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Numerals

( �1, 0, 1)-Matrix
The number of distinct (�1 ; 0; 1)/-/n �n matrices
(counting row and column permutations, the trans-
pose, and multiplication by �1 as equivalent) having
2n different row and column sums for n �2, 4, 6, ...
are 1, 4, 39, 2260, 1338614, ... (Kleber). For example,
the 2 �2 matrix is given by

�1 �1
0 1

� �
;

To get the total number from these counts (assuming
that 0 is not the missing sum, which is true for n 5
10); multiply by (2n!)2 : In general, if an -matrix which
has different column and row sums (collectively called
line sums), then

1. n is even,
2. The number in f�n; 1 �n ; 2 �n; . . .  ; ng that
does not appear as a line sum is either �n or , and
3. Of the largest line sums, half are column sums
and half are row sums

(Bodendiek and Burosch 1995, F. Galvin).

See also ALTERNATING SIGN MATRIX, C -MATRIX,
INTEGER MATRIX

References
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durch die Kombinatorik: Aufgaben und Lösungen aus
dem Schatz der Mathematik-Olympiaden. Heidelberg,
Germany: Spektrum Akademischer Verlag, pp. 250 �/253,
1995.

( �1, 1)-Matrix

See also HADAMARD MATRIX, INTEGER MATRIX

References
Kahn, J.; Komlós, J.; and Szemeredi, E. "On the Probability

that a Random 91 Matrix is Singular." J. Amer. Math.
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0-Free
ZEROFREE

0
DIVISION BY ZERO, FALLACY, NAUGHT, ZERO, ZERO

DIVISOR, ZERO-FORM, ZERO MATRIX, ZERO-SUM GAME,
ZEROFREE

0 �1
FALLACY

(0, 1)-Matrix
A (0; 1)/-INTEGER MATRIX, i.e., a matrix each of whose
elements is 0 or 1, also called a binary matrix.

The numbers of binary matrices with no adjacent 1s
(in either columns or rows) for n �1, 2, ..., are given
by 2, 7, 63, 1234, ... (Sloane’s A006506). For example,
the binary matrices with no adjacent 1s are

0 0
0 0

� �
;

0 0
0 1

� �
;

0 0
1 0

� �
;

0 1
0 0

� �

0 1
1 0

� �
;

1 0
0 0

� �
;

1 0
0 1

� �
;

These numbers are closely related to the HARD

SQUARE ENTROPY CONSTANT. The numbers of binary
matrices with no three adjacent 1s for , 2, ..., are given
by 2, 16, 265, 16561, ... (Sloane’s A050974).

Wilf (1997) considers the complexity of transforming
an m�n binary matrix A into a TRIANGULAR MATRIX

by permutations of the rows and columns of , and
concludes that the problem falls in difficulty between
a known easy case and a known hard case of the
general NP-COMPLETE PROBLEM.

See also ADJACENCY MATRIX, FROBENIUS-KÖ NIG THE-

OREM, GALE-RYSER THEOREM, HADAMARD’S MAXIMUM

DETERMINANT PROBLEM, HARD SQUARE ENTROPY

CONSTANT, IDENTITY MATRIX, INCIDENCE MATRIX,
INTEGER MATRIX, LAM’S PROBLEM, S -CLUSTER, S -RUN

References
Brualdi, R. A. "Discrepancy of Matrices of Zeros and Ones."

Electronic J. Combinatorics 6, No. 1, R15, 1�/12, 1999.
http://www.combinatorics.org/Volume_6/v6i1toc.html.

Ehrlich, H. "Determinantenabschätzungen für binäre Ma-
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1
The number one (1), also called "unity" is the first
POSITIVE INTEGER. It is an ODD NUMBER. Although the
number 1 used to be considered a PRIME NUMBER, it



requires special treatment in so many definitions and
applications involving primes greater than or equal to
2 that it is usually placed into a class of its own (Wells
1986, p. 31). The number 1 is sometimes also called
"unity," so the th roots of 1 are often called the th
ROOTS OF UNITY. FRACTIONS having 1 as a NUMERATOR

are called UNIT FRACTIONS. If only one root, solution,
etc., exists to a given problem, the solution is called
UNIQUE.

The GENERATING FUNCTION having all COEFFICIENTS

1 is given by

1

1 � x 
�1 �x �x2 �x3 �x4 �. . . :

See also FALLACY, ONE-FORM, ONE-MOUTH THEOREM,
ONE-NINTH CONSTANT, ONE-SHEETED HYPERBOLOID,
ONE-TO-ONE, ONE-WAY FUNCTION, 2, 3, COMPLEXITY

(NUMBER), EXACTLY ONE, ROOT OF UNITY, UNIQUE,
UNIT FRACTION, ZERO
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2
The number two (2) is the second POSITIVE INTEGER

and the first PRIME NUMBER. It is EVEN, and is the
only EVEN PRIME (the PRIMES other than 2 are called
the ODD PRIMES). The number 2 is also equal to its
FACTORIAL since 2! �2 : A quantity taken to the
POWER 2 is said to be SQUARED. The number of times
k a given BINARY number bn � � � b2b1b0 is divisible by 2
is given by the position of the first bk �1 ; counting
from the right. For example, 12 �1100 is divisible by
2 twice, and 13 �1101 is divisible by 2 zero times.

The only known solutions to the CONGRUENCE

2n �3 (mod n)

are n �4700063497 (Sloane’s A050259; Guy 1994)
and

63130707451134435989380140059866138830623361447484274774099906755

(P.-L. Montgomery 1999). In general, the least satis-
fying

2n �k (mod n)

for k �2, 3, ... are n �3, 4700063497, 6, 19147, 10669,
25, 9, 2228071, ... (Sloane’s A036236).

See also 1, BINARY, 3, RULER FUNCTION, SQUARED,
TWO-EARS THEOREM, TWO-FORM, TWO-GRAPH, TWO-

SCALE EXPANSION, TWO-SHEETED HYPERBOLOID,
ZERO
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2x mod 1 Map
Let x0 be a RATIONAL NUMBER in the CLOSED INTERVAL

[0; 1]; and generate a SEQUENCE using the MAP

xn�1 �2xn (mod 1): (1)

Then the number of periodic ORBITS of period p (for
PRIME) is given by

Np �
2p � 2

p 
(2)

(i.e, the number of period- repeating bit strings,
modulo shifts). Since a typical ORBIT visits each point
with equal probability, the NATURAL INVARIANT is
given by

r(x) �1: (3)

See also TENT MAP
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3
3 is the only INTEGER which is the sum of the
preceding POSITIVE INTEGERS (1�2�3) and the only
number which is the sum of the FACTORIALS of the
preceding POSITIVE INTEGERS (/1!�2!�3): It is also
the first ODD PRIME. A quantity taken to the POWER 3
is said to be CUBED.

The sequence 1, 31, 331, 3331, 33331, ... (Sloane’s
A033175) consisting of n�0, 1, ... 3s followed by a 1.
The th tern is given by

a(n)�
10n�1 � 7

3
:

The result is prime for , 2, 3, 4, 5, 6, 7, 17, 39, ...
(Sloane’s A055520); i.e., for 3, 31, 331, 3331, 33331,
333331, 3333331, 33333331, ... (Sloane’s A051200), a
fact which Gardner (1997) calls "a remarkable pat-
tern that is entirely accidental and leads nowhere."



See also 1, 2, 3X �1 MAPPING, CUBED, PERIOD THREE

THEOREM, TERNARY, THREE-CHOICE POLYGON,
THREE-CHOICE WALK, THREE-COLORABLE, THREE

CONICS THEOREM, THREE JUG PROBLEM, THREE-

VALUED LOGIC, TREFOIL KNOT, WIGNER 3J -SYMBOL,
ZERO
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3x �1 Mapping
COLLATZ PROBLEM

4

See also FOUR COINS PROBLEM, FOUR-COLOR THEO-

REM, FOUR CONICS THEOREM, FOUR EXPONENTIALS

CONJECTURE, FOUR TRAVELERS PROBLEM, FOUR-VEC-

TOR, FOUR-VERTEX THEOREM, LAGRANGE’S FOUR-

SQUARE THEOREM
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4-D Geometry
4-DIMENSIONAL GEOMETRY

4-Dimensional Geometry
4-dimensional geometry is Euclidean geometry ex-
tended into one additional DIMENSION. The prefix
"hyper-" is usually used to refer to the 4- (and higher-)
dimensional analogs of 3-dimensional objects, e.g.
HYPERCUBE, HYPERPLANE, HYPERSPHERE. -dimen-
sional POLYHEDRA are called POLYTOPES. the 4-dimen-
sional cases of general -dimensional objects are often
given special names, such as those summarized in the
following table.

2-D 3-D 4-D General

CIRCLE SPHERE GLOME HYPERSPHERE

SQUARE CUBE TESSERACT HYPERCUBE

EQUILATERAL

TRIANGLE

TETRAHEDRON PENTATOPE SIMPLEX

POLYGON POLYHEDRON POLYCHORON POLYTOPE

LINE SEG-

MENT

PLANE HYPERPLANE HYPERPLANE

SQUARE OCTAHEDRON 16-CELL CROSS POLY-

TOPE

EDGE FACE FACET FACET

AREA VOLUME CONTENT CONTENT

The SURFACE AREA of a HYPERSPHERE in -D is given by

Sn �
2pn=2

G 1
2 n
� � ;

and the VOLUME by

Vn �
pn=2Rn

G 1 � 1
2 n

� � ;
where G(n) is the GAMMA FUNCTION.

See also DIMENSION, HYPERCUBE, HYPERSPHERE
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5

See also FIVE DISKS PROBLEM, MIQUEL FIVE CIRCLES

THEOREM, PENTAGON, PENTAGRAM, PENTAHEDRON,
TETRAHEDRON 5-COMPOUND
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5-Cell
PENTATOPE

6

See also 6-SPHERE COORDINATES, HEXAGON, HEXAHE-



DRON, SIX CIRCLES THEOREM, SIX-COLOR THEOREM,
SIX EXPONENTIALS THEOREM, WIGNER 6J -SYMBOL
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6-Sphere Coordinates

The coordinate system obtained by INVERSION of
CARTESIAN COORDINATES, with u; v ; w � (��; �):
The transformation equations are

x �
u

u2 � v2 � w2 
(1)

y
v

u2 � v2 � w2 
(2)

z
w

u2 � v2 � w2 
: (3)

The equations of the surfaces of constant coordinates
are given by

x �
1

2u

 !2

�y2 �z2 �
1

4u2 
; (4)

which gives spheres tangent to the yz -plane at the
origin for u constant,

x2 � y �
1

2v

 !2

�z2 �
1

4v2 
; (5)

which gives spheres tangent to xz -plane at the origin
for v constant, and

x2 �y2 � z �
1

2w

 !2

�
1

4w2 
: (6)

which gives spheres tangent to the xy -plane at the
origin for w constant.
The metric coefficients are

guu �gvv �gww �
1

u2 � v2 � w2ð Þ2 : (7)

See also CARTESIAN COORDINATES, INVERSION
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7

See also SEVEN CIRCLES THEOREM
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8

See also EIGHT CURVE, EIGHT-POINT CIRCLE THEO-

REM, EIGHT SURFACE
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8-Cell
TESSERACT

9

See also NINE-POINT CENTER, NINE-POINT CIRCLE,
NINE-POINT CONIC, WIGNER 9J -SYMBOL
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10
The number 10 (ten) is the basis for the DECIMAL

system of notation. In this system, each "decimal
place" consists of a DIGIT 0�/9 arranged such that each
DIGIT is multiplied by a POWER of 10, decreasing from
left to right, and with a decimal place indicating the
100�1/s place. For example, the number 1234.56
specifies



1 �103 �2 �102 �3 �101 �4 �100 �5 �10 �1

�6 �10�2 :

The decimal places to the left of the decimal point are
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
100000000, ... (Sloane’s A011557), called one, ten,
HUNDRED, THOUSAND, ten thousand, hundred thou-
sand, MILLION, 10 million, 100 million, and so on. The
names of subsequent decimal places for LARGE NUM-

BERS differ depending on country.

Any POWER of 10 which can be written as the
PRODUCT of two numbers not containing 0s must be
OF THE FORM 2n � 5n �10n for an INTEGER such that
neither 2n nor 5n contains any ZEROS. The largest
known such number is

1023 �233 � 533 �8 ; 589; 934; 592

�116; 415; 321; 826; 934; 814; 453; 125:

A complete list of known such numbers is

101 �21 � 51

102 �22 � 52

103 �23 � 53

104 �24 � 54

105 �25 � 55

106 �26 � 56

107 �27 � 57

109 �29 � 59

1018 �218 � 518

1033 �233 � 533

(Madachy 1979). Since all POWERS of 2 with expo-
nents 86 Bn 54:6 �107 contain at least one ZERO

(M. Cook), no other POWER of ten less than 46 million
can be written as the PRODUCT of two numbers not
containing 0s.

See also BILLION, DECIMAL, HUNDRED, LARGE NUM-

BER, MILLIARD, MILLION, THOUSAND, TRILLION, ZERO
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11

References
Wells, D. The Penguin Dictionary of Curious and Interesting

Numbers. Middlesex, England: Penguin Books, 1986.

12
One DOZEN, or a twelfth of a GROSS.

See also DOZEN, GROSS

References
Wells, D. The Penguin Dictionary of Curious and Interesting

Numbers. Middlesex, England: Penguin Books, 1986.

13

A NUMBER traditionally associated with bad luck. A
so-called BAKER’S DOZEN is equal to 13. Fear of the
number 13 is called TRISKAIDEKAPHOBIA. There are 13
ARCHIMEDEAN SOLIDS. Mazur and Tate (1973/74)
proved that there is no ELLIPTIC CURVE over the
rationals Q having a RATIONAL POINT of order 13.

See also BAKER’S DOZEN, TRISKAIDEKAPHOBIA
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15

See also 15 PUZZLE, FIFTEEN THEOREM

15 Puzzle

A puzzle introduced by Sam Loyd in 1878. It consists
of 15 squares numbered from 1 to 15 which are placed
in a 4�4 box leaving one position out of the 16 empty.
The goal is to reposition the squares from a given
arbitrary starting arrangement by sliding them one
at a time into the configuration shown above. For
some initial arrangements, this rearrangement is
possible, but for others, it is not.
To address the solubility of a given initial arrange-
ment, proceed as follows. If the SQUARE containing
the number i appears "before" (reading the squares in
the box from left to right and top to bottom) numbers
which are less than , then call it an inversion of order
, and denote it ni: Then define



N �
X15

i�1

ni �
X15

i�2

ni ;

where the sum need run only from 2 to 15 rather than
1 to 15 since there are no numbers less than 1 (so n1

must equal 0). If N is EVEN, the position is possible,
otherwise it is not. This can be formally proved using
ALTERNATING GROUPS. For example, in the following
arrangement

/n2 �1 (2 precedes 1) and all other ni �0 ; so N �1 and
the puzzle cannot be solved.

Johnson (1879) proved that odd permutations of the
puzzle are impossible, which Story (1879) proved that
all even permutations are possible. While Herstein
and Kaplansky (1978) wrote that "no really easy proof
seems to be known," Archer (1999) presented a simple
proof. A more general result due to Wilson (1974)
showed that for any CONNECTED GRAPH on nodes,
with the exception of CYCLE GRAPHS Cn and the
THETA-0 GRAPH, either exactly half or all of the n!
possible labelings are obtainable by sliding labels,
depending on whether the graph is BIPARTITE (Archer
1999). u0 has six inequivalent labelings, which has
(n �2)! inequivalent labelings.

Reversing the order of the "8 Puzzle" made on a 3 �3
board can be proved to require at least 26 moves,
although the best solution requires 30 moves (Gard-
ner 1984, pp. 200 and 206 �/207). The number of
distinct solutions in 28, 30, 32, ... moves are 0, 10,
112, 512, ... (Sloane’s A046164), giving 634 solutions
better than the 36-move solution given by Dudeney
(1949).
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15 Schoolgirl Problem
KIRKMAN’S SCHOOLGIRL PROBLEM

16-Cell

The finite regular 4-D CROSS POLYTOPE with SCHLÄ-

FLI SYMBOL f3; 3; 4g and VERTICES which are the
PERMUTATIONS of (, 0, 0, 0). The 16-cell is the dual of
the TESSERACT. Its graph is isomorphic to the CIRCU-

LANT GRAPH Ci1; 2; 3(8):/

See also 24-CELL, 120-CELL, 600-CELL, CELL, CROSS

POLYTOPE, HYPERCUBE, PENTATOPE, POLYCHORON,
POLYTOPE, TESSERACT
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17 is a FERMAT PRIME which means that the 17-sided
REGULAR POLYGON (the HEPTADECAGON) is CONSTRUC-

TIBLE using COMPASS and STRAIGHTEDGE (as proved
by Gauss).

See also CONSTRUCTIBLE POLYGON , FERMAT PRIME,
HEPTADECAGON
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17-gon
HEPTADECAGON

18-Point Problem
Place a point somewhere on a LINE SEGMENT. Now
place a second point and number it 2 so that each of
the points is in a different half of the LINE SEGMENT.
Continue, placing every th point so that all points are
on different (1=N)/th of the LINE SEGMENT. Formally,
for a given , does there exist a sequence of real
numbers x1 ; x2 ; ..., xN such that for every n �
f1; . . . ; N g and every k � f1 ; . . . ; ng; the inequality

k � 1

n
5xi B

k

n

holds for some i � f1 ; . . . ; n g/? Surprisingly, it is only
possible to place 17 points in this manner (Berlekamp
and Graham 1970, Warmus 1976).

Steinhaus (1979) gives a 14-point solution (0.06, 0.55,
0.77, 0.39, 0.96, 0.28, 0.64, 0.13, 0.88, 0.48, 0.19, 0.71,
0.35, 0.82), and Warmus (1976) gives the 17-point
solution

4
7 5x1 B

7
12;

2
7 5x2 B

5
17;

16
17 5x3 B1 ; 1

14 5x4 B
1
13;

8
11 5x5 B

11
15;

5
11 5x6 B

6
13 ;

1
7 5x7 B

2
13 ;

14
17 5x8 B

5
6;

3
8 5x9 B

5
13;

11
17 5x10 B

2
3 ;

3
14 5x11 B

3
13;

15
17 5x12 B

11
12;

1
2 5x12 B

9
17 ; 0 5x14 B

1
17;

13
17 5x15 B

4
5;

5
16 5x16 B

6
17 ;

10
17 5x17 B

11
17;

Warmus (1976) states that there are 768 patterns of
17-point solutions (counting reversals as equivalent).

See also DISCREPANCY THEOREM, POINT PICKING
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24-Cell

A finite regular 4-D POLYTOPE with SCHLÄ FLI SYMBOL

f3; 4; 3g: Coxeter (1969) gives a list of the VERTEX

positions. The EVEN coefficients of the/D4/ lattice are 1,
24, 24, 96, ... (Sloane’s A004011), and the 24 shortest
vectors in this lattice form the 24-cell (Coxeter 1973,
Conway and Sloane 1993, Sloane and Plouffe 1995).
The 24-cell is self-dual, and is the unique regular
convex POLYCHORON which has no direct 3-D analog.

One construction for the 24-cell evokes comparison
with the RHOMBIC DODECAHEDRON. Given two equal
cubes, we construct this dodecahedron by cutting one
cube into six congruent square pyramids, and attach-
ing these to the six squares bounding the other cube.
Similarly, given two equal tesseracts, we can con-
struct the 24-cell by cutting one tesseract into eight
congruent cubic pyramids, and attaching these to the
eight cubes bounding the other tesseract (Towle).

See also 16-CELL, 120-CELL, 600-CELL, CELL, HYPER-

CUBE, PENTATOPE, POLYCHORON, POLYTOPE
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36 Officer Problem
How can a delegation of six regiments, each of which
sends a colonel, a lieutenant-colonel, and major, a
captain, a lieutenant, and a sub-lieutenant be ar-



ranged in a regular 6 �6 array such that no row or
column duplicates a rank or a regiment? The answer
is that no such arrangement is possible.

See also EULER’S GRAECO-ROMAN SQUARES CONJEC-

TURE, LATIN SQUARE
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42
According to Adams (1997), 42 is the ultimate answer
to life, the universe, and everything, although it is left
as an exercise to the reader to determine the actual
question leading to this result.
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72 Rule
RULE OF 72

120-Cell

A finite regular 4-D POLYTOPE with SCHLÄ FLI SYMBOL

f5; 3; 3g: The 120-cell has 600 vertices (Coxeter
1969), and consists of 120 DODECAHEDRA and 720
PENTAGONS (Coxeter 1973, p. 264). In the plate
following p. 176, Coxeter (1973) illustrates the poly-
tope. The dual of the 120-cell is the 600-CELL.

See also 16-CELL, 24-CELL, 600-CELL, CELL, HYPER-

CUBE, PENTATOPE, POLYCHORON, POLYTOPE, SIMPLEX
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144
A DOZEN DOZEN, also called a GROSS. 144 is a SQUARE

NUMBER and a SUM-PRODUCT NUMBER.

See also DOZEN

163
The number 163 is very important in number theory,
since d �163 is the largest number such that the
IMAGINARY QUADRATIC FIELD Q �

ffiffiffi
d

p� �
has CLASS

NUMBER h(�d) �1 : It also satisfies the curious iden-
tities

163
X4

i�0

8
i

	 

(1)

1

2
44 �

8
4

	 
� �
(2)

1

2
44 �

X4

i �0

4
i

	 
2
" #

; (3)

where n
k

 �
is a BINOMIAL COEFFICIENT (Stoschek). An

approximation due to Stoschek is given by

p :
29

163 
�

512

163 
:3:1411043; (4)

which is good to 3 digits.

See also RAMANUJAN CONSTANT
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196-Algorithm
Take any POSITIVE INTEGER of two DIGITS or more,
reverse the DIGITS, and add to the original number.
Now repeat the procedure with the SUM so obtained.
This procedure quickly produces PALINDROMIC NUM-

BERS for most INTEGERS. For example, starting with
the number 5280 produces (5280, 6105, 11121,
23232). The end results of applying the algorithm to
1, 2, 3, ... are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 33, 44, 55,
66, 77, 88, 99, 121, ... (Sloane’s A033865). The value
for 89 is especially large, being 8813200023188.

The first few numbers not known to produce PALIN-

DROMES are 196, 887, 1675, 7436, 13783, ... (Sloane’s
A006960), which are simply the numbers obtained by
iteratively applying the algorithm to the number 196.
This number therefore lends itself to the name of the
ALGORITHM. In 1990, John Walker computed
2,415,836 iterations of the algorithm on 196 and
obtained a number having 1,000,000 digits. This
was extended in 1995 by Tim Irvin, who obtained a



number having 2,000,000 digits. The rec.puzzles
archive states that a 3,924,257-digit nonpalindromic
number is obtained after 9,480,000 iterations.

The number of terms a(n) in the iteration sequence
required to produce a PALINDROMIC NUMBER from
(i.e., a(n) �1 for a PALINDROMIC NUMBER, a(n) �2 if a
PALINDROMIC NUMBER is produced after a single
iteration of the 196-algorithm, etc.) for , 2, ... are 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, ...
(Sloane’s A030547). The smallest numbers which
require, 1, 2, ... iterations to reach a palindrome are
0, 10, 19, 59, 69, 166, 79, 188, ... (Sloane’s A023109).

The 196-algorithm can be implemented in Mathema-
tica as

PalindromicQ[n_Integer?Positive]: � Module[

{sn �ToString[n]},

sn ��StringReverse[sn]

]

Algorithm196[n_Integer?PalindromicQ,it_:0]:-

�{n} Algorithm196[n_Integer?Positive,

it_:Infinity]: �
FixedPointList[# � ToExpression[StringRe-

verse[ToString[#]]]&,

n, it, SameTest- �(PalindromicQ[#2]&)

]

M. Sofroniou gives an efficient Mathematica imple-
mentation which has complexity O k2ð Þ for steps,
requiring approximately 10.6 hours on a 450 MHz
Pentium II to compute 250,000 iterations. Extrapo-
lating the timing data suggests that approximately 42
days would be needed on this same machine to match
Walker’s 2,415,836 iterations.

See also ADDITIVE PERSISTENCE, DIGITADDITION,
MULTIPLICATIVE PERSISTENCE, PALINDROMIC NUM-

BER, PALINDROMIC NUMBER CONJECTURE, RATS
SEQUENCE, RECURRING DIGITAL INVARIANT
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239
Some interesting properties (as well as a few arcane
ones not reiterated here) of the number 239 are
discussed in Beeler et al. (1972, Item 63). 239 appears
in MACHIN’S FORMULA

1
4 p �4 tan�1 1

5

� �
�tan �1 1

239

� �
;

which is related to the fact that

2 � 134 �1 �2392 ;

which is why 239/169 is the 7th CONVERGENT of
ffiffiffi
2

p
:

Another pair of INVERSE TANGENT FORMULAS invol-
ving 239 is

tan�1 1
239

� �
tan�1 1

70

� �
�tan�1 1

99

� �

tan�1 1
408

� �
�tan�1 1

577

� �
:

239 needs 4 SQUARES (the maximum) to express it, 9
CUBES (the maximum, shared only with 23) to express
it, and 19 fourth POWERS (the maximum) to express it
(see WARING’S PROBLEM). However, 239 doesn’t need
the maximum number of fifth POWERS (Beeler et al.
1972, Item 63).
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243
Feynman (1997) noticed the curious fact that the
decimal expansion

1
243�0:004115226337448559 . . .

repeats pairs of the digits 0, 1, 2, 3, ... separated by
the digits 4, 5, 6, 7, .... Just after this point, the
pattern breaks, since the fraction is given exactly by
the repeating decimal

1
243�0:004115226337448559670781893:

This pattern is related to the fact that

1
9�0:1̄



and

1
81 �0:0123456789:
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257-gon
257 is a FERMAT PRIME, and the 257-gon is therefore a
CONSTRUCTIBLE POLYGON using COMPASS and
STRAIGHTEDGE, as proved by Gauss. An illustration
of the 257-gon is not included here, since its 257
segments so closely resemble a CIRCLE. Richelot and
Schwendenwein found constructions for the 257-gon
in 1832 (Coxeter 1969). De Temple (1991) gives a
construction using 150 CIRCLES (24 of which are
CARLYLE CIRCLES) which has GEOMETROGRAPHY sym-
bol 94S1 �47S2 �275C1 �0C2 �150C3 and SIMPLI-

CITY 566.

See also 65537-GON, CONSTRUCTIBLE POLYGON, FER-

MAT PRIME, HEPTADECAGON, PENTAGON
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600-Cell

A finite regular 4-D POLYTOPE with SCHLÄ FLI SYMBOL

f3; 3; 5g: The 600-cell has 120 VERTICES (Coxeter
1969). In the plate following p. 160, Coxeter (1973)
gives two illustrations of the polytope.

The dual of the 600-cell is the 120-CELL.

See also 16-CELL, 24-CELL, 120-CELL, CELL, HYPER-

CUBE, PENTATOPE, POLYCHORON, POLYTOPE, SIMPLEX
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666
A number known as the BEAST NUMBER appearing in
the Bible and ascribed various numerological proper-
ties.

See also APOCALYPTIC NUMBER, BEAST NUMBER,
LEVIATHAN NUMBER
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1729
1729 is sometimes called the HARDY-RAMANUJAN

NUMBER. It is the smallest TAXICAB NUMBER, i.e., the
smallest number which can be expressed as the sum
of two cubes in two different ways:

1729�13�123�93�103:

See also HARDY-RAMANUJAN NUMBER, TAXICAB NUM-

BER

2187
The digits in the number 2187 form the two VAMPIRE

NUMBERS: 21�87�1827 and 2187�27�81: 2187 is
also given by 37.



See also VAMPIRE NUMBER
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65537-gon
65537 is the largest known FERMAT PRIME, and the
65537-gon is therefore a CONSTRUCTIBLE POLYGON

using COMPASS and STRAIGHTEDGE, as proved by
Gauss. The 65537-gon has so many sides that it is,
for all intents and purposes, indistinguishable from a
CIRCLE using any reasonable printing or display
methods.

Hermes spent 10 years on the construction of the
65537-gon at Königsberg around (1900). After the
Second World War, his manuscripts were moved to
the Mathematical Institute in Göttingen, where they
can now be viewed (Coxeter 1969).

De Temple (1991) notes that a GEOMETRIC CONSTRUC-

TION can be done using 1332 or fewer CARLYLE

CIRCLES.

See also 257-GON, CONSTRUCTIBLE POLYGON, HEPTA-

DECAGON, PENTAGON
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A

AAA Theorem

Specifying three ANGLES A , B , and C does not
uniquely define a TRIANGLE, but any two TRIANGLES

with the same ANGLES are SIMILAR. Specifying two
ANGLES of a TRIANGLE automatically gives the third
since the sum of ANGLES in a TRIANGLE sums to 180 8
(/ p RADIANS), i.e.,

C � p �A �B :

See also AAS THEOREM, ASA THEOREM, ASS THEO-

REM, SAS THEOREM, SSS THEOREM, TRIANGLE

AAS Theorem

Specifying two angles A and B and a side a uniquely
determines a TRIANGLE with AREA

K �
a2 sin B sin C

2 sin A
�

a2 sin B sin( p � A � B)

2 sin A
: (1)

The third angle is given by

C � p �A �B ; (2)

since the sum of angles of a TRIANGLE is 1808 (/p
RADIANS). Solving the LAW OF SINES

a

sin A 
�

b

sin B 
(3)

for b gives

b �a
sin B

sin A 
: (4)

Finally,

c �b cos A �a cos B �a(sin B cot A �cos B) (5)

�a sin B(cot A �cot B): (6)

See also AAA THEOREM, ASA THEOREM, ASS THEO-

REM, SAS THEOREM, SSS THEOREM, TRIANGLE

Abacus

A mechanical counting device consisting of a frame
holding a series of parallel rods on each of which
beads are strung. Each bead represents a counting
unit, and each rod a place value. The primary purpose
of the abacus is not to perform actual computations,
but to provide a quick means of storing numbers
during a calculation. Abaci were used by the Japa-
nese and Chinese, as well as the Romans.

See also ROMAN NUMERAL, SLIDE RULE
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abc Conjecture
A CONJECTURE due to J. Oesterlé and D. W. Masser.
It states that, for any INFINITESIMAL e > 0; there
exists a CONSTANT Ce such that for any three
RELATIVELY PRIME INTEGERS a , b , c satisfying

a�b�c; (1)

the INEQUALITY

max(½a½; ½b½; ½c½) 5Ce

Y
p½abc

p1�e (2)

holds, where p½abc indicates that the PRODUCT is over
PRIMES p which DIVIDE the PRODUCT abc . If this
CONJECTURE were true, it would imply FERMAT’S LAST

THEOREM for sufficiently large POWERS (Goldfeld
1996). This is related to the fact that the abc
conjecture implies that there are at least C ln x
WIEFERICH PRIMES 5 x for some constant C (Silver-
man 1988, Vardi 1991).



The conjecture can also be stated by defining the
height and radical of the sum P : a � b � c as

h(P) � maxfln½a½; ln½b½; ln ½c ½g (3)

r(P) �
X
p ½abc

ln p ; (4)

where p runs over all prime divisors of a , b , and c .
Then the abc conjecture states that for all e > 0; there
exists a constant K such that for all P : a �b �c ;

h(P) 5r(P) � eh(P) �K (5)

(van Frankenhuysen 2000). van Frankenhuysen
(2000) has shown that there exists an infinite se-
quence of sums P : a �b �c or RATIONAL INTEGERS

with large height compared to the radical,

h(p) ]r(P) �4Kl

ffiffiffiffiffiffiffiffiffiffi
h(P)

p

ln[h(P)]
; (6)

with

Kl�2l=2 2p

e

 !1=4

> 1:517 (7)

for l�0:5990; improving a result of Stewart and
Tijdeman (1986).

See also FERMAT’S LAST THEOREM, MASON’S THEO-

REM, MORDELL CONJECTURE, ROTH’S THEOREM, WIE-

FERICH PRIME
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Abel Polynomial
A polynomial An(x; a) given by the associated SHEF-

FER SEQUENCE with

f (t)�teat; (1)

given by

An(x; a)�x(x�an)n�1: (2)

The GENERATING FUNCTION is

X�
k�0

Ak(x; a)

k!
tk�exW(at)=a; (3)

where W(x) is LAMBERT’S W -FUNCTION. The asso-
ciated BINOMIAL IDENTITY is

(x�y)(x�y�an)n�1

�
Xn

k�0

n
k

� �
xy(x�ak)k�1[y�a(n�k)]n�k�1; (4)

where n
k

� 	
is a BINOMIAL COEFFICIENT, a formula

originally due to Abel (Riordan 1979, p. 18; Roman
1984, pp. 30 and 73).

The first few Abel polynomials are

A0(x; a)�1
A1(x; a)�x
A2(x; a)�x(x�2a)
A3(x; a)�x(x�3a)2

A4(x; a)�x(x�4a)3:
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Abel Transform
The following INTEGRAL TRANSFORM relationship,
known as the Abel transform, exists between two
functions f (x) and g(t) for 0BaB1;

f (x)�g
x

0

g(t) dt

(x � t)a
(1)

g(t)��
sin(pa)

p

d

dtg
t

0

f (x) dx

(x � t)1�a
(2)

��
sin(pa)

p g
t

0

df

dx

dx

(t � x)1�a
�

f (0)

t1�a

" #
: (3)

The Abel transform is used in calculating the radial



mass distribution of galaxies (Binney and Tremaine
1987) and inverting planetary radio occultation data
to obtain atmospheric information as a function of
height.

Bracewell (1999, p. 262) defines a slightly different
form of the Abel transform given by

g(x) �A[f (r)] �2g
�

x

f (r)r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p : (4)

The following table gives a number of common Abel
transform pairs (Bracewell 1999, p. 264). Here,

Pa(x) �P
x

2a 
�

1

2

 !
�

1 for 0 Bx B0
0 otherwise

�
(5)

where P(x) is the RECTANGLE FUNCTION, and

M(x) �2 p x �3g
x

0

J0(x) dx �x �2J0(x)

 �
(6)

�
p2

x2 
[J1(x)H0(x) �J0(x)H1(x)]; (7)

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND

and Hn(x) is a STRUVE FUNCTION.

/f (r)/ /g(x)/ conditions

/ Pa(r)/ /2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
/ /a2 > x2

/

/(a2 �r2)�1=2 Pa(r)/ /p/ /a2 > x2
/

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �r2

p
Pa(r)/ /

1
2p(a2 �x2)/ /a2 > x2

/

/(a2 �r2)Pa(r)/ /
4
3(a

2 �x2)3=2
/ /a2 > x2

/

/(a2 �r2)3=2 Pa(r)/ /
3
8p(a2 �x2)2

/ /a2 > x2
/

/(a � r)Pa(r)/ /a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
�x2 cosh �1 a

x

� �
/

/
1
p

cosh �1 a

r

� �
/ /a �x/

/ d(r �a)/ /
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p Pa(x)/

/e �r2 =s2

/ /s
ffiffiffi
p

p
e �x2 =s2

/ /s > 0/

/r2e �r2 =s2

/ /s(x2 �1
2s

2)
ffiffiffi
p

p
e �x2 =s2

/ /s > 0/

/
e �r2 =s2

s
ffiffiffi
p

p (r2 �1
2s

2)/ /x2e �x2 = s2

/ /s > 0/

/
1

b2 � r2
/ /

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p / /b2 �x2 > 0/

/J0(vr)/ /
2 cos( vx)

v
/ /v > 0/

/M(r)/ /
8p4

v2x2
sin2 xv

2 p

� �
/ /v > 0/

See also FOURIER TRANSFORM, HILBERT TRANSFORM,
INTEGRAL EQUATION
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Abel’s Binomial Theorem
The identity

Xm

y�0

m
y

� �
(w �y)m�y �1(z �y)y �w �1(z �w �m)m

(Bhatnagar 1995, p. 51). There are a host of other
such BINOMIAL IDENTITIES.

See also BINOMIAL IDENTITY, Q -ABEL’S THEOREM
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Abel’s Convergence Theorem
Given a TAYLOR SERIES

f (z) �
X�
n�0

Cnzn�
X�
n�0

Cnrneinu; (1)

where the COMPLEX NUMBER z has been written in the
polar form z�reiu; examine the REAL and IMAGINARY

PARTS

u(r; u)�
X�
n�0

Cnrn cos(nu) (2)

v(r; u)�
X�
n�0

Cnrn sin(nu): (3)

Abel’s theorem states that, if u(1; u) and v(1; u) are
CONVERGENT, then

u(1; u)�iv(1; u)�lim
r01

f (reiu): (4)



Stated in words, Abel’s theorem guarantees that, if a
REAL POWER SERIES CONVERGES for some POSITIVE

value of the argument, the DOMAIN of UNIFORM

CONVERGENCE extends at least up to and including
this point. Furthermore, the continuity of the sum
function extends at least up to and including this
point.
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Abel’s Curve Theorem
The sum of the values of an INTEGRAL of the "first" or
"second" sort

g
x1 ; y1

x0 ; y0

P dx

Q
�. . .�g

xN ; yN

x0 ; y0

P dx

Q
�F(z)

and

P(x1 ; y1)

Q(x1 ; y1)

dx1

dz
�. . .�

P(xN ; yN)

Q(xN ; yN)

dxN

dz
�

dF

dz
;

from a FIXED POINT to the points of intersection with a
curve depending rationally upon any number of
parameters is a RATIONAL FUNCTION of those para-
meters.
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Abel’s Differential Equation
The Abel equation of the first kind is given by

y ?�f0(x) �f1(x)y �f2(x)y2 �f3(x)y3 �. . .

(Murphy 1960, p. 23; Zwillinger 1997, p. 120), and
the Abel equation of the second kind by

[g0(x) �g1(x)y]y?�f0(x) �f1(x)y �f2(x)y2 �f3(x)y3

(Murphy 1960, p. 25; Zwillinger 1997, p. 120).
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Abel’s Differential Equation Identity
Given a homogeneous linear SECOND-ORDER ORDIN-

ARY DIFFERENTIAL EQUATION,

yƒ� P(x)y? � Q(x)y � 0 ; (1)

call the two linearly independent solutions y1(x) and
y2(x) : Then

yƒ1 �P(x)y?1 �Q(x)y1 �0 (2)

yƒ2 �P(x)y?2 �Q(x)y2 �0: (3)

Now, take y1� (3) minus y2� (2),

y1[yƒ2 �P(x)y?2 �Q(x)y2] �y2[yƒ1 �P(x)y?1 �Q(x)y1] �0

(4)

(y1yƒ2 �y2yƒ1) �P(y1y?2 �y?1y2) �Q(y1y2 �y1y2) �0 (5)

(y1yƒ2 �y2yƒ1) �P(y1y?2 �y?1y2) �0 : (6)

Now, use the definition of the WRONSKIAN and take
its DERIVATIVE,

W �y1y?2 �y?1y2 (7)

W ?�(y?y ?2 �y1yƒ2) �(y?1y?2 �y ƒ1y2)

y1yƒ2 �yƒ1y2 : (8)

Plugging W and W ? into (6) gives

W ?�PW �0 : (9)

This can be rearranged to yield

dW

W
��P(x) dx (10)

which can then be directly integrated to

ln
W(x)

W0

" #
��gP(x) dx; (11)

where lnx is the NATURAL LOGARITHM. Exponentiat-
ing then yields Abel’s identity

W(x) �W0e �gP(x) dx ; (12)

where W0 is a constant of integration.

See also ORDINARY DIFFERENTIAL EQUATION–SECOND-

ORDER
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Abel’s Duplication Formula
The duplication formula for ROGERS L -FUNCTION

follows from ABEL’S FUNCTIONAL EQUATION and is
given by

1
2L(x2)�L(x)�L

x

1 � x

 !
:

See also ABEL’S FUNCTIONAL EQUATION, DILOGA-

RITHM
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Abel’s Functional Equation
Let L(x) denote the ROGERS L -FUNCTION defined in
terms of the usual DILOGARITHM by

L(x) �
6

p2
Li2(x) �1

2 ln x ln(1 �x)
h i

�
6

p2

X�
n �1

xn

n2 
�1

2 ln x ln(1 �x)

" #
;

then L(x) satisfies the functional equation

L(x) �L(y) �L(xy) �L
x(1 � y)

1 � xy

 !
�L

y(1 � x)

1 � xy

 !
:

ABEL’S DUPLICATION FORMULA follows from this iden-
tity.

See also ABEL’S DUPLICATION FORMULA, DILOGA-

RITHM, FUNCTIONAL EQUATION, POLYLOGARITHM,
RIEMANN ZETA FUNCTION, ROGERS L -FUNCTION
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Abel’s Impossibility Theorem
In general, POLYNOMIAL equations higher than fourth
degree are incapable of algebraic solution in terms of
a finite number of ADDITIONS, SUBTRACTIONS, MULTI-

PLICATIONS, DIVISIONS, and ROOT EXTRACTIONS. This
was also shown by Ruffini in 1813 (Wells 1986, p. 59).

See also CUBIC EQUATION, GALOIS’S THEOREM, POLY-

NOMIAL, QUADRATIC EQUATION, QUARTIC EQUATION,
QUINTIC EQUATION
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chungen von höheren Graden als dem vierten allgemein
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Abel’s Inequality
Let ffn g and fan g be SEQUENCES with fn ]fn�1 > 0 for
n � 1, 2, ..., then

jXm

n�1

anfnj5Af1 ;

where

A �maxf½a1 ½; ½a1 �a2 ½; . . . ; ½a1 �a2 �. . .�am ½g:

Abel’s Irreducibility Theorem
If one ROOT of the equation f (x) �0; which is irredu-
cible over a FIELD K , is also a ROOT of the equation
F(x) �0 in K , then all the ROOTS of the irreducible
equation f (x) �0 are ROOTS of F(x) �0: Equivalently,
F(x) can be divided by f (x) without a REMAINDER,

F(x) �f (x)F1(x);

where F1(x) is also a POLYNOMIAL over K .

See also ABEL’S LEMMA, KRONECKER’S POLYNOMIAL

THEOREM, SCHÖ NEMANN’S THEOREM
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Abel’s Lemma
The pure equation

xp �C

of PRIME degree p is irreducible over a FIELD when C
is a number of the FIELD but not the pth POWER of an
element of the FIELD.

Jeffreys and Jeffreys (1988) use the term "Abel’s
lemma" for another LEMMA related to ABEL’S UNIFORM

CONVERGENCE TEST.

See also ABEL’S IRREDUCIBILITY THEOREM, GAUSS’S

POLYNOMIAL THEOREM, KRONECKER’S POLYNOMIAL

THEOREM, SCHÖ NEMANN’S THEOREM
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Jeffreys, H. and Jeffreys, B. S. "Abel’s Lemma." §1.1153 in
Methods of Mathematical Physics, 3rd ed. Cambridge,
England: Cambridge University Press, pp. 41 �/2, 1988.

Abel’s Test
ABEL’S UNIFORM CONVERGENCE TEST

Abel’s Theorem
ABEL’S BINOMIAL THEOREM, ABEL’S CONVERGENCE

THEOREM, ABEL’S CURVE THEOREM, ABEL’S IMPOSSI-

BILITY THEOREM, ABEL’S IRREDUCIBILITY THEOREM,
ABELIAN THEOREM, Q -ABEL’S THEOREM

Abel’s Uniform Convergence Test
Let fun(x) g be a SEQUENCE of functions. If

1. un(x) can be written un(x) �anfn(x);/
2. aan is CONVERGENT,
3. fn(x) is a MONOTONIC DECREASING SEQUENCE

(i.e., fn�1(x) 5fn(x)) for all n , and
4. fn(x) is BOUNDED in some region (i.e., 0 5fn(x) 5
M for all x e [a ; b])/

then, for all x � [a ; b]; the SERIES aun(x) CONVERGES

UNIFORMLY.

See also CONVERGENCE TESTS, CONVERGENT SERIES,
UNIFORM CONVERGENCE
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Abelian
A group or other algebraic object is said to be Abelian
is the law of commutativity always holds. If an
algebraic object is not Abelian, it is said to be NON-

ABELIAN.

See also ABELIAN CATEGORY, ABELIAN DIFFERENTIAL,
ABELIAN FUNCTION, ABELIAN GROUP, ABELIAN INTE-

GRAL, ABELIAN VARIETY, COMMUTATIVE, NON-ABE-

LIAN

Abelian Category
An Abelian category is an abstract mathematical
CATEGORY which displays some of the characteristic
properties of the CATEGORY of all ABELIAN GROUPS.

See also ABELIAN GROUP, CATEGORY
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Abelian Differential
An Abelian differential is an ANALYTIC or MERO-

MORPHIC DIFFERENTIAL on a COMPACT or closed
RIEMANN SURFACE.

Abelian Extension
This entry contributed by NICOLAS BRAY

If F is an ALGEBRAIC GALOIS EXTENSION of K such
that the GALOIS GROUP of the extension is ABELIAN,
then F is said to be an Abelian extension of K .

See also ALGEBRAIC EXTENSION, GALOIS EXTENSION,
GALOIS GROUP

Abelian Function
An INVERSE FUNCTION of an ABELIAN INTEGRAL.
Abelian functions have two variables and four peri-
ods, and can be defined by

U y ; t;
q ?
q

� �
�
X�

l ���

22piy(l�q ?)� pit(l �q ?)2�2piq(l�q?)

Baker (1907, p. 21). Abelian functions are a general-
ization of ELLIPTIC FUNCTIONS, and are also called
hyperelliptic functions.

See also ABELIAN INTEGRAL, ELLIPTIC FUNCTION,
THETA FUNCTIONS
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Abelian Group
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A GROUP for which the elements COMMUTE (i.e., AB �
BA for all elements A and B ) is called an Abelian
group. All CYCLIC GROUPS are Abelian, but an Abelian
group is not necessarily CYCLIC. All SUBGROUPS of an
Abelian group are NORMAL. In an Abelian group, each
element is in a CONJUGACY CLASS by itself, and the
CHARACTER TABLE involves POWERS of a single ele-
ment known as a GENERATOR.

 



No general formula is known for giving the number of
nonisomorphic FINITE GROUPS of a given ORDER.
However, the number of nonisomorphic Abelian
FINITE GROUPS a(n) of any given ORDER n is given
by writing n as

n �
Y

i

p ai

i ; (1)

where the pi are distinct PRIME FACTORS, then

a(n) �
Y

i

P( ai) ; (2)

where P(k) is the PARTITION FUNCTION. This gives 1,
1, 1, 2, 1, 1, 1, 3, 2, ... (Sloane’s A000688). The
smallest orders for which n � 1, 2, 3, ... noniso-
morphic Abelian groups exist are 1, 4, 8, 36, 16, 72,
32, 900, 216, 144, 64, 1800, 0, 288, 128, ... (Sloane’s
A046056), where 0 denotes an impossible number
(i.e., not a product of partition numbers) of noniso-
morphic Abelian, groups. The "missing" values are
13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, ...
(Sloane’s A046064). The incrementally largest num-
bers of Abelian groups as a function of order are 1, 2,
3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (Sloane’s
A046054), which occur for orders 1, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192, ... (Sloane’s
A046055).

The KRONECKER DECOMPOSITION THEOREM states
that every FINITE Abelian group can be written as a
GROUP DIRECT PRODUCT of CYCLIC GROUPS of PRIME

POWER ORDER. If the ORDER of a FINITE GROUP is a
PRIME p , then there exists a single Abelian group of
order p (denoted Zp) and no non-Abelian groups. If
the ORDER is a prime squared p2 then there are two
Abelian groups (denoted Zp2 and Zp �Zp : If the ORDER

is a prime cubed p3 ; then there are three Abelian
groups (denoted Zp �Zp �Zp ; Zp �Zp2 ; and Zp3 ) ; and
five groups total. If the order is a PRODUCT of two
primes p and q , then there exists exactly one Abelian
group of ORDER pq (denoted Zp �Zq) :/

Another interesting result is that if a(n) denotes the
number of nonisomorphic Abelian groups of ORDER n ,
then

X�
n�1

a(n)n �s � z(s) z(2s) z(3s) � � � ; (3)

where z(s) is the RIEMANN ZETA FUNCTION. Srinivasan
(1973) has also shown that

XN

n�1

a(n) �A1N �A2N 1=2 �A3N 1 =3

�O[x105=407(ln x)2] ; (4)

where

Ak �
Y
j�1

j"k

z
j

k

 !
�

2:294856591 . . . for k �1
�14:6475663 . . . for k �2
118:6924619 . . . for k�3;

8<
: (5)

and z(s) is again the RIEMANN ZETA FUNCTION.
[Richert (1952) incorrectly gave A3�114:/] DeKoninck
and Ivic (1980) showed that

XN

n�1

1

a(n)
�BN�O[

ffiffiffiffiffi
N

p
(ln N)�1=2]; (6)

where

B�
Y

1�
X�
k�2

1

P(k � 2)
�

1

P(k)

" #
1

pk

( )
�0:752 . . . (7)

is a product over PRIMES. Bounds for the number of
nonisomorphic non-Abelian groups are given by
Neumann (1969) and Pyber (1993).

See also FINITE GROUP, GROUP THEORY, KRONECKER

DECOMPOSITION THEOREM, PARTITION FUNCTION P ,
RING
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Abelian Integral
An INTEGRAL OF THE FORM

g
x

0

dtffiffiffiffiffiffiffiffiffi
R(t)

p ;

where R(t) is a POLYNOMIAL of degree > 4: They are
also called HYPERELLIPTIC INTEGRALS.



See also ABELIAN FUNCTION, ELLIPTIC INTEGRAL
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Abelian Theorem
A theorem which asserts that if a sequence or
function behaves regularly, then some average of it
behaves regularly. For example,

A(x) �x

implies

A1(x) �g
x

0

A(t) dt �1
2x

2

for any A(x) : The converse is false, but can be made
into a correct TAUBERIAN THEOREM if A(x) is subjected
to an appropriate additional condition (Hardy 1999,
p. 46).

See also TAUBERIAN THEOREM
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Abelian Variety
An Abelian variety is an algebraic GROUP which is a
complete ALGEBRAIC VARIETY. An Abelian variety of
DIMENSION 1 is an ELLIPTIC CURVE.

See also ALBANESE VARIETY
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Abelianization
In general, groups are not ABELIAN. However, there is
always a GROUP HOMOMORPHISM h : G 0 G? to an
ABELIAN GROUP, and this homomorphism is called
Abelianization. The homomorphism is abstractly
described by its kernel, the COMMUTATOR SUBGROUP

[G, G ]. So G ? � G=[G; G] : Roughly speaking, in any
expression, every product becomes commutative after
Abelianization. As a consequence, some previously
unequal expressions may become equal, or even
represent the IDENTITY ELEMENT.

For example, in the eight-element QUATERNION GROUP

/G � f91; 9i ; 9j; 9kg/, the COMMUTATOR SUB-

GROUP is f91g: The Abelianization of G is a copy of

Z2 �Z2 ; and for instance, i ?j?�j?i ? in the Abelianiza-
tion.

See also ABELIAN, GROUP, HOMOMORPHISM

Abel-Plana Formula
This entry contributed by DAVID ANDERSON

The Abel-Plana formula gives an expression for the
difference between a discrete sum and the corre-
sponding integral. The formula can be derived from
the ARGUMENT PRINCIPLE

G
g

f (z)
g ?(z)

g(z)
dz �

X
n

f ( mn) �
X

m

f ( nm); (1)

where mn are the zeros of g(z) and nm are the poles
contained within the CONTOUR g : An appropriate
choice of g and g then yields

X�
n�0

f (n) �g
�

0

f (x) dx

�1
2 f (0) �1

2g
�

0

[f (it) �f (�it)][cot( pit) �i] dt; (2)

or equivalently

X�
n�0

f (n) �g
�

0

f (x) dx

�1
2 f (0) �i g

�

0

f (it) � f ( �it)

e2 pt � 1
dt : (3)

The formula is particularly useful in Casimir effect
calculations involving differences between quantized
modes and free modes.

See also ARGUMENT PRINCIPLE
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Abhyankar’s Conjecture
For a FINITE GROUP G , let p(G) be the SUBGROUP

generated by all the SYLOW P -SUBGROUPS of G . If X is
a projective curve in characteristic p 
0, and if x0; ...,
xt are points of X (for t 
0), then a NECESSARY and
SUFFICIENT condition that G occur as the GALOIS

GROUP of a finite covering Y of X , branched only at
the points x0; ..., xt; is that the QUOTIENT GROUP

G=p(G) has 2g�t generators.

Raynaud (1994) solved the Abhyankar problem in the
crucial case of the affine line (i.e., the projective line
with a point deleted), and Harbater (1994) proved the
full Abhyankar conjecture by building upon this
special solution.

 



See also FINITE GROUP, GALOIS GROUP, QUOTIENT

GROUP, SYLOW P -SUBGROUP
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Ablowitz-Ramani-Segur Conjecture
The Ablowitz-Ramani-Segur conjecture states that a
nonlinear PARTIAL DIFFERENTIAL EQUATION is solva-
ble by the INVERSE SCATTERING METHOD only if every
nonlinear ORDINARY DIFFERENTIAL EQUATION ob-
tained by exact reduction has the PAINLEVÉ PROP-

ERTY.

See also INVERSE SCATTERING METHOD
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Abnormal Number
A hypothetical number which can be factored into
primes in more than one way. Hardy and Wright
(1979) prove the FUNDAMENTAL THEOREM OF ARITH-

METIC by showing that no abnormal numbers exist.

See also FUNDAMENTAL THEOREM OF ARITHMETIC
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Abs
ABSOLUTE VALUE

Abscissa
The x - (horizontal) coordinate of a point in a two
dimensional coordinate system. Physicists and as-
tronomers sometimes use the term to refer to the axis
itself instead of the distance along it.

See also AXIS, ORDINATE, REAL LINE, X -AXIS, Y -AXIS,
Z -AXIS

Absolute Convergence
A SERIES anun is said to CONVERGE absolutely if the
SERIES an unj j CONVERGES, where unj j denotes the
ABSOLUTE VALUE. If a SERIES is absolutely convergent,
then the sum is independent of the order in which
terms are summed. Furthermore, if the SERIES is

multiplied by another absolutely convergent series,
the product series will also converge absolutely.

See also CONDITIONAL CONVERGENCE, CONVERGENT

SERIES, RIEMANN SERIES THEOREM
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Absolute Deviation
Let ū denote the MEAN of a SET of quantities ui ; then
the absolute deviation is defined by

Dui � ui � ̄uj j:

See also DEVIATION, MEAN DEVIATION, SIGNED DE-

VIATION, STANDARD DEVIATION

Absolute Error
The DIFFERENCE between the measured or inferred
value of a quantity x0 and its actual value x , given by

Dx �x0 �x

(sometimes with the ABSOLUTE VALUE taken) is called
the absolute error. The absolute error of the SUM or
DIFFERENCE of a number of quantities is less than or
equal to the SUM of their absolute errors.

See also ERROR PROPAGATION, PERCENTAGE ERROR,
RELATIVE ERROR
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Absolute Frequency
The number of data points which fall within a given
CLASS in a FREQUENCY DISTRIBUTION.

See also CUMULATIVE FREQUENCY, FREQUENCY DIS-

TRIBUTION, RELATIVE FREQUENCY, RELATIVE CUMU-

LATIVE FREQUENCY
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Absolute Geometry
GEOMETRY which depends only on the first four of
EUCLID’S POSTULATES and not on the PARALLEL

POSTULATE. Euclid himself used only the first four



postulates for the first 28 propositions of the ELE-

MENTS , but was forced to invoke the PARALLEL

POSTULATE on the 29th.

See also AFFINE GEOMETRY, ELEMENTS , EUCLID’S

POSTULATES, GEOMETRY, ORDERED GEOMETRY, PAR-

ALLEL POSTULATE
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Absolute Moment
The absolute moment of Mn of a probability function
P(x) taken about a point a is defined by

Mn �g x �aj jnP(x) dx:

See also CENTRAL MOMENT, MOMENT, RAW MOMENT
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Absolute Monotonic Sequence

See also ABSOLUTELY MONOTONIC SEQUENCE
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Absolute Pseudoprime
CARMICHAEL NUMBER

Absolute Square
Also known as the squared norm. The absolute
square of a COMPLEX NUMBER z is written zj j2 ; where
zj j is the MODULUS and is defined as

zj j2�zz̄; (1)

where z̄ denotes the COMPLEX CONJUGATE of z . For a
REAL NUMBER, (1) simplifies to

zj j2�z2 : (2)

If the COMPLEX NUMBER is written z �x �iy; then the
absolute square can be written

x �iyj j2�x2 �y2 : (3)

An absolute square can be computed in terms of x and
y using the Mathematica command ComplexExpan-
d[Abs[z ]2, TargetFunctions- 
{Conjugate}].

An important identity involving the absolute square
is given by

a 9be �i d
�� ��2�(a 9be �id)(a 9beid)

�a2 �b2 9ab(ei d �e �id) �a2 �b2 92ab cos d : (4)

If a �1, then (4) becomes

1 9be �id
�� ��2�1 �b2 92b cos d

�(1 9b)2 
�4b sin2(1

2 d) : (5)

If a �1, and b �1, then

1 �e �id
�� ��2�4 sin2(1

2 d): (6)

Finally,

½eif1 �eif2 ½2 �(eif1 �eif2 )(e �if1 �e �i f2 )

�2[1 �cos(f2�f1)]

�4 cos2[1
2(f2�f1)]: (7)

See also ARGUMENT (COMPLEX NUMBER), COMPLEX

NUMBER, MODULUS (COMPLEX NUMBER)

Absolute Value

The absolute value of a REAL NUMBER x is denoted xj j
and given by the "unsigned" portion of x ,

xj j�x sgn(x)�
�x for x50
x for x]0;

�
where sgn x is the sign function SGN. The absolute
value is therefore always greater than or equal to 0.
The same notation is used to denote the MODULUS of a
COMPLEX NUMBER z�x�iy; zj j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
; a P -ADIC

NORM, or a general VALUATION. The NORM of a VECTOR

x is also denoted xj j; although xj j is more commonly
used.

Other NOTATIONS similar to the absolute value are
the FLOOR FUNCTION �x�b c; NINT function [x]; and
CEILING FUNCTION �x�d e:/
The integral of the absolute value of the different of
two variables is given by

 



g
1

0 g
1

0

x �yj jndx dy �
2

(n � 1)(n � 2) 
;

which has values 1/3, 1/6, 1/10, 1/15, 1/21, ... for n �1,
2, ..., i.e., the inverses of the TRIANGULAR NUMBERS

(Sloane’s A000217).

See also ABSOLUTE SQUARE, CEILING FUNCTION,
FLOOR FUNCTION, MODULUS (COMPLEX NUMBER),
NINT, RECTANGLE FUNCTION, SGN, TRIANGLE FUNC-

TION, VALUATION
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Absolutely Continuous
A MEASURE l is absolutely continuous with respect to
another measure m if l(E) �0 for every set with
m(E) �0: This makes sense as long as m is a POSITIVE

MEASURE, such as LEBESGUE MEASURE, but l can be
any measure, possibly a COMPLEX MEASURE.

By the RADON-NIKODYM THEOREM, this is equivalent
to saying that

l(E) �gE

f dm

where the integral is the LEBESGUE INTEGRAL, for
some INTEGRABLE function f . The function f is like a
derivative, and is called the RADON-NIKODYM DERI-

VATIVE dl=d m:/

The measure supported at 0 (/m(E) �1 iff 0 � E) is not
absolutely continuous with respect to LEBESGUE

MEASURE, and is a SINGULAR MEASURE.

See also COMPLEX MEASURE, CONCENTRATED, HAAR

MEASURE, LEBESGUE DECOMPOSITION (MEASURE),
LEBESGUE MEASURE, MUTUALLY SINGULAR, POLAR

REPRESENTATION (MEASURE), SINGULAR MEASURE
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Absolutely Fair
A sequence of random variates X0 ; X1 ; ... is called
absolutely fair if for n �1, 2, ...,

(X1) �0

and

(Xn�1 ½X1 ; . . . ; Xn) �0

(Feller 1971, p. 210).

See also MARTINGALE
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Absolutely Monotonic Function
This entry contributed by RONALD M. AARTS

A function f (x) is absolutely monotonic in the interval
a Bx Bb if it has nonnegative derivatives of all orders
in the region, i.e.,

f (k)(x) ]0 (1)

for a Bx Bb and k �0, 1, 2, .... For example, the
functions

f (x) ��ln(�x) (�1 5x B0) (2)

and

f (x) �sin �1 x (0 5x 51) (3)

are absolutely monotonic functions (Widder 1941).

See also ABSOLUTELY MONOTONIC SEQUENCE
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Absolutely Monotonic Sequence

See also ABSOLUTE MONOTONIC SEQUENCE, ABSO-

LUTELY MONOTONIC FUNCTION
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Absorption Law
The law appearing in the definition of a BOOLEAN

ALGEBRA which states

a ffl(a b) �a (a fflb) �a

for binary operators  and ffl (which most commonly
are logical OR and logical AND).

See also BOOLEAN ALGEBRA, LATTICE
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Abstract Algebra
That portion of ALGEBRA dealing with theoretical as
opposed to applied topics. Ash (1998) includes the
following areas in his definite of abstract algebra:
logic and foundations, counting, elementary NUMBER

THEORY, informal SET THEORY, LINEAR ALGEBRA, and
the theory of linear operators.

See also ALGEBRA

References
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Abstract Manifold
An abstract manifold is a MANIFOLD in the context of
an abstract space with no particular embedding, or
representation in mind. It is a TOPOLOGICAL SPACE

with an ATLAS of COORDINATE CHARTS.

For example, the SPHERE S2 can be considered a
SUBMANIFOLD of R3 or a QUOTIENT SPACE O(3) =O(2):
But as an abstract manifold, it is just a MANIFOLD,
which can be covered by two coordinate charts /

f1 : R2 0 S2
/ and /f2 : R2 0 S2

/, with the single
TRANSITION FUNCTION,

f�1
2 ( f1 : R

2 �(0; 0) 0 R2 �(0; 0)

defined by

f�1
2 (f1(x; y) �(x=r2 ; y=r2)

where /r2 �x2 �y2
/. It can also be thought of as two

disks glued together at their boundary.

See also ALGEBRAIC MANIFOLD, HOMOGENEOUS

SPACE, MANIFOLD, SUBMANIFOLD, TOPOLOGICAL

SPACE

Abstract Mathematics
ABSTRACT ALGEBRA

Abstract Simplicial Complex
An abstract simplicial complex is a collection S of
finite nonempty sets such that if A is an element of S ,
then so is every nonempty subset of A (Munkres
1993, p. 15).

See also SIMPLICIAL COMPLEX
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Abstract Vector Space

See also QUOTIENT VECTOR SPACE, VECTOR SPACE

Abstraction Operator
LAMBDA CALCULUS

Abundance
The abundance of a number n is the quantity

A(n) � s(n) �2n;

where s(n) is the DIVISOR FUNCTION. Kravitz has
conjectured that no numbers exist whose abundance
is an ODD SQUARE (Guy 1994).

The following table lists special classifications given
to a number n based on the value of A(n) :/

/A(n)/ Number

/B0/ DEFICIENT NUMBER

-1 ALMOST PERFECT NUMBER

0 PERFECT NUMBER

1 QUASIPERFECT NUMBER

/ > 0/ ABUNDANT NUMBER

See also ABUNDANCY, DEFICIENCY
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Abundancy
The ratio s(n)=n ; where s(n) is the DIVISOR FUNCTION.

See also ABUNDANCE, ABUNDANT NUMBER
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Abundant Number
An abundant number is an INTEGER n which is not a
PERFECT NUMBER and for which

s(n) � s(n) �n > n; (1)

where s(n) is the DIVISOR FUNCTION. The quantity
s(n) �2n is sometimes called the ABUNDANCE. The
first few abundant numbers are 12, 18, 20, 24, 30, 36,
... (Sloane’s A005101). Abundant numbers are some-
times called EXCESSIVE NUMBERS.

There are only 21 abundant numbers less than 100,
and they are all EVEN. The first ODD abundant
number is

945�33 � 7 � 5: (2)

That 945 is abundant can be seen by computing

s(945)�975 > 945: (3)

Any multiple of a PERFECT NUMBER or an abundant
number is also abundant. Every number greater than
20161 can be expressed as a sum of two abundant
numbers.

Define the density function

A(x)� lim
n0�

½fn : s(n) ] xng½
n

(4)

for a POSITIVE REAL NUMBER x , then Davenport (1933)
proved that A(x) exists and is continuous for all x , and
Erdos (1934) gave a simplified proof (Finch). Wall
(1971) and Wall et al. (1977) showed that

0:2441BA(2)B0:2909; (5)

 



and Deléglise (1998) showed that

0:2474 BA(2) B0 :2480: (6)

A number which is abundant but for which all its
PROPER DIVISORS are DEFICIENT is called a PRIMITIVE

ABUNDANT NUMBER (Guy 1994, p. 46).

See also ALIQUOT SEQUENCE, DEFICIENT NUMBER,
HIGHLY ABUNDANT NUMBER, MULTIAMICABLE NUM-

BERS, PERFECT NUMBER, PRACTICAL NUMBER, PRIMI-

TIVE ABUNDANT NUMBER, WEIRD NUMBER
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Acceleration
Let a particle travel a distance s(t) as a function of
time t (here, s can be thought of as the ARC LENGTH of
the curve traced out by the particle). The SPEED (the
SCALAR NORM of the VECTOR VELOCITY) is then given
by

ds

dt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

 !2

�
dy

dt

 !2

�
dz

dt

 !2
vuut : (1)

The acceleration is defined as the time DERIVATIVE of
the VELOCITY, so the SCALAR acceleration is given by

a�
dv

dt
(2)

�
d2s

dt2
(3)

�

dx

dt

d2x

dt2
�

dy

dt

d2y

dt2
�

dz

dt

d2z

dt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

 !2

�
dy

dt

 !2

�
dz

dt

 !2
vuut (4)

�
dx

ds

d2x

dt2
�

dy

ds

d2y

dt2
�

dz

ds

d2z

dt2
(5)

�
dr

ds
�
d2r

dt2
: (6)

The VECTOR acceleration is given by

a�
dv

dt
�

d2r

dt2
�

d2s

dt2
T̂�k

ds

dt

 !2

N̂; (7)

where T̂ is the UNIT TANGENT VECTOR, k the CURVA-

TURE, s the ARC LENGTH, and N̂ the UNIT NORMAL

VECTOR.

Let a particle move along a straight LINE so that the
positions at times t1; t2; and t3 are s1; s2; and s3;
respectively. Then the particle is uniformly acceler-
ated with acceleration a IFF

a�2
(s2 � s3)t1 � (s3 � s1)t2 � (s1 � s2)t3

(t1 � t2)(t2 � t3)(t3 � t1)

" #
(8)

is a constant (Klamkin 1995, 1996).

Consider the measurement of acceleration in a rotat-
ing reference frame. Apply the ROTATION OPERATOR

R̃�
d

dt

 !
body

�v� (9)

twice to the RADIUS VECTOR r and suppress the body
notation,

aspace�R̃2r�
d

dt
�v�

 !2

r�
d

dt
�v�

 !
dr

dt
�v�r

 !

�
d2r

dt2
�

d

dt
(v�r)�v�

dr

dt
�v�(v�r)

�
d2r

dt2
�v�

dr

dt
�r�

dv

dt
�v�

dr

dt

�v�(v�r): (10)

Grouping terms and using the definitions of the
VELOCITY v�dr=dt and ANGULAR VELOCITY a�

dv=dt give the expression



aspace �
d2r

dt2 
�2v �v � v �(v �r) �r � a: (11)

Now, we can identify the expression as consisting of
three terms

abody �
d2r

dt2 
; (12)

aCoriolis �2v �v; (13)

acentrifugal � v �( v �r) ; (14)

a "body" acceleration, centrifugal acceleration, and
Coriolis acceleration. Using these definitions finally
gives

aspace �abody �aCoriolis �acentrifugal �r � a; (15)

where the fourth term will vanish in a uniformly
rotating frame of reference (i.e., a �0): The centrifu-
gal acceleration is familiar to riders of merry-go-
rounds, and the Coriolis acceleration is responsible
for the motions of hurricanes on Earth and necessi-
tates large trajectory corrections for intercontinental
ballistic missiles.

See also ANGULAR ACCELERATION, ARC LENGTH,
JERK, VELOCITY
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Accidental Cancellation
ANOMALOUS CANCELLATION

Accretion
CUMULATION

Accumulation Point
An accumulation point is a POINT which is the limit of
a SEQUENCE, also called a LIMIT POINT. For some
MAPS, periodic orbits give way to CHAOTIC ones
beyond a point known as the accumulation point.

See also BOLZANO-WEIERSTRASS THEOREMBolzano-
Weierstrass Theorem, CANTOR’S INTERSECTION THE-

OREM, CHAOS, FRACTIONAL PART, HEINE-BOREL THE-

OREM, LIMIT POINT, LOGISTIC MAP, MODE LOCKING,
PERIOD DOUBLING, PISOT-VIJAYARAGHAVAN CON-

STANT

Achilles and the Tortoise Paradox
ZENO’S PARADOXES

Achiral
AMPHICHIRAL

Ackermann Function
The Ackermann function is the simplest example of a
WELL DEFINED TOTAL FUNCTION which is COMPUTABLE

but not PRIMITIVE RECURSIVE, providing a counter-
example to the belief in the early 1900s that every
COMPUTABLE FUNCTION was also PRIMITIVE RECUR-

SIVE (Dötzel 1991). It grows faster than an exponen-
tial function, or even a multiple exponential function.
The Ackermann function A(x; y) is defined by

A(x; y)�
y�1 if x�0

A(x�1; 1) if y�0
A(x�1;A(x; y�1)) otherwise:

8<
: (1)

Special values for INTEGER x include

A(0; y)�y�1 (2)

A(1; y)�y�2 (3)

A(2; y)�2y�3 (4)

A(3; y)�2y�3�3 (5)

A(4; y)�22U2|{z}
y�3

�3: (6)

Expressions of the latter form are sometimes called
POWER TOWERS. A(0; y) follows trivially from the
definition. A(1; y) can be derived as follows,

A(1; y)�A(0; A(1; y�1))�A(1; y�1)�1

�A(0; A(1; y�2))�1�A(1; y�2)�2
�. . .�A(1; 0)�y�A(0; 1)�y�y�2:

(7)

/A(2; y) has a similar derivation,

A(2; y)�A(1; A(2; y�1))�A(2; y�1)�2

�A(1; A(2; y�2))�2�A(2; y�2)�4�. . .

�A(2; 0)�2y�A(1; 1)�2y�2y�3: (8)

Buck (1963) defines a related function using the same
fundamental RECURRENCE RELATION (with arguments
flipped from Buck’s convention)

F(x; y)�F(x�1;F(x; y�1)); (9)

but with the slightly different boundary values

F(0; y)�y�1 (10)

F(1; 0)�2 (11)

F(2; 0)�2 (12)

F(x; 0)�1 for x�3; 4; : . . . (13)

Buck’s recurrence gives

F(1; y)�2�y (14)

F(2; y)�2y (15)

F(3; y)�2y (16)

 



F(4; y) � 22U2|ffl{zffl}
y

: (17)

Taking F(4; n) gives the sequence 1, 2, 4, 16, 65536,
265536, ... (Sloane’s A006263). Defining ah(x) �F(x; x)

for x �0, 1, ... then gives 1, 3, 4, 8, 65536, 22U2|ffl{zffl}
m

; ...

(Sloane’s A001695), where m � 2U2|{z}
65536

; a truly huge

number!

See also ACKERMANN NUMBER, COMPUTABLE FUNC-

TION, GOODSTEIN SEQUENCE, POWER TOWER, PRIMI-

TIVE RECURSIVE FUNCTION, TAK FUNCTION, TOTAL

FUNCTION
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Ackermann Number
A number OF THE FORM n � � � ��n|fflfflfflfflffl{zfflfflfflfflffl}

n

; where ARROW

NOTATION has been used. The first few Ackermann
numbers are 1 �1 �1; 2 �� 2 �4; and

3 ��� 3 � 33U3|ffl{zffl}
7 ;625;507;484;987

:/

See also ACKERMANN FUNCTION, ARROW NOTATION,
POWER TOWER
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Acnode
Another name for an ISOLATED POINT.

See also CRUNODE, SPINODE, TACNODE

Acoptic Polyhedron
A term invented by B. Grünbaum in an attempt to
promote concrete and precise POLYHEDRON terminol-
ogy. The word "coptic" derives from the Greek for "to
cut," and acoptic polyhedra are defined as POLYHEDRA

for which the FACES do not intersect (cut) themselves,
making them 2-MANIFOLDS.

See also HONEYCOMB, NOLID, POLYHEDRON, SPONGE

Action
Let M(X) denote the GROUP of all invertible MAPS X 0
X and let G be any GROUP. A HOMOMORPHISM u : G 0
M(X) is called an action of G on X . Therefore, u
satisfies

1. For each g � G ; u(g) is a MAP X 0 X : x 	 u(g)x ;/
2. u(gh)x � u(g)( u(h)x);/
3. u(e)x �x; where e is the group identity in G ,
4. u(g �1)x � u(g) �1x:/

See also CASCADE, FLOW, SEMIDIRECT PRODUCT,
SEMIFLOW

Actuarial Polynomial
The polynomials a(b)

n (x) given by the SHEFFER SE-

QUENCE with

g(t)�(1�t)�b (1)

f (t) � ln(1 � t); (2)

giving GENERATING FUNCTION

X�
k�0

a(b)
n

k!
tk�ex(1�et)�bt: (3)

The Sheffer identity is

a(b)
n (x�y)�

Xn

k�0

n
k

� �
a(b)

k (y)fn�k(�x); (4)

where fn(x) is an EXPONENTIAL POLYNOMIAL. The
actuarial polynomials are given in terms of the
EXPONENTIAL POLYNOMIALS fn(x) by

a(b)
n (x)�(1�t)bfn(�x) (5)

�
Xn

k�0

b

k

� �
f(k)

n (�x): (6)

They are related to the STIRLING NUMBERS OF THE

SECOND KIND S(n; m) by

a(b)
n (x)�

Xn

k�0

b

k

� �Xn

j�k

S(n; j)(j)k(�x)j�k; (7)



where n
k

� 	
is a BINOMIAL COEFFICIENT and (x)n is a

FALLING FACTORIAL. The actuarial polynomials also
satisfy the identity

a(b)
n (�x) �e �x

X�
k�0

(k � b)n

k!
xk (8)

(Roman 1984, p. 125; Whittaker and Watson 1990,
p. 336).

The first few polynomials are

a( b)
0 (x) �1

a( b)
1 (x) ��x � b

a( b)
2 (x) �x2 �x(1 �2b) � b2

a( b)
3 (x) ��x3 �3x2( b �1) �x(3b2 �3b �1) � b3 :

See also SHEFFER SEQUENCE
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Acute Angle

An ANGLE of less than p=2 RADIANS (90 8) is called an
acute angle.

See also ACUTE TRIANGLE, ANGLE, FULL ANGLE,
OBTUSE ANGLE, REFLEX ANGLE, RIGHT ANGLE,
STRAIGHT ANGLE

Acute Triangle

A TRIANGLE in which all three ANGLES are ACUTE

ANGLES. A TRIANGLE which is neither acute nor a
RIGHT TRIANGLE (i.e., it has an OBTUSE ANGLE) is
called an OBTUSE TRIANGLE. From the LAW OF CO-

SINES, for a triangle with side lengths a , b , and c ,

cos C �
a2 � b2 � c2

2ab
;

with C the angle opposite side C . For an angle to be
acute, cos C > 0 : Therefore, an acute triangle satisfies
a2 �b2 > c2 ; b2 �c2 > a2 ; and c2 �a2 > b2 :/
The smallest number of acute triangles into which an
arbitrary OBTUSE TRIANGLE can be dissected is seven
if B > 90 
; B �A; B �C B90 
; and otherwise eight
(Manheimer 1960, Gardner 1981, Wells 1991). A
SQUARE can be dissected into as few as 9 acute
triangles (Gardner 1981, Wells 1991).

See also OBTUSE TRIANGLE, ONO INEQUALITY, RIGHT

TRIANGLE
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Acyclic Digraph

An acyclic digraph is a DIRECTED GRAPH containing no
directed cycles, also known as a directed acyclic graph
or a "DAG." Every acyclic digraph has at least one
node of OUTDEGREE 0. The numbers of acyclic
digraphs on n�1, 2, ... vertices are 1, 2, 6, 31, 302,
5984, ... (Sloane’s A003087).

See also DIRECTED GRAPH, FOREST

References
Harary, F. Graph Theory. Reading, MA: Addison-Wesley,

p. 200, 1994.
Robinson, R. W. "Counting Unlabeled Acyclic Digraphs." In

Combinatorial Mathematics V (Melbourne 1976) . Provi-
dence, RI: Amer. Math. Soc., pp. 28�/3, 1976.

 



Skiena, S. Implementing Discrete Mathematics: Combinato-
rics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, p. 190, 1990.

Sloane, N. J. A. Sequences A003087/M1696 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Acyclic Graph
FOREST

Ad
ADJOINT REPRESENTATION, ADJOINT REPRESENTA-

TION (LIE GROUP)

Adams’ Circle

Given a TRIANGLE DABC ; construct the CONTACT

TRIANGLE DTATBTC : Now extend lines parallel to the
sides of the CONTACT TRIANGLE from the GERGONNE

POINT. These intersect the triangle DABC in the six
points P , Q , R , S , T , and U . As C. Adams proved in
1843, these points are CONCYCLIC in a CIRCLE now
known as Adams’ circle. Moreover, Adams’ circle is
concentric with the INCIRCLE of DABC (Honsberger
1995, pp. 62 �/4).

Extend the segments UP , TS , and RQ to form a
TRIANGLE DXYZ: Then the GERGONNE POINT of DABC
is the SYMMEDIAN POINT of DXYZ; and Adams’ circle of

DABC is the LEMOINE CIRCLE of DXYZ (Honsberger
1995, p. 98).

See also CONTACT TRIANGLE, GERGONNE POINT
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Adams’ Method
Adams’ method is a numerical METHOD for solving
linear FIRST-ORDER ORDINARY DIFFERENTIAL EQUA-

TIONS OF THE FORM

dy

dx
�f (x; y): (1)

Let

h�xn�1�xn (2)

be the step interval, and consider the MACLAURIN

SERIES of y about xn;

yn�1�yn�
dy

dx

 !
n

(x�xn)�
1

2

d2y

dx2

 !
n

(x�xn)2�. . .

(3)

dy

dx

 !
n�1

�
dy

dx

 !
n

�
d2y

dx2

 !
n

(x�xn)2�. . . : (4)

Here, the DERIVATIVES of y are given by the BACK-

WARD DIFFERENCES

qn�
dy

dx

 !
n

�
Dyn

xn�1 � xn

�
yn�1 � yn

h
(5)

9qn�
d2y

dx2

 !
n

�qn�qn�1 (6)

92qn�
d3y

dx3

 !
n

�9qn�9qn�1; (7)

etc. Note that by (1), qn is just the value of f (xn; yn):/

For first-order interpolation, the method proceeds by
iterating the expression

yn�1�yn�qnh (8)

where qn�f (xn; yn): The method can then be ex-
tended to arbitrary order using the finite difference
integration formula from Beyer (1987)

g
1

0

fpdp�

1�1
2 9�

5
12 9

2�3
8 9

3�251
720 9

4� 95
288 9

5�19087
60480 9

6�. . .
 !

fp

(9)

to obtain



yn�1 �yn �h(qn �
1
2 9qn�1 �

5
12 9

2qn �2 �
3
8 9

3qn�3

�251
720 9

4qn�4 �
95

288 9
5qn�5 �. . .Þ: (10)

Note that von Kármán and Biot (1940) confusingly
use the symbol normally used for FORWARD DIFFER-

ENCES d to denote BACKWARD DIFFERENCES 9:/

See also GILL’S METHOD, MILNE’S METHOD, PREDIC-

TOR-CORRECTOR METHODS, RUNGE-KUTTA METHOD
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Adams-Bashforth-Moulton Method
ADAMS’ METHOD

Addend
A quantity to be ADDED to another, also called a
SUMMAND. For example, in the expression a �b �c; a ,
b , and c are all addends. The first of several addends,
or "the one to which the others are added" (a in the
previous example), is sometimes called the AUGEND.

See also ADDITION, AUGEND, PLUS, RADICAND

Addition

The combining of two or more quantities using the
PLUS operator. The individual numbers being com-
bined are called ADDENDS, and the total is called the
SUM. The first of several ADDENDS, or "the one to
which the others are added," is sometimes called the
AUGEND. The opposite of addition is SUBTRACTION.
While the usual form of adding two n -digit INTEGERS

(which consists of summing over the columns right to
left and "CARRYING" a 1 to the next column if the sum
exceeds 9) requires n operations (plus carries), two n -

digit INTEGERS can be added in about 2 lg n steps by n
processors using carry-lookahead addition (McGeoch
1993). Here, lg x is the LG function, the LOGARITHM to
the base 2.

See also ADDEND, AMENABLE NUMBER, AUGEND,
CARRY, DIFFERENCE, DIVISION, MULTIPLICATION,
PLUS, SUBTRACTION, SUM
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Addition Chain
An addition chain for a number n is a SEQUENCE 1 �
a0 Ba1 B. . .Bar �n; such that each member after a0

is the SUM of two earlier (not necessarily distinct)
ones. The number r is called the length of the
addition chain. For example,

1; 1 �1 �2; 2 �2 �4; 4 �2 �6 ; 6 �2 �8; 8 �6 �14

is an addition chain for 14 of length r �5 (Guy 1994).

See also BRAUER CHAIN, HANSEN CHAIN, SCHOLZ

CONJECTURE
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Addition-Multiplication Magic Square

A square which is simultaneously a MAGIC SQUARE

and MULTIPLICATION MAGIC SQUARE. The top square
shown above has order eight, with addition MAGIC

CONSTANT 840 and multiplicative magic constant
2,058,068,231,856,000 (Horner 1955, Hunter and
Madachy 1975). The bottom two squares have
order nine with addition MAGIC CONSTANTS 848 and

 



1200 and multiplicative magic constants
5,804,807,833,440,000 and 1,619,541,385,529,760,
000, respectively (Hunter and Madachy 1975, Mada-
chy 1979).

L. Sallows has constructed an interesting 3 �3 magic
square in which the products of corresponding pairs
of 2 �2 diagonals are 12, 24, 36, and 72, while the
products of the numbers in the pair of 3 �3 diagonals
also give 72.

See also MAGIC SQUARE
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Additive Number Theory
The portion of NUMBER THEORY concerned with
expressing an integer as a sum of integers from
some given set.

See also CIRCLE METHOD, MULTIPLICATIVE NUMBER

THEORY, NUMBER THEORY

Additive Persistence
Consider the process of taking a number, adding its
DIGITS, then adding the DIGITS of the number derived
from it, etc., until the remaining number has only one
DIGIT. The number of additions required to obtain a
single DIGIT from a number n is called the additive
persistence of n , and the DIGIT obtained is called the
DIGITAL ROOT of n .

For example, the sequence obtained from the starting
number 9876 is (9876, 30, 3), so 9876 has an additive
persistence of 2 and a DIGITAL ROOT of 3. The additive
persistences of the first few positive integers are
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, ...
(Sloane’s A031286). The smallest numbers of additive
persistence n for n �0, 1, ... are 0, 10, 19, 199,
19999999999999999999999, ... (Sloane’s A006050).

See also ADDITIVE PERSISTENCE, DIGITADDITION,
DIGITAL ROOT, MULTIPLICATIVE PERSISTENCE, NAR-

CISSISTIC NUMBER, RECURRING DIGITAL INVARIANT
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Adéle
An element of an ADÉ LE GROUP, sometimes called a
REPARTITION in older literature (e.g., Chevalley 1951,
p. 25). Adéles arise in both NUMBER FIELDS and
FUNCTION FIELDS. The adéles of a NUMBER FIELD are
the additive SUBGROUPS of all elements in

Q 
kv ; where

v is the PLACE, whose ABSOLUTE VALUE is B1 at all but
finitely many v/s.

Let F be a FUNCTION FIELD of algebraic functions of
one variable. Then a MAP r which assigns to every
PLACE P of F an element r(P) of F such that there are
only a finite number of PLACES P for which vp(r(P)) B
0 is called an adéle (Chevalley 1951, p. 1951).

See also FUNCTION FIELD, IDELE
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Adéle Group
The restricted topological GROUP DIRECT PRODUCT of
the GROUP Gkv

with distinct invariant open subgroups
G0v

:/
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Adem Relations
Relations in the definition of a STEENROD ALGEBRA

which state that, for i B2j;

Sqi 
( Sqj(x) �

X�i �

k �0

j �k �1
i �2k

� �
Sqi�j�k 

( Sqk(x) ;

where f ( g denotes function COMPOSITION and �i � is
the FLOOR FUNCTION.

See also STEENROD ALGEBRA

Adequate Knot
A class of KNOTS containing the class of ALTERNATING

KNOTS. Let c(K) be the CROSSING NUMBER. Then for
KNOT SUM K1#K2 which is an adequate knot,



c(K1#K2) �c(K1) �c(K2) :

This relationship is postulated to hold true for all
KNOTS.

See also ALTERNATING KNOT, CROSSING NUMBER

(LINK)

Adiabatic Invariant
A property of motion which is conserved to exponen-
tial accuracy in the small parameter representing the
typical rate of change of the gross properties of the
body.

See also ALGEBRAIC INVARIANT, LYAPUNOV CHARAC-

TERISTIC NUMBER

Adjacency List
The adjacency list representation of a GRAPH consists
of n lists one for each vertex vi ; 1 5i 5n ; which gives
the vertices to which vi is adjacent. The adjacency
lists of a graph g may be computed using ToAdja-
cencyLists[g ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘). A
graph may be constructed from adjacency lists using
FromAdjacencyLists[e ].

See also ADJACENCY MATRIX
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Mathematica. Reading, MA: Addison-Wesley, pp. 86 �/7,
1990.

Adjacency Matrix

The adjacency matrix of a simple GRAPH is a MATRIX

with rows and columns labeled by VERTICES, with a 1
or 0 in position (vi ; vj) according to whether vi and vj

are ADJACENT or not. For a simple graph with no self-
loops, the adjacency matrix must have 0s on the
diagonal. For an undirected graph, the adjacency
matrix is symmetrical. The adjacency matrix of a
graph can be computed using Edges[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

See also ADJACENCY LIST, INCIDENCE MATRIX, IN-

TEGER MATRIX
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Adjacency Relation
The SET E of EDGES of a GRAPH (V, E ), being a set of
unordered pairs of elements of V , constitutes a
RELATION on V . Formally, an adjacency relation is
any RELATION which is IRREFLEXIVE and SYMMETRIC.

See also IRREFLEXIVE, RELATION, SYMMETRIC

Adjacent Fraction
Two FRACTIONS are said to be adjacent if their
difference has a unit NUMERATOR. For example, 1/3
and 1/4 are adjacent since 1 =3 �1 =4 �1=12 ; but 1=2
and 1=5 are not since 1 =2 �1 =5 �3=10 : Adjacent
fractions can be adjacent in a FAREY SEQUENCE.

See also FAREY SEQUENCE, FORD CIRCLE, FRACTION,
NUMERATOR
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Adjacent Value
The value nearest to but still inside an inner FENCE.
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Adjacent Vertices
In a GRAPH G , two VERTICES are adjacent if they are
joined by an EDGE.

See also EDGE (GRAPH), GRAPH, VERTEX (GRAPH)

Adjoint
Given a SECOND-ORDER ORDINARY DIFFERENTIAL

EQUATION

L̃u(x)�p0

d2u

dx2
�p1

du

dx
�p2u; (1)

where pi�pi(x) and u�u(x); the adjoint operator L̃�
is defined by

L̃�u�
d

dx2
(p0u)�

d

dx
(p1u)�p2u

�p0

d2u

dx2
�(2p?0�p1)

du

dx
�(pƒ0�p?1�p2)u: (2)

Write the two LINEARLY INDEPENDENT solutions as
y1(x) and y2(x): Then the adjoint operator can also be

 



written

L̃�u �g (y2 L̃y1 �y1 L̃y2)dx �
p1

p0

(y ?2y2 �y1y ?2)

" #
: (3)

In general, given two adjoint operators Ã and B̃ ;

( Ã B̃) ��  B̃� Ã�; (4)

which can be generalized to

( Ã B̃ � � �  Z̃) ��  Z̃ � � � �  B̃� Ã�: (5)

Note that many older physics text use the a DAGGER

notation A $ to denote the adjoint (Arfken 1985). For
example, (Dirac 1982, p. 26) denotes the adjoint of the
BRA vector 
P ½a as a $½P �; or ā½P�: The term Hermitian
conjugate is sometimes also used instead of adjoint
(Griffiths 1987, p. 22)

See also ADJOINT CURVE, ADJOINT MATRIX, DAGGER,
HERMITIAN OPERATOR, SELF-ADJOINT, STURM-LIOU-

VILLE THEORY
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Adjoint Curve
A curve which has at least multiplicity ri �1 at each
point where a given curve (having only ordinary
singular points and cusps) has a multiplicity ri is
called the adjoint to the given curve. When the
adjoint curve is of order n �3 ; it is called a special
adjoint curve.
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Adjoint Matrix
The adjoint matrix, sometimes also called the adju-
gate matrix or conjugate transpose (Golub and van
Loan 1996, p. 14), of an m �n MATRIX A is the n �m
matrix defined by

A �� ̄AT ; (1)

where the ADJOINT operator is denoted with a star, T
denotes the TRANSPOSE, and Ā denotes the CONJU-

GATE MATRIX. Unfortunately, several different nota-
tions are in use. Older physics text commonly use A $

(Arfken 1985, p. 210), mathematicians commonly use
A� (Courant and Hilbert 1989, p. 9), and computer
scientists sometimes use AH (Golub and van Loan
1996, p. 14). In this work, a star is used to denote the
adjoint operator, so care must be taken not to confuse

this with the star used in older physics and engineer-
ing texts to denote the COMPLEX CONJUGATE.

If a MATRIX is SELF-ADJOINT, it is said to be HERMI-

TIAN. The adjoint matrix of a MATRIX product is given
by

(ab)�ij�[(ab)T]ij: (2)

Using the identity for the product of TRANSPOSE gives

[(ab)T]ij�[bTaT]ij�bT
ikaT

kj�[bT]ik[aT]kj�b�
ika�

kj

�[b�a�]ij; (3)

where EINSTEIN SUMMATION has been used here to
sum over repeated indices, it follows that

(AB)��B�A�: (4)

See also ADJOINT, COMPLEX CONJUGATE, DAGGER,
HERMITIAN MATRIX, SCHUR DECOMPOSITION, TRANS-

POSE
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Adjoint Operator
Given a SECOND-ORDER ORDINARY DIFFERENTIAL

EQUATION

pi�pi(x) (1)

where u�u(x) and L̃�; the adjoint operator L̃�u
(denoted by a DAGGER), is defined by

d

dx2
(p0u)�

d

dx
(p1u)�p2u(y1yƒ2�y2yƒ1)�P(y1y?2�y?1y2)

�Q(y1y2�y1y2)�0p0

p0

d2u

dx2
�(2p?0�p1)

du

dx
�(pƒ0�p?1�p2)u�L̃�u

�g (y2L̃y1�y1L̃y2) dx�
p1

p0

(y?1y2�y1y?2)

" #
: (2)

Write the two LINEARLY INDEPENDENT solutions as
y?�f0(x)�f1(x)y�f0(x)y2�f3(x)y3�. . . and /

[g0(x)�g1(x)y]y?�f0(x)�f1(x)y�f2(x)y2�f3(x)y3
/.

Then the adjoint operator can also be written

Ã: (3)

In general, given two adjoint operators B̃ and (ÃB̃)��
B̃�Ã�;



( Ã B̃ � � �  Z̃) ��  Z̃� � � �  B̃ � Ã�: (4)

which can be generalized to

A $: (5)

The adjoint of the BRA vector 
P½ a is denoted a $½P�; or
ā½P� (Dirac 1982, p. 26). The term Hermitian con-
jugate is sometimes also used (Griffiths 1987, p. 22)

See also ADJOINT MATRIX, DAGGER, HERMITIAN

OPERATOR, SELF-ADJOINT OPERATOR, STURM-LIOU-

VILLE THEORY
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Adjoint Representation
A LIE ALGEBRA is a VECTOR SPACE g with a LIE

BRACKET [X, Y ], satisfying the JACOBI IDENTITY.
Hence any element X gives a linear transformation
given by

ad(X)(Y) �[X ; Y] ; (1)

which is called the adjoint representation of g : It is a
LIE ALGEBRA REPRESENTATION because of the JACOBI

IDENTITY,

[ad(X1) ; ad(X2)](Y) �[X1 ; [X2 ; Y]] �[X2 ; [X1 ; Y]]

�[[X1 ; X2] ; Y] �ad([X1 ; X2])(Y): (2)

A REPRESENTATION is given by matrices. The simplest
LIE ALGEBRA is gln the set of matrices. Consider the
adjoint representation of gl2 ; which has four dimen-
sions and so will be a four dimensional representa-
tion. The matrices

e1 � 
1 0
0 0

 �
(3)

e2 � 
0 1
0 0

 �
(4)

e3 � 
0 0
1 0

 �
(5)

e4 � 
0 0
0 1

 �
(6)

give a basis for gl2 : Using this basis, the adjoint
representation is described by the following matrices,

ad e1 �

0 0  0 0
0 1  0 0
0 0 �1 0
0 0  0 0

2
664

3
775 (7)

ad e2 �

0 0  1 0
�1 0  0 1

0 0  0 0
0 0 �1 0

2
664

3
775 (8)

ad e3 �

0 �1 0  0
0 0 0 0
1 0 0 �1
0 1 0 0

2
664

3
775 (9)

ad e4 �

0 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 0

2
664

3
775: (10)

The following Mathematica function gives the adjoint
representation of the matrix m in the Lie algebra,
given by a basis, the list of matrices g .

ad[g_List, m_List?MatrixQ]:� Transpose[Li-

nearSolve[Transpose[Flatten/@g],

Flatten[m.#1-#1.m]]&/@g]

See also COMMUTATOR, LIE ALGEBRA, LIE GROUP, LIE

BRACKET, NILPOTENT LIE ALGEBRA, REPRESENTA-

TION, SEMISIMPLE LIE ALGEBRA
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Adjugate Matrix
ADJOINT MATRIX

Adjunction
If a is an element of a FIELD F over the PRIME FIELD

P , then the set of all RATIONAL FUNCTIONS of a with
COEFFICIENTS in P is a FIELD derived from P by
adjunction of a .

Adleman-Pomerance-Rumely Primality
Test
A modified MILLER’S PRIMALITY TEST which gives a
guarantee of PRIMALITY or COMPOSITENESS. The ALGO-

RITHM’s running time for a number n has been proved
to be as O((ln n)c ln ln ln n) for some c 
0. It was
simplified by Cohen and Lenstra (1984), implemented
by Cohen and Lenstra (1987), and subsequently
optimized by Bosma and van der Hulst (1990).
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Adleman-Rumely Primality Test
ADLEMAN-POMERANCE-RUMELY PRIMALITY TEST

Admissible
A string or word is said to be admissible if that word
appears in a given SEQUENCE. For example, in the
SEQUENCE aabaabaabaabaab . . .  ; a , aa , baab are all
admissible, but bb is inadmissible.

See also BLOCK GROWTH

Ado’s Theorem
Every finite-dimensional LIE ALGEBRA of character-
istic p �0 has a FAITHFUL finite-dimensional repre-
sentation.

See also IWASAWA’S THEOREM, LIE ALGEBRA
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Affine Complex Plane
The set A2 of all ORDERED PAIRS of COMPLEX NUM-

BERS.

See also AFFINE CONNECTION, AFFINE EQUATION,
AFFINE GEOMETRY, AFFINE GROUP, AFFINE HULL,
AFFINE PLANE, AFFINE SPACE, AFFINE TRANSFORMA-

TION, AFFINITY, COMPLEX PLANE, COMPLEX PROJEC-

TIVE PLANE

Affine Connection
CONNECTION COEFFICIENT

Affine Equation
A nonhomogeneous LINEAR EQUATION or system of
nonhomogeneous LINEAR EQUATIONS is said to be
affine.

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE GEOMETRY, AFFINE GROUP, AFFINE

HULL, AFFINE PLANE, AFFINE SPACE, AFFINE TRANS-

FORMATION, AFFINITY

Affine Geometry
A GEOMETRY in which properties are preserved by
PARALLEL PROJECTION from one PLANE to another. In
an affine geometry, the third and fourth of EUCLID’S

POSTULATES become meaningless. This type of GEO-

METRY was first studied by Euler.

See also ABSOLUTE GEOMETRY, AFFINE COMPLEX

PLANE, AFFINE CONNECTION, AFFINE EQUATION,
AFFINE GROUP, AFFINE HULL, AFFINE PLANE, AFFINE

SPACE, AFFINE TRANSFORMATION, AFFINITY, OR-

DERED GEOMETRY
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Affine Group
The set of all nonsingular AFFINE TRANSFORMATIONS

of a TRANSLATION in SPACE constitutes a GROUP

known as the affine group. The affine group contains
the full linear group and the group of TRANSLATIONS

as SUBGROUPS.

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE

HULL, AFFINE PLANE, AFFINE SPACE, AFFINE TRANS-

FORMATION, AFFINITY
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Affine Hull
The IDEAL generated by a SET in a VECTOR SPACE.

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE

GROUP, AFFINE PLANE, AFFINE SPACE, AFFINE TRANS-

FORMATION, AFFINITY, CONVEX HULL, HULL

Affine Plane
A 2-D AFFINE GEOMETRY constructed over a FINITE

FIELD. For a FIELD F of size n , the affine plane
consists of the set of points which are ordered pairs of
elements in F and a set of lines which are themselves
a set of points. Adding a POINT AT INFINITY and LINE

AT INFINITY allows a PROJECTIVE PLANE to be con-
structed from an affine plane. An affine plane of order
n is a BLOCK DESIGN OF THE FORM (/n2 ; n , 1). An affine
plane of order n exists IFF a PROJECTIVE PLANE of
order n exists.

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE



GROUP, AFFINE HULL, AFFINE SPACE, AFFINE TRANS-

FORMATION, AFFINITY, PROJECTIVE PLANE
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Affine Scheme
Let P be the set of PRIME IDEALS of a COMMUTATIVE

RING A . Then an affine scheme is a technical
mathematical object defined as the SPECTRUM s(A)
of P , regarded as a local-ringed space with a structure
sheaf. A local-ringed space that is locally isomorphic
to an affine scheme is called a SCHEME (Itô 1986,
p. 69).

See also PRIME IDEAL, SCHEME, SPECTRUM (RING)
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Affine Space
Let V be a VECTOR SPACE over a FIELD K , and let A be
a nonempty SET. Now define addition p �a � A for any
VECTOR a � V and element p � A subject to the condi-
tions

1. p �0 �p ;/
2. (p �a) �b �p �(a �b) ;/
3. For any q � A; there EXISTS a unique VECTOR a �
V such that q �p �a:/

Here, a, b � V : Note that (1) is implied by (2) and (3).
Then A is an affine space and K is called the
COEFFICIENT FIELD.

In an affine space, it is possible to fix a point and
coordinate axis such that every point in the SPACE can
be REPRESENTED AS an n -tuple of its coordinates.
Every ordered pair of points A and B in an affine
space is then associated with a VECTOR AB .

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE

GROUP, AFFINE HULL, AFFINE PLANE, AFFINE SPACE,
AFFINE TRANSFORMATION, AFFINITY

Affine Transformation
Any TRANSFORMATION preserving COLLINEARITY (i.e.,
all points lying on a LINE initially still lie on a LINE

after TRANSFORMATION) and ratios of distances (e.g.,
the midpoint of a line segment remains the midpoint
after transformation). An affine transformation may
also be thought of as a shearing transformation (Croft
et al. 1991). An affine transformation is also called an
AFFINITY.

An affine transformation of Rn is a MAP F : Rn 0 Rn

OF THE FORM

F(p) � Ap � q (1)

for all p � Rn; where A is a linear transformation of
Rn : If det(A) �1; the transformation is ORIENTATION-

PRESERVING; if det(A) ��1 ; it is ORIENTATION-REVER-

SING.

CONTRACTION, EXPANSION, DILATION, REFLECTION,
SIMILARITY TRANSFORMATIONS, SPIRAL SIMILARITIES,
ROTATION, and TRANSLATION are all affine transfor-
mations, as are their combinations. A particular
example combining ROTATION and EXPANSION is the
rotation-enlargement transformation

x?
y?

 �
�s

cos a sin a
�sin a cos a

 �
x �x0

y �y0

 �

�s
cos a(x �x0) �sin a(y �y0)
�sin a(x �x0) �cos a(y �y0)

 �
: (2)

Separating the equations,

x?�(s cos a)x �(s sin a)y �s(x0 cos a �y0 sin a) (3)

y?�(�s sin a)x �(s cos a)y �s(x0 sin a �y0 cos a) : (4)

This can be also written as

x?�ax�by�c (5)

y?�bx�ay�d; (6)

where

a�s cos a (7)

b��s sin a: (8)

The scale factor s is then defined by

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
; (9)

and the rotation ANGLE by

a�tan�1 �
b

a

 !
: (10)

See also AFFINE COMPLEX PLANE, AFFINE CONNEC-

TION, AFFINE EQUATION, AFFINE GEOMETRY, AFFINE

GROUP, AFFINE HULL, AFFINE PLANE, AFFINE SPACE,
AFFINE TRANSFORMATION, AFFINITY, EQUIAFFINITY,
EUCLIDEAN MOTION
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Affine Variety
An affine variety V is a VARIETY contained in AFFINE

SPACE. For example,

f(x; y; z) : x2 �y2 �z2 �0 g (1)

is the CONE, and

f(x ; y; z) : x2 �y2 �z2 �0; ax �by �cz �0 g (2)

is a CONIC SECTION, which is a SUBVARIETY of the
cone. The cone can be written V(x2 �y2 �z2) to
indicate that it is the variety corresponding to x2 �
y2 �z2 �0: Naturally, many other polynomials van-
ish on V(x2 �y2 �z2); in fact all polynomials in I(C) �
fx2 �y2 �z2 g: The set I(C) is an IDEAL in the POLY-

NOMIAL RING C[x; y; z] : Note also, that the ideal of
polynomials vanishing on the conic section is the
IDEAL generated by x2 �y2 �z2 and ax � by � cz:/

A MORPHISM between two affine varieties is given by
polynomial coordinate functions. For example, the
map f(x; y; z) � (x2 ; y2 ; z2) is a MORPHISM from X �
V(x2 �y2 �z2) to Y �V(x �y �z) : Two affine varieties
are ISOMORPHIC if there is a MORPHISM which has an
inverse morphism. For example, the affine variety
V(x2 �y2 �z2) is isomorphic to the cone V(x2 �y2 �
z2) via the coordinate change f(x; y; z) �(x; y; iz):/

Many polynomials f may be factored, for instance f �
x2 �y2 �(x �iy)(x �iy) ; and then V(f ) �V(x �iy) @
V(x �iy) : Consequently, only IRREDUCIBLE POLYNO-

MIALS, and more generally only PRIME IDEALS p are
used in the definition of a variety. An affine variety V
is the set of common zeros of a collection of poly-
nomials p1 ; ..., pk ; i.e.,

V �fx �(x1 ; . . .  ; xn) : p1(x) �. . .�pk(x) �0 g (3)

as long as the IDEAL I �(p1 ; . . . ; pk) is a PRIME IDEAL.
More classically, an affine variety is defined by any
set of polynomials, i.e., what is now called an
ALGEBRAIC SET. Most points in V will have dimension
n �k ; but V may have singular points like the origin
in the cone.

When V is one-dimensional generically (at almost all
points), which typically occurs when k �n �1; then V
is called a curve. When V is two-dimensional, it is
called a surface. In the case of COMPLEX affine space,
a curve is a RIEMANN SURFACE, possibly with some
singularities.

Mathematica has a built-in function ImplicitPlot
in the Mathematica add-on package Graphics‘Im-

plicitPlot‘ (which can be loaded with the com-
mand BBGraphics‘) that will graph affine
varieties in the real affine plane. For example, the
following graphs a hyperbola and a circle.

BBGraphics‘;

Show[GraphicsArray[{

ImplicitPlot[x^2 - y^2 ��  1, {x, -2, 2},

DisplayFunction - 
 Identity],

ImplicitPlot[x^2 � y^2 ��  1, {x, -2, 2},

DisplayFunction - 
 Identity]

}]]

An extension to this function called Implicit-
Plot3D can be downloaded from MathSource and
used to plot affine varieties in three-dimensional
space.

See also ALGEBRAIC SET, CATEGORY THEORY, COM-

MUTATIVE ALGEBRA, CONIC SECTION, GROEBNER

BASIS, PROJECTIVE VARIETY, SCHEME, STACK (MOD-

ULI SPACE), INTRINSIC VARIETY, ZARISKI TOPOLOGY
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Affinity
AFFINE TRANSFORMATION

Affix
In the archaic terminology of Whittaker and Watson
(1990), the COMPLEX NUMBER z representing x �iy :/

References
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Aggregate
An archaic word for infinite SETS such as those
considered by Georg Cantor.

See also CLASS (SET), SET

AGM
ARITHMETIC-GEOMETRIC MEAN

Agnesi’s Witch
WITCH OF AGNESI

Agnésienne
WITCH OF AGNESI

Agonic Lines
SKEW LINES



Ahlfors Five Island Theorem
Let f (z) be a TRANSCENDENTAL MEROMORPHIC FUNC-

TION, and let D1 ; D2 ; ..., D5 be five SIMPLY CONNECTED

domains in C with disjoint closures (Ahlfors 1932).
Then there exists j � f1; 2 ; . . . ; 5 g and, for any R 
0,
a SIMPLY CONNECTED domain G ƒfz �C : ½z½ > Rg such
that f (z) is a CONFORMAL MAP of G onto Dj : If f (z) has
only finitely many POLES, then "five" may be replaced
by "three" (Ahlfors 1933).

See also MEROMORPHIC FUNCTION, TRANSCENDENTAL

FUNCTION
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Ahlfors-Bers Theorem
The RIEMANN’S MODULI SPACE gives the solution to
RIEMANN’S MODULI PROBLEM, which requires an
ANALYTIC parameterization of the compact RIEMANN

SURFACES in a fixed HOMEOMORPHISM.

A-Integrable
A generalization of the LEBESGUE INTEGRAL. A MEA-

SURABLE FUNCTION f (x) is called A -integrable over the
CLOSED INTERVAL [a, b ] if

mfx : ½f (x)½ > ng�O(n�1); (1)

where m is the LEBESGUE MEASURE, and

I�lim
n0� g

b

a

[f (x)]n dx (2)

exists, where

[f (x)]n�
f (x) if ½f (x)½5n
0 if ½f (x)½ > n:

�
(3)
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Airy Differential Equation
Some authors define a general Airy differential
equation as

yƒ9k2xy�0: (1)

This equation can be solved by series solution using
the expansions

y�
X�
n�0

anxn (2)

y? �
X�
n�0

nanxn�1�
X�
n�1

nanxn�1

�
X�
n�0

(n�1)an�1xn (3)

yn�
X�
n�0

(n�1)nan�1xn�1�
X�
n�1

(n�1)nan�1xn�1

�
X�
n�0

(n�2)(n�1)an�2xn: (4)

Specializing to the "conventional" Airy differential
equation occurs by taking the MINUS SIGN and setting
k2�1: Then plug (4) into

yƒ�xy�0 (5)

to obtain

X�
n�0

(n�2)(n�1)an�2xn�x
X�
n�0

anxn�0 (6)

X�
n�0

(n�2)(n�1)an�2xn�
X�
n�0

anxn�1�0 (7)

2a2�
X�
n�1

(n�2)(n�1)an�2xn�
X�
n�1

an�1xn�0 (8)

2a2�
X�
n�1

[(n�2)(n�1)an�2�an�1]xn�0: (9)

In order for this equality to hold for all x , each term
must separately be 0. Therefore,

a2�0 (10)

(n�2)(n�1)an�2�an�1: (11)

Starting with the n�3 term and using the above
RECURRENCE RELATION, we obtain

5 � 4a5�20a5�a2�0: (12)

Continuing, it follows by INDUCTION that

a2�a5�a8�a11�. . . a3n�1�0 (13)

for n � 1, 2, .... Now examine terms OF THE FORM a3n:

a3�
a0

3 � 2
(14)

 



a6 �
a3

6 � 5 
�

a0

(6 � 5)(3 � 2) 
(15)

a9 �
a6

9 � 8 
�

a0

(9 � 8)(6 � 5)(3 � 2) 
: (16)

Again by INDUCTION,

a3n �
a0

[(3n)(3n � 1)][(3n � 3)(3n � 4)] � � � [6 � 5][3 � 2]

(17)

for n �1, 2, .... Finally, look at terms OF THE FORM

a3n �1 ;

a4 �
a1

4 � 3 
(18)

a7 �
a4

7 � 6 
�

a1

(7 � 6)(4 � 3) 
(19)

a10 �
a7

10 � 9 
�

a1

(10 � 9)(7 � 6)(4 � 3) 
: (20)

By INDUCTION,

a3n �1

�
a1

[(3n � 1)(3n)][(3n � 2)(3n � 3)] � � � [7 � 6][4 � 3]

(21)

for n � 1, 2, .... The general solution is therefore

y �a0 1 �
X�
n�1

x3n

(3n)(3n � 1)(3n � 3)(3n � 4) � � � 3 � 2

" #

�a1 x �
X�
n�1

x3n�1

(3n � 1)(3n)(3n � 2)(3n � 3) � � � 4 � 3

" #
:

(22)

For a general k2 with a MINUS SIGN, equation (1) is

yƒ� k2xy �0 ; (23)

and the solution is

y(x) �1
3

ffiffiffi
x

p
[AI�1 =3(2

3 kx3=2 Þ�BI1 =3(2
3 kx3 =2 Þ�; (24)

where I is a MODIFIED BESSEL FUNCTION OF THE FIRST

KIND. This is usually expressed in terms of the AIRY

FUNCTIONS Ai(x) and Bi(x)

y(x) �A? Ai(k2=3x) �B ?Bi(k2=3x) : (25)

If the PLUS SIGN is present instead, then

yƒ�k2xy �0 (26)

and the solutions are

y(x) �1
3

ffiffiffi
x

p
[AJ�1=3(2

3kx3 =2 Þ�BJ1=3(2
3kx3 =2 Þ�; (27)

where J(z) is a BESSEL FUNCTION OF THE FIRST KIND.

A generalization of the Airy differential equation is
given by

y§�4xy?�2y�0; (28)

which has solutions

y�C1[Ai(x)]2�C2Ai(x) Bi(x)�C3[Bi(x)]2 (29)

(Abramowitz and Stegun 1972, p. 448; Zwillinger
1997, p. 128).

See also AIRY-FOCK FUNCTIONS, AIRY FUNCTIONS,
BESSEL FUNCTION OF THE FIRST KIND, MODIFIED

BESSEL FUNCTION OF THE FIRST KIND
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Airy Functions

The Ai(x) and Bi(x) functions are defined as the two
LINEARLY INDEPENDENT solutions to

yƒ� yz � 0: (1)

(Abramowitz and Stegun 1972, pp. 446�47; illu-
strated above), written in the form

y(z) � A Ai(z) � B Bi(z); (2)

where

Ai(z) � 1
3

ffiffiffi
x

p
I�1=3

2
3z

3=2
 !

�I1=3
2
3z

3=2
 !h i

�

ffiffiffiffiffiffi
z

3p

s
K1=3

2
3z

3=2
 !

(3)

Bi(z)�

ffiffiffi
z

3

s
I�1=3

2
3z

3=2
 !

�I1=3
2
3z

3=2
 !h i

; (4)

where I(z) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND and K(z) is a MODIFIED BESSEL FUNCTION

OF THE SECOND KIND. The functions are implemented
in Mathematica as AiryAi[z ] and AiryBi[z ]. Their
derivatives are implemented as AiryAiPrime[z ] and



AiryBiPrime[z ].

Plots of Ai(z) in the COMPLEX PLANE are illustrated
above, and Bi(z) is illustrated below.

The Airy Ai(x) function is given by the integral

Ai(z)�
1

2p g
�

��

ei(zt�t3=3)dt (5)

and the INFINITE SERIES

Ai(x)�
1

32=3p

X�
n�0

G 1
3(n � 1)
 !

n!

 (31=3x)n sin
2(n � 1)p

3

" #
(6)

(Banderier et al. ). A generalization of the Airy
function has been constructed by Hardy.
For z�0,

Ai(0)�
1

32=3G(2
3)

(7)

Bi(0)�
1

31=6G(2
3)
; (8)

where G(z) is the GAMMA FUNCTION.

The ASYMPTOTIC SERIES of Ai(z) has a different form
in different QUADRANTS of the COMPLEX PLANE, a fact
known as the STOKES PHENOMENON.

Functions related to the Airy functions have been
defined as

Gi(z)�
1

p g
�

0

sin(1
3 t3�ztÞdt (9)

Hi(z)�
1

p g
�

0

exp �1
3 t3�zt

 !
dt; (10)

where Gi(z) is defined for I[z]"0 and Hi(z) for R[z]]
0: The can be expressed in terms of the Airy functions
by

Gi(z)��
z2

2p
1 F4 1 : 2

3;
5
6;

7
6;

4
3;

1
1296 z6

 !

�
[sgn(z)]6

360pz6 1 F4 1 : 7
6;

4
3;

5
3;

11
6 : 1

1296 z6
 !

�
z6

6½z½6

 [Bi(�½z½)�Bi(½z½)]�
i
ffiffiffi
3

p
½z½3

6z4
[Ai(�½z½)�Ai(½z½)]

�
1

6z4½z½6
I[z]�R[z][Bi(½z½)�Bi(�½z½)]f g (11)

Hi(z)�2
3

ffiffiffiffiffiffi
�2

3

q
J�1=3

2
3 �zð Þ3=2
 !

�J1=3
2
3 �zð Þ3=2
 !h i

�
z2

2p
1 F2 1 : 4

3;
5
3;

1
9z

3
 !

; (12)

where pFq is a GENERALIZED HYPERGEOMETRIC FUNC-

TION, SGN is the sign function, zj j is the MODULUS of z ,
R[z] is the REAL PART, I[z] is the IMAGINARY PART, and
Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.

 



Watson (1966, pp. 188 �/90) gives a slightly more
general definition of the Airy function as the solution
to the AIRY DIFFERENTIAL EQUATION

Fƒ9k2 Fx �0 (13)

which is FINITE at the ORIGIN, where F? denotes the
DERIVATIVE dF=dx; k2 �1=3; and either SIGN is
permitted. Call these solutions (1=p)F(9k2 ; x) ; then

1

p 
F 91

3; x
 !

�g
�

0

cos t3 9xt
� 	

dt (14)

F 1
3; x
 !

�1
3 p

ffiffiffi
x

3

s
J�1 =3

2x3 =2

33 =2

 !
�J1 =3

2x3 =2

33=2

 !" #

(15)

F �1
3; x

 !
�1

3 p

ffiffiffi
x

3

s
I�1 =3

2x3 =2

33=2

 !
�I1 =3

2x3 =2

33=2

 !" #
;

(16)

where J(z) is a BESSEL FUNCTION OF THE FIRST KIND.
Using the identity

Kn(x) �
p

2

I�n(x) � In(x)

sin(np)
; (17)

where K(z) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND, the second case can be re-expressed

F(�1
3; x) �1

3 p

ffiffiffi
x

3

s
2

p
sin 1

3p
 !

K1=3

2x3=2

33=2

 !
(18)

�
p

3

ffiffiffi
x

3

s
2

p

ffiffiffi
3

p

2
K1=3

2x3=2

33=2

 !
(19)

�
1

3

ffiffiffi
x

p
K1=3

2x3=2

33=2

 !
: (20)

See also AIRY-FOCK FUNCTIONS, BESSEL FUNCTION OF

THE FIRST KIND, MAP-AIRY DISTRIBUTION, MODIFIED

BESSEL FUNCTION OF THE FIRST KIND, MODIFIED

BESSEL FUNCTION OF THE SECOND KIND
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Airy Projection
A MAP PROJECTION. The inverse equations for f are
computed by iteration. Let the ANGLE of the projection
plane be ub: Define

a�

0 for ub�
1
2 p

ln[1
2 cos (1

2 p� ub)]

tan [1
2(

1
2 p� ub)]

otherwise:

8><
>: (1)

For proper convergence, let xi�p=6 and compute the
initial point by checking

xi� ½exp[�(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
�a tan xi) tan xi]½: (2)

As long as xi > 1; take xi�1�xi=2 and iterate again.
The first value for which xiB1 is then the starting
point. Then compute

xi�cos�1fexp[�(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
�a tan xi) tan xi]g (3)

until the change in xi between evaluations is smaller
than the acceptable tolerance. The (inverse) equa-
tions are then given by

f�1
2 p�2xi (4)

l�tan�1 �
x

y

 !
: (5)

AiryAi
AIRY FUNCTIONS

AiryAiPrime
AIRY FUNCTIONS

AiryBi
AIRY FUNCTIONS

AiryBiPrime
AIRY FUNCTIONS

Airy-Fock Functions
The three Airy-Fock functions are

v(z)�1
2

ffiffiffi
p

p
Ai(z) (1)

w1(z)�2eip=6v(vz) (2)

w2(z)�2e�ip=6v(v�1z); (3)

where Ai(z) is an AIRY FUNCTION. These functions
satisfy



v(z) �
v1(z) � v2(z)

2i 
(4)

w1(z) �w2(z̄); (5)

where z̄ is the COMPLEX CONJUGATE of z .

See also AIRY FUNCTIONS
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Aitken Interpolation
An algorithm similar to NEVILLE’S ALGORITHM for
constructing the LAGRANGE INTERPOLATING POLYNO-

MIAL. Let f (x½x0 ; x1 ; . . . ; xk) be the unique POLYNO-

MIAL of kth ORDER coinciding with f (x) at x0 ; ..., xk :
Then

f (x½x0 ; x1) �
1

x1 � x0
jf0 x0 �x
f1 x1 �x j

f (x½x0 ; x2) �
1

x2 � x0
jf0 x0 �x
f2 x2 �x j

f (x½x0 ; x1 ; x2) �
1

x2 � x1
jf (x½x0 ; x1)x1 �x
f (x½x0 ; x2)x2 �xj

f (x½x0 ; x1 ; x2 ; x3) �
1

x3 � x2
jf (x½x0 ; x1)x2 �x
f (x½x0 ; x1)x3 �xj:

See also LAGRANGE INTERPOLATING POLYNOMIAL
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Aitken’s Delta Squared Process
An ALGORITHM which extrapolates the partial sums sn

of a SERIES Sn an whose CONVERGENCE is approxi-
mately geometric and accelerates its rate of CONVER-

GENCE. The extrapolated partial sum is given by

s?n�sn�1�
(sn�1 � sn)2

sn�1 � 2sn � sn�1

:

See also EULER’S SERIES TRANSFORMATION
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Ajima-Malfatti Points

The lines connecting the vertices and corresponding
circle-circle intersections in MALFATTI’S TANGENT

TRIANGLE PROBLEM coincide in a point Y called the
first Ajima-Malfatti point (Kimberling and MacDo-
nald 1990, Kimberling 1994). Similarly, letting Aƒ; Bƒ;
and Cƒ be the excenters of ABC , then the lines A?Aƒ;
B?Bƒ; and C?Cƒ are coincident in another point called
the second Ajima-Malfatti point. The points are
sometimes simply called the malfatti points (Kimber-
ling 1994).
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Moon, P. and Spencer, D. E. Theory of Holors: A
Generalization of Tensors. Cambridge, England:
Cambridge University Press, 1986.

Akisation
CUMULATION

Albanese Variety
An ABELIAN VARIETY which is canonically attached to
an ALGEBRAIC VARIETY which is the solution to a
certain universal problem. The Albanese variety is
dual to the PICARD VARIETY.
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Albers Conic Projection
ALBERS EQUAL-AREA CONIC PROJECTION

Albers Equal-Area Conic Projection

An EQUAL-AREA PROJECTION. Let f0 be the LATITUDE

for the origin of the CARTESIAN COORDINATES and l0

its LONGITUDE. Let f1 and f2 be the standard
parallels. Then

x � r sin u (1)

y � r0 � r cos u; (2)

where

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 2n sin f

p
n 

(3)

u �n( l�l0) (4)

r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 2n sin f0

p
n 

(5)

C �cos2 f1 �2n sin f1 (6)

n �1
2(sin f1 �sin f2): (7)

The inverse FORMULAS are

f �sin �1 C � r2n2

2n

 !
(8)

l � l0 �
u

n 
; (9)

where

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �( r0 �y)2

q
(10)

u �tan �1 x

r0 � y

 !
: (11)

See also EQUAL-AREA PROJECTION
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Alcuin’s Sequence
The INTEGER SEQUENCE 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4,
7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, ...
(Sloane’s A005044) given by the COEFFICIENTS of the
MACLAURIN SERIES for 1=(1 �x2)(1 �x3)(1 �x4): The
number of different TRIANGLES which have INTEGRAL

sides and PERIMETER n is given by

T(n) �P3(n) �
X

1 5j5�n=2 �

P2(j) (1)

�
n2

12

" #
�

n

4

$ %
n � 2

4

$ %
(2)

�

[
n2

48
] for n even

[
(n � 3)2

48
] for n odd:

8>>><
>>>: (3)

where P2(n) and P3(n) are PARTITION FUNCTIONS, with
Pk(n) giving the number of ways of writing n as a sum
of k terms, [x] is the NINT function, and xb c is the
FLOOR FUNCTION (Jordan et al. 1979, Andrews 1979,
Honsberger 1985). Strangely enough, T(n) for n �3,
4, ... is precisely Alcuin’s sequence.

See also PARTITION FUNCTION P , TRIANGLE
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Aleksandrov’s Uniqueness Theorem
A convex body in EUCLIDEAN n -space that is centrally
symmetric with center at the ORIGIN is determined
among all such bodies by its brightness function (the
VOLUME of each projection).

See also TOMOGRAPHY
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Aleksandrov-Cech Cohomology
A theory which satisfies all the EILENBERG-STEENROD

AXIOMS with the possible exception of the LONG EXACT

SEQUENCE OF A PAIR AXIOM, as well as a certain
additional continuity CONDITION.
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Aleph
The SET THEORY symbol (/ ) for the CARDINALITY of an
INFINITE SET.

See also ALEPH-0, ALEPH-1, COUNTABLE SET, COUN-

TABLY INFINITE, FINITE, INFINITE, TRANSFINITE NUM-

BER, UNCOUNTABLY INFINITE

Aleph-0
The SET THEORY symbol 0 for a SET having the same
CARDINAL NUMBER as the "small" INFINITE SET of
INTEGERS. The ALGEBRAIC NUMBERS also belong to 0 :
Rather surprising properties satisfied by 0 include

r
0 �0 (1)

r 0 �0 (2)

0 �f �0 ; (3)

where f is any FINITE SET. However,

0

0 �C ; (4)

where C is the CONTINUUM.

See also ALEPH-1, CARDINAL NUMBER, CONTINUUM,
CONTINUUM HYPOTHESIS, COUNTABLY INFINITE, FI-

NITE, INFINITE, TRANSFINITE NUMBER, UNCOUNTABLY

INFINITE

Aleph-1
The SET THEORY symbol 1 for the smallest INFINITE

SET larger than ALEPH-0, and equal to the CARDIN-

ALITY of the set of countable ORDINAL NUMBERS.

The CONTINUUM HYPOTHESIS asserts that 1 �c ;
where c is the CARDINALITY of the "large" INFINITE

SET of REAL NUMBERS (called the CONTINUUM in SET

THEORY). However, the truth of the CONTINUUM

HYPOTHESIS depends on the version of SET THEORY

you are using and so is UNDECIDABLE.

Curiously enough, n -D SPACE has the same number of
points (c ) as 1-D SPACE, or any FINITE INTERVAL of 1-D
SPACE (a LINE SEGMENT), as was first recognized by
Georg Cantor.

See also ALEPH-0, CARDINALITY, CONTINUUM, CON-

TINUUM HYPOTHESIS, COUNTABLY INFINITE, FINITE,
INFINITE, ORDINAL NUMBER, TRANSFINITE NUMBER,
UNCOUNTABLY INFINITE

Alethic
A term in LOGIC meaning pertaining to TRUTH and
FALSEHOOD.

See also FALSE, PREDICATE, TRUE

Alexander Ideal
The order IDEAL in L; the RING of integral LAURENT

POLYNOMIALS, associated with an ALEXANDER MATRIX

for a KNOT K . Any generator of a principal Alexander
ideal is called an ALEXANDER POLYNOMIAL. Because
the ALEXANDER INVARIANT of a TAME KNOT in S3 has a
SQUARE presentation MATRIX, its Alexander ideal is
PRINCIPAL and it has an ALEXANDER POLYNOMIAL D(t):/

See also ALEXANDER INVARIANT, ALEXANDER MATRIX,
ALEXANDER POLYNOMIAL
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Alexander Invariant
The Alexander invariant H�( X̂) of a KNOT K is the
HOMOLOGY of the INFINITE cyclic cover of the comple-
ment of K , considered as a MODULE over L; the RING of
integral LAURENT POLYNOMIALS. The Alexander in-
variant for a classical TAME KNOT is finitely presen-
table, and only H1 is significant.

For any KNOT K n in Sn�2 whose complement has the
homotopy type of a FINITE COMPLEX, the Alexander
invariant is finitely generated and therefore finitely
presentable. Because the Alexander invariant of a
TAME KNOT in S3 has a SQUARE presentation MATRIX,
its ALEXANDER IDEAL is PRINCIPAL and it has an
ALEXANDER POLYNOMIAL denoted D(t) :/

See also ALEXANDER IDEAL, ALEXANDER MATRIX,
ALEXANDER POLYNOMIAL
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Alexander Matrix
A presentation matrix for the ALEXANDER INVARIANT

H1( X̃) of a KNOT K . If V is a SEIFERT MATRIX for a
TAME KNOT K in S3 ; then V T �tV and V T �tV T are
Alexander matrices for K , where V T denotes the
MATRIX TRANSPOSE.

See also ALEXANDER IDEAL, ALEXANDER INVARIANT,
ALEXANDER POLYNOMIAL, SEIFERT MATRIX
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Alexander Polynomial
A POLYNOMIAL invariant of a KNOT discovered in 1923
by J. W. Alexander (Alexander 1928). In technical
language, the Alexander polynomial arises from the
HOMOLOGY of the infinitely cyclic cover of a KNOT’s
complement. Any generator of a PRINCIPAL ALEXAN-

DER IDEAL is called an Alexander polynomial (Rolfsen



1976). Because the ALEXANDER INVARIANT of a TAME

KNOT in S3 has a SQUARE presentation MATRIX, its
ALEXANDER IDEAL is PRINCIPAL and it has an Alex-
ander polynomial denoted D(t) :/

Let C be the MATRIX PRODUCT of BRAID WORDS of a
KNOT, then

det(1 �C)

1 � t � . . .  � tn �1 
�DL ; (1)

where DL is the Alexander polynomial and det is the
DETERMINANT. The Alexander polynomial of a TAME

KNOT in S3 satisfies

D(t) � det(V T �tV) : (2)

where V is a SEIFERT MATRIX, det is the DETERMI-

NANT, and V T denotes the MATRIX TRANSPOSE. The
Alexander polynomial also satisfies

D(1) � 91: (3)

The Alexander polynomial of a splittable link is
always 0. Surprisingly, there are known examples of
nontrivial KNOTS with Alexander polynomial 1. An
example is the ( �3; 5; 7) PRETZEL KNOT.

The Alexander polynomial remained the only known
KNOT POLYNOMIAL until the JONES POLYNOMIAL was
discovered in 1984. Unlike the Alexander polynomial,
the more powerful JONES POLYNOMIAL does, in most
cases, distinguish HANDEDNESS. A normalized form of
the Alexander polynomial symmetric in t and t �1 and
satisfying

D(unknot) � 1 (4)

was formulated by J. H. Conway and is sometimes
denoted 9L : The NOTATION [a �b �c �. . . is an ab-
breviation for the Conway-normalized Alexander
polynomial of a KNOT

a �b(x �x �1) �c(x2 �x �2) �. . . (5)

For a description of the NOTATION for LINKS, see
Rolfsen (1976, p. 389). Examples of the Conway-
Alexander polynomials for common KNOTS include

9TK �[1 �1 ��x �1 �1 �x (6)

9FEK �[3 �1 ��x �1 �3 �x (7)

9SSK �[1 �1 �1 �x �2 �x �1 �1 �x �x2 (8)

for the TREFOIL KNOT, FIGURE-OF-EIGHT KNOT, and
SOLOMON’S SEAL KNOT, respectively. Multiplying
through to clear the NEGATIVE POWERS gives the
usual Alexander polynomial, where the final SIGN is
determined by convention.

Let an Alexander polynomial be denoted D; then there
exists a SKEIN RELATIONSHIP (discovered by
J. H. Conway)

DL�
(t) �DL�

(t) �(t �1 =2 �t1=2) DL0
(t) �0 (9)

corresponding to the above LINK DIAGRAMS (Adams
1994). A slightly different SKEIN RELATIONSHIP con-
vention used by Doll and Hoste (1991) is

9L�
�9L�

�z9L0
: (10)

These relations allow Alexander polynomials to be
constructed for arbitrary knots by building them up
as a sequence of over- and undercrossings.

For a KNOT,

DK (�1) �
1(mod 8) if Arf (K) �0 ;
5(mod 8) if Arf (K) �1 ;

�
(11)

where Arf is the ARF INVARIANT (Jones 1985). If K is a
KNOT and

jDK (i) j
3: (12)

then K cannot be REPRESENTED AS a closed 3-BRAID.
Also, if

DK (e2pi=5) > 13
2 ; (13)

then K cannot be REPRESENTED AS a closed 4-braid
(Jones 1985).

The HOMFLY POLYNOMIAL P(a; z) generalizes the
Alexander polynomial (as well at the JONES POLY-

NOMIAL) with

9(z)�P(1; z) (14)

(Doll and Hoste 1991).

Rolfsen (1976) gives a tabulation of Alexander poly-
nomials for KNOTS up to 10 CROSSINGS and LINKS up
to 9 CROSSINGS.

See also BRAID GROUP, JONES POLYNOMIAL, KNOT,
KNOT DETERMINANT, LINK, SKEIN RELATIONSHIP
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Alexander’s Horned Sphere

The above solid, composed of a countable UNION of
COMPACT SETS, is called Alexander’s horned sphere. It
is HOMEOMORPHIC with the BALL B3 ; and its boundary
is therefore a SPHERE. It is therefore an example of a
wild embedding in E3 : The outer complement of the
solid is not SIMPLY CONNECTED, and its fundamental
GROUP is not finitely generated. Furthermore, the set
of nonlocally flat ("bad") points of Alexander’s horned
sphere is a CANTOR SET.
The complement in R3 of the bad points for Alex-
ander’s horned sphere is SIMPLY CONNECTED, making
it inequivalent to ANTOINE’S HORNED SPHERE. Alex-
ander’s horned sphere has an uncountable infinity of
WILD POINTS, which are the limits of the sequences of
the horned sphere’s branch points (roughly, the
"ends" of the horns), since any NEIGHBORHOOD of a
limit contains a horned complex.

A humorous drawing by Simon Frazer (Guy 1983,
Schroeder 1991, Albers 1994) depicts mathematician
John H. Conway with Alexander’s horned sphere
growing from his head.

See also ANTOINE’S HORNED SPHERE
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Alexander’s Theorem
Any LINK can be represented by a closed BRAID.

Alexander-Conway Polynomial
CONWAY POLYNOMIAL

Alexander-Spanier Cohomology
A fundamental result of DE RHAM COHOMOLOGY is
that the kth DE RHAM COHOMOLOGY VECTOR SPACE of
a MANIFOLD M is canonically isomorphic to the
Alexander-Spanier cohomology VECTOR SPACE

Hk(M; R) (also called cohomology with compact sup-
port). In the case that M is COMPACT, Alexander-
Spanier cohomology is exactly "singular" COHOMOL-

OGY.

Algebra
The branch of mathematics dealing with such topics
as GROUP THEORY, invariant theory, and COHOMOL-

OGY which studies number systems and operations
within them. The word "algebra" is a distortion of the
Arabic title of a treatise by al-Khwarizmi about
algebraic methods. Note that mathematicians refer
to the "school algebra" generally taught in middle and
high school as "ARITHMETIC," reserving the word
"algebra" for the more advanced aspects of the
subject.

Formally, an algebra is a VECTOR SPACE V , over a
FIELD F with a MULTIPLICATION which turns it into a
RING defined such that, if f � F and x; y � V ; then

f (xy) �(fx)y �x(fy) :

In addition to the usual algebra of REAL NUMBERS,
there are :1151 additional CONSISTENT algebras
which can be formulated by weakening the FIELD

AXIOMS, at least 200 of which have been rigorously
proven to be self-CONSISTENT (Bell 1945).

Algebras which have been investigated and found to
be of interest are usually named after one or more of
their investigators. This practice leads to exotic-
sounding (but unenlightening) names which algebra-
ists frequently use with minimal or nonexistent
explanation.

See also ABSTRACT ALGEBRA, ALTERNATIVE ALGEBRA,
ASSOCIATIVE ALGEBRA, B*-ALGEBRA, BANACH ALGE-

BRA, BOOLEAN ALGEBRA, BOREL SIGMA ALGEBRA, C*-



ALGEBRA, CAYLEY ALGEBRA, CLIFFORD ALGEBRA,
COMMUTATIVE ALGEBRA, DERIVATION ALGEBRA, EX-

TERIOR ALGEBRA, FUNDAMENTAL THEOREM OF ALGE-

BRA, GRADED ALGEBRA, GRASSMANN ALGEBRA, HECKE

ALGEBRA, HEYTING ALGEBRA, HOMOLOGICAL ALGE-

BRA, HOPF ALGEBRA, JORDAN ALGEBRA, LIE ALGEBRA,
LINEAR ALGEBRA, MEASURE ALGEBRA, NONASSOCIA-

TIVE ALGEBRA, POWER ASSOCIATIVE ALGEBRA, QUA-

TERNION, ROBBINS ALGEBRA, SCHUR ALGEBRA,
SEMISIMPLE ALGEBRA, SIGMA ALGEBRA, SIMPLE AL-

GEBRA, STEENROD ALGEBRA, UMBRAL ALGEBRA, VON

NEUMANN ALGEBRA
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Algebraic Closure
The FIELD F̄ is called an algebraic closure of F if F̄ is
algebraic over F and if every polynomial f (x) � F[x]
SPLITS completely over F̄ ; so that F̄ can be said to
contain all the elements that are algebraic over F .

For example, the FIELD of COMPLEX NUMBERS C is the
algebraic closure of the FIELD of REALS R :/

See also ALGEBRAICALLY CLOSED, SPLITTING FIELD
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Algebraic Coding Theory
CODING THEORY

Algebraic Combinatorics
The use of techniques from algebra, topology, and
geometry in the solution of combinatorial problems,
or the use of combinatorial methods to attack pro-
blems in these areas (Billera et al. 1999, p. ix).

See also COMBINATORICS
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Algebraic Congruence
A CONGRUENCE OF THE FORM

f (x) �0 (mod n)

where f (x) is an INTEGER POLYNOMIAL (Nagell 1951,
p. 73).

See also CONGRUENCE, FUNCTIONAL CONGRUENCE
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Algebraic Connectivity
The second smallest EIGENVALUE of the LAPLACIAN

MATRIX of a graph G . This eigenvalue is greater than
0 IFF G is a CONNECTED GRAPH.

See also CONNECTED GRAPH, FIEDLER VECTOR, LA-

PLACIAN MATRIX
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Algebraic Curve
An algebraic curve over a FIELD K is an equation
f (X ; Y) �0; where f (X ; Y) is a POLYNOMIAL in X and
Y with COEFFICIENTS in K . A nonsingular algebraic
curve is an algebraic curve over K which has no
SINGULAR POINTS over K . A point on an algebraic
curve is simply a solution of the equation of the curve.
A K -RATIONAL POINT is a point (X, Y ) on the curve,
where X and Y are in the FIELD K .

See also ALGEBRAIC GEOMETRY, ALGEBRAIC VARIETY,
CURVE
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Algebraic Expression
An algebraic expression in variables fx1 ; . . .  ; xn g is
an expression constructed with the variables and
ALGEBRAIC NUMBERS using addition, multiplication,
and rational powers.
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Algebraic Extension
This entry contributed by NICOLAS BRAY

An extension F of a FIELD K is said to be algebraic if
every element of F is algebraic over K (i.e., is the root
of a nonzero polynomial with coefficients in K ).

See also GALOIS EXTENSION

Algebraic Function
A function which can be constructed using only a
finite number of ELEMENTARY OPERATIONS together
with the INVERSES of functions capable of being so
constructed. Nonalgebraic functions are called TRANS-

CENDENTAL FUNCTIONS.

See also ELEMENTARY FUNCTION, ELEMENTARY OP-

ERATION, TRANSCENDENTAL FUNCTION
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Algebraic Function Field
FUNCTION FIELD

Algebraic Geometry
Algebraic geometry is the study of geometries that
come from algebra, in particular, from RINGS. In
CLASSICAL ALGEBRAIC GEOMETRY, the algebra is the
RING of POLYNOMIALS, and the geometry is the set of
zeros of polynomials, called an ALGEBRAIC VARIETY.
For instance, the UNIT CIRCLE is the set of zeros of
x2 �y2 �1 and is an ALGEBRAIC VARIETY, as are all of
the CONIC SECTIONS.

In the twentieth century, it was discovered that the
basic ideas of classical algebraic geometry can be
applied to any COMMUTATIVE RING with a unit, such
as the INTEGERS. The geometry of such a ring is
determined by its algebraic structure, in particular
its PRIME IDEALS. Grothendieck defined SCHEMES as
the basic geometric objects, which have the same
relationship to the geometry of a ring as a MANIFOLD

to a COORDINATE CHART. The language of CATEGORY

THEORY evolved at around the same time, largely in
response to the needs of the increasing abstraction in
algebraic geometry.

As a consequence, algebraic geometry became very
useful in other areas of mathematics, most notably in
ALGEBRAIC NUMBER THEORY. For instance, Deligne
used it to prove a variant of the RIEMANN HYPOTH-

ESIS. Also, Andrew Wiles’ proof of FERMAT’S LAST

THEOREM used the tools developed in algebraic
geometry.

In the latter part of the twentieth century, research-
ers have tried to extend the relationship between
algebra and geometry to arbitrary NONCOMMUTATIVE

RINGS. The study of geometries associated to non-
commutative rings is called NONCOMMUTATIVE GEO-

METRY.

See also ALGEBRAIC CURVE, ALGEBRAIC NUMBER

THEORY, ALGEBRAIC VARIETY, CATEGORY THEORY,
COMMUTATIVE ALGEBRA, CONIC SECTION, DIFFEREN-

TIAL GEOMETRY, GEOMETRY, NONCOMMUTATIVE GEO-

METRY, PLANE CURVE, SCHEME, SPACE CURVE,
ZARISKI TOPOLOGY
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Algebraic Integer
If r is a ROOT of the POLYNOMIAL equation

xn �an�1xn�1 �� � ��a1x �a0 �0;

where the ais/ are INTEGERS and r satisfies no similar
equation of degree Bn; then r is called an algebraic
integer of degree n . An algebraic integer is a special
case of an ALGEBRAIC NUMBER (for which the leading
COEFFICIENT an need not equal 1). RADICAL INTEGERS

are a SUBRING of the algebraic integers.

A SUM or PRODUCT of algebraic integers is again an
algebraic integer. However, ABEL’S IMPOSSIBILITY

THEOREM shows that there are algebraic integers of
degree ]5 which are not expressible in terms of
ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION,
and ROOT EXTRACTION (the ELEMENTARY OPERATIONS)

on COMPLEX NUMBERS. In fact, if ELEMENTARY OPERA-

TIONS are allowed on real numbers only, then there
are real numbers which are algebraic integers of
degree 3 which cannot be so expressed.

The GAUSSIAN INTEGERS are algebraic integers of
Q(

ffiffiffiffiffiffi
�1

p
) ; since a �bi are roots of

z2 �2az �a2 �b2 �0:

See also ALGEBRAIC NUMBER, CASUS IRREDUCIBILUS,
ELEMENTARY OPERATION, EUCLIDEAN NUMBER, RADI-

CAL INTEGER
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Algebraic Invariant
A quantity such as a DISCRIMINANT which remains
unchanged under a given class of algebraic transfor-
mations. Such invariants were originally called HY-

PERDETERMINANTS by Cayley.

See also DISCRIMINANT (POLYNOMIAL), INVARIANT,
QUADRATIC INVARIANT
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Algebraic Knot
A single component ALGEBRAIC LINK. Most knots up to
11 crossings are algebraic, but they quickly become
outnumbered by nonalgebraic knots for more cross-
ings (Hoste et al. 1998).

See also ALGEBRAIC LINK, KNOT, LINK
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Algebraic K-Theory
K -THEORY

Algebraic Language
Let X be an alphabet (i.e., a finite and nonempty set),
and call its member letters. A word on X is a finite
sequence of letters a1 . . . an ; where a1 ; . . . ; an � X :
Denote the empty word by e , and the set of all words
in X by X �: Define the concatenation (also called
product) of a word u �a1 . . . an with a word v �
b1 . . . bm as uv �a1 . . . anb1 . . . bm : In general, concate-
nation is not commutative. Use the notation ½u½a to
mean the number of letters a in the word u . A
language L is then a subset of X �; and L is said to be
algebraic when a set of rewriting rules, applied
recursively, forms all the words of L and no others.

See also DYCK LANGUAGE
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Algebraic Link
A class of fibered knots and links which arises in
ALGEBRAIC GEOMETRY. An algebraic link is formed by
connecting the NW and NE strings and the SW and
SE strings of an ALGEBRAIC TANGLE (Adams 1994).

See also ALGEBRAIC KNOT, ALGEBRAIC TANGLE,
FIBRATION, TANGLE
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Algebraic Manifold
An algebraic manifold is another name for a smooth
ALGEBRAIC VARIETY. It can be covered by COORDINATE

CHARTS so that the TRANSITION FUNCTIONS are given
by RATIONAL FUNCTIONS. Technically speaking, the
coordinate charts should be to all of affine space Cn :/

For example, the SPHERE is an algebraic manifold,
with a chart given by STEREOGRAPHIC PROJECTION to
C ; and another chart at �; with the TRANSITION

FUNCTION given by 1=z: In this setting, it is called the

RIEMANN SPHERE. The TORUS is also an algebraic
manifold, in this setting called an ELLIPTIC CURVE,
with charts given by ELLIPTIC FUNCTIONS such as the
WEIERSTRASS ELLIPTIC FUNCTION.

See also ABSTRACT MANIFOLD, ALGEBRAIC GEOMETRY,
ALGEBRAIC VARIETY, ELLIPTIC CURVE, MANIFOLD

Algebraic Number
If r is a ROOT of the POLYNOMIAL equation

a0xn �a1xn�1 �� � ��an�1x �an �0 ; (1)

where the ais/ are INTEGERS and r satisfies no similar
equation of degree Bn; then r is an algebraic number
of degree n . If r is an algebraic number and a0 �1;
then it is called an ALGEBRAIC INTEGER. It is also true
that if the cis/ in

a0xn �c1xn�1 �� � ��cn�1x �cn �0 (2)

are algebraic numbers, then any ROOT of this equa-
tion is also an algebraic number.

If a is an algebraic number of degree n satisfying the
POLYNOMIAL

a(x � a)(x � b)(x � g) . . .  ; (3)

then there are n �1 other algebraic numbers b; g ; ...
called the conjugates of a: Furthermore, if a satisfies
any other algebraic equation, then its conjugates also
satisfy the same equation (Conway and Guy 1996).

Any number which is not algebraic is said to be
TRANSCENDENTAL. The set of algebraic numbers is
denoted A (Mathematica ), or sometimes Q̄ (Nester-
enko 1999), and is implemented in Mathematica as
Algebraics. A number x can then be tested to see if
it is algebraic using the command Element[x ,
Algebraics].

See also ALGEBRAIC INTEGER, EUCLIDEAN NUMBER,
HERMITE-LINDEMANN THEOREM, RADICAL INTEGER,
Q-BAR, TRANSCENDENTAL NUMBER
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Algebraic Number Field
NUMBER FIELD

Algebraic Number Theory
NUMBER THEORY

Algebraic Projective Geometry
PROJECTIVE GEOMETRY

Algebraic Set
An algebraic set is the locus of zeros of a collection of
POLYNOMIALS. For example, the circle is the set of
zeros of x2 �y2 �1 and the point at (a, b ) is the set of
zeros of x and y . The algebraic set f(x; 0)g@ f(0; y)g is
the set of solutions to xy �0. It decomposes into two
irreducible algebraic sets, called ALGEBRAIC VARI-

ETIES. In general, an algebraic set can be written
uniquely as the finite union of ALGEBRAIC VARIETIES.

The intersection of two algebraic sets is an algebraic
set corresponding to the union of the polynomials. For
example, x �0 and y �0 intersect at (0; 0); i.e., where
x �0 and y �0. In fact, the intersection of an
arbitrary number of algebraic sets is itself an alge-
braic set. However, only a finite union of algebraic
sets is algebraic. If X is the set of solutions to fi �0
and Y is the set of solutions to gj �0; then X @ Y is the
set of solutions to figj �0: Consequently, the algebraic
sets are the closed sets in a TOPOLOGY, called the
ZARISKI TOPOLOGY.

The set of polynomials vanishing on an algebraic set
X is an IDEAL in the POLYNOMIAL RING. Conversely,
any IDEAL defines an algebraic set since it is a
collection of polynomials. HILBERT’S NULLSTELLEN-

SATZ describes the precise relationship between
IDEALS and algebraic sets.

See also ALGEBRAIC VARIETY, CATEGORY THEORY,
COMMUTATIVE ALGEBRA, CONIC SECTION, HILBERT’S

NULLSTELLENSATZ, IDEAL, PRIME IDEAL, PROJECTIVE

VARIETY, SCHEME, ZARISKI TOPOLOGY

References
Bump, D. Algebraic Geometry. Singapore: World Scientific,

pp. 1 �/, 1998.
Hartshorne, R. Algebraic Geometry. New York: Springer-

Verlag, 1977.

Algebraic Surface
The set of ROOTS of a POLYNOMIAL f (x; y ; z) �0: An
algebraic surface is said to be of degree n �max(i �
j �k) ; where n is the maximum sum of powers of all
terms amxim yjm zkm : The following table lists the names
of algebraic surfaces of a given degree.

Order Surface

3 CUBIC SURFACE

4 QUARTIC SURFACE

5 QUINTIC SURFACE

6 SEXTIC SURFACE

7 HEPTIC SURFACE

8 OCTIC SURFACE

9 NONIC SURFACE

10 DECIC SURFACE

12 DODECIC SURFACE

See also BARTH DECIC, BARTH SEXTIC, BOY SURFACE,
CAYLEY CUBIC, CHAIR, CLEBSCH DIAGONAL CUBIC,
CUSHION,DERVISH,ENDRAss OCTIC,HEART SURFACE,
HENNEBERG’S MINIMAL SURFACE, KUMMER SURFACE,
ORDER (ALGEBRAIC SURFACE), ROMAN SURFACE, SAR-

TI DODECIC SURFACE, TOGLIATTI SURFACE

References
Banchoff, T. F. "Computer Graphics Tools for Rendering

Algebraic Surfaces and for Geometry of Order." In Geo-
metric Analysis and Computer Graphics: Proceedings of a
Workshop Held May 23 �/5, 1988 (Eds. P. Concus, R. Finn,
D. A. Hoffman). New York: Springer-Verlag, pp. 31 �/7,
1991.

Fischer, G. (Ed.). Mathematical Models from the Collections
of Universities and Museums. Braunschweig, Germany:
Vieweg, p. 7, 1986.

Algebraic Tangle
Any TANGLE obtained by additions and multiplica-
tions of rational TANGLES (Adams 1994).

See also ALGEBRAIC LINK, TANGLE
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Algebraic Topology
The study of intrinsic qualitative aspects of spatial
objects (e.g., SURFACES, SPHERES, TORI, CIRCLES,
KNOTS, LINKS, configuration spaces, etc.) that remain
invariant under both-directions continuous ONE-TO-

ONE (HOMEOMORPHIC) transformations. The disci-
pline of algebraic topology is popularly known as
"RUBBER-SHEET GEOMETRY" and can also be viewed as
the study of DISCONNECTIVITIES. Algebraic topology
has a great deal of mathematical machinery for



studying different kinds of HOLE structures, and it
gets the prefix "algebraic" since many HOLE struc-
tures are represented best by algebraic objects like
GROUPS and RINGS.

A technical way of saying this is that algebraic
topology is concerned with FUNCTORS from the topo-
logical CATEGORY of GROUPS and HOMOMORPHISMS.
Here, the FUNCTORS are a kind of filter, and given an
"input" SPACE, they spit out something else in return.
The returned object (usually a GROUP or RING) is then
a representation of the HOLE structure of the SPACE,
in the sense that this algebraic object is a vestige of
what the original SPACE was like (i.e., much informa-
tion is lost, but some sort of "shadow" of the SPACE is
retained–just enough of a shadow to understand some
aspect of its HOLE-structure, but no more). The idea is
that FUNCTORS give much simpler objects to deal
with. Because SPACES by themselves are very compli-
cated, they are unmanageable without looking at
particular aspects.

COMBINATORIAL TOPOLOGY is a special type of alge-
braic topology that uses COMBINATORIAL methods.

See also CATEGORY, COMBINATORIAL TOPOLOGY, DIF-

FERENTIAL TOPOLOGY, FUNCTOR, HOMOTOPY THEORY,
TOPOLOGY
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Algebraic Unknotting Number
The algebraic unknotting number of a knot K in S3 is
defined as the algebraic unknotting number of the S -
equivalence class of a SEIFERT MATRIX of K . The
algebraic unknotting number of an element in an S -
equivalent class is defined as the minimum number of
algebraic unknotting operations necessary to trans-
form the element to the S -equivalence class of the
zero matrix (Saeki 1999).

See also SEIFERT MATRIX, UNKNOTTING NUMBER
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Algebraic Variety
A generalization to n -D of ALGEBRAIC CURVES. More
technically, an algebraic variety is a reduced SCHEME

of FINITE type over a FIELD K . An algebraic variety V
is defined as the SET of points in the REALS Rn (or the
COMPLEX NUMBERS Cn

/) satisfying a system of POLY-

NOMIAL equations fi(x1 ; . . . ; xn) �0 for i �1, 2, ....
According to the HILBERT BASIS THEOREM, a FINITE

number of equations suffices.

A variety is the set of common zeros to a collection of
POLYNOMIALS. In classical algebraic geometry, the
polynomials have COMPLEX NUMBERS for coefficients.
Because of the FUNDAMENTAL THEOREM OF ALGEBRA,
such polynomials always have zeros. For example,

f(x ; y; z) : x2 �y2 �z2 g
is the CONE, and

f(x; y; z) : x2 �y2 �z2 ; ax �by �cz �0 g
is a CONIC SECTION, which is a SUBVARIETY of the
cone.

Actually, the cone and the conic section are examples
of AFFINE VARIETIES because they are in AFFINE

SPACE. A general variety is comprised of affine
varieties glued together, like the COORDINATE CHARTS

of a MANIFOLD. The FIELD of coefficients can be any
ALGEBRAICALLY CLOSED field. When a variety is
embedded in projective space, it is a PROJECTIVE

ALGEBRAIC VARIETY. Also, an INTRINSIC VARIETY can
be thought of as an abstract object, like a MANIFOLD,
independent of any particular embedding. A SCHEME

is a generalization of a variety, which includes the
possibility of replacing C[x; y; z] by any COMMUTA-

TIVE RING with a unit. A further generalization is a
STACK.

See also ABELIAN VARIETY, AFFINE VARIETY, ALBA-

NESE VARIETY, ALGEBRAIC NUMBER THEORY, BRAUER-

SEVERI VARIETY, CATEGORY THEORY, CHOW VARIETY,
COMMUTATIVE ALGEBRA, CONIC SECTION, INTRINSIC

VARIETY, PICARD VARIETY, PROJECTIVE ALGEBRAIC

VARIETY, SCHEME, STACK (MODULI SPACE), ZARISKI

TOPOLOGY
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Algebraically Closed
A FIELD K is said to be algebraically closed if every
POLYNOMIAL with coefficients in K has a ROOT in K .

See also ALGEBRAIC CLOSURE, FIELD
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Algebraically Independent
This entry contributed by JOHNNY CHEN

Let K be a FIELD, and A a K -algebra. Elements y1 ; ...,
yn are algebraically independent over K if the natural
surjection K[Y1 ; . . .  ; Yn] 0 K[y1 ; . . . yn] is an iso-
morphism. In other words, there are no polynomial
relations F(y1 ; . . . ; yn) �0 with coefficients in K .
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See also IRRATIONAL NUMBER, LINDEMANN-WEIER-

STRASS THEOREM, SCHANUEL’S CONJECTURE, SHI-

DLOVSKII THEOREM, TRANSCENDENTAL NUMBER

Algebraics
ALGEBRAIC NUMBER

Algebroidal Function
An ANALYTIC FUNCTION f (z) satisfying the irreducible
algebraic equation

A0(z)f k �A1(z)f k �1 �� � ��Ak(z) �0

with single-valued MEROMORPHIC FUNCTIONS Aj(z) in
a COMPLEX DOMAIN G is called a k -algebroidal
function in G .

See also MEROMORPHIC FUNCTION
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Algorithm
A specific set of instructions for carrying out a
procedure or solving a problem, usually with the
requirement that the procedure terminate at some
point. Specific algorithms sometimes also go by the
name METHOD, PROCEDURE, or TECHNIQUE. The word
"algorithm" is a distortion of al-Khwarizmi, an Arab
mathematician who wrote an influential treatise
about algebraic methods.

See also 196-ALGORITHM, ALGORITHMIC COMPLEXITY,
ARCHIMEDES ALGORITHM, BHASKARA-BROUCKNER AL-

GORITHM, BORCHARDT-PFAFF ALGORITHM, BRELAZ’S

HEURISTIC ALGORITHM, BUCHBERGER’S ALGORITHM,

BULIRSCH-STOER ALGORITHM, BUMPING ALGORITHM,
COMPUTABLE FUNCTION, CONTINUED FRACTION FAC-

TORIZATION ALGORITHM, DECISION PROBLEM, DIJK-

STRA’S ALGORITHM, EUCLIDEAN ALGORITHM,
FERGUSON-FORCADE ALGORITHM, FERMAT’S ALGO-

RITHM, FLOYD’S ALGORITHM, GAUSSIAN APPROXIMA-

TION ALGORITHM, GENETIC ALGORITHM, GOSPER’S

ALGORITHM, GREEDY ALGORITHM, HASSE’S ALGO-

RITHM, HJLS ALGORITHM, JACOBI ALGORITHM, KRUS-

KAL’S ALGORITHM, LEVINE-O’SULLIVAN GREEDY

ALGORITHM, LLL ALGORITHM, MARKOV ALGORITHM,
MILLER’S ALGORITHM, NEVILLE’S ALGORITHM, NEW-

TON’S METHOD, PRIME FACTORIZATION ALGORITHMS,
PRIMITIVE RECURSIVE FUNCTION, PROGRAM, PSLQ
ALGORITHM, PSOS ALGORITHM, QUOTIENT-DIFFER-

ENCE ALGORITHM, RISCH ALGORITHM, SCHRAGE’S

ALGORITHM, SHANKS’ ALGORITHM, SPIGOT ALGO-

RITHM, SYRACUSE ALGORITHM, TOTAL FUNCTION,
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Algorithmic Complexity
BIT COMPLEXITY, KOLMOGOROV COMPLEXITY

Alhazen’s Billiard Problem
In a given CIRCLE, find an ISOSCELES TRIANGLE whose
LEGS pass through two given POINTS inside the
CIRCLE. This can be restated as: from two POINTS in
the PLANE of a CIRCLE, draw LINES meeting at the
POINT of the CIRCUMFERENCE and making equal
ANGLES with the NORMAL at that POINT.

The problem is called the billiard problem because it
corresponds to finding the POINT on the edge of a
circular "BILLIARD" table at which a cue ball at a given
POINT must be aimed in order to carom once off the
edge of the table and strike another ball at a second
given POINT. The solution leads to a BIQUADRATIC

EQUATION OF THE FORM

H(x2 �y2) �2Kxy �(x2 �y2)(hy �kx) �0 :

The problem is equivalent to the determination of the
point on a spherical mirror where a ray of light will
reflect in order to pass from a given source to an
observer. It is also equivalent to the problem of
finding, given two points and a CIRCLE such that the
points are both inside or outside the CIRCLE, the
ELLIPSE whose FOCI are the two points and which is
tangent to the given CIRCLE.

The problem was first formulated by Ptolemy in 150
AD, and was named after the Arab scholar Alhazen,
who discussed it in his work on optics. It was not until
1997 that Neumann proved the problem to be
insoluble using a COMPASS and RULER construction
because the solution requires extraction of a CUBE

ROOT (Neumann 1998). This is the same reason that
the CUBE DUPLICATION problem is insoluble.

See also BILLIARDS, BILLIARD TABLE PROBLEM, CUBE

DUPLICATION
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Alhazen’s Problem
ALHAZEN’S BILLIARD PROBLEM

Alias Transformation
A transformation in which the coordinate system is
changed, leaving vectors in the original coordinate
system "fixed" while changing their representation in
the new coordinate system. In contrast, a transforma-
tion in which vectors are transformed in a fixed
coordinate system is called an ALIBI TRANSFORMA-

TION.

See also ALIBI TRANSFORMATION, ROTATION FORMULA

Aliasing
Given a power spectrum (a plot of power vs. fre-
quency), aliasing is a false translation of power falling
in some frequency range (�fc ; fc) outside the range.
Aliasing can be caused by discrete sampling below the
NYQUIST FREQUENCY. The sidelobes of any INSTRU-

MENT FUNCTION (including the simple SINC SQUARED

function obtained simply from FINITE sampling) are
also a form of aliasing. Although sidelobe contribution
at large offsets can be minimized with the use of an
APODIZATION FUNCTION, the tradeoff is a widening of
the response (i.e., a lowering of the resolution).

See also APODIZATION FUNCTION, NYQUIST FRE-

QUENCY

Alibi Transformation
A transformation in which vectors are transformed in
a fixed coordinate system. In contrast, a transforma-
tion in which the coordinate system is changed,
leaving vectors in the original coordinate system
"fixed" while changing their representation in the
new coordinate system, is called an ALIAS TRANSFOR-

MATION.

See also ALIAS TRANSFORMATION, ROTATION FORMULA

Aliquant Divisor
A number which does not DIVIDE another exactly. For
instance, 4 and 5 are aliquant divisors of 6. A number
which is not an aliquant divisor (i.e., one that does
DIVIDE another exactly) is said to be an ALIQUOT

DIVISOR.

See also ALIQUOT DIVISOR, DIVISOR, PROPER DIVISOR

Aliquot Cycle
ALIQUOT SEQUENCE, SOCIABLE NUMBERS

 



Aliquot Divisor
A number which DIVIDES another exactly. For in-
stance, 1, 2, 3, and 6 are aliquot divisors of 6. A
number which is not an aliquot divisor is said to be an
ALIQUANT DIVISOR. The term "aliquot" is frequently
used to specifically mean a PROPER DIVISOR, i.e., a
DIVISOR of a number other than the number itself.

See also ALIQUANT DIVISOR, DIVISOR, PROPER DIVISOR

Aliquot Sequence
Let

s(n) � s(n) �n

where s(n) is the DIVISOR FUNCTION and s(n) is the
RESTRICTED DIVISOR FUNCTION. Then the SEQUENCE of
numbers

s0(n) �n ; s1(n) �s(n) ; s2(n) �s(s(n)) ; � � �
is called an aliquot sequence. If the SEQUENCE for a
given n is bounded, it either ends at s(1) �0 or
becomes periodic.

1. If the SEQUENCE reaches a constant, the con-
stant is known as a PERFECT NUMBER.
2. If the SEQUENCE reaches an alternating pair, it
is called an AMICABLE PAIR.
3. If, after k iterations, the SEQUENCE yields a cycle
of minimum length t OF THE FORM sk�1(n); sk �2(n);
..., sk�1(n); then these numbers form a group of
SOCIABLE NUMBERS of order t .

It has not been proven that all aliquot sequences
eventually terminate and become period. The smal-
lest number whose fate is not known is 276, which
has been computed up to s628(276) (Guy 1994). There
are five such sequences less than 1000, namely 276,
552, 564, 660, and 966, sometimes called the "Lehmer
five." Furthermore, there are 934 open sequences
5105; and 9710 open sequences5106 (Creyaufmül-
ler).

See also 196-ALGORITHM, ADDITIVE PERSISTENCE,
AMICABLE NUMBERS, CATALAN’S ALIQUOT SEQUENCE

CONJECTURE, MULTIAMICABLE NUMBERS, MULTIPER-

FECT NUMBER, MULTIPLICATIVE PERSISTENCE, PER-

FECT NUMBER, SOCIABLE NUMBERS, UNITARY

ALIQUOT SEQUENCE
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Alladi-Grinstead Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let N(n) be the number of ways in which the
FACTORIAL n! can be decomposed into n FACTORS of
the form Pbk

k arranged in nondecreasing order. Also
define

m(n)�max(pb1

1 ); (1)

i.e., m(n) is the LEAST PRIME FACTOR raised to its
appropriate POWER in the factorization. Then define

a(n)�
ln m(n)

ln n
(2)

where ln(x) is the NATURAL LOGARITHM. For instance,

9!�2 � 2 � 2 � 2 � 2 � 22 � 5 � 7 � 34

�2 � 2 � 2 � 2 � 3 � 5 � 7 � 23 � 33

�2 � 2 � 2 � 2 � 5 � 7 � 23 � 32 � 32

�2 � 2 � 2 � 3 � 22 � 22 � 5 � 7 � 33

�2 � 2 � 2 � 22 � 22 � 5 � 7 � 32 � 32

�2 � 2 � 2 � 3 � 3 � 5 � 7 � 32 � 24

�2 � 2 � 3 � 3 � 22 � 5 � 7 � 23 � 32

�2 � 2 � 3 � 3 � 3 � 3 � 5 � 7 � 25

�2 � 3 � 3 � 22 � 22 � 22 � 5 � 7 � 32

�2 � 3 � 3 � 3 � 3 � 22 � 5 � 7 � 24

�2 � 3 � 3 � 3 � 3 � 5 � 7 � 23 � 23

�3 � 3 � 3 � 3 � 22 � 22 � 5 � 7 � 23; (3)

so

a(9)�
ln 3

ln 9
�

ln 3

2ln 3
�

1

2
: (4)

For large n ,

lim
n0�

a(n) ¼ ec�1 ¼ 0:809394020534:::; (5)

where

c�
X�
k�2

1

k
ln

k

k � 1

 !
: (6)
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Allais Paradox
Choose between the following two alternatives:

1. 90% chance of an unknown amount x and a 10%
chance of $1 million, or
2. 89% chance of the same unknown amount x ,
10% chance of $2.5 million, and 1% chance of
nothing.

The PARADOX is to determine which choice has the
larger EXPECTATION VALUE, 0:9x�/$/100; 000 or 0:89x�/

//$/250; 000: However, the best choice depends on the
unknown amount, even though it is the same in both
cases! This appears to violate the INDEPENDENCE

AXIOM.

See also INDEPENDENCE AXIOM, MONTY HALL PRO-

BLEM, NEWCOMB’S PARADOX
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Allegory
A technical mathematical object which bears the
same resemblance to binary relations as CATEGORIES

do to FUNCTIONS and SETS.

See also CATEGORY
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Allometric
Mathematical growth in which one population grows
at a rate PROPORTIONAL to the POWER of another
population.
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All-Pairs Shortest Path
The shortest distance between any pair of vertices in
the shortest-path spanning tree, as long as the path
giving the shortest path does not pass through the
root of the spanning tree (Skiena 1990, p. 228). The
problem can be solved using n applications of DIJK-

STRA’S ALGORITHM or FLOYD’S ALGORITHM. The latter
also works in the case of a weighted graph where the
edges have negative weights.

See also FLOYD’S ALGORITHM, DIJKSTRA’S ALGORITHM,
GRAPH GEODESIC
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All-Poles Model
MAXIMUM ENTROPY METHOD

All-to-All Communication
GOSSIPING

Almost All
Given a property P , if P(x) �x as x 0 � (so the
number of numbers less than x not satisfying the
property P is s(x)) ; then P is said to hold true for
almost all numbers. For example, almost all positive
integers are COMPOSITE NUMBERS (which is not in
conflict with the second of EUCLID’S THEOREMS that
there are an infinite number of PRIMES).

See also FOR ALL, NORMAL ORDER
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Almost Alternating Knot
An ALMOST ALTERNATING LINK with a single compo-
nent.

See also ALMOST ALTERNATING LINK

Almost Alternating Link
Call a projection of a LINK an almost alternating
projection if one crossing change in the projection
makes it an alternating projection. Then an almost
alternating link is a LINK with an almost alternating
projection, but no alternating projection. Every AL-

TERNATING KNOT has an almost alternating projec-
tion. A PRIME KNOT which is almost alternating is
either a TORUS KNOT or a HYPERBOLIC KNOT. There-
fore, no SATELLITE KNOT is an almost alternating
knot.

All nonalternating 9-crossing PRIME KNOTS are almost
alternating. Of the 393 nonalternating knots and
links with 11 or fewer crossings, all but five are
known to be almost alternating (and 3 of these have
11 crossings). The fate of the remaining five is not
known. The (q; 2); (4; 3); and (5; 3)/-TORUS KNOTS are
almost alternating (Adams 1994, p. 142).

See also ALTERNATING KNOT, LINK
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Almost Everywhere
A property of X is said to hold almost everywhere if
the SET of points in X where this property fails has
MEASURE ZERO.

See also ALMOST EVERYWHERE CONVERGENCE, MEA-

SURE ZERO
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Almost Everywhere Convergence
A weakened version of POINTWISE CONVERGENCE

hypothesis which states that, for X a MEASURE SPACE,
fn(x) 0 f (x) for all x � Y ; where Y is a measurable
subset of X such that m(X_Y)�0:/

See also POINTWISE CONVERGENCE
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Almost Integer
A number which is very close to an INTEGER. One
surprising example involving both E and PI is

ep�p�19:999099979 . . . (1)

which can also be written as

(p�20)i��0:9999999992�0:0000388927i:�1 (2)

cos(ln(p�20)):�0:9999999992: (3)

Applying COSINE a few more times gives

cos(p cos(p cos(ln(p�20))))

:�1�3:9321609261�10�35: (4)

This curious near-identity was apparently noticed
almost simultaneously around 1988 by N. J. A. -
Sloane, J. H. Conway, and S. Plouffe, but no satisfy-
ing explanation as to "why" it has been true has yet
been discovered.

An interesting near-identity is given by

1

4
cos 1

10

 !
�cosh 1

10

 !
�2cos 1

20

ffiffiffi
2

p !
cosh 1

20

ffiffiffi
2

p !h i
�1�2:480 . . .�10�13 (5)

(W. Dubuque). Other remarkable near-identities are
given by

5(1 �
ffiffiffi
5

p
)[G 3

4

 !
]2

e5x=6
ffiffiffi
p

p �1�4:5422 . . .�10�14 (6)

where G(z) is the GAMMA FUNCTION (S. Plouffe),

e6�p4�p5�0:000017673 . . . (7)

(D. Wilson),

r
160

p

 !1=13

:0:9999996766; (8)

where r:0:739085 is the root of x�cos x (L. A.
Broukhis),

ln 2�log10 2�0:994177 . . . (9)

(D. Davis),

163

ln 163
�31:9999983738 . . . (10)

(posted to sci.math; origin unknown),

eK 5=7�gp�(2=7�g):1:00014678 (11)

K g�19=7p2=7�g

2f
:1:00105 (12)

egf(Kp)�(2=7�g)
:1:01979; (13)

where K is CATALAN’S CONSTANT, g is the EULER-

MASCHERONI CONSTANT, and f is the GOLDEN RATIO

(D. Barron), and

163(p�e)�68:999664 . . . (14)

53453

ln 53453
�4910:00000122 . . . (15)

(2�1)2�
(52 � 1)2

62 � 1

" #
e� (2�1)2�

(52 � 1)2

62 � 1

" #�1

�613
37 e� 35

991�44:99999999993962 . . . (16)

(Stoschek). Stoschek also gives an interesting near-
identity involving the fine structure constant a and
FEIGENBAUM CONSTANT d;

(28�d�1)(a�1�137):0:999998: (17)

The near identity

3
ffiffiffi
2

p
(
ffiffiffi
5

p
�2)�1:0015516 . . . (18)

arises by noting that the stellation ratio 3(
ffiffiffi
5

p
�2) in

the CUMULATION of the DODECAHEDRON to form the
GREAT DODECAHEDRON is approximately equal to

ffiffiffi
2

p
:/

A set of almost integers due to D. Hickerson are those
OF THE FORM

hn�
n!

2(ln 2)n�1 : (19)

for 15n515; as summarized in the following table.



n /hn/

0 0.72135

1 1.04068

2 3.00278

3 12.99629

4 74.99874

5 541.00152

6 4683.00125

7 47292.99873

8 545834.99791

9 7087261.00162

10 102247563.00527

11 1622632572.99755

12 28091567594.98157

13 526858348381.00125

14 10641342970443.08453

15 230283190977853.03744

16 5315654681981354.51308

17 130370767029135900.45799

These numbers are close to integers due to the fact
that the quotient is the dominant term in an infinite
series for the number of possible outcomes of a race
between n people (with ties are allowed). Calling this
number f (n); it follows that

f (n)�
Xn

k�1

n
k

� �
f (n�k) (20)

for n]1; where n
k

� 	
is a BINOMIAL COEFFICIENT. From

this, we obtain the exponential generating function
for f

X�
n�0

f (n)

n!
zn�

1

2 � ez
; (21)

and then by CONTOUR INTEGRATION it can be shown
that

f (n)�1
2 n!

X�
k���

1

(ln 2 � 2pik)n�1 (22)

for n]1; where i is the square root of -1 and the sum
is over all integers k (here, the imaginary parts of the
terms for k and �k cancel each other, so this sum is
real.) The k � 0 term dominates, so f (n) is asympto-
tic to n!=(2(ln 2)n�1): In fact, the other terms are quite

small for n from 1 to 15, so f (n) is the nearest integer
to n!=(2(ln 2)n�1) for these values (Hickerson), given
by the sequence 1, 3, 13 75, 541, 4683, ... (Sloane’s
A034172).

A large class of IRRATIONAL "almost integers" can be
found using the theory of MODULAR FUNCTIONS, and a
few rather spectacular examples are given by Rama-
nujan (1913�/4). Such approximations were also
studied by Hermite (1859), Kronecker (1863), and
Smith (1965). They can be generated using some
amazing (and very deep) properties of the J -FUNC-

TION. Some of the numbers which are closest approx-
imations to INTEGERS are ep

ffiffiffiffiffiffi
163

p
(sometimes known as

the RAMANUJAN CONSTANT and which corresponds to
the field Q(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�163

p
) which has CLASS NUMBER 1 and is

the IMAGINARY QUADRATIC FIELD of maximal discri-
minant), ep

ffiffiffiffi
22

p
; ep

ffiffiffiffi
37

p
; and ep

ffiffiffiffi
58

p
; the last three of which

have CLASS NUMBER 2 and are due to Ramanujan
(Berndt 1994, Waldschmidt 1988).

The properties of the J -FUNCTION also give rise to the
spectacular identity

ln(6403203 � 744)

p

" #2

�163�2:32167 . . .�10�29 (23)

(Le Lionnais 1983, p. 152).

The list below gives numbers OF THE FORM x � ep
ffiffi
n

p

for n 5 1000 for which [x] � x 5 0:01:/

ep
ffiffi
6

p
�2; 197:990869543 . . .

ep
ffiffiffiffi
17

p
�422; 150:997675680 . . .

ep
ffiffiffiffi
18

p
�614; 551:992885619 . . .

ep
ffiffiffiffi
22

p
�2; 508; 951:998257424 . . .

ep
ffiffiffiffi
25

p
�6; 635; 623:999341134 . . .

ep
ffiffiffiffi
37

p
�199; 148; 647:999978046551 . . .

ep
ffiffiffiffi
43

p
�884; 736; 743:999777466 . . .

ep
ffiffiffiffi
58

p
�24; 591; 257; 751:999999822213 . . .

ep
ffiffiffiffi
59

p
�30; 197; 683; 486:993182260 . . .

ep
ffiffiffiffi
67

p
�147; 197; 952; 743:999998662454 . . .

ep
ffiffiffiffi
74

p
�545; 518; 122; 089:999174678853 . . .

ep
ffiffiffiffiffiffi
149

p
�45; 116; 546; 012; 289; 599:991830287 . . .

ep
ffiffiffiffiffiffi
163

p
�262; 537; 412; 640; 768; 743:999999999999250072 . . .

ep
ffiffiffiffiffiffi
177

p
�1; 418; 556; 986; 635; 586; 485:996179355 . . .

ep
ffiffiffiffiffiffi
232

p
�604; 729; 957; 825; 300; 084; 759:999992171526 . . .

ep
ffiffiffiffiffiffi
267

p
�19; 683; 091; 854; 079; 461; 001; 445:992737040 . . .

ep
ffiffiffiffiffiffi
326

p
�4; 309; 793; 301; 730; 386; 363; 005; 719:996011651 . . .

ep
ffiffiffiffiffiffi
386

p
�639; 355; 180; 631; 208; 421; 212; 174; 016:997669832 . . .

ep
ffiffiffiffiffiffi
522

p
�14; 871; 070; 263; 238; 043; 663; 567; . . .

. . . 627; 879; 007:999848726 . . .

ep
ffiffiffiffiffiffi
566

p
�288; 099; 755; 064; 053; 264; 917; 867; . . .

. . . 975; 825; 573:993898311 . . .

ep
ffiffiffiffiffiffi
638

p
�28; 994; 858; 898; 043; 231; 996; 779; . . .

. . . 771; 804; 797; 161:992372939 . . .

ep
ffiffiffiffiffiffi
719

p
�3; 842; 614; 373; 539; 548; 891; 490; . . .

. . . 294; 277; 805; 829; 192:999987249 . . .

 



e p
ffiffiffiffiffiffi
790

p
�223 ; 070 ; 667 ; 213 ; 077 ; 889 ; 794; 379 ; . . .

. . . 623; 183 ; 838 ; 336 ; 437 :992055117 . . .

e p
ffiffiffiffiffiffi
792

p
�249 ; 433 ; 117 ; 287 ; 892 ; 229 ; 255; 125 ; . . .

. . . 388; 685 ; 911 ; 710 ; 805 :996097323 . . .

e p
ffiffiffiffiffiffi
928

p
�365 ; 698 ; 321 ; 891 ; 389 ; 219 ; 219; 142 ; . . .

. . . 531; 076 ; 638 ; 716 ; 362 ; 775 :998259747 . . .

e p
ffiffiffiffiffiffi
986

p
�6; 954 ; 830 ; 200 ; 814 ; 801 ; 770 ; 418 ; 837 ; . . .

. . . 940; 281 ; 460 ; 320 ; 666 ; 108 :994649611 . . .

Gosper noted that the expression

1 �262537412640768744e �p
ffiffiffiffiffiffi
163

p
�196884e �2 p

ffiffiffiffiffiffi
163

p

�103378831900730205293632e �3 p
ffiffiffiffiffiffi
163

p
: (24)

differs from an INTEGER by a mere 10 �59:
/

See also CLASS NUMBER, J -FUNCTION, PI, PISOT-

VIJAYARAGHAVAN CONSTANT
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Almost Perfect Number
A number n for which the DIVISOR FUNCTION satisfies
s(n) � 2n � 1 is called almost perfect. The only
known almost perfect numbers are the POWERS of 2,
namely 1, 2, 4, 8, 16, 32, ... (Sloane’s A000079). Singh
(1997) calls almost perfect numbers SLIGHTLY DEFEC-

TIVE.

See also QUASIPERFECT NUMBER
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Almost Periodic Function
This entry contributed by RONALD M. AARTS

A function representable as a generalized Fourier
series. Let R be a METRIC SPACE with metric r(x; y):
Following Bohr (1947), a CONTINUOUS FUNCTION x(t)
for ( �� B t B �) with values in R is called an
almost periodic function if, for every e > 0 ; there
exists l � l( o) > 0 such that every interval [t0 ; t0 �
l( o)] contains at least one number t for which

r[x(t) ; x(t � t)] B o (��Bt B�): (1)

Another formal description can be found in Krasno-
sel’skii et al. (1973).

Every almost periodic function is bounded and uni-
formly continuous on the entire REAL LINE. In addi-
tion, the range of an almost period function is
compact in R:/

See also FOURIER SERIES, PERIODIC FUNCTION
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Almost Prime
A number n with prime factorization

n�
Yr

i�1

pai

i

is called k -almost prime when the sum of the POWERS

a
r

i�1 ai�k: The set of k -almost primes is denoted Pk:/

The PRIMES correspond to the "1-almost prime"
numbers 2, 3, 5, 7, 11, ... (Sloane’s A000040). The 2-
almost prime numbers correspond to SEMIPRIMES 4, 6,
9, 10, 14, 15, 21, 22, ... (Sloane’s A001358). The first
few 3-almost primes are 8, 12, 18, 20, 27, 28, 30, 42,
44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, ...
(Sloane’s A014612). The first few 4-almost primes are
16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, ...
(Sloane’s A014613). The first few 5-almost primes are
32, 48, 72, 80, ... (Sloane’s A014614).



See also CHEN’S THEOREM, PRIME NUMBER, SEMI-

PRIME
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Almost Unit
An almost unit is a nonunit in the INTEGRAL DOMAIN

of FORMAL POWER SERIES with a nonzero first coeffi-
cient, P �a1x �z2x2 �. . . ; where a1 "0: Under the
operation of composition, the almost units in the
INTEGRAL DOMAIN of FORMAL POWER SERIES over a
FIELD F form a GROUP (Henrici 1988, p. 45).

See also SCHUR-JABOTINSKY THEOREM

References
Henrici, P. Applied and Computational Complex Analysis,

Vol. 1: Power Series-Integration-Conformal Mapping-Lo-
cation of Zeros. New York: Wiley, p. 45, 1988.

Alon-Tarsi Conjecture

See also LATIN SQUARE
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Alpha
Alpha is the name for the first letter in the Greek
alphabet: a:/

In finance, alpha is a financial measure giving the
difference between a fund’s actual return and its
expected level of performance, given its level of risk
(as measured by BETA). A POSITIVE alpha indicates
that a fund has performed better than expected based
on its BETA, whereas a NEGATIVE alpha indicates
poorer performance.

See also ALPHA FUNCTION, ALPHA-TEST, ALPHA

VALUE, BETA, SHARPE RATIO

Alpha Function

an(z) �g
�

1

tne �zt dt �n!z �(n �1)e �z
Xn

k �0

zk

k!
:

It is equivalent to

an(z) �E�n(z) ;

where En(z) is the EN -FUNCTION.

See also BETA EXPONENTIAL FUNCTION, EN -FUNCTION

Alpha Value
An alpha value is a number 0 5 a 51 such that P(z ]
zobserved) 5 a is considered "SIGNIFICANT," where P is a
P -VALUE.

See also CONFIDENCE INTERVAL, P -VALUE, SIGNIFI-

CANCE

Alphabet
A SET (usually of letters) from which a SUBSET is
drawn. A sequence of letters is called a WORD, and a
set of WORDS is called a CODE.

See also CODE, STRING, WORD

Alpha-Beta Conjecture
MANN’S THEOREM

Alphamagic Square
A MAGIC SQUARE for which the number of letters in
the word for each number generates another MAGIC

SQUARE. This definition depends, of course, on the
language being used. In English, for example,

5 22 18
28 15 2
12 8 25

4 9 8
11 7 3
6 5 10

;

where the MAGIC SQUARE on the right corresponds to
the number of letters in

f ive twenty-two eighteen
twenty-eight f if teen two

twelve eight twenty-f ive
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Alphametic
A CRYPTARITHM in which the letters used to represent
distinct DIGITS are derived from related words or
meaningful phrases. The term was coined by Hunter
in 1955 (Madachy 1979, p. 178).

References
Brooke, M. One Hundred & Fifty Puzzles in Crypt-Arith-

metic. New York: Dover, 1963.
Hunter, J. A. H. and Madachy, J. S. "Alphametics and the

Like." Ch. 9 in Mathematical Diversions. New York:
Dover, pp. 90 �/5, 1975.

Madachy, J. S. "Alphametics." Ch. 7 in Madachy’s Mathe-
matical Recreations. New York: Dover, pp. 178 �/00, 1979.

Alpha-Test
For some constant a0 ; a(f ; z) B a0 implies that z is an
APPROXIMATE ZERO of f , where

a(f ; z) �
½f (z) ½

½f ?(z)½
sup
k>1

f (k)(z)

k!f ?(z)

�����
�����
1 =(k �1)

Smale (1986) found a constant a : 0 :130707 for the
test, and this value was subsequently improved to
a0 �3 �2

ffiffiffi
2

p
:0 :171573 by Wang and Han (1989),

and further improved by Wang and Zhao (1995;
Petkovic et al. 1997, p. 2).

See also APPROXIMATE ZERO, NEWTON’S METHOD,
POINT ESTIMATION THEORY
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Alternating Algebra
EXTERIOR ALGEBRA

Alternating Group
A PERMUTATION GROUP of an even number of permu-
tations on a set of length n , denoted An or Alt(n )
(Scott 1987, p. 267). An alternating group is a
NORMAL SUBGROUP of the PERMUTATION GROUP, and
has ORDER n!=2; the first few values of which for
n�2, 3, ... are 1, 3, 12, 60, 360, 2520, ... (Sloane’s
A001710). Alternating groups are FINITE analogs of
the families of simple LIE GROUPS.

Alternating groups with n]5 are non-ABELIAN SIM-

PLE GROUPS (Scott 1987, p. 295). The number of
conjugacy classes in the alternating groups An for
n�2, 3, ... are 1, 3, 4, 5, 7, 9, ... (Sloane’s A000702).

See also 15 PUZZLE, FINITE GROUP, GROUP, JORDAN’S

SYMMETRIC GROUP THEOREM, LIE GROUP, PERMUTA-

TION GROUP, SIMPLE GROUP, SYMMETRIC GROUP
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Alternating Knot
An alternating knot is a KNOT which possesses a knot
diagram in which crossings alternate between under-
and overpasses. Not all knot diagrams of alternating
knots need be alternating diagrams.

The TREFOIL KNOT and FIGURE-OF-EIGHT KNOT are
alternating knots. The number of PRIME alternating
and nonalternating knots of n crossings are summar-
ized in the following table.

type Sloane counts

alternating A002864 0, 0, 1, 1, 2, 3, 7, 18,
41, 123, 367, 1288,
4878, 19536, 85263,
379799, ...

nonalternating A051763 0, 0, 0, 0, 0, 0, 0, 3, 8,
42, 185, 888, 5110,
27436, 168030,
1008906, ...

The 3 nonalternating knots of eight crossings are 08�/

19, 08�/20, and 08�/21, illustrated below (Wells 1991).



One of TAIT’S KNOT CONJECTURES states that the
number of crossings is the same for any diagram of a
reduced alternating knot. Furthermore, a reduced
alternating projection of a knot has the least number
of crossings for any projection of that knot. Both of
these facts were proved true by Kauffman (1988),
Thistlethwaite (1987), and Murasugi (1987). FLYPE

moves are sufficient to pass between all minimal
diagrams of a given alternating knot (Hoste et al.
1998).

If K has a reduced alternating projection of n cross-
ings, then the SPAN of K is An: Let c(K) be the
CROSSING NUMBER. Then an alternating knot K1#K2

(a KNOT SUM) satisfies

c(K1#K2) �c(K1) �c(K2) :

In fact, this is true as well for the larger class of
ADEQUATE KNOTS and postulated for all KNOTS.

It is conjectured that the proportion of knots which
are alternating tends exponentially to zero with
increasing crossing number (Hoste et al. 1998), a
statement which has been proved true for alternating
links.

See also ADEQUATE KNOT, ALMOST ALTERNATING

LINK, ALTERNATING LINK, FLYPING CONJECTURE,
TAIT’S KNOT CONJECTURES
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Alternating Knot Diagram
A KNOT DIAGRAM which has alternating under- and
overcrossings as the KNOT projection is traversed. The
first KNOT which does not have an alternating
diagram has 8 crossings.

Alternating Link
A LINK which has a LINK DIAGRAM with alternating
underpasses and overpasses.

The proportion of links which are alternating tends
exponentially to zero with increasing crossing num-
ber (Sundberg and Thistlethwaite 1998, Thistle-
thwaite 1998).

See also ALMOST ALTERNATING LINK, ALTERNATING

KNOT
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Alternating Multilinear Form
An alternating multilinear form on a REAL VECTOR

SPACE V is a MULTILINEAR FORM

F : V �� � ��V 0 R (1)

such that

F(x1 ; . . . ; xi ; xi �1 ; . . . ; xn)

��F(x1 ; . . . ; xi�1 ; xi ; . . . ; xn) (2)

for any index i . For example,

F((a1 ; a2 ; a3) ; (b1 ; b2 ; b3); (c1 ; c2 ; c3))

�a1b2c3 �a1b3c2 �a2b3c1 �a2b1c3 �a3b1c2

�a3b2c1 (3)

is an alternating form on R3:/

An alternating multilinear form is defined on a
MODULE in a similar way, by replacing R with the
RING.

See also DUAL SPACE, EXTERIOR ALGEBRA, MODULE,
MULTILINEAR FORM, VECTOR SPACE

 



Alternating Permutation
An arrangement of the elements c1 ; ..., cn such that no
element ci has a magnitude between ci�1 and ci�1 is
called an alternating (or ZIGZAG) permutation. The
determination of the number of alternating permuta-
tions for the set of the first n INTEGERS f1; 2; . . . ; ng
is known as ANDRÉ ’S PROBLEM. An example of an
alternating permutation is (1, 3, 2, 5, 4).

As many alternating permutations among n elements
begin by rising as by falling. The magnitude of the cn/s
does not matter; only the number of them. Let the
number of alternating permutations be given by Zn �
2An : This quantity can then be computed from

2nan �
X

aras ; (1)

where r and s pass through all INTEGRAL numbers
such that

r �s �n �1 ; (2)

/a0 �a1 �1; and

An �n!an : (3)

The numbers An are sometimes called the EULER

ZIGZAG NUMBERS, and the first few are given by 1, 1, 1,
2, 5, 16, 61, 272, ... (Sloane’s A000111). The EVEN-
numbered An/s are called EULER NUMBERS, SECANT

NUMBERS, or ZIG NUMBERS, and the ODD-numbered
ones are sometimes called TANGENT NUMBERS or ZAG

NUMBERS.

Curiously enough, the SECANT and TANGENT MA-

CLAURIN SERIES can be written in terms of the An/s as

sec x �A0 �A2

x2

2! 
�A4

x4

4! 
�. . . (4)

tan x �A1x �A3

x3

3! 
�A5

x5

5! 
�. . . ; (5)

or combining them,

sec x �tan x

�A0 �A1x �A2

x2

2! 
�A3

x3

3! 
�A4

x4

4! 
�A5

x5

5!

�. . . : (6)

See also ENTRINGER NUMBER, EULER NUMBER, EULER

ZIGZAG NUMBER, SECANT NUMBER, SEIDEL-ENTRIN-

GER-ARNOLD TRIANGLE, TANGENT NUMBER
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Alternating Representation

See also REPRESENTATION

Alternating Series
A SERIES OF THE FORM

X�
k �1

(�1)k �1ak (1)

or

X�
k �1

(�1)kak : (2)

Rather surprisingly, the alternating series

X�
k�1

( �1)k �1

k
�ln 2 (3)

converges to the natural logarithm of 2.

See also SERIES
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Alternating Series Test
Also known as the LEIBNIZ CRITERION. An ALTERNAT-

ING SERIES CONVERGES if a1 ]a2 ]. . . and

lim
k 0�

ak �0:

See also CONVERGENCE TESTS

Alternating Sign Matrix
A MATRIX of 0s, 1s, and -1s in which the entries in
each row or column sum to 1 and the nonzero entries
in each row and column alternate in sign. The
number of n �n alternating sign matrices for n �1,
2, ... are 1, 2, 21, 1344, 628080, ...(Sloane’s A050204),
illustrated below:

A?1 �[1] (1)

A ?2 � 
1 0
0 1

 �
;

0 1
1 0

 �
(2)

A?3 �
�1 1 1

1 �1 1
1 1 �1

2
4

3
5; �1 1 1

1 0 0
1 0 0

2
4

3
5; �1 1 1

1 1 �1
1 �1 1

2
4

3
5

0 0  1
0 0  1
1 1 �1

2
4

3
5; 0 0 1

0 1 0
1 0 0

2
4

3
5; 0 0 1

1 0 0
0 1 0

2
4

3
5; . . . : (3)

If the additional restriction is added that any -1s in a
row or column must have a �1 "outside" it (i.e., all -1s
are "bordered" by �1/s), then the number of these
"Robins and Rumsey" n �n alternating sign matrices
An are given by 1, 2, 7, 42, 429, 7436, 218348, ...
(Sloane’s A005130). The single A1 and two A2/s are
identical to A?1 and A?2 ; but only seven of the 21 A?3/s are
A3/s:

A3 �
0 0 1
0 1 0
1 0 0

2
4

3
5; 0 0 1

1 0 0
0 1 0

2
4

3
5; 0 1 0

0 0 1
1 0 0

2
4

3
5; 0 1 0

1 �1 1
0 1 0

2
4

3
5;

(4)

0 1 0
1 0 0
0 0 1

2
4

3
5; 1 0 0

0 0 1
0 1 0

2
4

3
5; 1 0 0

0 1 0
0 0 1

2
4

3
5 (5)

The conjecture that the number An of An is explicitly
given by the formula

An

Yn�1

j �0

(3j � 1)!

(n � j)!
; (6)

now proven to be true, was known as the ALTERNAT-

ING SIGN MATRIX CONJECTURE. Let A(n; k) be the
number of n �n alternating sign matrices with one in
the top row occurring in the kth position. Then

An �
Xn

k �1

A(n ; k): (7)

The result

A(n; k � 1)

A(n ; k)
�

(n � k)(n � k � 1)

k(2n � k � 1) 
(8)

for 0 Bk Bn implies (7) (Mills et al. 1983).

Making a triangular array of the number of A?n with a
1 at the top of column k gives

1

1 1

2 3 2

7 14 14 7

42 105 135 105 42

(Sloane’s A048601), and taking the ratios of adjacent
terms gives the array

2=2

2=3 3=2

2=4 5=5 4=2

2=5 7=9 9=7 5=2

(Sloane’s A029656 and A029638). The fact that these
numerators and denominators are respectively the
numbers in the (2, 1)- and (1, 2)-Pascal triangles
which are different from 1 is known as the REFINED

ALTERNATING SIGN MATRIX CONJECTURE.

See also ALTERNATING SIGN MATRIX CONJECTURE,
CONDENSATION, DESCENDING PLANE PARTITION, IN-

TEGER MATRIX, PERMUTATION MATRIX
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Alternating Sign Matrix Conjecture
The conjecture that the number of ALTERNATING SIGN

MATRICES "bordered" by �1/s An is explicitly given by
the formula

An �
Yn�1

j�0

(3j � 1)!

(n � j)!
:

This conjecture was proved by Doron Zeilberger in
1995 (Zeilberger 1996a). This proof enlisted the aid of
an army of 88 referees together with extensive
computer calculations. A beautiful, shorter proof
was given later that year by Kuperberg (Kuperberg
1996), and the REFINED ALTERNATING SIGN MATRIX

CONJECTURE was subsequently proved by Zeilberger
(Zeilberger 1996b) using Kuperberg’s method to-
gether with techniques from q -calculus and orthogo-
nal polynomials.

See also ALTERNATING SIGN MATRIX, REFINED ALTER-

NATING SIGN MATRIX CONJECTURE
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Alternating Tensor
ANTISYMMETRIC TENSOR

Alternative Algebra
Let A denote an R/-ALGEBRA, so that A is a VECTOR

SPACE over R and

A �A 0 A (1)

(x; y) 	x � y : (2)

Then A is said to be alternative if, for all x; y � A

(x � y) � y �x � (y � y) (3)

(x � x) � y �x � (x � y): (4)

Here, VECTOR MULTIPLICATION x � y is assumed to be
BILINEAR.

The ASSOCIATOR (x; y; z) is an alternating function,
and the SUBALGEBRA generated by two elements is
associative.

See also ASSOCIATOR
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Alternative Denial
The term used in PROPOSITIONAL CALCULUS for the
NAND CONNECTIVE. The notation A½B is used for this
connective, a most unfortunate choice in light of
modern usage of A½B or A½½B to denote OR.

See also JOINT DENIAL, NAND
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Alternative Link
A category of LINK encompassing both ALTERNATING

KNOTS and TORUS KNOTS.

See also ALTERNATING KNOT, LINK, TORUS KNOT
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Altitude

The altitudes of a TRIANGLE are the CEVIANS AiHi

which are PERPENDICULAR to the LEGS AjAk opposite
Ai : The three altitudes of any TRIANGLE are CONCUR-

RENT at the ORTHOCENTER H (Durell 1928). This
fundamental fact did not appear anywhere in Euclid’s
ELEMENTS .
The altitudes have lengths hi �AiHi given by

hi �ai�1 sin ai �2 �ai�2 sin ai�1 (1)

h1 �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s � a1)(s � a2)(s � a3)

p
a1

; (2)

where s is the SEMIPERIMETER and ai �AjAk : Another
pair of interesting FORMULAS are

sh �
D
R 

(3)

where D is the AREA of the TRIANGLE DA1A2A3 and sh

is the SEMIPERIMETER of the ALTITUDE TRIANGLE

DH1H2H3 ; and

h1h2h3 �2sh D�
2D2

R
; (4)

where R is the CIRCUMRADIUS of DA1A2A3 (Johnson
1929, p. 191).

Other formulas satisfied by the altitude include

1

h1

�
1

h2

�
1

h3

�
1

r 
(5)

1

r1

�
1

h2

�
1

h3

�
1

h1

(6)

1

r2

�
1

r3

�
1

r 
�

1

r1

�
2

h1

; (7)

where r is the INRADIUS and ri are the EXRADII

(Johnson 1929, p. 189). In addition,

HA1 � HH1 �HA2 � HH2 �HA3 � HH3 (8)

HA1 � HH1 �
1
2 a2

1 �a2
2 �a2

3

� 	
�4R2 ; (9)

where R is the CIRCUMRADIUS.

The points A1 ; A3 ; H1 ; and H3 (and their permutations
with respect to indices) all lie on a CIRCLE, as do the
points A3 ; H3 ; H , and H1 (and their permutations
with respect to indices). TRIANGLES DA1A2A3 and
DA1H2H3 are inversely similar.

The triangle H1H2H3 has the minimum PERIMETER of
any TRIANGLE inscribed in a given ACUTE TRIANGLE

(Johnson 1929, pp. 161 �/65). Additional properties
involving the FEET of the altitudes are given by
Johnson (1929, pp. 261�/62). The line joining the
feet to two altitudes of a triangle is ANTIPARALLEL to
the third side (Johnson 1929, p. 172).

See also CEVIAN, FOOT, MALTITUDE, ORTHOCENTER,
PERPENDICULAR, PERPENDICULAR FOOT, TAYLOR CIR-

CLE
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Altitude Plane
The plane through an edge of a TRIHEDRAL ANGLE

drawn perpendicularly to the opposite face. The term
was first used by J. Neuberg (Altshiller-Court 1979,
p. 298).
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Altitude Triangle

The TRIANGLE DH1H2H3 formed by connecting the
three feet H1 ; H2 ; and H3 of the altitudes of a given
triangle DA1A2A3 :/

See also ALTITUDE

Alysoid
CATENARY

Ambient Isotopy
An ambient isotopy from an embedding of a MANI-

FOLD M in N to another is a HOMOTOPY of self
DIFFEOMORPHISMS (or ISOMORPHISMS, or piecewise-
linear transformations, etc.) of N , starting at the
IDENTITY MAP, such that the "last" DIFFEOMORPHISM

compounded with the first embedding of M is the
second embedding of M . In other words, an ambient
isotopy is like an ISOTOPY except that instead of
distorting the embedding, the whole ambient SPACE

is being stretched and distorted and the embedding is
just "coming along for the ride." For SMOOTH MANI-

FOLDS, a MAP is ISOTOPIC IFF it is ambiently isotopic.

For KNOTS, the equivalence of MANIFOLDS under
continuous deformation is independent of the embed-
ding SPACE. KNOTS of opposite CHIRALITY have ambi-
ent isotopy, but not REGULAR ISOTOPY.

See also ISOTOPY, REGULAR ISOTOPY

References
Hirsch, M. W. Differential Topology. New York: Springer-

Verlag, 1988.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First

1,701,936 Knots." Math. Intell. 20, 33�/8, Fall 1998.

Ambiguous
An expression is said to be ambiguous (or poorly
defined) if its definition does not assign it a unique
interpretation or value. An expression which is not
ambiguous is said to be WELL DEFINED.

See also ILL DEFINED, WELL DEFINED

Ambiguous Rectangle
FAULT-FREE RECTANGLE

Ambrose-Kakutani Theorem
For every ergodic FLOW on a nonatomic PROBABILITY

SPACE, there is a MEASURABLE SET intersecting almost
every orbit in a discrete set.

Amenable Number
A number n which can be built up from INTEGERS a1 ;
a2 ; ..., ak by either ADDITION or MULTIPLICATION such
that

Xk

i�1

ai �
Yk

i�1

ai �n:

The numbers fa1 ; . . . ; an g in the SUM are simply a
PARTITION of n . The first few amenable numbers are

2 �2 �2 �2 �4
1 �2 �3 �1 �2 �3 �6

1 �1 �2 �4 �1 �1 �2 �4 �8
1 �1 �2 �2 �2 �1 �1 �2 �2 �2 �8:

In fact, all COMPOSITE NUMBERS are amenable.

See also COMPOSITE NUMBER, PARTITION, SUM
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Amicable Numbers
AMICABLE PAIR, AMICABLE QUADRUPLE, AMICABLE

TRIPLE, MULTIAMICABLE NUMBERS, RATIONAL AMIC-

ABLE PAIR

Amicable Pair
An amicable pair (m, n ) consists of two INTEGERS m, n
for which the sum of PROPER DIVISORS (the DIVISORS

excluding the number itself) of one number equals the
other. Amicable pairs are occasionally called
FRIENDLY PAIRS (Hoffman 1998, p. 45), although this
nomenclature is to be discouraged since the numbers
more commonly known as FRIENDLY PAIRS are defined
by a different, albeit related, criterion. Symbolically,
amicable pairs satisfy

s(m)�n (1)

s(n)�m; (2)

where

s(n)�s(n)�n (3)

is the RESTRICTED DIVISOR FUNCTION. Equivalently,
an amicable pair (m, n ) satisfies

s(m)�s(n)�s(m)�s(n)�m�n: (4)

where s(n) is the DIVISOR FUNCTION. The smallest
amicable pair is (220, 284) which has factorizations



220�11 � 5 � 22 (5)

284 � 71 � 22 (6)

giving RESTRICTED DIVISOR FUNCTIONS

s(220) �
X

f1; 2; 4; 5; 10; 11; 20; 22; 44; 55; 110g
� 284 (7)

s(284) �
X

f1; 2; 4; 71; 142g � 220: (8)

The quantity

s(m) � s(n) � s(m) � s(n); (9)

in this case, 220 � 284 � 504, is called the PAIR SUM.
The first few amicable pairs are (220, 284), (1184,
1210), (2620, 2924) (5020, 5564), (6232, 6368), (10744,
10856), (12285, 14595), (17296, 18416), (63020,
76084), ... (Sloane’s A002025 and A002046). An
exhaustive tabulation is maintained by D. Moews.

In 1636, Fermat found the pair (17296, 18416) and in
1638, Descartes found (9363584, 9437056), although
these results were actually rediscoveries of numbers
known to Arab mathematicians. By 1747, Euler had
found 30 pairs, a number which he later extended to
60. In 1866, 16-year old B. Nicolò I. Paganini found
the small amicable pair (1184, 1210) which had
eluded his more illustrious predecessors (Paganini
1866�867; Dickson 1952, p. 47). There were 390
known amicable pairs as of 1946 (Escott 1946). There
are a total of 236 amicable pairs below 108 (Cohen
1970), 1427 below 1010 (te Riele 1986), 3340 less than
1011 (Moews and Moews 1993), 4316 less than 2:01�
1011 (Moews and Moews), and 5001 less than

/: 3:06 � 1011 (Moews and Moews).

Rules for producing amicable pairs include the
THÂBIT IBN KURRAH RULE rediscovered by Fermat
and Descartes and extended by Euler to EULER’S

RULE. A further extension not previously noticed was
discovered by Borho (1972).

Pomerance (1981) has proved that

[amicable numbers 5 n] B ne�[ln(n)]1=2 (10)

for large enough n (Guy 1994). No nonfinite lower
bound has been proven.

Let an amicable pair be denoted (m, n ), and take m B

n . (m, n ) is called a regular amicable pair of type (i, j )
if

(m; n) � (gM; gN); (11)

where /g � GCD(m; n)/ is the GREATEST COMMON

DIVISOR,

GCD(g; M) � GCD(g; N) � 1; (12)

M and N are SQUAREFREE, then the number of PRIME

FACTORS of M and N are i and j . Pairs which are not
regular are called irregular or exotic (te Riele 1986).
There are no regular pairs of type (1; j) for j ] 1: If
m � 0 (mod 6) and

n � s(m) � m (13)

is EVEN, then (m, n ) cannot be an amicable pair (Lee
1969). The minimal and maximal values of m=n found
by te Riele (1986) were

938304290=1344480478 � 0:697893577 . . . (14)

and

4000783984=4001351168 � 0:9998582518 . . . (15)

te Riele (1986) also found 37 pairs of amicable pairs
having the same PAIR SUM. The first such pair is
(609928, 686072) and (643336, 652664), which has
the PAIR SUM

s(m) � s(n) � m � n � 1; 296; 000: (16)

te Riele (1986) found no amicable n -tuples having the
same PAIR SUM for n
2. However, Moews and Moews
found a triple in 1993, and te Riele found a quadruple
in 1995. In November 1997, a quintuple and sextuple
were discovered. The sextuple is (1953433861918,
2216492794082), (1968039941816, 2201886714184),
(1981957651366, 2187969004634), (1993501042130,
2176425613870), (2046897812505, 2123028843495),
(2068113162038, 2101813493962), all having PAIR

SUM 4169926656000. Amazingly, the sextuple is
smaller than any known quadruple or quintuple,
and is likely smaller than any quintuple.

The earliest known odd amicable numbers all
were divisible by 3. This led Bratley and McKay
(1968) to conjecture that there are no amicable
pairs coprime to 6 (Guy 1994, p. 56). However,
Battiato and Borho (1988) found a counter-
example, and now many amicable pairs are known
which are not divisible by 6 (Pedersen). The
smallest known example of this kind is the amic-
able pair (42262694537514864075544955198125,
42405817271188606697466971841875), each number
of which has 32 digits.

A search was then begun for amicable pairs coprime
to 30. The first example was found by Y. Kohmoto in
1997, consisting of a pair of numbers each having 193
digits (Pedersen). Kohmoto subsequently found two
other examples, and te Riele and Pedersen used two
of Kohmoto’s examples to calculated 243 type-/(3; 2)
pairs coprime to 30 by means of a method which
generates type-/(3; 2) pairs from a type-/(2; 1) pairs.

No amicable pairs which are coprime to 2 � 3 � 5 �
7 � 210 are currently known.

On October 4, 1997, Mariano Garcia found the largest
known amicable pair, each of whose members has
4829 DIGITS. The new pair is

N1�CM[(P�Q)P89�1] (17)

N2�CQ[(P�M)P89�1]; (18)

where

C�211P89 (19)

 



M � 287155430510003638403359267 (20)

P � 574451143340278962374313859 (21)

Q � 136272576607912041393307632916794623:

(22)

P , Q , (P � Q)P89 �1; and (P �M)P89 �1 are PRIME.

See also AMICABLE QUADRUPLE, AMICABLE TRIPLE,
AUGMENTED AMICABLE PAIR, BREEDER, CROWD, EU-

LER’S RULE, FRIENDLY PAIR, MULTIAMICABLE NUM-

BERS, PAIR SUM, QUASIAMICABLE PAIR, RATIONAL

AMICABLE PAIR, SOCIABLE NUMBERS, SUPER UNITARY

AMICABLE PAIR, THÂ BIT IBN KURRAH RULE, UNITARY

AMICABLE PAIR
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Amicable Quadruple
An amicable quadruple as a QUADRUPLE (a; b; c; d)
such that

s(a)�s(b)�s(c)�s(d)�a�b�c�d (1)

where s(n) is the DIVISOR FUNCTION.



If (a, b ) and (x, y ) are amicable pairs and

GCD(a; x) �GCD(a; y) �GCD(b; x) �GCD(a; y)

�1 ; (2)

then (ax; ay ; bx ; by) is an amicable quadruple. This
follows from the identity

s(ax) � s(a)s(x) �(a �b)(x �y)

�ax �ay �bx �by : (3)

The smallest known amicable quadruple is
(842448600, 936343800, 999426600, 1110817800).

Large amicable quadruples can be generated using
the formula

a
b
c
d

2
664
3
775�Cn

173 � 1933058921 � 149 � 103540742849
173 � 1933058921 � 15531111427499
336352252427 � 149 � 103540742849

336352252427 � 15531111427499

2
664

3
775;
(4)

where

Cn �2n�1Mn � 59 � 72 � 114 � 172 � 19 � 292 � 67 � 712

� 109 � 131 � 139 � 179 � 307 � 431 � 521 � 653

� 1019 � 1279 � 2557 � 3221 � 5113 � 5171

� 6949 (5)

and Mn is a MERSENNE PRIME with n a prime > 3
(Y. Kohmoto; Guy 1994, p. 59).

See also AMICABLE PAIR, AMICABLE TRIPLE

References
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed.

New York: Springer-Verlag, p. 59, 1994.

Amicable Triple
Dickson (1913, 1952) defined an amicable triple to be
a TRIPLE of three numbers (l ; m; n) such that

s(l) �m �n

s(m) �l �n

s(n) �l �m;

where s(n) is the RESTRICTED DIVISOR FUNCTION

(Madachy 1979). Dickson (1913, 1952) found eight
sets of amicable triples with two equal numbers, and
two sets with distinct numbers. The latter are
(123228768, 103340640, 124015008), for which

s(123228768) �103340640 �124015008 �227355648

s(103340640) �123228768 �124015008 �247243776

s(124015008) �123228768 �103340640 �226569408;

and (1945330728960, 2324196638720, 2615631953920),
for which

s(1945330728960) �2324196638720 �2615631953920

�4939828592640

s(2324196638720) �1945330728960 �2615631953920

�4560962682880

s(2615631953920) �1945330728960 �2324196638720

�4269527367680:

A second definition (Guy 1994) defines an amicable
triple as a TRIPLE (a ; b; c) such that

s(a) � s(b) � s(c) �a �b �c ;

where s(n) is the DIVISOR FUNCTION. An example is (
22325 � 11; 25327; 223271):/

See also AMICABLE PAIR, AMICABLE QUADRUPLE
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Amortization
The payment of a debt plus accrued INTEREST by
regular payments.

Ampersand Curve

The PLANE CURVE with Cartesian equation

(y2�x2)(x�1)(2x�3)�4(x2�y2�2x)2:
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Amphicheiral
AMPHICHIRAL



Amphichiral
An object is amphichiral (also called REFLEXIBLE) if it
is superposable with its MIRROR IMAGE (i.e., its image
in a plane mirror).

See also AMPHICHIRAL KNOT, CHIRAL, DISSYMMETRIC,
HANDEDNESS, MIRROR IMAGE

Amphichiral Knot
An amphichiral knot is a KNOT which is capable of
being continuously deformed into its own MIRROR

IMAGE. More formally, a knot K is amphichiral (also
called achiral or amphicheiral) if there exists an
orientation-reversing homeomorphism of R3 mapping
K to itself (Hoste et al. 1998). (If the words "orienta-
tion-reversing" are omitted, all knots are equivalent
to their mirror images.)

There are 20 amphichiral knots having ten or fewer
crossings, illustrated above, which correspond to
04 �01 (the FIGURE-OF-EIGHT KNOT), 06 �03, 08 �03,
08 �09, 08 �12, 08 �17, 08 �18, 10 �17,10 �33, 10 �37, 10 �43,
10 �45, 10 �79, 10 �81, 10 �88, 10 �99, 10 �09, 10 �15, 10 �18,
and 10 �23 (Jones 1985). The following table gives the
total number of amphichiral knots, number of �
amphichiral noninvertible knots, � amphichiral non-
invertible knots, and fully amphichiral invertible
knots a with n crossings, starting with n �3.

type Sloane counts

amph. A052401 0, 1, 0, 1, 0, 5, 0, 13, 0, 58, 0, 274, 1, ...

/�/ A051767 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 65, ...

/�/ A051768 0, 0, 0, 0, 0, 1, 0, 6, 0, 40, 0, 227, 1, ...

a A052400 0, 1, 0, 1, 0, 4, 0, 7, 0, 17, 0, 41, 0, 113, ...

Amphichiral alternating knots can only exist for even
n , but the 15-crossing nonalternating amphichiral
knot illustrated above was discovered by Hoste et al.
(1998). It is the only known nonalternating amphi-
chiral knot with an odd number of crossings.

The HOMFLY POLYNOMIAL is good at identifying
amphichiral knots, but sometimes fails to identify
knots which are not. No KNOT INVARIANT which
always definitively determines if a KNOT is AMPHI-

CHIRAL is known.

Let b� be the SUM of POSITIVE exponents, and b� the
SUM of NEGATIVE exponents in the BRAID GROUP Bn: If

b��3b��n�1 > 0;

then the KNOT corresponding to the closed BRAID b is
not amphichiral (Jones 1985).

See also AMPHICHIRAL, BRAID GROUP, CHIRAL KNOT,
INVERTIBLE KNOT, KNOT SYMMETRY, MIRROR IMAGE
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Amplitude
The variable f (also denoted am u) used in ELLIPTIC

FUNCTIONS and ELLIPTIC INTEGRALS, which can be
defined by

f�am u�am(u; k)�g
u

0

dn(u; k) du; (1)

where dn(u; k)�dn(u) is a JACOBI ELLIPTIC FUNCTION

with MODULUS. As is common with JACOBI ELLIPTIC

FUNCTIONS, the modulus k is often suppressed for
conciseness. The amplitude is the inverse function of



the ELLIPTIC INTEGRAL OF THE FIRST KIND. The
amplitude function is implemented in Mathematica
as JacobiAmplitude[u , m ], where m �k2 is the
PARAMETER.

The DERIVATIVE of the amplitude is given by

d

du
am(u; k) �

d

du
am(u) �dn(u; k) �dn(u) ; (2)

or using the notation f;

df

du 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2 sin2 f

p
�dn(u; k) �dn(u) : (3)

The amplitude function has the special values

am(0 ; k) �am(0) �0 (4)

am(K(k) ; k) �1
2 p; (5)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND. In addition, it obeys the identities

sin f �sin(am(u; k)) �sin(am u) �sn(u ; k)

�sn(u) (6)

cos f �cos(am(u; k)) �cos(am u) �cn(u; k)

�cn(u) (7)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2 sin2 f

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2 sin2(am(u; k))

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2 sn2 u

p
�dn(u; k) �dn(u) ; (8)

which serve as definitions for the JACOBI ELLIPTIC

FUNCTIONS.

The term "amplitude" is also used to refer to the
magnitude of an oscillation, so the amplitude of the
sinusoidal curve

y �A cos(vt) (9)

is A .

See also ARGUMENT (ELLIPTIC INTEGRAL), CHARAC-

TERISTIC (ELLIPTIC INTEGRAL), DELTA AMPLITUDE,
ELLIPTIC FUNCTION, ELLIPTIC INTEGRAL OF THE FIRST

KIND, JACOBI ELLIPTIC FUNCTIONS, MODULAR ANGLE,
MODULUS (ELLIPTIC INTEGRAL), NOME, PARAMETER
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Anaglyph
A STEREOGRAM made of two pictures, one red and one
blue, taken from offset positions. When the pictures
are viewed through glasses with one lens of each
color, the picture appears to be three-dimensional.

See also STEREOGRAM
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Anallagmatic Curve
A curve which is invariant under INVERSION. Exam-
ples include the CARDIOID, CARTESIAN OVALS, CASSINI

OVALS, LIMAÇ ON, STROPHOID, and MACLAURIN TRISEC-

TRIX.

Anallagmatic Pavement
HADAMARD MATRIX

Analogy
Inference of the TRUTH of an unknown result obtained
by noting its similarity to a result already known to
be TRUE. In the hands of a skilled mathematician,
analogy can be a very powerful tool for suggesting
new and extending old results. However, subtleties
can render results obtained by analogy incorrect, so
rigorous PROOF is still needed.

See also GAUSS’S FORMULAS, INDUCTION, NAPIER’S

ANALOGIES

Analysis
The study of how continuous mathematical struc-
tures (FUNCTIONS) vary around the NEIGHBORHOOD of
a point on a SURFACE. Analysis includes CALCULUS,
DIFFERENTIAL EQUATIONS, etc.

See also ANALYSIS (LOGIC), ANALYSIS SITUS, CALCU-

LUS, COMPLEX ANALYSIS, FUNCTIONAL ANALYSIS,
NONSTANDARD ANALYSIS, REAL ANALYSIS
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Analysis (Logic)
Logicians often call second-order arithmetic "analy-
sis." Unfortunately, this term conflicts with the more
usual definition of ANALYSIS as the study of functions.
This terminology problem is discussed briefly by
Enderton (1977, p. 287).

See also SET THEORY
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Analysis of Variance
ANOVA

Analysis Situs
An archaic name for TOPOLOGY.

Analytic
A solution to a problem that can be written in "closed
form" in terms of known functions, constants, etc., is
often called an analytic solution. Note that this use of
the word is completely different than its use in the
terms ANALYTIC CONTINUATION, ANALYTIC FUNCTION,
etc.

See also ANALYTIC CONTINUATION, ANALYTIC FUNC-

TION

Analytic Continuation
An ANALYTIC FUNCTION is determined near a point z0

by a POWER SERIES

f (z)�
X�
k�0

ak(z�z0)k: (1)

Such a power series expansion is in general valid only
within its RADIUS OF CONVERGENCE. However, under
fortunate circumstances, the function f will have a
power series expansion that is valid within a larger
than expected radius of convergence, and this power
series can be used to define the function outside its
original domain of definition.

Let f1 and f2 be ANALYTIC FUNCTIONS on domains V1

and V2; respectively, and suppose that the intersec-
tion V1SV2 is not empty and that f1�f2 on V1SV2:
Then f2 is called an analytic continuation of f1 to V2;
and vice versa (Flanigan 1983, p. 234). If it exists, the
analytic continuation of f1 to V2 is unique.

By means of analytic continuation, starting from a
representation of a function by any one POWER

SERIES, any number of other POWER SERIES can be
found which together define the value of the function
at all points of the domain. Furthermore, any point
can be reached from a point without passing through
a singularity of the function, and the aggregate of all
the power series thus obtained constitutes the analy-
tic expression of the function (Whittaker and Watson
1990, p. 97).

Analytic continuation can lead to some interesting
phenomenon such as MULTIVALUED FUNCTIONS. For
example, consider analytic continuation of the
SQUARE ROOT function f (z)�

ffiffiffi
z

p
: Although this func-

tion is not globally well-defined (since every nonzero
number has two square roots), f has a well-defined
TAYLOR SERIES around z0�1;

f (z)�f (z0)�(z�z0)f ?(z0)�
(z � z0)2

2!
f ??(z0)�. . .

�1�1
2(z�1)�1

8(z�1)3� 1
16(z�1)3� 5

128(z�1)4

�. . .

which can be used to extend the domain over which f
is defined. Note that when ½z½�1; the POWER SERIES

for f has a RADIUS OF CONVERGENCE of 1.

The animation above shows the analytic continuation
of f (z)�

ffiffiffi
z

p
along the path eit: Note that when the

function goes all the way around, f is the negative of
the original function, so going around twice returns
the function to its original value. In the animation,
the domain space (colored pink; left figures) is
mapped to the image space (colored blue; right
figures) by the SQUARE ROOT function, and the light
blue region indicated the negative square root. How-
ever, by continuing the function around the circle, the
square root function takes values in what used to be
the light blue region, so the roles of the blue and light
blue region are reversed. This can be interpreted as
going from one branch of the multivalued SQUARE

ROOT function to the other. This illustrates that
analytic continuation extends a function using the
nearby values that provide the information on the
power series.

It is possible for the function to never return to the
same value. For example, f (z)�ln z increased by 2pi
every time it is continued around zero. The natural
domain of a function is the maximal chain of domains
on which a function can be analytically continued to a
single-valued function. For ln z; it is the connected
infinite COVER of the punctured plane, and for z�1=2 it
is the connected double COVER. If there is a boundary



across which the function cannot be extended, then is
called the natural boundary. For instance, there
exists a MEROMORPHIC FUNCTION f in the unit disk
where every point on the unit circle is a limit point of
the set of poles. Then the circle is a natural boundary
for f .

See also ANALYTIC FUNCTION, DIRECT ANALYTIC

CONTINUATION, GLOBAL ANALYTIC CONTINUATION,
MONODROMY THEOREM, PERMANENCE OF ALGEBRAIC

FORM, PERMANENCE OF MATHEMATICAL RELATIONS

PRINCIPLE, SCHWARZ REFLECTION PRINCIPLE
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Analytic Function
A COMPLEX FUNCTION is said to be analytic on a
region R if it is COMPLEX DIFFERENTIABLE at every
point in R . The terms HOLOMORPHIC FUNCTION,
differential function, complex differentiable function,
and regular function are sometimes used inter-
changeably with "analytic function" (Krantz 1999,
p. 16). Many mathematicians prefer the term "holo-
morphic function" (or "holomorphic map") to "analytic
function" (Krantz 1999, p. 16), while "analytic" ap-
pears to be in widespread use among physicists,
engineers, and in some older texts (Morse and
Feshbach 1953, pp. 356 �74; Knopp 1996, pp. 83 �11;
Whittaker and Watson 1990, p. 83).

If a FUNCTION is analytic, it is infinitely DIFFERENTI-

ABLE. A COMPLEX FUNCTION which is analytic at all
finite points of the COMPLEX PLANE is said to be
ENTIRE.

See also BERGMAN SPACE, COMPLEX DIFFERENTIABLE,

DIFFERENTIABLE, ENTIRE FUNCTION, HOLOMORPHIC

FUNCTION, MEROMORPHIC FUNCTION, PSEUDOANALY-

TIC FUNCTION, REAL ANALYTIC FUNCTION, SEMIANA-

LYTIC, SUBANALYTIC
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Boston, MA: Birkhäuser, p. 16, 1999.

Morse, P. M. and Feshbach, H. "Analytic Functions." §4.2 in
Methods of Theoretical Physics, Part I. New York:
McGraw-Hill, pp. 356 �74, 1953.

Whittaker, E. T. and Watson, G. N. A Course in Modern
Analysis, 4th ed. Cambridge, England: Cambridge Uni-
versity Press, 1990.

Analytic Geometry
The study of the GEOMETRY of figures by algebraic
representation and manipulation of equations de-
scribing their positions, configurations, and separa-
tions. Analytic geometry is also called COORDINATE

GEOMETRY since the objects are described as n -tuples
of points (where n �2 in the PLANE and 3 in SPACE) in
some COORDINATE SYSTEM.

See also ARGAND DIAGRAM, CARTESIAN COORDINATES,
CARTESIAN GEOMETRY, COMPLEX PLANE, GEOMETRY,
PLANE, QUADRANT, SPACE, X -AXIS, Y -AXIS, Z -AXIS
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Analytic Set
A DEFINABLE SET, also called a SOUSLIN SET.

See also COANALYTIC SET, SOUSLIN SET

Analytic Solution
ANALYTIC

Anarboricity
Given a GRAPH G , the anarboricity is the maximum
number of line-disjoint nonacyclic SUBGRAPHS whose
UNION is G .

See also ARBORICITY

Anchor
An anchor is the BUNDLE MAP r from a VECTOR

BUNDLE A to the TANGENT BUNDLE TB satisfying



1. [ r(X); r(Y)] � r([X ; Y]) and
2. [X ; fY] � f[X ; Y] � ( r(X) � f)Y ;/

where X and Y are smooth sections of A , f is a
smooth function of B , and the bracket is the "Jacobi-
Lie bracket" of a VECTOR FIELD.

See also BUNDLE, LIE ALGEBROID
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Anchor Ring
An archaic name for the TORUS.
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And
A term (PREDICATE) in LOGIC which yields TRUE if one
or more conditions are TRUE, and FALSE if any
condition is FALSE. A AND B is denoted N1 ; CM[(P �
Q)]P80 �1]; or simply A�: The BINARY AND operator
has the following TRUTH TABLE:

/A/ /B/ /CM[(P �Q)]P80 �1]/

F F  F

F T  F

T F  F

T T  T

A PRODUCT of ANDs (the AND of J0( vr) conditions) is
called a CONJUNCTION, and is denoted

N2

Two binary numbers can have the operation AND
performed bitwise with 1 representing TRUE and 0
FALSE. Some computer languages denote this opera-
tion on A; B; and C as A&&B&&C or logand(A,B,C).

See also BINARY OPERATOR, INTERSECTION, NOT, OR,
PREDICATE, TRUTH TABLE, XOR

AND

A CONNECTIVE in LOGIC which yields TRUE if all
conditions are TRUE, and FALSE if any condition is
FALSE. A AND B is denoted AfflB (Mendelson 1997,
p. 12), A&B; ASB (Simpson 1987, p. 538), A � B;
A : B (Carnap 1958, p. 7), or simply AB (Simpson
1987, p. 538). The way to distinguish the similar
symbols ffl (AND) and  (OR) is to note that the
symbol for AND is oriented in the same direction as
the capital letter ‘A." The AND operation is imple-
mented in Mathematica as And[A , B , ...]. The circuit
diagram symbol for an AND gate is illustrated above.
The AND operation can be written in terms of NOT
and AND as

AfflB�!(!A!B):

The BINARY AND operator has the following TRUTH

TABLE (Carnap 1958, p. 10; Simpson 1987, p. 545;
Mendelson 1997, p. 12).

A B /AfflB/

T T T

T F F

F T F

F F F

A PRODUCT of ANDs (the AND of n conditions) is
called a CONJUNCTION, and is denoted

L
n

k�1
Ak:

For example, the TRUTH TABLE for A AND B AND C
is given below (Simpson 1987, p. 545).

A B C /AfflBfflC/

T T T T

T T F F

T F T F

T F F F

F T T F



F T F F

F F T F

F F F F

Two binary numbers can have the operation AND
performed bitwise with 1 representing TRUE and 0
FALSE. Some computer languages denote this opera-
tion on A , B , and C as A&&B&&C or logand(A,B,C).

See also BINARY OPERATOR, CONJUNCTION, CONNEC-

TIVE, INTERSECTION, NAND, NOR, NOT, OR, TRUTH

TABLE, WEDGE, XNOR, XOR
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Anderson-Darling Statistic
A statistic defined to improve the KOLMOGOROV-

SMIRNOV TEST in the TAIL of a distribution.

See also KOLMOGOROV-SMIRNOV TEST, KUIPER STA-

TISTIC
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André’s Problem
The determination of the number of ALTERNATING

PERMUTATIONS having elements f1; 2; . . . ; ng:/

See also ALTERNATING PERMUTATION

André’s Reflection Method
A technique used by André (1887) to provide an
elegant solution to the BALLOT PROBLEM (Hilton and
Pederson 1991) and in study of WIENER PROCESSES

(Doob 1953; Papoulis 1984, p. 505).

See also BALLOT PROBLEM, WIENER PROCESS
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Andrew’s Sine
The function

c(z) � sin

�
z

c

�
½z ½Bc p

0; ½z½ > c p

8<
:

which occurs in estimation theory.

See also SINE
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Andrews Cube
SEMIPERFECT MAGIC CUBE

Andrews-Curtis Link
The LINK of 2-spheres in R4 obtained by SPINNING

intertwined arcs. The link consists of a knotted 2-
sphere and a SPUN TREFOIL KNOT.

See also SPUN KNOT, TREFOIL KNOT
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Andrews-Schur Identity

Xn

k�0

qk2�ak 2n�k�a
k

 �

�
X�

k���

q10k2�(4a�1)k 2n�2a�2
n�5k

 �

 [10k � 2a � 2]

[2n � 2a � 2]
; (1)

where [x] is a GAUSSIAN POLYNOMIAL. It is a POLY-

NOMIAL identity for a�0, 1 which implies the
ROGERS-RAMANUJAN IDENTITIES by taking n 0 �

and applying the JACOBI TRIPLE PRODUCT identity. A
variant of this equation is



Xn

k ���a=2 �

qk2�2ak n �k �a
n �k

 �

�
X[n=5]

�[(n�2a �2)=5]

q15k2�(6a�1)k 2n �2a �2
5 �5k

 �

 [10k � 2a � 2]

[2n � 2a � 2]
; (2)

where the symbol xb c in the SUM limits is the FLOOR

FUNCTION (Paule 1994). The RECIPROCAL of the
identity is

X�
k �0

qk2 �2ak

(q; q)2k �a

�
Y�
j�0

1

(1 � q2j�1)(1 � q20j�4a �4)(1 � q20j�4a�16)
(3)

for a �0, 1 (Paule 1994). For q �1, (1) and (2) become

Xn

��a =2 �

n �k �a
n �k

� �

�
X�n=5 �

��(n�2a �2)=5 �

2n �2a �2
n �5k

� �
5k � q � 1

n � a � 1
: (4)
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Andrica’s Conjecture

Andrica’s conjecture states that, for pn the nth PRIME

NUMBER, the INEQUALITY

An �
ffiffiffiffiffiffiffiffiffiffi
pn�1

p
�

ffiffiffiffiffi
pn

p
B1

holds, where the discrete function An is plotted above.
The largest value among the first 1000 PRIMES is for

n �4, giving
ffiffiffiffiffiffi
11

p
�

ffiffiffi
7

p
:0 :670873 : Since the Andrica

function falls asymptotically as n increases so a
PRIME GAP of increasing size is needed at large n , it
seems likely the CONJECTURE is true. However, it has
not yet been proven.

/An bears a strong resemblance to the PRIME DIFFER-

ENCE FUNCTION, plotted above, the first few values of
which are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, ... (Sloane’s
A001223).

A generalization of Andrica’s conjecture considers the
equation

px
n�1 �px

n �1

and solves for x . The smallest such x is x :0 :567148
(Sloane’s A038458), known as the SMARANDACHE

CONSTANT, which occurs for pn �113 and pn�1 �127
(Perez).

See also BROCARD’S CONJECTURE, GOOD PRIME,
FORTUNATE PRIME, PÓ LYA CONJECTURE, PRIME DIF-

FERENCE FUNCTION, SMARANDACHE CONSTANTS,
TWIN PEAKS
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Anger Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
y?

x
� 1�

v2

x2

 !
y�

x � v

px2
sin(vx)

whose solutions are ANGER FUNCTIONS.

See also ANGER FUNCTION
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Anger Function
A generalization of the BESSEL FUNCTION OF THE

FIRST KIND defined by

Jv(z) �
1

p g 
p

0

cos (vu �z sin u) du:

If v is an INTEGER n , then Jn(z) �Jn(z) ; where Jn(z) is
a BESSEL FUNCTION OF THE FIRST KIND. Anger’s
original function had an upper limit of 2 p; but the
current NOTATION was standardized by Watson
(1966).

See also ANGER DIFFERENTIAL EQUATION, BESSEL

FUNCTION, MODIFIED STRUVE FUNCTION, PARABOLIC

CYLINDER FUNCTION, STRUVE FUNCTION, WEBER

FUNCTIONS
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Angle

Given two intersecting LINES or LINE SEGMENTS, the
amount of ROTATION about the point of intersection
(the VERTEX) required to bring one into correspon-
dence with the other is called the angle u between
them. Angles are usually measured in DEGREES

(denoted 
) ; RADIANS (denoted rad, or without a unit),
or sometimes GRADIANS (denoted grad).
One full rotation in these three measures corresponds
to 3608, 2p rad, or 400 grad. Half a full ROTATION is
called a STRAIGHT ANGLE, and a QUARTER of a full
rotation is called a RIGHT ANGLE. An angle less than a
RIGHT ANGLE is called an ACUTE ANGLE, and an angle

greater than a RIGHT ANGLE is called an OBTUSE

ANGLE.

The use of DEGREES to measure angles harks back to
the Babylonians, whose SEXAGESIMAL number system
was based on the number 60. 360 8 likely arises from
the Babylonian year, which was composed of 360 days
(12 months of 30 days each). The DEGREE is further
divided into 60 ARC MINUTES, and an ARC MINUTE into
60 ARC SECONDS. A more natural measure of an angle
is the RADIAN. It has the property that the ARC

LENGTH around a CIRCLE is simply given by the
radian angle measure times the CIRCLE RADIUS. The
RADIAN is also the most useful angle measure in
CALCULUS because the DERIVATIVE of TRIGONOMETRIC

functions such as

d

dx
sin x �cos x

does not require the insertion of multiplicative con-
stants like p=180: GRADIANS are sometimes used in
surveying (they have the nice property that a RIGHT

ANGLE is exactly 100 GRADIANS), but are encountered
infrequently, if at all, in mathematics.

The concept of an angle can be generalized from the
CIRCLE to the SPHERE. The fraction of a SPHERE

subtended by an object is measured in STERADIANS,
with the entire SPHERE corresponding to 4p STERA-

DIANS.

A ruled SEMICIRCLE used for measuring and drawing
angles is called a PROTRACTOR. A COMPASS can also be
used to draw circular ARCS of some angular extent.

See also ACUTE ANGLE, ARC MINUTE, ARC SECOND,
CENTRAL ANGLE, COMPLEMENTARY ANGLE, DEGREE,
DIHEDRAL ANGLE, DIRECTED ANGLE, EULER ANGLES,
EXTERIOR ANGLE, FULL ANGLE, GRADIAN, HORN

ANGLE, INSCRIBED ANGLE, OBLIQUE ANGLE, OBTUSE

ANGLE, PERIGON, PROTRACTOR, RADIAN, REFLEX

ANGLE, RIGHT ANGLE, SOLID ANGLE, STERADIAN,
STRAIGHT ANGLE, SUBTEND, SUPPLEMENTARY ANGLE,
VERTEX ANGLE
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Angle Bisector

The (interior) bisector of an ANGLE is the LINE or LINE

 



SEGMENT which cuts it into two equal ANGLES on the
same "side" as the ANGLE.

The length of the bisector of ANGLE A1 in the above
TRIANGLE DA1A2A3 is given by

t2
1 �a2a3 1 �

a2
1

(a2 � a3)2

" #
;

where ti �AiTi and ai �AjAk : The angle bisectors
meet at the INCENTER I , which has TRILINEAR CO-

ORDINATES 1:1:1.

See also ANGLE BISECTOR THEOREM, CYCLIC QUAD-

RANGLE, EXTERIOR ANGLE BISECTOR, ISODYNAMIC

POINTS, ORTHOCENTRIC SYSTEM, STEINER-LEHMUS

THEOREM, TRISECTION
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Angle Bisector Theorem
The ANGLE BISECTOR of an ANGLE in a TRIANGLE

divides the opposite side in the same RATIO as the
sides adjacent to the ANGLE.

Angle Bracket
The combination of a BRA and KET

(bra�ket �bracket) which represents the INNER PRO-

DUCT of two functions or vectors,

f ½gh i�g f (x)g(x) dx

v½wh i�v �w:

By itself, the BRA is a COVARIANT 1-VECTOR, and the
KET is a CONTRAVARIANT ONE-FORM. These terms are
commonly used in quantum mechanics.

See also BRA, BRACE, DIFFERENTIAL K -FORM, KET,
ONE-FORM, PARENTHESIS, SQUARE BRACKET
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Angle of Parallelism

Given a point P and a LINE AB , draw the PERPENDI-

CULAR through P and call it PC . Let PD be any other
line from P which meets CB in D . In a HYPERBOLIC

GEOMETRY, as D moves off to infinity along CB , then
the line PD approaches the limiting line PE , which is
said to be parallel to CB at P . The angle �CPE which
PE makes with PC is then called the angle of
parallelism for perpendicular distance x , and is given
by Y

(x) �2 tan �1(e �x) :

This is known as LOBACHEVSKY’S FORMULA.

See also HYPERBOLIC GEOMETRY, LOBACHEVSKY’S

FORMULA
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Angle Trisection
TRISECTION

Angle-Preserving Transformation
CONFORMAL MAPPING

Angular Acceleration
The angular acceleration a is defined as the time
DERIVATIVE of the ANGULAR VELOCITY v;

a �
dv

dt
�

d2 u

dt2 
ẑ �

a

r
:

See also ACCELERATION, ANGULAR DISTANCE, ANGU-

LAR VELOCITY

Angular Defect
The DIFFERENCE between the SUM of face ANGLES Ai

at a VERTEX of a POLYHEDRON and 2p;

d�2p�
X

i

Ai:

See also DESCARTES TOTAL ANGULAR DEFECT, JUMP

ANGLE, SPHERICAL DEFECT



Angular Distance
The angular distance traveled around a CIRCLE is the
number of RADIANS the path subtends,

u �
l

2 pr
2p �

l

r 
:

See also ANGULAR ACCELERATION, ANGULAR VELO-

CITY

Angular Velocity
The angular velocity v is the time DERIVATIVE of the
ANGULAR DISTANCE u with direction ẑ PERPENDICULAR

to the plane of angular motion,

v �
du

dt
ẑ �

v

r
:

See also ANGULAR ACCELERATION, ANGULAR DIS-

TANCE

Anharmonic Ratio
CROSS-RATIO

Animal

1. A FIXED POLYOMINO.
2. The set of points obtained by taking the centers
of a FIXED POLYOMINO.

See also POLYOMINO
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Anisohedral Tiling
A k -anisohedral tiling is a tiling which permits no n -
ISOHEDRAL TILING with n Bk .
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Annealing
SIMULATED ANNEALING

Annihilator
The term annihilator is used in several different ways
in various aspects of mathematics. It is most com-

monly used to mean the SET of all functions satisfying
a given set of conditions which is zero on every
member of a given SET.

Annuity
PRESENT VALUE

Annulus
The region in common to two concentric CIRCLES of
RADII a and b . The AREA of an annulus is

Aannulus � p(b2 �a2):

In the above figure, the area of the circle whose
diameter is tangent to the inner circle and has
endpoints at the outer circle is equal to the area of
the annulus.

See also ANNULUS THEOREM, BULLSEYE ILLUSION,
CHORD, CIRCLE, CONCENTRIC CIRCLES, LUNE, SPHE-

RICAL SHELL
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Annulus Conjecture
ANNULUS THEOREM

Annulus Theorem
Let K n

1 and K n
2 be disjoint bicollared KNOTS in Rn�1 or

Sn�1 and let U denote the open region between them.
Then the closure of U is a closed annulus Sn�[0; 1]:
Except for the case n � 3, the theorem was proved by
Kirby (1969).
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Anomalous Cancellation
The simplification of a FRACTION a=b which gives a
correct answer by "canceling" DIGITS of a and b .
There are only four such cases for NUMERATOR and
DENOMINATORS of two DIGITS in base 10: 64=16�



4=1 �4 ; 98 =49 �8 =4 �2; 95=19 �5=1 �5; and
65 =26 �5=2 (Boas 1979).

The concept of anomalous cancellation can be ex-
tended to arbitrary bases. PRIME bases have no
solutions, but there is a solution corresponding to
each PROPER DIVISOR of a COMPOSITE b . When b �1 is
PRIME, this type of solution is the only one. For base 4,
for example, the only solution is 324 =134 �24 : Boas
gives a table of solutions for b 539 : The number of
solutions is EVEN unless b is an EVEN SQUARE.

b N  b N

4 1 26 4

6 2 27 6

8 2 28 10

9 2 30 6

10 4 32 4

12 4 34 6

14 2 35 6

15 6 36 21

16 7 38 2

18 4 39 6

20 4

21 10

22 6

24 6

See also FRACTION, PRINTER’S ERRORS, REDUCED

FRACTION
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Anomalous Number
BENFORD’S LAW

Anonymous
A term in SOCIAL CHOICE THEORY meaning invariance
of a result under permutation of voters.

See also DUAL VOTING, MONOTONIC VOTING

Anosov Automorphism
A HYPERBOLIC linear map Rn 0 Rn with INTEGER

entries in the transformation MATRIX and DETERMI-

NANT 9 1 is an ANOSOV DIFFEOMORPHISM of the n -
TORUS, called an Anosov automorphism (or HYPER-

BOLIC AUTOMORPHISM). Here, the term automorphism
is used in the GROUP THEORY sense.

Anosov Diffeomorphism
An Anosov diffeomorphism is a C1 DIFFEOMORPHISM

f such that the MANIFOLD M is HYPERBOLIC with
respect to f: Very few classes of Anosov diffeomorph-
isms are known. The best known is ARNOLD’S CAT

MAP.

A HYPERBOLIC linear map Rn 0 Rn with INTEGER

entries in the transformation MATRIX and DETERMI-

NANT 9 1 is an Anosov diffeomorphism of the n -
TORUS. Not every MANIFOLD admits an Anosov diffeo-
morphism. Anosov diffeomorphisms are EXPANSIVE,
and there are no Anosov diffeomorphisms on the
CIRCLE.

It is conjectured that if f : M 0 M is an Anosov
diffeomorphism on a COMPACT RIEMANNIAN MANI-

FOLD and the NONWANDERING SET V(f) of f is M ,
then f is TOPOLOGICALLY CONJUGATE to a FINITE-TO-

ONE FACTOR of an ANOSOV AUTOMORPHISM of a
NILMANIFOLD. It has been proved that any Anosov
diffeomorphism on the n -TORUS is TOPOLOGICALLY

CONJUGATE to an ANOSOV AUTOMORPHISM, and also
that Anosov diffeomorphisms are C1 STRUCTURALLY

STABLE.

See also ANOSOV AUTOMORPHISM, AXIOM A DIFFEO-

MORPHISM, DYNAMICAL SYSTEM
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Anosov Flow
A FLOW defined analogously to the ANOSOV DIFFEO-

MORPHISM, except that instead of splitting the TAN-

GENT BUNDLE into two invariant sub-BUNDLES, they
are split into three (one exponentially contracting,
one expanding, and one which is 1-dimensional and
tangential to the flow direction).

See also DYNAMICAL SYSTEM

Anosov Map
An important example of a ANOSOV DIFFEOMORPHISM.

xn�1

yn�1

 �
�

2 1
1 1

 �
xn

yn

 �
;

where xn�1; yn�1 are computed mod 1.



See also ARNOLD’S CAT MAP

ANOVA
"Analysis of Variance." A STATISTICAL TEST for hetero-
geneity of MEANS by analysis of group VARIANCES. To
apply the test, assume random sampling of a variate
y with equal VARIANCES, independent errors, and a
NORMAL DISTRIBUTION. Let n be the number of
REPLICATES (sets of identical observations) within
each of K FACTOR LEVELS (treatment groups), and yij

be the jth observation within FACTOR LEVEL i . Also
assume that the ANOVA is "balanced" by restricting
n to be the same for each FACTOR LEVEL.

Now define the sum of square terms

SST �
Xk

i �1

Xn

j�1

(yij � ̃y)2 (1)

�
Xk

i�1

Xn

j�1

y2
ij �

Pk
i �1

Pn
j�1 yij

 !2

Kn 
(2)

SSA �
1

n

Xk

i�1

Xn

j�1

yij

 !2

�
1

Kn

Xk

i�1

Xn

j�1

yij

 !2

(3)

SSE �
Xk

i �1

Xn

j�1

(yij � ̈yi)
2 (4)

� SST � SSA ; (5)

which are the total, treatment, and error sums of
squares. Here, ÿi is the mean of observations within
FACTOR LEVEL i , and ỹ is the "group" mean (i.e., mean
of means). Compute the entries in the following table,
obtaining the P -VALUE corresponding to the calcu-
lated F -RATIO of the mean squared values

F �
MSA

MSE 
: (6)

Category SS / 


/Freedom Mean Squared F -RATIO

Treatment SSA /K �1/ /MSA �
SSA

K � 1
/ /

MSA

MSE
/

Error SSE /K(n �1)/ /MSE �
SSE

K(n � 1)
/

Total SST /Kn �1/ /MST �
SST

Kn � 1
/

If the P -VALUE is small, reject the NULL HYPOTHESIS

that all MEANS are the same for the different groups.

See also FACTOR LEVEL, MANOVA, REPLICATE,
VARIANCE
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Anthropomorphic Polygon
A SIMPLE POLYGON with precisely two EARS and one
MOUTH.

References
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Anthyphairetic Ratio
An archaic term for a CONTINUED FRACTION.
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Antiautomorphism
If a MAP f : G 0 G ? from a GROUP G to a GROUP G?
satisfies f (ab) �f (a)f (b) for all a; b � G; then f is said
to be an antiautomorphism.

See also AUTOMORPHISM

Anticenter

The point of concurrence of the three MALTITUDES of a
CYCLIC QUADRILATERAL. Let MAC and MBD be the
MIDPOINTS of the diagonals of a CYCLIC QUADRILAT-

ERAL ABCD , and let P be the intersection of the
diagonals. Then the ORTHOCENTER of TRIANGLE

DPMACMBD is the anticenter T of ABCD (Honsberger
1995, p. 39).

See also CYCLIC QUADRILATERAL, MALTITUDE
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Anticevian Triangle
Given a center a : b : g ; the anticevian triangle is
defined as the TRIANGLE with VERTICES �a : b : g ; a :
�b : g; and a : b : �g : If A?B ?C? is the CEVIAN TRIANGLE

of X and AƒB ƒCƒ is an anticevian triangle, then X and
Aƒ are HARMONIC CONJUGATE POINTS with respect to
A and A?:/

See also CEVIAN TRIANGLE
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Antichain
Let P be a finite PARTIALLY ORDERED SET. An antic-
hain in P is a set of pairwise incomparable elements
(e.g., a family of SUBSETS such that, for any two of
them, neither is a SUBSET of the other). Antichains
are also called Sperner systems in older literature
(Comtet 1974).

The following table gives the antichains on n -set
f1; 2; . . . ; ng for small n .

n antichains

1 / ¥; f(1)g/

2 / ¥; ff1gg; ff2gg; ff1 g; f2gg; ff1; 2gg/

3 / ¥; ff1gg; ff2gg; ff3 gg; ff1; 2gg;/

/ ff1; 3gg; ff2; 3gg; ff1g; f2gg; ff1g; f3gg;/

/ ff2g; f3gg; ff1; 2; 3gg; ff1g; f2; 3gg; ff1 ; 2g; f2 ; 3gg;/

/ ff1; 2g; f1; 3gg; ff1; 2g; f3gg; ff2g; f1; 3gg; ff2 ; 3g; f1; 3 gg;/

/ ff1g; f2g; f3gg; ff1; 2g; f2; 3g; f1; 3gg/

The number of antichains on the n -set f1; 2; . . . ; ng
for n � 1, 2, ..., are 1, 2, 5, 19, 167, ... (Sloane’s
A014466). If the EMPTY SET is not considered a valid
antichain, then these reduce to 0, 1, 4, 18, 166, ...
(Sloane’s A007153; Comtet 1974, p. 273). The num-
bers obtained by adding one to Sloane’s A014466, 2, 3,
6, 20, 168, 7581, 7828354, ... (Sloane’s A000372), are
also frequently encountered (Speciner 1972).

The number of antichains on the n -set are equal to
the number of monotonic increasing Boolean func-
tions of n variables, and also the number of free
distributive lattices with n generators (Comtet 1974,
p. 273). Determining these numbers is known as
DEDEKIND’S PROBLEM, and the numbers in each of
these sequences are sometimes called Dedekind
numbers (Sloane).

The WIDTH of P is the maximum CARDINALITY of an
ANTICHAIN in P . For a PARTIAL ORDER, the size of the
longest ANTICHAIN is called the WIDTH w(P): Sperner
(1928) proved that the maximum width of an antic-
hain containing n elements is

wmax(n)�
n

n=2b c

� �
;

where n
k

� 	
is a BINOMIAL COEFFICIENT and nb c is the

FLOOR FUNCTION.

See also BOOLEAN FUNCTION, CHAIN, DILWORTH’S

LEMMA, PARTIALLY ORDERED SET, WIDTH (PARTIAL

ORDER)
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Anticlastic
When the GAUSSIAN CURVATURE K is everywhere
NEGATIVE, a SURFACE is called anticlastic and is
saddle-shaped. A SURFACE on which K is everywhere
POSITIVE is called SYNCLASTIC. A point at which the
GAUSSIAN CURVATURE is NEGATIVE is called a HYPER-

BOLIC POINT.

See also ELLIPTIC POINT, GAUSSIAN QUADRATURE,
HYPERBOLIC POINT, PARABOLIC POINT, PLANAR

POINT, SYNCLASTIC

Anticommutative
An OPERATOR + for which a + b ��b + a is said to be
anticommutative.

See also COMMUTATIVE

Anticommutator
For OPERATORS Ã and B̃ ; the anticommutator is
defined by

f Ã; B̃ g� Ã B̃ � B̃ Ã:

See also COMMUTATOR, JORDAN ALGEBRA, JORDAN

PRODUCT

Anticomplementary Triangle

A TRIANGLE DA?B ?C? which has a given TRIANGLE

DABC as its MEDIAL TRIANGLE. The TRILINEAR CO-

ORDINATES of the anticomplementary triangle are

A?��a �1 : b �1 : c �1

B ? � a �1 : �b �1 : c �1

C? � a �1 : b �1 : �c �1 :

See also MEDIAL TRIANGLE

Anticross-Stitch Curve
BOX FRACTAL

Antiderivative
INTEGRAL

Antidifferentiation
INTEGRATION

Antigonal Points

Given �AXB��AYB � p RADIANS in the above fig-
ure, then X and Y are said to be antigonal points with
respect to A and B .

Antihomography
A CIRCLE-preserving TRANSFORMATION composed of
an ODD number of INVERSIONS.

See also HOMOGRAPHY

Antihomologous Points
Two points which are COLLINEAR with respect to a
SIMILITUDE CENTER but are not HOMOLOGOUS POINTS.
Four interesting theorems from Johnson (1929) fol-
low.

 



1. Two pairs of antihomologous points form in-
versely similar triangles with the HOMOTHETIC

CENTER.
2. The PRODUCT of distances from a HOMOTHETIC

CENTER to two antihomologous points is a con-
stant.
3. Any two pairs of points which are antihomolo-
gous with respect to a SIMILITUDE CENTER lie on a
CIRCLE.
4. The tangents to two CIRCLES at antihomologous
points make equal ANGLES with the LINE through
the points.

See also HOMOLOGOUS POINTS, HOMOTHETIC CENTER,
SIMILITUDE CENTER
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Antilaplacian
The antilaplacian of u with respect to x is a function
whose LAPLACIAN with respect to x equals u . The
antilaplacian is never unique.

See also LAPLACIAN

Antilinear
An antilinear OPERATOR Ã satisfies the following two
properties:

Ã[f1(x) �f2(x)] � Ãf1(x) � Ãf2(x)

Ãcf (x) � ̃c Ãf (x) ;

where c̃ is the COMPLEX CONJUGATE of c .

See also ANTIUNITARY, LINEAR OPERATOR
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Antilinear Operator
An antilinear OPERATOR

L̃�u �g (y2 L̃y1 �y1 L̃y2) dx �
p1

p0

(y?1y2 �y1y?2)

" #

satisfies the following two properties:

PD �CB

D �PE

where �CPE is the COMPLEX CONJUGATE of Ce :/

See also ANTIUNITARY OPERATOR, LINEAR OPERATOR
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Antilogarithm
The INVERSE FUNCTION of the LOGARITHM, defined
such that

logb(antilogb z) �z �antilogb(logb z) :

The antilogarithm in base b of z is therefore bz:
/

See also COLOGARITHM, LOGARITHM, POWER

Antimagic Graph
A GRAPH with e EDGES labeled with distinct elements
f1; 2  . . . ; c g so that the SUM of the EDGE labels at
each VERTEX differ.

See also LABELED GRAPH, MAGIC GRAPH
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Antimagic Square

An antimagic square is an n � n ARRAY of integers
from 1 to n2 such that each row, column, and main
diagonal produces a different sum such that these
sums form a SEQUENCE of consecutive integers. It is
therefore a special case of a HETEROSQUARE. Anti-
magic squares of orders 4� are illustrated above
(Madachy 1979). For the 4 � 4 square, the sums are
30, 31, 32, ..., 39; for the 5 � 5 square they are 59, 60,
61, ..., 70; and so on.
Let an antimagic square of order n have entries 0, 1,
..., n2�2; n2�1; and let

M(n)�1
2 n(n2�1)

be the magic constant. Then if and antimagic square
of order n exists, it is either positive with sums
[M(n)�n; M(n)�n�1]; or negative with sums
[M(n)�n�1; M(n)�n] (Madachy 1979).

Antimagic squares of orders one, two, and three are
impossible. In the case of the 3�3 square, there is no
known method of proof of this fact except by case
analysis or enumeration by computer. There are 18
families of antimagic squares of order four. The total



number of antimagic squares of orders 1, 2, ... modulo
the full group of symmetries (reflection, rotation,
complementation, and exchanges) are 0, 0, 0,
299710, ... (Sloane’s A050257; Cormie).

Abe (1994) and Madachy (1979) ask for methods of
constructing antimagic squares of every order. Re-
cently, J. Cormie and V. Linek have developed gen-
eral constructions for squares of order n for all n 

3, as well as for bordering antimagic squares.

See also HETEROSQUARE, MAGIC SQUARE, TALISMAN

SQUARE
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Antimorph
A number which can be represented both in the form
x2

0 �Dy2
0 and in the form Dx2

1 �y2 :
1 This is only

possible when the PELL EQUATION

x2 �Dy2 ��1

is solvable. Then

x2�Dy2��(x0�Dy2
0)(x2

n�Dy2
n)

�D(x0yn�y0xn)2�(x0xn�Dy0yn)2:

See also IDONEAL NUMBER, POLYMORPH
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Antimorphic Number
ANTIMORPH

Antinomy
A PARADOX or contradiction.

Antiparallel

Two lines PQ and RS are said to be antiparallel with
respect to the sides of an ANGLE A if they make the
same angle in the opposite senses with the BISECTOR

of that angle. If PQ and RS are antiparallel with
respect to PR and QS , then the latter are also
antiparallel with respect to the former. Furthermore,
if PQ and RS are antiparallel, then the points P , Q ,
R , and S are CONCYCLIC (Johnson 1929, p. 172;
Honsberger 1995, pp. 87�/8).

There are a number of fundamental relationships
involving a triangle and antiparallel lines (Johnson
1929, pp. 172�/73).

1. The line joining the feet to two ALTITUDES of a
triangle is antiparallel to the third side.
2. The tangent to a triangle’s CIRCUMCIRCLE at a
vertex is antiparallel to the opposite side.
3. The radius of the CIRCUMCIRCLE at a vertex is
perpendicular to all lines antiparallel to the
opposite sides.

In a TRIANGLE DABC; a SYMMEDIAN BK bisects all
segments antiparallel to a given side AC (Honsberger
1995, p. 88). Furthermore, every antiparallel to BC in
DABC is PARALLEL to the tangent to the CIRCUMCIR-

CLE of DABC at A (Honsberger 1995, p. 98).

 



See also ANGLE, CONCYCLIC, COSINE CIRCLE, COSINE

HEXAGON, HYPERPARALLEL, LEMOINE CIRCLE, LE-

MOINE HEXAGON, PARALLEL, TUCKER CIRCLES, TUCK-

ER HEXAGON
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Antipedal Triangle

The antipedal triangle A of a given TRIANGLE T is the
TRIANGLE of which T is the PEDAL TRIANGLE. For a
TRIANGLE with TRILINEAR COORDINATES a : b : g and
ANGLES A , B , and C , the antipedal triangle has
VERTICES with TRILINEAR COORDINATES

�( b � a cos C)(g � a cos B) : (g � a cos B)(a � b cos C) :

( b � a cos C)(a � g cos B)

( g � b cos A)(b � a cos C) :�( g � b cos A)(a � b cos C) :

(a � b cos C)( b � g cos A)

( b � g cos A)( g � a cos B) : (a � g cos B)( g � b cos A) :

�( a � g cos B)(b � g cos A) :

The ISOGONAL CONJUGATE of the ANTIPEDAL TRIANGLE

of a given TRIANGLE is HOMOTHETIC with the original
TRIANGLE. Furthermore, the PRODUCT of their AREAS

equals the SQUARE of the AREA of the original
TRIANGLE (Gallatly 1913).

See also PEDAL TRIANGLE
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Antipersistent Process
A FRACTAL PROCESS for which H B1 =2; so r B0.

See also PERSISTENT PROCESS

Antipodal Map
The MAP which takes points on the surface of a
SPHERE S2 to their ANTIPODAL POINTS.

Antipodal Points
Two points are antipodal (i.e., each is the ANTIPODE of
the other) if they are diametrically opposite. Exam-
ples include endpoints of a LINE SEGMENT, or poles of
a SPHERE. Given a point on a SPHERE with LATITUDE d

and LONGITUDE l; the antipodal point has LATITUDE

�d and LONGITUDE l 9180
 (where the sign is taken
so that the result is between �1808 and �180
):/

See also ANTIPODE, BORSUK-ULAM THEOREM, DIA-

METER, GREAT CIRCLE, LYUSTERNIK-SCHNIRELMANN

THEOREM, METEOROLOGY THEOREM, SPHERE

Antipode
Given a point A , the point B which is the ANTIPODAL

POINT of A is said to be the antipode of A .

See also ANTIPODAL POINTS
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Antiprism



A SEMIREGULAR POLYHEDRON constructed with 2 n -
gons and 2n TRIANGLES. The nets are particularly
simple, consisting of two n -gons on top and bottom,
separated by a ribbon of 2n triangles, with the two n -
gons being offset by one ribbon segment.

The SAGITTA of a regular n -gon of side length a has
length

s�
1

2
a tan

p

2n

 !
(1)

Let d be the length of a lateral edge when the top and
bottom bases separated by a distance h , then

s2�(1
2a)2�h2�d2; (2)

so

d�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2�a2 sec2

p

2n

 !vuut : (3)

For an antiprism of side lengths 1, a�d�1; and
solving for h gives

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1

4 sec2
p

2n

 !vuut : (4)

The CIRCUMRADIUS Rcirc of an antiprism is given by

Rcirc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 h
 !2

�R2

r
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 csc2

p

2n

 !vuut ; (5)

where

R�1
2 csc

p

n

 !
(6)

is the CIRCUMRADIUS of one of the bases.

The TETRAHEDRON can be considered a degenerate 2-
antiprism and the 3-antiprism of height

ffiffiffi
6

p
a=3 (for

side length a ) is simply the OCTAHEDRON. The first
few heights hn producing unit antiprisms for a�1 are

h3�
1
2

ffiffiffi
6

p
(7)

h4�21=4 (8)

h5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10(5�

ffiffiffi
5

p
)

q
(9)

h6�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
p

�1

q
(10)

h8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�7

2

ffiffiffi
2

pq
�1�

ffiffiffi
2

pr
: (11)

The DUALS are the TRAPEZOHEDRA. The SURFACE AREA

of a n -gonal antiprism is

S�2An�gon�2nAD

�2 1
4 na2 cot

p

n

 !" #
�2n 1

2 a
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2�h2
p

�1
2 na a cot

p

n

 !
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�1

4 a2 tan2
p

2n

 !vuut2
4

3
5: (12)

If h�a , this simplifies to

S�1
2 na2 cot

p

n

 !
�

ffiffiffi
3

p
" #

: (13)

The first few are

S3�2
ffiffiffi
3

p
(14)

S4�2(1�
ffiffiffi
3

p
) (15)

S5�
1
2 5

ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq� �
(16)

S6�6
ffiffiffi
3

p
(17)

S8�4(1�
ffiffiffi
2

p
�

ffiffiffi
3

p
): (18)

To find the volume, label vertices as in the above
figure. Then the vectors v1 and v2 are given by

v1�(�s; 1
2 a; h) (19)

v2�(�s; �1
2 a; h); (20)

so the normal to one of the lateral facial planes is

n�v1�v2�(ah; 0; as); (21)

and the unit normal is

n̂�
v1 � v2

½v1 � v2½

�
ahffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2(h2 � s2)
p ; 0;

asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2(h2 � s2)

p
 !

: (22)

 



The height of a pyramid with apex at the center and
having the triangle determined by x1 and x2 as the
base is then given by the projection of a vector from
the origin to a point on the plane onto the normal,

hpyr � ̂u � (R �s ; �1
2 a ; 1

2 h) � ̂u � (R �s ; �1
2 a;

1
2 h)

� ̂u � (R; 0 ; 1
2 h) (23)

�
a2h cot

�
p

2n

�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2


h2 � 1

4 a
2 tan2

�
p

2n

�s � : (24)

The total volume of the 2n pyramids having the
lateral faces as bases is therefore

Vpyr �(2n) 1
3 hpyr(

1
2 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 �h2)

ph i
� 1

12 a
2h cot

�
p

2n

�
(25)

Plugging in h and setting a �1 gives

Vpyr �
1

12 n cot
p

2n

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �1

4 sec2
p

2n

 !vuut : (26)

The two pyramids having the upper and lower
surfaces as bases contribute a volume

Vhase �2 1
2

 !
1
2 h
 !

1
4 na2 cot

p

n

 !" #

� 1
12 na2 h cot

p

n

 !
: (27)

Combining the two, setting a �1, and plugging in the
height h to get unit lateral edges gives the total
volume as the somewhat complicated expression

V � 1
12 n cot

p

2n

 !
�cot

p

n

 !" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �1

4 sec2
p

2n

 !vuut : (28)

The volumes of the first few unit antiprisms are
therefore given by

V3 �
1
3

ffiffiffi
2

p
(29)

V4 �
1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �3

ffiffiffi
2

pq
(30)

V5 �
1
6(5 �2

ffiffiffi
5

p
) (31)

v6 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1�

ffiffiffi
3

p !r
(32)

See also GYROELONGATED PYRAMID, OCTAHEDRON,
PRISM, PRISMOID, TRAPEZOHEDRON
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Antiquity
GEOMETRIC PROBLEMS OF ANTIQUITY

Antiset
A SET which transforms via converse functions.
Antisets usually arise in the context of CHU SPACES.

See also CHU SPACE, SET

References
Stanford Concurrency Group. "Guide to Papers on Chu

Spaces." http://boole.stanford.edu/chuguide.html.

Antisnowflake
KOCH ANTISNOWFLAKE

Antisphere
PSEUDOSPHERE

Antisquare Number
A number OF THE FORM pa � A is said to be an
antisquare if it fails to be a SQUARE NUMBER for the
two reasons that a is ODD and A is a nonsquare
modulo p .

See also SQUARE NUMBER, SQUAREFREE, SQUAREFUL

Antisymmetric
A quantity which changes SIGN when indices are
reversed. For example, Aij �ai �aj is antisymmetric
since Aij��Aji:/

See also ANTISYMMETRIC MATRIX, ANTISYMMETRIC

TENSOR, SYMMETRIC

Antisymmetric Matrix
An antisymmetric matrix is a MATRIX which satisfies
the identity

A��AT (1)

where AT is the matrix TRANSPOSE. A matrix m may



be tested to see if it is antisymmetric using the
Mathematica function

AntisymmetricQ[m_List?MatrixQ] : � (m ��� -

Transpose[m])

In component notation, this becomes

aij ��aji : (2)

Letting k �i �j; the requirement becomes

akk ��akk ; (3)

so an antisymmetric matrix must have zeros on its
diagonal. The general 3 �3 antisymmetric matrix is
OF THE FORM

0 a12 a13

�a12 0 a23

�a13 �a23 0

2
4

3
5: (4)

Applying A�1 to both sides of the antisymmetry
condition gives

�A �1AT �1 : (5)

Any SQUARE MATRIX can be expressed as the sum of
symmetric and antisymmetric parts. Write

A �1
2
(A �AT) �1

2
(A �AT): (6)

But

A �

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n n ::: n
an1 an2 � � �  ann

2
664

3
775 (7)

AT�

a11 a21 � � �  an1

a12 a22 � � �  an2

n n ::: n
a1n a2n � � �  ann

2
664

3
775; (8)

so

A �AT �

2a11 a12 �a21 � � �  a1n �an1

a12 �a21 2a22 � � �  a2n �an2

n n ::: n
a1n �an1 a2n �an2 � � �  2ann

2
664

3
775; (9)

which is symmetric, and

A �AT

�

0 a12 �a21 � � �  a1n �an1

�(a12 �a21) 0 � � �  a2n �an2

n n ::: n
�(a1n �an1) �(a2n �an2) � � �  0

2
664

3
775; (10)

which is antisymmetric.

See also SKEW SYMMETRIC MATRIX, SYMMETRIC

MATRIX

Antisymmetric Relation
A RELATION R on a SET S is antisymmetric provided
that distinct elements are never both related to one

another. In other words xRy and yRx together imply
that x �y .

Antisymmetric Tensor
An antisymmetric (also called alternating) tensor is a
TENSOR which changes sign when two indices are
switched. For example, a tensor Ax1 ;���;xn such that

Ax1 ; ���; xi ; ���; xj ; ���; xn ��Ax1 ; ���; x j ; ���; xi ; ���; xn (1)

is antisymmetric.

The simplest nontrivial antisymmetric tensor is
therefore an antisymmetric rank-2 tensor, which
satisfies

Amn ��Anm : (2)

Furthermore, any rank-2 TENSOR can be written as a
sum of SYMMETRIC and antisymmetric parts as

Amn �1
2(A

mn �Anm) �1
2(A

mn �Anm) : (3)

The antisymmetric part of a tensor Aab is sometimes
denoted using the special notation

A ab½ ��1
2(A

ab �Aba) : (4)

For a general rank-n TENSOR,

A a1 ���an½ ��
1

n!
ea1 ���an

X
permutations

Aa1 ���an ; (5)

where ea1 ���an
is the PERMUTATION SYMBOL. Symbols for

the symmetric and antisymmetric parts of tensors
can be combined, for example

T (ab)c
d½ � �1

4(T
abc
de �Tbac

de �Tabc
ed �Tbac

ed ) : (6)

(Wald 1984, p. 26).

See also ALTERNATING MULTILINEAR FORM, EXTERIOR

ALGEBRA, SYMMETRIC TENSOR, WEDGE PRODUCT

References
Wald, R. M. General Relativity. Chicago, IL: University of

Chicago Press, 1984.

Antiunitary
An operator Ã which satisfies:

Ãf1 ½ Ãf2

0 1
� f1 ½f2h i

Ã[f1(x) �f2(x)] � Ãf1(x) � Ãf2(x)

Ãcf (x) � ̃c Ãf (x) ;

where f ½gh i is the INNER PRODUCT and c̃ is the
COMPLEX CONJUGATE of c .

See also ANTILINEAR, UNITARY

References
Sakurai, J. J. Modern Quantum Mechanics. Menlo Park,

CA: Benjamin/Cummings, 1985.

 



Antiunitary Operator
An operator B̃ which satisfies:

2
ffiffiffi
3

p
�S4

91 �C1

f : M 0 M �V( f)

where 2(1 �
ffiffiffi
3

p
) is the INNER PRODUCT and

xn�1

yn�1

 �
�

2 1
1 1

 �
xn

yn

 �
is the COMPLEX CONJUGATE of Ce :/

See also ANTILINEAR OPERATOR, UNITARY OPERATOR

References
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Antoine’s Horned Sphere
A topological 2-sphere in 3-space whose exterior is
not SIMPLY CONNECTED. The outer complement of
Antoine’s horned sphere is not SIMPLY CONNECTED.
Furthermore, the group of the outer complement is
not even finitely generated. Antoine’s horned sphere
is inequivalent to ALEXANDER’S HORNED SPHERE sin-
ce the complement in R3 of the bad points for ALEX-

ANDER’S HORNED SPHERE is SIMPLY CONNECTED.

See also ALEXANDER’S HORNED SPHERE

References
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Perish Press, pp. 76 �9, 1976.

Antoine’s Necklace

Construct a chain C of 2n components in a solid TOR-

US V . Now form a chain C1 of 2n solid tori in V ,
where

p1(V �C1) $ p1(V �C)

via inclusion. In each component of C1 ; construct a
smaller chain of solid tori embedded in that compo-
nent. Denote the union of these smaller solid tori C2 :
Continue this process a countable number of times,

then the intersection

A �S
�

i�1
Ci

which is a nonempty compact SUBSET of R3 is called
Antoine’s necklace. Antoine’s necklace is HOMEO-

MORPHIC with the CANTOR SET.

See also ALEXANDER’S HORNED SPHERE, NECKLACE
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Apeirogon
The REGULAR POLYGON essentially equivalent to the
CIRCLE having an infinite number of sides and
denoted with SCHLÄ FLI SYMBOL f�g:/

See also CIRCLE, REGULAR POLYGON
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Apéry Number
The numbers defined by

An�
Xn

k�0

n
k

� �2
n�k

k

� �2

�
Xn

k�0

[(n � k!]2

(k!)4[(n � k)!]2 ; (1)

where n
k

� 	
is a BINOMIAL COEFFICIENT. The first few for

n�0, 1, 2, ... are 1, 5, 73, 1445, 33001, 819005, ...
(Sloane’s A005259). They are also given by the
RECURRENCE RELATION

an�
(34n3 � 51n2 � 27n � 5)an�1 � (n � 1)3an�2

n3

(2)

(Beukers 1987). There is also an associated set of
numbers

Bn�
Xn

k�0

n
k

� �2
n�k

k

� �
(3)

(Beukers 1987). The values for n�0, 1, ... are 1, 3, 19,
147, 1251, 11253, 104959, ... (Sloane’s A005258).

Both An and Bn arose in Apéry’s irrationality proof of
z(2) and z(3) (van der Poorten 1979, Beukers 1987).
They satisfy some surprising congruence properties,

Ampr�1�Ampr�1�1(mod p3r) (4)

Bmpr�1�Bmpr�1�1(mod p3r) (5)

for p a PRIME]5 and m; reN (Beukers 1985, 1987), as
well as



B(p�1)=2�
4a2�2p (mod p) if p�a2�b2; a odd
0 (mod p) if p�3 (mod 4)

�
(Stienstra and Beukers 1985, Beukers 1987). Defin-
ing gn from the GENERATING FUNCTION

X�
n�1

gnqn�q
Y�
n�1

(1�q2n)4(1�q4n)4 (6)

gives gn of 1, -4, -2, 24, -11, -44, ... (Sloane’s A030211;
Koike 1984) for n�1, 3, 5, ..., and

A(p�1)=2�gp (mod p) (7)

for p an ODD PRIME (Beukers 1987). Furthermore, for
p an ODD PRIME and m; reN;

A(mpr�1)=2�gpA(mpr�1�1)=2�p3Ampr�2�1)=2�0 (mod pr) (8)

(Beukers 1987).

The Apéry numbers are given by the diagonal
elements An�Ann in the identity

Amn�
X�

k���

X�
j���

m
k

� �2
m
k

� �2
2m�n�j�k

2m

� �

�
X�

k���

m�n�k
k

� �2
m�n�2k

m�k

� �2

�
X�

k���

m
k

� �
n
k

� �
m�k

k

� �
n�k

k

� �
(9)

(Koepf 1998, p. 119).
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J. Number Th. 25, 201�/10, 1987.

Chowla, S.; Cowles, J.; and Cowles, M. "Congruence Proper-
ties of Apéry Numbers." J. Number Th. 12, 188�/90, 1980.

Gessel, I. "Some Congruences for the Apéry Numbers." J.
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Proof of the Irrationality of z(3):/" Math. Intel. 1, 196�/03,
1979.

Apéry’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry. Apéry’s constant is
defined by

z(3)�1:2020569 . . . ; (1)

(Sloane’s A002117) where z(z) is the RIEMANN ZETA

FUNCTION. Apéry (1979) proved that z(3) is IRRA-

TIONAL, although it is not known if it is TRANSCEN-

DENTAL. Sorokin (1994) and Nesterenko (1996)
subsequently constructed independent proofs for the
irrationality of z(3) (Hata 2000). z(3) arises naturally
in a number of physical problems, including in the
second- and third-order terms of the electron’s gyro-
magnetic ratio, computed using quantum electrody-
namics.

The CONTINUED FRACTION for z(3) is [1, 4, 1, 18, 1, 1, 1,
4, 1, ...] (Sloane’s A013631). The positions at which
the numbers 1, 2, ... occur in the continued fraction
are 1, 12, 25, 2, 64, 27, 17, 140, 10, ... (Sloane’s
A033165). The incrementally maximal terms are 1, 4,
18, 30, 428, 458, 527, ... (Sloane’s A033166), which
occur at positions 1, 2, 4, 29, 63, 572, ... (Sloane’s
A033167).

The following table summarized progress in comput-
ing upper bounds on the IRRATIONALITY MEASURE for
z(3): Here, the exact values for two of the numerical
bounds are given by

m1�1�
6 ln c0 � d0

6 ln c0 � d0

:7:377956 (2)

m4�1�
4 ln(

ffiffiffi
2

p
� 1) � 3

4 ln(
ffiffiffi
2

p
� 1) � 3

:13:4178202; (3)

where

c0�
1
9(362�133

ffiffiffi
7

p
) (4)

d0�26�p
ffiffiffi
3

p
�cot(1

9p)�cot(2
9p)

h i
(5)

(Hata 2000).

index upper
bound

reference

1 7.377956 Hata (2000)

2 8.830284 Hata (1990)

3 12.74359 Dvornicich and Viola (1987)

4 13.41782 Sorokin (1994), Nesterenko
(1996), Prévost (1996)

Beukers (1979) reproduced Apéry’s rational approx-
imation to z(3) using the triple integral of the form

 



g
1

0 g
1

0 g
1

0

Ln(x)Ln(y)

1 � (1 � xy)u
dx dy du; (6)

where Ln(x) is a LEGENDRE POLYNOMIAL. This inte-
gral is closely related to z(3) using the curious
identity

g
1

0
g

1

0
g

1

0

xrys

1 � (1 � xy)u
dx dy du

�
2z(3)�

Pr
l�1

2

l3
for r�s

Pmax(r; s)
1�min(r; s)�1

1

r � s l2for r"s
����

8>>><
>>>:

�
2z(3)�H (3)

r for r�s
c1(1 � min(r; s)) � c1(1 � max(r; s))

r � sj j
for r"s;

8<
:

where H (n)
r is a generalized HARMONIC NUMBER and

ck(x) is a POLYGAMMA FUNCTION (Hata 2000).

Sums related to z(3) are

z(3)�
5

2

X�
n�1

(�1)n�1

n3 2n
n

� ��5

2

X�
k�1

(�1)k�1(k!)2

(2k)!k3
(7)

(used by Apéry), and

l(3)�
X�
k�0

1

(2k � 1)3�
7
8z(3) (8)

X�
k�0

1

(3k � 1)3�
2p3

81
ffiffiffi
3

p �13
27z(3) (9)

X�
k�0

1

(4k � 1)3�
p3

64
� 7

16z(3) (10)

X�
k�0

1

(6k � 1)3�
p3

36
ffiffiffi
3

p � 91
216 z(3); (11)

where l(z) is the DIRICHLET LAMBDA FUNCTION. The
above equations are special cases of a general result
due to Ramanujan (Berndt 1985). Apéry’s proof relied
on showing that the sum

a(n)�
Xn

k�0

n
k

� �2
n�k

k

� �2

; (12)

where n
k

� 	
is a BINOMIAL COEFFICIENT, satisfies the

RECURRENCE RELATION

(n�1)3a(n�1)�(34n3�51n2�27n�5)a(n)

�n3a(n�1)�0 (13)

(van der Poorten 1979, Zeilberger 1991). The char-
acteristic polynomial x2�34x�1 has roots (1�
9

ffiffiffi
2

p
)4; so

lim
n0�

an�1

an

�(1�
ffiffiffi
2

p
)4 (14)

is irrational and an cannot satisfy a two-term recur-
rence (Jin and Dickinson 2000).

Apéry’s constant is also given by

z(3)�
X�
n�1

Sn; 2

n!n
; (15)

where Sn; m is a STIRLING NUMBER OF THE FIRST KIND.
This can be rewritten as

z(3)�
1

2

X�
n�1

1

n2
1�

1

2
�. . .�

1

n

 !
�

1

2

X�
n�1

Hn

n2
; (16)

where Hn is the nth HARMONIC NUMBER (Castellanos
1988).

INTEGRALS for z(3) include

z(3)�
1

2 g
�

0

t2

et � 1
dt (17)

�
8

7
1
4p

2 ln 2�2 g
x=4

0

x ln(sin x) dx

" #
: (18)

Gosper (1990) gave

z(3)�
1

4

X�
k�1

30k � 11

(2k � 1)k3 2k
k

� �2 : (19)

A CONTINUED FRACTION involving Apéry’s constant is

6

z(3)
�5�

16

117�

26

535�
� � � n6

34n3 � 51n2 � 27n � 5�
� � �

(20)

(Apéry 1979, Le Lionnais 1983). Amdeberhan (1996)
used WILF-ZEILBERGER PAIRS (F, G ) with

F(n; k)�
(�1)kk!2(sn � k � 1)!

(sn � k � 1)!(k � 1)
; (21)

s�1 to obtain

z(3)�
5

2

X�
n�1

(�1)n�1 1

2n
n

� �
n3

; (22)

For s�2,

z(3)�
1

4

X�
n�1

(�1)n�1 56n2 � 32n � 5

(2n � 1)2

1

3n
n

� �
2n
n

� �
n3

(23)

and for s�3,

z(3)�
X�
n�0

(�1)n

72
4n
n

� �
3n
n

� �

6120n � 5265n4 � 13761n2 � 13878n3 � 1040

(4n � 1)(4n � 3)(n � 1)(3n � 1)2(3n � 2)2 (24)

(Amdeberhan 1996). The corresponding G(n; k) for



s �1 and 2 are

G(n; k) �
2(�1)kk!2(n � k)!

(n � k � 1)!(n � 1)2 (25)

and

G(n; k) �
( �1)kk!2(2n � k)!(3 � 4n)(4n2 � 6n � k � 3)

2(2n � k � 2)!(n � 1)2(2n � 1)2 :

(26)

Gosper (1996) expressed z(3) as the MATRIX PRODUCT

lim
N 0�

YN
n�1

Mn � 
0 z(3)
0 1

 �
; (27)

where

Mn �

(n � 1)4

4006(n � 5
4)

2(n � 7
4)

2

24570n4 � 64101n3 � 62152n2 � 26427n � 4154

31104(n � 1
3)(n � 1

2)(n � 2
3)

0 1

2
64

3
75

(28)

which gives 12 bits per term. The first few terms are

M1 �
1

10600

2077

1728
0 1

2
4

3
5 (29)

M2 �
1

9801

7501

4320
0 1

2
4

3
5 (30)

M3 �
9

67600

50501

20160
0 1

2
4

3
5; (31)

which gives

z(3) :
423203577229

352066176000 
�1 :20205690315732 . . . (32)

Given three INTEGERS chosen at random, the prob-
ability that no common factor will divide them all is

z(3)½ ��1
:1 :20206 �1 :0:831907 : (33)

B. Haible and T. Papanikolaou computed z(3) to
1,000,000 DIGITS using a WILF-ZEILBERGER PAIR

identity with

F(n; k) �(�1)k n!6(2n � k � 1)!k!3

2(n � k � 1)!2(2n)!3 
; (34)

s �1, and t �1, giving the rapidly converging

z(3) �
X�
n�0

(�1)n n!10(205n2 � 250n � 77)

64(2n � 1)!5
(35)

(Amdeberhan and Zeilberger 1997). The record as of
Dec. 1998 was 128 million digits, computed by
S. Wedeniwski.

See also RIEMANN ZETA FUNCTION, TRILOGARITHM,
WILF-ZEILBERGER PAIR
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Aphylactic Projection
A term sometimes used to describe a MAP PROJECTION

which is neither EQUAL-AREA nor CONFORMAL (Lee
1944; Snyder 1987, p. 4).

See also CONFORMAL MAPPING, EQUAL-AREA PROJEC-

TION, MAP PROJECTION
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Apoapsis

The greatest radial distance of an ELLIPSE as mea-
sured from a FOCUS. Taking v � p in the equation of
an ELLIPSE

r �
a(1 � e2)

1 � e cos v

gives the apoapsis distance

r��a(1 �e):

Apoapsis for an orbit around the Earth is called
apogee, and apoapsis for an orbit around the Sun is
called aphelion.

See also ECCENTRICITY, ELLIPSE, FOCUS, PERIAPSIS

Apocalypse Number
A number having 666 DIGITS (where 666 is the BEAST

NUMBER) is called an apocalypse number. The FIBO-

NACCI NUMBER F3184 is an apocalypse number.

See also APOCALYPTIC NUMBER, BEAST NUMBER,
LEVIATHAN NUMBER
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Apocalyptic Number
A number OF THE FORM 2n which contains the digits
666 (the BEAST NUMBER) is called an APOCALYPTIC

NUMBER. 2157 is an apocalyptic number. The first few
such powers are 157, 192, 218, 220, ... (Sloane’s
A007356).

See also APOCALYPSE NUMBER, BEAST NUMBER,
LEVIATHAN NUMBER
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Apodization
The application of an APODIZATION FUNCTION.

Apodization Function
A function (also called a TAPERING FUNCTION) used to
bring an interferogram smoothly down to zero at the
edges of the sampled region. This suppresses side-
lobes which would otherwise be produced, but at the
expense of widening the lines and therefore decreas-
ing the resolution.

The following are apodization functions for symme-
trical (2-sided) interferograms, together with the
INSTRUMENT FUNCTIONS (or APPARATUS FUNCTIONS)
they produce and a blowup of the INSTRUMENT

FUNCTION sidelobes. The INSTRUMENT FUNCTION I(k)
corresponding to a given apodization function A(x)
can be computed by taking the finite FOURIER COSINE

TRANSFORM,

I(k)�g
a

�a

cos(2pkx)A(x) dx: (1)



Type Apodization

Function

INSTRUMENT FUNCTION

BARTLETT /1�
xj j
a

/ /a sinc2(pka)/

BLACKMAN /BA(x)/ /B1(k)/

CONNES / 1�
x2

a2

� �2

/ /8a
ffiffiffiffiffiffi
2p

p J5=2(2pka)

(2pka)5=2 /

COSINE /cos
px

2a

� �
/ /

4a cos(2pak)

p(1 � 16a2k2)
/

GAUSSIAN /e�x2=(2a2)
/ /2f

a

0
cos(2pkx)e�x2=(2s2) dx/

HAMMING /HmA(x)/ /HmI(k)/

HANNING /HnA(x)/ /HnI(k)/

UNIFORM 1 /2a sinc(2pka)/

WELCH /1�
x2

a2
/ /WI(k)/

where

BA(x)�0:42�0:5cos
px

a

 !
�0:08cos

2px

a

 !
(2)

BI(k)

�
a(0:84 � 0:36a2k2 � 2:17 � 10�19a4k4)sinc(2pak)

(1 � a2k2)(1 � 4a2k3)

(3)

HmA(x)�0:54�0:46cos
px

a

 !
(4)

HmI(k)�
a(1:08 � 0:64a2k2)sinc(2pak)

1 � 4a2k2
(5)

HnA(x)�cos2 px

2a

 !
(6)

�
1

2
1�cos

px

a

 !" #
(7)

HnI(k)�
a sinc(2pak)

1 � 4a2k2
(8)

�a[sinc(2pka)�
1

2
sinc(2pka�p)�

1

2
sinc(2pka}p)]

(9)

WI(k)�a2
ffiffiffiffiffiffi
2p

p J3=2(2pka)

(2pka)3=2 (10)

�a
sin(2pka) � 2pak cos(2pak)

2a3k3p3
: (11)

Type Instrument

Function

FWHM

IF

Peak

/
Peak(�)Sidelobe

Peak
/ /

Peak(�)Sidelobe

Peak
/

Bartlett 1.77179 1 0.00000000 /0:0471904/

Blackman 2.29880 0.84 /�0:00106724/ 0.00124325

Connes 1.90416 /
16
15/ /�0:0411049/ /0:0128926/

Cosine 1.63941 /
4
p
/ /�0:0708048/ /0:0292720/

Gaussian – 1 – –

Hamming 1.81522 1.08 /�0:00689132/ 0.00734934

Hanning 2.00000 1 /�0:0267076/ 0.00843441

Uniform 1.20671 2 /�0:217234/ /0:128375/

Welch 1.59044 /
4
3/ /�0:0861713/ /0:356044/

A general symmetric apodization function A(x) can be
written as a FOURIER SERIES

A(x)�a0�2
X�
n�1

an cos
npx

b

 !
: (12)

where the COEFFICIENTS satisfy

a0�2
X�
n�1

an�1: (13)

The corresponding apparatus function is

I(t)�g
b

�b

A(x)e�2pikx dx�2bfa0sinc(2pkb)

�
X�
n�1

[sinc(2pkb�np)�sinc(2pkb�np)]g: (14)

To obtain an APODIZATION FUNCTION with zero at
ka�3=4; use

a0 sinc(3
2 pÞ�a1[sinc(5

2 p)�sinc(1
2 p)�0: (15)

Plugging in (14),

�(1�2a1)
2

3p
�a1

2

5p
�

2

p

 !

��1
3(1�2a1)�a1(1

5�1)�0 (16)

a1(6
5�

2
3)�

1
3 (17)

 



a1 �
1
3

6
5 �

2
3

�
5

6 � 3 � 2 � 5 
� 5

28 (18)

a0 �1 �2a1 �
28 � 2 � 5

28
�18

28 �
9

14 : (19)

The HAMMING FUNCTION is close to the requirement
that the APPARATUS FUNCTION goes to 0 at ka �5=4;
giving

a0 �
25
46 :0:5435 (20)

a1 �
21
92 :0:2283: (21)

The BLACKMAN FUNCTION is chosen so that the
APPARATUS FUNCTION goes to 0 at ka �5=4 and ka �
9=4 ; giving

a0 �
3969

9304 
:0:42659 (22)

a1 �
1155

4652 
:0:24828 (23)

a2 �
715

18608 
:0:38424 ; (24)

See also BARTLETT FUNCTION, BLACKMAN FUNCTION,
CONNES FUNCTION, COSINE APODIZATION FUNCTION,
FULL WIDTH AT HALF MAXIMUM, GAUSSIAN FUNC-

TION, HAMMING FUNCTION, HANN FUNCTION, HAN-

NING FUNCTION, MERTZ APODIZATION FUNCTION,
PARZEN APODIZATION FUNCTION, UNIFORM APODIZA-

TION FUNCTION, WELCH APODIZATION FUNCTION
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Apollonian Gasket

Consider three mutually tangent circles, and draw
their inner SODDY CIRCLES. Then draw the inner
SODDY CIRCLES of this circle with each pair of the
original three, and continue iteratively. The points
which are never inside a circle form a set of measure 0
having fractal dimension approximately 1.3058 (Man-
delbrot 1983, p. 172).

See also BOWL OF INTEGERS, FORD CIRCLE, SODDY

CIRCLES
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Apollonius Circles
There are two completely different definitions of the
so-called Apollonius circles:

1. The set of all points whose distances from two
fixed points are in a constant ratio 1 : m (Durell
1928, Ogilvy 1990).
2. The eight CIRCLES (two of which are nondegene-
rate) which solve APOLLONIUS’ PROBLEM for three
CIRCLES.

Given one side of a TRIANGLE and the ratio of the
lengths of the other two sides, the LOCUS of the third
VERTEX is the Apollonius circle (of the first type)
whose CENTER is on the extension of the given side.
For a given TRIANGLE, there are three circles of
Apollonius.

Denote the three Apollonius circles (of the first type)
of a TRIANGLE by k1; k2; and k3; and their centers L1;

L2; and L3: The center L1 is the intersection of the
side A2A3 with the tangent to the CIRCUMCIRCLE at
A1: L1 is also the pole of the SYMMEDIAN POINT K with
respect to CIRCUMCIRCLE. The centers L1; L2; and L3

are COLLINEAR on the POLAR of K with regard to its
CIRCUMCIRCLE, called the LEMOINE LINE. The circle of
Apollonius k1 is also the locus of a point whose PEDAL

TRIANGLE is ISOSCELES such that P1P2�P1P3:/



Let U and V be points on the side line BC of a
TRIANGLE DABC met by the interior and exterior
ANGLE BISECTORS of ANGLES A . The CIRCLE with
DIAMETER UV is called the A -Apollonian circle.
Similarly, construct the B - and C -Apollonian circles.
The Apollonian circles pass through the VERTICES A ,
B , and C , and through the two ISODYNAMIC POINTS S
and S?: The VERTICES of the D-TRIANGLE lie on the
respective Apollonius circles.

See also APOLLONIUS’ PROBLEM, APOLLONIUS PURSUIT

PROBLEM, CASEY’S THEOREM, HART’S THEOREM, HEX-

LET, ISODYNAMIC POINTS, SODDY CIRCLES, TANGENT

CIRCLES, TANGENT SPHERES
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Apollonius Point
Consider the EXCIRCLES GA ; GB ; and GC of a TRIANGLE,
and the CIRCLE G internally TANGENT to all three.
Denote the contact point of G and GA by A?; etc. Then
the LINES AA?; BB?; and CC? CONCUR in this point. It
has TRIANGLE CENTER FUNCTION

a �sin2 A cos2[1
2(B �C)]:
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Apollonius Pursuit Problem
Given a ship with a known constant direction and
speed v , what course should be taken by a chase ship
in pursuit (traveling at speed V ) in order to intercept
the other ship in as short a time as possible? The
problem can be solved by finding all points which can
be simultaneously reached by both ships, which is an
APOLLONIUS CIRCLE with m �v=V : If the CIRCLE cuts
the path of the pursued ship, the intersection is the
point towards which the pursuit ship should steer. If
the CIRCLE does not cut the path, then it cannot be
caught.

See also APOLLONIUS CIRCLES, APOLLONIUS’ PRO-

BLEM, PURSUIT CURVE
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Apollonius Spheres
TANGENT SPHERES

Apollonius’ Problem

Given three objects, each of which may be a POINT,
LINE, or CIRCLE, draw a CIRCLE that is TANGENT to

 



each. There are a total of ten cases. The two easiest
involve three points or three LINES, and the hardest
involves three CIRCLES. Euclid solved the two easiest
cases in his Elements , and the others (with the
exception of the three CIRCLE problem), appeared in
the Tangencies of Apollonius which was, however,
lost. The general problem is, in principle, solvable by
STRAIGHTEDGE and COMPASS alone.

The three-CIRCLE problem was solved by Viète (Boyer
1968), and the solutions are called APOLLONIUS

CIRCLES. There are eight total solutions. The simplest
solution is obtained by solving the three simultaneous
quadratic equations

(x �x1)2 �(y �y1)2 �(r 9r1)2 �0 (1)

(x �x2)2 �(y �y2)2 �(r 9r2)2 �0 (2)

(x �x3)2 �(y �y3)2 �(r 9r3)2 �0 (3)

in the three unknowns x , y , r for the eight triplets of
signs (Courant and Robbins 1996). Expanding the
equations gives

(x2 �y2 �r2) �2xxi �2yyi �2rri �(x2
i �y2

i �r2
i ) �0

(4)

for i �1, 2, 3. Since the first term is the same for each
equation, taking (2) �(1) and (3) �(1) gives

ax �by �cr �d (5)

a ?x �b?y �c?r �d?; (6)

where

a �2(x1 �x2) (7)

b �2(y1 �y2) (8)

c �92(r1 �r2) (9)

d �(x2
1 �y2

1 �r2
1) �(x2

2 �y2
2 �r2

2) (10)

and similarly for a ?; b?; c ? and d? (where the 2
subscripts are replaced by 3s). Solving these two
simultaneous linear equations gives

x �
b?d � bd? � b ?cr � bc?r

ab ? � ba ? 
(11)

y �
�a ?d � ad ? � a ?cr � ac ?r

ab ? � a 0b
; (12)

which can then be plugged back into the QUADRATIC

EQUATION (1) and solved using the QUADRATIC FOR-

MULA.
Perhaps the most elegant solution is due to Gergonne.
It proceeds by locating the six HOMOTHETIC CENTERS

(three internal and three external) of the three given
CIRCLES. These lie three by three on four lines
(illustrated above). Determine the POLES of one of
these with respect to each of the three CIRCLES and
connect the POLES with the RADICAL CENTER of the
CIRCLES. If the connectors meet, then the three pairs
of intersections are the points of tangency of two of
the eight circles (Petersen 1879, Johnson 1929, Dörrie
1965). To determine which two of the eight Apollo-
nius circles are produced by the three pairs, simply
take the two which intersect the original three
CIRCLES only in a single point of tangency. The
procedure, when repeated, gives the other three pairs
of CIRCLES.

If the three CIRCLES are mutually tangent, then the
eight solutions collapse to two, known as the SODDY

CIRCLES.

Larmor (1891) and Lachlan (1893, pp. 244�/51) con-
sider the problem of four circles having a common
tangent circle.

See also APOLLONIUS PURSUIT PROBLEM, BEND

(CURVATURE), CASEY’S THEOREM, CIRCULAR TRIAN-

GLE, DESCARTES CIRCLE THEOREM, FOUR COINS

PROBLEM, HART CIRCLE, HART’S THEOREM, SODDY

CIRCLES
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Apollonius’ Theorem
STEWART’S THEOREM

Apothem

Given a CIRCLE, the PERPENDICULAR distance a from
the MIDPOINT of a CHORD to the CIRCLE’s center is
called the apothem. It is also equal to the RADIUS r
minus the SAGITTA s ,

a �r �s :

See also CHORD, RADIUS, SAGITTA, SECTOR, SEGMENT

Apparatus Function
INSTRUMENT FUNCTION

Appell Cross Sequence
A sequence

s(l)
n (x) �[h(t)]lsn(x) ;

where sn(x) is a SHEFFER SEQUENCE, h(t) is invertible,
and l ranges over the real numbers is called a
STEFFENSEN SEQUENCE. If sn(x) is an associated
SHEFFER SEQUENCE, then s(l)

n is called a CROSS

SEQUENCE. If sn(x) �xn ; then

s ln(x) �[h(t)]lxn

is called an Appell cross sequence.

Examples include the BERNOULLI POLYNOMIAL, EU-

LER POLYNOMIAL, and HERMITE POLYNOMIAL.

See also APPELL SEQUENCE, CROSS SEQUENCE, SHEF-

FER SEQUENCE, STEFFENSEN SEQUENCE
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Appell Hypergeometric Function
A formal extension of the HYPERGEOMETRIC FUNCTION

to two variables, resulting in four kinds of functions
(Appell 1925; Whittaker and Watson 1990, Ex. 22,
p. 300),

F1(a; b; b?; g; x; y)�
X�
m�0

X�
n�0

(a)m�n(b)m(b?)n

m!n!(g)m�n

xmyn

(1)

F2(a; b; b?; g; g?; x; y)

�
X�
m�0

X�
n�0

(a)m�n(b)m(b?)n

m!n!(g)m(g?)n

xmyn

(2)

F3(a; a?; b; b?; g; x; y)

�
X�
m�0

X�
n�0

(a)m(a?)n(b)m(b?)n

m!n!(g)m�n

xmyn

(3)

F4(a; b; g; g?; x; y)�
X�
m�0

X�
n�0

(a)m�n(b)m�n

m!n!(g)m(g?)n

xmyn:

(4)

Appell defined the functions in 1880, and Picard
showed in 1881 that they may all be expressed by
INTEGRALS OF THE FORM

 



g
1

0

u a(1 �u)b(1 �xu)g(1 �yu) ddu (5)

(Bailey 1934, pp. 76 �/9). The Appell functions are
special cases of the KAMPÉ DE FÉ RIET FUNCTION, and
are the first four in the set of HORN FUNCTIONS.

In particular, the general integral

g (a �b sin x �c cos x)v dx

�CF1 n �1; 1
2 ;

1
2; n �2;

a � c cos x � b sin x

a � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s ;

0
BBBB@

a � c cos x � b sin x

a � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
�

; (6)

where

C �sec[x �tan �1(c
b
)](a �c cos x �b sin x)n�1

 b(n �1)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s" #�1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
� sin x) � c cosx

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
� a

vuuuuuuut



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
� sin x) � c cos x

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
� a

vuuuuuuut ; (7)

has a closed form in terms of F1 :/

/F1( a; b; b?; g; x; y) reduces to the HYPERGEOMETRIC

FUNCTION in the cases

F1( a; b; b?; g; 0; y) �2F1( a; b?; g; y) (8)

F1(a; b; b?; g; x; 0) �2F1(a; b; g; x) (9)

The F1 function is built into Mathematica 4.0 as
AppellF1[a , b1 , b2 , c , x , y ].

See also ELLIPTIC INTEGRAL, HORN FUNCTION, HY-

PERGEOMETRIC FUNCTION, KAMPÉ DE FÉ RIET FUNC-

TION, LAURICELLA FUNCTIONS
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Appell Polynomial
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Appell Sequence
An Appell sequence is a SHEFFER SEQUENCE for
(g(t) ; t) : Roman (1984, pp. 86 �/06) summarizes prop-
erties of Appell sequences and gives a number of
specific examples.

The sequence sn(x) is Appell for g(t) IFF

1

g(t) 
ey(t) �

X�
k�0

sk(y)

k!
tk (1)

for all y in the field C of characteristic 0, and IFF

sn(x) �
xn

g(t)
(2)

(Roman 1984, p. 27). The Appell identity states that
the sequence sn(x) is an Appell sequence IFF

sn(x�y)�
Xn

k�0

n
k

� �
sk(y)xn�k (3)

(Roman 1984, p. 27).

The BERNOULLI POLYNOMIALS, EULER POLYNOMIALS,
and HERMITE POLYNOMIALS are Appell sequences (in
fact, more specifically, they are APPELL CROSS SE-

QUENCES).

See also APPELL CROSS SEQUENCE, SHEFFER SE-

QUENCE, UMBRAL CALCULUS
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Appell Transformation
A HOMOGRAPHIC transformation

x1 �
ax � by � c

a ƒx � b ƒy � c ƒ

y1 �
a ?x � b ?y � c ?

a ƒx � b ƒy � c ƒ

with t1 substituted for t according to

k dt1 �
dt

(a ƒx � bƒy � c ƒ)2 :
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AppellF1
APPELL HYPERGEOMETRIC FUNCTION

Apple

A SURFACE OF REVOLUTION defined by Kepler. It
consists of more than half of a circular ARC rotated
about an axis passing through the endpoints of the
ARC. The equations of the upper and lower boundaries
in the x -z PLANE are

z9�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �(x �r)2

q
for R 
r and /x � [�(r �R) ; r }R]/. It is the outside
surface of a SPINDLE TORUS.

See also BUBBLE, LEMON, OBLATE SPHEROID, SPHERE-

SPHERE INTERSECTION, SPINDLE TORUS

Approximate Zero
An initial point that provides safe convergence of
NEWTON’S METHOD (Smale 1981; Petkovic et al. 1997,
p. 1).

See also ALPHA-TEST, NEWTON’S METHOD, POINT

ESTIMATION THEORY
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Approximately Equal
If two quantities A and B are approximately equal,
this is written A :B:/

See also DEFINED, EQUAL

Approximately Equal To
APPROXIMATELY EQUAL

Approximation Theory
The mathematical study of how given quantities can
be approximated by other (usually simpler) ones
under appropriate conditions. Approximation theory
also studies the size and properties of the ERROR

introduced by approximation. Approximations are
often obtained by POWER SERIES expansions in which
the higher order terms are dropped.

See also LAGRANGE REMAINDER
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Arakelov Theory
A formal mathematical theory which introduces
"components at infinity" by defining a new type of
divisor class group of INTEGERS of a NUMBER FIELD.

 



The divisor class group is called an "arithmetic
surface."

See also ARITHMETIC GEOMETRY

Arbelos

The term "arbelos" means SHOEMAKER’S KNIFE in
Greek, and this term is applied to the shaded AREA

in the above figure which resembles the blade of a
knife used by ancient cobblers (Gardner 1979).
Archimedes himself is believed to have been the first
mathematician to study the mathematical properties
of this figure. The position of the central notch is
arbitrary and can be located anywhere along the
DIAMETER.
The arbelos satisfies a number of unexpected iden-
tities (Gardner 1979, Schoch).

1. Call the diameters of the left and right SEMI-

CIRCLES r B1 and 1�r; respectively, so the dia-
meter of the enclosing SEMICIRCLE is 1. Then the
arc length along the bottom of the arbelos is

L�pr�p(1�r)�p1

so the arc length along the enclosing semicircle is
the same as the arc length along the two smaller
semicircles.
2. Draw the PERPENDICULAR BD from the tangent
of the two SEMICIRCLES to the edge of the large
CIRCLE. Then the AREA of the arbelos is the same as
the AREA of the CIRCLE with DIAMETER BD . Let
AC�1 and r�AB , then simultaneously solve the
equations

r2�h2�x2 (1)

(1 � r)2�h2�y2 (2)

x2�y2�12 (3)

for the sides

x � AD �
ffiffiffi
r

p
(4)

y � CD �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

p
(5)

h � BD �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1 � r)

p
: (6)

3. The CIRCLES C1 and C?1 inscribed on each half of
BD on the arbelos (called ARCHIMEDES’ CIRCLES)
each have DIAMETER (AB)(BC)=(AC):/

If AC�1 and AB�r , then the radius of the
Archimedes’ circles is

R�1
2r(1�r): (7)

The positions of the circles can be found using the
triangles shown above. The lengths of the horizo-
nal legs and hypotenuses are known as indicated,
so the vertical legs can be found using the
PYTHAGOREAN THEOREM. This then gives the
centers of the circles as

x1�r�R�1
2r(1�r) (8)

y1�
ffiffiffiffiffiffiffiffiffi
2rR

p
�r

ffiffiffiffiffiffiffiffiffiffiffi
1�r

p
(9)

and

x?1�r�R�1
2r(3�r) (10)

y?1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R(1�r)

p
�(1�r)

ffiffiffi
r

p
: (11)

4. Let A? be the point at which the CIRCLE centered
at A and of RADIUS r�AB intersects the enclosing
SEMICIRCLE, and let C? be the point at which the
CIRCLE centered at C of RADIUS 1�r�BC inter-
sects the enclosing SEMICIRCLE. Then the smallest
CIRCLE C2 passing through A? and tangent to BD is
equal to the smallest CIRCLE C?2 passing through C?



and tangent to BD (Schoch). Moreover, the radii R
of these circles are the same as ARCHIMEDES’

CIRCLES. Solving

(x�1
2)

2�y2�(1
2)

2 (12)

x2�y2�r2 (13)

gives (x; y) � (r2; r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
); so the center of C2 is

x2�r2�1
2r(1�r)�1

2r(r�1) (14)

y2�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2:

p
(15)

Similarly, solving

(x�1
2)

2�y2�(1
2)

2 (16)

(x � 1)2�y2�(1�r)2 (17)

gives (x; y) � (r(2 � r); (1 � r)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(2 � r)

p
); so the

center of C?2 is

x?2�r(2�r)�1
2r(1�r)�1

2r(r�3) (18)

y?2�(1�r)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(2�r)

p
: (19)

5. The APOLLONIUS CIRCLE C3 of the circles with
arcs BA?; BC?; and AA?DC?C is located at a position

x�1
2r(1�3r�2r2) (20)

y�r(1�r)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2�r)(1�r)

p
(21)

and has radius R equal to that of ARCHIMEDES’

CIRCLES (Schoch), as does the smallest circle C?3
passing through B and tangent to C3:/

Furthermore, letting B?D? be the line parallel to
BD through the center of CIRCLE C3; the CIRCLE Cƒ3
with center on B?D? and tangent to the small
semicircles of the arbelos also has radius R
(Schoch). The position of the center of Cƒ3 is given
by

xƒ3�x�1
2r(1�3r�2r2) (22)

yƒ3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1
2r�R)�(x�1

2r)2
q

�r(1�r)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r�r2

p
: (23)

The vertical h? position of D? is

h?�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4�

1
4(2r3�3r2�r�1)2

q

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1�r)(2r2�3r�1)(2r2�r�2)

p
: (24)

6. Let P be the MIDPOINT of AB , and let Q be the
MIDPOINT of BC . Then draw the SEMICIRCLE hav-
ing PQ as a DIAMETER with center M . This CIRCLE

has RADIUS

RPQ�
1
2f1�1

2[r�(1�r)]g�1
4: (25)

The smallest circle C4 through D? touching arc PQ
then has radius R (Schoch). Using similar trian-
gles, the center of this circle is at

x4�
r(2r4 � 5r3 � 3r � 1)

1 � 4r � 4r2
(26)

y4�
2r2 � 2r � 1

2(4r2 � 4r � 1)

 



�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1�r)(2r2�3r�1)(2r2�r�2)

p
: (27)

Similarly, let U be the point of intersection of B?D?
and the SEMICIRCLE PQ , then the CIRCLE through
B , B?; and U also has RADIUS R (Schoch). The
center of this CIRCLE is at

x?4�
1
4r(3�3r�2r2) (28)

y?4�
1
4r(1�r)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2r�1)(3�2r)

p
: (29)

Consider the circle X of RADIUS rX which is tangent
to the two interior semicircles. Its position and
radius are obtained by solving the simultaneous
equations

h2�z2�(1
2r�rX )2 (30)

h2�(1
2�z)2�[1

2(1�r)�rX ]2 (31)

(1
2r � rX )2�[1

2(1�r)�rX ]2�(1
4)

2: (32)

giving

z�1
4�

1
4(2r�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4r�4r2

p
(33)

h�r(1�r) (34)

rX �
1
4(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4r�4r2

p
�1): (35)

Letting Cƒ4 be the smallest CIRCLE through X and
tangent to ABC , the radius of Cƒ4 is therefore h=2�
r(1�r)=2�R (Schoch), and its center is located at

xƒ4�
1
4�

1
2r�

1
4(2r�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4r�4r2

p
(36)

yƒ4�
1
2r(1�r): (37)

7. Within each small semicircle of an arbelos,
construct arbeloses similar to the original. Then
the circles C5 and C?5 are congruent and have
radius R (Schoch). Moreover, connect the mid-
points of the arcs and their cusp points to form the
RECTANGLES u EFGH and u E?F?G?H?: Then these
rectangles are similar with respect to the point Cƒ5
(Schoch). This point lies on the line B?D?; and the
circle with center Cƒ5 and radius Cƒ5B? also has
radius R , so Cƒ5 has coordinates (1

2r(1�3r�
2r2); 1

2r(1�r)): The following tables summarized
the positions of the rectangle vertices.

X Coordinates /X?/ Coordinates

E /(1
2r;

1
2r)/ /E?/ /(r(2�r); 0)/

F /(1
2r(1�r); 1

2r(1�r))/ /F?/ /(1
2r(3�r); 1

2r(1�r))/

G /(r2; 0)/ /G?/ /(1
2(1�r); 1

2(1�r))/

H /(1
2r

2; 1
2r

2)/ /H?/ /(1
2(1�2r�r2); 1

2(1�r)2)/

8. Let MM? be the PERPENDICULAR BISECTOR of AC ,
let B be the cusp of the arbelos and D lie above it,
let E and G? be the tops of the large and small
semicircles, respectively. Let EG? intersect the
lines MM? and BD in points I and J , respectively.
Then the smallest circle C6 passing through I and
tangent to arc AC at M?; the smallest circle C?6
through J and tangent to the outside semicircle at
PC; and the circle Cƒ6 with diameter JB are all
equal to the Archimedean circles (Schoch). The
circle Cƒ6 is called the BANKOFF CIRCLE, and is also
the CIRCUMCIRCLE of the point B and tangent
points PA and PC of the first Pappus circle. The
centers of the circles C6; C?6; and Cƒ6 are given by

x6�
1
2

y6�
1
2(1�r�r2) (38)



x?6 �
r(1 � r � 2r2)

2(1 � 2r � 2r2) 
(39)

y?6 �
r(1 � r)(1 � r � r2)

1 � 2r � 2r2 
(40)

x ƒ6 �r (41)

yƒ6 �
1
2r(1 �r) : (42)

Rather amazingly, the points E , M , B , G?; PC ; D ,
and M ? are CONCYCLIC (Schoch) in a circle with
center ((1 �2r)=4 ; 1 =4) and radius

REMBG?PCDM ?�
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1 �2r �2r2)

p
: (43)

9. The smallest CIRCUMCIRCLE of the Archimedean
circles has an area equal to that of the arbelos.

10. The line tangent to the semicircles AB and BC
contains the point E and F which lie on the lines
AD and CD , respectively. Furthermore, BD and
EF bisect each other, and the points B , D , E , and
F are CONCYCLIC.

11. Construct a chain of TANGENT CIRCLES starting
with the CIRCLE TANGENT to the two small ones
and large one (a so-called PAPPUS CHAIN). The
centers of the CIRCLES lie on an ELLIPSE, and the
DIAMETER of the nth CIRCLE Cn is (/(1=n))/th PER-

PENDICULAR distance to the base of the SEMICIR-

CLE. This result is most easily proven using
INVERSION, but was known to Pappus, who re-
ferred to it as an ancient theorem (Hood 1961,
Cadwell 1966, Gardner 1979, Bankoff 1981).

12. If B divides AC in the GOLDEN RATIO f; then
the circles in the chain satisfy a number of other
special properties (Bankoff 1955).

See also ARCHIMEDES’ CIRCLES, BANKOFF CIRCLE,
COXETER’S LOXODROMIC SEQUENCE OF TANGENT

CIRCLES, GOLDEN RATIO, INVERSION, PAPPUS CHAIN,
STEINER CHAIN
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Arborescence
A DIRECTED GRAPH is called an arborescence if, from a
given node x known as the ROOT NODE, there is

 



exactly one elementary path from x to every other
node y .

See also ARBORICITY, DIRECTED GRAPH, ROOT NODE

Arboricity
Given a GRAPH G , the arboricity is the MINIMUM

number of line-disjoint acyclic SUBGRAPHS whose
UNION is G .

See also ANARBORICITY

Arc

In general, any smooth curve joining two points. In
particular, any portion (other than the entire curve)
of a CIRCLE or ELLIPSE. As Archimedes proved, for
CHORDS AC and BD which are PERPENDICULAR to
each other,

arc AB �arc CD �arc BC �arc DA

(Wells 1991).
The prefix "arc" is also used to denote the INVERSE

FUNCTIONS of TRIGONOMETRIC FUNCTIONS and HYPER-

BOLIC FUNCTIONS. Finally, any path through a graph
which passes through no vertex twice is called an arc
(Gardner 1984, p. 96).

See also APPLE, ARC LENGTH, CHORD, CIRCLE-CIRCLE

INTERSECTION, CIRCULAR TRIANGLE, FIVE DISKS

PROBLEM, FLOWER OF LIFE, LEMON, LENS, PIECEWISE

CIRCULAR CURVE, REULEAUX POLYGON, REULEAUX

TRIANGLE, SALINON, SEED OF LIFE, TRIANGLE ARCS,
VENN DIAGRAM, YIN-YANG
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Arc Length
Arc length is defined as the length along a curve,

s �g
b

a

dlj j: (1)

Defining the line element ds2 � dlj j2; parameterizing
the curve in terms of a parameter t , and noting that

ds =dt is simply the magnitude of the VELOCITY with
which the end of the RADIUS VECTOR r moves gives

s �g
b

a

ds �g
b

a

ds

dt
dt �g

b

a

r?(t)j jdt: (2)

In POLAR COORDINATES,

dl �r̂ dr �r ̂u du �
dr

du
r̂ �r ̂u

 !
d u; (3)

so

ds � dlj j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

dr

d u

 !2

du

vuut (4)

s �g dlj j�g
02

01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

dr

du

 !2

d u

vuut : (5)

In CARTESIAN COORDINATES,

dl �dyx̂ �dyŷ (6)

ds � dl:dlj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 �dy2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy

dx

 !2

�1 dx

vuut : (7)

Therefore, if the curve is written

r(x) �xx̂ �f (x)ŷ; (8)

then

s �g
b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �f ?2(x)

q
dx: (9)

If the curve is instead written

r(t) �x(t)x̂ �y(t)ŷ; (10)

then

s �g
b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2(t) �y?2(t)

q
dt: (11)

Or, in three dimensions,

r(t)�x(t)x̂�y(t)ŷ�z(t)ẑ; (12)

so

s�g
b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2(t)�y?2(t)�z?2(t)

q
dt: (13)

See also CURVATURE, GEODESIC, NORMAL VECTOR,
RADIUS OF CURVATURE, RADIUS OF TORSION, SPEED,
SURFACE AREA, TANGENTIAL ANGLE, TANGENT VEC-

TOR, TORSION (DIFFERENTIAL GEOMETRY), VELOCITY

Arc Minute
A unit of ANGULAR measure equal to 60 ARC SECONDS,
or 1/60 of a DEGREE. The arc minute is denoted 0 (not
to be confused with the symbol for feet ).



See also ARC SECOND, DEGREE

Arc Second
A unit of ANGULAR measure equal to 1/60 of an ARC

MINUTE, or 1/3600 of a DEGREE. The arc second is
denoted (not to be confused with the symbol for
inches ).

See also ARC MINUTE, DEGREE

Arccos
INVERSE COSINE

ArcCos
INVERSE COSINE

Arccosecant
INVERSE COSECANT

ArcCosh
INVERSE HYPERBOLIC COSINE

Arccosine
INVERSE COSINE

ArcCot
INVERSE COTANGENT

Arccot
INVERSE COTANGENT

Arccotangent
INVERSE COTANGENT

Arccoth
INVERSE HYPERBOLIC COTANGENT

ArcCoth
INVERSE HYPERBOLIC COTANGENT

ArcCsc
INVERSE COSECANT

Arccsc
INVERSE COSECANT

Arccsch
INVERSE HYPERBOLIC COSECANT

ArcCsch
INVERSE HYPERBOLIC COSECANT

Arch

A 4-POLYHEX (Gardner 1978, p. 147).
The term is also used by Gradshteyn and Ryzhik
(2000, p. xxx) to denote

Arch z �i cos �1 z;

where cos�1 z is the INVERSE COSINE.

See also ARCTH, ARSH, ARTH, INVERSE COSINE
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Archimedean Dual
The DUALS of the ARCHIMEDEAN SOLIDS, sometimes
called the CATALAN SOLIDS, are given in the following
table. Hume (1986) gives exact solutions for the side
lengths, angles, and DIHEDRAL ANGLES of the Archi-
medean duals.

n ARCHIMEDEAN SOLID DUAL

1 CUBOCTAHEDRON RHOMBIC DODECAHEDRON

2 GREAT RHOMBICOSIDODECA-

HEDRON

DISDYAKIS TRIACONTAHE-

DRON

3 GREAT RHOMBICUBOCTAHE-

DRON

DISDYAKIS DODECAHEDRON

4 ICOSIDODECAHEDRON RHOMBIC TRIACONTAHEDRON

5 SMALL RHOMBICOSIDODECA-

HEDRON

DELTOIDAL HEXECONTAHE-

DRON

6 SMALL RHOMBICUBOCTAHE-

DRON

DELTOIDAL ICOSITETRAHE-

DRON

7 SNUB CUBE (laevo) PENTAGONAL ICOSITETRAHE-

DRON (dextro)

8 SNUB DODECAHEDRON (lae-
vo)

PENTAGONAL HEXECONTAHE-

DRON (dextro)

9 TRUNCATED CUBE SMALL TRIAKIS OCTAHEDRON

10 TRUNCATED DODECAHEDRON TRIAKIS ICOSAHEDRON

11 TRUNCATED ICOSAHEDRON PENTAKIS DODECAHEDRON

12 TRUNCATED OCTAHEDRON TETRAKIS HEXAHEDRON

13 TRUNCATED TETRAHEDRON TRIAKIS TETRAHEDRON

 



Here are the Archimedean DUALS (Pearce 1978,
Holden 1991) displayed in the order listed above (left
to right, then continuing to the next row).

Here are the Archimedean solids paired with their
DUALS.

See also ARCHIMEDEAN SOLID, CATALAN SOLID
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Archimedean Solid
The Archimedean solids are convex POLYHEDRA which
have a similar arrangement of nonintersecting reg-

ular plane CONVEX POLYGONS of two or more different
types arranged in the same way about each VERTEX

with all sides the same length (Cromwell 1997,
pp. 91�/2). The Archimedean solids are distinguished
from the regular PRISMS and ANTIPRISMS by having
very high symmetry, thus excluding solids belonging
to a DIHEDRAL GROUP of symmetries (e.g., prisms and
antiprisms with unit side lengths) and the ELON-

GATED SQUARE GYROBICUPOLA (because that surface’s
symmetry-breaking twist allows vertices "near the
equator" and those "in the polar regions" to be
distinguished; Cromwell 1997, p. 92). The Archime-
dean solids are sometimes also referred to as the
SEMIREGULAR POLYHEDRA.

Nine of the Archimedean solids can be obtained by
TRUNCATION of a PLATONIC SOLID, and two further
can be obtained by a second truncation. The remain-
ing two solids, the SNUB CUBE and SNUB DODECAHE-

DRON, are obtained by moving the faces of a CUBE and
DODECAHEDRON outward while giving each face a
twist. The resulting spaces are then filled with
ribbons of EQUILATERAL TRIANGLES (Wells 1991).

Pugh (1976, p. 25) points out the Archimedean solids
are all capable of being circumscribed by a regular
TETRAHEDRON so that four of their faces lie on the
faces of that TETRAHEDRON. A method of constructing
the Archimedean solids using a method known as
"expansion" has been enumerated by Stott (Stott
1910; Ball and Coxeter 1987, pp. 139�/40).

Let the cyclic sequence S�(p1; p2; . . . pq) represent
the degrees of the faces surrounding a vertex (i.e., S
is a list of the number of sides of all polygons
surrounding any vertex). Then the definition of an
Archimedean solid requires that the sequence must
be the same for each vertex to within ROTATION and
REFLECTION. Walsh (1972) demonstrates that S re-
presents the degrees of the faces surrounding each
vertex of a semiregular convex polyhedron or TESSEL-

LATION of the plane IFF

1. q]3 and every member of S is at least 3,
2. aq

i�1
1
pi
] 1

2 q�1; with equality in the case of a
plane TESSELLATION, and
3. for every ODD NUMBER p �S; S contains a
subsequence (b , p , b ).

Condition (1) simply says that the figure consists of
two or more polygons, each having at least three
sides. Condition (2) requires that the sum of interior
angles at a vertex must be equal to a full rotation for
the figure to lie in the plane, and less than a full
rotation for a solid figure to be convex.

The usual way of enumerating the semiregular
polyhedra is to eliminate solutions of conditions (1)
and (2) using several classes of arguments and then
prove that the solutions left are, in fact, semiregular
(Kepler 1864, pp. 116�/26; Catalan 1865, pp. 25�/2;
Coxeter 1940, p. 394; Coxeter et al. 1954; Lines 1965,



pp. 202�/03; Walsh 1972). The following table gives
all possible regular and semiregular polyhedra and
tessellations. In the table, ‘P’ denotes PLATONIC

SOLID, ‘M’ denotes a PRISM or ANTIPRISM, ‘A’ denotes
an Archimedean solid, and ‘T’ a plane tessellation.

S Figure Solid SCHLÄFLI

SYMBOL

(3, 3, 3) P TETRAHEDRON /f3; 3g/

(3, 4, 4) M Triangular PRISM /tf2; 3g
/

(3, 6, 6) A TRUNCATED TETRAHEDRON t/f3; 3g/

(3, 8, 8) A TRUNCATED CUBE /tf4; 3g
/

(3, 10, 10) A TRUNCATED DODECAHE-

DRON

/tf5; 3g
/

(3, 12, 12) T (Plane TESSELLATION) /tf6; 3g
/

(4, 4, n ) M n -gonal PRISM /tf2; ng
/

(4, 4, 4) P CUBE /f4; 3g/

(4, 6, 6) A TRUNCATED OCTAHEDRON /tf3; 4g
/

(4, 6, 8) A GREAT RHOMBICUBOCTA-

HEDRON

t
3
4f g/

(4, 6, 10) A GREAT RHOMBICOSIDODE-

CAHEDRON

t
3
5f g/

(4, 6, 12) T (Plane TESSELLATION) t
3
6f g/

(4, 8, 8) T (Plane TESSELLATION) /tf4; 4g
/

(5, 5, 5) P DODECAHEDRON /f5; 3g/

(5, 6, 6) A TRUNCATED ICOSAHEDRON /tf3; 5g
/

(6, 6, 6) T (Plane TESSELLATION) /f6; 3g/

(3, 3, 3, n ) M n -gonal ANTIPRISM s
2
nf g

/

(3, 3, 3, 3) P OCTAHEDRON /f3; 4g/

(3, 4, 3, 4) A CUBOCTAHEDRON /
3
4f g/

(3, 5, 3, 5) A ICOSIDODECAHEDRON /
3
5f g/

(3, 6, 3, 6) T (Plane TESSELLATION) /
3
6f g/

(3, 4, 4, 4) A SMALL RHOMBICUBOCTA-

HEDRON

r
3
4f g/

(3, 4, 5, 4) A SMALL RHOMBICOSIDODE-

CAHEDRON

r
3
5f g/

(3, 4, 6, 4) T (Plane TESSELLATION) r
3
6f g/

(4, 4, 4, 4) T (Plane TESSELLATION) /f4; 4g/

(3, 3, 3, 3, 3) P ICOSAHEDRON /f3; 5g/

(3, 3, 3, 3, 4) A SNUB CUBE s
3
4f g/

(3, 3, 3, 3, 5) A SNUB DODECAHEDRON s
3
5f g/

(3, 3, 3, 3, 6) T (Plane TESSELLATION) s
3
6f g/

(3, 3, 3, 4, 4) T (Plane TESSELLATION) –

(3, 3, 4, 3, 4) T (Plane TESSELLATION) s
4
4f g/

(3, 3, 3, 3, 3) T (Plane TESSELLATION) /f3; 6g/

As shown in the above table, there are exactly 13
Archimedean solids (Walsh 1972, Ball and Coxeter
1987). They are called the CUBOCTAHEDRON, GREAT

RHOMBICOSIDODECAHEDRON, GREAT RHOMBICUBOCTA-

HEDRON, ICOSIDODECAHEDRON, SMALL RHOMBICOSIDO-

DECAHEDRON, SMALL RHOMBICUBOCTAHEDRON, SNUB

CUBE, SNUB DODECAHEDRON, TRUNCATED CUBE, TRUN-

CATED DODECAHEDRON, TRUNCATED ICOSAHEDRON

(soccer ball), TRUNCATED OCTAHEDRON, and TRUN-

CATED TETRAHEDRON. The Archimedean solids satisfy

(2p� s)V � 4p;

where s is the sum of face-angles at a vertex and V is
the number of vertices (Steinitz and Rademacher
1934, Ball and Coxeter 1987).

Here are the Archimedean solids shown in alphabe-
tical order (left to right, then continuing to the next
row).

The following table lists the symbols for the Archi-
medean solids (Wenninger 1989, p. 9).

 



n Solid SCHLÄFLI

SYMBOL

WYTHOFF

SYMBOL

C&R
Symbol

1 CUBOCTAHEDRON /
3
4f g/ 2 2½34 3 4 (3.4)2

2 GREAT RHOMBICOSIDODECA-

HEDRON

t
3
5f g/ 2 3 5 2½34/

3 GREAT RHOMBICUBOCTAHE-

DRON

t
3
4f g/ 2 3 4 2½34/

4 ICOSIDODECAHEDRON /
3
5f g/ 2 2½34 3 5 (3.5)2

5 SMALL RHOMBICOSIDODECA-

HEDRON

t
3
5f g/ 3 5 2½34 2 3.4.5.4

6 SMALL RHOMBICUBOCTAHE-

DRON

r
3
4f g/ 3 4 2½34 2 3.43

7 SNUB CUBE s
3
4f g/ /2½34 2 3 4 34.4

8 SNUB DODECAHEDRON s
3
5f g/ /2½34 2 3 5 34.5

9 TRUNCATED CUBE /tf4; 3g
/ 2 3 2½34 4 3.82

10 TRUNCATED DODECAHEDRON t/f5; 3g
/ 2 3 2½34 5 3.102

11 TRUNCATED ICOSAHEDRON /tf3; 5g
/ 2 5 2½34 3 5.62

12 TRUNCATED OCTAHEDRON t/f3; 4g
/ 2 4 2½34 3 4.62

13 TRUNCATED TETRAHEDRON t/f3; 3g/ 2 3 2½34 3 3.62

The following table gives the number of vertices v ,
edges e , and faces f , together with the number of n -
gonal faces fn for the Archimedean solids.

n Solid v e f /f3/ /f4/ /f5/ /f6/ /f8/ /f10/

1 CUBOCTAHEDRON 12 24 14 8 6

2 GREAT

RHOMBICOSIDODECAHEDRON

120 180 62 30 20 12

3 GREAT

RHOMBICUBOCTAHEDRON

48 72 26 12 8 6

4 ICOSIDODECAHEDRON 30 60 32 20 12

5 SMALL

RHOMBICOSIDODECAHEDRON

60 120 62 20 30 12

6 SMALL

RHOMBICUBOCTAHEDRON

24 48 26 8 18

7 SNUB CUBE 24 60 38 32 6

8 SNUB DODECAHEDRON 60 150 92 80 12

9 TRUNCATED CUBE 24 36 14 8 6

10 TRUNCATED DODECAHEDRON 60 90 32 20 12

11 TRUNCATED ICOSAHEDRON 60 90 32 12 20

12 TRUNCATED OCTAHEDRON 24 36 14 6 8

13 TRUNCATED TETRAHEDRON 12 18 8 4 4

Let r be the INRADIUS of the dual polyhedron
(corresponding to the INSPHERE, which touches the
faces of the dual solid), r be the MIDRADIUS of both the
polyhedron and its dual (corresponding to the MID-

SPHERE, which touches the edges of both the poly-
hedron and its duals), and R the CIRCUMRADIUS

(corresponding to the CIRCUMSPHERE of the solid
which touches the vertices of the solid). Since the
CIRCUMSPHERE and INSPHERE are dual to each other,
they obey the relationship

Rr�r2 (1)

(Cundy and Rollett 1989, Table II following p. 144).
The following tables give the analytic and numerical
values of r , r; and R for the Archimedean solids with
EDGES of unit length (Coxeter et al. 1954; Cundy and
Rollett 1989, Table II following p. 144). Hume (1986)
gives approximate expressions for the DIHEDRAL

ANGLES of the Archimedean solid (and exact expres-
sions for their duals).

n Solid r /r/ R

1 CUBOCTAHEDRON /34/ /12

ffiffiffi
3

p
/ 1

2 GREAT

RHOMBICOSIDODECAHEDRON

/ 1
241 105 � 6

ffiffiffi
5

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 � 12

ffiffiffi
5

pp
/

/12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 � 12

ffiffiffi
5

pp
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 � 12

ffiffiffi
5

pp
/

3 GREAT

RHOMBICUBOCTAHEDRON

/ 3
97 14 �

ffiffiffi
2

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 � 6

ffiffiffi
2

pp
/

/12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 � 6

ffiffiffi
2

pp
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 � 6

ffiffiffi
2

pp
/

4 ICOSIDODECAHEDRON /18 5 � 3
ffiffiffi
5

p� 	
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2

ffiffiffi
5

pp
/ /12(1 �

ffiffiffi
5

p
)/

5 SMALL RHOMBICOSIDODECAHE-

DRON

/ 1
41 15 � 2

ffiffiffi
5

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 � 4

ffiffiffi
5

pp
/

/12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � 4

ffiffiffi
5

pp
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 � 4

ffiffiffi
5

pp
/

6 SMALL RHOMBICUBOCTAHEDRON / 1
17 6 �

ffiffiffi
2

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2

ffiffiffi
2

pp
/

/12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 2

ffiffiffi
2

pp
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2

ffiffiffi
2

pp
/

7 SNUB CUBE * * *

8 SNUB DODECAHEDRON * * *

9 TRUNCATED CUBE / 1
17 5 � 2

ffiffiffi
2

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 � 4

ffiffiffi
2

pp
/

/12 2 �
ffiffiffi
2

p� 	
/ /12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 � 4

ffiffiffi
2

pp
/

10 TRUNCATED DODECAHEDRON / 5
488 17

ffiffiffi
2

p
� 3

ffiffiffiffiffiffi
10

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37 � 15

ffiffiffi
5

pp
/

/14 5 � 3
ffiffiffi
5

p� 	
/ /14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74 � 30

ffiffiffi
5

pp
/

11 TRUNCATED ICOSAHEDRON / 9
872 21 �

ffiffiffi
5

p� 	
/

/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58 � 18

ffiffiffi
5

pp
/

/34 1 �
ffiffiffi
5

p� 	
/ /14

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58 � 18

ffiffiffi
5

pp
/

12 TRUNCATED OCTAHEDRON / 9
20

ffiffiffiffiffiffi
10

p
/ /32/ /12

ffiffiffiffiffiffi
10

p
/

13 TRUNCATED TETRAHEDRON / 9
44

ffiffiffiffiffiffi
22

p
/ /34

ffiffiffi
2

p
/ /12

ffiffiffiffiffiffi
22

p
/

*The complicated analytic expressions for the CIR-

CUMRADII of these solids are given in the entries for
the SNUB CUBE and SNUB DODECAHEDRON.

n Solid r /r/ R

1 CUBOCTAHEDRON 0.75 0.86603 1

2 GREAT

RHOMBICOSIDODECAHEDRON

3.73665 3.76938 3.80239

3 GREAT

RHOMBICUBOCTAHEDRON

2.20974 2.26303 2.31761

4 ICOSIDODECAHEDRON 1.46353 1.53884 1.61803

5 SMALL

RHOMBICOSIDODECAHEDRON

2.12099 2.17625 2.23295

6 SMALL

RHOMBICUBOCTAHEDRON

1.22026 1.30656 1.39897

7 SNUB CUBE 1.15763 1.24719 1.34371

8 SNUB DODECAHEDRON 2.03969 2.09688 2.15583



9 TRUNCATED CUBE 1.63828 1.70711 1.77882

10 TRUNCATED DODECAHEDRON 2.88526 2.92705 2.96945

11 TRUNCATED ICOSAHEDRON 2.37713 2.42705 2.47802

12 TRUNCATED OCTAHEDRON 1.42302 1.5 1.58114

13 TRUNCATED TETRAHEDRON 0.95940 1.06066 1.17260

The Archimedean solids and their DUALS are all
CANONICAL POLYHEDRA. Since the Archimedean solids
of convex, the CONVEX HULL of each Archimedean
solid is the solid itself.

See also ARCHIMEDEAN SOLID STELLATION, CATALAN

SOLID, DELTAHEDRON, ISOHEDRON, JOHNSON SOLID,
KEPLER-POINSOT SOLID, PLATONIC SOLID, QUASIRE-

GULAR POLYHEDRON, SEMIREGULAR POLYHEDRON,
UNIFORM POLYHEDRON
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Archimedean Solid Stellation
A large class of POLYHEDRA which includes the
DODECADODECAHEDRON and GREAT ICOSIDODECAHE-

DRON. No complete enumeration (even with restric-
tive uniqueness conditions) has been worked out.
There are at least four stellations of the CUBOCTAHE-

DRON (Wenninger 1989), although the exact number
depends on what type of cells formed by plane
intersections are allowed.

There are also many stellations of the Archimedean
solid duals. The RHOMBIC DODECAHEDRON has three
stellations (Wells 1991, pp. 216�17).

See also ARCHIMEDEAN SOLID, CATALAN SOLID
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Archimedean Spiral
A SPIRAL with POLAR equation

r � a u1 =n ; (1)

where r is the radial distance, u is the polar angle,
and n is a constant which determines how tightly the
spiral is "wrapped." The CURVATURE of an Archime-
dean spiral is given by

k �
nu1 �1=n(1 � n � n2 u2)

a(1 � n2 u2)3 =2 ; (2)

and the ARC LENGTH by

s �au1 =n
2F1((2n)�1 ; �1

2; 1�(2n) �1; �n2 u2) ; (3)

where 2F1(a ; b; c; x) is a HYPERGEOMETRIC FUNC-

TION. Various special cases are given in the following
table.

Name n

LITUUS -2

HYPERBOLIC SPIRAL -1

ARCHIMEDES’ SPIRAL 1

FERMAT’S SPIRAL 2

If a fly crawls radially outward along a uniformly
spinning disk, the curve it traces with respect to a
reference frame in which the disk is at rest is an
Archimedean spiral (Steinhaus 1999, p. 137).
Furthermore, a heart-shaped frame composed of two
arcs of an Archimedean spiral which is fixed to a
rotating disk converts uniform rotational motion to
uniform back-and-forth motion (Steinhaus 1999,
pp. 136�/37).

See also ARCHIMEDES’ SPIRAL, DAISY, FERMAT’S

SPIRAL, HYPERBOLIC SPIRAL, LITUUS, SPIRAL
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Archimedean Spiral Inverse Curve
The INVERSE CURVE of the ARCHIMEDEAN SPIRAL

r�au1=n

with INVERSION CENTER at the origin and inversion
RADIUS k is the ARCHIMEDEAN SPIRAL

r � kau1=n:

Archimedean Tessellation
TESSELLATION

Archimedean Valuation
A VALUATION for which xj j51 IMPLIES 1�xj j5C for
the constant C�1 (independent of x ). Such a VALUA-

TION does not satisfy the strong TRIANGLE INEQUALITY

x�yj j5 max( xj j; yj j):

Archimedes Algorithm
Successive application of ARCHIMEDES’ RECURRENCE

FORMULA gives the Archimedes algorithm, which can
be used to provide successive approximations to p (PI).
The algorithm is also called the BORCHARDT-PFAFF

ALGORITHM. Archimedes obtained the first rigorous
approximation of p by CIRCUMSCRIBING and INSCRIB-

ING n�G � 2k
/-gons on a CIRCLE. From ARCHIMEDES’

RECURRENCE FORMULA, the CIRCUMFERENCES a and b
of the circumscribed and inscribed POLYGONS are

a(n)�2n tan
p

n

 !
(1)

b(n)�2n sin
p

n

 !
; (2)

where

b(n)BC�2pr�2p � 1�2pBa(n): (3)

For a HEXAGON, n � 6 and

a0�a(6)�4
ffiffiffi
3

p
(4)

b0�b(6)�6; (5)

where ak�a(6 � 2k): The first iteration of ARCHI-

MEDES’ RECURRENCE FORMULA then gives

a1�
2 � 6 � 4

ffiffiffi
3

p

6 � 4
ffiffiffi
3

p �
24

ffiffiffi
3

p

3 � 2
ffiffiffi
3

p �24 2�
ffiffiffi
3

p !
(6)

b1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24 2�

ffiffiffi
3

p !
� 6

r
�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3

pq



�6
ffiffiffi
6

p
�

ffiffiffi
2

p !
: (7)

Additional iterations do not have simple closed forms,
but the numerical approximations for k �0, 1, 2, 3, 4
(corresponding to 6-, 12-, 24-, 48-, and 96-gons) are

3:00000 B p B3:46410 (8)

3:10583 B p B3:21539 (9)

3 :13263 B p B3 :15966 (10)

3 :13935 B p B3 :14609 (11)

3:14103 B p B3:14271: (12)

By taking k �4 (a 96-gon) and using strict inequal-
ities to convert irrational bounds to rational bounds
at each step, Archimedes obtained the slightly looser
result

223
71 �3:14084 . . . B p B22

7 �3 :14285 . . . : (13)

See also PI
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Archimedes’ Axiom
An AXIOM actually attributed to Eudoxus (Boyer and
Merzbach 1991, pp. 89 �/0) which states that

a

b 
�

c

d

IFF the appropriate one of following conditions is
satisfied for INTEGERS m and n :

1. If ma Bnb , then mc Bnd .
2. If ma �nb , then mc �nd .
3. If ma 
nb , then mc 
nd .

Also known as the continuity axiom or Archimedes’
lemma, this axiom survives in the writings of Eu-
doxus (Boyer and Merzbach 1991). It states that,
given two magnitudes having a ratio, one can find a
multiple of either which will exceed the other. This
principle was the basis for the EXHAUSTION METHOD

which Archimedes invented to solve problems of AREA

and VOLUME.

Formally, Archimedes’ axiom states that if AB and
CD are two line segments, then there exist a finite
number of points A1 ; A2 ; ..., An on A @ B such that

CD �AA1 �AA2 �. . .�An�1An ;

and B is between A and An (Itô 1986, p. 611). A
geometry in which Archimedes’ lemma does not hold
is called a NON-ARCHIMEDEAN GEOMETRY.

See also CONTINUITY AXIOMS, FRACTION, INEQUALITY,
NON-ARCHIMEDEAN GEOMETRY
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Archimedes’ Cattle Problem
Also called the BOVINUM PROBLEMA. It is stated as
follows: "The sun god had a herd of cattle consisting of
bulls and cows, one part of which was white, a second
black, a third spotted, and a fourth brown. Among the
bulls, the number of white ones was one half plus one
third the number of the black greater than the brown;
the number of the black, one quarter plus one fifth
the number of the spotted greater than the brown; the
number of the spotted, one sixth and one seventh the
number of the white greater than the brown. Among
the cows, the number of white ones was one third plus
one quarter of the total black cattle; the number of
the black, one quarter plus one fifth the total of the
spotted cattle; the number of spotted, one fifth plus
one sixth the total of the brown cattle; the number of
the brown, one sixth plus one seventh the total of the
white cattle. What was the composition of the herd?"

Solution consists of solving the simultaneous DIO-

PHANTINE EQUATIONS in INTEGERS W , X , Y , Z (the
number of white, black, spotted, and brown bulls) and
w , x , y , z (the number of white, black, spotted, and
brown cows),

W�5
6 X�Z (1)

X� 9
20 Y�Z (2)

Y�13
42 W�Z (3)

w� 7
12(X�x) (4)

x� 9
20(Y�y) (5)

y�11
30(Z�z) (6)

z�13
42(W�w): (7)

The smallest solution in INTEGERS is

W�10; 366; 482 (8)

X�7; 460; 514 (9)

Y�7; 358; 060 (10)

Z�4; 149; 387 (11)

 



w �7 ; 206; 360 (12)

x �4 ; 893; 246 (13)

y �3 ; 515; 820 (14)

z �5; 439; 213: (15)

A more complicated version of the problem requires
that W �X be a SQUARE NUMBER and Y �Z a
TRIANGULAR NUMBER. The solution to this PROBLEM

are numbers with 206544 or 206545 digits.

References
Amthor, A. and Krumbiegel B. "Das Problema bovinum des

Archimedes." Z. Math. Phys. 25, 121 �/71, 1880.
Archibald, R. C. "Cattle Problem of Archimedes." Amer.

Math. Monthly 25, 411 �/14, 1918.
Beiler, A. H. Recreations in the Theory of Numbers: The

Queen of Mathematics Entertains. New York: Dover,
pp. 249 �/52, 1966.

Bell, A. H. "Solution to the Celebrated Indeterminate Equa-
tion x2 �ng2 �1 :/" Amer. Math. Monthly 1, 240, 1894.

Bell, A. H. "‘Cattle Problem.’ By Archimedes 251 BC." Amer.
Math. Monthly 2, 140, 1895.

Bell, A. H. "Cattle Problem of Archimedes." Math. Mag. 1,
163, 1882 �/884.

Burton, D. M. Elementary Number Theory, 4th ed. Boston,
MA: Allyn and Bacon, p. 391, 1989.

Calkins, K. G. "Archimedes’ Problema Bovinum. " http://
www2.andrews.edu/~calkins/profess/cattle.htm.

Dickson, L. E. History of the Theory of Numbers, Vol. 2:
Diophantine Analysis. New York: Chelsea, pp. 342 �/45,
1952.

Dörrie, H. "Archimedes’ Problema Bovinum ." §1 in 100 Great
Problems of Elementary Mathematics: Their History and
Solutions. New York: Dover, pp. 3 �/, 1965.

Grosjean, C. C. and de Meyer, H. E. "A New Contribution to
the Mathematical Study of the Cattle-Problem of Archi-
medes." In Constantin Carathéodory: An International
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Archimedes’ Circles

Draw the PERPENDICULAR LINE from the intersection
of the two small SEMICIRCLES in the ARBELOS. The two
CIRCLES C1 and C2 TANGENT to this line, the large

SEMICIRCLE, and each of the two SEMICIRCLES are
then congruent and known as Archimedes’ circles.

See also ARBELOS, BANKOFF CIRCLE, SEMICIRCLE

Archimedes’ Constant
PI

Archimedes’ Hat-Box Theorem

Enclose a SPHERE in a CYLINDER and cut out a
SPHERICAL SEGMENT by slicing twice PERPENDICU-

LARLY to the CYLINDER’s axis. Then the lateral SUR-

FACE AREA of the SPHERICAL SEGMENT S1 is equal to
the lateral SURFACE AREA cut out of the CYLINDER S2

by the same slicing planes, i.e.,

S �S1 �S2 �2pRh;

where R is the RADIUS of the CYLINDER (and tangent
SPHERE) and h is the height of the cylindrical (and
spherical) segment.

See also ARCHIMEDES’ PROBLEM, CYLINDER, SPHERE,
SPHERICAL SEGMENT
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Archimedes’ Lemma
ARCHIMEDES’ AXIOM

Archimedes’ Midpoint Theorem

Let M be the MIDPOINT of the ARC AMB . Pick C at
random and pick D such that MD�AC (where �



denotes PERPENDICULAR). Then

AD �DC �BC:

See also MIDPOINT
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Archimedes’ Postulate
ARCHIMEDES’ LEMMA

Archimedes’ Problem
Cut a SPHERE by a PLANE in such a way that the
VOLUMES of the SPHERICAL SEGMENTS have a given
RATIO.

See also ARCHIMEDES’ HAT-BOX THEOREM, SPHERICAL

SEGMENT

Archimedes’ Recurrence Formula

Let an and bn be the PERIMETERS of the CIRCUM-

SCRIBED and INSCRIBED n -gon and a2n and b2n the
PERIMETERS of the CIRCUMSCRIBED and INSCRIBED 2n/-
gon. Then

a2n �
2anbn

an � bn

(1)

b2n �
ffiffiffiffiffiffiffiffiffiffiffiffi
a2nbn

p
: (2)

The first follows from the fact that side lengths of the
POLYGONS on a CIRCLE of RADIUS r �1 are

sR �2 tan
p

n

 !
(3)

sr �2 sin
p

n

 !
; (4)

so

an �2n tan
p

n

 !
(5)

bn �2n sin
p

n

 !
: (6)

But

2anbn

an � bn

�

2 � 2n tan
p

n

 !
� 2n sin

p

n

 !

2n tan
p

n

 !
� 2n sin

p

n

 !

�4n

tan
p

n

 !
sin

p

n

 !

tan
p

n

 !
� sin

p

n

 ! : (7)

Using the identity

tan 1
2x
 !

�
tan x sin x

tan x � sin x 
(8)

then gives

2anbn

an � bn

�4n tan p
2n

 !
�a2n : (9)

The second follows from

ffiffiffiffiffiffiffiffiffiffiffiffi
a2nbn

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n tan

p

2n

 !
� 2n sin

p

n

 !vuut (10)

Using the identity

sin x �2 sin 1
2 x
 !

cos 1
2 x
 !

(11)

gives

ffiffiffiffiffiffiffiffiffiffiffiffi
a2nbn

p
�2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tan

x

2n

 !
�2 sin

p

2n

 !
cos

p

2n

 !vuut

�4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

p

2n

 !vuut �4n sin
p

2n

 !
�b2n : (12)

Successive application gives the ARCHIMEDES ALGO-

RITHM, which can be used to provide successive
approximations to PI (/p):/

See also ARCHIMEDES ALGORITHM, PI
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Archimedes’ Spiral

An ARCHIMEDEAN SPIRAL with POLAR equation

r �a u:

This spiral was studied by Conon, and later by
Archimedes in On Spirals about 225 BC. Archimedes
was able to work out the lengths of various tangents
to the spiral.
Archimedes’ spiral can be used for COMPASS and
STRAIGHTEDGE division of an ANGLE into n parts
(including ANGLE TRISECTION) and can also be used
for CIRCLE SQUARING. In addition, the curve can be
used as a cam to convert uniform circular motion into
uniform linear motion (Steinhaus 1983, p. 137;
Brown). The cam consists of one arch of the spiral
above the X -AXIS together with its reflection in the X -

AXIS. Rotating this with uniform angular velocity
about its center will result in uniform linear motion of
the point where it crosses the Y -AXIS.

See also ARCHIMEDEAN SPIRAL
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Archimedes’ Spiral Inverse
Taking the ORIGIN as the INVERSION CENTER, ARCHI-

MEDES’ SPIRAL r �a u inverts to the HYPERBOLIC

SPIRAL r �a=u :/

ArcSec
INVERSE SECANT

Arcsec
INVERSE SECANT

Arcsecant
INVERSE SECANT

ArcSech
INVERSE HYPERBOLIC SECANT

Arcsech
INVERSE HYPERBOLIC SECANT

ArcSin
INVERSE SINE

Arcsin
INVERSE SINE

Arcsine
INVERSE SINE

Arcsinh
INVERSE HYPERBOLIC SINE

ArcSinh
INVERSE HYPERBOLIC SINE

Arctan
INVERSE TANGENT

ArcTan
INVERSE TANGENT

Arctangent
INVERSE TANGENT

Arctangent Integral
INVERSE TANGENT INTEGRAL

Arctanh
INVERSE HYPERBOLIC TANGENT

ArcTanh
INVERSE HYPERBOLIC TANGENT

Arcth

Arcth z�
1

i
cot�1(�iz);

where cot�1 z is the INVERSE COTANGENT.

See also ARCH, ARSH, ARTH, INVERSE COTANGENT
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Arcwise-Connected

See also CONNECTED SET, LOCALLY PATHWISE-CON-

NECTED, PATH-CONNECTED, PATHWISE-CONNECTED

Arcwise-Connected Set

See also CONNECTED SET, PATH-CONNECTED SET

Area
The AREA of a SURFACE is the amount of material
needed to "cover" it completely. The AREA of a
TRIANGLE is given by

AD�
1
2 lh ; (1)

where l is the base length and h is the height, or by
HERON’S FORMULA

AD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s �a)(s �b)(s �c)

p
; (2)

where the side lengths are a , b , and c and s the
SEMIPERIMETER. The AREA of a RECTANGLE is given by

Arectangle �ab ; (3)

where the sides are length a and b . This gives the
special case of

Asquare �a2 (4)

for the SQUARE. The AREA of a REGULAR POLYGON with
n sides and side length s is given by

An�gon �
1
4 ns2 cot

p

n

 !
: (5)

CALCULUS and, in particular, the INTEGRAL, are
powerful tools for computing the AREA between a
curve f (x) and the X -AXIS over an INTERVAL [a, b ],
giving

A �g
b

a

f (x) dx : (6)

The AREA of a POLAR curve with equation r �r( u) is

A �1
2 g r2 d u: (7)

Written in CARTESIAN COORDINATES, this becomes

A �
1

2 g x
dy

dt 
�y

dx

dt

 !
dt (8)

�
1

2 g (x dy�y dx) : (9)

For the AREA of special surfaces or regions, see the
entry for that region. The generalization of AREA to 3-

D is called VOLUME, and to higher DIMENSIONS is
called CONTENT.

See also ARC LENGTH, AREA ELEMENT, CONTENT,
SURFACE AREA, VOLUME
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Area Element
The area element for a SURFACE with RIEMANNIAN

METRIC

ds2 �E du2 �2F du dv�G dv2

is

dA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F2

p
du ffldv ;

where du ffldv is the WEDGE PRODUCT.

See also AREA, LINE ELEMENT, RIEMANNIAN METRIC,
VOLUME ELEMENT
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Area Integral
A double integral over three coordinates giving the
AREA within some region R ,

A �ggR

dx dy:

If a plane curve is given by /y �f (x)/, then the area
between the curve and the X -AXIS from x � a to x �
b is given by

A�g
b

a

f (x)dx:

See also INTEGRAL, LINE INTEGRAL, LUSIN AREA

INTEGRAL, MULTIPLE INTEGRAL, SURFACE INTEGRAL,
VOLUME INTEGRAL

Area Principle
There are at least two results known as "the area
principle."

 



The geometric area principle states that

A1Pj j
A2Pj j

�
A1BCj j
A2BCj j

: (1)

This can also be written in the form

A1Pj j
A2Pj j

" #
�

A1BCj j
A2BCj j

" #
; (2)

where

AB

CD

" #
(3)

is the ratio of the lengths [A, B ] and [C, D ] for AB ½½CD
with a PLUS or MINUS SIGN depending on if these
segments have the same or opposite directions, and

ABC

DEF

" #
(4)

is the RATIO of signed AREAS of the TRIANGLES.
Grünbaum and Shepard (1995) show that CEVA’S

THEOREM, HOEHN’S THEOREM, and MENELAUS’ THEO-

REM are the consequences of this result.

The area principle of complex analysis states that if f
is a SCHLICHT FUNCTION and if

h(z) �
1

f (z) 
�

1

z
�
X�
j�0

bjz
j ; (5)

then

X�
j�1

j bj

�� ��251 (6)

(Krantz 1999, p. 150).

See also CEVA’S THEOREM, HOEHN’S THEOREM, ME-

NELAUS’ THEOREM, SCHLICHT FUNCTION, SELF-TRANS-

VERSALITY THEOREM
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Areal Coordinates

BARYCENTRIC COORDINATES (t1 ; t2 ; t3) normalized so
that they become the AREAS of the TRIANGLES PA1A2 ;
PA1A3 ; and PA2A3 ; where P is the point whose
coordinates have been specified, normalized by the
area of the original triangle DA1A2A3 : This is equiva-
lent to application of the normalization relation

t1 �t2 �t3 �1

(Coxeter 1969, p. 218).

See also BARYCENTRIC COORDINATES, TRILINEAR CO-

ORDINATES
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Area-Preserving Map
A MAP F from Rn to Rn is AREA-preserving if

m(F(A)) � m(A)

for every subregion A of Rn ; where m(A) is the n -D
MEASURE of A . A linear transformation is AREA-
preserving if its corresponding DETERMINANT is equal
to 1.

See also CONFORMAL MAP, SYMPLECTIC MAP

Arf Invariant
A LINK invariant which always has the value 0 or 1. A
KNOT has ARF INVARIANT 0 if the KNOT is "pass
equivalent" to the UNKNOT and 1 if it is pass
equivalent to the TREFOIL KNOT. If K�; K�; and L
are projections which are identical outside the region
of the crossing diagram, and K� and K� are KNOTS

while l is a 2-component LINK with a nonintersecting
crossing diagram where the two left and right strands
belong to the different LINKS, then

a(K�)�a(K�)�l(L1; L2); (1)

where l is the LINKING NUMBER of L1 and L2: The Arf
invariant can be determined from the ALEXANDER

POLYNOMIAL or JONES POLYNOMIAL for a KNOT. For DK

the ALEXANDER POLYNOMIAL of K , the Arf invariant is
given by



DK (�1) �
1(mod 8) if Arf (K) �0
5(mod 8) if Arf (K) �1

�
(2)

(Jones 1985). For the JONES POLYNOMIAL WK of a
KNOT K ,

Arf (K) �WK (i) (3)

(Jones 1985), where I is the IMAGINARY NUMBER.
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Arg
ARGUMENT (COMPLEX NUMBER)

Argand Diagram
A plot of COMPLEX NUMBERS as points

z �x �iy

using the X -AXIS as the REAL AXIS and Y -AXIS as the
IMAGINARY AXIS. An Argand diagram is also called the
COMPLEX PLANE or ARGAND PLANE. The Argand plane
was described by C. Wessel prior to Argand.

See also COMPLEX PLANE, IMAGINARY NUMBER, REAL

NUMBER
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Argand Plane
ARGAND DIAGRAM

Argoh’s Conjecture
Let Bk be the kth BERNOULLI NUMBER. Then does

nBn�1 ��1 (mod n)

IFF n is PRIME? For example, for n � 1, 2, ..., nBn�1

(mod n ) is 0, -1, -1, 0, -1, 0, -1, 0, -3, 0, -1, ... (Sloane’s
A046094). There are no counterexamples less than
n �5; 600: Any counterexample to Argoh’s conjecture
would be a contradiction to GIUGA’S CONJECTURE, and
vice versa.

See also BERNOULLI NUMBER, GIUGA’S CONJECTURE
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Argument (Complex Number)
A COMPLEX NUMBER z may be REPRESENTED AS

z �x �iy � zj jei u ; (1)

where zj j is called the MODULUS of z , and u is called
the argument (or PHASE) and is given by

arg(x �iy) �tan �1 y

x

 !
: (2)

Here, u; sometimes also denoted f; corresponds to the
counterclockwise ANGLE from the POSITIVE REAL AXIS,
i.e., the value of u such that x �cos u and y �sin u:
The special kind of INVERSE TANGENT used here takes
into account the quadrant in which z lies and is
returned by the FORTRAN command ATAN2(X,Y) and
the Mathematica command ArcTan[x , y ], and is
often restricted to the range �p B u 5 p: In the
degenerate case when x � 0,

f �
�1

2 p if y B0

undefined if y �0
1
2 p if y > 0:

8><
>: (3)

From the definition of the argument,

arg(zw) �arg( zj jeiuz wj jeiuw ) �arg(ei uz eiuw )

�arg ei(uz�uw)
5 6

�arg(z) �arg(w) : (4)

Extending this procedure gives

arg(zn) �n arg(z) : (5)

The argument of a COMPLEX NUMBER is sometimes
called the PHASE.

See also AFFIX, COMPLEX NUMBER, DE MOIVRE’S

IDENTITY, EULER FORMULA, IMAGINARY PART, IN-

VERSE TANGENT, MODULUS (COMPLEX NUMBER),
PHASE, PHASOR, REAL PART
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Argument (Elliptic Integral)
Given an AMPLITUDE f in an ELLIPTIC INTEGRAL, the
argument u is defined by the relation

f�am u:

 



See also AMPLITUDE, ELLIPTIC INTEGRAL

Argument (Function)
An argument of a FUNCTION f (x1 ; . . .  ; xn) is one of the
n parameters on which the function’s value depends.
For example, the SINE sin x is a one-argument
function, the BINOMIAL COEFFICIENT

n
m

� 	
is a two-

argument function, and the HYPERGEOMETRIC FUNC-

TION 2F1(a ; b; c; z) is a four-argument function.

Argument Addition Relation
A mathematical relationship relating f (x �y) to f (x)
and f (y) :/

See also ARGUMENT MULTIPLICATION RELATION, RE-

CURRENCE RELATION, REFLECTION RELATION, TRANS-

LATION RELATION

Argument Multiplication Relation
A mathematical relationship relating f (nx) to f (x) for
INTEGER n .

See also ARGUMENT ADDITION RELATION, RECUR-

RENCE RELATION, REFLECTION RELATION, TRANSLA-

TION RELATION

Argument Principle
If f (z) is MEROMORPHIC in a region R enclosed by a
CONTOUR g ; let N be the number of COMPLEX ROOTS of
f (z) in  g; and P be the number of POLES in g ; then

N �P �
1

2pi g  g
f ?(z) dz

f (z)

Defining w �f (z) and s �f ( g) gives

N �P �
1

2 pi g  s
dw

w
:

See also CAUCHY INTEGRAL FORMULA, CAUCHY INTE-

GRAL THEOREM, HURWITZ’S ROOT THEOREM, MERO-

MORPHIC FUNCTION, POLE, ROOT, ROUCHÉ ’S

THEOREM, VARIATION OF ARGUMENT
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Argument Variation
VARIATION OF ARGUMENT

Aristotle’s Wheel Paradox

A PARADOX mentioned in the Greek work Mechanica,
dubiously attributed to Aristotle. Consider the above
diagram depicting a wheel consisting of two con-
centric CIRCLES of different DIAMETERS (a wheel
within a wheel). there is a 1:1 correspondence of
points on the large CIRCLE with points on the small
CIRCLE, so the wheel should travel the same distance
regardless of whether it is rolled from left to right on
the top straight line or on the bottom one. this seems
to imply that the two CIRCUMFERENCES of different
sized CIRCLES are equal, which is impossible.
The fallacy lies in the assumption that a 1:1 corre-
spondence of points means that two curves must have
the same length. In fact, the CARDINALITIES of points
in a LINE SEGMENT of any length (or even an INFINITE

LINE, a PLANE, a 3-D SPACE, or an infinite dimensional
EUCLIDEAN SPACE) are all the same: 1 (ALEPH-1), so
the points of any of these can be put in a ONE-TO-ONE

correspondence with those of any other.

See also ZENO’S PARADOXES
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Arithmetic
The branch of mathematics dealing with INTEGERS or,
more generally, numerical computation. Arithmetical
operations include ADDITION, CONGRUENCE calcula-
tion, DIVISION, FACTORIZATION, MULTIPLICATION,
POWER computation, ROOT EXTRACTION, and SUBTRAC-

TION. Arithmetic was part of the QUADRIVIUM taught
in medieval universities.

The FUNDAMENTAL THEOREM OF ARITHMETIC, also
called the UNIQUE FACTORIZATION THEOREM, states
that any POSITIVE INTEGER can be represented in
exactly one way as a PRODUCT of PRIMES.

The LÖWENHEIM-SKOLEM THEOREM, which is a funda-
mental result in MODEL THEORY, establishes the
existence of "nonstandard" models of arithmetic.



See also ALGEBRA, CALCULUS, FLOATING-POINT AR-

ITHMETIC, FUNDAMENTAL THEOREM OF ARITHMETIC,
GROUP THEORY, HIGHER ARITHMETIC, LINEAR ALGE-

BRA, LÖ WENHEIM-SKOLEM THEOREM, MODEL THEORY,
NUMBER THEORY, TRIGONOMETRY
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Arithmetic Function
A function c(n) such that

c(n�m)�c(c(n)�c(m))

and

c(n; m)�c(c(n)c(m)):

See also ARITHMETICAL FUNCTION
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Arithmetic Geometry
A vaguely defined branch of mathematics dealing
with VARIETIES, the MORDELL CONJECTURE, ARAKE-

LOV THEORY, and ELLIPTIC CURVES.
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Arithmetic Mean
For a CONTINUOUS DISTRIBUTION FUNCTION, the ar-
ithmetic mean of the population, denoted m; x̃; xh i; or
A(x); is given by

m� f (x)h i�g
�

��

P(x)f (x) dx; (1)

where xh i is the EXPECTATION VALUE. For a DISCRETE

DISTRIBUTION,

m� f (x)h i�
PN

n�0 P(xn)f (xn)PN
n�0 P(xn)

�
XN

n�0

P(xn)f (xn): (2)

The population mean satisfies

f (x)�g(x)h i� f (x)h i� g(x)h i (3)

cf (x)h i�c f (x)h i; (4)

and

f (x)g(y)h i� f (x)h i g(y)h i (5)

if x and y are INDEPENDENT STATISTICS. The "sample
mean," which is the mean estimated from a statistical
sample, is an UNBIASED ESTIMATOR for the population
mean.

For small samples, the mean is more efficient than
the MEDIAN and approximately p=2 less (Kenney and
Keeping 1962, p. 211). A general expression which
often holds approximately is

mean�mode:3(mean�median): (6)

Given a set of samples fxig; the arithmetic mean is

A(x)� x̃�m� xh i� 1

N

XN

i�1

xi: (7)

Hoehn and Niven (1985) show that

A(a1�c; a2�c; . . . ; an�c)

�c�A(a1; a2; . . . ; an) (8)

for any POSITIVE constant c . For positive arguments,
the arithmetic mean satisfies

A]G]H; (9)

where G is the GEOMETRIC MEAN and H is the
HARMONIC MEAN (Hardy et al. 1952; Mitrinovic
1970; Beckenbach and Bellman 1983; Bullen et al.
1988; Mitrinovic et al. 1993; Alzer 1996). This can be
shown as follows. For a; b > 0;

1ffiffiffi
a

p �
1ffiffiffi
b

p
 !2

]0 (10)

1

a
�

2ffiffiffiffiffiffi
ab

p �
1

b
]0 (11)

1

a
�

1

b
]

2ffiffiffiffiffiffi
ab

p (12)

ffiffiffiffiffiffi
ab

p
]

2
1
a
� 1

b

(13)

G]H; (14)

with equality IFF b�a . To show the second part of
the inequality,

(
ffiffiffi
a

p
�

ffiffiffi
b

p
)2�a�2

ffiffiffiffiffiffi
ab

p
�b]0 (15)

a � b

2
]

ffiffiffiffiffiffi
ab

p
(16)

A]G; (17)

with equality IFF a�b . Combining (14) and (17) then
gives (9).

 



Given n independent random GAUSSIAN DISTRIBUTED

variates xi ; each with population mean mi � m and
VARIANCE s2

i � s2 ;

x̃ � 1
N

XN

i�1

xi (18)

xh i� 1

N

XN

i�1

xi

* +
�

1

N

XN

i�1

xih i

�
1

N

XN

i�1

m �
1

N
(N m) � m; (19)

so the sample mean is an UNBIASED ESTIMATOR of
population mean. However, the distribution of x̃
depends on the sample size. For large samples, x̃ is
approximately NORMAL. For small samples, STU-

DENT’S T -DISTRIBUTION should be used.

The VARIANCE of the sample mean is independent of
the distribution.

var(x̃) �var
1

n

XN

i�1

xi

 !
�

1

N 2
var

XN

i�1

xi

 !

�
1

N 2

Xn

i�1

var(xi) �
1

N 2

 !XN

i�1

s2 �
s2

N
:

(20)

From K -STATISTIC for a GAUSSIAN DISTRIBUTION, the
UNBIASED ESTIMATOR for the VARIANCE is given by

s2 �
N

N � 1
s2 ; (21)

where

s �
1

N

XN

i�1

(xi � ̄x)2 ; (22)

so

var(x̃) �
s2

N � 1 
: (23)

The SQUARE ROOT of this,

sx �
sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p ; (24)

is called the STANDARD ERROR.

var(x̃) � x̃2
0 1

� x̃h i2 ; (25)

so

x̃2
0 1

�var(x̃) �(x̃)2 �
s2

N
� m2 : (26)

See also ARITHMETIC-GEOMETRIC MEAN, ARITHMETIC-

HARMONIC MEAN, CARLEMAN’S INEQUALITY, CUMU-

LANT, GENERALIZED MEAN, GEOMETRIC MEAN, HAR-

MONIC MEAN, HARMONIC-GEOMETRIC MEAN,
KURTOSIS, MEAN, MEAN DEVIATION, MEDIAN (STATIS-

TICS), MODE, MOMENT, QUADRATIC MEAN, ROOT-

MEAN-SQUARE, SAMPLE VARIANCE, SKEWNESS, STAN-

DARD DEVIATION, TRIMEAN, VARIANCE
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Arithmetic Progression
ARITHMETIC SEQUENCE

Arithmetic Sequence
A SEQUENCE of n numbers fd0 �kdgn �1

k �0 such that the
differences between successive terms is a constant d .

See also ARITHMETIC SERIES, BAUDET’S CONJECTURE,
NONARITHMETIC PROGRESSION SEQUENCE, SE-

QUENCE, SZEMERÉ DI’S THEOREM

Arithmetic Series
An arithmetic series is the SUM of a SEQUENCE fakg; k
� 1, 2, ..., in which each term is computed from the
previous one by adding (or subtracting) a constant d .
Therefore, for k 
 1,

ak�ak�1�d�ak�2�2d�. . .�a1�d(k�1): (1)

The sum of the sequence of the first n terms is then
given by

Sn�
Xn

k�1

ak�
Xn

k�1

[a1�(k�1)d]�na1�d
Xn

k�1

(k�1)

�na1�d
Xn

k�2

(k�1)



�na1 �d
Xn�1

k �1

k (2)

Using the SUM identity

Xn

k �1

k �1
2n(n �1) (3)

then gives

Sn �na1 �
1
2dn(n �1) �1

2n[2ai �d(n �1)] : (4)

Note, however, that

a1 �an �a1 �[a1 �d(n �1)] �2a1 �d(n �1); (5)

so

Sn �
1
2 n(a1 �an) ; (6)

or n times the AVERAGE of the first and last terms!
This is the trick Gauss used as a schoolboy to solve
the problem of summing the INTEGERS from 1 to 100
given as busy-work by his teacher. While his class-
mates toiled away doing the ADDITION longhand,
Gauss wrote a single number, the correct answer

1
2(100)(1 �100) �50 � 101 �5050 (7)

on his slate (Burton 1989, pp. 80 �/1; Hoffman 1998,
p. 207). When the answers were examined, Gauss’s
proved to be the only correct one.

See also ARITHMETIC SEQUENCE, GEOMETRIC SERIES,
HARMONIC SERIES, PRIME ARITHMETIC PROGRESSION
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Arithmetical Function
INTEGER FUNCTION

Arithmetic-Geometric Mean
The arithmetic-geometric mean (often abbreviated
AGM) M(a; b) of two numbers a and b is defined by
starting with a0�a and b0�b; then iterating

an�1�
1
2(an�bn) (1)

bn�1�
ffiffiffiffiffiffiffiffiffiffi
anbn

p
(2)

until an�bn: an and bn converge towards each other
since

an�1�bn�1�
1
2(an�bn)�

ffiffiffiffiffiffiffiffiffiffi
anbn

p
�

an � 2
ffiffiffiffiffiffiffiffiffiffi
anbn

p
� bn

2
: (3)

But
ffiffiffiffiffi
bn

p
B

ffiffiffiffiffi
an

p
; so

2bnB2
ffiffiffiffiffiffiffiffiffiffi
anbn

p
: (4)

Now, add an�bn�2
ffiffiffiffiffiffiffiffiffiffi
anbn

p
to each side

an�bn�2
ffiffiffiffiffiffiffiffiffiffi
anbn

p
Ban�bn; (5)

so

an�1�bn�1B
1
2(an�bn): (6)

The AGM is very useful in computing the values of
complete ELLIPTIC INTEGRALS and can also be used for
finding the INVERSE TANGENT. In terms of the com-
plete ELLIPTIC INTEGRAL OF THE FIRST KIND K(k);

M(a; b)�
(a � b)p

4K
a � b

a � b

 ! : (7)

The special value 1=M(1;
ffiffiffiffiffi
2)

p
is called GAUSS’S CON-

STANT.

The AGM has the properties

lM(a; b)�M(la; lb) (8)

M(a; b)�M 1
2(a�b);

ffiffiffiffiffiffi
ab

p !
(9)

M(1;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
)�M(1�x; 1�x) (10)

M(1; b)�
1 � b

2
M 1;

2
ffiffiffi
b

p

1 � b

 !
: (11)

The Legendre form is given by

M(1; x)�
Y�
n�0

1
2(1�kn); (12)

where k0�x and

kn�1�
2
ffiffiffiffiffi
kn

p
1 � kn

: (13)

Solutions to the differential equation

(x3�x)
d2y

dx2
�(3x2�1)

dy

dx
�xy�0 (14)

are given by [M(1�x; 1�x)]�1 and [M(1; x)]�1:
/

A generalization of the ARITHMETIC-GEOMETRIC MEAN

is

 



Ip(a ; b) �g
�

0

xp �2 dx

(xp � ap)1 =p(xp � bp)(p �1)=p (15)

which is related to solutions of the differential
equation

x(1 �xp)Y ƒ�[1 �(p �1)xp]Y ?�(p �1)xp �1Y �0: (16)

When p �2 or p �3, there is a modular transforma-
tion for the solutions of (16) that are bounded as x 0
0: Letting Jp(x) be one of these solutions, the
transformation takes the form

Jp(l) � mJp(x) ; (17)

where

l �
1 � u

1 � (p � 1)u 
(18)

m �
1 � (p � 1)u

p 
(19)

and

xp �up �1: (20)

The case p �2 gives the ARITHMETIC-GEOMETRIC

MEAN, and p �3 gives a cubic relative discussed by
Borwein and Borwein (1990, 1991) and Borwein
(1996) in which, for a ; b > 0 and I(a ; b) defined by

I(a ; b) �g
�

0

t dt

[(a3 � t3)(b3 � t3)2]1 =3 ; (21)

I(a; b) �I
a � 2b

3
;

b

3 
(a2 �ab �b2)

" # !
(22)

For iteration with a0 �a and b0 �b and

an �1 �
an � 2bn

3 
(23)

bn�1 �
bn

3
(a2

n �anbn �b2
n) ; (24)

lim
n0�

an � lim
n0�

bn �
I(1; 1)

I(a; b) 
: (25)

Modular transformations are known when p �4 and
p �6, but they do not give identities for p �6
(Borwein 1996).

See also ARITHMETIC-HARMONIC MEAN
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Arithmetic-Harmonic Mean
Let

an�1 �
1
2(an �bn) (1)

bn�1 �
2anbn

an � bn

: (2)

Then

A(a0 ; b0) � lim
n0�

an � lim
n 0�

bn

ffiffiffiffiffiffiffiffiffiffi
a0b0

p
; (3)

which is just the GEOMETRIC MEAN.

Arithmetic-Logarithmic-Geometric Mean
Inequality

a � b

2
>

b � a

ln b � ln a
>

ffiffiffiffiffiffi
ab

p
:

See also NAPIER’S INEQUALITY
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Armstrong Number
The n -digit numbers equal to sum of nth powers of
their digits (a finite sequence), also called plus perfect
numbers. They first few are given by 1, 2, 3, 4, 5, 6, 7,
8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, ...
(Sloane’s A005188).

See also HARSHAD NUMBER, NARCISSISTIC NUMBER
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Arnold Diffusion
The nonconservation of ADIABATIC INVARIANTS which
arises in systems with three or more DEGREES OF

FREEDOM.
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Arnold Tongue
Consider the CIRCLE MAP. If K is NONZERO, then the
motion is periodic in some FINITE region surrounding
each rational V: This execution of periodic motion in
response to an irrational forcing is known as MODE

LOCKING. If a plot is made of K versus V with the
regions of periodic MODE-LOCKED parameter space
plotted around rational V values (the WINDING NUM-

BERS), then the regions are seen to widen upward
from 0 at K � 0 to some FINITE width at K � 1. The
region surrounding each RATIONAL NUMBER is known
as an ARNOLD TONGUE.

At K � 0, the Arnold tongues are an isolated set of
MEASURE zero. At K � 1, they form a general CANTOR

SET of dimension d �0:8700 93:7 �10 �4 (Rasband
1990, p. 131). In general, an Arnold tongue is defined
as a resonance zone emanating out from RATIONAL

NUMBERS in a two-dimensional parameter space of
variables.

See also CIRCLE MAP, DEVIL’S STAIRCASE
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Arnold’s Cat Map
The best known example of an ANOSOV DIFFEOMORPH-

ISM. It is given by the TRANSFORMATION

xn �1
yn �1

 �
�

1 1
1 2

 �
xn

yn

 �
; (1)

where xn�1 and yn�1 are computed mod 1. The Arnold
cat mapping is non-Hamiltonian, nonanalytic, and
mixing. However, it is AREA-PRESERVING since the
DETERMINANT is 1. The LYAPUNOV CHARACTERISTIC

EXPONENTS are given by

j1 � s 1
1 2� s j�s2 �3s �1 �0; (2)

so

s9�1
2(3 9

ffiffiffi
5

p
) : (3)

The EIGENVECTORS are found by plugging s9 into the
MATRIX EQUATION

1 � s9 1
1 2� s9

 �
x
y

 �
�

0
0

 �
: (4)

For s�; the solution is

y �1
2(1 �

ffiffiffi
5

p
)x � fx; (5)

where f is the GOLDEN RATIO, so the unstable

(normalized) EIGENVECTOR is

j�� 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 �10

ffiffiffi
5

pq
1
2(1 �

ffiffiffi
5

p
)

1
" #

: (6)

Similarly, for s�; the solution is

y ��1
2(
ffiffiffi
5

p
�1)x � f �1x; (7)

so the stable (normalized) EIGENVECTOR is

j�� 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 �10

ffiffiffi
5

pq
1
2(1 �

ffiffiffi
5

p
)

1
" #

: (8)

See also ANOSOV MAP

Aronhold Process
The process used to generate an expression for a
covariant in the first degree of any one of the
equivalent sets of COEFFICIENTS for a curve.

See also CLEBSCH-ARONHOLD NOTATION, JOA-

CHIMSTHAL’S EQUATION
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Aronson’s Sequence
The sequence whose definition is: "t is the first,
fourth, eleventh, ... letter of this sentence." The first
few values are 1, 4, 11, 16, 24, 29, 33, 35, 39, ...
(Sloane’s A005224).
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Arrangement
In general, an arrangement of objects is simply a
grouping of them. The number of "arrangements" of n
items is given either by a COMBINATION (order is
ignored) or PERMUTATION (order is significant).

The division of SPACE into cells by a collection of
HYPERPLANES (Agarwal and Sharir 2000) is also
called an arrangement.

See also COMBINATION, CONFIGURATION, CUTTING,
HYPERPLANE, ORDERING, PERMUTATION
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Arrangement Number
PERMUTATION

Array
An array is a "list of lists" with the length of each
level of list the same. The size (sometimes called the
"shape") of a d -dimensional array is then indicated as
m �n �x � � ��p|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d

: The most common type of array

encountered is the 2-D m �n rectangular array
having m columns and n rows. If m �n , a square
array results. Sometimes, the order of the elements in
an array is significant (as in a MATRIX), whereas at
other times, arrays which are equivalent modulo
reflections (and rotations, in the case of a square
array) are considered identical (as in a MAGIC SQUARE

or PRIME ARRAY).

In order to exhaustively list the number of distinct
arrays of a given shape with each element being one
of k possible choices, the naive algorithm of running
through each case and checking to see whether it’s
equivalent to an earlier one is already just about as
efficient as can be. The running time must be at least
the number of answers, and this is so close to kmn���p

that the difference isn’t significant.

However, finding the number of possible arrays of a
given shape is much easier, and an exact formula can
be obtained using the POLYA ENUMERATION THEOREM.
For the simple case of an m � n array, even this
proves unnecessary since there are only a few
possible symmetry types, allowing the possibilities
to be counted explicitly. For example, consider the
case of m and n EVEN and distinct, so only reflections
need be included. To take a specific case, let m �6 and
n �4 so the array looks like

a b c n d e f
g h i n j k l
� � � � � � � � � � � � � � � � � � �
m n  o n p q r
s t u n v w x

where each a , b , ..., x can take a value from 1 to k .
The total number of possible arrangements is k24 (/kmn

in general). The number of arrangements which are
equivalent to their left-right mirror images is k12 (in

general, kmn=2) ; as is the number equal to their up-
down mirror images, or their rotations through 180 8.
There are also k6 arrangements (in general, kmn=4)

with full symmetry.

In general, it is therefore true that

kmn=4 with full symmetry
kmn=2 �kmn =4 with only left-right ref lection
kmn=2 �kmn =4 with only up-down ref lection
kmn=2�kmn=4 with only 180
 rotation;

8>><
>>:

so there are

kmn�3kmn=2�2kmn=4

arrangements with no symmetry. Now dividing by
the number of images of each type, the result, for
m " n with m, n EVEN, is

N(m; n; k)

� 1
4 kmn�(1

2)(3)(kmn=2�kmn=4)

�1
4(k

mn�3kmn=2�2kmn=4)

�1
4 kmn�3

4 kmn=2�1
2 kmn=4:

The number is therefore of order O(kmn=4); with
"correction" terms of much smaller order.

See also ANTIMAGIC SQUARE, EULER SQUARE, KIRK-

MAN’S SCHOOLGIRL PROBLEM, LATIN RECTANGLE,
LATIN SQUARE, MAGIC SQUARE, MATRIX, MRS. PER-

KINS’ QUILT, MULTIPLICATION TABLE, ORTHOGONAL

ARRAY, PERFECT SQUARE, PRIME ARRAY, QUOTIENT-

DIFFERENCE TABLE, ROOM SQUARE, STOLARSKY AR-

RAY, TRUTH TABLE, WYTHOFF ARRAY

Arrow Notation
A NOTATION invented by Knuth (1976) to represent
LARGE NUMBERS in which evaluation proceeds from
the right (Conway and Guy 1996, p. 60).

For example,

m�n�mn (1)

m �� n � m � � � � � m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

�mmUm|fflffl{zfflffl}
n

m��2�m�m|fflffl{zfflffl}
2

�m�m�mm (2)

m �� 3 � m � m � m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
3

�m�(m�m)

�m�mm�mmm

(3)

m���2�m��m|fflffl{zfflffl}
2

�m��m�mmUm|fflffl{zfflffl}
m

(4)

m���3�m��mm��m|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
3

�m��m�mmUm|fflffl{zfflffl}
m



�m �� � ��m|fflfflfflfflfflffl{zfflfflfflfflfflffl}� mmUm|fflffl{zfflffl}
mmUm|fflffl{zfflffl}

m

mmUm|fflffl{zfflffl}
m

(5)

/m �� m/ is sometimes called a POWER TOWER. The
values n � � � ��n|fflfflfflfflffl{zfflfflfflfflffl}

n

are called ACKERMANN NUMBERS.

See also ACKERMANN NUMBER, CHAINED ARROW

NOTATION, DOWN ARROW NOTATION, LARGE NUMBER,
POWER TOWER, STEINHAUS-MOSER NOTATION
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Arrow’s Paradox
Perfect democratic VOTING is, not just in practice but
in principle, impossible.

See also SOCIAL CHOICE THEORY, VOTING
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Arrowhead Curve
SIERPINSKI ARROWHEAD CURVE

Arsh

Arsh z �
1

i
sin �1(iz) ;

where sin �1 z the INVERSE SINE.

See also ARCH, ARCTH, ARTH, INVERSE SINE
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Art Gallery Theorem
Also called Chvátal’s art gallery theorem. If the walls
of an art gallery are made up of n straight LINE

SEGMENTS, then the entire gallery can always be
supervised by n=3b c watchmen placed in corners,
where xb c is the FLOOR FUNCTION. This theorem was
proved by Chvátal (1975). It was conjectured that an
art gallery with n walls and h HOLES requires

(n �h) =3b c watchmen, which has now been proven
by Bjorling-Sachs and Souvaine (1991, 1995) and
Hoffman et al. (1991).

See also ILLUMINATION PROBLEM, TRIANGULATION,
VORONOI DIAGRAM
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Arth

Arth z�
1

i
tan�1(iz):

where tan�1 z is the INVERSE TANGENT.

See also ARCH, ARSH, ARCTH, INVERSE TANGENT
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Articulation Vertex
An articulation of a CONNECTED GRAPH is a node
whose removal will disconnect the graph (Chartrand
1985). In general, an articulation vertex is node of a
GRAPH whose removal increases the number of com-
ponents (Harary 1994, p. 26). Articulation vertices
are also called cut-vertices or "cutpoints" (Harary
1994, p. 26).

A GRAPH with no articulation vertices is called a
BICONNECTED GRAPH.

See also BICONNECTED GRAPH, BLOCK, BRIDGE, CUT

SET, NONSEPARABLE GRAPH, VERTEX (GRAPH)
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Artin Braid Group
BRAID GROUP

Artin L-Function
An Artin L -function over the RATIONALS Q encodes in
a GENERATING FUNCTION information about how an
irreducible MONIC POLYNOMIAL over factors when
reduced modulo each PRIME. For the POLYNOMIAL

x2 �1; the Artin L -function is

L(s ; Q(i)=Q ; sgn) �
Y

p odd prime

1

1 �
�1

p

 !
p �s

;

where (�1 =p) is a LEGENDRE SYMBOL, which is
equivalent to the EULER L -FUNCTION. The definition
over arbitrary POLYNOMIALS generalizes the above
expression.

See also LANGLANDS RECIPROCITY
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Artin Reciprocity
ARTIN’S RECIPROCITY THEOREM

Artin’s Conjecture
There are at least two statements which go by the
name of Artin’s conjecture. The first is the RIEMANN

HYPOTHESIS.

The second states that every INTEGER not equal to �1
or a SQUARE NUMBER is a primitive root modulo p for
infinitely many p and proposes a density for the set of
such p which are always rational multiples of a
constant known as ARTIN’S CONSTANT. There is an
analogous theorem for functions instead of numbers
which has been proved by Billharz (Shanks 1993,
p. 147).

See also ARTIN’S CONSTANT, RIEMANN HYPOTHESIS
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Artin’s Constant
If n"�1 and n is not a PERFECT SQUARE, then Artin
conjectured that the SET S(n) of all PRIMES for which
n is a PRIMITIVE ROOT is infinite. Under the assump-
tion of the EXTENDED RIEMANN HYPOTHESIS, Artin’s
conjecture was solved by Hooley (1967).

If, in addition, n is not an r th POWER for any r 
1
then let n? be the SQUAREFREE PART of n and suppose
that n?�=1 (mod 4). Then Artin conjectured that the
density of S(n) relative to the PRIMES is given by
CArtin; where

CArtin�
Y�
k�1

1�
1

pk(pk � 1)

" #
�0:3739558136 . . . ; (1)

and pk is the kth PRIME, independently of the choice of
n .

/CArtin is connected with the PRIME ZETA FUNCTION P(n)
by

ln CArtin��
X�
n�2

(un � 1)P(n)

n
; (2)

where

un�un�1�un�2 (3)

with u1�1; u2�3 (Ribenboim 1998, Gourdon and
Sebah). Wrench (1961) gave 45 digits of CArtin; and
Gourdon and Sebah give 60.

If n?�1 (mod 4) and n is still restricted not to be an
rth power, then the density is not CArtin itself, but a
rational multiple thereof. The explicit formula for
computing the density in this case is conjectured to be

C?Artin� 1�m(n?)
Y

prime q

q j n?

1

q2 � q � 1

2
64

3
75CArtin (4)

(Finch, Matthews 1976), where m(n) is the MÖBIUS



FUNCTION. Special cases can be written down expli-
citly for n?�p a PRIME,

C?Artin � 1 �
1

p2 � p � 1

 !
CArtin (5)

or n?�pq ; where p, q are both PRIMES with u; v �
1 (mod 4);

C?Artin � 1 �
1

p2 � p � 1

1

q2 � q � 1

 !
CArtin ; (6)

If n is a perfect cube (which is not a perfect square), a
perfect fifth power (which is not a perfect square or
perfect cube), etc., other formulas apply (Hooley 1967,
Western and Miller 1968).

The significance of Artin’s constant is more easily
seen by describing it as the fraction of PRIMES p for
which 1=p has a maximal DECIMAL EXPANSION, i.e., p
is a FULL REPTEND PRIME, (Conway and Guy 1996).

See also ARTIN’S CONJECTURE, DECIMAL EXPANSION,
FULL REPTEND PRIME, PRIMITIVE ROOT, STEPHENS’

CONSTANT
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Artin’s Reciprocity Theorem
A general RECIPROCITY THEOREM for all orders which
covered all other known reciprocity theorems when
proved by E. Artin in 1927. If R is a NUMBER FIELD

and R? a finite integral extension, then there is a
SURJECTION from the group of fractional IDEALS prime
to the discriminant, given by the Artin symbol. For
some cycle c , the kernel of this SURJECTION contains
each PRINCIPAL fractional IDEAL generated by an
element congruent to 1 mod c .

See also LANGLANDS PROGRAM

Artinian Group
A GROUP in which any decreasing CHAIN of distinct
SUBGROUPS terminates after a FINITE number.

Artinian Ring
A noncommutative SEMISIMPLE RING satisfying the
"descending chain condition."

See also GORENSTEIN RING, SEMISIMPLE RING
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Artistic Sequence
A SERIES is called artistic if every three consecutive
terms have a common three-way ratio

P[ai ; ai�1 ; ai�2] �
(ai � ai�1 � ai�2)ai �1

aiai�2

:

A SERIES is also artistic IFF its BIAS is a constant. A
GEOMETRIC SERIES with RATIO r 
 0 is an artistic
series with

P�1
r
�1�r]3:

See also BIAS (SERIES), GEOMETRIC SERIES, MELODIC

SEQUENCE

References
Duffin, R. J. "On Seeing Progressions of Constant Cross

Ratio." Amer. Math. Monthly 100, 38�/7, 1993.

 



ASA Theorem

Specifying two adjacent ANGLES A and B and the side
between them c uniquely determines a TRIANGLE

with AREA

K �
c2

2 (cot A � cot B) 
(1)

The angle C is given in terms of A and B by

C � p �A �B ; (2)

and the sides a and b can be determined by using the
LAW OF SINES

a

sin A 
�

b

sin B 
�

c

sin C 
(3)

to obtain

a �
sin A

sin( p � A � B)
c (4)

b �
sin B

sin( p � A � B)
c : (5)

See also AAA THEOREM, AAS THEOREM, ASS THEO-

REM, SAS THEOREM, SSS THEOREM, TRIANGLE

Aschbacher’s Component Theorem
Suppose that E(G) (the commuting product of all
components of G ) is SIMPLE and G contains a
semisimple INVOLUTION. Then there is some semi-
simple INVOLUTION x such that CG(x) has a NORMAL

SUBGROUP K which is either QUASISIMPLE or ISO-

MORPHIC to O �(4; q) ? and such that Q �CG(K) is
TIGHTLY EMBEDDED.

See also INVOLUTION (GROUP), ISOMORPHIC GROUPS,
NORMAL SUBGROUP, QUASISIMPLE GROUP, SIMPLE

GROUP, TIGHTLY EMBEDDED

A-Sequence
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

An INFINITE SEQUENCE of POSITIVE INTEGERS aiS
satisfying

1 5a1 Ba2 Ba3 B. . . (1)

is an A -sequence if no ak is the SUM of two or more
distinct earlier terms (Guy 1994). Such sequences are
sometimes also known as sum-free sets.

Erdos (1962) proved

S(A) � sup
all A sequences

X�
k �1

1

ak

B103: (2)

Any A -sequence satisfies the CHI INEQUALITY (Levine
and O’Sullivan 1977), which gives S(A) B3:9998:
Abbott (1987) and Zhang (1992) have given a bound
from below, so the best result to date is

2:0649 BS(A) B3 :9998: (3)

Levine and O’Sullivan (1977) conjectured that the
sum of RECIPROCALS of an A -sequence satisfies

S(A) 5
X�
k �1

1

xk

�3 :01 . . . ; (4)

where xi are given by the LEVINE-O’SULLIVAN GREEDY

ALGORITHM.

See also B2-SEQUENCE, MIAN-CHOWLA SEQUENCE,
SUM-FREE SET
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ASS Theorem

Specifying two adjacent side lengths a and c of a
TRIANGLE (with a Bc ) and one ACUTE ANGLE A
opposite a does not, in general, uniquely determine
a triangle. If sin A Ba=c ; there are two possible
TRIANGLES satisfying the given conditions. If sin A �
a =c; there is one possible TRIANGLE. If sin A > a=c;
there are no possible TRIANGLES. Remember: don’t try
to prove congruence with the ASS theorem or you will
make an ASS out of yourself.

See also AAA THEOREM, AAS THEOREM, SAS THEO-

REM, SSS THEOREM, TRIANGLE

Associate
Let p be an ODD PRIME, a a positive number such that
p ½a (i.e., p does not DIVIDE a ), and let x be one of the
numbers 1, 2, 3, ..., p�1: Then there is a unique x?;



called the associate of x , such that

xx ?�a (mod p)

with 0 Bx?Bp (Hardy and Wright 1979, p. 67). If x?�
x; then a is called a QUADRATIC RESIDUE of p .

See also QUADRATIC RESIDUE
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Associated Fiber Bundle
Given a GROUP ACTION G �F 0 F and a PRINCIPAL

BUNDLE p : A 0 M ; the associated fiber bundle on M
is

p̃ : A �F =G 0 M : (1)

In particular, it is the QUOTIENT SPACE A �F =G
where (a ; x) �(ga; g �1x) ::/

For example, the torus T �f(eis ; eit) has a S1 action
given by

f(eiu)(eis ; eit) �(ei(s� u) ; ei(t� u)) (2)

and the frame bundle on the sphere,

p : SO(3) 0 S2 ; (3)

is a principal S1 bundle. The associated fiber bundle
is a fiber bundle on the sphere, with fiber the torus. It
is an example of a four-dimensional MANIFOLD.

See also BUNDLE, FIBER BUNDLE, GROUP ACTION,
PRINCIPAL BUNDLE, QUOTIENT SPACE

Associated Laguerre Polynomial
LAGUERRE POLYNOMIAL

Associated Legendre Polynomial
LEGENDRE POLYNOMIAL

Associated Principal Bundle

See also BUNDLE

Associated Sequence
A SHEFFER SEQUENCE for (1; f (t)) is called the
associated sequence for f (t) ; and a sequence sn(x) of
polynomials satisfying the orthogonality conditions

[f (t)]k ½sn(x)
D E

�n!dnk ;

where dnk is the DELTA FUNCTION, is said to be
associated to f (t) :/

See also SHEFFER SEQUENCE
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Associated Stirling Number of the First
Kind
STIRLING NUMBER OF THE FIRST KIND

Associated Triangles

The three CIRCULAR TRIANGLES A?B?C ?; AB ?C ?; A?BC ?;
and A?B ?C obtained by extending the arcs of a
CIRCULAR TRIANGLE ABC into complete circles.

See also CIRCULAR TRIANGLE
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Associated Vector Bundle
Given a PRINCIPAL BUNDLE p : A 0 M; with fiber a
LIE GROUP G and BASE MANIFOLD M , and a REPRE-

SENTATION of G , say f : G�V 0 V; then the asso-
ciated vector bundle is

p̃ : A�V=G 0 M: (1)

In particular, it is the QUOTIENT SPACE A�V=G
where (a; v)�(ga; g�1v):/

This construction has many uses. For instance, any
REPRESENTATION of the ORTHOGONAL GROUP gives rise
to a BUNDLE of TENSORS on a RIEMANNIAN MANIFOLD

as the vector bundle associated to the FRAME BUNDLE.

For example, p : SO(3) 0 S2 is the frame bundle on
S2; where

p

w1

w2

w3

2
664

3
775

0
BB@

1
CCA�w1; (2)

writing the special orthogonal matrix with rows wi: It
is a SO(2) bundle with the action defined by

 



cos u �sin u
sin u cos u

 �
� A �

1 0  0
0 cos u �sin u
0 sin u cos u

2
4

3
5A; (3)

which preserves the map p:/

The TANGENT BUNDLE is the associated vector bundle
with the standard REPRESENTATION of SO(2) on V �
R2; given by pairs (v, A ), with v � (a; b) � R2 and A �
SO(3) : Two pairs (v1 ; A1) and (v2 ; A2) represent the
same tangent vector IFF there is a g � SO(2) such that
v2 �gv1 and A1 �g � A2 :/

See also ASSOCIATED FIBER BUNDLE, FRAME BUNDLE,
GROUP ACTION, LIE GROUP, PRINCIPAL BUNDLE,
REPRESENTATION, QUOTIENT SPACE

Associative
Three elements x , y and z of a set S are said to be
associative under a binary operation � if they satisfy

x�(y�z) �(x�y) �z :

Real numbers are associative under addition

x �(y �z) �(x �y) �z

and multiplication

x �(y � z) �(x � y) � z:

See also ASSOCIATIVE ALGEBRA, COMMUTATIVE, DIS-

TRIBUTIVE, TRANSITIVE

Associative Algebra
In simple terms, let x , y , and z be members of an
ALGEBRA. Then the ALGEBRA is said to be associative if

x � (y � z) �(x � y) � z ; (1)

where � denotes MULTIPLICATION. More formally, let
A denote an R/-algebra, so that A is a VECTOR SPACE

over R and

A �A 0 A (2)

(x; y) 0 x � y: (3)

Then A is said to be m -associative if there exists an
m -dimensional SUBSPACE S of A such that

(y � x) � z �y �(x � z) (4)

for all y; z � A and x � S : Here, VECTOR MULTIPLICA-

TION x � y is assumed to be BILINEAR. An n -dimen-
sional n -associative ALGEBRA is simply said to be
"associative."

See also ASSOCIATIVE
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Associative Magic Square

An n �n MAGIC SQUARE for which every pair of
numbers symmetrically opposite the center sum to
n2 �1: The LO SHU is associative but not PANMAGIC.
Order four squares can be PANMAGIC or associative,
but not both. Order five squares are the smallest
which can be both associative and PANMAGIC, and 16
distinct associative PANMAGIC SQUARES exist, one of
which is illustrated above (Gardner 1988).

See also MAGIC SQUARE, PANMAGIC SQUARE
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Associator
For an ALGEBRA A , the associator is the trilinear map
A �A �A 0 A given by

(x; y; z) �(xy)z �x(yz) :

The associator is identically zero IFF A is associative.

See also ALTERNATIVE ALGEBRA, COMMUTATOR,
POWER ASSOCIATIVE ALGEBRA
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Asterisk
STAR



Astroid

A 4-cusped HYPOCYCLOID which is sometimes also
called a TETRACUSPID, CUBOCYCLOID, or PARACYCLE.
The PARAMETRIC EQUATIONS of the astroid can be
obtained by plugging in n�a=b�4 or 4=3 into the
equations for a general HYPOCYCLOID, giving

x�3b cos f�b cos(3f)�4b cos3 f�a cos3 f (1)

y�3b sin f�b sin(3f)�4b sin3 f�a sin3 f: (2)

In CARTESIAN COORDINATES,

x2=3�y2=3�a2=3: (3)

In PEDAL COORDINATES with the PEDAL POINT at the
center, the equation is

r2�3p2�a2 (4)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s(t)�3
2 g

t

0

½sin(2t?)j dt?�3
2 sin2 t (5)

k(t)��2
3 csc(2t) (6)

f(t)��t: (7)

As usual, care must be taken in the evaluation of s(t)
for t > p=2: Since (5) comes from an integral involving
the ABSOLUTE VALUE of a function, it must be
monotonic increasing. Each QUADRANT can be treated
correctly by defining

n�
2t

p

" #
�1; (8)

where xb c is the FLOOR FUNCTION, giving the formula

s(t)�(�1)�1[n(mod 2)]3
2 sin2 t�3[1

2 n]: (9)

The overall ARC LENGTH of the astroid can be

computed from the general HYPOCYCLOID formula

sn�
Sa(n � 1)

n
(10)

with n � 4,

s4�6a: (11)

The AREA is given by

An�
(n � 1)(n � 2)

n2
pa2 (12)

with n � 4,

A4�
3
8 pa2: (13)

The EVOLUTE of an ELLIPSE is a stretched HYPOCY-

CLOID. The gradient of the TANGENT T from the point
with parameter p is �tan p: The equation of this
TANGENT T is

x sin p�y cos p�1
2 a sin(2p) (14)

(MacTutor Archive). Let T cut the X -AXIS and the Y -

AXIS at X and Y , respectively. Then the length XY is a
constant and is equal to a .

The astroid can also be formed as the ENVELOPE

produced when a LINE SEGMENT is moved with each
end on one of a pair of PERPENDICULAR axes (e.g., it is
the curve enveloped by a ladder sliding against a wall
or a garage door with the top corner moving along a
vertical track; left figure above). The astroid is
therefore a GLISSETTE. To see this, note that for a
ladder of length L , the points of contact with the wall
and floor are (x0; 0) and (0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2�x2

0

p
); respectively.

The equation of the LINE made by the ladder with its
foot at (x0; 0) is therefore

y�0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

0

p
�x0

(x�x0) (15)

which can be written

U(x; y; x0)�y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

0

p
x0

(x�x0): (16)

The equation of the ENVELOPE is given by the
simultaneous solution of

 



U(x; y; x0) �y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

0

p
x0

(x �x0) �0

@U

@x0

�
x2

0 � L2x

x2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

0

p �0;

8>>><
>>>: (17)

which is

x �
x3

0

L2 
(18)

y �
(L2 � x2

0)3 =2

L2 
(19)

Noting that

x2=3 �
x2

0

L4 =3 
(20)

y2 =3 �
L2 � x2

0

L4 =3 
(21)

allows this to be written implicitly as

x2 =3 �y2=3 �L2 =3 ; (22)

the equation of the astroid, as promised.

The related problem obtained by having the "garage
door" of length L with an "extension" of length DL
move up and down a slotted track also gives a
surprising answer. In this case, the position of the
"extended" end for the foot of the door at horizontal
position x0 and ANGLE u is given by

x ��DL cos u (23)

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 �x2

0

q
�DL sin u: (24)

Using

x0 �L cos u (25)

then gives

x ��
DL

L
x0 (26)

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 �x2

0

q
1 �

DL

L

 !
(27)

Solving (26) for x0 ; plugging into (27) and squaring
then gives

y2 �L2 �
L2x2

( DL)2 1 �
DL

L

 !2

: (28)

Rearranging produces the equation

x2

( DL)2 �
y2

(L � DL)2 �1 ; (29)

the equation of a (QUADRANT of an) ELLIPSE with
SEMIMAJOR and SEMIMINOR AXES of lengths dl and
l�dl:/

the astroid is also the ENVELOPE of the family of
ELLIPSES

x2

c2
�

y2

(1 � c)2�1�0; (30)

illustrated above (Wells 1991).

See also DELTOID, ELLIPSE ENVELOPE, LAMÉ CURVE,
NEPHROID, RANUNCULOID
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Astroid Evolute

A HYPOCYCLOID EVOLUTE for n �4 is another ASTROID

scaled by a factor n=(n �2) �4=2 �2 and rotated
1=(2 � 4) �1=8 of a turn.

Astroid Involute

A HYPOCYCLOID INVOLUTE for n �4 is another ASTRO-

ID scaled by a factor (n �2)=n �2 =4 �1=2 and rotated
1=(2 � 4) �1=8 of a turn.

Astroid Pedal Curve

The PEDAL CURVE of an ASTROID with PEDAL POINT at
the center is a QUADRIFOLIUM.

Astroid Radial Curve

The QUADRIFOLIUM

x �x0 �3a cos t �3a cos(3t)

y �y0 �3a sin t �3 sin(3t):

Astroidal Ellipsoid
The surface which is the inverse of the ELLIPSOID in
the sense that it "goes in" where the ELLIPSOID "goes
out." It is given by the PARAMETRIC EQUATIONS

x �(a cos u cos v)3

y �(b sin u cos v)3

z � (c sin v)3

for u � [ �p=2 ; p=2] and v � [ �p; p] : The special case
a � b � c � 1 corresponds to the HYPERBOLIC OCTA-

HEDRON.

See also ELLIPSOID, HYPERBOLIC OCTAHEDRON
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Asymptosy
ASYMPTOTIC behavior. A useful yet endangered word,
found rarely outside the captivity of the Oxford
English Dictionary.

See also ASYMPTOTE, ASYMPTOTIC

Asymptote

A curve approaching a given curve arbitrarily closely,
as illustrated in the above diagram.

See also ASYMPTOSY, ASYMPTOTIC, ASYMPTOTIC

CURVE
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Asymptotic
Approaching a value or curve arbitrarily closely (i.e.,
as some sort of LIMIT is taken). A CURVE A which is
asymptotic to given CURVE C is called the ASYMPTOTE

 



of C . Hardy and Wright (1979, p. 7) use the symbol 7
to denote that one quantity is asymptotic to another.
If f 7 f; then Hardy and Wright say that f and f are
of the same ORDER OF MAGNITUDE.

See also ASYMPTOSY, ASYMPTOTE, ASYMPTOTIC

CURVE, ASYMPTOTIC DIRECTION, ASYMPTOTIC NOTA-

TION, ASYMPTOTIC SERIES, LANDAU SYMBOL, LIMIT,
ORDER OF MAGNITUDE
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Asymptotic Curve
Given a REGULAR SURFACE M , an asymptotic curve is
formally defined as a curve x(t) on M such that the
NORMAL CURVATURE is 0 in the direction x?(t) for all t
in the domain of x. The differential equation for the
parametric representation of an asymptotic curve is

eu ?2 �2fu ?v?�gv ?2 �0; (1)

where e , f , and g are coefficients of the SECOND

FUNDAMENTAL FORM. The differential equation for
asymptotic curves on a MONGE PATCH (u; v; h(u; v))
is

huuu?2 �2huuu ?v ?�hvvv?
2 �0 ; (2)

and on a polar patch (r cos u; r sin u; h(r)) is

hƒ(r)r ?2 �h?(r)ru ?2 �0: (3)

The images below show asymptotic curves for the
ELLIPTIC HELICOID, FUNNEL, HYPERBOLIC PARABO-

LOID, and MONKEY SADDLE.

See also RULED SURFACE
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Asymptotic Direction
An asymptotic direction at a point p of a REGULAR

SURFACE M �R3 is a direction in which the NORMAL

CURVATURE of M vanishes.

1. There are no asymptotic directions at an
ELLIPTIC POINT.
2. There are exactly two asymptotic directions at a
HYPERBOLIC POINT.
3. There is exactly one asymptotic direction at a
PARABOLIC POINT.
4. Every direction is asymptotic at a PLANAR POINT.

See also ASYMPTOTIC CURVE
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Asymptotic Equipartition Property
This entry contributed by ERIK G. MILLER

A theorem from INFORMATION THEORY that is a simple
consequence of the WEAK LAW OF LARGE NUMBERS. It
states that if a set of values X1 ; X2/, ..., Xn is drawn
independently from a random variable X distributed
according to P(x) then the joint probability
P(X1 ; . . . ; Xn) satisfies

�
1

n
ln P(X1 ; X2 ; . . . ; Xn) 0 H(X) ;

where H(X) is the ENTROPY of the random variable X .

See also ENTROPY
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Asymptotic Expansion
ASYMPTOTIC SERIES

Asymptotic Notation
Let n be a integer variable which tends to infinity and
let x be a continuous variable tending to some limit.
Also, let f(n) or f(x) be a positive function and f (n) or
f (x) any function. Then Hardy and Wright (1979)
define

1. f �O( f) to mean that ½f ½BAf for some constant
A and all values of n and x ,
2. f �o(f) to mean that f =f 0 0 ;/
3. f � f to mean that f =f 0 1;/
4. f ) f to mean the same as f �o( f) ;/
5. f ) f to mean f = f 0 �; and
6. f 7f to mean A1 f Bf BA2 f for some positive
constants A1 and A2 :/

/f �o( f) implies and is stronger than f �O( f) :/

The term LANDAU SYMBOL is sometimes used to
indicate the notation o(f); and in general, O(x) and
o(x) are read as "is of order x ."

See also LANDAU SYMBOL
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Asymptotic Series
An asymptotic series is a SERIES EXPANSION of a
FUNCTION in a variable x which may converge or
diverge (Erdélyi 1987, p. 1), but whose partial sums
can be made an arbitrarily good approximation to a
given function for large enough x . To form an
asymptotic series R(x) of

f (x) �R(x); (1)

take

xnRn xð Þ�xn[f (x) �Sn(x)] ; (2)

where

Sn xð Þ�a0 �
a1

x
�

a2

x2 
�� � ��an

xn 
: (3)

The asymptotic series is defined to have the proper-
ties

lim
x0�

xnRn(x) �0 for fixed n (4)

lim
x0�

xnRn(x) �� for fixed x (5)

Therefore,

f (x) :
X�
n�0

anx �n (6)

in the limit x 0 �: If a function has an asymptotic
expansion, the expansion is unique. The symbol � is
also used to mean directly SIMILAR.

See also HYPERASYMPTOTIC SERIES, SUPERASYMPTO-

TIC SERIES
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Atiyah-Singer Index Theorem
A theorem which states that the analytic and topolo-
gical "indices" are equal for any elliptic differential
operator on an n -D COMPACT DIFFERENTIABLE C �

boundaryless MANIFOLD.

See also COMPACT MANIFOLD, DIFFERENTIABLE MANI-

FOLD
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Atkin-Goldwasser-Kilian-Morain
Certificate
A recursive PRIMALITY CERTIFICATE for a PRIME p . The
certificate consists of a list of

1. A point on an ELLIPTIC CURVE C

y2 �x3 �g2x �g3 (mod p)

for some numbers g2 and g3 :/
2. A PRIME q with q > (p1 =4 �1)2; such that for
some other number k and m � kq with k " 1;
mC(x; y; g2 ; g3 ; p) is the identity on the curve, but
kC(x; y; g2 ; g3 ; p) is not the identity. This guar-
antees PRIMALITY of p by a theorem of Goldwasser
and Kilian (1986).
3. Each q has its recursive certificate following it.
So if the smallest q is known to be PRIME, all the
numbers are certified PRIME up the chain.

A PRATT CERTIFICATE is quicker to generate for small
numbers. The Mathematica task ProvablePri-
meQ[n ] in the Mathematica add-on package Num-
berTheory‘PrimeQ‘ (which can be loaded with the
command BBNumberTheory‘) therefore generates
an Atkin-Goldwasser-Kilian-Morain certificate only
for numbers above a certain limit (1010 by default),
and a PRATT CERTIFICATE for smaller numbers.

See also ELLIPTIC CURVE PRIMALITY PROVING, ELLIP-

TIC PSEUDOPRIME, PRATT CERTIFICATE, PRIMALITY

CERTIFICATE, WITNESS
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Atlas
An atlas is a collection of consistent COORDINATE

CHARTS on a MANIFOLD, where "consistent" most
commonly means that the TRANSITION FUNCTIONS of
the charts are SMOOTH. As the name suggests, an
atlas corresponds to a collection of maps, each of
which shows a piece of a MANIFOLD and looks like flat
two-dimensional Euclidean space. To use an atlas,
one needs to know how the maps overlap. To be
useful, the maps must not be too different on these
overlapping areas.

The overlapping maps from one chart to another are
called transition functions. They represent the tran-
sition from one chart’s point of view to that of
another. Let the open unit ball in Rn be denoted B1 :
Then if f : U 0 B1 and c : V 0 B1 are two coordinate
charts, the composition f(c �1 is a function defined
on c(U S V) : That is, it is a function from an open
subset of B1 to B1 ; and given such a function from Rn

to Rn ; there are conditions for it to be smooth or have
k smooth derivatives (i.e., it is a C -K FUNCTION).
Furthermore, when R2n is isomorphic to Cn (in the
even DIMENSIONAL case), a function can be HOLO-

MORPHIC.

A smooth atlas has transition functions that are C -

INFINITY smooth (i.e., infinitely differentiable). The
consequence is that a smooth function on one chart is
smooth in any other chart (by the CHAIN RULE for
higher derivatives). Similarly, one could have an
atlas in class Ck; where the transition functions are
in class C -K .

In the even-dimensional case, one may ask whether
the transition functions are HOLOMORPHIC. In this
case, one has a holomorphic atlas, and by the chain
rule, it makes sense to ask if a function on the
manifold is holomorphic.

It is possible for two atlases to be compatible, mean-
ing the union is also an atlas. By ZORN’S LEMMA, there
always exists a maximal atlas, where a maximal atlas
is an atlas not contained in any other atlas. However,
in typical applications, it is not necessary to use a

maximal atlas and any sufficiently refined atlas will
do.

See also COORDINATE CHART, HOLOMORPHIC FUNC-

TION, MANIFOLD, SMOOTH FUNCTION, TRANSITION

FUNCTION, ZORN’S LEMMA

Atom
ATOMIC STATEMENT, URELEMENT

Atomic Statement
In LOGIC, a statement which cannot be broken down
into smaller statements.

Attraction Basin
BASIN OF ATTRACTION

Attractor
An attractor is a SET of states (points in the PHASE

SPACE), invariant under the dynamics, towards which
neighboring states in a given BASIN OF ATTRACTION

asymptotically approach in the course of dynamic
evolution. An attractor is defined as the smallest unit
which cannot be itself decomposed into two or more
attractors with distinct BASINS OF ATTRACTION. This
restriction is necessary since a DYNAMICAL SYSTEM

may have multiple attractors, each with its own
BASIN OF ATTRACTION.

Conservative systems do not have attractors, since
the motion is periodic. For dissipative DYNAMICAL

SYSTEMS, however, volumes shrink exponentially so
attractors have 0 volume in n -D phase space.

A stable FIXED POINT surrounded by a dissipative
region is an attractor known as a SINK. Regular
attractors (corresponding to 0 LYAPUNOV CHARACTER-

ISTIC EXPONENTS) act as LIMIT CYCLES, in which
trajectories circle around a limiting trajectory which
they asymptotically approach, but never reach.
STRANGE ATTRACTORS are bounded regions of PHASE

SPACE (corresponding to POSITIVE LYAPUNOV CHARAC-

TERISTIC EXPONENTS) having zero MEASURE in the
embedding PHASE SPACE and a FRACTAL DIMENSION.
Trajectories within a STRANGE ATTRACTOR appear to
skip around randomly.

See also BARNSLEY’S FERN, BASIN OF ATTRACTION,
CHAOS GAME, FRACTAL DIMENSION, LIMIT CYCLE,
LYAPUNOV CHARACTERISTIC EXPONENT, MEASURE,
SINK (MAP), STRANGE ATTRACTOR

Aubel’s Theorem
VON AUBEL’S THEOREM

Auction
A type of sale in which members of a group of buyers
offer ever increasing amounts. The bidder making the



last bid (for which no higher bid is subsequently made
within a specified time limit: "going once, going twice,
sold") must then purchase the item in question at this
price. Variants of simple bidding are also possible, as
in a VICKREY AUCTION.

See also VICKREY AUCTION

Augend
The first of several ADDENDS, or "the one to which the
others are added," is sometimes called the augend.
Therefore, while a , b , and c are ADDENDS in a � b �
c ; a is the augend.

See also ADDEND, ADDITION

Augmented Amicable Pair
A PAIR of numbers m and n such that

s(m) � s(n) � m � n � 1;

where s(m) is the DIVISOR FUNCTION. Beck and Najar
(1977) found 11 augmented amicable pairs.

See also AMICABLE PAIR, DIVISOR FUNCTION, QUASIA-

MICABLE PAIR
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Augmented Dodecahedron

JOHNSON SOLID J58:/
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Augmented Hexagonal Prism

JOHNSON SOLID J54:/
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Augmented Pentagonal Prism

JOHNSON SOLID J52:/
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Augmented Polyhedron
A UNIFORM POLYHEDRON with one or more other
solids adjoined.

Augmented Sphenocorona

JOHNSON SOLID J87:/
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Augmented Triangular Prism

JOHNSON SOLID J49:/
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Augmented Tridiminished Icosahedron

JOHNSON SOLID J64:/
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Augmented Truncated Cube

JOHNSON SOLID J66:/
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Augmented Truncated Dodecahedron

JOHNSON SOLID J68:/
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Augmented Truncated Tetrahedron

JOHNSON SOLID J65:/
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Augmenting Path
A path constructed by repeatedly finding a path of
positive capacity from a source to a sink and then
adding it to the flow (Skiena 1990, p. 237).

See also BERGE’S THEOREM
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Aureum Theorema
Gauss’s name for the QUADRATIC RECIPROCITY THEO-

REM.

Aurifeuillean Factorization
A factorization OF THE FORM

24n �2 �1 �(22n�1 �2n �1 �1)(22n�1 �2n �1 �1): (1)

The factorization for n �14 was discovered by Aur-
ifeuille, and the general form was subsequently
discovered by Lucas. The large factors are sometimes
written as L and M as follows

24k �2 �1 �(22k �1 �2k �1)(22k �1 �2k �1) (2)

36k�3 �1 �(32k �1 �1)(32k �1 �3k �1)

 (32k �1 �3k �1); (3)

which can be written

22h �1 �L2hM2h (4)

33h �1 �(3h �1)L3hM3h (5)

55k �1 �(5h �1)L5hM5h ; (6)

where h �2k �1 and

L2h ; M2h �2h �1 �2k (7)

L3h ; M3h �3h �1 �3k (8)

L5h ; M5h �52h �3 � 5h �1 �5k(5k �1): (9)

See also GAUSS’S CYCLOTOMIC FORMULA
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Ausdehnungslehre
EXTERIOR ALGEBRA

Aut
"Aut" is the term applied in PROPOSITIONAL CALCULUS

to the XOR connective. "Aut" is Latin form for "either/
or (but not both)," e.g., "Aut Caesar aut nihil" (Cesare
Borgia; 1476 �/507).

The symbol Aut is also commonly used for the
completely different purpose of denoting an AUTO-

MORPHISM.

See also AUTOMORPHISM, XOR
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Authalic Latitude
An AUXILIARY LATITUDE which gives a SPHERE equal
SURFACE AREA relative to an ELLIPSOID. The authalic
latitude is defined by

b�sin�1 q

qp

 !
; (1)

where

q�(1�e2)
sin f

1 � e2 sin2 f
�

1

2e
ln

1 � e sin f

1 � e sin f

 !" #
(2)

and qp is q evaluated at the north pole (/f�90
): Let
Rq be the RADIUS of the SPHERE having the same
SURFACE AREA as the ELLIPSOID, then

Rq�a

ffiffiffiffiffi
qp

2

s
: (3)

The series for b is

b�f�(1
3 e2� 31

180 e4� 59
560 e6�. . .) sin(f)

�( 17
360 e4� 61

1260 e6�. . .) sin(4f)

�( 383
45360 e6�. . .) sin(6f)�. . . : (4)

The inverse FORMULA is found from

 



Df �
(1 � e2 sin2 f)2

2 cos f

 q

1 � e2 
�

sin f

1 � e2 sin2 f 
�

1

2e
ln

1 � e sin f

1 � e sin f

 !" #
;

(5)

where

q �qp sin b (6)

and f0 �sin �1(q=2): This can be written in series
form as

f � b �(1
3 e

2 � 31
180 e

4 � 517
5040 e

6 �. . .) sin(2b) :

�( 23
360 e

4 � 251
3780 e

6 �. . .) sin(4b)

�( 761
45360 e

6 �. . .) sin(6b) �. . . : (7)

See also LATITUDE
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Authalic Projection
Lee (1944) defines an authalic MAP PROJECTION to be
one in which at any point the scales in two orthogonal
directions are inversely proportional.

See also EQUAL-AREA PROJECTION
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Autocorrelation
The autocorrelation function Rf (t) of a real function
f (t) is defined by

Rf (t) � lim
T 0�

1

2T g
T

�T

f ( t)f (T � t) dt (1)

(Papoulis 1962, p. 241). For a complex function, the
autocorrelation rf (t) is defined by

rf (t) �f w f � f̄ (�t) + f (t) �g
�

��

f (t � t) ̄f ( t) dt : (2)

where + denotes CONVOLUTION, w denotes CROSS-

CORRELATION, and f̄ is the COMPLEX CONJUGATE

(Papoulis 1962, pp. 241 �/42). The autocorrelation
discards phase information, returning only the
power, and is therefore an irreversible operation.

There is also a somewhat surprising and extremely
important relationship between the autocorrelation
and the FOURIER TRANSFORM known as the WIENER-

KHINTCHINE THEOREM. Let F[f (x)] �F(k) ; and F̄
denote the COMPLEX CONJUGATE of F , then the
FOURIER TRANSFORM of the ABSOLUTE SQUARE of
F(k) is given by

F[ ½F(k) ½2] �g
�

��

f̄ (t)f ( t �x) d t: (3)

The autocorrelation is a HERMITIAN OPERATOR since
rf (�t) � ̄rf (t):/

/f w f is MAXIMUM at the ORIGIN; in other words,

g
�

��

f (u)f (u �x) du 5g
�

��

f 2(u) du : (4)

To see this, let e be a REAL NUMBER. Then

g
�

��

[f (u) � ef (u �x)]2 du > 0 (5)

g
�

��

f 2(u) du �2e g
�

��

f (u)f (u �x) du

�e2 g
�

��

f 2(u �x) du > 0 (6)

g
�

��

f 2(u) du �2e g
�

��

f (u)f (u �x) du

�e2 g
�

��

f 2(u �x) du > 0: (7)

Define

a �g
�

��

f 2(u) du (8)

b �2 g
�

��

f (u)f (u �x) du: (9)

Then plugging into above, we have ae2 �be �c > 0:
This QUADRATIC EQUATION does not have any REAL

ROOT, so b2 �4ac 50; i.e., b =2 5a: It follows that

g
�

��

f (u)f (u�x) du5g
�

��

f 2(u) du; (10)

with the equality at x�0. This proves that f w f is
MAXIMUM at the ORIGIN.

See also AVERAGE POWER, CONVOLUTION, CROSS-

CORRELATION, QUANTIZATION EFFICIENCY, WIENER-

KHINTCHINE THEOREM
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Autogonal Projection
CONFORMAL PROJECTION

Automata Theory
The mathematical study of abstract computing ma-
chines (especially TURING MACHINES) and the analy-
sis of algorithms used by such machines.

See also CELLULAR AUTOMATON, TURING MACHINE
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Automatic Set
A k -automatic set is a set of integers whose base-k
representations form a regular language, i.e., a
language accepted by a finite automaton or state
machine. If bases a and b are incompatible (do not
have a common power) and if an a -automatic set Sa

and b -automatic set Sb are both of density 0 over the
integers, then it is believed that Sa S Sb is finite.
However, this problem has not been settled.

Some automatic sets, such as the 2-automatic con-
sisting of numbers whose BINARY representations
contain at most two 1s: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12,
16, 17, 18, ... (Sloane’s A048645) have a simple
arithmetic expression. However, this is not the case
for general k -automatic sets.

See also TURING MACHINE
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Automaton
AUTOMATIC SET, CELLULAR AUTOMATON, TURING

MACHINE

Automorphic Form

See also AUTOMORPHIC FUNCTION, LANGLANDS PRO-

GRAM

Automorphic Function
An automorphic function f (z) of a COMPLEX variable z
is one which is analytic (except for POLES) in a domain
D and which is invariant under a DENUMERABLY

INFINITE group of LINEAR FRACTIONAL TRANSFORMA-

TIONS (also known as MÖ BIUS TRANSFORMATIONS)

z?�
az � b

cz � d 
:

Automorphic functions are generalizations of TRIGO-

NOMETRIC FUNCTIONS and ELLIPTIC FUNCTIONS.

See also AUTOMORPHIC FORM, MODULAR FUNCTION,
MÖ BIUS TRANSFORMATION, ZETA FUCHSIAN
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Automorphic Number
A number k such that nk2 has its last digits equal to k
is called n -automorphic. For example, 1 �

¯
52�2

¯
5

(Wells 1986, pp. 58�/9) and 1 �
¯
62�3

¯
6 (Wells 1986,

p. 68) are 1-automorphic and 2 �
¯
82�12

¯
8 and 2 �

882�15488 are 2-automorphic. de Guerre and Fair-
bairn (1968) give a history of automorphic numbers.

The first few 1-automorphic numbers are 1, 5, 6, 25,
76, 376, 625, 9376, 90625, ... (Sloane’s A003226, Wells
1986, p. 130). There are two 1-automorphic numbers
with a given number of digits, one ending in 5 and one
in 6 (except that the 1-digit automorphic numbers
include 1), and each of these contains the previous
number with a digit prepended. Using this fact, it is
possible to construct automorphic numbers having
more than 25,000 digits (Madachy 1979). The first
few 1-automorphic numbers ending with 5 are 5, 25,
625, 0625, 90625, ... (Sloane’s A007185), and the first
few ending with 6 are 6, 76, 376, 9376, 09376, ...
(Sloane’s A016090). The 1-automorphic numbers a(n)
ending in 5 are IDEMPOTENT (mod 10n) since

[a(n)]2
�a(n)(mod 10n)

(Sloane and Plouffe 1995).

The following table gives the 10-digit n -automorphic
numbers.

n n -Automorphic
Numbers

Sloane

1 0000000001,
8212890625,
1787109376

–, A007185, A016090

 



2 0893554688 A030984

3 6666666667,
7262369792,
9404296875

–, A030985, A030986

4 0446777344 A030987

5 3642578125 A030988

6 3631184896 A030989

7 7142857143,
4548984375,
1683872768

A030990, A030991,
A030992

8 0223388672 A030993

9 5754123264,
3134765625,
8888888889

A030994, A030995, –

The infinite 1-automorphic number ending in 5 is
given by ...56259918212890625 (Sloane’s A018247),
while the infinite 1-automorphic number ending in 6
is given by ...740081787109376 (Sloane’s A018248).

See also IDEMPOTENT, NARCISSISTIC NUMBER, NUM-

BER PYRAMID, TRIMORPHIC NUMBER
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Automorphism
An ISOMORPHISM of a system of objects onto itself. The
term derives from the Greek prefix a yto (auto ) "self"
and mor 8  vsi& (morphosis ) "to form" or "to shape."

The automorphisms of a GRAPH always describe a
GROUP (Skiena 1990, p. 19).

An automorphism of a region of the COMPLEX PLANE is
a conformal SELF-MAP (Krantz 1999, p. 81).

See also ANOSOV AUTOMORPHISM, GRAPH AUTO-

MORPHISM
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Automorphism Group
The GROUP of functions from an object G to itself
which preserve the structure of the object, denoted
Aut(G): The automorphism group of a GROUP pre-
serves the MULTIPLICATION table, the automorphism
group of a GRAPH the INCIDENCE MATRICES, and that
of a FIELD the ADDITION and MULTIPLICATION tables.

Autonomous
A differential equation or system of ORDINARY DIFFER-

ENTIAL EQUATIONS is said to be autonomous if it does
not explicitly contain the independent variable
(usually denoted t ). A second-order autonomous
differential equation is OF THE FORM F(y; y?; yƒ)�0;
where y?�dy=dt�v: By the CHAIN RULE, yƒ can be
expressed as

yƒ�v?�
dv

dt
�

dv

dy

dy

dt
�

dv

dy
v:

For an autonomous ODE, the solution is independent
of the time at which the initial conditions are applied.
This means that all particles pass through a given
point in phase space. A nonautonomous system of n
first-order ODEs can be written as an autonomous
system of n�1 ODEs by letting t�xn�1 and increas-
ing the dimension of the system by 1 by adding the
equation

dxn�1

dt
�1:

Autoregressive Model
MAXIMUM ENTROPY METHOD



Auxiliary Circle

The CIRCUMCIRCLE of an ELLIPSE, i.e., the CIRCLE

whose CENTER concurs with that of the ELLIPSE and
whose RADIUS is equal to the ELLIPSE’s SEMIMAJOR

AXIS.

See also CIRCLE, ECCENTRIC ANGLE, ELLIPSE
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Auxiliary Latitude
AUTHALIC LATITUDE, CONFORMAL LATITUDE, GEO-

CENTRIC LATITUDE, ISOMETRIC LATITUDE, LATITUDE,
PARAMETRIC LATITUDE, RECTIFYING LATITUDE, RE-

DUCED LATITUDE

Auxiliary Triangle
MEDIAL TRIANGLE

Average
MEAN

Average Absolute Deviation

a �
1

N

XN

i �1

xi � mj j� xi � mj jh i:

See also ABSOLUTE DEVIATION, DEVIATION, STANDARD

DEVIATION, VARIANCE

Average Function
If f is CONTINUOUS on a CLOSED INTERVAL [a, b ], then
there is at least one number x � in [a, b ] such that

g
b
a f (x)dx �f (xƒ)(b �a):

The average value of the FUNCTION (f �) on this
interval is then given by f (x�) :/

See also MEAN-VALUE THEOREM

Average Power
The average power of a complex signal f (t) as a
function of time t is defined as

f 2(t)
0 1

� lim
T 0�

1

2T g
T

�T

f (t)2dt
�� ��;

where zj j is the MODULUS (Papoulis 1962, p. 240).

See also AUTOCORRELATION
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Average Seek Time
POINT-POINT DISTANCE–1-D

Avoided Pattern
A pattern t �( t1 ; . . . ; tn) is said to avoid a �
( a1 ; . . . ; ak) if a is not CONTAINED in t : In other words,
t avoids a IFF no K -SUBSET of t is ORDER ISOMORPHIC

to a:/

See also CONTAINED PATTERN, ORDER ISOMORPHIC,
PERMUTATION PATTERN, WILF CLASS, WILF EQUIVA-

LENT
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Axial Vector
PSEUDOVECTOR

Axiom
A PROPOSITION regarded as self-evidently TRUE with-
out PROOF. The word "axiom" is a slightly archaic
synonym for POSTULATE. Compare CONJECTURE or
HYPOTHESIS, both of which connote apparently TRUE

but not self-evident statements.

See also ARCHIMEDES’ AXIOM, AXIOM OF CHOICE,
AXIOMATIC SYSTEM, CANTOR-DEDEKIND AXIOM, CON-

GRUENCE AXIOMS, CONJECTURE, CONTINUITY AXIOMS,
COUNTABLE ADDITIVITY PROBABILITY AXIOM, DEDE-

KIND’S AXIOM, DIMENSION AXIOM, EILENBERG-STEEN-

ROD AXIOMS, EUCLID’S AXIOMS, EXCISION AXIOM,
FANO’S AXIOM, FIELD AXIOMS, HAUSDORFF AXIOMS,
HILBERT’S AXIOMS, HOMOTOPY AXIOM, INACCESSIBLE

CARDINALS AXIOM, INCIDENCE AXIOMS, INDEPEN-

DENCE AXIOM, INDUCTION AXIOM, LAW, LEMMA,
LONG EXACT SEQUENCE OF A PAIR AXIOM, ORDERING

AXIOMS, PARALLEL AXIOM, PASCH’S AXIOM, PEANO’S

AXIOMS, PLAYFAIR’S AXIOM, PORISM, POSTULATE,
PROBABILITY AXIOMS, PROCLUS’ AXIOM, RULE, T2-

SEPARATION AXIOM, THEOREM, ZERMELO’S AXIOM OF

CHOICE, ZERMELO-FRAENKEL AXIOMS

 



Axiom A Diffeomorphism
Let f : M 0 M be a C1 DIFFEOMORPHISM on a com-
pact RIEMANNIAN MANIFOLD M . Then f satisfies
Axiom A if the NONWANDERING set V( f) of f is
hyperbolic and the PERIODIC POINTS of f are DENSE

in v( f) : although it was conjectured that the first of
these conditions implies the second, they were shown
to be independent in or around 1977. examples
include the ANOSOV DIFFEOMORPHISMS and SMALE

HORSESHOE MAP.

In some cases, Axiom A can be replaced by the
condition that the DIFFEOMORPHISM is a hyperbolic
diffeomorphism on a hyperbolic set (Bowen 1975,
Parry and Pollicott 1990).

See also ANOSOV DIFFEOMORPHISM, AXIOM A FLOW,
DIFFEOMORPHISM, DYNAMICAL SYSTEM, RIEMANNIAN

MANIFOLD, SMALE HORSESHOE MAP
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Axiom A Flow
A FLOW defined analogously to the AXIOM A DIFFEO-

MORPHISM, except that instead of splitting the TAN-

GENT BUNDLE into two invariant sub-BUNDLES, they
are split into three (one exponentially contracting,
one expanding, and one which is 1-dimensional and
tangential to the flow direction).

See also DYNAMICAL SYSTEM

Axiom of Choice
An important and fundamental axiom in SET THEORY

sometimes called ZERMELO’S AXIOM OF CHOICE. It was
formulated by Zermelo in 1904 and states that, given
any SET of mutually exclusive nonempty SETS, there
exists at least one SET that contains exactly one
element in common with each of the nonempty
SETS. The axiom of choice is related to the first of
HILBERT’S PROBLEMS.

In ZERMELO-FRAENKEL SET THEORY (in the form
omitting the axiom of choice), the ZORN’S LEMMA,
TRICHOTOMY LAW, and the WELL ORDERING PRINCIPLE

are equivalent to the axiom of choice (Mendelson
1997, p. 275). In contexts sensitive to the axiom of
choice, the notation "ZF" is often used to denote
Zermelo-Fraenkel without the axiom of choice, while
"ZFC" is used if the axiom of choice is included.

In 1940, Gödel proved that the axiom of choice is
CONSISTENT with the axioms of VON NEUMANN-BER-

NAYS-GÖ DEL SET THEORY (a conservative extension of
ZERMELO-FRAENKEL SET THEORY). However, in 1963,
Cohen (1963) unexpectedly demonstrated that the
axiom of choice is also independent of ZERMELO-

FRAENKEL SET THEORY (Mendelson 1997; Boyer and
Merzbacher 1991, pp. 610 �11).

See also HILBERT’S PROBLEMS, SET THEORY, VON

NEUMANN-BERNAYS-GÖ DEL SET THEORY, WELL OR-

DERED SET, WELL ORDERING PRINCIPLE, ZERMELO-

FRAENKEL AXIOMS, ZERMELO-FRAENKEL SET THEORY,
ZORN’S LEMMA
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Axiom of Comprehension
AXIOM OF SEPARATION

Axiom of Extensionality
The axiom of ZERMELO-FRAENKEL SET THEORY which
asserts that sets formed by the same elements are
equal,

� x(x � a � x � b) [ a � b:

Using the notation a ƒ b (a is a SUBSET of b ) for x �

a(x � b); the axiom can be rewritten

a ƒ b ffl b ƒ a [ a � b:

See also ZERMELO-FRAENKEL SET THEORY
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Axiom of Foundation
One of the ZERMELO-FRAENKEL AXIOMS, also known
the axiom of regularity (Rubin 1967, Suppes 1972). In
the formal language of SET THEORY, it states that

x " 0 [� y(y � x ffl ySx � f);

where [ means IMPLIES, � means EXISTS, ffl means
AND, S denotes INTERSECTION, and f is the EMPTY



SET (Mendelson 1997, p. 288). More descriptively,
"every nonempty set is disjoint from one of its
elements."

The axiom of foundation can also be stated as "A set
contains no infinitely descending (membership) se-
quence," or "A set contains a (membership) minimal
element," i.e., there is an element of the set that
shares no member with the set (Ciesielski 1997, p. 37;
Moore 1982, p. 269; Rubin 1967, p. 81; Suppes 1972,
p. 53).

Mendelson (1958) proved that the equivalence of
these two statements necessarily relies on the AXIOM

OF CHOICE. The dual expression is called e/-induction,
and is equivalent to the axiom itself (Itô 1986, p. 147).

See also AXIOM OF CHOICE, ZERMELO-FRAENKEL

AXIOMS
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Axiom of Infinity
The axiom of ZERMELO-FRAENKEL SET THEORY which
asserts the existence of a set containing all the
natural numbers,

� r( ¥ � x � y � x(y? � x)):

Here, following von Neumann, 0 � f; 1 � 0? � f0g;
2 � 1 ? � f0 ; 1 g; 3 � 2? � f0; 1; 2g; ....

See also ZERMELO-FRAENKEL SET THEORY
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Axiom of Regularity
AXIOM OF FOUNDATION

Axiom of Replacement
One of the ZERMELO-FRAENKEL AXIOMS which asserts
the existence for any set a of a set x such that, for any
y of a , if there exists a z satisfying A(y; z) ; then such
z exists in x . This axiom was introduced by Fraenkel.

See also ZERMELO-FRAENKEL AXIOMS
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Axiom of Separation
The axiom of ZERMELO-FRAENKEL SET THEORY which
asserts the existence for any set a and a formula A(y)
of a set x consisting of all elements of a satisfying
A(y);

� x � y(y � x � y � a ffl A(y)) :

This axiom is also called the axiom of comprehension
or axiom of subsets, and was introduced by Zermelo.

See also ZERMELO-FRAENKEL SET THEORY
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Axiom of the Empty Set
One of the ZERMELO-FRAENKEL AXIOMS which asserts
the existence of the EMPTY SET f: The axiom may be
stated symbolically as

� x � y(!y � x):

See also ZERMELO-FRAENKEL AXIOMS

References
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Axiom of the Power Set
One of the ZERMELO-FRAENKEL AXIOMS which asserts
the existence for any set a of the POWER SET x
consisting of all the SUBSETS of a . The axiom may
be stated symbolically as

� x � y(y � x �� z � y(z � a)):

See also POWER SET, ZERMELO-FRAENKEL AXIOMS
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Axiom of the Sum Set
The axiom of ZERMELO-FRAENKEL SET THEORY which
asserts the existence for any set a of the sum (union)
x of all sets that are elements of a . The axiom may be
stated symbolically as

� x � y(y � x �� z � a(y � z)):

See also ZERMELO-FRAENKEL SET THEORY
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Encyclopedic Dictionary of Mathematics, 2nd ed., Vol. 1.
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Axiom of the Unordered Pair
The axiom of ZERMELO-FRAENKEL SET THEORY which
asserts the existence for any sets a and b of a set x
having a and b as its only elements. x is called the
unordered pair of a and b , denoted fa ; b g: The axiom
may be stated symbolically as

� x � y(y � x � y � a  y � b):

See also ZERMELO-FRAENKEL SET THEORY
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Axiomatic Set Theory
A version of SET THEORY in which axioms are taken as
uninterpreted rather than as formalizations of pre-
existing truths.

See also AXIOMATIC SYSTEM, COMPLETE AXIOMATIC

THEORY, NAIVE SET THEORY, SET THEORY

References
Curry, H. B. Foundations of Mathematical Logic. New York:

Dover, pp. 22 �3, 1977.

Axiomatic System
A logical system which possesses an explicitly stated
SET of AXIOMS from which THEOREMS can be derived.

See also AXIOMATIC SET THEORY, COMPLETE AXIO-

MATIC THEORY, CONSISTENCY, MODEL THEORY, THE-

OREM

Axioms of Subsets
This entry contributed by NICOLAS BRAY

For any set theoretic formula f (x; t1 ; t2 ; . . . ; tn);

(�t1)(�t2) � � � (�tn)(�A)(�B)(�x) :

(x � B Ux � A fflf (x; t1 ; . . . ; tn))

In other words, for any formula and set A there is a
SUBSET of A consisting exactly of those elements
which satisfy the formula.

Axis

A LINE with respect to which a curve or figure is
drawn, measured, rotated, etc.

The term is also used to refer to a LINE through a
SHEAF OF PLANES (Woods 1961; Altshiller-Court 1979,
p. 12).

See also ABSCISSA, BROCARD AXIS, HOMOLOGY AXIS,
LEMOINE AXIS, LINE, MAJOR AXIS, MEDIAL AXIS,
MINOR AXIS, ORDINATE, ORTHIC AXIS, PERSPECTIVE

AXIS, RADICAL AXIS, REAL AXIS, SEMIMAJOR AXIS,
SEMIMINOR AXIS, SHEAF OF PLANES, SIMILARITY AXIS,
X -AXIS, Y -AXIS, Z -AXIS
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Ax-Kochen Isomorphism Theorem
Let P be the SET of PRIMES, and let Qp and Zp(t) be the
FIELDS of P -ADIC NUMBERS and formal POWER SERIES

over Zp�(0; 1; . . . ; p�1): Further, suppose that D
is a "nonprincipal maximal filter" on P . ThenQ

p �p Qp=D and
Q

p �q Zp(t)=D are ISOMORPHIC.



See also HYPERREAL NUMBER, NONSTANDARD ANALY-

SIS

Axonometry
A METHOD for mapping 3-D figures onto the PLANE.

See also CROSS SECTION, MAP PROJECTION, POHLKE’S

THEOREM, PROJECTION, STEREOLOGY
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Azimuthal Equidistant Projection

An AZIMUTHAL PROJECTION which is neither EQUAL-

AREA nor CONFORMAL. Let f1 and l0 be the LATITUDE

and LONGITUDE of the center of the projection, then
the transformation equations are given by

x �k? cos f sin( l � l0) (1)

y �k?[cos f1 sin f �sin f1 cos f cos(l � l0)]: (2)

Here,

k ?�
c

sin c 
(3)

and

cos c �sin f1 sin f �cos f1 cos f cos(l � l0) ; (4)

where c is the angular distance from the center. The

inverse FORMULAS are

f �sin �1 cos c sin f1 �
y sin c cos f1

c

 !
(5)

and

l �

l0 �tan �1 x sin c

c cos f1 cos c � y sin f1 sin c

 !
for f1 "990(

l0 �tan �1 �
x

y

 !
for f1 �90(

l0 �tan �1 x

y

 !
for f1 ��90( :

8>>>>>>>>><
>>>>>>>>>:

(6)
with the angular distance from the center given by

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2 :

p
(7)

See also AZIMUTHAL PROJECTION, EQUIDISTANT PRO-

JECTION
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Azimuthal Projection
A MAP PROJECTION on which the azimuths of all
points are shown correctly with respect to the center
(Snyder 1987, p. 4). A plane tangent to one of the
Earth’s poles is the basis for polar azimuthal projec-
tion. The term "zenithal" is an older one for azimuthal
projections (Hinks 1921, Lee 1944).

See also

AZIMUTHAL EQUIDISTANT PROJECTION, LAMBERT AZI-

MUTHAL EQUAL-AREA PROJECTION, ORTHOGRAPHIC

PROJECTION, STEREOGRAPHIC PROJECTION
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B

B2-Sequence
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Also called a SIDON SEQUENCE. An INFINITE SEQUENCE

of POSITIVE INTEGERS

1 5b1 Bb2 Bb3 B. . . (1)

such that all pairwise sums

bi �bj (2)

for i 5j are distinct (Guy 1994). An example is 1, 2, 4,
8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252,
290, 361, ... (Sloane’s A005282).

Zhang (1993, 1994) showed that

S(B2) � SUP
all B2 sequences

X�
k �1

1

bk

> 2:1597; (3)

which has been increased to S(B2) > 2:16086 by
R. Lewis using the sequence 1, 2, 4, 8, 13, 21, 31,
45, 66, 81, 97, 123, 148, 182, 204, 252, 291, 324, ...
(Sloane’s A046185). The definition can be extended to
Bn/-sequences (Guy 1994).

See also A -SEQUENCE, MIAN-CHOWLA SEQUENCE
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Baby Monster Group
Also known as FISCHER’S BABY MONSTER GROUP. The
SPORADIC FINITE GROUP B . It has ORDER

241 � 313 � 56 � 72 � 11 � 13 � 17 � 19 � 23 � 31 � 47:

See also FINITE GROUP, MONSTER GROUP
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BAC-CAB Identity
The VECTOR TRIPLE PRODUCT identity

A �(B �C) �B(A � C) �C(A � B) :

This identity can be generalized to n -D

a2 �� � ��an�1 �(b1 �� � ��bn�1)

�(�1)n�1

b1 � � �  bn�1

a2 � b1 � � �  a2 � bn�1

n ::: n
an�1 � b1 � � �  an�1 � bn�1

��������

��������:

See also LAGRANGE’S IDENTITY

BAC-CAB Rule
BAC-CAB IDENTITY

Bachelier Function
BROWN FUNCTION

Bachet Equation
The DIOPHANTINE EQUATION

x2�k�y3:

which is also an ELLIPTIC CURVE. The general equa-
tion is still the focus of ongoing study.

Bachet’s Conjecture
LAGRANGE’S FOUR-SQUARE THEOREM

Bachet’s Theorem
LAGRANGE’S FOUR-SQUARE THEOREM

Backhouse’s Constant
Let P(x) be defined as the POWER SERIES whose nth
term has a COEFFICIENT equal to the nth PRIME,

P(x)�
X�
k�0

pkxk�1�2x�3x2�5x3�7x4�11x5�. . . ;

and let Q(x) be defined by

Q(x)�
1

P(x)
�
X�
k�0

qkxk:

Then N. Backhouse conjectured that

lim
n0� jqn�1

qn
j�1:4560749485826896713995953511116 . . . :

This list was subsequently shown to exist by P. Flajo-
let.
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Bäcklund Transformation

A method for solving classes of nonlinear PARTIAL

DIFFERENTIAL EQUATIONS.

See also INVERSE SCATTERING METHOD, SOLITON
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Backtracking
A method of solving combinatorial problems by means
of an algorithm which is allowed to run forward until
a dead end is reached, at which point previous steps
are retraced and the algorithm is allowed to run
forward again. Backtracking can greatly reduce the
amount of work in an exhaustive search. Backtrack-
ing is implemented as Backtrack[s , partialQ , solu-
tionQ ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

Backtracking also refers to a method of drawing
FRACTALS by appropriate numbering of the corre-
sponding tree diagram which does not require storage
of intermediate results (Lauwerier 1991).
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Backus-Gilbert Method
A method which can be used to solve some classes of
INTEGRAL EQUATIONS and is especially useful in
implementing certain types of data inversion. It has
been applied to invert seismic data to obtain density
profiles in the Earth.
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Backward Difference
The backward difference is a FINITE DIFFERENCE

defined by

9p �9fp �fp �fp �1 : (1)

Higher order differences are obtained by repeated
operations of the backward difference operator, so

92
p�9(9p)�9(fp�fp�1)�9fp�9fp�1 (2)

�(fp�fp�1)�(fp�1�fp�2)

�fp�2fp�1�fp�2 (3)

In general,

9k
p�9kfp�

Xk

m�0

(�1)m k
m

� �
fp�m; (4)

where
k
m

� �
is a BINOMIAL COEFFICIENT.

NEWTON’S BACKWARD DIFFERENCE FORMULA ex-
presses fp as the sum of the nth backward differences

fp�f0�p90�
1

2!
p(p�1)92

0�
1

3!
p(p�1)(p�2)93

0

�. . . :; (5)

where 9n
0 is the first nth difference computed from

the difference table.

See also ADAMS’ METHOD, DIFFERENCE EQUATION,
DIVIDED DIFFERENCE, FINITE DIFFERENCE, FORWARD

DIFFERENCE, NEWTON’S BACKWARD DIFFERENCE FOR-

MULA, RECIPROCAL DIFFERENCE
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Backward Stability
The property of certain algorithms that accurate
answers are returned for well-conditioned problems,
and the inaccuracy of the answers returned for ill-
conditioned problems is proportional to the sensitiv-
ity.

Bader-Deuflhard Method
A generalization of the BULIRSCH-STOER ALGORITHM

for solving ORDINARY DIFFERENTIAL EQUATIONS.
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Baer Differential Equation
The Baer differential equation is given by

(x � a1)(x �a2)yƒ�1
2 2x �(a1 �a2)½ �y?�(p2x �q2)y �0;

while the Baer "wave equation" is

(x �a1)(x �a2)yƒ�1
2 2x �(a1 �a2)½ �y?�(k2x2 �p2x �q2)y �0

(Moon and Spencer 1961, pp. 156 �/57; Zwillinger
1997, p. 121).
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Bagging

See also RESAMPLING STATISTICS

Baguenaudier

A PUZZLE involving disentangling a set of rings from a
looped double rod, originally used by French peasants
to lock chests (Steinhaus 1983). The word "bague-
naudier" means "time-waster" in French, and the
puzzle is also called the Chinese rings or Devil’s
needle puzzle. ("Bague" also means "ring," but this

appears to be an etymological coincidence. Interest-
ingly, the bladder-senna tree is also known as
"baguenaudier" in French.) Culin (1965) attributes
the puzzle to Chinese general Hung Ming (A.D. 181 �/

34), who gave it to his wife as a present to occupy her
while he was away at the wars.
The solution of the baguenaudier is intimately related
to the theory of GRAY CODES.

The minimum number of moves a(n) needed for n
rings is

a(n) �[2
3 (2

n �1)] �
1
3 (2

n�1 �2) n even
1
3 (2

n�1 �1) n odd;

(
(1)

where xd e is the CEILING FUNCTION, giving 1, 2, 5, 10,
21, 42, 85, 170, 341, 682, ... (Sloane’s A000975). The
GENERATING FUNCTION for these numbers is

1

(1 � 2x)(1 � x2) 
�1 �2x �5x2 �10x3 �21x4 �. . . : (2)

They are also given by the RECURRENCE RELATION

a(n) �a(n �1) �2a(n �2) �1 (3)

with a(1) �1 and a(2) �2:/

By simultaneously moving the two end rings, the
number of moves for n rings can be reduced to

b(n) � 2n�1 �1 n even
2n�1 n odd;

�
(4)

giving 1, 1, 4, 7, 16, 31, 64, 127, 256, 511, ... (Sloane’s
A051049).

Defining the complexity of a solution as the minimal
number of times the ring passes through the arc from
the last ring to the base of the puzzle, the minimal
complexity of a solution if 2n�1 ; as conjectured by
Kauffman (1996) and proved by Przytycki and Sikora
(2000).

See also GRAY CODE, HABIRO MOVE
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Bailey’s Lemma
If, for n ]0 ;

bn �
Xn

r�0

ar

(q; q)n�r(aq; q)n�r

; (1)

then

b?n �
Xn

r�0

a?r
(q; q)n�r(aq; q)n�r

; (2)

where

a?r �
( r1; q)r( r2; q)r(aq =r1 r2)r 

ar

(aq =r1; q)r(aq =r2; q)r

(3)

b?n �
X
j]0

( r1; q)j( r2; q)j(aq =r11 r2; q)n�j(aq =r1 r2)j 
bj

(q; q)n �j(aq =r1; q)n(aq=r2; q)n

:

(4)
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Bailey’s Method
LAMBERT’S METHOD

Bailey’s Theorem
Let G(z) be the GAMMA FUNCTION, then

G(m � 1
2)

G(m)

" #2

� 1

m 
�

1

2

 !2
1

m � 1 
�

1 � 3

2 � 4

 !2
1

m � 2 
�. . .

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

�
G(n � 1

2)

G(n)

" #2

� 1

n 
�

1

2

 !2
1

n � 1 
�

1 � 3

2 � 4

 !2
1

n � 2 
�. . .

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

:

Writing the sums explicitly, Bailey’s theorem states

G(m � 1
2)

G(m)

" #2 Xn�1

k�0

1

m � k

(2k � 1)!!

(2k)!!

" #2

G(n � 1
2)

G(n)

" #2 Xm�1

k�0

1

n � k

(2k � 1)!!

(2k)!!

" #2

:

See also GAMMA FUNCTION
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Bailey’s Transformation
The very general transformation

9F8

�a; 1�1
2 a; b; c; d

1
2 a 1�a�b; 1�a�c; 1�a�d:

e; f ; g; �m;
1�a�e; 1�a�f ; 1�a�g; 1�a�m

�

�
(1 � a)m(1 � k � e)m(1 � k � f )m(1 � k � g)m

(1 � k)m(1 � a � e)m(1 � a � f )m(1 � a � g)m



�9F8

k; 1 �1
2k; k �b �a ; k �c �a ; k �d �a ;

1
2k; 1 �a �b; a �a �c; 1 �a �d;

"

e ; f ; g ; �m;
1 �k �e ; 1 �k �f ; 1 �k �g ; 1 �k �m

�
;

where k �1 �2a �b �c �d; and the parameters are
subject to the restriction

b �c �d �e �f �g �m �2 �3a

(Bailey 1935, p. 27).

Bhatnagar (1995, pp. 17 �/8) defines the Bailey trans-
form as follows. Let (a; q)n be the Q -POCHHAMMER

SYMBOL, and let a be an indeterminate, and let the
LOWER TRIANGULAR MATRICES F �(F(n; k)) and F �
(G(n; k)) be defined as

F(n; k) �
1

(q; q)n�k(aq; q)n�k

and

G(n ; k) �
(1 � aq2n)(a; q)n �k

(1 � a)(q; q)n�k

Þ(�1)n�kq
n �k

2ð Þ

Then F and G are MATRIX INVERSES.

See also DOUGALL-RAMANUJAN IDENTITY, GENERAL-

IZED HYPERGEOMETRIC FUNCTION
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Bailey-Borwein-Plouffe Algorithm
The DIGIT-EXTRACTION ALGORITHM for calculating the
digits of PI given by the formula

p �
X�
n�0

4

8n � 1 
�

2

8n � 4 
�

1

8n � 5 
�

1

8n � 6

 !
1

16

 !n

:

See also PI, PI FORMULAS
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Baire Category Theorem
A nonempty complete METRIC SPACE cannot be RE-

PRESENTED AS the UNION of a COUNTABLE family of
NOWHERE DENSE SUBSETS.

See also COUNTABLE SET, METRIC SPACE, NOWHERE

DENSE

Baire Function

References
Feller, W. An Introduction to Probability Theory and Its

Applications, Vol. 2, 3rd ed. New York: Wiley, pp. 104�/

06, 1971.

Baire Space
A TOPOLOGICAL SPACE X in which each SUBSET of X of
the "first category" has an empty interior. A TOPOLO-

GICAL SPACE which is HOMEOMORPHIC to a complete
METRIC SPACE is a Baire space.

Bairstow’s Method
A procedure for finding the quadratic factors for the
COMPLEX CONJUGATE ROOTS of a POLYNOMIAL P(x)
with REAL COEFFICIENTS.

x�(a�ib)½ � x�(a�ib)½ ��x2�2ax�(a2�b2)

�x2�Bx�C: (1)

Now write the original POLYNOMIAL as

P(x)�(x2�Bx�C)Q(x)�Rx�S (2)

R(B�dB; C�dC):R(B; C)�
@R

@B
dB�

@R

@C
dC (3)

S(B�dB; C�dC):S(B; C)�
@S

@B
dB�

@S

@C
dC (4)

@P

@C
�0�(x2�Bx�C)

@Q

@C
�Q(x)�

@R

@C
�

@S

@C
(5)

�Q(x)�(x2�Bx�C)
@Q

@C
�

@R

@C
�

@S

@C
(6)

@P

@B
�0�(x2�Bx�C)

@Q

@B
�xQ(x)�

@R

@B
�

@S

@B
(7)

�xQ(x)�(x2�Bx�C)
@Q

@B
�

@R

@B
�

@S

@B
: (8)

Now use the 2-D NEWTON’S METHOD to find the
simultaneous solutions.
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Baker’s Dozen
The number 13.

See also 13, DOZEN

Baker’s Map
The MAP

xn�1 �2 mxn ; (1)

where x is computed modulo 1. A generalized Baker’s
map can be defined as

xn�1 �
laxn yn B a

(1 � lb) � lbxn yn > a

�
(2)

yn�1 �

yn

a
yn B a

yn � a

b
yn > a;

8>>><
>>>: (3)

where b �1 � a; la � lb 51 ; and x and y are computed
mod 1. The q �1 Q -DIMENSION is

D1 �1 �

a ln
1

a

 !
� b ln

1

b

 !

a ln
1

ga

 !
� b ln

1

gb

 ! : (4)

If la � lb ; then the general Q -DIMENSION is

Dq �1 �
1

q � 1

ln(aq � bq)

ln la

: (5)
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Bakos’ Compound
CUBE 4-COMPOUND

Balanced ANOVA
An ANOVA in which the number of REPLICATES (sets
of identical observations) is restricted to be the same
for each FACTOR LEVEL (treatment group).

See also ANOVA

Balanced Binomial Coefficient
An integer n is p -balanced for p a prime if, among all
nonzero binomial coefficients n

k

� �
; for k �0, ..., n

(mod p ), there are equal numbers of quadratic resi-
dues and nonresidues (mod p ). Let Tp be the set of
integers n , 05n 5p �1; that are p -balanced. Among
all the primes B1; 000; 000; only those with p �2, 3,
and 11 have Tp �¥:/

p /Tp/

2 /¥/

3 /¥/

5 /f3g/

7 /f3g/

11 /¥/

13 /f7; 11g/

17 /f3; 15g/

See also BINOMIAL COEFFICIENT
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Balanced Incomplete Block Design
BLOCK DESIGN

Ball
The n -ball, denoted Bn ; is the interior of a SPHERE

Sn�1 ; and sometimes also called the n -DISK.
(Although physicists often use the term "SPHERE" to
mean the solid ball, mathematicians definitely do
not!) Let Vol(Bn) denote the volume of an n -D ball
of RADIUS r . Then

X�
n�0

Vol(Bn) �e pr2 

[1 �erf (r
ffiffiffi
p

p
)];

where erf (x) is the ERF function.

See also ALEXANDER’S HORNED SPHERE, BALL LINE

PICKING, BALL TRIANGLE PICKING, BANACH-TARSKI

PARADOX, BING’S THEOREM, BISHOP’S INEQUALITY,
BOUNDED SET, DISK, HYPERSPHERE, SPHERE, WILD

POINT
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Ball Line Picking
Given an n -ball Bn of radius R , find the distribution
of the lengths s of the lines determined by two points
chosen at random within the ball. The probability
distribution of lengths is given by

Pn(s) �n
sn�1

Rn
Ix(

1
2(n �1); 1

2) ; (1)

where

x �1 �
s2

4R2 
(2)

and

Ix(p; q) �
B(x; p ; q)

B(p; q) 
(3)

is a REGULARIZED BETA FUNCTION, with B(x; p ; q) is
an INCOMPLETE BETA FUNCTION and B(p; q) is a BETA

FUNCTION (Tu and Fischbach 2000). The first few are

P1(s) �
1

R 
�

s

2R 
(4)

P2(s) �
4s

pR2
cos�1 s

2R

 !
�

2s2

pR3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

s2

4R2

s
(5)

P3(s) �
3s2

R3 
�

9s3

4R4 
�

3s5

16R6 
(6)

P4(s) �
8s3

pR4
cos�1 s

2R

 !
�

8s4

3pR5

� 1 �
s2

4R2

 !3=2

�
4s4

pR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

s2

4R2

s
: (7)

The average lengths are given by

s̄1 �
2R

3 
(8)

s̄2 �
128R

45 p 
(9)

s̄3 �
36R

35 
(10)

s̄4 �
16384R

4725p
: (11)

See also BALL POINT PICKING, SPHERE LINE PICKING
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Ball Point Picking

See also BALL LINE PICKING, DISK POINT PICKING,
NOISE SPHERE, SPHERE POINT PICKING

Ball Tetrahedron Picking
The mean volume of a TETRAHEDRON formed by four
random points in a UNIT SPHERE is V̄ �12p=715
(Hostinsky 1925; Solomon 1978, p. 124).

See also SPHERE TETRAHEDRON PICKING
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Ball Triangle Picking

The determination of the probability for obtaining an
OBTUSE TRIANGLE by picking three points at random
in the unit DISK was generalized by Hall (1982) to the
n -dimensional BALL. Buchta (1986) subsequently
gave closed form evaluations for Hall’s integrals.
Let Pn be the probability that that three points
chosen independently and uniformly from the n -BALL



form an ACUTE TRIANGLE, then

P2m�1 ��
1

2 
�22m�1

2m
m

� �
4m
2m

� �
4m
m

� �
6m � 1

2m

� ��m
2m
m

� �2

22m

�
Xm

k �0

2k
k

� �
2m � k

m

� �
4m � 2k
2m � k

� �

�
3m � k � 1

(m � k)(3m � 2k � 1) 
(1)

P2m�2 �
1

4 
�

3

22m�4

4m � 4
m � 1

� �
2m � 2
m � 1

� �� 24m

2m
m

� �
p2

� 1

(2m � 1)2 2m
m

� �
2
664

�
Xm

k �0

22k(3m � k � 3)

(2k � 1)
2k
k

� �
2m � k

m

� �
2m � k � 2

m

� ��; (2)

the first few being

P2 �
4

p2 
�

1

8 
:0 :280285 (3)

P3 �
33
70 :0:471429 (4)

P4 �
256

45p2 
�

1

32 
:0 :607655 (5)

P5 �
1415

2002 
:0:706793 (6)

P6 �
2048

315p2 
�

31

256 
:0:779842 (7)

P7 �
231161

277134 
:0:834113 (8)

P8 �
4194304

606375p2 
�

89

512 
:0:874668 (9)

P9 �
9615369

10623470 
:0:905106 : (10)

The case P2 corresponds to DISK TRIANGLE PICKING

case.

See also CUBE TRIANGLE PICKING, OBTUSE TRIANGLE,
SPHERE POINT PICKING
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Ballantine
BORROMEAN RINGS

Ballieu’s Theorem
Let the CHARACTERISTIC POLYNOMIAL of an /n �n/

COMPLEX MATRIX A be written in the form

P(l) � ½l1 �A ½� l n�b1 l 
n�1�b2 l 

n�2�. . .�bn�1 l �bn:

Then for any set m �( m1 ; m2 ; . . . ; mn) of POSITIVE

numbers with m0 �0 and

M �� max
05k 5n�1

mk � mn ½bn�k ½

mk �1

;

all the EIGENVALUES li (for i �1, ..., n ) lie on the
CLOSED DISK ½z½5M � in the COMPLEX PLANE.
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Ballot Problem
Suppose A and B are candidates for office and there
are 2n voters, n voting for A and n for B . In how
many ways can the ballots be counted so that A is
always ahead of or tied with B? The solution is a
CATALAN NUMBER Cn :/

A related problem also called "the" ballot problem is
to let A receive a votes and B b votes with a �b . This
version of the ballot problem then asks for the
probability that A stays ahead of B as the votes are
counted (Vardi 1991). The solution is (a �b) =(a �b);
as first shown by M. Bertrand (Hilton and Pedersen
1991). Another elegant solution was provided by
André (1887) using the so-called ANDRÉ ’S REFLECTION

METHOD.

The problem can also be generalized (Hilton and
Pedersen 1991). Furthermore, the TAK FUNCTION is
connected with the ballot problem (Vardi 1991).

See also ANDRÉ ’S REFLECTION METHOD, CATALAN

NUMBER, STAIRCASE WALK, TAK FUNCTION
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Balthasart Projection

A CYLINDRICAL EQUAL-AREA PROJECTION which uses a
standard parallel of fs �50 :/

See also CYLINDRICAL EQUAL-AREA PROJECTION,
BEHRMANN CYLINDRICAL EQUAL-AREA PROJECTION,
GALL ORTHOGRAPHIC PROJECTION, LAMBERT AZI-

MUTHAL EQUAL-AREA PROJECTION, PETERS PROJEC-

TION, TRISTAN EDWARDS PROJECTION

Banach Algebra
A Banach algebra is an ALGEBRA B over a FIELD F
endowed with a NORM �kk such that B is a BANACH

SPACE under the norm �kk and multiplication is
continuous in the sense that if x; y � B then xyk k5
xk k yk k: Continuity of multiplication is the most

important property.

F is frequently taken to be the COMPLEX NUMBERS in
order to assure that the SPECTRUM fully characterizes
an OPERATOR (i.e., the spectral theorems for normal or
compact normal operators do not, in general, hold in
the SPECTRUM over the REAL NUMBERS).

If B has a unit, then x � B is invertible if and only if
x̂( f) "0 for all f; where x � ̂x is the GELFAND TRANS-

FORM.

See also B*-ALGEBRA, BANACH SPACE, GELFAND

TRANSFORM
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Banach Fixed Point Theorem
Let f be a contraction mapping from a closed SUBSET

F of a BANACH SPACE E into F . Then there exists a
unique z � F such that f (z) �z :/

See also FIXED POINT THEOREM
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Banach Measure
An "AREA" which can be defined for every set–even
those without a true geometric AREA–which is rigid
and finitely additive.

Banach Space
A Banach space is a COMPLETE VECTOR SPACE B with
a norm vk k: Its topology is determined by its norm,
and the vector space operations of addition and scalar
multiplication are required to be continuous. Two
norms �v�1 and �v�2 are called equivalent if they give
the same TOPOLOGY, which is equivalent to the
existence of constants c and C such that

c�v�15�v�25C�v�1 (1)

holds for all v . In the finite dimensional case, all
norms are equivalent. An infinite dimensional space
can have many different norms.

A basic example is n dimensional EUCLIDEAN SPACE

with the Euclidean norm. Usually, the notion of
Banach space is only used in the infinite dimensional
setting, typically as a VECTOR SPACE of functions. For
example, the set of continuous functions on the real
line with the norm of a function f given by

fk k�supx �R f (x)j j (2)

is a Banach space, where sup denotes the SUPREMUM.

On the other hand, the set of continuous functions on
the unit interval [0; 1] with the norm of a function f
given by



fk k�g
1

0

f (x)j j dx (3)

is not a Banach space because it is not complete. For
instance, the CAUCHY SEQUENCE of functions

fn

1 for x 51=2
1
2n �1 �nx for x 51=2 �1=n

0 for x > 1=2 �1=n

8<
: 

(4)

does not converge to a continuous function.

HILBERT SPACES with their norm given by the inner
product are examples of Banach spaces. While a
HILBERT SPACE is always a Banach space, the con-
verse need not hold. Therefore, it is possible for a
Banach space not to have a norm given by an inner
product. For instance, the supremum norm cannot be
given by an INNER PRODUCT.

See also BESOV SPACE, COMPLETE SPACE, HILBERT

SPACE, SCHAUDER FIXED POINT THEOREM, VECTOR

SPACE

Banach-Hausdorff-Tarski Paradox
BANACH-TARSKI PARADOX

Banach-Steinhaus Theorem
UNIFORM BOUNDEDNESS PRINCIPLE

Banach-Tarski Paradox
First stated in 1924, the Banach-Tarski paradox
states that it is possible to dissect a BALL into six
pieces which can be reassembled by rigid motions to
form two balls of the same size as the original. The
number of pieces was subsequently reduced to five by
R. M. Robinson in 1944, although the pieces are
extremely complicated. (Actually, four pieces are
sufficient as long as the single point at the center is
neglected.) A generalization of this theorem is that
any two bodies in R3 which do not extend to infinity
and each containing a ball of arbitrary size can be
dissected into each other (i.e., they are EQUIDECOM-

POSABLE).

See also BALL, CIRCLE SQUARING, DISSECTION, EQUI-

DECOMPOSABLE
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Bandwidth
The bandwidth of a MATRIX M/� (mij) is the maximum
value of i �jj j such that mij is nonzero.

The bandwidth of a GRAPH G is the minimum
bandwidth among ADJACENCY MATRICES of GRAPHS

isomorphic to G . Bounds for the bandwidth of a graph
have been considered by (Harper 1964), and the
bandwidth of the k -cube was determined by Harper
(1966).
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Bang’s Theorem
The lines drawn to the VERTICES of a face of a
TETRAHEDRON from the point of contact of the FACE

with the INSPHERE form three ANGLES at the point of
contact which are the same three ANGLES in each
FACE.

See also TETRAHEDRON
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Honsberger, R. Mathematical Gems II. Washington, DC:
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White, H. S. "Two Tetrahedron Theorems." Nouvelles Ann.
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Bankoff Circle

The circle through the cusp of the ARBELOS and the
tangent points of the first Pappus circle, which is
congruent to the two ARCHIMEDES’ CIRCLES. If AB�r



and AC �1, then the radius of the Bankoff circle is

R �1
2r(1 �r) :

See also ARCHIMEDES’ CIRCLES, ARBELOS, PAPPUS

CHAIN

References
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Banzhaf Power Index
The number of ways in which a group of n with
weights an

i�1 wi �1 can change a losing coalition (one
with a wi B1=2)) to a winning one, or vice versa. It
was proposed by the lawyer J. F. Banzhaf in 1965.
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Bar
A bar (also called an overbar) is a horizontal line
written above a mathematical symbol to give it some
special meaning. If the bar is placed over a single
symbol, as in x̄ (voiced "x -bar"), it is sometimes called
a MACRON. If placed over multiple symbols (especially
in the context of a RADICAL), it is known as a
VINCULUM. Common uses of the bar symbol include
the following.

1. The MEAN

x̄ �
1

n

Xn

i�1

xi

of a set xif gn
i�1 :/

2. The COMPLEX CONJUGATE

z̄ �x �iy

for z �x �iy:/
3. The COMPLEMENT F̄ of a set F .
4. A SET stripped of any structure besides order,
hence the ORDER TYPE of the set.

In conventional typography, "bar" refers to a vertical
(instead a horizontal) bar, such as those used to
denote ABSOLUTE VALUE / xj jð Þ (Bringhurst 1997,
p. 271).

See also DOUBLE BAR, HAT, MACRON, VINCULUM
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Bar (Edge)
The term in rigidity theory for the EDGES of a GRAPH.

See also CONFIGURATION, FRAMEWORK

Bar Chart

A bar graph is any plot of a set of data such that the
number of data elements falling within one or more
categories is indicated using a rectangle whose height
or width is a function of the number of elements.

See also HISTOGRAM, PIE CHART

References
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics,
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Bar Graph
BAR CHART

Bar Graph Polygon

A column-convex SELF-AVOIDING POLYGON which con-
tains the bottom edge of its minimal bounding
rectangle. The anisotropic perimeter and area gen-
erating function

G(x; y; q)�
X

m]1
X
n]1

X
a]a

C(m; n; a)xmynqa;

where C(m;n;a) is the number of polygons with 2m
horizonal bonds, 2n vertical bonds, and area a , has
been computed exactly for the bar graph polygons
(Bousquet-Mélou 1996, Bousquet-Mélou et al. 1999).
The anisotropic area and perimeter generating func-
tion G(x; y; q) and partial generating functions



Hm(y; q) ; connected by

G(x; y; q) �
X
m]1

Hm(y; q)xm ;

satisfy the self-reciprocity and inversion relations

Hm(1=y; 1=q) �
( �1)m

yqm
Hm(y; q)

and

G(x; y; q) �yG(�xq ; 1 =y; 1 =q) �0

(Bousquet-Mélou et al. 1999).

See also LATTICE POLYGON, SELF-AVOIDING POLYGON
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Bar Polyhex

A POLYHEX consisting of HEXAGONS arranged along a
line.

See also BAR POLYIAMOND
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Bar Polyiamond

A POLYIAMOND consisting of EQUILATERAL TRIANGLES

arranged along a line.

See also BAR POLYHEX
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Barber Paradox
A man of Seville is shaved by the Barber of Seville IFF

the man does not shave himself. Does the barber

shave himself? This PSEUDOPARADOX was proposed by
Bertrand Russell.

See also PSEUDOPARADOX, RUSSELL’S PARADOX

References
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Barbier’s Theorem
All CURVES OF CONSTANT WIDTH of width w have the
same PERIMETER pw :/

Bare Angle Center
The TRIANGLE CENTER with TRIANGLE CENTER FUNC-

TION

a �A:

References
Kimberling, C. "Major Centers of Triangles." Amer. Math.
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Barlow Packing
A face-centered cubic SPHERE PACKING obtained by
placing layers of spheres one on top of another.
Because there are two distinct ways to place each
layer on top of the previous one, there are an infinite
number of such packings as the number of layers is
increased.

See also KEPLER CONJECTURE, SPHERE PACKING
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Barnes’ G-Function

Barnes’ G -function is defined by

G(z�1)

�(2p)z=2e� z(z�1)�gz2½ �=2
Y�
n�1

1�
z

n

 !n

e�z�z2=(2n)

" #
(1)

where g is the EULER-MASCHERONI CONSTANT (Whit-
taker and Watson 1990, p. 264; Voros 1987). It is an
ENTIRE FUNCTION analogous to 1=G(z); where G(z) is
the GAMMA FUNCTION, except that it has order 2
instead of 1.
This is an ANALYTIC CONTINUATION of the G -function
defined in the construction of the GLAISHER-KINKELIN

CONSTANT

G(n)�
G(n)½ �n�1

Kn

; (2)

where

Kn�00112233 � � � (n�1)n�1; (3)

which has the special values

G(n)�
0 if n�0; �1; �2; . . .
1 if n�1
0!1!2! � � � (n�2)! if n�2; 3; 4 . . .

8<
: (4)

for INTEGER n . This function is what Sloane and
Plouffe (1995) call the SUPERFACTORIAL, and the first
few values for n�1, 2, ... are 1, 1, 1, 2, 12, 288, 34560,
24883200, 125411328000, 5056584744960000, ...
(Sloane’s A000178).

Barnes’ G -function satisfies the functional equation

G(z�1)�G(z)G(z); (5)

and has the TAYLOR SERIES

ln G(1�z)�1
2 ln(2p)�1½ �z�(1�g)

z2

2

�
X�
n�3

(�1)n�1
z(n�1)

zn

n
(6)

in zj jB1: It also gives an analytic solution to the finite
product

Yn

i�1

G(k�i)�
G(n � k � 1)

G(k � 1)
; (7)

has the identities

G(n)½ �n

G(n)
�K(n); (8)

where K(n) is the K -FUNCTION, and the equivalent
reflection formulas

G
0
(z � 1)

G(z � 1)
�1

2 ln(2p)�1
2�z�z

G
0
(z)

G(z)
(9)

ln
G(1 � z)

G(1 � z)

" #
�pg

z

0

z cot(pz) dz�z ln(2p) (10)

G(1
2 � z)

(1
2 � z)

�
(2p)2

G(1
2 � z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

cos(pz)

s
exp pg

z

0

tan(pz) dz

� �
(11)

(Voros 1987; Whittaker and Watson 1990, p. 264). A
Stirling-like ASYMPTOTIC SERIES as z 0 � is given by

ln G(1�z)
z2 1
2 ln z�3

4

 !
�1

2 ln(2p)z� 1
12 ln z�ln A

�O
1

z

 !
(12)

(Voros 1987).

/G(n) has the special values

G(1
2)�p�1=4exp 1

24 ln 2�3
2 z?(�1)

h i
(13)

�A�3=2p�1=4e1=821=24 (14)

G(3
2) � A�3=2p1=4e1=821=24; (15)

and so on, where z?(�1) is the derivative of the
RIEMANN ZETA FUNCTION evaluated at -1 and the
GLAISHER-KINKELIN CONSTANT A is defined by

A�exp[ 1
12�z?(�1)]�1:28242712 . . . (16)

(Voros 1987). Mathematica 4.0 implements the con-
stant A as Glaisher. In general, for odd n�2k�1;



G(1
2(2k �1)) �ck

A�3 =2 p�(2k�3)=4e1 =821 =24

2(k�1)(k �2)=2
; (17)

where

ck �
Yk �2

i�1

2i G(1
2 � i)ffiffiffi
p

p (18)

for k �1, of which the first few terms are 1, 1, 1, 3, 45,
4725 4465125, ... (Sloane’s A057863).

Barnes’ G -function can arise in spectral functions in
mathematical physics (Voros 1987).

Another G -FUNCTION is defined by Erdélyi et al.
(1981, p. 20) as

G(z) � c0
1
2 �hz
 !

� c0(1
2z) ; (19)

where c0(z) is the DIGAMMA FUNCTION. An unrelated
pair of functions are denoted gn and Gn and are
known as RAMANUJAN G - AND G -FUNCTIONS.

See also EULER-MASCHERONI CONSTANT, G -FUNC-

TION, GLAISHER-KINKELIN CONSTANT, K -FUNCTION,
MEIJER’S G -FUNCTION, RAMANUJAN G - AND G -FUNC-

TIONS, SUPERFACTORIAL
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Barnes’ Lemma
If a CONTOUR in the COMPLEX PLANE is curved such
that it separates the increasing and decreasing
sequences of POLES, then

1

2pi g
i�

�i�

G( a �s)G(b �s) G( g �s) G

�( d �s) ds
G( a � g) G( a � d) G( b � g) G( b � d)

G( a � b � g � d)
;

where G(z) is the GAMMA FUNCTION (Bailey 1935,
p. 7).

Barnes’ second lemma states that

g 2

2pi

G(a1 � s) G(a2 � s) G( a3 � s) G(1 � b1 � s) G( �s) ds

G( b2 � s)

�
G( a1)G( a2) G( a3)G(1 � b1 � a1) G(1 � b1 � a2) G(1 � b1 � a3)

G( b2 � a1) G( b2 � a2)G( b2 � a3)

provided that b1 � b2 � a1 � a2 � a3 �1 (Bailey 1935,
pp. 42 �/3).
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Barnes-Wall Lattice
A lattice which can be constructed from the LEECH

LATTICE A24 :/

See also COXETER-TODD LATTICE, LATTICE POINT,
LEECH LATTICE
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Barnette’s Conjecture
The conjecture that every 3-connected BIPARTITE

CUBIC PLANAR GRAPH is HAMILTONIAN.

See also BIPARTITE GRAPH, CUBIC GRAPH, HAMILTO-

NIAN GRAPH
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Barnsley’s Fern

The ATTRACTOR of the ITERATED FUNCTION SYSTEM

given by the set of "fern functions"

f1(x; y) �
0:85 0:04

�0:04 0:85

� �
x
y

� �
�

0:00
1:60

� �
(1)

f2(x; y) �
�0:15 0:28

0:26 0:24

� �
x
y

� �
�

0:00
0:44

� �
(2)

f3(x; y) � 
0:20 �0:26
0:23 0:22

� �
x
y

� �
�

0:00
1:60

� �
(3)

f4(x; y) � 
0:00 0 :00
0:00 0 :16

� �
x
y

� �
(4)

(Barnsley 1993, p. 86; Wagon 1991). These AFFINE

TRANSFORMATIONS are contractions. The tip of the
fern (which resembles the black spleenwort variety of
fern) is the fixed point of f1 ; and the tips of the lowest
two branches are the images of the main tip under f2

and f3 (Wagon 1991).

See also DYNAMICAL SYSTEM, FRACTAL, ITERATED

FUNCTION SYSTEM
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Barrel

A SOLID OF REVOLUTION composed of parallel circular
top and bottom with a common axis and a side formed
by a smooth curve symmetrical about the midplane.

For sides consisting of an arc of an ELLIPSE, the
equation of the side is given by

x(z)�r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

(z � 1
2 h)2

a2

vuut ; (1)

with x(0)�r1: Solving for a gives

a�
hr2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 � r2
1

p ; (2)

so the sides have equation

x(z)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2�
(r1 � r2)(r1 � r2)(h � 2z)2

h2

s
: (3)

Using the equation for a SOLID OF REVOLUTION then
gives

V�pg
h

0

[x(z)]2dx�1
3 ph(2r2

2�r2
1): (4)

For sides consisting of a PARABOLIC SEGMENT, the
equation of the side is given by

x(z)�r2�a(z�1
2 h)2 (5)

with x(0) � r1: Solving for a gives



a �
4(r1 � r2)

h2
; (6)

so the sides have equation

x(z) �r2 �
(r1 � r2)(h � 2z)2

h2 
: (7)

Using the equation for a SOLID OF REVOLUTION then
gives

V � pg
h

0

[x(z)]2dx � 1
15 ph(3r2

1 �4r1r2 �8r2
2) : (8)

See also CYLINDER
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Barrier
A number n is called a barrier of a number-theoretic
function f (m) if, for all m Bn , m �f (m) 5n: Neither
the TOTIENT FUNCTION f(n) nor the DIVISOR FUNCTION

s(n) has a barrier.

Let U ⁄C be an OPEN SET and x0 � @U ; then a function
b : Ū 0 R is called a barrier for U at a point x0 if

1. b is continuous,
2. b is SUBHARMONIC on U ,
3. b ½@U 50 ;/
4. fz � @U : b(z) �0g�fz0 g/

(Krantz 1999, pp. 100 �/01).

See also SUBHARMONIC FUNCTION
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Barth Decic

The Barth decic is a DECIC SURFACE in complex three-
dimensional projective space having the maximum
possible number of ORDINARY DOUBLE POINTS (345). It
is given by the implicit equation

8(x2 � f4y2)(y2 � f4z2)(z2 � f4x2)

�(x4 �y4 �z4 �2x2y2 �2x2z2 �2y2z2) �(3 �5f)

� (x2 �y2 �z2 �w2)2[x2 �y2 �z2 �(2 � f)w2]2w2

�0;

where f is the GOLDEN MEAN and w is a parameter
(Endraß, Nordstrand), taken as w �1 in the above
plot. The Barth decic is invariant under the ICOSAHE-

DRAL GROUP.

See also ALGEBRAIC SURFACE, BARTH SEXTIC, DECIC

SURFACE, ORDINARY DOUBLE POINT
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Barth Sextic



The Barth-sextic is a SEXTIC SURFACE in complex
three-dimensional projective space having the max-
imum possible number of ORDINARY DOUBLE POINTS

(65). Of these, 20 nodes are at the vertices of a regular
DODECAHEDRON of side length 2 =f; and 30 are at the
midpoints of the edges of a concentric DODECAHEDRON

of side length 2=f2 ; where f is the GOLDEN RATIO. The
surface was discovered by W. Barth in 1994, and is
given by the implicit equation

4(f2x2 �y2)( f2y2 �z2)( f2z2 �x2) �(1 �2f)

�(x2 �y2 �z2 �w2)2w2 �0;

where f is the GOLDEN MEAN, and w is a parameter
(Endraß, Nordstrand), taken as w �1 in the above
plot.

The Barth sextic is invariant under the ICOSAHEDRAL

GROUP. Under the map

(x; y; z; w) 0 (x2; y2; z2; w2);

the surface is the eightfold cover of the CAYLEY CUBIC

(Endraß).

See also ALGEBRAIC SURFACE, BARTH DECIC, CAYLEY

CUBIC, ORDINARY DOUBLE POINT, SEXTIC SURFACE

References
Barth, W. "Two Projective Surfaces with Many Nodes

Admitting the Symmetries of the Icosahedron." J. Alg.
Geom. 5, 173�/86, 1996.

Dominici, P. "Flight Through Barth’s Sextic." http://
www.mi.uni-erlangen.de/~bauerth/flight/.
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Bartlett Function

The APODIZATION FUNCTION

f (x)�1�
xj j
a

(1)

which is a generalization of the one-argument TRIAN-

GLE FUNCTION. Its FULL WIDTH AT HALF MAXIMUM is a .

It has INSTRUMENT FUNCTION

I(x)�g
a

�a

e�2pikx 1�
xj j
a

 !
dx

�g
0

�a

e�2pikx 1�
x

a

 !
dx

�g
a

0

e�2pikx 1�
x

a

 !
dx: (2)

Letting x?��x in the first part therefore gives

g
0

�a

e�2pikx 1�
x

a

 !
dx�g

0

a

e�2pikx? 1�
x?

a

 !
(�dx?)

�g
a

0

e�2pikx 1�
x

a

 !
dx: (3)

Rewriting (2) using (3) gives

I(x)�(e2pikx�e�2pikx) 1�
x

a

 !
dx

�2g
a

0

cos(2pkx) 1�
x

a

 !
dx: (4)

Integrating the first part and using the integral

g x cos(bx) dx�
1

b2
cos(bx)�

x

b
sin(bx) (5)

for the second part gives

I(x)�2
sin(2pkx)

2pk
�

1

a

1

4p2k2
cos(2pkx)�

x

2pk
sin(2pkx)

( )" #a

0

�2
sin(2pka)

2pk
�0

" #
�

1

a

cos(2pka) � 1

4p2k2
�

a sin(2pka)

2pk

" #( )

�
1

2p2ak2
[cos(2pka)�1]�a

sin2(pka)

p2k2a2
�a sinc2(pka) (6)

where sinc x is the SINC FUNCTION. The peak (in units
of a ) is 1. The function I(x) is always positive, so there
are no NEGATIVE sidelobes. The extrema are given by
letting b�pka and solving

d

db

sin b

b

 !2

�2
sin b

b

sin b� b cos b

b2
�0 (7)

sin b(sin b�b cos b)�0 (8)

sin b�b cos b�0 (9)

tan b�b: (10)

Solving this numerically gives b�4:49341 for the
first maximum, and the peak POSITIVE sidelobe is
0.047190. The full width at half maximum is given by



setting x � pka and solving

sinc2 x �1
2 (11)

for x1 =2 ; yielding

x1 =2 � pk1=2a �1:39156: (12)

Therefore, with L �2a;

FWHM �2k1 =2 �
0:885895

a
�

1:77179

L
: (13)

See also APODIZATION FUNCTION, PARZEN APODIZA-

TION FUNCTION, TRIANGLE FUNCTION
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Barycentric Coordinates
Barycentric coordinates are triples of numbers
(t1; t2; t3) corresponding to masses placed at the
vertices of a reference triangle DA1A2A3: These
masses then determine a point P , which is the
centroid of the three masses, and is identified with
coordinates (t1; t2; t3): The vertices of the triangle are
given by (1; 0; 0); (0; 1; 0); and (0; 0; 1): Barycentric
coordinates were discovered by Möbius in 1827
(Coxeter 1969, p. 217; Fauvel et al. 1993).

To find the barycentric coordinates for an arbitrary
point P , find t2 and t3 from the point Q at the
intersection of the line A1P with the side A2A3; and
then determine t1 as the mass at An that will balance
a mass t2�t3 at Q , thus making P the centroid (left
figure). Furthermore, the areas of the triangles
DA1A2P , DA1A3P , and DA2A3P are proportional to
the barycentric coordinates t3; t2; and t1 of P (right
figure; Coxeter 1969, p. 217).

Barycentric coordinates are homogeneous, so

(t1; t2; t3)�(mt1; mt2; mt3) (1)

for m"0. Barycentric coordinates normalized so that
they become the actual areas of the subtriangles are
called homogeneous barycentric coordinates, and

barycentric coordinates normalized so that

t1�t2�t3�1; (2)

so that the coordinates give the areas of the sub-
triangles normalized by the area of the original
triangle are called AREAL COORDINATES (Coxeter
1969, p. 218). Barycentric and areal coordinates can
provide particular elegant proofs of geometric theo-
rems such as ROUTH’S THEOREM, CEVA’S THEOREM,
and MENELAUS’ THEOREM (Coxeter 1969, pp. 219�/21).

The homogeneous barycentric coordinates corre-
sponding to TRILINEAR COORDINATES /a : b : g/ are/

(aa; bb; cg)/, and the TRILINEAR COORDINATES corre-
sponding to homogeneous barycentric coordinates
(t1; t2; t3) are /t1=a : t2=b : t3=c/. The homogeneous
barycentric coordinates for some common triangle
centers are summarized in the following table, where /

s�(a�b�c)=2/ is the SEMIPERIMETER.

triangle center homogeneous barycentric coordinates

CENTROID

(TRIANGLE)

(1, 1, 1)

CIRCUMCENTER (a2(b2�c2�a2), b2(c2�a2�b2), c3(a2�b2�c2))

EXCENTERS (�a , b , c )

(a , �b , c )

(a , b , �c )

GERGONNE POINT ((s�b )(s�c ), (s�c )(s�a ), (s�a )(s�b ))

INCENTER (a , b , c )

NAGEL POINT (s�a , s�b , s�c )

ORTHOCENTER /((a2�b2�c2)(c2�a2�b2); (b2�c2�a2)(a2�b2�c2));/

/(c2�a2�b2)(b2�c2�a2))/

SYMMEDIAN POINT /(a2 ; b2; c2)/

In barycentric coordinates, a line has a linear homo-
geneous equation. In particular, the line joining
points (r1; r2; r3) and (s1; s2; s3) has equation

jr1 r2 r3

s1 s2 s3

t1 t2 t3

j (3)

(Loney 1962, pp. 39 and 57; Coxeter 1969, p. 219;
Bottema 1982). If the vertices Pi of a triangle DP1P2P3

have barycentric coordinates (xi; yi; zi); then the area
of the triangle is

DP1P2P3�jx1 y1 z1

x2 y2 z2

x3 y3 z3

jDABC (4)

(Bottema 1982, Yiu 2000).



See also AREAL COORDINATES, TRILINEAR COORDI-

NATES
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Base (Logarithm)
The number used to define the number system in
which a LOGARITHM is computed. In general, the
logarithm of a number x in base b is written logb x:
The symbol log x is an abbreviation regrettably used
both for the COMMON LOGARITHM log10 x (by engineers
and physicists and indicated on pocket calculators)
and for the NATURAL LOGARITHM loge x (by mathema-
ticians). ln x denotes the NATURAL LOGARITHM loge x
(as used by engineers and physicists and indicated on
pocket calculators), and lg x denotes log2 x: In this
work, the notations log x �log10 x and ln x �loge x
are used.

To convert between logarithms in different bases, the
formula

logb x �
ln x

ln b

can be used.

See also COMMON LOGARITHM, E , LG, LN, LOGARITHM,
NAPIERIAN LOGARITHM, NATURAL LOGARITHM, BASE

(NUMBER)

Base (Neighborhood System)
A base for a neighborhood system of a point x is a
collection N of OPEN SETS such that x belongs to every
member of N , and any OPEN SET containing x also
contains a member of N as a SUBSET.

Base (Number)
A REAL NUMBER x can be represented using any
INTEGER number b as a base (sometimes also called a
RADIX or SCALE). The choice of a base yields to a
representation of numbers known as a NUMBER

SYSTEM. In base b , the DIGITS 0, 1, ..., b �1 are used
(where, by convention, for bases larger than 10, the
symbols A, B, C, ...are generally used as symbols
representing the DECIMAL numbers 10, 11, 12, ...).

Base Name

2 BINARY

3 TERNARY

4 QUATERNARY

5 Quinary

6 Senary

7 Septenary

8 OCTAL

9 Nonary

10 DECIMAL

11 Undenary

12 DUODECIMAL

16 HEXADECIMAL

20 VIGESIMAL

60 SEXAGESIMAL

Let the base b representation of a number x be
written

(anan�1 . . . a0 :a�1 . . .)b ; (1)

(e.g., 123:45610) ; then the index of the leading DIGIT

needed to represent the number is

n � logb xb c; (2)

where xb c is the FLOOR FUNCTION. Now, recursively
compute the successive DIGITS

ai �
ri

bi

$ %
; (3)

where rn �x and

ri�1 �ri �aib
i (4)

for i �n , n � 1; ..., 1, 0, .... This gives the base b
representation of x . Note that if x is an INTEGER, then
i need only run through 0, and that if x has a
fractional part, then the expansion may or may not
terminate. For example, the HEXADECIMAL represen-
tation of 0.1 (which terminates in DECIMAL notation)
is the infinite expression 0:19999 . . .h/.

Some number systems use a mixture of bases for
counting. Examples include the Mayan calendar and
the old British monetary system (in which ha’pen-
nies, pennies, threepence, sixpence, shillings, half
crowns, pounds, and guineas corresponded to units of
1/2, 1, 3, 6, 12, 30, 240, and 252, respectively).

Knuth (1998) has considered using TRANSCENDENTAL

bases. This leads to some rather unfamiliar results,
such as equating p to 1 in "base p;/" p�10p/.

See also BINARY, DECIMAL, DUODECIMAL, HEREDI-



TARY REPRESENTATION, HEXADECIMAL, OCTAL, QUA-

TERNARY, SEXAGESIMAL, TERNARY, VIGESIMAL
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Base Curve
DIRECTRIX (RULED SURFACE)

Base Manifold
The base manifold in a BUNDLE is analogous to the
domain for a set of functions. In fact, a bundle, by
definition, comes with a map to the base manifold,
often called p or projection.

For example, the base manifold to the TANGENT

BUNDLE of a MANIFOLD M is the MANIFOLD M . A
VECTOR FIELD is a function from the manifold to the
TANGENT BUNDLE, with the restriction that every
point gets mapped to a vector at that point. In
general, a BUNDLE has SECTIONS, at least locally,
which are maps from the base manifold to the
BUNDLE.

See also BUNDLE, MANIFOLD, SECTION (BUNDLE),
TANGENT BUNDLE, VECTOR BUNDLE

Base Space
The SPACE B of a FIBER BUNDLE given by the MAP f :
E 0 B; where E is the TOTAL SPACE of the FIBER

BUNDLE.

See also FIBER BUNDLE, TOTAL SPACE

Baseball
The numbers three and four appear prominently in
the game of baseball. There are three strikes for an
out, and three outs per inning, 3 � 3 �9 innings in a
game, giving 33 �27 outs per game (assuming no
extra innings). In addition, there are 3 �3 players per
team. Four balls are needed for a walk. The number
of bases can either be regarded as three (excluding
HOME PLATE) or four (including it).

See also BASEBALL COVER, HOME PLATE

Baseball Cover

A pair of identical plane regions (mirror symmetric
about two perpendicular lines through the center)
which can be stitched together to form a baseball (or
tennis ball). A baseball has a CIRCUMFERENCE of 9 1/8
inches. The practical consideration of separating the
regions far enough to allow the pitcher a good grip
requires that the "neck" distance be about 1 3/16
inches. The baseball cover was invented by Elias
Drake as a boy in the 1840s. (Thompson’s attribution
of the current design to trial and error development
by C. H. Jackson in the 1860s is apparently unsub-
stantiated, as discovered by George Bart.)
One way to produce a baseball cover is to draw the
regions on a SPHERE, then cut them out. However, it is
difficult to produce two identical regions in this
manner. Thompson (1996) gives mathematical ex-
pressions giving baseball cover curves both in the
plane and in 3-D. J. H. Conway has humorously
proposed the following "baseball curve conjecture:"
no two definitions of "the" baseball curve will give the
same answer unless their equivalence was obvious
from the start.

See also BASEBALL, HOME PLATE, TENNIS BALL

THEOREM, YIN-YANG
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Basepoint

See also LOOP

Basic Polynomial Sequence
A POLYNOMIAL SEQUENCE pn(x) is called the basic
polynomial sequence for a DELTA OPERATOR Q if



1. p0(x) �1;/
2. pn(0) �0 for all n �0,
3. Qpn(x) �npn �1(x):/

If pn(x) is a basic polynomial sequence for some DELTA

OPERATOR Q , then it is a BINOMIAL-TYPE SEQUENCE of
polynomials. Furthermore, if pn(x) is a BINOMIAL-TYPE

SEQUENCE of polynomials, then it is a basic polyno-
mial sequence for some DELTA OPERATOR.

See also BINOMIAL-TYPE SEQUENCE, DELTA OPERA-

TOR, POLYNOMIAL SEQUENCE, UMBRAL OPERATOR
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Basin of Attraction
The set of points in the space of system variables such
that initial conditions chosen in this set dynamically
evolve to a particular ATTRACTOR.

See also WADA BASIN

Basis
The word basis can arise in several different contexts.
Speaking in general terms, an object is "generated" by
a basis in whatever manner is appropriate. For
example, a VECTOR SPACE can have a BASIS which
SPANS the vector space by finite LINEAR COMBINA-

TIONS.

See also BASIS POINT, BASIS (TOPOLOGY), BASIS

(VECTOR SPACE), HAMEL BASIS, HILBERT BASIS,
ORTHONORMAL BASIS, VECTOR BASIS

Basis (Topology)
If X is a SET, a basis for a TOPOLOGY on X is a
collection B of SUBSETS of X (called basis elements)
satisfying the following properties.

1. For each x � X ; there is at least one basis element
B containing X .
2. If x belongs to the intersection of two basis
elements B1 and B2 ; then there is a basis element
B3 containing x such that B3 ƒB1 S B2/.
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Basis (Vector Space)
A basis of a VECTOR SPACE V is defined as a subset
v1 ; . . .  ; vn of vectors in V that are LINEARLY INDE-

PENDENT and SPAN V . Consequently, if
(v1 ; v2 ; . . . ; vn) is a list of vectors in V , then these
vectors form a basis if and only if every v � V can be

uniquely written as

v �a1b1 �a2b2 �. . .�anbn ;

where a1 ; . . . ; ap are elements of R or C: A VECTOR

SPACE V will have many different bases, but there are
always the same number of basis vectors in each of
them. The number of basis vectors in V is called the
DIMENSION of V . Every spanning list in a vector space
can be reduced to a basis of the vector space.

The simplest example of a basis is the standard basis
in Rn consisting of the coordinate axes. For example,
in R2 ; the standard basis consists of two VECTORS e1 �
(1; 0) and e2 �(0; 1): Any VECTOR w �(a; b) can be
written uniquely as the LINEAR COMBINATION/

w �ae1 �be2/. Indeed, a vector is defined by its
coordinates. The VECTORS v1 �(3; 2) and v2 �(2; 1)
are also a basis for R2 because any VECTOR w � (a ; b)
can be uniquely written as w � (�a � 2b)v1 �(2a �
3b)v2 : The above figure shows (0:6 ; �0:5)n �
(0:9; :02)m; which are linear combinations of the
basis f(0:6; �0 :5); (0:9; 0:2)g:/
Here is a Mathematica function which will return the
coefficients ai given a basis vi :

LinearCombination[v_List?MatrixQ, w_] : �
LinearSolve[Transpose[v], w]

For example, LinearCombo[{{1, 2}, {0, 1}}, {-3, 4}]
yields f3; �2g; since 3(�1; 2)�2(0; 1)�(�3; 4)/.

When a VECTOR SPACE is infinite dimensional, then a
basis exists, as long as one assumes the AXIOM OF

CHOICE. A subset of the basis which is linearly
independent and whose span is DENSE is called a
complete set, and is similar to a basis. When V is a
HILBERT SPACE, a complete set is called a HILBERT

BASIS.

See also BASIS, DIMENSION, HILBERT BASIS, LINEAR

COMBINATION, ORTHONORMAL BASIS, SPAN (VECTOR

SPACE), VECTOR SPACE



Basis Element
A collection B of subsets of a set X forming a
topological BASIS.

See also BASIS (TOPOLOGY)

Basis Point
One basis point is defined to be 0.01 PERCENTAGE

POINTS. Therefore, a change of 0.21% could also be
expressed as a change by 21 "basis points."

See also PERCENTAGE POINT

Basis Theorem
HILBERT BASIS THEOREM

Basler Problem
The problem of analytically finding the value of z(2);
where z(n) is the RIEMANN ZETA FUNCTION.

See also APÉ RY’S CONSTANT, RIEMANN ZETA FUNC-

TION

References
Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61,

67 �/8, 1988.

Basset Function
MODIFIED BESSEL FUNCTION OF THE SECOND KIND

Bat
CHEVRON

Batch
A set of values of similar meaning obtained in any
manner.
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Bateman Equation
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Bateman Function

kn(x) �
e�x

G(1 � 1
2n) 

U(�1
2n ; 0 ; 2x)

for x �0, where U is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND.

See also CONFLUENT HYPERGEOMETRIC DIFFERENTIAL

EQUATION, HYPERGEOMETRIC FUNCTION
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Batrachion
A class of CURVE defined at INTEGER values which
hops from one value to another. Their name derives
from the Greek word batraxion batrachion , which
means "small frog." Many batrachions are FRACTAL.
Examples include the BLANCMANGE FUNCTION, HOF-

STADTER-CONWAY $10,000 SEQUENCE, HOFSTADTER’S Q -

SEQUENCE, and MALLOWS’ SEQUENCE.
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Baudet’s Conjecture
If C1 ; C2 ; . . . ; f > Cr are sets of positive integers and

@
r

i �1
Ci �N ;

where N is the set of positive integers, then some Ci

contains arbitrarily long ARITHMETIC SEQUENCES. The
conjecture was proved in 1928 by B. L. van der
Waerden.

See also ARITHMETIC SEQUENCE, VAN DER WAERDEN’S

THEOREM

References
van der Waerden, B. L."How the Proof of Baudet’s Con-

jecture Was Found." Studies in Pure Mathematics (Pre-
sented to Richard Rado). London: Academic Press,
pp. 251�/60, 1971.

Bauer’s Identical Congruence
Let T(m) denote the set of the f(m) numbers less than
and RELATIVELY PRIME to m , where f(n) is the
TOTIENT FUNCTION. Define

fm(x)�
Y

t �T(m)

(x�t): (1)

Then a theorem of Lagrange states that

fp(x)�xf(p)�1 (mod p) (2)

for p an ODD PRIME (Hardy and Wright 1979, p. 98).

This can be generalized as follows. Let p be an ODD

PRIME DIVISOR of m and pa the highest POWER which
divides m , then

fm(x)�(xp�1�1)f(m)=(p�1) (mod pa) (3)



and, in particular,

fpa (x) �(xp�1 �1)pa �1 

(mod pa) : (4)

Now, if m �2 is EVEN and 2a is the highest POWER of 2
that divides m , then

fm(x) �(x2 �1)f(m) =2 (mod 2a) (5)

and, in particular,

f2a (x) �(x2 �1)2a�2 

(mod 2a): (6)

See also CONGRUENCE, LEUDESDORF THEOREM
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Bauer’s Theorem
Let m ]3 be an integer and let

f (x) �
Xn

k�0

akxn�k

be an INTEGER POLYNOMIAL that has at least one real
zero. Then f (x) has infinitely many PRIME DIVISORS

that are not congruent to 1 (mod m ) (Nagell 1951,
p. 168).

See also BAUER’S IDENTICAL CONGRUENCE, PRIME

DIVISOR
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Bauer-Muir Transformation
A transformation formula for CONTINUED FRACTIONS

(Lorentzen and Waadeland 1992) which can, for
example, be used to prove identities such as

1

1�
2�q

1 �
2�q2

1�
2 � q3

1 � � � �

� 1

2�
q

2 � q �
q2

2 � q2 �
q3

2 � q3 � � � �

(Berndt et al. ).

See also CONTINUED FRACTION
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Bauspiel
A construction for the RHOMBIC DODECAHEDRON.
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Baxter-Hickerson Function
In April 1999, Ed Pegg conjectured on sci.math that
there were only finitely many ZEROFREE cubes, to
which D. Hickerson responded with a counterexam-
ple. A few days later, Lew Baxter posted the slightly
simpler example

f (n) �1
3(2 � 105n �104n �2 � 103n �102n �10n �1);

which produces numbers whose cubes lack zeros. The
first few terms for n �0, 1, . . . are 2, 64037,
6634003367, 666334000333667, . . . (Sloane’s A052-
427). Primes occur for n �0, 1, 7, 133, . . . (Sloane’s
A051832) with no others 5470 (Weisstein, Dec. 15,
1999), corresponding to 2, 64037, . . . (Sloane’s
A051833).

See also NUMBER PATTERN, ZEROFREE
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Bayes’ Formula
BAYES’ THEOREM

Bayes’ Theorem
Let A and Bj be SETS. CONDITIONAL PROBABILITY

requires that

P ASBj

� �
�P(A)P(Bj½A); (1)

whereS denotes INTERSECTION ("and"), and also that

P ASBj

� �
�P BjSA
� �

�P(Bj)P(A½Bj): (2)

Therefore,

P(Bj½A)�
P(Bj)P(A½Bj)

P(A)
: (3)

Now, let

S�@
N

i�1
Ai; (4)



so Ai is an event in S and Ai S Aj �¥ for i "j; then

A �A S S �A S @
N

i�1
Ai

� �
�@

N

i�1
A S Aið Þ  (5)

P(A) �P @
N

i �1
A S Aið Þ

� �
�
XN

i�1

P AS Aið Þ: (6)

But this can be written

P(A) �
XN

i�1

P(Ai)P(A½Ai); (7)

so

P(Ai ½A) �
P(Ai)P(A½Ai)XN

j�1

P(Aj)P(A½Aj)

(8)

(Papoulis 1984, pp. 38 �/9).

See also CONDITIONAL PROBABILITY, INCLUSION-EX-

CLUSION PRINCIPLE, INDEPENDENT STATISTICS, TOTAL

PROBABILITY THEOREM
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Bayesian Analysis
A statistical procedure which endeavors to estimate
parameters of an underlying distribution based on
the observed distribution. Begin with a "PRIOR DIS-

TRIBUTION" which may be based on anything, includ-
ing an assessment of the relative likelihoods of
parameters or the results of non-Bayesian observa-
tions. In practice, it is common to assume a UNIFORM

DISTRIBUTION over the appropriate range of values for
the PRIOR DISTRIBUTION.

Given the PRIOR DISTRIBUTION, collect data to obtain
the observed distribution. Then calculate the LIKE-

LIHOOD of the observed distribution as a function of
parameter values, multiply this likelihood function by
the PRIOR DISTRIBUTION, and normalize to obtain a
unit probability over all possible values. This is called
the POSTERIOR DISTRIBUTION. The MODE of the dis-
tribution is then the parameter estimate, and "prob-
ability intervals" (the Bayesian analog of CONFIDENCE

INTERVALS) can be calculated using the standard
procedure. Bayesian analysis is somewhat controver-
sial because the validity of the result depends on how
valid the PRIOR DISTRIBUTION is, and this cannot be
assessed statistically.

See also MAXIMUM LIKELIHOOD, PRIOR DISTRIBUTION,
UNIFORM DISTRIBUTION
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Bays’ Shuffle
A shuffling algorithm used in a class of RANDOM

NUMBER generators.
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Beal’s Conjecture
A generalization of FERMAT’S LAST THEOREM which
states that if ax �by �cz ; where a , b , c , x , y , and z are
POSITIVE INTEGERS and x; y; z > 2; then a , b , and c
have a common factor. The conjecture was announced
in Mauldin (1997), and a cash prize of $75,000 has
been offered for its proof or a counterexample.

See also ABC CONJECTURE, FERMAT’S LAST THEOREM
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Beam Detector
N.B. A detailed online essay by S. Finch was the
starting point for this entry.



A "beam detector" for a given curve C is defined as a
curve (or set of curves) through which every LINE

tangent to or intersecting C passes. The shortest 1-
arc beam detector, illustrated in the upper left figure,
has length L1�p�2: The shortest known 2-arc beam
detector, illustrated in the right figure, has angles

u1:1:286 rad (1)

u2:1:191 rad; (2)

given by solving the simultaneous equations

2 cos u1�sin(1
2u2)�0 (3)

tan(1
2u1)cos(1

2u2)�sin(1
2u2)[sec2(1

2u2)�1]�2: (4)

The corresponding length is

L2�2p�2u1�u2�2 tan 1
2u1

 !
�sec 1

2u2

 !
�cos 1

2u2

 !
�tan 1

2u1

 !
sin 1

2u2

 !
�4:8189264563 . . . : (5)

A more complicated expression gives the shortest
known 3-arc length L3�4:799891547 . . ./. Finch de-
fines

L� inf
n]1

Ln (6)

as the beam detection constant, or the TRENCH

DIGGERS’ CONSTANT. It is known that L]p:/
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Bean Curve

The PLANE CURVE given by the Cartesian equation

x4�x2y2�y4�x(x2�y2):
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Beast Number
The occult "number of the beast" associated in the
Bible with the Antichrist. It has figured in many
numerological studies. It is mentioned in Revelation
13:18: "Here is wisdom. Let him that hath under-
standing count the number of the beast: for it is the
number of a man; and his number is 666." The origin
of this number is not entirely clear, although it may
be as simple as the number containing the concatena-
tion of one symbol of each type (exclude M�1000) in
ROMAN NUMERALS: DCLXVI�666 (Wells 1986).

The first few numbers containing the beast number in
their digits are 666, 1666, 2666, 3666, 4666, 5666,
6660, . . . (Sloane’s A051003).

The beast number has several interesting properties
which numerologists may find particularly interest-
ing (Keith 1982�/3). In particular, the beast number is
equal to the sum of the squares of the first 7 PRIMES

22�32�52�72�112�132�172�666; (1)

satisfies the identity

f(666)�6 � 6 � 6; (2)

where f is the TOTIENT FUNCTION, as well as the sum



X6 � 6

i �1

i �666 (3)

which is the sum of numbers on a roulette wheel
(Emanouilidis 1998). Emanouilidis (1998) also gives
additional more obscure connections between 666 and
the numbers on a roulette wheel. The number 666 is a
sum and difference of the first three 6th POWERS,

666 �16 �26 �36 (4)

(Keith). Another curious identity is that there are
exactly two ways to insert " �" signs into the
sequence 123456789 to make the sum 666, and
exactly one way for the sequence 987654321,

666 � 1 � 2 � 3 � 4 � 567 � 89

� 123 � 456 � 78 � 9 (5)

666 � 9 � 87 � 6 � 543 � 21 (6)

(Keith). 666 is a REPDIGIT, and is also a TRIANGULAR

NUMBER

T6 � 6 �T36 �666: (7)

In fact, it is the largest REPDIGIT TRIANGULAR NUMBER

(Bellew and Weger 1975 �/6). 666 is also a SMITH

NUMBER. The first 144 DIGITS of p �3; where p is PI,
add to 666. In addition 144 �(6 �6) �(6 �6) (Blatner
1997). Finally,

X5

i �0

2048i �691 (mod 666) : (8)

A number OF THE FORM 2i which contains the digits of
the beast number "666" is called an APOCALYPTIC

NUMBER, and a number having 666 digits is called an
APOCALYPSE NUMBER.

See also APOCALYPSE NUMBER, APOCALYPTIC NUM-

BER, BIMONSTER, MONSTER GROUP, ROMAN NUMERAL
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Beatty Sequence
The Beatty sequence is a SPECTRUM SEQUENCE with
an IRRATIONAL base. In other words, the Beatty
sequence corresponding to an IRRATIONAL NUMBER u

is given by ub c; 2 ub c; 3 ub c; . . ., where xb c is the FLOOR

FUNCTION. If a and b are POSITIVE IRRATIONAL

NUMBERS such that

1

a 
�

1

b 
�1;

then the Beatty sequences ab c; 2ab c; . . . and bb c;
2bb c; . . . together contain all the POSITIVE INTEGERS

without repetition.

The sequences for particular values of a and b are
given in the following table (Sprague 1963; Wells
1986, pp. 35 and 40), where f is the GOLDEN RATIO.

parameter Sloane sequence

/a �
ffiffiffi
2

p
/ A001951 1, 2, 4, 5, 7, 8, 9, 11, 12, . . .

/b �2 �
ffiffiffi
2

p
/ A001952 3, 6, 10, 13, 17, 20, 23, 27, 30, . . .

/a �
ffiffiffi
3

p
/ A022838 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, . . .

/b �1
2(3 �

ffiffiffi
3

p
)/ A054406 2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 26, . . .

/a�e/ A022843 2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29, . . .

/b�e=(e�1)/ A054385 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 18, . . .

/a�p/ A022844 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, . . .

/b�p=(p�1)/ A054386 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19,

. . .

/a�f/ A000201 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21,

. . .

/b�f2
/ A001950 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31,

34, . . .

See also FRACTIONAL PART, WYTHOFF ARRAY,
WYTHOFF’S GAME
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Beauzamy and Dégot’s Identity
For P , Q , R , and S POLYNOMIALS in n variables

[P � Q ; R � S] �
X

i1 ; ... ; in ]0

A

i1! � � � in! 
;

where

A �[R(i1 ; ... ; in)(D1 ; . . . ; Dn)Q(x1 ; . . . ; xn)

�P(i1 ; ... ; in)(D1 ; . . . ; Dn)S(x1 ; . . . ; xn)];

/Di �@=@xi is the DIFFERENTIAL OPERATOR, [X, Y ] is
the BOMBIERI INNER PRODUCT, and

P(i1 ; ... ; in) �Di1

1 � � �Din
n P :

See also REZNIK’S IDENTITY

Bed-of-Nails Function
SHAH FUNCTION

Bee

A 4-POLYHEX.
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Behrens-Fisher Test
FISHER-BEHRENS PROBLEM

Behrmann Cylindrical Equal-Area
Projection

A CYLINDRICAL EQUAL-AREA PROJECTION which uses a
standard parallel of fs�30:/

See also BALTHASART PROJECTION, CYLINDRICAL

EQUAL-AREA PROJECTION, EQUAL-AREA PROJECTION,
GALL ORTHOGRAPHIC PROJECTION, LAMBERT AZI-

MUTHAL EQUAL-AREA PROJECTION, PETERS PROJEC-

TION, TRISTAN EDWARDS PROJECTION
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Bei

The IMAGINARY PART of

Jn(xe3pi=4)�bern(x)�i bein(x): (1)

The function bein(x) has the series expansion

bein(x)�(1
2 x)n

X�
k�0

sin[(3
4n�

1
2k)p]

k!G(n� k � 1)
(1
4 x2)k; (2)

where G(x) is the GAMMA FUNCTION (Abramowitz and



Stegun 1972, p. 379).

The special case n �0 gives

J0 i
ffiffi
i

p
x

 !
�ber(x) �i bei(x) ; (3)

where J0(x) is the zeroth order BESSEL FUNCTION OF

THE FIRST KIND. The function bei0(x) �bei(x) has the
series expansion

bei(x) �
X�
n�0

( �1)n(1
2 x)2�4n

[(2n � 1)!]2 : (4)

See also BER, BESSEL FUNCTION, KEI, KELVIN FUNC-

TIONS, KER
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Bell Curve
GAUSSIAN DISTRIBUTION, NORMAL DISTRIBUTION

Bell Number
The number of ways a SET of n elements can be
PARTITIONED into nonempty SUBSETS is called a BELL

NUMBER and is denoted Bn: For example, there are
five ways the numbers f1; 2; 3g can be partitioned:

{{1},{2},{3}}, {{1, 2},{3}}, {{1, 3},{2}}, {{1}, {2, 3}}, and
{{1, 2, 3}}, so B3�5: B0�1 and the first few Bell
numbers for n�1, 2, . . . are 1, 2, 5, 15, 52, 203, 877,
4140, 21147, 115975, . . . (Sloane’s A000110).

Bell numbers are closely related to CATALAN NUM-

BERS. The diagram above shows the constructions
giving B3�5 and B4�15; with line segments repre-
senting elements in the same SUBSET and dots
representing subsets containing a single element
(Dickau). The INTEGERS Bn can be defined by the sum

Bn�
Xn

k�1

S(n; k); (1)

where S(n; k) is a STIRLING NUMBER OF THE SECOND

KIND, i.e., as the STIRLING TRANSFORM of the sequence
1, 1, 1, . . .

The Bell number are given by the EXPONENTIAL

GENERATING FUNCTION

een�1�
X�
n�0

Bn

n!
xn: (2)

The Bell numbers can also be generated using the
BELL TRIANGLE, using the RECURRENCE RELATION

Bn�1�
Xn

k�0

Bk

n
k

� �
; (3)

where a
b

� �
is a BINOMIAL COEFFICIENT, or using the

formula of Comtet (1974)

Bn� e�1
X2n

m�1

mn

m!

& ’
; (4)

where xd e denotes the CEILING FUNCTION.

The Bell number Bn is also equal to fn(1); where fn(x)
is an EXPONENTIAL POLYNOMIAL. DOBINSKI’S FORMULA

gives the nth Bell number

Bn�
1

e

X�
k�0

kn

k!
: (5)

Lovász (1993) showed that this formula gives the
asymptotic limit

Bn
n�1=2[l(n)]n�1=2el(n)�n�1; (6)

where l(n) is defined implicitly by the equation



l(n) log[ l(n)] �n: (7)

A variation of DOBINSKI’S FORMULA gives

Bn �
Xn

k �1

kn

k!

Xn�k

j�0

( �1)j

j! 
(8)

(Pitman 1997). de Bruijn (1958) gave the asymptotic
formula

ln Bn

n
�ln n �ln ln n �1 �

ln ln n

ln n
�

1

ln n

�
1

2

ln ln n

ln n

 !2

�O
ln ln n

(ln n)2

" #
(9)

TOUCHARD’S CONGRUENCE states

Bp�k �Bk �Bk �1 (mod p) ; (10)

when p is PRIME. The only PRIME Bell numbers for
n 51000 are B2 ; B3 ; B7 ; B13 ; B42 ; and B55 : The Bell
numbers also have the curious property that

B0 B1 B2 � � �  Bn

B1 B2 B3 � � �  Bn�1

n n  n ::: n
Bn Bn�1 Bn�2 � � �  B2n

��������

���������
Yn

i�1

i! (11)

(Lenard 1986), where the product is simply a SUPER-

FACTORIAL, the first few of which for n �0, 1, 2, . . . are
1, 1, 2, 12, 288, 34560, 24883200, . . . (Sloane’s
A000178).

See also BELL TRIANGLE, DOBINSKI’S FORMULA, EX-

PONENTIAL POLYNOMIAL, STIRLING NUMBER OF THE

SECOND KIND, TOUCHARD’S CONGRUENCE
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Bell Polynomial
The Bell polynomial are defined by

Bn; k(x1 ; x2 ; . . .)�
X

j1 �j2 �����k

j1 �2j2 �����n

n!

j1!j2! � � �
x1

1!

 !j1
x2

2!

 !j2

� � � :

They have GENERATING FUNCTION

X�
k �0

bk(x; x1 ; x2 ; . . .)

k!
tk �ex

X�
k �1

xk

k!
tk

 !
:

See also EXPONENTIAL POLYNOMIAL, IDEMPOTENT

NUMBER, LAH NUMBER
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Bell Triangle

A triangle of numbers which allow the BELL NUMBERS

to be computed using the RECURRENCE RELATION

Bn�1�
Xn

k�0

Bk

n
k

� �
:

See also BELL NUMBER, CLARK’S TRIANGLE, LEIBNIZ

HARMONIC TRIANGLE, LOSSNITSCH’S TRIANGLE, NUM-

BER TRIANGLE, PASCAL’S TRIANGLE, SEIDEL-ENTRIN-

GER-ARNOLD TRIANGLE

Bellows Conjecture
The conjecture proposed by Dennis Sullivan that all
FLEXIBLE POLYHEDRA keep a constant VOLUME as they



are flexed (Cromwell 1997). This conjecture was
proven by Connelly et al. (1997).

See also FLEXIBLE POLYHEDRON
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Beltrami Differential Equation
For a MEASURABLE FUNCTION m; the Beltrami differ-
ential equation is given by

fz̃ � mfz ;

where fz is a PARTIAL DERIVATIVE and z̃ denotes the
COMPLEX CONJUGATE of z .

See also QUASICONFORMAL MAP
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Beltrami Field
A VECTOR FIELD u satisfying the vector identity

u �(9 �u) �0

where A �B is the CROSS PRODUCT and 9�A is the
CURL is said to be a Beltrami field.

See also DIVERGENCELESS FIELD, IRROTATIONAL

FIELD, SOLENOIDAL FIELD

Beltrami Identity
An identity in CALCULUS OF VARIATIONS discovered in
1868 by Beltrami. The EULER-LAGRANGE DIFFEREN-

TIAL EQUATION is

@f

@y 
�

d

dx

@f

@yx

 !
�0: (1)

Now, examine the DERIVATIVE of f with respect to x

df

dx 
�

@f

@y
yx �

@f

@yx

yxx �
@f

@x 
: (2)

Solving for the @f/@y term gives

@f

@y
yx �

df

dx 
�

@f

@yx

yxx �
@f

@x 
: (3)

Now, multiplying (1) by yx gives

yx

@f

@y 
�yx

d

dx

@f

@yx

 !
�0: (4)

Substituting (3) into (4) then gives

df

dx 
�

@f

@yx

yxx �
@f

@x 
�yx

d

dx

@f

@yx

 !
�0 (5)

�
@f

@x 
�

d

dx
f �yx

@f

@yx

 !
�0 : (6)

This form is especially useful if fx �0, since in that
case

d

dx
f �yx

@f

@yx

 !
�0 ; (7)

which immediately gives

f �yx

@f

@yx

�C ; (8)

where C is a constant of integration (Weinstock 1974,
pp. 24 �/5; Arfken 1985, pp. 928 �/29; Fox 1988,
pp. 8 �/).

The Beltrami identity greatly simplifies the solution
for the minimal AREA SURFACE OF REVOLUTION about
a given axis between two specified points. It also
allows straightforward solution of the BRACHISTO-

CHRONE PROBLEM.

See also BRACHISTOCHRONE PROBLEM, CALCULUS OF

VARIATIONS, EULER-LAGRANGE DIFFERENTIAL EQUA-

TION, SURFACE OF REVOLUTION
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Beltrami’s Theorem
Let f : M 0 N be a GEODESIC MAPPING. If either M or
N has constant curvature, then both surfaces have
constant curvature (Ambartzumian 1982, p. 26;
Kreyszig 1991).

See also GEODESIC MAPPING
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Bend (Curvature)
The bend of a circle C mutually tangent to three other
circles is defined as the signed CURVATURE of C . If the
contacts are all external, the signs of the bends of all



four circles are taken as POSITIVE, whereas if one
circle surrounds the other three, the sign of this circle
is taken as NEGATIVE (Coxeter 1969). Bends can also
be defined for spheres.

See also CURVATURE, DESCARTES CIRCLE THEOREM,
SODDY CIRCLES
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Bend (Knot)
A KNOT used to join the ends of two ropes together to
form a longer length.
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Benford’s Law
A phenomenological law also called the first digit law,
first digit phenomenon, or leading digit phenomenon.
Benford’s law states that in listings, tables of statis-
tics, etc., the DIGIT 1 tends to occur with PROBABILITY

~30%, much greater than the expected 10% (i.e., one
digit out of 10). Benford’s law can be observed, for
instance, by examining tables of LOGARITHMS and
noting that the first pages are much more worn and
smudged than later pages (Newcomb 1881). While
Benford’s law unquestionably applies to many situa-
tions in the real world, a satisfactory explanation has
been given only recently through the work of Hill
(1996).

Benford’s law applies to data that are not dimension-
less, so the numerical values of the data depend on
the units. If there exists a universal probability
distribution P(x) over such numbers, then it must be
invariant under a change of scale, so

P(kx)�f (k)P(x): (1)

If f P (x ) dx�1, then f P (kx ) dx�1/k , and normal-
ization implies /f (k)�1=k/. Differentiating with re-
spect to k and setting k�1 gives

xP?(x)��P(x); (2)

having solution /P(x)�1=x/. Although this is not a
proper probability distribution (since it diverges),
both the laws of physics and human convention
impose cutoffs. For example, if street addresses are
distributed uniformly over the range of 1 to some
maximum cutoff value, then they’ll obey something
close to Benford’s law.

If many powers of 10 lie between the cutoffs, then the
probability that the first (decimal) digit is D is given
by the LOGARITHMIC DISTRIBUTION

PD�
g

D�1

D

P(x) dx

g
10

1

P(x) dx

�

ln
D � 1

D

 !
ln 10

�
ln(D � 1) � ln(D)

ln 10
(3)

for D�1, . . ., 9, illustrated above and tabulated
below.

D PD D PD

1 0.30103 6 0.0669468

2 0.176091 7 0.0579919

3 0.124939 8 0.0511525

4 0.09691 9 0.0457575

5 0.0791812

However, Benford’s law applies not only to scale-
invariant data, but also to numbers chosen from a
variety of different sources. Explaining this fact
requires a more rigorous investigation of CENTRAL

LIMIT-like theorems for the MANTISSAS of random
variables under MULTIPLICATION. As the number of
variables increases, the density function approaches
that of a LOGARITHMIC DISTRIBUTION. Hill (1996)
rigorously demonstrated that the "distribution of
distributions" given by random samples taken from
a variety of different distributions is, in fact, Ben-
ford’s law (Matthews 1999).

One striking example of Benford’s law is given by the
54 million real constants in Plouffe’s "Inverse Sym-
bolic Calculator" database, 30% of which begin with
the DIGIT 1. Taking data from several disparate
sources, the table below, shows the distribution of
first digits as compiles by Benford (1938) in his
original paper.



First Digit

Col. Title 1 2 3 4 5 6 7 8 9 Samples

A Rivers, Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335

B Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259

C Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104

D Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100

E Specific Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389

F Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703

G H.P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690

H Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800

I Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159

J Atomic Wgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91

K /n�1 ;
ffiffiffi
n

p
/ 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000

L Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560

M Reader’s
Digest

33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308

N Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741

O X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707

P Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458

Q Blackbody 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1165

R Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342

S /n1 ;n2 � � �n!/ 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900

T Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1011

Probable
Error

9
0.8

9
0.4

9
0.4

9
0.3

9
0.2

9
0.2

9
0.2

9
0.3

The following table gives the distribution of the first
digit of the mantissa following Benford’s Law using a
number of different methods.

method Sloane sequence

Sainte-Lague A055439 1, 2, 3, 1, 4, 5, 6, 1,
2, 7, 8, 9, . . .

d’Hondt A055440 1, 2, 1, 3, 1, 4, 2, 5,
1, 6, 3, 1, . . .

largest remainder,
Hare quotas

A055441 1, 2, 3, 4, 1, 5, 6, 7,
1, 2, 8, 1, . . .

largest remainder,
Droop quotas

A055442 1, 2, 3, 1, 4, 5, 6, 1,
2, 7, 8, 1, . . .
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Benham’s Wheel

An optical ILLUSION consisting of a spinnable top
marked in black with the pattern shown above. When



the wheel is spun (especially slowly), the black broken
lines appear as green, blue, and red colored bands!
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Benjamin-Bona-Mahony Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �uxxx �uux �0

(Arvin and Goldstein 1985; Zwillinger 1997, p. 130).
A generalized version is given by

ut �92ut �}( f(u)) �0

(Goldstein and Wichnoski 1980; Zwillinger 1997,
p. 132).
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Bennequin’s Conjecture
A BRAID with M strands and R components with P
positive crossings and N negative crossings satisfies

½P �N ½52U �M �R 5P �N ;

where U is the UNKNOTTING NUMBER. While the
second part of the INEQUALITY was already known
to be true (Boileau and Weber, 1983, 1984) at the time
the conjecture was proposed, the proof of the entire
conjecture was completed using results of Kronhei-
mer and Mrowka on MILNOR’S CONJECTURE (and,
independently, using MENASCO’S THEOREM).

See also BRAID, MENASCO’S THEOREM, MILNOR’S

CONJECTURE, UNKNOTTING NUMBER
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Benson’s Formula
An equation for a LATTICE SUM with n �3

�b3(1) �
X

?
�

i; j; k ���

( �1)i�j�k�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 � j2 � k2

p
�12p

X�
m; n�1 ; 3 ; ...

sech2(1
2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �n2

p
) :

Here, the prime denotes that summation over (0, 0, 0)
is excluded. The sum is numerically equal to
�1:74756 . . . ; a value known as "the" MADELUNG

CONSTANT.

See also MADELUNG CONSTANTS
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Ber

The REAL PART of

Jn(xe3pi=4)�bern(x)�i bein(x): (1)

The function bern(x) has the series expansion

bern(x)�(1
2x)n

X�
k�0

cos[(3
4n�

1
2k)p]

k!G(n� k � 1)
(1
4x

2)k; (2)



where G(x) is the GAMMA FUNCTION (Abramowitz and
Stegun 1972, p. 379).

The special case n �0 gives

J0 i
ffiffi
i

p
x

 !
�ber(x) �i bei(x); (3)

where J0(x) is the zeroth order BESSEL FUNCTION OF

THE FIRST KIND. The function ber0(x) �ber(x) has the
series expansion

ber(x) �
X�
n�0

( �1)n(1
2x)4n

[(2n)!]2 : (4)

See also BEI, BESSEL FUNCTION, KEI, KELVIN FUNC-

TIONS, KER
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Beraha Constants
The nth Beraha constant (or number) is given by

B(n) �2 �2 cos
2 p

n

 !
:

They appear to be ROOTS of the CHROMATIC POLY-

NOMIALS of planar triangular GRAPHS. B(5) is f �1;
where f is the GOLDEN RATIO, B(7) is the SILVER

CONSTANT, and B(10) � f �2: The following table
summarizes the first few Beraha numbers.

n /B(n)/ Approx.

1 4

2 0

3 1

4 2

5 /
1
2(3 �

ffiffiffi
5

p
)/ 2.618

6 3

7 /2 �2 cos(2
7 p)/ 3.247

8 /2 �
ffiffiffi
2

p
/ 3.414

9 /2 �2 cos(2
9 p)/ 3.532

10 /
1
2(5�

ffiffiffi
5

p
)/ 3.618

See also CHROMATIC POLYNOMIAL, GOLDEN RATIO,
SILVER CONSTANT
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Berezin Transform
The operator B̃ defined by

B̃f (x)�gD

(1 � ½z½2)2

½1 � zw̄½4
f (w) dA(w)

for z �D; where D is the unit open disk and w̄ is the
COMPLEX CONJUGATE (Hedenmalm et al. 2000, p. 29).
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Berge’s Theorem
A MATCHING is maximal IFF it contains no AUGMENT-

ING PATH.

See also MATCHING
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Berger-Kazdan Comparison Theorem
Let M be a compact n -D MANIFOLD with INJECTIVITY

radius inj(M): Then

Vol(M) ]
cn inj(M)

p
;

with equality IFF M is ISOMETRIC to the standard
round SPHERE Sn with RADIUS inj(M) ; where cn(r) is
the VOLUME of the standard n -HYPERSPHERE of
RADIUS r .

See also BLASCHKE CONJECTURE, HYPERSPHERE,
INJECTIVE, ISOMETRY
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Bergman Kernel
A Bergman kernel is a function of a COMPLEX

VARIABLE with the "reproducing kernel" property
defined for any DOMAIN in which there exist NONZERO

ANALYTIC FUNCTIONS of class l2(d) with respect to the
LEBESGUE MEASURE dv .
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Bergman Space
Let G be an open subset of the COMPLEX PLANE C ; and
let L2

a(G) denote the collection of all ANALYTIC FUNC-

TIONS f : G 0 C whose MODULUS is square integrable
with respect to AREA measure. Then L2

a(G); sometimes
also denoted A2(G) ; is called the Bergman space for G .
Thus, the Bergman space consists of all the ANALYTIC

FUNCTIONS in L2(G): The Bergman space can also be
generalized to LP

a (G); where 0 Bp B�:/

See also HARDY SPACE
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Berlekamp-Massey Algorithm
If a sequence takes only a small number of different
values, then by regarding the values as the elements
of a FINITE FIELD, the Berlekamp-Massey algorithm is
an efficient procedure for finding the shortest linear
recurrence from the field that will generate the
sequence.

See also REED-SLOANE ALGORITHM
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Berlekamp-Zassenhaus Algorithm

An algorithm that can be used to find subsets S of a
set for which the product of elements of S of a set of
monic irreducible polynomials in ZP for which the
product of the elements of S has integer coefficients
(van Hoeij 2000).
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Bernoulli Differential Equation

dy

dx
�p(x)y�q(x)yn: (1)

Let v�y1�n for n"1; then

dv

dx
�(1�n)y�n dy

dx
: (2)

Rewriting (1) gives

y�n dy

dx
�q(x)�p(x)y1�n�q(x)�vp(x): (3)

Plugging (3) into (2),

dv

dx
�(1�n)[q(x)�vp(x)]: (4)

Now, this is a linear FIRST-ORDER ORDINARY DIFFER-

ENTIAL EQUATION OF THE FORM

dv

dx
�vP(x)�Q(x); (5)

where P(x)�(1�n)p(x) and Q(x)�(1�n)q(x): It can
therefore be solved analytically using an INTEGRAT-

ING FACTOR

v�
g eg P(x) dxQ(x) dx � C

eg P(x) dx

�
(1 � n)g e(1�n)g p(x) dxq(x) dx � C

e(1�n)g p(x) dx
; (6)

where C is a constant of integration. If n�1, then
equation (1) becomes

dy

dx
�y(q�p) (7)

dy

y
�(q�p) dx (8)

y�C2eg [q(x)�p(x)] dx: (9)

The general solution is then, with C1 and C2 con-

stants,

y�

(1 � n)g e(1�n)g p(x) dxq(x) dx � C1

e(1�n)g p(x) dx

2
6664

3
7775

1=(1�n)

for n"1

C2eg [(q(x)�p(x)] dx for n�1:

8>>>>>><
>>>>>>:

(10)
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Bernoulli Distribution
A STATISTICAL DISTRIBUTION given by

P(n)�
q�1�p for n�0
p for n�1

�
(1)

�pn(1�p)1�n for n�0; 1: (2)

The distribution of heads and tails in COIN TOSSING is
a Bernoulli distribution with p�q�1=2: The MO-

MENT-GENERATING FUNCTION of the Bernoulli distri-
bution is

M(t)� etnh i�
X1

n�0

etnpn(1�p)1�n�e0(1�p)�etp; (3)

so

M(t)�(1�p)�pet (4)

M?(t) � pet (5)

Mƒ(t) � pet (6)

M(n)(t)�pet; (7)

and the MOMENTS about 0 are

m?1�m�M?(0)�p (8)

m?2�Mƒ(0)�p (9)

m?n�M(n)(0)�p: (10)

The MOMENTS about the MEAN are

m2�m?2�(m?1)2�p�p2�p(1�p) (11)



m3 � m?3 �3m?2 m?1 �2(m?1)3 �p �3p2 �2p3

�p(1 �p)(1 �2p) (12)

m4 � m?4 �4m?3 m?1 �6m?2(m ?1)2 �3(m?1)4

�p �4p2 �6p3 �3p4 �p(1 �p)(3p2 �3p �1): (13)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are
then

m �p (14)

s2 � m2 �p(1 �p) (15)

g1 �
m3

s3

�
p(1 � p)(1 � 2p)

[p(1 � p)]3 =2 �
1 � 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1 � p)

p (16)

g2 �
m4

s4

�3 �
p(1 � 2p)(2p2 � 2p � 1)

p2(1 � p)2 �3

�
6p2 � 6p � 1

p(1 � p)
: (17)

To find an estimator p̂ for the mean of a Bernoulli
population with actual mean p , let N trials be made
and suppose n successes are obtained. Assume an
estimator given by

§
n

N
; (18)

so that the probability of obtaining the observed n
successes in N trials is then

N
n

� �
pn(1 �p)N �n : (19)

The expectation value of the estimator p̂ is therefore
given by

p̂h i$
XN

n�0

p
N
n

� �
pn(1�p)N�n

�(1�p)N 1

1 � p

 !N

p�p; (20)

so ph i is indeed an UNBIASED ESTIMATOR for the
population mean p .

See also BERNOULLI TRIAL, BINOMIAL DISTRIBUTION,
COIN TOSSING, RUN
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Bernoulli Function
BERNOULLI POLYNOMIAL

Bernoulli Inequality

(1�x)n > 1�nx; (1)

where x >�1"0 is a REAL NUMBER and n �1 an
INTEGER. This inequality can be proven by taking a
MACLAURIN SERIES of (1�x)n;

(1�x)n�1�nx�1
2n(n�1)x2�1

6n(n�1)(n�2)x3�� � � : (2)

Since the series terminates after a finite number of
terms for INTEGRAL n , the Bernoulli inequality for
x �0 is obtained by truncating after the first-order
term.
When �1BxB0; slightly more finesse is needed. In
this case, let y� ½x½��x > 0 so that 0ByB1; and
take

(1�y)n�1�ny�1
2n(n�1)y2�1

6n(n�1)(n�2)y3�� � � : (3)

Since each POWER of y multiplies by a number B1
and since the ABSOLUTE VALUE of the COEFFICIENT of
each subsequent term is smaller than the last, it
follows that the sum of the third order and subse-
quent terms is a POSITIVE number. Therefore,

(1�y)n > 1�ny; (4)

or

(1�x)n > 1�nx; for �1BxB0; (5)

completing the proof of the INEQUALITY over all
ranges of parameters.

For x >�1"0; the following generalizations of Ber-
noulli inequality are valid for real exponents:

(1�x)a > 1�ax if a�1 or aB0; (6)

and

(1�x)a
B1�ax if 0BaB1 (7)

(Mitrinovic 1970).
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Bernoulli Lemniscate
LEMNISCATE

Bernoulli Number
There are two definitions for the Bernoulli numbers.
In modern usage, the Bernoulli numbers are written
Bn; while the Bernoulli numbers encountered in older
literature (where they are confusingly also denoted
Bn) are distinguished by writing them as B�:

n In each
case, the Bernoulli numbers are a special case of the
BERNOULLI POLYNOMIALS Bn(x) or B�

n(x) with Bn�
Bn(0) and B�

n�B�
n(0):/



The older definition of the Bernoulli numbers, no
longer in widespread use, defines B�

n using the
equations

x

ex � 1
�

x

2
�1�

X�
n�1

(�1)n�1B�
nx2n

(2n)!

�
B�

1x2

2!
�

B�
2x4

4!
�

B�
3x6

6!
�� � � (1)

for ½x½B2p , or

1�
x

2
cot

x

2

 !
�
X�
n�1

B�
nx2n

(2n)!

�
B�

1x2

2!
�

B�
2x4

4!
�

B�
3x6

6!
�� � � (2)

for ½x½Bp (Whittaker and Watson 1990, p. 125).
Gradshteyn and Ryzhik (2000) denote these numbers
B�

n; while Bernoulli numbers defined by the newer
(National Bureau of Standards) definition are de-
noted Bn: The B�

n Bernoulli numbers may be calcu-
lated from the integral

B�
n�4n g

�

0

t2n�1 dt

e2pt � 1
; (3)

and analytically from

B�
n�

2(2n)!

(2p)2n

X�
p�1

p�2n�
2(2n)!

(2p)2n z(2n) (4)

for n�1, 2, . . ., where z(z) is the RIEMANN ZETA

FUNCTION.

The first few Bernoulli numbers b�
n are

B�
1�

1
6

B�
2�

1
30

B�
3�

1
42

B�
4�

1
30

B�
5�

5
66

B�
6�

691
2;730

B�
7�

7
6

B�
8�

3;617
510

B�
9�

43;867
798

B�
10�

174;611
330

B�
11�

854;513
138 :

Bernoulli numbers defined by the modern definition

are denoted Bn and sometimes called "even-index"
Bernoulli numbers. These are the Bernoulli numbers
returned, by example, by the Mathematica function
BernoulliB[n ]. The first few are

B0�1

B1��1
2

B2�
1
6

B4��1
30

B6�
1

42

B8��1
30

B10�
5
66

B12�� 691
2;730

B14�
7
6

B16��3;617
510

B18�
43;867

798

B20��174;611
330

B22�
854;513

138

(Sloane’s A000367 and A002445), with

B2n�1�0 (5)

for n�1, 2, . . . The Bernoulli numbers Bn are a
superset of the archaic ones B�

n since

Bn�

1 for n�0
�1

2 for n�1

(�1)(n=2)�1B�
n=2 for n even

0 for n odd:

8>><
>>: (6)

The Bn can be defined by the identity

x

ex � 1
�
X�
n�0

Bnxn

n!
: (7)

These relationships can be derived using the gener-
ating function

F(x; t)�
X�
n�0

Bn(x)tn

n!
; (8)

which converges uniformly for ½t½B2p and all x
(Castellanos 1988). Taking the partial derivative
gives

@F(x; t)

@x
�
X�
n�0

Bn�1(x)tn

(n � 1)!
�t

X�
n�0

Bn(x)tn

n!
�tF(x; t): (9)

The solution to this differential equation can be found



using SEPARATION OF VARIABLES as

F(x; t)�T(t)ext; (10)

so integrating gives

g
1

0

F(x; t) dx�T(t)g
1

0

ext dx�T(t)
et � 1

t
: (11)

But integrating (11) explicitly gives

g
1

0

F(x; t) dx�
X�
n�0

tn

n! g
1

0

Bn(x) dx

�1�
X�
n�0

tn

n! g
1

0

Bn(x) dx�1; (12)

so

T(t)
et � 1

t
�1: (13)

Solving for T(t) and plugging back into (10) then gives

text

et � 1
�
X�
n�0

Bn(x)tn

n!
(14)

(Castellanos 1988). Setting x�0 and adding t=2 to
both sides then gives

1
2t coth(1

2t)�
X�
n�0

B2nt2n

(2n)!
: (15)

Letting t�2ix then gives

x cot x�
X�
n�0

(�1)nB2n

(2x)2n

(2n)!
(16)

for x � [�p; p]: The Bernoulli numbers may also be
calculated from the integral

Bn�
n!

2pi g
z

ez � 1

dz

zn�1
; (17)

or from

Bn�lim
x00

dn

dxn

x

ex � 1
: (18)

The Bernoulli numbers satisfy the identity

k�1
1

� �
Bk�

k�1
2

� �
Bk�1�� � �� k�1

k

� �
B1�B0�0; (19)

where (n
k) is a BINOMIAL COEFFICIENT. They also sa-

tisfy the nice sum identity

Xn

i�0

(1 � 21�i)(1 � 2i�n�1)Bn�iBi

(n � i)!i!
�

(1 � n)Bn

n!
(20)

(Gosper).

An ASYMPTOTIC SERIES for the even Bernoulli num-
bers is

B2n
(�1)n�14
ffiffiffiffiffiffi
pn

p n

pe

 !2n

: (21)

Bernoulli numbers appear in expressions OF THE

FORM an
k�1 kp; where p�1, 2, . . . Bernoulli numbers

also appear in the series expansions of functions
involving tan x; cot x; csc x; ln½sin x½; ln½cos x½;
ln½tan x½; tanh x; coth x; and csch x: An analytic
solution exists for EVEN orders,

B2n�
(�1)n�12(2n)!

(2p)2n

X�
p�1

p�2n�
(�1)n�12(2n)!

(2p)2n z(2n) (22)

for n�1, 2, . . ., where z(2n) is the RIEMANN ZETA

FUNCTION. Another intimate connection with the
RIEMANN ZETA FUNCTION is provided by the identity

Bn�(�1)n�1nz(1�n): (23)

The DENOMINATOR of B2k is given by the VON STAUDT-

CLAUSEN THEOREM

denom(B2k)�
Y2k�1

p prime

(p�1)½2k

p; (24)

which also implies that the DENOMINATOR of B2k is
SQUAREFREE (Hardy and Wright 1979). Another
curious property is that the fraction part of Bn in
DECIMAL has a DECIMAL PERIOD which divides n , and
there is a single digit before that period (Conway
1996).

Bernoulli first used the Bernoulli numbers while
computing an

k�1kp
/. He used the property of the

FIGURATE NUMBER TRIANGLE that

Xn

i�0

aij�
(n � 1)anj

j � 1
; (25)

along with a form for anj which he derived inductively
to compute the sums up to n�10 (Boyer 1968, p. 85).
For p �Z > 0; the sum is given by

Xn

k�1

kp�
(B � n � 1)[p�1] � Bp�1

p � 1
; (26)

where the NOTATION B[k] means the quantity in
question is raised to the appropriate POWER k , and
all terms OF THE FORM Bm are replaced with the
corresponding Bernoulli numbers Bm: Written expli-
citly in terms of a sum of POWERS,

Xn

k�1

kp�np�
Xp

k�0

Bkp!

k!(p � k � 1)!
np�k�1: (27)

It is also true that the COEFFICIENTS of the terms in



such an expansion sum to 1 (which Bernoulli stated
without proof). Ramanujan gave a number of curious
infinite sum identities involving Bernoulli numbers
(Berndt 1994).

G. J. Fee and S. Plouffe have computed B200;000 ;
which has 
800; 000 DIGITS (Plouffe). Plouffe and
collaborators have also calculated Bn for n up to
72,000.

See also ARGOH’S CONJECTURE, BERNOULLI FUNC-

TION, BERNOULLI NUMBER OF THE SECOND KIND,
BERNOULLI POLYNOMIAL, DEBYE FUNCTIONS, EULER-

MACLAURIN INTEGRATION FORMULAS, EULER NUM-

BER, FIGURATE NUMBER TRIANGLE, GENOCCHI NUM-

BER, MODIFIED BERNOULLI NUMBER, PASCAL’S

TRIANGLE, RIEMANN ZETA FUNCTION, VON STAUDT-

CLAUSEN THEOREM
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Bernoulli Number of the Second Kind
A number defined by bn�bn(0); where bn(x) is a
BERNOULLI POLYNOMIAL OF THE SECOND KIND (Roman
1974, p. 294), also called Cauchy numbers of the first
kind. The first few for n � 0, 1, 2, . . . are 1, 1/2,�1=6;
1/4,�19=30; 9/4, . . . (Sloane’s A006232 and A006233).
They are given by

bn�g
1

0

(x)n dx;

where (x)n is a FALLING FACTORIAL, and have EXPO-

NENTIAL GENERATING FUNCTION

E(x)�
x

ln(1 � x)
�1�

1!

2
x�

2!

6
x2�

3!

4
x3�� � � :

See also BERNOULLI NUMBER, BERNOULLI POLYNO-

MIAL OF THE SECOND KIND
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Bernoulli Polynomial

There are two definitions of Bernoulli polynomials in
use. The nth Bernoulli polynomial is denoted here by
Bn(x) (Abramowitz and Stegun 1972), and the archaic
form of the Bernoulli polynomial by B�

n(x) (or some-
times fn(x)): When evaluated at zero, these defini-
tions correspond to the BERNOULLI NUMBERS,

Bn�Bn(0) (1)

B�
n�B�

n(0): (2)

The Bernoulli polynomials are an APPELL SEQUENCE

with

g(t)�
et � 1

t
(3)

(Roman 1984, p. 31), giving the GENERATING FUNC-

TION

tetx

et � 1
�
X�
n�0

Bn(x)
tn

n!
(4)

(Abramowitz and Stegun 1972, p. 804), first obtained
by Euler (1738). The first few Bernoulli polynomials
are

B0(x)�1

B1(x)�x�1
2

B2(x)�x2�x�1
6

B3(x)�x3�3
2x

2�1
2x

B4(x)�x4�2x3�x2� 1
30

B5(x)�x5�5
2x

4�5
3x

3�1
6x

B6(x)�x6�3x5�5
2x

4�1
2x

2� 1
42:

Whittaker and Watson (1990, p. 126) define an older
type of "Bernoulli polynomial" by writing

t
ezt � 1

et � 1
�
X�
n�1

fn(z)tn

n!
(5)

instead of (5). This gives the polynomials

fn(x)�Bn(x)�Bn; (6)

where Bn is a BERNOULLI NUMBER, the first few of
which are

f1(x)�x

f2(x)�x2�x

f3(x)�x3�3
2x

2�1
2x

f4(x)�x4�2x3�x2

f5(x)�x5�5
2x

4�5
3x

3�1
6x:

The Bernoulli polynomials also satisfy

Bn(1)�(�1)nBn(0) (7)

and

Bn(1�x)�(�1)nBn(x) (8)

(Lehmer 1988), as well as the relation

Bn(x�1)�Bn(x)�nxn�1 (9)

(Whittaker and Watson 1990, p. 127).
Bernoulli (1713) defined the polynomials in terms of
sums of the POWERS of consecutive integers,

Xm�1

k�0

kn�1�
1

n
[Bn(m)�Bn(0)]: (10)

The Bernoulli polynomials satisfy the RECURRENCE

RELATION

dBn

dx
�nBn�1(x) (11)

(Appell 1882), and obey the identity

Bn(x)�(B�x)n; (12)

where Bk is interpreted here as Bk(x): Hurwitz gave
the FOURIER SERIES

Bn(x)��
n!

(2pi)n

X
?

�

k���

k�ne2pikx; (13)

for 0BxB1; where the prime in the summation
indicates that the term k�0 is omitted. Performing
the sum gives

Bn(x)��
n!

(2pi)n [(�1)nLin(e�2pix)�Lin(e2pix)]; (14)

where Lin(x) is the POLYLOGARITHM function. Raabe
(1851) found

1

m

Xm�1

k�0

Bn x�
k

m

 !
�m�n Bn(mx): (15)



A sum identity involving the Bernoulli polynomials is

Xm

k �0

m
k

� �
Bk( a)Bm�k(b)

��(m �1)Bm( a � b) �m(a � b �1)Bm�1(a � b) (16)

for m an INTEGER. A sum identity due to S. M. Ruiz is

Xn

k �0

(�1)k�n n
k

� �
Bn(k) �n!; (17)

where (n
k) is a BINOMIAL COEFFICIENT. The Bernoulli

polynomials are also given by the formula

Bn(x) �Bn(0) �
Xn

k�1

n

k
S(n �1; k �1)(x)k ; (18)

where S(n; m) is a STIRLING NUMBER OF THE SECOND

KIND and (x)k is a FALLING FACTORIAL (Roman 1984,
p. 94). A general identity is given by

(n)mxn�m �
Xn

k �m

(n)k

(k � m � 1)!
Bn�k(x) ; (19)

which simplifies to

nxn�1 �
Xn

k�1

n
k

� �
Bn�k(x) (20)

(Roman 1984, p. 97). Gosper gave the identity

Xi

j�0

[2(i � j) � 1]32f (2(2f �1)�1)B2(i �j)B2j�1(1
3)

[2(i � j)]!(2j � 1)!

�
2 � 32(i�1)(22i�1 � 1)B2i �1(1

3) � (i � 1
2)B2i

(2i)! 
: (21)

Roman (1984, p. 93) defines a generalization B( a)
n (x) of

the Bernoulli numbers with an additional free para-
meter such that Bn(x) �B(1)

n (x) :/

See also BERNOULLI NUMBER, BERNOULLI POLYNO-

MIAL OF THE SECOND KIND, EULER-MACLAURIN

INTEGRATION FORMULAS, EULER POLYNOMIAL
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Bernoulli Polynomial of the Second Kind
Polynomials bn(x) which form a SHEFFER SEQUENCE

with

g(t) �
t

et � 1 
(1)

f (t) �et �1; (2)

giving GENERATING FUNCTION

X�
k �0

bk(x)

k!
tk �

t(t � 1)x

ln(1 � t) 
: (3)

Roman (1984) defines BERNOULLI NUMBERS OF THE

SECOND KIND as bn �bn(0): They are related to the
STIRLING NUMBERS OF THE FIRST KIND s(n ; m) by

bn(x)�bn(0)�
Xn

k�1

n

k
s(n�1; k�1)xk (4)

(Roman 1984, p. 115), and obey the reflection formula

bn(1
2n�1�x)�(�1)nbn(1

2n�1�x) (5)

(Roman 1984, p. 119).

The first few Bernoulli polynomials of the second kind
are

b0(x)�1
b1(x)�1

2(2x�1)

b2(x)�1
6(6x2�1)

b3(x)�1
4(4x3�6x2�1)

b4(x)� 1
30(30x4�120x3�120x2�19):

See also BERNOULLI NUMBER OF THE SECOND KIND,
BERNOULLI POLYNOMIAL, SHEFFER SEQUENCE, STIR-

LING NUMBER OF THE FIRST KIND
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Bernoulli Scheme
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Bernoulli Trial
An experiment in which s TRIALS are made of an
event, with probability p of success in any given
TRIAL.

See also BERNOULLI DISTRIBUTION, COIN TOSSING,
RUN
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Bernoulli’s Method
In order to find a root of a polynomial equation

a0xn �a1xn�1 �� � ��an �0 ; (1)

consider the difference equation

a0y(t �n) �a1y(t �n �1) �� � ��any(t);

which is known to have solution

y(t) �w1xt
1 �w2xt

2 �� � ��wnxt
n �� � � ; (2)

where w1 ; w2 ; . . ./, are arbitrary functions of t with
period 1, and x1 ; . . . ; xn are roots of (1). In order to
find the absolutely greatest root (1), take any arbi-
trary values for y(0) ; y(1) ; . . . ; y(n �1): By repeated
application of (2), calculate in succession the values
y(n) ; y(n �1); y(n �2); . . . Then the ratio of two
successive members of this sequence tends in general
to a limit, which is the absolutely greatest root of (1).

See also ROOT
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Bernoulli’s Paradox
Suppose the HARMONIC SERIES converges to h :

X�
k�1

1

k 
�h:

Then rearranging the terms in the sum gives

h �1 �h;

which is a contradiction.

See also HARMONIC SERIES
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Bernoulli’s Theorem
WEAK LAW OF LARGE NUMBERS

BernoulliB
BERNOULLI NUMBER, BERNOULLI POLYNOMIAL

Bernstein Minimal Surface Theorem
If a MINIMAL SURFACE is given by the equation z �
f (x; y) and f has CONTINUOUS first and second
PARTIAL DERIVATIVES for all REAL x and y , then f is
a PLANE.

See also MINIMAL SURFACE
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Bernstein Polynomial
The POLYNOMIALS defined by

Bi ; n(t) �
n
i

� �
ti(1 �t)n�i ;

where (n
k) is a BINOMIAL COEFFICIENT. The Bernstein

polynomials of degree n form a basis for the POWER -
POLYNOMIALS of degree n .

Another form of Bernstein polynomials is given by

Bn(f ; x) �
Xn

j�0

n
j

� �
xj(1 �x)n �jf

j

n

 !

(Gzyl and Palacios 1997, Mathé 1999).

See also BÉ ZIER CURVE
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Bernstein’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let En(f ) be the error of the best uniform approxima-
tion to a REAL function f (x) on the INTERVAL [�1; 1] by
REAL POLYNOMIALS of degree at most n . If

a(x)� xj j; (1)

then Bernstein showed that

0:267 . . .B lim
n0�

2nE2n(a)B0:286: (2)

He conjectured that the lower limit (/b) was b�1=(2�ffiffiffi
p

p
): However, this was disproven by Varga and

Carpenter (1987) and Varga (1990), who computed

b�0:2801694990 . . . : (3)

For rational approximations p(x)=q(x) for p and q of
degree m and n , D. J. Newman (1964) proved

1
2 e�9

ffiffi
n

p
5En; n(a)53e�

ffiffi
n

p
(4)

for n ] 4: Gonchar (1967) and Bulanov (1975) im-
proved the lower bound to

e�p
ffiffiffiffiffiffiffi
n�1

p
5En; n(a)53e�

ffiffi
n

p
: (5)

Vjacheslavo (1975) proved the existence of POSITIVE

constants m and M such that

m5ep
ffiffi
n

p
En; n(a)BM (6)

(Petrushev 1987, pp. 105�/06). Varga et al. (1993)
conjectured and Stahl (1993) proved that

lim
n0�

ep
ffiffiffiffi
2n

p
E2n; 2n(a)�8: (7)
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Bernstein’s Inequality
Let P be a POLYNOMIAL of degree n with derivative P?:
Then

P?k k�5n Pk k�;

where

Pk k��max
zj j�1

P(z)j j:

Bernstein’s Polynomial Theorem
If g(u) is a trigonometric POLYNOMIAL of degree m
satisfying the condition g(u)j j51 where u is arbitrary
and real, then g?(u)5m:/
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Bernstein-Bézier Curve
BÉZIER CURVE

Bernstein-Szego Polynomials
The POLYNOMIALS on the interval [�1; 1] associated
with the WEIGHT FUNCTIONS

w(x)�(1�x2)�1=2

w(x) � (1 � x2)1=2

w(x)�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � x

1 � x

s
;

also called BERNSTEIN POLYNOMIALS.
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Berry Conjecture
The longstanding conjecture that the nonimaginary
solutions En of

z(1
2�iEn)�0;

where z(z) is the RIEMANN ZETA FUNCTION, are the
EIGENVALUES of an "appropriate" HERMITIAN OPERA-

TOR H . Berry and Keating (1999) further conjecture
that this operator is



H �xp ��i x
d

dx 
�

1

2

 !
;

where x and p are the position and conjugate
momentum operators, respectively.

See also RIEMANN HYPOTHESIS, RIEMANN ZETA FUNC-

TION
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Berry Paradox
There are several versions of the Berry paradox, the
original version of which was published by Bertrand
Russell and attributed to Oxford University librarian
Mr. G. Berry. In one form, the paradox notes that the
number "one million, one hundred thousand, one
hundred and twenty one" can be named by the
description: "the first number not nameable in under
ten words." However, this latter expression has only
nine words, so the number can be named in under ten
words, so there is an inconsistency in naming it in
this manner!
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Berry-Esséen Theorem
If F(x) is a probability distribution with zero mean
and

r �g
�

��

½x½3 dF(x) B�; (1)

where the above integral is a STIELTJES INTEGRAL,
then for all x and n ,

½Fn(x) �F(x) �1
2½B

33

4

r

s3
ffiffiffi
n

p ; (2)

where F(x) is the NORMAL DISTRIBUTION FUNCTION,
F(x) �1 =2 �N(x) in Feller’s notation, and

Fn(x) �Fn�(xs
ffiffiffi
n

p
) (3)

is the normalized n -fold CONVOLUTION of F(x) (Wal-
lace 1958, Feller 1971).

See also CENTRAL LIMIT THEOREM
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Bertelsen’s Number
An erroneous value of p(109) ; where p(x) is the PRIME

COUNTING FUNCTION. Bertelsen’s value of 50,847,478
is 56 lower than the correct value of 50,847,534.

See also PRIME COUNTING FUNCTION
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Bertini’s Theorem
The general curve of a system which is LINEARLY

INDEPENDENT on a certain number of given irreduci-
ble curves will not have a singular point which is not
fixed for all the curves of the system.
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Bertrand Curves
Two curves which, at any point, have a common
principal NORMAL VECTOR are called Bertrand curves.
The product of the TORSIONS of Bertrand curves is a
constant.

Bertrand’s Paradox
BERTRAND’S PROBLEM



Bertrand’s Postulate
If n �3, there is always at least one PRIME between n
and 2n �2: Equivalently, if n �1, then there is
always at least one PRIME between n and 2n: The
conjecture was first made by Bertrand in 1845
(Nagell 1951, p. 67). It was proved in 1850 �/1 by
Chebyshev, and is therefore sometimes known as
CHEBYSHEV’S THEOREM. An extension of this result is
that if n �k , then there is a number containing a
PRIME divisor �k in the sequence n , n �1 ; . . . ; n �
k �1: (The case n �k �1 then corresponds to Ber-
trand’s postulate.) This was first proved by Sylvester,
independently by Schur, and a simple proof was given
by Erdos (Hoffman 1998, p. 37)

A related problem is to find the least value of u so that
there exists at least one PRIME between n and n �
O(nu) for sufficiently large n (Berndt 1994). The
smallest known value is u �6 =11 � e (Lou and Yao
1992).

See also CHOQUET THEORY, DE POLIGNAC’S CONJEC-

TURE, PRIME NUMBER
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Bertrand’s Problem
What is the PROBABILITY that a CHORD drawn at
random on a CIRCLE of RADIUS r (i.e., CIRCLE LINE

PICKING) has length ]r (or sometimes greater than
or equal to the side length of an inscribed equilateral
triangle; Solomon 1978, p. 2)? The answer depends on
the interpretation of "two points drawn at random,"
or more specifically on the "natural" measure for the
problem.

In the most commonly considered measure, the
ANGLES u1 and u2 are picked at random on the
CIRCUMFERENCE of the circle. Without loss of general-
ity, this can be formulated as the probability that the
chord length of a single point at random angle u
measured from the X -AXIS on the unit circle. Since the
length as a function of u (CIRCLE LINE PICKING) is
given by

s( u) �2 sin(1
2 u)

��� ���; (1)

solving for s( u) �1 gives p=3; so the fraction of the top
unit semicircle having chord length greater than 1 is

P �
p �

p

3

p
�

2

3 
: (2)

However, if a point is instead placed at random on a
RADIUS of the CIRCLE and a CHORD drawn PERPENDI-

CULAR to it, then

P �

ffiffi
3

p

2 r

r
�

ffiffiffi
3

p

2
: (3)

The latter interpretation is more satisfactory in the
sense that the result remains the same for a rotated
CIRCLE, a slightly smaller CIRCLE INSCRIBED in the
first, or for a CIRCLE of the same size but with its
center slightly offset. Jaynes (1983) shows that the
interpretation of "random" as a continuous UNIFORM

DISTRIBUTION over the RADIUS is the only one posses-
sing all these three invariances.

See also CHORD, CIRCLE LINE PICKING, GEOMETRIC

PROBABILITY
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Bertrand’s Test
A CONVERGENCE TEST also called DE MORGAN’S AND

BERTRAND’S TEST. If the ratio of terms of a SERIES

fan g
�

n�1 can be written in the form

an

an�1

�1�
1

n
�

rn

n ln n
;

then the series converges if limn0� rn�1 and di-
verges if limn0� rnB1; where limn0� is the LOWER

LIMIT and limn0� is the UPPER LIMIT.

See also KUMMER’S TEST
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Bertrand’s Theorem
BERTRAND’S POSTULATE

Besov Space
A type of abstract SPACE which occurs in SPLINE and
RATIONAL FUNCTION approximations. The Besov space
B ap ;q is a complete quasinormed space which is a
BANACH SPACE when 1 5 p ; q 5 �  (Petrushev and
Popov 1987).

See also BANACH SPACE

References
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tial Operators. New York: Wiley, 1998.

Bessel Differential Equation

x2 d2y

dx2 
�x

dy

dx 
�(x2 �m2)y �0 : (1)

Equivalently, dividing through by x2 ;

d2y

dx2 
�

1

x

dy

dx 
� 1 �

m2

x2

 !
y �0; (2)

The solutions to this equation define the BESSEL

FUNCTIONS. The equation has a regular SINGULARITY

at 0 and an irregular SINGULARITY at �:/
A transformed version of the Bessel differential
equation given by Bowman (1958) is

x2 d2y

dx2 
�(2p �1)x

dy

dx 
�(a2x2r � b2)y �0: (3)

The solution is

y �x�p C1Jq=r

a

r
xr

 !
�C2Yq=r

a

r
xr

 !" #
; (4)

where

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � b2

q
; (5)

/Jn(x) and Yn(x) are the BESSEL FUNCTIONS OF THE

FIRST and SECOND KINDS, and C1 and C2 are con-
stants. Another form is given by letting y �xaJn( bxg);
h �yx �a ; and /j � bxg

/ (Bowman 1958, p. 117), then

d2y

dx2 
�

2a � 1

x

dy

dx 
� b2 g2x2g�2 �

a2 � n2 g2

x2

 !
y �0 : (6)

The solution is

y �
xa[AJn(bxg) �BYn( bxg)] for integer n
AJn( bxg) �BJ �n( bxg) for noninteger n :

�
(7)

See also AIRY FUNCTIONS, ANGER FUNCTION, BEI,
BER, BESSEL FUNCTION, BOURGET’S HYPOTHESIS,
CATALAN INTEGRALS, CYLINDRICAL FUNCTION, DINI

EXPANSION, HANKEL FUNCTION, HANKEL’S INTEGRAL,
HEMISPHERICAL FUNCTION, KAPTEYN SERIES,
LIPSCHITZ’S INTEGRAL, LOMMEL DIFFERENTIAL EQUA-

TION, LOMMEL FUNCTION, LOMMEL’S INTEGRALS,
NEUMANN SERIES (BESSEL FUNCTION), PARSEVAL’S

INTEGRAL, POISSON INTEGRAL, RAMANUJAN’S INTE-

GRAL, RICCATI DIFFERENTIAL EQUATION, SONINE’S

INTEGRAL, STRUVE FUNCTION, WEBER FUNCTIONS,
WEBER’S DISCONTINUOUS INTEGRALS
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Bessel Function
A function Zn(x) defined by the RECURRENCE RELA-

TIONS

Zn�1 �Zn�1

2n

x
Zn

and

Zn�1 �Zn �1 ��2
dZn

dx
:

The Bessel functions are more frequently defined as
solutions to the DIFFERENTIAL EQUATION

x2 d2y

dx2 
�x

dy

dx 
�(x2 �n2)y �0 :

There are two classes of solution, called the BESSEL

FUNCTION OF THE FIRST KIND Jn(x) and BESSEL

FUNCTION OF THE SECOND KIND Yn(x) : (A BESSEL

FUNCTION OF THE THIRD KIND is a special combination
of the first and second kinds.) Several related func-
tions are also defined by slightly modifying the
defining equations.

See also BESSEL FUNCTION OF THE FIRST KIND,
BESSEL FUNCTION OF THE SECOND KIND, BESSEL

FUNCTION OF THE THIRD KIND, CYLINDER FUNCTION,
HEMICYLINDRICAL FUNCTION, MODIFIED BESSEL

FUNCTION OF THE FIRST KIND, MODIFIED BESSEL



FUNCTION OF THE SECOND KIND, SPHERICAL BESSEL

FUNCTION OF THE FIRST KIND, SPHERICAL BESSEL

FUNCTION OF THE SECOND KIND
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Bessel Function Fourier Expansion
Let n]1=2 and a1; a2; . . . be the POSITIVE ROOTS of
Jn(x)�0: An expansion of a function in the interval
(0, 1) in terms of BESSEL FUNCTIONS OF THE FIRST

KIND

f (x)�
X�
l�1

ArJn(xar); (1)

has COEFFICIENTS found as follows:

g
1

0

xf (x)Jn(xal) dx�
X�
r�1

Ar g
1

0

xJn(xar)Jn(xal) dx: (2)

But ORTHOGONALITY of BESSEL FUNCTION ROOTS gives

g
1

0

xJn(xal)Jn(xar) dx�1
2dl;rJ

2
n�1(ar) (3)

(Bowman 1958, p. 108), so

g
1

0

xf (x)Jn(xal) dx�1
2

X�
r�1

Ardl; rJ
2
n�1(xar)

�1
2AlJ

2
n�1(al); (4)

and the COEFFICIENTS are given by

Al�
2

J2
n�1(al) g

1

0

xf (x)Jn(xal) dx: (5)
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Bessel Function of the First Kind

The Bessel functions of the first kind Jn(x) are defined
as the solutions to the BESSEL DIFFERENTIAL EQUA-

TION

x2 d2y

dx2
�x

dy

dx
�(x2�m2)y�0 (1)

which are nonsingular at the origin. They are some-
times also called CYLINDER FUNCTIONS or CYLINDRI-

CAL HARMONICS. The above plot shows Jn(x) for n�1,
2, . . ., 5.
To solve the differential equation, apply FROBENIUS

METHOD using a series solution OF THE FORM

y�xk
X�
n�0

anxn�
X�
n�0

anxn�k: (2)

Plugging into (1) yields

x2
X�
n�0

(k�n)(k�n�1)anxk�n�2

�x
X�
n�0

(k�n)anxk�n�1

�x2
X�
n�0

anxk�n�m2
X�
n�0

anxn�k�0 (3)

X�
n�0

(k�n)(k�n�1)anxk�n�
X�
n�0

(k�n)anxk�n



�
X�
n�2

an�2xk�n�m2
X�
n�0

anxn�k�0: (4)

The INDICIAL EQUATION, obtained by setting n�0, is

a0[k(k�1)�k�m2]�a0(k2�m2)�0: (5)

Since a0 is defined as the first NONZERO term, k2�
m2�0; so k�9m: Now, if k�m ,

X�
n�0

[(m�n)(m�n�1)�(m�n)�m2]

�anxm�n�
X�
n�2

an�2xm�n�0 (6)

X�
n�0

[(m�n)2�m2]anxm�n�
X�
n�2

an�2xm�n�0 (7)

X�
n�0

n(2m�n)anxm�n�
X�
n�2

an�2xm�n�0 (8)

a1(2m�1)�
X�
n�2

[ann(2m�n)�an�2]xm�n�0: (9)

First, look at the special case m��1=2; then (9)
becomes

X�
n�2

[ann(n�1)�an�2]xm�n�0; (10)

so

an��
1

n(n � 1)
an�2: (11)

Now let n�2l; where l�1, 2, . . .

a2l��
1

2l(2l � 1)
a2l�2

�
(�1)l

[2l(2l � 1)[2(l � 1)(2l � 3)] � � � [2 � 1 � 1]
a0

�
(�1)l

2ll!(2l � 1)!!
a0; (12)

which, using the identity 2ll!(2l�1)!!�(2l)!; gives

a2l�
(�1)l

(2l)!
a0: (13)

Similarly, letting n�2l�1;

a2l�1��
1

(2l � 1)(2l)
a2l�1

�
(�1)l

[2l(2l � 1)][2(l � 1)(2l � 1)] � � � [2 � 1 � 3][1]
a1;

(14)

which, using the identity 2ll!(2l�1)!!�(2l�1)!; gives

a2l�1�
(�1)l

2ll!(2l � 1)!!
a1�

(�1)l

(2l � 1)!
a1: (15)

Plugging back into (2) with k�m��1=2 gives

y�x�1=2
X�
n�0

anxn

�x�1=2
X�

n�1;3; 5; ...

anxn�
X�

n�0; 2; 4; ...

anxn

" #

�x�1=2
X�
l�0

a2lx
2l�

X�
l�0

a2l�1x2l�1

" #

�x�1=2 a0

X�
I�0

(�1)l

(2l)!
x2l�a1

X�
I�0

(�1)l

(2l � 1)!
x2l�1

" #

�x�1=2(a0 cos x�a1 sin x): (16)

The BESSEL FUNCTIONS of order 91=2 are therefore
defined as

J�1=2(x)�

ffiffiffiffiffiffi
2

px

s
cos x (17)

J1=2(x)�

ffiffiffiffiffiffi
2

px

s
sin x; (18)

so the general solution for m�91=2 is

y�a?0J�1=2(x)�a?1J1=2(x): (19)

Now, consider a general m"�1=2: Equation (9)
requires

a1(2m�1)�0 (20)

[ann(2m�n)�an�2]xm�n�0 (21)

for n�2, 3, . . ., so

a1�0 (22)

an��
1

n(2m � n)
an�2 (23)

for n�2, 3, . . . Let n�2l�1; where l�1, 2, . . ., then

a2l�1��
1

(2l � 1)[2(m � 1) � 1]
a2l�1�� � �

�. . .�f (n; m)a1�0; (24)

where f (n; m) is the function of l and m obtained by
iterating the recursion relationship down to a1: Now
let n�2l; where l�1, 2, . . ., so

a2l��
1

2l(2m � 2l)
a2l�2��

1

4l(m � l)
a2l�2

�
(�1)l

[4l(m � l)][4(l � 1)(m � l � 1)] � � � [4 � (m � 1)]
a0:

(25)



Plugging back into (9),

y�
X�
n�0

anxn�m�
X�

n�1; 3; 5; ...

anxn�m�
X�

n�0; 2; 4; ...

anxn�m

�
X�
l�0

a2l�1x2l�m�1�
X�
l�0

a2lx
2l�m

�a0

X�
l�0

(�1)l

[4l(m � l)][4(l � 1)(m � l � 1)] � � � [4(m � 1)]
x2l�m

�a0

X�
l�0

[(�1)lm(m � 1) � � � 1]x2l�m

[4l(m � l)][4(l � 1)(m � l � 1)] � � � [4(m � 1)m(m � 1) � � � 1]

�a0

X�
l�0

(�1)lm!

22ll!(m � l)!
x2l�m; (26)

Now define

Jm(x)�
X�
l�0

(�1)l

22l�ml!(m � l)!
x2l�m; (27)

where the factorials can be generalized to GAMMA

FUNCTIONS for nonintegral m . The above equation
then becomes

y�a02mm!Jm(x)�a?0Jm(x): (28)

Returning to equation (5) and examining the case k�
�m;

a1(1�2m)�
X�
n�2

[ann(n�2m)�an�2]xn�m�0: (29)

However, the sign of m is arbitrary, so the solutions
must be the same for �m and �m: We are therefore
free to replace�m with�mj j; so

a1(1�2 mj j)�
X�
n�2

[ann(n�2 mj j)�an�2]x mj j�n�0; (30)

and we obtain the same solutions as before, but with
m replaced by mj j:

Jm(x)�

X�
l�0

(�1)l

22l� mj jl!( mj j�l)l
x2l� mj j for mj j"�1

2ffiffiffiffiffiffi
2

px

s
cos x for m��1

2ffiffiffiffiffiffi
2

px

s
sin x for m�1

2:

8>>>>>>>>>><
>>>>>>>>>>:

(31)

We can relate Jm and J�m (when m is an INTEGER) by
writing

J�m(x)�
X�
l�0

(�1)l

22l�ml!(l � m)!
x2l�m: (32)

Now let l�l?�m: Then

J�m(x)�
X�

l?�m�0

(�1)l?�m

22l?�m(l? � m)!l!
x2l?�m

�
X�1

l?��m

(�1)l?�m

22l?�ml?!(l? � m)!
x2l?�m

�
X�
l?�0

(�1)l?�m

22l?�ml?!(l? � m)!
x2?l�m: (33)

But l?!�� for l?��m; . . . ; �1; so the DENOMINATOR

is infinite and the terms on the right are zero. We
therefore have

J�m(x)�
X�
l�0

(�1)l�m

22l�ml!(l � m)!
x2l�m�(�1)mJm(x): (34)

Note that the BESSEL DIFFERENTIAL EQUATION is
second-order, so there must be two linearly indepen-
dent solutions. We have found both only for mj j�1=2:
For a general nonintegral order, the independent
solutions are Jm and J�m: When m is an INTEGER, the
general (real) solution is OF THE FORM

Zm�C1Jm(x)�C2Ym(x); (35)

where Jm is a Bessel function of the first kind, Ym

(a.k.a. Nm) is the BESSEL FUNCTION OF THE SECOND

KIND (a.k.a. NEUMANN FUNCTION or WEBER FUNC-

TION), and C1 and C2 are constants. Complex solu-
tions are given by the HANKEL FUNCTIONS (a.k.a.
BESSEL FUNCTIONS OF THE THIRD KIND).

The Bessel functions are ORTHOGONAL in [0; 1] with
respect to the weight factor x . Except when 2n is a
NEGATIVE INTEGER,

Jm(z)�
z�1=2

22m�1=2im�1=2G(m � 1)
M0; m(2iz); (36)

where G(x) is the GAMMA FUNCTION and M0; m is a
WHITTAKER FUNCTION. In terms of a CONFLUENT

HYPERGEOMETRIC FUNCTION OF THE FIRST KIND, the
Bessel function is written

Jn(z)�
(1
2z)n

G(n� 1)
0 F1(n�1; �1

4z
2): (37)

A derivative identity for expressing higher order
Bessel functions in terms of J0(x) is

Jn(x)�inTn i
d

dx

 !
J0(x); (38)

where Tn(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND. Asymptotic forms for the Bessel functions
are

Jm(x):
1

G(m � 1)

x

2

 !m

(39)

for x � 1 and



Jm(x):

ffiffiffiffiffiffi
2

px

s
cos x�

mp

2
�

p

4

 !
(40)

for x�1:/

A derivative identity is

d

dx
[xmJm(x)]�xmJm�1(x): (41)

An integral identity is

g
u

0

u?J0(u?) du?�uJ1(u): (42)

Some sum identities are

1�[J0(x)]2�2
X�
k�1

[Jk(x)]2 (43)

(Abramowitz and Stegun 1972, p. 363),

1 � J0(x)�2
X�
k�1

J2k(x) (44)

(Abramowitz and Stegun 1972, p. 361),

0�
X2n

k�0

(�1)kJk(z)J2n�k(z)�2
X�
k�1

Jk(z)J2n�k(z) (45)

for n]1 (Abramowitz and Stegun 1972, p. 361),

Jn(2z)�
Xn

k�0

Jk(z)Jn�k(z)

�2
X�
k�1

(�1)kJk(z)Jn�k(z) (46)

(Abramowitz and Stegun 1972, p. 361), and the
JACOBI-ANGER EXPANSION

eiz cos u�
X�

n���

inJn(z)einu; (47)

which can also be written

eiz cos u�J0(z)�2
X�
n�1

inJn(z) cos(nu): (48)

The Bessel function addition theorem states

Jn(y�z)�
X�

m���

Jm(y)Jn�m(z): (49)

The first k roots x1; . . ., xk of the Bessel function Jn(x)
can be found in Mathematica (Wolfram Research,
Urbana, IL) using the command BesselJZeros[n ,
k ] in the Mathematica add-on package Numerical-
Math‘BesselZeros‘ (which can be loaded with the
command BBNumericalMath‘). ROOTS of the
FUNCTION Jn(x) are given in the following table.

zero /J0(x)/ /J1(x)/ /J2(x)/ /J3(x)/ /J4(x)/ /J5(x)/

1 2.4048 3.8317 5.1336 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

The first k roots x1; . . ., xk of the derivative of the
Bessel function J?n(x) can be found in Mathematica
using the command BesselJPrimeZeros[n , k ] in
the Mathematica add-on package NumericalMath‘-
BesselZeros‘ (which can be loaded with the com-
mand BBNumericalMath‘). The first few such
ROOTS are given in the following table.

zero /J?0(x)/ /J?1(x)/ /J?2(x)/ /J?3(x)/ /J?4(x)/ /J?5(x)/

1 3.8317 1.8412 3.0542 4.2012 5.3175 6.4156

2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199

3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872

4 13.3237 11.7060 13.1704 14.5858 15.9641 17.3128

5 16.4706 14.8636 16.3475 17.7887 19.1960 20.5755

Various integrals can be expressed in terms of Bessel
functions

Jn(z)�
1

p g
p

0

cos(z sin u�nu) du; (50)

which is BESSEL’S FIRST INTEGRAL,

Jn(z)�
i�n

p g
p

0

eiz cos u cos(nu) du (51)

Jn(z)�
1

2pin g
2p

0

eiz cosfeinf df (52)

for n�1, 2, . . .,

Jn(z)�
2

p

xn

(2rn � 1)!! g
p=2

0

sin2n u cos(x cos u) du (53)

for n�1, 2, . . .,

Jn(x)�
1

2pi gg e(x=2)(z�1=z)z�n�1 dz (54)

for n��1=2: The Bessel functions are normalized so
that

g
�

0

Jn(x) dx�1 (55)



for positive integral (and real) n . Integrals involving
J1(x) include

g
�

0

J1(x)

x

" #2

dx �
4

3 p 
(56)

g
�

0

J1(x)

x

" #2

x dx�
1

2 
: (57)

The special case of n �0 gives J0(z) as the series

J0(z) �
X�
k �0

(�1)k
(1
4z

2)k

(k!)2 (58)

(Abramowitz and Stegun 1972, p. 360), or the integral

J0(z)�
1

p g
p

0

eiz cos u du: (59)

See also BESSEL FUNCTION OF THE SECOND KIND,
DEBYE’S ASYMPTOTIC REPRESENTATION, DIXON-FER-

RAR FORMULA, HANSEN-BESSEL FORMULA, KAPTEYN

SERIES, KNESER-SOMMERFELD FORMULA, MEHLER’S

BESSEL FUNCTION FORMULA, NICHOLSON’S FORMULA,
POISSON’S BESSEL FUNCTION FORMULA, RAYLEIGH

FUNCTION, SCHLÄ FLI’S FORMULA, SCHLÖ MILCH’S SER-

IES, SOMMERFELD’S FORMULA, SONINE-SCHAFHEITLIN

FORMULA, WATSON’S FORMULA, WATSON-NICHOLSON

FORMULA, WEBER’S DISCONTINUOUS INTEGRALS, WE-

BER’S FORMULA, WEBER-SONINE FORMULA, WEYRICH’S

FORMULA
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Press, 1966.

Bessel Function of the Second Kind

A Bessel function of the second kind Yn(x) is a
solution to the BESSEL DIFFERENTIAL EQUATION which
is singular at the origin. Bessel functions of the
second kind are also called NEUMANN FUNCTIONS or
WEBER FUNCTIONS. The above plot shows Yn(x) for
n�1, 2, . . ., 5.
Let v�Jm(x) be the first solution and u be the other
one (since the BESSEL DIFFERENTIAL EQUATION is
second-order, there are two LINEARLY INDEPENDENT

solutions). Then

xuƒ�u?�xu�0 (1)

xvƒ�v?�xv�0: (2)

Take v� (1) minus u� (2),

x(uƒv�uvƒ)�u?v�uv?�0 (3)

d

dx
[x(u?v�uv?)]�0; (4)

so x(u?v�uv?)�B; where B is a constant. Divide by
xv2;

u?v � uv?

v2
�

d

dx

u

v

 !
�

B

xv2
(5)

u

v
�A�B g

dx

xv2
: (6)

Rearranging and using v�Jm(x) gives

u�AJm(x)�BJm(x) g
dx

xJ2
m(x)

�A?Jm(x)�B?Ym(x); (7)

where Ym is the so-called Bessel function of the
second kind.



/Yn(z) can be defined by

Yn(z) �
Jv(z) cos(np) � J� n(z)

sin( np) 
(8)

(Abramowitz and Stegun 1972, p. 358), where Jn(z) is
a BESSEL FUNCTION OF THE FIRST KIND and, for n an
integer n by the SERIES

Yn(z) ��
(1
2z) �n

p

Xn�1

k �0

(n � k � 1)!

k!
(1
4z

2)k �
2

p
ln(1

2z)Jn(z)

�
(1
2z)n

p

X�
k �0

[c0(k �1) � c0(n �k �1)]
(�1

4z
2)k

k!(n � k)! 
; (9)

where c0(x) is the DIGAMMA FUNCTION (Abramowitz
and Stegun 1972, p. 360).

The function has the integral representations

Yn(z) �
1

p
1ntp0 sin(z sin u � nu) du

�
1

p
1 nt�0 [e nt �e � nt(�1)n]e �z sin ht dt: (10)

��
2(1

2 x) �vffiffiffi
p

p
G(1

2 � n) g
�

1

cos(xt) dt

(t2 � 1)n�1 =2 (11)

(Abramowitz and Stegun 1972, p. 360).

ASYMPTOTIC SERIES are

Ym(x) 


2

p
[ln(1

2 x) � g] m �0; x �1

�
G(m)

p

2

x

 !m

m "0; x �1

8>>>><
>>>>:

(12)

Ym(x) 


ffiffiffiffiffiffi
2

px

s
sin x �

mp

2
�

p

4

 !
x �1 ; (13)

where G(z) is a GAMMA FUNCTION.

For the special case n �0, Y0(x) is given by the series

Y0(z)

�
2

p
[ln(1

2z) � g]J0(z) �
X�
k�1

(�1)k�1Hk

(1
4z

2)k

(k!)2

( )
; (14)

(Abramowitz and Stegun 1972, p. 360), where g is the
EULER-MASCHERONI CONSTANT and Hn is a HARMONIC

NUMBER.

See also BESSEL FUNCTION OF THE FIRST KIND,
BOURGET’S HYPOTHESIS, HANKEL FUNCTION
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Bessel Function of the Third Kind
HANKEL FUNCTION

Bessel Polynomial
Krall and Find (1948) defined the Bessel polynomials
as the function

yn(x)�
Xn

k�0

(n � k!)

(n � k)!k!

x

2

 !k

(1)

which satisfies the differential equation

x2yƒ�(2x�2)y?�n(n�1)y�0: (2)

Carlitz (1957) subsequently considered the related
polynomials

pn(x)�xnyn�1

1

x

 !
:

This polynomial forms an associated SHEFFER SE-

QUENCE with

f (t)�t�1
2t

2: (3)

This gives the GENERATING FUNCTION

X�
k�0

pk(x)

k!
tk�ex(1�

ffiffiffiffiffiffiffiffi
1�2t

p
): (4)

The explicit formula is

pn(x)�
X�
k�1

(2n � k � 1)!

2n�k(k � 1)!(n � k)!
xk: (5)

The polynomials satisfy the recurrence formula



pƒn(x) �2p ?n(x) �2npn�1(x) �0 : (6)

The first few polynomials are

p0(x) �1
p1(x) �x
p2(x) �x2 �x
p3(x) �x3 �3x2 �3x
p4(x) �x4 �6x3 �15x2 �15x:

See also BESSEL FUNCTION, SHEFFER SEQUENCE
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Bessel Transform
HANKEL TRANSFORM

Bessel’s Correction
The factor (N �1)=N in the relationship between the
VARIANCE s and the EXPECTATION VALUES of the
SAMPLE VARIANCE,

s2
/ 0

�
N � 1

N
s2 ; (1)

where

s2 ��x2 ���x�2 : (2)

For two samples,

ŝ2 �
N1s2

1 � N2s2
2

N1 � N2 � 2 
: (3)

See also SAMPLE VARIANCE, VARIANCE
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Bessel’s Finite Difference Formula
An INTERPOLATION formula also sometimes known as

fp �f0 �p d1 =2 �B2( d2
0 � d2

1) �B3 d
3
1 =2 �B4( d4

0 � d4
1)

�B5 d
5
1=2 �� � � ; (1)

for p � [0; 1]; where d is the CENTRAL DIFFERENCE and

B2n �
1
2 G2n �

1
2 (E2n �F2n) (2)

B2n�1 �G2n�1 �
1
2 G2n �

1
2(F2n �E2n) (3)

E2n �G2n �G2n�1 �B2n �B2n �1 (4)

F2n �G2n�1 �B2n �B2n�1 ; (5)

where Gk are the COEFFICIENTS from GAUSS’S BACK-

WARD FORMULA and GAUSS’S FORWARD FORMULA and
Ek and Fk are the COEFFICIENTS from EVERETT’S

FORMULA. The Bk/s also satisfy

B2n(p) �B2n(q) (6)

B2n �1(p) ��B2n�1(q) ; (7)

for

q�1�p: (8)

See also EVERETT’S FORMULA
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Bessel’s First Integral

Jn(x)�
1

p g
p

0

cos(nu�x sin u) du;

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND.

Bessel’s Formula
BESSEL’S FINITE DIFFERENCE FORMULA, BESSEL’S

INTERPOLATION FORMULA, BESSEL’S STATISTICAL FOR-

MULA

Bessel’s Inequality
If f (x) is PIECEWISE CONTINUOUS and has a general
FOURIER SERIES X

i

aifi(x) (1)

with WEIGHTING FUNCTION w(x); it must be true that

g f (x)�
X

i

aifi(x)

" #2

w(x) dx]0 (2)

g f 2(x)w(x) dx�2
X

i

ai g f (x)fi(x)w(x) dx



�
X

i

a2
i f f

2
i (x)w(x) dx ]0: (3)

But the COEFFICIENT of the generalized FOURIER

SERIES is given by

am �g f (x) fm(x)w(x) dx; (4)

so

g f 2(x)w(x) dx �2
X

i

a2
i �
X

i

a2
i ]0 (5)

g f 2(x)w(x) dx ]
X

i

a2
i : (6)

Equation (6) is an inequality if the functions fi are
not COMPLETE. If they are COMPLETE, then the
inequality (2) becomes an equality, so (6) becomes
an equality and is known as PARSEVAL’S THEOREM. If
f (x) has a simple FOURIER SERIES expansion with
COEFFICIENTS a0 ; a1 ; an , a p and b1 ; . . ., bn ; then

1
2 a

2
0 �
X�
k ¼1

(a2
k �b2

k) 5
1

p g  
p

� p

[f (x)]2 dx: (7)

The inequality can also be derived from SCHWARZ’S

INEQUALITY

½�f ½g �½2 5�f ½f ��g ½g � (8)

by expanding g in a superposition of EIGENFUNCTIONS

of f , g �ai aifi : Then

�f ½g��
X

i

ai �f ½fi �5
X

i

ai (9)

½�f ½g �½2 5
X

i

ai

�����
�����
2

�
X

i

ai

 ! X
i

āi

 !
�
X

i

ai āi

5�f ½f ��g ½g �; (10)

where f̄ is the COMPLEX CONJUGATE. If g is normal-
ized, then �g ½g��1 and

�f ½f �]
X

i

ai āi (11)

See also SCHWARZ’S INEQUALITY, TRIANGLE INEQUAL-

ITY
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Bessel’s Interpolation Formula
BESSEL’S FINITE DIFFERENCE FORMULA

Bessel’s Second Integral
POISSON INTEGRAL

Bessel’s Statistical Formula
Let x̄1 and s2

1 be the observed mean and variance of a
sample of N1 drawn from a normal universe with
unknown mean m(1) and let x̄2 and s2

2 be the observed
mean and variance of a sample of N2 drawn from a
normal universe with unknown mean m(2) : Assume
the two universes have a common variance s2 ; and
define

w̄ � ̂x1 � ̄x2 (1)

v � m(1) � m(2) (2)

N �N1 �N2 (3)

Then

t �
w̄ � v

sw =
ffiffiffiffiffi
N

p �
w̄ � vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i�1(wi � w̄)2

N(N � 1)

s (4)

is distributed as STUDENT’S T -DISTRIBUTION fn(t) with
n �N �2 :/

See also STUDENT’S T -DISTRIBUTION
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BesselI
MODIFIED BESSEL FUNCTION OF THE FIRST KIND

BesselJ
BESSEL FUNCTION OF THE FIRST KIND

BesselK
MODIFIED BESSEL FUNCTION OF THE SECOND KIND

BesselY
BESSEL FUNCTION OF THE SECOND KIND

Beta
A financial measure of a fund’s sensitivity to market
movements which measures the relationship between
a fund’s excess return over Treasury Bills and the
excess return of a benchmark index (which, by
definition, has b �1): A fund with a beta of b has
performed r � b �1ð Þ�100% better (or rj j worse if
r B0) than its benchmark index (after deducting the
T-bill rate) in up markets and rj j worse (or rj j better if
r B0) in down markets.

See also ALPHA, BETA DISTRIBUTION, BETA FUNCTION,
BETA INTEGRAL, SHARPE RATIO



Beta Distribution

A general type of STATISTICAL DISTRIBUTION which is
related to the GAMMA DISTRIBUTION. Beta distribu-
tions have two free parameters, which are labeled
according to one of two notational conventions. The
usual definition calls these a and b; and the other
uses b?� b �1 and a?� a �1 (Beyer 1987, p. 534).
The above plots are for various values of ( a; b): The
domain is [0; 1]; and the probability function P(x) and
DISTRIBUTION FUNCTION D(x) are given by

P(x) �
(1 � x)b�1xa�1

B( a; b)
�

G( a � b)

G(a) G(b)
(1 �x) b�1x a�1 (1)

D(x) � I(x; a ; b); (2)

where B(a ; b) is the BETA FUNCTION, I(x; a; b) is the
REGULARIZED BETA FUNCTION, and a; b > 0 : The
distribution is normalized since

g
1
0 P(x) dx �

G( a � b)

G( a) G( b) g
1

0

xa �1(1 �x) b�1 dx (3)

�
G( a � b)

G(a) G(b)
B( a; b) �1: (4)

The CHARACTERISTIC FUNCTION is

f(t) �F
xa �1(1 � x)b �1

b(a ; b)
[1
2 sgn(1 �x) �sgn x]

( )

� 1F1(a; a �b; it) ; (5)

where F[f ] is a FOURIER TRANSFORM with parameters
a �b �1 and 1F1(a; b; z) is a CONFLUENT HYPERGEO-

METRIC FUNCTION.
The MEAN is

m �
G(a � b)

G( a) G( b) g
1

0

xa �1(1 �x) b�1x dx

�
G(a � b)

G( a) G( b)
B(a �1; b) �

G( a � b)

G( a) G( b)

G( a � 1)G(b)

G( a � b � 1)

�
a

a � b 
: (6)

The RAW MOMENTS are given by

m?r �g
1

0

P(x)(x � m)r dx �
G( a � b) G( a � r)

G( a � b � r) G(a)
(7)

(Papoulis 1984, p. 147), and the CENTRAL MOMENTS by

mr � �
a

a � b

 !r

2F1 �r ; a; a � b;
a � b

a

 !
; (8)

where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNC-

TION. The VARIANCE, SKEWNESS, and KURTOSIS are
therefore given by

s2�
ab

(a� b)2(a� b� 1)
(9)

g1�
2(b� a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a� b

pffiffiffiffiffiffi
ab

p
(2 � a� b)

(10)

g2�
6[a3 � a2(1 � 2b) � b2(1 � b) � 2ab(2 � b)]

ab(a� b� 2)(a� b� 3)
:

(11)

The MODE of a variate distributed as b(a; b) is

x̂�
a� 1

a� b� 2
: (12)

See also GAMMA DISTRIBUTION
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Beta Exponential Function

Another "BETA FUNCTION" defined in terms of an
integral is the "exponential" beta function, given by

bn(z)�g
1

�1

tne�zt dt (1)

�n!z�(n�1) ez
Xn

k�0

(�1)kzk

k!
�e�z

Xn

k�0

zk

k!

" #
: (2)



If n is an integer, then

bn(z) �(�1)n�1E �n(�z) �E �n(z) ; (3)

where En(z) is the EN -FUNCTION. The exponential
beta function satisfies the RECURRENCE RELATION

zbn(z) �(�1)nez �e �z �nbn�1(z) : (4)

The values for n �0, 1, and 2 are

b0(z) �
2 sinh z

z 
(5)

b1(z) �
2(sinh z � z cosh z)

z2
: (6)

b2(z)�
2(2 � z2) sinh z � 4z cosh z

z3
: (7)

See also ALPHA FUNCTION, EN -FUNCTION

Beta Function
The beta function is the name used by Legendre and
Whittaker and Watson (1990) for the BETA INTEGRAL

(also called the Eulerian integral of the first kind). To
derive the integral representation of the beta func-
tion, write the product of two FACTORIALS as

m!n!�g
�

0

e�uum du g
�

0

e�vvn dv: (1)

Now, let u�x2; v�y2; so

m!n!�4 g
�

0

e�x2

x2m�1 dx g
�

0

e�y2

y2n�1 dy

�4 g
�

��
g

�

��

e�(x2�y2)x2m�1y2n�1 dx dy: (2)

Transforming to POLAR COORDINATES with x�r cos u;
y�r sin u

m!n!�4 g
p=2

0 g
�

0

e�r2

(r cos u)2m�1(r sin u)2n�1r dr du

�4g
�

0

e�r2

r2m�2n�3 drg
p=2

0

cos2m�1 usin2n�1 u du

�2(m�n�1)!g
p=2

0

cos2m�1 u sin2n�1 u du: (3)

The beta function is then defined by

B(m�1; n�1)�B(n�1; m�1)

�2 g
p=2

0

cos2m�1 u sin2n�1 u du�
m!n!

(m � n � 1)!
: (4)

Rewriting the arguments,

B(p; q)�
G(p)G(q)

G(p � q)
�

(p � 1)!(q � 1)!

(p � q � 1)!
: (5)

The general trigonometric form is

g
p=2

0

sinn x cosm x dx�1
2B(1

2(n�1); 1
2(m�1)): (6)

Equation (6) can be transformed to an integral over
POLYNOMIALS by letting u�cos2 u;

B(m�1; n�1)�
m!n!

(m � n � 1)!
�g

1

0

um(1�u)n du (7)

B(m; n)�
G(m)G(n)

G(m � n)
�g

1

0

um�1(1�u)n�1 du: (8)

The beta function is implemented in Mathematica as
Beta[a , b ].

For any z1; z2 with /R[z1]; R[z2] > 0;

B(z1; z2)�B(z2; z1) (9)

(Krantz 1999, p. 158).

The INCOMPLETE BETA FUNCTION B(z; a; b); imple-
mented in Mathematica as Beta[z , a , b ], is defined
by the integral in (8) with an upper limit of z instead
of 1. The REGULARIZED BETA FUNCTION I(z; a; b);
implemented in Mathematica as BetaRegulari-
zed[z , a , b ] is defined by

I(z; a; b)�
B(z; a; b)

B(a; b)
: (10)

To put it in a form which can be used to derive the
LEGENDRE DUPLICATION FORMULA, let x�

ffiffiffi
u

p
; so u�

x2 and du�2x dx; and

B(m; n)�g
1

0

x2(m�1)(1�x2)n�1(2x dx)

�2 g
1

0

x2m�1(1�x2)n�1 dx: (11)

To put it in a form which can be used to develop
integral representations of the BESSEL FUNCTIONS

and HYPERGEOMETRIC FUNCTION, let u�x=(1�x); so

B(m�1; n�1)�g
�

0

um du

(1 � u)m�n�2 : (12)

Derivatives of the beta function are given by

d

da
B(a; b)�B(a; b)[c0(a)�c0(a�b)] (13)

d

db
B(a; b)�B(a; b)[c0(b)�c0(a�b)] (14)

d2

da2
B(a; b)�B(a; b)



� [ c0(a) � c0(a �b)]2 � c1(a) � c1(a �b)
2 3

; (15)

d2

db2
B(a ; b) �B(a ; b)

� [c0(b) � c0(a �b)]2 � c1(b) � c1(a �b)
2 3

; (16)

d2

da db
B(a; b)

�B(a ; b) [c0(a) � c0(a �b)][ c0(b) � c0(a �b)]f

�c1(a �b) (17)

where cn(x) is the POLYGAMMA FUNCTION.

Various identities can be derived using the GAUSS

MULTIPLICATION FORMULA

B(np ; nq) �
G(np) G(nq)

G[n(p � q)]

�n�nq

B(p; q)B p �
1

n 
; q

 !
� � �B p �

n � 1

n
; q

 !
B(q; q)B(2q ; q) � � �B([n � 1]q; q)

:

(18)

Additional identities include

B(p; q �1) �
G(p)G(q � 1)

G(p � q � 1) 
�

q

p

G(p � 1)G(q)

G([p � 1]q)

�
q

p
B(p �1; q) (19)

B(p; q) �B(p �1; q) �B(p ; q �1) (20)

B(p; q �1) �
q

p � q
B(p; q) : (21)

If n is a POSITIVE INTEGER, then

B(p ; n �1) �
1 � 2 � � �n

p(p � 1) � � � (p � n)
(22)

B(p ; p)B(p �1
2 ; p �1

2) �
p

24p �1p 
(23)

B(p �q)B(p �q; r) �B(q; r)B(q �r ; p) : (24)

Gosper gives the general formulas

Y2n

i�0

B
i

2n � 1 
�a ;

i

2n � 1 
�b

 !

�
(2n � 1)(2n�1) =2 

pnB(n; 1
2[(b � a)(2n � 1) � 1])B(a(2n � 1); b(2n � 1))

(n � 1)!

(25)

for ODD n , and

Y2n�1

i�0

B
i

2n 
�a ;

i

2n 
�b

 !

�
nn pnB(n; 2(a � b)n)B(2an; 2bn)

22(a �b)n�n �1(n � 1)!B((a � b)n ; (a � b � 1)n) 
;

(26)

which are an immediate consequence of the analo-
gous identities for GAMMA FUNCTIONS. Plugging n �1
and n�2 into the above give the special cases

B(a; b)B(a�1
3; b�1

3)B(a�2
3; b�2

3)

�
6p

ffiffiffi
3

p
B(3a; 3b)

1 � 3(a � b)
(27)

B(a; b)B(a�1
4; b�1

4)B(a�1
2; b�1

2)B(a�3
4; b�3

4)

�
23�4(a�b)p2B(4a; 4b)

(a � b)[1 � 4(a � b)]B(2(a � b); 2(a � b � 1)
:

(28)

See also BETA INTEGRAL, CENTRAL BETA FUNCTION,
DIRICHLET INTEGRALS, GAMMA FUNCTION, INCOM-

PLETE BETA FUNCTION, REGULARIZED BETA FUNCTION
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Beta Function (Exponential)

mr � �
a

a � b

 !r

2F1 �r ; a; a � b;
a � b

a

 !
;

Another "BETA FUNCTION" defined in terms of an
integral is the "exponential" beta function, given by

2F1(a; b; c; x)u2

ab

( a � b)2( a � b � 1)
(1)

�
2(b � a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a � b

pffiffiffiffiffiffi
ab

p
(2 � a � b) 

(2)

The exponential beta function satisfies the RECUR-

RENCE RELATION

6[a3 � a2(1 � 2b) � b2(1 � b) � 2ab(2 � b)]

ab( a � b � 2)(a � b � 3) 
: (3)

The first few integral values are

b( a; b) � ̂x �
a � 1

a � b � 2 
: (4)

(5)

g
1

�1

tne �zt dt

�n!z�(n�1) ez
Xn

k �0

(�1)kzk

k!
�e �z

Xn

k �0

zk

k!

" #
: (6)

See also ALPHA FUNCTION

Beta Integral
The integral

g
1

0

xp(1 �x)q dx

called the EULERIAN INTEGRAL OF THE FIRST KIND by
Legendre and Whittaker and Watson (1990). The
solution is the BETA FUNCTION B(p �1; q �1):/

See also BETA FUNCTION, EULERIAN INTEGRAL OF THE

FIRST KIND, EULERIAN INTEGRAL OF THE SECOND

KIND
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Beta Prime Distribution
A distribution with probability function

P(x) �
xa�1(1 � x) � a� b

B(a; b)
;

where B is a BETA FUNCTION. The MODE of a variate
distributed as b?(a; b) is

x̂ �
a � 1

b � 1 
:

If x is a b?( a; b) variate, then 1 =x is a b?( b; a) variate.
If x is a b( a; b) variate, then (1 �x)=x and x=(1 �x)
are b?( b; a) and b?( a; b) variates. If x and y are g( a1)
and g( a2) variates, then x=y is a b?(a1 ; a2) variate. If
x2 =2 and y2 =2 are g(1=2) variates, then z2 � x=yð Þ2 is a
b?(1=2; 1=2) variate.

BetaRegularized
REGULARIZED BETA FUNCTION

Bethe Lattice
CAYLEY TREE

Betrothed Numbers
QUASIAMICABLE PAIR

Betti Group
The free part of the HOMOLOGY GROUP with a domain
of COEFFICIENTS in the GROUP of INTEGERS (if this
HOMOLOGY GROUP is finitely generated).

See also HOMOLOGY GROUP
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Betti Number
Betti numbers are topological objects which were
proved to be invariants by Poincaré, and used by
him to extend the POLYHEDRAL FORMULA to higher
dimensional spaces. Informally, the Betti number is
the maximum number of cuts that can be made
without dividing a surface into two separate pieces
(Gardner 1984, pp. 9�0). Formally, the nth Betti
number is the rank of the nth HOMOLOGY GROUP of
a TOPOLOGICAL SPACE. The following table gives the
Betti number of some common surfaces.



SURFACE Betti number

CROSS-CAP 1

CYLINDER 1

KLEIN BOTTLE 2

MÖ BIUS STRIP 1

plane lamina 0

PROJECTIVE PLANE 1

SPHERE 0

TORUS 2

Let pr be the RANK of the HOMOLOGY GROUP Hr of a
TOPOLOGICAL SPACE K . For a closed, orientable sur-
face of GENUS g , the Betti numbers are p0 �1; p1 �2g;
and p2 �1: For a NONORIENTABLE SURFACE with k
CROSS-CAPS, the Betti numbers are p0 �1; p1 �k �1/,
and p2 �0:/

See also CHROMATIC NUMBER, EULER CHARACTERIS-

TIC, GENUS (SURFACE), HOMOLOGY GROUP, POINCARÉ

DUALITY, TOPOLOGICAL SPACE

References
Gardner, M. The Sixth Book of Mathematical Games from

Scientific American. Chicago, IL: University of Chicago
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Bézier Curve

Given a set of n �1 control points P0 ; P1 ; . . .,  Pn ; the
corresponding Bézier curve (or Bernstein-Bézier
curve) is given by

C(t) �
Xn

i �0

PiBi ; n(t);

where Bi; n(t) is a BERNSTEIN POLYNOMIAL and
t � [0; 1]:/
A "rational" Bézier curve is defined by

C(t) �
Pn

i�0 Bi; p(t)wiPiPn
i �0 Bi ; p(t)wi

;

where p is the order, Bi; p are the BERNSTEIN POLY-

NOMIALS, Pi are control points, and the weight wi of
Pi is the last ordinate of the homogeneous point P v:i

These curves are CLOSED under perspective transfor-
mations, and can represent CONIC SECTIONS exactly.

The Bézier curve always passes through the first and
last control points and lies within the CONVEX HULL of
the control points. The curve is tangent to P1 �P0

and Pn �Pn�1 at the endpoints. The "variation
diminishing property" of these curves is that no line
can have more intersections with a Bézier curve than
with the curve obtained by joining consecutive points
with straight line segments. A desirable property of
these curves is that the curve can be translated and
rotated by performing these operations on the control
points.

Undesirable properties of Bézier curves are their
numerical instability for large numbers of control
points, and the fact that moving a single control point
changes the global shape of the curve. The former is
sometimes avoided by smoothly patching together
low-order Bézier curves. A generalization of the
Bézier curve is the B-SPLINE.

See also B-SPLINE, NURBS CURVE

Bézier Spline
BÉ ZIER CURVE, SPLINE

Bézout Numbers
Integers ( l; m) for a and b such that

la � mb �GCD(a ; b) :

For INTEGERS a1 ; . . ., ap ; the Bézout numbers are a set
of numbers k1 ; . . .,  kn such that

k1a1 �k2a2 �� � ��knan �d;

where d is the GREATEST COMMON DIVISOR of a1; . . .,
ap:/

See also GREATEST COMMON DIVISOR

Bézout’s Theorem
In general, two algebraic curves of degrees m and n
intersect in m � n points and cannot meet in more
than m � n points unless they have a component in
common (i.e., the equations defining them have a
common factor). This can also be stated: if P and Q
are two POLYNOMIALS with no roots in common, then
there exist two other POLYNOMIALS A and B such that
AP�BQ�1: Similarly, given N POLYNOMIAL equa-
tions of degrees n1; n2; . . ., /nN in N variables, there
are in general n1n2 � � �nN common solutions.

Séroul (2000, p. 10) uses the term Bézout’s theorem
for the following two theorems.

1. Let a; b �Z be any two integers, then there exist
u; v �Z such that



au �bv �GCD(a ; b) :

2. Two integers a and b are RELATIVELY PRIME if
there exist u; v �Z such that

au �bv �1:

See also BLANKINSHIP ALGORITHM, GREATEST COM-

MON DIVISOR, POLYNOMIAL
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Bhargava’s Theorem
Let the nth composition of a function f (x) be denoted
f (n)(x) ; such that f (0)(x) �f (x) and f (1)(x) �f (x) : Denote
the COMPOSITION of f and g by f (g(x) �f (g(x)); and
defineX

F(a ; b; c)

�F(a ; b ; c) �F(b; c ; a) �F(c ; b ; a) : (1)

Let

u �(a ; b; c) (2)

½½u ½½�a �b �c (3)

½½u½½�a4 �b4 �c4 ; (4)

and

f (u) �(a(b �c) ; b(c �a) ; c(a �b)) (5)

g(u) �
X

a2b;
X

ab2 ; 3abc
 !

: (6)

Then if ½u ½�0 (i.e., c ��a �b) ;

½½f (m)
(g(n)(u) ½½� ½½g(n)

(f (m)(u)½½

�2(ab �bc �ca)2m�13n 

; (7)

where m; n � f0; 1; . . .g and COMPOSITION is done in
terms of components.

See also DIOPHANTINE EQUATION–4TH POWERS,
FORD’S THEOREM
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Bhaskara-Brouckner Algorithm
SQUARE ROOT

Bialtitude
The common perpendicular to two opposite edges of a
TETRAHEDRON.

See also ALTITUDE, BIMEDIAN, TETRAHEDRON
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Bianchi Identities
The RIEMANN TENSOR is defined by

Rlmv k; h �
1

2

@

@xh

� @2glv

@xk @xm 
�

@2gmv

@xk @xl 
�

@2glk

@xm @xv 
�

@2gmk

@xv @xl

 !
: (1)

Permuting n ; k ; and h (Weinberg 1972, pp. 146 �/47)
gives the Bianchi identities

Rlmv k; h �Rlmhv; k �Rlmkh; v �0; (2)

which can be written concisely as

Ra
b[lm; v] �0 (3)

(Misner et al. 1973, p. 221), where T[a1...an] denoted the
ANTISYMMETRIC TENSOR part. Wald (1984, p. 39) calls

9[aR o
bc]d �0 (4)

the Bianchi identity, where 9 is the COVARIANT

DERIVATIVE, and R d?
abc is the RIEMANN TENSOR.

See also BIANCHI IDENTITIES (CONTRACTED), RIEMANN

TENSOR
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Bianchi Identities (Contracted)
CONTRACTING l with n in the BIANCHI IDENTITIES

Rlmnk; h�Rlmhn; k�Rlmkh; n�0 (1)

gives



Rmk; h �Rmh; k �Rn 
mkh; n �0: (2)

CONTRACTING again,

R; h �Rm 
h; m �Rn 

h; n �0; (3)

or

(Rm
h �

1
2 d

m 
hR); m �0; (4)

or

(Rmn �1
2 g

mnR); m �0: (5)

Bias (Estimator)
The bias of an ESTIMATOR ũ is defined as

B( ̃u) � ũ
/ 0

� u :

It is therefore true that

ũ � u �( ̃u �� ̃u �) �( � ̃u�� u) �( ̃u �� ̃u�) �B( ̃u) :

An ESTIMATOR for which B �0 is said to be UNBIASED

ESTIMATOR.

See also BIASED ESTIMATOR, ESTIMATOR, UNBIASED

ESTIMATOR

Bias (Series)
The bias of a SERIES is defined as

Q[ai ; ai�1 ; ai �2] �
aiai�2 � a2

i�1

a1ai�1ai�2

:

A SERIES is GEOMETRIC IFF Q �0. A SERIES is ARTISTIC

IFF the bias is constant.

See also ARTISTIC SEQUENCE, GEOMETRIC SEQUENCE
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Biased Estimator
An ESTIMATOR which exhibits BIAS.

See also BIAS (ESTIMATOR), ESTIMATOR, UNBIASED

ESTIMATOR

Biaugmented Pentagonal Prism

JOHNSON SOLID J53:/
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Biaugmented Triangular Prism

JOHNSON SOLID J50:/
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Biaugmented Truncated Cube

JOHNSON SOLID J67:/



References
Weisstein, E. W. "Johnson Solids." MATHEMATICA NOTEBOOK

JOHNSONSOLIDS.M.
Weisstein, E. W. "Johnson Solid Netlib Database." MATHE-

MATICA NOTEBOOK JOHNSONSOLIDS.DAT.

BIBD
BLOCK DESIGN

Bicentered Tree

A TREE (also called a bicentral tree) having two nodes
that are GRAPH CENTERS. The numbers of bicentered
trees on n �1, 2, ... nodes are 0, 1, 0, 1, 1, 3, 4, 11, 20,
51, 108 ... (Sloane’s A000677).

See also CENTERED TREE, GRAPH CENTER, TREE
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Bicentral Tree
BICENTERED TREE

Bicentric Perspective
Bicentric perspective is the study of the projection of
3D space from a pair of fiducial points instead of a
single one, the latter of which may be called "centric"
or "natural" PERSPECTIVE by way of distinction.

See also PERSPECTIVE, PROJECTION

References
Koenderink, J. J. "Fundamentals of Bicentric Perspective."

In Future Tendencies in Computer Science, Control and
Applied Mathematics. Proceedings of the International
Conference on Research in Computer Science and Control
held on the occasion of the 25th Anniversary of INRIA in

Paris, December 8 �/1, 1992 (Ed. A. Bensoussan and J.-
P. Verjus). New York: Springer-Verlag, 233 �/51, 1992.

Bicentric Polygon

A POLYGON which has both a CIRCUMCIRCLE (which
touches each vertex) and an INCIRCLE (which is
tangent to each side). All TRIANGLES are bicentric
with

R2 �x2 �2Rr ; (1)

where R is the CIRCUMRADIUS, r is the INRADIUS, and
x is the separation of centers. For BICENTRIC QUAD-

RILATERALS (Fuss’s problem), the CIRCLES satisfy

2r2(R2 �x2) �(R2 �x2)2 (2)

(Dörrie 1965) or, in another form,

1

(R � x)2 �
1

(R � x)2 �
1

r2 
(3)

(Davis; Durége; Casey 1888, pp. 109 �/10; Johnson
1929; Dörrie 1965).
If the circles permit successive tangents around the
INCIRCLE which close the POLYGON for one starting
point on the CIRCUMCIRCLE, then they do so for all
points on the CIRCUMCIRCLE, a result known as
PONCELET’S PORISM.

See also BICENTRIC QUADRILATERAL, BICENTRIC TRI-

ANGLE, CIRCUMCIRCLE, INCIRCLE, POLYGON, PONCE-

LET’S PORISM, PONCELET TRANSVERSE, TANGENTIAL

QUADRILATERAL, TRIANGLE, WEILL’S THEOREM
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Bicentric Quadrilateral

A 4-sided BICENTRIC POLYGON, also called a CYCLIC-

INSCRIPTABLE QUADRILATERAL. The INRADIUS r , CIR-

CUMRADIUS R , and offset s are connected by the
equation

1

(R � s)2 �
1

(R � s)2 �
1

r2 
(1)

(Davis; Durége; Casey 1888, pp. 109 �/10; Johnson
1929; Dörie 1965; Coolidge 1971, p. 46). In addition

r �

ffiffiffiffiffiffiffiffiffiffiffi
abcd

p

s 
(2)

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ac � bd)(ad � bc)(ad � cd)

abcd

s
(3)

(Beyer 1987), and

a �c �b �d: (4)

The AREA of a bicentric quadrilateral is

A �
ffiffiffiffiffiffiffiffiffiffiffiffi
abcd :

p
(5)

See also BICENTRIC POLYGON, BICENTRIC TRIANGLE,
CYCLIC QUADRILATERAL, PONCELET’S PORISM
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Bicentric Triangle
All triangles are bicentric, i.e., possess both an
INCIRCLE and a CIRCUMCIRCLE. This is not necessarily
the case for polygons with four or more sides. The
INRADIUS r and CIRCUMRADIUS R are connected by

1

r � d 
�

1

r � d 
�

1

R 
;

where d is the distance between the INCENTER and
CIRCUMCENTER (Coolidge 1971, p. 45).

See also BICENTRIC POLYGON, BICENTRIC QUADRILAT-

ERAL
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Bichromatic Graph
A GRAPH with EDGES of two possible "colors," usually
identified as red and blue. For a bichromatic graph
with R red EDGES and B blue EDGES,

R �B ]2:

See also BLUE-EMPTY GRAPH, EXTREMAL COLORING,
EXTREMAL GRAPH, MONOCHROMATIC FORCED TRIAN-

GLE, RAMSEY NUMBER

Bicollared
A SUBSET X ƒY is said to be bicollared in Y if there
exists an embedding b : X �[�1; 1] 0 Y such that
b(x; 0) �x when x � X : The MAP b or its image is then
said to be the bicollar.

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, pp. 34 �/5, 1976.

Biconditional
The CONNECTIVE in A UB (also denoted A �B) that
returns a true result IFF A and B are either both true
or both false. The biconditional is also called an
EQUIVALENCE.

See also CONDITIONAL, EQUIVALENT
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Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, p. 8, 1958.
Mendelson, E. Introduction to Mathematical Logic, 4th ed.

London: Chapman & Hall, p. 14, 1997.



Bicone

Two cones placed base-to-base.

See also DIPYRAMID, CONE, DOUBLE CONE, NAPPE,
SPHERICON

Bi-Connected Component
A maximal SUBGRAPH of an undirected graph such
that any two edges in the SUBGRAPH lie on a common
simple cycle.

See also STRONGLY CONNECTED COMPONENT

Biconnected Component
BLOCK

Biconnected Graph

A GRAPH with no ARTICULATION VERTICES is called
biconnected (Skiena 1990, p. 175), block, or "nonse-
parable graph" (Harary 1994, p. 26). The numbers of
biconnected simple graphs on n �1, 2, ... nodes are 0,
1, 1, 3, 10, 56, 468, ... (Sloane’s A002218). A graph can
be tested for biconnectivity using BiconnectedQ[g ]
in the Mathematica add-on package Discrete-

Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘).
Any graph containing a node of degree 1 cannot be
biconnected. All HAMILTONIAN GRAPHS are bicon-
nected (Skiena 1990, p. 177).

See also ARTICULATION VERTEX, BLOCK, CONNECTED

GRAPH, K -CONNECTED GRAPH
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Bicorn

The bicorn is the name of a collection of QUARTIC

CURVES studied by Sylvester in 1864 and Cayley in
1867 (MacTutor Archive). The bicorn is given by the
PARAMETRIC EQUATIONS

x�a sin t (1)

y�
a cos2 t(2 � cos t)

3 � sin2 t
(2)

and Cartesian equation

y2(a2�x2)�(x2�2ay�a2)2 (3)

(Mactutor, with the final a squared instead of to the
first power). The graph of the bicorn is similar to that
of the COCKED HAT CURVE.
The CURVATURE is given by

k�
6
ffiffiffi
2

p
(cos t � 2)3(3 cos t � 2) sec t

a[73 � 80 cos t � 9 cos(2t)]3=2 : (4)
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Bicubic Graph

A BIPARTITE CUBIC GRAPH. Tutte (1971) conjectured
that all 3-connected bicubic graphs are Hamiltonian
(the TUTTE CONJECTURE). The Horton graph on 96
nodes provided the first counterexample (Bondy and
Murty 1976, p. 240; illustrated above).

Horton subsequently found a counterexample on 92
nodes (Horton 1982). Two smaller (nonisomorphic)
counterexamples on 78 nodes have since been found
(Ellingham 1981, 1982b; Owens 1983). Ellingham
and Horton (1983) subsequently found a nonhamilto-
nian 3-connected bicubic graph on 54 vertices, illu-
strated above.

See also BIPARTITE GRAPH, CUBIC GRAPH, TUTTE

CONJECTURE
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Bicubic Spline
A bicubic spline is a special case of bicubic interpola-
tion which uses an interpolation function OF THE

FORM

y(x1 ; x2) �
X4

i �1

X4

j�1

cijt
i �1uj�1

yx1
(x1 ; x2) �

X4

i �1

X4

j�1

(i �1)cijt
i�2uj�1

yx2
(x1 ; x2) �

X4

i�1

X4

j�1

(j �1)cijt
i�1uj�2

yx1x2
�
X4

i�1

X4

j�1

(i �1)(j �1)cijt
i�2uj �2 ;

where cij are constants and u and t are parameters
ranging from 0 to 1. For a bicubic spline, however, the
partial derivatives at the grid points are determined
globally by 1-D SPLINES.

See also B -SPLINE, SPLINE
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Bicupola
Two adjoined CUPOLAS.

See also CUPOLA, ELONGATED GYROBICUPOLA, ELON-

GATED ORTHOBICUPOLA, GYROBICUPOLA, ORTHOBICU-

POLA



Bicuspid Curve

The PLANE CURVE given by the Cartesian equation

(x2 �a2)(x �a)2 �(y2 �a2)2 �0:

Bi-Cyclide Coordinates
BICYCLIDE COORDINATES

Bicyclide Coordinates

A coordinate system which is similar to BISPHERICAL

COORDINATES but having fourth-degree surfaces in-
stead of second-degree surfaces for constant m : The
coordinates are given by the transformation equa-
tions

x �
a

L
cn m dn m sn n cn n cos c (1)

y �
a

L
cn m dn m sn n cn n sin c (2)

z �
a

L
sin m dn n ; (3)

where

L�1 �dn2 
m sn2 n ; (4)

/m � [0; K] ; n � [0; K ?] ; c � [0; 2p) ; and cn x; dn x; and

sn x are JACOBI ELLIPTIC FUNCTIONS. Surfaces of
constant m are given by the bicyclides

(x2 �y2 �z2)2

�
a2

k4

(1 � k2)2 � 2(1 � k2) dn2 
m � (1 � k2) dn4 

m

dn2 
m cn2 m

�(x2 �y2) �a2 sn2 m �
1

k2 sn2 m

 !
z2 �

a4

k2 
�0 ; (5)

surfaces of constant n by the cyclides of rotation

cn2 n

a2 sn2 n
(x2 �y2) �

dn2 
n

a2
z2

" #2

�
2 cn2 n

a2 sn2 n
(x2 �y2)

�
2 dn2 

n

a2
z2 �1 �0 ; (6)

and surfaces of constant c by the half-planes

tan c �
y

x 
: (7)

See also BISPHERICAL COORDINATES, CAP-CYCLIDE

COORDINATES, CYCLIDIC COORDINATES
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Bicylinder
STEINMETZ SOLID

Bidiakis Cube

The 12-VERTEX graph consisting of a CUBE in which
two opposite faces (say, top and bottom) have edges
drawn across them which connect the centers of
opposite sides of the faces in such a way that the
orientation of the edges added on top and bottom are
PERPENDICULAR to each other.

See also BISLIT CUBE, CUBE, CUBICAL GRAPH

Bieberbach Conjecture
The nth COEFFICIENT in the POWER SERIES of a
UNIVALENT FUNCTION should be no greater than n .
In other words, if



f (z) �a0 �a1z �a2z2 �. . .�anzn �. . .

is a CONFORMAL MAP of a UNIT DISK on any domain,
then ½an ½5n½a1 ½: In more technical terms, "geometric
extremality implies metric extremality." An alternate
formulation is that ½aj ½leqj for any SCHLICHT FUNCTION

f (Krantz 1999, p. 150).

The conjecture had been proven for the first six terms
(the cases n �2, 3, and 4 were done by Bieberbach,
Lowner, and Garabedian and Schiffer, respectively),
was known to be false for only a finite number of
indices (Hayman 1954), and true for a convex or
symmetric domain (Le Lionnais 1983). The general
case was proved by Louis de Branges (1985). de
Branges proved the MILIN CONJECTURE, which estab-
lished the ROBERTSON CONJECTURE, which in turn
established the Bieberbach conjecture (Stewart 1996).

author result

Bieberbach (1916) / ½a2 ½52/

Löwner (1923) / ½a3 ½53/

Garabedian and Schiffer (1955) / ½a4 ½54/

Pederson (1968), Ozawa (1969) / ½a6 ½56/

Pederson and Schiffer (1972) / ½a5½55/

de Branges (1985) /½aj½leqj for all j

The sum

Xn

j�k

(�1)k�j 2j
j�k

� �
n�j�1

n�j

� �
e�jt

was an essential tool in de Branges’ proof (Koepf
1998, p. 29).

See also MILIN CONJECTURE, ROBERTSON CONJEC-

TURE, SCHLICHT FUNCTION, UNIVALENT FUNCTION
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Bienaymé-Chebyshev Inequality
CHEBYSHEV INEQUALITY

Bifoliate

The PLANE CURVE given by the Cartesian equation

x4�y4�2axy2:
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Bifolium

A FOLIUM with b �0. The bifolium is the PEDAL CURVE

of the DELTOID, where the PEDAL POINT is the
MIDPOINT of one of the three curved sides. The
Cartesian equation is

(x2 �y2)2 �4axy2

and the POLAR equation is

r � 4a sin2 u cos u:

See also FOLIUM, QUADRIFOLIUM, TRIFOLIUM
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Bifurcation
A period doubling, quadrupling, etc., that accompa-
nies the onset of CHAOS. It represents the sudden
appearance of a qualitatively different solution for a
nonlinear system as some parameter is varied.
Bifurcations come in four basic varieties: FLIP BIFUR-

CATION, FOLD BIFURCATION, PITCHFORK BIFURCATION,
and TRANSCRITICAL BIFURCATION (Rasband 1990).

See also CODIMENSION, FEIGENBAUM CONSTANT,
FEIGENBAUM FUNCTION, FLIP BIFURCATION, HOPF

BIFURCATION, LOGISTIC MAP, PERIOD DOUBLING,
PITCHFORK BIFURCATION, TANGENT BIFURCATION,
TRANSCRITICAL BIFURCATION
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Bifurcation Theory
The study of the nature and properties of BIFURCA-

TIONS.

See also CHAOS, DYNAMICAL SYSTEM
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Bigraph
BIPARTITE GRAPH

Bigyrate Diminished
Rhombicosidodecahedron

JOHNSON SOLID J79:/
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Biharmonic Equation
The differential equation obtained by applying the
BIHARMONIC OPERATOR and setting to zero.

94f�0: (1)

In CARTESIAN COORDINATES, the biharmonic equation
is

94f�92(92)f
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In POLAR COORDINATES (Kaplan 1984, p. 148)

94 f � frrrr �
2

r2
frruu �

1

r4
fuuuu �

2

r
frrr �

2

r3
fruu

�
1

r2
frr �

4

r4
fuu �

1

r3
fr �0: (3)

For a radial function f(r) ; the biharmonic equation
becomes

94 f �
1

r

d

dr
r

d

dr

1

r

d

dr
r

df
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 !" #( )

� frrrr �
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r
frrr �

1

r2
frr �

1

r3
fr �0: (4)

Writing the inhomogeneous equation as

94 f �64 b; (5)

we have

64br dr�d r
d

dr

1

r

d

dr
r

df

dr

 !" #( )
(6)

32br2 �C1 �r
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dr

1
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(8)

16br2 �C1 ln r �C2 �
1

r

d

dr
r

df

dr

 !
(9)

(16 br3 �C1r ln r �C2r) dr �d r
df

dr

 !
: (10)

Now use

g r ln r dr�1
2 r

2 ln r �1
4 r

2 (11)

to obtain

4 br4 �C1(1
2 r

2 ln r �1
4 r

2) �1
2 C2r2 �C3 �r

df

dr
(12)

4 br3 �C ?1r ln r �C?2r �
C3

r

 !
dr �df (13)

f(r) � br4 �C?1(1
2 r

2 ln r �1
4 r

2) �1
2 C ?2r2 �C3 ln r �C4

� br4 �ar2 �b �(cr2 �d) ln
r

R

 !
: (14)

The homogeneous biharmonic equation can be sepa-
rated and solved in 2-D BIPOLAR COORDINATES.

See also BIHARMONIC OPERATOR, VON KÁ RMÁ N EQUA-

TIONS
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Biharmonic Operator
Also known as the BILAPLACIAN.

94 �( 92)2 :

In n -D space,

94 1

r

 !
�

3(15 � 8n � n2)

r5 
:

See also BIHARMONIC EQUATION, D’ALEMBERTIAN,
LAPLACIAN, VON KÁ RMÁ N EQUATIONS

Biholomorphic Function
CONFORMAL MAPPING

Biholomorphic Map
CONFORMAL MAPPING

Biholomorphic Transformation
CONFORMAL MAPPING

Bijection

A transformation which is ONE-TO-ONE and ONTO.

See also DOMAIN, ONE-TO-ONE, ONTO, PERMUTATION,
RANGE (IMAGE)

Bilaplacian
BIHARMONIC OPERATOR

Bilinear Basis

A bilinear basis is a BASIS, which satisfies the
conditions

(ax�by) � z�a(x � z)�b(y � z)



z � (ax �by) �a(z � x) �b(z � y) ;

See also BASIS, BILINEAR FUNCTION, MULTILINEAR

BASIS

Bilinear Form
A bilinear form on a REAL VECTOR SPACE is a function

b : V �V 0 R

that satisfies the following axioms for any scalar a
and any choice of vectors v; w; v1 ; v2 ; w1 and w2 :

1. b(av ; w) �b(v ; aw) � ab(v ; w)/
2. b(v1 �v2 ; w) �b(v1 ; w) �b(v2 ; w)/
3. b(v ; w1 �w2) �b(v; w1) ��b(v; w2):/

For example, the function b((x1 ; x2) ; (y1 ; y2)) �x1y2 �
x2y1 is a bilinear form on R2 :/

On a COMPLEX VECTOR SPACE, a bilinear form takes
values in the COMPLEX NUMBERS. In fact, a bilinear
form can take values in any VECTOR SPACE, since the
axioms make sense as long as VECTOR ADDITION and
SCALAR MULTIPLICATION are defined.

See also BILINEAR FUNCTION, MULTILINEAR FORM,
SYMMETRIC BILINEAR FORM, VECTOR SPACE

Bilinear Function
A function of two variables is bilinear if it is linear
with respect to each of its variables. The simplest
example is f (x; y)�xy:/

See also BILINEAR BASIS, LINEAR FUNCTION, SYM-

METRIC BILINEAR FORM

Billiard Table Problem
BILLIARDS

Billiards
The game of billiards is played on a RECTANGULAR

table (known as a billiard table) upon which balls are
placed. One ball (the "cue ball") is then struck with
the end of a "cue" stick, causing it to bounce into other
balls and REFLECT off the sides of the table. Real

billiards can involve spinning the ball so that it does
not travel in a straight LINE, but the mathematical
study of billiards generally consists of REFLECTIONS in
which the reflection and incidence angles are the
same. However, strange table shapes such as CIRCLES

and ELLIPSES are often considered.

Many interesting problems can arise in the detailed
study of billiards trajectories. For example, any
smooth plane convex set has at least two DOUBLE

NORMALS, so there are always two distinct "to and fro"
paths for any smoothly curved table. More amazingly,
there are always f(k) distinct k -gonal periodic orbits
on smooth billiard table, where f(k) is the TOTIENT

FUNCTION (Croft et al. 1991, p. 16). This gives
Steinhaus’s result that there are always two distinct
periodic triangular orbits (Croft and Swinnerton-
Dyer 1963) as a special case. Analysis of billiards
path can involve sophisticated use of ERGODIC THEORY

and DYNAMICAL SYSTEMS.

Given a rectangular billiard table with only corner
pockets and sides of INTEGER lengths m and n (with
m and n RELATIVELY PRIME), a ball sent at a 458 angle
from a corner will be pocketed in another corner after
m�n�2 bounces (Steinhaus 1983, p. 63; Gardner
1984, pp. 211�/14). Steinhaus (1983, p. 64) also gives
a method for determining how to hit a billiard ball
such that it caroms off all four sides before hitting a
second ball (Knaster and Steinhaus 1946, Steinhaus
1948).

ALHAZEN’S BILLIARD PROBLEM seeks to find the point
at the edge of a circular "billiards" table at which a
cue ball at a given point must be aimed in order to
carom once off the edge of the table and strike
another ball at a second given point. It was not until
1997 that Neumann proved that the problem is
insoluble using a COMPASS and RULER construction.



On an ELLIPTICAL billiard table, the ENVELOPE of a
trajectory is a smaller ELLIPSE, a HYPERBOLA, a LINE

through the FOCI of the ELLIPSE, or a closed polygon
(Steinhaus 1983, pp. 239 and 241; Wagon 1991). The
closed polygon case is related to PONCELET’S PORISM.

The only closed billiard path of a single circuit in an
ACUTE TRIANGLE is the PEDAL TRIANGLE. There are an
infinite number of multiple-circuit paths, but all
segments are parallel to the sides of the PEDAL

TRIANGLE. There exists a closed billiard path inside
a CYCLIC QUADRILATERAL if its CIRCUMCENTER lies
inside the quadrilateral (Wells 1991).

There are four identical closed billiard paths inside
and touching each face of a CUBE such that each leg
on the path has the same length (Hayward 1962;
Steinhaus 1979; Steinhaus 1983; Gardner 1984,
pp. 33 �/5; Wells 1991). This path is in the form of a
chair-shaped hexagon, and each leg has length

ffiffiffi
3

p
=3:

For a unit cube, one such path has vertices (0, 2/3, 2/
3), (1/3, 1, 1/3), (2/3, 2/3, 0), (1, 1/3, 1/3), (2/3, 0, 2/3),
(1/3, 1/3, 1). Lewis Carroll (Charles Dodgson ) also
considered this problem (Weaver 1954).

There are three identical closed billiard paths inside
and touching each face of a TETRAHEDRON such that
each leg of the path has the same length (Gardner
1984, pp. 35 �/6; Wells 1991). These were discovered
by J. H. Conway and independently by Hayward
(1962). The vertices of the path are appropriately
chosen vertices of equilateral triangles in each facial

plane which are scaled by a factor of 1/10. For a
tetrahedron with unit side lengths, each leg has
length

ffiffiffiffiffiffi
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p
=10 : For a tetrahedron with vertices (0,

0, 0), (0,
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Conway has shown that period orbits exist in all
TETRAHEDRA, but it is not known if there are periodic
orbits in every POLYHEDRON (Croft et al. 1991, p. 16).

See also ALHAZEN’S BILLIARD PROBLEM, BILLIARD

TABLE PROBLEM, PONCELET’S PORISM, REFLECTION

PROPERTY, SALMON’S THEOREM
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Billion
The word billion denotes different numbers in Amer-
ican and British usage. In the American system, one
billion equals 109. In the British, French, and Ger-
man systems, one billion equals 1012. Fortunately, in
recent years, the "American" system has become
common in both the United States and Britain.

See also LARGE NUMBER, MILLIARD, MILLION, TRIL-

LION

Bilunabirotunda

JOHNSON SOLID J91 :/
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Bimagic Cube

A bimagic cube of order 25 is known.

See also MAGIC CUBE
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Bimagic Square

If replacing each number by its square in a MAGIC

SQUARE produces another MAGIC SQUARE, the square
is said to be a bimagic square. Bimagic squares are
also called DOUBLY MAGIC SQUARES, and are 2-MULTI-

MAGIC SQUARES.
The first known bimagic square (shown above) has
order 8 with magic constant 260 for addition and
11,180 after squaring. It is believed that no bimagic
squares of order less than 8 exists (Benson and
Jacoby 1976), and Hendricks (1998) shows that a
bimagic square of order 3 is impossible for any set of
numbers except the trivial case of using the same
number 9 times.

See also MAGIC SQUARE, MULTIMAGIC SQUARE, TRI-

MAGIC SQUARE
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Bimedian

A LINE SEGMENT joining the MIDPOINTS of opposite
sides of a QUADRILATERAL or TETRAHEDRON.

VARIGNON’S THEOREM states that the bimedians of a
QUADRILATERAL bisect each other (left figure). In
addition, the three bimedians of a tetrahedron are
CONCURRENT and bisect each other (right figure;
Altshiller-Court 1979, p. 48).

See also COMMANDINO’S THEOREM, MEDIAN (TRIAN-

GLE), VARIGNON’S THEOREM
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Bimodal Distribution
A STATISTICAL DISTRIBUTION having two separated
peaks.

See also UNIMODAL DISTRIBUTION

Bimonster

The wreathed product of the MONSTER GROUP by Z2 :

The bimonster is a quotient of the COXETER GROUP

with the above COXETER-DYNKIN DIAGRAM. This had
been conjectured by Conway, but was proven around
1990 by Ivanov and Norton. If the parameters p ; q ; r
in Coxeter’s NOTATION [3p ; q ; r] are written side by
side, the bimonster can be denoted by the BEAST

NUMBER 666.

Bin
An interval into which a given data point does or does
not fall.

See also BIN-PACKING PROBLEM, HISTOGRAM

Binary
The BASE 2 method of counting in which only the
digits 0 and 1 are used. In this BASE, the number 1011
equals 1 � 20�1 � 21�0 � 22�1 � 23�11: This BASE

is used in computers, since all numbers can be simply
REPRESENTED AS a string of electrically pulsed ons
and offs. The following table gives the binary equiva-
lents of the first few decimal numbers.

1 1 11 1011 21 10101

2 10 12 1100 22 10110

3 11 13 1101 23 10111

4 100 14 1110 24 11000

5 101 15 1111 25 11001

6 110 16 10000 26 11010

7 111 17 10001 27 11011

8 1000 18 10010 28 11100

9 1001 19 10011 29 11101

10 1010 20 10100 30 11110

A NEGATIVE �n is most commonly REPRESENTED AS

the complement of the POSITIVE number n�1; so
�11�000010112 would be written as the complement
of 10�000010102; or 11110101. This allows addition
to be carried out with the usual carrying and the left-
most digit discarded, so 17�/1�6 gives

00010001 17

11110101 �11

00000110 6

The number of times k a given binary number
bn . . . b2b1b0 is divisible by 2 is given by the position
of the first bk�1 counting from the right. For
example, 12�1100 is divisible by 2 twice, and
13�1101 is divisible by 2 0 times.



The number of 1s N(1; n) in the binary representa-
tion of a number is given by

N(1; n) �n �gde(n!; 2) �n �
X	log2n


k �1

n

2k

$ %
; (1)

where gde(n!; 2) is the GREATEST DIVIDING EXPONENT

of 2 with respect to n!: This is a special application of
the general result that the POWER of a PRIME p
dividing a FACTORIAL (Graham et al. 1990, Vardi
1991). Writing a(n) for N(1; n); the number of 1s is
also given by the RECURRENCE RELATION

a(2n) �a(n) (2)

a(2n �1) �a(n) �1; (3)

with a(0) �0; and by

N(1; n) �2n �log2(d) ; (4)

where d is the DENOMINATOR of

1

n!

dn

dxn 
(1 �x) �1=2

" #
x�0

: (5)

For n � 1, 2, ..., the first few values are 1, 1, 2, 1, 2, 2,
3, 1, 2, 2, 3, ... (Sloane’s A000120; Smith 1966,
Graham 1970, McIlroy 1974).

Unfortunately, the storage of binary numbers in
computers is not entirely standardized. Because
computers store information in 8-bit bytes (where a
bit is a single binary digit), depending on the "word
size" of the machine, numbers requiring more than 8
bits must be stored in multiple bytes. The usual
FORTRAN77 integer size is 4 bytes long. However, a
number REPRESENTED AS (byte1 byte2 byte3 byte4) in
a VAX would be read and interpreted as (byte4 byte3
byte2 byte1) on a Sun. The situation is even worse for
floating point (real) numbers, which are represented
in binary as a MANTISSA and CHARACTERISTIC, and
worse still for long (8-byte) reals!

Binary multiplication of single bit numbers (0 or 1) is
equivalent to the AND operation, as can be seen in
the following MULTIPLICATION TABLE.

/�/ 0 1

0 0 0

1 0 1

See also BASE (NUMBER), BINARY CARRY SEQUENCE,
DECIMAL, FACTORIAL, HEXADECIMAL, MOSER-DE

BRUIJN SEQUENCE, NEGABINARY, OCTAL, QUATERN-

ARY, RUDIN-SHAPIRO SEQUENCE, STOLARSKY-HAR-

BORTH CONSTANT, TERNARY
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Binary Bracketing
A binary bracketing is a BRACKETING built up entirely
of binary operations. The number of binary bracket-
ings of n letters (CATALAN’S PROBLEM) are given by
the CATALAN NUMBERS Cn�1 ; where

Cn �
1

n � 1

2n
n

� �
�

1

n � 1

(2n)!

n!2
�

(2n)!

(n � 1)!n! 
;

where (2n
n ) denotes a BINOMIAL COEFFICIENT and n! is

the usual FACTORIAL, as first shown by Catalan in
1838. For example, for the four letters a , b , c , and d
there are five possibilities: ((ab)c)d; (a(bc))d; (ab)(cd);
a((bc)d; and a(b(cd)) ; written in shorthand as ((xx)x)x;
(x(xx))x; (xx)(xx); x((xx)x; and x(x(xx)):/

See also BRACKETING, CATALAN NUMBER, CATALAN’S

PROBLEM
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Binary Carry Sequence
The sequence a(n) given by the exponents of the
highest power of 2 dividing n , i.e., the number of
trailing 0s in the BINARY representation of n . For
n �1, 2, ..., the first few are 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,
2, ... (Sloane’s A007814). Amazingly, this corresponds
to one less than the number of disk to be moved at
nth step of optimal solution to TOWERS OF HANOI

problem, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, ... (Sloane’s
A001511).

The anti-PARITY of this sequence is given by 1, 0, 1, 1,
1, 0, 1, 0, 1, 0, 1, 1, ... (Sloane’s A035263) which,
amazingly, also corresponds to the ACCUMULATION

POINT of 2n cycles through successive bifurcations.

See also DOUBLE-FREE SET, TOWERS OF HANOI
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Binary Goldbach Conjecture
GOLDBACH CONJECTURE

Binary Heap
HEAP

Binary Matrix
(0,1)-MATRIX

Binary Operation
This entry contributed by J. BRAD WEATHERLY

A binary operation on a nonempty set A is a map f :
A � A 0 A; such that f is defined for every element in
A and the image of f is unique. Examples of binary
operations on A from A � A to A include � and -.

See also BINARY OPERATOR

Binary Operator
An OPERATOR defined on a set S which takes two
elements from S as inputs and returns a single
element of S . Binary operators are called composi-
tions by Rosenfeld (1968). Sets possessing a binary
multiplication operation include the GROUP, GROUP-

OID, MONOID, QUASIGROUP, and SEMIGROUP. Sets
possessing both a binary multiplication and a binary
addition operation include the DIVISION ALGEBRA,
FIELD, RING, RINGOID, SEMIRING, and UNIT RING.

See also AND, BINARY OPERATION, BOOLEAN ALGE-

BRA, CLOSURE (SET), CONNECTIVE, DIVISION ALGE-

BRA, FIELD, GROUP, GROUPOID, MONOID, OPERATOR,
OR, MONOID, NOT, QUASIGROUP, RING, RINGOID,
SEMIGROUP, SEMIRING, XNOR, XOR, UNIT RING
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Binary Quadratic Form
A QUADRATIC FORM in two variables having the form

Q(x; y) � a11x2 �2a12xy �a22y2 : (1)

Consider a binary quadratic form with real coeffi-
cients a11 ; a12 ; and a22 ; determinant

D �a11a22 �a2
12 �1; (2)

and a11 > 0: Then Q(x; y) is POSITIVE DEFINITE. An
important result states that exist two integers x and
y not both 0 such that

Q(x; y) 5
2ffiffiffi
3

p (3)

for all values of aij satisfying the above constraint
(Hilbert and Cohn-Vossen 1999, p. 39).

See also PELL EQUATION, POSITIVE DEFINITE QUAD-

RATIC FORM, QUADRATIC FORM, QUADRATIC INVAR-

IANT
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Binary Relation
Given a set of objects S , a binary relation is a subset
of the CARTESIAN PRODUCT S �S:/

See also RELATION
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Binary Remainder Method

An ALGORITHM for computing a UNIT FRACTION (Stew-
art 1992).
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Binary Search
A SEARCHING algorithm which works on a sorted table
by testing the middle of an interval, eliminating the
half of the table in which the key cannot lie, and then
repeating the procedure iteratively.

See also SEARCHING
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Binary Tree
A TREE with two BRANCHES at each FORK and with one
or two LEAVES at the end of each BRANCH. (This
definition corresponds to what is sometimes known as
an "extended" binary tree.) The height of a binary
tree is the number of levels within the TREE. For a
binary tree of height H with n nodes,

H 5n 52H �1:

These extremes correspond to a balanced tree (each
node except the LEAVES has a left and right CHILD,
and all LEAVES are at the same level) and a degen-
erate tree (each node has only one outgoing BRANCH),
respectively. For a search of data organized into a
binary tree, the number of search steps S(n) needed

to find an item is bounded by

lg n 5S(n) 5n:

Partial balancing of an arbitrary tree into a so-called
AVL binary search tree can improve search speed.

The number of binary trees with n internal nodes is
the CATALAN NUMBER Cn (Sloane’s A000108), and the
number of binary trees of height b is given by
Sloane’s A001699. The numbers of binary trees on
n �1, 2, ... nodes (i.e., n -node trees having VERTEX

DEGREE either 1 or 3; also called 3-Cayley trees, 3-
valent trees, or boron trees) are 1, 1, 0, 1, 0, 1, 0, 1, 0,
2, 0, 2, 0 ,4, 0, 6, 0, 11, ... (Sloane’s A052120).

See also B -TREE, CAYLEY TREE, COMPLETE BINARY

TREE, EXTENDED BINARY TREE, HEAP, QUADTREE,
QUATERNARY TREE, RAMUS TREE, RED-BLACK TREE,
SPLAY TREE, STERN-BROCOT TREE, WEAKLY BINARY

TREE
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Binet Forms
The two RECURRENCE SEQUENCES

Un�mUn�1�Un�2 (1)

Vn�mVn�1�Vn�2 (2)

with U0�0; U1�1 and V0�2; V1�m; can be solved
for the individual Un and Vn: They are given by

Un�
an � bn

D
(3)

Vn�an�bn; (4)

where

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�4

p
(5)

a�
m � D

2
(6)

b�
m � D

2
: (7)

A useful related identity is



Un�1 �Un�1 �Vn : (8)

BINET’S FIBONACCI NUMBER FORMULA is a special case
of the Binet form for Un corresponding to m �1.

See also BINET’S FIBONACCI NUMBER FORMULA,
FIBONACCI Q -MATRIX

Binet’s Fibonacci Number Formula
A special case of the Un BINET FORM with m �1,
corresponding to the nth FIBONACCI NUMBER,

Fn �
(1 �

ffiffiffi
5

p
)n � (1 �

ffiffiffi
5

p
)n

2n
ffiffiffi
5

p :

It was derived by Binet in 1843, although the result
was known to Euler and to Daniel Bernoulli more
than a century earlier.

See also BINET FORMS, FIBONACCI NUMBER
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Binet’s Log Gamma Formulas
Binet’s first formula for ln G(z); where G(z) is a
GAMMA FUNCTION, is given by

ln G(z) �(z �1
2) ln z �z �1

2ln(2p)

�g
�

0

[(et �1)�1 �t�1 �1
2]t

�1e�tz dt

for R[z] > 0 (Erdélyi et al. 1981, p. 21). Binet’s second
formula is

ln G(z) � z �1
2

 !
ln z �z �1

2 ln (2p) �2 g
�

0

tan
t

2

 !
e2 pt � 1

dt

for R[z] > 0 (Erdélyi et al. 1981, p. 22; Whittaker and
Watson 1990, p. 251).

See also GAMMA FUNCTION, MALMSTÉ N’S FORMULA
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Binet-Cauchy Identity
The algebraic identity

Xn

i �1

aici

 ! Xn

i�1

bidi

 !
�

Xn

i �1

aidi

 ! Xn

i�1

bici

 !

�
X

1 5i 5j 5n

(aibj �ajbi)(cidj �cjdi): (1)

Letting ci �ai and di �bi gives LAGRANGE’S IDENTITY.

The identity can be coded in Mathematica as follows.

BBDiscreteMath‘Combinatorica‘;

BinetCauchyId[n_] : � Module[{

aa � Array[a, n], bb � Array[b, n],

cc � Array[c, n], dd � Array[d, n]

},

aa.cc bb.dd - aa.dd bb.cc ��
Plus @@ ((a[#1]b[#2] -

a[#2]b[#1])(c[#1]d[#2] - c[#2]d[#1]) & @@@

KSubsets[Range[n], 2])

]

The n �2 case then gives

(a1c1 �a2c2)(b1d1 �b2d2) �(b1c1 �b2c2)(a1d1 �a2d2)

�(a1b2 �a2b1)(c1d2 �c2d1): (2)

The n �3 case is equivalent to the vector identity

(A �B) �(C �D) �(A �C)(B �D) �(A �D)(B �C); (3)

where A �B is the DOT PRODUCT and A �B is the
CROSS PRODUCT. Note that this identity itself is
sometimes known as LAGRANGE’S IDENTITY.

See also LAGRANGE’S IDENTITY
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Bing’s Theorem
If M3 is a closed oriented connected 3-MANIFOLD such
that every simple closed curve in M lies interior to a
BALL in M , then M is HOMEOMORPHIC with the
HYPERSPHERE, S3 :/

See also BALL, HYPERSPHERE
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Binomial
A POLYNOMIAL with 2 terms.

See also BINOMIAL COEFFICIENT, MONOMIAL, POLY-

NOMIAL, TRINOMIAL

Binomial Coefficient
The number of ways of picking n unordered outcomes
from N possibilities, also known as a COMBINATION or
combinatorial number. The symbols NCn and N

n

� �
are

used to denote a binomial coefficient, and are some-
times read as "N CHOOSE n ." The value of the
binomial coefficient is given by



NCn�
N
n

� �
�

N!

(N � n)!n!
; (1)

where n! denotes a FACTORIAL. Writing the FACTORIAL

as a GAMMA FUNCTION n!�G(n�1) allows the bino-
mial coefficient to be generalized to non-integral
arguments.

The binomial coefficients form the rows of PASCAL’S

TRIANGLE, and the number of LATTICE PATHS from the
ORIGIN (0; 0) to a point (a, b ) is the binomial
coefficient a�b

a

� �
(Hilton and Pedersen 1991).

For a POSITIVE INTEGER n , the BINOMIAL THEOREM

gives

(x�a)n�
Xn

k�0

n
k

� �
xkan�k: (2)

The FINITE DIFFERENCE analog of this identity is
known as the CHU-VANDERMONDE IDENTITY. A simi-
lar formula holds for NEGATIVE INTEGERS,

(x�a)�n�
X�
k�0

�n
k

� �
xka�n�k: (3)

There are a number of elegant BINOMIAL SUMS.

The binomial coefficients satisfy the identities

n
0

� �
�

n
n

� �
�1 (4)

n
k

� �
�

n
n�k

� �
�(�1)k k�n�1

k

� �
(5)

n�1
k

� �
�

n
k

� �
�

n
k�1

� �
: (6)

As shown by Kummer in 1852, if pk is the largest
power of a PRIME p that divides n�k

k

� �
; where n and k

are nonnegative integers, then k is the number of
carries that occur when k is added to n in base p
(Graham et al. 1989, Exercise 5.36, p. 245; Ribenboim
1989; Vardi 1991, p. 68). Kummer’s result can also be
stated in the form that the exponent of a PRIME p
dividing n

m

� �
is given by the number of integers j ] 0

for which

frac(m=pj) > frac(n=pj); (7)

where frac(x) denotes the FRACTIONAL PART of x . This
inequality may be reduced to the study of the
exponential sums anL(n)e(x=n); where L(n) is the
MANGOLDT FUNCTION. Estimates of these sums are
given by Jutila (1974, 1975), but recent improvements
have been made by Granville and Ramare (1996).

R. W. Gosper showed that

f (n)�
n�1

1
2(n�1)

� �
�(�1)(n�1)=2 (mod n) (8)

for all PRIMES, and conjectured that it holds only for

PRIMES. This was disproved when Skiena (1990)
found it also holds for the COMPOSITE NUMBER n�
3�11�179: Vardi (1991, p. 63) subsequently showed
that n�p2 is a solution whenever p is a WIEFERICH

PRIME and that if n � pk with k�3 is a solution, then
so is n � pk�1: This allowed him to show that the only
solutions for COMPOSITE n B 1:3 � 107 are 5907,
10932, and 35112, where 1093 and 3511 are WIEFER-

ICH PRIMES.

Consider the binomial coefficients f (n)� 2n�1
n

� �
; the

first few of which are 1, 3, 10, 35, 126, ... (Sloane’s
A001700). The GENERATING FUNCTION is

1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x

p �1

" #
�x�3x2�10x3�35x4�. . . : (9)

These numbers are SQUAREFREE only for n�2, 3, 4, 6,
9, 10, 12, 36, ... (Sloane’s A046097), with no others
known. It turns out that f (n) is divisible by 4 unless n
belongs to a 2-AUTOMATIC SET S2; which happens to be
the set of numbers whose BINARY representations
contain at most two 1s: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16,
17, 18, ... (Sloane’s A048645). Similarly, f (n) is
divisible by 9 unless n belongs to a 3-AUTOMATIC

SET S3; consisting of numbers n for which the
representation of 2n in TERNARY consists entirely of
0s and 2s (except possibly for a pair of adjacent 1s;
D. Wilson, A. Karttunen). The initial elements of S3
are 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 18, 19, 21, 22, 27, ...
(Sloane’s A051382). If f (n) is squarefree, then n must
belong to S�S2SS3: It is very probable that S is
finite, but no proof is known. Now, squares larger
than 4 and 9 might also divide f (n); but by eliminat-
ing these two alone, the only possible n for n5264 are
1, 2, 3, 4, 6, 9, 10, 12, 18, 33, 34, 36, 40, 64, 66, 192,
256, 264, 272, 513, 514, 516, 576 768, 1026, 1056,
2304, 16392, 65664, 81920, 532480, and 545259520.
All of these but the last have been checked (D. Wil-
son), establishing that there are no other n such that
f (n) is squarefree for n5545; 259; 520:/

Erdos showed that the binomial coefficient n
k

� �
; with

35k5n=2 is a POWER of an INTEGER for the single
case 50

3

� �
�1402 (Le Lionnais 1983, p. 48). Binomial

coefficients Tn�1�
n
2

� �
are squares a2 when a2 is a

TRIANGULAR NUMBER, which occur for a�1, 6, 35,
204, 1189, 6930, ... (Sloane’s A001109). These values
of a have the corresponding values n�2, 9, 50, 289,
1682, 9801, ... (Sloane’s A052436).

The binomial coefficients n
n=2b c

 !
are called CENTRAL

BINOMIAL COEFFICIENTS, where xb c is the FLOOR

FUNCTION, although the subset of coefficients 2n
n

� �
is

sometimes also given this name. Erdos and Graham
(1980, p. 71) conjectured that the CENTRAL BINOMIAL

COEFFICIENT
2n
n

� �
is never SQUAREFREE for n� 4, and

this is sometimes known as the ERDOS SQUAREFREE

CONJECTURE. SÁRKOZY’S THEOREM (Sárkozy 1985)
provides a partial solution which states that the
BINOMIAL COEFFICIENT

2n
n

� �
is never SQUAREFREE for



all sufficiently large n ] n0 (Vardi 1991). Granville
and Ramare (1996) proved that the only SQUAREFREE

values are n �2 and 4. Sander (1992) subsequently
showed that 2n9d

n

� �
are also never SQUAREFREE for

sufficiently large n as long as d is not "too big."

For p , q , and r distinct PRIMES, then the function (8)
satisfies

f (pqr)f (p)f (q)f (r) �f (pq)f (pr)f (qr) (mod pqr) (10)

(Vardi 1991, p. 66).

Most binomial coefficients (n
k) with n ]2k have a

prime factor p 5n=k; and Lacampagne et al. (1993)
conjecture that this inequality is true for all n �
17 :125k ; or more strongly that any such binomial
coefficient has LEAST PRIME FACTOR p 5n =k or p 5
17 with the exceptions 62

6

� �
; 959

56

� �
; 474

66

� �
; 284

28

� �
for which

p �19, 19, 23, 29 (Guy 1994, p. 84).

The binomial coefficient m
n

� �
(mod 2) can be computed

using the XOR operation n XOR m , making PASCAL’S

TRIANGLE mod 2 very easy to construct.

The binomial coefficient "function" can be defined as

C(x; y) �
x!

y!(x � y)
(11)

(Fowler 1996), shown above. It has a very complicated
GRAPH for NEGATIVE x and y which is difficult to
render using standard plotting programs.

See also APÉ RY NUMBER, BALANCED BINOMIAL COEF-

FICIENT, BALLOT PROBLEM, BINOMIAL DISTRIBUTION,
BINOMIAL IDENTITY, BINOMIAL SUMS, BINOMIAL THE-

OREM, CENTRAL BINOMIAL COEFFICIENT, CHOOSE,
CHU-VANDERMONDE IDENTITY, COMBINATION, DEFI-

CIENCY, ERDOS SQUAREFREE CONJECTURE, EXCEP-

TIONAL BINOMIAL COEFFICIENT, FACTORIAL, GAMMA

FUNCTION, GAUSSIAN COEFFICIENT, GAUSSIAN POLY-

NOMIAL, GOOD BINOMIAL COEFFICIENT, KINGS PRO-

BLEM, KLEE’S IDENTITY, LAH NUMBER, MULTICHOOSE,
MULTINOMIAL COEFFICIENT, PERMUTATION, ROMAN

COEFFICIENT, SÁ RKOZY’S THEOREM, STANLEY’S IDEN-

TITY, STAR OF DAVID THEOREM, STOLARSKY-HAR-

BORTH CONSTANT, STREHL IDENTITIES, SZÉ KELY

IDENTITY, WOLSTENHOLME’S THEOREM
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Binomial Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

(y?)m�f (x; y)

(Hille 1969, p. 675; Zwillinger 1997, p. 120).
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Binomial Distribution

The binomial distribution gives the probability dis-
tribution Pp(n½N) of obtaining exactly n successes out
of N BERNOULLI TRIALS (where the result of each
BERNOULLI TRIAL is true with probability p and false
with probability q�1�p): The binomial distribution
is therefore given by

Pp(n½N)�
N
n

� �
pn(1�p)N�n�

N!

n!(N � n)!
pnqN�n: (1)

The above plot shows the distribution of n successes
out of N�20 trials with p�q�1=2: Steinhaus (1983,
pp. 25�/8) considers the expected number of squares

S(n; N; s) containing a given number of grains n on
board of size s after random distribution of N of
grains,

S(n; N; s)�sP1=s(n½N): (2)

Taking N�s�64 gives the results summarized in
the following table.

S n

0 23.3591

1 23.7299

2 11.8650

3 3.89221

4 0.942162

5 0.179459

6 0.0280109

7 0.0036840

8 4.16639�10�4

9 4.11495�10�5

10 3.59242�10�6

The probability of obtaining more successes than the
n observed in a binomial distribution is

P�
XN

k�n�1

N
k

� �
pk(1�p)N�k�Ip(n�1; N�n); (3)

where

Ix(a; b)�
B(x; a; b)

B(a; b)
; (4)

/B(a; b) is the BETA FUNCTION, and B(x; a; b) is the
incomplete BETA FUNCTION.

The CHARACTERISTIC FUNCTION for the binomial dis-
tribution is

f(t)�(q�peit)n (5)

(Papoulis 1984, p. 154). The MOMENT-GENERATING

FUNCTION M for the distribution is

M(t) � �etn��
XN

n�0

etn N
n

� �
pnqN�n

�
XN

n�0

N
n

� �
(pet)(1�p)N�n�[pet�(1�p)]N (6)

M?(t) � N[pet�(1�p)]N�1(pet) (7)

M??(t)�N(N�1)[pet�(1�p)]N�2(pet)2



�N[pet�(1�p)]N�1(pet): (8)

The MEAN is

m�M?(0)�N(p�1�p)p�Np: (9)

The MOMENTS about 0 are

m?1�m�Np (10)

m?2�Np(1�p�Np) (11)

m?3�Np(1�3p�3Np�2p2�3NP2�N2p2) (12)

m?4�Np(1�7p�7Np�12p2�18Np2�6N2p2�6p3

�11Np3�6N2p3�N3p3); (13)

so the MOMENTS about the MEAN are

m2�s2�[N(N�1)p2�Np]�(Np)2

�N2p2�Np2�Np�N2p2�Np(1�p)�Npq (14)

m3�m?3�3m?2m?1�2(m1)3�Np(1�p)(1�2p) (15)

m4�m?4�4m?3m?1�6m?2(m?1)2�3(m1)4

�Np(1�p)[3p2(2�N)�3p(N�2)�1]: (16)

The SKEWNESS and KURTOSIS are

g1�
m3

s3
�

Np(1 � p)(1 � 2p)

[Np(1 � p)]3=2 �
1 � 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1 � p)

p
�

q � pffiffiffiffiffiffiffiffiffiffi
Npq

p (17)

g2�
m4

s4
�3�

6p2 � 6p � 1

Np(1 � p)
�

1 � 6pq

Npq
: (18)

An approximation to the Bernoulli distribution for
large N can be obtained by expanding about the value
ñ where P(n) is a maximum, i.e., where dP=dn�0:
Since the LOGARITHM function is MONOTONIC, we can
instead choose to expand the LOGARITHM. Let n�
ñ�h; then

ln[P(n)]�ln[P(ñ)]�B1h�
1
2 B2h

2� 1
3! B3h

3�. . . ; (19)

where

Bk�
dk ln[P(n)]

dnk

" #
n�ñ

: (20)

But we are expanding about the maximum, so, by
definition,

B1�
d ln[P(n)]

dn

" #
n�ñ

�0: (21)

This also means that B2 is negative, so we can write
B2��½B2½: Now, taking the LOGARITHM of (1) gives

ln[P(n)]�ln N!�ln n!�ln(N�n)!�n ln p

�(N�n) ln q: (22)

For large n and N�n we can use STIRLING’S

APPROXIMATION

ln(n!):n ln n�n; (23)

so

d[ln(n!)]

dn
:(ln n�1)�1�ln n (24)

d[ln(N � n)!]

dn
:

d

dn
[(N�n) ln(N�n)�(N�n)]

� �ln(N�n)�(N�n)
�1

N � n
�1

" #

��ln(N�n); (25)

and

d ln[P(n)]

dn
:�ln n�ln(N�n)ln p�ln q: (26)

To find ñ; set this expression to 0 and solve for n ,

ln
N � ñ

ñ

p

q

 !
�0 (27)

N � ñ

ñ

p

q
�1 (28)

(N�ñ)p�ñq (29)

ñ(q�p)�ñ�Np; (30)

since p�q�1: We can now find the terms in the
expansion

B2�
d2 ln[P(n)]

dn2

" #
n�ñ

��
1

ñ
�

1

N � ñ

��
1

Np
�

1

N(1 � p)
��

1

N

1

p
�

1

q

 !
��

1

N

p � q

pq

 !

��
1

Npq
��

1

N(1 � p)
(31)

B3�
d3 ln[P(n)]

dn3

" #
n�ñ

��
1

ñ2
�

1

(N � ñ)2�
1

N2p2
�

1

N2q2

�
q2 � p2

N2p2q2
�

(1 � 2p � p2) � p2

N2p2(1 � p)2

�
1 � 2p

N2p2(1 � p)2 (32)



B4 �
d4 ln[P(n)]

dn4

" #
n�ñ

��
2

ñ3 
�

2

(n � ñ)3

��2
1

N3p3 
�

1

N3q3

 !
�

2(p3 � q3)

N3p3q3

�
2(p2 � pq � q2)

N3p3q3

�
2[p2 � p(1 � p) � (1 � 2p � p2)]

N3p3(1 � p3)

�
2(3p2 � 3p � 1)

N3p3(1 � p3)
: (33)

Now, treating the distribution as continuous,

lim
N 0�

XN

n�0

P(n) :g P(n) dn �g
�

��

P(ñ � h) d h �1: (34)

Since each term is of order 1=N 
1 =s2 smaller than
the previous, we can ignore terms higher than B2 ; so

P(n) �P(ñ)e �½B2 ½ h
2 =2 : (35)

The probability must be normalized, so

g
�

��

P(ñ) e �½B2 ½ h
2 =2 dh �P(ñ)

ffiffiffiffiffiffiffiffi
2p

½B2 ½

s
�1 ; (36)

and

P(n) �

ffiffiffiffiffiffiffiffi
½B2 ½

2 p

s
e �½B2 ½(n�ñ)2 =2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNpq
p exp �

(n � Np)2

2Npq

" #
: (37)

Defining s2 �Npq ;

P(n) �
1

s
ffiffiffiffiffiffi
2p

p exp �
(n � ñ)2

2s2

" #
; (38)

which is a GAUSSIAN DISTRIBUTION. For p �1; a
different approximation procedure shows that the
binomial distribution approaches the POISSON DIS-

TRIBUTION. The first CUMULANT is

k1 �np; (39)

and subsequent CUMULANTS are given by the RECUR-

RENCE RELATION

kr�1 �pq
dkr

dp
: (40)

Let x and y be independent binomial RANDOM VARI-

ABLES characterized by parameters n, p and m, p .
The CONDITIONAL PROBABILITY of x given that x �y �
k is

P(x �i ½x �y �k) �
P(x � i ; x � y � k)

P(x � y � k)

�
P(x � i; y � k � i)

P(x � y � k)
�

P(x � i)P(y � k � i)

P(x � y � k)

�

n
i

� �
pi(1 � p)n�i m

k � i

� �
pk�i(1 � p)m�(k�i)

n � m
k

� �
pk(1 � p)n�m�k

�

n
i

� �
m

k � i

� �
n � m

k

� � : (41)

Note that this is a HYPERGEOMETRIC DISTRIBUTION.

See also DE MOIVRE-LAPLACE THEOREM, HYPERGEO-

METRIC DISTRIBUTION, NEGATIVE BINOMIAL DISTRIBU-

TION
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Binomial Expansion
BINOMIAL SERIES

Binomial Formula
BINOMIAL SERIES, BINOMIAL THEOREM

Binomial Identity
Roman (1984, p. 26) defines "the" binomial identity as
the equation

pn(x�y)�
Xn

k�0

n
k

� �
pk(y)pn�k(x): (1)

IFF the sequence pn(x) satisfies this identity for all y
in a FIELD C of characteristic 0, then pn(x) is an
ASSOCIATED SEQUENCE known as a BINOMIAL-TYPE

SEQUENCE.

In general, a binomial identity is a formula expres-
sing products of factors as a sum over terms, each
including a BINOMIAL COEFFICIENT (n

k): The prototypi-
cal example is the BINOMIAL THEOREM



(x �a)n �
Xn

k�0

n
k

� �
xkan�k (2)

for n �0. Abel (1826) gave a host of such identities
(Riordan 1979, Roman 1984), some of which include

(x � y)(x � y � an)n�1

�
Xn

k �0

n
k

� �
xy(x �ak)k �1[y �a(n �k)]n �k �1 ; (3)

x�1(x �y �na)n

�
Xn

k�0

Xn

k �0

n
k

� �
(x �ak)k �1[y �a(n �k)]n�k (4)

(Abel 1826, Riordan 1979, p. 18; Roman 1984, pp. 30
and 73), and

x�1(x �y)n �
Xn

k �0

n
k

� �
(x �ak)k �1(y �ak)n�k (5)

(Saslaw 1989).

See also ABEL’S BINOMIAL THEOREM, ABEL POLYNO-

MIAL, BINOMIAL COEFFICIENT, DILCHER’S FORMULA,
Q -ABEL’S THEOREM
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Binomial Number
A number OF THE FORM an 9bn ; where a, b , and n are
INTEGERS. They can be factored algebraically

an �bn �(a �b)(an�1 �an �2b �. . .�abn�2 �bn�1) (1)

for all n ,

an �bn �(a �b)(an�1 �an �2b �. . .�abn�2 �bn�1) (2)

for n not a power of 2, and

anm �bnm �(am �bm)

� [am(n�1) �am(n�2)bm �. . .�bm(n�1)] : (3)

for all positive integers m, n . For example,

a2 �b2 �(a �b)(a �b) (4)

a3 �b3 �(a �b)(a2 �ab �b2) (5)

a4 �b4 �(a �b)(a �b)(a2 �b2) (6)

a5 �b5 �(a �b)(a4 �a3b �a2b2 �ab3 �b4) (7)

a6 �b6 �(a �b)(a �b)(a2 �ab �b2)(a2 �ab �b2) (8)

a7 �b7 �(a �b)(a6 �a5b �a4b2 �a3b3 �a2b4 �ab5 �b6) (9)

a8 �b8 �(a �b)(a �b)(a2 �b2)(a4 �b4) (10)

a9 �b9 �(a �b)(a2 �ab �b2)(a6 �a3b3 �b6) (11)

a10 �b10 �(a �b)(a �b)(a4 �a3b �a2b2 �ab3 �b4)

� (a4 �a3b �a2b2 �ab3 �b4) (12)

and

a2 �b2 �a2 �b2 (13)

a3 �b3 �(a �b)(a2 �ab �b2) (14)

a4 �b4 �a4 �b4 (15)

a5 �b5 �(a �b)(a4 �a3b �a2b2 �ab3 �b4) (16)

a6 �b6 �(a2 �b2)(a4 �a2b2 �b4) (17)

a7 �b7 �(a �b)(a6 �a5b �a4b2 �a3b3 �a2b4 �ab5 �b6) (18)

a8 �b8 �a8 �b8 (19)

a9�b9�(a�b)(a2�ab�b2)(a6�a3b3�b6) (20)

a10�b10�(a2�b2)(a8�a6b2�a4b4�a2b6�b8): (21)

In 1770, Euler proved that if (a; b )�1; then every
FACTOR of

a2n

�b2n

(22)

is either 2 or OF THE FORM 2n�1K�1: (A number OF

THE FORM 22n

�1 is called a FERMAT NUMBER.)

If p and q are PRIMES, then

(apq � 1)(a � 1)

(ap � 1)(aq � 1)
�1 (23)

is DIVISIBLE by every PRIME FACTOR of ap�1 not
dividing aq�1:/

See also CUNNINGHAM NUMBER, FERMAT NUMBER,
MERSENNE NUMBER, RIESEL NUMBER, SIERPINSKI

NUMBER OF THE SECOND KIND
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Binomial Polynomial
FALLING FACTORIAL

Binomial Series
For ½x½B1;

(1 �x)n �
Xn

k �0

n
k

� �
xk (1)

�
n
0

� �
x0 �

n
1

� �
x1 �

n
2

� �
x2 �� � �  (2)

�1 �
n!

1!(n � 1)!
x �

n!

(n � 2)!2!
x2 �. . . (3)

�1 �nx �
n(n � 1)

2
x2 �. . . : (4)

The binomial series also has the CONTINUED FRAC-

TION representation

(1�x)n�
1

1 �
nx

1 �

1 � (1 � n)

1 � 2
x

1 �

1 � (1 � n)

2 � 3
x

1 �

2(2 � n)

3 � 4
x

1 �

2(2 � n)

4 � 5
x

1 �

3(3 � n)

5 � 6
x

1 � . . .

: (5)

See also BINOMIAL IDENTITY, BINOMIAL THEOREM,
MULTINOMIAL SERIES, NEGATIVE BINOMIAL SERIES
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Binomial Sums
The important BINOMIAL THEOREM states that

Xn

k�0

n
k

� �
rk�(1�r)n: (1)

Sums of powers of BINOMIAL COEFFICIENTS

ar(n)�
Xn

k�0

n
k

� �r

(2)

are given by

a1(n)�2n (3)

a2(n)�
2n
n

� �
(4)

/a1(n) and a2(n) obey the RECURRENCE RELATION

a1(n�1)�2a1(n)�0 (5)

(n�1)a2(n�1)�(4n�2)a2(n)�0: (6)

Franel (1894, 1895) was the first to obtain recur-
rences for a3n (Riordan 1948, p. 193) and a4(n);

(n�1)2a3(n�1)�(7n2�7n�2)a3(n)�8n2a3(n�1)

�0 (7)

(Barrucand 1975, Cusick 1989, Jin and Dickinson
2000)

(n�1)3a4(n�1)�2(2n�1)(3n2�3n�1)a4(n)

�4n(4n�1)(4n�1)a4(n�1)�0: (8)

(Jin and Dickinson 2000). Therefore, a3n are some-
times called FRANEL NUMBERS. The sequence for a3n
cannot be expressed as a fixed number of hypergeo-
metric terms (Petkovsek et al. 1996, p. 160), and
therefore has no closed-form hypergeometric expres-
sion. Perlstadt (1987) found recurrences of length 4
for r�5 and 6, while Schmidt and Yuan (1995)
showed that the give recurrences for r�3, 4, 5, and
6 are minimal, are the minimal lengths for r �6 are
at least 3. The following table summarizes the first
few values of ar(n) for small r .

k Sloane /ak(n)/

1 A000079 1, 2, 4, 8, 16, 32, 54, . . .

2 A000984 1, 2, 6, 20, 70, 252, 924, . . .

3 A000172 1, 2, 10, 56, 346, 2252, . . .

4 A005260 1, 2, 18, 164, 1810, 21252, . . .

5 A005260 1, 2, 34, 488, 9826, 206252, . . .



The corresponding alternating series is

br�
Xn

k�0

(�1)k n
k

� �k

�0: (9)

The first few values are

b1(n)�0 (10)

b2(n)�
2n

ffiffiffi
p

p

G(1
2 �

1
2 n)G(1 � 1

2 n)
; (11)

�
0 for n�2k
(�1)k(n

k) for n�2k�1

�
(12)

b3(n)�
2n

ffiffiffi
p

p
G(1 � 3

2 n)

n!G(1
2(1 � n))G(1 � 1

2 n)2 (13)

�
0 for n�2k�1
(�1)k(3k)!

(k!)3 for n�2k;

8<
: (14)

where G(z) is the GAMMA FUNCTION, and the odd
terms of b3(n) are given by de Bruijn’s s(3; n) with
alternating signs.

de Bruijn (1982) has considered the sum

s(m; n)�
X2n

k�0

(�1)k�n 2n

k

 !m

(15)

for m; n]1: This sum has closed form for m�1, 2,
and 3,

s(1;n)�0 (16)

s(2; n)�
(2n)!

(n!)2 ; (17)

the CENTRAL BINOMIAL COEFFICIENT, giving 1, 2, 6, 20,
70, 252, 924, . . . (Sloane’s A000984), and

s(3; n)�
(3n)!

(n!)3 ; (18)

giving 1, 6, 90, 1680, 36450, 756756, . . . (Sloane’s
A006480; Aizenberg and Yuzhakov 1984). However,
there is no similar formula for m]4 (Finch). The first
few terms of s(4; n) are 1, 14, 786, 61340, 5562130, . . .
(Sloane’s A050983), and for s(5;n) are 1, 30, 5730,
1696800, 613591650, . . . (Sloane’s A050984).

An interesting generalization of b1(n) was found by
Ruiz (1996),

X�
k�0

(�1)k n
k

� �
(x�k)n�n! (19)

and

Xn

k�0

(�1)k n
k

� �
(x�k)n�n! (20)

for positive integer n and all x .

The infinite sum of inverse binomial coefficients has
the analytic form

X�
k�0

1

n
k

� �� 2 F1(1; 1; �n; �1) (21)

��(n�1)g
1

0

dx

(1 � x)n�2(x � 1)
; (22)

where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNC-

TION. In fact, in general,

X�
k�0

1

n
k

� �p� p�1 Fp(1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p�1

; �n; . . . ; �n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
p

; (�1)k) (23)

and

X�
k�0

(�1)k

n
k

� �p � p�1 Fp(1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p�1

); �n; . . . ; �n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
p

; (�1)k�1):

(24)

A fascinating series of identities involving inverse
central binomial coefficients times small powers are
given by

X�
n�1

1

2n
n

� �� 1
27(2p

ffiffiffi
3

p
�9)�0:7363998587 . . . (25)

X�
n�1

1

n
2n
n

� ��1
9p

ffiffiffi
3

p
�0:6045997881 . . . (26)

X�
n�1

1

n2 2n
n

� ��1
3z(2)�1

8 p
2 (27)

X�
n�1

1

n4 2n
n

� ��17
36z(4)� 17

3240 p
4 (28)

(Comtet 1974, p. 89; Le Lionnais 1983, pp. 29, 30, 41,
36), which follow from the beautiful formula

X�
n�1

1

nk 2n
n

� ��1
2 k�1Fk(1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k�1

; 3
2; 2; . . . ; 2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k�1

; 1
4) (29)

for k]1; where mFn(a1; . . . ; am; b1; . . . ; bn; x) is a
GENERALIZED HYPERGEOMETRIC FUNCTION. Additional
sums of this type include



X�
n �1

1

n3 2n
n

� �� 1
18p

ffiffiffi
3

p
[ c1(1

3) � c1(2
3)] �

4
3 z(3) (30)

X�
n �1

1

n5 2n
n

� �
� 1

432p
ffiffiffi
3

p
[ c3(1

3) � c3(2
3)] �

19
3 z(5) �1

9 z(3)p2 (31)

X�
n�1

1

n7 2n
n

� �� 11
311040p

ffiffiffi
3

p
[c5(1

3) � c5(2
3)] �

493
24 z(7) �1

3 z(5)p2

� 17
1620z(3)p4 ; (32)

where cn(x) is the POLYGAMMA FUNCTION and z(x) is
the RIEMANN ZETA FUNCTION (Plouffe 1998).

Sums OF THE FORM

X�
n�1

( �1)n�1

nk 2n
n

� ��1
2 k �1Fk(1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k �1

; 3
2 ; 2; . . . ; 2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k �1

; �1
4) (33)

can also be simplified (Plouffe) to give the special
cases

X�
n �1

( �1)n�1

n
2n
n

� � �2
5

ffiffiffi
5

p
sinh�1(1

2) (34)

X�
n�1

( �1)n�1

n2 2n
n

� ��2[sinh�1(1
2)]

2 (35)

X�
n�1

( �1)n�1

n3 2n
n

� ��2
5 z(3) : (36)

Other general identities include

(a � b)n

a
�
Xn

k �0

n
k

� �
(a �kc)k �1(b �kc)n�k (37)

(Prudnikov et al. 1986), which gives the BINOMIAL

THEOREM as a special case with c �0, and

X�
n �0

2n �s
n

� �
xn � 2 F1(1

2(s �1); 1
2(s �2); s �1; 4x)

�
2?

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x

p
� 1)?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x

p ; (38)

where 2F1(a ; b; c; z) is a HYPERGEOMETRIC FUNCTION

(Abramowitz and Stegun 1972, p. 555; Graham et al.
1994, p. 203).

For NONNEGATIVE INTEGERS n and r with r 5n �1 ;

Xn

k �0

( �1)k

k � 1

n
k

� � Xr�1

j�0

(�1)j n
j

� �
(r �j)n�k

"

�
Xn�r

j �0

(�1)j n
j

� �
(n �1 �r �j)n�k

�
�n!: (39)

Taking n �2r �1 gives

Xn

k�0

(�1)k

K � 1

n
k

� �Xr�1

j�0

n
j

� �
(r �j)n�k �1

2n!: (40)

Other identities are

Xn

k �0

n �k
k

� �
[xn�1(1 �x)k �(1 �x)n�1xk] �1 (41)

(Gosper 1972) and

X
i

ni

2

� �
�
X
i>j

ninj �
n
2

� �
; (42)

where

n �
X

i

ni : (43)

The latter is the umbral analog of the multinomial
theorem for n2

(a � b � c)2

2
�

a2

2
�

b2

2
�

c2

2
�ab �ac �bc (44)

using the lower-factorial polynomial (n)2�n(n�1)=2;
giving

a�b�c
2

� �
�

a
2

� �
�

b
2

� �
�

c
2

� �
�ab�ac�bc: (45)

The identity holds true not only for (n)2 and n2=2; but
also for any quadratic polynomial OF THE FORM n(n�
a)=2 (Dubuque).

See also APÉ RY NUMBER, BINOMIAL COEFFICIENT,
CENTRAL BINOMIAL COEFFICIENT, HYPERGEOMETRIC

IDENTITY, HYPERGEOMETRIC SERIES, IDEMPOTENT

NUMBER, JONAH FORMULA KLEE’S IDENTITY, LUCAS

CORRESPONDENCE THEOREM, MARRIED COUPLES PRO-

BLEM, MORLEY’S FORMULA, NEXUS NUMBER, STAN-

LEY’S IDENTITY, STREHL IDENTITIES, SZÉ KELY

IDENTITY, WARING FORMULA, WORPITZKY’S IDENTITY
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Binomial Theorem
The theorem that, for POSITIVE INTEGERS n ,

(x �a)n �
Xn

k�0

n!

k!(n � k)!
xkan �k �

Xn

k �0

n
k

� �
xkan�k ;

the so-called BINOMIAL SERIES, where (n
k) are BINO-

MIAL COEFFICIENTS. The theorem was known for the
case n �2 by Euclid around 300 BC, and stated in its
modern form by Pascal in a posthumous pamphlet
published in 1665. Newton (1676) showed that a
similar formula (with INFINITE upper limit) holds for
NEGATIVE INTEGERS n ,

(x �a) �n �
X�
k �0

�n
k

� �
xka�n�k ;

the so-called NEGATIVE BINOMIAL SERIES, which con-
verges for xj j > aj j:/

See also BINOMIAL COEFFICIENT, BINOMIAL IDENTITY,
BINOMIAL SERIES, CAUCHY BINOMIAL THEOREM, CHU-

VANDERMONDE IDENTITY, LOGARITHMIC BINOMIAL

FORMULA, NEGATIVE BINOMIAL SERIES, Q -BINOMIAL

THEOREM, RANDOM WALK
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Binomial Transform
The binomial transform takes the sequence a0 ; a1 ; a2 ;
. . . to the sequence b0 ; b1 ; b2 ; . . . via the transforma-
tion

bn �
Xn

k �0

(�1)n�k n
k

� �
ak :

The inverse transform is

an �
Xn

k�0

n
k

� �
bk :

(Sloane and Plouffe 1995, pp. 13 and 22). The inverse
binomial transform of bn �1 for prime n and bn �0
for composite n is 0, 1, 3, 6, 11, 20, 37, 70, . . . (Sloane’s
A052467). The inverse binomial transform of bn �1
for even n and bn �0 for odd n is 0, 1, 2, 4, 8, 16, 32,
64, . . . (Sloane’s A000079). Similarly, the inverse
binomial transform of bn �1 for odd n and bn �0 for
even n is 1, 2, 4, 8, 16, 32, 64, . . . (Sloane’s A000079).
The inverse binomial transform of the BELL NUMBERS

1, 1, 2, 5, 15, 52, 203, . . . (Sloane’s A000110) is a
shifted version of the same numbers: 1, 2, 5, 15, 52,
203, . . . (Bernstein and Sloane 1995, Sloane and
Plouffe 1995, p. 22).

The CENTRAL and RAW MOMENTS of statistical dis-
tributions are also related by the binomial transform.

See also CENTRAL MOMENT, EULER TRANSFORM,
EXPONENTIAL TRANSFORM, MÖ BIUS TRANSFORM,
RAW MOMENT
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Binomial Triangle
PASCAL’S TRIANGLE

Binomial-Type Sequence
A sequence of POLYNOMIALS pn satisfying the identi-
ties

pn(x �y) �
X
k ]0

n
k

� �
pk(x)pn�k(y) :

See also BINOMIAL IDENTITY, SHEFFER SEQUENCE,
UMBRAL CALCULUS
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Binormal Developable
A RULED SURFACE M is said to be a binormal
developable of a curve y if M can be parameterized
by x(u ; v) �y(u) �v B̂(u) ; where B is the BINORMAL

VECTOR.

See also NORMAL DEVELOPABLE, TANGENT DEVELOP-

ABLE
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Binormal Vector

B̃ � T̂ � N̂ (1)

�
r? � r ƒ

r? � r ƒj j
; (2)

where the unit TANGENT VECTOR T and unit "princi-
pal" NORMAL VECTOR N are defined by

T̂ �
r?(s)

r̂(s)j j  
(3)

N̂ �
rƒ(s)

rƒ(s)j j  
(4)

Here, r is the RADIUS VECTOR, s is the ARC LENGTH, t

is the TORSION, and k is the CURVATURE. The binormal
vector satisfies the remarkable identity

[ Ḃ; B̈; �B] � t 5
d

ds

k

t

 !
: (5)

See also FRENET FORMULAS, NORMAL VECTOR, TAN-

GENT VECTOR
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Bin-Packing Problem
The problem of packing a set of items into a number of
bins such that the total weight, volume, etc. does not
exceed some maximum value. A simple algorithm (the
first-fit algorithm) takes items in the order they come
an places them in the first bin in which they fit. In
1973, J. Ullman proved that this algorithm can differ
from an optimal packing by as much at 70% (Hoffman
1998, p. 171). An alternative strategy first orders the
items from largest to smallest, then places them
sequentially in the first bin in which they fit. In
1973, D. Johnson showed that this strategy is never
suboptimal by more than 22%, and furthermore that
no efficient bin-packing algorithm can be guaranteed
to do better than 22% (Hoffman 1998, p. 172).

There exist arrangements of items such that applying
the packing algorithm after removing an item results
in one more bin being required than the number
obtained if the item is included (Hoffman 1998,
pp. 172�/73).

See also COOKIE-CUTTER PROBLEM, TILING PROBLEM
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Bioche’s Theorem
If two complementary PLÜCKER CHARACTERISTICS are
equal, then each characteristic is equal to its comple-
ment except in four cases where the sum of order and
class is 9.
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Biotic Potential
LOGISTIC EQUATION



Bipartite Graph

A set of VERTICES decomposed into two disjoint sets
such that no two VERTICES within the same set are
adjacent. A bigraph is a special case of a K -PARTITE

GRAPH with k �2. Bipartite graphs are equivalent to
two-colorable graphs, and a graph is bipartite IFF all
its cycles are of even length (Skiena 1990, p. 213).
The numbers of bipartite graphs on n �1, 2, . . . nodes
are 1, 2, 3, 7, 13, 35, 88, 303, ... (Sloane’s A033995). A
graph can be tested for bipartiteness using Bipar-
titeQ[g ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

The numbers of CONNECTED bipartite graphs on
n�1, 2 . . . nodes are 1, 1, 1, 3, 5, 17, 44, 182, ...
(Sloane’s A005142).
All TREES are bipartite (Skiena 1990, p. 213).

See also BICUBIC GRAPH, COMPLETE BIPARTITE

GRAPH, K -PARTITE GRAPH, KÖ NIG-EGEVÁ RY THEOREM
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Biplanar Double Point
ISOLATED SINGULARITY

Bipolar Coordinates
Bipolar coordinates are a 2-D system of coordinates.
There are two commonly defined types of bipolar
coordinates, the first of which is defined by

x�
a sinh v

cosh v � cos u
(1)

y�
a sin u

cosh v � cos u
; (2)

where u � [0; 2p); v � (��; �): The following identi-
ties show that curves of constant u and v are CIRCLES

in xy -space.

x2�(y�a cot u)2�a2 csc2 u (3)

(x�a coth v)2�y2�a2 csch2 v: (4)

The SCALE FACTORS are

hu�
a

cosh v � cos u
(5)

hv�
a

cosh v � cos u
(6)

The LAPLACIAN is

92�
(cosh v � cos u)2

a2

@2

@u2
�

@2

@v2

 !
: (7)

LAPLACE’S EQUATION is separable.

Two-center bipolar coordinates are two coordinates
giving the distances from two fixed centers r1 and r2;
sometimes denoted r and r?: For two-center bipolar
coordinates with centers at (9c; 0);

r2
1�(x�c)2�y2 (8)

r2
2�(x�c)2�y2: (9)

Combining (8) and (9) gives



r2
1 �r2

2 �4cx : (10)

Solving for CARTESIAN COORDINATES x and y gives

x �
r2

1 � r2
2

4c 
(11)

y �9
1

4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16c2r2

1 �(r2
1 �r2

2 �4c2)2
q

: (12)

Solving for POLAR COORDINATES gives

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 � r2
2 � 2c2

2

s
(13)

u �tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4

2 � 2(4c2 � r2
1)r2

2 � (4c2 � r2
1)2

q
r2

1 � r2
2

2
4

3
5: (14)

See also BIPOLAR CYLINDRICAL COORDINATES, POLAR

COORDINATES
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Bipolar Cylindrical Coordinates

A set of CURVILINEAR COORDINATES defined by

x �
a sinh v

cosh v � cos u 
(1)

y �
a sin u

cosh v � cos u 
(2)

z �z ; (3)

where u � [0; 2 p); v � (��; �); and z � (��; �):
There are several notational conventions, and
whereas (u; v; z) is used in this work, Arfken (1970)
prefers ( h ; j; z) : The following identities show that

curves of constant u and v are CIRCLES in xy -space.

x2 �(y �a cot u)2 �a2 csc2 u (4)

(x �a coth v)2 �y2 �a2 csch2 v: (5)

The SCALE FACTORS are

hu �
a

cosh v � cos u 
(6)

hv �
a

cosh v � cos u 
(7)

hz �1: (8)

The LAPLACIAN is

92 �
(cosh v � cos u)2

a2

@2

@u2 
�

@2

@v2

 !
�

@2

@z2 
: (9)

LAPLACE’S EQUATION is not separable in BIPOLAR

CYLINDRICAL COORDINATES, but it is in 2-D BIPOLAR

COORDINATES.

See also BIPOLAR COORDINATES, POLAR COORDINATES
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Bipolyhedral Group
The image of A5 �A5 in the SPECIAL ORTHOGONAL

GROUP SO(4); where A5 is the ICOSAHEDRAL GROUP.

See also ICOSAHEDRAL GROUP, SPECIAL ORTHOGONAL

GROUP
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Biprism
Two slant triangular PRISMS fused together.

See also PRISM, SCHMITT-CONWAY BIPRISM

Bipyramid
DIPYRAMID



Biquadratefree

A number is said to be biquadratefree (or quarticfree)
if its PRIME FACTORIZATION contains no quadrupled
factors. All PRIMES and PRIME POWERS pn with n 5 3
are therefore trivially biquadratefree. The biquadra-
tefree numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 17, . . . (Sloane’s A046100). The biquadrate-
ful numbers (i.e., those that contain at least one
biquadrate) are 16, 32, 48, 64, 80, 81, 96, . . . (Sloane’s
A046101). The number of biquadratefree numbers
less than 10, 100, 1000, . . . are 10, 93, 925, 9240,
92395, 923939, . . ., and their asymptotic density is
1=z(4) � 90=p4:0:923938; where z(n) is the RIE-

MANN ZETA FUNCTION.

See also CUBEFREE, PRIME NUMBER, RIEMANN ZETA

FUNCTION, SQUAREFREE
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Biquadratic Equation
QUARTIC EQUATION

Biquadratic Number
A biquadratic number is a fourth POWER, n4: The first
few biquadratic numbers are 1, 16, 81, 256, 625, . . .
(Sloane’s A000583). The minimum number of biqua-
dratic numbers needed to represent the numbers 1, 2,
3, . . . are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1,
2, 3, 4, 5, . . . (Sloane’s A002377), and the number of
distinct ways to represent the numbers 1, 2, 3, . . . in
terms of biquadratic numbers are 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, . . . A brute-force
algorithm for enumerating the biquadratic permuta-
tions of n is repeated application of the GREEDY

ALGORITHM.

Every POSITIVE integer is expressible as a SUM of (at
most) g(4)�19 biquadratic numbers (WARING’S PRO-

BLEM). Davenport (1939) showed that G(4)�16;
meaning that all sufficiently large integers require
only 16 biquadratic numbers. It is also known that
every integer is a sum of at most 10 signed biqua-
drates ( eg(4)510; although it is not known if 10 can

be reduced to 9). The following table gives the first
few numbers which require 1, 2, 3, . . ., 19 biquadratic
numbers to represent them as a sum, with the
sequences for 17, 18, and 19 being finite.

# Sloane Numbers

1 Sloane’s
A000290

1, 16, 81, 256, 625, 1296,
2401, 4096, . . .

2 Sloane’s
A003336

2, 17, 32, 82, 97, 162, 257,
272, . . .

3 Sloane’s
A003337

3, 18, 33, 48, 83, 98, 113, 163,
. . .

4 Sloane’s
A003338

4, 19, 34, 49, 64, 84, 99, 114,
129, . . .

5 Sloane’s
A003339

5, 20, 35, 50, 65, 80, 85, 100,
115, . . .

6 Sloane’s
A003340

6, 21, 36, 51, 66, 86, 96, 101,
116, . . .

7 Sloane’s
A003341

7, 22, 37, 52, 67, 87, 102, 112,
117, . . .

8 Sloane’s
A003342

8, 23, 38, 53, 68, 88, 103, 118,
128, . . .

9 Sloane’s
A003343

9, 24, 39, 54, 69, 89, 104, 119,
134, . . .

10 Sloane’s
A003344

10, 25, 40, 55, 70, 90, 105,
120, 135, . . .

11 Sloane’s
A003345

11, 26, 41, 56, 71, 91, 106,
121, 136, . . .

12 Sloane’s
A003346

12, 27, 42, 57, 72, 92, 107,
122, 137, . . .

13 Sloane’s
A046044

13, 28, 43, 58, 73, 93, 108,
123, 138, . . .

14 Sloane’s
A046045

14, 29, 44, 59, 74, 94, 109,
124, 139, . . .

15 Sloane’s
A046046

15, 30, 45, 60, 75, 95, 110,
125, 140, . . .

16 Sloane’s
A046047

31, 46, 61, 76, 111, 126, 141,
156, . . .

17 Sloane’s
A046048

47, 62, 77, 127, 142, 157, 207,
222, . . .

18 Sloane’s
A046049

63, 78, 143, 158, 223, 238,
303, 318, . . .

19 Sloane’s
A046050

79, 159, 239, 319, 399

The following table gives the numbers which can be
represented in n different ways as a sum of k
biquadrates.



k n  Sloane Numbers

1 1 Sloane’s
A000290

1, 16, 81, 256, 625, 1296,
2401, 4096, . . .

2 2 Sloane’s
A018786

635318657, 3262811042,
8657437697, . . .

The numbers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
18, 19, 20, 21, . . .  (Sloane’s A046039) cannot be
represented using distinct biquadrates.

See also CUBIC NUMBER, PARTITION, SQUARE NUM-

BER, WARING’S PROBLEM
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Biquadratic Reciprocity Theorem
Gauss stated the reciprocity theorem for the case
n �4

x4 �q (mod p) (1)

can be solved using the GAUSSIAN INTEGERS as

p

s

 !
4

s

p

 !
4

�(�1)[(N( p) �1)=4][(N(s) �1)=4] : (2)

Here, p and s are distinct GAUSSIAN INTEGER PRIMES,
and

N(a �bi) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
(3)

is the norm. The symbol a
p

 !
means

a

p

 !
4

� 1 if x4 � a (mod p) is solvable
�1; i ; or �i otherwise

�
(4)

where "solvable" means solvable in terms of GAUS-

SIAN INTEGERS.

2 is a quartic residue (mod p ) IFF there are integers x,
y such that

x2 �64y2 �p: (5)

This is a generalization of the GENUS THEOREM.

See also BIQUADRATIC RESIDUE, GENUS THEOREM,
RECIPROCITY THEOREM
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Biquadratic Residue
If there is an INTEGER x such that

x4 �q (mod p) ; (1)

then q is said to be a biquadratic residue (mod p ). If
not, q is said to be a biquadratic nonresidue (mod p ).

See also BIQUADRATIC RECIPROCITY THEOREM, CUBIC

RESIDUE, QUADRATIC RESIDUE
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Biquaternion
A QUATERNION with COMPLEX coefficients. The ALGE-

BRA of biquaternions is isomorphic to a full matrix
ring over the complex number field (van der Waerden
1985).

See also QUATERNION
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Birational Transformation
A transformation in which coordinates in two SPACES

are expressed rationally in terms of those in another.

See also RIEMANN CURVE THEOREM, WEBER’S THEO-

REM

Birch Conjecture
SWINNERTON-DYER CONJECTURE

Birch-Swinnerton-Dyer Conjecture
SWINNERTON-DYER CONJECTURE



Birkhoff’s Ergodic Theorem
Let T be an ergodic ENDOMORPHISM of the PROBABIL-

ITY SPACE X and let f : X 0 R be a real-valued
MEASURABLE FUNCTION. Then for ALMOST EVERY x �
X ; we have

1

n

Xn

j�1

f (Tj(x) 0 g f dm  (1)

as n 0 �: To illustrate this, take f to be the
characteristic function of some SUBSET A of X so that

f (x) �
1 if x � A
0 if x QA:

�
(2)

The left-hand side of (1) just says how often the orbit
of x (that is, the points x , Tx , T2x; . . .) lies in A , and
the right-hand side is just the MEASURE of A . Thus,
for an ergodic ENDOMORPHISM, "space-avera-
ges �time-averages almost everywhere." Moreover,
if T is continuous and uniquely ergodic with BOREL

PROBABILITY MEASURE m and f is continuous, then we
can replace the ALMOST EVERYWHERE convergence in
(1) with "everywhere."

See also BIRKHOFF’S THEOREM, ERGODIC THEORY
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Birkhoff-Khinchin Ergodic Theorem
BIRKHOFF’S ERGODIC THEOREM

Birkhoff-Witt Theorem
POINCARÉ -BIRKHOFF-WITT THEOREM

Birotunda
Two adjoined ROTUNDAS.

See also BILUNABIROTUNDA, CUPOLAROTUNDA, ELON-

GATED GYROCUPOLAROTUNDA, ELONGATED ORTHOCU-

POLAROTUNDA, ELONGATED ORTHOBIROTUNDA,
GYROCUPOLAROTUNDA, GYROELONGATED ROTUNDA,
ORTHOBIROTUNDA, TRIANGULAR HEBESPHENOROTUN-

DA

Birthday Attack
Birthday attacks are a class of brute-force techniques
used in an attempt to solve a class of CRYPTOGRAPHIC

HASH FUNCTION problems. These methods take ad-
vantage of functions which, when supplied with a
random input, return one of k equally likely values.
By repeatedly evaluating the function for different
inputs, the same output is expected to be obtained
after about 1:2

ffiffiffi
k

p
evaluations.

See also BIRTHDAY PROBLEM, CRYPTOGRAPHIC HASH

FUNCTION
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Birthday Problem
Consider the probability Q1(n; d) that no two people
out of a group of n will have matching birthdays out
of d equally possible birthdays. Start with an arbi-
trary person’s birthday, then note that the probability
that the second person’s birthday is different is (d�
1)=d; that the third person’s birthday is different from
the first two is [(d�1)=d][(d�2)=d]; and so on, up
through the nth person. Explicitly,

Q1(n; d)�
d � 1

d

d � 2

d
� � �d � (n � 1)

d

�
(d � 1)(d � 2) � � � [d � (n � 1)]

dn�1
: (1)

But this can be written in terms of FACTORIALS as

Q1(n; d)�
d!

(d � n)!dn
; (2)

so the probability P2(n; 365) that two people out of a
group of n do have the same birthday is therefore

P2(n; d)�1�Q1(n; d)�1�
d!

(d � n)!dn
: (3)

If 365-day years have been assumed, i.e., the exis-
tence of leap days is ignored, then the number of
people needed for there to be at least a 50% chance
that two share birthdays is the smallest n such that
P2(n; 365)]1=2: This is given by n�23, since

P2(23; 365)

�
3809390470229739078524370829105639051888645406094

7509188326851535012542620742522314756326980590820

:0:507297: (4)

The number n of people needed to obtain P2(n; d)]
1=2 for d�1, 2, . . ., are 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, . . .
(Sloane’s A033810).

The probability P2(n; d) can be estimated as

P2(n; d):1�e�n(n�1)=2d (5)

:1� 1�
n

2d

 !n�1

; (6)



where the latter has error

eB
n3

6(d � n � 1)2 (7)

(Sayrafiezadeh 1994).

In general, let Qi(n; d) denote the probability that a
birthday is shared by exactly i (and no more) people
out of a group of n people. Then the probability that a
birthday is shared by k or more people is given by

Pk(n; d)�1�
Xk�1

i�1

Qi(n; d): (8)

/Q2 can be computed explicitly as

Q2(n; d)�
n!

dn

Xn=2b c

i�2

1

2i

d
i

� �
d�i
n�2i

� �

�
n!

dn

Xn=2b c

i�1

d!

2ii!(n � 2i)!(d � n � i)!

�
(�1)n

dn

�
2�n=2G(1�n)P(�d)

n (1
2

ffiffiffi
2

p
)

�
G(1 � d)

G(1 � d � n)

�
; (9)

where n
m

� �
is a BINOMIAL COEFFICIENT, G(n) is a

GAMMA FUNCTION, and P(l)
n (x) is an ULTRASPHERICAL

POLYNOMIAL. This gives the explicit formula for
P3(n; d) as

P3(n; d)�1�Q1(n; d)�Q2(n; d)

�1�
(�1)n�1G(n � 1)P(�d)

n (2�1=2)

2n=2dn
: (10)

/Q3(n; d) cannot be computed in entirely closed form,
but a partially reduced form is

Q3(n; d)�
G(d � 1)

dn

(�1)nF(9
8) � F(�9

8)

G(d � n � 1)
�(�1)nG

"

�(1�n)
Xn=3b c

i�1

(�3)�i2(i�n)=2P(i�d)
n�3i (

1
2

ffiffiffi
2

p
)

G(d � i � 1)G(i � 1)

�
;

(11)

where

F�F(n; d; a)�1�3 F2

1
3(1�n); 1

3(2�n); �1
3

1
2(d�n�1); 1

2(d�n�2)
; a

" #

(12)

and 3F2(a; b; c; d; e; z) is a GENERALIZED HYPER-

GEOMETRIC FUNCTION.

In general, Qk(n; d) can be computed using the
RECURRENCE RELATION

Qk(n; d)�
Xn=kb c

i�1

�
n!d!

diki!(k!)i(n � ik)!(d � i)!

�
Xk�1

j�1

Qj(n�k; d�i)
(d � i)n�ik

dn�ik

�
(13)

(Finch). However, the time to compute this recursive
function grows exponentially with k and so rapidly
becomes unwieldy. The minimal number of people to
give a 50% probability of having at least n coincident
birthdays is 1, 23, 88, 187, 313, 460, 623, 798, 985,
1181, 1385, 1596, 1813, ... (Sloane’s A014088; Diaco-
nis and Mosteller 1989).

A good approximation to the number of people n such
that p�Pk(n; d) is some given value can be given by
solving the equation

ne�n=(dk)� dk�1k! ln
1

1 � p

 !
1�

n

d(k � 1)

 !" #1=k

(14)

for n and taking nd e; where nd e is the CEILING

FUNCTION (Diaconis and Mosteller 1989). For p �
0:5 and k�1, 2, 3, ..., this formula gives n � 1, 23, 88,
187, 313, 459, 622, 797, 983, 1179, 1382, 1592, 1809,
... (Sloane’s A050255), which differ from the true
values by from 0 to 4. A much simpler but also poorer
approximation for n such that /p � 0:5/ for kB20 is
given by

n � 47(k � 1:5)3=2 (15)

(Diaconis and Mosteller 1989), which gives 86, 185,
307, 448, 606, 778, 965, 1164, 1376, 1599, 1832, ... for
k�3, 4, ... (Sloane’s A050256).

The "almost" birthday problem, which asks the
number of people needed such that two have a
birthday within a day of each other, was considered
by Abramson and Moser (1970), who showed that 14
people suffice. An approximation for the minimum
number of people needed to get a 50�/0 chance that
two have a match within k days out of d possible is
given by

n(k; d)�1:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2k � 1

s
(16)

(Sevast’yanov 1972, Diaconis and Mosteller 1989).



See also BIRTHDAY ATTACK, COINCIDENCE, SMALL

WORLD PROBLEM, SULTAN’S DOWRY PROBLEM
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Bisected Perimeter Point
NAGEL POINT

Bisection Procedure
A simple procedure for iteratively converging on a
solution which is known to lie inside some interval [a,
b ]. Let ap and bn be the endpoints at the nth iteration
and rn be the nth approximate solution. Then, the
number of iterations required to obtain an error
smaller than e is found as follows.

bn �an �
1

2n�1 
(b �a) (1)

rn �
1
2(an �bn) (2)

½rn �r ½51
2(bn �an) �2 �n(b �a) B e (3)

�n ln 2 Bln e �ln(b �a) ; (4)

so

n >
ln(b � a) � ln e

ln 2
: (5)

See also ROOT
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Bisector
Bisection is the division of a given curve or figure into
two equal parts (halves).

See also ANGLE BISECTOR, BISECTION PROCEDURE,
EXTERIOR ANGLE BISECTOR, HALF, HEMISPHERE, LINE

BISECTOR, PERPENDICULAR BISECTOR, TRISECTION

Bishop’s Inequality
Let V(r) be the volume of a BALL of radius r in a
complete n -D RIEMANNIAN MANIFOLD with RICCI

CURVATURE ](n �1)k : Then V(r) ]Vk(r) ; where Vk

is the volume of a BALL in a space having constant
SECTIONAL CURVATURE. In addition, if equality holds
for some BALL, then this BALL is ISOMETRIC to the
BALL of radius r in the space of constant SECTIONAL

CURVATURE k:/

See also BALL, ISOMETRY
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Bishops Problem

Find the maximum number of bishops B(n) which can
be placed on an n �n CHESSBOARD such that no two
attack each other. The answer is 2n �2 (Dudeney
1970, Madachy 1979), giving the sequence 2, 4, 6, 8, ...
(the EVEN NUMBERS) for n �2, 3, .... One maximal
solution for n � 8 is illustrated above. The number of
distinct maximal arrangements of bishops for n �1,
2, ... are 1, 4, 26, 260, 3368, ... (Sloane’s A002465). The
number of rotationally and reflectively distinct solu-
tions on an n �n board for n ]2 is

B(n) � 2(n�4)=2[2(n�2)=2 �1] for n even
2(n�3)=2[2(n�3)=2 �1] for n odd

�
(Dudeney 1970, p. 96; Madachy 1979, p. 45; Pickover
1995). An equivalent formula is

B(n) �2n�3 �2[(n�1)=2]�1 ;

where nb c is the FLOOR FUNCTION, giving the se-
quence for n �1, 2, ... as 1, 1, 2, 3, 6, 10, 20, 36, ...
(Sloane’s A005418).

The minimum number of bishops needed to occupy or
attack all squares on an n �n CHESSBOARD is n ,
arranged as illustrated above.

See also CHESS, KINGS PROBLEM, KNIGHTS PROBLEM,
QUEENS PROBLEM, ROOKS PROBLEM
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Bislit Cube

The 8-VERTEX graph consisting of a CUBE in which two
opposite faces have DIAGONALS oriented PERPENDICU-

LAR to each other.

See also BIDIAKIS CUBE, CUBE, CUBICAL GRAPH

Bispherical Coordinates

A system of CURVILINEAR COORDINATES variously
denoted (j; h; f) (Arfken 1970) or (u; h; c) (Moon
and Spencer 1988). Using the notation of Arfken, the
bispherical coordinates are defined by

x�
a sin j cos f

cosh h� cos j
(1)

y�
a sin j sin f

cosh h� cos j
(2)

z�
a sinh h

cosh h� cos j
: (3)



Surfaces of constant h are given by the spheres

x2 �y2 �(z �a coth h)2 �
a2

sinh2 
h 
; (4)

surfaces of constant j by the APPLES /( j B p=2) or
LEMONS /( j > p=2)

x2 �y2 �z2 �2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
cot j �a2 ; (5)

and surface of constant c by the half-planes

tan f �y=x: (6)

The SCALE FACTORS are

hj �
a

cos h � cos j 
(7)

hh �
a

cosh h � cos j 
(8)

hf �
a sin j

cosh h � cos j 
: (9)

The LAPLACIAN is given by

92f �
(cosh h � cos j)2

a2 sin j

� sin j
@

@ h

1

cosh h � cos j

@f

@ h

 !(

�
@

@ j

sin j

cosh h � cos j

@f

@ j

 !4

�
(cosh h � cos j)2

a2 sin2 j

@2f

@ f2 
:

In bispherical coordinates, LAPLACE’S EQUATION is
separable (Moon and Spencer 1988), but the HELM-

HOLTZ DIFFERENTIAL EQUATION is not.

See also BICYCLIDE COORDINATES, LAPLACE’S EQUA-

TION–BISPHERICAL COORDINATES, SPHERICAL COORDI-

NATES, TOROIDAL COORDINATES
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Bisymmetric Matrix
A SQUARE MATRIX is called bisymmetric if it is both
CENTROSYMMETRIC and either SYMMETRIC or SKEW

SYMMETRIC (Muir 1960, p. 19).

See also CENTROSYMMETRIC MATRIX, SKEW SYM-

METRIC MATRIX, SYMMETRIC MATRIX
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Bit Complexity
The number of single operations (of ADDITION, SUB-

TRACTION, and MULTIPLICATION) required to complete
an algorithm.

See also STRASSEN FORMULAS
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Bit Length

The number of binary bits necessary to represent a
number, given explicitly by

BL(n)� lg nd e;

where xd e is the CEILING FUNCTION and lg n is LG, the
LOGARITHM to base 2. For n�0, 1, 2, ..., the first few
values are 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, ... (Sloane’s
A036377). The function is given by the Mathematica
4.0 function BitLength[n ] in the Developer con-
text.
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Bitangent

A LINE which is TANGENT to a curve at two distinct
points.

There exist plane QUARTIC CURVESX
i �j 54

aijx
iyj �0

that have 28 real bitangents (Shioda 1995, Trott
1997), for example

122(x4 �y4) �152(x2 �y2) �350x2y2 �81 �0

(Trott 1997), illustrated above.

See also KLEIN’S EQUATION, PLÜ CKER CHARACTERIS-

TICS, SECANT LINE, SOLOMON’S SEAL LINES, TANGENT

LINE
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Bitwin Chain
A bitwin chain of length one consists of two pairs of
TWIN PRIMES with the property that they are related
by being of the form:

(n �1; n �1) and (2n �1; 2n �1):

In general a chain of length i consists of i �1 pairs of
TWIN PRIMES,

(n �1; n �1); (2n �1 ; 2n �1); . . . ; (2i � n �1 ; 2i � n
�1):

Bitwin chains can also be viewed as consisting of two
related CUNNINGHAM CHAINS of the first and second
kinds,

(n �1; 2n �1; 4n �1 ; . . .)  and

(n �1; 2n �1; 4n �1 ; . . .):

P. Jobling (1999) found the largest known chain of
length six,

337190719854678690 � 2n 91;

where n �0 to 6.

See also CUNNINGHAM CHAIN, TWIN PRIMES
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Biunitary Divisor
A divisor d of a positive integer n is biunitary if the
greatest common unitary divisor of d and n=d is 1.
For a prime power py ; the biunitary divisors are the
powers 1, p , p2 ; ..., py ; except for py=2 when y is
EVEN(Cohen 1990).

See also DIVISOR, K -ARY DIVISOR, UNITARY DIVISOR
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Bivalent
Capable of taking on one out of two possible values.

See also EXCLUDED MIDDLE LAW, UNIVALENT

Bivalent Range
If the CROSS-RATIO k of fAB ; CDg satisfy

k2 � k �1 �0 ; (1)

then the points are said to form a bivalent range, and

fAB ; CDg�fAC; DBg�fAD; BCg� k (2)

fAC; BDg�fAD ; BCg�fAB ; DCg��k2 : (3)

See also HARMONIC RANGE
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Bivariate Distribution

See also GAUSSIAN BIVARIATE DISTRIBUTION



Bivariate Normal Distribution
GAUSSIAN BIVARIATE DISTRIBUTION

Bivector
An antisymmetric TENSOR of second RANK (a.k.a. 2-
form).

�X �Xab v
a ffl vb ;

where ffl is the WEDGE PRODUCT (or OUTER PRODUCT).

See also TENSOR, VECTOR

Biweight
TUKEY’S BIWEIGHT

Björling Curve
Let a(z) ; g(z) : (a ; b) 0 R3 be curves such that ½½g ½½ � 1
and a � g � 0; and suppose that a and g have holo-
morphic extensions a; g : (a ; b) � (c ; d) 0 C3 such
that ½½g ½½ � 1 and a � g � 0 also for z � (a; b) � (c ; d):
Fix z0 � (a ; b) �(c; d) : Then the Björling curve, de-
fined by

B(z) � a(z) �i g
z

z0

g(z) � a?(z) dz ;

is a minimal curve (Gray 1997, p. 762).
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Black Dot Illusion

In the above illustration, black dots appear to form
and vanish at the intersections of the gray horizontal
and vertical lines. When focusing attention on a
single white dot, some gray dots nearby and some
black dots a little further away also seem to appear.
More black dots seem to appear as the eye is scanned
across the image (as opposed to focusing on a single
point). Strangely, the effect seems to be reduced, but
not eliminated, when the head is cocked at a 458
angle. The effect seems to exist only at intermediate
distances; if the eye is moved very close to or very far
away from the figure, the phantom black dots do not
appear.

See also ILLUSION
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fun2.htm.

Black Spleenwort Fern
BARNSLEY’S FERN

Blackboard Bold
DOUBLESTRUCK

Blackman Function

An APODIZATION FUNCTION given by

A(x)�0:42�0:5 cos
px

a

 !
�0:08 cos

2px

a

 !
: (1)

Its FULL WIDTH AT HALF MAXIMUM is 0:810957a: The
APPARATUS FUNCTION is

I(k)�
a(0:84 � 0:36a2k2 � 2:17 � 10�19a4k4)sin(2pak)

(1 � a2k2)(1 � 4a2k2)
: (2)

The COEFFICIENTS are approximations in the general



expansion

A(x) �a0 �2
X�
n �1

an cos
npx

b

 !
; (3)

to

a0 �
3969

9304 
:0:42659 (4)

a1 �
1155

4652 
:0:24828 (5)

a2 �
715

18608 
:0:38424; (6)

which produce zeros of I(k) at ka �7=4 and ka �9=4 :/

See also APODIZATION FUNCTION
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Black-Scholes Theory
The theory underlying financial derivatives which
involves "stochastic calculus" and assumes an uncor-
related LOG NORMAL DISTRIBUTION of continuously
varying prices. A simplified "binomial" version of the
theory was subsequently developed by Sharpe et al.
(1995) and Cox et al. (1979). It reproduces many
results of the full-blown theory, and allows approx-
imation of options for which analytic solutions are not
known (Price 1996).

See also GARMAN-KOHLHAGEN FORMULA
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Blanche’s Dissection

The simplest dissection of a SQUARE into rectangles of
the same AREAS but different shapes, composed of the
seven pieces illustrated above. The square is 210
units on a side, and each RECTANGLE has AREA

2102=7�6300:/

See also PERFECT SQUARE DISSECTION, RECTANGLE
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Blancmange Function

A CONTINUOUS FUNCTION which is nowhere DIFFER-

ENTIABLE. The iterations towards the continuous
function are BATRACHIONS resembling the HOFSTAD-

TER-CONWAY $10,000 SEQUENCE. The first six iterations
are illustrated below. The dth iteration contains N�
1 points, where N�2d; and can be obtained by setting
b(0)�b(N)�0; letting

b(m�2n�1)�2n�1
2[b(m)�b(m�2n)];

and looping over n�d to 1 by steps of �1 and m�0



to N �1 by steps of 2n :/

Peitgen and Saupe (1988) refer to this curve as the
TAKAGI FRACTAL CURVE.

See also HOFSTADTER-CONWAY $10,000 SEQUENCE,
WEIERSTRASS FUNCTION
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Blankinship Algorithm
A method for finding solutions u and v to a linear
congruence

au �bv �d

by constructing a matrix formed by adjoining a vector
containing a and b with a UNIT MATRIX,

M �
a 1 0
b 0 1

� �
;

and applying the EUCLIDEAN ALGORITHM to the first
column, while extending the operations to all rows.
The algorithm terminates when the first column
contains the GREATEST COMMON DIVISOR GCD(a; b) :/

See also EUCLIDEAN ALGORITHM, GREATEST COMMON

DIVISOR
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Blaschke Condition
If faj g⁄D(0; 1) (with possible repetitions) satisfies

X�
j�1

(1 � ½aj ½) 5�;

where D(0; 1) is the unit open disk, and no aj �0;
then there is a bounded ANALYTIC FUNCTION on
D(0; 1) which has ZERO SET consisting precisely of
the aj/s, counted according to their MULTIPLICITIES.
More specifically, the INFINITE PRODUCT

Y�
j�1

�
āj

½aj ½
Baj

(z) ;

where Baj
(z) is a BLASCHKE FACTOR and z̃ is the

COMPLEX CONJUGATE, converges uniformly on com-
pact subsets of D(0; 1) to a bounded analytic function
B(z) :/

See also BLASCHKE FACTOR, BLASCHKE FACTORIZA-

TION, BLASCHKE PRODUCT
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Blaschke Conjecture
The only WIEDERSEHEN MANIFOLDS are the standard
round spheres. The conjecture has been proven by
combining the BERGER-KAZDAN COMPARISON THEO-

REM with A. Weinstein’s results for n EVEN and
C. T. Yang’s for n ODD.

See also WIEDERSEHEN MANIFOLD
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Blaschke Factor
If a is a point in the open UNIT DISK, then the
Blaschke factor is defined by

Ba(z) �
z � a

1 � āz 
;

where ā is the COMPLEX CONJUGATE of a . Blaschke
factors allow the manipulation of the zeros of a
HOLOMORPHIC FUNCTION analogously to factors of

/(z�a) for complex polynomials (Krantz 1999, p. 117).

See also BLASCHKE CONDITION, BLASCHKE FACTOR-

IZATION
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Blaschke Factorization
Let f be a bounded ANALYTIC FUNCTION on D(0; 1)
vanishing to order m ]0 at 0 and let faj g be its other
zeros, listed with multiplicities. Then

f (z) �zmF(z)
Y�
j�1

�
āj

½aj ½
Baj

(z) ;

where F is a bounded ANALYTIC FUNCTION on D(0; 1);
F is zerofree, z̃ is the COMPLEX CONJUGATE, and

sup
z �D(0; 1)

½f (z) ½� sup
z �D(0; 1)

½F(z) ½:

See also BLASCHKE FACTOR
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Blaschke Product
A Blaschke product is an expression of the form

B(z) �zm
Y�
j�1

�
āj

½aj ½
Baj

(z) ;

where m is a nonnegative integer and z̃ is the
COMPLEX CONJUGATE.

See also BLASCHKE FACTOR
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Blaschke’s Theorem
A convex planar domain in which the minimal
GENERALIZED DIAMETER is �1 always contains a
CIRCLE of RADIUS 1/3.

See also GENERALIZED DIAMETER
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Blasius Differential Equation
The third-order ORDINARY DIFFERENTIAL EQUATION

2y§�yyƒ�0:

This equation arises in the theory of fluid boundary
layers, and must be solved numerically (Rosenhead
1963; Schlichting 1979; Tritton 1989, p. 129). The
velocity profile produced by this differential equation
is known as the Blasius profile.
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Blecksmith-Brillhart-Gerst Theorem
A generalization of SCHRÖ TER’S FORMULA.
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Blichfeldt’s Lemma
BLICHFELDT’S THEOREM

Blichfeldt’s Theorem
Any bounded planar region with POSITIVE AREA > A
placed in any position of the UNIT SQUARE LATTICE can
be TRANSLATED so that the number of LATTICE POINTS

inside the region will be at least A �1 (Blichfeldt
1914, Steinhaus 1983) The theorem can be general-
ized to n -D.

See also LATTICE POINT, MINKOWSKI CONVEX BODY

THEOREM, PICK’S THEOREM
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B-Line
A line which simultaneously bisects a triangle’s
perimeter and area.

See also CLEAVER, SPLITTER
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BLM/Ho Polynomial
A 1-variable unoriented KNOT POLYNOMIAL Q(x): It
satisfies

Qunknot�1 (1)

and the SKEIN RELATIONSHIP

QL�
�QL�

�x(QL0
�QL�

): (2)



It also satisfies

QL1#L2
�QL1

QL2
; (3)

where is the KNOT SUM and

QL��QL ; (4)

where L � is the MIRROR IMAGE of L . The BLM/Ho
polynomials of MUTANT KNOTS are also identical.
Brandt et al. (1986) give a number of interesting
properties. For any LINK L with ]2 components,
QL �1 is divisible by 2(x �1): If L has c components,
then the lowest POWER of x in QL(x) is 1�c ; and

lim
x00

xc�1QL(x) � lim
(l; m)0(1; 0)

(�m)c�1PL(l; m) ; (5)

where PL is the HOMFLY POLYNOMIAL. Also, the
degree of QL is less than the CROSSING NUMBER of L .
If L is a 2-BRIDGE KNOT, then

QL(z) �2z �1VL(t)VL(t�1 �1 �2z �1) ; (6)

where z ��t �t�1 (Kanenobu and Sumi 1993).

The POLYNOMIAL was subsequently extended to the 2-
variable KAUFFMAN POLYNOMIAL F , which satisfies

Q(x) �F(1; x) : (7)

Brandt et al. (1986) give a listing of Q POLYNOMIALS

for KNOTS up to 8 crossings and links up to 6
crossings.
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Bloch Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry. Let F be the set of
COMPLEX ANALYTIC FUNCTIONS f defined on an open
region containing the CLOSURE of the UNIT DISK D �
fz : ½z ½B1 g satisfying f (0) �0 and df =dz(0) �1 : For
each f in F , let b(f ) be the SUPREMUM of all numbers r
such that there is a disk S in D on which f is ONE-TO-

ONE and such that f (S) contains a disk of radius r . In
1925, Bloch (Conway 1978) showed that b(f ) ]1 =72:
Define Bloch’s constant by

B �inf fb(f ) :  f � F g:

Ahlfors and Grunsky (1937) derived

0 :433012701 . . . �1
4

ffiffiffi
3

p
5B B

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffi
3

pp G(1
3)G(11

12)

G(1
4)

B0:4718617:

They also conjectured that the upper limit is actually
the value of B ,

B �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
ffiffiffi
3

pp G(1
3) G(11

12)

G(1
4)

�
ffiffiffi
p

p
21 =4

G(1
3)

G(1
4)

ffiffiffiffiffiffiffiffiffiffi
G(11

12)

G( 1
12)

vuut
�0:4718617 . . .

(Le Lionnais 1983).

See also LANDAU CONSTANT
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Bloch-Landau Constant
LANDAU CONSTANT

Block

A maximal BICONNECTED SUBGRAPH of a given GRAPH

G . In the illustration above, the blocks are f2; 5; 6g;
f3; 4; 6; 7g; and f1; 7g:/
If a graph G is biconnected, then G itself is called a
block (Harary 1994, p. 26) or a BICONNECTED GRAPH

(Skiena 1990, p. 175).

See also BICONNECTED GRAPH, BLOCK DESIGN, DIGIT

BLOCK, SQUARE POLYOMINO
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Block (Group Action)
A GROUP ACTION G �V 0 V might preserve a special
kind of PARTITION of V called a system of blocks. A
block is a SUBSET D of V such that for any group
element g either

1. g preserves D; i.e., gD�D; or
2. g translates everything in D out of D; i.e.,
g DSD� f:/

For example, the GENERAL LINEAR GROUP GL(2; R)
acts on the plane minus the origin, R2 �(0; 0): The
lines A �f(at; bt) g are blocks because either a line is
mapped to itself, or to another line. Of course, the
points on the line may be rescaled, so the lines in A
are minimal blocks.

In fact, if two blocks intersect then their intersection
is also a block. Hence, the minimal blocks form a
PARTITION of V: It is important to avoid confusion
with the notion of a block in a BLOCK DESIGN, which is
different.

See also GROUP, PRIMITIVE GROUP ACTION, STEINER

SYSTEM
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Block (Set)
One of the disjoint SUBSETS making up a SET PARTI-

TION. A block containing n elements is called an n -
block. The partitioning of sets into blocks can be
denoted using a RESTRICTED GROWTH STRING.

See also BLOCK DESIGN, RESTRICTED GROWTH

STRING, SET PARTITION

Block Design
An incidence system (v , k , l ; r , b ) in which a set X of
v points is partitioned into a family A of b subsets
(blocks) in such a way that any two points determine
l blocks with k points in each block, and each point is
contained in r different blocks. It is also generally
required that k Bv , which is where the "incomplete"
comes from in the formal term most often encoun-
tered for block designs, BALANCED INCOMPLETE BLOCK

DESIGNS (BIBD). The five parameters are not inde-
pendent, but satisfy the two relations

vr �bk (1)

l(v �1) �r(k �1): (2)

A BIBD is therefore commonly written as simply (v ,
k , l); since b and r are given in terms of v , k , and l by

b �
v(v � 1)l
k(k � 1) 

(3)

r �
l(v � 1)

k � 1
: (4)

A BIBD is called SYMMETRIC if b �v (or, equivalently,
r �k ).

Writing X �fxi g
v
i�1 and A � fAj g

b;
j�1 then the INCI-

DENCE MATRIX of the BIBD is given by the v � b
MATRIX M defined by

mij �
1 if xi � A
0 otherwise :

�
(5)

This matrix satisfies the equation

MM T�(r�l)I �lJ; (6)

where I is a v �v IDENTITY MATRIX and J is the v �v
UNIT MATRIX (Dinitz and Stinson 1992).

Examples of BIBDs are given in the following table.

Block Design (v , k , l)/

AFFINE

PLANE

(/n2; n , 1)

FANO PLANE (7, 3, 1)

HADAMARD

DESIGN

SYMMETRIC (/4n � 3; 2n � 1; n )

PROJECTIVE

PLANE

SYMMETRIC (/n2�n�1; n�1; 1)

STEINER TRI-

PLE SYSTEM

(v , 3, 1)

UNITAL (/q3�1; q�1; 1)

See also AFFINE PLANE, DESIGN, FANO PLANE,
HADAMARD DESIGN, PARALLEL CLASS, PROJECTIVE

PLANE, RESOLUTION, RESOLVABLE, STEINER TRIPLE

SYSTEM, SYMMETRIC BLOCK DESIGN, UNITAL
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Block Diagonal Matrix
A block diagonal matrix, also called a diagonal block
matrix, is a SQUARE DIAGONAL MATRIX in which the
diagonal elements are SQUARE MATRICES of any size
(possibly even 1�1); and the off-diagonal elements
are 0. A block diagonal matrix is therefore a BLOCK

MATRIX in which the blocks off the diagonal are the
ZERO MATRICES, and the diagonal matrices are
SQUARE.



Block diagonal matrices can be constructed in Math-
ematica using the following code snippet.

BBLinearAlgebra‘MatrixManipulation‘

BlockDiagonal[a_List]: �
Module[{n �Length[a],lens �Length/@a,i,k,tmp},

k �Outer[List,lens,lens];

tmp �Map[ZeroMatrix[#1[[1]],#1[[2]]]&,k,{2}];

BlockMatrix@

ReplacePart[tmp,a,Table[{i,i},{i,Length[a]}],

Table[{i},{i,Length[a]}]]]

See also BLOCK MATRIX, CAYLEY-HAMILTON THEO-

REM, DIAGONAL MATRIX, DIRECT SUM, JORDAN CANO-

NICAL FORM, LINEAR TRANSFORMATION, MATRIX,
MATRIX DIRECT SUM

Block Growth
Let (x0x1x2 . . .) be a sequence over a finite ALPHABET A
(all the entries are elements of A ). Define the block
growth function B(n) of a sequence to be the number
of ADMISSIBLE words of length n . For example, in the
sequence aabaabaabaabaab . . . ; the following words
are ADMISSIBLE

Length Admissible Words

1 a, b

2 /aa; ab; ba/

3 /aab; aba; baa/

4 /aaba abaa; baab/

so B(1)�2; B(2)�3; B(3)�3; B(4)�3; and so on.
Notice that B(n)5B(n�1); so the block growth
function is always nondecreasing. This is because
any ADMISSIBLE word of length n can be extended
rightwards to produce an ADMISSIBLE word of length
n�1: Moreover, suppose B(n)�B(n�1) for some n .
Then each admissible word of length n extends to a
unique ADMISSIBLE word of length n�1:/

For a SEQUENCE in which each substring of length n
uniquely determines the next symbol in the SE-

QUENCE, there are only finitely many strings of length
n , so the process must eventually cycle and the
SEQUENCE must be eventually periodic. This gives
us the following theorems:

1. If the SEQUENCE is eventually periodic, with
least period p , then B(n) is strictly increasing until
it reaches p , and B(n) is constant thereafter.
2. If the SEQUENCE is not eventually periodic, then
B(n) is strictly increasing and so B(n)]n�1 for

all n . If a SEQUENCE has the property that B(n)�
n�1 for all n , then it is said to have minimal block
growth, and the SEQUENCE is called a STURMIAN

SEQUENCE.

The block growth is also called the GROWTH FUNCTION

or the COMPLEXITY of a SEQUENCE.

Block Matrix
A block matrix is a MATRIX that is defined using
smaller matrices, called blocks. For example,

A B

C D

� �
; (1)

where A, B, C, and D are themselves matrices, is a block
matrix. In the specific example

A�
0 2
2 0

� �
(2)

B�
3 3 3
3 3 3

� �
(3)

C�
4 4
4 4
4 4

2
4

3
5 (4)

D�
5 0 5
0 5 0
5 0 5

2
4

3
5; (5)

it is the matrix

0 2 3 3 3
2 0 3 3 3
4 4 5 0 5
4 4 0 5 0
4 4 5 0 5

2
66664

3
77775: (6)

Block matrices can be created using BlockMa-
trix[blocks ] in the Mathematica add-on package
LinearAlgebra‘MatrixMultiplication‘ (which
can be loaded with the command
BBLinearAlgebra‘).

When two block matrices have the same shape and
their diagonal blocks are square matrices, then they
multiply similarly to MATRIX MULTIPLICATION. For
example,

A1 B1

C1 D1

� �
A2 B2

C2 D2

� �

�
A1A2�B1C2 A1B2

C1A2�D1C2 C1B2�D1D2

� �
: (7)

When the blocks are SQUARE MATRICES, the set of
invertible block matrices form a group, which is a
special case of the GENERAL LINEAR GROUP. In this
case, it is GL2(R�); the invertible two by two matrices
with entries in the UNITS of a RING R , where here R is
the ring of square matrices.



See also BLOCK DIAGONAL MATRIX, CAYLEY-HAMIL-

TON THEOREM, MATRIX, RING

Blow-Up
A common mechanism which generates SINGULARI-

TIES from smooth initial conditions.

See also BLOW-UP LEMMA

Blow-Up Lemma
The blow-up lemma essentially says that regular
pairs in SZEMERÉ DI’S REGULARITY LEMMA behave
like COMPLETE BIPARTITE GRAPHS from the point of
view of embedding bounded degree subgraphs.

In particular, given a graph R of order r , minimal
VERTEX DEGREE d and maximal VERTEX DEGREE D;
then there exists an e > 0 such that the following
holds. Let N be an arbitrary positive integer, and
replace the vertices of R with pairwise disjoint N -sets
V1 ; V2 ; ..., Vr (blowing up). Now construct two graphs
on the same vertex set V �@ Vi : The graph R(N) is
obtained by replacing all edges of R with copies of the
complete bipartite graph KN ; N ; and construct a
sparser graph by replacing the edges of R with
some ( e; d)/-superregular pair. If a graph H with
D(H) 5D is embeddable into R(N) ; then it is already
embeddable into G (Komlós et al. 1998).

See also SZEMERÉ DI’S REGULARITY LEMMA
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Blue-Empty Coloring
BLUE-EMPTY GRAPH

Blue-Empty Graph
An EXTREMAL GRAPH in which the forced TRIANGLES

are all the same color. Call R the number of red
MONOCHROMATIC FORCED TRIANGLES and B the num-
ber of blue MONOCHROMATIC FORCED TRIANGLES, then
a blue-empty graph is an EXTREMAL GRAPH with
B �0. For EVEN n , a blue-empty graph can be
achieved by coloring red two COMPLETE SUBGRAPHS

of n=2 points (the RED NET method). There is no blue-
empty coloring for ODD n except for n �7 (Lorden
1962).

See also COMPLETE GRAPH, EXTREMAL GRAPH, MONO-

CHROMATIC FORCED TRIANGLE, RED NET
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Sauvé, L. "On Chromatic Graphs." Amer. Math. Monthly 68,

107 �/11, 1961.

Board

A board is a subset of the polygons determined by a
number of (usually regularly spaced and oriented)
lines. These polygons form the spaces on which
"pieces" can be placed and move in many games
(called board games). The simplest division the plane
is into equal squares. The 3 �3 square board is used
in TIC-TAC-TOE. The 8 �8 square board is used in
CHECKERS and CHESS. Hexagonal boards are used in
some games. Chinese checkers uses a board in the
space of a pentagram with spaces at the vertices of a
regular triangular tiling.

See also CHECKERS, CHESS, CHESSBOARD, GRID, ROOK

NUMBER, TIC-TAC-TOE
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Boatman’s Knot
CLOVE HITCH

Bôcher Equation
A second-order ORDINARY DIFFERENTIAL EQUATION OF

THE FORM

yƒ�1
2

m1

x � a1

�. . .�
mn�1

x � an�1

" #
y?

�1
4

A0 � A1x � . . . � A1x1

(x � a1)m1 (x � a2)m2 . . . (x � an�1)mn�1

" #
y�0:
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Bochner Identity
For a smooth HARMONIC MAP u : M 0 N ;

D( ½9u½2) � ½9(du) ½2 � RicM 9u; 9uh i
� RiemN(u)( 9u; 9u) 9u; 9uh i;

where 9 is the GRADIENT, Ric is the RICCI TENSOR, and
Riem is the RIEMANN TENSOR.
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Bochner’s Theorem
Among the continuous functions on Rn ; the POSITIVE

DEFINITE FUNCTIONS are those functions which are
the FOURIER TRANSFORMS of finite measures.

Bode’s Rule
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi�1 �xi ; so f1 �f (x1) ; f2 �
f (x2) ; ..., f5 �f (x5) : Then Bode’s rule approximating
the integral of f (x) is given by the NEWTON-COTES-like
formula

g
x5

x1

f (x) dx � 2
45h(7f1 �32f2 �12f3 �32f4 �7f5)

� 8
945h

7f (6)(j) :

See also HARDY’S RULE, NEWTON-COTES FORMULAS,
SIMPSON’S 3/8 RULE, SIMPSON’S RULE, TRAPEZOIDAL

RULE, WEDDLE’S RULE
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Bogdanov Map
A 2-D MAP which is conjugate to the HÉ NON MAP in its
nondissipative limit. It is given by

x?�x �y?

y?�y � ey �kx(x �1) � mxy:

See also HÉ NON MAP

References
Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.;

and Place, C. M. "The Bogdanov Map: Bifurcations, Mode
Locking, and Chaos in a Dissipative System." Int. J.
Bifurcation Chaos 3, 803 �/42, 1993.

Bogdanov, R. "Bifurcations of a Limit Cycle for a Family of
Vector Fields on the Plane." Selecta Math. Soviet 1, 373 �/

88, 1981.

Bogomolov-Miyaoka-Yau Inequality
Relates invariants of a curve defined over the IN-

TEGERS. If this inequality were proven true, then
FERMAT’S LAST THEOREM would follow for sufficiently
large exponents. Miyaoka claimed to have proven this
inequality in 1988, but the proof contained an error.

See also FERMAT’S LAST THEOREM
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Bohemian Dome

A QUARTIC SURFACE which can be constructed as
follows. Given a CIRCLE C and PLANE E PERPENDICU-

LAR to the PLANE of C , move a second CIRCLE K of the
same RADIUS as C through space so that its CENTER

always lies on C and it remains PARALLEL to E . Then
K sweeps out the Bohemian dome. It can be given by
the PARAMETRIC EQUATIONS

x �a cos u

y �b cos v �a sin u

z �c sin v

where u; v � [0; 2p) : In the above plot, a �0:5; b �1:5;
and c�1.

See also QUARTIC SURFACE
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Bohr Matrix
A finite or infinite SQUARE MATRIX with RATIONAL

entries. (If the matrix is infinite, all but a finite
number of entries in each row must be 0.) The sum or
product of two Bohr matrices is another Bohr matrix.
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Bohr-Favard Inequalities
If f has no spectrum in [�l; l] ; then

fk k�5
p

2l
f ?k k�

(Bohr 1935). A related inequality states that if Ak is
the class of functions such that

f (x) �f (x �2p) ; f (x) ; f ?(x); . . . ; f (k �1)(x)

are absolutely continuous and f
2 p

0
f (x) dx �0; then

fk k�5
4

p

X�
n�0

( �1)n(k �1)

(2n � 1)k�1 f (k)(x)
55 55

�

(Northcott 1939). Further, for each value of k , there is
always a function f (x) belonging to Ak and not
identically zero, for which the above inequality
becomes an equality (Favard 1936). These inequal-
ities are discussed in Mitrinovic et al. (1991).
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la démonstration de quelques propriétés extrémales des
intégrale des fonctions périodiques ou presquepériodi-
ques." Mat. Tidsskr. B , 81�/4, 1936. Reviewed in Zentral-
blatt f. Math. 16, 58�/9, 1939.

Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities
Involving Functions and Their Integrals and Derivatives.
Dordrecht, Netherlands: Kluwer, pp. 71 �/2, 1991.

Northcott, D. G. "Some Inequalities Between Periodic Func-
tions and Their Derivatives." J. London Math. Soc. 14,
198 �/02, 1939.

Tikhomirov, V. M. "Approximation Theory." In Analysis II.
Convex Analysis and Approximation Theory (Ed.
R. V. Gamkrelidze). New York: Springer-Verlag, pp. 93 �/

55, 1990.

Bohr-Mollerup Theorem
If a function 8 : (0; �) 0 (0; �) satisfies

1. ln[ 8 (x)] is convex,
2. 8 (x�1)�x8 (x) for all x �0, and
3. 8 (1)�1;/

then 8 (x) is the GAMMA FUNCTION G(x): Therefore, by
ANALYTIC CONTINUATION, G(z) is the only MERO-

MORPHIC FUNCTION on C satisfying the functional

equation

zG(z)�G(z�1)

with G(1)�1 and which is logarithmically convex on
the positive REAL AXIS.

See also GAMMA FUNCTION
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Bolyai-Gerwein Theorem
WALLACE-BOLYAI-GERWEIN THEOREM

Bolza Problem
Given the functional

U�g
t1

t0

f (y1; . . . ; yn; y?1; . . . ; y?n) dt

�G(y10; . . . ; ynr; y11; . . . ; yn1); (1)

find in a class of arcs satisfying p differential and q
finite equations

fa(y1; . . . ; yn; y?1; . . . ; y?n)�0 for a�1; . . . ; p (2)

cb(y1; . . . ; yn)�0 for b�1; . . . ; q (3)

as well as the r equations on the endpoints

xg(y10; . . . ; ynr; y11; . . . ; yn1)�0

for g�1; . . . ; r;
(4)

one which renders U a minimum.

References
Goldstine, H. H. A History of the Calculus of Variations from

the 17th through the 19th Century. New York: Springer-
Verlag, p. 374, 1980.

Bolzano Theorem
BOLZANO-WEIERSTRASS THEOREM

Bolzano-Weierstrass Theorem
Every BOUNDED infinite set in Rn has an ACCUMULA-

TION POINT.

For n�1, an infinite subset of a closed bounded set S
has an ACCUMULATION POINT in S . For instance, given
a bounded SEQUENCE ap; with�C5an5C for all n , it
must have a MONOTONIC subsequence ank

: The SUB-

SEQUENCE ank
must converge because it is monotonic

and bounded. Because S is closed, it contains the
limit of ank

:/

The Bolzano-Weierstrass theorem is closely related to
the HEINE-BOREL THEOREM and CANTOR’S INTERSEC-

TION THEOREM, each of which can be easily derived
from either of the other two.



See also ACCUMULATION POINT, CANTOR’S INTERSEC-

TION THEOREM, HEINE-BOREL THEOREM, INTERMEDI-

ATE VALUE THEOREM
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Bombieri Inner Product
For HOMOGENEOUS POLYNOMIALS P and Q of degree
n ,

[P; Q] �
X

i1 ; ... ; in ]0

(i1! . . . in!)(ai; ...; in
bi1 ; ... ; in

) :

Bombieri Norm
This entry contributed by KEVIN O’BRYANT

The Bombieri p -norm of a polynomial

Q(x) �
Xn

i�0

aix
i (1)

is defined by

[Q]p �
Xn

i �0

n
i

� �1 �p

½ai ½
p

" #1=p

; (2)

where (n
k) is a BINOMIAL COEFFICIENT. The most re-

markable feature of Bombieri’sn norm is that given
polynomials R and S such that RS �Q ; then BOM-

BIERI’S INEQUALITY

[R]2[S]2 5
n
m

� �1 =2

[Q]2 (3)

holds, where n is the degree of Q , and m is the degree
of either R or S . This theorem captures the heuristic
that if R and S have big coefficients, then so does RS;
i.e., there can’t be too much cancellation.

See also NORM, BOMBIERI’S INEQUALITY, POLYNOMIAL

NORM
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Bombieri’s Inequality
For HOMOGENEOUS POLYNOMIALS P and Q of degree
m and n , then

[P � Q]2 ]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!n!

(m � n)! 
[P]2[Q]2 ;

s

where [P � Q]2 is the BOMBIERI NORM. If m �n , this
becomes

[P�Q]2][P]2[Q]2;

See also BOMBIERI NORM, BEAUZAMY AND DÉ GOT’S

IDENTITY, REZNIK’S IDENTITY
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Bombieri’s Theorem
Define

E(x; q; a)�c(x; q; a)�
x

f(q)
; (1)

where

c(x; q; a)�
X
n5x

n�a (mod q)

L(n) (2)

(Davenport 1980, p. 121), L(n) is the MANGOLDT

FUNCTION, and f(q) is the TOTIENT FUNCTION. Now
define

E(x; q)� max
a

(a; q)�1

½E(x; q; a)½ (3)

where the sum is over a RELATIVELY PRIME to q ,
(a; q)�1; and

E�(x; q)�max
y5x

E(y; q): (4)

Bombieri’s theorem then says that for fixed A �0,X
q5Q

E�(x; q)�
ffiffiffi
x

p
Q(ln x)5; (5)

provided that /

ffiffiffi
x

p
(ln x)�4

BQB
ffiffiffi
x

p
/.
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Bond Percolation

A PERCOLATION which considers the lattice edges as
the relevant entities (left figure).

See also PERCOLATION THEORY, SITE PERCOLATION

Bonferroni Correction
The Bonferroni correction is a multiple-comparison
correction used when several independent STATISTI-

CAL TESTS are being performed simultaneously (since
while a given ALPHA VALUE a may be appropriate for
each individual comparison, it is not for the set of all
comparisons). In order to avoid a lot of spurious
positives, the ALPHA VALUE needs to be lowered to
account for the number of comparisons being per-
formed.

The simplest and most conservative approach is the
Bonferroni correction, which sets the ALPHA VALUE for
the entire set of n comparisons equal to a by taking
the ALPHA VALUE for each comparison equal to a=n:
Explicitly, given n tests Ti for hypotheses Hi (/1 5i 5
n) under the assumption H0 that all hypotheses Hi

are false, and if the individual test critical values are
5 a=n; then the experiment-wide critical value is 5 a:
In equation form, if

P(Ti passes ½H0) 5
a

n

for 1 5i 5n; then

P(some Ti passes ½H0) 5 a;

which follows from BONFERRONI’S INEQUALITIES.

Another correction instead uses 1 �(1 � a)1 =n : While
this choice is applicable for two-sided hypotheses,
multivariate normal statistics, and positive orthant
dependent statistics, it is not, in general, correct
(Shaffer 1995).

See also ALPHA VALUE, HYPOTHESIS TESTING, STATIS-

TICAL TEST
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Bonferroni Test
BONFERRONI CORRECTION

Bonferroni’s Inequalities
Let P(Ei) be the probability that Ei is true, and
P@n

i�1 Eið Þ be the probability that at least one of E1;
E2; ..., En is true. Then

P @
n

i�1
Ei

� �
5
Xn

i�1

P(Ei):

A slightly wider class of inequalities are also known
as "Bonferroni inequalities."

References
Comtet, L. "Bonferroni Inequalities." §4.7 in Advanced

Combinatorics: The Art of Finite and Infinite Expansions,
rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 193�/94,
1974.

Galambos, J.; and Simonelli, I. Bonferroni-Type Inequalities
with Applications. New York: Springer-Verlag, 1996.

Bonne Projection

A MAP PROJECTION which resembles the shape of a
heart. Let f1 be the standard parallel, l0 the central
meridian, f be the LATITUDE, and l the LONGITUDE on
a UNIT SPHERE. Then

x�r sin E (1)

y�cot f1�r cos E; (2)

where

r�cot f1�f1�f (3)

E�
(l� l0) cos f

r
: (4)



The inverse FORMULAS are

f �cot f1 � f1 � r (5)

l�l0 �
r

cos f
tan�1 x

cot f1 � y

 !
; (6)

where

r �9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �(cot f1 �y)2

q
: (7)

The WERNER PROJECTION is a special case of the
Bonne projection.

See also MAP PROJECTION, WERNER PROJECTION
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Book Stacking Problem

How far can a stack of n books protrude over the edge
of a table without the stack falling over? It turns out
that the maximum overhang possible dn for n books
(in terms of book lengths) is half the nth partial sum
of the HARMONIC SERIES, given explicitly by

dn�
1

2

Xn

k�1

1

k
�1

2[g�C(1�n)]

where C(z) is the DIGAMMA FUNCTION and g is the
EULER-MASCHERONI CONSTANT. The first few values

are

d1�
1
2�0:5

d2�
3
4�0:75

d3�
11
12:0:91667

d4�
25
24:1:04167;

(Sloane’s A001008 and A002805).
In order to find the number of stacked books required
to obtain d book-lengths of overhang, solve the dn

equation for d , and take the CEILING FUNCTION. For
n�1, 2, ... book-lengths of overhang, 4, 31, 227, 1674,
12367, 91380, 675214, 4989191, 36865412,
272400600, ... (Sloane’s A014537) books are needed.
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Boole
IVERSON BRACKET

Boole Polynomial
Polynomials sk(x; l) which form a SHEFFER SE-

QUENCE with

g(t)�1�elt (1)

f (t) � et�1 (2)

and have GENERATING FUNCTION

X�
k�0

sk(x; l)

k!
tk�

(1 � t)x

1 � (1 � t)l
: (3)

The first few are

s0(x; l)�1
2

s1(x; l)�1
4(2x�l)t

x2(x; l)�1
4[2x(x�l�1)�l]:

Jordan (1950) considers the related polynomials rn(x)



which form a SHEFFER SEQUENCE with

g(t) �1
2(1 �et) (4)

f (t) �et �1: (5)

These polynomials have GENERATING FUNCTION

X�
k �0

rn(x)

k!
tk �

2(1 � t)x

2 � t
: (6)

The first few are

r0(x) �1
r1(x) �1

2(2x �1)

r2(x) �1
2(2x2 �4x �1)

r3(x) �1
4(4x3 �18x2 �20x �3):

The PETERS POLYNOMIALS are a generalization of the
Boole polynomials.

See also PETERS POLYNOMIAL
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Boole’s Inequality
Let P(Ei) be the probability of an event Ei occurring.
Then

P @
N

i �1
Ei

� �
5
XN

i�1

P(Ei) ;

where @ denotes the UNION. If Ei and Ej are DISJOINT

SETS for all i and j , then the INEQUALITY becomes an
equality.

See also DISJOINT SETS, UNION

Boolean Algebra
A mathematical structure which is similar to a
BOOLEAN RING, but which is defined using the meet
and join operators instead of the usual addition and
multiplication operators. Explicitly, a Boolean alge-
bra is the PARTIAL ORDER on subsets defined by
inclusion (Skiena 1990, p. 207), i.e., the Boolean
algebra b(A) of a set A is the set of subsets of A
that can be obtained by means of a finite number of
the set operations UNION (OR), INTERSECTION (AND),
and COMPLEMENTATION (NOT) (Comtet 1974, p. 185).
A Boolean algebra also forms a LATTICE (Skiena 1990,
p. 170), and each of the elements of b(A) is called a
BOOLEAN FUNCTION. There are 22n

BOOLEAN FUNC-

TIONS in a Boolean algebra of order n (Comtet 1974,
p. 186).

In 1938, Shannon proved that a two-valued Boolean
algebra (whose members are most commonly denoted
0 and 1, or false and true) can describe the operation
of two-valued electrical switching circuits. In modern
times, Boolean algebra and BOOLEAN FUNCTIONS are
therefore indispensable in the design of computer
chips and integrated circuits.

Boolean algebras have a recursive structure apparent
in the HASSE DIAGRAMS illustrated above for Boolean
algebras of orders n�2, 3, 4, and 5. These figures
illustrate the partition between left and right halves
of the lattice, each of which is the Boolean algebra on
n�1 elements (Skiena 1990, pp. 169�/70).

A Boolean algebra can be formally defined as a SET B
of elements a , b , ... with the following properties:

1. B has two binary operations,ffl (logical AND, or
"WEDGE") and � (logical OR, or "VEE"), which
satisfy the IDEMPOTENT laws

affla�a�a�a; (1)

the COMMUTATIVE laws

afflb�bffla (2)

a�b�b�a; (3)

and the ASSOCIATIVE laws

affl(bfflc)�(afflb)fflc (4)

a�(b�c)�(a�b)�c: (5)

2. The operations satisfy the ABSORPTION LAW

affl(a�b)�a�(afflb)�a: (6)

3. The operations are mutually distributive

affl(b�c)�(afflb)ffl(afflc) (7)

a�(bfflc)�(a�b)ffl(afflc): (8)

4. B contains universal bounds ¥ and I which
satisfy

¥ffla�¥ (9)

¥�a�a (10)

Iffla�a (11)

I�a�I: (12)

5. B has a unary operation a 0 a? of complementa-
tion which obeys the laws

affla?�¥ (13)



a �a?�I (14)

(Birkhoff and Mac Lane 1965).

In the slightly archaic terminology of (Bell 1937,
p. 444), a Boolean algebra can be defined as a set B of
elements a , b , ... with BINARY OPERATORS � (or �;
logical OR) and ffl (or : ; logical AND) such that

1a. If a and b are in the set B , then a �b is in the
set B .
1b. If a and b are in the set B , then a fflb is in the
set B .
2a. There is an element Z (zero) such that a �Z �
a for every element a .
2b. There is an element U (unity) such that a ffl
U �a for every element a .
3a. a �b �b �a :/
3b. a fflb �b ffla :/
4a. a �b fflc �(a �b) ffl(a �c) :/
4b. a ffl(b �c) �(a fflb) �(a fflc):/
5. For every element a there is an element a ? such
that a �a ?�U and a ffla ?�Z:/
6. There are at least two distinct elements in the
set B .

Huntington (1933ab) presented the following basis for
Boolean algebra:

1. Commutativity. x �y �y �x:/
2. Associativity. (x �y) �z �x �(y �z):/
3. HUNTINGTON AXIOM. !(!x �y) �!(!x �!y) �x:/

H. Robbins then conjectured that the HUNTINGTON

AXIOM could be replaced with the simpler ROBBINS

AXIOM,

!(!(x �y) �!(x �!y)) �x (15)

The ALGEBRA defined by commutativity, associativity,
and the ROBBINS AXIOM is called ROBBINS ALGEBRA.
Computer theorem proving demonstrated that every
ROBBINS ALGEBRA satisfies the second WINKLER CON-

DITION, from which it follows immediately that all
ROBBINS ALGEBRAS are Boolean (McCune, Kolata
1996).

See also BOOLEAN FUNCTION, BOOLEANS, HUNTING-

TON AXIOM, MAXIMAL IDEAL THEOREM, ROBBINS

ALGEBRA, ROBBINS AXIOM, WINKLER CONDITIONS,
WOLFRAM AXIOM
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Boolean Connective
One of the LOGIC operators AND ffl; OR �; and NOT :/

See also QUANTIFIER

Boolean Function
Consider a Boolean algebra of subsets b(A) generated
by a set A , which is the set of subsets of A that can be
obtained by means of a finite number of the set
operations union, intersection, and complementation.
Then each of the elements of b(A) is called a Boolean
function generated by A (Comtet 1974, p. 185). Each
Boolean function has a unique representation (up to
order) as a union of COMPLETE PRODUCTS. It follows
that there are 22p

inequivalent Boolean functions for a
set A with cardinality p (Comtet 1974, p. 187).

In 1938, Shannon proved that a two-valued Boolean
algebra (whose members are most commonly denoted
0 and 1, or false and true) can describe the operation
of two-valued electrical switching circuits. The follow-
ing table gives the TRUTH TABLE for the 222

�16
possible Boolean functions of two binary variables.

A B /F0/ /F1/ /F2/ /F3/ /F4/ /F5/ /F6/ /F7/

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

A B /F8/ /F9/ /F10/ /F11/ /F12/ /F13/ /F14/ /F15/

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1



1 0 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1

The names and symbols for these functions are given
in the following table (Simpson 1987, p. 539).

operation symbol name

/F0/ 0 FALSE

/F1/ /A fflB/ AND

/F2/ /A ffl!B/ A AND NOT B

/F3/ A A

/F4/ /!A fflB/ NOT A AND B

/F5/ B B

/F6/ /A�B/ XOR

/F7/ /A �B/ OR

/F8/ /A�B/ NOR

/F9/ A XNOR B XNOR

/F10/ /!B/ NOT B

/F11/ /A �!B/ A OR NOT B

/F12/ /!A/ NOT A

/F13/ /!A �B/ NOT A OR B

/F14/ /AfflB/ NAND

/F15/ 1 TRUE

Determining the number of monotone Boolean func-
tions of n variables is known as DEDEKIND’S PROBLEM

and is equivalent to the number of ANTICHAINS on the
n -set f1; 2; . . .  ; ng: Boolean functions can also be
thought of as colorings of a Boolean n -cube. The
numbers of inequivalent monotone Boolean functions
in n �1, 2, ... variables are given by 2, 3, 5, 10, 30,
...(Sloane’s A003182).

Let M(n; k) denote the number of distinct monotone
Boolean functions of n variables with k MINCUTS.
Then

M(n; 0) �1

M(n; 1) �2n

M(n ; 2) � 2n�1(2n �1) �3n �2n

M(n; 3) � 1
6(2

n)(2n �1)(2n �2) �6n �5n �4n �3n :

See also ANTICHAIN, BOOLEAN ALGEBRA, BOOLEANS,

COMPLETE PRODUCT, CONJUNCTION, DEDEKIND’S PRO-

BLEM, MINCUT, MONOTONE FUNCTION
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Boolean Representation Theorem
Every BOOLEAN ALGEBRA is isomorphic to the BOO-

LEAN ALGEBRA of sets. It is equivalent to the MAXIMAL

IDEAL THEOREM, which can be proved without using
the AXIOM OF CHOICE (Mendelson 1997, p. 121).

See also BOOLEAN ALGEBRA, MAXIMAL IDEAL THEO-

REM
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Boolean Ring
A RING with a unit element in which every element is
IDEMPOTENT.

See also BOOLEAN ALGEBRA

Booleans
The domain of Booleans, sometimes denoted B;
consisting of the elements TRUE and FALSE, imple-
mented in Mathematica as Booleans. In Mathema-
tica , a quantity can be tested to determine if it is in
the domain of Booleans using Element[e , Booleans].

See also BOOLEAN ALGEBRA, BOOLEAN FUNCTION,
FALSE, TRUE

Boomeron Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut�b � vx

bxt�uxxb�a�vx�2v�(v�b):
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Boosting

See also RESAMPLING STATISTICS

Bootstrap Methods

A set of methods that are generally superior to
ANOVA for small data sets or where sample distribu-
tions are non-normal.

See also ANOVA, JACKKNIFE, PERMUTATION TESTS,
RESAMPLING STATISTICS
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Borchardt-Pfaff Algorithm
ARCHIMEDES ALGORITHM

Border Square

A MAGIC SQUARE that remains magic when its border
is removed. A nested magic square remains magic
after the border is successively removed one ring at a
time. An example of a nested magic square is the
order 7 square illustrated above (i.e., the order 7, 5,
and 3 squares obtained from it are all magic).

See also MAGIC SQUARE
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Bordism
A relation between COMPACT boundaryless MANI-

FOLDS (also called closed MANIFOLDS). Two closed
MANIFOLDS are bordant IFF their disjoint union is
the boundary of a compact (n �1)/-MANIFOLD.
Roughly, two MANIFOLDS are bordant if together
they form the boundary of a MANIFOLD. The word

bordism is now used in place of the original term
COBORDISM.

References
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Bordism Group
There are bordism groups, also called COBORDISM

GROUPS or COBORDISM RINGS, and there are singular
bordism groups. The bordism groups give a frame-
work for getting a grip on the question, "When is a
compact boundaryless MANIFOLD the boundary of
another MANIFOLD?" The answer is, precisely when
all of its STIEFEL-WHITNEY CLASSES are zero. Singular
bordism groups give insight into STEENROD’S REALI-

ZATION PROBLEM: "When can homology classes be
realized as the image of fundamental classes of
manifolds?" That answer is known, too.

The machinery of the bordism group winds up being
important for HOMOTOPY THEORY as well.
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Borel Algebra

See also BOREL SIGMA ALGEBRA, BOREL SUBALGEBRA

Borel Determinacy Theorem
Let T be a TREE defined on a metric over a set of paths
such that the distance between paths p and q is 1=n;
where n is the number of nodes shared by p and q .
Let A be a BOREL SET of paths in the topology induced
by this metric. Suppose two players play a game by
choosing a path down the tree, so that they alternate
and each time choose an immediate successor of the
previously chosen point. The first player wins if the
chosen path is in A . Then one of the players has a
winning STRATEGY in this GAME.

See also GAME THEORY, TREE

Borel Field
If a FIELD has the property that, if the sets An ; ..., An ;
... belong to it, then so do the sets A1 �. . .�An �. . .
and A1 . . . An . . .  ; then the field is called a Borel field
(Papoulis 1984, p. 29).

See also FIELD
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Borel Measure
If F is the BOREL SIGMA ALGEBRA on some TOPOLOGI-

CAL SPACE, then a MEASURE m : F 0 R is said to be a
Borel measure (or BOREL PROBABILITY MEASURE). For
a Borel measure, all continuous functions are MEA-

SURABLE.

Borel Probability Measure
BOREL MEASURE

Borel Set
A Borel set is an element of a BOREL SIGMA ALGEBRA.
Roughly speaking, Borel sets are the sets that can be
constructed from open or closed sets by repeatedly
taking countable unions and intersections. Formally,
the class B of Borel sets in Euclidean Rn is the
smallest collection of sets that includes the open and
closed sets such that if E , E1 ; E2 ; ... are in B , then so
are @�

i�1 Ei ;S
�
i�1 Ei ; and Rn_E ; where F_E is a SET

DIFFERENCE (Croft et al. 19991).

The set of rational numbers is a Borel set, as is the
CANTOR SET.

See also CLOSED SET, OPEN SET, STANDARD SPACE
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Borel Sigma Algebra
A SIGMA ALGEBRA which is related to the TOPOLOGY of
a SET. The Borel s/-algebra is defined to be the SIGMA

ALGEBRA generated by the OPEN SETS (or equiva-
lently, by the CLOSED SETS).

See also BOREL ALGEBRA, BOREL MEASURE, BOREL

SUBALGEBRA

Borel Space
A SET equipped with a SIGMA ALGEBRA of SUBSETS.

Borel Subalgebra

See also BOREL ALGEBRA, BOREL SIGMA ALGEBRA

Borel’s Expansion
Let f(t)�a�

n�0 Antn be any function for which the
integral

I(x)�g
�

0

e�txtpf(t) dt

converges. Then the expansion

I(x)
G(p � 1)

xp�1
A0�(p�1)

A1

x
�(p�1)(p�2)

A2

x2
�. . .

" #
;

where G(z) is the GAMMA FUNCTION, is usually an
ASYMPTOTIC SERIES for I(x):/

Borel-Cantelli Lemma
Let fAng

�

n�0 be a SEQUENCE of events occurring with a
certain probability distribution, and let A be the
event consisting of the occurrence of a finite number
of events An; n�1, .... Then if

X�
n�1

P(An)B�;

then

P(A)�1:
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Borel-Weyl Theorem
Let G�SL(n;C): If l �Zn is the highest weight of an
irreducible holomorphic representation V of G , (i.e., l
is a dominant integral weight), then the G -map f :
V� 0 G(l) defined by a � Fa; where Fa(g)� a; gvh i; is
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Born-Infeld Equation
The PARTIAL DIFFERENTIAL EQUATION

(1�u2
t )uxx�2uxutuxt�(1�u2

x)utt�0:
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Boron Tree
BINARY TREE



Borromean Rings

Three mutually interlocked rings, named after the
Italian Renaissance family who used them on their
coat of arms. The configuration of rings is also known
as a "Ballantine," and a brand of beer (illustrated
above) has been brewed under this name. In the
Borromean rings, no two rings are linked, so if any
one of the rings is cut, all three rings fall apart. Any
number of rings can be linked in an analogous
manner (Steinhaus 1983, Wells 1991).

The Borromean rings have LINK symbol 06 �/3 �/2, BRAID

WORD s�1
1 s2 s

�1
1 s2 s

�1
1 s2 ; and are also the simplest

BRUNNIAN LINK.

See also BRUNNIAN LINK, CIRCLE-CIRCLE INTERSEC-

TION, TRIQUETRA, VENN DIAGRAM
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Borrow

The procedure used in SUBTRACTION to "borrow" 10
from the next higher DIGIT column in order to obtain a
POSITIVE DIFFERENCE in the column in question.

See also CARRY

Borsuk’s Conjecture
Borsuk conjectured that it is possible to cut an n -D
shape of GENERALIZED DIAMETER 1 into n �1 pieces
each with diameter smaller than the original. It is
true for n �2, 3 and when the boundary is "smooth."
However, the minimum number of pieces required
has been shown to increase as 
1 :1

ffiffi
n

p
: Since 1 :1

ffiffi
n

p
>

n �1 at n �9162, the conjecture becomes false at
high dimensions. In fact, the conjecture is false for
every n �561.

See also GENERALIZED DIAMETER, KELLER’S CONJEC-

TURE, LEBESGUE MINIMAL PROBLEM

References
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Borsuk-Ulam Theorem
Every continuous map /f : Sn 0 Rn

/ must identify a
pair of ANTIPODAL POINTS.
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Borwein Conjectures
Use the definition of the Q -SERIES

(a; q)n �
Yn�1

j�0

(1 �aqj) (1)

and define

N
M

� �
�

(qN �M �1; q)M

(q; q)m

: (2)

Then P. Borwein has conjectured that (1) the POLY-

NOMIALS An(q) ; Bn(q) ; and Cn(q) defined by

(q; q3)n(q2; q3)n �An(q3) �qBn(q3) �q2Cn(q3) (3)

have NONNEGATIVE COEFFICIENTS, (2) the POLYNO-

MIALS A�
n(q); B �n(q) ; and C�

n(q) defined by

(q; q3)2
n(q2; q3)2

n �A�
n
(q3) �qB�

n(q3) �q2C�
n(q3) (4)

have NONNEGATIVE COEFFICIENTS, (3) the POLYNO-

MIALS A�
n(q) ; B�

n(q) ; C �n(q); D�
n(q) ; and E �n(q) defined by

(q; q5)n(q2; q5)n(q3; q5)n(q4; q5)n �

A�
n(q5) �qB�

n(q5) �q2C �n(q5) �q3D �n(q5) �q4E �n(q5) (5)

have NONNEGATIVE COEFFICIENTS, (4) the POLYNO-

MIALS A$
n(m; n; t; q); B $n(m; n; t; q) ; and

C $n(m; n; t; q) defined by

(q; q3)m(q2; q3)m(zq; q3)n(zq2; q3)n

�
X2m

t�0

zt[A$(m; n; t; q3) �qB$(m; n; t; q3)

�q2C$(m; n; t; q3)] (6)

have NONNEGATIVE COEFFICIENTS, (5) for k ODD and
1 5a 5k =2; consider the expansion

(qa; qk)m(qk �a; qk)n �
X(k�1)=2

n�(1�k) =2

(�1)nqk( n2�n)=2�a nFn(q
k) (7)

with

Fn(q) �
X�

j���

(�1)jqj(k2j�2k n�k�2a)=2 m �n
m � n �kj

� �
; (8)

then if a is RELATIVELY PRIME to k and m �n , the
COEFFICIENTS of Fn(q) are NONNEGATIVE, and (6) given
a � b B2K and �K � b 5n �m 5K � a; consider

G( a; b; K; q)

�
X

q

(�1)jqj[K(a �b)j�K(a � b)] =2 m �n
m �Kj

� �
; (9)

the GENERATING FUNCTION for partitions inside an
m �n rectangle with hook difference conditions spe-
cified by a; b; and K . Let a and b be POSITIVE

RATIONAL NUMBERS and k �1 an INTEGER such that

ak and bk are integers. then if 1 5 a � b 52k �1 (with
strict inequalities for k � 2) and �k � b 5n �m 5
k � a; then g( a; b; k; q) has NONNEGATIVE COEFFI-

CIENTS.

See also Q -SERIES
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Bott Periodicity Theorem

Define

O �lim
0

O(n) ; F �R (1)

U �lim
0

U(n); F �C (2)

Sp �lim
0

Sp(n) ; F �H: (3)

Then

V2BU $BU �Z (4)

V4BO $BSp �Z (5)

V4BSp $BO �Z: (6)
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Bottle Imp Paradox
In Robert Louis Stevenson’s "bottle imp paradox," you
are offered the opportunity to buy, for whatever price
you wish, a bottle containing a genie who will fulfill
your every desire. The only catch is that the bottle
must thereafter be resold for a price smaller than
what you paid for it, or you will be condemned to live
out the rest of your days in excruciating torment.
Obviously, no one would buy the bottle for 1c since he
would have to give the bottle away, but no one would
accept the bottle knowing he would be unable to get
rid of it. Similarly, no one would buy it for 2c, and so
on. However, for some reasonably large amount, it
will always be possible to find a next buyer, so the
bottle will be bought (Paulos 1995).

See also UNEXPECTED HANGING PARADOX



References
Erickson, G. W. and Fossa, J. A. Dictionary of Paradox.

Lanham, MD: University Press of America, pp. 25 �/7,
1998.

Paulos, J. A. A Mathematician Reads the Newspaper. New
York: BasicBooks, p. 97, 1995.

Bouligand Dimension
MINKOWSKI-BOULIGAND DIMENSION

Bound
GREATEST LOWER BOUND, INFIMUM, LEAST UPPER

BOUND, SUPREMUM

Bound Variable
An occurrence of a variable in a LOGIC which is not
FREE. Bound variables are also called DUMMY VARI-

ABLES.

See also DUMMY VARIABLE, SENTENCE

References
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ed. Dordrecht, Netherlands: Reidel, pp. 30 �/4, 1974.

Boundary
The set of points, known as BOUNDARY POINTS, which
are members of the CLOSURE of a given set S and the
CLOSURE of its complement set. The boundary is
sometimes called the FRONTIER.

See also BOUNDARY CONDITIONS, BOUNDARY MAP,
BOUNDARY POINT, BOUNDARY SET, NATURAL BOUND-

ARY, SURGERY

Boundary Conditions
There are several types of boundary conditions
commonly encountered in the solution of PARTIAL

DIFFERENTIAL EQUATIONS.

1. DIRICHLET BOUNDARY CONDITIONS specify the
value of the function on a surface T �f (r; t) :/
2. NEUMANN BOUNDARY CONDITIONS specify the
normal derivative of the function on a surface,

@T

@n 
�n̂ � 9T �f (r ; y) :

3. CAUCHY BOUNDARY CONDITIONS specify a
weighted average of first and second kinds.
4. ROBIN BOUNDARY CONDITIONS. For an elliptic
partial differential equation in a region V; Robin
boundary conditions specify the sum of and the
normal derivative of u � f at all points of the
boundary of V; with a and f being prescribed.

See also BOUNDARY VALUE PROBLEM, DIRICHLET

BOUNDARY CONDITIONS, GOURSAT PROBLEM, INITIAL

VALUE PROBLEM, NEUMANN BOUNDARY CONDITIONS,
PARTIAL DIFFERENTIAL EQUATION, ROBIN BOUNDARY

CONDITIONS
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Boundary Map
The MAP Hn(X ; A) 0 Hn�1(A) appearing in the LONG

EXACT SEQUENCE OF A PAIR AXIOM.

See also LONG EXACT SEQUENCE OF A PAIR AXIOM

Boundary Point
A point which is a member of the CLOSURE of a given
set S and the CLOSURE of its complement set. If A is a
subset of Rn ; then a point x �Rn is a boundary point of
A if every NEIGHBORHOOD of x contains at least one
point in A and at least one point not in A .

See also BOUNDARY

Boundary Set
A (symmetrical) boundary set of RADIUS r and center
x0 is the set of all points x such that

x �x0j j�r :

Let x0 be the ORIGIN. In R1 ; the boundary set is then
the pair of points x �r and x ��r : In R2 ; the
boundary set is a CIRCLE. In R3 ; the boundary set is
a SPHERE.

See also CIRCLE, COMPACT SET, DISK, OPEN SET,
SPHERE
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Boundary Value Problem
A boundary value problem is a problem, typically an
ORDINARY DIFFERENTIAL EQUATION or a PARTIAL

DIFFERENTIAL EQUATION, which has values assigned
on the physical boundary of the DOMAIN in which the
problem is specified. For example,

@2u

@t2
�92u�f in V

u(0; t)�u1 on @V
@u

@t
(0; t)�u2 on @V;

8>>>>><
>>>>>:

where @V denotes the boundary of V; is a boundary
problem.



See also BOUNDARY CONDITIONS, INITIAL VALUE

PROBLEM
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Bounded
A mathematical object (such as a set or function) is
said to bounded if it possesses a BOUND, i.e., a value
which all members of the set, functions, etc., are less
than.

See also BOUNDED SET

Bounded Set
A SET in a METRIC SPACE (X, d ) is bounded if it has a
FINITE GENERALIZED DIAMETER, i.e., there is an R B�

such that d(x; y) 5R for all x; y � X : A SET in Rn is
bounded if it is contained inside some BALL x2

1 �. . .�
x2

n 5R2 of FINITE RADIUS R (Adams 1994).

See also BOUND, FINITE
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Bounded Variation
A FUNCTION f (x) is said to have bounded variation if,
over the CLOSED INTERVAL x � [a ; b]; there exists an
M such that

f (xi) �f (a)j j� f (x2) �f (x1)j j�. . .� f (b) �f (xn �1)j j
5M (1)

for all a Bx1 Bx2 B. . .Bxn�1 Bb:/

The space of functions of bounded variation is
denoted "BV," and has the SEMINORM

F(f ) �supg f
df

dx
; (2)

where f ranges over all COMPACTLY SUPPORTED

functions bounded by -1 and 1. The seminorm is
equal to the SUPREMUM over all sums above, and is
also equal to f df =dxj j dx (when this expression

makes sense).

On the interval [0; 1]; the function x2 sin(1=x) (pur-
ple) is of bounded variation, but x sin 1=x (red) is not.
More generally, a function f is locally of bounded
variation in a domain U if f is LOCALLY INTEGRABLE,
f � L1

loc ; and for all open subsets W , with COMPACT

CLOSURE in U , and all SMOOTH VECTOR FIELDS g
COMPACTLY SUPPORTED in W ,

gW

f div gdx 5c(W) sup½g½; (3)

div denotes DIVERGENCE and c is a constant which
only depends on the choice of W and f .

Such functions form the space BVloc(U) : They may not
be DIFFERENTIABLE, but by the RIESZ REPRESENTA-

TION THEOREM, the derivative of a BVloc/-function f is a
REGULAR BOREL MEASURE Df . Functions of bounded
variation also satisfy a compactness theorem.

Given a sequence fn of functions in BVloc(U); such that

sup
n

fnk kL1(W)�gW

½Dfn½ dx

� �
B�;

that is the TOTAL VARIATION of the functions is
bounded, in any COMPACTLY SUPPORTED open subset
W , there is a SUBSEQUENCE fnk

which converges to a
function f �BVloc in the topology of L1

loc: Moreover, the
limit satisfies

gW

½Df ½ dx5lim inf gW

½Dfnk
½ dx: (4)

They also satisfy a version of POINCARÉ’S LEMMA.

See also DIFFERENTIABLE, WEAKLY DIFFERENTIABLE
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Bour’s Minimal Surface

Gray (1997) defines Bour’s minimal curve over com-
plex z by

x?�
zm�1

m � 1 
�

zm�1

m � 1 
(1)

y?�i
zm�1

m � 1 
�

zm�1

m � 1

 !
(2)

z ?�
2zm

m
; (3)

and then derives a family of MINIMAL SURFACES.

The order three Bour surface resembles a CROSS-CAP

and is given using ENNEPER-WEIERSTRASS PARAME-

TERIZATION by

(4)

g �
ffiffiffi
z

p
(5)

or explicitly by the PARAMETRIC EQUATIONS

x �r cos u �1
2 r

2 cos(2u) (6)

y ��r sin u �1
2 r

2 sin(2u) ; (7)

z �4
3 r

3 =2 cos(3
2u) (8)

(Maeder 1997). The coefficients of the FIRST FUNDA-

MENTAL FORM are given by

E �1 �r2 (9)

F � 0 (10)

G � r2(r2 �1) (11)

and the coefficients of the SECOND FUNDAMENTAL

FORM by

e ��r �1 =2 cos(3
2 f) (12)

f �
ffiffiffi
r

p
sin(3

2 f) (13)

g �r3 =2 cos(3
2 f): (14)

The AREA ELEMENT is

dA �r(r �1)2 dr ffld f: (15)

The GAUSSIAN and MEAN CURVATURES are given by

K ��
1

r(r � 1)4 (16)

H �0 : (17)

See also CROSS-CAP, ENNEPER-WEIERSTRASS PARAME-

TERIZATION, MINIMAL SURFACE
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Bourget Function
The function defined by the CONTOUR INTEGRAL

Jn; k(z)

�
1

2 pi g
(0�)

t�n�1 t �
1

t

 !k

exp 1
2z t�

1

t

 !" #
dt;

where f
(0�)

denotes the CONTOUR encircling the point
z � 0 once in a counterclockwise direction. It is equal
to

Jn; k(z)�
1

p g
p

0

(2 cos u)k cos(nu�z sin u) du

(Watson 1966, p. 326).

See also BESSEL FUNCTION OF THE FIRST KIND
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Bourget’s Hypothesis
When n is an INTEGER ]0; then Jn(z) and Jn�m(z)
have no common zeros other than at z�0 for m an



INTEGER ]1 ; where Jn(z) is a BESSEL FUNCTION OF

THE FIRST KIND. The theorem has been proved true for
m �1 2, 3, and 4.
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Bourque-Ligh Conjecture
Bourque and Ligh (1992) conjectured that the LEAST

COMMON MULTIPLE MATRIX on a GCD-CLOSED SET S is
nonsingular. This conjecture was shown to be false by
Hong (1999).

See also GCD-CLOSED SET, LEAST COMMON MULTIPLE

MATRIX
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Boussinesq Equation
The linear Boussinesq equation is the PARTIAL DIF-

FERENTIAL EQUATION

utt � a2uxx � b2uxxtt (1)

(Whitham 1974, p. 9; Zwillinger 1997, p. 129). The
nonlinear Boussinesq equation is

utt �uxx �uxxxx �3(u2)xx �0 (2)

(Calogero and Degasperis 1982; Zwillinger 1997,
p. 130). The modified Boussinesq equation is

1
3 utt �utuxx �

3
2 u

2
xuxx �uxxxx �0 (3)

(Clarkson 1986; Zwillinger 1997, p. 132).

References
Calogero, F. and Degasperis, A. Spectral Transform and

Solitons: Tools to Solve and Investigate Nonlinear Evolu-
tion Equations. New York: North-Holland, 1982.

Clarkson, P. A. "The Painlevé Property, a Modified Boussi-
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Boustrophedon Transform
The boustrophedon ("ox-plowing") transform b of a
sequence a is given by

bn �
Xn

k �0

n
k

� �
akEn�k (1)

an �
Xn

k�0

(�1)n�k n
k

� �
bkEn�k (2)

for n ]0; where En is a SECANT NUMBER or TANGENT

NUMBER defined by

X�
n�0

En

xn

n!
�sec x�tan x: (3)

The exponential generating functions of a and b are
related by

B(x)�(sec x�tan x)A(x); (4)

where the exponential generating function is defined
by

A(x)�
X�
n�0

An

xn

n!
: (5)

See also ALTERNATING PERMUTATION, ENTRINGER

NUMBER, SECANT NUMBER, SEIDEL-ENTRINGER-AR-

NOLD TRIANGLE, TANGENT NUMBER
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Bovinum Problema
ARCHIMEDES’ CATTLE PROBLEM

Bow

x4�x2y�y3:
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Bowditch Curve
LISSAJOUS CURVE



Bowl of Integers

Place two solid spheres of radius 1/2 inside a hollow
sphere of radius 1 so that the two smaller circles
touch each other at the center of the large circle and
are tangent to the large circle on the extremities of
one of its diameters. This arrangement is called the
"bowl of integers" (Soddy 1937) since the BEND of each
of the infinite chain of spheres that can be packed into
it such that each successive sphere is tangent to its
neighbors is an integer. The first few bends are then
�1, 2, 5, 6, 9, 11, 14, 15, 18, 21, 23, ... (Sloane’s
A046160). The sizes and positions of the first few
rings of spheres are given in the table below.

n /kn/ /zn/ /Rn/ /fn/

1 -1 0 0 –

2 2 /
1
2/ 0 –

3 5 /
2
5/ /

2
5

ffiffiffi
3

p
/ /

1
6p/

4 6 /
1
2/ /

2
3/ 0

5 9 /
2
3/ /

2
9

ffiffiffi
7

p
/ /9 tan�1(1

2

ffiffiffi
3

p
)/

6 11 /
8
11/ /

6
11/ 0

7 14 /
11
14/ /

2
7

ffiffiffi
3

p
/ /

1
6p/

8 15 /
4
5/ /

2
15

ffiffiffiffiffiffi
13

p
/ /9 tan�1(2

ffiffiffi
3

p
)/

9 18 /
5
6/ /

4
9/ 0

10 21 /
6
7/ /

1
21

ffiffiffiffiffiffi
19

p
/ /9 tan�1(3

7

ffiffiffi
3

p
)/

11 23 /
20
23/ /

2
23

ffiffiffiffiffiffi
21

p
/ /9 tan�1(1

9

ffiffiffi
3

p
)/

12 27 /
8
9/ /

10
27/ 0,9 tan�1(1

3

ffiffiffi
3

p
)/

13 30 /
9
10/ /

2
15

ffiffiffi
7

p
/ /9 tan�1 (1

5

ffiffiffi
3

p
)/

14 33 /
10
11/ /

2
33

ffiffiffiffiffiffi
31

p
/ /9 tan�1 ( 1

11

ffiffiffi
3

p
)/

15 38 /
35
38/ /

6
19/ 0

Spheres can also be packed along the plane tangent to
the two spheres of radius 2 (Soddy 1937). The
sequence of integers for can be found using the
equation of five TANGENT SPHERES. Letting k3�k4�
2 gives

k(k1; k2)

�1
2(4�k1�k2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3[k2(8�k2)�2k1(k2�4)�3k2

1

q
):

For example, k(3; 3)�11; k(3; 11)�15; k(11; 15)�
27; k(15; 27)�35; k(27; 27)47; and so on, giving the
sequence -1, 2, 3, 11, 15, 27, 35, 47, 51, 63, 75, 83, ...
(Sloane’s A046159). The sizes and positions of the
first few rings of spheres are given in the table below.

n /kn/ /Rn/ /fn/

1 -1 0 –

2 2 0 –

3 3 /
2
3/ 0

4 11 /
1
6p/

5 15 /
4
15/ 0

6 27 /
2
27

ffiffiffi
7

p
/ /9 tan�1(3

ffiffiffi
3

p
)/

7 35 /
6
35/ 0

8 47 /
4
47

ffiffiffi
3

p
/ /

1
6p/

9 51 /
2

51

ffiffiffiffiffiffi
13

p
/ /9 tan�1(3

5

ffiffiffi
3

p
)/

10 63 /
8
63/ 0

11 75 /
2

75

ffiffiffiffiffiffi
19

p
/ /9 tan�1(5

ffiffiffi
3

p
)/

12 83 /
2

83

ffiffiffiffiffiffi
21

p
/ /9 tan�1(5

3

ffiffiffi
3

p
)/

13 99 /
10
99/ 0

14 107 /
6

107

ffiffiffi
3

p
/ /

1
6p/

15 111 /
4

111

ffiffiffi
7

p
/ /9 tan�1(1

2

ffiffiffi
3

p
)/

16 123 /
2

123

ffiffiffiffiffiffi
31

p
/ /9 tan�1(5

7

ffiffiffi
3

p
)/

17 143 /
12

143/ 0

18 147 /
2

147

ffiffiffiffiffiffi
37

p
/ /9 tan�1(7

ffiffiffi
3

p
)/

19 155 /
2

155

ffiffiffiffiffiffi
39

p
/ /9 tan�1(1

6

ffiffiffi
3

p
)/

20 171 /
2

171

ffiffiffiffiffiffi
43

p
/ /9 tan�1(7

5

ffiffiffi
3

p
)/



The analogous problem of placing two circles of bend
2 inside a circle of bend -1 and then constructing
chains of mutually tangent circles was considered by
B. L. Galebach and A. R. Wilks. The circle have
integral bends given by -1, 2, 3, 6, 11, 14, 15, 18, 23,
26, 27, 30, 35, 38, ... (Sloane’s A042944). Of these, the
only known numbers congruent to 2, 3, 6, 11 (mod 12)
missing from this sequence are 78, 159, 207, 243, 246,
342, ... (Sloane’s A042945), a sequence which is
conjectured to be finite.

See also APOLLONIAN GASKET, BEND (CURVATURE),
COXETER’S LOXODROMIC SEQUENCE OF TANGENT

CIRCLES, HEXLET, SPHERE, TANGENT SPHERES
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Bowley Index
The statistical INDEX

PB �
1
2(PL �PP) ;

where PL is LASPEYRES’ INDEX and PP is PAASCHE’S

INDEX.

See also INDEX

References
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Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, p. 66, 1962.

Bowley Skewness
Also known as QUARTILE SKEWNESS COEFFICIENT,

(Q3 � Q2) � (Q2 � Q1)

Q3 � Q1

�
Q1 � 2Q2 � Q3

Q3 � Q1

;

where the Qs denote the INTERQUARTILE RANGES.

See also INTERQUARTILE RANGE, SKEWNESS
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Bowling
Bowling is a game played by rolling a heavy ball down
a long narrow track and attempting to knock down
ten pins arranged in the form of a TRIANGLE with its
vertex oriented towards the bowler. The number 10
is, in fact, the TRIANGULAR NUMBER

T4�4(4�1)=2�10:/

Two "bowls" are allowed per "frame." If all the pins
are knocked down in the two bowls, the score for that
frame is the number of pins knocked down. If some or
none of the pins are knocked down on the first bowl,
then all the pins knocked down on the second, it is
called a "spare," and the number of points tallied is 10
plus the number of pins knocked down on the bowl of
the next frame. If all of the pins are knocked down on
the first bowl, the number of points tallied is 10 plus
the number of pins knocked down on the next two
bowls. Ten frames are bowled, unless the last frame is
a strike or spare, in which case an additional bowl is
awarded.

The maximum number of points possible, correspond-
ing to knocking down all 10 pins on every bowl, is 300.
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Box
CUBOID

Box Counting Dimension
CAPACITY DIMENSION

Box Fractal

A FRACTAL also called the anticross-stitch curve
which can be constructed using STRING REWRITING

by creating a matrix with 3 times as many entries as



the current matrix using the rules

line 1 : ‘‘ +00 0 ‘‘ + +00; ‘‘ 00 0 ‘‘ 00

line 2 : ‘‘ +00 0 ‘‘ + 00; ‘‘ 00 0 ‘‘ 00

line 3 : ‘‘ +00 0 ‘‘ + +00; ‘‘ 00 0 ‘‘ 00

Let Nn be the number of black boxes, Ln the length of
a side of a white box, and An the fractional AREA of
black boxes after the nth iteration.

Nn �5n (1)

Ln �(1
3)

n �3�n (2)

An �L2
n Nn �(5

9)
n : (3)

The CAPACITY DIMENSION is therefore

dcap �� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln(5n)

ln(3 �n)

�
ln 5

ln 3 
�1:464973521 . . . : (4)

See also CANTOR DUST, CROSS-STITCH CURVE, SIER-

PINSKI CARPET, SIERPINSKI SIEVE

References
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Box-and-Whisker Plot

A HISTOGRAM-like method of displaying data invented
by J. Tukey (1977). Draw a box with ends at the
QUARTILES Q1 and Q3 : Draw the MEDIAN as a
horizontal line in the box. Extend the "whiskers" to
the farthest points. For every point that is more than
3/2 times the INTERQUARTILE RANGE from the end of a
box, draw a dot on the corresponding top or bottom of
the whisker. If two dots have the same value, draw
them side by side.

References
Tukey, J. W. Explanatory Data Analysis. Reading, MA:

Addison-Wesley, pp. 39 �/1, 1977.

Boxcar Function

The function

Be(a; b) �c[H(x �a) �H(x �b)]

which is equal to c for a 5x 5b and 0 otherwise. Here
H(x) is the HEAVISIDE STEP FUNCTION. The special
case B1(�1=2 ; 1 =2) gives the unit RECTANGLE FUNC-

TION.

See also HEAVISIDE STEP FUNCTION, RECTANGLE

FUNCTION

References
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Boxcars

A roll of two 6s (the highest roll possible) on a pair of
6-sided DICE. The probability of rolling boxcars in a
single roll of two dice is 1/36, or 2.777...%. In order to
have a 50% chance of obtaining at least one boxcars in
n rolls of two dice, it must be true that

1
35

36

 !n

�
1

2 
; (1)

so solving for n gives

n �
ln 2

ln 36 � ln 35 
�24 :605 . . . : (2)

In fact, rolling two dice 25 times gives a probability of

1�
35

36

 !25

:0:505532 (3)

that at least once boxcars will occur.

See also DICE, DE MÉ RÉ ’S PROBLEM, SNAKE EYES

Box-Counting Dimension
CAPACITY DIMENSION



Box-Muller Transformation
A transformation which transforms from a 2-D con-
tinuous UNIFORM DISTRIBUTION to a 2-D GAUSSIAN

BIVARIATE DISTRIBUTION (or COMPLEX GAUSSIAN DIS-

TRIBUTION). If x1 and x2 are uniformly and indepen-
dently distributed between 0 and 1, then z1 and z2 as
defined below have a GAUSSIAN DISTRIBUTION with
MEAN m �0 and VARIANCE s2 �1:

z1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln  x1

p
cos(2 px2) (1)

z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln x1

p
sin(2px2) : (2)

This can be verified by solving for x1 and x2 ;

x1 �e�(z2
1�z2

2) =2 (3)

x2 �
1

2p
tan �1 z2

z1

 !
: (4)

Taking the JACOBIAN yields

@(x1 ; x2)

@(z1 ; z2) 
�

@x1

@z1

@x1

@z2

@x2

@z1

@x2

@z2

���������

���������
��

1ffiffiffiffiffiffi
2 p

p e �z2
1 
=2

" #
1ffiffiffiffiffiffi
2p

p e�z2
2 
=2

" #
: (5)

See also GAUSSIAN BIVARIATE DISTRIBUTION, GAUS-

SIAN DISTRIBUTION, NORMAL DEVIATES
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Box-Packing Theorem
The number of "prime" boxes is always finite, where a
set of boxes is prime if it cannot be built up from one
or more given configurations of boxes.

See also CONWAY PUZZLE, CUBOID, DE BRUIJN’S

THEOREM, KLARNER’S THEOREM, SLOTHOUBER-

GRAATSMA PUZZLE
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Boy Surface
A NONORIENTABLE SURFACE which is one of the three
possible SURFACES obtained by sewing a MÖBIUS

STRIP to the edge of a DISK. The other two are the
CROSS-CAP and ROMAN SURFACE. The Boy surface is a
model of the PROJECTIVE PLANE without singularities
and is a SEXTIC SURFACE. The Boy surface can be
described using the general method for NONORIENTA-

BLE SURFACES, but this was not known until the
analytic equations were found by Apéry (1986). Based
on the fact that it had been proven impossible to
describe the surface using quadratic polynomials,
Hopf had conjectured that quartic polynomials were
also insufficient (Pinkall 1986). Apéry’s IMMERSION

proved this conjecture wrong, giving the equations
explicitly in terms of the standard form for a
NONORIENTABLE SURFACE,

f1(x; y; z)�1
2[(2x2�y2�z2)(x2�y2�z2)�2yz(y2�z2)

�zx(x1�z2)�xy(y2�x2)] (1)

f2(x; y; z)�1
2

ffiffiffi
3

p
[(y2�z2)(x2�y2�z2)

�zx(z2�x2)�xy(y2�x2)] (2)

f3(x; y; z)�1
8(x�y�z)

� [(x�y�z)3�4(y�x)(z�y)(x�z)]: (3)

Plugging in

x�cos u sin v (4)

y�sin u sin v (5)

z�cos v (6)

and letting u � [0; p] and v � [0; p] then gives the Boy
surface, three views of which are shown above.

The R3 parameterization can also be written as

x�

ffiffiffi
2

p
cos2 v cos(2u) � cos u sin(2v)

2 �
ffiffiffi
2

p
sin(3u) sin(2v)

(7)

y�

ffiffiffi
2

p
cos2 v cos(2u) � cos u sin(2v)

2 �
ffiffiffi
2

p
sin(3u) sin(2v)

(8)

z�
2 cos2 v

2 �
ffiffiffi
2

p
sin(3u) sin(2v)

(9)

(Nordstrand) for u � [�p=2; p=2] and v � [0; p]:/

Three views of the surface obtained using this
parameterization are shown above.

In fact, a HOMOTOPY (smooth deformation) between
the ROMAN SURFACE and Boy surface is given by the
equations



x(u ; v) �

ffiffiffi
2

p
cos(2u) cos2 v � cos u sin(2v)

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(10)

y(u; v) �

ffiffiffi
2

p
sin(2u) cos2 v � sin u sin(2v)

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(11)

z(u; v) �
3 cos2v

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(12)

as a varies from 0 to 1, where a �0 corresponds to the
ROMAN SURFACE and a �1 to the Boy surface (Wang),
shown below.

In R4 ; the parametric representation is

x0 �3[(u2 �v2 �w2)(u2 �v2) �
ffiffiffi
2

p
vw(3u2 �v2)] (13)

x1 �
ffiffiffi
2

p
(u2 �v2)(u2 �v2 �

ffiffiffi
2

p
uw) (14)

x2 �
ffiffiffi
2

p
(u2 �v2)(2uv �

ffiffiffi
2

p
vw) (15)

x3 �3(u2 �v2)2 ; (16)

and the algebraic equation is

64(x0 �x3)3x3
3 �48(x0 �x3)2x2

3(3x2
1 �3x2

2 �2x2
3)

�12(x0 �x3)x3[27(x2
1 �x2

2)2 �24x2
3(x2

1 �x2
2)

�36
ffiffiffi
2

p
x2x3(x2

2 �3x2
1) �x4

3] �(9x2
1 �9x2

2 �2x2
3)

�[�81(x2
1 �x2

2)2 �72x2
3(x2

1 �x2
2)

�108
ffiffiffi
2

p
x1x3(x2

1 �3x2
2) �4x4

3] �0 (17)

(Apéry 1986). Letting

x0 �1 (18)

x1 �x (19)

x2 �y (20)

x3 �z (21)

gives another version of the surface in R3 :
/

See also CROSS-CAP, IMMERSION, MÖ BIUS STRIP,
NONORIENTABLE SURFACE, REAL PROJECTIVE PLANE,
ROMAN SURFACE, SEXTIC SURFACE
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Boy, W. "Ü ber die Curvatura integra und die Topologie
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Bp-Theorem
If Op ?(G) �1 and if x is a p -element of G , then

Lp ?(CG(x) 5E(CG(x));

where Lp ? is the P -LAYER.

Bra
A (COVARIANT) 1-VECTOR denoted c ½:h The bra is DUAL

to the CONTRAVARIANT KET, denoted ½ ci: Taken
together, the bra and KET form an ANGLE BRACKET

(bra�ket �bracket). The bra is commonly encoun-
tered in quantum mechanics.

See also ANGLE BRACKET, BRACKET PRODUCT, COVAR-

IANT VECTOR, DIFFERENTIAL K -FORM, KET, ONE-FORM
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Brace
One of the symbols f and g used in many different
contexts in mathematics. Braces are used

1. To denote grouping of mathematical terms,
usually as the outermost delimiter in a complex
expression such as fa�b[c�d(e�f )]g;/
2. To delineate a SET, as in fa1; . . . ; ang;/
3. Using a left bracket only, to denote different
cases for an expression, such as



p(n) �
1 for n even
0 for n odd;

�
4. Using a single horizontal underbrace, to indicate
the number of items in a list with not all elements
shown explicitly, as in 1 ; 1 ; . . . ; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

n

:/

5. As an alternate notation to the FRACTIONAL PART

function, fxg�frac x:/

See also ANGLE BRACKET, PARENTHESIS, SQUARE

BRACKET
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Braced Square

The braced square problem asks: given a hinged
SQUARE composed of four equal rods (indicated by
the thick lines above), how many more hinged rods
must be added in the same plane (with no two rods
crossing) so that the original square is rigid in the
plane. The best solution known, illustrated in the left
figure above, uses a total of 27 rods, where A , B , and
C are COLLINEAR. If rods are allowed to cross, the best
known solution, discovered by E. Friedman in
Jan. 2000, requires 21 rods, as illustrated in the right
figure above.
Friedman has also considered the minimum number
of rods needed to construct RIGID regular n -gons (with
overlapping permitted). The best known solutions for
n�3, 4, ... are 3, 21, 69, 11, 45, 99, 51, ....

See also HINGED TESSELLATION, RIGID GRAPH,
SQUARE
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Brachistochrone Problem
Find the shape of the CURVE down which a bead
sliding from rest and ACCELERATED by gravity will
slip (without friction ) from one point to another in
the least time. The term derives from the Greek

braxisto& (brachistos ) "the shortest" and xrono&
(chronos ) "time, delay."

The brachistochrone problem was one of the earliest
problems posed in the CALCULUS OF VARIATIONS. The
solution, a segment of a CYCLOID, was found by
Leibniz, L’Hospital, Newton, and the two Bernoullis.
Johann Bernoulli solved the problem using the
analogous one of considering the path of light re-
fracted by transparent layers of varying density
(Mach 1893, Gardner 1984, Courant and Robbins
1996). Note that bead may actually travel uphill
along the cycloid for a distance, but the path is
nonetheless faster than a straight line or any other
line.

The time to travel from a point P1 to another point P2

is given by the INTEGRAL

t12�g
2

1

ds

v
; (1)

The VELOCITY at any point is given by a simple
application of energy conservation equating kinetic
energy to gravitational potential energy,

1
2mv2�mgy; (2)

so

v�
ffiffiffiffiffiffiffiffi
2gy

p
: (3)

Plugging this into (1) then gives

t12�g
2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p
ffiffiffiffiffiffiffiffi
2gy

p dx�g
2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

2gy

s
dx: (4)

The function to be varied is thus

f �(1�y?2)1=2(2gy)�1=2; (5)

To proceed, one would normally have to apply the
full-blown EULER-LAGRANGE DIFFERENTIAL EQUATION

@f

@y
�

d

dx

@f

@y?

 !
�0: (6)

However, the function f (y; y?; x) is particularly nice
since x does not appear explicitly. Therefore, @f=@x�
0; and we can immediately use the BELTRAMI IDEN-

TITY

f �y?
@f

@y?
�C: (7)

Computing

@f

@y?
�y?(1�y?2)�1=2(2 gy)�1=2; (8)

subtracting y?(@f=@y?) from f , and simplifying then
gives



1ffiffiffiffiffiffiffiffiffiffi
2 gy

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p �C : (9)

Squaring both sides and rearranging slightly results
in

1 �
dy

dx

 !2
2
4

3
5y �

1

2g C2 
�k2 ; (10)

where the square of the old constant C has been
expressed in terms of a new (POSITIVE) constant k2 :
This equation is solved by the PARAMETRIC EQUATIONS

x �1
2k

2( u �sin u) (11)

y �1
2k

2(1 �cos u) ; (12)

which are–lo and behold–the equations of a CYCLOID.

If kinetic friction is included, the problem can also be
solved analytically, although the solution is signifi-
cantly messier. In that case, terms corresponding to
the normal component of weight and the normal
component of the ACCELERATION (present because of
path CURVATURE) must be included. Including both
terms requires a constrained variational technique
(Ashby et al. 1975), but including the normal compo-
nent of weight only gives an elementary solution. The
TANGENT and NORMAL VECTORS are

T �
dx

ds
x̂ �

dy

ds
ŷ (13)

N ��
dy

ds
x̂ �

dx

ds
ŷ; (14)

gravity and friction are then

Fgravity �mg ̂y (15)

Ffriction ��m(FgravityṄ)T ��mmg
dx

ds
T ; (16)

and the components along the curve are

FgravityṪ �mg
dy

ds 
(17)

FfrictionṪ ��mmg
dx

ds
; (18)

so Newton’s Second Law gives

m
dv

dt 
�mg

dy

ds 
� mmg

dx

ds 
: (19)

But

dv

dt 
�v

dv

ds 
�

1

2

d

ds
(v2) (20)

1
2v

2 �g(y � mx) (21)

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g(y � mx) ;

p
(22)

so

t �g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (y?)2

2g(y � mx)

s
dx : (23)

Using the EULER-LAGRANGE DIFFERENTIAL EQUATION

gives

[1 �y?2](1 � my?) �2(y � mx)yƒ�0: (24)

This can be reduced to

1 � (y?)2

(1 � my?)2 �
C

y � mx 
: (25)

Now letting

y?�cot(1
2 u) ; (26)

the solution is

x �1
2k

2[(u �sin u) � m(1 �cos u)] (27)

y �1
2k

2[(1 �cos u) � m(u �sin u)]: (28)

See also CALCULUS OF VARIATIONS, CYCLOID, TAUTO-

CHRONE PROBLEM
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Bracket

Mathematicians often use the term "bracket" to mean
"COMMUTATOR," which is denoted using SQUARE

BRACKETS.

See also ANGLE BRACKET, BRA, BRACE, BRACKET

POLYNOMIAL, BRACKET PRODUCT, IVERSON BRACKET,



KET, LAGRANGE BRACKET, POISSON BRACKET, SQUARE

BRACKET

Bracket Polynomial
A one-variable KNOT POLYNOMIAL related to the
JONES POLYNOMIAL. The bracket polynomial, how-
ever, is not a topological invariant, since it is changed
by type I REIDEMEISTER MOVES. However, the SPAN of
the bracket polynomial is a knot invariant. The
bracket polynomial is occasionally given the grand-
iose name REGULAR ISOTOPY INVARIANT. It is defined
by

Lh i(A; B; d) �
X
s

L½ sh id½½ s½½; (1)

where A and B are the "splitting variables," s runs
through all "states" of L obtained by SPLITTING the
LINK, L½ sh i is the product of "splitting labels" corre-
sponding to s; and

½½ s½½�NL �1; (2)

where NL is the number of loops in s: Letting

B �A�1 (3)

d � �A2 �A�2 (4)

gives a KNOT POLYNOMIAL which is invariant under
REGULAR ISOTOPY, and normalizing gives the KAUFF-

MAN POLYNOMIAL X which is invariant under AMBI-

ENT ISOTOPY. The bracket POLYNOMIAL of the UNKNOT

is 1. The bracket POLYNOMIAL of the MIRROR IMAGE K �
is the same as for K but with A replaced by A�1 : In
terms of the one-variable KAUFFMAN POLYNOMIAL X ,
the two-variable KAUFFMAN POLYNOMIAL F and the
JONES POLYNOMIAL V ,

X(A) � (�A3) �w(L) Lh i; (5)

Lh i(A) �F(�A3 ; A �A�1) (6)

Lh i(A) �V(A�4) ; (7)

where w(L) is the WRITHE of L .

See also JONES POLYNOMIAL, SQUARE BRACKET

POLYNOMIAL
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Bracket Product
L2 -INNER PRODUCT

Bracketing
Take x itself to be a bracketing, then recursively
define a bracketing as a sequence B �(B1 ; . . . ; Bk)
where k ]2 and each Bi is a bracketing. A bracketing
can be REPRESENTED AS a parenthesized string of xs,
with parentheses removed from any single letter x for
clarity of notation (Stanley 1997). Bracketings built
up of binary operations only are called BINARY

BRACKETINGS. For example, four letters have 11
possible bracketings:

xxxx (xx)xx x(xx)x xx(xx)
(xxx)x x(xxx) ((xx)x)x (x(xx))x

(xx)(xx) x((xx)x) x(x(xx));

the last five of which are binary.

The number of bracketings on n letters is given by
the GENERATING FUNCTION

1
4(1 �x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �6x �x2

p
) �x �x2 �3x3 �11x4 �45x5

(Schröder 1870, Stanley 1997) and the RECURRENCE

RELATION

sn �
3(2n � 3)sn�1 � (n � 3)sn�2

n

(Sloane), giving the sequence for sn as 1, 1, 3, 11, 45,
197, 903, ... (Sloane’s A001003). The numbers are also
given by

sn �
X

i1 �...�ik �n

s(i1) � � � s(ik)

for n ]2 (Stanley 1997).

The first PLUTARCH NUMBER 103,049 is equal to s10

(Stanley 1997), suggesting that Plutarch’s problem of
ten compound propositions is equivalent to the
number of bracketings. In addition, Plutarch’s second
number 310,954 is given by (s10�s11)=2�310; 954
(Habsieger et al. 1998).

See also BINARY BRACKETING, PLUTARCH NUMBERS
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Bradley’s Theorem
Let

S( a; b; m; z)

�m
X�
j�0

G(m � j(z � 1)) G( b � 1 � jz)

G(m � jz � 1)G(a � b � 1 � j(z � 1))

( a)j

j!
;

where ( a)j is a POCHHAMMER SYMBOL, and let a be a
NEGATIVE INTEGER. Then

S( a; b; m; z) �
G(b � 1 � m)

G(a � b � 1 � m) 
;

where G(z) is the GAMMA FUNCTION.
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Brahmagupta Identity
Let

b �det B �x2 �ty2 ;

where B is the BRAHMAGUPTA MATRIX, then

det[B(x1 ; y1)B(x2 ; y2)] �det[B(x1 ; y1)] det[B(x2 ; y2)]

� b1 b2 :

References
Suryanarayan, E. R. "The Brahmagupta Polynomials." Fib.

Quart. 34, 30�/39, 1996.

Brahmagupta Matrix

B(x; y) �
x y

9ty 9x

� �
:

It satisfies

B(x1 ; y1)B(x2 ; y2) �B(x1x2 9ty1y2 ; x1y2 9y1x2) :

Powers of the matrix are defined by

Bn �
x y
ty x

� �n

�
xn yn

tyn xn

� �
�Bn:

The xn and yn are called BRAHMAGUPTA POLYNOMIALS.
The Brahmagupta matrices can be extended to
NEGATIVE INTEGERS

B�n�
x y
ty x

� ��n

�
x�n y�n

ty�n x�n

� �
�B�n:

See also BRAHMAGUPTA IDENTITY
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Brahmagupta Polynomial
One of the POLYNOMIALS obtained by taking POWERS

of the BRAHMAGUPTA MATRIX. They satisfy the RE-

CURRENCE RELATION

xn�1�xxn�tyyn (1)

yn�1�xyn�yxn: (2)

A list of many others is given by Suryanarayan
(1996). Explicitly,

xn�xn�t
n
2

� �
xn�2y2�t2 n

4

� �
xn�4y4�. . . (3)

yn�nxn�1y�t
n
3

� �
xn�3y3�t2 n

5

� �
xn�5y5�. . .

(4)

The Brahmagupta POLYNOMIALS satisfy

@xn

@x
�

@yn

@y
�nxn�1 (5)

@xn

@y
�t

@yn

@y
�ntyn�1: (6)

The first few POLYNOMIALS are

x0�0

x1�x

x2�x2�ty2

x3�x3�3txy2

x4�x4�6tx2y2�t2y4

and

y0�0

y1�y

y2�2xy

y3�3x2y�ty3

y4�4x3y�4txy3:

Taking x�y�1 and t�2 gives yn equal to the PELL

NUMBERS and xn equal to half the Pell-Lucas num-
bers. The Brahmagupta POLYNOMIALS are related to
the MORGAN-VOYCE POLYNOMIALS, but the relation-
ship given by Suryanarayan (1996) is incorrect.
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Brahmagupta’s Formula
For a QUADRILATERAL with sides of length a , b , c , and
d , the AREA K is given by

K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s �a)(s �b)(s �c)(s �d) �abcd cos2[1

2(A �B)];
q

(1)

where

s �1
2(a �b �c �d) (2)

is the SEMIPERIMETER, A is the ANGLE between a and
d , and B is the ANGLE between b and c . For a CYCLIC

QUADRILATERAL (i.e., a QUADRILATERAL inscribed in a
CIRCLE), A �B � p; so

K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s �a)(s �b)(s �c)(s �d)

p
(3)

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bc � ad)(ac � bd)(ab � cd)

p

4R 
; (4)

where R is the RADIUS of the CIRCUMCIRCLE. If the
QUADRILATERAL is INSCRIBED in one CIRCLE and
CIRCUMSCRIBED on another, then the AREA FORMULA

simplifies to

K �
ffiffiffiffiffiffiffiffiffiffiffi
abcd

p
: (5)

See also BRETSCHNEIDER’S FORMULA, HERON’S FOR-

MULA, QUADRILATERAL
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Brahmagupta’s Problem
Solve the PELL EQUATION

x2 �92y2 �1

in INTEGERS. The smallest solution is x �1151,
y �120.

See also DIOPHANTINE EQUATION, PELL EQUATION

Brahmagupta’s Theorem

In a CYCLIC QUADRILATERAL ABCD having perpendi-
cular diagonals AC �BD; the perpendiculars to the
sides through point T of intersection of the diagonals
(the ANTICENTER) always bisects the opposite side (so
MAB ; MBC ; MCD ; and MDA are the MIDPOINTS of the
corresponding sides of the QUADRILATERAL).

See also ANTICENTER, CYCLIC QUADRILATERAL, MID-

POINT
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Braid
An intertwining of strings attached to top and bottom
"bars" such that each string never "turns back up." In
other words, the path of each string in a braid could
be traced out by a falling object if acted upon only by
gravity and horizontal forces.

See also BRAID GROUP
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Braid Group
Also called ARTIN BRAID GROUPS. Consider n strings,
each oriented vertically from a lower to an upper
"bar." If this is the least number of strings needed to
make a closed braid representation of a LINK, n is
called the BRAID INDEX. Now enumerate the possible
braids in a group, denoted Bn: A general n -braid is
constructed by iteratively applying the si (/i�
1; . . . ; n�1) operator, which switches the lower
endpoints of the ith and (i�1)/th strings–keeping
the upper endpoints fixed–with the (i�1)/th string
brought above the ith string. If the (i�1)/th string
passes below the ith string, it is denoted s�1

i :/



Topological equivalence for different representations
of a BRAID WORD Pi si and Pi s?i is guaranteed by the
conditions

si sj � sj si for ½i �j½]2
si si�1 si � si�1 si si�1 for all i

�
as first proved by E. Artin. Any n -braid is expressed
as a BRAID WORD, e.g., s1 s2 s3 s 

�1
2 s1 is a BRAID WORD

for the braid group B3 : When the opposite ends of the
braids are connected by nonintersecting lines, KNOTS

are formed which are identified by their braid group
and BRAID WORD. The BURAU REPRESENTATION gives a
matrix representation of the braid groups.
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Braid Index
The least number of strings needed to make a closed
braid representation of a LINK. The braid index is
equal to the least number of SEIFERT CIRCLES in any
projection of a KNOT (Yamada 1987). Also, for a
nonsplittable LINK with CROSSING NUMBER c(L) and
braid index i(L);

c(L) ]2[i(L) �1]

(Ohyama 1993). Let E be the largest and e the
smallest POWER of l in the HOMFLY POLYNOMIAL of
an oriented LINK, and i be the braid index. Then the
MORTON-FRANKS-WILLIAMS INEQUALITY holds,

i ]1
2(E �e) �1

(Franks and Williams 1987). The inequality is sharp
for all PRIME KNOTS up to 10 crossings with the
exceptions of 09 �/042, 09 �/049, 10 �/132, 10 �/150, and 10 �/156.
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Braid Word
Any n -braid is expressed as a braid word, e.g.,
s1 s2 s3 s 

�1
2 s1 is a braid word for the BRAID GROUP B3 :

By ALEXANDER’S THEOREM, any LINK is representable
by a closed braid, but there is no general procedure
for reducing a braid word to its simplest form.
However, MARKOV’S THEOREM gives a procedure for
identifying different braid words which represent the
same LINK.

Let b� be the sum of POSITIVE exponents, and b� the
sum of NEGATIVE exponents in the BRAID GROUP Bn : If

b��3b �]n;

then the closed braid b is not AMPHICHIRAL (Jones
1985).

See also BRAID GROUP
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Braikenridge-Maclaurin Construction
Let An ; B2 ; C1 ; A2 ; and B1 be five points determining a
CONIC. Then the CONIC is the LOCUS of the point

C2�A1(L � C1A2)� B1(L � C1B2);

where L is a line through the point A1B2 � B1A2:/

See also BRAIKENRIDGE-MACLAURIN THEOREM, CONIC

SECTION



Braikenridge-Maclaurin Theorem

The converse of PASCAL’S THEOREM, which states that
if the three pairs of opposite sides of (an irregular)
HEXAGON meet at three COLLINEAR points, then the
six vertices lie on a conic, which may degenerate into
a pair of lines (Coxeter and Greitzer 1967, p. 76).

See also BRAIKENRIDGE-MACLAURIN CONSTRUCTION,
CONIC SECTION, PASCAL’S THEOREM
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Branch
A branch at a point u in a TREE is a maximal SUBTREE

containing u as an ENDPOINT (Harary 1994, p. 35).

See also FORK, LEAF (TREE), LIMB, TREE
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Branch Cut

A line in the COMPLEX PLANE across which a MULTI-

VALUED FUNCTION is discontinuous. Some functions
have a relatively simple branch cut structure, but
branch cuts for some functions are extremely compli-
cated. The illustrations above show the single branch
cut present in the definition of the square root
function in the complex plane. In general, branch
cuts are not unique, but are chosen by convention to
give simple analytic properties. An alternative to
branch cuts is the use of RIEMANN SURFACES.

function branch cut(s)

/cos�1 z/ /(��; �1) and (1; �)/

/cosh�1
/ /( ��; 1)/

/cot�1 z/ /(�i ; i)/

/coth�1
/ /[ �1 ; 1]/

/csc�1 z/ /(�1; 1)/

/csch�1
/ /( �i ; i)/

/ln z/ /( ��; 0]/

/sec�1 z/ /(�1; 1)/

/sech�1
/ /( �; 0] and (1; �)/

/sin�1 z/ /(��; �1) and (1; �)/

/sinh�1
/ /(�i�; �i) and (i; i�)/

/

ffiffiffi
z

p
/ /(��; 0)/

/tan�1 z/ /(�i�; �i) and (i; i�)/

/tanh�1
/ /(��; �1] and [1; �)/

/zn; nQZ/ /(��; 0) for R[n]50; (��; 0] for R[n] > 0/

See also BRANCH POINT, CUT, MULTIVALUED FUNC-

TION, RIEMANN SURFACE
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Branch Line
BRANCH CUT

Branch Point
An argument at which identical points in the COM-

PLEX PLANE are mapped to different points. For
example, consider

f (z)�za:



Then f (e0i) �f (1) �1 ; but f (e2 pi) �e2pia ; despite the
fact that ei0 �e2 pi : PINCH POINTS are also called
branch points.

See also BRANCH CUT, PINCH POINT
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Brauer Chain
A Brauer chain is an ADDITION CHAIN in which each
member uses the previous member as a summand. A
number n for which a shortest chain exists which is a
Brauer chain is called a BRAUER NUMBER.

See also ADDITION CHAIN, BRAUER NUMBER, HANSEN

CHAIN
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Brauer Group
The GROUP of classes of finite dimensional central
simple ALGEBRAS over k with respect to a certain
equivalence.
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Brauer Number
A number n for which a shortest chain exists which is
a BRAUER CHAIN is called a Brauer number. There are
infinitely many non-Brauer numbers.

See also BRAUER CHAIN, HANSEN NUMBER
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Brauer’s Theorem
If, in the GERSGORIN CIRCLE THEOREM for a given m ,

½ajj �amm ½ > Lj �Lm

for all j "m; then exactly one EIGENVALUE of A lies in
the DISK Gm :/
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Brauer-Severi Variety
An ALGEBRAIC VARIETY over a FIELD K that becomes
ISOMORPHIC to a PROJECTIVE SPACE.
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Braun’s Conjecture
Let B �fb1 ; b2 ; . . .g be an INFINITE ABELIAN SEMI-

GROUP with linear order b1 Bb2 B. . . such that b1 is
the unit element and a Bb IMPLIES ac Bbc for
a ; b; c � B : Define a MÖ BIUS FUNCTION m on B by
m(b1) �1 and X

bd ½bn

m(bd) �0

for n �2, 3, .... Further suppose that m(bn) � m(n) (the
true MÖ BIUS FUNCTION) for all n ]1: Then Braun’s
conjecture states that

bmn �bm bn

for all m; n ]1:/

See also MÖ BIUS PROBLEM
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Breadth-First Traversal
A search algorithm of a GRAPH which explores all
nodes adjacent to the current node before moving on.
For cyclic graphs, care must be taken to make sure
that no nodes are repeated. When properly imple-
mented, all nodes in a given connected component are
explored.

See also DEPTH-FIRST TRAVERSAL
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Breeder
A pair of POSITIVE INTEGERS (a1; a2) such that the
equations

a1�a2x�s(a1)�s(a2)(x�1)

have a POSITIVE INTEGER solution x , where s(n) is the
DIVISOR FUNCTION. If x is PRIME, then (a1; a2x) is an
AMICABLE PAIR (te Riele 1986). (a1; a2) is a "special"
breeder if



a1 �au

a2 �a;

where a and u are RELATIVELY PRIME, (a ; u) �1: If
regular amicable pairs of type (i ; 1) with i ]2 are OF

THE FORM (au, ap ) with p PRIME, then (au, a ) are
special breeders (te Riele 1986).

See also AMICABLE PAIR
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Brelaz’s Heuristic Algorithm
An ALGORITHM which can be used to find a good, but
not necessarily minimal, EDGE or VERTEX COLORING

for a GRAPH. However, the algorithm does minimally
color COMPLETE K -PARTITE GRAPH.

See also CHROMATIC NUMBER, EDGE COLORING,
VERTEX COLORING
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Brent’s Factorization Method
A modification of the POLLARD RHO FACTORIZATION

METHOD which uses

xi�1�x2
i �c (mod n):
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Brent’s Method
A ROOT-finding ALGORITHM which combines root
bracketing, bisection, and INVERSE QUADRATIC INTER-

POLATION. It is sometimes known as the VAN WIJN-

GAARDEN-DEKER-BRENT METHOD.

Brent’s method uses a LAGRANGE INTERPOLATING

POLYNOMIAL of degree 2. Brent (1973) claims that
this method will always converge as long as the
values of the function are computable within a given
region containing a ROOT. Given three points x1; x2;
and x3; Brent’s method fits x as a quadratic function
of y , then uses the interpolation formula

x�
[y � f (x1)][y � f (x2)]x3

[f (x3) � f (x1)][f (x3) � f (x2)]

�
[y � f (x2)][y � f (x3)]x1

[f (x1) � f (x2)][f (x1) � f (x3)]

�
[y � f (x3)][y � f (x1)]x2

[f (x2) � f (x3)][f (x2) � f (x1)]
: (1)

Subsequent root estimates are obtained by setting
y�0, giving

x�x2�
P

Q
; (2)

where

P�S[R(R�T)(x3�x2)�(1�R)(x2�x1)] (3)

Q�(T�1)(R�1)(S�1) (4)

with

R�
f (x2)

f (x3)
(5)

S�
f (x2)

f (x1)
(6)

T�
f (x1)

f (x3)
(7)

(Press et al. 1992).
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Brent-Salamin Formula
A formula which uses the ARITHMETIC-GEOMETRIC

MEAN to compute PI. It has quadratic convergence
and is also called the GAUSS-SALAMIN FORMULA and
SALAMIN FORMULA. Let

an�1�
1
2(an�bn) (1)

bn�1�
ffiffiffiffiffiffiffiffiffiffi
anbn

p
(2)

cn�1�
1
2(an�bn) (3)

dn�a2
n�b2

n; (4)

and define the initial conditions to be a0�1; b0�
1=

ffiffiffi
2

p
: Then iterating ap and bn gives the ARITHMETIC-



GEOMETRIC MEAN, and p is given by

p �
4[M(1; 2�1=2)]2

1 �
P�

j�1 2j�1dj

(5)

�
4[M(1; 2�1 =2)]2

1 �
P�

j�1 2j�1c2
j

: (6)

King (1924) showed that this formula and the
LEGENDRE RELATION are equivalent and that either
may be derived from the other.

See also ARITHMETIC-GEOMETRIC MEAN, PI

References
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in

Analytic Number Theory and Computational Complexity.
New York: Wiley, pp. 48 �/51, 1987.

Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61,
148 �/163, 1988.

King, L. V. On the Direct Numerical Calculation of Elliptic
Functions and Integrals. Cambridge, England: Cambridge
University Press, 1924.

Lord, N. J. "Recent Calculations of p : The Gauss-Salamin
Algorithm." Math. Gaz. 76, 231 �/242, 1992.

Salamin, E. "Computation of p Using Arithmetic-Geometric
Mean." Math. Comput. 30, 565 �/570, 1976.

Bretschneider’s Formula
Given a general QUADRILATERAL with sides of lengths
a , b , c , and d (Beyer 1987), the AREA is given by

Aquadrilateral �
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2q2 �(b2 �d2 �a2 �c2)2

q
;

where p and q are the diagonal lengths.

See also BRAHMAGUPTA’S FORMULA, HERON’S FORMU-

LA
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Brianchon Point
The point of CONCURRENCE of the joins of the
VERTICES of a TRIANGLE and the points of contact of
a CONIC SECTION INSCRIBED in the TRIANGLE. A CONIC

INSCRIBED in a TRIANGLE has an equation OF THE

FORM

f

u 
�

g

v 
�

h

w 
�0 ;

so its Brianchon point has TRILINEAR COORDINATES

(1=f ; 1 =g; 1=h): For KIEPERT’S PARABOLA, the Bran-
chion point has TRIANGLE CENTER FUNCTION

a �
1

a(b2 � c2) 
;

which is the STEINER POINT.

See also HEPTAGON THEOREM, KIEPERT’S PARABOLA,
STEINER POINTS
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Brianchon’s Theorem

The DUAL of PASCAL’S THEOREM (Casey 1888, p. 146).
It states that, given a HEXAGON CIRCUMSCRIBED on a
CONIC SECTION, the lines joining opposite VERTICES

(DIAGONALS) meet in a single point.

See also DUALITY PRINCIPLE, PASCAL’S THEOREM
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Brick
A RECTANGULAR PARALLELEPIPED.

See also CANONICAL BRICK, EULER BRICK, HARMONIC

BRICK, RECTANGULAR PARALLELEPIPED

Bride’s Chair
One name for the figure used by Euclid to prove the
PYTHAGOREAN THEOREM.

See also PEACOCK’S TAIL, WINDMILL
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Bridge

The bridges of a CONNECTED GRAPH are the EDGES

whose removal disconnects the GRAPH (Chartrand
1985, p. 45; Skiena 1990, p. 177). More generally, a
bridge is an edge of a GRAPH G whose removal
increases the number of components of G (Harary
1994, p. 26). An edge of a CONNECTED GRAPH is a
bridge IFF is does not lie on any cycle. The bridges of a
graph can be found using Bridges[g ] in the Math-
ematica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘).
Every edge of a TREE is a bridge. A CUBIC GRAPH

contains a bridge IFF it contains an ARTICULATION

VERTEX (Skiena 1990, p. 177).

See also ARTICULATION VERTEX, BLOCK
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Bridge Card Game
Bridge is a CARD game played with a normal deck of
52 cards. The number of possible distinct 13-card
hands is

N �
52
13

� �
�635; 013; 559; 600:

where (n
k) is a BINOMIAL COEFFICIENT. While the

chances of being dealt a hand of 13 CARDS (out of
52) of the same suit are

4

52
13

� �� 1

158; 753; 389; 900 
;

the chance that one of four players will receive a hand
of a single suit is

1

39 ; 688; 347; 497 
:

There are special names for specific types of hands. A
ten, jack, queen, king, or ace is called an "honor."
Getting the three top cards (ace, king, and queen) of
three suits and the ace, king, and queen, and jack of
the remaining suit is called 13 top honors. Getting all
cards of the same suit is called a 13-card suit. Getting
12 cards of same suit with ace high and the 13th card
not an ace is called 2-card suit, ace high. Getting no
honors is called a Yarborough.

The probabilities of being dealt 13-card bridge hands
of a given type are given below. As usual, for a hand
with probability P , the ODDS against being dealt it are
(1=P) �1 : 1:/

Hand Exact

Probability

Probability ODDS

13 top

honors

/
4

N 
�/

/
1

158 ; 753 ; 389 ; 900
/

/6:30 �10 �12
/ 158,753,389,899:1

13-card

suit

/
4

N 
�/

/
1

158 ; 753 ; 389 ; 900
/

/6:30 �10 �12
/ 158,753,389,899:1

12-card

suit,

ace high

/
4 � 12 � 36

N
�/

/
4

1; 469; 938; 705
/

/2:72�10�9
/ 367,484,697.8:1

Yarborough /

32
13

� �
N

�
5; 394

9; 860; 459
/ /5:47�10�4

/ 1,827.0:1

four aces /

48
9

� �
N

�
11

4; 165
/ /2:64�10�3

/ 377.6:1

nine honors /

20
9

� �
32
4

� �
N

�/

//

/
888; 212

93; 384; 347
/

/9:51�10�3
/ 104.1:1

See also CARDS, POKER
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Bridge Index
A numerical KNOT invariant. For a TAME KNOT K , the
bridge index is the least BRIDGE NUMBER of all planar
representations of the KNOT. The bridge index of the
UNKNOT is defined as 1.

See also BRIDGE NUMBER, CROOKEDNESS
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Bridge Knot
An n -bridge knot is a knot with BRIDGE NUMBER n .
The set of 2-bridge knots is identical to the set of
rational knots. If L is a 2-BRIDGE KNOT, then the
BLM/HO POLYNOMIAL Q and JONES POLYNOMIAL V
satisfy

QL(z) �2z �1VL(t)VL(t�1 �1 �2z �1) ;

where z ��t �t�1 (Kanenobu and Sumi 1993). Kane-
nobu and Sumi also give a table containing the
number of distinct 2-bridge knots of n crossings for
n �10 to 22, both not counting and counting MIRROR

IMAGES as distinct.

n /Kn/ /Kn �K +n/

3 0  0

4 0  0

5

6

7

8

9

10 45 85

11 91 182

12 176 341

13 352 704

14 693 1365

15 1387 2774

16 2752 5461

17 5504 11008

18 10965 21845

19 21931 43862

20 43776 87381

21 87552 175104

22 174933 349525
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Bridge Number
The least number of unknotted arcs lying above the
plane in any projection. The knot 05 �002 has bridge
number 2. Such knots are called 2-BRIDGE KNOTS.
There is a one-to-one correspondence between 2-
BRIDGE KNOTS and rational knots. The knot 08 �010 is
a 3-bridge knot. A knot with bridge number b is an n -
EMBEDDABLE KNOT where n 5 b:/

See also BRIDGE INDEX
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Bridge of Königsberg
KÖ NIGSBERG BRIDGE PROBLEM

Brightness
The area of the SHADOW of a body on a plane, also
called the "outer quermass."

See also INNER QUERMASS, SHADOW
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Brill-Noether Theorem
If the total group of the canonical series is divided
into two parts, the difference between the number of
points in each part and the double of the dimension of
the complete series to which it belongs is the same.
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Bring Quintic Form
A TSCHIRNHAUSEN TRANSFORMATION can be used to
take a general QUINTIC EQUATION to the form

x5 �x �a �0 ;

where a may be COMPLEX.

See also BRING-JERRARD QUINTIC FORM, QUINTIC

EQUATION
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Bring-Jerrard Quintic Form
A TSCHIRNHAUSEN TRANSFORMATION can be used to
algebraically transform a general QUINTIC EQUATION

to the form

z5 �c1z �c0 �0: (1)

In practice, the general quintic is first reduced to the
PRINCIPAL QUINTIC FORM

y5 �b2y2 �b1y �b0 �0 (2)

before the transformation is done. Then, we require
that the sum of the third POWERS of the ROOTS

vanishes, so s3(yj) �0 : We assume that the ROOTS zi

of the Bring-Jerrard quintic are related to the ROOTS

yi of the PRINCIPAL QUINTIC FORM by

zi � ay4
i � by3

i �gy2
i � dyi � e: (3)

In a similar manner to the PRINCIPAL QUINTIC FORM

transformation, we can express the COEFFICIENTS cj

in terms of the bj :/

See also BRING QUINTIC FORM, PRINCIPAL QUINTIC

FORM, QUINTIC EQUATION
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Brioschi Formula
For a curve with METRIC

ds2 �E du2 �F du dv�G dv2 ; (1)

where E , F , and G is the first FUNDAMENTAL FORM,
the GAUSSIAN CURVATURE is

K �
M1 � M2

(EG � F2)2 ; (2)

where

M1 �

�1
2Euv �Fuv �

1
2Guu

1
2Eu Fu �

1
2Ev

Fv �
1
2Gu E F

1
2Gv F G

�������
������� (3)

M2 �

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

�������
�������; (4)

which can also be written

K ��
1ffiffiffiffiffiffiffiffi
EG

p @

@u

1ffiffiffiffi
E

p @
ffiffiffiffi
G

p

@u

 !
�

@

@v

1ffiffiffiffi
G

p @
ffiffiffiffi
E

p

@v

 !" #
(5)

��
1ffiffiffiffiffiffiffiffi
EG

p @

@u

Guffiffiffiffiffiffiffiffi
EG

p
 !

�
@

@v

Evffiffiffiffiffiffiffiffi
EG

p
 !" #

: (6)

See also FUNDAMENTAL FORMS, GAUSSIAN CURVA-

TURE
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Briot-Bouquet Equation
An ORDINARY DIFFERENTIAL EQUATION OF THE FORM

xmy?�f (x; y);

where m is a POSITIVE INTEGER, f is ANALYTIC at x�
y�0; f (0; 0)�0; and f ?y(0; 0)"0:/

Zwillinger (1997, p. 120), citing Ince (1956, p. 295),
define the Briot-Bouquet equation as

xy?�ly�a10x�a20x2�a11yx�a02y2�� � �
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Brjuno Number
Let pn =qn be the sequence of CONVERGENTS of the
CONTINUED FRACTION of a number a: Then a Brjuno
number is an IRRATIONAL NUMBER such that

X�
n�0

ln qn�1

qn

B�

(Marmi et al. 1999). Brjuno numbers arise in the
study of one-dimensional analytic small divisors
problems, and Brjuno (1971, 1972) proved that all
"germs" with linear part l�e2 pia are linearizable if a
is a Brjuno number. Yoccoz (1995) proved that this
condition is also NECESSARY.
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Broadcasting
GOSSIPING

Brocard Angle

Define the first BROCARD POINT as the interior point V
of a TRIANGLE for which the ANGLES � VAB ; � VBC;
and � VCA are equal to an angle v: Similarly, define
the second BROCARD POINT as the interior point V? for
which the ANGLES � V?AC ; � V?CB; and � V?BA are

equal to an angle v?: Then v � v?; and this angle is
called the Brocard angle.
The Brocard angle v of a TRIANGLE DA1A2A3 is given
by the formulas

cot v �cot A1 �cot A2 �cot A3 (1)

�
a2

1 � a2
2 � a2

3

4D

 !
(2)

�
1 � cos a1 cos a2 cos a3

sin a1 sin a2 sin a3

(3)

�
sin2 a1 � sin2 a2 � sin2 a3

2 sin a1 sin a2 sin a3

(4)

�
a1 sin a1 � a2 sin a2 � a3 sin a3

a1 cos a1 � a2 cos a2 � a3 cos a3

(5)

csc2 v �csc2 a1 �csc2 a2 �csc2 a3 (6)

sin v �
2 Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
1a2

2 � a2
2a2

3 � a2
3a2

1

p (7)

where D is the TRIANGLE AREA, A , B , and C are
ANGLES, and a , b , and c are side lengths (Johnson
1929), where (6) is due to Neuberg (Tucker 1883).

If an ANGLE a of a TRIANGLE is given, the maximum
possible Brocard angle is given by

cot v �3
2 tan(1

2 a) �1
2 cos(1

2 a) (8)

(Johnson 1929, p. 289). If v is specified, that the
largest possible value amax and minimum possible
value amin of any possible triangle having Brocard
angle v are given by

cot(1
2 amax) �cot v �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2 �3

p
(9)

cot(1
2 amin)�cot v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2 �3;

q
(10)

where the square rooted quantity is the radius of the
corresponding NEUBERG CIRCLE (Johnson 1929,
p. 288). The maximum possible Brocard angle for
any triangle is 308 (Honsberger 1995, pp. 102�/103).
Let a TRIANGLE have ANGLES A , B , and C . Then

sin A sin B sin C5kABC; (11)

where

k�
3
ffiffiffi
3

p

2p

 !3

(12)

(Le Lionnais 1983). This can be used to prove that

8v3BABC (13)

(Abi-Khuzam 1974).

See also BROCARD CIRCLE, BROCARD LINE, EQUI-



BROCARD CENTER, FERMAT POINTS, NEUBERG CIRCLE
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Kreisen des Dreiecks. Berlin: Georg Reimer, 1891.

Honsberger, R. "The Brocard Angle." §10.2 in Episodes in
Nineteenth and Twentieth Century Euclidean Geometry.
Washington, DC: Math. Assoc. Amer., pp. 101 �/106, 1995.

Johnson, R. A. Modern Geometry: An Elementary Treatise on
the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, pp. 263 �/286 and 289 �/294, 1929.

Lachlan, R. An Elementary Treatise on Modern Pure
Geometry. London: Macmillian, pp. 65 �/66, 1893.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann,
p. 28, 1983.

Tucker, R. "The ‘Triplicate Ratio’ Circle." Quart. J. Pure
Appl. Math. 19, 342 �/348, 1883.

Brocard Axis

The LINE KO passing through the SYMMEDIAN POINT

K and CIRCUMCENTER O of a TRIANGLE. The distance
OK is called the BROCARD DIAMETER. The Brocard
axis is PERPENDICULAR to the LEMOINE AXIS and is the
ISOGONAL CONJUGATE of KIEPERT’S HYPERBOLA. It has
equations

sin(B �C) a �sin(C �A) b �sin(A �B) g�0

bc(b2 �c2) a �ca(c2 �a2) b �ab(a2 �b2)g�0:

The SYMMEDIAN POINT K , CIRCUMCENTER O , ISODY-

NAMIC POINTS S and S ?; and BROCARD MIDPOINT MB

all lie along the Brocard axis.
Note that the Brocard axis is not equivalent to the
BROCARD LINE.

See also BROCARD CIRCLE, BROCARD DIAMETER,
BROCARD LINE

Brocard Circle

The CIRCLE passing through the first and second
BROCARD POINTS V and V?; the LEMOINE POINT K , and
the CIRCUMCENTER O of a given TRIANGLE. The
BROCARD POINTS V and V? are symmetrical about
the LINE  KO ; which is called the BROCARD LINE. The
LINE SEGMENT KO is called the BROCARD DIAMETER,
and it has length

OK �
OV

cos v 
�

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 sin2 v

p
cos v

;

where R is the CIRCUMRADIUS and v is the BROCARD

ANGLE. The distance between either of the BROCARD

POINTS and the SYMMEDIAN POINT is

VK �V?K �VO tan v:

The Brocard circle and LEMOINE CIRCLE are con-
centric.

See also BROCARD ANGLE, BROCARD DIAMETER,
BROCARD POINTS
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Brocard Diameter

The LINE SEGMENT KO joining the SYMMEDIAN POINT

K and CIRCUMCENTER O of a given TRIANGLE. It is the
DIAMETER of the TRIANGLE’S BROCARD CIRCLE, and lies
along the BROCARD AXIS. The Brocard diameter has
length

OK �
OV

cos v 
�

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 sin2 v

p
cos v

;

where V is the first BROCARD POINT, R is the
CIRCUMRADIUS, and v is the BROCARD ANGLE.

See also BROCARD AXIS, BROCARD CIRCLE, BROCARD

LINE, BROCARD POINTS

Brocard Line

A LINE from any of the VERTICES Ai of a TRIANGLE to
the first V or second V? BROCARD POINT. Let the
ANGLE at a VERTEX Ai also be denoted Ai ; and denote
the intersections of A1 V and A1 V? with A2A3 as W1

and W2 : Then the ANGLES involving these points are

�A1 VW3 �A1 (1)

�W3 VA2 �A3 (2)

�A2 VW1 �A2 (3)

Distances involving the points Wi and W ?i are given by

A2 V�
a3

sin A2

sin v (4)

A2 V
A3 V

�
a2

3

a1a2

�
sin(A3 � v)

sin v 
(5)

W3A1

W3A2

�
a2 sin v

a1 sin(A3 � v) 
�

a2

a3

 !2

; (6)

where v is the BROCARD ANGLE (Johnson 1929,
pp. 267 �/268).
The Brocard line, MEDIAN M , and SYMMEDIAN POINT

K are concurrent, with A1 V1 ; A2K ; and A3M meeting
at a point P . Similarly, A1 V?; A2M ; and A3K meet at a
point which is the ISOGONAL CONJUGATE point of P
(Johnson 1929, pp. 268�/269).

See also BROCARD AXIS, BROCARD DIAMETER, BRO-

CARD POINTS, ISOGONAL CONJUGATE, SYMMEDIAN

POINT, MEDIAN (TRIANGLE)
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Brocard Midpoint
The MIDPOINT of the BROCARD POINTS. It has TRIAN-

GLE CENTER FUNCTION

a�a(b2�c2)�sin(A�v);

where v is the BROCARD ANGLE. It lies on the
BROCARD AXIS.
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Brocard Points

The first Brocard point is the interior point V (or t1 or



Z1) of a TRIANGLE for which the ANGLES �VAB ; �
VBC; and �VCA are equal to an angle v: The second
Brocard point is the interior point V? (or t2 or Z2) for
which the ANGLES �V?AC ; �V?CB; and �V?BA are
equal to an angle v?: The two angles v � v? are equal,
and this angle is called the BROCARD ANGLE,

v ��VAB ��VBC ��VCA

��V?AC ��V?CB ��V?BA :

The first two Brocard points are ISOGONAL CONJU-

GATES (Johnson 1929, p. 266). They were described by
French army officer Henri Brocard in 1875, although
they had previously been investigated by Jacobi and,
in 1816, Crelle (Wells 1991; Honsberger 1995, p. 98).
The satisfy VO �V?O and �VO V?�2v; where O is
the CIRCUMCENTER and v is the BROCARD ANGLE

(Honsberger 1995, p. 106).
If three dogs start at the vertices of a triangle and
chase either their left or right neighbor at a constant
speed, that the three will meet at either V or V? (Wells
1991).

One BROCARD LINE, MEDIAN, and SYMMEDIAN (out of
the three of each) are CONCURRENT, with AV; CK , and
BG meeting at a point, where G is the CENTROID and
K is the SYMMEDIAN POINT. Similarly, AV?; BG , and
CK meet at a point which is the ISOGONAL CONJUGATE

of the first (Johnson 1929, pp. 268 �/269; Honsberger
1995, pp. 121 �/124).

Let CBC be the CIRCLE which passes through the
vertices B and C and is TANGENT to the line AC at C ,
and similarly for CAB and CBC : Then the CIRCLES CAB ;
CBC ; and CAC intersect in the first Brocard point V:
Similarly, let C ?BC be the CIRCLE which passes through
the vertices B and C and is TANGENT to the line AB at
B , and similarly for C?AB and C ?AC : Then the CIRCLES

C ?AB ; C ?BC ; and C ?AC intersect in the second Brocard
points V? (Johnson 1929, pp. 264 �/265; Honsberger

1995, pp. 99 �/100).

The PEDAL TRIANGLES of V and V? are congruent, and
SIMILAR to the TRIANGLE DABC (Johnson 1929,
p. 269). Lengths involving the Brocard points include

OV�OV?�R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4 sin2 v

p
(1)

VV?�2R sin v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4 sin2 v

p
: (2)

Extend the segments AV; B V; and CV to the CIRCUM-

CIRCLE of DABC to form DC?A?B ?; and the segments
AV?; BV?; and CV? to form DBƒCƒAƒ: Then DA?B?C? and
DAƒBƒCƒ are congruent to DABC (Honsberger 1995,
pp. 104�/106).

Brocard’s third point is related to a given TRIANGLE by
the TRIANGLE CENTER FUNCTION

a�a�3 (3)

(Casey 1893, Kimberling 1994). The third Brocard
point Vƒ (or t3 or Z3) is COLLINEAR with the SPIEKER

CENTER and the ISOTOMIC CONJUGATE POINT of its
TRIANGLE’S INCENTER.

See also BROCARD ANGLE, BROCARD MIDPOINT, EQUI-

BROCARD CENTER, YFF POINTS
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Brocard Triangles

Given TRIANGLE DA1A2A3 ; let the point of intersection
of A2 V and A3 V? be B1 ; where V and V? are the
BROCARD POINTS, and similarly define B2 and B3 :
Then B1B2B3 is called the first Brocard triangle, and
is INVERSELY SIMILAR to A1A2A3 (Honsberger 1995,
p. 112). It is inscribed in the BROCARD CIRCLE drawn
with OK as the DIAMETER.
The triangles B1A2A3 ; B2A3A1 ; and B3A1A2 are
ISOSCELES TRIANGLES with base angles v; where v
is the BROCARD ANGLE. The sum of the areas of the
ISOSCELES TRIANGLES is D; the AREA of TRIANGLE

A1A2A3 : The first Brocard triangle is in perspective
with the given TRIANGLE, with A1B1 ; A2B2 ; and A3B3

CONCURRENT. The CENTROID of the first brocard
triangle is the CENTROID G of the original triangle
(Honsberger 1995, pp. 112 �/116).

Let perpendiculars be drawn from the midpoints MA ;
MB ; and MC of each side of the first Brocard triangle

to the opposite sides of the triangle DABC : Then the
extensions of these lines CONCUR in the NINE-POINT

CENTER (Honsberger 1995, pp. 116 �/118).

Let c1 ; c2 ; and c3 be the CIRCLES through the vertices
A2 and A3 ; An and A3 ; and An and A2 ; respectively,
which intersect in the first BROCARD POINT V:
Similarly, define c ?1 ; c ?2 ; and c ?3 with respect to the
second BROCARD POINT V?: Let the two circles c1 and
c ?1 tangent at An to A1A2 and A1A3 ; and passing
respectively through A3 and A2 ; meet again at C1 ; and
similarly for C2 and C3 : Then the triangle DC1C2C3 is
called the second Brocard triangle.

The second Brocard triangle is also the triangle
obtained as the intersections of the lines A1K ; A2K ;

and A3K with the BROCARD CIRCLE, where K is the
SYMMEDIAN POINT. Let P1; P2; and P3 be the intersec-
tions of the lines A1K ; A2K; and A3K with the
CIRCUMCIRCLE of DA1A2A3: Then C1; C2; and C3 are
the midpoints of A1P1; A2P2; and A3P3; respectively
(Lachlan 1893).

The two Brocard triangles are in PERSPECTIVE at M .

See also BROCARD CIRCLE, CIRCLE-CIRCLE INTERSEC-



TION, MCCAY CIRCLE, NINE-POINT CENTER, STEINER

POINTS, TARRY POINT
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Brocard’s Conjecture

p(p2
n�1) � p(p2

n) ]4

for n ]2 where p(n) is the PRIME COUNTING FUNCTION

and pn is the nth PRIME. For n �1, 2, ..., the first few
values are 2, 5, 6, 15, 9, 22, 11, 27, 47, 16, ... (Sloane’s
A050216).

See also ANDRICA’S CONJECTURE
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Brocard’s Problem
Find the values of n for which n! �1 is a SQUARE

NUMBER m2 ; where n! is the FACTORIAL (Brocard 1876,
1885). Pairs of numbers (m, n ) are called BROWN

NUMBERS. The only known solutions are n �4, 5, and
7, and there are no other solutions with n 5107 (Wells
1986, p. 70; D. Wilson). It is virtually certain that
there are no more solutions (Guy 1994). In fact,
Dabrowski (1996) has shown that n! � A � k2 has
only finitely many solutions for general A , although
this result requires assumption of a weak form of the
ABC CONJECTURE if A is SQUARE).

Wilson has also computed the least k such that n! �
k2 is square starting at n �4, giving 1, 1, 3, 1, 9, 27,
15, 18, 288, 288, 420, 464, 1856, ... (Sloane’s
A038202).

See also BROWN NUMBERS, FACTORIAL, SQUARE

NUMBER
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Bromwich Integral
The inverse of the LAPLACE TRANSFORM, given by

F(t) �
1

2pi g 
g �i �

g�i�

epif (s) ds ;

where g is a vertical CONTOUR in the COMPLEX PLANE

chosen so that all singularities of f (s) are to the left of
it.

See also LAPLACE TRANSFORM
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Brooks’ Theorem
The CHROMATIC NUMBER of a graph is at most the
maximum VERTEX DEGREE D; unless the graph is
COMPLETE or an odd cycle.

See also CHROMATIC NUMBER
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Brothers
A PAIR of consecutive numbers.

See also PAIR, SMITH BROTHERS, TWINS



Brouwer Fixed Point Theorem
Any continuous FUNCTION G : B 0 Bn has a FIXED

POINT, where

Bn �fx �Rn : x2
1 �� � ��x2

n 51 g

is the unit n -BALL.

See also BALL, FIXED POINT THEOREM
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Browkin’s Theorem
For every POSITIVE INTEGER n , there exists a SQUARE

in the plane with exactly n LATTICE POINTS in its
interior. This was extended by Schinzel and Kuli-
kowski to all plane figures of a given shape. The
generalization of the SQUARE in 2-D to the CUBE in 3-
D was also proved by Browkin.

See also CUBE, SCHINZEL’S THEOREM, SQUARE
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Brown Function
For a FRACTAL PROCESS with values y(t �Dt) and y(t �
Dt) ; the correlation between these two values is given
by the Brown function

r �22H �1 �1;

also known as the BACHELIER FUNCTION, LÉ VY FUNC-

TION, or WIENER FUNCTION.

Brown Numbers
Brown numbers are PAIRS (m, n ) of INTEGERS satisfy-
ing the condition of BROCARD’S PROBLEM, i.e., such
that

n! �1 �m2

where n! is the FACTORIAL and m2 is a SQUARE

NUMBER. Only three such PAIRS of numbers are
known: (5, 4), (11, 5), (71, 7), and Erdos conjectured
that these are the only three such PAIRS.

See also BROCARD’S PROBLEM, FACTORIAL, SQUARE

NUMBER, WILSON PRIME
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Brown’s Criterion
A SEQUENCE fni g of nondecreasing POSITIVE INTEGERS

is COMPLETE IFF

1. n1 �1 :/
2. For all k �2, 3, ...,

sk�1 � n1 � n2 �� � �� nk�1 ] nk �1:

A corollary states that a SEQUENCE for which n1 �1
and nk�1 52 nk is COMPLETE (Honsberger 1985).

See also COMPLETE SEQUENCE
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Broyden’s Method
An extension of the SECANT METHOD of root finding to
higher dimensions.

See also SECANT METHOD
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Bruck-Ryser Theorem
BRUCK-RYSER-CHOWLA THEOREM

Bruck-Ryser-Chowla Theorem
If n �1; 2 (mod 4); and the SQUAREFREE part of n is
divisible by a PRIME p �3 (mod 4); then no DIFFER-

ENCE SET of ORDER n exists. Equivalently, if a
PROJECTIVE PLANE of order n exists, and n �1 or 2
(mod 4), then n is the sum of two SQUARES.

Dinitz and Stinson (1992) give the theorem in the
following form. If a symmetric (v; k; l)/-BLOCK DESIGN

exists, then

1. If v is EVEN, then k �l is a SQUARE NUMBER,
2. If v is ODD, then the DIOPHANTINE EQUATION

x2�(k�l)y2�(�1)(v�1)=2lz2

has a solution in integers, not all of which are 0.

See also BLOCK DESIGN, DIFFERENCE SET, FISHER’S

BLOCK DESIGN INEQUALITY



References
Dinitz, J. H. and Stinson, D. R. "A Brief Introduction to

Design Theory." Ch. 1 in Contemporary Design Theory: A
Collection of Surveys (Ed. J. H. Dinitz and D. R. Stinson).
New York: Wiley, pp. 1 �12, 1992.

Gordon, D. M. "The Prime Power Conjecture is True for
n B 2 ;000; 000:/" Electronic J. Combinatorics 1, R6 1�7,
1994. http://www.combinatorics.org/Volume_1/volume
1.html#R6.

Ryser, H. J. Combinatorial Mathematics. Buffalo, NY:
Math. Assoc. Amer., 1963.

Bruhat Order
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Brun’s Constant
The number obtained by adding the reciprocals of the
odd TWIN PRIMES,

B � (1
3 �

1
5) � (1

5 �
1
7) � ( 1

11 �
1

13) � ( 1
17 �

1
19) � � � � ; (1)

By BRUN’S THEOREM, the constant converges to a
definite number as p 0 �: Any finite sum under-
estimates B . Shanks and Wrench (1974) used all the
TWIN PRIMES among the first 2 million numbers.
Brent (1976) calculated all TWIN PRIMES up to 100
billion and obtained (Ribenboim 1989, p. 146)

B : 1:90216054; (2)

assuming the truth of the first HARDY-LITTLEWOOD

CONJECTURE. Using TWIN PRIMES up to 1014, Nicely
(1996) obtained

B :1:9021605778 92:1 �10�9 (3)

(Cipra 1995, 1996), in the process discovering a bug in
Intel’s† PentiumTM microprocessor. Using TWIN

PRIMES up to 2:5515 ; Nicely subsequently obtained
the result

B :1:9021605820 92:4 �10�9 : (4)

(Note that the value given by Le Lionnais 1983 is
incorrect)

Segal (1930) proved that Brun-type sums Bd of 1 =p
over consecutive primes separated by d are finite
(Halberstam and Richert 1983, p. 92). Wolf suggests
that Bd is roughly equal to 4=d which, in the d �2
case of twin primes, gives B2 :2 instead of 1:902:/...
Wolf also considers the "COUSIN PRIMES" Brun’s
constant B4 :/

See also COUSIN PRIMES, TWIN PRIMES, TWIN PRIME

CONJECTURE, TWIN PRIMES CONSTANT
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Brun’s Sieve

See also SIEVE
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Brun’s Sum
BRUN’S CONSTANT

Brun’s Theorem
The series producing BRUN’S CONSTANT CONVERGES

even if there are an infinite number of TWIN PRIMES.
Proved in 1919 by V. Brun.

Brunnian Link
A Brunnian link is a set of n linked loops such that
each proper sublink is trivial, so that the removal of
any component leaves a set of trivial unlinked
UNKNOTS. The BORROMEAN RINGS are the simplest
example and have n�3.

See also BORROMEAN RINGS



References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, 1976.

Brunn-Minkowski Inequality
The nth root of the CONTENT of the set sum of two sets
in Euclidean n -space is greater than or equal to the
sum of the nth roots of the CONTENTS of the
individual sets.

See also TOMOGRAPHY
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Brusselator Equations
The system of ordinary differential equations

u?�A �u2v �(B �1)u (1)

v ?�Bu �u2v (2)

(Hairer et al. 1987, p. 112; Zwillinger 1997, p. 136).
The so-called full Brusselator equations are given by

u?�1 �u2v �(w �1)u (3)

v ?�uw �u2v (4)

w?��uw � a (5)

(Hairer et al. 1987, p. 114; Zwillinger 1997, p. 136).
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Brute Force Factorization
DIRECT SEARCH FACTORIZATION

B-Spline

A generalization of the BÉ ZIER CURVE. Let a vector
known as the KNOT VECTOR be defined

T �ft0 ; t1 ; . . . ; tm g; (1)

where T is a nondecreasing SEQUENCE with ti � [0; 1];

and define control points P0 ; ..., Pn : Define the degree
as

p �m �n �1: (2)

The "knots" tp �1 ; ..., tm�p�1 are called INTERNAL

KNOTS.
Define the basis functions as

Ni;0(t) �
1 if ti 5t Bti�1 and ti Bti�1

0 otherwise

�
(3)

Ni ; p(t) �
t � ti

ti�p � ti

Ni; p �1(t)

�
ti �p �1 � t

ti�p �1 � ti�1

Ni�1; p �1(t):

(4)

Then the curve defined by

C(t) �
Xn

i �0

PiNi;p(t) (5)

is a B-spline. Specific types include the nonperiodic B-
spline (first p �1 knots equal 0 and last p �1 equal to
1) and uniform B-spline (INTERNAL KNOTS are equally
spaced). A B-spline with no INTERNAL KNOTS is a
BÉ ZIER CURVE.

A curve is p �k times differentiable at a point where
k duplicate knot values occur. The knot values
determine the extent of the control of the control
points.

See also BÉ ZIER CURVE, NURBS CURVE

B-Tree
B -trees were introduced by Bayer (1972) and
McCreight. They are a special m -ary balanced tree
used in databases because their structure allows
records to be inserted, deleted, and retrieved with
guaranteed worst-case performance. An n -node B -
tree has height O(1g2); where LG is the LOGARITHM to
base 2. The Apple † Macintosh † (Apple Computer,
Cupertino, CA) HFS filing system uses B -trees to
store disk directories (Benedict 1995). A B -tree
satisfies the following properties:

1. The ROOT is either a LEAF (TREE) or has at least
two CHILDREN.
2. Each node (except the ROOT and LEAVES) has
between m=2d e and m CHILDREN, where xd e is the
CEILING FUNCTION.
3. Each path from the ROOT to a LEAF (TREE) has
the same length.

Every 2�/ TREE is a B -tree of order 3. The number of
B -trees of order-3 with n�1, 2, ... leaves are 1, 1, 1, 1,
2, 2, 3, 4, 5, 8, 14, 23, 32, 43, 63, ... (Ruskey, Sloane’s
A014535). The number of order-4 B -trees with n � 1,



2, ... leaves are 1, 1, 1, 2, 2, 4, 5, 9, 15, 28, 45, ...
(Sloane’s A037026).

See also RED-BLACK TREE, TREE
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Bubble
A bubble is a minimal-energy surface of the type that
is formed by soap film. The simplest bubble is a single
SPHERE, illustrated above (courtesy of J. M. Sullivan).
More complicated forms occur when multiple bubbles
are joined together. The simplest example is the
DOUBLE BUBBLE, and beautiful configurations can
form when three or more bubbles are conjoined
(Sullivan).

An outstanding problem involving bubbles is the
determination of the arrangements of bubbles with
the smallest SURFACE AREA which enclose and sepa-
rate n given volumes in space.

See also DOUBLE BUBBLE, PLATEAU’S LAWS, PLA-

TEAU’S PROBLEM, SPHERE
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Buchberger’s Algorithm
The algorithm for the construction of a GRÖ BNER

BASIS from an arbitrary ideal basis.

See also GRÖ BNER BASIS
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Buchowski Paradox
A paradox arising in the use of comparative adjec-
tives. Suppose you have exactly two brothers, both of
whom are older than you are. Then the following
apparently false statement is actually true: "My
younger brother is older than I am."

Buckminster Fuller Dome
GEODESIC DOME

Buffon’s Needle Problem

Find the probability P(l;d) that a needle of length l

will land on a line, given a floor with equally spaced
PARALLEL LINES a distance d apart. The problem was
first posed by the French naturalist Buffon in 1733,
and reproduced with the solution by Buffon in 1777.
For l5d;

P(l; d)�g
2p

0

l cos uj j
d

du

2p
�

l

2pd
4g

p=2

0

cos u du

�
2l

pd
[sin u]p=2

0 �
2l

pd
: (1)



For l ]d; the solution is slightly more complicated,

P(l; d) �
1

pd
d p �2 sin�1 d

l

 !" #
�2l 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

d2

l2

s !( )
(2)

(Uspensky 1937, p. 252; Kunkel).
Several attempts have been made to experimentally
determine p by needle-tossing. For a discussion of the
relevant statistics and a critical analysis of one of the
more accurate (and least believable) needle-tossings,
see Badger (1994). Uspensky (1937, pp. 112 �/113)
discusses experiments conducted with 2520, 3204,
and 5000 trials. An asymptotically unbiased estima-
tor for p from the needle-tossing experiment is

p̂ �
2rn

N
; (3)

where r �l=d ; n is the number of throws, and N is
the number of line crossings, which has asymptotic
variance

var(p̂) �
p2

n
(1
2p �1) :

5:63

n 
(4)

(Mantel 1953; Solomon 1978, p. 7).

If the needle is longer than the distance between two
lines, then the probability that it intersects at least
one line is

P(l) �
2l

pd
(1 �sin f0) �

2f0

p
; (5)

where cos f0 �d =l (Uspensky 1937, p. 258).

The problem can be extended to a "needle" in the
shape of a CONVEX POLYGON with GENERALIZED

DIAMETER less than d . The probability that the
boundary of the polygon will intersect one of the lines
is given by

P �
p

pd 
; (6)

where p is the PERIMETER of the polygon (Uspensky
1937, p. 253; Solomon 1978, p. 18). A further general-
ization obtained by throwing a needle on a board
ruled with two sets of perpendicular lines is called the
BUFFON-LAPLACE NEEDLE PROBLEM.

See also BUFFON-LAPLACE NEEDLE PROBLEM
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Buffon-Laplace Needle Problem

Find the probability P(l; a; b) that a needle of length
l will land on a line, given a floor with a grid of
equally spaced PARALLEL LINES distances a and b
apart, with lBa; b: The position of the needle can be
specified with points (x, y ) and its orientation with
coordinate f: By symmetry, we can consider a single
rectangle of the grid, so 0BxBa and 0ByBb: In



addition, since opposite orientations are equivalent,
we can take �p=2 B f B p=2 :/
The probability is given by

P(l; a; b) �1 �
g  

p =2

� p=2

F(f) df

pab
; (1)

where

F( f) �ab �bl cos f �la sin fj j�1
2l

2 sin(2f)j j (2)

(Uspensky 1937, p. 256; Solomon 1978, p. 4), giving

P(l; a ; b) �
2l(a � b) � l2

pab
: (3)

If the plane is instead tiled with congruent triangles
with sides a , b , c , and a needle with length l less
than the shortest altitude is thrown, the probability
that the needle is contained entirely within one of the
triangles is given by

P �1 �
(Aa2 � Bb2 � Cc2)l2

2pK2

�
(4a � 4b � 4c � 3l)l

2pK
; (4)

where A , B , and C are the angles opposite a , b , and
c , respectively, and K is the AREA of the triangle. For
equilateral triangles, this simplifies to

P �1 �
2

3

l

a

 !2

�
l
ffiffiffi
3

p

pa
4 �

l

a

 !
(5)

(Uspensky 1937, p. 258).

See also BUFFON’S NEEDLE PROBLEM
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Bug Problem
MICE PROBLEM

Building
A highly structured geometric object used to study
GROUPS which act upon them.

See also COXETER GROUP, GROUP
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Bulirsch-Stoer Algorithm
An algorithm which finds RATIONAL FUNCTION extra-
polations OF THE FORM

Ri(i�1)...(i�m)�
Pm(x)

Pn(x)
�

p0 � p1x � . . . � pmx
m

q0 � q1x � . . . � qnx
n

and can be used in the solution of ORDINARY DIFFER-

ENTIAL EQUATIONS.
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Bullet Nose

A plane curve with implicit equation

a2

x2
�

b2

y2
�1: (1)

In parametric form,

x�a cos t (2)

y�b cot t: (3)

The CURVATURE is

k�
3ab cot t csc t

(b2 csc4 t � a2 sin2 t)3=2 (4)

and the TANGENTIAL ANGLE is

f�tan�1 b csc3 t

a

 !
: (5)
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Bullseye Illusion

Although the inner shaded region has the same area
as the outer shaded ANNULUS, it appears to be larger.
Since the rings are equally spaced,

Ainner � p � 32 �9p
Aouter � p � 52 � p � 42 �9p:

See also ILLUSION
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Bump Function

Given any OPEN SET U in Rn with COMPACT CLOSURE

K � Ū ; there exists SMOOTH FUNCTIONS which are
identically one on U and vanish arbitrarily close to U .
One way to express this more precisely is that for any
OPEN SET V containing K , there is a SMOOTH FUNC-

TION f such that

1. f (x) � 1 for all x � U and
2. f (x) � 0 for all x Q V :/

A function f that satisfies (1) and (2) is called a bump
function. If f f � 1 then by rescaling f , namely fk(x) �
knf (kx) ; one gets a sequence of smooth functions
which converges to the DELTA FUNCTION.

See also COMPACT SUPPORT, CONVOLUTION, DIRAC

DISTRIBUTION, SMOOTH FUNCTION

Bumping Algorithm
Given a PERMUTATION fp1 ; p2 ; . . . ; pn g of f1; . . . ; ng;
the bumping algorithm constructs a standard YOUNG

TABLEAU by inserting the pi one by one into an
already constructed YOUNG TABLEAU. To apply the
bumping algorithm, start with ffp1 gg; which is a
YOUNG TABLEAU. If p1 through pk have already been
inserted, then in order to insert pk�1 ; start with the
first line of the already constructed YOUNG TABLEAU

and search for the first element of this line which is
greater than pk �1 : If there is no such element, append
pk�1 to the first line and stop. If there is such an
element (say, pp); exchange pp for pk �1 ; search the
second line using pp ; and so on.

See also TABLEAU CLASS, YOUNG TABLEAU
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Bundle

The term "bundle" is an abbreviated form of the full
term FIBER BUNDLE. Depending on context, it may
mean one of the special cases of FIBER BUNDLES, such
as a VECTOR BUNDLE or a PRINCIPAL BUNDLE. Bundles
are so named because they contain a collection of
objects which, like a bundle of hay, are held together
in a special way. All of the fibers line up–or at least
they line up to nearby fibers.
LOCALLY, a bundle looks like a PRODUCT MANIFOLD in
a TRIVIALIZATION. The graph of a function f sits inside
the product as (x ; f (x)): The SECTIONS of a bundle
generalize functions in this way. It is necessary to use
bundles when the range of a function only makes
sense locally, as in the case of a VECTOR FIELD on the
SPHERE.

Bundles are a special kind of SHEAF.

See also FIBER BUNDLE, JET BUNDLE, LINE BUNDLE,
PRINCIPAL BUNDLE, SHEAF, TANGENT BUNDLE, VEC-

TOR BUNDLE

Bundle Map
A bundle map is a map between bundles along with a
compatible map between the BASE MANIFOLDS. Sup-
pose p : X 0 M and q : Y 0 N are two BUNDLES, then



F : X 0 Y

is a bundle map if there is a map f : M 0 N such that
q(F(x)) �f (p(x)) for all x � X : In particular, the FIBER

of X over a point m � M ; gets mapped to the fiber of Y
over f (m) � N :/

In the language of CATEGORY THEORY, the above
diagram COMMUTES. To be more precise, the induced
map between fibers has to be a map in the category of
the fiber. For instance, in a bundle map between
VECTOR BUNDLES the fiber over m � M is mapped to
the fiber over f (m) � M by a LINEAR TRANSFORMATION.

For example, when f : M 0 N is a SMOOTH MAP

between SMOOTH MANIFOLDS then df : TM 0 TN is
the differential, which is a bundle map between the
tangent bundles. Over any point in m � M ; the
tangent vectors at m get mapped to tangent vectors
at f (m) � N by the JACOBIAN.

See also BUNDLE, COMMUTATIVE DIAGRAM, FIBER

(BUNDLE), JACOBIAN, PRINCIPAL BUNDLE, VECTOR

BUNDLE

Buniakowsky Inequality
SCHWARZ’S INEQUALITY

Burali-Forti Paradox
In the theory of transfinite ORDINAL NUMBERS,

1. Every WELL ORDERED SET has a unique ORDINAL

NUMBER,
2. Every segment of ordinals (i.e., any set of
ordinals arranged in natural order which contains
all the predecessors of each of its elements) has an
ORDINAL NUMBER which is greater than any
ordinal in the segment, and
3. The set B of all ordinals in natural order is well
ordered.

Then by statements (3) and (1), B has an ordinal b:
Since b is in B , it follows that bBb by (2), which is a
contradiction.

See also ORDINAL NUMBER

References
Copi, I. M. "The Burali-Forti Paradox." Philos. Sci. 25, 281�/

286, 1958.

Curry, H. B. Foundations of Mathematical Logic. New York:
Dover, p. 5, 1977.

Erickson, G. W. and Fossa, J. A. Dictionary of Paradox.
Lanham, MD: University Press of America, pp. 29�/30,
1998.

Mirimanoff, D. "Les antinomies de Russell et de Burali-Forti
et le problème fondamental de la théorie des ensembles."
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Burau Representation
Gives a MATRIX representation bi of a BRAID GROUP in
terms of (n�1)�(n�1) MATRICES. A �t always
appears in the (i, i ) position.

b1�

�t 0 0 . . . 0
�1 1 0 . . . 0

0 0 1 . . . 0
n n n ::: n
0 0 1 . . . 1

2
66664

3
77775 (1)

bi�

1 . . . 0 0 . . . 0
n ::: n n ::: n
0 . . . �t 0 . . . 0
0 . . . �t 0 . . . 0
0 . . . �1 1 . . . 0
0

::: 0 0
::: n

0 . . . 0 0 . . . 1

2
666666664

3
777777775

(2)

bn�1�

1 0 . . . 0 0
0 1 . . . 0 0
n n ::: n n
0 0 . . . 0 �t
0 0 . . . 0 �t

2
66664

3
77775 (3)

Let C be the MATRIX PRODUCT of BRAID WORDS, then

det(1 �C)

1 � t � . . . � tn�1
�DL; (4)

where DL is the ALEXANDER POLYNOMIAL and det is
the DETERMINANT.
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Burgers’ Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�uux�nuxx

(Benton and Platzman 1972; Zwillinger 1995, p. 417;
Zwillinger 1997, p. 130). The so-called nonplanar
Burgers equation is given by

ut�uux�
Ju

2t
�1

2duxx

(Sachdev and Nair 1987; Zwillinger 1997, p. 131).
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Burkhardt Quartic
The VARIETY which is an invariant of degree four and
is given by the equation

y4
0 �y0(y3

1 �y3
2 �y3

3 �y3
4) �3y1y2y3y4 �0 :

See also QUARTIC EQUATION
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Bü rmann’s Theorem
Bürmann’s theorem deals with the expansion of
functions in powers of another function. Let f(z) be
a function of z which is analytic in a closed region S ,
of which a is an interior point, and let f(a) �b:
Suppose also that f?(a) "0: Then TAYLOR’S THEOREM

furnishes the expansion

f(z) �b � f?(a)(z �a) �
fƒ(a)

2!
(z �a)2 �. . . ; (1)

and if it is legitimate to revert this series, we obtain

z �a �
f(z) � b

f?(a)
�

1

2

f ƒ(a)

[ f?(a)]3 [ f(z) �b]2 �. . . ; (2)

which expresses z as an ANALYTIC FUNCTION of the
variable f(z) �b for sufficiently small values of
z �aj j: If then f (z) is analytic near z �a , it follows

that f (z) is an ANALYTIC FUNCTION of f(z) �b when
z �aj j is sufficiently small, and so there will be an

expansion in the form

f (z) �f (a) �a1[ f(z) �b] �
a2

2!
[ f(z) �b]2 �

a3

3!
[ f(z) �b]3

�. . .  (3)

The actual coefficients in the expansion are given by
the following theorem, which is generally known as
Bürmann’s theorem. Let c(z) be a function of z

defined by the equation

c(z) �
z � a

f(z) � b 
: (4)

Then an ANALYTIC FUNCTION f (z) can, in a certain
domain of values of z , be expanded in the form

f (z) �f (a) �
Xn�1

m�1

[ f(z) � b]m

m!

dm�1

dam�1 
ff ?(a)[ c(a)]m g

�Rn ; (5)

where the remainder term is

Rn �
1

2pi g
x

a gg
f(z) � b

f(t) � b

" #n�1
f ?(t) f?(z) dt dz

f(t) � f(z)
; (6)

and g is a CONTOUR in the t -plane enclosing the points
a and z such that if z is any point inside g; the
equation f(t)�f(z) has no roots on or inside the
CONTOUR except a simple root t�z:/

TEIXEIRA’S THEOREM is extended form of Bürmann’s
theorem. The LAGRANGE EXPANSION gives another
such extension.

See also DARBOUX’S FORMULA, LAGRANGE EXPANSION,
LAGRANGE INVERSION THEOREM, TAYLOR SERIES,
TEIXEIRA’S THEOREM
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Burnside Problem
A problem originating with W. Burnside (1902), who
wrote, "A still undecided point in the theory of
discontinuous groups is whether the ORDER of a
GROUP may be not finite, while the order of every
operation it contains is finite." This question would
now be phrased as "Can a finitely generated group be
infinite while every element in the group has finite
order?" (Vaughan-Lee 1990). This question was an-
swered by Golod (1964) when he constructed finitely
generated infinite P -GROUP. These GROUPS, however,
do not have a finite exponent.

Let Fr be the FREE GROUP of RANK r and let N be the
NORMAL SUBGROUP generated by the set of nth
POWERS fgn g �Frg:j Then N is a normal subgroup of
Fr: We define B(r; n)�Fr=N to be the QUOTIENT

GROUP. We call B(r; n) the r -generator Burnside
group of exponent n . It is the largest r -generator
group of exponent n , in the sense that every other



such group is a HOMOMORPHIC image of B(r ; n) : The
Burnside problem is usually stated as: "For which
values of r and n is B(r; n) a FINITE GROUP?"

An answer is known for the following values. For
r �1, B(1; n) is a CYCLIC GROUP of ORDER n . For
n �2, B(r ; 2) is an elementary ABELIAN 2-group of
ORDER 2r : For n �3, B(r ; 3) was proved to be finite by
Burnside. The ORDER of the B(r ; 3) groups was
established by Levi and van der Waerden (1933),
namely 3a where

a � r �
r
2

� �
�

r
3

� �
; (1)

where (n
k) is a BINOMIAL COEFFICIENT. For n �4,

B(r ; 4) was proved to be finite by Sanov (1940).
Groups of exponent four turn out to be the most
complicated for which a POSITIVE solution is known.
The precise nilpotency class and derived length are
known, as are bounds for the ORDER. For example,

B(2; 4)j j�212 (2)

B(3; 4)j j�269 (3)

B(4; 4)j j�2422 (4)

B(5; 4)j j�22728 ; (5)

while for larger values of r the exact value is not yet
known. For n �6, B(r ; 6) was proved to be finite by
Hall (1958) with ORDER 2a3b ; where

a �1 �(r �1)3c (6)

b � 1 � (r � 1)2r (7)

c � r �
r
2

� �
�

r
3

� �
: (8)

No other Burnside groups are known to be finite. On
the other hand, for r �2 and n ] 665; with n ODD,
B(r ; n) is infinite (Novikov and Adjan 1968). There is
a similar fact for r �2 and n a large POWER of 2.

E. Zelmanov was awarded a FIELDS MEDAL in 1994 for
his solution of the "restricted" Burnside problem.

See also FREE GROUP
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Burnside’s Conjecture
This entry contributed by NICOLAS BRAY

In Note M, Burnside (1955) states, "The contrast that
these results shew between groups of odd and of even
order suggests inevitably that simple groups of odd
order do not exist." Of course, SIMPLE GROUPS of prime
order do exist, namely the groups Zp for any prime p .
Therefore, Burnside conjectured that every FINITE

SIMPLE GROUP of non-prime order must have even
order. The conjecture was proven true by Feit and
Thompson (1963).

See also ABELIAN GROUP, FEIT-THOMPSON CONJEC-

TURE, FEIT-THOMPSON THEOREM, SIMPLE GROUP
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Burnside’s Lemma
CAUCHY-FROBENIUS LEMMA

Buschman Transform
The INTEGRAL TRANSFORM defined by

(Kf)(x)�g
�

��

(x2�t2)l=2
� Pl

n

t

x

 !
f(t) dt;

where ya
� is the TRUNCATED POWER FUNCTION and

Pl
n (x) is an associated LEGENDRE POLYNOMIAL.
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Busemann-Petty Problem
If the section function of a centered convex body in
Euclidean n -space /(n]3) is smaller than that of
another such body, is its volume also smaller?
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Busy Beaver
A busy beaver is an n -state, 2-symbol, 5-tuple TURING

MACHINE which writes the maximum possible number
BB(n) of 1s on an initially blank tape before halting.
For n�0, 1, 2, ..., BB(n) is given by 0, 1, 4, 6, 13,



]4098;]136612 ; .... The busy beaver sequence is also
known as RADO’S SIGMA FUNCTION.

See also HALTING PROBLEM, TURING MACHINE
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Butterfly Catastrophe

A CATASTROPHE which can occur for four control
factors and one behavior axis. The butterfly cata-
strophe is the universal unfolding of the singularity
f (x) �x6 of codimension 4, i.e., with four unfolding
parameters. It has the form
F(x; u; v; w ; t) � x6 �ux4 �vx3 �wx2 �tx:/

The equations

x �c(8at3 �24t5)

y �c(�6at2 �15t4)

display such a catastrophe (von Seggern 1993).
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Butterfly Curve

A PLANE CURVE given by the implicit equation

y6 �(x2 �x6) :

See also DUMBBELL CURVE, EIGHT CURVE, PIRIFORM
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Butterfly Effect
Due to nonlinearities in weather processes, a butter-
fly flapping its wings in Tahiti can, in theory, produce
a tornado in Kansas. This strong dependence of
outcomes on very slightly differing initial conditions
is a hallmark of the mathematical behavior known as
CHAOS.

See also CHAOS, LORENZ SYSTEM

Butterfly Fractal

The FRACTAL-like curve generated by the 2-D function

f (x; y)�

(x2 � y2) sin
x � y

a

 !
x2 � y2

:



Butterfly Polyiamond

A 6-POLYIAMOND.
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Butterfly Theorem

Given a CHORD PQ of a CIRCLE, draw any other two
CHORDS AB and CD passing through its MIDPOINT.
Call the points where AD and BC meet PQ X and Y .
Then M is also the MIDPOINT of XY . There are a
number of proofs of this theorem, including those by
W. G. Horner, Johnson (1929, p. 78), and Coxeter
(1987, pp. 78 and 144). The latter concise proof
employs PROJECTIVE GEOMETRY.
The following proof is given by Coxeter and Greitzer
(1967, p. 46). In the figure at right, drop perpendi-
culars x1 and y1 from X and Y to AB , and x2 and y2

from X and Y to CD . Write a �PM �MQ ; x �XM ,
and y �MY , and then note that by SIMILAR TRIAN-

GLES

x

y 
�

x1

y1

�
x2

y2

(1)

x1

y2

�
AX

CY
(2)

x2

y1

�
XD

YB
; (3)

so

x2

y2
�

x1

y1

x2

y2

�
x1

y2

x2

y1

�
AX � XD

CY � YB
�

PX � XQ

PY � YQ

�
(a � x)(a � x)

(a � y)(a � y)
�

a2 � x2

a2 � y2
�

a2

a2
�1; (4)

so x�y . Q.E.D.

See also CHORD, CIRCLE, CYCLIC QUADRILATERAL,
MIDPOINT, QUADRILATERAL

References
Coxeter, H. S. M. Projective Geometry, 2nd ed. New York:

Springer-Verlag, pp. 78 and 144, 1987.
Coxeter, H. S. M. and Greitzer, S. L. "The Butterfly." §2.8 in

Geometry Revisited. Washington, DC: Math. Assoc. Amer.,
pp. 45�/46, 1967.

Johnson, R. A. Modern Geometry: An Elementary Treatise on
the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, p. 78, 1929.



C

Cable
TENSEGRITY

Cable Knot
Let K1 be a TORUS KNOT. Then the SATELLITE KNOT

with COMPANION KNOT K2 is a cable knot on K2 :/

See also SATELLITE KNOT
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Cactus Fractal

A MANDELBROT SET-like FRACTAL obtained by iterat-
ing the map

zn�1�z3
n�(z0�1)zn�z0:

See also FRACTAL, JULIA SET, MANDELBROT SET

Cage Graph

A 3-regular g -cage for g]3 is a CUBIC GRAPH of GIRTH

g with the minimum possible number of points. More
generally, an (v, g )-cage graph is a smallest v -regular
graph with GIRTH g . Cubic cages were first discussed
by Tutte (1947), but the intensive study of cage
graphs did not begin until publication of an article
by Erdos and Sachs (1963). There exists a (3; g)/-cage

for all g]3; and the (3; g)/-cages are unique for g�3
to 8. The number of nonisomorphic (3; g) cages for
g�1, 2, ... are given by 0, 0, 1, 1, 1, 1, 1, 1, 18, 3, ...
(Sloane’s A052453; Gould 1988, Royle). The number
of vertices in the (3; g) cages for g�3, 4, ... are 4, 6,
10, 14, 22, 30, 46, 62, 94, ... (Sloane’s A052454). A
selection of known (3; g)/-cages are illustrated above.
There are a number of special cases (Wong 1982). The
(2; g)/-cage is the CYCLE GRAPH Cg; the (v; 2)/-cage is
the MULTIGRAPH of v edges on two vertices, the (v; 3)/-
cage is the COMPLETE GRAPH Kv�1; and the (v; 4)/-cage
is the BIPARTITE GRAPH Kv; v:/

Computing the number of vertices in a (v, g )-cage is
very difficult for g]5 and n]3 (Wong 1982). The
following table summarizes known cages. A lower
bound for the number of vertices f (v; g) in a (v, g )-
cage is given by

fl(v; g)�

v(v � 1)r � 2

v � 2
for g�2r�1

2(v � 1)r � 2

v � 2
for g�2r

8>>><
>>>:

(Tutte 1967, p. 70; Bollobás 1978, p. 105; Wong 1982).
Sauer (1967ab) has obtained the best known upper
bounds

fu(3; g)�
4
3�

29
12 2g�2 for g odd

2
3�

29
12 2g�2 for g even

(
(1)

fu(n; g)� 2(n�1)g�2 for g odd
2(n�1)g�3 for g even;

�
(2)

with v]4 (Wong 1982).

In the table, Kn denotes a COMPLETE GRAPH, and Km; n

a complete bipartite graph.

g /(3; g)/ /(4; g)/ /(5; g)/ /(6; g)/ /(7; g)/-cage

3 /K4/ /K5/ /K6/ /K7/ /K8/

4 /K3; 3/ /K4; 4/ /K5; 5/ /K6; 6/ /K7; 7/

5 PETERSEN

GRAPH

ROBERTSON

GRAPH

ROBERTSON-

WEGNER

GRAPH

HOFFMAN-

SINGLETON

GRAPH

6 HEAWOOD

GRAPH

7 MCGEE

GRAPH

8 LEVI

GRAPH



g /f (3; g)/ /f (4; g)/ /f (5; g)/ /f (6; g)/ /f (7; g)/

3  4 5 6 7 8

4  6  8 10 12 14

5  10 19 30 40 50

6  14 26 42 62 90

7 24

8 30

9 /[54; 58]/

10 70

11 /B112/

The first (3; 9)/-cage was found by Biggs and Hoare
(1980), and Brinkmann et al. (1995) completed an
exhaustive search yielding all 18 (3; 9)/-cages (Royle).
The three (3; 10)/-cages were found by O’Keefe and
Wong (1980). Computations by McKay and W. Myr-
vold have demonstrated that a (3; 11)/-cage must have
112 vertices (Royle). The single known example was
found by Balaban (1973).

The known (4; g)/- and (5; g)/-cages are shown above
(Wong 1982).

See also CAYLEY GRAPH, CUBIC GRAPH, EXCESS,
HOFFMAN-SINGLETON GRAPH, MOORE GRAPH, REGU-

LAR GRAPH, ROBERTSON GRAPH, ROBERTSON-WEGNER

GRAPH, UNITRANSITIVE GRAPH
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Cahn-Hilliard Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�9 � M(u)9
@f

@u
�K92u

 !" #
:
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Cairo Tessellation

A TESSELLATION appearing in the streets of Cairo and
in many Islamic decorations. Its tiles are obtained by
projection of a DODECAHEDRON, and it is the DUAL

TESSELLATION of the semiregular tessellation of
squares and equilateral triangles.

See also DODECAHEDRON, TESSELLATION
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Cake Cutting
It is always possible to "fairly" divide a cake among n
people using only vertical cuts. Furthermore, it is
possible to cut and divide a cake such that each
person believes that everyone has received 1=n of the
cake according to his own measure (Steinhaus 1983,
pp. 65 �/71). Finally, if there is some piece on which
two people disagree, then there is a way of partition-
ing and dividing a cake such that each participant
believes that he has obtained more than 1 =n of the
cake according to his own measure.

There are also similar methods of dividing collections
of individually indivisible objects among two or more
people when cash payments are used to even up the
final division (Steinhaus 1983, pp. 67 �/68).

Ignoring the height of the cake, the cake-cutting
problem is really a question of fairly dividing a CIRCLE

into n equal AREA pieces using cuts in its plane. One
method of proving fair cake cutting to always be
possible relies on the FROBENIUS-KÖ NIG THEOREM.

See also CIRCLE DIVISION BY CHORDS, CIRCLE DIVI-

SION BY LINES, CYLINDER CUTTING, ENVYFREE,
FROBENIUS-KÖ NIG THEOREM, HAM SANDWICH THEO-

REM, PANCAKE THEOREM, PIZZA THEOREM, SQUARE

DIVISION BY LINES, TORUS CUTTING, VOTING
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Cal
WALSH FUNCTION

Calabi’s Triangle

The one TRIANGLE, in addition to the EQUILATERAL

TRIANGLE, for which the largest inscribed SQUARE can
be inscribed in three different ways. The ratio of the
sides to that of the base is given by x�
1:55138752454 . . . (Sloane’s A046095), where

x�
1

3
�

(�23 � 3i
ffiffiffiffiffiffiffiffi
237

p
)1=3

3 � 22=3
�

11

3[2(�23 � 3i
ffiffiffiffiffiffiffiffi
237

p
)]1=3

is the largest POSITIVE ROOT of

2x3�2x2�3x�2�0;

which has CONTINUED FRACTION [1, 1, 1, 4, 2, 1, 2, 1, 5,
2, 1, 3, 1, 1, 390, ...] (Sloane’s A046096).

See also GRAHAM’S BIGGEST LITTLE HEXAGON, TRIAN-

GLE
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Calabi-Yau Manifold
CALABI-YAU SPACE

Calabi-Yau Space
Calabi-Yau spaces are important in string theory,
where one model posits the geometry of the universe
to consist of a ten-dimensional space OF THE FORM

M �V ; where M is a four dimensional manifold
(space-time) and V is a six dimensional COMPACT

Calabi-Yau space. They are related to KUMMER

SURFACES. Although the main application of Calabi-
Yau spaces is in theoretical physics, they are also
interesting from a purely mathematical standpoint.
Consequently, they go by slightly different names,
depending mostly on context, such as Calabi-Yau
manifolds or Calabi-Yau varieties.

Although the definition can be generalized to any
dimension, they are usually considered to have three
complex dimensions. Since their COMPLEX STRUCTURE

may vary, it is convenient to think of them as having
six real dimensions and a fixed SMOOTH STRUCTURE.

A Calabi-Yau space is characterized by the existence
of a NONVANISHING HARMONIC SPINOR f: This condi-
tion implies that its CANONICAL BUNDLE is TRIVIAL.

Consider the local situation using coordinates. In R6 ;
pick coordinates x1 ; x2 ; x3 and y1 ; y2 ; y3 so that

zj �xj �iyj (1)

gives it the structure of C3 : Then

fz �dz1 ffldz2 ffldz3 (2)

is a local section of the canonical bundle. A unitary
change of coordinates w �Az , where A is a UNITARY

MATRIX, transforms f by det A; i.e.

fw �det Afz : (3)

If the linear transformation A has DETERMINANT 1,
that is, it is a special unitary transformation, then f
is consistently defined as fz or as fw :/

On a Calabi-Yau manifold V , such a f can be defined
globally, and the LIE GROUP SU(3) is very important
in the theory. In fact, one of the many equivalent
definitions, coming from RIEMANNIAN GEOMETRY,
says that a Calabi-Yau manifold is a 2n/-dimensional
manifold whose HOLONOMY GROUP reduces to SU(n):
Another is that it is a CALIBRATED MANIFOLD with a
CALIBRATION FORM c; which is algebraically the same

as the REAL PART of

dz1 ffl. . .ffldzn : (4)

Often, the extra assumptions that V is SIMPLY

CONNECTED and/or COMPACT are made.

Whatever definition is used, Calabi-Yau manifolds, as
well as their MODULI SPACES, have interesting proper-
ties. One is the symmetries in the numbers forming
the HODGE DIAMOND of a compact Calabi-Yau mani-
fold. It is surprising that these symmetries, called
MIRROR SYMMETRY, can be realized by another Calabi-
Yau manifold, the so-called mirror of the original
Calabi-Yau manifold. The two manifolds together
form a MIRROR PAIR. Some of the symmetries of the
geometry of mirror pairs have been the object of
recent research.

See also CALIBRATED MANIFOLD, CANONICAL BUNDLE,
COMPLEX MANIFOLD, DOLBEAULT COHOMOLOGY, HAR-

MONIC, HODGE DIAMOND, KÄ HLER FORM, LIE GROUP,
MIRROR PAIR, MODULI SPACE, SPINOR, VARIETY

Calabi-Yau Variety
CALABI-YAU SPACE

Calculus
In general, "a" calculus is an abstract theory devel-
oped in a purely formal way.

"The" calculus, more properly called ANALYSIS (or
REAL ANALYSIS or, in older literature, INFINITESIMAL

ANALYSIS) is the branch of mathematics studying the
rate of change of quantities (which can be interpreted
as SLOPES of curves) and the length, AREA, and
VOLUME of objects. The calculus is sometimes divided
into DIFFERENTIAL and INTEGRAL CALCULUS, con-
cerned with DERIVATIVES

d

dx
f (x)

and INTEGRALS

g f (x) dx;

respectively.

While ideas related to calculus had been known for
some time (Archimedes’ EXHAUSTION METHOD was a
form of calculus), it was not until the independent
work of Newton and Leibniz that the modern elegant
tools and ideas of calculus were developed. Even so,
many years elapsed until the subject was put on a
mathematically rigorous footing by mathematicians
such as Weierstrass.

See also ARC LENGTH, AREA, CALCULUS OF VARIA-

TIONS, CHANGE OF VARIABLES THEOREM, DERIVATIVE,
DIFFERENTIAL CALCULUS, ELLIPSOIDAL CALCULUS,
EXTENSIONS CALCULUS, FLUENT, FLUXION, FRAC-



TIONAL CALCULUS, FUNCTIONAL CALCULUS, FUNDA-

MENTAL THEOREMS OF CALCULUS, HEAVISIDE CALCU-

LUS, INTEGRAL, INTEGRAL CALCULUS, JACOBIAN,
LAMBDA CALCULUS, KIRBY CALCULUS, MALLIAVIN

CALCULUS, PREDICATE CALCULUS, PROPOSITIONAL

CALCULUS, SLOPE, STOCHASTIC CALCULUS, TENSOR

CALCULUS, UMBRAL CALCULUS, VOLUME
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Calculus of Variations
A branch of mathematics which is a sort of general-
ization of CALCULUS. Calculus of variations seeks to
find the path, curve, surface, etc., for which a given
FUNCTION has a STATIONARY VALUE (which, in physi-
cal problems, is usually a MINIMUM or MAXIMUM).
Mathematically, this involves finding STATIONARY

VALUES of integrals OF THE FORM

i �g
a

b

f (y; ẏ; x) dx : (1)

i has an extremum only if the EULER-LAGRANGE

DIFFERENTIAL EQUATION is satisfied, i.e., if

@f

@y 
�

d

dx

@f

@ ̇y

 !
�0: (2)

the FUNDAMENTAL LEMMA OF CALCULUS OF VARIA-

TIONS states that, if

g
b

a

M(x)h(x) dx �0 (3)

for all h(x) with CONTINUOUS second PARTIAL DERIVA-

TIVES, then

M(x) �0 (4)

on (a, b ).

A generalization of calculus of variations known as
MORSE THEORY (and sometimes called "calculus of
variations in the large" uses nonlinear techniques to
address variational problems.

See also BELTRAMI IDENTITY, BOLZA PROBLEM, BRA-

CHISTOCHRONE PROBLEM, CATENARY, ENVELOPE THE-

OREM, EULER-LAGRANGE DIFFERENTIAL EQUATION,
ISOPERIMETRIC PROBLEM, ISOVOLUME PROBLEM, LIN-

DELOF’S THEOREM, MORSE THEORY, PLATEAU’S PRO-

BLEM, POINT-POINT DISTANCE–2-D, POINT-POINT

DISTANCE–3-D, ROULETTE, SKEW QUADRILATERAL,
SPHERE WITH TUNNEL, SURFACE OF REVOLUTION,
UNDULOID, WEIERSTRASS-ERDMAN CORNER CONDI-

TION
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Calcus

1 calcus � 1
2304:

See also HALF, QUARTER, SCRUPLE, UNCIA, UNIT

FRACTION

Calderón’s Formula

f (x) �Ccg
�

��
g

�

��

f ; ca; b
� 

ca; b(x)a �2 da db ;

where

ca ; b(x) � aj j�1 =2
c

x � b

a

 !
:

This result was originally derived using HARMONIC

ANALYSIS, but also follows from a WAVELETS view-
point.

C*-Algebra
A special type of B*-ALGEBRA in which the INVOLU-

TION is the ADJOINT operator in a HILBERT SPACE.

See also B*-ALGEBRA, K -THEORY
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Caliban Puzzle
A puzzle in LOGIC in which one or more facts must be
inferred from a set of given facts.

Calibration Form
A calibration form on a RIEMANNIAN MANIFOLD M is a
DIFFERENTIAL K -FORM f such that

1. f is a CLOSED FORM.
2. The COMASS of f;

sup
v �fflpTM ; vj j�1

f(v)j j  (1)

defined as the largest value of f on a p vector of p -
volume one, equals 1.

A p -dimensional submanifold is calibrated when f
restricts to give the VOLUME FORM.

It is not hard to see that a calibrated submanifold N
minimizes its volume among objects in its HOMOLOGY

CLASS. By STOKES’ THEOREM, if N ? represents the

same homology class, then

gN

f �gN ?
f: (2)

Since

vol(N) �gN

f (3)

and

vol(N ?) ]gN ?
f; (4)

it follows that the volume of N is less than or equal to
the volume of N ?:/

A simple example is dx on the plane, for which the
lines y �c are calibrated submanifolds. In fact, in this
example, the calibrated submanifolds give a FOLIA-

TION. On a KÄ HLER MANIFOLD, the KÄ HLER FORM v is
a calibration form, which is INDECOMPOSABLE. For
example, on

C2 � (x1 �y1i ; x2 �y2i)f g; (5)

the Kähler form is

dx1 ffldy1 �dx2 ffldy2 : (6)

On a KÄ HLER MANIFOLD, the calibrated submanifolds
are precisely the complex submanifolds. Conse-
quently, the complex submanifolds are locally volume
minimizing.

See also KÄ HLER FORM, KÄ HLER MANIFOLD, VOLUME

FORM

Calogero-Degasperis-Fokas Equation
The PARTIAL DIFFERENTIAL EQUATION

uxxx �
1
8 u

3
x �ux(Aeu �Be�u) �0:
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Calugareanu Theorem
Letting Lk be the LINKING NUMBER of the two
components of a ribbon, Tw be the TWIST, and Wr be
the WRITHE, then

Lk(K)�Tw(K)�Wr(K):

(Adams 1994, p. 187).

See also GAUSS INTEGRAL, LINKING NUMBER, TWIST,
WRITHE
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Calvary Cross

See also CROSS

Cameron’s Sum-Free Set Constant
A set of POSITIVE INTEGERS S is sum-free if the
equation x �y �z has no solutions x , y , z � S: The
probability that a random sum-free set S consists
entirely of ODD INTEGERS satisfies

0 :21759 5c 50 :21862 :
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Campbell’s Theorem
Any n -dimensional RIEMANNIAN MANIFOLD can be
locally EMBEDDED into an (n �1)/-dimensional mani-
fold with RICCI CURVATURE Rab �0: A similar version
of the theorem for a PSEUDO-RIEMANNIAN MANIFOLD

states that any n -dimensional PSEUDO-RIEMANNIAN

MANIFOLD can be locally and isometrically embedded
in an n(n �1)=2/-dimensional PSEUDO-EUCLIDEAN

SPACE.

See also EMBEDDING, PSEUDO-EUCLIDEAN SPACE,
PSEUDO-RIEMANNIAN MANIFOLD, RICCI CURVATURE,
RIEMANNIAN MANIFOLD
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Cancellation
ANOMALOUS CANCELLATION

Cancellation Law
If bc �bd (mod a) and (b; a) �1 (i.e., a and b are
RELATIVELY PRIME), then c �d (mod a) :/

See also CONGRUENCE
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Cannonball Problem
Find a way to stack a SQUARE of cannonballs laid out
on the ground into a SQUARE PYRAMID (i.e., find a
SQUARE NUMBER which is also SQUARE PYRAMIDAL).
This corresponds to solving the DIOPHANTINE EQUA-

TION

Xk

i �1

i2 �1
6 k(1 �k)(1 �2k) �N2

for some pyramid height k . The only solution is
k �24, N �70, corresponding to 4900 cannonballs
(Ball and Coxeter 1987, Dickson 1952), as conjectured
by Lucas (1875, 1876) and proved by Watson (1918).

See also SPHERE PACKING, SQUARE NUMBER, SQUARE

PYRAMID, SQUARE PYRAMIDAL NUMBER
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Canonical
The word canonical is used to indicate a particular
choice from of a number of possible conventions. This



convention allows a mathematical object or class of
objects to be uniquely identified or standardized. For
example, the RIGHT-HAND RULE for the CROSS PRO-

DUCT is a convention, which corresponds to the
canonical ORIENTATION in R3 :/

See also BASIS (VECTOR SPACE), CANONICAL BRICK,
CANONICAL BUNDLE, CANONICAL TRANSFORMATION,
RATIONAL CANONICAL FORM

Canonical Box Matrix
JORDAN BLOCK

Canonical Brick
A 1�2 �4 RECTANGULAR PARALLELEPIPED.

See also BRICK

References
Gardner, M. "Mathematical Games: In Which a Mathema-

tical Aesthetic is Applied to Modern Minimal Art." Sci.
Amer. 239, 22�/32, Nov. 1978.

Canonical Bundle
The canonical bundle is a HOLOMORPHIC LINE BUNDLE

on a COMPLEX MANIFOLD which is determined by its
COMPLEX STRUCTURE. On a coordinate chart
(z1 ; . . . zn) ; it is spanned by the nonvanishing section
dz1 ffl. . .ffldzn : The TRANSITION FUNCTION between
COORDINATE CHARTS is given by the determinant of
the JACOBIAN of the coordinate change.

The canonical bundle is defined in a similar way to
the HOLOMORPHIC TANGENT BUNDLE. In fact, it is the
nth EXTERIOR POWER of the DUAL BUNDLE to the
HOLOMORPHIC TANGENT BUNDLE.

Canonical Form

A clear-cut way of describing every object in a class in
a ONE-TO-ONE manner.

See also NORMAL FORM, ONE-TO-ONE
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Canonical Polygon

A closed polygon whose vertices lie on a POINT

LATTICE and whose edges consist of vertical and
horizontal steps of unit length or diagonal steps (at
angles which are multiples of 45 8 with respect to the
lattice axes) of length

ffiffiffi
2

p
: In addition, no two steps

may be taken in the same direction, no edge inter-
sections are allowed, and no point may be a vertex of
two edges. The numbers of distinct canonical poly-
gons of n �1, 2, ... sides are 0, 0, 1, 3, 3, 9, 13, 48, 125,
... (Sloane’s A052436).

There are exactly eight distinct convex canonical
polygons, illustrated above.
The concept can also be generalized to diagonals
rotated with respect to the lattice axes.

See also GOLYGON, LATTICE POLYGON
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Canonical Polyhedron

A POLYHEDRON is said to be canonical if all its EDGES

touch a SPHERE and the center of gravity of their
contact points is the center of that SPHERE. Each
combinatorial type of (GENUS zero) polyhedron con-
tains just one canonical version. The ARCHIMEDEAN

SOLIDS and their DUALS are all canonical.
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Canonical Transformation
SYMPLECTIC DIFFEOMORPHISM

Cantor Comb
CANTOR SET

Cantor Diagonal Argument
CANTOR DIAGONAL METHOD

Cantor Diagonal Method
A clever technique used by Georg Cantor to show that
the INTEGERS and REALS cannot be put into a ONE-TO-

ONE correspondence (i.e., the UNCOUNTABLY INFINITE

set of REAL NUMBERS is "larger" than the COUNTABLY

INFINITE set of INTEGERS).

It proceeds by first considering a countably infinite
list of elements from a set S , each of which is an
infinite set (in the case of the REALS, the decimal
expansion of each REAL). A new member S? of S is
then created by arranging its nth term to differ from
the nth term of the nth member of S . This shows that
S is not COUNTABLE, since any attempt to put it in
one-to-one correspondence with the integers will fail
to include some elements of S . The argument is
rather subtle, and requires some care to describe
clearly.

See also CARDINALITY, CONTINUUM HYPOTHESIS,
COUNTABLE SET, COUNTABLY INFINITE
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Cantor Diagonal Slash
CANTOR DIAGONAL METHOD

Cantor Dust

A FRACTAL which can be constructed using STRING

REWRITING by creating a matrix three times the size

of the current matrix using the rules

line 1 : "+" 0 "+ +"; " " 0 " "

line 2 : "+" 0 " "; " " 0 " "

line 3 : "+" 0 "+ +"; " " 0 " "

Let Nn be the number of black boxes, Ln the length of
a side of a box, and An the fractional AREA of black
boxes after the nth iteration.

Nn �4n (1)

Ln �(1
3)

n �3�n (2)

An �L2
nNn �(4

9)
n : (3)

The CAPACITY DIMENSION is therefore

dcap �� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln (4n)

ln (3�n)
�

2 ln 2

ln 3

:1:26186: (4)

See also BOX FRACTAL, SIERPINSKI CARPET, SIERPINS-

KI SIEVE
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Cantor Function
The function whose values are

1

2

c1

2
�. . .�

cm�1

2m�1

�
2

2m

 !

for any number between

a�
c1

3
�. . .�

cm�1

3m�1
�

1

3m

and

b�
c1

3
�. . .�

cm�1

3m�1
�

2

3m
:

Chalice (1991) shows that any real-valued function
F(x) on [0; 1] which is MONOTONE INCREASING and
satisfies

1. F(0)�0;/
2. F(x=3)�F(x)=2;/
3. F(1�x)�1�F(x)/

is the Cantor function.



The DEVIL’S STAIRCASE is sometimes also called the
Cantor function (Devaney 1987, p. 110).

See also CANTOR SET, DEVIL’S STAIRCASE
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Cantor Set

The Cantor set /(T�) is given by taking the interval
[0; 1] (set T0) ; removing the middle third (/T1);
removing the middle third of each of the two remain-
ing pieces (/T2) ; and continuing this procedure ad
infinitum. It is therefore the set of points in the
INTERVAL [0; 1] whose ternary expansions do not
contain 1, illustrated above.
This produces the SET of REAL NUMBERS fxg such that

x �
c1

3
�. . .�

cn

3n 
�. . . ; (1)

where cn may equal 0 or 2 for each n . This is an
infinite, PERFECT SET. The total length of the LINE

SEGMENTS in the nth iteration is

ln �
2

3

 !n

; (2)

and the number of LINE SEGMENTS is Nn �2n ; so the
length of each element is

en �
l

N 
�

1

3

 !n

(3)

and the CAPACITY DIMENSION is

dcap �� lim
e00�

ln N

ln e
�� lim

n0�

n ln 2

�n ln 3 
�

ln 2

ln 3

�0 :630929 . . . : (4)

The Cantor set is nowhere DENSE, so it has LEBESGUE

MEASURE 0.

A general Cantor set is a CLOSED SET consisting
entirely of BOUNDARY POINTS. Such sets are UNCOUN-

TABLE and may have 0 or POSITIVE LEBESGUE MEA-

SURE. The Cantor set is the only totally disconnected,
perfect, COMPACT METRIC SPACE up to a HOMEO-

MORPHISM (Willard 1970).

See also ALEXANDER’S HORNED SPHERE, ANTOINE’S

NECKLACE, CANTOR FUNCTION, CLOSED SET,
SCRAWNY CANTOR SET
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Cantor Square Fractal

A FRACTAL which can be constructed using STRING

REWRITING by creating a matrix three times the size
of the current matrix using the rules

line 1 : "+" 0 "+++"; " " 0 " "

line 2 : "+" 0 "+ +"; " " 0 " "

line 3 : "+" 0 "+++"; " " 0 " "

The first three steps are illustrated above.

The size of the unit element after the nth iteration is

Ln �
1

3

 !n

and the number of elements is given by the RECUR-

RENCE RELATION

Nn �4Nn�1 �5(9n)

where N1 �5; and the first few numbers of elements
are 5, 65, 665, 6305, .... Expanding out gives

Nn �5
Xn

k �0

4n�k9k �1 �9n �4n :

The CAPACITY DIMENSION is therefore

D �� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln(9n � 4n)

ln(3�n)
�� lim

n0�

ln(9n)

ln(3�n)

�
ln 9

ln 3
�

2 ln 3

ln 3
�2:

Since the DIMENSION of the filled part is 2 (i.e., the
SQUARE is completely filled), Cantor’s square fractal is
not a true FRACTAL.

See also BOX FRACTAL, CANTOR DUST
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Cantor-Dedekind Axiom
The points on a line can be put into a ONE-TO-ONE

correspondence with the REAL NUMBERS.

See also CARDINAL NUMBER, CONTINUUM HYPOTH-

ESIS, DEDEKIND CUT

Cantor’s Equation

ve � e ;

where v is an ORDINAL NUMBER and e is an INACCES-

SIBLE CARDINAL.

See also CARDINAL NUMBER, INACCESSIBLE CARDINAL,
ORDINAL NUMBER
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Cantor’s Intersection Theorem
A theorem about (or providing an equivalent defini-
tion of)) COMPACT SETS, originally due to Georg
Cantor. Given a decreasing sequence of bounded
nonempty CLOSED SETS

C1 ‡C2 ‡C3 ‡. . .

in the real numbers, then Cantor’s intersection
theorem states that there must exist a point p in
their intersection, p � Cn for all n . For example, 0 �S
[0; 1=n] : It is also true in higher DIMENSIONS of
EUCLIDEAN SPACE.

Note that the hypotheses stated above are crucial.
The infinite intersection of open intervals may be
empty, for instance S (0; 1=n) : Also, the infinite
intersection of unbounded closed sets may be EMPTY,
e.g., S [n; �] :/

Cantor’s intersection theorem is closely related to the
HEINE-BOREL THEOREM and BOLZANO-WEIERSTRASS

THEOREM, each of which can be easily derived from
either of the other two. It can be used to show that the
CANTOR SET is nonempty.

See also BOLZANO-WEIERSTRASS THEOREM, BOUNDED

SET, CANTOR SET, CLOSED SET, COMPACT SET, HEINE-

BOREL THEOREM, INTERSECTION, REAL NUMBER,
TOPOLOGICAL SPACE

Cantor’s Paradox
The SET of all SETS is its own POWER SET. Therefore,
the CARDINALITY of the SET of all SETS must be bigger
than itself.

See also CANTOR’S THEOREM, POWER SET

References
Curry, H. B. Foundations of Mathematical Logic. New York:

Dover, p. 5, 1977.
Erickson, G. W. and Fossa, J. A. Dictionary of Paradox.

Lanham, MD: University Press of America, pp. 32 �/33,
1998.

Cantor’s Theorem
The CARDINAL NUMBER of any set is lower than the
CARDINAL NUMBER of the set of all its subsets. A
COROLLARY is that there is no highest � (ALEPH).

See also CANTOR’S PARADOX

Cap

A topological object produced by puncturing a surface
a single time, attaching two ZIPS around the puncture
in opposite directions, distorting the hole so that the
zips line up, and then zipping up. The cap is
topologically trivial in the sense that a surface with
a cap is topologically equivalent to a surface without
one.

See also CROSS-CAP, CROSS-HANDLE, CUP, HANDLE,
SPHERICAL CAP
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Capacity
TRANSFINITE DIAMETER

Capacity Dimension
A DIMENSION also called the FRACTAL DIMENSION,
HAUSDORFF DIMENSION, and HAUSDORFF-BESICOV-

ITCH DIMENSION in which nonintegral values are
permitted. Objects whose capacity dimension is dif-
ferent from their TOPOLOGICAL DIMENSION are called
FRACTALS. The capacity dimension of a compact
METRIC SPACE X is a REAL NUMBER dcapicity such that



if n( e) denotes the minimum number of open sets of
diameter less than or equal to e; then n( e) is propor-
tional to e�D as e 0 0: Explicitly,

dcapacity �� lim
e00�

ln N

ln e

(if the limit exists), where N is the number of
elements forming a finite COVER of the relevant
METRIC SPACE and e is a bound on the diameter of
the sets involved (informally, e is the size of each
element used to cover the set, which is taken to
approach 0). If each element of a FRACTAL is equally
likely to be visited, then dcapacity �dinformation ; where
dinformation is the INFORMATION DIMENSION. The capa-
city dimension satisfies

dcorrelation 5dinformation 5dcapacity

where dcorrelation is the CORRELATION DIMENSION, and
is conjectured to be equal to the LYAPUNOV DIMEN-

SION.

See also CORRELATION EXPONENT, DIMENSION, HAUS-

DORFF DIMENSION, KAPLAN-YORKE DIMENSION
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Cap-Cyclide Coordinates

A coordinate system obtained by INVERSION of the
BICYCLIDE COORDINATES. They are given by the

transformation equations

x �
L

a Y
sn m dn n cos c (1)

y �
L

aY
sn m dn n sin c (2)

z �

ffiffiffi
k

p
Pi

2a Y
; (3)

where

L�1 �dn2 
m sn2 n (4)

Y�sn2 m dn2 
n �

Lffiffiffi
k

p �cn m dn m sn n cn n

" #2

(5)

P�
L2

k
�(sn2 m dn2 

n �cn2 m dn2 
m sn2 n cn2 n) ; (6)

and cn x; dn x; and sn x are JACOBI ELLIPTIC FUNC-

TIONS. Surfaces of constant m are ring cyclides with
complicated equations (Moon and Spencer 1988,
p. 133), surfaces of constant n are cap-cyclides with
complicated equations (Moon and Spencer 1988,
p. 133), and surfaces of constant c are half-planes

tan c �
y

x 
: (7)

See also BICYCLIDE COORDINATES, CYCLIDIC COORDI-

NATES, DISK-CYCLIDE COORDINATES, FLAT-RING CY-

CLIDE COORDINATES
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Capping
CUMULATION

Carathéodory Derivative
A function f is Carathéodory differentiable at a if
there exists a function f which is CONTINUOUS at a
such that

f (x) �f (a) � f(x)(x �a) :

Every function which is Carathéodory differentiable
is also FRÉCHET DIFFERENTIABLE.

See also DERIVATIVE, FRÉ CHET DERIVATIVE



Carathéodory’s Fundamental Theorem
Each point in the CONVEX HULL of a set S in Rn is in
the convex combination of n �1 or fewer points of S .

See also CONVEX HULL, HELLY’S THEOREM
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Carathéodory’s Theorem
If V1 and V2 are bounded domains, @V1 ; @V2 are
JORDAN CURVES, and 8 : V1 0 V2 is a CONFORMAL

MAPPING, then 8 (respectively, 8�1) extends one-to-
one and continuously to @V1 (respectively, @V2):/
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Cardano’s Formula
CUBIC EQUATION

Cardinal Addition
Let A and B be any sets with empty INTERSECTION,
and let ½X ½ denote the CARDINAL NUMBER of a SET X .
Then

½A½�½B ½� ½A @ B ½

(Ciesielski 1997, p. 68; Dauben 1990, p. 173; Rubin
1967, p. 274; Suppes 1972, pp. 112 �/113).

It is an interesting exercise to show that cardinal
addition is WELL DEFINED. The main steps are to show
that for any CARDINAL NUMBERS a and b , there exist
disjoint sets A and B with CARDINAL NUMBERS a and
b , and to show that if A and B are disjoint and C and
D disjoint with ½A½� ½C½ and ½B ½� ½D ½ then ½A @ B½�
½C @ D½: The second of these is easy. The first is a little
tricky and requires an appeal to the axioms of SET

THEORY. Also, one needs to restrict the definition of
cardinal to guarantee if a is a cardinal, then there is a
set A satisfying ½A½�a :/

See also CARDINAL MULTIPLICATION, CARDINAL EX-

PONENTIATION
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Cardinal Comparison
For any sets A and B , their CARDINAL NUMBERS

satisfy ½A½5 ½B½ IFF there is a one-to-one function f
from A into B (Rubin 1967, p. 266; Suppes 1972,
pp. 94 and 116). It is easy to show this satisfies the
reflexive and transitive axioms of a PARTIAL ORDER.
However, it is difficult to show the antisymmetry
property, whose proof is known as the SCHRÖ DER-

BERNSTEIN THEOREM. To show the trichotomy prop-
erty, one must use the AXIOM OF CHOICE.

Although an order type can be defined similarly, it
does not seem usual to do so.

See also SCHRÖ DER-BERNSTEIN THEOREM
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Cardinal Exponentiation
Let A and B be any sets, and let ½X ½ be the CARDINAL

NUMBER of a set X . Then cardinal exponentiation is
defined by

½A½½B ½� ½set of all function from B into A½

(Ciesielski 1997, p. 68; Dauben 1990, p. 174; Moore
1982, p. 37; Rubin 1967, p. 275, Suppes 1972, p. 116).

It is easy to show that the CARDINAL NUMBER of the
POWER SET of A is 2 ½A ½; sine ½f0; 1 g½�2 and there is a
natural BIJECTION between the SUBSETS of A and the
functions from A into f0; 1g:/

See also CARDINAL ADDITION, CARDINAL MULTIPLICA-

TION, CARDINAL NUMBER, POWER SET
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Cardinal Multiplication
Let A and B be any sets. Then the product of ½A½ and
½B½ is defined as the CARTESIAN PRODUCT

½A½ + ½B½� ½A�B½

(Ciesielski 1997, p. 68; Dauben 1990, p. 173; Moore
1982, p. 37; Rubin 1967, p. 274; Suppes 1972,
pp. 114�/115).

See also CARDINAL ADDITION, CARDINAL EXPONENTIA-

TION
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Cardinal Number
In common usage, a cardinal number is a number
used in counting (a COUNTING NUMBER), such as 1, 2,
3, ....

In formal SET THEORY, a cardinal number (also called
"the cardinality") is a type of number defined in such
a way that any method of counting SETS using it gives
the same result. (This is not true for the ORDINAL

NUMBERS.) In fact, the cardinal numbers are obtained
by collecting all ORDINAL NUMBERS which are obtain-
able by counting a given set. A set has �0 (ALEPH-0)
members if it can be put into a ONE-TO-ONE corre-
spondence with the finite ORDINAL NUMBERS. The
cardinality of a set is also frequently referred to as the
"power" of a set (Moore 1982, Dauben 1990, Suppes
1972).

In Cantor’s original notation, the symbol for a SET A
annotated with a single overbar Ā indicated A
stripped of any structure besides order, hence it
represented the ORDER TYPE of the set. A double
overbar ¯̄A then indicated stripping the order from the
set and thus indicated the cardinal number of the set.
However, in modern notation, the symbol ½A½ is used
to denote the cardinal number of set.

Cantor, the father of modern SET THEORY, noticed
that while the ORDINAL NUMBERS v �1 ; v �2; ... were
bigger than omega in the sense of order, they were
not bigger in the sense of EQUIPOLLENCE. This led him
to study what would come to be called cardinal
numbers. He called the ordinals v; v �1; ... that are
equipollent to the integers "the second number class"
(as opposed to the finite ordinals, which he called the
"first number class"). Cantor showed

1. The second number class is bigger than the first.
2. There is no class bigger than the first number
class and smaller than the second.
3. The class of real numbers is bigger than the first
number class.

One of the first serious mathematical definitions of
cardinal was the one devised by Gottlob Frege and
Bertrand Russell, who defined a cardinal number ½A½
as the set of all sets EQUIPOLLENT to A . (Moore 1982,
p. 153; Suppes 1972, p. 109). Unfortunately, the
objects produced by this definition are not sets in
the sense of ZERMELO-FRAENKEL SET THEORY, but

rather "PROPER CLASSES" in the terminology of von
Neumann.

Tarski (1924) proposed to instead define a cardinal
number by stating that every set A is associated with
a cardinal number ½A½; and two sets A and B have the
same cardinal number IFF they are EQUIPOLLENT

(Moore 1982, pp. 52 and 214; Rubin 1967, p. 266;
Suppes 1972, p. 111). The problem is that this
definition requires a special axiom to guarantee that
cardinals exist.

A. P. Morse and Dana Scott defined cardinal number
by letting A be any set, then calling ½A½ the set of all
sets EQUIPOLLENT to A and of least possible RANK

(Rubin 1967, p. 270).

It is possible to associate cardinality with a specific
set, but the process required either the AXIOM OF

FOUNDATION or the AXIOM OF CHOICE. However, these
are two of the more controversial ZERMELO-FRAENKEL

AXIOMS. With the AXIOM OF CHOICE, the cardinals can
be enumerated through the ordinals. In fact, the two
can be put into one-to-one correspondence. The AXIOM

OF CHOICE implies that every set can be WELL

ORDERED and can therefore be associated with an
ORDINAL NUMBER.

This leads to the definition of cardinal number for a
SET A as the least ORDINAL NUMBER b such that A
and b are EQUIPOLLENT. In this model, the cardinal
numbers are just the INITIAL ORDINALS. This defini-
tion obviously depends on the AXIOM OF CHOICE,
because if the AXIOM OF CHOICE is not true, then
there are sets that cannot be well ordered. Cantor
believed that every set could be well ordered and used
this correspondence to define the �/s ("alephs"). For
any ORDINAL NUMBER a; �a�va:/

An INACCESSIBLE CARDINAL cannot be expressed in
terms of a smaller number of smaller cardinals.

See also ALEPH, ALEPH-0, ALEPH-1, CANTOR-DEDEKIND

AXIOM, CANTOR DIAGONAL SLASH, CARDINAL ADDI-

TION, CARDINAL EXPONENTIATION, CARDINAL MULTI-

PLICATION, CONTINUUM, CONTINUUM HYPOTHESIS,
EQUIPOLLENT, INACCESSIBLE CARDINALS AXIOM, IN-

FINITY, ORDINAL NUMBER, POWER SET, SURREAL

NUMBER, UNCOUNTABLE SET
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Cardinality
CARDINAL NUMBER

Cardioid

The curve given by the POLAR equation

r�a(1�cos u); (1)

sometimes also written

r�2b(1�cos u); (2)

where b�a=2; the CARTESIAN equation

(x2�y2�ax)2�a2(x2�y2); (3)

and the PARAMETRIC EQUATIONS

x�a cos t(1�cos t) (4)

y�a sin t(1�cos t): (5)

The cardioid is a degenerate case of the LIMAÇON. It is
also a 1-CUSPED EPICYCLOID (with r�r ) and is the
CAUSTIC formed by rays originating at a point on the
circumference of a CIRCLE and reflected by the
CIRCLE.

the name cardioid was first used by de castillon in
philosophical transactions of the royal society in
1741. its ARC LENGTH was found by la hire in 1708.
there are exactly three PARALLEL TANGENTS to the
cardioid with any given gradient. also, the TANGENTS

at the ends of any CHORD through the CUSP point are
at RIGHT ANGLES. The length of any CHORD through
the CUSP point is 2a:/

The cardioid may also be generated as follows. Draw
a CIRCLE C and fix a point A on it. Now draw a set of
CIRCLES centered on the CIRCUMFERENCE of C and
passing through A . The ENVELOPE of these CIRCLES is
then a cardioid (Pedoe 1995). Let the CIRCLE C be
centered at the origin and have RADIUS 1, and let the
fixed point be A�(1; 0): Then the RADIUS of a CIRCLE

centered at an ANGLE u from (1, 0) is

r2�(0�cos u)2�(1�sin u)2

�cos2 u�1�2 sin u�sin2 u�2(1�sin u): (6)

If the fixed point A is not on the circle, then the
resulting ENVELOPE is a LIMAÇON instead of a cardi-
oid.

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s�g
t

0

2½cos(1
2 t)½ dt�4a sin(1

2 u) (7)

k�
3½sec(1

2 u)½

4a
(8)

f�3
2 u: (9)

As usual, care must be taken in the evaluation of s(t)
for t > p: Since (7) comes from an integral involving
the ABSOLUTE VALUE of a function, it must be
monotonic increasing. Each QUADRANT can be treated
correctly by defining

n�
t

p

$ %
�1; (10)

where xb c is the FLOOR FUNCTION, giving the formula

s(t)�(�1)1�[n(mod 2)]4 sin(1
2 t)�8 1

2 n
j k

: (11)

The PERIMETER of the curve is



L �g
2 p

0

½2a cos(1
2 u) ½ du �4a g  

p

0

cos(1
2 u) d u

�4a g  
p =2

0

cos f(2 df) �8a g  
p=2

0

cos f d f

�8a[sin f]p =2
0 �8a : (12)

The AREA is

A �1
2 g

2 p

0

r2 du �1
2 a

2 g
2p

0

(1 �2 cos u �cos2 u) du

�1
2 a

2 g
2 p

0

f1 �2 cos u �1
2[1 �cos(2 u)]g du

�1
2 a

2 g
2 p

0

[3
2 �2 cos u �1

2 cos(2 u)] du

�1
2 a

2[3
2 u �2 sin u �1

4 sin(2u)]2p
0 �3

2 pa2 : (13)

See also CARDIOID COORDINATES, CIRCLE, CISSOID,
COIN PARADOX, CONCHOID, EQUIANGULAR SPIRAL,
LEMNISCATE, LIMAÇ ON, MANDELBROT SET
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Cardioid Caustic
The CATACAUSTIC of a CARDIOID for a RADIANT POINT

at the CUSP is a NEPHROID. The CATACAUSTIC for
PARALLEL rays crossing a CIRCLE is a CARDIOID.

Cardioid Coordinates

A coordinate system (m ; n ; c) defined by the coordi-
nate transformation

x �
mn

( m2 � n2)2 cos c (1)

y �
mn

( m2 � n2)2 sin c (2)

z �
1

2

n2 � n2

( m2 � n2)2 (3)

with m; n 50 and c � 0; 2p½ Þ: Surfaces of constant m
are given by the cardioids of revolution intersecting
the positive half of the z -axis

x2 �y2 �z2 �
1

4m2 
[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2 �z2

p
�1]; (4)

surfaces of constant n by the cardioids of revolution
intersecting the negative half of the z -axis

x2�y2�z2�
1

4n2
[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2�z2

p
�z]; (5)

and surfaces of constant c by the half-planes

tan c�
y

x
: (6)

The metric coefficients are

gmm�
1

(m2 � n2)3 (7)

gnn�
1

(m2 � n2)3 (8)

gcc�
m2n2

(m2 � n2)4 (9)

See also CARDIOID



References
Moon, P. and Spencer, D. E. "Cardioid Coordinate ( m; n ; c):/"

Fig. 4.02 in Field Theory Handbook, Including Coordinate
Systems, Differential Equations, and Their Solutions, 2nd
ed. New York: Springer-Verlag, pp. 107 �/109, 1988.

Cardioid Evolute

x �2
3 a �1

3 a cos u(1 �cos u)

y �1
3 a sin u(1 �cos u) :

This is a mirror-image CARDIOID with a?�a=3 :/

Cardioid Inverse Curve
If the CUSP of the cardioid is taken as the INVERSION

CENTER, the cardioid inverts to a PARABOLA.

Cardioid Involute

x �2a �3a cos u(1 �cos u)

y �3a sin u(1 �cos u) :

This is a mirror-image CARDIOID with a?�3a :/

Cardioid Pedal Curve

The PEDAL CURVE of the CARDIOID where the PEDAL

POINT is the CUSP is CAYLEY’S SEXTIC.

Cards
Cards are a set of n rectangular pieces of cardboard
with markings on one side and a uniform pattern on
the other. The collection of all cards is called a "deck,"
and a normal deck of cards consists of 52 cards having
14 distinct values for each of four different "suits."
The suits are called clubs (/$); diamonds (/2) ; hearts /

( +) ; and spades (/&): Spades and clubs are colored
black, while hearts and diamonds are colored red. The
cards of each suit are numbered 1 through 13, where
the special terms ace (1), jack (11), queen (12), and
king (13) are used instead of numbers 1 and 11 �/13.
However, in BRIDGE and a number of other games, the
ace is considered the highest card, and so would be
assigned a value of 14 instead of 1.

The randomization of the order of cards in a deck is
called SHUFFLING. Cards are used in many gambling
games (such as POKER), and the investigation of the
probabilities of various outcomes in card games was
one of the original motivations for the development of
modern PROBABILITY theory.

See also BRIDGE CARD GAME, CLOCK SOLITAIRE, COIN,
COIN TOSSING, CRIBBAGE, DICE, POKER, SHUFFLE

References
Chatto, W. A. Facts and Speculations on the Origin and

History of Playing Cards. Saint Clair Shores, MI: Scho-
larly Press, 1977.

Hargrave, C. P. History of Playing Cards and a Bibliogra-
phy of Cards and Gaming. New York: Dover, 1986.

Horr, N. T. Bibliography of Card Games and of the History
of Playing Cards. Montclair, NJ: Patterson Smith, 1972.

Jessel, F. and Horr, N. T. Bibliographies of Works on
Playing Cards and Gaming. Montclair, NJ: Patterson
Smith, 1972.

Leeming, J. Games and Fun with Playing Cards. New York:
Dover, 1980.

Parlett, D. S. A Dictionary of Card Games. Oxford, England:
Oxford University Press, 1992.

Parlett, D. S. The Oxford Guide to Card Games: A History of
Card Games. Oxford, England: Oxford University Press,
1991.

Parlett, D. S. Solitaire: Aces Up and 399 Other Card Games.
New York: Pantheon, 1991.

Sackson, S. Card Games Around the World. New York:
Dover, 1994.

University of Waterloo. "Playing Cards." http://www.ahs.u-
waterloo.ca/~museum/vexhibit/plcards/plcards.html.

Caret
The symbol ffl which is used to denote partial
conjunction in symbolic logic. It also appears in
several other contexts in mathematics and is some-
times called a "WEDGE". The shape of the caret is
similar to that of the HAT.

See also HAT, WEDGE
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Carleman Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut �ux �v2 �u2

vt �vx �u2 �v2 :
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Carleman’s Inequality
Let fai g

n
i�1 be a SET of POSITIVE numbers. Then

Xn

i�1

(a1a2 . . . ai)
1=i 

5e
Xn

i�1

ai

(which is given incorrectly in Gradshteyn and Ryzhik
1994). Here, the constant E is the best possible, in the
sense that counterexamples can be constructed for
any stricter INEQUALITY which uses a smaller con-
stant. The theorem is suggested by writing a ?i�ap

i in
HARDY’S INEQUALITY

Xn

i�1

a1 � . . . � ai

i

 !p

B
p

p � 1

 !pXn

i�1

ap
i (1)

and letting p 0 �:/

See also ARITHMETIC MEAN, E , GEOMETRIC MEAN,
HARDY’S INEQUALITY
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Carlson-Levin Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Assume that f is a NONNEGATIVE REAL function on
0; �½ Þ and that the two integrals

g
�

0

xp�1�l[f (x)]p dx (1)

g
�

0

xq�1�m[f (x)]q dx (2)

exist and are FINITE. If p�q�2 and l�m�1;
Carlson (1934) determined

g
�

0

f (x) dx

5
ffiffiffi
p

p
g

�

0

[f (x)]2 dx

� �1=4

g
�

0

x2[f (x)]2 dx

� �1=4

(3)

and showed that
ffiffiffi
p

p
is the best constant (in the sense

that counterexamples can be constructed for any
stricter INEQUALITY which uses a smaller constant).
For the general case

g
�

0

f (x) dx

5C g
�

0

xp�1�l[f (x)]p dx

� �s

g
�

0

xq�1�m[f (x)]q dx

� �t

;

(4)

and Levin (1948) showed that the best constant

C�
1

(ps)s(qt)t

G
s

a

 !
G

t

a

 !

(l� m)G
s � t

a

 !
2
66664

3
77775

a

; (5)

where

s�
m

pm� ql
(6)

t�
l

pm� ql
(7)

a�1�s�t (8)

and G(z) is the GAMMA FUNCTION.
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Carlson’s Theorem
If f (z) is regular and OF THE FORM O(ek zj j) where k B p;
for R[z] ]0; and if f (z) �0 for z �0, 1, ..., then f (z) is
identically zero.

See also GENERALIZED HYPERGEOMETRIC FUNCTION
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Carlyle Circle

Consider a QUADRATIC EQUATION x2 �sx �p �0
where s and p denote signed lengths. The CIRCLE

which has the points A �(0; 1) and B �(s ; p) as a
DIAMETER is then called the Carlyle circle Cs;p of the
equation. The CENTER of Cs;p is then at the MIDPOINT

of AB , M �(s =2 ; (1 �p) =2); which is also the MID-

POINT of S �(s ; 0) and Y �(0; 1 �p) : Call the points
at which Cs;p crosses the X -AXIS H1 �(x1 ; 0) and H2 �
(x2 ; 0) (with x1 ]x2) : Then

s �x1 �x2

p �x1x2

(x �x1)(x �x2) �x2 �sx �p ;

so x1 and x2 are the ROOTS of the quadratic equation.

See also 257-GON, 65537-GON, HEPTADECAGON, PENTA-

GON
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Carmichael Condition
A number n satisfies the Carmichael condition IFF

(p �1) (n=p �1)j for all PRIME DIVISORS p of n . This is
equivalent to the condition (p �1) (n �1)j for all PRIME

DIVISORS p of n .

See also CARMICHAEL NUMBER
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Carmichael Function
There are two definitions of the Carmichael function.
One is the reduced totient function (also called the
least universal exponent function), defined as the
smallest integer m such that kn �1 (mod n) for all k
RELATIVELY PRIME to n . The ORDER of a (mod n ) is at
most l(n) (Ribenboim 1989). The first few values of
this function, implemented in Mathematica 4.0 as
CarmichaelLambda[n ], are 1, 1, 2, 2, 4, 2, 6, 2, 6, 4,
10, ... (Sloane’s A002322). It can be defined recur-
sively as

l(n) �
f(n) for n �p a ; p �2 and a 52; or p ]3
1
2 f(n) for n �2 a and a ]3

LCM[l(pai

i )]i for n �
Q

i pai

i :

8<
:

Some special values are

l(1) �1

l(2) �1

l(4) �2

l(2r) �2r�2

for r ]3; and

l ?(pr) � f(pr)

for p an ODD PRIME and r ]1:/

The second Carmichael’s function l ?(n) is given by the
LEAST COMMON MULTIPLE (LCM) of all the FACTORS of
the TOTIENT FUNCTION f(n); except that if 8 n;j then
2a�2 is a FACTOR instead of 2a�1: The values of l?(n) for
the first few n are 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 2, 12, ...
(Sloane’s A011773).

See also MODULO MULTIPLICATION GROUP, TOTIENT

FUNCTION
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Carmichael Lambda
CARMICHAEL FUNCTION

Carmichael Number
A Carmichael number is an ODD COMPOSITE NUMBER

n which satisfies FERMAT’S LITTLE THEOREM

an �1 �1 �0 (mod n) (1)

for every choice of a satisfying (a ; n) �1 (i.e., a and n
are RELATIVELY PRIME) with 1 Ba Bn : A Carmichael
number is therefore a PSEUDOPRIME to any base.
Carmichael numbers therefore cannot be found to be
COMPOSITE using FERMAT’S LITTLE THEOREM. How-
ever, if (a; n) "1; the congruence of FERMAT’S LITTLE

THEOREM is sometimes NONZERO, thus identifying a
Carmichael number n as COMPOSITE.

Carmichael numbers are sometimes called "absolute
pseudoprimes" and also satisfy KORSELT’S CRITERION.
R. D. Carmichael first noted the existence of such
numbers in 1910, computed 15 examples, and con-
jectured that there were infinitely many. In 1956,
Erdos sketched a technique for constructing large
Carmichael numbers (Hoffman 1998, p. 183), and a
proof was given by Alford et al. (1994).

The first few Carmichael numbers are 561, 1105,
1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, ...
(Sloane’s A002997). The number of Carmichael num-
bers less than 102, 103, ... are 0, 1, 7, 16, 43, 105, ...
(Sloane’s A055553; Pinch 1993). The smallest Carmi-
chael numbers having 3, 4, ... factors are 561 �3 �
11 �17; 41041 �7 �11 �13 �41; 825265, 321197185,
... (Sloane’s A006931).

Carmichael numbers have at least three PRIME

FACTORS. For Carmichael numbers with exactly three
PRIME FACTORS, once one of the PRIMES has been
specified, there are only a finite number of Carmi-
chael numbers which can be constructed. Indeed, for
Carmichael numbers with k prime factors, there are
only a finite number with the least k �2 specified.

Numbers OF THE FORM (6k �1)(12k �1)(18k �1) are
Carmichael numbers if each of the factors is PRIME

(Korselt 1899, Ore 1988, Guy 1994). This can be seen
since for

N �(6k �1)(12k �1)(18k �1)

�1296k3 �396k2 �36k �1; (2)

/N �1 is a multiple of 36k and the LEAST COMMON

MULTIPLE of 6k; 12k; and 18k is 36k; so aN �1 �1
modulo each of the PRIMES 6k �1; 12k �1 ; and 18k �
1; hence aN �1 �1 modulo their product. The first few
such Carmichael numbers correspond to k �1, 6, 35,
45, 51, 55, 56, ... (Sloane’s A046025) and are 1729,
294409, 56052361, 118901521, ... (Sloane’s A033502).
In Jan. 1999, Dubner found the largest known
Carmichael of this form, having 4848 digits and index

k �133752260 � 3003 � 101604 (3)

The prime factors of N have 1616, 1616, and 1617
digits.

Let C(n) denote the number of Carmichael numbers
less than n . Then, for all sufficiently large n ,

C(n) > n2 =7 (4)

(Alford et al. 1994), which proves that there are infin-
itely many Carmichael numbers. The upper bound

C(n) Bn exp
ln n ln ln ln n

ln ln n

 !
(5)

has also been proved (R. G. E. Pinch).

The Carmichael numbers have the following proper-
ties:

1. If a PRIME p divides the Carmichael num-
ber n , then /n�1 (mod p�1)/ implies that
n �p (mod p (p�1)).
2. Every Carmichael number is SQUAREFREE.
3. An ODD COMPOSITE SQUAREFREE number n is a
Carmichael number IFF n divides the DENOMINA-

TOR of the BERNOULLI NUMBER Bn�1:/

The largest known Carmichael numbers having a
given number of factors are summarized in the
following table (Dubner 1989, Dubner 1998).

Factors Digits Discoverer

3 10200 Dubner

4 2467 Caldwell and Dubner

5 1015 Caldwell and Dubner

6 827 Caldwell and Dubner

See also CARMICHAEL CONDITION, PSEUDOPRIME
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Carmichael Sequence
A FINITE, INCREASING SEQUENCE of INTEGERS

fa1 ; . . . ; am g such that

(ai �1) (a1 . . . ai �1)j

for i �1, ..., m , where m nj indicates that m DIVIDES n .
A Carmichael sequence has exclusive EVEN or ODD

elements. There are infinitely many Carmichael
sequences for every order.

See also GIUGA SEQUENCE
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Carmichael’s Conjecture
Carmichael’s conjecture asserts that there are an
INFINITE number of CARMICHAEL NUMBERS. This was
proven by Alford et al. (1994).

See also CARMICHAEL NUMBER, CARMICHAEL’S TOTI-

ENT FUNCTION CONJECTURE
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Carmichael’s Theorem
If a and n are RELATIVELY PRIME so that the GREAT-

EST COMMON DIVISOR GCD(a ; n) �1 ; then

a l(n) �1 (mod n)

where l is the CARMICHAEL FUNCTION.

Carmichael’s Totient Function Conjecture
It is thought that the TOTIENT VALENCE FUNCTION

Nf(n) ]2 ; i.e., if there is an n such that f(x) �n; then
there are at least two solutions x . This assertion is
called Carmichael’s totient function conjecture and is
equivalent to the statement that there exists an m "n
such that f(n) � f(m) (Ribenboim 1996, pp. 39 �/40).

Dickson 1952 (p. 137) states that the conjecture was
proved by Carmichael (1907), who also developed a
method of finding the solution (Carmichael 1909).
The result also appears as in exercise in Carmichael
(1914). However, Carmichael (1922) subsequently
discovered an error in the proof, and the conjecture
currently remain open. Any counterexample to the
conjecture must have more than 10,000,000 DIGITS

(Schlafly and Wagon 1994; conservatively given as
10,000 in Conway and Guy 1996, p. 155).

Ford (1998ab) showed that if there is a counter-
example to Carmichael’s conjecture, then a positive
proportion of totients are counterexamples.

SIERPINSKI’S CONJECTURE states that all integers > 1
appear as multiplicities of the TOTIENT VALENCE

FUNCTION.

See also TOTIENT FUNCTION, SIERPINSKI’S CONJEC-

TURE, TOTIENT VALENCE FUNCTION
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Carnot’s Polygon Theorem
If a PLANE cuts the sides AB , BC , CD , and DA of a
SKEW QUADRILATERAL ABCD in points P , Q , R , and
S , then

AP

PB
�

BQ

QC
�

CR

RD
�

DS

SA 
�1

both in magnitude and sign (Altshiller-Court 1979,
p. 111).

More generally, if P1 ; P2 ; ..., are the VERTICES of a
finite POLYGON with no "minimal sides" and the side
PiPj meets a curve in the POINTS Pij1 and Pij2 ; thenQ

i P1P12i

Q
i P2P23i 	 	 	

Q
i PNPN1iQ

i PNPN1i 	 	 	
Q

i P2P2i1

�1 ;

where AB denotes the DISTANCE from POINT A to B .
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Carnot’s Theorem
Given any TRIANGLE A1A2A3 ; the signed sum of
PERPENDICULAR distances from the CIRCUMCENTER

O to the sides is

OO1 �OO2 �OO3 �R �r ;

where r is the INRADIUS and R is the CIRCUMRADIUS.
The sign of the distance is chosen to be POSITIVE IFF

the entire segment OOi lies outside the TRIANGLE.

See also JAPANESE TRIANGULATION THEOREM
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Carotid-Kundalini Fractal

A fractal-like structure is produced for x B0 by
superposing plots of CAROTID-KUNDALINI FUNCTIONS

ckn of different orders n . the region �1 Bx B0 is
called FRACTAL LAND by pickover (1995), the central
region the GAUSSIAN MOUNTAIN RANGE, and the
region 0 Bx B1 OSCILLATION LAND. The plot above
shows n �1 to 25. Gaps in FRACTAL LAND occur
whenever

x cos�1 x �2 p
p

q

for p and q RELATIVELY PRIME INTEGERS. At such
points x , the functions assume the (q �1)=2d e values
cos(2pr =q) for r �0, 1, ..., q=2b c; where zd e is the
CEILING FUNCTION and zb c is the FLOOR FUNCTION.
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Carotid-Kundalini Function
The FUNCTION given by

CKn(x)�cos(nx cos�1 x);

where n is an INTEGER and�1BxB1:/

See also CAROTID-KUNDALINI FRACTAL



Carry

The operating of shifting the leading DIGITS of an
ADDITION into the next column to the left when the
SUM of that column exceeds a single DIGIT (i.e., 9 in
base 10).

See also ADDEND, ADDITION, BORROW

Carrying Capacity
LOGISTIC GROWTH CURVE

Cartan Decomposition
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Cartan Matrix
A Cartan matrix is a SQUARE INTEGER MATRIX who
elements (Aij) satisfy the following conditions.

1. Aij is an integer, one of f�3; �2; �1; 0 ; 2 g:/
2. Aii �2 the diagonal entries are all 2.
3. Aij 50 off of the diagonal.
4. Aij �0 iff Aji �0:/
5. There exists a DIAGONAL MATRIX D such that
DAD�1 gives a SYMMETRIC and POSITIVE DEFINITE

QUADRATIC FORM.

A Cartan matrix can be associated to a SEMISIMPLE

LIE ALGEBRA g: It is a k �k SQUARE MATRIX, where k
is the RANK of g: The SIMPLE ROOTS are the basis
vectors, and Aij is determined by their inner product,
using the KILLING FORM.

Aij �2 �ai ; aj �=�aj ; aj � (1)

In fact, it is more a table of values than a matrix. By
reordering the basis vectors, one gets another Cartan
matrix, but it is considered equivalent to the original
Cartan matrix.

The Lie algebra g can be reconstructed, up to
ISOMORPHISM, by the 3k generators fej ; fi ; hi g which
satisfy the SERRE RELATIONS. In fact,

g�h�e�f (2)

where h; e; f are the LIE SUBALGEBRAS generated by
the generators of the same letter.

For example,

A �
2 �1

�1 2

� �
(3)

is a Cartan matrix. The LIE ALGEBRA g has six
generators fh1 ; h2 ; e1 ; e2 ; f1 ; f2 g: They satisfy the
following relations.

1. [h1 ; h2] �0:/
2. [e1 ; f1] �h1/ and /[e2 ; f2] �h2/ while [e1, f2] �
[e2, f1] �0.
3. [hi ; ej] ��Aijej :/
4. [hi ; fj] ��Aijfj :/
5. e12 �[e1 ; e2] "0 and f12 �[f1 ; f2] "0 :/
6. [ei ; e12] �0 and [fi ; f12] �0 :/

From these relations, it is not hard to see that g�sl3
with the standard REPRESENTATION

h1 �
1 0 1
0 �1 0
0 0 0

2
4

3
5 (4)

h2 �
0 0  0
0 1  0
0 0 �1

2
4

3
5 (5)

e1 �
0 1 0
0 0 0
0 0 0

2
4

3
5 (6)

e2 �
0 0 0
0 0 1
0 0 0

2
4

3
5 (7)

e12 �
0 0 1
0 0 0
0 0 0

2
4

3
5 (8)

f1 �
0 0 0
1 0 0
0 0 0

2
4

3
5 (9)

f2 �
0 0 0
0 0 0
0 1 0

2
4

3
5 (10)

f12 �
0 0 0
0 0 0

�1 0 0

2
4

3
5: (11)

In addition, the WEYL GROUP can be constructed
directly from the Cartan matrix. Its rows determine
the reflections against the simple roots. The following
Mathematica command converts a Cartan matrix to a
list of generators for the Weyl group, in its represen-
tation on the ROOT LATTICE. In particular, its output
represents the matrices of the Weyl group as INTEGER

MATRICES.

See also DYNKIN DIAGRAM, LIE ALGEBRA, ROOT (LIE

ALGEBRA), ROOT SYSTEM, SEMISIMPLE LIE ALGEBRA,
SPECIAL LINEAR LIE ALGEBRA, WEYL GROUP
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Cartan Relation
The relationship Sqi(x%y) �aj�k�i Sqj(x)%Sqk(y) en-
countered in the definition of the STEENROD ALGEBRA.

Cartan Subgroup
A type of maximal ABELIAN SUBGROUP.
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Cartan Torsion Coefficient
The ANTISYMMETRIC parts of the CHRISTOFFEL SYM-

BOL OF THE SECOND KIND Gl
mn :/

Cartesian Coordinates

Cartesian coordinates are rectilinear 2-D or 3-D
coordinates (and therefore a special case of CURVI-

LINEAR COORDINATES) which are also called rectan-
gular coordinates. The three axes of 3-D Cartesian
coordinates, conventionally denoted the X -, Y -, and Z -

AXES (a NOTATION due to Descartes ) are chosen to be
linear and mutually PERPENDICULAR. In 3-D, the
coordinates x , y , and z may lie anywhere in the
INTERVAL (��; �) :/
The INVERSION of 3-D Cartesian is called 6-SPHERE

COORDINATES coordinates.

The SCALE FACTORS of Cartesian coordinates are all
unity, hi �1: The LINE ELEMENT is given by

ds �dx x̂ �dy ŷ �dz ẑ ; (1)

and the VOLUME ELEMENT by

dV �dx dy dz: (2)

The GRADIENT has a particularly simple form,

9�x̂
@

@x 
�ŷ

@

@y 
�ẑ

@

@z 
; (3)

as does the LAPLACIAN

92 �
@2

@x2 
�

@2

@y2 
�

@2

@z2 
: (4)

The LAPLACIAN is

92F �9 � ( 9F) �
@2F

@x2 
�

@2F

@y2 
�

@2F

@z2

�x̂
@2Fx

@x2 
�

@2Fx

@y2 
�

@2Fx

@z2

 !

�ŷ
@2Fy

@x2 
�

@2Fy

@y2 
�

@2Fy

@z2

 !

�ẑ
@2Fz

@x2 
�

@2Fz

@y2 
�

@2Fz

@z2

 !
: (5)

The DIVERGENCE is

9 � F �
@Fx

@x
�

@Fy

@y
�

@Fz

@z
; (6)

and the CURL is

9�F �

x̂ ŷ ẑ
@

@x

@

@y

@

@z
Fx Fy Fz

��������

���������
@Fz

@y
�

@Fy

@z

 !
x̂ �

@Fx

@z
�

@Fz

@x

 !
ŷ

�
@Fy

@x
�

@Fx

@y

 !
ẑ: (7)

The GRADIENT of the DIVERGENCE is

9(9 � u)�

@

@x

@uz

@x
�

@uy

@y
�

@uz

@z

 !
@

@y

@uz

@x
�

@uy

@y
�

@uz

@z

 !
@

@z

@uz

@x
�

@uy

@y
�

@uz

@z

 !

2
6666666664

3
7777777775

�

@

@x

@

@y
@

@z

2
666666664

3
777777775

@ux

@x
�

@uy

@y
�

@uz

@z

 !
: (8)

LAPLACE’S EQUATION is separable in Cartesian coor-
dinates.

See also CARTESIAN GEOMETRY, COORDINATES, HELM-

HOLTZ DIFFERENTIAL EQUATION–CARTESIAN COORDI-

NATES, 6-SPHERE COORDINATES
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Cartesian Geometry
The use of coordinates (such as CARTESIAN COORDI-

NATES) in the study of GEOMETRY. Cartesian geometry
is named after René Descartes (Bell 1986, p. 48),
although Descartes may have been anticipated by
Fermat (Coxeter and Greitzer 1967, p. 31).

See also ANALYTIC GEOMETRY, CARTESIAN COORDI-

NATES
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Cartesian Ovals

A curve consisting of two ovals which was first
studied by Descartes in 1637. It is the locus of a point
P whose distances from two FOCI F1 and F2 in two-
center BIPOLAR COORDINATES satisfy

mr 9nr ?�k ; (1)

where m, n are POSITIVE INTEGERS, k is a POSITIVE

real, and r and r ? are the distances from F1 and F2 : If
m �n , the oval becomes an ELLIPSE. In CARTESIAN

COORDINATES, the Cartesian ovals can be written

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �a)2 �y2

q
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �a)2 �y2

q
�k2 (2)

(x2 �y2 �a2)(m2 �n2) �2ax(m2 �n2) �k2

��2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �a)2 �y2

q
; (3)

[(m2 �n2)(x2 �y2 �a2) �2ax(m2 �n2)]2

�2(m2 �n2)(n2 �y2 �a2) �4ax(m2 �n2) �k2 : (4)

Now define

b �m2 �n2 (5)

c �m2 �n2 ; (6)

and set a �1. Then

[b(x2 �y2) �2cx �b]2 �4bx �k2 �2c �2c(x2 �y2) : (7)

If c ? is the distance between F1 and F2 ; and the
equation

r �mr ?�a (8)

is used instead, an alternate form is

[(1 �m2)(x2 �y2) �2m2c ?x �a?2 �m2c ?2]2

�4a?2(x2 �y2) : (9)

The curves possess three FOCI. If m �1, one Carte-
sian oval is a central CONIC, while if m �a /c , then the
curve is a LIMAÇ ON and the inside oval touches the
outside one. Cartesian ovals are ANALLAGMATIC

CURVES.
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Cartesian Product
The Cartesian product of two sets A and B (also
called the product set, set direct product, or cross
product) is defined to be the set of all points (a, b )
where a � A and b � B : It is denoted A �B ; and is
called the Cartesian product since it originated in
Descartes’ formulation of analytic geometry. In the
Cartesian view, points in the plane are specified by
their vertical and horizontal coordinates, with points
on a line being specified by just one coordinate. The
main examples of direct products are EUCLIDEAN 3-
space (/R�R�R; where R are the REAL NUMBERS),
and the plane (/R�R):/

The GRAPH PRODUCT is sometimes called the Carte-
sian product (Vizing 1963, Cark and Suen 2000).

See also DIRECT PRODUCT, DISJOINT UNION, EXTER-

NAL DIRECT PRODUCT, EXTERNAL DIRECT SUM, GRAPH

PRODUCT, GROUP DIRECT PRODUCT, PRODUCT SPACE
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Cartesian Space
EUCLIDEAN SPACE

Cartesian Trident
TRIDENT OF DESCARTES

Cartography
The study of MAP PROJECTIONS and the making of
geographical maps.

See also MAP PROJECTION

Cascade
A Z/-ACTION or N/-ACTION. A cascade and a single MAP

X 0 X are essentially the same, but the term "cas-
cade" is preferred by many Russian authors.

See also ACTION, FLOW

Casey’s Theorem
Four CIRCLES c1; c2; c3; and c4 are TANGENT to a fifth
CIRCLE or a straight LINE IFF

T12T349T13T429T14T23�0: (1)

where Tij is the length of a common TANGENT to
CIRCLES i and j (Johnson 1929, pp. 121�/122). The
following cases are possible:

1. If all the Ts are direct common tangents, then c5

has like contact with all the circles,
2. If the Ts from one circle are transverse while
the other three are direct, then this one circle has
contact with c5 unlike that of the other three,
3. If the given circles can be so paired that the
common tangents to the circles of each pair are
direct, while the other four are transverse, then
the members of each pair have like contact with c5/

(Johnson 1929, p. 125).

The special case of Casey’s theorem shown above was
given in a SANGAKU PROBLEM from 1874 in the
Gumma Prefecture. In this form, a single circle is
drawn inside a square, and four circles are then

drawn around it, each of which is tangent to the
square on two of its sides. For a square of side length
a with lower left corner at (0; 0) containing a central
circle of radius r with center (x, y ), the radii and
positions of the four circles can be found by solving

(1�r4�x)2�(y�r4)2�(r�r4)2 (2)

(1�r1�x)2�(1�r1�y)2�(r�r1)2 (3)

(x�r3)2�(y�r3)2�(r�r3)2 (4)

(x�r2)2�(1�r2�y)2�(r�r2)2: (5)

Four of the Tij for the theorem are given immediately
for the figure as

T12�a�r1�r2 (6)

T34�a�rr�r4 (7)

T14�a�r1�r4 (8)

T23�a�r2�r3: (9)

The remaining T13 and T24 can be found as shown in
the above right figure. Let cij be the distance from Oi

to Oj; then

c2
13�(a�r1�r3)2�(a�r1�r3)2�2(a�r1�r3)2 (10)

c2
24�(a�r2�r4)2�(a�r2�r4)2

�2(a�r2�r4)2; (11)

so

T13�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

13�(r3�r1)2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a�r1�r3)2�(r3�r1)2

q
(12)

T24�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

24�(r2�r4)2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a�r2�r4)2�(r2�r4)2

q
: (13)

Since the four circles are all externally tangent to c5;
the relevant form of Casey’s theorem to use has signs
(�; �); so we have the equation

(a�r1�r2)(a�r3�r4)�(a�r1�r4)(a�r2�r3)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[2(a�r1�r3)2�(r3�r1)2][2(a�r2�r4)2�(r2�r4)2]

q
�0 (14)

(Rothman 1998). Solving for a then gives the relation-
ship

a�
2(r1r3 � r2r4) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(r1 � r2)(r1 � r4)(r3 � r2)(r3 � r4)

p
r1 � r2 � r3 � r4

(15)

Durell (1928) calls the following Casey’s theorem: if t
is the length of a common tangent of two circles of
radii a and b , t? is the length of the corresponding
common tangent of their inverses with respect to any
point, and a? and b? are the radii of their inverses,



then

t2

ab 
�

t?2

a ?b ?
: (16)

See also PURSER’S THEOREM, TANGENT CIRCLES
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Casimir Operator
An OPERATOR

G�
Xm

i�1

eR
i u

iR

on a representation R of a LIE ALGEBRA.
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Casoratian
The Casoratian of sequences x(1)

n ; x(2)
n ; ..., x(k)

n is defined
by the k �k DETERMINANT

C(x(1)
n ; x(2)

n ; x(k)
n ) �

x(1)
n x(2)

n . . .  x(k)
n

x(1)
n�1 x(2)

n�1 . . .  x(k)
n�1

n n :::
:::

x(1)
n�k �1 x(2)

n�k �1 . . .  x(k)
n�k�1

��������

��������:
The solutions x(1)

n ; x(2)
n ; ..., x(k)

n of the linear difference
equation

xn�k�b(k�1)
n xn�(k�1)�. . .�b(1)

n xn�1�b(0)
n xn�0

for n�0, 1, ..., are linearly independent sequences IFF

their Casoratian is nonzero for n�0 (Zwillinger
1995).

See also LINEARLY DEPENDENT SEQUENCES
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Casorati-Weierstrass Theorem
WEIERSTRASS-CASORATI THEOREM

Cassini Ellipses
CASSINI OVALS

Cassini Ovals

The curves, also called Cassini ellipses, described by a
point such that the product of its distances from two
fixed points a distance 2a apart is a constant b2: The
shape of the curve depends on b=a: If aBb , the curve
is a single loop with an OVAL (left figure above) or dog
bone (second figure) shape. The case a�b produces a
LEMNISCATE (third figure). If a�b , then the curve
consists of two loops (right figure). Cassini ovals are
ANALLAGMATIC CURVES.

The curve was first investigated by Cassini in 1680
when he was studying the relative motions of the
Earth and the Sun. Cassini believed that the Sun
traveled around the Earth on one of these ovals, with
the Earth at one FOCUS of the oval.

The Cassini ovals are defined in two-center BIPOLAR

COORDINATES by the equation

r1r2�b2; (1)

with the origin at a FOCUS. Even more incredible
curves are produced by the locus of a point the
product of whose distances from 3 or more fixed
points is a constant.

The Cassini ovals have the CARTESIAN equation

[(x�a)2�y2][(x�a)2�y2]�b4 (2)

or the equivalent form

(x2�y2�a2)2�4a2x2�b4 (3)

and the polar equation

r4�a4�2a2r2 cos(2u)�b4: (4)

Solving for r2 using the QUADRATIC EQUATION gives



r2 �
2a2 cos(2 u) 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a4 cos2(2u) � 4(a4 � b4)

p

2

�a2 cos(2u) 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 cos2(2u) �b4 �a4

p
�a2 cos(2u) 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4[cos2(2u) �1] �b4

p
�a2 cos(2u) 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 �a4 sin2(2u)

q

�a2 cos(2 u) 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a

 !4

�sin2(2u)

vuut
2
64

3
75: (5)

Let a TORUS of tube radius a be cut by a plane
perpendicular to the plane of the torus’s centroid. Call
the distance of this plane from the center of the torus
hole r , let a �r , and consider the intersection of this
plane with the torus as r is varied. The resulting
curves are Cassini ovals, with a LEMNISCATE occur-
ring at r �1=2 (Gosper). Cassini ovals are therefore
TORIC SECTIONS.

If a Bb , the curve has AREA

A �1
2 r

2 d u �2(1
2)g  

p =4

�p =4

r2 d u �a2 �b2E
a4

b4

 !
; (6)

where the integral has been done over half the curve
and then multiplied by two and E(x) is the complete
ELLIPTIC INTEGRAL OF THE SECOND KIND. If a �b , the
curve becomes

r2 �a2 cos(2u) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �sin2 u

ph i
�2a2 cos(2 u) ; (7)

which is a LEMNISCATE having AREA

A �2a2 (8)

(two loops of a curve
ffiffiffi
2

p
the linear scale of the usual

lemniscate r2 �a2 cos(2u) ; which has area A �a2 =2
for each loop). If a �b , the curve becomes two disjoint
ovals with equations

r�9a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos(2u)9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a

 !2

�sin2(2u)

vuut
vuuut ; (9)

where u � [�u0; u0] and

u0�
1
2 sin�1 b

a

 !2
2
4

3
5: (10)

See also CASSINI SURFACE, LEMNISCATE, MANDEL-

BROT SET, OVAL, TORUS
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Cassini Projection

A MAP PROJECTION defined by

x�sin�1 B (1)

y�tan�1 tan f

cos(l� l0)

" #
; (2)

where

B�cos f sin(l�l0): (3)

The inverse FORMULAS are

f�sin�1(sin D cos x) (4)

l�l0�tan�1 tan x

cos D

 !
; (5)

where

D�y�f0: (6)
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Cassini Surface

The QUARTIC SURFACE obtained by replacing the
constant b in the equation of the CASSINI OVALS with
b �z , obtaining

[(x �a)2 �y2][(x �a)2 �y2] �z4 : (1)

As can be seen by letting y �0 to obtain

(x2 �a2)2 �z4 (2)

x2 �z2 �a2 ; (3)

the intersection of the surface with the y �0 PLANE is
a CIRCLE of RADIUS a .

Let a TORUS of tube radius a be cut by a plane
perpendicular to the plane of the torus’s centroid. Call
the distance of this plane from the center of the torus
hole r , let a �r , and consider the intersection of this
plane with the torus as r is varied. The resulting
curves are CASSINI OVALS, and the surface having
these curves as CROSS SECTIONS is the Cassini surface

(x �2 �z2 �c2) �4c2x2 �4c2r2 ;

which has a scaled r2 on the right side instead of z4

(Gosper).

See also CASSINI OVALS, TORUS
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Cassini’s Identity
For Fn the nth FIBONACCI NUMBER,

Fn�1Fn�1 �F2
n �(�1)n :

This identity was also discovered by Simson (Coxeter
and Greitzer 1967, p. 41; Coxeter 1969, pp. 165 �/168).
It is a special case of CATALAN’S IDENTITY with r � 1.

See also D’OCAGNE’S IDENTITY, CATALAN’S IDENTITY,
FIBONACCI NUMBER
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Casson Invariant
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Castillon’s Problem

Inscribe a TRIANGLE in a CIRCLE such that the sides of
the TRIANGLE pass through three given POINTS A , B ,
and C .
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Casting Out Nines
An elementary check of a MULTIPLICATION which
makes use of the CONGRUENCE 10n�1 (mod 9) for n]
2: From this CONGRUENCE, a MULTIPLICATION ab�c
must give



a �
X

ai �a �

b �
X

bi �b �

c �
X

ci �c �;

so ab �a�b � must be �c � (mod 9). Casting out nines
was transmitted to Europe by the Arabs, but was
probably an Indian invention and is therefore some-
times also called "the Hindu check." The procedure
was described by Fibonacci in his Liber Abaci (Wells
1986, p. 74).
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Casus Irreducibilus
If P(x) is an irreducible CUBIC EQUATION all of whose
roots are real, then to obtain them by radicals, you
must take roots of nonreal numbers at some point.

See also ALGEBRAIC INTEGER
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Cat Map
ARNOLD’S CAT MAP

Catacaustic
The curve which is the ENVELOPE of reflected rays.

CARDIOID CUSP of
CARDIOID

NEPHROID

CIRCLE not on CIRCUM-

FERENCE

LIMAÇ ON

CIRCLE on CIRCUMFER-

ENCE

CARDIOID

CIRCLE point at �/ NEPHROID

CISSOID OF

DIOCLES

FOCUS CARDIOID

one arch of
a CYCLOID

rays PERPENDI-

CULAR axis
two arches of
a CYCLOID

DELTOID point at infinity ASTROID

/ln x/ rays PARALLEL

axis
CATENARY

LOGARITHMIC

SPIRAL

ORIGIN equal LOGARITH-

MIC SPIRAL

PARABOLA rays PERPENDI-

CULAR axis
TSCHIRNHAUSEN

CUBIC

QUADRIFOLIUM center ASTROID

TSCHIRNHAUSEN

CUBIC

FOCUS SEMICUBICAL

PARABOLA

See also CAUSTIC, CIRCLE CAUSTIC, DIACAUSTIC
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Catafusene
POLYHEX

Catalan
CATALAN’S CONSTANT

Catalan Integrals
Special cases of general FORMULAS due to Bessel.

J0(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �y2

p
) �

1

p g 
p

0

ey cos u cos(z sin u) du;

where J0(z) is a BESSEL FUNCTION OF THE FIRST KIND.
Now, let z �1 �z ? and y �1 �z ?: Then

J0(2i
ffiffiffi
z

p
)�

1

p g
p

0

e(1�z) cos u cos[(1�z) sin u] du:

See also BESSEL FUNCTION OF THE FIRST KIND

Catalan Number

The Catalan numbers are an INTEGER SEQUENCE fCng
which appears in TREE enumeration problems of the
type, "In how many ways can a regular n -gon be



divided into n�2 TRIANGLES if different orientations
are counted separately?" (EULER’S POLYGON DIVISION

PROBLEM). The solution is the Catalan number Cn�2

(Dörrie 1965, Honsberger 1973), as graphically illu-
strated above (Dickau). The first few Catalan num-
bers for n�1, 2, ... are 1, 2, 5, 14, 42, 132, 429, 1430,
4862, 16796, ... (Sloane’s A000108).

The only ODD Catalan numbers are those OF THE

FORM C2k�1; and the last DIGIT is five for k�9 to 15.
The only PRIME Catalan numbers for n5215�1 are
C2�2 and C3�5:/

The Catalan numbers turn up in many other related
types of problems. Cn�1 can also be defined as the
number of (�1; 1)/-sequences fs1; s2; . . . ; sng such
that a2n

i�1 sj�0 and ai
j�1 sj]0 for i52n�1 (Mays

and Wojciechowski 2000). The following table gives
the first few such sequences.

n lists

1 /f1; �1g/

2 /f1; 1; �1; �1g/

3 /f1; 1; �1; 1; �1; �1g; f1; 1; 1; �1; �1; �1g/

4 /f1; 1; �1; 1; �1; 1; �1; �1g;/

/f1; 1; �1; 1; 1; �1; �1; �1g;/

/f1; 1; 1; �1; �1; 1; �1; �1g;/

/f1; 1; 1; �1; 1; �1; �1; �1g;/

/f1; 1; 1; 1; �1; �1; �1; �1g/

The Catalan number Cn�1 also gives the number of
BINARY BRACKETINGS of n letters (CATALAN’S PRO-

BLEM), the solution to the BALLOT PROBLEM, the

number of trivalent PLANTED PLANAR TREES (Dickau;
illustrated above), the number of states possible in an
n -FLEXAGON, the number of different diagonals pos-
sible in a FRIEZE PATTERN with n�1 rows, the
number of ways of forming an n -fold exponential,
the number of rooted planar binary trees with n
internal nodes, the number of rooted plane bushes
with n EDGES, the number of extended BINARY TREES

with n internal nodes, the number of mountains
which can be drawn with n upstrokes and n down-
strokes, the number of noncrossing handshakes
possible across a round table between n pairs of
people (Conway and Guy 1996), and the number of
SEQUENCES with NONNEGATIVE PARTIAL SUMS which
can be formed from n 1s and n �1s (Bailey 1996,
Brualdi 1992)!

An explicit formula for Cn is given by

Cn�
1

n � 1

2n
n

� �
�

1

n � 1

(2n)!

n!2
�

(2n)!

(n � 1)!n!
; (1)

where 2n
n

& '
denotes a BINOMIAL COEFFICIENT and n! is

the usual FACTORIAL. A RECURRENCE RELATION for Cn

is obtained from

Cn�1

Cn

�
(2n � 2)!

(n � 2)[(n � 1)!]2

(n � 1)(n!)2

(2n)!

�
(2n � 2)(2n � 1)(n � 1)

(n � 2)(n � 1)2 �
2(2n � 1)(n � 1)2

(n � 1)2(n � 2)

�
2(2n � 1)

n � 2
; (2)

so

Cn�1�
2(2n � 1)

n � 2
Cn: (3)

Other forms include

Cn�
2 � 6 � 10 	 	 	 (4n � 2)

(n � 1)!
(4)

�
2n(2n � 1)!!

(n � 1)!
(5)

�
(2n)!

n!(n � 1)!
: (6)

SEGNER’S RECURRENCE FORMULA, given by Segner in
1758, gives the solution to EULER’S POLYGON DIVISION

PROBLEM

En�E2En�1�E3En�2�. . .�En�1E2: (7)

With E1�E2�1; the above RECURRENCE RELATION

gives the Catalan number Cn�2�En:/

The GENERATING FUNCTION for the Catalan numbers
is given by



1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x

p

2x
�
X�
n�0

Cnxn �1 �x �2x2 �5x3 �. . . : (8)

The asymptotic form for the Catalan numbers is

Ck �
4kffiffiffi
p

p
k3 =2 

(9)

(Vardi 1991, Graham et al. 1994).

A generalization of the Catalan numbers is defined by

pdk �
1

k

pk
k �1

� �
�

1

(p � 1)k � 1

pk
k

� �
(10)

for k ]1 (Klarner 1970, Hilton and Pederson 1991).
The usual Catalan numbers Ck � 2 dk are a special
case with p �2. pdk gives the number of p -ary TREES

with k source-nodes, the number of ways of associat-
ing k applications of a given p -ary OPERATOR, the
number of ways of dividing a convex POLYGON into k
disjoint (p �1)/-gons with nonintersecting DIAGONALS,
and the number of P -GOOD PATHS from (0, �1) to
(k; (p �1)k �1) (Hilton and Pederson 1991).

A further generalization is obtained as follows. Let p
be an INTEGER > 1; let Pk �(k ; (p �1)k �1) with k ]0;
and q 5p �1: Then define pdq0 �1 and let pdqk be the
number ofP -GOOD PATHS from (1, q �1) to Pk (Hilton
and Pederson 1991). Formulas for pdqi include the
generalized JONAH FORMULA

n �q
k �1

� �
�
Xk

i �1
p dqi

n �pi
k �i

� �
(11)

and the explicit formula

pdqk�
p � q

pk � q

pk�q
k�1

� �
: (12)

A RECURRENCE RELATION is given by

pdqk�
X
i; j

p dp�r; i pdq�r; j (13)

where i; j; r]1; k]1; qBp�r; and i�j�k�1
(Hilton and Pederson 1991).

See also BALLOT PROBLEM, BINARY BRACKETING,
BINARY TREE, CATALAN’S PROBLEM, CATALAN’S TRI-

ANGLE, DELANNOY NUMBER, EULER’S POLYGON DIVI-

SION PROBLEM, FLEXAGON, FRIEZE PATTERN,
MOTZKIN NUMBER, P -GOOD PATH, PLANTED PLANAR

TREE, SCHRÖ DER NUMBER, STAIRCASE POLYGON,
SUPER CATALAN NUMBER
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Catalan Solid
The DUAL POLYHEDRA of the ARCHIMEDEAN SOLIDS,
given in the following table. They are known as
Catalan solids in honor of the French mathematician
who first published them in 1862 (Wenninger 1983,
p. 1).

n ARCHIMEDEAN SOLID DUAL

1 CUBOCTAHEDRON RHOMBIC

DODECAHEDRON

2 GREAT RHOMBICOSIDODECA-

HEDRON

DISDYAKIS

TRIACONTAHEDRON

3 GREAT RHOMBICUBOCTAHE-

DRON

DISDYAKIS

DODECAHEDRON

4 ICOSIDODECAHEDRON RHOMBIC

TRIACONTAHEDRON

5 RHOMBICOSIDODECAHEDRON DELTOIDAL HEXE-

CONTAHEDRON

6 SMALL RHOMBICUBOCTAHE-

DRON

DELTOIDAL ICOSITE-

TRAHEDRON

7 SNUB CUBE (laevo) PENTAGONAL ICOSI-

TETRAHEDRON

(dextro)

8 SNUB DODECAHEDRON

(laevo)

PENTAGONAL HEXE-

CONTAHEDRON

(dextro)

9 TRUNCATED CUBE SMALL TRIAKIS

OCTAHEDRON

10 TRUNCATED DODECAHEDRON TRIAKIS

ICOSAHEDRON

11 TRUNCATED ICOSAHEDRON PENTAKIS

DODECAHEDRON

12 TRUNCATED OCTAHEDRON TETRAKIS

HEXAHEDRON

13 TRUNCATED TETRAHEDRON TRIAKIS

TETRAHEDRON

Here are the ARCHIMEDEAN DUALS (Pearce 1978,
Holden 1991) displayed in the order listed above (left
to right, then continuing to the next row).

Here are the Archimedean solids paired with the
corresponding Catalan solids.

See also ARCHIMEDEAN SOLID, DUAL POLYHEDRON,
SEMIREGULAR POLYHEDRON
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Catalan’s Aliquot Sequence Conjecture
The conjecture proposed by Catalan in 1888 and
extended by E. Dickson that each ALIQUOT SEQUENCE

ends in a PRIME, a PERFECT NUMBER, or a set of
SOCIABLE NUMBERS. The conjecture remains open to
this day.

See also ALIQUOT SEQUENCE, SOCIABLE NUMBERS
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Catalan’s Conjecture
8 and 9 (23 and 32) are the only consecutive POWERS

(excluding 0 and 1), i.e., the only solution to CATA-

LAN’S DIOPHANTINE PROBLEM. Solutions to this pro-
blem (CATALAN’S DIOPHANTINE PROBLEM) are
equivalent to solving the simultaneous DIOPHANTINE

EQUATIONS

X2 �Y3 �1
X3 �Y2 �1:

This CONJECTURE has not yet been proved or refuted,
although it has been shown to be decidable in a FINITE

(but more than astronomical) number of steps. In
particular, if n and n �1 are POWERS, then n B
exp exp exp exp 730 (Guy 1994, p. 155), which follows
from R. Tijdeman’s proof that there can be only a
FINITE number of exceptions should the CONJECTURE

not hold.

Hyyro and Makowski proved that there do not exist
three consecutive POWERS (Ribenboim 1996), and it is
also known that 8 and 9 are the only consecutive
CUBIC and SQUARE NUMBERS (in either order).

See also CATALAN’S DIOPHANTINE PROBLEM
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Catalan’s Constant
A constant which appears in estimates of combina-
torial functions. It is usually denoted K , b(2); or G . It
is not known if K is IRRATIONAL. Numerically,

K�0:915965594177 . . . (1)

(Sloane’s A006752). The CONTINUED FRACTION for K
is [0, 1, 10, 1, 8, 1, 88, 4, 1, 1, ...] (Sloane’s A014538). K
can be given analytically by the following expres-
sions,

K�b(2) (2)

��ix2(i) (3)

�
X�
k�0

(�1)k

(2k � 1)2�
1

12
�

1

32
�

1

52
�. . . (4)

�1�
X�
n�1

1

(4n � 1)2�
1

9
�
X�
n�1

1

(4n � 3)2 (5)

�g
1

0

tan�1 x dx

x
(6)

��g
1

0

ln x dx

1 � x2
; (7)

where b(z) is the DIRICHLET BETA FUNCTION and xn(z)
is LEGENDRE’S CHI-FUNCTION. In terms of the POLY-

GAMMA FUNCTION C1(x);

K� 1
16 C1(1

4)�
1
16 C1(3

4) (8)

� 1
80 C1( 5

12)�
1

80 C1( 1
12)�

1
10 p

2 (9)

� 1
32 C1(1

8)�
1
32 C1(3

8)�
1
16

ffiffiffi
2

p
: (10)

Applying CONVERGENCE IMPROVEMENT to (4) gives

K�
1

16

X�
m�1

(m�1)
3m � 1

4m
z(m�2); (11)

where z(z) is the RIEMANN ZETA FUNCTION and the
identity

1

(1 � 3z)2�
1

(1 � z)2�
X�
m�1

(m�1)
3m � 1

4m
zm (12)

has been used (Flajolet and Vardi 1996). The Flajolet
and Vardi algorithm also gives

K�
1ffiffiffi
2

p
Y�
k�1

1�
1

22k

 !
z(2k)

b(2k)

" #1=(2k�1)

; (13)

where b(z) is the DIRICHLET BETA FUNCTION. Glaisher
(1913) gave

K�1�
X�
n�1

nz(2n � 1)

16n
(14)

(Vardi 1991, p. 159). W. Gosper used the related
FORMULA

K�
1ffiffiffi
2

p 1

C(2) � 1

" #21=2 Y�
k�2

1

�C(2k) � 1

" #1=(2k�1)

; (15)

where

C(m)�
mcm�1(1

4)

pm(2m � 1)4m�1Bm

; (16)

where Bn is a BERNOULLI NUMBER and c(x) is a
POLYGAMMA FUNCTION (Finch). The Catalan constant
may also be defined by

K�1
2 g

1

0

K(k) dk; (17)

where K(k) (not to be confused with Catalan’s
constant itself, denoted K ) is a complete ELLIPTIC

INTEGRAL OF THE FIRST KIND.



K �
p ln 2

8
�
X�
i�1

ai

2 (i�1)=2b ci2 
; (18)

where

fai g�f1; 1 ; 1 ; 0 ; �1; �1; �1; 0g (19)

is given by the periodic sequence obtained by append-
ing copies of f1 ; 1 ; 1 ; 0; �1; �1; �1; 0g (in other
words, ai �a[i�1 (mod8)] �1 for i �8) and xb c is the
FLOOR FUNCTION (Nielsen 1909).

See also DIRICHLET BETA FUNCTION
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Catalan’s Diophantine Problem
Find consecutive POWERS, i.e., solutions to

ab �cd �1;

excluding 0 and 1. CATALAN’S CONJECTURE is that the
only solution is 32 �23 �1; so 8 and 9 (23 and 32) are

the only consecutive POWERS (again excluding 0 and
1).

See also CATALAN’S CONJECTURE
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Catalan’s Identity

F2
n �Fn�rFn �r � (�1)n�rF2

r ;

where Fn is a FIBONACCI NUMBER. Letting r �1 gives
CASSINI’S IDENTITY.

See also CASSINI’S IDENTITY, D’OCAGNE’S IDENTITY,
FIBONACCI NUMBER

Catalan’s Problem
The problem of finding the number of different ways
in which a PRODUCT of n different ordered FACTORS

can be calculated by pairs (i.e., the number of BINARY

BRACKETINGS of n letters). For example, for the four
FACTORS a , b , c , and d , there are five possibilities:
((ab)c)d; (a(bc))d; (ab)(cd); a((bc)d) ; and a(b(cd)) : The
solution was given by Catalan in 1838 as

C ?n �
(4n � 6)!!!!

n!
�

2 � 6 � 10 	 	 	 (4n � 6)

n! 
;

where n!!!! is a MULTIFACTORIAL and n! is the usual
FACTORIAL, which is equal to the CATALAN NUMBER

Cn�1�C?n:/

See also BINARY BRACKETING, CATALAN’S DIOPHAN-

TINE PROBLEM, CATALAN NUMBER, EULER’S POLYGON

DIVISION PROBLEM
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Catalan’s Surface

A MINIMAL SURFACE given by the PARAMETRIC EQUA-



TIONS

x(u ; v) �u �sin u cosh v (1)

y(u; v) �1 �cos u cosh v (2)

z(u; v) �4 sin(1
2u) sinh(1

2v) (3)

(Gray 1997), or

x(r; f) �a sin(2f) �2a f �1
2av2 cos(2 f) (4)

y(r ; f) ��a cos(2 f) �1
2av2 cos(2f) (5)

z(r ; f) �2av sin f ; (6)

where

v ��r �
1

r 
(7)

(do Carmo 1986).
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Catalan’s Triangle
A triangle of numbers with entries given by

cnm �
(n � m)!(n � m � 1)

m!(n � 1)!

for 0 5m 5n; where each element is equal to the one
above plus the one to the left. Furthermore, the sum
of each row is equal to the last element of the next
row and also equal to the CATALAN NUMBER Cn :

1
1 1
1 2  2
1 3  5  5
1 4  9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132

(Sloane’s A009766).

See also BELL TRIANGLE, CLARK’S TRIANGLE, EULER’S

TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, NUMBER

TRIANGLE, PASCAL’S TRIANGLE, PRIME TRIANGLE,

SEIDEL-ENTRINGER-ARNOLD TRIANGLE
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Catalan’s Trisectrix
TSCHIRNHAUSEN CUBIC

Catalogue Paradox
Consider a library which compiles a bibliographic
catalog of all (and only those) catalogs which do not
list themselves. Then does the library’s catalog list
itself?

See also PSEUDOPARADOX, RUSSELL’S PARADOX
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Catastrophe
For any system that seeks to minimize a function,
only seven different local forms of CATASTROPHE

"typically" occur for four or fewer variables:

1. FOLD CATASTROPHE,
2. CUSP CATASTROPHE,
3. SWALLOWTAIL CATASTROPHE,
4. BUTTERFLY CATASTROPHE,
5. ELLIPTIC UMBILIC CATASTROPHE,
6. HYPERBOLIC UMBILIC CATASTROPHE, and
7. PARABOLIC UMBILIC CATASTROPHE.

More specifically, for any system with fewer than five
control factors and fewer than three behavior axes,
these are the only seven catastrophes possible. The
following tables gives the possible catastrophes as a
function of control factors and behavior axes (Goetz).

Control
Factors

1 Behavior
Axis

2 Behavior Axes

1 FOLD

2 CUSP

3 SWALLOWTAIL HYPERBOLIC UMBILIC,
ELLIPTIC UMBILIC

4 BUTTERFLY PARABOLIC UMBILIC

The following table gives prototypical examples for
equations showing each type of catastrophe.



equation catastrophe

/x3 �ux/ FOLD

CATASTROPHE

/x4 �ux2 �vx/ CUSP CATA-

STROPHE, Rie-
mann-Hugoniot
catastrophe

/x5 �ux3 �vx2 �wx/ SWALLOWTAIL

CATASTROPHE

/x3 �y3 �uxy �vx �wy/ HYPERBOLIC UMBI-

LIC CATASTROPHE

/x3 �xy2 �u(x2 �y2) �vx �wy/ ELLIPTIC UMBILIC

CATASTROPHE

/x6 �ux4 �vx3 �wx2 �tx/ BUTTERFLY

CATASTROPHE

/x2y �y4 �ux2 �vy2 �wx �ty/ PARABOLIC UMBI-

LIC CATASTROPHE

See also BUTTERFLY CATASTROPHE, CATASTROPHE

THEORY, CUSP CATASTROPHE, ELLIPTIC UMBILIC

CATASTROPHE, FOLD CATASTROPHE, HYPERBOLIC UM-

BILIC CATASTROPHE, PARABOLIC UMBILIC CATA-

STROPHE, SWALLOWTAIL CATASTROPHE
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Catastrophe Theory
Catastrophe theory studies how the qualitative nat-
ure of equation solutions depends on the parameters
that appear in the equations. Subspecializations
include bifurcation theory, nonequilibrium thermo-
dynamics, singularity theory, synergetics, and topo-
logical dynamics. For any system that seeks to
minimize a function, only seven different local forms
of CATASTROPHE "typically" occur for four or fewer
variables.

See also CATASTROPHE
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Categorical Game
A GAME in which no DRAW is possible. All CATEGO-

RICAL GAMES are unfair (Steinhaus 1983, p. 16).

See also DRAW, GAME
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Categorical Variable
A variable which belongs to exactly one of a finite
number of CATEGORIES.

See also CATEGORY

Category
A category consists of two things: a collection of
OBJECTS and, for each pair of OBJECTS, a collection
of MORPHISMS (sometimes called "arrows") from one to
another.

In most concrete categories over sets, an OBJECT is
some mathematical structure (e.g., a GROUP, VECTOR

SPACE, or DIFFERENTIABLE MANIFOLD) and a MORPH-

ISM is a MAP between two OBJECTS. The MORPHISMS

are then required to satisfy some fairly natural
conditions; for instance, the IDENTITY MAP between
any object and itself is always a MORPHISM, and the
composition of two MORPHISMS (if defined) is always a
MORPHISM.

One usually requires the MORPHISMS to preserve the
mathematical structure of the objects. So if the
objects are all groups, a good choice for a MORPHISM

would be a group HOMOMORPHISM. Similarly, for
vector spaces, one would choose linear maps, and
for differentiable manifolds, one would choose differ-
entiable maps.

In the category of TOPOLOGICAL SPACES, homomorph-
isms are usually continuous maps between topologi-
cal spaces. However, there are also other category
structures having TOPOLOGICAL SPACES as objects,
but they are not nearly as important as the "stan-
dard" category of TOPOLOGICAL SPACES and continu-
ous maps.

See also ABELIAN CATEGORY, ALLEGORY, EILENBERG-



STEENROD AXIOMS, GROUPOID, HOLONOMY, LOGOS,
MONODROMY, TOPOS
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Category Theory
The branch of mathematics which formalizes a
number of algebraic properties of collections of
transformations between mathematical objects (such
as binary relations, groups, sets, topological spaces,
etc.) of the same type, subject to the constraint that
the collections contain the identity mapping and are
closed with respect to compositions of mappings. The
objects studied in category theory are called CATE-

GORIES.

See also CATEGORY

Catenary

The curve a hanging flexible wire or chain assumes
when supported at its ends and acted upon by a
uniform gravitational force. The word catenary is
derived from the Latin word for "chain." In 1669,
Jungius disproved Galileo’s claim that the curve of a
chain hanging under gravity would be a PARABOLA

(MacTutor Archive). The curve is also called the
alysoid and chainette. The equation was obtained by
Leibniz, Huygens, and Johann Bernoulli in 1691 in
response to a challenge by Jakob Bernoulli.
Huygens was the first to use the term catenary in a
letter to Leibniz in 1690, and David Gregory wrote a
treatise on the catenary in 1690 (MacTutor Archive).
If you roll a PARABOLA along a straight line, its FOCUS

traces out a catenary. As proved by Euler in 1744, the
catenary is also the curve which, when rotated, gives
the surface of minimum SURFACE AREA (the CATE-

NOID) for the given bounding CIRCLE.

The PARAMETRIC EQUATIONS for the catenary are
given by

x(t)�t (1)

y(t)�1
2 a(et=a�e�t=a)�a cosh

t

a

 !
; (2)

where t�0 corresponds to the vertex, and the
CESÀRO EQUATION is

(s2�a2)k��a: (3)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s(t)�a sinh
t

a

 !
; (4)

k(t)��
1

a
sech2 t

a

 !
; (5)

f(t)��2 tan�1 tanh
t

2a

 !" #
: (6)

The slope is proportional to the ARC LENGTH as
measured from the center of symmetry.

The St. Louis Arch closely approximates an inverted
catenary, but it has a finite thickness and varying
cross sectional area (thicker at the base; thinner at
the apex). The centroid has half-length of
L�299.2239 feet at the base, height of 625.0925
feet, top cross sectional area 125.1406 square feet,
and bottom cross sectional area 1262.6651 square
feet.

The catenary also gives the shape of the road
(ROULETTE) over which a regular polygonal "wheel"
can travel smoothly. For a regular n -gon, the Carte-
sian equation of the corresponding catenary is

y��A cosh
x

A

 !
; (7)

where



A �R cos
p

n

 !
: (8)

See also CALCULUS OF VARIATIONS, CATENOID, LINDE-

LOF’S THEOREM, ROULETTE, SURFACE OF REVOLUTION
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Catenary Evolute

x�a[x�1
2 sinh(2t)]

y�2a cosh t:

Catenary Involute

The parametric equation for a CATENARY is

r(t)�a
t

cosh t

� �
; (1)

so

dr

dt
�a

1
sinh t

� �
(2)

dr

dt

�����
������a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sinh2 t

p
�a cosh t (3)

and

T̂�

dr

dt

dr

dt

�����
�����
�

sech t
tanh t

� �
(4)

ds2� ½dr2½�a2(1�sinh2 t) dt2�a2 cosh2 dt2 (5)

ds

dt
�a cosh t: (6)

Therefore,

s�a g cosh t dt�a sinh t (7)

and the equation of the INVOLUTE is

x�a(t�tanh t) (8)

y�a sech t: (9)

This curve is called a TRACTRIX.



Catenary Radial Curve

The KAMPYLE OF EUDOXUS.

Catenoid

A CATENARY of REVOLUTION. The catenoid and PLANE

are the only SURFACES OF REVOLUTION which are also
MINIMAL SURFACES. The catenoid can be given by the
PARAMETRIC EQUATIONS

x �c cosh
v

c

 !
cos u (1)

y �c cosh
v

c

 !
sin u (2)

z �v; (3)

where u � [0; 2p): The differentials are

dx �sinh
v

c

 !
cos u dv�cosh

v

c

 !
sin u du  (4)

dy �sinh
v

c

 !
sin u dv�cosh

v

c

 !
cos u du  (5)

dz �du; (6)

so the LINE ELEMENT is

ds2 �dx2 �dy2 �dz2

� sinh2 v

c

 !
�1

" #
dv2 �cosh2 v

c

 !
du2

�cosh2 v

c

 !
dv2 �cosh2 v

c

 !
du2 : (7)

The PRINCIPAL CURVATURES are

k1 ��
1

c
sech2 v

c

 !
(8)

k2 �
1

c
sech2 v

c

 !
: (9)

The MEAN CURVATURE of the catenoid is

H �0 (10)

and the GAUSSIAN CURVATURE is

K ��
1

c2
sech4 v

c

 !
: (11)

The HELICOID can be continuously deformed into a
catenoid with c �1 by the transformation

x(u ; v) �cos a sinh v sin u �sin a cosh v cos u (12)

y(u; v)��cos a sinh v cos u�sin a cosh v sin u (13)

z(u; v)�u cos a�v sin a; (14)

where a�0 corresponds to a HELICOID and a�p=2 to
a catenoid.

See also CATENARY, COSTA MINIMAL SURFACE, HELI-

COID, MINIMAL SURFACE, SURFACE OF REVOLUTION
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Caterpillar Graph

A TREE with every NODE on a central stalk or only one
EDGE away from the stalk. A tree is a caterpillar
graph IFF all nodes of degree ]3 are surrounded by at
most two nodes of degree two or greater. The number
of caterpillar graphs on n �1, 2, ... nodes are 1, 1, 1, 2,
3, 6, 10, 20, 36, 72, 136, ... (Sloane’s A005418), giving
the number of noncaterpillar graphs on n �7, 8, ... as
1, 3, 11, 34, 99, ... (Sloane’s A052471). The non-
caterpillar graphs on n 59 nodes are illustrated
above.

See also TREE
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Cattle Problem of Archimedes
ARCHIMEDES’ CATTLE PROBLEM

Cauchy Binomial Theorem

Yn

k�1

(1 �yqk) �
Xn

m �0

ymqm(m �1)=2 n
m

� �
q

�
Xn

m �0

ymqm(m �1)=2 (q)n

(q)m(q)n�m

;

where [nrm]q is a Q -BINOMIAL COEFFICIENT.

See also Q -BINOMIAL COEFFICIENT, Q -BINOMIAL THE-

OREM

Cauchy Boundary Conditions
BOUNDARY CONDITIONS of a PARTIAL DIFFERENTIAL

EQUATION which are a weighted AVERAGE of DIRICH-

LET BOUNDARY CONDITIONS (which specify the value
of the function on a surface) and NEUMANN BOUNDARY

CONDITIONS (which specify the normal derivative of
the function on a surface).

See also BOUNDARY CONDITIONS, CAUCHY PROBLEM,
DIRICHLET BOUNDARY CONDITIONS, NEUMANN

BOUNDARY CONDITIONS
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Cauchy Condition
UNIFORMLY CAUCHY

Cauchy Criterion
A NECESSARY and SUFFICIENT condition for a SE-

QUENCE Si to CONVERGE. The Cauchy criterion is
satisfied when, for all e > 0; there is a fixed number N
such that Sj�Si

�� ��B e for all i; j > N:/

Cauchy Distribution

The Cauchy distribution, also called the LORENTZIAN

DISTRIBUTION, is a continuous distribution describing
resonance behavior. It also describes the distribution
of horizontal distances at which a LINE SEGMENT

tilted at a random ANGLE cuts the X -AXIS. Let u

represent the ANGLE that a line, with fixed point of
rotation, makes with the vertical axis, as shown
above. Then

tan u�
x

b
(1)

u�tan�1 x

b

 !
(2)

du��
1

1 �
x2

b2

dx

b
��

b dx

b2 � x2
; (3)

so the distribution of ANGLE u is given by

du

p
��

1

p

b dx

b2 � x2
: (4)

This is normalized over all angles, since

g
p=2

�p=2

du

p
�1 (5)



and

�g
�

��

1

p

b dx

b2 � x2 
�

1

p
tan�1 b

x

 !" #�
��

�
1

p
[1
2 p �(�1

2 p)] �1 : (6)

The general Cauchy distribution and its cumulative
distribution can be written as

P(x) �
1

p

1
2 G

(x � m)2 � (1
2 G)2 (7)

D(x) �
1

2 
�

1

p
tan�1 x � m

b

 !
; (8)

where G is the FULL WIDTH AT HALF MAXIMUM (/ G�2b
in the above example) and m is the MEDIAN (m �0 in
the above example). The CHARACTERISTIC FUNCTION is

f(t) �
1

p g
�

��

eitx
1
2 G

(1
2 G)2 � (x � m)2 dx �eimt �G tj j=2 : (9)

The MOMENTS mn of the distribution are undefined
since the integrals

mn �g
�

��

G
2p

xn

(x � m)2 � (1
2 G)2 (10)

diverge for n ]1:/
If X and Y are variates with a NORMAL DISTRIBUTION,
then Z �X =Y has a Cauchy distribution with MEDIAN

m �0 and full width

G�
2sy

sx

: (11)

The sum of n variates each from a Cauchy distribu-
tion has itself a Cauchy distribution, as can be seen
from

Pn(x) �F�1 f[ f(t)]n g�
(1
2 nG)

p[(1
2 nG)2 � (x � nm)2] 

; (12)

where f(t) is the CHARACTERISTIC FUNCTION and
F�1 fj j is the inverse FOURIER TRANSFORM, taken
with parameters a �b �1 :/

See also GAUSSIAN DISTRIBUTION, NORMAL DISTRIBU-

TION
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Cauchy Equation
EULER EQUATION

Cauchy Functional Equation

The fifth of HILBERT’S PROBLEMS is a generalization of
this equation.

See also HILBERT’S PROBLEMS

Cauchy Integral Formula

Given a CONTOUR INTEGRAL OF THE FORM

G
g

f (z) dz

z � z0

; (1)

define a path gr as an infinitesimal clockwise CIRCLE

around the point z0 (the dot in the above illustration),
and define the path g0 as an arbitrary loop with a cut
line (on which the forward and reverse contributions
cancel each other out) so as to go around z0:/
The total path is then

g�g0�gr; (2)

so

G
g

f (z) dz

z � z0

�G
g0

f (z) dz

z � z0

�G
gr

f (z) dz

z � z0

: (3)

From the CAUCHY INTEGRAL THEOREM, the CONTOUR

INTEGRAL along any path not enclosing a POLE is 0.
Therefore, the first term in the above equation is 0
since g0 does not enclose the POLE, and we are left
with

G
g

f (z) dz

z � z0

�G
gr

f (z) dz

z � z0

: (4)

Now, let z�z0�reiu; so dz�ireiu du: Then

G
g

f (z) dz

z � z0

�G
gr

f (z0 � reiu)

reiu
ireiu du

�G
gr

f (z0�reiu)i du: (5)

But we are free to allow the radius r to shrink to 0, so



G
g

f (z) dz

z � z0

�lim
r00 G

gr

f (z0 �reiu)i du �G
gr

f (z0)i du

�if (z0) G
gr

du �2pif (z0) ; (6)

and

f (z0) �
1

2pi G  g
f (z) dz

z � z0

: (7)

If multiple loops are made around the POLE, then
equation (7) becomes

n(g ; z0)f (z0) �
1

2 pi G  g
f (z) dz

z � z0

; (8)

where n(g ; z0) is the WINDING NUMBER.

A similar formula holds for the derivatives of f (z) ;

f ?(z0) �lim
h00

f (z0 � h) � f (z0)

h

�lim
h00

1

2 pih G  g
f (z) dz

z � z0 � h 
�G  

g

f (z) dz

z � z0

" #

�lim
h00

1

2 pih G  g
f (z)[(z � z0) � (z � z0 � h] dz

(z � z0 � h)(z � z0)

�lim
h00

1

2 pih G  g
hf (z) dz

(z � z0 � h)(z � z0)

�
1

2pi G  g
f (z) dz

(z � z0)2 : (9)

Iterating again,

f ƒ(z0) �
2

2pi G  g
f (z) dz

(z � z0)3 : (10)

Continuing the process and adding the WINDING

NUMBER n ,

n(g; z0)f (r)(z0)�
r!

2piG g
f (z) dz

(z � z0)r�1 : (11)

See also ARGUMENT PRINCIPLE, CONTOUR INTEGRAL,
MORERA’S THEOREM
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Birkhäuser, pp. 26�/29, 1999.

Morse, P. M. and Feshbach, H. Methods of Theoretical
Physics, Part I. New York: McGraw-Hill, pp. 367�/372,
1953.

Woods, F. S. "Cauchy’s Theorem." §146 in Advanced Calcu-
lus: A Course Arranged with Special Reference to the
Needs of Students of Applied Mathematics. Boston, MA:
Ginn, pp. 352�/353, 1926.

Cauchy Integral Test
INTEGRAL TEST

Cauchy Integral Theorem
If f (z) is analytic in some simply connected region R ,
then

G
g

f (z) dz�0 (1)

for any closed CONTOUR g completely contained in R .
Writing z as

z�x�iy (2)

and f (z) as

f (z)�u�iv (3)

then gives

G
g

f (z) dz�g
g

(u�iv)(dx�i dy)

�g
g

u dx�v dy�ig
g

v dx�u dy: (4)

From GREEN’S THEOREM,

g
g

f (x; y) dx�g(x; y) dy��gg
@g

@x
�

@f

@y

 !
dx dy; (5)

g
g

f (x; y) dx�g(x; y) dy�gg
@g

@x
�

@f

@y

 !
dx dy (6)

so (4) becomes

G
g

f (z) dz��gg
@v

@x
�

@u

@y

 !
dx dy

�igg
@u

@x
�

@v

@y

 !
dx dy: (7)

But the CAUCHY-RIEMANN EQUATIONS require that

@u

@x
�

@v

@y
(8)

@u

@y
��

@v

@x
; (9)

so



G
g

f (z) dz �0; (10)

Q.E.D.

For a MULTIPLY CONNECTED region,

G
C1

f (z) dz �G
C2

f (z) dz : (11)

See also ARGUMENT PRINCIPLE, CAUCHY INTEGRAL

THEOREM, CONTOUR INTEGRAL, MORERA’S THEOREM,
RESIDUE THEOREM
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Birkhäuser, pp. 26 �/29, 1999.

Morse, P. M. and Feshbach, H. Methods of Theoretical
Physics, Part I. New York: McGraw-Hill, pp. 363 �/367,
1953.

Woods, F. S. "Integral of a Complex Function." §145 in
Advanced Calculus: A Course Arranged with Special
Reference to the Needs of Students of Applied Mathe-
matics. Boston, MA: Ginn, pp. 351 �/352, 1926.

Cauchy Mean Theorem
CAUCHY’S FORMULA

Cauchy Number of the First Kind
BERNOULLI NUMBER OF THE SECOND KIND

Cauchy Principal Value

PVg
�

��

f (x) dx �limR0�g
R

�R

f (x) dx

PVg
b

a

f (x) dx �lime00 g
c� e

a

f (x) dx �g
b

c� e

f (x) dx

" #
;

where e > 0 and a 5c 5b : Russian authors use the
notation P(x) instead of PVx for the principal value of
x .
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Cauchy Problem
If f (x; y) is an ANALYTIC FUNCTION in a NEIGHBOR-

HOOD of the point (x0 ; y0) (i.e., it can be expanded in a

series of NONNEGATIVE INTEGER POWERS of (x �x0)
and (y �y0)) ; find a solution y(x) of the DIFFERENTIAL

EQUATION

dy

dx 
�f (x) ;

with initial conditions y �y0 and x �x0 : The existence
and uniqueness of the solution were proven by
Cauchy and Kovalevskaya in the CAUCHY-KOVALEVS-

KAYA THEOREM. The Cauchy problem amounts to
determining the shape of the boundary and type of
equation which yield unique and reasonable solutions
for the CAUCHY BOUNDARY CONDITIONS.

See also CAUCHY BOUNDARY CONDITIONS, CAUCHY-

KOVALEVSKAYA THEOREM

Cauchy Product
The Cauchy product of two sequences f (n) and g(n)
defined for nonnegative integers n is defined by

(f (g)(n) �
Xn

k �0

f (k)g(n �k) :

See also CONVOLUTION
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Cauchy Ratio Test
RATIO TEST

Cauchy Remainder
The remainder after n terms of a TAYLOR SERIES is
given by

Rn �
(x � x�)n(x � x0)n�1

n!
f (n�1)(x�);

where x� � (x0 ; x):/

Note that the Cauchy remainder Rn is also sometimes
taken to refer to the remainder when terms up to the
(n �1)/st power are taken in the TAYLOR SERIES, and
that a notation in which h 0 x �x0 ; x� 0 a � uh; and
x�x� 0 1�u is sometimes used (Blumenthal 1926;
Whittaker and Watson 1990, pp. 95�/96).

See also LAGRANGE REMAINDER, SCHLÖ MILCH RE-

MAINDER, TAYLOR SERIES

References
Beesack, P. R. "A General Form of the Remainder in Taylor’s

Theorem." Amer. Math. Monthly 73, 64�/67, 1966.



Blumenthal, L. M. "Concerning the Remainder Term in
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Cauchy Root Test
ROOT TEST

Cauchy Sequence
A SEQUENCE a1 ; a2 ; ... such that the METRIC d(am ; an)
satisfies

lim
min(m; n) 0�

d(am ; an) �0:

Cauchy sequences in the rationals do not necessarily
CONVERGE, but they do CONVERGE in the REALS.

REAL NUMBERS can be defined using either DEDEKIND

CUTS or Cauchy sequences.

See also DEDEKIND CUT

Cauchy Test
RATIO TEST

Cauchy-Davenport Theorem
Let t be a NONNEGATIVE INTEGER and let x1 ; ..., xt be
nonzero elements of Zp which are not necessarily
distinct. Then the number of elements of Zp that can
be written as the sum of some SUBSET (possibly
empty) of the xi is at least min fp ; t �1g: In particu-
lar, if t ]p �1; then every element of Zp can be so
written.
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Cauchy-Frobenius Lemma
Let J be a FINITE GROUP and the image R(J) be a
representation which is a HOMEOMORPHISM of J into
a PERMUTATION GROUP S(X) ; where S(X) is the GROUP

of all permutations of a SET X . Define the orbits of
R(J) as the equivalence classes under x �y; which is
true if there is some permutation p in R(J) such that
p(x) �y: Define the fixed points of p as the elements x
of X for which p(x) �x: Then the AVERAGE number of
FIXED POINTS of permutations in R(J) is equal to the
number of orbits of R(J) :/

The LEMMA was apparently known by Cauchy (1845)
in obscure form and Frobenius (1887) prior to Burn-
side’s (1900) rediscovery. It is sometimes also called
BURNSIDE’S LEMMA, the PÓ LYA-BURNSIDE LEMMA, or

even "the LEMMA THAT IS NOT BURNSIDE’S!" Whatever
its name, the lemma was subsequently extended and
refined by Pólya (1937) for applications in COMBINA-

TORIAL counting problems. In this form, it is known as
PÓ LYA ENUMERATION THEOREM.

See also PÓ LYA ENUMERATION THEOREM
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Cauchy-Hadamard Theorem
The RADIUS OF CONVERGENCE of the TAYLOR SERIES

a0 �a1z �a2z2 �. . .

is

r �
1

lim
n0�

( anj j)1 =n :

See also RADIUS OF CONVERGENCE, TAYLOR SERIES

Cauchy-Kovalevskaya Theorem
The theorem which proves the existence and unique-
ness of solutions to the CAUCHY PROBLEM.

See also CAUCHY PROBLEM

Cauchy-Lagrange Identity
LAGRANGE’S IDENTITY

Cauchy-Maclaurin Theorem
MACLAURIN-CAUCHY THEOREM

Cauchy-Riemann Equations
Let

f (x; y)�u(x; y)�iv(x; y); (1)

where

z�x�iy; (2)



so

dz �dx �i dy: (3)

The total derivative of f with respect to z may then be
computed as follows.

y �
z � x

i 
(4)

x �z �iy ; (5)

so

@y

@z 
�

1

i 
��i (6)

@x

@z 
�1; (7)

and

df

dz 
�

@f

@x

@x

@z 
�

@f

@y

@y

@z 
�

@f

@x 
�i

@f

@y 
: (8)

In terms of u and v , (8) becomes

df

dz 
�

@u

@x 
�i

@v

@x

 !
�i

@u

@y 
�i

@v

@y

 !

�
@u

@x 
�i

@v

@x

 !
� �i

@u

@y 
�

@v

@y

 !
: (9)

Along the real, or X -AXIS, @f =@y �0 ; so

df

dz 
�

@u

@x 
�i

@v

@x 
: (10)

Along the imaginary, or Y -AXIS, @f =@x �0; so

df

dz 
��i

@u

@y 
�

@v

@y 
: (11)

If f is COMPLEX DIFFERENTIABLE, then the value of the
derivative must be the same for a given dz , regardless
of its orientation. Therefore, (10) must equal (11),
which requires that

@u

@x 
�

@v

@y 
(12)

and

@v

@x 
��

@u

@y
: (13)

These are known as the Cauchy-Riemann equations.

They lead to the condition

@2u

@x @y 
��

@2v

@x @y 
: (14)

The Cauchy-Riemann equations may be concisely

written as

df

dz̄ 
�

@f

@x 
�i

@f

@y 
�

@u

@x 
�i

@v

@x

 !
�i

@u

@y 
�i

@v

@y

 !

�
@u

@x 
�

@v

@y

 !
�i

@u

@y 
�

@v

@x

 !
�0 ; (15)

where z̄ is the COMPLEX CONJUGATE.

If z �reiu ; then the Cauchy-Riemann equations be-
come

@u

@r 
�

1

r

@v

@ u 
(16)

1

r

@u

@ u 
��

@v

@r 
(17)

(Abramowitz and Stegun 1972, p. 17).

If u and v satisfy the Cauchy-Riemann equations,
they also satisfy LAPLACE’S EQUATION in 2-D, since

@2u

@x2 
�

@2u

@y2 
�

@

@x

@v

@y

 !
�

@

@y
�

@v

@x

 !
�0 (18)

@2v

@x2 
�

@2v

@y2 
�

@

@x
�

@u

@y

 !
�

@

@y

@u

@x

 !
�0 : (19)

By picking an arbitrary f (z) ; solutions can be found
which automatically satisfy the Cauchy-Riemann
equations and LAPLACE’S EQUATION. This fact is
used to use CONFORMAL MAPPINGS to find solutions
to physical problems involving scalar potentials such
as fluid flow and electrostatics.

See also ANALYTIC FUNCTION, CAUCHY INTEGRAL

THEOREM, COMPLEX DERIVATIVE, CONFORMAL TRANS-

FORMATION, ENTIRE FUNCTION, MONOGENIC FUNC-

TION, POLYGENIC FUNCTION
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Cauchy’s Cosine Integral Formula

g  
p=2

� p=2

cos m� n�2 ueiu(m� n�2j) du

�
p G(m � n � 1)

2 m� n�2 G(m � j) G( n � j) 
;

where G(z) is the GAMMA FUNCTION.

Cauchy’s Determinant Theorem
Any row r and column s of a DETERMINANT being
selected, if the element common to them be multiplied
by its COFACTOR in the DETERMINANT, and every
product of another element of the row by another
element of the columns be multiplied by its COFAC-

TOR, the sum of the results is equal to the given
DETERMINANT. Symbolically,

D�ars

@D
@ars

�
X

ariaks

@2 D
@ari @aks

(1)

�(�1)r�sarsArs �
X

9ariaksArk ; is ; (2)

where i ; k �1 ; 2, ..., n ; i "s; k "r; and the sign before
ariaksArk ; is is determined by the formula (�1)n1�n2 ; with
n1 the total number of PERMUTATION INVERSIONS in
the suffix and n2 �r �i �k �s :/

See also DETERMINANT
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Cauchy’s Formula
The GEOMETRIC MEAN is smaller than the ARITHMETIC

MEAN,

YN
i�1

ni

 !1 =N

5

PN
i �1 ni

N
;

with equality in the cases (1) N �1 or (2) ni �nj for all
i, j .

See also ARITHMETIC MEAN, GEOMETRIC MEAN

Cauchy’s Inequality
A special case of HÖ LDER’S SUM INEQUALITY with p �
q �2;

Xn

k �1

akbk

 !2

5
Xn

k �1

a2
k

 ! Xn

k �1

b2
k

 !
; (1)

where equality holds for ak �cbk : The inequality is
sometimes also called Lagrange’s inequality (Mitri-
novic 1970, p. 42), and can be written in vector form
as

a � bj j5 aj j bj j: (2)

In 2-D, it becomes

(a2 �b2)(c2 �d2) ](ac �bd)2 : (3)

It can be proven by writing

Xn

i �1

(aix �bi)
2 �

Xn

i �1

a2
i x �

bi

ai

 !2

�0 : (4)

If bi =ai is a constant c , then x ��c : If it is not a
constant, then all terms cannot simultaneously van-
ish for REAL x , so the solution is COMPLEX and can be
found using the QUADRATIC EQUATION

x �
�2

P 
aibi 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4(
P 

aibi)
2 � 4

P 
a2

i

P
b2

i

q
2
P 

a2
i

: (5)

In order for this to be COMPLEX, it must be true that

X
i

aibi

 !2

5
X

i

a2
i

 ! X
i

b2
i

 !
; (6)

with equality when bi =ai is a constant. The VECTOR

derivation is much simpler,

(a � b)2 �a2b2 cos2 u 5a2b2 ; (7)

where

a2 �a � a �
X

i

a2
i ; (8)

and similarly for b .

See also CHEBYSHEV INEQUALITY, HÖ LDER’S INEQUAL-

ITIES
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Birkhäuser, p. 12, 1999.

Mitrinovic, D. S. "Cauchy’s and Related Inequalities." §2.6 in
Analytic Inequalities. New York: Springer-Verlag,
pp. 41�/48, 1970.



Cauchy’s Rigidity Theorem
RIGIDITY THEOREM

Cauchy’s Theorem
CAUCHY BINOMIAL THEOREM, CAUCHY-DAVENPORT

THEOREM, CAUCHY’S DETERMINANT THEOREM, CAU-

CHY’S FORMULA, CAUCHY-HADAMARD THEOREM, CAU-

CHY INTEGRAL THEOREM, CAUCHY-KOVALEVSKAYA

THEOREM, MACLAURIN-CAUCHY THEOREM, RIGIDITY

THEOREM

Cauchy-Schwarz Inequality
SCHWARZ’S INEQUALITY

Cauchy-Schwarz Integral Inequality
Let a1 and a2 by any two REAL integrable functions in
[a, b ], then

lim
min(m; n) 0�

d(am ; an) �0:

with equality IFF F with k real.
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Cauchy-Schwarz Sum Inequality

p "2

u1

Equality holds IFF the sequences u2 ; u8 ; ... and m1 ; m2 ;
... are proportional.

See also FIBONACCI IDENTITY
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Caudrey-Dodd-Gibbon-Sawada-Kotera
Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �uxxxxx �30uuxxx �30uxuxx �180u2ux �0 :

See also SAWADA-KOTERA EQUATION
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Caustic
The curve which is the ENVELOPE of reflected (CATA-

CAUSTIC) or refracted (DIACAUSTIC) rays of a given
curve for a light source at a given point (known as the
RADIANT POINT). The caustic is the EVOLUTE of the
ORTHOTOMIC.

See also CATACAUSTIC, CIRCLE CAUSTIC, DIACAUSTIC,
ENVELOPE, EVOLUTE, ORTHOTOMIC, RADIANT POINT
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Cavalieri’s Principle

1. If the lengths of every one-dimensional slice are
equal for two regions, then the regions have equal
AREAS.
2. If the AREAS of every two-dimensional SECTION

are equal for two SOLIDS, then the SOLIDS have
equal VOLUMES.

See also CROSS SECTION, PAPPUS’S CENTROID THEO-

REM, SECTION, VOLUME THEOREM
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Cavalieri’s Theorem
CAVALIERI’S PRINCIPLE

Cayley Algebra
The only NONASSOCIATIVE DIVISION ALGEBRA with
REAL SCALARS. There is an 8-square identity corre-
sponding to this algebra.

The elements of a Cayley algebra are called CAYLEY

NUMBERS or OCTONIONS, and the MULTIPLICATION

TABLE for any Cayley algebra over a FIELD F with
characteristic p "2 may be taken as shown in the



following table, where u1 ; u2 ; ..., u8 are a bases over
F and m1 ; m2 ; and m3 are nonzero elements of F
(Schafer 1996, pp. 5 �/).

/u1/ /u2/ /u3/ /u4/ /u5/ /u6/ /u7/ /u8/

/u1/ /u1/ /u2/ /u3/ /u4/ /u5/ /u6/ /u7/ /u8/

/u2/ /u2/ /m1u1/ /�u4/ /�m1u3/ /�u6/ /�m1u5/ /u8/ /m1u7/

/u3/ /u3/ /u4/ /m2u1/ /m2u2/ /�u7/ /�u8/ /�m2u5/ /�m2u6/

/u4/ /u4/ /m1u3/ /�m2u2/ /�m1 m2u1/ /�u8/ /�m1u7/ /m2u6/ m1 m2 m5

/u5/ /u5/ /u6/ /u7/ /u8/ /m3u1/ /m3u2/ /m3u3/ /m3u4/

/u6/ /u6/ /m1u5/ /u8/ /m1u7/ /�m3u2/ /�m1 m3u1/ /�m3u4/ �m1m2m3

/u7/ /u7/ /�u8/ /m2u5/ /�m2u6/ /�m3u3/ /m3u4/ /�m2 m3u1/ m2 m3 m2

/u8/ /u8/ /�m1u7/ /m2u6/ /�m1 m2u5/ /�m3u4/ /m1 m3u3/ /�m2 m3u2/ m1m2m3m1

See also CAYLEY NUMBER, DIVISION ALGEBRA, OCTO-

NION, NONASSOCIATIVE ALGEBRA
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Cayley Cubic

A CUBIC RULED SURFACE (Fischer 1986) in which the
director line meets the director CONIC SECTION.
Cayley’s surface is the unique cubic surface having
four ORDINARY DOUBLE POINTS (Hunt), the maximum
possible for CUBIC SURFACE (Endraß). The Cayley
cubic is invariant under the TETRAHEDRAL GROUP and
contains exactly nine lines, six of which connect the
four nodes pairwise and the other three of which are
coplanar (Endraß).
If the ORDINARY DOUBLE POINTS in projective 3-space
are taken as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0,
1), then the equation of the surface in projective
coordinates is

1

x0

�
1

x1

�
1

x2

�
1

x3

�0 (1)

(Hunt). Defining "affine" coordinates with plane at
infinity v �x0 �x1 �x2 �2x3 and

x �
x0

v 
(2)

y �
x1

v 
(3)

z �
x2

v 
(4)

then gives the equation

�5(x2y �x2z �y2x �y2z �z2y �z2x) �2(xy �xz �yz)

�0 (5)

plotted in the left figure above (Hunt). The slightly
different form

4(x3 �y3 �z3 �w3) �(x �y �z �w)3 �0 (6)

is given by Endraß which, when rewritten in TETRA-

HEDRAL COORDINATES, becomes

x2 �y2 �x2z �y2z �z2 �1 �0; (7)

plotted in the right figure above.

The Hessian of the Cayley cubic is given by

0 �x2
0(x1x2 �x1x3 �x2x3) �x2

1(x0x2 �x0x3 �x2x3)

�x2
2(x0x1 �x0x3 �x1x3) �x2

3(x0x1 �x0x2 �x1x2) (8)

in homogeneous coordinates x0 ; x1 ; x2 ; and x3 : Taking
the plane at infinity as v �5(x0 �x1 �x2 �2x3)=2 and
setting x , y , and z as above gives the equation

25[x3(y�z)�y3(x�z)�z3(x�y)]�50(x2y2�x2z2�y2z2)

�125(x2yz�y2xz�z2xy)�60xyz�4(xy�xz�yz)�0; (9)

plotted above (Hunt). The Hessian of the Cayley cubic
has 14 ORDINARY DOUBLE POINTS, four more than a
the general Hessian of a smooth CUBIC SURFACE

(Hunt).

See also CAYLEY SURFACE
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Cayley Graph

The Cayley graph of a GROUP G is a DIRECTED GRAPH

determined by a set of generators g1 ; ..., gk : The
vertices correspond to the elements of the group, and
whenever gia �b; an edge is drawn between a and b .
For example, the DIHEDRAL GROUP D7 (left figure) is
generated by the two elements, flips (red) and rota-
tions (blue). The Cayley graph depends on the choice
of a generating set. The right figure above illustrates
the Cayley graph for the ALTERNATING GROUP A4 :/
Royle has constructed all cubic Cayley graphs up to
1000 vertices, excluding those on 512 and 768
vertices.

The Cayley graphs of infinite groups provide inter-
esting geometries. For example, the Cayley graphs of
the FREE GROUP on two generators are illustrated
above (drawn out to successive levels), representing
horizontal and vertical displacement respectively.
Each new edge is drawn at half the size to give
FRACTAL images.

See also CAGE GRAPH, CAYLEY TREE, DISCRETE

GROUP, FREE GROUP, GRAPH, GROUP, TREE
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Cayley Lines
The 60 PASCAL LINES of a hexagon inscribed in a conic
intersect three at a time through 20 STEINER POINTS,
and also three at a time in 60 KIRKMAN POINTS. Each
STEINER POINT lies together with three KIRKMAN

POINTS on a total of 20 lines known as Cayley lines.
The 20 Cayley lines pass four at a time though 15
points known as SALMON POINTS (Wells 1991). There
is a dual relationship between the 20 Cayley lines and
the 20 STEINER POINTS.

See also KIRKMAN POINTS, PASCAL LINES, PASCAL’S

THEOREM, PLÜ CKER LINES, SALMON POINTS, STEINER

POINTS
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Cayley Number
There are two completely different definitions of
Cayley numbers. The first and most commonly
encountered type of Cayley number is the eight
elements in a CAYLEY ALGEBRA, also known as
octonions. The set of octonions is sometimes denoted
O: A typical Cayley number is OF THE FORM

a �bi0 �ci1 �di2 �ei3 �fi4 �gi5 �hi6 ;

where each of the triples (i0 ; i1 ; i3) ; (i1 ; i2 ; i4);
(i2 ; i3 ; i5); (i3 ; i4 ; i6); (i4 ; i5 ; i0); (i5 ; i6 ; i1); (i6 ; i0 ; i2)
behaves like the QUATERNIONS (i ; j ; k): Cayley num-
bers are not ASSOCIATIVE. They have been used in the
study of 7- and 8-D space, and a general rotation in 8-
D space can be written

x? 0 ((((((xc1)c2)c3)c4)c5)c6)c7:

A quantity which describes a DEL PEZZO SURFACE is
sometimes also called a Cayley number (Coxeter
1973, p. 211).

See also COMPLEX NUMBER, DEL PEZZO SURFACE,
QUATERNION, REAL NUMBER
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Cayley Surface
In affine 3-space the Cayley surface is given by

x3 �x1x2 �
1
3x

3
1

(Nomizu and Sasaki 1994). The surface has been
generalized by Eastwood and Ezhov (2000) to

FN (x1 ; x2 ; . . . ; xN ) �
XN

d�1

(�1)d
X

i�j �...�m �N

xixj . . . xm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d

�0:

This gives the first few hypersurfaces as

x4 �x1x3 �
1
2 x

2
2 �x2

1x2 �
1
4 x

4
1

x5 �x1x4 �x2x3 �x2
1x3 �x1x2

2 �x3
1x2 �

1
5 x

5
1 :

See also CAYLEY CUBIC
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Cayley Transform

The LINEAR FRACTIONAL TRANSFORMATION

z �
i � z

i � z

that maps the UPPER HALF-PLANE fz : I[z] > 0 g CON-

FORMALLY onto the UNIT DISK fz : ½z ½B1g:/
See also CONFORMAL MAPPING, LINEAR FRACTIONAL

TRANSFORMATION
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Cayley Tree

A TREE in which each non-leaf NODE has a constant
number of branches n is called an n -Cayley tree. 2-
Cayley trees are PATH GRAPHS. The unique n -Cayley
tree on n �1 nodes is the STAR GRAPH. The illustra-
tion above shows the first few 3-Cayley trees (also
called trivalent trees, binary trees, or boron trees).
The numbers of binary trees on n �1, 2, ... nodes (i.e.,
n -node trees having VERTEX DEGREE either 1 or 3;
also called 3-Cayley trees, 3-valent trees, or boron
trees) are 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0 ,4, 0, 6, 0, 11,
... (Sloane’s A052120).

The illustrations above show the first few 4-Cayley
and 5-Cayley trees.
The PERCOLATION THRESHOLD for a Cayley tree
having z branches is

pc �
1

z � 1 
:

See also CAYLEY GRAPH, PATH GRAPH, STAR GRAPH,
TREE
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Cayley-Bacharach Theorem
Let X1 ; X2 ƒP2 be CUBIC plane curves meeting in
nine points p1 ; ..., p9 : If X ƒP2 is any CUBIC contain-
ing p1 ; ..., p8 ; then X contains p9 as well. It is related
to GORENSTEIN RINGS, and is a generalization of
PAPPUS’S HEXAGON THEOREM and PASCAL’S THEOREM.

See also PASCAL’S THEOREM, PAPPUS’S HEXAGON

THEOREM
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Cayley-Dickson Algebra
CAYLEY ALGEBRA

Cayley-Hamilton Theorem
Given

a11�x a12 	 	 	 a1m

a21 a22�x 	 	 	 a2m

n n ::: n
am1 am2 	 	 	 amm�x

��������

��������
�xm�cm�1xm�1�. . .�c0; (1)

then

Am�cm�1A
m�1�. . .�c0I�0; (2)

where I is the IDENTITY MATRIX. Cayley verified this
identity for m�2 and 3 and postulated that it was
true for all m . For m�2, direct verification gives

a�x b
c d�x

����
�����(a�x)(d�x)�bc

�x2�(a�d)x�(ad�bc)�x2�c1x�c2 (3)

A�
a b
c d

� �
(4)

A2�
a b
c d

� �
a b
c d

� �
� a2�bc ab�bd

ac�cd bc�d2

� �
(5)

�(a�d)A� �a2�ad�ab�bd
�ac�dc�ad�d2

� �
(6)

(ad�bc)I�
ad�bc 0

0 ad�bc

� �
; (7)

so

A2�(a�d)A�(ad�bc)I�
0 0
0 0

� �
: (8)

The Cayley-Hamilton theorem states that a n�n
MATRIX A is annihilated by its CHARACTERISTIC POLY-

NOMIAL det(xI�A); which is monic of degree n .
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Cayleyian Curve
The ENVELOPE of the lines connecting corresponding
points on the JACOBIAN CURVE and STEINERIAN

CURVE. The Cayleyian curve of a net of curves of
order n has the same GENUS (CURVE) as the JACOBIAN

CURVE and STEINERIAN CURVE and, in general, the
class 3n(n�1):/
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Cayley-Klein Parameters
The parameters a; b; g; and d which, like the three
EULER ANGLES, provide a way to uniquely character-
ize the orientation of a solid body. These parameters
satisfy the identities

aā�gḡ�1 (1)

aā�bb̄�1 (2)

bb̄�dd̄�1 (3)

āb� ḡd�0 (4)

ad�bg�1 (5)

and

b��ḡ (6)

d�ā; (7)

where z̄ denotes the COMPLEX CONJUGATE. In terms of
the EULER ANGLES u; f; and c; the Cayley-Klein
parameters are given by

a�ei(c�f)=2 cos(1
2 u) (8)

b�iei(c�f)=2 sin(1
2 u) (9)

g�iei(c�f)=2 sin(1
2 u) (10)

d�ei(c�f)=2 cos(1
2 u) (11)

(Goldstein 1960, p. 155).

The transformation matrix is given in terms of the
Cayley-Klein parameters by

A�

1
2(a

2�g2�d2�b2) 1
2i(g

2�a2�d2�b2) gd�ab

1
2i(a

2�g2�b2�d2) 1
2(a

2�g2�b2�d2) �i(ab�gd)

bd�ag i(ag�bd) ad�bg

2
64

3
75
(12)

(Goldstein 1960, p. 153).

The Cayley-Klein parameters may be viewed as
parameters of a matrix (denoted Q for its close
relationship with QUATERNIONS)

Q�
a b

g d

� �
(13)



which characterizes the transformations

u?�  au � bv (14)

v ?�gu � dv: (15)

of a linear space having complex axes. This matrix
satisfies

Q �Q �QQ��I ; (16)

where I is the IDENTITY MATRIX and A� the ADJOINT

MATRIX, as well as

½Q ½�½Q ½�1: (17)

In terms of the EULER PARAMETERS ei and the PAULI

MATRICES si ; the Q/-matrix can be written as

Q �e0I �i( e1 s1 �e2 s2 �e3 s3) (18)

(Goldstein 1980, p. 156).

See also EULER ANGLES, EULER PARAMETERS, PAULI

MATRICES, QUATERNION, ROTATION
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Cayley-Klein-Hilbert Metric
The METRIC of Felix Klein’s model for HYPERBOLIC

GEOMETRY,

g11 �
a2(1 � x2

2)

(1 � x2
1 � x2

2)2

g12 �
a2x1x2

(1 � x2
1 � x2

2)2

g22 �
a2(1 � x2

1)

(1 � x2
1 � x2

2)2 :

See also HYPERBOLIC GEOMETRY

Cayley-Menger Determinant
This entry contributed by KAREN D. COLLINS

A DETERMINANT that gives the volume of a SIMPLEX in
j dimensions. If S is a j -simplex in Rn with vertices
v1 ; . . .  ; vj �1 and B/�( bik) denotes the (j �1) �(j �1)
matrix given by

bik � vi �vkk k2
2 ; (1)

then the CONTENT Vj is given by

V2
j (S) �

(�1)j �1

2j(j!)2 det( B̂) ; (2)

where B̂ is the (j �2) �(j �2) matrix obtained from B
by bordering B with a top row (0; 1; . . .  ; 1) and a left
column (0; 1; . . .  ; 1)T : Here, the vector L2-NORMS

½½vi �vk ½½2 are the edge lengths and the DETERMINANT

in (2) is the Cayley-Menger determinant (Sommer-
ville 1958, Gritzmann and Klee 1994). The first few
coefficients for j �0, 1, ... are �1, 2, �16, 288,
�9216, 460800, ... (Sloane’s A055546).

For j �2, (2) becomes

�16 D2 �

0 1  1  1
1 0 c2 b2

1 c2 0 a2

1 b2 a2 0

��������

��������; (3)

which gives the AREA for a plane triangle with side
lengths a , b , and c , and is a form of HERON’S

FORMULA.

For j �3, the content of the 3-simplex (i.e., volume of
the general TETRAHEDRON) is given by the determi-
nant

288V2 �

0 1  1  1  1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

����������

����������
; (4)

where the edge between vertices i and j has length
dij : Setting the left side equal to 0 (corresponding to a
TETRAHEDRON of volume 0) gives a relationship
between the DISTANCES between vertices of a planar
QUADRILATERAL (Uspensky 1948, p. 256).

See also HERON’S FORMULA, QUADRILATERAL, TETRA-

HEDRON
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Cayley’s Group Theorem
Every FINITE GROUP of order n can be REPRESENTED

AS a PERMUTATION GROUP on n letters, as first proved
by Cayley in 1878 (Rotman 1995).

See also FINITE GROUP, PERMUTATION GROUP
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Cayley’s Hypergeometric Function
Theorem
If

(1 �z)a �b �c
2F1(2a; 2b; 2c; z) �

X�
n �0

anzn ;

then

2F1(a; b; c �1
2; z)2F1(c �a ; c �b; c1

2; z)

�
X�
n �0

(c)n

(c � 1
2) 

anzn ;

where 2F1(a ; b; c; z) is a HYPERGEOMETRIC FUNC-

TION.

See also HYPERGEOMETRIC FUNCTION

Cayley’s Ruled Surface
CAYLEY CUBIC

Cayley’s Sextic

A plane curve discovered by Maclaurin but first
studied in detail by Cayley. The name Cayley’s sextic
is due to R. C. Archibald, who attempted to classify
curves in a paper published in Strasbourg in 1900
(MacTutor Archive). Cayley’s sextic is given in POLAR

COORDINATES by

r�4a cos3(1
3u): (1)

Parametric equations can be given by

x(t)�4a cos4(1
2t)(2 cos t�1) (2)

y(t)�4a cos3(1
2t) sin(3

2t) (3)

(Gray 1997, p. 119). Calculating r gives

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
�4 cos3(1

2t); (4)

and t is related to u by

u�tan�1 y

x

 !
�3

2t; (5)

thus recovering (1). The CARTESIAN equation is

4(x2�y2�ax)3�27a2(x2�y2)2: (6)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

for the curve with a�1 are

s(t)�3(t�sin t); (7)

k(t)�1
3 sec2(1

2t); (8)

f(t)�2t: (9)
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Cayley’s Sextic Evolute

The EVOLUTE of Cayley’s sextic is

x�1
8 a� 1

16 a[3 cos(2
3 t)�cos(2t)]

y� 1
16 a[3 sin(2

3 t)�sin(2t)];

which is a NEPHROID.

C-Curve
LÉVY FRACTAL



C-Determinant
A DETERMINANT appearing in PADÉ APPROXIMANT

identities:

Cr=s �
ar�s �1 ar�s�2 	 	 	  ar

n n ::: n
ar ar�1 	 	 	  ar�s�1

������
������:

See also PADÉ APPROXIMANT

Cech Cohomology
The direct limit of the COHOMOLOGY groups with
COEFFICIENTS in an ABELIAN GROUP of certain cover-
ings of a TOPOLOGICAL SPACE.

Ceiling
CEILING FUNCTION

Ceiling Function

The function xd e which gives the smallest INTEGER

]x; shown as the thick curve in the above plot.
Schroeder (1991) calls the ceiling function symbols
the "GALLOWS" because of the similarity in appear-
ance to the structure used for hangings. The name
and symbol for the ceiling function were coined by
K. E. Iverson (Graham et al. 1990). Although some
authors used the symbol ]x[ to denote the ceiling
function (by analogy with the older notation [x] for
the FLOOR FUNCTION), this practice is strongly dis-
couraged (Graham et al. 1990, p. 67).
Since usage concerning fractional part/value and
integer part/value can be confusing, the following
table gives a summary of names and notations used
(D. W. Cantrell). Here, S&O indicates Spanier and
Oldham (1987).

notation name S&O Graham et

al.

Mathematica

/ xb c/ integer-

value

/Int(x)/ floor or inte-

ger part

Floor[ x ]

/sgn(x) xj jb c/ integer-part /Ip(x)/ no name IntegerPart[

x ]

/x� xb c/ fractional-

value

/frac(x)/ fractional

part or fxg/
no name

/sgn(x)(½x ½� ½x ½b c)/ fractional-

part

/Fp(x)/ no name Fractional-

Part[ x ]

Odlyzko and Wilf (1991) have shown that the se-
quence fxn g defined by x0 �1 and

xn�1 �
3
2xn

l m
satisfies

xn � K(3
2)

n
j k

for all n , where K �1:6222705028 . . . is analogous to
MILLS’ CONSTANT in the sense that the formula is
useless unless K is known exactly ahead of time
(Finch).

See also FLOOR FUNCTION, INTEGER PART, MILLS’

CONSTANT, NEAREST INTEGER FUNCTION, STAIRCASE

FUNCTION
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Cell
A finite regular POLYTOPE.

See also 16-CELL, 24-CELL, 120-CELL, 600-CELL

Cellular Automaton
A cellular automaton is a grid (possibly 1-D) of cells
which evolves according to a set of rules based on the
states of surrounding cells. von Neumann was one of
the first people to consider such a model, and
incorporated a cellular model into his "universal
constructor." von Neumann proved that an automa-
ton consisting of cells with four orthogonal neighbors
and 29 possible states would be capable of simulating
a TURING MACHINE for some configuration of about
200,000 cells (Gardner 1983, p. 227).

1-D automata called "ELEMENTARY CELLULAR AUTO-

MATA" are represented by a row of pixels with states



either 0 or 1. These can be indexed with an 8-bit
binary number, as shown by Stephen Wolfram.
Wolfram further restricted the number from 28 �
256 to 32 by requiring certain symmetry conditions.

The most well-known cellular automaton is Conway’s
game of LIFE, popularized in Martin Gardner’s Scien-
tific American columns. Although the computation of
successive LIFE generations was originally done by
hand, the computer revolution soon arrived and
allowed more extensive patterns to be studied and
propagated.

See also AUTOMATA THEORY, ELEMENTARY CELLULAR

AUTOMATON, LIFE, LANGTON’S ANT, TOTALISTIC CEL-

LULAR AUTOMATON, TURING MACHINE
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Cellular Space
A HAUSDORFF SPACE which has the structure of a so-
called CW-COMPLEX.

Center
A special POINT which usually has some symmetric
placement with respect to points on a curve or in a
SOLID. The center of a CIRCLE is equidistant from all
points on the CIRCLE and is the intersection of any two
distinct DIAMETERS. The same holds true for the
center of a SPHERE.

See also CENTER (GROUP), CENTER OF MASS, CIRCLE,
CIRCUMCENTER, CLEAVANCE CENTER, CURVATURE

CENTER, ELLIPSE, EQUI-BROCARD CENTER, EXCENTER,
FUHRMANN CENTER, HOMOTHETIC CENTER, INCEN-

TER, INVERSION CENTER, MAJOR TRIANGLE CENTER,
NINE-POINT CENTER, ORTHOCENTER, PERSPECTIVE

CENTER, POINT, RADICAL CENTER, SIMILITUDE CEN-

TER, SPHERE, SPIEKER CENTER, TAYLOR CENTER,
TRIANGLE CENTER, TRIANGLE CENTER FUNCTION,
YFF CENTER OF CONGRUENCE

Center (Group)
The center of a GROUP is the set of elements which
commute with every element of the GROUP. It is equal
to the intersection of the CENTRALIZERS of the GROUP

elements.

See also CENTRALIZER, ISOCLINIC GROUPS, NILPOTENT

GROUP

Center Function
TRIANGLE CENTER FUNCTION

Center of Gravity
CENTROID (GEOMETRIC)

Center of Mass
CENTROID (GEOMETRIC)

Center of Similitude
SIMILITUDE CENTER



Centered Cube Number

A FIGURATE NUMBER OF THE FORM,

CCubn �n3 �(n �1)3 �(2n �1)(n2 �n �1):

The first few are 1, 9, 35, 91, 189, 341, ... (Sloane’s
A005898). The GENERATING FUNCTION for the cen-
tered cube numbers is

x(x3 � 5x2 � 5x � 1)

(x � 1)4 �x �9x2 �35x3 �91x4 �. . . :

See also CUBIC NUMBER

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, p. 51, 1996.
Sloane, N. J. A. Sequences A005898/M4616 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Centered Hexagonal Number
HEX NUMBER

Centered Pentagonal Number

A CENTERED POLYGONAL NUMBER consisting of a
central dot with five dots around it, and then
additional dots in the gaps between adjacent dots.
The general term is (5n2 �5n �2)=2 ; and the first few
such numbers are 1, 6, 16, 31, 51, 76, ... (Sloane’s
A005891). The GENERATING FUNCTION of the centered

pentagonal numbers is

x(x2 � 3x � 1)

(1 � x)3 �x �6x2 �16x3 �31x4 �. . . :

See also CENTERED POLYGONAL NUMBER, CENTERED

SQUARE NUMBER, CENTERED TRIANGULAR NUMBER,
HEX NUMBER
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Centered Polygonal Number

A FIGURATE NUMBER in which layers of POLYGONS are
drawn centered about a point instead of with the
point at a VERTEX.

See also CENTERED PENTAGONAL NUMBER, CENTERED

SQUARE NUMBER, CENTERED TRIANGULAR NUMBER
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Centered Square Number

A CENTERED POLYGONAL NUMBER consisting of a
central dot with four dots around it, and then
additional dots in the gaps between adjacent dots.
The general term is n2�(n�1)2; and the first few



such numbers are 1, 5, 13, 25, 41, ... (Sloane’s
A001844). Centered square numbers are the sum of
two consecutive SQUARE NUMBERS and are congruent
to 1 (mod 4). The GENERATING FUNCTION giving the
centered square numbers is

x(x � 1)2

(1 � x)3 �x �5x2 �13x3 �25x4 �. . . :

See also CENTERED PENTAGONAL NUMBER, CENTERED

POLYGONAL NUMBER, CENTERED TRIANGULAR NUM-

BER, SQUARE NUMBER

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, p. 41, 1996.
Sloane, N. J. A. Sequences A001844/M3826 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Centered Tree

A TREE (also called a central tree) having a single
node that is a GRAPH CENTER. The numbers of
centered trees on n �1, 2, ... nodes are 1, 1, 0, 1, 1,
2, 3, 7, 12, 27, 55, ... (Sloane’s A000676).

See also BICENTERED TREE, GRAPH CENTER, TREE
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Centered Triangular Number

A CENTERED POLYGONAL NUMBER consisting of a
central dot with three dots around it, and then
additional dots in the gaps between adjacent dots.
The general term is (3n2 �3n �2)=2 ; and the first few
such numbers are 1, 4, 10, 19, 31, 46, 64, ... (Sloane’s
A005448). The GENERATING FUNCTION giving the
centered triangular numbers is

x(x2 � x � 1)

(1 � x)3 �x �4x2 �10x3 �19x4 �. . . :

See also CENTERED PENTAGONAL NUMBER, CENTERED

SQUARE NUMBER
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Centillion
In the American system, 10303.

See also LARGE NUMBER

Central Angle

An ANGLE having its VERTEX at a CIRCLE’s center
which is formed by two points on the CIRCLE’S

CIRCUMFERENCE. For angles with the same endpoints,

uc�2ui;

where ui is the INSCRIBED ANGLE.

References
Pedoe, D. Circles: A Mathematical View, rev. ed. Washing-

ton, DC: Math. Assoc. Amer., pp. xxi-xxii,
1995.



Central Beta Function

The central beta function is defined by

b(p) �B(p; p); (1)

where B(p; q) is the BETA FUNCTION. It satisfies the
identities

b(p) �21�2pB(p ; 1
2) (2)

�21 �2p cos(pp)(1
2 �p ; p) (3)

�g
1

0

tpdt

(1 � t)2p (4)

2

p

Y�
n�1

n(n � 2p)

(n � p)(n � p) 
: (5)

With p �1 =2; the latter gives the WALLIS FORMULA.
When p �a =b;

bb(a=b) �21�2a =bJ(a ; b); (6)

where

J(a ; b) �g
1

0

ta�1 dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � tb

p : (7)

The central beta function satisfies

(2 �4x)b(1 �x) �xb(x) (8)

(1 �2x) b(1 �x) b(x) �2p cot(px) (9)

b(1
2 �x) �24x �1 tan(px)b(x) (10)

b(x)b(x �1
2) �24x �1 pb(2x) b(2x �1

2): (11)

For p an ODD POSITIVE INTEGER, the central beta

function satisfies the identity

b(px)�
1ffiffiffi
p

p
Y(p�1)=2

k�1

2x �
2k � 1

p

2p

Yp�1

k�0

b x�
k

p

 !
: (12)

See also BETA FUNCTION, REGULARIZED BETA FUNC-

TION

References
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Central Binomial Coefficient
The nth central binomial coefficient is defined as

n
n=2b c

1 2
; where n

k

& '
is a BINOMIAL COEFFICIENT and nb c

is the FLOOR FUNCTION. The first few values are 1, 2,
3, 6, 10, 20, 35, 70, 126, 252, ... (Sloane’s A001405).
The central binomial coefficients have GENERATING

FUNCTION

1 � 4x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x2

p

2(2x3 � x2)
�1�2x�3x2�6x3�10x4�. . . :

The central binomial coefficients are SQUAREFREE

only for n�1, 2, 3, 4, 5, 7, 8, 11, 17, 19, 23, 71, ...
(Sloane’s A046098), with no others less than 7320.

The above coefficients are a superset of the alter-
native "central" binomial coefficients

2n
n

� �
�

(2n)!

(n!)2 ;

which have GENERATING FUNCTION

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4x

p �1�2x�6x2�20x3�70x4�. . . :

The first few values are 2, 6, 20, 70, 252, 924, 3432,
12870, 48620, 184756, ... (Sloane’s A000984).

A fascinating series of identities involving inverse
central binomial coefficients times small powers are
given by

X�
n¼1

1

2n
n

� �� 1
27(2p

ffiffiffi
3

p
�9)�0:7363998587 . . . (1)

X�
n¼1

1

n
2n
n

� ��1
9p

ffiffiffi
3

p
�0:6045997881 . . . (2)

X�
n¼1

1

n2 2n
n

� ��1
3z(2)�1

8p
2 (3)



X�
n�1

1

n4 2n
n

� ��17
36 z(4) � 17

3240p
4 (4)

(Comtet 1974, p. 89; Le Lionnais 1983, pp. 29, 30, 41,
36), which follow from the beautiful formula

X�
n �1

1

nk 2n
n

� ��1
2 k �1Fk (1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k �1

; 3
2 ; 2; . . . ; 2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k �1

; 1
4): (5)

for k ]1 ; where mFn(a1 ; . . . ; am; b1 ; . . . ; bn; x) is a
GENERALIZED HYPERGEOMETRIC FUNCTION. Additional
sums of this type include

X�
n�1

1

n3 2n
n

� �� 1
18p

ffiffiffi
3

p
[ c1(1

3) � c1(2
3)] �

4
3 z(3) (6)

X�
n�1

1

n5 2n
n

� �
� 1

432p
ffiffiffi
3

p
[ c3(1

3) � c3(2
3)] �

19
3 z(5) �1

9 z(3) p3 ; (7)

X�
n�1

1

n7 2n
n

� �� 11
311040 p

ffiffiffi
3

p
[ c5(1

3) � c5(2
3)] �

493
24 z(7)

�1
3 z(5)p2 � 17

1620z(3) p4 ; (8)

where cn(x) is the POLYGAMMA FUNCTION and z(x) is
the RIEMANN ZETA FUNCTION (Plouffe 1998).

Similarly, we have

X�
n�1

(�1)n �1

2n
n

� � � 1
25[5 �4

ffiffiffi
5

p
csch�1(2)] (9)

X�
n�1

( �1)n�1

n
2n
n

� � �2
5

ffiffiffi
5

p
csch�1(2) (10)

X�
n�1

(�1)n�1

n2 2n
n

� ��2[csch�1(2)]2 (11)

X�
n�1

( �1)n�1

n3 2n
n

� ��2
5 z(3) (12)

(Le Lionnais 1983, p. 35; Guy 1994, p. 257), where
z(z) is the RIEMANN ZETA FUNCTION. These follow from
the analogous identity

X�
n�1

( �1)n�1

nk 2n
n

� ��1
2 k�1Fk (1 ; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k�1

; 3
2; 2; . . . ; 2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k �1

; �1
4) : (13)

Erdos and Graham (1980, p. 71) conjectured that the

central binomial coefficient 2n
n

& '
is never SQUAREFREE

for n �4, and this is sometimes known as the ERDOS

SQUAREFREE CONJECTURE. SÁ RKOZY’S THEOREM (Sár-
kozy 1985) provides a partial solution which states
that the BINOMIAL COEFFICIENT

2n
n

& '
is never SQUARE-

FREE for all sufficiently large n ]n0 (Vardi 1991).
Granville and Ramare (1996) proved that the only
SQUAREFREE values are n �2 and 4. Sander (1992)
subsequently showed that /

2n9d
n

& '
/ are also never

SQUAREFREE for sufficiently large n as long as d is
not "too big."

See also BINOMIAL COEFFICIENT, BINOMIAL SUMS,
CENTRAL TRINOMIAL COEFFICIENT, ERDOS SQUARE-

FREE CONJECTURE, STAIRCASE WALK, SÁ RKÖ ZY’S

THEOREM, QUOTA SYSTEM
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Central Conic
An ELLIPSE or HYPERBOLA.

See also CONIC SECTION
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Central Difference
The central difference for a function tabulated at
equal intervals fn is defined by

d(fn)�dn�d1
n�fn�1=2�fn�1=2: (1)

First and higher order central differences arranged so
as to involve integer indices are then given by

dn�1=2�d1
n�1=2�fn�1�fn (2)



d2
n � d1

n�1=2 � d1
n�1 =2 �fn�1 �2fn �fn �1 (3)

d3
n�1 =2 � d2

n�1 � d2
n �fn�2 �3fn�1 �3fn �fn�1 : (4)

Higher order differences may be computed for EVEN

and ODD powers,

d2k
n�1 =2 �

X2k

j�0

(�1)j 2k
j

� �
fn�k �j (5)

d2k�1
n�1 =2 �

X2k �1

j�0

(�1)j 2k �1
j

� �
fn�k �1�j : (6)

See also BACKWARD DIFFERENCE, DIVIDED DIFFER-

ENCE, FORWARD DIFFERENCE
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Central Dilation

A DILATION that is not merely a TRANSLATION. Two
triangles related by a central dilation are said to be
PERSPECTIVE TRIANGLES because the lines joining
corresponding vertices CONCUR.

See also DILATION, PERSPECTIVE TRIANGLES, SPIRAL

SIMILARITY, TRANSLATION
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Central Factorial
The central factorials x[k] form an associated SHEFFER

SEQUENCE with

f (t) �et =2 �e�t =2 �2 sinh(1
2 t) ;

giving the GENERATING FUNCTION

X�
k �0

x[k]

k!
tk �e2x sinh �1(t=2) :

The first central factorials are

x[0] �1
x[1] �x
x[2] �x2

x[3] �1
4(4x3 �x) ��1

4(1 �2x)x(1 �2x)

x[4] �x4 �x2 ��(1 �x)x2(1 �x)
x[5] � 1

16(16x5 �40x3 �9x)

� 1
16(1 �2x)(3 �2x)x(1 �2x)(3 �2x) :

See also FACTORIAL, FALLING FACTORIAL, GOULD

POLYNOMIAL, RISING FACTORIAL
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Central Limit Theorem
Let x1; x2; . . . ; xN be a set of N INDEPENDENT random
variates and each xi have an arbitrary probability
distribution P(x1; . . . ; xN) with MEAN mi and a finite
VARIANCE s2

i : Then the normal form variate

Xnorm�

PN
i�1 xi �

PN
i�1 miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i�1 s2
i

q (1)

has a limiting cumulative distribution function which
approaches a NORMAL (GAUSSIAN).

Under additional conditions on the distribution of the
summand, the probability density itself is also GAUS-

SIAN (Feller 1971) with MEAN m�0 and VARIANCE

s2�1: If conversion to normal form is not performed,
then the variate

X�
1

N

XN

i�1

xi (2)

is NORMALLY DISTRIBUTED with mX �mx and
sX �sx=

ffiffiffiffiffi
N

p
:/

Kallenberg (1997) gives a six-line proof of the central
limit theorem. An elementary, but slightly more
cumbersome proof of the central limit theorem,
consider the INVERSE FOURIER TRANSFORM of PX (f ):



F�1[PX (f )]�g
�

��

e2pifXP(X) dX

�g
�

��

X�
n�0

(2pifX)n

n!
P(X) dX

�
X�
n�0

(2pif )n

n! g
�

��

XnP(X) dX

�
X�
n�0

(2pif )n

n!
�Xn�: (3)

Now write

�Xn���N�n(x1�x2�. . .�xN)n�

�g
�

��

N�n(x1�. . .

�xN)nP(x1) 	 	 	P(xN) dx1 	 	 	dxN ; ð4Þ

so we have

F�1[PX(f )]�
X�
n�0

(2pif )n

n!
�Xn�

�
X�
n�0

(2pif )n

n! g
�

��

N�n(x1�. . .�xN)n

�P(x1) 	 	 	P(xN) dx1 	 	 	dxN

�g
�

��

X�
n�0

2pif (x1 � . . . � xN)

N

" #n
1

n!

�P(x1) 	 	 	P(xN) dx1 	 	 	dxN

�g
�

��

e2pif (x1�...�xN )=NP(x1) 	 	 	P(xN) dx1 	 	 	dxN

� g
�

��

e2pifx1=NP(x1) dx1

� �

�	 	 	� g
�

��

e2pifxN=NP(xN) dxN

� �

� g
�

��

e2pifx=NP(x) dx

� �N

� g
�

��

1�
2pif

N

 !
x�

1

2

2pif

N

 !2

x2�. . .

2
4

3
5P(x) dx

8<
:

9=
;

N

� g
�

��

P(x) dx�
2pif

N g
�

��

xP(x) dx

" #

�
(2pf )2

2N2 g
�

��

x2P(x) dx�O(N�3)�N

� 1�
2pif

N
�x��

(2pf )2

2N2
�x2��O(N�3)

" #N

�exp N ln 1�
2pif

N
�x��

(2pf )2

2N2
�x2��O(N�3)

" #( )

(5)

Now expand

ln(1�x)�x�1
2 x2�1

3 x3�. . . ; (6)

so

F�1[PX (f )]:exp N
2pif

N
�x��

(2pf )2

2N2
�x2�

"(

�
1

2

(2pif )2

N2
�x�2�O(N�3)

�7

�exp 2pif�x��
(2pf )2(�x2�� �x�2)

2N
�O(N�2)

" #

:exp 2pifmx�
(2pf )2

s2
x

2N

" #
; (7)

since

mx��x� (8)

s2
x��x2���x�2: (9)

Taking the FOURIER TRANSFORM,

PX �g
�

��

e�2pifxF�1[PX(f )] df

�g
�

��

e2pif (mz�x)�(2pf )2
s2

z=2N df : (10)

This is OF THE FORM

g
�

��

eiaf�bf 2

df ; (11)

where a�2p(mx�x) and b�(2psx)
2=2N: But, from

Abramowitz and Stegun (1972, p. 302, equation
7.4.6),

g
�

��

eiaf�bf 2

df �e�a2=4b

ffiffiffi
p

b

s
: (12)

Therefore,



PX �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

(2psz)
2

2N

vuuuut exp
�[2p( mx � x)]2

4
(2psz)

2

2N

8>>><
>>>:

9>>>=
>>>;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pN

4p2 s2
x

s
exp �

4p2(mx � x)22N

4 � 4p2 s2
x

" #

�

ffiffiffiffiffi
N

p

sx

ffiffiffiffiffiffi
2p

p e �(mz�x)2N =2 s2
z : (13)

But mX � mx and mX � mx ; so

PX �
1

sX

ffiffiffiffiffiffi
2p

p e�(mX�x)2 =2 s2
X : (14)

The "fuzzy" central limit theorem says that data
which are influenced by many small and unrelated
random effects are approximately NORMALLY DISTRIB-

UTED.

See also BERRY-ESSÉ EN THEOREM, LINDEBERG CON-

DITION, LINDEBERG-FELLER CENTRAL LIMIT THEO-

REM, LYAPUNOV CONDITION
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Central Moment
A MOMENT mn of a probability function P(x) taken
about the mean m;

mn �g (x � m)nP(x) dx: (1)

The central moments mn can be expressed as terms of
the RAW MOMENTS m?n (i.e., those taken about zero)
using the BINOMIAL TRANSFORM

mn �
Xn

k �0

n
k

� �
(�1)n�k 

m?k m?1
n�k; (2)

with m?0 �1 (Papoulis 1986, p. 146). The first few

values are therefore

m1 �0 (3)

m2 ��m?1
2� m?2 (4)

m3 �2m ?1
3�3m?1 m?2 � m?3 (5)

m4 ��3m?1
4�6m?1

2m?2 �4m ?1 m?3 � m?4 (6)

m5 �4m?1
5�10m?1

3m?2 �10m?1
2m ?3 �5 m?1 m ?4 � m ?5 : (6)

See also ABSOLUTE MOMENT, CUMULANT, KURTOSIS,
MOMENT, PEARSON KURTOSIS, RAW MOMENT, SKEW-

NESS
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Central Point
A point v is a central point of a graph if the
eccentricity of the point equals the GRAPH RADIUS.
The set of all central points is called the GRAPH

CENTER.

See also CENTROID POINT, GRAPH CENTER, GRAPH

ECCENTRICITY, GRAPH RADIUS
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Central Tree
CENTERED TREE

Central Trinomial Coefficient
The nth central trinomial coefficient is defined as the
coefficient of xn in the expansion of (1 �x �x2)n : It is
also the number of permutations of n symbols, each
�1, 0, or 1, which sum to 0. For example, there are
seven such permutations of three symbols:
f�1; 0; 1g; f�1; 1; 0g; f0; �1 ; 1 g; f0 ; 0 ; 0g; and
f0; 1; �1g; f1; �1 ; 0 g; f1; 0; �1g: The first few
central binomial coefficients are 1, 3, 7, 19, 51, 141,
393, ... (Sloane’s A002426). This sequence cannot be
expressed as a fixed number of hypergeometric terms
(Petkovsek et al. 1996, p. 160). The GENERATING

FUNCTION is given by

f (x)�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 � x)(1 � 3x)
p �1�x�3x2�7x3�. . . :

See also CENTRAL BINOMIAL COEFFICIENT, TRINOMIAL

COEFFICIENT
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Central Value
CLASS MARK

Centralizer
The centralizer of an element z of a GROUP G is the
set of elements of G which commute with z ,

CG(z) �fx � G ; xz �zx g:

Likewise, the centralizer of a SUBGROUP H of a GROUP

G is the set of elements of G which commute with
every element of H ,

CG(H) �fx � G; 	h � H ; xh �hxg:

The centralizer always contains the CENTER of the
group and is contained in the corresponding NORMAL-

IZER. In an ABELIAN GROUP, the centralizer is the
whole group.

See also ABELIAN GROUP, CENTER (GROUP), GROUP,
NORMALIZER, SUBGROUP

Centrally Symmetric Set
CENTROSYMMETRIC SET

Centric Perspective
PERSPECTIVE

Centrode

C�tT�kB;

where t is the TORSION, k is the CURVATURE, T is the
TANGENT VECTOR, and B is the BINORMAL VECTOR.

Centroid (Function)
By analogy with the GEOMETRIC CENTROID, the
centroid of an arbitrary function f (x) is defined as

�x��
g

�

��

xf (x) dx

g
�

��

f (x) dx

:
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Centroid (Geometric)
The CENTER OF MASS of a 2-D planar LAMINA or a 3-D
solid. The mass of a LAMINA with surface density
function s(x; y) is

M�gg s(x; y) dA; (1)

and the coordinates of the centroid (also called the
CENTER OF GRAVITY) are

x̄�
gg xs(x; y) dA

M
(2)

ȳ�
gg ys(x; y) dA

M
: (3)

The centroid of a lamina is the point on which it
would balance when placed on a needle. The centroid
of a solid is the point on which the solid would
"balance."

The centroid of a set of n point masses mi located at
positions xi is

x̄�
Pn

i�1 mixiPn
i�1 mi

; (4)

which, if all masses are equal, simplifies to

x̄�
Pn

i�1 xi

n
: (5)

The centroid of n point masses also gives the location
at which a school should be built in order to minimize
the distance travelled by children from n cities,
located at the positions of the masses, and with mi

equal to the number of students from city i (Stein-
haus 1983, pp. 113�/116).

The centroid of the vertices of a quadrilateral occurs
at the point of intersection of the BIMEDIANS (i.e., the
lines MABMCD and MADMBC joining pairs of opposite
MIDPOINTS) (Honsberger 1995, pp. 36�/37). In addi-
tion, it is the MIDPOINT of the line MACMBD connecting
the midpoints of the diagonals AC and BD (Honsber-
ger 1995, pp. 39�/40).

Given an arbitrary HEXAGON, connecting the cen-
troids of each consecutive three sides gives the so-
called CENTROID HEXAGON, a hexagon with equal and



parallel sides (Wells 1991).

The centroids of several common laminas along the
nonsymmetrical axis are summarized in the following
table.

Figure / ȳ/

PARABOLIC SEGMENT /
2
5h/

SEMICIRCLE /

4r

3p
/

In 3-D, the mass of a solid with density function
r(x; y; z) is

M �gggr(x; y; z) dV ; (6)

and the coordinates of the center of mass are

x̄ �
ggg xr(x; y; z) dV

M 
(7)

ȳ �
ggg yr(x; y; z) dV

M 
(8)

z̄ �
ggg z r(x; y; z) dV

M
: (9)

Figure / z̄/

CONE /
1
4h/

CONICAL FRUSTUM /

h(R2
1 � 2R1R2 � 3R2

2)

4(R2
1 � R1R2 � R2

2)
/

HEMISPHERE /
3
8R/

PARABOLOID /
2
3h/

PYRAMID /
1
4h/

See also CENTROID HEXAGON, PAPPUS’S CENTROID

THEOREM
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Centroid (Orthocentric System)
The centroid of the four points constituting an
ORTHOCENTRIC SYSTEM is the center of the common
NINE-POINT CIRCLE (Johnson 1929, p. 249). This fact
automatically guarantees that the centroid of the
INCENTER and EXCENTERS of a TRIANGLE is located at
the CIRCUMCENTER.
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Centroid (Triangle)

The CENTROID (CENTER OF MASS) of the VERTICES of a
TRIANGLE is the point G (sometimes also denoted M )
which is also the intersection of the TRIANGLE’S three
MEDIANS (Johnson 1929, p. 249; Wells 1991, p. 150).
The point is therefore sometimes called the median
point. The centroid is always in the interior of the
TRIANGLE. It has TRILINEAR COORDINATES

1

a
:

1

b
:

1

c
; (1)

or

csc A : csc B : csc C; (2)

and homogeneous BARYCENTRIC COORDINATES



(1; 1; 1):/

If the sides of a TRIANGLE DA1A2A3 are divided by
points P1 ; P2 ; and P3 so that

A2P1

P1A3

�
A3P2

P2A1

�
A1P3

P3A2

�
p

q 
; (3)

then the centroid of the TRIANGLE DP1P2P3 is M , the
centroid of the original triangle DA1A2A3 (Johnson
1929, p. 250).

One BROCARD LINE, MEDIAN, and SYMMEDIAN (out of
the three of each) are CONCURRENT, with AV; CK , and
BG meeting at a point, where V is the first BROCARD

POINT and K is the SYMMEDIAN POINT. Similarly, AV?;
BG , and CK , where V? is the second BROCARD POINT,
meet at a point which is the ISOGONAL CONJUGATE of
the first (Johnson 1929, pp. 268 �/269).
Pick an interior point X . The TRIANGLES BXC , CXA ,
and AXB have equal areas IFF X corresponds to the
centroid. The centroid is located one third of the way
from each VERTEX to the MIDPOINT of the opposite
side. Each median divides the triangle into two equal
areas; all the medians together divide it into six equal
parts, and the lines from the MEDIAN POINT to the
VERTICES divide the whole into three equivalent
TRIANGLES. In general, for any line in the plane of a
TRIANGLE ABC ,

d �1
3(dA �dB �dC) ; (4)

where d , dA ; dB ; and dC are the distances from the
centroid and VERTICES to the line.

A TRIANGLE will balance at the centroid, and along
any line passing through the centroid. The TRILINEAR

POLAR of the centroid is called the LEMOINE AXIS. The
PERPENDICULARS from the centroid are proportional

to s �1
i ;

a1p2 �a2p2 �a3p3 �
2
3 D; (5)

where D is the AREA of the TRIANGLE. Let P be an
arbitrary point, the VERTICES be A1 ; A2 ; and A3 ; and
the centroid G . Then

PA1

2
�PA2

2
�PA3

2

�GA1

2
�GA2

2
�GA3

2
�3PG

2 
: (6)

If O is the CIRCUMCENTER of the triangle’s centroid,
then

OG
2 
�R2 �1

9(a
2 �b2 �c2) : (7)

The centroid lies on the EULER LINE and NAGEL LINE.
The centroid of the PERIMETER of a TRIANGLE is the
triangle’s SPIEKER CENTER (Johnson 1929, p. 249).
The SYMMEDIAN POINT of a triangle is the centroid of
its PEDAL TRIANGLE (Honsberger 1995, pp. 72 �/74).

Given a triangle DABC; construct circles through
each pair of vertices which also pass through the
CENTROID G . The TRIANGLE DA?B?C ? determined by
the center of these circles then satisfies a number of
interesting properties. The first is that the CIRCUM-

CIRCLE O and CENTROID G of DABC are, respectively,
the CENTROID G? and SYMMEDIAN POINT K ? of the
triangle DA?B?C? (Honsberger 1995, p. 77). In addi-
tion, the MEDIANS of DABC and DA?B?C intersect in
the midpoints of the sides of DABC:/

See also CIRCUMCENTER, EULER LINE, EXMEDIAN

POINT, INCENTER, NAGEL LINE, ORTHOCENTER
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Centroid Hexagon

The hexagon obtained from an arbitrary HEXAGON by
connecting the centroids of each consecutive three
sides. This hexagon has equal and parallel sides
(Wells 1991).
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Centroid Point

A point in a WEIGHTED TREE that has minimum
weight for the tree. The set of all centroid points is
called a TREE CENTROID (Harary 1994, p. 36). The
largest possible values for a centroid point (i.e., the
maximum minimum weight) for a tree on n �2, 3, ...
nodes are 1, 1, 2, 2, 3, 3, ....

See also TREE CENTROID, WEIGHTED TREE
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Centroidal Line
The three planes determined by the edges of a
TRIHEDRON and the internal bisectors of the respec-

tively opposite faces are coaxal, and the common line
of these planes is called the centroidal line.

See also TRIHEDRON
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Centrosymmetric Matrix
A SQUARE MATRIX is called centrosymmetric if it is
symmetric with respect to the center (Muir 1960,
p. 19).

See also BISYMMETRIC MATRIX, SYMMETRIC MATRIX
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Centrosymmetric Set
A CONVEX SET K is centro-symmetric, sometimes also
called centrally symmetric, if it has a center p that
bisects every CHORD of K through p.
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Certificate of Compositeness
COMPOSITENESS CERTIFICATE

Certificate of Primality
PRIMALITY CERTIFICATE

Cesàro Equation
An INTRINSIC EQUATION which expresses a curve in
terms of its ARC LENGTH s and RADIUS OF CURVATURE

R (or equivalently, the CURVATURE k):/

See also ARC LENGTH, INTRINSIC EQUATION, NATURAL

EQUATION, RADIUS OF CURVATURE, WHEWELL EQUA-

TION
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Cesàro Fractal

A FRACTAL also known as the TORN SQUARE FRACTAL.
The base curves and motifs for the two fractals
illustrated above are shown below.

See also FRACTAL, KOCH SNOWFLAKE
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Cesàro Mean
FEJES TÓ TH’S INTEGRAL

Cesàro’s Theorem
The three points determined on three coplanar edges
of a TETRAHEDRON by the external bisecting planes of
the opposite DIHEDRAL ANGLES are COLLINEAR.
Furthermore, this line belongs to the plane deter-
mined by the three points in which the remaining
three (concurrent) edges of the TETRAHEDRON are met
by the internal bisecting planes of the respectively
opposite DIHEDRAL ANGLE.
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Ceva’s Theorem

Given a TRIANGLE with VERTICES A , B , and C and
points along the sides D , E , and F , a NECESSARY and
SUFFICIENT condition for the CEVIANS AD , BE , and
CF to be CONCURRENT (intersect in a single point) is
that

BD � CE � AF �DC � EA � FB: (1)

This theorem was first published by Giovanni Cevian
1678.
Let P �[V1 ; . . . ; Vn] be an arbitrary n -gon, C a given
point, and k a POSITIVE INTEGER such that 1 5k 5
n=2 : For i �1, ..., n , let Wi be the intersection of the
lines CVi and Vi �kVi�k ; then

Yn

i �1

Vi �kWi

WiVi�k

" #
�1: (2)

Here, AB ½½CD and

AB

CD

" #
(3)

is the RATIO of the lengths [A, B ] and [C, D ] with a
plus or minus sign depending on whether these
segments have the same or opposite directions
(Grünbaum and Shepard 1995).

Another form of the theorem is that three CONCUR-

RENT lines from the VERTICES of a TRIANGLE divide the
opposite sides in such fashion that the product of
three nonadjacent segments equals the product of the
other three (Johnson 1929, p. 147).

See also HOEHN’S THEOREM, MENELAUS’ THEOREM
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Cevian

A line segment which joins a VERTEX of a TRIANGLE

with a point on the opposite side (or its extension). In
the above figure,

s �
b sin a?

sin(g � a?) 
:

The condition for Cevians from the three sides of a
TRIANGLE to CONCUR is known as CEVA’S THEOREM.
If AD , BE , and CF are cevians of a TRIANGLE DABC
through an arbitrary point P inside DABC ; then the
ratios

AP

PD 
;

BP

PE 
;

CP

PF

into which P divides the Cevians have a sum ]6 and
a product ]8 (Ramler 1958; Honsberger 1995,
pp. 138 �/141).

See also ANGLE BISECTOR, CEVA’S THEOREM, CEVIAN

CIRCLE, CEVIAN TRIANGLE, MEDIAN (TRIANGLE), PED-

AL-CEVIAN POINT, ROUTH’S THEOREM, SPLITTER
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Cevian Circle

The CIRCUMCIRCLE of the CEVIAN TRIANGLE DA?B ?C ? of
a given TRIANGLE DABC with respect to a point P .

See also CEVIAN TRIANGLE, CIRCUMCIRCLE

Cevian Conjugate Point
ISOTOMIC CONJUGATE POINT

Cevian Transform
Vandeghen’s (1965) name for the transformation
taking points to their ISOTOMIC CONJUGATE POINTS.

See also ISOTOMIC CONJUGATE POINT
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Cevian Triangle

Given a point P and a TRIANGLE DABC; the Cevian
triangle DA?B?C? is defined as the triangle composed
of the endpoints of the CEVIANS though P . If the point
P has TRILINEAR COORDINATES a :b :g , then the Cevian
triangle has VERTICES 0:b :g , a :0:g , and a :b :0. If
A?B?C? is the CEVIAN TRIANGLE of X and AƒBƒCƒ is
the ANTICEVIAN TRIANGLE, then X and Aƒ are HARMO-



NIC CONJUGATE POINTS with respect to A and A?:/

If DA?B ?C ? is the Cevian triangle of DABC; then the
triangle DAƒB ƒCƒ obtained by reflecting A?; B?; and C?
across the midpoints of their sides is also a Cevian
triangle of DABC (Honsberger 1995, p. 141; left
figure). Furthermore, if the CEVIAN CIRCLE crosses
the sides of DABC in three points Aƒ; B ƒ; and Cƒ; then
DAƒB ƒC ƒ is also a Cevian triangle of DABC (Honsber-
ger 1995, pp. 141 �/142; right figure).

See also ANTICEVIAN TRIANGLE, CEVIAN, CEVIAN

CIRCLE

References
Honsberger, R. Episodes in Nineteenth and Twentieth

Century Euclidean Geometry. Washington, DC: Math.
Assoc. Amer., pp. 141 �/143, 1995.

CG
Given a GROUP G , the algebra CG is a VECTOR SPACE

CG �
X

aigi ½ai �C ; gi � G
n o

of finite sums of elements of G , with multiplication
defined by g � h �gh ; the group operation. It is an
example of a GROUP RING.

For example, when the group is the SYMMETRIC

GROUP on three letters, S3 ; the GROUP RING CS3 is a
six-dimensional algebra. An example of the product of
elements is

(3f1; 3; 2g�if1 ; 2 ; 3g)(�2f2 ; 1; 3g�f3; 2; 1g)

��6f2; 3; 1g�2i f2; 1; 3 g�i f3; 2; 1g�3 f3; 1; 2 g:

MODULES over CG correspond to complex REPRESEN-

TATIONS of G . When G is a FINITE GROUP then CG is a
finite-dimensional algebra.

See also ALGEBRA, GROUP, GROUP RING, PERMUTA-

TION, REPRESENTATION, RING

Ch
HYPERBOLIC COSINE

Chain
Let P be a finite PARTIALLY ORDERED SET. A chain in
P is a set of pairwise comparable elements (i.e., a
TOTALLY ORDERED subset). The LENGTH of P is the
maximum CARDINALITY of a chain in P . For a PARTIAL

ORDER, the size of the longest chain is called the
LENGTH.

See also ADDITION CHAIN, ANTICHAIN, BRAUER CHAIN,
CHAIN (GRAPH), CHAIN OF CIRCLES, DILWORTH’S

LEMMA, HANSEN CHAIN, LENGTH (PARTIAL ORDER),
PAPPUS CHAIN, PARTIAL ORDER
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Chain (Graph)
A chain of a GRAPH is a SEQUENCE fx1 ; x2 ; . . . ; xn g
such that (x1 ; x2) ; (x2 ; x3) ; ..., (xn�1 ; xn) are EDGES of
the GRAPH.

See also GRAPH

Chain Complex
A chain complex is a sequence of maps

	 	 	 0@i�1 Ci 0
@i Ci�1 0

@i�1 	 	 	 ; (1)

where the spaces Ci may be GROUPS or MODULES. The
maps must satisfy @i�1(@i�0: Making the domain
implicitly understood, the maps are denoted by @;
called the BOUNDARY OPERATOR or the differential.
Chain complexes are an algebraic tool for computing
or defining HOMOLOGY and have a variety of applica-
tions. A COCHAIN COMPLEX is used in the case of
COHOMOLOGY.

Elements of Cp are called CHAINS. For each p , the
kernel of @p : Cp 0 Cp�1 is called the group of cycles,

Zp�fc �Cp : @(c)�0g: (2)

The letter Z is short for the German word for cycle,
"Zyklus." The image @(Cp�1) is contained in the group
of cycles because @(@�0: It is called the group of
boundaries.

Bp�fc �Cp : there exists b �Cp�1 such that @(b)�cg: (3)

The quotients Hp�Zp=Bp are the HOMOLOGY GROUPS

of the chain.

For example, the sequence

	 	 	0�4
Z=8Z0

�4
Z=8Z0

�4 	 	 	 ; (4)

where every space is Z=8Z and each map is given by
multiplication by 4 is a chain complex. The cycles at
each stage are Zp�f0; 2; 4; 6g and the boundaries
are Bp�f0; 4g: So the homology at each stage is the
group of two elements Z=2Z: A simpler example is
given by a LINEAR TRANSFORMATION a : V 0 W; which
can be extended to a chain complex by the zero vector



space and the ZERO MAP. Then the nontrivial homol-
ogy groups are ker a and W =im(a) :/

The terminology of chain complexes comes from the
calculation for HOMOLOGY of geometric objects in a
TOPOLOGICAL SPACE, like a MANIFOLD. For example,
the figure above is the circle as a SIMPLICIAL COM-

PLEX. Let A and B denote the points, and C and D
denote the oriented segments, which are the chains.
The boundary of C is B �A; and the boundary of D is
A �B :/

The group C1 is the FREE ABELIAN GROUP C; Dh i and
the group C0 is the FREE ABELIAN GROUP A; Bh i: The
BOUNDARY OPERATOR is

@(nC �mD) �n(B �A) �m(A �B)

�(m �n)A �(n �m)B : (5)

The other groups Cp are the TRIVIAL GROUP, and the
other maps are the ZERO MAP. Then Z1 is generated by
C �D and B1 is the trivial subgroup. So H1 is the rank
one FREE ABELIAN GROUP isomorphic to Z: The zero-
dimensional case is slightly more interesting. Every
element of C0 has no boundary and so is in Z0 while
the boundaries B0 are generated by A �B: Hence,
H0 �Z0 =B0 is also isomorphic to Z: Note that the
result is not affected by how the circle is cut into
pieces, or by how many cuts are used.

See also CHAIN EQUIVALENCE, CHAIN HOMOMORPH-

ISM, CHAIN HOMOTOPY, COCHAIN COMPLEX, COHO-

MOLOGY, FREE ABELIAN GROUP, HOMOLOGY,
HOMOLOGY (CHAIN), SIMPLICIAL HOMOLOGY
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Chain Equivalence
Chain equivalences give an EQUIVALENCE RELATION

on the space of CHAIN HOMOMORPHISMS. Two CHAIN

COMPLEXES are chain equivalent if there are chain
maps f : C� 0 D� and g : D� 0 C � such that f( g is
CHAIN HOMOTOPIC to the identity on D� and g( f is
CHAIN HOMOTOPIC to the identity on C�:/

See also CHAIN COMPLEX. CHAIN HOMOMORPHISM,
CHAIN HOMOTOPY, HOMOTOPY EQUIVALENCE, SNAKE

LEMMA
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Chain Fraction
CONTINUED FRACTION

Chain Homomorphism
Also called a chain map. Given two CHAIN COMPLEXES

C� and D�; a chain homomorphism is given by
homomorphisms ai : Ci 0 Di such that

a( @C �@D(a;

where @C and @D are the BOUNDARY OPERATORS.

See also CHAIN COMPLEX, CHAIN EQUIVALENCE,
CHAIN HOMOTOPY, HOMOMORPHISM (MODULE)
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Chain Homotopy
Suppose a : C� 0 D � and b : C� 0 D � are two CHAIN

HOMOMORPHISMS. Then a chain homotopy is given by
a sequence of maps

dp : Cp 0 Dp �1

such that

@D(d � d(@C � a � b;

where @ denotes the BOUNDARY OPERATOR.

See also CHAIN COMPLEX, CHAIN EQUIVALENCE,
CHAIN HOMOMORPHISM, HOMOTOPY, SNAKE LEMMA
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Chain Map
CHAIN HOMOMORPHISM

Chain of Circles
A sequence of circles which closes (such as a STEINER

CHAIN or the circles inscribed in the ARBELOS) is
called a chain.

See also ARBELOS, COXETER’S LOXODROMIC SEQUENCE

OF TANGENT CIRCLES, NINE CIRCLES THEOREM,
PAPPUS CHAIN, SEVEN CIRCLES THEOREM, SIX CIR-

CLES THEOREM, STEINER CHAIN, STEINER’S PORISM
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Chain Rule
If g(x) is DIFFERENTIABLE at the point x and f (x) is
DIFFERENTIABLE at the point g(x) ; then f (g is DIFFER-

ENTIABLE at x . Furthermore, let y �f (g(x)) and u �
g(x) ; then

dy

dx 
�

dy

du
�

du

dx
: (1)

There are a number of related results which also go
under the name of "chain rules." For example, if z �
f (x; y) ; x �g(t); and y �h(t) ; then

dz

dt 
�

@z

@x

dx

dt 
�

@z

@y

dy

dt
: (2)

The "general" chain rule applies to two sets of
functions

y1 �f1(u1 ; . . .  ; up)

n (3)

ym �fm(u1 ; . . . ; up)

and

u1 �g1(x1 ; . . . ; xn)

n (4)

up �gp(x1 ; . . .  ; xn):

Defining the m �n JACOBI MATRIX by

@yi

@xj

 !
�

@y1

@x1

@y1

@x2

	 	 	 @y1

@xn

n n ::: n
@ym

@x1

@ym

@x2

	 	 	 @ym

@xn

2
666664

3
777775; (5)

and similarly for (@yi =@uj) and ( @ui =@xj) then gives

@yi

@xj

 !
�

@yi

@uj

 !
@ui

@xj

 !
: (6)

In differential form, this becomes

dy1 �
@y1

@u1

@u1

@x1

�. . .�
@y1

@up

@up

@x1

 !
dx1

�
@y1

@u1

@u1

@x2

�. . .�
@y1

@up

@up

@x2

 !
dx2 �. . .  (7)

(Kaplan 1984).

See also DERIVATIVE, JACOBIAN, POWER RULE, PRO-

DUCT RULE
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Chained Arrow Notation
A NOTATION which generalizes ARROW NOTATION and
is defined as

a 
	 	 	
b|fflfflfflfflffl{zfflfflfflfflffl}
c

�a 0 b 0 c:

See also ARROW NOTATION
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Chainette
CATENARY

Chair

A SURFACE with tetrahedral symmetry which, accord-
ing to Nordstrand, looks like an inflatable chair from
the 1970s. It is given by the implicit equation

(x2 �y2 �z2 �ak2)2 �b[(z �k)2 �2x2][(z �k)2 �2y2]

�0:

The surface illustrated above has k �5, a �0:95 ; and
b�0:8:/

See also BRIDE’S CHAIR
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Chaitin’s Constant
An IRRATIONAL NUMBER V which gives the probability
that for any set of instructions, a UNIVERSAL TURING

MACHINE will halt. The digits in V are random and
cannot be computed ahead of time.

See also HALTING PROBLEM, TURING MACHINE, UNI-

VERSAL TURING MACHINE
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Chaitin’s Number
CHAITIN’S CONSTANT

Chaitin’s Omega
CHAITIN’S CONSTANT

Champernowne Constant
Champernowne’s constant 0.1234567891011... (Sloa-
ne’s A033307) is the number obtained by concatenat-
ing the POSITIVE INTEGERS and interpreting them as
decimal digits to the right of a decimal point. It is
NORMAL in base 10. In 1961, Mahler showed it to also
be TRANSCENDENTAL.

The first few terms in the CONTINUED FRACTION of the
Champernowne constant are 0, 8, 9, 1, 149083, 1, 1, 1,
4, 1, 1, 1, 3, 4, 1, 1, 1, 15,

457540111391031076483646628242956118599603939 . . .

710457555000662004393090262659256314937953207 . . .

747128656313864120937550355209460718308998457 . . .

5801469863148833592141783010987;

6, 1, 1, 21, 1, 9, 1, 1, 2, 3, 1, 7, 2, 1, 83, 1, 156, 4, 58, 8,
54, ... (Sloane’s A030167). The next term of the
CONTINUED FRACTION is huge, having 2504 digits.

In fact, the coefficients eventually become un-
bounded, making the continued fraction difficult to
calculate for too many more terms. Large terms
greater than 105 occur at positions 5, 19, 41, 102,
163, 247, 358, 460, ... and have 6, 166, 2504, 140,
33102, 109, 2468, 136, ... digits, respectively (Plouffe).
The 527th partial quotient of the continued fraction
expansion has 411,100 decimal digits and the 1709th
partial quotient has 4,911,098 decimal digits, as
computed using Mathematica 4.0. This result was
obtained by Mark Sofroniou and Giulia Spaletta and

presented at the conference on Foundations of Com-
putational Mathematics in Oxford, UK, July 1999.

Interestingly, the COPELAND-ERDOS CONSTANT, which
is the decimal number obtained by concatenating the
PRIMES (instead of all the positive integers), has a
well-behaved CONTINUED FRACTION that does not
show the "large term" phenomenon.

See also COPELAND-ERDOS CONSTANT, SMARANDACHE

SEQUENCES
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Change of Variables Theorem
A theorem which effectively describes how lengths,
areas, volumes, and generalized n -dimensional vo-
lumes (CONTENTS) are distorted by DIFFERENTIABLE

FUNCTIONS. In particular, the change of variables
theorem reduces the whole problem of figuring out
the distortion of the content to understanding the
infinitesimal distortion, i.e., the distortion of the
DERIVATIVE (a linear MAP), which is given by the
linear MAP’s DETERMINANT. So f : Rn 0 Rn is an AREA-

PRESERVING linear MAP IFF det(f )j j�1; and in more
generality, if S is any subset of Rn; the CONTENT of its
image is given by det(f )j j times the CONTENT of the
original. The change of variables theorem takes this
infinitesimal knowledge, and applies CALCULUS by
breaking up the DOMAIN into small pieces and adds up
the change in AREA, bit by bit.

The change of variable formula persists to the
generality of DIFFERENTIAL FORMS on MANIFOLDS,
giving the formula

gM

(f�v)�gW

(v) (1)

under the conditions that M and W are compact
connected oriented MANIFOLDS with nonempty bound-
aries, f : M 0 W is a smooth map which is an
orientation-preserving DIFFEOMORPHISM of the
boundaries.

In 1-D, the explicit statement of the theorem for f a
continuous function of y is

gs

f (f(x))
df

dx
dx�gT

f (y) dy; (2)



where y � f(x) is a differential mapping on the
interval [c, d ] and T is the interval [a, b ] with f(c) �
a and f(d) �b (Lax 1999). In 2-D, the explicit
statement of the theorem is

gR

f (x ; y) dx dy

�gR�
f [x(u; v) ; y(u ; v)]

@(x; y)

@(u ; v)

�����
����� du dv

and in 3-D, it is

gR

f (x; y; z) dx dy dz

�gR�
f [x(u; v; w) ; y(u; v; w); z(u; v ; w)]

� @(x; y; z)

@(u; v ; w)

�����
����� du dv dw ;

(3)

where R �f (R�) is the image of the original region R�;

@(x; y; z)

@(u; v; w)

�����
����� (4)

is the JACOBIAN, and f is a global orientation-preser-
ving DIFFEOMORPHISM of R and R� (which are open
subsets of Rn):/

The change of variables theorem is a simple conse-
quence of the CURL THEOREM and a little DE RHAM

COHOMOLOGY. The generalization to n -D requires no
additional assumptions other than the regularity
conditions on the boundary.

See also IMPLICIT FUNCTION THEOREM, JACOBIAN
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Chaos
A DYNAMICAL SYSTEM is chaotic if it

1. Has a DENSE collection of points with periodic
orbits,
2. Is sensitive to the initial condition of the system
(so that initially nearby points can evolve quickly
into very different states), and
3. Is TOPOLOGICALLY TRANSITIVE.

Chaotic systems exhibit irregular, unpredictable be-
havior (the BUTTERFLY EFFECT). The boundary be-
tween linear and chaotic behavior is often
characterized by PERIOD DOUBLING, followed by quad-
rupling, etc., although other routes to chaos are also
possible (Abarbanel et al. 1993; Hilborn 1994; Stro-
gatz 1994, pp. 363 �/365).

An example of a simple physical system which dis-
plays chaotic behavior is the motion of a magnetic
pendulum over a plane containing two or more
attractive magnets. The magnet over which the
pendulum ultimately comes to rest (due to frictional
damping) is highly dependent on the starting position
and velocity of the pendulum (Dickau). Another such
system is a double pendulum (a pendulum with
another pendulum attached to its end).

See also ACCUMULATION POINT, ATTRACTOR, BASIN OF

ATTRACTION, BUTTERFLY EFFECT, CHAOS GAME, DY-

NAMICAL SYSTEM, FEIGENBAUM CONSTANT, FRACTAL

DIMENSION, GINGERBREADMAN MAP, HÉ NON-HEILES

EQUATION, HÉ NON MAP, LIMIT CYCLE, LOGISTIC

EQUATION, LYAPUNOV CHARACTERISTIC EXPONENT,
PERIOD THREE THEOREM, PHASE SPACE, QUANTUM

CHAOS, RESONANCE OVERLAP METHOD, SARKOVSKII’S

THEOREM, SHADOWING THEOREM, SINK (MAP),
STRANGE ATTRACTOR
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Chaos Game
Pick a point at random inside a regular n -gon. Then
draw the next point a fraction r of the distance
between it and a VERTEX picked at random. Continue
the process (after throwing out the first few points).
The result of this "chaos game" is sometimes, but not
always, a FRACTAL. The case (n; r) �(4; 1=2) gives the
interior of a SQUARE with all points visited with equal
probability.

The above plots show the chaos game for 10,000
points in the regular 3-, 4-, 5-, and 6-gons with
r�1=2:/

The above plots show the chaos game for 10,000
points in the square with r�0:25; 0.4, 0.5, 0.6, 0.75,
and 0.9.

See also BARNSLEY’S FERN
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Chaplygin’s Equation
The PARTIAL DIFFERENTIAL EQUATION

uxx �
y2

1 �
y2

c2

uyy �yuy �0:
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Chapman-Kolmogorov Equation
The equation

f (xn ½xs) �g
�

��

f (xn ½xr)f (xr ½xs) dxr

which gives the transitional densities of a MARKOV

SEQUENCE. Here, n > r > s are any integers (Papoulis
1984, p. 531).

See also MARKOV PROCESS
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Character (Group)
The GROUP THEORETICAL term for what is known to
physicists, by way of its connection with matrix
TRACES, as the trace. The powerful GROUP ORTHOGON-

ALITY THEOREM gives a number of important proper-
ties about the structures of GROUPS, many of which
are most easily expressed in terms of characters. In
essence, group characters can be thought of as the
TRACES of a special set of matrices (a so-called
IRREDUCIBLE REPRESENTATION) used to represent
group elements and whose multiplication corresponds
to the multiplication table of the group. The explicit
construction of a set of characters (CHARACTER TABLE)
is illustrated for the FINITE GROUP D3.

All members of the same CONJUGACY CLASS in the
same representation have the same character. Mem-
bers of other CONJUGACY CLASSES may also have the
same character, however. An (abstract) GROUP can be
uniquely identified by a listing of the characters of its
various representations, known as a CHARACTER

TABLE. Some of the SCHÖ NFLIES SYMBOLS denote
different sets of symmetry operations but correspond

to the same abstract GROUP and so have the same
CHARACTER TABLES.

See also CHARACTER TABLE, CONJUGACY CLASS,
GROUP ORTHOGONALITY THEOREM, TRACE (MATRIX)

Character (Number Theory)
A number theoretic function xk(n) for POSITIVE inte-
gral n is a character modulo k if

xk(1) �1

xk(n) � xk(n �k)

xk(m)xk(n) � xk(mn)

for all m, n , and

xk(n) �0

if (k ;n) "1 : xk can only assume values which are f(k)
ROOTS OF UNITY, where f is the TOTIENT FUNCTION.

See also DIRICHLET L -SERIES, MULTIPLICATIVE CHAR-

ACTER, PRIMITIVE CHARACTER

Character Table
A FINITE GROUP G has a finite number of CONJUGACY

CLASSES and a finite number of distinct IRREDUCIBLE

REPRESENTATIONS. The CHARACTER of a REPRESENTA-

TION is constant on a CONJUGACY CLASS. Hence, the
values of the characters can be written as an array,
known as a character table. Typically, the rows are
given by the IRREDUCIBLE REPRESENTATIONS and the
columns are given the CONJUGACY CLASSES. A char-
acter table contains enough information to uniquely
identify a given abstract group and distinguish it
from others.

For example, the SYMMETRIC GROUP on three letters
S3 has three CONJUGACY CLASSES, represented by the
PERMUTATIONS f1; 2; 3g; f2; 1; 3g; and f2; 3; 1g: It
also has three IRREDUCIBLE REPRESENTATIONS; two
are one-dimensional and the third is two-dimen-
sional:

1. The TRIVIAL REPRESENTATION f1(g)(a)�a:/
2. The ALTERNATING REPRESENTATION, given by
the signature of the PERMUTATION,
f2(g)(a)�sgn(g)a:/
3. The STANDARD REPRESENTATION on V�

z1; z2; z3ð Þ : a zi�0f g with f3({a, b, c })(z1, z2, z3)
� (za, zb, zc ).

The STANDARD REPRESENTATION can be described on
C2 via the matrices

f̃3(f2; 1; 3g)�
0 1
1 0

� �

f̃3(f2; 3; 1g)�
0 �1
1 �1

� �
;



and hence the CHARACTER of the first matrix is 0 and
that of the second is �1. The CHARACTER of the
identity is always the dimension of the VECTOR SPACE.
The trace of the alternating representation is just the
SIGNATURE of the PERMUTATION. Consequently, the
character table for S3 is shown below.

1 2 3

/S3/ e (12) (123)

trivial 1 1 1

alternating 1 �1 1

standard 2 0 �1

Chemists and physicists use a special convention for
representing character tables which is applied espe-
cially to the so-called POINT GROUPS, which are the 32
finite symmetry groups possible in a lattice. In the
example above, the numbered regions contain the
following contents (Cotton 1990 pp. 90�/92).

1. The symbol used to represent the group in
question (in this case C3v):/
2. The CONJUGACY CLASSES, indicated by number
and symbol, where the sum of the coefficients gives
the ORDER of the group.
3. MULLIKEN SYMBOLS, one for each IRREDUCIBLE

REPRESENTATION.
4. An array of the CHARACTERS of the IRREDUCIBLE

REPRESENTATION of the group, with one column for
each CONJUGACY CLASS, and one row for each
IRREDUCIBLE REPRESENTATION.
5. Combinations of the symbols x , y , z , Rx; Ry; and
Rz; the first three of which represent the coordi-
nates x , y , and z , and the last three of which stand
for rotations about these axes. These are related to
transformation properties and basis representa-
tions of the group.
6. All square and binary products of coordinates
according to their transformation properties.

The character tables for many of the POINT GROUPS

are reproduced below using this notation.

/C1/ E

A 1

/Cs/ E /sh/

A 1 1 /x; y; Rz/ /x2; y2; z2; xy/

B 1 �1 /z; Rx; Ry/ yz, xz

/Ci/ E i

/Ag/ 1 1 /Rx;Ry;Rz/ /x2; y2; z2; xy; xz; yz/

/Au/ 1 �1 /x; y; z/

/C2/ E /C2/

A 1 1 /z; Rz/ /x2; y2; z2; xy/

B 1 �1 /x; y;Rx;Rz/ yz, xz

/C3/ E /C3/ /C 2
3 / /o�exp(2pi=3)/

A 1 1 1 /z; Rz/ /x2; y2; z2; xy/

E /
1
1

;
/ o * /og/ /(x; y)(Rx; Ry)/ /(x2�y2; xy)(yz; xz)/

/C4/ E /C3/ /C2/ C4
3

A 1 1 1 1 /z; Rz/ /x2�y2; z2
/

B 1 �1 1 �1 /x2�y2; xy/

E /
1
1

;
/ �i 1 i } /(x; y)(Rx; Ry)/ (yz, xz )

/C5/ E /C5/ /C 2
5 / C5

3 C5
4

/o�exp(2pi=5)/

A 1 1 1 1 1 /z; Rz/ /x2�y2; z2
/

/E1/ /
1
1

;
/ o * o2* o2 o } /(x; y)(Rx;Ry)/ (yz, xz )

/E2/ /
1
1

;
/ o2* o o * o2} /(x2�y2; xy)/

/C6/ E /C6/ /C3/ /C2/ /C 2
3 / C6

5
/o�exp(2pi=6)/

A 1 1 1 1 1 1 /z; Rz/ /x2�y2; z2
/



B 1 �1 1 �1 1 �1

/E1/ /
1
1

;
/ o * �o �1 �o * o } /(Rx; Ry)/ (yz, xz )

/E2/ /
1
1

;
/ �o * �o * 1 �o o *} /(x2�y2; xy)/

/D2/ E /C2(z)/ /C2(y)/ /C2(x)/

/A1/ 1 1 1 1 /x2�y2; z2
/

/B1/ 1 1 �1 �1 /z; Rz/ xy

/B2/ 1 �1 1 �1 y, Ry xz

/B3/ 1 �1 �1 1 /z; Rz/ yz

/D3/ E /2C3/ /3C2/

/A1/ 1 1 1 /x2�y2; z2
/

/A2/ 1 1 �1 /z; Rz/ xy

E 2 �1 0 /(x; y)(Rx; Ry)/ /(x2�y2; xy)(xz; yz)/

/D4/ E /2C4/ /C2/ /2C?2/ /2Cƒ2/

/A1/ 1 1 1 1 1 /x2�y2; z2
/

/A2/ 1 1 1 �1 �1 /z; Rz/

/B1/ 1 �1 1 1 �1 /x2�y2
/

/B2/ 1 �1 1 �1 1 xy

E 2 0 �2 0 0 /(x; y)(Rx; Ry)/ (xz, yz )

/D5/ E /2C5/ /2C 2
5 / /5C2/

/A1/ 1 1 1 1 /x2�y2; z2
/

/B1/ 1 1 1 �1 /z; Rz/

/B2/ 2 /2 cos 72�
/ /2 cos 144�

/ 0 /(x; y)(Rx; Ry)/ (xz, yz )

/B3/ 2 /2 cos 144�
/ /2 cos 72�

/ 0 /(x2�y2; xy)/

/D6/ E /2C6/ /2C3/ /C2/ /3C?2/ /3Cƒ2/

/A1/ 1 1 1 1 1 1 /x2�y2; z2
/

/A2/ 1 1 1 1 �1 �1 /z; Rz/

/B1/ 1 �1 1 �1 1 �1

/B2/ 1 �1 1 �1 �1 1 /(x; y)(Rx; Ry)/

/E1/ 2 1 �1 �2 0 0 (xz, yz )

/E2/ 2 �1 �1 2 0 0 /(x2�y2; xy)/

/C2v/ E /C2/ /sv(xz)/ /s?v(yz)/

/A1/ 1 1 1 1 z /x2; y2; z2
/

/A2/ 1 1 �1 �1 /Rz/ xy

/B1/ 1 �1 1 �1 /x; Ry/ xz

/B2/ 1 �1 �1 1 /y; Rx/ yz

/C3v/ E /2C3/ /3sv/

/A1/ 1 1 1 z /x2�y2; z2
/

/A2/ 1 1 �1 /Rz/

E 2 �1 0 /(x; y)(Rx; Ry)/ /(x2�y2; xy)(xz; yz)/

/C4v/ E /2C4/ /C2/ /2sv/ /2sd/

/A1/ 1 1 1 1 1 z /x2�y2; z2
/

/A2/ 1 1 1 �1 �1 /Rz/

/B1/ 1 �1 1 1 �1 /x2�y2
/

/B2/ 1 �1 1 �1 1 xy

E 2 0 �2 0 0 /(x; y)(Rx; Ry)/ (xz, yz )

/C5v/ E /2C5/ /2C 2
5 / /5sv/

/A1/ 1 1 1 1 z /x2�y2; z2
/

/B1/ 1 1 1 �1 /Rz/

/B2/ 2 /2 cos 72�
/ /2 cos 144�

/ 0 /(x; y)(Rx; Ry)/ (xz, yz )

/B3/ 2 /2 cos 144�
/ /2 cos 72�

/ 0 /(x2�y2; xy)/

/C6v/ E /2C6/ /2C3/ /C2/ /3sv/ /3sd/

/A1/ 1 1 1 1 1 1 z /x2�y2; z2
/

/A2/ 1 1 1 1 �1 �1 /Rz/



/B1/ 1 �1 1 �1 1 �1

/B2/ 1 �1 1 �1 �1 1

/E1/ 2 1 �1 �2 0 0 /(x ; y)(Rx ; Ry)/ (xz, yz )

/E2/ 2 �1 �1 2 0 0  /(x2 �y2 ; xy)/

/C�v/ E /C F
� / ... / �sv/

/A1 �S�
/ 1 1 ... 1 z /x2 �y2 ; z2

/

/A2 �S�
/ 1 1 ... �1 /Rz/

/E1 �P/ 2 /2 cos F/ ... 0 /(x; y); (Rx ; Ry)/ (xz, yz )

/E2 �D/ 2 /2 cos 2F/ ... 0 /(x2 �y2 ; xy)/

/E3 �F/ 2 /2 cos 3F/ ... 0

/n/ /n/ /n/ /
:::/ /n/

See also CHARACTER (GROUP), CONJUGACY CLASS,
GROUP, IRREDUCIBLE REPRESENTATION, POINT

GROUPS, REPRESENTATION
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Characteristic (Elliptic Integral)
A parameter n used to specify an ELLIPTIC INTEGRAL

OF THE THIRD KIND P(n ; f , k ).

See also AMPLITUDE, ELLIPTIC INTEGRAL, MODULAR

ANGLE, MODULUS (ELLIPTIC INTEGRAL), NOME, PARA-

METER
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Characteristic (Euler)
EULER CHARACTERISTIC

Characteristic (Field)
For a FIELD K with multiplicative identity 1, consider
the numbers 2 �1 �1; 3 �1 �1 �1 ; 4 �1 �1 �1 �1;
etc. Either these numbers are all different, in which
case we say that K has characteristic 0, or two of
them will be equal. In the latter case, it is straightfor-
ward to show that, for some number p , we have

1 �1 �. . .�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p times

�0:

If p is chosen to be as small as possible, then p will be
a PRIME, and we say that K has characteristic p . The
characteristic of a field K is sometimes denoted ch(K ).

The FIELDS Q (rationals), R (reals), C (complex
numbers), and the P -ADIC NUMBERS Qp have char-
acteristic 0. For p a PRIME, the FINITE FIELD GF(/pn)
has characteristic p .

If H is a SUBFIELD of K , then H and K have the same
characteristic.

See also FIELD, FINITE FIELD, SUBFIELD
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Characteristic (Partial Differential
Equation)
Paths in a 2-D plane used to transform PARTIAL

DIFFERENTIAL EQUATIONS into systems of ORDINARY

DIFFERENTIAL EQUATIONS. They were invented by
Riemann. For an example of the use of characteris-
tics, consider the equation

u1�6uux�0:

Now let u(s)�u(x(s); t(s)): Since

du

ds
�

dx

ds
ux�

dt

ds
ut;

it follows that dt=ds�1; dx=ds��6u; and du=ds�0:
Integrating gives t(s)�s; x(s)��6su0(x); and u(s)�
u0(x); where the constants of integration are 0 and
u0(x)�u(x; 0):/
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Characteristic (Real Number)
For a REAL NUMBER x , xb c�int(x) is called the
characteristic, where xb c is the FLOOR FUNCTION.

See also MANTISSA, SCIENTIFIC NOTATION

Characteristic Class
Characteristic classes are COHOMOLOGY classes in the
BASE SPACE of a VECTOR BUNDLE, defined through
OBSTRUCTION theory, which are (perhaps partial)
obstructions to the existence of k everywhere linearly
independent vector FIELDS on the VECTOR BUNDLE.
The most common examples of characteristic classes
are the CHERN, PONTRYAGIN, and STIEFEL-WHITNEY

CLASSES.

Characteristic Equation
The equation which is solved to find a matrix’s
EIGENVALUES, also called the characteristic polyno-
mial. For a general k �k MATRIX M ; the characteristic
equation in variable t is defined by

det(M �tI) �0; (1)

where I is the IDENTITY MATRIX and det(A) is the
DETERMINANT of the MATRIX A: Writing M out ex-
plicitly gives

M �

a11 a12 	 	 	  a1k

a21 a22 	 	 	  a2k

n n ::: n
ak1 ak2 	 	 	  akk

2
664

3
775; (2)

so the characteristic equation is given by

a11 �t a12 	 	 	  a1k

a21 a22 �t 	 	 	  a2k

n n ::: n
ak1 ak2 	 	 	  akk �t

��������

���������0 (3)

The solutions t of the characteristic equation are
called EIGENVALUES, and are extremely important in
the analysis of many problems in mathematics and
physics.

See also BALLIEU’S THEOREM, CAYLEY-HAMILTON

THEOREM, DIAGONAL MATRIX, EIGENVALUE, PARODI’S

THEOREM, ROUTH-HURWITZ THEOREM
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Characteristic Factor
A characteristic factor is a factor in a particular
factorization of the TOTIENT FUNCTION f(n) such that
the product of characteristic factors gives the repre-
sentation of a corresponding abstract GROUP as a
GROUP DIRECT PRODUCT. By computing the character-
istic factors, any ABELIAN GROUP can be expressed as

a GROUP DIRECT PRODUCT of CYCLIC SUBGROUPS, for
example, the FINITE GROUP Z2/

N
/Z4 or Z2/

N
/Z2/

N
/Z2.

There is a simple algorithm for determining the
characteristic factors of MODULO MULTIPLICATION

GROUPS.

See also CYCLIC GROUP, GROUP DIRECT PRODUCT,
MODULO MULTIPLICATION GROUP, TOTIENT FUNCTION
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Characteristic Function (Probability)
The characteristic function f(t) is defined as the
FOURIER TRANSFORM of the PROBABILITY DENSITY

FUNCTION using FOURIER TRANSFORM parameters
(a; b) �(1; 1);

f(t) �F[P(x)] �g
�

��

eitxP(x) dx (1)

�g
�

��

P(x) dx �it g
�

��

xP(x) dx

�1
2(it)

2 g
�

��

x2P(x) dx �. . . (2)

�
X�
k �0

(it)k

k!
m?k (3)

�1 �it m?1 �
1
2 t

2 m?2 �
1

3!
it3 m?3 �

1

4!
t4 m?4 �. . . ; (4)

where m?n (sometimes also denoted nn) is the nth
MOMENT about 0 and m?0 �1 (Abramowitz and Stegun
1972, p. 928). A DISTRIBUTION is not uniquely speci-
fied by its MOMENTS, but is uniquely specified by its
characteristic function,

P(x) �F�1[f(t)] �
1

2 p g
�

��

e �itx f(t) dt (5)

(Papoulis 1984, p. 155).

The characteristic function can therefore be used to
generate RAW MOMENTS,

f(n)(0)�
dnf

dtn

" #
t�0

�inm?n (6)

or the CUMULANTS kn;

ln f(t)�
X�
n�o

kn

(it)n

n!
: (7)

See also CUMULANT, MOMENT, MOMENT-GENERATING



FUNCTION, PROBABILITY DENSITY FUNCTION
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Characteristic Function (Set)
Given a SUBSET A of a larger set, the characteristic
function xA is identically one on A , and is zero
elsewhere.

These kinds of functions get their own name because
they are useful tools. It is easier to say "the char-
acteristic function of the rationals" or "the character-
istic function of PRIMES" than to keep repeating the
definition.

A characteristic function is a special case of a SIMPLE

FUNCTION.

See also SET, SIMPLE FUNCTION
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Characteristic Polynomial
The expanded form of the CHARACTERISTIC EQUATION,

det(xI �A);

where A is an n �n MATRIX and I is the IDENTITY

MATRIX. The characteristic polynomial of a GRAPH G
takes A as the ADJACENCY MATRIX of A:/

See also CAYLEY-HAMILTON THEOREM, EIGENVALUE,
SPECTRUM (MATRIX)
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Characteristic Root
EIGENVALUE

Characteristic Vector
EIGENVECTOR

Charlier A-Series
CHARLIER SERIES

Charlier Differential Series
CHARLIER SERIES

Charlier Polynomial
The orthogonal polynomials defined by

c(m)
n (x)�2 F0(�n;�x; ;�m�1) (1)

�
(�1)n

mn
(x�n�1)n 1F1(�n; x�n�1;m) (2)

�2 F0(�n;�x; ;�1=m) (3)

where (x)n is the POCHHAMMER SYMBOL (Koekoek and
Swarttouw 1998). The first few are given by

c(m)
0 (x)�1

c(m)
1 (x)�1�

x

m

c(m)
2 (x)�

x2 � m2 � x(1 � 2m)

m2
:
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Charlier Series
A class of formal series expansions in derivatives of a
distribution C(t) which may (but need not) be the
NORMAL DISTRIBUTION FUNCTION

F(t)�
1ffiffiffiffiffiffi
2p

p e�t2=2

and moments or other measured parameters. Edge-
worth series are known as the Charlier series or
Gram-Charlier series. Let c(t) be the CHARACTERISTIC

FUNCTION of the function C(t); and gr its CUMULANTS.
Similarly, let F(t) be the distribution to be approxi-
mated, f (t) its CHARACTERISTIC FUNCTION, and kr its
CUMULANTS. By definition, these quantities are con-
nected by the formal series

f (t)�exp
X�
r�1

(kr�gr)
(it)r

r!

" #
c(t)



(Wallace 1958). Integrating by parts gives (it)r 
c(t) as

the CHARACTERISTIC FUNCTION of (�1)r C(r)(x) ; so the
formal identity corresponds pairwise to the identity

F(x) �exp
X�
r�1

( kr � gr)
( �D)r

r!

" #
C(x);

where D is the DIFFERENTIAL OPERATOR. The most
important case C(t) �F(t) was considered by Cheby-
shev (1890), Charlier (1905), and Edgeworth (1905).

Expanding and collecting terms according to the
order of the derivatives gives the so-called Gram-
Charlier A-Series, which is identical to the formal
expansion of F �C in Hermite polynomials. The A-
series converges for functions F whose tails approach
zero faster than C?1=2 (Cramér 1925, Wallace 1958,
Szego 1975).

See also CORNISH-FISHER ASYMPTOTIC EXPANSION,
EDGEWORTH SERIES
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Charlier, C. V. L. "Ü ber das Fehlergesetz." Ark. Math. Astr.

och Phys. 2, No. 8, 1 �/9, 1905 �/06.
Chebyshev, P. L. "Sur deux théorèmes relatifs aux probabil-
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Charlier’s Check
A check which can be used to verify correct computa-
tions in a table of grouped classes. For example,
consider the following table with specified class limits
and frequencies f . The class marks xi are then
computed as well as the rescaled frequencies ui ;
which are given by

ui �
fi � x0

c
; (1)

where the class mark is taken as x0 �74 :5 and the
class interval is c �10. The remaining quantities are
then computed as follows.

class limits /xi/ /fi/ /(m)n/ /fiui/ /fiu
2
i/ /fi(ui �1)2

/

30 �/39 34.5 2 �4 �8 32  18

40 �/49 44.5 3 �3 �9 27  12

50 �/59 54.5 11 �2 �22 44 11

60 �/69 64.5 20 �1 �20 20 0

70 �/79 74.5 32 0 0 0 32

80 �/89 84.5 25 1 25 25 100

90 �/99 94.5 7 2 14 28 63

total 100 �20 176 236

In order to compute the VARIANCE, note that

s2
u �

P
i fiu

2
iP

i fi

�
P

i fiuiP
i fi

 !2

(2)

�
176

100 
�

�20

100

 !2

�1:72; (3)

so the VARIANCE of the original data is

s2
x �c2s2

u �172: (4)

Charlier’s check makes use of the additional column
fi(ui �1)2 added to the right side of the table. By
noting that the identityX

i

fi(ui�1)2�
X

i

fi(u
2
i �2ui�1)

�
X

i

fiu
2
i �2

X
i

fiui�
X

i

fi; (5)

connects columns five through seven, it can be
checked that the computations have been done
correctly. In the example above,

236�176�2(�20)�100; (6)

so the computations pass Charlier’s check.

See also VARIANCE
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Chart
COORDINATE CHART

Chasles-Cayley-Brill Formula
The number of coincidences of a (n; n?) correspon-
dence of value g on a curve of GENUS p is given by

n�n?�2pg:



See also ZEUTHEN’S THEOREM
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Chasles’s Contact Theorem
If a one-parameter family of curves has index N and
class M , the number tangent to a curve of order n1

and class m1 in general position is

m1N �n1M :
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Chasles’s Polars Theorem
If the TRILINEAR POLARS of the VERTICES of a TRIAN-

GLE are distinct from the respectively opposite sides,
they meet the sides in three COLLINEAR points.

See also COLLINEAR, TRIANGLE, TRILINEAR POLAR

Chasles’s Theorem
If two projective PENCILS of curves of orders n and n 0

have no common curve, the LOCUS of the intersections
of corresponding curves of the two is a curve of order
n �n 0 through all the centers of either PENCIL.
Conversely, if a curve of order n �n0 contains all
centers of a PENCIL of order n to the multiplicity
demanded by NOETHER’S FUNDAMENTAL THEOREM,
then it is the LOCUS of the intersections of correspond-
ing curves of this PENCIL and one of order n0 projective
therewith.

See also NOETHER’S FUNDAMENTAL THEOREM, PENCIL
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Chebyshev
This entry contributed by RONALD M. AARTS

A number of spellings of "Chebyshev" (which is the
spelling used exclusively in this work) are commonly
found in the literature. These include Tchebicheff,
Cebysev, Tschebyscheff, Chebishev, and Tsche-
byscheff (Clenshaw).
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Chebyshev Approximation Formula
Using a CHEBYSHEV POLYNOMIAL OF THE FIRST KIND

T(x) ; define

cj �
2

N

XN

k �1

f (xk)Tj(xk)

�
2

N

XN

k �1

f cos
p(k � 1

2)

N

( )" #
cos

pj(k � 1
2)

N

( )
:

Then

f (x) :
XN �1

k �0

ckTk(x) �1
2 c0 :

It is exact for the N zeros of TN(x) : This type of
approximation is important because, when truncated,
the error is spread smoothly over [�1; 1]: The Cheby-
shev approximation formula is very close to the
MINIMAX POLYNOMIAL.
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Chebyshev Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

The constants

lm; n� inf
r �Rm; n

sup
x]0

½e�x�r(x)½;

where

r(x)�
p(x)

q(x)
;

p and q are mth and nth order POLYNOMIALS, and
Rm; n is the set all RATIONAL FUNCTIONS with REAL

coefficients.

See also ONE-NINTH CONSTANT, RATIONAL FUNCTION
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Chebyshev Deviation

max
a5x5b

½f (x)�r(x)½w(x)f g:
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Chebyshev Differential Equation

(1�x2)
d2y

dx2
�x

dy

dx
�a2y�0 (1)

for ½x½B1: The Chebyshev differential equation has
regular SINGULARITIES at �1, 1, and �: It can be
solved by series solution using the expansions

y�
X�
n�0

anxn (2)

y?�
X�
n�0

nanxn�1�
X�
n�1

nanxn�1�
X�
n�0

(n�1)an�1xn (3)

yƒ�
X�
n�0

(n�1)nan�1xn�1�
X�
n�1

(n�1)nan�1xn�1

�
X�
n�0

(n�2)(n�1)an�2xn: (4)

Now, plug (2�/4) into the original equation (1) to
obtain

(1�x2)
X�
n�0

(n�2)(n�1)an�2xn

�x
X�
n�0

(n�1)nn�1xn�a2
X�
n�0

anxn�0 (5)

X�
n�0

(n�2)(n�1)an�2xn�
X�
n�0

(n�2)(n�1)an�2xn�2

�
X�
n�0

(n�1)an�2xn�1�a2
X�
n�0

anxn�0 (6)

X�
n�0

(n�2)(n�1)an�2xn�
X�
n�2

n(n�1)anxn�2

�
X�
n�1

nanxn�a2
X�
n�0

anxn�0 (7)

2 � 1a2�3 � 2a3x�1 � ax�a2a0�a2a1x

�
X�
n�2

[(n�2)(n�1)an�2�n(n�1)an�nan�a2an]xn

�0 (8)

(2a2�a2a0)�[(a2�1)a1�6a3]x

�
X�
n�2

[(n�2)(n�1)an�2�(a2�n2)an]xn�0; (9)

so

2a2�a2a0�0 (10)

(a2�1)a1�6a3�0; (11)

and by induction,

an�2�
n2 � a2

(n � 1)(n � 2)
an (12)

for n�2, 3, ....
Since (10) and (11) are special cases of (12), the
general RECURRENCE RELATION can be written

an�2�
n2 � a2

(n � 1)(n � 2)
an (13)

for n�0, 1, .... From this, we obtain for the EVEN

COEFFICIENTS

a2�
�a2

2
a0 (14)

a4�
22 � a2

3 � 4
a2�

(22 � a2)(�a2)

1 � 2 � 3 � 4
a0 (15)

a2n�
[(2n)2 � a2][(2n � 2)2 � a2] 	 	 	 (�a2)

(2n)!
a0:

(16)

and for the ODD COEFFICIENTS

a3�
1 � a2

6
a0 (17)



a5 �
32 � a2

4 � 5
a3 �

(32 � a2)(12 � a2)

5!
a1 (18)

a2n �1 �

[(2n � 1)2 � a2][(2n � 3)2 � a2] 	 	 	 [12 � a2]

(2n � 1)! 
a1 : (19)

The even coefficients k �2n can be given in closed
form by as

ak even �a0

Yk =2

j �1

(k �2j)2 � a2

�
2k �1 pa csc(1

2 pa)

G(1 � 1
2 k � 1

2 a) G(1 � 1
2 k � 1

2 a)
a0 ; (20)

and the odd coefficients k �2n �1 as

ak odd �a1

Y(k �1)=2

j�1

(k �2j)2 � a2

�
2k �1 pa sec(1

2 pa)

G(1 � 1
2 k � 1

2 a)G(1 � 1
2 k � 1

2 a) 
a1 : (21)

The general solution is then given by summing over
all indices,

y �a0 1 �
X�

k�2 ;4...

ak even

k!
xk

" #
� x �

X�
k�3;5...

ak odd

k!
xk

" #
; (22)

which can be done in closed form as

y �a0 cos(a sin�1 x) �
a1

a
sin(a sin�1 x): (23)

Performing a change of variables gives the equivalent
form of the solution

y �b1 cos(a cos�1 x) �b2 sin( a cos�1 x) (24)

�b1T a(x) �b2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
Ua �1(x); (25)

where Tn(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND and Un(x) is a CHEBYSHEV POLYNOMIAL OF

THE SECOND KIND. Another equivalent form of the
solution is given by

y �c1 cosh[a ln(x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1

p
)]

�ic2 sinh[ a ln(x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1

p
)]: (26)

See also CHEBYSHEV POLYNOMIAL OF THE FIRST KIND,
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND
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Chebyshev Functions

The function defined by

u(n) �
Xn

i�1

ln pi �ln
Y
p 5n

p

 !
; (1)

where pi is the ith PRIME (left figure), so

lim
x 0�

x

u(x) 
�1 (2)

(right figure). The function has asymptotic behavior

u(n) �n (3)

(Bach and Shallit 1996; Hardy 1999, p. 28). The
notation q (n) is also commonly used for this function
(Hardy 1999, p. 27).
Chebyshev also defined the related function

c(n) �
X
p; n

p n 5n

ln p ; (4)

which is equal to the summatory MANGOLDT FUNC-

TION and is given by the logarithm of the LEAST

COMMON MULTIPLE of the numbers from 1 to n . The
values of LCM(1 ; 2 ; 	 	 	 ; n) for n �1, 2, ... are 1, 2, 6,
12, 60, 60, 420, 840, 2520, 2520, ... (Sloane’s
A003418). For example,

c(10) �ln 2520 �3 ln 2�2 ln 3�ln 5 �ln 7: (5)

The function has asymptotic behavior

c(n) �n (6)

(Hardy 1999, p. 27).

According to Hardy (1999, p. 27), the functions u(n)
and c(n) are in some ways more natural than the
PRIME COUNTING FUNCTION p(x) since they deal with
multiplication of primes instead of the counting of
them.

See also MANGOLDT FUNCTION, PRIME COUNTING

FUNCTION, PRIME NUMBER THEOREM
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Chebyshev Inequality
Apply MARKOV’S INEQUALITY with a �k2 to obtain

P[(x � m)2 
]k2] 5

�(x � m)2 �

k2
�

s2

k2 
: (1)

Therefore, if a RANDOM VARIABLE x has a finite MEAN

m and finite VARIANCE s2 ; then 	k ]0 ;

P( ½x � m½]k) 5
s2

k2 
(2)

P( ½x � m½]k s) 5
1

k2 
: (3)

See also CHEBYSHEV SUM INEQUALITY
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Chebyshev Integral

g xp(1 �x)q dx �
x1�p

2F1(p � 1; �q; p � 2; x)

p � 1
:

See also CHEBYSHEV INTEGRAL INEQUALITY

Chebyshev Integral Inequality

g
b

a

f1(x) dx g
b

a

f2(x) dx 	 	 	 g
b

a

fn(x) dx

5(b�a)n�1 g
b

a

f1(x)f2(x) 	 	 	 fn(x) dx

where f1; f2; ..., fn are NONNEGATIVE integrable
functions on [a, b ] which are all either monotonic
increasing or monotonic decreasing.
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Chebyshev Phenomenon
PRIME QUADRATIC EFFECT

Chebyshev Polynomial of the First Kind

A set of ORTHOGONAL POLYNOMIALS defined as the
solutions to the CHEBYSHEV DIFFERENTIAL EQUATION

and denoted Tn(x): They are used as an approxima-
tion to a LEAST SQUARES FIT, and are a special case of
the ULTRASPHERICAL POLYNOMIAL with a�0: They
are also intimately connected with trigonometric
MULTIPLE-ANGLE FORMULAS. The Chebyshev polyno-
mials of the first kind are denoted Tn(x); and are
implemented in Mathematica as ChebyshevT[n , x ].
They are normalized such that Tn(1)�1: The first few
polynomials are illustrated above for x � [�1; 1] and
n�1, 2, ..., 5.
The Chebyshev polynomials of the first kind can be
obtained from the GENERATING FUNCTIONS

g1(t; x)�
1 � t2

1 � 2xt � t2
�T0(x)�2

X�
n�1

Tn(x)tn (1)



and

g2(t; x)�
1 � xt

1 � 2xt � t2
�
X�
n�0

Tn(x)tn (2)

for ½x½51 and ½t½B1 (Beeler et al. 1972, Item 15). (A
closely related GENERATING FUNCTION is the basis for
the definition of CHEBYSHEV POLYNOMIAL OF THE

SECOND KIND.)

The polynomials can also be defined in terms of the
sums

Tn(x)�
n

2

Xn=2b c

r�0

(�1)r

n � r

n�r
r

� �
(2x)n�2r (3)

Tn(x)�cos(cos�1 x)�
Xn=2b c

m�0

n
2m

� �
xn�2m(x2�1)m; (4)

where n
k

& '
is a BINOMIAL COEFFICIENT and xb c is the

FLOOR FUNCTION, or the product

Tn(x)�2n�1
Yn

k�1

x�cos
(2k � 1)p

2n

" #( )
(5)

(Zwillinger 1995, p. 696).

/Tn also satisfy the curious DETERMINANT equation

Tn�

x 1 0 0 	 	 	 0 0
1 2x 1 0

::: 0 0
0 1 2x 1

::: 0 0
0 0 1 2x

::: 0 0
0 0 0 1

::: 1 0
n :::

:::
:::

:::
::: 1

0 0 0 0 	 	 	 1 2x

��������������

��������������
: (6)

The Chebyshev polynomials of the first kind are a
special case of the JACOBI POLYNOMIALS P(a;b)

n with a�
b��1=2;

Tn(x)�
P(�1=2;�1=2)

n (x)

P(�1=2;�1=2)
n (1)

�2 F1(�n; �n; 1
2;

1
2(1�x)); (7)

where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNCTION

(Koekoek and Swarttouw 1998).

Zeros occur when

x�cos
p k � 1

2

1 2
n

2
4

3
5 (8)

for k�1, 2, ..., n . Extrema occur for

x�cos
pk

n

 !
; (9)

where k�0; 1; . . . ; n: At maximum, Tn(x)�1; and at
minimum, Tn(x)��1: The Chebyshev POLYNOMIALS

are ORTHONORMAL with respect to the WEIGHTING

FUNCTION (1�x2)�1=2

g
1

�1

Tm(x)Tn(x) dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p �
1
2 pdnm for m"0; n"0

p for m�n�0;

�
(10)

where /dmn/ is the KRONECKER DELTA. Chebyshev
polynomials of the first kind satisfy the additional
discrete identity

Xm

k�1

Ti(xk)Tj(xk)�
1
2 mdij for i"0; j"0

m for i�j�0;

�
(11)

where xk for k�1, ..., m are the m zeros of Tm(x):
They also satisfy the RECURRENCE RELATIONS

Tn�1(x)�2xTn(x)�Tn�1(x) (12)

Tn�1(x)�xTn(x)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�x2)f1�[Tn(x)]2g

q
(13)

for n]1: They have a COMPLEX integral representa-
tion

Tn(x)�
1

4pi gg
(1 � z2)z�n�1 dz

1 � 2xz � z2
(14)

and a Rodrigues representation

Tn(x)�
(�1)n ffiffiffi

p
p

(1 � x2)1=2

2n(n � 1
2)!

dn

dxn
[(1�x2)n�1=2]: (15)

Using a FAST FIBONACCI TRANSFORM with multiplica-
tion law

(A;B)(C;D)�(AD�BC�2xAC;BD�AC) (16)

gives

Tn�1(x); �Tn(x)�(T1(x); �T0(x))(1; 0)n: (17)

Using GRAM-SCHMIDT ORTHONORMALIZATION in the
range (�1,1) with WEIGHTING FUNCTION (1�x2)(�1=2)

gives

p0(x)�1 (18)

p1(x)� x�
g

1

�1

x(1 � x2)�1=2 dx

g
1

�1

(1 � x2)�1=2 dx

2
6664

3
7775

�x�
[�1(1 � x2)1=2]1

�1

[sin�1 x]1
�1

�x (19)



p2(x) � x �
g

1

�1

x3(1 � x2)�1 =2 dx

g
1

�1

x2(1 � x2)�1 =2 dx

2
6664

3
7775x

�
g

1

�1

x2(1 � x2) �1=2 dx

g
1

�1

(1 � x2) �1=2 dx

2
6664

3
7775� 1

� x �0½ �x �

p

2

p 
�x2 �1

2; (20)

etc. Normalizing such that Tn(1) �1 gives

T0(x) �1

T1(x) �x

T2(x) �2x2 �1

T3(x) �4x3 �3x

T4(x) �8x4 �8x2 �1

T5(x) �16x5 �20x3 �5x

T6(x) �32x6 �48x4 �18x2 �1

The Chebyshev polynomial of the first kind is related
to the BESSEL FUNCTION OF THE FIRST KIND Jn(x) and
MODIFIED BESSEL FUNCTION OF THE FIRST KIND In(x)
by the relations

Jn(x) �inTn i
d

dx

 !
J0(x) (21)

In(x) �Tn

d

dx

 !
I0(x): (22)

Letting x �cos u allows the Chebyshev polynomials of
the first kind to be written as

Tn(x) �cos(n u) �cos(n cos�1 x) : (23)

The second linearly dependent solution to the trans-
formed differential equation

d2Tn

du2 
�n2Tn �0 (24)

is then given by

Vn(x) �sin(nu) �sin(n cos �1 x) ; (25)

which can also be written

Vn(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
Un�1(x) ; (26)

where Un is a CHEBYSHEV POLYNOMIAL OF THE

SECOND KIND. Note that Vn(x) is therefore not a
POLYNOMIAL.

The triangle of RESULTANTS r(Tn(x); Tk(x)) is given by
f0g;/ /f�1; 0g;/ /f0 ; �4; 0g;/ /f1; 16 ; 64 ; 0g;/ {0, �16,
0, 4096, 0}, ... (Sloane’s A054375).

The POLYNOMIALS

pn(x) �xn �21 �nTn(x) (27)

of degree n �2; the first few of which are

p1(x) �0
p2(x) �1

2

p3(x) �3
4 x

p4(x) �x2 �1
8

p5(x)� 5
16(4x3�x)

are the POLYNOMIALS of degreeBn which stay closest
to xn in the interval (�1; 1): The maximum deviation
is 21�n at the n�1 points where

x�cos
kp

n

 !
; (28)

for k�0, 1, ..., n (Beeler et al. 1972).

See also CHEBYSHEV APPROXIMATION FORMULA, CHE-

BYSHEV POLYNOMIAL OF THE SECOND KIND
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Chebyshev Polynomial of the Second Kind

A modified set of Chebyshev POLYNOMIALS defined by
a slightly different GENERATING FUNCTION. They arise
in the development of four-dimensional SPHERICAL

HARMONICS in angular momentum theory. They are a
special case of the ULTRASPHERICAL POLYNOMIAL with
a�1: They are also intimately connected with trigo-
nometric MULTIPLE-ANGLE FORMULAS. The Chebyshev
polynomials of the second kind are denoted Un(x); and
implemented in Mathematica as ChebyshevU[n , x ].
The polynomials Un(x) are illustrated above for x �
[�1; 1] and n�1, 2, ..., 5.
The defining GENERATING FUNCTION of the Chebyshev
polynomials of the second kind is

g2(t; x)�
1

1 � 2xt � t2
�
X�
n�0

Un(x)tn (1)

for ½x½B1 and ½t½B1: To see the relationship to a
CHEBYSHEV POLYNOMIAL OF THE FIRST KIND T(x); take
@g=@t;

@g

@t
��(1�2xt�t2)�2(�2x�2t)

�2(t�x)(1�2xt�t2)�2�
X�
n�0

nUn(x)tn�1: (2)

Multiply (2) by t ,

(2t2�2xt)(1�2xt�t2)�2�
X�
n�0

nUn(x)tn (3)

and take (3) minus (2),

(2t2 � 2tx) � (1 � 2xt � t2)

(1 � 2xt � t2)2 �
t2 � 1

(1 � 2xt � t2)2

�
X�
n�0

(n�1)Un(x)tn: (4)

The Rodrigues representation is

Un(x)�
(�1)n(n � 1)

ffiffiffi
p

p

2n�1(n � 1
2)!(1 � x2)1=2

dn

dxn
[(1�x2)n�1=2]: (5)

The polynomials can also be defined in terms of the
sums

Un(x)�
Xn=2b c

r�0

(�1)r n�r
r

� �
(2x)n�2r

�
Xn=2d e

m�0

n�1
2m�1

� �
xn�2m(x2�1)m; (6)

where xb c is the FLOOR FUNCTION and xd e is the
CEILING FUNCTION, or in terms of the product

Un(x)�2n
Yn

k�1

x�cos
kp

n � 1

 !" #
(7)

(Zwillinger 1995, p. 696).

/Un(x) also obey the interesting DETERMINANT identity

Un�

2x 1 0 0 	 	 	 0 0
1 2x 1 0

::: 0 0
0 1 2x 1

::: 0 0
0 0 1 2x

::: 0 0
0 0 0 1

::: 1 0
n :::

:::
:::

:::
::: 1

0 0 0 0 	 	 	 1 2x

��������������

��������������
: (8)

The Chebyshev polynomials of the second kind are a
special case of the JACOBI POLYNOMIALS P(a;b)

n with /

a�b�1=2/,

Un(x)�(n�1)
P(1=2; 1=2)

n (x)

P(1=2; 1=2)
n (1)

� 2 F1(�n; n�2; 3
2 ; 1

2(1�x)); (9)

where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNCTION

(Koekoek and Swarttouw 1998).

The first few POLYNOMIALS are

U0(x)�1

U1(x)�2x

U2(x)�4x2�1

U3(x)�8x3�4x

U4(x)�16x4�12x2�1

U5(x)�32x5�32x3�6x



U6(x) �64x6 �80x4 �24x2 �1 :

Letting x �cos u allows the Chebyshev polynomials of
the second kind to be written as

Un(x) �
sin[(n � 1)] u]

sin u
: (10)

The second linearly dependent solution to the trans-
formed differential equation is then given by

Wn(x) �
cos[(n � 1)u]

sin u
; (11)

which can also be written

Wn(x) �(1 �x2) �1 =2Tn�1(x) ; (12)

where Tn(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND. Note that Wn(x) is therefore not a
POLYNOMIAL.

The triangle of RESULTANTS r(Un(x) ; Uk(x)) is given
by f0g; f�4; 0 g; f0 ; �64 ; 0g; f16 ; 256; 4096; 0g;
f0; 0; 0; 1048576; 0g; ... (Sloane’s A054376).

See also CHEBYSHEV APPROXIMATION FORMULA, CHE-

BYSHEV POLYNOMIAL OF THE FIRST KIND, ULTRA-

SPHERICAL POLYNOMIAL
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Chebyshev Quadrature
A GAUSSIAN QUADRATURE-like FORMULA for numer-
ical estimation of integrals. It uses WEIGHTING FUNC-

TION W(x)�1 in the interval [�1; 1] and forces all the
weights to be equal. The general FORMULA is

g
1

�1

f (x) dx�
2

n

Xn

i�1

f (xi):

The ABSCISSAS are found by taking terms up to yn in
the MACLAURIN SERIES of

sn(y)�exp 1
2 n �2�ln(1�y) 1�

1

y

 !
�ln(1�y) 1�

1

y

 !" #( )
;

and then defining

Gn(x)�xnsn

1

x

 !
:

The ROOTS of Gn(x) then give the ABSCISSAS. The first
few values are

G0(x)�1
G1(x)�x
G2(x)�1

3(3x2�1)

G3(x)�1
2(2x3�x)

G4(x)� 1
45(45x4�30x2�1)

G5(x)� 1
72(72x5�60x3�7x)

G6(x)� 1
105(105x6�105x4�21x2�1)

G7(x)� 1
6480(6480x7�7560x5�2142x3�149x)

G8(x)� 1
42525(42525x8�56700x6�20790x4�2220x2�43)

G9(x)� 1
22400(22400x9�33600x7�15120x5�2280x3�53x):

Because the ROOTS are all REAL for n57 and n�9
only (Hildebrand 1956), these are the only permissi-
ble orders for Chebyshev quadrature. The error term
is

En�
cn

f (n�1)(j)

(n � 1)!
n odd

cn

f (n�2)(j)

(n � 2)!
n even;

8>>><
>>>:

where

cn�
g

1

�1

xGn(x) dx n odd

g
1

�1

x2Gn(x) dx n even:

8>>><
>>>:

The first few values of cn are 2/3, 8/45, 1/15, 32/945,
13/756, and 16/1575 (Hildebrand 1956). Beyer (1987)
gives abscissas up to n�7 and Hildebrand (1956) up
to n�9.



n /xi/

2 9 0.57735

3 0

9 0.707107

4 9 0.187592

9 0.794654

5 0

9 0.374541

9 0.832497

6 9 0.266635

9 0.422519

9 0.866247

7 0

9 0.323912

9 0.529657

9 0.883862

9 0

9 0.167906

9 0.528762

9 0.601019

9 0.911589

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/

2 /91
3

ffiffiffi
3

p
/

3 0

/91
2

ffiffiffi
2

p
/

4 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
� 2

3
ffiffiffi
5

p
s

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p
� 2

3
ffiffiffi
5

p
s

5 0

91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffiffiffiffi
11

p

3

s

91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffiffiffiffi
11

p

3

s

See also GAUSSIAN QUADRATURE, LOBATTO QUADRA-

TURE
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Chebyshev Sum Inequality
If

a1 ]a2 ]. . .]an

b1 ]b2 ]. . .]bn ;

then

n
Xn

k �1

akbk ]
Xn

k �1

ak

 ! Xn

k �1

bk

 !
:

This is true for any distribution.

See also CAUCHY’S INEQUALITY, HÖ LDER’S INEQUAL-

ITIES
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Chebyshev-Gauss Quadrature
Also called CHEBYSHEV QUADRATURE. A GAUSSIAN

QUADRATURE over the interval [�1; 1] with WEIGHT-

ING FUNCTION W(x)�(1�x2)�1=2 (Abramowitz and
Stegun 1972, p. 889). The ABSCISSAS for quadrature
order n are given by the roots of the CHEBYSHEV

POLYNOMIAL OF THE FIRST KIND Tn(x); which occur
symmetrically about 0. The WEIGHTS are

wi��
An�1gn

AnT?n(xi)Tn�1(xi)
�

An

An�1

gn�1

Tn�1(xi)T?n(xi)
; (1)

where An is the COEFFICIENT of xn in Tn(x): For
HERMITE POLYNOMIALS,

An�2n�1; (2)

so

An�1

An

�2: (3)

Additionally,

gn�
1
2 p; (4)

so

wi��
p

Tn�1(xi)T?n(xi)
: (5)

Since



Tn(x)�cos(n cos�1 x); (6)

the ABSCISSAS are given explicitly by

xi�cos
(2i � 1)p

2n

" #
: (7)

Since

T?n(xi)�
(�1)i�1n

ai

(8)

Tn�1(xi)�(�1)i sin ai; (9)

where

ai�
(2i � 1)p

2n
; (10)

all the WEIGHTS are

wi�
p

n
: (11)

The explicit FORMULA is then

g
1

�1

f (x) dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

�
p

n

Xn

k�1

f cos
2k � 1

2n
p

 !" #
�

2p

22n(2n)!
f (2n)(j): (12)

The following two tables give the numerical and
analytic values for the first few points and weights.

n /xi/ /wi/

2 9 0.707107 1.5708

3 0 1.0472

9 0.866025 1.0472

4 9 0.382683 0.785398

9 0.92388 0.785398

5 0 0.628319

9 0.587785 0.628319

9 0.951057 0.628319

2 /91
2

ffiffiffi
2

p
/ /

1
2 p/

3 0 /
1
3 p/

3 /91
2

ffiffiffi
3

p
/ /

1
3 p/

4 /91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pp
/ /

1
4 p/

4 /91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pp
/ /

1
4 p/

5 0 /
1
5 p/

5 /91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(5�

ffiffiffi
5

p
)

q
/ /

1
5 p/

5 /91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(5�

ffiffiffi
5

p
)

q
/ /

1
5 p/
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Chebyshev-Radau Quadrature
A GAUSSIAN QUADRATURE-like FORMULA over the
interval [�1; 1] which has WEIGHTING FUNCTION

W(x)�x: The general FORMULA is

g
1

�1

xf (x) dx�
Xn

i�1

wi[f (xi)�f (�xi)]:

n /xi/ /wi/

1 0.7745967 0.4303315

2 0.5002990 0.2393715

0.8922365 0.2393715

3 0.4429861 0.1599145

0.7121545 0.1599145

0.9293066 0.1599145

4 0.3549416 0.1223363

0.6433097 0.1223363

0.7783202 0.1223363

0.9481574 0.1223363

References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.

Boca Raton, FL: CRC Press, p. 466, 1987.



Chebyshev’s Formula
CHEBYSHEV-GAUSS QUADRATURE

Chebyshev’s Theorem
There are at least two theorems known as Cheby-
shev’s theorem. The first is BERTRAND’S POSTULATE,
and the second is a weak form of the PRIME NUMBER

THEOREM stating that the ORDER OF MAGNITUDE of the
PRIME COUNTING FUNCTION p(x) is

p(x)7
x

ln x 
;

where 7 denotes "is ASYMPTOTIC to" (Hardy and
Wright 1979, p. 9).

See also BERTRAND’S POSTULATE, PRIME COUNTING

FUNCTION, PRIME NUMBER THEOREM

References
Hardy, G. H. and Wright, E. M. An Introduction to the

Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, 1979.

Chebyshev-Sylvester Constant
In 1891, Chebyshev and Sylvester showed that for
sufficiently large x , there exists at least one PRIME

NUMBER p satisfying

x Bp B(1 � a)x;

where a �0 :092 . . . : Since the PRIME NUMBER THEO-

REM shows the above inequality is true for all a > 0
for sufficiently large x , this constant is only of
historical interest.
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ChebyshevT
CHEBYSHEV POLYNOMIAL OF THE FIRST KIND

ChebyshevU
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND

Checkerboard
CHESSBOARD

Checker-Jumping Problem
Seeks the minimum number of checkers placed on a
board required to allow pieces to move by a sequence
of horizontal or vertical jumps (removing the piece
jumped over) n rows beyond the forward-most initial
checker. The first few cases are 2, 4, 8, 20. It is,
however, impossible to reach level five.

See also CHECKERS
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Checkers
Schroeppel (1972) estimated that there are about 1012

possible positions. However, this disagrees with the
estimate of Jon Schaeffer of 5 �1020 plausible posi-
tions, with 1018 reachable under the rules of the
game. Because "solving" checkers may require only
the SQUARE ROOT of the number of positions in the
search space (i.e., 109), there is hope that some day
checkers may be solved (i.e., it may be possible to
guarantee a win for the first player to move before the
game is even started; Dubuque 1996).

Depending on how they are counted, the number of
EULERIAN CIRCUITS on an n �n checkerboard are
either 1, 40, 793, 12800, 193721, ... (Sloane’s
A006240) or 1, 13, 108, 793, 5611, 39312, ... (Sloane’s
A006239).

See also BOARD, CHECKER-JUMPING PROBLEM, CHESS-

BOARD
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Checksum

A sum of the digits in a given transmission modulo
some number. The simplest form of checksum is a
parity bit appended on to 7-bit numbers (e.g., ASCII
characters) such that the total number of 1s is always
EVEN ("even parity") or ODD ("odd parity"). A signifi-
cantly more sophisticated checksum is the CYCLIC

REDUNDANCY CHECK (or CRC), which is based on the
algebra of polynomials over the integers (mod 2). It is
substantially more reliable in detecting transmission
errors, and is one common error-checking protocol
used in modems.

See also CYCLIC REDUNDANCY CHECK, ERROR-COR-

RECTING CODE
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Cheeger’s Finiteness Theorem
Consider the set of compact n -RIEMANNIAN MANI-

FOLDS M with diameter/(M) 5d; Volume/(M) ]V ; and
½K½5 k where k is the SECTIONAL CURVATURE. Then
there is a bound on the number of DIFFEOMORPHISMS

classes of this set in terms of the constants n , d , V ,
and k :/
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Chefalo Knot
A fake KNOT created by tying a SQUARE KNOT, then
looping one end twice through the KNOT such that
when both ends are pulled, the KNOT vanishes.

Chen’s Theorem
Every "large" EVEN NUMBER may be written as 2n �
p �m where p is a PRIME and m � P2 is the SET of
SEMIPRIMES (i.e., 2-ALMOST PRIMES).

See also ALMOST PRIME, GOLDBACH CONJECTURE,
PRIME NUMBER, SCHNIRELMANN’S THEOREM, SEMI-

PRIME
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Chern Class
A GADGET defined for COMPLEX VECTOR BUNDLES. The
Chern classes of a COMPLEX MANIFOLD are the Chern
classes of its TANGENT BUNDLE. The i th Chern class is
an OBSTRUCTION to the existence of (n �i �1) every-
where COMPLEX linearly independent VECTOR FIELDS

on that VECTOR BUNDLE. The ith Chern class is in the
(2i)/th cohomology group of the base SPACE.

See also CHERN NUMBER, OBSTRUCTION, PONTRYAGIN

CLASS, STIEFEL-WHITNEY CLASS

Chern Number
The Chern number is defined in terms of the CHERN

CLASS of a MANIFOLD as follows. For any collection
CHERN CLASSES such that their cup product has the
same DIMENSION as the MANIFOLD, this cup product
can be evaluated on the MANIFOLD’s FUNDAMENTAL

CLASS. The resulting number is called the Chern
number for that combination of Chern classes. The
most important aspect of Chern numbers is that they
are COBORDISM invariant.

See also CHERN CLASS, PONTRYAGIN NUMBER, STIE-

FEL-WHITNEY NUMBER

Chernoff Face

A way to display n variables on a 2-D surface. For
instance, let x be eyebrow slant, y be eye size, z be
nose length, etc. The above figures show faces
produced using 10 characteristics–head eccentricity,
eye size, eye spacing, eye eccentricity, pupil size,
eyebrow slant, nose size, mouth shape, mouth size,
and mouth opening)–each assigned one of 10 possible
values, generated using Mathematica (S. Dickson).
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Chess
Chess is a game played on an 8�8 BOARD, called a
CHESSBOARD, of alternating black and white squares.
Pieces with different types of allowed moves are
placed on the board, a set of black pieces in the first



two rows and a set of white pieces in the last two
rows. The pieces are called the bishop (2), king (1),
knight (2), pawn (8), queen (1), and rook (2). The
object of the game is to capture the opponent’s king. It
is believed that chess was played in India as early as
the sixth century AD.

Hardy (1999, p. 17) estimated the number of possible
games of chess as

101050 

:

In a game of 40 moves, the number of possible board
positions is at least 10120 according to Peterson
(1996). However, this value does not agree with the
1040 possible positions given by Beeler et al. (1972).
This value was obtained by estimating the number of
pawn positions (in the no-captures situation, this is
158), times all pieces in all positions, dividing by 2 for
each of the (rook, knight) which are interchangeable,
dividing by 2 for each pair of bishops (since half the
positions will have the bishops on the same color
squares). There are more positions with one or two
captures, since the pawns can then switch columns
(Schroeppel 1996). Shannon (1950) gave the value

P(40) :
64!

32!(8!)2(2!)6 :1043 :

The number of chess games which end in exactly n
plies (including games that mate in fewer than n
plies) for n �1, 2, 3, ... are 20, 400, 8902, 197742,
4897256, 120921506, 3284294545, ... (K. Thompson,
Sloane’s A006494). Rex Stout’s fictional detective
Nero Wolfe quotes the number of possible games
after ten moves as follows: "Wolfe grunted. One
hundred and sixty-nine million, five hundred and
eighteen thousand, eight hundred and twenty-nine
followed by twenty-one ciphers. The number of ways
the first ten moves, both sides, may be played" (Stout
1983). The number of chess positions after n moves
for n �1, 2, ... are 20, 400, 5362, 71852, 809896?,
9132484?, ... (Schwarzkopf 1994, Sloane’s A019319).

Cunningham (1889) incorrectly found 197,299 games
and 71,782 positions after the fourth move. C. Flye
St. Marie was the first to find the correct number of
positions after four moves: 71,852. Dawson (1946)
gives the source as Intermediare des Mathematiques
(1895), but K. Fabel writes that Flye St. Marie
corrected the number 71,870 (which he found in
1895) to 71,852 in 1903. The history of the determina-
tion of the chess sequences is discussed in Schwarz-
kopf (1994).

The analysis of chess is extremely complicated due to
the many possible options at each move. Steinhaus
(1983, pp. 11 �/14), as well as many entire books,
consider clever end-game positions which may be
analyzed completely.

Two problems in recreational mathematics ask

1. How many pieces of a given type can be placed
on a CHESSBOARD without any two attacking.
2. What is the smallest number of pieces needed to
occupy or attack every square.

The answers are given in the following table (Mada-
chy 1979).

Piece Max. Min.

BISHOPS 14 8

KINGS 16 9

KNIGHTS 32 12

QUEENS 8 5

ROOKS 8 8

See also BISHOPS PROBLEM, BOARD, CHECKERBOARD,
CHECKERS, FAIRY CHESS, GO, GOMORY’S THEOREM,
HARD HEXAGON ENTROPY CONSTANT, KINGS PRO-

BLEM, KNIGHT’S TOUR, MAGIC TOUR, QUEENS PRO-

BLEM, ROOKS PROBLEM, TOUR
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Chessboard

A board containing 8 �8 squares alternating in color
between black and white on which the game of CHESS

is played. The checkerboard is identical to the chess-
board except that chess’s black and white squares are
colored red and white in CHECKERS.

It is impossible to cover a chessboard from which two
opposite corners have been removed with DOMINOES.
Sprague (1963) considered the problem of "rolling"
five cubes, each which an upright letter "A" on its top,
on a chessboard. Here "rolling" means the cubes are
moved from square to adjacent square by being tipped
over along an edge (as one might move a heavy box) in
a series of quarter turns. If five such cubes are
initially arranged in the shape of a plus sign with
the edges of the of plus sign aligned with the upper
and left corners of a chessboard (top left in above
figure), then it is impossible to obtain a straight row
or column with all "A"s on top and oriented identi-
cally. The best that can be done is to place four out of
the five "A"s in the same orientation and facing
upward, with the remaining "A" also facing upward
and rotated a quarter turn, illustrated above in the
bottom row (Gardner 1984, pp. 75 �/78).

The above plot shows a chessboard centered at (0, 0)
and its INVERSE about a small circle also centered at
(0, 0) (Gardner 1984, pp. 244 �/245; Dixon 1991).

See also CHECKERS, CHESS, CIRCULAR CHESSBOARD,
DOMINO, GOMORY’S THEOREM, INVERSION, KINGS

PROBLEM, KNIGHTS PROBLEM, KNIGHT’S TOUR,
QUEENS PROBLEM, ROOKS PROBLEM, WHEAT AND

CHESSBOARD PROBLEM
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Chevalley Groups
Finite SIMPLE GROUPS of LIE-TYPE. They include four
families of linear SIMPLE GROUPS: PSL(n; q);
PSU(n; q); PSp(2n; q); or PVe(n; q):/

See also TWISTED CHEVALLEY GROUPS
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Chevalley’s Theorem
Let f (x) be a member of a FINITE FIELD

F[x1 ; x2 . . . ; xn] and suppose f (0; 0; . . . ; 0) �0 and
n is greater than the degree of f , then f has at least
two zeros in An(F) :/

References
Chevalley, C. "Démonstration d’une hypothèse de M. Artin."
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Chevron

A 6-POLYIAMOND.
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Chi

The Chi function is defined by

Chi(z) � g �ln z �g
z

0

cosh t � 1

t
dt;

where g is the EULER-MASCHERONI CONSTANT. The

function is given by the Mathematica command
CoshIntegral[z ].

See also COSINE INTEGRAL, SHI, SINE INTEGRAL
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Chi Distribution
The probability density function and cumulative
distribution function are

Pn(x) �
21 �n=2xn�1e�x2 =2

G(1
2 n) 

(1)

Dn(x) �Q(1
2 n;

1
2 x

2); (2)

where Q is the REGULARIZED GAMMA FUNCTION.

m �

ffiffiffi
2

p
G(1

2(n � 1))

G(1
2 n) 

(3)

s2 �
2[G(1

2 n) G(1 � 1
2 n) � G2(1

2(n � 1))]

G2(1
2 n) 

(4)

g1 �
2G3(1

2(n � 1)) � 3 G(1
2 n) G(1

2(n � 1))G(1 � 1
2 n)

[ G(1
2 n) G(1 � 1

2 n) � G2(1
2(n � 1))]3 =2

�

G2(1
2 n)G

3 � n

2

 !
[G(1

2 n)G(1 � 1
2 n) � G2(1

2(n � 1))]3 =2 (5)

g2 �
�3G4(1

2(n � 1)) � 6 G(1
2 n) G2(1

2(n � 1))G(1 � 1
2 n)

G(1
2 n) G

2 � n

2

 !
� G2(1

2(n � 1))

" #2

�

�4 G2(1
2n)G(1

2(n � 1)) G
3 � n

2

 !
� G3(1

2n) G
4 � n

2

 !

G(1
2n) G

2 � n

2

 !
� G2(1

2(n � 1))

" #2 ;

(6)

where m is the MEAN, s2 the VARIANCE, g1 the
SKEWNESS, and g2 the KURTOSIS. For n�1, the x

distribution is a HALF-NORMAL DISTRIBUTION with u�
1: For n�2, it is a RAYLEIGH DISTRIBUTION with s�1:/

See also CHI-SQUARED DISTRIBUTION, HALF-NORMAL

DISTRIBUTION, RAYLEIGH DISTRIBUTION



Chi Inequality
The inequality

(j �1)aj �ai ](j �1)i;

which is satisfied by all A -SEQUENCE.

References
Levine, E. and O’Sullivan, J. "An Upper Estimate for the

Reciprocal Sum of a Sum-Free Sequence." Acta Arith. 34,
9 �/24, 1977.

Child
A node which is one EDGE further away from a given
node in a ROOTED TREE.

See also ROOT NODE, ROOTED TREE, SIBLING

Chinese Hypothesis
A PRIME p always satisfies the condition that 2p �2 is
divisible by p . However, this condition is not true
exclusively for PRIMES (e.g., 2341 �2 is divisible by
341 �11 � 31): COMPOSITE NUMBERS n (such as 341)
for which 2n �2 is divisible by n are called POULET

NUMBERS, and are a special class of FERMAT PSEUDO-

PRIMES. The Chinese hypothesis is a special case of
FERMAT’S LITTLE THEOREM.

See also CARMICHAEL NUMBER, EULER’S THEOREM,
FERMAT’S LITTLE THEOREM, FERMAT PSEUDOPRIME,
POULET NUMBER, PSEUDOPRIME
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Chinese Postman Problem
A problem asking for the shortest tour of a graph
which visits each edge at least once (Kwan 1962;
Skiena 1990, p. 194). For an EULERIAN GRAPH, an
EULERIAN CIRCUIT is the optimal solution. In a TREE,
however, the path crosses each twice.

See also EULERIAN CIRCUIT, TRAVELING SALESMAN

PROBLEM
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Chinese Remainder Theorem
Let r and s be POSITIVE INTEGERS which are RELA-

TIVELY PRIME and let a and b be any two INTEGERS.
Then there is an INTEGER N such that

N �a (mod r) (1)

and

N �b (mod s) : (2)

Moreover, N is uniquely determined modulo rs . An
equivalent statement is that if (r ; s) �1; then every
pair of RESIDUE CLASSES modulo r and s corresponds
to a simple RESIDUE CLASS modulo rs .

The theorem can also be generalized as follows. Given
a set of simultaneous CONGRUENCES

x �ai (mod mi) (3)

for i �1, ..., r and for which the mi are pairwise
RELATIVELY PRIME, the solution of the set of CON-

GRUENCES is

x �a1b1

M

m1

�. . .�arbr

M

mr

(mod M) ; (4)

where

M �m1m2 	 	 	mr (5)

and the bi are determined from

bi

M

mi

�1 (mod mi): (6)
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Chinese Rings
BAGUENAUDIER

Chiral
Having forms of different HANDEDNESS which are not
mirror-symmetric.

See also DISSYMMETRIC, ENANTIOMER, HANDEDNESS,
MIRROR IMAGE, REFLEXIBLE

Chiral Knot
A chiral knot is a KNOT which is not capable of being
continuously deformed into its own MIRROR IMAGE.

See also AMPHICHIRAL KNOT, KNOT SYMMETRY



Chi-Squared Distribution
A x2 distribution is a GAMMA DISTRIBUTION with u�2
and a�r=2; where r is the number of DEGREES OF

FREEDOM. If Yi have NORMAL INDEPENDENT distribu-
tions with MEAN 0 and VARIANCE 1, then

x2�
Xr

i�1

Y2
i (1)

is distributed as x2 with r DEGREES OF FREEDOM. If x2
i

are independently distributed according to a x2

distribution with r1; r2; ..., rk DEGREES OF FREEDOM,
then

Xk

j�1

x2
j (2)

is distributed according to x2 with r�ak
j�1 rj DEGREES

OF FREEDOM. The probability density function is

Pr(x)�
xr=2�1e�x=2

G(1
2 r)2r=2

(3)

for /x � [0; �)/. The cumulative distribution function is
then

Dr(x
2)�g

x2

0

tr=2�1e�t=2 dt

G(1
2 r)2r=2

�
g(1

2 r; 1
2 x

2)

G(1
2 r)

�P(1
2 r; 1

2 x
2); (4)

where P(a; z) is a REGULARIZED GAMMA FUNCTION.
The CONFIDENCE INTERVALS can be found by finding
the value of x for which Dr(x) equals a given value.
The MOMENT-GENERATING FUNCTION of the x2 distri-
bution is

M(t)�(1�2t)�r=2 (5)

R(t)�ln M(t)��1
2 r ln(1�2t) (6)

R?(t)�
r

1 � 2t
(7)

Rƒ(t)�
2r

(1 � 2t)2 ; (8)

so

m�R?(0)�r (9)

s2�Rƒ(0)�2r (10)

g1�2

ffiffiffi
2

r

s
(11)

g2�
12

r
: (12)

The nth MOMENT about zero for a distribution with r
DEGREES OF FREEDOM is

m?n�2n
G(n � 1

2 r)

G(1
2 r)

�r(r�2) 	 	 	 (r�2n�2); (13)

and the moments about the MEAN are

m2�2r (14)

m3�8r (15)

m4�12r(r�4): (16)

The nth CUMULANT is

kn�2nG(n)(1
2 r)�2n�1(n�1)!r: (17)

The MOMENT-GENERATING FUNCTION is

M(t)�ert=
ffiffiffiffi
2r

p
1�

2tffiffiffiffiffi
2r

p
 !�r=2

� et
ffiffiffiffiffi
2=r

p
1�

ffiffiffi
2

r

s
t

 !" #�r=2

� 1�
t2

r
�

1

3

2

r

 !3=2

t3�. . .

2
4

3
5�r=2

: (18)

As r 0 �;

lim
r0�

M(t)�et2=2; (19)

so for large r ,

ffiffiffiffiffiffiffiffi
2x2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

(xi � mi)
2

s2
i

vuut (20)

is approximately a GAUSSIAN DISTRIBUTION with
MEAN

ffiffiffiffiffi
2r

p
and VARIANCE s2�1: Fisher showed that

x2 � rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r � 1

p (21)

is an improved estimate for moderate r . Wilson and
Hilferty showed that

x2

r

 !1=3

(22)

is a nearly GAUSSIAN DISTRIBUTION with MEAN m�
1�2=(9r) and VARIANCE s2�2=(9r):/

In a GAUSSIAN DISTRIBUTION,

P(x) dx�
1

s
ffiffiffiffiffiffi
2p

p e�(x�m)2=2s2

dx; (23)

let

z�(x�m)2=s2: (24)

Then



dz �
2(x � m)2

s2
dx �

2
ffiffiffi
z

p

s
dx (25)

so

dx �
s

2
ffiffiffi
z

p dz : (26)

But

P(z) dz �2P(x) dx; (27)

so

P(x) dx �2
1

s
ffiffiffiffiffiffi
2p

p e �z=2 dz �
1

s
ffiffiffi
p

p e �z=2 dz: (28)

This is a x2 distribution with r �1, since

P(z) dz �
z1 =2 �1e �z=2

G(1
2)2

1=2
dz �

x�1=2e �1 =2ffiffiffiffiffiffi
2p

p dz : (29)

If Xi are independent variates with a NORMAL

DISTRIBUTION having MEANS mi and VARIANCES s2
i for

i �1, ..., n , then

1
2 x

2 �
Xn

i�1

(xi � mi)
2

2s2
i

(30)

is a GAMMA DISTRIBUTION variate with a �n =2;

P(1
2 x

2)d(1
2 x

2) �
1

G(1
2 n) 

e � x2 =2(1
2 x

2)(n=2)�1d(1
2 x

2) : (31)

The noncentral chi-squared distribution is given by

P(x) �2�n=2e �(l�x)=2xn=2 �1F(1
2 n;

1
4 lx) ; (32)

where

F(a; z) �0
F1(; a; z)

G(a)
; (33)

/0F1 is the CONFLUENT HYPERGEOMETRIC LIMIT FUNC-

TION and G is the GAMMA FUNCTION. The MEAN,
VARIANCE, SKEWNESS, and KURTOSIS are

m�l�n (34)

s2�2(2l�n) (35)

g1�
2
ffiffiffi
2

p
(3l� n)

(2l� n)3=2 (36)

g2�
12(4l� n)

(2l� n)2 : (37)

See also CHI DISTRIBUTION, SNEDECOR’S F -DISTRIBU-

TION, STATISTICAL DISTRIBUTION
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Chi-Squared Test
Let the probabilities of various classes in a distribu-
tion be p1; p2; ..., pk; with means m1; m2; .... The
expected frequency

x2
s �

Xk

i�1

(mi � Npi)
2

Npi

is a measure of the deviation of a sample from
expectation. Karl Pearson proved that the limiting
distribution of x2

s is x2 (Kenney and Keeping 1951,
pp. 114�/116).

Pr(x2]x2
s )�g

�

x2
s

f (x2) d(x2)

�
1

2 g
�

x2
s

x2

2

 !(k�3)=2

G
k � 1

2

 ! e�x2=2 d(x2)

�1�

G 1
2 x

2
s ;

k � 1

2

 !

G
k � 1

2

 !

�1�I
x2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k � 1)

p ;
k � 3

2

 !
;

where I(x; n) is PEARSON’S FUNCTION. There are some
subtleties involved in using the x2 test to fit curves
(Kenney and Keeping 1951, pp. 118�/119).

When fitting a one-parameter solution using x2; the
best-fit parameter value can be found by calculating
x2 at three points, plotting against the parameter
values of these points, then finding the minimum of a
PARABOLA fit through the points (Cuzzi 1972,
pp. 162�/168).

See also CHI-SQUARED DISTRIBUTION
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Chmutov Surface
An ALGEBRAIC SURFACE with affine equation

Pd(x1 ; x2) �Td(x3) �0; (1)

where Td(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND and Pd(x1 ; x2) is a polynomial defined by

Pd(x1 ; x2) �

x1 1 0 	 	 	  0 0 0
2x2 x1 1

::: 0 0 0
3 x2 x1

:::
:::

::: n
0 1 x2

::: 1 0 0
0 0 1

::: x1 1 0
n :::

:::
::: x2 x1 1

0 0 0 	 	 	  1 x2 x1

��������������

��������������

�

x2 1 0 	 	 	  0 0 0
2x1 x2 1

::: 0 0 0
3 x1 x2

:::
:::

::: n
0 1 x1

::: 1 0 0
0 0 1

::: x2 1 0
n :::

:::
::: x1 x2 1

0 0 0 	 	 	  1 x1 x2

��������������

��������������
; (2)

where the matrices have dimensions d �d: These
represent surfaces in CP3 with only ORDINARY DOU-

BLE POINTS as singularities. The first few surfaces are
given by

x �y �z �0 (3)

x2 �y2 �2z2 �1 �2x �2y (4)

6 �x3 �y3 �4z3 �3(2xy �z): (5)

The dth order such surface has

N(d) �

1
12(5d3 �13d2 �12d) if d �0 (mod 6)
1
12(5d3 �13d2 �16d �8) if d �2; 4 (mod 6)
1
12(5d3 �13d2 �13d �4) if d �1; 5 (mod 6)
1
12(5d3 �14d2 �9d) if d �3 (mod 6)

8>>>><
>>>>:

singular points (Chmutov 1992), giving the sequence
0, 1, 3, 14, 28, 57, 93, 154, 216, 321, 425, 576, 732, 949,
1155, ... for d �1, 2, .... For a number of orders d ,
Chmutov surfaces have more ordinary double points
than any other known equations of the same degree.

Based on Chmutov’s equations, Banchoff (1991)
defined the simpler set of surfaces

Tn(x) �Tn(y) �Tn(z) �0 ; (6)

where n is EVEN and Tn(x) is again a CHEBYSHEV

POLYNOMIAL OF THE FIRST KIND. For example, the
surfaces illustrated above have orders 2, 4, and 6 are
given by the equations

2(x2 �y2 �z2) �3 (7)

3 �8(x4 �y4 �z4) �8(x2 �y2 �z2) (8)

2[x2(3 �4x2)2 �y2(3 �4y2)2 �z2(3 �4z2)2] �3: (9)

See also GOURSAT’S SURFACE, ORDINARY DOUBLE

POINT, SUPERELLIPSE
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Choice Axiom
AXIOM OF CHOICE

Choice Number
COMBINATION

Cholesky Decomposition
Given a symmetric POSITIVE DEFINITE MATRIX A ; the
Cholesky decomposition is an UPPER TRIANGULAR

MATRIX U such that

A �UTU :

Cholesky decomposition is implemented as Choles-
kyDecomposition[m ] in the Mathematica add-on
package LinearAlgebra‘Cholesky‘ (which can be
loaded with the command BBLinearAlgebra‘).

See also LU DECOMPOSITION, MATRIX DECOMPOSI-

TION, QR DECOMPOSITION
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Choose
An alternative term for a BINOMIAL COEFFICIENT, in
which n

k

& '
is read as "n choose k ." R. K. Guy sug-

gested this pronunciation around 1950, when the
notations nCr and nCr were commonly used. Leo
Moser liked the pronunciation and he and others
spread it around. It got the final seal of approval from
Donald Knuth when he incorporated it into the TEX
mathematical typesetting language as fn_choose k g:/

See also BINOMIAL COEFFICIENT, MULTICHOOSE

Choquet Theory
Erdos proved that there exist at least one PRIME OF

THE FORM 4k �1 and at least one PRIME OF THE FORM

4k �3 between n and 2n for all n �6.

See also EQUINUMEROUS, PRIME NUMBER

Chord

The LINE SEGMENT joining two points on a curve. The
term is often used to describe a LINE SEGMENT whose
ends lie on a CIRCLE. In the above figure, r is the
RADIUS of the CIRCLE, a is called the APOTHEM, and s
the SAGITTA.

The shaded region in the left figure is called a
SECTOR, and the shaded region in the right figure is
called a SEGMENT.
All ANGLES inscribed in a CIRCLE and subtended by
the same chord are equal. The converse is also true:
The LOCUS of all points from which a given segment
subtends equal ANGLES is a CIRCLE.

Given any closed convex curve, it is possible to find a
point P through which three chords, inclined to one
another at angles of 60 8, pass such that P is the
MIDPOINT of all three (Wells 1991).

Let a CIRCLE of RADIUS R have a CHORD at distance r .
The AREA enclosed by the CHORD, shown as the
shaded region in the above figure, is then

A �2 g
ffiffiffiffiffiffiffiffiffiffi
R2 �r2

p

0

x(y) dy: (1)

But

y2 �(r �x)2 �R2 ; (2)

so

x(y) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �y2

p
�r (3)

and

A �2 g
ffiffiffiffiffiffiffiffiffiffi
R2 �r2

p

0

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �y2

p
�r) dy (4)

�R2 tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

r

 !2

�1

vuut
2
64

3
75�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �r2

p
: (5)

Checking the limits, when r �R , A �0 and when r 0
0;

A �1
2 pR2 ; (6)

the expected area of the SEMICIRCLE.

See also ANNULUS, APOTHEM, BERTRAND’S PROBLEM,
CONCENTRIC CIRCLES, HOLDITCH’S THEOREM, RADIUS,
SAGITTA, SECTOR, SEGMENT, SEMICIRCLE
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Chord Diagram

See also ALGEBRA OF CHORD DIAGRAMS, KONTSEVICH

INTEGRAL

Chordal
RADICAL AXIS



Chordal Theorem

The LOCUS of the point at which two given CIRCLES

possess the same POWER is a straight line PERPENDI-

CULAR to the line joining the MIDPOINTS of the CIRCLE

and is known as the chordal (or, more commonly, the
RADICAL AXIS) of the two CIRCLES.

See also POWER (CIRCLE), RADICAL LINE
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Chow Coordinates
A generalization of GRASSMANN COORDINATES to m -D
ALGEBRAIC VARIETIES of degree d in Pn ; where Pn is
an n -D projective space. To define the Chow coordi-
nates, take the intersection of an m -D ALGEBRAIC

VARIETY Z of degree d by an (n �m)/-D SUBSPACE U of
Pn : Then the coordinates of the d points of intersec-
tion are algebraic functions of the GRASSMANN CO-

ORDINATES of U , and by taking a symmetric function
of the algebraic functions, a HOMOGENEOUS POLYNO-

MIAL known as the Chow form of Z is obtained. The
Chow coordinates are then the COEFFICIENTS of the
Chow form. Chow coordinates can generate the
smallest field of definition of a divisor.

See also CHOW RING, CHOW VARIETY
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Chow Ring
The intersection product for classes of rational
equivalence between cycles on an ALGEBRAIC VARIETY.

See also CHOW COORDINATES, CHOW VARIETY
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Chow Variety
The set Cn; m; d of all m -D varieties of degree d in an
n -D projective space Pn into an M -D projective space
PM:/

See also CHOW COORDINATES, CHOW RING
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Christoffel Formula
Let fpn(x)g be orthogonal POLYNOMIALS associated
with the distribution da(x) on the interval [a, b ]. Also
let

r�c(x�x1)(x�x2) 	 	 	 (x�xl)

(for c"0) be a POLYNOMIAL of order l which is
NONNEGATIVE in this interval. Then the orthogonal
polynomials fq(x)g associated with the distribution
r(x) da(x) can be represented in terms of the poly-
nomials pn(x) as

r(x)qn(x)�

pn(x) pn�1(x) 	 	 	 pn�l(x)
pn(x1) pn�1(xl) 	 	 	 pn�l(x1)

n n ::: n
pn(xl) pn�1(xl) 	 	 	 pn�l(xl)

��������

��������:
In the case of a zero xk of multiplicity m �1, we
replace the corresponding rows by the derivatives of
order 0, 1, 2, ..., m�1 of the POLYNOMIALS pn(xl); ...,
pn�l(xl) at x�xk:/
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Christoffel Number
One of the quantities li appearing in the GAUSS-

JACOBI MECHANICAL QUADRATURE. They satisfy

l1�l2�. . .�ln�g
b

a

da(x)�a(b)�a(a) (1)

and are given by

ln�g
b

a

pn(x)

p?n(xn)(x � xn)

" #2

da(x) (2)

ln��
kn�1

kn

1

pn�1(xn)p?n(xn)
(3)

�
kn

kn�1

1

pn�1(xn)P?n(xn)
(4)

(ln)
�1�[p0(xn)]

2�. . .�[pn(xn)]
2; (5)

where kn is the higher COEFFICIENT of pn(x):/



See also COTES NUMBER, HERMITE’S INTERPOLATING

POLYNOMIAL
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Christoffel Symbol
The Christoffel symbols are TENSOR-like objects de-
rived from a RIEMANNIAN METRIC g . They are used to
study the geometry of the metric and appear, for
example, in the GEODESIC EQUATION. There are two
closely related kinds of Christoffel symbols, the FIRST

KIND Gi; j; k ; and the SECOND KIND Gk
i; j :/

It is always possible to pick a coordinate system on a
RIEMANNIAN MANIFOLD such that the Christoffel
symbol vanishes at a chosen point. In general
relativity, Christoffel symbols are "gravitational
forces," and the preferred coordinate system referred
to above would be one attached to a body in free fall.

See also CHRISTOFFEL SYMBOL OF THE FIRST KIND,
CHRISTOFFEL SYMBOL OF THE SECOND KIND, GEODE-

SIC, LEVI-CIVITA CONNECTION, RIEMANNIAN GEOME-

TRY
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Christoffel Symbol of the First Kind
The first type of TENSOR derived from a RIEMANNIAN

METRIC g which is used to study the geometry of the
metric. Christoffel symbols of the first kind are
variously denoted [ij, k ], i j

k
�;

=
Gabc ; or fab ; c g:

[ij; k] �gmk G
m
ij (1)

�gmk �em �
@ �ei

@qi 
(2)

� �ek �
@ �ei

@qj 
; (3)

where gmk is the METRIC TENSOR, Gm
ij is a CHRISTOFFEL

SYMBOL OF THE SECOND KIND, and

�ei �
@ �r
@qi 

�hi êi : (4)

But

@gij

@qk 
�

@

@qk 
( �ei � �ej) �

@ �ei

@qk 
� �ej � �ei �

@ �ej

@qk

�[ik; j] �[jk ; i] ; (5)

so

[ab ; c] �1
2(gac; b�gbc; a�gab; c): (6)

See also CHRISTOFFEL SYMBOL, CHRISTOFFEL SYMBOL

OF THE SECOND KIND

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, pp. 160�/67, 1985.

Christoffel Symbol of the Second Kind
The second type of TENSOR-like object derived from a
RIEMANNIAN METRIC g which is used to study the
geometry of the metric. Christoffel symbols of the
second kind are variously denoted as m

i j

n o
or Gm

ij : In
the latter case, they are sometimes known as connec-
tion coefficients.

Gm
ij � �em �

@ �ei

@qj
(1)

�gkm[ij; k] (2)

�
1

2
gkm @gik

@qj
�

@gjk

@qi
�

@gij

@qk

 !
; (3)

where gkm is the METRIC TENSOR. The Christoffel
symbol of the second kind is related to the CHRIS-

TOFFEL SYMBOL OF THE FIRST KIND [bc, d ] by

Ga
bc�gadfbc; dg: (4)

Christoffel symbols of the second kind can also be
defined by

G �ea
�eb �eg � �ea �(9 �eg �eb) (5)

(long form) or

Ga
bg� �ea �(9g �eb); (6)

(abbreviated form), and satisfy

9 �eg �eb�G �ea
�eb �eg �ea (7)

(long form) and

9g �eb�Ga
bg �ea (8)

(abbreviated form).

Christoffel symbols of the second kind are not
TENSORS, but have TENSOR-like CONTRAVARIANT and
COVARIANT indices. Christoffel symbols of the second
kind also do not transform as tensors. In fact,
changing coordinates from x1; . . . ; xn to y1; . . . ; yn

gives

Gk?
ij �

X @2xl

@yi @yj

@yk

@xl

�
X

GT
rs

@xr

@yi

@xs

@yj

@yk

@xt

: (9)

However, a fully COVARIANT Christoffel symbol of the
second kind is given by



Gabg�
1
2(gab; g�gag; b�cabg�cagb�cbga); (10)

where the gs are the METRIC TENSORS, the cs are
COMMUTATION COEFFICIENTS, and the commas indi-
cate the COMMA DERIVATIVE. In an ORTHONORMAL

BASIS, gab; g�0 and gmg�dmg; so

Gabg�Gm
abgmg�G

m
ab�

1
2(cabg�cagb�cbga) (11)

and

Gijk�0 for i"j"k (12)

Giik��
1

2

@gii

@xk
for i"k (13)

Giji�Gjii�
1

2

@gii

@xj
(14)

Gk
ij�0 for i"j"k (15)

Gk
ii��

1

2gkk

@gii

@xk
for i"k (16)

Gi
ij�Gi

ji�
1

2gii

@gii

@xj
�

1

2

@ ln gii

@xj
: (17)

For TENSORS of RANK 3, the Christoffel symbols of the
second kind may be concisely summarized in MATRIX

form:

Gu�

Gu
rr Gu

ru Gu
rf

Gu
ur Gu

uu Gu
uf

Gu
fr Gu

fu Gu
ff

2
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3
75: (18)

The Christoffel symbols are given in terms of the
coefficients of the FIRST FUNDAMENTAL FORM E , F ,
and G by

G1
11�

GEu � 2FFu � FEv

2(EG � F2)
(19)

G1
12�

GEv � FGu

2(EG � F2)
(20)

G1
22�

2GFv � GGu � FGv

2(EG � F2)
(21)

G2
11�

2EFu � EEv � FEu

2(EG � F2)
(22)

G2
12�

EGu � FEv

2(EG � F2)
(23)

G2
22�

EGv � 2FFv � FGu

2(EG � F2)
; (24)

and G1
21�G1

12 and G2
21�G2

12: If F�0, the Christoffel
symbols of the second kind simplify to

G1
11�

Eu

2E
(25)

G1
12�

Ev

2E
(26)

G1
22��

Gu

2E
(27)

G2
11��

Ev

2G
(28)

G2
12�

Gu

2G
(29)

G2
22�

Gv

2G
(30)

(Gray 1997).

The following relationships hold between the Chris-
toffel symbols of the second kind and coefficients of
the first FUNDAMENTAL FORM,

G1
11E�G2

11F�1
2 Eu (31)

G1
12E�G2

12F�1
2 Ev (32)

G1
22E�G2

22F�Fv�
1
2 Gu (33)

G1
11F�G2

11G�Fu�
1
2 Ev (34)

G1
12F�G2

12G�1
2 Gu (35)

G1
22F�G2

22G�1
2 Gv (36)

G1
11�G2

12�(ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG�F2

p
)u (37)

G1
12�G2

22�(ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG�F2

p
)v (38)

(Gray 1997).

For a surface given in MONGE’S FORM z�F(x; y);

Gk
ij�

zijzk

1 � z2
1 � z2

2

: (39)

Christoffel symbols of the second kind arise in the
computation of GEODESICS. The GEODESIC EQUATION

of free motion is

dt2��habdjadjb; (40)

or

d2ja

dt2
�0: (41)

Expanding,

d

dt

@ja

@xm

dxm

dt

 !
�

@ja

@xm

d2xm

dt2
�

@2ja

@xm @xn

dxm

dt

dxn

dt
�0 (42)



@ ja

@xm

d2xm

dt2

@xl

@ ja 
�

@2 ja

@xm @xn

dxm

d t

dxn

dt

@xl

@ ja 
�0: (43)

But

@ ja

@xn

@x l

@ ja 
� dl

m ; (44)

so

dl
m

d2xm

dt2 
�

@2 ja

@xm @xn

@xl

@ ja

 !
dx m

dt

dxn

dt

�
d2xl

dt2 
�G 

l
mn

dx m

dt

dxn

dt
; (45)

where

Gl
mn �

@2ja

@xm @xn

@xl

@ja
: (46)

See also CARTAN TORSION COEFFICIENT, CHRISTOFFEL

SYMBOL, CHRISTOFFEL SYMBOL OF THE FIRST KIND,
COMMA DERIVATIVE, COMMUTATION COEFFICIENT,
CONNECTION COEFFICIENT, GAUSS EQUATIONS, SEMI-

COLON DERIVATIVE, TENSOR
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Christoffel-Darboux Formula
For three consecutive orders of an ORTHOGONAL

POLYNOMIAL, the following relationship holds for
n�2, 3, ...,

pn(x)�(Anx�Bn)pn�1(x)�Cnpn�2(x); (1)

where An > 0; Bn; and Cn > 0 are constants. Denoting
the highest COEFFICIENT of pn(x) by kn;

An�
kn

kn�1

(2)

Cn�
An

An�1

�
knkn�2

k2
n�1

: (3)

Then

p0(x)p0(y)�. . .�pn(x)pn(y)

�
kn

kn�1

pn�1(x)pn(y) � pn(x)pn�1(y)

x � y
: (4)

In the special case of x�y , (4) gives

[p0(x)]2�. . .�[pn(x)]2

�
kn

kn�1

[p?n�1(x)pn(x)�p?n(x)pn�1(x)]: (5)
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Christoffel-Darboux Identity

X�
k�0

fk(x)fk(y)

gk

�
fm�1(x)fm(y) � fm(x)fm�1(y)

amgm(x � y);
(1)

where fk(x) are ORTHOGONAL POLYNOMIALS with
WEIGHTING FUNCTION W(x);

gm�g [fm(x)]2W(x) dx; (2)

and

ak�
Ak�1

Ak

(3)

where Ak is the COEFFICIENT of xk in fk(x):/
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Chromatic Number
The fewest number of colors g(G) necessary to color
the vertices of GRAPH or regions of a SURFACE (Skiena
1990, p. 210). The chromatic number is the smallest
positive integer z such that the CHROMATIC POLYNO-

MIAL pG(z) > 0: Calculating the chromatic number of
a GRAPH is an NP-COMPLETE PROBLEM (Skiena 1990,
pp. 211�/12).

For any two positive integers g and k , there exists a
graph of girth at least g and chromatic number at
least k (Erdos 1961, Lovász 1968; Skiena 1990,
p. 215).

The chromatic number of a surface of GENUS g is
given by the HEAWOOD CONJECTURE,

g(g)� 1
2(7�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48g�1

p
)

j k
;

where xb c is the FLOOR FUNCTION. g(g) is sometimes
also denoted x(g) (which is unfortunate, since x(g)�
2�2g commonly refers to the EULER CHARACTERIS-

TIC). For g�0, 1, ..., the first few values of x(g) are 4,



7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, ... (Sloane’s
A000934).

Erdos (1959) proved that there are graphs with
arbitrarily large GIRTH and CHROMATIC NUMBER

(Bollobás and West 2000).

See also BETTI NUMBER, BRELAZ’S HEURISTIC ALGO-

RITHM, BROOKS’ THEOREM, CHROMATIC POLYNOMIAL,
EDGE CHROMATIC NUMBER, EDGE COLORING, EULER

CHARACTERISTIC, GENUS (SURFACE), HEAWOOD CON-

JECTURE, MAP COLORING, PERFECT GRAPH, TORUS

COLORING
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Chromatic Polynomial
A POLYNOMIAL pG(z) of a GRAPH G which counts the
number of ways to color g with exactly z colors. For
example, the CUBICAL GRAPH has chromatic polyno-
mial

pG(z) �z8 �12z7 �66z6 �214z5 �441z4 �572z3

�423z2 �133z ; (1)

so the number of 1-, 2-, ... colorings are 0, 2, 114, 2652,
29660, 198030, .... The chromatic polynomial of a
graph g in the variable z can be determined using
ChromaticPolynomial[g , z ] in the Mathematica
add-on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

The chromatic polynomial of a DISCONNECTED GRAPH

is the product of the chromatic polynomials of its
CONNECTED COMPONENTS. The chromatic polynomial
of a graph of order n has degree n , with leading
coefficient 1 and constant term 0. Furthermore, the
coefficients alternate signs, and the coefficient of the
(n �1)/st term is �e ; where e is the number of edges.

Interestingly, pG(�1) is equal to the number of acyclic
orientations of G (Stanley 1973).

Except for special cases (such as TREES), the calcula-
tion of PG/(z) is exponential in the minimum number
of edges in G and the COMPLEMENT GRAPH Ḡ (Skiena
1990, p. 211), and calculating the chromatic polyno-
mial of a GRAPH is at least an NP-COMPLETE PROBLEM

(Skiena 1990, pp. 211 �/12).

Tutte (1970) showed that the chromatic polynomial of
a planar triangulation possess a ROOT close to f2 �
f �1 �2:618033 . . . ; where f is the GOLDEN MEAN.
More precisely, if n is the number of VERTICES of G ,
then

PG(f2)5f5�n (2)

(Tutte 1970, Le Lionnais 1983).

Read (1968) conjectured that, for any chromatic
polynomial

cnzn�. . .�c1z; (3)

there does not exist a 15p5q5r5n such that ½cp½ >
½cq½ and ½cq½B ½cr½ (Skiena 1990, p. 221).

The CHROMATIC NUMBER of a graph gives the smallest
number of colors with which a graph can be colored,
and so is the smallest positive integer z such that
pG(z) > 0 (Skiena 1990, p. 211).

See also CHROMATIC NUMBER, K -COLORING
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Chu Identity
CHU-VANDERMONDE IDENTITY



Chu Space
A Chu space is a BINARY RELATION from a SET A to an
ANTISET X which is defined as a SET which transforms
via converse functions.

See also ANTISET
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Church’s Theorem
No decision procedure exists for ARITHMETIC.

Church’s Thesis
CHURCH-TURING THESIS

Church-Turing Thesis
The TURING MACHINE concept defines what is meant
mathematically by an algorithmic procedure. Stated
another way, a function f is effectively COMPUTABLE

IFF it can be computed by a TURING MACHINE.

See also ALGORITHM, COMPUTABLE FUNCTION, DECID-

ABLE, TURING MACHINE
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Chu-Vandermonde Identity
A special case of GAUSS’S THEOREM, with a being a
NEGATIVE INTEGER �n :

2F1(�n; b; c; 1)�
(c � b)n

(c)n

;

where 2F1(a ; b; c; z) is a HYPERGEOMETRIC FUNC-

TION and (a)n is a POCHHAMMER SYMBOL (Bailey 1935,
p. 3; Koepf 1998, p. 32). The identity is sometimes
also called Vandermonde’s theorem.

The identity

(x �a)n �
X�
k �0

n
k

� �
(x)k(a)n�k

(Koepf 1998, p. 42), where n
k

& '
is a BINOMIAL COEFFI-

CIENT and (a)n �a(a �1) 	 	 	 (a �n �1) is the POCH-

HAMMER SYMBOL is sometimes also known as the
Chu-Vandermonde identity. (0) can be written as

x �a
n

� �
�
Xn

k �0

x
k

� �
a

n �k

� �
;

which is sometimes known as VANDERMONDE’S CON-

VOLUTION FORMULA (Roman 1984). A special case
gives the identity

Xmax(k; n)

l�0

m
k �l

� �
n
l

� �
�

m �n
k

� �
:

The identities

Xn

k�0

a
k

� �
b

n �k

� �
�

a �b
n

� �
(1)

Xn

k �0

n
k

� �
s

t �k

� �
�

n �s
t

� �
(2)

Xn

k �0

n
k

� �
s

t �k

� �
�

n �s
n �t

� �
(3)

are all special instances of the Chu-Vandermonde
identity (Koepf 1998, p. 41).

See also BINOMIAL THEOREM, GAUSS’S HYPERGEO-

METRIC THEOREM, Q -CHU-VANDERMONDE IDENTITY,
UMBRAL CALCULUS
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Chvátal Graph

Grünbaum conjectured that for every m �1, n �2,
there exists an m -regular, m -chromatic graph of
GIRTH at least n . This result is trivial for n �2 and
m �2; 3; but only two other such graphs are known:
the Chvátal graph illustrated above, and the GRÜN-

BAUM GRAPH.

See also GRÜ NBAUM GRAPH
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Chvátal’s Art Gallery Theorem
ART GALLERY THEOREM

Chvátal’s Theorem
Let a GRAPH G have VERTICES with VERTEX DEGREES

d1 5	 	 	5dm : If for every i Bn=2 we have either di ]

i �1 or dn�i ]n �i ; then the GRAPH is HAMILTONIAN.

See also HAMILTONIAN GRAPH
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ci
COSINE INTEGRAL

Ci
COSINE INTEGRAL

Cigarettes
It is possible to place 7 cigarettes in such a way that
each touches the other if l=d > 7

ffiffiffi
3

p
=2 (Gardner 1959,

p. 115).
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Cin
COSINE INTEGRAL

C-Infinity Function

A C� function is a function that is DIFFERENTIABLE

for all degrees of differentiation. For instance, f (x) �
e2x is C� because its nth derivative f (n)(x) �2ne2x

exists and is CONTINUOUS. All polynomials are C �:
The reason for the notation is that /Ck FUNCTIONS have
k continuous derivatives.

/C � functions are also called "smooth" because neither
they nor their derivatives have "corners," which
would make their graph look somewhat rough. For
example, f (x) � ½x3 ½ is not smooth.

There are special C� functions which are very useful
in analysis and geometry. For example, there are
smooth functions called BUMP FUNCTIONS, which are
smooth approximations to a CHARACTERISTIC FUNC-

TION. Typically, these functions require some CALCU-

LUS to show that they are indeed C �:/

Any ANALYTIC FUNCTION is smooth. But a smooth
function is not necessarily analytic. For instance, an
analytic function cannot be a BUMP FUNCTION. Con-
sider the following function, whose TAYLOR SERIES at
0 is identically zero, yet the function is not zero:

f (x) �
0 for x 50
e �1=x for x > 0:

�
The function f goes to zero very quickly. One property
of smooth functions is that they can look very
different at different scales.

The set of smooth functions cannot be made into a
BANACH SPACE, which makes some problems hard,
but instead has the weaker structure of a FRÉCHET

SPACE.

See also C-K FUNCTION, C-INFINITY TOPOLOGY, CAL-

CULUS, DIFFERENTIAL TOPOLOGY, FRÉ CHET SPACE,
PARTITION OF UNITY, SARD’S THEOREM

Circle

A circle is the set of points equidistant from a given
point O . The distance r from the CENTER is called the
RADIUS, and the point O is called the CENTER. Twice
the RADIUS is known as the DIAMETER d�2r: The
PERIMETER C of a circle is called the CIRCUMFERENCE,
and is given by

C�pd�2pr: (1)

The angle a circle subtends from its center is a FULL

ANGLE, equal to 3608 or 2p RADIANS.
The circle is a CONIC SECTION obtained by the
intersection of a CONE with a PLANE PERPENDICULAR

to the CONE’s symmetry axis. A circle is the degen-



erate case of an ELLIPSE with equal semimajor and
semiminor axes (i.e., with ECCENTRICITY 0). The
interior of a circle is called a DISK. The generalization
of a circle to 3-D is called a SPHERE, and to n -D for
n]4 a HYPERSPHERE.

The region of intersection of two circles is called a
LENS. The region of intersection of three symmetri-
cally placed circles (as in a VENN DIAGRAM), in the
special case of the center of each being located at the
intersection of the other two, is called a REULEAUX

TRIANGLE.

The PARAMETRIC EQUATIONS for a circle of RADIUS a
are

x�a cos t (2)

y�a sin t: (3)

For a body moving uniformly around the circle,

x?��a sin t (4)

y?�a cos t; (5)

and

xƒ��a cos t (6)

yƒ��a sin t: (7)

When normalized, the former gives the equation for
the unit TANGENT VECTOR of the circle, (�sin t; cos t):
The circle can also be parameterized by the rational
functions

x�
1 � t2

1 � t2
(8)

y�
2t

1 � t2
; (9)

but an ELLIPTIC CURVE cannot. The following plots
show a sequence of NORMAL and TANGENT VECTORS for
the circle.

The ARC LENGTH s , CURVATURE k; and TANGENTIAL

ANGLE f of the circle are

s(t)�g ds�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
dt�at (10)

k(t)�
x?yƒ� y?xƒ

(x?2 � y?2)3=2�
1

a
(11)

f(t)�g k(t) dt�
t

a
: (12)

The CESÀRO EQUATION is

k�
1

a
: (13)

In POLAR COORDINATES, the equation of the circle has
a particularly simple form.

r�a (14)

is a circle of RADIUS a centered at ORIGIN,

r�2a cos u (15)

is circle of RADIUS a centered at (a; 0); and

r�2a sin u (16)

is a circle of RADIUS a centered on (0; a): In CARTE-

SIAN COORDINATES, the equation of a circle of RADIUS

a centered on (x0; y0) is

(x�x0)2�(y�y0)2�a2: (17)

In PEDAL COORDINATES with the PEDAL POINT at the
center, the equation is

pa�r2 (18)

The circle having P1P2 as a diameter is given by

(x�x1)(x�x2)�(y�y1)(y�y2)�0: (19)

The equation of a circle passing through the three
points (xi; yi) for i � 1, 2, 3 (the CIRCUMCIRCLE of the
TRIANGLE determined by the points) is

x2�y2 x y 1
x2

1�y2
1 x1 y1 1

x2
2�y2

2 x2 y2 1
x2

3�y2
3 x3 y3 1

��������

���������0: (20)

The CENTER and RADIUS of this circle can be identified
by assigning coefficients of a QUADRATIC CURVE

ax2�cy2�dx�ey�f �0; (21)

where a�c and b�0 (since there is no xy cross
term). COMPLETING THE SQUARE gives

a x�
d

2a

 !2

�a y�
e

2a

 !2

�f �
d2 � e2

4a
�0: (22)

The CENTER can then be identified as



x0 ��
d

2a 
(23)

y0 ��
e

2a 
(24)

and the RADIUS as

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � e2

4a2
�

f

a

s
; (25)

where

a �
x1 y1 1
x2 y2 1
x3 y3 1

������
������ (26)

d ��
x2

1 �y2
1 y1 1

x2
2 �y2

2 y2 1
x2

3 �y2
3 y3 1

������
������ (27)

e �
x2

1 �y2
1 x1 1

x2
2 �y2

2 x2 1
x2

3 �y2
3 x3 1

������
������ (28)

f ��
x2

1 �y2
1 x1 y1

x2
2 �y2

2 x2 y2

x2
3 �y2

3 x3 y3

������
������ (29)

Four or more points which lie on a circle are said to be
CONCYCLIC. Three points are trivially concyclic since
three noncollinear points determine a circle.

The CIRCUMFERENCE-to-DIAMETER ratio C =d for a
circle is constant as the size of the circle is changed
(as it must be since scaling a plane figure by a factor s
increases its PERIMETER by s ), and d also scales by s .
This ratio is denoted p (PI), and has been proved
TRANSCENDENTAL. With d the DIAMETER and r the
RADIUS,

C � pd �2pr : (30)

Knowing C=d ; we can then compute the AREA of the
circle either geometrically or using CALCULUS. From
CALCULUS,

A �g
2 p

0

du g
r

0

r dr�(2p) 1
2 r

2
1 2

� pr2 : (31)

Now for a few geometrical derivations. Using con-
centric strips, we have

As the number of strips increases to infinity, we are
left with a TRIANGLE on the right, so

A �1
2(2pr)r � pr2 : (32)

This derivation was first recorded by Archimedes in
Measurement of a Circle (ca. 225 BC ). If we cut the
circle instead into wedges,

As the number of wedges increases to infinity, we are
left with a RECTANGLE, so

A�(pr)r�pr2: (33)

See also ADAMS’ CIRCLE, ARC, BLASCHKE’S THEOREM,
BRAHMAGUPTA’S FORMULA, BROCARD CIRCLE, CASEY’S

THEOREM, CEVIAN CIRCLE, CHORD, CIRCLE INSCRIB-

ING, CIRCLE-LINE INTERSECTION, CIRCUMCIRCLE, CIR-

CUMFERENCE, CLIFFORD’S CIRCLE THEOREM, CLOSED

DISK, CONCENTRIC CIRCLES, COSINE CIRCLE, COTES

CIRCLE PROPERTY, DIAMETER, DISK, DROZ-FARNY

CIRCLES, EULER TRIANGLE FORMULA, EXCIRCLE, EX-

COSINE CIRCLE, EYEBALL THEOREM, FEUERBACH’S

THEOREM, FIVE CIRCLES THEOREM, FIVE DISKS

PROBLEM, FLOWER OF LIFE, FORD CIRCLE, FUHRMANN

CIRCLE, GERGORIN CIRCLE THEOREM, HART CIRCLE,
HOPF CIRCLE, INCIRCLE, INVERSIVE DISTANCE, JOHN-

SON CIRCLE, KINNEY’S SET, LEMOINE CIRCLE, LENS,
LESTER CIRCLE, MAGIC CIRCLES, MALFATTI CIRCLES,
MCCAY CIRCLE, MIDCIRCLE, MONGE’S THEOREM,
NEUBERG CIRCLE, NINE-POINT CIRCLE, OPEN DISK,
P -CIRCLE, PARRY CIRCLE, PI, POINT CIRCLE, POLAR

CIRCLE, POWER (CIRCLE), PRIME CIRCLE, PSEUDOCIR-

CLE, PTOLEMY’S THEOREM, PURSER’S THEOREM, RADI-

CAL AXIS, RADIUS, REULEAUX TRIANGLE, SEED OF

LIFE, SEIFERT CIRCLE, SEMICIRCLE, SEVEN CIRCLES

THEOREM, SIMILITUDE CIRCLE, SIX CIRCLES THEO-

REM, SODDY CIRCLES, SPHERE, TAYLOR CIRCLE,
TRIPLICATE-RATIO CIRCLE, TUCKER CIRCLES, UNIT

CIRCLE, VENN DIAGRAM, VILLARCEAU CIRCLES, YIN-

YANG
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Circle Bundle

A circle bundle p : E 0 M is a FIBER BUNDLE whose
FIBERS p�1(x) are circles. It may also have the
structure of a PRINCIPAL BUNDLE if there is an action
of SO(2) that preserves the fibers, and is locally
trivial. That is, if every point has a TRIVIALIZATION

U �S1 such that the action of SO(2) on S1 is the usual
one.

See also BUNDLE, GROUP ACTION, PRINCIPAL BUNDLE

Circle Caustic
Consider a point light source located at a point ( m; 0):
The CATACAUSTIC of a unit CIRCLE for the light at m �
� is the NEPHROID

x �1
4[3 cot t �cos(3t)] (1)

y �1
4[3 sin t �sin(3t)]: (2)

The CATACAUSTIC for the light at a finite distance m >

1 is the curve

x �
m(1 � 3m cos t � 2m cos3 t)

�(1 � 2m2) � 3 m cos t 
(3)

y �
2m2 sin3 t

1 � 2m2 � 3m cos t 
; (4)

and for the light on the CIRCUMFERENCE of the CIRCLE

m �1 is the CARDIOID

x �2
3 cos t(1 �cos t) �1

3 (5)

y �2
3 sin t(1 �cos t): (6)

If the point is inside the circle, the catacaustic is a
discontinuous two-part curve. These four cases are
illustrated below.

The CATACAUSTIC for PARALLEL rays crossing a CIRCLE

is a CARDIOID.

See also CATACAUSTIC, CAUSTIC

Circle Chord Picking
CIRCLE LINE PICKING

Circle Covering
An arrangement of overlapping circles which cover
the entire plane. A lower bound for a covering using
equivalent circles is 2 p=

ffiffiffiffiffiffi
27

p
(Williams 1979, p. 51).

See also CIRCLE PACKING, DISK COVERING PROBLEM,
FIVE DISKS PROBLEM, FLOWER OF LIFE, SEED OF LIFE
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Circle Covering by Arcs

The probability P(a ; n) that n random arcs of angular
size a cover the circumference of a circle completely
(for a circle with unit circumference) is

P(a; n) �
X1=ab c

k �0

(�1)k n
k

� �
(1 �ka)n�1 ;

where xb c is the FLOOR FUNCTION (Solomon 1978,
p. 75). This was first given correctly by Stevens
(1939), although partial results were obtains by
Whitworth (1897), Baticle (1935), Garwood (1940),
Darling (1953), and Shepp (1972).

The probability that n arcs leave exactly l gaps is
given by

Pl gaps(a ; n) �
n
l

� �Xk

j�1

(�1)j�l n �l
j �l

� �
(1 �ja)n �1

(Stevens 1939; Solomon 1978, p. 76).

See also CIRCLE POINT PICKING, CIRCLE LINE PICKING
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Circle Cutting
CIRCLE DIVISION BY CHORDS, CIRCLE DIVISION BY

LINES

Circle Division by Chords

A related problem, sometimes called Moser’s circle
problem, is to find the number of pieces into which a
CIRCLE is divided if n points on its CIRCUMFERENCE

are joined by CHORDS with no three CONCURRENT. The
answer is

g(n) �
n
4

� �
�

n
2

� �
�1 (1)

� 1
24(n

4 �6n3 �23n2 �18n �24) ; (2)

(Yaglom and Yaglom 1987, Guy 1988, Conway and
Guy 1996, Noy 1996), where n

m

& '
is a BINOMIAL

COEFFICIENT. The first few values are 1, 2, 4, 8, 16,
31, 57, 99, 163, 256, ... (Sloane’s A000127). This
sequence demonstrates the danger in making as-
sumptions based on limited trials. While the series
starts off like 2n �1 ; it begins differing from this
GEOMETRIC SERIES at n�6.

See also CAKE CUTTING, CIRCLE DIVISION BY LINES,
CYLINDER CUTTING, HAM SANDWICH THEOREM, PAN-

CAKE THEOREM, PIZZA THEOREM, PLANE DIVISION BY

CIRCLES, PLANE DIVISION BY ELLIPSES, PLANE DIVI-

SION BY LINES, SQUARE DIVISION BY LINES, TORUS

CUTTING
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Circle Division by Lines

Determining the maximum number of pieces in which
it is possible to divide a CIRCLE for a given number of
cuts is called the circle cutting, or sometimes PAN-

CAKE CUTTING, problem. The minimum number is
always n�1; where n is the number of cuts, and it is



always possible to obtain any number of pieces
between the minimum and maximum. The first cut
creates 2 regions, and the nth cut creates n new
regions, so

f (1) �2 (1)

f (2) �2 �f (1) (2)

f (n) �n �f (n �1): (3)

Therefore,

f (n) �n �[(n �1) �f (n �2)]

�n �(n �1) �. . .�2 �f (1) �f (1) �
Xn

k�2

kf (1)

�2 �1
2(n �2)(n �1) �1

2(n
2 �n �2): (4)

Evaluating for n �1, 2, ... gives 2, 4, 7, 11, 16, 22, ...
(Sloane’s A000124). This is equivalent to the maximal
number of regions into which a PLANE can be cut by n
lines.

See also CIRCLE DIVISION BY CHORDS, PLANE DIVI-

SION BY CIRCLES, SPACE DIVISION BY PLANES, SPACE

DIVISION BY SPHERES, SQUARE DIVISION BY LINES

References
Sloane, N. J. A. Sequences A000124/M1041 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Sloane, N. J. A. and Plouffe, S. Figure M1041 in The
Encyclopedia of Integer Sequences. San Diego: Academic
Press, 1995.

Yaglom, A. M. and Yaglom, I. M. Challenging Mathematical
Problems with Elementary Solutions, Vol. 1. New York:
Dover, pp. 102 �/06, 1987.

Wells, D. The Penguin Dictionary of Curious and Interesting
Numbers. Middlesex, England: Penguin Books, p. 31,
1986.

Circle Evolute

x �cos t x?��sin t xƒ��cos t (1)

y �sin t y?�cos t yƒ��sin t; (2)

so the RADIUS OF CURVATURE is

R �
(x?2 � y?2)3 =2

yƒx? � xƒy?
�

(sin2 t � cos2 t)3=2

( �sin t)(�sin t) � (�cos t) cos t

�1; (3)

and the TANGENT VECTOR is

T̂ �
�sin t
cos t

� �
: (4)

Therefore,

cos t � T̂ � x̂ ��sin t (5)

sin t � T̂ � ŷ �cos t; (6)

so

j(t) �x �R sin t �cos t �1 � cos t �0 (7)

h(t) �y �R cos t �sin t �1 � (�sin t) �0 ; (8)

and the EVOLUTE degenerates to a POINT at the
ORIGIN.

See also CIRCLE INVOLUTE
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Circle Inscribing
If r is the INRADIUS of a CIRCLE inscribed in a RIGHT

TRIANGLE with sides a and b and HYPOTENUSE c , then

r�1
2(a�b�c):

A SANGAKU PROBLEM dated 1803 from the Gumma
Prefecture asks to construct the figure consisting of a
circle centered at O , a second smaller circle centered
at O2 tangent to the first, and an ISOSCELES TRIANGLE

whose base AB completes the diameter of the larger
circle through the smaller XB . Now inscribe a third
circle with center O3 inside the large circle, outside
the small one, and on the side of a leg of the triangle.
It then follows that the line O3A�XB: To find the
explicit position and size of the circle, let the circle O
have radius 1/2 and be centered at (0; 0) and let the
circle O2 have diameter 0BrB1: Then solving the
simultaneous equations

1
2 r�a
1 22

� 1
2 r
1 22

�y2 (1)

1
2�a
1 22

� r�1
2

1 22

�y2 (2)



for a and y gives

a �
r(1 � r)

1 � r 
(3)

y �
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1 � r)

p

1 � r
: (4)

See also INCIRCLE, INSCRIBED, POLYGON
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Circle Involute

First studied by Huygens when he was considering
clocks without pendula for use on ships at sea. He
used the circle involute in his first pendulum clock in
an attempt to force the pendulum to swing in the path
of a CYCLOID. For a CIRCLE with a �1, the PARA-

METRIC EQUATIONS of the circle and their derivatives
are given by

x �cos t x?��sin t xƒ��cos t (1)

y �sin t y?�cos t yƒ��sin t: (2)

The TANGENT VECTOR is

T̂ �
�sin t
cos t

� �
(3)

and the ARC LENGTH along the circle is

s �g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 �y?2

q
dt �g dt �t; (4)

so the involute is given by

ri �r �s ̂T � 
cos t
sin t

� �
�t 

�sin t
cos t

� �
�

cos t �t sin t
sin t �t cos t

� �
; (5)

or

x �a(cos t �t sin t) (6)

y �a(sin t �t cos t) : (7)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s�g ds�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
dt�1

2 at2 (8)

k�
1

at
(9)

f�t: (10)

The CESÀRO EQUATION is

k�
1ffiffiffiffiffi
as

p : (11)

See also CIRCLE, CIRCLE EVOLUTE, ELLIPSE INVO-

LUTE, INVOLUTE

References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.

Boca Raton, FL: CRC Press, p. 220, 1987.
Gray, A. Modern Differential Geometry of Curves and

Surfaces with Mathematica, 2nd ed. Boca Raton, FL:
CRC Press, p. 105, 1997.

Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagina-
tion. New York: Chelsea, pp. 6�/, 1999.

Lawrence, J. D. A Catalog of Special Plane Curves. New
York: Dover, pp. 190�/91, 1972.

MacTutor History of Mathematics Archive. "Involute of a
Circle." http://www-groups.dcs.st-and.ac.uk/~history/
Curves/Involute.html.

Circle Involute Pedal Curve

The PEDAL CURVE of CIRCLE INVOLUTE

f �cos t�t sin t

g�sin t�t cos t

with the center as the PEDAL POINT is the ARCHI-



MEDES’ SPIRAL

x�t sin t

y��t cos t:

Circle Lattice Points
For every POSITIVE INTEGER n , there exists a CIRCLE

which contains exactly n lattice points in its interior.
H. Steinhaus proved that for every POSITIVE INTEGER

n , there exists a CIRCLE of AREA n which contains
exactly n lattice points in its interior.

SCHINZEL’S THEOREM shows that for every POSITIVE

INTEGER n , there exists a CIRCLE in the PLANE having
exactly n LATTICE POINTS on its CIRCUMFERENCE. The
theorem also explicitly identifies such "SCHINZEL

CIRCLES" as

x�1
2

1 22

�y2�1
4 5k�1 for n�2k

x�1
3

1 22

�y2�1
9 52k for n�2k�1:

8><
>: (1)

Note, however, that these solutions do not necessarily
have the smallest possible RADIUS. For example,
while the SCHINZEL CIRCLE centered at (1/3, 0) and
with RADIUS 625/3 has nine lattice points on its
CIRCUMFERENCE, so does the CIRCLE centered at (1/
3, 0) with RADIUS 65/3.

Let r be the smallest INTEGER RADIUS of a CIRCLE

centered at the ORIGIN (0, 0) with L(r) LATTICE POINTS.
In order to find the number of lattice points of the
CIRCLE, it is only necessary to find the number in the
first octant, i.e., those with 05y5 r=

ffiffiffi
2

p> ?
; where zb c

is the FLOOR FUNCTION. Calling this N(r); then for r]
1; L(r)�8N(r)�4; so L(r)�4 (mod 8): The multi-
plication by eight counts all octants, and the subtrac-
tion by four eliminates points on the axes which the
multiplication counts twice. (Since

ffiffiffi
2

p
is IRRATIONAL,

a mid-arc point is never a LATTICE POINT.)

GAUSS’S CIRCLE PROBLEM asks for the number of
lattice points within a CIRCLE of RADIUS r

N(r)�1�4 rb c�4
Xrb c

i�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�i2

pj k
: (2)

Gauss showed that

N(r)�pr2�E(r); (3)

where

½E(r)½52
ffiffiffi
2

p
pr: (4)

The number of lattice points on the CIRCUMFERENCE

of circles centered at (0, 0) with radii 0, 1, 2, ... are 1,
4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, ... (Sloane’s A046109).
The following table gives the smallest RADIUS r5
390; 800 for a circle centered at (0, 0) having a given
number of LATTICE POINTS L(r) (Sloane’s A046112).
Note that the high-water mark radii are always
multiples of five.

/L(r)/ r /L(r)/ r

1 0 108 1,105

4 1 132 40,625

12 5 140 21,125

20 25 156 203,125

28 125 180 5,525

36 65 196 274,625

44 3,125 252 27,625

52 15,625 300 71,825

60 325 324 32,045

68 390,625 420 359,125

76 /51; 953; 125/ 540 160,225

84 1,625

92 /548; 828; 125/

100 4,225

If the CIRCLE is instead centered at (1/2, 0), then the
CIRCLES of RADII 1/2, 3/2, 5/2, ... have 2, 2, 6, 2, 2, 2, 6,



6, 6, 2, 2, 2, 10, 2, ... (Sloane’s A046110) on their
CIRCUMFERENCES. If the CIRCLE is instead centered at
(1/3, 0), then the number of lattice points on the
CIRCUMFERENCE of the CIRCLES of RADIUS 1/3, 2/3, 4/3,
5/3, 7/3, 8/3, ... are 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1,
1, 5, 3, ... (Sloane’s A046111).

Let

1. an be the RADIUS of the CIRCLE centered at (0, 0)
having 8n �4 lattice points on its CIRCUMFERENCE,
2. bn =2 be the RADIUS of the CIRCLE centered at (1/
2, 0) having 4n �2 lattice points on its CIRCUM-

FERENCE,
3. cn =3 be the RADIUS of CIRCLE centered at (1/3, 0)
having 2n �1 lattice points on its CIRCUMFERENCE.

Then the sequences fan g; fbn g; and fcn g are equal,
with the exception that bn �0 if 2½n and cn �0 if 3½n:
However, the sequences of smallest radii having the
above numbers of lattice points are equal in the three
cases and given by 1, 5, 25, 125, 65, 3125, 15625, 325,
... (Sloane’s A046112).

KULIKOWSKI’S THEOREM states that for every POSITIVE

INTEGER n , there exists a 3-D SPHERE which has
exactly n LATTICE POINTS on its surface. The SPHERE

is given by the equation

(x�a)2�(y�b)2�(z�
ffiffiffi
2

p
)2�c2�2;

where a and b are the coordinates of the center of the
so-called SCHINZEL CIRCLE and c is its RADIUS

(Honsberger 1973).

See also CIRCLE, CIRCUMFERENCE, GAUSS’S CIRCLE

PROBLEM, KULIKOWSKI’S THEOREM, LATTICE POINT,
SCHINZEL CIRCLE, SCHINZEL’S THEOREM
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Circle Lattice Theorem
GAUSS’S CIRCLE PROBLEM

Circle Line Picking

Given a UNIT CIRCLE, pick two points at random on its
circumference, forming a CHORD. Without loss of
generality, the first point can be taken as (1; 0); and
the second by (cos u; sin u); with u � [0; p] (by sym-
metry, the range can be limited to p instead of 2p):
The distance s between the two points is then

s(u)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 cos u

p
�2½sin(1

2 u)½: (1)

The average distance is then given by

s̄�
g

p

0

s(u) du

g
p

0

du

�
4

p
: (2)

The probability function Ps is obtained from

Ps�
du

ds

�����
�����Pu�

1

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (1

2 s)2
q : (3)

The RAW MOMENTS are then

m?n�
g

p

0

[2 sin(1
2 u)]n du

g
p

0

du

(4)

�g
2

0

sn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � (1

2 s)2
q (5)

�
2nG(1

2(1 � n))ffiffiffi
p

p
G(1 � 1

2 n)
; (6)

giving the first few as



m?2 �2 (7)

m?3 �
32

3p 
(8)

m ?4 �6: (9)

The CENTRAL MOMENTS are

m2 �2 �
16

p2 
(10)

m3 �
8(48 � 5 p2)

3 p3 
(11)

m4 �6 �
64(p2 � 36)

3p4
; (12)

giving the SKEWNESS and KURTOSIS as

g1 �
2
ffiffiffi
2

p
(48 � 5p2)

3(p2 � 8)3 =2 (13)

g2 �
�9p4 � 320p2 � 2304

6(p2 � 8)2 : (14)

BERTRAND’S PROBLEM asks for the PROBABILITY that a
CHORD drawn at random on a CIRCLE of RADIUS r has
length ]r :/

See also BALL LINE PICKING, BERTRAND’S PROBLEM,
CIRCLE COVERING BY ARCS, CIRCLE TRIANGLE PICK-

ING, DISK LINE PICKING

Circle Map
A 1-D MAP which maps a CIRCLE onto itself

un�1 � un �V�
K

2p
sin(2pun) ; (1)

where un�1 is computed mod 1 and K is a constant.
Note that the circle map has two parameters: V and
K . V can be interpreted as an externally applied
frequency, and K as a strength of nonlinearity. The 1-
D JACOBIAN is

@ un�1

@ un

�1 �K cos(2 pun) ; (2)

so the circle map is not AREA-PRESERVING. It is related
to the STANDARD MAP

In�1 �In �
K

2p
sin(2pun) (3)

un�1 � un �In �1 ; (4)

for I and u computed mod 1. Writing un�1 as

un�1 � un �In �
K

2 p
sin(2 pun) (5)

gives the circle map with In �V and K ��K : The
unperturbed circle map has the form

un�1 � un �V: (6)

If V is RATIONAL, then it is known as the map WINDING

NUMBER, defined by

V�W �
p

q 
; (7)

and implies a periodic trajectory, since un will return
to the same point (at most) every q ORBITS. If V is
IRRATIONAL, then the motion is quasiperiodic. If K is
NONZERO, then the motion may be periodic in some
finite region surrounding each RATIONAL V: This
execution of periodic motion in response to an IRRA-

TIONAL forcing is known as MODE LOCKING.

If a plot is made of K vs. V with the regions of periodic
MODE-LOCKED parameter space plotted around RA-

TIONAL V values (WINDING NUMBERS), then the re-
gions are seen to widen upward from 0 at K �0 to
some finite width at K �1. The region surrounding
each RATIONAL NUMBER is known as an ARNOLD

TONGUE. At K �0, the ARNOLD TONGUES are an
isolated set of MEASURE zero. At K �1, they form a
CANTOR SET of DIMENSION d :0:08700 : For K �1, the
tongues overlap, and the circle map becomes non-
invertible.

Let Vn be the parameter value of the circle map for a
cycle with WINDING NUMBER Wn �Fn =Fn �1 passing
with an angle u �0 ; where Fn is a FIBONACCI NUMBER.
Then the parameter values Vn accumulate at the rate

d� lim
n0�

Vn � Vn�1

Vn�1 � Vn

��2:833 (8)

(Feigenbaum et al. 1982).

See also ARNOLD TONGUE, DEVIL’S STAIRCASE, MODE

LOCKING, WINDING NUMBER (MAP)
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Circle Method
A method employed by Hardy, Ramanujan, and
Littlewood to solve many asymptotic problems in
ADDITIVE NUMBER THEORY, particularly in deriving
an asymptotic formula for the PARTITION FUNCTION P .
The circle method proceeds by choosing a circular
CONTOUR satisfying certain technical properties
(Apostol 1997). The method was modified by Rade-



macher using a different contour in his derivative of
the exact convergent formula for the PARTITION

FUNCTION P .

See also PARTITION FUNCTION P
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Circle Negative Pedal Curve
The NEGATIVE PEDAL CURVE of a circle is an ELLIPSE if
the PEDAL POINT is inside the CIRCLE, and a HYPER-

BOLA if the PEDAL POINT is outside the CIRCLE.

Circle Notation
A NOTATION for LARGE NUMBERS due to Steinhaus
(1983). In circle notation, is defined as n in n
SQUARES, where numbers written inside squares (and
triangles) are interpreted in terms of STEINHAUS-

MOSER NOTATION. The particular number known as
the MEGA is then defined as follows (correcting the
typographical error of Steinhaus).

See also MEGA, MEGISTRON, STEINHAUS-MOSER NO-

TATION
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Circle Order
A POSET P is a circle order if it is ISOMORPHIC to a SET

of DISKS ordered by containment.

See also ISOMORPHIC POSETS, PARTIALLY ORDERED

SET

Circle Orthotomic

The ORTHOTOMIC of the CIRCLE represented by

x�cos t (1)

y�sin t (2)

with a source at (x, y ) is

x�x cos(2t)�y sin(2t)�2 sin t (3)

y��x sin(2t)�y cos(2t)�2 cos t: (4)

Circle Packing
A circle packing is an arrangement of circles inside a
given boundary such that no two overlap and some (or
all) of them are mutually tangent. The generalization
to spheres is called a SPHERE PACKING. TESSELLA-

TIONS of regular polygons correspond to particular
circle packings (Williams 1979, pp. 35�/1). There is a
well developed theory of circle packing in the context
of discrete conformal mapping (Stephenson).

The densest packing of circles in the PLANE is the
hexagonal lattice of the bee’s honeycomb (right figure;
Steinhaus 1983, p. 202), which has a PACKING DEN-

SITY of

hh�
1
6 p

ffiffiffi
3

p
:0:9068996821 (1)

(Wells 1986, p. 30). Gauss proved that the hexagonal
lattice is the densest plane lattice packing, and in
1940, L. Fejes Tóth proved that the hexagonal lattice
is indeed the densest of all possible plane packings.

Wells (1991, pp. 30�/1) considers the maximum size
possible for n identical circles packed on the surface
of a UNIT SPHERE.

Using discrete conformal mapping, the radii of the
circles in the above packing inside a UNIT CIRCLE can
be determined as roots of the polynomial equations

a6�378a5�3411a4�8964a3�10233a2�3402a�27

�0 (2)



169b6�24978b5�2307b4�14580b3�3375b2�162b

�27�0 (3)

c6�438c5�19077c4�15840c3�360c2�2592c�432

�0 (4)

with

a:0:266746 (5)

b:0:321596 (6)

c:0:223138: (7)

The following table gives the packing densities h for
the circle packings corresponding to the regular and
semiregular plane tessellations (Williams 1979,
p. 49).

TESSELLATION /h exact /h approx.

/f3; 6g/ /
1
12

ffiffiffiffiffiffi
12

p
p/ 0.9069

/f4; 4g/ /
1
4 p/ 0.7854

/f6; 3g/ /
1
9

ffiffiffi
3

p
p/ 0.6046

/32:42
/ /(2�

ffiffiffi
3

p
)p/ 0.8418

/32:4:3:4/ /(2�
ffiffiffi
3

p
)p/ 0.8418

/3:6:3:6/ /
1
8

ffiffiffi
3

p
p/ 0.6802

/34:6/ /
1
7

ffiffiffi
2

p
p/ 0.7773

3.122
/(7

ffiffiffi
3

p
�12)p/ 0.3907

4.82
/(3�2

ffiffiffi
2

p
)p/ 0.5390

/3:4:6:4/ /
1
3(2

ffiffiffi
3

p
�3)p/ 0.7290

/3:4:6:4/ /
1
3(2

ffiffiffi
3

p
�3)p/ 0.4860

Solutions for the smallest diameter CIRCLES into
which n UNIT CIRCLES can be packed have been
proved optimal for n�1 through 10 (Kravitz 1967).
The best known results are summarized in the
following table, and the first few cases are illustrated
above (Friedman).

n d exact d approx.

1 1 1.00000

2 2 2.00000

3 /1�2
3

ffiffiffi
3

p
/ 2.15470...

4 /1�
ffiffiffi
2

p
/ 2.41421...

5 /1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1�1=

ffiffiffi
5

p
)

q
/ 2.70130...

6 3 3.00000

7 3 3.00000

8 /1�csc(p=7)/ 3.30476...

9 /1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2�

ffiffiffi
2

p
)

p
/ 3.61312...

10 3.82...

11

12 4.02...

The following table gives the diameters d of circles
giving the densest known packings of n equal circles
packed inside a UNIT SQUARE, the first few of which
are illustrated above (Friedman). All n�1 to 20
solutions (in addition to all solutions n�k2) have
been proved optimal (Friedman). Peikert (1994) uses
a normalization in which the centers of n circles of
diameter m are packed into a square of side length 1.
Friedman lets the circles have unit radius and gives
the smallest square side length s . A tabulation of
analytic s and diagrams for n�1 to 25 circles is given
by Friedman. Coordinates for optimal packings are
given by Nurmela and Östergård.

n d /:d/ m /:m/

1 1 1.000000

2
2

2 �
ffiffiffi
2

p
0.585786 /

ffiffiffi
2

p
/ 1.414214

3
4

4 �
ffiffiffi
2

p
�

ffiffiffi
6

p
0.508666 /

ffiffiffi
6

p
�

ffiffiffi
2

p
/ 1.035276

4 /
1
2/ 0.500000 1 1.000000



5 /

ffiffiffi
2

p
�1/ 0.414214 /

1
2

ffiffiffi
2

p
/ 0.707107

6 /
1
23(6

ffiffiffiffiffiffi
13

p
�13)/ 0.375361 /

1
6

ffiffiffiffiffiffi
13

p
/ 0.600925

7 /
2
13(4 �

ffiffiffi
3

p
)/ 0.348915 /4 �2

ffiffiffi
3

p
/ 0.535898

8
2

2 �
ffiffiffi
2

p
�

ffiffiffi
6

p
0.341081 /

1
2(
ffiffiffi
6

p
�

ffiffiffi
2

p
)/ 0.517638

9 /
1
3/ 0.333333 /

1
2/ 0.500000

10 0.296408 0.421280

The smallest SQUARE into which two UNIT CIRCLES,
one of which is split into two pieces by a chord, can be
packed is not known (Goldberg 1968, Ogilvy 1990).

The best known packings of circles into an equilateral
triangle are shown above for the first few cases
(Friedman).

A rigid packing of circles can be obtained from a
hexagonal tessellation by removing the centers of a
hexagonal web, then replacing each remaining circle
with three equal inscribed circles (appropriately
oriented), as illustrated above (Meschkowski 1966,
Wells 1991). If the original circles have unit radius,
the lengths r , y�; and y� can be obtained by solving

r �y� cos 30 �; (8)

r �y��1 (9)

y��r tan 30 �; (10)

giving

r �2
ffiffiffi
3

p
�3 (11)

y��4 �2
ffiffiffi
3

p
(12)

y��2 �
ffiffiffi
3

p
: (13)

The resulting circles cover a fraction

h�hh

2

3

3pr2

p12

 !
�(7

ffiffiffi
3

p
�12)p:0:390675 (14)

of the plane, believed to be the smallest possible for a
rigid packing of circles (Wells 1991).

See also CIRCLE COVERING, DESCARTES CIRCLE THE-

OREM, FOUR COINS PROBLEM, HYPERSPHERE PACK-

ING, MALFATTI’S RIGHT TRIANGLE PROBLEM,
MERGELYAN-WESLER THEOREM, SANGAKU PROBLEM,
SODDY CIRCLES, SPHERE PACKING, SQUARE PACKING,
TANGENT CIRCLES, TRIANGLE PACKING, UNIT CELL
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Circle Pedal Curve

The PEDAL CURVE of a CIRCLE is a CARDIOID if the
PEDAL POINT is taken on the CIRCUMFERENCE,

and otherwise a LIMAÇ ON.

Circle Point Picking

A uniform distribution of points on the CIRCUMFER-

ENCE of a UNIT CIRCLE can be obtained by picking two
numbers x1; x2 from a UNIFORM DISTRIBUTION on
(�1; 1); and rejecting pairs with x2

1�x2
2]1: From

the remaining points, the DOUBLE-ANGLE FORMULAS

then imply that the points with CARTESIAN COORDI-

NATES

x�
x2

1 � x2
2

x2
1 � x2

2

y�
2x1x2

x2
1 � x2

2

have the desired distribution (von Neumann 1951,
Cook 1957). This method can also be extended to
SPHERE POINT PICKING (Cook 1957). The plots above
show the distribution of points for 50, 100, and 500
initial points (where the counts refer to the number of
points before throwing away).

See also CIRCLE COVERING BY ARCS, DISK POINT

PICKING, SPHERE POINT PICKING
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Circle Quadrature
CIRCLE SQUARING

Circle Radial Curve

The RADIAL CURVE of a unit CIRCLE from a RADIAL

POINT (x; 0) is another CIRCLE with PARAMETRIC

EQUATIONS

x(t) �x �cos t

y(t) ��sin t:

Circle Squaring
Construct a SQUARE equal in AREA to a CIRCLE using
only a STRAIGHTEDGE and COMPASS. This was one of
the three GEOMETRIC PROBLEMS OF ANTIQUITY, and
was perhaps first attempted by Anaxagoras. It was
finally proved to be an impossible problem when PI

was proven to be TRANSCENDENTAL by Lindemann in
1882.’

However, approximations to circle squaring are given
by constructing lengths close to p �3 :1415926 . . . :
Ramanujan (1913 �/4), Olds (1963), Gardner (1966,
pp. 92 �/3), and (Bold 1982, p. 45) give geometric
constructions for 355=113 �3 :1415929 . . . : Dixon
(1991) gives constructions for 6=5(1 � f) �
3:141640 . . . and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40=3�2

ffiffiffi
3

pq
�3:141533 . . . (KOCHANS-

KY’S APPROXIMATION).

While the circle cannot be squared in EUCLIDEAN

SPACE, it can in GAUSS-BOLYAI-LOBACHEVSKY SPACE

(Gray 1989).

See also BANACH-TARSKI PARADOX, GEOMETRIC CON-

STRUCTION, KOCHANSKY’S APPROXIMATION, QUADRA-

TURE, SQUARING
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Circle Strophoid
The STROPHOID of a CIRCLE with pole at the center
and fixed point on the CIRCUMFERENCE is a FREETH’S

NEPHROID.

Circle Tangents

Given the above figure, GE�FH , since

AB�AG�GB�GE�GF�GE�(GE�EF)

�2GE�EF

CD�CH�HD�EH�FH�FH�(FH�EF)

�EF�2FH:



Because AB �CD , it follows that GE �FH .

The line tangent to a CIRCLE of RADIUS a centered at
(x, y )

x?�x �a cos t

y?�y �a sin t

through (0, 0) can be found by solving the equation

x �a cos t
y �a sin t

� �
� a cos t

a sin t

� �
�0;

giving

t �9cos�1 �ax 9 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � a2

p
x2 � y2

 !
:

Two of these four solutions give tangent lines, as
illustrated above, and the lengths of these lines are
equal (Casey 1888, p. 29).

A line tangent to two given circles at centers r1 and r2

of radii a1 and a2 Ba1 may be constructed by
constructing the tangent to the single circle of radius
a1 �a2 centered at r1 and through r2 ; then translat-
ing this line along the radius through r1 a distance a2

until it falls on the original two circles (Casey 1888,
pp. 31�/2).

See also KISSING CIRCLES PROBLEM, MIQUEL POINT,
MONGE’S PROBLEM, NINE-POINT CIRCLE, PEDAL CIR-

CLE, TANGENT CIRCLES, TANGENT LINE, TRIANGLE
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Circle Triangle Picking
Select three points at random on a unit CIRCLE. Find
the distribution of possible areas.

The first point can be assigned coordinates (1; 0)
without loss of generality. Call the central angles
from the first point to the second and third u1 and u2:
The range of u1 can be restricted to [0; p] because of
symmetry, but u2 can range from [0; 2p): Then

A(u1; u2)�2½sin(1
2 u1) sin(1

2 u2) sin[1
2(u1�u2)]½; (1)

so

Ā�
g

p

0 g
2p

0

A(u1; u2) du2 du1

C
; (2)

where

C�g
p

0 g
2p

0

du2 du1�2p2: (3)

Therefore,

Ā�
2

2p2 g
p

0
g

2p

0

½sin(1
2 u1) sin(1

2 u2) sin[1
2(u1�u2)]½ du2 du1

�
1

p2 g
p

0

sin(1
2 u1) g

2p

0

sin(1
2 u2)½sin[1

2(u2�u1)]½ du2

2
4

3
5 du1

�
1

p2 g
p

0
g

2p

0
u2�u1>0

sin(1
2 u1) sin(1

2 u2) sin[1
2(u1�u2)] du2 du1

�
1

p2 g
p

0
g

2p

0
u2�u1B0

sin(1
2 u1) sin(1

2 u2) sin[1
2(u1�u2)] du2 du1

�
1

p2 g
p

0

sin(1
2 u1) g

2p

u1

sin(1
2 u2) sin[1

2(u2�u1)] du2

2
4

3
5 du1



�
1

p2 g  
p

0

sin(1
2 u1)

� g  
u1

0

sin(1
2 u2) sin[1

2(u2 � u1)] du2

" #
du1 : (4)

But

g (1
2 u2)sin[1

2( u2 � u1)] d u2

�g sin(1
2 u2)[sin(1

2 u2)cos(1
2 u2) �sin(1

2 u1) cos(1
2 u2)] du2

�cos(1
2 u1)g sin2(1

2 u2) du2

�sin(1
2 u1)g sin(1

2 u1) cos(1
2 u2) d u2

�1
2 cos(1

2 u1)g (1 �cos u2) du2

�1
2 sin(1

2 u2)g sin u2 du2 (5)

Write (4) as

Ā �
1

p2 g  
p

0

sin(1
2 u1)I1 du1 �g  

p

0

sin(1
2 u1)I2 du1

� �
; (6)

then

I1 �g
2p

0

sin(1
2 u2) sin[1

2( u2 � u1)] du2 ; (7)

and

I2 �g 
u1

0

sin(1
2 u2) sin[1

2( u1 � u2)] du2 : (8)

From (6),

I1 �
1
2 cos(1

2 u2)[u2 �sin u2]2 p
u1
�1

2 sin(1
2 u1)[cos u2]2 p

u1

�1
2 cos(1

2 u1)(2p � u1 �sin u1) �1
2 sin(1

2 u1)(1 �cos u1)

� p cos(1
2 u1) �1

2 u1 cos(1
2 u1)

�1
2[cos(1

2 u1) sin u1 �cos u1sin(1
2 u1)] �1

2 sin(1
2 u1)

� p cos(1
2 u1) �1

2 u1 cos(1
2 u1) �1

2 �
1
2 sin( u1 �

1
2 u1)

�1
2 sin(1

2 u1)

� p cos(1
2 u1) �1

2 u1 cos(1
2 u1) �sin(1

2 u1) ; (9)

so

g  
p

0

I1 sin(1
2 u1) d u1 �

5
4 p: (10)

Also,

I2 �
1
2 cos(1

2 u1)[sin u2 � u2]u1

0 �1
2 sin(1

2 u1)[cos u]u1

0

�1
2 cos(1

2 u2)(sin u1 � u1) �1
2 sin(1

2 u1)(cos u1 �1)

��1
2 u1 cos(1

2 u1) �1
2[sin u1 cos(1

2 u1)

�cos u1 sin(1
2 u2)] �1

2 sin(1
2 u1)

��1
2 u1 cos(1

2 u1) �sin(1
2 u1); (11)

so

g 
p

0

I2 sin(1
2 u1) du1 �

1
4 p: (12)

Combining (10) and (12) gives

Ā�
1

p2

5p

4
�

p

4

 !
�

3

2p
:0:4775: (13)

The first few moments are

m?2�
3
8 (14)

m?3�
41

32p
(15)

m?4�
45
128; (16)

so the VARIANCE is

s2
A��A�2��A2��

3(p2 � 6)

8p2
:0:1470: (17)

See also CIRCLE LINE PICKING, DISK TRIANGLE

PICKING, POINT-POINT DISTANCE–1-D, SPHERE POINT

PICKING

Circle-Circle Intersection

Two circles may intersect in two imaginary points, a
single degenerate point, or two distinct points.

Let two CIRCLES of RADII R and r and centered at
(0; 0) and (d; 0) intersect in a LENS-shaped region.



The equations of the two circles are

x2 �y2 �R2 (1)

(x �d)2 �y2 �r2 : (2)

Combining (1) and (2) gives

(x �d)2 �(R2 �x2) �r2 : (3)

Multiplying through and rearranging gives

x2 �2 dx �d2 �x2 �r2 �R2 : (4)

Solving for x results in

x �
d2 � r2 � R2

2d
: (5)

The line connecting the cusps of the LENS therefore
has half-length given by plugging x back in to obtain

y2 �R2 �x2 �R2 �
d2 � r2 � R2

2d

 !2

�
4d2R2 � (d2 � r2 � R2)2

4d2 
; (6)

giving a half-height y �a =2 of

a �
1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2R2 �(d2 �r2 �R2)2

q

�
1

d
[(�d �r �R)(�d �r �R)(�d �r �R)(d �r �R)]1=2 : (7)

This same formulation applies directly to the SPHERE-

SPHERE INTERSECTION problem.
To find the AREA of the asymmetric "LENS" in which
the CIRCLES intersect, simply use the formula for the
circular SEGMENT of radius R?/and triangular height d?

A(R?; d?) �R?2 cos�1 d?

R?

 !
�d?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R?2 �d?2

p
(8)

twice, one for each half of the "LENS." Noting that the
heights of the two segment triangles are

d1 �x �
d2 � r2 � R2

2d 
(9)

d2 �d �x �
d2 � r2 � R2

2d
: (10)

The result is

A �A(R; d1) �A(r ; d2)

�r2 cos�1 d2 � r2 � R2

2dr

 !
�R2 cos�1 d2 � R2 � r2

2dR

 !

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�d �r �R)(d �r �R)(d �r �R)(d �r �R)

p
: (11)

The limiting cases of this expression can be checked

to give 0 when d �R �r and

A �2R2 cos�1 d

2R

 !
�1

2 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 �d2

p
(12)

�2A 1
2 d; R
1 2

(13)

when r �R , as expected. In order for half the area of
two UNIT DISKS (R �1) to overlap, set A � pR2 =2 � p=2
in the above equation

1
2 p �2 cos �1 1

2 d
1 2

�1
2 d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �d2

p
(14)

and solve numerically, yielding d :0:807946 :/

If three symmetrically placed equal circles intersect
in a single point, as illustrated above, the total area of
the three lens-shaped regions formed by the pairwise
intersection of circles is given by

A�p�3
2

ffiffiffi
3

p
: (15)

Similarly, the total area of the four lens-shaped
regions formed by the pairwise intersection of circles
is given by

A�2(p�2): (16)

See also BORROMEAN RINGS, BROCARD TRIANGLES,
CIRCLE-ELLIPSE INTERSECTION, CIRCLE-LINE INTER-

SECTION, CIRCULAR TRIANGLE, DOUBLE BUBBLE,
GOAT PROBLEM, LENS, REULEAUX TRIANGLE, SEG-

MENT, SPHERE-SPHERE INTERSECTION, TRIQUETRA,
VENN DIAGRAM



Circle-Ellipse Intersection

An ellipse intersects a circle in 0, 1, 2, 3, or 4 points.
The points of intersection of a circle of center (x0 ; y0)
and radius r with an ellipse of semi-major and semi-
minor axes a and b , respectively and center (xe ; ye)
can be determined by simultaneously solving

(x �x0)2 �(y �y0)2 �r2 (1)

(x � xe)
2

a2
�

(y � ye)
2

b2
�1: (2)

If (x0 ; y0) �(xe ; ye) �(0; 0); then the solution takes on
the particularly simple form

x�9a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � b2

a2 � b2

s
(3)

y�9b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

a2 � b2

s
: (4)

See also CIRCLE, CIRCLE-CIRCLE INTERSECTION, EL-

LIPSE

Circle-Line Intersection

A LINE determined by two points (x1; y1) and (x2; y2)
may intersect a CIRCLE of RADIUS r and center (0, 0) in
two imaginary points, a degenerate single point
(corresponding to the line being tangent to the circle),
or two real points. Defining

dx�x2�x1 (1)

dy�y2�y1 (2)

dr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x�d2
y

q
(3)

D�
x1 x2

y1 y2

����
�����x1y2�x2y1 (4)

gives the points of intersection as

x�
�Ddy 9 sgn�(dy) dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d2

r � D2
p

d2
r

; (5)

y�
�Ddx 9 ½dy½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d2

r � D2
p

d2
r

; (6)

where the function sgn� is defined as

sgn�(x)�
�1 for xB0
1 otherwise:

�
(7)

The discriminant

D�r2d2
r �D2 (8)

therefore determines the incidence of the line and
circle as summarized in the following table.

/D/ Incidence

/DB0/ no intersection

/D�0/ tangent

/D > 0/ intersection

Circle-Point Midpoint Theorem

Taking the locus of MIDPOINTS from a fixed point to a
circle of radius r results in a circle of radius r=2: This



follows trivially from

r( u) �
�x
0

� �
�

1

2

r cos u
r sin u

� �
�

�x
0

� �� �

�
1
2 r cos u �1

2 x
1
2 sin u

" #
:

References
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the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, p. 17, 1929.

Circles-and-Squares Fractal

A FRACTAL produced by iteration of the equation

zn�1 �z2
n (mod m)

which results in a MøIRÉ -like pattern.

See also FRACTAL, MøIRÉ PATTERN

Circuit
GRAPH CYCLE

Circuit Rank
Also known as the CYCLOMATIC NUMBER. The circuit
rank is the smallest number of EDGES g which must
be removed from a GRAPH of N EDGES and n nodes
such that no CIRCUIT remains.

g �N �n �1 :

Circulant Determinant
Gradshteyn and Ryzhik (2000) define circulants by

x1 x2 x3 	 	 	  xn

xn x1 x2 	 	 	  xn�1

xn�1 xn x1 	 	 	  xn�2

n n n ::: n
x2 x3 x4 	 	 	  x1

����������

����������
�
Y
j�1

(x1 �x2 vj �x3 v
2
j �. . .�xn v

n�1
j ) (1)

where vj is the nth ROOT OF UNITY. The second-order

circulant determinant is

x1 x2

x2 x1

����
�����(x1 �x2)(x1 �x2) ; (2)

and the third order is

x1 x2 x3

x3 x1 x2

x2 x3 x1

������
�������(x1 �x2 �x3)(x1 � vx2 � v2x3)

� (x1 � v2x2 � vx3) ; (3)

where v and v2 are the COMPLEX CUBE ROOTS of
UNITY.

The EIGENVALUES l of the corresponding n �n CIR-

CULANT MATRIX are

lj �x1 �x2 vj �x3 v
2
j �. . .�xn v

n�1
j : (4)

See also CIRCULANT MATRIX

References
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Circulant Graph

A GRAPH of n VERTICES in which the ith VERTEX is
adjacent to the (i�j)/th and (i�j)/th VERTICES for each
j in a list l . The circulant graph Ci1; 2; ...; n=2b c(n) gives
the COMPLETE GRAPH Kn and the graph Ci1(n) gives
the CYCLIC GRAPH Cn:/

The number of circulant graphs on n�1, 2, ... nodes
(counting empty graphs) are given by 1, 2, 2, 4, 3, 8, 4,
12, ... (Sloane’s A049287). Note that these numbers



cannot be counted simply by enumerating the num-
ber of nonempty subsets of f1 ; 2 ; . . . ; n=2b cg since, for
example, Ci1(5) �Ci2(5) �C5 : There is an easy for-
mula for prime orders, and formulas are known for
squarefree and prime-squared orders.
Special cases are summarized in the table below.

Graph Symbol

OCTAHEDRAL GRAPH /Ci1; 2(6)/

16-CELL /Ci1; 2; 3(8)/

See also 16-CELL, OCTAHEDRAL GRAPH

References
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Keji Daxue Xuebao 25, 272 �/76, 1996.

Circulant Matrix
An n �n MATRIX C defined as follows,

Cn�

1 n
1ð Þ n

2ð Þ 	 	 	 n
n�1ð Þ

n
n�1ð Þ 1 n

1ð Þ 	 	 	 n
n�2ð Þ

n n n ::: n
n
1ð Þ n

2ð Þ n
3ð Þ 	 	 	  1

2
664

3
775;

where n
k

& '
is a BINOMIAL COEFFICIENT. The DETERMI-

NANT of Cn is given by the beautiful formula

Cn�
Yn�1

j�0

[( 1� vj)
n�1];

where v0 �1; v1 ; ..., vn �1 are the nth ROOTS OF

UNITY. The determinants for n �1, 2, ..., are given by
1, �3, 28, �375, 3751, 0, 6835648, �1343091375,
364668913756, ... (Sloane’s A048954), which is 0
when n �0 (mod 6):/

Circulant matrices are examples of LATIN SQUARES.

See also CIRCULANT DETERMINANT
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Circular Chessboard

A circular pattern obtained by superposing parallel
equally spaced lines on a set of concentric circles of
increasing radii, then coloring the regions in chess-
board fashion. The pattern appeared on the cover of
early editions of Scripta Mathematica.

See also CHESSBOARD

References
Gardner, M. The Sixth Book of Mathematical Games from

Scientific American. Chicago, IL: University of Chicago
Press, pp. 243�/45 and 249�/51, 1984.

Circular Cylinder
CYLINDER

Circular Cylindrical Coordinates
CYLINDRICAL COORDINATES

Circular Functions
The functions describing the horizontal and vertical
positions of a point on a CIRCLE as a function of ANGLE

(COSINE and SINE) and those functions derived from
them:

cot x�
1

tan x
�

cos x

sin x
(1)

csc x�
1

sin x
(2)

sec x�
1

cos x
(3)

tan x�
sin x

cos x
: (4)



Circular functions are also called TRIGONOMETRIC

FUNCTIONS, and the study of circular functions is
called TRIGONOMETRY.

See also COSECANT, COSINE, COTANGENT, ELLIPTIC

FUNCTION, GENERALIZED HYPERBOLIC FUNCTIONS,
HYPERBOLIC FUNCTIONS, SECANT, SINE, TANGENT,
TRIGONOMETRIC FUNCTIONS, TRIGONOMETRY

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Circular Func-

tions." §4.3 in Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, 9th print-
ing. New York: Dover, pp. 71 �/9, 1972.

Circular Permutation
The number of ways to arrange n distinct objects
along a FIXED (i.e., cannot be picked up out of the
plane and turned over) CIRCLE is

Pn �(n �1)!:

The number is (n �1)! instead of the usual FACTORIAL

n! since all CYCLIC PERMUTATIONS of objects are
equivalent because the CIRCLE can be rotated.

For example, of the 3! �6 permutations of three
objects, the (3 �1)! �2 distinct circular permutations
are f1 ; 2 ; 3g and f1; 3; 2g: Similarly, of the 4! �24
permutations of four objects, the (3 �1)! �6 distinct
circular permutations are f1; 2; 3; 4g; f1 ; 2; 4; 3g;
f1; 3; 2; 4g; f1; 3; 4; 2g; f1; 4 ; 2 ; 3 g; and
f1; 4; 3; 2g: Of these, there are only three FREE

permutations (i.e., inequivalent when flipping the
circle is allowed): f1; 2; 3; 4g; f1 ; 2 ; 4 ; 3 g; and
f1; 3; 2; 4g: The number of free circular permuta-
tions of order n is P ?n �1 for n �1, 2, and

P?n �
1
2(n �1)!

for n ]3; giving the sequence 1, 1, 1, 3, 12, 60, 360,
2520, ... (Sloane’s A001710).

See also CYCLIC PERMUTATION, FACTORIAL, PERMUTA-

TION, PRIME CIRCLE

References
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Circular Reciprocation
RECIPROCATION

Circular Triangle

A triangle ABC formed by three circular ARCS. By
extending the arcs into complete circles, the points of
intersection A?; B ?; and C ? are obtained. This gives the
three circular triangles, A?B ?C ?; AB ?C?; A?BC?; and
A?B?C ; which are called the ASSOCIATED TRIANGLES to
ABC . In addition, circular triangles A?B?C ?; AB ?C ?;
A?BC?; and A?B ?C can also be drawn.

The circular triangle and its associated circles have a
total of eight INCIRCLES and six CIRCUMCIRCLE. These
systems of circles have some remarkable properties,
including the HART CIRCLE, which is an analog of the
NINE-POINT CIRCLE in FEUERBACH’S THEOREM.

See also APOLLONIUS’ PROBLEM, ARC, ASSOCIATED

TRIANGLES, CIRCLE-CIRCLE INTERSECTION, FEUERBA-

CH’S THEOREM, HART CIRCLE, HARUKI’S THEOREM,
NINE-POINT CIRCLE, SPHERICAL TRIANGLE, TRIQUE-

TRA

References
Lachlan, R. "Properties of a Circular Triangle." §397�/04 in

An Elementary Treatise on Modern Pure Geometry.
London: Macmillian, pp. 251�/57, 1893.

Circular-Cylinder Coordinates
CYLINDRICAL COORDINATES



Circumcenter

The center O of a TRIANGLE’S CIRCUMCIRCLE. It can be
found as the intersection of the PERPENDICULAR

BISECTORS. If the TRIANGLE is ACUTE, the circumcen-
ter is in the interior of the TRIANGLE. In a RIGHT

TRIANGLE, the circumcenter is the MIDPOINT of the
HYPOTENUSE.

OO1 �OO2 �OO3 �R �r ; (1)

where Oi are the MIDPOINTS of sides Ai ; R is the
CIRCUMRADIUS, and r is the INRADIUS (Johnson 1929,
p. 190). The TRILINEAR COORDINATES of the circum-
center are

cos A : cos B : cos C ; (2)

and the exact trilinears are therefore

R cos A : R cos B : R cos C : (3)

The AREAL COORDINATES are

(1
2 a cot A; 1

2 b cot B ; 1
2 c cot C) : (4)

The distance between the INCENTER and circumcenter
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(R �2r)

p
: Given an interior point, the distances

to the VERTICES are equal IFF this point is the
circumcenter. It lies on the BROCARD AXIS.

The circumcenter O and ORTHOCENTER H are ISO-

GONAL CONJUGATES.

The ORTHOCENTER H of the PEDAL TRIANGLE

DO1O2O3 formed by the CIRCUMCENTER O concurs
with the circumcenter O itself, as illustrated above.
The circumcenter also lies on the EULER LINE.

See also BROCARD DIAMETER, CARNOT’S THEOREM,
CENTROID (TRIANGLE), CIRCLE, EULER LINE, INCEN-

TER, LESTER CIRCLE, ORTHOCENTER
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Circumcircle

A TRIANGLE’S circumscribed circle. Its center O is
called the CIRCUMCENTER, and its RADIUS R the
CIRCUMRADIUS. The circumcircle can be specified
using TRILINEAR COORDINATES as

bga�gab�abc�0: (1)

The STEINER POINT S and TARRY POINT T lie on the



circumcircle.

When an arbitrary point P is taken on the circum-
circle, then the feet P1 ; P2 ; and P3 of the perpendi-
culars from P to the sides (or their extensions) of the
TRIANGLE are COLLINEAR on a line called the SIMSON

LINE. Furthermore, the reflections PA ; PB ; PC of any
point P on the CIRCUMCIRCLE taken with respect to
the sides BC , AC , AB of the triangle are COLLINEAR,
not only with each other but also with the ORTHO-

CENTER H (Honsberger 1995, pp. 44 �/7).
The tangent to a triangle’s circumcircle at a vertex is
ANTIPARALLEL to the opposite side, the sides of the
ORTHIC TRIANGLE are parallel to the tangents to the
circumcircle at the vertices, and the radius of the
circumcircle at a vertex is perpendicular to all lines
ANTIPARALLEL to the opposite sides (Johnson 1929,
pp. 172 �/73).

A GEOMETRIC CONSTRUCTION for the circumcircle is
given by Pedoe (1995, pp. xii-xiii). The equation for
the circumcircle of the TRIANGLE with VERTICES

(xi ; yi) for i �1, 2, 3 is

x2 �y2 x y 1
x2

1 �y2
1 x1 y1 1

x2
2 �y2

2 x2 y2 1
x2

3 �y2
3 x3 y3 1

��������

���������0 : (2)

Expanding the DETERMINANT,

a(x2 �y2) �2dx �2fy �g �0; (3)

where

a �
x1 y1 1
x2 y2 1
x3 y3 1

������
������ (4)

d ��1
2

x2
1 �y2

1 y1 1
x2

2 �y2
2 y2 1

x2
3 �y2

3 y3 1

������
������ (5)

f �1
2

x2
1 �y2

1 x1 1
x2

2 �y2
2 x2 1

x2
3 �y2

3 x3 1

������
������ (6)

g ��
x2

1 �y2
1 x1 y1

x2
2 �y2

2 x2 y2

x2
3 �y2

3 x3 y3

������
������: (7)

COMPLETING THE SQUARE gives

a x�
d

a

 !2

�a y�
f

a

 !2

�
d2

a
�

f 2

a
�g �0 (8)

which is a CIRCLE OF THE FORM

(x �x0)2 �(y �y0)2 �r2 ; (9)

with CIRCUMCENTER

x0 ��
d

a 
(10)

y0 ��
f

a 
(11)

and CIRCUMRADIUS

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � d2

a2
�

g

a

s
: (12)

If a polygon with side lengths a , b , c , ... and standard
trilinear equations a �0; b �0 ; g �0; ... has a cir-
cumcircle, then for any point of the circle,

a

a 
�

b

b 
�

c

g 
�. . .�0 (13)

(Casey 1878, 1893).

See also CIRCLE, CIRCUMCENTER, CIRCUMRADIUS,
EXCIRCLE, INCIRCLE, PARRY POINT, PIVOT THEOREM,
PURSER’S THEOREM, SIMSON LINE, STEINER POINTS,
TARRY POINT
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Circumference
The PERIMETER of a CIRCLE. For RADIUS r or DIAMETER

d�2r;

C�2pr�pd;

where p is PI.

See also CIRCLE, DIAMETER, GRAPH CIRCUMFERENCE,
PERIMETER, PI, RADIUS



Circumflex
HAT

Circuminscribed
Given two CLOSED CURVES, the circuminscribed curve
is simultaneously INSCRIBED in the outer one and
CIRCUMSCRIBED on the inner one.

See also PONCELET’S PORISM, STEINER CHAIN

Circumradius

The radius of a TRIANGLE’S CIRCUMCIRCLE or of a
POLYHEDRON’s CIRCUMSPHERE, denoted R . For a
TRIANGLE,

R �
abcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a � b � c)(b � c � a)(c � a � b)(a � b � c)
p

(1)

where the side lengths of the TRIANGLE are /
a ; b; and c/.

This equation can also be expressed in terms of the
RADII of the three mutually tangent CIRCLES centered
at the TRIANGLE’S VERTICES. Relabeling the diagram
for the SODDY CIRCLES with VERTICES O1 ; O2 ; and O3

and the radii r1 ; r2 ; and r3 ; and using

a �r1 �r2 (2)

b �r2 �r3 (3)

c �r1 �r3 (4)

then gives

R �
(r1 � r2)(r1 � r3)(r2 � r3)

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3(r1 � r2 � r3)

p : (5)

If O is the CIRCUMCENTER and M is the triangle
CENTROID, then

OM
2 
�R2 �1

9(a
2 �b2 �c2): (6)

Rr �
abc

4s 
(7)

cos a1 �cos a2 �cos a3 �1 �
r

R 
(8)

r �2R cos a1 cos a2 cos a3 (9)

(Johnson 1929, pp. 189 �/91). Let d be the distance
between INRADIUS r and circumradius R , d �rR :
Then

R2 �d2 �2Rr (10)

1

R � d 
�

1

R � d 
�

1

r 
(11)

(Mackay 1886 �/7; Casey 1888, pp. 74 �/5). These and
many other identities are given in Johnson (1929,
pp. 186 �/90).
The HYPOTENUSE of a RIGHT TRIANGLE is a DIAMETER

of the triangle’s CIRCUMCIRCLE, so the circumradius is
given by

R �1
2 c ; (12)

where c is the HYPOTENUSE.

For an ARCHIMEDEAN SOLID, expressing the circum-
radius in terms of the INRADIUS r and MIDRADIUS r

gives

R�1
2(r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�a2)

p
(13)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�1

4 a2
q

(14)

for an ARCHIMEDEAN SOLID.

See also CARNOT’S THEOREM, CIRCUMCIRCLE, CIRCUM-

SPHERE, INCIRCLE, INRADIUS
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Circumscribed
A geometric figure which touches only the vertices (or
other extremities) of another figure.

See also CIRCUMCENTER, CIRCUMCIRCLE, CIRCUMIN-

SCRIBED, CIRCUMRADIUS, INSCRIBED

Circumsphere

A SPHERE circumscribed in a given solid. Its radius is
called the CIRCUMRADIUS. The figures above depict
the circumspheres of the Platonic solids.

See also INSPHERE, MIDSPHERE

Cis
Another name for the complex exponential,

Cis x �eix �cos x �i sin x:

See also EXPONENTIAL FUNCTION, PHASOR

Cissoid
Given two curves C1 and C2 and a fixed point O , let a
line from O cut C1 at Q and C2 at R . Then the LOCUS

of a point P such that OP �QR is the cissoid. The
word cissoid means "ivy shaped."

Curve
1

Curve
2

Pole Cissoid

LINE PARALLEL

LINE

any point line

LINE CIRCLE center CONCHOID OF

NICOMEDES

CIRCLE tangent
line

on CIRCUM-

FERENCE

oblique
cissoid

CIRCLE tangent
line

on CIRCUM-

FERENCE

opp. tan-
gent

CISSOID OF

DIOCLES

CIRCLE radial line on CIRCUM-

FERENCE

strophoid

CIRCLE concentric
CIRCLE

center CIRCLE

CIRCLE same
CIRCLE

/(a
ffiffiffi
2

p
; 0)/ LEMNISCATE

See also CISSOID OF DIOCLES
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Cissoid of Diocles

A curve invented by Diocles in about 180 BC in
connection with his attempt to duplicate the cube by
geometrical methods. The name "cissoid" first ap-
pears in the work of Geminus about 100 years later.
Fermat and Roberval constructed the tangent in
1634. Huygens and Wallis found, in 1658, that the
AREA between the curve and its asymptote was 3a
(MacTutor Archive). From a given point there are
either one or three TANGENTS to the cissoid.
Given an origin O and a point P on the curve, let S be
the point where the extension of the line OP inter-
sects the line x�2a and R be the intersection of the
CIRCLE of RADIUS a and center (a; 0) with the
extension of OP . Then the cissoid of Diocles is the
curve which satisfies OP�RS .

The cissoid of Diocles is the ROULETTE of the VERTEX

of a PARABOLA rolling on an equal PARABOLA. Newton
gave a method of drawing the cissoid of Diocles using
two line segments of equal length at RIGHT ANGLES. If
they are moved so that one line always passes
through a fixed point and the end of the other line
segment slides along a straight line, then the MID-

POINT of the sliding line segment traces out a cissoid
of Diocles.

The cissoid of Diocles is given by the PARAMETRIC

EQUATIONS

x�2a sin2 u (1)

y�
2a sin3 u

cos u
: (2)

Converting these to POLAR COORDINATES gives



r2 �x2 �y2 �4a2 sin4 u �
sin6 u

cos2 u

 !

�4a2 sin4 u(1 �tan2 u) �4a2 sin4 u sec2 u; (3)

so

r �2a sin2 u sec u �2a sin u tan u: (4)

In CARTESIAN COORDINATES,

x3

2a � x 
�

8a3 sin6 u

2a � 2a sin2 u 
�4a2 sin6 u

1 � sin2 u

�4a2 sin6 u

cos2 u 
�y2 : (5)

An equivalent form is

x(x2 �y2) �2ay2 : (6)

Using the alternative parametric form

x(t) �
2at2

1 � t2 
(7)

y(t) �
2at3

1 � t2 
(8)

(Gray 1997), gives the CURVATURE as

k(t) �
3

a ½t½(t2 � 4)3=2 : (9)
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Cissoid of Diocles Caustic
The CAUSTIC of the cissoid where the RADIANT POINT is
taken as (8a; 0) is a CARDIOID.

Cissoid of Diocles Inverse Curve
If the cusp of the CISSOID OF DIOCLES is taken as the
INVERSION CENTER, then the cissoid inverts to a
PARABOLA.

Cissoid of Diocles Pedal Curve

The PEDAL CURVE of the cissoid, when the PEDAL

POINT is on the axis beyond the ASYMPTOTE at a
distance from the cusp which is four times that of the
ASYMPTOTE is a CARDIOID.

C-k Function
A function with k CONTINUOUS DERIVATIVES is called
a Ck function. In order to specify a Ck function on a
domain X , the notation Ck(X) is used. The most
common Ck space is C0 ; the space of CONTINUOUS

FUNCTIONS, whereas C1 is the space of CONTINUOUSLY

DIFFERENTIABLE FUNCTIONS. Cartan (1977, p. 327)
writes humorously that "by ‘differentiable,’ we mean
of class Ck ; with k being as large as necessary."

Of course, any SMOOTH FUNCTION is Ck ; and when
l �k , then any Cl function is Ck : It is natural to think
of a Ck function as being a little bit rough, but the
graph of a C3 function "looks" smooth.

Examples of Ck functions are ½x½k�1 (for k even) and
xk�1 sin(1=x); which do not have a (k�1)/st derivative
at 0.

The notion of Ck function may be restricted to those
whose first k derivatives are BOUNDED functions. The
reason for this restriction is that the set of Ck

functions has a NORM which makes it a BANACH

SPACE,

½½f ½½Ck(X)�
Xk

n�0

sup
x �X

½f (n)(x)½:

See also BANACH SPACE, C-INFINITY FUNCTION,
CALCULUS, CONTINUOUSLY DIFFERENTIABLE FUNC-



TION, CONTINUOUS FUNCTION, DIFFERENTIAL EQUA-

TION, REGULARITY (PDE)
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MA: Birkhäuser, pp. 12 �/3, 1999.

Clairaut’s Difference Equation
This entry contributed by RONALD M. AARTS

Clairaut’s difference equation is a special case of
Lagrange’s equation (Sokolnikoff and Redheffer 1958)
defined by

uk �kDuk �F( Duk) ;

or in "x notation,"

y �x
Dy

Dx 
�F

Dy

Dx

 !

(Spiegel 1970). It is so named by analogy with
CLAIRAUT’S DIFFERENTIAL EQUATION

y �x
dy

dx 
�F

dy

dx

 !
:

See also CLAIRAUT’S DIFFERENTIAL EQUATION

References
Sokolnikoff, I. S. and Redheffer, R. M. Mathematics of

Physics and Modern Engineering. New York: McGraw-
Hill, 1958.

Spiegel, M. R. Schaum’s Outline of Theory and Problems of
Calculus of Finite Differences and Difference Equations.
New York: McGraw-Hill, 1970.

Clairaut’s Differential Equation

y �x
dy

dx 
�f

dy

dx

 !
(1)

or

y �px �f (p); (2)

where f is a FUNCTION of one variable and p �dy=dx:
The general solution is

y �cx �f (c) : (3)

The singular solution ENVELOPES are x ��f ?(c) and
y �f (c) �cf ?(c):/
A PARTIAL DIFFERENTIAL EQUATION known as Clair-
aut’s equation is given by

u �xux �yuy �f (ux ; uy) (4)

(Iyanaga and Kawada 1980, p. 1446; Zwillinger 1997,
p. 132).

See also CLAIRAUT’S DIFFERENCE EQUATION, D’ALEM-

BERT’S EQUATION
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Clarity
The RATIO of a measure of the size of a "fit" to the size
of a "residual."
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Clark’s Triangle

A NUMBER TRIANGLE created by setting the vertex
equal to 0, filling one diagonal with 1s, the other
diagonal with multiples of an INTEGER f , and filling in
the remaining entries by summing the elements on
either side from one row above. Call the first column
n�0 and the last column m�n so that

c(m; 0)�fm (1)

c(m; m)�1 (2)

then use the RECURRENCE RELATION

c(m; n)�c(m�1; n�1)�c(m�1; n) (3)

to compute the rest of the entries. For n�1, we have

c(m; 1)�c(m�1; 0)�c(m�1; 1) (4)

c(m; 1)�c(m�1; 1)�c(m�1; 0)�f (m�1): (5)

For arbitrary m , the value can be computed by



SUMMING this RECURRENCE,

c(m; 1) �f
Xm�1

k�1

k

 !
�1 �1

2 fm(m �1) �1: (6)

Now, for n �2 we have

c(m; 2) �c(m �1; 1) �c(m �1; 2) (7)

c(m; 2) �c(m �1; 2) �c(m �1 ; 1)

�1
2 f (m �1)m �1 ; (8)

so SUMMING the RECURRENCE gives

c(m; 2) �
Xm�1

k �1

[1
2 fk(k �1) �1] �

Xm

k�1

(1
2 fk

2 �1
2 fk �1)

�1
2 f [1

6 m(m �1)(2m �1)] �1
2 f [1

2 m(m �1)] �m

�1
6(m �1)(fm2 �2fm �6): (9)

Similarly, for n �3 we have

c(m; 3) �c(m �1 ; 3) �c(m �1; 2)

�1
6 fm

3 �fm2 �(11
6 f �1)m �(f �2): (10)

Taking the SUM,

c(m; 3) �
Xm

k �2

1
6 fk

3 �fk2 �(11
6 f �1)k �(f �2): (11)

Evaluating the SUM gives

c(m; 3) � 1
24(m �1)(m �2)(fm2 �3fm �12): (12)

So far, this has just been relatively boring ALGEBRA.
But the amazing part is that if f �6 is chosen as the
INTEGER, then c(m; 2) and c(m; 3) simplify to

c(m; 2) �1
6(m �1)(6m2 �12m �6) �(m �1)3 (13)

c(m; 3) �1
4(m �1)2(m �2)2 ; (14)

which are consecutive CUBES (m �1)3 and nonconse-
cutive SQUARES n2 �[(m �1)(m �2)=2]2 :/

See also BELL TRIANGLE, CATALAN’S TRIANGLE,
EULER’S TRIANGLE, LEIBNIZ HARMONIC TRIANGLE,
LOSSNITSCH’S TRIANGLE, NUMBER TRIANGLE, PAS-

CAL’S TRIANGLE, SEIDEL-ENTRINGER-ARNOLD TRIAN-

GLE, SUM
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Class
The word "class" has many specialized meanings in
mathematics in which it refers to a group of objects
with some common property (e.g., CHARACTERISTIC

CLASS or CONJUGACY CLASS.)

In statistics, a class is a grouping of values by which
data is binned for computation of a FREQUENCY

DISTRIBUTION (Kenney and Keeping 1962, p. 14).
The range of values of a given class is called a CLASS

INTERVAL, the boundaries of an interval are called
CLASS LIMITS, and the middle of a CLASS INTERVAL is
called the CLASS MARK.

class
interval

class
mark

absolute
frequency

relative
frequency

cumulative
absolute
frequency

relative
cumulative
frequency

0.00 �/

9.99
5 1 0.01 1 0.01

10.00 �/

9.99
15 3 0.03 4 0.04

20.00 �/

9.99
25 8 0.08 12 0.12

30.00 �/

9.99
35 18 0.18 30 0.30

40.00 �/

9.99
45 24 0.24 54 0.54

50.00�/

9.99
55 22 0.22 76 0.76

60.00�/

9.99
65 15 0.15 91 0.91

70.00�/

9.99
75 8 0.08 99 0.99

80.00�/

9.99
85 0 0.00 99 0.99

90.00�/

9.99
95 1 0.01 100 1.00

See also CHARACTERISTIC CLASS, CLASS BOUNDARIES,
CLASS GROUP FACTORIZATION METHOD, CLASS INTER-

VAL, CLASS LIMITS, CLASS MARK, CLASS (MULTIPLY

PERFECT NUMBER), CLASS NUMBER, CLASS (SET),
CONJUGACY CLASS, FREQUENCY DISTRIBUTION

Class (Group)
CONJUGACY CLASS



Class (Map)
A MAP u : Rn 0 Rn from a DOMAIN G is called a map
of class Cr if each component of

u(x) �(u1(x1 ; . . . ; xn) ; . . . ; um(x1 ; . . . ; xn))

is of class Cr (0 5r 5� or r � v) in G , where Cd

denotes a continuous function which is differentiable
d times.

Class (Multiply Perfect Number)
The number k in the expression s(n) �kn for a
MULTIPLY PERFECT NUMBER is called its class.

See also MULTIPLY PERFECT NUMBER

Class (Set)
A class is a generalized set invented to get around
RUSSELL’S PARADOX while retaining the arbitrary
criteria for membership which leads to difficulty for
SETS. The members of classes are SETS, but it is
possible to have the class C of "all SETS which are not
members of themselves" without producing a PARA-

DOX (since C is a PROPER CLASS (and not a SET), it is
not a candidate for membership in C ).

The distinction between classes and sets is a concept
from VON NEUMANN-BERNAYS-GÖ DEL SET THEORY.

See also AGGREGATE, PROPER CLASS, RUSSELL’S

PARADOX, SET, TYPE, VON NEUMANN-BERNAYS-GÖ DEL

SET THEORY
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Class Boundaries
Because of rounding, the stated CLASS LIMITS do not
correspond to the actual ranges of data falling in
them. For example, if the CLASS LIMITS are 1.00 and
2.00, then all values between 0.95 and 2.05 would
actually fall in the given CLASS, so the class bound-
aries are 0.95 and 2.05 (Kenney and Keeping 1962,
p. 17).

See also CLASS LIMITS
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Class Field

See also CLASS FIELD THEORY

Class Field Theory

See also CLASS FIELD, CLASS NUMBER, RECIPROCITY

LAW
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Class Group Factorization Method

A PRIME FACTORIZATION ALGORITHM.
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Class Interval
One of the ranges into which data in a FREQUENCY

DISTRIBUTION table (or HISTOGRAM) are BINNED. The
ends of a class interval are called CLASS LIMITS, and
the middle of an interval is called a CLASS MARK.

See also BIN, CLASS BOUNDARIES, CLASS LIMITS,
CLASS MARK, HISTOGRAM, SHEPPARD’S CORRECTION
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Class Limits
The end values which specify a CLASS INTERVAL.

See also CLASS BOUNDARIES, CLASS INTERVAL

References
Kenney, J. F. and Keeping, E. S. "Class Limits and Class

Boundaries." §1.10 in Mathematics of Statistics, Pt. 1, 3rd
ed. Princeton, NJ: Van Nostrand, p. 17, 1962.

Class Mark
The average of the values of the CLASS LIMITS for a
given class. A class mark is also called a midvalue or
central value (Kenney and Keeping 1962, p. 14), and
is commonly denoted xc :/

See also CLASS INTERVAL, CLASS LIMITS
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Class Number
For any IDEAL I , there is an IDEAL Ii such that

IIi�z; (1)

where z is a PRINCIPAL IDEAL, (i.e., an IDEAL of rank
1). Moreover, there is a finite list of ideals Ii such that



this equation may be satisfied for every I . The size of
this list is known as the class number. When the class
number is 1, the RING corresponding to a given IDEAL

has unique factorization and, in a sense, the class
number is a measure of the failure of unique
factorization in the original number ring.

A finite series giving exactly the class number of a
RING is known as a CLASS NUMBER FORMULA. A CLASS

NUMBER FORMULA is known for the full ring of
cyclotomic integers, as well as for any subring of the
cyclotomic integers. Finding the class number is a
computationally difficult problem.

Let h(d) denote the class number of a quadratic ring,
corresponding to the BINARY QUADRATIC FORM

ax2�bxy�cy2; (2)

with DISCRIMINANT

d�b2�4ac: (3)

Then the class number h(d) for DISCRIMINANT d gives
the number of possible factorizations of ax2�bxy�
cy2 in the QUADRATIC FIELD Q(

ffiffiffi
d

p
): Here, the factors

are of the form x�y
ffiffiffi
d

p
; with x and y half INTEGERS.

Some fairly sophisticated mathematics shows that
the class number for discriminant d can be given by
the CLASS NUMBER FORMULA

h(d)�

�
1

2 ln h(d)

Xd�1

r�1

(d=r)ln sin
pr

d

 !
for d > 0

�
w(d)

2½d½

X½d½�1

r�1

(d=r)r for dB0;

8>>>><
>>>>:

(4)

where (d=r) is the KRONECKER SYMBOL, h(d) is the
FUNDAMENTAL UNIT, w(d) is the number of substitu-
tions which leave the BINARY QUADRATIC FORM un-
changed

w(d)�
6 for d��3
4 for d��4
2 otherwise;

8<
: (5)

and the sums are taken over all terms where the
KRONECKER SYMBOL is defined (Cohn 1980). The class
number for d �0 can also be written

h2h(d)�
Yd�1

r�1

sin�(d=r) pr

d

 !
(6)

for d �0, where the PRODUCT is taken over terms for
which the KRONECKER SYMBOL is defined.

The class number h(d) is related to the DIRICHLET L -

SERIES by

h(d)�
Ld(1)

k(d)
; (7)

where k(d) is the DIRICHLET STRUCTURE CONSTANT.

Oesterlé (1985) showed that class number h(�d)
satisfies the INEQUALITY

h(�d) >
1

7000

Y
p½d

� 1�
2
ffiffiffi
p

p> ?
p � 1

 !
ln d; (8)

for �dB0; where xb c is the FLOOR FUNCTION, the
product is over PRIMES dividing d , and the + indicates
that the GREATEST PRIME FACTOR of d is omitted from
the product. It is also known that if d is RELATIVELY

PRIME to 5077, then the denominator 7000 in (8) can
be replaced by 55.

The Mathematica function NumberTheory‘Num-
berTheoryFunctions‘ClassNumber[n ] gives the class
number h(d) for d a NEGATIVE SQUAREFREE number
OF THE FORM 4k�1:/

GAUSS’S CLASS NUMBER PROBLEM asks to determine a
complete list of fundamental DISCRIMINANTS�d such
that the CLASS NUMBER is given by h(�d)�n for a
given n . This problem has been solved for n57 and
ODD n523: Gauss conjectured that the class number
h(�d) of an IMAGINARY QUADRATIC FIELD with DIS-

CRIMINANT �d tends to infinity with d , an assertion
now known as GAUSS’S CLASS NUMBER CONJECTURE.

The discriminants d having h(�d)�1; 2, 3, 4, 5, ... are
Sloane’s A014602 (Cohen 1993, p. 229; Cox 1997,
p. 271), Sloane’s A014603 (Cohen 1993, p. 229), Sloa-
ne’s A006203 (Cohen 1993, p. 504), Sloane’s A013658
(Cohen 1993, p. 229), Sloane’s A046002, Sloane’s
A046003, .... The complete set of negative discrimi-
nants having class numbers 1�/ and ODD 7�/3 are
known. Buell (1977) gives the smallest and largest
fundamental class numbers for dB4; 000; 000; par-
titioned into EVEN discriminants, discriminants 1
(mod 8), and discriminants 5 (mod 8). Arno et al.
(1993) give complete lists of values of d with h(�d)�k
for ODD k�5, 7, 9, ..., 23. Wagner gives complete lists
of values for k�5, 6, and 7.

Lists of NEGATIVE discriminants corresponding to
IMAGINARY QUADRATIC FIELDS Q(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�d(n)

p
) having

small class numbers h(�d) are given in the table
below. In the table, N is the number of "fundamental"
values of�d with a given class number h(�d); where
"fundamental" means that�d is not divisible by any
SQUARE NUMBER s2 such that h(�d=s2)Bh(�d): For
example, although h(�63)�2; -63 is not a funda-
mental discriminant since 63�32 � 7 and
h(�63=32)�h(�7)�1Bh(�63): EVEN values 85
h(�d)524 have been computed by Weisstein. The
number of negative discriminants having class num-
ber 1, 2, 3, ... are 9, 18, 16, 54, 25, 51, 31, ... (Sloane’s
A046125). The largest negative discriminants having
class numbers 1, 2, 3, ... are 163, 427, 907, 1555, 2683,
... (Sloane’s A038552).

The following table lists the numbers having class
numbers h525: The search was terminated at 50000,
70000, 90000, and 90000 for class numbers 18, 20, 22,



and 24, respectively. As far as I know, analytic upper
bounds are not currently known for these cases.

/h(�d)/ N Sloane d

1 9 A014602 3, 4, 7, 8, 11, 19, 43, 67, 163

2 18 A014603 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235,

267, 403, 427

3 16 A006203 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643,

883, 907

4 54 A013658 39, 55, 56, 68, 84, 120, 132, 136, 155, 168, 184, 195, 203, 219,

228, 259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408,

435, 483, 520, 532, 555, 568, 595, 627, 667, 708, 715, 723, 760,

763, 772, 795, 955, 1003, 1012, 1027, 1227, 1243, 1387, 1411,

1435, 1507, 1555

5 25 A046002 47, 79, 103, 127, 131, 179, 227, 347, 443, 523, 571, 619, 683,

691, 739, 787, 947, 1051, 1123, 1723, 1747, 1867, 2203, 2347,

2683

6 51 A046003 87, 104, 116, 152, 212, 244, 247, 339, 411, 424, 436, 451, 472,

515, 628, 707, 771, 808, 835, 843, 856, 1048, 1059, 1099, 1108,

1147, 1192, 1203, 1219, 1267, 1315, 1347, 1363, 1432, 1563,

1588, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563,

2787, 2923, 3235, 3427, 3523, 3763

7 31 A046004 71, 151, 223, 251, 463, 467, 487, 587, 811, 827, 859, 1163, 1171,

1483, 1523, 1627, 1787, 1987, 2011, 2083, 2179, 2251, 2467,

2707, 3019, 3067, 3187, 3907, 4603, 5107, 5923

8 131 A046005 95, 111, 164, 183, 248, 260, 264, 276, 295, 299, 308, 371, 376,

395, 420, 452, 456, 548, 552, 564, 579, 580, 583, 616, 632, 651,

660, 712, 820, 840, 852, 868, 904, 915, 939, 952, 979, 987, 995,

1032, 1043, 1060, 1092, 1128, 1131, 1155, 1195, 1204, 1240,

1252, 1288, 1299, 1320, 1339, 1348, 1380, 1428, 1443, 1528,

1540, 1635, 1651, 1659, 1672, 1731, 1752, 1768, 1771, 1780,

1795, 1803, 1828, 1848, 1864, 1912, 1939, 1947, 1992, 1995,

2020, 2035, 2059, 2067, 2139, 2163, 2212, 2248, 2307, 2308,

2323, 2392, 2395, 2419, 2451, 2587, 2611, 2632, 2667, 2715,

2755, 2788, 2827, 2947, 2968, 2995, 3003, 3172, 3243, 3315,

3355, 3403, 3448, 3507, 3595, 3787, 3883, 3963, 4123, 4195,

4267, 4323, 4387, 4747, 4843, 4867, 5083, 5467, 5587, 5707,

5947, 6307

9 34 A046006 199, 367, 419, 491, 563, 823, 1087, 1187, 1291, 1423, 1579,

2003, 2803, 3163, 3259, 3307, 3547, 3643, 4027, 4243, 4363,

4483, 4723, 4987, 5443, 6043, 6427, 6763, 6883, 7723, 8563,

8803, 9067, 10627

10 87 A046007 119, 143, 159, 296, 303, 319, 344, 415, 488, 611, 635, 664, 699,

724, 779, 788, 803, 851, 872, 916, 923, 1115, 1268, 1384, 1492,

1576, 1643, 1684, 1688, 1707, 1779, 1819, 1835, 1891, 1923,

2152, 2164, 2363, 2452, 2643, 2776, 2836, 2899, 3028, 3091,

3139, 3147, 3291, 3412, 3508, 3635, 3667, 3683, 3811, 3859,

3928, 4083, 4227, 4372, 4435, 4579, 4627, 4852, 4915, 5131,

5163, 5272, 5515, 5611, 5667, 5803, 6115, 6259, 6403, 6667,

7123, 7363, 7387, 7435, 7483, 7627, 8227, 8947, 9307, 10147,

10483, 13843

11 41 A046008 167, 271, 659, 967, 1283, 1303, 1307, 1459, 1531, 1699, 2027,

2267, 2539, 2731, 2851, 2971, 3203, 3347, 3499, 3739, 3931,

4051, 5179, 5683, 6163, 6547, 7027, 7507, 7603, 7867, 8443,

9283, 9403, 9643, 9787, 10987, 13003, 13267, 14107, 14683,

15667

12 206 A046009 231, 255, 327, 356, 440, 516, 543, 655, 680, 687, 696, 728, 731,

744, 755, 804, 888, 932, 948, 964, 984, 996, 1011, 1067, 1096,

1144, 1208, 1235, 1236, 1255, 1272, 1336, 1355, 1371, 1419,

1464, 1480, 1491, 1515, 1547, 1572, 1668, 1720, 1732, 1763,

1807, 1812, 1892, 1955, 1972, 2068, 2091, 2104, 2132, 2148,

2155, 2235, 2260, 2355, 2387, 2388, 2424, 2440, 2468, 2472,

2488, 2491, 2555, 2595, 2627, 2635, 2676, 2680, 2692, 2723,

2728, 2740, 2795, 2867, 2872, 2920, 2955, 3012, 3027, 3043,

3048, 3115, 3208, 3252, 3256, 3268, 3304, 3387, 3451, 3459,

3592, 3619, 3652, 3723, 3747, 3768, 3796, 3835, 3880, 3892,

3955, 3972, 4035, 4120, 4132, 4147, 4152, 4155, 4168, 4291,

4360, 4411, 4467, 4531, 4552, 4555, 4587, 4648, 4699, 4708,

4755, 4771, 4792, 4795, 4827, 4888, 4907, 4947, 4963, 5032,

5035, 5128, 5140, 5155, 5188, 5259, 5299, 5307, 5371, 5395,

5523, 5595, 5755, 5763, 5811, 5835, 6187, 6232, 6235, 6267,

6283, 6472, 6483, 6603, 6643, 6715, 6787, 6843, 6931, 6955,

6963, 6987, 7107, 7291, 7492, 7555, 7683, 7891, 7912, 8068,

8131, 8155, 8248, 8323, 8347, 8395, 8787, 8827, 9003, 9139,

9355, 9523, 9667, 9843, 10003, 10603, 10707, 10747, 10795,

10915, 11155, 11347, 11707, 11803, 12307, 12643, 14443,

15163, 15283, 16003, 17803

13 37 A046010 191, 263, 607, 631, 727, 1019, 1451, 1499, 1667, 1907, 2131,

2143, 2371, 2659, 2963, 3083, 3691, 4003, 4507, 4643, 5347,

5419, 5779, 6619, 7243, 7963, 9547, 9739, 11467, 11587, 11827,

11923, 12043, 14347, 15787, 16963, 20563

14 96 A046011 215, 287, 391, 404, 447, 511, 535, 536, 596, 692, 703, 807, 899,

1112, 1211, 1396, 1403, 1527, 1816, 1851, 1883, 2008, 2123,

2147, 2171, 2335, 2427, 2507, 2536, 2571, 2612, 2779, 2931,

2932, 3112, 3227, 3352, 3579, 3707, 3715, 3867, 3988, 4187,

4315, 4443, 4468, 4659, 4803, 4948, 5027, 5091, 5251, 5267,

5608, 5723, 5812, 5971, 6388, 6499, 6523, 6568, 6979, 7067,

7099, 7147, 7915, 8035, 8187, 8611, 8899, 9115, 9172, 9235,

9427, 10123, 10315, 10363, 10411, 11227, 12147, 12667, 12787,

13027, 13435, 13483, 13603, 14203, 16867, 18187, 18547,

18643, 20227, 21547, 23083, 23692, 30067

15 68 A046012 239, 439, 751, 971, 1259, 1327, 1427, 1567, 1619, 2243, 2647,

2699, 2843, 3331, 3571, 3803, 4099, 4219, 5003, 5227, 5323,

5563, 5827, 5987, 6067, 6091, 6211, 6571, 7219, 7459, 7547,

8467, 8707, 8779, 9043, 9907, 10243, 10267, 10459, 10651,

10723, 11083, 11971, 12163, 12763, 13147, 13963, 14323,

14827, 14851, 15187, 15643, 15907, 16603, 16843, 17467,

17923, 18043, 18523, 19387, 19867, 20707, 22003, 26203,

27883, 29947, 32323, 34483

16 322 A046013 399, 407, 471, 559, 584, 644, 663, 740, 799, 884, 895, 903, 943,

1015, 1016, 1023, 1028, 1047, 1139, 1140, 1159, 1220, 1379,

1412, 1416, 1508, 1560, 1595, 1608, 1624, 1636, 1640, 1716,

1860, 1876, 1924, 1983, 2004, 2019, 2040, 2056, 2072, 2095,

2195, 2211, 2244, 2280, 2292, 2296, 2328, 2356, 2379, 2436,

2568, 2580, 2584, 2739, 2760, 2811, 2868, 2884, 2980, 3063,

3108, 3140, 3144, 3160, 3171, 3192, 3220, 3336, 3363, 3379,

3432, 3435, 3443, 3460, 3480, 3531, 3556, 3588, 3603, 3640,

3732, 3752, 3784, 3795, 3819, 3828, 3832, 3939, 3976, 4008,

4020, 4043, 4171, 4179, 4180, 4216, 4228, 4251, 4260, 4324,

4379, 4420, 4427, 4440, 4452, 4488, 4515, 4516, 4596, 4612,

4683, 4687, 4712, 4740, 4804, 4899, 4939, 4971, 4984, 5115,

5160, 5187, 5195, 5208, 5363, 5380, 5403, 5412, 5428, 5460,

5572, 5668, 5752, 5848, 5860, 5883, 5896, 5907, 5908, 5992,

5995, 6040, 6052, 6099, 6123, 6148, 6195, 6312, 6315, 6328,

6355, 6395, 6420, 6532, 6580, 6595, 6612, 6628, 6708, 6747,

6771, 6792, 6820, 6868, 6923, 6952, 7003, 7035, 7051, 7195,

7288, 7315, 7347, 7368, 7395, 7480, 7491, 7540, 7579, 7588,

7672, 7707, 7747, 7755, 7780, 7795, 7819, 7828, 7843, 7923,

7995, 8008, 8043, 8052, 8083, 8283, 8299, 8308, 8452, 8515,

8547, 8548, 8635, 8643, 8680, 8683, 8715, 8835, 8859, 8932,

8968, 9208, 9219, 9412, 9483, 9507, 9508, 9595, 9640, 9763,

9835, 9867, 9955, 10132, 10168, 10195, 10203, 10227, 10312,

10387, 10420, 10563, 10587, 10635, 10803, 10843, 10948,

10963, 11067, 11092, 11107, 11179, 11203, 11512, 11523,

11563, 11572, 11635, 11715, 11848, 11995, 12027, 12259,

12387, 12523, 12595, 12747, 12772, 12835, 12859, 12868,

13123, 13192, 13195, 13288, 13323, 13363, 13507, 13795,

13819, 13827, 14008, 14155, 14371, 14403, 14547, 14707,

14763, 14995, 15067, 15387, 15403, 15547, 15715, 16027,

16195, 16347, 16531, 16555, 16723, 17227, 17323, 17347,

17427, 17515, 18403, 18715, 18883, 18907, 19147, 19195,

19947, 19987, 20155, 20395, 21403, 21715, 21835, 22243,

22843, 23395, 23587, 24403, 25027, 25267, 27307, 27787,

28963, 31243

17 45 A046014 383, 991, 1091, 1571, 1663, 1783, 2531, 3323, 3947, 4339, 4447,

4547, 4651, 5483, 6203, 6379, 6451, 6827, 6907, 7883, 8539,

8731, 9883, 11251, 11443, 12907, 13627, 14083, 14779, 14947,

16699, 17827, 18307, 19963, 21067, 23563, 24907, 25243,

26083, 26107, 27763, 31627, 33427, 36523, 37123

18 150 A046015 335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691,

1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747,

2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307,

4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899, 6196,

6227, 6331, 6387, 6484, 6739, 6835, 7323, 7339, 7528, 7571,

7715, 7732, 7771, 7827, 8152, 8203, 8212, 8331, 8403, 8488,

8507, 8587, 8884, 9123, 9211, 9563, 9627, 9683, 9748, 9832,

10228, 10264, 10347, 10523, 11188, 11419, 11608, 11643,

11683, 11851, 11992, 12067, 12148, 12187, 12235, 12283,

12651, 12723, 12811, 12952, 13227, 13315, 13387, 13747,

13947, 13987, 14163, 14227, 14515, 14667, 14932, 15115,

15243, 16123, 16171, 16387, 16627, 17035, 17131, 17403,

17635, 18283, 18712, 19027, 19123, 19651, 20035, 20827,

21043, 21652, 21667, 21907, 22267, 22443, 22507, 22947,

23347, 23467, 23683, 23923, 24067, 24523, 24667, 24787,

25435, 26587, 26707, 28147, 29467, 32827, 33763, 34027,

34507, 36667, 39307, 40987, 41827, 43387, 48427

19 47 A046016 311, 359, 919, 1063, 1543, 1831, 2099, 2339, 2459, 3343, 3463,

3467, 3607, 4019, 4139, 4327, 5059, 5147, 5527, 5659, 6803,



8419, 8923, 8971, 9619, 10891, 11299, 15091, 15331, 16363,

16747, 17011, 17299, 17539, 17683, 19507, 21187, 21211,

21283, 23203, 24763, 26227, 27043, 29803, 31123, 37507, 38707

20 350 A046017 455, 615, 776, 824, 836, 920, 1064, 1124, 1160, 1263, 1284,

1460, 1495, 1524, 1544, 1592, 1604, 1652, 1695, 1739, 1748,

1796, 1880, 1887, 1896, 1928, 1940, 1956, 2136, 2247, 2360,

2404, 2407, 2483, 2487, 2532, 2552, 2596, 2603, 2712, 2724,

2743, 2948, 2983, 2987, 3007, 3016, 3076, 3099, 3103, 3124,

3131, 3155, 3219, 3288, 3320, 3367, 3395, 3496, 3512, 3515,

3567, 3655, 3668, 3684, 3748, 3755, 3908, 3979, 4011, 4015,

4024, 4036, 4148, 4264, 4355, 4371, 4395, 4403, 4408, 4539,

4548, 4660, 4728, 4731, 4756, 4763, 4855, 4891, 5019, 5028,

5044, 5080, 5092, 5268, 5331, 5332, 5352, 5368, 5512, 5560,

5592, 5731, 5944, 5955, 5956, 5988, 6051, 6088, 6136, 6139,

6168, 6280, 6339, 6467, 6504, 6648, 6712, 6755, 6808, 6856,

7012, 7032, 7044, 7060, 7096, 7131, 7144, 7163, 7171, 7192,

7240, 7428, 7432, 7467, 7572, 7611, 7624, 7635, 7651, 7667,

7720, 7851, 7876, 7924, 7939, 8067, 8251, 8292, 8296, 8355,

8404, 8472, 8491, 8632, 8692, 8755, 8808, 8920, 8995, 9051,

9124, 9147, 9160, 9195, 9331, 9339, 9363, 9443, 9571, 9592,

9688, 9691, 9732, 9755, 9795, 9892, 9976, 9979, 10027, 10083,

10155, 10171, 10291, 10299, 10308, 10507, 10515, 10552,

10564, 10819, 10888, 11272, 11320, 11355, 11379, 11395,

11427, 11428, 11539, 11659, 11755, 11860, 11883, 11947,

11955, 12019, 12139, 12280, 12315, 12328, 12331, 12355,

12363, 12467, 12468, 12472, 12499, 12532, 12587, 12603,

12712, 12883, 12931, 12955, 12963, 13155, 13243, 13528,

13555, 13588, 13651, 13803, 13960, 14307, 14331, 14467,

14491, 14659, 14755, 14788, 15235, 15268, 15355, 15603,

15688, 15691, 15763, 15883, 15892, 15955, 16147, 16228,

16395, 16408, 16435, 16483, 16507, 16612, 16648, 16683,

16707, 16915, 16923, 17067, 17187, 17368, 17563, 17643,

17763, 17907, 18067, 18163, 18195, 18232, 18355, 18363,

19083, 19443, 19492, 19555, 19923, 20083, 20203, 20587,

20683, 20755, 20883, 21091, 21235, 21268, 21307, 21387,

21508, 21595, 21723, 21763, 21883, 22387, 22467, 22555,

22603, 22723, 23443, 23947, 24283, 24355, 24747, 24963,

25123, 25363, 26635, 26755, 26827, 26923, 27003, 27955,

27987, 28483, 28555, 29107, 29203, 30283, 30787, 31003,

31483, 31747, 31987, 32923, 33163, 34435, 35683, 35995,

36283, 37627, 37843, 37867, 38347, 39187, 39403, 40243,

40363, 40555, 40723, 43747, 47083, 48283, 51643, 54763,

58507

21 85 A046018 431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371,

4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907,

8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811,

9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291, 13339,

13723, 14419, 14563, 15427, 16339, 16987, 17107, 17707,

17971, 18427, 18979, 19483, 19531, 19819, 20947, 21379,

22027, 22483, 22963, 23227, 23827, 25603, 26683, 27427,

28387, 28723, 28867, 31963, 32803, 34147, 34963, 35323,

36067, 36187, 39043, 40483, 44683, 46027, 49603, 51283,

52627, 55603, 58963, 59467, 61483

22 139 A046019 591, 623, 767, 871, 879, 1076, 1111, 1167, 1304, 1556, 1591,

1639, 1903, 2215, 2216, 2263, 2435, 2623, 2648, 2815, 2863,

2935, 3032, 3151, 3316, 3563, 3587, 3827, 4084, 4115, 4163,

4328, 4456, 4504, 4667, 4811, 5383, 5416, 5603, 5716, 5739,

5972, 6019, 6127, 6243, 6616, 6772, 6819, 7179, 7235, 7403,

7763, 7768, 7899, 8023, 8143, 8371, 8659, 8728, 8851, 8907,

8915, 9267, 9304, 9496, 10435, 10579, 10708, 10851, 11035,

11283, 11363, 11668, 12091, 12115, 12403, 12867, 13672,

14019, 14059, 14179, 14548, 14587, 14635, 15208, 15563,

15832, 16243, 16251, 16283, 16291, 16459, 17147, 17587,

17779, 17947, 18115, 18267, 18835, 18987, 19243, 19315,

19672, 20308, 20392, 22579, 22587, 22987, 24243, 24427,

25387, 25507, 25843, 25963, 26323, 26548, 27619, 28267,

29227, 29635, 29827, 30235, 30867, 31315, 33643, 33667,

34003, 34387, 35347, 41083, 43723, 44923, 46363, 47587,

47923, 49723, 53827, 77683, 85507

23 68 A046020 647, 1039, 1103, 1279, 1447, 1471, 1811, 1979, 2411, 2671,

3491, 3539, 3847, 3923, 4211, 4783, 5387, 5507, 5531, 6563,

6659, 6703, 7043, 9587, 9931, 10867, 10883, 12203, 12739,

13099, 13187, 15307, 15451, 16267, 17203, 17851, 18379,

20323, 20443, 20899, 21019, 21163, 22171, 22531, 24043,

25147, 25579, 25939, 26251, 26947, 27283, 28843, 30187,

31147, 31267, 32467, 34843, 35107, 37003, 40627, 40867,

41203, 42667, 43003, 45427, 45523, 47947, 90787

24 511 A048925 695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988,

2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824,

2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540,

3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912, 3940,

4063, 4292, 4308, 4503, 4564, 4580, 4595, 4632, 4692, 4715,

4744, 4808, 4872, 4920, 4936, 5016, 5124, 5172, 5219, 5235,

5236, 5252, 5284, 5320, 5348, 5379, 5432, 5448, 5555, 5588,

5620, 5691, 5699, 5747, 5748, 5768, 5828, 5928, 5963, 5979,

6004, 6008, 6024, 6072, 6083, 6132, 6180, 6216, 6251, 6295,

6340, 6411, 6531, 6555, 6699, 6888, 6904, 6916, 7048, 7108,

7188, 7320, 7332, 7348, 7419, 7512, 7531, 7563, 7620, 7764,

7779, 7928, 7960, 7972, 8088, 8115, 8148, 8211, 8260, 8328,

8344, 8392, 8499, 8603, 8628, 8740, 8760, 8763, 8772, 8979,

9028, 9048, 9083, 9112, 9220, 9259, 9268, 9347, 9352, 9379,

9384, 9395, 9451, 9480, 9492, 9652, 9672, 9715, 9723, 9823,

9915, 9928, 9940, 10011, 10059, 10068, 10120, 10180, 10187,

10212, 10248, 10283, 10355, 10360, 10372, 10392, 10452,

10488, 10516, 10612, 10632, 10699, 10740, 10756, 10788,

10792, 10840, 10852, 10923, 11019, 11032, 11139, 11176,

11208, 11211, 11235, 11267, 11307, 11603, 11620, 11627,

11656, 11667, 11748, 11752, 11811, 11812, 11908, 11928,

12072, 12083, 12243, 12292, 12376, 12408, 12435, 12507,

12552, 12628, 12760, 12808, 12820, 12891, 13035, 13060,

13080, 13252, 13348, 13395, 13427, 13444, 13512, 13531,

13539, 13540, 13587, 13611, 13668, 13699, 13732, 13780,

13912, 14035, 14043, 14212, 14235, 14260, 14392, 14523,

14532, 14536, 14539, 14555, 14595, 14611, 14632, 14835,

14907, 14952, 14968, 14980, 15019, 15112, 15267, 15339,

15411, 15460, 15483, 15528, 15555, 15595, 15640, 15652,

15747, 15748, 15828, 15843, 15931, 15940, 15988, 16107,

16132, 16315, 16360, 16468, 16563, 16795, 16827, 16872,

16888, 16907, 16948, 17032, 17043, 17059, 17092, 17283,

17560, 17572, 17620, 17668, 17752, 17812, 17843, 18040,

18052, 18088, 18132, 18148, 18340, 18507, 18568, 18579,

18595, 18627, 18628, 18667, 18763, 18795, 18811, 18867,

18868, 18915, 19203, 19528, 19579, 19587, 19627, 19768,

19803, 19912, 19915, 20260, 20307, 20355, 20427, 20491,

20659, 20692, 20728, 20803, 20932, 20955, 20980, 20995,

21112, 21172, 21352, 21443, 21448, 21603, 21747, 21963,

21988, 22072, 22107, 22180, 22323, 22339, 22803, 22852,

22867, 22939, 23032, 23035, 23107, 23115, 23188, 23235,

23307, 23368, 23752, 23907, 23995, 24115, 24123, 24292,

24315, 24388, 24595, 24627, 24628, 24643, 24915, 24952,

24955, 25048, 25195, 25347, 25467, 25683, 25707, 25732,

25755, 25795, 25915, 25923, 25972, 25987, 26035, 26187,

26395, 26427, 26467, 26643, 26728, 26995, 27115, 27163,

27267, 27435, 27448, 27523, 27643, 27652, 27907, 28243,

28315, 28347, 28372, 28459, 28747, 28891, 29128, 29283,

29323, 29395, 29563, 29659, 29668, 29755, 29923, 30088,

30163, 30363, 30387, 30523, 30667, 30739, 30907, 30955,

30979, 31252, 31348, 31579, 31683, 31795, 31915, 32008,

32043, 32155, 32547, 32635, 32883, 33067, 33187, 33883,

34203, 34363, 34827, 34923, 36003, 36043, 36547, 36723,

36763, 36883, 37227, 37555, 37563, 38227, 38443, 38467,

39603, 39643, 39787, 40147, 40195, 40747, 41035, 41563,

42067, 42163, 42267, 42387, 42427, 42835, 43483, 44947,

45115, 45787, 46195, 46243, 46267, 47203, 47443, 47707,

48547, 49107, 49267, 49387, 49987, 50395, 52123, 52915,

54307, 55867, 56947, 57523, 60523, 60883, 61147, 62155,

62203, 63043, 64267, 79363, 84043, 84547, 111763

25 95 A056987 479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283,

7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131,

11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923,

15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107,

21323, 21499, 21523, 21739, 21787, 21859, 24091, 24571,

25747, 26371, 27067, 27091, 28123, 28603, 28627, 28771,

29443, 30307, 30403, 30427, 30643, 32203, 32443, 32563,

32587, 33091, 34123, 34171, 34651, 34939, 36307, 37363,

37747, 37963, 38803, 39163, 44563, 45763, 48787, 49123,

50227, 51907, 54667, 55147, 57283, 57667, 57787, 59707,

61027, 62563, 63067, 64747, 66763, 68443, 69763, 80347,

85243, 89083, 93307

The table below gives lists of POSITIVE fundamental
discriminants d having small class numbers h(d);
corresponding to REAL QUADRATIC FIELDS. All POSI-

TIVE SQUAREFREE values of d597 (for which the
KRONECKER SYMBOL is defined) are included.

/h(d)/ d

1 5, 13, 17, 21, 29, 37, 41, 53, 57, 61, 69, 73, 77

2 65

The POSITIVE d for which h(d�1) is given by Sloane’s
A014539.

See also CLASS FIELD THEORY, CLASS NUMBER



FORMULA, DIRICHLET L -SERIES, DISCRIMINANT (BIN-

ARY QUADRATIC FORM), GAUSS’S CLASS NUMBER

CONJECTURE, GAUSS’S CLASS NUMBER PROBLEM,
HEEGNER NUMBER, IDEAL, J -FUNCTION, RING
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quences/eisonline.html.

Stark, H. M. "A Complete Determination of the Complex
Quadratic Fields of Class Number One." Michigan Math.
J. 14, 1�/7, 1967.

Stark, H. M. "On Complex Quadratic Fields with Class
Number Two." Math. Comput. 29, 289 �/02, 1975.

Wagner, C. "Class Number 5, 6, and 7." Math. Comput. 65,
785 �/00, 1996.

Weisstein, E. W. "Class Numbers." MATHEMATICA NOTE-

BOOK CLASSNUMBERS.M.

Class Number Formula
A class number formula is a finite series giving
exactly the CLASS NUMBER of a RING. For a RING of
quadratic integers, the class number is denoted h(d);
where d is the discriminant. A class number formula
is known for the full ring of cyclotomic integers, as
well as for any subring of the cyclotomic integers.
This formula includes the quadratic case as well as
many cubic and higher-order RINGS.

See also CLASS NUMBER, RING

Class Representative
A set of class representatives is a SUBSET of X which
contains exactly one element from each EQUIVALENCE

CLASS.

See also EQUIVALENCE CLASS

Classical Algebraic Geometry
Classical algebraic geometry is the study of ALGE-

BRAIC VARIETIES, both AFFINE VARIETIES in Cn and
PROJECTIVE VARIETIES in C ’n

/. The original motivation
was to study systems of polynomials and their roots.

See also ALGEBRAIC GEOMETRY, ALGEBRAIC VARIETY,
POLYNOMIAL

Classical Canonical Form
JORDAN CANONICAL FORM

Classical Groups
The four following types of GROUPS,

1. LINEAR GROUPS,
2. ORTHOGONAL GROUPS,
3. SYMPLECTIC GROUPS, and
4. UNITARY GROUPS,

which were studied before more exotic types of groups
(such as the SPORADIC GROUPS) were discovered.

See also GROUP, GROUP THEORY, LINEAR GROUP,
ORTHOGONAL GROUP, SIMPLE GROUP, SYMPLECTIC

GROUP, UNITARY GROUP

Classification
The classification of a collection of objects generally
means that a list has been constructed with exactly
one member from each ISOMORPHISM type among the
objects, and that tools and techniques can effectively
be used to identify any combinatorially given object
with its unique representative in the list. Examples of
mathematical objects which have been classified
include the finite SIMPLE GROUPS and 2-MANIFOLDS

but not, for example, KNOTS.

See also ENUMERATION PROBLEM

Classification Theorem
CLASSIFICATION THEOREM OF FINITE GROUPS, CLAS-

SIFICATION THEOREM OF SURFACES

Classification Theorem of Finite Groups
The classification theorem of FINITE SIMPLE GROUPS,
also known as the ENORMOUS THEOREM, which states
that the FINITE SIMPLE GROUPS can be classified
completely into



1. CYCLIC GROUPS Zp of PRIME ORDER,
2. ALTERNATING GROUPS An of degree at least five,
3. LIE-TYPE CHEVALLEY GROUPS PSL(n; q);
PSU(n; q); PsP(2n; q); and PV 

e(n; q);/
4. LIE-TYPE (TWISTED CHEVALLEY GROUPS or the
TITS GROUP) 3D4(q); E6(q) ; E7(q) ; E8(q) ; F4(q);
2F4(2n) ?; G2(q) ; 2G2(3n) ; 2B(2n) ;/
5. SPORADIC GROUPS M11 ; M12 ; M22 ; M23 ; M24 ; J2 �
HJ ; Suz , HS , McL , Co3 ; Co2 ; Co1 ; He , Fi22 ; Fi23 ;
Fi?24 ; HN , Th , B , M , J1 ; O’N , J3 ; Ly , Ru , J4 :/

The "PROOF" of this theorem is spread throughout the
mathematical literature and is estimated to be
approximately 15,000 pages in length.

See also FINITE GROUP, GROUP, J -FUNCTION, SIMPLE

GROUP
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Classification Theorem of Surfaces
All closed surfaces, despite their seemingly diverse
forms, are topologically equivalent to SPHERES with
some number of HANDLES or CROSS-CAPS. The tradi-
tional proof follows Seifert and Threlfall (1980), but
Conway’s so-called "zero-irrelevancy" ("ZIP") provides
a more streamlined approach (Francis and Weeks
1999).

See also CROSS-CAP, HANDLE
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Clausen Formula
Clausen’s 4F3 identity

4F3
a ; b; c; d

e; f ; g
; 1

� �
�

(2a)½d½(a � b)½d½(2b)½d½
(2a � 2b)½d½a ½d½b½d½

; (1)

holds for a �b �c �d �1=2 ; e �a �b �1=2; a �f �
d �1 �b �g ; where d a nonpositive integer and (a)n

is the POCHHAMMER SYMBOL (Petkovsek et al. 1996).
Closely related identities include

4F3 �
1
2 a;

1
2(a �1); b �n; �n

1
2 b ; 1

2(b �1); a �1
; 1

" #
�

(b � a)n

(b)n

(2)

and

4F3

1
2 a;

1
2(a �1); b �n ; �n

1
2(b �1); 1

2(b �2); a
; 1

 #

�
(b � a � 1)n

(b � 1)n�1(b � 2n) 
(3)

(Bailey 1935; Slater 1966, p. 245; Andrews and Burge
1993)

Another identity ascribed to Clausen which involves
the HYPERGEOMETRIC FUNCTION 2F1(a; b; c; z) and
the GENERALIZED HYPERGEOMETRIC FUNCTION

3F2(a ; b; c; d; e; z) is given by

2F1

a ; b
a �b �1

2
; x

� �� �2

� 3 F2

2a; a �b; 2b
a �b �1

2; 2a �2b; x

� �
(4)

(Clausen 1828; Bailey 1935, p. 86; Hardy 1999,
p. 106).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
HYPERGEOMETRIC FUNCTION
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Clausen Function

Define

Sn(x)�
X�
k�1

sin(kx)

kn
(1)

Cn(x)�
X�
k�1

cos(kx)

kn
; (2)



and write

Cln(x) �

Sn(x) �
X�
k �1

sin(kx)

kn
n even

Cn(x) �
X�
k �1

cos(kx)

kn
n odd:

8>>>><
>>>>:

(3)

Then the Clausen function Cln(x) can be given
symbolically in terms of the POLYLOGARITHM as

Cln(x) �
1
2 i[Lin(e �ix) �Lin(eix)] n even
1
2 [Lin(e �ix) �Lin(eix)] n odd:

(
(4)

For n �1, the function takes on the special form

Cl1(x) �C1(x) ��ln½2 sin(1
2 x)½ (5)

and for n �2, it becomes CLAUSEN’S INTEGRAL

Cl2(x) �S2(x) ��g
x

0

ln[2 sin(1
2 t)] dt: (6)

The symbolic sums of opposite parity are summable
symbolically, and the first few are given by

C2(x) �1
6 p

2 �1
2 px �1

4 x
2 (7)

C4(x) � 1
90 �

1
12 p

2x2 � 1
12 px3 � 1

48 x
4 (8)

S1(x) �1
2( p �x) (9)

S3(x) �1
6 p

2x �1
4 px2 � 1

12 x
3 (10)

S5(x) � 1
90 p

4x � 1
36 p

2x3 � 1
48 px4 � 1

240 x
5 (11)

for 0 5x 52p (Abramowitz and Stegun 1972).

See also CLAUSEN’S INTEGRAL, POLYGAMMA FUNC-

TION, POLYLOGARITHM
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Clausen’s Integral

The n �2 case of the S2 CLAUSEN FUNCTION

Cl2(u)��g
u

0

ln[2 sin(1
2 t)] dt:

See also CLAUSEN FUNCTION
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Clausen’s Product Identity

2F1(1
4�a; 1

4�b; q�a�b; x) 2F1(1
4�a; 1

4�b; 1�a

�b; x)

� 3 F2(1
2;

1
2�a�b; 1

2�a�b; 1�a�b; 1�a

�b; x);

where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNC-

TION.

Koepf, W. Hypergeometric Summation: An Algorith-
mic Approach to Summation and Special Function
Identities. Braunschweig, Germany: Vieweg, p. 118,
1998.

Cleavance Center

The point of concurrence S of a triangle’s CLEAVERS



M1C1 ; M2C2 ; and M3C3 ; which is simply the SPIEKER

CENTER, i.e., the INCENTER of the MEDIAL TRIANGLE

(Honsberger 1995, p. 2).

See also CLEAVANCE CENTER, MEDIAL TRIANGLE,
NAGEL POINT, SPIEKER CENTER
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Cleaver

A PERIMETER-bisecting segment of a polygon originat-
ing from the MIDPOINT of one side. Each cleaver M1C1 ;
M2C2 ; and M3C3 in a TRIANGLE DA1A2A3 is parallel to
an ANGLE BISECTOR of the triangle (shown as dashed
lines above). In addition, the three cleavers CONCUR

in a point S known as the CLEAVANCE CENTER, which
is the SPIEKER CENTER, i.e., INCENTER of the MEDIAL

TRIANGLE (Honsberger 1995, p. 2).

See also B -LINE, CLEAVANCE CENTER, MEDIAL TRI-

ANGLE, MIDPOINT, SPLITTER
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Clebsch Diagonal Cubic

A CUBIC ALGEBRAIC SURFACE given by the equation

x3
0 �x3

1 �x3
2 �x3

3 �x3
4 �0; (1)

with the added constraint

x0 �x1 �x2 �x3 �x4 �0: (2)

The implicit equation obtained by taking the plane at
infinity as x0 �x1 �x2 �x3 =2 is

81(x3 �y3 �z3) �189(x2y �x2z �y2x �y2z �z2x �z2y)

�54xyz �126(xy �xz �yz) �9(x2 �y2 �z2)

�9(x �y �z) �1 �0 (3)

(Hunt, Nordstrand). On Clebsch’s diagonal surface,
all 27 of the complex lines (SOLOMON’S SEAL LINES)
present on a general smooth CUBIC SURFACE are real.
In addition, there are 10 points on the surface where
3 of the 27 lines meet. These points are called
ECKARDT POINTS (Fischer 1986, Hunt), and the
Clebsch diagonal surface is the unique CUBIC SUR-

FACE containing 10 such points (Hunt).

If one of the variables describing Clebsch’s diagonal
surface is dropped, leaving the equations

x3
0�x3

1�x3
2�x3

3�0; (4)

x0�x1�x2�x3�0; (5)

the equations degenerate into two intersecting
PLANES given by the equation

(x�y)(x�z)(y�z)�0: (6)

See also CUBIC SURFACE, ECKARDT POINT
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Clebsch-Aronhold Notation
A notation used to describe curves. The fundamental
principle of Clebsch-Aronhold notation states that if
each of a number of forms be replaced by a POWER of a
linear form in the same number of variables equal to
the order of the given form, and if a sufficient number
of equivalent symbols are introduced by the ARON-

HOLD PROCESS so that no actual COEFFICIENT appears
except to the first degree, then every identical
relation holding for the new specialized forms holds
for the general ones.
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ClebschGordan
CLEBSCH-GORDAN COEFFICIENT

Clebsch-Gordan Coefficient
A mathematical symbol used to integrate products of
three SPHERICAL HARMONICS. Clebsch-Gordan coeffi-
cients commonly arise in applications involving the
addition of angular momentum in quantum me-
chanics. If products of more than three SPHERICAL

HARMONICS are desired, then a generalization known
as WIGNER 6J -SYMBOLS or WIGNER 9J -SYMBOLS is
used. The Clebsch-Gordan coefficients are written

Cj
m1m2

�(j1j2m1m2 ½j1j2jm) (1)

and are defined by

CJM �
X

M �M1 �M2

CJ
M1M2

CM1M2
; (2)

where J �J1 �J2 :/

The coefficients are subject to the restrictions that
(j1 ; j2 ; j) be positive integers or half-integers, j1 �j2 �
j is an integer, (m1 ; m2 ; m) are positive or negative
integers or half integers,

j1 �j2 �j ]0 (3)

j1 �j2 �j ]0 (4)

�j1 �j2 �j ]0; (5)

and �½j1 ½5m1 5 ½j1 ½; �½j2 ½5m2 5 ½j2 ½; and �½j ½5m 5 ½j ½
(Abramowitz and Stegun 1972, p. 1006). In addition,
by use of symmetry relations, coefficients may always
be put in the standard form j1 Bj2 Bj and m ]0:/

The Clebsch-Gordan coefficients are implemented in
Mathematica as ClebschGordan[{j1 , m1 }, {j2 , m2 },
{j , m }] (assumed to be in standard form) and satisfy

(j1j2m1m2 ½j1j2jm) �0 for m1 �m2 "m (6)

and are

The Clebsch-Gordan coefficients are sometimes ex-
pressed using the related RACAH V -COEFFICIENTS,

V(j1j2j; m1m2m) (7)

or WIGNER 3J -SYMBOLS. Connections among the three
are

(j1j2m1m2 ½j1j2jm)

�(�1)m�j1�j2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j �1

p j1 j2 j
m1 m2 �m

� �
(8)

(j1j2m1m2 ½j1j2jm)

�(�1)j�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j �1V

p
(j1j2j; m1m2 �m) (9)

V(j1j2j; m1m2m) �(�1)�j1�j2�j j1 j2 j1

m1 m2 m2

� �
: (10)

They have the symmetry

(j1j2m1m2½j1j2jm)�(�1)j1�j2�j(j2j1m2m1½j2j1jm); (11)

and obey the orthogonality relationshipsX
j; m

(j1j2m1m2½j1j2jm)(j1j2jm½j1j2m?1m?2)

�dm1m?1
dm2m?2

(12)X
m1 ; m2

(j1j2m1m2½j1j2jm)(j1j2j?m?½j1j2m1m2)

�djj?dmm?: (13)

See also RACAH V-COEFFICIENT, RACAH W-COEFFI-

CIENT, WIGNER 3J -SYMBOL, WIGNER 6J -SYMBOL,
WIGNER 9J -SYMBOL
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Clement Matrix
KAC MATRIX

Clenshaw Recurrence Formula
The downward Clenshaw recurrence formula evalu-
ates a sum of products of indexed COEFFICIENTS by
functions which obey a RECURRENCE RELATION. If

f (x)�
XN

k�0

ckFk(x)

and

Fn�1(x)�a(n; x)Fn(x)�b(n; x)Fn�1(x);

where the ck/s are known, then define



yN �2 �yN �1 �0

yk � a(k; x)yk�1 � b(k �1; x)yk�2 �ck

for k �N ; N �1; . . . and solve backwards to obtain y2

and y1 :

ck �yk � a(k; x)yk�1 � b(k �1; x)yk �2

f (x) �
XN

k �0

ckFk(x)

�c0F0(x) �[y1 � a(1; x)y2 � b(2; x)y3]F1(x)

�[y2 � a(2; x)y3 � b(3; x)y4]F2(x)

�[y3 � a(3; x)y4 � b(4; x)y5]F3(x)

�[y4 � a(4; x)y5 � b(5; x)y6]F4(x) �. . .

�c0F0(x) �y1F1(x) �y2[F2(x) � a(1; x)F1(x)]

�y3[F3(x) � a(2; x)F2(x) � b(2; x)]

�y4[F4(x) � a(3; x)F3(x) � b(3; x)] �. . .

�c0F0(x) �y2[ fa(1; x)F1(x) � b(1; x)F0(x) g
�a(1; x)F1(x)] �y1F1(x)

�c0F0(x) �y1F1(x) � b(1; x)F0(x)y2 :

The upward Clenshaw recurrence formula is

y�2 �y�1 �0

yk �
1

b(k � 1 ; x) 
[yk �2 � a(k ; x)yk �1 �ck]

for k �0 ; 1 ; . . . ; N �1:

f (x) �cNFN(x) � b(N ; x)FN �1(x)yN �1 �FN(x)yN �2 :
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Cliff Random Number Generator
A RANDOM NUMBER generator produced by iterating

Xn�1 � 100 ln Xn (mod1)j j

for a SEED X0 �0:1: This simple generator passes the
NOISE SPHERE test for randomness by showing no
structure.

See also RANDOM NUMBER, SEED
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Clifford Algebra
Let V be an n -D linear SPACE over a FIELD K , and let
Q be a QUADRATIC FORM on V . A Clifford algebra is
then defined over the T(V) =I(Q) ; where T(V) is the
tensor algebra over V and I is a particular IDEAL of
T(V) :/

Clifford algebraists call their higher dimensional
numbers HYPERCOMPLEX even though they do not
share all the properties of complex numbers and no
classical function theory can be constructed over
them.

See also HYPERCOMPLEX NUMBER, QUATERNION
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Clifford’s Circle Theorem

Let C1 ; C2 ; C3 ; and C4 be four CIRCLES of GENERAL

POSITION through a point P . Let Pij be the second
intersection of the CIRCLES Ci and Cj : Let Cijk be the
CIRCLE PijPikPjk : Then the four CIRCLES C234 ; C134 ;
C124 ; and C123 all pass through the point P1234:
Similarly, let C5 be a fifth CIRCLE through P . Then
the five points P2345; P1345; P1245; P1235 and P1234 all lie
on one CIRCLE C12345: And so on.

See also CIRCLE, COX’S THEOREM
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Clifford’s Curve Theorem
The dimension of a special series can never exceed
half its order.
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Clique

A clique of a GRAPH is its maximal COMPLETE

SUBGRAPH (Harary 1994, p. 20), although some
authors define a clique as any COMPLETE SUBGRAPH

and then refer to "maximum cliques" (Skiena 1990,
p. 217). The problem of finding the size of a clique for
a given GRAPH is an NP-COMPLETE PROBLEM (Skiena
1997).
Cliques arise in a number of areas of GRAPH THEORY

and combinatorics, including the theory of ERROR-

CORRECTING CODES. The command MaximumCli-
que[g ] in the Mathematica add-on package Discre-
teMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘) finds the
size of the largest clique in a given GRAPH.

The number of graphs on n nodes having 3 cliques are
0, 0, 1, 4, 12, 31, 67, ... (Sloane’s A005289). A
COMPLETE K -PARTITE GRAPH has maximum clique
size k . The largest order n graph which does not
contain the COMPLETE GRAPH Kp as a SUBGRAPH is
called the TURÁ N’S GRAPH Tn;p (Skiena 1990, p. 218).

See also CLIQUE GRAPH, CLIQUE NUMBER, COMPLETE

GRAPH, INDUCED SUBGRAPH, PARTY PROBLEM, PER-

FECT GRAPH, RAMSEY NUMBER, TURÁ N’S THEOREM
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Clique Graph

The clique graph of a given GRAPH G is the GRAPH

INTERSECTION of the family of CLIQUES of G . A GRAPH

G is a clique graph IFF it contains a family F of
COMPLETE SUBGRAPHS whose GRAPH UNION is G , such
that whenever every pair of such complete graphs in
some subfamily F ? has a nonempty graph intersec-
tion, the intersection of all members of F ? is not empty
(Harary 1994, p. 20).

See also CLIQUE, CLIQUE NUMBER, COMPLETE GRAPH
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Clique Number
The number of VERTICES in the largest CLIQUE of G ,
denoted v(G): For an arbitrary GRAPH,

v(G)]
Xn

i�1

1

n � di

;

where di is the DEGREE of VERTEX i . The following
table gives the number Nk(n) of n -node graphs having
clique number k for small k .

k Sloane /Nk(n)/

1 1, 1, 1, 1, 1, 1, ...



2 A052450 0, 1, 2, 6, 13, 37, 106, ...

3 A052451 0, 0, 1, 3, 15, 82, 578, ...

4 A052452 0, 0, 0, 1, 4, 30, 301, ...

5  0, 0, 0, 0, 1, 5, 51, ...

6  0, 0, 0, 0, 0, 1, 6, ...

See also CLIQUE, CLIQUE GRAPH
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Clock Arithmetic
CONGRUENCE

Clock Prime
A prime number obtained by reading digits around an
analog clock. In a clockwise directions, the primes are
2, 3, 5, 7, 11, 23, 67, 89, 4567, 23456789,
23456789101112123, ... (Sloane’s A036342). In a
counterclockwise direction, the primes are 2, 3, 5, 7,
11, 43, 109, 10987, 76543, 6543211211,
4321121110987, ... (Sloane’s A036342). In either
direction, the primes are 2, 3, 5, 7, 11, 23, 43, 67,
89, 109, 4567, 10987, 76543, 23456789, 6543211211,
... (Sloane’s A036344).

On a 24-hour digital clock, there are 211 possible
prime values: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 101, ... (Sloane’s A050246).
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Clock Solitaire
A solitaire game played with CARDS. The chance of
winning is 1/13, and the AVERAGE number of CARDS

turned up is 42.4.
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Close Packing
SPHERE PACKING

Closed
A mathematical structure A is said to be closed under
an operation � if, whenever a and b are both
elements of A , then so is a �b:/

A mathematical object taken together with its bound-
ary is also called closed. For example, while the
interior of a SPHERE is an OPEN BALL, the interior
together with the sphere itself is a CLOSED BALL.

See also CLOSED BALL, CLOSED CURVE, CLOSED DISK,
CLOSED FORM, CLOSURE (TOPOLOGY)

Closed Ball
The closed ball with center x and radius r is defined
by

Br(x) �fy : ½y �x½5r g:

See also BALL, CLOSED DISK, OPEN BALL
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Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved

Problems in Geometry. New York: Springer-Verlag, p. 1,
1991.

Closed Curve

In the plane, a closed curve is a CURVE with no
endpoints and which completely encloses an AREA.

See also CURVE, JORDAN CURVE, SIMPLE CURVE
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Closed Curve Problem
Find NECESSARY and SUFFICIENT conditions that
determine when the integral curve of two periodic
functions k(s) and t(s) with the same period L is a
CLOSED CURVE.



Closed Disk

An n -D closed disk of RADIUS r is the collection of
points of distance 5r from a fixed point in EUCLIDEAN

n -space. Krantz (1999, p. 3) uses the symbol D̄(x; r)
to denote the closed disk, and D̄ � D̄(0 ; 1) to denote
the unit closed disk centered at the origin

See also DISK, OPEN DISK
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Closed Form
A discrete FUNCTION A(n; k) is called closed form (or
sometimes "hypergeometric") in two variables if the
ratios A(n �1; k) =A(n; k) and A(n; k �1)=A(n; k) are
both RATIONAL FUNCTIONS. A pair of closed form
functions (F, G ) is said to be a WILF-ZEILBERGER

PAIR if

F(n �1; k) �F(n ; k) �G(n; k �1) �G(n; k) :

See also ELEMENTARY NUMBER, LIOUVILLIAN NUM-

BER, RATIONAL FUNCTION, WILF-ZEILBERGER PAIR
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Closed Graph Theorem
A linear OPERATOR between two BANACH SPACES is
continuous IFF it has a "closed" graph.

See also BANACH SPACE

References
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Closed Interval

An INTERVAL which includes its LIMIT POINTS. If the
endpoints of the interval are FINITE numbers a and b ,
then the INTERVAL is denoted [a, b ]. If one of the
endpoints is 9�; then the interval still contains all of
its LIMIT POINTS, so [a; �) and (��; b] are also closed
intervals.

See also CLOSED BALL, CLOSED DISK, CLOSED SET,
HALF-CLOSED INTERVAL, INTERVAL, OPEN INTERVAL
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Closed Manifold
A COMPACT MANIFOLD without boundary.

See also OPEN MANIFOLD

Closed Set

There are several equivalent definitions of a closed
SET. A SET S is closed if

1. The COMPLEMENT of S is an OPEN SET,
2. S is its own CLOSURE,

3. Sequences/nets/filters in S which converge do so
within S ,
4. Every point outside S has a NEIGHBORHOOD

disjoint from S .

The POINT-SET TOPOLOGICAL definition of a closed set
is a set which contains all of its LIMIT POINTS.
Therefore, a closed set C is one for which, whatever
point x is picked outside of C , x can always be
isolated in some OPEN SET which doesn’t touch C .

The most commonly encountered closed sets are the
CLOSED INTERVAL, closed path, CLOSED DISK, interior
of a closed path together with the path itself, and
CLOSED BALL. The CANTOR SET is an unusual closed
set in the sense that it consists entirely of BOUNDARY

POINTS (and is nowhere DENSE, so it has LEBESGUE

MEASURE 0).



It is possible for a set to be neither OPEN nor closed,
e.g., the HALF-CLOSED INTERVAL (0; 1]:/

See also BOREL SET, BOUNDARY POINT, CANTOR SET,
CLOSED BALL, CLOSED INTERVAL, CLOSED DISK,
COMPACT SET, HALF-CLOSED INTERVAL, OPEN SET
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Closed Star
The CLOSURE St y of a STAR St y at a vertex v of a
SIMPLICIAL COMPLEX K .

See also LINK (SIMPLICIAL COMPLEX), STAR
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Closed Subgroup
A SUBSET of a TOPOLOGICAL GROUP which is CLOSED as
a SUBSET and also a SUBGROUP.

See also EFFECTIVE ACTION, FREE ACTION, GROUP,
ISOTROPY GROUP, MATRIX GROUP, ORBIT (GROUP),
QUOTIENT SPACE (LIE GROUP), REPRESENTATION,
TOPOLOGICAL GROUP, TRANSITIVE

Closure (Set)
A SET S and a BINARY OPERATOR � are said to exhibit
closure if applying the BINARY OPERATOR to two
elements S returns a value which is itself a member
of S .

The term "closure" is also used to refer to a "closed"
version of a given set. The closure of a SET can be
defined in several equivalent ways, including

1. The SET plus its LIMIT POINTS, also called
"boundary" points, the union of which is also called
the "frontier."
2. The unique smallest CLOSED SET containing the
given SET.
3. The COMPLEMENT of the interior of the COMPLE-

MENT of the set.
4. The collection of all points such that every
NEIGHBORHOOD of these points intersects the
original SET in a nonempty SET.

In topologies where the T2-SEPARATION AXIOM is
assumed, the closure of a finite SET S is S itself.

See also BINARY OPERATOR, BOUNDARY SET, CLOSURE

(TOPOLOGY), CONNECTED SET, EXISTENTIAL CLOSURE,
REFLEXIVE CLOSURE, TIGHT CLOSURE, TRANSITIVE

CLOSURE

References
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Closure (Topology)
The closure of a set A is the smallest closed set
containing A . Closed sets are CLOSED under arbitrary
intersection, so it is also the intersection of all closed
sets containing A . Typically, it is just A with all of its
ACCUMULATION POINTS.

See also CLOSED SET, CLOSURE (SET), SEQUENCE,
TOPOLOGY

Closure Relation

d(x �t) �
X�
n�0

fn(x) fn(t) ;

where d(x) is the DELTA FUNCTION.

Clothoid
CORNU SPIRAL

Clove Hitch

A HITCH also called the BOATMAN’S KNOT or PEG KNOT.

References
Owen, P. Knots. Philadelphia, PA: Courage, pp. 24 �/7, 1993.

Club
SPHINX

Clump
RUN

Cluster
Given a POINT LATTICE, a cluster is a group of filled
cells which are all connected to their neighbors
vertically or horizontally.

See also CLUSTER PERIMETER, PERCOLATION THEORY,
S -CLUSTER, S -RUN
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Cluster Perimeter
The number of empty neighbors of a CLUSTER.



See also PERIMETER POLYNOMIAL

Cluster Prime
An ODD PRIME p is called a cluster prime if every
EVEN positive integer less than p �2 can be written as
a difference of two primes q �q?; where q; q?5p : The
first 23 odd primes 3, 5, 7, ..., 89 are all cluster
primes. The first few odd primes that are not cluster
primes are 97, 127, 149, 191, 211, ... (Sloane’s
A038133).

The numbers of cluster primes less than 101, 102, ...
are 23, 99, 420, 1807, ... (Sloane’s A039506), and the
corresponding numbers of noncluster primes are 0, 1,
68, 808, 7784, ... (Sloane’s A039507). It is not known if
there are infinitely many cluster primes, but Bleck-
smith et al. (1999) show that for every positive
integer s , there is a bound x0 �xx(s) such that if x ]
x0 ; then

pc(x) B
x

(ln x)s ;

where pc(x) is the number of cluster primes not
exceeding x . Blecksmith et al. (1999) also show that
the sum of the reciprocals of the cluster primes is
finite.

See also PRIME CONSTELLATION
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C-Matrix
Any SYMMETRIC MATRIX ( CT �C) or SKEW SYMMETRIC

MATRIX (/CT ��C) Cn with diagonal elements 0 and
others 9 1 satisfying

CCT �( n�1)I;

where I is the IDENTITY MATRIX, is known as a C -
matrix (Ball and Coxeter 1987). There are two
symmetric C -matrices of order 2,

0 �1
�1 0

� �
;

0 1
1 0

� �
and two antisymmetric C -matrices of order 2,

0 1
�1 0

� �
;

0 1
�1 0

� �
:

Further examples include

C4 �

0 � � �
� 0 � �
� �  0 �
� � �  0

2
664

3
775

C6 �

0 � � � � �
� 0 � � � �
� �  0 � � �
� � �  0 � �
� � � �  0 �
� � � � �  0

2
6666664

3
7777775

There are no symmetric C -matrices of order 4 or 22
(Ball and Coxeter 1987, p. 309). The following table
gives the number of C -matrices of orders n �1, 2, ....

Type Sloane Numbers

symmetric 0, 2, 0, 0, 0, 384, 0, 0, ...

antisymmetric 0, 2, 0, 16, 0, 0, 0, 30720, ...

total 0, 4, 0, 16, 0, 384, 0, 30720, ...

A C -matrix of an odd prime power order may be
constructed using a general method due to Paley
(Paley 1933, Ball and Coxeter 1987).
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Coanalytic Set
A DEFINABLE SET which is the complement of an
ANALYTIC SET.

See also ANALYTIC SET

Coastline Paradox
Determining the length of a country’s coastline is not
as simple as it first appears, as first considered by
L. F. Richardson (1881�/953). In fact, the answer
depends on the length of the RULER you use for the
measurements. A shorter RULER measures more of
the sinuosity of bays and inlets than a larger one, so
the estimated length continues to increase as the
RULER length decreases.

In fact, a coastline is an example of a FRACTAL, and
plotting the length of the RULER versus the measured
length of the coastline on a log-log plot gives a
straight line, the slope of which is the FRACTAL



DIMENSION of the coastline (and will be a number
between 1 and 2).

See also LONGIMETER
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Coates-Wiles Theorem
In 1976, Coates and Wiles showed that ELLIPTIC

CURVES with COMPLEX MULTIPLICATION having an
infinite number of solutions have L -functions which
are zero at the relevant fixed point. This is a special
case of the SWINNERTON-DYER CONJECTURE.
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Coaxal Circles

CIRCLES which share a RADICAL LINE with a given
circle are said to be coaxal. The centers of coaxal
circles are COLLINEAR, and the collection of all coaxal
circles is called a pencil of coaxal circles (Coxeter and
Greitzer 1967, p. 35). It is possible to combine the two
types of coaxal systems illustrated above such that
the sets are orthogonal.

Members of a COAXAL SYSTEM satisfy

x2 �y2 �2lx �c �(x � l)2 �y2 �c � l2 �0

for values of l: Picking /l2 �c/ then gives the two
circles

(x 9
ffiffiffi
c

p
)2 �y2 �0

of zero RADIUS, known as POINT CIRCLES. The two

point circles /(9
ffiffiffi
c

p
; 0)/, real or imaginary, are called

the LIMITING POINTS.

See also CIRCLE, COAXALOID SYSTEM, GAUSS-BODEN-

MILLER THEOREM, LIMITING POINT, POINT CIRCLE,
RADICAL LINE
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Coaxal Planes
SHEAF OF PLANES

Coaxal System
A system of COAXAL CIRCLES.

See also COAXAL CIRCLES, PONCELET’S COAXAL THE-

OREM

Coaxaloid System
A system of circles obtained by multiplying each
RADIUS in a COAXAL SYSTEM by a constant.
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Coaxial Circles
COAXAL CIRCLES

Cobordant Manifold
Two open MANIFOLDS M and M ? are cobordant if there
exists a MANIFOLD with boundary Wn�1 such that an
acceptable restrictive relationship holds.

See also COBORDISM, H -COBORDISM THEOREM, MORSE

THEORY



Cobordism
BORDISM, H -COBORDISM

Cobordism Group
BORDISM GROUP

Cobordism Ring
BORDISM GROUP

Cobweb Equation
This entry contributed by RONALD M. AARTS

The simple first-order DIFFERENCE EQUATION

yt �1 �Ayt �B ; (1)

where

A ��
ms

md

(2)

B �
bd � bs

md

(3)

and

Dt ��mdpt �bd (4)

St�1 �mspt �bs (5)

are the price-demand and price-supply curves, where
�md and bd represent the slope and D -intercept,
respectively, for the demand curve, and ms and bs

represent the corresponding constants for the supply
curve (Ezekiel 1938, Goldberg 1986).

A class of behaviors related to this equation is known
as "Cobweb phenomena" in economics.

See also DIFFERENCE EQUATION
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Cochleoid

The cochleoid, whose name means "snail-form" in

Latin, was first discussed by J. Peck in 1700 (Mac-
Tutor Archive). It has also been called the oui-ja
board curve (Beyer 1987, p. 215). The points of
contact of PARALLEL TANGENTS to the cochleoid lie
on a STROPHOID.
In POLAR COORDINATES,

r �
a sin u

u
: (1)

In CARTESIAN COORDINATES,

(x2 �y2) tan�1 y

x

 !
�ay : (2)

The CURVATURE is

k �
2
ffiffiffi
2

p
u3[2u � sin(2u)]

[1 � 2u2 � cos(2u) � 2u sin(2u)]3 =2 : (3)

See also QUADRATRIX OF HIPPIAS
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Cochleoid Inverse Curve

The INVERSE CURVE of the COCHLEOID

r�
sin u

u
(1)

with INVERSION CENTER at the ORIGIN and inversion



radius k is the QUADRATRIX OF HIPPIAS.

x �kt cot u (2)

y �kt: (3)

Cochloid
CONCHOID OF NICOMEDES

Cochran’s Theorem
The converse of FISHER’S THEOREM.

Cocked Hat Curve

The PLANE CURVE

(x2 �2ay �a2)2 �y2(a2 �x2) ;

which is similar to the BICORN.
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Cocktail Party Graph

A GRAPH consisting of two rows of paired nodes in
which all nodes but the paired ones are connected
with an EDGE. It is the complement of the LADDER

GRAPH.

See also LADDER GRAPH

Coconut
MONKEY AND COCONUT PROBLEM

Codazzi Equations
MAINARDI-CODAZZI EQUATIONS

Code
A code is a set of n -tuples of elements ("WORDS") taken
from an ALPHABET.

See also ALPHABET, CODING THEORY, ENCODING,
ERROR-CORRECTING CODE, GRAY CODE, HUFFMAN

CODING, ISBN, LINEAR CODE, UPC, WORD

Codimension
The minimum number of parameters needed to fully
describe all possible behaviors near a nonstructurally
stable element.

See also BIFURCATION

Coding Theory
Coding theory, sometimes called ALGEBRAIC CODING

THEORY, deals with the design of ERROR-CORRECTING

CODES for the reliable transmission of information
across noisy channels. It makes use of classical and
modern algebraic techniques involving FINITE FIELDS,
GROUP THEORY, and polynomial algebra. It has con-
nections with other areas of DISCRETE MATHEMATICS,
especially NUMBER THEORY and the theory of experi-
mental designs.

See also ENCODING, ERROR-CORRECTING CODE, FI-

NITE FIELD, HADAMARD MATRIX
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Codomain
A SET within which the values of a function lie (as
opposed to the RANGE, which is the set of values that
the function actually takes).

See also DOMAIN, RANGE (IMAGE)
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Coefficient
A multiplicative factor (usually indexed) such as one
of the constants ai in the POLYNOMIAL

anxn �an �1xn�1 �. . .  �a2x2 �a1x �a0 :/

See also BINOMIAL COEFFICIENT, CARTAN TORSION

COEFFICIENT, CENTRAL BINOMIAL COEFFICIENT,
CLEBSCH-GORDAN COEFFICIENT, COEFFICIENT FIELD,
COEFFICIENT NOTATION, COMMUTATION COEFFICIENT,
CONNECTION COEFFICIENT, CORRELATION COEFFI-

CIENT, CROSS-CORRELATION COEFFICIENT, EXCESS

COEFFICIENT, GAUSSIANCOEFFICIENT, LAGRANGIAN

COEFFICIENT, MULTINOMIAL COEFFICIENT, PEARSON’S

SKEWNESS COEFFICIENTS, PRODUCT-MOMENT COEFFI-

CIENT OF CORRELATION, QUARTILE SKEWNESS COEF-

FICIENT, QUARTILE VARIATION COEFFICIENT, RACAH

V -COEFFICIENT, RACAH W -COEFFICIENT, REGRESSION

COEFFICIENT, ROMAN COEFFICIENT, TRIANGLE COEF-

FICIENT, UNDETERMINED COEFFICIENTS METHOD,
VARIATION COEFFICIENT

Coefficient Field
Let V be a VECTOR SPACE over a FIELD K , and let A be
a nonempty SET. For an appropriately defined AFFINE

SPACE A , K is called the coefficient field.

Coefficient Notation
Given a SERIES OF THE FORM

A(z) �
X

k

akzk ;

the notation [zk](A(z)) is used to indicate the coeffi-
cient ak (Sedgewick and Flajolet 1996). This corre-
sponds to the Mathematica functions
Coefficient[A [z ], z , k ] and SeriesCoeffi-
cient[series , k ].

References
Sedgewick, R. and Flajolet, P. An Introduction to the

Analysis of Algorithms. Reading, MA: Addison-Wesley,
1996.

Coercive Functional
A bilinear FUNCTIONAL f on a normed SPACE E is
called coercive (or sometimes ELLIPTIC) if there exists
a POSITIVE constant K such that

f(x; x) ]K ½½x½½2

for all x � E:/

See also LAX-MILGRAM THEOREM
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Cofactor
The signed version Cij of a MINOR Mij of a MATRIX

Cij �(�1)i�jMij

used in the computation of the matrix’s DETERMINANT

det(A) �
X
i

aiCij:

The cofactor can be computed in Mathematica using

Cofactor[m_List,{i_Integer,j_Integer}] : �
(-1)^(i�j)Drop[Transpose[Drop[Transpose[m],

{j}]],{i}]

See also DETERMINANT, DETERMINANT EXPANSION BY

MINORS, MINOR

References
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Cofactor Expansion
DETERMINANT EXPANSION BY MINORS

Cofinite Filter
This entry contributed by VIKTOR BENGTSSON

If S is an infinite set, then the collection FS �fA ⁄
S : S �A is finite g is a FILTER called the cofinite (or
Fréchet) filter on S .

See also FILTER, ULTRAFILTER

Cohen-Kung Theorem
Guarantees that the trajectory of LANGTON’S ANT is
unbounded.

Cohomology
Cohomology is an invariant of a TOPOLOGICAL SPACE,
formally "dual" to HOMOLOGY, and so it detects "holes"
in a SPACE. Cohomology has more algebraic structure
than HOMOLOGY, making it into a GRADED RING (with
multiplication given by the so-called "CUP PRODUCT"),
whereas HOMOLOGY is just a graded ABELIAN GROUP

invariant of a SPACE.

A generalized homology or cohomology theory must
satisfy all of the EILENBERG-STEENROD AXIOMS with
the exception of the dimension axiom.

See also ALEKSANDROV-CECH COHOMOLOGY, ALEXAN-

DER-SPANIER COHOMOLOGY, CECH COHOMOLOGY, CUP

PRODUCT, DE RHAM COHOMOLOGY, DOLBEAULT CO-

HOMOLOGY, GRADED ALGEBRA, HOMOLOGY (TOPOL-

OGY)



Cohomology Class

See also INTEGRAL COHOMOLOGY CLASS

Cohomotopy Group
Cohomotopy groups are similar to HOMOTOPY GROUPS.
A cohomotopy group is a GROUP related to the
HOMOTOPY classes of MAPS from a SPACE X into a
SPHERE Sn :/

See also HOMOTOPY GROUP

Coin
A flat disk which acts as a two-sided DIE.

See also BERNOULLI TRIAL, CARDS, COIN PARADOX,
COIN TOSSING, DICE, FELLER’S COIN-TOSSING CON-

STANTS, FOUR COINS PROBLEM, GAMBLER’S RUIN
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Coin Flipping
COIN TOSSING

Coin Paradox

After a half rotation of the coin on the left around the
central coin (of the same RADIUS), the coin undergoes
a complete rotation. In other words, a coin makes two
complete rotations when rolled around the boundary
of an identical coin. This fact is readily apparent in
the generation of the CARDIOID as one disk rolling on
another.

See also CARDIOID
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Coin Problem
Let there be n ]2 INTEGERS 0 Ba1 B. . .Ban with
(a1 ; a2 ; . . . ; an) �1 (all RELATIVELY PRIME). For large
enough N �an

i�1 aixi ; there is a solution in NONNEGA-

TIVE INTEGERS xi : The greatest N �g(a1 ; a2 ; . . . ; an)

for which there is no solution is called the coin
problem. Sylvester showed

g(a1 ; a2) �(a1 �1)(a2 �1) �1 ;

and an explicit solution is known for n �3, but no
closed form solution is known for larger N .

References
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Coin Tossing
An idealized coin consists of a circular disk of zero
thickness which, when thrown in the air and allowed
to fall, will rest with either side face up ("heads" H or
"tails" T) with equal probability. A coin is therefore a
two-sided DIE. Despite slight differences between the
sides and NONZERO thickness of actual coins, the
distribution of their tosses makes a good approxima-
tion to a p �1 =2 BERNOULLI DISTRIBUTION.

There are, however, some rather counterintuitive
properties of coin tossing. For example, it is twice as
likely that the triple TTH will be encountered before
THT than after it, and three times as likely that
THH will precede HHT . Furthermore, it is six times
as likely that HTT will be the first of HTT , TTH , and
TTT to occur (Honsberger 1979). There are also
strings S of Hs and Ts that have the property that
the expected wait W(S1) to see string S1 is less than
the expected wait W(S2) to see S2 ; but the probability
of seeing S1 before seeing S2 is less than 1/2
(Berlekamp et al. 1982; Gardner 1988). Examples
include

1. THTH and HTHH , for which W(THTH) �20
and W(HTHH) �18 ; but for which the probability
that THTH occurs before HTHH is 9/14 (Gardner
1988, p. 64),
2. W(TTHH) �W(THHH) �16 ; W(HHH) ; but for
which the probability that TTHH occurs before
HHH is 7/12, and for which the probability that
THHH occurs before HHH is 7/8 (Penney 1969;
Gardner 1988, p. 66).

More amazingly still, spinning a penny instead of
tossing it results in heads only about 30% of the time
(Paulos 1995).

The study of RUNS of two or more identical tosses is
well-developed, but a detailed treatment is surpris-
ingly complicated given the simple nature of the
underlying process.

See also BERNOULLI DISTRIBUTION, BERNOULLI TRIAL,
CARDS, COIN, DICE, GAMBLER’S RUIN, MARTINGALE,
RUN, SAINT PETERSBURG PARADOX
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Coincidence
A coincidence is a surprising concurrence of events,
perceived as meaningfully related, with no apparent
causal connection (Diaconis and Mosteller 1989).
Given a large number events, extremely unlikely
coincidences are possible–and perhaps even common.
To quote Sherlock Holmes, "Amid the action and
reaction of so dense a swarm of humanity, every
possible combination of events may be expected to
take place, and many a little problem will be
presented which may be striking and bizarre..."
(Conan Doyle 1988, p. 245).

See also BIRTHDAY PROBLEM, LAW OF TRULY LARGE

NUMBERS, ODDS, PROBABILITY, RANDOM NUMBER,
SIGNIFICANCE
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Coincident
Two LINES or plane CONGRUENT geometric figures
which lie on top of each other are said to be
coincident.

See also CONGRUENT, HOMOTHETIC, SIMILAR

Colatitude
The polar angle on a SPHERE measured from the
North Pole instead of the equator. The angle f in
SPHERICAL COORDINATES is the COLATITUDE. It is
related to the LATITUDE d by f �90 �� d :/

See also LATITUDE, LONGITUDE, SPHERICAL COORDI-

NATES

Colinear
COLLINEAR

Collapsoid

The collapsoids are a class of non-convex collapsible
polyhedra. They can be constructed by replacing each
edge of a DODECAHEDRON or ICOSAHEDRON by the
diagonal of a pyramid (with base removed). Thirty
such pyramids are then fitted together using tabs.
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Collatz Problem
A problem posed by L. Collatz in 1937, also called the
3X�1 MAPPING, HASSE’S ALGORITHM, KAKUTANI’S PRO-

BLEM, SYRACUSE ALGORITHM, SYRACUSE PROBLEM,
THWAITES CONJECTURE, and ULAM’S PROBLEM (Lagar-
ias 1985). Thwaites (1996) has offered a £1000 reward
for resolving the CONJECTURE. Let a0 be an INTEGER.
Then the Collatz problem asks if iterating

an�
1
2 an�1 for an�1 even

3an�1�1 for an�1 odd

�
(1)

always returns to 1 for POSITIVE a0: This question has
been tested and found to be true for all numbers

/53 � 253:2:702�1016 (Oliveira e Silva 1999), im-



proving the earlier results of 1015 (Vardi 1991, p. 129)
and 5:6�1013 (Leavens and Vermeulen 1992). The
members of the SEQUENCE produced by the Collatz
are sometimes known as HAILSTONE NUMBERS. Be-
cause of the difficulty in solving this problem, Erdos
commented that "mathematics is not yet ready for
such problems" (Lagarias 1985). If NEGATIVE numbers
are included, there are four known cycles (excluding
the trivial 0 cycle): (4, 2, 1), (�2, �1), (�5, �7, �10),
and (�17, �25, �37, �55, �82, �41, �61, �91,
�136, �68, �34). The number of tripling steps
needed to reach 1 for n�1, 2, ... are 0, 0, 2, 0, 1, 2,
5, 0, 6, ... (Sloane’s A006667).

The Collatz problem was modified by Terras (1976,
1979), who asked if iterating

tn�
1
2 tn�1 for tn�1 even
1
2(3tn�1�1) for tn�1 odd

(
(2)

always returns to 1 for initial integer value t0: If
NEGATIVE numbers are included, there are 4 known
cycles: (1, 2), (�1), (�5, �7, �10), and (�17, �25,
�37, �55, �82, �41, �61, �91, �136, �68, �34).
It is a special case of the "generalized Collatz
problem" with d�2, m0�1; m1�3; r0�0; and r1�
�1: Terras (1976, 1979) also proved that the set of
INTEGERS Sk�fn : n has stopping time5kg has a
limiting asymptotic density F(k); such that if Nx(k)
is the number of n such that n5x and s(n)5k; then
the limit

F(k)� lim
x0�

Nx(k)

x
; (3)

exists. Furthermore, F(k) 0 1 as k 0 �; so almost all
INTEGERS have a finite stopping time. Finally, for all
k]1;

1�F(k)� lim
x0�

Nx(k)

x
52�nk; (4)

where

H(x)��x lg x�(1�x) lg(1�x) (5)

u�
1

lg 3
(6)

h�1�H(u)�0:05004 . . . (7)

(Lagarias 1985).

Conway proved that the original Collatz problem has
no nontrivial cycles of lengthB400: Lagarias (1985)
showed that there are no nontrivial cycles with length
B275; 000: Conway (1972) also proved that Collatz-
type problems can be formally UNDECIDABLE.

A generalization of the COLLATZ PROBLEM lets d]2
be a POSITIVE INTEGER and m0; ..., md�1 be NONZERO

INTEGERS. Also let ri �Z satisfy

ri�imi (mod d): (8)

Then

T(x)�
mix � ri

d
(9)

for x�i (mod d) defines a generalized Collatz map-
ping. An equivalent form is

T(x)�
mix

d

$ %
�Xi (10)

for x�i (mod d) where X0; ..., Xd�1 are INTEGERS and
rb c is the FLOOR FUNCTION. The problem is connected

with ERGODIC THEORY and MARKOV CHAINS (Mat-
thews 1995). Matthews (1995) obtained the following
table for the mapping

Tk(x)�
1
2 x for x�0 (mod 2)
1
2(3x�k) for x�1 (mod 2);

(
(11)

where k�T5k :/

k # Cycles Max. Cycle Length

0 5 27

1 10 34

2 13 118

3 17 118

4 19 118

5 21 165

6 23 433

Matthews and Watts (1984) proposed the following
conjectures.

1. If m0 	 	 	md�1j jB dd; then all trajectories
fTK (n)g for n �Z eventually cycle.
2. If m0 	 	 	md�1j j > dd; then almost all trajectories
fTK (n)g for n �Z are divergent, except for an
exceptional set of INTEGERS n satisfying

#fn �S �X5nBXg�o(X):j

3. The number of cycles is finite.
4. If the trajectory fTK (n)g for n �Z is not even-
tually cyclic, then the iterates are uniformly
distribution mod da for each a]1; with

limN0�

1

N � 1
cardfK5N TK (n)�j (mod da)g

��



�d� a (12)

for 0 5j 5d a �1:/

Matthews believes that the map

T(x) �

7x �3 for x �0 (mod 3)
1
3(7x �2) for x �1 (mod 3)
1
3(x �2) for x �2 (mod 3)

8><
>: (13)

will either reach 0 (mod 3) or will enter one of the
cycles (�1) or (�2; �4); and offers a $100 (Austra-
lian?) prize for a proof.

See also HAILSTONE NUMBER
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Collinear

Three or more points P1 ; P2 ; P3 ; ..., are said to be
collinear if they lie on a single straight LINE L . A line
on which points lie, especially if it is related to a
geometric figure such as a TRIANGLE, is sometimes
called an AXIS. Three points are collinear IFF the
ratios of distances satisfy

x2 �x1 : y2 �y1 : z2 �z1 �x3 �x1 : y3 �y1 : z3 �z1 :

Two points are trivially collinear since two points
determine a LINE.
Let points P1 ; P2 ; and P3 lie, one each, on the sides of
a triangle DA1A2A3 or their extensions, and reflect
these points about the midpoints of the triangle sides
to obtain P?1 ; P?2 ; and P ?3 : Then P ?1 ; P ?2 ; and P?3 are
collinear IFF P1 ; P2 ; and P3 are (Honsberger 1995).

See also AXIS, CONCYCLIC, CONFIGURATION, DIRECTED

ANGLE, DROZ-FARNY THEOREM, GENERAL POSITION,
LINE, N-CLUSTER, SYLVESTER’S LINE PROBLEM
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Collineation
A transformation of the plane which transforms
COLLINEAR points into COLLINEAR points. A projective
collineation transforms every 1-D form projectively,
and a perspective collineation is a collineation which
leaves all lines through a point and points through a
line invariant. In an ELATION, the center and axis are
incident; in a HOMOLOGY they are not. For further
discussion, see Coxeter (1969, p. 248).

See also AFFINITY, CORRELATION, ELATION, EQUIAF-

FINITY, HOMOLOGY (GEOMETRY), PERSPECTIVE COLLI-

NEATION, PROJECTIVE COLLINEATION
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Collision-Free Hash Function
A function H that maps an arbitrary length message
M to a fixed length message digest MD is a collision-
free hash function if

1. It is a ONE-WAY HASH FUNCTION.
2. It is hard to find two distinct messages (M?; M)
that hash to the same result H(M?)�H(M): More



precisely, any efficient algorithm (solving a P-

PROBLEM) succeeds in finding such a collision
with negligible probability (Russell 1992).

See also HASH FUNCTION
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Collocation Method
A method of determining coefficients al in an expan-
sion

y(x) �y0(x) �
Xq

l �1

alyl(x)

so as to nullify the values of an ORDINARY DIFFER-

ENTIAL EQUATION L[y(x)] �0 at prescribed points.
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Cologarithm
The LOGARITHM of the RECIPROCAL of a number, equal
to the NEGATIVE of the LOGARITHM of the number
itself,

colog x �log
1

x

 !
��log x:

See also ANTILOGARITHM, LOGARITHM

Colon Product
Let AB and CD be DYADS. Their colon product is
defined by

AB : CD �C � AB � D �(A � C)(B � D):

See also DYAD

Colorable
Color each segment of a KNOT DIAGRAM using one of
three colors. If

1. At any crossing, either the colors are all
different or all the same, and
2. At least two colors are used,

then a KNOT is said to be colorable (or more specifi-
cally, THREE-COLORABLE). Colorability is invariant
under REIDEMEISTER MOVES, and can be generalized.
For instance, for five colors 0, 1, 2, 3, and 4, a KNOT is
five-colorable if

1. at any crossing, three segments meet. If the
overpass is numbered a and the two underpasses
B and C , then 2a �b �c (mod 5); and
2. at least two colors are used.

Colorability cannot always distinguish HANDEDNESS.
For instance, three-colorability can distinguish the
mirror images of the TREFOIL KNOT but not the
FIGURE-OF-EIGHT KNOT. Five-colorability, on the other
hand, distinguishes the MIRROR IMAGES of the FIGURE-

OF-EIGHT KNOT but not the TREFOIL KNOT.

See also COLORING, WORM

Coloring
A coloring of plane regions, LINK segments, etc., is an
assignment of a distinct labeling (which could be a
number, letter, color, etc.) to each component. Color-
ing problems generally involve TOPOLOGICAL consid-
erations (i.e., they depend on the abstract study of the
arrangement of objects), and theorems about color-
ings, such as the famous FOUR-COLOR THEOREM, can
be extremely difficult to prove.

See also COLORABLE, EDGE COLORING, FOUR-COLOR

THEOREM, K -COLORING, LOVÁ SZ NUMBER, POLYHE-

DRON COLORING, SIX-COLOR THEOREM, THREE-COLOR-

ABLE, VERTEX COLORING
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Columbian Number
SELF NUMBER

Column Space

See also ROW SPACE



Column Vector
An m �1 MATRIX

a11

a21

n
am1

2
664

3
775:

See also MATRIX, ROW VECTOR, VECTOR

Column-Convex Polyomino

A column-convex polyomino is a self-avoiding CONVEX

POLYOMINO such that the intersection of any vertical
line with the polyomino has at most two connected
components. Column-convex polyominos are also
called vertically convex polyominoes. A ROW-CONVEX

POLYOMINO is similarly defined. The number a(n) of
column-convex n -polyominoes are given by the third-
order RECURRENCE RELATION

a(n) �5a(n �1) �7a(n �2) �4a(n �3)

with a(1) �1 ; a(2) �2 ; a(3) �6; and a(4) �19 (Hick-
erson 1999). The first few are 1, 2, 6, 19, 61, 196, 629,
2017, ... (Sloane’s A001169). a(n) has GENERATING

FUNCTION

f (x)
x(1 � x)3

1 � 5x � 7x2 � 4x3 
�x �2x2 �6x3 �19x4 �. . . :

See also CONVEX POLYOMINO, POLYOMINO, ROW-

CONVEX POLYOMINO
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Colunar Triangle
Given a SCHWARZ TRIANGLE (pqr) ; replacing each
VERTEX with its antipodes gives the three colunar
SPHERICAL TRIANGLES

(pq ?r ?) ; (p ?qr?); (p?q ?r)

where

1

p 
�

1

p?
�1

1

q 
�

1

q?
�1

1

r 
�

1

r?
�1:

See also SCHWARZ TRIANGLE, SPHERICAL TRIANGLE
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Comass
The comass of a DIFFERENTIAL P -FORM f is the largest
value of f on a p vector of p -volume one,

sup
v �LpTM; vj j�1

f(v)j j:

See also CALIBRATION FORM

Comb Function
SHAH FUNCTION

Combination
The number of ways of picking k unordered outcomes
from n possibilities. Also known as the BINOMIAL

COEFFICIENT or CHOICE NUMBER and read "n choose
r ."

nCk�
n
k

� �
�

n!

k!(n � k)!
;



where n! is a FACTORIAL (Uspensky 1937, p. 18). For
example, there are 4

2

& '
�6 combinations on

f1; 2; 3; 4g; namely f1 ; 2g; f1 ; 3g; f1; 4g; f2; 3g;
f2; 4g; and f3 ; 4 g: These combinations are known
as K -SUBSETS.

Muir (1960, p. 7) uses the nonstandard notations
(n)k � 

n
k

& '
and (n̄)k � 

n�k
k

& '
:/

See also BINOMIAL COEFFICIENT, DERANGEMENT,
FACTORIAL, K -SUBSET, PERMUTATION, SUBFACTORIAL

References
Conway, J. H. and Guy, R. K. "Choice Numbers." In The

Book of Numbers. New York: Springer-Verlag, pp. 67 �/8,
1996.

Muir, T. A Treatise on the Theory of Determinants. New
York: Dover, 1960.

Ruskey, F. "Information on Combinations of a Set." http://
www.theory.csc.uvic.ca/~cos/inf/comb/CombinationsIn-
fo.html.

Skiena, S. "Combinations." §1.5 in Implementing Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica. Reading, MA: Addison-Wesley, pp. 40 �/6,
1990.

Uspensky, J. V. Introduction to Mathematical Probability.
New York: McGraw-Hill, p. 18, 1937.

Combination Lock
Let a combination of n buttons be a SEQUENCE of
disjoint nonempty SUBSETS of the SET f1; 2; . . . ; ng:
If the number of possible combinations is denoted an ;
then an satisfies the RECURRENCE RELATION

an �
Xn�1

i�0

n
n �i

� �
ai ; (1)

with a0 �1: This can also be written

an �
dn

dxn

1

2 � ex

 !
j
x �0

�1
2

X�
k �0

kn

2k 
; (2)

where the definition 00 �1 has been used. Further-
more,

an

Xn

k �1

An; k2n�k �
Xn

k�1

An; k2k �1 ; (3)

where An ; k are EULERIAN NUMBERS. In terms of the
STIRLING NUMBERS OF THE SECOND KIND s(n; k) ;

an �
Xn

k�1

k!s(n; k) : (4)

/an can also be given in closed form as

an �
1
2 Li �n(1

2) ; (5)

where Lin(z) is the POLYLOGARITHM. The first few
values of an for n �1, 2, ... are 1, 3, 13, 75, 541, 4683,
47293, 545835, 7087261, 102247563, ... (Sloane’s
A000670).

The quantity

bn �
an

n! 
(6)

satisfies the inequality

1

2(ln 2)n 5bn 5
1

(ln 2)n : (7)
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Combinatorial Composition
COMPOSITION

Combinatorial Design
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Combinatorial Dual Graph
Let m(G) be the cycle rank of a graph G , m�(G) be the
cocycle rank, and the relative complement G �H of a
SUBGRAPH H of G be defined as that subgraph
obtained by deleting the lines of H . Then a graph
G � is a combinatorial dual of G if there is a one-to-one
correspondence between their sets of lines such that
for any choice Y and Y� of corresponding subsets of
lines,

M�(G�Y)�m�(G)�m(�Y��);

where �Y�� is the subgraph of G� with the line set
Y�:/

Whitney showed that the GEOMETRIC DUAL GRAPH

and combinatorial dual graph are equivalent (Harary
1994, p. 115), and so may simply be called "the" DUAL

GRAPH. Also, a graph is PLANAR IFF it has a combina-
torial dual (Harary 1994, p. 115).

See also DUAL GRAPH, GEOMETRIC DUAL GRAPH,
PLANAR GRAPH
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Combinatorial Geometry

See also MATROID
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Combinatorial Number
BINOMIAL COEFFICIENT

Combinatorial Optimization
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Combinatorial Species
SPECIES

Combinatorial Topology
Combinatorial topology is a special type of ALGEBRAIC

TOPOLOGY that uses COMBINATORIAL methods. For
example, SIMPLICIAL HOMOLOGY is a combinatorial
construction in ALGEBRAIC TOPOLOGY, so it belongs to
combinatorial topology.

See also ALGEBRAIC TOPOLOGY, SIMPLICIAL HOMOL-

OGY, TOPOLOGY
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Combinatorics
The branch of mathematics studying the enumera-
tion, combination, and permutation of sets of ele-
ments and the mathematical relations which
characterize these properties.

See also ALGEBRAIC COMBINATORICS, ANTICHAIN,
CHAIN, DILWORTH’S LEMMA, DIVERSITY CONDITION,
ENUMERATION PROBLEM, ERDOS-SZEKERES THEOREM,
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Comedian Triangles
Two triangles having the same MEDIAN are said to be
comedian triangles.

See also COSYMMEDIAN TRIANGLES, MEDIAN (TRIAN-

GLE)
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Comma
A typesetting symbol which has several distinct
meanings in mathematics. It is used for a number of
purposes.

1. To denote Boundaries between elements in a
list, as in f1; 2; 3; . . .g:/
2. To delimit indices in the element of a MATRIX, as
in ai; j (although it is frequently omitted when
implied by context).
3. To indicate the COMMA DERIVATIVE of a TENSOR.
4. In place of a DECIMAL POINT in continental
Europe, e.g., 3,14159.

See also COMMA DERIVATIVE, DECIMAL POINT
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Comma Derivative
For A a TENSOR,

A;k �
@A

@xk 
�@kA

Ak
;k �

1

gk

@Ak

@xk 
�@kAk :

Schmutzer (1968, p. 70) uses the older notation A kj /.

See also COVARIANT DERIVATIVE, TENSOR
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Comma of Didymus
The musical interval by which four fifths exceed a
seventeenth (i.e., two octaves and a major third),

@A

@xk 
�@kA

also called a SYNTONIC COMMA.

See also COMMA OF PYTHAGORAS, DIESIS, SCHISMA

Comma of Pythagoras
The musical interval by which twelve fifths exceed
seven octaves,

Ak
;k

Successive CONTINUED FRACTION CONVERGENTS to

1

gk

@Ak

@xk
�@kAk

give increasingly close approximations A kj of m fifths



by n octaves as 1, 2, 5/3, 12/7, 41/24, 53/31, 306/179,
665/389, ... (Sloane’s A005664 and A046102; Jeans
1968, p. 188), shown in bold in the table below. All
near-equalities of m fifths and n octaves having

with

are given in the following table.

m n Ratio m n Ratio

12 7 1.013643265 265 155 1.010495356

41 24 0.9886025477 294 172 0.9855324037

53 31 1.002090314 306 179 0.9989782832

65 38 1.015762098 318 186 1.012607608

94 55 0.9906690375 347 203 0.9875924759

106 62 1.004184997 359 210 1.001066462

118 69 1.017885359 371 217 1.014724276

147 86 0.9927398469 400 234 0.9896568543

159 93 1.006284059 412 241 1.003159005

188 110 0.9814251419 424 248 1.016845369

200 117 0.994814985 453 265 0.9917255479

212 124 1.008387509 465 272 1.005255922

241 141 0.9834766286 477 279 1.018970895

253 148 0.9968944607 494 289 0.9804224033

See also COMMA OF DIDYMUS, DIESIS, SCHISMA
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Commandino’s Theorem
The four medians of a TETRAHEDRON CONCUR in a
point which divides each MEDIAN in the ratio 1:3, the
longer segment being on the side of the vertex of the
TETRAHEDRON.

See also BIMEDIAN, MEDIAN (TETRAHEDRON), TETRA-

HEDRON
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Common Cycloid
CYCLOID

Common Fraction
A FRACTION in which NUMERATOR and DENOMINATOR

are both integers, as opposed to fractions. Common
fractions are sometimes also called vulgar fractions.

See also COMPLEX FRACTION, FRACTION

Common Logarithm

The LOGARITHM in BASE 10. The notation log x is used
by physicists, engineers, and calculator keypads to
denote the common logarithm. However, mathemati-
cians generally use the same symbol to mean the
NATURAL LOGARITHM LN, ln x: Worse still, in Russian
literature the notation lg x is used to denote a base-10
logarithm, which conflicts with the use of the symbol
LG to indicate the logarithm to base 2. To avoid all
ambiguity, it is best to explicitly specify log10 x when
the logarithm to base 10 is intended. In this work,
log x�log10 x; ln x�loge x is used for the NATURAL



LOGARITHM, and lg x �log2 x is the logarithm to the
base 2.
Hardy and Wright (1979, p. 8) assert that the
common logarithm has "no mathematical interest."
Common and natural logarithms can be expressed in
terms of each other as

ln x �
log10 x

log10 e

log10 x �
ln x

ln 10 
:

See also LG, LN, LOGARITHM, NATURAL LOGARITHM
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Common Residue
The value of b , where a �b (mod m) ; taken to be
NONNEGATIVE and smaller than m .

See also MINIMAL RESIDUE, RESIDUE (CONGRUENCE)

Commutation Coefficient
A TENSOR-like coefficient which gives the difference
between PARTIAL DERIVATIVES of two coordinates with
respect to the other coordinate,

c mab �em �[ �ea ; �e b] �9a �eb �9b �e a :

See also CONNECTION COEFFICIENT, PARTIAL DERIVA-

TIVE

Commutative
Two elements x and y of a set S are said to be
commutative under a binary operation + if they
satisfy

x + y �y + x:

Real numbers are commutative under addition

x �y �y �x

and multiplication

x � y �y � x:

See also ASSOCIATIVE, COMMUTE, COMMUTATIVE

ALGEBRA, COMMUTATIVE MATRICES, COMMUTATIVE

RING, DISTRIBUTIVE, TRANSITIVE

Commutative Algebra
Let A denote an R/-algebra, so that A is a VECTOR

SPACE over R and

A �A 0 A (1)

(x; y) �x � y : (2)

Now define

Z �fx � A : x � y �0 for some y � A "0 g; (3)

where 0 � Z : An ASSOCIATIVE R/-algebra is commuta-
tive if x � y �y � x for all x; y � A: Similarly, a RING is
commutative if the MULTIPLICATION operation is
commutative, and a LIE ALGEBRA is commutative if
the COMMUTATOR [A, B ] is 0 for every A and B in the
LIE ALGEBRA.

See also ABELIAN GROUP, COMMUTATIVE
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Commutative Group
ABELIAN GROUP

Commutative Matrices
COMMUTING MATRICES

Commutative Ring
A RING is commutative if the MULTIPLICATION opera-
tion is COMMUTATIVE.

See also COMMUTATIVE, RING

Commutator
Let Ã; B̃; ...be OPERATORS. Then the commutator of Ã
and B̃ is defined as

[Ã; B̃]�ÃB̃�B̃Ã: (1)

Let a , b , ... be constants. Identities include

[f (x); x]�0 (2)

[Ã; Ã]�0 (3)



[ Ã; B̃] ��[ B̃ ; Ã] (4)

[ Ã; B̃ C̃] �[ Ã; B̃] C̃ � B̃[ Ã; C̃] (5)

[ Ã B̃ ; C̃] �[ Ã; C̃] B̃ � Ã[ B̃ ; C̃] (6)

[a � Ã; b � B̃] �[ Ã; B̃] (7)

[ Ã � B̃ ; C̃ � D̃] �[ Ã; C̃] �[ Ã; D̃] �[ B̃ ; C̃] �[ B̃; D̃] : (8)

Let A and B be TENSORS. Then

[A; B] �9AB �9BA: (9)

There is a related notion of commutator in the theory
of groups. The commutator of two GROUP elements A
and B is ABA �1B �1 ; and two elements A and B are
said to COMMUTE when their commutator is the
IDENTITY ELEMENT. When the group is a LIE GROUP,
the LIE BRACKET in its LIE ALGEBRA is an infinitesi-
mal version of the group commutator. For instance,
let A and B be square matrices, and let a(s) and b(t) be
paths in the LIE GROUP of INVERTIBLE MATRICES

which satisfy

a(0) � b(0) �1 (10)

@x

@s j
s�0

�A (11)

@ b

@s j
s �0

�B; (12)

then

@

@s

@

@t
a(s) b(t) a�1(s) b�1(t)j

(s�0 ; t �0)

�2[A; B] : (13)

See also AD, AD, ANTICOMMUTATOR, COMMUTATOR

SUBGROUP, JACOBI IDENTITIES
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Commutator Series (Lie Algebra)
The commutator series of a LIE ALGEBRA g; sometimes
called the derived series, is the sequence of subalge-
bras recursively defined by

gk �1 �[ gk ; gk];

with g0 �g: The sequence of subspaces is always
decreasing with respect to inclusion or dimension,
and becomes stable when g is finite dimensional. The
notation [ a; b] means the linear span of elements of
the form [A, B ], where A � a and B � b:/

When the commutator series ends in the zero sub-
space, the Lie algebra is called SOLVABLE. For
example, consider the LIE ALGEBRA of strictly UPPER

TRIANGULAR MATRICES, then

g0 �

0 a12 a13 a14 a15

0 0 a23 a24 a25

0 0  0 a34 a35

0 0 0 0 a45

0 0 0 0 0

2
66664

3
77775 (1)

g1 �

0 0 a13 a14 a15

0 0  0  a24 a25

0 0  0  0  a35

0 0 0 0 0
0 0 0 0 0

2
66664

3
77775 (2)

g2 �

0 0 0 0 a15

0 0 0 0  0
0 0 0 0  0
0 0 0 0  0
0 0 0 0  0

2
66664

3
77775; (3)

and g3 �0: By definition, gk ƒgk where gk is the term
in the LOWER CENTRAL SERIES, as can be seen by the
example above.

In contrast to the SOLVABLE LIE ALGEBRAS, the
SEMISIMPLE LIE ALGEBRAS have a constant commu-
tator series. Others are in between, e.g.,

[ gln ; gln] �sln ; (4)

which is semisimple, because the TRACE satisfies

Tr(AB) �Tr(BA) : (5)

Here, gln is a general linear Lie algebra and sln is the
SPECIAL LINEAR LIE ALGEBRA.

Here are some Mathematica functions for determin-
ing the commutator series, given a list of matrices
which is a basis for g:/

MatrixBasis[a_List]: �
Partition[#1,Length[a[[1]]]]&/@

LatticeReduce[Flatten/@a]

LieCommutator[a_,b_]: �a.b-b.a

NextDerived[{}] �{};

NextDerived[g_List]: �
MatrixBasis[Flatten[Outer[LieCommutator,g,g,1]

,1]]

kthDerived[g_List,k_Integer]: �
Nest[NextDerived,g,k]

For example,

gl5�Flatten[Table[ReplacePart

[Table

[0,{i,5},{j,5}],1,{k,l}],{k,5},{l,5}],1];sl5�
kthDerived[gl5, 1]

See also BOREL SUBALGEBRA, COMMUTATOR SERIES

(GROUP), LIE ALGEBRA, LIE GROUP, NILPOTENT LIE

GROUP, NILPOTENT LIE ALGEBRA, REPRESENTATION



(LIE ALGEBRA), REPRESENTATION (SOLVABLE LIE

GROUP), SOLVABLE LIE GROUP, SPLIT SOLVABLE LIE

ALGEBRA

Commutator Subgroup
The commutator subgroup of a GROUP G is the
SUBGROUP generated by the COMMUTATORS of its
elements, and is denoted [G, G ]. It is always a
NORMAL SUBGROUP. It can range from the identity
subgroup (in the case of an ABELIAN GROUP), to the
whole group. For instance, in the QUATERNION group
f91; 9i ; 9j ; 9kg with eight elements, the commuta-
tors form the subgroup f1; �1g: The commutator
subgroup of the SYMMETRIC GROUP is the ALTERNAT-

ING GROUP. The commutator subgroup of the ALTER-

NATING GROUP An is the whole group An : When n ]5;
An is a SIMPLE GROUP and its only nontrivial normal
subgroup is itself. Since [An ; An] is a nontrivial
normal subgroup, it must be An :/

The first homology of a group G is the ABELIANIZA-

TION

H1(G) �G=[G ; G] :

See also ABELIAN GROUP, ABELIANIZATION, COMMU-

TATOR, GROUP, GROUP COHOMOLOGY, NORMAL SUB-

GROUP

Commute
Two algebraic objects that are COMMUTATIVE, i.e., A
and B such that A + B �B + A for some operation +;
are said to commute with each other.

See also COMMUTATIVE, COMMUTATOR

Commuting Matrices
This entry contributed by RONALD M. AARTS

Two matrices A and B which satisfy

AB �BA

under MATRIX MULTIPLICATION are said to be com-
muting.

In general, MATRIX MULTIPLICATION is not COMMU-

TATIVE. Furthermore, in general there is no MATRIX

INVERSE A �1 even when A "0: Finally, AB can be zero
even without A �0 or B �0: And when AB �0 ; we
may still have BA "0; a simple example of which is
provided by

A �
0 1
0 0

� �

B �
1 0
0 0

� �
;

for which

AB �0 ;

but

BA �
0 1
0 0

� �
�A

(Taussky 1957).

See also COMMUTATIVE
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Co-Monotone Approximation
COMONOTONE APPROXIMATION

Comonotone Approximation
This entry contributed by RONALD M. AARTS

The approximation of a piecewise MONOTONIC FUNC-

TION f by a polynomial with the same monotonicity.
Such comonotonic approximations can always be
accomplished with nth degree polynomials, and
have an error of Av(f ; 1=n) (Passow and Raymon
1974, Passow et al. 1974, Newman 1979).
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Compact Closure
A set U has compact closure if its CLOSURE is
COMPACT. Typically, compact closure is equivalent to
the condition that U is BOUNDED.

See also BOUNDED, COMPACT SET, TOPOLOGY

Compact Group
COMPACT LIE GROUP

Compact Lie Group
If the parameters of a LIE GROUP vary over a CLOSED

INTERVAL, them the LIE GROUP is said to be compact.
Every representation of a compact group is equiva-
lent to a UNITARY representation.

See also LIE GROUP
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Compact Manifold
A compact manifold is a MANIFOLD which is compact
as a TOPOLOGICAL SPACE. Examples are the CIRCLE

(the only 1-D compact manifold) and the n -dimen-
sional sphere and torus. Compact manifolds in two
dimensions are completely classified by their orienta-
tion and the number of holes (GENUS).

For many problems in topology and geometry, it is
convenient to study compact manifolds because of
their "nice" behavior. Among the properties making
compact manifolds "nice" are the fact that they can be
covered by finitely many CHARTS, and that any
continuous real-valued function is bounded on a
compact manifold. However, it is an open question if
the known compact manifolds in 3-D are complete,
and it is not even known what a complete list in 4-D
should look like. The following terse table therefore
summarizes current knowledge about the number of
compact manifolds N(D) of D dimensions.

D /N(D)/

1 1

2 2

See also MANIFOLD, SPHERE, TOPOLOGICAL SPACE,
TORUS, TYCHONOF COMPACTNESS THEOREM

Compact Set
The SET S is compact if, from any SEQUENCE of
elements X1 ; X2 ; ...of S , a subsequence can always
be extracted which tends to some limit element X of
S . Compact sets are therefore sets which are both
CLOSED and BOUNDED.

See also BOUNDED SET, CLOSED SET
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Compact Space
A TOPOLOGICAL SPACE is compact if every open cover
of X has a finite subcover. In other words, if X is the
union of a family of open sets, there is a finite
subfamily whose union is X . A subset A of a
TOPOLOGICAL SPACE X is compact if it is compact as
a TOPOLOGICAL SPACE with the relative topology (i.e.,
every family of open sets of X whose union contains A
has a finite subfamily whose union contains A ).

Compact Support
A function has compact support if it is zero outside of
a COMPACT SET. A function with compact support is

only interesting in a BOUNDED domain. Alternatively,
one can say that a function has compact support if its
SUPPORT is a COMPACT SET. For example, the function
f : x 0 x2 in its entire domain (i.e., f : R 0 R �) does
not have compact support, while any BUMP FUNCTION

does have compact support.

See also BUMP FUNCTION, COMPACT SET, SUPPORT

Compact Surface
A compact surface is a SURFACE which is also a
COMPACT SET. A compact surface has a TRIANGULA-

TION with a finite number of triangles. The SPHERE

and TORUS are compact.

See also COMPACT SET, TRIANGULATION

Compactification
A compactification of a TOPOLOGICAL SPACE X is a
larger space Y containing X which is also compact.
The smallest compactification is the ONE-POINT COM-

PACTIFICATION. For example, the real line is not
compact. It is contained in the circle, which is
obtained by adding a point at infinity. Similarly, the
plane is compactified by adding one point at infinity,
giving the SPHERE.

See also COMPACT SET, STEREOGRAPHIC PROJECTION,
TOPOLOGICAL SPACE

Compactness Theorem
Inside a BALL B in R3;

frectifiable currents S in BL area S5c; length @S5cg

is compact under the FLAT NORM.
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Compact-Open Topology
The compact-open topology is a common topology
used on FUNCTION SPACES. Suppose X and Y are
TOPOLOGICAL SPACES and C(X; Y) is the set of con-
tinuous maps from f : X 0 Y : The compact-open
topology on C(X; Y) is generated by subsets of the
following form,

B(K ; U)�ff ½f (K)ƒUg;

where K is compact in X and U is open in Y . (Hence
the terminology "compact-open.") It is important to
note that these sets are not CLOSED under intersec-
tion, and do not form a BASIS. Instead, the sets
B(K ; U) form a SUBBASIS for the compact-open
topology. That is, the open sets in the compact-open
topology are the arbitrary unions of finite intersec-
tions of B(K ; U):/



The simplest FUNCTION SPACE to compare topologies
is the space of real-valued continuous functions f :
R 0 R: A sequence of functions fn converges to f �0
IFF for every B(K ; U) containing f contains all but a
finite number of the fn : Hence, for all K �0 and all
e > 0; there exists an N such that for all n �N ,

fn(x)j jBe for all ½x½5K :

For example, the sequence of functions fn �
sin(nx=2)=(n �1) �x2n =e �n2 =2 converges to the zero
function, although each function is unbounded.

When Y is a METRIC SPACE, the compact-open topol-
ogy is the same as the topology of COMPACT CONVER-

GENCE. If X is a LOCALLY COMPACT HAUSDORFF space,
a fairly weak condition, then the evaluation map

e : X �C(X ; Y) 0 Y

defined by e(x; f ) �f (x) is CONTINUOUS. Similarly, H :
X �Z 0 Y is CONTINUOUS IFF the map H̃ : Z 0
C(X ; Y) ; given by H(x; z) � H̃(z)(x) ; is CONTINUOUS.
Hence, the compact-open topology is the right topol-
ogy to use in HOMOTOPY theory.

See also ALGEBRAIC TOPOLOGY, COMPACT CONVER-

GENCE, HOMOTOPY THEORY, TOPOLOGICAL SPACE
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Companion Knot
Let K1 be a knot inside a TORUS. Now knot the TORUS

in the shape of a second knot (called the companion
knot) K2 : Then the new knot resulting from K1 is
called the SATELLITE KNOT K3 :/
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Companion Matrix
The companion matrix to a MONIC POLYNOMIAL

a(x) �a0 �a1x �. . .�an�1xn�1 �xn (1)

is the n �n SQUARE MATRIX

A �

0 0  	 	 	  0 �a0

1 0  	 	 	  0 �a1

0 1  	 	 	  0 �a2

n n  :::
::: n

0 0  	 	 	  1 �an�1

2
66664

3
77775 (2)

with ones on the SUBDIAGONAL and the last column
given by the coefficients of a(x) : Note that in the
literature, the companion matrix is sometimes de-
fined with the rows and columns switched, i.e., the
TRANSPOSE of the above matrix.

When ei is the STANDARD BASIS, a companion matrix
satisfies

Aei�ei�1 (3)

for i Bn , as well as

Aen�
X

�aiei; (4)

including

A ne1�
X

�aiA ie1: (5)

The MINIMAL POLYNOMIAL of the companion matrix is
therefore a(x); which is also its CHARACTERISTIC

POLYNOMIAL.

Companion matrices are used to write a matrix in
RATIONAL CANONICAL FORM. In fact, any n �n matrix
whose MINIMAL POLYNOMIAL p(x) has DEGREE n is
SIMILAR to the companion matrix for p(x) : The
RATIONAL CANONICAL FORM is more interesting when
the degree of p(x) is less than n .

The following Mathematica command gives the com-
panion matrix for a polynomial p in the variable x .

CompanionMatrix[p_,x_]:�
Module[{rnk�Exponent[p,x],

v�CoefficientList[p,x],w},

w�Drop[v/Last[v],-1];

If[rnk��1,{-w},

Transpose[Append[(Prepend[#1,0]&/@IdentityMa-

trix[rnk-1]),-w]]]]

See also MATRIX, MINIMAL POLYNOMIAL (MATRIX),
RATIONAL CANONICAL FORM
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Comparability Graph
The comparability graph of a POSET P�(X; 5) is the
GRAPH with vertex set X for which vertices x and y
are adjacent IFF either x5y or y5x in P .



See also INTERVAL GRAPH, PARTIALLY ORDERED SET

Comparison Test
Let a ak and a bk be a SERIES with POSITIVE terms
and suppose a1 5b1 ; a2 5b2 ; ....

1. If the bigger series CONVERGES, then the smaller
series also CONVERGES.
2. If the smaller series DIVERGES, then the bigger
series also DIVERGES.

See also CONVERGENCE TESTS
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Compass
A tool with two arms joined at their ends which can be
used to draw CIRCLES. In GEOMETRIC CONSTRUCTIONS,
the classical Greek rules stipulate that the compass
cannot be used to mark off distances, so it must
"collapse" whenever one of its arms is removed from
the page. This results in significant complication in
the complexity of GEOMETRIC CONSTRUCTIONS.

See also CONSTRUCTIBLE POLYGON, GEOMETRIC CON-

STRUCTION, GEOMETROGRAPHY, MASCHERONI CON-

STRUCTION, PLANE GEOMETRY, POLYGON, PONCELET-

STEINER THEOREM, RULER, SIMPLICITY, STEINER

CONSTRUCTION, STRAIGHTEDGE
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Compatible
Let Ak k be the MATRIX NORM associated with the
MATRIX A and xk k be the VECTOR NORM associated
with a VECTOR x. Let the product Ax be defined, then
Ak k and xk k are said to be compatible if

Axk k5 Ak k xk k:
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Complement
In general, the word "complement" refers to that
subset F ? of some set S which excludes a given subset
F . Taking F and its complement F ? together then
gives the whole of the original set. The notations F ?
and F̄ are commonly used to denote the complement
of a set F .

This concept is commonly used and made precise in
the particular cases of a GRAPH COMPLEMENT, KNOT

COMPLEMENT, and COMPLEMENT SET. The word "com-
plementary" is also used in the same way, so combin-
ing an angle and its COMPLEMENTARY ANGLE gives a
RIGHT ANGLE and a complementary error function
ERFC and the usual error function ERF give unity
when added together,

erfc x�erf x�1:

See also COMPLEMENT SET, COMPLEMENTARY ANGLE,
ERFC, GRAPH COMPLEMENT, KNOT COMPLEMENT
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Complement Graph
GRAPH COMPLEMENT

Complement Knot
KNOT COMPLEMENT

Complement Set
Given a set S with a subset E , the complement of E is
defined as

E?�fF : F �S; FQEg: (1)

Using SET DIFFERENCE notation, the complement is
defined by

E?�S_E: (2)

If E�S , then

E?�S?�¥; (3)

where ¥ is the EMPTY SET. The complement is
implemented in Mathematica as Complement[l , l1 ,
...].

Given a single SET, the second PROBABILITY AXIOM

gives

1�P(S)�P(E@E?): (4)

Using the fact that ESE?�¥;

1�P(E)�P(E?) (5)

P(E?)�1�P(E): (6)

This demonstrates that

P(S?)�P(¥)�1�P(S)�1�1�0: (7)

Given two SETS,

P(ESF?)�P(E)�P(ESF) (8)



P(E ?S F ?) �1 �P(E) �P(F) �P(E S F): (9)

See also INTERSECTION, SET DIFFERENCE, SYMMETRIC

DIFFERENCE
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Complementary Angle
Two ANGLES a and p=2 � a are said to be complemen-
tary.

See also ANGLE, RIGHT ANGLE, SUPPLEMENTARY

ANGLE

Complementary Error Function
ERFC

Complementary Modulus
If k is the MODULUS of an ELLIPTIC INTEGRAL or
ELLIPTIC FUNCTION, then

k ?�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

p

is called the complementary modulus. Complete
elliptic integrals with respect to the complementary
modulus are often denoted

K ?(k) �K(k?) �K(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

p
)

and

E ?(k) �E(k ?) �E(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

p
):

See also MODULUS (ELLIPTIC INTEGRAL)
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Complementation
The process of taking the COMPLEMENT of a set or
truth function. In the latter case, complementation is
equivalent to the NOT operation.

See also COMPLEMENT, NOT

Complete
COMPLETE AXIOMATIC THEORY, COMPLETE BIGRAPH,
COMPLETE GRAPH, COMPLETE QUADRANGLE, COM-

PLETE QUADRILATERAL, COMPLETE SEQUENCE, COM-

PLETE SET OF FUNCTIONS, COMPLETE SPACE,

COMPLETENESS PROPERTY, WEAKLY COMPLETE SE-

QUENCE

Complete Axiomatic Theory
An axiomatic theory (such as a GEOMETRY) is said to
be complete if each valid statement in the theory is
capable of being proven true or false.

See also CONSISTENCY

Complete Beta Function
BETA FUNCTION, INCOMPLETE BETA FUNCTION

Complete Bigraph
COMPLETE BIPARTITE GRAPH

Complete Binary Tree

A labeled BINARY TREE containing the labels 1 to n
with root 1, branches leading to nodes labeled 2 and 3,
branches from these leading to 4, 5 and 6, 7,
respectively, and so on (Knuth 1997, p. 401).

See also BINARY TREE, COMPLETE TREE, COMPLETE

TERNARY TREE, HEAP
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Complete Bipartite Graph

A BIPARTITE GRAPH (i.e., a set of VERTICES decomposed
into two disjoint sets such that there are no two



VERTICES within the same set are adjacent) such that
every pair of VERTICES in the two sets are adjacent. If
there are p and q VERTICES in the two sets, the
complete bipartite graph (sometimes also called a
COMPLETE BIGRAPH) is denoted Kp ; q : The above
figures show K3 ; 2 and K2 ; 5 : K3 ; 3 is also known as
the UTILITY GRAPH, and is the unique 4-CAGE GRAPH.

A complete bipartite graph Kn ; n is a CIRCULANT

GRAPH (Skiena 1990, p. 99). The complete bipartite
graph K18 ; 18 illustrated above plays an important role
in the novel by Eco (1989, p. 473; Skiena 1990,
p. 143).

See also BIPARTITE GRAPH, CAGE GRAPH, COMPLETE

GRAPH, COMPLETE K -PARTITE GRAPH, K -PARTITE

GRAPH, THOMASSEN GRAPH, UTILITY GRAPH
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Complete Convex Function
This entry contributed by RONALD M. AARTS

A function f (x) is completely convex in an OPEN

INTERVAL (a, b ) if it has DERIVATIVES of all orders
there and if

(�1)kf (2k)(x) ]0

for k �0, 1, 2, ... in that interval (Widder 1945,
p. 177). For example, the functions sin x and cos x
are completely convex in the intervals (0; p) and
(�p=2; p=2) respectively.

See also COMPLETELY MONOTONIC FUNCTION
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Complete Digraph

Complete digraphs are digraphs in which every pair
of nodes is connected by a bidirectional edge.

See also COMPLETE GRAPH, DIGRAPH, RAMSEY’S

THEOREM

Complete Direct Sum
RING DIRECT PRODUCT

Complete Functions
COMPLETE SET OF FUNCTIONS

Complete Gamma Function
GAMMA FUNCTION, INCOMPLETE GAMMA FUNCTION

Complete Graph

A GRAPH in which each pair of VERTICES is connected
by an EDGE. The complete graph with n VERTICES is
denoted Kn; and has n

2

& '
undirected edges, where n

k

& '
is

a BINOMIAL COEFFICIENT. In older literature, complete
GRAPHS are called UNIVERSAL GRAPHS.
The number of EDGES in Kv is v(v�1)=2 (the trian-
gular numbers), and the GENUS is (v�3)(v�4)=12 for
v]3: The ADJACENCY MATRIX A of the complete graph
G takes the particularly simple form of all 1s with 0s
on the diagonal, i.e., the UNIT MATRIX minus the
IDENTITY MATRIX,

A�J�I: (1)

/K3 is the CYCLE GRAPH C3; as well as the ODD GRAPH

O2 (Skiena 1990, p. 162). K4 is the TETRAHEDRAL

GRAPH, as well as the WHEEL GRAPH W4; and is also a
PLANAR GRAPH. K5 is nonplanar. Conway and Gordon
(1983) proved that every embedding of K6 is INTRIN-

SICALLY LINKED with at least one pair of linked



triangles. They also showed that any embedding of K7

contains a knotted HAMILTONIAN CYCLE.

The CHROMATIC POLYNOMIAL pKn(z) of Kn is given by
the FALLING FACTORIAL (z)n ; and the CHROMATIC

NUMBER by n .

It is not known in general if a set of TREES with 1, 2,
..., n �1 EDGES can always be packed into Kn :
However, if the choice of TREES is restricted to either
the path or star from each family, then the packing
can always be done (Zaks and Liu 1977, Honsberger
1985).

See also CLIQUE, COMPLETE BIPARTITE GRAPH, COM-

PLETE DIGRAPH, COMPLETE K -PARTITE GRAPH, EMPTY

GRAPH, GRAPH COMPLEMENT, ODD GRAPH
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Complete k-Partite Graph

A K -PARTITE GRAPH (i.e., a set of VERTICES decomposed
into k disjoint sets such that no two VERTICES within
the same set are adjacent) such that every pair of
VERTICES in the k sets are adjacent. If there are p , q ,
..., r VERTICES in the k sets, the complete k -partite
graph is denoted /Kp;q ;:::;r :/ The above figure shows
K2 ; 3 ; 5 :/

See also COMPLETE GRAPH, COMPLETE K -PARTITE

GRAPH, K -PARTITE GRAPH
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Complete Metric Space
A complete metric space is a METRIC SPACE in which
every CAUCHY SEQUENCE is CONVERGENT. Examples
include the REAL NUMBERS with the usual metric and
the P -ADIC NUMBERS.

Complete Minimal Surface
A surface which is simultaneously COMPLETE and
MINIMAL. There have been a large number of funda-
mental breakthroughs in the study of such surfaces in
recent years, and they remain the focus of intensive
current research.

Until the COSTA MINIMAL SURFACE was discovered in
1984, the only other known complete minimal em-
beddable surfaces in R3 with no self-intersections
were the PLANE, CATENOID, and HELICOID. The plane
is genus 0 and the catenoid and the helicoid are genus
0 with two punctures, but the Costa minimal surface
is genus 1 with three punctures (Schwalbe and
Wagon 1999).

See also COMPLETE SURFACE, COSTA MINIMAL SUR-

FACE, MINIMAL SURFACE, NIRENBERG’S CONJECTURE
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Complete Permutation
DERANGEMENT

Complete Product
The complete products of a BOOLEAN ALGEBRA of
subsets generated by a set fAkg

p
k�1 of CARDINALITY p

are the 2p BOOLEAN FUNCTIONS

B1B2 	 	 	Bp�B1SB2S 	 	 	SBp;

where each Bk may equal Ak or its complement Āk:
For example, the 23�8 complete products of A�
fA1; A2; A3g are

A1A2A3; A1A2Ā3; A1Ā2A3; Ā1A2A3;

A1Ā2Ā3; Ā1A2Ā3; Ā1Ā2A3; Ā1Ā2Ā3:

Each BOOLEAN FUNCTION has a unique representa-
tion (up to order) as a union of complete products. For
example,



A1A2 @ Ā3 �(A1A2A3 @ A1A2Ā3)

@ (A1A2Ā3 @ Ā1A2Ā3 @ A1Ā2Ā3 @ Ā1Ā2Ā3)

�A1A2A3 @ a1A2Ā3 @ Ā1A2Ā3 @ A1Ā2Ā3 @ Ā1Ā2Ā3

�A1A2A3 �A1A2Ā3 � Ā1Ā2Ā3

(Comtet 1974, p. 186).

See also BOOLEAN FUNCTION, CONJUNCTION
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Complete Quadrangle

If the four points making up a QUADRILATERAL are
joined pairwise by six distinct lines, a figure known as
a complete quadrangle results. A complete quadran-
gle is therefore a set of four points, no three collinear,
and the six lines which join them. Note that a
complete quadrilateral is different from a COMPLETE

QUADRANGLE.
The midpoints of the sides of any complete quad-
rangle and the three diagonal points all lie on a CONIC

known as the NINE-POINT CONIC. If it is an ORTHO-

CENTRIC QUADRILATERAL, the CONIC reduces to a
CIRCLE. The ORTHOCENTERS of the four TRIANGLES of
a complete quadrangle are COLLINEAR on the RADICAL

LINE of the CIRCLES on the diameters of a QUAD-

RILATERAL.

See also COMPLETE QUADRANGLE, PTOLEMY’S THEO-

REM
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Complete Quadrilateral

The figure determined by four lines, no three of which
are concurrent, and their six points of intersection
(Johnson 1929, pp. 61 �/2). Note that this figure is
different from a COMPLETE QUADRANGLE. A complete
quadrilateral has three diagonals (compared to two
for an ordinary QUADRILATERAL). The MIDPOINTS of
the diagonals of a complete quadrilateral are COLLI-

NEAR on a line M (Johnson 1929, pp. 152 �/53).
A theorem due to Steiner (Mention 1862, Johnson
1929, Steiner 1971) states that in a complete quad-
rilateral, the bisectors of angles are CONCURRENT at
16 points which are the incenters and EXCENTERS of
the four TRIANGLES. Furthermore, these points are
the intersections of two sets of four CIRCLES each of
which is a member of a conjugate coaxal system. The
axes of these systems intersect at the point common
to the CIRCUMCIRCLES of the quadrilateral.

Newton proved that, if a CONIC SECTION is inscribed
in a complete quadrilateral, then its center lies on M
(Wells 1991). In addition, the ORTHOCENTERS of the
four triangles formed by a complete quadrilateral lie
on a line which is perpendicular to M . Plücker proved
that the circles having the three diagonals as dia-
meters have two common points which lie on the line
joining the four triangles’ ORTHOCENTERS (Wells
1991).

See also COMPLETE QUADRANGLE, GAUSS-BODENMIL-

LER THEOREM, MIDPOINT, ORTHOCENTER, POLAR

CIRCLE, QUADRILATERAL
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Complete Residue System
A set of numbers a0 ; a1 ; ..., am�1 (mod m ) form a
complete set of residues, also called a covering
system, if they satisfy

ai �i (mod m)

for i �0, 1, ..., m �1: For example, a complete system
of residues is formed by a base b and a modulus m if
the residues ri in bi �ri (mod m) for i �1, ..., m �1
run through the values 1, 2, ..., m �1:/

See also CONGRUENCE, EXACT COVERING SYSTEM,
HAUPT-EXPONENT, ORDER (MODULO), REDUCED RESI-

DUE SYSTEM, RESIDUE CLASS

References
Guy, R. K. "Covering Systems of Congruences." §F13 in

Unsolved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 251 �/53, 1994.

Nagell, T. "Residue Classes and Residue Systems." §20 in
Introduction to Number Theory. New York: Wiley, pp. 69 �/

1, 1951.

Complete Sequence
A SEQUENCE of numbers V �fnn g is complete if every
POSITIVE INTEGER n is the sum of some subsequence
of V , i.e., there exist ai �0 or 1 such that

n �
X�
i�1

ai ni

(Honsberger 1985, pp. 123 �/26). The FIBONACCI NUM-

BERS are complete. In fact, dropping one number still
leaves a complete sequence, although dropping two
numbers does not (Honsberger 1985, pp. 123 and
126). The SEQUENCE of PRIMES with the element f1g
prepended,

f1; 2; 3; 5 ; 7 ; 11 ; 13; 17; 19 ; 23 ; . . .g

is complete, even if any number of PRIMES each > 7
are dropped, as long as the dropped terms do not
include two consecutive PRIMES (Honsberger 1985,
pp. 127 �/28). This is a consequence of BERTRAND’S

POSTULATE.

See also BERTRAND’S POSTULATE, BROWN’S CRITER-

ION, FIBONACCI DUAL THEOREM, GREEDY ALGORITHM,
WEAKLY COMPLETE SEQUENCE, ZECKENDORF’S THEO-

REM
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Complete Set of Functions
A set of ORTHONORMAL FUNCTIONS ffn(x) g is termed
complete in the CLOSED INTERVAL x � [a ; b] if, for
every PIECEWISE CONTINUOUS function f (x) in the
interval, the minimum square error

En � ½½f �(c1 f1 �. . .�cn fn) ½½2

(where ½½f ½½ denotes the L2-NORM with respect to a
WEIGHTING FUNCTION w(x)) converges to zero as n
becomes infinite. Symbolically, a set of functions is
complete if

lim
m0� g

b

a

f (x) �
Xm

n�0

an fn(x)

" #2

w(x) dx �0;

where the above integral is a LEBESGUE INTEGRAL.

See also BESSEL’S INEQUALITY, HILBERT SPACE, L2-

NORM
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Complete Space
A SPACE of COMPLETE FUNCTIONS.

See also COMPLETE METRIC SPACE

Complete Surface
A surface which has no edges.

See also COMPLETE MINIMAL SURFACE, EMBEDDED

SURFACE, MINIMAL SURFACE

Complete Ternary Tree

A labeled TERNARY TREE containing the labels 1 to n
with root 1, branches leading to nodes labeled 2, 3, 4,
branches from these leading to 5, 6, 7 and 8, 9, 10
respectively, and so on (Knuth 1997, p. 401).

See also COMPLETE BINARY TREE, COMPLETE TREE,
TERNARY TREE
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Complete Tree

See also COMPLETE BINARY TREE, COMPLETE TERN-

ARY TREE

Complete Vector Space
A VECTOR SPACE is complete if every CAUCHY SE-

QUENCE in the space converges to an element in the
space. For example, the rationals are not complete,
whereas the real numbers are.

See also VECTOR SPACE

Completely Monotonic Function
This entry contributed by RONALD M. AARTS

A completely monotonic function is a function f (x)
such that

(�1)�nf (n)(x) ]0

for n �0, 1, 2, .... Such functions occur in areas such
as probability theory (Feller 1971), numerical analy-
sis, and elasticity (Ismail et al. 1986).

See also COMPLETE CONVEX FUNCTION, MONOTONIC

FUNCTION
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Completely Multiplicative Function
A real valued arithmetical function f (n) is called
completely multiplicative if

f (mn) �f (m)f (n)

holds for each pair of integers (m, n ).

See also MULTIPLICATIVE FUNCTION
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Completely Regular Graph
A POLYHEDRAL GRAPH is completely regular if the
DUAL GRAPH is also REGULAR. There are only five
types. Let r be the number of EDGES at each node, r�
the number of EDGES at each node of the DUAL GRAPH,
V the number of VERTICES, E the number of EDGES,
and F the number of faces in the PLATONIC SOLID

corresponding to the given graph. The following table
summarizes the completely regular graphs.

Type /r/ /r�/ V E F

Tetrahedral 3 3 4 6 4

Cubical 3 4 8 12 6

Dodecahedral 3 5 20 39 12

Octahedral 4 3 6 12 8

Icosahedral 5 3 12 30 20

Completeness Property
All lengths can be expressed as REAL NUMBERS.

Completing the Square
The conversion of an equation OF THE FORM ax2 �
bx �c to the form

a x�
b

2a

 !2

� c �
b2

4a

 !
;

which, defining B �b =2a and C �c �b2 =4a ; simplifies
to

a(x �B)2 �C:

Completion
A METRIC SPACE X which is not complete has a
CAUCHY SEQUENCE which does not CONVERGE. The
completion of X is obtained by adding the limits to the
Cauchy sequences. The completion is always COM-

PLETE.

For example, the rational numbers, with the distance
metric, are not complete because there exist CAUCHY

SEQUENCES that do not converge, e.g., 1, 1.4, 1.41,
1.414, ... does not converge because

ffiffiffi
2

p
is not rational.

The completion of the rationals is the real numbers.
Note that the completion depends on the METRIC. For
instance, for any PRIME p , the rationals have a
METRIC given by the P -ADIC NORM, and then the
completion of the rationals is the set of P -ADIC

NUMBERS. Another common example of a completion
is the space of L2-FUNCTIONS.

Technically speaking, the completion of X is the set of
CAUCHY SEQUENCES and X is contained in this set,
ISOMETRICALLY, as the constant sequences.

See also CAUCHY SEQUENCE, L2-SPACE, LOCAL FIELD,
METRIC SPACE, P -ADIC NUMBER, REAL NUMBER

Complex
CW-COMPLEX, SIMPLICIAL COMPLEX



Complex Addition
Two COMPLEX NUMBERS z �x �iy and z ?�x?�iy ? are
added together componentwise,

z �z?�(x �x ?) �i(y �y?) :

In component form,

(x; y) �(x?; y?) �(x �x?; y �y?)

(Krantz 1999, p. 1).

See also COMPLEX DIVISION, COMPLEX MULTIPLICA-

TION, COMPLEX NUMBER, VECTOR ADDITION
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Complex Analysis
The study of COMPLEX NUMBERS, their DERIVATIVES,
manipulation, and other properties. Complex analy-
sis is an extremely powerful tool with an unexpect-
edly large number of practical applications to the
solution of physical problems. CONTOUR INTEGRA-

TION, for example, provides a method of computing
difficult INTEGRALS by investigating the singularities
of the function in regions of the COMPLEX PLANE near
and between the limits of integration.

The most fundamental result of complex analysis is
the CAUCHY-RIEMANN EQUATIONS, which give the
conditions a FUNCTION must satisfy in order for a
complex generalization of the DERIVATIVE, the so-
called COMPLEX DERIVATIVE, to exist. When the COM-

PLEX DERIVATIVE is defined "everywhere," the func-
tion is said to be ANALYTIC. A single example of the
unexpected power of complex analysis is PICARD’S

THEOREM, which states that an ANALYTIC FUNCTION

assumes every COMPLEX NUMBER, with possibly one
exception, infinitely often in any NEIGHBORHOOD of an
ESSENTIAL SINGULARITY!

See also ANALYTIC CONTINUATION, ARGUMENT PRIN-

CIPLE, BRANCH CUT, BRANCH POINT, CAUCHY INTE-

GRAL FORMULA, CAUCHY INTEGRAL THEOREM,
CAUCHY PRINCIPAL VALUE, CAUCHY-RIEMANN EQUA-

TIONS, COMPLEX NUMBER, CONFORMAL MAPPING,
CONTOUR INTEGRATION, DE MOIVRE’S IDENTITY, EU-

LER FORMULA, INSIDE-OUTSIDE THEOREM, JORDAN’S

LEMMA, LAURENT SERIES, LIOUVILLE’S CONFORMAL-

ITY THEOREM, MONOGENIC FUNCTION, MORERA’S

THEOREM, PERMANENCE OF ALGEBRAIC FORM, PI-

CARD’S THEOREM, POLE, POLYGENIC FUNCTION, RE-

SIDUE (COMPLEX ANALYSIS)
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Complex Conjugate
The complex conjugate of a COMPLEX NUMBER z�
a�bi is defined to be

z̄�a�bi: (1)

Note that there are several notations in common use
for the complex conjugate. Older physics and engi-
neering texts tend to prefer z� (Bekefi and Barrett
1987, p. 616; Arfken 1985, p. 356; Harris and Stocker
1998, p. 21; Hecht 1998, p. 18; Herkommer 1999,
p. 262), while many modern math and physics texts
favor z̄ (Abramowitz and Stegun 1972, p. 16; Kaplan
1981, p. 28; Roman 1987, p. 534; Kreyszig 1988,
p. 568; Kaplan 1992, p. 572; Harris and Stocker
1998, p. 21; Krantz 1999, p. 2; Anton 2000, p. 528).
In the latter case, the notation z� is then reserved to
denote the ADJOINT operator, which is denoted z$ in
many older physics texts. In this work, z̄ is used to
denote the complex conjugate, and z� is used to
denote the ADJOINT.

The CONJUGATE MATRIX of a MATRIX A�(aij) is the
MATRIX obtained by replacing each element aij with
its complex conjugate, Ā�(āij) (Arfken 1985, p. 210).
The complex conjugate is implemented in Mathema-
tica as Conjugate[z ].

The common notational conventions are summarized
in the table below.

convention complex conjugate ADJOINT

mathematics /Ā/ /A�/



engineering /A �/ /A $/

By definition, the complex conjugate satisfies

¯̄z �z: (2)

The complex conjugate is DISTRIBUTIVE under COM-

PLEX ADDITION,

z1 �z2 �z1 �z2 ; (3)

since

(a1 �ib1) �(a2 �ib2) �(a1 �a2) �i(b1 �b2)

�(a1 �a2) �i(b1 �b2) �(a1 �ib1) �(a2 �ib2)

�a1 �ib1 �a2 �ib2 ;

and DISTRIBUTIVE over COMPLEX MULTIPLICATION,

z1z2 � ̄z1 z̄2 ; (4)

since

(a1 �b1i)(a2 �b2i) �(a1a2 �b1b2) �i(a1b2 �a2b1)

�(a1a2 �b1b2) �i(a1b2 �a2b1) �(a1 �ib1)(a2 �ib2)

�a1 �ib1a2 �ib2 :

See also ADJOINT MATRIX, COMPLEX ANALYSIS, COM-

PLEX DIVISION, COMPLEX NUMBER, CONJUGATE MA-

TRIX, MODULUS (COMPLEX NUMBER)
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Complex Derivative
A DERIVATIVE of a COMPLEX function, which must
satisfy the CAUCHY-RIEMANN EQUATIONS in order to
be COMPLEX DIFFERENTIABLE.

See also CAUCHY-RIEMANN EQUATIONS, COMPLEX

DIFFERENTIABLE, DERIVATIVE
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Complex Differentiable
Let z �x �iy and f (z) �u(x; y) �iv(x; y) on some
region G containing the point z0 : If f (z) satisfies the
CAUCHY-RIEMANN EQUATIONS and has continuous
first PARTIAL DERIVATIVES at z0 ; then f ?(z0) exists
and is given by

f ?(z0) � lim
z0z0

f (z) � f (z0)

z � z0

;

and the function is said to be COMPLEX DIFFERENTI-

ABLE (or, equivalently, ANALYTIC, HOLOMORPHIC, or
regular).

A function f : C 0 C can be thought of as a map from
the plane to the plane, f : R2 0 R2 : Then f is complex
differentiable iff its JACOBIAN is of the form

a �b
b a

� �
at every point. That is, its derivative is given by the
multiplication of a COMPLEX NUMBER a �bi: For
instance, the function f (z)� z̄; where z̄ is the COMPLEX

CONJUGATE, is not complex differentiable.

See also ANALYTIC FUNCTION, CAUCHY-RIEMANN

EQUATIONS, COMPLEX DERIVATIVE, DIFFERENTIABLE,
ENTIRE FUNCTION, HOLOMORPHIC FUNCTION, PSEU-

DOANALYTIC FUNCTION
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Complex Division
The division of two COMPLEX NUMBERS can be accom-
plished by multiplying the NUMERATOR and DENOMI-

NATOR by the COMPLEX CONJUGATE of the
DENOMINATOR, for example, with z1�a�bi and z2�
c�di; z�z1=z2 is given by

z�
a � bi

c � di
�

(a � bi)c � di

(c � di)c � di
�

(a � bi)(c � di)

(c � di)(c � di)

�
(ac � bd) � i(bc � ad)

c2 � d2
;



where z̄ denotes the COMPLEX CONJUGATE. In compo-
nent notation,

(x; y)

(x?; y?) 
�

xx? � yy?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 � y?2

p ;
yx ? � xy?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x?2 � y?2
p !

:

See also COMPLEX ADDITION, COMPLEX MULTIPLICA-

TION, COMPLEX NUMBER, DIVISION

Complex Form (Type)
The DIFFERENTIAL FORMS on Cn decompose into forms
of type (p, q ). For example, on C ; the EXTERIOR

ALGEBRA decomposes into four types:

fflC �ffl0 �ffl1;0 �ffl0 ;1 �ffl1 ;1

��1���dz ���dz̄ ���dz ffldz̄�; (1)

where dz �dx �i dy; dz̄ �dx �i dy; and / denotes
the DIRECT SUM. In general, a (p, q )-form is the sum of
terms with p dzs and q dz̄/s. A k -form decomposes
into a sum of (p, q )-forms, where k �p �q :/

For example, the 2-forms on C2 decompose as

ffl2 C2 �ffl2;0 �ffl1 ;1 �ffl0 ;2 (2)

��dz1 ffl dz2 ���dz1 ffl dz̄1 ; dz1 ffl dz̄2 ; dz2 ffl dz̄1 ;

dz2 ffl dz̄2 ���dz̄1 ffl dz̄2 �: (3)

The decomposition into forms of type (p, q ) is
preserved by HOLOMORPHIC MAPS. More precisely,
when f : X 0 Y is holomorphic and a is a (p, q )-
form on Y , then the PULLBACK f �a is a (p, q )-form on
X .

Recall that the EXTERIOR ALGEBRA is generated by the
ONE-FORMS, by WEDGE PRODUCT and addition. Then
the forms of type (p, q ) are generated by

Lp( L1; 0) fflLq( L0 ; 1) : (4)

The SUBSPACE L1 ; 0 of the complex one-forms can be
identified as the �i/-EIGENSPACE of the ALMOST COM-

PLEX STRUCTURE J , which satisfies J2 ��I : Similarly,
the �i/-EIGENSPACE is the SUBSPACE ffl0 ; 1 : In fact, the
decomposition of TX C �TX1 ; 0 �TX0; 1 determines
the ALMOST COMPLEX STRUCTURE J on TX .

More abstractly, the forms into type (p, q ) are a
REPRESENTATION of C �; where l acts by multiplication
by lp l̄q :/

See also ALMOST COMPLEX STRUCTURE, COMPLEX

MANIFOLD, DEL BAR OPERATOR, DOLBEAULT COHO-

MOLOGY

References
Griffiths, P. and Harris, J. Principles of Algebraic Geometry.

New York: Wiley, pp. 106 �/26, 1994.
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Complex Fraction
A FRACTION in which NUMERATOR and DENOMINATOR

are themselves fractions.

See also COMMON FRACTION, FRACTION

Complex Function
A FUNCTION whose RANGE is in the COMPLEX NUMBERS

is said to be a complex function, or a complex-valued
function.

See also REAL FUNCTION, SCALAR FUNCTION, VECTOR

FUNCTION

Complex Infinity
An infinite number in the COMPLEX PLANE whose
ARGUMENT is unknown.

See also C*, DIVISION BY ZERO, EXTENDED COMPLEX

PLANE, INFINITY, POINT AT INFINITY, RIEMANN

SPHERE

Complex Line Integral
LINE INTEGRAL

Complex Manifold
A complex manifold is a MANIFOLD M whose COORDI-

NATE CHARTS are open subsets of Cn and the TRANSI-

TION FUNCTIONS between charts are HOLOMORPHIC

FUNCTIONS. Naturally, a complex manifold of dimen-
sion n also has the structure of a REAL SMOOTH

MANIFOLD of dimension 2n :/

A function f : M 0 C is HOLOMORPHIC if it is HOLO-

MORPHIC in every COORDINATE CHART. Similarly, a
map f : M 0 N is HOLOMORPHIC if its restrictions to
coordinate charts on N are holomorphic. Two complex
manifolds M and N are considered equivalent if there
is a map f : M 0 N which is a DIFFEOMORPHISM and
whose inverse is HOLOMORPHIC.

See also ALGEBRAIC VARIETY, CONFORMAL MAPPING,
HOLOMORPHIC FUNCTION, MANIFOLD, RIEMANN SUR-

FACE, STEIN MANIFOLD

Complex Matrix
A MATRIX whose elements may contain COMPLEX

NUMBERS.

The MATRIX PRODUCT of two 2�2 complex matrices is
given by

x11�y11i x12�y12i
x21�y21i x22�y22i

� �
u11�v11i u12�v12i
u21�v21i u22�v22i

� �



�
R11 R12

R21 R22

� �
�i

I11 I12

I21 I22

� �
;

where

R11 �u11x11 �u21x21 �v11y11 �v21y12

R12 �u12x11 �u22x12 �v11y11 �v22y12

R21 �u11x21 �u21x22 �v11y21 �v21y22

R22 �u12x21 �u22x22 �v12y21 �v22y22

I11 �v11x11 �v21x21 �u11y11 �u21y12

I12 �v12x11 �v22x12 �u12y11 �u22y12

I21 �v11x21 �u21x22 �u11y21 �u21y22

I22 �v12x21 �v22x22 �u12y21 �u22y22 :

Hadamard (1893) proved that the DETERMINANT of
any complex n �n matrix A with entries in the closed
UNIT DISK ½aij ½51 satisfies

½det A½5nn=2 (1)

(HADAMARD’S MAXIMUM DETERMINANT PROBLEM),
with equality attained by the VANDERMONDE MATRIX

of the n ROOTS OF UNITY (Faddeev and Sominskii
1965, p. 331; Brenner 1972). The first few values for
n �1, 2, ... are 1, 2, 3

ffiffiffi
3

p
; 16, 25

ffiffiffi
5

p
; 216, ....

Studying the maximum possible eigenvalue norms for
random complex n �n matrices is computationally
intractable. Although average properties of the dis-
tribution of ½l ½ can be determined, finding the max-
imum value corresponds to determining if the set of
matrices contains a SINGULAR MATRIX, which has
been proven to be an NP-COMPLETE PROBLEM (Poljak
and Rohn 1993, Kaltofen 1999). The above plots show
the distributions for 2 �2; 3 �3; and 4 �4 matrix
eigenvalue norms for elements uniformly distributed
inside the unit disk ½z½51: Similar plots are obtain-
ed for elements uniformly distributed inside
½R[z] ½; ½I[z]½51: The exact distribution of eigenvalues
for complex matrices with both real and imaginary
parts distributed as independent standard normal
variates is given by Ginibre (1965), Hwang (1986),
and Mehta (1991).

See also COMPLEX VECTOR, HADAMARD’S MAXIMUM

DETERMINANT PROBLEM, INTEGER MATRIX, K -MATRIX,
MATRIX, REAL MATRIX
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Complex Measure
A MEASURE which takes values in the COMPLEX

NUMBERS. The set of complex measures on a MEASURE

SPACE X forms a VECTOR SPACE. Note that this is not
the case for the more common POSITIVE MEASURES.
Also, the space of finite measures (/½ m(X) ½B�) has a
norm given by the TOTAL VARIATION MEASURE ½½m ½½�
½ m½(X) ½; which makes it a BANACH SPACE.

Using the POLAR REPRESENTATION of m; it is possible
to define the LEBESGUE INTEGRAL using a complex
measure,

g f dm �g eiuf d½ m½:

Sometimes, the term "complex measure" is used to
indicate an arbitrary measure. The definitions for
measure can be extended to measures which take
values in any VECTOR SPACE. For instance in SPEC-

TRAL THEORY, measures on C ; which take values in
the bounded linear maps from a HILBERT SPACE to
itself, represent the SPECTRUM of an operator.

See also BANACH SPACE, LEBESGUE INTEGRAL, MEA-

SURE, MEASURE SPACE, POLAR REPRESENTATION

(MEASURE), SPECTRAL THEORY

References
Rudin, W. Real and Complex Analysis. New York: McGraw-

Hill, pp. 116�/32, 1987.

Complex Modulus
MODULUS (COMPLEX NUMBER)

Complex Multiplication
Two COMPLEX NUMBERS x�a�ib and y ¼ c�id are
multiplied as follows:



xy �(a �ib)(c �id) �ac �ibc �iad �bd

�(ac �bd) �i(ad �bc) :

In component form,

(x; y)(x?; y?) �(xx?�yy?; xy ?�yx?) (1)

(Krantz 1999, p. 1). The special case of a COMPLEX

NUMBER multiplied by a SCALAR a is then given by

(x; y)(x?; y?) �(a ; 0)(x; y) �(ax ; ay) : (2)

Surprisingly, complex multiplication can be carried
out using only three REAL multiplications, ac , bd , and
(a �b)(c �d) as

R[(a �ib)(c �id)] �ac �bd

J[(a �ib)(c �id)] �(a �b)(c �d) �ac �bd:

Complex multiplication has a special meaning for
ELLIPTIC CURVES.

See also COMPLEX ADDITION, COMPLEX DIVISION,
COMPLEX NUMBER, ELLIPTIC CURVE, IMAGINARY

PART, MULTIPLICATION, REAL PART
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Complex Number
The complex numbers are the FIELD C of numbers OF

THE FORM x �iy ; where x and y are REAL NUMBERS

and I is the IMAGINARY UNIT equal to the SQUARE

ROOT of �1,
ffiffiffiffiffiffi
�1

p
: When a single letter z �x �iy is

used to denote a complex number, it is sometimes
called an "AFFIX." In component notation, z �x �iy
can be written (x, y ). The FIELD of complex numbers
includes the FIELD of REAL NUMBERS as a SUBFIELD.

The set of complex numbers is implemented in
Mathematica as Complexes. A number x can then
be tested to see if it is complex using the command
Element[x , Complexes].

Through the EULER FORMULA, a complex number

z �x �iy (1)

may be written in "PHASOR" form

z � ½z ½(cos u �i sin u) � ½z ½ei u : (2)

Here, ½z ½ is known as the MODULUS and u is known as
the ARGUMENT or PHASE. The ABSOLUTE SQUARE of z is
defined by ½z½2 �zz̄; with z̄ the COMPLEX CONJUGATE,
and the argument may be computed from

arg(z) � u �tan�1 y

x

 !
: (3)

DE MOIVRE’S IDENTITY relates POWERS of complex
numbers

zn � ½z½n[cos(n u) �i sin(nu)] : (4)

COMPLEX DIVISION and COMPLEX MULTIPLICATION can
also be defined for complex numbers.

Finally, the REAL R(z) and IMAGINARY PARTS I(z) are
given by

R(z) �1
2(z � ̄z) (5)

J(z) �
z � z̄

2i
��1

2i(z � ̄z) �1
2i(z̄ �z) : (6)

The POWERS of complex numbers can be written in
closed form as follows:

zn� xn�
n
2

� �
xn�2y2�

n
4

� �
xn�4y4�. . .

� �

�i
n
1

� �
xn�1y�

n
3

� �
xn�3y3�. . .

� �
: (7)

The first few are explicitly

z2�(x2�y2)�i(2xy) (8)

z3�(x3�3xy2)�i(3x2y�y) (9)

z4�(x4�6x2y2�y4)�i(4x3y�4xy3) (10)

z5�(x5�10x3y2�5xy4)�i(5x4y�10x2y3�y5) ð11Þ

(Abramowitz and Stegun 1972).

See also ABSOLUTE SQUARE, ARGUMENT (COMPLEX

NUMBER), COMPLEX DIVISION, COMPLEX MULTIPLICA-

TION, COMPLEX PLANE, I, IMAGINARY NUMBER, MOD-

ULUS (COMPLEX NUMBER), PHASE, PHASOR, REAL

NUMBER, SURREAL NUMBER
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Complex Plane

The plane of COMPLEX NUMBERS spanned by the
vectors 1 and i , where i is the IMAGINARY NUMBER.
Every COMPLEX NUMBER corresponds to a unique
POINT in the complex plane. The LINE in the plane
with i �0 is the REAL LINE. The complex plane is
sometimes called the ARGAND PLANE or GAUSS PLANE,
and a plot of COMPLEX NUMBERS in the plane is
sometimes called an ARGAND DIAGRAM.

See also AFFINE COMPLEX PLANE, ARGAND DIAGRAM,
ARGAND PLANE, BERGMAN SPACE, C*, COMPLEX

PROJECTIVE PLANE, EXTENDED COMPLEX PLANE,
ISOTROPIC LINE, LEFT HALF-PLANE, LOWER HALF-

DISK, LOWER HALF-PLANE, RIGHT HALF-PLANE,
UPPER HALF-DISK, UPPER HALF-PLANE
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Complex Projective Plane
The set P2 is the set of all EQUIVALENCE CLASSES

[a; b; c] of ordered triples (a ; b; c) �C3_(0; 0; 0) un-
der the equivalence relation (a; b; c) �(a?; b?; c?) if
(a; b; c) �( la?; lb ?; lc ?) for some NONZERO COMPLEX

NUMBER l :/

See also COMPLEX PROJECTIVE PLANE

Complex Projective Space

See also COMPLEX SPACE, REAL PROJECTIVE SPACE

Complex Representation
PHASOR

Complex Space

See also COMPLEX PROJECTIVE SPACE, REAL SPACE,
TWISTOR SPACE

Complex Structure
The complex structure of a point x �x1 ; x2 in the
PLANE is defined by the linear MAP J : R2 0 R2

J(x1 ; x2) �(�x2 ; x1) ;

and corresponds to a clockwise rotation by p=2 : This
map satisfies

J2 ��I

(Jx) �(Jy) �x � y

(Jx) � x �0;

where I is the IDENTITY MAP.

More generally, if V is a 2-D VECTOR SPACE, a linear
map J : V 0 V such that J2 ��I is called a complex
structure on V . If V �R2 ; this collapses to the
previous definition.

See also MODULI SPACE
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Complex System
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Complex Vector
A VECTOR whose elements are COMPLEX NUMBERS.

See also COMPLEX NUMBER, REAL VECTOR, VECTOR

Complex Vector Bundle
A complex vector bundle is a VECTOR BUNDLE p : E 0
M whose FIBER p�1(x) is a COMPLEX VECTOR SPACE. It
is not necessarily a COMPLEX MANIFOLD, even if its
BASE MANIFOLD M is a COMPLEX MANIFOLD. If a
complex vector bundle also has the structure of a
COMPLEX MANIFOLD, and p is HOLOMORPHIC, then it is
called a HOLOMORPHIC VECTOR BUNDLE.



See also BUNDLE, COMPLEX VECTOR SPACE, HOLO-

MORPHIC VECTOR BUNDLE, MANIFOLD, VECTOR SPACE

Complex Vector Space
A complex vector space is a VECTOR SPACE whose
FIELD of scalars is the COMPLEX numbers. A linear
transformation between complex vector spaces is
given by a matrix with complex entries (i.e., a
COMPLEX MATRIX).

See also BASIS (VECTOR SPACE), COMPLEX STRUC-

TURE, LINEAR TRANSFORMATION, REAL VECTOR

SPACE, VECTOR SPACE

Complexes
COMPLEX NUMBER

Complexity (Number)
The number of 1s needed to represent an INTEGER

using only additions, multiplications, and parenth-
eses are called the integer’s complexity. For example,

1 �1

2 �1 �1

3 �1 �1 �1

4 �(1 �1)(1 �1) �1 �1 �1 �1

5 �(1 �1)(1 �1) �1 �1 �1 �1 �1 �1

6 �(1 �1)(1 �1 �1)

7 �(1 �1)(1 �1 �1) �1

8 �(1 �1)(1 �1)(1 �1)

9 �(1 �1 �1)(1 �1 �1)

10 �(1 �1 �1)(1 �1 �1) �1

�(1 �1)(1 �1 �1 �1 �1)

So, for the first few n , the complexity is 1, 2, 3, 4, 5, 5,
6, 6, 6, 7, 8, 7, 8, ... (Sloane’s A005245).
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Complexity (Sequence)
BLOCK GROWTH

Complexity Theory
The theory of classifying problems based on how
difficult they are to solve. A problem is assigned to
the P-PROBLEM (polynomial time) class if the number
of steps needed to solve it is bounded by some POWER

of the problem’s size. A problem is assigned to the NP-

PROBLEM (nondeterministic polynomial time) class if
it permits a nondeterministic solution and the num-
ber of steps of the solution is bounded by some power
of the problem’s size. The class of P-PROBLEMS is a
subset of the class of NP-PROBLEMS, but there also
exist problems which are not NP.

If a solution is known to an NP-PROBLEM, it can be
reduced to a single period verification. A problem is
NP-COMPLETE if an ALGORITHM for solving it can be
translated into one for solving any other NP-PRO-

BLEM. Examples of NP-COMPLETE PROBLEMS include
the HAMILTONIAN CYCLE and TRAVELING SALESMAN

PROBLEMS. LINEAR PROGRAMMING, thought to be an
NP-PROBLEM, was shown to actually be a P-PROBLEM

by L. Khachian in 1979. It is not known if all
apparently NP-PROBLEMS are actually P-PROBLEMS.

See also BIT COMPLEXITY, NP-COMPLETE PROBLEM,
NP-PROBLEM, P-PROBLEM
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Complex-Valued Function
COMPLEX FUNCTION

Component
A GROUP L is a component of H if L is a QUASISIMPLE

GROUP which is a SUBNORMAL SUBGROUP of H .

See also GROUP, QUASISIMPLE GROUP, SUBGROUP,
SUBNORMAL SUBGROUP

Component Graph
An n -component of a GRAPH G is a maximal n -
connected SUBGRAPH.

References
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Composite Knot
A KNOT which is not a PRIME KNOT. Composite knots
are special cases of SATELLITE KNOTS.

See also KNOT, PRIME KNOT, SATELLITE KNOT

Composite Number
A composite number n is a POSITIVE INTEGER n �1
which is not PRIME (i.e., which has FACTORS other
than 1 and itself). The first few composite numbers
(sometimes called "composites" for short) are 4, 6, 8, 9,
10, 12, 14, 15, 16, ... (Sloane’s A002808), which can be
written 22, 2 � 3; 23, 32, 2 � 5; 22 � 3; 2 � 7 ; 3 � 5; and
24, respectively. The number 1 is a special case which
is considered to be neither composite nor PRIME.

A composite number C can always be written as a
PRODUCT in at least two ways (since 1 � C is always
possible). Call these two products

C �ab �cd ; (1)

then it is obviously the case that C ½ab (C divides ab ).
Set

c �mn; (2)

where m is the part of C which divides a , and n is the
part of C which divides b . Then there are p and q
such that

a �mp (3)

b �nq : (4)

Solving ab �cd for d gives

d �
ab

c
�

(mp)(nq)

mn
�pq : (5)

It then follows that

S �a2 �b2 �c2 �d2 �m2p2 �n2q2 �m2n2 �p2q2

�(m2 �q2)(n2 �p2) : (6)

It therefore follows that a2 �b2 �c2 �d2 is never
PRIME! In fact, the more general result that

S �ak �bk �ck �dk (7)

is never PRIME for k an INTEGER ]0 also holds
(Honsberger 1991).

See also AMENABLE NUMBER, GRIMM’S CONJECTURE,
HIGHLY COMPOSITE NUMBER, PRIME FACTORIZATION

PRIME GAPS, PRIME NUMBER, WEAKLY PRIME
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Composite Runs
PRIME GAPS

Compositeness Certificate
A compositeness certificate is a piece of information
which guarantees that a given number p is COMPO-

SITE. Possible certificates consist of a FACTOR of a
number (which, in general, is much quicker to check
by direct division than to determine initially), or of
the determination that either

ap�1 f1 (mod p);

(i.e., p violates FERMAT’S LITTLE THEOREM), or

a "�1; 1 and a2 �1 (mod p) :

A quantity a satisfying either property is said to be a
WITNESS to p ’s compositeness.

See also ADLEMAN-POMERANCE-RUMELY PRIMALITY

TEST, FERMAT’S LITTLE THEOREM, MILLER’S PRIMAL-

ITY TEST, PRIMALITY CERTIFICATE, WITNESS

Compositeness Test
A test which always identifies PRIME NUMBERs cor-
rectly, but may incorrectly identify a COMPOSITE

NUMBER as a PRIME.

See also PRIMALITY TEST

Composition
The combination of two FUNCTIONS to form a single
new FUNCTION. The composition of two functions f
and g is denoted f (g and is defined by

f (g�f (g(x)); (1)

where f is a function whose domain includes the
range of g . The notation

f (g(x)�f (g(x)); (2)



is sometimes used to explicitly indicate the symbol
used for the variable.

Composition is associative, so that

f ((g(h) �(f (g)(h: (3)

If the functions g is continuous at x0 and f is
continuous at g(x0) ; then f (g is also continuous at x0 :/

A combinatorial composition is defined as an unor-
dered arrangement of k nonnegative integers which
sum to n (Skiena 1990, p. 60). The compositions of n
into k parts is given by Compositions[n , k ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘), and the number Ck(n)
of compositions of a number n of length k is given by
the formula

Ck(n) �
n �k �1

k �1

� �
�

(n � k � 1)!

n!(k � 1)!
; (4)

implemented as NumberOfCompositions[n , k ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘). The following table
gives Ck(n) for n �1, 2, ... and small k .

k Sloane /Ck(1); Ck(2) ; ...

2 Sloane’s
A000027

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, ...

3 Sloane’s
A000217

3, 6, 10, 15, 21, 28, 36, 45, 55,
66, 78, 91, 105, 120, ...

4 Sloane’s
A000292

4, 10, 20, 35, 56, 84, 120, 165,
220, 286, 364, 455, 560, 680, ...

5 Sloane’s
A000332

5, 15, 35, 70, 126, 210, 330, 495,
715, 1001, 1365, 1820, ...

6 Sloane’s
A000389

6, 21, 56, 126, 252, 462, 792,
1287, 2002, 3003, 4368, ...

7 Sloane’s
A000579

7, 28, 84, 210, 462, 924, 1716,
3003, 5005, 8008, 12376, ...

8 Sloane’s
A000580

8, 36, 120, 330, 792, 1716, 3432,
6435, 11440, 19448, ...

9 Sloane’s
A000581

9, 45, 165, 495, 1287, 3003,
6435, 12870, 24310, 43758, ...

An operation called composition is also defined on
BINARY QUADRATIC FORMS. For two numbers repre-
sented by two forms, the product can then be
represented by the composition. For example, the
composition OF THE FORMs 2x2 �15y2 and 3x2 �10y2

is given by 6x2 �5y2 ; and in this case, the product of
17 and 13 would be REPRESENTED AS ( (6  � 36 �5 � 1 �
221)): There are several algorithms for computing
binary quadratic form composition, which is the basis
for some factoring methods.

See also ADEM RELATIONS, BHARGAVA’S THEOREM,
BINARY OPERATOR, BINARY QUADRATIC FORM, RAN-

DOM COMPOSITION
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Composition Series
Every FINITE GROUP G of order greater than one
possesses a finite series of SUBGROUPS, called a
composition series, such that

I1Hs1 . . . 1H21H11G ;

where Hi�1 is a maximal subgroup of Hi and H1G
means that H is a NORMAL SUBGROUP of G . A
composition series is therefore a NORMAL SERIES

without repetition whose factors are all simple (Scott
1987, p. 36).

The QUOTIENT GROUPS G=H1 ; H1 =H2 ; ..., Hs�1 =Hs ; Hs

are called composition quotient groups.

See also FINITE GROUP, INVARIANT SUBGROUP, JOR-

DAN-HÖ LDER THEOREM, NORMAL SERIES, NORMAL

SUBGROUP, QUOTIENT GROUP, SUBGROUP
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Composition Theorem
Given a QUADRATIC FORM

Q(x; y) �x2 �y2 ;

then

Q(x; y)Q(x?; y?) �Q(xx ?�yy?; x?y �x?y) ;

since

(x2 �y2)(x?2 �y?2) �(xx ?�yy?)2 �(xy?�x?y)2

�x2x?2�y2y?2�x?2y2�x2y?2:

See also GENUS THEOREM, QUADRATIC FORM



Compound Interest
Let P be the PRINCIPAL (initial investment), r be the
annual compounded rate, i(n) the "nominal rate," n be
the number of times INTEREST is compounded per
year (i.e., the year is divided into n CONVERSION

PERIODS), and t be the number of years (the "term").
The INTEREST rate per CONVERSION PERIOD is then

r �
i(n)

n
: (1)

If interest is compounded n times at an annual rate of
r (where, for example, 10% corresponds to r �0:10);
then the effective rate over 1=n the time (what an
investor would earn if he did not redeposit his
interest after each compounding) is

(1 �r)1=n : (2)

The total amount of holdings A after a time t when
interest is re-invested is then

A �P 1 �
i(n)

n

 !nt

�P(1 �r)nt : (3)

Note that even if interest is compounded continu-
ously, the return is still finite since

lim
n 0�

1 �
1

n

 !n

�e; (4)

where E is the base of the NATURAL LOGARITHM.

The time required for a given PRINCIPAL to double
(assuming n �1 CONVERSION PERIOD) is given by
solving

2P �P(1 �r)t ; (5)

or

t �
ln 2

ln(1 � r) 
; (6)

where LN is the NATURAL LOGARITHM. This function
can be approximated by the so-called RULE OF 72:

t :
0:72

r
: (7)

See also E , INTEREST, LN, NATURAL LOGARITHM,
PRINCIPAL, RULE OF 72, SIMPLE INTEREST
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Compound Polyhedron
POLYHEDRON COMPOUND

Compressible Surface
Let L be a LINK in R3 and let there be a DISK D in the
LINK COMPLEMENT R3 �L : Then a surface F such that
D intersects F exactly in its boundary and its
boundary does not bound another disk on F is called
a compressible surface (Adams 1994, p. 86).

See also KNOT COMPLEMENT
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Compression

See also INFORMATION THEORY
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Computability
COMPLEXITY THEORY

Computable Function
Any computable function can be incorporated into a
PROGRAM using while-loops (i.e., "while something is
true, do something else"). For-loops (which have a
fixed iteration limit) are a special case of while-loops,
so computable functions could also be coded using a
combination of for- and while-loops. The ACKERMANN

FUNCTION is the simplest example of a WELL DEFINED

TOTAL FUNCTION which is computable but not PRIMI-

TIVE RECURSIVE, providing a counterexample to the
belief in the early 1900s that every computable
function was also primitive recursive (Dötzel 1991).

See also ACKERMANN FUNCTION, CHURCH’S THESIS,
COMPUTABLE NUMBER, PRIMITIVE RECURSIVE FUNC-

TION, TURING MACHINE
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Computable Number
A number which can be computed to any number of
DIGITS desired by a TURING MACHINE. Surprisingly,
most IRRATIONALS are not computable numbers!
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Computational Complexity
COMPLEXITY THEORY

Computational Geometry
The study of efficient algorithms for solving geometric
problems. Examples of problems treated by computa-
tional geometry include determination of the CONVEX

HULL and VORONOI DIAGRAM for a set of points,
TRIANGULATION of points in a plane or in space, and
other related problems.

See also CONVEX HULL, DELAUNAY TRIANGULATION,
DISCRETE GEOMETRY, GEOMETRIC PROBABILITY, HAP-

PY END PROBLEM, INTERSECTION DETECTION, MIN-

KOWSKI SUM, NEAREST NEIGHBOR PROBLEM,
POLYHEDRON PACKING, SPAN (GEOMETRY), SYLVES-

TER’S FOUR-POINT PROBLEM, TESSELLATION, TRIAN-

GULATION, VERTEX ENUMERATION, VORONOI DIAGRAM
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Concatenated Number Sequences
CONSECUTIVE NUMBER SEQUENCES

Concatenation
The concatenation of two strings a and b is the string
ab formed by joining a and b . Thus the concatenation
of the strings "book" and "case" is the string "book-
case". The concatenation of two strings a and b is
often denoted ab , a½½b; or, in Mathematica , a B� b:
Concatenation is an associative operation, so that the
concatenation of three or more strings, for example
abc , abcd , etc., is WELL DEFINED.

The concatenation of two or more numbers is the
number formed by concatenating their numerals. For
example, the concatenation of 1, 234, and 5678 is
12345678. The value of the result depends on the
numeric base, which is typically understood from
context.

The formula for the concatenation of numbers p and
q in base b is

p ½½q �pbl(q) �q;

where

l(q) � logb qb c�1

is the LENGTH of q in base b and xb c is the FLOOR

FUNCTION.

See also CONSECUTIVE NUMBER SEQUENCES, LENGTH

(NUMBER), SMARANDACHE SEQUENCES

Concave

A SET in Rd is concave if it does not contain all the
LINE SEGMENTS connecting any pair of its points. If
the SET does contain all the LINE SEGMENTS, it is
called CONVEX.

See also CONNECTED SET, CONVEX FUNCTION, CON-

VEX HULL, CONVEX OPTIMIZATION THEORY, CONVEX

POLYGON, DELAUNAY TRIANGULATION, SIMPLY CON-

NECTED

Concave Function

A function f (x) is said to be concave on an interval [a,
b ] if, for any points x1 and x2 in [a, b ], the function
�f (x) is CONVEX on that interval (Gradshteyn and
Ryzhik 2000).

See also CONVEX FUNCTION
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Concentrated
Let m be a POSITIVE MEASURE on a SIGMA ALGEBRA M ,
and let l be an arbitrary (real or complex) MEASURE

on M . If there is a SET A �M such that l(E)�l(ASE)
for every E �M; then l is said to be concentrated on A .



This is equivalent to requiring that l(E) �0 whenever
E S A �¥:/

See also ABSOLUTELY CONTINUOUS, MUTUALLY SIN-

GULAR
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Concentric
Two geometric figures are said to be concentric if
their CENTERS coincide. The region between two
concentric CIRCLES is called an ANNULUS.

See also ANNULUS, CONCENTRIC CIRCLES, CONCYCLIC,
ECCENTRIC

Concentric Circles
Concentric circles are circles with a common center.
The region between two CONCENTRIC circles of differ-
ent RADII is called an ANNULUS. Any two circles can be
made concentric by INVERSION by picking the INVER-

SION CENTER as one of the LIMITING POINTS.

Given two concentric circles with RADII R and 2R;

what is the probability that a chord chosen at random
from the outer circle will cut across the inner circle?
Depending on how the "random" CHORD is chosen, 1/2,
1/3, or 1/4 could all be correct answers.

1. Picking any two points on the outer circle and
connecting them gives 1/3.
2. Picking any random point on a diagonal and
then picking the CHORD that perpendicularly
bisects it gives 1/2.
3. Picking any point on the large circle, drawing a
line to the center, and then drawing the perpendi-
cularly bisected CHORD gives 1/4.

So some care is obviously needed in specifying what is
meant by "random" in this problem.

Given an arbitrary CHORD BB? to the larger of two
concentric CIRCLES centered on O , the distance
between inner and outer intersections is equal on
both sides (AB �A?B?) : To prove this, take the
PERPENDICULAR to BB? passing through O and cross-
ing at P . By symmetry, it must be true that PA and
PA? are equal. Similarly, PB and PB? must be equal.
Therefore, PB �PA �AB equals PB?�PA ?�A?B ?: In-
cidentally, this is also true for HOMEOIDS, but the
proof is nontrivial.

See also ANNULUS, LIMITING POINT

Conchoid
A curve whose name means "shell form." Let C be a
curve and O a fixed point. Let P and P? be points on a
line from O to C meeting it at Q , where P?Q �QP �k;
with k a given constant. For example, if C is a CIRCLE

and O is on C , then the conchoid is a LIMAÇ ON, while
in the special case that k is the DIAMETER of C , then
the conchoid is a CARDIOID. The equation for a
parametrically represented curve (f (t) ; g(t)) with O �
(x0 ; y0) is

x �f 9
k(f � x0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(f � x0)2 � (g � y0)2
q

y�g9
k(g � y0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(f � x0)2 � (g � y0)2
q :

See also CONCHO-SPIRAL, CONCHOID OF DE SLUZE,
CONCHOID OF NICOMEDES, CONICAL SPIRAL, DÜ RER’S

CONCHOID
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Conchoid of de Sluze

A curve first constructed by René de Sluze in 1662. In
CARTESIAN COORDINATES,

a(x �a)(x2 �y2) �k2x2 ;

and in POLAR COORDINATES,

r �
k2 cos u

a
�a sec u:

The above curve has k2 =a �1; a ��0:5:/

Conchoid of Nicomedes

A curve studied by the Greek mathematician Nico-
medes in about 200 BC , also called the COCHLOID. It
is the LOCUS of points a fixed distance away from a
line as measured along a line from the FOCUS point
(MacTutor Archive). Nicomedes recognized the three
distinct forms seen in this family. This curve was a
favorite with 17th century mathematicians and could
be used to solve the problems of CUBE DUPLICATION,
ANGLE TRISECTION, HEPTAGON construction, and other
NEUSIS CONSTRUCTIONS (Johnson 1975).
In POLAR COORDINATES,

r �b �a sec u: (1)

In CARTESIAN COORDINATES,

(x �a)2(x2 �y2) �b2x2 : (2)

The conchoid has x �a as an asymptote and the AREA

between either branch and the ASYMPTOTE is infinite.
The AREA of the loop is

A �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �a2

p
�2ab ln

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p

a

 !

�b2 cos�1 a

b

 !
: (3)

See also CONCHOID
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Concho-Spiral

The SPACE CURVE with PARAMETRIC EQUATIONS

r�mua

u�u

z�muc:

See also CONICAL SPIRAL, SPIRAL

Concordant Form
A concordant form is an integer TRIPLE (a; b; N)
where



a2 �b2 �c2

a2 �Nb2 �d2 ;

�
with c and d integers. Examples include

146632 �1113842 �1123452

146632 �47 � 1113842 �7637512

�

11412 �132602 �133092

11412 �53 � 132602 �965412

�

28731612 �24010802 �37443612

28731612 �83 � 24010802 �220627612 :

�
Dickson (1962) states that C. H. Brooks and S. Wat-
son found in The Ladies’ and Gentlemen’s Diary
(1857) that x2 �y2 and x2 �Ny2 can be simultaneously
squares for N B100 only for 1, 7, 10, 11, 17, 20, 22,
23, 24, 27, 30, 31, 34, 41, 42, 45, 49, 50, 52, 57, 58, 59,
60, 61, 68, 71, 72, 74, 76, 77, 79, 82, 85, 86, 90, 92, 93,
94, 97, 99, and 100 (which evidently omits 47, 53, and
83 from above). The list of concordant primes less
than 1000 is now complete with the possible exception
of the 16 primes 103, 131, 191, 223, 271, 311, 431,
439, 443, 593, 607, 641, 743, 821, 929, and 971
(Brown).

See also CONGRUUM
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Concur
Two or more lines which intersect in a POINT are said
to concur.

See also CONCURRENT
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Concurrency Principle

See also CONCURRENT RELATION

Concurrent
Two or more LINES are said to be concurrent if they
intersect in a single point. Two LINES concur if their
TRILINEAR COORDINATES satisfy

l1 m1 n1

l2 m2 n2

l3 m3 n3

������
�������0: (1)

Three LINES concur if their TRILINEAR COORDINATES

satisfy

l1 a �m1 b �n1 g �0 (2)

l2 a �m2 b �n2 g �0 (3)

l3 a �m3 b �n3 g �0; (4)

in which case the point is

m2n3 �n2m3 : n2l3 �l2n3 : l2m3 �m2l3 : (5)

Three lines

A1x �B1y �C1 �0 (6)

A2x �B2y �C2 �0 (7)

A3x �B3y �C3 �0 (8)

are concurrent if their COEFFICIENTS satisfy

A1 B1 C1

A2 B2 C2

A3 B3 C3

������
�������0: (9)

See also CONCYCLIC, POINT

Concurrent Normals Conjecture
It is conjectured that any convex body in Euclidean n -
space has an interior lying on normals through 2n
distinct boundary points (Croft et al. 1991). This has
been proved for n�2 and 3 by Heil (1979ab, 1985). It
is known that higher dimensions always contain at
least a 6-normal point, but the general conjecture
remains open.
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Concurrent Relation
Let X and Y be sets, and let R⁄X�Y be a relation
on X�Y: Then R is a concurrent relation if and only
if for any finite subset F of X , there exists a single
element p of Y such that if a �F; then aRp . Examples
of concurrent relations include the following:



1. The relation B on either the natural numbers,
the integers, the rational numbers, or the real
numbers.
2. The relation R between elements of an exten-
sion E of a field F; defined by

R � (a ; b) � E �E : b is algebraic over F andf

x is in the extension of F by yg:
3. The containment relation ⁄ between open
neighborhoods of a given point p of a TOPOLOGICAL

SPACE X .

See also CONCURRENCY PRINCIPLE
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Concyclic

Four or more points P1 ; P2 ; P3 ; P4 ; ... which lie on a
CIRCLE C are said to be concyclic. Three points are
trivially concyclic since three noncollinear points
determine a CIRCLE. The number of the n2 LATTICE

POINTS x; y � [1; n] which can be picked with no four
concyclic is i(n2 =3 � e) (Guy 1994).
A theorem states that if any four consecutive points of
a POLYGON are not concyclic, then its AREA can be
increased by making them concyclic. This fact arises
in some PROOFS that the solution to the ISOPERI-

METRIC PROBLEM is the CIRCLE.

See also ANTIPARALLEL, CIRCLE, COLLINEAR, CON-

CENTRIC, CYCLIC HEXAGON, CYCLIC PENTAGON, CYC-

LIC QUADRILATERAL, ECCENTRIC, N-CLUSTER
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Condensation
A method of computing the DETERMINANT of a SQUARE

MATRIX due to Charles Dodgson (1866) (who is more
famous under his pseudonym Lewis Carroll). The
method is useful for hand calculations because, for an
INTEGER MATRIX, all entries in submatrices computed
along the way must also be integers. The method is
also implemented efficiently in a parallel computa-
tion. Condensation is also known as the method of
contractants (Macmillan 1955, Lotkin 1959).

Given an n �n matrix, condensation successively
computes an (n �1) �(n �1) matrix, an (n �2) �(n �
2) matrix, etc., until arriving at a 1 �1 matrix whose
only entry ends up being the DETERMINANT of the
original matrix. To compute the k �k matrix (/n �1 ]
k ]1); take the k2 2 �2 connected subdeterminants of
the (k �1) �(k �1) matrix and divide them by the k2

central entries of the (k �2) �(k �2) matrix, with no
divisions performed for k �n �1: The k �k matrices
arrived at in this manner are the matrices of
determinants of the k2(n �k �1) �(n �k �1) con-
nected submatrices of the original matrices.

For example, the first condensation of the 3 �3
matrix

a b c
d e f
g h i

2
4

3
5

yields the matrix

ae �bd bf �ce
dh �eg ei �fh

� �
;

and the second condensation yields

[((ae2i �aefh �bdei �bdfh)

�(bdfh �befg �cdeh �ce2g))=e]

which is the determinant of the original matrix.
Collecting terms gives

(1)aei �(�1)afh �(�1)bdi �(0)bde �1fh �(1)bfg

�(1)cdh �(�1)ceg;

of which the nonzero terms correspond to the PERMU-

TATION MATRICES. In the 4�4 case, 24 nonzero terms
are obtained together with 18 vanishing ones. These
42 terms correspond to the ALTERNATING SIGN MA-

TRICES for which any �1s in a row or column must
have a�1 "outside" it (i.e., all �1s are "bordered" by
�1/s).

See also ALTERNATING SIGN MATRIX, DETERMINANT,
DETERMINANT EXPANSION BY MINORS
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Condition
A requirement NECESSARY for a given statement or
theorem to hold. Also called a CRITERION.

See also BOUNDARY CONDITIONS, CARMICHAEL CON-

DITION, CAUCHY BOUNDARY CONDITIONS, CONDITION

NUMBER, DIRICHLET BOUNDARY CONDITIONS, DIVER-

SITY CONDITION, FELLER-LÉ VY CONDITION, HÖ LDER

CONDITION, LICHNEROWICZ CONDITIONS, LINDEBERG

CONDITION, LIPSCHITZ CONDITION, LYAPUNOV CONDI-

TION, NEUMANN BOUNDARY CONDITIONS, ROBERTSON

CONDITION, ROBIN BOUNDARY CONDITIONS, TAYLOR’S

CONDITION, TRIANGLE CONDITION, WEIERSTRASS-ERD-

MAN CORNER CONDITION, WINKLER CONDITIONS

Condition Number
The ratio of the largest to smallest SINGULAR VALUE of
a MATRIX. A system is said to be SINGULAR if the
condition number is INFINITE, and ILL-CONDITIONED if
it is too large. The p -norm condition number of a
matrix can be computed using MatrixCondition-
Number[m , p ] in the Mathematica add-on package
LinearAlgebra‘MatrixMultiplication‘ (which
can be loaded with the command
BBLinearAlgebra‘) for p � 1, 2, or �; where
omitting the p is equivalent to specifying Infinity.

See also ILL-CONDITIONED MATRIX, SINGULAR MA-

TRIX, SINGULAR VALUE DECOMPOSITION

Conditional
The formal term in PROPOSITIONAL CALCULUS for the
CONNECTIVE IMPLIES.

See also BICONDITIONAL, IMPLIES
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Conditional Convergence
If the SERIES

X�
n�0

un

CONVERGES, but

X�
n�0

½un ½

does not, where ½x½ is the ABSOLUTE VALUE, then the
SERIES is said to be conditionally CONVERGENT. The
RIEMANN SERIES THEOREM states that, by a suitable
rearrangement of terms, a conditionally convergent
SERIES may be made to converge to any desired value,
or to DIVERGE.

See also ABSOLUTE CONVERGENCE, CONVERGENCE

TESTS, DIVERGENT SERIES, RIEMANN SERIES THEO-

REM, SERIES
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Conditional Probability
The conditional probability of an EVENT A assuming
that B has occurred, denoted P(A½B); equals

P(A½B) �
P(A S B)

P(B)
; (1)

which can be proven directly using a VENN DIAGRAM.
Multiplying through, this becomes

P(A½B)P(B) �P(A S B) ; (2)

which can be generalized to

P(A S B S C) �P(A)P(B½A)P(C½A S B) : (3)

Rearranging (1) gives

P(B ½A) �
P(B S A)

P(A)
: (4)

Solving (4) for /P(BSA)�P(ASB)/ and plugging in to
(1) gives

P(A½B)�
P(A)P(B½A)

P(B)
: (5)

See also BAYES’ FORMULA, FERMAT’S PRINCIPLE OF

CONJUNCTIVE PROBABILITY, TOTAL PROBABILITY THE-

OREM

References
Papoulis, A. "Conditional Probabilities and Independent

Sets." §2�/ in Probability, Random Variables, and Stochas-
tic Processes, 2nd ed. New York: McGraw-Hill, pp. 33�/5,
1984.



Condom Problem
GLOVE PROBLEM

Condon-Shortley Phase
The (�1)m phase factor in some definitions (e.g.,
Arfken 1985) of the SPHERICAL HARMONICS and
associated LEGENDRE POLYNOMIALS. Using the Con-
don-Shortley convention gives

Ym
l ( u; f) �(�1)m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l � 1

4p
(l � m)!

(l � m)!

s
Pm

l (cos u)eimf :

The Condon-Shortley phase is not necessary in the
definition of the SPHERICAL HARMONICS, but including
it simplifies the treatment of angular moment in
quantum mechanics. In particular, they are a con-
sequence of the ladder operators L� and L� (Arfken
1985, p. 693).

See also LEGENDRE POLYNOMIAL, SPHERICAL HARMO-

NIC
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Conductor
J -CONDUCTOR

Cone

A cone is a PYRAMID with a circular CROSS SECTION,
and a right cone is a cone with its vertex above the
center of its base. However, in discussions of CONIC

SECTIONS, the word "cone" is taken mean "DOUBLE

CONE," consisting of two cones placed apex to apex.
This is a QUADRATIC SURFACE, and each single cone is
called a "NAPPE." The HYPERBOLA can then be defined
as the intersection of a PLANE with both NAPPES of the
cone.

A right cone of height h can be described by the
PARAMETRIC EQUATIONS

x�
h � z

h
r cos u (1)

y�
h � z

h
r sin u (2)

z�z (3)

for z � [0; h] and u � [0; 2p): The VOLUME of a cone is
therefore

V�1
3 Abh; (4)

where Ab is the base AREA and h is the height. If the
base is circular, then

V�1
3 pr2h: (5)

This amazing fact was first discovered by Eudoxus,
and other proofs were subsequently found by Archi-
medes in On the Sphere and Cylinder (ca. 225 BC )
and Euclid in Proposition XII.10 of his ELEMENTS

(Dunham 1990).

The CENTROID can be obtained by setting R2�0 in the
equation for the centroid of the CONICAL FRUSTUM,

z̄�
�z�

V
�

h(R2
1 � 2R1R2 � 3R2

2)

4(R2
1 � R1R2 � R2

2)
; (6)

(Eshbach 1975, p. 453; Beyer 1987, p. 133) yielding

z̄�1
4 h: (7)

For a right circular cone, the SLANT HEIGHT s is

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�h2

p
(8)

and the surface AREA (not including the base) is

S�prs�pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�h2

p
: (9)

The LOCUS of the apex of a variable cone containing
an ELLIPSE fixed in 3-space is a HYPERBOLA through
the FOCI of the ELLIPSE. In addition, the LOCUS of the
apex of a cone containing that HYPERBOLA is the
original ELLIPSE. Furthermore, the ECCENTRICITIES of
the ELLIPSE and HYPERBOLA are reciprocals.



There are three ways in which a grid can be mapped
onto a cone so that it forms a CONE NET (Steinhaus
1983, pp. 225 �/27).

Using the parameterization

x �
h � u

h
r cos v (10)

y �
h � u

h
r sin v (11)

z �u (12)

gives coefficients of the FIRST FUNDAMENTAL FORM

E �1 �
r2

h2 
(13)

F �0 (14)

G �
r2(h � u)2

h2
; (15)

SECOND FUNDAMENTAL FORM coefficients

e �0 (16)

f �0 (17)

g �
r(h � u)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � r2
p ; (18)

AREA ELEMENT

dS �
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � r2

p

h2
(h �u) ; (19)

GAUSSIAN CURVATURE

K �0; (20)

and MEAN CURVATURE

M �
h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � r2
p

(2hr � 2ru)
: (21)

Note that writing z�v instead of z�u would give a
HELICOID instead of a CONE.

See also BICONE, CONE NET, CONIC SECTION, CONICAL

FRUSTUM, CYLINDER, DOUBLE CONE, GENERALIZED

CONE, HELICOID, NAPPE, PYRAMID, SPHERE, SPHER-

ICON
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Cone (Space)
The JOIN of a TOPOLOGICAL SPACE X and a point P , /

C(X)�X + P/.
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Cone Graph
A GRAPH Cn�Km; where Cn is a CYCLIC GRAPH and Km

is a COMPLETE GRAPH.

Cone Net

The mapping of a grid of regularly ruled squares onto
a CONE with no overlap or misalignment. Cone nets
are possible for vertex angles of 908, 1808, and 2708,
where the dark edges in the upper diagrams above
are joined. Beautiful photographs of cone net models
(lower diagrams above) are presented in Steinhaus
(1983). The transformation from a point (x, y ) in the



grid plane to a point /(x?; y?; z ?)/ on the cone is given by

x?�rn cos
u

n

 !
(1)

y?�rn sin
u

n

 !
(2)

z ?�(1 �r)h; (3)

where n �1/4, 1/2, or 3/4 is the fraction of a circle
forming the base, and

h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �n2

p
(4)

u �tan�1 y

x

 !
(5)

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
: (6)

See also CONE, SPHERICON
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Cone-Plane Intersection
CONIC SECTION

Cone-Sphere Intersection

Let a CONE of opening parameter c and vertex at /

(0; 0; 0)/ intersect a SPHERE of RADIUS r centered at /
(x0 ; y0 ; z0)/, with the CONE oriented such that its axis
does not pass through the center of the SPHERE. Then
the equations of the curve of intersection are

x2 � y2

c2
�z2 (1)

(x �x0)2 �(y �y0)2 �(z �z0)2 �r2 : (2)

Combining (1) and (2) gives

(x �x0)2 �(y �y0)2 �
x2 � y2

c2
�

2z0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�z2

0 �r2 (3)

x2 1 �
1

c2

 !
�2x0x �y2 1 �

1

c2

 !
�2y0y

�(x2
0 �y2

0 �z2
0 �r2) �

2z0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�0 : (4)

Therefore, x and y are connected by a complicated
QUARTIC EQUATION, and x , y , and z by a QUADRATIC

EQUATION.

If the CONE-SPHERE intersection is on-axis so that a
CONE of opening parameter c and vertex at /(0; 0; z0)/
is oriented with its AXIS along a radial of the SPHERE

of radius r centered at /(0; 0; 0)/, then the equations of
the curve of intersection are

(z �z0)2 �
x2 � y2

c2 
(5)

x2 �y2 �z2 �r2 : (6)

Combining (5) and (6) gives

c2(z �z0)2 �z2 �r2 (7)

c2(z2 �2z0z �z2
0) �z2 �r2 (8)

z2(c2 �1) �2c2z0z �(z2
0c2 �r2) �0: (9)

Using the QUADRATIC EQUATION gives

z �
2c2z0 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c4z2

0 � 4(c2 � 1)(z2
0c2 � r2)

p
2(c2 � 1)

�
c2z0 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2(r2 � z2

0) � r2
p

c2 � 1
: (10)

So the curve of intersection is planar. Plugging (10)
into (5) shows that the curve is actually a CIRCLE,
with RADIUS given by

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
: (11)

See also CONE, SPHERE
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Confidence Interval
The probability that a measurement will fall within a
given CLOSED INTERVAL [a, b ]. For a CONTINUOUS

DISTRIBUTION,

CI(a; b)�g
a

b

P(x) dx; (1)

where P(x) is the PROBABILITY DISTRIBUTION FUNC-

TION. Usually, the confidence interval of interest is
symmetrically placed around the mean, so



CI(x)�CI(m�x; m�x)�g
m�x

m�x

P(x) dx; (2)

where m is the MEAN. For a GAUSSIAN DISTRIBUTION,
the probability that a measurement falls within /ns/ of
the mean m is

CI(ns)�
1

s
ffiffiffiffiffiffi
2p

p g
m�ns

m�ns

e�(x�m)2=2s2

dx

�
2

s
ffiffiffiffiffiffi
2p

p g
m�ns

0

e�(x�m)2=2s2

dx: (3)

Now let /u�(x�m)=
ffiffiffi
2

p
s/, so /du�dx=

ffiffiffi
2

p
s/. Then

CI(ns)�
2

s
ffiffiffiffiffiffi
2p

p
ffiffiffi
2

p
s g

n=
ffiffi
2

p

0

e�u2

du�
2ffiffiffi
p

p g
n=
ffiffi
2

p

0

e�u2

du

�erf
nffiffiffi
2

p
 !

(4)

where erf(x ) is the so-called ERF function. The variate
value producing a confidence interval CI is often
denoted /xCI/, so

xCI�
ffiffiffi
2

p
erf�1(CI): (5)

range CI

s 0.6826895

2s 0.9544997

3s 0.9973002

4s 0.9999366

5s 0.9999994

To find the standard deviation range corresponding to
a given confidence interval, solve (4) for n .

n�
ffiffiffi
2

p
erf�1(CI) (6)

CI range

0.800 91.28155s

0.900 91.64485s

0.950 91.95996s

0.990 92.57583s

0.995 92.80703s

0.999 93.29053s

Configuration
The word configuration is sometimes used to describe
a finite collection of points /p�(p1; . . . ; pn)/, /pi �Rd

/,
where Rd is a EUCLIDEAN SPACE.

The term "configuration" also is used to describe a
finite incidence structure /(vr; bk)/ with the following
properties (Gropp 1992).

1. There are v points and b lines.
2. There are k points on each line and r lines
through each point.
3. Two different lines intersect each other at most
once and two different points are connected by a
line at most once.

The conditions

vr�bk

v]r(k�1)�1

are NECESSARY for the existence of a configuration.
For k�3, these conditions are also SUFFICIENT, and
for k�4 this is probably also the case (Gropp 1992).
The necessary conditions hold, but there is no 225.
For k�6 and 7, the above conditions are not
SUFFICIENT, as illustrated by the affine projective
plane of order 6 (367, 426) and the projective plane
(437, 437).

Configurations are among the oldest combinatorial
structures, having been defined by T. Reye in 1876.
An r -REGULAR GRAPH can be regarded as a configura-
tion /(vr; b2)/ by associating nodes with the points, and
edges with the lines. The following table summarizes
the number of different configurations for some
special values (Gropp 1992).

configuration distinct

(122, 83) 5

(152, 103) 18

A symmetric configuration /nk�(nk; nk)/ consists of n
lines and n points arranged such that k lines pass
through each point and there are k points on each
line. All symmetric /n3/ configurations are known for /

n514/. The number of 73, 83, 93. . . configurations
are 1, 1, 3, 10, 31, 229, 2036, 21399, 245342, ...,
correcting an error of von Sterneck for 123 (Sloane’s
A001403; Sterneck 1894, 1895; Wells 1991, p. 72;
Colbourn and Dinitz 1996; Gropp 1997; Hilbert and
Cohn-Vossen 1999).



The FANO PLANE, in which the central point corre-
sponds to the POINT AT INFINITY, is the unique 73

configuration. There are no 73 configurations using
points all at finite distances (Wells 1986, p. 75).

There are no 83 configurations using points all at
finite distances (Wells 1986, p. 75), but a single
configuration exists with a POINT AT INFINITY.

There are three 93 configurations, of which PAPPUS’S

HEXAGON THEOREM (left figure) is one (Wells 1985,
p. 75). The other two consist of embedded EQUILAT-

ERAL TRIANGLES (Wells 1991, pp. 159�/60).

In the second 93 configuration, the angle u can be
computed using the above figure. For the top triangle,
trigonometry gives

tan(30��u)�
x

1
4

ffiffiffi
3

p : (1)

Solving for x and plugging into the trigonometric
equation from the bottom triangle gives

tan u�
1
4

ffiffiffi
3

p

1
2 � x

�

ffiffiffi
3

p

2 �
ffiffiffi
3

p
tan(30� � u)

: (2)

Now using the identity

tan(a�b)�
tan a� tan b

1 � tan a tan b
(3)

with /a�u; b�30�
/ gives

tan(u�30�)�
tan u�

1ffiffiffi
3

p

1 �
1ffiffiffi
3

p tan u

�

ffiffiffi
3

p
tan u� 1ffiffiffi

3
p

� tan u
: (4)

Plugging in gives

tan u 2�
ffiffiffi
3

p ffiffiffi
3

p
tan u� 1ffiffiffi

3
p

� tan u

 !
�

ffiffiffi
3

p
; (5)

which simplifies to

tan2 u�sec2 u�1�3
5 (6)

sec2 u�8
5 (7)

cos2 u�1
2[1�cos(2u)]�5

8 (8)

1
4�cos(2u) (9)

u�1
2 cos�1 1

4

1 2
:0:659058 rad: (10)

Some additional trigonometry then gives the posi-
tions of the three innermost EQUILATERAL TRIANGLE

vertices,

P1�
1
8(5�

ffiffiffi
5

p
); 1

8(
ffiffiffiffiffiffi
15

p
�

ffiffiffi
3

p
)

1 2
(11)

P2�
1
4

ffiffiffi
5

p
; 1

4

ffiffiffi
3

p1 2
(12)

P3�
1
8(7�

ffiffiffi
5

p
); 1

8(3
ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
)

1 2
: (13)

For the third 93 configuration, solving the five
simultaneous equations

tan(u�30�)�
x

h1

(14)

tan(60��u)�
h2

1
2

(15)

h1�x
ffiffiffi
3

p
�h2�

1
2

ffiffiffi
3

p
(16)

tan(60��u)�

ffiffiffi
3

p
� tan u

1 �
ffiffiffi
3

p
tan u

�
h2 � x

ffiffiffi
3

p

l � 1
2

(17)

tan 60��
ffiffiffi
3

p
�

h2 � x
ffiffiffi
3

p

1
2 � l

(18)



gives

u �1
2 cos�1 1

4

1 2
(19)

x �1
4(7 �3

ffiffiffi
5

p
) (20)

l �1
4(
ffiffiffi
5

p
�1) (21)

h1 �
1
4(
ffiffiffiffiffiffi
15

p
�

ffiffiffi
3

p
) (22)

h2 �
1
2(
ffiffiffiffiffiffi
15

p
�2

ffiffiffi
3

p
) : (23)

The six points are then given by

P1 �
1
4(3

ffiffiffi
5

p
�5); 1

4(3
ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
)

1 2
(24)

P2 �
1
2 ;

1
2(
ffiffiffiffiffiffi
15

p
�2

ffiffiffi
3

p
)

1 2
(25)

P3 �
3
4(3 �

ffiffiffi
5

p
); 1

4(3
ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
)

1 2
(26)

P4 �
1
2(
ffiffiffi
5

p
�1); 0

1 2
(27)

P5 �
1
4(5 �

ffiffiffi
5

p
) ; 1

4(
ffiffiffiffiffiffi
15

p
�

ffiffiffi
3

p
)

1 2
(28)

P6 �
1
4(3 �

ffiffiffi
5

p
) ; 1

4(3
ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
)

1 2
: (29)

The DESARGUES CONFIGURATION, illustrated above, is
one of the ten 103 configurations. Page and Dorwart
(1984) discuss the 31 113 configurations (Wells 1991,
p. 63).

The CREMONA-RICHMOND CONFIGURATION, illustrated
above, is one of the 245342 153 configurations.

See also BAR (EDGE), CREMONA-RICHMOND CONFIG-

URATION, DESARGUES CONFIGURATION, DOUBLE

SIXES, EQUILATERAL TRIANGLE, EUCLIDEAN SPACE,
FANO PLANE, FRAMEWORK, ORCHARD-PLANTING PRO-

BLEM, ORIENTED MATROID, PAPPUS’S HEXAGON THE-

OREM, PROJECTIVE PLANE, REGULAR GRAPH, REYE’S

CONFIGURATION, RIGID GRAPH, TENSEGRITY, TESSER-

ACT
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Confluent Hypergeometric Differential
Equation
The second-order ordinary differential equation

xyƒ�(c �x)y?�ay �0; (1)

sometimes also called Kummer’s differential equation
(Zwillinger 1997, p. 124). It has a REGULAR SINGULAR

POINT at 0 and an irregular singularity at �: The
solutions

y�b1 1F1(a; c; x)�b2U(a; c; x) (2)

are called CONFLUENT HYPERGEOMETRIC FUNCTION OF

THE FIRST and SECOND KINDS, respectively. Note that
the CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

FIRST KIND is also denoted /M(a; c; x)/ or /F(a; c; z)/.

See also CONFLUENT HYPERGEOMETRIC FUNCTION OF



THE FIRST KIND, CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND, GENERAL CONFLU-

ENT HYPERGEOMETRIC DIFFERENTIAL EQUATION, HY-

PERGEOMETRIC DIFFERENTIAL EQUATION, WHITTAKER

DIFFERENTIAL EQUATION
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Confluent Hypergeometric Function
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

FIRST KIND, CONFLUENT HYPERGEOMETRIC FUNCTION

OF THE SECOND KIND, CONFLUENT HYPERGEOMETRIC

LIMIT FUNCTION

Confluent Hypergeometric Function of the
First Kind
The confluent hypergeometric function is a degener-
ate form the HYPERGEOMETRIC FUNCTION

2F1(a ; b; c; z) which arises as a solution the CON-

FLUENT HYPERGEOMETRIC DIFFERENTIAL EQUATION. It
is commonly denoted 1F1(a; b; z)/, /M(a ; b ; z)/, or/

F(a; b; z)/, and is also known as KUMMER’S FUNCTION

of the first kind. An alternate form of the solution to
the CONFLUENT HYPERGEOMETRIC DIFFERENTIAL

EQUATION is known as the WHITTAKER FUNCTION.

The confluent hypergeometric function has a HYPER-

GEOMETRIC SERIES given by

1F1(a; b; z) �1 �
a

b
z �

a(a � 1)

b(b � 1)

z2

2! 
�. . .

�
X�
k�0

(a)k

(b)k

zk

k! 
; (1)

where /(a)k/ and /(b)k/ are POCHHAMMER SYMBOLS. If a
and b are INTEGERS, a B0, and either b �0 or b Ba ,
then the series yields a POLYNOMIAL with a finite
number of terms. If b is an INTEGER 50, then

1F1(a; b; z) is undefined. The confluent hypergeo-
metric function is given in terms of the LAGUERRE

POLYNOMIAL by

Lm
n (x) �

(m � n)!

m!n!
1 F1(�n; m �1; x) ; (2)

(Arfken 1985, p. 755), and also has an integral
representation

1F1(a; b; z)

�
G(b)

G(b � a) G(a) g
1

0

eztta �1(1 �t)b�a �1 dt (3)

(Abramowitz and Stegun 1972, p. 505).

BESSEL FUNCTIONS, the ERROR FUNCTION, the incom-
plete GAMMA FUNCTION, HERMITE POLYNOMIAL, LA-

GUERRE POLYNOMIAL, as well as other are all special
cases of this function (Abramowitz and Stegun 1972,
p. 509). Kummer showed that

ex
1F1(a; b; �x)�1 F1(b�a; b; x) (4)

(Koepf 1998, p. 42).

KUMMER’S SECOND FORMULA gives

1F1
1
2�m; 2m�1; z
1 2

�M0;m(z)

�zm�1=2 1�
X�
p�1

z2p

24pp!(m � 1)(m � 2) 	 	 	 (m � p)

" #
;

(5)

where 1F1(a; b; z) is the CONFLUENT HYPERGEO-

METRIC FUNCTION and /m"�1=2; �1; �3=2/, ....

See also CONFLUENT HYPERGEOMETRIC DIFFERENTIAL

EQUATION, CONFLUENT HYPERGEOMETRIC FUNCTION

OF THE SECOND KIND, CONFLUENT HYPERGEOMETRIC

LIMIT FUNCTION, GENERALIZED HYPERGEOMETRIC

FUNCTION, HEINE HYPERGEOMETRIC SERIES, HYPER-

GEOMETRIC FUNCTION, HYPERGEOMETRIC SERIES,
KUMMER’S FORMULAS, WEBER-SONINE FORMULA,
WHITTAKER FUNCTION
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Confluent Hypergeometric Function of the
Second Kind
Gives the second linearly independent solution to the
CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUA-

TION. It is also known as the KUMMER’S FUNCTION of
the second kind, the TRICOMI FUNCTION, or the
GORDON FUNCTION. It is denoted /U(a ; b; z)/ and has
an integral representation

U(a; b; z) �
1

G(a) g
�

0

e �ztta �1(1 �t)b �a�1 dt

(Abramowitz and Stegun 1972, p. 505). The WHIT-

TAKER FUNCTIONS give an alternative form of the
solution. For small z , the function behaves as /z1 �b

/.

See also BATEMAN FUNCTION, CONFLUENT HYPERGEO-

METRIC FUNCTION OF THE FIRST KIND, CONFLUENT

HYPERGEOMETRIC LIMIT FUNCTION, COULOMB WAVE

FUNCTION, CUNNINGHAM FUNCTION, GORDON FUNC-

TION, HYPERGEOMETRIC FUNCTION, POISSON-CHAR-

LIER POLYNOMIAL, TORONTO FUNCTION, WEBER

FUNCTIONS, WHITTAKER FUNCTION
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Confluent Hypergeometric Limit Function

0F1(; a; z) � lim
q0�

1 F1 q; a;
z

q

 !
: (1)

It has a series expansion

0F1(; a; z) �
X�
n�0

zn

(a)nn! 
(2)

and satisfies

z
d2y

dz2 
�a

dy

dz 
�y �0: (3)

A BESSEL FUNCTION OF THE FIRST KIND can be

expressed in terms of this function by

Jn(x) �
1
2 x
1 2n

n!
0 F1(; n �1; �1

4 x
2) (4)

(Petkovsek et al. 1996).

See also CONFLUENT HYPERGEOMETRIC FUNCTION,
GENERALIZED HYPERGEOMETRIC FUNCTION, HYPER-

GEOMETRIC FUNCTION
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Confocal Conics

Confocal conics are CONIC SECTIONS sharing a com-
mon FOCUS. Any two confocal CENTRAL CONICS are
orthogonal (Ogilvy 1990, p. 77).

See also CONFOCAL ELLIPSES, CONFOCAL ELLIPSOIDAL

COORDINATES, CONFOCAL HYPERBOLAS, CONFOCAL

PARABOLAS, CONFOCAL QUADRICS, CONIC SECTION,
FOCUS
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Confocal Ellipses

ELLIPSES sharing common FOCI (left figure). The
family of confocal ellipses covers the plane simply,
in the sense that there is a unique ellipse passing
through each point in the plane (Hilbert and Cohn-
Vossen 1999, p. 5). The figure on the right shows
confocal ellipses superimposed on CONFOCAL HYPER-



BOLAS, which form an orthogonal net of curves
(Hilbert and Cohn-Vossen 1999, pp. 5 �/).

See also CONFOCAL CONICS, CONFOCAL HYPERBOLAS,
CONFOCAL PARABOLAS, ELLIPSE
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Confocal Ellipsoidal Coordinates

The confocal ellipsoidal coordinates, called simply
"ellipsoidal coordinates" by Morse and Feshbach
(1953) and "elliptic coordinates" by Hilbert and
Cohn-Vossen (1999, p. 22), are given by the equations

x2

a2 � j
�

y2

b2 � j
�

z2

c2 � j
�1 (1)

x2

a2 � h
�

y2

b2 � h
�

z2

c2 � h
�1 (2)

x2

a2 � z
�

y2

b2 � z
�

z2

c2 � z
�1; (3)

where /�cBjB�/, /�b2BhB�c2
/, and /�a2BzB�b2

/.
These coordinates correspond to three CONFOCAL

QUADRICS all sharing the same pair of foci. Surfaces
of constant /j/ are confocal ELLIPSOIDS, surfaces of
constant h are one-sheeted HYPERBOLOIDS, and sur-
faces of constant /z/ are two-sheeted HYPERBOLOIDS

(Hilbert and Cohn-Vossen 1999, pp. 22�/3). For every /

(x; y; z)/, there is a unique set of ellipsoidal coordi-
nates. However, /(j; h; z)/ specifies eight points sym-
metrically located in OCTANTS.
Solving for x , y , and z gives

x2�
(a2 � j)(a2 � h)(a2 � z)

(b2 � a2)(c2 � a2)
(4)

y2�
(b2 � j)(b2 � h)(b2 � z)

(a2 � b2)(c2 � b2)
(5)

z2�
(c2 � j)(c2 � h)(c2 � z)

(a2 � c2)(b2 � c2)
: (6)

The LAPLACIAN is

92C�(h�z)f (j)
@

@j
f (j)

@C
@j

" #
�(z�j)f (h)

@

@h

� f (h)
@C
@h

" #
�(j�h)f (z)

@

@z
f (z)

@C
@z

" #
; (7)

where

f (x)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�a2)(x�b2)(x�c2)

p
: (8)

Another definition is

x2

a2 � l
�

y2

b2 � l
�

z2

c2 � l
�1 (9)

x2

a2 � m
�

y2

b2 � m
�

z2

c2 � m
�1 (10)

x2

a2 � n
�

y2

b2 � n
�

z2

c2 � n
�1; (11)

where

lBc2BmBb2BnBa2 (12)

(Arfken 1970, pp. 117�/18). Byerly (1959, p. 251) uses
a slightly different definition in which the Greek
variables are replaced by their squares, and a�0.
Equation (9) represents an ELLIPSOID, (10) represents
a one-sheeted HYPERBOLOID, and (11) represents a
two-sheeted HYPERBOLOID.

In terms of CARTESIAN COORDINATES,

x2�
(a2 � l)(a2 � m)(a2 � n)

(a2 � b2)(a2 � c2)
(13)

y2�
(b2 � l)(b2 � m)(b2 � n)

(b2 � a2)(b2 � c2)
(14)

z2�
(c2 � l)(c2 � m)(c2 � n)

(c2 � a2)(c2 � b2)
: (15)

The SCALE FACTORS are

hl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m� l)(n� l)

4(a2 � l)(b2 � l)(c2 � l)

s
(16)

hm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n� m)(l� m)

4(a2 � m)(b2 � m)(c2 � m)

s
(17)

hn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l� n)(m� n)

4(a2 � n)(b2 � n)(c2 � n)

s
: (18)

The LAPLACIAN is



92 �2
a2b2 � a2c2 � b2c2 � 2n(a2 � b2 � c2) � 3 n2

( m � n)(n � l)

@

@ n

�
4(a2 � n)(b2 � n)(c2 � n)

(m � n)(n � l)

@2

@ n2

�2
a2b2 � a2c2 � b2c2 � 2m(a2 � b2 � c2) � 3 m2

( n � m)( m � l)

@

@ m

�
4(a2 � m)(b2 � m)(c2 � m)

(m � l)( n � m)

@2

@ m2

�2
�(a2b2 � a2c2 � b2c2) � 2 l(a2 � b2 � c2) � 3l2

( m � l)(n � l)

@

@ l

(19)

Using the NOTATION of Byerly (1959, pp. 252 �/53),
this can be reduced to

92 �( m2 � n2)
@2

@ a2 
�(l2 � n2)

@2

@ b2 �( l2 � m2)
@2

@ g2 
; (20)

where

a �c g  
l

c

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( l2 � b2)( l2 � c2)

p
�F

b

c
;
p

2

 !
�F

b

c
; sin�1 c

l

 ! !
(21)

b �c g  
m

b

dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c2 � m2)( m2 � b2)

p

�F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

c2

s
; sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

m2

1 �
b2

c2

vuuuuuut
0
BBBB@

1
CCCCA

2
66664

3
77775 (22)

g �c g  
n

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 � n2)(c2 � n2)

p �F
b

c
; sin�1 n

b

 ! !
: (23)

Here, F is an ELLIPTIC INTEGRAL OF THE FIRST KIND.
In terms of a; b; and g;

l �c dc a;
b

c

 !
(24)

m �b nd b;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

c2

s !
(25)

n �b sn g ;
b

c

 !
; (26)

where dc, nd, and sn are JACOBI ELLIPTIC FUNCTIONS.
The HELMHOLTZ DIFFERENTIAL EQUATION is separable
in confocal ellipsoidal coordinates.

See also HELMHOLTZ DIFFERENTIAL EQUATION–CON-

FOCAL ELLIPSOIDAL COORDINATES

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Definition of

Elliptical Coordinates." §21.1 in Handbook of Mathema-
tical Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing. New York: Dover, p. 752, 1972.

Arfken, G. "Confocal Ellipsoidal Coordinates /( j1 ; j2 ; j3)/."
§2.15 in Mathematical Methods for Physicists, 2nd ed.
New York: Academic Press, pp. 117 �/18, 1970.

Byerly, W. E. An Elementary Treatise on Fourier’s Series,
and Spherical, Cylindrical, and Ellipsoidal Harmonics,
with Applications to Problems in Mathematical Physics.
New York: Dover, pp. 251 �/52, 1959.

Hilbert, D. and Cohn-Vossen, S. "The Thread Construction
of the Ellipsoid, and Confocal Quadrics." §4 in Geometry
and the Imagination. New York: Chelsea, pp. 19 �/5, 1999.

Moon, P. and Spencer, D. E. "Ellipsoidal Coordinates /

( h; u ; l)/." Table 1.10 in Field Theory Handbook, Including
Coordinate Systems, Differential Equations, and Their
Solutions, 2nd ed. New York: Springer-Verlag, pp. 40 �/4,
1988.

Morse, P. M. and Feshbach, H. Methods of Theoretical
Physics, Part I. New York: McGraw-Hill, p. 663, 1953.

Confocal Hyperbolas

HYPERBOLAS sharing common FOCI (left figure). The
family of confocal hyperbolas covers the plane simply,
in the sense that there is a unique hyperbola passing
through each point in the plane (Hilbert and Cohn-
Vossen 1999, p. 5). The figure on the right shows
confocal hyperbolas superimposed on CONFOCAL EL-

LIPSES, which form an orthogonal net of curves
(Hilbert and Cohn-Vossen 1999, pp. 5�/).

See also CONFOCAL CONICS, CONFOCAL ELLIPSES,
CONFOCAL PARABOLAS, ELLIPSE
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Confocal Parabolas

PARABOLAS sharing a common FOCUS.

See also CONFOCAL CONICS, CONFOCAL ELLIPSES,
CONFOCAL HYPERBOLAS, PARABOLA
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Confocal Parabolic Coordinates
CONFOCAL PARABOLOIDAL COORDINATES

Confocal Paraboloidal Coordinates

x2

a2 � l 
�

y2

b2 � l 
�z � l (1)

x2

a2 � m 
�

y2

b2 � m 
�z � m (2)

x2

a2 � n 
�

y2

b2 � n 
�z � n ; (3)

where /l � (��; b2)/, /m � (b2 ; a2)/, and / n � (a2 ; �)/.

x2 �
(a2 � l)(a2 � m)(a2 � n)

(b2 � a2) 
(4)

y2 �
(b2 � l)(b2 � m)(b2 � n)

(a2 � b2) 
(5)

z � l � m � n �a2 �b2 : (6)

The SCALE FACTORS are

hl �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( m � l)( n � l)

4(a2 � l)(b2 � l)

s
(7)

hm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( n � m)( l � m)

4(a2 � m)(b2 � m)

s
(8)

hn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l � n)( m � n)

16(a2 � n)(b2 � n)

s
: (9)

The LAPLACIAN is

92 �
2(a2 � b2 � 2 n)

(m � n)( n � l)

@

@ n 
�

4(a2 � n)( n � b2)

( m � n)( n � l)

@2

@ n2

�
2(a2 � b2 � 2m)

( m � l)(n � m)

@

@ m 
�

4(a2 � m)( m � b2)

(m � l)( n � m)

@2

@ m2

�
2(2l � a2 � b2)

( m � l)(n � l)

@

@ l 
�

4(l � a2)( l � b2)

( m � l)(n � l)

@2

@ l2 
: (10)

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPAR-

ABLE.

See also HELMHOLTZ DIFFERENTIAL EQUATION–CON-

FOCAL PARABOLOIDAL COORDINATES
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Confocal Quadrics

A set of QUADRATIC SURFACES which share FOCI.
Ellipsoids and one- and two-sheeted hyperboloids
can be confocal. These three types of surfaces can be
combined to form an orthogonal coordinate system
known as CONFOCAL ELLIPSOIDAL COORDINATES (Hil-
bert and Cohn-Vossen 1991, pp. 22 �/3).
The planes of symmetry of the tangent cone from any
point P in space to any surface of the confocal system
which does not enclose P are the tangent planes at P
to the three surfaces of the system that pass through
P . As a limiting case, this result means that every
surface of the confocal system when viewed from a
point lying on a focal curve and not enclosed by the
surface looks like a circle with its center on the line of
sight, provided that the line of sight is tangent to the
focal curve (Hilbert and Cohn-Vossen 1999, p. 24).

See also CONFOCAL ELLIPSOIDAL COORDINATES, EL-

LIPSOID, HYPERBOLOID, QUADRATIC SURFACE
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Confoliation
A topological structure which interpolates between
contact structures and codimension-one FOLIATIONS.

See also FOLIATION
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Conformal Latitude
An AUXILIARY LATITUDE defined by

x �2 tan �1 tan(1
4 p �

1
2 f)

1 � e sin f

1 � e sin f

" #e=2
8<
:

9=
;�1

2 p

�2 tan �1 1 � sin f

1 � sin f

1 � e sin f

1 � e sin f

 !e( )1=2

�1
2 p

� f �(1
2 e

2 � 5
24 e

4 � 3
32 e

6 � 281
5760 e

8 �. . .) sin(2f)

�( 5
48 e

4 � 7
80 e

6 � 697
11520 e

8 �. . .) sin(4f)

�( 13
480 e

6 � 461
13440 �. . .) sin(6f)

�( 1237
161280 e

8 �. . .) sin(8f) �. . .

The inverse is obtained by iterating the equation

f �2 tan�1 tan(1
4 p �

1
2 x)

1 � e sin f

1 � e sin f

 !e=2
2
4

3
5�1

2 p

using f � x as the first trial. A series form is

f � x �(1
2 e

2 � 5
24 e

4 � 1
12 e

6 � 13
360 e

8 �. . .) sin(2x)

�( 7
48 e

4 � 29
240 e

6 � 811
11520 e

8 �. . .) sin(4x)

�( 7
120 e

6 � 81
1120 e

8 �. . .) sin(6x)

�( 4279
161280e

8 �. . .) sin(8x) �. . .

The conformal latitude was called the ISOMETRIC

LATITUDE by Adams (1921), but this term is now
used to refer to a different quantity.

See also AUXILIARY LATITUDE, LATITUDE
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Conformal Map
CONFORMAL MAPPING

Conformal Mapping
A conformal mapping, also called a conformal map,
conformal transformation, angle-preserving transfor-
mation, or biholomorphic map, is a TRANSFORMATION

w�f (z) that preserves local ANGLES. An ANALYTIC

FUNCTION is conformal at any point where it has a
NONZERO DERIVATIVE. Conversely, any conformal
mapping of a complex variable which has continuous
partial derivatives is analytic. Conformal mapping is
extremely important in COMPLEX ANALYSIS, as well as
in many areas of physics and engineering.

Several conformal transformations of regular grids
are illustrated in the first figure above, and are
implemented as ComplexMap in the Mathematica
add-on package Graphics‘ComplexMap‘ (which can
be loaded with the command BBGraphics‘). In
the second figure above, contours of constant ½z½ are
shown together with their corresponding contours
after the transformation. Moon and Spencer (1988)
and Krantz (1999, pp. 183�/94) give tables of confor-
mal mappings.

Let u and f be the tangents to the curves g and f (g) at
z0 and w0 in the COMPLEX PLANE,

w�w0�f (z)�f (z0)�
f (z) � f (z0)

z � z0

(z�z0) (1)

arg(w�w0)�arg
f (z) � f (z0)

z � z0

" #
�arg(z�z0): (2)

Then as w 0 w0 and z 0 z0;

f�arg f ?(z0)�u (3)

½w½� ½f ?(z0)½½z½: (4)

A function f : C 0 C is conformal IFF there are
complex numbers a"0 and b such that



f (z)�az�b (5)

for z �C (Krantz 1999, p. 80). Furthermore, if h : C 0
C is an analytic function such that

lim
½z½0��

½h(z)½���; (6)

then h is a polynomial in z (Greene and Krantz 1997;
Krantz 1999, p. 80).

Conformal transformations can prove extremely use-
ful in solving physical problems. By letting w�f (z);
the REAL and IMAGINARY PARTS of w(z) must satisfy
the CAUCHY-RIEMANN EQUATIONS and LAPLACE’S

EQUATION, so they automatically provide a scalar
POTENTIAL and a so-called stream function. If a
physical problem can be found for which the solution
is valid, we obtain a solution–which may have been
very difficult to obtain directly–by working back-
wards.

For example, let

w(z)�Azn�Arneinu; (7)

the REAL and IMAGINARY PARTS then give

f�Arn cos(nu) (8)

c�Arn sin(nu): (9)

For n��2,

f�
A

r2
cos(2u) (10)

c��
A

r2
sin(2u); (11)

which is a double system of LEMNISCATES (Lamb 1945,
p. 69).

For n��1,

f�
A

r
cos u (12)

c�
A

r
sin u: (13)

This solution consists of two systems of CIRCLES, and
f is the POTENTIAL FUNCTION for two PARALLEL

opposite charged line charges (Feynman et al. 1989,
§7�/; Lamb 1945, p. 69).

For n�1=2;

f�Ar1=2 cos
u

2

 !
�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
� x

2

s
(14)

c�Ar1=2 sin
u

2

 !
�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
� x

2

s
: (15)

/f gives the field near the edge of a thin plate
(Feynman et al. 1989, §7�/).

For n�1,

f�Ar cos u�Ax (16)

c�Ar sin u�Ay; (17)

giving two straight lines (Lamb 1945, p. 68).

For n�3=2;

w�Ar3=2e3iu=2: (18)

/f gives the field near the outside of a rectangular
corner (Feynman et al. 1989, §7�/).



For n �2,

w �A(x �iy)2 �A[(x2 �y2) �2ixy] (19)

f �A(x2 �y2) �Ar2 cos(2u) (20)

c �2Axy �Ar2 sin(2u) : (21)

These are two PERPENDICULAR HYPERBOLAS, and f is
the POTENTIAL FUNCTION near the middle of two point
charges or the field on the opening side of a charged
RIGHT ANGLE conductor (Feynman 1989, §7 �/).

See also ANALYTIC FUNCTION, CAUCHY-RIEMANN

EQUATIONS, CAYLEY TRANSFORM, CONFORMAL PRO-

JECTION, HARMONIC FUNCTION, LAPLACE’S EQUATION,
MÖ BIUS TRANSFORMATION, QUASICONFORMAL MAP,
SCHWARZ-CHRISTOFFEL MAPPING, SIMILAR
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Conformal Projection
A MAP PROJECTION which is a CONFORMAL MAPPING,
i.e., one for which local (infinitesimal) angles on a
sphere are mapped to the same angles in the projec-
tion. On maps of an entire sphere, however, there are
usually singular points at which local angles are
distorted.

The term conformal was applied to map projections by
Gauss in 1825, and eventually supplanted the alter-
native terms "orthomorphic" (Germain 1865, Lee
1944; Snyder 1987, p. 4) and "autogonal" (Tissot
1881, Lee 1944).

No projection can be both EQUAL-AREA and conform,
and projections which are neither EQUAL-AREA nor
conformal are sometimes called APHYLACTIC (Lee
1944; Snyder 1987, p. 4).

See also CONFORMAL MAPPING, EQUIDISTANT PROJEC-

TION, LAMBERT CONFORMAL CONIC PROJECTION, MAP

PROJECTION
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Conformal Tensor
WEYL TENSOR

Conformal Transformation
CONFORMAL MAPPING

Congruence
If two numbers b and c have the property that their
difference b�c is integrally divisible by a number m
(i.e., b�c=m is an integer), then b and c are said to be
"congruent modulo m ." The number m is called the
MODULUS, and the statement "b is congruent to c
(modulo m )" is written mathematically as

b�c (mod m): (1)

If b�c is not integrally divisible by m , then we say "b
is not congruent to c (modulo m )," which is written

bfc (mod m): (2)

The explicit "(mod m )" is sometimes omitted when the



MODULUS m is understood by context, so in such
cases, care must be taken not to confuse the symbol�
with the EQUIVALENCE sign.

The quantity b is sometimes called the "base," and
the quantity c is called the RESIDUE or REMAINDER.
There are several types of residues. The COMMON

RESIDUE defined to be NONNEGATIVE and smaller than
m , while the MINIMAL RESIDUE is c or c�m; which-
ever is smaller in ABSOLUTE VALUE. In many compu-
ter languages (such as FORTRAN or Mathematica ), the
COMMON RESIDUE of b (mod m ) is written mod(b ,m )
(FORTRAN) or Mod[b ,m ] (Mathematica ).

Congruence arithmetic is perhaps most familiar as a
generalization of the arithmetic of the clock. Since
there are 60 minutes in an hour, "minute arithmetic"
uses a modulus of m�60. If one starts at 40 minutes
past the hour and then waits another 35 minutes,
40�35�15 (mod 60); so the current time would be
15 minutes past the (next) hour.

Similarly, "hour arithmetic" on a 12-hour clock uses a
modulus of m�12, so 10 o’clock (a.m.) plus five hours
gives 10�5�3 (mod 12); or 3 o’clock (p.m.)

Congruences satisfy a number of important proper-
ties, and are extremely useful in many areas of
NUMBER THEORY. Using congruences, simple DIVISI-

BILITY TESTS to check whether a given number is
divisible by another number can sometimes be
derived. For example, if the sum of a number’s digits
is divisible by 3 (9), then the original number is
divisible by 3 (9).

Congruences also have their limitations. For exam-
ple, if a�b and c�d (mod n); then it follows that
ax�bx; but usually not that xc�xd or ac�bd: In

addition, by "rolling over," congruences discard abso-
lute information. For example, knowing the number
of minutes past the hour is useful, but knowing the
hour the minutes are past is often more useful still.

Let a�a? (mod m) and b�b? (mod m); then impor-
tant properties of congruences include the following,
where[means "IMPLIES":

1. Equivalence: a�b (mod 0)[a�b (which can
be regarded as a definition).

2. Determination: either a�b (mod m) or
afb (mod m):/
3. Reflexivity: a�a (mod m):/
4. Symmetry: a�b (mod m)[b�a (mod m):/
5. Transitivity: a�b(mod m) and b�c (mod m)/

/[a�c (mod m):/
6. a�b�a?�b? (mod m):/
7. a�b�a?�b? (mod m):/
8. ab�a?b? (mod m):/
9. a�b (mod m)[ka�kb (mod m):/
10. a�b (mod m)[an�bn (mod m):/
11. /a�b (mod m1)/ and /a�b (mod m2)[a�
b (mod[m1;m2]); where [m1; m2] is the LEAST

COMMON MULTIPLE.
12. ak�bk (mod m)[a�b mod m

(k; m)

1 2
; where (k,

m ) is the GREATEST COMMON DIVISOR.
13. If a�b (mod m); then P(a)�P(b) (mod m); for
P(x) a POLYNOMIAL.

Properties (6�/) can be proved simply by defining

a�a?�rd (3)

b�b?�sd; (4)

where r and s are INTEGERS. Then

a�b�a?�b?�(r�s)d (5)

a�b�a?�b?�(r�s)d (6)

ab�a?b?�(a?s�b?r�rsd)d; (7)

so the properties are true.

Congruences also apply to FRACTIONS. For example,
note that

2�4�1 3�3�2 6�6�1 (mod 7); (8)

so

1
2�4 1

4�2 2
3�3 1

6�6 (mod 7): (9)

To find p=q (mod m ), use an ALGORITHM similar to the
GREEDY ALGORITHM. Let q0�q and find

p0�
m

q0

& ’
; (10)

where/ �x� /is the CEILING FUNCTION, then compute



q1 �q0p0 (mod m) : (11)

Iterate until qn �1; then

p

q 
�p

Yn�1

i�0

pi (mod m): (12)

This method always works for m PRIME, and some-
times even for m COMPOSITE. However, for a COMPO-

SITE m , the method can fail by reaching 0 (Conway
and Guy 1996). Finding a fractional congruence is
equivalent to solving a corresponding LINEAR CON-

GRUENCE EQUATION

ax �b (mod m): (13)

See also ALGEBRAIC CONGRUENCE, CANCELLATION

LAW, CHINESE REMAINDER THEOREM, COMMON RE-

SIDUE, CONGRUENCE AXIOMS, CONGRUENCE EQUA-

TION, DIVISIBILITY TESTS, FUNCTIONAL CONGRUENCE,
GREATEST COMMON DIVISOR, LEAST COMMON MULTI-

PLE, LINEAR CONGRUENCE EQUATION, MINIMAL RE-

SIDUE, MODULUS (CONGRUENCE), QUADRATIC

CONGRUENCE EQUATION, QUADRATIC RECIPROCITY

LAW, RESIDUE (CONGRUENCE), RSA ENCRYPTION
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Congruence Arithmetic
CONGRUENCE

Congruence Axioms
The five of HILBERT’S AXIOMS which concern geo-
metric equivalence.

See also CONGRUENCE AXIOMS, CONTINUITY AXIOMS,
HILBERT’S AXIOMS, INCIDENCE AXIOMS, ORDERING

AXIOMS, PARALLEL POSTULATE
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Congruence Equation
An equation OF THE FORM

f (x) �b (mod m) ; (1)

where the values of 0 5x Bm for which the equation
holds are sought. Such an equation may have none,
one, or many solutions. There is a general method for
solving both the general LINEAR CONGRUENCE EQUA-

TION

ax �b (mod m) (2)

and the general QUADRATIC CONGRUENCE EQUATION

a2x2 �a1x �a0 �0 (mod n) : (3)

However, solution of the general polynomial congru-
ence

amxm �. . .  �a2x2 �a1x �a0 �0 (mod n) (4)

is intractable. Note that any polynomial congruence
will give congruent results when congruent values
are substituted.

Two or more simultaneous congruences

x �a (mod m) (5)

x �b (mod n) (6)

are solvable using the CHINESE REMAINDER THEOREM.

See also CHINESE REMAINDER THEOREM, CONGRU-

ENCE, LINEAR CONGRUENCE EQUATION, QUADRATIC

CONGRUENCE EQUATION

Congruence Transformation
A transformation OF THE FORM g �DT hD ; where
det(D) "0 and det(D) is the DETERMINANT. ISOME-

TRIES are also called congruence transformations.

See also SYLVESTER’S INERTIA LAW

Congruent
There are at least two meanings on the word
congruent in mathematics. Two geometric figures
are said to be congruent if they are equivalent to



within ROTATION and TRANSLATION (i.e., IFF one can
be transformed into the other by an ISOMETRY). This
relationship is written A $B: Unfortunately, the
symbol $ is also used to denote an ISOMORPHISM.

A number a is said to be congruent to b modulo m if
m½a �b (m DIVIDES a �b) :/

See also COINCIDENT, CONGRUENCE, HOMOTHETIC,
ISOMETRY, ROTATION, SIMILAR, TRANSLATION
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Congruent Incircles Point
The point Y for which TRIANGLES BYC , CYA , and
AYB have congruent INCIRCLES. It is a special case of
an ELKIES POINT.
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Congruent Isoscelizers Point

In 1989, P. Yff proved there is a unique configuration
of ISOSCELIZERS for a given TRIANGLE such that all
three have the same length. Furthermore, these
ISOSCELIZERS meet in a point called the congruent
isoscelizers point, which has TRIANGLE CENTER FUNC-

TION

a �cos(1
2 B) �cos(1

2 C) �cos(1
2 A):

See also ISOSCELIZER
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Congruent Matrices
Two SQUARE MATRICES A and B are called congruent if
there exists a nonsingular matrix P such that

B �PTAP ;

where PT is the TRANSPOSE.

See also TRANSPOSE
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Congruent Numbers
A set of numbers (a ; x; y; t) such that

x2 �ay2 �z2

x2 �ay2 �t2 :

�
They are a generalization of the CONGRUUM PROBLEM,
which is the case y �1. For a �101, the smallest
solution is

x �2015242462949760001961

y �118171431852779451900

z �2339148435306225006961

t �1628124370727269996961:

See also CONGRUUM
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Congruum
A number h which satisfies the conditions of the
CONGRUUM PROBLEM:

x2 �h �a2

and

x2 �h �b2 ;

where x; h; a; b are integers. The list of congrua is
given by 24, 96, 120, 240, 336, 384, 480, 720, ...
(Sloane’s A057102).

See also CONCORDANT FORM, CONGRUUM PROBLEM
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Congruum Problem
Find a SQUARE NUMBER x2 such that, when a given
integer h is added or subtracted, new SQUARE

NUMBERS are obtained so that

x2�h�a2 (1)



and

x2 �h �b2 : (2)

This problem was posed by the mathematicians
Théodore and Jean de Palerma in a mathematical
tournament organized by Frederick II in Pisa in 1225.
The solution (Ore 1988, pp. 188 �/91) is

x �m2 �n2 (3)

h �4mn(m2 �n2) ; (4)

where m and n are INTEGERS. a and b are then given
by

a �m2 �2mn �n2 (5)

b �n2 �2mn �m2 (6)

Fibonacci proved that all numbers h (the CONGRUA)
are divisible by 24. FERMAT’S RIGHT TRIANGLE THEO-

REM is equivalent to the result that a congruum
cannot be a SQUARE NUMBER.

A table for small m and n is given in Ore (1988,
p. 191), and a larger one (for h 51000) by Lagrange
(1977). The first

m n h  x  a  b

Sloane A057103 A055096 A057104 A057105

2 1 24 5 7 1

3 1 96 10 14 2

3 2 120 13 17 7

4 1 240 17 23 7

4 2 384 20 28 4

4 3 336 25 31 17

See also CONCORDANT FORM, CONGRUENT NUMBERS,
CONGRUUM, SQUARE NUMBER
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Conic
CONIC SECTION

Conic Constant

K ��e2 ;

where e is the ECCENTRICITY of a CONIC SECTION.

See also CONIC SECTION, ECCENTRICITY

Conic Double Point
ISOLATED SINGULARITY

Conic Equidistant Projection

A MAP PROJECTION with transformation equations

x�r sin u (1)

y�r0�r cos u; (2)

where

r�(G�f) (3)

u�n(l�l0) (4)

r0�(G�u0) (5)

G�
cos f1

n
�f1 (6)

n�
cos f1 � cos f2

f2 � f1

: (7)

The inverse FORMULAS are given by

f�G�r (8)

l�l0�
u

n
; (9)



where

r �sgn(n)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �( r0 �y)2

q
(10)

u �tan�1 x

r0 � y

 !
: (11)

See also EQUIDISTANT PROJECTION

Conic Projection

A conic projection of points on a unit sphere centered
at O consists of extending the line OS for each point
S until it intersects a cone with apex A which tangent
to the sphere along a circle passing through a point T
in a point C . For a cone with apex a height h above O ,
the angle from the Z -AXIS at which the cone is tangent
is given by

u �sec �1 h; (1)

and the radius of the circle of tangency and height
above O at which it is located are given by

r �sin u �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1

p

h 
(2)

z �cos u �
1

h 
: (3)

Letting f?�p=2 � f be the colatitude of a point S on a

sphere, the length of the vector OC along OS is

l �sec(u � f?) �sec(sec �1 h � f?)

�csc( f �sec�1 h) : (4)

The left figure above shows the result of re-projecting
onto a plane perpendicular to the Z -AXIS (equivalent
to looking at the cone from above the apex), while the
figure on the right shows the cone cut along the solid
line and flattened out. The equations transforming a
point on a sphere ( f; l) to a point on the flattened
cone are

x �csc(sec �1 h � f) cos f sin
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � 1
p

 !
(5)

y �csc(sec �1 h � f) cos f cos
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � 1
p

 !
: (6)

This form of the projection, however, is seldom used
in practice, and the term "conic projection" is used
instead to refer to any projection in which lines of
latitude are mapped to equally spaced radial lines
and lines of latitude (parallels) are mapped to
circumferential lines with arbitrary mathematically
spaced separations (Snyder 1987, p. 5).

See also ALBERS EQUAL-AREA CONIC PROJECTION,
CONIC EQUIDISTANT PROJECTION, CYLINDRICAL PRO-

JECTION, LAMBERT AZIMUTHAL EQUAL-AREA PROJEC-

TION, POLYCONIC PROJECTION
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Conic Section

The conic sections are the nondegenerate curves
generated by the intersections of a PLANE with one
or two NAPPES of a CONE. For a PLANE perpendicular
to the axis of the CONE, a circle is produced. For a
PLANE which is not perpendicular to the axis and
which intersects only a single nappe, the curve
produced is either an ELLIPSE or a PARABOLA (Hilbert
and Cohn-Vossen 1999, p. 8). The curve produced by
a PLANE intersecting both NAPPES is a HYPERBOLA

(Hilbert and Cohn-Vossen 1999, pp. 8�/).
The ELLIPSE and HYPERBOLA are known as CENTRAL

CONICS.

Because of this simple geometric interpretation, the
conic sections were studied by the Greeks long before
their application to inverse square law orbits was
known. Apollonius wrote the classic ancient work on
the subject entitled On Conics. Kepler was the first to
notice that planetary orbits were ELLIPSES, and
Newton was then able to derive the shape of orbits
mathematically using CALCULUS, under the assump-
tion that gravitational force goes as the inverse
square of distance. Depending on the energy of the
orbiting body, orbit shapes which are any of the four
types of conic sections are possible.

A conic section may more formally be defined as the
locus of a point P that moves in the PLANE of a fixed
point F called the FOCUS and a fixed line d called the
DIRECTRIX (with F not on d ) such that the ratio of the
distance of P from F to its distance from d is a
constant e called the ECCENTRICITY. If e�0, the conic
is a CIRCLE, if 0BeB1; the conic is an ELLIPSE, if
e�1, the conic is a PARABOLA, and if e �1, it is a
HYPERBOLA.

A conic section with DIRECTRIX at x�0, focus at
(p; 0); and ECCENTRICITY e �0 has Cartesian equa-
tion

y2�(1�e2)x2�2px�p2�0 (1)

(Yates 1952, p. 36), where p is called the FOCAL

PARAMETER. Plugging in p for an ELLIPSE gives

y2�(1�e2)x2�
2a(1 � e2)

e
x�

a2(1 � e2)2

e2
�0; (2)

for a PARABOLA (1) simplifies to

y2�4p(x�p); (3)

and for a HYPERBOLA, (1) simplifies to

y2�(1�e2)x2�
2a(e2 � 1)

e
x�

a2(e2 � 1)2

e2
�0: (4)

The polar equation of a conic section with FOCAL

PARAMETER p is given by

r�
ep

1 � e cos u
: (5)

The PEDAL CURVE of a conic section with PEDAL POINT

at a FOCUS is either a CIRCLE or a LINE. In particular
the ELLIPSE PEDAL CURVE and HYPERBOLA PEDAL

CURVE are both CIRCLES, while the PARABOLA PEDAL

CURVE is a LINE (Hilbert and Cohn-Vossen 1999,
pp. 25�/7).

Five points in a plane determine a conic (Coxeter and
Greitzer 1967, p. 76; Le Lionnais 1983, p. 56; Wells
1991), as do five tangent lines in a plane (Wells 1991).
This follows from the fact that a conic section is a
QUADRATIC CURVE, which has general form

ax2�2bxy�cy2�dx�fy�g�0; (6)

so dividing through by a to obtain

x2�2b?xy�c?y2�d?x�f ?y�g?�0 (7)

leaves five constants. Five points, (xi; yi) for i�1, ...,
5, therefore determine the constants uniquely. The
GEOMETRIC CONSTRUCTION of a conic section from five
points lying on it is called the BRAIKENRIDGE-MA-

CLAURIN CONSTRUCTION.

Two conics that do not coincide or have an entire
straight line in common cannot meet at more than
four points (Hilbert and Cohn-Vossen 1999, pp. 24
and 160). There is an infinite family of conics
touching four lines. However, of the eleven regions
into which plane division cuts the plane, only five can
contain a conic section which is tangent to all four



lines. Parabolas can occur in one region only (which
also contains ellipses and one branch of hyperbolas),
and the only closed region contains only ellipses.

Let a polygon of 2n sides be inscribed in a given conic,
with the sides of the polygon being termed alternately
"odd" and "even" according to some definite conven-
tion. Then the n(n �2) points where an odd side meet
a nonadjacent even side lie on a curve of order n �2
(Evelyn et al. 1974, p. 30).

See also BRAIKENRIDGE-MACLAURIN CONSTRUCTION,
BRIANCHON’S THEOREM, CENTRAL CONIC, CIRCLE,
CONE, CYLINDRICAL SECTION, ECCENTRICITY, EL-

LIPSE, FERMAT CONIC, FOCAL PARAMETER, FOUR

CONICS THEOREM, FRÉ GIER’S THEOREM, HYPERBOLA,
NAPPE, PARABOLA, PASCAL’S THEOREM, PLANE DIVI-

SION BY ELLIPSES, QUADRATIC CURVE, SEYDEWITZ’S

THEOREM, SKEW CONIC, STEINER’S THEOREM, THREE

CONICS THEOREM
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Chasles, M. Traité des sections coniques. Paris, 1865.
Coolidge, J. L. A History of the Conic Sections and Quadric

Surfaces. New York: Dover, 1968.
Coxeter, H. S. M. "Conics" §8.4 in Introduction to Geometry,

2nd ed. New York: Wiley, pp. 115�/19, 1969.
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

Washington, DC: Math. Assoc. Amer., pp. 138�/41, 1967.
Downs, J. W. Practical Conic Sections. Palo Alto, CA: Dale

Seymour, 1993.
Evelyn, C. J. A.; Money-Coutts, G. B.; and Tyrrell, J. A. The

Seven Circles Theorem and Other New Theorems. London:
Stacey International, p. 30, 1974.

Hilbert, D. and Cohn-Vossen, S. "The Cylinder, the Cone,
the Conic Sections, and Their Surfaces of Revolution." §2
in Geometry and the Imagination. New York: Chelsea,
pp. 7�/1, 1999.

Iyanaga, S. and Kawada, Y. (Eds.). "Conic Sections." §80 in
Encyclopedic Dictionary of Mathematics. Cambridge, MA:
MIT Press, pp. 271�/76, 1980.

Klein, F. "Famous Problems of Elementary Geometry: The
Duplication of the Cube, the Trisection of the Angle, and
the Quadrature of the Circle." In Famous Problems and
Other Monographs. New York: Chelsea, pp. 42�/4, 1980.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann,
p. 56, 1983.

Lebesgue, H. Les Coniques. Paris: Gauthier-Villars, 1955.
Ogilvy, C. S. "The Conic Sections." Ch. 6 in Excursions in

Geometry. New York: Dover, pp. 73�/5, 1990.
Pappas, T. "Conic Sections." The Joy of Mathematics. San

Carlos, CA: Wide World Publ./Tetra, pp. 196�/97, 1989.
Salmon, G. Conic Sections, 6th ed. New York: Chelsea, 1960.
Smith, C. Geometric Conics. London: MacMillan, 1894.

Sommerville, D. M. Y. Analytical Conics, 3rd ed. London:
G. Bell and Sons, 1961.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York:
Dover, pp. 238�/40, 1999.

Weisstein, E. W. "Books about Conic Sections." http://
www.treasure-troves.com/books/ConicSections.html.

Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, p. 175, 1991.

Yates, R. C. "Conics." A Handbook on Curves and Their
Properties. Ann Arbor, MI: J. W. Edwards, pp. 36�/6,
1952.

Conic Section Tangent
Given a CONIC SECTION

x2�y2�2gx�2fy�c�0;

the tangent at /(x1; y1)/ is given by the equation

xx1�yy1�g(x�x1)�f (y�y1)�c�0:

Conical Coordinates

There are several different definitions of conical
coordinates defined by Morse and Feshbach (1953),
Byerly (1959), Arfken (1970), and Moon and Spencer
(1988). The (l; m; n) system defined in Mathematica
is

x�
lmn

ab
(1)

y�
l

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m2 � a2)(n2 � a2)

a2 � b2

s
(2)

z�
l

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m2 � b2)(n2 � b2)

b2 � a2

s
; (3)

where b2 > m2 > c2 > n2: Byerly (1959) uses a (r; m; n)
system which is essentially the same coordinate
system as above, but replacing l with r , a with b ,
and b with c . Moon and Spencer (1988) use (r; u; l)
instead of (l; m; n):/



The above equations give

x2 �y2 �z2 � l2 (4)

x2

m2 
�

y2

m2 � a2 
�

z2

m2 � b2 
�0 (5)

x2

n2 
�

y2

n2 � a2 
�

z2

n2 � b2 
�0: (6)

The SCALE FACTORS are

hl �1 (7)

hm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2( m2 � n2)

( m2 � a2)(b2 � m2)

s
(8)

hn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2( m2 � n2)

( n2 � a2)(n2 � b2)

s
: (9)

The LAPLACIAN is

92 �
n(2n2 � a2 � b2)

( m � n)(m � n)l2

@

@ n

�
(a � n)(a � n)(n � b)(n � b)

( n � m)( n � m) l2

@2

@ n2

�
m(2m2 � a2 � b2)

( m � n)(m � n) l2

@

@ m

�
( m � b)(m � b)( m � a)(m � a)

( n � m)( n � m) l2

@2

@ m2

�
2

l

@

@ l 
�

@2

@ l2 : (10)

The HELMHOLTZ DIFFERENTIAL EQUATION is separable
in conical coordinates.

See also HELMHOLTZ DIFFERENTIAL EQUATION–CON-

ICAL COORDINATES
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Conical Frustum

A conical frustum is a FRUSTUM created by slicing the
top off a CONE (with the cut made parallel to the
base). For a right circular CONE, let s be the slant
height and R1 and R2 the top and bottom RADII. Then

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R1 �R2)2 �h2 :

q
(1)

The SURFACE AREA, not including the top and bottom
CIRCLES, is

A � p(R1 �R2)s � p(R1 �R2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R1 �R2)2 �h2 :

q
(2)

The VOLUME of the frustum is given by

V � p g
h

0

[r(z)]2 dz: (3)

But

r(z) �R1 �(R2 �R1)
z

h 
; (4)

so

V � p g
h

0

[r(z)]2 dz � p g
h

0

R1 �(R2 �R1)
z

h

" #2

dz

�1
3 ph(R2

1 �R1R2 �R2
2) : (5)

This formula can be generalized to any PYRAMID by
letting Ai be the base AREAS of the top and bottom of
the frustum. Then the VOLUME can be written as

V �1
3h(A1 �A2 �

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p
): (6)

The area-weighted integral of z over the frustum is

zh i� p g
h

0

z[r(z)]2 dz� 1
12 ph2(R2

1�2R1R2�3R2
2); (7)

so the CENTROID is located along the Z -AXIS at a
height

z̄�
zh i
V

�
h(R2

1 � 2R1R2 � 3R2
2)

4(R2
1 � R1R2 � R2

2)
(8)

(Eshbach 1975, p. 453; Beyer 1987, p. 133; Harris and
Stocker 1998, p. 105). The special case of the CONE is
given by taking R2�0; yielding z̄�h=4:/

See also CONE, FRUSTUM, PYRAMIDAL FRUSTUM,
SPHERICAL SEGMENT
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Conical Function
Functions which can be expressed in terms of LE-

GENDRE FUNCTIONS OF THE FIRST and SECOND KINDS.
See Abramowitz and Stegun (1972, p. 337).

Pm

�1 =2 �ip(cos u) �1 �
4p2 � 12

22
sin2(1

2 u)

�
(4p2 � 12)(4p2 � 32)

2242 
sin4(1

2 u) �. . .

�
2

p g  
u

0

cosh(pt)dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(cos t � cos u)

p

Q m�1=2 �ip(cos u) �9i sinh(p p)g
�

0

cos(pt)dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(cosh t � cos u)

p

�g
�

0

cosh(pt)dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(cos t � cos u)

p :

See also TOROIDAL FUNCTION
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Conical Projection
CONIC PROJECTION

Conical Spiral

A SPACE CURVE given by the PARAMETRIC EQUATIONS

x �
h � z

h
r cos(az)

y �
h � z

h
r sin(az)

z �z

for h the height of the cone, r its radius, and a a
constant.

See also CONE, SEASHELL

Conical Surface
GENERALIZED CONE

Conical Wedge
The SURFACE also called the CONOCUNEUS OF WALLIS

and given by the parametric equation

x �u cos v

y �u sin v

z �c(1 �2 cos2 v) :

See also CYLINDRICAL WEDGE, WEDGE
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Conjecture
A proposition which is consistent with known data,
but has neither been verified nor shown to be false. It
is synonymous with HYPOTHESIS.
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Conjugacy Class
A complete set of mutually conjugate GROUP ele-
ments. Each element in a GROUP belongs to exactly
one class, and the IDENTITY ELEMENT (I�1) is always
in its own class. The ORDERS of all classes must be
integral FACTORS of the ORDER of the GROUP. From the
last two statements, a GROUP of PRIME order has one
class for each element. More generally, in an ABELIAN

GROUP, each element is in a conjugacy class by itself.

Two operations belong to the same class when one
may be replaced by the other in a new COORDINATE

SYSTEM which is accessible by a symmetry operation
(Cotton 1990, p. 52). These sets correspond directly to
the sets of equivalent operations.



To see how to compute conjugacy classes, consider the
FINITE GROUP D3, which has the following MULTI-

PLICATION TABLE.

/D3/ 1 A B C D E

1 1 A B C D E

A A 1 D E B C

B B E 1 D C A

C C D E 1 A B

D D C A B E 1

E E B C A 1 D

/f1g is always in a conjugacy class of its own. To find
another conjugacy class take some element, say A ,
and find the results of all similarity transformations
X �1AX �X �1(AX) on A . For example, for X �A , the
product of A by A can be read of as the element at the
intersection of the row containing A (the first multi-
plicand) with the column containing A (the second
multiplicand), giving A�1AA �A�11: Now, we want to
find Z where A�11 �Z ; so pre-multiply both sides by
A to obtain (AA�1)1 �1 �AZ; so Z is the element
whose column intersects row A in 1, i.e., A . Thus,
A�1AA �A: Similarly, B �1AB �C; and continuing the
process for all elements gives

A�1AA �A (1)

B�1AB �C (2)

C�1AC �B (3)

D�1AD �C (4)

E�1AE �B (5)

The possible outcomes are A , B , or C , so  fA; B ; C g
forms a conjugacy class. To find the next conjugacy
class, take one of the elements not belonging to an
existing class, say D . Applying a similarity transfor-
mation gives

A�1DA �E (6)

B �1DB �D ; (7)

so we need proceed no further since D and E both
appear, meaning fD; E g form a conjugacy class and
we have exhausted all elements of the group.

Let G be a FINITE GROUP of ORDER ½G½; and let s be the
number of conjugacy classes of G . If ½G ½ is ODD, then

½G ½�s (mod 16)

(Burnside 1955, p. 295). Furthermore, if every PRIME

pi DIVIDING ½G½ satisfies pi �1 (mod 4); then

½G½�s (mod 32)

(Burnside 1955, p. 320). Poonen (1995) showed that if
every PRIME pi DIVIDING ½G½ satisfies pi �1 (mod m)
for m ]2; then

½G ½�s (mod 2m2) :
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Conjugate
COMPLEX CONJUGATE, CONJUGATE ELEMENT, CONJU-

GATE GRADIENT METHOD, CONJUGATE MATRIX,
CONJUGATE POINTS, CONJUGATE SUBGROUP, CONJU-

GATION MOVE

Conjugate Element
Given a GROUP with elements A and X , there must be
an element B which is a SIMILARITY TRANSFORMATION

of A; B �X �1AX so A and B are conjugate with
respect to X . Conjugate elements have the following
properties:

1. Every element is conjugate with itself.
2. If A is conjugate with B with respect to X , then
B is conjugate to A with respect to X .
3. If A is conjugate with B and C , then B and C
are conjugate with each other.

See also CONJUGACY CLASS, CONJUGATE SUBGROUP

Conjugate Gradient Method

An ALGORITHM for finding the nearest LOCAL MINI-

MUM of a function of n variables which presupposes
that the GRADIENT of the function can be computed. It
uses conjugate directions instead of the local GRADI-

ENT for going downhill. If the vicinity of the MINIMUM

has the shape of a long, narrow valley, the minimum
is reached in far fewer steps than would be the case
using the STEEPEST DESCENT METHOD.

See also GRADIENT, LOCAL MINIMUM, MINIMUM,
STEEPEST DESCENT METHOD
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Conjugate Matrix
The matrix Ā obtained from a given matrix A by
taking the COMPLEX CONJUGATE of each element of A
(Courant and Hilbert 1989, p. 9). The notation A� is
sometimes also used, which can lead to confusion
since this symbol is also used to denote the ADJOINT

MATRIX.

See also ADJOINT MATRIX, COMPLEX CONJUGATE
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Conjugate Partition

Pairs of partitions for a single number whose FER-

RERS DIAGRAMS transform into each other when
reflected about the line y ��x; with the coordinates
of the upper left dot taken as (0, 0), are called
conjugate (or transpose) partitions. For example, the
conjugate partitions illustrated above correspond to
the partitions 6 �3 �3 �2 �1 and 5 �4 �3 �1 �1 �
1 of 15. A partition that is conjugate to itself is said to
be a SELF-CONJUGATE PARTITION.
The conjugate partition of a given partition l can be
implemented in Mathematica as follows.

ConjugatePartition[l_List] : �
Module[{i, r � Reverse[l], n � Length[l]},

Table[n � 1 � Position[r, _?(# �� i &),

Infinity, 1][[1, 1]], {i, l[[1]]}

] ]

A similar implementation is given as Transpose-
Partition[l ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

See also DURFEE SQUARE, FERRERS DIAGRAM, PARTI-

TION FUNCTION P , SELF-CONJUGATE PARTITION
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Conjugate Permutation
INVERSE PERMUTATION

Conjugate Points
HARMONIC CONJUGATE POINTS, INVERSE POINTS, ISO-

GONAL CONJUGATE, ISOTOMIC CONJUGATE POINT

Conjugate Subgroup
A SUBGROUP H of an original GROUP G has elements
hi : Let x be a fixed element of the original GROUP G
which is not a member of H . Then the transformation
xhix

�1 ; (i �1, 2, ...) generates the so-called conjugate
subgroup xHx�1 : If, for all x , xHx�1 �H ; then H is a
SELF-CONJUGATE (also called "invariant" or "normal")
SUBGROUP.

All SUBGROUPS of an ABELIAN GROUP are SELF-CON-

JUGATE.

See also SELF-CONJUGATE SUBGROUP, SUBGROUP,
SYLOW THEOREMS

Conjugate Transpose Matrix
ADJOINT MATRIX

Conjugation
The process of taking a COMPLEX CONJUGATE of a
COMPLEX NUMBER, COMPLEX MATRIX, etc., or of per-
forming a CONJUGATION MOVE on a KNOT.

See also COMPLEX CONJUGATE, COMPLEX MATRIX,
COMPLEX NUMBER, CONJUGATE MATRIX, CONJUGA-

TION MOVE

Conjugation Move

A type I MARKOV MOVE.

See also MARKOV MOVES, STABILIZATION

Conjunction
A product of ANDs, denoted

ffl
n

k�1
Ak:



The conjunctions of a BOOLEAN ALGEBRA A of subsets
of cardinality p are the 2p functions

Al �@
i � l

Ai ;

where l ƒf1 ; 2 ; . . . ; p g: For example, the 8 conjunc-
tions of A �fA1 ; A2 ; A3 g are ¥; A1 ; A2 ; A3 ; A1A2 ;
A2A3 ; A3A1 ; and A1A2A3 (Comtet 1974, p. 186).

See also AND, BOOLEAN ALGEBRA, BOOLEAN FUNC-

TION, COMPLETE PRODUCT, DISJUNCTION, NOT, OR
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Conjunctive Normal Form
A statement is in conjunctive normal form if it is a
CONJUNCTION (sequence of ANDs) consisting of one or
more conjuncts, each of which is a DISJUNCTION (OR)
of one or more statement letters and negations of
statement letters. Examples of disjunctive normal
forms include

A (1)

(A �B) ffl(!A �C) (2)

(A �B �!A) ffl(C �!B) ffl(A �!C) (3)

A �B (4)

A ffl(B �C) ; (5)

where � denotes OR, ffl denotes AND, and ! denotes
NOT. Every statement in logic consisting of a combi-
nation of multiple ffl; �; and !/s can be written in
conjunctive normal form.

See also DISJUNCTIVE NORMAL FORM
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Connected Component
A TOPOLOGICAL SPACE decomposes into its connected
components. The connectedness relation between two
pairs of points satisfies transitivity, i.e., if a �b and
b �c then a �c : Hence, being in the same component
is an EQUIVALENCE RELATION, and the equivalence
classes are the connected components.

Using PATH-CONNECTEDNESS, the path-connected
component containing x � X is the set of all y path-
connected to x . That is, it is the set of y such that
there is a continuous path from x to y .

Technically speaking, in some TOPOLOGICAL SPACES,
path-connected is not the same as connected. A subset
Y of X is connected if there is no way to write Y �

U @ V with U and V disjoint OPEN SETS. Every
TOPOLOGICAL SPACE decomposes into a disjoint union
X �@ Yi where the Yi are connected. The Yi are called
the connected components of X .

See also CONNECTED SET, PATH-CONNECTED, TOPO-

LOGICAL SPACE

Connected Digraph

There are two distinct notions of connectivity in a
DIGRAPH. A DIGRAPH is WEAKLY CONNECTED if there is
an undirected path between any pair of vertices, and
STRONGLY CONNECTED if there is a directed path
between every pair of vertices (Skiena 1990, p. 173).
The following tables summarized the number of
weakly and strongly connected digraphs on n �1, 2,
... nodes. The 8 weakly but not strongly connected
digraphs on three nodes are illustrated above.

connectivity Sloane counts

weakly connected A003085 1, 2, 13, 199, 9364,
...

strongly
connected

A035512 1, 1, 5, 83, 5048,
1047008, ...

weakly but not
strongly

A056988 0, 1, 8, 116, 4316,
483835, ...

See also CONNECTED GRAPH, DIGRAPH, STRONGLY

CONNECTED DIGRAPH, WEAKLY CONNECTED DIGRAPH
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Connected Graph

A GRAPH which is connected in the sense of a
TOPOLOGICAL SPACE, i.e., there is a path from any
point to any other point in the GRAPH. The number of
n -node connected unlabeled graphs for n �1, 2, ... are
1, 1, 2, 6, 21, 112, 853, 11117, ... (Sloane’s A001349).
The total number of (not necessarily connected)
unlabeled n -node graphs is given by the EULER

TRANSFORM of the preceding sequence, 1, 2, 4, 11,
34, 156, 1044, 12346, ... (Sloane’s A000088; Sloane
and Plouffe 1995, p. 20).
The numbers of connected labeled graphs on n -nodes
are 1, 1, 4, 38, 728, 26704, ... (Sloane’s A001187), and
the total number of (not necessarily connected)
labeled n -node graphs is given by the EXPONENTIAL

TRANSFORM of the preceding sequence: 1, 2, 8, 64,
1024, 32768, ... (Sloane’s A006125; Sloane and Plouffe
1995, p. 19).

If an is the number of unlabeled connected graphs on
n nodes satisfying some property, than the EULER

TRANSFORM bn is the total number of unlabeled
graphs (connected or not) with the same property.
This application of the EULER TRANSFORM is called
RIDDELL’S FORMULA.

If G is DISCONNECTED, then its complement Ḡ is
connected (Skiena 1990, p. 171; Bollobás 1998). How-
ever, the converse is not true, as can be seen using the
example of the CYCLE GRAPH C5 which is connected
and isomorphic to its complement.

One can also speak of connected graphs in which each
vertex has degree at least k (i.e., the minimum of the
DEGREE SEQUENCE is ]k) : The usual CONNECTED

GRAPH is therefore connected with minimal degree
/]1: The following table gives the number of con-
nected graphs with minimal degree]k on n vertices
for small k .

k Sloane sequence

1 A001349 1, 1, 2, 6, 21, 112, 853, 11117, ...

2 A004108 0, 0, 1, 3, 11, 61, 507, 7442, ...

3 A007112 0, 0, 0, 1, 3, 19, 150, 2589, ...

See also ALGEBRAIC CONNECTIVITY, BICONNECTED

GRAPH, DEGREE SEQUENCE, DISCONNECTED GRAPH,
EULER TRANSFORM, PLANAR CONNECTED GRAPH,
POLYHEDRAL GRAPH, POLYNEMA, REGULAR GRAPH,
RIDDELL’S FORMULA, SEQUENTIAL GRAPH, STEINITZ’S

THEOREM, TAIT’S HAMILTONIAN GRAPH CONJECTURE
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Connected Set
A connected set is a SET which cannot be partitioned
into two nonempty SUBSETS which are open in the
relative topology induced on the SET. Equivalently, it
is a SET which cannot be partitioned into two none-
mpty SUBSETS such that each SUBSET has no points in
common with the CLOSURE of the other.

The REAL NUMBERS are a connected set.

See also CLOSED SET, CLOSURE (SET), EMPTY SET,
OPEN SET, SET, SIMPLY CONNECTED, SUBSET
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Connected Space
A SPACE D is connected if any two points in D can be
connected by a curve lying wholly within D . A SPACE

is 0-connected (a.k.a. PATHWISE-CONNECTED) if every
MAP from a 0-SPHERE to the SPACE extends continu-
ously to the 1-DISK. Since the 0-SPHERE is the two
endpoints of an interval (1-DISK), every two points
have a path between them. A space is 1-connected
(a.k.a. SIMPLY CONNECTED) if it is 0-connected and if
every MAP from the 1-SPHERE to it extends continu-
ously to a MAP from the 2-DISK. In other words, every
loop in the SPACE is CONTRACTIBLE. A SPACE is n -
MULTIPLY CONNECTED if it is (n �1)/-connected and if
every MAP from the n -SPHERE into it extends con-
tinuously over the (n �1)/-DISK.

A theorem of Whitehead says that a SPACE is
infinitely connected IFF it is CONTRACTIBLE.

See also CONNECTIVITY, CONTRACTIBLE, LOCALLY

PATHWISE-CONNECTED, MULTIPLY CONNECTED, PATH-

WISE-CONNECTED, SIMPLY CONNECTED

Connected Sum
The connected sum M1#M2 of n -manifolds M1 and M2

is formed by deleting the interiors of n -BALLS bn
i in mn

i

and attaching the resulting punctured MANIFOLDS

Mi � Ḃi to each other by a HOMEOMORPHISM h : @B2 0
@B1 ; so

M1#M2 �(M1 � Ḃ1)@
h
(M2 � Ḃ2):

/Bi is required to be interior to Mi and @Bi bicollared in
Mi to ensure that the connected sum is a MANIFOLD.

The connected sum of two KNOTS is called a KNOT

SUM.

See also KNOT SUM
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Connected Sum Decomposition
Every COMPACT 3-MANIFOLD is the CONNECTED SUM of
a unique collection of PRIME 3-MANIFOLDS.

See also JACO-SHALEN-JOHANNSON TORUS DECOMPO-

SITION

Connection

See also CONNECTION COEFFICIENT, CONNECTION

(VECTOR BUNDLE), GAUSS-MANIN CONNECTION

Connection (Vector Bundle)
A connection on a VECTOR BUNDLE p : E 0 M is a way
to "differentiate" SECTIONS, in a way that is analogous
to the EXTERIOR DERIVATIVE df of a function f . In
particular, a connection 9 is a function from smooth
sections G(M; E) to smooth sections of E TENSOR with
ONE-FORMS G(M; ET�M) that satisfies the follow-
ing conditions.

1. 9fs�sdf �f9s (Leibniz rule), and
2. 9s1�s2�9s1�9s2:/

Alternatively, a connection can be considered as a
linear map from SECTIONS of ETM; i.e., a section of
E with a VECTOR FIELD X , to sections of E , in analogy
to the DIRECTIONAL DERIVATIVE. The DIRECTIONAL

DERIVATIVE of a function f , in the direction of a vector
field X , is given by df (X): The connection, along with
a vector field X , may be applied to a section s of E to
get the section 9Xs: From this perspective, connec-
tions must also satisfy

9fXs�f9Xs (1)

for any smooth function f . This property follows from
the first definition.

For example, the TRIVIAL BUNDLE E�M�Rk admits
a FLAT CONNECTION since any SECTION s corresponds
to a function s̃ : M 0 Rk: Then setting 9s�ds gives
the connection. Any connection on the TRIVIAL BUN-

DLE is of the form 9s�ds�sa; where a is any ONE-

FORM with values in Hom(E; E)�E�E; i.e., a is a
matrix of ONE-FORMS.

The matrix of ONE-FORMS

a�
dx 2x dy 0
0 dx�3 dy 0

xy dx 0 y2 dx�dy

2
4

3
5 (2)

determines a connection 9 on the rank-3 bundle over



R2 : It acts on a section s �(s1 ; s2 ; s3) by the following.

9@=@xs �sx � a( @=@x)s �sx �
1 0 0
0 1 0
xy 0 y2

2
4

3
5 s

�( @s1 =@x �s1 ; @s2 =@x �s2 ; @s3 =@x �xys1 �y2s3) (3)

9@=@ys �sy � a( @=@y)s �sy �
0 2x 0
0 �3 0
0 0 1

2
4

3
5 s

�( @s1 =@x �2xs2 ; @s2 =@x �3s2 ; @s3 =@x �s3): (4)

In any TRIVIALIZATION, a connection can be described
just as in the case of a TRIVIAL BUNDLE. However, if
the bundle E is not TRIVIAL, then the EXTERIOR

DERIVATIVE ds is not WELL DEFINED (globally) for a
SECTION s . Still, the difference between any two
connections must be ONE-FORMS with values in
ENDOMORPHISMS of E , i.e., matrices of one forms. So
the space of connections forms an AFFINE SPACE.

The CURVATURE of the bundle is given by the formula
V�9(9: In coordinates, V� a ffl a is matrix of TWO-

FORMS. For instance, in the example above,

V�
0 2x dxffldy 0
0 �3x ffldy 0
0 2x3y dxffldy y2 dx ffldy

2
4

3
5 (5)

is the curvature.

Another way of describing a connection is as a
splitting of the TANGENT BUNDLE TE of E as TM �
E : The vertical part of TE corresponds to tangent
vectors along the fibers, and is the kernel of dp :
TE 0 TM : The horizontal part is not WELL DEFINED a
priori. A connection defines a subspace of TE(x; v)

which is isomorphic to TMx : It defines k FLAT

SECTIONS si such that 9si �0; which are a BASIS for
the FIBERS of E , at least nearby x . These flat sections
determine the horizontal part of TE near x . Also, a
connection on a vector bundle can be defined by a
CONNECTION on the ASSOCIATED PRINCIPAL BUNDLE.

In some settings there is a canonical connection. For
example, a RIEMANNIAN MANIFOLD has the LEVI-

CIVITA CONNECTION, given by the CHRISTOFFEL SYM-

BOLS OF THE FIRST and SECOND KINDS, which is the
unique torsion-free connection compatible with the
metric. A HOLOMORPHIC VECTOR BUNDLE with a
HERMITIAN METRIC has a unique connection which
is compatible with both metric and the COMPLEX

STRUCTURE.

See also CONNECTION (PRINCIPAL BUNDLE), CURVA-

TURE, CURVATURE (BUNDLE), HERMITIAN METRIC,
LEVI-CIVITA CONNECTION, PARALLEL TRANSPORT,
PRINCIPAL BUNDLE, SECOND FUNDAMENTAL FORM,
SECTION (BUNDLE), TORSION (BUNDLE)

Connective
A function, or the symbol representing a function,
which corresponds to English conjunctions such as
"and," "or," "not," etc. that takes one or more truth
values as input and returns a single truth value as
output. The terms "logical connective" and "proposi-
tional connective" are also used. The following table
summarizes some common connectives and their
notations.

connective symbol

AND /A fflB ; A � B; A:B; AB , A&B ;
A&&B/

EQUIVALENT /A �B ; A UB ; A XB/

IMPLIES /A [B ; A ‡B ; A 0 B/

NAND /Affl̄B ; A½B ; A � B/

NONEQUIVALENT /A fB ; A  UB ; A uXB/

NOR /A�̄B ; A ¡B ; A �B/

NOT /!A;� A; Ā;�A/

OR /A�B; A�B; A½B; A½½B/

XNOR A XNOR B

XOR /A
¯
�B; A�B/

See also AND, BINARY OPERATOR, EQUIVALENT,
IMPLIES, OR, NAND, NONEQUIVALENT, NOR, NOT,
PROPOSITIONAL CALCULUS, TRUTH TABLE, XNOR,
XOR

References
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Connective Constant
SELF-AVOIDING WALK CONNECTIVE CONSTANT

Connectivity
CONNECTED SPACE, EDGE CONNECTIVITY, VERTEX

CONNECTIVITY

Connectivity Pair
An ordered pair (a, b ) of nonnegative integers such
that there is some set of a points and b edges whose
removal disconnects the graph and there is no set of
a�1 nodes and b edges or a nodes and b�1 edges
with this property.

References
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Connes Function

The APODIZATION FUNCTION

A(x) � 1 �
x2

a2

 !2

:

Its FULL WIDTH AT HALF MAXIMUM is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pp
a ; and

its INSTRUMENT FUNCTION is

I(x) �8a
ffiffiffiffiffiffi
2p

p J5 =2(2pka)

(2pka)5 =2 ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.

See also APODIZATION FUNCTION

Conocuneus of Wallis
CONICAL WEDGE

Conoid
PLÜ CKER’S CONOID, RIGHT CONOID

Consecutive Number Sequences
Consecutive number sequences are sequences con-
structed by concatenating numbers of a given type.
Many of these sequences were considered by Smar-
andache, so they are sometimes known as SMARAN-

DACHE SEQUENCES.

The nth term of the consecutive integer sequence
consists of the concatenation of the first n POSITIVE

INTEGERS: 1, 12, 123, 1234, ... (Sloane’s A007908;
Smarandache 1993, Dumitrescu and Seleacu 1994,
sequence 1; Mudge 1995; Stephan 1998). This se-
quence gives the digits of the CHAMPERNOWNE CON-

STANT and contains no PRIMES in the first 7,746 terms
(Weisstein, Jan. 23, 2000). Fleuren (1999) has ver-
ified the absence of primes up to n �200. This is
roughly consistent with simple arguments based on
the distribution of primes which suggest that only a
single prime is expected in the first 15,000 or so
terms. The number of digits of the n term can be
computed by noticing the pattern in the following
table, where d �[log10 n] �1 is the number of digits
in n .

d n Range Digits

1 1�/ n

2 10�/9 /9 �2(n �9)/

3 100 �/99 /9 �90 � 2 �3(n �99)/

4 1000 �/

999
/9 �90 � 2 �900 � 3 �4(n �999)/

Therefore, the number of digits D(n) in the nth term
can be written

D(n) �d(n �1 �10d�1) �
Xd�1

k �1

9k � 10k �1

�(n �1)d �
10d � 1

9
;

where the second term is the REPUNIT Rd :/

The nth term of the reverse integer sequence consists
of the concatenation of the first n POSITIVE INTEGERS

written backwards: 1, 21, 321, 4321, ... (Sloane’s
A000422; Smarandache 1993, Dumitrescu and Se-
leacu 1994, Stephan 1998). The only PRIME in the first
7,287 terms (Weisstein, Jan. 23, 2000) of this se-
quence is the 82nd term 828180...321 (Stephan 1998,
Fleuren 1999), which has 155 digits. This is roughly
consistent with simple arguments based on the
distribution of prime which suggest that a single
prime is expected in the first 15,000 or so terms. The
terms of the reverse integer sequence have the same
number of digits as do the consecutive integer
sequence.

The concatenation of the first n PRIMES gives 2, 23,
235, 2357, 235711, ... (Sloane’s A019518; Smith 1996,
Mudge 1997). This sequence converges to the digits of
the COPELAND-ERDOS CONSTANT and is PRIME for
terms 1, 2, 4, 128, 174, 342, 435, 1429, ... (Sloane’s
A046035; Ibstedt 1998, pp. 78 �/9), with no others less
than 4,706 (Weisstein, Jan. 23, 2000).

The concatenation of the first n ODD NUMBERS gives 1,
13, 135, 1357, 13579, ... (Sloane’s A019519; Smith
1996, Marimutha 1997, Mudge 1997). This sequence
is PRIME for terms 2, 10, 16, 34, 49, 2570, ... (Sloane’s
A046036; Weisstein, Ibstedt 1998, pp. 75 �/6), with no
others less than 4,354 (Weisstein, Jan. 1, 2000). The
2570th term, given by 1 3 5 7...5137 5139, has 9725
digits and was discovered by Weisstein in Aug. 1998.

The concatenation of the first n EVEN NUMBERS gives
2, 24, 246, 2468, 246810, ... (Sloane’s A019520; Smith
1996; Marimutha 1997; Mudge 1997; Ibstedt 1998,
pp. 77�/8).

The concatenation of the first n SQUARE NUMBERS

gives 1, 14, 149, 14916, ... (Sloane’s A019521; Mar-
imutha 1997). The only PRIME in the first 2,822 terms
is the third term, 149, (Weisstein).

The concatenation of the first n CUBIC NUMBERS gives
1, 18, 1827, 182764, ... (Sloane’s A019522; Marimutha
1997). There are no PRIMES in the first 2,652 terms
(Weisstein).

See also CHAMPERNOWNE CONSTANT, CONCATENA-

TION, COPELAND-ERDOS CONSTANT, CUBIC NUMBER,
DEMLO NUMBER, EVEN NUMBER, ODD NUMBER,
SMARANDACHE SEQUENCES, SQUARE NUMBER
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Conservation of Number Principle
A generalization of Poncelet’s CONTINUITY PRINCIPLE

made by H. Schubert in 1874 �/9. The conservation of
number principle asserts that the number of solutions
of any determinate algebraic problem in any number
of parameters under variation of the parameters is
invariant in such a manner that no solutions become
INFINITE. Schubert called the application of this
technique the CALCULUS of ENUMERATIVE GEOMETRY.

See also CONTINUITY PRINCIPLE, DUALITY PRINCIPLE,
HILBERT’S PROBLEMS
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Conservative Field
The following conditions are equivalent for a con-
servative VECTOR FIELD:

1. For any oriented simple closed curve C , the LINE

INTEGRAL FC/ F � ds �0 :/
2. For any two oriented simple curves C1 and C2

with the same endpoints, f
C1

F � ds �f
C2

F � ds :/
3. There exists a SCALAR POTENTIAL FUNCTION f
such that F �9f ; where 9 is the GRADIENT.
4. The CURL 9�F �0:/

See also CURL, GRADIENT, LINE INTEGRAL, POIN-

CARÉ ’S THEOREM, POTENTIAL FUNCTION, VECTOR

FIELD

Consistency
The absence of CONTRADICTION (i.e., the ability to
prove that a statement and its negative are both true)
in an AXIOMATIC SYSTEM is known as consistency.

See also AXIOMATIC SET THEORY, AXIOMATIC SYSTEM,
COMPLETE AXIOMATIC THEORY, CONSISTENCY

STRENGTH, GÖ DEL’S INCOMPLETENESS THEOREM

Consistency Strength
If the CONSISTENCY of one of two propositions implies
the CONSISTENCY of the other, the first is said to have
greater consistency strength.

Constant
Any REAL NUMBER which is "significant" (or interest-
ing) in some way. In this work, the term "constant" is
generally reserved for REAL nonintegral numbers of
interest, while "NUMBER" is reserved for interesting
INTEGERS (e.g., BRUN’S CONSTANT, but BEAST NUM-

BER). In contexts like LINEAR COMBINATION, the term
"constant" is generally used to mean "SCALAR" or
"REAL NUMBER," and need not exclude integer values.

Certain constants are known to many DECIMAL DIGITS

and recur throughout many diverse areas of mathe-
matics, often in unexpected and surprising places
(e.g., PI, E , and to some extent, the EULER-MASCHER-

ONI CONSTANT g): Other constants are more specia-
lized and may be known to only a few DIGITS.
S. Plouffe maintains a site about the computation
and identification of numerical constants. Plouffe’s
site also contains a page giving the largest number of
DIGITS computed for the most common constants.
S. Finch maintains a delightful, more expository site
containing detailed essays and references on con-
stants both common and obscure.

The mathematician Glaisher remarked, "No doubt
the desire to obtain the values of these quantities to a
great many figures is also partly due to the fact that
most of them are interesting in themselves; for e , p; g;
1n 2; and many other numerical quantities occupy a
curious, and some of them almost a mysterious, place
in mathematics, so that there is a natural tendency to
do all that can be done towards their precise deter-
mination" (Gourdon and Sebah).

See also COEFFICIENT, NUMBER, REAL NUMBER,
SCALAR
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Constant Function

A FUNCTION f (x) �c which does not change as its
parameters vary. The GRAPH of a 1-D constant
FUNCTION is a straight LINE. The DERIVATIVE of a
constant FUNCTION c is

d

dx 
c �0; (1)

and the INTEGRAL is

g c dx�cx : (2)

The FOURIER TRANSFORM of the constant function
f (x) �1 is given by

F[1] �g
�

��

e �2 pikx dx � d(k) ; (3)

where d(k) is the DELTA FUNCTION.

See also FOURIER TRANSFORM–1

References
Spanier, J. and Oldham, K. B. "The Constant Function c ."

Ch. 1 in An Atlas of Functions. Washington, DC: Hemi-
sphere, pp. 11 �/4, 1987.

Constant Precession Curve
CURVE OF CONSTANT PRECESSION

Constant Problem
Given an expression involving known constants,
integration in finite terms, computation of limits,
etc., determine if the expression is equal to ZERO. The
constant problem is a very difficult unsolved problem
in transcendental NUMBER THEORY. However, it is

known that the problem is UNDECIDABLE if the
expression involves oscillatory functions such as
SINE. However, the FERGUSON-FORCADE ALGORITHM

is a practical algorithm for determining if there exist
integers ai for given real numbers xi such that

a1x1 �a2x2 �:::�anxn �0 ;

or else establish bounds within which no relation can
exist (Bailey 1988).

See also FERGUSON-FORCADE ALGORITHM, HERMITE-

LINDEMANN THEOREM, INTEGER RELATION, SCHA-

NUEL’S CONJECTURE
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Constant Width Curve
CURVE OF CONSTANT WIDTH

Constructible Number
A number which can be represented by a FINITE

number of ADDITIONS, SUBTRACTIONS, MULTIPLICA-

TIONS, DIVISIONS, and FINITE SQUARE ROOT extrac-
tions of integers. Such numbers correspond to LINE

SEGMENTS which can be constructed using only
STRAIGHTEDGE and COMPASS.

All RATIONAL NUMBERS are constructible, and all
constructible numbers are ALGEBRAIC NUMBERS

(Courant and Robbins 1996, p. 133). If a CUBIC

EQUATION with rational coefficients has no rational
root, then none of its roots is constructible (Courant
and Robbins, p. 136).

In particular, let F0 be the FIELD of RATIONAL

NUMBERS. Now construct an extension field F1 of
constructible numbers by the adjunction of

ffiffiffiffiffi
k0

p
;

where k0 is in F0; but
ffiffiffiffiffi
k0

p
is not, consisting of all

numbers OF THE FORM a0�b0

ffiffiffiffiffi
k0

p
; where a0; b0 �F0:

Next, construct an extension field F2 of F1 by the
adjunction of

ffiffiffiffiffiffi
K1

p
; defined as the numbers a1�

b1

ffiffiffiffiffi
k1

p
; where a1; b1 �F1; and k1 is a number in F1

for which
ffiffiffiffiffiffi
K1

p
does not lie in F1: Continue the process

n times. Then constructible numbers are precisely
those which can be reached by such a sequence of
extension fields Fn; where n is a measure of the



"complexity" of the construction (Courant and Rob-
bins 1996).

See also ALGEBRAIC NUMBER, COMPASS, CONSTRUC-

TIBLE POLYGON, EUCLIDEAN NUMBER, RATIONAL

NUMBER, STRAIGHTEDGE
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Constructible Polygon

COMPASS and STRAIGHTEDGE constructions dating
back to Euclid were capable of inscribing regular
polygons of 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48,
64, ..., sides. However, this listing is not a complete
enumeration of "constructible" polygons. A regular n -
gon (/n ]3) can be constructed by STRAIGHTEDGE and
COMPASS IFF

n �2kp1p2 	 	 	ps ;

where k is in INTEGER ]0 and the pi are distinct
FERMAT PRIMES. FERMAT NUMBERS are OF THE FORM

Fm �22m 

�1 ;

where m is an INTEGER ]0: The only known PRIMES of
this form are 3, 5, 17, 257, and 65537. The fact that
this condition was SUFFICIENT was first proved by
Gauss in 1796 when he was 19 years old. That this
condition was also NECESSARY was not explicitly
proven by Gauss, and the first proof of this fact is
credited to Wantzel (1836).

See also COMPASS, CONSTRUCTIBLE NUMBER, CYCLO-

TOMIC POLYNOMIAL, FERMAT NUMBER, GEOMETRIC

CONSTRUCTION, GEOMETROGRAPHY, HEPTADECAGON,
HEXAGON, OCTAGON, PENTAGON, POLYGON, SQUARE,
STRAIGHTEDGE, TRIANGLE
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Construction
BRAIKENRIDGE-MACLAURIN CONSTRUCTION, CON-

STRUCTIBLE NUMBER, CONSTRUCTIBLE POLYGON,
CONSTRUCTIVE DILEMMA, GEOMETRIC CONSTRUC-

TION, HAUY CONSTRUCTION, MASCHERONI CONSTRUC-

TION, MATCHSTICK CONSTRUCTION, NEUSIS

CONSTRUCTION, PALEY CONSTRUCTION, STEINER CON-

STRUCTION, WYTHOFF CONSTRUCTION

Constructive Dilemma
A formal argument in LOGIC in which it is stated that
(1) P[Q and R[S (where[means "IMPLIES"), and
(2) either P or R is true, from which two statements it
follows that either Q or S is true.

See also DESTRUCTIVE DILEMMA, DILEMMA



Contact Angle

The ANGLE a between the normal vector of a SPHERE

(or other geometric object) at a point where a PLANE is
tangent to it and the normal vector of the plane. In
the above figure,

a �cos�1 a

R

 !
�sin�1 R � h

R

 !
�

See also SPHERICAL CAP

Contact Number
KISSING NUMBER

Contact Triangle

The TRIANGLE formed by the points of intersection of a
TRIANGLE T ’s INCIRCLE with T . This is the PEDAL

TRIANGLE of T with the INCENTER as the PEDAL POINT

(cf., TANGENTIAL TRIANGLE). The lines from the
vertices of the contact triangle to the vertices of the
original triangle CONCUR in the GERGONNE POINT.
Furthermore, the contact triangle and TANGENTIAL

TRIANGLE are perspective from the GERGONNE POINT.

See also ADAMS’ CIRCLE, GERGONNE POINT, PEDAL

TRIANGLE, SEVEN CIRCLES THEOREM, TANGENTIAL

TRIANGLE
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Contained Partition

A PARTITION p is said to contain another partition q if
the FERRERS DIAGRAM of p contains the FERRERS

DIAGRAM of q . For example, f3; 3; 2g (left figure)
contains both f3; 3; 1g and f3; 3; 2g (right figures).
YOUNG’S LATTICE YP is the PARTIAL ORDER of parti-
tions contained within p ordered by containment
(Skiena 1990, p. 77).

See also PARTITION, YOUNG’S LATTICE
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Contained Pattern
A subset t � Sn of a permutation f1 ; . . . ; ng is said to
contain a � Sk if there exist 1 5i1 B. . .Bik 5n such
that t �( ti ; . . .  ; tk) is ORDER ISOMORPHIC to a �
( a1 ; . . . ; ak): Here, Sn is the SYMMETRIC GROUP on n
elements.

In other words, t contains a IFF any K -SUBSET of t is
ORDER ISOMORPHIC to a:/

See also AVOIDED PATTERN, ORDER ISOMORPHIC,
PERMUTATION PATTERN, WILF CLASS, WILF EQUIVA-

LENT
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Content
The content of a POLYTOPE or other n -dimensional
object is its generalized VOLUME (i.e., its "hypervo-
lume"). Just as a three-dimensional object has VO-

LUME, SURFACE AREA, and GENERALIZED DIAMETER, an
n -dimensional object has "measures" of order 1, 2, ...,
n .

The content of an integer polynomial P �Z(x) ; denoted
cont(P) ; is the largest integer k ]1 such that P=k also
has integer coefficients. Gauss’s lemma for contents
states that if P and Q are two polynomials with
integer coefficients, then cont(PQ)�cont(P)cont(Q)
(Séroul 2000, p. 287).

See also POLYNOMIAL, VOLUME
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Contests
MATHEMATICS CONTESTS

Contiguous Function
A HYPERGEOMETRIC FUNCTION in which one para-
meter changes by �1 or �1 is said to be contiguous.
There are 26 functions contiguous to 2F1(a ; b; c; x)
taking one pair at a time. There are 325 taking two or
more pairs at a time. See Abramowitz and Stegun
(1972, pp. 557 �/58).

See also HYPERGEOMETRIC FUNCTION
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Contingency
A SENTENCE is called a contingency if its TRUTH TABLE

contains at least one ‘T’ and at least one ‘F.’

See also CONTRADICTION, TAUTOLOGY, TRUTH TABLE
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Continued Fraction
A "general" continued fraction representation of a
REAL NUMBER x is OF THE FORM

x�a0�
b1

a1 �
b2

a2 �
b3

a3 � . . .

; (1)

which can be written

x�a0�
b1

a1�

b2

a2�
	 	 	� (2)

An archaic word for a continued fraction is ANTHY-

PHAIRETIC RATIO.

The SIMPLE CONTINUED FRACTION representation of a
number x (which is usually what is meant when the
term "continued fraction" is used without qualifica-
tion) is given by

x�a0�
1

a1 �
1

a2 �
1

a3 � . . .

; (3)

which can be written in a compact abbreviated

NOTATION as

x�[a0; a1; a2; a3; . . .]: (4)

Some care is needed, since some authors begin
indexing the terms at a1 instead of a0; causing the
parity of certain fundamental results in continued
fraction theory to be reversed. Starting the indexing
with a0;

a0� xb c (5)

is the integral part of x , where xb c is the FLOOR

FUNCTION,

a1�
1

x � a0

$ %
(6)

is the integral part of the RECIPROCAL of x�a0;

a2�
1

1

x � a0

� a1

6666664
7777775 (7)

is the integral part of the reciprocal of the remainder,
etc. Writing the remainders according to the RECUR-

RENCE RELATION

r0�x (8)

rn�
1

rn�1 � an�1

(9)

gives the concise formula

an� rnb c: (10)

The quantities an are called PARTIAL QUOTIENTS, and
the quantity obtained by including n terms of the
continued fraction

cn�
pn

qn

�[a0; a1; . . . ; an]

�a0�
1

a1 �
1

a2 �
1

. . . �
1

an

(11)

is called the nth CONVERGENT. For example, consider
the computation of the continued fraction of p; given
by p�[3; 7; 15; 1; 292; 1; 1; . . .]:/

Term Value PQs Convergent Value

/a0/ / pb c�3/ /[3]/ /3/ 3.00000

/a1/ /
1

p�3

j k
�7/ /[3; 7]/ /

22
7/ 3.14286

/a2/ /� 1
1

p�3�7 ��15/ /[3; 7; 15]/ /
333
106/ 3.14151



Continued fractions provide, in some sense, a series of
"best" estimates for an IRRATIONAL NUMBER. Func-
tions can also be written as continued fractions,
providing a series of better and better rational
approximations. Continued fractions have also
proved useful in the proof of certain properties of
numbers such as E and p (PI). Because irrationals
which are square roots of RATIONAL NUMBERS have
periodic continued fractions, an exact representation
for a tabulated numerical value (i.e., 1.414... for
PYTHAGORAS’S CONSTANT,

ffiffiffi
2

p
) can sometimes be

found if it is suspected to represent an unknown
QUADRATIC SURD.

Continued fractions are also useful for finding near
commensurabilities between events with different
periods. For example, the Metonic cycle used for
calendrical purposes by the Greeks consists of 235
lunar months which very nearly equal 19 solar years,
and 235/19 is the sixth CONVERGENT of the ratio of the
lunar phase (synodic) period and solar period
(365.2425/29.53059). Continued fractions can also be
used to calculate gear ratios, and were used for this
purpose by the ancient Greeks (Guy 1990).

Let Pn=Qn be convergents of a nonsimple continued
fraction. Then

P�1�1 Q�1�0 (12)

P0�a0 Q0�1 (13)

and subsequent terms are calculated from the RECUR-

RENCE RELATIONS

Pj�ajPj�1�bjPj�2 (14)

Qj�ajQj�1�bjQj�2 (15)

for j�1, 2, ..., n . It is also true that

PnQn�1�Pn�1Qn�(�1)n�1
Yn

k�1

bk: (16)

The error in approximating a number by a given
CONVERGENT is roughly the MULTIPLICATIVE INVERSE

of the square of the DENOMINATOR of the first
neglected term.

A finite simple continued fraction representation
terminates after a finite number of terms. To "round"
a continued fraction, truncate the last term unless it
is 91, in which case it should be added to the
previous term (Gosper 1972, Item 101A). To take
one over a continued fraction, add (or possibly delete)
an initial 0 term. To negate, take the NEGATIVE of all
terms, optionally using the identity

[�a; �b; �c; �d; . . .]

�[�a�1; 1; b�1; c; d; . . .]: (17)

A particularly beautiful identity involving the terms

of the continued fraction is

[a0; a1; . . . ; an]

[a0; a1; . . . ; an�1]
�

[an; an�1; . . . ; a1; a0]

[an; an�1; . . . ; a1]
� (18)

Finite simple fractions represent rational numbers
and all rational numbers are represented by finite
continued fractions. There are two possible represen-
tations for a finite simple fraction:

[a0; . . . ; an]

�
[a0; . . . ; an�1; an�1; 1] for an�1
[a0; . . . ; an�2; an�1�1] for an�1

�
(19)

On the other hand, an infinite simple fraction
represents a unique IRRATIONAL NUMBER, and each
IRRATIONAL NUMBER has a unique infinite continued
fraction.

Consider the CONVERGENTS cn�pn=qn of a simple
continued fraction, and define

p�2�0 q�2�1 (20)

p�1�1 q�1�0 (21)

p0�a0 q0�1: (22)

Then subsequent terms can be calculated from the
RECURRENCE RELATIONS

pn�anpn�1�pn�2 (23)

qn�anqn�1�qn�2: (24)

The CONTINUED FRACTION FUNDAMENTAL RECUR-

RENCE RELATION for simple continued fractions is

pnqn�1�pn�1qn�(�1)n�1: (25)

It is also true that if a0"0;

pn

pn�1

�[an; an�1; . . . ; a0] (26)

qn

qn�1

�[an; . . . ; a1]: (27)

Furthermore,

pn

qn

�
pn�1 � pn�1

qn�1 � qn�1

: (28)

Also, if a convergent cn�pn=qn > 1; then

qn

pn

�[0; a0; a1; . . . ; an]: (29)

Similarly, if cn�pn=qnB1; then a0�0 and

qn

pn

�[a1; . . . ; an]: (30)

The convergents cn�pn=qn also satisfy



cn�cn�1�
(�1)n�1

qnqn�1

(31)

cn�cn�2�
an(�1)n

qnqn�2

: (32)

Plotted above on semilog scales are cn�p (n even; left
figure) and p�cn (n odd; right figure) as a function of
n for the convergents of p: In general, the EVEN

convergents c2n�1 of an infinite simple continued
fraction for a number x form an INCREASING SE-

QUENCE, and the ODD convergents c2n form a DE-

CREASING SEQUENCE (so any EVEN convergent is less
than any ODD convergent). Summarizing,

c0Bc2Bc4B	 	 	Bc2n�2Bc2nB	 	 	Bx (33)

xB 	 	 	Bc2n�1Bc2n�1Bc5Bc3Bc1: (34)

Furthermore, each convergent for n]3 lies between
the two preceding ones. Each convergent is nearer to
the value of the infinite continued fraction than the
previous one. In addition, for a number x�
[a0; a1; . . .];

1

(an�1 � 2)q2
n

B x�
pn

qn

�����
�����B 1

an�1q2
n

: (35)

The SQUARE ROOT of a SQUAREFREE INTEGER has a
periodic continued fraction OF THE FORM

ffiffiffi
n

p
�[a0; a1; . . . ; an; 2a0] (36)

(Rose 1994, p. 130). Furthermore, if D is not a
SQUARE NUMBER, then the terms of the continued
fraction of

ffiffiffiffi
D

p
satisfy

0BanB2
ffiffiffiffi
D

p
: (37)

In particular,

[ā]�
a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4

p

2
(38)

[1; ā]�
�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4a

p

2
(39)

[a; 2a]�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�1

p
(40)

[a; b]�
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab � (ab(ab � 4)

p

2b
(41)

[a1; . . . ; an]

�
�(qn�1 � pn) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(qn�1 � pn)2 � 4qnpn�1

q
2qn

(42)

[a0; b1; . . . ; bn]�a0�
1

[b1; . . . ; bn]
(43)

[b1; . . . ; bn]�
[b1; . . . ; bn]pn � pn�1

[b1; . . . ; bn]qn � qn�1

: (44)

The first follows from

a�n�
1

n �
1

n �
1

n � . . .

�n�
1

n �
1

n �
1

n � . . .

0
BBB@

1
CCCA

: (45)

Therefore,

a�n�
1

n �
1

n �
1

n � . . .

; (46)

so plugging (46) into (45) gives

a�n�
1

n � (a� n)
�n�

1

a
: (47)

Expanding

a2�na�1�0; (48)

and solving using the QUADRATIC FORMULA gives

a�
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

p

2
: (49)

The analog of this treatment in the general case gives

a�
apn � pn�1

aqn � qn�1

: (50)

The following table gives the repeating simple con-
tinued fractions for the square roots of the first few
integers (excluding the trivial SQUARE NUMBERS).

N /a
ffiffiffiffiffi
N

p
/ N /a

ffiffiffiffiffi
N

p
/

2 /[1; 2̄]/ 22 /[4; 1; 2; 4; 2; 1; 8]/

3 /[1; 1; 2]/ 23 /[4; 1; 3; 1; 8]/

5 /[2; 4]/ 24 /[4; 1; 8]/



6 /[2; 2; 4]/ 26 /[5; 10]/

7 /[2; 1; 1; 1; 4]/ 27 /[5; 5; 10]/

8 /[2; 1; 4]/ 28 /[5; 3; 2; 3; 10]/

10 /[3; 6̄] / 29 /[5; 2; 1; 1; 2; 10]/

11 /[3; 3; 6]/ 30 /[5; 2; 10]/

12 /[3; 2; 6]/ 31 /[5; 1; 1; 3; 5; 3; 1; 1; 10]/

13 /[3; 1; 1; 1; 1; 6]/ 32 /[5; 1; 1; 1; 10]/

14 /[3; 1; 2; 1; 6]/ 33 /[5; 1; 2; 1; 10]/

15 /[3; 1; 6]/ 34 /[5; 1; 4; 1; 10]/

17 /[4; 8̄]/ 35 /[5; 1; 10]/

18 /[4; 4; 8]/ 37 /[6; 12]/

19 /[4; 2; 1; 3; 1; 2; 8]/ 38 /[6; 6; 12]/

20 /[4; 2; 8]/ 39 /[6; 4; 12]/

21 /[4; 1; 1; 2; 1; 1; 8]/ 40 /[6; 3; 12]/

The periods of the continued fractions of the square
roots of the first few nonsquare integers 2, 3, 5, 6, 7, 8,
10, 11, 12, 13, ... (Sloane’s A000037) are 1, 2, 1, 2, 4, 2,
1, 2, 2, 5, ... (Sloane’s A013943; Williams 1981,
Jacobson et al. 1995). An upper bound for the length
is roughly O(ln D

ffiffiffiffi
D

p
):/

An even stronger result is that a continued fraction is
periodic IFF it is a ROOT of a quadratic POLYNOMIAL.
Calling the portion of a number x remaining after a
given convergent the "tail," it must be true that the
relationship between the number x and terms in its
tail is OF THE FORM

x�
ax � b

cd � d
; (51)

which can only lead to a QUADRATIC EQUATION.

LOGARITHMS logb0
b1 can be computed by defining b2;

... and the POSITIVE INTEGER n1; ...such that

bn1

1 Bb0Bbn1�1
1 b2�

b0

bn1

1

(52)

bn2

2 Bb1Bbn2�1
2 b3�

b1

bn2

2

(53)

and so on. Then

logb0
b1�[n1; n2; n3; :::]: (54)

A geometric interpretation for a reduced FRACTION

y=x consists of a string through a LATTICE of points
with ends at (1; 0) and (x, y ) (Klein 1907, 1932;
Steinhaus 1983, p. 40; Gardner 1984, pp. 210�/11,
Ball and Coxeter 1987, pp. 86�/7; Davenport 1992).
This interpretation is closely related to a similar one
for the GREATEST COMMON DIVISOR. The pegs it
presses against (xi; yi) give alternate CONVERGENTS

yi=xi; while the other CONVERGENTS are obtained from
the pegs it presses against with the initial end at
(0; 1): The above plot is for e�2; which has con-
vergents 0, 1, 2/3, 3/4, 5/7, ....

Let the continued fraction for x be written
[a0; a1; :::; an]: Then the limiting value is almost
always KHINTCHINE’S CONSTANT

K� lim
n0�

(a1a2 . . . an)1=n�2:68545 . . . : (55)

Continued fractions can be used to express the
POSITIVE ROOTS of any POLYNOMIAL equation. Con-
tinued fractions can also be used to solve linear
DIOPHANTINE EQUATIONS and the PELL EQUATION.
Euler showed that if a CONVERGENT SERIES can be
written in the form

c1�c1c2�c1c2c3�. . . ; (56)

then it is equal to the continued fraction

c1

1 �
c2

1 � c2 �
c3

1 � c3 � . . .

: (57)

Gosper has invented an ALGORITHM for performing
analytic ADDITION, SUBTRACTION, MULTIPLICATION,
and DIVISION using continued fractions. It requires
keeping track of eight INTEGERS which are concep-
tually arranged at the VERTICES of a CUBE. Although
this ALGORITHM has not appeared in print, similar
algorithms have been constructed by Vuillemin
(1987) and Liardet and Stambul (1998).

Gosper’s algorithm for computing the continued frac-
tion for (ax�b)=(cx�d) from the continued fraction



for x is described by Gosper (1972), Knuth (1981,
Exercise 4.5.3.15, pp. 360 and 601), and Fowler
(1999). (In line 9 of Knuth’s solution, Xk 1 A=Cb c
should be replaced by Xk 1 min A=Cb c;ð /

/ (A �B)=(C �D)b cÞ:/) Gosper (1972) and Knuth (1981)
also mention the bivariate case (axy �bx/

/�cy �d) =(Axy �Bx �Cy �D) :/

Ramanujan developed a number of interesting closed-
form expressions for continued fractions, including

1

1 �

e �2 p

1 �

e �4 p

1 � . . .
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

p

2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 1

p

2

" #
e2 p =5 (58)

1

1�

e �2 p
ffiffi
5

p

1 �

e �4 p
ffiffi
5

p

1 � . . .

�

ffiffiffi
5

p

1 � 53 =4

ffiffiffi
5

p
� 1

2

 !5 =2

�1

2
4

3
5�

ffiffiffi
5

p
� 1

2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

e2 p =
ffiffi
5

p

(59)

and

4 g
�

0

xe �2
ffiffi
5

p

cosh x
dx �1

2[ z(2;
1
4(1 �

ffiffiffi
5

p
)) � z(2; 1

4(3�
ffiffiffi
5

p
)]

�
1

1�

12

1�

12

1�

22

1�

22

1�

32

1�

32

1�
(60)

(Watson 1929; Preece 1931; Watson 1931; Hardy
1999, p. 8).

See also GAUSSIAN BRACKETS, HURWITZ’S IRRATIONAL

NUMBER THEOREM, KHINTCHINE’S CONSTANT, LA-

GRANGE’S CONTINUED FRACTION THEOREM, LAMÉ ’S

THEOREM, LEHMER CONTINUED FRACTION, LÉ VY

CONSTANT, LOCHS THEOREM, PADÉ APPROXIMANT,
PARTIAL QUOTIENT, PI, QUADRATIC IRRATIONAL NUM-

BER, QUOTIENT-DIFFERENCE ALGORITHM, ROGERS-

RAMANUJAN CONTINUED FRACTION, SEGRE’S THEO-

REM, TROTT’S CONSTANT
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Continued Fraction Constant
A continued fraction with partial quotients which
increase in ARITHMETIC PROGRESSION is

[A �D; A �2D ; A �3D ; . . .]�

IA =D

2

D

 !

I1 �A =D

2

D

 ! ;

where In(x) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND (Schroeppel 1972). A special case is

C �0 �
1

1 �
1

2 �
1

3 �
1

4 �
1

5 � . . .

;

which has the value

C �
I1(2)

I0(2) 
�0 :697774658 . . .

(Lehmer 1973, Rabinowitz 1990).

See also E , GOLDEN RATIO, MODIFIED BESSEL FUNC-

TION OF THE FIRST KIND, PI, RABBIT CONSTANT,
THUE-MORSE CONSTANT
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Continued Fraction Factorization
Algorithm
A PRIME FACTORIZATION ALGORITHM which uses RE-

SIDUES produced in the CONTINUED FRACTION of
ffiffiffiffiffiffiffiffiffi
mN

p

for some suitably chosen m to obtain a SQUARE

NUMBER. The ALGORITHM solves

x2 �y2 (mod n)

by finding an m for which m2 (mod n ) has the
smallest upper bound. The method requires (by
conjecture) about exp(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln n ln ln n

p
) steps, and

was the fastest PRIME FACTORIZATION ALGORITHM in
use before the QUADRATIC SIEVE, which eliminates the
2 under the SQUARE ROOT (Pomerance 1996), was
developed.

See also EXPONENT VECTOR, PRIME FACTORIZATION

ALGORITHMS
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Continued Fraction Fundamental
Recurrence Relation
For a SIMPLE CONTINUED FRACTION x�[a0; a1; . . .]
with CONVERGENTS pn=qn; the fundamental RECUR-



RENCE RELATION is given by

pnqn�1 �pn �1qn �(�1)n�1 :

See also SIMPLE CONTINUED FRACTION, CONTINUED

FRACTION

References
Olds, C. D. Continued Fractions. New York: Random House,

p. 27, 1963.

Continued Fraction Map

f (x) �
1

x 
�

1

x

$ %

for x � [0; 1]; where xb c is the FLOOR FUNCTION. The
NATURAL INVARIANT of the map is

r(y) �
1

(1 � y) ln 2
:
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Continued Fraction Unit Fraction
Algorithm
An algorithm for computing a UNIT FRACTION, called
the FAREY SEQUENCE method by Bleicher (1972).
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Continued Square Root
NESTED RADICAL

Continued Vector Product
VECTOR TRIPLE PRODUCT

Continuity
The property of being CONTINUOUS.

See also CONTINUITY AXIOMS, CONTINUITY CORREC-

TION, CONTINUITY PRINCIPLE, CONTINUOUS DISTRIBU-

TION, CONTINUOUS FUNCTION, CONTINUOUS SPACE,
FUNDAMENTAL CONTINUITY THEOREM, LIMIT
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Continuity Axioms
"The" continuity axiom is an additional AXIOM which
must be added to those of Euclid’s ELEMENTS in order
to guarantee that two equal CIRCLES of RADIUS r
intersect each other if the separation of their centers
is less than 2r (Dunham 1990). The continuity axioms
are the three of HILBERT’S AXIOMS which concern
geometric equivalence.

ARCHIMEDES’ LEMMA is sometimes also known as "the
continuity axiom."

See also CONGRUENCE AXIOMS, HILBERT’S AXIOMS,
INCIDENCE AXIOMS, ORDERING AXIOMS, PARALLEL

POSTULATE
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Continuity Correction
A correction to a discrete BINOMIAL DISTRIBUTION to
approximate a continuous distribution.

P(a5X5b):P
a � 1

2 � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 � p)

p 5z5
b � 1

2 � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1 � p)

p !
;

where



z �
(x � m)

s

is a continuous variate with a NORMAL DISTRIBUTION

and X is a variate of a BINOMIAL DISTRIBUTION.

See also BINOMIAL DISTRIBUTION, NORMAL DISTRIBU-

TION
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Continuity Principle
The metric properties discovered for a primitive
figure remain applicable, without modifications other
than changes of signs, to all correlative figures which
can be considered to arise from the first. As stated by
Lachlan (1893), the principle states that if, from the
nature of a particular problem, a certain number of
solutions are expected (and are, in fact, found in any
one case), then there will be the same number of
solutions in all cases, although some solutions may be
imaginary.

For example, two circles intersect in two points, so it
can be stated that every two circles intersect in two
points, although the points may be imaginary or may
coincide. The principle is extremely powerful (if
somewhat difficult to state precisely), and allows
immediate derivation of some geometric propositions
from other propositions which may appear simpler
and may be substantially easier to prove.

The continuity principle was first enunciated by
Kepler and thereafter enunciated by Boscovich. How-
ever, it was not generally accepted until formulated
by Poncelet in 1822. Formally, it amounts to the
statement that if an analytic identity in any finite
number of variables holds for all real values of the
variables, then it also holds by ANALYTIC CONTINUA-

TION for all complex values (Bell 1945). This principle
is also called "Poncelet’s continuity principle," or
sometimes the "permanence of mathematical rela-
tions principle" (Bell 1945).

See also ANALYTIC CONTINUATION, CONSERVATION OF

NUMBER PRINCIPLE, DUALITY PRINCIPLE, PERMA-

NENCE OF ALGEBRAIC FORM
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Continuous
A general mathematical property obeyed by mathe-
matical objects in which all elements are within a
NEIGHBORHOOD of nearby points. The continuous
maps between TOPOLOGICAL SPACES form a CATE-

GORY. The designation "continuous" is sometimes
used to indicate membership in this category.

See also ABSOLUTELY CONTINUOUS, CONTINUOUS

DISTRIBUTION, CONTINUITY, CONTINUOUS FUNCTION,
CONTINUOUS SPACE, DIFFERENTIABLE, JUMP, PIECE-

WISE CONTINUOUS
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Continuous Distribution
A STATISTICAL DISTRIBUTION for which the variables
may take on a continuous range of values. Abramo-
witz and Stegun (1972, p. 930) give a table of the
parameters of most common continuous distributions.

See also BETA DISTRIBUTION, BIVARIATE DISTRIBU-

TION, CAUCHY DISTRIBUTION, CHI DISTRIBUTION, CHI-

SQUARED DISTRIBUTION, CORRELATION COEFFICIENT,
DISCRETE DISTRIBUTION, DOUBLE EXPONENTIAL DIS-

TRIBUTION, EQUALLY LIKELY OUTCOMES DISTRIBU-

TION, EXPONENTIAL DISTRIBUTION, EXTREME VALUE

DISTRIBUTION, F -DISTRIBUTION, FERMI-DIRAC DISTRI-

BUTION, FISHER’S Z -DISTRIBUTION, FISHER-TIPPETT

DISTRIBUTION, GAMMA DISTRIBUTION, GAUSSIAN DIS-

TRIBUTION, HALF-NORMAL DISTRIBUTION, LAPLACE

DISTRIBUTION, LATTICE DISTRIBUTION, LÉ VY DISTRI-

BUTION, LOGARITHMIC DISTRIBUTION, LOG-SERIES

DISTRIBUTION, LOGISTIC DISTRIBUTION, LORENTZIAN

DISTRIBUTION, MAXWELL DISTRIBUTION, NORMAL DIS-

TRIBUTION, PARETO DISTRIBUTION, PASCAL DISTRIBU-

TION, PEARSON TYPE III DISTRIBUTION, POISSON

DISTRIBUTION, PÓ LYA DISTRIBUTION, RATIO DISTRIBU-

TION, RAYLEIGH DISTRIBUTION, RICE DISTRIBUTION,
SNEDECOR’S F -DISTRIBUTION, STUDENT’S T -DISTRIBU-

TION, STUDENT’S Z -DISTRIBUTION, UNIFORM DISTRIBU-

TION, WEIBULL DISTRIBUTION
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Continuous Function
There are several commonly used methods of defining
the slippery, but extremely important, concept of a
continuous function. The space of continuous func-
tions is denoted C0 ; and corresponds to the k �0 case
of a C-K FUNCTION.

A continuous function can be formally defined as a
FUNCTION f : X 0 Y where the pre-image of every
OPEN SET in Y is OPEN in X . More concretely, a
function f (x) in a single variable x is said to be
continuous at point x0 if

1. f (x0) is defined, so that x0 is in the DOMAIN of f .
2. limx 0x0

f (x) exists for x in the DOMAIN of f .
3. limx 0x0

f (x) �f (x0) ;/

where lim denotes a LIMIT.

Many mathematicians prefer to define the continuity
of a function via a so-called EPSILON-DELTA DEFINI-

TION of a LIMIT. In this formalism, a LIMIT c of
function f (x) as x approaches a point x0 ;

lim
x0x0

f (x) �c ; (1)

is defined when, given any e > 0; a d > 0 can be found
such that for every x in some domain D and within
the neighborhood of x0 of radius d (except possibly x0

itself),

f (x) �cj jB e: (2)

Then if x0 is in D and

lim
x 0x0

f (x) �f (x0) �c ; (3)

/f (x) is said to be continuous at x0 :/

If f is DIFFERENTIABLE at point x0 ; then it is also
continuous at x0 : If two functions f and g are
continuous at x0 ; then

1. f �g is continuous at x0 :/
2. f �g is continuous at x0 :/
3. f �g is continuous at x0 :/
4. f }g is continuous at x0 if g(x0) "0 and is
discontinuous at x0 if g(x0) �0:/
5. f (g is continuous at x0 ; where f (g denotes
f (g(x)); the COMPOSITION of the functions f and g .

The notion of continuity for a function in two vari-
ables is slightly trickier, as illustrated above by the
plot of the function

z �
x2 � y2

x2 � y2 
: (4)

This function is discontinuous at the origin, but has
limit 0 along the line x �y , limit 1 along the X -AXIS,
and limit �1 along the Y -AXIS (Kaplan 1992, p. 83).

See also C-K FUNCTION, CONTINUOUSLY DIFFERENTI-

ABLE FUNCTION, CRITICAL POINT, DIFFERENTIABLE,
LIMIT, NEIGHBORHOOD, PIECEWISE CONTINUOUS, STA-

TIONARY POINT
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Continuous Group
A GROUP having CONTINUOUS group operations. A
continuous group is necessarily infinite, since an
INFINITE GROUP just has to contain an infinite number
of elements. But some infinite groups, such as the
integers or rationals, are not continuous groups.

See also DISCRETE GROUP, FINITE GROUP, INFINITE

GROUP

Continuous Space
A TOPOLOGICAL SPACE.

See also NET

Continuous Transformation
HOMEOMORPHISM

Continuous Vector Bundle
A continuous vector bundle is a VECTOR BUNDLE p :
E 0 M with only the structure of a TOPOLOGICAL



MANIFOLD. The map p is CONTINUOUS. It has no
SMOOTH STRUCTURE or METRIC.

See also BUNDLE, MANIFOLD, METRIC (BUNDLE),
VECTOR BUNDLE

Continuously Differentiable Function
The space of continuously differentiable functions is
denoted C1 ; and corresponds to the k �1 case of a C-K

FUNCTION.

See also C-K FUNCTION, CONTINUOUS FUNCTION
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pp. 12 �/3 and 21, 1999.

Continuum
The nondenumerable set of REAL NUMBERS, denoted
C . It satisfies

��C �C (1)

and

Cr �C ; (2)

where �0 is ALEPH-0. It is also true that

��0

0 �C : (3)

However,

CC �F (4)

is a SET larger than the continuum. Paradoxically,
there are exactly as many points C on a LINE (or LINE

SEGMENT) as in a PLANE, a 3-D SPACE, or finite
HYPERSPACE, since all these SETS can be put into a
ONE-TO-ONE correspondence with each other.

The CONTINUUM HYPOTHESIS, first proposed by Georg
Cantor, holds that the CARDINAL NUMBER of the
continuum is the same as that of ALEPH-1. The
surprising truth is that this proposition is UNDECID-

ABLE, since neither it nor its converse contradicts the
tenets of SET THEORY.

See also ALEPH-0, ALEPH-1, CONTINUUM HYPOTHESIS,
DENUMERABLE SET

Continuum Hypothesis
Portions of this entry contributed by MATTHEW SZUD-

ZIK

The proposal originally made by Georg Cantor that
there is no infinite set with a CARDINAL NUMBER

between that of the "small" infinite set of INTEGERS �0

and the "large" infinite set of REAL NUMBERS C (the
"CONTINUUM"). Symbolically, the continuum hypoth-
esis is that �1 �C:/

Gödel showed that no CONTRADICTION would arise if
the continuum hypothesis were added to conventional
ZERMELO-FRAENKEL SET THEORY. However, using a
technique called FORCING, Paul Cohen (1963, 1964)
proved that no contradiction would arise if the
negation of the continuum hypothesis was added to
SET THEORY. Together, Gödel’s and Cohen’s results
established that the validity of the continuum hy-
pothesis depends on the version of SET THEORY being
used, and is therefore UNDECIDABLE (assuming the
ZERMELO-FRAENKEL AXIOMS together with the AXIOM

OF CHOICE).

Conway and Guy (1996, p. 282) recount a generalized
version of the continuum hypothesis originally due to
Hausdorff in 1908 which is also UNDECIDABLE: is
2� a ��a�1 for every a/? The continuum hypothesis
follows from generalized continuum hypothesis, so
ZF �GCH �CH :/

In 2000, H. Woodin formulated a new plausible
"axiom" whose adoption (in addition to the ZER-

MELO-FRAENKEL AXIOMS and AXIOM OF CHOICE) would
imply that the Continuum Hypothesis is false. Since
set theoreticians have felt for some time that the
Continuum Hypothesis should be false, if Woodin’s
axiom proves to be particularly elegant, useful, or
intuitive, it may catch on. It is interesting to compare
this to a situation with Euclid’s PARALLEL POSTULATE

more than 300 years ago, when Wallis proposed an
additional axiom that would imply the PARALLEL

POSTULATE (Greenberg 1994, pp. 152�/53).

See also ALEPH-0, ALEPH-1, AXIOM OF CHOICE,
CARDINAL NUMBER, CONTINUUM, DENUMERABLE

SET, FORCING, HILBERT’S PROBLEMS, LEBESGUE MEA-

SURABILITY PROBLEM, UNDECIDABLE, ZERMELO-

FRAENKEL AXIOMS, ZERMELO-FRAENKEL SET THEORY
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Contour

A path in the COMPLEX PLANE over which CONTOUR

INTEGRATION is performed to compute a CONTOUR

INTEGRAL. When choosing a contour to evaluate an
integral on the REAL LINE, a contour is generally
chosen based on the range of integration and the
position of POLES in the COMPLEX PLANE. For example,
for an integral from �� to �� along the real axis, the
contour at left could be chosen if the function f had no
POLES on the REAL LINE, and the middle contour could
be chosen if it had a POLE at the origin. To perform an
integral over the positive real axis from 0 to �� for a
function with a POLE at 0, the contour at right could
be chosen.

See also CONTOUR INTEGRAL, CONTOUR INTEGRATION,
HANKEL CONTOUR, INSIDE-OUTSIDE THEOREM, POLE,
RESIDUE (COMPLEX ANALYSIS)

Contour Integral
An integral obtained by CONTOUR INTEGRATION. The
particular path in the COMPLEX PLANE used to
compute the integral is called a CONTOUR. Watson
(1966 p. 20) uses the notation f

(a �) 
f (z) dz to denote

the contour integral of f (z) with CONTOUR encircling
the point a once in a counterclockwise direction.

See also CONTOUR, CONTOUR INTEGRATION
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Contour Integration
Contour integration is the process of calculating the
values of a CONTOUR INTEGRAL around a given
CONTOUR in the COMPLEX PLANE. As a result of a
truly amazing property of HOLOMORPHIC FUNCTIONS,
such integrals can be computed easily simply by
summing the values of the RESIDUES inside the
CONTOUR.

Let P(x) and Q(x) be POLYNOMIALS of DEGREES n and

m with COEFFICIENTS bn; ..., b0 and cm; ..., c0: Take the
CONTOUR in the UPPER HALF-PLANE, replace x by z ,
and write z�Reiu: Then

g
�

��

P(z) dz

Q(z)
� lim

R0� g
R

�R

P(z) dz

Q(z)
: (1)

Define a path gR which is straight along the REAL axis
from�R to R and make a circular half-arc to connect
the two ends in the upper half of the COMPLEX PLANE.
The RESIDUE THEOREM then gives

lim
R�� g

gR

P(z) dz

Q(z)

� lim
R�� g

R

�R

P(z) dz

Q(z)
� lim

R0� g
p

0

P(Reiu)

Q(Reiu)
iReiu du

�2pi
X
I[z]>0

Res
P(z)

Q(z)

" #
; (2)

where Res denotes the RESIDUES. Solving,

lim
R0� g

R

�R

P(z) dz

Q(z)

�2pi
X
I[z]>0

Res
P(z)

Q(z)
� lim

R0� g
p

0

P(Reiu)

Q(Reiu)
iReiu du

Define

Ir� lim
R0� g

p

0

P(Reiu)

Q(Reiu)
iReiu du

� lim
R0� g

p

0

bn(Reiu)n � bn�1(Reiu)n�1 � . . . � b0

cm(Reiu)m � cm�1(Reiu)m�1 � . . . � c0

iR du

� lim
R0� g

p

0

bn

cm

(Reiu)n�miR du

� lim
R0� g

p

0

bn

cm

Rn�1�mi(eiu)n�m du (3)

and set

e��(n�1�m); (4)

then equation (3) becomes

Ir� lim
R0�

i

Re

br

cm
g

p

0

ei(n�m)u du: (5)

Now,

lim
R0�

R�e�0 (6)

for o > 0: That means that for�n�1�m]1; or m]

n�2; IR�0; so

g
�

��

P(z) dz

Q(z)
�2pi

X
I[z]>0

Res
P(z)

Q(z)

" #
(7)



for m ]n �2: Apply JORDAN’S LEMMA with f (x) �
P(x) =Q(x) : We must have

lim
x0�

f (x) �0 ; (8)

so we require m ]n �1: Then

g
�

��

P(z)

Q(z)
eiaz dz �2pi

X
I[z]>0

Res
P(z)

Q(z)
eiaz

" #
(9)

for m ]n �1 :/

Since this must hold separately for REAL and IMAGIN-

ARY PARTS, this result can be extended to

g
�

��

P(x)

Q(x)
cos(ax) dx

�2pR
X
I[z]>0

Res
P(z)

Q(z)
eiaz

" #( )
(10)

g
�

��

P(x)

Q(x)
sin(ax) dx

�2pI
X
I[z]>0

Res
P(z)

Q(z)
eiaz

" #( )
: (11)

It is also true that

g
�

��

P(z)

Q(z)
ln(az) dz �0 : (12)

See also CAUCHY INTEGRAL FORMULA, CAUCHY INTE-

GRAL THEOREM, CONTOUR, CONTOUR INTEGRAL, IN-

SIDE-OUTSIDE THEOREM, JORDAN’S LEMMA, RESIDUE

(COMPLEX ANALYSIS), SINE INTEGRAL
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Contour Plot

A plot of EQUIPOTENTIAL CURVES. If desired, the
regions between contours can be shaded or colored

to indicate their magnitude. Contour plots are im-
plemented in Mathematica as ContourPlot[f , {x ,
xmin , xmin }, {y , ymin , ymax }].

See also EQUIPOTENTIAL CURVE, LEVEL CURVE, LEVEL

SET, LEVEL SURFACE

Contractant
CONDENSATION

Contracted Cycloid
CURTATE CYCLOID

Contraction (Geometry)
An AFFINE TRANSFORMATION in which the scale is
reduced.

See also EXPANSION

Contraction (Graph)
The merging of nodes in a GRAPH by eliminating
segments between two nodes.

Contraction (Ideal)
When f : A 0 B is a ring HOMOMORPHISM and b is an
IDEAL in B , then f �1(b) is an ideal in A , called the
contraction of b and sometimes denoted bc :/

The contraction of a PRIME IDEAL is always prime. For
example, consider f : Z 0 Z[

ffiffiffi
2

p
] : Then the contrac-

tion of
ffiffiffi
2

p� 
is the ideal of even integers.

See also ALGEBRAIC NUMBER THEORY, EXTENSION

(IDEAL), IDEAL, PRIME IDEAL, RING

References
Atiyah, M. F. and MacDonald, I. G. Introduction to Com-

mutative Algebra. Reading, MA: Addison-Wesley, pp. 9�/0,
1969.

Contraction (Tensor)
The contraction of a TENSOR is obtained by setting
unlike indices equal and summing according to the
EINSTEIN SUMMATION convention. Contraction re-
duces the RANK of a TENSOR by 2. For a second RANK

TENSOR,

contr(B?j
i)�B?i

i

B?i
i�

@x?i
@xk

@xl

@x?i
Bk

l �
@xl

@xk

Bk
l �dl

kBk
l �Bk

k:

Therefore, the contraction is invariant, and must be a
SCALAR. In fact, this SCALAR is known as the TRACE of
a MATRIX in MATRIX theory.
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Contradiction
A SENTENCE is called a contradiction if its TRUTH

TABLE contains only ‘F.’

See also CONSISTENCY STRENGTH, CONTINGENCY,
TAUTOLOGY, TRUTH TABLE

References
Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, p. 13, 1958.

Contradiction Law
No A is not-A .

See also NOT

Contravariant Tensor
A contravariant tensor is a TENSOR having specific
transformation properties (cf., a COVARIANT TENSOR).
To examine the transformation properties of a contra-
variant tensor, first consider a TENSOR of RANK 1 (a
VECTOR)

dr �dx1 ̂x1 �dx2 ̂x2 �dx3 ̂x3 ; (1)

for which

dx?i �
@x?i
@xj

dxj : (2)

Now let Ai �dxi ; then any set of quantities Aj which
transform according to

A?i �
@x?i
@xj

Aj ; (3)

or, defining

aij �
@x?i
@xj

; (4)

according to

A?i �aijAj (5)

is a contravariant tensor. Contravariant tensors are
indicated with raised indices, i.e., a m :/

COVARIANT TENSORS are a type of TENSOR with
differing transformation properties, denoted an : How-
ever, in 3-D CARTESIAN COORDINATES,

@xj

@x?i
�

@x?i
@xj

�aij (6)

for i ; j �1 ; 2, 3, meaning that contravariant and
covariant tensors are equivalent. The two types of
tensors do differ in higher dimensions, however.

Contravariant FOUR-VECTORS satisfy

a m �L 
m
n a

n ; (7)

where L is a LORENTZ TENSOR.

To turn a COVARIANT TENSOR an into a contravariant
tensor am (INDEX RAISING), use the METRIC TENSOR gmn

to write

g mnan �am : (8)

Covariant and contravariant indices can be used
simultaneously in a MIXED TENSOR.

See also CONTRAVARIANT VECTOR, COVARIANT TEN-

SOR, FOUR-VECTOR, INDEX RAISING, LORENTZ TENSOR,
METRIC TENSOR, MIXED TENSOR, TENSOR
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Contravariant Vector
The usual type of VECTOR, which can be viewed as a
CONTRAVARIANT TENSOR ("KET") of RANK 1. Contra-
variant vectors are dual to ONE-FORMS ("BRAS," a.k.a.
COVARIANT VECTORS).

See also BRA, COVARIANT VECTOR, CONTRAVARIANT

TENSOR, KET, ONE-FORM, VECTOR

Control Theory
The mathematical study of how to manipulate the
parameters affecting the behavior of a system to
produce the desired or optimal outcome.

See also KALMAN FILTER, LINEAR ALGEBRA, PONTRYA-

GIN MAXIMUM PRINCIPLE
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Convective Acceleration
The acceleration of an element of fluid, given by the
CONVECTIVE DERIVATIVE of the VELOCITY v,

Dv

Dt
�

@v

@t 
�v � 9v;

where 9 is the GRADIENT operator.

See also ACCELERATION, CONVECTIVE DERIVATIVE,
CONVECTIVE OPERATOR
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Convective Derivative
A DERIVATIVE taken with respect to a moving coordi-
nate system, also called a LAGRANGIAN DERIVATIVE. It
is given by

D

Dt 
�

@

@t 
�v � 9;

where 9 is the GRADIENT operator and v is the
VELOCITY of the fluid. This type of derivative is
especially useful in the study of fluid mechanics.
When applied to v,

Dv

Dt
�

@v

@t 
�( 9�v) �v �9(1

2 v
2) :

See also CONVECTIVE OPERATOR, DERIVATIVE, VELO-

CITY
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Convective Operator
Defined for a VECTOR FIELD A by (A � 9) ; where 9 is
the GRADIENT operator.

Applied in arbitrary orthogonal 3-D coordinates to a
VECTOR FIELD B, the convective operator becomes

[(A � 9)B]j �
X3

k�1

Ak

hk

@Bj

@qk

�
Bk

hkhj

Aj

@hj

@qk

�Ak

@hk

@qj

 !" #
; (1)

where the hi/s are related to the METRIC TENSORS by
hi �

ffiffiffiffiffi
gii

p
: In CARTESIAN COORDINATES,

(A � 9)B � Ax

@Bx

@x
�Ay

@Bx

@y
�Az

@Bx

@z

 !
x̂

� Ax

@By

@x
�Ay

@Ky

@y
�Az

@By

@z

 !
ŷ

� Ax

@Bz

@x
�Ay

@Bz

@y
�Az

@Bz

@z

 !
ẑ : (2)

In CYLINDRICAL COORDINATES,

(A � 9)B � Ar

@Br

@r
�

Af

r

@Br

@ f
�Az

@Br

@z
�

AfB f
r

 !
r̂

� Ar

@Bf

@r
�

Af

r

@Bf

@ f
�Az

@Bf

@z
�

AfBr

r

 !
f̂

� Ar

@Bz

@r
�

Af

r

@Bz

@ f
�Az

@Bz

@z

 !
ẑ : (3)

In SPHERICAL COORDINATES,

(A � 9)B

� Ar

@Br

@r
�

Af

r

@Br

@ u
�

Af

r sin u

@Br

@ f
�

AuBu � AfBf

r

 !
r̂

� Ar

@Bu

@r
�

Au

r

@Bu

@ u
�

Af

r sin u

@Bu

@ f
�

AuBr

r
�

AfBf cot u

r

 !
û

� Ar

@Bf

@r
�

Au

r

@Bf

@ u
�

Af

r sin u

@Bf

@ f
�

AfBr

r
�

AfBu cot u

r

 !
f̂:

(4)

See also CONVECTIVE ACCELERATION, CONVECTIVE

DERIVATIVE, CURVILINEAR COORDINATES, GRADIENT

Convergence
ALMOST EVERYWHERE CONVERGENCE, CONVERGENCE

IMPROVEMENT, CONVERGENCE TESTS, CONVERGENT,
CONVERGENT SEQUENCE, CONVERGENT SERIES,
POINTWISE CONVERGENCE

Convergence Acceleration
CONVERGENCE IMPROVEMENT

Convergence Improvement
The improvement of the convergence properties of a
SERIES, also called CONVERGENCE ACCELERATION,
such that a SERIES reaches its limit to within some
accuracy with fewer terms than required before.
Convergence improvement can be effected by forming
a LINEAR COMBINATION with a SERIES whose sum is
known. Useful sums include

X�
n�1

1

n(n � 1)
�1 (1)

X�
n�1

1

n(n � 1)(n � 2)
�

1

4
(2)

X�
n�1

1

n(n � 1)(n � 2)(n � 3)
�

1

18
(3)

X�
n�1

1

n(n � 1) 	 	 	 (n � p)
�

1

p � p!
: (4)

Kummer’s transformation takes a convergent series

s�
X�
k�0

ak (5)

and another convergent series

c�
X�
k�0

ck (6)

with known c such that



lim
k 0�

ak

ck

� l "0: (7)

Then a series with more rapid convergence to the
same value is given by

s � lc �
X�
k�0

1 � l
ck

ak

 !
ak (8)

(Abramowitz and Stegun 1972).

The EULER TRANSFORM takes a convergent alternat-
ing series

X�
k �0

(�1)kak �a0 �a1 �a2 . . . (9)

into a series with more rapid convergence to the same
value to

s �
X�
k �0

(�1)k Dka0

2k�1
; (10)

where

Dka0 �
Xk

m�0

�(�1)m k
m

� �
ak �m (11)

(Abramowitz and Stegun 1972; Beeler et al. 1972).

Given a series OF THE FORM

S �
X�
n �1

f
1

n

 !
; (12)

where f (z) is an ANALYTIC at 0 and on the closed unit
DISK, and

f (z)½z00 �O(z2) ; (13)

then the series can be rearranged to

S �
X�
n�1

X�
m�2

fm

1

n

 !m

�
X�
m�2

X�
n�1

fm

1

n

 !m

�
X�
m�2

fm z(m); (14)

where

f (z) �
X�
m�2

fmzm (15)

is the MACLAURIN SERIES of f and z is the RIEMANN

ZETA FUNCTION (Flajolet and Vardi 1996). The trans-
formed series exhibits geometric convergence. Simi-
larly, if f (z) is ANALYTIC in ½z ½51=n0 for some POSITIVE

INTEGER n0 ; then

S �
Xn0 �1

n�1

f
1

n

 !

�
X�
m�2

fm z(m) �
1

1m 
�. . .�

1

(n0 � 1)m

" #
; (16)

which converges geometrically (Flajolet and Vardi
1996). (16) can also be used to further accelerate the
convergence of series (14).

See also EULER TRANSFORM, WILF-ZEILBERGER PAIR
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Convergence Tests
A test to determine if a given SERIES CONVERGES or
DIVERGES.

See also ABEL’S UNIFORM CONVERGENCE TEST, BER-

TRAND’S TEST, D’ALEMBERT RATIO TEST, DIVERGENCE

TESTS, ERMAKOFF’S TEST, GAUSS’S TEST, INTEGRAL

TEST, KUMMER’S TEST, LIMIT COMPARISON TEST,
LIMIT TEST, RAABE’S TEST, RADIUS OF CONVERGENCE,
RATIO TEST, RIEMANN SERIES THEOREM, ROOT TEST
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Convergent
The RATIONAL NUMBER obtained by keeping only a
limited number of terms in a CONTINUED FRACTION is
called a convergent. For example, in the SIMPLE

CONTINUED FRACTION for the GOLDEN RATIO,

f�1�
1

1 �
1

1 � . . .

;

the convergents are

1; 1�
1

1
�2; 1�

1

1 � 1
1

�
3

2
; . . .

The word convergent is also used to describe a
CONVERGENT SEQUENCE or CONVERGENT SERIES.



See also CONTINUED FRACTION, CONVERGENT SE-

QUENCE, CONVERGENT SERIES, PARTIAL QUOTIENT,
SIMPLE CONTINUED FRACTION

Convergent Sequence
A SEQUENCE Sn converges to the limit S

lim
n0�

Sn �S

if, for any e > 0; there exists an N such that ½Sn �S½B
e for n �N . If Sn does not converge, it is said to
DIVERGE. This condition can also be written as

lim
n0�

Sn � lim
n 0�

Sn �S:

Every bounded MONOTONIC SEQUENCE converges.
Every unbounded SEQUENCE diverges.

See also CONDITIONAL CONVERGENCE, STRONG CON-

VERGENCE, WEAK CONVERGENCE
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Convergent Series
The infinite SERIES a�

n�1 an is convergent if the
SEQUENCE of partial sums

Sn �
Xn

k�1

ak

is convergent. Conversely, a SERIES is divergent if the
SEQUENCE of partial sums is divergent. If auk and avk

are convergent SERIES, then a(uk �vk) and a(uk �vk)
are convergent. If c "0 ; then auk and c auk both
converge or both diverge. Convergence and diver-
gence are unaffected by deleting a finite number of
terms from the beginning of a series. Constant terms
in the denominator of a sequence can usually be
deleted without affecting convergence. All but the
highest POWER terms in POLYNOMIALS can usually be
deleted in both NUMERATOR and DENOMINATOR of a
SERIES without affecting convergence. If a SERIES

converges absolutely, then it converges.

See also CONVERGENCE TESTS, RADIUS OF CONVER-

GENCE

References
Bromwich, T. J. I’a. and MacRobert, T. M. An Introduction

to the Theory of Infinite Series, 3rd ed. New York: Chelsea,
1991.

Conversion Period
The period of time between INTEREST payments.

See also COMPOUND INTEREST, INTEREST, SIMPLE

INTEREST

Convex

A SET in EUCLIDEAN SPACE Rd is a CONVEX SET if it
contains all the LINE SEGMENTS connecting any pair
of its points. If the SET does not contain all the LINE

SEGMENTS, it is called CONCAVE.

See also CONNECTED SET, CONVEX FUNCTION, CON-

VEX HULL, CONVEX OPTIMIZATION THEORY, CONVEX

POLYGON, CONVEX SET, DELAUNAY TRIANGULATION,
MINKOWSKI CONVEX BODY THEOREM, SIMPLY CON-

NECTED
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Convex Function

A function whose value at the MIDPOINT of every
INTERVAL in its DOMAIN does not exceed the AVERAGE

of its values at the ends of the INTERVAL. In other
words, a function f (x) is convex on an INTERVAL [a, b ]
if for any two points x1 and x2 in [a, b ],

f [1
2(x1�x2)]51

2[f (x1)�f (x2)]

(Gradshteyn and Ryzhik 2000). If f (x) has a second
DERIVATIVE in [a, b ], then a NECESSARY and SUFFI-



CIENT condition for it to be convex on that INTERVAL is
that the second DERIVATIVE f ƒ(x) > 0 for all x in [a, b ].
If the inequality above is STRICT for all x1 and x2 ; then
f (x) is called strictly convex. Examples of convex
functions include xp for p ]1; x ln x for x �0, and ½x½
for all x . If the sign of the inequality is reversed, the
function is called CONCAVE.

See also CONCAVE FUNCTION, LOGARITHMICALLY

CONVEX FUNCTION
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Convex Hull

The convex hull of a set of points S in n -D is the
INTERSECTION of all convex sets containing S . For N
points p1 ; ..., pN ; the convex hull C is then given by
the expression

C �
XN

j�1

ljpj : lj ]0 for all j and
XN

j�1

lj �1

( )
:

Computing the convex hull is a problem in COMPUTA-

TIONAL GEOMETRY. The indices of the points specify-
ing the convex hull of a set of points in two
dimensions is given by the command Convex-
Hull[pts ] in the Mathematica add-on package Dis-
creteMath‘ComputationalGeometry‘ (which can
be loaded with the command BBDiscreteMath‘).
Future versions of Mathematica will support n -
dimensional convex hulls.

In d dimensions, the "gift wrapping" algorithm,
which has complexity O(n d=2b c�1); where xb c is the
FLOOR FUNCTION, can be used (Skiena 1997, p. 352).
In 2- and 3-D, however, specialized algorithms exist
with complexity O(n ln n) (Skiena 1997, pp. 351 �/52).
Yao (1981) has proved that any decision-tree algo-
rithm for the 2-D case requires quadratic or higher-
order tests, and that any algorithm using quadratic

tests (which includes all currently known algorithms)
cannot be done with lower complexity than O(n ln n):
However, it remains an open problem whether better
complexity can be obtained using higher-order poly-
nomial tests (Yao 1981). O’Rourke (1997) gives a
robust 2-D implementation as well as an O(n2) 3-D
implementation. Qhull works efficiently in 2 to 8
dimensions (Barber et al. 1997).

The DUAL POLYHEDRON of any non-convex UNIFORM

POLYHEDRON is a stellated form of the CONVEX HULL of
the given polyhedron (Wenninger 1983, pp. 3�/ and
40).

See also CARATHÉ ODORY’S FUNDAMENTAL THEOREM,
COMPUTATIONAL GEOMETRY, CROSS POLYTOPE, GROE-

MER PACKING, GROEMER THEOREM, HAPPY END

PROBLEM, RADON’S THEOREM, SAUSAGE CONJECTURE,
SPAN (GEOMETRY), SYLVESTER’S FOUR-POINT PRO-

BLEM, TEMPERATURE
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Convex Optimization Theory
The problem of maximizing a linear function over a
CONVEX POLYHEDRON, also known as OPERATIONS

RESEARCH or OPTIMIZATION THEORY. The general
problem of convex optimization is to find the mini-
mum of a convex (or quasiconvex) function f on a
FINITE-dimensional convex body A . Methods of solu-
tion include Levin’s algorithm and the method of
circumscribed ELLIPSOIDS, also called the Nemir-
ovsky-Yudin-Shor method.
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Convex Polygon
A POLYGON is CONVEX if it contains all the LINE

SEGMENTS connecting any pair of its points. Let f (n)
be the smallest number such that when W is a set of
more than f (n) points in GENERAL POSITION (with no
three points COLLINEAR) in the plane, all of the
VERTICES of some convex n -gon are contained in W .
The answers for n �2, 3, and 4 are 2, 4, and 8. It is
conjectured that f (n) �2n�2 ; but only proven that

2n �2 5f (n) 5
2n �4
n �2

� �
;

where n
k

& '
is a BINOMIAL COEFFICIENT.

See also CONVEX POLYOMINO, CONVEX POLYHEDRON,
CONVEX POLYOMINO, CONVEX POLYTOPE, HAPPY END

PROBLEM, LATTICE POLYGON, POLYGON

Convex Polyhedron

A convex polyhedron can be defined algebraically as
the set of solutions to a system of linear inequalities

mx5b; (1)

where m is a real s �3 MATRIX and b is a real s -
VECTOR. Although usage varies, most authors addi-
tionally require that a solution be bounded for it to
define a CONVEX POLYHEDRON. An example of a
convex polyhedron is illustrated above. The more
simple DODECAHEDRON is given by a system with
s �12. Explicit examples are given in the following
table.

convex polyhedron s /m/ b

TETRAHEDRON 4 1 1 1
1 �1 �1

�1 1 �1
�1 �1 1

2
664

3
775

2
0
0
0

2
664
3
775

CUBE 6 1 0 0
�1 0 0

0 1 0
0 �1 0
0 0 1
0 0 �1

2
6666664

3
7777775

1
1
1
1
1
1

2
6666664

3
7777775

OCTAHEDRON 8 1 1 1
1 1 �1
1 �1 1
1 �1 �1

�1 1 1
�1 1 �1
�1 �1 1
�1 �1 �1

2
66666666664

3
77777777775

1
1
1
1
1
1
1
1

2
66666666664

3
77777777775

In general, given the MATRICES, the VERTICES (and
FACES) can be found using an algorithmic procedure
known as VERTEX ENUMERATION.

Geometrically, a convex polyhedron can be defined as
a POLYHEDRON for which a line connecting any two
(noncoplanar) points on the surface always lies in the
interior of the polyhedron. The 92 convex polyhedra
having only REGULAR POLYGONS as faces are called
the JOHNSON SOLIDS, which include the PLATONIC

SOLIDS and ARCHIMEDEAN SOLIDS. No method is
known for computing the VOLUME of a general convex
polyhedron (Ogilvy 1990, p. 173).

Every convex polyhedron can be represented in the
plane or on the surface of a sphere by a 3-connected
PLANAR GRAPH (called a POLYHEDRAL GRAPH). Con-
versely, by a theorem of Steinitz as restated by
Grünbaum, every 3-connected PLANAR GRAPH can be
realized as a convex polyhedron (Duijvestijn and
Federico 1981). The numbers of vertices V , edges E ,
and faces F of a convex polyhedron are related by the
POLYHEDRAL FORMULA

V�F�E�2:

See also ARCHIMEDEAN SOLID, CONVEX POLYGON,
CONVEX POLYOMINO, CONVEX POLYTOPE, DELTAHE-

DRON, JOHNSON SOLID, KEPLER-POINSOT SOLID, PLA-

TONIC SOLID, POLYHEDRAL FORMULA, POLYHEDRAL

GRAPH, POLYHEDRON, REGULAR POLYHEDRON, VER-

TEX ENUMERATION
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Convex Polyomino

A convex polyomino (sometimes called a "convex
polygon") is a polyomino whose PERIMETER is equal
to that of its minimal bounding box (Bousquet-Mélou
et al. 1999). Furthermore, if it contains at least one
corner of its minimal bounding box, it is said to be a
DIRECTED CONVEX POLYOMINO. A COLUMN-CONVEX

POLYOMINO is a self-avoiding polyomino such that
the intersection of any vertical line with the poly-
omino has at most two connected components, and a
ROW-CONVEX POLYOMINO is similarly defined.
The anisotropic perimeter and area generating func-
tion

G(x; y; q)�
X
m]1

X
n]1

X
a]1

C(m; n; a)xmynqa; (1)

where C(m; n; a) is the number of polygons with 2m
horizonal bonds, 2n vertical bonds, and area a is
given by

G(x; y; q)�2
X
m]1

ym�2

(xq)2
mN(xqm�1)N(xqm)

� [Tm�1S(xqm)�yTmS(xqm�1)]2

�
X
m]1

xymqm(Tm)2

(xq)m�1(xq)m
; (2)

where

N(x)�
X
n]0

(�1)nxnq
n�1

2ð Þ

(q)n(yq)n

(3)

S(x)�
X
n]1

xnqn

(yq)n

Xn�1

j�0

(�1)jq
j
2ð Þ

(q)j(yqj�1)n�j

" #
(4)

and Tn(x) is the polynomial RECURRENCE RELATION

Tn(x)�2Tn�1(x)�(xqn�1�1)Tn�2(x) (5)

with T0(x)�1 and T1(x)�1 (Bousquet-Mélou 1992b).
The first few of these polynomials are given by

T2(x)�1�qx

T3(x)�1�(2q�q2)x

T4(x)�1�(3q�2q2�q3)x�q4x2

T5(x)�1�(4q�3q2�2q3�q4)x�(2q4�2q5�q6)x2:

Expanding the generating function shows that the
number of convex polyominoes having PERIMETER

2n�8 is given by

(2n�11)4n�4(2n�1)
2n
n

� �
; (6)

where n
k

& '
is a BINOMIAL COEFFICIENT (Delest and

Viennot 1984, Bousquet-Mélou 1992).

This function has been computed exactly for the
column-convex and directed column-convex polyomi-
noes (Bousquet-Mélou 1996, Bousquet-Mélou et al.
1999). G(1; 1; q) is a Q -SERIES, but becomes algebraic
for column-convex polyominoes. However, G(x; y; q)
for column-convex polyominoes again involves Q -

SERIES (Temperley 1956, Bousquet-Mélou et al.
1999).

/G(x; y)�G(x; y; 1) is an algebraic function of x and y
(called the "fugacities") given by

G(x; y)�
X
x]1

X
y]1

C(m; n)xmyn

�
R(x; y)xy

[D(x; y)]2�
4x2y2

D3=2
; (7)

where

R(x; y)�1�3x�3y�3x2�3y2�5xy�x3�y3�x2y

�xy2�xy(x�y)2 (8)

D(x; y)�1�2x�2y�2xy�x2�y2

�(1�y)2 1�
x(2 � 2y � x)

(1 � y)2

" #
(9)

(Lin and Chang 1988, Bousquet-Mélou 1992). This
can be solved to explicitly give

C(m; n)�
mn � 1

m � n � 2

2m�2n�4
2m�2

� �

�2(m�n�2)
m�n�3

m�1

� �
m�n�3

n�1

� �
(10)

(Gessel 1990, Bousquet-Mélou 1992).

/G(x; y) satisfies the inversion relation

G(x; y)�y3G(x=y; 1=y)�xy�x3y
@

@x

1 � x � y

D(x; y)
; (11)

where



D(x; y) �1 �2x �2y �2xy �x2 �y2

�(1 �y)2 1 �
x(2 � 2y � x)

(1 � y)2

" #
(12)

(Lin and Chang 1988, Bousquet-Mélou et al. 1999).

The half-vertical perimeter and area generating
function for column-convex polyominos of width 3 is
given by the special case

H3(y; q) �
yq3

(1 � yq)4(1 � yq2)2(1 � yq3)

�(y6q8 �4y5q7 �2y5q6 �y4q6 �y4q4

�4y3q5 �6y3q4 �4y3q3 �y2q4 �y2q2 �2yq2 �4yq �1)

(13)

of the general rational function (Bousquet-Mélou et
al. 1999), which satisfies the reciprocity relation

H3(1=y; 1=q) ��
1

yq3
H3(y; q) : (14)

The anisotropic area and perimeter generating func-
tion G(x; y; q) and partial generating functions
Hm(y; q) ; connected by

G(x; y; q) �
X
m]1

Hm(y; q)xm ; (15)

satisfy the self-reciprocity and inversion relations

Hm(1=y; 1=q) ��
1

yqm
Hm(y; q) (16)

and

G(x; y; q) �yG(xq; 1=y; 1=q) �0

(Bousquet-Mélou et al. 1999).

See also COLUMN-CONVEX POLYOMINO, DIRECTED

CONVEX POLYOMINO, POLYOMINO
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Convex Polytope

See also CONVEX POLYGON, CONVEX POLYHEDRON,
POLYTOPE

Convex Set
A SET S in n -dimensional space is called a convex set
if the line segment joining any pair of points of S lies
entirely in S .

See also CONVEX
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Convolution
A convolution is an integral which expresses the
amount of overlap of one function g(t) as it is shifted
over another function f (t): It therefore "blends" one
function with another. For example, in synthesis
imaging, the measured dirty map is a convolution of
the "true" CLEAN map with the dirty beam (the
FOURIER TRANSFORM of the sampling distribution).
The convolution is sometimes also known by its
German name, faltung ("folding").

A convolution over a finite range [0; t] is given by

f (t) + g(t)�g
t

0

f (t)g(t�t) dt; (1)

where the symbol f + g (occasionally also written as
f g) denotes convolution of f and g . Convolution is
more often taken over an infinite range,

f (t) + g(t)�g
�

��

f (t)g(t�t) dt

�g
�

��

g(t)f (t�t) dt: (2)

Let f , g , and h be arbitrary functions and a a
constant. Convolution the satisfies the following
properties,

f + g�g + f (3)

f + (g + h)�(f + g) + h (4)

f + (g�h)�(f + g)�(f + h) (5)

(Bracewell 1999, p. 27), as well as



a(f + g) �(af ) + g �f + (ag) : (6)

Taking the DERIVATIVE of a convolution gives

d

dx 
(f + g) �

df

dx
+ g �f +

dg

dx 
: (7)

The AREA under a convolution is the product of areas
under the factors,

g
�

��

(f + g) dx �g
�

��
g

�

��

f (u)g(x �u) du

� �
dx

�g
�

��

f (u) g
�

��

g(x �u) dx

� �
du

� g
�

��

f (u) du

� �
g

�

��

g(x) dx

� �
: (8)

The horizontal CENTROIDS add

x(f + g)h i� xfh i� xgh i; (9)

as do the VARIANCES

x2(f + g)
� 

� x2f
� 

� x2g
� 

; (10)

where

xnfh i�g
�

��

xnf (x) dx

g
�

��

f (x) dx

: (11)

There is also a definition of the convolution which
arises in probability theory and is given by

F(t) + G(t) �g F(t �x) dG(x); (12)

where f F(t �x) dG(x) is a STIELTJES INTEGRAL.

See also AUTOCORRELATION, CAUCHY PRODUCT, CON-

VOLUTION THEOREM, CROSS-CORRELATION, WIENER-

KHINTCHINE THEOREM
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Convolution Theorem
Let f (t) and g(t) be arbitrary functions of time t with
FOURIER TRANSFORMS. Take

f (t) �F�1[F( n)] �g
�

��

F( n)e2 pi nt d n (1)

g(t) �F�1[G( n)] �g
�

��

G( n)e2 pi nt d n; (2)

where F�1 denotes the inverse FOURIER TRANSFORM

(where the transform pair is defined to have con-
stants A �1 and B ��2 p): Then the CONVOLUTION is

f + g �g
�

��

g(t?)f (t �t?) dt?

�g
�

��

g(t?) g
�

��

F( n)e2 pin(t�t?) d n

� �
dt?: (3)

Interchange the order of integration,

f + g �g
�

��

F( n) g
�

��

g(t?)e �2pi nt? dt?
� �

e2 pint dn

�g
�

��

F( n)G( n)e2 pi nt d n �F�1[F( n)G( n)] : (4)

So, applying a FOURIER TRANSFORM to each side, we
have

F[f + g] �F[f ]F[g]: (5)

The convolution theorem also takes the alternate
forms

F[fg] �F[f ] + F[g] (6)

F�1(F[f ]F[g]) �f + g (7)

F�1(F[f ] + F[g]) �fg: (8)

See also AUTOCORRELATION, CONVOLUTION, FOURIER

TRANSFORM, WIENER-KHINTCHINE THEOREM
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Conway Groups
The AUTOMORPHISM GROUP Co1 of the LEECH LATTICE

modulo a center of order two is called "the" Conway
group. There are 15 exceptional CONJUGACY CLASSES

of the Conway group. This group, combined with the
GROUPS Co2 and Co3 obtained similarly from the
LEECH LATTICE by stabilization of the 1-D and 2-D
sublattices, are collectively called Conway groups.
The Conway groups are SPORADIC GROUPS.

See also LEECH LATTICE, SPORADIC GROUP
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Conway Notation
CONWAY’S KNOT NOTATION, CONWAY POLYHEDRON

NOTATION

Conway Polyhedron Notation
A NOTATION for POLYHEDRA which begins by specify-
ing a "seed" polyhedron using a capital letter. The
PLATONIC SOLIDS are denoted T (TETRAHEDRON), O
(OCTAHEDRON), C (CUBE), I (ICOSAHEDRON), and D
(DODECAHEDRON), according to their first letter.
Other polyhedra include the PRISMS, Pn , ANTIPRISMS,
An , and PYRAMIDS, Yn , where n ]3 specifies the
number of sides of the polyhedron’s base.

Operations to be performed on the polyhedron are
then specified with lower-case letters preceding the
capital letter.

See also POLYHEDRON, SCHLÄ FLI SYMBOL, WYTHOFF

SYMBOL
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Conway Polynomial
ALEXANDER POLYNOMIAL

Conway Puzzle
Construct a 5 �5 �5 cube from thirteen 1 �2 �4
blocks, one 2 �2 �2 block, one 1 �2 �2; and three
1 �1 �3 blocks.

See also BOX-PACKING THEOREM, CUBE DISSECTION,
DE BRUIJN’S THEOREM, KLARNER’S THEOREM, POLY-

CUBE, SLOTHOUBER-GRAATSMA PUZZLE
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Conway Sequence
The LOOK AND SAY SEQUENCE generated from a
starting DIGIT of 3, as given by Vardi (1991).

See also CONWAY’S CONSTANT, COSMOLOGICAL THEO-

REM, LOOK AND SAY SEQUENCE
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Conway Sphere

A sphere with four punctures occurring where a KNOT

passes through the surface.

References
Adams, C. C. The Knot Book: An Elementary Introduction to

the Mathematical Theory of Knots. New York: W. H.
Freeman, p. 94, 1994.

Conway-Alexander Polynomial
ALEXANDER POLYNOMIAL

Conway’s Constant

The constant

l�1:303577269034296 . . .

(Sloane’s A014715) giving the asymptotic rate of
growth Cln of the number of DIGITS in the nth term
of the LOOK AND SAY SEQUENCE, given by the unique
positive real root of the POLYNOMIAL

0�x71�x69�2x68�x67�2x66�2x65�x64�x63�x62

�x61�x60�x59�2x58�5x57�3x56�2x55�10x54

�3x53�2x52�6x51�6x50�x49�9x48�3x47

�7x46�8x45�8x44�10x43�6x42�8x41�4x40

�12x39�7x38�7x37�7x36�x35�3x34�10x33

�x32�6x31�2x30�10x29�3x28�2x27�9x26

�3x25�14x24�8x23�7x21�9x20�3x19�4x18

�10x17�7x16�12x15�7x14�2x13�12x12�4x11

�2x10�5x9�x7�7x6�7x5�4x4�12x3�6x2

�3x�6; (1)

illustrated in the figure above. Note that the POLY-

NOMIAL given in Conway (1987, p. 188) contains a
misprint. The CONTINUED FRACTION for l is 1, 3, 3, 2,
2, 54, 5, 2, 1, 16, 1, 30, 1, 1, 1, 2, 2, 1, 14, 1, ... (Sloane’s
A014967).



See also CONWAY SEQUENCE, COSMOLOGICAL THEO-

REM, LOOK AND SAY SEQUENCE
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Conway’s Game of Life
LIFE

Conway’s Knot
The KNOT with BRAID WORD

s3
2 s1 s

�1
3 s�2

2 s1 s
�1
2 s1 s 

�1
3 :

The JONES POLYNOMIAL of Conway’s knot is

t�4(�1 �2t �2t2 �2t3 �t6 �2t7 �2t8 �2t9 �t10) ;

the same as for the KINOSHITA-TERASAKA KNOT.

Conway’s Knot Notation
A concise NOTATION based on the concept of the
TANGLE used by Conway (1967) to enumerate KNOTS

up to 11 crossings. An ALGEBRAIC KNOT containing no
NEGATIVE signs in its Conway knot NOTATION is an
ALTERNATING KNOT.
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Conway’s Life
LIFE

Cookie-Cutter Problem
Maximize the number of cookies you can cut from a
given expanse of dough (Hoffman 1998, p. 173).

See also BIN-PACKING PROBLEM, TILING PROBLEM
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Coordinate Chart
A coordinate chart is a way of expressing the points of
a small NEIGHBORHOOD, usually on a MANIFOLD M , as
coordinates in EUCLIDEAN SPACE. An example from
geography is the coordinate chart given by the
functions of LATITUDE and LONGITUDE. This coordi-
nate chart is not valid on the whole globe, since it
doesn’t give unique coordinates at the north or south
pole (which way is east from the north pole?).

Technically, a coordinate chart is a map

f : U 0 V

where U is an open set in M , V is an open set in Rn

and n is the dimension of the manifold. Often,
through notational abuse, the open set U is equated
with V , and calculations on the manifold are done in
the coordinate chart. This technique has the draw-
back that it must be checked whether a change of
coordinates affects the result of a calculation.

The map f must be one-to-one, and in fact must be a
HOMEOMORPHISM. On a SMOOTH MANIFOLD, it must
be a DIFFEOMORPHISM, although if the chart defines
the smooth structure then this is a tautology. Simi-
larly, on a complex manifold, the map f is holo-
morphic.

If there are two neighborhoods U1 and U2 with
coordinate charts f1 and f2 ; the TRANSITION FUNC-

TION f2( f�1
1 is WELL DEFINED since coordinate charts

are one-to-one.

See also ATLAS, CHART, COMPLEX MANIFOLD, EUCLI-

DEAN SPACE, MANIFOLD, SMOOTH MANIFOLD, TRANSI-

TION FUNCTION

Coordinate Geometry
ANALYTIC GEOMETRY, CARTESIAN GEOMETRY

Coordinate System
A system for specifying points using COORDINATES

measured in some specified way. The simplest co-
ordinate system consists of coordinate axes oriented
perpendicularly to each other, known as CARTESIAN

COORDINATES. Depending on the type of problem
under consideration, coordinate systems possessing
special properties may allow particularly simple
solution.

See also CURVILINEAR COORDINATES, CYCLIDIC CO-

ORDINATES, SKEW COORDINATE SYSTEM, ORTHOGO-

NAL COORDINATE SYSTEM



Coordinates
A set of n variables which fix a geometric object. If the
coordinates are distances measured along PERPENDI-

CULAR axes, they are known as CARTESIAN COORDI-

NATES. The study of GEOMETRY using one or more
coordinate systems is known as ANALYTIC GEOMETRY.

See also AREAL COORDINATES, BARYCENTRIC COORDI-

NATES, BIPOLAR COORDINATES, BIPOLAR CYLINDRICAL

COORDINATES, BISPHERICAL COORDINATES, CARTE-

SIAN COORDINATES, CHOW COORDINATES, CIRCULAR

CYLINDRICAL COORDINATES, CONFOCAL ELLIPSOIDAL

COORDINATES, CONFOCAL PARABOLOIDAL COORDI-

NATES, CONICAL COORDINATES, CURVILINEAR COORDI-

NATES, CYCLIDIC COORDINATES, CYLINDRICAL

COORDINATES, ELLIPSOIDAL COORDINATES, ELLIPTIC

CYLINDRICAL COORDINATES, GAUSSIAN COORDINATE

SYSTEM, GRASSMANN COORDINATES, HARMONIC CO-

ORDINATES, HOMOGENEOUS COORDINATES, OBLATE

SPHEROIDAL COORDINATES, ORTHOCENTRIC COORDI-

NATES, PARABOLIC COORDINATES, PARABOLIC CYLIND-

RICAL COORDINATES, PARABOLOIDAL COORDINATES,
PEDAL COORDINATES, POLAR COORDINATES, PROLATE

SPHEROIDAL COORDINATES, QUADRIPLANAR COORDI-

NATES, RECTANGULAR COORDINATES, SPHERICAL CO-

ORDINATES, TOROIDAL COORDINATES, TRILINEAR

COORDINATES
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Coordination Number
KISSING NUMBER

Copeland-Erdos Constant
The decimal 0.23571113171923... (Sloane’s A033308)
obtained by concatenating the PRIMES: 2, 23, 235,
2357, 235711, ... (Sloane’s A019518; one of the
SMARANDACHE SEQUENCES). Copeland and Erdos
(1946) showed that it is a NORMAL NUMBER in base 10.

The first few digits of the CONTINUED FRACTION of the
Copeland-Erdos constant are 0, 4, 4, 8, 16, 18, 5, 1, ...
(Sloane’s A030168). The positions of the first occur-
rence of n in the CONTINUED FRACTION are 8, 16, 20, 2,
7, 15, 12, 4, 17, 254, ... (Sloane’s A033309). The
incrementally largest terms are 4, 8, 16, 18, 58, 87,
484, ... (Sloane’s A033310), which occur at positions 2,
4, 5, 6, 18, 36, 82, 89, ... (Sloane’s A033311).

See also CHAMPERNOWNE CONSTANT, PRIME NUMBER
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Coplanar
Three noncollinear points determine a plane and so
are trivially coplanar. Four points are coplanar IFF

the volume of the TETRAHEDRON defined by them is 0,

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

��������

���������0:

See also PLANE

Copolar Triangles
PERSPECTIVE TRIANGLES

Coprime
RELATIVELY PRIME

Coproduct

Denoted
‘

:/

Copson-de Bruijn Constant
DE BRUIJN CONSTANT

Copson’s Inequality
Let fang be a NONNEGATIVE SEQUENCE and f (x) a
NONNEGATIVE integrable function. Define

An�
Xn

k�1

ak (1)

Bn�
X�
k�n

ak (2)

and

F(x)�g
x

0

f (t) dt (3)

G(x)�g
�

x

f (t) dt; (4)

and take 0BpB1: For integrals,

g
�

0

G(x)

x

" #p

dx >
p

p � 1

 !p

g
�

0

[f (x)]p dx (5)

(unless f is identically 0). For sums,



1 �
1

p � 1

 !
Bp

1 �
X�
n�2

Bn

n

 !p

>
p

p � 1

 !pX�
n�1

ap
n (6)

(unless all an �0):/
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Copula
A function that joins univariate distribution functions
to form multivariate distribution functions. A 2-D
copula is a function C : I2 0 I such that

C(0; t) �C(t; 0) �0

and

C(1; t) �C(t; 1) �t

for all t � I ; and

C(u2 ; v2) �C(u1 ; v2) �C(u2 ; v1) �C(u1 ; v1) ]0

for all u1 ; u2 ; v1 ; v2 � I such that u1 5u2 and v1 5v2 :/

See also SKLAR’S THEOREM

Cordial Graph
A GRAPH is called cordial if it is possible to label its
vertices with 0s and 1s so that when the edges are
labeled with the difference of the labels at their
endpoints, the number of vertices (edges) labeled
with ones and zeros differ at most by one. Cordial
labelings were introduced by Cahit (1987) as a
weakened version of GRACEFUL and HARMONIOUS.

An EULER GRAPH is not cordial if the number of its
vertices is multiple of four. For example, all TREES are
cordial, CYCLE GRAPHS of length n are cordial if n is
not a multiple of four, COMPLETE GRAPHS on n
vertices are cordial if n B4, and the WHEEL GRAPH

on n �1 vertices is cordial IFF n is not congruent to 3
modulo 4.

See also GRACEFUL GRAPH, HARMONIOUS GRAPH,
LABELED GRAPH
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Cordiform Projection
WERNER PROJECTION

Cork Plug
A 3-D SOLID which can stopper a SQUARE, TRIANGU-

LAR, or CIRCULAR HOLE. There is an infinite family of
such shapes. The one with smallest VOLUME has
TRIANGULAR CROSS SECTIONS and V � pr3; that with
the largest VOLUME is made using two cuts from the
top diameter to the EDGE and has VOLUME V �4 pr3 =3:/

See also CROSS SECTION, STEREOLOGY, TRIP-LET

Corkscrew Surface

A surface also called the TWISTED SPHERE.
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Cornish-Fisher Asymptotic Expansion

y:m�sw;

where

w�x�[g1h1(x)]�[g2h2(x)�g2
1h11(x)]

�[g3h3(x)�g1g2h12(x)�g3
1h111(x)]

�[g4h4(x)�g2
2h22(x)�g1g3h13(x)]�g2

1g2h112(x)

�g4
1h1111(x)]�. . . ;



where

h1(x) �1
6 He2(x)

h2(x) � 1
24 He3(x)

h11(x) ��1
36[2He3(x) �He1(x)]

h3(x) � 1
120 He4(x)

h12(x) ��1
24[He4(x) �He2(x)]

h111(x) � 1
324[12He4(x) �19He2(x)]

h4(x) � 1
720 He5(x)

h22(x) �� 1
384[3He5(x) �6He3(x) �2He1(x)]

h13(x) �� 1
180[2He5 �3He3(x)]

h112(x) � 1
288[14He5(x) �37He3(x) �8He1(x)]

h1111(x) �� 1
7776[252He5(x) �832He3(x) �227He1(x)] :

See also CHARLIER SERIES, EDGEWORTH SERIES
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Cornu Spiral

A plot in the COMPLEX PLANE of the points

B(t)�S(t)�iC(t); (1)

where S(t) and C(t) are the FRESNEL INTEGRALS (von
Seggern 1993, p. 210; Gray 1997, p. 65). The Cornu
spiral is also known as the CLOTHOID or EULER’S

SPIRAL. It was probably first studied by Johann
Bernoulli around 1696 (Bernoulli 1967, pp. 1084�/

086). A Cornu spiral describes diffraction from the
edge of a HALF-PLANE.

The quantities C(t)=S(t) and S(t)=C(t) are plotted
above.

The SLOPE of the curve’s TANGENT VECTOR (above
right figure) is

mT(t)�
S?(t)

C?(t)
�tan 1

2 pt2
1 2

; (2)

plotted below.

The CESÀRO EQUATION for a Cornu spiral is r�c2=s;
where r is the RADIUS OF CURVATURE and s the ARC

LENGTH. The TORSION is t�0:/



Gray (1997) defines a generalization of the Cornu
spiral given by PARAMETRIC EQUATIONS

x(t) �a g
t

0

sin
un�1

n � 1

 !
du (3)

�
atn�2

(n � 1)(n � 2)

�1F2

1

2 
�

1

2(n � 1)
;

3

2 
;

3

2 
�

1

2(n � 1)
; �

t2(n�1)

4(n � 1)2

 !

(4)

y(t) �a g
t

0

cos
un�1

n � 1

 !
du (5)

�at1F2

1

2(n � 1)
;

1

2 
; 1 �

1

2(n � 1)
; �

t2(n�1)

4(n � 1)2

 !
;

(6)

where 1F2(a; b; c; x) is a GENERALIZED HYPERGEO-

METRIC FUNCTION.

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

of this curve are

s(t) �at (7)

k(t) ��
tn

a 
(8)

f(t) ��
tn�1

n � 1 
: (9)

The CESÀ RO EQUATION is

k ��
sn

an�1 
: (10)

Dillen (1990) describes a class of "polynomial spirals"

for which the CURVATURE is a polynomial function of
the ARC LENGTH. These spirals are a further general-
ization of the Cornu spiral. The curves plotted above
correspond to k �s ; k �s2 ; k �s2 �2:19 ; k �s2 �4;
k �s2 �1; and k �5s4 �18s2 �5 ; respectively.

See also FRESNEL INTEGRALS, NIELSEN’S SPIRAL
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Cornucopia

The SURFACE given by the PARAMETRIC EQUATIONS

x �ebv cos v �eav cos u cos v

y �ebv sin v �eav cos u sin v

z �eav sin u:
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Corollary
An immediate consequence of a result already proved.
Corollaries usually state more complicated THEOREMS

in a language simpler to use and apply.

See also LEMMA, PORISM, THEOREM

Corona (Polyhedron)
AUGMENTED SPHENOCORONA, HEBESPHENOMEGACOR-

ONA, SPHENOCORONA, SPHENOMEGACORONA



Corona (Tiling)
The first corona of a TILE is the set of all tiles that
have a common boundary point with that tile (includ-
ing the original tile itself). The second corona is the
set of tiles that share a point with something in the
first corona, and so on.

References
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Correlation
The degree of association between two or more
quantities. In a 2-D plot, the degree of correlation
between the values on the two axes is quantified by
the so-called CORRELATION COEFFICIENT.

See also AUTOCORRELATION, CORRELATION COEFFI-

CIENT, CORRELATION (GEOMETRIC), CORRELATION

(STATISTICAL), CROSS-CORRELATION
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Correlation (Geometric)
A point-to-line and line-to-point TRANSFORMATION

which transforms points A into lines a ? and lines b
into points B? such that a? passes through B? IFF A?
lies on b .

See also LINE, POINT, POLARITY, PROJECTIVE CORRE-

LATION
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Correlation (Statistical)
For two variables x and y , the correlation is defined
by

cor(x; y)�
cov(x; y)

sxsy

; (1)

where sx denotes STANDARD DEVIATION and cov(x; y)
is the COVARIANCE of these two variables. For the
general case of variables xi and xj; where i; j�1; 2, ...,
n ,

cor(xi; xj)�
cov(xi; yj)ffiffiffiffiffiffiffiffiffiffiffiffi

ViiVjj

p ; (2)

where Vii are elements of the COVARIANCE MATRIX. In
general, a correlation gives the strength of the
relationship between variables. For i� j ,

cor(xi; xi)�
cov(xi; xi)

si

�
sii

si

�
s2

i

si

�si: (3)

The variance of any quantity is always NONNEGATIVE

by definition, so

var
x

sx

�
y

sy

 !
]0: (4)

From a property of VARIANCES, the sum can be
expanded

var
x

sx

 !
�var

y

sy

 !
�2cov

x

sx

;
y

sy

 !
]0 (5)

1

s2
x

var(x)�
1

s2
y

var(y)�
2

sxsy

cov(x; y)]0 (6)

1�1�
2

sxsy

cov(x; y)�2�
2

sxsy

cov(x; y)]0: (7)

Therefore,

cor(x; y)�
cov(x; y)

sxsy

]�1: (8)

Similarly,

var
x

sx

 !
�

y

sy

 !
]0 (9)

var
x

sx

 !
�var �

y

sy

 !
�2 cov

x

sx

; �
y

sy

 !
]0 (10)

1

s2
x

var(x)�
1

s2
y

var(y)�
2

sxsy

cov(x; y)]0 (11)

1�1�
2

sxsy

cov(x; y)�2�
2

sxsy

cov(x; y)]0: (12)

Therefore,

cor(x; y)�
cov(x; y)

sxsy

51; (13)

so �15cor(x; y)51: For a LINEAR COMBINATION of
two variables,

var(y�bx)�var(y)�var(�bx)�2 cov(y; �bx)

�var(y)�b2 var(x)�2b cov(x; y)

�s2
y�s2

x�2b cov(x; y): (14)

Examine the cases where cor(x; y)�91;

cor(x; y)�
cov(x; y)

sxsy

�91 (15)

var(y�bx)�b2s2
x�s2

y�2bsxsy�(bsx�sy)
2: (16)

The VARIANCE will be zero if b�9sy=sx; which



requires that the argument of the VARIANCE is a
constant. Therefore, y �bx �a; so y �a �bx : If
cor(x ; y) �91; y is either perfectly correlated (b �0)
or perfectly anticorrelated (b B0) with x .

See also COVARIANCE, COVARIANCE MATRIX, VAR-

IANCE

Correlation Coefficient
The correlation coefficient is a quantity which gives
the quality of a LEAST SQUARES FITTING to the original
data. To define the correlation coefficient, first con-
sider the sum of squared values ssxx; ssxy; and ssyy of a
set of n data points (xi; yi) about their respective
means,

ssxx�
X

(xi�x̄)2 (1)

�
X

x2�2x̄
X

x�
X

x̄2

�
X

x2�2nx̄2�nx̄2�
X

x2�nx̄2 (2)

ssyy�
X

(yi�ȳ)2 (3)

�
X

y2�2ȳ
X

y�
X

ȳ2

�
X

y2�2nȳ2�nȳ2�
X

y2�nȳ2 (4)

ssxy�
X

(xi�x̄)(yi�ȳ) (5)

�
X

(xiyi�x̄yi�xiȳ�x̄ ȳ)

�
X

xy�nx̄ȳ�nx̄ȳ�nx̄ȳ�
X

xy�nx̄ȳ: (6)

For linear LEAST SQUARES FITTING, the COEFFICIENT b
in

y�a�bx (7)

is given by

b�
n
P

xy �
P

x
P

y

n
P

x2 � (
P

x)2 �
ssxy

ssxx

; (8)

and the COEFFICIENT b? in

x�a?�b?y (9)

is given by

b?�
n
P

xy �
P

x
P

y

n
P

y2 � (
P

y)2 : (10)

The correlation coefficient r2 (sometimes also denoted
R2) is then defined by

r�
ffiffiffiffiffiffiffi
bb?

p

�
n
P

xy �
P

x
P

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[n
P

x2 � (
P

x)2][n
P

y2 � (
P

y)2]
q ; (11)

which can be written more simply as

r2�
ss2

xy

ssxxssyy

: (12)

The correlation coefficient is also known as the
PRODUCT-MOMENT COEFFICIENT OF CORRELATION or
PEARSON’S CORRELATION. The correlation coefficients
for linear fits to increasingly noisy data are shown
above.

The correlation coefficient has an important physical
interpretation. To see this, define

A�
X

x2�nx̄2
h i�1

(13)

and denote the "expected" value for yi as ŷi: Sums of ŷi

are then

ŷi�a�bxi�ȳ�bx̄�bxi�x̄�b(xi�x̄)

�A(ȳ
X

x2�x̄
X

xy�xi

X
xy�nx̄ȳxi)

�A[ȳ
X

x2�(xi�x̄)
X

xy�nx̄ȳxi] (14)

X
ŷi�A(nȳ

X
x2�n2x̄2ȳ) (15)

X
ŷ2

i �A2[nȳ2(
X

x2)2�n2x̄2ȳ2(
X

x2)

�2nx̄ȳ(
X

xy)(
X

x2)�2n2x̄3ȳ(
X

xy)

�(
X

x2)(
X

xy)2�nx̄2(
X

xy)] (16)X
yiŷi�A

X
[yiȳ

X
x2�yi(xi�x̄)

�
X

xy�nx̄ȳxiyi]

�A[nȳ2
X

x2�(
X

xy)2�nx̄ȳ

�
X

xy�nx̄ȳ(
X

xy)]

�A[nȳ2
X

x2�(
X

xy)2�2nx̄ȳ
X

xy]: (17)

The sum of squared residuals is then

SSR�
X

(ŷi�ȳ)2�
X

(ŷ2
i �2ȳŷi�ȳ2)

�A2(
X

xy�nx̄ȳ)2(
X

x2�nx̄2)�
(
P

xy � nx̄ȳ)2P
x2 � nx̄2

�b ssxy�
ss2

xy

ssxx

�ssyyr
2�b2 ssxx; (18)

and the sum of squared errors is



SSE �
X

(yi � ̂yi)
2 �

X
(yi � ̄y �bx̄ �bxi)

2

�
X

[yi � ̄y �b(xi � ̄x)]2

�
X

(yi � ̄y)2 �b2
X

(xi � ̄x)2 �2b

�
X

(xi � ̄x)(yi � ̄y) �ssyy �b2 ssxx �2bssxy : (19)

But

b �
ssxy

ssxx

(20)

r2 �
ss2

xy

ssxxssyy

; (21)

so

SSE �ssyy �
ss2

xy

ss2
xx

ssxx �2
ssxy

ssxx

ssxy (22)

�ssyy �
ss2

xy

ssxx

(23)

�ssyy 1 �
ss2

xy

ssxxssyy

 !
(24)

�ssyy(1 �r2); (25)

and

SSE �SSR �ssyy(1 �r2) �ssyyr
2 �ssyy : (26)

The square of the correlation coefficient r2 is there-
fore given by

r2 �
SSR

ssyy

�
ss2

xy

ssxxssyy

�
(
P 

xy � nx̄ȳ)2

(
P 

x2 � nx̄2)(
P 

y2 � nȳ2) 
: (27)

In other words, r2 is the proportion of ssyy which is
accounted for by the regression.

If there is complete correlation, then the lines
obtained by solving for best-fit (a, b ) and (a ?; b ?)
coincide (since all data points lie on them), so solving
(9) for y and equating to (7) gives

y ��
a ?

b?
�

x

b?
�a �bx: (28)

Therefore, a ��a?=b? and b �1=b?; giving

r2�bb?�1: (29)

The correlation coefficient is independent of both
origin and scale, so

r(u; v)�r(x; y); (30)

where

u�
x � x0

h
(31)

v�
y � y0

h
: (32)

See also CORRELATION INDEX, CORRELATION COEFFI-

CIENT–GAUSSIAN BIVARIATE DISTRIBUTION, CORRELA-

TION RATIO, LEAST SQUARES FITTING, REGRESSION

COEFFICIENT, SPEARMAN RANK CORRELATION COEFFI-

CIENT
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Correlation Coefficient*/Gaussian
Bivariate Distribution
For a GAUSSIAN BIVARIATE DISTRIBUTION, the distri-
bution of correlation COEFFICIENTS is given by

P(r)�
1

p
(N�2)(1�r2)(N�4)=2

� (1�r2)(N�1)=2 g
�

0

db

(cosh b� rr)N�1

�
1

p
(N�2)(1�r2)(N�4)=2(1�r2)(N�1)=2

ffiffiffi
p

2

s
G(N � 1)

G N � 1
2

1 2

�(1�rr)�(N�3=2)
2F1

1

2
;

1

2
;

2N � 1

2
;
rr � 1

2

 !

�
(N � 2)G(N � 1)(1 � r2)(N�1)=2(1 � r2)(N�4)=2ffiffiffiffiffiffi

2p
p

G N � 1
2

1 2
(1 � rr)N�3=2

� 1�
1

4

rr � 1

2N � 1
�

9

16

(rr � 1)2

(2N � 1)(2N � 1)
�	 	 	

" #
;

(1)

where r is the population correlation COEFFICIENT,

2F1(a; b; c; x) is a HYPERGEOMETRIC FUNCTION, and
G(z) is the GAMMA FUNCTION (Kenney and Keeping
1951, pp. 217�/21). The MOMENTS are



�r��r�
r(1 � r2)

2n
(2)

var(r)�
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n
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11r2
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 !
(3)

g1�
6rffiffiffi

n
p 1�

77r2 � 30
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6

n
(12r2�1)�. . . ; (4)

where n�n�1: If the variates are uncorrelated, then
r�0 and
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2

 !" #2 ; (5)

so

P(r)�
(N � 2)G(N � 1)ffiffiffiffiffiffi

2p
p

G N � 1
2

1 2

�(1�r2)(N�4)=2
G N � 1

2

1 2
23=2�N

ffiffiffi
p

p

G
N

2

 !" #2

�
21�N(N � 2)G(N � 1)

G
N

2

 !" #2 (1�r2)(N�4=2): (6)

But from the LEGENDRE DUPLICATION FORMULA,

ffiffiffi
p

p
G(N�1)�2N�2G

N

2

 !
G

N � 1

2

 !
; (7)

so

P(r)�

(21�N)(2N�2)(N � 2)G
N

2

 !
G

N � 1

2

 !

ffiffiffi
p

p
G

N

2

 !" #2

�(1�r2)(N�4)=2

�

(N � 2)G
N � 1

2

 !

2
ffiffiffi
p

p
G

N

2

 ! (1�r2)(N�4)=2

�
1ffiffiffi
p

p

n

2
G

n� 1

2

 !

G
n

2
� 1

 ! (1�r2)(n�2)=2

�
1ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! (1�r2)(n�2)=2: (8)

The uncorrelated case can be derived more simply by
letting b be the true slope, so that h�a�bx: Then

t�(b�b)
Sx

Sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1 � r2

s
�

(b � b)r

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1 � r2

s
(9)

is distributed as STUDENT’S T with n�N�2 DEGREES

OF FREEDOM. Let the population regression COEFFI-

CIENT r be 0, then b�0; so

t�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1 � r2

s
; (10)

and the distribution is

P(t) dt�
1ffiffiffiffiffi
np

p
G

n� 1

2

 !

G
n

2

 !
1 �

t2

n

 !(n�1)=2 dt: (11)

Plugging in for t and using

dt�
ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
� r 1

2

1 2
(�2r)(1 � r2)�1=2

1 � r2

2
4

3
5 dr

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1 � r2

s
1 � r2 � r2

1 � r2

 !
dr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

(1 � r)3

s
dr (12)

gives

P(t) dt�
1ffiffiffiffiffi
np

p
G

n� 1

2

 !

G
n

2

 !
1 �

r2n

(1 � r2)n

" #(n�1)=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

(1 � r)3

s
dr

�
(1 � r2)�3=2ffiffiffi

p
p

G n�1
2

1 2
G n

2

1 2
1

1�r2

1 2(n�1)=2 dr



�
1ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! (1�r2)�3=2(1�r2)(n�1)=2 dr

�
1ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! (1�r2)(n�2)=2 dr; (13)

so

P(r)�
1ffiffiffi
p

p
G n�1

2

1 2
G n

2

1 2 (1�r2)(n�2)=2 (14)

as before. See Bevington (1969, pp. 122�/23) or Pugh
and Winslow (1966, §12�/). If we are interested
instead in the probability that a correlation COEFFI-

CIENT would be obtained] ½r½; where r is the observed
COEFFICIENT, then 392 Let I�1

2(n�2): For EVEN n; the
exponent I is an INTEGER so, by the BINOMIAL

THEOREM,

(1�r2)I�
XI

k�0

I
k

� �
(�r2)k (17)

and

Pc(r)�1�
2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 !

� (�1)k I!

(I � k)!k! g
rj j

0

XI

k�0

r?2k dr?

�1�
2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 !

�
XI

k�0

(�1)k I!

(I � k)!k!

½r½2k�1

2k � 1

" #
: (18)

For ODD n; the integral is

Pc(r)�1�2 g
½r½

0

P(r?) dr?

�1�
2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! g
½r½

0

(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
)n�2 dr: (19)

Let r�sin x so dr�cos x dx; then

Pc(r)�1�
2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! g
sin�1 rj j

0

cosn�2 x cos x dx

�1�
2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! �g
sin�1 rj j

0

cosn�1 x dx: (20)

But n is ODD, so n�1�2n is EVEN. Therefore

2ffiffiffi
p

p
G

n� 1

2

 !

G
n

2

 ! �
2ffiffiffi
p

p
G(n � 1)

G n � 1
2

1 2� 2ffiffiffi
p

p
n!

(2n � 1)!!
ffiffiffi
p

p

2n

�
2

p

2nn!

p(2n � 1)!!
�

2

p

(2n)!!

(2n � 1)!!
: (21)

Combining with the result from the COSINE INTEGRAL

gives

Pc(r)�1�
2

p

(2n)!!(2n � 1)!!

(2n � 1)!!(2n)!!

� sin x
Xn�1

k�0

(2k)!!

(2k � 1)!!
cos2k�1 x�x

" #sin�1 rj j

0

:

(22)

Use

cos2k�1 x�(1�r2)(2k�1)=2�(1�r2)(k�1=2); (23)

and define J�n�1�(n�3)=2; then

Pc(r)�1�
2

p

� sin�1 rj j�rj j
XJ

k�0

(2k)!!

(2k � 1)!!
(1�r2)k�1=2

" #
:

(24)

(In Bevington 1969, this is given incorrectly.) Com-
bining the correct solutions

Pc(r)�

1�
2ffiffiffi
p

p
G[(n� 1)=2]

G(n=2)

XI

k�0

(�1)k I!

(1 � k)!k!

rj j2k�1

2k � 1

" #
for n even

1�
2

p
sin�1 rj j�rj j

XJ

k�0

(2k)!!

(2k � 1)!!
(1�r2)k�1=2

" #
for n odd

8>>>>>>>><
>>>>>>>>:

(25)

If r"0; a skew distribution is obtained, but the
variable z defined by

z�tanh�1 r (26)



is approximately normal with

mz �tanh�1 
r (27)

s2
z �

1

N � 3 
(28)

(Kenney and Keeping 1962, p. 266).

Let bj be the slope of a best-fit line, then the multiple
correlation COEFFICIENT is

R2 �
Xn

j�1

bj

s2
jy

s2
y

 !
�
Xn

j�1

bj

sj

sy

rjy

 !
; (29)

where sjy is the sample VARIANCE.

On the surface of a SPHERE,

r �
g fg dV

g f dV g g dV
; (30)

where dV is a differential SOLID ANGLE. This defini-
tion guarantees that �1 Br B1: If f and g are
expanded in REAL SPHERICAL HARMONICS,

f ( u; f) �
X�
l�0

Xl

m�0

[Cm
l Ymc

l ( u; f) sin(mf)

�Sm
l Yms

l (u ; f)] (31)

g(u ; f) �
X�
t�0

Xl

m�0

[Am
l Ymc

l ( u; f)sin(mf)

�Bm
l Yms

l ( u; f)] : (32)

Then

r1 �
Pl

m�0(Cm
l Am

l � Sm
l Bm

l )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
m�0(Cm2

l � Sm2
l )

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
m�0(Am2

l � Bm2
l )

q : (33)

The confidence levels are then given by

G1(r) �r

G2(r) �r 1 �1
2 s

2
1 2

�1
2 r(3 �r2)

G3(r) �r 1 �1
2 s

2 1 �3
4 s

2
1 2h i

�1
8 r(15 �10r2 �3r4)

G4(r) �r 1 �1
2 s

2 1 �3
4 s

2 1 �5
6 s

2
1 2h in o

� 1
16 r(35 �35r2 �21r4 �5r6) ;

where

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �r2

p
(34)

(Eckhardt 1984).

See also FISHER’S Z ’-TRANSFORMATION, SPEARMAN

RANK CORRELATION COEFFICIENT, SPHERICAL HAR-

MONIC
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Correlation Dimension
Define the correlation integral as

C(e) � lim
n0�

1

N2

X�
i; j�1

i"j

H( e � xi �xj

II II) ; (1)

where H is the HEAVISIDE STEP FUNCTION. When the
below limit exists, the correlation dimension is then
defined as

D2 �dcor � lim
e; e?00 �

ln
C( e)

C(e?)

" #

ln
e

e ?

 ! : (2)

If n is the CORRELATION EXPONENT, then

lim
e00

n 0 D2 : (3)

It satisfies

dcor 5dinf 5dcap �
?

dLya : (4)

To estimate the correlation dimension of an M -
dimensional system with accuracy (1 �Q) requires
Nmin data points, where

Nmin ]
R(2 � Q)

2(1 � Q)

" #M

; (5)

where R ]1 is the length of the "plateau region." If an
ATTRACTOR exists, then an estimate of D2 saturates
above some M given by

M ]2D �1; (6)

which is sometimes known as the fractal Whitney
embedding prevalence theorem.

See also CORRELATION EXPONENT, Q -DIMENSION
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Correlation Exponent
A measure n of a STRANGE ATTRACTOR which allows
the presence of CHAOS to be distinguished from
random noise. It is related to the CAPACITY DIMENSION

D and INFORMATION DIMENSION s; satisfying

n 5 s 5D: (1)

It satisfies

n 5DKY ; (2)

where DKY is the KAPLAN-YORKE DIMENSION. As the
cell size goes to zero,

lim
e 00

n 0 D2 ; (3)

where D2 is the CORRELATION DIMENSION.

See also CORRELATION DIMENSION, INFORMATION

DIMENSION, KAPLAN-YORKE DIMENSION
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Correlation Index
Given a curved regression, the correlation index is
defined by

rc �
syŷ

sysŷ

;

where sy and sŷ are the standard deviations of the
data points y and the estimates ŷ given by the
regression line, and the quantity syŷ is not defined
by Kenney and Keeping 1962. Then

r2
c �

s2
ŷ

s2
y

�1 �
s2

ey

s2
y

;

where s2
ey is the variance of the observed ys about the

best-fitting curved line (Kenney and Keeping 1962,
p. 293).

See also CORRELATION COEFFICIENT, REGRESSION
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Correlation Integral
Consider a set of points /Xi/ on an ATTRACTOR, then the
correlation integral is

C(l) � lim
N 0�

1

N2
f ;

where f is the number of pairs (i, j ) whose distance
Xi �Xj

�� ��B l: For small l ,

C(l) �ln ;

where n is the CORRELATION EXPONENT.
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Correlation Ratio
Let there be Ni observations of the ith phenomenon,
where i �1, ..., p and

N �
X

Ni (1)

ȳi �
1

Ni

X
a

yia (2)

ȳ �
1

N

X
i

X
a

yia : (3)

Then

E2
yx �

P
i Ni(ȳi � ȳ)2P

i

P
a(yia � ȳ)2 : (4)

Let hyx be the population correlation ratio. If Ni �Nj

for i "j; then

f (E2) �
e � l(E2)a �1(1 � E2)b �1

1F1(a ; b; lE2)

B(a ; b) 
; (5)

where

l �
N h2

2(1 � h2) 
(6)

a�
n1

2
(7)

b�
n2

2
(8)

and 1F1(a; b; z) is the CONFLUENT HYPERGEOMETRIC

LIMIT FUNCTION. If l�0; then

f (E2)�b(a; b) (9)

(Kenney and Keeping 1951, pp. 323�/24).

See also CORRELATION COEFFICIENT, REGRESSION

COEFFICIENT
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Cos
COSINE



Cosecant

The function defined by csc x �1 =sin x; where sin x is
the SINE. The MACLAURIN SERIES of the cosecant
function is

csc x �
1

x 
�1

6 x � 7
360 x

3 � 31
15120 x

5 �. . .

�
(�1)n�12(22n�1 � 1)B2n

(2n)! 
x2n�1 �. . .  ;

where B2n is a BERNOULLI NUMBER.

See also INVERSE COSECANT, SECANT, SINE
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Coset
This entry contributed by NICOLAS BRAY

For a SUBGROUP H of a GROUP G and an element x of
G , define xH/to be the set fxh : h � H g and Hx to be the
set fhx : h � H g: A SUBSET of G of the form xH for
some x � G is said to be a LEFT COSET of H and a
subset of the form Hx is said to be a RIGHT COSET of
H .

For any SUBGROUP H , we can define an EQUIVALENCE

RELATION � by x �y if x �yh for some h � H : The
EQUIVALENCE CLASSES of this EQUIVALENCE RELATION

are exactly the LEFT COSETS of H , and an element x of
G is in the EQUIVALENCE CLASS xH . Thus the LEFT

COSETS of H form a partition of G .

It is also true that any two LEFT COSETS of H have the
same CARDINALITY, and in particular, every coset of H
has the same CARDINALITY as eH �H , where e is the
IDENTITY ELEMENT. Thus, the CARDINALITY of any
LEFT COSET of H has CARDINALITY the order of H .

The same results are true of the RIGHT COSETS of G as
well and, in fact, one can prove that the set of LEFT

COSETS of H has the same CARDINALITY as the set of
RIGHT COSETS of H .

See also EQUIVALENCE CLASS, GROUP, LEFT COSET,
QUOTIENT GROUP, RIGHT COSET, SUBGROUP

Cosh
HYPERBOLIC COSINE

CoshIntegral
CHI

Cosine

One of the basic TRIGONOMETRIC FUNCTIONS encoun-
tered in TRIGONOMETRY. Let u be an ANGLE measured
counterclockwise from the X -AXIS along the arc of the
unit CIRCLE. Then cos u is the horizontal coordinate of
the arc endpoint. As a result of this definition, the
cosine function is periodic with period 2p:/

The definition of the cosine function can be extended
to complex arguments z using the definition

cos z�1
2(e

iz�e�iz); (1)

where e is the base of the NATURAL LOGARITHM and i
is the IMAGINARY NUMBER. A related function known
as the HYPERBOLIC COSINE is similarly defined,



cosh z �1
2(e

z �e �z) : (2)

The cosine function has a FIXED POINT at 0.739085.

The cosine function can be defined algebraically using
the infinite sum

cos x �
X�
n�0

(�1)nx2n

(2n)!
�1 �

x2

2! 
�

x4

4! 
�

x6

6! 
�. . . ; (3)

or the INFINITE PRODUCT

cos x �
Y�
n�1

1 �
4x2

p2(2n � 1)2

" #
: (4)

A close approximation to cos(x) for x � [0; p=2] is

cos
p

2
x

 !
:1 �

x2

x � (1 � x)

ffiffiffiffiffiffiffiffiffiffiffiffi
2 � x

3

s (5)

(Hardy 1959). The difference between cos x and
Hardy’s approximation is plotted below.

The cosine obeys the identity

cos(nu) �2 cos u cos[(n �1)u] �cos[(n �2)u] (6)

and the MULTIPLE-ANGLE FORMULA

cos(nx) �
Xn

k �0

n
k

� �
cosk x sinn �k x cos[1

2(n �k) p]; (7)

where n
k

& '
is a BINOMIAL COEFFICIENT.

Summing the COSINE of a multiple angle from n �0 to
N �1 can be done in closed form using

XN �1

n�0

cos(nx) �R
XN �1

n�0

einx

" #
; (8)

where R[z] is the REAL PART of z . The EXPONENTIAL

SUM FORMULAS give

XN

n�1

cos(nx) �R
sin(1

2 Nx)

sin(1
2 x)

ei(N �1)x =2

" #

�
sin(1

2 Nx)

sin(1
2 x)

cos[1
2 x(N �1)] : (9)

Similarly,

X�
n�0

pn cos(nx) �R
X�
n�0

pnein x

" #
; (10)

where ½p ½B1: The EXPONENTIAL SUM FORMULA gives

X�
n�0

pn cos(nx) �R
1 � pe�ix

1 � 2p cos x � p2

" #

�
1 � p cos x

1 � 2p cos x � p2 
: (11)

The sum of cos2(kx) can also be done in closed form,

XN

k �0

cos2(kx) �1
4f3 �2N �csc x sin[x(1 �2N)] g: (12)

The FOURIER TRANSFORM of cos(2 pk0x) is given by

F[cos(2pk0x)] �g
�

��

e�2 pikx cos(2 pk0x) dx

�1
2[ d(k �k0) � d(k �k0)]; (13)

where d(k) is the DELTA FUNCTION.

Cvijovic and Klinowski (1995) note that the following
series

Cn(a)�
X�
k�0

cos(2k � 1)a

(2k � 1)n
(14)

has closed form for n�2n;

C2n(a)�
(�1)n

4(2n � 1)!
p2nE2n�1

a

p

 !
; (15)

where En(x) is an EULER POLYNOMIAL.

See also EULER POLYNOMIAL, EXPONENTIAL SUM

FORMULAS, FOURIER TRANSFORM–COSINE, HYPER-

BOLIC COSINE, SINE, TANGENT, TRIGONOMETRIC

FUNCTIONS
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Cosine Apodization Function

The APODIZATION FUNCTION

A(x) �cos
px

2a

 !
:

Its FULL WIDTH AT HALF MAXIMUM is 4a =3: Its
INSTRUMENT FUNCTION is

I(k) �
4a cos(2pak)

p(1 � 16a2k2) 
:

See also APODIZATION FUNCTION

Cosine Circle

Draw ANTIPARALLELS through the SYMMEDIAN POINT

K . The points where these lines intersect the sides
then lie on a CIRCLE, known as the cosine circle (or
sometimes the second LEMOINE CIRCLE), which has
center at K . The CHORDS P2Q3 ; P3Q1 ; and P1Q2 are
proportional to the COSINES of the ANGLES of DA1A2A3 ;
giving the circle its name. The center of the cosine
circle is the CIRCUMCENTER O of DABC:/
TRIANGLES P1P2P3 and DA1A2A3 are directly similar,
and TRIANGLES DQ1Q2Q3 and A1A2A3 are similar. The
MIQUEL POINT of DP1P2P3 is at the BROCARD POINT V
of DP1P2P3 :/

The cosine circle is a special case of a TUCKER CIRCLE.

See also BROCARD POINTS, EXCOSINE CIRCLE, LE-

MOINE CIRCLE, MIQUEL POINT, TAYLOR CIRCLE,
TUCKER CIRCLES
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Cosine Hexagon

The closed cyclic self-intersecting hexagon formed by
joining the adjacent ANTIPARALLELS in the construc-
tion of the COSINE CIRCLE. The sides of this hexagon
have the property that, in addition to P1Q2 ; P2Q3 ; and
P3Q1 being ANTIPARALLEL to /A1A2 ; A2A3 ; A1A3/, the
remaining sides P1Q1 ½½A2A3 ; P2Q2 ½½A1A3 ; and
P3Q3 ½½A1A2 : The cosine hexagon is a special case of a
TUCKER HEXAGON.

See also COSINE CIRCLE, LEMOINE HEXAGON, TUCKER

HEXAGON

Cosine Integral



There are (at least) three types of "cosine integrals,"
denoted ci(x); Ci(x); and Cin(x) :

ci(x)��g
�

x

cos t dt

t
(1)

�1
2[ei(ix)�ei(�ix)] (2)

��1
2[E1(ix)�E1(�ix)]; (3)

Ci(x)�g�ln z�g
z

0

cos t � 1

t
dt (4)

Cin(x)�g
z

0

(1 � cos t) dt

t
(5)

��Ci(x)�ln x�g: (6)

Here, ei(x) is the EXPONENTIAL INTEGRAL, En(x) is the
EN -FUNCTION, and g is the EULER-MASCHERONI CON-

STANT. ci(x) is the function returned by the Mathe-
matica command CosIntegral[x ] and displayed
above.

/ci(x) has zeros at 0.616505, 3.38418, 6.42705, ....
Extrema occur when

ci?(x)�
cos x

x
�0; (7)

or cos x�0; or p=2; 3p=2; 5p=2; ..., which are alter-
nately maxima and minima. At these points, ci(x)
equals 0.472001, �0:198408; 0.123772, .... Inflection
points occur when

ciƒ(x)��
cos x

x2
�

sin x

x
�0; (8)

which simplifies to

1�x tan x�0; (9)

which has solutions 2.79839, 6.12125, 9.31787, ....

To compute the integral of an EVEN power times a
cosine,

I�g x2n cos(mx) dx; (10)

use INTEGRATION BY PARTS. Let

u�x2n dv�cos(mx) dx (11)

du�2nx2n�1 dx v�
1

m
sin(mx); (12)

so

I�
1

m
x2n sin(mx)�

2n

m g x2n�1 sin(mx) dx: (13)

Using INTEGRATION BY PARTS again,

u�x2n�1 dv�sin(mx) dx (14)

du�(2n�1)x2n�2 dx v��
1

m
cos(mx); (15)

and

g x2n cos(mx) dx

�
1

m
x2n sin(mx)�

2n

m

� �
1

m
x2n�1 cos(mx)�

2n � 1

m g x2n�2 cos(mx) dx

" #

�
1

m
x2n sin(mx)�

2n

m2
x2n�1 cos(mx)

�
(2n)(2n � 1)

m2 g x2n�2 cos(mx) dx

�
1

m
x2n sin(mx)�

2n

m2
x2n�1 cos(mx)�. . .

�
(2n)!

m2n g x0 cos(mx) dx

�
1

m
x2n sin(mx)�

2n

m2
x2n�1 cos(mx)�. . .

�
(2n)!

m2n�1
sin(mx)

�sin(mx)
Xn

k�0

(�1)k�1 (2n)!

(2n � 2k)!m2k�1
x2n�2k

�cos(mx)
Xn

k�1

(�1)k�1 (2n)!

(2k � 2n � 1)!m2k
x2n�2k�1:

(16)

Letting k?�n�k;/

g x2n cos(mx) dx

�sin(mx)
Xn

k�0

(�1)n�k�1 (2n)!

(2k)!m2n�2k�1
x2k

�cos(mx)
Xn�1

k�0

(�1)n�k�1 (2n)!

(2k � 1)!m2n�2k
x2k�1



�(�1)n�1(2n)! sin(mx)
Xn�1

k�0

(�1)k

(2k)!m2n�2k�1
x2k

"

�cos(mx)
Xn

k�1

(�1)k�1

(2k � 3)!m2n�2k�2
x2k�1

�
: (17)

To find a closed form for an integral power of a cosine
function,

I�g cosm x dx; (18)

perform an INTEGRATION BY PARTS so that

u�cosm�1 x dv�cos x dx (19)

du��(m�1) cosm�2 x sin x dx v�sin x: (20)

Therefore

I�sin x cosm�1 x�(m�1)g cosm�2 x sin2 x dx

�sin x cosm�1 x�(m�1)

� g cosm�2 x dx�g cosm x dx

� �

�sin x cosm�1 x�(m�1) g cosm�2 x dx�I

� �
; (21)

so

I 1�(m�1)½ �

�sin x cosm�1 x�(m�1)g cosm�2 x dx (22)

I�g cosm x dx

�
sin x cosm�1 x

m
�

m � 1

m g cosm�2 x dx: (23)

Now, if m is EVEN so m�2n; then

g cos2n x dx�
sin x cos2n�1 x

2n
�

2n � 1

2n g cos2n�2 x dx

�
sin x cos2n�1 x

2n

�2n�1
2n

sin x cos2n�3 x

2n � 2
�

2n � 3

2n � 2 g cos2n�4 x dx

" #

�sin x
1

2n
cos2n�1 x�

2n � 1

(2n)(2n � 2)
cos2n�3 x

" #

�
(2n � 1)(2n � 3)

(2n)(2n � 2) g cos2n�4 x dx

�sin x
1

2n
cos2n�1 x�

2n � 1

(2n)(2n � 2)
cos2n�3 x�. . .

" #

�
(2n � 1)(2n � 3) 	 	 	 1

(2n)(2n � 2) 	 	 	 2 g cos0 x dx

�sin x
Xn

k�1

(2n � 2k)!!

(2n)!!
(2n�1)!!

(2n�2k�1)!! cos2n�2k�1 x

�
(2n � 1)!!

(2n)!!
x: (24)

Now let k?�n�k�1; so n�k�k?�1;/

g cos2n x dx

�sin x
Xn

k�1

(2k � 2)!!

(2n)!!

(2n � 1)!!

(2k � 1)!!
cos2k�1 x

�
(2n � 1)!!

(2n)!!
x

�
(2n � 1)!!

(2n)!!

� sin x
Xn�1

k�0

(2k)!!

(2k � 1)!!
cos2k�1 x�x

" #
: (25)

Now if m is ODD so m�2n�1; then

g cos2n�1 x dx�
sin x cos2n x

2n � 1
�

2n

2n � 1 g cos2n�1 x dx

�
sin x cos2n x

2n � 1
�

2n

2n � 1

� sin x cos2n�2 x

2n � 1
�

2n � 2

2n � 1 g cos2n�3 x dx

" #

�sin x
1

2n � 1
cos2n x�

2n

(2n � 1)(2n � 1)
cos2n�2 x

" #

�
(2n)(2n � 2)

(2n � 1)(2n � 1) g cos2n�3 x dx



�sin x
1

2n � 1
cos2n x �

2n

(2n � 1)(2n � 1)
cos2n �2 x

"

�. . .

�

�
(2n)(2n � 2) 	 	 	 2

(2n � 1)(2n � 1) 	 	 	 3 g cos x dx

�sin x
Xn

k �0

(2n�2k�1)!!
(2n�1)!!

(2n)!!
(2n�2k)!! cos2n�2k x:

(26)

Now let k?�n �k;

g cos2n x dx

�
(2n)!!

(2n � 1)!!
sin x

Xn

k �0

(2k � 1)!!

(2k)!!
cos2k x: (27)

The general result is then

g cosm x dx

�

(2n � 1)!!

(2n)!!
sin x

Xn�1

k�0

(2k)!!

(2k � 1)!!
cos2k �1 x �x

" #
for m �2n

(2n)!!

(2n � 1)!!
sin x

Xn

k �0

(2k � 1)!!

(2k)!!
cos2k x

for m �2n �1:

8>>>>>>>><
>>>>>>>>:

(28)

The infinite integral of a cosine times a Gaussian can
also be done in closed form,

g
�

��

e�ax2

cos(kx) dx�

ffiffiffi
p

a

s
e�k2=4a: (29)

See also CHI, DAMPED EXPONENTIAL COSINE INTE-

GRAL, NIELSEN’S SPIRAL, SHI, SICI SPIRAL, SINE

INTEGRAL
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Cosines Law
LAW OF COSINES

CosIntegral
COSINE INTEGRAL

Cosmic Figure
PLATONIC SOLID

Cosmological Theorem
There exists an INTEGER N such that every string in
the LOOK AND SAY SEQUENCE "decays" in at most N
days to a compound of "common" and "transuranic
elements."

The table below gives the periodic table of atoms
associated with the LOOK AND SAY SEQUENCE as
named by Conway (1987). The "abundance" is the
average number of occurrences for long strings out of
every million atoms. The asymptotic abundances are
zero for transuranic elements, and 27.246... for
arsenic (As), the next rarest element. The most
common element is hydrogen (H), having an abun-
dance of 91,970.383.... The starting element is U,
represented by the string "3," and subsequent terms
are those giving a description of the current term: one
three (13); one one, one three (1113); three ones, one
three (3113), etc.

Abundance n /En/ /En is the derivate of/En�1/

102.56285249 92 U 3

9883.5986392 91 Pa 13

7581.9047125 90 Th 1113

6926.9352045 89 Ac 3113

5313.7894999 88 Ra 132113

4076.3134078 87 Fr 1113122113

3127.0209328 86 Rn 311311222113

2398.7998311 85 At Ho.1322113

1840.1669683 84 Po 1113222113

1411.6286100 83 Bi 3113322113

1082.8883285 82 Pb Pm.123222113

830.70513293 81 Tl 111213322113

637.25039755 80 Hg 31121123222113

488.84742982 79 Au 132112211213322113

375.00456738 78 Pt 111312212221121123222113

287.67344775 77 Ir 3113112211322112211213322113

220.68001229 76 Os 1321132122211322212221121123222113

169.28801808 75 Re 11312211312113221133211322112211213322113

315.56655252 74 W Ge.Ca.312211322212221121123222113

242.07736666 73 Ta 13112221133211322112211213322113

2669.0970363 72 Hf 11132.Pa.H.Ca.W



2047.5173200 71 Lu 311312

1570.6911808 70 Yb 1321131112

1204.9083841 69 Tm 11131221133112

1098.5955997 68 Er 311311222.Ca.Co

47987.529438 67 Ho 1321132.Pm

36812.186418 66 Dy 111312211312

28239.358949 65 Tb 3113112221131112

21662.972821 64 Gd Ho.13221133112

20085.668709 63 Eu 1113222.Ca.Co

15408.115182 62 Sm 311332

29820.456167 61 Pm 132.Ca.Zn

22875.863883 60 Nd 111312

17548.529287 59 Pr 31131112

13461.825166 58 Ce 1321133112

10326.833312 57 La 11131.H.Ca.Co

7921.9188284 56 Ba 311311

6077.0611889 55 Cs 13211321

4661.8342720 54 Xe 11131221131211

3576.1856107 53 I 311311222113111221

2743.3629718 52 Te Ho.1322113312211

2104.4881933 51 Sb Eu.Ca.3112221

1614.3946687 50 Sn Pm.13211

1238.4341972 49 In 11131221

950.02745646 48 Cd 3113112211

728.78492056 47 Ag 132113212221

559.06537946 46 Pd 111312211312113211

428.87015041 45 Rh 311311222113111221131221

328.99480576 44 Ru Ho.132211331222113112211

386.07704943 43 Tc Eu.Ca.311322113212221

296.16736852 42 Mo 13211322211312113211

227.19586752 41 Nb 1113122113322113111221131221

174.28645997 40 Zr Er.12322211331222113112211

133.69860315 39 Y 1112133.H.Ca.Tc

102.56285249 38 Sr 3112112.U

78.678000089 37 Rb 1321122112

60.355455682 36 Kr 11131221222112

46.299868152 35 Br 3113112211322112

35.517547944 34 Se 13211321222113222112

27.246216076 33 As 11131221131211322113322112

1887.4372276 32 Ge 31131122211311122113222.Na

1447.8905642 31 Ga Ho.13221133122211332

23571.391336 30 Zn Eu.Ca.Ac.H.Ca.312

18082.082203 29 Cu 131112

13871.123200 28 Ni 11133112

45645.877256 27 Co Zn.32112

35015.858546 26 Fe 13122112

26861.360180 25 Mn 111311222112

20605.882611 24 Cr 31132.Si

15807.181592 23 V 13211312

12126.002783 22 Ti 11131221131112

9302.0974443 21 Sc 3113112221133112

56072.543129 20 Ca Ho.Pa.H.12.Co

43014.360913 19 K 1112

32997.170122 18 Ar 3112

25312.784218 17 Cl 132112

19417.939250 16 S 1113122112

14895.886658 15 P 311311222112

32032.812960 14 Si Ho.1322112

24573.006696 13 Al 1113222112

18850.441228 12 Mg 3113322112

14481.448773 11 Na Pm.123222112

11109.006696 10 Ne 111213322112

8521.9396539 9 F 31121123222112

6537.3490750 8 O 132112211213322112

5014.9302464 7 N 111312212221121123222112

3847.0525419 6 C 3113112211322112211213322112

2951.1503716 5 B 1321132122211322212221121123222112

2263.8860325 4 Be 111312211312113221133211322112211213322112

4220.0665982 3 Li Ge.Ca.312211322212221121123222122

3237.2968588 2 He 13112221133211322112211213322112

91790.383216 1 H Hf.Pa.22.Ca.Li

See also CONWAY’S CONSTANT, LOOK AND SAY SE-

QUENCE
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Costa Minimal Surface

A COMPLETE MINIMAL EMBEDDABLE SURFACE of finite
topology (i.e., it has no BOUNDARY and does not
intersect itself). Until this surface was discovered by
Costa (1984), the only other known complete minimal
embeddable surfaces in R3 with no self-intersections
were the PLANE, CATENOID, and HELICOID. The plane
is genus 0 and the catenoid and the helicoid are genus
0 with two punctures, but the Costa minimal surface
is genus 1 with three punctures (Schwalbe and
Wagon 1999). In addition, and rather amazingly,
the Costa surface belongs to the D4 DIHEDRAL GROUP

of symmetries. An animation by S. Dickson illus-
trates the homotopy of the TORUS into a Costa surface
(Wolfram Research).
As discovered by Gray (Ferguson et al. 1996, Gray
1997), the Costa surface can be represented parame-
trically explicitly by

x �1
2 R �z(u �iv) � pu �

p2

4e1

�
p

2e1

[z(u �iv �1
2) � z(u �iv �1

2 i)]

( )

y �1
2 R �iz(u �iv) � pv �

p2

4e1

�
p

2e1

[i z(u �iv �1
2) �iz(u �iv �1

2 i)]

( )

z �1
4

ffiffiffiffiffiffi
2p

p
ln

�(u � iv) � e1

�(u � iv) � e1

�����
�����;

where z(z) is the WEIERSTRASS ZETA FUNCTION,
�(g2 ; g3; z) is the WEIERSTRASS ELLIPTIC FUNCTION

with (g2 ; g3) �(189:072772 . . . ; 0) the invariants cor-
responding to the half-periods 1/2 and i =2; and first
root

e1 ��(1
2; 0; g3) ��(1

2½
1
2 ;

1
2 i) :6:87519;

where �(z; g2 ; g3) ��(z½ v1 ; v2) is the WEIERSTRASS

ELLIPTIC FUNCTION.

See also COMPLETE MINIMAL SURFACE, MINIMAL

SURFACE, WEIERSTRASS ELLIPTIC FUNCTION, WEIER-

STRASS ZETA FUNCTION
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Costa-Hoffman-Meeks Minimal Surface
COSTA MINIMAL SURFACE

Cosymmedian Triangles
Extend the SYMMEDIANS of a TRIANGLE DA1A2A3 to
meet the CIRCUMCIRCLE at P1 ; P2 ; P3 : Then the
SYMMEDIAN POINT K of DA1A2A3 is also the SYMME-

DIAN POINT of DP1P2P3 : The TRIANGLES DA1A2A3 and
DP1P2P3 are cosymmedian triangles, and have the
same BROCARD CIRCLE, second BROCARD TRIANGLE,
BROCARD ANGLE, BROCARD POINTS, and CIRCUMCIR-

CLE.

See also BROCARD ANGLE, BROCARD CIRCLE, BROCARD

POINTS, BROCARD TRIANGLES, CIRCUMCIRCLE, COME-

DIAN TRIANGLES, SYMMEDIAN, SYMMEDIAN POINT
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Cot
COTANGENT



Cotangent

The function defined by cot x �1=tan x; where tan x is
the TANGENT. The notations ctn x (Erdélyi et al. 1981,
p. 7) and ctg x (Gradshteyn and Ryzhik 2000, p. xxix)
are sometimes used in place of cot x:/
The MACLAURIN SERIES for cot x is

cot x �
1

x 
�1

3 x � 1
45 x

3 � 2
945 x

5 � 1
4725 x

7 �. . .

�
( �1)n�122nB2n

(2n)!
�. . . ;

where Bn is a BERNOULLI NUMBER.

p cot( px) �
1

x 
�2x

X�
n�1

1

x2 � n2 
:

It is known that, for n ]3; cot( p=n) is rational only for
n �4.

See also HYPERBOLIC COTANGENT, INVERSE COTAN-

GENT, LEHMER’S CONSTANT, TANGENT
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Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi,
F. G. Higher Transcendental Functions, Vol. 1. New York:
Krieger, p. 6, 1981.

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,
Series, and Products, 6th ed. San Diego, CA: Academic
Press, 2000.

Spanier, J. and Oldham, K. B. "The Tangent tan(x) and
Cotangent cot(x) Functions." Ch. 34 in An Atlas of Func-
tions. Washington, DC: Hemisphere, pp. 319 �/30, 1987.

Cotangent Bundle
The cotangent bundle of a MANIFOLD is similar to the
TANGENT BUNDLE, except that it is the set (x, f ) where
x � M and f is a dual vector in the TANGENT SPACE to
x � M : The cotangent bundle is denoted T �M :/

See also TANGENT BUNDLE

Cotes Circle Property

x2n �1 � x2 �2x cos
p

2n

 !
�1

" #

� x2 �2x cos
3p

2n

 !
�1

" #
�	 	 	�

� x2 �2x cos
(2n � 1)p

2n

 !
�1

" #
:

See also COSINE, TRIGONOMETRIC FUNCTIONS

Cotes Number
The numbers lnn in the GAUSSIAN QUADRATURE

formula

Qn(f ) �
Xn

n�1

lnnf (xnn) :

See also CHRISTOFFEL NUMBER, GAUSSIAN QUADRA-

TURE
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Cotes’ Spiral
The planar orbit of a particle under a r�3 force field. It
is an EPISPIRAL.

See also EPISPIRAL

Coth
HYPERBOLIC COTANGENT.

Cotree
The cotree T � of a spanning tree T in a CONNECTED

GRAPH G is the spacing SUBGRAPH of G containing
exactly those edges of G which are not in T (Harary
1994, p. 39).

See also TWIG
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Coulomb Wave Function
A special case of the CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE FIRST KIND. It gives the solution to
the radial Schrödinger equation in the Coulomb
potential /(1=r) of a point nucleus

d2W

dr2 
� 1 �

2h

r
�

L(L � 1)

r2

" #
W �0 (1)

(Abramowitz and Stegun 1972; Zwillinger 1997,
p. 122). The complete solution is

W �C1FL( h; r) �C2GL(h ; r) : (2)

The Coulomb function of the first kind is

FL( h; r) �CL(h) rL �1e �ip 
1F1(L �1 �i h; 2L

�2; 2i r) ; (3)

where

CL( h) �
2Le� ph =2 ½G(L � 1 � i h) ½

G(2L � 2)
; (4)

/1F1(a; b; z) is the CONFLUENT HYPERGEOMETRIC

FUNCTION, G(z) is the GAMMA FUNCTION, and the
Coulomb function of the second kind is

GL( h; r) �
2h

C2
0( h)

FL( h ; r) ln(2 r) �
qL(h)

pL( h)

" #

�
1

(2L � 1)CL( h)
r �L

X�
K ��L

aL
k ( h) rK �L ; (5)

where qL ; pL ; and aL
k are defined in Abramowitz and

Stegun (1972, p. 538).

See also CONFLUENT HYPERGEOMETRIC FUNCTION OF

THE FIRST KIND
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Count
The largest n such that ½zn ½B4 in a MANDELBROT SET.
Points of different count are often assigned different
colors.

Countable Additivity Probability Axiom
For a COUNTABLE SET of n disjoint events E1 ; E2 ; ...,
En

P @
n

i�1
Ei

� �
�
Xn

i�1

P(Ei):

See also COUNTABLE SET

Countable Set
A SET which is either FINITE or DENUMERABLE.
However, some author (Ciesielski 1997, p. 64) use
the definition "equipollent to the finite ordinals,"
commonly used to define a DENUMERABLE SET, to
define a countable set.

See also ALEPH-0, ALEPH-1, COUNTABLY INFINITE,
DENUMERABLE SET, FINITE, INFINITE, UNCOUNTABLY

INFINITE
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Countable Space
FIRST-COUNTABLE SPACE

Countably Infinite
Any SET which can be put in a ONE-TO-ONE correspon-
dence with the NATURAL NUMBERS (or INTEGERS) so
that a prescription can be given for identifying its
members one at a time is called a countably infinite
(or denumerably infinite) set. Once one countable set
S is given, any other set which can be put into a ONE-

TO-ONE correspondence with S is also countable.
Countably infinite sets have CARDINAL NUMBER

ALEPH-0.

Examples of countable sets include the INTEGERS,
ALGEBRAIC NUMBERS, and RATIONAL NUMBERS. Georg
Cantor showed that the number of REAL NUMBERS is



rigorously larger than a countably infinite set, and
the postulate that this number, the so-called "CON-

TINUUM," is equal to ALEPH-1 is called the CONTINUUM

HYPOTHESIS. Examples of nondenumerable sets in-
clude the REAL, COMPLEX, IRRATIONAL, and TRANS-

CENDENTAL NUMBERS.

See also ALEPH-0, ALEPH-1, CANTOR DIAGONAL SLASH,
CARDINAL NUMBER, CONTINUUM, CONTINUUM HY-

POTHESIS, COUNTABLE SET, HILBERT HOTEL, UN-

COUNTABLY INFINITE
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Counterfeit Coin Problem
WEIGHING

Counting Generalized Principle
If r experiments are performed with ni possible
outcomes for each experiment i �1; 2 ; . . . ; r; then
there are a total of

Qr
i�1 ni possible outcomes.

Counting Number
A POSITIVE INTEGER: 1, 2, 3, 4, ... (Sloane’s A000027),
also called a NATURAL NUMBER. However, zero (0) is
sometimes also included in the list of counting
numbers. Due to lack of standard terminology, the
following terms are recommended in preference to
"counting number," "NATURAL NUMBER," and "WHOLE

NUMBER."

set name symbol

..., -2, -1, 0, 1, 2,

...
INTEGERS Z

1, 2, 3, 4, ... POSITIVE INTEGERS Z�

0, 1, 2, 3, 4, ... NONNEGATIVE INTE-

GERS

Z*

0, -1, -2, -3, -4, ... NONPOSITIVE INTE-

GERS

-1, -2, -3, -4, ... NEGATIVE INTEGERS Z-

See also NATURAL NUMBER, WHOLE NUMBER, Z, Z-,
Z�, Z*
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Coupon Collector’s Problem
Let n objects be picked repeatedly with probability pi

that object i is picked on a given try, withX
i

pi �1:

Find the earliest time at which all n objects have
been picked at least once.

References
Hildebrand, M. V. "The Birthday Problem." Amer. Math.

Monthly 100, 643, 1993.

Cousin Primes
Pairs of PRIMES OF THE FORM (p , p �4) are called
cousin primes. The first few are (3, 7), (7, 11), (13, 17),
(19, 23), (37, 41), (43, 47), (67, 71), ... (Sloane’s
A023200 and A046132). According to the first FIRST

HARDY-LITTLEWOOD CONJECTURE, the cousin primes
have the same asymptotic density as the TWIN

PRIMES,

Px(p; p �4) �2
Y
p ]3

p(p � 2)

(p � 1)2 g
x

2

dx ?

(ln x?)2

�1:320323632 g
x

2

dx?

(ln x?)2

where
Q

2 �1 :320323632 is the TWIN PRIMES CON-

STANT.

An analogy to BRUN’S CONSTANT, the constant

B4 �(1
7 �

1
11) �( 1

13 �
1
17) �( 1

19 �
1
23) �( 1

37 �
1
41) �. . . ;

(omitting the initial term 1=3 �1=7) can be defined.
Using cousin primes up to 242, the value of B4 is
estimated as

B4:1:1970449

(Wolf 1996).

See also BRUN’S CONSTANT, PRIME CONSTELLATION,
SEXY PRIMES, TWIN PRIMES, TWIN PRIMES CONSTANT
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Covariance
Given n sets of variates denoted fx1g; ..., fxng; the
covariance sij�cov(xi; xj) of xi and xj is defined by

cov(xi; xj)��(xi�mi)(xj�mj)� (1)

��xixj���xi��xj�; (2)

where mi��xi� and mj��xj� are the MEANS of xi and
xj; respectively. The matrix (Vij) of the quantities



Vij �cov(xi; xj) is called the COVARIANCE MATRIX. In
the special case i � j ,

cov(xi ; xi) ��x2
i ���xi �

2 � s2
i ; (3)

giving the usual VARIANCE sii � s2
i �var(xi) ; :/

The covariance of two variates xi and xj provides a
measure of how strongly correlated these variables
are, and the derived quantity

cor(xi ; xj) �
cov(xi ; xj)

si sj

; (4)

where si ; sj are the STANDARD DEVIATIONS, is called
CORRELATION of xi and xj : The covariance is sym-
metric since

cov(x ; y) �cov(y; x): (5)

For two variables, the covariance is related to the
VARIANCE by

var(x �y) �var(x) �var(y) �2 cov(x; y) : (6)

For two independent variates x �xi and y �xj ;

cov(x; y) ��xy�� mx my ��x��y�� mx my �0 ; (7)

so the covariance is zero. However, if the variables
are correlated in some way, then their covariance will
be NONZERO. In fact, if cov(x; y) > 0; then y tends to
increase as x increases. If cov(x; y) B0 ; then y tends
to decrease as x increases.

The covariance obeys the identity

cov(x �z ; y) ��(x �z)y �(x �z)(y) �

��xy ���zy ��( �x���z �) �y�

��xy ���x��y���zy���z ��y�

�cov(x; y) �cov(z ; y) : (8)

By induction, it therefore follows that

cov
Xn

i�1

xi ; y

 !
�
Xn

i�1

cov(xi ; y) (9)

cov
Xn

i�1

xi ;
Xm

j �1

yj

 !
�
Xn

i �1

cov xi

Xm

j�1

yj

 !
(10)

�
Xn

i�1

cov
Xm

j�1

yj ; xi

 !
(11)

�
Xn

i �1

Xm

j�1

cov(yj ; xi) (12)

�
Xn

i�1

Xn

j�1

cov(xi ; yj) : (13)

See also CORRELATION (STATISTICAL), COVARIANCE

MATRIX, VARIANCE

Covariance Matrix
Given n sets of variates denoted fx1 g; ..., fxn g , the
first-order covariance matrix is defined by

Vij �cov(xi ; xj) ��(xi � mi)(xj � mj) �;

where mi is the MEAN. Higher order matrices are given
by

Vmn
ij ��(xi � mi)

m(xj � mj)
n �:

An individual matrix element Vij �cov(xi ; xj) is called
the COVARIANCE of xi and xj :/

See also CORRELATION (STATISTICAL), COVARIANCE,
ERROR PROPAGATION, VARIANCE

Covariant Derivative
The covariant derivative of a CONTRAVARIANT TENSOR

Aa (also called the "semicolon derivative" since its
symbol is a semicolon) is given by

9 � A �Aa
; b �Aa 

; b �Ga
bkAk ; (1)

where Ak
;k is a COMMA DERIVATIVE and 9 � is a general-

ization of the symbol commonly used to denote the
DIVERGENCE of a vector function in 3-D, Gk

ij is a
CONNECTION COEFFICIENT, and EINSTEIN SUMMATION

has been used in the last term. The covariant
derivative of a COVARIANT TENSOR Aa is

Aa; b�
1

gbb

@Aa

@xb

�Gk
abAk; (2)

Schmutzer (1968, p. 72) uses the older notation Aj
½½k or

Aj½½k:/

See also COMMA DERIVATIVE, CONNECTION COEFFI-

CIENT, COVARIANT TENSOR, DIVERGENCE, LEVI-CIVITA

CONNECTION
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Covariant Tensor
A covariant tensor is a TENSOR having specific
transformation properties (cf., a CONTRAVARIANT TEN-

SOR). To examine the transformation properties of a
covariant tensor, first consider the GRADIENT

9f�
@f

@x1

x̂1�
@f

@x2

x̂2�
@f

@x3

x̂3; (1)

for which



@ f?

@x?i
�

@ f

@xj

@xj

@x ?i
; (2)

where f(x1 ; x2 ; x3) � f?(x?1 ; x?2 ; x?3) : Now let

Ai �
@ f

@xi

; (3)

then any set of quantities Aj which transform accord-
ing to

A?i �
@xj

@x?i
Aj (4)

or, defining

aij �
@xj

@x?i
; (5)

according to

A?i �aijAj (6)

is a covariant tensor. Covariant tensors are indicated
with lowered indices, i.e., am :/

CONTRAVARIANT TENSORS are a type of TENSOR with
differing transformation properties, denoted a n : How-
ever, in 3-D CARTESIAN COORDINATES,

@xj

@x?i
�

@x?i
@xj

�aij (7)

for i ; j �1 ; 2, 3, meaning that contravariant and
covariant tensors are equivalent. The two types of
tensors do differ in higher dimensions, however.
Covariant FOUR-VECTORS satisfy

am �L  
n
man ; (8)

where L is a LORENTZ TENSOR.

To turn a CONTRAVARIANT TENSOR an into a covariant
tensor am (INDEX LOWERING), use the METRIC TENSOR

gmn to write

gmna
n �a m : (9)

Covariant and contravariant indices can be used
simultaneously in a MIXED TENSOR.

See also CONTRAVARIANT TENSOR, FOUR-VECTOR,
INDEX LOWERING, LORENTZ TENSOR, METRIC TENSOR,
MIXED TENSOR, TENSOR
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Covariant Vector
A COVARIANT TENSOR of RANK 1, more commonly
called a ONE-FORM (or "BRA").

See also BRA, CONTRAVARIANT VECTOR, CONTRAVAR-

IANT TENSOR, KET, ONE-FORM, VECTOR

Cover
A family g of nonempty SUBSETS of X whose UNION

contains the given set X (and which contains no
duplicated subsets) is called a cover (or covering) of X .
For example, there is only a single cover of f1g;
namely f1 g itself. However, there are five covers of
f1; 2g; namely ff1g; f2gg; ff1; 2 gg; ff1 g; f1; 2gg;
ff2g; f1; 2gg; and ff1g; f2g; f1; 2gg:/
A MINIMAL COVER is a cover for which removal of one
member destroys the covering property. For example,
of the five covers of f1; 2g; only ff1g; f2gg and
ff1; 2gg are minimal covers. There are various other
types of specialized covers, including PROPER COVERS,
antichain covers, k -covers, and k �/-covers (Macula
1994).

The number of possible covers for a set of N elements
are

½C(N)½�
1

2

XN

k �0

(�1)k N
k

� �
22N �k 

;

the first few of which are 1, 5, 109, 32297,
2147321017, 9223372023970362989, ... (Sloane’s
A003465).

See also MINIMAL COVER, PROPER COVER
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Cover Relation
The transitive reflexive reduction of a PARTIAL ORDER.
An element z of a POSET (X ; 5) covers another
element x provided that there exists no third element
y in the poset for which x 5y 5z: In this case, z is
called an "upper cover" of x and x a "lower cover" of z .

See also PARTIAL ORDER

Covering
COVER, COVERING MAP, PACKING

Covering Dimension
LEBESGUE COVERING DIMENSION

Covering Map
A covering map is a SURJECTIVE OPEN MAP f : X 0 Y
whose preimages f�1(y) are a DISCRETE SET in X . For
example, the map f (z)�z2; as a map f : C�0 0 C�



0; is a covering. Note that f �1(w) always consists of
two points. In general, the cardinality of f �1(y) is
independent of y � Y :/

Another example is p : C 0 C=G#T; where G�f(a �
bI) ½a; b �Zg: The map p is actually the UNIVERSAL

COVER of the torus T: If f : X 0 T is any covering of
the torus, then there exists a covering p̃ : C 0 X such
that p factors through p̃; i.e., p �f (p̃:/

See also SIMPLY CONNECTED, TOPOLOGICAL SPACE,
UNIVERSAL COVER

Covering System
COMPLETE RESIDUE SYSTEM

Coversine

covers A �1 �sin A;

where sin A is the SINE.

See also EXSECANT, HAVERSINE, SINE, VERSINE
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Coxeter Diagram
COXETER-DYNKIN DIAGRAM

Coxeter Graph

A non-Hamiltonian graph with a high degree of
symmetry such that there is a GRAPH AUTOMORPHISM

taking any path of length three into any other.

See also COXETER-DYNKIN DIAGRAM, LEVI GRAPH
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Coxeter Group
A group generated by the elements Pi for i �1, ..., n
subject to

(PiPj)
Mij �1 ;

where Mij are the elements of a COXETER MATRIX.
Coxeter used the NOTATION [3p; q; r] for the Coxeter
group generated by the nodes of a Y-shaped COXETER-

DYNKIN DIAGRAM whose three arms have p , q , and r
EDGES. A Coxeter group of this form is finite IFF

1

p � 1 
�

1

q � 1 
�

1

r � 1
> 1:

See also BIMONSTER, BUILDING, COXETER-DYNKIN

DIAGRAM
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Coxeter Matrix
An n �n SQUARE MATRIX M with

Mii �1

Mij �Mji > 1

for all i ; j �1; ..., n .

See also COXETER GROUP

Coxeter-Dynkin Diagram
A LABELED GRAPH whose nodes are indexed by the
generators of a COXETER GROUP having (Pi ; Pj) as an
EDGE labeled by Mij whenever Mij > 2 ; where Mij is an
element of the COXETER MATRIX. Coxeter-Dynkin
diagrams are used to visualize COXETER GROUPS. A
Coxeter-Dynkin diagram is associated with each
RATIONAL DOUBLE POINT (Fischer 1986), and a Cox-
eter diagram is sufficient to characterize the algebra
of the group.

See also COXETER GROUP, DYNKIN DIAGRAM, RA-

TIONAL DOUBLE POINT
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Coxeter’s Loxodromic Sequence of
Tangent Circles
An infinite sequence of CIRCLES such that every four
consecutive CIRCLES are mutually tangent, and the
CIRCLES’ RADII ..., R�n; ..., R�1; R0; R1; R2; R3; R4; ...,



Rn ; Rn �1 ; ..., are in GEOMETRIC PROGRESSION with
ratio

k �
Rn�1

Rn

� f �
ffiffiffiffi
f

p
;

where f is the GOLDEN RATIO (Gardner 1979ab).
Coxeter (1968) generalized the sequence to SPHERES.

See also ARBELOS, BOWL OF INTEGERS, GOLDEN

RATIO, HEXLET, PAPPUS CHAIN, STEINER CHAIN
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Coxeter-Todd Lattice
The complex LATTICE L 

v
6 corresponding to real lattice

K12 having the densest HYPERSPHERE PACKING (KIS-

SING NUMBER) in 12-D. The associated AUTOMORPH-

ISM GROUP G0 was discovered by Mitchell (1914). The
order of G0 is given by

½Aut( L  
v
6 ) ½�29 � 37 � 5 � 7 �39; 191; 040:

The order of the AUTOMORPHISM GROUP of K12 is given
by

½Aut(K12) ½�210 � 37 � 5 � 7

(Conway and Sloane 1983).

See also BARNES-WALL LATTICE, LEECH LATTICE
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Cox’s Theorem
Let s1 ; ..., s4 be four PLANES in GENERAL POSITION

through a point P and let Pij be a point on the LINE

si � sj : Let sijk denote the PLANE PijPikPjk : Then the
four PLANES s234 ; s134 ; s124 ; s123 all pass through one
point P1234 : Similarly, let s1 ; ..., s5 be five PLANES in

GENERAL POSITION through P . Then the five points
P2345 ; P1345 ; P1245 ; P1235 ; and P1234 all lie in one PLANE.
And so on.

See also CLIFFORD’S CIRCLE THEOREM, PLANE

Cramér Conjecture
The unproven CONJECTURE that

lim
n 0�

pn �1 � pn

(ln pn)2 �1;

where pn is the nth PRIME.
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Cramér-Euler Paradox
A curve of order n is generally determined by n(n �
3)=2 points. So a CONIC SECTION is determined by five
points and a CUBIC CURVE should require nine. But
the MACLAURIN-BÉ ZOUT THEOREM says that two
curves of degree n intersect in n2 points, so two
CUBICS intersect in nine points. This means that
n(n�3)=2 points do not always uniquely determine
a single curve of order n . The paradox was publicized
by Stirling, and explained by Plücker.

See also CUBIC CURVE, MACLAURIN-BÉ ZOUT THEOREM

Cramer’s Rule
Given a set of linear equations

a1x�b1y�c1z�d1

a2x�b2y�c2z�d2

a3x�b3y�c3z�d3;

8<
: (1)

consider the DETERMINANT

D�

a1 b1 c1

a2 b2 c2

a3 b3 c3

������
������: (2)

Now multiply D by x , and use the property of
DETERMINANTS that MULTIPLICATION by a constant
is equivalent to MULTIPLICATION of each entry in a
given row by that constant

x
a1 b1 c1

a2 b2 c2

a3 b3 c3

������
�������

a1x b1 c1

a2x b2 c2

a3x b3 c3

������
������: (3)

Another property of DETERMINANTS enables us to add



a constant times any column to any column and
obtain the same DETERMINANT, so add y times column
2 and z times column 3 to column 1,

xD �
a1x �b1y �c1z b1 c1

a2x �b2y �c2z b2 c2

a3x �b3x �c3z b3 c3

������
�������

d1 b1 c1

d2 b2 c2

d3 b3 c3

������
������: (4)

If d �0 ; then (4) reduces to xD �0, so the system has
nondegenerate solutions (i.e., solutions other than (0,
0, 0)) only if D �0 (in which case there is a family of
solutions). If d "0 and D �0, the system has no
unique solution. If instead d "0 and D "0; then
solutions are given by

x �

d1 b1 c1

d2 b2 c2

d3 b3 c3

������
������

D
; (5)

and similarly for

y �

a1 d1 c1

a2 d2 c2

a3 d3 c3

������
������

D 
(6)

z �

a1 b1 d1

a2 b2 d2

a3 b3 d3

������
������

D 
(7)

This procedure can be generalized to a set of n
equations so, given a system of n linear equations

a11 a12 	 	 	  a1n

n n ::: n
a1n1 an2 	 	 	  ann

2
4

3
5 x1

n
xn

2
4

3
5� d1

n
dn

2
4

3
5; (8)

let

D �
a11 a12 	 	 	  a1n

n n ::: n
a1n1 an2 	 	 	  ann

������
������: (9)

If d �0; then nondegenerate solutions exist only if
D �0. If d "0 and D �0, the system has no unique
solution. Otherwise, compute

Dk �

a11 	 	 	  a1(k �1) d1 a1(k �1) 	 	 	  a1n

n ::: n n n ::: n
an1 	 	 	  an(k �1) dn an(k �1) 	 	 	  ann

������
������: (10)

Then xk �Dk =D for 1 5k 5n: In the 3-D case, the
VECTOR analog of Cramer’s rule is

(A �B) �(C �D) �(A � B �D)C �(A � B �C)D: (11)

See also DETERMINANT, LINEAR ALGEBRA, MATRIX,
SYSTEM OF EQUATIONS, VECTOR
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Cramér’s Theorem
If X and Y are INDEPENDENT variates and X �Y is a
GAUSSIAN DISTRIBUTION, then both X and Y must
have GAUSSIAN DISTRIBUTIONS. This was proved by
Cramér in 1936.

Craps
A game played with two DICE. If the total is 7 or 11 (a
"natural"), the thrower wins and retains the DICE for
another throw. If the total is 2, 3, or 12 ("craps"), the
thrower loses but retains the DICE. If the total is any
other number (called the thrower’s "point"), the
thrower must continue throwing and roll the "point"
value again before throwing a 7. If he succeeds, he
wins and retains the DICE, but if a 7 appears first, the
player loses and passes the DICE.

The following table summarizes the probabilities of
winning on a roll-by-roll basis, where P(p �n) is the
probability of rolling a point n . For rolls that are not
naturals (W) or craps (L), the probability that the
point p � n will be rolled first is found from

P(win½p �n) �
P(p � n)

P(p � 7) � P(p � n)

�
P(p � n)

1
6 36 � P(p � n) 

:

n /P(p �n)/ W/L /P(win½p �n)/

2 /
1

36/ L 0

3 /
2

36/ L 0

4 /
3

36/ /
3
9/

5 /
4

36/ /
4

10/

6 /
5

36/ /
5

11/

7 /
6

36/ W 1

8 /
5

36/ /
5

11/

9 /
4

36/ /
4

10/

10 /
3

36/ /
3
9/

11 /
2

36/ W 1

12 /
1

36/ L 0

Summing P(p�n) from n�1 to 12 then gives the
probability of winning as 244=495:0:492929
(Kraitchik 1942), just under 50%.

See also DICE
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CRC
CYCLIC REDUNDANCY CHECK

Creative Telescoping
TELESCOPING SUM, ZEILBERGER’S ALGORITHM

Cremona Transformation
An entire Cremona transformation is a BIRATIONAL

TRANSFORMATION of the PLANE. Cremona transforma-
tions are MAPS OF THE FORM

xi �1 �f (xi ; yi) ;

yi �1 �g(xi ; yi) ;

in which f and g are POLYNOMIALS. A quadratic
Cremona transformation is always factorable.

See also NOETHER’S TRANSFORMATION THEOREM
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Cremona-Richmond Configuration

A 153 configuration of 15 lines and 15 points, with
three lines through three points, three points on
every line, and containing no triangles.

See also CONFIGURATION
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Cribbage
Cribbage is a game in which each of two players is
dealt a hand of six CARDS. Each player then discards
two of his six cards to a four-card "crib" which
alternates between players. After the discard, the

top card in the remaining deck is turned up. Cards
are then alternately played out by the two players,
with points being scored for pairs, runs, cumulative
total of 15 and 31, and playing the last possible card
("go") not giving a total over 31. All face cards are
counted as 10 for the purpose of playing out, but the
normal values of Jack �11 ; Queen �12 ; King �13
are used to determine runs. Aces are always low
(/ace �1): After all cards have been played, each
player counts the four cards in his hand taken in
conjunction with the single top card. Points are
awarded for pairs, flushes, runs, and combinations
of cards giving 15. A Jack having the same suit as a
top card is awarded an additional point for "nobbs."
The crib is then also counted and scored. The winner
is the first person to "peg" a certain score, as recorded
on a "cribbage board."

The best possible score in a hand is 29, corresponding
to three 5s and a Jack with a top 5 the same suit as
the Jack. Hands with scores of 19, 25, 26, and 27 are
not possible. A hand scoring zero points is therefore
sometimes humorously referred to as a "19-point"
hand.

See also BRIDGE CARD GAME, CARDS, POKER

Criss-Cross Method
A standard form of the LINEAR PROGRAMMING problem
of maximizing a linear function over a CONVEX

POLYHEDRON is to maximize c � x subject to mx 5b
and x ]0; where m is a given s �d matrix, c and b
are given d -vector and s -vectors, respectively. The
Criss-cross method always finds a VERTEX solution if
an optimal solution exists.

See also CONVEX POLYHEDRON, LINEAR PROGRAM-

MING, VERTEX (POLYHEDRON)

Criterion
A requirement NECESSARY for a given statement or
theorem to hold. Also called a CONDITION.

See also BROWN’S CRITERION, CAUCHY CRITERION,
EULER’S CRITERION, GAUSS’S CRITERION, KORSELT’S

CRITERION, LEIBNIZ CRITERION, POCKLINGTON’S CRI-

TERION, VANDIVER’S CRITERIA, WEYL’S CRITERION

Critical Damping
DAMPED SIMPLE HARMONIC MOTION–CRITICAL DAMP-

ING

Critical Index
Let F be the MACLAURIN SERIES of a MEROMORPHIC

FUNCTION f with a finite or infinite number of POLES

at points zk; indexed so that



0 B ½z1 ½5 ½z2 ½5 ½z3 ½5. . . ;

then a POLE will occur as many times in the sequence
fzk g as indicated by its order. Any index such that

½zm ½B ½zm�1 ½

holds is then called a critical index of f (Henrici 1988,
pp. 641 �/42).
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Critical Line
The LINE R(s) �1 =2 in the COMPLEX PLANE on which
the RIEMANN HYPOTHESIS asserts that all nontrivial
(COMPLEX) ROOTS of the RIEMANN ZETA FUNCTION z(s)
lie. Although it is known that an INFINITE number of
zeros lie on the critical line and that these comprise at
least 40% of all zeros, the RIEMANN HYPOTHESIS is
still unproven.

See also CRITICAL STRIP, RIEMANN HYPOTHESIS,
RIEMANN ZETA FUNCTION
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Critical Point
A FUNCTION y �f (x) has critical points at all points x0

where f ?(x0) �0 or f (x) is not DIFFERENTIABLE. A
FUNCTION z �f (x; y) has critical points where the
GRADIENT 9f �0 or @f =@x or the PARTIAL DERIVATIVE

@f =@y is not defined.

See also FIXED POINT, INFLECTION POINT, ONLY

CRITICAL POINT IN TOWN TEST, STATIONARY POINT

Critical Strip

The region /0 B s B1/, where s is defined as the REAL

PART of a COMPLEX NUMBER s � s �it : All nontrivial
zeros (i.e., those at negative integer) of the RIEMANN

ZETA FUNCTION lie inside this strip.

See also CRITICAL LINE, RIEMANN HYPOTHESIS,
RIEMANN ZETA FUNCTION
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Crofton Cell
A RANDOM POLYGON containing the origin (Kovalenko
1999).

See also RANDOM POLYGON
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Crofton’s Formula
Let n points j1 ; ..., jn be randomly distributed on a
domain S , and let H be some event that depends on
the positions of the n points. Let S ? be a domain
slightly smaller than S but contained within it, and
let dS be the part of S not in S?: Let P[H] be the
probability of event H , s be the measure of S , and dS
the measure of dS; then Crofton’s formula states that

dP[H] �n(P[H j1 � dS] �P[H])s�1 ds

(Solomon 1978, p. 99).

See also CROFTON’S INTEGRALS
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Crofton’s Integrals
Consider a convex plane curve K with PERIMETER L ,
and the set of points P exterior to K . Further, let t1

and t2 be the perpendicular distances from P to K
(with corresponding tangent points A1 and A2 on K ),
and let v ��A1PA2 : Then

gP ext : to K

sin v

t1t2

dP �2p2 (1)

(Crofton 1885; Solomon 1978, p. 28).

If K has a continuous RADIUS OF CURVATURE and the
radii of curvature at points A1 and A2 are r1 and r2 ;
then

gP ext : to K

sin v

t1t2

r1 r2 dP �1
2 L

2 (2)

(Solomon 1978, p. 28), and furthermore

gP ext : to K

sin v

t1t2

(r1 � r2) dP �2pL (3)

(Santaló 1953; Solomon 1978, p. 28).

See also CROFTON’S FORMULA
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Crofton’s Theorem
CROFTON’S FORMULA

Crook

A 6-POLYIAMOND.

See also POLYIAMOND
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Crookedness
Let a KNOT K be parameterized by a VECTOR FUNC-

TION v(t) with t �S1 ; and let w be a fixed UNIT VECTOR

in R3 : Count the number of RELATIVE MINIMA of the
projection function w � v(t) : Then the MINIMUM such

number over all directions w and all K of the given
type is called the crookedness m(K): Milnor (1950)
showed that 2pm(K) is the INFIMUM of the total
curvature of K . For any TAME KNOT K in R3 ; m(K) �
b(K) where b(K) is the BRIDGE INDEX.

See also BRIDGE INDEX
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Cross
In general, a cross is a figure formed by two inter-
secting LINE SEGMENTS. In LINEAR ALGEBRA, a cross is
defined as a set of n mutually PERPENDICULAR pairs
of VECTORS of equal magnitude from a fixed origin in
EUCLIDEAN n -SPACE.

The word "cross" is also used to denote the operation
of the CROSS PRODUCT, so a �b would be pronounced
"a cross b."

See also CROSS PRODUCT, DOT, EUTACTIC STAR,
GAULLIST CROSS, GREEK CROSS, LATIN CROSS, MAL-

TESE CROSS, PAPAL CROSS, SAINT ANDREW’S CROSS,
SAINT ANTHONY’S CROSS, STAR

Cross Curve
CRUCIFORM

Cross Fractal
CANTOR SQUARE FRACTAL

Cross of Lorraine
GAULLIST CROSS

Cross Polytope
A regular POLYTOPE in n -D corresponding to the
CONVEX HULL of the points formed by permuting the
coordinates ( 9 1, 0, 0, ..., 0). A cross-polytope (also
called an orthoplex) is denoted ? missing and has 2n
vertices and SCHLÄFLI SYMBOL

f3; . . . ; 3|fflfflfflfflffl{zfflfflfflfflffl}
n�2

; 4g:

The cross polytope is named because its 2n vertices
are located equidistant from the origin along the
Cartesian axes in n -space, which each such axis
perpendicular to all others. A cross polytope is
bounded by 2n (n�1)/-simplexes, and is a dipyramid
erected (in both directions) into the nth dimension,
with an (n�1)/-dimensional cross polytope as its base.



In 1-D, the cross polytope is the LINE SEGMENT

[�1; 1]: In 2-D, the cross polytope f4g is the filled
SQUARE with vertices (�1 ; 0); (0;�1); (1; 0); (0; 1): In
3-D, the cross polytope (3; 4) is the convex hull of the
OCTAHEDRON with vertices (�1; 0; 0); (0;�1 ; 0);
(0; 0;�1); (1; 0; 0); (0; 1 ; 0); (0; 0; 1): In 4-D, the
cross polytope f3 ; 3 ; 4g is the 16-CELL, depicted in the
above figure by projecting onto one of the four
mutually perpendicular 3-spaces within the 4-space
obtained by dropping one of the four vertex compo-
nents (R. Towle).

The graph of bn missing is isomorphic with the
CIRCULANT GRAPH Ci1 ; 2 ;... ;(n�1)(2n) :/

See also 16-CELL, HYPERCUBE, POLYTOPE, SIMPLEX

Cross Product

For VECTORS u and v, the cross product is defined by

u �v �x̂(uyvz �uzvy) �ŷ(uxvz �uzvx)

�ẑ(uxvy �uyvx) : (1)

This can be written in a shorthand NOTATION which
takes the form of a DETERMINANT

u �v �
x̂ ŷ ẑ
ux uy uz

vx vy vz

������
������: (2)

Here, /u �v/ is always PERPENDICULAR to both u and
v, with the orientation determinant by the RIGHT-

HAND RULE. It is also true that

u �vj j�uj j vj jsin u; (3)

� uj j vj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �(û � v̂)2

q
; (4)

where u is the angle between u and v, given by the
DOT PRODUCT

cos u �û � v̂: (5)

Jeffreys and Jeffreys (1988) use the notation u fflv to
denote the cross product.
The cross product is implemented in Mathematica 3.0
and higher as Cross[a , b ].

Identities involving the cross product include

d

dt
[r1(t) �r2(t)] �r1(t) �

dr2

dt
�

dr1

dt
�r2(t) (6)

A �B ��B �A (7)

A �(B �C) �A �B �A �C (8)

(tA) �B �t(A �B) : (9)

For a proof that A �B is a PSEUDOVECTOR, see Arfken
(1985, pp. 22 �/3). In TENSOR notation,

A �B � eijkAjBk ; (10)

where eijk is the PERMUTATION SYMBOL.

See also CARTESIAN PRODUCT, DOT PRODUCT, PERMU-

TATION SYMBOL, RIGHT-HAND RULE, SCALAR TRIPLE

PRODUCT, VECTOR, VECTOR DIRECT PRODUCT, VEC-

TOR MULTIPLICATION
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Cross Section
The cross section of a SOLID is a plane figure obtained
by its intersection with a PLANE. The cross section of
an object therefore represents an infinitesimal "slice"
of a solid, and may be different depending on the
orientation of the slicing plane. While the cross
section of a SPHERE is always a DISK, the cross section
of a CUBE may be a SQUARE, HEXAGON, or other shape.

See also AXONOMETRY, CAVALIERI’S PRINCIPLE, INNER

QUERMASS, LAMINA, PLANE, PROJECTION, RADON

TRANSFORM, STEREOLOGY

Cross Sequence
A sequence

s(l)
n (x)�[h(t)]lsn(x);



where /sn(x)/ is a SHEFFER SEQUENCE, /h(t)/ is invertible,
and l ranges over the real numbers is called a
STEFFENSEN SEQUENCE. If /sn(x)/ is an associated
SHEFFER SEQUENCE, then /s(l)

n / is called a cross se-
quence.

Examples include the ACTUARIAL POLYNOMIAL and
POISSON-CHARLIER POLYNOMIAL.

See also APPELL CROSS SEQUENCE, SHEFFER SE-

QUENCE, STEFFENSEN SEQUENCE
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Cross Surface
A SPHERE with a single CROSS-CAP. This term is more
appropriate in purely topological applications than
the more common term REAL PROJECTIVE PLANE,
which implies the presence of an affine structure
(Francis and Weeks 1999). The double cross surface is
the KLEIN BOTTLE and the triple cross surface is
called DYCK’S SURFACE (Francis and Collins 1993,
Francis and Weeks 1999).

See also CROSS-CAP, REAL PROJECTIVE PLANE
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Cross-Cap

The self-intersection of a one-sided SURFACE. "Cross-
cap" is sometimes also written without the hyphen as
the single word "crosscap." The cross-cap can be
thought of as the object produced by puncturing a
surface a single time, attaching two ZIPS around the
puncture in the same direction, distorting the hole so
that the zips line up, requiring that the surface

intersect itself, and then zipping up. The cross-cap
can also be described as a circular HOLE which, when
entered, exits from its opposite point (from a topolo-
gical viewpoint, both singular points on the cross-cap
are equivalent).

The cross-cap has a segment of double points which
terminates at two "PINCH POINTS" known as WHITNEY

SINGULARITIES. A CROSS-HANDLE is homeomorphic to
two cross-caps (Francis and Weeks 1999).

A SPHERE with one cross-cap has traditionally been
called a REAL PROJECTIVE PLANE. While this is appro-
priate in the study of PROJECTIVE GEOMETRY when an
affine structure is present, J. H. Conway advocates
use of the term CROSS SURFACE in a purely topological
interpretation (Francis and Weeks 1999). The cross-
cap is one of the three possible SURFACES obtained by
sewing a MÖBIUS STRIP to the edge of a DISK. The
other two are the BOY SURFACE and ROMAN SURFACE.

The cross-cap can be generated using the general
method for NONORIENTABLE SURFACES using the
polynomial function

f(x; y; z)�(xz; yz; 1
2(z

2�x2)) (1)

(Pinkall 1986). Transforming to SPHERICAL COORDI-

NATES gives

x(u; v)�1
2 cos u sin(2v) (2)

y(u; v)�1
2 sin u sin(2v) (3)

z(u; v)�1
2(cos2 v�cos2 u sin2 v) (4)

for u � [0; 2p) and v � [0; p=2]: To make the equations
slightly simpler, all three equations are normally
multiplied by a factor of 2 to clear the arbitrary
scaling constant. Three views of the cross-cap gener-
ated using this equation are shown above. Note that
the middle one looks suspiciously like BOUR’S MINI-

MAL SURFACE.

Another representation is

f(x; y; z)�(yz; 2xy; x2�y2); (5)

(Gray 1997), giving PARAMETRIC EQUATIONS



x �1
2 sin u sin(2v) (6)

y �sin(2u) sin2 v (7)

z �cos(2u) sin2 v ; (8)

(Geometry Center) where, for aesthetic reasons, the
y - and z -coordinates have been multiplied by 2 to
produce a squashed, but topologically equivalent,
surface. Nordstrand gives the implicit equation

4x2(x2 �y2 �z2 �z) �y2(y2 �z2 �1) �0 (9)

which can be solved for z to yield

z �
�2x2 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(y2 � 2x2)(1 � 4x2 � y2)

p
4x2 � y2 

: (10)

Taking the inversion of a cross-cap such that (0, 0,
�1=2) is sent to � gives a CYLINDROID, shown above
(Pinkall 1986).

See also BOY SURFACE, CAP, CLASSIFICATION THEO-

REM OF SURFACES, CROSS-HANDLE, CROSS SURFACE,
HANDLE, MÖ BIUS STRIP, NONORIENTABLE SURFACE,
PROJECTIVE PLANE, ROMAN SURFACE
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Cross-Correlation
The cross-correlation of two COMPLEX FUNCTIONS f (t)
and g(t) of a real variable t , denoted f w g is defined
by

f w g � f̄ (�t) + g(t) ; (1)

where + denotes CONVOLUTION and f̄ (t) is the COM-

PLEX CONJUGATE of f (t) : Since CONVOLUTION is de-
fined by

f (t) + g(t) �g
�

��

f ( t)g(t � t) dt ; (2)

it follows that

f w g �g
�

��

f̄ (�t)g(t � t) dt : (3)

Letting t ?��t; dt ?��d t so (3) is equivalent to

f w g�g
��

�

f̄ (t?)g(t�t?)(�dt?)

�g
�

��

f̄ (t)g(t�t) dt: (4)

The cross-correlation satisfies the identity

(g w h) w (g w h)�(g w g) w (h w h): (5)

If f or g is EVEN, then

f w g�f + g; (6)

where + again denotes CONVOLUTION.

See also AUTOCORRELATION, CONVOLUTION, CROSS-

CORRELATION THEOREM, FOURIER TRANSFORM
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Cross-Correlation Coefficient
The COEFFICIENT r in a GAUSSIAN BIVARIATE DISTRI-

BUTION.

Cross-Correlation Theorem
Let f w g denote the CROSS-CORRELATION of functions
f (t) and g(t): Then



f w g �g
�

��

f̄ ( t)g(t � t) dt

�g
�

��
g

�

��

F̄( n)e2 pint dn g
�

��

G( n ?)e �2 pin ?(t� t) dn ?

" #
dt

�g
�

��
g

�

��
g

�

��

F̄( n)G(n ?)e �2pi t(n ?�n) e�2pi n?t dt dn d n?

�g
�

��
g

�

��

F̄( n)G( n?)e �2pin ?t g
�

��

e�2pit( n?�n) dt

" #
dn dn ?

�g
�

��
g

�

��

F̄( n)G( n?)e �2pin ?t d( n?�n) dn? dn

�g
�

��

F̄( n)G( n)e �2 pint dn

(1)

where F denotes the FOURIER TRANSFORM, z̄ is the
COMPLEX CONJUGATE, and

f (t) �F[F(n)] �g
�

��

F(n)e �2pint dt (2)

g(t) �F[G( n)] �g
�

��

G( n)e �2 pi nt dt: (3)

Applying a FOURIER TRANSFORM on each side gives
the cross-correlation theorem,

f w g �F[ F̄(n)G( n)]: (4)

If F �G , then the cross-correlation theorem reduces
to the WIENER-KHINTCHINE THEOREM.

See also FOURIER TRANSFORM, WIENER-KHINTCHINE

THEOREM

Crosscram
DOMINEERING

Crossed Hyperbolic Rotation
Exchanges branches of the HYPERBOLA x ?y?�xy:

x?�  m�1x

y?��my:

See also HYPERBOLIC ROTATION

Crossed Ladders Problem

Given two crossed LADDERS resting against two
buildings, what is the distance between the build-
ings? Let the height at which they cross be h and the
lengths of the LADDERS l1 and l2 : The height at which
l2 touches the building h2 is then obtained by
simultaneously solving the equations

l2
1 �h2

1 �d2 (1)

l2
2 �h2

2 �d2 (2)

and

1

h 
�

1

h1

�
1

h2

; (3)

the latter of which follows either immediately from
the CROSSED LADDERS THEOREM or from similar
triangles with d1 �dh=h2 ; d2 �dh=h1 ; and d �d1 �
d2 : Eliminating d gives the equations

h4
1 �2hh3

1 �(h �h1)2(l2
2 �l2

1) �0: (4)

h4
2 �2hh3

2 �(h �h2)2(l2
1 �l2

2) �0: (5)

These quartic equations can be solved for h1 and h2

given known values of h , l1 ; and l2 :/
There are solutions in which not only l1 ; l2 ; h1 ; h2 ; and
h are all integers, but so are d1 ; and d2 : One example
is h1 �119; h1 �70; h � 30, d1 �40; d2 �16 :/

The problem can also be generalized to the situation
in which the ends of the ladders are not pinned
against the buildings, but propped fixed distances d1

and d2 away.

See also CROSSED LADDERS THEOREM, LADDER
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Crossed Ladders Theorem

In the above figure, let E be the intersection of AD
and BC and specify that ABIEFICD: Then

1

AB 
�

1

CD 
�

1

EF
:

A beautiful related theorem due to H. Stengel can be
stated as follows. In the above figure, let E lie on the
side AB and D lie on the side BC . Now let EC
intersect the line AD at a point F , and construct
points H , I , and J so that EIIDHIFJIBG : Then

1

EI 
�

1

DH 
�

1

FJ 
�

1

BG 
:

See also CROSSED LADDERS PROBLEM

Crossed Trough

The SURFACE

z �cx2y2 :

See also MONKEY SADDLE
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Cross-Handle

A cross-handle is a topological structure which can be
thought of as the object produced by puncturing a
surface twice, attaching a ZIP around each puncture
travelling in the same direction, pulling the edges of
the zips together after one tube first passes through
itself it order for the direction of the zips to match up,
and then zipping up. In 3-space, the cross-handle
contains a line of self-intersection.
A cross-handle is homeomorphic to two CROSS-CAPS

(Francis and Weeks 1999). DYCK’S THEOREM states
that HANDLES and cross-handles are equivalent in the
presence of a CROSS-CAP.

See also CAP, CROSS-CAP, DYCK’S THEOREM, HANDLE
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Crossing Number (Graph)
Given a "good" GRAPH G (i.e., one for which all
intersecting EDGES intersect in a single point and
arise from four distinct VERTICES), the crossing
number n(G) is the minimum possible number of
crossings with which the GRAPH can be drawn. A
GRAPH with crossing number 0 is a PLANAR GRAPH.
Garey and Johnson (1983) showed that determining
the crossing number is an NP-COMPLETE PROBLEM.

GUY’S CONJECTURE suggests that the crossing number
for the COMPLETE GRAPH Kn is

n(Kn)�
1

4

n

2

$ %
n � 1

2

$ %
n � 2

2

$ %
n � 3

2

$ %
; (1)

which can be rewritten



n(Kn) �
1
64 n(n �2)2(n �4) for n even
1
64(n �1)2(n �3)2 for n odd:

(
(2)

The values of (2) for n �1, 2, ... are then given by 0, 0,
0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315, 441, 588, ...
(Sloane’s A000241), although it has not been proven
that these agree with the actual crossing numbers for
n ]11 :/

ZARANKIEWICZ’S CONJECTURE asserts that the cross-
ing number for a COMPLETE BIGRAPH is

n(Km; n) �
n

2

$ %
n � 1

2

$ %
m

2

$ %
m � 1

2

$ %
: (3)

It has been checked up to m; n �7 ; and Zarankiewicz
has shown that, in general, the FORMULA provides an
upper bound to the actual number. The table below
gives known results. When the number is not known
exactly, the prediction of ZARANKIEWICZ’S CONJEC-

TURE is given in parentheses.

1 2 3 4  5  6  7

1 0 0 0 0  0  0  0

2  0 0 0 0 0  0

3  1 2 4 6  9

4 4 8 12  18

5 16 24  36

6 36 54

7 77, 79, or (81)

Kleitman (1970, 1976) computed the exact crossing
numbers n(K5 ; n) for all positive n .

See also GUY’S CONJECTURE, RECTILINEAR CROSSING

NUMBER, TOROIDAL CROSSING NUMBER, ZARANKIE-

WICZ’S CONJECTURE
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Crossing Number (Link)
The least number of crossings that occur in any
projection of a LINK. In general, it is difficult to find
the crossing number of a given LINK. Knots and links
are generally tabulated based on their crossing
numbers.

See also KNOT, LINK
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Cross-Ratio

[a; b; c; d]�
(a � b)(c � d)

(a � d)(c � b)
: (1)

For a MÖBIUS TRANSFORMATION f ,

[a; b; c; d]�[f (a); f (b); f (c); f (d)]: (2)

There are six different values which the cross-ratio
may take, depending on the order in which the points



are chosen. Let l �[a ; b ; c ; d] : Possible values of the
cross-ratio are then l ; 1 � l; 1=l ; ( l �1)= l; 1 =(1 � l);
and l =(l �1):/
Given lines a , b , c , and d which intersect in a point
O , let the lines be cut by a line l , and denote the
points of intersection of l with each line by A , B , C ,
and D . Let the distance between points A and B be
denoted AB , etc. Then the cross-ratio

[AB; CD] �
(AB)(CD)

(BC)(AD) 
(3)

is the same for any position of the l (Coxeter and
Greitzer 1967). Note that the definitions/

(AB=AD) =(BC =CD)/ and /(CA=CB)=(DA =DB)/ are used
instead by Kline (1990) and Courant and Robbins
(1966), respectively. The identity

[AD; BC] �[AB ; DC] �1 (4)

holds IFF /AC ==BD/, where / ==/ denotes SEPARATION.

The cross-ratio of four points on a radial line of an
INVERSION CIRCLE is preserved under INVERSION

(Ogilvy 1990, p. 40).

See also BIVALENT RANGE, EQUICROSS, HARMONIC

RANGE, HOMOGRAPHIC, MÖ BIUS TRANSFORMATION,
SEPARATION
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Cross-Stitch Curve

A fractal curve of infinite length which bounds an
area twice that of the original square.

See also BOX FRACTAL, CANTOR SQUARE FRACTAL,
FRACTAL, SIERPINSKICURVE
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Crout’s Method
A ROOT finding technique used in LU DECOMPOSITION.
It solves the /N2

/ equations

i Bj li1u1j �li2u2j �	 	 	�liiujj �aij

i �j li1u1j �li2u2j �	 	 	�liiujj �aij

i �j li1u1j �li2u2j �	 	 	�liiujj �aij

for the /N2 �N/ unknowns /lij/ and /uij/.

See also LU DECOMPOSITION

References
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-

ling, W. T. Numerical Recipes in FORTRAN: The Art of
Scientific Computing, 2nd ed. Cambridge, England: Cam-
bridge University Press, pp. 36 �/8, 1992.

Crowd
A group of SOCIABLE NUMBERS of order 3.

Crown

A 6-POLYIAMOND.

See also POLYIAMOND
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Crucial Point
The HOMOTHETIC CENTER of the ORTHIC TRIANGLE and
the triangular hull of the three EXCIRCLES. It has
TRIANGLE CENTER FUNCTION

a �tan A �sin(2B) �sin(2C) �sin(2A) :
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Cruciform

A plane curve also called the CROSS CURVE and
POLICEMAN ON POINT DUTY CURVE (Cundy and Rollett
1989). It is given by the equation

x2y2 �a2x2 �b2y2 �0; (1)

which is equivalent to

1 �
a2

x2 
�

b2

y2 
�0 (2)

a2

x2 
�

b2

y2 
�1; (3)

or, rewriting,

y2 �
b2x2

x2 � a2 
: (4)

In parametric form,

x �a sec t (5)

y �b csc t: (6)

The CURVATURE is

k �
3ab csc2 t sec2 t

(b2 cos2 t cos2 ta2 sec2 t tan2 t)3 =2 : (7)
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Crunode

A point where a curve intersects itself so that two
branches of the curve have distinct tangent lines. The
MACLAURIN TRISECTRIX, shown above, has a crunode
at the origin.

See also ACNODE, SPINODE, TACNODE

Cryptarithm
CRYPTARITHMETIC

Cryptarithmetic
A number PUZZLE in which a group of arithmetical
operations has some or all of its DIGITS replaced by
letters or symbols, and where the original DIGITS

must be found. In such a puzzle, each letter repre-
sents a unique digit.

See also ALPHAMETIC, DIGIMETIC, SKELETON DIVISION
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Cryptographic Hash Function
A cryptographic hash function is most commonly one
of the following: a ONE-WAY HASH FUNCTION, a COLLI-

SION-FREE HASH FUNCTION, a TRAPDOOR ONE-WAY

HASH FUNCTION, or a function from a class of
UNIVERSAL HASH FUNCTIONS.



See also BIRTHDAY ATTACK, COLLISION-FREE HASH

FUNCTION, HASH FUNCTION, ONE-WAY HASH FUNC-

TION, TRAPDOOR ONE-WAY HASH FUNCTION, UNIVER-

SAL HASH FUNCTION
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Cryptography
The science of adversarial information protection.

See also CODING THEORY, CRYPTARITHM, CRYPTO-

GRAPHIC HASH FUNCTION, KNAPSACK PROBLEM, PUB-

LIC-KEY CRYPTOGRAPHY, TRAPDOOR ONE-WAY

FUNCTION
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Crystallographic Point Groups
The crystallographic point groups are the POINT

GROUPS in which translational periodicity is required
(the so-called CRYSTALLOGRAPHY RESTRICTION). There
are 32 such groups, summarized in the following table
which organized them by SCHÖ NFLIES SYMBOL type.

type point groups

nonaxial /Ci ; Cs/

cyclic /C1 ; C2 ; C3 ; C4 ; C6/

cyclic with horizontal planes /C2h ; C3h ; C4h ; C6h/

cyclic with vertical planes /C2v ; C3v ; C4v ; C6v/

dihedral /D2 ; D3 ; D4 ; D6/

dihedral with horizontal
planes

/D2h ; D3h ; D4h ; D6h/

dihedral with planes
between axes

/D2d ; D3d/

improper rotation /S4 ; S6/

cubic groups /T ; Th ; Td ; O; Oh/

Note that while the TETRAHEDRAL/Td/ and OCTAHEDRAL

/Oh/ POINT GROUPS are also crystallographic point
groups, the ICOSAHEDRAL GROUP /Ih/ is not. The orders,
classes, and group operations for these groups can be
concisely summarized in their CHARACTER TABLES.

See also CHARACTER TABLE, CRYSTALLOGRAPHY RE-

STRICTION, DIHEDRAL GROUP, GROUP, GROUP THEO-

RY, HERMANN-MAUGUIN SYMBOL, LATTICE GROUPS,
OCTAHEDRAL GROUP, POINT GROUPS, SCHÖ NFLIES

SYMBOL, SPACE GROUPS, TETRAHEDRAL GROUP
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Crystallography Restriction
If a discrete GROUP of displacements in the plane has
more than one center of rotation, then the only
rotations that can occur are by 2, 3, 4, and 6. This
can be shown as follows. It must be true that the sum
of the interior angles divided by the number of sides is
a divisor of 3608.

180�(n � 2)

n
�

360�

m
;

where m is an INTEGER. Therefore, symmetry will be
possible only for

2n

n � 2 
�m;

where m is an INTEGER. This will hold for 1-, 2-, 3-, 4-,
and 6-fold symmetry. That it does not hold for n �6 is
seen by noting that n �6 corresponds to m �3. The
m �2 case requires that /n �n �2/ (impossible), and
the m�1 case requires that n��2 (also impossible).

The POINT GROUPS that satisfy the crystallographic
restriction are called CRYSTALLOGRAPHIC POINT

GROUPS.

See also CRYSTALLOGRAPHIC POINT GROUPS, POINT

GROUPS, SYMMETRY
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Császár Polyhedron

A POLYHEDRON topologically equivalent to a TORUS

which was discovered in the late 1940s by Á kos
Császár (Gardner 1975). It has 7 VERTICES, 14 faces,
and 21 EDGES, and is the DUAL POLYHEDRON of the
SZILASSI POLYHEDRON.

The SKELETON of the Császár polyhedron, illustrated
above, is ISOMORPHIC to the COMPLETE GRAPH K7.
Rather surprisingly, the graph of the Császár poly-
hedron’s skeleton and its DUAL GRAPH can be used to
find STEINER TRIPLE SYSTEMS (Gardner 1975).

The figure above shows how to construct the Császár
polyhedron.

See also SZILASSI POLYHEDRON, TOROIDAL POLYHE-

DRON

References
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Csc
COSECANT

Csch
HYPERBOLIC COSECANT

C-Table
C -DETERMINANT

Ctg
COTANGENT

Cth
HYPERBOLIC COTANGENT

Ctn
COTANGENT

Cubature
Ueberhuber (1997, p. 71) and Krommer and Ueber-
huber (1998, pp. 49 and 155 �/65) use the word
"QUADRATURE" to mean numerical computation of a
univariate INTEGRAL, and "cubature" to mean numer-
ical computation of a MULTIPLE INTEGRAL. Cubature
techniques available in Mathematica include MONTE

CARLO INTEGRATION, implemented as NIntegrate[f ,
..., Method- �MonteCarlo] or NIntegrate[f , ...,
Method- �QuasiMonteCarlo], and the adaptive
Genz-Malik algorithm, implemented as NIntegra-
te[f , ..., Method- �MultiDimensional].

See also MONTE CARLO INTEGRATION, NUMERICAL

INTEGRATION, QUADRATURE
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Cube

The three-dimensional PLATONIC SOLID P3 which is
also called the HEXAHEDRON. The cube is composed of
six SQUARE faces, 6f4g; which meet each other at
RIGHT ANGLES, and has eight VERTICES and 12 EDGES.
It is also the UNIFORM POLYHEDRON U6 and Wennin-
ger model W3: It is described by the SCHLÄFLI SYMBOL

f4; 3g and WYTHOFF SYMBOL 3 ½24:/

The DUAL POLYHEDRON of the cube is the OCTAHE-

DRON. It has the Oh OCTAHEDRAL GROUP of symme-
tries, and is a ZONOHEDRON. The connectivity of the
vertices is given by the CUBICAL GRAPH.

Because the VOLUME of a cube of side length n is
given by n3; a number OF THE FORM n3 is called a
CUBIC NUMBER (or sometimes simply "a cube"). Simi-
larly, the operation of taking a number to the third
POWER is called CUBING. Sodium chloride (NaCl;
common table salt) naturally forms cubic crystals.
Using so-called "wallet hinges," a ring of six cubes can
be rotated continuously (Wells 1975; Wells 1991,
pp. 218�/19).

The cube cannot be STELLATED. A PLANE passing
through the MIDPOINTS of opposite sides (perpendi-
cular to a C3 axis) cuts the cube in a regular
HEXAGONAL CROSS SECTION (Gardner 1960; Steinhaus
1983, p. 170; Cundy and Rollett 1989, p. 157; Holden
1991, pp. 22�/3). Since there are four such axes, there
are four possible HEXAGONAL CROSS SECTIONS. If the
vertices of the cube are (91; 91; 91); then the
vertices of the inscribed HEXAGON are (0; �1; �1);
(1; 0; �1); (1; 1; 0); (0; 1; 1); (�1; 0; 1); and
(�1; �1; 0): A HEXAGON is also obtained when the
cube is viewed from above a corner along the exten-
sion of a space diagonal (Steinhaus 1983, p. 170). A
HYPERBOLOID of one sheet is obtained as the envelope
of a cube rotated about a space diagonal (Steinhaus
1983, pp. 171�/72).

The centers of the faces of an OCTAHEDRON form a
cube, and the centers of the faces of a cube form an
OCTAHEDRON (Steinhaus 1983, pp. 194�/95). The lar-
gest SQUARE which will fit inside a cube of side a has
each corner a distance 1/4 from a corner of a cube. The
resulting SQUARE has side length 3

ffiffiffi
2

p
a=4; and the

cube containing that side is called PRINCE RUPERT’S

CUBE.

The solid formed by the faces having the sides of the
STELLA OCTANGULA (left figure) as DIAGONALS is a
cube (right figure; Ball and Coxeter 1987). Affixing a
SQUARE PYRAMID of height 1/2 on each face of a cube
having unit edge length results in a RHOMBIC DODE-

CAHEDRON (Brückner 1900, p. 130; Steinhaus 1983,
p. 185).

The cube can be constructed by CUMULATION of a unit
edge-length TETRAHEDRON by a pyramid with height
1
6

ffiffiffi
6

p
: The following table gives polyhedra which can

be constructed by CUMULATION of a cube by pyramids
of given heights h .



h /(r �h)=h/ Result

/
1
6/ /4=3/ TETRAKIS HEXAHEDRON

/
1
2/ 2 RHOMBIC DODECAHEDRON

/
1
2

ffiffiffi
2

p
/ /1 �

ffiffiffi
2

p
/ 24-faced star DELTAHEDRON

The VERTICES of a cube of side length 2 with face-
centered axes are given by (91; 91 ; 91): If the cube is
oriented with a space diagonal along the Z -AXIS, the
coordinates are (0, 0,

ffiffiffi
3

p
) ; (0, 2

ffiffiffiffiffiffiffiffi
2=3

p
; 1 =

ffiffiffi
3

p
) ; (/

ffiffiffi
2

p
;ffiffiffiffiffiffiffiffi

2=3
p

; �1=
ffiffiffi
3

p
); (/

ffiffiffi
2

p
; �

ffiffiffiffiffiffiffiffi
2 =3

p
; 1=

ffiffiffi
3

p
) ; (0, �2

ffiffiffiffiffiffiffiffi
2=3

p
;

�1=
ffiffiffi
3

p
); (/�

ffiffiffi
2

p
;�

ffiffiffiffiffiffiffiffi
2=3

p
; 1=

ffiffiffi
3

p
) ; (/�

ffiffiffi
2

p
;

ffiffiffiffiffiffiffiffi
2=3

p
;�1 =

ffiffiffi
3

p
);

and the negatives of these vectors. A FACETED version
is the GREAT CUBICUBOCTAHEDRON.

A cube of side length 1 has INRADIUS, MIDRADIUS, and
CIRCUMRADIUS of

r �1
2 �0:5 (1)

r �1
2

ffiffiffi
2

p
:0:70710 (2)

R �1
2

ffiffiffi
3

p
:0:86602 : (3)

The cube has a DIHEDRAL ANGLE of

a �1
2 p: (4)

The SURFACE AREA and VOLUME of the cube are

S �6a2 (5)

V �a3 : (6)

See also AUGMENTED TRUNCATED CUBE, BIAUGMEN-

TED TRUNCATED CUBE, BIDIAKIS CUBE, BISLIT CUBE,
BROWKIN’S THEOREM, CUBE DISSECTION, CUBE DOVE-

TAILING PROBLEM, CUBE DUPLICATION, CUBIC NUM-

BER, CUBICAL GRAPH, CUBOID, GOURSAT’S SURFACE,
HADWIGER PROBLEM, HYPERCUBE, KELLER’S CONJEC-

TURE, PLATONIC SOLID, PRINCE RUPERT’S CUBE,
PRISM, RUBIK’S CUBE, SOMA CUBE, STELLA OCTANGU-

LA, TESSERACT, UNIT CUBE
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Cube 2-Compound

A POLYHEDRON COMPOUND obtained by allowing two
CUBES to share opposite VERTICES, then rotating one a
sixth of a turn (Holden 1971, p. 34).

See also CUBE, CUBE 3-COMPOUND, CUBE 4-COM-

POUND, CUBE 5-COMPOUND, POLYHEDRON COMPOUND
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Cube 3-Compound

A compound with the symmetry of the CUBE which
arises by joining three CUBES such that each shares



two C2 axes (Holden 1971, p. 35). The solid is depicted
atop the left pedestle in M. C. Escher’s woodcut
Waterfall.

See also CUBE, CUBE 2-COMPOUND, CUBE 4-COM-

POUND, CUBE 5-COMPOUND, ESCHER’S SOLID, POLY-

HEDRON COMPOUND
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Cube 4-Compound

A compound also called BAKOS’ COMPOUND having the
symmetry of the CUBE which arises by joining four
CUBES such that each C3 axis falls along the C3 axis of
one of the other CUBES (Bakos 1959; Holden 1971,
p. 35). Let the first cube c1 consists of a cube in
standard position rotated by p=3 radians around the
(1; 1; 1)/-axis, then the other three cubes are obtained
by rotating c1 around the (0; 0; 1)/-axis (Z -AXIS) by
p=2;�p=2; and p radians, respectively.

See also CUBE, CUBE 2-COMPOUND, CUBE 3-COM-

POUND, CUBE 5-COMPOUND, POLYHEDRON COMPOUND
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Cube 5-Compound

A POLYHEDRON COMPOUND consisting of the arrange-
ment of five CUBES in the VERTICES of a DODECAHE-

DRON (or the centers of the faces of the ICOSAHEDRON).
The cube 5-compound is the dual of the OCTAHEDRON

5-COMPOUND.

In the above figure, let a�1 be the length of a CUBE

EDGE. Then

x�1
2(3�

ffiffiffi
5

p
)

u�tan�1 3 �
ffiffiffi
5

p

2

 !
:20�54?

f�tan�1

ffiffiffi
5

p
� 1

2

 !
:31�43?

c�90��f:58�17?

a�90��u:69�06?:

The compound is most easily constructed using pieces
like the ones in the above line diagram. The cube 5-
compound has the 30 facial planes of the RHOMBIC

TRIACONTAHEDRON (Steinhaus 1983, pp. 199 and 209;
Ball and Coxeter 1987).

For cubes of unit edge lengths, the resulting com-
pound has edge lengths

s1�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(65�29

ffiffiffi
5

p
)

q
(1)

s2�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27�12

ffiffiffi
5

pq
(2)

s3�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(25�11

ffiffiffi
5

p
)

q
(3)

s4�
ffiffiffi
5

p
�2 (4)

s5�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2(7�3

ffiffiffi
5

p
)

q
(5)

s6�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
5

pq
(6)

s7�
1
2(3�

ffiffiffi
5

p
): (7)

The CIRCUMRADIUS is

R�1
2

ffiffiffi
3

p
; (8)

and the SURFACE AREA and VOLUME are

S�165
ffiffiffi
5

p
�360 (9)



V �1
2(55

ffiffiffi
5

p
�120): (10)

See also CUBE, CUBE 2-COMPOUND, CUBE 3-COM-

POUND, CUBE 4-COMPOUND, CUBE 5-COMPOUND–OC-

TAHEDRON 5-COMPOUND, CUBE 20-COMPOUND,
DODECAHEDRON, OCTAHEDRON 5-COMPOUND, POLY-

HEDRON COMPOUND, RHOMBIC TRIACONTAHEDRON
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Cube 20-Compound

See also CUBE, CUBE 2-COMPOUND, CUBE 3-COM-

POUND, CUBE 4-COMPOUND, CUBE 5-COMPOUND, POLY-

HEDRON COMPOUND
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Cube 5-Compound �/Octahedron 5-
Compound

The compound of the CUBE 5-COMPOUND and its dual,
the OCTAHEDRON 5-COMPOUND.

See also CUBE 5-COMPOUND, OCTAHEDRON 5-COM-

POUND

Cube Dissection
A CUBE can be divided into n subcubes for only n �1,
8, 15, 20, 22, 27, 29, 34, 36, 38, 39, 41, 43, 45, 46, and
n ]48 (Sloane’s A014544).

The seven pieces used to construct the 3 �3 �3 cube
dissection known as the SOMA CUBE are one 3-
POLYCUBE and six 4-POLYCUBES (1 � 3 �6 � 4 �27);
illustrated above.

Another 3 �3 �3 cube dissection due to Steinhaus
(1983) uses three 5-POLYCUBES and three 4-POLY-

CUBES (3 � 5 �3 � 4 �27); illustrated above. There
are two solutions.

It is possible to cut a 1 �3 RECTANGLE into two
identical pieces which will form a CUBE (without
overlapping) when folded and joined. In fact, an
INFINITE number of solutions to this problem were
discovered by C. L. Baker (Hunter and Madachy
1975).

Lonke (2000) has considered the number f (j ; k; n) of
j -dimensional faces of a random k -dimensional cen-
tral section of the n -cube Bn

��[�1 ; 1]n ; and gives the
special result

f (0; k; n)�2k n
k

� � ffiffiffiffiffiffi
2k

p

s
g

�

0

e�kt2=2gn�k(tBn�k
� ) dt;

where gn�k is the (n�k)/-dimensional Gaussian prob-
ability measure.

See also CONWAY PUZZLE, DISSECTION, HADWIGER

PROBLEM, POLYCUBE, SLOTHOUBER-GRAATSMA PUZ-

ZLE, SOMA CUBE
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Cube Division by Planes

What is the average number of regions into which n
randomly chosen planes divide a cube?

See also CYLINDER CUTTING, SPACE DIVISION BY

PLANES

Cube Dovetailing Problem

Given the figure on the left (without looking at the
solution on the right), determine how to disengage
the two slotted CUBE halves without cutting, break-
ing, or distorting.
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Cube Duplication
Also called the DELIAN PROBLEM or DUPLICATION OF

THE CUBE. A classical problem of antiquity which,
given the EDGE of a CUBE, requires a second CUBE to
be constructed having double the VOLUME of the first
using only a STRAIGHTEDGE and COMPASS.

Under these restrictions, the problem cannot be
solved because the DELIAN CONSTANT 21 =3 (the re-
quired RATIO of sides of the original CUBE and that to

be constructed) is not a EUCLIDEAN NUMBER. The
problem can be solved, however, using a NEUSIS

CONSTRUCTION.

See also ALHAZEN’S BILLIARD PROBLEM, COMPASS,
CUBE, DELIAN CONSTANT, GEOMETRIC PROBLEMS OF

ANTIQUITY, NEUSIS CONSTRUCTION, STRAIGHTEDGE
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Cube Line Picking
The average DISTANCE between two points chosen at
random inside a unit cube (the n�3 case of HYPER-

CUBE LINE PICKING) is

D(3)� 1
105[4�17

ffiffiffi
2

p
�6

ffiffiffi
3

p
�21 ln(1�

ffiffiffi
2

p
)

�42 ln(2�
ffiffiffi
3

p
)�7p]

(Robbins 1978, Le Lionnais 1983).

Pick n points on a CUBE, and space them as far apart
as possible. The best value known for the minimum
straight LINE distance between any two points is
given in the following table.

n /d(n)/

5 1.1180339887498

6 1.0606601482100

7 1

8 1

9 0.86602540378463

10 0.74999998333331



11 0.70961617562351

12 0.70710678118660

13 0.70710678118660

14 0.70710678118660

15 0.625

See also CUBE POINT PICKING, CUBE TRIANGLE

PICKING, DISCREPANCY THEOREM, HYPERCUBE LINE

PICKING, POINT PICKING, POINT-POINT DISTANCE–1-D
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Cube Point Picking
Pick N points p1 ; ..., pN randomly in a unit n -cube.
Let C be the CONVEX HULL, so

C �
XN

j�1

ljpj : lj ]0 for all j and
XN

j�1

lj �1

( )
: (1)

Let V(n; N) be the expected n -D VOLUME (the CON-

TENT) of C , S(n; N) be the expected (n �1)/-D SURFACE

AREA of C , and P(n ; N) the expected number of
VERTICES on the POLYGONAL boundary of C . Then

lim
N 0�

N[1 � V(2; N)]

ln N
�8

3

lim
N 0�

ffiffiffiffiffi
N

p
[4 �S(2; N)]

�
ffiffiffiffiffiffi
2p

p
2 �g

1

0

(
ffiffiffiffiffiffiffiffiffiffiffiffi
1 �t2

p
�1)t�3=2 dt

" #

�4:2472965 . . . ; (2)

lim
N 0�

P(2; N) �8
3 ln N �8

3( g �ln 2)

��0:309150708 . . . (3)

(Rényi and Sulanke 1963, 1964).

See also BALL POINT PICKING, CUBE LINE PICKING,
SPHERE POINT PICKING
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Cube Power
A number raised to the third POWER. x3 is read as "x
cubed."

See also CUBIC NUMBER

Cube Root

Given a number z , the cube root of z , denoted
ffiffiffi
z3

p
or

z1=3 (z to the 1/3 POWER), is a number a such that
a3�z: There are three (not necessarily distinct) cube
roots for any number.

For real arguments, the cube root is an INCREASING

FUNCTION, although the usual derivative test cannot
be used to establish this fact at the ORIGIN since the



derivative approaches infinity there (as illustrated
above).

See also CUBE DUPLICATION, CUBED, DELIAN CON-

STANT, GEOMETRIC PROBLEMS OF ANTIQUITY, K -

MATRIX, SQUARE ROOT

Cube Tetrahedron Picking

Given four points chosen at random inside a UNIT

CUBE, the average VOLUME of the TETRAHEDRON

determined by these points is given by

V̄ �

g
1

0

	 	 	g
1

0

½V(xi) ½dx1 	 	 	dx4dy1 	 	 	dy4dz1 	 	 	dz4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
12

g
1

0

	 	 	g
1

0

dx1 	 	 	dx4dy1 	 	 	dy4dz1 	 	 	dz4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
12

where the VERTICES are located at (xi ; yi ; zi) where
i �1, ..., 4, and the (signed) VOLUME is given by the
DETERMINANT

V �
1

3!

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

��������

��������:
The integral is extremely difficult to compute. The
analytic result is not known, but numerically is given
by V̄ :0:0138: (Note that the result quoted in the
reply to Seidov 2000 actually refers to the average
volume for TETRAHEDRON TETRAHEDRON PICKING.)

See also CUBE, POINT PICKING, SPHERE TETRAHE-

DRON PICKING, SQUARE TRIANGLE PICKING, TETRA-

HEDRON
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Cube Triangle Picking
Pick 3 points at random in the unit n -HYPERCUBE.
Denote the probability that the three points form an
OBTUSE TRIANGLE

Q
(n): Langford (1969) proved

F(2) � 97
150 �

1
40 p �0 :725206483 . . .

See also BALL TRIANGLE PICKING, CUBE POINT

PICKING
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Cubed
A number to the POWER 3 is said to be cubed, so that
x3 is called "x cubed."

See also CUBE ROOT, SQUARED

Cubefree

A number is said to be cubefree if its PRIME FACTOR-

IZATION contains no tripled factors. All PRIMES are
therefore trivially cubefree. The cubefree numbers
are 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...
(Sloane’s A004709). The cubeful numbers (i.e., those
that contain at least one cube) are 8, 16, 24, 27, 32, 40,
48, 54, ... (Sloane’s A046099). The number of cubefree
numbers less than 10, 100, 1000, ... are 9, 85, 833,
8319, 83190, 831910, ..., and their asymptotic density
is 1=z(3) :0:831907 ; where z(n) is the RIEMANN ZETA

FUNCTION.

See also BIQUADRATEFREE, CUBEFREE PART, PRIME

NUMBER, RIEMANN ZETA FUNCTION, SQUAREFREE

References
Sloane, N. J. A. Sequences A004709 and A046099 in "An

On-Line Version of the Encyclopedia of Integer Se-
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Cubefree Part
That part of a POSITIVE INTEGER left after all cubic
factors are divided out. For example, the cubefree
part of 24�23 � 3 is 3. For n�1, 2, ..., the first few
are 1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, ...
(Sloane’s A050985). The squarefree part function can
be implemented in Mathematica as

SquarefreePart[n_Integer?Positive] :�



Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 3]} &

/@ FactorInteger[n])

See also CUBEFREE, CUBIC PART, SQUAREFREE PART
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Cubefree Word
A cubefree word contains no cubed words as sub-
words. The number of binary cubefree words of length
n �1, 2, ... are 2, 4, 6, 10, 16, 24, 36, 56, 80, 118, ...
(Sloane’s A028445). Binary cubefree words satisfy

2 � 1:080n 5c(n) 52 � 1:522n : (1)

The number of ternary cubefree words of length
n �1, 2, ... are 3, 9, 24, 66, 180, 486, 1314, ... (Sloane’s
A051042). The number of quaternary cubefree words
of length n �1, 2, ... are 4, 16, 60, 228, 864, 3264,
12336, ... (Sloane’s A051043).

See also OVERLAPFREE WORD, SQUAREFREE WORD,
WORD
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Cube-Octahedron Compound

A POLYHEDRON COMPOUND composed of a CUBE and
its DUAL POLYHEDRON, the OCTAHEDRON. For a CUBE

of edge length 1, the 14 vertices are located at (/91=2;
91=2 ;91=2); ( 9 1, 0, 0), (0, 9 1, 0), (0, 0, 9 1). Since
the edges of the cube and octahedron bisect each
other, the resulting solid has side lengths 1/2 andffiffiffiffiffiffiffiffiffiffi

2=2
p

; and SURFACE AREA and VOLUME given by

S �3(1 �
ffiffiffiffiffi
3)

p
V �3

2 :

The CONVEX HULL of the cube-octahedron compound
is a RHOMBIC DODECAHEDRON.

The solid common to both the CUBE and OCTAHEDRON

(left figure) in a cube-octahedron compound is a
CUBOCTAHEDRON (middle figure). The edges intersect-
ing in the points plotted above are the diagonals of
RHOMBUSES, and the 12 RHOMBUSES form a RHOMBIC

DODECAHEDRON (right figure; Ball and Coxeter 1987).

See also CUBE, CUBOCTAHEDRON, OCTAHEDRON,
POLYHEDRON COMPOUND

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, p. 137, 1987.
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New

York: Wiley, p. 158, 1969.
Cundy, H. and Rollett, A. "Cube Plus Octahedron." §3.10.2 in

Mathematical Models, 3rd ed. Stradbroke, England:
Tarquin Pub., p. 130, 1989.

Weisstein, E. W. "Polyhedra." MATHEMATICA NOTEBOOK

POLYHEDRA.M.
Wenninger, M. J. "Compound of a Cube and Octahedron."
§43 in Polyhedron Models. New York: Cambridge Uni-
versity Press, p. 68, 1989.

Cubic Close Packing
SPHERE PACKING

Cubic Curve
A cubic curve is an ALGEBRAIC CURVE of degree 3. An
algebraic curve over a FIELD K is an equation
f (X;Y)�0; where f (X;Y) is a POLYNOMIAL in X and
Y with COEFFICIENTS in K , and the degree of f is the
MAXIMUM degree of each of its terms (MONOMIALS).

Newton showed that all cubics can be generated by
the projection of the five divergent cubic parabolas.
Newton’s classification of cubic curves appeared in
the chapter "Curves" in Lexicon Technicum by John
Harris published in London in 1710. Newton also
classified all cubics into 72 types, missing six of them.
In addition, he showed that any cubic can be obtained
by a suitable projection of the ELLIPTIC CURVE

y2�ax3�bx2�cx�d; (1)

where the projection is a BIRATIONAL TRANSFORMA-



TION, and the general cubic can also be written as

y2 �x3 �ax �b: (2)

Newton’s first class is equations OF THE FORM

xy2 �ey �ax3 �bx2 �cx �d: (3)

This is the hardest case and includes the SERPENTINE

CURVE as one of the subcases. The third class was

ay2 �x(x2 �2bx �c) ; (4)

which is called NEWTON’S DIVERGING PARABOLAS.
Newton’s 66th curve was the TRIDENT OF NEWTON.
Newton’s classification of cubics was criticized by
Euler because it lacked generality. Plücker later gave
a more detailed classification with 219 types.

The NINE ASSOCIATED POINTS THEOREM states that
Any cubic curve that passes through eight of the nine
intersections of two given cubic curves automatically
passes through the ninth (Evelyn et al. 1974, p. 15).

Pick a point P , and draw the tangent to the curve at
P . Call the point where this tangent intersects the
curve Q . Draw another tangent and call the point of
intersection with the curve R . Every curve of third
degree has the property that, with the areas in the
above labeled figure,

B�16A (5)

(Honsberger 1991).

See also CAYLEY-BACHARACH THEOREM, CUBIC EQUA-

TION, ELLIPTIC CURVE, NINE ASSOCIATED POINTS

THEOREM, TRIANGLE CUBIC CURVE
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Cubic Equation
A cubic equation is a POLYNOMIAL equation of degree
three. Given a general cubic equation

z3�a2z2�a1z�a0�0 (1)

(the COEFFICIENT a3 of z3 may be taken as 1 without
loss of generality by dividing the entire equation
through by a3); first attempt to eliminate the a2 term
by making a substitution OF THE FORM

z�x�l: (2)

Then

(x�l)3�a2(x�l)2�a1(x�l)�a0�0 (3)

(x3�3lx2�3l2x�l3)�a2(x2�2lx�l2)

�a1(x�l)�a0�0 (4)

x3�(a2�3l)x2�(a1�2a2l�3l2)x

�(a0�a1l�a2l
2�l3)�0: (5)

The x2 is eliminated by letting l�a2=3; so

z�x�1
3a2: (6)

Then

z3�(x�1
3 a2)3�x3�a2x2�1

3 a2
2x� 1

27a
3
2: (7)

a2z2�a2(x�1
3 a2)2�a2x2�2

3 a2
2x�1

9 a3
2 (8)

a1z�a1(x�1
3 a2)�a1x�1

3 a1a2; (9)

so equation (1) becomes

x3�(�a2�a2)x2�(1
3 a2

2�
2
3 a2

2�a1)x

�( 1
27 a3

2�
1
9 a3

2�
1
3 a1a2�a0)�0 (10)

x3�(a1�
1
3 a2

2)x�(1
3 a1a2�

2
27 a3

2�a0)�0 (11)

x3�3 �
3a1 � a2

2

9
x�2 �

9a1a2 � 27a0 � 2a3
2

54
�0: (12)

Defining

p�
3a1 � a2

2

3
(13)

q�
9a1a2 � 27a0 � 2a3

2

27
(14)

then allows (12) to be written in the standard form

x3�px�q: (15)

The simplest way to proceed is to make VIETA’S



SUBSTITUTION

x�w�
p

3w
; (16)

which reduces the cubic to the equation

w3�
p3

27w3
�q�0; (17)

which is easily turned into a QUADRATIC EQUATION in
w3 by multiplying through by w3 to obtain

(w3)2�q(w3)� 1
27 p3�0 (18)

(Birkhoff and Mac Lane 1996, p. 106). The result
from the QUADRATIC EQUATION is

w3�1
2 q9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2� 4

27 p3
q1 2

�1
2 q9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 q2� 1

27 p3
q

�R9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�Q3

p
; (19)

where Q and R are sometimes more useful to deal
with than are p and q . There are therefore six
solutions for w (two corresponding to each sign for
each ROOT of w3): Plugging w back in to (17) gives
three pairs of solutions, but each pair is equal, so
there are three solutions to the cubic equation.

Equation (12) may also be explicitly factored by
attempting to pull out a term OF THE FORM (x�B)
from the cubic equation, leaving behind a quadratic
equation which can then be factored using the
QUADRATIC FORMULA. This process is equivalent to
making VIETA’S SUBSTITUTION, but does a slightly
better job of motivating Vieta’s "magic" substitution,
and also at producing the explicit formulas for the
solutions. First, define the intermediate variables

Q�
3a1 � a2

2

9
(20)

R�
9a2a1 � 27a0 � 2a3

2

54
(21)

(which are identical to p and q up to a constant
factor). The general cubic equation (12) then becomes

x3�3Qx�2R�0: (22)

Let B and C be, for the moment, arbitrary constants.
An identity satisfied by PERFECT CUBIC POLYNOMIAL

equations is that

x3�B3�(x�B)(x2�Bx�B2): (23)

The general cubic would therefore be directly factor-
able if it did not have an x term (i.e., if Q�0).
However, since in general Q"0; add a multiple of
(x�B)/*/say C(x�B)/*/to both sides of (23) to give the
slightly messy identity

(x3�B3)�C(x�B)�(x�B)(x2�Bx�B2�C)

�0; (24)

which, after regrouping terms, is

x3�Cx�(B3�BC)�(x�B)[x2�Bx�(B2�C)]

�0: (25)

We would now like to match the COEFFICIENTS C and
�(B3�BC) with those of equation (22), so we must
have

C�3Q (26)

B3�BC�2R: (27)

Plugging the former into the latter then gives

B3�3QB�2R: (28)

Therefore, if we can find a value of B satisfying the
above identity, we have factored a linear term from
the cubic, thus reducing it to a QUADRATIC EQUATION.
The trial solution accomplishing this miracle turns
out to be the symmetrical expression

B�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3: (29)

Taking the second and third POWERS of B gives

B2�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3�2[R2�(Q3�R2)]1=3

�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3

�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3�2Q (30)

B3��2QB

� [R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3

n o
� [R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3

n o
�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]�[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]

�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3

�[R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]2=3[R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
]1=3�2QB

��2QB�2R�[R2�(Q3�R2)]1=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p1 21=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p1 21=3
� �
��2QB�2R�QB��3QB�2R: (31)

Plugging B3 and B into the left side of (28) gives

(�3QB�2R)�3QB�2R; (32)

so we have indeed found the factor (x�B) of (22), and
we need now only factor the quadratic part. Plugging
C�3Q into the quadratic part of (25) and solving the
resulting

x2�Bx�(B2�3Q)�0 (33)

then gives the solutions



x�1
2 �B9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4(B2�3Q)

ph i
��1

2 B91
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3B2�12Q

p
��1

2 B91
2

ffiffiffiffiffi
3i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�4Q

p
: (34)

These can be simplified by defining

A� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

ph i1=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

ph i1=3

(35)

A2� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

ph i2=3

�2 R2�(Q3�R2)
= J1=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

ph i2=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

ph i2=3

� R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3�R2

p
)

h i2=3

�2Q

�B2�4Q; (36)

so that the solutions to the quadratic part can be
written

x��1
2 B91

2

ffiffiffi
3

p
iA: (37)

Defining

D�Q3�R2 (38)

S�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

ffiffiffiffi
D

pq
(39)

T�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

ffiffiffiffi
D

p
;

q
(40)

where D is the DISCRIMINANT (which is defined
slightly differently, including the opposite SIGN, by
Birkhoff and Mac Lane 1996) then gives very simple
expressions for A and B , namely

B�S�T (41)

A�S�T: (42)

Therefore, at last, the ROOTS of the original equation
in z are then given by

z1��1
3 a2�(S�T) (43)

z2��1
3 a2�

1
2(S�T)�1

2 i
ffiffiffiffiffi
3

p
(S�T) (44)

z3��1
3 a2�

1
2(S�T)�1

2 i
ffiffiffiffiffi
3

p
(S�T); (45)

with a2 the COEFFICIENT of z2 in the original equation,
and S and T as defined above. These three equations
giving the three ROOTS of the cubic equation are
sometimes known as CARDANO’S FORMULA. Note that
if the equation is in the standard form of Vieta

x3�px�q; (46)

in the variable x , then a2�0; a1�p; and a0��q; and
the intermediate variables have the simple form (cf.
Beyer 1987)

Q�1
3 p (47)

R�1
2 q (48)

D�Q3�R2�
p

3

 !2

�
q

2

 !2

: (49)

The solutions satisfy NEWTON’S RELATIONS

z1�z2�z3��a2 (50)

z1z2�z2z3�z1z3�a1 (51)

z1z2z3��a0: (52)

In standard form (46), a2�0; a1�p; and a0��q; so
eliminating q gives

p��(z2
i �zizj�z2

j ) (53)

for i"j; and eliminating p gives

q��zizj(zi�zj) (54)

for i"j: In addition, the properties of the SYMMETRIC

POLYNOMIALS appearing in NEWTON’S RELATIONS give

z2
1�z2

2�z2
3��2p (55)

z3
1�z3

2�z3
3�3q (56)

z4
1�z4

2�z4
3�2p2 (57)

z5
1�z5

2�z5
3��5pq: (58)

The equation for z1 in CARDANO’S FORMULA does not
have an i appearing in it explicitly while z2 and z3 do,
but this does not say anything about the number of
REAL and COMPLEX ROOTS (since S and T are
themselves, in general, COMPLEX). However, deter-
mining which ROOTS are REAL and which are COM-

PLEX can be accomplished by noting that if the
DISCRIMINANT D �0, one ROOT is REAL and two are
COMPLEX CONJUGATES; if D�0, all ROOTS are REAL

and at least two are equal; and if D B0, all ROOTS are
REAL and unequal. If D B0, define

u�cos�1 Rffiffiffiffiffiffiffiffiffiffiffi
�Q3

p !
: (59)

Then the REAL solutions are OF THE FORM

z1�2
ffiffiffiffiffiffiffiffi
�Q

p
cos

u

3

 !
�1

3 a2 (60)

z2�2
ffiffiffiffiffiffiffiffi
�Q

p
cos

u� 2p

3

 !
�1

3 a2 (61)

z3�2
ffiffiffiffiffiffiffiffi
�Q

p
cos

u� 4p

3

 !
�1

3 a2: (62)

This procedure can be generalized to find the REAL

ROOTS for any equation in the standard form (46) by



using the identity

sin3 u �3
4 sin u �1

4 sin(3u) �0 (63)

(Dickson 1914) and setting

x �

ffiffiffiffiffiffiffiffi
4 ½p ½

3

s
y (64)

(Birkhoff and Mac Lane 1996, pp. 90 �/1), then

4 pj j
3

 !3 =2

y3 �p

ffiffiffiffiffiffiffiffiffi
4 pj j

3

s
y �q (65)

y3 �3
4

p

pj j
y �

3

4 pj j

 !3 =2

q (66)

4y3 �3 sgn(p)y �1
2 q

3

pj j

 !3=2

�C : (67)

If p �0, then use

sinh(3 u) �4 sinh3 
u �3 sinh u (68)

to obtain

y �sinh(1
3 sinh�1 C): (69)

If p B0 and Cj j]1; use

cosh(3u) �4 cosh3 
u �3 cosh u; (70)

and if p B0 and Cj j51; use

cos(3u) �4 cos3 u �3 cos u; (71)

to obtain

y �

cosh(1
3 cosh�1 C) for C ]1

�cosh(1
3 cosh�1 Cj j) for C 5�1

cos(1
3 cos�1 C) for Cj jB1:

8>><
>>: (72)

The solutions to the original equation are then

xi �2

ffiffiffiffiffiffi
pj j
3

s
yi �

1
3 a2 : (73)

An alternate approach to solving the cubic equation is
to use LAGRANGE RESOLVENTS (Faucette 1996). Let
v �e2pi=3 ; define

(1; x1) �x1 �x2 �x3 (74)

( v; x1) �x1 � vx2 � v2x3 (75)

(v2 ; x1) �x1 � v2x2 � vx3 ; (76)

where xi are the ROOTS of

x3 �px �q �0; (77)

and consider the equation

[x �(u1 �u2)][x �( vu1 � v2u2)][x �( v2u1 � vu2)]

�0; (78)

where u1 and u2 are COMPLEX NUMBERS. The ROOTS

are then

xj � vju1 � v2ju2 (79)

for j �0, 1, 2. Multiplying through gives

x3�3u1u2x�(u3
1�u3

2)�0; (80)

which can be written in the form (77), where

u3
1�u3

2�q (81)

u3
1u3

2��
p

3

 !3

: (82)

Some curious identities involving the roots of a cubic
equation due to Ramanujan are given by Berndt
(1994).

See also CASUS IRREDUCIBILUS, DISCRIMINANT (POLY-

NOMIAL), PERFECT CUBIC POLYNOMIAL, QUADRATIC

EQUATION, QUARTIC EQUATION, QUINTIC EQUATION,
SEXTIC EQUATION
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Cubic Graph

Cubic graphs, also called trivalent graphs, are graphs
all of whose nodes have degree 3 (i.e., 3-REGULAR

GRAPHS). Cubic graphs on n nodes exists only for even
n (Harary 1994, p. 15). The numbers of cubic graphs
on 2, 4, 6, ... nodes are 0, 1, 2, 6, 21, 94, 540, 4207, ...
(Sloane’s A005638). The unique 4-node cubic graph is
the COMPLETE GRAPH k4 : The two 6-node cubic graphs
are the UTILITY GRAPH K3; 3 and the CIRCULANT GRAPH

Ci1 ; 3(6) : The connected 3-regular graphs have been
determined by Brinkmann (1996) up to 24 nodes.

/(3; g)/-CAGE GRAPHS and UNITRANSITIVE GRAPHS are
cubic. In addition, the following tables gives polyhe-
dra whose SKELETONS are cubic.

POLYHEDRON nodes

TETRAHEDRON 4

CUBE 8

TRUNCATED TETRAHEDRON 12

DODECAHEDRON 20

TRUNCATED CUBE 24

TRUNCATED OCTAHEDRON 24

GREAT RHOMBICUBOCTAHEDRON

(ARCHIMEDEAN)
48

TRUNCATED ICOSAHEDRON 60

GREAT RHOMBICOSIDODECAHEDRON

(ARCHIMEDEAN)
120

See also BARNETTE’S CONJECTURE, BICUBIC GRAPH,
CAGE GRAPH, CUBICAL GRAPH, FRUCHT GRAPH,

QUARTIC GRAPH, QUINTIC GRAPH, REGULAR GRAPH,
TAIT’S HAMILTONIAN GRAPH CONJECTURE, TUTTE

CONJECTURE, UNITRANSITIVE GRAPH
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Cubic Number

A FIGURATE NUMBER OF THE FORM n3; for n a POSITIVE

INTEGER. The first few are 1, 8, 27, 64, ... (Sloane’s
A000578). The GENERATING FUNCTION giving the
cubic numbers is

x(x2 � 4x � 1)

(x � 1)4 �x�8x2�27x3�. . . (1)

The HEX PYRAMIDAL NUMBERS are equivalent to the
cubic numbers (Conway and Guy 1996).

As a part of the study of WARING’S PROBLEM, it is
known that every positive integer is a sum of no more
than 9 positive cubes (/g(3)�9; proved by Dickson,
Pillai, and Niven in the early twentieth century), that
every "sufficiently large" integer is a sum of no more
than 7 positive cubes (/G(3)57): However, it is not
known if 7 can be reduced (Wells 1986, p. 70). The
number of positive cubes needed to represent the
numbers 1, 2, 3, ... are 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6,
7, 8, 2, ...(Sloane’s A002376), and the number of
distinct ways to represent the numbers 1, 2, 3, ... in



terms of positive cubes are 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, ...
(Sloane’s A003108).

In 1939, Dickson proved that the only INTEGERS

requiring nine positive cubes are 23 and 239. Wiefer-
ich proved that only 15 INTEGERS require eight cubes:
15, 22, 50, 114, 167, 175, 186, 212, 213, 238, 303, 364,
420, 428, and 454 (Sloane’s A018889). The quantity
G(3) in WARING’S PROBLEM therefore satisfies G(3)5
7; and the largest number known requiring seven
cubes is 8042. Deshouillers et al. (1999) conjectured
that 7,373,170,279,850 is the largest integer that
cannot be expressed as the sum of four nonnegative
cubes.

The following table gives the first few numbers which
require at least N�1, 2, 3, ..., 9 (i.e., N or more)
positive cubes to represent them as a sum.

N Sloane Numbers

1 Sloane’s
A000578

1, 8, 27, 64, 125, 216, 343,
512, ...

2 Sloane’s
A003325

2, 9, 16, 28, 35, 54, 65, 72,
91, ...

3 Sloane’s
A003072

3, 10, 17, 24, 29, 36, 43, 55,
62, ...

4 Sloane’s
A003327

4, 11, 18, 25, 30, 32, 37, 44,
51, ...

5 Sloane’s
A003328

5, 12, 19, 26, 31, 33, 38, 40,
45, ...

6 Sloane’s
A003329

6, 13, 20, 34, 39, 41, 46, 48,
53, ...

7 Sloane’s
A018890

7, 14, 21, 42, 47, 49, 61, 77,
...

8 Sloane’s
A018889

15, 22, 50, 114, 167, 175,
186, ...

9 Sloane’s
A018888

23, 239

There is a finite set of numbers which cannot be
expressed as the sum of distinct positive cubes: 2, 3, 4,
5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, ...(Sloane’s A001476).

It is known that every integer is a sum of at most 5
signed cubes (/eg(3)55 in WARING’S PROBLEM). It is
believed that 5 can be reduced to 4, so that

N�A3�B3�C3�D3 (2)

for any number N , although this has not been proved
for numbers OF THE FORM 9n94: However, every
multiple of 6 can be REPRESENTED AS a sum of four

signed cubes as a result of the algebraic identity

6x�(x�1)3�(x�1)3�x3�x3: (3)

In fact, all numbers N B1000 and not OF THE FORM

9n94 are known to be expressible as the SUM

N�A3�B3�C3 (4)

of three (positive or negative) cubes with the excep-
tion of N�30, 33, 42, 52, 74, 110, 114, 156, 165, 195,
290, 318, 366, 390, 420, 444, 452, 478, 501, 530, 534,
564, 579, 588, 600, 606, 609, 618, 627, 633, 732, 735,
758, 767, 786, 789, 795, 830, 834, 861, 894, 903, 906,
912, 921, 933, 948, 964, 969, and 975 (Sloane’s
A046041; Miller and Woollett 1955; Gardiner et al.
1964; Guy 1994, p. 151). While it is known that (4)
has no solutions for N of the form 9n94 (Hardy and
Wright 1979, p. 327), there is known reason for
excluding the above integers (Gardiner et al. 1964).
Mahler proved that 1 has infinitely-many representa-
tions as 3 signed cubes.

The following table gives the numbers which can be
represented in exactly W different ways as a sum of
N positive cubes. (Combining all Ws for a given N
then gives the sequences in the previous table.) For
example,

157�43�43�33�13�13�53�23�23�23�23 (5)

can be represented in W�2 ways by N�5 cubes. The
smallest number representable in W�2 ways as a
sum of N � 2 cubes,

1729�13�123�93�103; (6)

is called the HARDY-RAMANUJAN NUMBER and has
special significance in the history of mathematics as a
result of a story told by Hardy about Ramanujan.
Note that Sloane’s A001235 is defined as the se-
quence of numbers which are the sum of cubes in two
or more ways, and so appears identical in the first few
terms to the (N�2; W�2) series given below.

N W Sloane numbers

1 0 A007412 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
14, ...

1 1 A000578 1, 8, 27, 64, 125, 216, 343, 512,
...

2 0 A057903 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13,
14, ...

2 1 2, 9, 16, 28, 35, 54, 65, 72, 91, ...

2 2 A018850 1729, 4104, 13832, 20683,
32832, ...

2 3 A003825 87539319, 119824488,
143604279, ...



2 4 A003826 6963472309248,
12625136269928, ...

2 5 48988659276962496, ...

2 6 8230545258248091551205888,
...

3 0 A057904 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13,
14, ...

3 1 A025395 3, 10, 17, 24, 29, 36, 43, 55, 62,
...

3 2 251, ...

4 0 A057905 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13,
14, ...

4 1 A025403 4, 11, 18, 25, 30, 32, 37, 44, 51,
...

4 2 A025404 219, 252, 259, 278, 315, 376,
467, ...

5 0 A057906 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13,
14, 15, ...

5 1 A048926 5, 12, 19, 26, 31, 33, 38, 40, 45,
...

5 2 A048927 157, 220, 227, 246, 253, 260,
267, ...

6 0 A057907 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12,
14, 15, ...

6 1 A048929 6, 13, 20, 27, 32, 34, 39, 41, 46,
...

6 2 A048930 158, 165, 184, 221, 228, 235,
247, ...

6 3 A048931 221, 254, 369, 411, 443, 469,
495, ...

The following table gives the possible residues (mod
n ) for cubic numbers for n�1 to 20, as well as the
number of distinct residues s(n):/

n /s(n)/ /x3 (mod n)/

2 2 0, 1

3 3 0, 1, 2

4 3 0, 1, 3

5 5 0, 1, 2, 3, 4

6 6 0, 1, 2, 3, 4, 5

7 3 0, 1, 6

8 5 0, 1, 3, 5, 7

9 3 0, 1, 8

10 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

11 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

12 9 0, 1, 3, 4, 5, 7, 8, 9, 11

13 5 0, 1, 5, 8, 12

14 6 0, 1, 6, 7, 8, 13

15 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

16 10 0, 1, 3, 5, 7, 8, 9, 11, 13, 15

17 17 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16

18 6 0, 1, 8, 9, 10, 17

19 7 0, 1, 7, 8, 11, 12, 18

20 15 0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17,
19

Dudeney found two RATIONAL NUMBERS other than 1
and 2 whose cubes sum to 9,

415280564497

348671682660
and

676702467503

348671682660
(7)

(Gardner 1958). The problem of finding two RATIONAL

NUMBERS whose cubes sum to six was "proved"
impossible by Legendre. However, Dudeney found
the simple solutions 17/21 and 37/21.

The only three consecutive INTEGERS whose cubes
sum to a cube are given by the DIOPHANTINE

EQUATION

33�43�53�63: (8)

CATALAN’S CONJECTURE states that 8 and 9 (23 and 32)
are the only consecutive POWERS (excluding 0 and 1),
i.e., the only solution to CATALAN’S DIOPHANTINE

PROBLEM. This CONJECTURE has not yet been proved
or refuted, although R. Tijdeman has proved that
there can be only a finite number of exceptions should
the CONJECTURE not hold. It is also known that 8 and
9 are the only consecutive cubic and SQUARE NUMBERS

(in either order).

There are six POSITIVE INTEGERS equal to the sum of
the DIGITS of their cubes: 1, 8, 17, 18, 26, and 27
(Sloane’s A046459; Moret Blanc 1879). There are four
POSITIVE INTEGERS equal to the sums of the cubes of
their digits:

153�13�53�33 (9)

370�33�73�03 (10)

371�33�73�13 (11)

407�43�03�73 (12)

(Ball and Coxeter 1987). There are two SQUARE



NUMBERS OF THE FORM n3 �4 : 4�23 �4 and 121 �
53 �4 (Le Lionnais 1983). A cube cannot be the
concatenation of two cubes, since if c3 is the con-
catenation of a3 and b3 ; then c3 �10ka3 �b3 ; where k
is the number of digits in b3 : After shifting any
powers of 1000 in 10k into a3 ; the original problem
is equivalent to finding a solution to one of the
DIOPHANTINE EQUATIONS

c3 �b3 �a3 (13)

c3 �b3 �10a3 (14)

c3 �b3 �100a3 : (15)

None of these have solutions in integers, as proved
independently by Sylvester, Lucas, and Pepin (Dick-
son 1966, pp. 572 �/78).

See also BIQUADRATIC NUMBER, CENTERED CUBE

NUMBER, CLARK’S TRIANGLE, DIOPHANTINE EQUA-

TION–3RD POWERS, HARDY-RAMANUJAN NUMBER, PAR-

TITION, SQUARE NUMBER
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Cubic Part
The largest cube dividing a POSITIVE INTEGER n . For
n �1, 2, ..., the first few are 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, ...
(Sloane’s A008834).

See also CUBEFREE PART, CUBIC NUMBER, SQUARE

PART
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Cubic Reciprocity Theorem
A RECIPROCITY THEOREM for the case n �3 solved by
Gauss using "INTEGERS" OF THE FORM a �br ; when r
is a root of x2 �x �1 �0 (i.e., r equals �(�1)1 =3 or
(�1)2=3) and a , b are INTEGERS.

See also CUBIC RESIDUE, RECIPROCITY THEOREM
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Cubic Residue
If there is an INTEGER x such that

x3 �q (mod p) ; (1)

then q is said to be a cubic residue (mod p ). If not, q is
said to be a cubic nonresidue (mod p ).

See also CUBIC RECIPROCITY THEOREM, QUADRATIC

RESIDUE
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Cubic Spline
A cubic spline is a SPLINE constructed of piecewise
third-order POLYNOMIALS which pass through a set of
control points. The second DERIVATIVE of each POLY-

NOMIAL is commonly set to zero at the endpoints,
since this provides a boundary condition that com-
pletes the system of n �2 equations, leading to a
simple 3-diagonal system which can be solved easily
to give the coefficients of the polynomials. However,
this choice is not the only one possible, and other
boundary conditions can be used instead.

See also SPLINE, THIN PLATE SPLINE
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Cubic Surface
An ALGEBRAIC SURFACE of ORDER 3. Schläfli and
Cayley classified the singular cubic surfaces. On the
general cubic, there exists a curious geometrical
structure called DOUBLE SIXES, and also a particular
arrangement of 27 (possibly complex) lines, as dis-
covered by Schläfli (Salmon 1965, Fischer 1986) and
sometimes called SOLOMON’S SEAL LINES. A nonregu-
lar cubic surface can contain 3, 7, 15, or 27 real lines
(Segre 1942, Le Lionnais 1983). The CLEBSCH DIAG-

ONAL CUBIC contains all possible 27. The maximum
number of ORDINARY DOUBLE POINTS on a cubic
surface is four, and the unique cubic surface having
four ORDINARY DOUBLE POINTS is the CAYLEY CUBIC.

Schoutte (1910) showed that the 27 lines can be put
into a ONE-TO-ONE correspondence with the vertices of
a particular POLYTOPE in 6-D space in such a manner
that all incidence relations between the lines are
mirrored in the connectivity of the POLYTOPE and
conversely (Du Val 1931). A similar correspondence
can be made between the 28 bitangents of the general
plane QUARTIC CURVE and a 7-D POLYTOPE (Coxeter
1928) and between the tritangent planes of the
canonical curve of genus 4 and an 8-D POLYTOPE

(Du Val 1933).

A smooth cubic surface contains 45 TRITANGENTS

(Hunt). The Hessian of smooth cubic surface contains
at least 10 ORDINARY DOUBLE POINTS, although the
Hessian of the CAYLEY CUBIC contains 14 (Hunt).

See also CAYLEY CUBIC, CLEBSCH DIAGONAL CUBIC,
DOUBLE SIXES, ECKARDT POINT, ISOLATED SINGULAR-

ITY, NORDSTRAND’S WEIRD SURFACE, SOLOMON’S SEAL

LINES, TRITANGENT
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Cubical Conic Section
CUBICAL ELLIPSE, CUBICAL HYPERBOLA, CUBICAL

PARABOLA, SKEW CONIC

Cubical Ellipse

An equation OF THE FORM

y�ax3�bx2�cx�d

where only one ROOT is real.

See also CUBICAL CONIC SECTION, CUBICAL HYPERBO-

LA, CUBICAL PARABOLA, CUBICAL PARABOLIC HYPER-

BOLA, ELLIPSE, SKEW CONIC

Cubical Graph



The PLATONIC GRAPH corresponding to the connectiv-
ity of the CUBE. Several symmetrical circular embed-
dings of this graph are illustrated in the second figure
above. The cubical graph has 8 nodes, 12 edges,
VERTEX CONNECTIVITY 3, and EDGE CONNECTIVITY 3,
GRAPH DIAMETER 3, GRAPH RADIUS 3, and GIRTH 4. The
cubical graph’s CHROMATIC POLYNOMIAL is

pG(z) �z8 �12z7 �66z6 �214z5 �441z4 �572z3

�423z2 �133z ;

and the CHROMATIC NUMBER is x(G) �2:/

The maximum number of nodes in a cubical graph
which induce a cycle is six (Danzer and Klee 1967;
Skiena 1990, p. 149).

See also BIDIAKIS CUBE, BISLIT CUBE, CUBE, DODE-

CAHEDRAL GRAPH, ICOSAHEDRAL GRAPH, OCTAHE-

DRAL GRAPH, PLATONIC GRAPH, TETRAHEDRAL GRAPH
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Cubical Hyperbola

An equation OF THE FORM

y �ax3 �bx2 �cx �d;

where the three ROOTS are REAL and distinct, i.e.,

y �a(x �r1)(x �r2)(x �r3)

�a[x3 �(r1 �r2 �r3)x2 �(r1r2 �r1r3 �r2r3)x

�r1r2r3] :

See also CUBICAL CONIC SECTION, CUBICAL ELLIPSE,
CUBICAL HYPERBOLA, CUBICAL PARABOLA, HYPERBO-

LA

Cubical Parabola

An equation OF THE FORM

y �ax3 �bx2 �cx �d;

where the three ROOTS of the equation coincide (and
are therefore real), i.e.,

y �a(x �r)3 �a(x3 �3rx2 �3r2x �r3) :

See also CUBICAL CONIC SECTION, CUBICAL ELLIPSE,
CUBICAL HYPERBOLA, CUBICAL PARABOLIC HYPERBO-

LA, PARABOLA, SEMICUBICAL PARABOLA
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Cubical Parabolic Hyperbola

An equation OF THE FORM

y�ax3�bx2�cx�d;



where two of the ROOTS of the equation coincide (and
all three are therefore real), i.e.,

y �a(x �r1)2(x �r2)

�a[x3 �(2r1 �r2)x2 �r1(r1 �2r2)x �r2
1r2] :

See also CUBICAL CONIC SECTION, CUBICAL ELLIPSE,
CUBICAL HYPERBOLA, CUBICAL PARABOLA, HYPERBO-

LA

Cubicuboctahedron
GREAT CUBICUBOCTAHEDRON, SMALL CUBICUBOCTA-

HEDRON

Cubique d’Agnesi
WITCH OF AGNESI

Cubitruncated Cuboctahedron

The UNIFORM POLYHEDRON U16 whose DUAL is the
TETRADYAKIS HEXAHEDRON. It has WYTHOFF SYMBOL

34
3 4½: Its faces are 8f6g�6f8g�6f8

3g: It is a FACETED

OCTAHEDRON. the CIRCUMRADIUS for a cubitruncated
cuboctahedron of unit edge length is

r�1
2

ffiffiffiffiffi
7

p
:

References
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Cambridge University Press, pp. 113�/14, 1971.

Cuboctahedron

The ARCHIMEDEAN SOLID A1 (also called the DYMAX-

ION or HEPTAPARALLELOHEDRON) with faces /8f3g�
6f4g: It is one of the two convex QUASIREGULAR

POLYHEDRA. It is UNIFORM POLYHEDRON U7 and
Wenninger model W11: It has SCHLÄFLI SYMBOL /

3
4

; K
/

and WYTHOFF SYMBOL 2|34.

The DUAL POLYHEDRON is the RHOMBIC DODECAHE-

DRON. The cuboctahedron has the Oh OCTAHEDRAL

GROUP of symmetries. According to Heron, Archi-
medes ascribed the cuboctahedron to Plato (Heath
1981; Coxeter 1973, p. 30). The VERTICES of a cuboc-
tahedron with EDGE length of

ffiffiffi
2

p
are (0, 91, 91),

(91, 0, 91), and (91, 91, 0).

The INRADIUS r of the dual, MIDRADIUS r of the solid
and dual, and CIRCUMRADIUS R of the solid for a�1
are

r�3
4�0:75 (1)

r�1
2

ffiffiffiffiffi
3

p
:0:86602 (2)

R�1: (3)

The distances from the center of the solid to the
centroids of the triangular and square faces are

r3�
1
3

ffiffiffi
6

p
(4)

r4�
1
2

ffiffiffi
2

p
: (5)

The SURFACE AREA and VOLUME are

S�6�2
ffiffiffiffiffi
3

p
(6)

V�5
3

ffiffiffi
2

p
: (7)

FACETED versions of the cuboctahedron include the
CUBOHEMIOCTAHEDRON and OCTAHEMIOCTAHEDRON.



The solid common to both the CUBE and OCTAHEDRON

(left figure) in a CUBE-OCTAHEDRON COMPOUND is a
CUBOCTAHEDRON (right figure; Ball and Coxeter
1987). The mineral argentite (Ag2S) forms cuboctahe-
dral crystals (Steinhaus 1983, p. 203). The cubocta-
hedron can be inscribed in the RHOMBIC

DODECAHEDRON (Steinhaus 1983, p. 206).

Wenninger (1989) lists four of the possible STELLA-

TIONS of the cuboctahedron: the CUBE-OCTAHEDRON

COMPOUND, a truncated form of the STELLA OCTAN-

GULA, a sort of compound of six intersecting square
pyramids, and an attractive concave solid formed of
rhombi meeting four at a time.

If a cuboctahedron is oriented with triangles on top
and bottom, the two halves may be rotated one sixth
of a turn with respect to each other to obtain
JOHNSON SOLID J27, the TRIANGULAR ORTHOBICUPOLA.

In cubic close packing, each sphere is surrounded by
12 other spheres. Taking a collection of 13 such
spheres gives the cluster illustrated above. Connect-
ing the centers of the external 12 spheres gives a
cuboctahedron (Steinhaus 1983, pp. 203�/07), which
is therefore also a SPACE-FILLING POLYHEDRON.

See also ARCHIMEDEAN SOLID, CUBE, CUBE-OCTAHE-

DRON COMPOUND, CUBOHEMIOCTAHEDRON, OCTAHE-

DRON, OCTAHEMIOCTAHEDRON, QUASIREGULAR

POLYHEDRON, RHOMBIC DODECAHEDRON, RHOMBIC

DODECAHEDRON STELLATIONS, RHOMBUS, SPACE-

FILLING POLYHEDRON, SPHERE PACKING, STELLATION,
TRIANGULAR ORTHOBICUPOLA
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Cuboctahedron-Rhombic Dodecahedron
Compound

The POLYHEDRON COMPOUND consisting of the CUBOC-

TAHEDRON and its dual, the RHOMBIC DODECAHEDRON,
illustrated in the left figure above. The right figure
shows the solid common to the two polyhedra. If the
CUBOCTAHEDRON has unit edge length, the compound
can be constructed by midpoint CUMULATION with
heights

h3�
1
4

ffiffiffi
6

p
(1)

h4�
1
2

ffiffiffi
2

p
: (2)

The resulting compound has side lengths

s1�
1
8

ffiffiffi
6

p
(3)

s2�
1
2 (4)

s3�
1
4

ffiffiffi
6

p
(5)



s4 �
1
2

ffiffiffi
2

p
; (6)

and SURFACE AREA and VOLUME

S �3
4(4 �5

ffiffiffi
2

p
�2

ffiffiffi
3

p
) (7)

V �31
16

ffiffiffi
2

p
: (8)

See also CUBOCTAHEDRON, POLYHEDRON COMPOUND,
POLYHEDRON DUAL, RHOMBIC DODECAHEDRON

Cuboctatruncated Cuboctahedron
CUBITRUNCATED CUBOCTAHEDRON

Cubocycloid
ASTROID

Cubohemioctahedron

The UNIFORM POLYHEDRON U15 whose DUAL is the
HEXAHEMIOCTACRON. It has WYTHOFF SYMBOL 4

3
4|3.

Its faces are 4{6}�6{4}. It is a FACETED version of the
CUBOCTAHEDRON. Its CIRCUMRADIUS for unit edge
length is R �1.
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Cuboid

A rectangular PARALLELEPIPED, sometimes also called
a brick. A cuboid of side lengths a , b , and c has
VOLUME

V �abc (1)

and SURFACE AREA

S �2(ab �ac �bc) : (2)

The face diagonals are

dab �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
(3)

dac �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2

p
(4)

dbc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
(5)

and the body diagonal is

dabc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 �c2

p
: (6)

A cuboid with all sides equal is called a CUBE.

See also CUBE, EULER BRICK, PARALLELEPIPED,
PRISM, SPIDER AND FLY PROBLEM
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Cullen Number
A number OF THE FORM

Cn �2nn �1 :

The first few are 3, 9, 25, 65, 161, 385, ... (Sloane’s
A002064). Cullen numbers are DIVISIBLE by

/p �2n �1/ if p is a PRIME OF THE FORM /8k 93/.

The only Cullen numbers Cn for /n B300; 000/ which
are PRIME are for n �1, 141, 4713, 5795, 6611, 18496,
32292, 32469, 59656, 90825, 262419, ... (Sloane’s
A005849; Ballinger). The largest PRIME Cullen num-
ber known is for n�361275, but the range 335000�/

45000 has not yet been fully checked.

See also CUNNINGHAM NUMBER, FERMAT NUMBER,
SIERPINSKI NUMBER OF THE FIRST KIND, WOODALL

NUMBER
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Cumulant
Let /f(t)/ be the CHARACTERISTIC FUNCTION, defined as
the FOURIER TRANSFORM of the PROBABILITY DENSITY



FUNCTION (using FOURIER TRANSFORM parameters /

a �b �1/),

f(t) �F[P(x)] �g
�

��

eitxP(x) dx: (1)

Then the cumulants / kn/ are then defined by

ln f(t) �
X�
n�0

kn

(it)n

n! 
(2)

(Abramowitz and Stegun 1972, p. 928). Taking the
MACLAURIN SERIES gives

ln f(t) �(it)m?1 �
1

2 
(it)2(m?2 � m?1

2) �
1

3! 
(it)3

� (2m?1
3�3m?1 m?2 � m?3) � 1

4!(it)
4

� (�6m?1
4�12m?1

2m ?2 �3 m?2
2�4m ?1 m?3 � m?4) �

1

5!

� (it)5

� [24m ?1
5�60m ?1

3m?2 �20m ?1
2m?3 �10m?2 m?3

�5 m?1(6m?2
2� m?4) � m?5] �. . . ; (3)

where /mn ?/ are RAW MOMENTS, so

k1 � m?1 (4)

k2 � m ?2 � m ?1 (5)

k3 �2m ?1
3�3m?1 m?2 � m?3 (6)

k4 ��6m ?1
4�12m ?1

2m?2 �3m?2
2�4m?1 m?3 � m?4 (7)

k5 ��24 m?1
5�60 m?1

3m?2 �20 m?1
2m?3 �10m ?2 m?3

�5 m?1(6m?2
2� m?4) � m?5 : (8)

In terms of the CENTRAL MOMENTS mn ;

k1 � m (9)

k2 � m2 � s2 (10)

k3 � m3 (11)

k4 � m4 �3m2
2 (12)

k5 � m5 �10 m2 m3 ; (13)

where m is the MEAN and s2 � m2 is the VARIANCE.

The K -STATISTIC are UNBIASED ESTIMATORS of the
cumulants.

See also CHARACTERISTIC FUNCTION (PROBABILITY),
CUMULANT-GENERATING FUNCTION, K -STATISTIC,
KURTOSIS, MEAN, MOMENT, SHEPPARD’S CORRECTION,
SKEWNESS, UNBIASED ESTIMATOR, VARIANCE
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Cumulant-Generating Function
Let /M(h)/ be the MOMENT-GENERATING FUNCTION, then

K(h) �ln M(h) � k1h �
1

2!
h2 k2 �

1

3!
h3 k3 �. . . ; (1)

where /k1 ; k2/, ..., are the CUMULANTS.

If

L �
XN

j�1

cjxj (2)

is a function of N independent variables, then the
cumulant-generating function for L is given by

K(h)�
XN

j�1

Kj(cjh): (3)

See also CUMULANT, MOMENT-GENERATING FUNCTION
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Cumulation
The dual operation of TRUNCATION which replaces the
faces of a POLYHEDRON with PYRAMIDS of height h
(where h may be positive, zero, or negative) having
the face as the base. This operation is implemented in
Mathematica under the misnomer Stellate[poly ,
ratio ] in the Mathematica add-on package Graphic-
s‘Polyhedra‘ (which can be loaded with the com-
mand BBGraphics‘). The operation is sometimes
also called accretion, or sometimes akisation (since it
transforms a regular polygon to an n -akis polyhe-
dron, i.e., quadruples the number of faces).

The following plots show cumulation series for the
TETRAHEDRON, CUBE, OCTAHEDRON, DODECAHEDRON,
and ICOSAHEDRON.



Cumulation with h �0 gives a triangulated version
of the original solid. The following table gives special
solids formed by cumulation of given heights on
simple solids. In this table, r is the INRADIUS, and (r �
h) =h is the "stellation ratio" as defined in Mathema-
tica .

Original h /(r�h)=h/ Result

CUBE /
1
6/ /4=3/ TETRAKIS HEXAHE-

DRON

CUBE /
1
2/ 2 RHOMBIC DODECAHE-

DRON

CUBE /
1
2

ffiffiffi
2

p
/ /1�

ffiffiffi
2

p
/ 24-faced star DELTA-

HEDRON

DODECAHEDRON /
1
19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(65�22

ffiffiffi
5

p
)

q
/ /

3
19(10�

ffiffiffi
5

p
)/ PENTAKIS DODECAHE-

DRON

DODECAHEDRON /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10(5�

ffiffiffi
5

p
)

q
/ /2

ffiffiffi
5

p
�3/ 60-faced star DELTA-

HEDRON

DODECAHEDRON /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(5�2

ffiffiffi
5

p
)

q
/ /

ffiffiffi
5

p
/ SMALL STELLATED

DODECAHEDRON

ICOSAHEDRON /
1
6

ffiffiffi
3

p
(
ffiffiffi
5

p
�3)/ /3(

ffiffiffi
5

p
�2)/ GREAT DODECAHE-

DRON

ICOSAHEDRON /
1
15

ffiffiffiffiffiffi
15

p
/ /

1
5(10�3

ffiffiffi
5

p
)/ SMALL TRIAMBIC

ICOSAHEDRON

ICOSAHEDRON /
1
3

ffiffiffi
6

p
/ /1�3

ffiffiffi
2

p
�

ffiffiffiffiffiffi
10

p
/ 60-faced star DELTA-

HEDRON

ICOSAHEDRON /
1
6

ffiffiffi
3

p
(3�

ffiffiffi
5

p
)/ 3 GREAT STELLATED

DODECAHEDRON

OCTAHEDRON /
ffiffiffi
3

p
�2

3

ffiffiffi
6

p
/ /5�3

ffiffiffi
2

p
/ SMALL TRIAKIS

OCTAHEDRON

OCTAHEDRON /
1
3

ffiffiffi
6

p
/ 3 STELLA OCTANGULA

TETRAHEDRON /
1
15

ffiffiffi
6

p
/ /

7
5/ TRIAKIS TETRAHE-

DRON

TETRAHEDRON /
1
6

ffiffiffi
6

p
/ 2 CUBE

TETRAHEDRON /
1
3

ffiffiffi
6

p
/ 3 9-faced star DELTA-

HEDRON

Another type of cumulation (which I call "midpoint
cumulation") replaces each facial polygon with trian-
gular polygons joining vertices with the neighboring
edge midpoints, and then constructs a pyramid with
base determined by the face’s midpoints. Midpoint

cumulation allow compounds of Archimedean solids
and their duals to be easily constructed.

ARCHIMEDEAN

SOLID

dual face 1 face 2

CUBOCTAHE-

DRON

RHOMBIC DO-

DECAHEDRON

3 : 1
4

ffiffiffi
6

p
/ 4: 1

2

ffiffiffi
2

p
/

ICOSIDODECA-

HEDRON

RHOMBIC TRIA-

CONTAHE-

DRON

3 : 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7�3

ffiffiffi
5

pp
)

q
/

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(5�2

ffiffiffi
5

p
)

q
/

SMALL RHOM-

BICUBOCTAHE-

DRON

DELTOIDAL
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ffiffiffi
2

p
�1)/

TRUNCATED

CUBE

SMALL TRIAKIS
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6

ffiffiffiffiffi
3

p
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ffiffiffiffiffi
2

p
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ffiffiffiffiffi
2

p
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/3 : 1
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ffiffiffiffiffi
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5

p
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1
2(6�

ffiffiffiffiffi
5
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)
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ffiffiffi
5

p
)

q
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ffiffiffi
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p
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/4 : 1
8

ffiffiffiffiffi
2
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/ /3 : 1

4

ffiffiffi
6
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TRUNCATED
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TRIAKIS TET-

RAHEDRON

/3 : 1
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6

p
/ /6 : 1

2
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See also ELEVATUM, ESCHER’S SOLID, INVAGINATUM,
PYRAMID, STELLATION, TRUNCATION
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Cumulative Distribution Function
DISTRIBUTION FUNCTION

Cumulative Frequency
Let the ABSOLUTE FREQUENCIES of occurrence of an
event in a number of CLASS INTERVALS be denoted f1 ;
f2 ; .... The cumulative frequency corresponding to the
upper boundary of any CLASS INTERVAL ci in a
FREQUENCY DISTRIBUTION is the total absolute fre-
quency of all values less than that boundary, denoted

FB�
X
i5n

fi:

See also ABSOLUTE FREQUENCY, CLASS INTERVAL,
CUMULATIVE FREQUENCY POLYGON, FREQUENCY DIS-

TRIBUTION, RELATIVE CUMULATIVE FREQUENCY, RE-



LATIVE FREQUENCY
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Cumulative Frequency Polygon

A plot of the cumulative frequency against the upper
class boundary with the points joined by line seg-
ments. Any continuous cumulative frequency curve,
including a cumulative frequency polygon, is called
an OGIVE.

See also ABSOLUTE FREQUENCY, CLASS INTERVAL,
FREQUENCY DISTRIBUTION, FREQUENCY POLYGON,
OGIVE, RELATIVE CUMULATIVE FREQUENCY, RELATIVE

FREQUENCY
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Cundy and Rollett’s Egg

An OVAL dissected into pieces which are to used to
create pictures. The resulting figures resemble those
constructed out of TANGRAMS.

See also DISSECTION, EGG, OVAL, TANGRAM

References
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed.

Stradbroke, England: Tarquin Pub., pp. 19 �/1, 1989.

Dixon, R. Mathographics. New York: Dover, p. 11, 1991.

Cunningham Chain
A SEQUENCE of PRIMES q1 Bq2 B. . .Bqk is a Cunning-
ham chain of the first kind (second kind) of length k if
q1 �1 �2qi �1 ( q1 �1 �2qi �1) for i � 1, ..., k �1:
Cunningham PRIMES of the first kind are SOPHIE

GERMAIN PRIMES.

The two largest known Cunningham chains (of the
first kind) of length three are ( 384205437 � 24000 �1;
384205437 � 24001 �1 ; 384205437 � 24002 �1) and
(/651358155 � 23291 �1; 651358155 � 23292 �1;
651358155 � 23293 �1); both discovered by W. Roon-
guthai in 1998.

See also BITWIN CHAIN, PRIME ARITHMETIC PROGRES-

SION, PRIME CLUSTER
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Cunningham Function
Sometimes also called the PEARSON-CUNNINGHAM

FUNCTION. It can be expressed using WHITTAKER

FUNCTIONS (Whittaker and Watson 1990, p. 353).

vn;m(x) �
e pi(m=2 �n) �x

G(1 � n � 1
2m) 

U(1
2m �n; 1 �m; x) ;

where U(a ; b ; z) is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND (Abramowitz and
Stegun 1972, p. 510).

See also CONFLUENT HYPERGEOMETRIC FUNCTION OF

THE SECOND KIND, WHITTAKER FUNCTION
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Cunningham Number
A BINOMIAL NUMBER OF THE FORM C9(b; n)�bn91:
Bases bk which are themselves powers need not be
considered since they correspond to (bk)n

91�bkn91:
PRIME NUMBERS OF THE FORM C9(b; n) are very rare.

A NECESSARY (but not SUFFICIENT) condition for
C�(2; n)�2n�1 to be PRIME is that n be OF THE

FORM n�2m: Numbers OF THE FORM Fm�



C �(2; 2m) �22m �1 are called FERMAT NUMBERS, and
the only known PRIMES occur for /C �(2; 1) �3/,
C �(2; 2) �5; C �(2; 4) �17 ; C �(2; 8) �257; and
C �(2; 16) �65537 (i.e., n �0, 1, 2, 3, 4). The only
other PRIMES C �(b; n) for nontrivial b 511 and 2 5
n 51000 are C �(6; 2) �37 ; C �(6; 4) �1297; and
C �(10 ; 2) �101:/

PRIMES OF THE FORM C �(b; n) are also very rare. The
MERSENNE NUMBERS Mn �C �(2; n) �2n �1 are
known to be prime only for 37 values, the first few
of which are n �2, 3, 5, 7, 13, 17, 19, ... (Sloane’s
A000043). There are no other PRIMES C�(b ; n) for
nontrivial b 520 and 2 5n 51000:/

In 1925, Cunningham and Woodall (1925) gathered
together all that was known about the PRIMALITY and
factorization of the numbers C 9(b ; n) and published a
small book of tables. These tables collected from
scattered sources the known prime factors for the
bases 2 and 10 and also presented the authors’ results
of 30 years’ work with these and other bases.

Since 1925, many people have worked on filling in
these tables. D. H. Lehmer, a well-known mathema-
tician who died in 1991, was for many years a leader
of these efforts. Lehmer was a mathematician who
was at the forefront of computing as modern electro-
nic computers became a reality. He was also known
as the inventor of some ingenious pre-electronic
computing devices specifically designed for factoring
numbers.

Updated factorizations were published in Brillhart et
al. (1988). The current archive of Cunningham
number factorizations for b � 1, ..., 9 12 is kept
on ftp://sable.ox.ac.uk/pub/math/cunningham/. The
tables have been extended by Brent and te Riele
(1992) to b � 13, ..., 100 with m B255 for b B30 and
m B100 for b ]30 : All numbers with exponent 58
and smaller, and all composites with 590 digits have
now been factored.

See also BINOMIAL NUMBER, CULLEN NUMBER, FER-

MAT NUMBER, MERSENNE NUMBER, REPUNIT, RIESEL

NUMBER, SIERPINSKI NUMBER OF THE FIRST KIND,
WOODALL NUMBER
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Cunningham Project
CUNNINGHAM NUMBER

Cup

See also CAP, CUP PRODUCT
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Cup Product
The cup product is a product on COHOMOLOGY

CLASSES. In the case of DE RHAM COHOMOLOGY, a
COHOMOLOGY CLASS can be represented by a CLOSED

FORM. The cup product of [ a] and [ b] is represented by
the CLOSED FORM [a ffl b] ; where ffl is the WEDGE

PRODUCT of DIFFERENTIAL K -FORMS. It is the dual
operation to intersection in HOMOLOGY.

In general, the cup product is a map

�: Hp �Hq 0 Hp �q

which satisfies a �b �(�1)pqb �a :/

See also COHOMOLOGY, CUP, DE RHAM COHOMOLOGY,
HOMOLOGY
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Cupola
An n -gonal cupola Qn is a POLYHEDRON having n
obliquely oriented TRIANGULAR and n rectangular
faces separating an fng and a f2ng REGULAR POLY-

GON, each oriented horizontally. The coordinates of
the base VERTICES are

R cos
p(2k � 1)

2n

" #
; R sin

p(2k � 1)

2n

" #
; 0

 !
; (1)

and the coordinates of the top VERTICES are

r cos
2kp

n

" #
; r sin

2kp

n

" #
; z

 !
; (2)

where R and r are the CIRCUMRADII of the base and
top



R �1
2a csc

p

2n

 !
(3)

r �1
2a csc

p

n

 !
; (4)

and z is the height.

A cupola with all unit edge lengths (in which case the
triangles become unit equilateral triangles and the
rectangles become unit squares) is possible only for
n �3, 4, 5, in which case the height z can be obtained
by letting k � 0 in the equations (1) and (2) to obtain
the coordinates of neighboring bottom and top VER-

TICES,

b �

R cos
p

2n

 !

R sin
p

2n

 !
0

2
6666664

3
7777775 (5)

t �
r
0
z

2
4
3
5: (6)

Since all side lengths are a ,

½b �t ½2 �a2 : (7)

Solving for z then gives

R cos
p

2n

 !
�r

" #2

�R2 sin2 p

2n

 !
�z2 �a2 (8)

z2 �R2 �r2 �2rR cos
p

2n

 !
�a2 (9)

z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �2rR cos

p

2n

 !
�r2 �R2

vuut

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �1

4 csc2
p

n

 !vuut (10)

See also BICUPOLA, ELONGATED CUPOLA, GYROELON-

GATED CUPOLA, PENTAGONAL CUPOLA, ROTUNDA,
SQUARE CUPOLA, TRIANGULAR CUPOLA
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Cupolarotunda
A CUPOLA adjoined to a ROTUNDA.

See also GYROCUPOLAROTUNDA, ORTHOCUPOLAROTUN-

DA

Curl
The curl of a TENSOR field is given by

(9�A) a � eamnAv: m ; (1)

where eijk is the LEVI-CIVITA TENSOR and ";" is the
COVARIANT DERIVATIVE. For a VECTOR FIELD, the curl
is denoted

curl(F) �9�F; (2)

and 9�F is normal to the PLANE in which the
"circulation" is MAXIMUM. Its magnitude is the limit-
ing value of circulation per unit AREA,

(9�F) � n̂ �lim
A00

G
C

F � ds

A
: (3)

Let

F �F1 ̂u1 �F2 ̂u2 �F3 ̂u3 (4)

and

hi �
@r

@ui

�����
�����; (5)

then

9�F �
1

h1h2h3

h1 ̂u1 h2 ̂u2 h3 ̂u3

@

@u1

@

@u2

@

@u3

h1F1 h2F2 h2F2

��������

��������
�

1

h2h3

@

@u2

(h3F3) �
@

@u3

(h2F2)

" #
û1

�
1

h1h3

@

@u3

(h1F1) �
@

@u1

(h3F3)

" #
û2

�
1

h1h2

@

@u1

(h2F2) �
@

@u2

(h1F1)

" #
û3 : (6)

Special cases of the curl formulas above can be given
for CURVILINEAR COORDINATES.

See also CURL THEOREM, CURVILINEAR COORDINATES,
DIVERGENCE, GRADIENT, VECTOR DERIVATIVE
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Curl Theorem
A special case of STOKES’ THEOREM in which F is a
VECTOR FIELD and M is an oriented, compact em-
bedded 2-MANIFOLD with boundary in /R2

/, given by

gS

( 9�F) � da �g
@S

F � ds: (1)

There are also alternate forms. If

F �cF ; (2)

then

gS

da �9F �gC

F ds: (3)

and if

F �c �P ; (4)

then

gS

(da �9) �P �gC

ds �P: (5)

See also CHANGE OF VARIABLES THEOREM, CURL,
STOKES’ THEOREM
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Curlicue Fractal

The curlicue fractal is a figure obtained by the
following procedure. Let s be an IRRATIONAL NUMBER.
Begin with a line segment of unit length, which
makes an ANGLE f0 �0 to the horizontal. Then define
un iteratively by

un�1 �( un �2 ps)(mod 2p) ;

with u0 �0: To the end of the previous line segment,
draw a line segment of unit length which makes an
angle

fn �1 � un � fn(mod 2 p) ;

to the horizontal (Pickover 1995). The result is a
FRACTAL, and the above figures correspond to the
curlicue fractals with 10,000 points for the GOLDEN

RATIO f ; ln 2 ; e ,
ffiffiffi
2

p
; the EULER-MASCHERONI CON-

STANT g ; p; and FEIGENBAUM CONSTANT d :/

The TEMPERATURE of these curves is given in the
following table.

Constant Temperature

GOLDEN RATIO f/ 46

/ln 2/ 51

e 58

/

ffiffiffi
2

p
/ 58

EULER-MASCHERONI CONSTANT g/ 63

/p/ 90

FEIGENBAUM CONSTANT a/ 92
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Curly Brace
BRACE

Current
A linear FUNCTIONAL on a smooth differential form.

See also FLAT NORM, INTEGRAL CURRENT, RECTIFI-



ABLE CURRENT

Curtate Cycloid

The path traced out by a fixed point at a RADIUS b B
a , where a is the RADIUS of a rolling CIRCLE, some-
times also called a CONTRACTED CYCLOID.

x �af �b sin f (1)

y �a �b cos f : (2)

The ARC LENGTH from f �0 is

s �2(a �b)E(u) ; (3)

where

sin(1
2 f) �sn u (4)

k2 �
4ab

(a � c)2 ; (5)

and E(u) is a complete ELLIPTIC INTEGRAL OF THE

SECOND KIND and sn u is a JACOBI ELLIPTIC FUNC-

TION.

See also CYCLOID, PROLATE CYCLOID, TROCHOID
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Curtate Cycloid Evolute
The EVOLUTE of the CURTATE CYCLOID

x�af�b sin f (1)

y�a�b cos f: (2)

is given by

x�
a[�2bf� 2af cos f� 2a sin f� b sin(2f)]

2(a cos f� b)
(3)

y�
a(a � b cos f)2

b(a cos f� b)
: (4)

Curvature
In general, there are two important types of curva-
ture: EXTRINSIC CURVATURE and INTRINSIC CURVA-

TURE. The EXTRINSIC CURVATURE of curves in 2- and
3-space was the first type of curvature to be studied
historically, culminating in the FRENET FORMULAS,
which describe a SPACE CURVE entirely in terms of its
"curvature," TORSION, and the initial starting point
and direction.

After the curvature of 2- and 3-d curves was studied,
attention turned to the curvature of surfaces in 3-
space. The main curvatures which emerged from this
scrutiny are the MEAN CURVATURE, GAUSSIAN CURVA-

TURE, and the WEINGARTEN MAP. MEAN CURVATURE

was the most important for applications at the time
and was the most studied, but Gauss was the first to
recognize the importance of the GAUSSIAN CURVA-

TURE.

Because GAUSSIAN CURVATURE is "intrinsic," it is
detectable to 2-dimensional "inhabitants" of the sur-
face, whereas MEAN CURVATURE and the WEINGARTEN

MAP are not detectable to someone who can’t study
the 3-dimensional space surrounding the surface on
which he resides. The importance of GAUSSIAN CUR-

VATURE to an inhabitant is that it controls the surface
AREA of SPHERES around the inhabitant.

Riemann and many others generalized the concept of
curvature to SECTIONAL CURVATURE, SCALAR CURVA-

TURE, the RIEMANN TENSOR, RICCI CURVATURE, and a
host of other INTRINSIC and EXTRINSIC CURVATURES.
General curvatures no longer need to be numbers,
and can take the form of a MAP, GROUP, GROUPOID,
tensor field, etc.

The simplest form of curvature and that usually first
encountered in CALCULUS is an EXTRINSIC CURVA-

TURE. In 2-D, let a PLANE CURVE be given by
CARTESIAN PARAMETRIC EQUATIONS x�x(t) and y�
y(t): Then the curvature k is defined by

k�
df

ds
�

df

dt
ds

dt

�

df

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

 !2

�
dy

dt

 !2
vuut �

df

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 � y?2

p ; (1)

where f is the TANGENTIAL ANGLE and s is the ARC

LENGTH. As can readily be seen from the definition,
curvature therefore has units of inverse distance. Thedf

dt
derivative in the above equation can be found

using the identity

tan f�
dy

dx
�

dy=dt

dx=dt
�

y?

x?
; (2)

so

d

dt
(tan f)�sec2 f

df

dt
�

x?yƒ� y?xƒ

x?2
(3)



and

df

dt
�

1

sec2 f

d

dt
(tan f)�

1

1 � tan2 f

x?yƒ� y?xƒ

x?2

�
1

1 � y?2

x?2

x?yƒ� y?xƒ

x?2
�

x?yƒ� y?xƒ

x?2 � y?2
: (4)

Combining (1), (2), and (4) then gives

k�
x?yƒ� y?xƒ

(x?2 � y?2)3=2 : (5)

For a 2-D curve written in the form y�f (x); the
equation of curvature becomes

k�
d2y
dx2

1 � (dy
dx

)2
h i3=2 : (6)

If the 2-D curve is instead parameterized in POLAR

COORDINATES, then

k�
r2 � 2r2

u � rruu
(r2 � r2

u)
3=2 ; (7)

where ru�@r=@u (Gray 1997, p. 89). In PEDAL CO-

ORDINATES, the curvature is given by

k�
1

r

dp

dr
: (8)

The curvature for a 2-D curve given implicitly by
g(x; y)�0 is given by

k�
gxxg

2
y � 2gxygxgy � gyyg

2
x

(g2
x � g2

y)3=2 (9)

(Gray 1997).

Now consider a parameterized SPACE CURVE r(t) in 3-
D for which the TANGENT VECTOR T̂ is defined as

T̂�

dr

dt

dr

dt

�����
�����
�

dr

dt
ds

dt

: (10)

Therefore,

dr

dt
�

ds

dt
T̂ (11)

d2r

dt2
�

d2s

dt2
T̂�

ds

dt

dT̂

dt
�

ds2

dt2
T̂�kN̂

ds

dt

 !2

; (12)

where N̂ is the NORMAL VECTOR. But

dr

dt
�

d2r

dt2
�

ds

dt

d2s

dt2
(T̂�T̂)�k

ds

dt

 !3

(T̂�N̂)

�k
ds

dt

 !3

(T̂�N̂) (13)

dr

dt
�

d2r

dt2

�����
������k

ds

dt

 !3

�k
dr

dt

�����
�����
3

; (14)

so

k�
dT̂

ds

�����
������

dr
dt
� d2r

dt2

��� ���
dr
dt

��� ���3 : (15)

The curvature of a 2-D curve is related to the RADIUS

OF CURVATURE of the curve’s OSCULATING CIRCLE.
Consider a CIRCLE specified parametrically by

x�a cos t (16)

y�a sin t (17)

which is tangent to the curve at a given point. The
curvature is then

k�
x?yƒ� y?xƒ

(x?2 � y?2)3=2�
a2

a3
�

1

a
; (18)

or one over the RADIUS OF CURVATURE. The curvature
of a CIRCLE can also be repeated in vector notation.
For the CIRCLE with 05tB2p; the ARC LENGTH is

s(t)�g
t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

dt

 !2

�
dy

dt

 !2
vuut dt

�g
t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 t�a2 sin2 t

p
dt�at; (19)

so t�s=a and the equations of the CIRCLE can be
rewritten as

x�a cos
s

a

 !
(20)

y�a sin
s

a

 !
: (21)

The POSITION VECTOR is then given by

r(s)�a cos
s

a

 !
x̂�a sin

s

a

 !
ŷ; (22)

and the TANGENT VECTOR is

T̂�
dr

ds
��sin

s

a

 !
x̂�cos

s

a

 !
ŷ; (23)

so the curvature is related to the RADIUS OF CURVA-

TURE a by

k�
dT̂

ds

�����
������j�1

a
cos

s

a

 !
x̂�

1

a
sin

s

a

 !
ŷj



�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

s

a

 !
� sin2 s

a

 !
a2

vuuuut �
1

a 
; (24)

as expected.

Four very important derivative relations in differen-
tial geometry related to the FRENET FORMULAS are

ṙ �T (25)

r̈ � kN (26)

�r � ̇kN � k(tB � kT) (27)

[ṙ ; r̈; �r] � k2 t ; (28)

where T is the TANGENT VECTOR, N is the NORMAL

VECTOR, B is the BINORMAL VECTOR, and t is the
TORSION (Coxeter 1969, p. 322).

The curvature at a point on a surface takes on a
variety of values as the PLANE through the normal
varies. As k varies, it achieves a minimum and a
maximum (which are in perpendicular directions)
known as the PRINCIPAL CURVATURES. As shown in
Coxeter (1969, pp. 352 �/53),

k2 �
X

bi
i k �det(bj

i) �0 (29)

k2 �2H k �K �0; (30)

where K is the GAUSSIAN CURVATURE, H is the MEAN

CURVATURE, and det denotes the DETERMINANT.

The curvature k is sometimes called the FIRST

CURVATURE and the TORSION t the SECOND CURVA-

TURE. In addition, a THIRD CURVATURE (sometimes
called TOTAL CURVATURE)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ds2
T �ds2

B

q
(31)

is also defined. A signed version of the curvature of a
CIRCLE appearing in the DESCARTES CIRCLE THEOREM

for the radius of the fourth of four mutually tangent
circles is called the BEND.

See also BEND (CURVATURE), CURVATURE CENTER,
CURVATURE SCALAR, EXTRINSIC CURVATURE, FIRST

CURVATURE, FOUR-VERTEX THEOREM, GAUSSIAN CUR-

VATURE, INTRINSIC CURVATURE, LANCRET EQUATION,
LINE OF CURVATURE, MEAN CURVATURE, NORMAL

CURVATURE, PRINCIPAL CURVATURES, RADIUS OF

CURVATURE, RICCI CURVATURE, RIEMANN TENSOR,
SECOND CURVATURE, SECTIONAL CURVATURE, SODDY

CIRCLES, THIRD CURVATURE, TORSION (DIFFERENTIAL

GEOMETRY), WEINGARTEN MAP
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Curvature Center
The point on the POSITIVE RAY of the NORMAL VECTOR

at a distance r(s); where r is the RADIUS OF CURVA-

TURE. It is given by

z�x�rN�x�r2 T

ds
; (1)

where N is the NORMAL VECTOR and T is the TANGENT

VECTOR. It can be written in terms of x explicitly as

z�x�
xƒ(x? � x?)2 � x?(x? � x?)(x? � xƒ)

(x? � x?)(xƒ � xƒ) � (x? � xƒ)2 : (2)

For a CURVE represented parametrically by
(f (t); g(t));

a�f �
(f ?2 � g?2)g?

f ?gƒ� f ƒg?
(3)

b�g�
(f ?2 � g?2)f ?

f ?gƒ� f ƒg?
(4)
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Curvature Scalar
SCALAR CURVATURE

Curvature Vector

K�
dT

ds
;



where T is the TANGENT VECTOR defined by

T �

dx

ds

dx

ds

�����
�����
:

Curve
A CONTINUOUS MAP from a 1-D SPACE to an n -D
SPACE. Loosely speaking, the word "curve" is often
used to mean the GRAPH of a 2- or 3-D curve. The
simplest curves can be represented parametrically in
n -D SPACE as

x1 �f1(t)

x2 �f2(t)

n

xn �fn(t) :

Other simple curves can be simply defined only
implicitly, i.e., in the form

f (x1; x2; . . .)�0:

See also PLANE CURVE, SPACE CURVE, SPHERICAL

CURVE
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Curve of Constant Breadth
CURVE OF CONSTANT WIDTH

Curve of Constant Precession
A curve whose CENTRODE revolves about a fixed axis
with constant ANGLE and SPEED when the curve is
traversed with unit SPEED. The TANGENT INDICATRIX

of a curve of constant precession is a SPHERICAL

HELIX. An ARC LENGTH parameterization of a curve
of constant precession with NATURAL EQUATIONS

k(s)��v sin(ms) (1)

t(s)��v cos(ms) (2)

is

x(s)�
a� m

2a

sin[(a� m)s]

a� m
�

a� m

2a

sin[(a� m)s]

a� m
(3)

y(s)�
a� m

2a

sin[(a� m)s]

a� m
�

a� m

2a

cos[(a� m)s]

a� m
(4)

z(s)�
v

ma
sin(ms); (5)

where

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2�m2

p
(6)

and v; and m are constant. This curve lies on a
circular one-sheeted HYPERBOLOID

x2�y2�
m2

v2
z2�

4m2

v4
: (7)

The curve is closed IFF m=a is RATIONAL.
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Curve of Constant Slope
GENERALIZED HELIX

Curve of Constant Width
Curves which, when rotated in a square, make
contact with all four sides. Such curves are sometimes
also known as ROLLERS.

The "width" of a closed convex curve is defined as the
distance between parallel lines bounding it ("support-
ing lines"). Every curve of constant width is convex.
Curves of constant width have the same "width"
regardless of their orientation between the parallel
lines. In fact, they also share the same PERIMETER

(BARBIER’S THEOREM). Examples include the CIRCLE

(with largest AREA), and REULEAUX TRIANGLE (with
smallest AREA) but there are an infinite number. A
curve of constant width can be used in a special drill
chuck to cut square "HOLES."

A generalization gives solids of constant width. These
do not have the same surface AREA for a given width,



but their shadows are curves of constant width with
the same width!

See also DELTA CURVE, KAKEYA NEEDLE PROBLEM,
REULEAUX TRIANGLE
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Curvilinear Coordinates
A COORDINATE SYSTEM composed of intersecting
surfaces. If the intersections are all at right angles,
then the curvilinear coordinates are said to form an
ORTHOGONAL COORDINATE SYSTEM. If not, they form a
SKEW COORDINATE SYSTEM.

A general METRIC gmn has a LINE ELEMENT

ds2 �gmndu mdu n ; (1)

where EINSTEIN SUMMATION is being used. Curvi-
linear coordinates are defined as those with a diag-
onal METRIC so that

gmn � dm
n h

2
m ; (2)

where dm
n is the KRONECKER DELTA. Curvilinear

coordinates therefore have a simple LINE ELEMENT

ds2 � dm
n h

2
mdumdun �h2

mdum2 ; (3)

which is just the PYTHAGOREAN THEOREM, so the
differential VECTOR is

dr �hm dum ûm ; (4)

or

dr �
@r

@u1

du1 �
@r

@u2

du2 �
@r

@u3

du3 ; (5)

where the SCALE FACTORS are

hi �
@r

@ui

�����
����� (6)

and

ûi �

@r
@ui

½ @r
@ui
½
�

1

hi

@r

@ui

: (7)

Equation (5) may therefore be re-expressed as

dr �h1 du1 ̂u1 �h2 du2 ̂u2 �h3 du3 ̂u3 : (8)

The GRADIENT is

grad(f)�9f

�
1

h1

@f

@u1

û1�
1

h2

@f

@u2

û2�
1

h3

@f

@u3

û3; (9)

the DIVERGENCE is

div(F)�9 � F�
1

h1h2h3

� @

@u1

(h2h3F1)�
@

@u2

(h3h1F2)�
@

@u3

(h1h2F3)

" #
; (10)

and the CURL is

9�F�
1

h1h2h3

h1û1 h2û2 h3û3

@

@u1

@

@u2

@

@u3

h1F1 h2F2 h2F2

��������

��������
�

1

h2h3

@

@u2

(h3F3)�
@

@u3

(h2F2)

" #
û1

�
1

h1h3

@

@u3

(h1F1)�
@

@u1

(h3F3)

" #
û2

�
1

h1h2

@

@u1

(h2F2)�
@

@u2

(h1F1)

" #
û3: (11)

See also ORTHOGONAL COORDINATE SYSTEM, SKEW

COORDINATE SYSTEM
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Cushion

The QUARTIC SURFACE resembling a squashed round
cushion on a barroom stool and given by the equation

z2x2 �z4 �2zx2 �2z3 �x2 �z2

�(x2 �z)2 �y4 �2x2y2 �y2z2 �2y2z �y2 �0 :

See also QUARTIC SURFACE
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Cusp

A cusp is a point on a continuous curve where the
tangent vector reverses sign as the curve is traversed.
A cusp is a type of DOUBLE POINT. The above plot
shows the curve x3 �y2 �0; which has a cusp at the
ORIGIN.

See also CRUNODE, DOUBLE CUSP, DOUBLE POINT,
ORDINARY DOUBLE POINT, RAMPHOID CUSP, SALIENT

POINT, SPINODE, TACNODE
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Cusp Catastrophe

A CATASTROPHE which can occur for two control
factors and one behavior axis. The cusp catastrophe
is the universal unfolding of the singularity f (x) �x4

and has the equation F(x; u; v) �x4 �ux2 �vx: The
equation y �x2 =3 also has a cusp catastrophe.

See also CATASTROPHE THEORY
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Cusp Form
A cusp form is a MODULAR FORM for which the
coefficient c(0) �0 in the FOURIER SERIES

f ( t) �
X�
n�0

c(n)e2 pint

(Apostol 1997, p. 114). The only entire cusp form of
weight k B 12 is the zero function (Apostol 1997,
p. 116). The set of all cusp forms in Mk (all MODULAR

FORMS of weight k ) is a linear subspace of Mk which is
denoted Mk ; 0 : The dimension of Mk ; 0 is 1 for k � 12,
16, 18, 20, 22, and 26 (Apostol 1997, p. 119). For a
cusp form f � M2k; 0 ;

c(n) �O(nk) (1)

(Apostol 1997, p. 135) or, more precisely,

c(n) �O(nk �1 =4� e) (2)

for every e > 0 (Selberg 1965; Apostol 1997, p. 136). It
is conjectured that the �1=4 in the exponent can be
reduced to�1=2 (Apostol 1997, p. 136).

See also MODULAR FORM
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Cusp Map

The function

f (x) �1 �2½x½1 =2

for x � [�1 ; 1]: The INVARIANT DENSITY is

r(y) �1
2(1 �y):
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Cusp Point
CUSP

Cut
Given a weighted, UNDIRECTED GRAPH G �(V ; E) and
a GRAPHICAL PARTITION of V into two sets A and B ,
the cut of G with respect to A and B is defined as

cut(A; B) �
X

i �A; j �B

W(i ; j);

where W(i ; j) denotes the weight for the edge con-
necting vertices i and j .

See also BRANCH CUT, CUT SET
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Cut Set
A set of edges of a GRAPH which, if removed (or "cut"),
disconnects the graph (i.e., forms a DISCONNECTED

GRAPH).

See also ARTICULATION VERTEX, DISCONNECTED

GRAPH
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Cutpoint
ARTICULATION VERTEX

Cutting
The slicing of a 3-D object by a plane (or more general
slice).

See also ARCHIMEDES’ HAT-BOX THEOREM, ARRANGE-

MENT, CAKE CUTTING, CYLINDER CUTTING, DIVISION,
HADWIGER PROBLEM, HAM SANDWICH THEOREM,
PANCAKE CUTTING, PIE CUTTING, SQUARE DIVISION

BY LINES, TORUS CUTTING

Cut-Vertex
ARTICULATION VERTEX

CW-Approximation Theorem
If X is any SPACE, then there is a CW-COMPLEX Y and
a MAP f : Y 0 X inducing ISOMORPHISMS on all
HOMOTOPY, HOMOLOGY, and COHOMOLOGY groups.

CW-Complex
A CW-complex is a homotopy-theoretic generalization
of the notion of a SIMPLICIAL COMPLEX. A CW-complex
is any SPACE X which can be built by starting off with
a discrete collection of points called X0 ; then attach-
ing 1-D DISKS D1 to X0 along their boundaries S0 ;
writing X1 for the object obtained by attaching the D1

/

s to X0 ; then attaching 2-D DISKS D2 to X1 along their
boundaries S1 ; writing X2 for the new SPACE, and so
on, giving spaces Xn for every n . A CW-complex is any
SPACE that has this sort of decomposition into
SUBSPACES Xn built up in such a hierarchical fashion
(so the Xn

/s must exhaust all of X ). In particular, Xn

may be built from Xn�1 by attaching infinitely many
n -DISKS, and the attaching MAPS Sn�1 0 Xn �1 may be
any continuous MAPS.

The main importance of CW-complexes is that, for the
sake of HOMOTOPY, HOMOLOGY, and COHOMOLOGY

groups, every SPACE is a CW-complex. This is called
the CW-APPROXIMATION THEOREM. Another is WHITE-

HEAD’S THEOREM, which says that MAPS between CW-
complexes that induce ISOMORPHISMS on all HOMO-

TOPY GROUPS are actually HOMOTOPY equivalences.

See also COHOMOLOGY, CW-APPROXIMATION THEO-

REM, HOMOLOGY GROUP, HOMOTOPY GROUP, SIMPLI-

CIAL COMPLEX, SPACE, SUBSPACE, WHITEHEAD’S

THEOREM



Cycle (Circle)
A CIRCLE with an arrow indicating a direction.

Cycle (Map)
An n -cycle is a finite sequence of points Y0 ; ..., Yn�1

such that, under a MAP G ,

Y1 �G(Y0)

Y2 �G(Y1)

Yn�1 �G(Yn�2)

Y0 �G(Yn�1) :

In other words, it is a periodic trajectory which comes
back to the same point after n iterations of the cycle.
Every point Yj of the cycle satisfies Yj �Gn(Yj) and is
therefore a FIXED POINT of the mapping Gn : A fixed
point of G is simply a CYCLE of period 1.

Cycle (Permutation)
A SUBSET of a PERMUTATION whose elements trade
places with one another. Permutations cycles are
called "orbits" by Comtet (1974, p. 256). For example,
in the PERMUTATION GROUP f4 ; 2; 1; 3g; f1; 3; 4g is a
3-cycle (/1 0 3 ; 3 0 4 ; and 4 0 1) and f2 g is a 1-cycle/

(2 0 2): There is a great deal of freedom in picking
the representation of a cyclic decomposition since (1)
the cycles are disjoint and can therefore be specified
in any order, and (2) any rotation of a given cycle
specifies the same cycle (Skiena 1990, p. 20). There-
fore, (431)(2), (314)(2), (143)(2), (2)(431), (2)(314), and
(2)(143) all describe the same cycle.

The cyclic decomposition of a PERMUTATION can be
computed in Mathematica with the function ToCy-
cles[p ] in the Mathematica add-on package Dis-
creteMath‘Permutations‘ (which can be loaded
with the command BBDiscreteMath‘) and the
PERMUTATION corresponding to a cyclic decomposition
can be computed with FromCycles[c1 , ..., cn ] in the
Mathematica add-on package DiscreteMath‘Per-
mutations‘ (which can be loaded with the command
BBDiscreteMath‘). According to Vardi (1991),
the Mathematica code for ToCycles is one of the
most obscure ever written.

Every PERMUTATION GROUP on n symbols can be
uniquely expressed as a product of disjoint cycles
(Skiena 1990, p. 20). A cycle decomposition of a
PERMUTATION can be viewed as a CLASS of a PERMUTA-

TION GROUP.

The number d1(n; k) of k -cycles in a PERMUTATION

GROUP of order n is given by

d1(n; k) �(�1)n�kS1(n; k) � ½S1(n; k)½; (1)

where S1(n; m) are the STIRLING NUMBERS OF THE

FIRST KIND. More generally, let dr(n; k) be the
number of permutations of n having exactly k cycles

all of which are of length ]r : d2(n; k) are sometimes
called the associated STIRLING NUMBERS OF THE FIRST

KIND (Comtet 1974, p. 256). The quantities d3(n ; k)
appear in a closed-form expression for the coefficients
of in STIRLING’S SERIES (Comtet 1974, p. 257 and 267).
The following table gives the triangles for dr(n; k) :/

r Sloane /dr(n; k)/

1 A008275 1; 1, 1; 2, 3, 1; 6, 11, 6, 1; 24, 50, 35,
10, 1; ...

2 A008306 1; 2; 6, 3; 24, 20; 120, 130, 15; 720,
924, 210; ...

3 A050211 2; 6; 24; 120, 40; 720, 420; 5040,
3948; 40320, ...

4 A050212 6; 24; 120; 720; 5040, 1260; 40320,
18144; ...

5 A050213 24; 120; 720; 5040; 40320; 362880,
72576; ...

The functions dr(n; k) are given by the RECURRENCE

RELATION

dr(n; k)�(n�1)dr(n�1; k)

�(n�1)r�1dr(n�r; k�1); (2)

where (n)k is the FALLING FACTORIAL, combined with
the initial conditions

dr(n; k)�0 for n5kr�1 (3)

dr(n; 1)�(n�1)! (4)

(Riordan 1958, p. 85; Comtet 1974, p. 257).

See also GOLOMB-DICKMAN CONSTANT, PERMUTATION,
PERMUTATION GROUP, STIRLING NUMBER OF THE

FIRST KIND, STIRLING’S SERIES, SUBSET
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Cycle Decomposition
CYCLE (PERMUTATION)

Cycle Graph
A cycle graph Cn is a graph on n nodes containing a
single cycle through all nodes. Cycle graphs can be
generated using Cycle[n ] in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘). The CHROMATIC NUMBER of
Cn is given by

x(Cn) �
3 for n odd
2 for n even :

�

A cycle graph of a GROUP is a GRAPH which shows
cycles of a GROUP as well as the connectivity between
the cycles. Several examples are shown above. For Z4,
the group elements Ai satisfy A4

i �1; where 1 is the
IDENTITY ELEMENT, and two elements satisfy
A2

1 �A2
3 �1:/

For a CYCLIC GROUP of COMPOSITE ORDER n (e.g., Z4,
Z6, Z8 ), the degenerate subcycles corresponding to
factors dividing n are often not shown explicitly since
their presence is implied.

See also CHAIN (GRAPH), CHARACTERISTIC FACTOR,
CYCLIC GRAPH, CYCLIC GROUP, GRAPH CYCLE, HA-

MILTONIAN CYCLE, SQUARE GRAPH, TRIANGLE GRAPH,
WALK
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Cyclic Graph

A GRAPH of n nodes and n edges such that node i is
connected to the two adjacent nodes i �1 and i �1
(mod n ), where the nodes are numbered 0, 1, ..., n �1:/

See also CYCLE GRAPH, FOREST, GRAPH CYCLE, STAR

GRAPH, WHEEL GRAPH
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Cyclic Group
A cyclic group Zn (also commonly denoted Zn or Cn;
Shanks 1993, p. 75) of ORDER n is a GROUP defined by
the element X (the GENERATOR) and its n POWERS up
to

Xn �I ;

where I is the IDENTITY ELEMENT. Cyclic groups are
ABELIAN. There exists a unique cyclic group of every
order n ]2; so cyclic groups of the same order are
always isomorphic (Scott 1987, p. 34; Shanks 1993,
p. 74). Furthermore, subgroups of cyclic groups are
cyclic, and all GROUPS of PRIME ORDER are cyclic. In
fact, the only SIMPLE ABELIAN GROUPS are the cyclic
groups of order n � 1 or a n a prime (Scott 1987,
p. 35).

Examples of cyclic groups include Z2 ; Z3 ; Z4 ; and the
MODULO MULTIPLICATION GROUPS Mm such that m �
2, 4, pn ; or 2pn ; for p an ODD PRIME and n ]1 (Shanks
1993, p. 92). By computing the CHARACTERISTIC FAC-

TORS, any ABELIAN GROUP can be expressed as a
GROUP DIRECT PRODUCT of cyclic SUBGROUPS, for
example, Z2Z4 or Z2Z2Z2.

See also ABELIAN GROUP, CHARACTERISTIC FACTOR,
FINITE GROUP Z2, FINITE GROUP Z3, FINITE GROUP Z4,
FINITE GROUP Z5, FINITE GROUP Z6, METACYCLIC

GROUP, MODULO MULTIPLICATION GROUP, SIMPLE

GROUP
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Cyclic Hexagon
A hexagon (not necessarily regular) on whose VER-

TICES a CIRCLE may be CIRCUMSCRIBED. Let

si �
Y

i

(a2
1 ; a2

2 ; a2
3 ; a2

4 ; a2
5 ; a2

6) (1)

denote the i th-order SYMMETRIC POLYNOMIAL on the
six variables consisting of the squares a2

i of the
hexagon side lengths ai ; so

s1 �a2
1 �a2

2 �a2
3 �a2

4 �a2
5 �a2

6 (2)

s2 �a2
1a2

2 �a2
1a2

3 �a2
1a2

4 �a2
1a2

5 �a2
1a2

6

�a2
2a2

3 �a2
2a2

4 �a2
2a2

5 �a2
2a2

6

�a2
3a2

4 �a2
3a2

5 �a2
3a2

6

�a2
4a2

5 �a2
4a2

6 �a2
5a2

6 (3)

s3 �a2
1a2

2a2
3 �a2

1a2
2a2

4 �a2
1a2

2a2
5 �a2

1a2
2a2

6

�a2
2a2

3a2
4 �a2

2a2
3a2

5 �a2
2a2

3a2
6

�a2
3a2

4a2
5 �a2

3a2
4a2

6 �a2
4a2

5a2
6 (4)

s4 �a2
1a2

2a2
3a2

4 �a2
1a2

2a2
3a2

5 �a2
1a2

2a2
3a2

6

�a2
1a2

3a2
4a2

5 �a2
1a2

3a2
4a2

6

�a2
1a2

3a2
5a2

6 �a2
1a2

4a2
5a2

6

�a2
2a2

3a2
4a2

5 �a2
2a2

3a2
4a2

6 �a2
2a2

3a2
5a2

6

�a2
2a2

4a2
5a2

6 �a2
3a2

4a2
5a2

6 (5)

s5 �a2
1a2

2a2
3a2

4a2
5 �a2

1a2
2a2

3a2
4a2

6

�a2
1a2

2a2
3a2

5a2
6 �a2

1a2
2a2

4a2
5a2

6

�a2
1a2

3a2
4a2

5a2
6 �a2

2a2
3a2

4a2
5a2

6 (6)

s6 �a2
1a2

2a2
3a2

4a2
5a2

6 : (7)

Then let K be the AREA of the hexagon and define

u �16K2 (8)

t2 �u �4s2 � s2
1 (9)

t3 �8s3 � s1t2 �16
ffiffiffiffiffi
s6

p
(10)

t4 �t2
2 �64s4 �64 s1

ffiffiffiffiffi
s6

p
(11)

t5 �128s5 �32t2

ffiffiffiffiffi
s6

p
: (12)

The AREA of the hexagon then satisfies

ut3
4 �t2

3t2
4 �16t3

3t5 �18ut3t4t5 �27u2t2
5 �0; (13)

or this equation with
ffiffiffiffiffi
s6

p
replaced by �

ffiffiffiffiffi
s6

p
; a

seventh order POLYNOMIAL in u . This is 1=(4u2) times
the DISCRIMINANT of the CUBIC EQUATION

z3 �2t3z2 �ut4z �2u2t5 : (14)

See also CONCYCLIC, CYCLIC PENTAGON, CYCLIC

POLYGON, FUHRMANN’S THEOREM
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Cyclic Number
A number having n �1 DIGITS which, when MULTI-

PLIED by 1, 2, 3, ..., n �1 ; produces the same digits in
a different order. Cyclic numbers are generated by
the UNIT FRACTIONS 1=n which have maximal period
DECIMAL EXPANSIONS (which means n must be
PRIME). The first few numbers which generate cyclic
numbers are 7, 17, 19, 23, 29, 47, 59, 61, 97, ...
(Sloane’s A001913). A much larger generator is
17389.

It has been conjectured, but not yet proven, that an
INFINITE number of cyclic numbers exist. In fact, the
FRACTION of PRIMES which generate cyclic numbers
seems to be approximately 3/8. See Yates (1973) for a
table of PRIME period lengths for PRIMES B1; 370; 471:
When a cyclic number is multiplied by its generator,
the result is a string of 9s. This is a special case of
MIDY’S THEOREM.

07 �0.142857

17 �0.0588235294117647

19 �0.052631578947368421

23 �0.0434782608695652173913

29 �0.0344827586206896551724137931

47 �0.02127659574468085106382978723404255319-
0.021276595744680851063829787234042553191489-
3617

59 �0.01694915254237288135593220338983050847-
0.016949152542372881355932203389830508474576-
2711864406779661

61 �0.01639344262295081967213114754098360655-
0.016393442622950819672131147540983606557377-
049180327868852459

97�0.01030927835051546391752577319587628865-
0.010309278350515463917525773195876288659793-
81443298969072164948453608247422680412371134-
0206185567

See also DECIMAL EXPANSION, FULL REPTEND PRIME,
MIDY’S THEOREM
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Cyclic Pentagon
A cyclic pentagon is a not necessarily regular PENTA-

GON on whose VERTICES a CIRCLE may be CIRCUM-

SCRIBED. Let such a pentagon have edge lengths a1 ;
..., a5 ; and AREA K , and let

si �Pi(a
2
1 ; a2

2 ; a2
3 ; a2

4 ; a2
5) (1)

denote the i th-order SYMMETRIC POLYNOMIAL on the
five variables consisting of the squares a2

i of the
pentagon side lengths ai ; so

s1 �a2
1 �a2

2 �a2
3 �a2

4 �a2
5 (2)

s2 �a2
1a2

2 �a2
1a2

3 �a2
1a2

4 �a2
1a2

5 �a2
2a2

3

�a2
2a2

4 �a2
2a2

5 �a2
3a2

4 �a2
3a2

5

�a2
4a2

5 (3)

s3 �a2
1a2

2a2
3 �a2

1a2
2a2

4 �a2
1a2

2a2
5

�a2
2a2

3a2
4 �a2

2a2
3a2

5 �a2
3a2

4a2
5 (4)

s4 �a2
1a2

2a2
3a2

4 �a2
1a2

2a2
3a2

5 �a2
1a2

3a2
4a2

5

�a2
1a2

2a2
4a2

5 �a2
2a2

3a2
4a2

5 (5)

s5 �a2
1a2

2a2
3a2

4a2
5 : (6)

In addition, also define

u �16K2 (7)

t2 �u �4s2 � s2
1 (8)

t3 �8s3 � s1t2 (9)

t4 ��64 s4 �t2
2 (10)

t5 �128s5 : (11)

Then the AREA of the pentagon satisfies

ut3
4 �t2

3t2
4 �16t3

3t5 �18ut3t4t5 �27u2t2
5 �0; (12)

a seventh order POLYNOMIAL in u (Robbins 1995).
This is also 1=(4u2) times the DISCRIMINANT of the
CUBIC EQUATION

z3 �2t3z2 �ut4z �2u2t5 (13)

(Robbins 1995).

See also CONCYCLIC, CYCLIC HEXAGON, CYCLIC POLY-

GON
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Cyclic Permutation
A PERMUTATION which shifts all elements of a SET by
a fixed offset, with the elements shifted off the end
inserted back at the beginning. For a SET with
elements a0 ; a1 ; ..., an �1 ; a cyclic permutation of one
place to the left would yield a1 ; ..., an�1 ; a0 ; and a
cyclic permutation of one place to the right would
yield an �1 ; a0 ; a1 ; ....

The mapping can be written as ai 0 ai�k(mod n) for a
shift of k places. A shift of k places to the left is
implemented in Mathematica as RotateLeft[list ,
k ], while a shift of k places to the right is implemen-
ted as RotateRight[list , k ].

See also PERMUTATION

Cyclic Polygon
A cyclic polygon is a POLYGON with VERTICES upon
which a CIRCLE can be CIRCUMSCRIBED. Since every
TRIANGLE has a CIRCUMCIRCLE, every TRIANGLE is
cyclic. It is conjectured that for a cyclic polygon of
2m�1 sides, 16K2 (where K is the AREA) satisfies a
MONIC POLYNOMIAL of degree Dm; where

Dm�
Xm�1

k�0

(m�k)
2m�1

k

� �
(1)

�
1

2
(2m�1)

2m
m

� �
�22m

� �
(2)

(Robbins 1995). It is also conjectured that a cyclic
polygon with 2m�2 sides satisfies one of two POLY-

NOMIALS of degree Dm: The first few values of Dm are
1, 7, 38, 187, 874, ... (Sloane’s A000531).

For TRIANGLES n�3�2 � 1�1; the POLYNOMIAL is
HERON’S FORMULA, which may be written

16K2�2a2b2�2a2c2�2b2c2�a4�b4�c4; (3)

and which is of order D1�1 in 16K2: For a CYCLIC

QUADRILATERAL, the POLYNOMIAL is BRAHMAGUPTA’S

FORMULA, which may be written



16K2 ��a4 �2a2b2 �b4 �2a2c2 �2b2c2 �c4

�8abcd �2a2d2 �2b2d2 �2c2d2 �d4 ; (4)

which is of order D1 �1 in 16K2 : Robbins (1995) gives
the corresponding FORMULAS for the CYCLIC PENTA-

GON and CYCLIC HEXAGON.

See also CONCYCLIC, CYCLIC HEXAGON, CYCLIC PEN-

TAGON, CYCLIC QUADRANGLE, CYCLIC QUADRILAT-

ERAL, JAPANESE THEOREM
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Cyclic Quadrangle
Let A1 ; A2 ; A3 ; and A4 be four POINTS on a CIRCLE, and
H1 ; H2 ; H3 ; H4 the ORTHOCENTERS of TRIANGLES

DA2A3A4 ; etc. If, from the eight POINTS, four with
different subscripts are chosen such that three are
from one set and the fourth from the other, these
POINTS form an ORTHOCENTRIC SYSTEM. There are
eight such systems, which are analogous to the six
sets of ORTHOCENTRIC SYSTEMS obtained using the
feet of the ANGLE BISECTORS, ORTHOCENTER, and
VERTICES of a generic TRIANGLE.

On the other hand, if all the POINTS are chosen from
one set, or two from each set, with all different
subscripts, the four POINTS lie on a CIRCLE. There
are four pairs of such CIRCLES, and eight POINTS lie by
fours on eight equal CIRCLES.

The SIMSON LINE of A4 with regard to TRIANGLE

DA1A2A3 is the same as that of H4 with regard to
the TRIANGLE DH1A2A3:/

See also ANGLE BISECTOR, CONCYCLIC, CYCLIC POLY-

GON, CYCLIC QUADRILATERAL, ORTHOCENTRIC SYS-

TEM
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Cyclic Quadrilateral

A QUADRILATERAL for which a CIRCLE can be circum-
scribed so that it touches each VERTEX. The AREA is
then given by a special case of BRETSCHNEIDER’S

FORMULA. Let the sides have lengths a , b , c , and d ,
let s be the SEMIPERIMETER

s�1
2(a�b�c�d); (1)

and let R be the CIRCUMRADIUS. Then

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s�a)(s�b)(s�c)(s�d)

p
(2)

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ac � bd)(ad � bc)(ab � cd)

p

4R
: (3)

Solving for the CIRCUMRADIUS gives

R�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ac � bd)(ad � bc)(ab � cd)

(s � a)(s � b)(s � c)(s � d)

s
: (4)

The DIAGONALS of a cyclic quadrilateral have lengths

p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ab � cd)(ac � bd)

ad � bc

s
(5)

q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ac � bd)(ad � bc)

ab � cd

s
; (6)

so that pq�ac�bd:/
In general, there are three essentially distinct cyclic
quadrilaterals (modulo ROTATION and REFLECTION)
whose edges are permutations of the lengths a , b , c ,
and d . Of the six corresponding DIAGONAL lengths,
three are distinct. In addition to p and q , there is
therefore a "third" DIAGONAL which can be denoted r .
It is given by the equation

r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ad � bc)(ab � cd)

ac � bd

s
: (7)

This allows the AREA formula to be written in the
particularly beautiful and simple form



A�
pqr

4R
: (8)

The DIAGONALS are sometimes also denoted p , q , and
r .

The AREA of a cyclic quadrilateral is the MAXIMUM

possible for any QUADRILATERAL with the given side
lengths. Also, the opposite ANGLES of a cyclic quad-
rilateral sum to p RADIANS (Dunham 1990). There
exists a closed BILLIARDS path inside a cyclic quad-
rilateral if its CIRCUMCENTER lies inside the quad-
rilateral (Wells 1991, p. 11).

The INCENTERS of the four triangles composing the
cyclic quadrilateral form a RECTANGLE. Furthermore,
the sides of the RECTANGLE are PARALLEL to the lines
connecting the MID-ARC POINTS between each pair of
vertices (left figure above; Fuhrmann 1890, p. 50;
Johnson 1929, pp. 254�/55; Wells 1991). If the EX-

CENTERS of the triangles constituting the quadrilat-
eral are added to the INCENTERS, a 4�4 rectangular
grid is obtained (right figure; Johnson 1929, p. 255;
Wells 1991).

Consider again the four triangles contained in a cyclic
quadrilateral. Amazingly, the CENTROIDS Mi; NINE-

POINT CENTERS Ni; and ORTHOCENTERS Hi formed by
these triangles are similar to the original quadrilat-
eral. In fact, the triangle formed by the ORTHOCEN-

TERS is congruent to it (Wells 1991, p. 44).

A cyclic quadrilateral with RATIONAL sides a , b , c ,
and d , DIAGONALS p and q , CIRCUMRADIUS r , and
AREA a is given by a�25, b�33, c�39, d�65,
p�60, q�52, r�65=2; and a �1344.

Let ahbo be a QUADRILATERAL such that the angles
�hab and �hob are RIGHT ANGLES, then ahbo is a
cyclic quadrilateral (Dunham 1990). This is a COR-

OLLARY of the theorem that, in a RIGHT TRIANGLE, the
MIDPOINT of the HYPOTENUSE is equidistant from the
three VERTICES. Since M is the MIDPOINT of both
RIGHT TRIANGLES DAHB and DBOH; it is equidistant
from all four VERTICES, so a CIRCLE centered at M
may be drawn through them. This theorem is one of
the building blocks of Heron’s derivation of HERON’S

FORMULA.

An application of BRAHMAGUPTA’S THEOREM gives the
pretty result that, for a cyclic quadrilateral with
perpendicular diagonals, the distance from the CIR-

CUMCENTER O to a side is half the length of the
opposite side, so in the above figure,

OMAB�
1
2CD�CMCD�DMCD; (9)

and so on (Honsberger 1995, pp. 37�/8).

Let MAC and MBD be the MIDPOINTS of the diagonals of
a cyclic quadrilateral ABCD , and let P be the
intersection of the diagonals. Then the ORTHOCENTER

of TRIANGLE DPMACMBD is the ANTICENTER T of
ABCD (Honsberger 1995, p. 39).



Place four equal CIRCLES so that they intersect in a
point. The quadrilateral ABCD is then a cyclic
quadrilateral (Honsberger 1991). For a CONVEX cyclic
quadrilateral Q , consider the set of CONVEX cyclic
quadrilaterals Q½½ whose sides are PARALLEL to Q .
Then the Q½½ of maximal AREA is the one whose
DIAGONALS are PERPENDICULAR (Gürel 1996).

See also BICENTRIC QUADRILATERAL, BRAHMAGUPTA’S

THEOREM, BRETSCHNEIDER’S FORMULA, BUTTERFLY

THEOREM, CENTROID (TRIANGLE), CONCYCLIC, CYCLIC

POLYGON, CYCLIC QUADRANGLE, EULER BRICK, HER-

ON’S FORMULA, MALTITUDE, MID-ARC POINTS, NINE-

POINT CENTER, ORTHOCENTER, PONCELET TRANS-

VERSE, PTOLEMY’S THEOREM, QUADRILATERAL, TAN-

GENTIAL QUADRILATERAL
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khäuser, pp. 6 �/, 2000.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.
Boca Raton, FL: CRC Press, p. 123, 1987.

Dunham, W. Journey through Genius: The Great Theorems
of Mathematics. New York: Wiley, p. 121, 1990.

Fuhrmann, W. Synthetische Beweise Planimetrischer Sätze.
Berlin, 1890.
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Cyclic Redundancy Check
A sophisticated CHECKSUM (often abbreviated CRC),
which is based on the algebra of polynomials over the
integers (mod 2). It is substantially more reliable in
detecting transmission errors, and is one common
error-checking protocol used in modems. The CRC is
a form of HASH FUNCTION.

To compare large data blocks using the CRC, first
precalculate the CRCs for each block. Two blocks can
then be rapidly compared by seeing if their CRCs are
equal, saving a great deal of calculation time in most
cases. The method is not infallible since for an N -bit
checksum, 1 =2N of random blocks will have the same
checksum for inequivalent data blocks. However, if N
is large, the probability that two inequivalent blocks
have the same CRC can be made very small.

See also CHECKSUM, ERROR-CORRECTING CODE, HASH

FUNCTION
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Cyclic Triple

The 3-node TOURNAMENT (and DIRECTED GRAPH)
illustrated above (Harary 1994, p. 205).

See also TOURNAMENT, TRANSITIVE TRIPLE
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Cyclically Symmetric Plane Partition
A PLANE PARTITION whose solid Young diagram is
invariant under the rotation which cyclically per-
mutes the x -, y -, and z -axes. MACDONALD’S PLANE

PARTITION CONJECTURE gives a formula for the num-
ber of cyclically symmetric plane partitions (CSPPs)
of a given integer whose YOUNG DIAGRAMS fit inside
an n �n �n box. Macdonald gave a product repre-
sentation for the power series whose coefficients qn

were the number of such partitions of n .

See also MACDONALD’S PLANE PARTITION CONJEC-

TURE, MAGOG TRIANGLE, PLANE PARTITION
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Cyclic-Inscriptable Quadrilateral
BICENTRIC QUADRILATERAL

Cyclid
CYCLIDE

Cyclide

A pair of focal conics which are the envelopes of two
one-parameter families of spheres, sometimes also
called a CYCLID. The cyclide is a QUARTIC SURFACE,
and the lines of curvature on a cyclide are all straight
lines or circular arcs (Pinkall 1986). The STANDARD

TORI and their INVERSIONS in an INVERSION SPHERE S
centered at a point x0 and of RADIUS r , given by

I(x0 ; r) �x0 �
x � x0r2

½x � x0 ½
2 
;

are both cyclides (Pinkall 1986). Illustrated above are
RING CYCLIDES, HORN CYCLIDES, and SPINDLE CY-

CLIDES. The figures on the right correspond to x0

lying on the torus itself, and are called the PARABOLIC

RING CYCLIDE, PARABOLIC HORN CYCLIDE, and PARA-

BOLIC SPINDLE CYCLIDE, respectively.

See also CYCLIDIC COORDINATES, HORN CYCLIDE,
INVERSION, INVERSION SPHERE, PARABOLIC HORN

CYCLIDE, PARABOLIC RING CYCLIDE, RING CYCLIDE,
SPINDLE CYCLIDE, STANDARD TORI
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Cyclidic Coordinates
A general system of fourth-order CURVILINEAR CO-

ORDINATES based on the CYCLIDE in which LAPLACE’S

EQUATION is SEPARABLE (either simply separable or
R -separable). Bôcher (1894) treated all possible sys-
tems of this class (Moon and Spencer 1988, p. 49).

See also BICYCLIDE COORDINATES, CAP-CYCLIDE CO-

ORDINATES, DISK-CYCLIDE COORDINATES, ORTHOGO-

NAL COORDINATE SYSTEM
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Cycloid

The cycloid is the locus of a point on the rim of a
CIRCLE of RADIUS a rolling along a straight LINE. It
was studied and named by Galileo in 1599. Galileo
attempted to find the AREA by weighing pieces of
metal cut into the shape of the cycloid. Torricelli,
Fermat, and Descartes all found the AREA. The cycloid
was also studied by Roberval in 1634, Wren in 1658,
Huygens in 1673, and Johann Bernoulli in 1696.
Roberval and Wren found the ARC LENGTH (MacTutor
Archive). Gear teeth were also made out of cycloids,



as first proposed by Desargues in the 1630s (Cundy
and Rollett 1989).
In 1696, Johann Bernoulli challenged other mathe-
maticians to find the curve which solves the BRACHIS-

TOCHRONE PROBLEM, knowing the solution to be a
cycloid. Leibniz, Newton, Jakob Bernoulli and L’Hos-
pital all solved Bernoulli’s challenge. The cycloid also
solves the TAUTOCHRONE PROBLEM, as alluded to in
the following passage from Moby Dick : "[The try-pot]
is also a place for profound mathematical meditation.
It was in the left-hand try-pot of the Pequod , with the
soapstone diligently circling round me, that I was
first indirectly struck by the remarkable fact, that in
geometry all bodies gliding along a cycloid, my
soapstone, for example, will descend from any point
in precisely the same time" (Melville 1851). Because
of the frequency with which it provoked quarrels
among mathematicians in the 17th century, the
cycloid became known as the "Helen of Geometers"
(Boyer 1968, p. 389).

The cycloid is the CATACAUSTIC of a CIRCLE for a
RADIANT POINT on the circumference, as shown by
Jakob and Johann Bernoulli in 1692. The CAUSTIC of
the cycloid when the rays are parallel to the Y -AXIS is
a cycloid with twice as many arches. The RADIAL

CURVE of a CYCLOID is a CIRCLE. The EVOLUTE and
INVOLUTE of a cycloid are identical cycloids.

If the cycloid has a CUSP at the ORIGIN, its equation in
CARTESIAN COORDINATES is

x�a cos�1 a � y

a

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ay�y2

p
: (1)

In parametric form, this becomes

x�a(t�sin t) (2)

y�a(1�cos t): (3)

If the cycloid is upside-down with a cusp at (0; a); (2)
and (3) become

x�2a sin�1 y

2a

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ay�y2

p
(4)

or

x�a(t�sin t) (5)

y�a(1�cos t) (6)

(sign of sin t flipped for x ).

The DERIVATIVES of the parametric representation (2)
and (3) are

x?�a(1�cos t) (7)

y?�a sin t (8)

dy

dx
�

y?

x?
�

a sin t

a(1 � cos t)
�

sin t

1 � cos t
�

2 sin(1
2 t)cos(1

2 t)

2 sin2(1
2 t)

�cot(1
2 t) (9)

The squares of the derivatives are

x?2�a2(1�2 cos t�cos2 t) (10)

y?2�a2 sin2 t; (11)

so the ARC LENGTH of a single cycle is

L�g ds�g
2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
dt

�a g
2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�2 cos t�cos2 t)�sin2 t

q
dt

�a
ffiffiffi
2

p
g

2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos t

p
dt�2a g

2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos t

2

s
dt

�2a g
2p

0

sin(1
2 t)

��� ��� dt: (12)

Now let u�t=2 so du�dt=2: Then

L�4a g
p

0

sin u du�4a[�cos u]p0

��4a[(�1)�1]�8a: (13)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s�8a sin2(1
4 t) (14)

k��1
4 a csc(1

2 t) (15)

f��1
2 at: (16)

The AREA under a single cycle is

A�g
2p

0

y dx�a2 g
2p

0

(1�cos f)(1�cos f) df

�a2 g
2p

0

(1�cos f)2 df

�a2 g
2p

0

(1�2 cos f�cos 2f) df

�a2 g
2p

0

f1�2 cos f�1
2[1�cos(2f)]g df

�a2 g
2p

0

[3
2�2 cos f�1

2 cos(2f)] df

�a2[3
2 f�2 sin f�1

4 sin(2f)]2p
0

�a2 3
2 2p�3pa2: (17)

The NORMAL is



T̂ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 2 cos t
p 

1 �cos t
sin t

� �
: (18)

See also BRACHISTOCHRONE PROBLEM, CURTATE CY-

CLOID, CYCLIDE, CYCLOID EVOLUTE, CYCLOID INVO-

LUTE, EPICYCLOID, HYPOCYCLOID, PROLATE CYCLOID,
TAUTOCHRONE PROBLEM, TROCHOID
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Cycloid Evolute

The EVOLUTE of the CYCLOID

x(t)�a(t�sin t)

y(t)�a(1�cos t)

is given by

x(t)�a(t�sin t)

y(t)�a(cos t�1):

As can be seen in the above figure, the EVOLUTE is
simply a shifted copy of the original CYCLOID, so the
CYCLOID is its own EVOLUTE.

Cycloid Involute

The INVOLUTE of the CYCLOID

x(t)�a(t�sin t)

y(t)�a(1�cos t)

is given by

x(t)�a(t�sin t)

y(t)�a(3�cos t):

As can be seen in the above figure, the INVOLUTE is
simply a shifted copy of the original CYCLOID, so the
CYCLOID is its own INVOLUTE!

Cycloid Radial Curve

The RADIAL CURVE of the CYCLOID is the CIRCLE

x�x0�2a sin f



y ��2a �y0 �2a cos f:

Cyclomatic Number
CIRCUIT RANK

Cyclotomic
CYCLOTOMIC POLYNOMIAL

Cyclotomic Equation
The equation

xp �1 ;

where solutions zk �e2 pik=p are the ROOTS OF UNITY

sometimes called DE MOIVRE NUMBERS. Gauss showed
that the cyclotomic equation can be reduced to solving
a series of QUADRATIC EQUATIONS whenever p is a
FERMAT PRIME. Wantzel (1836) subsequently showed
that this condition is not only SUFFICIENT, but also
NECESSARY. An "irreducible" cyclotomic equation is an
expression OF THE FORM

xp � 1

x � 1
�xp�1�xp�2�. . .�1�0;

where p is PRIME. Its ROOTS zi satisfy zij j�1:/

See also CYCLOTOMIC POLYNOMIAL, DE MOIVRE

NUMBER, POLYGON, PRIMITIVE ROOT OF UNITY
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Cyclotomic Factorization

zp�yp�(z�y)(z�zy) 	 	 	 (z�zp�1y);

where z�e2pi=p (a DE MOIVRE NUMBER) and p is a
PRIME.

Cyclotomic Field
The smallest field containing m �Z]1 with z a PRIME

ROOT OF UNITY is denoted Rm(z);

xp�yp�
Yp

k�1

(x�zky):

Specific cases are

R3�Q(
ffiffiffiffiffiffi
�3

p
)

R4�Q(
ffiffiffiffiffiffi
�1

p
)

R6�Q(
ffiffiffiffiffiffi
�3

p
);

where Q denotes a QUADRATIC FIELD.
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Cyclotomic Integer
A number OF THE FORM

a0�a1z�. . .�ap�1z
p�1;

where

z�e2pi=p

is a DE MOIVRE NUMBER and p is a PRIME NUMBER.
Unique factorizations of cyclotomic INTEGERS fail for
p � 23.

Cyclotomic Invariant
Let p be an ODD PRIME and Fn the CYCLOTOMIC FIELD

of pn�1
/th ROOTS of unity over the rational FIELD. Now

let pe(n) be the POWER of p which divides the CLASS

NUMBER hn of Fn: Then there exist INTEGERS mp; lp]

0 and np such that

e(n)�mppn�lpn�np

for all sufficiently large n . For REGULAR PRIMES,
mp�lp�np�0:/
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Cyclotomic Number
DE MOIVRE NUMBER, SYLVESTER CYCLOTOMIC NUM-

BER

Cyclotomic Polynomial
A polynomial given by

Fn(x)�
Y

?
n

k�1

(x�zk); (1)

where zk are the ROOTS OF UNITY in C given by

zk�e2pik=n (2)

and k runs over integers RELATIVELY PRIME to n . The
prime may be dropped if the product is instead taken
over PRIMITIVE ROOTS OF UNITY, so that

Fn(x)�
Yn

k�1primitive

zk

(x�zk): (3)



The notation Fn(x) is also frequently encountered.
Dickson et al. (1923) and Apostol (1975) give exten-
sive bibliographies for cyclotomic polynomials.

/Fn(x) is an INTEGER POLYNOMIAL and an IRREDUCIBLE

POLYNOMIAL with DEGREE f(n); where f(n) is the
TOTIENT FUNCTION. Cyclotomic polynomials are re-
turned by the Mathematica command Cycloto-
mic[n , x ]. The roots of cyclotomic polynomials lie on
the UNIT CIRCLE in the COMPLEX PLANE, as illustrated
above for the first few cyclotomic polynomials.

The first few cyclotomic POLYNOMIALS are

F1(x)�x�1

F2(x)�x�1

F3(x)�x2�x�1

F4(x)�x2�1

F5(x)�x4�x3�x2�x�1

F6(x)�x2�x�1

F7(x)�x6�x5�x4�x3�x2�x�1

F8(x)�x4�1

F9(x)�x6�x3�1

F10(x)�x4�x3�x2�x�1:

If p is an ODD PRIME, then

Fp(x)�
xp � 1

x � 1
�xp�1�xp�2�. . .�x�1 (4)

F2p(x)�
x2p � 1

xp � 1

x � 1

x2 � 1
�xp�1�xp�2�. . .�x�1 (5)

F4p(x)�
x4p � 1

x2p � 1

x2 � 1

x4 � 1

�x2p�2�x2p�4�. . .�x2�1 (6)

(Riesel 1994, p. 306). Similarly, for p again an ODD

PRIME,

xp�1�F1(x)Fp(x) (7)

x2p�1�F1(x)F2(x)Fp(x)F2p(x) (8)

x4p�1�F1(x)F4(x)F2(x)Fp(x)F2p(x)F4p(x): (9)

For the first few remaining values of n ,

x�1�F1(x) (10)

x2�1�F1(x)F2(x) (11)

x4�1�F1(x)F2(x)F4(x) (12)

x8�1�F1(x)F2(x)F4(x)F8(x) (13)

x9�1�F1(x)F3(x)F9(x) (14)

x15�1�F1(x)F3(x)F5(x)F15(x) (15)

x16�1�F1(x)F2(x)F4(x)F8(x)F16(x) (16)

x18�1�F1(x)F2(x)F3(x)6(x)F9(x)F18(x) (17)

(Riesel 1994, p. 307).

For p a PRIME relatively prime to n ,

Fnp(x)�
Fn(xp)

Fn(x)
; (18)

but if p½n;

Fnp(x)�Fn(xp) (19)

(Nagell 1951, p. 160).

An explicit equation for Fn(x) for SQUAREFREE n is
given by

Fn(x)�
Xf(n)

j�0

anjz
f(n)�j; (20)

where Anj is calculated using the RECURRENCE RELA-

TION

anj�

�
m(n)

j

Xj�1

m�0

anmm(GCD(n; j�m))f(GCD(n; j�m)); (21)

with an0�1; where mn is the MÖBIUS FUNCTION and
GCD(m; n) is the GREATEST COMMON DENOMINATOR

of m and n .

The POLYNOMIAL xn�1 can be factored as

xn�1�
Y
d½n

Fd(x); (22)



where Fd(x) is a CYCLOTOMIC POLYNOMIAL. Further-
more,

xn�1�
x2n � 1

xn � 1
�
Q

d½2n Fd(x)Q
d½n Fd(x)

: (23)

The COEFFICIENTS of the inverse of the cyclotomic
POLYNOMIAL

1

1 � x � x2
�1�x�x3�x4�x6�x7�x9�x10�. . .

�
X�
n�0

cnxn (24)

can also be computed from

cn�1�2 1
3 (n�2)
j k

� 1
3 (n�1)
j k

� 1
3 n
j k

(25)

�1�3 1
3(n�2)
j k

� nb c (26)

�
2ffiffiffi
3

p sin[2
3 p(n�1)]; (27)

where�x� is the FLOOR FUNCTION.

The LOGARITHM of the cyclotomic polynomial

Fn(x)�
Y
djn

(1�xn=d)m(d) (28)

is the MÖBIUS INVERSION FORMULA (Vardi 1991,
p. 225).

For p PRIME,

Fp(x)�
Xp�1

k�0

xk; (29)

i.e., the coefficients are all 1. The first cyclotomic
polynomial to have a coefficient other than 9 1 and 0
is F105(x); which has coefficients of �2 for x7 and x41:
This is true because 105 is the first number to have
three distinct ODD PRIME factors, i.e., Td (McClellan
and Rader 1979, Schroeder 1997). The smallest
values of n for which Fn(x) has one or more coeffi-
cients 9 1, 9 2, 9 3, ... are 0, 105, 385, 1365, 1785,
2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465,
10465, 11305, ... (Sloane’s A013594).

It appears to be true that, for m; n > 1; if Fm(x)�
Fn(x) factors, then the factors contain a cyclotomic
polynomial. For example,

F7(x)�F22(x)�(x2�1)(x8�x7�2x4�2)

�F4(x)(x8�x7�2x4�2): (30)

This observation has been checked up to m; n�150
(C. Nicol). If m and n are prime, then Cm�Cn is
irreducible.

Migotti (1883) showed that COEFFICIENTS of Fpq(x) for
p and q distinct PRIMES can be only 0, 9 1. Lam and

Leung (1996) considered

Fpq(x)�
Xpq�1

k�0

akxk (31)

for p, q PRIME. Write the TOTIENT FUNCTION as

f(pq)�(p�1)(q�1)�rp�sq (32)

and let

05k5(p�1)(q�1); (33)

then

1. ak�1 IFF k�ip�jq for some i � [0; r] and
j � [0; s];/
2. ak��1 IFF k�pq�ip�jp for i � [r�1; q�1]
and j � [s�1; p�1];/
3. otherwise ak�0:/

The number of terms having ak�1 is (r�1)(s�1);
and the number of terms having ak��1 is (p�s�
1)(q�r�1): Furthermore, assume q � p , then the
middle COEFFICIENT of Fpq is (�1)r:/

Resultants of cyclotomic polynomials have been com-
puted by Lehmer (1930), Diederichsen (1940), and
Apostol (1970). It is known that r(Fk(x); Fn(x))�1 if
(m; n)�1; i.e., m and n are relatively prime (Apostol
1975). Apostol (1975) showed that for positive inte-
gers m and n and arbitrary nonzero complex num-
bers a and b ,

r(Fm(ax); Fn(bx))

�bf(m)f(n)
Y
d½n

Fm=d

ad

bd

 !" #m(n=d)f(m)=f(m=d)

; (34)

where d�GCD(m; d) is the GREATEST COMMON DIVI-

SOR of m and d , f(n) is the TOTIENT FUNCTION, m(n) is
the MÖBIUS FUNCTION, and the product is over the
divisors of n . If m and n are distinct primes p and q ,
then (34) simplifies to

r(Fq(ax); Fp(bx))

�
apq � bpq

ap � bp

a � b

aq � bq
for a"b

a(p�1)(q�1) for a�b:

8<
: (35)

The following table gives the RESULTANTS

r(Fk(x); Fn(x)) (Sloane’s A054372).

/k_n/ 1 2 3 4 5 6 7

1 0

2 2 0

3 3 1 0

4 2 2 1 0



5 5 1 1 1 0

6 1 3 4 1 1 0

7 7 1 1 1 1 1 0

See also AURIFEUILLEAN FACTORIZATION, GAUSS’S

CYCLOTOMIC FORMULA, LUCAS’S THEOREM, MÖ BIUS

INVERSION FORMULA, PRIMITIVE ROOT OF UNITY,
ROOT OF UNITY
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Cylinder

In common usage, the term "cylinder" refers to a
SOLID of circular CROSS SECTION in which the centers
of the CIRCLES all lie on a single LINE (i.e., a right
circular cylinder). In mathematical usage, "cylinder"
is commonly taken to refer to only the lateral sides of
this solid, excluding the top and bottom caps. If a
plane inclined with respect to the caps intersects a
cylinder, it does so in an ELLIPSE. The cylinder was
extensively studied by Archimedes in his two-volume
work On the Sphere and Cylinder in ca. 225 BC.

A cylinder is called a right cylinder if it is "straight" in
the sense that its CROSS SECTIONS lie directly on top of
each other; otherwise, the cylinder is called oblique.
The lateral surface of a cylinder of height h and
RADIUS r can be described parametrically by

x�r cos u (1)

y�r sin u (2)

z�z; (3)

for z � [0; h] and u � [0; 2p): These are the basis for
CYLINDRICAL COORDINATES. The SURFACE AREA (of the
sides) and VOLUME of the cylinder of height h and
RADIUS r are

S�2prh (4)

V�pr2h: (5)

Therefore, if top and bottom caps are added, the
volume-to-surface area ratio for a cylindrical solid is



V

S 
�

pr2h

2prh � 2 pr2 
�

1

2

1

r 
�

1

h

 !�1

; (6)

which is related to the HARMONIC MEAN of the radius
r and height h . The fact that

Vsphere

Vcircumscribed cylinder � Vsphere

�
4
3

2 � 4
3

�
4
3

2
3

�2 (7)

was known to Archimedes (Steinhaus 1983, p. 223).

Using the parametrization

x(u; v) �a cos v (8)

y(u ; v) �a sin v (9)

z(u; v) �u (10)

gives coefficients of the FIRST FUNDAMENTAL FORM

E �1 (11)

F �0 (12)

G �a2 ; (13)

the coefficients of the SECOND FUNDAMENTAL FORM

e �0 (14)

f �0 (15)

g �a (16)

AREA ELEMENT

dS �a duffl dv; (17)

GAUSSIAN CURVATURE

K �0; (18)

and MEAN CURVATURE

H �
1

2a 
: (19)

See also ARCHIMEDES’ HAT-BOX THEOREM, BARREL,
CONE, CYLINDER DISSECTION, CYLINDER-SPHERE IN-

TERSECTION, CYLINDRICAL SEGMENT, CYLINDRICAL

WEDGE, ELLIPTIC CYLINDER, GENERALIZED CYLINDER,
SPHERE, STEINMETZ SOLID, VIVIANI’S CURVE
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Cylinder Cutting
The maximum number of pieces into which a cylinder
can be divided by n oblique cuts is given by

f (n) �
n �1

3

� �
�n �1 �1

6(n �2)(n �3);

where a
b

& '
is a BINOMIAL COEFFICIENT. This problem is

sometimes also called cake cutting or pie cutting, and
has the same solution as SPACE DIVISION BY PLANES.
For n �1, 2, ... cuts, the maximum number of pieces is
2, 4, 8, 15, 26, 42, ... (Sloane’s A000125).

See also CIRCLE DIVISION BY LINES, CUBE DIVISION BY

PLANES, HAM SANDWICH THEOREM, PANCAKE THEO-

REM, SPACE DIVISION BY PLANES, TORUS CUTTING
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Cylinder Dissection
A cylinder can be dissected into unequal squares,
with nine squares required at a minimum. Trivial
squarings can be constructed by taking rectangle
dissections and matching edges, but there are two
nontrivial nine-square tilings (Stewart 1997).

See also MÖ BIUS STRIP DISSECTION, PERFECT SQUARE

DISSECTION, TORUS DISSECTION
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Cylinder Function

The cylinder function is defined as

C(x; y) �
1 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
5a

0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
> a :

�
(1)

The BESSEL FUNCTIONS are sometimes also called
cylinder functions. To find the FOURIER TRANSFORM of
the cylinder function, let

kx �k cos a (2)

ky �k sin a (3)

x �r cos u (4)

y �r sin u: (5)

Then

F(k; a) �F(C(x; y))

�g
2 p

0 g
a

0

ei(k cos a r cos u�k sin a r sin u)r dr du

�g
2 p

0 g
a

0

eikr cos( u �a)r dr du: (6)

Let b � u � a; so db �du: Then

F(k; a) �g
2p � a

� a
g

a

0

eikr cos br dr du

�g
2p

0 g
a

0

eikr cos br dr du

�2p g
a

0

J0(kr)r dr; (7)

where J0(x) is a zeroth order BESSEL FUNCTION OF

THE FIRST KIND. Let u �kr; so du �k dr; then

F(k ; a) �
2 p

k2 g
ka

0

J0(u)u du�
2p

k2 
[uJ1(u)]ka

0

�
2 pa

k
J1(ka) �2pa2 J1(ka)

ka
: (8)

As defined by Watson (1966), a "cylinder function" is
any function which satisfies the RECURRENCE RELA-

TIONS

Cn�1(z)�Cn�1(z)�
2n

z
Cn(z) (9)

Cn�1(z)�Cn�1(z)�2C?n(z): (10)

This class of functions can be expressed in terms of
BESSEL FUNCTIONS.

See also BESSEL FUNCTION OF THE FIRST KIND,
CYLINDER FUNCTION, CYLINDRICAL FUNCTION, HEMI-

SPHERICAL FUNCTION
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Cylinder-Cylinder Intersection
STEINMETZ SOLID

Cylinder-Plane Intersection
CYLINDRICAL SECTION

Cylinder-Sphere Intersection
The curve formed by the intersection of a CYLINDER

and a SPHERE is known as VIVIANI’S CURVE.

The problem of finding the lateral SURFACE AREA of a
CYLINDER of radius r internally tangent to a SPHERE

of radius R was given in a SANGAKU PROBLEM from
1825.



The easiest way to determine the solution is to solve
the simultaneous equations

x2 �y2 �z2 �R2 (1)

y2 �[z �(R �r)]2 �r2 (2)

for x and y ,

x �9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(R �r)(R �z)

p
(3)

y �9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R �z)(2r �R �z)

p
: (4)

These give the PARAMETRIC EQUATIONS for VIVIANI’S

CURVE in this case (left figure). The SURFACE AREA can
the be found by constructing a series of curved
segments (right figure). The arc length element
around the surface of the cylinder at a height z is
given by

ds �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

dy

dz

 !2
vuut dz �

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R � z)(2r � R � z)

p : (5)

The SURFACE AREA of one quarter of the surface is
then

S1 =4 �g x(z) ds

�g
R

R�2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(R �r)(R �z)

p rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R � z)(2r � R � z)

p dz

�g
R

R�2r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(R � r)

2r � R � z

s
dz; (6)

where some care is needed treating the lower limit,

S1 =4 � lim
r?0r�

4r[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(R �r)

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R �r)(r �r ?)

p
]

�4r3 =2
ffiffiffiffiffiffiffiffiffiffiffiffi
R �r

p
: (7)

The total SURFACE AREA is then

S �4S1 =4 �16r3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
R �r

p
(8)

a result obtained in a more roundabout geometric
arguments by Rothman (1998). (Note that the answer
printed in the original Rothman article was incorrect;

the corrected answer has been posted on the Internet
version of the article.)

See also CYLINDER, SPHERE, VIVIANI’S CURVE
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Cylindrical Algebraic Decomposition
This entry contributed by ADAM STRZEBONSKI

Define a cell in R1 as an open interval or a point. A
cell in Rk �1 then has one of two forms,

f(x; y) : x � C ; and f (x) By Bg(x) g

or

f(x; y) : x � C ; and y �f (x) g;

where x �fx1 ; . . . ; xk g; C is a cell in Rk ; f and g are
either (1) continuous functions on C such that for
some polynomials F and G , F(x; f (x)) �0 and
G(x; g(x)) �0 ; or (2) 9�; and f (x) Bg(x) for all x � C :/

A cylindrical algebraic decomposition of S ƒRn is a
representation of S as a finite union of disjoint cells.
Let F be finite set of polynomials in n variables. A
cylindrical algebraic decomposition of S ƒRn is said to
be F -invariant if each of the polynomials from F has a
constant sign on each cell of the decomposition.

The cylindrical algebraic decomposition (CAD) algo-
rithm, given a finite set F of polynomials in n
variables, computes an F -invariant cylindrical alge-
braic decomposition of Rn : Given a logical combina-
tion of polynomial equations and inequalities in n
real unknowns, one can use the CAD algorithm to
find a cylindrical algebraic decomposition of its
solution set. For example, the decomposition of

x2 �y2 �z2 B1

is given by

�1 Bx B1
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
By B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2 �y2

p
Bz B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2�y2

p
:

8<
:

Mathematica 4.0 contains the function Cylindri-
calAlgebraicDecomposition which performs cy-
lindrical algebraic decompositions. Although the
process is algorithmic, it becomes computationally
infeasible for complicated inequalities.

See also CYLINDRICAL PARTS, GENERIC CYLINDRICAL

ALGEBRAIC DECOMPOSITION, QUANTIFIER ELIMINA-

TION, TARSKI’S THEOREM
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Cylindrical Coordinates

Cylindrical coordinates are a generalization of 2-D
POLAR COORDINATES to 3-D by superposing a height
(z ) axis. Unfortunately, there are a number of
different notations used for the other two coordinates.
Either r or r is used to refer to the radial coordinate
and either f or u to the azimuthal coordinates.
Arfken (1985), for instance, uses (r; f; z); while

Beyer (1987) uses (r; u; z): In this work, the NOTA-

TION (r; u; z) is used.

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
(1)

u�tan�1 y

x

 !
(2)

z�z; (3)

where r � [0; �); u � [0; 2p); and z � (��; �): In terms
of x , y , and z

x�r cos u (4)

y�r sin u (5)

z�z: (6)

Morse and Feshbach (1953) define the cylindrical
coordinates by

x�j1j2 (7)

y�j1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j2

2

q
(8)

z�j3; (9)

where j1�r and j2�cos u: The METRIC elements of
the cylindrical coordinates are

grr�1 (10)

guu�r2 (11)

gzz�1; (12)

so the SCALE FACTORS are

gr�1 (13)

gu�r (14)

gz�1: (15)

The LINE ELEMENT is

ds�dr r̂�r du û�dz ẑ; (16)

and the VOLUME ELEMENT is

dV�r dr du dz: (17)

The JACOBIAN is

@(x; y; z)

@(r; u; z)

�����
������r: (18)

A CARTESIAN VECTOR is given in CYLINDRICAL COOR-

DINATES by

r�
r cos u

r sin u

z

2
4

3
5: (19)



To find the UNIT VECTORS,

r̂�

dr

dr

dr

dr

�����
�����
�

cos u

sin u

0

2
4

3
5 (20)

û�

dr

du

dr

du

�����
�����
�

� sin u

cos u

0

2
4

3
5 (21)

ẑ�

dr

dz

dr

dz

�����
�����
�

0
0
1

2
4
3
5: (22)

Derivatives of unit VECTORS with respect to the
coordinates are

@r̂

@r
�0 (23)

@r̂

@u
�

�sin u

cos u

0

2
4

3
5�û (24)

@r̂

@z
�0 (25)

@û

@r
�0 (26)

@û

@u
�

�cos u

�sin u

0

2
4

3
5��r̂ (27)

@û

@z
�0 (28)

@ẑ

@r
�0 (29)

@ẑ

@u
�0 (30)

@ẑ

@z
�0: (31)

The GRADIENT of a VECTOR FIELD in cylindrical
coordinates is given by

9�r̂
@

@r
�û

1

r

@

@u
�ẑ

@

@z
; (32)

so the GRADIENT components become

9rr̂�0 (33)

9ur̂�
1

r
û (34)

9zr̂�0 (35)

9rû�0 (36)

9uû��
1

r
r̂ (37)

9zû�0 (38)

9rẑ�0 (39)

9uẑ�0 (40)

9zẑ�0: (41)

Now, since the CONNECTION COEFFICIENTS are defined
by

Gi
jk�x̂i �(9kx̂j); (42)

Gr�

0 0 0

0 �
1

r
0

0 0 0

2
664

3
775 (43)

Gu�
0

1

r
0

0 0 0
0 0 0

2
664

3
775 (44)

Gz�
0 0 0
0 0 0
0 0 0

2
4

3
5; (45)

the COVARIANT DERIVATIVES, given by

Aj; k�
1

gkk

@Aj

@xk

�Gi
jkAi; (46)

are

Ar; r�
@Ar

@r
�Gi

rrAi�
@Ar

@r
(47)

Ar; u�
1

r

@Ar

@u
�Gi

ruAi�
1

r

@Au

@r
�Gu

ruAu

�
1

r

@Ar

@u
�

Au

r
(48)

Ar;z�
@Ar

@z
�Gi

r zAi�
@Ar

@z
(49)

Au; r�
@Au

@r
Gi

urAi�
@Au

@r
(50)



Au; u�
1

r

@Au

@u
�Gi

uuAi�
1

r

@Au

@u
�Gr

uuAr

�
1

r

@Au

@u
�

Ar

r
(51)

Au; z�
@Au

@z
�Gi

uzAi�
@Au

@z
(52)

Az; r�
@Az

@r
�Gi

zrAi�
@Az

@r
(53)

Az; u�
@Az

@u
�Gi

zuAi�
1

r

@Az

@u
(54)

Az; z�
@Az

@z
�Gi

zzAi�
@Az

@z
: (55)

CROSS PRODUCTS of the coordinate axes are

r̂�ẑ��û (56)

û�ẑ� r̂ (57)

r̂�û� ẑ: (58)

The COMMUTATION COEFFICIENTS are given by

cmab �em�[ �ea; �eb]�9a �eb�9b �ea; (59)

But

[r̂; r̂]�[û; û]�[f̂; f̂]�0; (60)

so carr�cauu�caff�0; where a�r; u; f: Also

[r̂; û]��[û; r̂]�9rû�9ur̂�0�
1

r
û��

1

r
û; (61)

so curu��cuur��1
r
; cr

ru�cfru�0: Finally,

[r̂; f̂]�[û; f̂]�0: (62)

Summarizing,

cr�
0 0 0
0 0 0
0 0 0

2
4

3
5 (63)

cu�

0 �
1

r
0

1

r
0 0

0 0 0

2
666664

3
777775 (64)

cf�
0 0 0
0 0 0
0 0 0

2
4

3
5: (65)

Time DERIVATIVES of the VECTOR are

ṙ�
cos u ṙ�r sin u u̇

sin u ṙ�r cos u u̇

ż

2
4

3
5� ṙr̂�ru̇û�żẑ (66)

r̈�

�sin u ṙu̇�cos ur̈�sin uṙu̇�r cos u u̇2�r sin u ü

cos u ṙu̇�sin ur̈�cos u ṙu̇�r sin u u̇2�r cos u ü

z̈

2
4

3
5

�
�2 sin u ṙu̇�cos ur̈�r cos u u̇2�r sin u ü

2 cos u ṙu̇�sin u r̈�r sin u u̇2�r cos u ü

z̈

2
4

3
5

�(r̈�ru̇2)r̂�(2ṙu̇�rü)û�żẑ: (67)

SPEED is given by

v� ½ṙ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2�r2u̇2�ż2

p
: (68)

Time derivatives of the UNIT VECTORS are

˙̂r�
�sin u u̇

cos u u̇

0

2
4

3
5�u̇û (69)

˙̂u�
�cos u u̇

�sin u u̇

0

2
4

3
5��u̇r̂ (70)

˙̂z�
0
0
0

2
4
3
5�0: (71)

CROSS PRODUCTS of the axes are

r̂�ẑ��û (72)

û�ẑ�r̂ (73)

r̂�û� ẑ: (74)

The CONVECTIVE DERIVATIVE is

Dṙ

Dt
�

@

@t
�ṙ � 9

 !
ṙ�

@ṙ

@t
�ṙ � 9ṙ: (75)

To rewrite this, use the identity

9(A � B)�A�(9�B)�B�(9�A)�(A � 9)B

�(B � 9)A (76)

and set A�B, to obtain

9(A � A)�2A�(9�A)�2(A � 9)A; (77)

so

(A � 9)A�(1
2 A2)�A�(9�A): (78)

Then

Dṙ

Dt
�r̈�9(1

2 ṙ2)�ṙ�(9�ṙ)

�r̈�(9�ṙ)�ṙ�9(1
2 ṙ2): (79)

The CURL in the above expression gives

9�ṙ�
1

r

@

@r
(r2u̇)ẑ�2u̇ẑ; (80)



so

�ṙ �( 9�ṙ) ��2 ̇u(ṙr̂ �ẑ �r ̇u û �ẑ) ��2 ̇u(�ṙ ̂u �r ̇ur̂)

�2ṙ ̇u û �2r ̇u2 r̂: (81)

We expect the gradient term to vanish since SPEED

does not depend on position. Check this using the
identity 9(f 2) �2f 9f ;

9(1
2 ṙ2) �1

2 9(ṙ2 �r2 u̇2 � ̇z2) � ̇r 9ṙ �r ̇u9(r ̇u) � ̇z 9ż : (82)

Examining this term by term,

ṙ 9ṙ � ̇r
@

@t
9r � ̇r

@

@t
r̂ � ̇r ˙̂r � ̇r ̇u û (83)

r ̇u 9(r ̇u) �r ̇u r
@

@t
9u � u̇9r

" #
�r ̇u r

@

@t

1

r
û

 !
� u̇r̂

" #

�r ̇u r �
1

r2
ṙ ̂u �

1

r
˙̂u

 !
� u̇r̂

" #

��u̇ṙ ̂u �r ̇u(�u̇r̂) �r ̇u2 r̂ ��u̇ṙ ̂u (84)

ż 9ż � ̇z
@

@t
9z � ̇z

@

@t
ẑ � ̇z ˙̂z �0 ; (85)

so, as expected,

9(1
2 ṙ2) �0 : (86)

We have already computed , so combining all three
pieces gives

Dṙ

Dt 
�(r̈ �r ̇u2 �2r ̇u2)r̂ �(2ṙ ̇u �2ṙ ̇u �r ̈u) ̂u � ̈zẑ

�(r̈ �3r ̇u2)r̂ �(4ṙ ̇u �r ̈u) ̂u � ̈zẑ : (87)

The DIVERGENCE is

9 � A �Ar
;r �Ar

;r �( Gr
rrA

t �Gr
urA

u �Gr
zrA

z) �A u;u

�( Gu
ruA
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uuA

u �G  
u
zuA
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�Az
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rzA
r �Gz
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u �Gz

zzA
z)

�Ar
;r �Au
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;z �(0 �0 �0) �

1

r 
�0 �0

 !

�(0 �0 �0)

�
1
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@

@r
Ar �

1
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@

@ u
Au �

1

gz

@

@z
Az �

1

r
Ar

�
@

@r 
�

1
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 !
Ar �

1

r

@

@ u
Au �

@

@z
Az ; (88)

or, in VECTOR notation

9 � F �
1

r

@

@r
(rFr) �

1

r

@Fu

@ u
�

@Fz

@z
: (89)

The CROSS PRODUCT is

9�F �
1

r

@Fz

@ u
�

@Fu

@z

 !
r̂ �

@Fr

@z
�

@Fz

@r

 !
û

�
1

r

@

@r 
(rFu) �

@Fr

@ u

" #
ẑ : (90)

The scalar LAPLACIAN is

92f �
1

r

@

@r
r
@f

@r

 !
�

1

r2

@2f

@ u2 �
@2f

@z2

�
@2f

@r2 
�

1

r

@f

@r 
�

1

r2

@2f

@ u2 �
@2f

@z2 
: (91)

The vector LAPLACIAN is

92v �

@2vr

@r2 
�

1

r2

@2vr

@ f2 �
@2vr

z2
�

1

r

@vr

@r
�

2

r2

@vf
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�

vr
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�

1

r2

@2vf

@ f2 �
@2vf
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�

1

r

@vf
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�
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r2
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@f
�

vf

r2

@2vz
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�

1
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@2vz

@f2 �
@2vz

@z2
�

1

r

@vz

@r

2
666666664

3
777777775
:

(92)

The HELMHOLTZ DIFFERENTIAL EQUATION is separable
in cylindrical coordinates and has STÄCKEL DETERMI-

NANT S � 1 (for r , u; z ) or S�1=(1�j2
2) (for Morse

and Feshbach’s j1; j2; j3):/

See also ELLIPTIC CYLINDRICAL COORDINATES, HELM-

HOLTZ DIFFERENTIAL EQUATION–CIRCULAR CYLINDRI-

CAL COORDINATES, POLAR COORDINATES, SPHERICAL

COORDINATES
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Cylindrical Equal-Area Projection

The MAP PROJECTION having transformation equa-



tions

x �( l � l0)cos fs (1)

y �sin f sec fs (2)

for the normal aspect, where l is the LONGITUDE, l0 is
the standard LONGITUDE (horizontal center of the
projection), f is the LATITUDE, and fs is the so-called
"standard latitude." The inverse transformation
equations for the normal aspect are

f �sin�1(y cos fs) (3)

l �x sec fs � l0 : (4)

Special cases of cylindrical equal-area projections are
summarized in the following table (Maling 1992).

/ cs/ MAP PROJECTION

08 LAMBERT CYLINDRICAL EQUAL-AREA

PROJECTION

308 BEHRMANN CYLINDRICAL EQUAL-AREA

PROJECTION

37.3838 TRISTAN EDWARDS PROJECTION

44.1388 PETERS PROJECTION

458 GALL ORTHOGRAPHIC PROJECTION

508 BALTHASART PROJECTION

An oblique form of the cylindrical equal-area projec-
tion is given by the equations

lp �

tan�1 cos f1 sin f2 cos l1 � sin f1 cos f2 cos l2

sin f1 cos f2 sinl2 � cos f1 sin f2 sin l1

 !

(5)

fp �tan�1 �
cos(lp � l1)

tan f1

" #
; (6)

and the inverse FORMULAS are

f �sin�1(y sin fp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y2

p
cos fp sin x) (7)

l � l0 �tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2

p
sin fp sin x � y cos fpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � y2
p

cos x

 !
:

(8)

A transverse form of the cylindrical equal-area
projection is given by the equations

x�cos f sin(l�l0) (9)

y�tan�1 tan f

cos(l� l0)

" #
�f0; (10)

and the inverse FORMULAS are

f�sin�1[
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
sin(y�f0)] (11)

l�l0�tan�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p cos(y�f0)

" #
: (12)

See also BALTHASART PROJECTION, BEHRMANN CY-

LINDRICAL EQUAL-AREA PROJECTION, CYLINDRICAL

EQUIDISTANT PROJECTION, EQUAL-AREA PROJECTION,
GALL ORTHOGRAPHIC PROJECTION, LAMBERT CYLIND-

RICAL EQUAL-AREA PROJECTION, PETERS PROJECTION

TRISTAN EDWARDS PROJECTION
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Cylindrical Equidistant Projection

The MAP PROJECTION having transformation equa-
tions

x �( l � l0)cos f1 (1)

y � f; (2)

and the inverse FORMULAS are

f �y (3)

l � l0 �x sec f1 ; (4)

The following table gives special cases of the cylind-
rical equidistant projection.

/f1/ projection name

08 EQUIRECTANGULAR PROJECTION

/37 �30?/ MILLER EQUIDISTANT PROJECTION

43 8 MILLER EQUIDISTANT PROJECTION

45 8 GALL ISOGRAPHIC PROJECTION

/50 �28?/ MILLER EQUIDISTANT PROJECTION

See also CYLINDRICAL EQUAL-AREA PROJECTION,
EQUIDISTANT PROJECTION, EQUIRECTANGULAR PRO-

JECTION, GALL ISOGRAPHIC PROJECTION, MILLER

EQUIDISTANT PROJECTION

References
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1993.

Cylindrical Equirectangular Projection
CYLINDRICAL EQUIDISTANT PROJECTION

Cylindrical Function

Rm(x; y) �
J ?m(x)Y ?m(y) � J ?m(y)Y ?m(x)

Jm(x)Y ?m(y) � J ?m(y)Ym(x)

Sm(x; y) �
J ?m(x)Ym(y) � Jm(y)Y ?m(x)

Jm(x)Ym(y) � Jm(y)Ym(x) 
:

See also CYLINDER FUNCTION, HEMISPHERICAL FUNC-

TION

Cylindrical Harmonics
BESSEL FUNCTION OF THE FIRST KIND

Cylindrical Hoof
CYLINDRICAL WEDGE

Cylindrical Parts
The cylindrical parts of a system of real algebraic
equations and inequalities in variables fx1 ; . . . ; xn g
are the terms

f1 5x1 5g1

f2(x1) 5x2 5g2(x1)

n

fn(x1 ; x2 ; . . . ; xn) 5xn 5gn(x1 ; . . .  ; xn�1) ;

where ‘/5/’ is one of B;5; or �; and fi and gi are 9� or
algebraic expressions in variables fx1 ; . . . ; xi �1 g that
are real-valued for all (i �1)/-tuples of real numbers
fa1 ; . . . ; ai �1 g satisfying

f1 5a1 5g1

f2(a1) 5a2 5g2(a2)

n

fi�1(a1 ; . . . ; ai�2) 5ai�1 5gi�1(a1 ; . . . ; ai�2) :

The CONJUNCTION of a finite number of disjoint
cylindrical parts is called a CYLINDRICAL ALGEBRAIC

DECOMPOSITION.

See also CYLINDRICAL ALGEBRAIC DECOMPOSITION

References
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Cylindrical Projection

A cylindrical projection of points on a unit sphere
centered at O consists of extending the line OS for
each point S until it intersects a cylinder tangent to
the sphere at its equator at a corresponding point C .
If the sphere is tangent to the cylinder at longitude l0 ;
then a point on the sphere with latitude f and
longitude l is mapped to a point on the cylinder with
height tan f:/

Unwrapping and flattening out the cylinder then
gives the Cartesian coordinates

x � l � l0 (1)

y �tan f : (2)

The cylindrical projection of the Earth is illustrated
above.
This form of the projection, however, is seldom used
in practice, and the term "cylindrical projection" is
used instead to refer to any projection in which lines
of longitude are mapped to equally spaced parallel
lines and lines of latitude (parallels) are mapped to
parallel lines with arbitrary mathematically spaced
separations (Snyder 1987, p. 5). For example, the
common MERCATOR PROJECTION uses the complicated
transformation

y �ln[tan(1
4 p �

1
2 f)] (3)

instead of tan f in order to achieve certain desirable
properties in the projection.

Craig (1882) used the term "cylindric" instead of
"cylindrical" (Lee 1944), but this convention did not
catch on.

See also BEHRMANN CYLINDRICAL EQUAL-AREA PRO-

JECTION, CYLINDRICAL EQUAL-AREA PROJECTION, CY-

LINDRICAL EQUIDISTANT PROJECTION, GALL

ORTHOGRAPHIC PROJECTION, MERCATOR PROJECTION,
MILLER CYLINDRICAL PROJECTION, PETERS PROJEC-

TION, PSEUDOCYLINDRICAL PROJECTION

References
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Cylindrical Section

The intersection of a PLANE with a right circular
CYLINDER is a CIRCLE (if the plane is at a right angle
to the axis), an ELLIPSE, or, if the plane is parallel to
the axis, a single line (if the plane is tangent to the
cylinder), pair of parallel lines bounding an infinite
rectangle (if the plane cuts the cylinder), or no
intersection at all (if the plane missed the cylinder
entirely; Hilbert and Cohn-Vossen 1999, pp. 7�/).

The volume of the cylindrical section can be obtained
instantly by noting that two such sections can be
fitted together to form a cylinder of radius R and



height h1 �h2 ; so the volume of the original wedge is
half that of the cylinder of height h1 �h2 : The volume
can be found directly through integration by noting
that the height in polar and Cartesian coordinates is
given by

h(r ; u) �h1 �
1

2
1 �

r

R
cos u

 !
(h2 �h1) (1)

h(x; y) �h1 �
1

2
1 �

x

R

 !
(h2 �h1); (2)

so

V �g
R

0 g
2 p

0 g
h(r; u)

0

r dr du dz (3)

�g
R

�R g
ffiffiffiffiffiffiffiffiffiffi
R2 �x2

p

�
ffiffiffiffiffiffiffiffiffiffi
R2 �x2

p g
h(x; y)

0

dx dy dz ; (4)

giving (1). Similarly, the volume-weighted coordi-
nates are given by

xh i�1
8 pR3(h2 �h1) (5)

yh i�0 (6)

zh i� 1
32 pR2(5h2

1 �6h1h2 �5h2
2); (7)

so the centroids are given by

x̄ �
xh i
V

�
R(h2 � h1)

4(h1 � h2) 
(8)

ȳ �
yh i
V

�0 (9)

z̄ �
zh i
V

�
5h2

1 � 6h1h2 � 5h2
2

16(h1 � h2)
; (10)

(cf. the strange parameterization used by Harris and
Stocker 1998, p. 103).

See also CONIC SECTION, CYLINDER, CYLINDRICAL

SEGMENT, CYLINDRICAL WEDGE, ELLIPSE
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Cylindrical Segment

The solid portion of a CYLINDER below a cutting PLANE

which is oriented PARALLEL to the CYLINDER’s axis of
symmetry (i.e., a portion of a horizontal cylindrical
tank which is partially filled with fluid).

The solid cut from a circular CYLINDER by a tilted
PLANE which does not cut the base (sometimes called
a truncated cylinder) has VOLUME

V �1
2 pR2(h1 �h2) ; (1)

lateral SURFACE AREA

SL � pR(h1 �h2) ; (2)

and top SURFACE AREA

ST � pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �1

4(h2 �h1)2
q

(3)

(Harris and Stocker 1998, p. 103).
For a CYLINDER of RADIUS r and length L , the VOLUME

V(L; r ; h) of the cylindrical segment is given by
multiplying the AREA of a circular SEGMENT of height
h by L ,

V(L ; r ; h) �L r2 cos �1 r � h

r

 !
�(r�h)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rh�h2

p
" #

;

plotted above. Note that the above equation gives
V(h�0)�0; V(h�r)�pr2L=2; and V(h�2r)�pr2L;
as it must.

See also CYLINDRICAL WEDGE, SECTOR, SEGMENT,
SPHERICAL SEGMENT

Cylindrical Surface
GENERALIZED CYLINDER



Cylindrical Wedge

A wedge is cut from a CYLINDER by slicing with a
plane that intersects the base of the cylinder. The
VOLUME of a cylindrical wedge can be found by noting
that the plane cutting the cylinder passes through the
three points illustrated above (with c�a�b); so the
three-point form of the plane gives the equation

�hx�bz�(a�b)h�0: (1)

Solving for z gives

z�
h(x � a � b)

b
: (2)

The volume is therefore

V�2 g
ffiffiffiffiffiffiffiffiffiffi
a2�x2

p

0 g
a

a�b

h(x�b�a)
b

dx dy (3)

� h
6b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2a�b)b

p
(3a2�2ab�b2)�3pa2(a�b)

h
�6a2(a�b)tan�1 a�bffiffiffiffiffiffiffiffiffiffiffiffiffi

(2a�b)b
p
1 2

�; (4)

and the lateral SURFACE AREA

SL�
2h

b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2a�b)b

p
�a(a�b)cot�1 a � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2a � b)b
p
 !" #

;

(5)

(apparently given incorrectly by Harris and Stocker
1998, p. 104).

A special case of the cylindrical wedge, also called a
cylindrical hoof, is a wedge passing through a
DIAMETER of the base (so that a � b ). Let the height
of the wedge be h and the radius of the CYLINDER

from which it is cut r . Then plugging the points

(0; �r; 0); (0; r; 0); and (r; 0; h) into the 3-point
equation for a PLANE gives the equation for the plane
as

hx�rz�0: (6)

combining with the equation of the CIRCLE which
describes the curved part remaining of the cylinder
(and writing t�x then gives the PARAMETRIC EQUA-

TIONS of the "tongue" of the wedge as

x�t (7)

y�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�t2

p
(8)

z�
ht

r
(9)

for t � [0; r]: To examine the form of the tongue, it
needs to be rotated into a convenient plane. This can
be accomplished by first rotating the plane of the
curve by 908 about the X -AXIS using the ROTATION

MATRIX Rx(90�) and then by the ANGLE

u�tan�1 h

r

 !
(10)

above the Z -AXIS. The transformed plane now rests in
the xz -plane and has PARAMETRIC EQUATIONS

x�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � r2

p

r
(11)

z�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�t2

p
(12)

and is shown below.

The length of the tongue (measured down its middle)
is obtained by plugging t � r into the above equation
for x , which becomes

L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�r2

p
(13)

(and which follows immediately from the PYTHAGOR-

EAN THEOREM). The VOLUME of the wedge is given by

V�2
3 r2h (14)

and the lateral SURFACE AREA by

SL�2rh: (15)

While the centroid of the general cylindrical wedge is
complicated for a"b; for the cylindrical hoof, the



centroid is given by

x̄ � g
a

a �b g
ffiffiffiffiffiffiffiffiffiffi
a2 �x2

p

�
ffiffiffiffiffiffiffiffiffiffi
a2 �x2

p g
h(b�a �x)=b

0

x dz dy dz ; (16)

giving

xh i� 3
16 pr (17)

yh i�0 (18)

zh i� 3
32 ph: (19)

See also CONICAL WEDGE, CYLINDRICAL SECTION,
CYLINDRICAL SEGMENT, WEDGE

References
Harris, J. W. and Stocker, H. "Obliquely Cut Circular

Cylinder" and "Segment of a Cylinder." §4.6.3 �/.6.4 in
Handbook of Mathematics and Computational Science.
New York: Springer-Verlag, pp. 103 �/04, 1998.

Kern, W. F. and Bland, J. R. "Truncated Prism (or Cylin-
der)." §31 in Solid Mensuration with Proofs, 2nd ed. New
York: Wiley, pp. 81 �/3 and 127, 1948.

Cylindroid
PLÜ CKER’S CONOID

C*
The RIEMANN SPHERE C ��C @ f�g; also called the
EXTENDED COMPLEX PLANE. The notation Ĉ is some-
times also used (Krantz 1999, p. 82).

The notation C � also stands for C �f0 g; the punctu-
red plane, which is both a LIE GROUP and an ABELIAN

VARIETY.

See also C, COMPLEX NUMBER, COMPLEX PLANE,
EXTENDED COMPLEX PLANE, Q, R, RIEMANN SPHERE,
Z

References
Krantz, S. G. Handbook of Complex Analysis. Boston, MA:

Birkhäuser, p. 82, 1999.



D

d’Alembert Ratio Test
RATIO TEST

d’Alembert’s Equation
The ORDINARY DIFFERENTIAL EQUATION

y �xf (y ?) �g(y?) ;

where y �dy=dx and f and g are given functions. This
equation is sometimes also known as LAGRANGE’S

EQUATION (Zwillinger 1997).

See also LAGRANGE’S EQUATION

References
Ince, E. L. Ordinary Differential Equations. New York:

Dover, pp. 38 �/9, 1956.
Murphy, G. M. Ordinary Differential Equations and Their

Solution. Princeton, NJ: Van Nostrand, pp. 65 �/6, 1960.
Valiron, G. The Geometric Theory of Ordinary Differential

Equations and Algebraic Functions. Brookline, MA: Math.
Sci. Press, pp. 217 �/18, 1950.

Zwillinger, D. "Lagrange’s Equation." §II.A.69 in Handbook
of Differential Equations, 3rd ed. Boston, MA: Academic
Press, pp. 120 and 265 �/68, 1997.

d’Alembert’s Solution
The method of d’Alembert provides a solution to the
one-dimensional WAVE EQUATION

@2y

@x2 
�

1

c2

@2y

@t2 
(1)

that models vibrations of a string.

The general solution can be obtained by introducing
new variables j �x �ct and h �x �ct ; and applying
the CHAIN RULE to obtain

@

@x 
�

@ j

@x

@

@ j 
�

@ h

@x

@

@ h 
(2)

�
@

@ j 
�

@

@ h 
(3)

@

@t 
�

@ j

@t

@

@ j 
�

@ h

@t

@

@ h 
(4)

��c
@

@ j 
�c

@

@ h 
: (5)

Using (3) and (5) to compute the left and right sides of
(1) then gives

@2y

@x2 
�

@

@ j 
�

@

@ h

 !
@y

@ j 
�

@y

@ h

 !
�

@2y

@ j2 �2
@2y

@ j@ h 
�

@2y

@ h2
(6)

@2y

@t2 
� �c

@

@ j 
�c

@

@ h

 !
�c

@y

@ j 
�c

@y

@ h

 !

�c2 @
2y

@ j2 �2c2 @2y

@ j@ h 
�c2 @

2y

@ h2 
: (7)

respectively, so plugging in and expanding then gives

@2y

@ j@ h 
�0: (8)

This partial differential equation has general solution

�f (j) �g( h) (9)

�f (x �ct) �g(x �ct) : (10)

where f and g are arbitrary functions, with f
representing a right-traveling wave and g a left-
traveling wave.

See also WAVE EQUATION

References

Bekefi, G. and Barrett, A. H. Electromagnetic Vibra-
tions, Waves, and Radiation. Cambridge, MA: MIT
Press, pp. 161 �/63, 1987.

d’Alembert’s Theorem
If three CIRCLES A , B , and C are taken in pairs, the
external SIMILARITY POINTS of the three pairs lie on a
straight LINE. Similarly, the external SIMILARITY

POINT of one pair and the two internal SIMILARITY

POINTS of the other two pairs lie upon a straight LINE,
forming a SIMILARITY AXIS of the three CIRCLES.

See also SIMILARITY POINT

References
Dörrie, H. 100 Great Problems of Elementary Mathematics:

Their History and Solutions. New York: Dover, p. 155,
1965.

d’Alembertian
Written in the NOTATION of PARTIAL DERIVATIVES, the
d’Alembertian I2 is defined by

I

2 �92 �
1

c2

@2

@t2 
;

where c is the speed of light. Writing in TENSOR

notation,

I

2f� glkf;l

� �
;k
�glk @2f

@xl@xk
�Gl @f

@xl
:

See also GRADIENT FOUR-VECTOR, HARMONIC COOR-

DINATES, LAPLACIAN, WAVE EQUATION



d’Alembertian Operator
Written in the NOTATION of PARTIAL DERIVATIVES,

I

2

where c is the speed of light. Writing in TENSOR

notation,

I

2 �92 �
1

c2

@2

@t2 
;

See also HARMONIC COORDINATES

d’Ocagne’s Identity

FmFnþ1 �FnFmþ1 ¼ ð�1 ÞnFm�n ;

where Fn is a FIBONACCI NUMBER.

See also CASSINI’S IDENTITY, CATALAN’S IDENTITY,
FIBONACCI NUMBER

# 1999 �/001 Wolfram Research, Inc.

d’Octagne’s Identity
# 1999 �/001 Wolfram Research, Inc.

DAG
ACYCLIC DIGRAPH

Dagger
The symbol $ most commonly used in older physics
texts to denote the ADJOINT operator. The dagger is
also known as the obelisk, obelus, or long cross
(Bringhurst 1997, p. 275).

See also ADJOINT, DOUBLE DAGGER

References
Bringhurst, R. The Elements of Typographic Style, 2nd ed.

Point Roberts, WA: Hartley and Marks, 1997.

Daisy

A figure resembling a daisy or sunflower in which
copies of a geometric figure of increasing size are
placed at regular intervals along a spiral. The result-

ing figure appears to have multiple spirals spreading
out from the center.

See also HEXLET, PHYLLOTAXIS, SPIRAL, SWIRL,
WHIRL

References
Dixon, R. "On Drawing a Daisy." §5.1 in Mathographics.

New York: Dover, pp. 122�/43, 1991.

Damped Exponential Cosine Integral

g
�

0

e�wT cos(vt)dv: (1)

Integrate by parts with

u�e�vT dv�cos(vt)dv (2)

du��Te�vTdv v�
1

t
sin(vt); (3)

so

g e�vT cos(vt)dv

�
1

t
e�wt sin(vt)�

T

t g e�wT sin(vt)dv: (4)

Now integrate

g e�vT sin(vt)dv (5)

by parts. Let

u�e�vT dv�sin(vt)dv (6)

du��Te�vTdv v��
1

t
cos(vt); (7)

so

g e�vt sin(vt)dv

��
1

t
cos(vt)�

T

t g e�vT cos(vt)dv (8)



and

g e vT cos(vt)d v �
1

t
e �vt sin( vt)

�
T

t2 
e � vt cos(vt) �

T2

t2 g e� vT cos(vt)dv (9)

1 �
T2

t2

 !
g e � vT cos(vt)dv

�e � vT 1

t
sin( vt) �

T

t2
cos(vt)

" #
(10)

t2 � T2

t2 g e �vT cos(vt)dv

�
e � vt

t2
t sin( vT) �T cos(vt)½ � (11)

g e �vT cos( vt)dv

�
e � vT

t2 � T2
t sin(vt) �T cos(vT)½ �: (12)

Therefore,

g
�

0

e � vT cos(vt)dv �0 �
T

t2 � T2 
�

T

t2 � T2 
: (13)

See also COSINE INTEGRAL, FOURIER TRANSFORM–

LORENTZIAN FUNCTION, LORENTZIAN FUNCTION

Damped Simple Harmonic Motion
Adding a damping force proportional to ẋ to the
equation of SIMPLE HARMONIC MOTION, the first
derivative of x with respect to time, the equation of
motion for damped simple harmonic motion is

ẍ � bẋ � v2
0x �0 ; (1)

where b is the damping constant. This equation
arises, for example, in the analysis of the flow of
current in an electronic CLR circuit, (which contains
a capacitor, an inductor, and a resistor ). The curve
produced by two damped harmonic oscillators at right
angles to each other is called a HARMONOGRAPH, and
simplifies to a LISSAJOUS CURVE if b1 � b2 �0:/

The damped harmonic oscillator can be solved by
looking for trial solutions OF THE FORM x �ert : Plug-
ging this into (1) gives

r2 � br � v2
0

� �
ert �0 (2)

r2 � br � v2
0 �0 : (3)

This is a QUADRATIC EQUATION with solutions

r �
1

2
�b 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4 v2

0

q	 

: (4)

There are therefore three solution regimes depending
on the SIGN of the quantity inside the SQUARE ROOT,

a � b2 �4v2
0 : (5)

The three regimes are summarized in the following
table.

/a/ regime

/a B0/ UNDERDAMPING

/a �0/ CRITICAL DAMPING

/a > 0/ OVERDAMPING

If a periodic (sinusoidal) forcing term is added at
angular frequency v; the same three solution regimes
are again obtained. Surprisingly, the resulting mo-
tion is still periodic (after an initial transient re-
sponse, corresponding to the solution to the unforced
case, has died out), but it has an amplitude different
from the forcing amplitude.

The "particular" solution xp(t) to the forced second-
order nonhomogeneous ORDINARY DIFFERENTIAL

EQUATION

ẍ �p(t)ẋ �q(t)x �A cos(vt) (6)

due to forcing is given by the equation

xp(t) ��x1(t)g
x2(t)g(t)

W(t)
dt �x2(t)g

x1(t)g(t)

W(t)
dt; (7)

where x1 and x2 are the homogeneous solutions to the
unforced equation

ẍ�p(t)ẋ�q(t)x�0 (8)

and W(t) is the WRONSKIAN of these two functions.
Once the sinusoidal case of forcing is solved, it can be
generalized to any periodic function by expressing
the periodic function in a FOURIER SERIES.

See also DAMPED SIMPLE HARMONIC MOTION,
DAMPED SIMPLE HARMONIC MOTION–CRITICAL DAMP-

ING, DAMPED SIMPLE HARMONIC MOTION–OVERDAMP-

I N G, DA M P E D  SI M P L E  HA RM O N I C  MO T I ON –

UNDERDAMPING, HARMONOGRAPH, LISSAJOUS CURVE,
SIMPLE HARMONIC MOTION

References
Papoulis, A. "Motion of a Harmonically Bound Particle."
§15�/ in Probability, Random Variables, and Stochastic
Processes, 2nd ed. New York: McGraw-Hill, pp. 524�/28,
1984.



Damped Simple Harmonic Motion */

Critical Damping

Critical damping is a special case of damped simple
harmonic motion in which

a � b2 �4 v2
0 �0; (1)

so

b �2v0 : (2)

In this case, a �0 so the solutions OF THE FORM x �ert

satisfy

r9�
1

2
(�b) ��

1

2 
b ��v0 : (3)

One of the solutions is therefore

x1 �e� v0t : (4)

In order to find the other linearly independent
solution, we can make use of the identity

x2(t) �x1(t)g
e�gp(t)dt

x1(t)½ �2
dt: (5)

Since we have p(t) �2v0 ; e �fp(t)dt simplifies to e �2 v0t :
Equation (5) therefore becomes

x2(t) �e � v0tg
e�2 v0t

e � v0t½ �2 dt �e� v0tgdt �te � v0t : (6)

The general solution is therefore

x �(A �Bt)e � v0t : (7)

In terms of the constants A and B , the initial values
are

x(0) �A (8)

x?(0) �B �Av; (9)

so

A �x(0) (10)

B ¼ x?ð0Þ þ v0xð0Þ: (11)

The above plot shows a critically damped simple
harmonic oscillator with v �0:3; b �0 :15 for a vari-
ety of initial conditions (A, B ).
For sinusoidally forced simple harmonic motion with
critical damping, the equation of motion is

ẍ �2 v0 ẋ � v2
0x �A cos(vt) ; (12)

and the WRONSKIAN is

W(t) �x1 ẋ2 � ̇x1x2 �e �2 v0t : (13)

Plugging this into the equation for the particular
solution gives

xp(t) ��e �v0tg
te � v0tA cos vtð Þ

e �2v0t
dt

�te � v0tg
e � v0tA cos(vt)

e �2 v0t
dt

�
A

v2 � v2
0ð Þ

v2
0 � v2

� �
cos(vt) �2vv0 sin( vt)

� �
: (14)

In order to put this in the desired form, note that we
want to equate

C cos u �S sin u �Q cos(u � d)

�Q( cos u cos d �sin u sin d) : (15)

This means

C �Q cos d � v2
0 � v2 (16)

S ��Q sin d �2 vv0 ; (17)

so

Q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 �S2

p
(18)

d�tan�1 �
S

C

 !
: (19)

Plugging in,

Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4

0�2v2
0v

2�v4�4v2
0v

2

q
�v2

0v
2: (20)

d�tan�1 2vv0

v2 � v2
0

 !
: (21)

The solution in the requested form is therefore

xp�
A

v2 �v2
0ð Þ2 v2

0�v2
� �

cos(vt�d)

A

v2 �v2
0

cos vt�dð Þ; (22)

where d is defined by (21).

See also DAMPED SIMPLE HARMONIC MOTION,
DAMPED SIMPLE HARMONIC MOTION–OVERDAMPING,



DAMPED SIMPLE HARMONIC MOTION–UNDERDAMPING,
SIMPLE HARMONIC MOTION

References
Papoulis, A. Probability, Random Variables, and Stochastic

Processes, 2nd ed. New York: McGraw-Hill, p. 528, 1984.

Damped Simple Harmonic Motion */

Overdamping

Overdamped simple harmonic motion occurs when

b2 �4v2
0 > 0; (1)

so

a � b2 �4v2
0 > 0: (2)

x1 �er�t (3)

x2 �er�t ; (4)

where

r9�
1

2
�b 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4v2

0

q	 

: (5)

The general solution is therefore

x �Aer�t �Ber�t ; (6)

where A and B are constants. The initial values are

x(0) �A �B (7)

x?(0) �Ar��Br�; (8)

so

A �x(0) �
r�x(0) � x?(0)

r� � r�
(9)

B ��
r�x(0) � x?(0)

r� � r�
: (10)

The above plot shows an overdamped simple harmo-
nic oscillator with v �0:3; b �0:075 and three differ-
ent initial conditions (A, B ).
For a cosinusoidally forced overdamped oscillator
with forcing function g(t) �C cos(vt) ; the particular
solutions are

y1(t) �er1t (11)

y2(t) �er2t ; (12)

where

r1 �
1

2
�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4v2

0

q	 

(13)

r2 �
1

2
�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4 v2

0

q	 

: (14)

These give the identities

r1 �r2 ��b (15)

r1 �r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4 v2

0

q
(16)

and

v2
0 �

1

4
b � r1 �r2ð Þ2
h i

�r1r2 : (17)

The WRONSKIAN is

W(t) �y1y?2 �y ?1y2 �er1tr2er2t �r1er1ter2t

� r2 �r1ð Þe r1�r2ð Þt: (18)

The particular solution is

yp ��y1v1 �y2v2 ; (19)

where

v1 �g
y2g(t)

W(t)
�

C

r2 � r1

v sin( vt) � r2 cos(vt)

er2t r2
2 � v2ð Þ

(20)

v2 �g
y2g(t)

W(t)
�

C

r2 � r1

v sin vtð Þ� r1 cos vtð Þ
er1t r2

2 � v2ð Þ
: ð21Þ

Therefore,

yp�C
cos(vt) r1r2 �v2ð Þ� sin(vt)v r1 � r2ð Þ

r2
1 �v2ð Þ r2

2 �v2ð Þ

�
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2v2 � v2 �v2
0ð Þ2

q cos vt�dð Þ; (22)

where

d�tan�1 bv

v2 � v2
0

 !
: (23)

See also DAMPED SIMPLE HARMONIC MOTION,
DAMPED SIMPLE HARMONIC MOTION–CRITICAL DAMP-

ING, DAMPED SIMPLE HARMONIC MOTION–UNDER-

DAMPING, SIMPLE HARMONIC MOTION
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Damped Simple Harmonic Motion*/

Underdamping

Underdamped simple harmonic motion occurs when

b2�4v2
0B0; (1)

so

a�b2�4v2
0B0: (2)

Define

g�
ffiffiffiffiffiffi
�a

p
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2

0�b2
q

; (3)

then solutions satisfy

r9��
1

2
b9ig; (4)

where

r9�
1

2
�b9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4v2

0

q	 

; (5)

and are OF THE FORM

x�e� b=29igð Þt: (6)

Using the EULER FORMULA

eix�cosx�i sinx; (7)

this can be rewritten

x�e� b=2ð Þt cos gtð Þ9i sin gtð Þ½ �: (8)

We are interested in the real solutions. Since we are
dealing here with a linear homogeneous ODE, linear
sums of LINEARLY INDEPENDENT solutions are also
solutions. Since we have a sum of such solutions in
(8), it follows that the IMAGINARY and REAL PARTS

separately satisfy the ODE and are therefore the
solutions we seek. The constant in front of the sine

term is arbitrary, so we can identify the solutions as

x1�e� b=2ð Þt cos(gt) (9)

x2�e� b=2ð Þt sin(gt); (10)

so the general solution is

x�e� b=2ð Þt[A cos(gt)�B sin(gt)]: (11)

The initial values are

x(0)�A (12)

x?(0)��
1

2
bA�B; g (13)

so A and B can be expressed in terms of the initial
conditions by

A�x(0) (14)

B�
bx(0)

2g
�

x?(0)

g
: (15)

The above plot shows an underdamped simple har-
monic oscillator with v�0:3; b�0:4 for a variety of
initial conditions (A, B ).
For a cosinusoidally forced underdamped oscillator
with forcing function g(t)�C cos(vt); use

g�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2

0�b2
q

(16)

a�
1

2
b (17)

to obtain

4v2
0�b2�4g2 (18)

v2
0�g2�

1

4
b2�g2�a2 (19)

b�2a: (20)

The particular solutions are

y1(t)�e�at cos(gt) (21)

y2(t)�e�at sin(gt): (22)

The WRONSKIAN is

W(t)�y1y?2�y?1y2

�e�at cos(gt)�ae�at sin(gt)�e�atg cos(gt)½ �

�e�at sin(gt)�ae�at cos(gt)�e�atg sin(gt)½ �

�e�2at a[�sin (gt) cos(gt)�sin (gt) cos(gt)]f

�g[cos2(gt)�sin2(gt)]g

�ge�2at: (23)

The particular solution is given by



yp ��y1v1 �y2v2 ; (24)

where

v1 �g
y2g(t)

W(t)
�

C

g g e at cos(gt) cos(vt)dt (25)

v2 �g
y2g(t)

W(t)
�

C

g g e at cos(gt) cos( vt)dt: (26)

Using computer algebra to perform the algebra, the
particular solution is

yp(t) �C
a2 � g2 � v2ð Þ cos( vt) � 2av sin( vt)

a2 � ( g � v)2
h i

a2 � ( g � v)2
h i

�C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

0 � v2ð Þ2�b2 v2

q
v2

0 � v2ð Þ2�v2 4v2
0 � b2

� � cos(vt � d) ; ð27Þ

where

d �tan�1 bv

v2 � v2
0

 !
: (28)

If the forcing function is sinusoidal instead of cosinu-
soidal, then

d?�d�
1

2
p�tan�1x�

1

2
p�tan�1 �

1

x

 !
; (29)

so

d?�tan�1 v2
0 �v2

bv

 !
: (30)

See also DAMPED SIMPLE HARMONIC MOTION,
DAMPED SIMPLE HARMONIC MOTION–CRITICAL DAMP-

ING, DAMPED SIMPLE HARMONIC MOTION–OVERDAMP-

ING, SIMPLE HARMONIC MOTION
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d-Analog
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

The d -analog of a COMPLEX NUMBER s is defined as

[s]d�1�
2d

sd
(1)

(Flajolet et al. 1995). For integer n , [2]!�1 and

[n]d!�[3][4] 
 
 
 [n]

� 1�
2d

3d

 !
1�

2d

4d

 !

 
 
 1�

2d

nd

 !
: (2)

It can then be extended to complex values via

[s]d!�
Y�
j�1

[j � 2]

[j � s]
(3)

(Flajolet et al. 1995). It satisfies the basic functional
identity

[s]d!�[s]d[s�1]d!: (4)

The d -analog of the POLYGAMMA FUNCTION is

[c]d(s�1)�
d

ds
ln[s]d!

��d�2d
X�
m�1

1

(m � s) (m � s)d � 2d
h i : (5)

The first few values are

[c]1(s)�
3 � 2s

s2 � 3s � 2
(6)

[c]2(s)�c0(s�2)�2c0(s)�c0(s�2); (7)

where c0(x) is the DIGAMMA FUNCTION.

The d -analog of the EULER-MASCHERONI CONSTANT g

is

[g]d��[c]d(3)�d�2d
X�
m�3

1

m md � 2dð Þ
(8)

(Flajolet et al. 1995). The first few values are

[g]1�
3

2
(9)

[g]2�
11

12
(10)

[g]3�
9

2
�H3�i

ffiffi
3

p �H3�i
ffiffi
3

p (11)

[g]4�
47

12
�H2�2i�H2�2i; (12)

where Hn is a HARMONIC NUMBER.

The d -analog of the HARMONIC NUMBERS is H2½ �d�0
and

Hn½ �d�d�2d 1

3d�1[3]
�

1

4d�1[4]
�. . .�

1

nd�1[n]

 !
(13)

�[c]d(n�1)�[g]d (14)

(Flajolet et al. 1995).



The d -analog of INFINITY FACTORIAL is given by

[ �!]d �
Y�
n�3

1 �
2d

nd

 !
: (15)

This INFINITE PRODUCT can be evaluated in closed
form in terms of p; the HYPERBOLIC SINE sinh x; and
GAMMA FUNCTIONS G(x) involving roots of unity zk

n �

(�1)k=n ;

d1 �0 (16)

d2 �
1

6 
(17)

d3 ¼
sinh ðp

ffiffiffi
3

p
Þ

42p
ffiffiffi
3

p (18)

d4 �
cosh p sinh p

60p 
(19)

d5 �
1

1240 G 2z1
5

� �
G �2z2

5

� ��� ��2 (20)

d6 �
sinh2( p

ffiffiffi
3

p
)

1512p2 
(21)

d7 �
1

28448 G 2 z1
7

� �
G �2 z2

7

� �
G 2 z3

7

� ��� ��2 (22)

d8 �
sinh 2pð Þ sinh 2z1

4

� ��� ��2
16320p3 

(23)

d9 �
sinh p

ffiffiffi
3

p� �
588672 p

ffiffiffi
3

p
G 2z1

9

� �
G �2z2

9

� �
G �2z4

9

� ��� ��2 : (24)

These are all special cases of a general result for
INFINITE PRODUCTS.

See also INFINITE PRODUCT, Q -ANALOG
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Dandelin Spheres

The inner and outer SPHERES TANGENT internally to a
CONE and also to a PLANE intersecting the CONE are
called Dandelin spheres.
The SPHERES can be used to show that the intersec-
tion of the PLANE with the CONE is an ELLIPSE. Let p
be a PLANE intersecting a right circular CONE with
vertex O in the curve E . Call the SPHERES TANGENT to
the CONE and the PLANE S1 and S2 ; and the CIRCLES

on which the SPHERES are TANGENT to the CONE R1

and R2 : Pick a line along the CONE which intersects
R1 at Q , E at P , and R2 at T . Call the points on the
PLANE where the CIRCLES are TANGENT F1 and F2:
Because intersecting tangents have the same length,

F1P�QP

F2P�TP:

Therefore,

PF1�PF2�QP�PT�QT;

which is a constant independent of P , so E is an
ELLIPSE with a�QT=2:/

See also CONE, SPHERE
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Danielson-Lanczos Lemma
The DISCRETE FOURIER TRANSFORM of length N
(where N is EVEN) can be rewritten as the sum of
two DISCRETE FOURIER TRANSFORMS, each of length
N =2 : One is formed from the EVEN-numbered points;
the other from the ODD-numbered points. Denote the
kth point of the DISCRETE FOURIER TRANSFORM by Fn :
Then

Fn �
XN �1

k�0

fke �2pink=N

�
XN =2 �1

k�0

e �2 pikn=(N =2)f2k �Wn
XN =2 �1

k �0

e�2 pikn= N =2ð Þf2k �1

�Fe
n �WnFo

n ;

where W �e�2 pi=N and n �0; . . .  ; N : This procedure
can be applied recursively to break up the N =2 even
and ODD points to their N =4 EVEN and ODD points. If
N is a POWER of 2, this procedure breaks up the
original transform into 1gN transforms of length 1.
Each transform of an individual point has Feeo 




n �fk

for some k . By reversing the patterns of evens and
odds, then letting e �0 and o �1, the value of k in
BINARY is produced. This is the basis for the FAST

FOURIER TRANSFORM.

See also DISCRETE FOURIER TRANSFORM, FAST FOUR-

IER TRANSFORM, FOURIER TRANSFORM
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Darboux Integral
A variant of the RIEMANN INTEGRAL defined when the
UPPER and LOWER INTEGRALS, taken as limits of the
LOWER SUM

L f ; f; Nð Þ�
Xn

r�1

M f ; drð Þ� f xr �1ð Þ

and UPPER SUM

U f ; f; Nð Þ�
Xn

r�1

M f ; drð Þ� f xr�1ð Þ;

are equal. Here, f (x) is a REAL FUNCTION, f(x) is a
monotonic increasing function with respect to which
the sum is taken, m(f ; S) denotes the lower bound of
f (x) over the interval S , and M(f ; S) denotes the
upper bound.

See also LOWER INTEGRAL, LOWER SUM, RIEMANN

INTEGRAL, UPPER INTEGRAL, UPPER SUM
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Darboux Problem
GOURSAT PROBLEM

Darboux Vector
The rotation VECTOR of the TRIHEDRON of a curve with
CURVATURE k "0 when a point moves along a curve
with unit SPEED. It is given by

D � tT � kB ; (1)

where t is the TORSION, T the TANGENT VECTOR, and B
the BINORMAL VECTOR. The Darboux vector field
satisfies

Ṫ �D �T (2)

Ṅ �D �N (3)

Ḃ�D�B: (4)

See also BINORMAL VECTOR, CURVATURE, TANGENT

VECTOR, TORSION (DIFFERENTIAL GEOMETRY)
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Darboux’s Formula
Darboux’s formula is a theorem on the expansion of
functions in infinite series. TAYLOR SERIES may be
obtained as a special case of the formula, which may
be stated as follows.

Let f (z) be analytic at all points of the line joining a to
z , and let f(t) be any POLYNOMIAL of degree n in t .
Then if 05t51; differentiation gives

d

dt

X�
m�1

(�1)m(z�a)mB(n�m)(t)f (m)(a�t(a�z))

��(z�a)f(n)(t)f ?(a�t(z�a))

�(�1)n(z�a)n�1
f(t)f (n�1)(a�t(z�a)): (1)

But f(n)(t)�f(n)(0); so integrating t over the interval
0 to 1 gives

f(n)(0)[f (z)�f (a)]

�
Xn

m�1

(�1)m�1(z�a)m[f(n�m)(1)f (m)(z)



�f(n�m)(0)f (m)(a)]

�(�1)n(z �a)n�1g
1

0

f(t)f (n �1)(a �t(z �a))dt: (2)

The TAYLOR SERIES follows by letting f(t) �(t �1)n

and letting n 0 � (Whittaker and Watson 1990,
p. 125).

See also BÜ RMANN’S THEOREM, EULER-MACLAURIN

INTEGRATION FORMULAS, MACLAURIN SERIES, TAYLOR

SERIES

References
Whittaker, E. T. and Watson, G. N. "A Formula Due to

Darboux." §7.1 in A Course in Modern Analysis, 4th ed.
Cambridge, England: Cambridge University Press, p. 125,
1990.

Darboux-Stieltjes Integral
DARBOUX INTEGRAL

Darling’s Products
A generalization of the HYPERGEOMETRIC FUNCTION

identity

2F1( a; b; g; z)2F1(1 � a; 1 � b; 2� g; z)

�2 F1(a �1 � g ; b �1 � g; 2� g; z)2F1( g � a; g � b; g; z)

(1)

to the GENERALIZED HYPERGEOMETRIC FUNCTION

3F2(a ; b; c; d; e; x) : Darling’s products are

3F2
a; b; g; z
d; o

� �
3F2

1 � a; 1 � b; 1 � g; z
2 � d; 2 � o

� �

�
o � 1

o � d
3F2

a �1 � d; b �1 � d; g �1 � d; z
2 � d ; o �1 � d

�

�3F2
d � a; d � b; d � g; z

d; d �1 � o

� �

�
d � 1

d � o 
3F2

a �1 � o ; b �1 � o ; g �1 � o; z
2 � o ; d �1 � o

� �

�3F2
o � a; o � b; o � g; z

o ; o �1 � d

� �
(2)

and

(1 �z)a � b� g� d� o
3F2

a; b; g; z
d; o

� �

�
o � 1

o � d
3F2

d � a; d � b; d � g; z
d; d �1 � o

� �

�3F2
o � a; o � b; o � g; z
o �1; o �1 � d

� �

�
d � 1

d � o 
3F2

o � a; o � b; o � g; z
o ; o �1 � d

� �

�3F2
d � a; d � b; d � g; z

d �1; d �1 � o

� �
; (3)

which reduce to (1) when g � o 0 �:/

See also GENERALIZED HYPERGEOMETRIC FUNCTION
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Dart
PENROSE TILES

Darwin’s Expansions
Series expansions of the PARABOLIC CYLINDER FUNC-

TIONS U(a; x) and W(a; x) : The formulas can be found
in Abramowitz and Stegun (1972).

See also PARABOLIC CYLINDER FUNCTION
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Darwin-de Sitter Spheroid
A SURFACE OF REVOLUTION OF THE FORM

r( f) �a 1 �e sin2 f �
3

8 
e2 �k

 !
sin2(2f)

" #
;

where k is a second-order correction to the figure of a
rotating fluid.

See also OBLATE SPHEROID, PROLATE SPHEROID,
SPHEROID
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Data Cube
A 3-D data set consisting of stacked 2-D data slices as
a function of a third coordinate.

See also GRAPH (FUNCTION)

Data Structure
A formal structure for the organization of informa-
tion. Examples of data structures include the LIST,
QUEUE, STACK, and TREE.
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Database
A database can be roughly defined as a structure
consisting of

1. A collection of information (the data),
2. A collection of queries that can be submitted,
and
3. A collection of algorithms by which the structure
responds to queries, searches the data, and re-
turns the results.
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Daubechies Wavelet Filter
A WAVELET used for filtering signals. Daubechies
(1988, p. 980) has tabulated the numerical values
up to order p�10.

See also WAVELET
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Davenport-Schinzel Sequence
Form a sequence from an ALPHABET of letters [1;n]
such that there are no consecutive letters and no
alternating subsequences of length greater than d .
Then the sequence is a Davenport-Schinzel sequence
if it has maximal length Nd(n): The value of N1(n) is
the trivial sequence of 1s: 1, 1, 1, ... (Sloane’s
A000012). The values of N2(n) are the POSITIVE

INTEGERS 1, 2, 3, 4, ... (Sloane’s A000027). The values
of N3(n) are the ODD INTEGERS 1, 3, 5, 7, ... (Sloane’s
A005408). The first nontrivial Davenport-Schinzel
sequence N4(n) is given by 1, 4, 8, 12, 17, 22, 27, 32,
... (Sloane’s A002004). Additional sequences are given
by Guy (1994, p. 221) and Sloane.
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Davey-Stewartson Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

iut�uxx�auyy�bu uj j2�uv�0

vxx�gvyy�d uj j2
� �

yy
�0:
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Dawson’s Integral

An INTEGRAL which arises in computation of the Voigt
lineshape:

D(x)�e�x2

g
x

0

ey2

dy: (1)

It is sometimes generalized such that

D9(x)�e�x2

g
x

0

e9y2

dy; (2)

giving

D�(x)�
1

2

ffiffiffi
p

p
e�x2

erfi(x) (3)

D�(x)�
1

2

ffiffiffi
p

p
ex2

erf (x); (4)

where erf (z) is the ERF function and erfi(z) is the
imaginary error function ERFI. D�(x) is illustrated in
the left figure above, and D�(x) in the right figure.



D�(x) has an ASYMPTOTIC SERIES

D�(x) �
1

2x 
�

1

4x3 
�. . .  (5)

The plots above show the behavior of D�(z) in the
COMPLEX PLANE.

The plots above show the behavior of D�(z) in the
COMPLEX PLANE.

/D� has a maximum at D?
�(x) �0; or

1 �
ffiffiffi
p

p
e �x2 

x2 erfi(x) �0; (6)

giving

D�(0:9241388730) �0:5410442246; (7)

and an inflection at Dƒ�(x) �0; or

�2x �
ffiffiffi
p

p
e �x2

2x2 �1
� �

erfi(x) �0; (8)

giving

D�(1:5019752683)�0:4276866160: (9)

See also ERFI, GAUSSIAN FUNCTION
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de Bruijn Constant
Also called the COPSON-DE BRUIJN CONSTANT. It is the
minimal constant

c�1:0164957714 . . .

such that the inequality

X�
n�1

an5c
X�
n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n � a2
n�1 � a2

n�2 � . . .

n

s

always holds.
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de Bruijn Diagram
DE BRUIJN GRAPH

de Bruijn Graph
A graph whose nodes are sequences of symbols from
some ALPHABET and whose edges indicate the se-
quences which might overlap.
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de Bruijn Sequence
The shortest circular sequence of length sa such that
every string of length n on the ALPHABET a of size s

occurs as a contiguous subrange of the sequence
described by a . A de Bruijn sequence can be gener-
ated using DeBruijnSequence[a , n ] in the Mathe-
matica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).
For example, a de Bruijn sequence of order n on the
alphabet fa; b; cg is given by fa;a; c; b; b; c; c;a; bg:/



Every de Bruijn sequence corresponds to an EULER-

IAN CYCLE on a DE BRUIJN GRAPH. Surprisingly, it
turns out that the lexicographic sequence of LYNDON

WORDS of lengths DIVISIBLE by n gives the lexicogra-
phically smallest de Bruijn sequence (Ruskey).

de Bruijn sequences can be generated by feedback
shift registers (Golomb 1966; Ronse 1984; Skiena
1990, p. 196).

See also DE BRUIJN GRAPH, LYNDON WORD
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de Bruijn’s Theorem
A box can be packed with a HARMONIC BRICK a �ab �
abc IFF the box has dimensions ap �abq �abcr for
some natural numbers p , q , r (i.e., the box is a
multiple of the brick).

See also BOX-PACKING THEOREM, CONWAY PUZZLE,
KLARNER’S THEOREM
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de Bruijn-Newman Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let J be the XI FUNCTION defined by

J(iz) �
1

2
z2 �

1

4

 !
p
�z=2 �

1
4G

1

2 
z �

1

4

 !
z z �

1

2

 !
: (1)

/J(z =2)=8 can be viewed as the FOURIER TRANSFORM of
the signal

F(t) �
X�
n�1

2p2n4e9t �3pn2e5t
� �

e�pn2e4t 

(2)

for t 	R ]0: Then denote the FOURIER TRANSFORM of
F(t)e lt2 

as H( l; z) ;

F F(t)e lt2
h i

�H( l; z) : (3)

de Bruijn (1950) proved that H has only REAL zeros
for l ]1=2: C. M. Newman (1976) proved that there
exists a constant L such that H has only REAL zeros
IFF l ]L: The best current lower bound (Csordas et
al. 1993, 1994) is L >�5:895 �10 �9 : The RIEMANN

HYPOTHESIS is equivalent to the conjecture that L50:/

See also XI FUNCTION
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de Gua’s Theorem
The square of the AREA of the base (i.e., the face
opposite the right TRIHEDRAL ANGLE) of a TRIRECTAN-

GULAR TETRAHEDRON is equal to the sum of the
squares of the AREAS of its other three faces. This
theorem was presented to the Paris Academy of
Sciences in 1783 by J. P. de Gua de Malves (1712 �/

785), although it was known to Descartes (1859) and
to Faulhaber (Altshiller-Court 1979, p. 300). It is a
special case of a general theorem presented by
Tinseau to the Paris Academy in 1774 (Osgood and
Graustein 1930, p. 517; Altshiller-Court 1979).

See also PYTHAGOREAN THEOREM, TRIRECTANGULAR

TETRAHEDRON
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de Jonquières Theorem
For an algebraic curve, the total number of groups of
a gr

N consisting in a point of multiplicity k1; one of
multiplicity k2; ..., one of multiplicity kp; whereX

ki�N (1)X
(ki�1)�r; (2)

and where a1 points have one multiplicity, a2 another,
etc., and Y

�k1k2 . . . kp (3)
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de Jonquières Transformation
A transformation of an algebraic curve which is of the
same type as its inverse. A de Jonquières transforma-
tion is always factorable.
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de la Loubere’s Method
A method for constructing MAGIC SQUARES of ODD

order, also called the SIAMESE METHOD.

See also MAGIC SQUARE

de Longchamps Point
The reflection of the ORTHOCENTER about the CIRCUM-

CENTER of a TRIANGLE. This point is also the ORTHO-

CENTER of the ANTICOMPLEMENTARY TRIANGLE. It has
TRIANGLE CENTER FUNCTION

a �cos A �cos B cosC :

The SODDY LINE intersects the EULER LINE in the de
Longchamps point (Oldknow 1996).

See also CIRCUMCENTER, EULER LINE, ORTHOCENTER,
SODDY LINE
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de Méré’s Problem
The probability of getting at least one "6" in four rolls
of a single 6-sided DIE is

1 �
5

6

 !4

:0:5177; (1)

which is slightly higher than the probability of at
least one double-six in 24 throws of two dice,

1 �
35

36

 !24

:0 :4914 : (2)

The French nobleman and gambler Chevalier de
Méré suspected that (1) was higher than (2), but his
mathematical skills were not great enough to demon-
strate why this should be so. He posed the question to
Pascal, who solved the problem and proved de Méré
correct. In fact, de Méré’s observation remains true
even if two dice are thrown 25 times, since the
probability of throwing at least one double-six is then

1�
35

36

 !
25:0:5055: (3)

See also BOXCARS, DICE
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de Moivre Number
A solution /zk ¼ e2pik=d

/ to the CYCLOTOMIC EQUATION

xd ¼ 1:

The de Moivre numbers give the coordinates in the
COMPLEX PLANE of the VERTICES of a REGULAR POLY-

GON with d sides and unit RADIUS.

n de Moivre Number

2 9 1
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2
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See also CYCLOTOMIC EQUATION, CYCLOTOMIC POLY-

NOMIAL, EUCLIDEAN NUMBER
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de Moivre’s Identity

ei(nu) � ei u
� �n

: (1)

From the EULER FORMULA it follows that

cos(nu) �i sin(nu) �(cos u �i sin u)n : (2)

A similar identity holds for the HYPERBOLIC FUNC-

TIONS,

(cosh z �sinh z)n �cosh(nz) �sinh(nz): (3)

See also EULER FORMULA
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de Moivre’s Quintic
A QUINTIC EQUATION OF THE FORM

x5�ax3�
1

5
a2x�b�0:

See also QUINTIC EQUATION

de Moivre-Laplace Theorem
The asymptotic form of the n -step BERNOULLI DIS-

TRIBUTION with parameters p and q�1�p is given
by

Pn(k)�
n
k

	 

pkqn�k�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnpq

p e�(k�np)2=(2npq) (1)

(Papoulis 1984, p. 66).

Uspensky (1937) defines the de Moivre-Laplace the-
orem as the fact that the sum of those terms of the
BINOMIAL SERIES of (p�q)n for which the number of
successes x falls between d1 and d2 is approximately

Q:
1ffiffiffiffiffiffi
2p

p g
t2

t1

e�t2=2dt; (2)

where

t1�

d1 �
1

2
� np

s
(3)

t2�

d2 �
1

2
� np

s
(4)

s�
ffiffiffiffiffiffiffiffiffiffi
npq:

p
(5)

More specifically, Uspensky (1937, p. 129) showed
that

Q�
1ffiffiffiffiffiffi
2p

p g
t2

t1

e�t2=2dt�
q � p

6
ffiffiffiffiffiffiffiffiffi
2ps

p 1�t2
� �

e�t2=2
h it2

t1
�V; (6)

where the error term satisfies

½V½B
0:13 � 0:18½p-q½

s2
�e�3s=2 (7)

for s]5 (Uspensky 1937, p. 129; Kenney and Keep-
ing 1958, pp. 36�/7). Note that Kenney and Keeping
(1958, p. 37) give the slightly smaller DENOMINATOR

0:12�0:18½p�q½:/

A COROLLARY states that the probability that x
successes in n trials will differ from the expected
value np by more than d is Pd ¼ 1�Qd; where

Qd�
2ffiffiffiffiffiffi
2p

p g
d

0

e�t2=2dt; (8)

with

d�

d �
1

2

s
(9)

(Kenney and Keeping 1958, p. 39). Uspensky (1937,
p. 130) showed that Qd1

�P( x�npj j5d) is given by

Qd1
�

2ffiffiffiffiffiffi
2p

p g
d1

0

e�u2=2du�
1 � u1 � u2ffiffiffiffiffiffiffiffiffi

2ps
p e�d2

1=2�V1; (10)

where

d1�
d

d
(11)



u1 �ðnq þ dÞ�nq þ d � ð12Þ

u2 �ðnp þ dÞ�np þ d �; ð13Þ

and the error term satisfies

jV1 jB
0 :20 þ 0 :25 jp  qj

s2 
þ e 3 s=2 ; ð14Þ

for s ]5 (Uspensky 1937, p. 130; Kenney and Keep-
ing 1958, pp. 40 �/1).

See also BERNOULLI DISTRIBUTION, BINOMIAL SERIES,
GAUSSIAN DISTRIBUTION, NORMAL DISTRIBUTION,
WEAK LAW OF LARGE NUMBERS
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de Morgan’s and Bertrand’s Test
BERTRAND’S TEST

de Morgan’s Duality Law
For every proposition involving logical addition and
multiplication ("or" and "and"), there is a correspond-
ing proposition in which the words "addition" and
"multiplication" are interchanged.

de Morgan’s Laws
Let @ represent "or", S represent "and", and ? repre-
sent "not." Then, for two logical units E and F ,

(E @ F) ?�E ?S F ?

(E S F)?�E ?@ F ?:

These laws also apply in the more general context of
BOOLEAN ALGEBRA and, in particular, in the BOOLEAN

ALGEBRA of SET THEORY, in which case @would denote

UNION, S INTERSECTION, and ? complementation with
respect to any superset of E and F .
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de Polignac’s Conjecture
Every EVEN NUMBER is the difference of two consecu-
tive PRIMES in infinitely many ways (Dickson 1952,
p. 424). If true, taking the difference 2, this conjec-
ture implies that there are infinitely many TWIN

PRIMES (Ball and Coxeter 1987). The CONJECTURE

has never been proven true or refuted.

See also EVEN NUMBER, GOLDBACH CONJECTURE,
TWIN PRIMES
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de Rham Cohomology
de Rham cohomology is a formal set-up for the
analytic problem: If you have a DIFFERENTIAL K -

FORM v on a MANIFOLD M , is it the EXTERIOR

DERIVATIVE of another DIFFERENTIAL K -FORM v?/?
Formally, if v�dv? then dv�0:: This is more
commonly stated as d(d�0; meaning that if v is to
be the EXTERIOR DERIVATIVE of a DIFFERENTIAL K -

FORM, a NECESSARY condition that v must satisfy is
that its EXTERIOR DERIVATIVE is zero.

de Rham cohomology gives a formalism that aims to
answer the question, "Are all differential k -forms on a
MANIFOLD with zero EXTERIOR DERIVATIVE the EXTER-

IOR DERIVATIVES of (k�1)/-forms?" In particular, the
kth de Rham cohomology vector space is defined to be
the space of all k -forms with EXTERIOR DERIVATIVE 0,
modulo the space of all boundaries of (k�1)/-forms.
This is the trivial VECTOR SPACE IFF the answer to our
question is yes.

The fundamental result about de Rham cohomology is
that it is a topological invariant of the MANIFOLD,



namely: the kth de Rham cohomology VECTOR SPACE

of a MANIFOLD M is canonically isomorphic to the
ALEXANDER-SPANIER COHOMOLOGY VECTOR SPACE

Hk(M; R) (also called cohomology with compact sup-
port). In the case that M is compact, ALEXANDER-

SPANIER COHOMOLOGY is exactly singular cohomol-
ogy.

See also ALEXANDER-SPANIER COHOMOLOGY, CHANGE

OF VARIABLES THEOREM, COHOMOLOGY, DIFFEREN-

TIAL K -FORM, EXTERIOR DERIVATIVE, VECTOR SPACE

de Sluze Conchoid
CONCHOID OF DE SLUZE

de Sluze Pearls
PEARLS OF SLUZE

Dead Variable
DUMMY VARIABLE

Debye Functions
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where xj jB2p and Bn are BERNOULLI NUMBERS.
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where x �0. The sum of these two integrals is

g
�

0

tndt

et � 1 
�n!z(n �1); (3)

where z(z) is the RIEMANN ZETA FUNCTION.
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Debye’s Asymptotic Representation
An asymptotic expansion for a HANKEL FUNCTION OF

THE FIRST KIND

H(1)
n (x) �

1ffiffiffi
p

p exp fix[cos a �( a �p=2) sin a] g
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See also HANKEL FUNCTION OF THE FIRST KIND
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Decade
A power of 10.

See also OCTAVE

Decagon

The constructible regular 10-sided POLYGON with
SCHLÄFLI SYMBOL f10g: The INRADIUS r , CIRCUMRA-

DIUS R , and AREA can be computed directly from the
formulas for a general REGULAR POLYGON with side



length s and n �10 sides,

r �
1

2
s cot

p
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 !
�

1

2
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ffiffiffi
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ffiffiffi
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Here, f is the GOLDEN MEAN.

See also DECAGRAM, DODECAGON, TRIGONOMETRY

VALUES PI/10, UNDECAGON
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Decagonal Number

A FIGURATE NUMBER OF THE FORM 4n2 �3n : The first
few are 1, 10, 27, 52, 85, ... (Sloane’s A001107). The
GENERATING FUNCTION giving the decagonal numbers
is

x(7x � 1)

(1 � x)3 �x �10x2 �27x3 �52x4 �. . .

The first few odd decagonal numbers are 1, 27, 85,
175, 297, ... (Sloane’s A028993), and the first few even
decagonal numbers are 10, 52, 126, 232, 360, 540, ...
(Sloane’s A028994).

See also DECAGON, FIGURATE NUMBER
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Decagram

The STAR POLYGON f10 =3g:/
See also DECAGON, STAR POLYGON

Decahedral Graph
A POLYHEDRAL GRAPH having 10 vertices. There are
32,300 nonisomorphic nonahedral graphs, as first
enumerated by Duijvestijn and Federico (1981).

See also POLYHEDRAL GRAPH
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Decic Surface
An ALGEBRAIC SURFACE which can be represented
implicitly by a POLYNOMIAL of degree 10 in x , y , and z .
An example is the BARTH DECIC.

See also ALGEBRAIC SURFACE, BARTH DECIC, CUBIC

SURFACE, QUADRATIC SURFACE, QUARTIC SURFACE

Decidable
A THEORY is decidable IFF there is an algorithm which
can determine whether or not any SENTENCE r is a
member of the THEORY.

See also CHURCH-TURING THESIS, DETERMINISTIC,
GÖ DEL’S COMPLETENESS THEOREM, GÖ DEL’S INCOM-

PLETENESS THEOREM, KREISEL CONJECTURE, SEN-

TENCE, TARSKI’S THEOREM, THEORY, UNDECIDABLE
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Decillion
In the American system, 1033.

See also LARGE NUMBER



Decimal
The BASE-10 notational system for representing REAL

NUMBERS. The expression of a number in the decimal
system is called its DECIMAL EXPANSION, examples of
which are 1, 13, 2028, 12.1, and 3.14159. Each
number is called a decimal DIGIT, and the period
placed to the right of the units place in a decimal
number is called the DECIMAL POINT.

See also 10, BASE (NUMBER), BINARY, DECIMAL POINT,
HEXADECIMAL, NEGADECIMAL, OCTAL
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Decimal Comma
The symbol used in continental Europe to denote a
DECIMAL POINT, point example 3,14159....

See also DECIMAL POINT

Decimal Expansion
The decimal expansion of a number is its representa-
tion in base 10. For example, the decimal expansion of
252 is 625, of p is 3.14159..., and of 1=9 is 0.1111....

If r�p=q has a finite decimal expansion, then

r�
a1

10
�

a2

102
�. . .�

an

10n

�
a110n�1 � a210n�2 � . . . � an

10n

�
a110n�1 � a210n�2 � . . . � an

2n � 5n
: (1)

FACTORING possible common multiples gives

r�
p

2a5b
; (2)

where pf0 (mod 2, 5). Therefore, the numbers with
finite decimal expansions are fractions of this form.
The number of decimals is given by max(a;b) (Wells
1986, p. 60). Numbers which have a finite decimal
expansion are called REGULAR NUMBERS.

Any NONREGULAR fraction m=n is periodic, and has a
period l(n) independent of m , which is at most n�1
DIGITS long. If n is RELATIVELY PRIME to 10, then the
period l(n) of m=n is a divisor of f(n) and has at most
f(n) DIGITS, where f is the TOTIENT FUNCTION. It
turns out that l(n) is the HAUPT-EXPONENT of 10 (mod
n ) (Glaisher 1878, Lehmer 1941). When a rational
number m=n with (m;n)�1 is expanded, the period
begins after s terms and has length t , where s and t

are the smallest numbers satisfying

102�10s�t(mod n): (3)

When nf0 (mod 2, 5), s�0, and this becomes a
purely periodic decimal with

10t�1 (modn): (4)

As an example, consider n�84.

100�1 101�10 102�16 103��8
104�4 105�40 106��20 107��32;
108�16

so s�2, t�6. The decimal representation is 1=84�
0:011910476: When the DENOMINATOR of a fraction
m=n has the form n�n02a5b with (n0; 10)�1; then
the period begins after max(a;b) terms and the length
of the period is the exponent to which 10 belongs (mod
n0); i.e., the number x such that 10x�1 modn0ð Þ: If q
is PRIME and l(q) is EVEN, then breaking the repeat-
ing DIGITS into two equal halves and adding gives all
9s. For example, 1=7�0:142857; and 142�857�999.
For 1=q with a PRIME DENOMINATOR other than 2 or 5,
all cycles n=q have the same length (Conway and Guy
1996).

If n is a PRIME and 10 is a PRIMITIVE ROOT of n , then
the period l(n) of the repeating decimal 1=n is given
by

l(n)�f(n); (5)

where f(n) is the TOTIENT FUNCTION. Furthermore,
the decimal expansions for p=n; with p�1, 2, ..., n�1
have periods of length n�1 and differ only by a cyclic
permutation. Such numbers are called LONG PRIMES

by conway and guy (1996). an equivalent definition is
that

10i�1(modn) (6)

for i�n�1 and no i less than this. In other words, a
NECESSARY (but not SUFFICIENT) condition is that the
number 9Rn�1 (where Rn is a REPUNIT) is DIVISIBLE by
n , which means that Rn is DIVISIBLE by n .

The first few numbers with maximal decimal expan-
sions, called FULL REPTEND PRIMES, are 7, 17, 19, 23,
29, 47, 59, 61, 97, 109, 113, 131, 149, 167, ... (Sloane’s
A001913). The decimals corresponding to these are
called CYCLIC NUMBERS. No general method is known
for finding FULL REPTEND PRIMES. Artin conjectured
that ARTIN’S CONSTANT C�0:3739558136 . . . is the
fraction of PRIMES p for with 1=p has decimal
maximal period (Conway and Guy 1996). D. Lehmer
has generalized this conjecture to other bases, obtain-
ing values which are small rational multiples of C .

To find DENOMINATORS with short periods, note that

101�1�32

102�1�32 �11



103 �1 �33 �37

104 �1 �32 �11 �101

105 �1 �32 �41 �271

106 �1 �33 �7 �11 �13 �37

107 �1 �32 �239 �4649

108 �1 �32 �11 �73 �101 �137

109 �1 �34 �37 �333667

1010 �1 �32 �11 �41 �271 �9091

1011 �1 �32 �21649 �513239

1012 �1 �33 �7 �11 �13 �37 �101 �9901:

The period of a fraction with DENOMINATOR equal to a
PRIME FACTOR above is therefore the POWER of 10 in
which the factor first appears. For example, 37
appears in the factorization of 103 �1 and 109 �1;
so its period is 3. Multiplication of any FACTOR by a
2a5b still gives the same period as the FACTOR alone. A
DENOMINATOR obtained by a multiplication of two
FACTORS has a period equal to the first POWER of 10 in
which both FACTORS appear. The following table gives
the PRIMES having small periods (Sloane’s A046106,
A046107, and A046108; Ogilvy and Anderson 1988).

period primes

1 3

2 11

3 37

4 101

5 41, 271

6 7, 13

7 239, 4649

8 73, 137

9 333667

10 9091

11 21649, 513239

12 9901

13 53, 79, 265371653

14 909091

15 31, 2906161

16 17, 5882353

17 2071723, 5363222357

18 19, 52579

19 1111111111111111111

20 3541, 27961

A table of the periods e of small PRIMES other than the
special p �5, for which the decimal expansion is not
periodic, follows (Sloane’s A002371).

p e p e p e

3 1 31 15 67 33

7 6 37 3 71 35

11 2 41 5 73 8

13 6 43 21 79 13

17 16 47 46 83 41

19 18 53 13 89 44

23 22 59 58 97 96

29 28 61 60 101 4

Shanks (1873ab) computed the periods for all PRIMES

up to 120,000 and published those up to 29,989.

See also DECIMAL, DECIMAL POINT, FRACTION, HAUPT-

EXPONENT, MIDY’S THEOREM, REPEATING DECIMAL
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Decimal Period
DECIMAL COMMA, DECIMAL EXPANSION, DECIMAL

POINT

Decimal Point
The symbol uses to separate the integer part of a
decimal number from its fractional part is called the
decimal point. In the United States, the decimal point
is denoted with a period (e.g., 3.1415), whereas a
raised period is used in Britain (e.g., 3:1415); and a
DECIMAL COMMA is used in continental Europe (e.g.,
3,1415). The number 3.1415 is voiced "three point one
four one five," while in continental Europe, 3,1415
would be voiced "three comma one four one five."

See also COMMA, DECIMAL, DECIMAL COMMA, DECI-

MAL EXPANSION

Decision Problem
Does there exist an ALGORITHM for deciding whether
or not a specific mathematical assertion does or does
not have a proof? The decision problem is also known
as the ENTSCHEIDUNGSPROBLEM (which, not so coin-
cidentally, is German for "decision problem"rpar;.
Using the concept of the TURING MACHINE, Turing
showed the answer to be NEGATIVE for elementary
NUMBER THEORY. J. Robinson and Tarski showed the
decision problem is undecidable for arbitrary FIELDS.

Decision Theory
A branch of GAME THEORY dealing with strategies to
maximize the outcome of a given process in the face of
uncertain conditions.

See also NEWCOMB’S PARADOX, OPERATIONS RE-

SEARCH, PRISONER’S DILEMMA

Deck Transformation
The deck transformations of a UNIVERSAL COVER X̃
form a group G; which is the FUNDAMENTAL GROUP of
the QUOTIENT SPACE

X � X̃ =G:

Deck transformations are also called covering trans-
formations, and are defined for any COVER p : A 0 X :
They act on A by homeomorphisms which preserve
the projection p .

The UNIVERSAL COVER of X , denoted X̃ ; is a SIMPLY

CONNECTED space and is a COVERING of p : X̃ 0 X :
Every loop in X , say a function f on the unit interval
with f (0) �f (1) �p ; lifts to a path f̃ 	 X̃ ; which only
depends on the choice of f̃ 	 p�1(p); i.e., the starting

point in the PREIMAGE of p: Moreover, the endpoint
f̃ (1) depends only on the HOMOTOPY CLASS of f and
f̃ (0): Given a point q 	 X̃ ; and a; a member of the
FUNDAMENTAL GROUP of X , a point a �q is defined to be
the endpoint of a LIFT of a path f which represents a:/

For example, when X is the SQUARE TORUS then X̃ is
the plane and the preimage p�1(p) is a translation of
the integer lattice f(n ;m)gƒR2 : Any loop in the torus
lifts to a path in the plane, with the endpoints lying in
the integer lattice. These translated integer lattices
are the ORBITS of the action of Z �Z on R2 by addition.
The above animation shows the action of some deck
transformations on some disks in the plane. The
spaces are the torus and its UNIVERSAL COVER, the
plane. An element of the fundamental group, shown
as the path in blue, defines a deck transformation of
the universal cover. It moves around the points in the
universal cover. The points moved to have the same
projection in the torus. The blue path is a loop in the
torus, and all of its preimages are shown.

See also COVER, FUNDAMENTAL GROUP, GROUP

ACTION, UNIVERSAL COVER
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Decomposable
A DIFFERENTIAL K -FORM v of degree p in an EXTERIOR

ALGEBRA fflV is decomposable if there exist p ONE-

FORMS ai such that

v�a1ffl. . .fflapi; (1)

where afflb denotes a WEDGE PRODUCT. Forms of
degree 0, 1, dimV�1; and dimV are always decom-
posable. Hence the first instance of indecomposable
forms occurs in R4; in which case e1ffle2�e3ffle4 is
indecomposable.

If a p -form v has an ENVELOPE of dimension p then it
is decomposable. In fact, the ONE-FORMS in the (dual)
basis to the envelope can be used as the ai above.

The PLÜCKER RELATIONS form a system of quadratic
equations on the aI in

v�
X

aIei1
ffl. . .ffleip

; (2)



which is equivalent to v being decomposable. Since a
decomposable p -form corresponds to a p -dimensional
subspace, these quadratic equations show that the
GRASSMANNIAN is a PROJECTIVE VARIETY. In particu-
lar, v is decomposable if for every b 	fflp �1 V +;

i(i(b) v) v �0 ; (3)

where i denotes CONTRACTION and V + is the DUAL

SPACE to V .

Here is a Mathematica function which tests whether
the ANTISYMMETRIC TENSOR w is decomposable.

BBDiscreteMath‘Combinatorica‘;

ContractAll[a_List, b_List] : � Module[{k �
TensorRank[a] - TensorRank[b]}, If[k �� 0,

Map[Flatten[#1].Flatten[b] &, a, {k}],

ContractAll[b, a]

]

] Envelope[a_List?VectorQ] : � Select[{a},

#1 ! � Table[0, {Length[a]}] &]

Envelope[a_List] : � Module[

{

z, inds, vects,

d � Dimensions[a][[1]], r � TensorRank[a]

},

z � Table[0, ##1] & @@ Table[{d}, {r - 1}];

inds � KSubsets[Range[d], r - 1];

vects � Map[ContractAll[a, ReplacePart[z,

1, #1]] &, inds];

Select[RowReduce[vects], #1 ! � Table[0,

{d}] &]

] DecomposableQ[a_?ListQ] : �
(Length[Envelope[a]] ��  TensorRank[a])

See also CONTRACTION (TENSOR), EXTERIOR ALGEBRA,
GRASSMANNIAN, PLÜ CKER RELATIONS, VECTOR SPACE,
WEDGE PRODUCT
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Decomposition
A rewriting of a given quantity (e.g., a MATRIX) in
terms of a combination of "simpler" quantities.

See also CHOLESKY DECOMPOSITION, COMPOSITION,
CONNECTED SUM DECOMPOSITION, JACO-SHALEN-JO-

HANNSON TORUS DECOMPOSITION, LU DECOMPOSI-

TION, PRIME FACTORIZATION, QR DECOMPOSITION,
SINGULAR VALUE DECOMPOSITION

Decomposition Group
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Deconvolution
The inversion of a CONVOLUTION equation, i.e., the
solution for f of an equation OF THE FORM

f + g ¼ h þ e;

given g and h , where o is the NOISE and + denotes the
CONVOLUTION. Deconvolution is ill-posed and will
usually not have a unique solution even in the
absence of NOISE.

Linear deconvolution ALGORITHMS include INVERSE

FILTERING and WIENER FILTERING. Nonlinear ALGO-

RITHMS include the CLEAN algorithm, MAXIMUM

ENTROPY METHOD, and LUCY.

See also CONVOLUTION, LUCY, MAXIMUM ENTROPY

METHOD, WIENER FILTER
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Decreasing Function
A function f (x) decreases on an INTERVAL I if f bð ÞB
f að Þ for all b �a , where a; b 	 I : Conversely, a function
f (x) increases on an INTERVAL I if f bð Þ > f að Þ for all
b �a with a ; b 	 I :/

If the DERIVATIVE f ?(x) of a CONTINUOUS FUNCTION f (x)
satisfies f ?(x) B0 on an OPEN INTERVAL (a, b ), then
f (x) is decreasing on (a, b ). However, a function may
decrease on an interval without having a derivative
defined at all points. For example, the function �x1=3

is decreasing everywhere, including the origin x �0,
despite the fact that the DERIVATIVE is not defined at
that point.

See also DERIVATIVE, INCREASING FUNCTION, NON-

DECREASING FUNCTION, NONINCREASING FUNCTION
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Decreasing Sequence
A SEQUENCE a1 ;a2 :::f g for which a1]a2]. . . :/

See also INCREASING SEQUENCE, SEQUENCE

Decreasing Series
A SERIES s1; s2; . . . for which s1]s2]. . . :/



Dedekind Cut
A set partition of the RATIONAL NUMBERS into two
nonempty subsets S1 and S2 such that all members of
S1 are less than those of S2 and such that S1 has no
greatest member. REAL NUMBERS can be defined
using either Dedekind cuts or CAUCHY SEQUENCES.

See also CANTOR-DEDEKIND AXIOM, CAUCHY SE-

QUENCE
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Dedekind Eta
DEDEKIND ETA FUNCTION

Dedekind Eta Function

Let

q�e2pit; (1)

then the Dedekind eta function is defined over the
UPPER HALF-PLANE H� t : I½t� > 0f g by

h(t)�q1=24
Y�
n�1

1�qnð Þ� q; qð Þ�; (2)

which can be written as

h(t)�q1=24 1�
X�
n�1

(�1)n qn 3n�1ð Þ=2�qn 3n�1ð Þ=2
� �( )

(3)

(Weber 1902, pp. 85 and 112; Atkin and Morain
1993). h(t) is a MODULAR FORM first introduced by
Dedekind in 1877, and is related to the MODULAR

DISCRIMINANT of the WEIERSTRASS ELLIPTIC FUNCTION

by

D(t)�(2p)12
h(p)½ �24 (4)

(Apostol 1997, p. 47).
The derivative of h(t) satisfies

�4pi
d

dt
ln h(t)½ ��G2(t) (5)

d

dt
ln �

1

t

" #
�

d

dt
ln h(t)½ ��1

2

d

dr
ln(�it); (6)

where G2(t) is an EISENSTEIN SERIES.

Letting z24�e2pi=24�epi=12 be a ROOT OF UNITY, h(t)
satisfies

h(t�1)�epi=12h(t) (7)

h(t�n)�epin=12h(t) (8)

h �
1

t

 !
�

ffiffiffiffiffiffiffiffi
�it

p
h(t) (9)

where n is an integer (Weber 1902, p. 113; Atkin and
Morain 1993; Apostol 1997, p. 47). The Dedekind eta
function is related to the JACOBI THETA FUNCTION q 3

by

q 3 0; epit
� �

�

h2 1

2
t� 1ð Þ

 !

h(t� 1)
(10)

(Apostol 1997, p. 91).

Macdonald (1972) has related most expansions OF

THE FORM q; qð Þc
� to affine ROOT SYSTEMS. Exceptions

not included in Macdonald’s treatment include c�2,
found by Hecke and Rogers, c�4, found by Ramanu-
jan , and c�26, found by Atkin (Leininger and Milne
1997). Using the Dedekind eta function, the JACOBI

TRIPLE PRODUCT identity is written

q; qð Þ3
��

X�
n�0

(�1)n(2n�1)qn n�1ð Þ=2 (11)

(Jacobi 1829, Hardy and Wright 1979, Leininger and
Milne 1997, Hirschhorn 1999).

Dedekind’s functional equation states that if ab
cd

� �
	G;

where G is the MODULAR GROUP GAMMA, c �0, and
t 	H; then



h
a t � b

c t � d

 !
� e(a ; b; c ;d) �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c t �d

ph i
h( t); (12)

where

e(a; b; c ;d) �exp pi
a � d

12c
�s �d; cð Þ

 !" #
; (13)

and

s h; kð Þ�
Xk �1

r�1

r

k

hr

k
�

hr

k

" #
�

1

2

 !
(14)

is a DEDEKIND SUM (Apostol 1997, pp. 52 �/7), with xb c
the FLOOR FUNCTION.

See also DIRICHLET ETA FUNCTION, DEDEKIND SUM,
ELLIPTIC LAMBDA FUNCTION, INFINITE PRODUCT,
INVARIANT (ELLIPTIC FUNCTION), JACOBI THETA

FUNCTIONS, KLEIN’S ABSOLUTE INVARIANT, Q -SERIES,
TAU FUNCTION, WEBER FUNCTIONS
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Dedekind Function

c(n) �n
Y

distinct prime

factors p of n

1 �p �1
� �

where the PRODUCT is over the distinct PRIME FAC-

TORS of n . The first few values are 1, 3, 4, 6, 6, 12, 8,
12, 12, 18, ... (Sloane’s A001615).

See also DEDEKIND ETA FUNCTION, EULER PRODUCT,
TOTIENT FUNCTION
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Dedekind Number
ANTICHAIN

Dedekind Ring
A abstract commutative RING in which every NON-

ZERO IDEAL is a unique product of PRIME IDEALS.
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Dedekind Section
DEDEKIND CUT

Dedekind Sum
Given RELATIVELY PRIME INTEGERS p and q (i.e.,
(p; q)�1); the Dedekind sum is defined by

s p; qð Þ�
Xq

i�1

i

q

 ! !
pi

q

 ! !
; (1)

where

(x)ð Þ� x� xb c�1

2
xQZ

0 x 	Z;

8<
: (2)

with xb c the FLOOR FUNCTION. (x)ð Þ is an ODD FUNC-

TION since (x)ð Þ�� (x)ð Þ and is periodic with period 1.
The Dedekind sum is meaningful even if (p; q)"1; so
the relatively prime restriction is sometimes dropped
(Apostol 1997, p. 72). The symbol s(p; q) is sometimes
used instead of s(p;a) (Beck 2000).

The Dedekind sum can also be expressed in the form

s(p; q)�
1

4q

Xq�1

r�1

cot
ppr

k

 !
cot

pr

q

 !
: (3)

If 0BhBk; let r0; r1; ..., rn�1 denote the remainders in
the EUCLIDEAN ALGORITHM given by

r0�k (4)

r1�h (5)



rj þ1 �rj1 ðmod rj Þ (6)

for 1 5rj�1 Brj and rn �1 �1: Then

s h; kð Þ� 1

12

Xn�1

j�1

�1ð Þj �1 r2
j � r2

j�1 � 1

rjrj�1

( )

�
�1ð Þn�1

8 
(7)

(Apostol 1997, pp. 72 �/3).

In general, there is no simple formula for closed-form
evaluation of s(p ; q) ; but some special cases are

s(1; q) �
(q � 1)(q � 2)

12q 
(8)

s 2 ; q oddð Þ�(q � 1)(q � 2)

24q 
(9)

(Apostol 1997, p. 62). Apostol (1997, p. 73) gives the
additional special cases

12hks h; kð Þ� k �1ð Þ k �h2 �1
� �

for k �1 (modh)
(10)

12hks h ; kð Þ� k �2ð Þ k �
1

2
h2 �1
� �" #

for k �2 (modh)

(11)

12hks h; kð Þ�k2 � h2 �6h �2
� �

k �h2 �1

for k ��1 (modh)
(12)

12hks h; kð Þ�k2 �
h2 � t r � 1ð Þ r � 2ð Þh � r2 � 1

r 
k

�h2 �1 (13)

for k �r modhð Þ and h �t (modr) ; where r ]1 and t ¼
91: Finally,

12hks(h; k) �k2 �
h2 � 4r(t � 2)(t � 2)h � 26

5 
k �h2

�1 (14)

for k �5 (modh) and h �t (mod5); where t ¼91 or  9
2.

Dedekind sums obey 2-term

s(p; q) �s(q ;p) ��
1

4 
�

1

12

p

q 
�

q

p 
�

1

pq

 !
(15)

(Dedekind 1953; Rademacher and Grosswald 1972;
Pommersheim 1993; Apostol 1997, pp. 62 �/4) and 3-
term

s bc?;að Þ�s ca?; bð Þ�s ab?; cð Þ

��
1

4 
�

1

12

a

bc 
�

b

ca 
�

c

ab

 !
(16)

(Rademacher 1954), reciprocity laws, where a , a ?; b ,
b?; and c , c? are pairwise COPRIME, and

aa ?�1 (mod b) (17)

bb ?�1 (mod c) (18)

cc0�1 (mod a) (19)

(Pommersheim 1993).

/6ps(p ; q) is an integer, and if u �(3; q) ; then

12pqs(p ; q) �0 (mod up) (20)

and

12pqs(q;p) �q2 �1 (mod up): (21)

In addition, s(p ; q) satisfies the congruence

12qs(p ; q) �(q �1)(q �2) �4p(q �1)

�4
X

rBq =2

2pr

q

$ %
(mod 8); (22)

which, if q is odd, becomes

12qs(p; q) �q �1 �4
X

rBq=2

2pr

q

$ %
(mod 8) (23)

(Apostol 1997, pp. 65 �/6). If q �3, 5, 7, or 13, let r �
24 =(q �1); let integers a , b , c , d be given with ad �
bc �1 such that c �c1q and c1 > 0; and let

d � s(a; c) �
a � d

12c

( )
� s(a1;c1) �

a � d

12c1

( )
: (24)

Then rd is an even integer (Apostol 1997, pp. 66 �/9).

Let p , q , u , v 	N with (p; q) �(u; v) �1 (i.e., are
pairwise RELATIVELY PRIME), then the Dedekind
sums also satisfy

s(p; q)�s(u; v)

�s(pu?�qv?;pv�qu)�
1

4
�

1

12

q

vt
�

v

tq
�

t

qv

 !
; (25)

where t�pv�qu; and u?; v? are any INTEGERS such
that uu?�vv?�1 (Pommersheim 1993).

If p is prime, then

(p�1)s(h; k)�s(ph; k)�
Xp�1

m�0

s(h�mk;pk) (26)

(Dedekind 1953; Apostol 1997, p. 73). Moreover, it
has been beautifully generalized by Knopp (1980).

See also DEDEKIND ETA FUNCTION, ISEKI’S FORMULA
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Dedekind’s Axiom
For every partition of all the points on a line into two
nonempty SETS such that no point of either lies
between two points of the other, there is a point of
one SET which lies between every other point of that
SET and every point of the other SET.

Dedekind’s Problem
The determination of the number of monotone BOO-

LEAN FUNCTIONS of n variables (equivalent to the
number of ANTICHAINS on the n -set 1; 2; :::; nf g) is
called Dedekind’s problem.

See also ANTICHAIN, BOOLEAN FUNCTION
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Deducible
If q is logically deducible from p , this is written p � q:/

Deep Theorem
Qualitatively, a deep theorem is a theorem whose
proof is long, complicated, difficult, or appears to
involve branches of mathematics which are not
obviously related to the theorem itself (Shanks
1993). Shanks (1993) cites the QUADRATIC RECIPRO-

CITY THEOREM as an example of a deep theorem.

See also THEOREM, TRIVIAL
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Defective Matrix
A MATRIX whose EIGENVECTORS are not COMPLETE.

Defective Number
DEFICIENT NUMBER

Deficiency
Given BINOMIAL COEFFICIENT

N
k

� �
; write

N �k �i �aibi ;

for 1 5i 5k; where bi contains only those prime
factors > k: Then the number of i for which bi �1
(i.e., for which all the factors of N �k �i are 5k is
called the deficiency of N

k

� �
(Erdoset al. 1993, Guy

1994). The following table gives the GOOD BINOMIAL

COEFFICIENTS (i.e., those with 1 pf N
k

� �
> kÞ) having

deficiency d ]1 (Erdos et al. 1993), and Erdos et al.
(1993) conjecture that there are no other with d �1.

d Good Binomial Coefficients

1 /

3
2

	 

;

7
3

	 

;

13
4

	 

;

14
4

	 

;

23
5

	 

;

62
6

	 

;

89
8

	 

; ...

2 /

7
4

	 

;

44
8

	 

;

74
10

	 

;

174
12

	 

;

239
14

	 

;

5179
27

	 

;/

/

8413
28

	 

;

96622
42

	 

/

3 /

46
10

	 

;

47
10

	 

;

241
16

	 

;

2105
25

	 

;

1119
27

	 

;

6459
33

	 

/

4 /

47
11

	 

/

9 /

284
28

	 

/

See also ABUNDANCE, GOOD BINOMIAL COEFFICIENT
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Deficient Number
Numbers which are not PERFECT and for which

s(N) � s(N) �N BN ;

or equivalently

s(n) B2n;

where s(N) is the DIVISOR FUNCTION. Deficient num-
bers are sometimes called DEFECTIVE NUMBERS (Singh
1997). PRIMES, PRIME POWERS, and any divisors of a
PERFECT or deficient number are all deficient. The
first few deficient numbers are 1, 2, 3, 4, 5, 7, 8, 9, 10,
11, 13, 14, 15, 16, 17, 19, 21, 22, 23, ... (Sloane’s
A005100).

See also ABUNDANT NUMBER, LEAST DEFICIENT

NUMBER, PERFECT NUMBER
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Definable Set
An ANALYTIC, BOREL, or COANALYTIC SET.

Defined
If A and B are equal by definition (i.e., A is defined as
B ), then this is written symbolically as A �B; A :�B;
or sometimes ‹ :/

Definite Integral
An INTEGRAL

g
b

a

f (x)dx

with upper and lower limits. The first FUNDAMENTAL

THEOREM OF CALCULUS allows definite integrals to be
computed in terms of INDEFINITE INTEGRALS, since if
F is the INDEFINITE INTEGRAL for f (x) ; then

g
b

a

f (x)dx �F(b) �F(a) :

See also CALCULUS, FUNDAMENTAL THEOREMS OF

CALCULUS, INDEFINITE INTEGRAL, INTEGRAL

Degen’s Eight-Square Identity

See also EULER FOUR-SQUARE IDENTITY, FIBONACCI

IDENTITY

Degeneracy
The property of being DEGENERATE.

See also DEGENERATE

Degenerate
A limiting case in which a class of object changes its
nature so as to belong to another, usually simpler,
class. For example, the POINT is a degenerate case of
the CIRCLE as the RADIUS approaches 0, and the
CIRCLE is a degenerate form of an ELLIPSE as the
ECCENTRICITY approaches 0. Another example is the
two identical ROOTS of the second-order POLYNOMIAL

(x �1)2 : Since the n ROOTS of an nth degree POLY-

NOMIAL are usually distinct, ROOTS which coincide are
said to be degenerate. Degenerate cases often require
special treatment in numerical and analytical solu-
tions. For example, a simple search for both ROOTS of
the above equation would find only a single one: 1.

The word degenerate also has several very specific
and technical meanings in different branches of
mathematics.

See also TRIVIAL
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Degree
The word "degree" has many meanings in mathe-
matics.

The most common meaning is the unit of ANGLE

measure defined such that an entire rotation is 3608.
This unit harks back to the Babylonians, who used a
base 60 number system. 3608 likely arises from the
Babylonian year, which was composed of 360 days (12
months of 30 days each). The degree is subdivided
into 60 MINUTES per degree, and 60 SECONDS per
MINUTE.

The word "degree" is also used in many contexts
where it is synonymous with "order," as applied for
example to polynomials.

See also ARC MINUTE, ARC SECOND, DEGREE (EXTEN-

SION FIELD), DEGREE OF FREEDOM, DEGREE (MAP),
DEGREE (POLYNOMIAL), DEGREE (VERTEX), INDEGREE,
LOCAL DEGREE, OUTDEGREE

References
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Degree (Algebraic Surface)
ORDER (ALGEBRAIC SURFACE)

Degree (Extension Field)
The degree (or relative degree, or index) of an
EXTENSION FIELD K =F ; denoted K : F½ �; is the dimen-
sion of K as a VECTOR SPACE over F , i.e.,

K : F½ ��dimFK :

If K : F½ � is finite, then the extension is said to be
finite; otherwise, it is said to be infinite.

See also EXTENSION FIELD
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Degree (Map)
Let f : M �N be a MAP between two compact, con-
nected, oriented n -D MANIFOLDS without boundary.
Then f induces a HOMOMORPHISM f	 from the HOMOL-

OGY GROUPS Hn(M) to Hn(N); both canonically iso-
morphic to the INTEGERS, and so f	 can be thought of
as a HOMOMORPHISM of the INTEGERS. The INTEGER

d(f ) to which the number 1 gets sent is called the
degree of the MAP f .

There is an easy way to compute d(f ) if the MANI-

FOLDS involved are smooth. Let x 	N; and approx-
imate f by a smooth map HOMOTOPIC to f such that x
is a "regular value" of f (which exist and are every-
where by SARD’S THEOREM). By the IMPLICIT FUNCTION

THEOREM, each point in f �1(x) has a NEIGHBORHOOD

such that f restricted to it is a DIFFEOMORPHISM. If
the DIFFEOMORPHISM is orientation preserving, as-
sign it the number �1 ; and if it is orientation
reversing, assign it the number �1. Add up all the
numbers for all the points in f �1(x) ; and that is the
d(f ); the degree of f . One reason why the degree of a
map is important is because it is a HOMOTOPY

invariant. A sharper result states that two self-
maps of the n -sphere are homotopic IFF they have
the same degree. This is equivalent to the result that
the nth HOMOTOPY GROUP of the n -SPHERE is the set Z
of INTEGERS. The ISOMORPHISM is given by taking the
degree of any representation.

One important application of the degree concept is
that homotopy classes of maps from n -spheres to n -
spheres are classified by their degree (there is exactly
one homotopy class of maps for every INTEGER n , and
n is the degree of those maps).

Degree (Polynomial)
The highest POWER in a UNIVARIATE POLYNOMIAL is
known as its degree, or sometimes "order." For
example, the POLYNOMIAL

P(x) �anxn �. . .�a2x2 �a1x �a0

is of degree n , denoted P(x) �n: The degree of a
polynomial is implemented in Mathematica as Ex-
ponent[poly , x ].

See also ORDER (POLYNOMIAL)

Degree (Vertex)
VERTEX DEGREE

Degree Matrix
A DIAGONAL MATRIX corresponding to a GRAPH that
has the VERTEX DEGREE of vi in the ith position
(Skiena 1990, p. 235).

See also VERTEX DEGREE
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Degree of Freedom
The number of degrees of freedom in a problem,
distribution, etc., is the number of parameters which
may be independently varied.

See also LIKELIHOOD RATIO

Degree Sequence
Given an UNDIRECTED GRAPH, a degree sequence is a
monotonic nonincreasing sequence of the VERTEX

DEGREES (valencies) of its VERTICES. The number of
degree sequences for a graph of a given order is
closely related to GRAPHICAL PARTITIONS. The mini-
mum vertex degree in a GRAPH G is denoted d(G); and
the maximum degree is denoted D(G) (Skiena 1990,
p. 157). A GRAPH whose degree sequence contains
multiple copies of a single integer is called a REGULAR

GRAPH. A graph corresponding to a given degree
sequence can be constructed using RealizeDegree-
Sequence[d ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

It is possible for two topologically distinct graphs to
have the same DEGREE SEQUENCE.



The number of distinct degree sequences for graphs of
n �1, 2, ... nodes are given by 1, 2, 4, 11, 31, 102, 342,
... (Sloane’s A004251), compared with the total num-
ber of nonisomorphic simple undirected graphs with
n NODES of 1, 2, 4, 11, 34, 156, 1044, ... (Sloane’s
A000088). The first order having fewer degree se-
quences than number of nonisomorphic graphs is
therefore n �5. For the graphs illustrated above, the
degree sequences are given in the following table.

1 / f0g/

2 / f0; 0g; f1; 1g/

3 / f0; 0; 0g; f1; 1; 0 g; f2 ; 1; 1 g; f2 ; 2; 2 g/

4 / f0; 0; 0; 0g; f1; 1 ; 0; 0 g; f2 ; 1; 1 ; 0g; f2; 2 ; 2; 0 g;/

/ f3; 2; 2; 1g; f3; 3 ; 2; 2 g; f3 ; 3; 3 ; 3g; f1; 1 ; 1; 1 g;/

/ f2; 2; 1; 1g; f2; 2 ; 2; 2 g; f3 ; 1; 1 ; 1g/

The possible sums of elements for a degree sequence
of order n are 0, 2, 4, 6, ..., n(n �1):/

A degree sequence is said to be k -connected if there
exists some k -CONNECTED GRAPH corresponding to
the degree sequence. For example, while the degree
sequence f1; 2; 1g is 1- but not 2-connected, f2; 2; 2g is
2-connected.

See also DEGREE SET, DEGREE (VERTEX), GRAPHIC

SEQUENCE, GRAPHICAL PARTITION, K -CONNECTED

GRAPH, REGULAR GRAPH
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Degree Set
The set of integers which make up a DEGREE

SEQUENCE. Any set of positive integers is the degree
set for some graph.

See also DEGREE SEQUENCE
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Dehn Invariant
An invariant defined using the angles of a 3-D
POLYHEDRON. It remains constant under solid DISSEC-

TION and reassembly. Solids with the same VOLUME

can have different Dehn invariants.

Two POLYHEDRA can be dissected into each other only
if they have the same volume and the same Dehn
invariant. In 1902, Dehn showed that two interdis-
sectable polyhedra must have equal Dehn invariants,
settling the third of HILBERT’S PROBLEMS, and Sydler
(1965) showed that two polyhedra with the same
Dehn invariants are interdissectable.

See also DISSECTION, EHRHART POLYNOMIAL, HIL-

BERT’S PROBLEMS
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Dehn Surgery
The operation of drilling a TUBULAR NEIGHBORHOOD

of a KNOT K in S3 and then gluing in a solid TORUS so
that its meridian curve goes to a (p, q )-curve on the
TORUS boundary of the KNOT exterior. Every compact
connected 3-MANIFOLD comes from Dehn surgery on a
LINK in S3:/

See also KIRBY CALCULUS, TUBULAR NEIGHBORHOOD

References
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Dehn’s Lemma
An embedding of a 1-SPHERE in a 3-MANIFOLD which
exists continuously over the 2-DISK also extends over
the DISK as an embedding. This theorem was pro-
posed by Dehn in 1910, but a correct proof was not
obtained until the work of Papakyriakopoulos
(1957ab).
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Del
GRADIENT

Del Bar Operator
The operator @̄ is defined on a COMPLEX MANIFOLD,
and is called the ‘del bar operator.’ The EXTERIOR

DERIVATIVE d takes a function and yields a ONE-FORM.
It decomposes as

d �@� @̄; (1)

as complex ONE-FORMS decompose into TYPE

L1 ¼ L1;0 �L0 ;1 (2)

where �denotes the DIRECT SUM. More concretely, in
coordinates zk �xk �iyk ;

@f �
X @f

@xk

�i
@f

@yk

 !
dzk (3)

and

@̄f �
X @f

@xk

�i
@f

@yk

 !
dz̄k : (4)

These operators extend naturally to forms of higher
degree. In general, if a is a (p, q )-FORM, then @ a is a
(p �1; q)/-form and @̄ a is a (p ; q �1)/-form. The equation
@̄f �0 expresses the condition of f being a HOLO-

MORPHIC FUNCTION. More generally, a (p ; 0)/-FORM a is
called HOLOMORPHIC if @̄ a �0 ; in which case its
coefficients, as written in a COORDINATE CHART, are
HOLOMORPHIC FUNCTIONS.

The del bar operator is also well-defined on SECTIONS

of a HOLOMORPHIC VECTOR BUNDLE. The reason is
because a change in coordinates or trivializations is
HOLOMORPHIC.

See also ALMOST COMPLEX STRUCTURE, ANALYTIC

FUNCTION, CAUCHY-RIEMANN EQUATIONS, COMPLEX

MANIFOLD, COMPLEX FORM (TYPE), DIFFERENTIAL K -

FORM, DOLBEAULT COHOMOLOGY, DOLBEAULT OPERA-

TORS, HOLOMORPHIC FUNCTION, HOLOMORPHIC VEC-

TOR BUNDLE
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Del Pezzo Surface
A SURFACE which is related to CAYLEY NUMBERS.
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Delambre’s Analogies
GAUSS’S FORMULAS

Delannoy Number
The Delannoy numbers are the number of lattice
paths from (0; 0) to (b, a ) in which only east (1, 0),
north (0, 1), and northeast (1, 1) steps are allowed (i.e,
0; 	; and P ): They are given by the RECURRENCE

RELATION

D(a; b)�D(a�1; b)�D(a; b�1)�D(a�1; b�1); (1)

with D(0; 0)�1: They have the GENERATING FUNC-

TION

X�
p;q�1

D(p; q)xpyq�(1�x�y�xy)�1 (2)

(Comtet 1974, p. 81).



For n �a �b; the Delannoy numbers are the number
of "king walks"

D(n;n) �Pn(3) ;

where Pn(x) is a LEGENDRE POLYNOMIAL (Moser 1955;
Comtet 1974, p. 81; Vardi 1991). Another expression
is

D(n;n) �
Xn

k �0

n
k

	 

n �k

k

	 

�2F1(�n ;n �1; 1 ;�1); (3)

where a
b

� �
is a BINOMIAL COEFFICIENT and

2F1(a ; b; c; z) is a HYPERGEOMETRIC FUNCTION. The
values of D(n ;n) for n �1, 2, ... are 3, 13, 63, 321,
1683, 8989, 48639, ... (Sloane’s A001850).

The SCHRÖ DER NUMBERS bear the same relation to
the Delannoy numbers as the CATALAN NUMBERS do
to the BINOMIAL COEFFICIENTS.

See also BINOMIAL COEFFICIENT, CATALAN NUMBER,
MOTZKIN NUMBER, SCHRÖ DER NUMBER
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Delaunay Triangulation

The Delaunay triangulation is a TRIANGULATION

which is equivalent to the NERVE of the cells in a
VORONOI DIAGRAM, i.e., that triangulation of the
CONVEX HULL of the points in the diagram in which
every CIRCUMCIRCLE of a TRIANGLE is an empty circle
(Okabe et al. 1992, p. 94). The Mathematica com-
mand PlanarGraphPlot[pts ] in the Mathematica
add-on package DiscreteMath‘Computational-
Geometry‘ (which can be loaded with the command

BBDiscreteMath‘) plots the Delaunay triangula-
tion of the given list of points.
The Delaunay triangulation and VORONOI DIAGRAM in
R2 are dual to each other.

See also TRIANGULATION, VORONOI DIAGRAM
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Delian Constant
The number 21 =3 (the CUBE ROOT of 2) which is to be
constructed in the CUBE DUPLICATION problem. This
number is not a EUCLIDEAN NUMBER although it is an
ALGEBRAIC of third degree.

See also CUBE, CUBE DUPLICATION, CUBE ROOT,
GEOMETRIC CONSTRUCTION, GEOMETRIC PROBLEMS

OF ANTIQUITY
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Delian Problem
CUBE DUPLICATION, DELIAN CONSTANT

Delta Amplitude
Given an AMPLITUDE f and a MODULUS m in an
ELLIPTIC INTEGRAL,

D(f)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2f:

q

See also AMPLITUDE, ELLIPTIC INTEGRAL, MODULUS

(ELLIPTIC INTEGRAL)

Delta Curve
A curve which can be turned continuously inside an
EQUILATERAL TRIANGLE. There are an infinite number
of delta curves, but the simplest are the CIRCLE and
lens-shaped D/-biangle. All the D curves of height h
have the same PERIMETER 2ph=3: Also, at each
position of a D curve turning in an EQUILATERAL

TRIANGLE, the perpendiculars to the sides at the
points of contact are CONCURRENT at the instanta-
neous center of rotation.



See also EQUILATERAL TRIANGLE, LENS, REULEAUX

POLYGON, REULEAUX TRIANGLE, ROTOR
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Delta Function

A GENERALIZED FUNCTION which can be defined as the
limit of a class of DELTA SEQUENCES. The delta
function is sometimes called "Dirac’s delta function"
or the "impulse symbol" (Bracewell 1999). Formally, d
is a LINEAR FUNCTIONAL from a space (commonly
taken as a SCHWARZ SPACE S or the space of all
smooth functions of compact support D ) of test
functions f . The action of d on f , commonly denoted
d[f ] or d; fh i; then gives the value at 0 of f for any
function f .
In engineering contexts, the functional nature of the
delta function is often suppressed, and d is instead
viewed as a "special kind" of function, resulting in the
useful (but unfortunately deceptive) notation d(x): In
addition, it is possible to define the delta function as
an integral satisfying certain properties at infinity
(although this is often not explicitly stated), and
commonly used (equivalent) definitions of this type
include

d(x)�
1

p
lim
e00

e

x2 � e2
; (1)

�lim
e00

e xj je�1 (2)

� lim
e00�

1

2
ffiffiffiffiffi
pe

p e�x2=(4e) (3)

�lim
e00

1

px
sin

x

e

 !
(4)

�lim
e00

1

e
Ai

x

e

 !
(5)

�lim
e00

1

e
J1=e

x � 1

e

 !
(6)

�lim
e00

1

e
e�x2=eLn

2x

e

 !�����
����� (7)

� lim
n0�

1

2p

sin n �
1

2

 !
x

" #

sin
1

2
x

 ! : (8)

Here, Ai(x) is an AIRY FUNCTION, Jn(x) is a BESSEL

FUNCTION OF THE FIRST KIND, and Ln(x) is a LA-

GUERRE POLYNOMIAL of arbitrary positive integer
order. (8) is sometimes called the DIRICHLET KERNEL.

The fundamental equation that defines derivatives of
the delta function d(x) is

g f ðxÞdðnÞðxÞ dx��g
@f

@x
dðn�1ÞðxÞ dx: ð9Þ

Letting f (x)�xg(x) in this definition, it follows that

g xg(x)d?(x)dx��g d(x)
@

@x
[xg(x)]dx;

��g d(x) g(x)�xg?(x)½ �dx

��g g(x)d(x)dx; (10)

where the second term can be dropped since
fxg?(x)d(x)dx�0; so (10) implies

xd?(x)��d(x): (11)

In general, the same procedure gives

g xnf (x)½ �d(n)(x)dx�(�1)ng
@n xnf (x)½ �

@xn
d(x)dx; (12)

but since any power of x times d(x) integrates to 0, it
follows that only the constant term contributes.
Therefore, all terms multiplied by derivatives of f (x)
vanish, leaving n!f (x); so

g xnf (x)½ �d nð Þ(x)dx�(�1)nn!g f (x)d(x)dx; (13)

which implies

xnd(n)(x)�(�1)nn!d(x): (14)

Other identities involving the derivative of the delta
function include

d?(�x)��d?(x) (15)

g
�

��

f (x)d?(x�a)dx��f ?(a) (16)



(d?+f )(a)�g
�

��

d?(a�x)f (x)dx�f ?(a) (17)

where + denotes CONVOLUTION,

g
�

��

d?(x)j jdx��; (18)

and

x2d?(x)�0: (19)

The delta function can also be viewed as the DERIVA-

TIVE of the HEAVISIDE STEP FUNCTION,

d

dx
H(x)½ ��d(x) (20)

(Bracewell 1999, p. 94).

Additional identities include

d(x�a)�0 (21)

for x"a;

g
a�o

a�o

d(x�a)dx�1; (22)

where o is any POSITIVE number, and

g
�

��

f (x)d(x�a)dx�f (a) (23)

d(ax)�
1

aj j
d(x) (24)

d x2�a2
� �

�
1

2 aj j
d(x�a)�d(x�a)½ � (25)

More generally, the delta function of a function is
given by

d[g(x)]�
X

i

d(x � xi)

g?(xi)j j
; (26)

where the xi/s are the ROOTS of g . For example,
examine

d(x2�x�2)�d[(x�1)(x�2)]: (27)

Then g?(x)�2x�1; so g?(x1)�g?(1)�3 and g?(x2)�
g?(�2)��3; and we have

d(x2�x�2)�
1

3
d(x�1)�

1

3
d(x�2): (28)

A FOURIER SERIES expansion of d(x�a) gives

an�
1

pg
p

�p
d(x�a) cos(nx)dx�

1

p
cos(na) (29)

bn�
1

pg
p

�p
d(x�a) sin(nx)dx�

1

p
sin(na); (30)

so

d(x�a)�
1

2p
�

1

p

�
X�
n�1

[cos(na) cos(nx)�sin(na) sin(nx)]

�
1

2p
�

1

p

X�
n�1

cos[n(x�a)]: (31)

The delta function is given as a FOURIER TRANSFORM

as

d(x)�F 1½ ��g
�

��

e�2pikxdk: (32)

Similarly,

F�1[d(x)]�g
�

��

d xð Þe2pikxdx�1 (33)

(Bracewell 1999, p. 95). More generally, the FOURIER

TRANSFORM of the delta function is

F d(x�x0)½ ��g
�

��

e�2pikxd(x�x0)dx�e2pikx0 : (34)

Delta functions can also be defined in 2-D, so that in
2-D CARTESIAN COORDINATES

d2(x; y)�
0
�

x2�y2"0
x2�y2�0;

*
(35)

g
�

��
g

�

��

d2(x; y)dxdy�1 (36)

d2(ax; by)�
1

½ab½
d2(x; y); (37)

and

d2(x; y)�d(x)d(y): (38)

Similarly, in POLAR COORDINATES,

d2(x; y)�
d(r)

p½r½
(39)

(Bracewell 1999, p. 85).

In 3-D CARTESIAN COORDINATES

d3(x; y; z)�d3(x)�
0
�

x2�y2�z2"0
x2�y2�z2�0

*
(40)

g
�

��
g

�

��
g

�

��

d3(x; y; z)dxdydz�1 (41)

and

d(x)d(y)d(z): (42)

in CYLINDRICAL COORDINATES (r; u; z);



d3(r ; u; z) �
d(r) d(z)

pr
: (43)

In SPHERICAL COORDINATES (r; u; f) ;

d3(r ; u ; f) �
d(r)

2 pr2 
(44)

(Bracewell 1999, p. 85).

A series expansion in CYLINDRICAL COORDINATES

gives

d3 r1 �r2ð Þ� 1

r1

d r1 �r2ð Þd u1 � u2ð Þd z1 �z2ð Þ

�
1

r1

d r1 �r2ð Þ 1

2p

X�
m���

eim u1�u2ð Þ 1

2p g
�

��

eik z1�z2ð Þdk :

(45)

The delta function also obeys the so-called SIFTING

PROPERTY

g f (x) d(x �x0)dx �f (x0) (46)

(Bracewell 1999, pp. 74 �/5).

See also DELTA SEQUENCE, DOUBLET FUNCTION,
FOURIER TRANSFORM–DELTA FUNCTION, GENERAL-

IZED FUNCTION, IMPULSE SYMBOL, POINCARÉ -BER-

TRAND THEOREM, SHAH FUNCTION, SOKHOTSKII’S

FORMULA

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, pp. 481 �/85, 1985.
Bracewell, R. "The Impulse Symbol." Ch. 5 in The Fourier

Transform and Its Applications, 3rd ed. New York:
McGraw-Hill, pp. 69 �/7, 1999.

Dirac, P. A. M. Quantum Mechanics, 4th ed. London: Oxford
University Press, 1958.

Gasiorowicz, S. Quantum Physics. New York: Wiley,
pp. 491 �/94, 1974.

Papoulis, A. Probability, Random Variables, and Stochastic
Processes, 2nd ed. New York: McGraw-Hill, pp. 97 �/8,
1984.

Spanier, J. and Oldham, K. B. "The Dirac Delta Function
d(x �a) :/" Ch. 10 in An Atlas of Functions. Washington,
DC: Hemisphere, pp. 79 �/2, 1987.

van der Pol, B. and Bremmer, H. Operational Calculus
Based on the Two-Sided Laplace Integral. Cambridge,
England: Cambridge University Press, 1955.

Delta Operator
A SHIFT-INVARIANT OPERATOR Q for which Qx is a
NONZERO constant.

1. Qa �0 for every constant a .
2. If p(x) is a POLYNOMIAL of degree n , Qp(x) is a
POLYNOMIAL of degree n �1 :/
3. Every delta sequence has a unique BASIC

POLYNOMIAL SEQUENCE.

See also BASIC POLYNOMIAL SEQUENCE, SHIFT-INVAR-

IANT OPERATOR, UMBRAL CALCULUS
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Delta Sequence
A SEQUENCE of strongly peaked functions for which

lim
n0� g

�

��

dn(x)f (x) dx �f (0) (1)

so that in the limit as /n 0 �/, the sequences become
DELTA FUNCTIONS. Examples include

dn(x) �

0 x B�1
2n

n �1
2n 
Bx B 1

2n

0 x � 1
2n

8><
>: ð2Þ

�
nffiffiffi
p

p e �n2x2 ð3Þ

�
n

p
sinc(ax) �

sin(nx)

px 
ð4Þ

�
1

px

einx � e �inx

2i 
ð5Þ

�
1

2pix
[eixt]n

�n ð6Þ

�
1

2 p g
n

�n

eixt dt ð7Þ

�
1

2p

sin[(n � 1
2)x]

sin(1
2x)

; ð8Þ

where (8) is known as the DIRICHLET KERNEL.

See also DELTA FUNCTION

Delta Variation
VARIATION

Deltahedron
A POLYHEDRON whose faces are CONGRUENT EQUILAT-

ERAL TRIANGLES (Wells 1986, p. 73). There are an
infinite number of deltahedra, but only eight convex
ones (Freudenthal and van der Waerden 1947).



Among this list of eight, faces composed of coplanar
equilateral triangles sharing an edge (such as the
RHOMBIC DODECAHEDRON) are not allowed. The eight
convex deltahedra have n �4, 6, 8, 10, 12, 14, 16, and
20 faces. These are summarized in the table below,
and illustrated in the following figures.

n Name

4 TETRAHEDRON

6 TRIANGULAR DIPYRAMID

8 OCTAHEDRON

10 PENTAGONAL DIPYRAMID

12 SNUB DISPHENOID

14 TRIAUGMENTED TRIANGULAR PRISM

16 GYROELONGATED SQUARE DIPYRAMID

20 ICOSAHEDRON

The 24-faced deltahedra formed by (1) CUMULATION of
the CUBE and (2) STELLA OCTANGULA are both con-
cave.

The "caved in" CUMULATED DODECAHEDRON is a
deltahedron with 60 faces. It is ICOSAHEDRON STELLA-

TION I20 (Wells 1991, p. 78).

Cundy (1952) identified 17 concave deltahedra with
two kinds of VERTICES.

See also CUMULATION, GYROELONGATED SQUARE

DIPYRAMID, ICOSAHEDRON, OCTAHEDRON, PENTAGO-

NAL DIPYRAMID, SNUB DISPHENOID TETRAHEDRON,
TRIANGULAR DIPYRAMID, TRIAUGMENTED TRIANGU-

LAR PRISM
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Deltohedron
TRAPEZOHEDRON

Deltoid

A 3-cusped HYPOCYCLOID, also called a tricuspoid. The
deltoid was first considered by Euler in 1745 in
connection with an optical problem. It was also
investigated by Steiner in 1856 and is sometimes



called Steiner’s hypocycloid (Lockwood 1967; Coxeter
and Greitzer 1967, p. 44; MacTutor Archive). The
equation of the deltoid is obtained by setting n �
a =b �3 in the equation of the HYPOCYCLOID, where a
is the RADIUS of the large fixed CIRCLE and b is the
RADIUS of the small rolling CIRCLE, yielding the
parametric equations

x �
2

3
cos f �

1

3
cos(2f)

" #
a �2b cos f �b cos(2f) (1)

y �
2

3
sinf �

1

3
sin(2f)

" #
a �2b sinf �b sin(2f) : (2)

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s(t) �4g
t

0

½ sin
3

2 
t?

 !
dt?�

16

3
sin2 3

4 
t

 !
(3)

k(t) ��
1

8
csc

3

2 
t

 !
(4)

f(t) ��
1

2 
t: (5)

As usual, care must be taken in the evaluation of s tð Þ
for t > 2 p=3: Since the form given above comes from
an integral involving the ABSOLUTE VALUE of a
function, it must be monotonic increasing. Each
branch can be treated correctly by defining

n �
3t

2p

" #
�1; (6)

where xb c is the FLOOR FUNCTION, giving the formula

s(t) �(�1)1 �[n (mod2)] 16

3
sin2 3

4 
t

 !
�

32

3

1

2 
n

" #
: (7)

The total ARC LENGTH is computed from the general
HYPOCYCLOID equation

sn �
8a(n � 1)

n
: (8)

With n �3, this gives

s3 �
16

3
a : (9)

The AREA is given by

An �
(n � a)(n � 2)

n2 
pa2 (10)

with n �3

A3 �
2

9 
pa2 : (11)

The length of the tangent to the tricuspoid, measured
between the two points P , Q in which it cuts the
curve again, is constant and equal to 4a: If you draw
TANGENTS at P and Q , they are at RIGHT ANGLES.

See also ASTROID, HYPOCYCLOID, SIMSON LINE
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Deltoid Caustic
The caustic of the DELTOID when the rays are
PARALLEL in any direction is an ASTROID.

Deltoid Evolute

A HYPOCYCLOID EVOLUTE for n�3 is another DEL-



TOID scaled by a factor n=(n �2) �3=1 �3 and rotated
1=(2 �3) �1=6 of a turn.

Deltoid Involute

A HYPOCYCLOID INVOLUTE for n �3 is another DEL-

TOID scaled by a factor (n �2)=n �1 =3 and rotated
1=(2 �3) �1=6 of a turn.

Deltoid Pedal Curve

The PEDAL CURVE for a DELTOID with the PEDAL POINT

at the CUSP is a FOLIUM. For the PEDAL POINT at the
CUSP (NEGATIVE x -intercept), it is a BIFOLIUM. At the
center, or anywhere on the inscribed EQUILATERAL

TRIANGLE, it is a TRIFOLIUM.

Deltoid Radial Curve

The TRIFOLIUM

x �x0 �4a cos f �4a cos(2 f)

y �y0 �4a sinf �4a sin(2f) :

Deltoidal Hexecontahedron

The 60-faced DUAL POLYHEDRON of the SMALL RHOM-

BICOSIDODECAHEDRON A5 and Wenninger dual W14 : It
is sometimes also called the trapezoidal hexecontahe-
dron or strombic hexecontahedron.

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
HEXECONTAHEDRON, SMALL RHOMBICOSIDODECAHE-

DRON
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Deltoidal Icositetrahedron

The 24-faced DUAL POLYHEDRON of the SMALL RHOM-

BICUBOCTAHEDRON A6 and Wenninger dual W13 : It is
also called the TRAPEZOIDAL ICOSITETRAHEDRON. For
a SMALL RHOMBICUBOCTAHEDRON with unit edge
length, the deltoidal icositetrahedron has edge
lengths

s1 �
2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �

ffiffiffi
2

pq
(1)

s2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
(2)

and INRADIUS

r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

17
7 �4

ffiffiffi
2

p� �s
: (3)

Normalizing so the smallest edge has unit edge
length s1 �1 gives a deltoidal icositetrahedron with
SURFACE AREA and VOLUME

S �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 �2

ffiffiffi
2

p
:

q
(4)

V �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 �71

ffiffiffi
2

p
:

q
(5)

See also ARCHIMEDEAN SOLID, DELTOIDAL ICOSITE-

TRAHEDRON STELLATIONS, DELTOIDAL ICOSITETRAHE-

DRON STELLATIONS, ICOSITETRAHEDRON, SMALL

RHOMBICUBOCTAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 23, 1983.

Deltoidal Icositetrahedron Stellations

The CONVEX HULLS of the SMALL CUBICUBOCTAHE-

DRON U13 ; SMALL RHOMBIHEXAHEDRON U18 ; and STEL-

LATED TRUNCATED HEXAHEDRON U19 are all the
Archimedean SMALL RHOMBICUBOCTAHEDRON A6 ;
whose dual is the deltoidal icositetrahedron, so the
duals of these solids (i.e., the SMALL HEXACRONIC

ICOSITETRAHEDRON, SMALL RHOMBIHEXAHEDRON, and
GREAT TRIAKIS OCTAHEDRON) are all stellations of the
deltoidal icositetrahedron (Wenninger 1983, p. 57).

See also ARCHIMEDEAN SOLID, ICOSITETRAHEDRON,
SMALL RHOMBICUBOCTAHEDRON
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Demiregular Tessellation
TESSELLATION

Demlo Number
The initially PALINDROMIC NUMBERS 1, 121, 12321,
1234321, 123454321, ... (Sloane’s A002477). For the
first through ninth terms, the sequence is given by
the GENERATING FUNCTION

�
10x � 1

(x � 1)(10x � 1)(100x � 1)

�1 �121x �12321x2 �1234321x3 �:::

(Plouffe 1992, Sloane and Plouffe 1995). The defini-
tion of this sequence is slightly ambiguous from the
tenth term on.

See also CONSECUTIVE NUMBER SEQUENCES, PALIN-

DROMIC NUMBER

References
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Student 6, 68�/0, 1938.
Plouffe, S. "Approximations de Séries Génératrices et quel-

ques conjectures." Montréal, Canada: Université du Qué-
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Dendrite
A system of line segments connecting a given set of
points.

See also PLATEAU’S PROBLEM, TRAVELING SALESMAN

PROBLEM

References
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York:

Dover, pp. 120 �/25, 1999.

Dendrite Fractal

A JULIA SET with constant c chosen at the boundary
of the MANDELBROT SET (Branner 1989; Dufner et al.
1998, p. 225). The image above was computed using
c � i .

See also JULIA SET

References
Branner, B. "The Mandelbrot Set." In Chaos and Fractals:

The Mathematics behind the Computer Graphics (Ed.
R. L. Devaney and L. Keen). Providence, RI: Amer.
Math. Soc., pp. 75 �/05, 1989.
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Mengen. Harri Deutsch, p. 225, 1998.

Denjoy Integral
A type of INTEGRAL which is an extension of both the
RIEMANN INTEGRAL and the LEBESGUE INTEGRAL. The
original Denjoy integral is now called a Denjoy
integral "in the restricted sense," and a more general
type is now called a Denjoy integral "in the wider
sense." The independently discovered PERRON INTE-

GRAL turns out to be equivalent to the Denjoy integral
"in the restricted sense."

See also INTEGRAL, LEBESGUE INTEGRAL, PERRON

INTEGRAL, RIEMANN INTEGRAL

References
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Denominator
The number q in a FRACTION p =q:/

See also FRACTION, NUMERATOR, RATIO, RATIONAL

NUMBER

Dense
A set A in a FIRST-COUNTABLE SPACE is dense in B if
B �A @ L; where L is the limit of sequences of
elements of A . For example, the rational numbers
are dense in the reals. In general, a SUBSET A of X is
dense if its CLOSURE cl(A) �X :/

See also CLOSURE (SET), DENSITY, DERIVED SET,
NOWHERE DENSE, PERFECT SET

Density
DENSITY (POLYGON), DENSITY (SEQUENCE), NATURAL

DENSITY

Density (Polygon)
The number q in a STAR POLYGON fp=qg:/

See also STAR POLYGON

Density (Sequence)
Let a SEQUENCE aif g�i�1 be strictly increasing and
composed of NONNEGATIVE INTEGERS. Call A(x) the
number of terms not exceeding x . Then the density is
given by limx 0�A(x)=x if the LIMIT exists.

References
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed.

New York: Springer-Verlag, p. 199, 1994.

Density Function
PROBABILITY FUNCTION

Denumerable Set
A SET is denumerable IFF it is EQUIPOLLENT to the
finite ORDINAL NUMBERS. (Moore 1982, p. 6; Rubin
1967, p. 107; Suppes 1972, pp. 151 �/52). However,
Ciesielski (1997, p. 64) calls this property "counta-
ble." The set ALEPH-0 is most commonly called
"denumerable" to "COUNTABLY INFINITE".

See also COUNTABLE SET, COUNTABLY INFINITE

References
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Rubin, J. E. Set Theory for the Mathematician. New York:
Holden-Day, 1967.

Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

Denumerably Infinite
COUNTABLY INFINITE

Depth (Graph)
GRAPH THICKNESS

Depth (Size)
The depth of a box is the horizontal DISTANCE from
front to back (usually not necessarily defined to be
smaller than the WIDTH, the horizontal DISTANCE

from side to side).

See also HEIGHT, WIDTH (SIZE)

Depth (Statistics)
The smallest RANK (either up or down) of a set of data.

See also RANK (STATISTICS)

References
Tukey, J. W. Explanatory Data Analysis. Reading, MA:
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Depth (Tree)
The depth of a RESOLVING TREE is the number of
levels of links, not including the top. The depth of the
link is the minimal depth for any RESOLVING TREE of
that link. The only links of length 0 are the trivial
links. A KNOT of length 1 is always a trivial KNOT and
links of depth one are always HOPF LINKS, possibly
with a few additional trivial components (Bleiler and
Scharlemann 1988). The LINKS of depth two have also
been classified (Scharlemann and Thompson 1991).

References
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Depth-First Traversal
A search algorithm of a GRAPH which explores the
first son of a node before visiting its brothers. Tarjan
(1972) and Hopcroft and Tarjan (1973) showed that
depth-first search gives linear time algorithms for
many problems in graph theory (Skiena 1990).

See also BREADTH-FIRST TRAVERSAL
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Derangement
A derangement of n ordered objects, denoted !n; is a
PERMUTATION in which none of the objects appear in
their "natural" (i.e., ordered) place. For example, the
only derangements of f1; 2; 3g are f2; 3; 1g and
f3; 1; 2g; so !3�2: Similarly, the derangements of
f1; 2; 3; 4g are f2; 1; 4; 3g; f2; 3; 4; 1g; f2; 4; 1; 3g;
f3; 1; 4; 2g; f3; 4; 1; 2g; f3; 4; 2; 1g; f4; 1; 2; 3g;
f4; 3; 1; 2g; and f4; 3; 2; 1g: Derangements are permu-
tations without fixed points (i.e., having no cycles of
length one). The derangements of a list of n elements
can be computed using Derangments[n ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

The problem was formulated by P. R. de Montmort in
1708, and solved by him in 1713 (de Montmort 1713�/

714). Nicholas Bernoulli also solved the problem
using the INCLUSION-EXCLUSION PRINCIPLE (de Mon-
tmort 1713�/714, p. 301; Bhatnagar, p. 8).

The function giving the number of distinct derange-
ments on n elements is called the SUBFACTORIAL !n
and is equal to

!n�n!
Xn

k�0

(�1)k

k!
(1)

(Bhatnagar, pp. 8�/) or

!n�
n!

e

" #
; (2)

where k! is the usual FACTORIAL and [x] is the
NEAREST INTEGER FUNCTION. These are also called
RENCONTRES NUMBERS (named after rencontres soli-
taire), or COMPLETE PERMUTATIONS, or derangements.
The number of derangements !n�d(n) of length n
satisfy the RECURRENCE RELATIONS

d(n)�(n�1)[d(n�1)�d(n�2)] (3)

and

d(n)�nd(n�1)�(�1)n; (4)

with d(1)�0 and d(2)�1 (Skiena 1990, p. 33). The
first few are 0, 1, 2, 9, 44, 265, 1854, ... (Sloane’s
A000166). This sequence cannot be expressed as a
fixed number of hypergeometric terms (Petkovsek et
al. 1996, pp. 157�/60).



See also MARRIED COUPLES PROBLEM, PERMUTATION,
ROOT, SUBFACTORIAL

References
Aitken, A. C. Determinants and Matrices. Westport, CT:

Greenwood Pub., p. 135, 1983.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, pp. 46 �/7,
1987.

Bhatnagar, G. Inverse Relations, Generalized Bibasic Series,
and their U (n ) Extensions. Ph.D. thesis. Ohio State
University, 1995.

Comtet, L. "The ‘Problème des Recontres’." §4.2 in Advanced
Combinatorics: The Art of Finite and Infinite Expansions,
rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 180 �/83,
1974.

Coolidge, J. L. An Introduction to Mathematical Probability.
Oxford, England: Oxford University Press, p. 24, 1925.

Courant, R. and Robbins, H. What is Mathematics?: An
Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 115 �/16,
1996.

de Montmort, P. R. Essai d’analyse sur les jeux de hasard.
Paris, 1708. Second edition published 1713 �/714. Third
edition reprinted in New York: Chelsea, pp. 131 �/38, 1980.

Dickau, R. M. "Derangements." http://forum.swarthmor-
e.edu/advanced/robertd/derangements.html.

Durell, C. V. and Robson, A. Advanced Algebra. London,
p. 459, 1937.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete
Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, MA: Addison-Wesley, 1994.

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A �B. Well-
esley, MA: A. K. Peters, 1996.

Roberts, F. S. Applied Combinatorics. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

Ruskey, F. "Information on Derangements." http://
www.theory.csc.uvic.ca/~cos/inf/perm/Derange-
ments.html.

Skiena, S. "Derangements." §1.4.2 in Implementing Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica. Reading, MA: Addison-Wesley, pp. 33 �/4,
1990.

Sloane, N. J. A. Sequences A000166/M1937 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Stanley, R. P. Enumerative Combinatorics, Vol. 1. New
York: Cambridge University Press, p. 67, 1986.

Vardi, I. Computational Recreations in Mathematica. Read-
ing, MA: Addison-Wesley, p. 123, 1991.

Derivation
A derivation is a sequence of steps, logical or
computational, from one result to another. The word
derivation comes from the word "derive."

"Derivation" can also refer to a particular type of
operator used to define a DERIVATION ALGEBRA on a
ring or algebra.

See also DERIVATION ALGEBRA

Derivation Algebra
Let A be any algebra over a FIELD F , and define a
derivation of A as a linear operator D on A satisfying

(xy)D �(xD)y �x(yD)

for all x; y 	 A: Then the set D(A) of all derivations of A
in a SUBSPACE of the associative algebra of all linear
operators on A is a LIE ALGEBRA, called the derivation
algebra.

See also LIE ALGEBRA
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Derivative
The derivative of a FUNCTION represents an infinite-
simal change in the function with respect to whatever
parameters it may have. The "simple" derivative of a
function f with respect to x is denoted either f ?(x) or

df

dx
(1)

(and often written in-line as df=dx): When derivatives
are taken with respect to time, they are often denoted
using Newton’s OVERDOT notation for FLUXIONS,

dx

dt
�ẋ: (2)

When a derivative is taken n times, the notation x(n)

or

dnf

dxn
(3)

is used, with

ẋ; ẍ; �x; etc: (4)

the corresponding FLUXION notation. When a function
f (x; y; . . .) depends on more than one variable, a
PARTIAL DERIVATIVE

@f

@x
;
@2f

@x@y
; etc: (5)

can be used to specify the derivative with respect to
one or more variables.

The derivative of a function f (x) with respect to the
variable x is defined as

f ?(x)�lim
h00

f (x � h) � f (x)

h
: (6)

Note that in order for the limit to exist, both limh00�

and limh00� must exist and be equal, so the FUNCTION

must be continuous. However, continuity is a NECES-

SARY but not SUFFICIENT condition for differentiabil-
ity. Since some DISCONTINUOUS functions can be
integrated, in a sense there are "more" functions
which can be integrated than differentiated. In a
letter to Stieltjes, Hermite wrote, "I recoil with



dismay and horror at this lamentable plague of
functions which do not have derivatives."

A 3-D generalization of the derivative to an arbitrary
direction is known as the DIRECTIONAL DERIVATIVE. In
general, derivatives are mathematical objects which
exist between smooth functions on manifolds. In this
formalism, derivatives are usually assembled into
"TANGENT MAPS."

Simple derivatives of some simple functions follow.

d

dx
xn�nxn�1 (7)

d

dx
ln½x½�

1

x
(8)

d

dx
sinx�cosx (9)

d

dx
cosx��sinx (10)

d

dx
tanx�

d

dx

sinx

cosx

 !
�

cos x cosx � sinx(�sinx)

cos2x

�
1

cos2x
�sec2x (11)

d

dx
cscx�

d

dx
(sinx)�1��(sinx)�2 cosx��

cosx

sin2x

��cscx cotx (12)

d

dx
secx�

d

dx
(cosx)�1��(cosx)�2(�sinx)�

sinx

cos2x

�secx tanx (13)

d

dx
cotx�

d

dx

cosx

sinx

 !
�

sinx(�sinx) � cosx cosx

sin2x

��
1

sin2x
��csc2x (14)

d

dx
ex�ex (15)

d

dx
ax�

d

dx
elnax

�
d

dx
exlna�(lna)exlna�(lna)ax (16)

d

dx
sin�1x�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p (17)

d

dx
cos�1x��

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p (18)

d

dx
tan�1x�

1

1 � x2
(19)

d

dx
cot�1x��

1

1 � x2
(20)

d

dx
sec�1x�

1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p (21)

d

dx
csc�1x��

1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p (22)

d

dx
sinhx�coshx (23)

d

dx
coshx�sinhx (24)

d

dx
tanhx�sech2x (25)

d

dx
cothx��csch2x (26)

d

dx
sechx��sechx tanhx (27)

d

dx
cschx��cschx cothx (28)

d

dx
snx�cnx dnx (29)

d

dx
cnx��snx dnx (30)

d

dx
dnx��k2 snx cnx: (31)

where sn(x)�sn(x; k); cn(x)�cn(x; k); etc. are JACOBI

ELLIPTIC FUNCTIONS, and the PRODUCT RULE and
QUOTIENT RULE have been used extensively to expand
the derivatives.

There are a number of important rules for computing
derivatives of certain combinations of functions.
Derivatives of sums are equal to the sum of deriva-
tives so that

f (x)�
 
 
�h(x)½ �?�f ?(x)�
 
 
�h?(x): (32)

In addition, if c is a constant,

d

dx
cf (x)½ ��cf ?(x): (33)

The PRODUCT RULE for differentiation states

d

dx
f (x)g(x)½ ��f (x)g?(x)�f ?(x)g(x); (34)

where f ? denotes the DERIVATIVE of f with respect to
x . This derivative rule can be applied iteratively to
yield derivate rules for products of three or more



functions, for example,

[fgh] ?�(fg)h?�(fg) ?h �fgh?�(fg?�f ?g)h

�f ?gh �fg ?h �fgh?: (35)

The QUOTIENT RULE for derivatives states that

d

dx

f (x)

g(x)

" #
�

g(x)f ?(x) � f (x)g?(x)

g(x)½ �2 (36)

while the POWER RULE gives

d

dx
xnð Þ�nxn�1 (37)

Other very important rule for computing derivatives
is the CHAIN RULE, which states that

dy

dx 
�

dy

du 
�
du

dx
; (38)

or more generally,

dz

dt 
�

@z

@x

dx

dt 
�

@z

@y

dy

dt
; (39)

were /@z=@x/ denotes a PARTIAL DERIVATIVE.

Miscellaneous other derivative identities include

dy

dx 
�

dy

dt
dx

dt

(40)

dy

dx 
�

1

dx

dy

: (41)

If F(x; y) �C ; where C is a constant, then

dF �
@F

@y
dy �

@F

@x
dx �0; (42)

so

dy

dx 
��

@F

@x
@F

@y

: (43)

A vector derivative of a vector function

X(t) �

x1(t)
x2(t)
n

xk(t)

2
664

3
775 (44)

can be defined by

dX

dt
�

dx1

dt
dx2

dt
n

dtk

dt

2
6666666664

3
7777777775

(45)

The nth derivatives of xnf (x) for n �1, 2, ... are

d

dx 
[xf (x)] �f (x) �xf ?(x) (46)

d2

dx2
x2f (x)
� �

�2f (x)�4xf ?(x)�x2f ƒ(x) (47)

d3

dx3
x3f (x)
� �

�6f (x)�18xf ?(x)�9x2f ƒ(x)�x3f§(x): (48)

See also BLANCMANGE FUNCTION, CARATHÉ ODORY

DERIVATIVE, CHAIN RULE, COMMA DERIVATIVE, CON-

VECTIVE DERIVATIVE, COVARIANT DERIVATIVE, DIREC-

TIONAL DERIVATIVE, EULER-LAGRANGE DERIVATIVE,
FLUXION, FRACTIONAL CALCULUS, FRÉ CHET DERIVA-

TIVE, LAGRANGIAN DERIVATIVE, LIE DERIVATIVE,
LOGARITHMIC DERIVATIVE, PINCHERLE DERIVATIVE,
POWER RULE, PRODUCT RULE, Q -SERIES, QUOTIENT

RULE, SCHWARZIAN DERIVATIVE, SEMICOLON DERIVA-

TIVE, WEIERSTRASS FUNCTION
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Derivative Test
FIRST DERIVATIVE TEST, SECOND DERIVATIVE TEST



Derived Polygon

Given a POLYGON with an EVEN NUMBER of sides, the
derived polygon is obtained by joining the points
which are a fractional distance r along each side. If
r �1=2; then the derived polygons are called MID-

POINT POLYGONS and tend to a shape with opposite
sides parallel and equal in length. Furthermore,
alternate polygons have approximately the same
length, and the original and all derived polygons
have the same centroid.
Amazingly, if r "1; the derived polygons still ap-
proach a shape with opposite sides parallel and equal
in length, and all have the same centroid. The above
illustrations show 20 derived polygons for ratios r �
0:3; 0.5, 0.7, and 0.9. More amazingly still, if the
original polygon is skew, a plane polygonal is ap-
proached which has these same properties.

See also MIDPOINT POLYGON, WHIRL
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Derived Set
The LIMIT POINTS of a SET P , denoted P?:/

See also DENSE, LIMIT POINT, PERFECT SET
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Dervish

A QUINTIC SURFACE having the maximum possible
number of ORDINARY DOUBLE POINTS (31), which was
constructed by W. Barth in 1994 (Endraß). The
implicit equation of the surface is

64(x�w) x4�4x3w�10x2y2�4x2w2
�

�16xw3�20xy2w�5y4�16w4�20y2w2�

�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�

ffiffiffi
5

pq
2z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�

ffiffiffi
5

pq
w

	 


� 4 x2�y2�z2
� �

�(1�3
ffiffiffi
5

p
)w2

h i2

; (1)

where w is a parameter (Endraß). The surface can
also be described by the equation

aF�q�0; (2)

where

F�h1h2h3h4h5; (3)

h1 ¼ x  z ð4Þ

h2�cos
2p
5

 !
x�sin

2p
5

 !
y�z (5)

h3�cos
4p
5

 !
x�sin

4p
5

 !
y�z (6)

h4�cos
6p
5

 !
x�sin

6p
5

 !
y�z (7)

h5�cos
8p
5

 !
x�sin

8p
5

 !
y�z (8)

q�(1�cz) x2�y2�1�rz2
� �2

; (9)

and



r �
1

4
1 �

ffiffiffi
5

p� �
(10)

a ��
8

5
1 �

1ffiffiffi
5

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 �
ffiffiffi
5

pq
(11)

c �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pq
(12)

(Nordstrand).

The dervish is invariant under the GROUP D5 and
contains exactly 15 lines. Five of these are the
intersection of the surface with a D5/-invariant cone
containing 16 nodes, five are the intersection of the
surface with a D5/-invariant plane containing 10
nodes, and the last five are the intersection of the
surface with a second D5/-invariant plane containing
no nodes (Endraß).

See also ALGEBRAIC SURFACE, QUINTIC SURFACE
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Desargues’ Configuration

The 103 CONFIGURATION of ten lines intersecting
three at a time in 10 points which arises in DESAR-

GUES’ THEOREM.

See also CONFIGURATION, DESARGUES’ THEOREM

Desargues’ Theorem

If the three straight LINES joining the corresponding
VERTICES of two TRIANGLES ABC and A?B ?Cƒ all meet
in a point (the PERSPECTIVE CENTER), then the three
intersections of pairs of corresponding sides lie on a
straight LINE (the PERSPECTIVE AXIS). Equivalently, if
two TRIANGLES are PERSPECTIVE from a POINT, they
are PERSPECTIVE from a LINE.
The 10 lines and 10 3-line intersections form a 103

CONFIGURATION sometimes called DESARGUES’ CON-

FIGURATION.

Desargues’ theorem is SELF-DUAL upon application of
the DUALITY PRINCIPLE of PROJECTIVE GEOMETRY.

See also DESARGUES’ CONFIGURATION, DUALITY PRIN-

CIPLE, PAPPUS’S HEXAGON THEOREM, PASCAL LINES,
PASCAL’S THEOREM, PERSPECTIVE AXIS, PERSPECTIVE

CENTER, PERSPECTIVE TRIANGLES, SELF-DUAL
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Descartes Circle Theorem
A special case of APOLLONIUS’ PROBLEM requiring the
determination of a CIRCLE touching three mutually
TANGENT CIRCLES (also called the KISSING CIRCLES

PROBLEM). There are two solutions: a small circle
surrounded by the three original CIRCLES, and a large
circle surrounding the original three. Frederick



Soddy gave the FORMULA for finding the RADIUS of the
so-called inner and outer SODDY CIRCLES given the
RADII of the other three. The relationship is

2 k2
1 � k2

2 � k2
3 � k2

4

� �
� k1 � k2 � k3 � k4ð Þ2

;

where ki are the CURVATURES of the CIRCLES. Here,
the NEGATIVE solution corresponds to the outer
SODDY CIRCLE and the POSITIVE solution to the inner
SODDY CIRCLE.

This formula was known to Descartes and Viète
(Boyer and Merzbach 1991, p. 159), but Soddy ex-
tended it to SPHERES. In n -D space, n �2 mutually
touching n -SPHERES can always be found, and the
relationship of their CURVATURES is

n
Xn�2

i�1

k2
i

 !
�

Xn�2

i�1

ki

 !2

:

See also APOLLONIUS’ PROBLEM, FOUR COINS PRO-

BLEM, SANGAKU PROBLEM, SODDY CIRCLES, SPHERE

PACKING, TANGENT CIRCLES
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Descartes Folium
FOLIUM OF DESCARTES

Descartes Ovals
CARTESIAN OVALS

Descartes Total Angular Defect
The total angular defect is the sum of the ANGULAR

DEFECTS over all VERTICES of a POLYHEDRON, where
the ANGULAR DEFECT d at a given VERTEX is the
difference between the sum of face angles and 2p: For
any convex POLYHEDRON, the Descartes total angular
defect is

D�
X

i

di �4p: (1)

This is equivalent to the POLYHEDRAL FORMULA for a
closed rectilinear surface, which satisfies

D�2p(V �E �F) : (2)

A POLYHEDRON with N0 equivalent VERTICES is called
a PLATONIC SOLID and can be assigned a SCHLÄ FLI

SYMBOL fp; qg: It then satisfies

N0 �
4p
d 

(3)

and

d �2p�q 1 �
2

p

 !
p; (4)

so

N0 �
4p

2p � 2q � pq 
: (5)

See also ANGULAR DEFECT, PLATONIC SOLID, POLY-

HEDRAL FORMULA, POLYHEDRON

Descartes’ Formula
DESCARTES TOTAL ANGULAR DEFECT

Descartes’ Sign Rule
A method of determining the maximum number of
POSITIVE and NEGATIVE REAL ROOTS of a POLYNOMIAL.

For POSITIVE ROOTS, start with the SIGN of the
COEFFICIENT of the lowest (or highest) POWER. Count
the number of SIGN changes n as you proceed from
the lowest to the highest POWER (ignoring POWERS

which do not appear). Then n is the maximum
number of POSITIVE ROOTS. Furthermore, the number
of allowable ROOTS is n , n �2; n �4; .... For example,
consider the POLYNOMIAL

f (x) �x7 �x6 �x4 �x3 �x2 �x �1: (1)

Since there are three SIGN changes, there are a
maximum of three possible POSITIVE ROOTS.

For NEGATIVE ROOTS, starting with a POLYNOMIAL

f (x) ; write a new POLYNOMIAL f (�x) with the SIGNS of
all ODD POWERS reversed, while leaving the SIGNS of
the EVEN POWERS unchanged. Then proceed as before
to count the number of SIGN changes n . Then n is the
maximum number of NEGATIVE ROOTS. For example,
consider the POLYNOMIAL

f (x) �x7 �x6 �x4 �x3 �x2 �x �1; (2)

and compute the new POLYNOMIAL

f (�x)��x7�x6�x4�x3�x2�x�1: (3)

In this example, there are four SIGN changes, so there
are a maximum of four NEGATIVE ROOTS.

See also BOUND, ROOT, STURM FUNCTION
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Descartes-Euler Polyhedral Formula
POLYHEDRAL FORMULA

Descending Plane Partition

7 7 6 6 3 1
6 5 4 2

3 3
2

A descending plane partition of order n is a 2-D array
(possibly empty) of positive integers less than or
equal to n such that the left-hand edges are succes-
sively indented, rows are nonincreasing across, col-
umns are decreasing downwards, and the number of
entries in each row is strictly less than the largest
entry in that row. Implicit in this definition are the
requirements that no "holes" are allowed in the array,
all rows are flush against the top, and the diagonal
element must be filled if any element of its row is
filled. The above example shows a decreasing plane
partition of order seven.

3 3
3 3 3 2 3 1 3 2  f

2

The sole descending plane partition of order one is the
empty one ¥; the two of order two are "2" and f; and
the seven of order three are illustrated above. In
general, the number of descending plane partitions of
order n is equal to the number of �1/-bordered
ALTERNATING SIGN MATRICES: 1, 2, 7, 42, 429, ...
(Sloane’s A005130).

See also ALTERNATING SIGN MATRIX, PLANE PARTI-

TION
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Descriptive Geometry
PROJECTIVE GEOMETRY

Descriptive Set Theory
The study of DEFINABLE SETS and functions in POLISH

SPACES.
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Design
A formal description of the constraints on the possible
configurations of an experiment which is subject to
given conditions. A design is sometimes called an
EXPERIMENTAL DESIGN.

See also BLOCK DESIGN, COMBINATORICS, DESIGN

THEORY, HADAMARD DESIGN, HOWELL DESIGN, SPHE-

RICAL DESIGN, SYMMETRIC BLOCK DESIGN, TRANS-

VERSAL DESIGN

Design Theory
The study of DESIGNS and, in particular, NECESSARY

and SUFFICIENT conditions for the existence of a
BLOCK DESIGN.

See also BLOCK DESIGN, BRUCK-RYSER-CHOWLA THE-

OREM, DESIGN, FISHER’S BLOCK DESIGN INEQUALITY
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Desmic Surface
Let D1; D2; and D3 be tetrahedra in projective 3-space
P3: Then the tetrahedra are said to be desmically
related if there exist constants a; b; and g such that

aD1 �bD2 �gD3�0:

A desmic surface is then defined as a QUARTIC SUR-

FACE which can be written as

aD1�bD2�cD3�0

for desmically related tetrahedra D1; D2; and D3:
Desmic surfaces have 12 ORDINARY DOUBLE POINTS,
which are the vertices of three tetrahedra in 3-space
(Hunt).



See also QUARTIC SURFACE
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Destructive Dilemma
A formal argument in LOGIC in which it is stated that

1. P [Q and R [S (where [means "IMPLIES"), and
2. Either not-Q or not-S is true, from which two
statements it follows that either not-P or not-R is
true.

See also CONSTRUCTIVE DILEMMA, DILEMMA

Determinant
Determinants are mathematical objects which are
very useful in the analysis and solution of SYSTEMS OF

LINEAR EQUATIONS. As shown by CRAMER’S RULE, a
nonhomogeneous system of linear equations has a
nontrivial solution IFF the determinant of the sys-
tem’s MATRIX is NONZERO (i.e., the MATRIX is non-
singular). For example, eliminating x , y , and z from
the equations

a1x�a2y�a3z�0 (1)

b1x�b2y�b3z�0 (2)

c1x�c2y�c3z�0 (3)

gives the expression

a1b2c3�a1b3c2�a2b3c1�a2b1c3�a3b1c2�a3b2c1

�0; (4)

which is called the determinant for this system of
equation. Determinants are defined only for SQUARE

MATRICES. If the determinant of a MATRIX is 0, the
MATRIX is said to be a SINGULAR MATRIX.

The determinant of a MATRIX A;

a1 a2 
 
 
 an

b1 b2 
 
 
 bn

n n ::: n
z1 z2 
 
 
 zn

��������

��������
(5)

is commonly denoted det A; Aj j; or in component
notation as a9a1b2c3 
 
 
ð Þ; D a1b2c3 
 
 
ð Þ; or a1b2c3 
 
 
j j
(Muir 1960, p. 17).

A 2�2 determinant is defined to be

det
a b
c d

� �
�

a b
c d

����
�����ad�bc: (6)

A k�k determinant can be expanded "by MINORS" to
obtain

a11
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n
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a21

n
ak1

a22

n
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:::

 
 


a2(k�1)

n
ak(k�1)

������
������: (7)

A general determinant for a MATRIX A has a value

Aj j�
X

i

aija
ij; (8)

with no implied summation over j and where aij is the
COFACTOR of aij defined by

aij�(�1)i�jCij: (9)

Here, C is the (n�1)�(n�1) MATRIX formed by
eliminating row i and column j from A: This process
is called DETERMINANT EXPANSION BY MINORS (or
"Laplacian expansion by minors," sometimes further
shortened to simply "Laplacian expansion").

A determinant can also be computed by writing down
all PERMUTATIONS of f1; . . . ;ng; taking each permuta-
tion as the subscripts of the letters a , b , ..., and
summing with signs determined by ep�(�1)i(p);
where i(p) is the number of PERMUTATION INVERSIONS

in permutation p (Muir 1960, p. 16), and en1n2
. . . is

the PERMUTATION SYMBOL. For example, with n�3,
the permutations and the number of inversions they
contain are 123 (0), 132 (1), 213 (1), 231 (2), 312 (2),
and 321 (3), so the determinant is given by

a1 a2 a3

b1 b2 b3

c1 c2 c3

������
������

�a1b2c3�a1b3c2�a2b1c3�a2b3c1�a3b1c2

�a3b2c1: ð10Þ

If c is a constant and A an n�n SQUARE MATRIX, then

aAj j�an Aj j: (11)

Given an n�n determinant, the additive inverse is

�Aj j�(�1)n Aj j: (12)

Determinants are also DISTRIBUTIVE, so

ABj j�Aj j Bj j: (13)

This means that the determinant of a MATRIX INVERSE

can be found as follows:

Ij j�AA�1
�� ���Aj j A�1

�� ���1; (14)

where I is the IDENTITY MATRIX, so



Aj j� 1

A�1
�� �� : (15)

Determinants are MULTILINEAR in rows and columns,
since

a1 a2 a3

a4 a5 a6

a7 a8 a9

������
�������

a1 0 0
a4 a5 a6

a7 a8 a9

������
�������

0 a2 0
a4 a5 a6

a7 a8 a9

������
�������

0 0 a3

a4 a5 a6

a7 a8 a9

������
������

(16)

and

a1 a2 a3

a4 a5 a6

a7 a8 a9

������
�������

a1 a2 a3

0 a a6

0 a8 a9

������
�������

0 a2 a3

a4 a5 a6

0 a8 a9

������
�������

0 a2 a3

0 a5 a6

a7 a8 a9

������
������:

(17)

The determinant of the SIMILARITY TRANSFORMATION

of a matrix is equal to the determinant of the original
MATRIX

BAB�1
�� ���Bj j Aj j B�1

�� ���Bj j Aj j 1

Bj j
� Aj j: (18)

The determinant of a similarity transformation
minus a multiple of the unit MATRIX is given by

B�1AB�lI
�� ���B�1AB�B�1lIB

�� ���B�1(A�lI)B
�� ��

� B�1
�� �� A�lIj j Bj j�A�lIj j: (19)

The determinant of a MATRIX TRANSPOSE equals the
determinant of the original MATRIX,

Aj j�AT
�� ��; (20)

and the determinant of a COMPLEX CONJUGATE is
equal to the COMPLEX CONJUGATE of the determinant

Ā
�� ���Aj j: (21)

Let o be a small number. Then

I�eAj j�1�eTr(A)�O e2
� �

; (22)

where Tr(A) is the TRACE of A: The determinant takes
on a particularly simple form for a TRIANGULAR

MATRIX

a11 a21 
 
 
 ak1

0 a22 
 
 
 ak2

n n ::: n
0 0 n akk

��������

��������
�
Yk

n�1

ann: (23)

Important properties of the determinant include the
following, which include invariance under ELEMEN-

TARY ROW AND COLUMN OPERATIONS.

1. Switching two rows or columns changes the
sign.
2. Scalars can be factored out from rows and
columns.
3. Multiples of rows and columns can be added
together without changing the determinant’s va-
lue.
4. Scalar multiplication of a row by a constant c
multiplies the determinant by c .
5. A determinant with a row or column of zeros has
value 0.
6. Any determinant with two rows or columns
equal has value 0.

Property 1 can be established by induction. For a 2�
2 MATRIX, the determinant is

a1 b1

a2 b2

����
�����a1b2�b1a2�� b1a2�a1b2ð Þ

��
b1 a1

b2 a2

����
���� (24)

For a 3�3 MATRIX, the determinant is

a1 b1 c1

a2 b2 c2

a3 b3 c3

������
�������a1

b2 c2

b3 c3

����
�����b1

a2 c2

a3 c3

����
�����c1

a2 b2

a3 b3

����
����

�� a1
c2 b2

c3 b3

����
�����b1

c2 a2

c3 a3

����
�����c1

a2 b2

a3 b3

����
����

	 


��
a1 c1 b1

a2 c2 b2

a3 c3 b3

������
������

�� �a1
b2 c2

b3 c3

����
�����b1

a2 c2

a3 c3

����
�����c1

b2 a2

b3 a3

����
����
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b1 a1 c1

b2 a2 c2

b3 a3 c3

������
������

�� �a1
c2 b2

c3 b3
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a2 c2

a3 c3

����
�����c1

b2 a2

b3 a3

����
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��
c1 b1 a1

c2 b2 a2

c3 b3 a3

������
������: (25)

Property 2 follows likewise. For 2�2 and 3�3
matrices,

ka1 b1

ka2 b2

����
�����k a1b2ð Þ�k b1a2ð Þ�k

a1 b1

a2 b2

����
���� (26)

and

ka1 b1 c1

ka2 b2 c2

ka3 b3 c3

������
�������ka1

b2 c2

b3 c3

����
�����b1

ka2 c2

ka3 c3

����
����



�c1
ka2 b2

ka3 b3

����
�����k

a1 b1 c1

a2 b2 c2

a3 b3 c3

������
������: (27)

Property 3 follows from the identity

a1 �kb1 b1 c1

a2 �kb2 b2 c2

a3 �kb3 b3 c3

������
������

� a1 �kb1ð Þ

� b2 c2

b3 c3

����
�����b1

a �kb2 c2

a3 �kb3 c3

����
�����c1

a2 �kb2 b2

a3 �kb3 b3

����
����: (28)

If aij is an n �n MATRIX with aij REAL NUMBERS, then
det[aij] has the interpretation as the oriented n -
dimensional CONTENT of the PARALLELEPIPED

spanned by the column vectors [ai;1] ; ..., [ai ;n] in Rn ::
Here, "oriented" means that, up to a change of �or �
SIGN, the number is the n -dimensional CONTENT, but
the SIGN depends on the "orientation" of the column
vectors involved. If they agree with the standard
orientation, there is a �SIGN; if not, there is a �SIGN.
The PARALLELEPIPED spanned by the n -D vectors v1

through vi is the collection of points

t1v1 �. . .�tivi ; (29)

where tj is a REAL NUMBER in the CLOSED INTERVAL

[0; 1]::/

Several accounts state that Lewis Carroll (Charles
Dodgson ) sent Queen Victoria a copy of one of his
mathematical works, in one account, An Elementary
Treatise on Determinants . Heath (1974) states, "A
well-known story tells how Queen Victoria, charmed
by Alice in Wonderland , expressed a desire to receive
the author’s next work, and was presented, in due
course, with a loyally inscribed copy of An Elementary
Treatise on Determinants ," while Gattegno (1974)
asserts "Queen Victoria, having enjoyed Alice so
much, made known her wish to receive the author’s
other books, and was sent one of Dodgson’s mathe-
matical works." However, in Symbolic Logic (1896),
Carroll stated, "I take this opportunity of giving what
publicity I can to my contradiction of a silly story,
which has been going the round of the papers, about
my having presented certain books to Her Majesty
the Queen. It is so constantly repeated, and is such
absolute fiction, that I think it worth while to state,
once for all, that it is utterly false in every particular:
nothing even resembling it has occurred" (Mikkelson
and Mikkelson).

Hadamard (1893) showed that the absolute value of

the determinant of a COMPLEX n �n matrix with
entries in the UNIT DISK satisfies

det Aj j5nn=2 (30)

(Brenner 1972). The plots above show the distribution
of determinants for random n �n complex matrices
with entries satisfying aij

�� ��B1 for n�2, 3, and 4.

There are an infinite number of 3�3 determinants
with no 0 or 9 1 entries having unity determinant.
One parametric family is

�8n2�8n 2n�1 4n
�4n2�4n n�1 2n�1

�4n2�4n�1 n 2n�1

������
������: (31)

Specific examples having small entries include

2 3 2
4 2 3
9 6 7

������
������;

2 3 5
3 2 3
9 5 7

������
������;

2 3 6
3 2 3
17 11 16

������
������; . . . (32)

(Guy 1989, 1994).

See also CAYLEY-MENGER DETERMINANT, CIRCULANT

DETERMINANT, COFACTOR, CONDENSATION, CRAMER’S

RULE, DETERMINANT EXPANSION BY MINORS, DETER-

MINANT IDENTITIES, ELEMENTARY ROW AND COLUMN

OPERATIONS, HADAMARD’S MAXIMUM DETERMINANT

PROBLEM, HESSIAN DETERMINANT, HYPERDETERMI-

NANT, IMMANANT, JACOBIAN, KNOT DETERMINANT,
MATRIX, MINOR, PERMANENT, PFAFFIAN, SINGULAR

MATRIX, SYLVESTER’S DETERMINANT IDENTITY, SYL-

VESTER MATRIX, SYSTEM OF EQUATIONS, VANDER-

MONDE DETERMINANT, WRONSKIAN
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Determinant (Binary Quadratic Form)
The determinant of a BINARY QUADRATIC FORM

Au2 �2Buv �Cv2

is

D �B2 �AC:

It is equal to 1/4 of the corresponding DISCRIMINANT.

Determinant (Knot)
KNOT DETERMINANT

Determinant Expansion by Minors
Also known as "Laplacian" determinant expansion by
minors, expansion by minors is a technique for
computing the DETERMINANT of a given SQUARE

MATRIX M : Although efficient for small matrices,
techniques such as GAUSSIAN ELIMINATION are much
more efficient when the matrix size becomes large.

Let Mj j denote the DETERMINANT of a MATRIX M ; then

Mj j�
Xk

i�1

�1ð Þi�jaijMij ; (1)

where Mij is a so-called MINOR of M ; obtained by
taking the determinant of M with row i and column j
"crossed out." For example, for a 3 �3 matrix, the
above formula gives

a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������

�a11
a22 a23

a32 a33

����
�����a12

a21 a23

a31 a33

����
�����a13

a21 a22

a31 a32

����
����: (2)

The procedure can then be iteratively applied to
calculate the minors in terms of subminors, etc. The
factor (�1)i�j is sometimes absorbed into the minor as

Mj j�
Xk

i�1

aijCij ; (3)

in which case Cij is called a COFACTOR.

The equation for the determinant can also be formally
written as

Aj j�
X
p

(�1)I(p)
Yn

i�1

ai;p(i); (4)

where p ranges over all permutations of 1; 2; :::;nf g
and I(p) is the INVERSION NUMBER of p (Bressoud and
Propp 1999).

See also COFACTOR, CONDENSATION, DETERMINANT,
GAUSSIAN ELIMINATION
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Determinant Identities
Interesting DETERMINANT identities include

1 a b�c
1 b c�a
1 c a�b

������
�������0 (1)

(Muir 1960, p. 39),

a�b�c�d b c d
b�c�d�a c d a
c�d�a�b d a c
d�a�b�c a b c

��������

��������
�

1 b c d
1 c d a
1 d a b
1 a b c

��������

��������
� (a�b�c�d) (2)

(Muir 1960, p. 41),

1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

��������

��������
�(b�a)(c�a)(c�b)(d�a)(d�b)

� (d�c) (3)

(Muir 1960, p. 42),

bcd a a2 a3

cda b b2 b3

dab c c2 c3

abc d d2 d3

��������

��������
�

1 a2 a3 a4

1 b2 b3 b4

1 c2 c3 c4

1 d2 d3 d4

��������

��������
(4)

(Muir 1960, p. 47),

0 a2 b2 c2

a2 0 g2 b2

b2 g2 0 a2

c2 b2 a2 0

��������

��������
�

0 aa bb cg
aa 0 cg aa
bb cg 0 aa
cg bb aa 0

��������

��������
(5)

(Muir 1960, p. 42),

1 1 1 1
1 1�x 1 1
1 1 1�y 1
1 1 1 1�z

��������

��������
�xyz (6)

(Muir 1960, p. 44), and the CAYLEY-MENGER DETER-

MINANT



0 a b c
a 0 c b
b c 0 a
c b a 0

��������

��������
�

0 1  1  1
1 0 c2 b2

1 c2 0 a2

1 b2 a2 0

��������

��������
(7)

(Muir 1960, p. 46), which is closely related to HERON’S

FORMULA.

See also DETERMINANT
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Determinant Theorem
Given a MATRIX M ; the following are equivalent:

1. Mj j"0:/
2. The columns of M are linearly independent.
3. The rows of M are linearly independent.
4. Range(/M) � Rn ::/
5. Null(/M) � f0g:/
6. M has a MATRIX INVERSE.

See also DETERMINANT, MATRIX INVERSE, NULLSPACE,
RANGE (IMAGE)

Deterministic
A TURING MACHINE is called deterministic if there is
always at most one instruction associated with a
given present internal state/tape state pair (q, s ).
Otherwise, it is called nondeterministic (Itô 1987,
p. 137).

In prediction theory, let fXt g be a weakly stationary
process, and let Mt(X) be a subspace spanned by the
Xs (with s 5t) : If Mt(X) is independent of t so that
Mt(X) �M(X) for every t , then fXt g is said to be
deterministic (Itô 1987, p. 1463).

See also TURING MACHINE
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Developable Surface
A surface on which the GAUSSIAN CURVATURE K is
everywhere 0.

See also BINORMAL DEVELOPABLE, GAUSSIAN CURVA-

TURE, NORMAL DEVELOPABLE, SYNCLASTIC, TANGENT

DEVELOPABLE
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Deviation
The DIFFERENCE of a quantity from some fixed value,
usually the "correct" or "expected" one.

See also ABSOLUTE DEVIATION, AVERAGE ABSOLUTE

DEVIATION, DIFFERENCE, DISPERSION (STATISTICS),
MEAN DEVIATION, SIGNED DEVIATION, STANDARD

DEVIATION
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Devil on Two Sticks
DEVIL’S CURVE

Devil’s Curve

The devil’s curve was studied by G. Cramer in 1750
and Lacroix in 1810 (MacTutor Archive). It appeared
in Nouvelles Annales in 1858. The Cartesian equation
is

y4�a2y2�x4�b2x2; (1)

equivalent to

y2 y2�a2
� �

�x2 x2�b2
� �

; (2)

the polar equation is

r2 sin2 u�cos2 u
� �

�a2 sin2 u�b2 cos2 u; (3)

and the PARAMETRIC EQUATIONS are

x�cos t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 t � b2 cos2 t

sin2 t � cos2 t

s
ð4Þ

y�sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 t � b2 cos2 t

sin2 t � cos2 t

s
: (5)

The curve illustrated above corresponds to para-



meters a2 �1 and b2 �2 :/

A special case of the Devil’s curve is the so-called
"electric motor curve":

y2 y2 �96
� �

�x2 x2 �100
� �

(6)

(Cundy and Rollett 1989).
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Devil’s Needle Puzzle
BAGUENAUDIER

Devil’s Staircase

A plot of the WINDING NUMBER W resulting from
MODE LOCKING as a function of V for the CIRCLE MAP

un�1 � un �V�
K

2p
sin(2pun)

with K �1. (Since the CIRCLE MAP becomes MODE-

LOCKED, the WINDING NUMBER is independent of the
initial starting argument u0 :/) At each value of V; the
WINDING NUMBER is some RATIONAL NUMBER. The
result is a monotonic increasing "staircase" for which
the simplest RATIONAL NUMBERS have the largest
steps. The Devil’s staircase continuously maps the
interval [0; 1] onto [0; 1]; but is constant almost
everywhere (i.e., except on a CANTOR SET).
For K �1, the MEASURE of quasiperiodic states (/ V
IRRATIONAL) on the V/-axis has become zero, and the
measure of MODE-LOCKED state has become 1. The
DIMENSION of the Devil’s staircase
:0:8700 93 :7 �10 �4 :/

See also CANTOR FUNCTION, CIRCLE MAP, MINKOWS-

KI’S QUESTION MARK FUNCTION, WINDING NUMBER

(MAP)
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Diabolic Square
The term used by Hunter and Madachy (1975, p. 24)
and Madachy (1979, p. 87) to refer to a PANMAGIC

SQUARE.

See also PANMAGIC SQUARE
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Diabolical Cube
A 6-piece POLYCUBE DISSECTION of the 3 �3 CUBE.

See also CUBE DISSECTION, SOMA CUBE
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Diabolical Square
DIABOLIC SQUARE



Diabolo

One of the three 2-POLYABOLOES.

See also POLYABOLO

Diacaustic
The ENVELOPE of refracted rays for a given curve.

See also CATACAUSTIC, CAUSTIC
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Diagonal

A diagonal of a SQUARE MATRIX which is traversed in
the "southeast" direction. "The" diagonal (or "main
diagonal" or "principal diagonal"rpar; of an n �n
square matrix is the diagonal from a11 to ann :/

See also DIAGONAL MATRIX, DIAGONAL METRIC,
DIAGONAL (POLYGON), DIAGONAL (POLYHEDRON), DI-

AGONAL RAMSEY NUMBER, DIAGONAL SLASH, DIAGO-

NAL TRIANGLE, DIAGONALIZABLE MATRIX, SHALLOW

DIAGONAL, SKEW DIAGONAL, SUBDIAGONAL, SUPER-

DIAGONAL, TRIDIAGONAL MATRIX

Diagonal (Polygon)

A LINE SEGMENT connecting two nonadjacent VER-

TICES of a POLYGON. The number of ways a fixed
convex n -gon can be divided into TRIANGLES by
nonintersecting diagonals is Cn�2 (with Cn�3 diag-

onals), where Cn is a CATALAN NUMBER. This is
EULER’S POLYGON DIVISION PROBLEM. Counting the
number of regions determined by drawing the diag-
onals of a regular n -gon is a more difficult problem, as
is determining the number of n -tuples of CONCUR-

RENT diagonals (Kok 1972).
The number of regions which the diagonals of a
CONVEX POLYGON divide its center if no three are
concurrent in its interior is

N �
n
4

	 

�

n �1
4

	 

�

1

24
(n �1)(n �2) n2 �3n �12

� �
:

The first few values are 0, 0, 1, 4, 11, 25, 50, 91, 154,
246, ... (Sloane’s A006522).

See also CATALAN NUMBER, DIAGONAL (POLYHE-

DRON), EULER’S POLYGON DIVISION PROBLEM, POLY-

GON, VERTEX (POLYGON)
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Diagonal (Polyhedron)
A LINE SEGMENT connecting two nonadjacent sides of
a POLYHEDRON. Any polyhedron having no diagonals
must have a SKELETON which is a COMPLETE GRAPH

(Gardner 1975). The only SIMPLE POLYHEDRON with
no diagonals is the TETRAHEDRON. The only known
TOROIDAL POLYHEDRON with no diagonals is the
CSÁ SZÁ R POLYHEDRON.

See also CSÁ SZÁ R POLYHEDRON, TETRAHEDRON
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See also CSÁ SZÁ R POLYHEDRON, DIAGONAL (POLY-
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Diagonal (Solidus)
SOLIDUS

Diagonal Block Matrix
BLOCK DIAGONAL MATRIX

Diagonal Matrix
A diagonal matrix is a SQUARE MATRIX A OF THE FORM

aij�cidij; (1)

where dij is the KRONECKER DELTA, ci are constants,



and i; j �1; 2, ..., n , with is no implied summation
over indices. The general diagonal matrix is therefore
OF THE FORM

c1 0 
 
 
  0
0 c2 
 
 
  0
n n ::: n
0 0 
 
 
  cn

2
664

3
775 (2)

often denoted diag c1 ; c2 ; . . . ; cnð Þ: The diagonal matrix
with elements l � c1 ; . . .  ; cnf g can be computed in
Mathematica using DiagonalMatrix[l ].

Given a MATRIX EQUATION OF THE FORM

a11 
 
 
  a1n

n ::: n
an1 
 
 
  ann

2
4

3
5 l1 
 
 
  0

n ::: n
0 
 
 
  ln

2
4

3
5

�
l1 
 
 
  0
n ::: n
0 
 
 
  ln

2
4

3
5 a11 
 
 
  a1n

n ::: n
an1 
 
 
  ann

2
4

3
5; (3)

multiply through to obtain

a11 l1 
 
 
  a1n ln

n ::: n
an1 l1 
 
 
  ann ln

2
4

3
5� a11 l1 
 
 
  a1n l1

n ::: n
an1 ln 
 
 
  ann ln

2
4

3
5: (4)

Since in general, li " lj for i "j; this can be true only
if off-diagonal components vanish. Therefore, A must
be diagonal.

Given a diagonal matrix T; the MATRIX POWER can be
computed simply by taking each element to the power
in question,

Tn �

t1 0 
 
 
  0
0 t2 
 
 
  0
n n ::: n
0 0 
 
 
  tk

2
664

3
775

n

�

tn
1 0 
 
 
  0
0 tn

2 
 
 
  0
n n ::: n
0 0 
 
 
  tn

k

2
664

3
775: (5)

Similarly, a MATRIX EXPONENTIAL can be performed
simply by exponentiating each of the diagonal ele-
ments,

exp(A) �

et1 0 
 
 
  0
0 et2 
 
 
  0
n n ::: n
0 0 
 
 
  etk

2
664

3
775: (6)

See also CANONICAL BOX MATRIX, DIAGONAL, DIAG-

ONALIZABLE MATRIX, EXPONENTIAL MATRIX, MATRIX,
NORMAL MATRIX, PERSYMMETRIC MATRIX, SKEW

SYMMETRIC MATRIX, SYMMETRIC MATRIX, TRIANGU-

LAR MATRIX, TRIDIAGONAL MATRIX
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Diagonal Metric
A METRIC gij which is zero for i "j:/

See also METRIC

Diagonal Quadratic Form
If A �(aij) is a DIAGONAL MATRIX, a special case of a
SYMMETRIC MATRIX, then

Q( y) �vTAv �
X

aiiv
2
i

is a diagonal quadratic form, and Q(v;w) �vTAw is its
associated diagonal SYMMETRIC BILINEAR FORM.

For a general SYMMETRIC MATRIX A ; a SYMMETRIC

BILINEAR FORM Q may be diagonalized by a nonde-
generate n �n matrix C such that Q(C y;Cw) is a
diagonal form. That is, CTAC is a DIAGONAL MATRIX.
Note that C may not be an ORTHOGONAL MATRIX.

Here is a Mathematica function to find a matrix C
which will diagonalize a symmetric bilinear form,
given a SYMMETRIC MATRIX.

DiagonalizerMatrix[a_List?MatrixQ] : � Module[

{

q, ctr, t2,

v1 � Prepend[Table[0, {Length[a] - 1}], 1]

},

q[v_] : � v.a.v;

If[(t2 � q[v1]) ! � 0, v1 / �
Sqrt[Abs[t2]]];

ctr � {v1};

Do[

v1 � NullSpace[ctr.a][[1]];

If[(t2 � q[v1]) ! � 0, v1 / �
Sqrt[Abs[t2]]];

AppendTo[ctr, v1],

{Length[a] - 1}

];

Transpose[Sort[ctr, q[#1] � q[#2] &]]

]

For example, consider

A�
1 2
2 3

� �
:

Then taking

C�
1 �2
0 1

� �

gives

CTAC�
1 0
0 �1

� �
;

so A has SIGNATURE (1; 1):/

See also QUADRATIC FORM, SIGNATURE (MATRIX),
SYMMETRIC BILINEAR FORM, VECTOR SPACE



Diagonal Ramsey Number
A RAMSEY NUMBER OF THE FORM Rðk ; k; 2Þ:/

See also RAMSEY NUMBER

Diagonal Slash
CANTOR DIAGONAL METHOD

Diagonal Triangle

The TRIANGLE determined by the intersections of the
sides and diagonals of a CYCLIC QUADRILATERAL. Each
vertex is the POLE of the opposite side with respect to
the CIRCLE

See also CYCLIC QUADRILATERAL, POLE (INVERSION),
TRIANGLE
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Diagonalizable Matrix
This entry contributed by VIKTOR BENGTSSON

An n �n/-matrix A is said to be diagonalizable if it can
be written on the form

A �PDP �1 ;

where D is a DIAGONAL n �n matrix with the
EIGENVALUES of A as its entries and P is an INVER-

TIBLE n �n matrix consisting of the EIGENVECTORS

corresponding to the EIGENVALUES in D:/

The diagonalization theorem states that a quadratic
matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors. Diagonalization
(and most other forms of matrix factorisation) are
particularly useful when studying linear transforma-
tions, discrete dynamical systems, continuous sys-
tems, and so on.

See also CANTOR DIAGONAL ARGUMENT, DIAGONAL

MATRIX, DIAGONAL QUADRATIC FORM, INVERTIBLE

MATRIX

Diagonalization
MATRIX DIAGONALIZATION

Diagonals Problem
EULER BRICK

Diagram
A schematic mathematical illustration showing the
relationships between or properties of mathematical
objects.

See also ALTERNATING KNOT DIAGRAM, ARGAND

DIAGRAM, COXETER-DYNKIN DIAGRAM, DE BRUIJN

DIAGRAM, DYNKIN DIAGRAM, FERRERS DIAGRAM,
HASSE DIAGRAM, HEEGAARD DIAGRAM, KNOT DIA-

GRAM, LINK DIAGRAM, PLOT, STEM-AND-LEAF DIA-

GRAM, VENN DIAGRAM, VORONOI DIAGRAM, YOUNG

DIAGRAM

Diagrammatic Move
KNOT MOVE

Diameter

The diameter of a CIRCLE is the DISTANCE from a point
on the CIRCLE to a point p RADIANS away, and is the
maximum distance from one point on a circle to
another. The diameter of a SPHERE is the maximum
distance between two ANTIPODAL POINTS on the sur-
face of the sphere.
If r is the RADIUS of a CIRCLE or SPHERE, then d �2r:
The ratio of the CIRCUMFERENCE C of a CIRCLE or
GREAT CIRCLE of a SPHERE to the diameter d is PI,

p�
C

d
:

See also BROCARD DIAMETER, CIRCUMFERENCE, GEN-

ERALIZED DIAMETER, GRAPH DIAMETER, PI, RADIUS,
SPHERE, TRANSFINITE DIAMETER



Diamond

Another word for a RHOMBUS. The diamond is also the
name given to the unique 2-POLYIAMOND.

See also KITE, LOZENGE, PARALLELOGRAM, POLYIA-

MOND, QUADRILATERAL, RHOMBUS

Dice
A die (plural "dice") is a SOLID with markings on each
of its faces. The faces are usually all the same shape,
making PLATONIC SOLIDS and ARCHIMEDEAN SOLID

DUALS the obvious choices. The die can be "rolled" by
throwing it in the air and allowing it to come to rest
on one of its faces. Dice are used in many games of
chance as a way of picking RANDOM NUMBERS on
which to bet, and are used in board or role-playing
games to determine the number of spaces to move,
results of a conflict, etc. A COIN can be viewed as a
degenerate 2-sided case of a die.

The most common type of die is a six-sided CUBE with
the numbers 1�/ placed on the faces. The value of the
roll is indicated by the number of "spots" showing on
the top. For the six-sided die, opposite faces are
arranged to always sum to seven. This gives two
possible MIRROR IMAGE arrangements in which the
numbers 1, 2, and 3 may be arranged in a clockwise or
counterclockwise order about a corner. Commercial
dice may, in fact, have either orientation. The
illustrations below show 6-sided dice with counter-
clockwise and clockwise arrangements, respectively.

The CUBE has the nice property that there is an
upward-pointing face opposite the bottom face from
which the value of the "roll" can easily be read. This
would not be true, for instance, for a TETRAHEDRAL

die, which would have to be picked up and turned
over to reveal the number underneath (although it
could be determined by noting which number 1�/ was
not visible on one of the upper three faces). The
arrangement of spots corresponding to a roll of 5
on a six-sided die is called the QUINCUNX. There are
also special names for certain rolls of two six-sided
dice: two 1s are called SNAKE EYES and two 6s are
called BOXCARS.

Shapes of dice other than the usual 6-sided CUBE are
commercially available from companies such as Dice
& Games, Ltd. Diaconis and Keller (1989) show that
there exist "fair" dice other than the usual PLATONIC

SOLIDS and duals of the ARCHIMEDEAN SOLIDS, where

a fair die is one for which its symmetry group acts
transitively on its faces (i.e., ISOHEDRA). There are 30
isohedra.

The probability of obtaining p points (a roll of p ) on n
s -sided dice can be computed as follows. The number
of ways in which p can be obtained is the COEFFICIENT

of xp in

f (x)� x�x2�. . .�xs
� �n

(1)

since each possible arrangement contributes one
term. f (x) can be written as a MULTINOMIAL SERIES

f (x)�xn
Xs�1

i�0

xi

 !n

�xn 1 � xs

1 � x

 !n

; (2)

so the desired number c is the COEFFICIENT of xp in

xn 1�xsð Þn 1�xð Þ�n
: (3)

Expanding,
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so in order to get the COEFFICIENT of xp; include all
terms with

p�n�sk�l: (5)

c is therefore
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But p�sk�n > 0 only when kB(p�n)=s; so the
other terms do not contribute. Furthermore,
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so
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where xb c is the FLOOR FUNCTION, and
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sn
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(Uspensky 1937, pp. 23�/4).

Consider now s�6. For n�2 six-sided dice,
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for 25p512: (11)

The most common roll is therefore seen to be a 7, with
probability 6=36�1=6; and the least common rolls
are 2 and 12, both with probability 1/36.

For n�3 six-sided dice,

kmax ¼ np � 3
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and
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For three six-sided dice, the most common rolls are 10
and 11, both with probability 1/8; and the least
common rolls are 3 and 18, both with probability 1/
216.

For four six-sided dice, the most common roll is 14,
with probability 73/648; and the least common rolls
are 4 and 24, both with probability 1/1296.

In general, the likeliest roll /pL/ for n s -sided dice is
given by

pL(n; s)�
1

2
n(s�1)

$ %
; (14)

which can be written explicitly as
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For 6-sided dice, the likeliest rolls are given by
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or 7, 10, 14, 17, 21, 24, 28, 31, 35, ... for n�2, 3, ...
(Sloane’s A030123) dice. The probabilities corre-
sponding to the most likely rolls can be computed by
plugging p�pL into the general formula together
with

kL(n; s)�

1

2
n for n even

n(s � 1) � 1

2s

$ %
for n odd; s even
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2s
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Unfortunately, P(pL;n; s) does not have a simple
closed-form expression in terms of s and n . However,
the probabilities of obtaining the likeliest roll totals
can be found explicitly for a particular s . For n 6-
sided dice, the probabilities are 1/6, 1/8, 73/648, 65/
648, 361/3888, 24017/279936, 7553/93312, ... for
n�2, 3, ....

The probabilities for obtaining a given total using n 6-
sided dice are shown above for n�1, 2, 3, and 4 dice.
They can be seen to approach a GAUSSIAN DISTRIBU-

TION as the number of dice is increased.



See also BOXCARS, COIN TOSSING, CRAPS, DE MÉ RÉ ’S

PROBLEM, EFRON’S DICE, ISOHEDRON, POKER, QUIN-

CUNX, SICHERMAN DICE, SNAKE EYES, YAHTZEE
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Dichroic Polynomial
A POLYNOMIAL ZG(q ; v) in two variables for abstract
GRAPHS. A GRAPH with one VERTEX has Z �q . Adding
a VERTEX not attached by any EDGES multiplies the Z
by q . Picking a particular EDGE of a GRAPH G , the
POLYNOMIAL for G is defined by adding the POLY-

NOMIAL of the GRAPH with that EDGE deleted to v
times the POLYNOMIAL of the graph with that EDGE

collapsed to a point. Setting v ��1 gives the number
of distinct VERTEX colorings of the GRAPH. The
dichroic POLYNOMIAL of a PLANAR GRAPH can be
expressed as the SQUARE BRACKET POLYNOMIAL of
the corresponding ALTERNATING LINK by

ZG(q; v) �qN =2BL(G) ;

where N is the number of VERTICES in G . Dichroic
POLYNOMIALS for some simple GRAPHS are

ZK1
�q

ZK2
�q2 �vq

ZK3
�q3 �3vq2 �3v2q �v3 :
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Dickman Function
The probability that a random integer between 1 and
x will have its GREATEST PRIME FACTOR 5xa ap-
proaches a limiting value F(a) as x 0 �; where
F(a)�1 for a > 1 and

F(a)�g
a

0

F
t

1 � t

 !
dt

t

for 05a51 (Dickman 1930, Knuth 1997). Similarly,
the second-largest prime factor will be 5xb with
approximate probability G(b); where G(b)�1 for b]

1=2 and

G(b)�g
b

0

G
t
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 !
�F

t
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 !" #
dt
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See also GREATEST PRIME FACTOR, PRIME FACTORS
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Dicone
BICONE

Dictionary Order
LEXICOGRAPHIC ORDER

Dido’s Problem
Find the figure bounded by a line which has the
maximum AREA for a given PERIMETER. The solution
is a SEMICIRCLE. The problem is based on a passage
from Virgil’s Aeneid : "The Kingdom you see is
Carthage, the Tyrians, the town of Agenor;

But the country around is Libya, no folk to meet in
war.

Dido, who left the city of Tyre to escape her brother,

Rules here–a long a labyrinthine tale of wrong

Is hers, but I will touch on its salient points in
order....

Dido, in great disquiet, organised her friends for
escape.

They met together, all those who harshly hated the
tyrant

Or keenly feared him: they seized some ships which
chanced to be ready...

They came to this spot, where to-day you can behold
the mighty

Battlements and the rising citadel of New Carthage,



And purchased a site, which was named ‘Bull’s Hide’
after the bargain

By which they should get as much land as they could
enclose with a bull’s hide."

See also ISOPERIMETRIC PROBLEM, ISOVOLUME PRO-

BLEM, PERIMETER, SEMICIRCLE
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Diesis
The symbol %; also called the DOUBLE DAGGER (Bring-
hurst 1997, p. 277).
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Diffeomorphic

See also DIFFEOMORPHISM

Diffeomorphism
A diffeomorphism is a MAP between MANIFOLDS which
is DIFFERENTIABLE and has a DIFFERENTIABLE in-
verse.

See also ANOSOV DIFFEOMORPHISM, AXIOM A DIFFEO-

MORPHISM, DIFFEOMORPHIC, PESIN THEORY, SYM-

PLECTIC DIFFEOMORPHISM, TANGENT MAP

Difference
The difference of two numbers n1 and n2 is n1 �n2 ;
where the MINUS sign denotes SUBTRACTION.

See also BACKWARD DIFFERENCE, FINITE DIFFER-

ENCE, FORWARD DIFFERENCE, MINUS, SUBTRACTION,
SYMMETRIC DIFFERENCE

Difference Equation
A difference equation is the discrete analog of a
DIFFERENTIAL EQUATION. A difference equation in-
volves a FUNCTION with INTEGER-valued arguments
f (n) in a form like

f (n) �f (n �1) �g(n) ; (1)

where g is some FUNCTION. The above equation is the
discrete analog of the first-order ORDINARY DIFFER-

ENTIAL EQUATION

f ?(x) �g(x) (2)

Examples of difference equations often arise in

DYNAMICAL SYSTEMS. Examples include the iteration
involved in the MANDELBROT and JULIA SET defini-
tions,

f (n �1) �f (n)2 �c ; (3)

with c a constant, as well as the LOGISTIC EQUATION

f (n �1) �rf (n) 1�f (n)½ �; (4)

with r a constant.

See also FINITE DIFFERENCE, ORDINARY DIFFEREN-

TIAL EQUATION, RECURRENCE RELATION
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Difference of Successes
If x1=n1 and x2=n2 are the observed proportions from
standard NORMALLY DISTRIBUTED samples with pro-
portion of success u; then the probability that

w�
x1

n1

�
x2

n2

(1)

will be as great as observed is

Pd�1�2g
dj j

0

f(t)dt (2)

where

d�
w

sw

(3)

sw�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
û 1�û
� � 1

n1�

1

n2

 !vuut (4)



û �
x1 � x2

n1 � n2

: (5)

Here, û is the UNBIASED ESTIMATOR. The SKEWNESS

and KURTOSIS of this distribution are

g2
1 �

n1 � n2ð Þ2

n1n2 n1 � n2ð Þ
1 � 4 ̂u(1 � û)

û(1 � û) 
(6)

g2 �
n2

1 � n1n2 � n2
2

n1n2 n1 � n2ð Þ
1 � 6 ̂u 1 � û

� �
û 1 � û
� � : (7)

Difference Operator
BACKWARD DIFFERENCE, FORWARD DIFFERENCE

Difference Quotient

Dhf (x) �
f (x � h) � f (x)

h
�

Df

h
:

It gives the slope of the SECANT LINE passing through
f (x) and f (x �h) : In the limit n 0 0; the difference
quotient becomes the PARTIAL DERIVATIVE

lim
h01

Dx(h)f (x; y) �
@f

@x 
:

Difference Set
Let G be a GROUP of ORDER h and D be a set of k
elements of G . If the set of differences di �dj contains
every NONZERO element of G exactly l times, then D
is a (h; k; l)/-difference set in G of ORDER n �k � l : If
l �1 ; the difference set is called planar. The quad-
ratic residues in the FINITE FIELD GF(11) form a
difference set. If there is a difference set of size k in a
group G , then 2 k

2

� �
must be a multiple of Gj j�1 ; where

k
2

� �
is a BINOMIAL COEFFICIENT.

See also BRUCK-RYSER-CHOWLA THEOREM, FIRST

MULTIPLIER THEOREM, PRIME POWER CONJECTURE
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Difference Table
A table made by subtracting adjacent entries in a
sequence, then repeating the process with those
numbers.

See also DIVIDED DIFFERENCE, FINITE DIFFERENCE,
INTERPOLATION, QUOTIENT-DIFFERENCE TABLE
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Different
Two quantities are said to be different (or "unequal")
if they are not EQUAL.

The term "different" also has a technical usage
related to MODULES. Let a MODULE M in an INTEGRAL

DOMAIN D1 for R
ffiffiffiffi
D

p� �
be expressed using a two-

element basis as

M� j1;j2½ �;

where j1 and j2 are in D1: Then the different of the
MODULE is defined as

D�D(M)�
j1 j2

j?
1 j?

2

����
�����j1j

?
2�j?

1j2:

The different D"0 IFF j1 and j2 are linearly
independent. The DISCRIMINANT is defined as the
square of the different.

See also DISCRIMINANT (MODULE), EQUAL, MODULE
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Different Prime Factors
DISTINCT PRIME FACTORS

Differentiable
A REAL FUNCTION is said to be differentiable at a point
if its DERIVATIVE exists at that point. The notion of
differentiability can also be extended to COMPLEX

FUNCTIONS (leading to the CAUCHY-RIEMANN EQUA-

TIONS and the theory of HOLOMORPHIC FUNCTIONS),
although a few additional subtleties arise in COMPLEX

DIFFERENTIABILITY that are not present in the real
case.

Amazingly, there exist CONTINUOUS FUNCTIONS which
are nowhere differentiable. Two examples are the
BLANCMANGE FUNCTION and WEIERSTRASS FUNCTION.

See also ANALYTIC FUNCTION, BLANCMANGE FUNC-

TION, CAUCHY-RIEMANN EQUATIONS, COMPLEX DIF-

FERENTIABLE, CONTINUOUS FUNCTION, DERIVATIVE,
HOLOMORPHIC FUNCTION, PARTIAL DERIVATIVE,
WEAKLY DIFFERENTIABLE, WEIERSTRASS FUNCTION
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Differentiable Manifold
SMOOTH MANIFOLD

Differential
A ONE-FORM.

See also DIFFERENTIAL K -FORM, EXACT DIFFEREN-

TIAL, INEXACT DIFFERENTIAL, ONE-FORM

Differential Calculus
That portion of "the" CALCULUS dealing with DERIVA-

TIVES.

See also INTEGRAL CALCULUS

Differential Equation
An equation which involves the DERIVATIVES of a
function as well as the function itself. If PARTIAL

DERIVATIVES are involved, the equation is called a
PARTIAL DIFFERENTIAL EQUATION; if only ordinary
DERIVATIVES are present, the equation is called an
ORDINARY DIFFERENTIAL EQUATION. Differential equa-
tions play an extremely important and useful role in
applied math, engineering, and physics, and much
mathematical and numerical machinery has been
developed for the solution of differential equations.

See also ADAMS’ METHOD, DIFFERENCE EQUATION,
INTEGRAL EQUATION, ORDINARY DIFFERENTIAL EQUA-

TION, PARTIAL DIFFERENTIAL EQUATION
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Differential Evolution
A simple EVOLUTION STRATEGY which is fairly fast
and reasonably robust.

See also EVOLUTION STRATEGIES, GENETIC ALGO-

RITHM, OPTIMIZATION THEORY
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Differential Form
DIFFERENTIAL K -FORM

Differential Geometry
Differential geometry is the study of RIEMANNIAN

MANIFOLDS. Differential geometry deals with metrical
notions on MANIFOLDS, while DIFFERENTIAL TOPOLOGY

deals with those nonmetrical notions of MANIFOLDS.

See also DIFFERENTIAL TOPOLOGY
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Differential Ideal
A differential ideal J on a MANIFOLD M is an IDEAL in
the EXTERIOR ALGEBRA of DIFFERENTIAL K -FORMS on
M which is also CLOSED under the EXTERIOR DERIVA-

TIVE d . That is, for any differential form a and any
form b 	I; then

1. a ffl b 	I; and
2. d b 	I/

For example, I� xdy;dx ffldyh i is a differential ideal
on M �R2 :/

A smooth map f : X 0 M is called an integral of J if
the PULLBACK MAP of all forms in J vanish on X , i.e.,
f +(I)�0:/

See also DIFFERENTIAL FORM, ENVELOPE (FORM),
INTEGRABLE (DIFFERENTIAL IDEAL), MANIFOLD

Differential k-Form
A differential k -form is a TENSOR of RANK k which is
antisymmetric under exchange of any pair of indices.
The number of ALGEBRAICALLY INDEPENDENT compo-
nents in n -D is given by the BINOMIAL COEFFICIENT

n
k

� �
: In particular, a ONE-FORM v1 (often simply called

a "differential") is a quantity



v1 �b1dx1 �b2dx2 �. . .�bndxn ; (1)

where b1 �b1 x1 ; x2 ; . . . ; xnð Þ and b2 �b2 x1 ; x1 ; . . .  ; xnð Þ
are the components of a COVARIANT TENSOR. Chan-
ging variables from x to y gives

v1 �
Xn

i�1

bidxi �
Xn

i�1

Xn

j�1

bi

@xi

@yj

dyj �
Xn

j�1

bjdyj ; (2)

where

b̄j �
Xn

i�1

bj

@xi

@yj

; (3)

which is the covariant transformation law.

A p -ALTERNATING MULTILINEAR FORM on a VECTOR

SPACE V corresponds to an element of fflp V +; the pth
EXTERIOR POWER of the DUAL SPACE to V . A differ-
ential p -form on a MANIFOLD is a SECTION of the
VECTOR BUNDLE fflp T +M ; the pth EXTERIOR POWER of
the COTANGENT BUNDLE. Hence, it is possible to write
a p -form in coordinates byX

Ij j�p

aIdxi1
ffl. . .ffldxip

(4)

where I ranges over all increasing subsets of p
elements from 1 ; . . . ;nf g; and the aI are functions.

An important operation on differential forms, the
EXTERIOR DERIVATIVE, is used in the celebrated
STOKES’ THEOREM. The EXTERIOR DERIVATIVE d of a
p form is a (p �1)/-form. In fact, by definition, if xi is
the coordinate function, thought of as a ZERO-FORM,
then d xið Þ�dxi :/

Another important operation on forms is the WEDGE

PRODUCT, or exterior product. If a is a p -form and b is
q -form, then a ffl b is a p �q form. Also, a p -form can
be CONTRACTED with an r -vector, i.e., a SECTION of
fflr TM ; to give a (p �r)/-form, or if r �p , an (r �p)/-
vector. If the manifold has a METRIC, then there is an
operation dual to the exterior product, called the
INTERIOR PRODUCT.

In higher dimensions, there are more kinds of
differential forms. For instance, on the TANGENT

SPACE to R2 there is the ZERO-FORM 1, two ONE-FORMS

dx and dy , and one TWO-FORM dx ffldy: A ONE-FORM

can be written uniquely as fdx �gdy : In four dimen-
sions, dx1 ffldx2 �dx3 ffldx4 is a TWO-FORM which
cannot be written as a fflb:/

The minimum number of terms necessary to write a
form is sometimes called the rank of the form, usually
in the case of a TWO-FORM. When a form has rank one,
it is called DECOMPOSABLE. Another meaning for rank
of a form is its rank as a TENSOR, in which case a p -
form can be described as an ANTISYMMETRIC TENSOR

of rank p , in fact of type (0;p) : The rank of a form can
also mean the dimension of its ENVELOPE, in which
case the rank is an integer-valued function. With the

latter definition of rank, a p -form is decomposable IFF

it has rank p .

When n is the dimension of a MANIFOLD M , then n is
also the dimension of the TANGENT SPACE TMx :
Consequently, an n -form always has rank one, and
for p �n , a p -form must be zero. Hence, an n -form is
called a TOP-DIMENSIONAL FORM. A TOP-DIMENSIONAL

FORM can be INTEGRATED without using a METRIC.
Consequently, a p -form can be integrated on a p -
dimensional SUBMANIFOLD. Differential forms are a
VECTOR SPACE (with a C -INFINITY TOPOLOGY) and
therefore have a dual space. Submanifolds represent
an element of the dual via integration, so it is
common to say that they are in the dual space of
forms, which is the space of CURRENTS. With a
METRIC, the HODGE STAR operator + defines a map
from p -forms to (n�p)/-forms such that 		�(�1)p(n�p):/

When f : M 0 N is a SMOOTH MAP, it pushes forward
TANGENT VECTORS from TM to TN according to the
JACOBIAN f	: Hence, a differential form on N pulls
back to a differential form on M .

f	a y1ffl. . .fflyp

� �
�a f	y1ffl. . .fflf	yp

� �
(5)

The PULLBACK MAP is a linear map which commutes
with the EXTERIOR DERIVATIVE,

f +(da)�df +(a): (6)

See also ANGLE BRACKET, BRA, COVARIANT TENSOR,
EXTERIOR ALGEBRA, EXTERIOR DERIVATIVE, HODGE

STAR, INTEGRATION (FORM), JACOBIAN, KET, MANI-

FOLD, ONE-FORM, STOKES’ THEOREM, SYMPLECTIC

FORM, TANGENT BUNDLE, TENSOR, TWO-FORM,
WEDGE PRODUCT, ZERO-FORM
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Differential Operator
The OPERATOR representing the computation of a
DERIVATIVE,

D̃�
d

dx
: (1)

The second derivative is then denoted D̃2; the third
D̃3; etc. The INTEGRAL is denoted D̃�1:/



The differential operator satisfies the identity

x �
d

dx 
��ex2 =2 d

dx 
e �x2 =2 (2)

(Arfken 1985, p. 720). Furthermore,

2x �
d

dx

 !n

1 �Hn(x) ; (3)

where Hn(x) is a HERMITE POLYNOMIAL.

The symbol q can be used to denote the operator

q�z
d

dz 
(4)

(Bailey 1935, p. 8).

See also CONVECTIVE DERIVATIVE, DERIVATIVE, FRAC-

TIONAL DERIVATIVE, GRADIENT
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Differential Structure
EXOTIC R4, EXOTIC SPHERE

Differential Topology
The motivating force of TOPOLOGY, consisting of the
study of smooth (differentiable) MANIFOLDS. Differ-
ential topology deals with nonmetrical notions of
MANIFOLDS, while DIFFERENTIAL GEOMETRY deals
with metrical notions of MANIFOLDS.

See also DIFFERENTIAL GEOMETRY
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Differentiating Under the Integral Sign
INTEGRATION UNDER THE INTEGRAL SIGN, LEIBNIZ

INTEGRAL RULE

Differentiation
The computation of a DERIVATIVE.

See also CALCULUS, DERIVATIVE, INTEGRAL, INTEGRA-

TION
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Digamma Function

A SPECIAL FUNCTION which is given by the LOGARITH-

MIC DERIVATIVE of the GAMMA FUNCTION (or, depend-
ing on the definition, the LOGARITHMIC DERIVATIVE of
the FACTORIAL). Because of this ambiguity, two
different notations are sometimes (but not always)
used, with

C(z)�
d

dz
lnG(z)�

G?(z)

G(z)
(1)

defined as the LOGARITHMIC DERIVATIVE of the GAMMA

FUNCTION G(z); and

F(z)�
d

dz
lnz! (2)

defined as the LOGARITHMIC DERIVATIVE of the FAC-

TORIAL function. The two are connected by the
relationship

F(z)�C(z�1): (3)

The nth DERIVATIVE of C(z) is called the POLYGAMMA

FUNCTION, denoted cn(z): The notation c0(z)�C(z) is
therefore frequently used for the digamma function
itself, and Erdélyi et al. (1981) use the notation c(z)
for C(z): The function C(z)�c0(z) is returned by the
function PolyGamma[z ] or PolyGamma[0, z ] in Math-
ematica .
From a series expansion of the FACTORIAL function,

c0(z�1)�
d

dz

� lim
n0�

[lnn!�z lnn�ln(z�1)�ln(z�2)

�. . .�ln(z�n) (4)



� lim
n0�

lnn �
1

z � 1 
�

1

z � 2 
�. . .�

1

z � n

 !
(5)

��g �
X�
n �1

1

z � 1 
�

1

n

 !
(6)

��g �
X�
n �1

z

n(n � z) 
(7)

�lnz �
1

2z 
�
X�
n �1

B2n

2nz2n 
; (8)

where g is the EULER-MASCHERONI CONSTANT and B2n

are BERNOULLI NUMBERS.

The digamma function satisfies

c0(z) �g
�

0

e �t

t
�

e�zt

1 � e �t

 !
dt : (9)

For integral z �n;

c0(n) ��g �
Xn�1

k �1

1

k 
��g �Hn �1 ; (10)

where g is the EULER-MASCHERONI CONSTANT and Hn

is a HARMONIC NUMBER. Other identities include

dc0

dz
�
X�
n�0

1

(z � n)2 (11)

c0(1 �z) � c0(z) �p cot( pz) (12)

c0(z �1) � c0(z) �
1

z 
(13)

c0(2z) �
1

2 
c0(z) �

1

2 
c0 z �

1

2

 !
�ln2 : (14)

Special values are

c0

1

2

 !
��g �2 ln2 (15)

c0(1) ��g : (16)

At integral values,

c0(n �1) ��g �
Xn

k �1

1

k 
; (17)

and at half-integral values,

c0

1

2 
�n

 !
��g �2 ln2 �2

Xn

k �1

1

2k � 1

��g �Hn�1 =2 ; (18)

where Hn is a HARMONIC NUMBER. At rational argu-

ments, c0(p=q) is given by GAUSS’S DIGAMMA THEO-

REM.

Sums and differences of c1(r =s) for small integral r
and s can be expressed in terms of CATALAN’S

CONSTANT and p:/

See also BARNES’ G -FUNCTION, G -FUNCTION, GAMMA

FUNCTION, GAUSS’S DIGAMMA THEOREM, HARMONIC

NUMBER, HURWITZ ZETA FUNCTION, LOGARITHMIC

DERIVATIVE, MELLIN’S FORMULA, POLYGAMMA FUNC-

TION, RAMANUJAN FUNCTION
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Digimetic
A CRYPTARITHM in which DIGITS are used to represent
other DIGITS.

See also CRYPTARITHM

Digit
The number of digits D in an INTEGER n is the
number of numbers in some base (usually 10) re-
quired to represent it. The numbers 1 to 9 are
therefore single digits, while the numbers 10 to 99
are double digits. Terms such as "double-digit infla-
tion" are occasionally encountered, although this
particular usage has thankfully not been needed in
the U.S. for some time. The number of (base 10) digits
in a number n can be calculated as

D� 1�log10 nj jb c;

where xb c is the FLOOR FUNCTION.

The number of digits d in the number n represented
in base b is given by the Mathematica function
DigitCount[n , b , d ], with DigitCount[n , b ] giving
a list of the numbers of each digit in n .

Numbers in base-10 which are divisible by their digits
are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44,
48, 55, 66, 77, 88, 99, 111, 112, 115, 122, ... (Sloane’s
A034838). Numbers which are divisible by the sum of
their digits are called HARSHAD NUMBERS: 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 12, 18, 20, 21, 24, ... (Sloane’s A005349).
Numbers which are divisible by both their digits and



the sum of their digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24,
36, 48, 111, 112, 126, 132, 135, 144, ... (Sloane’s
A050104). Numbers which are equal to (i.e., not just
divisible by) the product of their divisors and the sum
of their divisors are called SUM-PRODUCT NUMBERS

and are given by 1, 135, 144, ... (Sloane’s A038369).

b order Sloane Numbers (/]b)/

2 increasing

2 nondecreasing A000225 3, 7, 15, 31, 63,
127, 255, 511,
1023, ...

2 nonincreasing A031997 2, 3, 4, 6, 7, 8, 12,
14, 15, 16, 24, 28,
30, 31, ...

2 decreasing 2

10 increasing A009993 12, 13, 14, 15, 16,
17, 18, 19, 23, 24,
25, 26, ...

10 nondecreasing A009994 11, 12, 13, 14, 15,
16, 17, 18, 19, 22,
23, 24, ...

10 nonincreasing A009996 10, 11, 20, 21, 22,
30, 31, 32, 33, 40,
41, 42, ...

10 decreasing A009995 10, 20, 21, 30, 31,
32, 40, 41, 42, 43,
50, 51, ...

16 increasing A023784 18, 19, 20, 21, 22,
23, 24, 25, 26, 27,
28, 29, ...

16 nondecreasing A023757 17, 18, 19, 20, 21,
22, 23, 24, 25, 26,
27, 28, ...

16 nonincreasing A023771 17, 32, 33, 34, 48,
49, 50, 51, 64, 65,
66, 67, ...

16 decreasing A023797 32, 33, 48, 49, 50,
64, 65, 66, 67, 80,
81, 82, ...

In HEXADECIMAL, numbers with increasing digits are
called METADROMES, those with nondecreasing digits
are called PLAINDRONES, those with nonincreasing
digits are called NIALPDROMES, and those with de-
creasing digits are called KATADROMES.

The count of numbers with strictly increasing digits
in base-b is 2b�1; and the number with strictly
decreasing digits is 2b�1:/

See also 196-ALGORITHM, ADDITIVE PERSISTENCE,
DIGIT PRODUCT, DIGIT SERIES, DIGIT-SHIFTING CON-

STANTS, DIGITADDITION, DIGITAL ROOT, FACTORION,
FIGURES, HARSHAD NUMBER, KATADROME, LENGTH

(NUMBER), METADROME, MULTIPLICATIVE PERSIS-

TENCE, NARCISSISTIC NUMBER, NIALPDROME, PLAIN-

DROME, SCIENTIFIC NOTATION, SIGNIFICANT DIGITS,
SMITH NUMBER, SUM-PRODUCT NUMBER
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Digit Block
Let uB(n) be the number of DIGIT BLOCKS of a
sequence B in the base-b expansion of n , which can
be implemented in Mathematica as

u[n_Integer, b_Integer, block_List] :�
Count[Partition[IntegerDigits[n, b],

Length[block], 1], block]

The following table gives the sequence uB(n)f g for a
number of blocks B.

B Sloane sequence

00 A056973 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0,
0, 3, ...

01 A037800 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
0, 0, ...

10 A033264 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1,
0, 1, ...

11 A014081 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2,
3, 0, ...

000 A056974 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 2, ...

001 A056975 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, ...

010 A056976 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, ...

011 A056977 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, ...

100 A056978 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 1, ...

101 A056979 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
0, 0, ...



110 A056980 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
0, 0, ...

111 A014082 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
2, 0, ...

See also DIGIT SERIES, RUDIN-SHAPIRO SEQUENCE
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Digit Product
Let sb(n) be the sum of the base-b digits of n , and
e(n) �(�1)S2(n) the THUE-MORSE SEQUENCE, then

Y�
n�0

2n � 1

2n � 2

 !e(n)

�
1

2

ffiffiffi
2

p
: (1)

See also DIGIT, DIGIT SERIES
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Digit Series
Let sb(n) be the sum of the base-b digits of n , which
can be implemented in Mathematica as

s[n_, b_] : � Plus @@ IntegerDigits[n, b]

Then

X�
n�1

sb(n)

n(n � 1) 
�

b

b � 1 
lnb ; (1)

the b �2 case of which was given in the 1981 Putnam
competition (Allouche 1992). In addition,

X�
n�1

s2

2n � 1

n2(n � 1)2 �
p2

9 
(2)

X�
n�2

s2(n)½ �2 8n3 � 4n2 � n � 1

4n n2 � 1ð Þ 4n2 � 1ð Þ
�

17

24 
�ln2 (3)

(Allouche 1992, Allouche and Shallit 1992).

Let u(n) be the number of DIGIT BLOCKS of 11 in the
binary expansion of n , then

X�
n�1

u(n)

n(n � 1) 
�

3

2
ln2�

1

4
p (4)

(Allouche 1992).

See also DIGIT, DIGIT BLOCK, DIGIT PRODUCT
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Digitaddition
Start with an INTEGER n , known as the GENERATOR.
Add the SUM of the GENERATOR’s digits to obtain the
digitaddition n?: A number can have more than one
GENERATOR. If a number has no GENERATOR, it is
called a SELF NUMBER. The sum of all numbers in a
digitaddition series is given by the last term minus
the first plus the sum of the DIGITS of the last.

If the digitaddition process is performed on n? to yield
its digitaddition nƒ; on nƒ to yield n§; etc., a single-
digit number, known as the DIGITAL ROOT of n , is
eventually obtained. The digital roots of the first few
integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8,
9, 1, ... (Sloane’s A010888).

If the process is generalized so that the kth (instead
of first) powers of the digits of a number are
repeatedly added, a periodic sequence of numbers is
eventually obtained for any given starting number n .
If the original number n is equal to the sum of the kth
powers of its digits, it is called a NARCISSISTIC

NUMBER. If the original number is the smallest
number in the eventually periodic sequence of num-
bers in the repeated k -digitadditions, it is called a
RECURRING DIGITAL INVARIANT. Both NARCISSISTIC

NUMBERS and RECURRING DIGITAL INVARIANTS are
relatively rare.

The only possible periods for repeated 2-digitaddi-
tions are 1 and 8, and the periods of the first few
positive integers are 1, 8, 8, 8, 8, 8, 1, 8, 8, 1, .... The
possible periods p for n -digitadditions are summar-
ized in the following table, together with digitaddi-
tions for the first few integers and the corresponding
sequence numbers. Some periods do not show up for a
long time. For example, a period-6 10-digitaddition
does not occur until the number 266.

n Sloane ps n -Digitadditions

2 Sloane’s
A031176

1, 8 1, 8, 8, 8, 8, 8, 1, 8, 8,
1, ...

3 Sloane’s
A031178

1, 2, 3 1, 1, 1, 3, 1, 1, 1, 1, 1,
1, 1, 1, 3, ...



4 Sloane’s
A031182

1, 2, 7 1, 7, 7, 7, 7, 7, 7, 7, 7,
1, 7, 1, 7, 7, ...

5 Sloane’s
A031186

1, 2, 4, 6,
10, 12, 22,
28

1, 12, 22, 4, 10, 22, 28,
10, 22, 1, ...

6 Sloane’s
A031195

1, 2, 3, 4,
10, 30

1, 10, 30, 30, 30, 10,
10, 10, 3, 1, 10, ...

7 Sloane’s
A031200

1, 2, 3, 6,
12, 14, 21,
27, 30, 56,
92

1, 92, 14, 30, 92, 56, 6,
92, 56, 1, 92, 27, ...

8 Sloane’s
A031211

1, 25, 154 1, 25, 154, 154, 154,
154, 25, 154, 154, 1,
25, 154, 154, 1, ...

9 Sloane’s
A031212

1, 2, 3, 4,
8, 10, 19,
24, 28, 30,
80, 93

1, 30, 93, 1, 19, 80, 4,
30, 80, 1, 30, 93, 4, 10,
...

10 Sloane’s
A031213

1, 6, 7, 17,
81, 123

1, 17, 123, 17, 17, 123,
123, 123, 123, 1, 17,
123, 17 ...

The numbers having period-1 2-digitadded sequences
are also called HAPPY NUMBERS. The first few num-
bers having period p n -digitadditions are summar-
ized in the following table, together with their
sequence numbers.

n p Sloane Members

2 1 Sloane’s
A007770

1, 7, 10, 13, 19, 23, 28,
31, 32, ...

2 8 Sloane’s
A031177

2, 3, 4, 5, 6, 8, 9, 11, 12,
14, 15, ...

3 1 Sloane’s
A031179

1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 12, ...

3 2 Sloane’s
A031180

49, 94, 136, 163, 199,
244, 316, ...

3 3 Sloane’s
A031181

4, 13, 16, 22, 25, 28, 31,
40, 46, ...

4 1 Sloane’s
A031183

1, 10, 12, 17, 21, 46, 64,
71, 100, ...

4 2 Sloane’s
A031184

66, 127, 172, 217, 228,
271, 282, ...

4 7 Sloane’s
A031185

2, 3, 4, 5, 6, 7, 8, 9, 11,
13, 14, ...

5 1 Sloane’s
A031187

1, 10, 100, 145, 154, 247,
274, ...

5 2 Sloane’s
A031188

133, 139, 193, 199, 226,
262, ...

5 4 Sloane’s
A031189

4, 37, 40, 55, 73, 124,
142, ...

5 6 Sloane’s
A031190

16, 61, 106, 160, 601,
610, 778, ...

5 10 Sloane’s
A031191

5, 8, 17, 26, 35, 44, 47,
50, 53, ...

5 12 Sloane’s
A031192

2, 11, 14, 20, 23, 29, 32,
38, 41, ...

5 22 Sloane’s
A031193

3, 6, 9, 12, 15, 18, 21, 24,
27, ...

5 28 Sloane’s
A031194

7, 13, 19, 22, 25, 28, 31,
34, 43, ...

6 1 Sloane’s
A011557

1, 10, 100, 1000, 10000,
100000, ...

6 2 Sloane’s
A031357

3468, 3486, 3648, 3684,
3846, ...

6 3 Sloane’s
A031196

9, 13, 31, 37, 39, 49, 57,
73, 75, ...

6 4 Sloane’s
A031197

255, 466, 525, 552, 646,
664, ...

6 10 Sloane’s
A031198

2, 6, 7, 8, 11, 12, 14, 15,
17, 19, ...

6 30 Sloane’s
A031199

3, 4, 5, 16, 18, 22, 29, 30,
33, ...

7 1 Sloane’s
A031201

1, 10, 100, 1000, 1259,
1295, ...

7 2 Sloane’s
A031202

22, 202, 220, 256, 265,
526, 562, ...

7 3 Sloane’s
A031203

124, 142, 148, 184, 214,
241, 259, ...

7 6 7, 70, 700, 7000, 70000,
700000, ...

7 12 Sloane’s
A031204

17, 26, 47, 59, 62, 71, 74,
77, 89, ...

7 14 Sloane’s
A031205

3, 30, 111, 156, 165, 249,
294, ...

7 21 Sloane’s
A031206

19, 34, 43, 91, 109, 127,
172, 190, ...

7 27 Sloane’s
A031207

12, 18, 21, 24, 39, 42, 45,
54, 78, ...

7 30 Sloane’s
A031208

4, 13, 16, 25, 28, 31, 37,
40, 46, ...

7 56 Sloane’s
A031209

6, 9, 15, 27, 33, 36, 48,
51, 57, ...



7 92 Sloane’s
A031210

2, 5, 8, 11, 14, 20, 23, 29,
32, 35, ...

8 1 1, 10, 14, 17, 29, 37, 41,
71, 73, ...

8 25 2, 7, 11, 15, 16, 20, 23,
27, 32, ...

8 154 3, 4, 5, 6, 8, 9, 12, 13, 18,
19, ...

9 1 1, 4, 10, 40, 100, 400,
1000, 1111, ...

9 2 127, 172, 217, 235, 253,
271, 325, ...

9 3 444, 4044, 4404, 4440,
4558, ...

9 4 7, 13, 31, 67, 70, 76, 103,
130, ...

9 8 22, 28, 34, 37, 43, 55, 58,
73, 79, ...

9 10 14, 38, 41, 44, 83, 104,
128, 140, ...

9 19 5, 26, 50, 62, 89, 98, 155,
206, ...

9 24 16, 61, 106, 160, 337,
373, 445, ...

9 28 19, 25, 46, 49, 52, 64, 91,
94, ...

9 30 2, 8, 11, 17, 20, 23, 29,
32, 35, ...

9 80 6, 9, 15, 18, 24, 33, 42,
48, 51, ...

9 93 3, 12, 21, 27, 30, 36, 39,
45, 54, ...

10 1 Sloane’s
A011557

1, 10, 100, 1000, 10000,
100000, ...

10 6 266, 626, 662, 1159,
1195, 1519, ...

10 7 46, 58, 64, 85, 122, 123,
132, ...

10 17 2, 4, 5, 11, 13, 20, 31, 38,
40, ...

10 81 17, 18, 37, 71, 73, 81,
107, 108, ...

10 123 3, 6, 7, 8, 9, 12, 14, 15,
16, 19, ...

See also 196-ALGORITHM, ADDITIVE PERSISTENCE,

DIGIT, DIGITAL ROOT, MULTIPLICATIVE PERSISTENCE,
NARCISSISTIC NUMBER, RECURRING DIGITAL INVAR-

IANT

References
Trott, M. "Numerical Computations." §1.2.1 in The Mathe-

matica Guidebook, Vol. 1: Programming in Mathematica.
New York: Springer-Verlag, 2000.

Digital Root
Consider the process of taking a number, adding its
DIGITS, then adding the DIGITS of numbers derived
from it, etc., until the remaining number has only one
DIGIT. The number of additions required to obtain a
single DIGIT from a number n is called the ADDITIVE

PERSISTENCE of n , and the DIGIT obtained is called the
digital root of n .

For example, the sequence obtained from the starting
number 9876 is (9876, 30, 3), so 9876 has an ADDITIVE

PERSISTENCE of 2 and a digital root of 3. The digital
roots of the first few integers are 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 2, 3, 4, 5, 6, 7, 9, 1, ... (Sloane’s A010888). The
digital root of an INTEGER n can therefore be com-
puted without actually performing the iteration using
the simple congruence formula

n (mod 9) n f0 (mod 9)
9 n �0 (mod 9):

*

See also ADDITIVE PERSISTENCE, DIGITADDITION,
KAPREKAR NUMBER, MULTIPLICATIVE DIGITAL ROOT,
MULTIPLICATIVE PERSISTENCE, NARCISSISTIC NUM-

BER, RECURRING DIGITAL INVARIANT, SELF NUMBER

References
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Digit-Extraction Algorithm
An algorithm which allows digits of a given number to
be calculated without requiring the computation of
earlier digits. The BAILEY-BORWEIN-PLOUFFE ALGO-

RITHM for PI is the best-known such algorithm, but an
algorithm also exists for E .

See also BAILEY-BORWEIN-PLOUFFE ALGORITHM

Digit-Shifting Constants
Given a REAL NUMBER x , find the powers of a base b
that will shift the digits of x a number of places n to
the left. This is equivalent to solving

bx�bnx (1)



or

x �n �logbx: (2)

The solution is given by

x ��
W �b�nlnbð Þ

lnb
; (3)

where W(x) is LAMBERT’S W -FUNCTION.

The above plot shows logbx �n �x for b �10 and
small values of n . As can be seen, there are two
distinct solutions, corresponding to two different
BRANCHES of W(x) in (3). For n �1, 2, ..., these
solutions are approximately given by 0.137129,
0.0102386, 0.00100231, 0.000100023, 0.0000100002,
..., and 1, 2.37581, 3.55026, 4.66925, 5.76046, ...,
respectively. For example,

100 :0102385... �1 :02385 . . . (4)

and

102 :37581... �237:581 . . . (5)

See also BASE (NUMBER), DIGIT, LOGARITHM

Digon

The DEGENERATE POLYGON (corresponding to a LINE

SEGMENT) with SCHLÄ FLI SYMBOL {2}.

See also LINE SEGMENT, POLYGON, TRIGONOMETRY

VALUES PI/2

Digraph
DIRECTED GRAPH

Dihedral Angle

The ANGLE u between two PLANES. The dihedral angle
between the planes

A1x �B1y �C1z �D1 �0 (1)

A2x �B2y �C2z �D2 �0 (2)

which have normal vectors N1 � A1 ;B1 ;C1ð Þ and N2 �
A2 ; B2 ;C2ð Þ is simply given via the DOT PRODUCT of the

normals,

cos u �N1 �N2

�
A1A2 � B1B2 � C1C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 � B2

1 � C2
1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 � B2
2 � C2

2

p : (3)

The dihedral angle between planes in a general
TETRAHEDRON is closely connected with the face areas
via a generalization of the LAW OF COSINES.

See also ANGLE, PLANE, TETRAHEDRON, TRIHEDRON,
VERTEX ANGLE
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Dihedral Group
A GROUP of symmetries for an n -sided REGULAR

POLYGON, denoted Dn : The ORDER of Dn is 2n:/

See also FINITE GROUP D3, FINITE GROUP D4
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Dihedral Prime
A number n such that the "LED representation" of n
(i.e., the arrangement of horizonal and vertical lines
seen on a digital clock or pocket calculator), n upside
down, n in a mirror, and n upside-down-and-in-a-
mirror are all primes. The digits of n are therefore
restricted to 0, 1, 2, 5, and 8. The first few dihedral



primes are 2, 11, 101, 181, 1181, 1811, 18181, 108881,
110881, 118081, 120121, ... (Sloane’s A038136).
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Dijkstra Tree
The shortest path-spanning TREE from a VERTEX of a
GRAPH.

Dijkstra’s Algorithm
An ALGORITHM for finding a GRAPH GEODESIC, i.e., the
shortest path between two VERTICES in a GRAPH. It
functions by constructing a shortest-path tree from
the initial vertex to every other vertex in the graph.
The algorithm is implemented as Dijkstra[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

See also FLOYD’S ALGORITHM, GRAPH GEODESIC
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Dilation

A SIMILARITY TRANSFORMATION which transforms
each line to a PARALLEL line whose length is a fixed
multiple of the length of the original line. The
simplest dilation is therefore a TRANSLATION, and
any dilation that is not merely a TRANSLATION is
called a CENTRAL DILATION. Two triangles related by a
CENTRAL DILATION are said to be PERSPECTIVE TRIAN-

GLES because the lines joining corresponding vertices
CONCUR. A dilation corresponds to an EXPANSION plus
a TRANSLATION.

See also EXPANSION, PARALLEL, PERSPECTIVE TRIAN-

GLES, TRANSLATION
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Dilative Rotation
SPIRAL SIMILARITY

Dilcher’s Formula

X
15k5n

n
k

	 

(�1)k �1

km

�
X

15i1 5i2 5...5im 5n

1

i1i2 
 
 
 im

; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT (Dilcher 1995,

Flajolet and Sedgewick 1995, Prodinger 2000). An
inverted version is given by

X
1 5k 5n

n
k

	 

(�1)k �1

X
1 5i15i25...5im�k

1

i1i2 
 
 
 im

�
X

1 5k 5n

1

km 
�H(m)

n ; (2)

where H(k)
n is a HARMONIC NUMBER of order m

(Hernández 1999, Prodinger 2000). A Q -ANALOG of
(1) is given by

X
1 5k 5n

n
k

� �
q

(�1)k�1
q

k � 1
2

	 

� (m � 1)k

1 � qkð Þm

�
X

1 5i15i25...5im5n

qi1

1 � qi1


 
 
 qim

1 � qim

; (3)

where

n
k

� �
q

�
(q; q)n

(q; q)k(q; q)n�k

(4)

is a GAUSSIAN POLYNOMIAL (Prodinger 2000).

See also BINOMIAL IDENTITY
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Dilemma
Informally, a situation in which a decision must be
made from several alternatives, none of which is
obviously the optimal one. In formal LOGIC, a di-
lemma is a specific type of argument using two
conditional statements which may take the form of
a CONSTRUCTIVE DILEMMA or a DESTRUCTIVE DI-

LEMMA.

See also CONSTRUCTIVE DILEMMA, DESTRUCTIVE

DILEMMA, MONTY HALL PROBLEM, PARADOX, PRISON-

ER’S DILEMMA

Dilogarithm

A special case of the POLYLOGARITHM Lin(z) for n�2.
It is denoted Li2(z); or sometimes L2(z): The notation
Li2(x) for the dilogarithm is unfortunately similar to
that for the LOGARITHMIC INTEGRAL Li(x): The diloga-
rithm can be defined by the sum

Li2(z)�
X�
k�1

zk

k2
(1)

or the integral

Li2(z)�g
0

z

ln(1 � t)dt

t
: (2)

There are also two different commonly encountered
normalizations for the Li2(z) function, both denoted
L(z); and one of which is known as the ROGERS L -

FUNCTION.
The major functional equations for the dilogarithm
are given by

Li2(x)�Li2(�x)�
1

2
Li2 x2
� �

(3)

Li2(1�x)�Li2 1�x�1
� �

��
1

2
(ln x)2 (4)

Li2(x)�Li2(1�x)�
1

6
p2�(ln x) ln(1�x) (5)

Li2(�x)�Li2(1�x)�
1

2
Li2 1�x2
� �

��
1

12
p2�(ln x) ln(x�1): (6)

A complete list of Li2(x) which can be evaluated in
closed form is given by

Li2(�1)��
1

12
p2 (7)

Li2(0)�0 (8)

Li2

1

2

 !
�

1

12
p2�

1

2
(ln 2)2 (9)

Li2(1)�
1

6
p2 (10)

Li2(�f)��
1

10
p2�(ln f)2 (11)

��
1

10
p2� csch�1 2

� �2
(12)

Li2(�f�1)��
1

15
p2�

1

2
(ln f)2 (13)

��
1

15
p2�

1

2
csch�1 2
� �2

(14)

Li f�2
� �

�
1

15
p2�(ln f)2 (15)

�
1

15
p2� csch�1 2

� �2
(16)

Li f�1
� �

�
1

10
p2�(ln f)2 (17)

�
1

10
p2� csch�1 2

� �2
; (18)

where f is the GOLDEN RATIO (Lewin 1981, Borwein et
al. 1998).

There are several remarkable identities involving the
DILOGARITHM function. Ramanujan gave the identi-
ties



Li2

1

3

 !
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1
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Li2
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 !
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1
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1

6
(ln 3)2 (19)

Li2 �
1

2

 !
�

1

5
Li2

1

9

 !

��
1

18 
p2 �ln 2 ln 3 �

1
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1
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Li2

1

4

 !
�

1

3
Li2

1

9

 !

�
1

18 
p2 �2 ln 2 ln 3 �2(ln 2)2 �

2

3
(ln 3)2 ð21Þ
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1
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1
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1

6
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1

2
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9
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 !2

(23)

Li2

1

2

ffiffiffi
5

p
�1

� � !
�

1

10 
p2 � ln

1

2
1 �

ffiffiffi
5

p� � !" #2

(24)

(Berndt 1994, Gordon and McIntosh 1997), and
Bailey et al. show that

p2 �36Li2

1

2

 !
�36Li2

1

4

 !
�12Li2

1

8

 !
�6Li2

1

64

 !

(25)

12Li2

1

2

 !
�p2 �6 ln 2ð Þ2 (26)

See also ABEL’S DUPLICATION FORMULA, ABEL’S

FUNCTIONAL EQUATION, CLAUSEN FUNCTION, IN-

VERSE TANGENT INTEGRAL, L -ALGEBRAIC NUMBER,
LEGENDRE’S CHI-FUNCTION, LOGARITHM, POLYLOGA-

RITHM, ROGERS L -FUNCTION, SPENCE’S FUNCTION,
SPENCE’S INTEGRAL, TRILOGARITHM, WATSON IDENTI-

TIES
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Dilworth’s Lemma
The WIDTH of a set P is equal to the minimum number
of CHAINS needed to COVER P . Equivalently, if a set P
of ab �1 elements is PARTIALLY ORDERED, then P
contains a CHAIN of size a �1 or an ANTICHAIN of size
b �1 : Letting N be the CARDINALITY of P , W the
WIDTH, and L the LENGTH, this last statement says
N 5LW : Dilworth’s lemma is a generalization of the
ERDOS-SZEKERES THEOREM. RAMSEY’S THEOREM gen-
eralizes Dilworth’s lemma.

See also ANTICHAIN, CHAIN, COMBINATORICS, ERDOS-

SZEKERES THEOREM, RAMSEY’S THEOREM
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Dilworth’s Theorem
DILWORTH’S LEMMA

Dimension
The dimension of an object is a topological measure of
the size of its covering properties. Roughly speaking,
it is the number of coordinates needed to specify a
point on the object. For example, a RECTANGLE is two-
dimensional, while a CUBE is three-dimensional. The
dimension of an object is sometimes also called its
"dimensionality."

The prefix "hyper-" is usually used to refer to the 4-
(and higher-) dimensional analogs of 3-dimensional
objects, e.g. HYPERCUBE, HYPERPLANE.

The notion of dimension is important in mathematics
because it gives a precise parameterization of the
conceptual or visual complexity of any geometric
object. In fact, the concept can even be applied to
abstract objects which cannot be directly visualized.
For example, the notion of time can be considered as
one-dimensional, since it can be thought of as con-
sisting of only "now," "before" and "after." Since



"before" and "after," regardless of how far back or how
far into the future they are, are extensions, time is
like a line, a 1-dimensional object.

To see how lower and higher dimensions relate to
each other, take any geometric object (like a POINT,
LINE, CIRCLE, PLANE, etc.), and "drag" it in an
opposing direction (drag a POINT to trace out a LINE,
a LINE to trace out a box, a CIRCLE to trace out a
CYLINDER, a DISK to a solid CYLINDER, etc.). The result
is an object which is qualitatively "larger" than the
previous object, "qualitative" in the sense that,
regardless of how you drag the original object, you
always trace out an object of the same "qualitative
size." The POINT could be made into a straight LINE, a
CIRCLE, a HELIX, or some other CURVE, but all of these
objects are qualitatively of the same dimension. The
notion of dimension was invented for the purpose of
measuring this "qualitative" topological property.

Finite collections of objects (e.g., points in space) are
considered 0-dimensional. Objects that are "dragged"
versions of 0-dimensional objects are then called 1-
dimensional. Similarly, objects which are dragged 1-
dimensional objects are 2-dimensional, and so on.
Dimension is formalized in mathematics as the
intrinsic dimension of a TOPOLOGICAL SPACE. This
dimension is called the LEBESGUE COVERING DIMEN-

SION (also known simply as the TOPOLOGICAL DIMEN-

SION). The archetypal example is EUCLIDEAN n -space
Rn ; which has topological dimension n . The basic
ideas leading up to this result (including the DIMEN-

SION INVARIANCE THEOREM, DOMAIN INVARIANCE THE-

OREM, and LEBESGUE COVERING DIMENSION) were
developed by Poincaré, Brouwer, Lebesgue, Urysohn,
and Menger.

There are several branchings and extensions of the
notion of topological dimension. Implicit in the notion
of the LEBESGUE COVERING DIMENSION is that dimen-
sion, in a sense, is a measure of how an object fills
space. If it takes up a lot of room, it is higher
dimensional, and if it takes up less room, it is lower
dimensional. HAUSDORFF DIMENSION (also called
FRACTAL DIMENSION) is a fine tuning of this definition
that allows notions of objects with dimensions other
than INTEGERS. FRACTALS are objects whose HAUS-

DORFF DIMENSION is different from their TOPOLOGICAL

DIMENSION.

The concept of dimension is also used in ALGEBRA,
primarily as the dimension of a VECTOR SPACE over a
FIELD. This usage stems from the fact that VECTOR

SPACES over the reals were the first VECTOR SPACES to
be studied, and for them, their topological dimension
can be calculated by purely algebraic means as the
CARDINALITY of a maximal linearly independent sub-
set. In particular, the dimension of a SUBSPACE of Rn

is equal to the number of LINEARLY INDEPENDENT

VECTORS needed to generate it (i.e., the number of
VECTORS in its BASIS). Given a transformation A of Rn ;

dim[Range(A)] �dim[Null(A)] �dim(Rn) :

See also 4-DIMENSIONAL GEOMETRY, BASIS (VECTOR

SPACE), CAPACITY DIMENSION, CODIMENSION, CORRE-

LATION DIMENSION, EXTERIOR DIMENSION, FRACTAL

DIMENSION, HAUSDORFF DIMENSION, HAUSDORFF-BE-

SICOVITCH DIMENSION, KAPLAN-YORKE DIMENSION,
KRULL DIMENSION, LEBESGUE COVERING DIMENSION,
LEBESGUE DIMENSION, LYAPUNOV DIMENSION, POSET

DIMENSION, Q -DIMENSION, SIMILARITY DIMENSION,
TOPOLOGICAL DIMENSION
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Dimension Axiom
One of the EILENBERG-STEENROD AXIOMS. Let X be a
single point space. Hn(X) �0 unless n �0, in which
case H0(X) �0 where G are some GROUPS. The H0 are
called the COEFFICIENTS of the HOMOLOGY THEORY

H( � ) :/

See also EILENBERG-STEENROD AXIOMS, HOMOLOGY

(TOPOLOGY)

Dimension Invariance Theorem
/Rn is HOMEOMORPHIC to Rm 

IFF n �m . This theorem
was first proved by Brouwer.

See also DOMAIN INVARIANCE THEOREM

Dimensionality
DIMENSION

Dimensionality Theorem
For a FINITE GROUP of h elements with an ni/th
dimensional ith irreducible representation,



X
i

n2
i �h

Diminished Polyhedron
A UNIFORM POLYHEDRON with pieces removed.

Diminished Rhombicosidodecahedron

JOHNSON SOLID J76 :/
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Dini Expansion
An expansion based on the ROOTS of

x�n xJt
n(x) �HJn(x)½ ��0;

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND,
is called a Dini expansion.

See also BESSEL FUNCTION FOURIER EXPANSION
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Dini’s Surface

A surface of constant NEGATIVE CURVATURE obtained

by twisting a PSEUDOSPHERE and given by the PARA-

METRIC EQUATIONS

x �a cos u sin v (1)

y �a sin u sin v (2)

z �a cos v �ln tan
1

2 
v

 !" #( )
�bu : (3)

The above figure corresponds to a �1, b �0:2; u 	
[0; 4p]; and v 	 (0; 2]:/
The coefficients of the FIRST FUNDAMENTAL FORM are

E �
1

2
a2 �2b2 �a2 cos(2v)
� �

(4)

F �ab cos v cot v (5)

G �a2 cot2 v; (6)

the coefficients of the SECOND FUNDAMENTAL FORM

are

e ��
a2 cos v sin vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p (7)

f �
ab cos vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p (8)

g �
a2 cot vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p ; (9)

and the AREA ELEMENT is

dA �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
cos v: (10)

The GAUSSIAN and MEAN CURVATURES are given by

K��
1

a2 � b2
(11)

H��
cot(2v)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p : (12)

See also PSEUDOSPHERE
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Dini’s Test
A test for the convergence of FOURIER SERIES. Let

fx(t)�f (x�t)�f (x�t)�2f (x);

then if



g
p

0

fx(t)j jdt

t

is FINITE, the FOURIER SERIES converges to f (x) at x .

See also FOURIER SERIES
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Dinitz Problem
Given any assignment of n -element sets to the n2

locations of a square n �n array, is it always possible
to find a PARTIAL LATIN SQUARE? The fact that such a
PARTIAL LATIN SQUARE can always be found for a 2 �2
array can be proven analytically, and techniques
were developed which also proved the existence for
4 �4 and 6 �6 arrays. However, the general problem
eluded solution until it was answered in the affirma-
tive by Galvin in 1993 using results of Janssen
(1993ab) and F. Maffray.

See also PARTIAL LATIN SQUARE
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Diocles’s Cissoid
CISSOID OF DIOCLES

Diophantine Equation
An equation in which only INTEGER solutions are
allowed. HILBERT’S 10TH PROBLEM asked if a techni-
que for solving a general Diophantine existed. A
general method exists for the solution of first degree
Diophantine equations. However, the impossibility of
obtaining a general solution was proven by Julia
Robinson and Martin Davis in 1970, following proof of
the result that the relation n�F2m (where F2m is a
FIBONACCI NUMBER) is Diophantine by Yuri Matiya-
sevich (Matiyasevich 1970, Davis 1973, Davis and
Hersh 1973, Davis 1982, Matiyasevich 1993). More
specifically, Matiyasevich showed that there is a
polynomial P in n , m , and a number of other

variables x , y , z , ... having the property that n�
F2m IFF there exist integers x , y , z , ... such that
P(n;m; x; y; z; . . .)�0::/

Jones and Matiyasevich (1982) proved that no ALGO-

RITHMS can exist to determine if an arbitrary Dio-
phantine equation in nine variables has solutions. As
a consequence of this result, it can be proved that
there does not exists a general algorithm for solving a
QUARTIC DIOPHANTINE EQUATION, although the algo-
rithm for constructing such an unsolvable quartic
Diophantine equation can require arbitrarily many
variables (Matiyasevich 1993).

Ogilvy and Anderson (1988) give a number of Dio-
phantine equations with known and unknown solu-
tions.

A linear Diophantine equation (in two variables) is an
equation of the general form

ax�by�c; (1)

where solutions are sought with a , b , and c INTEGERS.
Such equations can be solved completely, and the first
known solution was constructed by Brahmagupta.
Consider the equation

ax�by�1: (2)

Now use a variation of the EUCLIDEAN ALGORITHM,
letting a�r1 and b�r2

r1�q1r2�r3 (3)

r2�q2r3�r4 (4)

rn�3�qn�3rn�2�rn�1 (5)

rn�2�qn�2rn�1�1: (6)

Starting from the bottom gives

1�rn�2�qn�2rn�1 (7)

rn�1�rn�3�qn�3rn�2; (8)

so

1�rn�2�qn�2(rn�3�qn�3rn�2)

��qn�2rn�3�(1�qn�2qn�3)rn�2: (9)

Continue this procedure all the way back to the top.

Take as an example the equation

1027x�712y�1: (10)

Proceed as follows.

1027� 712�1�315 ½ 1��165� 1027� 238�712 	
712� 315�2� 82 ½ 1� 73� 712�165�315 ½
315� 82�3�69 ½ 1��19� 315� 73� 82 ½

82� 69�1�13 ½ 1� 16� 82� 19� 69 ½
69� 13�5� 4 ½ 1� �3� 69� 16� 13 ½
13� 4�3� 1 ¡ 1� 1� 13� 3� 4 ½

1� 0� 4� 1� 1 ½

The solution is therefore x��165, y�238. The



above procedure can be simplified by noting that the
two left-most columns are offset by one entry and
alternate signs, as they must since

1 ��Ai �1ri �Airi�1 (11)

ri�1 �ri�1 �riqi�1 (12)

1 �Airi �1 � Aiqi �1 �Ai�1

� �
; (13)

so the COEFFICIENTS of ri�1 and ri�1 are the same and

Ai�1 ��(Aiqi�1 �Ai�1) : (14)

Repeating the above example using this information
therefore gives

1027 � 712 �1�315½1 ��165 � 1027� 238 �712	
712 � 315 �2� 82 ½1 � 73 � 712�165 �315½
315 � 82 �3�69 ½1 ��19 � 315� 73� 82 ½

82 � 69 �1�13 ½1 � 16 � 82� 19� 69 ½
69 � 13 �5� 4 ½1 ��3 � 69� 16� 13 ½
13 � 4 �3� 1 ¡1 � 1 � 13� 3 � 4 ½

1 � 0 � 4� 1 � 1 ½

and we recover the above solution.

Call the solutions to

ax �by �1 (15)

/x0 and y0 : If the signs in front of ax or by are
NEGATIVE, then solve the above equation and take
the signs of the solutions from the following table:

equation x y

/ax �by �1/ /x0/ /y0/

/ax �by �1/ /x0/ /�y0/

/�ax �by �1/ /�x0/ /y0/

/�ax �by �1/ /�x0/ /�y0/

In fact, the solution to the equation

ax �by �1 (16)

is equivalent to finding the CONTINUED FRACTION for
a =b; with a and b RELATIVELY PRIME (Olds 1963). If
there are n terms in the fraction, take the (n �1)/th
convergent pn�1 =qn�1 : But

pnqn�1 �pn�1qn �(�1)n ; (17)

so one solution is x0 �(�1)nqn�1 ; y0 �(�1)npn�1 ; with
a general solution

x �x0 �kb (18)

y �y0 �ka (19)

with k an arbitrary INTEGER. The solution in terms of
smallest POSITIVE INTEGERS is given by choosing an
appropriate k .

Now consider the general first-order equation OF THE

FORM

ax �by �c : (20)

The GREATEST COMMON DIVISOR d �GCD(a; b) can be
divided through yielding

a?x �b?y �c ?; (21)

where a?�a=d; b?�b=d; and c ?�c=d : If d¶c ; then c?
is not an INTEGER and the equation cannot have a
solution in INTEGERS. A necessary and sufficient
condition for the general first-order equation to
have solutions in INTEGERS is therefore that d½c: If
this is the case, then solve

a?x �b ?y �1 (22)

and multiply the solutions by c?; since

a ?(c ?x) �b?(c?y) �c?: (23)

D. Wilson has compiled a list of the smallest nth
POWERS which are the sums of n distinct smaller nth
POWERS. The first few are 3, 5, 6, 15, 12, 25, 40,
...(Sloane’s A030052):

31 �11 �21

52 �32 �42

63 �33 �43 �53

154 �44 �64 �84 �94 �144

125 �45 �55 �65 �75 �95 �115

256 �16 �26 �36 �56 �66 �76 �86 �96 �106

�126 �136 �156 �166 �176 �186 �236

407 �17 �37 �57 �97 �127 �147 �167 �177

�187�207�217�227�257�287�397

848�18�28�38�58�78�98�108�118

�128�138�148�158�168�178�188

�198�218�238�248�258�268�278

�298�328�338�358�378�388�398

�418�428�438�458�468�478�488

�498�518�528�538�578�588�598

�618�638�698�738

479�19�29�49�79�119�149�159�189

�269�279�309�319�329�339

�369�389�399�439

6310�110�210�410�510�610�810�1210

�1510�1610�1710�2010�2110�2510

�2610�2710�2810�3010�3610�3710

�3810�4010�5110�6210:

See also ABC CONJECTURE, ARCHIMEDES’ CATTLE

PROBLEM, BACHET EQUATION, BRAHMAGUPTA’S PRO-

BLEM, CANNONBALL PROBLEM, CATALAN’S PROBLEM,
DIOPHANTINE EQUATION–2ND POWERS, DIOPHANTINE

EQUATION–3RD POWERS, DIOPHANTINE EQUATION–4TH

POWERS, DIOPHANTINE EQUATION–5TH POWERS, DIO-

PHANTINE EQUATION–6TH POWERS, DIOPHANTINE

EQUATION–7TH POWERS, DIOPHANTINE EQUATION–

8TH POWERS, DIOPHANTINE EQUATION–9TH POWERS,



DIOPHANTINE EQUATION–10TH POWERS, DIOPHANTINE

EQUATION N TH POWERS, DIOPHANTUS PROPERTY,
EULER BRICK, EULER QUARTIC CONJECTURE, FER-

MAT’S LAST THEOREM, FERMAT ELLIPTIC CURVE

THEOREM, GENUS THEOREM, HURWITZ EQUATION,
MARKOV NUMBER, MONKEY AND COCONUT PROBLEM,
MULTIGRADE EQUATION, P -ADIC NUMBER, PELL EQUA-

TION, PYTHAGOREAN QUADRUPLE, PYTHAGOREAN TRI-

PLE, THUE EQUATION
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Diophantine Equation*/10th Powers
The 10.1.2 equation

A10�B10�C10 (1)

is a special case of FERMAT’S LAST THEOREM with
n�10, and so has no solution. The smallest 10.1.15
solution is

10010�9410�9110�2�7710�7610�6310�6210�5210

�4510�3510�3310�1610�1010�110�10810 (2)

(J.-C. Meyrignac 1999, PowerSum). The smallest
10.1.22 solution is

3310�2�3010�2�2610�2310�2110�1910�1810

�2�1310�2�1210�5�1010�2�910�710�610�310 (3)

(Ekl 1998). The smallest 10.1.23 solution is

5�110�210�310�610�6�710�4�910

�1010�2�1210�1310�1410�1510 (4)

(Lander et al. 1967).

The smallest 10.2.13 solution is

5110�3210�4910�4310�4110�3710�2810�2610

�2510�1510�1010�10910�510�310: (5)

The smallest 10.2.15 solution is

3510�310�3310�3210�2410�2110�2�2010

�3�1310�1210�1110�910�710�2�110 (6)

(Ekl 1998). The smallest 10.2.19 solution is

5�210�510�610�1010�6�1110



�2�1210�3�1510�910�1710 (7)

(Lander et al. 1967).

The smallest 10.3.13 solution is

4610�3210�2210

�4310�4310�2710�2610�1710�1610

�1210�910�910�610�410�310�310: (8)

The smallest 10.3.14 solution is

3010�2810�410�3110�2310�2�2010�2�1710

�1610�1010�3�910�510�2�210 (9)

(Ekl 1998). The smallest 10.3.24 solution is

110�210�310�10�410�710�7�810

�1010�1210�1610�1110�2�1510 (10)

(Lander et al. 1967).

The 10.4.12 equation has solution

5110�4910�4310�3910�2910�2810�2�1710

�1610�1310�710�410�5310�24410�2210 (11)

(E. Bainville 1999, PowerSum). The smallest 10.4.15
solution is

4�2310�2610�5�1810�3�1710�1510�1210�610

�3�410 (12)

(Ekl 1998). The smallest 10.4.23 solution is

5�110�2�210�2�310�410�4�610�3:710�810

�2�1010�2�1410�1510�3�1110�1610 (13)

(Lander et al. 1967).

The smallest 10.5.16 solutions are

4�110�210�2�410�610�2�1210

�5�1310�1510�2�310�810�1410�1610 (14)

2010�1110�810�310�110�2�1810�1710

�1610�1010�2�710�6�410�2�210 (15)

(Lander et al. 1967, Ekl 1998).

The smallest 10.6.6 solution is

9510�7110�3210�2810�2510�1610

�9210�8510�3410�3410�2310�510: (16)

The smallest 10.6.16 solution is

1810�1210�1110�1010�310�210

�1710�1610�4�1310�4�710�4�610�510�410 (17)

(Ekl 1998). The smallest 10.6.27 solution is

110�4�310�2�410�2�510�7�610

�9�710�1010�1310�2�210�810�1110�2�1210 (18)

(Lander et al. 1967).

The smallest 10.7.7 solutions are

3810�3310�2610�2610�1510�810�110

�3610�3510�3210�2910�2410�2310�2210 (19)

6810�6110�5510�3210�3110�2810�110

�6710�6410�4910�4410�2310�2010�1710 (20)

(Lander et al. 1967, Ekl 1998).
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Diophantine Equation*/2nd Powers
A general quadratic Diophantine equation in two
variables x and y is given by

ax2�cy2�k; (1)

where a , c , and k are specified (positive or negative)
integers and x and y are unknown integers satisfying
the equation whose values are sought. The slightly
more general second-order equation

ax2�bxy�cy2�k (2)

is one of the principal topics in Gauss’s Disquisitiones
arithmeticae . According to Itô (1987), equation (2) can
be solved completely using solutions to the PELL

EQUATION. In particular, all solutions of

ax2�bxy�cy2�1 (3)

are among the CONVERGENTS of the CONTINUED

FRACTIONS of the roots of ax2�bx�c: In Mathema-
tica 5.0, solution to the general bivariate quadratic
Diophantine equation will be implemented as Re-
duce[eqn && Element[x|y , Integers], {x , y }].

For quadratic Diophantine equations in more than
two variables, there exist additional deep results due
to C. L. Siegel.

An equation OF THE FORM

x2�Dy2�1; (4)

where D is an INTEGER is a very special type of
equation called a PELL EQUATION. Pell equations, as



well as the analogous equation with a minus sign on
the right, can be solved by finding the CONTINUED

FRACTION for
ffiffiffiffi
D

p
: The more complicated equation

x2�Dy2�c (5)

can also be solved for certain values of c and D , but
the procedure is more complicated (Chrystal 1961).
However, if a single solution to (5) is known, other
solutions can be found using the standard technique
for the PELL EQUATION.

The following table summarizes possible representa-
tion of primes p of given forms, where x and y are
positive integers. No odd primes other than those
indicated share these properties (Nagell 1951,
p. 188).

form congruence for p

/x2�y2
/ /�1 (mod 4)

/x2�2y2
/ /�1; 3 (mod 8)

/x2�3y2
/ /�1 (mod 6)

/x2�7y2
/ /�1; 9; 11 (mod 14)

/2x2�3y2
/ /�5; 11 (mod 24)

As a part of the study of WARING’S PROBLEM, it is
known that every positive integer is a sum of no more
than 4 positive squares (/g(2)�4; LAGRANGE’S FOUR-

SQUARE THEOREM), that every "sufficiently large"
integer is a sum of no more than 4 positive squares
(/G(2)�4); and that every integer is a sum of at most 3
signed squares (eg(2)�3): If zero is counted as a
square, both POSITIVE and NEGATIVE numbers are
included, and the order of the two squares is distin-
guished, Jacobi showed that the number of ways a
number can be written as the sum of two squares (the
r2(n) function) is four times the excess of the number
of DIVISORS of the form 4x�1 over the number of
DIVISORS OF THE FORM 4x�1:/

In 1769 Euler (1862) noted the identity

ab apr9bqsð Þ2�ab aps�bqrð Þ2

� aap2�bbq2
� �

abr2�abs2
� �

; (6)

which gives a parametric solution to the equation

Ax2�By2�C (7)

for integers A;B;C; x; y with C composite (Dickson
1957, p. 407).

Call a Diophantine equation consisting of finding a
sum of m kth POWERS which is equal to a sum of n
kth POWERS a "/k:m:n equation." The 2.1.2 quadratic
Diophantine equation

A2�B2�C2; (8)

corresponds to finding a PYTHAGOREAN TRIPLE (A , B ,
C ) has a well-known general solution (Dickson 1966,
pp. 165�/70). To solve the equation, note that every
PRIME OF THE FORM 4x�1 can be expressed as the
sum of two RELATIVELY PRIME squares in exactly one
way. A set of INTEGERS satisfying the 2.1.3 equation

A2�B2�C2�D2 (9)

is called a PYTHAGOREAN QUADRUPLE.

Parametric solutions to the 2.2.2 equation

A2�B2�C2�D2 (10)

are known (Dickson 1966; Guy 1994, p. 140). To find
in how many ways a general number m can be
expressed as a sum of two squares, factor it as follows

m�2a0 p
2a1

1 
 
 
p2an
n qb1

1 
 
 
 qbr
r ; (11)

where the ps are primes OF THE FORM 4x�1 and the
qs are primes OF THE FORM x�1: If the as are
integral, then define

B� 2b1�1ð Þ 2b2�1ð Þ 
 
 
 2br�1ð Þ�1: (12)

Then m is a sum of two unequal squares in

N(m)�

0
for any ai half -integral

1

2
b1�1ð Þ b2�1ð Þ 
 
 
 br�1ð Þ

for all ai integral;B odd
1

2
b1�1ð Þ b2�2ð Þ 
 
 
 br�1ð Þ�1

2
for all ai integral;B even:

8>>>>>>>>>>><
>>>>>>>>>>>:

(13)

Solutions to an equation OF THE FORM

A2�B2
� �

C2�D2
� �

�E2�F2 (14)

are given by the FIBONACCI IDENTITY

a2�b2
� �

c2�d2
� �

�(ac9bd)2�(bc�ad)2

�e2�f 2: (15)

Another similar identity is the EULER FOUR-SQUARE

IDENTITY

a2
1�a2

2

� �
b2

1�b2
2

� �
c2

1�c2
2

� �
d2

1�d2
2

� �
�e2

1�e2
2�e2

3�e2
4 (16)

a2
1�a2

2�a2
3�a2

4

� �
b2

1�b2
2�b2

3�b2
4

� �
� a1b1�a2b2�a3b3�a4b4ð Þ2

� a1b2�a2b1�a3b4�a4b3ð Þ2

� a1b3�a2b4 �a3b1�a4b2ð Þ2

� a1b4�a2b3�a3b2�a4b1ð Þ2
: (17)



Degen’s eight-square identity holds for eight squares,
but no other number, as proved by Cayley. The two-
square identity underlies much of TRIGONOMETRY, the
four-square identity some of QUATERNIONS, and the
eight-square identity, the CAYLEY ALGEBRA (a non-
commutative nonassociative algebra; Bell 1945).

Chen Shuwen found the 2.6.6 equation

872�2332�2642�3962�4962�5402

�902�2062�3092�3662�5222�5232: (18)

RAMANUJAN’S SQUARE EQUATION

2n�7�x2 (19)

has been proved to have only solutions n�3, 4, 5, 7,
and 15 (Schroeppel 1972).

See also ALGEBRA, CANNONBALL PROBLEM, CONTIN-

UED FRACTION, EULER FOUR-SQUARE IDENTITY, FER-

MAT DIFFERENCE EQUATION, GENUS THEOREM,
HILBERT SYMBOL, LAGRANGE NUMBER (DIOPHANTINE

EQUATION), LEBESGUE IDENTITY, PELL EQUATION,
PYTHAGOREAN QUADRUPLE, PYTHAGOREAN TRIPLE,
QUADRATIC RESIDUE, SQUARE NUMBER, SUM OF

SQUARES FUNCTION, WARING’S PROBLEM
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Diophantine Equation*/3rd Powers
As a part of the study of WARING’S PROBLEM, it is
known that every positive integer is a sum of no more
than 9 positive cubes (/g(3)�9); that every "suffi-
ciently large" integer is a sum of no more than 7
positive cubes (/G(3)57; although it is not known if 7
can be reduced), and that every integer is a sum of at
most 5 signed cubes (eg(3)55; although it is not
known if 5 can be reduced to 4).

It is known that every n can be written is the form

n�A2�B2�C3: (1)

The 3.1.2 equation

A3�B3�C3 (2)

is a case of FERMAT’S LAST THEOREM with n�3. In
fact, this particular case was known not to have any
solutions long before the general validity of FERMAT’S

LAST THEOREM was established. Thue showed that a
Diophantine equation OF THE FORM

AX3�BY3�1 (3)

for A , B , and l integers, has only finite many
solutions (Hardy 1999, pp. 78�/9).

Miller and Woollett (1955) and Gardiner et al. (1964)
investigated integer solutions of

A3�B3�C3�D (4)

i.e., numbers representable as the sum of three
(positive or negative) CUBIC NUMBERS.

The general rational solution to the 3.1.3 equation

A3�B3�C3�D3 (5)

was found by Euler and Vieta (Dickson 1966,
pp. 550�/54; Hardy 1999, pp. 20�/1). Hardy and
Wright (1979, pp. 199�/01) give a solution which can
be based on the identities

a3 a3�b3
� �3

�b3 a3�b3
� �3

�a3 a3�2b3
� �3

�b3 2a3�b3
� �3

(6)

a3 a3�2b3
� �3

�a3 a3�b3
� �3

�b3 a3�b3
� �3

� 2a3�b3
� �3

: (7)

This is equivalent to the general 3.2.2 solution found
by Ramanujan (Dickson 1966, pp. 500 and 554;
Berndt 1994, pp. 54 and 107; Hardy 1999, p. 11, 68,
and 237). The smallest integer solutions are



33�43�53�63 (8)

13�63�83�93 (9)

73�143�173�203 (10)

113�153�273�293 (11)

283�533�753�843 (12)

263�553�783�873 (13)

333�703�923�1053 (14)

(Fredkin 1972; Madachy 1979, pp. 124 and 141).
Other general solutions have been found by Binet
(1841) and Schwering (1902), although Ramanujan’s
formulation is the simplest. No general solution
giving all POSITIVE integral solutions is known
(Dickson 1966, pp. 550�/61). Y. Kohmoto has found a
3.1.39 solution,

21000003�20460003�8820003�2160003

�19796003�11454003�850003

�20811003�6281103�18903

�20431503�9012003�304503

�20022803�10724803�303603

�19604803�11995203�152003

�19488003�12297603�302403

�20781603�6588123�131883

�20091123�10480403�138883: (15)

3.1.4 equations include

113�123�133�143�203 (16)

53�73�93�103�133: (17)

3.1.5 equations include

13�33�43�53�83�93 (18)

33�43�53�83�103�123; (19)

and a 3.1.6 equation is given by

13�53�63�73�83�103�133: (20)

The 3.2.2 equation

A3�B3�C3�D3 (21)

has a known parametric solution (Dickson 1966,
pp. 550�/54; Guy 1994, p. 140), and 10 solutions
with sum B105,

1729�13�123��93�103 (22)

4104�23�163�93�153 (23)

13832�23�243�183�203 (24)

20683�103�273�193�243 (25)

32832�43�323�183�303 (26)

39312�23�343�153�333 (27)

40033�93�343�163�333 (28)

46683�33�363�273�303 (29)

64232�173�393�263�363 (30)

65728�123�403�313�333 (31)

(Sloane’s A001235; Moreau 1898). The first number
(Madachy 1979, pp. 124 and 141) in this sequence,
the so-called HARDY-RAMANUJAN NUMBER, is asso-
ciated with a story told about Ramanujan by
G. H. Hardy, but was known as early as 1657 (Berndt
and Bhargava 1993). The smallest number represen-
table in n ways as a sum of cubes is called the nth
TAXICAB NUMBER.

Ramanujan gave a general solution to the 3.2.2
equation as

a�l2g
� �3

� lb�gð Þ3� la�gð Þ3� b�l2g
� �3

(32)

where

a2�ab�b2�3lg2 (33)

(Berndt 1994, p. 107). Another form due to Ramanu-
jan is

A2�7AB�9B2
� �3

� 2A2�4AB�12B2
� �3

� 2A2�10B2
� �3

� A2�9AB�B2
� �3

: (34)

Hardy and Wright (1979, Theorem 412) prove that
there are numbers that are expressible as the sum of
two cubes in n ways for any n (Guy 1994, pp. 140�/

41). The proof is constructive, providing a method for
computing such numbers: given RATIONALS NUMBERS

r and s , compute

t�
r r3 � 2s3ð Þ

r3 � s3
(35)

u�
s 2r3 � s3ð Þ

r3 � s3
(36)

v�
t t3 � 2u3ð Þ

t3 � u3
(37)

w�
u 2t3 � u3ð Þ

t3 � u3
: (38)

Then

r3�s3�t3�u3�v3�w3 (39)

The DENOMINATORS can now be cleared to produce an
integer solution. If r=s is picked to be large enough,
the v and w will be POSITIVE. If r=s is still larger, the
v=w will be large enough for v and w to be used as the



inputs to produce a third pair, etc. However, the
resulting integers may be quite large, even for n�2.
E.g., starting with 33�13�28; the algorithm finds

28�
28340511

21446828

 !3

�
63284705

21446828

 !3

; (40)

giving

28�214468283� 3�21446828ð Þ3�214468283 (41)

�283405113�632847053: (42)

The numbers representable in three ways as a sum of
two cubes (a 3.23 equation) are

87539319�1673�4363�2283�4233

�2553�4143 ð43Þ

119824488�113 þ 4933 ¼ 903 þ 4923

¼ 3463 þ 4283 ð44Þ

143604279�1113�5223�3593�4603

�4083�4233 ð45Þ

175959000�703�5603�1983�5523

�3153�5253 ð46Þ

327763000�3003�6703�3393�6613

�5103�5803 ð47Þ

(Guy 1994, Sloane’s A003825). Wilson (1997) found 32
numbers representable in four ways as the sum of two
cubes (a 3.24 equation). The first is

6963472309248�24213�190833�54362�189483

�102003�180723�133223�166303: (48)

The smallest known numbers so representable are
6963472309248, 12625136269928, 21131226514944,
26059452841000, ... (Sloane’s A003826). Wilson also
found six five-way sums,

48988659276962496�387873�3657573

�1078393�3627533

�2052923�3429523

�2214243�3365883

�2315183�3319543 (49)

490593422681271000�483693�7886313

�2337753�7817853

�2851203�7760703

�5431453�6912953

�5792403�6666303 (50)

6355491080314102272�1031133�18522153

�5804883�18331203

�7887243�18033723

�11507923�16905443

�14620503�14782383 (51)

27365551142421413376�1677513�30133053

�2653923�30127923

�9443763�29822403

�12831483�29338443

�18721843�27502883 (52)

1199962860219870469632�5915433�106258653

�9358563�106240563

33301683�105163203

�66019123�96983843

�83875503�84804183 (53)

111549833098123426841016�10740733�481379993

�87878703�480403563

�139509723�477443823

�244501923�459364623

�337844783�417912043; (54)

and a single six-way sum

8230545258248091551205888

�112393173�2018914353

�177812643�2018570643

�632731923�1998100803

�859709163�1965675483

�1254363283�1842692963

�1593634503�1611279423: (55)

A solution to the 3.4.4 equation is

23�33�103�113�13�53�83�123 (56)

(Madachy 1979, pp. 118 and 133).

3.6.6 equations also exist:

13�23�43�83�93�123

�33�53�63�73�103�113 (57)



873 �2333 �2643 �3963 �4963 �5403

�903 �2063 �3093 �3663 �5223 �5233 : (58)

(Madachy 1979, p. 142; Chen Shuwen).

Euler gave the general solution to

A3 �B3 �C2 (59)

as

A �3n2 �6n2 �n (60)

B ��3n3 �6n2 �n (61)

C�6n2 3n2�1
� �

: (62)

See also CANNONBALL PROBLEM, CUBIC NUMBER,
HARDY-RAMANUJAN NUMBER, MULTIGRADE EQUA-

TION, SUPER-D NUMBER, TAXICAB NUMBER, TRI-

MORPHIC NUMBER, WARING’S PROBLEM
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Aufgabe: x3�y3�z3�v3�0::/" Arch. Math. Phys. 2, 280�/

84, 1902.
Shanks, D. Solved and Unsolved Problems in Number

Theory, 4th ed. New York: Chelsea, p. 157, 1993.
Sloane, N. J. A. Sequences A001235 and A003825 in "An

On-Line Version of the Encyclopedia of Integer Se-
quences." http://www.research.att.com/~njas/sequences/
eisonline.html.

Weisstein, E. W. "Like Powers." MATHEMATICA NOTEBOOK

LIKEPOWERS.M.
Wilson, D. Personal communication, Apr. 17, 1997.
# 1999�/001 Wolfram Research, Inc.

Diophantine Equation*/4th Powers
As a consequence of Matiyasevich’s refutation of
Hilbert’s 10th problem, it can be proved that there
does not exists a general algorithm for solving a
general quartic Diophantine equation. However, the
algorithm for constructing such an unsolvable quartic
Diophantine equation can require arbitrarily many
variables (Matiyasevich 1993).

As a part of the study of WARING’S PROBLEM, it is
known that every positive integer is a sum of no more
than 19 positive biquadrates / g(4)�19ð Þ; that every
"sufficiently large" integer is a sum of no more than
16 positive biquadrates / G(4)�16ð Þ; and that every
integer is a sum of at most 10 signed biquadrates (
eg(4)510; although it is not known if 10 can be
reduced to 9). The first few numbers n which are a
sum of four fourth POWERS (/m�1 equations) are 353,
651, 2487, 2501, 2829, ... (Sloane’s A003294).

The 4.1.2 equation

x4�y4�z4 (1)

is a case of FERMAT’S LAST THEOREM with n�4 and
therefore has no solutions. In fact, the equations

x49y4�z2 (2)

also have no solutions in INTEGERS (Nagell 1951,
pp. 227 and 229). The equation

x4�y4�2z2 (3)

has no solutions in integers (Nagell 1951, p. 230). The
only number OF THE FORM

4x4�y4 (4)

which is PRIME is 5 (Baudran 1885, Le Lionnais 1983).

Let the notation p :m :n stand for the equation
consisting of a sum of m p th powers being equal to
a sum of n p th powers. In 1772, Euler proposed that
the 4.1.3 equation

A4�B4�C4�D4 (5)

had no solutions in INTEGERS (Lander et al. 1967).
This assertion is known as the EULER QUARTIC



CONJECTURE. Ward (1948) showed there were no
solutions for D510; 000; which was subsequently
improved to D5220; 000 by Lander et al. (1967).
However, the EULER QUARTIC CONJECTURE was dis-
proved in 1987 by N. Elkies, who, using a geometric
construction, found

2; 682; 4404�15; 365; 6394�18; 796; 7604

�20; 615; 6734 (6)

and showed that infinitely many solutions existed
(Guy 1994, p. 140). In 1988, Roger Frye found

95; 8004�217; 5194�414; 5604�422; 4814 (7)

and proved that there are no solutions in smaller
INTEGERS (Guy 1994, p. 140). Another solution was
found by Allan MacLeod in 1997,

638; 523; 2494�630; 662; 6244

�275; 156; 2404�219; 076; 4654 (8)

(Ekl 1998). It is not known if there is a parametric
solution. In contrast, there are many solutions to the
equation

A4�B4�C4�2D4 (9)

(see below).

The 4.1.4 equation

A4�B4�C4�D4�E4 (10)

has solutions

304�1204�2724�3154�3534 (11)

2404�3404�4304�5994�6514 (12)

4354�7104�13845�24204�24874 (13)

11304�11904�14324�23654�25014 (14)

8504�10104�15464�27454�28294 (15)

22704�23454�24604�31524�37234 (16)

3504�16524�32304�33954�39734 (17)

2054�10604�26504�40944�42674 (18)

13944�17504�35454�36704�43334 (19)

6994�7004�28404�42504�44494 (20)

3804�16604�18804�49074�49494 (21)

10004�11204�32334�50804�52814 (22)

4104�14124�39104�50554�54634 (23)

9554�17704�26344�54004�54914 (24)

304�16804�30434�54004�55434 (25)

13544�18104�43554�51504�57294 (26)

5424�27704�42804�56954�61674 (27)

504�8854�50004�59844�66094 (28)

14904�34684�47904�61854�68014 (29)

13904�28504�53654�63684�71014 (30)

1604�13454�27904�71664�72094 (31)

8004�30524�54404�66354�73394 (32)

22304�31964�56204�69954�77034 (33)

(Norrie 1911, Patterson 1942, Leech 1958, Brudno
1964, Lander et al. 1967), but it is not known if there
is a parametric solution (Guy 1994, p. 139).

There are an infinite number of solutions to the 4.1.5
equation

A4�B4�C4�D4�E4�F4: (34)

Some of the smallest are

24�24�34�44�44�54 (35)

44�64�84�94�144�154 (36)

44�214�224�264�284�354 (37)

14�24�124�244�444�454 (38)

14�84�124�324�644�654 (39)

24�394�444�464�524�654 (40)

224�524�574�744�764�954 (41)

224�284�634�724�944�1054 (42)

(Berndt 1994). Berndt and Bhargava (1993) and
Berndt (1994, pp. 94�/6) give Ramanujan’s solutions
for arbitrary s , t , m , and n ,

8s2�40st�24t2
� �4

� 6s2�44st�18t2
� �4

� 14s2�4st�42t2
� �4

� 9s2�27t2
� �4

� 4s2�12t2
� �4

� 15s2�45t2
� �4

; (43)

and

4m2�12n2
� �4

� 3m2�9n2
� �4

� 2m2�12mn�6n2
� �4

� 4m2�12n2
� �4

� 2m2�12mn�6n2
� �4

� 5m2�15n2
� �4

: ð44Þ

These are also given by Dickson (1966, p. 649), and
two general FORMULAS are given by Beiler (1966,
p. 290). Other solutions are given by Fauquembergue
(1898), Haldeman (1904), and Martin (1910).



Parametric solutions to the 4.2.2 equation

A4�B4�C4�D4 (45)

are known (Euler 1802; Gérardin 1917; Guy 1994,
pp. 140�/41), but no "general" solution is known
(Hardy 1999, p. 21). A few specific solutions are

594�1584�1334�1344�635; 318; 657 (46)

74�2394�1574�2274�3; 262; 811; 042 (47)

1934�2924�2564�2574�8; 657; 437; 697 (48)

2984�4974�2714�5024�68; 899; 596; 497 (49)

5144�3594�1034�5424�86; 409; 838; 577 (50)

2224�6314�5034�5584�160; 961; 094; 577 (51)

214�7174�4714�6814�264; 287; 694; 402 (52)

764�12034�6534�11764

�2; 094; 447; 251; 857 ð53Þ

9974�13424�8784�13814

�4; 231; 525; 221; 377 ð54Þ

(Sloane’s A003824 and A018786; Richmond 1920;
Dickson, pp. 60�/2; Dickson 1966, pp. 644�/47; Leech
1957; Berndt 1994, p. 107; Ekl 1998 [with typo]), the
smallest of which is due to Euler (Hardy 1999, p. 21).
Lander et al. (1967) give a list of 25 primitive 4.2.2
solutions. General (but incomplete) solutions are
given by

x�a�b (55)

y�c�d (56)

u�a�b (57)

v�c�d; (58)

where

a�n m2�n2
� �

�m4�18m2n2�n4
� �

(59)

b�2m m6�10m4n4�m2n4�4n6
� �

(60)

c�2n 4m6�m4n2�10m2n4�n6
� �

(61)

d�m m2�n2
� �

�m4�18m2n2�n4
� �

(62)

(Hardy and Wright 1979).

Parametric solutions to the 4.2.3 equation

A4�B4�C4�D4�E4 (63)

are known (Gérardin 1910, Ferrari 1913). The smal-
lest solution is

34�54�84�74�74 (64)

(Lander et al. 1967).

Ramanujan gave the 4.2.4 equation

34�94�54�54�64�84: (65)

Ramanujan gave the 4.3.3 equations

24�44�74�34�64�64 (66)

34�74�84�14�24�94 (67)

64�94�124�24�24�134 (68)

(Berndt 1994, p. 101). Similar examples can be found
in Martin (1896). Parametric solutions were given by
Gérardin (1911).

Ramanujan also gave the general expression

34� 2x4�1
� �4

� 4x5�x
� �4

� 4x4�1
� �4

� 6x4�3
� �4

� 4x5�5x
� �4

(69)

(Berndt 1994, p. 106). Dickson (1966, pp. 653�/55)
cites several FORMULAS giving solutions to the 4.3.3
equation, and Haldeman (1904) gives a general
FORMULA.

Ramanujan gave the 4.3.4 identities

24�24�74�44�44�54�64 (70)

34�94�144�74�84�104�134 (71)

74�104�134�54�54�64�144 (72)

(Berndt 1994, p. 101). Haldeman (1904) gives general
FORMULAS for 4�/ and 4�/ equations.

Ramanujan gave

2 ab�ac�bcð Þ2�a4�b4�c4 (73)

2 ab�ac�bcð Þ4�a4 b�cð Þ4�b4 c�að Þ4�c4 a�bð Þ4 (74)

2 ab�ac�bc�ð Þ6

� a2b�b2c�c2a
� �4

� ab2�bc2�ca2
� �4

�3(abc)4

(75)

2 ab�ac�bcð Þ8� a3�2abc
� �4

b�cð Þ4

� b3�2abc
� �4

c�að Þ4� c3�2abc
� �4

a�bð Þ4
; (76)

where

a�b�c�0 (77)

(Berndt 1994, pp. 96�/7). FORMULA (74) is equivalent
to FERRARI’S IDENTITY

a2�2ac�2bc�b2
� �4

� b2�2ab�2ac�c2
� �4

� c2�2ab�2bc�a2
� �4

�2 a2�b2�c2�ab�ac�bc
� �4

: (78)

BHARGAVA’S THEOREM is a general identity which
gives the above equations as a special case, and may



have been the route by which Ramanujan proceeded.
Another identity due to Ramanujan is

a �b �cð Þ4� b �c �dð Þ4� a �dð Þ4

� c �d �að Þ4� d �a �bð Þ4� b �cð Þ4
; (79)

where a =b �c =d; and 4 may also be replaced by 2
(Ramanujan 1957, Hirschhorn 1998).

V. Kyrtatas noticed that a �3, b �7, c �20, d �25,
e �38, and f �39 satisfy

a4 � b4 � c4

d4 � e4 � f 4 
�

a � b � c

d � e � f
(80)

and asks if there are any other distinct integer
solutions.

See also BHARGAVA’S THEOREM, BIQUADRATIC NUM-

BER, FORD’S THEOREM, MULTIGRADE EQUATION, WAR-

ING’S PROBLEM
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Diophantine Equation*/5th Powers
The 5.1.2 fifth-order Diophantine equation

A5�B5�C5 (1)

is a special case of FERMAT’S LAST THEOREM with
n�5, and so has no solution. improving on the
results on Lander et al. (1967), who checked up to
2:8�1014: (In fact, no solutions are known for POWERS

of 6 or 7 either.) No solutions to the 5.1.3 equation

A5�B5�C5�D5 (2)

are known (Lander et al. 1967). For 4 fifth POWERS,
we have the 5.1.4 equation

275�845�1105�1335�1445 (3)

(Lander and Parkin 1967, Lander et al. 1967, Ekl
1998), but it is not known if there is a parametric
solution (Guy 1994, p. 140). Sastry (1934) found a 2-
parameter solution for 5.1.5 equations

(75v5�u5)5�(u5�25v5)5�(u5�25v5)5

�(10u3v2)5�(50uv4)5�(u5�75v5)5 (4)

(quoted in Lander and Parkin 1967), and Lander and
Parkin (1967) found the smallest numerical solutions.
Lander et al. (1967) give a list of the smallest
solutions, the first few being



195�435�465�475�675�725 (5)

215�235�375�795�845�945 (6)

75�435�575�805�1005�1075 (7)

785�1205�1915�2595�3475�3655 (8)

795�2025�2585�2615�3955�4155 (9)

45�265�1395�2965�4125�4275 (10)

315�1055�1395�3145�4165�4355 (11)

545�915�1015�4045�4305�4805 (12)

195 þ 2015 þ 3475 þ 388 þ 4485 ¼ 5035 ð13Þ

1595�1725�2005�3565�5135�5305 (14)

2185�2765�3855�4095�4955�5535 (15)

25�2985�3515�4745�5005�5755 (16)

(Lander and Parkin 1967, Lander et al. 1967). The
5.1.6 equation has solutions

45�55�65�75�95�115�125 (17)

55�105�115�165�195�295�305 (18)

155�165�175�225�245�285�325 (19)

135�185�235�315�365�665�675 (20)

75�205�295�315�345�665�675 (21)

225�355�485�585�615�645�785 (22)

45�135�195�205�675�965�995 (23)

65�175�605�645�735�895�995 (24)

(Martin 1887, 1888, Lander and Parkin 1967, Lander
et al. 1967). The smallest 5.1.7 solution is

15�75�85�145�155�185�205�235 (25)

(Lander et al. 1967).

No solutions to the 5.2.2 equation

A5�B5�C5�D5 (26)

are known, despite the fact that sums up to 1:026�
1026 have been checked (Guy 1994, p. 140). The
smallest 5.2.3 solution is

141325�2205�140685�62375�50275 (27)

(B. Scher and E. Seidl 1996, Ekl 1998). Sastry’s
(1934) 5.1.5 solution gives some 5.2.4 solutions. The
smallest primitive 5.2.4 solutions are

45�105�205�285�35�295 (28)

55�135�255�375�125�385 (29)

265�295�355�505�285�525 (30)

55�255�625�635�615�645 (31)

65�505�535�825�165�855 (32)

565�635�725�865�315�965 (33)

445�585�675�945�145�995 (34)

115�135�375�995�635�975 (35)

485�575�765�1005�255�1065 (36)

585�765�795�1025�545�1115 (37)

(Rao 1934, Moessner 1948, Lander et al. 1967). The
smallest primitive 5.2.5 solutions are

45�55�75�165�215�15�225 (38)

95�115�145�185�305�235�295 (39)

105�145�265�315�335�165�385 (40)

45�225�295�355�365�245�425 (41)

85�155�175�195�455�305�445 (42)

55�65�265�275�445�365�425 (43)

(Rao 1934, Lander et al. 1967).

Parametric solutions are known for the 5.3.3 (Sastry
and Lander 1934; Moessner 1951; Swinnerton-Dyer
1952; Lander 1968; Bremmer 1981; Guy 1994,
pp. 140 and 142; Choudhry 1999). Swinnerton-Dyer
(1952) gave two parametric solutions to the 5.3.3
equation but, forty years later, W. Gosper discovered
that the second scheme has an unfixable bug.
Choudhry (1999) gave a parametric solution to the
more general equation

ax5�by5�cx5�au5�bv5�cw5 (44)

with a�b�c�0: The smallest primitive solutions to
the 5.3.3 equation with unit coefficients are

245�285�675�35�545�625 (45)

185�445�665�135�515�645 (46)

215�435�745�85�625�685 (47)

565�675�835�535�725�815 (48)

495�755�1075�395�925�1005 (49)

(Moessner 1939, Moessner 1948, Lander et al. 1967,
Ekl 1998).

A two-parameter solution to the 5.3.4 equation was
given by Xeroudakes and Moessner (1958). Gloden
(1949) also gave a parametric solution. The smallest
solution is



15 �85 �145 �275 �35 �225 �255 (50)

(Rao 1934, Lander et al. 1967).

Several parametric solutions to the 5.4.4 equation
were found by Xeroudakes and Moessner (1958). The
smallest 5.4.4 solution is

55 �65 �65 �85 �45 �75 �75 �75 (51)

(Rao 1934, Lander et al. 1967). The first 5.4.4.4
equation is

35 �485 �525 �615 �135 �365 �515 �645

�185 �365 �445 �665 (52)

(Lander et al. 1967).

Moessner and Gloden (1944) give the 5.5.6 solution

225 �175 �165 �65 �55

�215 �205 �125 �105 �25 �15 : (53)

Chen Shuwen found the 5.6.6 solution

875�2335�2645�3965�4965�5405

�905�2065�3095�3665�5225�5235: (54)

See also MULTIGRADE EQUATION
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Diophantine Equation*/6th Powers
The 6.1.2 equation

A6�B6�C6 (1)

is a special case of FERMAT’S LAST THEOREM with
n�6, and so has no solution. No 6.1.n solutions are
known for n56 (Lander et al. 1967; Guy 1994,
p. 140). The smallest 6.1.7 solution is

746�2346�4026�4746�7026�8946�10176

�11416 (2)

(Lander et al. 1967; Ekl 1998). The smallest primitive
6.1.8 solutions are

86�126�306�786�1026�1386�1656�2466

�2516 (3)

486�1116�1566�1866�1886�2286�2406�4266

�4316 (4)

936�936�1956�1976�3036�3036�3036�4116

�4406 (5)

2196�2556�2616�2676�2896�3516�3516�3516

�4406 (6)

126�666�1386�1746�2126�2886�3066�4416

�4556 (7)

126�486�2226�2366�3336�3846�3906�4266

�4936 (8)

666�786�1446�2286�2566�2886�4356�4446

�4996 (9)

166�246�606�1566�2046�2766�3306�4926

�5026 (10)

616�966�1566�2286�2766�3186�3546�5346

�5476 (11)



1706�1776�2766�3126�3126�4086�4506�4986

�5596 (12)

606�1026�1266�2616�2706�3386�3546�5706

�5816 (13)

576�1466�1506�3606�3906�4026�4446�5286

�5836 (14)

336�726�1226�1926�2046�3906�5346�5346

�6076 (15)

126�906�1146�1146�2736�3066�4926�5926

�6236 (16)

(Lander et al. 1967). The smallest 6.1.9 solution is

16�176�196�226�316�376�376�416�496

�546 (17)

(Lander et al. 1967). The smallest 6.1.10 solution is

26�46�76�146�166�266�266�306�326�326

�396 (18)

(Lander et al. 1967). The smallest 6.1.11 solution is

26�56�56�56�76�76�96�96�106�146�176

�186 (19)

(Lander et al. 1967). There is also at least one 6.1.16
identity,

16�26�46�56�66�76�96�126�136�156

�166�186�206�216�226�236�286 (20)

(Martin 1893). Moessner (1959) gave solutions for
6.1.16, 6.1.18, 6.1.20, and 6.1.23 equations.

Ekl (1996) has searched and found no solutions to the
6.2.2

A6�B6�C6�D6 (21)

with sums less than 7:25�1026: No solutions are
known to the 6.2.3 or 6.2.4 equations. The smallest
primitive 6.2.5 equations are

10926�8616�6026�2126�846�11176�7706 (22)

18936�14686�14076�13026�12466

�20416�6916 (23)

21846�20966�14846�12666�12396

�24416�7526 (24)

26536�29626�14886�12816�3906

�28276�1516 (25)

29546�24816�8506�7986�4206

�29596�24706 (26)

(E. Brisse 1999 Resta 1999, PowerSum). The smallest
6.2.6 equation is

2416�176�2186�2106�1186�2:636�426 (27)

(Ekl 1998). The smallest 6.2.7 solution is

186�226�366�586�696�786�786

�566�916 (28)

(Lander et al. 1967). The smallest 6.2.8 solution is

86�106�126�156�246�306�336�366

�356�376 (29)

(Lander et al. 1967). The smallest 6.2.9 solution is

16�56�56�76�136�136�136�176�196

�66�216 (30)

(Lander et al. 1967). The smallest 6.2.10 solution is

16�16�16�46�46�76�96�116�116�116

�126�126 (31)

(Lander et al. 1967).

Parametric solutions are known for the 6.3.3 equation

A6�B6�C6�D6�E6�F6 (32)

(Guy 1994, pp. 140 and 142). Known solutions are

36�196�226�106�156�236 (33)

366�376�676�156�526�656 (34)

336�476�746�236�546�736 (35)

326�436�816�36�556�806 (36)

376�506�816�116�656�786 (37)

256�626�1386�826�926�1356 (38)

516�1136�1366�406�1256�1296 (39)

716�926�1476�16�1326�1336 (40)

1116�1216�2306�266�1696�2256 (41)

756�1426�2456�146�1636�2436 (42)

(Rao 1934, Lander et al. 1967, Ekl 1998). Ekl (1998)
mentions but does not list the 87 smallest solutions to
the 6.2.6 equation. The smallest primitive 6.3.4
solutions are

736�586�416�706�656�326�156 (43)

856�626�616�836�696�566�526 (44)

856�746�616�876�716�566�266 (45)

906�886�116�926�786�746�216 (46)

956�836�266�1016�286�246�236 (47)

1306�446�236�1196�1086�866�386 (48)

1256�1146�386�1266�1046�936�686 (49)



2056�1136�186�1986�1486�1336�396 (50)

2116�1236�346�2106�1346�736�396 (51)

2126�1646�1036�2176�1306�1146�86 (52)

2226�346�256�2176�1566�966�686 (53)

2186�1676�296�2246�1076�1026�656 (54)

2266�1106�176�2246�1436�726�346 (55)

2446�1236�1126�2386�1806�916�726 (56)

2416�1726�1566�2466�1456�1326�566 (57)

2576�1556�66�2526�1816�1436�1146 (58)

2656�1476�126�2316�2216�2106�1146 (59)

2606�2186�1856�2766�1526�1126�256 (60)

3056�856�666�2736�2676�1726�1226 (61)

3126�2416�336�3156�2286�996�26 (62)

3316�2346�596�3066�2946�1516�956 (63)

3326�2436�436�3386�1776�1686�956 (64)

3516�2656�2216�3366�3096�1696�736 (65)

3656�1376�1266�3606�2346�1756�1336 (66)

3606�2656�2006�3366�3186�2126�1696 (67)

3486�3256�366�3576�2766�2766�826 (68)

3736�2886�1046�3636�2926�2666�1206 (69)

3866�1136�626�3786�2606�2096�886 (70)

(Lander et al. 1967, Ekl 1998).

Moessner (1947) gave three parametric solutions to
the 6.4.4 equation. The smallest 6.4.4 solution is

26�26�96�96�36�56�66�106 (71)

(Rao 1934, Lander et al. 1967). The smallest 6.4.4.4
solution is

16�346�496�1116�76�436�696�1106

�186�256�776�1096 (72)

(Lander et al. 1967).

Moessner and Gloden (1944) give the 6.7.8 solution

326�316�236�226�136�66�56

�336�286�276�206�116�106�26�16: (73)
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Diophantine Equation*/7th Powers
The 7.1.2 equation

A7�B7�C7 (1)

is a special case of FERMAT’S LAST THEOREM with
n�7, and so has no solution. No solutions to the
7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are known. There is
now a known solutions to the 7.1.7 equation,

5687�5257�4397�4307�4137�2667�2587�1277

(2)

(M. Dodrill 1999, PowerSum), requiring an update by
Guy (1994, p. 140). The smallest 7.1.8 solution is

127�357�537�587�647�837�857�907

�1027 (3)

(Lander et al. 1967, Ekl 1998). The smallest 7.1.9
solution is

67�147�207�227�277�337�417�507�597

�627 (4)

(Lander et al. 1967).

No solutions to the 7.2.2, 7.2.3, 7.2.4, or 7.2.5
equations are known. The smallest 7.2.6 equation is

1257�247�1217�947�837�617�577�277 (5)

(Meyrignac). The smallest 7.2.8 solution is

57�67�77�157�157�207�287�317

�107�337 (6)

(Lander et al. 1967, Ekl 1998). A 7.2.10.10 solution is



27�277�47�87�137�147�147�167�187�227

�237�237

�77�77�97�137�147�187�207�227

�227�237 (7)

(Lander et al. 1967).

No solutions to the 7.3.3 equation are known (Ekl
1996), nor are any to 7.3.4. The smallest 7.3.5
equations are

967�417�177�877�2�777�687�567 (8)

1537�437�147�1407�1377�597�427�427: (9)

No solutions are known to the 7.3.6 equation. The
smallest 7.3.7 solution is

77�77�127�167�277�287�317

�267�307�307 (10)

(Lander et al. 1967).

Guy (1994, p. 140) asked if a 7.4.4 equation exists.
The following solution provide an affirmative answer

1497�1237�147�107�1467�1297�907�157 (11)

1947�1507�1057�237

�1927�1527�1327�387 (12)

3547�1127�527�197�3437�2817�467�357 (13)

(Ekl 1996, Elk 1998, M. Lau 1999, PowerSum).
Numerical solutions to the 7.4.5 equation are given
by Gloden (1948). The smallest primitive 7.4.5 solu-
tions are

507�437�167�127�527�297�267�117�37 (14)

817�587�197�97�777�687�567�487�27 (15)

877 þ 747 þ 697 þ 407

�827 þ 797 þ 757 þ 257 þ 97 ð16Þ

997�767�327�297

�937�887�667�367�357 (17)

987�827�587�347

�997�757�697�167�137 (18)

1047�967�607�147

�1027�957�817�577�237 (19)

1117�1027�407�297

�1127�967�827�557�217 (20)

1137�1027�867�237

�1207�817�587�557�107 (21)

(Lander et al. 1967, Ekl 1998).

Gloden (1949) gives parametric solutions to the 7.5.5
equation. The first few 7.5.5 solutions are

87�87�137�167�197

�27�127�157�177�187 (22)

47�87�147�167�237

�77�77�97�207�227 (23)

117�127�187�217�267

�97�107�227�237�247 (24)

67�127�207�227�277

�107�137�137�257�267 (25)

37�137�177�247�387

�147�267�327�327�337 (26)

(Lander et al. 1967). Ekl (1998) mentions but does not
list 107 primitive solutions to 7.5.5.

A parametric solution to the 7.6.6 equation was given
by Sastry and Rai (1948). The smallest is

27�37�67�67�107�137

�17�17�77�77�127�127 (27)

(Lander et al. 1967). Another found by Chen Shuwen
is

877�2337�2647�3967�4967�5407

�907�2067�3097�3667�5227�5237: (28)

Moessner and Gloden (1944) gave the 7.9.10 solution

427�377�367�297�237�197�137�67�57

�417�407�337�287�277�157�147�97�27

�17: (29)
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Gloden, A. "Zwei Parameterlösungen einer mehrgeradigen

Gleichung." Arch. Math. 1, 480�/82, 1949.
Guy, R. K. "Sums of Like Powers. Euler’s Conjecture." §D1 in

Unsolved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 139�/44, 1994.

Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. "A Survey of
Equal Sums of Like Powers." Math. Comput. 21, 446�/59,
1967.

Moessner, A. and Gloden, A. "Einige Zahlentheoretische
Untersuchungen und Resultate." Bull. Sci. École Polytech.
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Diophantine Equation*/8th Powers
The 8.1.2 equation

A8�B8�C8 (1)

is a special case of FERMAT’S LAST THEOREM with
n�8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5,
8.1.6, 8.1.7, or 8.1.8 solutions are known. The smal-
lest 8.1.9 is

11678�10948�10408�5608�5588

�3668�3488�2848�2718�1908 (2)

(N. Kuosa). The smallest 8.1.10 is

2358�2268�1848�1718�1528�1428

�668�588�348�168�68 (3)

(N. Kuosa, PowerSum). The smallest 8.1.11 solution
is

148�188�448�448�668�708�928�938

�968�1068�1128�1258 (4)

(Lander et al. 1967, Ekl 1998). The smallest 8.1.12
solution is

88�88�108�248�248�248�268�308�348

�448�528�638�658 (5)

(Lander et al. 1967). The general identity

28k�4�1
� �8

� 28k�4�1
� �8

� 27k�4
� �8

� 2k�1
� �8

�7 25k�3
� �8

� 23k�2
� �8

h i
(6)

gives a solution to the 8.1.17 equation (Lander et al.
1967).

No 8.2.2, 8.2.3, 8.2.4, 8.2.5, 8.2.6, or 8.2.7 solutions
are known. The smallest 8.2.8 solution is

1298�958�1288�928�868�828�748�578�558

�208: (7)

The smallest 8.2.9 solution is

28�78�88�168�178�208�208�248�248

�118�278 (8)

(Lander et al. 1967, Ekl 1998).

No 8.3.3, 8.3.4, 8.3.5, or 8.3.6 solutions are known.
The smallest 8.3.7 solution is

1088�688�58

�1028�888�888�528�378�268�68: (9)

The smallest 8.3.8 solution is

68�128�168�168�388�388�408�478

�88�178�508 (10)

(Lander et al. 1967, Ekl 1998).

No 8.4.4 solutions is known. The smallest 8.4.5
solution is

2218�1088�948�948

�1958�1948�1888�1268�388: (11)

The smallest 8.4.6 solution is

478�298�128�58

�458�408�308�268�238�38 (12)

(Ekl 1998). The smallest 8.4.7 solution is

78�98�168�228�228�288�348

�68�118�208�358 (13)

(Lander et al. 1967).

The smallest 8.5.5 solutions are

438�208�118�108�18

�418�358�328�288�58 (14)

428�418�358�98�68

�458�368�278�138�88 (15)

638�638�318�158�68

�658�598�488�378�78 (16)

758�478�398�268�68

�678�678�628�208�118 (17)

778�768�718�428�288

�868�418�368�328�298 (18)

908�818�108�48�38

�928�748�558�508�378 (19)

938�658�658�418�138

�818�818�798�758�458 (20)

898�878�288�148�148

�968�368�338�318�248 (21)

938�908�328�188�98

�948�868�718�608�198 (22)

1048�738�368�178�38

�1038�788�688�118�98 (23)

1038�868�588�118�88

�1048�788�698�628�98 (24)

1088�1018�888�458�18

�1168�598�468�158�38 (25)

1168 þ 928 þ 798 þ 338 þ 258

¼ 1138 þ 1038 þ 608 þ 448 þ 318 (26)



1238�978�718�108�28

�1258�778�488�378�268 (27)

1218�1098�718�708�408

�1208�1048�998�758�618 (28)

1278�438�268�108�38

�1238�1058�698�428�148 (29)

(Letac 1942, Lander et al. 1967, Ekl 1998). The
smallest 8.5.6 solutions are

368 þ 368 þ 338 þ 258 þ 218

�388 þ 348 þ 328 þ 158 þ 158 þ 138 ð30Þ

398�338�328�258�198

�378�358�358�178�168�28 (31)

418 þ 218 þ 208 þ 198 þ 168

�408 þ 318 þ 308 þ 178 þ 98 þ 88 ð32Þ

438�348�248�88�18

�428�378�288�168�168�158 (33)

448�428�248�178�48

�478�208�188�88�68�68 (34)

498�298�228�18�18

�478�428�268�238�178�58 (35)

468�468�338�308�98

�458�458�368�368�348�328 (36)

518�488�398�218�108

�538�458�258�228�228�68 (37)

558 þ 378 þ 198 þ 198 þ 188

�518 þ 508 þ 358 þ 268 þ 118 þ 98 ð38Þ

588�178�138�108�78

�568�458�418�408�88�18 (39)

558�538�248�218�28

�528�528�508�258�178�78 (40)

588�518�178�118�118

�608�378�348�298�238�38 (41)

548�518�518�438�48

�598�468�418�308�178�28 (42)

588�538�358�198�178

�618�308�258�238�168�18 (43)

618�298�288�278�268

�578�528�488�178�148�58 (44)

588�518�498�88�68

�618�448�328�268�108�18 (45)

628�538�388�328�238

�618�528�508�348�248�18 (46)

598�578�478�408�88

�628�528�458�178�158�28 (47)

638�628�558�438�278

�658�598�568�178�138�108 (48)

(Ekl 1998).

Moessner and Gloden (1944) found solutions to the
8.6.6 equation. The smallest 8.6.6 solution is

38�68�88�108�158�238

�58�98�98�128�208�228 (49)

(Lander et al. 1967). Ekl (1998) mentions but does not
list 204 primitive solutions to the 8.6.6 equation.
Moessner and Gloden (1944) found solutions to the
8.6.7 equation.

Parametric solutions to the 8.7.7 equation were given
by Moessner (1947) and Gloden (1948). The smallest
8.7.7 solution is

18�38�58�68�68�88�138

�48�78�98�98�108�118�128 (50)

(Lander et al. 1967).

Sastry (1934) used the smallest 17�/ solution to give a
parametric 8.8.8 solution. The smallest 8.8.8 solution
is

18�38�78�78�78�108�108�128

�48�58�58�68�68�118�118�118 (51)

(Lander et al. 1967).

Letac (1942) found solutions to the 8.9.9 equation.

Moessner and Gloden (1944) found the 8.9.10 solution

548�538�468�378�298�238�228�68�58

�558��508�498�338�328�268�188�98�28

�18: (52)
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Diophantine Equation*/9th Powers
The 9.1.2 equation

A9�B9�C9 (1)

is a special case of FERMAT’S LAST THEOREM with
n�9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5,
9.1.6, 9.1.7, 9.1.8, 9.1.9, 9.1.10, or 9.1.11 solutions are
known. The smallest 9.1.12 solution is

1039�919�919�899�719�689�659

�439�429�199�169�139�59: (2)

To 9.1.13 solution is known. The smallest 9.1.14
solution is

669�639�549�519�499�389�359�299

�249�219�129�109�79�29�19 (3)

(Ekl 1998).

No 9.2.2, 9.2.3, 9.2.4,. 9.2.5, 9.2.6, 9.2.7, 9.2.8, or 9.2.9
solutions are known. A 9.2.10 solution is given by

1219�2�1169�1159�899�529�289

�269�149�99�1379�699 (4)

(L. Morelli 1999, PowerSum). No 9.2.11 solutions are
known. The smallest 9.2.12 solution is

4�29�2�39�49�79�169�179�2�199

�159�219 (5)

(Lander et al. 1967, Ekl 1998). There are no known
9.1.13 or 9.1.14 solutions. The smallest 9.1.15 solu-
tion is

29�29�49�69�69�79�99�99�109�159

�189�219�219�239�239�269 (6)

(Lander et al. 1967).

There are no known 9.3.3, 9.3.4, 9.3.5, 9.3.6, 9.3.7, or
9.3.8 solutions. The smallest 9.3.9 solution is

2�389�39�419�239�2�209�189�2�139�129�99

(7)

(Ekl 1998). There is no known 9.3.10 solution. The
smallest 9.3.11 solution is

29�39�69�79�99�99�199�199�219�259

�299�139�169�309 (8)

(Lander et al. 1967).

There are no known 9.4.4 or 9.4.5 solutions are
known. The smallest 9.4.6 solution is

909�649�359�359

�869�809�629�439�279�169: (9)

There are no known 9.4.7 or 9.4.8 solutions. The
smallest 9.4.9 solution is

389�319�129�29

�369�2�329�309�159�139�89�49�39 (10)

(Ekl 1998). The smallest 9.4.10 solutions are

29�69�69�99�109�119�149�189�199�199

�59�129�169�219 (11)

(Lander et al. 1967).

The smallest 9.5.5 solution is

1929�1019�919�309�269

�1809�1759�1169�179�129: (12)

There is no known 9.5.6 solution. The smallest 9.5.7
solution is

359�269�2�159�129

�339�329�249�169�149�89�69 (13)

(Ekl 1998). There are no known 9.5.8, 9.5.9, or 9.5.10
solutions. The smallest 9.5.11 solution is

39�59�59�99�99�129�159�159�169�219

�219�79�89�149�209�229 (14)

(Lander et al. 1967).

The smallest 9.6.6 solutions are

239�189�149�139�139�19

�229�219�159�109�99�59 (15)

319�239�219�149�99�29

�299�299�159�119�109�69 (16)

469�449�279�279�279�99

�489�399�239�159�139�129 (17)

479�479�229�229�129�49

�509�399�359�139�109�79 (18)

549�529�489�479�469�149

�609�189�179�169�159�159 (19)

709�449�369�339�199�49

�649�639�579�479�229�139 (20)

689�589�509�469�419�79

�709�489�269�259�239�189 (21)

(Lander et al. 1967, Ekl 1998).

Ekl (1998) mentions but does not list nine primitive
solutions to the 9.7.7 equation.



Moessner (1947) gives a parametric solution to the
9.10.10 equation.

Palamá (1953) gave a solution to the 9.11.11 equation.

Moessner and Gloden (1944) give the 9.11.12 solution

729 �679 �669 �539 �439 �379 �359 �299 �199

�69 �59

�719 �709 �639 �559 �409 �399 �339 �329

�179 �99 �29 �19 : (22)
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Diophantine Equation */nth Powers
The 2 �/ equation

An �Bn��Cn (1)

is a special case of FERMAT’S LAST THEOREM and so
has no solutions for n ]3: Lander et al. (1967) give a
table showing the smallest n for which a solution to

xk
1 �xk

2 �. . .�xk
m �yk

1 �yk
2 �. . .�yk

n ; (2)

with 1 5m 5n is known. An updated table is given
below; a more extensive table may be found at the
PowerSum web site.

k

m 2 3 4 5 6 7  8  9 10

1 2 3 3 4 7 8 11 15 23

2 2 2 2 4 7 8  9 12 19

3  3 3 7  8 11 24

4 4 7 10 23

5 5 5 11 16

6 6 27

7 7

Take the results from the RAMANUJAN 6 �/0 �/ IDENTITY

that for ad �bc , with

F2m(a ; b; c ;d)

�(a �b �c)2m �(b �c �d)2m �(c �d �a)2m

�(d�a�b)2m�(a�d)2m�(b�c)2m (3)

and

f2m(x; y)�(1�x�y)2m�(x�y�xy)2m�(y�xy�1)2m

�(xy�1�x)2m�(1�xy)2m�(x�y)2m; (4)

then

F2m(a; b; c;d)�a2mf2m(x; y): (5)

Using

f2(x; y)�0 (6)

f4(x; y)�0 (7)

now gives

(a�b�c)n�(b�c�d)n�(a�d)n

�(c�d�a)n�(d�a�b)n�(b�c)n (8)

for n�2 or 4.

See also DIOPHANTINE EQUATION, RAMANUJAN 6 -10-8

IDENTITY
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Diophantine Quadruple
DIOPHANTINE SET

Diophantine Set
A set S of POSITIVE INTEGERS is said to be Diophan-
tine IFF there exists a POLYNOMIAL Q with integral



coefficients in m]1 indeterminates such that

S� Q x1; :::; xmð Þ]1 : x1]1; :::; xm]1f g:

It has been proved that the set of PRIME NUMBERS is a
Diophantine set.
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Diophantus Property
A set of m distinct POSITIVE INTEGERS S� a1; :::; amf g
satisfies the Diophantus property D nð Þ of order n (a
positive integer) if, for all i; j�1; ..., m with i"j;

aiaj�n�b2
ij; (1)

the bij/s are INTEGERS. The set S is called a Diophan-
tine n -tuple.

Diophantine 1-doubles are abundant: (1, 3), (2, 4), (3,
5), (4, 6), (5, 7), (1, 8), (3, 8), (6, 8), (7, 9), (8, 10), (9, 11),
... (Sloane’s A050269 and A050270). Diophantine 1-
triples are less abundant: (1, 3, 8), (2, 4, 12), (1, 8, 15),
(3, 5, 16), (4, 6, 20), ... (Sloane’s A050273, A050274,
and A050275).

Fermat found the smallest Diophantine 1-quadruple:
1; 3; 8; 120f g (Davenport and Baker 1969, Jones

1976). There are no others with largest term 5200;
and Davenport and Baker (1969) showed that if c�1;
3c�1; and 8c�1 are all squares, then c�120. Jones
(1976) derived an infinite sequence of polynomials
S� x; x�2; c1 xð Þ; c2 xð Þ; :::f g such that the product of
any two, increased by 1, is the square of a polynomial.
Letting c�1 xð Þ�c0 xð Þ�0; then the general ck xð Þ is
given by the RECURRENCE RELATION

ck� 4x2�8x�2
� �

ck�1�ck�2�4 x�1ð Þ: (2)

The first few ck are

c1�4 x�1ð Þ

c2�4 3�11x�12x2�4x3
� �

c3�8 3�23x�62x2�74x3�40x4�8x5
� �

:

Letting x�1 gives the sequence sn�1; 3, 8, 120,
1680, 23408, 326040, ... (Sloane’s A051047), for whichffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

snsn�1�1
p

is 2, 5, 31, 449, 6271, 87361, ... (Sloane’s
A051048).

General D 1ð Þ quadruples are

F2n;F2n�2;F2n�4; 4F2n�1F2n�2F2n�3;
, -

(3)

where Fn are FIBONACCI NUMBERS, and

n;n�2; 4n�4; 4 n�1ð Þ; 2n�1ð Þ 2n�3ð Þf g: (4)

The quadruplet

2Fn�1; 2Fn�1; 2F3
nFn�1Fn�2;

,

2Fn�1Fn�2Fn�3 2F2
n�1�F2

n

� �
g (5)

is D F2
nð Þ (Dujella 1996). Dujella (1993) showed there

exist no Diophantine quadruples D 4k�2ð Þ:/
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Diophantus’s Riddle
"Diophantus’s youth lasts 1/6 of his life. He grew a
beard after 1/12 more of his life. After 1/7 more of his
life, Diophantus married. Five years later, he had a
son. The son lived exactly half as long as his father,
and Diophantus died just four years after his son’s
death. All of this totals the years Diophantus lived."

Let D be the number of years Diophantus lived, and
let S be the number of years his son lived. Then the
above word problem gives the two equations

D�
1

6
�

1

12
�

1

7

 !
D�5�S�4

S�
1

2
D:

Solving this simultaneously gives S�42 as the age of
the son and D�84 as the age of Diophantus.
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Dipyramid

Two PYRAMIDS symmetrically placed base-to-base,
also called a BIPYRAMID. The dipyramids are DUALS

of the regular PRISMS.

Consider the dipyramids generated by taking the
duals of the n -PRISMS. The edge lengths of the base Sb

n

and slant edges Ss
n ; half-height (half the distance from

peak to peak) hn ; surface areas Sn and volumes Vn

(after scaling so that the smallest edge length is 1)
are given by

Sb
3 ;S

s
3 �2;

4

3 
(1)

h3 �
2

3 
(2)

S3 �
9

8

ffiffiffi
7

p
(3)

V3 �
3

16

ffiffiffi
3

p
(4)

sb
4 ; s

s
4 ¼

ffiffiffi
2

p
;
ffiffiffi
2

p
ð5Þ

h4 ¼ 1 ð6Þ

S4 �2
ffiffiffi
3

p
(7)

V4 �
1

3

ffiffiffi
2

p
(8)

Sb
4 ;S

s
4 �

ffiffiffi
5

p
�1;

4

5

ffiffiffi
5

p
(9)

h4 �
1

2

ffiffiffi
2

p
(10)

S4 �2
ffiffiffi
3

p
(11)

V4 �
1

3

ffiffiffi
2

p
(12)

Sb
5 ;S

s
5 �

ffiffiffi
5

p
�1 ;

4

5

ffiffiffi
5

p
(13)

h5 ¼
1

5 
ð5 þ

ffiffiffi
5

p
Þ ð14Þ

S5 �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95 �40

ffiffiffi
5

pq
(15)

V5 �
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
65 �29

ffiffiffi
5

p� �s
(16)

Sb
6 ; S

s
6 �

2

3

ffiffiffi
3

p
;
4

3

ffiffiffi
3

p
(17)

h6 �2 (18)

S6 �3
ffiffiffiffiffiffi
15

p
(19)

V6 �3 (20)

Sb
8 ;S

s
8 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2�

ffiffiffi
2

p� �r
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(21)

h8 �2 �
ffiffiffi
2

p
(22)

S8 �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 �16

ffiffiffi
2

pq
(23)

V8 �
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 58�41

ffiffiffi
2

p� �r
(24)

Sb
10 ;S

s
10 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5
5 �

ffiffiffi
5

p� �s
; 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
5 �2

ffiffiffi
5

p� �s
(25)

h10 �3 �
ffiffiffi
5

p
(26)

S10 �5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55 �24

ffiffiffi
5

pq
(27)

V10 �
5

6 
� 15 �7

ffiffiffi
5

p� �
: (28)

JOHNSON SOLID J12 is a triangular dipyramid, the
OCTAHEDRON is a square dipyramid, and JOHNSON

SOLID J13 is a pentagonal dipyramid.

See also DELTAHEDRON, ELONGATED DIPYRAMID,
JOHNSON SOLID, OCTAHEDRON, PENTAGONAL DIPYR-

AMID, PRISM, PYRAMID, TRAPEZOHEDRON, TRIANGU-

LAR DIPYRAMID, TRIGONAL DIPYRAMID
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Dirac Delta Function
DELTA FUNCTION

Dirac Distribution
DELTA FUNCTION
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Dirac Equation
The quantum electrodynamical law which applies to
spin-1/2 particles and is the relativistic generalization
of the SCHRÖ DINGER EQUATION. In 3�1 dimensions
(three space dimensions and one time dimension), it
is given by

ih

c

@ c

@t
� axpx � aypy � azpz � a4 mcð Þ
� �

c; (1)

where h is h-bar, c is the speed of light, c is the
wavefunction , m is the mass of the particle, ai are the
DIRAC MATRICES, si are PAULI SPIN MATRICES, and

pi �

pi 0 0 0
0 pi 0 0
0 0 pi 0
0 0 0 pi

2
664

3
775: (2)

In 1�1 dimensions, the Dirac equation is the system
of PARTIAL DIFFERENTIAL EQUATIONS

ut �vx �imu �2i l uj j2�vj j2
� �

u�0 (3)

vt�ux�imv�2il vj j2�uj j2
� �

v�0 (4)

(Alvarez et al. 1982; Zwillinger 1997, p. 137);

See also SCHRÖ DINGER EQUATION
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Dirac Gamma Matrices
DIRAC MATRICES

Dirac Matrices
The Dirac matrices are a class of 4�4 matrices which
arise in quantum electrodynamics. There are a
variety of different symbols used, and Dirac matrices
are also known as gamma matrices or Dirac gamma
matrices.

The Dirac matrices are defined as the 4�4 matrices

si�I2�si;Pauli (1)

ri�si;Pauli�I2; (2)

where si;Rauli are the / 2�2ð Þ PAULI MATRICES, 2 is
the 2�2ð Þ IDENTITY MATRIX, i�1, 2, 3, and A�B is
the MATRIX DIRECT PRODUCT. Explicitly, this set of
Dirac matrices is then given by

I�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 (3)

s1�

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

2
664

3
775 (4)

s2�

0 �i 0 0
i 0 0 0
0 0 0 �i
0 0 i 0

2
664

3
775 (5)

s3�

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

2
664

3
775 (6)

r1�

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

2
664

3
775 (7)

r2�

0 0 �i 0
0 0 0 �i
i 0 0 0
0 i 0 0

2
664

3
775 (8)

r3�

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

2
664

3
775 (9)

These matrices satisfy the anticommutation identi-
ties

sisj�sjsi�2dijI (10)

rirj�rjri�2dijI; (11)

where dij is the KRONECKER DELTA, the commutation
identity

si;rj

� �
�sirj�sjri�0; (12)

and are cyclic under permutations of indices

sisi�isk (13)

riri�irk: (14)

A total of 16 Dirac matrices can be defined via

Eij�sirj (15)

for i; j�0; 1, 2, 3 and where s0�r0�I: These
matrices satisfy



1. Eij

�� ���1; where |A| is the DETERMINANT,
2. E2

ij �I ;/
3. Eij �E	

ij ; where A + denotes the ADJOINT MATRIX,
making them Hermitian, and therefore unitary,
4. Tr Eij

� �
�0 ; except Tr E00ð Þ�4 ;/

5. Any two Eij multiplied together yield a Dirac
matrix to within a multiplicative factor of �1 or
9i ;/
6. The Eij are linearly independent,
7. The Eij form a complete set, i.e., any 4 �4
constant matrix may be written as

A �
X3

i;j�0

cijEij ; (16)

where the cij are real or complex and are given by

cmn �
1

4 
Tr AEmnð Þ  (17)

(Arfken 1985).

Dirac’s original matrices were written ai and were
defined by

ai �E1i � r1 si (18)

a4 �E30 � r3 ; (19)

for i �1, 2, 3, giving

a1 �E11 �

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

2
664

3
775 (20)

a2 �E12 �

0 0 0 �i
0 0 i 0
0 �i 0 0
i 0 0 0

2
664

3
775 (21)

a3 �E13 �

0 0 1 0
0 0 0 �1
1 0 0 0
0 �1 0  0

2
664

3
775 (22)

a4 �E30 �

1 0  0  1
0 1  0  0
0 0 �1 0
0 0  0  �1

2
664

3
775: (23)

The additional matrix

a5 �E20 � r2 �

0 0 �i 0
0 0  0  �i
i 0 0  0
0 i 0 0

2
664

3
775 (24)

is sometimes defined.

A closely related set of Dirac matrices is defined by

gi �
0 si

�si 0

� �
(25)

g4 �
I 0
2I �I

� �
(26)

for i �1, 2, 3 (Goldstein 1980). Instead of g4 ; g0 ; is
commonly used. Unfortunately, there are two differ-
ent conventions for its definition, the "chiral basis"

g0 �
0 I
I 0 

: (27)

and the "Dirac basis"

g0 � 
I 0
0 �I 

: (28)

Other sets of Dirac matrices are sometimes defined as

yi �E2i (29)

y4 �E30 (30)

y5 ��E10 (31)

and

di �E3i (32)

for i �1, 2, 3 (Arfken 1985).

Any of the 15 Dirac matrices (excluding the identity
matrix) commute with eight Dirac matrices and
anticommute with the other eight. Let M �
1
2 1 �Eij

� �
; then

M2 �M (33)

(Arfken 1985, p. 216). In addition

a1

a2

a3

2
4

3
5� a1

a2

a3

2
4

3
5�2is: (34)

The products of ai and yi satisfy

a1a2a3a4a5�1 (35)

y1y2y3y4y5�1: (36)

The 16 Dirac matrices form six anticommuting sets of
five matrices each:

1. a1; a2; a3; a4; a5;/
2. y1; y2; y3; y4; y5;/
3. d1; d2; d3; r1; r2;/
4. a1; y1; d1; s2; s3;/
5. a2; y2; d2; s1; s3;/
6. a3; y3; d3; s1; s2; :/

See also PAULI MATRICES
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Dirac Notation
A notation invented by Dirac which is very useful in
quantum mechanics. The notation defines the "KET"
vector, denoted c�;j and its transpose, called the
"BRA" vector and denoted �cj:: The "bracket" is then
defined by � fj c�:: Dirac notation satisfies the iden-
tities

� f Õ
�� ��c���fj Õ c�

�f j c��g
�

��

f̄cdx;

where c̄ is the COMPLEX CONJUGATE.

See also ANGLE BRACKET, BRA, DIFFERENTIAL K-

FORM, KET, L2-SPACE, ONE-FORM

Dirac Operator
The operator D ��i d�d	ð Þ; where d	 is the ADJOINT.

Dirac’s Theorem
A GRAPH with n ]3 VERTICES in which each VERTEX

has VERTEX DEGREE ]n=2 has a HAMILTONIAN CIR-

CUIT.

See also HAMILTONIAN CIRCUIT

Direct Analytic Continuation
If (f, U ) and (g, V ) are FUNCTIONS ELEMENTS, then (g,
V ) is a direct analytic continuation of (f, U ) if U S
V "0¥ and f and G are equal on U S V ::/

See also ANALYTIC CONTINUATION, GLOBAL ANALYTIC

CONTINUATION
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Direct Product
The direct product is defined for a number of classes
of algebraic objects, including GROUPS, RINGS, and
MODULES. In each case, the direct product of an
algebraic object is given by the CARTESIAN PRODUCT

of its elements, considered as sets, and its algebraic
operations are defined componentwise. For instance,
the direct product of two VECTOR SPACES of DIMEN-

SIONS n and m is a VECTOR SPACE of DIMENSION

n �m:/

Direct products satisfy the property that, given maps
a : S 0 A and b : S 0 B; there exists a unique map
S 0 A �B given by a(s) ; b(s)ð Þ:: The notion of map is
determined by the CATEGORY, and this definition
extends to other CATEGORIES such as TOPOLOGICAL

SPACES. Note that no notion of commutativity is
necessary, in contrast to the case for the COPRODUCT.
In fact, when A and B are ABELIAN, as in the cases of
MODULES (e.g., VECTOR SPACES) or ABELIAN GROUPS)
(which are MODULES over the integers), then the
DIRECT SUM A �B is well-defined and is the same as
the direct product. Although the terminology is
slightly confusing because of the distinction between
the elementary operations of addition and multiplica-
tion, the term "direct sum" is used in these cases
instead of "direct product" because of the implicit
connotation that addition is always commutative.

Note that direct products and DIRECT SUMS differ for
infinite indices. An element of the DIRECT SUM is zero
for all but a finite number of entries, while an
element of the direct product can have all nonzero
entries.

Some other unrelated objects are sometimes also
called a direct product. For example, the TENSOR

DIRECT PRODUCT is the same as the TENSOR PRODUCT,
in which case the dimensions multiply instead of add.
Here, "direct" may be used to distinguish it from the
EXTERNAL TENSOR PRODUCT.

See also CARTESIAN PRODUCT, CATEGORY THEORY,
COPRODUCT, DIRECT SUM, GROUP DIRECT PRODUCT,
MATRIX DIRECT PRODUCT, PRODUCT (CATEGORY THE-

ORY), RING DIRECT PRODUCT, SET DIRECT PRODUCT,
TENSOR DIRECT PRODUCT, TENSOR PRODUCT (VECTOR

SPACE)

Direct Proportion
DIRECTLY PROPORTIONAL

Direct Search Factorization
Direct search factorization is the simplest (and most
simple-minded) PRIME FACTORIZATION ALGORITHM. It
consists of searching for factors of a number by
systematically performing TRIAL DIVISIONS, usually
using a sequence of increasing numbers. Multiples of
small PRIMES are commonly excluded to reduce the
number of trial DIVISORS, but just including them is
sometimes faster than the time required to exclude
them. Direct search factorization is very inefficient,
and can be used only with fairly small numbers.

When using this method on a number n , only
DIVISORS up to

ffiffiffi
n

p
b c (where xb c is the FLOOR FUNC-

TION) need to be tested. This is true since if all
INTEGERS less than this had been tried, then



nffiffiffi
n

p
b c� 1 

B
ffiffiffi
n

p
: (1)

In other words, all possible FACTORS have had their
COFACTORS already tested. It is also true that, when
the smallest PRIME FACTOR p of n is >

ffiffiffi
n3

p
; then its

COFACTOR m (such that n �pm ) must be PRIME. To
prove this, suppose that the smallest p is >

ffiffiffi
n3

p
; :  If

m �ab , then the smallest value a and b could
assume is p . But then

n �pm �pab �p3 > n; (2)

which cannot be true. Therefore, m must be PRIME, so

n ¼ p1p2 (3)

See also PRIME FACTORIZATION ALGORITHMS, TRIAL

DIVISION

Direct Sum
The direct sum A �B of two sets of integers A and B
consists of the set a �b : a 	 A ; b 	 Bf g; and can be
generalized to an arbitrary number of sets A �B �
 
 

in the obvious way. For example, the direct sum of
A �f1; 2 g; B �f1; 2 g; and C �f2 ; 3g is A �B �C �
f4; 5; 5; 6; 5; 6 ; 6; 7 g:: The direct sum of a sequence of
sets l can be implemented in Mathematica as follows.

DirectSum[l__] : � Flatten[Outer[Plus, l]]

The significant property of the direct sum is that it is
the COPRODUCT in the CATEGORY of MODULES (i.e., a
MODULE DIRECT SUM). This general definition gives as
a consequence the definition of the direct sum A �B
of ABELIAN GROUPS A and B (since they are Z/-
modules, i.e., MODULES over the INTEGERS) and the
direct sum of VECTOR SPACES (since they are MODULES

over a FIELD). Note that the direct sum of Abelian
groups is the same as the GROUP DIRECT PRODUCT, but
that the term direct sum is not used for groups which
are NON-ABELIAN.

Note that DIRECT PRODUCTS and direct sums differ for
infinite indices. An element of the direct sum is zero
for all but a finite number of entries, while an
element of the DIRECT PRODUCT can have all nonzero
entries.

See also ABELIAN GROUP, DIRECT PRODUCT, GROUP

DIRECT PRODUCT, MATRIX DIRECT SUM, MODULE,
MODULE DIRECT SUM

Direct Variation
DIRECTLY PROPORTIONAL

Directed Acyclic Graph
ACYCLIC DIGRAPH

Directed Angle
The symbol �ABC denotes the directed angle from
AB to BC , which is the signed angle through which
AB must be rotated about B to coincide with BC .
Four points ABCD lie on a CIRCLE (i.e., are CON-

CYCLIC) IFF �ABC ��ADC:: It is also true that

�l1l2 ��l2l1 �0� or 360�:

Three points A , B , and C are COLLINEAR IFF �ABC �
0or180: or 1808. For any four points, A , B , C , and D ,

�ABC��CDA��BAD��DCB:

See also ANGLE, COLLINEAR, CONCYCLIC, MIQUEL

EQUATION
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Directed Convex Polyomino

A CONVEX POLYOMINO containing at least one edge of
its minimal bounding rectangle. The perimeter and
area generating function for directed polygons of
width m , height n , and area q is given by

Gðx; y; qÞ ¼
X
x]1

X
y]1

X
q]1

Cðm; n; aÞxmynqn

�y
RðxÞ� N̂ðxÞ

NðxÞ
ð1Þ



where

N(x) �
X
n]0

( �1)nxnq
n �1

2ð Þ

(q)n(yq)n

(2)

N̂(x) �
X
n]1

( �1)nxnq
n �1

2ð Þ

(q)n�1(yq)n

(3)

R(x) �y
X
n]2

xnqn

(yq)n

Pn�2

m�0

( �1)m

q

m � 2
2

	 

(q)m(yqm�1)n�m�1

0
BBB@

1
CCCA

2
6664

3
7775 (4)

(Bousquet-Mélou 1992).
The anisotropic perimeter generating function for
directed convex polygons of width x and height y is
given by

G(x; y) �
X
x]1

X
y]1

C(m;n)xmyn �
xyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(x; y)

p ; (5)

where

D(x ; y) �1 �2x �2y �2xy �x2 �y2

�(1 �y)2 1 �
x(2 � 2y � x)

(1 � y)2

" #
(6)

(Lin and Chang 1988, Bousquet 1992, Bousquet-
Mélou et al. 1999). This can be solved to explicitly
give

C(m;n) �
m �n �2

m �1

	 

m �n �2

n �1

	 

(7)

(Bousquet-Mélou 1992). Expanding the generating
function gives

G(x; y) �
X
m]1

Hm(y)xm (8)

�
y

1 � y 
x �

y(1 � y)

(1 � y)3 x
2 �

y(1 � 4y � y2)

(1 � y)5 x3 �. . .  (9)

�(y �y2 �y3 �y4 �y5 �. . .)x

�(y �4y2 �9y3 �16y4 �25y5 �. . .)x2

�(y �9y2 �36y3 �100y4 �225y5 �. . .)x3

�(y �16y2 �100y3 �400y4 �1225y5 �. . .)x4 �. . . (10)

An explicit formula of Hm(y) is given by Bousquet-
Mélou (1992). These functions satisfy the reciprocity
relations

Hm(1=y) ��ym�2Hm(y) (11)

G(x; y) �y2G(x=y; 1 =y) �0 (12)

(Bousquet-Mélou et al. 1999).

The anisotropic area and horizontal perimeter gen-
erating function G(x; q) and partial generating func-
tions Hm(q); connected by

G(x; q)�
X
m]1

Hm(q)xm;

satisfy the self-reciprocity and inversion relations

Hm(1=q)��
1

q
Hm(q)

and

G(x; q)�qG(x; 1=q)�0

(Bousquet-Mélou et al. 1999).

See also CONVEX POLYOMINO, LATTICE POLYGON
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Directed Graph

A GRAPH in which each EDGE is replaced by a directed
EDGE, also called a digraph or reflexive graph. A
COMPLETE directed graph is called a TOURNAMENT. A
directed graph having no symmetric pair of directed
edges is called an ORIENTED GRAPH.
If G is an undirected connected GRAPH, then one can
always direct the circuit EDGES of G and leave the
SEPARATING EDGES undirected so that there is a
directed path from any node to another. Such a
GRAPH is said to be transitive if the adjacency relation
is transitive.



The number of directed graphs of n nodes for n �1, 2,
... are 1, 3, 16, 218, 9608, ... (Sloane’s A000273).

See also ACYCLIC DIGRAPH, ARBORESCENCE, CAYLEY

GRAPH, GRAPH, INDEGREE, NETWORK, ORIENTED

GRAPH, OUTDEGREE, SINK (DIRECTED GRAPH),
SOURCE, STRONGLY CONNECTED DIGRAPH, TOPOLOGY

(DIGRAPH), TOURNAMENT, WEAKLY CONNECTED DI-

GRAPH
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Directed Set
A set S together with a RELATION ] which is both
transitive and reflexive such that for any two ele-
ments a; b 	 S; there exists another element c 	 S with
a]c]b: In this case, the relation]is said to "direct"
the set.

See also NET

Direction Cosine
Let a be the ANGLE between v and x, b the ANGLE

between v and y, and c the ANGLE between v and z.
Then the direction cosines are equivalent to the
(x; y; z) coordinates of a UNIT VECTOR v̂;

a�cosa�
v � x̂

vj j
(1)

b�cosb�
v � ŷ

vj j
(2)

g�cosc�
v � ẑ

vj j
: (3)

From these definitions, it follows that

a2�b2�g2�1: (4)

To find the JACOBIAN when performing integrals over
direction cosines, use

u�sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

q	 

(5)

f�tan�1 b

a

 !
(6)

g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2�b2

q
: (7)

The JACOBIAN is

@(u;f)

@(a;b)

�����
������

@u

@a

@u

@b

@f

@a

@f

@b

���������

���������
: (8)

Using

d

dx
sin�1x
� �

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p (9)

d

dx
tan�1x
� �

�
1

1 � x2
; (10)

@(u;f)

@(a;b)

�����
������

1

2
a2 � b2
� ��1=2

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2 � b2

q
1

2
a2 � b2
� ��1=2

2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2 � b2

q
�a�2b

1 �
b2

a2

a�1

1 �
b2

a2

���������������

���������������
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2 � b2

q a2 � b2
� ��1=2

1 �
b2

a2

1�
b2

a2

 !

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
� �

1 � a2 � b2
� �q ; (11)

so

dV�sinudfdu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

q
@(u;f)

@(a;b)

�����
�����dadb

�
dadbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � a2 � b2
q �

dadb

g
: (12)

Direction cosines can also be defined between two sets
of CARTESIAN COORDINATES,



a1 �x̂?�x̂ (13)

a2 �x̂?�ŷ (14)

a3 �x̂?�ẑ (15)

b1 �ŷ?�x̂ (16)

b2 �ŷ?�ŷ (17)

b3 �ŷ ?�ẑ (18)

g1 �ẑ ?�x̂ (19)

g2 �ẑ ?�ŷ (20)

g3 � ẑ?�ẑ : (21)

Projections of the unprimed coordinates onto the
primed coordinates yield

x̂?�  x̂?�x̂ð Þx̂ � x̂ ?�ŷð Þŷ � x̂ ?�ẑð Þẑ � a1 ̂x � a2 ̂y � a3 ̂z ð22Þ

ŷ ?�  ŷ?�x̂ð Þx̂ � ŷ?�ŷð Þŷ � ŷ?�ẑð Þẑ � b1 ̂x � b2 ̂y � b3 ̂z ð23Þ

ẑ ?�  ẑ ?�x̂ð Þx̂ � ẑ?�ŷð Þŷ � ẑ ?�ẑð Þẑ � g1 ̂x � g2 ̂y � g3 ̂z ; ð24Þ

and

x?�r �x̂?�a1x � a2y � a3z (25)

y?�r �ŷ ?�b1x � b2y � b3z (26)

z?�r �ẑ?�  g1x � g2y � g3z : (27)

Projections of the primed coordinates onto the un-
primed coordinates yield

x̂ � x̂ �x̂?ð Þx̂?� x̂ �ŷ ?ð Þŷ ?� x̂ �ẑ ?ð Þẑ?

� a1 ̂x?�b1 ̂y?�g1 ̂z? (28)

ŷ � ŷ �x̂?ð Þx̂?� ŷ �ŷ ?ð Þŷ ?� ŷ �ẑ ?ð Þẑ?

� a2 ̂x ?�  b2 ̂y?�g2 ̂z? (29)

ẑ � ẑ �x̂?ð Þx̂?� ẑ �x̂?ð Þŷ?� ẑ �ẑ ?ð Þẑ?

� a3 ̂x?�  b3 ̂y ?�  g3 ̂z ?; (30)

and

x �r �x̂ � a1x � b1y � g1z (31)

y �r �ŷ � a2x � b2y � g2z (32)

z �r �ẑ � a3x � b3y � g3z : (33)

Using the orthogonality of the coordinate system, it
must be true that

x̂ �ŷ �ŷ �ẑ �ẑ �x̂ �0 (34)

x̂ �x̂ �ŷ �ŷ �ẑ �ẑ �1; (35)

giving the identities

al am � bl bm � gl gm �0 (36)

for l ;m �1; 2 ; 3 and l "m; and

a2
l � b2

l � g2
l �1 (37)

for l �1; 2 ; 3:: These two identities may be combined
into the single identity

al am � bl bm � gl gm � dlm ; (38)

where dlm is the KRONECKER DELTA.

Direction Vector
UNIT VECTOR

# 1999 �/001 Wolfram Research, Inc.

Directional Derivative

9uf �9f �
u

uj j
8 lim

h00

f (x � hu) � f (x)

h
: (1)

/9uf x0 ; y0 ; z0ð Þ is the rate at which the function w �
f (x; y; z) changes at x0 ; y0 ; z0ð Þ in the direction u : Let u
be a UNIT VECTOR in CARTESIAN COORDINATES, so

uj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x �u2
y �u2

z

q
�1; (2)

then

9uf �
@f

@x
ux�

@f

@y
uy�

@f

@z
uz: (3)

The directional derivative is often written in the
notation

d

ds
� ŝ�9�sx

@

@x
�sy

@

@y
�sz

@

@z
: (4)

Directly Proportional
Two quantities y and x are said to be directly
proportional, proportional, or "in direct proportion"
if y is given by a constant multiple of x , i.e., y�cx for
c a constant. This relationship is commonly written
y8x::/

See also INVERSELY PROPORTIONAL, PROPORTIONAL

# 1999�/001 Wolfram Research, Inc.

Directly Similar

Two figures are said to be SIMILAR when all corre-
sponding ANGLES are equal, and are directly similar



when all corresponding ANGLES are equal and de-
scribed in the same rotational sense.
Any two directly similar figures are related either by
a TRANSLATION or by a SPIRAL SIMILARITY (Coxeter
and Greitzer 1967, p. 97).

See also DOUGLAS-NEUMANN THEOREM, FUNDAMEN-

TAL THEOREM OF DIRECTLY SIMILAR FIGURES, HOMO-

THETIC, INVERSELY SIMILAR, SIMILAR, SPIRAL

SIMILARITY
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Director
A PLANE parallel to two (or more) SKEW LINES, also
called a director plane. The orientation of a director is
fixed, but it is specified uniquely only if a point lying
on it is also specified.

A director of two SKEW LINES is perpendicular to the
line of shortest distance of these two lines (Altshiller-
Court 1979, p. 1).

See also SKEW LINES
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Director Curve
The curve d(u) in the RULED SURFACE parameteriza-
tion

x(u; v) �b(u) �vd(u):

See also DIRECTOR, DIRECTRIX (RULED SURFACE),
RULED SURFACE, RULING
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Director Plane
DIRECTOR

# 1999 �/001 Wolfram Research, Inc.

Directrix
DIRECTRIX (CONIC SECTION), DIRECTRIX (GRAPH),
DIRECTRIX (RULED SURFACE)

Directrix (Conic Section)

The LINE which, together with the point known as the
FOCUS, serves to define a CONIC SECTION as the LOCUS

of points whose distance from the FOCUS is propor-
tional to the horizontal distance from the directrix. If
the ratio r �1, the conic is a PARABOLA, if r B1, it is
an ELLIPSE, and if r �1, it is a HYPERBOLA (Hilbert
and Cohn-Vossen 1999, p. 27).
HYPERBOLAS and noncircular ELLIPSES have two
distinct FOCI and two associated DIRECTRICES, each
DIRECTRIX being PERPENDICULAR to the line joining
the two foci (Eves 1965, p. 275).

See also CONIC SECTION, ELLIPSE, FOCUS, HYPERBO-

LA, PARABOLA
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Directrix (Graph)
A GRAPH CYCLE.

See also GRAPH CYCLE

Directrix (Ruled Surface)
The curve b(u) in the RULED SURFACE parameteriza-
tion

x(u; v) �b(u) �vd(u)

is called the directrix (or BASE CURVE).

See also DIRECTOR CURVE, RULED SURFACE
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Dirichlet Beta Function

b(x) �
X�
n�0

(�1)n(2n �1)�x (1)

b(x) �2�x F �1; x;
1

2

 !
; (2)

where F(z ; s ;a) is the LERCH TRANSCENDENT. The beta
function can be written in terms of the HURWITZ ZETA

FUNCTION z(x;a) by

b(x) �
1

4x
z x;

1

4

 !
� z x;

3

4

 !" #
: (3)

The beta function can be evaluated directly for
POSITIVE ODD x as

b(2k �1) �
( �1)kE2k

2(2k)!

1

2 
p

 !2k �1

; (4)

where En is an EULER NUMBER. The beta function can
be defined over the whole COMPLEX PLANE using

ANALYTIC CONTINUATION,

b(1 �z) �
2

p

 !z

sin
1

2 
pz

 !
G(z) b(z) ; (5)

where G(z) is the GAMMA FUNCTION.
Particular values for b are

b(1) �
1

4 
p (6)

b(2) �K (7)

b(3) �
1

32 
p3 ; (8)

where K is CATALAN’S CONSTANT.

See also CATALAN’S CONSTANT, DIRICHLET ETA FUNC-

TION, DIRICHLET LAMBDA FUNCTION, HURWITZ ZETA

FUNCTION, LEGENDRE’S CHI-FUNCTION, LERCH TRANS-

CENDENT, RIEMANN ZETA FUNCTION, ZETA FUNCTION
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Dirichlet Boundary Conditions
PARTIAL DIFFERENTIAL EQUATION BOUNDARY CONDI-

TIONS which give the value of the function on a
surface, e.g., T�f (r; t):/

See also BOUNDARY CONDITIONS, CAUCHY BOUNDARY

CONDITIONS
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Dirichlet Conditions
DIRICHLET BOUNDARY CONDITIONS, DIRICHLET FOUR-

IER SERIES CONDITIONS

Dirichlet Divisor Problem
Let the DIVISOR FUNCTION d(n)�n(n)�s0(n) be the
number of DIVISORS of n (including n itself). For a
PRIME p , n(p)�2: In general,



Xn

k�1

n(k) �n lnn �(2g�1)n �O nu
� �

;

where g is the EULER-MASCHERONI CONSTANT. Dirich-
let originally gave u :1=2 (Hardy 1999, pp. 67 �/8),
and Landau (1916) showed than u ]1 =4 (Hardy 1999,
p. 81). The following table summarizes incremental
progress on the upper limit (Hardy 1999, p. 81).

/u/ approx. citation

7/22 0.31818 1988

27/82 0.32927 van der Corput 1928

33/100 0.33000 van der Corput 1922

1/3 0.33333 Voronoi 1903

1/2 0.50000 Dirichlet

See also DIVISOR FUNCTION, GAUSS’S CIRCLE PROBLEM
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Dirichlet Energy
Let h be a real-valued HARMONIC FUNCTION on a
bounded DOMAIN V; then the Dirichlet energy is
defined as fV 9hj j2dx; where 9 is the GRADIENT.

See also ENERGY

Dirichlet Eta Function

The function defined by

h(x)�
X�
n�1

(�1)n�1n�x� 1�21�x
� �

z(x); (1)

where n�1, 2, ..., and z(x) is the RIEMANN ZETA

FUNCTION. Note that Borwein and Borwein (1986,
p. 289) use the notation a(s) instead of h(s):: Parti-
cular values are given in Abramowitz and Stegun
(1972, p. 811).
The eta function is related to the RIEMANN ZETA

FUNCTION and DIRICHLET LAMBDA FUNCTION by

z(n)

2n
�

l(n)

2n � 1
�

h(n)

2n � 2
(2)

and

z(n)�h(n)�2l(n) (3)

(Spanier and Oldham 1987). The eta function is also a
special case of the POLYLOGARITHM function,

h(x)��Lix(�1): (4)

The value h(1) may be computed by noting that the
MACLAURIN SERIES for ln(1�x) for�15x51 is

ln(1�x)�x�
1

2
x2�

1

3
x3�

1

4
x4�
 
 
 (5)

Therefore,

ln2�ln(1�1)�1�
1

2
�

1

3
�

1

4
�
 
 




�
X�
n�1

( �1)n�1

n
� h(1): (6)

The derivative of the eta function is given by

h?ðxÞ ¼�21 �x ln 2 zðxÞ þ ð1 �21�x Þz?ðxÞ; ð7Þ

or in the special case x �0, by

limx 00

d

dx 
h(x)

" #
��ln2 � z?(0) ��ln2 �

1

2
ln(2 p)

��ln

ffiffiffi
2

p

s !
�

1

2 
ln

1

2 
p

 !
: (8)

This latter fact provides a remarkable proof of the
WALLIS FORMULA.

Values for EVEN INTEGERS are related to the analy-
tical values of the RIEMANN ZETA FUNCTION. h(0) is
defined to be 1

2 :

h(0) �
1

2

h(1) �ln2

h(2) �
p2

12

h(3) �0:90154 . . .

h(4) �
7p4

720 
:

See also DEDEKIND ETA FUNCTION, DIRICHLET BETA

FUNCTION, DIRICHLET L -SERIES, DIRICHLET LAMBDA

FUNCTION, RIEMANN ZETA FUNCTION, ZETA FUNCTION

References
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
pp. 807 �/08, 1972.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in
Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987.

Spanier, J. and Oldham, K. B. "The Zeta Numbers and
Related Functions." Ch. 3 in An Atlas of Functions.
Washington, DC: Hemisphere, pp. 25 �/3, 1987.

Dirichlet Fourier Series Conditions
A piecewise regular function which

1. Has a finite number of finite discontinuities and
2. Has a finite number of extrema

can be expanded in a FOURIER SERIES which con-
verges to the function at continuous points and the

mean of the POSITIVE and NEGATIVE limits at points of
discontinuity.

See also FOURIER SERIES

Dirichlet Function
Let c and d "c be REAL NUMBERS (usually taken as
c �1 and d �0). The Dirichlet function is defined by

D(x) �
c for x rational
d for x irrational

*
(1)

and is discontinuous everywhere. The Dirichlet func-
tion can be written analytically as

D(x) � lim
m0�

lim
n 0�

cos2n(m!px) : (2)

Because the Dirichlet function cannot be plotted
without producing a solid blend of lines, a modified
version can be defined as

DM(x) �
0 for x irrational
1 =b for x �a=b a reduced fraction

*
(3)

(Dixon 1991), illustrated above. This function is
continuous at irrational x and discontinuous at
rational x (although a small interval around an
irrational point x contains infinitely many ration
points, these rationals will have very large denomi-
nators). When viewed from a corner along the line
y�x in normal perspective, a QUADRANT of EUCLID’S

ORCHARD turns into the modified Dirichlet function
(Gosper).

See also CONTINUOUS FUNCTION, EUCLID’S ORCHARD,
IRRATIONAL NUMBER, RATIONAL NUMBER
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Dirichlet Integrals
There are several types of integrals which go under
the name of a "Dirichlet integral." The integral

D[u]�gV½9u½2dV (1)

appears in DIRICHLET’S PRINCIPLE.

The integral

1

2pg
p

�p

f (x)

sin n �
1

2

 !
x

" #

sin
1

2
x

 ! dx; (2)

where the kernel is the DIRICHLET KERNEL, gives the
nth partial sum of the FOURIER SERIES.

Another integral is denoted

dk�
1

pg
�

��

sinakrk

rk

eirkgk drk�
0 for ½gk½ > ak

1 for ½gk½Bak

*
(3)

for k�1, ..., n .

There are two types of Dirichlet integrals which are
denoted using the letters C , D , I , and J . The type 1
Dirichlet integrals are denoted I , J , and IJ , and the
type 2 Dirichlet integrals are denoted C , D , and CD .

The type 1 integrals are given by

I�gg . . .g f t1�t2�:::�tnð Þta1�1
1 ta2�1

2 . . . tan�1
n dt1dt2dtn

�
G a1ð ÞG a2ð Þ:::G anð Þ

G
P

n an

� � g
1

0

f rð Þr
X

n

a

 !�1

dr; (4)

where G(z) is the GAMMA FUNCTION. In the case n�2,

I�ggT

xpyqdxdy�
p!q!

(p � q � 2)!
�

B(p � 1; q � 1)

p � q � 2
; (5)

where the integration is over the TRIANGLE T
bounded by the X -AXIS, Y -AXIS, and line x�y�1 and
B(x; y) is the BETA FUNCTION.

The type 2 integrals are given for b -D vectors a and r,
and 05c5b;

C(b)
a (r;m)�

G(m � R)

G(m)
Qb

i�1 G rið Þg
a1

0


 
 
g
ab

0

�
Qb

i�1 xri�1

i dxi

1 �
Pb

i�1 xi

� �m�R (6)

D(b)
a (r;m)�

G(m � R)

G(m)
Qb

i�1 G rið Þg
�

a1


 
 
g
�

ak

�
Qb

i�1 xri�1

i dxi

1 �
Pb

i�1 xi
� �m�R (7)

CD(c;d�c)
a (r;m)

�
G(m � R)

G(m)
Qb

i�1 G rið Þg
ac

0 g
�

ac�1
g

�

ab

Qb
i�1 xri�1

i dxi

1 �
Pb

i�1 xi

� �m�R ; (8)

where

R�
Xk

i�1

ri (9)

ai�
pi

1 �
Pk

i�1 pi

; (10)

and pi are the cell probabilities. For equal probabil-
ities, ai�1: The Dirichlet D integral can be expanded
as a MULTINOMIAL SERIES as

D(b)
a (r;m)�

1

1 �
Pb

i�1

� �m

�
X
x1Br1


 
 

X
xbBrb

m�1�
Pb

a�1 xi

m�1; x1 . . . ; xb

	 


Y
i�1

b
ai

1 �
Pb

k¼1 ak

 !xi

: (11)

For small b , C and D can be expressed analytically
either partially or fully for general arguments and
ai�1:

C(1)
1 r2; r1ð Þ�G r1 � r2ð Þ 2Fi r2; r1 � r2; 1 � r2;�1ð Þ

r2G r1ð ÞG r2ð Þ
(12)

C(2)
1 r2; r3; r1ð Þ� G r1 � r2 � r3ð Þ

r2G r1ð ÞG r2ð ÞG r3ð Þ

�g
1

0
2F1yra�1(1�y)� r1�r2�r3ð Þdy; (13)

where

2F1�2 F1 r2 ; r1�r2 �r3 ; 1�r2;�(1�y)�1
� �

(14)

is a HYPERGEOMETRIC FUNCTION.

D(1)
1 r2; r1ð Þ�G r1 � r2ð Þ2F1 r1; r1 ��r2; 1 � r1;�1ð Þ

r1G r1ð ÞG r2ð Þ
(15)



D 2ð Þ
1 r2 ; r3; r1ð Þ

�
G r1 � r2 � r3ð Þ

r1 � r3ð ÞG r1ð ÞG r2ð ÞG r3ð Þg
�

1
2F1yr3�1dy ; (16)

where

2F1 �2 F1 r1 �r3 ; r1 �r2 �r3; 1�r1 �r3; �1 �yð Þ: (17)
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Dirichlet Kernel
The Dirichlet kernel DM

n is obtained by integrating
the CHARACTER ei(j ;x) over the BALL ½ j½5M ;

DM
n ��

1

2pr

d

dr
DM

n�2 :

The Dirichlet kernel of a DELTA SEQUENCE is given by

dn(x) �
1

2p

sin n �
1

2

 !
x

" #

sin
1

2 
x

 ! :

The integral of this kernel is called the DIRICHLET

INTEGRAL D u½ �:/

See also DELTA SEQUENCE, DIRICHLET INTEGRALS,
DIRICHLET’S LEMMA

Dirichlet Lambda Function

l(x) �
X�
n�0

2n �1ð Þ�x� 1 �2 �xð Þz xð Þ  (1)

for x �2, 3, ..., where z(x) is the RIEMANN ZETA

FUNCTION. The function is undefined at x �1. It can
be computed in closed form where z(x) can, that is for
EVEN POSITIVE n . It is related to the RIEMANN ZETA

FUNCTION and DIRICHLET ETA FUNCTION by

z( n)

2n
�

l( n)

2n � 1 
�

h( n)

2 n � 2 
(2)

and

z(n) � h(n) �2l(n) (3)

(Spanier and Oldham 1987). Special values of l(n)
include

l(2) �
p2

8
(4)

l(4)�
p4

96
: (5)

See also DIRICHLET BETA FUNCTION, DIRICHLET ETA

FUNCTION, LEGENDRE’S CHI-FUNCTION, RIEMANN

ZETA FUNCTION, ZETA FUNCTION
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Dirichlet L-Series
Series OF THE FORM

Lk(s; x)�
X�
n�1

xk(n)n�s; (1)

where the CHARACTER xk(n) is an INTEGER FUNCTION

with period m , are called Dirichlet L -series. These
series are very important in ADDITIVE NUMBER THE-

ORY (they were used, for instance, to prove DIRI-

CHLET’S THEOREM), and have a close connection with
MODULAR FORMS. Dirichlet L -series can be written as
sums of LERCH TRANSCENDENTS with z a POWER of
e2pi=m:/

The DIRICHLET ETA FUNCTION

h(s)�
X�
n�1

(�1)n�1

ns
� 1�21�s
� �

z(s) (2)

(for s"1); DIRICHLET BETA FUNCTION

L�4(s)�b(s)�
X�
n�0

(�1)n

(2n � 1)s ; (3)

and RIEMANN ZETA FUNCTION

L�1(s)�z(s)�
X�
n�0

1

ns
(4)

are all Dirichlet L -series (Borwein and Borwein 1987,
p. 289).

Hecke found a remarkable connection between each
MODULAR FORM with FOURIER SERIES

f (r)�c(0)�
X�
n�1

c(n)e2pint (5)

and the Dirichlet L -series

f(s)�
X�
m�1

c(n)

ns
(6)

This Dirichlet series converges absolutely for s�
R s½ � > k�1 (if f is a CUSP FORM) and s > 2k if f is not
a CUSP FORM. In particular, if the coefficients /cðnÞ/
satisfy the multiplicative property

c mð Þc nð Þ�
X

d½ m;nð Þ
d2k�1c

mn

d2

 !
; (7)

then the Dirichlet L -series will have a representation
OF THE FORM

f sð Þ�
Y

p

1

1 � c pð Þp�s � p2k�1p�2s
; (8)

which is absolutely convergent with the Dirichlet
series (Apostol 1997, pp. 136�/37). In addition, let k]
4 be an EVEN integer, then f(s) can be ANALYTICALLY

CONTINUED beyond the line s�k such that

1. If c(0)�0; then f(s) is an ENTIRE FUNCTION of s ,
2. If c(0)"0; f(s) is analytic for all s except a
single SIMPLE POLE at s�k with RESIDUE

(�1)k=2c(0)(2p)k

G(k)
; (9)

where G(k) is the GAMMA FUNCTION, and
3. f(s) satisfies

(2p)�sG(s)f(s)�(�1)k�2(2p)s�kG(k�s)f(k�s) (10)

(Apostol 1997, p. 137).

The CHARACTER xk is called primitive if the CONDUC-

TOR f (x)�k: Otherwise, xk is imprimitive. A primitive
L -series modulo k is then defined as one for which
xk(n) is primitive. All imprimitive L -series can be
expressed in terms of primitive L -series.

Let P�1 or P�
Qt

i�1 pi; where pi are distinct ODD

PRIMES. Then there are three possible types of
primitive L -series with REAL COEFFICIENTS. The
requirement of REAL COEFFICIENTS restricts the
CHARACTER to xk(n)�91 for all k and n . The three
type are then

1. If k�P (e.g., k�1, 3, 5, ...) or k�4P (e.g., k�4,
12, 20, ...), there is exactly one primitive L -series.
2. If k�8P (e.g., k�8, 24, ...), there are two
primitive L -series.
3. If k�2P;Ppi; or 2aP where a > 3 (e.g., k�2, 6,
9, ...), there are no primitive L -series

(Zucker and Robertson 1976). All primitive L -series
are ALGEBRAICALLY INDEPENDENT and divide into two
types according to

xk k�1ð Þ�91: (11)

Primitive L -series of these types are denoted L9: For
a primitive L -series with REAL CHARACTER (NUMBER

THEORY), if k�P , then

Lk�
L�k if P�3 mod4ð Þ
Lk if P�1 mod4ð Þ:

*
(12)

If k�4P; then

Lk�
L�k if P�1 mod4ð Þ
Lk if P�3 mod4ð Þ;

*
(13)

and if k�8P; then there is a primitive function of
each type (Zucker and Robertson 1976).

The first few primitive NEGATIVE L -series are L�3;
L�4; L�7; L�8; L11; L�15; L�19; L�20; L�23; L�24; L�31;



L�35 ; L�39 ; L�40 ; L�43 ; L�47 ; L�51 ; L�52 ; L�55 ; L�56 ;
L�59 ; L�67 ; L�68 ; L�71 ; L�79 ; L�83 ; L�84 ; L�87 ; L�88 ;
L�91 ; L�95 ; ... (Sloane’s A003657), corresponding to
the negated discriminants of IMAGINARY QUADRATIC

FIELDS. The first few primitive POSITIVE L -series are
L�1 ; L �5 ; L �8 ; L �12 ; L �13 ; L �17 ; L �21 ; L �24 ; L�28 ; L�29 ;
L�33 ; L�37 ; L�40 ; L�41 ; L�44 ; L�53 ; L�56 ; L�57 ; L�60 ;
L�61 ; L�65 ; L�69 ; L�73 ; L�76 ; L�77 ; L�85 ; L�88 ; L�89 ;
L�92 ; L�93 ; L�97 ; ... (Sloane’s A046113).

The KRONECKER SYMBOL is a REAL CHARACTER mod-
ulo k , and is in fact essentially the only type of REAL

primitive CHARACTER (Ayoub 1963). Therefore,

L�d(s) �
X�
n �1

d½nð Þn�s (14)

L�d(s) �
X�
n �1

�d½nð Þn�s ; (15)

where d½nð Þ is the KRONECKER SYMBOL (Borwein and
Borwein 1986, p. 293). The functional equations for
L9 are

L�k(s) �2s ps�1k�s�1 =2 G(1 �s) cos
1

2 
s p

 !
L �k(1 �s)

ð16Þ

L�k(s) �2s ps�1k�s�1 =2 G(1 �s) sin
1

2 
sp

 !
L�k(1 �s)

:ð17Þ

For m a POSITIVE INTEGER

L�k(�2m) �0 (18)

L�k(1 �2m) �0 (19)

L�k(2m) �Rk�1=2 p2m (20)

L�k(2m �1) �R?k �1 =2 p2m�1 (21)

L�k(1 �2m) �
(�1)m(2m � 1)!R

(2k)2m�1 (22)

L�k(�2k) �
( �1)mR?(2m)!

(2k)2m (23)

where R and R? are RATIONAL NUMBERS. Nothing
general appears to be known about L�k(2m) or
L�k ð2m �1Þ; although it is possible to express all
L9(1) in terms of known transcendentals (Zucker and
Robertson 1976).

/L�k(1) can be expressed in terms of transcendentals
by

Ld(1) �h(d) k(d) ; (24)

where h(d) is the CLASS NUMBER and k(d) is the
DIRICHLET STRUCTURE CONSTANT. Some specific va-

lues of primitive L -series are

L�15(1) �
2pffiffiffiffiffiffi
15

p

L�11(1) �
pffiffiffiffiffiffi
11

p

L�8(1) �
p

2
ffiffiffi
2

p

L�7(1) �
pffiffiffi
7

p

L�4(1) �
1

4 
p

L�3(1) �
p

3
ffiffiffi
3

p

L�5(1) �
2ffiffiffi
5

p ln
1 �

ffiffiffi
5

p

2

 !

L�s(1) �
ln 1 �

ffiffiffi
2

p� �ffiffiffi
2

p

L�12(1) �
ln(2 �

ffiffiffi
3

p
)ffiffiffi

3
p

L�13(1) �
2ffiffiffiffiffiffi
13

p ln
3 �

ffiffiffiffiffiffi
13

p

2

 !

L�17(1) �
2ffiffiffiffiffiffi
17

p ln(4 �
ffiffiffiffiffiffi
17

p
)

L�21(1) �
2ffiffiffiffiffiffi
21

p ln
5 �

ffiffiffiffiffiffi
21

p

2

 !

L�24(1)�
ln(5 � 2

ffiffiffi
6

p
)ffiffiffi

6
p :

In particular,

L�3(1)�L(1; x)�
X�
n�0

1

(3n � 1)(3n � 2)
(25)

for x a nontrivial Dirichlet character modulo 3 (Ire-
land and Rosen 1990, p. 266).

No general forms are known for L�k(2m) and
L�kð2m�1Þ in terms of known transcendentals. For
example,

L�4 2ð Þ�b 2ð Þ�K ; (26)

where K is defined as CATALAN’S CONSTANT.

See also DIRICHLET BETA FUNCTION, DIRICHLET ETA

FUNCTION, DIRICHLET SERIES, DOUBLE SUM, HECKE

L -SERIES, MODULAR FORM, PETERSSON CONJECTURE
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Dirichlet Problem
The problem of finding the connection between a
continuous function f on the boundary @R of a region
R with a HARMONIC FUNCTION taking on the value f
on @R: In general, the problem asks if such a solution
exists and, if so, if it is unique. The Dirichlet problem
is extremely important in mathematical physics
(Courant and Hilbert 1989, pp. 179 �/80 and 240;
Logan 1997; Krantz 1999b).

If f is a CONTINUOUS FUNCTION on the boundary of the
open unit disk @D 0; 1ð Þ; then define

u zð Þ�
1

2p g
2p

0

f eic
� � 1 � zj j2

z � eicj j2 d c

f ðzÞ

if z 	 D ð0; 1Þ

if z 	 @Dð0; 1Þ
;

8><
>:

where @D 0; 1ð Þ; is the boundary of D(0; 1): Then u is
continuous on the closed unit disk D(0; 1) and har-
monic on D(0; 1) (Krantz 1999a, p. 93).

See also POISSON INTEGRAL, POISSON KERNEL
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Dirichlet Region
VORONOI POLYGON

Dirichlet Series
A series X

a nð Þe� l nð Þz ;

where a(n) and z are COMPLEX and l(n)f g is a
MONOTONIC increasing sequence of REAL NUMBERS is
called a general Dirichlet series. The numbers l(n)
are called the exponents, and a(n) are called the
coefficients. When l(n) �lnn; then e � l nð Þz �n �z ; the
series is a normal DIRICHLET L -SERIES. The Dirichlet
series is a special case of the LAPLACE-STIELTJES

TRANSFORM.

See also DIRICHLET L -SERIES, LAPLACE-STIELTJES

TRANSFORM, MODULAR FORM, MODULAR FUNCTION
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Dirichlet Structure Constant

k dð Þ�

2 ln  h dð Þffiffiffi
d

p for d > 0

2p

w dð Þ
ffiffiffiffiffiffi
dj j

p for d > 0

8>>><
>>>:

where h dð Þ is the FUNDAMENTAL UNIT and w dð Þ is the
number of substitutions which leave the BINARY

QUADRATIC FORM unchanged

w dð Þ�
6 for d��3
4 for d��4
2 otherwise:

8<
:

See also CLASS NUMBER, DIRICHLET L -SERIES
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Dirichlet Tessellation
VORONOI DIAGRAM



Dirichlet’s Approximation Theorem
Given any REAL NUMBER u and any POSITIVE INTEGER

N , there exist integers h and k with 0 5k 5N such
that

ku �hj jB1

N
:

A slightly weaker form of the theorem states that for
every real u; there exist integers h and k with k �0
and h; kð Þ1 �1 such that

u�
h

k

�����
�����B 1

k2 
:

See also HURWITZ’S IRRATIONAL NUMBER THEOREM,
IRRATIONALITY MEASURE, LIOUVILLE’S APPROXIMA-

TION THEOREM, RATIONAL APPROXIMATION, ROTH’S

THEOREM, THUE-SIEGEL-ROTH THEOREM
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Dirichlet’s Box Principle
A.k.a. the PIGEONHOLE PRINCIPLE. Given n boxes and
m �n objects, at least one box must contain more
than one object. This statement has important appli-
cations in NUMBER THEORY and was first stated by
Dirichlet in 1834.

See also FUBINI PRINCIPLE
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Dirichlet’s Boxing-In Principle
DIRICHLET’S BOX PRINCIPLE

Dirichlet’s Formula
If g is continuous and m; n > 0 ; then

g
t

0

t � jð Þm�1djg  
j

0

j �xð Þn�1g j; xð Þdx

�g
t

0

dxg
t

x

t � jð Þm�1
j �xð Þn�1g j; xð Þdj:

Dirichlet’s Lemma

g 
p

0

sin n �
1

2

 !
x

" #

2 sin
1

2 
x

 ! dx �
1

2 
p ;

where the KERNEL is the DIRICHLET KERNEL.

See also DIRICHLET KERNEL
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Dirichlet’s Principle
Dirichlet’s principle, also known as Thomson’s prin-
ciple, states that here exists a function u that
minimizes the functional

D[u] �gV½9u½2dV

(called the DIRICHLET INTEGRAL) for VƒR2 or R3

among all the functions /u 	 Cð1 ÞðVÞS C ð0 ÞðVÞ/ which
take on given values f on the boundary @V of V; and
that function u satisfies 92 �0 in V; u½@V�f ; u 	
C 2ð Þ Vð ÞS C 0ð Þ  V̄

� �
: Weierstrass showed that Dirichlet’s

argument contained a subtle fallacy. As a result, it
can be claimed only that there exists a lower bound to
which D u½ � comes arbitrarily close without being
forced to actually reach it. Kneser, however, obtained
a valid proof of Dirichlet’s principle.

See also DIRICHLET’S BOX PRINCIPLE, DIRICHLET

INTEGRALS
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Dirichlet’s Test
Let

Xp

n�1

an

�����
�����BK ;

where K is independent of p . Then if fn]fn�1 > 0 and

lim
n0�

fn�0;

it follows that



X�
n �1

anfn

CONVERGES.

See also CONVERGENCE TESTS

Dirichlet’s Theorem
Given an ARITHMETIC SERIES of terms an �b; for
n �1, 2, ..., the series contains an infinite number
of PRIMES if a and b are RELATIVELY PRIME, i.e.,
(a; b) �1 : Dirichlet proved this theorem using DIRICH-

LET L -SERIES, but the proof is challenging enough
that, in their classic text on NUMBER THEORY, the
usually explicit Hardy and Wright (1979) report "this
theorem is too difficult for insertion in this book."

See also PRIME ARITHMETIC PROGRESSION, PRIME

PATTERNS CONJECTURE, RELATIVELY PRIME, SIER-

PINSKI’S PRIME SEQUENCE THEOREM
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Dirichlet-Hardy Test
If, in an interval of x , Sn

r�1 is uniformly bounded with
respect to n and x , and fvr g is a sequence of positive
non-increasing quantities tending to zero, then
aar(x)vr is uniformly convergent in the interval.
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Disc
DISK

Disconnected Form
A FORM which is the sum of two FORMS involving
separate sets of variables.

Disconnected Graph

A graph is said to be disconnected if it is not
CONNECTED, i.e., if there exist two nodes is G such
that no edge in G having those nodes as endpoints.
The numbers of disconnected simple unlabeled
graphs on n �1, 2, ... nodes are 0, 1, 2, 5, 13, 44,
191, ... (Sloane’s A000719).
If G is disconnected, then its complement Ḡ is
connected (Skiena 1990, p. 171; Bollobás 1998). How-
ever, the converse is not true, as can be seen using the
example of the CYCLE GRAPH C5 which is connected
and isomorphic to its complement.

See also CONNECTED GRAPH, CUT SET, K -CONNECTED

GRAPH
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Disconnectivity
Disconnectivities are mathematical entities which
stand in the way of a SPACE being contractible (i.e.,
shrunk to a point, where the shrinking takes place
inside the SPACE itself). When dealing with TOPOLO-

GICAL SPACES, a disconnectivity is interpreted as a
"HOLE" in the space. Disconnectivities in SPACE are
studied through the EXTENSION PROBLEM or the
LIFTING PROBLEM.

See also EXTENSION PROBLEM, HOLE, LIFTING PRO-

BLEM



Discontinuity

A point at which a mathematical object is DISCONTIN-

UOUS.

Discontinuous
Not CONTINUOUS. A point at which a function is
discontinuous is called a DISCONTINUITY, or some-
times a JUMP.

See also CONTINUOUS, DISCONTINUITY
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Discordant Permutation
MARRIED COUPLES PROBLEM

Discrepancy Theorem
Let s1 ; s2 ; ... be an infinite series of real numbers lying
between 0 and 1. Then corresponding to any arbi-
trarily large K , there exists a positive integer n and
two subintervals of equal length such that the
number of sv with n �1; 2, ..., n which lie in one of
the subintervals differs from the number of such sn
that lie in the other subinterval by more than K (van
der Corput 1935ab, van Aardenne-Ehrenfest 1945,
1949, Roth 1954).

This statement can be refined as follows. Let N be a
large integer and s1 ; s2 ; ..., sN be a sequence of N real
numbers lying between 0 and 1. Then for any integer
1 5n 5N and any real number a satisfying 0 B a B1;
let Dn að Þ denote the number of sn with v �1; 2, ..., n
that satisfy /0 5sn B a/. Then there exist n and a such
that

Dn að Þ�naj j > c1

ln ln N

ln ln ln N

where c1 is a positive constant.

This result can be further strengthened, which is
most easily done by reformulating the problem. Let
N �1 be an integer and P1 ; P2 ; ..., PN be N (not
necessarily distinct) points in the square 0 5x 51;
0 5y 51: Then

g
1

0 g
1

0

S x; yð Þ�Nxy½ �2dxdy > c2 lnN ;

where c2 is a positive constant and S u; vð Þ is the
number of points in the rectangle 0 5x Bu; 0 5y Bv
(Roth 1954). Therefore,

S x; yð Þ�Nxyj j > c3

ffiffiffiffiffiffiffiffiffi
lnN

p
;

and the original result can be stated as the fact that
there exist n and a such that

Dn að Þ�naj j > c4

ffiffiffiffiffiffiffiffiffi
lnN

p
:

The randomly distributed points shown in the above
squares have S x; yð Þ�Nxyj j2�6:40 and 9.11, respec-
tively.

Similarly, the discrepancy of a set of N points in a
unit d -HYPERCUBE satisfies

S x; yð Þ�Nxyj j > c lnNð Þ d�1ð Þ=2

(Roth 1954, 1976, 1979, 1980).

See also 18-POINT PROBLEM, CUBE POINT PICKING
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Discrete Distribution
A STATISTICAL DISTRIBUTION whose variables can take
on only discrete values. Abramowitz and Stegun
(1972, p. 929) give a table of the parameters of most
common discrete distributions.

See also BERNOULLI DISTRIBUTION, BINOMIAL DIS-

TRIBUTION, CONTINUOUS DISTRIBUTION, GEOMETRIC

DISTRIBUTION, HYPERGEOMETRIC DISTRIBUTION, NE-

GATIVE BINOMIAL DISTRIBUTION, POISSON DISTRIBU-

TION, PROBABILITY, STATISTICAL DISTRIBUTION,
STATISTICS, UNIFORM DISTRIBUTION
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Discrete Fourier Transform
The FOURIER TRANSFORM is defined as

f nð Þ�F f tð Þ½ ��g
�

��

f tð Þe�2 pintdt: (1)

Now consider generalization to the case of a discrete
function, f tð Þ 0 f tkð Þ by letting fk �f tkð Þ; where tk �

kD; with k �0, ..., N �1 : Choose the frequency step
such that

nn �
n

N D
; (2)

with n ��N =2; ..., 0, ..., N =2: There are N �1 values
of n , so there is one relationship between the
frequency components. Writing this out as per Press
et al. (1989)

F f (t)½ ��
XN �1

k �0

fke �2 pi n=N Dð Þk DD�D
XN �1

k �0

fke �2 pink=N ; (3)

and

Fn �
XN �1

k �0

fke �2 pink=N : (4)

The inverse transform is

fk �
1

N

XN �1

n�0

Fne2 pink =N : (5)

Note that F�n �FN �n ; n �1, 2, ..., so an alternate
formulation is

nn �
n

N D
; (6)

where the NEGATIVE frequencies �nc B n B0 have
N =2 �1 5n 5N �1; POSITIVE frequencies 0 B n B nc

have 1 5n 5N =2 �1 ; with zero frequency n �0. n �
N =2 corresponds to both n � nc and n ��nc : The
discrete Fourier transform can be computed using a
FAST FOURIER TRANSFORM.

The discrete Fourier transform is a special case of the
Z -TRANSFORM. It can be computed for a list l of
COMPLEX NUMBERS using the Mathematica command
Fourier[l ].

The above plot shows the 2-D discrete Fourier trans-
form of the reciprocals of the greatest common divisor
GCD (i ; j) for i ; j 	 1 ; 512½ � (Trott 2000).

See also FAST FOURIER TRANSFORM, FOURIER TRANS-

FORM, HARTLEY TRANSFORM, WINOGRAD TRANSFORM,
Z -TRANSFORM
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Discrete Geometry

See also COMPUTATIONAL GEOMETRY
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Discrete Group

See also CONTINUOUS GROUP, FINITE GROUP

Discrete Logarithm
MULTIPLICATIVE ORDER



Discrete Mathematics
The branch of mathematics dealing with objects
which can assume only certain "discrete" values.
Discrete objects can be characterized by INTEGERS,
whereas continuous objects require REAL NUMBERS.
The study of how discrete objects combine with one
another and the probabilities of various outcomes is
known as COMBINATORICS.

See also COMBINATORICS, DISCRETE DISTRIBUTION,
DISCRETE FOURIER TRANSFORM, DISCRETE GEOME-

TRY, DISCRETE LOGARITHM
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Discrete Set
A set S is discrete in a larger TOPOLOGICAL SPACE X if
every point x 	 S has a NEIGHBORHOOD U such that
S S U � xf g:: The points of S are then said to be
ISOLATED (Krantz 1999, p. 63). Typically, a discrete
set is either finite or COUNTABLY INFINITE. For
example, the set of integers is discrete on the REAL

LINE. Another example of an infinite discrete set is
the set 1=n for all integers n > 1f g: On any reason-
able space, a finite set is discrete. A set is discrete if it
has the DISCRETE TOPOLOGY, that is, if every subset is
open.

In the case of a subset S , as in the examples above,
one uses the RELATIVE TOPOLOGY on S . Sometimes a
discrete set is also closed. Then there cannot be any
ACCUMULATION POINTS of a discrete set. On a COM-

PACT SET such as the SPHERE, a closed discrete set
must be finite because of this.

See also ACCUMULATION POINT, COMPACT SPACE,
DISCRETE TOPOLOGY, ISOLATED POINT, NEIGHBOR-

HOOD, TOPOLOGICAL SPACE
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Discrete Topology
A topology is given by a collection of subsets of a
TOPOLOGICAL SPACE X . The smallest topology has two
OPEN SETS, f and X . The largest topology contains all
subsets as open sets, and is called the discrete
topology. In particular, every point in X is an OPEN

SET in the discrete topology.

See also DISCRETE MATHEMATICS, DISCRETE SET,
TOPOLOGICAL SPACE

Discrete Uniform Distribution
EQUALLY LIKELY OUTCOMES DISTRIBUTION

DiscreteDelta
KRONECKER DELTA

Discriminant
A discriminant is a quantity (usually invariant under
certain classes of transformations) which charac-
terizes certain properties of a quantity’s ROOTS. The
concept of the discriminant is used for BINARY QUAD-

RATIC FORMS, ELLIPTIC CURVES, METRICS, MODULES,
POLYNOMIALS, QUADRATIC CURVES, QUADRATIC

FIELDS, QUADRATIC FORMS, and in the SECOND DERI-

VATIVE TEST.

See also DISCRIMINANT (BINARY QUADRATIC FORM),
DISCRIMINANT (CIRCLE), DISCRIMINANT (CONIC SEC-

TION), DISCRIMINANT (ELLIPTIC CURVE), DISCRIMI-

N A N T  (M E T R I C ) ,  M O D U L A R  DI S C R I M I N A N T ,
DISCRIMINANT (MODULE), DISCRIMINANT (POLYNO-

MIAL), DISCRIMINANT (QUADRATIC CURVE), DISCRIMI-

NANT (SECOND DERIVATIVE TEST)

Discriminant (Binary Quadratic Form)
The discriminant of a BINARY QUADRATIC FORM

au2 �buv �cv2

is defined by

d �b2 �4ac:

It is equal to four times the corresponding DETERMI-

NANT.

See also CLASS NUMBER

Discriminant (Circle)
In HOMOGENEOUS COORDINATES (x1; x2; x3); the equa-
tion of a CIRCLE C is

a(x2
1�x2

2)�2fx2x3�2gx1x3�cx2
3�0:

The discriminant of this circle is defined as



D�
a 0 g
0 a f
g f  c

������
�������a(ac �f 2 �g2);

and the quadratic form q(C) �ac �f 2 �g2 is the basic
invariant.

See also DISCRIMINANT (CONIC SECTION)
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Discriminant (Conic Section)
The discriminant of the general CONIC SECTION

ax2
1 �bx2

2 �cx2
3 �2fx2x3 �2gx1x3 �2hx1x2 �0

is defined as

D�
a h g
h b f
g f c

������
�������abc �2fgh �af 2 �bg2 �ch2 :

If b �a and g �h �0; then simplifies to the DISCRI-

MINANT of a CIRCLE.

See also DISCRIMINANT (CIRCLE)
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Discriminant (Elliptic Curve)
An ELLIPTIC CURVE is the set of solutions to an
equation of the form

y2 �a1xy �a3y �x3 �a2x2 �a4x �a6 : (1)

By changing variables, y 0 2y �a1x �a3 ; assuming
the CHARACTERISTIC is not 2, the equation becomes

y2 �4x3 �b2x2 �2b4x �b6 (2)

where

b2 �a2
1 �4a2 (3)

b4 �2a4 �a1a3 (4)

b6 �a2
3 �4a6 : (5)

Define also the quantity

b8 �a2
1a6 �4a2a6 �a1a3a4 �a2a2

3 �a2
4 ; (6)

then the discriminant is given by

D��b2
2b8 �8b3

4 �27b2
6 �9b2b4b6 : (7)

The discriminant depends on the choice of equations,
and can change after a change of variables, unlike the
J -INVARIANT.

If the CHARACTERISTIC of the FIELD is neither 2 or 3,
then its equation can be written as

y2 �x3 �Ax �B ; (8)

in which case, the discriminant is given by

D��16(4A3 �27B2) : (9)

Algebraically, the discriminant is nonzero when the
right-hand side has three distinct roots. In the
classical case of an ELLIPTIC CURVE over the COMPLEX

NUMBERS, the discriminant has a geometric interpre-
tation. If D"0 ; then the elliptic curve is nonsingular
and has GENUS 1, i.e., it is a TORUS. If  D�0 and A �0,
then it has a CUSP singularity, in which case there is
one tangent direction at the singularity. If D�0 and
A "0 ; then its singularity is called an ORDINARY

DOUBLE POINT (or node), in which case the singularity
has two distinct tangent directions.

Note that the discriminant of an ELLIPTIC CURVE is
not the same as the DISCRIMINANT of the correspond-
ing polynomial, but the two kinds of discriminants
vanish for the same values of A and B .

See also ALGEBRAIC GEOMETRY, ELLIPTIC CURVE,
FREY CURVE, ISOGENY, J -INVARIANT, LEGENDRE

FORM, MINIMAL DISCRIMINANT, WEIERSTRASS FORM
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Discriminant (Elliptic Function)
If /y2 ¼ 4x3 þ b2x2 þ 2b4x þ b6/ and b2 are the INVAR-

IANTS of a WEIERSTRASS ELLIPTIC FUNCTION a2
1�4a2

with periods b4 and /2a4 þ a1a3
/, then the discriminant

is defined by

b6 (1)

Letting a2
3�4a6:; then

b8�a2
1a6�4a2a6�a1a3a4�a2a2

3�a2
4;

r>1 D

��b2
2b8�8b3

4�27b2
6�9b2b4b6:

�y2�x3�Ax�B; (2)

¼ D ¼�16ð4A3 þ 27B2 ð3Þ

The FOURIER SERIES of for D"0; where H is the
UPPER HALF-PLANE, is



A ¼ 0 ð4Þ

where A "0; is the TAU FUNCTION, and A "0; are
integers (Apostol 1997, p. 20). The discriminant can
also be expressed in terms of the DEDEKIND ETA

FUNCTION ga b by

g �det(ga; b) � 
g11 g12

g21 g22

����
�����g11g22 � g12ð Þ2

: (5)

(Apostol 1997, p. 51).

See also DEDEKIND ETA FUNCTION, INVARIANT (EL-

LIPTIC FUNCTION), KLEIN’S ABSOLUTE INVARIANT, TAU

FUNCTION, WEIERSTRASS ELLIPTIC FUNCTION
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Discriminant (Metric)
Given a METRIC gab; the discriminant is defined by

g�det(ga;b)�
g11 g12

g21 g22

����
�����g11g22� g12ð Þ2: (1)

Let g be the discriminant and ḡ the transformed
discriminant, then

ḡ�D2g (2)

g�D̄2ḡ; (3)

where

D�
@ u1;u2ð Þ
@ ū1; ū2ð Þ

�

@u1

@u1

@u1

@u2

@u2

@u1

@u2

@u2

���������

���������
: (4)

D̄�
@ ū1; ū2ð Þ
@ u1;u2ð Þ

�

@ū1

@u1

@ū1

@u2

@ū2

@u1

@ū2

@u2

���������

���������
: (5)

Discriminant (Module)
Let a MODULE M in an INTEGRAL DOMAIN D1 for
R(

ffiffiffiffiffiffi
D)

p
be expressed using a two-element basis as

M�[j1;j2];

where j1 and j2 are in D1: Then the DIFFERENT of the
MODULE is defined as

D�D(M)�
j1 j2

j?2 j?2

����
�����j1j?2�j?1j2

and the discriminant is defined as the square of the
DIFFERENT (Cohn 1980).

For IMAGINARY QUADRATIC FIELDS Q
ffiffiffi
n

p
ð Þ (with

n B0), the discriminants are given in the following
table.

�1 /�22
/ �33 /�22 �3�11/ �67 �67

�2 /�23
/ �34 /�23 �17/ �69 /�22 �3�23/

�3 �3 �35 /�5�7/ �70 /�23 �5�7/

�5 /�22 �5/ �37 /�22 �37/ �71 �71

�6 /�23 �3/ �39 /�3�13/ �73 /�22 �73/

�7 �7 �41 /�22 �41/ �74 /�23 �37/

�10 /�23 �5/ �42 /�23 �3�7/ �77 /�22 �7�11/

�11 �11 �43 �43 �78 /�23 �3�13/

�13 /�22 �13/ �46 /�23 �23/ �79 �79

�14 /�23 �7/ �47 �47 �82 /�23 �41/

�15 /�3�5/ �51 /�3�17/ �83 �83

�17 /�22 �17/ �53 /�22 �53/ �85 /�22 �5�17/

�19 �19 �55 /�5�11/ �86 /�23 �43/

�21 /�22 �3�7/ �57 /�22 �3�19/ �87 /�3�29/

�22 /�23 �11/ �58 /�23 �29/ �89 /�22 �89/

�23 �23 �59 �59 �91 /�7�13/

�26 /�23 �13/ �61 /�22 �61/ �93 /�22 �3�31/

�29 /�22 �29/ �62 /�23 �31/ �94 /�23 �47/

�30 /�23 �3�5/ �65 /�22 �5�13/ �95 /�5�19/

�31 �31 �66 /�23 �3�11/ �97 /�22 �97/

The discriminants of REAL QUADRATIC FIELDS Q
ffiffiffi
n

p
ð Þ

(n �0) are given in the following table.

2 23 34 /23 �17/ 67 /67�22
/

3 /3�22
/ 35 /7�22 �5/ 69 /3�23/

5 5 37 37 70 /7�23 �5/

6 /3�23
/ 38 /19�23

/ 71 /71�22
/

7 /7�22
/ 39 /3�22 �13/ 73 73

10 /23 �5/ 41 41 74 /23 �37/

11 /11�22
/ 42 /3�23 �7/ 77 /7�11/

13 13 43 /43�22
/ 78 /3�23 �13/

14 /7�23
/ 46 /23�23

/ 79 /79�22
/

15 /3�22 �5/ 47 /47�22
/ 82 /23 �41/

17 17 51 /3�22 �17/ 83 /83�22
/

19 /19�22
/ 53 53 85 /5�17/



21 /3 �7/ 55 /11 �22 �5/ 86 /43 �23
/

22 /11 �23
/ 57 /3 �19/ 87 /3 �22 �13/

23 23 �22 58 /23 �29/ 89 89

26 /23 �13/ 59 /59 �22
/ 91 /7 �22 �13/

29 29 61 61 93 /3 �31/

30 /3 �23 �5/ 62 /31 �23
/ 94 /47 �23

/

31 /31 �22
/ 65 /5 �13/ 95 /19 �22 �5/

33 /3 �11/ 66 /3 �23 �11/ 97 97

See also DIFFERENT, FUNDAMENTAL DISCRIMINANT,
MODULE

References
Cohn, H. Advanced Number Theory. New York: Dover,

pp. 72 �/3 and 261 �/74, 1980.

Discriminant (Polynomial)
The PRODUCT of the SQUARES of the differences of the
POLYNOMIAL ROOTS ri : The discriminant of a poly-
nomial is only defined up to sign. For a POLYNOMIAL

anzn �an�1zn�1 �
 
 
�a1z �a0 �0 (1)

of degree n ,

Dn �
Yn

i;j

iBj

(ri �rj)
2 : (2)

It is also common to consider discriminants D?n for
an �1 or discriminants D??n obtained from Dn by
multiplying by a2(n�1)

n : If desired, powers an can be
inserted mentally so that each term is of degree 2(n �
1) and the whole expression is divided by a2(n�1)

n ::/

The discriminant is closely related to RESULTANTS

and can be implemented in Mathematica as

Discriminant[p_?PolynomialQ,x_] : �
With[{n � Exponent[p,x]}, Cancel[

((-1)^(n(n-1)/2)Resultant[p,D[p,x],x])/

Coefficient[p,x,n]^(2n-1)

]

]

The discriminant of the QUADRATIC EQUATION

a2z2 �a1z �a0 �0 (3)

is given by

D2 �
a2

1 � 4a0a2

a2
2

: (4)

The discriminant of the CUBIC EQUATION

a3z3 �a2z2 �a1z �a0 �0 (5)

is given by

D3 �
a2

1a2
2 � 4a0a3

2 � 4a3
1a3 � 18a0a1a2a3 � 27a2

0a2
3

a4
3

(6)

The discriminant of a QUARTIC EQUATION

z4 �a3z3 �a2z2 �a1z �a0 �0 (7)

is

D4 �
1

a6
4

(a2
1a2

2a2
3 �4a3

1a3
2 �4a2

1a3
2a4

�

þ18a3
1a2a3a4�27a4

1a2
4 þ 256a3

0a3
4Þ

�a0(�4a3
2a3

3�18a1a2a3
3�16a4

2a4

�80a1a2
2a3a4�6a2

1a2
3a4�144a2

1a2a2
4)

�a2
0(�27a4

3�144a2a2
3a4�128a2

2a2
4�192a1a3a2

4)]

(Beeler et al. 1972, Item 4).

See also CUBIC EQUATION, NEWTON’S RELATIONS,
POLYNOMIAL, QUADRATIC EQUATION, QUARTIC EQUA-

TION, RESULTANT, SUBRESULTANT

References
Schroeppel, R. Item 4 in Beeler, M.; Gosper, R. W.; and

Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial
Intelligence Laboratory, Memo AIM-239, p. 4, Feb. 1972.

Discriminant (Quadratic Curve)
Given a general QUADRATIC CURVE

Ax2�Bxy�Cy2�Dx�Ey�F�0; (1)

the quantity X is known as the discriminant, where

X�B2�4AC; (2)

and is invariant under ROTATION. Using the COEFFI-

CIENTS from QUADRATIC EQUATIONS for a rotation by
an angle u;

A?�
1

2
A 1�cos(2u)½ ��1

2
B sin(2u)�

1

2
C 1�cos(2u)½ �

A � C

2
�

B

2
sin(2u)�

A � C

2
cos(2u) (3)

B?�G cos 2u�d�
p

2

 !
�G sin(2u�d) (4)

C?�
1

2
A 1�cos(2u)½ ��1

2
B sin 2u�

1

2

 !
C 1�cos(2u)½ �

� A � C

2
�

B

2
sin 2uð Þ�C � A

2
cos 2uð Þ: (5)

Now let



G �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A �Cð Þ2

q
(6)

d �tan �1 B

C � A

 !
(7)

d2 �tan�1 A � C

B

 !
��cot �1 B

C � A

 !
; (8)

and use

cot�1(x) �
1

2 
p �tan�1(x) (9)

d2 � d �
1

2 
p (10)

to rewrite the primed variables

A?�
A � C

2
�

1

2
G cos(2 u � d) (11)

B ?�B cos(2u) �(C �A) sin(2u) �G(2u � d2) ð12Þ

C?�
A � C

2
�

1

2 
G cos(2u � d) : (13)

From (11) and (13), it follows that

4A?C ?�(A �C)2 �G2 cos(2u � d) : (14)

Combining with (12) yields, for an arbitrary u

X �B ?2 �4A?C?

�G2 sin2(2u � d) �G2 cos2(2u � d) �(A �C)2

�G2 �(A �C)2 �B2 �(A �C)2 �(A �C)2

�B2 �4AC ; (15)

which is therefore invariant under rotation. This
invariant therefore provides a useful shortcut to
determining the shape represented by a QUADRATIC

CURVE. Choosing u to make B?�0 (see QUADRATIC

EQUATION), the curve takes on the form

A?x2 �C ?y2 �D ?x �E ?y �F �0 : (16)

COMPLETING THE SQUARE and defining new variables
gives

A?x?2 �C ?y ?2 �H : (17)

Without loss of generality, take the sign of H to be
positive. The discriminant is

X �B?2 �4A?C ?��4A?C ?: (18)

Now, if �4A?C ?B0 ; then A? and C ? both have the same
sign, and the equation has the general form of an
ELLIPSE (if A? and B? are positive). If �4A?C? > 0; then
A? and C ? have opposite signs, and the equation has
the general form of a HYPERBOLA. If�4A?C ?�0 ; then

either A? or C? is zero, and the equation has the
general form of a PARABOLA (if the NONZERO A? or C? is
positive). Since the discriminant is invariant, these
conclusions will also hold for an arbitrary choice of u;
so they also hold when �4A?C? is replaced by the
original B2 �4AC: The general result is

1. If B2 �4AC B0 ; the equation represents an
ELLIPSE, a CIRCLE (degenerate ELLIPSE), a POINT

(degenerate CIRCLE), or has no graph.
2. If B2 �4AC > 0; the equation represents a
HYPERBOLA or pair of intersecting lines (degener-
ate HYPERBOLA).
3. If B2�4AC�0; the equation represents a
PARABOLA, a LINE (degenerate PARABOLA), a pair
of PARALLEL lines (degenerate PARABOLA), or has
no graph.

Discriminant (Quadratic Form)
DISCRIMINANT (BINARY QUADRATIC FORM)

Discriminant (Second Derivative Test)

D�fxxfyy�fxyfyx�fxxfyy�f 2
xy;

where fij are PARTIAL DERIVATIVES.

See also SECOND DERIVATIVE TEST

Disdyakis Dodecahedron

The DUAL POLYHEDRON of the Archimedean GREAT

RHOMBICUBOCTAHEDRON A3 and Wenninger dual W15;
also called the HEXAKIS OCTAHEDRON. If the original
GREAT RHOMBICUBOCTAHEDRON has unit side lengths,
then the resulting dual has edge lengths



s1 �
2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 �3

ffiffiffi
2

pq
(1)

s2 �
3

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 2�

ffiffiffi
2

p� �r
(2)

s3 �
2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 10�

ffiffiffi
2

p� �r
: (3)

The INRADIUS is

r �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

97
15 �8

ffiffiffi
2

p� �s
: (4)

Scaling the disdyakis dodecahedron so that s1 �1
gives a solid with SURFACE AREA and VOLUME

S �
6

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
783 �436

ffiffiffi
2

pq
(5)

V �
1

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 2194 �1513

ffiffiffi
2

p� �r
: (6)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
GREAT DISDYAKIS DODECAHEDRON, OCTATETRAHE-

DRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 25 �/6, 1983.

Disdyakis Triacontahedron

The DUAL POLYHEDRON of the Archimedean GREAT

RHOMBICOSIDODECAHEDRON A2 and Wenninger dual
W16 : It is also called the HEXAKIS ICOSAHEDRON.

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 25 and 27, 1983.

Disjoint Sets
Two SETS A1 and A2 are disjoint if their INTERSECTION

A1 S A2 �Ø ; where Ø is the EMPTY SET. n sets A1 ; A2 ;
..., An are disjoint if Ai S Aj �Ø for i "j : For example,

A;B ;Cf g and D ;Ef g are disjoint, but A;B ;Cf g and
C ;D; Ef g are not. Disjoint sets are also said to be

mutually exclusive or independent.

See also EMPTY SET, INDEPENDENT SET, INTERSEC-

TION, SET

Disjoint Union
The disjoint union of two SETS A and B is a BINARY

OPERATOR that combines all distinct elements of a
pair of given sets, while retaining the original set
membership as a distinguishing characteristic of the
union set. The disjoint union is denoted

A @+ B � A � 0f gð Þ@ B � 1f gð Þ�A+@ B+;

where /A �S/ is a SET DIRECT PRODUCT. For example,
the disjoint union of sets /A ¼ f1; 2; 3; 4; 5g/ and

/B ¼ f1 ; 2; 3 ; 4; 5 g/ can be computed by finding

A+� 1; 0ð Þ; 2; 0ð Þ; 3; 0ð Þ; 4 ; 0ð Þ; 5 ; 0ð Þf g

B +� 1; 1ð Þ; 2 ; 1ð Þ; 3 ; 1ð Þ; 4; 1ð Þf g;

so

A @+ B �A+@ B +

¼ fð1; 0 Þ; ð2; 0Þ; ð3; 0Þ; ð4 ; 0Þ; ð5 ; 0Þ;
ð1; 1 Þ; ð2; 1Þ; ð3 ; 1Þ; ð4 ; 1Þg

See also UNION

References
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Springer-Verlag, 1997.

Disjunction
The term in logic used to describe the operation
commonly known as OR.

See also CONJUNCTION, DISJUNCTIVE NORMAL FORM,
DISJUNCTIVE SYLLOGISM, OR

Disjunctive Game
NIM-HEAP



Disjunctive Normal Form
A statement is in disjunctive normal form if it is a
DISJUNCTION (sequence of ORs) consisting of one or
more disjuncts, each of which is a CONJUNCTION

(AND) of one or more statement letters and negations
of statement letters. Examples of disjunctive normal
forms include

A (1)

A fflBð Þ� !A fflCð Þ  (2)

A fflB ffl!Að Þ� C ffl!Bð Þ� A ffl!Cð Þ  (3)

A fflBð Þ  (4)

A � B fflCð Þ; (5)

where � denotes OR, ffl denotes AND, and ! denotes
NOT. Every statement in logic consisting of a combi-
nation of multiple ffl; �; and !/s can be written in
conjunctive normal form.

See also CONJUNCTIVE NORMAL FORM

References
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Disk
An n -D disk (or DISC) of RADIUS r is the collection of
points of distance 5r (CLOSED DISK) orBr (OPEN DISK)
from a fixed point in EUCLIDEAN n -space. A disk is the
SHADOW of a BALL on a PLANE PERPENDICULAR to the
BALL-RADIANT POINT line.

The n -disk for n ]3 is called a BALL, and the
boundary of the n -disk is a (n �1)/-HYPERSPHERE.
The standard n -disk, denoted Dn (or Bn) ; has its
center at the ORIGIN and has RADIUS r �1.

See also BALL, CLOSED DISK, DISK COVERING PRO-

BLEM, FIVE DISKS PROBLEM, HYPERSPHERE, LOWER

HALF-DISK, MERGELYAN-WESLER THEOREM, OPEN

DISK, POLYDISK, SPHERE, UNIT DISK, UPPER HALF-

DISK

Disk Algebra
This entry contributed by RONALD M. AARTS

A disk algebra is an ALGEBRA of functions which are
analytic on the OPEN UNIT DISK in C and continuous
up to the boundary. A representative measure for a
point x in the CLOSED DISK is a nonnegative MEASURE

m such that Int(f dm) �f (x) for all f in A . These
measures form a COMPACT, CONVEX SET Mx in the
linear space of all measures.

See also ALGEBRA

Disk Covering Problem
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given a UNIT DISK, find the smallest RADIUS r nð Þ
required for n equal disks to completely cover the
UNIT DISK. For a symmetrical arrangement with n�5
(the FIVE DISKS PROBLEM), r 5ð Þ�f�1�1=f�
0:6180340 . . . ; where f is the GOLDEN RATIO. How-
ever, the radius can be reduced in the general disk
covering problem where symmetry is not required.
The first few such values are

r(1)�1

r(2)�1

r(3)�
1

2

ffiffiffi
3

p

r(4)�
1

2

ffiffiffi
2

p

r(5)�0:609382864 . . .

r(6)�0:555

r(7)�
1

2

r(8)�0:437

r(9)�0:422

r(10)�0:398:

Here, values for n�6, 8, 9, 10 were obtained using
computer experimentation by Zahn (1962). The value
r(5) is equal to cos(u�f=2); where u and f are
solutions to

2 sin u�sin uþ 1

2
fþ c

 !
�sin c�u�

1

2
f

 !
¼ 0 (1)

2 sinf�sin u�
1

2
f�x

 !
�sin x�u�

1

2
f

 !
�0 (2)

2 sinu�sin(x�u)�sin(x�u)�sin(c�f)

�sin(c�f)�2 sin(c�2u)�0 (3)

cos(2c�x�f)�cos(2c�x�f)�2 cosx

�cos(2c�x�2u)�cos(2c�x�2u)�0 (4)

(Neville 1915). It is also given by 1=x; where x is the
largest real root of

a(y)x6�b(y)x5�c(y)x4�d(y)x3�e(y)x2�f (y)x�g(y)

�0 (5)

maximized over all y , subject to the constraintsffiffiffi
2

p
BxB2y�1 (6)



�1 By B1; (7)

and with

a(y) �80y2 �64y (8)

b(y) �416y3 �384y2 �64y (9)

c(y) �848y4 �928y3 �352y2 �32y (10)

d(y) �768y5 �992y4 �736y3 �288y2 �96y

e(y) �256y6 �384y5 �592y4 �480y3 �336y2 �96y

�16 (11)

f (y) �128y5 �192y4 �256y3 �160y2 �96y �32 ð12Þ

g(y) �64y2 �64y �16 (13)

(Bezdek 1983, 1984).

Letting N(o) be the smallest number of DISKS of
RADIUS o needed to cover a disk D , the limit of the
ratio of the AREA of D to the AREA of the disks is given
by

lim
o 0 0�

1

o2N( o) 
�

3
ffiffiffi
3

p

2p 
(14)

(Kershner 1939, Verblunsky 1949).

See also CIRCLE COVERING, FIVE DISKS PROBLEM
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Disk Lattice Points
GAUSS’S CIRCLE PROBLEM

Disk Line Picking

Using DISK POINT PICKING,

x �
ffiffiffi
r

p
cosu (1)

y �
ffiffiffi
r

p
sinu (2)

for r 	 0 ; 1½ �; u 	 0 ; 2p½ Þ; choose two points at random in
a UNIT DISK and find the distribution of distances s
between the two points. Without loss of generality,
take the first point as (r; u) �(r1 ; 0) and the second
point as (r2 ; u) : Then>

s̄ �
ng

1

0 g
1

0 g
2 p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 þ r2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2cos u

pq
dr1dr2du

g
1

0 g
1

0 g
2p

0

dr1dr2du

(3)

�
128

45p
(4)

(Uspensky 1937, p. 258).

This is a special case of BALL LINE PICKING with n�2,
so the full probability function for a disk of radius R is

P2(s)�
4s

pR2
cos�1 s

2R

 !
�

2s2

pR3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

s2

4R2

s
(5)

(Solomon 1978, p. 129).

See also BALL LINE PICKING, CIRCLE LINE PICKING
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pp. 257�/58, 1937.



Disk Packing
CIRCLE PACKING

Disk Point Picking

To generate random points over the UNIT DISK, it is
incorrect to use two uniformly distributed variables
r 	 0; 1½ �; and u 	 0 ; 2p½ Þ; and then take

x �r cosu (1)

y �r sinu : (2)

Because the area element is given by

dA �2prdr ; (3)

this gives a concentration of points in the center (left
figure above).
The correct transformation is instead given by

x�
ffiffiffi
r

p
cosu (4)

y�
ffiffiffi
r

p
sinu (5)

(right figure above).

See also CIRCLE POINT PICKING, DISK LINE PICKING,
POINT PICKING, SPHERE POINT PICKING

Disk Triangle Picking

Pick three points P�(x1; y1); Q�(x2; y2); and R�
(x3; y3) distributed independently and uniformly in a
UNIT DISK K . Then the average area of the TRIANGLE

determined by these points is

Ā�
gg

P 	K
gg

Q	K
gg

R	K

1

2

x1 y1 1
x2 y2 1
x3 y3 1

������
������dy3dy3dy1dx3dx2dx1

gg
P 	K
gg

Q	K
gg

R	K

dy3dy3dy1dx3dx2dx1

(1)

which can be evaluated using CROFTON’S FORMULA

and polar coordinates to yield Ā�35=(48p2) (Wool-
house 1967; Solomon 1987; Pfiefer 1989). This pro-
blem is very closely related to SYLVESTER’S FOUR-

POINT PROBLEM, and can be derived as the limit as
n 0 � of the general POLYGON TRIANGLE PICKING

problem.

The probability P2 that three random points in a disk
form an ACUTE TRIANGLE is

P2�
4

p2
�

1

8
(2)

(Woolhouse 1886). The problem was generalized by
Hall (1982) to n -D BALL TRIANGLE PICKING, and
Buchta (1986) gave closed form evaluations for Hall’s
integrals.

Let the VERTICES of a triangle in n -D be NORMAL

(GAUSSIAN) variates. The probability that a Gaussian
triangle in n -D is OBTUSE is

Pn�
3G(n)

G2 1

2
n

 !g
1=3

0

x(n�2)=2

(1 � x)n dx

�
3G(n)

G2 1

2
n

 !2n�1 g
p=3

0

sinn�1udu

�

6G(n)2F1

1

2
n;n; 1 �

1

2
n;�

1

3

 !

3n=2nG2 1

2
n

 ! ; (3)

where G(n) is the GAMMA FUNCTION and 2F1(a; b; c; x)
is the HYPERGEOMETRIC FUNCTION. For EVEN n�2k;

P2k�3
X2k�1

j�k

2k�1
j

	 

1

4

 !j
3

4

 !2k�1�j

(4)

(Eisenberg and Sullivan 1996). The first few cases are
explicitly

P2�
3

4
�0:75 (5)

P3�1�
3
ffiffiffi
3

p

4p
�0:586503 . . . (6)



P4 �
15

32 
�0:46875 (7)

P5 �1 �
9
ffiffiffi
3

p

8p
�0:37975499 . . . (8)

See also BALL TRIANGLE PICKING, HEXAGON TRIAN-

GLE PICKING, OBTUSE TRIANGLE, SQUARE TRIANGLE

PICKING, SYLVESTER’S FOUR-POINT PROBLEM, TRIAN-

GLE TRIANGLE PICKING
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Disk-Cyclide Coordinates

A coordinate system defined by the transformation

equations

x �
a

L
cn m cn n cos c (1)

y �
a

L
cn m cn n sinc (2)

z �
a

L
sn m dn m sn n dn n ; (3)

where

L�1 �dn2 
m sn2v (4)

and for m 	 [0; K]; n 	 [0;K ?] ; and c 	 0; 2pi½ Þ:: Surfaces
of constant m are given by the cyclides of rotation

x2 � y2

a2cn2 m 
�

k2sn2 m

a2dn2
m

z2

 !2

�
2 x2 � y2ð Þ

a2cn2m
�

2k2sn2m

a2dn2
m

z2�1�00 (5)

surfaces of constant n by the disk cyclides

cn2n

a2
x2�y2
� �

�
k?2sn2n

a2dn2
n

z2

" #2

�
2cn2n

a2
x2�y2
� �

�
2k?2sn2n

a2dn2
n

z2�1�0; (6)

and surfaces of constant c by the half-planes

tan c�
y

x
: (7)

See also CAP-CYCLIDE COORDINATES, CYCLIDIC CO-

ORDINATES, FLAT-RING CYCLIDE COORDINATES
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Dispersion (Sequence)
An array B�bij; i; j]1 of POSITIVE INTEGERS is called
a dispersion if



1. The first column of B is a strictly increasing
sequence, and there exists a strictly increasing
sequence fsk g such that
2. b12 �s1 ]2;/
3. The complement of the SET fbi1 : i ]1 g is the SET

fsk g;/
4. bij �sbi;j�1 for all j ]3 for i �1 and for all g ]2
for all i ]2 ::/

If an array B �bij ; is a dispersion, then it is an
INTERSPERSION.

See also INTERSPERSION
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Dispersion (Statistics)

( Du)2
i � ui � ̄uð Þ2

;

where ū is the average of fui g::/
See also ABSOLUTE DEVIATION, SIGNED DEVIATION,
VARIANCE

Dispersion Numbers
MAGIC GEOMETRIC CONSTANTS

Dispersion Relation
Any pair of equations giving the REAL PART of a
function as an integral of its IMAGINARY PART and the
IMAGINARY PART as an integral of its REAL PART.
Dispersion relationships imply causality in physics.
Let

f x0ð Þ�u x0ð Þ�iv x0ð Þ; (1)

then

u x0ð Þ�1

p
PV g

�

��

v(x)dx

x � x0

(2)

v x0ð Þ��
1

p
PV g

�

��

u(x)dx

x � x0

; (3)

where PV denotes the CAUCHY PRINCIPAL VALUE and
u(x0) and v(x0) are HILBERT TRANSFORMS of each
other. If the COMPLEX function is symmetric such
that f (�x) �f +(x); then

u x0ð Þ�2

p
PV g

�

0

xv(x)dx

x2 � x2
0

(4)

v x0ð Þ��
2

p
PV g

�

0

xu(x)dx

x2 � x2
0

: (5)

See also HILBERT TRANSFORM

Dispersive Long-Wave Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut � u2 � nx �2v
� �

x

vt � 2uv �vxð Þx :
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Disphenocingulum

JOHNSON SOLID J90 ::/
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Disphenoid
A TETRAHEDRON with identical ISOSCELES or SCALENE

faces.

See also SNUB DISPHENOID

Dissection
Any two rectilinear figures with equal AREA can be
dissected into a finite number of pieces to form each
other. This is the WALLACE-BOLYAI-GERWEIN THEO-

REM. For minimal dissections of a TRIANGLE, PENTA-

GON, and OCTAGON into a SQUARE, see Stewart (1987,
pp. 169�/70) and Ball and Coxeter (1987, pp. 89�/1).
The TRIANGLE to SQUARE dissection (HABERDASHER’S

PROBLEM) is particularly interesting because it can be
built from hinged pieces which can be folded and
unfolded to yield the two shapes (Gardner 1961;
Stewart 1987, p. 169; Pappas 1989; Steinhaus 1983,
pp. 3�/; Wells 1991, pp. 61�/2).



Laczkovich (1988) proved that the CIRCLE can be
squared in a finite number of dissections (/(�1050):):
Furthermore, any shape whose boundary is composed
of smoothly curving pieces can be dissected into a
SQUARE.

The situation becomes considerably more difficult
moving from 2-D to 3-D. In general, a POLYHEDRON

cannot be dissected into other POLYHEDRA of a
specified type. A CUBE can be dissected into n3 CUBES,
where n is any INTEGER. In 1900, Dehn proved that
not every PRISM can be dissected into a TETRAHEDRON

(Lenhard 1962, Ball and Coxeter 1987) The third of
HILBERT’S PROBLEMS asks for the determination of
two TETRAHEDRA which cannot be decomposed into
congruent TETRAHEDRA directly or by adjoining con-
gruent TETRAHEDRA. Max Dehn showed this could not
be done in 1902, and W. F. Kagon obtained the same
result independently in 1903. A quantity growing out
of Dehn’s work which can be used to analyze the
possibility of performing a given solid dissection is the
DEHN INVARIANT.

The table below is an updated version of the one given
in Gardner (1991, p. 50). Many of the improvements
are due to G. Theobald (Frederickson 1997). The
minimum number of pieces known to dissect a
regular n -gon (where n is a number in the first
column) into a k -gon (where k is a number is the
bottom row) is read off by the intersection of the
corresponding row and column. In the table, fng
denotes a regular n -gon, GR a GOLDEN RECTANGLE,
GC a GREEK CROSS, LC a LATIN CROSS, MC a
MALTESE CROSS, SW a SWASTIKA, f5=2g a five-point
star (solid PENTAGRAM), f6=2g a six-point star (i.e.,
HEXAGRAM or solid STAR OF DAVID), and f8=3g the
solid OCTAGRAM.

/f4g/ 4

/f5g/ 6 6

/f6g/ 5 5 7

/f7g/ 8 7 9 8

/f8g/ 7 5 9 8 11

/f9g/ 8 9 12 11 14 13

/f10g/ 7 7 10 9 11 10 13

/f12g/ 8 6 10 6 11 10 14 12

GR 4 3 6 5 7 6 9 6 7

GC 5 4 7 7 9 9 12 10 6 5

LC 5 5 8 6 8 8 11 10 7 5 7

MC 7 14 8

SW 6 12 8 9

/f5=2g/ 7 7 9 9 11 10 14 6 12 7 10 10

/f6=2g/ 5 5 8 6 9 8 11 9 9 5 8 8 11

/f8=3g/ 8 8 9 9 12 6 13 12 12 7 10 11 13 10

/f3g/ /f4g/ /f5g/ /f6g/ /f7g/ /f8g/ /f9g//f10g/ /f12g/ GR GC LC MC SW /f5=2g//f6=2g/

Wells (1991) gives several attractive dissections of the
regular DODECAGON. The best-known dissections of
one regular convex n -gon into another are shown for
n�3, 4, 5, 6, 7, 8, 9, 10, and 12 in the following
illustrations due to Theobald.



The best-known dissections of regular concave poly-
gons are illustrated below for f5=2g; f6=2g; and f8=3g
(Theobald).

The best-known dissections of various crosses are
illustrated below (Theobald).

The best-known dissections of the GOLDEN RECTAN-

GLE are illustrated below (Theobald).

See also BANACH-TARSKI PARADOX, BLANCHE’S DIS-

SECTION, CUNDY AND ROLLETT’S EGG, DECAGON,
DEHN INVARIANT, DIABOLICAL CUBE, DISSECTION

PUZZLES, DODECAGON, EHRHART POLYNOMIAL, EQUI-

DECOMPOSABLE, EQUILATERAL TRIANGLE, GOLDEN

RECTANGLE, HEPTAGON, HEXAGON, HEXAGRAM, HIL-

BERT’S PROBLEMS, LATIN CROSS, MALTESE CROSS,
NONAGON, OCTAGON, OCTAGRAM, PENTAGON, PENTA-

GRAM, POLYHEDRON DISSECTION, PYTHAGOREAN



SQUARE PUZZLE, PYTHAGOREAN THEOREM, REP-TILE,
SOMA CUBE, SQUARE, STAR OF LAKSHMI, SWASTIKA, T-

PUZZLE, TANGRAM, WALLACE-BOLYAI-GERWEIN THEO-

REM
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Dissection Puzzles
A puzzle in which one object is to be converted to
another by making a finite number of cuts and
reassembling it. The cuts are often, but not always,
restricted to straight lines. Sometimes, a given puzzle
is precut and is to be re-assembled into two or more
given shapes.

See also CUNDY AND ROLLETT’S EGG, PYTHAGOREAN

SQUARE PUZZLE, T-PUZZLE, TANGRAM

Dissipative System
A DYNAMICAL SYSTEM in which the PHASE SPACE

volume contracts along a trajectory. This means
that the generalized DIVERGENCE is less than zero,

@fi

@xi

B0;

where EINSTEIN SUMMATION has been used.

See also DYNAMICAL SYSTEM, PHASE SPACE

Dissymmetric
An object that is not superimposable on its MIRROR

IMAGE is said to be disymmetric. All asymmetric
objects are dissymmetric, and an object with no
IMPROPER ROTATION (rotoinversion) axis must also
be disymmetric. The opposite of dissymmetric is
ENANTIOMORPHOUS.

See also AMPHICHIRAL KNOT, CHIRAL, DISSYMMETRIC,
ENANTIOMER, ENANTIOMORPHOUS, HANDEDNESS,
MIRROR IMAGE, REFLEXIBLE

Distance
The distance between two points is the length of the
path connecting them. In the plane, the distance
between points x1; y1ð Þ and x2; y2ð Þ is given by the
PYTHAGOREAN THEOREM,

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2� y2�y1ð Þ2:

q
(1)

In Euclidean 3-space, the distance between points
x1; y1; z1ð Þ and x2; y2; z2ð Þ is

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2� y2�y1ð Þ2� z2�z1ð Þ2

q
: (2)

In general, the distance between points x and y in a
EUCLIDEAN SPACE Rn is given by

d� x�yj j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1

xi�yij j2:

vuut (3)

For curved or more complicated surfaces, the so-
called METRIC can be used to compute the distance



between two points by integration. When unqualified,
"the" distance generally means the shortest distance
between two points. For example, there are an
infinite number of paths between two points on a
SPHERE but, in general, only a single shortest path.
The shortest distance between two points is the
length of a so-called GEODESIC between the points.
In the case of the sphere, the geodesic is a segment of
a GREAT CIRCLE containing the two points.

Let g tð Þ be a smooth curve in a MANIFOLD M from x to
y with g 0ð Þ�x: and g 1ð Þ�y:: Then g? tð Þ 	 Tg tð Þ; where
Tx is the TANGENT SPACE of M at x . The LENGTH of g
with respect to the Riemannian structure is given by

g
1

0

g? tð Þk kg tð Þdt; (4)

and the distance d x; yð Þ between x and y is the
shortest distance between x and y given by

d x; yð Þ� inf
gix to y g g ?(t)k kg tð Þdt : (5)

In order to specify the relative distances of n �1
points in the plane, 1 �2 n �2ð Þ�2n �3 coordinates
are needed, since the first can always be taken as (0,
0) and the second as x; 0ð Þ; which defines the X -AXIS.
The remaining n �2 points need two coordinates
each. However, the total number of distances is

n
2

	 

�

n!

2! n � 2ð Þ! 
�

1

2
n n�1ð Þ; (6)

where n
k

� �
is a BINOMIAL COEFFICIENT. The distances

between n �1 points are therefore subject to m
relationships, where

m �
1

2
n n�1ð Þ� 2n �3ð Þ�1

2
n �2ð Þ n �3ð Þ: (7)

For n �1, 2, ..., this gives 0, 0, 0, 1, 3, 6, 10, 15, 21, 28,
... (Sloane’s A000217) relationships, and the number
of relationships between n points is the TRIANGULAR

NUMBER /Tn�3/.

Although there are no relationships for n �2 and
n �3 points, for n �4 (a QUADRILATERAL), there is one
(Weinberg 1972):

0 �d4
12d2

34 �d4
13d2

24 �d4
14d2

23 �d4
23d2

14 �d4
24d2

13 �d4
34d2

12

�d2
12d2

23d2
31 �d2

12d2
24d2

41 �d2
13d2

34d2
41

�d2
23d2

34d2
42 �d2

12d2
23d2

34 �d2
13d2

32d2
24

�d2
12d2

24d2
43 �d2

14d2
42d2

23 �d2
13d2

34d2
42

�d2
14d2

43d2
32 �d2

23d2
31d2

14 �d2
21d2

13d2
34

�d2
24d2

41d2
13 �d2

21d2
14d2

43 �d2
31d2

12d2
24

�d2
32d2

21d2
14 : (8)

This equation can be derived by writing

dij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi �xj

� �2
� yi �yj

� �2
q

(9)

and eliminating xi and yj from the equations for d12 ;
d13 ; d14 ; d23 ; d24 ; and d34 :: This results in a CAYLEY-

MENGER DETERMINANT

0 �

0 1  1  1  1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

����������

����������
; (10)

as observed by Uspensky (1948, p. 256).

See also ARC LENGTH, CUBE POINT PICKING, EXPAN-

SIVE, GEODESIC, LENGTH (CURVE), METRIC, PLANAR

DISTANCE, POINT DISTANCES, POINT-LINE DISTANCE–

2-D, POINT-LINE DISTANCE–3-D, POINT-PLANE DIS-

TANCE, POINT-POINT DISTANCE–1-D, POINT-POINT DIS-

TANCE–2-D, POINT-POINT DISTANCE–3-D, SPHERE
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Distance Graph
Let D be a set of positive numbers containing 1, then
the D -distance graph X Dð Þ on a nonempty subset X
of Euclidean space is the GRAPH with vertex set X and
edge set x; yð Þ : d x; yð Þ 	 Df g; where d x; yð Þ is the
Euclidean distance between vertices x and y .

See also PRIME-DISTANCE GRAPH, UNIT-DISTANCE

GRAPH, UNIT NEIGHBORHOOD GRAPH
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Distance-Regular Graph
A CONNECTED GRAPH G is called distance-regular if
there are integers d x; yð Þ such that for any two
vertices x; y 	 G ar distance i �d x; yð Þ; there are
exactly ci neighbors of y 	Gi�1 xð Þ and bi neighbors
of y 	Gi�1 xð Þ::/

See also INTERSECTION ARRAY, MOORE GRAPH, REG-

ULAR GRAPH
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Distinct Prime Factors

The number of distinct prime factors of a number n is
denoted (n): The first few values for n �1, 2, ... are 0,
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, ...
(Sloane’s A001221; Abramowitz and Stegun 1972,
Kac 1959). This sequence is given by the inverse
MÖ BIUS TRANSFORM of bn �1 for n prime and bn �0
for n (Sloane and Plouffe 1995, p. 22).
The first few values of the SUMMATORY FUNCTION

Xn

k �2

v kð Þ

are 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, ...
(Sloane’s A013939), and the asymptotic value is

Xn

k �2

v kð Þ�n ln lnn �B1n �o nð Þ;

where B1 is MERTENS CONSTANT. In addition,

Xn

k�2

v kð Þ½ �2�n ln ln nð Þ2�O ln ln nð Þ:

The numbers consisting only of distinct prime factors
are precisely the SQUAREFREE numbers.

See also DIVISOR FUNCTION, ERDOS-KAC THEOREM,
GREATEST PRIME FACTOR, HARDY-RAMANUJAN THEO-

REM, HETEROGENEOUS NUMBERS, LEAST PRIME FAC-

TOR, MERTENS CONSTANT, PRIME FACTORS,
SQUAREFREE
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Distribution (Generalized Function)
The class of all regular sequences of PARTICULARLY

WELL-BEHAVED FUNCTIONS equivalent to a given
regular sequence. A distribution is sometimes also
called a "generalized function" or "ideal function." As
its name implies, a generalized function is a general-
ization of the concept of a FUNCTION. For example, in
physics, a baseball being hit by a bat encounters a
force from the bat, as a function of time. Since the
transfer of momentum from the bat is modeled as
taking place at an instant, the force is not actually a
function. Instead, it is a multiple of the DELTA

FUNCTION. The set of distributions contains functions
(LOCALLY INTEGRABLE) and RADON MEASURES. Note
that the term "distribution" is closely related to
STATISTICAL DISTRIBUTIONS.

Generalized functions are defined as continuous
linear FUNCTIONALS over a SPACE of infinitely differ-
entiable functions such that all continuous functions
have derivatives which are themselves generalized
functions. The most commonly encountered general-
ized function is the DELTA FUNCTION. Vladimirov
(1984) contains a nice treatment of distributions
from a physicist’s point of view, while the multi-
volume work by Gel’fand and Shilov (1977) is a classic
and rigorous treatment of the field.

While it is possible to add distributions, it is not
possible to multiply distributions when they have
coinciding singular support. Despite this, it is possi-
ble to take the DERIVATIVE of a distribution, to get
another distribution. Consequently, they may satisfy
a linear PARTIAL DIFFERENTIAL EQUATION, in which
case the distribution is called a weak solution. For
example, given any locally integrable function f it
makes sense to ask for solutions u of POISSON’S

EQUATION

92u�f (1)

by only requiring the equation to hold in the sense of
distributions, that is, both sides are the same dis-
tribution. The definitions of the derivatives of a
distribution p xð Þ are given by

g
�

��

p? xð Þf xð Þdx��g
�

�

p xð Þf ? xð Þdx (2)

g
�

��

p nð Þ xð Þf xð Þdx� �1ð Þng
�

��

p xð Þf nð Þ xð Þdx: (3)

Distributions also differ from functions because they
are COVARIANT, that is, they push forward. Given a
SMOOTH FUNCTION a : V1 0 V2; a distribution T on V1



pushes forward to a distribution on V2 : In contrast, a
REAL FUNCTION f on V2 : pulls back to a function on V1 ;
namely f a xð Þð Þ:/
Distributions are, by definition, the dual to the
SMOOTH FUNCTIONS of COMPACT SUPPORT, with a
particular TOPOLOGY. For example, the DELTA FUNC-

TION d is the LINEAR FUNCTIONAL d fð Þ�f 0ð Þ: The
distribution corresponding to a function g is

Tg fð Þ�gVfg; (4)

and the distribution corresponding to a MEASURE m is

Tm fð Þ�gVfdm : (5)

The PUSHFORWARD MAP of a distribution T along a is
defined by

a	T fð Þ�T f ( að Þ; (6)

and the derivative of T is defined by DT fð Þ�T D	fð Þ
where D	 is the FORMAL ADJOINT of D . For example,
the first derivative of the DELTA FUNCTION is given by

d

dx
d fð Þ½ ���

df

dx j
x �0

: (7)

As is the case for any function space, the topology
determines which LINEAR FUNCTIONALS are continu-
ous, that is, are in the DUAL SPACE. The topology is
defined by the family of SEMINORMS,

NK ;a fð Þ�sup
k

D af
55 55; (8)

where sup denotes the SUPREMUM. It agrees with the
C -INFINITY TOPOLOGY on compact subsets. In this
topology, a sequence converges, fn 0 f ; IFF there is a
compact set K such that all fn are supported in K and
every derivative Dafn converges uniformly to Daf in
K . Therefore, the constant function 1 is a distribu-
tion, because if fn 0 f ; then

T1 fnð Þ�gK

fn 0 gK

f �T1 fð Þ: (9)

See also CONVOLUTION, DELTA FUNCTION, DELTA

SEQUENCE, FOURIER SERIES, FUNCTIONAL, LINEAR

FUNCTIONAL, MICROLOCAL ANALYSIS, STATISTICAL

ANALYSIS, TEMPERED DISTRIBUTION, ULTRADISTRIBU-

TION
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Distribution (Statistical)
STATISTICAL DISTRIBUTION

Distribution Function
The distribution function D xð Þ; sometimes also called
the PROBABILITY DISTRIBUTION FUNCTION, describes
the probability that a trial X takes on a value less
than or equal to a number x . The distribution
function is therefore related to a continuous PROB-

ABILITY DENSITY FUNCTION P xð Þ by

D xð Þ�P X5xð Þ�g
x

��

P x?ð Þdx?; (1)

so P xð Þ (when it exists) is simply the derivative of the
distribution function

P xð Þ�D? xð Þ� P x?ð Þ½ �x���P xð Þ�P ��ð Þ: (2)

Similarly, the distribution function is related to a
discrete probability P xð Þ by

D xð Þ�P X5xð Þ�
X
X5x

P xð Þ: (3)

In general, there exist distributions which are neither
continuous nor discrete.



A JOINT DISTRIBUTION FUNCTION can be defined if
outcomes are dependent on two parameters:

D x; yð Þ�P X5x;Y 5yð Þ  (4)

Dx xð Þ�D x;�ð Þ  (5)

Dy yð Þ�D �; yð Þ: (6)

Similarly, a multiple distribution function can be
defined if outcomes depend on n parameters:

D a1 ; :::; anð Þ�P x1 5a1 ; :::; xn 5anð Þ: (7)

Given a continuous P xð Þ; assume you wish to gen-
erate numbers distributed as P xð Þ using a random
number generator. If the random number generator
yields a uniformly distributed value yi in 0; 1½ � for
each trial i , then compute

D xð Þ�g
x

P x?ð Þdx?: (8)

The FORMULA connecting yi with a variable distrib-
uted as P xð Þ is then

xi �D�1 yið Þ; (9)

where D �i ðxÞ is the inverse function of D xð Þ; :  For
example, if P xð Þ were a GAUSSIAN DISTRIBUTION so
that

D xð Þ�1

2
1 �erf

x- m

s
ffiffiffi
2

p
 !" #

; (10)

then

xi � s
ffiffiffi
2

p
erf �1 2yi �1ð Þ� m: (11)

A distribution with constant VARIANCE of y for all
values of x is known as a HOMOSCEDASTIC distribu-
tion. The method of finding the value at which the
distribution is a maximum is known as the MAXIMUM

LIKELIHOOD method.

See also BERNOULLI DISTRIBUTION, BETA DISTRIBU-

TION, BINOMIAL DISTRIBUTION, BIVARIATE DISTRIBU-

TION, CAUCHY DISTRIBUTION, CHI DISTRIBUTION, CHI-

SQUARED DISTRIBUTION, CORNISH-FISHER ASYMPTO-

TIC EXPANSION, CORRELATION COEFFICIENT, DOUBLE

EXPONENTIAL DISTRIBUTION, EQUALLY LIKELY OUT-

COMES DISTRIBUTION, EXPONENTIAL DISTRIBUTION,
EXTREME VALUE DISTRIBUTION, F -DISTRIBUTION,
FERMI-DIRAC DISTRIBUTION, FISHER’S Z -DISTRIBU-

TION, FISHER-TIPPETT DISTRIBUTION, GAMMA DISTRI-

BUTION, GAUSSIAN DISTRIBUTION, GEOMETRIC

DISTRIBUTION, HALF-NORMAL DISTRIBUTION, HYPER-

GEOMETRIC DISTRIBUTION, JOINT DISTRIBUTION

FUNCTION, LAPLACE DISTRIBUTION, LATTICE DISTRI-

BUTION, LÉ VY DISTRIBUTION, LOGARITHMIC DISTRIBU-

TION, LOG-SERIES DISTRIBUTION, LOGISTIC

DISTRIBUTION, LORENTZIAN DISTRIBUTION, MAXWELL

DISTRIBUTION, NEGATIVE BINOMIAL DISTRIBUTION,

NORMAL DISTRIBUTION, PARETO DISTRIBUTION, PAS-

CAL DISTRIBUTION, PEARSON TYPE III DISTRIBUTION,
POISSON DISTRIBUTION, PÓ LYA DISTRIBUTION, RAN-

DOM NUMBER, RATIO DISTRIBUTION, RAYLEIGH DIS-

TRIBUTION, RICE DISTRIBUTION, SNEDECOR’S F -

DISTRIBUTION, STATISTICAL DISTRIBUTION, STUDENT’S

T -DISTRIBUTION, STUDENT’S Z -DISTRIBUTION, UNI-

FORM DISTRIBUTION, WEIBULL DISTRIBUTION
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Distribution Parameter
The distribution parameter of a NONCYLINDRICAL

RULED SURFACE parameterized by

x u; vð Þ� s uð Þ�v d uð Þ; (1)

where s is the STRICTION CURVE and d the DIRECTOR

CURVE, is the function p defined by

p �
det s? dd?ð Þ

d?: d?
: (2)

The GAUSSIAN CURVATURE of a RULED SURFACE is
given in terms of its distribution parameter by

K��
p uð Þ½ �2

p uð Þ½ �2�v2
n o2 : (3)

See also NONCYLINDRICAL RULED SURFACE, RULED

SURFACE, STRICTION CURVE
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Distributive
Elements of an ALGEBRA which obey the identity

A B�Cð Þ�AB�AC

are said to be distributive over the operation +.

See also ASSOCIATIVE, COMMUTATIVE, TRANSITIVE

Distributive Lattice
A LATTICE which satisfies the identities

(xffly)�(xffly)�xffl(y�z)



(x �y) ffl(x �z) �x �(y fflz)

is said to be distributive.

See also LATTICE, MODULAR LATTICE
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Ditrigonal Dodecadodecahedron

The UNIFORM POLYHEDRON U41 ; also called the DITRI-

GONAL DODECAHEDRON, whose DUAL POLYHEDRON is
the MEDIAL TRIAMBIC ICOSAHEDRON. It has WYTHOFF

SYMBOL 3½535: Its faces are 12 5
2

n o
�12 5f g: It is a

FACETED version of the SMALL DITRIGONAL ICOSIDO-

DECAHEDRON. The CIRCUMRADIUS for unit edge length
is

R �
1

2

ffiffiffi
3

p
:
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Ditrigonal Dodecahedron
DITRIGONAL DODECADODECAHEDRON

Divergence
The divergence of a VECTOR FIELD F is given by

div(F) �9�F �lim
V 00

G
s

F � da

V
: (1)

Define

F �F1 ̂u1 �F2 ̂u2 �F3 ̂u3 : (2)

Then in arbitrary orthogonal CURVILINEAR COORDI-

NATES,

div(F) �9�F �
1

h1h2h3

@

@u1

h2h3F1ð Þ� @

@u2

h3h1F2ð Þ
"

�
@

@u3

h1h2F3ð Þ
�
: (3)

If 9�F �0; then the field is said to be a DIVERGENCE-

LESS FIELD. For divergence in individual coordinate
systems, see CURVILINEAR COORDINATES.

9�
Ax

xj j
�

Tr(A)

xj j
�

xT(Ax)

xj j3
: (4)

The divergence of a TENSOR A is

9�A �Aa
ia (5)

�Ak
;k �Gk

jkAj ; (6)

�
1

g1 =2
g1 =2Ak
� �

; k (7)

where Aa
ia is the COVARIANT DERIVATIVE, Ak

;k is the
COMMA DERIVATIVE, gij is the METRIC TENSOR, and g �
det gij

� �
; (Arfken 1985, p. 165). Expanding the terms

gives

Aa
; a �Aa

; a � G 
a
aaA

a �G 
a
baA

b �Ga
gaA

g
� �

�Ab
; b � Gb

abAa �G  
b
bbAb �G  

b
gbAg

� �

�Ag
; g � Gg

agA
a �G 

g
bgA

b �G  
g
ggA

g
� �

: (8)

See also COMMA DERIVATIVE, COVARIANT DERIVATIVE,
CURL, CURL THEOREM, DIVERGENCE THEOREM, GRA-

DIENT, GREEN’S THEOREM, VECTOR DERIVATIVE
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Divergence Tests
If

lim
k 0�

uk "0;

then the series unf g diverges.

See also CONVERGENCE TESTS, CONVERGENT SERIES,
DINI’S TEST, SERIES

Divergence Theorem
A.k.a. GAUSS’S THEOREM. Let V be a region in space
with boundary @V: Then

gV

9�Fð ÞdV�g
@V

F�da: (1)

Let S be a region in the plane with boundary @S:

gS

9:FdA�g
@S

F:nds: (2)

If the VECTOR FIELD F satisfies certain constraints,



simplified forms can be used. If F(x; y; z) �v(x; y ; z)c
where c is a constant vector "0; then

gS

F :da �c �gS

vda: (3)

But

9�(f v) �(9f ) �v �f ( 9�v) ; (4)

so

gV

9�(cv)dV �c �gV

( 9v �v 9�c)dV �c :gV

9vdV (5)

c � gS

vda �gV

9vdV

	 

�0: (6)

But c "0; and c :f(v) must vary with v so that c :f(v)
cannot always equal zero. Therefore,

gS

vda �gV

9vdV : (7)

If F(x; y; z) �c �P(x; y; z) ; where c is a constant vector
"0; then

gS

da �PgV

9�PdV : (8)

See also CURL THEOREM, GRADIENT, GREEN’S THEO-

REM
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Divergenceless Field
A divergenceless field, also called a SOLENOIDAL

FIELD, is a FIELD for which 9�F �0: Therefore, there
exists a G such that F �9�G : Furthermore, F can be
written as

F �9�(Tr) �92(Sr) �T �S; (1)

where

T �9�(Tr) ��r �( 9T) (2)

S �92(Sr) �9
@

@r 
(rS)

" #
�r92S: (3)

Following Lamb, T and S are called TOROIDAL FIELD

and POLOIDAL FIELD.

See also BELTRAMI FIELD, IRROTATIONAL FIELD,
POLOIDAL FIELD, SOLENOIDAL FIELD, TOROIDAL FIELD

Divergent Sequence
A divergent sequence is a SEQUENCE for which the
LIMIT exists but is not CONVERGENT.

See also CONVERGENT SEQUENCE, DIVERGENT SERIES

Divergent Series
A SERIES which is not CONVERGENT. Series may
diverge by marching off to infinity or by oscillating.
Divergent series have some curious properties. For
example, rearranging the terms of 1 �1 �1 �1 �1 �

 
 
  gives both (1 �1) �(1 �1) �(1 �1) �
 
 
�0 and
1 �(1 �1) �(1 �1) �
 
 
�1 ::/

The RIEMANN SERIES THEOREM states that, by a
suitable rearrangement of terms, a CONDITIONALLY

CONVERGENT SERIES may be made to converge to any
desired value, or to diverge.

No less an authority than N. H. Abel wrote "The
divergent series are the invention of the devil, and it
is a shame to base on them any demonstration
whatsoever" (Gardner 1984, p. 171; Hoffman 1998,
p. 218). However, divergent series can actually be
"summed" rigorously by using extensions to the usual
summation rules (e.g., so-called Abel and Cesàro
sums). For example, the divergent series 1 �1 �1 �
1 �1 �
 
 
  has both Abel and Cesàro sums of 1/2.

See also ABSOLUTE CONVERGENCE, CONDITIONAL

CONVERGENCE, CONVERGENT SERIES, DIVERGENT SE-

QUENCE
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Diversity Condition
For any group of k men out of N , there must be at
least k jobs for which they are collectively qualified.

Divide
To divide is to perform the operation of DIVISION, i.e.,
to see how many times a DIVISOR d goes into another
number n . n divided by d is written n=d or n}d: The
result need not be an INTEGER, but if it is, some
additional terminology is used. d½n is read "d divides
n" and means that d is a DIVISOR of n . In this case, n
is said to be DIVISIBLE by d . Clearly, 1½n and n½n: By
convention, n½0 for every n except 0 (Hardy and
Wright 1979). The "divisibility" relation satisfies

b½a for c½b [c½a

b½a[bc½ac



c ½a and c ½b [c ½ ma �nbð Þ;

where the symbol [means IMPLIES.

/d?¶n is read "/d? does not divide n" and means that d?
is not a DIVISOR of n . ak ½½b means ak divides b exactly.
If n and d are RELATIVELY PRIME, the notation
(n;d) �1 or sometimes n �d is used.

See also CONGRUENCE, DIVISIBLE, DIVISIBILITY TESTS,
DIVISION, DIVISOR, GREATEST DIVIDING EXPONENT,
RELATIVELY PRIME
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Divided Difference
The divided difference f x1 ; x2 ; :::; xn½ � on n points x1 ; x2 ;
..., xn of a function f (x) is defined by f [x1] �f x1ð Þ and

f x1 ; x2 ; :::; xn½ ��f x1 ; :::; xn½ �� f x2 ; :::; xn½ �
x1 � xn

(1)

for n ]2 : The first few differences are

x0 ; x1½ �� f0 � f1

x0 � x1

(2)

x0 ; x1 ; x2½ �� x0 ; x1½ �� x1 ; x2½ �
x0 � x2

(3)

x0 ; x1 ; :::; xn½ �� x0 ; :::; xn�1½ �� x1 ; :::; xn½ �
x0 � xn

: (4)

Defining

pn(x) � x �x0ð Þ x �x1ð Þ 
 
 
  x �xnð Þ  (5)

and taking the DERIVATIVE

p?n xkð Þ� xk �x0ð Þ::: xk �xk �1ð Þ::: xk �xnð Þ (6)

gives the identity

x0 ; x1 ; :::; xn½ ��
Xn

k �0

fk

p?n xkð Þ
: (7)

Consider the following question: does the property

f x1 ; x2 ; :::; xn½ ��h x1 �x2 �:::�xnð Þ (8)

for n ]2 and h(x) a given function guarantee that f (x)
is a POLYNOMIAL of degree 5n/? Aczél (1985) showed
that the answer is "yes" for n �2, and Bailey (1992)
showed it to be true for n �3 with differentiable f (x):
Schwaiger (1994) and Andersen (1996) subsequently
showed the answer to be "yes" for all n ]3 with
restrictions on f (x) or h(x):/

See also HORNER’S METHOD, INTERPOLATION, NEW-

TON’S DIVIDED DIFFERENCE INTERPOLATION FORMU-

LA, RECIPROCAL DIFFERENCE
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Dividend
A quantity that is divided by another quantity.

See also DIVISION, DIVISOR

Divine Proportion
GOLDEN RATIO

Divisibility Tests
Write a positive decimal integer a out digit by digit in
the form an 
 
 
 a3a2a1a0: The following rules then
determine if a is DIVISIBLE by another number by
examining the CONGRUENCE properties of its digits. In
CONGRUENCE notation, n�k modmð Þ means that the
remainder when n is divided by a modulus m is k .
(Note that it is always true that 100�1�1 for any
base.)

1. All integers are DIVISIBLE by 1.
2. 101�0(mod2); so 10n�0(mod2) for n]1: There-
fore, if the last digit a0 is DIVISIBLE by 2 (i.e., is
EVEN), then so is a .
3. 100�1; 101�1; 102�1; ..., 10n�1 (mod 3).
Therefore, if an

i�0aj is DIVISIBLE by 3, so is a (Wells
1986, p. 48).
4. 101�2; 102�0; .../10n�0 (mod 4). So if the last
two digits are DIVISIBLE by 4, more specifically if
r�a0�2a1 is, then so is a .
5. 101�0(mod5); so 10n�0(mod5) for n]1: There-
fore, if the last digit a0 is DIVISIBLE by 5 (i.e., is 5 or
0), then so is a .
6. 101��2; 102��2; ..., 10n��2 (mod 6). There-
fore, if r�a0�2an

i�1ai is DIVISIBLE by 6, so is a . A



simpler rule states that if a is DIVISIBLE by 3 and is
EVEN, then a is also DIVISIBLE by 6.
7a. 101 �3; 102 �2; 103 ��1 ; 104 ��3 ; 105 ��2;
106 �1 (mod 7), and the sequence then repeats.
Therefore, if r � a0 �3a1 �2a2 �a3 �3a4 �2a5ð Þ�
a6 �3a7 �
 
 
ð Þ�
 
 
  is DIVISIBLE by 7, so is a .

7b. An alternate test proceeds by multiplying an by
3 and adding to an�1 ; then repeating the procedure
up through a0 : The final number can then, of
course, be further reduced using the same proce-
dure. If the result is divisible by 7, then so is the
original number (Wells 1986, p. 70).
7c. A third test multiplies a0 by 5 and adds it to a1 ;

proceeding up through an : The final number can
then, of course, be further reduced using the same
procedure. If the result is divisible by 7, then so is
the original number (Wells 1986, p. 70).
8. 101 �2; 102 �4; 103 �0; ..., 10n �0 (mod 8).
Therefore, if the last three digits are DIVISIBLE by
8, more specifically if r �a0 �2a1 �4a2 is, then so
is a (Wells 1986, p. 72).
9. 100 �1; 101 �1; 102 �1; ..., 10n �1 (mod 9).
Therefore, if an

i�0ai is DIVISIBLE by 9, so is a (Wells
1986, p. 74).
10. 101 �0 (mod 10), so if the last digit is 0, then a
is DIVISIBLE by 10.
11. 101 ��1; 102 �1; 103 ��1; 104 �1; ... (mod 11).
Therefore, if r �a0 �a1 �a2 �a3 �
 
 
  is DIVISIBLE

by 11, then so is a .
12. 101 ��2 ; 102 �4; 103 �4; ... (mod 12). There-
fore, if r �a0 �2a1 �4 a2 �a3 �
 
 
ð Þ is DIVISIBLE by
12, then so is a . Divisibility by 12 can also be
checked by seeing if a is DIVISIBLE by 3 and 4.
13. 101 ��3; 102 ��4 ; 103 ��1 ; 104 �3; 105 �4;
106 �1 (mod 13), and the pattern repeats. There-
fore, if r �ða0 �3a1 �4a2 �a3 þ 3a4 þ 4a5 Þ þ ða6 �
3a7 þ . . .Þ þ . . .  is DIVISIBLE by 13, so is a .

For additional tests for 13, see Gardner (1991).

See also CONGRUENCE, DIVISIBLE, DIVISOR, MODULUS

(CONGRUENCE)
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Divisible
A number n is said to be divisible by d if d is a
DIVISOR of n .

The product of any n consecutive integers is divisible
by n! : The sum of any n consecutive integers is
divisible by n if n is ODD, and by n=2 if n is EVEN.

See also DIVIDE, DIVISIBILITY TESTS, DIVISOR, DIVI-

SOR FUNCTION
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Division
Taking the RATIO x=y of two numbers x and y , also
written x }y: Here, x is called the DIVIDEND, y is
called the DIVISOR, and x=y is called a QUOTIENT. The
symbol "/" is called a SOLIDUS (or DIAGONAL), and the
symbol "/}/" is called the OBELUS. If left unevaluated,
x=y is called a FRACTION, with x known as the
NUMERATOR and y known as the DENOMINATOR.

Division in which the fractional (remainder) is dis-
carded is called INTEGER DIVISION, and is sometimes
denoted using a backslash, \.

Division is the inverse operation of MULTIPLICATION,
so that if

a �b �c;

then a can be recovered as

a �c }b

as long as b "0: In general, DIVISION BY ZERO is not
defined since the ability to "invert" a �b �c to recover
a breaks down if b �0 (in which case c is always 0,
independent of a ).

Cutting or separating an object into two or more parts
is also called division.

See also ADDITION, COMPLEX DIVISION, CUTTING,
DENOMINATOR, DIVIDE, DIVIDEND, DIVISION BY

ZERO, DIVISOR, INTEGER DIVISION, LONG DIVISION,
MULTIPLICATION, NUMERATOR, OBELUS, ODDS, PLANE

DIVISION BY LINES, QUOTIENT, RATIO, SKELETON

DIVISION, SOLIDUS, SPACE DIVISION BY SPHERES,
SUBTRACTION, TRIAL DIVISION, VECTOR DIVISION

Division Algebra
A division algebra, also called a "division ring" or
"skew field," is a RING in which every NONZERO

element has a multiplicative inverse, but multiplica-
tion is not COMMUTATIVE. In French, the term "corps
non commutatif" is used to mean division algebra,
while "corps" alone means FIELD.



Explicitly, a division algebra is a set together with
two BINARY OPERATORS S �; +ð Þ satisfying the follow-
ing conditions:

1. Additive associativity: For all a ; b ; c 	 S;
(a �b) �c �a �(b �c) ;/
2. Additive commutativity: For all a ; b 	 S;
a �b �b �a ;/
3. Additive identity: There exists an element 0 	 S
such that for all a 	 S ; 0 �a �a �0 �a ;/
4. Additive inverse: For every a 	 S there exists an
element �a 	 S such that a �(�a) �(�a) �a �0;/
5. Multiplicative associativity: For all a; b ; c 	 S;
a+bð Þ+c �a + b+cð Þ;/

6. Multiplicative identity: There exists an element
1 	 S not equal to 0 such that for all a 	 S;
1+a �a+1 �a ;/
7. Multiplicative inverse: For every a 	 S not equal
to 0, there exists a �1 	 S such that
a+a�1 �a �1 +a �1 ;/
8. Left and right distributivity: For all a; b ; c 	 S;
a+(b �c) �(a+b) �(a +c) and
(b �c) +a �(b+a) �(c +a):/

Thus a division algebra S;�; +ð Þ is a UNIT RING for
which S �f0g; +ð Þ is a GROUP. A division algebra must
contain at least two elements. A COMMUTATIVE divi-
sion algebra is called a FIELD.

In 1878 and 1880, Frobenius and Peirce proved that
the only associative REAL division algebras are REAL

NUMBERS, COMPLEX NUMBERS, and QUATERNIONS

(Mishchenko and Solovyov 2000). The CAYLEY ALGE-

BRA is the only NONASSOCIATIVE DIVISION ALGEBRA.
Hurwitz (1898) proved that the ALGEBRAS of REAL

NUMBERS, COMPLEX NUMBERS, QUATERNIONS, and
CAYLEY NUMBERS are the only ones where multi-
plication by unit "vectors" is distance-preserving.

Adams (1956) proved that n -dimensional vectors
form an ALGEBRA in which division (except by 0) is
always possible only for n �1, 2, 4, and 8. Bott and
Milnor (1958) proved that the only finite dimensional
real division algebras occur for dimensions n �1, 2, 4,
and 8. Each gives rise to an ALGEBRA with particu-
larly useful physical applications (which, however, is
not itself necessarily nonassociative), and these four
cases correspond to REAL NUMBERS, COMPLEX NUM-

BERS, QUATERNIONS, and CAYLEY NUMBERS, respec-
tively.

See also ALTERNATIVE ALGEBRA, CAYLEY NUMBER,
FIELD, GROUP, JORDAN ALGEBRA, LIE ALGEBRA,
NONASSOCIATIVE ALGEBRA, POWER ASSOCIATIVE AL-

GEBRA, QUATERNION, SCHUR’S LEMMA, UNIT RING
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Division by Zero
Division by zero is the operation of taking the
QUOTIENT of any number x and 0, i.e., x=0: The
uniqueness of DIVISION breaks down when dividing
by zero, since the product 0 �y �0 is the same for any
y , so y cannot be recovered by inverting the process of
MULTIPLICATION. 0 is the only number with this
property and, as a result, division by zero is UNDE-

FINED for REAL NUMBERS and can produce a fatal
condition called a "division by zero error" in computer
programs.

There are, however, contexts in which division by
zero can be considered as defined. For example,
division by zero z=0 for z 	C 	"0 in the EXTENDED

COMPLEX PLANE C* is defined to be a quantity known
as COMPLEX INFINITY. This definition expresses the
fact that, for z "0; limw 00z=w �� (i.e., COMPLEX

INFINITY). However, even though the formal state-
ment 1=0 �� is permitted in C*, note that this does
not mean that 1�0��: Zero does not have a multi-
plicative inverse under any circumstances.

Although division by zero is not defined for reals,
LIMITS involving division by a real quantity x which
approaches zero may be in fact be WELL DEFINED. For
example,

lim
x00

sinx

x
�1:

Of course, such limits may also approach INFINITY,

lim
x00�

1

x
��:

See also C*, COMPLEX INFINITY, COMPLEX NUMBER,
DIVISION, EXTENDED COMPLEX PLANE, FALLACY,
FIELD, LIMIT, REAL NUMBER, RING, ZERO



Division Lemma
When ac is DIVISIBLE by a number b that is
RELATIVELY PRIME to a , then c must be DIVISIBLE by
b .

Division Ring
DIVISION ALGEBRA

Divisor
A divisor of a number N is a number d which DIVIDES

N , also called a FACTOR. The total number of divisors
for a given number N can be found as follows. Write a
number in terms of its PRIME FACTORIZATION

N �p a1

1 p a2

2 
 
 
p ar
r : (1)

For any divisor d of N , N �dd? where

d �pd1

1 p
d2

2 
 
 
pdr
r ; (2)

so

d?�p a1�d1

1 p a2�d2

2 
 
 
p ar�dr
r : (3)

Now, d1 �0 ; 1; . . . ; a1 ; so there are a1 �1 possible
values. Similarly, for dn ; there are an �1 possible
values, so the total number of divisors v(N) of N is
given by

n(N) �
Yr

n �1

an �1ð Þ: (4)

The function n(N) is also sometimes denoted d(N) or
s0(N): The product of divisors can be found by writing
the number N in terms of all possible products

N �
d(1)d?(1)

n
d(n)d?(n)

;

8<
: 

(5)

so

N n(N) � d(1) 
 
 
d(n)
� �

d ?(1)d?(n)
� �

�
Yn
i �1

di

Yn
i�1

d?
i �

Y
d

� �2

; (6)

and Y
d �N n(N) =2 : (7)

The GEOMETRIC MEAN of divisors is

G �
Y

d
� �1= n(N)

� N n(n)=2
� �1 =n(N)

�
ffiffiffiffiffi
N

p
: (8)

The ARITHMETIC MEAN is

A(N) �
s(N)

n(N)
: (9)

The HARMONIC MEAN is

1

H 
�

1

N

X 1

d

 !
: (10)

But N �dd ?; so 1 =d �d?=N and

X 1

d 
�

1

N

X
d?�

1

N

X
d �

s(N)

N
; (11)

and we have

1

H(N) 
�

1

n(N)

s(N)

N
�

A(N)

N 
(12)

N �A(N)H(N) : (13)

Given three INTEGERS chosen at random, the prob-
ability that no common factor will divide them all is

z(3)½ ��1
:1 :20206�1 :0:831907 ; (14)

where z(3) is APÉ RY’S CONSTANT.

The smallest numbers having exactly 0, 1, 2, ...
divisors (other than 1) are 1, 2, 4, 6, 16, 12, 64, 24,
36, ... (Sloane’s A005179).

Let f (n) be the number of elements in the greatest
subset of [1;n] such that none of its elements are
divisible by two others. For n sufficiently large,

0:6725 . . .5
f (n)

n
50:673 . . . (15)

(Le Lionnais 1983, Lebensold 1976/1977).

See also ALIQUANT DIVISOR, ALIQUOT DIVISOR, ALI-

QUOT SEQUENCE, DIRICHLET DIVISOR PROBLEM, DIVI-

DEND, DIVISION, DIVISOR (CURVE), DIVISOR

FUNCTION, DIVISOR THEORY, E -DIVISOR, EXPONEN-

TIAL DIVISOR, GREATEST COMMON DIVISOR, IMPROPER

DIVISOR, INFINARY DIVISOR, K -ARY DIVISOR, PERFECT

NUMBER, PROPER DIVISOR, UNITARY DIVISOR
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Divisor Function

/sk(n) for n an integer is defined as the sum of the kth
POWERS of the DIVISORS of n . As an illustrative
example, consider the number 140, which has DIVI-

SORS di�1; 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, and 140
(for a total of N�12 of them). Therefore,

d(140)�s0(140)�N�12 (1)

s(140)�s1(140)�
XN

i�1

di�336 (2)

s2(140)�
XN

i�1

d2
i �27; 300 (3)

s3(140)�
XN

i�1

d3
i �3; 164; 112: (4)

The divisor function can also be generalized to
GAUSSIAN INTEGERS.
The function s0(n) gives the total number of DIVISORS

of n and is often denoted d(n); n(n); t(n); or V nð Þ:
(Hardy and Wright 1979, pp. 354�/55). The first few
values of s0(n) are 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, ...
(Sloane’s A000005). These values can be found as the
inverse MÖBIUS TRANSFORM of 1, 1, 1, ... (Sloane and
Plouffe 1995, p. 22). Heath-Brown (1984) proved that
s0(n)�s0(n�1) infinitely often.

The function s1(n) is equal to the sum of DIVISORS of n
and is often denoted s(n): The first few values of s(n)
are 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, ... (Sloane’s A000203).
The first few values of s2(n) are 1, 5, 10, 21, 26, 50, 50,
85, 91, 130, ... (Sloane’s A001157). The first few
values of s3(n) are 1, 9, 28, 73, 126, 252, 344, 585,
757, 1134, ... (Sloane’s A001158).

The sum of the DIVISORS of n excluding n itself (i.e.,
the PROPER DIVISORS of n ) is called the RESTRICTED

DIVISOR FUNCTION and is denoted s(n): The first few
values are 0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, ... (Sloane’s
A001065).

The sum of divisors s(N) can be found as follows. Let
N�ab with a"b and (a; b)�1: For any divisor d of
N , d�aibi; where ai is a divisor of a and bi is a divisor

of b . The divisors of a are 1, a1; a2; ..., and a . The
divisors of b are 1, b1; b2/, ..., b . The sums of the
divisors are then

s(a)�1�a1�a2�:::�a (5)

s(b)�1�b1�b2�:::�b: (6)

For a given ai;

ai 1�b1�b2�:::�bð Þ�ais(b): (7)

Summing over all ai;

1�a1�a2�:::�að Þs(b)�s(a)s(b); (8)

so s(N)�s(ab)�s(a)s(b): Splitting a and b into
prime factors,

s(N)�s pa1

1ð Þs pa2

2ð Þ . . .s par
rð Þ: (9)

For a prime POWER pai

i ; the divisors are 1, pi; p2
i ; ..., pai

i ;
so

s pai

i

� �
�1�pi�p2

i �:::�pai

i �
pai�1

i � 1

pi � 1
: (10)

For N , therefore,

s(N)�
Yr

i�1

pa�1
i � 1

pi � 1
: (11)

For the special case of N a PRIME, (11) simplifies to

s(p)�
p2 � 1

p � 1
�p�1: (12)

For N a POWER of two, (11) simplifies to

s 2að Þ�2a�1 � 1

2 � 1
�2a�1�1: (13)

The identity (9) can be generalized to

sk(N)�sk pa1

1ð Þsk pa2

2ð Þ:::sk par
rð Þ: (14)

In general,

sk(n)�
X
d½n

dk: (15)

The s(n) function has the series expansion

s(n)�
1

6
p2n 1�

�1ð Þn

22
�

2 cos
2

3
np

 !

32

2
66664

�

2cos
1

2
np

 !

42
�2

cos
2

5
np

 !
� cos

4

5
np

 !�
52�. . .

2
66664

3
77775 (16)

(Hardy 1999). Ramanujan gave the beautiful formula



X�
n�1

sa(n)sb(n)

ns

�
z(s)z(s � a)z(s � b)z(s � a � b)

z(2s � a � b)
; (17)

where z(n) is the ZETA FUNCTION and /

R½s�;R½s�a�;R½s�b�;R½s�a�b��1/ (Wilson 1923),
which was used by Ingham in a proof of the PRIME

NUMBER THEOREM (Hardy 1999, pp. 59�/0). This gives
the special case

X�
n�1

d(n)½ �2

ns
�

z(s)½ �4

z(2s)
(18)

(Hardy 1999, p. 59).

The divisor function also satisfies the INEQUALITY

s(n)

n ln lnn
5eg�

2 1 �
ffiffiffi
2

p� �
� g� ln(4p)ffiffiffiffiffiffiffiffi

lnn
p

ln lnn

�o
1ffiffiffiffiffiffiffiffi

lnn
p

ln lnnð Þ2

 !
; (19)

where g is the EULER-MASCHERONI CONSTANT (Robin
1984, Erdos 1989).

Let a number n have prime factorization

n�
Yr

j�1

p
aj

j ; (20)

then

s(n)�
Yr

j�1

p
aj�1

j � 1

pj � 1
(21)

(Berndt 1985). GRONWALL’S THEOREM states that

lim
n0�

s(n)

n ln lnn
�eg; (22)

where g is the EULER-MASCHERONI CONSTANT. s(n) is
a power of 2 IFF n�1 or n is a product of distinct
MERSENNE PRIMES (Sierpinski1958/59, Sivaramak-
rishnan 1989, Kaplansky 1999). The first few such
n are 1, 3, 7, 21, 31, 93, 127, 217, 381, 651, 889, 2667,
... (Sloane’s A046528), and the powers of 2 these
correspond to are 0, 2, 3, 5, 5, 7, 7, 8, 9, 10, 10, 12, 12,
13, 14, ... (Sloane’s A048947).

Curious identities derived using MODULAR FORM

theory are given by

s3(n)�s7(n)�120
Xn�1

k�1

s3(k)s3(n�k)�0 (23)

�10s3(n)�21s5(n)�11s9(n)�5040
Xn�1

k�1

s3(k)s5(n�k)

�0 (24)

(Apostol 1997, p. 140), together with

21s5(n)�20s7 nð Þ�s13(n)�10080
Xn�1

k�1

s5(n�k)s7(k)

�0 (25)

�10s3(n)�11s9 nð Þ�s13(n)�2640
Xn�1

k�1

s3(n�k)s9(k)

�0 (26)

�21s5(n)�22s9 nð Þ�s13(n)�2904
Xn�1

k�1

s9(n�k)s9(k)

�504
Xn�1

k�1

s5(n�k)s13(k)�0 (27)

(M. Trott).

The divisor function is ODD IFF n is a SQUARE NUMBER

or twice a SQUARE NUMBER. The divisor function
satisfies the CONGRUENCE

ns(n)�2 (modf(n)); (28)

for all PRIMES and no COMPOSITE NUMBERS with the
exception of 4, 6, and 22 (Subbarao 1974). r(n) is
PRIME whenever s(n) is (Honsberger 1991). Factor-
izations of s p

að Þ for PRIME p are given by Sorli.

In 1838, Dirichlet showed that the average number of
DIVISORS of all numbers from 1 to n is asymptotic to

Pn
i�1 s0(i)

n
�lnn�2g�1 (29)

(Conway and Guy 1996; Hardy 1999, p. 55), as
illustrated above, where the thin solid curve plots
the actual values and the thick dashed curve plots the
asymptotic function. This is related to the DIRICHLET

DIVISOR PROBLEM, which seeks to find the "best"
coefficient u in

Xn

k�1

n(k)�n lnn�(2g�1)n�O nu
� �

: (30)

A more precise formula is given by



Xn

k �2

s0(k) �n ln lnn �B2n �o(n) ; (31)

where

B2 � g �
X

p prime

ln 1 �p �1
� �

�
1

p � 1

" #
:1 :034653 (32)

(Hardy and Wright 1979, p. 355). The SUMMATORY

FUNCTIONS for sa with a �1 are

Xn

k�1

sa(k) �
z(a � b)

a � 1
na �1 �O nað Þ: (33)

For a�1,

Xn

k�1

s1(k)�
p2

12
n2�O(n lnn): (34)

See also DIRICHLET DIVISOR PROBLEM, DIVISOR,
DIVISOR PRODUCT, EVEN DIVISOR FUNCTION, FACTOR,
GREATEST PRIME FACTOR, GRONWALL’S THEOREM,
LEAST PRIME FACTOR, MULTIPLY PERFECT NUMBER,
ODD DIVISOR FUNCTION, ORE’S CONJECTURE, PER-

FECT NUMBER, RESTRICTED DIVISOR FUNCTION, SIL-

VERMAN CONSTANT, SUM OF SQUARES FUNCTION, TAU

FUNCTION, TOTIENT FUNCTION, TOTIENT VALENCE

FUNCTION, TWIN PEAKS, UNITARY DIVISOR FUNCTION
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Divisor Product
Let p(n) denote the product of the divisors of n
including n itself. For n�1, 2, ..., the first few values
are 1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, ...
(Sloane’s A007955). The following table gives values
of n for which p(n) is a Pth power. Lionnet (1879)
considered the case P�1.

P Sloane n

1 Sloane’s
A048943

1, 6, 8, 10, 14, 15, 16, 21, 22,
24, 26, ...

2 Sloane’s
A048944

1, 4, 8, 9, 12, 18, 20, 25, 27,
28, 32, ...

3 Sloane’s
A048945

1, 24, 30, 40, 42, 54, 56, 66,
70, 78, ...

4 Sloane’s
A048946

1, 16, 32, 48, 80, 81, 112, 144,
162, ...

Write the prime factorization of a number n ,

n�pa1

1 pa2

2 
 
 
par
r :

Then the power of pi occurring in p(n) is

1

2
ai a1�1ð Þ a2�1ð Þ 
 
 
 ar�1ð Þ

(Kaplansky 1999). This allows rules for determining
when p(n) is a power of n to be determined, as



considered by Halcke (1719) and Lionnet (1879). Let
p , q , and r be distinct primes, then the following table
gives the conditions and first few n for which p(n) is a
given power P of n (Dickson 1952, Ireland and Rosen
1990, Kaplansky 1999). The case of third powers
corresponds to numbers having exactly six divisors,
the case of forth powers to numbers having eight
divisors, and so on.

P Forms Sloane n

2 /p3 ; pq A007422 6, 8, 10, 14, 15, 21, 22,
...

3 /p5 ; p2q/ A030515 12, 18, 20, 28, 32, 44, ...

4 /p7 ; p3q;
pqr

A030626 24, 30, 40, 42, 54, 56, ...

5 /p9 ; p4q/ A030628 48, 80, 112, 162, 176, ...
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Divisor Theory
A generalization by Kronecker of Kummer’s theory of
PRIME IDEAL factors. A divisor on a full subcategory C
of mod(A ) is an additive mapping x on C with values
in a SEMIGROUP of IDEALS on A .

See also IDEAL, IDEAL NUMBER, PRIME IDEAL, SEMI-

GROUP
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Divorce Digraph
A binary relation associated with an instance of the
STABLE MARRIAGE PROBLEM. Stable marriages corre-
spond to vertices with outdegree 0 in the divorce
digraph (Skiena 1990, p. 252).

See also STABLE MARRIAGE PROBLEM
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Dixon’s Factorization Method
In order to find INTEGERS x and y such that

x2�y2 (modn) (1)

(a modified form of FERMAT’S FACTORIZATION

METHOD), in which case there is a 50% chance that
GCD(n; x�y) is a FACTOR of n , choose a RANDOM

INTEGER ri; compute

g rið Þ�r2
i (modn); (2)

and try to factor g rið Þ: If g rið Þ is not easily factorable
(up to some small trial divisor d ), try another ri: In
practice, the trial rs are usually taken to be

ffiffiffi
n

p
b c�k;

with k�1, 2, ..., which allows the QUADRATIC SIEVE

factorization method to be used. Continue finding and
factoring g rið Þ/s until N�pd are found, where p is the
PRIME COUNTING FUNCTION. Now for each g rið Þ; write

g rið Þ�pa1i

1i pa2i

2i :::p
aNi

Ni ; (3)

and form the EXPONENT VECTOR

v rið Þ�

a1i

a2i

n
aNi

2
664

3
775: (4)

Now, if aki are even for any k , then g rið Þ is a SQUARE

NUMBER and we have found a solution to (1). If not,
look for a LINEAR COMBINATION aiciv rið Þ such that the
elements are all even, i.e.,

c1

a11

a21

n
aN1

2
664

3
775�c2

a12

a22

n
aN2

2
664

3
775�
 
 
�cN

a1N

a2N

n
aNN

2
664

3
775�

0
0
n
0

2
664
3
775

mod2ð Þ

(5)

a11 a12 
 
 
 a1N

a21 a22 
 
 
 a2N

n n ::: n
aN1 aN2 
 
 
 aNN

2
664

3
775

c1

c2

n
cN

2
664

3
775�

0
0
n
0

2
664
3
775 mod2ð Þ: (6)

Since this must be solved only mod 2, the problem can
be simplified by replacing the aij/s with



bij �
0
1

for aij even
for aij odd :

*
(7)

GAUSSIAN ELIMINATION can then be used to solve

bc �z (8)

for c, where z is a VECTOR equal to 0 (mod2) . Once c
is known, then we haveY

k

g rkð Þ�
Y

k

r2
k (modn) ; (9)

where the products are taken over all k for which ck �
1: Both sides are PERFECT SQUARES, so we have a 50%
chance that this yields a nontrivial factor of n . If it
does not, then we proceed to a different z and repeat
the procedure. There is no guarantee that this
method will yield a factor, but in practice it produces
factors faster than any method using trial divisors. It
is especially amenable to parallel processing, since
each processor can work on a different value of r .
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Dixon’s Identity

Xn

k��n

�1ð Þk n �b
n �k

	 

n �c
c �k

	 

b �c
b �k

	 


�
G b � c � n � 1ð Þ

n! G b � 1ð ÞG c � 1ð Þ
; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT and G(x) is a

GAMMA FUNCTION.

See also DIXON’S THEOREM

References
Koepf, W. Hypergeometric Summation: An Algorithmic

Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, pp. 11 and 18 �/9, 1998.

Dixon’s Random Squares Factorization
Method
DIXON’S FACTORIZATION METHOD

Dixon’s Theorem

3F2
n;�x;�y

x �n �1; y �n �1

� �

�G(x �n �1)G(y �n �1)G

� 1

2
n �1

 !
G x �y �

1

2 
n �1

 !

�G(n �1)G x �y �n �1ð ÞG

� x �
1

2 
n �1

 !
G y �

1

2 
n �1

 !
; (1)

where 3F2(a; b; c; d; e; z) is a GENERALIZED HYPERGEO-

METRIC FUNCTION and G(z) is the GAMMA FUNCTION. It
can be derived from the DOUGALL-RAMANUJAN IDEN-

TITY. It can be written more symmetrically as

3F2 a; b ; c; d ; e; 1ð Þ

�

1

2 
a

 !
!(a � b)!(a � c)!

1

2 
a � b � c

 !
!

a!
1

2 
a � b

 !
!

1

2
a � c

 !
! a � b � cð Þ!

; (2)

where 1 �a=2 �b �c has a positive REAL PART, d �
a �b �1 ; and e �a �c �1 (Bailey 1935, p. 13; Pet-
kovsek 1996; Koepf 1998, p. 32). The identity can also
be written as the beautiful symmetric sum

X
k

�1ð Þk a �b
a �k

	 

a �c
c �k

	 

b �c
b �k

	 

�

a � b � cð Þ!
a!b!c!

(3)

(Petkovsek 1996). In this form, it closely resembles
DIXON’S IDENTITY.

See also DIXON’S IDENTITY, DOUGALL-RAMANUJAN

IDENTITY, GENERALIZED HYPERGEOMETRIC FUNC-

TION, ZEILBERGER-BRESSOUD THEOREM
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Dixon-Ferrar Formula
Let Jn(z) be a BESSEL FUNCTION OF THE FIRST KIND,
Yn(z) a BESSEL FUNCTION OF THE SECOND KIND, and
Kn(z) a MODIFIED BESSEL FUNCTION OF THE FIRST

KIND. Also let R[z] > 0 and R[z]j jB1 =2: Then

J2
n (z) �Y2

n (z) �
8 cos(n p)

p2 g
�

0

K2n(2z sinhdt):

See also NICHOLSON’S FORMULA, WATSON’S FORMULA
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D-Number
A NATURAL NUMBER n �3 such that

njðan�2 �a Þ

whenever /ða ;nÞ ¼ 1/ (a and n are RELATIVELY PRIME)
and/a 5n/. (Here, /njm/ means that n DIVIDES m .) There
are an infinite number of such numbers, the first few
being 9, 15, 21, 33, 39, 51, ... (Sloane’s A033553).

See also DIVIDE, KNÖ DEL NUMBERS
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Dobinski’s Formula
The general formula states that

fn(x)�e�x
X�
k�0

kn

k!
xk; (1)

where fn(x) is an EXPONENTIAL POLYNOMIAL (Roman
1984, p. 66). Setting x�1 gives the special case of the
nth BELL NUMBER,

Bn�
1

e

X�
k�0

kn

k!
: (2)

It can be derived by dividing the formula for a
STIRLING NUMBER OF THE SECOND KIND by m!; yield-
ing

mn

m!
�
Xm

k�1

n
k

* 8
1

(m � k)!
: (3)

Then

X�
k�1

mn

m!
lm�

Xn

k�1

n
k

* 8
lk

 ! X�
k�0

lj

j!

 !
; (4)

and

Xn

k�1

n
k

* 8
lk�e�l

X�
m�1

mn

m!
lm: (5)

Now setting l�1 gives the identity (Dobinski 1877;
Rota 1964; Berge 1971, p. 44; Comtet 1974, p. 211;
Roman 1984, p. 66; Lupas 1988; Wilf 1990, p. 106;
Chen and Yeh 1994; Pitman 1997).
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Dodecadodecahedron



The UNIFORM POLYHEDRON U36 whose DUAL POLYHE-

DRON is the MEDIAL RHOMBIC TRIACONTAHEDRON. The
solid is also called the GREAT DODECADODECAHEDRON,
and its DUAL POLYHEDRON is also called the SMALL

STELLATED TRIACONTAHEDRON. The dodecadodecahe-

dron has SCHLÄ FLI SYMBOL 5
2 ; 5
n o

and WYTHOFF

SYMBOL 2 5
25:
��� Its faces are 12 5

2

n o
�12 5f g; and its

CIRCUMRADIUS for unit edge length is

R �1 :

It can be obtained by TRUNCATING a GREAT DODECA-

HEDRON or FACETING a ICOSIDODECAHEDRON with
PENTAGONS and covering remaining open spaces
with PENTAGRAMS (Holden 1991, p. 103).

A FACETED version is the GREAT DODECAHEMICOSAHE-

DRON. The CONVEX HULL of the dodecadodecahedron
is an ICOSIDODECAHEDRON and the dual of the
ICOSIDODECAHEDRON is the RHOMBIC TRIACONTAHE-

DRON, so the dual of the dodecadodecahedron is one of
the RHOMBIC TRIACONTAHEDRON STELLATIONS (Wen-
ninger 1983, p. 41).
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Dodecagon

A 12-sided polygon. The regular dodecagon is CON-

STRUCTIBLE denoted using the SCHLÄ FLI SYMBOL

f12 g: The INRADIUS r , CIRCUMRADIUS R , and AREA A
can be computed directly from the formulas for a
general REGULAR POLYGON with side length s and
n �12 sides,

r �
1

2
s cot

p
12

 !
�

1

2
2 �

ffiffiffi
3

p� �
s (1)

R �
1

2 
s csc

p
12

 !
�

1

2

ffiffiffi
2

p
�

ffiffiffi
6

p� �
s (2)

A �
1

4 
ns2 cot

p
12

 !
�3 2�

ffiffiffi
3

p� �
s2 : (3)

KURSCHÁ K’S THEOREM gives the AREA of the dodeca-
gon inscribed in a UNIT CIRCLE with R �1,

A�
1

2
nR2 sin

2p
n

 !
�3 (4)

(Wells 1991, p. 137).

A PLANE PERPENDICULAR to a C5 axis of a DODECAHE-

DRON or ICOSAHEDRON cuts the solid in a regular
DECAGONAL CROSS SECTION (Holden 1991, pp. 24�/5).

The GREEK, LATIN, and MALTESE CROSSES are all
irregular dodecagons.

See also DECAGON, DODECAGRAM, DODECAHEDRON,
GREEK CROSS, KURSCHÁ K’S THEOREM, KURSCHÁ K’S

TILE, LATIN CROSS, MALTESE CROSS, TRIGONOMETRY

VALUES PI/12, UNDECAGON
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Dodecagram

The STAR POLYGON f12 =5g:/
See also POLYGON, POLYGRAM, STAR POLYGON, TRI-

GONOMETRY VALUES PI/12

Dodecahedral Conjecture
In any unit SPHERE PACKING, the volume of any
VORONOI CELL around any sphere is at least as large
as a regular DODECAHEDRON of INRADIUS 1. If true,
this would provide a bound on the densest possible
sphere packing greater than any currently known. It
is not, however, sufficient to establish the KEPLER

CONJECTURE.

See also KEPLER CONJECTURE, SPHERE PACKING

Dodecahedral Graph

The PLATONIC GRAPH corresponding to the connectiv-
ity of the vertices of a DODECAHEDRON. Finding a
HAMILTONIAN CIRCUIT on this graph is known as the
ICOSIAN GAME. The dodecahedral graph has 20 nodes,
30 edges, VERTEX CONNECTIVITY 3, EDGE CONNECTIV-

ITY 3, GRAPH DIAMETER 5, GRAPH RADIUS 5, and GIRTH

5.

See also CUBICAL GRAPH, ICOSAHEDRAL GRAPH,
ICOSIAN GAME, OCTAHEDRAL GRAPH, PLATONIC

GRAPH, TETRAHEDRAL GRAPH
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Dodecahedral Space
POINCARÉ MANIFOLD

Dodecahedron

The regular dodecahedron is the PLATONIC SOLID P4

composed of 20 VERTICES, 30 EDGES, and 12 PENTA-

GONAL FACES, 12f5g: It is also UNIFORM POLYHEDRON

U23 and Wenninger model W5: It is given by the
SCHLÄFLI SYMBOL f5; 3g and the WYTHOFF SYMBOL

3½25:/

Crystals of pyrite /(FeS2) resemble slightly distorted
dodecahedra (Steinhaus 1983, pp. 207�/08), and spha-
lerite (ZnS) crystals are irregular dodecahedra
bounded by congruent deltoids (Steinhaus 1983,
pp. 207 and 209). The HEXAGONAL SCALENOHEDRON

is another irregular dodecahedron. The DELTOIDAL

HEXECONTAHEDRON and TRIAKIS TETRAHEDRON are
irregular dodecahedra composed of a single type of
face, and the CUBOCTAHEDRON and TRUNCATED TET-

RAHEDRON are dodecahedral ARCHIMEDEAN SOLIDS

consisting of multiple types of faces.

Dodecahedra were known to the Greeks, and 90
models of dodecahedra with knobbed vertices have
been found in a number of archaeological excavations
in Europe dating from the Gallo-Roman period in
locations ranging from military camps to public bath
houses to treasure chests (Schuur).



The dodecahedron has the ICOSAHEDRAL GROUP Ih of
symmetries. The connectivity of the vertices is given
by the DODECAHEDRAL GRAPH. There are three DODE-

CAHEDRON STELLATIONS.

The DUAL POLYHEDRON of the dodecahedron is the
ICOSAHEDRON, so the centers of the faces of an
ICOSAHEDRON form a dodecahedron, and vice versa
(Steinhaus 1983, pp. 199�/01).

A PLANE PERPENDICULAR to a C3 axis of a dodecahe-
dron cuts the solid in a regular HEXAGONAL CROSS

SECTION (Holden 1991, p. 27). A PLANE PERPENDICU-

LAR to a C5 axis of a dodecahedron cuts the solid in a
regular DECAGONAL CROSS SECTION (Holden 1991,
p. 24).

A CUBE can be constructed from the dodecahedron’s
vertices taken eight at a time (above left figure;
Steinhaus 1983, pp. 198�/99; Wells 1991). Five such
cubes can be constructed, forming the CUBE 5-COM-

POUND. In addition, joining the centers of the faces
gives three mutually PERPENDICULAR GOLDEN REC-

TANGLES (right figure; Wells 1991).

The short diagonals of the faces of the RHOMBIC

TRIACONTAHEDRON give the edges of a dodecahedron
(Steinhaus 1983, pp. 209�/10).

The following table gives polyhedra which can be
constructed by CUMULATION of a dodecahedron by
pyramids of given heights h .

h /(r�h)=h/ Result

/�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1

19
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5
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p
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s
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19
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ffiffiffi
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�3/ 60-faced star
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/
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1

5
(5�2

ffiffiffi
5

p
)

s
/ /

ffiffiffi
5

p
/ SMALL STEL-

LATED DODECA-

HEDRON

When the dodecahedron with edge length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pp
is oriented with two opposite faces parallel to the xy -
PLANE, the vertices of the top and bottom faces lie at
z�9(f�1) and the other VERTICES lie at z�9(f�1);



where f is the GOLDEN RATIO. The explicit coordi-
nates are

9 2 cos
2

5
pi

 !
; 2 sin

2

5
pi

 !
;f�1

 !
(1)

9 2f cos
2

5
pi

 !
; 2f sin

2

5
pi

 !
;f�1

 !
(2)

with i�0, 1, ..., 4, where f is the GOLDEN RATIO.

The VERTICES of a dodecahedron can be given in a
simple form for a dodecahedron of side length a�ffiffiffi

5
p

�1 by (0,9f�1;9f); (/9f; 0,9f�1); (/9f�1;9f; 0),
and ( 9 1, 9 1, 9 1).

For a dodecahedron of unit edge length a�1, the
CIRCUMRADIUS R? and INRADIUS r? of a PENTAGONAL

FACE are

R?�
1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pq
(3)

r?�
1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

p
:

q
(4)

The SAGITTA x is then given by

x�R?�r?�
1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
125�10

ffiffiffi
5

p
:

q
(5)

Now consider the following figure.

Using the PYTHAGOREAN THEOREM on the figure then
gives

z2
1�m2� R?�rð Þ2 (6)

z2
2�(m�x)2�1 (7)

z1 � z2

2

 !2

�R?2�
z1 � z2

2

 !2

� m�r?ð Þ2
: (8)

Equation (3) can be written

z1z2�r2� m�r?ð Þ2
: (9)

Solving (1), (2), and (9) simultaneously gives

m�r?�
1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(10)

z1�2r?�
1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(11)

z2�R?�
1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pq
: (12)

The INRADIUS of the dodecahedron is then given by

r�
1

2
z1�z2ð Þ; (13)

so

r2�
1

40
25�11

ffiffiffi
5

p� �
; (14)

and solving for r gives

r�
1

20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250�110

ffiffiffi
5

pq
�1:11351 . . . (15)

Now,

R2�R?2�r2�
3

8
3�

ffiffiffi
5

p� �
; (16)

so the CIRCUMRADIUS is

R�
1

4

ffiffiffiffiffiffi
15

p
�

ffiffiffi
3

p� �
�1:40125 . . . (17)

The INTERRADIUS is given by

r2�r?2�r2�
1

8
7�3

ffiffiffi
5

p� �
; (18)

so

r�
1

4
3�

ffiffiffi
5

p� �
�1:30901 . . . (19)

The DIHEDRAL ANGLE is

a�cos�1 �
1

5

ffiffiffi
5

p
 !

:116:57�: (20)

The AREA of a single FACE is the AREA of a PENTAGON,

A�
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

p
:

q
(21)



The VOLUME of the dodecahedron can be computed by
summing the volume of the 12 constituent PENTAGO-

NAL PYRAMIDS,

V �12
1

3
Ar

 !
�

1

4
15 �7

ffiffiffi
5

p� �
: (22)

Apollonius showed that the VOLUME V and SURFACE

AREA A of the dodecahedron and its DUAL the
ICOSAHEDRON are related by

Vicosahedron

Vdodecahedron

�
Aicosahedron

Adodecahedron

(23)

See also AUGMENTED DODECAHEDRON, AUGMENTED

TRUNCATED DODECAHEDRON, CAIRO TESSELLATION,
CUBOCTAHEDRON, DELTOIDAL HEXECONTAHEDRON,
DODECAGON, DODECAHEDRON 2-COMPOUND, DODECA-

HEDRON 3-COMPOUND, DODECAHEDRON 5-COMPOUND,
DODECAHEDRON-ICOSAHEDRON COMPOUND, DODECA-

HEDRON-SMALL TRIAMBIC ICOSAHEDRON COMPOUND,
DODECAHEDRON STELLATIONS, ELONGATED DODECA-

HEDRON, GREAT DODECAHEDRON, GREAT STELLATED

DODECAHEDRON, HYPERBOLIC DODECAHEDRON, ICO-

SAHEDRON, METABIAUGMENTED DODECAHEDRON, ME-

TABIAUGMENTED TRUNCATED DODECAHEDRON,
PARABIAUGMENTED DODECAHEDRON, PARABIAUGMEN-

TED TRUNCATED DODECAHEDRON, PYRITOHEDRON,
RHOMBIC DODECAHEDRON, RHOMBIC TRIACONTAHE-

DRON, SMALL STELLATED DODECAHEDRON, STELLA-

TION, TRIAKIS TETRAHEDRON, TRIAUGMENTED

DODECAHEDRON, TRIAUGMENTED TRUNCATED DODE-

CAHEDRON, TRIGONAL DODECAHEDRON, TRIGONOME-

TRY VALUES PI/5, TRUNCATED DODECAHEDRON,
TRUNCATED TETRAHEDRON
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Dodecahedron 2-Compound

A compound of two dodecahedra having the symme-
try of the CUBE arises by combining two dodecahedra
rotated 908 with respect to each other about a
common C2 axis (Holden 1991, p. 37).

See also DODECAHEDRON, DODECAHEDRON 3-COM-

POUND, DODECAHEDRON 5-COMPOUND, POLYHEDRON

COMPOUND
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Dodecahedron 3-Compound

See also DODECAHEDRON, DODECAHEDRON 2-COM-

POUND, DODECAHEDRON 5-COMPOUND

Dodecahedron 5-Compound



There are at least two attractive 5-dodecahedra
compounds. The one illustrated in the left figure
above has the symmetry of the ICOSAHEDRON and can
be constructed by taking a DODECAHEDRON with top
and bottom vertices aligned along the Z -AXIS and one
vertex oriented in the direction of the x -axis, rotating
about the Y -AXIS by an angle

a �cos �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

15
5 �

ffiffiffi
5

p� �s !
;

and then rotating this solid by angles 2pi=5 for i �0,
1, ..., 4.

The compound shown at right can be obtained by
combining five dodecahedra, each rotated by 1/10 of a
turn about the line joining the centroids of opposite
faces.

See also DODECAHEDRON, DODECAHEDRON 2-COM-

POUND, DODECAHEDRON 3-COMPOUND, POLYHEDRON

COMPOUND
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Dodecahedron Stellations

The dodecahedron has three STELLATIONS: the SMALL

STELLATED DODECAHEDRON, GREAT DODECAHEDRON,
and GREAT STELLATED DODECAHEDRON (Wenninger
1989, pp. 35 and 38 �/0). Bulatov has produced 270
stellations of a deformed dodecahedron.

See also DODECAHEDRON, ICOSAHEDRON STELLA-

TIONS, STELLATED POLYHEDRON, STELLATION
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Dodecahedron-Icosahedron Compound

A POLYHEDRON COMPOUND consisting of a DODECAHE-

DRON and its dual the ICOSAHEDRON. It is most easily
constructed by adding 20 triangular PYRAMIDS, con-
structed as above, to an ICOSAHEDRON. In the com-
pound, the DODECAHEDRON and ICOSAHEDRON are
rotated p=5 radians with respect to each other, and
the ratio of the ICOSAHEDRON to DODECAHEDRON

edges lengths are the GOLDEN RATIO f:/

If the DODECAHEDRON is chosen to have unit edge
length, the resulting compound has side lengths

s1�
1

2
(1)

s2�
1

4
1�

ffiffiffi
5

p� �
: (2)

Normalizing so that s1�1 gives SURFACE AREA and
VOLUME

S ¼ 15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 þ 5

ffiffiffi
5

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð25 þ 11

ffiffiffi
5

pqr
ð3Þ

V�
5

2
15�7

ffiffiffi
5

p� �
: (4)

The above figure shows compounds composed of a
DODECAHEDRON of unit edge length and ICOSAHEDRA

having edge lengths varying from
ffiffiffi
5

p
=2 (inscribed in

the dodecahedron) to 2 (circumscribed about the
dodecahedron).

The intersecting edges of the compound form the
DIAGONALS of the 30 RHOMBUSES constituting the
TRIACONTAHEDRON, which is the DUAL POLYHEDRON



of the ICOSIDODECAHEDRON (Ball and Coxeter 1987).
The dodecahedron-icosahedron compound is also the
first STELLATION of the ICOSIDODECAHEDRON.

See also DUAL POLYHEDRON, DODECAHEDRON, ICOSA-

HEDRON, ICOSIDODECAHEDRON, PLATONIC SOLID,
POLYHEDRON COMPOUND, RHOMBIC TRIACONTAHE-

DRON
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Dodecahedron-Small Triambic
Icosahedron Compound

A stellated form of a truncated icosahedron, but a
different truncation than in the TRUNCATED ICOSAHE-

DRON ARCHIMEDEAN SOLID. It contains curious but
attractive patterns of raised regular pentagrams and
irregular hexagrams. For the solid constructed from a
DODECAHEDRON with unit edge lengths, the SURFACE

AREA is given by the root of a 10 order polynomial
with large integer coefficients, and the VOLUME is
given by

V �
1

20
35 �15

ffiffiffiffiffiffi
15

p
�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
650 �290

ffiffiffi
5

pq	 

:

See also DODECAHEDRON, SMALL TRIAMBIC ICOSAHE-

DRON
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Dodecic Surface
An ALGEBRAIC SURFACE of degree 12.

See also ALGEBRAIC SURFACE, SARTI DODECIC

Dolbeault Cohomology

See also CALABI-YAU SPACE, DOLBEAULT OPERATORS

Dolbeault Operators

See also DEL BAR OPERATOR, DOLBEAULT COHOMOL-

OGY

Domain
A CONNECTED OPEN SET. The term domain is also used
to describe the set of values D for which a FUNCTION

is defined. The set of values to which D is sent by the
function (MAP) is then called the RANGE.

See also CODOMAIN, CONNECTED SET, MAP, ONE-TO-

ONE, ONTO, RANGE (IMAGE), REINHARDT DOMAIN
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Domain Invariance Theorem
The Invariance of domain theorem states that if f :
A 0 Rn is a ONE-TO-ONE continuous MAP from A , then
a compact subset of Rn ; then the interior of A is
mapped to the interior of f (A):/

See also DIMENSION INVARIANCE THEOREM

Dome
BOHEMIAN DOME, GEODESIC DOME, HEMISPHERE,
SPHERICAL CAP, TORISPHERICAL DOME, VAULT

Dominance
The dominance RELATION on a SET of points in
EUCLIDEAN n -space is the INTERSECTION of the n
coordinate-wise orderings. A point p dominates a
point q provided that every coordinate of p is at least
as large as the corresponding coordinate of q .

A PARTITION pa dominates a PARTITION pb if, for all k ,
the sum of the k largest parts of pa is ]the sum of the
k largest parts of pb : For example, for n �7, f7g
dominates all other PARTITIONS, while
f1; 1; 1; 1 ; 1; 1 ; 1g is dominated by all others. In con-
trast, f3; 1; 1; 1; 1g and f2; 2; 2; 1g do not dominate
each other (Skiena 1990, p. 52).

The dominance orders in Rn are precisely the POSETS

of DIMENSION at most n .

See also DOMINATING SET, DOMINATION NUMBER,
PARTIALLY ORDERED SET, REALIZER
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Dominant Set
DOMINANCE, DOMINATING SET

Dominating Set
This entry contributed by NICOLAS BRAY

For a GRAPH G and a subset S of the VERTEX SET

V(G); denote by NG[S] the set of vertices in G which
are in S or adjacent to a vertex in S . If NG[S] �V(G);
then S is said to be a dominating set (of vertices in
G ).

See also DOMINANCE, DOMINATION NUMBER

Domination Number
This entry contributed by NICOLAS BRAY

The domination number of a graph G , denoted g(G) ; is
the minimum size of a DOMINATING SET of vertices in
G .

See also DOMINANCE, DOMINATING SET, VIZING CON-

JECTURE
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Domineering
A two-player game, also called crosscram, in which
player H has horizontal DOMINOES and player V has
vertical DOMINOES. The two players alternately place
a domino on a BOARD until the other cannot move, in
which case the player having made the last move
wins (Gardner 1974, Lachmann et al. 2000). Depend-
ing on the dimension of the board, the winner will be
H , V , 1 (the player making the first move), or 2 (the
player making the second move). For example, the
2 �2ð Þ board is a win for the first player.

Berlekamp (1988) solved the general problem for 2 �
n board for odd n . Solutions for the 2 �n board are
summarized in the following table, with 2 �n a win
for H for n ]28::/

n win n win n win

0 2 10 1 20 H

1 V 11 1 21 H

2 1 12 H 22 H

3 1 13 2 23 1

4 H 14  1 24 H

5 V 15 1 25 H

6 1 16 H 26 H

7 1 17 H 27 1

8 H 18  1 28 H

9 V 19 1 29 H

Lachmann et al. (2000) have solved the game k �n
for widths of n �2, 3, 4, 5, 7, 9, and 11, obtaining the
results summarized in the following table for k�0, 1,
....

n winner

3 2, V, 1, 1, H, H, ...

4 H for even k]8 and all k]22/

5 2, V, H, V, H, 2, H, H, ...

7 H for n]8/

9 H for n]22/

11 H for n]56/

See also DOMINO
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Domino

The unique 2-POLYOMINO consisting of two equal
squares connected along a complete EDGE.
The FIBONACCI NUMBER Fn�1 gives the number of
ways for 2 �1 dominoes to cover a 2 �n CHECKER-

BOARD, as illustrated in the following diagrams
(Dickau).

See also DOMINEERING, FIBONACCI NUMBER, GO-

MORY’S THEOREM, HEXOMINO, PENTOMINO, POLYOMI-

NO, POLYOMINO TILING, TETROMINO, TRIOMINO
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Domino Problem
WANG’S CONJECTURE

Donaldson Invariants
Distinguish between smooth MANIFOLDS in 4-D.

See also DONALDSON THEORY

Donaldson Theory

See also DONALDSON INVARIANTS

Donkin’s Theorem
The product of three translations along the directed
sides of a TRIANGLE through twice the lengths of these
sides is the IDENTITY MAP.

Donut
TORUS

Doob’s Theorem
A theorem proved by Doob (1942) which states that
any random process which is both GAUSSIAN and
MARKOV has the following forms for its correlation
function Cy( t) ; spectral density Gy(f ) ; and probability
densities p1(y) and p2(y1 ½y2 ; t) ::

Cy t ¼ s2
ye � t=tr

Gy(f ) �
4t �1

t s2
y

2 pfð Þ2�t �2
t

p1(y) � 1ffiffiffiffiffiffiffi
2 ps2

y

p e �(y�y)2 =2 s2
y

p2(y1 =y2 ; t) �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1 � e� t= ttð Þs2
y

q exp

� �
y2 � ȳð Þ� e � t=tt y1 � ȳð Þ

� �2
2 1 � e �2t= ttð Þs2

y

( )
;

where ȳ is the MEAN, sy the STANDARD DEVIATION, and
tr the relaxation time.
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Dorman-Luke Construction
DUAL POLYHEDRON

Dot
The "dot" � has several meanings in mathematics,
including MULTIPLICATION /(a:b is pronounced "a
times b"), computation of a DOT PRODUCT (a�b is
pronounced "a dot b").

See also DERIVATIVE, DOT PRODUCT, OVERDOT, TIMES



Dot Product

The dot product can be defined for two VECTORS X and
Y by

X �Y � ½X ½½Y ½ cos u ; ð1Þ

where u is the ANGLE between the VECTORS. It follows
immediately that X �Y �0 if X is PERPENDICULAR to Y.
The dot product therefore has the geometric inter-
pretation as the length of the PROJECTION of X onto
the UNIT VECTOR Y when the two vectors are placed so
that their tails coincide.
By writing

Ax �A cos uA Bx �B cos uB (2)

Ay �A sin uA By �B sin uB ; (3)

it follows that (1) yields

A �B �AB cos uA � uBð Þ

�AB cos uA cos uB �sin uA sin uBð Þ

�A cos uAB cos uB �A sin uAB sin uB

�AxBx �AyBy : (4)

So, in general,

X �Y �
Xn

i�1

xiyi �x1y1 �
 
 
�xnyn : (5)

This can be written very succinctly using EINSTEIN

SUMMATION notation as

X �Y �xiyi : (6)

The dot product is implemented in Mathematica as
Dot[a , b ], or simply by using a period, a . b .

The dot product is COMMUTATIVE

X �Y �Y �X ; (7)

ASSOCIATIVE

(rX) �Y �r(X �Y) ; (8)

and DISTRIBUTIVE

X �(Y �Z) �X �Y �X �Z : (9)

The DERIVATIVE of a dot product of VECTORS is

d

dt
r1(t) �r2(t)½ ��r1(t) �

dr2

dt
�

dr1

dt
�r2(t) : (10)

The dot product is invariant under rotations

A ?:B ?�A?i :B ?i �aijAjaikBk � aijaik

� �
AjBk

� djkAjBk �AjBj �A �B ; (11)

where EINSTEIN SUMMATION has been used.

The dot product is also called the scalar product and
INNER PRODUCT. In the latter context, it is usually
written a ; bh i: The dot product is also defined for
TENSORS A and B by

A �B �AaBa : (12)

See also CROSS PRODUCT, EINSTEIN SUMMATION,
INNER PRODUCT, OUTER PRODUCT, VECTOR, VECTOR

MULTIPLICATION, WEDGE PRODUCT
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Douady’s Rabbit Fractal

A JULIA SET with c ��0 :123 �0:745i; also known as
the dragon fractal.

See also DENDRITE FRACTAL, JULIA SET, SAN MARCO

FRACTAL, SIEGEL DISK FRACTAL
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Double Bar
The symbol k used to denote certain kinds of NORMS in
mathematics (/ xk kð Þ:):/

See also BAR
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Double Bubble

A double bubble is pair of BUBBLES which intersect
and are separated by a membrane bounded by the
intersection. The usual double bubble is illustrated in
the left figure above. A more exotic configuration in
which one bubble is torus-shaped and the other is
shaped like a dumbbell is illustrated at right (illus-
trations courtesy of J. M. Sullivan).

In the plane, the analog of the double bubble consists
of three circular arcs meeting in two points. It has
been proved that the configuration of arcs meeting at
equal 1208 ANGLES) has the minimum PERIMETER for
enclosing two equal areas (Alfaro et al. 1993, Morgan
1995).

It had been conjectured that two equal partial
SPHERES sharing a boundary of a flat disk separate
two volumes of air using a total SURFACE AREA that is
less than any other boundary. This equal-volume case
was proved by Hass et al. (1995), who reduced the
problem to a set of 200,260 integrals which they
carried out on an ordinary PC. Frank Morgan,
Michael Hutchings, Manuel Ritoré, and Antonio Ros
finally proved the conjecture for arbitrary double
bubbles in early 2000. In this case of two unequal
partial spheres, Morgan et al. showed that the
separating boundary which minimizes total surface
area is a portion of a SPHERE which meets the outer
spherical surfaces at DIHEDRAL ANGLES of 1208.
Furthermore, the CURVATURE of the partition is
simply the difference of the CURVATURES of the two
bubbles.

Amazingly, a group of undergraduates has extended
the theorem to 4-dimensional double bubbles, as well
as certain cases in 5-space and higher dimensions.
The corresponding triple bubble conjecture remains
open (Cipra 2000).

See also APPLE, BUBBLE, CIRCLE-CIRCLE INTERSEC-

TION, ISOVOLUME PROBLEM, SPHERE-SPHERE INTER-

SECTION
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Double Bubble Conjecture
DOUBLE BUBBLE

Double Cone

Two CONES placed apex to apex. The double cone is
given by algebraic equation

x2

c2
�

x2 � y2

a2
:

See also BICONE, CONE, NAPPE



Double Contact Theorem

If S1 ; S2 ; and S3 are three conics having the property
that there is a point X , not on any of the conics, lying
on a common chord of each pair of the three conics
(with the chords in question being distinct), then
there exists a conic S4 that has a double contact with
each of S1 ; S2 ; and S3 (Evelyn et al. 1974, p. 18).
The converse of the theorem states that if three conics
S1 ; S2 ; and S3 all have double contact with another S4

then each two of S1 ; S2 ; and S3 have a "distinguished"
pair of opposite common chords, the three such pairs
of common chords being the pairs of opposite sides of
a COMPLETE QUADRANGLE (Evelyn et al. 1974, p. 19).

The dual theorems are stated as follows. If three
conics are such that, taken by pairs, they have
couples of common tangents intersecting at three
distinct points on a line (that is not itself a tangent to
any of the conics), then (a) the conics have this
property in four different ways, and (b) the conics
all have double contact with a fourth. And, conver-
sely, if three conics each have double contact with a
fourth, then certain of their common tangents inter-
sect by pairs at the vertices of a COMPLETE QUAD-

RILATERAL (Evelyn et al. 1974, p. 22).

A degenerate case of the theorem gives the result that
the six SIMILITUDE CENTERS of three circles taken by
pairs are the vertices of a COMPLETE QUADRILATERAL

(Evelyn et al. 1974, pp. 21 �/2).

See also CONIC SECTION, SIMILITUDE CENTER
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Double Contraction Relation
A TENSOR t is said to satisfy the double contraction
relation when

t̄m
ij t

n
ij � dmn :

This equation is satisfied by

t̂0 �
2ẑẑ � x̂x̂ � ŷŷffiffiffi

6
p

t̂91 ��
1

2
(x̂ẑ �ẑx̂) �

1

2
i(ŷẑ-ẑŷ)

t̂92 ��
1

2 
(x̂x̂ �ŷŷ) �

1

2 
i(x̂ŷ-ŷx̂);

where the hat denotes zero trace, symmetric unit
TENSORS. These TENSORS are used to define the
SPHERICAL HARMONIC TENSOR.

See also SPHERICAL HARMONIC TENSOR, TENSOR
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Double Cusp
DOUBLE POINT

Double Dagger
The symbol % which is not used very commonly in
mathematics. The double dagger is also known as the
double obelisk or diesis (Bringhurst 1997, p. 275).

See also DAGGER

References
Bringhurst, R. The Elements of Typographic Style, 2nd ed.

Point Roberts, WA: Hartley and Marks, p. 277, 1997.

Double Dot
A pair of OVERDOTS placed over a symbol, as in ẍ; most
commonly used to denote a second derivative with
respect to time, i.e., ẍ �d2x=dt2 :/

See also OVERDOT

Double Exponential Distribution
FISHER-TIPPETT DISTRIBUTION, LAPLACE DISTRIBU-

TION

Double Exponential Integration
An fairly good NUMERICAL INTEGRATION technique
used by Maple V R4 † (Waterloo Maple Inc.) for
numerical computation of integrals. The method is
also available in Mathematica using the option
Method- �DoubleExponential to NIntegrate.

See also INTEGRAL, INTEGRATION, NUMERICAL INTE-

GRATION, QUADRATURE
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Double Factorial
The double factorial is a generalization of the usual
FACTORIAL n! defined by

n!! �
n �(n �2) . . . 5:3 :1 n odd
n �(n �2) . . . 6:4 :2 n even
1 n ��1; 0

:

8<
: 

(1)

Note that �1!! �0!! �1; by definition (Arfken 1985,
p. 547). For n �0, 1, 2, ..., the first few values are 1, 1,
2, 3, 8, 15, 48, 105, 384, ... (Sloane’s A006882). The
double factorial is implemented in Mathematica as
n!! or Factorial2[n ]. The double factorial is a
special case of the MULTIFACTORIAL.

The double factorial can be expressed in terms of the
GAMMA FUNCTION by

G n �
1

2

 !
�

(2n � 1)!!

2n

ffiffiffi
p

p
(2)

(Arfken 1985, p. 548).

There are many identities relating double factorials
to FACTORIALS. Since

(2n �1)!!2nn!

�[(2n �1)(2n �1) . . . 1][2n][2(n �1)][2(n �2)] . . . 2(1)

�[(2n �1)(2n �1) 
 
 
 1][2n(2n �2)(2n �4) 
 
 
 2]

�(2n �1)(2n)(2n �1)(2n �2)(2n �3)(2n �4) 
 
 
 2(1)

�(2n �1)!; (3)

it follows that (2n �1)!! � (2n�1)!
2nn! : For n �0, 1, ..., the

first few values are 1, 3, 15, 105, 945, 10395, ...
(Sloane’s A001147).

Also, since

(2n �1)!! �(2n)(2n �2)(2n �4) 
 
 
 2

�[(2n)][2(n �1)][2(n �2)] 
 
 
 2 �2nn!; (4)

it follows that (2n)!! �2nn!: For n �0, 1, ..., the first

few values are 1, 2, 8, 48, 384, 3840, 46080, ...
(Sloane’s A000165).

Finally, since

(2n �1)!!2nn!

�[(2n �1)(2n �3) 
 
 
 1][(2n)][2(n �1)]

� [2(n �2)] 
 
 
 2(1)

�(2n �1)(2n �3) 
 
 
 1[2n(2n �2)(2n �4) 
 
 
 2]

�2n(2n �1)(2n �2)(2n �3)(2n �4) 
 
 
 2(1)

�(2n)!; (5)

it follows that

(2n �1)!! �
(2n)!

2nn!
: (6)

The double factorial can also be extended to negative
odd integers using the definition

(�2n �1)!! �
( �1)n

(2n � 1)!! 
�

( �1)n2nn!

(2n)! 
(7)

for n �0, 1, ... (Arfken 1985, p. 547). Similarly, the
double factorial can be extended to complex argu-
ments as

z!! �2[1�2x�cos( px)] =4 p[cos(px)�1]=4 G 1 �
1

2 
x

 !
: (8)

For n ODD,

n!

n!!
�

n(n � 1)(n � 2) 
 
 
 (1)

n(n � 2)(n � 4) 
 
 
 (1)

�(n�1)(n�3) 
 
 
 (1)�(n�1)!!: (9)

For n EVEN,

n!

n!!
�

n(n � 1)(n � 2) 
 
 
 (2)

n(n � 2)(n � 4) 
 
 
 (2)

(n�1)(n�3) 
 
 
 (2)�(n�1)!!: (10)

Therefore, for any n ,

n!

n!!
�(n�1)!! (11)

n!�n!!(n�1)!!: (12)

A closed-form sum due to Ramanujan is given by

X�
n�0

(�1)n (2n � 1)!!

(2n)!!

" #3

�
G 9

8

� �
G 5

4

� �
G 7

8

� �
2
4

3
5

2

(13)

(Hardy 1999, p. 106). Whipple (1926) gives a general-
ization of this sum (Hardy 1999, pp. 111�/12).

See also FACTORIAL, GAMMA FUNCTION, MULTIFAC-

TORIAL
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Double Folium
BIFOLIUM

Double Gamma Function
BARNES G -FUNCTION, DIGAMMA FUNCTION

Double Integral
MULTIPLE INTEGRAL

Double Mersenne Number
A number OF THE FORM

MMn
�2 2n �1ð Þ�1 ;

where Mn is a MERSENNE NUMBER (T. Forbes). The
following table gives known factors of these numbers.

n factors reference

2 prime

3 prime

5 prime

7 prime

13 338193759479 Wilfrid Keller (1976)

17 231733529 Raphael Robinson (1957)

19 62914441 Raphael Robinson (1957)

31 295257526626031 Guy Haworth (1983)

See also MERSENNE NUMBER, MERSENNE PRIME

Double Normal
A CHORD which is a normal at each end. A CENTRO-

SYMMETRIC SET K ƒRd has d double normals through
the center (Croft et al. 1991). For a CURVE OF

CONSTANT WIDTH, all normals are double normals.

See also CENTROSYMMETRIC SET
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Double Obelisk
DOUBLE DAGGER

Double Overdot
DOUBLE DOT

Double Point
A point traced out twice as a closed curve is traversed.
The maximum number of double points for a non-
degenerate QUARTIC CURVE is three. An ORDINARY

DOUBLE POINT is called a NODE.

Arnold (1994) gives pictures of spherical and PLANE

CURVES with up to five double points, as well as other
curves.

See also BIPLANAR DOUBLE POINT, CONIC DOUBLE

POINT, CRUNODE, CUSP, ELLIPTIC CONE POINT,
GAUSS’S DOUBLE POINT THEOREM, NODE (ALGEBRAIC

CURVE), ORDINARY DOUBLE POINT, QUADRUPLE

POINT, RATIONAL DOUBLE POINT, SPINODE, TACNODE,
TRIPLE POINT, UNIPLANAR DOUBLE POINT
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Double Prime
A symbol used to distinguish a third quantity xƒ ("x
double prime") from two other related quantities x
and x? ("x PRIME ƒ). Double primes are most commonly
used to denote transformed coordinates, conjugate
points, and DERIVATIVES. A double prime is also used
to denote the number of arc seconds in an angle
measure, or the number of inches in a length.

See also PRIME
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Double Series
A SERIES having terms depending on two indices,X

i;j

aij:

Identities involving double sums include the follow-
ing:

X�
p¼0

Xp

q¼0

aq;p�q ¼
X�
m¼0

X�
n¼0

an;m ¼
X�
r¼0

Xr=2b c

s¼0

as;r�2s; (1)

where

r=2b c ¼

1

2
r r even

1

2
(r�1) r odd

8>>><
>>>:

(2)

is the FLOOR FUNCTION, and

X�
i¼1

Xp

j¼1

xixj ¼ n2 x2
9 :

: (3)

Consider the series

S(a; b; c; s) ¼
X

(m;n)"(0;0)

am2�bmn�cn2
� ��s

(4)

over binary QUADRATIC FORMS. If S can be decom-
posed into a linear sum of products of DIRICHLET L -

SERIES, it is said to be solvable. The related sums

S1(a; b; c; s) ¼
X

(m;n)"(0;0)

�1ð Þm am2�bmn�cn2
� ��s ð5Þ

S2(a; b; c; s) ¼
X

(m;n)"(0;0)

�1ð Þn am2�bmn�cn2
� ��s ð6Þ

S1;2(a; b; c; s)

¼
X

(m;n)"(0;0)

�1ð Þm�n am2�bmn�cn2
� ��s ð7Þ

can also be defined, which gives rise to such impress-
ive FORMULAS as

S1(1; 0; 58; 1)��
p ln 27 � 5

ffiffiffiffiffiffi
29

p� �ffiffiffiffiffiffi
58

p (8)

(Glasser and Zucker 1976b). A complete table of the
principal solutions of all solvable S(a; b; c; s) is given
in Glasser and Zucker (1980, pp. 126�/31).

The LATTICE SUM b2(2s) can be separated into two
pieces,

b2(2s)�
X�

i; j���

(�1)i�j

i2 � j2ð Þs

�
X�
i�1

X�
j�1

(�1)i�j

i2 � j2ð Þ2�
X�
i�1

X��

j��1

(�1)i�j

i2 � j2ð Þ2

�
X��

i��1

X�
j�1

(�1)i�j

i2 � j2ð Þ2�
X��

i��1

X��

j��1

(�1)i�j

i2 � j2ð Þ2

�
X�1

j���

(�1)j

j2s
�
X�
j�1

(�1)j

j2s
�
X�1

j���

(�1)i

i2s
�
X�
i�1

(�1)i

i2s

�4
X�

i; j�1

(�1)i�j

i2 � j2ð Þs�
X�
i�1

(�1)i

i2s

" #

�4
X�

i; j�1

(�1)i�j

i2 � j2ð Þs�h(2s)

" #
(9)

where h(n) is the DIRICHLET ETA FUNCTION. Using the
analytic form of the LATTICE SUM

b2(s)��4b(s)h(s)�4 S1;2(1; 0; 1; s)�h(2s)
� �

; (10)

where b(s) is the DIRICHLET BETA FUNCTION gives the
sum

S1;2(1; 0; 1; s)�
X�

i; j�1

�1ð Þi�j

i2 � j2ð Þ2�h(2s)�h(s)b(s): (11)

Borwein and Borwein (1986, p. 291) show that for
R[s] > 1;

X�
i; j���

1

i2 � j2ð Þs�4b(s)&(s) (12)

X�
i; j���

(�1)j

i2 � j2ð Þs�2�sb2(2s); (13)

where z(s) is the RIEMANN ZETA FUNCTION, and for
appropriate s ,

X�
i; j��1

(�1)i�j

(i � j)s �h(s)�h(s�1) (14)

X�
i; j�1

(�1)i�j

(i � j)s �2�sz(s) (15)

X�
i; j�1

1

(i � j)s�z(s�1)�z(s) (16)

X�
i; j���

(�1)i�j�1

ij j� jj jð Þs �4h(s�1) (17)

X�
i; j���

1

(i � j)s�4z(s�1) (18)



X�
i ; j���

(�1)i �j

(2i � j � 1)s �
1

2
(1 �2 �s) h(s) �

1

2 
b(s) (19)

(Borwein and Borwein 1986, p. 305).

Another double series reduction is given by

X�
m;n���

F( 2m � 2n � 1j j)
cosh[(2n � 1)u] cosh(2nu)

�2
X�
n�0

(2n � 1)F(2n � 1)

sinh[(2n � 1)u]
; (20)

where F denotes any function (Glasser 1974).

See also EULER SUM, LATTICE SUM, MADELUNG

CONSTANTS, SERIES, WEIERSTRASS’S DOUBLE SERIES

THEOREM
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Double Sixes
Two sextuples of SKEW LINES on the general CUBIC

SURFACE such that each line of one is SKEW to one
LINE in the other set. In all, there are 30 points, with
two lines through each point, and 12 lines with five
points on each line. Two lines can be placed in the
plane of each of the faces of a cube. The double sixes
were discovered by Schläfli.

See also BOXCARS, CONFIGURATION, CUBIC SURFACE,
SKEW LINES, SOLOMON’S SEAL LINES
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Double Sum
DOUBLE SERIES

Double Torus

A SPHERE with two HANDLES, i.e., a genus-2 TORUS.

See also HANDLE, TORUS, TRIPLE TORUS

Double-Angle Formulas
Formulas expressing trigonometric functions of an
angle 2x in terms of functions of an angle x ,

sin(2x) �2 sinx cosx (1)

cos(2x) �cos2x �sin2x (2)

�2 cos2x �1 (3)

�1 �2 sin2x (4)

tan(2x) �
2 tanx

1 � tan2x 
: (5)

The corresponding hyperbolic function double-angle
formulas are

sinh(2x) �2 sinhx coshx (6)

cosh(2x) �2 cosh2x �1 (7)

tanh(2x)�
2 tanhx

1 � tanh2x
: (8)

See also HALF-ANGLE FORMULAS, HYPERBOLIC FUNC-

TIONS, MULTIPLE-ANGLE FORMULAS, PROSTHAPHAER-

ESIS  FORMULAS, TRIGONOMETRIC ADDITION

FORMULAS, TRIGONOMETRIC FUNCTIONS, TRIGONOME-

TRY



Double-Free Set
A SET of POSITIVE INTEGERS is double-free if, for any
integer x , the SET fx; 2xg¢S (or equivalently, x 	 S
IMPLIES 2x QS): For example, of the subsets of f1; 2; 3g;
the sets Ø ; f1g; f2 g; f2; 3g; f1 ; 3g; and f3 g are double-
free, while f1 ; 2g and f1; 2; 3g are not.

The number a(n) of double-free subsets of f1 ; 2; . . . ;ng
can be computed using a(1) �2 and the RECURRENCE

RELATION

a(n) �a(n �1)
Fb(n) �3

Fb(n) �2

; (1)

where Fn is a FIBONACCI NUMBER, 1, 1, 2, 3, 5, 8, ...
(Sloane’s A000045), and b(n) is the BINARY CARRY

SEQUENCE giving the number of trailing 0s is the
BINARY representation of n , 0, 1, 0, 2, 0, 1, 3, 0, 1, ...
(Sloane’s A007814) (C. Bower). For n �1, 2, ..., a(n)
are given by are 2, 3, 6, 10, 20, 30, 60, 96, 192, ...
(Sloane’s A050291).

Define

r(n) �max f sj j : S ƒf1; 2 ; . . . ;n g is double-free g; (2)

where Sj j is the CARDINAL NUMBER of (number of
members in) S . Then for n �1, 2, ..., r nð Þ is given by
1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, ... (Sloane’s
A050292). An explicit formula for r nð Þ is given by

r(n) �
Xn

i�1

p(i); (3)

where

p(i) �
1 if b(i) is even
0 if b(i) is odd

*
(4)

where b(n) is defined above and the first few values of
p(i) are 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ... (Sloane’s
A035263; C. Bower). A simple RECURRENCE RELATION

for r nð Þ is given by

f (n) �
1

2 
n

& ’
�f

1

4 
n

$ % !
(5)

with f (0) �0 (Wang 1989), where xb c is the FLOOR

FUNCTION and xd e is the CEILING FUNCTION. An
asymptotic formula for r nð Þ is given by

r(n) �
2

3
n �O log4nð Þ  (6)

(Wang 1989).

See also A -SEQUENCE, KLARNER-RADO SEQUENCE,
SUM-FREE SET, TRIPLE-FREE SET
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Doublestruck
A letter of the alphabet drawn with doubled vertical
strokes is called doublestruck, or sometimes black-
board bold (because doublestruck characters provide
a means of indicating bold font weight when writing
on a blackboard). For example, A; B; C ; D ; E ; ....
Important SETS in mathematics are commonly de-
noted using doublestruck characters, e.g., C for the
set of complex numbers and R for the real numbers.

Doublestruck characters can be encoded using the
AMSFonts extended fonts for LATEX using the syntax
\mathbb{C }, and typed in Mathematica using the
syntax \[DoubleStruckC] or \[DoundStruckCa-
pitalC], where C denotes any letter.

Doublet Function

y � d?(x �a) ;

where d(x) is the DELTA FUNCTION.

See also DELTA FUNCTION
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Doubly Even Number
An even number N for which N �0 (mod4) : The first
few POSITIVE doubly even numbers are 4, 8, 12, 16, ...
(Sloane’s A008586).

See also EVEN FUNCTION, ODD NUMBER, SINGLY EVEN

NUMBER
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Doubly Magic Square
BIMAGIC SQUARE

Doubly Periodic Function
A function f (z) is said to be doubly periodic if it has
two periods v1 and v2 whose ratio v2 =v1 is not real.

See also ELLIPTIC FUNCTION, PERIODIC FUNCTION
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Doubly Ruled Surface
A surface that contains two families of rulings. The
only three doubly ruled surfaces are the PLANE,
HYPERBOLIC PARABOLOID, and single-sheeted HYPER-

BOLOID.

See also HYPERBOLIC PARABOLOID, HYPERBOLOID,
PLANE, RULED SURFACE
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Doubly Stochastic Matrix
A doubly stochastic matrix is a matrix A �(aij) such
that aij ]0 and X

i

aij �
X

j

aij �1

is some field for all i and j . In other words, both the
matrix itself and its transpose are STOCHASTIC.

The following tables give the number of distinct
doubly stochastic matrices (and distinct nonsingular
doubly stochastic matrices) over Zm for small m .

m doubly stochastic n �n matrices over Zm/

2 1, 2, 16, 512, ...

3 1, 3, 81, ...

4 1, 4, 256, ...

m doubly stochastic nonsingular n �n matrices
over Zm/

2 1, 2, 6, 192, ...

3 1, 2, 54, ...

4 1, 4, 192, ...

Horn (1954) proved that if y �Ax; where x and y are
complex n -vectors, A is doubly stochastic, and c1 ; c2 ;
..., Cn are any complex numbers, then an

i�1ciyi lies in
the CONVEX HULL of all the points an

i�1cixai ; a 	 Rn ;

where Rn is the set of all permutations of f1; :::; ng:
Sherman (1955) also proved the converse.

Birkhoff (1946) proved that any doubly stochastic n �
n matrix is in the CONVEX HULL of m PERMUTATION

MATRICES for m 5(n �1)2 �1: There are several
proofs and extensions of this result (Dulmage and
Halperin 1955, Mendelsohn and Dulmage 1958,
Mirsky 1958, Marcus 1960).

See also STOCHASTIC MATRIX
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Dougall’s Formula
For R[a�b�c�d]B�1 and a and b not integers,

X�
n���

G(a � n)G(b � n)

G(c � n)G(d � n)

�
p2csc(pa)csc(pb)G(c � d � a � b � 1)

G(c � a)G(d � a)G(c � b)G(d � b)
:

See also GAMMA FUNCTION
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Dougall’s Theorem

5F4

1

2
n�1;n;�x;�y;�z

1

2
n; x�n�1; y�n�1; z�n�1

2
6664

3
7775

�
G(x � n � 1)G(y � n � 1)G(z � n � 1)G(x � y � z � n � 1)

G(n � 1)G(x � y � n � 1)G(y � z � n � 1)G(x � z � n � 1)
;



where 5F4(a ; b; c ;d ; e; f ; g ;h; i; z) is a GENERALIZED

HYPERGEOMETRIC FUNCTION and G(z) is the GAMMA

FUNCTION.

Bailey (1935, pp. 25 �/6) called the DOUGALL-RAMANU-

JAN IDENTITY "Dougall’s theorem."

See also DOUGALL-RAMANUJAN IDENTITY, GENERAL-

IZED HYPERGEOMETRIC FUNCTION
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Dougall-Ramanujan Identity
A hypergeometric identity discovered by Ramanujan
around 1910. From Hardy (1999, pp. 13 and 102 �/03),

X�
n�0

(�1)n(s �2n)
s(n)(x � y � z � u � 2s � 1)(n)

(x � y � z � u � s)(n)

Y
x;y ;x;u

� x(n)

(x � s � 1)(n)

�
s

G(s � 1)G(x � y � z � u � s � 1)

Y
x;y ;z;u

� G(x � s � 1)G(y � z � u � s � 1)

G(z � u � s � 1)
: (1)

where

a(n) �a(a �1) 
 
 
 (a �n �1) (2)

is the RISING FACTORIAL (a.k.a. POCHHAMMER SYM-

BOL,

a(n) �a(a �1) 
 
 
 (a �n �1) (3)

is the FALLING FACTORIAL (Hardy 1999, p. 101), G(z) is
a GAMMA FUNCTION, and one of

x; y; z; u;�x �y �z �u �2s �1 (4)

is a POSITIVE INTEGER.

Equation (1) can also be rewritten as

7F6

s ; 1 �
1

2 
s ;�x;�y;�z ;�u; x �y �z �u �2s �1

1

2
s ; x �s �1; y �s �1; z �s �1;u �s �1;

�x �y �z �u �s

; 1

2
666664

3
777775

�
1

G(s � 1)G(x � y � z � u � s � 1)

Y
x;y ;z ;u

� G(x � s � 1)G(y � z � u � s � 1)

G(z � u � s � 1)
: (5)

(Hardy 1999, p. 102). In a more symmetric form, if
n �2a1 �1 �a2 �a3 �a4 �a5 ; a6 �1 �a1 =2; a7 ��n;
and bi �1 �a1 �ai�1 for i �1, 2, ..., 6, then

7F6
a1 ;a2 ;a3 ;a4 ;a5 ;a6 ; a7

b1; b2; b3; b4; b5; b6
; 1

� �

�
(a1 � 1)n(a1 � a2 � a3 � 1)n

(a1 � a2 � 1)n(a1 � a3 � 1)n

� (a1 � a2 � a4 � 1)n(a1 � a3 � a4 � 1)n

(a1 � a4 � 1)n(a1 � a2 � a3 � a4 � 1)n

; (6)

where (a)n is the POCHHAMMER SYMBOL (Petkovsek et
al. 1996).

The identity is a special case of JACKSON’S IDENTITY,
and gives DIXON’S THEOREM, SAALSCHÜTZ’S THEOREM,
and MORLEY’S FORMULA as special cases.

See also BAILEY’S TRANSFORMATION, DIXON’S THEO-

REM, DOUGALL’S THEOREM, GENERALIZED HYPERGEO-

METRIC FUNCTION, HYPERGEOMETRIC FUNCTION,
JACKSON’S IDENTITY, MORLEY’S FORMULA, ROGERS-

RAMANUJAN IDENTITIES, SAALSCHÜ TZ’S THEOREM
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Doughnut
TORUS



Douglas-Neumann Theorem
If the lines joining corresponding points of two
DIRECTLY SIMILAR figures are divided proportionally,
then the LOCUS of the points of the division will be a
figure DIRECTLY SIMILAR to the given figures.

See also DIRECTLY SIMILAR
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Dovetailing Problem
CUBE DOVETAILING PROBLEM

Dowker Notation
A simple way to describe a knot projection. The
advantage of this notation is that it enables a KNOT

DIAGRAM to be drawn quickly.

For an oriented ALTERNATING KNOT with n crossings,
begin at an arbitrary crossing and label it 1. Now
follow the undergoing strand to the next crossing, and
denote it 2. Continue around the knot following the
same strand until each crossing has been numbered
twice. Each crossing will have one even number and
one odd number, with the numbers running from 1 to
2n:/

Now write out the ODD NUMBERS 1, 3, ..., 2n �1 in a
row, and underneath write the even crossing number
corresponding to each number. The Dowker NOTA-

TION is this bottom row of numbers. When the
sequence of even numbers can be broken into two
permutations of consecutive sequences (such as
f4; 6; 2gf10 ; 12 ; 8g) ; the knot is composite and is not
uniquely determined by the Dowker notation. Other-
wise, the knot is prime and the NOTATION uniquely
defines a single knot (for amphichiral knots) or
corresponds to a single knot or its MIRROR IMAGE

(for chiral knots).

For general nonalternating knots, the procedure is
modified slightly by making the sign of the even
numbers POSITIVE if the crossing is on the top strand,
and NEGATIVE if it is on the bottom strand.

These data are available for knots, but not for links,
from Berkeley’s gopher site.

References
Adams, C. C. The Knot Book: An Elementary Introduction to

the Mathematical Theory of Knots. New York: W. H.
Freeman, pp. 35 �/0, 1994.

Dowker, C. H. and Thistlethwaite, M. B. "Classification of
Knot Projections." Topol. Appl. 16, 19�/1, 1983.

Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First
1,701,936 Knots." Math. Intell. 20, 33�/8, Fall 1998.

Thistlethwaite, M. B. "Knot Tabulations and Related To-
pics." In Aspects of Topology in Memory of Hugh Dowker

1912 �/982 (Ed. I. M. James and E. H. Kronheimer). Cam-
bridge, England: Cambridge University Press, pp. 2 �/6,
1985.

Down Arrow Notation
An inverse of the up ARROW NOTATION defined by

e ¡n �ln n

e ¡¡ n �ln 	n

e ¡¡¡ n �ln 		n;

where ln 	n is the number of times the NATURAL

LOGARITHM must be iterated to obtain a value 5e :/

See also ARROW NOTATION
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Dozen
12.

See also BAKER’S DOZEN, DUODECIMAL, GROSS

Dragon Curve
Nonintersecting curves which can be iterated to yield
more and more sinuosity. They can be constructed by
taking a path around a set of dots, representing a left
turn by 1 and a right turn by 0. The first-order curve
is then denoted 1. For higher order curves, add a 1 to
the end, then copy the string of digits preceding it to
the end but switching its center digit. For example,
the second-order curve is generated as follows: (1)1 0
(1)1(0) 0 110, and the third as: (110)1 0 (110)1(100)
0 1101100. Continuing gives 110110011100100...
(Sloane’s A014577). The OCTAL representation se-
quence is 1, 6, 154, 66344, ...(Sloane’s A003460).
The dragon curves of orders 1 to 9 are illustrated
below.

This procedure is equivalent to drawing a RIGHT

ANGLE and subsequently replacing each RIGHT ANGLE

with another smaller RIGHT ANGLE (Gardner 1978). In



fact, the dragon curve can be written as a LINDEN-

MAYER SYSTEM with initial string "FX", STRING

REWRITING rules "X" 0 "X�YF�", "Y" 0
" �FX-Y", and angle 908.

See also LINDENMAYER SYSTEM, PEANO CURVE
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Dragon Fractal
DOUADY’S RABBIT FRACTAL

Draughts
CHECKERS

Draw
The ending of a GAME in which neither of two players
wins, sometimes also called a "tie." A GAME in which
no draw is possible is called a CATEGORICAL GAME.

See also CATEGORICAL GAME, GAME, UNFAIR GAME

Drinfel’d-Sokolov-Wilson Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut �3wwx

wt ¼ 2wxxx þ 2uwx þ uxw:
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Drinfeld Module

See also MODULE
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Drinfeld’s Symmetric Space
A set of points which do not lie on any of a certain
class of HYPERPLANES.
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Droz-Farny Circles

The following amazing property of a triangle, first
given by Steiner and then proved by Droz-Farny
(1901), is related to the so-called Droz-Farny circles.
Draw a CIRCLE with center at the ORTHOCENTER H
which cuts the lines M2M3; M3M1; and M1M2 (where
Mi are the MIDPOINTS of their respective sides) at P1;
Q1; P2; Q2; and P3; Q3 respectively, then the line
segments AiPi�AiQi are all equal:

A1P1�A2P2�A3P3�A1Q1�A2Q2�A3Q3:

Conversely, if equal CIRCLES are drawn about the
VERTICES of a TRIANGLE (dashed circles in the above
figure), they cut the lines joining the MIDPOINTS of the
corresponding sides in six points P1; Q1; P2; Q2; P3;
and Q3; which lie on a CIRCLE whose center is the
ORTHOCENTER. If r is the RADIUS of the equal CIRCLES

centered on the vertices A1; A2; and A3; and R0 is the



RADIUS of the CIRCLE about H , then

R2
0�4R2�r2�

1

2
a2

1�a2
2�a2

3

� �
(Johnson 1929, p. 257).

In the special case that r is taken as the CIRCUMRA-

DIUS of the original triangle, then a circle D1; known
as the Droz-Farny circle (in particular, the "vertex-
circumcenter Droz-Farny circle"), is obtained, having
center H and RADIUS

R2
0�5R2�

1

2
a2

1�a2
2�a2

3

� �
(Johnson 1929, pp. 257�/78).

The "altitude feet-circumcenter" Droz-Farny circle D?1
is obtained by drawing circles with centers at the feet
of the altitudes and passing through the CIRCUMCEN-

TER. These circles cut the corresponding sides in six
concyclic points, having the same center H and the
same radius R0 as the vertex-circumcenter Droz-
Farny circle. This is the first Droz-Farny circle.

The first Droz-Farny circle D1 therefore passes
through 12 notable points, two on each of the sides
and two on each of the lines joining midpoints of the
sides, as illustrated in the rather busy figure above.

The circles about the midpoints of the sides and
passing though H cut the sides in six points lying on
another circle D2: This is the second Droz-Farny
circle, which has RADIUS equal to that of D1; but
whose center is the CIRCUMCENTER O instead of the
ORTHOCENTER H .

There is a beautiful generalization of the Droz-Farny
circles motivated by the observation that the ORTHO-

CENTER and CIRCUMCENTER are ISOGONAL CONJU-



GATES. Let P and Q be any pair of ISOGONAL

CONJUGATES of a triangle DABC; and let D , E , and
F be the feet of the perpendiculars to the sides from
one of the points (say, P ), and let circles with centers
D , E , and F be drawn to pass through Q . Then the
three pairs of points on the sides of DABC which are
determined by these circles always lie on a circle with
center P , and the two circles constructed in this way
are congruent (Honsberger 1995).

See also CIRCUMCENTER, ORTHOCENTER
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Droz-Farny Theorem

If two perpendicular lines are drawn through the
ORTHOCENTER H of any triangle, these lines intercept
each side (or its extension) in two points (labeled P12 ;
P?12 ; P13 ; P ?13 ; P23 ; P?23) : Then the MIDPOINTS M12 ; M12 ;
and M23 of these three segments are COLLINEAR.

See also COLLINEAR, MIDPOINT
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Drum
ISOSPECTRAL MANIFOLDS

ds
JACOBI ELLIPTIC FUNCTIONS

# 1999 �/001 Wolfram Research, Inc.

D-Statistic
KOLMOGOROV-SMIRNOV TEST

D-Triangle
Let the CIRCLES /c2/ and /c ?3/ used in the construction of
the BROCARD POINTS which are tangent to /A2A3/ at /A2/

and /A3/, respectively, meet again at D1 : The points /

D1D2D3/ then define the D-triangle. The VERTICES of
the D-triangle lie on the respective APOLLONIUS

CIRCLES.

See also APOLLONIUS CIRCLES, BROCARD POINTS
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Du Bois Reymond Constants

The constants Cn defined by

Cn�g
�

0

d

dt

sint

t

 !n�����
�����dt�1: (1)

These constants can also be written as

Cn�2
X�
k�1

1�x2
k

� ��n=2
; (2)

where xk is the kth root of

t�tant: (3)

/C1 diverges, and the first few constant are numeri-
cally given by

C2:0:1945280494 (4)

C3:0:028254 (5)

C4:0:005240704678: (6)

Rather surprisingly, the even-ordered du Bois Rey-



mond constants (and, in particular, C2; Le Lionnais
1983) can be computed analytically as polynomials in
e2 ;

C2 �
1

2
e2 �7
� �

(7)

C4 �
1

8
e4 �4e2 �25
� �

(8)

C6 �
1

32
e6 �6e4 �3e2 �98
� �

: (9)

These have the explicit formula

Cn ��3 �2 Res
x�i

x2

1 � x2ð Þn(tanx � x)

 !
; (10)

where n is even and Res denotes a RESIDUE (V. Adam-
chik).

See also INFINITE SERIES
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Dual Basis
Given a CONTRAVARIANT BASIS f �e1 ; . . . ; �en g; its dual
COVARIANT basis is given by

�e a � �e b �g( �ea ; �e b) � da
b ;

where g is the METRIC and d ab is the mixed KRO-

NECKER DELTA. In EUCLIDEAN SPACE with an ORTHO-

NORMAL BASIS,

�ej � �ej ;

so the BASIS and its dual are the same.

See also DUAL SPACE

Dual Bivector
A dual BIVECTOR is defined by

X̃ab �
1

2 
eabcdXcd ;

and a self-dual BIVECTOR by

X 	ab �Xab �i X̃ab :

See also BIVECTOR

Dual Bundle
Given a VECTOR BUNDLE p : E 0 M ; its dual bundle is
a VECTOR BUNDLE p	 : E	 0 M : The FIBER BUNDLE of

E 	 over a point p 	 M is the DUAL VECTOR SPACE to the
fiber of E .

See also DUAL SPACE, VECTOR BUNDLE

Dual Graph

Given a PLANAR GRAPH G , a GEOMETRIC DUAL GRAPH

and COMBINATORIAL DUAL GRAPH can be defined.
Whitney showed that these are equivalent (Harary
1994), so that one make speak of "the" dual graph G	:
The illustration above shows the process of construct-
ing a GEOMETRIC DUAL GRAPH.
The dual graph G	 of a POLYHEDRAL GRAPH G has
VERTICES each of which corresponds to a face of G and
each of whose faces corresponds to a VERTEX of G .
Two nodes in G 	 are connected by an EDGE if the
corresponding faces in G have a boundary EDGE in
common.

The dual graph of a WHEEL GRAPH is itself a wheel
(Skiena 1990, p. 147).

See also COMBINATORIAL DUAL GRAPH, GEOMETRIC

DUAL GRAPH, PLANAR GRAPH, SELF-DUAL GRAPH
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Dual Map
PULLBACK MAP

Dual Number
A number x�ey; where x; y 	R and o is a UNIT with
the property that e2�0:/
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Dual Polyhedron
By the DUALITY PRINCIPLE, for every POLYHEDRON,
there exists another POLYHEDRON in which faces and
VERTICES occupy complementary locations. This POLY-



HEDRON is known as the dual, or RECIPROCAL. The
process of taking the dual is also called RECIPROCA-

TION, or polar reciprocation. Brückner (1900) was
among the first to give a precise definition of duality
(Wenninger 1983, p. 1).

The dual of a PLATONIC SOLID or ARCHIMEDEAN SOLID

can be computed by connecting the midpoints of the
sides surrounding each VERTEX (the VERTEX FIGURE;
left figure), and constructing the corresponding TAN-

GENTIAL POLYGON (tangent to the CIRCUMCIRCLE of
the VERTEX FIGURE; right figure.) This is sometimes
called the Dorman-Luke construction (Wenninger
1983, p. 30).

The dual polyhedron of a PLATONIC SOLID or ARCHI-

MEDEAN SOLID can be also drawn by constructing
EDGES tangent to the MIDSPHERE (sometimes also
known as the reciprocating sphere or intersphere)
which are PERPENDICULAR to the original EDGES.
Furthermore, let r be the INRADIUS of the dual
polyhedron (corresponding to the INSPHERE, which
touches the faces of the dual solid), r be the
MIDRADIUS of both the polyhedron and its dual
(corresponding to the MIDSPHERE, which touches the
edges of both the polyhedron and its duals), and R the
CIRCUMRADIUS (corresponding to the CIRCUMSPHERE

of the solid which touches the vertices of the solid).
Since the CIRCUMSPHERE and INSPHERE are dual to
each other, r , R , and r obey the polar relationship

Rr�r2

(Cundy and Rollett 1989, Table II following p. 144).

The process of forming duals is illustrated above for
the PLATONIC SOLIDS. The top row shows the original
solid, the middle row shows the vertex figures of the
original solid as lines superposed on the tangential

polygons forming the dual faces. The POLYHEDRON

COMPOUNDS consisting of a POLYHEDRON and its dual
are generally very attractive, and are illustrated in
the bottom row.

For an ARCHIMEDEAN SOLID with v vertices, f faces,
and e edges, the dual polyhedron has f vertices, v
faces, and e edges. The dual of an isogonal solid (i.e.,
all vertices are alike) is isohedral (i.e., all faces are
alike) (Wenninger 1983, p. 5).

The dual of any non-convex UNIFORM POLYHEDRON is
a stellated form of the CONVEX HULL of the given
polyhedron (Wenninger 1983, pp. 3�/ and 40).

The following table gives a list of the duals of the
PLATONIC SOLIDS and KEPLER-POINSOT SOLIDS, to-
gether with the names of the POLYHEDRON-dual
COMPOUNDS. (Note that the duals of the PLATONIC

SOLIDS are themselves PLATONIC SOLIDS, so no new
solids are formed by taking the duals of the Platonic
solids.)

Duals can also be taken of other polyhedrons, includ-
ing the Archimedean solids and Uniform solids. The
names of some solids and their duals are given in the
table below.

POLYHEDRON Dual POLYHEDRON

COMPOUND

CSÁSZÁR POLYHE-

DRON

SZILASSI POLY-

HEDRON

CUBE OCTAHEDRON CUBE-OCTAHE-

DRON COMPOUND

CUBOCTAHEDRON RHOMBIC DODE-

CAHEDRON

DODECAHEDRON ICOSAHEDRON DODECAHEDRON-

ICOSAHEDRON

COMPOUND

GREAT DODECA-

HEDRON

SMALL STEL-

LATED DODECA-

HEDRON

GREAT DODECA-

HEDRON-SMALL

STELLATED DODE-

CAHEDRON COM-

POUND

GREAT ICOSAHE-

DRON

GREAT STEL-

LATED DODECA-

HEDRON

GREAT ICOSAHE-

DRON-GREAT

STELLATED DODE-

CAHEDRON COM-

POUND

GREAT STEL-

LATED DODECA-

HEDRON

GREAT ICOSAHE-

DRON

GREAT ICOSAHE-

DRON-GREAT

STELLATED DODE-

CAHEDRON COM-

POUND

ICOSAHEDRON DODECAHEDRON DODECAHEDRON-

ICOSAHEDRON

COMPOUND

OCTAHEDRON CUBE CUBE-OCTAHE-

DRON COMPOUND



SMALL STEL-

LATED DODECA-

HEDRON

GREAT DODECA-

HEDRON

GREAT DODECA-

HEDRON-SMALL

STELLATED DODE-

CAHEDRON COM-

POUND

SZILASSI POLYHE-

DRON

CSÁ SZÁ R POLY-

HEDRON

TETRAHEDRON TETRAHEDRON STELLA OCTANGU-

LA

When a POLYCHORON with SCHLÄ FLI SYMBOL fp ; q; r g
and its dual are in reciprocal positions, the vertices of
fp ; q; r g/’s bounding polyhedra can be found by select-
ing those vertices of fp ; q; r g closest to each vertex of
fr ; q; pg:/

See also ARCHIMEDEAN SOLID, DUALITY PRINCIPLE,
PLATONIC SOLID, POLYHEDRON, POLYHEDRON COM-

POUND, RECIPROCATING SPHERE, RECIPROCATION,
SELF-DUAL POLYHEDRON, UNIFORM POLYHEDRON,
ZONOHEDRON
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Dual Scalar
Given a third RANK TENSOR,

Vijk �det[A B C] ;

where det is the DETERMINANT, the dual scalar is
defined as

V �
1

3! 
eijkVijk ;

where eijk is the LEVI-CIVITA TENSOR.

See also DUAL TENSOR, LEVI-CIVITA TENSOR

Dual Solid
DUAL POLYHEDRON

Dual Space
The dual space to a real VECTOR SPACE V is the
VECTOR SPACE of LINEAR FUNCTIONS f : V 0 R ; and is

denoted V 	: In the dual to a COMPLEX VECTOR SPACE,
the linear functions take complex values.

In either case, the dual space has the same DIMEN-

SION as V . Given a BASIS v1 ; . . . ; vn for V there exists a
DUAL BASIS for V 	; written v	

1 ; . . . ; v	
n ; where v	

i vj

� �
� dij

and dij is the KRONECKER DELTA.

Another way to realize an isomorphism with V is
through an INNER PRODUCT. A REAL VECTOR SPACE

can have a symmetric INNER PRODUCT ;h i  in which
case a vector v corresponds to a dual element by
fv(w) � w; vh i: Then a basis corresponds to its dual
basis only if it is an ORTHONORMAL BASIS, in which
case v	

i � �;vi

9 :
: A COMPLEX VECTOR SPACE can have a

HERMITIAN INNER PRODUCT, in which case fv(w) �
w; vh i is a conjugate-linear isomorphism of V with V 	;

i.e., fav � ̄afv :/

Dual spaces can describe many objects in linear
algebra. When V and W are finite dimensional vector
spaces, an element of the tensor product V 	�W ; say
aaijv

	
j �wi ; corresponds to the linear transformation

T(v) �aaijv
	
j (w)wi : That is, V 	�W #Hom(V ;W) : For

example, the identity transformation is v1 �v 	1 �. . .�
vn �v	

n : A BILINEAR FORM on V , such as an inner
product, is an element of V 	�V 	:/

When V is infinite dimensional, care has to be taken
of the topology. The dual space of V is the VECTOR

SPACE of CONTINUOUS LINEAR FUNCTIONALS on V .

See also BASIS (VECTOR SPACE), BILINEAR FORM,
DISTRIBUTION (GENERALIZED FUNCTION), DUAL VEC-

TOR SPACE, LINEAR FUNCTIONAL, MATRIX, SELF-DUAL,
VECTOR SPACE

Dual Tensor
Given an antisymmetric second RANK TENSOR Cij ; a
dual pseudotensor Ci is defined by

Ci �
1

2 
eijkCjk ; (1)

where

Ci �

C23

C31

C12

2
4

3
5 (2)

Cjk �

0 C12 �C31

�C12 0 C23

C31 �C23 0

2
4

3
5: (3)

See also DUAL SCALAR
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Dual Tessellation
The dual of a regular TESSELLATION is formed by
taking the center of each polygon as a vertex and
joining the centers of adjacent polygons.

The triangular and hexagonal tessellations are duals
of each other, while the square tessellation it its own
dual.

Williams (1979, pp. 37 �/1) illustrates the dual tessel-
lations of the semiregular tessellations.

See also CAIRO TESSELLATION, TESSELLATION
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Dual Vector Space
Given a VECTOR SPACE X , the dual vector space X + is
the set of all bounded LINEAR FUNCTIONALS on X .

See also DUAL SPACE, LINEAR FUNCTIONAL, VECTOR

SPACE

Dual Voting
A term in SOCIAL CHOICE THEORY meaning each
alternative receives equal weight for a single vote.

See also ANONYMOUS, MONOTONIC VOTING

Duality Principle
All the propositions in PROJECTIVE GEOMETRY occur in
dual pairs which have the property that, starting
from either proposition of a pair, the other can be
immediately inferred by interchanging the parts
played by the words "point" and "line." The principle
was enunciated by Gergonne (1826; Cremona 1960,
p. x). A similar duality exists for RECIPROCATION as
first enunciated by Poncelet (1818; Casey 1893;
Lachlan 1893; Cremona 1960, p. x).

Example of dual geometric objects include BRIAN-

CHON’S THEOREM and PASCAL’S THEOREM, the 15
PLÜ CKER LINES and 15 SALMON POINTS, the 20
CAYLEY LINES and 20 STEINER POINTS, the 60 PASCAL

LINES and 60 KIRKMAN POINTS, DUAL POLYHEDRA, and
DUAL TESSELLATIONS.

Propositions which are equivalent to their duals are
said to be SELF-DUAL.

See also BRIANCHON’S THEOREM, CONSERVATION OF

NUMBER PRINCIPLE, DESARGUES’ THEOREM, DUAL

POLYHEDRON, PAPPUS’S HEXAGON THEOREM, PAS-

CAL’S THEOREM, PERMANENCE OF MATHEMATICAL

RELATIONS PRINCIPLE, PROJECTIVE GEOMETRY, RECI-

PROCAL, RECIPROCATION, SELF-DUAL
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Duality Theorem
Dual pairs of LINEAR PROGRAMS are in "strong
duality" if both are possible. The theorem was first
conceived by John von Neumann. The first written
proof was an Air Force report by George Dantzig, but
credit is usually given to Tucker, Kuhn, and Gale.

See also LINEAR PROGRAMMING

Duffing Differential Equation
The most general forced form of the Duffing equation
is

ẍ�dẋ� bx39v2
0x

� �
�A sin(vt�f): (1)

If there is no forcing, the right side vanishes, leaving

ẍ�dẋ� bx39v2
0x

� �
�0: (2)

If d�0 and we take the plus sign,

ẍ�v2
0x�bx3�0 (3)

(Bender and Orszag 1978, p. 547; Zwillinger 1997,
p. 122).

This equation can display chaotic behavior. For b > 0;
the equation represents a "hard spring," and for bB0;
it represents a "soft spring." If bB0; the phase
portrait curves are closed. Returning to (1), take b�
1; v0�1; A � 0, and use the minus sign. Then the
equation is

ẋ�dẋ� x3�x
� �

�0 (4)

(Ott 1993, p. 3). This can be written as a system of
first-order ordinary differential equations by writing

ẋ�y; (5)

ẏ�x�x3�dy: (6)

The fixed points of these differential equations

ẋ�y�0; (7)

so y � 0, and

ẏ�x�x3�dy�x 1�x2
� �

�0 (8)

giving x�0;91: Differentiating,

ẍ� ẏ�x�x3�dy (9)

ÿ� 1�3x2
� �

ẋ�dẏ (10)

ẍ
ÿ

� �
�

0 1
1�3x2 �d

� �
ẋ
ẏ

� �
: (11)

Examine the stability of the point (0,0):

0�l 1
1 �d�l

����
�����l(l�d)�1�l2�ld�1�0 (12)

l(0;0)
9 �

1

2
�d9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�4

p� �
: (13)

But d2]0; so l(0;0)
9 is real. Since

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�4

p
> dj j; there

will always be one POSITIVE ROOT, so this fixed point
is unstable. Now look at ( 9 1, 0).

0�l 1
�2 �d�l

����
�����l(l�d)�2�l2�ld�2�0 (14)

l
ð91;0Þ
9 �

1

2
�d9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�8

p� �
: (15)

For d > 0; R l(91;0)
9

� �
B0; so the point is asymptotically

stable. If d�0; l(91;0)
� �9i

ffiffiffi
2

p
; so the point is linearly

stable. If d 	 (�2
ffiffiffi
2

p
; 0); the radical gives an IMAGINARY

PART and the REAL PART is > 0; so the point is
unstable. If d��2

ffiffiffi
2

p
; l(91;0)

9 �
ffiffiffi
2

p
; which has a

POSITIVE REAL ROOT, so the point is unstable. If dB

�2
ffiffiffi
2

p
; then dj jB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�8

p
; so both ROOTS are POSITIVE

and the point is unstable. The following table sum-
marizes these results.

/d > 0/ asymptotically stable

/d�0/ linearly stable (superstable)

/dB0/ unstable

Now specialize to the case d�0; which can be
integrated by quadratures. In this case, the equations
become

ẋ�y (16)

ẏ�x�x3: (17)

Differentiating (16) and plugging in (17) gives

ẍ�ẏ�x�x3: (18)

Multiplying both sides by ẋ gives

ẍẋ�ẋx�ẋx3�0 (19)

d

dt

1

2
ẋ2�

1

2
x2�

1

4
x4

 !
�0; (20)

so we have an invariant of motion h ,

h�
1

2
ẋ2�

1

2
x�

1

4
x4: (21)



Solving for ẋ2 gives

ẋ2 �
dx

dt

 !2

�2h �x2 �
1

2
x4 ; (22)

dx

dt 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h �x2 �

1

2
x2

s
; (23)

so

t �gdt �g
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h � x2 �
1

2 
x2

s : (24)

Note that the invariant of motion h satisfies

ẋ �
@h

@ ̇x 
�

@h

@y 
(25)

@h

@x 
��x �x3 ��ẏ; (26)

so the equations of the Duffing oscillator are given by
the HAMILTONIAN SYSTEM

ẋ �
@h

@y

ẏ ��
@h

@x
:

8>>><
>>>:

(27)
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Duhamel’s Convolution Principle
Can be used to invert a LAPLACE TRANSFORM.

Dumbbell Curve

y2 �a2 x4 �x6
� �

:

See also BUTTERFLY CURVE, EIGHT CURVE, PIRIFORM
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Dummy Variable
A variable that appears in a calculation only as a
placeholder and which disappears completely in the
final result. For example, in the integral

g
x

0

f (x?)dx?;

/x? is a dummy variable since it is "integrated out" in
the final answer. Any variable name other than x
could therefore be used in the above expression, e.g.
f

x

0 
f (l)dl ; f

x

0 
f (q)dq; etc.

Dummy variables are also called BOUND VARIABLES or
dead variables. Comtet (1974) adopts a notation in
which dummy variable appearing as indices in sums
are denoted by placing a dot underneath them (i.e.,
indicating them with an UNDERDOT), e.g.,

X
˙

c:1 �
˙

c:2 �n

c1c2 �
1

6 
n n2 �1
� �

(Comtet 1974, p. 33).

See also BOUND VARIABLE, UNDERDOT
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Duodecillion
In the American system, 1039.

See also LARGE NUMBER

Duodecimal
The base-12 number system composed of the digits 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B. Such a system has been
advocated by no less than Herbert Spencer, John



Quincy Adams, and George Bernard Shaw (Gardner
1984). Some aspects of a base-12 system are pre-
served in the terms DOZEN and GROSS. The following
table gives the duodecimal equivalents of the first few
decimal numbers.

1 1 11 B 21 19

2 2 12 10 22 1A

3 3 13 11 23 1B

4 4 14 12 24 20

5 5 15 13 25 21

6 6 16 14 26 22

7 7 17 15 27 23

8 8 18 16 28 24

9 9 19 17 29 25

10 A 20 18 30 26

See also BASE (NUMBER), DOZEN, GROSS
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Dupin’s Cyclide
CYCLIDE

Dupin’s Indicatrix
A pair of conics obtained by expanding an equation in
MONGE’S FORM z �F x; yð Þ in a MACLAURIN SERIES

z �z 0; 0ð Þ�z1x �z2y �
1

2
z11x2 �2z12xy �z22y2
� �

�:::

�
1

2
b11x2 �2b12xy �b22y2
� �

:

This gives the equation

b11x2 �2b12xy �b22y2 �91 :

Amazingly, the radius of the indicatrix in any direc-
tion is equal to the SQUARE ROOT of the RADIUS OF

CURVATURE in that direction (Coxeter 1969).
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Dupin’s Theorem
In three mutually orthogonal systems of surfaces, the
LINES OF CURVATURE on any surface in one of the
systems are its intersections with the surfaces of the
other two systems.

Duplication Formula
ABEL’S DUPLICATION FORMULA, DOUBLE-ANGLE FOR-

MULAS, LEGENDRE DUPLICATION FORMULA

Duplication of the Cube
CUBE DUPLICATION

Durand’s Rule
Let the values of a function f xð Þ be tabulated at points
xi equally spaced by h �xi �1 �xi ; so f1 �f x1ð Þ; f2�
f x2ð Þ; ..., fn�f xnð Þ: Then Durand’s rule approximat-
ing the integral of f xð Þ is given by the NEWTON-

COTES-like formula

g
x1

xi

f (x)dx�h
2

5
f1�

11

10
f2�f3�:::�fn�2�

11

10
fn�1�

2

5
fn

 !
:

See also BODE’S RULE, HARDY’S RULE, NEWTON-COTES

FORMULAS, SIMPSON’S 3/8 RULE, SIMPSON’S RULE,
TRAPEZOIDAL RULE, WEDDLE’S RULE
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Dürer’s Conchoid

These curves appear in Dürer’s work Instruction in
Measurement with Compasses and Straight Edge
(1525) and arose in investigations of perspective.
Dürer constructed the curve by drawing lines QRP
and P?QR of length 16 units through Q(q; 0) and
R(r; 0); where q�r�13: The locus of P and P? is the



curve, although Dürer found only one of the two
branches of the curve.
The ENVELOPE of the lines QRP and P ?QR is a
PARABOLA, and the curve is therefore a GLISSETTE of
a point on a line segment sliding between a PARABOLA

and one of its TANGENTS.

Dürer called the curve "muschellini," which means
CONCHOID. However, it is not a true CONCHOID and so
is sometimes called DÜ RER’S SHELL CURVE. The
Cartesian equation is

2y2 x2 �y2
� �

�2by2(x �y) � b2 �3a2
� �

y2 �a2x2

�2a2b(x �y) �a2 a2 �b2
� �

�0:

The above curves are for (a; b) �(3; 1); (3; 3); (3; 5):
There are a number of interesting special cases. If
b �0, the curve becomes two coincident straight lines
x �0. For a �0, the curve becomes the line pair x �
b=2 ; x ��b=2; together with the CIRCLE x �y �b : If
a �b =2; the curve has a CUSP at (�2a ;a):/
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Dü rer’s Magic Square

Dürer’s magic square is a MAGIC SQUARE with MAGIC

CONSTANT 34 used in an engraving entitled Melenco-
lia I by Albrecht Dürer (The British Museum, Burton
1989, Gellert et al. 1989). The engraving shows a
disorganized jumble of scientific equipment lying
unused while an intellectual sits absorbed in thought.
Dürer’s magic square is located in the upper right-
hand corner of the engraving. The numbers 15 and 14
appear in the middle of the bottom row, indicating the
date of the engraving, 1514.

Dürer’s magic square has the additional property
that the sums in any of the four quadrants, as well as

the sum of the middle four numbers, are all 34
(Hunter and Madachy 1975, p. 24).

See also DÜ RER’S SOLID, MAGIC SQUARE
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Dürer’s Shell Curve
DÜRER’S CONCHOID

Dürer’s Solid

The 8-faced solid depicted in an engraving entitled
Melencolia I by Albrecht Dürer (The British Museum,
Burton 1989, Gellert et al. 1989), the same engraving
in which DÜRER’S MAGIC SQUARE appears, which
depicts a disorganized jumble of scientific equipment
lying unused while an intellectual sits absorbed in
thought. Although Dürer does not specify how his
solid is constructed, Schreiber (1999) has noted that it
appears to consist of a distorted CUBE which is first
stretched to give rhombic faces with angles of 728, and
then truncated on top and bottom to yield bounding
triangular faces whose vertices lie on the CIRCUM-

SPHERE of the azimuthal cube vertices.

Starting with a unit cube oriented parallel to the axes
of the coordinate system, rotate it by EULER ANGLES

c�p=4 and u�sec�1
ffiffiffi
3

p
to align a threefold symme-

try axis along the z -axis. The stretch factor needed to
produce rhombic angles of 728 is then



s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3ffiffiffi

5
p :

s
ð1Þ

The azimuthal points are a distance /d ¼ s =2/ away
from the origin, and in order for the vertices of the
triangles obtained by truncation to lie at this same
distance, the TRUNCATION must be done a distance /

ð3 �
ffiffiffi
5

p
Þ=2/ along the edge from one of the azimuthal

points, which corresponds to a height

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23ffiffiffi

5
p �

1

4 
:

s
ð2Þ

The resulting solid has six 126 �/08 �/2 �/08 �/268 penta-
gonal faces and two equilateral triangular faces, and
the lengths of the sides are in the ratio

1 : 1
2 ð3 þ

ffiffiffi
5

p
Þ :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð5 þ

ffiffiffi
5

p
Þ:

q
ð3Þ

Examination of this solid shows it to be identical to
the dimensions of the solid reconstructed from its
perspective picture (Schröder 1980, p. 70; Schreiber
1999).

See also DÜ RER’S MAGIC SQUARE

References
Burton, D. M. Cover illustration of Elementary Number

Theory, 4th ed. Boston, MA: Allyn and Bacon, 1989.
Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and
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Durfee Polynomial
Let F nð Þ be a family of PARTITIONS of n and let F n;dð Þ
denote the set of PARTITIONS in F nð Þ with DURFEE

SQUARE of size d . The Durfee polynomial of F nð Þ is
then defined as the polynomial

PF ;n �
X

F n;dð Þj jyd ;

where 0 5d 5
ffiffiffi
n

p
:/

See also DURFEE SQUARE, PARTITION
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Durfee Square

The length of the largest-sized SQUARE contained
within the FERRERS DIAGRAM of a PARTITION. Its size
can be determined using DurfeeSquare[f ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘). The size of the Durfee
square remains unchanged between a partition and
its CONJUGATE PARTITION (Skiena 1990, p. 57). In the
plot above, the Durfee square has size 3.

See also CONJUGATE PARTITION, DURFEE POLYNO-

MIAL, FERRERS DIAGRAM, PARTITION
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Dust
CANTOR DUST, FATOU DUST

Dvoretzky’s Theorem
Each centered convex body of sufficiently high dimen-
sion has an "almost spherical" k -dimensional central
section.

Dyad
Dyads extend VECTORS to provide an alternative
description to second RANK TENSORS. A dyad D A ;Bð Þ
of a pair of VECTORS A and B is defined by D A;Bð Þ�
AB: The DOT PRODUCT is defined by

A :BC � A :Bð ÞC

AB:C�A B:Cð Þ;

and the COLON PRODUCT by

AB : CD�C:AB:D�A:Cð Þ B:Dð Þ

See also DYADIC, TENSOR
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Dyadic
A linear POLYNOMIAL of DYADS AB �CD �::: consist-
ing of nine components Aij which transform as

Aij

� �0
�
X
m;n

hmhn

h?ih?j

@xm

@x
0
i

@xn

@x
0
j

Amn (1)

�
X
m;n

h
0

ih
0

j

hmhn

@x
0

i

@xm

@xj

@xn

Amn (2)

�
X
m;n

h
0

ihn

hmh?j

@x
0

i

@xm

@xm

@x
0
j

Amn: (3)

Dyadics are often represented by Gothic capital
letters. The use of dyadics is nearly archaic since
TENSORS perform the same function but are notation-
ally simpler.

A unit dyadic is also called the IDEMFACTOR and is
defined such that

I:A �A : (4)

In CARTESIAN COORDINATES,

I �x̂x̂ �ŷŷ �ẑẑ ; (5)

and in SPHERICAL COORDINATES

I �9r : (6)

See also DYAD, TENSOR, TETRADIC
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Dyck Language
The simplest ALGEBRAIC LANGUAGE, denoted D: If X is
the alphabet fx; xg; then D is the set of words u of X
which satisfy

1. uj jx� uj jx̄ ; where uj jx is the numbers of letters x
in the word u , and
2. if u is factored as vw , where v and w are words
of X 	; then vj jx] vj jx̄ :/

See also ALGEBRAIC LANGUAGE

References
Bousquet-Mélou, M. "Convex Polyominoes and Heaps of

Segments." J. Phys. A: Math. Gen. 25, 1925 �/934, 1992.

Dyck Path
A LATTICE PATH from 0; 0ð Þ to (n, n ) which never
crosses (but may touch) the line y �x . There are

Cn �
1

n � 1

2n
n

	 


Dyck paths, where Cn is a CATALAN NUMBER.

See also LATTICE PATH
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Dyck’s Surface
The surface with three CROSS-CAPS (Francis and
Collins 1993, Francis and Weeks 1999).

See also CROSS-CAP
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Dyck’s Theorem
HANDLES and CROSS-HANDLES are equivalent in the presence

of a CROSS-CAP.

See also CROSS-CAP, CROSS-HANDLE, HANDLE, VON

DYCK’S THEOREM
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Dye’s Theorem
For any two ergodic measure-preserving transforma-
tions on nonatomic PROBABILITY SPACES, there is an
ISOMORPHISM between the two PROBABILITY SPACES

carrying orbits onto orbits.

See also ERGODIC THEORY

Dyet
INEXACT DIFFERENTIAL



Dymaxion
Buckminster Fuller’s term for the CUBOCTAHEDRON.

See also CUBOCTAHEDRON, MECON

Dynamical System
A means of describing how one state develops into
another state over the course of time. Technically, a
dynamical system is a smooth action of the reals or
the INTEGERS on another object (usually a MANIFOLD).
When the reals are acting, the system is called a
continuous dynamical system, and when the INTE-

GERS are acting, the system is called a discrete
dynamical system. If f is any CONTINUOUS FUNCTION,
then the evolution of a variable x can be given by the
formula

xn �1 �f xnð Þ: (1)

This equation can also be viewed as a difference
equation

xn�1 �xn �f xnð Þ�xn ; (2)

so defining

g xð Þ�f xð Þ�x (3)

gives

xn�1 �xn �g xnð Þ+1; (4)

which can be read "as n changes by 1 unit, x changes
by g xð Þ:/" This is the discrete analog of the DIFFER-

ENTIAL EQUATION

x
0

nð Þ�g x nð Þð Þ: (5)

See also ANOSOV DIFFEOMORPHISM, ANOSOV FLOW,
AXIOM A DIFFEOMORPHISM, AXIOM A FLOW, BIFURCA-

TION THEORY, CHAOS, ERGODIC THEORY, GEODESIC

FLOW
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Dynkin Diagram

Every SEMISIMPLE LIE ALGEBRA g is classified by its
Dynkin diagram. A Dynkin diagram is a GRAPH with
a few different kinds of possible edges. The CON-

NECTED COMPONENTS of the graph correspond to the
irreducible subalgebras of g: So a SIMPLE LIE ALGE-

BRA’s Dynkin diagram has only one component. The
rules are restrictive. In fact, there are only certain
possibilities for each component, corresponding to the
classification of SEMI-SIMPLE LIE ALGEBRAS.
The roots of a complex LIE ALGEBRA form a LATTICE of
rank k in a CARTAN SUBALGEBRA hƒg; where k is the
RANK of g: Hence, the ROOT LATTICE can be considered
a lattice in Rk: A vertex, or node, in the Dynkin
diagram is drawn for each SIMPLE ROOT, which
corresponds to a generator of the ROOT LATTICE.
Between two nodes a and b; an edge is drawn if the
simple roots are not perpendicular. One line is drawn
if the angle between them is 2p=3; two lines if the
angle is 3p=3; and three lines are drawn if the angle is
5p=6: There are no other possible angles between
SIMPLE ROOTS. Alternatively, the number of lines N
between the simple roots a and b is given by

N�AabAba�
2 a;bh i
aj j2

2 b; ah i
bj j2

�4 cos2u;

where Aab is an entry in the CARTAN MATRIX. In a
Dynkin diagram, an arrow is drawn from the longer
root to the shorter root (when the angle is 3p=3 or
5p=6):/

The picture above shows the two simple roots for G2;
at an angle of 5p=6; in the ROOT LATTICE. Therefore,
the Dynkin diagram for G2 has two nodes, with three
lines between them.

Here are some properties of admissible Dynkin
diagrams.



1. A diagram obtained by removing a node from an
admissible node is admissible.
2. An admissible diagram has no loops.
3. No node has more than three lines attached to it.
4. A sequence of nodes with only two single lines
can be collapsed to give an admissible diagram.
5. The only connected diagram with a triple line
has two nodes.

A COXETER-DYNKIN DIAGRAM, also called a Coxeter
graph, is the same as a Dynkin diagram, without the
arrows, although sometimes these are also called
Dynkin diagrams. The Coxeter diagram is sufficient
to characterize the algebra, as can be seen by
enumerating connected diagrams.

The simplest way to recover a SIMPLE LIE ALGEBRA

from its Dynkin diagram is to first reconstruct its
CARTAN MATRIX Aij

� �
: The ith node and jth node are

connected by AijAji lines. Since Aij �0 IFF Aji �0 ; and
otherwise Aji 	 �3 ;�2;�1f g; it is easy to find Aij and
Aji ; up to order, from their product. The arrow in the
diagram indicates which is larger. For example, if
node 1 and node 2 have two lines between them, from
node 1 to node 2, then A12 ��1 and A21 ��2:/

However, it is worth pointing out that each SIMPLE

LIE ALGEBRA can be constructed concretely. For
instance, the infinite families An ; Bn ; Cn ; and Dn

correspond to sln�1C the SPECIAL LINEAR LIE ALGE-

BRA, so2n�1C the odd ORTHOGONAL LIE ALGEBRA,
sp2nC the SYMPLECTIC LIE ALGEBRA, and so2nC the
even ORTHOGONAL LIE ALGEBRA. The other simple Lie
algebras are called EXCEPTIONAL LIE ALGEBRAS, and
have constructions related to the OCTONIONS.

See also CARTAN MATRIX, COXETER-DYNKIN DIAGRAM,
KILLING FORM, LIE ALGEBRA, LIE GROUP, ROOT

LATTICE, ROOT (LIE ALGEBRA), SIMPLE LIE ALGEBRA,
WEYL GROUP
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Dyson’s Conjecture
Based on a problem in particle physics, Dyson
(1962abc) conjectured that the constant term in the
LAURENT SERIES

Y
1 5i"j5n

1 �
xi

xj

 !ai

is the MULTINOMIAL COEFFICIENT

a1 � a2 � :::� anð Þ
a1!a2!:::an!

The theorem was proved by Wilson (1962) and
independently by Gunson (1962). A definitive proof
was subsequently published by Good (1970).

See also MACDONALD’S CONSTANT-TERM CONJECTURE,
ZEILBERGER-BRESSOUD THEOREM
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E

Ear
A PRINCIPAL VERTEX xi of a SIMPLE POLYGON P is
called an ear if the diagonal [xi�1 ; xi �1] that bridges xi

lies entirely in P . Two ears xi and xj are said to
overlap if

int[xi �1 ; xi ; xi �1] S int[xj�1 ; xj ; xj�1] "¥:

The TWO-EARS THEOREM states that, except for TRI-

ANGLES, every SIMPLE POLYGON has at least two
nonoverlapping ears.

See also ANTHROPOMORPHIC POLYGON, MOUTH, TWO-

EARS THEOREM
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Early Election Results
Let Jones and Smith be the only two contestants in an
election that will end in a deadlock when all votes for
Jones (J ) and Smith (S ) are counted. What is the
EXPECTATION VALUE of Xk � S �Jj j after k votes are
counted? The solution is

�Xk ��
2N

N � 1
k=2b c

� �
N � 1

k =2b c� 1

� �
2N
k

� �

�

k(2N � k)

2N

N
k =2

� �2
2N
k

� ��1

for k even
k(2N � k � 1)

2N

N
(k �1)=2

� �2
2N

k �1

� ��1

for k odd:

8>>>>>>><
>>>>>>>:
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Eban Number
The sequence of numbers whose names (in English)
do not contain the letter "e" (i.e., "e" is "banned"). The
first few eban numbers are 2, 4, 6, 30, 32, 34, 36, 40,
42, 44, 46, 50, 52, 54, 56, 60, 62, 64, 66, 2000, 2002,
2004, ... (Sloane’s A006933); i.e., two, four, six, thirty,
etc.
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Eberhart’s Conjecture
If qn is the nth prime such that Mqn

is a MERSENNE

PRIME, then

qn �(3=2)n :

It was modified by Wagstaff (1983) to yield WAG-

STAFF’S CONJECTURE,

qn �(2e�g 

)n ;

where g is the EULER-MASCHERONI CONSTANT.

See also WAGSTAFF’S CONJECTURE
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Eccentric
Not CONCENTRIC.

See also CONCENTRIC, CONCYCLIC

Eccentric Angle
The angle u measured from the CENTER of an ELLIPSE

to a point on the ELLIPSE.

See also ECCENTRICITY, ELLIPSE

Eccentric Anomaly

The ANGLE obtained by drawing the AUXILIARY CIRCLE

of an ELLIPSE with center O and FOCUS F , and
drawing a LINE PERPENDICULAR to the SEMIMAJOR

AXIS and intersecting it at A . The ANGLE E is then
defined as illustrated above. Then for an ELLIPSE with
ECCENTRICITY e ,

AF�OF�AO�ae�a cos E (1)

But the distance AF is also given in terms of the
distance from the FOCUS r�FP and the SUPPLEMENT

of the ANGLE from the SEMIMAJOR AXIS v by

AF�r cos(p�v)��r cos v: (2)



Equating these two expressions gives

r �
a(cos E � e)

cos v
; (3)

which can be solved for cos v to obtain

cos v �
a(cos E � e)

r
: (4)

To get E in terms of r , plug (4) into the equation of
the ELLIPSE

r �
a(1 � e2)

1 � cos v 
: (5)

Rearranging,

r(1 �e cos v) �a(1 �e2) (6)

and plugging in (4) then gives

r 1 �
ae cos E

r
�

e2

r

 !
�r �ae cos E �e2a

�a(1 �e2) : (7)

Solving for r gives

r �a(1 �e2) �ea cos E �e2a �a(1 �e cos E) ; (8)

so differentiating yields the result

ṙ �ae ̇E sin E: (9)

The eccentric anomaly is a very useful concept in
orbital mechanics, where it is related to the so-called
mean anomaly M by KEPLER’S EQUATION

M �E �e sin E : (10)

M can also be interpreted as the AREA of the shaded
region in the above figure (Finch).

See also ECCENTRICITY, ELLIPSE, KEPLER’S EQUATION
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Eccentricity
A quantity defined for a CONIC SECTION which can be
given in terms of SEMIMAJOR a and SEMIMINOR AXES

b .

interval curve e

e �0 CIRCLE 0

/0 Be B1/ ELLIPSE /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

a2

s
/

e �1 PARABOLA 1

e �1 HYPERBOLA /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

a2

s
/

The eccentricity can also be interpreted as the
fraction of the distance to the semimajor axis at
which the FOCUS lies,

e �
c

a 
;

where c is the distance from the center of the CONIC

SECTION to the FOCUS.

See also CIRCLE, CONIC SECTION, ECCENTRIC ANOM-

ALY, ELLIPSE, FLATTENING, FOCAL PARAMETER, HY-

PERBOLA, PARABOLA, SEMIMAJOR AXIS, SEMIMINOR

AXIS

Echidnahedron

ICOSAHEDRON STELLATION #4.
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Eckardt Point
On the CLEBSCH DIAGONAL CUBIC, all 27 of the
complex lines present on a general smooth CUBIC

SURFACE are real. In addition, there are 10 points on
the surface where three of the 27 lines meet. These
points are called Eckardt points (Fischer 1986).

See also CLEBSCH DIAGONAL CUBIC, CUBIC SURFACE
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Eckart Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
ah

1 � h
�

bh

(1 � h)2�g

" #
y�0;

where h�edx:/
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ment of Second Pöschl-Teller, Morse-Rosen, and Eckart
Equations." J. Phys. A: Math. Gen. 20, 4083 �/096, 1987.

Zwillinger, D. Handbook of Differential Equations, 3rd ed.
Boston, MA: Academic Press, p. 122, 1997.

Eckert IV Projection

The equations are

x �
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(4 � p)
p (l � l0)(1 �cos u) (1)

y �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

4 � p

s
sin u; (2)

where u is the solution to

u �sin u cos u �2 sin u �(2 �1
2 p) sin f : (3)

This can be solved iteratively using NEWTON’S METH-

OD with u0 � f=2 to obtain

Du ��
u � sin u cos u � 2 sin u � (2 � 1

2 p) sin f

2 cos u(1 � cos u) 
:

(4)

The inverse FORMULAS are

f �sin �1 u � sin u cos u � 2 sin u

2 � 1
2 p

 !
(5)

l � l0 �
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � p

p
x

1 � cos u
; (6)

where

u �sin�1 y

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � p

p

s !
: (7)
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Eckert VI Projection

The equations are

x �
( l � l0)(1 � cos u)ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � p
p (1)

y �
2 uffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � p
p ; (2)

where u is the solution to

u �sin u �(1 �1
2 p) sin f: (3)

This can be solved iteratively using NEWTON’S METH-

OD with u0 � f to obtain

D u ��
u � sin u � (1 � 1

2 p) sin f

1 � cos u
: (4)

The inverse FORMULAS are

f �sin�1 u � sin u

1 � 1
2 p

 !
(5)

l � l0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p

p
x

1 � cos u 
; (6)

where

u �1
2

ffiffiffiffiffiffiffiffiffiffiffi
2 � p

p
y: (7)
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Economical Number
A number n is called an economical number if the
number of digits in the prime factorization of n
(including powers) uses fewer digits than the number
of digits in n . The first few economical numbers are
125, 128, 243, 256, 343, 512, 625, 729, ... (Sloane’s
A046759). Pinch shows that, under a plausible
hypothesis related to the TWIN PRIME CONJECTURE,
there are arbitrarily long sequences of consecutive
economical numbers, and exhibits such a sequence of
length nine starting at 1034429177995381247.

See also EQUIDIGITAL NUMBER, WASTEFUL NUMBER
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Economized Rational Approximation
A PADÉ APPROXIMANT perturbed with a CHEBYSHEV

POLYNOMIAL OF THE FIRST KIND to reduce the leading
COEFFICIENT in the ERROR.

See also PADÉ APPROXIMANT

Eddington Number

136 � 2256 :1:575 �1079 :

According to Eddington, the exact number of protons
in the universe, where 136 was the RECIPROCAL of the
fine structure constant as best as it could be mea-
sured in his time.

See also LARGE NUMBER
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Edge (Graph)

For an UNDIRECTED GRAPH, an unordered pair of
nodes which specify the line connecting them are said
to form an edge. For a DIRECTED GRAPH, the edge is an
ordered pair of nodes. The terms "line," "arc,"
"branch," and "1-simplex" are sometimes used instead
of edge (Skiena 1990, p. 80; Harary 1994). Harary
(1994) calls an edge of a graph a "line."

See also EDGE NUMBER, HYPEREDGE, NULL GRAPH,
TAIT COLORING, TAIT CYCLE, VERTEX (GRAPH)
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Edge (Polygon)

A LINE SEGMENT on the boundary of a FACE, also
called a SIDE.

See also EDGE (POLYHEDRON), VERTEX (POLYGON)

Edge (Polyhedron)

A LINE SEGMENT where two FACES of a POLYHEDRON

meet, also called a SIDE.

See also EDGE (POLYGON), VERTEX (POLYHEDRON)

Edge (Polytope)
A 1-D LINE SEGMENT where two 2-D FACES of an n -D
POLYTOPE meet, also called a SIDE.

See also EDGE (POLYGON), EDGE (POLYHEDRON)

Edge Chromatic Number
The fewest number of colors necessary to color each
EDGE of a GRAPH so that no two EDGES incident on the
same VERTEX have the same color. The edge chro-
matic number of a graph must be at least D; the
largest VERTEX DEGREE of the graph (Skiena 1990,
p. 216). However, Vizing (1964) and Gupta (1966)
showed that any graph can be edge-colored with at
most D�1 colors.

The edge chromatic number of a COMPLETE BIPARTITE

GRAPH is D:/
Determining the edge chromatic number of a graph is
an NP-COMPLETE PROBLEM (Holyer 1981; Skiena
1990, p. 216). The edge chromatic number of a graph
can be computed using EdgeChromaticNumber[g ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘).



See also CHROMATIC NUMBER, EDGE COLORING
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Edge Coloring

An edge coloring of a GRAPH G is a coloring of the
edges of G such that adjacent edges (or the edges
bounding different regions) receive different colors.
BRELAZ’S HEURISTIC ALGORITHM can be used to find a
good, but not necessarily minimal, edge coloring.
Finding the minimum vertex coloring is equivalent
to finding the minimum VERTEX COLORING of its LINE

GRAPH (Skiena 1990, p. 216). The EDGE CHROMATIC

NUMBER gives the minimum number of colors with
which a graph can be colored.

An edge coloring of a graph can be computed using
EdgeColoring[g ] in the Mathematica add-on pack-
age DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

See also BRELAZ’S HEURISTIC ALGORITHM, CHROMATIC

NUMBER, EDGE CHROMATIC NUMBER, K -COLORING
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Edge Connectivity
The minimum number of edges l(G) whose deletion
from a GRAPH G disconnects G , also called the line
connectivity. The edge connectivity of a DISCON-

NECTED GRAPH is 0, while that of a CONNECTED GRAPH

with a BRIDGE is 1.

Let k(G) be the VERTEX CONNECTIVITY of a graph G
and d(G) its minimum degree, then for any graph,

k(G) 5 l(G) 5 d(G)

(Whitney 1932, Harary 1994, p. 43).

The edge-connectivity of a graph can be determined
with the command EdgeConnectivity[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

See also DISCONNECTED GRAPH, K -CONNECTED

GRAPH, VERTEX CONNECTIVITY
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Edge Cover
A subset of edges defined similarly to the VERTEX

COVER (Skiena 1990, p. 219). Gallai (1959) showed
that the size of the minimum edge cover plus the side
of the maximum number of independent edges equals
the number of vertices of a graph.

See also VERTEX COVER
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Edge Number
The number of EDGES in a GRAPH, denoted Ej j:/

See also EDGE (GRAPH)

Edge Set
The edge set of a GRAPH is simply a set of all edges of
the graph.

See also VERTEX SET

# 1999 �/001 Wolfram Research, Inc.

Edge-Graceful Graph

A generalization of the GRACEFUL GRAPH.

See also GRACEFUL GRAPH, SKOLEM-GRACEFUL

GRAPH, SUPER-EDGE-GRACEFUL GRAPH
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Edge-Transitive Graph
A GRAPH such that any two edges are equivalent
under some element of its automorphism group.
Every nontrivial graph that is edge-transitive but
not VERTEX-TRANSITIVE contains at least 20 vertices
(Skiena 1990, p. 186). The smallest known CUBIC

GRAPH that is edge- but not VERTEX-TRANSITIVE is
the GRAY GRAPH.

See also GRAY GRAPH, FOLKMAN GRAPH, VERTEX-

TRANSITIVE GRAPH
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Edgeworth Series
Let a distribution to be approximated be the distribu-
tion Fn of standardized sums

Yn �
Pn

i �1(Xi � X̄)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1 s2

X

p : (1)

In the CHARLIER SERIES, take the component random
variables identically distributed with mean m ; var-
iance s2 ; and higher cumulants sr lr for r ]3: Also,
take the developing function C(t) as the standard
NORMAL DISTRIBUTION FUNCTION F(t) ; so we have

k1 � g1 �0 (2)

k2 � g2 �0 (3)

k3 � g3 �
lr

nr=2�1 
: (4)

Then the Edgeworth series is obtained by collecting
terms to obtain the asymptotic expansion of the
CHARACTERISTIC FUNCTION (PROBABILITY) OF THE

FORM

fn(t) � 1 �
X

r�1

Pr(it)

nr=2

" #
e �t2 =2 ; (5)

where Pr is a polynomial of degree 3r with coefficients
depending on the cumulants of orders 3 to r �2: If the
powers of C are interpreted as derivatives, then the
distribution function expansion is given by

Fn(x) �C(x) �
X

r�1

Pr( �F(x))

nr=2 
(6)

(Wallace 1958). The first few terms of this expansion
are then given by

f (t) �C(t) �
l3 C

(3)(t)

6
ffiffiffi
n

p �
1

n

l4 C
(4)(t)

24
�

l2
3 C

(6)(t)

72

" #
�. . .

(7)

Cramér (1928) proved that this series is uniformly
valid in t .

See also CHARLIER SERIES, CORNISH-FISHER ASYMP-

TOTIC EXPANSION
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e-Divisor
d is called an e -divisor (or exponential divisor) of a
number n with PRIME FACTORIZATION

n�pa1

1 pa2

2 � � � par
r

if /djn/ and

d�pb1

1 pb2

2 � � � pbr
r ;

where bj½aj for 15j5r: For example, the e -divisors of
36 are 2 � 3; 4 � 3; 2 � 9; and 4 � 9:/

See also E -PERFECT NUMBER
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Edmonds’ Map
A nonreflexible regular map of GENUS 7 with eight
VERTICES, 28 EDGES, and eight HEPTAGONAL faces.

Effective Action
A GROUP ACTION G�X 0 X is effective if there are no
nontrivial actions. In particular, this means that
there is no element of the GROUP (besides the



IDENTITY ELEMENT) which does nothing, leaving every
point where it is. This can be expressed as S x �X Gx �
fe g; where Gx is the ISOTROPY GROUP at x and e is the
identity of G .

It is possible for a LIE GROUP G to have an effective
action on a smaller dimensional space M . However,

N(M) �max fdim G½G is a compact Lie group;

acting effectively on M g

is finite, and is called the degree of symmetry of M .

See also FREE ACTION, GROUP, ISOTROPY GROUP,
MATRIX GROUP, ORBIT (GROUP), QUOTIENT SPACE

(LIE GROUP), REPRESENTATION, TOPOLOGICAL GROUP,
TRANSITIVE
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Efron’s Dice

A set of four nontransitive DICE such that the
probabilities of A winning against B, B against C, C
against D, and D against A are all 2:1. A set in which
ties may occur, in which case the DICE are rolled
again, which gives ODDS of 11:6 is

See also DICE, SICHERMAN DICE
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E-Function
For any a �A (where A denotes the set of ALGEBRAIC

NUMBERS), let aj j denote the maximum of moduli of all

conjugates of a: Then a function

f (z) �
X

n�0

cn

zn

n!

is said to be an E-function if the following conditions
hold (Nesterenko 1999).

1. All coefficients cn belong to the same ALGEBRAIC

NUMBER FIELD K of finite degree over Q.
2. If e > 0 is any positive number, then cnj j�O(nen)
as n 0 
:/
3. For any e > 0; there exists a sequence of natural
numbers fqn gn]1 such that qnck �ZK for k �0, ..., n
and that qn �O(nen) :/

Every E-function is an ENTIRE FUNCTION, and the set
of E-functions is a RING under the operations of
ADDITION and MULTIPLICATION. Furthermore, if f (z)
is an E-function, then f ?(z) and f

z

0
f (t) dt are E-

functions, and for any ALGEBRAIC NUMBER a; the
function f ( az) is also an E-function (Nesterenko
1999).

See also SHIDLOVSKII THEOREM
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Egg
An OVAL with one end more pointed than the other.

See also ELLIPSE, MOSS’S EGG, OVAL, OVOID, THOM’S

EGGS

Egyptian Fraction
EGYPTIAN NUMBER, UNIT FRACTION

Egyptian Number
A number n is called an Egyptian number if it is the
sum of the DENOMINATORS in some UNIT FRACTION

representation of a positive whole number not con-
sisting entirely of 1s. For example,

1�
1

2
�

1

3
�

1

6
;

so 2�3�6�11 is an Egyptian number. The num-
bers which are not Egyptian are 2, 3, 5, 6, 7, 8, 12, 13,
14, 15, 19, 21, and 23 (Sloane’s A028229; Konhauser
et al. 1996, p. 147).

If n is the sum of denominators of a unit fraction
representation composed of distinct denominators
which are not all 1s, then it is called a strictly
Egyptian number. For example, by virtue of



1 �
1

2 
�

1

2 
;

2 � 2 �4 is Egyptian, but it is not strictly Egyptian.
Graham (1963) proved that every number ]78 is
strictly Egyptian. Numbers which are strictly Egyp-
tian are 11, 24, 30, 31, 32, 37, 38, 43, ... (Sloane’s
A052428), and those which are not are 2, 3, 4, 5, 6, 7,
8, 9, 10, 12, ... (Sloane’s A051882).

See also UNIT FRACTION
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Ehrhart Polynomial
Let D denote an integral convex POLYTOPE of DIMEN-

SION n in a lattice M , and let lD(k) denote the number
of LATTICE POINTS in D dilated by a factor of the
integer k ,

lD(k) �#(kDS M) (1)

for k �Z�: Then lD is a polynomial function in k of
degree n with rational coefficients

lD(k) �ankn �an�1kn�1 �. . .�a0 (2)

called the Ehrhart polynomial (Ehrhart 1967, Pom-
mersheim 1993). Specific coefficients have important
geometric interpretations.

1. an is the CONTENT of D:/
2. an�1 is half the sum of the CONTENTS of the
(n �1)/-D faces of D:/
3. a0 �1 :/

Let S2(D) denote the sum of the lattice lengths of the
edges of D; then the case n �2 corresponds to PICK’S

THEOREM,

lD(k) �Vol( D)k2 �1
2 S2( D) �1 : (3)

Let S3(D) denote the sum of the lattice volumes of the
2-D faces of D; then the case n �3 gives

lD(k) �Vol( D)k3 �1
2 S3(D)k2 �a1k �1; (4)

where a rather complicated expression is given by
Pommersheim (1993), since a1 can unfortunately not
be interpreted in terms of the edges of D: The Ehrhart
polynomial of the tetrahedron with vertices at (0, 0,
0), (a , 0, 0), (0, b , 0), (0, 0, c ) is

lD(k) �1
6 abck3 �1

4(ab �ac �bc �d)k2

�
1

12

ac

b
�

bc

a
�

ab

c
�

d2

abc

 !
�1

4(a �b �c �A �B �C)

"

�As
bc

d
;

aA

d

 !
�Bs

ac

d
;

bB

d

 !

�Cs
ab

d
;

cC

d

 !�
k �1; (5)

where s(x; y) is a DEDEKIND SUM, A �GCD(b ; c) ; B �
GCD(a ; c) ; C �GCD(a ; b) (here, GCD is the GREAT-

EST COMMON DIVISOR), and d �ABC (Pommersheim
1993).

See also DEHN INVARIANT, PICK’S THEOREM

References
Ehrhart, E. "Sur une problème de géométrie diophantine
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Ei
EXPONENTIAL INTEGRAL, EN -FUNCTION

Eigenform
Given a DIFFERENTIAL OPERATOR D on the space of
DIFFERENTIAL FORMS, an eigenform is a form a such
that

D a � la

for some constant l : For example, on the TORUS, the
DIRAC OPERATOR D��i(d�d�) acts on the form

b�3ei(3x�4y)�5ei(3x�4y) dx�4ei(3x�4y) dxffldy;

giving

Db�15ei(3x�4y)�25ei(3x�4y) dx�20ei(3x�4y) dxffldy;

i.e., Db�5b:/

See also DIRAC OPERATOR, LAPLACIAN, SPECTRUM

(OPERATOR)



Eigenfunction
If L̃ is a linear OPERATOR on a FUNCTION SPACE, then f
is an eigenfunction for L̃ and l is the associated
EIGENVALUE whenever L̃f � lf :/

See also EIGENVALUE, EIGENVECTOR, FUNCTIONAL

Eigenspace
If A is an n�n matrix, and l is an EIGENVALUE of A;
then the union of the ZERO VECTOR and the set of all
EIGENVECTORS corresponding to l is a SUBSPACE of Rn

known as the EIGENSPACE of l:/

Eigenvalue
Let A be a linear transformation represented by a
MATRIX A: If there is a VECTOR X �Rn"0 such that

AX�lX (1)

for some SCALAR l; then l is called the eigenvalue of A
with corresponding (right) EIGENVECTOR X. Eigenva-
lues are also known as characteristic roots, proper
values, or latent roots (Marcus and Minc 1988,
p. 144).

Letting A be a k�k MATRIX,

a11 a12 � � � a1k

a21 a22 � � � a2k

n n ::: n
ak1 ak2 � � � akk

2
664

3
775 (2)

with eigenvalue l; then the corresponding EIGENVEC-

TORS satisfy

a11 a12 � � � a1k

a21 a22 � � � a2k

n n ::: n
ak1 ak2 � � � akk

2
664

3
775

x1

x2

n
xk

2
664

3
775�l

x1

x2

n
xk

2
664

3
775; (3)

which is equivalent to the homogeneous system

a11�l a12 � � � a1k

a21 a22�l � � � a2k

n n ::: n
ak1 ak2 � � � akk�l

2
664

3
775

x1

x2

n
xk

2
664

3
775�

0
0
n
0

2
664
3
775: (4)

Equation (4) can be written compactly as

(A�lI)X�0; (5)

where I is the IDENTITY MATRIX. This MATRIX EQUA-

TION can then be solved for l:/

Eigenvalues are given by the solutions of the CHAR-

ACTERISTIC EQUATION of a given matrix. For example,
for a 2�2 matrix, the eigenvalues are

l9�1
2 (a11�a22)9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a12a21�(a11�a22)2

q� �
; (6)

which arises as the solutions of the CHARACTERISTIC

EQUATION

x2�x(a11�a22)�(a11a22�a12a21)�0; (7)

which can be written

x2�xTr(A)�det(A)�0; (8)

where Tr(A) is the TRACE of A and det(A) is its
DETERMINANT. The CHARACTERISTIC EQUATION for
the 3�3 case is

x3�Tr(A)x2�1
2(aijaji�aiiajj)(1�dij)x�det(A)�0; (9)

where dij is the KRONECKER DELTA and EINSTEIN

SUMMATION has been used. The corresponding analy-
tic eigenvalue expressions for 4�4 and larger ma-
trices are very complicated.

As shown in CRAMER’S RULE, a system of linear
equations has nontrivial solutions only if the DETER-

MINANT vanishes, so we obtain the CHARACTERISTIC

EQUATION

A�lIj j�0: (10)

If all k l/s are different, then plugging these back in
gives k�1 independent equations for the k compo-
nents of each corresponding EIGENVECTOR. The EI-

GENVECTORS will then be orthogonal and the system
is said to be nondegenerate. If the eigenvalues are n -
fold DEGENERATE, then the system is said to be
degenerate and the EIGENVECTORS are not linearly
independent. In such cases, the additional constraint
that the EIGENVECTORS be ORTHOGONAL,

Xi � Xj� Xij j Xj

�� ��dij; (11)

where dij is the KRONECKER DELTA, can be applied to
yield n additional constraints, thus allowing solution
for the EIGENVECTORS.

Assume A has nondegenerate eigenvalues
l1; l2; . . . ; lk and corresponding linearly indepen-
dent EIGENVECTORS X1; X2; . . . ; Xk which can be
denoted

x11

x12

n
x1k

2
664

3
775;

x21

x22

n
x2k

2
664

3
775; � � �

xk1

xk2

n
xkk

2
664

3
775: (12)

Define the matrices composed of eigenvectors

P�[X1 X2 � � � Xk]�

x11 x21 � � � xk1

x12 x22 � � � xk2

n n ::: n
x1k x2k � � � xkk

2
664

3
775 (13)

and eigenvalues

D�

l1 0 � � � 0
0 l2 � � � 0
n n ::: n
0 0 � � � lk

2
664

3
775; (14)

where D is a DIAGONAL MATRIX. Then



AP �A[X1 X2 � � �  Xk]

�[AX1 AX2 � � �  AXk]

�[ l1X1 l2X2 � � �  lkXk]

�

l1x11 l2x21 � � �  lkxk1

l1x12 l2x22 � � �  lkxk2

n n ::: n
l1x1k l2x2k � � �  lkxkk

2
664

3
775

�

x11 x21 � � �  xk1

x12 x22 � � �  xk2

n n ::: n
x1k x2k � � �  xkk

2
664

3
775

l1 0 � � �  0
0 l2 � � �  0
n n ::: n
0 0 � � �  lk

2
664

3
775

�PD ; (15)

so

A �PDP �1 : (16)

Furthermore,

A2 �(PDP �1)(PDP �1) �PD(P�1P)DP �1

�PD2P �1 : (17)

By induction, it follows that for n �0,

An �PDnP �1 : (18)

The inverse of A is

A �1 �(PDP �1) �1 �PD �1P�1 ; (19)

where the inverse of the DIAGONAL MATRIX D is
trivially given by

D �1 �

l�1
1 0 � � �  0
0 l �1

2 � � �  0
n n ::: n
0 0 � � �  l �1

k

2
664

3
775: (20)

Equation (18) therefore holds for both POSITIVE and
NEGATIVE n .

A further remarkable result involving the matrices P
and D follows from the definition

eA �
X

n�0

An

n!
�
X

n�0

PDnP�1

n!

�P

P


n�0 Dn

n!

 !
P�1 �PeDP �1 : (21)

Since D is a DIAGONAL MATRIX,

eD �
X

n�0

Dn

n!
�
X

n�0

1

n!

ln
1 0 � � �  0

0 ln
2 � � �  0

n n ::: n
0 0 � � �  ln

k

2
664

3
775

�

P


n�0

ln
1

n!
0 � � �  0

0
P


n�0

ln
2

n!
� � �  0

n n ::: n

0 0 � � �
P


n �0

ln
k

n!

2
6666666664

3
7777777775

�

e l1 0 � � �  0
0 e l2 � � �  0
n n ::: n
0 0 � � �  e lk

2
664

3
775; (22)

/eD can be found using

Dn �

ln
1 0 � � �  0

0 ln
2 � � �  0

n n ::: n
0 0 � � �  ln

k

2
664

3
775: (23)

Assume we know the eigenvalue for

AX � lX : (24)

Adding a constant times the IDENTITY MATRIX to A;

(A �cI)X �(l �c)X � l ? pX ; (25)

so the new eigenvalues equal the old plus c . Multi-
plying A by a constant c

(cA)X �c(lX) � l ?X ; (26)

so the new eigenvalues are the old multiplied by c .

Now consider a SIMILARITY TRANSFORMATION of A: Let
Aj j be the DETERMINANT of A; then

Z�1AZ�lI
�� ���Z�1(A�lI)Z

�� ��
� Zj j A�lIj j Z�1

�� ���A�lIj j; (27)

so the eigenvalues are the same as for A:/

See also BRAUER’S THEOREM, COMPLEX MATRIX,
CONDITION NUMBER, EIGENFUNCTION, EIGENVECTOR,
FROBENIUS THEOREM, GERGORIN CIRCLE THEOREM,
LYAPUNOV’S FIRST THEOREM, LYAPUNOV’S SECOND

THEOREM, OSTROWSKI’S THEOREM, PERRON’S THEO-

REM, PERRON-FROBENIUS THEOREM, POINCARÉ SE-

PARATION THEOREM, RANDOM MATRIX, REAL MATRIX,
SCHUR’S INEQUALITIES, STURMIAN SEPARATION THEO-

REM, SYLVESTER’S INERTIA LAW, WIELANDT’S THEO-

REM
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Eigenvector
A right eigenvector satisfies

AX � lX ; (1)

where X is a column VECTOR. The right EIGENVALUES

therefore satisfy

A � lIj j�0: (2)

A left eigenvector satisfies

XA � lX ; (3)

where X is a row VECTOR, so

(XA)T � lLXT ; (4)

ATXT � lLXT ; (5)

where XT is the transpose of X.

The left EIGENVALUES satisfy

AT � lLI
�� ���AT � lLIT

�� ��� (A � lLI)T
��� ����(A � lLI)j j; (6)

(since Aj j�AT
�� ��) where Aj j is the DETERMINANT of A:

But this is the same equation satisfied by the right
EIGENVALUES, so the left and right EIGENVALUES are
the same. Let XR be a MATRIX formed by the columns
of the right eigenvectors and XL be a MATRIX formed
by the rows of the left eigenvectors. Let

D �
l1 � � �  0
n ::: n
0 � � �  ln

2
4

3
5: (7)

Then

AXR �XRD XLA �DXL (8)

XLAXR �XLXRD XLAXR �DXLXR ; (9)

so

XLXRD �DXLXR : (10)

But this equation is OF THE FORM CD �DC where D is
a DIAGONAL MATRIX, so it must be true that C �XLXR

is also diagonal. In particular, if A is a SYMMETRIC

MATRIX, then the left and right eigenvectors are
transposes of each other. If A is a SELF-ADJOINT

MATRIX, then the left and right eigenvectors are
conjugate HERMITIAN MATRICES.

Eigenvectors are sometimes known as characteristic
vectors, proper vectors, or latent vectors (Marcus and
Minc 1988, p. 144).

Given a 3 �3 MATRIX A with eigenvectors x1 ; x2 ; and
x3 and corresponding EIGENVALUES l1 ; l2 ; and l3 ;

then an arbitrary VECTOR y can be written

y �b1x1 �b2x2 �b3x3 : (11)

Applying the MATRIX A ;

Ay �b1Ax1 �b2Ax2 �b3Ax3

�l1 b1x1�
l2

l1

b2x2�
l3

l1

b3x3

 !
; (12)

so

Any�ln
1 b1x1�

l2

l1

 !n

b2x2�
l3

l1

 !n

b3x3

" #
: (13)

If l1 > l2; l3; it therefore follows that

lim
n0


Any�ln
1b1x1; (14)

so repeated application of the matrix to an arbitrary
vector results in a vector proportional to the EIGEN-

VECTOR having the largest EIGENVALUE.

See also EIGENFUNCTION, EIGENVALUE
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Eight Curve

A curve also known as the GERONO LEMNISCATE. It is
given by CARTESIAN COORDINATES

x4�a2(x2�y2); (1)

POLAR COORDINATES,

r2�a2 sec4 u cos(2u); (2)



and PARAMETRIC EQUATIONS

x �a sin t (3)

y �a sin t cos t: (4)

The CURVATURE and TANGENTIAL ANGLE are

k(t) ��
3 sin t � sin(3t)

2[cos2 t � cos2(2t)]3 =2 (5)

f(t) ��tan �1[cos t sec(2t)] : (6)

See also BUTTERFLY CURVE, DUMBBELL CURVE, EIGHT

SURFACE, PIRIFORM
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Eight Surface

The SURFACE OF REVOLUTION given by the PARA-

METRIC EQUATIONS

x(u; v) �cos u sin(2v) (1)

y(u; v) �sin u sin(2v) (2)

z(u; v) �sin v (3)

for u � [0; 2 p) and v � [�p=2; p=2]::/

See also EIGHT CURVE
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Eight-Point Circle Theorem

Let ABCD be a QUADRILATERAL with PERPENDICULAR

DIAGONALS. The MIDPOINTS of the sides (a , b , c , and
d ) determine a PARALLELOGRAM (the VARIGNON PAR-

ALLELOGRAM) with sides PARALLEL to the DIAGONALS.
The eight-point circle passes through the four MID-

POINTS and the four feet of the PERPENDICULARS from
the opposite sides a?; b ?; c ?; and d?:/

See also FEUERBACH’S THEOREM
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Eikonal Equation

Xn

i�1

@u

@xi

 !2

�1:

Eilenberg-Mac Lane Space
For any ABELIAN GROUP G and any NATURAL NUMBER

n , there is a unique SPACE (up to HOMOTOPY type)
such that all HOMOTOPY GROUPS except for the nth
are trivial (including the 0th HOMOTOPY GROUPS,
meaning the SPACE is path-connected), and the nth
HOMOTOPY GROUP is ISOMORPHIC to the GROUP G . In
the case where n�1, the GROUP G can be non-
ABELIAN as well.

Eilenberg-Mac Lane spaces have many important
applications. One of them is that every TOPOLOGICAL

SPACE has the HOMOTOPY type of an iterated FIBRA-

TION of Eilenberg-Mac Lane spaces (called a POST-

NIKOV SYSTEM). In addition, there is a spectral
sequence relating the COHOMOLOGY of Eilenberg-
Mac Lane spaces to the HOMOTOPY GROUPS of
SPHERES.



Eilenberg-Mac Lane-Steenrod-Milnor
Axioms
EILENBERG-STEENROD AXIOMS

Eilenberg-Steenrod Axioms
A family of FUNCTORS Hn( � ) from the CATEGORY of
pairs of TOPOLOGICAL SPACES and continuous maps, to
the CATEGORY of ABELIAN GROUPS and group homo-
morphisms satisfies the Eilenberg-Steenrod axioms if
the following conditions hold.

1. LONG EXACT SEQUENCE OF A PAIR AXIOM. For
every pair (X, A ), there is a natural long exact
sequence

. . .  0 Hn(A) 0 Hn(X) 0 Hn(X ; A) 0 Hn�1(A)

0 . . . ; (1)

where the MAP Hn(A) 0 Hn(X) is induced by the
INCLUSION MAP A 0 X and Hn(X) 0 Hn(X ; A) is
induced by the INCLUSION MAP (X ; f) 0 (X ; A):
The MAP Hn(X ; A) 0 Hn�1(A) is called the BOUND-

ARY MAP.
2. HOMOTOPY AXIOM. If f : (X ; A) 0 (Y ; B) is homo-
topic to g : (X ; A) 0 (Y ; B) ; then their INDUCED

MAPS f� : Hn(X ; A) 0 Hn(Y ; B) and g � :
Hn(X ; A) 0 Hn(Y ; B) are the same.
3. EXCISION AXIOM. If X is a SPACE with SUBSPACES

A and U such that the CLOSURE of A is contained
in the interior of U , then the INCLUSION MAP

(X U; A U) 0 (X ; A) induces an isomorphism
Hn(X U; A U) 0 Hn(X ; A) :/
4. DIMENSION AXIOM. Let X be a single point space.
Hn(X) �0 unless n �0, in which case H0(X) �G
where G are some GROUPS. The H0 are called the
COEFFICIENTS of the HOMOLOGY theory H(�) :/

These are the axioms for a generalized homology
theory. For a cohomology theory, instead of requiring
that H( � ) be a FUNCTOR, it is required to be a co-
functor (meaning the INDUCED MAP points in the
opposite direction). With that modification, the ax-
ioms are essentially the same (except that all the
induced maps point backwards).

See also ALEKSANDROV-CECH COHOMOLOGY

Ein Function

Ein(z) �g
z

0

(1 � e�t) dt

t
�E1(z) �ln z � g ;

where g is the EULER-MASCHERONI CONSTANT and E/
1

is the EN -FUNCTION with n�1.

See also EN -FUNCTION

Einstein Field Equations

The 16 coupled hyperbolic-elliptic nonlinear PARTIAL

DIFFERENTIAL EQUATIONS that describe the gravita-
tional effects produced by a given mass in general
relativity. The equations state that

Gmn�8pTmn;

where Tmn is the stress-energy tensor, and

Gmn�Rmn�
1
2 gmnR

is the EINSTEIN TENSOR, with Rmn the RICCI TENSOR

and R the SCALAR CURVATURE.

# 1999�/001 Wolfram Research, Inc.

Einstein Functions

The functions

E1(x)�
x2ex

(ex � 1)2 (1)

E2(x)�
x

ex � 1
(2)

E3(x)�ln(1�e�x) (3)

E4(x)�
x

ex � 1
�ln(1�e�x): (4)

/E1(x) has an inflection point at

Eƒ1(x)�1
8 csch4(1

2 x)[(x2�2) cosh x

�2(x2�2x sinh x�1)]�0 (5)

which can be solved numerically to give x:2:34693:
E1(x) has an inflection point at

Eƒ2(x)�
ex[x � 2 � ex(x � 2)]

(ex � 1)3 �0; (6)

which can be solved numerically to give x:17:5221:/
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Formulas, Graphs, and Mathematical Tables, 9th print-
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Einstein Summation
The convention that repeated indices are implicitly
summed over. This can greatly simplify and shorten
equations involving TENSORS. For example, using
Einstein summation,

aiai �
X

i

aiai

and

aikaij �
X

i

aikaij :

The convention was introduced by Einstein (1916),
who later jested to a friend,"I have made a great
discovery in mathematics; I have suppressed the
summation sign every time that the summation
must be made over an index which occurs twice..."
(Kollros 1956; Pais 1982, p. 216).
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Einstein Tensor

Gab �Rab �
1
2 Rgab ;

where Rab is the RICCI TENSOR, R is the SCALAR

CURVATURE, and gab is the METRIC TENSOR. (Wald
1984, pp. 40 �/1). It satisfies

G mn ; n �0

(Misner et al. 1973, p. 222).

See also METRIC TENSOR, RICCI TENSOR, SCALAR

CURVATURE
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Eisenstein Integer
The numbers a �bv; where

v �1
2(�1 �i

ffiffiffi
3

p
)

is one of the ROOTS of z3 �1 ; the others being 1 and

v2 �1
2(�1 �i

ffiffiffi
3

p
) :

Eisenstein integers are members of the IMAGINARY

QUADRATIC FIELD Q(
ffiffiffiffiffiffi
�3

p
); and the COMPLEX NUMBERS

Z v½ 	: Every Eisenstein integer has a unique factor-
ization. Specifically, any NONZERO Eisenstein integer
is uniquely the product of POWERS of -1, v; and the
"positive" EISENSTEIN PRIMES (Conway and Guy
1996). Every Eisenstein integer is within a distance
nj j=

ffiffiffi
3

p
of some multiple of a given Eisenstein integer

n .

Dörrie (1965) uses the alternative notation

J �1
2(1 �i

ffiffiffi
3

p
) (1)

O �1
2(1 �i

ffiffiffi
3

p
) : (2)

for �v2 and �v; and calls numbers OF THE FORM aJ �
bO G -NUMBERS. O and J satisfy

J �O �1 (3)

JO �1 (4)

J2 �O �0 (5)

O2 �J �0 (6)

J3 ��1 (7)

O3 ��1: (8)

The sum, difference, and products of G numbers are
also G numbers. The norm of a G number is

N(aJ �bO) �a2 �b2 �ab : (9)

The analog of FERMAT’S THEOREM for Eisenstein
integers is that a PRIME NUMBER p can be written in
the form

a2�ab�b2�(a�bv)(a�bv2)

IFF 3¶p�1: These are precisely the PRIMES OF THE

FORM 3m2�n2 (Conway and Guy 1996).

See also EISENSTEIN PRIME, EISENSTEIN UNIT, GAUS-

SIAN INTEGER, INTEGER
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Eisenstein Prime

Let v be the CUBE ROOT of unity (�1�i
ffiffiffi
3

p
)=2: Then

the Eisenstein primes are

1. Ordinary PRIMES CONGRUENT to 2 (mod 3),
2. 1�v is prime in Z v½ 	;/
3. Any ordinary PRIME CONGRUENT to 1 (mod 3)
factors as aa�; where each of a and a� are primes in
Z v½ 	 and a and a� are not "associates" of each other
(where associates are equivalent modulo multi-
plication by an EISENSTEIN UNIT).
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Eisenstein Series

Gr(t)�
X
m;n

?
1

(m � nt)2r ; (1)

where the sum S? excludes m�n�0; /T½t	�0/, and r
is an INTEGER with r �2. The Eisenstein series
satisfies the remarkable property

Gr

at� b

ct� d

 !
�(ct�d)2rEr(t): (2)

Furthermore, each Eisenstein series is expressible as
a polynomial of the INVARIANTS g2 and g3 of the
WEIERSTRASS ELLIPTIC FUNCTION with positive ra-
tional coefficients (Apostol 1997).
The Eisenstein series of EVEN order satisfy

G2k(t)�2z(2k)�
2(2pi)2k

(2k � 1)!

X

n�1

s2k�1(n)e2pint; (3)

where z(z) is the RIEMANN ZETA FUNCTION and sk(n) is
the DIVISOR FUNCTION (Apostol 1997, pp. 24 and 69).
Writing the NOME q as

q�epti�e�pK?(k)=K(k) (4)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, K ?(k)�K(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
); k is the MODULUS, and

defining

E2k(q)�
G2k(t)

2z(2k)
; (5)

we have

E2n(q)�1�c2n

X

k�1

kn�1q2k

1 � q2k
(6)

�1�c2n

X

k�1

s2n�1(k)q2k: (7)

where

c2n�
(2pi)2k

(2k � 1)!z(2k)
�(�1)k (2p)2k

G(2k)z(2k)
: (8)

��
4n

B2n

; (9)

where Bn is a BERNOULLI NUMBER. For n�1, 2, ..., the
first few values of c2n are -24, 240, -504, 480, -264,
65520=691; ... (Sloane’s A006863 and A001067).

The first few values of E2n(q) are therefore

E2(q)�1�24
X

k�1

s1(k)q2k (10)

E4(q)�1�240
X

k�1

s3(k)q2k (11)

E6(q)�1�504
X

k�1

s5(k)q2k (12)

E8(q)�1�480
X

k�1

s7(k)q2k (13)

E10(q)�1�264
X

k�1

s9(k)q2k (14)

E12(q)�1�
65520

691

X

k�1

s11(k)q2k (15)

E14(q)�1�24
X

k�1

s13(k)q2k; (16)

(Apostol 1997, p. 139). Ramanujan used the notations
P(z)�E2(

ffiffiffi
z

p
); Q(z)�E4(

ffiffiffi
z

p
); and R(z)�E6(

ffiffiffi
z

p
); and

these functions satisfy the system of differential



equations

qP � 1
12(P

2 �Q) (17)

qQ �1
3(PQ �R) (18)

qR �1
2(PR �Q2) (19)

(Nesterenko 1999), where q�zd=dz is the DIFFEREN-

TIAL OPERATOR.

/E2n(q) can also be expressed in terms of complete
ELLIPTIC INTEGRALS OF THE FIRST KIND K(k) as

E4(q) �
2K(k)

p

 !4

(1 �k2k?2) (20)

E6(q) �
2K(k)

p

 !6

(1 �2k2)(1 �1
2 k

2k?2) (21)

(Ramanujan 1913 �/914), where k is the MODULUS.

The following table gives the first few Eisenstein
series En(q) for even n .

n Sloane lattice /En(q)/

2 A006352 /1 �24q2 �72q4 �96q6 �168q8 �� � �/

4 A004009 /E8/ /1 �240q2 �2160q4 �6720q6 �� � �/

6 A013973 /1 �504q2 �16632q4 �122976q6 �� � �/

8 A008410 /E8 �E8/ /1 �480q2 �61920q4 �1050240q6 �� � �/

10 A013974 /y �r? sin u?:/

Ramanujan (1913 �/914) used the notation L(q) to
refer to the closely related function

L(q) �1 �24
X

k �1

s(0)
1 (n)(�1)kqk (22)

�1 �24
X

k �1

(2k � 1)q2k�1

1 � q2k�1

�
2K(k)

p

 !2

(1 �2k2) (23)

�1 �24q �24q2 �96q3 �� � �  (24)

(Sloane’s A004011), where

s(0)
1 (n) �

X
d½nd odd

d (25)

is the ODD DIVISOR FUNCTION. Ramanujan used the
notation M(q) and N(q) to refer to E4(q) and E6(q);
respectively.

See also DIVISOR FUNCTION, INVARIANT (ELLIPTIC

FUNCTION), KLEIN’S ABSOLUTE INVARIANT, LEECH

LATTICE, PI, THETA SERIES, WEIERSTRASS ELLIPTIC

FUNCTION
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Eisenstein Unit
The Eisenstein units are the EISENSTEIN INTEGERS

91, 9v;9v2 ; where

v ¼ 1
2ð�1 þ i

ffiffiffi
3

p
Þ

v2�1
2(�1�i

ffiffiffi
3

p
):

See also EISENSTEIN INTEGER, EISENSTEIN PRIME
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Eisenstein-Jacobi Integer
EISENSTEIN INTEGER



Elastica
The elastica formed by bent rods and considered in
physics can be generalized to curves in a RIEMANNIAN

MANIFOLD which are a CRITICAL POINT for

F l( g) �g
g

(k2 � l);

where k is the GEODESIC CURVATURE of g ; l is a REAL

NUMBER, and g is closed or satisfies some specified
boundary condition. The curvature of an elastica
must satisfy

0 �2 k ƒ(s) � k3(s) �2k(s)G(s) � lk(s) ;

where k is the signed curvature of g; G(s) is the
GAUSSIAN CURVATURE of the oriented Riemannian
surface M along g ; k ƒ is the second derivative of k
with respect to s , and l is a constant.
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Elation
A perspective COLLINEATION in which the center and
axis are incident.

See also HOMOLOGY (GEOMETRY)
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Elder’s Theorem
A generalization of STANLEY’S THEOREM. It states that
the total number of occurrences of an INTEGER k
among all unordered PARTITIONS of n is equal to the
number of occasions that a part occurs k or more
times in a PARTITION, where a PARTITION which
contains r parts that each occur k or more times
contributes r to the sum in question.

See also STANLEY’S THEOREM
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Election
EARLY ELECTION RESULTS, VOTING

Electric Motor Curve
DEVIL’S CURVE

Elegant Graph

See also GRACEFUL GRAPH, HARMONIOUS GRAPH

Element
If x is a member of a set A , then x is said to be an
element of A , written x � A: If x is not an element of A ,
this is written x QA: The term element also refers to a
particular member of a GROUP, or entry aij in a
MATRIX A or unevaluated DETERMINANT det(A) :/

See also SET THEORY

Elementary Cellular Automaton

The simplest class of 1-D cellular automata. They
have two possible values for each cell, and rules that
depend only on nearest neighbor values. They can be
indexed with an 8-bit binary number, as shown by
Stephen Wolfram (1983). Wolfram further restricted
the number from /28 ¼ 256/ to 32 by requiring certain
symmetry conditions. The illustrations above show
automata numbers 30 and 90 propagated for 256
generations. Rule 30 is chaotic, with central column
given by 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, ... (Sloane’s
A051023).

See also CELLULAR AUTOMATON
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Elementary Function
A function built up of a finite combination of constant
functions, field operations (ADDITION, MULTIPLICA-

TION, DIVISION, and ROOT EXTRACTIONS–the ELEMEN-

TARY OPERATIONS)–and algebraic, exponential, and
logarithmic functions and their inverses under re-
peated compositions (Shanks 1993, p. 145; Chow
1999). Among the simplest elementary functions are
the LOGARITHM, EXPONENTIAL FUNCTION (including
the HYPERBOLIC FUNCTIONS), POWER function, and
TRIGONOMETRIC FUNCTIONS.

Following Liouville (1837, 1838, 1839), Watson (1966,
p. 111) defines the elementary TRANSCENDENTAL

FUNCTIONS as

l1(z) �l(z) �ln(z)
e1(z) �e(z) �ez

z1f (z) � zf (z) �g f (z) dz ;

and lets l2 �l(l(z)); etc.

Not all functions are elementary. For example, the
NORMAL DISTRIBUTION FUNCTION

F(x) �
1ffiffiffiffiffiffi
2p

p g
x

0

e�t2 =2 dt

is a notorious example of a nonelementary function.
The ELLIPTIC INTEGRAL

g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x4

p
dx

is another.

See also ALGEBRAIC FUNCTION, ELEMENTARY OPERA-

TION, LIOUVILLE’S PRINCIPLE, RISCH ALGORITHM,
SPECIAL FUNCTION, SYMMETRIC POLYNOMIAL, TRANS-

CENDENTAL FUNCTION
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Elementary Matrix
The elementary MATRICES are the PERMUTATION

MATRIX pij and the SHEAR MATRIX e ƒij :/

See also ELEMENTARY ROW AND COLUMN OPERATIONS
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Elementary Matrix Operations
ELEMENTARY ROW AND COLUMN OPERATIONS

Elementary Number
A number which can be specified implicitly or
explicitly by exponential, logarithmic, and algebraic
operations.

See also LIOUVILLIAN NUMBER
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Elementary Operation
One of the operations of ADDITION, SUBTRACTION,
MULTIPLICATION, DIVISION, and integer (or rational)
ROOT EXTRACTION.

See also ABEL’S IMPOSSIBILITY THEOREM, ALGEBRAIC

FUNCTION, ELEMENTARY FUNCTION

Elementary Proof
A PROOF which can be accomplished using only REAL

NUMBERS (i.e., REAL ANALYSIS instead of COMPLEX

ANALYSIS; Hoffman 1998, pp. 92�/3).

See also PROOF
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Elementary Row and Column Operations
The MATRIX operations of



1. Interchanging two rows or columns,
2. Adding a multiple of one row or column to
another,
3. Multiplying any row or column by a nonzero
element.

See also GAUSSIAN ELIMINATION, MATRIX
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Elementary Symmetric Function
The elementary symmetric functions 1 �
24 a




k¼1
ð2k�1 Þq21 �1

1 þq2k �1 on p(n) variables 2K(k)
p

� �2

(1 �2k2) are

defined by

1 �24q �24q2 �96q3 �. . .� s(0)
1 (n) �

X
djnd odd

d (1)

M(q) �N(q) (2)

E4(q) �E6(q) (3)

G2( t) �Os�2 ; 2(R) � (4)

1 =p

91 �9v (5)

Alternatively, 9v2 can be defined as the coefficient of
v in the GENERATING FUNCTION

1
2(�1 �i

ffiffiffi
3

p
) (6)

For example, on four variables v2 ; ..., 1
2(�1 �i

ffiffiffi
3

p
) ; the

elementary symmetric functions are

1 �24q �24q2 �96q3 �. . .�F l( g) �g
g

( k2 � l) ; (7)

M(q) � k (8)

E4(q) �0 �2k ƒ(s) � k3(s) �2k(s)G(s) � lk(s); (9)

G2( t) �G(s) (10)

Define k ƒ as the coefficients of the GENERATING

FUNCTION

sg (k2 =s) ds ð11Þ

so the first few values are

R3 �x � A (12)

x QA �aij (13)

ð14Þ

28 �256 �

l1(z) �l(z) �ln(z)
e1(z) �e(z) �ez

z1f (z) � zf (z) �g f (z) dz;
(15)

In general, l2 �l(l(z)) can be computed from the
DETERMINANT

F(x) �
1ffiffiffiffiffiffi
2 p

p g
x

0

e �t2 =2 dt (16)

(Littlewood 1958, Cadogan 1971). Then the elemen-
tary symmetric functions satisfy the relationship

g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x4

p
dx (17)

In particular,

pij�1�24q�24q2�96q3�. . . (18)

es
ij�sa (19)

sb�sc (20)

Y�DABC (21)

(Schroeppel 1972), as can be verified by plugging in
and multiplying through.

See also FUNDAMENTAL THEOREM OF SYMMETRIC

FUNCTIONS, NEWTON’S RELATIONS, SYMMETRIC FUNC-

TION
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Elementary Transcendental Function
ELEMENTARY FUNCTION
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Elements
The classic treatise in geometry written by Euclid and
used as a textbook for more than 1,000 years in
western Europe. An Arabic version The Elements
appears at the end of the eighth century, and the first
printed version was produced in 1482 (Tietze 1965,



p. 8). The Elements , which went through more than
2,000 editions and consisted of 465 propositions, are
divided into 13 "books" (an archaic word for "chap-
ters"rpar;.

Book Contents

1 TRIANGLES

2 RECTANGLES

3 CIRCLES

4 POLYGONS

5 proportion

6 SIMILARITY

7 �/0 NUMBER THEORY

11 solid geometry

12 PYRAMIDS

13 PLATONIC SOLIDS

The elements started with 23 definitions, five POSTU-

LATES, and five "common notions," and systematically
built the rest of plane and solid geometry upon this
foundation. The five EUCLID’S POSTULATES are

1. It is possible to draw a straight LINE from any
POINT to another POINT.
2. It is possible to produce a finite straight LINE

continuously in a straight LINE.
3. It is possible to describe a CIRCLE with any
CENTER and RADIUS.
4. All RIGHT ANGLES are equal to one another.
5. If a straight LINE falling on two straight LINES

makes the interior ANGLES on the same side less
than two RIGHT ANGLES, the straight LINES (if
extended indefinitely) meet on the side on which
the ANGLES which are less than two RIGHT ANGLES

lie.

(Dunham 1990). Euclid’s fifth postulate is known as
the PARALLEL POSTULATE. After more than two
millennia of study, this POSTULATE was found to be
independent of the others. In fact, equally valid NON-

EUCLIDEAN GEOMETRIES were found to be possible by
changing the assumption of this POSTULATE. Unfortu-
nately, Euclid’s postulates were not rigorously com-
plete and left a large number of gaps. Hilbert needed
a total of 20 postulates to construct a logically
complete geometry.

See also PARALLEL POSTULATE
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Elevator Paradox
A fact noticed by physicist G. Gamow when he had an
office on the second floor and physicist M. Stern had
an office on the sixth floor of a seven-story building
(Gamow and Stern 1958, Gardner 1986). Gamow
noticed that about 5/6 of the time, the first elevator
to stop on his floor was going down, whereas about
the same fraction of time, the first elevator to stop on
the sixth floor was going up. This actually makes
perfect sense, since 5 of the 6 floors 1, 3, 4, 5, 6, 7 are
above the second, and 5 of the 6 floors 1, 2, 3, 4, 5, 7
are below the sixth. However, the situation takes
some unexpected turns if more than one elevator is
involved, as discussed by Gardner (1986).

References
Gamow, G. and Stern, M. Puzzle Math. New York: Viking,

1958.
Gardner, M. "Elevators." Ch. 10 in Knotted Doughnuts and

Other Mathematical Entertainments. New York: W. H.
Freeman, pp. 123 �/32, 1986.

Elevatum
A positive-height (outward-pointing) PYRAMID used in
CUMULATION. The term was introduced by B. Grün-
baum.

See also CUMULATION, INVAGINATUM

# 1999 �/001 Wolfram Research, Inc.

Elkies Point
Given POSITIVE numbers sa ; sb ; and sc ; the Elkies
point is the unique point Y in the interior of a
TRIANGLE DABC such that the respective INRADII ra ;
rb ; rc of the TRIANGLES DBYC ; DCYA ; and DAYB
satisfy ra : rb : rc �sa : sb : sc :/

See also CONGRUENT INCIRCLES POINT, INRADIUS
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Ellipse

A curve which is the LOCUS of all points in the PLANE

the SUM of whose distances r1 and r2 from two fixed
points F1 and F2 (the FOCI) separated by a distance of
2c is a given POSITIVE constant 2a (Hilbert and Cohn-
Vossen 1999, p. 2). This results in the two-center
BIPOLAR COORDINATE equation

r1�r2�2a; (1)

where a is the SEMIMAJOR AXIS and the ORIGIN of the
coordinate system is at one of the FOCI.

The ellipse was first studied by Menaechmus, inves-
tigated by Euclid, and named by Apollonius. The
FOCUS and DIRECTRIX of an ellipse were considered by
Pappus. In 1602, Kepler believed that the orbit of
Mars was OVAL; he later discovered that it was an
ellipse with the Sun at one FOCUS. In fact, Kepler
introduced the word "FOCUS" and published his
discovery in 1609. In 1705 Halley showed that the
comet which is now named after him moved in an
elliptical orbit around the Sun (MacTutor Archive).
An ellipse rotated about its minor axis gives an
OBLATE SPHEROID, while an ellipse rotated about its
major axis gives a PROLATE SPHEROID.

A ray of light passing through a



DIRECTRIX, where the ratio is B1: Letting r be the
ratio and d the distance from the center at which the
directrix lies, then in order for this to be true, it must
hold at the extremes of the major and minor axes, so

r�
a � c

d � a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

p

d
: (11)

Solving gives

d�
a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p �

a2

c
(12)

r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

a
�

c

a
: (13)

The FOCAL PARAMETER of the ellipse is

p�
b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p (14)

�
a2 � c2

c
(15)

�
a(1 � e2)

e
: (16)

Like HYPERBOLAS, noncircular ellipses have two
distinct FOCI and two associated DIRECTRICES, each
DIRECTRIX being PERPENDICULAR to the line joining
the two foci (Eves 1965, p. 275).

As can be seen from the CARTESIAN EQUATION for the
ellipse, the curve can also be given by a simple
parametric form analogous to that of a CIRCLE, but
with the x and y coordinates having different scal-
ings,

x�a cos t (17)

y�b sin t: (18)

The unit TANGENT VECTOR of the ellipse so parame-
terized is

xT(t)��
a sin tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 cos2 t � a2 sin2 t
p (19)

yT(t)�
b cos tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 cos2 t � a2 sin2 t
p : (20)

A sequence of NORMAL and TANGENT VECTORS are
plotted below for the ellipse.

In POLAR COORDINATES, the ANGLE u? measured from
the center of the ellipse is called the ECCENTRIC

ANGLE. Writing r? for the distance of a point from
the ellipse center, the equation in POLAR COORDI-

NATES is just given by the usual

x�r? cos u? (21)

y�r? sin u?: (22)

Here, the coordinates u? and r? are written with
primes to distinguish them from the more common
polar coordinates for an ellipse which are centered on
a focus. Plugging the polar equations into the
Cartesian equation (9) and solving for r?2 gives

r?2�
b2a2

b2 cos2 u? � a2 sin2 u?
: (23)

Define a new constant 05eB1 called the ECCENTRI-

CITY (where e�0 is the case of a CIRCLE) to replace b

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

a2

s
; (24)

from which it also follows from (8) that

a2e2�a2�b2�c2 (25)

c�ae (26)

b2�a2(1�e2): (27)

Therefore (23) can be written as

r?2�
a2(1 � e2)

1 � e2 cos2 u?
(28)

r?�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

1 � e2 cos2 u?

s
: (29)

If e�1; then



r?�af1�1
2 e2 sin2 u?� 1

16 e4

�[5�3 cos(2u?)] sin2 u?�. . .g; (30)

so

Dr?

a
�

a � r?

a
:1

2 e2 sin2 u?: (31)

Summarizing relationships among the parameters a ,
b , c , and e characterizing an ellipse,

b�a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�c2

p
(32)

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
�ae (33)

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

a2

s
�

c

a
: (34)

The ECCENTRICITY can therefore be interpreted as the
position of the FOCUS as a fraction of the SEMIMAJOR

AXIS.

If r and u are measured from a FOCUS F instead of
from the center C (as they commonly are in orbital
mechanics ) then the equations of the ellipse are

x�c�r cos u (35)

y�r sin u; (36)

and (9) becomes

(c � r cos u)2

a2
�

r2 sin2 u

b2
�1: (37)

Clearing the DENOMINATORS gives

b2(c2�2cr cos u�r2 cos2 u)�a2r2 sin2 u�a2b2 (38)

b2c2�2rcb2 cos u�b2r2 cos2 u�a2r2�a2r2 cos2 u

�a2b2: (39)

Plugging in (26) and (27) to re-express b and c in
terms of a and e ,

a2(1�e2)a2e2�2aea2(1�e2)r cos u�a2(1�e2)r2

�cos2 u�a2r2�a2r2 cos2 u�a2[a2(1�e2)]: (40)

Simplifying,

�r2�[er cos u�a(1�e2)]2�0 (41)

r�9[er cos u�a(1�e2)]: (42)

The sign can be determined by requiring that r must
be POSITIVE. When e�0, (42) becomes r�9(�a); but
since a is always POSITIVE, we must take the
NEGATIVE sign, so (42) becomes

r�a(1�e2)�er cos u (43)

r(1�e cos u)�a(1�e2) (44)

r�
a(1 � e2)

1 � e cos u
: (45)

The distance from a FOCUS to a point with horizontal
coordinate x (where the origin is taken to lie at the
center of the ellipse) is found from

cos u�
x � c

r
: (46)

Plugging this into (45) yields

r�e(x�c)�a(1�e2) (47)

r�a(1�e2)�e(x�c): (48)

In PEDAL COORDINATES with the PEDAL POINT at the
FOCUS, the equation of the ellipse is

b2

p2
�

2a

r
�1: (49)

To find the RADIUS OF CURVATURE, return to the
parametric coordinates centered at the center of the
ellipse and compute the first and second derivatives,

x?��a sin t (50)

y?�b cos t (51)

xƒ��a cos t (52)

yƒ��b sin t: (53)

Therefore,

R�
(x?2 � y?2)3=2

x?yƒ� xƒy?

�
(a2 sin2 t � b2 cos2 t)3=2

�a sin t(�b sin t) � (a cos t)(b cos t)

�
(a2 sin2 t � b2 cos2 t)3=2

ab(sin2 t � cos2 t)

�
(a2 sin2 t � b2 cos2 t)3=2

ab
: (54)

Similarly, the unit TANGENT VECTOR is given by



T̂�
�a sin t

b cost

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 sin2 t � b2 cos2 t
p : (55)

The ARC LENGTH of the ellipse can be computed using

s(t)�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
dt�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 t�b2 cos2 t

p
dt

�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 t�b2(1�sin2 t)

q
dt

�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�(a2�b2) sin2 t

q
dt

�bg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2 � a2

b2
sin2 t

s

�bg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin2 t

p
dt�bE(t; k); (56)

where E(f; k) is an incomplete ELLIPTIC INTEGRAL OF

THE SECOND KIND with MODULUS

k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

b2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

e2 � 1

s
: (57)

Again, note that t is a parameter which does not have
a direct interpretation in terms of an ANGLE. How-
ever, the relationship between the polar angle from
the ellipse center u and the parameter t follows from

u�tan�1 y

x

 !
�tan�1 b

a
tan t

 !
: (58)

This function is illustrated above with u shown as the
solid curve and t as the dashed, with b=a�0:6: Care
must be taken to make sure that the correct branch of
the INVERSE TANGENT function is used. As can be
seen, u weaves back and forth around t , with cross-
ings occurring at multiples of p=2:/

The CURVATURE and TANGENTIAL ANGLE of the ellipse

are given by

k(t)�
ab

(b2 cos2 t � a2 sin2 t)3=2 (59)

f(t)�tan�1 a

b
tan t

 !
: (60)

The entire PERIMETER p of the ellipse is given by
setting t�2p (corresponding to u�2p); which is
equivalent to four times the length of one of the
ellipse’s QUADRANTS,

p�bE 2p; 1�
a2

b2

 !
�4bE 1

2 p; 1�
a2

b2

 !

�4bE 1�
a2

b2

 !
; (61)

where E(k) is a complete ELLIPTIC INTEGRAL OF THE

SECOND KIND with MODULUS k . The PERIMETER can be
computed using the rapidly converging GAUSS-KUM-

MER SERIES as

p�p(a�b)
X

n�0

1
2

n

� �2

hn (62)

�p(a�b)2F1(�1
2; �

1
2; 1; h2) (63)

�
4E(h) � 2(h2 � 1)K(h)

p
(64)

�p(a�b)(1�1
4 h� 1

64 h2� 1
256 h3�. . .) (65)

(Sloane’s A056981 and A056982), where

h�
a � b

a � b

 !2

; (66)

/ 2F1(a; b; c; z) is a HYPERGEOMETRIC FUNCTION, K(k)
is a complete ELLIPTIC INTEGRAL of the first kind, and

n
k

� �
is a BINOMIAL COEFFICIENT.

Approximations to the PERIMETER include

p:p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a2�b2Þ

p
(67)

:p[3(a�b)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�3b)(3a�b)

p
] (68)

:p(a�b) 1�
3h

10 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 3h

p
 !

; (69)

where the last two are due to Ramanujan (1913�/4),
and (69) has a relative error of�3 � 2�17h5 for small



values of h . The error surfaces are illustrated above
for these functions.

The maximum and minimum distances from the
FOCUS are called the APOAPSIS and PERIAPSIS, and
are given by

r��rapoapsis �a(1 �e) (70)

r��rperiapsis �a(1 �e): (71)

The AREA of an ellipse may be found by direct
INTEGRATION

A �g
a

�a g
b
ffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
=a

�b
ffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
=a

dy dx �g
a

�a

2b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
dx

�
2b

a

1

2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �x2

p
�a2 sin�1 x

aj j

 !" #( )a

x ��a

�ab[sin �1 1 �sin�1(�1)] �ab
p

2 
� �

p

2

 !" #

� pab : ð72Þ

The AREA can also be computed more simply by
making the change of coordinates x?�(b=a)x and y?�
y from the elliptical region R to the new region R?:
Then the equation becomes

1

a2

a

b
x?

 !2

�
y?2

b2 
�1; (73)

or x?2 �y?2 �b2 ; so R? is a CIRCLE of RADIUS b . Since

@x

@x?
�

@x?

@x

 !�1

�
b

a

 !�1

�
a

b 
; (74)

the JACOBIAN is

@(x; y)

@(x?; y?)

�����
������

@x

@x?

@y?

@x?
@x

@y?

@y

@y?

���������

���������
�

a

b
0

0 1

������
�������a

b 
: (75)

The AREA is therefore

ggR

dx dy �ggR?

@(x; y)

@(x?; y?)

�����
����� dx ? dy?

�
a

b ggR?
dx ? dy?�

a

b 
(pb2) � pab ; (76)

as before. The AREA of an arbitrary ellipse given by
the QUADRATIC EQUATION

ax2 �bxy �cy2 �1 (77)

is

A �
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac � b2
p : (78)

The AREA of an ELLIPSE with semiaxes a and b with
respect to a PEDAL POINT P is

A �1
2 p(a2 �b2 � OPj j2) : (79)

The ellipse INSCRIBED in a given TRIANGLE and
tangent at its MIDPOINTS is called the MIDPOINT

ELLIPSE. The LOCUS of the centers of the ellipses
INSCRIBED in a TRIANGLE is the interior of the MEDIAL

TRIANGLE. Newton gave the solution to inscribing an
ellipse in a convex QUADRILATERAL (Dörrie 1965,
p. 217). The centers of the ellipses INSCRIBED in a
QUADRILATERAL all lie on the straight line segment
joining the MIDPOINTS of the DIAGONALS (Chakerian
1979, pp. 136 �/39).

The AREA of an ellipse with BARYCENTRIC COORDI-

NATES ( a; b; g) INSCRIBED in a TRIANGLE of unit AREA

is

D� p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 �2a)(1 �2b)(1 �2g)

p
: (80)

(Chakerian 1979, pp. 142 �/45).

The LOCUS of the apex of a variable CONE containing
an ellipse fixed in 3-space is a HYPERBOLA through the
FOCI of the ellipse. In addition, the LOCUS of the apex
of a CONE containing that HYPERBOLA is the original
ellipse. Furthermore, the ECCENTRICITIES of the
ellipse and HYPERBOLA are reciprocals. The LOCUS of
centers of a PAPPUS CHAIN of CIRCLES is an ellipse.
Surprisingly, the locus of the end of a garage door
mounted on rollers along a vertical track but extend-
ing beyond the track is a quadrant of an ellipse (Wells
1991, p. 66). (The ENVELOPE of the ladder’s positions
is an ASTROID.)

See also CIRCLE, CONIC SECTION, ECCENTRIC ANOM-

ALY, ECCENTRICITY, ELLIPTIC CONE, ELLIPSE TAN-

GENT, ELLIPTIC CURVE, ELLIPTIC CYLINDER,
HYPERBOLA, MIDPOINT ELLIPSE, PARABOLA, PARABO-

LOID, QUADRATIC CURVE, REFLECTION PROPERTY,
SALMON’S THEOREM, STEINER’S ELLIPSE
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Ellipse Caustic Curve
For an ELLIPSE given by

x�r cos t (1)

y�sin t (2)

with light source at (x; 0); the CAUSTIC is

x�
Nx

Dx

(3)

y�
Ny

Dy

; (4)

where

Nx�2rx(3�5r2)�(�6r2�6r4�3x2�9r2x2) cos t

�6rx(1�r2) cos(2t)

�(�2r2�2r4�x2�r2x2) cos(3t) (5)

Dx�2r(1�2r2�4x2)�3x(1�5r2) cos t

�(6r�6r3) cos(2t)�x(1�r2) cos(3t) (6)

Ny�8r(�1�r2�x2) sin3 t (7)

Dy�2r(�1�r2�4x2)�3(�x�5r2) cos t

�6r(1�r2) cos(2t)�x(�1�r2) cos(3t): (8)

At (
; 0);

x�
cos t[�1 � 5r2 � cos(2t)(1 � r2)]

4r
(9)

y�sin3 t: (10)

Ellipse Envelope

Consider the family of ELLIPSES

x2

c2
�

y2

(1 � c)2�1�0 (1)

for /c � ½0; 1	/. The PARTIAL DERIVATIVE with respect to c
is

�
2x2

c3
�

2y2

(1 � c)3�0 (2)

x2

c3
�

y2

(1 � c)3�0: (3)

Combining (1) and (3) gives the set of equations

1

c2

1

(1 � c)2

1

c3
�

1

(1 � c)3

2
6664

3
7775 x2

y2

� �
�

1
0

� �
(4)



x2

y2

� �
�

1

D

�
1

(1 � c)3 �
1

(1 � c)2

�
1

c3

1

c2

2
6664

3
7775 1

0

� �

�
1

D

�
1

(1 � c)3

�
1

c3

2
6664

3
7775; (5)

where the DISCRIMINANT is

D��
1

c2(1 � c)3 �
1

c3(1 � c)2 ��
1

c3(1 � c)3 ; (6)

so (5) becomes

x2

y2

� �
� c3

(1 �c)3

� �
: (7)

Eliminating c then gives

x2 =3 �y2 =3 �1; (8)

which is the equation of the ASTROID. If the curve is
instead represented parametrically, then

x �c cos t (9)

y �(1 �c) sin t: (10)

Solving

@x

@t

@y

@c 
�

@x

@c

@y

@t

�(�c sin t)(�sin t) �(cos t)[(1 �c) cos t]

�c(sin2 t �cos2 t) �cos2 t �c �cos2 t �0 (11)

for c gives

c �cos2 t; (12)

so substituting this back into (9) and (10) gives

x �(cos2 t) cos t �cos3 t (13)

y �(1 �cos2 t) sin t �sin3 t; (14)

the PARAMETRIC EQUATIONS of the ASTROID.

See also ASTROID, ELLIPSE, ENVELOPE

Ellipse Evolute

The EVOLUTE of an ELLIPSE is given by the PARA-

METRIC EQUATIONS

x �
a2 � b2

a
cos3 t (1)

y �
b2 � a2

b
sin3 t; (2)

which can be combined and written

(ax)2 =3 �(by)2=3

�[(a2 �b2) cos3 t]2 =3 �[(b2 �a2)] sin3 t]2=3

�(a2 �b2)2 =3(sin2 t �cos2 t) �(a2 �b2)2 =3 �c4 =3 ; (3)

which is a stretched ASTROID sometimes called the
LAMÉ CURVE. From a point inside the EVOLUTE, four
NORMALS can be drawn to the ellipse, but from a point
outside, only two NORMALS can be drawn.

See also ASTROID, ELLIPSE, EVOLUTE, LAMÉ CURVE
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Ellipse Involute

From ELLIPSE, the TANGENT VECTOR is

T�
�a sin t
b cos t

� �
; (1)



and the ARC LENGTH is

s �ag
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e2 sin2 t

p
dt �aE(t; e) ; (2)

where E(t; e) is an incomplete ELLIPTIC INTEGRAL OF

THE SECOND KIND. Therefore,

ri �r �s ̂T � 
a cos t
b sin t

� �
�aeE(t; e) 

�a sin t
b cos t

� �
(3)

�
afcos t �aeE(t; e) sin tg
bfsin t �aeE(t; e) cos tg

� �
: (4)

Ellipse Pedal Curve
The pedal curve of an ellipse with semimajor axis a ,
semiminor axis b , and PEDAL POINT (x0 ; y0) is given
by

f �
a[ax0 sin2 t � b cos t(b � y0 sin t)]

b2 cos2 t � a2 sin2 t

g �
b[a2 sin2 t � ax0 cos t sin t � by0 cos2 t]

b2 cos2 t � a2 sin2 t 
:

The pedal curve of an ellipse with PEDAL POINT at the
FOCUS is a CIRCLE (Hilbert and Cohn-Vossen, pp. 25 �/

6). For other pedal points, the pedal curves are more
complicated.

See also ELLIPSE, PEDAL CURVE
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Ellipse Point Picking

To inscribe an EQUILATERAL TRIANGLE in an ELLIPSE,
place the top VERTEX at (0; b) ; then solve to find the
(x, y ) coordinate of the other two VERTICES.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �(b �y)2

q
�2x (1)

x2 �(b �y)2 �4x2 (2)

3x2 �(b �y)2 : (3)

Now plugging in the equation of the ELLIPSE

x2

a2 
�

y2

b2 
�1; (4)

gives

3a2 1 �
y2

b2

 !
�b2 �2by �y2 (5)

y2 1 �3
a2

b2

 !
�2by �(b2 �3a2) �0 (6)

y �

2b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 � 4(b2 � 3a2) 1 � 3

a2

b2

 !vuut
2 1 � 3

a2

b2

 !

�

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1 � 3

a2

b2

 !
1 � 3

a2

b2

 !vuut
1 � 3

a2

b2

b; (7)

and

x�9a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

y2

b2

s
: (8)

See also ELLIPSE, EQUILATERAL TRIANGLE
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Ellipse Tangent

The normal to an ellipse at a point P intersects the
ellipse at another point Q . The angle corresponding to
Q can be found by solving the equation

(P �Q) �
dP

dt
�0 (1)

for t?; where P(t) �(a cos t; b sin t) and Q(t) �
(a cos t?; b sin t?) : This gives solutions

t?�9cos�1 9
N(t)

a4 sin2 t � b4 cos2 t

" #
; (2)

where

N(t) �b2 cos t[a2 �b2(b2 �a)2 cos(2t)]

�a2(a �b)(a �b) cos t sin2 t; (3)

of which (�; �) gives the valid solution. Plugging this
in to obtain Q then gives

d(t) � ½P �Q ½

�

ffiffiffi
2

p
ab[a2 � b2 � (b2 � a2) cos(2t)]3 =2

a4 � b4 � (b4 � a4) cos(2t)
ð4Þ

�
2ab(b2 cos2 t � a2 sin2 t)3 =2

b4 cos2 t � a4 sin2 t
: (5)

To find the maximum distance, take the derivative
and set equal to zero,

d?(t)

�
2ab(a � b)(a � b) cos t sin t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2 t � a2 sin2 t

p
(b4 cos2 t � a4 sin2 t)2

�(a4 sin2 t �b4 cos2 t �2a2b2) ¼ 0; (6)

which simplifies to

a4 sin2 t �b4 cos2 t �2a2b2 �0: (7)

Substituting for sin2 t and solving gives

cos2 t �
a4 � 2a2b2

a4 � b4 
(8)

sin2 t �
2a2b2 � b4

a4 � b4
: (9)

Plugging these into d(t) then gives

dmin �
3
ffiffiffi
3

p
a2b2

(a2 � b2)3 =2 : (10)

This problem was given as a SANGAKU PROBLEM on a
tablet from Miyagi Prefecture in 1912 (Rothman
1998). There is probably a clever solution to this
problem which does not require calculus, but it is
unknown if calculus was used in the solution by the
original authors (Rothman 1998).

See also ELLIPSE
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Ellipsoid

A QUADRATIC SURFACE which is given in CARTESIAN

COORDINATES by

x2

a2
�

y2

b2
�

z2

c2
�1; (1)

where the semi-axes are of lengths a , b , and c . In
SPHERICAL COORDINATES, this becomes

r2 cos2 u sin2 f

a2
�

r2 sin2 u sin2 f

b2
�

r2 cos2 f

c2
�1: (2)

The PARAMETRIC EQUATIONS are

x�a cos u sin f (3)

y ¼ b sin u sin f ð4Þ

z�c cos f: (5)

for u � [0; 2p) and f � [0; p]:/



If the lengths of two axes of an ellipsoid are the same,
the figure is called a SPHEROID (depending on whether
c Ba or c �a , an OBLATE SPHEROID or PROLATE

SPHEROID, respectively), and if all three are the
same, it is a SPHERE. Tietze (1965, p. 28) calls the
general ellipsoid a "triaxial ellipsoid."

There are two families of parallel CIRCULAR CROSS

SECTIONS in every ellipsoid. However, the two coin-
cide for SPHEROIDS (Hilbert and Cohn-Vossen 1999,
pp. 17 �/9). If the two sets of circles are fastened
together by suitably chosen slits so that are free to
rotate without sliding, the model is movable. Further-
more, the disks can always be moved into the shape of
a SPHERE (Hilbert and Cohn-Vossen 1999, p. 18).

In 1882, Staude discovered a "thread" construction for
an ellipsoid analogous to the taught pencil and string
construction of the ELLIPSE (Hilbert and Cohn-Vossen
1999, pp. 19 �/2). This construction makes use of a
fixed framework consisting of an ELLIPSE and a
HYPERBOLA.

The SURFACE AREA of an ellipsoid (Bowman 1961,
pp. 31 �/2) is given by

S �2pc2 �
2 pbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2
p [(a2 �c2)E( u) �c2 u] ; (6)

where /E ðuÞ/ is a COMPLETE ELLIPTIC INTEGRAL OF THE

SECOND KIND,

e2
1 �

a2 � c2

a2 
(7)

e2
2 �

b2 � c2

b2 
(8)

k �
e2

e1

; (9)

and u is given by inverting the expression

e1 �sn(u ; k) ; (10)

where sn(u ; k) is a JACOBI ELLIPTIC FUNCTION. The
VOLUME of an ellipsoid is

V �4
3 pabc : (11)

A different parameterization of the ellipsoid is the so-
called stereographic ellipsoid, given by the PARA-

METRIC EQUATIONS

x(u; v) �
a(1 � u2 � v2)

1 � u2 � v2 
(12)

y(u; v) �
2bu

1 � u2 � v2 
(13)

z(u; v) �
2cv

1 � u2 � v2 
: (14)

A third parameterization is the Mercator parameter-
ization

x(u; v)�a sech v cos u (15)

y(u; v)�b sech v sin u (16)

z(u; v)�c tanh v (17)

(Gray 1997).

The SUPPORT FUNCTION of the ellipsoid is

h�
x2

a4
�

y2

b4
�

z2

c4

 !�1=2

; (18)

and the GAUSSIAN CURVATURE is

K�
h4

a2b2c2
(19)

(Gray 1997, p. 296).

See also CONFOCAL ELLIPSOIDAL COORDINATES, CON-

FOCAL QUADRICS, CONVEX OPTIMIZATION THEORY,
ELLIPSOID PACKING, GOURSAT’S SURFACE, OBLATE

SPHEROID, PROLATE SPHEROID, SPHERE, SPHEROID,
SUPERELLIPSOID
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Ellipsoid Geodesic
An ELLIPSOID can be specified parametrically by

x �a cos u sin v (1)

y �b sin u sin v (2)

z �c cos v: (3)

The GEODESIC parameters are then

P �sin2 v(b2 cos2 u �a2 sin2 u) (4)

Q �1
4(b

2 �a2) sin(2u) sin(2v) (5)

R �cos2 v(a2 cos2 u �b2 sin2 u) �c2 sin2 v : (6)

When the coordinates of a point are on the QUADRIC

x2

a
�

y2

b
�

z2

c
�1 (7)

and expressed in terms of the parameters p and q of
the confocal quadrics passing through that point (in
other words, having a �p ; b �p; c �p; and a �q ; b �
q; c �q for the squares of their semimajor axes), then
the equation of a GEODESIC can be expressed in the
form

qdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(a � q)(b � q)(c � q)(u � q)

p
9

pdpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(a � p)(b � p)(c � p)(u � p)

p �0 ; (8)

with u an arbitrary constant, and the ARC LENGTH

element ds is given by

�2
ds

pq 
�

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(a � q)(b � q)(c � q)(u � q)

p
9

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(a � p)(b � p)(c � p)( u � p)

p ; (9)

where upper and lower signs are taken together.

See also OBLATE SPHEROID GEODESIC, SPHERE GEO-

DESIC
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Ellipsoid of Revolution
OBLATE SPHEROID, PROLATE SPHEROID, SPHEROID

Ellipsoid Packing
Bezdek and Kuperberg (1991) have constructed pack-
ings of identical ellipsoids of densities , greater
than the maximum density possible for identical
spheres (Sloane 1998).

See also SPHERE PACKING
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Ellipsoidal Calculus
Ellipsoidal calculus is a method for solving problems
in control and estimation theory having unknown but
bounded errors in terms of sets of approximating
ellipsoidal-value functions. Ellipsoidal calculus has
been especially useful in the study of LINEAR PRO-

GRAMMING.
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Ellipsoidal Coordinates
CONFOCAL ELLIPSOIDAL COORDINATES

Ellipsoidal Harmonic
ELLIPSOIDAL HARMONIC OF THE FIRST KIND, ELLIP-

SOIDAL HARMONIC OF THE SECOND KIND

Ellipsoidal Harmonic of the First Kind
The first solution to LAMÉ’S DIFFERENTIAL EQUATION,
denoted Em

n (x) for m�1, ..., 2n�1: They are also
called LAMÉ FUNCTIONS. The product of two ellipsoi-
dal harmonics of the first kind is a SPHERICAL

HARMONIC. Whittaker and Watson (1990, pp. 536�/

37) write

Up�
x2

a2 � up

�
y2

b2 � up

�
z2

c2 � up

�1 (1)

P(U)�U1U2 � � �Um; (2)

and give various types of ellipsoidal harmonics and
their highest degree terms as



1. P(U) : 2m/

2. xP(U) ; yP( U); z P(U) : 2m �1/

3. yz P( U) ; zx P( U); xyP( U) : 2m �2/

4. xyz P( U) : 2m �3 :/

A Lamé function of degree n may be expressed as

( u �a2) k1 ( u �b2) k2 (u �c2) k3

Ym
p�1

( u � up) ; (3)

where ki �0 or 1/2, ui are REAL and unequal to each
other and to �a2 ;�b2 ; and �c2 ; and

1
2 n �m � k1 � k2 � k3 : (4)

Byerly (1959) uses the RECURRENCE RELATIONS to
explicitly compute some ellipsoidal harmonics, which
he denotes by K(x) ; L(x) ; M(x); and N(x);

K0(x) �1

L0(x) �0

M0(x) �0

N0(x) �0

K1(x) �x

L1(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �b2

p

M1(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �c2

p

N1(x) �0

Kp1

2 (x) �x2 �1
3[b

2 �c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 �c2)2 �3b2c2

q
]

Kp2

2 (x) �x2 �1
3[b

2 �c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 �c2)2 �3b2c2

q
]

L2(x) �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �b2

p

M2(x) �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �c2

p

N2(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 �b2)(x2 �c2)

p

Kp1

3 (x) �x3 �1
5 x[2(b2 �c2) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4(b2 �c2)2 �15b2c2

q
]

Kp2

3 (x) �x3 �1
5 x[2(b2 �c2) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4(b2 �c2)2 �15b2c2

q
]

Lq1

3 (x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �b2

p
[x2

�1
5(b

2 �2c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 �2c2)2 �5b2c2

q
)]

Lq2

3 (x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �b2

p
[x2 �1

5(b
2 �2c2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 �2c2)2 �5b2c2

q
)]

Mq1

3 (x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �c2

p
[x2 �1

5(2b2 �c2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2b2 �c2)2 �5b2c2

q
)]

Mq2

3 (x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �c2

p
[x2 �1

5(2b2 �c2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2b2 �c2)2 �5b2c2

q
)]

Mq3

3 (x) �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 �b2)(x2 �c2)

p

See also ELLIPSOIDAL HARMONIC OF THE SECOND

KIND, STIELTJES’ THEOREM
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Ellipsoidal Harmonic of the Second Kind
Given by

Fp
m(x) �(2m �1)Ep

m(x)g



x

dx

(x2 � b2)(x2 � c2)[Ep
m(x)]2 :

Ellipsoidal Wave Equation
The ORDINARY DIFFERENTIAL EQUATION

yƒ�(a�bk2 sn2 x�qk4 sn4 x)y�0;

where sn x�sn(x; k) is a JACOBI ELLIPTIC FUNCTION

(Arscott 1981).

See also LAMÉ ’S DIFFERENTIAL EQUATION
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Elliptic Alpha Function
Elliptic alpha functions relate the complete ELLIPTIC

INTEGRALS OF THE FIRST K(kr) and SECOND KINDS

E(kr) at ELLIPTIC INTEGRAL SINGULAR VALUES kr



according to

a(r) �
e ?(kr)

k(kr) 
�

p

4[k(kr)]
2 (1)

�
p

4[k(kr)]
2 �

ffiffiffi
r

p
�

e(kr)
ffiffiffi
r

p

k(kr) 
(2)

�
p�1 � 4

ffiffiffi
r

p
q

dq 4(q)

dq

1

q 4(q)

q 4
3(q) 

; (3)

where q 3(q) is a JACOBI THETA FUNCTION and

kr � l �(r) (4)

q ¼ e � p 
ffiffi
r

p
; ð5Þ

and l �(r) is the ELLIPTIC LAMBDA FUNCTION. The
elliptic alpha function is related to the ELLIPTIC DELTA

FUNCTION by

a(r) � 1
2[
ffiffiffi
r

p
� d(r)]: (6)

It satisfies

a(4r) � (1 � kr)
2 
a(r) �2

ffiffiffi
r

p
kr ; (7)

and has the limit

lim
r0


a(r) �
1

p

" #
:8

ffiffiffi
r

p
�

1

p

 !
e � p 

ffiffi
r

p
(8)

(Borwein et al. 1989). A few specific values (Borwein
and Borwein 1987, p. 172) are

að1Þ ¼ 1
2

að2Þ ¼
ffiffiffi
2

p
�1

að3Þ ¼ 1
2 ð

ffiffiffi
3

p
�1 Þ

að4Þ ¼ 2ð
ffiffiffi
2

p
�1Þ2

að5Þ ¼ 1
2 ð

ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
5

p
�2

q
Þ

að6 Þ ¼ 5
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p
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3

p
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að7Þ ¼ 1
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að8 Þ ¼ 2 ð10 þ 7
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að15 Þ ¼ 1
2ð
ffiffiffiffiffiffi
15

p
�

ffiffiffi
5

p
�1Þ

að16 Þ ¼ 4ð
ffiffiffi
8

p
� 1

ð21 =4 þ 1Þ4

að18 Þ ¼�3057 þ 2163
ffiffiffi
2

p
þ 1764

ffiffiffi
3

p
�1248

ffiffiffi
6

p

að22Þ ¼�12479 �8824
ffiffiffi
2

p
þ 3762

ffiffiffiffiffiffi
11

p
þ 2661

ffiffiffiffiffiffi
22

p

að25Þ ¼ 5
2 ½1 �251=4 ð7 �3

ffiffiffi
5

p
Þ	

að27Þ ¼ 3½12 ð
ffiffiffi
3

p
þ 1 Þ�21 =3 	

að30 Þ ¼ 1
2

ffiffiffiffiffiffi
30

p
�ð2 þ

ffiffiffi
5

p
Þ2 ð3 þ

ffiffiffiffiffiffi
10

p
Þ2

�ð�6 �5
ffiffiffi
2

p
�3

ffiffiffi
5

p
�2

ffiffiffiffiffiffi
10

p
þ

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
57 þ 40

ffiffiffi
2

pq
�½56 þ 38

ffiffiffi
2

p
þ

ffiffiffiffiffiffi
30

p
ð2 þ

ffiffiffi
5

p
Þð3 þ

ffiffiffiffiffiffi
10

p
Þ	g

að37 Þ ¼ 1
2

ffiffiffiffiffiffi
37

p
�ð171 �25

ffiffiffiffiffiffi
37

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

37
p

�6

q� �

að46 Þ ¼ 1
2 ½
ffiffiffiffiffiffi
46

p
þ ð18 þ 13

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
661 þ 468

ffiffiffi
2

pq
Þ2

�ð18 þ 13
ffiffiffi
2

p
�3

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
147 þ 104

ffiffiffi
2

pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
661 þ 468

ffiffiffi
2

pq
Þ

�ð200 þ 14
ffiffiffi
2

p
þ 26

ffiffiffiffiffiffi
23

p
þ 18

ffiffiffiffiffiffi
46

p
þ

ffiffiffiffiffiffi
46

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
661 þ 468

ffiffiffi
2

pq
Þ	

að49Þ�7
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 ½

ffiffiffi
2

p
73=4 ð33011 þ 12477

ffiffiffi
7

p
Þ�21 ð9567 þ 3616

ffiffiffi
7

p
Þ	

q

að58Þ ¼ ½12ð
ffiffiffiffiffiffi
29

p
þ 5 Þ	6 ð99

ffiffiffiffiffiffi
29

p
�444 Þð99

ffiffiffi
2

p
�70 �13

ffiffiffiffiffiffi
29

p
Þ

¼ 3 ð�40768961 þ 2882008
ffiffiffi
2

p
�7570606

ffiffiffiffiffiffi
29

p
þ 5353227

�
ffiffiffiffiffiffi
58

p
Þ

a(64)�
8[2(

ffiffiffi
8

p
� 1) � (21=4 � 1)4]
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� 1
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J. Borwein has written an ALGORITHM which uses
lattice basis reduction to provide algebraic values for
a(n):/

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
ELLIPTIC INTEGRAL OF THE SECOND KIND, ELLIPTIC

INTEGRAL SINGULAR VALUE, ELLIPTIC LAMBDA FUNC-

TION
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Elliptic Cone

A CONE with ELLIPTICAL CROSS SECTION. The PARA-

METRIC EQUATIONS for an elliptic cone of height h ,
SEMIMAJOR AXIS a , and SEMIMINOR AXIS b are

x �(h �z)a cos u

y �(h �z)b sin u

z �z;

where u � [0; 2p) and z � [0; h]: The elliptic cone is a
QUADRATIC RULED SURFACE, and has VOLUME

V�1
3pab:

See also CONE, ELLIPTIC CYLINDER, ELLIPTIC PARA-

BOLOID, HYPERBOLIC PARABOLOID, QUADRATIC SUR-

FACE, RULED SURFACE

References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.

Boca Raton, FL: CRC Press, p. 226, 1987.
Fischer, G. (Ed.). Plate 68 in Mathematische Modelle/

Mathematical Models, Bildband/Photograph Volume.
Braunschweig, Germany: Vieweg, p. 63, 1986.

Elliptic Cone Point
ISOLATED SINGULARITY

Elliptic Coordinates
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Elliptic Curve
Informally, an elliptic curve is a type of CUBIC CURVE

whose solutions are confined to a region of space
which is topologically equivalent to a TORUS. The

WEIERSTRASS ELLIPTIC FUNCTION �(z; g2; g3) de-
scribes how to get from this TORUS to the algebraic
form of an elliptic curve.

Formally, an elliptic curve over a FIELD K is a
nonsingular CUBIC CURVE in two variables, f (X; Y)�
0; with a K -rational point (which may be a POINT AT

INFINITY). The FIELD K is usually taken to be the
COMPLEX NUMBERS C; REALS R; RATIONALS Q; alge-
braic extensions of Q; P -ADIC NUMBERS Qp; or a FINITE

FIELD.

By an appropriate change of variables, a general
elliptic curve over a FIELD of CHARACTERISTIC"2; 3

Ax3�Bx2y�Cxy2�Dy3�Ex2�Fxy�Gy2�Hx

�Iy�J�0; (1)

where A , B , ..., are elements of K , can be written in
the form

y2�x3�ax�b; (2)

where the right side of (2) has no repeated factors. If
K has CHARACTERISTIC three, then the best that can
be done is to transform the curve into

y2�x3�ax2�bx�c (3)

(the x2 term cannot be eliminated). If K has CHAR-

ACTERISTIC two, then the situation is even worse. A
general form into which an elliptic curve over any K
can be transformed is called the WEIERSTRASS FORM,
and is given by

y2�ay�x3�bx2�cxy�dx�e; (4)

where a , b , c , d , and e are elements of K . Luckily, Q;
R; and C all have CHARACTERISTIC zero.

Whereas CONIC SECTIONS can be parameterized by
the rational functions, elliptic curves cannot. The
simplest parameterization functions are ELLIPTIC

FUNCTIONS. ABELIAN VARIETIES can be viewed as
generalizations of elliptic curves.

If the underlying FIELD of an elliptic curve is
algebraically closed, then a straight line cuts an
elliptic curve at three points (counting multiple roots
at points of tangency). If two are known, it is possible



to compute the third. If two of the intersection points
are K -RATIONAL, then so is the third. Mazur and Tate
(1973/74) proved that there is no elliptic curve over Q
having a RATIONAL POINT of order 13.

Let (x1 ; y1) and (x2 ; y2) be two points on an elliptic
curve E with DISCRIMINANT

DE ��16(4a3 �27b2) (5)

satisfying

DE "0: (6)

A related quantity known as the J -INVARIANT of E is
defined as

j(E) �
2833a3

4a3 � 27b2 
: (7)

Now define

l �

y1 � y2

x1 � x2

for x1 "x2

3x2
1 � a

2y1

for x1 �x2 :

8>>><
>>>: (8)

Then the coordinates of the third point are

x3 � l2 �x1 �x2 (9)

y3 � l(x3 �x1) �y1 : (10)

For elliptic curves over Q; Mordell proved that there
are a finite number of integral solutions. The MOR-

DELL-WEIL THEOREM says that the GROUP of RATIONAL

POINTS of an elliptic curve over Q is finitely gener-
ated. Let the ROOTS of y2 be r1 ; r2 ; and r3 : The
discriminant is then

D�k(r1 �r2)2(r1 �r3)2(r2 �r3)2 : (11)

The amazing TANIYAMA-SHIMURA CONJECTURE states
that all rational elliptic curves are also modular. This
fact is far from obvious, and despite the fact that the
conjecture was proposed in 1955, it was not even
partially proved until 1995. Even so, Wiles’ proof for
the semistable case surprised most mathematicians,
who had believed the conjecture unassailable. As a
side benefit, Wiles’ proof of the TANIYAMA-SHIMURA

CONJECTURE also laid to rest the famous and thorny
problem which had baffled mathematicians for hun-
dreds of years, FERMAT’S LAST THEOREM.

Curves with small CONDUCTORS are listed in Swin-
nerton-Dyer (1975) and Cremona (1997). Methods for
computing integral points (points with integral co-
ordinates) are given in Gebel et al. and Stroeker and
Tzanakis (1994). The SCHOOF-ELKIES-ATKIN ALGO-

RITHM can be used to determine the order of an
elliptic curve E=Fp over the FINITE FIELD Fp:/

See also CUBIC CURVE, ELLIPTIC CURVE GROUP LAW,
FERMAT’S LAST THEOREM, FREY CURVE, J -INVARIANT,

MINIMAL DISCRIMINANT, MORDELL-WEIL THEOREM,
OCHOA CURVE, RIBET’S THEOREM, SCHOOF-ELKIES-

ATKIN ALGORITHM, SIEGEL’S THEOREM, SWINNERTON-

DYER CONJECTURE, TANIYAMA-SHIMURA CONJEC-

TURE, WEIERSTRASS ELLIPTIC FUNCTION, WEIER-

STRASS FORM
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Elliptic Curve Factorization Method
A factorization method, abbreviated ECM, which
computes a large multiple of a point on a random
ELLIPTIC CURVE modulo the number to be factored N .
It tends to be faster than the POLLARD RHO FACTOR-

IZATION and POLLARD P -1 FACTORIZATION METHODS.

Zimmermann maintains a table of the largest factors
found using the ECM. The largest factor found using
this algorithm is a prime factor of 54 digits of the 127-



digit cofactor C of

n �b4 �b2 �1 �13 �733 �7177 �C ;

where b �6343 �1; found by N. Lygeros and M. Miz-
ony in Dec. 1999.

See also ATKIN-GOLDWASSER-KILIAN-MORAIN CERTI-

FICATE, ELLIPTIC CURVE PRIMALITY PROVING, ELLIP-

TIC PSEUDOPRIME
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Elliptic Curve Group Law
The GROUP of an ELLIPTIC CURVE which has been
transformed to the form

y2 �x3 �ax �b

is the set of K -RATIONAL POINTS, including the single
POINT AT INFINITY. The group law (addition) is defined
as follows: Take 2 K -RATIONAL POINTS P and Q . Now
‘draw’ a straight line through them and compute the
third point of intersection R (also a K -RATIONAL

POINT). Then

P �Q �R �0

gives the identity POINT AT INFINITY. Now find the
inverse of R , which can be done by setting R �(a ; b)
giving �R �(a ; �b) :/

This remarkable result is only a special case of a more
general procedure. Essentially, the reason is that this
type of ELLIPTIC CURVE has a single POINT AT INFINITY

which is an inflection point (the line at infinity meets
the curve at a single POINT AT INFINITY, so it must be
an intersection of multiplicity three).

Elliptic Curve Primality Proving
A class of algorithm, abbreviated ECPP, which
provides certificates of primality using sophisticated
results from the theory of ELLIPTIC CURVES. A detailed
description and list of references are given by Atkin
and Morain (1990, 1993).

Adleman and Huang (1987) designed an independent
algorithm using elliptic curves of genus two.

See also ATKIN-GOLDWASSER-KILIAN-MORAIN CERTI-

FICATE, ELLIPTIC CURVE FACTORIZATION METHOD,
ELLIPTIC PSEUDOPRIME
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Elliptic Cylinder

A CYLINDER with ELLIPTICAL CROSS SECTION. The
PARAMETRIC EQUATIONS for the laterals sides of an
elliptic cylinder of height h , SEMIMAJOR AXIS a , and
SEMIMINOR AXIS b are

x�a cos u

y�b sin u

z�z;

where u � [0; 2p) and z � [0; h]:/

The elliptic cylinder is a QUADRATIC RULED SURFACE.

See also CONE, CYLINDER, ELLIPTIC CONE, ELLIPTIC

PARABOLOID, QUADRATIC SURFACE, RULED SURFACE
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Elliptic Cylindrical Coordinates

The v coordinates are the asymptotic angle of
confocal HYPERBOLIC CYLINDERS symmetrical about
the X -AXIS. The u coordinates are confocal ELLIPTIC

CYLINDERS centered on the origin.

x �a cosh u cos v (1)

y �a sinh u sin v (2)

z �z ; (3)

where u � [0; 
) ; v � [0; 2p) ; and z � (�
; 
) : They
are related to CARTESIAN COORDINATES by

x2

a2 cosh2 u 
�

y2

a2 sinh2 u 
�1 (4)

x2

a2 cos2 v 
�

y2

a2 sin2 v 
�1 : (5)

The SCALE FACTORS are

h1 �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 u sin2 v �sinh2 u cos2 v

p
(6)

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh(2u) � cos(2v)

2

s
(7)

�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 u �sin2 v

p
(8)

h2 �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 u sin2 v �sinh2 u cos2 v

p
(9)

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh(2u) � cos(2v)

2

s
(10)

�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 u �sin2 v

p
(11)

h3 �1: (12)

The LAPLACIAN is

92 �
1

a2(sinh2 u � sin2 v)

@2

@u2 
�

@2

@v2

 !
�

@2

@z2 
: (13)

Let

q1 �cosh u (14)

q2 �cos v (15)

q3 �z : (16)

Then the new SCALE FACTORS are

hq1
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � q2
2

q2
1 � 1

s
(17)

hq2
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

1 � q2
2

1 � q2
1

s
(18)

hq3
�1: (19)

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPAR-

ABLE.

See also CYLINDRICAL COORDINATES, HELMHOLTZ

DIFFERENTIAL EQUATION–ELLIPTIC CYLINDRICAL CO-

ORDINATES
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Elliptic Delta Function

d(r) �
ffiffiffi
r

p
�2a(r) ;

where a(r) is the ELLIPTIC ALPHA FUNCTION.

See also ELLIPTIC ALPHA FUNCTION, ELLIPTIC INTE-

GRAL SINGULAR VALUE
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Elliptic Exponential Function
The inverse of the ELLIPTIC LOGARITHM

eln(x) �g



x

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3 � at2 � bt

p :

It is doubly periodic in the COMPLEX PLANE.

Elliptic Fixed Point (Differential
Equations)
A FIXED POINT for which the STABILITY MATRIX is
purely IMAGINARY, l9�9i v (for v > 0):/

See also DIFFERENTIAL EQUATION, FIXED POINT,
HYPERBOLIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), PARABOLIC FIXED POINT, STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, STABLE

STAR, UNSTABLE IMPROPER NODE, UNSTABLE NODE,
UNSTABLE SPIRAL POINT, UNSTABLE STAR

References
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Elliptic Fixed Point (Map)
A FIXED POINT of a LINEAR TRANSFORMATION (MAP) for
which the rescaled variables satisfy

( d � a)2 �4bg B0:

See also HYPERBOLIC FIXED POINT (MAP), LINEAR

TRANSFORMATION, PARABOLIC FIXED POINT

Elliptic Function
A DOUBLY PERIODIC FUNCTION with periods 2v1 and
2v2 such that

f (z �2v1) �f (z �2 v2) �f (z) ; (1)

which is ANALYTIC and has no singularities except for
POLES in the finite part of the COMPLEX PLANE. The

HALF-PERIOD RATIO t � v2 = v1 must not be purely real,
because if it is, the function reduces to a singly
periodic function if t is rational, and a constant if t
is irrational (Jacobi 1835). v1 and v2 are labeled such
that I[ t] �I[ v2 =v1] > 0; where I[z] is the IMAGINARY

PART.

A "cell" of an elliptic function is defined as a
parallelogram region in the COMPLEX PLANE in which
the function is not multi-valued. Properties obeyed by
elliptic functions include

1. The number of POLES in a cell is finite.
2. The number of ROOTS in a cell is finite.
3. The sum of RESIDUES in any cell is 0.
4. LIOUVILLE’S ELLIPTIC FUNCTION THEOREM: An
elliptic function with no POLES in a cell is a
constant.
5. The number of zeros of f (z) �c (the "order"rpar;
equals the number of POLES of f (z) :/
6. The simplest elliptic function has order two,
since a function of order one would have a simple
irreducible POLE, which would need to have a
NONZERO residue. By property (3), this is impos-
sible.
7. Elliptic functions with a single POLE of order 2
with RESIDUE 0 are called WEIERSTRASS ELLIPTIC

FUNCTIONS. Elliptic functions with two simple
POLES having residues a0 and �a0 are called
JACOBI ELLIPTIC FUNCTIONS.
8. Any elliptic function is expressible in terms of
either WEIERSTRASS ELLIPTIC FUNCTION or JACOBI

ELLIPTIC FUNCTIONS.
9. The sum of the AFFIXES of ROOTS equals the sum
of the AFFIXES of the POLES.
10. An algebraic relationship exists between any
two elliptic functions with the same periods.

The elliptic functions are inversions of the ELLIPTIC

INTEGRALS. The two standard forms of these functions
are known as JACOBI ELLIPTIC FUNCTIONS and WEIER-

STRASS ELLIPTIC FUNCTIONS. JACOBI ELLIPTIC FUNC-

TIONS arise as solutions to differential equations OF

THE FORM

d2x

dt2
�A�Bx�Cx2�Dx3; (2)

and WEIERSTRASS ELLIPTIC FUNCTIONS arise as solu-
tions to differential equations OF THE FORM

d2x

dt2
�A�Bx�Cx2: (3)

See also DOUBLY PERIODIC FUNCTION, ELLIPTIC

CURVE, ELLIPTIC INTEGRAL, HALF-PERIOD RATIO,
JACOBI ELLIPTIC FUNCTIONS, JACOBI THETA FUNC-

TIONS, LIOUVILLE’S ELLIPTIC FUNCTION THEOREM,
MODULAR FORM, MODULAR FUNCTION, NEVILLE THE-



TA FUNCTIONS, THETA FUNCTIONS, WEIERSTRASS

ELLIPTIC FUNCTIONS
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Elliptic Functional
COERCIVE FUNCTIONAL

Elliptic Geometry
A constant curvature NON-EUCLIDEAN GEOMETRY

which replaces the PARALLEL POSTULATE with the
statement "through any point in the plane, there exist
no lines PARALLEL to a given line." Elliptic geometry is
sometimes also called RIEMANNIAN GEOMETRY. It can
be visualized as the surface of a SPHERE on which
"lines" are taken as GREAT CIRCLES. In elliptic
geometry, the sum of angles of a TRIANGLE is > 180�:/

See also EUCLIDEAN GEOMETRY, HYPERBOLIC GEOME-

TRY, NON-EUCLIDEAN GEOMETRY

Elliptic Group Modulo p
/E(a; b)=p denotes the elliptic GROUP modulo p whose
elements are 1 and 
 together with the pairs of
INTEGERS (x, y ) with 05x; yBp satisfying

y2�x3�ax�b (mod p) (1)

with a and b INTEGERS such that

4a3�27b2f0 (mod p): (2)

Given (x1; y1); define

(xi; yi)�(x1; y1)i (mod p): (3)

The ORDER h of E(a; b)=p is given by

h�1�
Xp

x�1

x3 � ax � b

p

 !
�1

" #
; (4)

where x3�ax�b=p is the LEGENDRE SYMBOL,
although this FORMULA quickly becomes impractical.
However, it has been proven that

p�1�2
ffiffiffi
p

p
5h(E(a; b)=p)5p�1�2

ffiffiffi
p

p
: (5)

Furthermore, for p a PRIME > 3 and INTEGER n in the
above interval, there exists a and b such that

h(E(a; b)=p)�n; (6)

and the orders of elliptic GROUPS mod p are nearly
uniformly distributed in the interval.



Elliptic Helicoid

A generalization of the HELICOID to the PARAMETRIC

EQUATIONS

x(u ; v) �av cos u

y(u; v) �bv sin u

z(u ; v) �cu :

See also HELICOID
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Surfaces with Mathematica, 2nd ed. Boca Raton, FL:
CRC Press, p. 422, 1997.

Elliptic Hyperboloid

The elliptic hyperboloid is the generalization of the
HYPERBOLOID to three distinct semimajor axes. The
elliptic hyperboloid of one sheet is a RULED SURFACE

and has Cartesian equation

x2

a2 
�

y2

b2 
�

z2

c2 
�1; (1)

and PARAMETRIC EQUATIONS

x(u; v) �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �u2

p
cos v (2)

y(u; v) �b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �u2

p
sin v (3)

z(u ; v) �cu (4)

for v � [0; 2p) ; or

x(u; v) �a(cos u �v sin u) (5)

y(u; v) �b(sin u 9v cos u) (6)

z(u; v) �9cv ; (7)

or

x(u; v) �a cosh v cos u (8)

y(u; v) �b cosh v sin u (9)

z(u; v) �c sinh v: (10)

The two-sheeted elliptic hyperboloid oriented along
the Z -AXIS has Cartesian equation

x2

a2 
�

y2

a2 
�

z2

c2 
��1; (11)

and PARAMETRIC EQUATIONS

x �a sinh u cos v (12)

y �b sinh u sin v (13)

z �c 9cosh u: (14)

The two-sheeted elliptic hyperboloid oriented along
the X -AXIS has Cartesian equation

x2

a2
�

y2

a2
�

z2

c2
�1 (15)

and PARAMETRIC EQUATIONS

x�a cosh u cosh v (16)

y�b sinh u cosh v (17)

z�c sinh v: (18)

See also HYPERBOLOID, RULED SURFACE
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Elliptic Integral
An elliptic integral is an INTEGRAL OF THE FORM

g
A(x) � B(x)

ffiffiffiffiffiffiffiffiffi
S(x)

p

A(x) � D(x)
ffiffiffiffiffiffiffiffiffi
S(x)

p dx; (1)

or

g
A(x) dx

B(x)
ffiffiffiffiffiffiffiffiffi
S(x)

p ; (2)



where A(x); B(x); C(x); and D(x) are POLYNOMIALS in x ,
and S(x) is a POLYNOMIAL of degree 3 or 4. Stated
more simply, an elliptic integral is an integral OF THE

FORM

g R(w; x) dx; (3)

where R(w; x) is a RATIONAL FUNCTION of x and w , w2

is a function of x that is CUBIC or QUARTIC in x ,
R(w; x) contains at least one ODD POWER of w , and w2

has no repeated factors (Abramowitz and Stegun
1972, p. 589).

Elliptic integrals can be viewed as generalizations of
the inverse TRIGONOMETRIC FUNCTIONS and provide
solutions to a wider class of problems. For instance,
while the ARC LENGTH of a CIRCLE is given as a simple
function of the parameter, computing the ARC LENGTH

of an ELLIPSE requires an elliptic integral. Similarly,
the position of a pendulum is given by a TRIGONO-

METRIC FUNCTION as a function of time for small angle
oscillations, but the full solution for arbitrarily large
displacements requires the use of elliptic integrals.
Many other problems in electromagnetism and grav-
itation are solved by elliptic integrals.

A very useful class of functions known as ELLIPTIC

FUNCTIONS is obtained by inverting elliptic integrals
to obtain generalizations of the trigonometric func-
tions. ELLIPTIC FUNCTIONS (among which the JACOBI

ELLIPTIC FUNCTIONS and WEIERSTRASS ELLIPTIC

FUNCTION are the two most common forms) provide
a powerful tool for analyzing many deep problems in
NUMBER THEORY, as well as other areas of mathe-
matics.

All elliptic integrals can be written in terms of three
"standard" types. To see this, write

R(w; x)�
P(w; x)

Q(w; x)
�

wP(w; x)Q(�w; x)

wQ(w; x)Q(�w; x)
: (4)

But since w2�f (x);

Q(w; x)Q(�w; x)�Q1(w; x)�Q1(�w; x); (5)

then

wP(w; x)Q(�w; x)�A�Bx�Cw�Dx2�Ewx

�Fw2�Gw2x�Hw3x

�(A�Bx�Dx2�Fw2�Gw2x)

�w(c�Ex�Hw2x�. . .)

�P1(x)�wP2(x); (6)

so

R(w; x)�
P1(x) � wP2(x)

wQ1(w)
�

R1(x)

w
�R2(x): (7)

But any function f R2(x) dx can be evaluated in terms

of elementary functions, so the only portion that need
be considered is

g R1(x)

w
dx: (8)

Now, any quartic can be expressed as S1S2 where

S1�a1x2�2b1x�c1 (9)

S2�a2x2�2b2x�c2: (10)

The COEFFICIENTS here are real, since pairs of
COMPLEX ROOTS are COMPLEX CONJUGATES

[x�(R�Ii)][x�(R�Ii)]

�x2�x(�R�Ii�R�Ii)�(R2�I2i)

�x2�2Rx�(R2�I2): (11)

If all four ROOTS are real, they must be arranged so as
not to interleave (Whittaker and Watson 1990,
p. 514). Now define a quantity l such that S1�lS2

(a1�la2)x2�(2b1�2b2l)x�(c1�lc2) (12)

is a SQUARE NUMBER and

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a1�la2)(c1�l2)

p
�2(b1�b2l) (13)

(a1�la2)(c1�lc2)�(b1�lb2)2�0: (14)

Call the ROOTS of this equation l1 and l2; then

S1�l1S2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a1�l1a2)x

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1�lc2

ph i2

�(a1�l1a2) x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � l1c2

a1 � l1a2

s !

�(a1�l1a2)(x�a)2 (15)

S1�l2S2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a1�l1a2)x

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1�lc2

ph i2

�(a1�l1a2) x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 � l2c2

a1 � l2a2

s !

�(a1�l2a2)(x�b)2: (16)

Taking (15)-(16) and l2(1)�l1(2) gives

S2(l2�l1)�(a1�l1a2)(x�a)2�(a1�l2a2)

� (x�b)2 (17)

S1(l2�l1)�l2(a1�l1a2)(x�a)2�l1(a1�l2a2)

� (x�b2): (18)

Solving gives

S1�
a1 � l1a2

l2 � l1

(x�a)2�
a1 � l2a2

l2 � l1

(x�b)2

�A1(x�a)2�B1(x�b)2 (19)



S2�
l2(a1 � l1a2)

l2 � l1

(x�a)2�
l1(a1 � l2a2)

l2 � l1

(x�b)2

�A2(x�a)2�B2(x�b)2; (20)

so we have

w2�S1S2�[A1(x�a)2�B1(x�b)2]

�[A2(x�a)2�B2(x�b)2]: (21)

Now let

t�
x � a

x � b
(22)

dy�[(x�b)�1�(x�a)(x�b)�2] dx

�
(x � b) � (x � a)

(x � b)2 dx

�
a� b

(x � b)2 dx; (23)

so

w2�(x�b)4 A1

x � a

x � b

 !2

�B1

2
4

3
5 A2

x � a

x � b

 !
�B2

" #

�(x�b)4(A1t2�B1)(A2t2�B2); (24)

and

w�(x�b)2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1t2�B1)(A2t2�B2)

p
(25)

dx

w
�

ðx � bÞ2

a� b
dt

" #
1

ðx � bÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA1t2 þ B1ÞðA2t2 þ B2Þ

q

�
dt

(a� b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1t2 � B1)(A2t2 � B2)

p : (26)

Now let

R3(t)�
R1(x)

a� b
; (27)

so

g
R1(x) dx

w
�g

R3(t) dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1t2 � B1)(A2t2 � B2)

p : (28)

Rewriting the EVEN and ODD parts

R3(t)�R3(�t)�2R4(t2) (29)

R3(t)�R3(�t)�2tR5(t2); (30)

gives

R3(t)�1
2(Reven�Rodd)�R4(t2)�tR5(t2); (31)

so we have

g
R1(x) dx

w
�g

R4(t2) dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1t2 � B1)(A2t2 � B2)

p
�g

R5(t2)t dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1t2 � B1)(A2t2 � B2)

p : (32)

Letting

u�t2 (33)

du�2t dt (34)

reduces the second integral to

1

2g
R5(u) duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(A1u � B1)(A2u � B2)
p ; (35)

which can be evaluated using elementary functions.
The first integral can then be reduced by INTEGRA-

TION BY PARTS to one of the three Legendre elliptic
integrals (also called Legendre-Jacobi ELLIPTIC INTE-

GRALS), known as incomplete elliptic integrals of the
first, second, and third kind, denoted F(f; k); E(f; k);
and

Q
(n; f; k); respectively (von Kármán and Biot

1940, Whittaker and Watson 1990, p. 515). If f�p=2;
then the integrals are called complete elliptic inte-
grals and are denoted K(k); E(k);

Q
(n; k):/

Incomplete elliptic integrals are denoted using a
MODULUS k , PARAMETER m�k2; or MODULAR ANGLE

a�sin�1 k: An elliptic integral is written I(f½m) when
the PARAMETER is used, I(f; k) when the MODULUS is
used, and I(f_a) when the MODULAR ANGLE is used.
Complete elliptic integrals are defined when f�p=2
and can be expressed using the expansion

(1�k2 sin2 u)�1=2�
X

n�0

(2n � 1)!!

(2n)!!
k2n sin2n u: (36)

An elliptic integral in standard form

g
x

a

dxffiffiffiffiffiffiffiffi
f (x)

p ; (37)

where

f (x)�a4x4�a3x3�a2x2�a1x�a0; (38)

can be computed analytically (Whittaker and Watson
1990, p. 453) in terms of the WEIERSTRASS ELLIPTIC

FUNCTION with invariants

g2�a0a4�4a1a3�3a2
2 (39)

g3�a0a2a4�2a1a2a3�a4a2
1�a2

3a0: (40)

If a�x0 is a root of f (x)�0; then the solution is

x�x0�
1
4 f ?(x0)[�(z; g2; g3)� 1

24 f ƒ(x0)]�1: (41)

For an arbitrary lower bound,



x�a

�

ffiffiffiffiffiffiffiffiffi
f (a)

p
�?(z)1

2 f ?(a)[�(z) � 1
24 f ƒ(a)] � 1

24 f (a)f§(a)

2[�(z) � 1
24 f ƒ(a)]2 � 1

48 f (a)f (iv)(a)
;

(42)

where �(z)��(z; g2; g3) is a WEIERSTRASS ELLIPTIC

FUNCTION (Whittaker and Watson 1990, p. 454).

A generalized elliptic integral can be defined by the
function

T(a; b)�
2

p g
p=2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 u� b2 sin2 u

p (43)

�
2

p g
p=2

0

du

cos u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 tan2 u

p (44)

(Borwein and Borwein 1987). Now let

t�b tan u (45)

dt�b sec2 u du: (46)

But

sec u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�tan2 u

p
; (47)

so

dt�
b

cos u
sec u du�

b

cos u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�tan2 u

p
du

�
b

cos u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

t

b

 !2
vuut du

�
du

cos u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�t2

p
; (48)

and

du

cos u
�

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � t2

p ; (49)

and the equation becomes

T(a; b)�
2

p g



0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � t2)(b2 � t2)

p

�
1

p g



�


dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � t2)(b2 � t2)

p : (50)

Now we make the further substitution u�1
2(t�ab=t):

The differential becomes

du�1
2(1�ab=t2) dt; (51)

but 2u�t�ab=t; so

2u=t�1�ab=t2 (52)

ab=t2�1�2u=t (53)

and

1�ab=t2�2�2u=t�2(1�u=t): (54)

However, the left side is always positive, so

1�ab=t2�2�2u=t�2½1�u=t½ (55)

and the differential is

dt�
du

1 �
u

t

�����
�����
: (56)

We need to take some care with the limits of
integration. Write (50) as

g



�


f (t) dt�g
0�

�


f (t) dt�g



0�
f (t) dt: (57)

Now change the limits to those appropriate for the u
integration

g



�


g(u) du�g



�


g(u) du�2 g



�


g(u) du; (58)

so we have picked up a factor of 2 which must be
included. Using this fact and plugging (56) in (50)
therefore gives

T(a; b)�
2

p g



�


du

1 �
u

t

�����
����� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia2b2 � (a2 � b2)t2 � t4
p :

(59)

Now note that

u2�
t4 � 2abt2 � a2b2

4t2
(60)

4u2t2�t4�2abt2�a2b2 (61)

a2b2�t4�4u2t2�2abt2: (62)

Plug (62) into (59) to obtain

T(a; b)�
2

p g



�


du

1 �
u

t

�����
����� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4u2t2 � 2abt2 � (a2 � b2)t2
p

�
2

p g



�


du

½t � u½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2 � (a � b)2

p : (63)

But

2ut�t2�ab (64)

t2�2ut�ab�0 (65)

t�1
2(2u9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2�4ab

p
Þ�u9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�ab

p
; (66)

so

t�u�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�ab

p
; (67)



and (63) becomes

T(a; b)�
2

p g



�


duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[4u2 � (a � b)2] � (u2 � ab)

p
�

1

p g



�


duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �

a � b

2

 !2
2
4

3
5(u2 � ab)

vuuut
: (68)

We have therefore demonstrated that

T(a; b)�T(1
2(a�b);

ffiffiffiffiffiffi
ab

p
): (69)

We can thus iterate

ai�1�
1
2(ai�bi) (70)

bi�1�
ffiffiffiffiffiffiffiffiffi
aibi

p
; (71)

as many times as we wish, without changing the
value of the integral. But this iteration is the same as
and therefore converges to the ARITHMETIC-GEO-

METRIC MEAN, so the iteration terminates at ai�bi�
M(a0; b0); and we have

T(a0; b0)�T(M(a0; b0); M(a0; b0))

�
1

p g



�


dt

M2(a0; b0) � t2

�
1

pM(a0; b0)
tan�1 t

M(a0; b0)

 !" #

�


�
1

pM(a0; b0)

p

2
� �

p

2

 !" #

�
1

M(a0; b0)
: (72)

Complete elliptic integrals arise in finding the arc
length of an ELLIPSE and the period of a pendulum.
They also arise in a natural way from the theory of
THETA FUNCTIONS. Complete elliptic integrals can be
computed using a procedure involving the ARITH-

METIC-GEOMETRIC MEAN. Note that

T(a; b)�
2

p g
p=2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 u� b2 sin2 u

p

�
2

p g
p=2

0

du

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 u�

b

a

 !2

sin2 u

vuut

�
2

ap g
p=2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1 �

b2

a2

 !2

sin2 u

vuut : (73)

So we have

T(a; b)�
2

ap
K 1�

b2

a2

 !
�

1

M(a; b)
; (74)

where K(k) is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND. We are free to let a�a0�1 and b�b0�

k?; so

2

p
K(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k?2

p
)�

2

p
K(k)�

1

M(1; k?)
; (75)

since k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k?2

p
; so

K(k)�
p

2M(1; k?)
: (76)

But the ARITHMETIC-GEOMETRIC MEAN is defined by

ai�
1
2(ai�1�bi�1) (77)

bi�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai�1�bi�1

p
(78)

ci�
1
2(ai�1�bi�1) i > 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
0�b2

0

p
i�0

;

(
(79)

where

cn�1�
1
2an�bn�

c2
n

4an�1

5
c2

n

4M(a0; b0)
; (80)

so we have

K(k)�
p

2aN

; (81)

where aN is the value to which an converges.
Similarly, taking instead a?0�1 and b?0�k gives

K ?(k)�
p

2a?N
: (82)

Borwein and Borwein (1987) also show that defining

U(a; b)�
p

2 g
p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2�b2 sin2 u

p
du

�aE?
b

a

 !
(83)

leads to

2U(an�1; bn�1)�U(an; bn)�anbnT(an; bn); (84)

so

K(k) � E(k)

K(k)
�1

2(c
2
0�2c2

1�22c2
2�. . .�2nc2

n) (85)

for a0�1 and b0�k?; and



K?(k) � E?(k)

K ?(k)
�1

2(c?0
2�2c?1

2�22c?2
2�. . .�2nc?n

2): (86)

The elliptic integrals satisfy a large number of
identities. The complementary functions and moduli
are defined by

K ?(k)�K(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
)�K(k?): (87)

Use the identity of generalized elliptic integrals

T(a; b)�T(1
2(a�b);

ffiffiffiffiffiffi
ab

p
) (88)

to write

1

a
K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

a2

s !
�

2

a � b
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4ab

(a � b)2

s !

�
2

a � b
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 � 2ab

(a � b)2

s !

�
2

a � b
K

a � b

a � b

 !
(89)

K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

a2

s !
�

2

1 �
b

a

K

1 �
b

a

1 �
b

a

0
BBB@

1
CCCA: (90)

Define

k?�
b

a
; (91)

and use

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k?2

p
; (92)

so

K(k)�
2

1 � k?
K

1 � k?

1 � k?

 !
: (93)

Now letting l�(1�k?)=(1�k?) gives

l(1�k?)�1�k?[k?(l�1)�1�l (94)

k?�
1 � l

1 � l
(95)

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k?2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1 � l

1 � l

 !2
vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � l)2 � (1 � l)2

(1 � l)2

s
�

2
ffiffi
l

p

1 � l
; (96)

and

1
2(1�k?)�

1

2
1�

1 � l

1 � l

 !
�

1

2

(1 � l) � (1 � l)

1 � l

" #

�
1

1 � l
: (97)

Writing k instead of l ,

k(k)�
1

k � 1
K

2
ffiffiffi
k

p

1 � k

 !
: (98)

Similarly, from Borwein and Borwein (1987),

E(k)�
1 � k

2
E

2
ffiffiffi
k

p

1 � k

 !
�

k?2

2
K(k) (99)

E(k)�(1�k?)E
1 � k?

1 � k?

 !
�k?K(k): (100)

Expressions in terms of the complementary function
can be derived from interchanging the moduli and
their complements in (93), (98), (99), and (100).

K ?(k)�K(k?)�
2

1 � k
K

1 � k

1 � k

 !

�
2

1 � k
K ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1 � k

1 � k

 !2
vuut

0
B@

1
CA

�
2

1 � k
K ?

2
ffiffiffi
k

p

1 � k

 !
(101)

K ?(k)�
1

1 � k?
K

2
ffiffiffiffi
k?

p

1 � k?

 !

�
1

1 � k?
K ?

1 � k?

1 � k?

 !
; (102)

and

E?(k)�(1�k)E?
2
ffiffiffi
k

p

1 � k

 !
�kK ?(k) (103)

E?(k)�
1 � k?

2

 !
E?

1 � k?

1 � k?

 !
�

k2

2
K?(k): (104)

Taking the ratios

K ?(k)

K(k)
�2

K ?
2
ffiffiffi
k

p

1 � k

 !

K
2
ffiffiffi
k

p

1 � k

 !�
1

2

K ?
1 � k?

1 � k?

 !

K
1 � k?

1 � k?

 ! (105)

gives the MODULAR EQUATION of degree 2. It is also
true that



K(x) �
4

(1 �
ffiffiffiffi
x?

p
)2 K

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p
" #2

0
@

1
A: (106)

See also ABELIAN INTEGRAL, AMPLITUDE, ARGUMENT

(ELLIPTIC INTEGRAL), CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), DELTA AMPLITUDE, ELLIPTIC FUNCTION,
ELLIPTIC INTEGRAL OF THE FIRST KIND, ELLIPTIC

INTEGRAL OF THE SECOND KIND, ELLIPTIC INTEGRAL

OF THE THIRD KIND, ELLIPTIC INTEGRAL SINGULAR

VALUE, HEUMAN LAMBDA FUNCTION, JACOBI ZETA

FUNCTION, MODULAR ANGLE, MODULUS (ELLIPTIC

INTEGRAL), NOME, PARAMETER
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Elliptic Integral of the First Kind
Let the MODULUS k satisfy 0Bk2B1; and the AMPLI-

TUDE be given by f�am u: The incomplete elliptic
integral of the first kind is then defined as

u�F(f; k)�g
f

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2 u

p : (1)

Let

t�sin u (2)

dt�cos u du�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�t2

p
du; (3)

then (1) can be written as

F(f; k)�g
sin f

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2t2

p dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p

�g
sin f

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p : (4)

Let

v�tan u (5)

dv�sec2 u du�(1�v2) du; (6)

then the integral can also be written as

F(f; k)�g
tan f

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

v2

1 � u2

s du

1 � v2

�g
tan f

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � v2) � k2v2

p (7)

�g
tan f

0

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � v2)(1 � k?v2)

p ; (8)

where k?2�1�k2 is the complementary MODULUS.
The elliptic integral of the first kind is implemented
in Mathematica as EllipticK[phi , m ] (note the use
of the parameter m�k2 instead of the modulus k ).

The inverse function of F(f; k) is given by the
AMPLITUDE

F�1(u; k)�f�am(u; k)�am u: (9)

The integral

I�
1ffiffiffi
2

p g
u0

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u� cos u0

p ; (10)

which arises in computing the period of a pendulum,
is also an elliptic integral of the first kind. Use

cos u�1�2 sin2(1
2 u) (11)

sin(1
2 u)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos u

2

s
(12)

to write

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u�cos u0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2 sin2(1

2 u)�cos u0

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos u0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2

1 � cos u0

sin2(1
2 u)

s

�
ffiffiffi
2

p
sin(1

2 u0)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�csc2(1

2 u0) sin2(1
2 u)

q
; ð13Þ



so

I�
1

2 g
u0

0

du

sin(1
2 u0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � csc2(1

2 u0) sin2(1
2 u)

q : (14)

Now let

sin(1
2 u)�sin(1

2 u0) sin f; (15)

so the angle u is transformed to

f�sin�1
sin(1

2 u)

sin(1
2 u0)

" #
; (16)

which ranges from 0 to p=2 as u varies from 0 to u0:
Taking the differential gives

1
2 cos(1

2 u) du�sin(1
2 u0) cos f df; (17)

or

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2(1

2 u0) sin2f
q

du�sin(1
2 u0) cos f df: (18)

Plugging this in gives

I�g
p=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2(1

2 u0) sin2f
q sin(1

2u0) cos f df

sin(1
2 u0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2 f

q

�g
p=2

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2(1

2 u0) sin2 f
q �K(sin(1

2 u0)); (19)

so

I�
1ffiffiffi
2

p g
u0

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u� cos u0

p �K(sin(1
2 u0)): (20)

Making the slightly different substitution f�u=2; so
du�2 df leads to an equivalent, but more compli-
cated expression involving an incomplete elliptic
integral of the first kind,

I�2
1ffiffiffi
2

p 1ffiffiffi
2

p csc(1
2 u0)g

u0

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � csc2(1

2 u0) sin2 f
q

�csc(1
2 u0)F(1

2 u0; csc(1
2 u0)): (21)

Therefore, we have proven the identity

csc xF(x; csc x)�K(sin x): (22)

The elliptic integral of the first kind satisfies

F(�f; k)��F(f; k): (23)

Special values of F(f; k) include

F(0; k)�0 (24)

F(1
2 p; k)�K(k); (25)

where K(k) is known as the complete elliptic integral
of the first kind.

The complete elliptic integral of the first kind,
illustrated above as a function of m�k2; is defined by

K(k)�F(1
2 p; k) (26)

�
X

n�0

(2n � 1)!!

(2n)!!
k2n g

2p

0

sin2n u du (27)

�1
2 pq

2
3(q) (28)

�
X

n�0

(2n � 1)!!

(2n)!!
k2n p

2

(2n � 1)!!

(2n)!!

�
p

2

X

n�0

(2n � 1)!!

(2n)!!

" #2

k2n (29)

�1
2 p 2F1(1

2;
1
2; 1; k2) (30)

�
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2

p P�1=2

1 � k2

1 � k2

 !
; (31)

where

q�e�lK ?(k)=K(k) (32)

is the NOME (for ½q½B1); 2F1(a; b; c; x) is the HYPER-

GEOMETRIC FUNCTION, and Pn(x) is a LEGENDRE

POLYNOMIAL. K(k) satisfies the LEGENDRE RELATION

E(k)K ?(k)�E?(k)K(k)�K(k)K ?(k)�1
2 p; (33)

where K(k) and E(k) are complete elliptic integrals of
the first and SECOND KINDS, respectively, and K ?(k)
and E?(k) are the complementary integrals. The
modulus k is often suppressed for conciseness, so
that K(k) and E(k) are often simply written K and E ,
respectively.



The DERIVATIVE of K(k) is

dK

dk
�g

1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � t2)(1 � k?2t2)

p �
E(k)

k(1 � k2) 
�

K(k)

k
(34)

and K(k) satisfies the differential equation

d

dk
kk ?2

dK

dk

 !
�kK(k) ; (35)

so

E �k(1 �k2)
dK

dk
�

K(k)

k

 !
(36)

�(1 �k2) k
dK

dk
�K(k)

 !
(37)

(Whittaker and Watson 1990, pp. 499 and 521). Be-
sides y �K(k) ; the other solution to the differential
equation

d

dk
k(1 �k2)

dy

dk

" #
�ky �0 (38)

(Zwillinger 1997, p. 122; Gradshteyn and Ryzhik
2000, p. 907) is MEIJER’S G -FUNCTION

y �G2; 0
2; 2 k2

1
2 ;

1
2

0 ; 0

����
�
:

�
(39)

See also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), ELLIPTIC INTEGRAL OF THE SECOND KIND,
ELLIPTIC INTEGRAL OF THE THIRD KIND, ELLIPTIC

INTEGRAL SINGULAR VALUE, GAUSS’S TRANSFORMA-

TION, LANDEN’S TRANSFORMATION, LEGENDRE RELA-

TION, MODULAR ANGLE, MODULUS (ELLIPTIC

INTEGRAL), PARAMETER
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Elliptic Integral of the Second Kind
Let the MODULUS k satisfy 0Bk2B1: (This may also
be written in terms of the PARAMETER m�k2 or
MODULAR ANGLE a�sin�1 k:/) The incomplete elliptic
integral of the second kind is then defined as

E(f; k)�g
f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin2 u

p
du: (1)

The elliptic integral of the second kind is implemen-
ted in Mathematica as EllipticE[phi , m ] (note the
use of the parameter m�k2 instead of the modulus k ).

To place the elliptic integral of the second kind in a
slightly different form, let

t�sin u (2)

dt�cos u du�
ffiffiffiffiffiffiffiffiffiffiffiffi
1�t2

p
du; (3)

so the elliptic integral can also be written as

E(f; k)�g
sin f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2t2

p dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p

�g
sin f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2t2

1 � t2

s
dt: (4)



The complete elliptic integral of the second kind,
illustrated above as a function of the PARAMETER m , is
defined by

E(k) �E(1
2 p; k) (5)

�
p

2
1 �

X

n�1

(2n � 1)!!

(2n)!!

" #2
k2n

2n � 1

8<
:

9=
; 

(6)

�1
2 p 2F1(�1

2;
1
2; 1; k2) (7)

�g
K

0

dn2 u du; (8)

where 2F1(a ; b; c; x) is the HYPERGEOMETRIC FUNC-

TION and dn u is a JACOBI ELLIPTIC FUNCTION. The
complete elliptic integral of the second kind satisfies
the LEGENDRE RELATION

E(k)K ?(k) �E ?(k)K(k) �K(k)K ?(k) �1
2 p; (9)

where K(k) and E(k) are complete ELLIPTIC INTEGRALS

OF THE FIRST and second kinds, respectively, and
K ?(k) and E?(k) are the complementary integrals. The
DERIVATIVE is

dE

dk 
�

E(k) � K(k)

k 
(10)

(Whittaker and Watson 1990, p. 521). Besides y �
E(k); the other solution to the differential equation

k?2
d

dk
k

dy

dk

 !
�ky �0 (11)

(Zwillinger 1997, p. 122; Gradshteyn and Ryzhik
2000, p. 907) is MEIJER’S G -FUNCTION

y �G2; 0
2; 2 k2

1
2 ;

3
2

0 ; 0

����
�
:

�
(12)

If kr is a singular value (i.e.,

kr � l �(r) ; (13)

where l� is the ELLIPTIC LAMBDA FUNCTION), and
K(kr) and the ELLIPTIC ALPHA FUNCTION a(r) are also
known, then

E(k)�
K(k)ffiffiffi

r
p

p

3[K(k)]2�a(r)

" #
�K(k): (14)

A generalization replacing sin u with sinh u in (1)
gives

�iE(if; �k)�g
f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sinh2

u
p

du: (15)

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
ELLIPTIC INTEGRAL OF THE THIRD KIND, ELLIPTIC

INTEGRAL SINGULAR VALUE
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Elliptic Integral of the Third Kind
Let 0Bk2B1: The incomplete elliptic integral of the
third kind is then defined as

P(n; f; k)�g
f

0

du

(1 � n sin2 u)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2 u

p (1)

�g
sin f

0

dt

(1 � nt2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � t2)(1 � k2t2)

p ; (2)

where n is a constant known as the CHARACTERISTIC.

The complete elliptic integral of the third kind



P(n½m) �P(n; 1
2 p½m) (3)

is illustrated above.

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
ELLIPTIC INTEGRAL OF THE SECOND KIND, ELLIPTIC

INTEGRAL SINGULAR VALUE
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Elliptic Integral Singular Value
When the MODULUS k has a singular value, the
complete elliptic integrals may be computed in
analytic form in terms of GAMMA FUNCTIONS. Abel
(quoted in Whittaker and Watson 1990, p. 525)
proved that whenever

K ?(k)

K(k)
�

a � b
ffiffiffi
n

p

c � d
ffiffiffi
n

p ; (1)

where a , b , c , d , and n are INTEGERS, K(k) is a
complete ELLIPTIC INTEGRAL OF THE FIRST KIND, and
K ?(k)�K(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
) is the complementary complete

ELLIPTIC INTEGRAL OF THE FIRST KIND, then the
MODULUS k is the ROOT of an algebraic equation
with INTEGER COEFFICIENTS.

A MODULUS kr such that

K ?(kr)

K(kr)
�

ffiffiffi
r

p
; (2)

is called a singular value of the elliptic integral. The
ELLIPTIC LAMBDA FUNCTION l�(r) gives the value of kr:
Selberg and Chowla (1967) showed that K(l�(r)) and
E(l�(r)) are expressible in terms of a finite number of
GAMMA FUNCTIONS. The complete ELLIPTIC INTEGRALS

OF THE SECOND KIND e(kr) and e?(kr) can be expressed
in terms of k(kr) and k?(kr) with the aid of the ELLIPTIC

ALPHA FUNCTION a(r):/

The following table gives the values of k(kr) for small
integral r in terms of GAMMA FUNCTIONS G(z):/
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K(k25) �

ffiffiffi
5

p
� 2

20

G2(1
4)ffiffiffi
p

p ;

where G(z) is the GAMMA FUNCTION and C1 is an
algebraic number (Borwein and Borwein 1987,
p. 298).

Borwein and Zucker (1992) give amazing expressions
for singular values of complete elliptic integrals in
terms of CENTRAL BETA FUNCTIONS

b(p) �B(p ; p) : (3)

Furthermore, they show that K(kn) is always expres-
sible in terms of these functions for n �1; 2 (mod 4):
In such cases, the G(z) functions appearing in the
expression are OF THE FORM G(t=4n) where 1 5t 5
(2n �1) and (t; 4n) �1: The terms in the numerator
depend on the sign of the KRONECKER SYMBOL ft=4ng:
Values for the first few n are
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;

where R is the REAL ROOT of

x3 �4x �4 �0 (4)

and C2 is an algebraic number (Borwein and Zucker
1992). Note that K(k11) is the only value in the above
list which cannot be expressed in terms of CENTRAL

BETA FUNCTIONS.

Using the ELLIPTIC ALPHA FUNCTION, the ELLIPTIC

INTEGRALS OF THE SECOND KIND can also be found
from

E�
p

4
ffiffiffi
r

p
K
� 1�

a(r)ffiffiffi
r

p
" #

K (5)

E?�
p

4k
�a(r)K ; (6)

and by definition,

K ?�K
ffiffiffi
n

p
: (7)

See also CENTRAL BETA FUNCTION, ELLIPTIC ALPHA

FUNCTION, ELLIPTIC DELTA FUNCTION, ELLIPTIC IN-

TEGRAL OF THE FIRST KIND, ELLIPTIC INTEGRAL OF

THE SECOND KIND, ELLIPTIC LAMBDA FUNCTION,
GAMMA FUNCTION, MODULUS (ELLIPTIC INTEGRAL)
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Elliptic Integral Singular Value k1
The first singular value k1 of the ELLIPTIC INTEGRAL

OF THE FIRST KIND K(k); corresponding to

K ?(k1)�K(k1); (1)

is given by

k1�
1ffiffiffi
2

p (2)

k?1�
1ffiffiffi
2

p : (3)

The value K(k1) is given by

K
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p
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�g
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0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � t2)(1 � 1

2 t2)
q ; (4)

which can be transformed to
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p
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0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p : (5)

Let

u�t4 (6)

du�4t3 dt�4u3=4 dt (7)

dt�1
4u

�3=4 du; (8)

then
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G(1
4)G(1
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G(3
4)
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2

p

4
: (9)

where B(a; b) is the BETA FUNCTION and G(z) is the
GAMMA FUNCTION. Now use

G(1
2)�

ffiffiffi
p

p
(10)

and

1

G(1 � x)
�

sin(px)

p
G(x); (11)

so
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p G(1
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Therefore,
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Now consider
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Let

t2�1�u2 (15)

2t dt��2u du (16)

dt��
1

t
u du�u(1�u2)�1=2 du; (17)
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Now note that
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Now let

t �u4 (21)

dt �4u3 du; (22)
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Summarizing (13) and (28) gives
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Elliptic Integral Singular Value k2
The second SINGULAR VALUE k2 ; corresponding to

K ?(k2) �
ffiffiffi
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K(k2) ; (1)

is given by
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For this modulus,
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Elliptic Integral Singular Value k3
The third SINGULAR VALUE k3 ; corresponding to

K ?(k3) �
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K(k3) ; (1)

is given by
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As shown by Legendre,
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(Whittaker and Watson 1990, p. 525). In addition,
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Summarizing,
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(Whittaker and Watson 1990).

See also JACOBI THETA FUNCTIONS
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Elliptic Lambda Function
The l GROUP is the SUBGROUP of the GAMMA GROUP

with a and d ODD; b and c EVEN. The function

l(t)�l(q)�k2(q)�
q 4

2(0; q)

q 4
3(0; q)

; (1)

where the NOME q is given by

q�eipr (2)

is a l/-MODULAR FUNCTION defined on the UPPER HALF-

PLANE and q i(z; q) are THETA FUNCTIONS. The lambda
elliptic function is given by the Mathematica com-
mand ModularLambda[tau ], and satisfies the func-
tional equations

l(t�2)�l(t) (3)

l
t

2t� 1

 !
�l(t): (4)

/l�(r) gives the value of the MODULUS kr for which the
complementary and normal complete ELLIPTIC INTE-

GRALS OF THE FIRST KIND are related by

K ?(kr)

K(kr)
�

ffiffiffi
r

p
: (5)

It can be computed from

l�(r)�k(q)�
q 2

2(q)

q 2
3(q)

; (6)

where

q�e�p
ffiffi
r

p
; (7)

and q i is a JACOBI THETA FUNCTION.

From the definition of the lambda function,

l�(r?)�l�
1

r

 !
�l�?(r): (8)

For all rational r , K(l�(r)) and E(l�(r)) are expres-
sible in terms of a finite number of GAMMA FUNCTIONS

(Selberg and Chowla 1967). l�(r) is related to the
RAMANUJAN G - AND G -FUNCTIONS by
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Special values are
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See also DEDEKIND ETA FUNCTION, ELLIPTIC ALPHA

FUNCTION, ELLIPTIC INTEGRAL OF THE FIRST KIND,
JACOBI THETA FUNCTIONS, KLEIN’S ABSOLUTE INVAR-

IANT, MODULAR FUNCTION, MODULUS (ELLIPTIC IN-

TEGRAL), RAMANUJAN G - AND G -FUNCTIONS
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Elliptic Logarithm
A generalization of integrals OF THE FORM

g
x




dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � at

p ;

which can be expressed in terms of logarithmic and
inverse trigonometric functions to

eln(x) �g



x

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3 � at2 � bt

p :

The inverse of the elliptic logarithm is the ELLIPTIC

EXPONENTIAL FUNCTION.

Elliptic Modular Function
MODULAR FUNCTION

Elliptic Modulus
MODULUS (ELLIPTIC INTEGRAL)

Elliptic Nome
NOME

Elliptic Paraboloid

A QUADRATIC SURFACE which has ELLIPTICAL CROSS

SECTION. The elliptic paraboloid of height h , SEMIMA-

JOR AXIS a , and SEMIMINOR AXIS b can be specified
parametrically by

x�a
ffiffiffi
u

p
cos v

y�b
ffiffiffi
u

p
sin v

z�u:

for v � [0; 2p) and u � [0;h]:/

See also ELLIPTIC CONE, ELLIPTIC CYLINDER, PARA-

BOLOID
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Elliptic Partial Differential Equation
A second-order PARTIAL DIFFERENTIAL EQUATION, i.e.,
one OF THE FORM

Auxx �2Buxy �Cuyy �Dux �Euy �F �0; (1)

is called elliptic if the MATRIX

Z �
A B
B C

� �
(2)

is POSITIVE DEFINITE. Elliptic partial differential
equations have applications in almost all areas of
mathematics, from harmonic analysis to geometry to
Lie theory, as well as numerous applications in
physics. As with a general PDE, elliptic PDE may
have non-constant coefficients and be non-linear.
Despite this variety, the elliptic equations have a
well-developed theory.

The basic example of an elliptic partial differential
equation is LAPLACE’S EQUATION

92u �0 (3)

in n -dimensional Euclidean space, where the LAPLA-

CIAN 92 is defined by

92 �
Xn

i�1

@2

@x2
i

:

Other examples of elliptic equations include the
nonhomogeneous POISSON’S EQUATION

92u �f (x) (4)

and the non-linear minimal surface equation.

For an elliptic partial differential equation, BOUND-

ARY CONDITIONS are used to give the constraint
u(x; y) �g(x ; y) on @V; where

uxx �uyy �f (ux ; uy ; u; x; y) (5)

holds in V:/
One property of constant coefficient elliptic equations
is that their solutions can be studied using the
FOURIER TRANSFORM. Consider POISSON’S EQUATION

with periodic f (x): The FOURIER SERIES expansion is
then given by

� zj j2 û( z) � f̂ ( z) ; (6)

where zj j2 is called the "principal symbol," and so we

can solve for u . Except for z �0 ; the multiplier is
nonzero.

In general, a PDE may have non-constant coefficients
or even be non-linear. A linear PDE is elliptic if its
principal symbol, as in the theory of PSEUDODIFFER-

ENTIAL OPERATORS, is nonzero away from the origin.
For instance, (3) has as its principal symbol zj j4 ;
which is non-zero for zj j"0; and is an elliptic PDE.

A nonlinear PDE is elliptic at a solution u if its
linearization is elliptic at u . One simply calls a non-
linear equation elliptic if it is elliptic at any solution,
such as in the case of harmonic maps between
Riemannian manifolds.

See also HARMONIC FUNCTION, HARMONIC MAP,
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION, MINIMAL SURFACE, PARABOLIC

PARTIAL DIFFERENTIAL EQUATION, PARTIAL DIFFER-

ENTIAL EQUATION, PSEUDODIFFERENTIAL OPERATOR

Elliptic Plane

The REAL PROJECTIVE PLANE with elliptic METRIC

where the distance between two points P and Q is
defined as the RADIAN ANGLE between the projection
of the points on the surface of a SPHERE (which is
tangent to the plane at a point S ) from the ANTIPODE

N of the tangent point.

References
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New

York: Wiley, p. 94, 1969.

Elliptic Point
A point p on a REGULAR SURFACE M �R3 is said to be
elliptic if the GAUSSIAN CURVATURE K(p) > 0 or
equivalently, the PRINCIPAL CURVATURES k1 and k2

have the same sign.

See also ANTICLASTIC, ELLIPTIC FIXED POINT (DIFFER-

ENTIAL EQUATIONS), ELLIPTIC FIXED POINT (MAP),
GAUSSIAN CURVATURE, HYPERBOLIC POINT, PARA-

BOLIC POINT, PLANAR POINT, SYNCLASTIC
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Gray, A. Modern Differential Geometry of Curves and

Surfaces with Mathematica, 2nd ed. Boca Raton, FL:
CRC Press, p. 375, 1997.

Elliptic Pseudoprime
Let E be an ELLIPTIC CURVE defined over the FIELD of
RATIONAL NUMBERS Q

ffiffiffiffiffiffiffi
�d

p� �
having equation

y2 �x3 �ax �b

with a and b INTEGERS. Let P be a point on E with
integer coordinates and having infinite order in the
additive group of rational points of E , and let n be a
COMPOSITE NATURAL NUMBER such that (�d=n) ��1;
where (�d=n) is the JACOBI SYMBOL. Then if

(n �1)P �0 (mod n) ;

n is called an elliptic pseudoprime for (E, P ).

See also ATKIN-GOLDWASSER-KILIAN-MORAIN CERTI-

FICATE, ELLIPTIC CURVE PRIMALITY PROVING, STRONG

ELLIPTIC PSEUDOPRIME
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Elliptic Rotation
The transformation

x?�x cos u �y sin u

y?�x sin u �y sin u

which leaves the CIRCLE

x2 �y2 �1

invariant.

See also EQUIAFFINITY

Elliptic Theta Function
JACOBI THETA FUNCTIONS, NEVILLE THETA FUNC-

TIONS

Elliptic Torus

A SURFACE OF REVOLUTION which is generalization of
the RING TORUS. It is produced by rotating an ELLIPSE

in the xz -plane about the z -axis, and is given by the
PARAMETRIC EQUATIONS

x(u ; v) �(a �b cos v) cos u
y(u; v) �(a �b cos v) sin u

z(u ; v) �c sin v:

See also RING TORUS, SURFACE OF REVOLUTION,
TORUS

References
Gray, A. "Tori." §11.4 in Modern Differential Geometry of

Curves and Surfaces with Mathematica, 2nd ed. Boca
Raton, FL: CRC Press, pp. 210 and 304 �/05, 1997.

Elliptic Umbilic Catastrophe

A CATASTROPHE which can occur for three control
factors and two behavior axes. The elliptical umbilic
is catastrophe of codimension 3 that has the equation
F(x; y; u; v; w)�x3=3�xy2�w(x2�y2)�ux�vy:/

See also CATASTROPHE THEORY, HYPERBOLIC UMBILIC

CATASTROPHE

References
Sanns, W. Catastrophe Theory with Mathematica: A Geo-

metric Approach. Germany: DAV, 2000.



Elliptical Projection
MOLLWEIDE PROJECTION

Elliptic-Cylinder Coordinates
ELLIPTIC CYLINDRICAL COORDINATES

EllipticE
ELLIPTIC INTEGRAL OF THE SECOND KIND

# 1999 �/001 Wolfram Research, Inc.

EllipticExp
ELLIPTIC EXPONENTIAL FUNCTION

# 1999 �/001 Wolfram Research, Inc.

EllipticExpPrime
ELLIPTIC EXPONENTIAL FUNCTION

# 1999 �/001 Wolfram Research, Inc.

EllipticF
ELLIPTIC INTEGRAL OF THE FIRST KIND

# 1999 �/001 Wolfram Research, Inc.

Ellipticity
Given a SPHEROID with equatorial radius a and polar
radius c ,

e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

a2

s
a > c (oblate spheroid)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � a2

a2

s
: a Bc (prolate spheroid)

8>>>><
>>>>:

See also FLATTENING, OBLATE SPHEROID, PROLATE

SPHEROID, SPHEROID

EllipticK
ELLIPTIC INTEGRAL OF THE FIRST KIND

# 1999 �/001 Wolfram Research, Inc.

EllipticLog
ELLIPTIC LOGARITHM

EllipticNomeQ
NOME

# 1999 �/001 Wolfram Research, Inc.

EllipticPi
ELLIPTIC INTEGRAL OF THE THIRD KIND

# 1999 �/001 Wolfram Research, Inc.

EllipticTheta
JACOBI THETA FUNCTIONS

# 1999 �/001 Wolfram Research, Inc.

EllipticThetaPrime
JACOBI THETA FUNCTIONS

# 1999 �/001 Wolfram Research, Inc.

Ellison-Mendès-France Constant

Q
ffiffiffiffiffiffiffi
�d

p� �
where e :K g�5=7 pg�2 =7 is the EULER-MASCHERONI

CONSTANT, and

(�d=n) ��1

is the Ellision-Mendès-France constant (given incor-
rectly by Le Lionnais 1983).
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Le Lionnais, F. Les nombres remarquables. Paris: Hermann,
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Elongated Cupola
A n -gonal CUPOLA adjoined to a 2n/-gonal PRISM.

See also ELONGATED PENTAGONAL CUPOLA, ELON-

GATED SQUARE CUPOLA, ELONGATED TRIANGULAR

CUPOLA

Elongated Dipyramid
ELONGATED PENTAGONAL DIPYRAMID, ELONGATED

SQUARE DIPYRAMID, ELONGATED TRIANGULAR DIPYR-

AMID

Elongated Dodecahedron

A SPACE-FILLING POLYHEDRON and PARALLELOHE-

DRON.

References
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York:

Dover, pp. 29�/0 and 257, 1973.



Elongated Gyrobicupola
ELONGATED PENTAGONAL GYROBICUPOLA, ELON-

GATED SQUARE GYROBICUPOLA, ELONGATED TRIANGU-

LAR GYROBICUPOLA

Elongated Gyrocupolarotunda
ELONGATED PENTAGONAL GYROCUPOLAROTUNDA

Elongated Orthobicupola
ELONGATED PENTAGONAL ORTHOBICUPOLA, ELON-

GATED TRIANGULAR ORTHOBICUPOLA

Elongated Orthobirotunda
ELONGATED PENTAGONAL ORTHOBIROTUNDA

Elongated Orthocupolarotunda
ELONGATED PENTAGONAL ORTHOCUPOLAROTUNDA

Elongated Pentagonal Cupola

JOHNSON SOLID J20:/
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Elongated Pentagonal Dipyramid

JOHNSON SOLID J16:/
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Elongated Pentagonal Gyrobicupola

JOHNSON SOLID J39:/
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Elongated Pentagonal Gyrobirotunda

JOHNSON SOLID J43:/
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Elongated Pentagonal Gyrocupolarotunda

JOHNSON SOLID J41:/
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Elongated Pentagonal Orthobicupola

JOHNSON SOLID J38:/
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Elongated Pentagonal Orthobirotunda

JOHNSON SOLID J42:/
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MATICA NOTEBOOK JOHNSONSOLIDS.DAT.

Elongated Pentagonal
Orthocupolarotunda

JOHNSON SOLID J40:/

References
Weisstein, E. W. "Johnson Solids." MATHEMATICA NOTEBOOK
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MATICA NOTEBOOK JOHNSONSOLIDS.DAT.

Elongated Pentagonal Pyramid

JOHNSON SOLID J9:/
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Elongated Pentagonal Rotunda

A PENTAGONAL ROTUNDA adjoined to a decagonal
PRISM which is JOHNSON SOLID J21 :/

Elongated Pyramid
An n -gonal PYRAMID adjoined to an n -gonal PRISM.

See also ELONGATED PENTAGONAL PYRAMID, ELON-

GATED SQUARE PYRAMID, ELONGATED TRIANGULAR

PYRAMID, GYROELONGATED PYRAMID

Elongated Rotunda
ELONGATED PENTAGONAL ROTUNDA

Elongated Square Cupola

JOHNSON SOLID J19 :/
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Weisstein, E. W. "Johnson Solids." MATHEMATICA NOTEBOOK

JOHNSONSOLIDS.M.
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Elongated Square Dipyramid

JOHNSON SOLID J15 :/

References
Weisstein, E. W. "Johnson Solids." MATHEMATICA NOTEBOOK

JOHNSONSOLIDS.M.
Weisstein, E. W. "Johnson Solid Netlib Database." MATHE-

MATICA NOTEBOOK JOHNSONSOLIDS.DAT.

Elongated Square Gyrobicupola

A nonuniform POLYHEDRON obtained by rotating the
bottom third of a SMALL RHOMBICUBOCTAHEDRON

(Ball and Coxeter 1987, p. 137). It is also called
Miller’s solid, the Miller-askinuze solid, or the pseu-
dorhombicuboctahedron, and is JOHNSON SOLID J37 :/

Although some writers have suggested that the
elongated square gyrobicupola should be considered
a fourteenth ARCHIMEDEAN SOLID, its twist allows
vertices "near the equator" and those "in the polar
regions" to be distinguished. Therefore, it is not a true
Archimedean like the SMALL RHOMBICUBOCTAHE-

DRON, whose vertices cannot be distinguished (Crom-
well 1997, pp. 91�/2).

See also ARCHIMEDEAN SOLID, JOHNSON SOLID,
SMALL RHOMBICUBOCTAHEDRON
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Elongated Square Pyramid

JOHNSON SOLID J8:/
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Elongated Triangular Cupola

JOHNSON SOLID J18:/
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Elongated Triangular Dipyramid

JOHNSON SOLID J14:/
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Elongated Triangular Gyrobicupola

JOHNSON SOLID J36:/
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Elongated Triangular Orthobicupola

JOHNSON SOLID J35:/
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Elongated Triangular Pyramid

JOHNSON SOLID J7 :/
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Elsasser Function

E(y; u) �g
1=2

�1 =2

exp �
2pyu sinh(2py)

cosh(2 py) � cos(2px)

" #
dx:

Embeddable Knot
A KNOT K is an n -embeddable knot if it can be placed
on a GENUS n standard embedded surface without
crossings, but K cannot be placed on any standardly
embedded surface of lower GENUS without crossings.
Any KNOT is an n -embeddable knot for some n . The
FIGURE-OF-EIGHT KNOT is a 2-EMBEDDABLE KNOT. A
knot with BRIDGE NUMBER b is an n -embeddable knot
where n 5b :/

See also EMBEDDABLE SURFACE, TUNNEL NUMBER

Embeddable Surface
EMBEDDED SURFACE

Embedded Surface
A SURFACE S is n -embeddable if it can be placed in
Rn

/-space without self-intersections, but cannot be
similarly placed in any Rk for k Bn . A surface so
embedded is said to be an embedded surface. The
COSTA MINIMAL SURFACE is embeddable in R3 ; but the
KLEIN BOTTLE is not (the commonly depicted R3

representation requires the surface to pass through
itself).

There is particular interest in surfaces which are
minimal, complete, and embedded.

See also EMBEDDABLE KNOT, MINIMAL SURFACE
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Embedding
An embedding is a representation of a topological
object, MANIFOLD, GRAPH, FIELD, etc. in a certain
space in such a way that its connectivity or algebraic
properties are preserved. For example, a FIELD

embedding preserves the algebraic structure of plus
and times, an embedding of a TOPOLOGICAL SPACE

preserves OPEN SETS, and a GRAPH EMBEDDING pre-
serves connectivity.

One space X is embedded in another space Y when
the properties of Y restricted to X are the same as the
properties of X . For example, the rationals are
embedded in the reals, and the integers are embedded
in the rationals. In geometry, the sphere is embedded
in R3 as the unit sphere.

See also CAMPBELL’S THEOREM, EMBEDDABLE KNOT,
EMBEDDED SURFACE, EXTRINSIC CURVATURE, FIELD,
GRAPH EMBEDDING, HYPERBOLOID EMBEDDING, IN-

JECTION, MANIFOLD, NASH’S EMBEDDING THEOREM,
SPHERE EMBEDDING, SUBMANIFOLD



Emden Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

(x2y?)?�x2yn �0:

See also MODIFIED EMDEN DIFFERENTIAL EQUATION
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Emden-Fowler Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

(xpy?) ?9xsyn �0 :
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Emden-Fowler Equation
The ORDINARY DIFFERENTIAL EQUATION
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Emirp
A PRIME whose REVERSAL is also prime, but which is
not a PALINDROMIC PRIME. The first few are 13, 17, 31,
37, 71, 73, 79, 97, 107, 113, 149, 157, ... (Sloane’s
A006567).

See also PALINDROMIC PRIME, REVERSAL
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Empty Graph

An empty graph on n nodes consists of n isolated
nodes with no edges. The empty graph on 0 nodes is
called the NULL GRAPH. The empty graph on n
vertices is the complement of the COMPLETE GRAPH

Kn :/

See also COMPLETE GRAPH, GRAPH, NULL GRAPH
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Empty Set
The SET containing no elements, denoted ¥: Stran-
gely, the empty set is both OPEN and CLOSED for any
SET X and TOPOLOGY.

A GROUPOID, SEMIGROUP, QUASIGROUP, RINGOID, and
SEMIRING can be empty. MONOIDS, GROUPS, and RINGS

must have at least one element, while DIVISION RINGS

and FIELDS must have at least two elements.

See also SET, URELEMENT

References
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e-Multiperfect Number
A number n is called a k e -perfect number if/
se ðnÞ ¼ kn/, where se(n) is the SUM of the E -DIVISORS

of n .

See also E -DIVISOR, E -PERFECT NUMBER

References
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solved Problems in Number Theory, 2nd ed. New York:
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Enantiomer
Two objects which are MIRROR IMAGES of each other
are called enantiomers. The term enantiomer is
synonymous with ENANTIOMORPH.

See also AMPHICHIRAL KNOT, CHIRAL, DISSYMMETRIC,
HANDEDNESS, MIRROR IMAGE, REFLEXIBLE
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Enantiomorph
ENANTIOMER

Enantiomorphous
Of opposite symmetry under reflection; MIRROR

IMAGES.

See also DISSYMMETRIC, ENANTIOMER, MIRROR IMAGE

Encoding
An encoding is a way of representing a number or
expression in terms of another (usually simpler) one.
However, multiple expressions can also be encoded as
a single expression, as in, for example,

(a ; b) �1
2[(a �b)2 �3a �b]

which encodes a and b uniquely as a single number.

a b (a, b )

0 0  0

0 1  1

1 0  2

0 2  3

1 1  4

2 0  5

See also CODE, CODING THEORY, HUFFMAN CODING,
PRÜ FER CODE, RUN-LENGTH ENCODING

Encroaching List Set
A structure consisting of an ordered set of sorted lists
such that the head and tail entries of later lists nest
within earlier ones. For example, an encroaching list
set for f6; 7; 1; 8; 2; 5; 9; 3; 4g is given by
ff1; 6; 7; 8; 9g; f2; 5g; f3; 4gg: Encroaching list
sets can be computed using EncroachingListSet[l ]
in the Mathematica add-on package Discrete-
Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘).

It is conjectured that the number of encroaching lists
associated with a RANDOM PERMUTATION of size n is
�

ffiffiffiffiffiffi
2n

p
for sufficiently large n (Skiena 1988; Skiena

1990, p. 78).
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Endogenous Variable
An economic variable which is independent of the
relationships determining the equilibrium levels, but
nonetheless affects the equilibrium.

See also EXOGENOUS VARIABLE
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Endomorphism
A SURJECTIVE MORPHISM from an object to itself. The
term derives from the Greek adverb ondon (endon )
"inside" and mor8 vsi& (morphosis ) "to form" or "to
shape."

In ERGODIC THEORY, let X be a SET, F a SIGMA

ALGEBRA on X and m a PROBABILITY MEASURE. A
MAP T : X 0 X is called an endomorphism or MEA-

SURE-PRESERVING TRANSFORMATION if

1. T is SURJECTIVE,
2. T is MEASURABLE,
3. m(T �1A) �m(A) for all A � F :/

An endomorphism is called ERGODIC if it is true that
T�1A�A IMPLIES m(A)�0 or 1, where
T�1A�fx �X : T(x) �Ag:/

See also MEASURABLE FUNCTION, MEASURE-PRESER-

VING TRANSFORMATION, MORPHISM, SIGMA ALGEBRA,
SURJECTIVE

Endoscopy
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Endpoint

A node of a GRAPH of degree 1 (left figure; Harary
1994, p. 15), or, a POINT at the boundary of LINE

SEGMENT or CLOSED INTERVAL (right figure).

See also CLOSED INTERVAL, INTERVAL, ISOLATED

POINT, LINE SEGMENT, POINT, ROOT NODE

References
Harary, F. Graph Theory. Reading, MA: Addison-Wesley,

1994.

Endrass Octic

Endraß surfaces are a pair of OCTIC SURFACES which
have 168 ORDINARY DOUBLE POINTS. This is the
maximum number known to exist for an OCTIC SUR-

FACE, although the rigorous upper bound is 174. The
equations of the surfaces X 98 are

64(x2 �w2)(y2 �w2)[(x �y)2 �2w2]

[(x �y)2 �2w2] �f�4(1 9
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where w is a parameter taken as w �1 in the above
plots. All ORDINARY DOUBLE POINTS of are real,
while 24 of those in are complex. The surfaces
were discovered in a 5-D family of octics with 112
nodes, and are invariant under the GROUP D8 �Z2 :/

See also ALGEBRAIC SURFACE, OCTIC SURFACE
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Energy
The term energy has an important physical meaning
in physics and is an extremely useful concept. A much
more abstract mathematical generalization is defined
as follows. Let V be a SPACE with MEASURE m ]0 and
let F(P; Q) be a real function on the PRODUCT SPACE

V�V: When

(m; n)�g g F(P; Q) dm(Q) dn(P)

�g F(P; m) dn(P)

exists for measures m; n]0; (m; n) is called the
MUTUAL ENERGY and (m; m) is called the ENERGY.

See also DIRICHLET ENERGY, MUTUAL ENERGY
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En-Function

The En(x) function is defined by the integral

En(x)�g



1

e�xt dt

tn
(1)

and is given by the Mathematica function ExpInte-
gralE[n , x ]. Defining t�h�1 so that dt��h�2 dh;

En(x)�g
1

0

e�x=h hh�2 dh (2)

En(0)�
1

n � 1
: (3)

The function satisfies the RECURRENCE RELATIONS

E?n(x)��En�1(x) (4)

nEn�1(x)�e�x�xEn(x): (5)



Equation (4) can be derived from

En(x) �g
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and (5) using INTEGRATION BY PARTS, letting
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Solving (10) for nEn�1(x) then gives (5).
An ASYMPTOTIC SERIES is given by

(n �1)!En(x)

�(�x)n�1E1(x) �e�x
Xn

s�0

�2(n �s �2)!(�x)s ; (11)

so
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" #
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The special case n �1 gives

E1(x) ��ei(�x) �g
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t
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x

e �udu

u
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where ei(x) is the EXPONENTIAL INTEGRAL, which is
also equal to

E1(x) ��g �ln x �
X

n�1

(�1)nxn

n!n
; (14)

where g is the EULER-MASCHERONI CONSTANT.

E1(0) �
 (15)

E1(ix) ��ci(x) �i si(x); (16)

where ci(x) and si(x) are the COSINE INTEGRAL and
SINE INTEGRAL.

See also COSINE INTEGRAL, ET -FUNCTION, EXPONEN-

TIAL INTEGRAL, GOMPERTZ CONSTANT, SINE INTEGRAL
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Engel’s Theorem
A finite-dimensional LIE ALGEBRA all of whose ele-
ments are ad-NILPOTENT is itself a NILPOTENT LIE

ALGEBRA.

Enlargement

See also EXPANSION

Enneacontagon
A 90-sided POLYGON. The regular enneacontagon is
CONSTRUCTIBLE.

Enneacontahedron
A ZONOHEDRON constructed from the 10 diameters of
the DODECAHEDRON which has 90 faces, 30 of which
are RHOMBS of one type and the other 60 of which are
RHOMBS of another. The enneacontahedron somewhat
resembles a figure of Sharp.

See also DODECAHEDRON, RHOMB, ZONOHEDRON
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Enneadecagon

A 19-sided POLYGON, sometimes also called the
ENNEAKAIDECAGON.

Enneagon
NONAGON

Enneagonal Number
NONAGONAL NUMBER

Enneakaidecagon
ENNEADECAGON

Enneper’s Minimal Surface

A self-intersecting MINIMAL SURFACE which can be
generated using the ENNEPER-WEIERSTRASS PARAME-

TERIZATION with

f (z)�1 (1)

g(z)�z: (2)

Letting z�reif and taking the REAL PART give

x�R reif�1
3 r3e3if

h i
(3)

�r cos f�1
3 r3 cos(3f) (4)

y�R[ireif�1
3 ir3e3if] (5)

��1
3 r[3 sin f�r2 sin(3f)] (6)

z�R[r2e2if] (7)

�r2 cos(2f); (8)

where r � [0; 1] and f � [�p; p): The coefficients of the
FIRST FUNDAMENTAL FORM are

E��2 cos(2f) (9)

F�4r cos f sin f (10)

G�2r2 cos(2f); (11)

the SECOND FUNDAMENTAL FORM coefficients are

e�(1�r2)2 (12)

f �0 (13)

g�r2(1�r2)2; (14)

and the GAUSSIAN and MEAN CURVATURES are

K��
4

(1 � r2)4 (15)

H�0: (16)

Letting z�u�iv gives the figure above, with para-
metrization

x�u�1
3 u3�uv2 (17)

y��v�u2v�1
3 v3 (18)

z�u2�v2 (19)

(do Carmo 1986, Gray 1997, Nordstrand). In this
parameterization, the coefficients of the FIRST FUNDA-

MENTAL FORM are

E�(1�u2�v2)2 (20)

F�0 (21)

G�(1�u2�v2)2; (22)

the SECOND FUNDAMENTAL FORM coefficients are

e��2 (23)

f �0 (24)

g�2; (25)

the AREA ELEMENT is

dA�(1�u2�v2) duffldv; (26)

and the GAUSSIAN and MEAN CURVATURES are

K��
4

(1 � u2 � v2)4 (27)

H�0: (28)

Nordstrand gives the implicit form

y2 � x2
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9 z2�2
3

 !3
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See also ENNEPER-WEIERSTRASS PARAMETERIZATION

References
Dickson, S. "Minimal Surfaces." Mathematica J. 1, 38�/0,

1990.
do Carmo, M. P. "Enneper’s Surface." §3.5C in Mathematical

Models from the Collections of Universities and Museums
(Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 43,
1986.

Enneper, A. "Analytisch-geometrische Untersuchungen." Z.
Math. Phys. 9, 96�/25, 1864.

Gray, A. "Examples of Minimal Surfaces," "The Associated
Family of Enneper’s Surface," and "Enneper’s Surface of
Degree n ." §30.2 and 31.7 in Modern Differential Geometry
of Curves and Surfaces with Mathematica, 2nd ed. Boca
Raton, FL: CRC Press, pp. 358, 684 �/85, and 726 �/32,
1997.

JavaView. "Classic Surfaces from Differential Geometry:
Enneper." http://www-sfb288.math.tu-berlin.de/vgp/java-
view/demo/surface/common/PaSurface_Enneper.html.

Maeder, R. The Mathematica Programmer. San Diego, CA:
Academic Press, pp. 150 �/51, 1994.

Nordstrand, T. "Enneper’s Minimal Surface." http://
www.uib.no/people/nfytn/enntxt.htm.

Osserman, R. A Survey of Minimal Surfaces. New York:
Dover, p. 65, 87, and 143, 1986.

Wolfram Research "Mathematica Version 2.0 Graphics
Gallery." http://www.mathsource.com/cgi-bin/
msitem22?0207 �/55.

Enneper’s Negative Curvature Surfaces
The Enneper surfaces are a three-parameter family of
surfaces with constant negative curvature (and non-
constant MEAN CURVATURE). In general, they are
described by ELLIPTIC FUNCTIONS. However, a special
case which can be specified parametrically using
ELEMENTARY FUNCTIONS is the KUEN SURFACE.

See also KUEN SURFACE
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Enneper-Weierstrass Parameterization
A parameterization of a MINIMAL SURFACE in terms of
two functions f (z) and g(z) as

x(r ; f)
y(r ; f)
z(r ; f)

2
4

3
5�R g

f (1�g2)
if (1�g2)

2fg

2
4

3
5 dz;

where z�reif and R is the REAL PART. Examples are
given in the following table.

Surface /f (z)/ /g(z)/

ENNEPER’S MINIMAL SURFACE 1 z

HENNEBERG’S MINIMAL SURFACE /2(1�z�4)/ z

BOUR’S MINIMAL SURFACE 1 /

ffiffiffi
z

p
/

TRINOID /(z3�1)�2
/ /z2

/

See also BOUR’S MINIMAL SURFACE, ENNEPER’S MINI-

MAL SURFACE, HENNEBERG’S MINIMAL SURFACE,
MINIMAL SURFACE, TRINOID
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Enormous Theorem
CLASSIFICATION THEOREM

Enriques Surfaces
An Enriques surface X is a smooth compact complex
surface having irregularity q(X)�0 and nontrivial
canonical sheaf KX such that K2

X �OX (Endraß). Such
surfaces cannot be embedded in projective 3-space,
but there nonetheless exist transformations onto
singular surfaces in projective 3-space. There exists
a family of such transformed surfaces of degree six
which passes through each edge of a TETRAHEDRON

twice. A subfamily with tetrahedral symmetry is
given by the two-parameter (r, c ) family of surfaces

frx0x1x2x3�c(x2
0x2

1x2
2�x2

0x2
1x2

3�x2
0x2

2x2
3�x2

1x2
2x2

3�0

and the polynomial fr is a sphere with radius r ,

fr�(3�r)(x2
0�x2

1�x2
2�x2

3)

�2(1�r)(x0x1�x0x2�x0x3�x1x2�x1x3�x2x3)

(Endraß).
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Entire Function
If a COMPLEX FUNCTION is ANALYTIC at all finite points
of the COMPLEX PLANE C ; then it is said to be entire,
sometimes also called "integral" (Knopp 1996, p. 112).

See also ANALYTIC FUNCTION, FINITE ORDER, HADA-

MARD FACTORIZATION THEOREM, HOLOMORPHIC

FUNCTION, LIOUVILLE’S BOUNDEDNESS THEOREM,
MEROMORPHIC FUNCTION, WEIERSTRASS FACTOR THE-

OREM
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Birkhäuser, pp. 31 �/2, 1999.

Entire Modular Form
A MODULAR FORM which is not allowed to have poles
in the UPPER HALF-PLANE H or at i 
:/

See also MODULAR FORM

Entringer Number
The Entringer numbers E(n; k) are the number of
PERMUTATIONS of f1; 2; . . . ; n �1 g; starting with k �
1; which, after initially falling, alternately fall then
rise. The Entringer numbers are given by

E(0; 0) �1
E(n; 0) �0

together with the RECURRENCE RELATION

E(n; k) �E(n; k �1) �E(n �1; n �k) :

The numbers E(n) �E(n; n) are the SECANT and
TANGENT NUMBERS given by the MACLAURIN SERIES

sec x �tan x

�A0 �A1x �A2

x2

2! 
�A3

x3

3! 
A4

x4

4! 
�A5

x5

5! 
�. . . :

See also ALTERNATING PERMUTATION, BOUSTROPHE-

DON TRANSFORM, EULER ZIGZAG NUMBER, PERMUTA-

TION, SECANT NUMBER, SEIDEL-ENTRINGER-ARNOLD

TRIANGLE, TANGENT NUMBER, ZAG NUMBER, ZIG

NUMBER
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Entropy
In physics, the word entropy has important physical
implications as the amount of "disorder" of a system.
In mathematics, a more abstract definition is used.
The (Shannon) entropy of a variable X is defined as

H(X) ��
X

x

p(x) ln[p(x)] ;

where p(x) is the probability that X is in the state x ,
and p ln p is defined as 0 if p�0. The joint entropy of
variables X1; ..., Xn is then defined by

H(X1; . . . ; Xn)

��
X

x1

� � �
X

xn

p(x1; . . . ; xn) ln[p(x1; . . . ; xn)]:

See also INFORMATION THEORY, KOLMOGOROV EN-

TROPY, KOLMOGOROV-SINAI ENTROPY, MAXIMUM EN-

TROPY METHOD, METRIC ENTROPY, ORNSTEIN’S

THEOREM, REDUNDANCY, RELATIVE ENTROPY, SHAN-

NON ENTROPY, TOPOLOGICAL ENTROPY
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Entscheidungsproblem
DECISION PROBLEM

Enumerable
DENUMERABLE SET

Enumerate
A GENERATING FUNCTION

F(x) �
X

n

anxn

is said to enumerate an (Hardy 1999, p. 85).

See also GENERATING FUNCTION
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Enumeration Problem
The problem of determining (or counting) the set of
all solutions to a given problem.

See also CLASSIFICATION, COMBINATORICS, EXISTENCE

PROBLEM
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Enumerative Geometry
Schubert’s application of the CONSERVATION OF NUM-

BER PRINCIPLE.

See also CONSERVATION OF NUMBER PRINCIPLE,
DUALITY PRINCIPLE, HILBERT’S PROBLEMS, PERMA-

NENCE OF MATHEMATICAL RELATIONS PRINCIPLE
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Envelope
The envelope of a one-parameter family of curves
given implicitly by

U(x; y; c) �0; (1)

or in parametric form by (f (t; c); g(t; c)); is a curve
which touches every member of the family. For a
curve represented by (f (t; c) ; g(t; c)) ; the envelope is
found by solving

0 �
@f

@t

@g

@c 
�

@f

@c

@g

@t
: (2)

For a curve represented implicitly, the envelope is
given by simultaneously solving

@U

@c
�0 (3)

U(x; y; c)�0: (4)

See also ASTROID, CARDIOID, CATACAUSTIC, CAUSTIC,
CAYLEYIAN CURVE, DÜ RER’S CONCHOID, ELLIPSE

ENVELOPE, ENVELOPE THEOREM, EVOLUTE, GLIS-

SETTE, HEDGEHOG, KIEPERT’S PARABOLA, LINDELOF’S

THEOREM, NEGATIVE PEDAL CURVE
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Envelope (Form)
Given a DIFFERENTIAL P -FORM q in the EXTERIOR

ALGEBRAfflp V�; its envelope is the smallest SUBSPACE

W such that q is in the subspace fflp W�ƒfflp V�:
Alternatively, W is spanned by the vectors that can
be written as the CONTRACTION of q with an element
offflp�1 V:/

For example, the envelope of dx in V�R2 is W�
�@=@x�; and the envelope of dx1ffldx2�dx3ffldx4 in
V�R4 is all of V .

Here is a Mathematica function which will compute
the envelope of an ANTISYMMETRIC TENSOR.

BBDiscreteMath‘Combinatorica‘;

ContractAll[a_List, b_List] :� Module[{k �
TensorRank[a] - TensorRank[b]}, If[k �� 0,

Map[Flatten[#1].Flatten[b] &, a, {k}],

ContractAll[b, a]

]

] Envelope[a_List?VectorQ] :� Select[{a},

#1 !� Table[0, {Length[a]}] &]

Envelope[a_List] :� Module[

{

z, inds, vects,

d � Dimensions[a][[1]], r � TensorRank[a]



},

z � Table[0, ##1] & @@ Table[{d}, {r - 1}];

inds � KSubsets[Range[d], r - 1];

vects � Map[ContractAll[a, ReplacePart[z, 1,

#1]] &, inds];

Select[RowReduce[vects], #1 ! � Table[0, {d}]

&]

]

See also DECOMPOSABLE, DIFFERENTIAL FORM, DIF-

FERENTIAL IDEAL, EXTERIOR ALGEBRA, VECTOR

SPACE, WEDGE PRODUCT

Envelope Theorem
Relates EVOLUTES to single paths in the CALCULUS OF

VARIATIONS. Proved in the general case by Darboux
and Zermelo (1894) and Kneser (1898). It states:
"When a single parameter family of external paths
from a fixed point O has an ENVELOPE, the integral
from the fixed point to any point A on the ENVELOPE

equals the integral from the fixed point to any second
point B on the ENVELOPE plus the integral along the
envelope to the first point on the ENVELOPE,
JOA �JOB �JBA :/"

References
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Envyfree
An agreement in which all parties feel as if they have
received the best deal.

See also CAKE CUTTING
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E-Operator
SUMMATION BY PARTS

e-Perfect Number
A number n is called an e -perfect number if se(n) �
2n; where se(n) is the SUM of the E -DIVISORS of n . If m
is SQUAREFREE, then se(m) �m: As a result, if n is e -
perfect and m is SQUAREFREE with m �b ; then mn is
e -perfect.

The first few e -perfect numbers are 36, 180, 252, 396,
468, ... (Sloane’s A054979). There are no ODD e -
perfect numbers. The first few primitive e -perfect
numbers are 36, 1800, 2700, 17424, ... (Sloane’s
A054980).

See also E -DIVISOR

References
Guy, R. K. "Exponential-Perfect Numbers." §B17 in Un-

solved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, p. 73, 1994.

Sloane, N. J. A. Sequences A054979 and A054980 in "An
On-Line Version of the Encyclopedia of Integer Se-
quences." http://www.research.att.com/~njas/sequences/
eisonline.html.

Subbarao, M. V. and Suryanarayan, D. "Exponential Perfect
and Unitary Perfect Numbers." Not. Amer. Math. Soc. 18,
798, 1971.

Epicycloid

The path traced out by a point P on the edge of a
CIRCLE of RADIUS b rolling on the outside of a CIRCLE

of RADIUS a . An epicycloid is therefore an EPITRO-

CHOID with h�b . Epicycloids are given by the
PARAMETRIC EQUATIONS

x�(a�b) cos f�b cos
a � b

b
f

 !
(1)

y�(a�b) sin f�b sin
a � b

b
f

 !
: (2)

A polar equation can be derived by computing

x2�(a�b)2 cos2 f�2b(a�b) cos f cos
a � b

b
f

 !

�b2 cos2 a � b

b
f

 !
(3)



y2 �(a �b)2 sin2 f �2b(a �b) sin f sin
a � b

b
f

 !

�b2 sin2 a � b

b
f

 !
; (4)

so

r2 �x2 �y2 �(a �b)2 �b2 �2b(a �b)

� cos
a

b 
�1

 !
f

" #
cos f �sin

a

b 
�1

 !
f

" #
sin f

( )
:

(5)

But

cos a cos b �sin a sin b �cos(a � b) ; (6)

so

r2 �(a �b)2 �b2 �2b(a �b) cos
a

b 
�1

 !
f � f

" #

�(a �b)2 �b2 �2b(a �b) cos
a

b
f

 !
: (7)

Note that f is the parameter here, not the polar
angle. The polar angle from the center is

tan u �
y

x 
�

(a � b) sin f � b sin
a � b

b
f

 !

(a � b)cos f � b cos
a � b

b
f

 ! : (8)

To get n CUSPS in the epicycloid, b �a=n; because
then n rotations of b bring the point on the edge back
to its starting position.

r2 �a2 1 �
1

n

 !2

�
1

n

 !2

�2
1

n

 !
1 �

1

n

 !
cos(nf)

2
4

3
5

�a2 1 �
2

n 
�

1

n2 
�

1

n2 
�

2

n

 !
n � 1

n

 !
cos(n f)

" #

�a2 n2 � 2n � 2

n2
�

2(n � 1)

n2
cos(nf)

" #

�
a2

n2
(n2 �2n �2) �2(n �1) cos(nf)
1 2

; (9)

so

tan u �

a
n � 1

n

 !
sin f �

a

n
sin[(n � 1)f]

a
n � 1

n

 !
cos f �

a

n
cos[(n � 1)f]

�
(n � 1) sin f � sin[(n � 1)f]

(n � 1) cos f � cos[(n � 1)f] 
: (10)

An epicycloid with one cusp is called a CARDIOID, one
with two cusps is called a NEPHROID, and one with five
cusps is called a RANUNCULOID.

n -epicycloids can also be constructed by beginning
with the DIAMETER of a CIRCLE, offsetting one end by a
series of steps while at the same time offsetting the
other end by steps n times as large. After traveling
around the CIRCLE once, an n -cusped epicycloid is
produced, as illustrated above (Madachy 1979).

Epicycloids have TORSION

t�0 (11)

and satisfy

s2

a2
�

r2

b2
�1; (12)

where r is the RADIUS OF CURVATURE (/1=k):/

See also CARDIOID, CYCLIDE, CYCLOID, EPICYCLOID–1-

CUSPED, EPICYCLOID EVOLUTE, EPICYCLOID INVO-

LUTE, EPICYCLOID PEDAL CURVE, EPITROCHOID, HY-

POCYCLOID, NEPHROID, RANUNCULOID
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Epicycloid Evolute

The EVOLUTE of the EPICYCLOID

x�(a�b) cos t�b cos
a � b

b

 !
t

" #

y�(a�b) sin t�b sin
a � b

b

 !
t

" #

is another EPICYCLOID given by

x�
a

a � 2b
(a�b) cos t�b cos

a � b

b

 !
t

" #( )

y�
a

a � 2b
(a�b) sin t�b cos

a � b

b

 !
t

" #( )
:

Epicycloid Involute

The INVOLUTE of the EPICYCLOID

x�(a�b) cos t�b cos
a � b

b

 !
t

" #

y�(a�b) sin t�b sin
a � b

b

 !
t

" #

is another EPICYCLOID given by

x�
a � 2b

a
(a�b) cos t�b cos

a � b

b

 !
t

" #( )

y�
a � 2b

a
(a�b) sin t�b cos

a � b

b

 !
t

" #( )
:

Epicycloid Pedal Curve

The PEDAL CURVE of an EPICYCLOID with PEDAL POINT

at the center, shown for an epicycloid with four cusps,
is not a ROSE as claimed by Lawrence (1972).
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Epicycloid Radial Curve

The RADIAL CURVE of an EPICYCLOID is shown above
for an epicycloid with four cusps. It is not a ROSE, as
claimed by Lawrence (1972).
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Epicycloid1-Cusped

A 1-cusped epicycloid has b �a , so n �1. The radius
measured from the center of the large circle for a 1-
cusped epicycloid is given by EPICYCLOID equation (9)
with n �1 so

r2 �
a2

n2 
[(n2 �2n �2) �2(n �1) cos (nf)]

�a2[(12 �2 � 1 �2) �2(1 �1) cos(1 � f)]

�a2(5 �4 cos f) (1)

r �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �4 cos f

p
; (2)

and

tan u �
2 sin f � sin (2f)

2 cos f � cos (2f) 
: (3)

The 1-cusped epicycloid is just an offset CARDIOID.

Epicycloid–2-Cusped
NEPHROID

Epimenides Paradox
A version of the LIAR’S PARADOX, attributed to the
philosopher Epimenides in the sixth century BC. "All
Cretans are liars...One of their own poets has said so."
This is not a true paradox since the poet may have
knowledge that at least one Cretan is, in fact, honest,
and so be lying when he says that all Cretans are
liars. There therefore need be no self-contradiction in
what could simply be a false statement by a person
who is himself a liar.

A sharper version of the paradox (which has no such
loophole) is the EUBULIDES PARADOX, "This statement
is false."

See also EUBULIDES PARADOX, LIAR’S PARADOX,
SOCRATES’ PARADOX
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Epimorphism
A MORPHISM f : Y 0 X in a CATEGORY is an epimorph-
ism if, for any two morphisms u; v : X 0 Z; uf �vf
implies u�v .

See also CATEGORY, MORPHISM

Epispiral

A plane curve with polar equation

r�a sec(nu):

There are n sections if n is ODD and 2n if n is EVEN.

References
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Epispiral Inverse Curve

The INVERSE CURVE of the EPISPIRAL

r�a sec(nu)

with INVERSION CENTER at the origin and inversion



radius k is the ROSE

r �
k cos(nu)

a
:

See also EPISPIRAL, INVERSE CURVE, ROSE

Epitrochoid

The ROULETTE traced by a point P attached to a
CIRCLE of radius b rolling around the outside of a
fixed CIRCLE of radius a . These curves were studied
by Dürer (1525), Desargues (1640), Huygens (1679),
Leibniz, Newton (1686), L’Hospital (1690), Jakob
Bernoulli (1690), la Hire (1694), Johann Bernoulli
(1695), Daniel Bernoulli (1725), Euler (1745, 1781).
An epitrochoid appears in Dürer’s work Instruction in
Measurement with Compasses and Straight Edge
(1525). He called epitrochoids SPIDER LINES because
the lines he used to construct the curves looked like a
spider.

The PARAMETRIC EQUATIONS for an epitrochoid are

x �(a �b) cos t �h cos
a � b

b
t

 !

y �(a �b) sin t �h sin
a � b

b
t

 !
;

where h is the distance from P to the center of the
rolling CIRCLE. Special cases include the LIMAÇ ON

with a �b , the CIRCLE with a �0, and the EPICYCLOID

with h �b .

See also EPICYCLOID, HYPOTROCHOID, SPIROGRAPH,
TROCHOID
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Epitrochoid Evolute

The PARAMETRIC EQUATIONS of the EVOLUTE of an
EPITROCHOID specified by circle radii a and b with
offset h are

x �

ah(a � b)c1(t) cos t � bc2(t) cos
(a � b)t

b

" #

b3 � (a � b)h2 � b(a � 2b)h cos
at

b

 ! (1)

y �

ah(a � b)c1(t) sin t � bc2(t) sin
(a � b)t

b

" #

b3 � (a � b)h2 � b(a � 2b)h cos
at

b

 ! ; (2)

where

c1(t) �h �b cos
at

b

 !
(3)

c2(t) �b �h cos
at

b

 !
: (4)

See also EPITROCHOID, EVOLUTE

Epsilon
In mathematics, a small POSITIVE INFINITESIMAL

quantity, usually denoted e or o ; whose LIMIT is
usually taken as e 0 0:/

The late mathematician P. Erdos also used the term
"epsilons" to refer to children (Hoffman 1998, p. 4).

See also EPSILON CONJECTURE, WYNN’S EPSILON

METHOD
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Epsilon Conjecture
The conjecture that Frey’s ELLIPTIC CURVE was not
modular. The conjecture was quickly proved by Ribet
(RIBET’S THEOREM) in 1986, and was an important
step in the proof of FERMAT’S LAST THEOREM and the
TANIYAMA-SHIMURA CONJECTURE.

See also FERMAT’S LAST THEOREM, RIBET’S THEOREM,
TANIYAMA-SHIMURA CONJECTURE

Epsilon-Delta Definition
CONTINUOUS FUNCTION, LIMIT

Epsilon-Neighborhood
NEIGHBORHOOD

Epstein Zeta Function

Z 
g
h

����
����(q; s) �

X
1

e �2pih � 1

[q(1 � g)]s=2 ;

where g and h are arbitrary VECTORS, the SUM runs
over a d -dimensional LATTICE, and 1 ��g is omitted
if g is a lattice VECTOR.

See also ZETA FUNCTION
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Equal
Two quantities are said to be equal if they are, in
some WELL DEFINED sense, equivalent. Equality of
quantities a and b is written a �b . Equal is im-
plemented in Mathematica as Equal[A , B , ...], or
A ��B �� ....

A symbol with three horizontal line segments (/�)
resembling the equals sign is used to denote both
equality by definition (e.g., A �B means A is DEFINED

to be equal to B ) and CONGRUENCE (e.g., 13 �
1 (mod 12) means 13 divided by 12 leaves a REMAIN-

DER of 1–a fact known to all readers of analog clocks).

See also CONGRUENCE, DEFINED, DIFFERENT, EQUAL

BY DEFINITION, EQUALITY, EQUIVALENT, ISOMORPH-

ISM, UNEQUAL

Equal by Definition
DEFINED

Equal Detour Point
The center of an outer SODDY CIRCLE. It has TRIANGLE

CENTER FUNCTION

a�1�
2D

a(b � c � a)
�sec(1

2 A) cos(1
2 B) cos(1

2 C)�1:

Given a point Y not between A and B , a detour of
length

½AY ½� ½YB½� ½AB½

is made walking from A to B via Y , the point is of
equal detour if the three detours from one side to
another via Y are equal. If ABC has no ANGLE

/> 2 sin�1 (4=5); then the point given by the above
TRILINEAR COORDINATES is the unique equal detour
point. Otherwise, the ISOPERIMETRIC POINT is also
equal detour.
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Equal Incircles Theorem
INCIRCLE

Equal Parallelians Point
The point of intersection of the three LINE SEGMENTS,
each parallel to one side of a TRIANGLE and touching
the other two, such that all three segments are of the
same length. The TRILINEAR COORDINATES are

bc(ca�ab�bc) : ca(ab�bc�ca) : ab(bc�ca�ab):
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Equal-Area Projection
A MAP PROJECTION in which areas on a sphere, and
the areas of any features contained on it, are mapped
to the plane in such a way that two are related by a
constant scaling factor. No projection can be both
equal-area and CONFORMAL, and projections which
are neither equal-area nor CONFORMAL are sometimes
called APHYLACTIC (Snyder 1987, p. 4). Equal-area
projections are also called EQUIVALENT, HOMOLO-

GRAPHIC, HOMALOGRAPHIC, AUTHALIC, or EQUIAREAL

(Lee 1944; Snyder 1987, p. 4).

See also ALBERS EQUAL-AREA CONIC PROJECTION,
APHYLACTIC PROJECTION, BEHRMANN CYLINDRICAL



EQUAL-AREA PROJECTION, CONFORMAL PROJECTION,
CYLINDRICAL EQUAL-AREA PROJECTION, EQUIDISTANT

PROJECTION, HAMMER-AITOFF EQUAL-AREA PROJEC-

TION, LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION,
MAP PROJECTION
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Equality
A mathematical statement of the equivalence of two
quantities. The equality "A is equal to B" is written
A �B .

See also EQUAL, FORMULA, INEQUALITY

Equally Likely Outcomes Distribution
Let there be a set S with N elements, each of them
having the same probability. Then

P(S) �P @
N

i�1
Ei

� �
�
XN

i�1

P(Ei)

�P(Ei)
XN

i�1

1 �NP(Ei) :

Using P(S) �1 gives

P(Ei) �
1

N
:

See also UNIFORM DISTRIBUTION

Equation
A mathematical expression stating that two or more
quantities are the same as one another, also called an
EQUALITY, FORMULA, or IDENTITY.

See also EQUALITY, FORMULA, IDENTITY, INEQUATION

Equiaffinity
An AREA-preserving AFFINITY. Equiaffinities include
the CROSSED HYPERBOLIC ROTATION, ELLIPTIC ROTA-

TION, HYPERBOLIC ROTATION, and PARABOLIC ROTA-

TION.

Equiangular Polygon
A POLYGON whose vertex angles are equal (Williams
1979, p. 32).

See also EQUILATERAL POLYGON, POLYGON, REGULAR

POLYGON
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Equiangular Spiral
LOGARITHMIC SPIRAL

Equianharmonic Case
The case of the WEIERSTRASS ELLIPTIC FUNCTION with
invariants g2 �0 and g3 �1:/

See also LEMNISCATE CASE, PSEUDOLEMNISCATE CASE
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Equiareal Projection
EQUAL-AREA PROJECTION

Equi-Brocard Center
The point Y for which the TRIANGLES BYC , CYA , and
AYB have equal BROCARD ANGLES.
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Equichordal Point

A point p for which all the CHORDS of a curve C
passing through p are of the same length. In other
words, p is an equichordal point if, for every chord
[x; y] of length p of the curve C , p satisfies

½x�p½� ½y�p½�p:

A function r(u) satisfying

r(0)�p�r(p)

corresponds to a curve with equichordal point (0, 0)
and chord length p defined by letting r(u) be the polar
equation of the half-curve for 05u5p and then
superimposing the polar equation r(u)�p over the
same range. The curves illustrated above correspond



to polar equations OF THE FORM

r( u) �x �(1
2 �x) cos(2u)

for various values of x .
Although it long remained an outstanding problem
(the EQUICHORDAL POINT PROBLEM), it is now known
that a plane convex region can have two equichordal
points.

See also CHORD, EQUICHORDAL POINT PROBLEM,
EQUIPRODUCT POINT, EQUIRECIPROCAL POINT
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Equichordal Point Problem
Is there a plane CONVEX SET having two distinct
EQUICHORDAL POINTS? The problem was first pro-
posed by Fujiwara (1916) and Blaschke et al. (1917),
but long defied solution. Rogers went so far as to
remark, "If you are interested in studying the
problem, my first advice is: ‘Don’t"’ (Croft et al.
1991, p. 9). This advice to the contrary, the problem
was recently solved by Rychlik (1997).

See also EQUICHORDAL POINT
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Equicross
RANGES and PENCILS which have equal CROSS-RATIOS

are said to be equicross.

See also CROSS-RATIO, PENCIL, RANGE (LINE SEG-

MENT)
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Equidecomposable
The ability of two plane or space regions to be
DISSECTED into each other.

Equidigital Number
A number n is called equidigital if the number of
digits in the prime factorization of n (including
powers) uses the same number of digits as the
number of digits in n . The first few equidigital
numbers are 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17,
19, 21, 23, ... (Sloane’s A046758).

See also ECONOMICAL NUMBER, WASTEFUL NUMBER
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Equidistance Postulate
PARALLEL lines are everywhere equidistant. This
POSTULATE is equivalent to the PARALLEL AXIOM.

References
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Equidistant Projection
A MAP PROJECTION in which the distances between
one or two points and every other point on the map
differ from the corresponding distances on the sphere
by only a constant scaling factor (Snyder 1987, p. 4).

See also AZIMUTHAL EQUIDISTANT PROJECTION, CON-

FORMAL PROJECTION, CONIC EQUIDISTANT PROJEC-

TION, CYLINDRICAL EQUIDISTANT PROJECTION, EQUAL-

AREA PROJECTION, EQUIDISTANT PROJECTION, MILL-

ER EQUIDISTANT PROJECTION
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Equidistributed Sequence
A sequence of REAL NUMBERS fxn g is equidistributed if
the probability of finding xn in any subinterval is
proportional to the subinterval length.

Consider the distribution of the FRACTIONAL PARTS of
nr in the intervals bounded by 0, 1 =n; 2=n; ...,

/(n �1)=n; 1. In particular, the number of empty
intervals for n �1, 2, ..., are given below for E , the
EULER-MASCHERONI CONSTANT g ; the GOLDEN RATIO

f; and PI.

r Sloane # Empty Intervals for n �1,
2, ...,

e Sloane’s
A036412

0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 1, 4, 4,
7, 5, ...

/ g/ Sloane’s
A046157

0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 3, 0, 3,
5, 3, ...

/ f/ Sloane’s
A036414

0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0,
2, 2, ...

/ p/ Sloane’s
A036416

0, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 4, 5,
7, 7, ...

The values of n for which no bins are left blank are
given in the following table.

r Sloane n with no empty intervals

e Sloane’s
A036413

1, 2, 3, 4, 6, 7, 32, 35, 39, 71,
465, 536, 1001, ...

/ g/ Sloane’s
A046158

1, 2, 3, 5, 6, 7, 12, 19, 26, 97,
123, 149, 272, 395, ...

/ f/ Sloane’s
A036415

1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21,
34, 55, 89, 144, ...

/p/ Sloane’s
A036417

1, 6, 7, 106, 112, 113, 33102,
33215, ...

Steinhaus (1983) remarks that the highly uniform
distribution of frac(nf) has its roots in the form of the
CONTINUED FRACTION for f:/

See also PISOT-VIJAYARAGHAVAN CONSTANT, UNIFORM

DISTRIBUTION, WEYL’S CRITERION
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Equilateral Hyperbola
RECTANGULAR HYPERBOLA

Equilateral Polygon
A POLYGON whose side are equal (Williams 1979,
pp. 31�/2).

See also EQUIANGULAR POLYGON, EQUILATERAL TRI-

ANGLE, POLYGON, REGULAR POLYGON
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Equilateral Triangle

An equilateral triangle is a TRIANGLE with all three
sides of equal length a . An equilateral triangle also
has three equal 608 ANGLES.
The ALTITUDE h of an equilateral triangle is

h�1
2

ffiffiffi
3

p
a; (1)

where a is the side length, so the AREA is

A�1
2 ah�1

4

ffiffiffi
3

p
a2: (2)



The INRADIUS r , CIRCUMRADIUS R , and AREA A can be
computed directly from the formulas for a general
REGULAR POLYGON with side length a and n �3 sides,

r �1
2 a cot

p

3

 !
�1

2 a tan
p

6

 !
�1

6

ffiffiffi
3

p
a (3)

R �1
2 a csc

p

3

 !
�1

2 a sec
p

6

 !
�1

3

ffiffiffi
3

p
a (4)

A �1
4 na2 cot

p

3

 !
�1

4

ffiffiffi
3

p
a2 : (5)

The AREAS of the INCIRCLE and CIRCUMCIRCLE are

Ar � pr2 � 1
12 pa2 (6)

AR � pR2 �1
3 pa2 : (7)

GEOMETRIC CONSTRUCTION of an equilateral consists
of drawing a diameter of a circle OPO and then
constructing its perpendicular bisector P3OB: Bisect
OB in point D , and extend the line P1P2 through D .
The resulting figure P1P2P3 is then an equilateral
triangle. An equilateral triangle may also be con-
structed (although not using the usual Greek rules,
which do not permit angle trisection) by TRISECTING

all three ANGLES of any TRIANGLE (MORLEY’S THEO-

REM).

NAPOLEON’S THEOREM states that if three equilateral
triangles are drawn on the LEGS of any TRIANGLE

(either all drawn inwards or outwards) and the
centers of these triangles are connected, the result
is another equilateral triangle.

Given the distances of a point from the three corners
of an equilateral triangle, a , b , and c , the length of a
side s is given by

3(a4 �b4 �c4 �s4) �(a2 �b2 �c2 �s2)2 (8)

(Gardner 1977, pp. 56 �/7 and 63). There are infinitely
many solutions for which a , b , and c are INTEGERS. In
these cases, one of a , b , c , and s is DIVISIBLE by 3, one
by 5, one by 7, and one by 8 (Guy 1994, p. 183).

Begin with an arbitrary TRIANGLE and find the
EXCENTRAL TRIANGLE. Then find the EXCENTRAL

TRIANGLE of that triangle, and so on. Then the
resulting triangle approaches an equilateral triangle.
The only RATIONAL TRIANGLE is the equilateral
triangle (Conway and Guy 1996). A POLYHEDRON

composed of only equilateral triangles is known as a
DELTAHEDRON.

Let any RECTANGLE be circumscribed about an EQUI-

LATERAL TRIANGLE. Then

X �Y �Z; (9)

where X , Y , and Z are the AREAS of the triangles in
the figure (Honsberger 1985).

The smallest equilateral triangle which can be in-
scribed in a UNIT SQUARE (left figure) has side length
and area

s�1 (10)

A�1
4

ffiffiffi
3

p
:0:4330: (11)

The largest equilateral triangle which can be in-
scribed (right figure) is oriented at an angle of 158 and
has side length and area

s�sec (15�)�
ffiffiffi
6

p
�

ffiffiffi
2

p
(12)

A�2
ffiffiffi
3

p
�3:0:4641 (13)

(Madachy 1979).

See also ACUTE TRIANGLE, DELTAHEDRON, EQUILIC

QUADRILATERAL, FERMAT POINTS, GYROELONGATED



SQUARE DIPYRAMID, ICOSAHEDRON, ISOSCELES TRIAN-

GLE, MORLEY’S THEOREM, OCTAHEDRON, PENTAGONAL

DIPYRAMID, REULEAUX TRIANGLE, RIGHT TRIANGLE,
SCALENE TRIANGLE, SNUB DISPHENOID, TETRAHE-

DRON, TRIANGLE, TRIANGLE PACKING, TRIANGULAR

DIPYRAMID, TRIAUGMENTED TRIANGULAR PRISM, VI-

VIANI’S THEOREM
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Equilateral Triangle Packing
TRIANGLE PACKING

Equilibrium Point
An equilibrium point in GAME THEORY is a set of
strategies fx̂1 ; . . . ; x̂n g such that the ith payoff
function Ki(x) is larger or equal for any other ith
strategy, i.e.,

Ki(x̂1 ; . . . ; x̂n) ]Ki(x̂1 ; . . . ; x̂i �1 ; xi ; x̂i �1 ; . . . ; x̂n) :

NASH EQUILIBRIUM

Equilic Quadrilateral
A QUADRILATERAL in which a pair of opposite sides
have the same length and are inclined at 608 to each
other (or equivalently, satisfy �A���B��120�):
Some interesting theorems hold for such quadrilat-
erals. Let ABCD be an equilic quadrilateral with
AD �BC and �A���B ��120�: Then

1. The MIDPOINTS P , Q , and R of the diagonals and
the side CD always determine an EQUILATERAL

TRIANGLE.
2. If EQUILATERAL TRIANGLE PCD is drawn out-
wardly on CD , then DPAB is also an EQUILATERAL

TRIANGLE.
3. If EQUILATERAL TRIANGLES are drawn on AC ,
DC , and DB away from AB , then the three new
VERTICES P , Q , and R are COLLINEAR.

See Honsberger (1985) for additional theorems.
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Equinumerous
Let A and B be two classes of POSITIVE INTEGERS. Let
A(n) be the number of integers in A which are less
than or equal to n , and let B(n) be the number of
integers in B which are less than or equal to n . Then
if

A(n) �B(n) ;

A and B are said to be equinumerous.

The four classes of PRIMES 8k �1 ; 8k �3; 8k �5 ; 8k �
7 are equinumerous. Similarly, since 8k �1 and 8k �
5 are both of the form 4k�1; and 8k�3 and 8k�7
are both OF THE FORM 4k�3; 4k�1 and 4k�3 are
also equinumerous.

See also BERTRAND’S POSTULATE, CHOQUET THEORY,
PRIME COUNTING FUNCTION
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Equipollent
Two statements in LOGIC are said to be equipollent if
they are deducible from each other.

Two sets A and B are said to be equipollent IFF there
is a one-to-one function (i.e., a BIJECTION) from A onto
B (Moore 1982, p. 10; Rubin 1967, p. 67; Suppes
1972, p. 91).

The term equipotent is sometimes used instead of
equipollent.
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Equipotent
EQUIPOLLENT

Equipotential Curve
A curve in 2-D on which the value of a function f (x; y)
is a constant. Other synonymous terms are ISARITHM

and ISOPLETH. A plot of several equipotential curves
is called a CONTOUR PLOT.

See also CONTOUR PLOT, LEMNISCATE

Equiproduct Point
A point, such as interior points of a disk, such that

(px)(py) �[const] ;

where p is the CHORD length.

See also EQUICHORDAL POINT, EQUIRECIPROCAL

POINT

Equireciprocal Point
p is an equireciprocal point if, for every chord [x; y] of
a curve C , p satisfies

½x �p½�1 �½y �p ½�1 �c

for some constant c . The FOCI of an ELLIPSE are
equichordal points.

See also EQUICHORDAL POINT, EQUIPRODUCT POINT
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Equirectangular Projection

A CYLINDRICAL EQUIDISTANT PROJECTION, also called
a RECTANGULAR PROJECTION, PLANE CHART, PLATE

CARRE, or UNPROJECTED MAP, in which the horizontal
coordinate is the longitude and the vertical coordinate
is the latitude, so the standard parallel is taken as
f1 �0:/

See also CYLINDRICAL EQUIDISTANT PROJECTION

Equiripple
A distribution of ERROR such that the ERROR remain-
ing is always given approximately by the last term
dropped.

Equitangential Curve
TRACTRIX

Equivalence
BICONDITIONAL, EQUIVALENT

Equivalence Class
An equivalence class is defined as a SUBSET OF THE

FORM fx � X : xRa g; where a is an element of X and
the NOTATION "xRy" is used to mean that there is an
EQUIVALENCE RELATION between x and y . It can be
shown that any two equivalence classes are either
equal or disjoint, hence the collection of equivalence
classes forms a partition of X . For all a ; b � X ; we
have aRb IFF a and b belong to the same equivalence
class.

A set of CLASS REPRESENTATIVES is a SUBSET of X
which contains EXACTLY ONE element from each
equivalence class.

For n a POSITIVE INTEGER, and a, b INTEGERS,
consider the CONGRUENCE a �b (mod n); then the
equivalence classes are the sets
f. . . ; �2n; �n; 0; n; 2n; . . .g; f. . . ; 1�2n; 1�
n; 1; 1�n; 1�2n; . . .g etc. The standard CLASS RE-

PRESENTATIVES are taken to be 0, 1, 2, ..., n�1:/

See also CONGRUENCE, COSET
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Equivalence Moves
REIDEMEISTER MOVES

Equivalence Problem
METRIC EQUIVALENCE PROBLEM

Equivalence Relation
An equivalence relation on a set X is a SUBSET of X�
X; i.e., a collection R of ordered pairs of elements of X ,
satisfying certain properties. Write "xRy" to mean (x,
y ) is an element of R , and we say "x is related to y ,"
then the properties are



1. Reflexive: aRa for all a � X ;/
2. Symmetric: aRb IMPLIES bRa for all a ; b � X/

3. Transitive: aRb and bRc imply aRc for all
a; b; c � X ;/

where these three properties are completely indepen-
dent. Other notations are often used to indicate a
relation, e.g., a �b or a �b :/

See also EQUIVALENCE CLASS, TEICHMÜ LLER SPACE
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Equivalent
If A [B and B [A (i.e, A [B fflB [A; where [
denotes IMPLIES), then A and B are said to be
equivalent, a relationship which is written symboli-
cally as A �B (Carnap 1958, p. 8), A UB ; or A XB:
Equivalence is implemented in Mathematica as
Equal[A , B , ...]. Binary equivalence has the following
TRUTH TABLE (Carnap 1958, p. 10).

A B /A �B/

T T T

T F F

F T F

F F T

Similarly, ternary equivalence has the following
TRUTH TABLE.

A B C /A �B �C/

T T T T

T T F F

T F T F

T F F F

F T T F

F T F F

F F T F

F F F T

The opposite of being equivalent is being NONEQUI-

VALENT.

Note that the symbol � is confusingly used in at least
two other different contexts. If A and B are "equiva-
lent by definition" (i.e., A is DEFINED to be B ), this is
written A �B ; and "a is CONGRUENT to b modulo m"
is written a �b (mod m) :/

See also BICONDITIONAL, CONNECTIVE, DEFINED, IFF,
IMPLIES, NONEQUIVALENT
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Equivalent Matrix
Two matrices A and B are equal to each other, written
A �B ; if they have the same dimensions m �n and
the same elements aij �bij for i �1, ..., n and j �1, ...,
m .

Gradshteyn and Ryzhik (2000) call an m �n MATRIX

A "equivalent" to another m �n MATRIX B IFF

B�PAQ

for P and Q any suitable nonsingular m�n and n�n
MATRICES, respectively.

See also MATRIX

References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,

Series, and Products, 6th ed. San Diego, CA: Academic
Press, p. 1103, 2000.

Equivalent Projection
EQUAL-AREA PROJECTION

Eratosthenes Sieve

An ALGORITHM for making tables of PRIMES. Sequen-
tially write down the INTEGERS from 2 to the highest
number n you wish to include in the table. Cross out
all numbers > 2 which are divisible by 2 (every
second number). Find the smallest remaining number
> 2: It is 3. So cross out all numbers > 3 which are
divisible by 3 (every third number). Find the smallest
remaining number > 3/. It is 5. So cross out all



numbers > 5 which are divisible by 5 (every fifth
number).
Continue until you have crossed out all numbers
divisible by

ffiffiffi
n

p
b c; where xb c is the FLOOR FUNCTION.

The numbers remaining are PRIME. This procedure is
illustrated in the above diagram which sieves up to
50, and therefore crosses out PRIMES up to

ffiffiffiffiffiffi
50

p3 4
�7:

If the procedure is then continued up to n , then the
number of cross-outs gives the number of distinct
PRIME FACTORS of each number.
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Erdos Number
The number of "hops" needed to connect the author of
a paper with the prolific late mathematician Paul
Erdos. An author’s Erdos number is 1 if he has co-
authored a paper with Erdos, 2 if he has co-authored
a paper with someone who has co-authored a paper
with Erdos, etc. (Hoffman 1998, p. 13).
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Erdos Reciprocal Sum Constants
A -SEQUENCE, B2 -SEQUENCE, NONAVERAGING SE-

QUENCE

Erdos Squarefree Conjecture
The CENTRAL BINOMIAL COEFFICIENT

2n
n

� �
is never

SQUAREFREE for n �4. This was proved true for all
sufficiently large n by SÁ RKOZY’S THEOREM. Goetghe-
luck (1988) proved the CONJECTURE true for 4 Bn 5
242205184 and Vardi (1991) for 4 Bn B2774840978 : The
conjecture was proved true in its entirety by Gran-
ville and Ramare (1996).

See also CENTRAL BINOMIAL COEFFICIENT
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Erdos-Anning Theorem
If an infinite number of points in the PLANE are all
separated by INTEGER distances, then all the points
lie on a straight LINE.

Erdos-Heilbronn Conjecture
Erdos and Heilbronn (Erdos and Graham 1980) posed
the problem of estimating from below the number of
sums a �b where a � A and b � B range over given sets
A; B ⁄Z=pZ of residues modulo a prime p , so that
a "b : Dias da Silva and Hamidoune (1994) gave a
solution, and Alon et al. (1995) developed a poly-
nomial method that allows one to handle restrictions
of the type f (a ; b) "0; where f is a polynomial in two
variables over Z=pZ:/
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Erdos-Ivic Conjecture
There are infinitely many primes m which divide
some value of the PARTITION FUNCTION P .

See also NEWMAN’S CONJECTURE, PARTITION FUNC-

TION P
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Erdos-Kac Theorem
A deeper result than the HARDY-RAMANUJAN THEO-

REM. Let N(x; a; b) be the number of INTEGERS in
[3; x] such that inequality



a 5
v(n) � ln ln nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ln n
p 5b

holds, where v(n) is the number of DISTINCT PRIME

FACTORS of n . Then

lim
x0


N(x; a ; b) �
(x � o(x))ffiffiffiffiffiffi

2p
p g

b

a

e �t2 =2 dt:

The theorem is discussed in Kac (1959).

See also DISTINCT PRIME FACTORS
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Erdos-Mordell Theorem
If O is any point inside a TRIANGLE /DABC/, and P , Q ,
and R are the feet of the perpendiculars from O upon
the respective sides BC , CA , and AB , then

OA �OB �OC ]2(OP �OQ �OR) :

Oppenheim (1961) and Mordell (1962) also showed
that

OA �OB �OC ](OQ �OR)(OR �OP)(OP �OQ) :
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Erdos-Moser Equation
The DIOPHANTINE EQUATION

Xm�1

j �1

jn �mn :

Erdos conjectured that there is no solution to this

equation other than the trivial solution 11 �21 �31 ;
although this remains unproved (Guy 1994, pp. 153 �/

54). Moser (1953) proved that there is no solution for
m B10106 

; and Butske et al. (1999) extended this to
m B109 :3 �106 

; or more specifically,
m B1:485 �109321155 :/
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Erdos-Selfridge Function
The Erdos-Selfridge function g(k) is defined as the
least integer bigger than k �1 such that the LEAST

PRIME FACTOR of g(k)
k

� �
exceeds k (Ecklund et al. 1974,

Erdoset al. 1993). The best lower bound known is

g(k) ]exp c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[ln k]3

ln ln k

s !

(Granville and Ramare 1996). Scheidler and Williams
(1992) tabulated g(k) up to k �140, and Lukes et al.
(1997) tabulated g(k) for 135 5k 5200: The values for
n �2, 3, ... are 4, 7, 7, 23, 62, 143, 44, 159, 46, 47, 174,
2239, ... (Sloane’s A046105).

See also BINOMIAL COEFFICIENT, GOOD BINOMIAL

COEFFICIENT, LEAST PRIME FACTOR
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Erdos-Stone Theorem
A generalization of TURÁN’S THEOREM to non-COM-

PLETE GRAPHS.

See also CLIQUE, EXTREMAL GRAPH THEORY, TURÁ N’S

THEOREM
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Erdos-Szekeres Theorem
Suppose a ; b �N; n �ab �1 ; and x1 ; ..., xn is a
sequence of n REAL NUMBERS. Then this sequence
contains a MONOTONIC increasing (decreasing) sub-
sequence of a �1 terms or a MONOTONIC decreasing
(increasing) subsequence of b �1 terms. DILWORTH’S

LEMMA is a generalization of this theorem.

See also COMBINATORICS, DILWORTH’S LEMMA
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Erdos-Turán Theorem
For any integers ai with

1 5a1 Ba2 B� � �Bak 5n;

the proportion of PERMUTATIONS in the SYMMETRIC

GROUP Sn whose cyclic decompositions contain no
cycles of lengths a1 ; a2 ; . . ., ak is at most

Xk

i�1

1

ai

 !�1

(Erdos and Turán 1967, Dixon 1969).

See also CYCLE (PERMUTATION), SYMMETRIC GROUP
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Erf

The "error function" encountered in integrating the
GAUSSIAN DISTRIBUTION (which is a normalized form
of the GAUSSIAN FUNCTION),

erf (z)�
2ffiffiffi
p

p g
z

0

e�t2

dt (1)

�1�erfc(z) (2)

�p�1=2g(1
2; z2); (3)

where ERFC is the complementary error function and
g(x; a) is the incomplete GAMMA FUNCTION. It can also
be defined as a MACLAURIN SERIES

erf (z)�
2ffiffiffi
p

p
X

n�0

(�1)nz2n�1

n!(2n � 1)
: (4)

Erf has the values

erf (0)�0 (5)

erf (
)�1: (6)

It is an ODD FUNCTION

erf (�z)��erf (z); (7)

and satisfies

erf (z)�erfc(z)�1: (8)

Erf may be expressed in terms of a CONFLUENT

HYPERGEOMETRIC FUNCTION OF THE FIRST KIND M as

erf (z)�
2zffiffiffi
p

p M(1
2;

3
2; �z2)�

2zffiffiffi
p

p e�z2

M(1; 3
2; z2): (9)



Erf is bounded by

1

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2

p Bex2

g



x

e �t2 

dt 5
1

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p

q : (10)

Its DERIVATIVE is

dn

dzn
erf (z) �(�1)n�1 2ffiffiffi

p
p Hn �1(z)e �z2 

; (11)

where Hn is a HERMITE POLYNOMIAL. The first
DERIVATIVE is

d

dz
erf (z) �

2ffiffiffi
p

p e �z2 

; (12)

and the integral is

g erf (z) dz �z erf (z) �
e �z2ffiffiffi

p
p : (13)

For x �1; erf may be computed from

erf(x) �
2ffiffiffi
p

p g
x

0

e �t2 

dt (14)

�
2ffiffiffi
p

p g
x

0

X

k�0

( �t2)k

k!
dt

�
2ffiffiffi
p

p g
x

0

X

k�0

( �1)kt2k

k!
dt

�
2ffiffiffi
p

p
X

k �0

x2k �1( �1)k

k!(2k � 1) 
(15)

�
2ffiffiffi
p

p (x �1
3 x

3 � 1
10 x

5 � 1
42 x

7 � 1
216 x

9 � 1
1320 x

11 �. . .) (16)

�
2ffiffiffi
p

p e �x2 

x 1 �
2x2

1 � 3 
�

(2x2)2

1 � 3 � 5 
�. . .

" #
(17)

(Acton 1990). For x �1;

erf (x) �
2ffiffiffi
p

p g



0

e�t2 

dt �g



x

e �t2 

dt

� �

�1 �
2ffiffiffi
p

p g



x

e �t2 

dt : (18)

Using INTEGRATION BY PARTS gives

g



x

e �t2 

dt ��
1

2 g



x

1

t
d(e �t2 

)

��
1

2

e �t2

t

" #

x

�
1

2 g



x

e �t2 

dt

t2

�
e �x2

2x
�

1

4 g



x

1

t3
d(e�t2 

)

�
e�x2

2x
�

e�x2

4x3 
�. . .  ; (19)

so

erf (x) �1 �
e �x2ffiffiffi
p

p
x

1 �
1

2x2 
�. . .

 !
(20)

and continuing the procedure gives the ASYMPTOTIC

SERIES

erf (x) �1 �
e �x2ffiffiffi

p
p

� (x �1 �1
2 x

�3 �3
4 x

�5 �15
8 x�7 �105

16 x�9 �. . .):

(21)

Ramanujan rediscovered the CONTINUED FRACTION

formula

g
a

0

e �t2 

dt �1
2

ffiffiffi
p

p
erf a

�1
2

ffiffiffi
p

p
�

e�a2

2a�

1

a �

2

2a �

3

a �

4

2a � . . .
; (22)

first stated by Laplace and proved by Jacobi (Watson
1928; Hardy 1999, pp. 8�/).
A COMPLEX generalization of erf x is defined as

wðzÞ ¼ e�z2

erfcð�izÞ ð23Þ

�e�z2

1 þ 2iffiffiffi
p

p þ 2iffiffiffi
p

p g
z

0

et2

dt

 !
ð24Þ

�
i

p g



�


e�t2

dt

z � t
�

2iz

p g



0

e�t2

dt

z � t
: ð25Þ

See also DAWSON’S INTEGRAL, ERFC, ERFI, FRESNEL

INTEGRALS, GAUSSIAN FUNCTION , GAUSSIAN INTE-

GRAL, NORMAL DISTRIBUTION FUNCTION, PROBABILITY

INTEGRAL
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Erfc

The "complementary error function" defined by

erfc(x)�1�erf (x) (1)

�
2ffiffiffi
p

p g



x

e�t2

dt (2)

�
ffiffiffi
p

p
g(1

2; z2); (3)

where g is the incomplete GAMMA FUNCTION. It has
the values

erfc(0)�1 (4)

lim
x0


erfc(x)�0 (5)

erfc(�x)�2�erfc(x) (6)

g



0

erfc(x) dx�
1ffiffiffi
p

p (7)

g



0

erfc2(x) dx�
2 �

ffiffiffi
2

pffiffiffi
p

p : (8)

A generalization is obtained from the ERFC DIFFER-

ENTIAL EQUATION

d2y

dz2
�2z

dy

dz
�2ny�0 (9)

(Abramowitz and Stegun 1972, p. 299; Zwillinger
1997, p. 122). The general solution is then

y�A erfcn(z)�B erfcn(�z); (10)

where erfcn(z) is the repeated erfc integral. For
integral n]1;

erfcn(z)�g � � �g|fflfflfflffl{zfflfflfflffl}
n

erfc(z) dz (11)

�
2ffiffiffi
2

p g



z

(t � z)n

n!
e�t2

dt (12)

�2�ne�z2 1
F1(1

2(n � 1); 1
2; z2)

G(1 � 1
2 n)

�
2z1F1(1 � 1

2 n; 3
2; z2)

G(1
2(n � 1))

" #

(13)

(Abramowitz and Stegun 1972), where 1F1(a; b; z) is
a CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

FIRST KIND and G(z) is a GAMMA FUNCTION. The first
few values, extended by the definition for n��1 and
0, are given by

erfc�1(z)�
2ffiffiffi
p

p e�z2

(14)

erfc0(z)�erfc(z) (15)

erfc1(z)�
e�z2ffiffiffi

p
p �z erfc(z) (16)



erfc2(z) �
1

4
(1 �2z2) erfc(z) �

2ze�z2ffiffiffi
p

p
" #

: (17)

See also ERF, ERFC DIFFERENTIAL EQUATION, ERFI
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Erfc Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�2xy?�2ny �0; (1)

whose solutions may be written either

y �A erfcn(x) �B erfcn(�x); (2)

where erfcn(x) is the repeated integral of the ERFC

function (Abramowitz and Stegun 1972, p. 299), or

y �C1e �x2 

H �n�1(x) �C2 1F1(1
2(n �1); 1

2; x2); (3)

where Hn(x) is a HERMITE POLYNOMIAL and

1F1(a; b; z) is a CONFLUENT HYPERGEOMETRIC FUNC-

TION OF THE FIRST KIND.

See also ERFC
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Erfi

erfi(z) ��i erf (iz) :

A ASYMPTOTIC SERIES for the erfi function is given by

erfi(x)�p�1=2x�1ex2

:

See also DAWSON’S INTEGRAL, ERF, ERFC

Ergodic Measure
An ENDOMORPHISM is called ergodic if it is true that
T�1A�A IMPLIES m(A)�0 or 1, where T�1A�fx �
X : T(x) �Ag: Examples of ergodic endomorphisms
include the MAP X 0 2x mod 1 on the unit interval
with LEBESGUE MEASURE, certain AUTOMORPHISMS of
the TORUS, and "Bernoulli shifts" (and more generally
"Markov shifts").

Given a MAP T and a SIGMA ALGEBRA, there may be
many ergodic measures. If there is only one ergodic
measure, then T is called uniquely ergodic. An
example of a uniquely ergodic transformation is the
MAP x�x�a mod 1 on the unit interval when a is
irrational. Here, the unique ergodic measure is
LEBESGUE MEASURE.

Ergodic Theory
Ergodic theory can be described as the statistical and
qualitative behavior of measurable group and semi-
group actions on MEASURE SPACES. The GROUP is most
commonly N, R, R�, and Z.

Ergodic theory had its origins in the work of Boltz-
mann in statistical mechanics problems where time-



and space-distribution averages are equal. Steinhaus
(1983, pp. 237 �/39) gives a practical application to
ergodic theory to keeping one’s feet dry ( when
walking along a shoreline without having to con-
stantly turn one’s head to anticipate incoming waves.
The mathematical origins of ergodic theory are due to
von Neumann, Birkhoff, and Koopman in the 1930s.
It has since grown to be a huge subject and has
applications not only to statistical mechanics, but also
to NUMBER THEORY, DIFFERENTIAL GEOMETRY, FUNC-

TIONAL ANALYSIS, etc. There are also many internal
problems (e.g., ergodic theory being applied to ergodic
theory) which are interesting.

See also AMBROSE-KAKUTANI THEOREM, BIRKHOFF’S

ERGODIC THEOREM, DYE’S THEOREM, DYNAMICAL

SYSTEM, HOPF’S THEOREM, ORNSTEIN’S THEOREM
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Ergodic Transformation
A transformation which has only trivial invariant
SUBSETS is said to be ergodic.

Erlang Distribution
Given a POISSON DISTRIBUTION with a rate of change
l ; the DISTRIBUTION FUNCTION D(x) giving the waiting
times until the hth Poisson event is

D(x) �1 �
G(h; xl)

G(h) 
(1)

for x � [0; 
); where G(x) is a complete GAMMA FUNC-

TION, and G(a; x) an INCOMPLETE GAMMA FUNCTION.
With h explicitly an integer, this distribution is
known as the Erlang distribution, and has probability
function

P(x) �
l(lx)h�1

(h � 1)!
e � lx : (2)

It is closely related to the GAMMA DISTRIBUTION,
which is obtained by letting a �h (not necessarily
an integer) and defining u �1 =l: When h �1, it
simplifies to the EXPONENTIAL DISTRIBUTION.

See also EXPONENTIAL DISTRIBUTION, GAMMA DIS-

TRIBUTION
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Erlanger Program
A program initiated by F. Klein in an 1872 lecture to
describe geometric structures in terms of their AUTO-

MORPHISM GROUPS.

References
Klein, F. "Vergleichende Betrachtungen über neuere geome-

trische Forschungen." 1872.
Yaglom, I. M. Felix Klein and Sophus Lie: Evolution of the

Idea of Symmetry in the Nineteenth Century. Boston, MA:
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Ermakoff’s Test
The series a f (n) for a monotonic nonincreasing f (x) is
convergent if

lim
x0


exf (ex)

f (x)
B1

and divergent if

lim
x0


exf (ex)

f (x)
> 1:
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Ernst Equation
The PARTIAL DIFFERENTIAL EQUATION

R[u] urr�
ur

r
�uzz

 !
�u2

r �u2
z ;

where R[u] is the REAL PART of u (Calogero and
Degasperis 1982, p. 62; Zwillinger 1997, p. 131).
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Errera Graph

The 17-node PLANAR GRAPH illustrated above which
tangles the Kempe chains in Kempe’s algorithm and
thus provides an example of how Kempe’s supposed
proof of the FOUR-COLOR THEOREM fails.

See also FOUR-COLOR THEOREM, KITTELL GRAPH
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Error
The difference between a quantity and its estimated
or measured quantity.

See also ABSOLUTE ERROR, PERCENTAGE ERROR,
RELATIVE ERROR

Error Curve
GAUSSIAN FUNCTION

Error Function
ERF, ERFC

Error Function Distribution
A NORMAL DISTRIBUTION with MEAN 0,

P(x)�
hffiffiffi
p

p e�h2x2

: (1)

The CHARACTERISTIC FUNCTION is

f(t)�e�t2=(4h2): (2)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m�0 (3)

s2�
1

2h2
(4)

g1�0 (5)

g2�0: (6)

The CUMULANTS are

k1�0 (7)

k2�
1

2h2
(8)

kn�0 (9)

for n]3:/

Error Propagation
Given a FORMULA y�f (x) with an ABSOLUTE ERROR in
x of dx , the ABSOLUTE ERROR is dy . The RELATIVE

ERROR is dy=y: If x�f (u; v); then

xi�x̄�(ui�ū)
@x

@u
�(vi�v̄)

@x

@v
�. . . ; (1)

where x̄ denotes the MEAN, so

s2
x�

1

N � 1

XN

i�1

(xi�x̄)2

�
1

N � 1

XN

i�1

�
(ui�ū)2 @x

@u

 !2

�(vi�v̄)2 @x

@v

 !2

�2(ui�ū)(vi�v̄)
@x

@u

 !
@x

@v

 !
�. . .

�
: (2)

The definitions of VARIANCE and COVARIANCE then
give

s2
u�

1

N � 1

XN

i�1

(ui�ū)2 (3)

s2
v�

1

N � 1

XN

i�1

(vi�v̄)2 (4)

suv�
1

N � 1

XN

i�1

(ui�ū)(vi�v̄) (5)

(where sii�s2
i ); so

s2
x�s2

u

@x

@u

 !2

�s2
v

@x

@v

 !2

�2suv

@x

@u

 !
@x

@v

 !
�. . . : (6)

If u and v are uncorrelated, then suv�0 so

s2
x�s2

u

@x

@u

 !2

�s2
v

@x

@v

 !2

: (7)



Now consider addition of quantities with errors. For
x �au 9bv; @x =@u �a and @x =@v �9b; so

s2
x �a2 s2

u �b2 s2
v 92ab suv : (8)

For division of quantities with x �9au =v ; @x=@u �
9a=v and @x=@v ��au =v2 ; so

s2
x �

a2

v2
s2

u �
a2u2

v4
s2

v �2
a

v

au

v2
suv : (9)

sx

x

 !2

�
a2

v2

v2

a2u2
s2

u �
a2u2

v4

v2

a2u2 
�2

a

v

 !
au

v2

 !
suv

�
su

u

 !2

�
sv

v

 !2

�2
suv

u

 !
suv

v

 !
: (10)

For exponentiation of quantities with

x �a 9bu �(eln a) 9bu �e 9b(ln a)u ; (11)

@x

@u 
�9b(ln a)e 9b ln au �9b(ln a)x ; (12)

so

sx � sub(ln a)x (13)

sx

x
�b ln a su : (14)

If a �e , then

sx

x
�b su : (15)

For LOGARITHMS of quantities with x �a ln(9bu);
@x =@u �a(9b)=(9bu) �a=u ; so

s2
x � s2

u

a2

u2

 !
(16)

sx �a
su

u
: (17)

For multiplication with x �9auv ; @x=@u �9av and
@x =@v �9au ; so

s2
x �a2v2 s2

u �a2u2 s2
v �2a2uv suv (18)

sx

x

 !2

�
a2v2

a2u2v2
s2

u �
a2u2

a2u2v2
s2

v �
2a2uv

a2u2v2
suv

�
su

u

 !2

�
sv

v

 !2

�2
suv

u

 !
suv

v

 !
: (19)

For POWERS, with x�au9b; @x=@u�9abu9b�1�
9bx=u; so

s2
x�s2

u

b2x2

u2
(20)

sx

x
�b

su

u
: (21)

See also ABSOLUTE ERROR, COVARIANCE, PERCENTAGE

ERROR, RELATIVE ERROR, VARIANCE
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Error-Correcting Code
An error-correcting code is an algorithm for expres-
sing a sequence of numbers such that any errors
which are introduced can be detected and corrected
(within certain limitations) based on the remaining
numbers. The study of error-correcting codes and the
associated mathematics is known as CODING THEORY.

Error detection is much simpler than error correction,
and one or more "check" digits are commonly em-
bedded in credit card numbers in order to detect
mistakes. Early space probes like Mariner used a type
of error-correcting code called a block code, and more
recent space probes use convolution codes. Error-
correcting codes are also used in CD players, high
speed modems, and cellular phones. Modems use
error detection when they compute CHECKSUMS,
which are sums of the digits in a given transmission
modulo some number. The ISBN used to identify
books also incorporates a check DIGIT.

A powerful check for 13 DIGIT numbers consists of the
following. Write the number as a string of DIGITS

a1; a2; a3 . . . a13: Take a1 þ a3 þ � � � þ a13 and double.
Now add the number of DIGITS in ODD positions which
are > 4 to this number. Now add a2�a4�� � ��a12:
The check number is then the number required to
bring the last DIGIT to 0. This scheme detects all
single DIGIT errors and all TRANSPOSITIONS of adja-
cent DIGITS except 0 and 9.

Let A(n; d) denote the maximal number of n (0,1)-
vectors having the property that any two of the set
differ in at least d places. The corresponding vectors
can correct [(d�1)=2] errors. A(n; d; w) is the num-
ber of A(n; d)/s with precisely w 1s (Sloane and
Plouffe 1995). Since it is not possible for n -vectors
to differ in d�n places and since n -vectors which
differ in all n places partition into disparate sets of
two,



A(n; d) �
1 n Bd
2 n �d:

:

Values of A(n; d) can be found by labeling the 2n (0,1)-
n -vectors, finding all unordered pairs (ai ; aj) of n -
vectors which differ from each other in at least d
places, forming a GRAPH from these unordered pairs,
and then finding the CLIQUE NUMBER of this graph.
Unfortunately, finding the size of a clique for a given
GRAPH is an NP-COMPLETE PROBLEM.

d Sloane /A(n; d)/

1 A000079 2, 4, 8, 16, 32, 64, 128, ...

2  1, 2, 4, 8, ...

3  1, 1, 2, 2, ...

4 A005864 1, 1, 1, 2, 4, 8, 16, 20, 40, ...

5  1, 1, 1, 1, 2, ...

6 A005865 1, 1, 1, 1, 1, 2, 2, 2, 4, 6, 12, ...

7  1, 1, 1, 1, 1, 1, 2, ...

8 A005866 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, ...

See also CHECKSUM, CLIQUE, CLIQUE NUMBER, COD-

ING THEORY, FINITE FIELD, HADAMARD MATRIX,
HAMMING CODE, ISBN, UPC
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Escher’s Map

The function

f (b; z)�z(1�cos b�i sin b)=2;

illustrated above for b�0:4:/

Escher’s Solid

The solid illustrated on the right pedestal in
M. C. Escher’s Waterfall woodcut. It can be con-
structed by CUMULATION of the RHOMBIC DODECAHE-

DRON with cumulation height 5/2.

See also CUBE 3-COMPOUND, CUMULATION, RHOMBIC

DODECAHEDRON

# 1999�/001 Wolfram Research, Inc.

Escribed Circle
EXCIRCLE

Essential Singularity
A SINGULAR POINT a for which f (z)(z�a)n is not
DIFFERENTIABLE for any INTEGER n �0.

See also PICARD’S THEOREM, POLE, REMOVABLE

SINGULARITY, SINGULAR POINT (FUNCTION), WEIER-

STRASS-CASORATI THEOREM
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Essential Supremum

The essential supremum is the proper generalization
to MEASURABLE FUNCTIONS of the MAXIMUM. The
technical difference is that the values of a function
on a set of MEASURE ZERO don’t affect the essential
supremum.
Given a MEASURABLE FUNCTION f : X 0 R ; where X is
a MEASURE SPACE with measure m; the essential
supremum is the smallest number a such that

m( fx such that f (x) > ag

has MEASURE ZERO. If no such number exists, as in
the case of f (x) �1=x on (0; 1); then the essential
supremum is 
:/

The essential supremum of the absolute value of a
function ½f ½ is usually denoted ½½f ½½
; and this serves as
the norm for L -INFINITY-SPACE.

See also L -INFINITY-SPACE, LP -SPACE, L 2-SPACE,
MEASURE, MEASURABLE FUNCTION, MEASURE SPACE

# 1999 �/001 Wolfram Research, Inc.

Estimate
An estimate is an educated guess for an unknown
quantity or outcome based on known information.
The making of estimates is an important part of
statistics, since care is needed to provide as accurate
an estimate as possible using as little input data as
possible. Often, an estimate for the uncertainty DE of
an estimate E can also be determined statistically. A
rule that tells how to calculate an estimate based on
the measurements contained in a sample is called an
ESTIMATOR.

See also BIAS (ESTIMATOR), ERROR, ESTIMATOR
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Estimator
An estimator is a rule that tells how to calculate an
ESTIMATE based on the measurements contained in a
sample. For example, the "sample MEAN" AVERAGE x̄ is
an estimator for the population MEAN m:/

The mean square error of an estimator ũ is defined by

MSE � (ũ � u)2
D E

:

Let B be the BIAS, then

MSE � [(ũ � ũ
= >

) �B(ũ)]2= >
� (ũ � ũ

= >
)2

D E
�B2(ũ) �V(ũ) �B2(ũ);

where V is the estimator VARIANCE.

See also BIAS (ESTIMATOR), ERROR, ESTIMATE, K -

STATISTIC, UNBIASED ESTIMATOR

Eta Function
DEDEKIND ETA FUNCTION, DIRICHLET ETA FUNCTION,
JACOBI THETA FUNCTIONS

Et-Function
A function which arises in FRACTIONAL CALCULUS.

Et( n ; a) �
1

G( n)
eat g

t

0

xn�1e �ax dx �tneat g( n ; at) ; (1)

where gða ; jÞ is the incomplete GAMMA FUNCTION and
G(z) the complete GAMMA FUNCTION. The Et function
satisfies the RECURRENCE RELATION

Et( n ; a) �aEt( n �1; a) �
tn

G(n� 1)
: (2)

A special value is

Et(0; a)�eat: (3)

See also EN -FUNCTION, FRACTIONAL CALCULUS
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Ethiopian Multiplication
RUSSIAN MULTIPLICATION

Etruscan Venus Surface
A 3-D shadow of a 4-D KLEIN BOTTLE.

See also IDA SURFACE, KLEIN BOTTLE
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Eubulides Paradox
The PARADOX "This statement is false," stated in the
fourth century BC. It is a sharper version of the
EPIMENIDES PARADOX, "All Cretans are liars...One of
their own poets has said so."

See also EPIMENIDES PARADOX, SOCRATES’ PARADOX
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Euclid Number
The nth Euclid number is defined by

En �1 �
Yn

i �1

pi �1 �pn#;

where pi is the ith PRIME and pn# is the PRIMORIAL.
The first few En are 3, 7, 31, 211, 2311, 30031,
510511, 9699691, 223092871, 6469693231, ... (Sloa-
ne’s A006862; Tietze 1965, p. 19).

The largest factors of En for n �1, 2, ... are 3, 7, 31,
211, 2311, 509, 277, 27953, ... (Sloane’s A002585). The
n of the first few PRIME Euclid numbers En are 1, 2, 3,
4, 5, 11, 75, 171, 172, 384, 457, 616, 643, ... (Sloane’s
A014545), and the largest known Euclid number is
E4413 : It is not known if there are an INFINITE number
of PRIME Euclid numbers (Guy 1994, Ribenboim
1996).

See also EUCLID-MULLIN SEQUENCE, PRIMORIAL,
SMARANDACHE SEQUENCES
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Euclid’s Axioms
EUCLID’S POSTULATES

Euclid’s Elements
ELEMENTS

Euclid’s Fifth Postulate
EUCLID’S POSTULATES

Euclid’s Orchard

An array of "trees" of unit height located at integer-
coordinate points in a POINT LATTICE. When viewed
from a corner along the line y �x in normal perspec-
tive, a QUADRANT of Euclid’s orchard turns into the
modified DIRICHLET FUNCTION (Gosper).

See also DIRICHLET FUNCTION, GREATEST COMMON

DIVISOR, ORCHARD-PLANTING PROBLEM

Euclid’s Postulates

1. A straight LINE SEGMENT can be drawn joining
any two points.
2. Any straight LINE SEGMENT can be extended
indefinitely in a straight LINE.
3. Given any straight LINE SEGMENT, a CIRCLE can
be drawn having the segment as RADIUS and one
endpoint as center.
4. All RIGHT ANGLES are congruent.
5. If two lines are drawn which intersect a third in
such a way that the sum of the inner angles on one
side is less than two RIGHT ANGLES, then the two
lines inevitably must intersect each other on that
side if extended far enough. This postulate is
equivalent to what is known as the PARALLEL

POSTULATE.

Euclid’s fifth postulate cannot be proven as a theo-
rem, although this was attempted by many people.
Euclid himself used only the first four postulates ( for
the first 28 propositions of the ELEMENTS, but was
forced to invoke the PARALLEL POSTULATE on the 29th.
In 1823, Janos Bolyai and Nicolai Lobachevsky
independently realized that entirely self-consistent
"NON-EUCLIDEAN GEOMETRIES" could be created in
which the parallel postulate did not hold. (Gauss had
also discovered but suppressed the existence of non-
Euclidean geometries.)



See also ABSOLUTE GEOMETRY, CIRCLE, ELEMENTS,
LINE SEGMENT, NON-EUCLIDEAN GEOMETRY, PARAL-

LEL POSTULATE, PASCH’S THEOREM, RIGHT ANGLE
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Euclid’s Principle
EUCLID’S THEOREMS

Euclid’s Theorems
A theorem sometimes called "Euclid’s First Theorem"
or EUCLID’S PRINCIPLE states that if p is a PRIME and
p ½ab ; then p½a or p ½b (where ½ means DIVIDES). A
COROLLARY is that p ½an [p ½a (Conway and Guy 1996).
The FUNDAMENTAL THEOREM OF ARITHMETIC is an-
other COROLLARY (Hardy and Wright 1979).

Euclid’s Second Theorem states that the number of
PRIMES is INFINITE. This theorem, also called the
INFINITUDE OF PRIMES theorem, was proved by Euclid
in Proposition IX.20 of the ELEMENTS (Tietze 1965,
pp. 7 �/). Ribenboim (1989) gives nine (and a half)
proofs of this theorem. Euclid’s elegant proof proceeds
as follows. Given a finite sequence of consecutive
PRIMES 2, 3, 5, ..., p , the number

N �2 �3 �5 � � � p �1 ; (1)

known as the ith EUCLID NUMBER when p �pi is the
ith PRIME, is either a new PRIME or the product of
PRIMES. If N is a PRIME, then it must be greater than
the previous PRIMES, since one plus the product of
PRIMES must be greater than each PRIME composing
the product. Now, if N is a product of PRIMES, then at
least one of the PRIMES must be greater than p . This
can be shown as follows.

If N is COMPOSITE and has no prime factors greater
than p , then one of its factors (say F ) must be one of
the PRIMES in the sequence, 2, 3, 5, ..., p . It therefore
DIVIDES the product 2 �3 �5 � � �p: However, since it is a
factor of N , it also DIVIDES N . But a number which
DIVIDES two numbers a and b Ba also DIVIDES their
difference a �b; so F must also divide

N �(2 �3 �5 � � �p) �(2 �3 �5 � � �p �1) �(2 �3 �5 � � � p) �1:

(2)

However, in order to divide 1, F must be 1, which is
contrary to the assumption that it is a PRIME in the
sequence 2, 3, 5, .... It therefore follows that if N is
composite, it has at least one factor greater than p .
Since N is either a PRIME greater than p or contains a
prime factor greater than p , a PRIME larger than the
largest in the finite sequence can always be found, so
there are an infinite number of PRIMES. Hardy (1967)
remarks that this proof is "as fresh and significant as
when it was discovered" so that "two thousand years
have not written a wrinkle" on it.

A similar argument shows that p! 91 and

1 �3 �5 �7 � � � p �1 (3)

must be either PRIME or be divisible by a PRIME > p:
Kummer used a variation of this proof, which is also a
proof by contradiction. It assumes that there exist
only a finite number of PRIMES N �p1 ; p2 ; ..., pr : Now
consider N �1: It must be a product of PRIMES, so it
has a PRIME divisor pi in common with N . Therefore,
pi ½N �(N �1) �1 which is nonsense, so we have
proved the initial assumption is wrong by contra-
diction.

It is also true that there are runs of COMPOSITE

NUMBERS which are arbitrarily long. This can be seen
by defining

n�j!�
Yj

i�1

i; (4)

where j! is a FACTORIAL. Then the j�1 consecutive
numbers n�2; n�3; ..., n�j are COMPOSITE, since

n�2�(1�2 � � � j)�2�2(1�3�4 � � �n�1) (5)

n�3�(1�2 � � � j)�3�3(1�2�4�5 � � �n�1) (6)

n�j�(1�2 � � � j)�j�j[1�2 � � � (j�1)�1]: (7)

Guy (1981, 1988) points out that while p1p2 � � �pn�1
is not necessarily PRIME, letting q be the next PRIME

after p1p2 � � �pn�1; the number q�p1p2 � � �pn�1 is
almost always a PRIME, although it has not been
proven that this must always be the case.

See also DIVIDE, EUCLID NUMBER, PRIME NUMBER
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Euclidean Algorithm
An ALGORITHM for finding the GREATEST COMMON

DIVISOR of two numbers a and b , also called Euclid’s
algorithm. The algorithm can also be defined for more
general RINGS than just the integers Z. There are
even PRINCIPAL RINGS which are not EUCLIDEAN but
where one can define the equivalent of the Euclidean
algorithm. The algorithm for rational numbers was
given in Book VII of Euclid’s Elements , and the
algorithm for reals appeared in Book X, and is the
earliest example of an INTEGER RELATION algorithm
(Ferguson et al. 1999).

The Euclidean algorithm is an example of a P-

PROBLEM whose time complexity is bounded by a
quadratic function of the length of the input values
(Banach and Shallit). Let a�bq�r; then find a
number u which DIVIDES both a and b (so that
a�su and b� tu ), then u also DIVIDES r since

r�a�bq�su�qtu�(s�qt)u: (1)

Similarly, find a number v which DIVIDES b and r (so
that b�s?v and r�t?v); then v DIVIDES a since

a�bq�r�s?vq�t?v�(s?q�t?)v: (2)

Therefore, every common DIVISOR of a and b is a
common DIVISOR of b and r , so the procedure can be
iterated as follows.

q1�
a

b

$ %
a�bq1�r1 r1�a�bq1 (3)

q2�
b

r1

$ %
b�q2r1�r2 r2�b�q2r1 (4)

q3�
r1

r2

$ %
r1�q3r2�r3 r3�r1�q3r2 (5)

q4�
r2

r3

$ %
r2�q4r3�r4 r4�r2�q4r3 (6)

qn�
rn�2

rn�1

$ %
rn�2�qnrn�1�rn rn�rn�2�qnrn�1

(7)

qn�1�
rn�1

rn

$ %
rn�1�qn�1rn�0 rn�rn�1=qn�1: (8)

For integers, the algorithm terminates when qn�1

divides rn�1 exactly, at which point rn corresponds to
the GREATEST COMMON DIVISOR of a and b ,/
GCD(a; b)�rn: For real numbers, the algorithm
yields either an exact relation or an infinite sequence
of approximate relations (Ferguson et al. 1999).

Lamé showed that the number of steps needed to
arrive at the GREATEST COMMON DIVISOR for two
numbers less than n is

steps5
log10 n

log10 f
�

log10

ffiffiffi
5

p

log10 f
(9)

where f is the GOLDEN MEAN, or55 times the number
of digits in the smaller number (Wells 1986, p. 59).
Numerically, Lamé’s expression evaluates to

steps54:785 log10 n�1:6723: (10)

As shown by LAMÉ’S THEOREM, the worst case occurs
when the ALGORITHM is applied to two consecutive
FIBONACCI NUMBERS. Heilbronn showed that the
average number of steps is 12 ln 2=p2 log10 n�
0:843 log10 n for all pairs (n, b ) with bBn . Kronecker
showed that the shortest application of the ALGO-

RITHM uses least absolute remainders. The QUOTI-

ENTS obtained are distributed as shown in the
following table (Wagon 1991).

Quotient /%/

1 41.5

2 17.0

3 9.3

For details, see Uspensky and Heaslet (1939) or
Knuth (1973). Let T(m; n) be the number of divisions
required to compute GCD(m; n) using the Euclidean
algorithm, and define T(m; 0)�0 if m]0: Then the
function T(m; n) is given by the RECURRENCE RELA-

TION

T(m; n)�
1�T(n; m mod n) for m]n

1�T(n; m) for mBn:

:
(11)

Tabulating this function for 05mBn gives

0
0 1
0 1 2
0 1 1 2
0 1 2 3 2
0 1 1 1 2 2

(Sloane’s A051010). The maximum numbers of steps
for a given n�1, 2, 3, ... are 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 4,
5, ... (Sloane’s A034883).

Define the functions

T(n)�
1

n

X
05mBn

T(m; n) (12)

t(n)�
1

f(n)

X
0BmBnGCD(m; n)�1

T(m; n) (13)

A(N)�
1

N2

X
15mBN15n5N

T(m; n); (14)



where f(n) is the TOTIENT FUNCTION, T(n) is the
average number of divisions when n is fixed and m
chosen at random, t(n) is the average number of
divisions when n is fixed and m is a random number
coprime to n , and A(N) is the average number of
divisions when m and n are both chosen at random in
[1; N] : The first few values of T(n) are 0, 1/2, 1, 1, 8/5,
7/6, 13/7, 7/4, ... (Sloane’s A051011 and A051012).

Norton (1990) showed that

T(n) �
12 ln 2

p2
ln n �

X
d½n

L(d)

d

" #
�C

�
1

n

X
d½n

f(d)O(d�1=6 �e) ; (15)

where L(d) is the VON MANGOLDT FUNCTION and C is
PORTER’S CONSTANT. Porter (1975) showed that

t(n) �
12 ln 2

p2
ln n �C �O(n�1 =6 � e) ; (16)

and Norton (1990) proved that

A(N) �
12 ln 2

p2
ln N �1

2 �
6

p2
z?(2)

" #
�C �1

2

�O(N �1 =6 � e); (17)

where z?(z) is the derivative of the RIEMANN ZETA

FUNCTION.

There exist 21 QUADRATIC FIELDS in which there is a
Euclidean algorithm (Inkeri 1947, Barnes and Swin-
nerton-Dyer 1952).

Although various attempts were made to generalize
the algorithm to find INTEGER RELATIONS between
n ]3 variables, none were successful until the dis-
covery of the FERGUSON-FORCADE ALGORITHM (Fergu-
son et al. 1999). Several other INTEGER RELATION

algorithms have now been discovered.

See also BLANKINSHIP ALGORITHM, EUCLIDEAN RING,
FERGUSON-FORCADE ALGORITHM, INTEGER RELATION,
QUADRATIC FIELD
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Euclidean Construction
GEOMETRIC CONSTRUCTION

Euclidean Domain
A more common way to describe a EUCLIDEAN RING.

See also ALGEBRAIC NUMBER THEORY, EUCLIDEAN

RING

Euclidean Geometry
A GEOMETRY in which EUCLID’S FIFTH POSTULATE

holds, sometimes also called PARABOLIC GEOMETRY. 2-
D Euclidean geometry is called PLANE GEOMETRY, and
3-D Euclidean geometry is called SOLID GEOMETRY.
Hilbert proved the CONSISTENCY of Euclidean geome-
try.

See also ELLIPTIC GEOMETRY, GEOMETRIC CONSTRUC-

TION, GEOMETRY, HYPERBOLIC GEOMETRY, NON-EU-

CLIDEAN GEOMETRY, PLANE GEOMETRY
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Euclidean Graph
A WEIGHTED GRAPH in which the weights are equal to
the Euclidean lengths of the edges in a specified
embedding (Skiena 1990, pp. 201 and 252).
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Euclidean Group
The GROUP of ROTATIONS and TRANSLATIONS.

See also ROTATION, TRANSLATION
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Euclidean Metric
The FUNCTION f : Rn �Rn 0 R that assigns to any two
VECTORS (/x1 ; ..., xn) and (/y1 ; ..., yn) the numberffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x1 �y1)2 �. . .�(xn �yn)2
q

;

and so gives the "standard" distance between any two
VECTORS in Rn :/

Euclidean Motion
A Euclidean motion of Rn is an AFFINE TRANSFORMA-

TION whose linear part is an ORTHOGONAL TRANSFOR-

MATION.

See also RIGID MOTION
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Euclidean Norm
L2-NORM

Euclidean Number
A Euclidean number is a number which can be
obtained by repeatedly solving the QUADRATIC EQUA-

TION. Euclidean numbers, together with the RA-

TIONAL NUMBERS, can be constructed using classical
GEOMETRIC CONSTRUCTIONS. However, the cases for
which the values of the TRIGONOMETRIC FUNCTIONS

SINE, COSINE, TANGENT, etc., can be written in closed
form involving square roots of REAL NUMBERS are
much more restricted.

See also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER,
CONSTRUCTIBLE NUMBER, RADICAL INTEGER
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Euclidean Plane
The 2-D EUCLIDEAN SPACE denoted R2 :/

See also COMPLEX PLANE, EUCLIDEAN SPACE

Euclidean Ring
A RING without zero divisors in which an integer
norm and an associated division algorithm (i.e., a
EUCLIDEAN ALGORITHM) can be defined. For signed
integers, the usual norm is the ABSOLUTE VALUE and
the division algorithm gives the ordinary QUOTIENT

and REMAINDER. For polynomials, the norm is the
degree.

Important examples of Euclidean rings (besides Z)
are the GAUSSIAN INTEGERS and C[x ], the RING of
polynomials with complex coefficients. All Euclidean
rings are also PRINCIPAL RINGS.

See also EUCLIDEAN ALGORITHM, PRINCIPAL RING,
RING
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Euclidean Space
Euclidean n -space is the SPACE of all n -tuples of REAL

NUMBERS, (/x1 ; x2 ; ..., xn) and is denoted Rn : It is
sometimes also called Cartesian space. Rn is a VECTOR

SPACE and has LEBESGUE COVERING DIMENSION n .
Elements of Rn are called n -VECTORS. R1 �R is the set
of REAL NUMBERS (i.e., the REAL LINE), and R2 is called
the EUCLIDEAN PLANE. In Euclidean space, COVAR-

IANT and CONTRAVARIANT quantities are equivalent so

�ej � �ej :/

See also EUCLIDEAN PLANE, PSEUDO-EUCLIDEAN

SPACE, REAL LINE, VECTOR
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Euclid-Mullin Sequence
The sequence of numbers obtained by letting ai �2;
and defining

an �1pf 1 �
Yn�1

k�1

ak

 !

where lpf(n ) is the LEAST PRIME FACTOR. The first few
terms are 2, 3, 7, 43, 13, 53, 5, 6221671,
38709183810571, 139, ... (Sloane’s A000945). Only
43 terms of the sequence are known; the 44th
requires factoring a composite 180-digit number.

See also EUCLID NUMBER, LEAST PRIME FACTOR
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Eudoxus’s Kampyle
KAMPYLE OF EUDOXUS

Euler Angles

According to EULER’S ROTATION THEOREM, any ROTA-

TION may be described using three ANGLES. If the
ROTATIONS are written in terms of ROTATION MA-

TRICES B; C; and D; then a general ROTATION A can
be written as

A�BCD: (1)

The three angles giving the three rotation matrices
are called Euler angles. There are several conven-
tions for Euler angles, depending on the axes about
which the rotations are carried out. Write the MATRIX

A as

A�

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5: (2)

The so-called "x -convention," illustrated above, is the
most common definition. In this convention, the
rotation given by Euler angles (f; u; c)); where the
first rotation is by an angle f about the Z -AXIS, the
second is by an angle u � [0; p] about the X -AXIS, and
the third is by an angle c about the Z -AXIS (again).
Note, however, that several notational conventions
for the angles are in common use. Goldstein (1960,
pp. 145�/48) and Landau and Lifschitz (1976) use
(f; u; c); Tuma (1974) says (c; u; f) is used in
aeronautical engineering in the analysis of space
vehicles (but claims that (f; u; c) is used in the
analysis of gyroscopic motion), while Bate et al.
(1971) use (V; i; v): Goldstein remarks that conti-
nental authors usually use (c; u; f); and warns that
left-handed coordinate systems are also in occasional
use (Osgood 1937, Margenau and Murphy 1956�/4).
Here, the notation (f; u; c) is used, a convention also
followed by Mathematica ’s RotateMatrix3D[phi ,
theta , psi ] in the Mathematica add-on package
Geometry‘Rotations‘ (which can be loaded with
the command BBGeometry‘) and RotateSha-
pe[g , phi , theta , psi ] in the Mathematica add-on
package Graphics‘Shapes‘ (which can be loaded
with the command BBGraphics‘) commands. In
the x -convention, the component rotations are then
given by

D�

cos f sin f 0
�sin f cos f 0

0 0 1

2
4

3
5 (3)



C �
1 0  0
0 cos u sin u
0 �sin u cos u

2
4

3
5 (4)

B �
cos c sin c 0
�sin c cos c 0

0 0 1

2
4

3
5; (5)

so

a11 �cos c cos f �cos u sin f sin c

a12 �cos c sin f �cos u cos f sin c

a13 �sin c sin u

a21 ��sin c cos f �cos u sin f cos c

a22 ��sin c sin f �cos u cos f cos c

a23 �cos c sin u

a31 �sin u sin f

a32 ��sin u cos f

a33 �cos u

To obtain the components of the ANGULAR VELOCITY v

in the body axes, note that for a MATRIX

A � A1 A2 A3½ 	; (6)

it is true that

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 vx

vy

vz

2
4

3
5� a11 vx �a12 vy �a13 vz

a21 vx �a22 vy �a23 vz

a31 vx �a32 vy �a33 vz

2
4

3
5 ð7Þ

�A1 vx �A2 vy �A3 vz : (8)

Now, vz corresponds to rotation about the f axis, so
look at the vz component of Av;

vf �A1 vz �
sin c sin u
cos c sin u

cos u

2
4

3
5ḟ : (9)

The line of nodes corresponds to a rotation by u about
the j/-axis, so look at the vj component of B v;

vu �B1 vj �B1 u̇ �
cos c
�sin c

0

2
4

3
5u̇: (10)

Similarly, to find rotation by c about the remaining
axis, look at the vc component of Bv;

vc�B3vc�B3c�
0
0
1

2
4
3
5ċ: (11)

Combining the pieces gives

v�
sin c sin u ḟ�cos cu̇

cos c sin u ḟ�sin cu̇

cos uḟ�ċ:

2
4

3
5 (12)

For more details, see Goldstein (1980, p. 176) and
Landau and Lifschitz (1976, p. 111).

The x -convention Euler angles are given in terms of
the CAYLEY-KLEIN PARAMETERS by

f��2i ln 9
a1=2g1=4

b1=4(1 � bg)1=4

" #
; �2i ln 9

ia1=2g1=4

b1=4(1 � bg)1=4

" #

(13)

c��2i ln 9
a1=2b1=4

g1=4(1 � bg)1=4

" #
; �2i ln 9

ia1=2b1=4

g1=4(1 � bg)1=4

" #

(14)

u�92 cos�1 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�bg

p� �
: (15)

In the "y -convention,"

fx�fy�
1
2 p (16)

cx�cy�
1
2 p: (17)

Therefore,

sin fx�cos fy (18)

cos fx��sin fy (19)

sin cx��cos cy (20)

cos cx�sin cy; (21)

giving rotation matrices

D�

�sin f cos f 0
�cos f �sin f 0

0 0 1

2
4

3
5 (22)

C�

1 0 0
0 cos u sin u

0 �sin u cos u

2
4

3
5 (23)

B�

sin c �cos c 0
cos c sin c 0

0 0 1

2
4

3
5 (24)

and A is given by

a11��sin c sin f�cos u cos f cos c

a12�sin c cos f�cos u sin f cos c

a13��cos c sin u

a21��cos c sin f�cos u cos f sin c

a22�cos c cos f�cos u sin f sin c

a23�sin c sin u

a31�sin u cos f

a32�sin u sin f

a33�cos u:

In the "xyz" (pitch-roll-yaw) convention, u is pitch, c
is roll, and f is yaw.



D �
cos f sin f 0
�sin f cos f 0

0 0 1

2
4

3
5 (25)

C �
cos u 0 �sin u

0 1  0
sin u 0 cos u

2
4

3
5 (26)

B �
1 0  0
0 cos c sin c
0 �sin c cos c

2
4

3
5 (27)

and A is given by

a11 �cos u cos f
a12 �cos u sin f

a13 ��sin u
a21 �sin c sin u cos f �cos c sin f
a22 �sin c sin u sin f �cos c cos f

a23 �cos u sin c
a31 �cos c sin u cos f �sin c sin f
a32 �cos c sin u sin f �sin c cos f

a33 �cos u cos c:

Varshalovich (1988, pp. 21 �/3) use the notation
( a; b; g) or (a?; b?; g ?) to denote the Euler angles,
and give three different angle conventions, none of
which corresponds to the x -convention.

A set of parameters sometimes used instead of angles
are the EULER PARAMETERS e0 ; e1 ; e2 and e3 ; defined by

e0 �cos
f

2

 !
(28)

e �
e1

e2

e3

2
4
3
5�n̂ sin

f

2

 !
: (29)

Using EULER PARAMETERS (which are QUATERNIONS),
an arbitrary ROTATION MATRIX can be described by

a11 �e2
0 �e2

1 �e2
2 �e2

3

a12 �2(e1e2 �e0e3)
a13 �2(e1e3 �e0e2)
a21 �2(e1e2 �e0e3)

a22 �e2
0 �e2

1 �e2
2 �e2

3

a23 �2(e2e3 �e0e1)
a31 �2(e1e3 �e0e2)
a32 �2(e2e3 �e0e1)

a33 �e2
0 �e2

1 �e2
2 �e2

3

(Goldstein 1960, p. 153).

If the coordinates of two pairs of n points xi and x?i are
known, one rotated with respect to the other, then the
Euler rotation matrix can be obtained in a straight-
forward manner using LEAST SQUARES FITTING. Write
the points as arrays of vectors, so

[x?i � � �x ?n] �A[x1 � � �xn] : (30)

Writing the arrays of vectors as matrices gives

X?�AX (31)

X ?XT �AXXT ; (32)

and solving for A gives

A �X ?XT(XXT)�1 : (33)

However, we want the angles u; f ; and c; not their
combinations contained in the MATRIX A : Therefore,
write the 3 �3 MATRIX

A �
f1( u; f ; c) f2(u ; f ; c) f3( u; f; c)
f4( u; f ; c) f5(u ; f ; c) f6( u; f; c)
f7(u; f; c) f7(u; f; c) f9(u; f; c)

2
4

3
5 (34)

as a 1�9 VECTOR

f�
f1(u; f; c)

n
f9(u; f; c)

2
4

3
5: (35)

Now set up the matrices

@f1

@u j
ui ; fi; ci

@f1

@f j
ui ; fi; ci

@f1

@c j
ui ; fi; ci

n n n
@f9

@u j
ui ; fi; ci

@f9

@f j
ui ; fi; ci

@f9

@c j
ui ; fi; ci

2
6666664

3
7777775

du
df
dc

2
4

3
5�df : (36)

Using NONLINEAR LEAST SQUARES FITTING then gives
solutions which converge to (u; f; c):/

See also CAYLEY-KLEIN PARAMETERS, EULER PARA-

METERS, EULER’S ROTATION THEOREM, INFINITESIMAL

ROTATION, QUATERNION, ROTATION, ROTATION FOR-

MULA, ROTATION MATRIX
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Euler Brick

A RECTANGULAR PARALLELEPIPED ("BRICK") with in-
teger edges a > b > c and face diagonals dij given by

dab �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
(1)

dac �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2

p
(2)

dbc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
: (3)

The problem is also called the brick problem, diag-
onals problem, perfect box problem, perfect cuboid
problem, or rational cuboid problem.
The smallest solution with integer edges and face
diagonals has sides (a ; b; c) �(240 ; 117; 44) and face
DIAGONALS dab �267; dac �244; and dbc �125; and
was discovered by Halcke (1719; Dickson 1952,
pp. 497 �/00). Interest in this problem was high during
the 18th century, and Saunderson (1740) found a
parametric solution, while Euler (1770, 1772) found
at least two parametric solutions. Kraitchik gave 257
cuboids with the ODD edge less than 1 million (Guy
1994, p. 174). F. Helenius has compiled a list of the
5003 smallest (measured by the longest edge) Euler
bricks. The first few are (240, 117, 44), (275, 252, 240),
(693, 480, 140), (720, 132, 85), (792, 231, 160), ...
(Sloane’s A031173, A031174, and A031175). Para-
metric solutions for Euler bricks are also known.

No solution is known to the more general problem in
which the oblique SPACE DIAGONAL

dabc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 �c2

p
(4)

is also an INTEGER. If such a brick exists, the smallest
side must be at least 1,281,000,000 (R. Rathbun
1996). Such a solution is equivalent to solving the
DIOPHANTINE EQUATIONS

A2 �B2 �C2 (5)

A2 �D2 �E2 (6)

B2 �D2 �F2 (7)

B2 �E2 �G2 : (8)

A solution with integral SPACE DIAGONAL and two out
of three face diagonals is a �672, b �153, and
c �104, giving dab �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52777

p
; dac�680; dbc�185;

and dabc�697; which was known to Euler. A solution
giving integral space and face diagonals with only a
single nonintegral EDGE is a�18720, b�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

211773121
p

; and c�7800, giving dab�23711; dac�
20280; dbc�16511; and dabc�24961:/

See also CUBOID, CYCLIC QUADRILATERAL, DIAGONAL

(POLYHEDRON), PARALLELEPIPED, PYTHAGOREAN

QUADRUPLE
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Euler Chain
A CHAIN whose EDGES consist of all graph EDGES.

Euler Characteristic
Let a closed surface have GENUS g . Then the POLY-

HEDRAL FORMULA generalizes to the POINCARÉ FOR-

MULA

x�V�E�F�x(g); (1)

where

x(g)�2�2g (2)

is the Euler characteristic, sometimes also known as
the EULER-POINCARÉ CHARACTERISTIC. The POLYHE-

DRAL FORMULA corresponds to the special case g�0.
The only compact closed surfaces with Euler char-
acteristic 0 are the KLEIN BOTTLE and TORUS (Dodson
and Parker 1997, p. 125).

In terms of the INTEGRAL CURVATURE of the surface K ,

gg K da�2px: (3)

The Euler characteristic is sometimes also called the
EULER NUMBER. It can also be expressed as

x�p0�p1�p2; (4)

where pi is the ith BETTI NUMBER of the space.



See also CHROMATIC NUMBER, EULER NUMBER (FI-

NITE COMPLEX), MAP COLORING, POINCARÉ FORMULA,
POLYHEDRAL FORMULA
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Euler Constant
E , EULER-MASCHERONI CONSTANT, MACLAURIN-CAU-

CHY THEOREM

Euler Curvature Formula
The curvature of a surface satisfies

k�k1 cos2 u�k2 sin2 u;

where k is the normal CURVATURE in a direction
making an ANGLE u with the first principal direction
and k1 and k2 are the PRINCIPAL CURVATURES.

See also PRINCIPAL CURVATURES

Euler Differential Equation
The general nonhomogeneous differential equation is
given by

x2 d2y

dx2
�ax

dy

dx
�by�S(x); (1)

and the homogeneous equation is

x2yƒ�axy?�by�0 (2)

yƒ�
a

x
y?�

b

x2
y�0: (3)

Now attempt to convert the equation from

yƒ�p(x)y?�q(x)y�0 (4)

to one with constant COEFFICIENTS

d2y

dz2
�A

dy

dz
�By�0 (5)

by using the standard transformation for linear
SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS.
Comparing (3) and (5), the functions p(x) and q(x) are

p(x)�
a

x
�ax�1 (6)

q(x)�
b

x2
�bx�2: (7)

Let B�b and define

z�B�1=2 g
ffiffiffiffiffiffiffiffiffi
q(x)

p
dx�b�1=2 g

ffiffiffiffiffiffiffiffiffiffiffi
bx�2

p
dx

�g x�1 dx�ln x: (8)

Then A is given by

A�
q?(x) � 2p(x)q(x)

2[q(x)]3=2 B1=2

�
�2bx�3 � 2(ax�1)(bx�2)

2(bx�2)3=2 b1=2

�a�1; (9)

which is a constant. Therefore, the equation becomes
a second-order ODE with constant COEFFICIENTS

d2y

dz2
�(a�1)

dy

dz
�by�0: (10)

Define

r1�
1
2 �A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �

�1
2 1�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�1)2�4b

q� �
(11)

r2�
1
2 �A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �

�1
2 1�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�1)2�4b

q� �
(12)

and

a�1
2(1�a) (13)

b�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b�(a�1)2

q
: (14)

The solutions are

y�
c1er1z�c2er2z (a�1)2 > 4b
c1�c2z)eaz (a�1)2�4
caz[c1 cos(bz)�c2 sin (bz)] (a�1)2

B4b:

8<
: ð15Þ

In terms of the original variable x ,

y�
c1½x½

r1 �c2½x½
r2 (a�1)2 > 4b

(c1�c2 ln½x½)½x½a (a�1)2�4b
½x½a[c1 cos(b ln ½x½)�c2 sin (b ln½x½)] (a�1)2

B4b:

8<
:

ð16Þ

Zwillinger (1997, p. 120) gives two other types of
equations known as Euler differential equations,

y?�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay4 � by3 � cy2 � dy � e

ax3 � bx3 � cx2 � dx � e

s
(17)

(Valiron 1950, p. 201) and



y ?�y2 � axm (18)

(Valiron 1950, p. 212), the latter of which can be
solved in terms of Bessel functions.

See also EULER’S EQUATIONS OF INVISCID MOTION
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Euler Equation
EULER DIFFERENTIAL EQUATION, EULER’S EQUATIONS

OF INVISCID MOTION, EULER FORMULA, EULER-LA-

GRANGE DIFFERENTIAL EQUATION

Euler Formula
The Euler formula states

eix �cos x �i sin x; (1)

where I is the IMAGINARY NUMBER. Note that Euler’s
POLYHEDRAL FORMULA is sometimes also called the
Euler formula, as is the EULER CURVATURE FORMULA.
The equivalent expression

ix �ln(cos x �i sin x) (2)

had previously been published by Cotes (1714). The
special case of the formula with x � p gives the
beautiful identity

eip �1 �0; (3)

an equation connecting the fundamental numbers I ,
PI, E , 1, and 0 (ZERO).

The Euler formula can be demonstrated using a
series expansion

eix �
X

n�0

ðixÞn

n!

�
X

n�0

( �1)nx2n

(2n)!
�i

X

n�1

( �1)n�1x2n�1

(2n � 1)!

�cos x �i sin x: (4)

It can also be proven using a COMPLEX integral. Let

z �cos u �i sin u (5)

dz �(�sin u �i cos u) du �i(cos u �i sin u) du

�iz d u (6)

g
dz

z
�g i du (7)

ln z �iu ; (8)

so

z �eiu �cos u �i sin u : (9)

See also DE MOIVRE’S IDENTITY, POLYHEDRAL FOR-

MULA
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Euler Four-Square Identity
The amazing polynomial identity

(a2
1 �a2

2 �a2
3 �a2

4)(b2
1 �b2

2 �b2
3 �b2

4)

�(a1b1 �a2b2 �a3b3 �a4b4)2

�(a1b2 �a2b1 �a3b4 �a4b3)2

�(a1b3 �a2b4 �a3b1 �a4b2)2

�(a1b4 �a2b3 �a3b2 �a4b1)2 ;

communicated by Euler in a letter to Goldbach on
April 15, 1750 (incorrectly given as April 15, 1705–
before Euler was born–in Conway and Guy 1996,
p. 232). The identity also follows from the fact that
the norm of the product of two QUATERNIONS is the
product of the norms (Conway and Guy 1996).

See also FIBONACCI IDENTITY, LAGRANGE’S FOUR-

SQUARE THEOREM, LEBESGUE IDENTITY
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Euler Graph
EULERIAN GRAPH

Euler Identity
For ½z½B1;

Y

k�1

(1�zk)�
Y

k�1

(1�z2k�1)�1:



Expanding and taking a series expansion about zero
for either side gives

1 �z �z2 �2z3 �2z4 �3z5 �4z6 �5z7 �. . . ;

giving 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, ...
(Sloane’s A000009), the number of partitions of n into
distinct parts.

See also JACOBI TRIPLE PRODUCT, PARTITION FUNC-

TION P , Q -SERIES
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Euler Integral
Euler integration was defined by Schanuel and
subsequently explored by Rota, Chen, and Klain.
The Euler integral of a FUNCTION f : R 0 R (assumed
to be piecewise-constant with finitely many disconti-
nuities) is the sum of

f (x) �1
2[f (x�) �f (x�)]

over the finitely many discontinuities of f . The n -D
Euler integral can be defined for classes of functions
Rn 0 R: Euler integration is additive, so the Euler
integral of f �g equals the sum of the Euler integrals
of f and g .

See also EULER MEASURE

Euler Law
POLYHEDRAL FORMULA

Euler L-Function
A special case of the ARTIN L -FUNCTION for the
POLYNOMIAL x2�1: It is given by

L(s)�
Y

p odd prime

1

1 � x�(p)p�s
;

where

x�(p)�
1 for p�1 (mod 4)
�1 for p�3 (mod 4)

�
�1

p

 !
;

(

where (�1=p) is a LEGENDRE SYMBOL.
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Euler Line

The line on which the ORTHOCENTER H , CENTROID G ,
CIRCUMCENTER O , DE LONGCHAMPS POINT L , NINE-

POINT CENTER F , and the TANGENTIAL TRIANGLE

CIRCUMCIRCLE OT of a TRIANGLE lie. The INCENTER

lies on the Euler line only if the TRIANGLE is an
ISOSCELES TRIANGLE. The Euler line consists of all
points with TRILINEAR COORDINATES a : b : g which
satisfy

a b g

cos A cos B cos C
cos B cos C cos C cos A cos A cos B

������
�������0; (1)

which simplifies to

a cos A(cos2 B�cos2 C)�b cos B(cos2 C�cos2 A)

�g cos C(cos2 A�cos2 B)�0: (2)

This can also be written

a sin(2A) sin(B�C)�b sin(2B) sin(C�A)

�g sin(2C) sin(A�B)�0: (3)

The Euler line may also be given parametrically in
EXACT TRILINEAR COORDINATES by

P(l)�O�lH (4)

where the following table summarized important
TRIANGLES CENTERS corresponding to various values
of l (including the factor of 1/2 omitted by Oldknow
1996).

/l/ TRIANGLE CENTER

-1 POINT AT INFINITY

/�1
2/ DE LONGCHAMPS POINT L

0 CIRCUMCENTER O

/
1
2/ CENTROID G

1 NINE-POINT CENTER F

/
/ ORTHOCENTER H



The CIRCUMCENTER O , NINE-POINT CENTER F , CEN-

TROID G , and ORTHOCENTER H form a HARMONIC

RANGE with

GO �1
2 HG (5)

OG �1
3 HO (6)

OF �1
2 HO (7)

FG �1
6 HO (8)

(Honsberger 1995, p. 7).

The Euler line intersects the SODDY LINE in the DE

LONGCHAMPS POINT, and the GERGONNE LINE in the
EVANS POINT. The ISOTOMIC CONJUGATE of the Euler
line is called JERABEK’S HYPERBOLA (Casey 1893,
Vandeghen 1965).

See also CENTROID (TRIANGLE), CIRCUMCENTER,
EVANS POINT, GERGONNE LINE, JERABEK’S HYPERBO-

LA, DE LONGCHAMPS POINT, NINE-POINT CENTER,
ORTHOCENTER, SODDY LINE, TANGENTIAL TRIANGLE
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Euler Measure
Define the Euler measure of a polyhedral set as the
EULER INTEGRAL of its indicator function. It is easy to
show by induction that the Euler measure of a closed
bounded convex POLYHEDRON is always 1 (indepen-
dent of dimension), while the Euler measure of a d -D
relative-open bounded convex POLYHEDRON is (�1)d:/

Euler Number
The Euler numbers, also called the SECANT NUMBERS

or ZIG NUMBERS, are defined for xj jBp=2 by

sech x�1��
E�1x2

2!
�

E�2x4

4!
�

E�3x6

6!
�. . . (1)

sec x�1�
E�1x2

2!
�

E�2x4

4!
�

E�3x6

6!
�. . . ; (2)

where sech is the HYPERBOLIC SECANT and sec is the
SECANT. Euler numbers give the number of ODD

ALTERNATING PERMUTATIONS and are related to GEN-

OCCHI NUMBERS. The base E of the NATURAL LOGA-

RITHM is sometimes known as Euler’s number.

Some values of the Euler numbers are

E�1�1

E�2�5

E�3�61

E�4�1; 385

E�5�50; 521

E�6�2; 702; 765

E�7�199; 360; 981

E�8�19; 391; 512; 145

E�9�2; 404; 879; 675; 441

E�10�370; 371; 188; 237; 525

E�11�69; 348; 874; 393; 137; 901

E�12�15; 514; 534; 163; 557; 086; 905

(Sloane’s A000364). The first few PRIME Euler num-
bers En� occur for n�2, 3, 19, 227, 255, ... (Sloane’s
A014547) up to a search limit of n�1415.

The slightly different convention defined by

E2n�(�1)nE�n (3)

E2n�1�0 (4)

is frequently used. These are, for example, the Euler
numbers computed by the Mathematica function
EulerE[n ]. This definition has the particularly sim-
ple series definition

sech x�
X

k�0

Ekxk

k!
(5)



and is equivalent to

En �2nEn(1
2) ; (6)

where En(x) is an EULER POLYNOMIAL. The Euler
numbers have the ASYMPTOTIC SERIES

E2n �(�1)n8

ffiffiffi
n

p

s
4n

pe

 !2n

: (7)

To confuse matters further, the EULER CHARACTER-

ISTIC is sometimes also called the "Euler number."

See also BERNOULLI NUMBER, EULER NUMBER (FINITE

COMPLEX), EULERIAN NUMBER, EULER POLYNOMIAL,
EULER ZIGZAG NUMBER, GENOCCHI NUMBER
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Euler Number (Finite Complex)
The Euler number of a finite complex K is defined by

x(K)�
X

(�1)p rank(Cp(K)):

The Euler number is a topological invariant.

See also EULER CHARACTERISTIC, LEFSCHETZ NUMBER
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Euler Parameters
The four parameters e0; e1; e2; and e3 describing a
finite rotation about an arbitrary axis. The Euler
parameters are defined by

e0�cos
f

2

 !
(1)

e�
e1

e2

e3

2
4
3
5�n̂ sin

f

2

 !
; (2)

and are a QUATERNION in scalar-vector representation

(e0; e)�e0�e1i�e2j�e3k: (3)

Because EULER’S ROTATION THEOREM states that an
arbitrary rotation may be described by only three
parameters, a relationship must exist between these
four quantities

e2
0�e � e�e2

0�e2
1�e2

2�e2
3�1 (4)

(Goldstein 1980, p. 153). The rotation angle is then
related to the Euler parameters by

cos f�2e2
0�1�e2

0�e � e�e2
0�e2

1�e2
2�e2

3 (5)

n̂ sin f�2ee0: (6)

The Euler parameters may be given in terms of the
EULER ANGLES by

e0�cos[1
2(f�c)] cos(1

2 u) (7)

e1�sin[1
2(f�c)] sin(1

2 u) (8)

e2�cos[1
2(f�c)] sin(1

2 u) (9)

e3�sin[1
2(f�c)] cos(1

2 u) (10)

(Goldstein 1980, p. 155).

Using the Euler parameters, the ROTATION FORMULA

becomes

r?�r(e2
0�e2

1�e2
2�e2

3)�2e(e � r)�(r�n̂) sin f; (11)

and the ROTATION MATRIX becomes

x?
y?
z?

2
4
3
5�A

x
y
z

2
4
3
5; (12)

where the elements of the matrix are

aij�dij(e
2
0�ekek)�2eiej�2eijke0ek: (13)

Here, EINSTEIN SUMMATION has been used, dij is the
KRONECKER DELTA, and eijk is the PERMUTATION

SYMBOL. Written out explicitly, the matrix elements
are

a11�e2
0�e2

1�e2
2�e2

3 (14)

a12�2(e1e2�e0e3) (15)

a13�2(e1e3�e0e2) (16)

a21�2(e1e2�e0e3) (17)



a22 �e2
0 �e2

1 �e2
2 �e2

3 (18)

a23 �2(e2e3 �e0e1) (19)

a31 �2(e1e3 �e0e2) (20)

a32 �2(e2e3 �e0e1) (21)

a33 �e2
0 �e2

1 �e2
2 �e2

3 : (22)

See also EULER ANGLES, QUATERNION, ROTATION

FORMULA, ROTATION MATRIX
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Euler Point
The MIDPOINTS MHA ; MHB ; MHC of the segments which
join the VERTICES of a triangle and the ORTHOCENTER

H are called Euler points. They are three of the nine
prominent points of a triangle through which the
NINE-POINT CIRCLE passes.

See also FEUERBACH’S THEOREM, NINE-POINT CIRCLE
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Euler Polyhedral Formula
POLYHEDRAL FORMULA

Euler Polynomial

The Euler polynomial En(x) is given by the APPELL

SEQUENCE with

g(t) �1
2(e

t �1); (1)

giving the GENERATING FUNCTION

2ext

et � 1 
�
X

n�0

En(x)
tn

n! 
: (2)

Roman (1984, p. 100) defines a generalization E(a)
n (x)

for which En(x) �E(1)
n (x): Euler polynomials are re-

lated to the BERNOULLI NUMBERS by

En �1(x) �
2n

n
Bn

x � 1

2

 !
�Bn

x

2

 !" #
(3)

�
2

n
Bn(x) �2nBn

x

2

 !" #
(4)

En�2(x) �2
n
2

� ��1Xn �2

k�0

n
2

� �
[(2n�k �1)Bn�kBk(x)]; ð5Þ

where n
k

� �
is a BINOMIAL COEFFICIENT. Setting x �1=2

and normalizing by 2n gives the EULER NUMBER

En �2nEn(1
2) : (6)

Call E ?n �En(0) ; then the first few terms are �1 =2; 0,
1/4, �1=2; 0, 17/8, 0, 31/2, 0, .... The terms are the
same but with the SIGNS reversed if x �1. These
values can be computed using the double sum

En(0) �2�n
Xn

j�1

(�1)j�n�1jk
Xn �j

k �0

n �1
k

� �" #
: (7)

The BERNOULLI NUMBERS Bn for n �1 can be ex-
pressed in terms of the E ?n by

Bn ��
nE ?n�1

2(2n � 1) 
: (8)

The Newton expansion of the Euler polynomials is
given by

En(x) �
Xn

j �0

Xn

k �j

�1
j

� �
1

2j
(k)jS(n ; k)(x)k �j ; (9)

where n
k

� �
is a BINOMIAL COEFFICIENT, (k)j is a FALLING

FACTORIAL, and S(n; k) is a STIRLING NUMBER OF THE

SECOND KIND (Roman 1984, p. 101).
The Euler polynomials satisfy the identity

Xn

k�0

n
2

� �
Ek(z)En�k(w)

�2(1�w�z)En(z�w)�2En�1(z�w) (10)

for n a NONNEGATIVE INTEGER.

See also APPELL SEQUENCE, BERNOULLI POLYNOMIAL,
EULER NUMBER, GENOCCHI NUMBER
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Euler Polynomial Identity
EULER FOUR-SQUARE IDENTITY

Euler Power Conjecture
EULER’S SUM OF POWERS CONJECTURE

Euler Product
For s �1, the RIEMANN ZETA FUNCTION is given by

z(s) �
X

n�1

1

ns 
�
Y

n�1

1

1 �
1

ps
n

;

where pi is the ith PRIME. This is Euler’s product
(Whittaker and Watson 1990).

Let s 0 1 ; then the terms in the product for upper
limits n �1, 2, ..., are given by 2, 4, 6, 15/2, 35/4, 77/8,
1001/96, 17017/1536, ... (Sloane’s A050298 and
A050299). The limiting case as n 0 
 gives MERTENS

THEOREM,

e g � lim
n0


1

ln n

Yn

i�1

1

1 �
1

pi

;

where g is the EULER-MASCHERONI CONSTANT.

See also DEDEKIND FUNCTION, EULER-MASCHERONI

CONSTANT, MERTENS THEOREM, RIEMANN ZETA

FUNCTION, STIELTJES CONSTANTS
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Euler Pseudoprime
An Euler pseudoprime is a composite number n
which satisfies

2(n�1)=2 �91 (mod n) :

The first few base-2 Euler pseudoprimes are 341, 561,
1105, 1729, 1905, 2047, ... (Sloane’s A006970).

See also EULER-JACOBI PSEUDOPRIME, PSEUDOPRIME,
STRONG PSEUDOPRIME
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Euler Quartic Conjecture
Euler conjectured that there are no POSITIVE INTEGER

solutions to the quartic DIOPHANTINE EQUATION

A4 �B4 �C4 �D4 :

This conjecture was disproved by Elkies (1988), who
found an infinite class of solutions.

See also DIOPHANTINE EQUATION–4TH POWERS, EU-

LER’S SUM OF POWERS CONJECTURE
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Euler Square
A square ARRAY made by combining n objects of two
types such that the first and second elements form
LATIN SQUARES. Euler squares are also known as
GRAECO-LATIN SQUARES, GRAECO-ROMAN SQUARES, or
LATIN-GRAECO SQUARES. For many years, Euler
squares were known to exist for n�3, 4, and for
every ODD n except n�3k: EULER’S GRAECO-ROMAN

SQUARES CONJECTURE maintained that there do not
exist Euler squares of order n�4k�2 for k�1, 2, ....
However, such squares were found to exist in 1959,
refuting the CONJECTURE.



See also LATIN RECTANGLE, LATIN SQUARE, ROOM

SQUARE
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Euler Sum
In response to a letter from Goldbach, Euler consid-
ered DOUBLE SUMS OF THE FORM

sh(m; n)�
X

k�1

1�
1

2
�. . .�

1

k

 !m

(k�1)�n (1)

�
X

k�1

[g�c0(k�1)]m(k�1)�n (2)

with m]1 and n]2 and where g is the EULER-

MASCHERONI CONSTANT and C(x)�c0(x) is the DI-

GAMMA FUNCTION. Euler found explicit formulas in
terms of the RIEMANN ZETA FUNCTION for s(1; n) with
n]2; and E. Au-Yeung numerically discovered

X

k�1

1�
1

2
�. . .�

1

k

 !2

k�2�17
4 z(4); (3)

where z(z) is the RIEMANN ZETA FUNCTION, which was
subsequently rigorously proven true (Borwein and
Borwein 1995). Sums involving k�n can be re-ex-
pressed in terms of sums the form (k�1)�n via

X

k�1

1�
1

2m
�. . .�

1

km

 !
k�n

�
X

k�0

1�
2

2m
�. . .�

1

(k � 1)m

" #
(k�1)�n

�
X

k�1

1�
1

2m
�. . .�

1

km

 !
(k�1)�n�

X

k�1

k�(m�n)

�sh(m; n)�z(m�n) (4)

X

k�1

1�
1

2
�. . .�

1

k

 !2

k�n

�sh(2; n)�2sh(1; n�1)�z(n�2); (5)

where sh is defined below.

Bailey et al. (1994) subsequently considered sums OF

THE FORMs

sh(m; n)�
X

k�1

1�
1

2
�. . .�

1

k

 !m

(k�1)�n (6)

sa(m; n)�
X

k�1

1�
1

2
�. . .�

(�1)k�1

k

" #m

(k�1)�n (7)

ah(m; n)�
X

k�1

1�
1

2
�. . .�

1

k

 !m

(�1)k�1(k�1)�n (8)

aa(m; n)�
X

k�1

1�
1

2
�. . .�

(�1)k�1

k

 !m

(�1)k�1

� (k�1)�n ð9Þ

sh(m; n)�
X

k�1

1�
1

2m
�. . .�

1

km

 !
(k�1)�n (10)

sa(m; n)�
X

k�1

1�
1

2m
�. . .�

(�1)k�1

km

 !
(k�1)�n (11)

ah(m; n)�
X

k�1

1�
1

2m
�. . .�

1

km

 !
(�1)k�1

� (k�1)�n ð12Þ

aa(m; n)�
X

k�1

1�
1

2m
�. . .�

(�1)k�1

km

 !
(�1)k�1

� (k�1)�n; ð13Þ

where sh and sa have the special forms

sh�
X

k�1

[g�c0(n�1)]m(k�1)�n (14)

aa�
X

k�1

fln 2�1
2(�1)n[c0(1

2 n�1
2)�c0(1

2 n�1)]gm

� (k�1)�m: (15)

Analytic single or double sums over z(z) can be
constructed for

sh(2; n)�1
3 n(n�1)z(n�2)�z(2)z(n)

�1
2 n

Xn�2

k�0

z(n�k)z(k�2) ð16Þ

sh(2; 2n�1)�1
6(2n2�7n�3)z(2n�1)�z(2)z(2n�1)

�1
2

Xn�2

k�1

(2k�1)z(2n�1�2k)z(2k�2) ð17Þ

sh(2; 2n�1)

��1
2(2n2�n�1)z(2n�1)�z(2)z(2n�1) ð18Þ



sh(m even; n odd)

�1
2

m�n
m

� �
�1

� �
z(m�n)�z(m)z(n)

�
Xm�n

j�1

2j�2
m�1

� �
�

2j�2
n�1

� �� �
ð19Þ

sh(m odd; n even)

��1
2

m�n
m

� �
�1

� �
z(m�n)

�
Xm�n

k�1

2j�2
m�1

� �
�

2j�2
n�1

� �� �
ð20Þ

where n
m

� �
is a BINOMIAL COEFFICIENT. Explicit for-

mulas inferred using the PSLQ ALGORITHM include

sh(2; 2)�3
2 z(4)�1

2[z(2)]2 (21)

� 11
360 p

4 (22)

sh(2; 4)�2
3 z(6)�1

3 z(2)z(4)�1
3[z(2)]3�[z(3)]2 (23)

� 37
22680 p

6�[z(3)]2 (24)

sh(3; 2)�15
2 z(5)�z(2)z(3) (25)

sh(3; 3)��33
16 z(6)�2[z(3)]2 (26)

sh(3; 4)�119
16 z(7)�33

4 z(3)z(4)�2z(2)z(5) (27)

sh(3; 6)�197
24 z(9)�33

4 z(4)z(5)�37
8 z(3)z(6)�[z(3)]3

�3z(2)z(7) (28)

sh(4; 2)�859
24 z(6)�3[z(3)]2 (29)

sh(4; 3)��109
8 z(7)�37

2 z(3)z(4)�5z(2)z(5) (30)

sh(4; 5)��29
2 z(9)�37

2 z(4)z(5)�33
4 z(3)z(6)�8

3[z(3)]3

�7z(2)z(7) (31)

sh(5; 2)�1855
16 z(7)�33z(3)z(4)�57

2 z(2)z(5) (32)

sh(5; 4)�890
9 z(9)�66z(4)z(5)�4295

24 z(3)z(6)�5[z(3)]3

�265
8 z(2)z(7) (33)

sh(6; 3)��3073
12 z(9)�243z(4)z(5)�2097

4 z(3)z(6)

�67
3 [z(3)]3�651

8 z(2)z(7) (34)

sh(7; 2)�134701
36 z(9)�15697

8 z(4)z(5)�29555
24 z(3)z(6)

�56[z(3)]3�3287
4 z(2)z(7); (35)

ah(2; 2)��2Li4(1
2)�

1
12(ln2)4�99

48 z(4)�7
4 z(3)ln 2

�1
2 z(2)(ln 2)2 (36)

ah(2; 3)��4Li5(1
2)�4(ln 2)Li4(1

2)�
2
15(ln 2)5�107

32 z(5)

�7
4 z(3)(ln 2)2�2

3 z(2)(ln 2)3�3
8 z(2)z(3) ð37Þ

ah(3; 2)�6Li5(1
2)�6(ln 2)Li4(1

2)�
1
5(ln 2)5�33

8 z(5)

�21
8 z(3)(ln 2)2�z(2)(ln 2)3�15

16 z(2)z(3); (38)

and

aa(2; 2)��4Li4(1
2)�

1
6(ln 2)4�37

16 z(4)�7
4 z(3)(ln 2)

�2z(ln 2)2 (39)

aa(2; 3)�4(ln 2)Li4(1
2)�

1
6(ln 2)5�79

32 z(5)�11
8 z(4)(ln 2)

�z(2)(ln 2)3 (40)

aa(3; 2)�30Li5(1
2)�

1
4(ln 2)5�1813

64 z(5)�285
16 z(4)(ln 2)

�21
8 z(3)(ln 2)2�7

2 z(2)(ln 2)3�3
4 z(2)z(3);

(41)

where Lin is a POLYLOGARITHM, and z(z) is the
RIEMANN ZETA FUNCTION (Bailey and Plouffe). Of
these, only sh(3; 2); sh(3; 3) and the identities for
sa(m; n); ah(m; n) and aa(m; n) have been rigorously
established.
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Euler System
A mathematical structure first introduced by Koly-
vagin (1990) and defined as follows. Let T be a finite-
dimensional p -adic representation of the GALOIS

GROUP of a NUMBER FIELD K . Then an Euler system
for T is a collection of COHOMOLOGY CLASSES cF �

H1(F; T) for a family of Abelian extensions F of K ,
with a relation between cF? and cF whenever FƒF?
(Rubin 2000, p. 4).



Wiles’ proof of FERMAT’S LAST THEOREM via the
TANIYAMA-SHIMURA CONJECTURE made use of Euler
systems.
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Birkhäuser, pp. 435 �/83, 1990.

Rubin, K. Euler Systems. Princeton, NJ: Princeton Univer-
sity Press, 2000.

Euler Totient Function
TOTIENT FUNCTION

Euler Transform
There are (at least) three types of Euler transforms
(or transformations). The first is a set of transforma-
tions of HYPERGEOMETRIC FUNCTIONS, called EULER’S

HYPERGEOMETRIC TRANSFORMATIONS.

The second type of Euler transform is a technique for
SERIES CONVERGENCE IMPROVEMENT which takes a
convergent alternating series

X

k �0

(�1)kak �a0 �a1 �a2 �. . .  (1)

into a series with more rapid convergence to the same
value to

s �
X

k �0

( �1)k Dka0

2k �1
; (2)

where the FORWARD DIFFERENCE is defined by

Dka0 �
Xk

m�0

�(�1)m k
m

� �
ak �m (3)

(Abramowitz and Stegun 1972; Beeler et al. 1972).

The third type of Euler transform is a relationship
between certain types of INTEGER SEQUENCES (Sloane
and Plouffe 1995, pp. 20 �/1). If a1 ; a2 ; ... and b1 ; b2 ; ...
are related by

1 �
X

n�1

bnxn �
Y

i �1

1

(1 � xi)a1
(4)

or, in terms of GENERATING FUNCTIONS A(x) and B(x);

1 �B(x) �exp
X

k �1

A(xk)

k

" #
; (5)

then fbn g is said to be the Euler transform of fan g
(Sloane and Plouffe 1995, p. 20). The Euler transform
can be effected by introducing the intermediate series
c1 ; c2 ; ... given by

cn �
X
d½n

dad ; (6)

then

bn �
1

n
cn �

Xn�1

k �1

ckbn�k

" #
; (7)

with b1 �c1 : Similarly, the inverse transform can be
effected by computing the intermediate series as

cn �nbn �
Xn�1

k �1

ckbn�1 ; (8)

then

an �
1

n

X
d½n

m
n

d

 !
cd ; (9)

where m(n) is the MÖ BIUS FUNCTION.

In GRAPH THEORY, if an is the number of UNLABELED

CONNECTED GRAPHS on n nodes satisfying some
property, then bn is the total number of UNLABELED

GRAPHS (connected or not) with the same property.
This application of the Euler transform is called
RIDDELL’S FORMULA for unlabeled graph (Sloane and
Plouffe 1995, p. 20).

There are also important number theoretic applica-
tions of the Euler transform. For example, if there are
a1 kinds of parts of size 1, a2 kinds of parts of size 2,
etc., in a given type of partition, then the Euler
transform bn of an is the number of partitions of n
into these integer parts. For example, if an�1 for all
n , then bn is the number of partitions of n into integer
parts. Similarly, if an�1 for n PRIME and an�0 for n
composite, then bn is the number of partitions of n
into prime parts (Sloane and Plouffe 1995, p. 21).
Other applications are given by Andrews (1986),
Andrews and Baxter (1989), and Cameron (1989).

See also BINOMIAL TRANSFORM, EULER’S HYPERGEO-

METRIC TRANSFORMATIONS, FORWARD DIFFERENCE,
INTEGER SEQUENCE, MÖ BIUS TRANSFORM, RIDDELL’S

FORMULA, STIRLING TRANSFORM
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Euler Triangle Formula
Let O and I be the CIRCUMCENTER and INCENTER of a
TRIANGLE with CIRCUMRADIUS R and INRADIUS r . Let
d be the distance between O and I . Then

d2 �R2 �2rR:

This is the simplest case of PONCELET’S PORISM.

See also PONCELET’S PORISM

Euler Walk
EULERIAN TRAIL

Euler Zigzag Number
The number of ALTERNATING PERMUTATIONS for n
elements is sometimes called an Euler zigzag num-
ber. Denote the number of ALTERNATING PERMUTA-

TIONS on n elements for which the first element is k
by E(n; k) : Then E(1; 1) �1 and

E(n ; k) �

0 for k ]n or k B1
E(n; k �1) �E(n �1; n �k) otherwise:

:
where E(n; k) is an ENTRINGER NUMBER.

See also ALTERNATING PERMUTATION, ENTRINGER

NUMBER, SECANT NUMBER, TANGENT NUMBER

References
Ruskey, F. "Information of Alternating Permutations."

http://www.theory.csc.uvic.ca/~cos/inf/perm/Alterna-
ting.html.

Sloane, N. J. A. Sequences A000111/M1492 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Euler’s 6n �1 Theorem
Every PRIME OF THE FORM 6n �1 can be written in the
form x2 �3y2 :/

Euler’s Addition Theorem
Let g(x) �(1 �x2)(1 �k2x2) : Then

g
a

0

dxffiffiffiffiffiffiffiffiffi
g(x)

p �g
b

0

dxffiffiffiffiffiffiffiffiffi
g(x)

p �g
c

0

dxffiffiffiffiffiffiffiffiffi
g(x)

p ;

where

c �
b
ffiffiffiffiffiffiffiffiffi
g(a)

p
� a

ffiffiffiffiffiffiffiffiffi
g(b)

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2a2b2

p :

Euler’s Circle
NINE-POINT CIRCLE

Euler’s Conjecture
Define g(k) as the quantity appearing in WARING’S

PROBLEM, then Euler conjectured that

g(k) �2k �
3

2

 !k
6664

7775�2 ;

where xb c is the FLOOR FUNCTION.

See also WARING’S PROBLEM

Euler’s Criterion
For p an ODD PRIME and a POSITIVE INTEGER a which
is not a multiple of p ,

a(p �1)=2 �
a

p

 !
(mod p) ;

where (a ½p) is the LEGENDRE SYMBOL.

See also LEGENDRE SYMBOL, QUADRATIC RESIDUE
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Euler’s Dilogarithm
DILOGARITHM

Euler’s Displacement Theorem
The general displacement of a rigid body (or coordi-
nate frame) with one point fixed is a ROTATION about
some axis. Furthermore, a ROTATION may be de-
scribed in any basis using three ANGLES.

See also EUCLIDEAN MOTION, EULER ANGLES, RIGID

MOTION, ROTATION, TRANSLATION

Euler’s Distribution Theorem
For signed distances on a LINE SEGMENT,

AB � CD�AC � DB�AD � BC�0;

since



(b �a)(d �c) �(c �a)(b �d) �(d �a)(c �b) �0:
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Euler’s Equations of Inviscid Motion

The system of PARTIAL DIFFERENTIAL EQUATIONS

describing fluid flow in the absence of viscosity, given
by

@u

@t
�(u � 9)u ��

9P

r
;

where u is the fluid velocity, P is the pressure, and r
is the fluid density.

See also EULER DIFFERENTIAL EQUATION
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Euler’s Factorization Method
A factorization algorithm which works by expressing
N as a QUADRATIC FORM in two different ways. Then

N �a2 �b2 �c2 �d2 ; (1)

so

a2 �c2 �d2 �b2 (2)

(a �c)(a �c) �(d �b)(d �b) : (3)

Let k be the GREATEST COMMON DIVISOR of a �c and
d �b so

a �c �kl (4)

d �b �km (5)

(l ; m) �1 ; (6)

(where (l, m ) denotes the GREATEST COMMON DIVISOR

of l and m ), and

l(a �c) �m(d �b) : (7)

But since (l ; m) �1; m½a �c and

a �c �mn; (8)

which gives

b �d �ln ; (9)

so we have

[(1
2 k)2 �(1

2 n)2](l2 �m2) �1
4(k

2 �n2)(l2 �m2)

�1
4[(kn)2 �(kl)2 �(nm)2 �(nl)2]

�1
4[(d �b)2 �(a �c)2 �(a �c)2 �(d �b)2]

�1
4(2a2 �2b2 �2c2 �2d2)

�1
4(2N �2N) �N : (10)

See also PRIME FACTORIZATION ALGORITHMS

Euler’s Graeco-Roman Squares Conjecture

Euler conjectured that there do not exist GRAECO-

ROMAN SQUARES (now known as EULER SQUARES) of
order n �4k �2 for k �1, 2, .... In fact, MacNeish
(1921 �/922) published a purported proof of this con-
jecture (Bruck and Ryser 1949). While it is true that
no such square of order six exists, such squares were
found to exist for all other orders of the form 4k �2
by Bose, Shrikhande, and Parker in 1959 (Wells 198,
p. 77), refuting the CONJECTURE (and establishing
unequivocally the invalidity of MacNeish’s "proof").

See also 36 OFFICER PROBLEM, EULER SQUARE, LATIN

SQUARE
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Euler’s Homogeneous Function Theorem
Let f (x; y) be a HOMOGENEOUS FUNCTION of order n so
that



f (tx ; ty) �tnf (x; y): (1)

Then define x?�xt and y ?�yt: Then

ntn �1f (x; y) �
@f

@x?

@x?

@t
�

@f

@y?

@y?

@t

�x
@f

@x?
�y

@f

@y?
�x

@f

@(xt) 
�y

@f

@(yt) 
: (2)

Let t �1, then

x
@f

@x 
�y

@f

@y 
�nf (x; y) : (3)

This can be generalized to an arbitrary number of
variables

xi

@f

@xi

�nf (x); (4)

where EINSTEIN SUMMATION has been used.

Euler’s Hypergeometric Transformations

2F1(a ; b; c; z) �g
1

0

tb�1(1 � t)c�b �1

(1 � tz)a dt ; (1)

where 2F1(a ; b; c; z) is a HYPERGEOMETRIC FUNC-

TION. The solution can be written using the Euler’s
transformations

t 0 t (2)

t 0 1 �t (3)

t 0 (1 �z �tz) �1 (4)

t 0
1 � t

1 � tz 
(5)

in the equivalent forms

2F1(a; b; c; z)

�(1 �z) �a
2F1(a ; c �b; c; z =(z �1)) (6)

�(1 �z) �b
2F1(c �a ; b; c; z =(z �1)) (7)

�(1 �z)c�a �b
2F1(c �a ; c �b; c; z) : (8)

See also HYPERGEOMETRIC FUNCTION
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Euler’s Idoneal Number
IDONEAL NUMBER

Euler’s Machin-Like Formula
The MACHIN-LIKE FORMULA

1
4 p �tan�1(1

2) �tan�1(1
3) :

The other 2-term MACHIN-LIKE FORMULAS are HER-

MANN’S FORMULA, HUTTON’S FORMULA, and MACHIN’S

FORMULA.

See also INVERSE TANGENT

Euler’s Pentagonal Number Theorem
PENTAGONAL NUMBER THEOREM

Euler’s Phi Function
TOTIENT FUNCTION

Euler’s Polygon Division Problem
The problem of finding in how many ways En a PLANE

convex POLYGON of n sides can be divided into
TRIANGLES by diagonals. Euler first proposed it to
Christian Goldbach in 1751, and the solution is the
CATALAN NUMBER En �Cn�2 :/

See also CATALAN NUMBER, CATALAN’S PROBLEM
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Euler’s Quadratic Residue Theorem
A number D that possesses no common divisor with a
prime number p is either a QUADRATIC RESIDUE or
nonresidue of p , depending whether D(p �1)=2 is con-
gruent mod p to 9 1.

Euler’s Rotation Theorem
An arbitrary ROTATION may be described by only
three parameters.

See also EULER ANGLES, EULER PARAMETERS, ROTA-

TION MATRIX

Euler’s Rule
The numbers 2npq and 2nr are an AMICABLE PAIR if
the three INTEGERS

p�2m(2n�m�1)�1 (1)

q�2n(2n�m�1)�1 (2)

r�2n�m(2n�m�1)2�1 (3)

are all PRIME NUMBERS for some POSITIVE INTEGER m
satisfying 15m5n�1 (Dickson 1952, p. 42). How-
ever, there are many AMICABLE PAIRS which do not



satisfy Euler’s rule, so it is a SUFFICIENT but not
NECESSARY condition for amicability. Euler’s rule is a
generalization of THÂ BIT IBN KURRAH RULE.

For example, Euler’s rule is satisfied for (n; m) �
(2; 1); (4; 4); (6; 7); (8; 1); (40 ; 29) ; ..., corresponding
to the triples (p; q; r) �(5; 11; 71); (23, 47, 1151),
(191, 383, 73727), ..., giving the AMICABLE PAIRS (220,
284), (17296, 18416), (9363584, 9437056), ....

See also AMICABLE PAIR, THÂ BIT IBN KURRAH RULE
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Euler’s Series Transformation
Accelerates the rate of CONVERGENCE for an ALTER-

NATING SERIES

S �
X

s�0

(�1)sus

�u0 �u1 �u2 �. . .�un �1 �
X

s�0

( �1)2

2s�1
[Dsun] (1)

for n EVEN and D the FORWARD DIFFERENCE operator

Dkun �
Xk

m�0

(�1)m k
m

� �
un�k�m ; (2)

where k
m

� �
are BINOMIAL COEFFICIENTS. The POSITIVE

terms in the series can be converted to an ALTERNAT-

ING SERIES using

X

r�1

vr �
X

r�1

(�1)r�1wr ; (3)

where

wr �vr �2v2r �4v4r �8v8r �. . . : (4)

See also ALTERNATING SERIES
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Euler’s Spiral
CORNU SPIRAL

Euler’s Sum of Powers Conjecture
Euler conjectured that at least n nth POWERS are
required for n �2 to provide a sum that is itself an
nth POWER. The conjecture was disproved by Lander
and Parkin (1967) with the counterexample

275 �845 �1105 �1335 �1445 :

Ekl (1998) defined Euler’s extended conjecture as the
assertion that there are no solutions to the k:m:n
DIOPHANTINE EQUATION

ak
1 �ak

2 �. . .�ak
m �bk

1 �bk
2 �. . .�bk

n ;

with ai and bi not necessarily distinct, such that m �
n Bk: There are no known counterexamples to this
conjecture (Ekl 1998). Ekl (1998) defines the Euler
conjecture number as the minimum known value of
D�m �n �k: The following table gives the smallest
known values.

k Soln. / D/ Reference

4 4.1.3 0 Elkies 1988

5 5.1.4 0 Lander et al. 1967

6 6.3.3 0 Subba Rao 1934

7 7.4.4 1 Ekl 1996

8 8.5.5 2 Letac 1942

9 9.6.6 3 Lander et al. 1967

10 10.7.7 4 Moessner 1939

See also DIOPHANTINE EQUATION–5TH POWERS, EU-

LER QUARTIC CONJECTURE
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Euler’s Theorem
A generalization of FERMAT’S LITTLE THEOREM. Euler
published a proof of the following more general
theorem in 1736. Let f(n) denote the TOTIENT FUNC-

TION. Then

af(n) �1 (mod n)

for all a RELATIVELY PRIME to n .

See also CHINESE HYPOTHESIS, EULER’S DISPLACE-

MENT THEOREM, EULER’S DISTRIBUTION THEOREM,
FERMAT’S LITTLE THEOREM, TOTIENT FUNCTION
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Euler’s Totient Rule
The number of bases in which 1=p is a REPEATING

DECIMAL (actually, repeating b -ary) of length l is the
same as the number of FRACTIONS 0 =(p �1); 1=(p �1);
..., (p �2)=(p �1) which have reduced DENOMINATOR

l . For example, in bases 2, 3, ..., 6, 1/7 is given by

1
7 �0:001001001001 . . .2

�0 :010212010212 . . .3

�0 :021021021020 . . .4

�0 :032412032412 . . .5

�0:050505050505 . . .6 ;

which have periods 3, 6, 3, 6, and 2, respectively,
corresponding to the DENOMINATORS 6, 3, 2, 3, and 6
of

1

6 
;

1

3 
;

1

2 
;

2

3 
; and

5

6 
:

See also CYCLIC NUMBER, REPEATING DECIMAL,
TOTIENT FUNCTION
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Euler’s Triangle
The triangle of numbers An; k given by

An; 1 �An; n �1

and the RECURRENCE RELATION

An�1; k �kAn; k �(n �2 �k)An; k �1

for k � [2; n]; where An ; k are EULERIAN NUMBERS.

1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1

The numbers 1, 1, 1, 1, 4, 1, 1, 11, 11, 1, ... are
Sloane’s A008292. Amazingly, the Z -TRANSFORMS of
tn

(z � 1)n

Tnz
Z[tn]�

(1 � z)n

Tnz
lim
x00

@n

@xn

z

z � e�xT

 !

are generators for Euler’s triangle.

A SPHERICAL TRIANGLE is sometimes also called
Euler’s triangle.

See also CLARK’S TRIANGLE, EULERIAN NUMBER,
LEIBNIZ HARMONIC TRIANGLE, LOSSNITSCH’S TRIAN-

GLE, NUMBER TRIANGLE, PASCAL’S TRIANGLE, SEIDEL-

ENTRINGER-ARNOLD TRIANGLE, SPHERICAL TRIANGLE,
Z -TRANSFORM
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Euler-Bernoulli Triangle
SEIDEL-ENTRINGER-ARNOLD TRIANGLE

Euler-Darboux Equation
The PARTIAL DIFFERENTIAL EQUATION

uxy�
aux � buy

x � y
�0:

See also EULER-POISSON-DARBOUX EQUATION
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EulerE
EULER NUMBER, EULER POLYNOMIAL

EulerGamma
EULER-MASCHERONI CONSTANT

# 1999�/001 Wolfram Research, Inc.



Eulerian Circuit
An EULERIAN TRAIL which starts and ends at the
same VERTEX. In other words, it is a GRAPH CYCLE

which uses each EDGE exactly once. The term EU-

LERIAN CYCLE is also used synonymously with Euler-
ian circuit. For technical reasons, Eulerian circuits
are easier to study mathematically than are HAMIL-

TONIAN CIRCUITS. As a generalization of the KÖ NIGS-

BERG BRIDGE PROBLEM, Euler showed (without proof)
that a CONNECTED GRAPH has an Eulerian circuit IFF

it has no VERTICES of ODD DEGREE.

FLEURY’S ALGORITHM is an elegant, but inefficient,
method of generating Eulerian circuit. An Eulerian
cycle of a graph may be found using EulerianCyc-
le[g ] in the Mathematica add-on package Discre-
teMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

See also CHINESE POSTMAN PROBLEM, EULER GRAPH,
HAMILTONIAN CIRCUIT, UNICURSAL CIRCUIT
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Eulerian Cycle
EULERIAN CIRCUIT

Eulerian Graph
A GRAPH containing an EULERIAN CIRCUIT. Finding
the largest SUBGRAPH of graph having an odd number
of vertices which is Eulerian is an NP-COMPLETE

PROBLEM (Skiena 1990, p. 194).

An UNDIRECTED GRAPH is Eulerian IFF every VERTEX

has EVEN DEGREE. The numbers of Eulerian graphs
with n �1, 2, ... nodes are 1, 1, 2, 3, 7, 16, 54, 243, ...

(Sloane’s A002854; Robinson 1969; Mallows and
Sloane 1975; Buekenhout 1995, p. 881; Colbourn
and Dinitz 1996, p. 687). There is an explicit formula
giving these numbers.

Euler showed (without proof) that a CONNECTED

GRAPH is Eulerian IFF it has no VERTICES of ODD

DEGREE. The numbers of connected Eulerian graphs
with n �1, 2, ... nodes are 1, 0, 1, 1, 4, 8, 37, 184, ...
(Sloane’s A003049; Robinson 1969; Liskovec 1972;
Harary and Palmer 1973, p. 117).

A DIRECTED GRAPH is Eulerian IFF every VERTEX has
equal INDEGREE and OUTDEGREE. A planar BIPARTITE

GRAPH is DUAL to a PLANAR Eulerian graph and vice
versa. The numbers of Eulerian digraphs on n�1, 2,
... nodes are 1, 1, 3, 12, ....

See also HAMILTONIAN GRAPH, TWO-GRAPH
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Eulerian Integral of the First Kind
Legendre and Whittaker and Watson’s (1990) term
for the BETA INTEGRAL

g
1

0

xp(1 �x)q dx;

whose solution is the BETA FUNCTION B(p �1; q �1):/

See also BETA FUNCTION, BETA INTEGRAL, EULERIAN

INTEGRAL OF THE SECOND KIND
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Eulerian Integral of the Second Kind
For R[n] >�1 and R[z] > 0;

Y
(z ; n) �nzg

1

0

(1 �x)nxz�1 dx (1)

�
n!

(z)n�1

nz (2)

�B(z; n �1); (3)

where (z)n is the POCHHAMMER SYMBOL and B(p ; q) is
the BETA FUNCTION.

See also BETA FUNCTION, BETA INTEGRAL, EULERIAN

INTEGRAL OF THE FIRST KIND

Eulerian Number
The number of PERMUTATION RUNS of length n with
k 5n; denoted n

k

= >
; An; k ; or A(n ; k): The Eulerian

numbers are given explicitly by the sum

n
k

A B
�
Xk

j�0

(�1)j n þ 1
j

� �
(k �j)n : (1)

Making the definition

bn ; 1 �1 (2)

b1 ; n �1 (3)

together with the RECURRENCE RELATION

bn; k �nbn; k �1 �kbn�1 ; k (4)

for n �k then gives

n
k

A B
�bk ; n�k �1 : (5)

The arrangement of the numbers into a triangle gives
EULER’S TRIANGLE, whose entries are 1, 1, 1, 1, 4, 1, 1,
11, 11, 1, ... (Sloane’s A008292). Therefore, they
represent a sort of generalization of the BINOMIAL

COEFFICIENTS where the defining RECURRENCE RELA-

TION weights the sum of neighbors by their row and
column numbers, respectively.

The Eulerian numbers satisfy

Xn

k �1

n
k

A B
�n!: (6)

Eulerian numbers also arise in the surprising context
of integrating the SINC FUNCTION, and also in sums of
the form

X

k�1

knrk�Li�n(r)�
r

(1 � r)n�1

Xn

i�1

n
k

A B
rn�i; (7)

where Lim(z) is the POLYLOGARITHM function.

See also COMBINATION LOCK, EULER NUMBER, EU-

LER’S TRIANGLE, EULER ZIGZAG NUMBER, PERMUTA-

TION RUN, POLYLOGARITHM, SIMON NEWCOMB’S

PROBLEM, SINC FUNCTION, WORPITZKY’S IDENTITY,
Z -TRANSFORM
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polynomes associés aux nombres d’Euler." C. R. Acad. Sci.
Paris Sér. A-B 266, A392-A393, 1968.

Salama, I. A. and Kupper, L. L. "A Geometric Interpretation
for the Eulerian Numbers." Amer. Math. Monthly 93, 51�/

2, 1986.
Schrutka, L. "Eine neue Einleitung der Permutationen."

Math. Ann. 118, 246 �/50, 1941.
Shanks, E. B. "Iterated Sums of Powers of the Binomial

Coefficients." Amer. Math. Monthly 58, 404 �/07, 1951.
Sloane, N. J. A. Sequences A008292 in "An On-Line Version

of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Tomic, M. "Sur une nouvelle classe de polynômes de la
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Eulerian Tour
EULERIAN TRAIL

Eulerian Trail
A WALK on the EDGES of a GRAPH which uses each
EDGE exactly once. A CONNECTED GRAPH has an
Eulerian trail IFF it has at most two VERTICES of
ODD DEGREE.

See also EULERIAN CIRCUIT, EULERIAN GRAPH KÖ -

NIGSBERG BRIDGE PROBLEM
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Euler-Jacobi Pseudoprime
An Euler-Jacobi pseudoprime to a base a is an ODD

COMPOSITE numbers such that (a ; n) �1 and the
JACOBI SYMBOL (a=n) satisfies

a

n

 !
�a(n�1)=2 (mod n) :

(Guy 1994; but note that Guy calls these simply
"Euler pseudoprimes"). No ODD COMPOSITE number is
an Euler-Jacobi pseudoprime for all bases a RELA-

TIVELY PRIME to it. This class includes some CARMI-

CHAEL NUMBERS, all STRONG PSEUDOPRIMES to base a ,
and all EULER PSEUDOPRIMES to base a . An Euler

pseudoprime is pseudoprime to at most 1/2 of all
possible bases less than itself.

The first few base-2 Euler-Jacobi pseudoprimes are
561, 1105, 1729, 1905, 2047, 2465, ... (Sloane’s
A047713), and the first few base-3 Euler-Jacobi
pseudoprimes are 121, 703, 1729, 1891, 2821, 3281,
7381, ... (Sloane’s A048950). The number of base-2
Euler-Jacobi primes less than 102, 103, ... are 0, 1, 12,
36, 114, ... (Sloane’s A055551).

See also EULER PSEUDOPRIME, PSEUDOPRIME
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Sloane, N. J. A. Sequences A047713/M5461, A048950, and
A055551 in "An On-Line Version of the Encyclopedia of
Integer Sequences." http://www.research.att.com/~njas/
sequences/eisonline.html.

Euler-Lagrange Derivative
The derivative

dL

dq
�

@L

@q
�

d

dt

@L

@q̇

 !

appearing in the EULER-LAGRANGE DIFFERENTIAL

EQUATION.

Euler-Lagrange Differential Equation
A fundamental equation of CALCULUS OF VARIATIONS

which states that if J is defined by an INTEGRAL OF

THE FORM

J�g f (x; y; ẏ) dx; (1)

where

ẏ�
dy

dt
; (2)

then J has a STATIONARY VALUE if the Euler-
Lagrange differential equation

@f

@y
�

d

dt

@f

@ẏ

 !
�0 (3)

is satisfied. If time DERIVATIVE NOTATION is replaced
instead by space variable notation, the equation
becomes

@f

@y
�

d

dx

@f

@yx

�0: (4)

In many physical problems, fx (the PARTIAL DERIVA-



TIVE of f with respect to x ) turns out to be 0, in which
case a manipulation of the Euler-Lagrange differen-
tial equation reduces to the greatly simplified and
partially integrated form known as the BELTRAMI

IDENTITY,

f �yx

@f

@yx

�C: (5)

For three independent variables (Arfken 1985,
pp. 924�/44), the equation generalizes to

@f

@u
�

@

@x

@f

@ux

�
@

@y

@f

@uy

�
@

@z

@f

@uz

�0: (6)

Problems in the CALCULUS OF VARIATIONS often can be
solved by solution of the appropriate Euler-Lagrange
equation.

To derive the Euler-Lagrange differential equation,
examine

dJ�dg L(q; q̇; t) dt�g
@L

@q
dq�

@L

@q̇
dq̇

 !
dt

�g
@L

@q
dq�

@L

@q̇

dðdqÞ
dt

" #
dt; ð7Þ

since dq̇�d(dq)=dt: Now, integrate the second term
by PARTS using

u�
@L

@q̇
dv�d(dq) (8)

du�
d

dt

@L

@q̇

 !
dt v�dq; (9)

so

g
@L

@q̇

d(dq)

dt
dt�g

@L

@q̇
d(dq)

�
@L

@q̇
dq

" #t2

t1

�g
t2

t1

d

dt

@L

@q̇
dt

 !
dq: (10)

Combining (7) and (10) then gives

dJ�
@L

@q̇
dq

" #t2

t1

�g
t2

t1

@L

@q
�

d

dt

@L

@q̇

 !
dq dt: (11)

But we are varying the path only, not the endpoints,
so dq(t1)�dq(t2)�0 and (11) becomes

dJ�g
t2

t1

@L

@q
�

d

dt

@L

@q̇

 !
dq dt: (12)

We are finding the STATIONARY VALUES such that
dJ�0: These must vanish for any small change dq;
which gives from (12),

@L

@q
�

d

dt

@L

@q̇

 !
�0: (13)

This is the Euler-Lagrange differential equation.

The variation in J can also be written in terms of the
parameter k as

dJ�g [f (x; y�kv; ẏ�kv̇)�f (x; y; ẏ)] dt

�kI1�
1
2 k

2I2�
1
6 k

3I3�
1
24 k

4I4�. . . ; (14)

where

v�dy (15)

v̇�dẏ (16)

and the first, second, etc., variations are

I1�g (vfy�v̇fẏ) dt (17)

I2�g (v2fyy�2vv̇fyẏ�v̇2fẏẏ) dt (18)

I3�g (v3fyyy�3v2v̇fyyẏ�3vv̇2fyẏẏ�v̇3fẏẏẏ) dt (19)

I4�g (v4fyyyy�4v3v̇fyyyẏ�6v2v̇2fyyẏẏ�4vv̇3fyẏẏẏ

�v̇4fẏẏẏẏ) dt: (20)

The second variation can be re-expressed using

d

dt
(v2l)�v2l̇�2vv̇l; (21)

so

I2�[v2l]1
2�g

2

1

[v2(fyy�l̇)�2vv̇(fyẏ�l)�v̇2fẏẏ] dt:

(22)

But

[v2l]1
2�0: (23)

Now choose l such that

fẏẏ(fyy�l̇)�(fyẏ�l)2 (24)

and z such that

fyẏ�l��
fẏẏ

z

dz

dt
(25)

so that z satisfies

fẏẏz̈� ḟ ẏẏż�(fyy� ḟ yẏ)z�0: (26)

It then follows that



I2 �g fẏẏ v̇ �
fyẏ � l

fẏẏv

 !2

dt �g fẏẏ v̇ �
v

z

dz

dt

 !2

: (27)

See also BELTRAMI IDENTITY, BRACHISTOCHRONE

PROBLEM, CALCULUS OF VARIATIONS, EULER-LA-

GRANGE DERIVATIVE
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Euler-Lucas Pseudoprime
Let U(P; Q) and V(P; Q) be LUCAS SEQUENCES

generated by P and Q , and define

D�P2�4Q:

Then

U(n�(D=n))=2�0 (mod n) when (Q=n)�1
V(n�(D=n))=2�D (mod n) when (Q=n)��1;

:
where (Q=n) is the LEGENDRE SYMBOL. An ODD

COMPOSITE NUMBER n such that (n; QD)�1 (i.e., n
and QD are RELATIVELY PRIME) is called an Euler-
Lucas pseudoprime with parameters (P, Q ).

See also PSEUDOPRIME, STRONG LUCAS PSEUDOPRIME
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Euler-Maclaurin Integration Formulas
The Euler-Maclaurin integration and sums formulas
can be derived from DARBOUX’S FORMULA by substi-
tuting the BERNOULLI POLYNOMIAL Bn(t) in for the
function f(t): Differentiating the identity

Bn(t�1)�Bn(t)�ntn�1 (1)

/n�k times gives

B(n�k)
n (t�1)�f(n�k)

n (t)�n(n�1) � � � ktk�1: (2)

Plugging in t�0 gives B(n�k)
n (1)�B(n�k)

n (0): From the
Maclaurin series of Bn(z) with k �0, we have

B(n�2k�1)
n (0)�0 (3)

B(n�2k)
n (0)�

n!

(2k)!
B2k (4)

B(n�1)
n (0)�1

2 n! (5)

B(n)
n (0)�n!; (6)

where Bn is a BERNOULLI NUMBER, and substituting
these values of B(n�k)

n (1) and B(n�k)
n (0) into DARBOUX’S

FORMULA gives

(z�a)f ?(a)�f (z)�f (a)�
z � a

2
[f ?(z)�f ?(a)]

�
Xn�1

m�1

B2m(z � a)2m

(2m)!
[f (2m)(z)�f (2m)(a)]

�
(z � a)2n�1

(2n)! g
1

0

B2n(t)f (2n�1)[a�(z�a)t] dt; (7)

which is the Euler-Maclaurin integration formula
(Whittaker and Watson 1990, p. 128).

In certain cases, the last term tends to 0 as n 0 
;
and an infinite series can then be obtained for f (z)�
f (a): In such cases, SUMS may be converted to
INTEGRALS by inverting the formula to obtain the
Euler-Maclaurin sum formula

Xn�1

k�1

fk�g
n

0

f (k)dk�1
2[f (0)�f (n)]

�
X

k�1

B2n

(2n)!
[f (2n�1)(n)�f (2n�1)(0)]; (8)

which, when expanded, gives

Xn�1

k�1

fk�g
n

0

f (k) dk�1
2[f (0)�f (n)]� 1

12[f ?(n)�f ?(0)]

� 1
720[f§(n)�f§(0)]� 1

30240[f
(5)(n)�f (5)(0)]

� 1
1209600[f

(7)�f (7)(0)]�. . . (9)

(Abramowitz and Stegun 1972, p. 16). The Euler-
Maclaurin sum formula is implemented in Mathema-
tica as the function NSum with option Method-
�Integrate.

The second Euler-Maclaurin integration formula is
used when f (x) is tabulated at n values f3=2; f5=2; ...,
fn�1=2 :/

g
xn

x1

f (x) dx�h[f3=2�f5=2�f7=2�. . .�fn�3=2�fn�1=2]

�
X

k�1

B2kh2k

(2k)!
(1�2�2k�1)[f (2k�1)

n �f (2k�1)
1 ]: (10)

See also DARBOUX’S FORMULA, SUM, WYNN’S EPSILON

METHOD
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Euler-Maclaurin Sum Formula
EULER-MACLAURIN INTEGRATION FORMULAS

Euler-Mascheroni Constant
The Euler-Mascheroni constant is denoted g (or
sometimes C ) and has the numerical value

g:0:577215664901532860606512090082402431042 . . .

(1)

(Sloane’s A001620). The Euler-Mascheroni constant
was denoted g and calculated to 16 digits by Euler in
1781. It is therefore sometimes known as Euler’s
constant. No quadratically converging algorithm for
computing g is known (Bailey 1988). X. Gourdon and
P. Demichel computed a record 108 million digits of g
in October 1999 (Gourdon and Sebah).

The Euler-Mascheroni constant is implemented in
Mathematica as EulerGamma. It is not known if this
constant is IRRATIONAL, let alone TRANSCENDENTAL

(Wells 1986, p. 28). If g is a simple fraction a=b; then
it is known that b > 1010;000 (Brent 1977; Wells 1986,
p. 28). Conway and Guy (1996) are "prepared to bet
that it is transcendental," although they do not expect
a proof to be achieved within their lifetimes.

The CONTINUED FRACTION of the Euler-Mascheroni
constant is [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4,
1, 1, 40, ...] (Sloane’s A002852). The first few CON-

VERGENTS are 1, 1/2, 3/5, 4/7, 11/19, 15/26, 71/123,
228/395, 3035/5258, 15403/26685, ... (Sloane’s
A046114 and A046115). The positions at which the
digits 1, 2, ... first occur in the CONTINUED FRACTION

are 2, 4, 9, 8, 11, 69, 24, 14, 139, 52, 22, ... (Sloane’s
A033149). The sequence of largest terms in the

CONTINUED FRACTION is 1, 2, 4, 13, 40, 49, 65, 399,
2076, ... (Sloane’s A033091), which occur at positions
2, 4, 8, 10, 20, 31, 34, 40, 529, ... (Sloane’s A033092).

The Euler-Mascheroni constant arises in many inte-
grals

g��g



0

e�xln x dx (2)

�g



0

1

1 � e�x
�

1

x

 !
e�x dx (3)

�g



0

1

x

1

1 � x
�e�x

 !
dx (4)

(Whittaker and Watson 1990, p. 246), and sums

g�1�
X

k�2

1

k
�ln

k � 1

k

 !" #
(5)

� lim
n0


(Hn�ln n) (6)

�
X

n�2

(�1)n z(n)

n
(7)

�ln
4

p

 !
�
X

n�1

(�1)n
z(n � 1)

2n(n � 1)
; (8)

where /Hn/ is a HARMONIC NUMBER (Graham et al.
1994, p. 278) and z(z) is the RIEMANN ZETA FUNCTION.

/g is also given by the EULER PRODUCT

eg� lim
n0


1

ln n

Yn

i�1

1

1 �
1

pi

; (9)

where the product is over PRIMES p . Another connec-
tion with the PRIMES was provided by Dirichlet’s 1838
proof that the average number of DIVISORS of all
numbers from 1 to n is asymptotic toPn

i�1 s0(i)

n
�ln n�2g�1 (10)

(Conway and Guy 1996). de la Vallée Poussin (1898)
proved that, if a large number n is divided by all
PRIMES 5n; then the average amount by which the
QUOTIENT is less than the next whole number is g:/

INFINITE PRODUCTS involving g also arise from the
BARNES’ G -FUNCTION with POSITIVE INTEGER n . The
cases G(2) and G(3) give

Y

n�1

e�1�1=2(n) 1�
1

n

 !n

�
e1�g=2ffiffiffiffiffiffi

2p
p (11)

Y

n�1

e�2�2=n 1�
2

n

 !n

�
e3�2gffiffiffiffiffiffi

2p
p : (12)



The Euler-Mascheroni constant is also given by the
limits

g ��G?(1) (13)

(Whittaker and Watson 1990, p. 236),

g �lim
s01

z(s) �
1

s � 1 
(14)

(Whittaker and Watson 1990, p. 271), and

g � lim
x 0


x �G
1

x

 !" #
(15)

(Le Lionnais 1983).

The difference between the nth convergent in (6) and
g is given by

Xn

k �1

1

k 
�ln n � g �g




n

x � xb c
x2

dx; (16)

where xb c is the FLOOR FUNCTION, and satisfies the
INEQUALITY

1

2(n � 1) 
B
Xn

k�1

1

k 
�ln n � g B

1

2n 
(17)

(Young 1991). A series with accelerated convergence
is

g �3
2 �ln 2 �

X

m�2

(�1)m m � 1

m
[z(m) �1] (18)

(Flajolet and Vardi 1996). Another series is

g �
X

n�1

(�1)n 1g nb c
n 

(19)

(Vacca 1910, Gerst 1969), where LG is the LOGARITHM

to base 2. The convergence of this series can be
greatly improved using Euler’s CONVERGENCE IM-

PROVEMENT transformation to

g �
X

k�1

2�(k �1)
Xk �1

j�0

1

2k �j � j
j

� � ; (20)

where a
b

� �
is a BINOMIAL COEFFICIENT (Beeler et al.

1972, with k �j replacing the undefined i ). Bailey
(1988) gives

g �
2n

e2n

X

m�0

2mn

(m � 1)!

Xm

t�0

1

t � 1 
�n ln 2 �O

1

2ne2n

 !
;

(21)

which is an improvement over Sweeney (1963).

The symbol g is sometimes also used for

g ?�e g :1 :781072 (22)

(Gradshteyn and Ryzhik 2000, p. xxvii).

Odena (1982 �/983) gave the strange approximation

(0:11111111)1 =4 �0 :577350 . . . ; (23)

and Castellanos (1988) gave

( 7
83)

2=9�0:57721521 . . . (24)

5202 � 22

524

 !1=6

�0:5772156634 . . . (25)

803 � 92

614

 !1=6

�0:57721566457 . . . (26)

9903 � 553 � 792 � 42

705
�0:5772156649015295 . . . :

ð27Þ

See also EULER PRODUCT, MERTENS THEOREM,
STIELTJES CONSTANTS
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Euler-Mascheroni Integrals
Define

In �(�1)ng



0

(ln z)ne �z dz ; (1)

then

I0 �g



0

e�z dz �[�e�z] 
0 �(0 �1) �1 (2)

I1 ��g



0

(ln z)e�z dz � g (3)

I2 � g2 �1
6 p

2 (4)

I3 � g3 �1
2 gp

2 �2z(3) (5)

I4 � g4 � g2 p2 � 3
20 p

4 �8gz(3) ; (6)

where g is the EULER-MASCHERONI CONSTANT and z(3)
is APÉ RY’S CONSTANT.

EulerPhi
TOTIENT FUNCTION

Euler-Poincaré Characteristic
EULER CHARACTERISTIC

Euler-Poisson-Darboux Equation
The PARTIAL DIFFERENTIAL EQUATION

uxy �
N(ux � uy)

x � y
�0 :

See also EULER-DARBOUX EQUATION
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Eutactic Star
An orthogonal projection of a CROSS onto a 3-D
SUBSPACE. It is said to be normalized if the CROSS

vectors are all of unit length.

See also HADWIGER’S PRINCIPAL THEOREM

Evans Point

The intersection of the GERGONNE LINE and the
EULER LINE. It does not appear to have a simple
parametric representation.

See also EULER LINE, GERGONNE LINE
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Eve
APPLE, ROOT, SNAKE, SNAKE EYES, SNAKE OIL

METHOD, SNAKE POLYIAMOND

Even Divisor Function
The sum of powers of EVEN DIVISORS of a number. It is
the analog of the DIVISOR FUNCTION for even divisors
only and is written s(e)

k (n): It is given simply in terms
of the usual DIVISOR FUNCTION by



s(e)
k (n) �

0 for n odd
2k sk(n=2) for n even :

:

See also DIVISOR FUNCTION, ODD DIVISOR FUNCTION

Even Function
A function f (x) such that f (x) �f (�x) : An even func-
tion times an ODD FUNCTION is odd.

Even Node

A NODE in a GRAPH is said to be an even node if its
VERTEX DEGREE is EVEN.

See also GRAPH, NODE (GRAPH), ODD NODE, VERTEX

DEGREE

Even Number
An INTEGER OF THE FORM N �2n; where n is an
INTEGER. The even numbers are therefore ..., -4, -2, 0,
2, 4, 6, 8, 10, ... (Sloane’s A005843). Since the even
numbers are integrally divisible by two, N �
0 (mod 2) for even N . An even number N for which
N �2 (mod 4) is called a SINGLY EVEN NUMBER, and
an even number N for which N �0 (mod 4) is called a
DOUBLY EVEN NUMBER. An integer which is not even
is called an ODD NUMBER. The GENERATING FUNCTION

of the even numbers is

2x

(x � 1)2 �2x �4x2 �6x3 �8x4 �. . .  :

See also DOUBLY EVEN NUMBER, EVEN FUNCTION,
ODD NUMBER, SINGLY EVEN NUMBER
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Even Part

The even part Ev(n) of a positive integer n is defined
by

Ev(n) �2b(n) ;

where b(n) is the EXPONENT of the exact power of 2
dividing n . The values for n �1, 2, ..., are 1, 2, 1, 4, 1,
2, 1, 8, 1, 2, 1, ... (Sloane’s A006519). The even part
function can be implemented in Mathematica as

EvenPart[0]: �1

EvenPart[n_Integer]: �2^IntegerExponent[n,2]

See also GREATEST DIVIDING EXPONENT, ODD PART
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Even Prime
The unique EVEN PRIME NUMBER 2. All other PRIMES

are ODD PRIMES.

The sequence 2, 4, 6, 10, 14, 22, 26, 34, 38, ... (Sloane’s
A001747) consisting of the number 2 together with
the PRIMES multiplied by 2 is sometimes also called
the even primes, since these are the even numbers
n �2k that are divisible by just 1, 2, k , and 2k:/

See also EVEN NUMBER, ODD PRIME, PRIME NUMBER

References
Sloane, N. J. A. Sequences A001747 in "An On-Line Version

of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Wells, D. The Penguin Dictionary of Curious and Interesting
Numbers. Middlesex, England: Penguin Books, p. 44,
1986.

Event
An event is a certain subset of a PROBABILITY SPACE.
Events are therefore collections of OUTCOMES on
which probabilities have been assigned. Events are
sometimes assumed to form a BOREL FIELD (Papoulis
1984, p. 29).

See also EXPERIMENT, INDEPENDENT EVENTS, MU-

TUALLY EXCLUSIVE EVENTS, OUTCOME, TRIAL
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Eventually Periodic
A PERIODIC SEQUENCE such as
f1; 1; 1; 2; 1; 2; 1; 2; 1; 2 ; 1 ; 1 ; 2 ; 1; . . .g which is
periodic from some point onwards.

See also PERIODIC SEQUENCE

Everett Interpolation
EVERETT’S FORMULA

Everett’s Formula

fp �(1 �p)f0 �pf1 �E2 d
2
0 �F2 d

2
1 �E4 d

4
0 �F4 d

4
1

�E6 d
6
0 �F6 d

6
1 � . . . ; (1)

for p � [0; 1]; where d is the CENTRAL DIFFERENCE and

E2n �G2n �G2n�1 �B2n �B2n �1 (2)

F2n �G2n�1 �B2n �B2n�1 ; (3)

where Gk are the COEFFICIENTS from GAUSS’S BACK-

WARD FORMULA and GAUSS’S FORWARD FORMULA and
Bk are the COEFFICIENTS from BESSEL’S FINITE DIF-

FERENCE FORMULA. The Ek/s and Fk/s also satisfy

E2n(p) �F2n(q) (4)

F2n(p) �E2n(q) ; (5)

for

q �1 �p : (6)

See also BESSEL’S FINITE DIFFERENCE FORMULA
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Eversion
A curve on the unit sphere S2 is an eversion if it has
no corners or cusps (but it may be self-intersecting).
These properties are guaranteed by requiring that
the curve’s velocity never vanishes. A mapping s :
S1 0 S2 forms an immersion of the CIRCLE into the

SPHERE IFF, for all u �R;

d

d u
[ s(eiu)]

�����
����� > 0:

Smale (1958) showed it is possible to turn a SPHERE

inside out (SPHERE EVERSION) using eversion.

See also SPHERE EVERSION
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Evolute
An evolute is the locus of centers of curvature (the
envelope) of a plane curve’s normals. The original
curve is then said to be the INVOLUTE of its evolute.
Given a plane curve represented parametrically by
(f (t); g(t)); the equation of the evolute is given by

x�f �R sin t (1)

y�g�R cos t; (2)

where (x, y ) are the coordinates of the running point,
R is the RADIUS OF CURVATURE

R�
(f ?2 � g?2)3=2

f ?gƒ� f ƒg?
; (3)

and t is the angle between the unit TANGENT VECTOR

T̂�
x?

½x?½
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ?2 � g?2

p f ?
g?

� �
(4)

and the X -AXIS,

cos t�T̂ � x̂ (5)

sin t�T̂ � ŷ: (6)

Combining gives

x�f �
(f ?2 � g?2)g?

f ?gƒ� f ƒg?
(7)

y�g�
(f ?2 � g?2)f ?

f ?gƒ� f ƒg?
: (8)

The definition of the evolute of a curve is independent
of parameterization for any differentiable function
(Gray 1997). If E is the evolute of a curve I , then I is
said to be the INVOLUTE of E . The centers of the
OSCULATING CIRCLES to a curve form the evolute to
that curve (Gray 1997, p. 111).



The following table lists the evolutes of some common
curves, some of which are illustrated above.

Curve Evolute

ASTROID ASTROID 2 times as large

CARDIOID CARDIOID 1/3 as large

CAYLEY’S SEXTIC NEPHROID

CIRCLE point (0, 0)

CYCLOID equal CYCLOID

DELTOID DELTOID 3 times as large

ELLIPSE ELLIPSE EVOLUTE

EPICYCLOID enlarged EPICYCLOID

HYPOCYCLOID similar HYPOCYCLOID

LIMAÇ ON CIRCLE CATACAUSTIC for a
point source

LOGARITHMIC

SPIRAL

equal LOGARITHMIC SPIRAL

NEPHROID NEPHROID 1/2 as large

PARABOLA NEILE’S PARABOLA

TRACTRIX CATENARY

See also ENVELOPE, INVOLUTE, OSCULATING CIRCLE,
ROULETTE
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Evolution Strategies
A DIFFERENTIAL EVOLUTION method used to minimize
functions of real variables. Evolution strategies are
significantly faster at numerical optimization than
traditional GENETIC ALGORITHMS and also more likely
to find a function’s true GLOBAL EXTREMUM.

See also DIFFERENTIAL EVOLUTION, GENETIC ALGO-

RITHM, OPTIMIZATION THEORY
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Exact Covering System
A system of congruences ai mod ni with 1 5i 5k is
called a COVERING SYSTEM if every INTEGER y satisfies
y �ai (mod n) for at least one value of i . A covering
system in which each integer is covered by just one
congruence is called an exact covering system.

See also COVERING SYSTEM
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Exact Differential
A differential OF THE FORM

df �P(x; y) dx�Q(x; y) dy (1)

is exact (also called a TOTAL DIFFERENTIAL) if f df is
path-independent. This will be true if

df �
@f

@x
dx�

@f

@y
dy; (2)

so P and Q must be OF THE FORM

P(x; y)�
@f

@x
Q(x; y)�

@f

@y
: (3)

But

@P

@y
�

@2f

@y@x
(4)

@Q

@x
�

@2f

@x@y
; (5)

so

@P

@y
�

@Q

@x
: (6)



See also PFAFFIAN FORM, INEXACT DIFFERENTIAL

Exact Period
LEAST PERIOD

Exact Sequence
An exact sequence is a sequence of maps

ai : Ai 0 Ai�1 (1)

between a sequence of spaces Ai ; which satisfies

im ai �ker ai�1 ; (2)

where "im" denotes the IMAGE and "ker" the KERNEL.
That is, for a � Ai ; ai(a) �0 IFF a � ai �1(b) for some b �
Ai�1 : It follows that ai�1(ai �0: The notion of exact
sequence makes sense when the spaces are GROUPS,
MODULES, CHAIN COMPLEXES, or SHEAVES. The nota-
tion for the maps may be suppressed and the
sequence written on a single line as

. . .  0 Ai�1 0 Ai 0 Ai�1 0 . . . : (3)

An exact sequence may be of either finite or infinite
length. The special case of length five,

0 0 A 0 B 0 C 0 0; (4)

beginning and ending with zero, meaning the zero
module f0g; is called a SHORT EXACT SEQUENCE. An
infinite exact sequence is called a LONG EXACT

SEQUENCE. For example, the sequence where Ai �
Z=4Z and ai is given by multiplying by 2,

. . .0
�2

Z=4Z 0
�2

Z=4Z 0
�2

. . .  ; (5)

is a long exact sequence because at each stage the
kernel and image are equal to the SUBGROUP f0 ; 2 g:/
Special information is conveyed when one of the
spaces Ai is the ZERO MODULE. For instance, the
sequence

0 0 A 0 B (6)

is exact IFF the map A 0 B is INJECTIVE. Similarly,

A 0 B 0 0 (7)

is exact IFF the map A 0 B is SURJECTIVE.

See also CHAIN COMPLEX, HOMOLOGY, LONG EXACT

SEQUENCE, SHORT EXACT SEQUENCE
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Exact Trilinear Coordinates
The TRILINEAR COORDINATES a : b : g of a point P
relative to a TRIANGLE are PROPORTIONAL to the
directed distances a ? : b? : c ? from P to the side lines
(i.e, a ?�k a; b ?�k b; c ?�kg): Letting k be the constant
of proportionality,

k �
2D

a a � b b � c g 
;

where D is the AREA of DABC and a , b , and c are the
lengths of its sides. When the trilinears are chosen so
that k �1, the coordinates are known as exact tri-
linear coordinates.

See also TRILINEAR COORDINATES

Exactly One
"Exactly one" means "one and only one," sometimes
also referred to as "JUST ONE." J. H. Conway has also
humorously suggested "onee" (one and only one) by
analogy with IFF (if and only if), "twoo" (two and only
two), and "threee" (three and only three). This
refinement is sometimes needed in formal mathema-
tical discourse because, for example, if you have two
apples, you also have one apple, but you do not have
exactly one apple.

In 2-valued LOGIC, exactly one is equivalent to the
exclusive or operator XOR,

P(E) XOR P(F) �P(E) �P(F) �2P(E S F) :

See also IFF, PRECISELY UNLESS, XNOR, XOR

Exactly When
IFF

Excenter
The center Ji of an EXCIRCLE. There are three
excenters for a given TRIANGLE, denoted J1 ; J2 ; J3 :
The INCENTER I and excenters Ji of a TRIANGLE are an
ORTHOCENTRIC SYSTEM.

OI
2 
�OJ1

2
�OJ2

2
�OJ3

2
�12R2 ;

where O is the CIRCUMCENTER, Ji are the excenters,
and R is the CIRCUMRADIUS (Johnson 1929, p. 190).
Denote the MIDPOINTS of the original TRIANGLE M1 ;
M2 ; and M3 : Then the lines J1M1 ; J2M2 ; and J3M3

intersect in a point known as the MITTENPUNKT.

See also CENTROID (ORTHOCENTRIC SYSTEM), EXCEN-



TER-EXCENTER CIRCLE, EXCENTRAL TRIANGLE, EXCIR-

CLE, INCENTER, MITTENPUNKT
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Excenter-Excenter Circle

Given a TRIANGLE DA1A2A3 ; the points A1 ; I , and J1

lie on a line, where I is the INCENTER and J1 is the
EXCENTER corresponding to A1 : Furthermore, the
circle with J2J3 as the diameter has Q as its center,
where P is the intersection of A1J1 with the CIRCUM-

CIRCLE of A1A2A3 and Q is the point opposite P on the
CIRCUMCIRCLE. The circle with diameter J2J3 also
passes through A2 and A3 and has radius

r�1
2 a1 csc 1

2 a1

� �
�2R cos 1

2 a1

� �
:

It arises because the points I , J1; J2; and J3 form an
ORTHOCENTRIC SYSTEM.

See also EXCENTER, INCENTER-EXCENTER CIRCLE,
ORTHOCENTRIC SYSTEM
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Excentral Triangle

The TRIANGLE J�DJ1J2J3 with VERTICES correspond-
ing to the EXCENTERS of a given TRIANGLE A , also
called the TRITANGENT TRIANGLE.

Beginning with an arbitrary TRIANGLE A , find the
excentral triangle J . Then find the excentral triangle
J? of that TRIANGLE, and so on. Then the resulting
TRIANGLE J(
) approaches an EQUILATERAL TRIANGLE.

Given a triangle DABC; draw the excentral triangle
DJAJBJC and MEDIAL TRIANGLE DMAMBMC: Then the
ORTHOCENTER H of DABC; INCENTER Im of
DMAMBMC; and CIRCUMCENTER Oe of DJAJBJC are



COLLINEAR with Im the MIDPOINT of HOe (Honsberger
1995).

The INCENTER I of DABC coincides with the ORTHO-

CENTER He of DJAJBJC ; and the CIRCUMCENTER O of
DABC coincides with the NINE-POINT CENTER Ne of
DJAJBJC : Furthermore, Ne �O is the MIDPOINT of the
line segment joining the ORTHOCENTER He and CIR-

CUMCENTER Oe of DJAJBJC (Honsberger 1995).

Call T the TRIANGLE tangent externally to the
EXCIRCLES of A . Then the INCENTER IT of K coincides
with the CIRCUMCENTER CJ of TRIANGLE DJ1J2J3 ;
where Ji are the EXCENTERS of A . The INRADIUS rT of
the INCIRCLE of T is

rT �2R �r �1
2(r �r1 �r2 �r3) ;

where R is the CIRCUMRADIUS of A , r is the INRADIUS,
and ri are the EXRADII (Johnson 1929, p. 192).

See also EXCENTER, EXCENTER-EXCENTER CIRCLE,
EXCIRCLE, GERGONNE POINT, MITTENPUNKT, SODDY

CIRCLES
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Exceptional Binomial Coefficient
A BINOMIAL COEFFICIENT

N
k

� �
is said to be exceptional

if lpf N
k

� �
> N =k: The following tables gives the excep-

tion binomial coefficients which are also GOOD BINO-

MIAL COEFFICIENTS, are not OF THE FORM
N

N�1

� �
; and

have specified least prime factors p �5.

p Exceptional Binomial Coefficients

13 /
3574
406

� �
/

17 /
241
16

� �
; 439

33

� �
; 317

56

� �
; 482

130

� �
; 998

256

� �
;/

/
998
260

� �
; 14273

896

� �
; 13277

900

� �
/

19 /
62
6

� �
; 959

56

� �
/

23 /
474
66

� �
/

29 /
284
28

� �
/

See also GOOD BINOMIAL COEFFICIENT, LEAST PRIME

FACTOR
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Exceptional Jordan Algebra
A JORDAN ALGEBRA which is not isomorphic to a
subalgebra.

See also JORDAN ALGEBRA, SPECIAL JORDAN ALGEBRA
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Exceptional Set of Goldbach Numbers
GOLDBACH NUMBER

Excess
The KURTOSIS of a distribution is sometimes called
the excess, or excess coefficient. The term is also used
to refer to the quantity

e�n�f0(n; g)



for a GRAPH G with n vertices and GIRTH g , where

f0(v; g) �

v(v � 1)r � 2

v � 2
for g �2r �1

2(v � 1)r � 2

v � 2
for g �2r

8>>><
>>>:

(Biggs and Ito 1980, Wong 1982). A (v, g )-CAGE GRAPH

having f (v; g) �f0(v; g) vertices (i.e., the minimal
number, so that the excess is e �0) is called a MOORE

GRAPH.

See also CAGE GRAPH, KURTOSIS, MOORE GRAPH
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Excess Coefficient
KURTOSIS

Excessive Number
ABUNDANT NUMBER

Exchange Shuffle
A SHUFFLE of a deck of cards obtained by successively
exchanging the cards in position 1, 2, ..., n with cards
in randomly chosen positions. For 4 5n 517; the
most frequent permutation is (n; . . . ; m �
1)(m; . . . ; 1) ; where m �n=2 if n is even and either
(n �1)=2 or (n �1)=2 if n is odd (Goldstine and Moews
2000). Amazingly, for n ]18 cards, the identity
permutation (i.e., the original state before the cards
were shuffled) is the most likely (Goldstine and
Moews 2000).

See also SHUFFLE

References
Goldstein, D. ad Moews, D. The Identity Is the Most Likely

Exchange Shuffle for Large n . 6 Oct 2000. http://xxx.lanl.-
gov/abs/math.CO/0010066/.

Robbins, D. P. and Bolker, E. D. "The Bias of Three Pseudo-
Random Shuffles." Aeq. Math 22, 268�/92, 1981.

Schmidt, F. and Simion, R. "Card Shuffling and a Transfor-
mation on Sn:/" Aeq. Math 44, 11�/4, 1992.

Excircle

Given a TRIANGLE, extend two nonadjacent sides. The
CIRCLE tangent to these two lines and to the other
side of the TRIANGLE is called an ESCRIBED CIRCLE, or
excircle. The CENTER Ji of the excircle is called the
EXCENTER and lies on the external ANGLE BISECTOR of
the opposite ANGLE. Every TRIANGLE has three ex-
circles, and the TRILINEAR COORDINATES of the EX-

CENTERS are �1 : 1 : 1; 1 :�1 : 1; and 1 : 1 :�1: The
RADIUS ri of the excircle i is called its EXRADIUS.

Note that the three excircles are not necessarily
tangent to the INCIRCLE, and so these four circles
are not equivalent to the configuration of the SODDY

CIRCLES.
Given a TRIANGLE with INRADIUS r , let hi be the
ALTITUDES of the excircles, and ri their RADII (the
EXRADII). Then

1

h1

�
1

h2

�
1

h3

�
1

r1

�
1

r2

�
1

r3

�
1

r

(Johnson 1929, p. 189).



There are four CIRCLES that are tangent all three
sides (or their extensions) of a given TRIANGLE: the
INCIRCLE I and three excircles J1 ; J2 ; and J3 : These
four circles are, in turn, all touched by the NINE-POINT

CIRCLE N .

Given a TRIANGLE DABC; construct the INCIRCLE with
INCENTER I and EXCIRCLE with EXCENTER JA : Let Ti

be the tangent point of DABC with its incircle, Te be
the tangent point of DABC with its EXCIRCLE JA ; HA

the foot of the ALTITUDE to vertex A , M the MIDPOINT

of AHA ; and construct Q such that QTi is a DIAMETER

of the INCIRCLE. Then M , I , and Te are COLLINEAR, as
are A , Q , and Te (Honsberger 1995).

See also EXCENTER, EXCENTER-EXCENTER CIRCLE,
EXCENTRAL TRIANGLE, FEUERBACH’S THEOREM, NA-

GEL POINT, TRIANGLE TRANSFORMATION PRINCIPLE

References
Coxeter, H. S. M. and Greitzer, S. L. "The Incircle and

Excircles." §1.4 in Geometry Revisited. Washington, DC:
Math. Assoc. Amer., pp. 10 �/3, 1967.

Honsberger, R. "An Unlikely Collinearity." §3.3 in Episodes
in Nineteenth and Twentieth Century Euclidean Geome-
try. Washington, DC: Math. Assoc. Amer., pp. 30 �/1, 1995.

Johnson, R. A. Modern Geometry: An Elementary Treatise on
the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, pp. 176 �/77 and 182 �/94, 1929.

Lachlan, R. "The Inscribed and the Escribed Circles." §126 �/

28 in An Elementary Treatise on Modern Pure Geometry.
London: Macmillian, pp. 72 �/4, 1893.

Excision Axiom
One of the EILENBERG-STEENROD AXIOMS which
states that, if X is a SPACE with SUBSPACES A and
U such that the CLOSURE of A is contained in the
interior of U , then the INCLUSION MAP (X U; A U) 0
(X ; A) induces an isomorphism
Hn(X U; A U) 0 Hn(X ; A) :/

Excluded Middle Law
A law in (2-valued) LOGIC which states there is no
third alternative to TRUTH or FALSEHOOD. In other
words, for any statement A , either A or not-A must
be true and the other must be false. This law no
longer holds in THREE-VALUED LOGIC or FUZZY LOGIC.

See also BIVALENT, FUZZY LOGIC, THREE-VALUED

LOGIC
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Excludent
A method which can be used to solve any QUADRATIC

CONGRUENCE EQUATION. This technique relies on the
fact that solving

x2 �b (mod p)

is equivalent to finding a value y such that

b �py �x2 :

Pick a few small moduli m . If y mod m does not make
b �py a quadratic residue of m , then this value of y
may be excluded. Furthermore, values of y > p =4 are
never necessary.

See also QUADRATIC CONGRUENCE EQUATION

Excludent Factorization Method
Also known as the difference of squares method. It
was first used by Fermat and improved by Gauss.
Gauss looked for INTEGERS x and y satisfying

y2 �x2 �N (mod E)

for various moduli E . This allowed the exclusion of
many potential factors. This method works best when
factors are of approximately the same size, so it is
sometimes better to attempt mN for some suitably
chosen value of m .

See also PRIME FACTORIZATION ALGORITHMS

Exclusion
METHOD OF EXCLUSIONS

Exclusive Disjunction
A DISJUNCTION that is true if only one, but not both, of
its arguments are true, and is false if neither or both
are true, which is equivalent to the XOR connective.

By contrast, the INCLUSIVE DISJUNCTION is true if
either or both of its arguments are true. This is
equivalent to the OR CONNECTIVE.

See also DISJUNCTION, INCLUSIVE DISJUNCTION, OR,
XOR

Exclusive Nor
XNOR



Exclusive Or
XOR

Excosine Circle
If the tangents at B and C to the CIRCUMCIRCLE of a
TRIANGLE DABC intersect in a point K1 ; then the
CIRCLE with center K1 and which passes through B
and C is called the excosine circle, and cuts AB and
AC in two points which are extremities of a DIA-

METER.

See also COSINE CIRCLE
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Exeter Point
Define A? to be the point (other than the VERTEX A )
where the MEDIAN through A meets the CIRCUMCIR-

CLE of ABC , and define B? and C? similarly. Then the
Exeter point is the PERSPECTIVE CENTER of the
TRIANGLE A?B?C ? and the TANGENTIAL TRIANGLE. It
has TRIANGLE CENTER FUNCTION

a �a(b4 �c4 �a4):
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Exhaustion Method
The method of exhaustion was a INTEGRAL-like limit-
ing process used by Archimedes to compute the AREA

and VOLUME of 2-D LAMINA and 3-D SOLIDS.

See also INTEGRAL, LIMIT

Existence
If at least one solution can be determined for a given
problem, a solution to that problem is said to exist.
Frequently, mathematicians seek to prove the exis-
tence of solutions (the EXISTENCE PROBLEM) and then
investigate their UNIQUENESS.

See also EXISTENCE PROBLEM, EXISTS, PICARD’S

EXISTENCE THEOREM, UNIQUE

Existence Problem
The question of whether a solution to a given problem
exists. The existence problem can be solved in the
affirmative without actually finding a solution to the
original problem. Such a demonstration is said to be

nonconstructive, and is called a NONCONSTRUCTIVE

PROOF or an existence proof.

See also ENUMERATION PROBLEM, EXISTENCE, NON-

CONSTRUCTIVE PROOF, PICARD’S EXISTENCE THEOREM
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Existence Proof
EXISTENCE PROBLEM, NONCONSTRUCTIVE PROOF

Existential Closure
A class of processes which attempt to round off a
domain and simplify its theory by adjoining elements.

See also MODEL COMPLETION
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Existential Formula
UNIVERSAL FORMULA

Existential Quantifier
The EXISTS QUANTIFIER �:/

See also EXISTS, FOR ALL, GENERAL QUANTIFIER,
QUANTIFIER

Existential Sentence

See also UNIVERSAL SENTENCE
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Exists
If there exists an A , this is written�A: Similarly, "A
does not exist" is written ~A: � is one of the two
mathematical objects known as QUANTIFIERS.

In Mathematica 4.0, the command ExistsRealQ[i-
neqs , vars ] can be used to determine if there exist
real values of the variables vars satisfying the system
of real equations and inequalities ineqs .

See also EXISTENCE, FOR ALL, IMPLIES, QUANTIFIER

Exmedian
The line through the VERTEX of a TRIANGLE which is
PARALLEL to the opposite side.
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Exmedian Point
The point of intersection of two EXMEDIANS.
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Exogenous Variable
An economic variable that is related to other eco-
nomic variables and determines their equilibrium
levels.

See also ENDOGENOUS VARIABLE
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Exotic R4
Donaldson (1983) showed there exists an exotic
smooth DIFFERENTIAL STRUCTURE on R4 : Donaldson’s
result has been extended to there being precisely a
CONTINUUM of nondiffeomorphic DIFFERENTIAL

STRUCTURES on R4 :/

See also EXOTIC SPHERE, SMOOTH STRUCTURE
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Exotic Sphere
Milnor (1963) found more than one smooth structure
on the 7-D HYPERSPHERE. Generalizations have sub-
sequently been found in other dimensions. Using
SURGERY theory, it is possible to relate the number
of DIFFEOMORPHISM classes of exotic spheres to higher
homotopy groups of spheres (Kosinski 1992).

Kervaire and Milnor (1963) computed a list of the
number N(d) of distinct (up to DIFFEOMORPHISM)
DIFFERENTIAL STRUCTURES on spheres indexed by
the DIMENSION d of the sphere. For d �1, 2, ...,
assuming the POINCARÉ CONJECTURE, they are 1, 1, 1,
]2; 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, ...
(Sloane’s A001676). The status of d �4 is still
unresolved: at least one exotic structure exists, but
it is not known if others do as well.

The only exotic Euclidean spaces are a CONTINUUM of
EXOTIC R4 structures.

See also EXOTIC R4, HYPERSPHERE, SMOOTH STRUC-

TURE
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Exp
EXPONENTIAL FUNCTION

Expansion
An AFFINE TRANSFORMATION (sometimes called an
enlargement or dilation) in which the scale is in-
creased. It is the opposite of a CONTRACTION, and is
also sometimes called an enlargement. A CENTRAL

DILATION corresponds to an expansion plus a TRANS-

LATION.

See also AFFINE TRANSFORMATION, CENTRAL DILA-

TION, CONTRACTION (GEOMETRY), DILATION, HOMO-

THETIC, TRANSFORMATION
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Expansive
Let f be a MAP. Then f is expansive if the statement
that the DISTANCE d(fnx; fny)Bd for all n �Z implies
that x�y . Equivalently, f is expansive if the orbits of
two points x and y are never very close.

Expectation Value
The expectation value of a function f (x) in a variable x
is denoted �f (x)� or Eff (x)g: For a single discrete
variable, it is defined by

�f (x)��
X

x

f (x)P(x): (1)

For a single continuous variable it is defined by,

�f (x)��g f (x)P(x) dx: (2)

The expectation value satisfies



�ax �by ��a�x��b �y� (3)

�a��a (4)X
x

D E
�
X

�x�: (5)

For multiple discrete variables

�f (x1 ; . . .  ; xn)�

�
X

x1 ; ...; xn

f (x1 ; . . . ; xn)P(x1 ; . . . ; xn) : (6)

For multiple continuous variables

�f (x1 ; . . . ; xn) �

�g f (x1 ; . . . ; xn)P(x1 ; . . .  ; xn) dx1 � � �dxn : (7)

The (multiple) expectation value satisfies

�(x � mx)(y � my) ���xy � mxy � myx � mx my �

��xy�� mx my � my mx � mx my

��xy���x��y�; (8)

where mi is the MEAN for the variable i .

See also CENTRAL MOMENT, ESTIMATOR, MAXIMUM

LIKELIHOOD, MEAN, MOMENT, RAW MOMENT, WALD’S

EQUATION
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Expected Value
EXPECTATION VALUE

Experiment
An experiment E(S ; F ; P) is defined (Papoulis 1984,
p. 30) as a mathematical object consisting of the
following elements.

1. A set S (the PROBABILITY SPACE) of elements.
2. A BOREL FIELD F consisting of certain subsets of
S called EVENTS.
3. A number P(X) satisfying the PROBABILITY

AXIOMS, called the probability, that is assigned to
every event A .

See also EVENT, OUTCOME, PROBABILITY AXIOMS,
PROBABILITY SPACE, TRIAL
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Experimental Design
DESIGN

ExpIntegralE
EN-FUNCTION

ExpIntegralEi
EXPONENTIAL INTEGRAL

Exploration Problem
JEEP PROBLEM

Exponent
The POWER p in an expression ap :/

See also BASE (NUMBER), POWER, EXPONENT LAWS,
EXPONENT VECTOR, HAUPT-EXPONENT

Exponent Laws
The laws governing the combination of EXPONENTS

(POWERS), sometimes called the laws of indices (Hig-
gens 1998). The laws are given by

xm �xn�xm�n (1)

xm

xn
�xm�n (2)

(xm)n�xmn (3)

(xy)m�xmym (4)

x

y

 !n

�
xn

yn
(5)

x�n�
1

xn
(6)

x

y

 !�n

�
y

x

 !n

; (7)

where quantities in the DENOMINATOR are taken to be
nonzero. Special cases include

x1�x (8)

and

x0�1 (9)

for x"0: The definition 00�1 is sometimes used to
simplify formulas, but it should be kept in mind that
this equality is a definition and not a fundamental
mathematical truth.

See also EXPONENT, EXPONENTIAL FUNCTION, POWER
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Exponent Vector
Let pi denote the ith PRIME, and write

m �
Y

i

pvi

i :

Then the exponent vector is v(m) �(v1; v2; . . .):/

See also DIXON’S FACTORIZATION METHOD
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Exponential
EXPONENTIAL FUNCTION

Exponential Digital Invariant
NARCISSISTIC NUMBER

Exponential Distribution

Given a POISSON DISTRIBUTION with rate of change l;
the distribution of waiting times between successive
changes (with k�0) is

D(x)�P(X5x)�1�P(X > x)

�1�
(lx)0e�lx

0!
�1�e�lx (1)

P(x)�D?(x)�le�lx; (2)

which is normalized since

g



0

P(x) dx�l g



0

e�lx dx

��[e�lx]
0 ��(0�1)�1: (3)

This is the only MEMORYLESS RANDOM DISTRIBUTION.
Define the MEAN waiting time between successive
changes as u�l�1: Then

P(x)�
1
u

e�x=u x]0

0 xB0:

:
(4)

The MOMENT-GENERATING FUNCTION is

M(t)�g



0

etx 1

u

 !
e�x=u dx�

1

u g



0

e�(1�ut)x=u dx

�
e�(1�ut)x=u

1 � ut

" #

0

�
1

1 � ut
(5)

M?(t)�
u

(1 � ut)2 (6)

Mƒ(t)�
2u2

(1 � ut)3 ; (7)

so

R(t)�ln M(t)��ln(1�ut) (8)

R?(t)�
u

1 � ut
(9)

Rƒ(t)�
u2

(1 � ut)2 (10)

m�R?(0)�u (11)

s2�Rƒ(0)�u2: (12)

The CHARACTERISTIC FUNCTION is

f(t)�Ffle�lx[1
2(1�sgn x)]g (13)

�
il

t � il
; (14)

where F[f ] is the FOURIER TRANSFORM with para-
meters a�b�1:/
The SKEWNESS and KURTOSIS are given by

g1�2 (15)

g2�6: (16)

The MEAN and VARIANCE can also be computed
directly

xh i�g



0

P(x) dx�
1

s g



0

xe�x=s dx: (17)

Use the integral

g xeax dx�
eax

a2
(ax�1) (18)

to obtain

xh i�1

s

e�x=s

�
1

s

 !2 �
1

s

 !
x�1

( )2
66664

3
77775




0



��s e�x =s 1 �
x

s

 !" #

0

��s(0 �1) �s : (19)

Now, to find

x2
= >

�
1

s g



0

x2e�x =s dx ; (20)

use the integral

g x2e �x=s dx �
eax

a3 
(2 �2ax �a2x2) (21)

x2
= >

�
1

s

e �x=s

�
1

s

 !3 2 �
2

s
x �

1

s2
x2

 !2
66664

3
77775




0

��s2(0 �2) �2s2 ; (22)

giving

s2 � x2
= >

� xh i2

�2s2 �s2 �s2 (23)

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(x)

p
�s : (24)

If a generalized exponential probability function is
defined by

P(a ; b)(x) �
1

b
e �(x� a)=b ; (25)

for x ] a; then the CHARACTERISTIC FUNCTION is

f(t) �
eiat

1 � ibt 
; (26)

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS

are

m�a�b (27)

s2�b2 (28)

g1�2 (29)

g2�6: (30)

See also DOUBLE EXPONENTIAL DISTRIBUTION

References
Balakrishnan, N. and Basu, A. P. The Exponential Distribu-

tion: Theory, Methods, and Applications. New York:
Gordon and Breach, 1996.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.
Boca Raton, FL: CRC Press, pp. 534�/35, 1987.

Spiegel, M. R. Theory and Problems of Probability and
Statistics. New York: McGraw-Hill, p. 119, 1992.

Exponential Divisor
E -DIVISOR

Exponential Function

The exponential function is defined by

exp(x)�ex; (1)

where E is the constant 2.718.... It satisfies the
identity

exp(x�y)�exp(x) exp(y): (2)

If z�x�iy;

ez�ex�iy�exeiy�ex(cos y�i sin y): (3)

The exponential function satisfies the identities

ex�cosh x�sinh x (4)

�sec(gd x)�tan(gd x) (5)

�tan 1
4 p�

1
2 gd x

� �
(6)

�
1 � sin(gd x)

cos(gd x)
; (7)

where gd x is the GUDERMANNIAN FUNCTION (Beyer
1987, p. 164; Zwillinger 1995, p. 485).
The exponential function has MACLAURIN SERIES

exp(x)�
X

n�0

xn

n!
; (8)

and satisfies the LIMIT

exp(x)� lim
n0


1�
x

n

 !n

: (9)



If

a �bi �ex�iy ; (10)

then

y �tan �1 b

a

 !
(11)

x �ln b csc tan�1 b

a

 !" #( )

�ln a sec tan�1 b

a

 !" #( )
: (12)

The above plot shows the function e1=z :/

See also CIS, E , EULER FORMULA, EXPONENT LAWS,
EXPONENTIAL RAMP, FOURIER TRANSFORM–EXPONEN-

TIAL FUNCTION, GUDERMANNIAN FUNCTION, PHASOR,
POWER, SIGMOID FUNCTION
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Exponential Generating Function
An exponential generating function for the integer
sequence a0 ; a1 ; ... is a function E(x) such that

E(x) �
X

k �0

ak

xk

k! 
�a0 �a1

x

1!
�a2

x2

2!
�. . . :

See also GENERATING FUNCTION
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Exponential Inequality
For c B1,

xcB1�c(x�1):

For c �1,

xc > 1�c(x�1):

Exponential Integral

Let E1(x) be the EN -FUNCTION with n�1,

E1(x)�g



1

e�tx dt

t
�g




x

e�u du

u
: (1)



Then define the exponential integral ei(x) by

E1(x) ��ei(�x) ; (2)

where the retention of the �ei(�x) NOTATION is a
historical artifact. Then ei(x) is given by the integral

ei(x) ��g



�x

e �t dt

t
: (3)

This function is given by the Mathematica function
ExpIntegralEi[x ]. The exponential integral can
also be written

ei(ix) �ci(x) �i si(x) ; (4)

where ci(x) and si(x) are COSINE and SINE INTEGRAL.
The real ROOT of the exponential integral occurs at
0.37250741078..., which is not known to be expres-
sible in terms of other standard constants. The
quantity �e ei(�1) �0 :596347362 . . . is known as the
GOMPERTZ CONSTANT.

lim
x00�

e2ei(�x)

x2
�e2 g ; (5)

where g is the EULER-MASCHERONI CONSTANT. The
TAYLOR SERIES of ei(�x) is given by

ei(�x) � g �ip �ln x �x �1
4 x

2 � 1
18 x

3 � 1
96 x

4 � 1
600 x

5

�. . . ; (6)

where the denominators of the coefficients are given
by n � n! (Sloane’s A001563; van Heemert 1957,
Mundfrom 1994).

See also COSINE INTEGRAL, EN -FUNCTION, GOMPERTZ

CONSTANT, SINE INTEGRAL
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Exponential Map
On a LIE GROUP, exp is a MAP from the LIE ALGEBRA to
its LIE GROUP. If you think of the LIE ALGEBRA as the
TANGENT SPACE to the identity of the LIE GROUP,
exp(v ) is defined to be h(1) ; where h is the unique LIE

GROUP HOMEOMORPHISM from the REAL NUMBERS to
the LIE GROUP such that its velocity at time 0 is v .

On a RIEMANNIAN MANIFOLD, exp is a MAP from the
TANGENT BUNDLE of the MANIFOLD to the MANIFOLD,
and exp(v ) is defined to be h(1) ; where h is the unique
GEODESIC traveling through the base-point of v such
that its velocity at time 0 is v .

The three notions of exp (exp from COMPLEX ANALY-

SIS, exp from LIE GROUPS, and exp from Riemannian
geometry) are all linked together, the strongest link
being between the LIE GROUPS and Riemannian
geometry definition. If G is a compact LIE GROUP, it
admits a left and right invariant RIEMANNIAN ME-

TRIC. With respect to that metric, the two exp maps
agree on their common domain. In other words, one-
parameter subgroups are geodesics. In the case of the
MANIFOLD S1; the CIRCLE, if we think of the tangent
space to 1 as being the IMAGINARY axis (Y -AXIS) in the
COMPLEX PLANE, then

expRiemannian geometry(v)�expLie Groups(v)

�expcomplex analysis(v);

and so the three concepts of the exponential all agree
in this case.

See also EXPONENTIAL FUNCTION, MATRIX EXPONEN-

TIAL
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Exponential Map Matrix
MATRIX EXPONENTIAL

Exponential Matrix
MATRIX EXPONENTIAL

Exponential Polynomial

Polynomials fn(x) (sometimes called the BELL POLY-



NOMIALS) which form the associated SHEFFER SE-

QUENCE for

f (t) �ln(1 �t); (1)

and therefore have GENERATING FUNCTION

Xn

k �0

fk(x)

k!
tk �e(et�1)x : (2)

Additional GENERATING FUNCTIONS are given by

fn(x) �e �x
X

k �0

knxk

k! 
(3)

or

fn(x) �x
Xn

k �1

n �1
k �1

� �
fk �1(x) ; (4)

with f0(x) �1; where n
k

� �
is a BINOMIAL COEFFICIENT.

The exponential polynomials have the explicit for-
mula

fn(x) �
Xn

k�0

S(n; k)xk ; (5)

where S(n; k) is a STIRLING NUMBER OF THE SECOND

KIND. The binomial identity

fn(x �y) �
Xn

k �0

n
k

� �
fk(x) fn�k(y); (6)

where n
k

� �
is a BINOMIAL COEFFICIENT, and the

recurrence formula is

fn�1(x) �x[ fn(x) � f?n(x)]: (7)

The Bell polynomials are defined such that fn(1) �
Bn ; where Bn is a BELL NUMBER. The first few Bell
polynomials are

f0(x) �1

f1(x) �x

f2(x) �x �x2

f3(x) �x �3x2 �x3

f4(x) �x �7x2 �6x3 �x4

f5(x) �x �15x2 �25x3 �10x4 �x5

f6(x) �x �31x2 �90x3 �65x4 �15x5 �x6 :

See also ACTUARIAL POLYNOMIAL, BELL NUMBER,
DOBINSKI’S FORMULA, LAH NUMBER, SHEFFER SE-

QUENCE, STIRLING NUMBER OF THE SECOND KIND

References
Bell, E. T. "Exponential Polynomials." Ann. Math. 35, 258 �/

77, 1934.
Roman, S. "The Exponential Polynomials." §4.1.3. in The

Umbral Calculus. New York: Academic Press, pp. 63�/7,
1984.

Exponential Ramp

The curve

y�1�eax

illustrated above.

See also EXPONENTIAL FUNCTION, SIGMOID FUNCTION

References
von Seggern, D. CRC Standard Curves and Surfaces. Boca

Raton, FL: CRC Press, p. 158, 1993.

Exponential Sum Formulas

XN�1

n�0

einx�
1 � eiNx

1 � eix
�

�eiNx=2(e�iNx=2 � eiNx=2)

�eix=2(e�ix=2 � eix=2)

�
sin 1

2 Nx
� �

sin 1
2 x
� � eix(N�1)=2; (1)

where

XN�1

n�0

rn�
1 � rN

1 � r
(2)



has been used. Similarly,

XN �1

n�0

pneinx �
1 � pNeiNx

1 � peix 
(3)

X

n�0

pneinx �
1

eipx � 1 
�

1 � pe �ix

1 � 2p cos x � p2 
: (4)

By looking at the REAL and IMAGINARY PARTS of these
FORMULAS, sums involving sines and cosines can be
obtained.

Exponential Sum Function

The exponential sum function en(x) ; sometimes also
denoted expn(x) ; is defined by

en(x) �
Xn

k�0

xk

k!

�
ex G(n � 1 ; x)

G(n � 1)
;

where G(a ; x) is the upper INCOMPLETE GAMMA

FUNCTION and G(x) is the (complete) GAMMA FUNC-

TION.

See also GAMMA FUNCTION, INCOMPLETE GAMMA

FUNCTION

Exponential Transform
The exponential transform is the transformation of a
sequence a1 ; a2 ; ... into a sequence b1 ; b2 ; ... according
to the equation

1 �
X

n �1

bnxn

n!
�exp

X

n�1

anxn

n!

 !
:

The inverse ("logarithmic"rpar; transform is then
given by

X

n�1

anxn

n!
�ln 1 �

X

n�1

bnxn

n!

 !
:

The exponential transform relates the number an of
labeled CONNECTED GRAPHS on n nodes satisfying
some property with the corresponding total number
bn (not necessarily connected) of labeled GRAPHS on n

nodes. In this application, the transform is called
RIDDELL’S FORMULA for labeled graphs.

See also BINOMIAL TRANSFORM, EULER TRANSFORM,
LOGARITHMIC TRANSFORM, MÖ BIUS TRANSFORM, RID-

DELL’S FORMULA, STIRLING TRANSFORM
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Expression

See also QUANTITY

Exradius

The RADIUS of an EXCIRCLE. Let a TRIANGLE have
exradius r1 (sometimes denoted r1); opposite side of
length a1 and angle a1; AREA D; and SEMIPERIMETER s .
Then

r2
1�

D
s � a1

 !2

(1)

�
s(s � a2)(s � a3)

s � a1

(2)

�4R sin 1
2 a1

� �
cos 1

2 a2

� �
cos 1

2 a3

� �
(3)

(Johnson 1929, p. 189), where R is the CIRCUMRA-

DIUS. Let r be the INRADIUS, then

4R�r1�r2�r3�r (4)

1

r1

�
1

r2

�
1

r3

�
1

r
(5)

rr1r2r3�D2: (6)



Some fascinating FORMULAS due to Feuerbach are

r(r2r3 �r3r1 �r1r2) �s D�r1r2r3 (7)

r(r1 �r2 �r3) �a2a3 �a3a1 �a1a2 �s2 (8)

rr1 �rr2 �rr3 �r1r2 �r2r3 �r3r1

�a2a3 �a3a1 �a1a2 (9)

r2r3 �r3r1 �r1r2 �rr1 �rr2 �rr3 �
1
2(a

2
1 �a2

2 �a2
3) (10)

(Johnson 1929, pp. 190 �/91).

See also CIRCLE, CIRCUMRADIUS, EXCIRCLE, INRADIUS,
RADIUS

References
Johnson, R. A. Modern Geometry: An Elementary Treatise on

the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, 1929.

Mackay, J. S. "Formulas Connected with the Radii of the
Incircle and Excircles of a Triangle." Proc. Edinburgh
Math. Soc. 12, 86�/05.

Mackay, J. S. "Formulas Connected with the Radii of the
Incircle and Excircles of a Triangle." Proc. Edinburgh
Math. Soc. 13, 103 �/04.

Exsecant

exsec x �sec x �1;

where sec x is the SECANT.

See also COVERSINE, HAVERSINE, SECANT, VERSINE
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Extended Binary Tree

A BINARY TREE in which special nodes are added
wherever a null subtree was present in the original
tree so that each node in the original tree (except the
root node) has degree three (Knuth 1997, p. 399).

See also BINARY TREE
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Extended Complex Plane
The COMPLEX PLANE with a POINT AT INFINITY

attached: C @ f
g; where 
 denotes COMPLEX INFI-

NITY. The extended complex plane is denoted C*.

See also C*, COMPLEX INFINITY, COMPLEX PLANE,
RIEMANN SPHERE
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Extended Cycloid
PROLATE CYCLOID

Extended Goldbach Conjecture
GOLDBACH CONJECTURE

Extended Greatest Common Divisor
GREATEST COMMON DIVISOR

Extended Mean-Value Theorem
Let the functions f and g be DIFFERENTIABLE on the
OPEN INTERVAL (a, b ) and CONTINUOUS on the CLOSED

INTERVAL [a, b ]. If g ?(x) "0 for any x � (a ; b); then
there is at least one point c � (a ; b) such that

f ?(c)

g ?(c) 
�

f (b) � f (a)

g(b) � g(a) 
:

See also MEAN-VALUE THEOREM

Extended Real Number (Affine)
This entry contributed by DAVID W. CANTRELL

The set R@ f�
; �
g obtained by adjoining two
improper elements to the set R of real numbers is
normally called the set of (affinely) extended real
numbers. Although the notation for this set is not
completely standardized, R̄ is commonly used. The set
may also be written in interval notation as [�
; �
]:
With an appropriate topology, R̄ is the two-point
COMPACTIFICATION (or affine closure) of R: The im-
proper elements, the affine infinities �
 and �
;
correspond to ideal points of the number line. Note
that these improper elements are not real numbers,
and that this system of extended real numbers is not
a FIELD.

Instead of writing�
; many authors write simply 
:
However, the compound symbol�
 will be used here
to represent the positive improper element of R̄;



allowing the individual symbol 
 to be used unam-
biguously to represent the unsigned improper ele-
ment of R �; the one-point COMPACTIFICATION (or
projective closure) of R :/

A very important property of R̄ ; which R lacks, is that
every subset S of R̄ has an INFIMUM (greatest lower
bound) and a SUPREMUM (least upper bound). In
particular, sup ¥��
 and, if S is unbounded above,
then sup S ��
: Similarly, inf ¥��
 and, if S is
unbounded below, then inf S ��
:/

Order relations can be extended from R to R̄ ; and
arithmetic operations can be partially extended. For
x � R̄ ;

�
Bx B�
 if x "9
; �
B�
 (1)

�(�
) ��
; �(�
) ��
 (2)

x �(�
) ��
�x ��
 if x "�
 (3)

x �(�
) ��
�x ��
 if x "�
 (4)

x �(9
) �9
 � x �9
 if x > 0 (5)

x �(9
) �9
 � x ��
 if x B0 (6)

x

9

�0 if x "9
 (7)

x

0

�����
�������
 if x "0 (8)

However, the expressions �
�(�
) ; �
�(�
);
and x=0 are UNDEFINED.

The above statements which define results of arith-
metic operations on R̄ may be considered as abbrevia-
tions of statements about determinate LIMIT forms.
For example, �(�
) ��
 may be considered as an
abbreviation for "If x increases without bound, then
�x decreases without bound." Most descriptions of R̄
also make a statement concerning the products of the
improper elements and 0, but there is no consensus as
to what that statement should be. Some authors (e.g.,
Kolmogorov 1995, p. 193) state that, like �
�(�
)
and �
�(�
); 0 � (9
) and 9
 � 0 should be
UNDEFINED, presumably because of the INDETERMI-

NATE status of the corresponding LIMIT forms. Other
authors (such as McShane 1983, p. 2) accept 0 �
(9
) �9
�0 �0; at least as a convention which is
useful in certain contexts.

Many results for other operations and functions can
be obtained by considering determinate LIMIT forms.
For example, a partial extension of the function
f (x; y) �xy can be obtained for x; y � R̄ as

(�
)y �
0 if y B0
�
 if y > 0

:
(9)

x�
�
0 if 0Bx B1
�
 if x > 1

:
(10)

x�
�
�
 if 0 Bx B1
0 if x > 1:

:
(11)

The functions ex and ln xj j can be fully extended to R̄;
with

e �
�0 (12)

e�
��
 (13)

ln 0j j��
 (14)

ln9
j j��
: (15)

Some other important functions (e.g., tanh(9
)�91
and tan�1(9
)�9p=2) can be extended to R̄; while
others (e.g., sin x; cos x) cannot. Evaluations of
expressions involving �
 and �
; derived by con-
sidering determinate LIMIT forms, are routinely used
by computer algebra systems such as Mathematica
when performing simplifications.

See also CLOSURE (SET), COMPACTIFICATION, EX-

TENDED REAL NUMBER (PROJECTIVE), INDETERMI-

NATE, LIMIT, R, R-, R�, REAL NUMBER
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Extended Real Number (Projective)
This entry contributed by DAVID W. CANTRELL

The set R@ f
g; obtained by adjoining one improper
element to the set R of real numbers, is the set of
projectively extended real numbers. Although nota-
tion is not completely standardized, R� is used here to
denote this set of extended real numbers. With an
appropriate topology, R� is the one-point COMPACTI-

FICATION (or projective closure) of R: As shown above,
the cross section of the RIEMANN SPHERE consisting of
its "real axis" and "north pole" can be used to
visualize R�: The improper element, projective in-
finity (/
); then corresponds with the ideal point, the
"north pole."



In contrast to the signed affine infinities (/�
 and
�
) of the affinely EXTENDED REAL NUMBERS R̄;
projective infinity, 
; is unsigned, like 0. Regrettably,

 is also unordered, i.e., for x �R � it can be said
neither that x B
 nor that x > 
: For this reason, R �

is used much less often in real analysis than is R̄:
Thus, if context is not specified, "the extended real
numbers" normally refers to R̄; not R�:/

Arithmetic operations can be partially extended from
R to R �;

�( 
) �
; x �
�
�x �
 if x "
;

x � 
�
 � x �
 if x "0;

x=
�0 if x "
;

and

x=0 �
 if x "0

(by contrast, x=0 is UNDEFINED in R̄) : The expressions
Kn and 0 �
 are most often left UNDEFINED in R �:/

The exponential function ex cannot be extended to R�:
On the other hand, R � is useful when dealing with
rational functions and certain other functions. For
example, if R � is used as the range of tan x; then by
taking tan((2n �1)p=2) �
 for integer n , the domain
of the function can be extended to all of R: Extended
real numbers are sometimes used in the implementa-
tion of FLOATING-POINT ARITHMETIC (Hauser 1996,
pp. 158 �/59).

See also COMPACTIFICATION, CLOSURE (SET), EX-

TENDED REAL NUMBER (AFFINE), REAL NUMBER,
RIEMANN SPHERE
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Extended Riemann Hypothesis
The first quadratic nonresidue mod p of a number is
always less than 2(ln p)2 :/

See also RIEMANN HYPOTHESIS
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ExtendedGCD
GREATEST COMMON DIVISOR

Extension (Ideal)
The extension of a; an IDEAL in COMMUTATIVE RING A ,
in a RING B , is the IDEAL generated by its image f (a)
under a RING HOMOMORPHISM f . Explicitly, it is any
finite sum OF THE FORM a yif (xi) where yi is in B and
xi is in a: Sometimes the extension of a is denoted ae :/

The image f ( a) may not be an ideal if f is not
SURJECTIVE. For instance, f : Z 0 Z[x] is a ring
homomorphism and the image of the even integers
is not an ideal since it does not contain any non-
constant polynomials. The extension of the even
integers in this case is the set of polynomials with
even coefficients.

The extension of a PRIME IDEAL may not be prime. For
example, consider f : Z 0 Z

ffiffiffi
2

p1 2
: Then the extension

of the even integers is not a prime ideal since
2 �

ffiffiffi
2

p
�
ffiffiffi
2

p
:/

See also ALGEBRAIC NUMBER THEORY, CONTRACTION

(IDEAL), IDEAL, PRIME IDEAL, RING
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Extension (Set)
The definition of a SET by enumerating its members.
An extensional definition can always be reduced to an
INTENTIONAL one.

An EXTENSION FIELD is sometimes also called simply
an extension.

See also EXTENSION FIELD , INTENSION

References
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Extension Field
A FIELD K is said to be an extension field (or field
extension, or extension), denoted K =F ; of a field F if F
is a SUBFIELD of K . The COMPLEX NUMBERS are an
extension field of the REAL NUMBERS, and the REAL

NUMBERS are an extension field of the RATIONAL

NUMBERS.

The DEGREE) (or relative degree, or index) of an
extension field K =F ; denoted [K : F] ; is the dimension
of K as a VECTOR SPACE over F , i.e.,

[K : F]�dimF K :

See also DEGREE (EXTENSION FIELD), FIELD, PYTHA-

GOREAN EXTENSION, SPLITTING FIELD, SUBFIELD
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Extension Problem
Given a SUBSPACE A of a SPACE X and a MAP from A to
a SPACE Y , is it possible to extend that MAP to a MAP

from X to Y?

See also LIFTING PROBLEM

Extensions Calculus
EXTERIOR ALGEBRA

Extent
The RADIUS of the smallest CIRCLE centered at one of
the points of an N-CLUSTER, which contains all the
points in the N-CLUSTER.

See also N-CLUSTER

Exterior
That portion of a region lying "outside" a specified
boundary.

See also INTERIOR

Exterior Algebra
The ALGEBRA of the EXTERIOR PRODUCT, also called an
alternating algebra or Grassmann algebra. The study
of exterior algebra is also called Ausdehnungslehre
and extensions calculus. Exterior algebras are
GRADED ALGEBRAS.

In particular, the exterior algebra of a VECTOR SPACE

is the DIRECT SUM over k in the natural numbers of
the VECTOR SPACES of alternating k -forms on that
VECTOR SPACE. The product on this algebra is then the
wedge product of forms. The exterior algebra for a
VECTOR SPACE V is constructed by forming monomials
u , vfflw; xfflyfflz; etc., where u , v , w , x , y , and z are
vectors in V andffl is asymmetric multiplication. The
sums formed from LINEAR COMBINATIONS of the
MONOMIALS are the elements of an exterior algebra.

The exterior algebra of a VECTOR SPACE can also be
described as a QUOTIENT VECTOR SPACE,

LpV��p V=Wp; (1)

where Wp is the subspace of p -tensors generated by
transpositions such as W2� x�y�y�xh i and �
denotes the TENSOR PRODUCT. The EQUIVALENCE

CLASS [x1�. . .�xp] is denoted x1ffl. . .fflxp: For in-
stance,

xffly�yfflx�0; (2)

since the representatives add to an element of W2:
Consequently, xffly��yfflx: Sometimes LpV is called
the pth exterior power of V , and may also be denoted
by AltpV:/

The alternating products are a SUBSPACE of the tensor
products. Define the linear map

Alt :�p V 0�p V (3)

by

Alt(vi1
�. . .�vip

)�
1

p!

X
s

p(s)vis(1)
�. . .�vis(p)

; (4)

where s ranges over all PERMUTATIONS of f1; . . . ; pg;
and p(s) is the signature of the PERMUTATION, given
by the PERMUTATION SYMBOL. Then LpV is the image
of Alt, as Wp is its NULLSPACE. The constant factor
1=p! , which is sometimes not used, makes Alt into a
PROJECTION OPERATOR.

For example, if V has the BASIS fe1; e2; e3; e4g; then

L0V� 1h i (5)

L1V� e1; e2; e3; e4h i (6)

L2V� e1ffle2; e1ffle3; e1ffle4; e2ffle3; e2ffle4; e3ffle4h i
(7)

L3V� e1ffle2ffle3; e1ffle2ffle4; e1ffle3ffle3;h

�e2ffle3ffle4i (8)

L4V� e1ffle2ffle3ffle4h i; (9)

and LkV�f0g where k > dim V: For a general
VECTOR SPACE V of dimension n , the space LpV has
dimension n

p

� �
:/

Here is a Mathematica function that implements the
Alt operator, whose image is the alternating subspace
of the p -tensors.

Alt[x_] :� Module[

{p � TensorRank[x], perms},

perms � Permutations[Range[p]];

Sum[

Signature[perms[[i]]] Transpose[x,

perms[[i]]],

{i, p!}

]/p!

]

Here is a Mathematica function which tests whether
a p -tensor is alternating by testing transpositions.

Transpositions[n_] :� Module[{i},

Table[Range[n] /. {i -� i � 1, i � 1 -� i},

{i, n - 1}]

] AlternatingQ[a_] :� (And[##1] &) @@ ((a

�� -Transpose[a, #1] &) /@

Transpositions[TensorRank[a]])



The space L���p L
pV becomes an ALGEBRA with the

WEDGE PRODUCT, defined using the function Alt. Also,
if T : V 0 W is a LINEAR TRANSFORMATION, then the
map T �; p : L

pV 0 LpW sends v1 ffl. . .fflvp to T(v1) ffl
. . .fflT(vp): If n �dim V and T(v) �Av where A is a
SQUARE MATRIX, then /T �; n (e1 ffl. . .fflen) �/

/(det A)e1 ffl. . .fflen :/

The alternating algebra, also called the exterior
algebra, L�V is a 2n dimensional ALGEBRA. In Math-
ematica , an element of the alternating algebra can be
represented by an n -nested binary list. For example,
{{{1, 2}, {0, 0}}, {{3, 0}, {4, 5}}} represents e1 ffle2 ffl

e3 �2e1 ffle3 �3e2 ffle3 �4e3 �5 : The WEDGE PRODUCT

can defined by the following Mathematica function

sgntmp[a_, b_] : � (-1)^(Mod[Sum[b[[i]], {i,

Length[b]}], 2]) a sgn[a_] : � Module[{d �
TensorRank[a]},

MapIndexed[sgntmp, a, {d}]

] wedge[{a_, b_}, {c_, d_}] : � Module[{rnk

� TensorRank[a]},

If[rnk ��  0,

{a d � b c, b d},

{wedge[a, d] � wedge[ sgn[b], c], wedge[b,

d]}

]

]

The following Mathematica function gives the p
powers of an element a in the exterior algebra as a
tensor.

ExtToTensor[a_, p_] : � Module[{d �
TensorRank[a], tmp, ind, indices},

tmp � Table[2, {d}];

If[p ��  0, (a[[##1]] &) @@ tmp,

Array[

(Block[{b},

b � {##1};

ind � ReplacePart[tmp, 1,

Transpose[{b}]];

Signature[b]/p! (a[[##1]] &) @@ ind] &),

Table[d, {p}]]]

]

The rank of an alternating form has a couple different
definitions. The rank of a form, used in studying
integral manifolds of differential ideals, is the dimen-
sion of its ENVELOPE. Another definition is its rank as
a TENSOR.

The DIFFERENTIAL K -FORMS in modern geometry are
an exterior algebra, and play a role in multivariable
calculus. In general, it is only necessary for V to have
the structure of a MODULE. So exterior algebras come
up in REPRESENTATION THEORY. For example, if V is a
REPRESENTATION of a group G , then Sym2V �L2V is a
decomposition of V �V into two representations.

See also DIFFERENTIAL FORM, ENVELOPE (FORM),
REPRESENTATION, SYMMETRIC GROUP, TENSOR PRO-

DUCT, VECTOR SPACE, WEDGE PRODUCT
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Exterior Angle

The angle ai formed between a side of a polygon and
the extension of an adjacent side. Since there are two
directions in which a side can be extended, there are
two exterior angles at each vertex. However, since
corresponding angles are opposite, they are also
equal. The sum of exterior angles in a convex polygon
is equal to 2p RADIANS (360 8), since this corresponds
to one complete rotation of the polygon.

See also ANGLE, EXTERIOR ANGLE BISECTOR

Exterior Angle Bisector

The exterior bisector of an ANGLE is the LINE or LINE

SEGMENT which cuts it into two equal ANGLES on the
opposite "side" as the ANGLE.

For a TRIANGLE, the exterior angle bisector bisects the
SUPPLEMENTARY ANGLE at a given VERTEX. It also



divides the opposite side externally in the ratio of
adjacent sides.

The points A?; B ?; and C ? determined on opposite sides
of a triangle DABC by an ANGLE BISECTOR from each
vertex, lie on a straight line if either (1) all or (2) one
out of the three bisectors is an external angle bisector
(Honsberger 1995).

See also ANGLE BISECTOR, ISODYNAMIC POINTS
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Exterior Angle Theorem
In any TRIANGLE, if one of the sides is extended, the
exterior angle is greater than both the interior and
opposite angles.

See also EXTERIOR ANGLE
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Exterior Derivative
The exterior derivative of a function f is the ONE-

FORM

df �
X

i

@f

@xi

dxi (1)

written in a COORDINATE CHART (x1; . . . ; xn): Think-
ing of a function as a zero-form, the exterior deriva-
tive extends linearly to all DIFFERENTIAL K -FORMS

using the formula

d(afflb)�dafflb�(�1)p
affldb;

when a is a k -form and where ffl is the WEDGE

PRODUCT.

The exterior derivative of a k -form is a (k�1)/-form.
For example, for a DIFFERENTIAL K -FORM

v1�b1 dx1�b2 dx2; (2)

the exterior derivative is

dv1�db1ffldx1�db2ffldx2: (3)

Similarly, consider

v1�b1(x1; x2) dx1�b2(x1; x2) dx2: (4)

Then

dv1�db1ffldx1�db2ffldx2

�
@b1

@x1

dx1�
@b1

@x2

dx2

 !
ffl dx1

�
@b2

@x1

dx1�
@b2

@x2

dx2

 !
ffl dx2: (5)

Denote the exterior derivative by

Dt�
@

@x
fflt: (6)

Then for a 0-form t ,

(Dt)m�
@t

@xm
; (7)

for a 1-form t ,

(Dt)mn�
1

2

@tn
@xm

�
@tm
@xn

 !
; (8)

and for a 2-form t ,

(Dt)ijk�
1
3 eijk

@t23

@x1
�

@t31

@x2
�

@t12

@x3

 !
; (9)

where eijk is the PERMUTATION TENSOR.

It is always the case that d(da)�0: When da�0; then
a is called a CLOSED FORM. A TOP-DIMENSIONAL FORM

is always a CLOSED FORM. When a�dh then a is
called an EXACT FORM, so any EXACT FORM is also
CLOSED. An example of a CLOSED FORM which is not
EXACT is du on the circle. Since u is a function defined
up to a constant multiple of 2p; du is a WELL DEFINED

ONE-FORM, but there is no function for which it is the
EXTERIOR DERIVATIVE.

The exterior derivative is linear and commutes with
the PULLBACK v� of DIFFERENTIAL K -FORMS v: That is,

df�(a)�f�(da): (10)

Hence the PULLBACK of a CLOSED FORM is closed and
the PULLBACK of an EXACT FORM is exact. Moreover, a
DE RHAM COHOMOLOGY class [a] has a WELL DEFINED

PULLBACK MAP [f�(a)]:/



In Mathematica , a k -form can be written as an
ANTISYMMETRIC k -tensor. Using this format, the
following Mathematica function computes the exter-
ior derivative of the form a in the (ordered) variables
vars.

Alt[x_List] : � Module[

{

p � TensorRank[x], perms

},

perms � Permutations[Range[p]];

Sum[Signature[perms[[i]]] Transpose[x,

perms[[i]]],{i, p!}]/p!

] ExtD1[a_List, vars_?List] : �
Alt[Outer[D[#2, #1] &, vars , a]]

It is also possible to use an n -nested binary tree to
represent the algebra of differential forms. Using this
format, the following Mathematica function computes
the exterior derivative recursively.

ExtD2[{a_List, b_List}, vars_List] : �
{D[b, First[vars]] - ExtD2[a, Rest[vars]],

ExtD2[b, Rest[vars]]} ExtD2[{a_?(! ListQ[#1]

&), b_?(! ListQ[#1] &)}, var_?ListQ] : �
{D[b, First[var]], 0}

See also DIFFERENTIAL K -FORM, EXTERIOR ALGEBRA,
HODGE STAR, JACOBIAN, MANIFOLD, POINCARÉ ’S LEM-

MA, STOKES’ THEOREM, TANGENT BUNDLE, TENSOR,
WEDGE PRODUCT
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Exterior Dimension
A type of DIMENSION which can be used to character-
ize FAT FRACTALS.

See also FAT FRACTAL
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Exterior Power
The kth exterior power of an element a in an
EXTERIOR ALGEBRA LV is given by the WEDGE PRO-

DUCT of a with itself k times. Note that if a has odd
degree, then any higher power of a must be zero. The

situation for even degree forms is different. For
example, if

a �e1 ffle2 �e3 ffle4 �e5 ffle6 ; (1)

then

a2 �2e1 ffle2 ffle3 ffle4 �2e1 ffle2 ffle5 ffle6 �2e3 ffle4

ffle5 ffle6 (2)

a3 �6e1 ffle2 ffle3 ffle4 ffle5 ffle6 ; (3)

a4 �0: (4)

See also EXTERIOR ALGEBRA, WEDGE PRODUCT

Exterior Product
WEDGE PRODUCT

Exterior Snowflake

The FRACTAL illustrated above.

See also FLOWSNAKE FRACTAL, KOCH ANTISNOW-

FLAKE, KOCH SNOWFLAKE, PENTAFLAKE
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External Contact
TANGENT EXTERNALLY

External Direct Product
The term external direct product is used to refer to
either the EXTERNAL DIRECT SUM of groups under the
group operation of multiplication, or over infinitely
many spaces in which the sum is not required to be
finite. In the latter case, the operation is also called
the CARTESIAN PRODUCT.

See also CARTESIAN PRODUCT, EXTERNAL DIRECT SUM

External Direct Sum

The CARTESIAN PRODUCT of a finite or infinite set of
modules over a ring with only finitely many nonzero
entries in each sequence.



See also CARTESIAN PRODUCT, EXTERNAL DIRECT

PRODUCT

External Path Length

The sum over all external (square) nodes of the paths
from the root of an EXTENDED BINARY TREE to each
node. For example, in the tree above, the external
path length is 25 (Knuth 1997, p. 399 �/00). The
INTERNAL and external path lengths are related by

E �I �2n;

where n is the number of internal nodes.

See also EXTENDED BINARY TREE, INTERNAL PATH

LENGTH
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External Tensor Product
Suppose that V is a REPRESENTATION of G , and W is a
REPRESENTATION of H . Then the TENSOR PRODUCT

V �W is a REPRESENTATION of the GROUP DIRECT

PRODUCT G �H : An element (g, h ) of G �H acts on a
basis element v �w by

(g ; h)(v �w) �gv �hw :

To distinguish from the TENSOR PRODUCT of repre-
sentations, the external tensor product is denoted
V�W ; although the only possible confusion would
occur when G �H .

When V and W are IRREDUCIBLE REPRESENTATIONS of
G and H respectively, then so is the external tensor
product. In fact, all IRREDUCIBLE REPRESENTATIONS of
G �H arise as external direct products of IRREDUCI-

BLE REPRESENTATIONS.

See also GROUP, IRREDUCIBLE REPRESENTATION,
REPRESENTATION, TENSOR PRODUCT (REPRESENTA-

TION), TENSOR PRODUCT (VECTOR SPACE), VECTOR

SPACE

Externally Tangent
TANGENT EXTERNALLY

Extra Strong Lucas Pseudoprime
Given the LUCAS SEQUENCE Un(b ; �1) and Vn(b; �1);
define D�b2 �4: Then an extra strong Lucas pseu-
doprime to the base b is a COMPOSITE NUMBER n �
2rs �( D=n) ; where s is ODD and (n; 2 D) �1 such that
either Us�0 (mod n) and Vs�92 (mod n); or V2ts�

0 (mod n) for some t with 05tBr�1: An extra
strong Lucas pseudoprime is a STRONG LUCAS PSEU-

DOPRIME with parameters (b; �1): COMPOSITE n are
extra strong pseudoprimes for at most 1/8 of possible
bases (Grantham 1997).

See also LUCAS PSEUDOPRIME, STRONG LUCAS PSEU-

DOPRIME
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Extrapolation
RICHARDSON EXTRAPOLATION

Extremal Coloring
EXTREMAL GRAPH

Extremal Graph
In general, an extremal graph is the largest graph of
order n which does not contain a given graph G as a
SUBGRAPH (Skiena 1990, p. 143). Turán studied ex-
tremal graphs that do not contain a COMPLETE GRAPH

Kp as a SUBGRAPH.

One much-studied type of extremal graph is a two-
coloring of a COMPLETE GRAPH Kn of n nodes which
contains exactly the number N�(R�B)min of MONO-

CHROMATIC FORCED TRIANGLES and no more (i.e., a
minimum of R�B where R and B are the numbers of
red and blue TRIANGLES). Goodman (1959) showed
that for an extremal graph of this type,

N(n)�

1
3 m(m�1)(m�2) for n�2m
1
3 2m(m�1)(4m�1) for n�4m�1
1
3 2m(m�1)(4m�1) for n�4m�3:

8><
>:

This is sometimes known as GOODMAN’S FORMULA.
Schwenk (1972) rewrote it in the form

N(n)�
n
3

� �
� 1

2 n 1
4(n�1)2
j kj k

;

sometimes known as SCHWENK’S FORMULA, where xb c
is the FLOOR FUNCTION. The first few values of N(n)



for n �1, 2, ... are 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40,
52, 70, 88, ... (Sloane’s A014557).

See also BICHROMATIC GRAPH, BLUE-EMPTY GRAPH,
EXTREMAL GRAPH THEORY, GOODMAN’S FORMULA,
MONOCHROMATIC FORCED TRIANGLE, SCHWENK’S

FORMULA, TURÁ N GRAPH
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Extremal Graph Theory
The study of how the intrinsic structure of graphs
ensures certain types of properties (e.g., CLIQUE-
formation and GRAPH COLORINGS) under appropriate
conditions.

See also ERDOS-STONE THEOREM, EXTREMAL GRAPH,
RAMSEY THEORY, STRUCTURAL RAMSEY THEORY,
SZEMERÉ DI’S REGULARITY LEMMA, TURÁ N GRAPH,
TURÁ N’S THEOREM
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Extremals
A field of extremals is a plane region which is SIMPLY

CONNECTED by a one-parameter family of extremals.
The concept was invented by Weierstrass.

Extreme and Mean Ratio
GOLDEN MEAN

Extreme Value Distribution
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let Mn denote the "extreme" (i.e., largest) ORDER

STATISTIC X nh i for a distribution of n elements Xi

taken from a continuous UNIFORM DISTRIBUTION.
Then the distribution of the Mn is

PðMnBxÞ ¼
0
xn

1

if xB0
if 05x51
if x�

8<
: ð1Þ

and the MEAN and VARIANCE are

m�
n

n � 1
(2)

s2�
n

(n � 1)2(n � 2)
: (3)

If Xi are taken from a STANDARD NORMAL DISTRIBU-

TION, then its cumulative distribution is

F(x)�
1ffiffiffiffiffiffi
2x

p g
x

�


e�t2=2 dt�1
2�F(x); (4)

where F(x) is the NORMAL DISTRIBUTION FUNCTION.
The probability distribution of Mn is then

P(MnBx)�[F(x)]n�
nffiffiffiffiffiffi
2n

p g
x

�


[F(t)]n�1e�t2=2 dt: (5)

The MEAN m(n) and VARIANCE s2(n) are expressible in
closed form for small n ,

m(1)�0 (6)
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p
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ffiffiffi
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4p
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p

p
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5
ffiffiffi
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p
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4

� �
�[m(5)]2: (15)

No exact expression is known for m(6) or s2(6); but
there is an equation connecting them

[m(6)]2�s2(6)�1�
5
ffiffiffi
3

p

4p
�

15
ffiffiffi
3

p

2p2
sin�1 1

4

� �
: (16)

An analog to the CENTRAL LIMIT THEOREM states that
the asymptotic normalized distribution of Mn satisfies
one of the three distributions



P(y) �exp(�e�y) (17)

P(y) �
0 if y50
exp[�(�y �a)] if y > 0

:
(18)

P(y) � exp[�(�y)a] if y50
1 if y > 0;

:
(19)

also known as GUMBEL, Fréchet, and WEIBULL DIS-

TRIBUTIONS, respectively.

See also FISHER-TIPPETT DISTRIBUTION, ORDER STA-

TISTIC
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Extreme Value Theorem
If a function f (x) is continuous on a closed interval [a,
b ], then f (x) has both a MAXIMUM and a MINIMUM on
[a, b ]. If f (x) has an extreme value on an open interval
(a, b ), then the extreme value occurs at a CRITICAL

POINT. This theorem is sometimes also called the
WEIERSTRASS EXTREME VALUE THEOREM.

Extremum
A MAXIMUM or MINIMUM. An extremum may be LOCAL

(a.k.a. a RELATIVE EXTREMUM; an extremum in a
given region which is not the overall MAXIMUM or
MINIMUM) or GLOBAL. Functions with many extrema
can be very difficult to GRAPH. Notorious examples
include the functions cos(1=x) and sin(1=x) near x �0

and sin(e2x �9) near 0 and 1.

The latter has

e11

p
�

1

2

$ %
�

e9

p
�

1

2

$ %
�1 �19085 �2579 �1 �16480

extrema in the CLOSED INTERVAL [0,1] (Mulcahy
1996).

See also GLOBAL EXTREMUM, GLOBAL MAXIMUM,
GLOBAL MINIMUM, KUHN-TUCKER THEOREM, LA-

GRANGE MULTIPLIER, LOCAL EXTREMUM, LOCAL MAX-

IMUM, LOCAL MINIMUM, MAXIMUM, MINIMUM
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Extremum Test
Consider a function f (x) in 1-D. If f (x) has a relative
extremum at (x0) ; then either f ?(x0) �0 or f is not
DIFFERENTIABLE at (x0) : Either the first or second
DERIVATIVE tests may be used to locate relative
extrema of the first kind.

A NECESSARY condition for f (x) to have a MINIMUM

(MAXIMUM) at (x0) is

f ?(x0) �0;

and

f ƒ(x0) ]0 (f ƒ(x0) 50):

A SUFFICIENT condition is f ?(x0) �0 and f ƒ(x0) > 0/

(/f ƒ(x0) B0): Let f ?(x0) �0; f ƒ(x0) �0 ; ..., f (n)(x0) �0;
but f (n�1)(x0) "0: Then f (x) has a RELATIVE MAXIMUM

at (x0) if n is ODD and f (n�1)(x0) > 0; and f (x) has a
RELATIVE MINIMUM at (x0) if n is ODD and f (n�1)(x0) >
0: There is a SADDLE POINT at (x0) if n is EVEN.

See also EXTREMUM, FIRST DERIVATIVE TEST, RELA-

TIVE MAXIMUM, RELATIVE MINIMUM, SADDLE POINT

(FUNCTION), SECOND DERIVATIVE TEST

Extrinsic Curvature
A curvature of a SUBMANIFOLD of a MANIFOLD which
depends on its particular EMBEDDING. Examples of
extrinsic curvature include the CURVATURE and TOR-

SION of curves in 3-space, or the mean curvature of
surfaces in 3-space.

See also CURVATURE, INTRINSIC CURVATURE, MEAN

CURVATURE



Eyeball Theorem Given two circles, draw the tangents from the center
of each circle to the sides of the other. Then the line
segments AB and CD are of equal length.

See also CIRCLE
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Faá di Bruno’s Formula
If f (t) and g(t) are functions for which all necessary
derivatives are defined, then

Dnf (g(t)) �

X n!

k1! � � � kn!
Dkf
� �

(g(t))
Dg(t)

1!

 !k1

. . .
Dng(t)

n!

 !kn

;

where k �k1 �. . .�kn and the sum of over all k1 ; ...,
kn for which

k1 �2k2 �. . .�nkn �n

(Roman 1980).

See also LEIBNIZ IDENTITY, UMBRAL CALCULUS
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Faber Polynomial
Let

f (x) �z �a1 �a2z�1 �a3z �2 �. . .�z
X�
n�0

anz�n

�zg(1=z) (1)

be a LAURENT POLYNOMIAL with a0 �1 : Then the

Faber polynomial Pm(f ) in f (z) of degree m is defined
such that

Pm(f ) �zm �cm1z �1 �cm2z�2 �. . .�zm �Gm(1=z) ; (2)

where

Gm(x) �
X�
n�1

cmnxn (3)

(Schur 1945). Writing

[g(x)]m �
X�
k �0

amkxl (4)

for m � 1, 2, ... gives the relationship

am;m�n �cmn �am1cm�1 ;n �am2cm�2 ;n

�. . .�am;m�1c1n : (5)

connecting amn and cmn :/

This polynomial can be used to calculate the number
of LATTICE PATHS from a point (r ; 0) to a point (a, b )
that remain below the line y � cx .

See also LATTICE PATH
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Fabry Imbedding
A representation of a PLANAR GRAPH as a planar
straight line graph such that no two EDGES cross.

See also PLANAR GRAPH

Face

The intersection of an n -D POLYTOPE with a tangent
HYPERPLANE. 0-D faces are known as VERTICES



(nodes), 1-D faces as EDGES, (n �2)/-D faces as RIDGES,
and (n �1)/-D faces as FACETS.

See also EDGE (POLYHEDRON), FACET, POLYTOPE,
RIDGE, VERTEX (POLYHEDRON)

Face-Regular Polyhedron
JOHNSON SOLID

Facet
An (n �1)/-D FACE of an n -D POLYTOPE. A procedure
for generating facets is known as FACETING.

Faceting
Using a set of corners of a SOLID that lie in a plane to
form the VERTICES of a new POLYGON is called
faceting. Such POLYGONS may outline new FACES

that join to enclose a new SOLID, even if the sides of
the POLYGONS do not fall along EDGES of the original
SOLID.
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Factor
A factor is a portion of a quantity, usually an INTEGER

or POLYNOMIAL that, when MULTIPLIED by all other
factors, give the entire quantity. The determination of
factors is called FACTORIZATION (or sometimes "FAC-

TORING"). It is usually desired to break factors down
into the smallest possible pieces so that no factor is
itself factorable. For INTEGERS, the determination of
factors is called PRIME FACTORIZATION. For large
quantities, the determination of all factors is usually
very difficult except in exceptional circumstances.

See also DIVISOR, FACTORIZATION, GREATEST PRIME

FACTOR, LEAST PRIME FACTOR, MULTIPLICATION,
POLYNOMIAL FACTORIZATION, PRIME FACTORIZATION,
PRIME FACTORIZATION ALGORITHMS

Factor (Graph)
A 1-factor of a GRAPH G with n VERTICES is a set of
n=2 separate EDGES which collectively contain all n of
the VERTICES of G among their endpoints.

See also GRAPH

Factor Base
The primes with LEGENDRE SYMBOL (n=p) �1 (less
than N �p(d) for trial divisor d ) which need be
considered when using the QUADRATIC SIEVE factor-
ization method.

See also DIXON’S FACTORIZATION METHOD
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Factor Group
QUOTIENT GROUP

Factor Level
A grouping of statistics.

Factor Ring
QUOTIENT RING

Factor Space
QUOTIENT SPACE

Factorial
The factorial n! is defined for a POSITIVE INTEGER n as

n!�
n�(n�1) � � � 2�1 n�1; 2; . . .
1 n�0:

�
(1)

The factorial n! gives the number of ways in which n
objects can be permuted. For example, 3!�6; since
the six possible permutations of f1; 2; 3g are f1; 2; 3g;
f1; 3; 2g; f2; 1; 3g; f2; 3; 1g; f3; 1; 2g; f3; 2; 1g: Since
there is a single permutation of zero elements (the
EMPTY SET ¥); 0!�1: The first few factorials for
�n�0, 1, 2, ... are 1, 1, 2, 6, 24, 120, ... (Sloane’s
A000142). An older NOTATION for the factorial is n
(Mellin 1909; Lewin 1958, p. 19; Dudeney 1970;
Gardner 1978; Conway and Guy 1996).

As n grows large, factorials begin acquiring tails of
trailing ZEROS. To calculate the number Z of trailing
ZEROS for n!; use

Z�
Xkmax

k�1

n

5k

$ %
; (2)

where

kmax�
lnn

ln5

$ %
(3)

and xb c is the FLOOR FUNCTION (Gardner 1978, p. 63;
Ogilvy and Anderson 1988, pp. 112�/14). For n�1, 2,
..., the number of trailing zeros are 0, 0, 0, 0, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 3, 3, ... (Sloane’s A027868). This is a
special application of the general result that the
POWER of a PRIME p dividing n! is



�p (n)�
X
k]0

n

pk

$ %
(4)

(Landau 1974, pp. 75�/6; Hardy and Wright 1979,
pp. 342; Ingham 1990, p. 20; Graham et al. 1994;
Vardi 1991; Hardy 1999, pp. 18 and 21). Stated
another way, the exact POWER of a PRIME p which
divides n! is

n � sum of digits of the base � p representation of n

p � 1

(5)

Let a(n) be the last nonzero digit in n!; then the first
few values are 2, 6, 4, 2, 2, 4, 2, 8, 8, 8, 6, 8, ...
(Sloane’s A008904). This sequence was studied by
Kakutani (1967), who showed that this sequence is
"5-automatic," meaning roughly that there exists a
finite automaton which, when given the digits of n in
base-5, will wind up in a state for which an output
mapping specifies a(n): The exact distribution of
digits follows from this result.

By noting that

n!�G(n�1); (6)

where G(n) is the GAMMA FUNCTION for INTEGERS n ,
the definition can be generalized to COMPLEX values

z!�G(z�1)�g
�

0

e�ttzdt: (7)

This defines z! for all COMPLEX values of z , except
when z is a NEGATIVE INTEGER, in which case z!��:
Using the identities for GAMMA FUNCTIONS, the values
of (1

2n)! (half integral values) can be written explicitly

�
1

2

 !
!�

ffiffiffi
p

p
(8)

1

2

 !
!�

1

2

ffiffiffi
p

p
(9)

n�
1

2

 !
!�

ffiffiffi
p

p

2n
(2n�1)!! (10)

n�
1

2

 !
!�

ffiffiffi
p

p

2n�1
(2n�1)!!; (11)

where n!! is a DOUBLE FACTORIAL.

For INTEGERS s and n with s B n ,

(s � n)!

2s � 2nð Þ!
�

(�1)n�s(2n � 2s)!

(n � s)!
: (12)

The LOGARITHM of z! is frequently encountered

ln(z!)�
1

2
ln

pz

sin(pz)

" #
�g�

X�
n�1

z(2n � 1)

2n � 1
z2n�1 (13)

�
1

2
ln

pz

sin(pz)

" #
�

1

2
ln

1 � z

1 � z

 !
�(1�g)z

�
X�
n�1

z(2n�1)�1½ 
 z2n�1

2n � 1
(14)

�ln lim
n0�

n!

(z � 1)(z � 2) � � � (z � n)
nz

" #
(15)

� lim
n0�

[ln(n!)�z lnn�ln(z�1)�ln(z�2)�. . .

�ln(z�n)] (16)

�
X�
n�1

zn

n!
Fn�1(0) (17)

��gz�
X�
n�2

(�1)n zn

n
z(n) (18)

��ln(1�z)�z(1�g)�
X�
n�2

(�1)n[z(n)�1]
zn

n
; (19)

where g is the EULER-MASCHERONI CONSTANT, z(z) is
the RIEMANN ZETA FUNCTION, and Fn(z) is the POLY-

GAMMA FUNCTION. The factorial can be expanded in a
series

z!�

ffiffiffiffiffiffi
2p

p
zz�1=2e�z 1�

1

2
z�1�

1

288
z�2�

139

51840
z�3�. . .

 !

(20)

(Sloane’s A001163 and A001164). STIRLING’S SERIES

gives the series expansion for ln(z!);

ln(z!)�
1

2
ln(2p)� z�

1

2

 !
lnz�z�

B2

2z
�. . .

�
B2n

2n(2n � 1)z2n�1
�. . .

�
1

2
ln(2p)� z�

1

2

 !
lnz�z�

1

12
z�1�

1

360
z�3

�
1

1260
z�5�. . . (21)

(Sloane’s A046968 and A046969), where Bn is a
BERNOULLI NUMBER.

Let h be the exponent of the greatest POWER of a
PRIME p dividing n!: Then



h �
X
i�1

pi 5n

n

pi

$ %
: (22)

Let g be the number of 1s in the BINARY representa-
tion of n . Then

g �h �n (23)

(Honsberger 1976). In general, as discovered by
Legendre in 1808, the POWER m of the PRIME p
dividing n! is given by

m �
X�
k �0

n

pk

$ %
�

n � (n0 � n1 � . . .  � nN

p � 1
; (24)

where the INTEGERS n1 ; ..., nN are the digits of n in
base p (Ribenboim 1989).

The numbers n! �1 are prime for n � 1, 2, 3, 11, 27,
37, 41, 73, 77, 116, 154, ... (Sloane’s A002981; Wells
1986, p. 70), and the numbers n! �1 are prime for n
� 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, ... (Sloane’s
A002982). In general, the power-product sequences
(Mudge 1997) are given by S9

k (n) �(n!)k 
91: The first

few terms of S�
2 (n) are 2, 5, 37, 577, 14401, 518401, ...

(Sloane’s A020549), and S�
2 (n) is PRIME for n � 1, 2,

3, 4, 5, 9, 10, 11, 13, 24, 65, 76, ... (Sloane’s A046029).
The first few terms of S �2 (n) are 0, 3, 35, 575, 14399,
518399, ... (Sloane’s A046032), but S�

2 (n) is PRIME for
only n � 2 since S �2 (n) �(n!)2 �1 �(n! �1)(n! �1) for
n � 2. The first few terms of S �3 (n) are 0, 7, 215,
13823, 1727999, ... (Sloane’s A046033), and the first
few terms of S�

3 (n) are 2, 9, 217, 13825, 1728001, ...
(Sloane’s A019514).

The first few numbers n such that the sum of the
factorials of their digits is equal to the PRIME COUNT-

ING FUNCTION p(n) are 6500, 6501, 6510, 6511, 6521,
12066, 50372, ... (Sloane’s A049529). This sequence is
finite, with the largest term being a23 �11 ; 071; 599:/

There are three numbers less than 200,000 for which

(n�1)!�1�0(mod n2); (25)

namely 5, 13, and 563 (Le Lionnais 1983). BROWN

NUMBERS are pairs (m, n ) of INTEGERS satisfying the
condition of BROCARD’S PROBLEM, i.e., such that

n!�1�m2; (26)

Only three such numbers are known: (5, 4), (11, 5),
(71, 7). Erdos conjectured that these are the only
three such pairs (Guy 1994, p. 193).

See also ALLADI-GRINSTEAD CONSTANT, BROCARD’S

PROBLEM, BROWN NUMBERS, CENTRAL FACTORIAL,
DOUBLE FACTORIAL, FACTORIAL PRIME, FACTORIAL

PRODUCTS, FACTORIAL SUMS, FACTORION, FALLING

FACTORIAL, GAMMA FUNCTION, HYPERFACTORIAL,
MULTIFACTORIAL, POCHHAMMER SYMBOL, PRIMORIAL,
RISING FACTORIAL, ROMAN FACTORIAL, STIRLING’S

SERIES, SUBFACTORIAL, SUPERFACTORIAL, WILSON

PRIME
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Factorial Moment

v(r) �
X

x

x(r)f (x) ;

where

x(r) �x(x �1) � � � (x �r �1):

See also MOMENT

Factorial Number
FACTORIAL

Factorial Prime
A PRIME OF THE FORM n! 91: n! �1 is PRIME for 1, 2, 3,
11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427,
872, 1477, 6380, ... (Sloane’s A002981). No others are
known, but N. Kuosa is coordinating a search in the
range 23; 000 Bn B30 ; 000:/

/n! �1 is PRIME for 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94,
166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917,
... (Sloane’s A002982).

See also FACTORIAL, PRIME NUMBER, PRIMORIAL
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Factorial Products
The only known factorials which are products of
factorials in an ARITHMETIC SEQUENCE are

0!1! ¼ 1!
1!2! ¼ 2!

0!1!2! ¼ 2!
6!7! ¼ 10!

1!3!5! ¼ 6!
1!3!5!7! ¼ 10!

(Madachy 1979).

There are no identities OF THE FORM

n! �a1!a2! � � �ar! (1)

for r ]2 with ai ]aj ]2 for i B j for n 518160 except

9! ¼ 7!3!3!2! (2)

10! ¼ 7!6! ¼ 7!5!3! (3)

16! ¼ 14!5!2! (4)

(Guy 1994, p. 80).

See also FACTORIAL, FACTORIAL SUMS
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Factorial Sums
The sum-of-factorials function is defined by

X
(n)�

Xn

k�1

k!

�
�e � ei(1) � pi � E2n�1(�1)]G(n � 2)

e
; (1)

�
�e � ei(1) �R[E2n�1(�1)]G(n � 2)

e
; (2)

where ei(1):1:89512 is the EXPONENTIAL INTEGRAL,
En is the EN -FUNCTION, R[z] is the REAL PART of z ,
and I is the IMAGINARY NUMBER. The first few values
are 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, ...
(Sloane’s A007489). a(n) cannot be written as a
hypergeometric term plus a constant (Petkovsek et
al. 1996). However the sum



X
?(n)�

Xn

k�1

kk!�(n�1)!�1 (3)

has a simple form, with the first few values being 1, 5,
23, 119, 719, 5039, ... (Sloane’s A033312).

There are only four INTEGERS equal to the sum of the
factorials of their digits. Such numbers are called
FACTORIONS. While no factorial greater than 1! is a
SQUARE NUMBER, D. Hoey listed sums B1012 of dis-
tinct factorials which give SQUARE NUMBERS, and J.
McCranie gave the one additional sum less than
21!�5:1�1019 :

0! þ 1! þ 2! ¼ 22

1! þ 2! þ 3! ¼ 32

1! þ 4! ¼ 52

1! þ 5! ¼ 112

4! þ 5! ¼ 122

1! þ 2! þ 3! þ 6! ¼ 272

1! þ 5! þ 6! ¼ 292

1! þ 7! ¼ 712

4! þ 5! þ 7! ¼ 722

1! þ 2! þ 3! þ 7! þ 8! ¼ 2132

1! þ 4! þ 5! þ 6! þ 7! þ 8! ¼ 2152

1! þ 2! þ 3! þ 6! þ 9! ¼ 6032

1! þ 4! þ 8! þ 9! ¼ 6352

1! þ 2! þ 3! þ 6! þ 7! þ 8! þ 10! ¼ 19172

1!�2!�3!�7!�8!�9!�10!�11!�12!�13!�14!�15!

�11838932

(Sloane’s A014597).

The first few values of the alternating SUM

a(n)�
Xn

i�1

(�1)n�ii! (4)

�(�1)n �1�eei(�1)�(�1)nEn�2(1)G(n�2)
� 

; (5)

where ei(x) is the EXPONENTIAL INTEGRAL, En(x) is the
EN -FUNCTION, and G(x) is the GAMMA FUNCTION, are
1, 1, 5, 19, 101, 619, 4421, 35899, ... (Sloane’s
A005165), and the first few values n for which a(n)
are prime are n � 3, 4, 5, 6, 7, 8, 10, 15, 19, 41, 59,
61, 105, 160, 661, 2653, 3069, 3943, 4053, 4998, ...
(Sloane’s A001272, Guy 1994, p. 100). Zivkovic (1999)
has shown that the number of such primes is finite.

Sums with powers of an index in the NUMERATOR and
products of FACTORIALS in the DENOMINATOR can
often be done analytically. For example, for numera-
tor 1,

Xn

i�1

1

k1�i

� �
! k2�i

� �
!
�1F̃2(1; 2�k1; 2�k2; 1)

�1F̃2(1; n�k1�2;n�k2�2; 1) (6)

Xn

i�1

1

k1 � ið Þ! k2 � ið Þ!
�2

F̃ 1; 1 � k1; k2 � 2;�1ð Þ
G k1ð Þ

�2
F̃ 1;n � k1 � 1; n � k2 � 2;�1ð Þ

G k1 � nð Þ
(7)

where pF̃q is a REGULARIZED HYPERGEOMETRIC FUNC-

TION. For numerator i ,

Xn

i�1

i

k1 � ið Þ! k2 � ið Þ!

��(n�1)1F̃2 1; n�k1�2;n�k2�2; 1ð Þ
�1F̃2 2; k1�2; k2�2; 1ð Þ

�1F̃2(2; n�k1�3;n�k2�3; 1) (8)

Xn

i�1

i

k1 � ið Þ! k2 � ið Þ!

�
(n � 1)2F̃1 1;n � k1 � 1; n � k2 � 2;�1ð Þ

G k1 � nð Þ

�2
F̃1 2; 1 � k1; k2 � 2;�1ð Þ

G k1ð Þ

�2
F̃1 2;n � k1 � 2; n � k2 � 3;�1ð Þ

G k1 � n � 1ð Þ
: (9)

These sums simplify substantially for special values
of k1 and k2: For example, with k1�k2�n;

Xn

i�1

1

(n � i)!(n � i)!
�

22n�1

G(2n � 1)
�

1

2[G(n)]2 (10)

Xn

i�1

i

(n � i)!(n � i)!
�

1

2G(n)G(n � 1)
(11)

Xn

i�1

i2

(n � i)!(n � i)!

�
1

2G(n)G(n � 1)
�

22F̃1(3; 2 � n; n � 3;�1)

G(n � 1)
: (12)

With k1�n and k2�n�1;

Xn

i�1

1

(n � i)!(n � 1 � i)!
�

4n�1

G(2n)
(13)

Xn

i�1

i

(n � i)!(n � 1 � i)!
�

1

2[G(n)]2�
22n�3

G(2n)
: (14)

With k1�n and k2�n�1;

Xn

i�1

1

(n � i)!(n � 1 � i)!

�
4n

G(2n � 2)
�

1

G(n � 1)G(n � 2)
(15)



Xn

i�1

1

(n � i)!(n � 1 � i)!

�
G(n) � G(n � 1)

2G(n) G(n � 1)G(n � 2) 
�

22n �1

G(2n � 2)
(16)

Sums of factorial POWERS include

X�
n �0

(n!)2

(2n)! 
�

2

27
18 �

ffiffiffi
3

p
p

� �
(17)

X�
n�0

(n!)3

(3n)! 
�3F2 1; 1; 1;

1

3 
;
2

3 
;

1

27

 !
(18)

�g
1

0

P(t) �Q(t)cos�1R(t)
� 

dt; (19)

where

P(t) �
2 8 � 7t2 � 7t3ð Þ

4 � t2 � t3ð Þ2 (20)

Q(t) �
4t(1 � t) 5 � t2 � t3ð Þ

4 � t2 � t3ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � t) 4 � t2 � t3ð Þ

p (21)

R(t) �1 �
1

2
t2 �t3
� �

(22)

(Schroeppel and Gosper 1972). In general,

X�
n�0

(n!)k

(kn)! 
�k Fk�1 1; . . . ; 1;|fflfflfflfflffl{zfflfflfflfflffl}

k

1

k 
;
2

k 
; . . . ;

k � 1

k
;

1

kk

0
@

1
A: (23)

Identities satisfied by sums of factorials include

X�
k �0

1

k! 
�e �2 :718281828 . . . (24)

X�
k �0

( �1)k

k!
�e�1 �0 :3678794411 . . . (25)

X�
k�0

1

ðk!Þ2 �I0 ð2 Þ�2 :279585302 . . . (26)

X�
k �0

( �1)k

(k!)2 �J0(2) �0:2238907791 . . . (27)

X�
k �0

1

(2k)! 
�cosh 1 �1:543080634 . . . (28)

X�
k �0

( �1)k

(2k)!
�cos 1 �0 :5403023058 . . . (29)

X�
k �0

1

(2k � 1)! 
�sinh 1 �1:175201193 . . . (30)

X�
k �0

( �1)k

(2k � 1)! 
�sin 1 �0 :8414709848 . . . (31)

(Spanier and Oldham 1987), where I0(x) is a MODIFIED

BESSEL FUNCTION OF THE FIRST KIND, J0(x) is a
BESSEL FUNCTION OF THE FIRST KIND, cosh x is the
HYPERBOLIC COSINE, cos x is the COSINE, sinh x is the
HYPERBOLIC SINE, and sin x is the SINE.

See also BINOMIAL SUMS, FACTORIAL, FACTORIAL

PRODUCTS
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Factorial2
DOUBLE FACTORIAL

Factoring
FACTORIZATION

Factorion
A factorion is an INTEGER which is equal to the sum of
FACTORIALS of its digits. There are exactly four such
numbers:

1 �1! (1)

2�2! (2)

145�1!�4!�5! (3)

40; 585�4!�0!�5!�8!�5! (4)

(Sloane’s A014080; Gardner 1978, Madachy 1979,
Pickover 1995). Obviously, the factorion of an n -digit
number cannot exceed n�9!:/

See also FACTORIAL, FACTORIAL SUMS
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Factorization
The determination of FACTORS (DIVISORS) of a given
INTEGER("PRIME FACTORIZATION"), POLYNOMIAL

("POLYNOMIAL FACTORIZATION"), etc. In many cases
of interest (particularly PRIME FACTORIZATION, factor-
ization is unique, and so gives the "simplest" repre-
sentation of a given quantity in terms of smaller
parts.

The terms "factorization" and "factoring" are used
synonymously.

See also FACTOR, POLYNOMIAL FACTORIZATION, PRIME

FACTORIZATION, PRIME FACTORIZATION ALGORITHMS

Fagnano’s Point
The point of coincidence of P and p? in FAGNANO’S

THEOREM.

See also FAGNANO’S THEOREM

Fagnano’s Problem

In a given ACUTE TRIANGLE DABC; find the INSCRIBED

TRIANGLE whose PERIMETER is as small as possible.
The answer is the ORTHIC TRIANGLE of DABC: The
problem was proposed and solved using calculus by
Fagnano in 1775 (Coxeter and Greitzer 1967, p. 88).

See also ACUTE TRIANGLE, ORTHIC TRIANGLE, PERI-

METER
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Fagnano’s Theorem
If P(x; y) and P(x?; y ?) are two points on an ELLIPSE

x2

a2 
�

y2

b2 
�1; (1)

with ECCENTRIC ANGLES f and f? such that

tan f tan f?�
b

a 
(2)

and A �P(a; 0) and B �P(0; b) : Then

arcBP �arcBP ?�
e2xx ?

a
� (3)

This follows from the identity

E(u; k) �E(v; k) �E(k) �k2 sn(u; k) sn(v; k); (4)

where E(u; k) is an incomplete ELLIPTIC INTEGRAL OF

THE SECOND KIND, E(k) is a complete ELLIPTIC

INTEGRAL OF THE SECOND KIND, and sn(v; k) is a
JACOBI ELLIPTIC FUNCTION. If P and p? coincide, the
point where they coincide is called FAGNANO’S POINT.

See also ELLIPSE, FAGNANO’S POINT

Fair Dice
DICE, ICOSAHEDRON

Fair Division
CAKE CUTTING

Fair Game
A GAME which is not biased toward any player.

See also FUTILE GAME, GAME, MARTINGALE

Fairy Chess
A variation of CHESS involving a change in the form of
the board, the rules of play, or the pieces used. For
example, the normal rules of chess can be used but
with a cylindrical or MÖ BIUS STRIP connection of the
edges.

See also CHESS
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Faithful Group Action
A GROUP ACTION f : G �X 0 X is called faithful if
there are no group elements g such that gx � x for
all x � X : Equivalently, the map f induces an INJEC-

TION of G into the SYMMETRIC GROUP Sx : So G can be
identified with a PERMUTATION SUBGROUP.

Most actions that arise naturally are faithful. An
example of an action which is not faithful is the action
ei(x �y) of G �R2 �f(x; y) g on X �S1 � eiuf g; i.e.,
f x; y; eiuð Þ�ei(u �x�y) :/

See also ADO’S THEOREM, EFFECTIVE ACTION, FREE

ACTION, GROUP, IWASAWA’S THEOREM, ORBIT

(GROUP), QUOTIENT SPACE (LIE GROUP), TRANSITIVE
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Falkner-Skan Differential Equation
The third-order ORDINARY DIFFERENTIAL EQUATION

y§� ayyƒ� b 1 �y?2
� �

�0:
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Fallacy
A fallacy is an incorrect result arrived at by appar-
ently correct, though actually specious reasoning. The
great Greek geometer Euclid wrote an entire book on
geometric fallacies which, unfortunately, has not
survived (Gardner 1984, p. ix).

The most common example of a mathematical fallacy
is the "proof" that 1 � 2 as follows. Let a � b , then

ab �a2 (1)

ab �b2 �a2 �b2 (2)

b(a �b) �(a �b)(a �b) (3)

b �a �b (4)

b �2b (5)

1 �2: (6)

The incorrect step is (4), in which DIVISION BY ZERO

/(a �b �0) is performed, which is not an allowed
algebraic operation. Similarly flawed reasoning can
be used to show that 0 � 1, or any number equals
any other number.

Ball and Coxeter (1987) give other such examples in
the areas of both arithmetic and geometry.

See also DIVISION BY ZERO
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Falling Factorial
For n]0; the falling factorial is defined by

(x)n�x(x�1) � � � (x�n�1); (1)

and is related to the RISING FACTORIAL x(n) (a.k.a.
POCHHAMMER SYMBOL) by

(x)n �(�1)n(�x)(n): (2)

The falling factorial can be implemented in Mathe-
matica as

FallingFactorial[x_, n_] :� (-1)Pochhammer[-

x, n]

The falling factorial is also called a binomial poly-
nomial or lower factorial.

Unfortunately, there are two notations used for the
falling and rising factorials, (x)n and x(n); which are
unfortunately polar opposites of one another. In
combinatorial usage, the falling factorial is denoted
(x)n and the RISING FACTORIAL is denoted (x)(n)

(Comtet 1974, p. 6; Roman 1984, p. 5; Hardy 1999,
p. 101), whereas in the calculus of FINITE DIFFER-

ENCES and the theory of special functions, the falling
factorial is denoted x(n) and the RISING FACTORIAL is
denoted (x)n (Roman 1984, p. 5; Abramowitz and
Stegun 1972, p. 256; Spanier 1987). Extreme caution
is therefore needed in interpreting the meanings of
the notations (x)n and x(n): In this work, the notation
(x)n is used for the falling factorial , potentially
causing confusion with the POCHHAMMER SYMBOL

(another name for the RISING FACTORIAL, which is
universally denoted (x)n):/

The first few falling factorials are

(x)0�1



(x)1 �x

(x)2 �x(x �1) �x2 �x

(x)3 �x(x �1)(x �2) �x3 �3x2 �2x

(x)4 �x(�1)(x �2)(x �3) �x4 �6x3 �11x2 �6x:

A sum formula connecting the falling factorial (x)n

and rising factorial x(n) ;

(x)n �
Xn

k �0

cnkx(k) ; (3)

is given using the Sheffer formalism with

g(t) �1 (4)

f (t) �et �1 (5)

h(t) �1 (6)

l(t) �1 �e �t ; (7)

which gives the GENERATING FUNCTION

X�
n �0

tn(x)

n!
tn �

X�
n�0

1

n!

Xn

k �0

cnkxktk �etx=(1�t) ; (8)

�1 �xt �
1

2
x2 �2x
� �

t2 �
1

6
x3 �6x2 �6x
� �

t3

�
1

24
x4 �12x3 �36x2 �24x
� �

t4 �. . . ; (9)

where

tn(x) �
Xn

k �0

cnkxk : (10)

Reading the coefficients off gives

c00 �1

c11 �1 c10 �0

c22 �1 c21 ��2 c20 �0

c33 �1 c32 ��6 c31 �6 c30 �0;

so,

(x)0 �x(0) (11)

(x)1 �x(1) (12)

(x)2 �x(2) �2x(1) (13)

(x)3 �x(3) �6x(2) �6x(1) ; (14)

etc. (and the formula given by Roman 1984, p. 133, is
incorrect).

The falling factorial is an associated SHEFFER SE-

QUENCE with

f (t) ¼ et �1 (15)

(Roman 1984, p. 29), and has GENERATING FUNCTION

X�
k �0

(x)k

k!
tk �ex ln(1�t) �(1 �t)x ; (16)

which is equivalent to the BINOMIAL THEOREM

X�
k �0

x
k

� �
tk �(1 �t)x � (17)

The binomial identity of the SHEFFER SEQUENCE is

(x �y)n �
Xn

k �0

n
k

� �
(x)k(y)n�k ; (18)

where n
k

� �
is a BINOMIAL COEFFICIENT, which can be

rewritten as

x �y
n

� �
�
X�
k�0

x
k

� �
y

n �k

� �
; (19)

known as the CHU-VANDERMONDE IDENTITY. The
falling factorials obey the RECURRENCE RELATION

x(x)n �(x)n�1 �n(x)n (20)

(Roman 1984, p. 61).

See also BINOMIAL THEOREM, CENTRAL FACTORIAL,
CHU-VANDERMONDE IDENTITY, RISING FACTORIAL,
SHEFFER SEQUENCE
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False
A statement which is rigorously not TRUE. Regular
two-valued LOGIC allows statements to be only TRUE

or false, but FUZZY LOGIC treats "truth" as a con-
tinuum which can have a value between 0 and 1. The
symbol ] is sometimes used to denote "false,"
although "F" is more commonly used in TRUTH

TABLES.

See also ALETHIC, BOOLEANS, FUZZY LOGIC, LOGIC,
TRUE, TRUTH TABLE, UNDECIDABLE



False Position Method
METHOD OF FALSE POSITION

False Spiral
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Faltung (Form)
Let A and B be bilinear forms

A �A(x; y) �
XX

aijxiyi

B �B(x; y) �
XX

bijxiyi

and suppose that A and B are bounded in [p ;p ?] with
bounds M and N . Then

F �F(A;B) �
XX

fijxiyj ;

where the series

fij �
X

k

aikbkj

is absolutely convergent, is called the faltung of A
and B . F is bounded in [p ;p ?]; and its bound does not
exceed MN .
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Faltung (Function)
CONVOLUTION

Family Number
HOME PRIME

Fan
A SPREAD in which each node has a FINITE number of
children.

See also SPREAD (TREE)

Fano Configuration
FANO PLANE

Fano Plane

The 2-D finite PROJECTIVE PLANE over GF(2) ("of
order two"), illustrated above. It is a BLOCK DESIGN

with n �7 ; k �3, l �1 ; r �3, and b �7, the STEINER

TRIPLE SYSTEM S(7) ; and the unique 73 CONFIGURA-

TION.
The Fano plane also solves the TRANSYLVANIA LOT-

TERY, which picks three numbers from the INTEGERS

1 �/4. Using two Fano planes we can guarantee
matching two by playing just 14 times as follows.
Label the VERTICES of one Fano plane by the INTE-

GERS 1 �/, the other plane by the INTEGERS 8 �/4. The 14
tickets to play are the 14 lines of the two planes. Then
if (a; b ; c) is the winning ticket, at least two of a ; b; c
are either in the interval [1, 7] or [8, 14]. These two
numbers are on exactly one line of the corresponding
plane, so one of our tickets matches them.

The Lehmers (1974) found an application of the Fano
plane for factoring INTEGERS via QUADRATIC FORMS.
Here, the triples of forms used form the lines of the
PROJECTIVE GEOMETRY on seven points, whose planes
are Fano configurations corresponding to pairs of
residue classes mod 24 (Lehmer and Lehmer 1974,
Guy 1975, Shanks 1985). The group of AUTOMORPH-

ISMS (incidence-preserving BIJECTIONS) of the Fano
plane is the SIMPLE GROUP of ORDER 168 (Klein 1870).

See also CONFIGURATION, DESIGN, PROJECTIVE

PLANE, STEINER TRIPLE SYSTEM, TRANSYLVANIA LOT-

TERY
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Fano’s Axiom
The three diagonal points of a COMPLETE QUADRILAT-

ERAL are never COLLINEAR.

Far Out
A phrase used by Tukey to describe data points which
are outside the outer FENCES.

See also FENCE



References
Tukey, J. W. Explanatory Data Analysis. Reading, MA:

Addison-Wesley, p. 44, 1977.

Farey Fraction
FAREY SEQUENCE

Farey Sequence
The Farey sequence Fn for any POSITIVE INTEGER n is
the set of irreducible RATIONAL NUMBERS a=b with 0 5
a 5b 5n and (a ; b) �1 arranged in increasing order.
The first few are

F1 �
0

1 
;
1

1

( )
(1)

F2 �
0

1 
;
1

2 
;
1

1

( )
(2)

F3 �
0

1 
;
1

3 
;
1

2 
;
2

3 
;
1

1

( )
(3)

F4 �
0

1 
;
1

4 
;
1

3 
;
1

2 
;
2

3 
;
3

4 
;
1

1

( )
(4)

F5 �
0

1 
;
1

5 
;
1

4 
;
1

3 
;
2

5 
;
1

2 
;
3

5 
;
2

3 
;
3

4 
;
4

5 
;
1

1

( )
(5)

(Sloane’s A006842 and A006843). Except for F1 ; each
Fn has an ODD number of terms and the middle term
is always 1/2.

Let p=q ; p?=q ?; and p ƒ=qƒ be three successive terms in
a Farey series. Then

qp ?�pq ?�1 (6)

p ?

q?
�

p � p ƒ

q � q ƒ
� (7)

These two statements are actually equivalent (Hardy
and Wright 1979, p. 24). For a method of computing a
successive sequence from an existing one of n terms,
insert the MEDIANT fraction (a �b) =(c �d) between
terms a=c and b=d when c �d 5n (Hardy and Wright
1979, pp. 25 �/6; Conway and Guy 1996; Apostol 1997).
Given 0 5a =b Bc =d 51 with bc �ad �1; let h=k be
the MEDIANT of a=b and c =d: Then a =b Bh=k Bc =d;
and these fractions satisfy the unimodular relations

bh �ak ¼ 1 (8)

ck �dh �1 (9)

(Apostol 1997, p. 99).

The number of terms N(n) in the Farey sequence for
the INTEGER n is

N(n) �1 �
Xn

k �1

f(k) �1 �F(n); (10)

where f(k) is the TOTIENT FUNCTION and F(n) is the
SUMMATORY FUNCTION of f(k); giving 2, 3, 5, 7, 11, 13,
19, ... (Sloane’s A005728). The asymptotic limit for the
function N(n) is

N(n)

3n2

p2
�0:3039635509n2 (11)

(Vardi 1991, p. 155).

FORD CIRCLES provide a method of visualizing the
Farey sequence. The Farey sequence Fn defines a
subtree of the STERN-BROCOT TREE obtained by
pruning unwanted branches (Graham et al. 1994).

See also FORD CIRCLE, MEDIANT, MINKOWSKI’S QUES-

TION MARK FUNCTION, RANK (SEQUENCE), STERN-

BROCOT TREE
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Farkas’s Lemma
The system

Ax ¼ x; x ]0

has no solution IFF the system

ATw 50; bT > 0

has a solution (Fang and Puthenpura 1993, p. 60).
This LEMMA is used in the proof of the KUHN-TUCKER

THEOREM.

See also KUHN-TUCKER THEOREM, LAGRANGE MULTI-

PLIER
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Faro Shuffle
RIFFLE SHUFFLE

Far-Out Point
For a TRIANGLE with side lengths a , b , and c , the far-
out point has TRIANGLE CENTER FUNCTION

a�a b4�c4�a4�b2c2
� �

:

As a : b : c approaches 1 : 1 : 1; this point moves out
along the EULER LINE to infinity.
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Fast Fibonacci Transform
For a general second-order RECURRENCE RELATION

fn�1�xfn�yfn�1; (1)

define a multiplication rule on ordered pairs by

(A;B)(C;D)�(AD�BC�xAC;BD�yAC): (2)

The inverse is then given by

(A;B)�1�
(�A; xA � B)

B2 � xAB � yA2
; (3)

and we have the identity

f1; yf0ð Þ(1; 0)n� fn�1; yfn

� �
(4)

(Beeler et al. 1972, Item 12).
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Fast Fourier Transform
The fast Fourier transform (FFT) is a DISCRETE

FOURIER TRANSFORM ALGORITHM which reduces the
number of computations needed for N points from
2N2 to 2N lgN; where LG is the base-2 LOGARITHM. If
the function to be transformed is not harmonically
related to the sampling frequency, the response of an
FFT looks like a SINC FUNCTION (although the
integrated POWER is still correct). ALIASING (LEAKAGE)
can be reduced by APODIZATION using a TAPERING

FUNCTION. However, ALIASING reduction is at the
expense of broadening the spectral response.

FFTs were first discussed by Cooley and Tukey
(1965), although Gauss had actually described the
critical factorization step as early as 1805 (Gergkand
1969, Strang 1993). A DISCRETE FOURIER TRANSFORM

can be computed using an FFT by means of the
DANIELSON-LANCZOS LEMMA if the number of points
N is a POWER of two. If the number of points N is not a
POWER of two, a transform can be performed on sets of
points corresponding to the prime factors of N which
is slightly degraded in speed. An efficient real Fourier
transform algorithm or a fast HARTLEY TRANSFORM

(Bracewell 1999) gives a further increase in speed by
approximately a factor of two. Base-4 and base-8 fast
Fourier transforms use optimized code, and can be
20�/0% faster than base-2 fast Fourier transforms.
PRIME factorization is slow when the factors are large,
but discrete Fourier transforms can be made fast for
N�2, 3, 4, 5, 7, 8, 11, 13, and 16 using the WINOGRAD

TRANSFORM ALGORITHM (Press et al. 1992, pp. 412�/

13, Arndt).

Fast Fourier transform algorithms generally fall into
two classes: decimation in time, and decimation in
frequency. The Cooley-Tukey FFT ALGORITHM first
rearranges the input elements in bit-reversed order,
then builds the output transform (decimation in
time). The basic idea is to break up a transform of
length N into two transforms of length N=2 using the
identity

XN�1

n�0

ane�2pink=N

�
XN=2�1

n�0

a2ne�2pi(2n)k=N�
XN=2�1

n�0

a2n�1e�2pi(2n�1)k=N

�
XN=2�1

n�0

aeven
n e�2pink=(N=2)�e�2pik=N


XN=2�1

n�0

aodd
n e�2pink=(N=2);

sometimes called the DANIELSON-LANCZOS LEMMA.



The easiest way to visualize this procedure is perhaps
via the FOURIER MATRIX.

The Sande-Tukey ALGORITHM (Stoer and Bulirsch
1980) first transforms, then rearranges the output
values (decimation in frequency).

See also DANIELSON-LANCZOS LEMMA, DISCRETE

FOURIER TRANSFORM, FOURIER MATRIX, FOURIER

TRANSFORM, HARTLEY TRANSFORM, NUMBER THEORE-

TIC TRANSFORM, WINOGRAD TRANSFORM
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Fast Gossiping
GOSSIPING

Fat Fractal
A CANTOR SET with LEBESGUE MEASURE greater than
0.

See also CANTOR SET, EXTERIOR DERIVATIVE, FRAC-

TAL, LEBESGUE MEASURE
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Fatou Dust
FATOU SET

Fatou Set
A JULIA SET J consisting of a set of isolated points
which is formed by taking a point outside an under-
lying set M (e.g., the MANDELBROT SET). If the point is
outside but near the boundary of M , the Fatou set
resembles the JULIA SET for nearby points within M .
As the point moves further away, however, the set
becomes thinner and is called FATOU DUST.

See also JULIA SET
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Fatou’s Lemma
If ffn g is a SEQUENCE of NONNEGATIVE measurable
functions, then

g lim inf
n0�

fndm5lim inf
n0� g fndm:

See also ALMOST EVERYWHERE CONVERGENCE, MEA-

SURE THEORY, POINTWISE CONVERGENCE
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Fatou’s Theorems
Let f (u) be LEBESGUE INTEGRABLE and let

f (r; u)�
1

2pg
p

�p
f (t)

1 � r2

1 � 2r cos(t � u) � r2
dt (1)

be the corresponding POISSON INTEGRAL. Then AL-

MOST EVERYWHERE in�p5u5p

lim
r00�

f (r; u)�f (u): (2)

Let

F(z)�c0�c1z�c2z2�. . .�cnzn�. . . (3)

be regular for ½z½B1; and let the integral



1

2pg
p

�p
½F(reiu) ½2du (4)

be bounded for r B1. This condition is equivalent to
the convergence of

½C0 ½
2 � ½C1 ½

2 �. . .�½Cn ½
2 �. . .  (5)

Then almost everywhere in �p5 u 5p;

lim
r00�

F(reiu) �F(ei u) : (6)

Furthermore, F(eiu) is measurable, ½F(eiu) ½2 is LEBES-

GUE INTEGRABLE, and the FOURIER SERIES of F(ei u) is
given by writing z �eiu :/
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Faulhaber’s Formula
In a 1631 edition of Academiae Algebrae , J. Faulha-
ber published the general formula for the POWER SUM

of the first n POSITIVE INTEGERS,

Xn

k�1

kp �
1

p � 1

Xp�1

i�1

�1ð Þdip
p �1

i

� �
Bp�1 �in

i ; (1)

where dip is the KRONECKER DELTA, n
i

� �
is a BINOMIAL

COEFFICIENT, and Bi is the ith BERNOULLI NUMBER.
Computing the sums for p � 1, ..., 10 gives

Xn

k �1

k �
1

2
n2 �n
� �

(2)

Xn

k �1

k2 �
1

6
2n3 �3n2 �n
� �

(3)

Xn

k �1

k3 �
1

4
n4 �2n3 �n2
� �

(4)

Xn

k�1

k4 �
1

30
6n5 �15n4 �10n3 �n
� �

(5)

Xn

k �1

k5 �
1

12
2n6 �6n5 �5n4 �n2
� �

(6)

Xn

k �1

k6 �
1

42
6n7 �21n6 �21n5 �7n3 �n
� �

(7)

Xn

k�1

k7 �
1

24
3n8 �12n7 �14n6 �7n4 �2n2
� �

(8)

Xn

k �1

k8 �
1

90
10n9 �45n8 �60n7 �42n5 �20n3 �3n
� �

(9)

Xn

k �1

k9 �
1

20
2n10 �10n9 �15n8 �14n6 �10n4 �3n2
� �

(10)

Xn

k �1

k10 �
1

66
6n11 �33n10 �55n9 �66n5 �33n3 �5n
� �

:

(11)

See also POWER, POWER SUM, SUM
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Fault-Free Rectangle

A DISSECTION of a RECTANGLE into smaller RECTAN-

GLES such that the original rectangle is not divided
into two subrectangles. Rectangle dissections into 3,
4, or 6 pieces cannot be fault-free but, as illustrated
above, a dissection into five or more pieces may be
fault-free.

See also BLANCHE’S DISSECTION, MRS. PERKINS’

QUILT, PERFECT SQUARE DISSECTION, RECTANGLE
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Favard Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let Tn(x) be an arbitrary trigonometric POLYNOMIAL

Tn(x)�
1

2
a0�

Xn

k�1

ak cos(kx)�bk sin(kx)½ 

( )

; (1)

where the COEFFICIENTS are real. Let the rth deriva-
tive of Tn(x) be bounded in [�1; 1]; then there exists a
POLYNOMIAL Tn(x) for which

f (x)�Tn(x)j j5 Kr

(n � 1)r ; (2)

for all x , where Kr is the r th Favard constant, which
is the smallest constant possible,

Kr�
4

p

X�
k�0

(�1)k

2k � 1

" #r�1

; (3)



which can be written in terms of the LERCH TRANS-

CENDENT as

Kr �2 �(r�1) F (�1)r�1 ; r �1;
1

2

 !
: (4)

These can be expressed by

Kr �

4

p 
l(r �1) for r odd

4

p 
b(r �1) for r even ;

8>>><
>>>: (5)

where l(x) is the DIRICHLET LAMBDA FUNCTION and
b(x) is the DIRICHLET BETA FUNCTION. Explicitly,

K0 �1

K1 �
1

2 
p

K2 �
1

8 
p2

K3 �
1

24 
p3

K4 �
5

384 
p4

K5 ¼
1

240 
p5

(Sloane’s A050970 and A050971).

See also DIRICHLET BETA FUNCTION, DIRICHLET

LAMBDA FUNCTION
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F-Distribution
A continuous statistical distribution which arises in
the testing of whether two observed samples have the
same VARIANCE. Let x2

m and x2
n be independent

variates distributed as CHI-SQUARED with m and n
DEGREES OF FREEDOM. Define a statistic Fn;m as the
ratio of the dispersions of the two distributions

Fn;m �
x2

n =n

x2
m =m 

: (1)

This statistic then has an F -distribution with prob-
ability function fn;m(x) and cumulative distribution
function Fn;m(x) given by

fn;m(x) �

G
n � m

2

 !
nn=2mm=2

G
n

2

 !
G

m

2

 ! xn=2 �1

(m � nx)(n�m)=2 (2)

�
mm=2nn=2xn=2 �1

(m � nx)(n�m)=2B
1

2 
n;

1

2 
m

 ! (3)

Fn ;m(x) �I 1;
1

2 
m;

1

2 
n

 !
�I

m

m � nx
;
1

2 
m;

1

2
n

 !
; (4)

where G(z) is the GAMMA FUNCTION, B(a; b) is the BETA

FUNCTION, and I(x; a; b) is the REGULARIZED BETA

FUNCTION. The MEAN, VARIANCE, SKEWNESS and
KURTOSIS are

m �
m

m � 2 
(5)

s2 �
2m2(m � n � 2)

n(m � 2)2(m � 4) 
(6)

g1 �
2(m � 2n � 2)

m � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m � 4)

n(m � n � 2)

s
(7)

g2 �
12 �16 � 20m � 8m2 � m3 � 44nð Þ

n(m � 6)(m � 8)(n � m � 2)

�
12 �32mn � 5m2n � 22n2 � 5mn2ð Þ

n(m � 6)(m � 8)(n � m � 2)
: (8)

The probability that F would be as large as it is if the
first distribution has a smaller variance than the
second is denoted Q(Fn ;m) :/

The noncentral F -distribution is given by

P(x)�e�l=2� ln1xð Þ= 2 n2�n1xð Þ½ 
nn1=2
1 nn2=2

2 xn1=2�1

 n2�n1xð Þ� n1�n2ð Þ=2

�

G
1

2
n1

 !
G 1 �

1

2
n2

 !
Ln1=2�1

n2=2 �
ln1x

2 n2 � n1xð Þ

 !

B
1

2
n1;

1

2
n2

 !
G

1

2
n1 � n2ð Þ

" # ;

(9)

where G(z) is the GAMMA FUNCTION, B(a;b) is the BETA

FUNCTION, and Ln
m(z) is an associated LAGUERRE

POLYNOMIAL.

See also BETA FUNCTION, GAMMA FUNCTION, HO-

TELLING T -SQUARED DISTRIBUTION, REGULARIZED

BETA FUNCTION, SNEDECOR’S F -DISTRIBUTION
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Feigenbaum Constant
A universal constant for functions approaching CHAOS

via period doubling. It was discovered by Feigenbaum
in 1975 and demonstrated rigorously by Lanford
(1982) and Collet and Eckmann (1979, 1980). The
Feigenbaum constant d characterizes the geometric
approach of the bifurcation parameter to its limiting
value. Let mk be the point at which a period 2k cycle
becomes unstable. Denote the converged value by m�:
Assuming geometric convergence, the difference be-
tween this value and mk is denoted

lim
k 0�

m�� mk �
G
dk 

; (1)

where G is a constant and d is a constant > 1: Solving
for d gives

d � lim
n0�

mn �1 � mn

mn�2 � mn�1

(2)

(Rasband 1990, p. 23). For the LOGISTIC EQUATION,

d �4 :669201609102990 . . . (3)

G�2 :637 . . . (4)

m��3:5699456 . . . (5)

Stoschek gives the approximation

d �4

1 �
122

163
�

4 :122 � 31

4 :1632
� . . .

1 �
102

163
�

102 � 30

1632
� . . .

(6)

:4:66920160933975:

Amazingly, the Feigenbaum constant d :4:669 is
"universal" (i.e., the same) for all 1-D MAPS f (x) if
f (x) has a single locally quadratic MAXIMUM. More
specifically, the Feigenbaum constant is universal for
1-D MAPS if the SCHWARZIAN DERIVATIVE

DSchwarzian �
f §(x)

f ?(x)
�

3

2

f ƒ(x)

f ?(x)

" #2

(7)

is NEGATIVE in the bounded interval (Tabor 1989,
p. 220). Examples of maps which are universal
include the HÉ NON MAP, LOGISTIC MAP, LORENZ

SYSTEM, Navier-Stokes truncations, and sine map
xn�1 �a sin( pxn) : The value of the Feigenbaum con-
stant can be computed explicitly using functional
group renormalization theory. The universal constant
also occurs in phase transitions in physics and,
curiously, is very nearly equal to

p�tan �1 e pð Þ�4:669201932 . . . (8)

For an AREA-PRESERVING 2-D MAP with

xn�1 �f xn ; ynð Þ  (9)

yn �1 �g xn ; ynð Þ; (10)

the Feigenbaum constant is d �8 :7210978 . . . (Tabor
1989, p. 225). For a function OF THE FORM

f (x) �1 �a ½x½n (11)

with a and n constant and n an INTEGER, the
Feigenbaum constant for various n is given in the
following table (Briggs 1991, Briggs et al. 1991,
Finch), which updates the values in Tabor (1989,
p. 225).

n / d/ /a/

3 5.9679687038... 1.9276909638...

4 7.2846862171... 1.6903029714...

5 8.3494991320... 1.5557712501...

6 9.2962468327... 1.4677424503...

An additional constant a; defined as the separation of
adjacent elements of PERIOD DOUBLED ATTRACTORS

from one double to the next, has a value

lim
n0�

dn

dn � 1
��a��2:502907875 . . . (12)

for "universal" maps (Rasband 1990, p. 37). This
value may be approximated from functional group
renormalization theory to the zeroth order by

1�a�1�
1 � a�2

1 � a�2 1 � a�1ð Þ½ 
2
; (13)

which, when the QUINTIC EQUATION is numerically
solved, gives a��2:48634 . . . ; only 0.7% off from the
actual value (Feigenbaum 1988).

See also ATTRACTOR, BIFURCATION, FEIGENBAUM

FUNCTION, LINEAR STABILITY, LOGISTIC EQUATION,
PERIOD DOUBLING
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Feigenbaum Function
Consider an arbitrary 1-D MAP

xn�1 �F xnð Þ  (1)

at the onset of CHAOS. After a suitable rescaling, the
Feigenbaum function

g(x) � lim
n0�

1

F 2nð Þ(0)
F 2

nð Þ xF 2
nð Þ(0)

� �
(2)

is obtained. This function satisfies

g(g(x)) ��
1

a 
g( ax) ; (3)

with a �2 :50290 . . . ; a quantity related to the FEI-

GENBAUM CONSTANT.

See also BIFURCATION, CHAOS, FEIGENBAUM CON-

STANT
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Feit-Thompson Conjecture
The conjecture that there are no PRIMES p and q for
which (pq �1)=(p �1) and (qp �1)=(q �1) have a
common factor. Parker noticed that if this were
true, it would greatly simplify the lengthy proof of
the FEIT-THOMPSON THEOREM (Guy 1994, p. 81).
However, the counterexample (p �17 ; q �3313) with
a common factor 112,643 was subsequently found by
Stephens (1971). There are no other such pairs with
both values less than 400,000.

See also FEIT-THOMPSON THEOREM
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Feit-Thompson Theorem
Every FINITE SIMPLE GROUP (which is not CYCLIC) has
EVEN ORDER, and the ORDER of every FINITE SIMPLE

noncommutative group is DOUBLY EVEN, i.e., divisible
by 4 (Feit and Thompson 1963).

See also BURNSIDE PROBLEM, FEIT-THOMPSON CON-

JECTURE, FINITE GROUP, ORDER (GROUP), SIMPLE

GROUP
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Fejes Tóth’s Integral

1

2p(n � 1) g
p

�p
f (x)

sin
1

2
(n � 1)x

" #

sin
1

2
x

 !
8>>>><
>>>>:

9>>>>=
>>>>;

2

dx

gives the nth CESÀRO MEAN of the FOURIER SERIES of
f (x):/
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Fejes Tóth’s Problem
SPHERICAL CODE

Feldman’s Theorem

Any nondegenerate closed SPACE CURVE may be
nondegenerately deformed into either of the two
curves illustrated above. Neither of these can be
nondegenerately transformed into the other.
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Feller’s Coin-Tossing Constants
COIN TOSSING

Feller-Lévy Condition
Given a sequence of independent random variates X1 ;
X2 ; ..., if s

2
k �var(Xk) and

r2
n �max

k5n

s2
k

s2
n

 !
;

then

lim
n0�

r2
n �0:

This means that if the LINDEBERG CONDITION holds
for the sequence of variates X1 ; ..., then the VARIANCE

of an individual term in the sum Sn of Xk is
asymptotically negligible. For such sequences, the
LINDEBERG CONDITION is NECESSARY as well as
SUFFICIENT for the LINDEBERG-FELLER CENTRAL LIMIT

THEOREM to hold.

See also BERRY-ESSÉ EN THEOREM, CENTRAL LIMIT

THEOREM, LINDEBERG CONDITION
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Fence
Values one STEP outside the HINGES are called inner
fences, and values two steps outside the HINGES are
called outer fences. Tukey calls values outside the
outer fences FAR OUT.

See also ADJACENT VALUE
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Fence Poset
A PARTIAL ORDER defined by /(i �1); i ), /(i �1); i ) for
ODD i .

See also PARTIAL ORDER
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Ferguson-Forcade Algorithm
The first practical algorithm for determining if there
exist integers ai for given real numbers xi such that

a1x1 �a2x2 �. . .�anxn �0 ;

or else establish bounds within which no such
INTEGER RELATION can exist (Ferguson and Forcade
1979). The algorithm therefore became the first viable
generalization of the EUCLIDEAN ALGORITHM to n ]3
variables.

A nonrecursive variant of the original algorithm was
subsequently devised by Ferguson (1987). The Fer-
guson-Forcade algorithm has been shown to be
polynomial-time in the logarithm in the size of a
smallest relation, but has not been shown to be
polynomial in dimension (Ferguson et al. 1999).

See also CONSTANT PROBLEM, EUCLIDEAN ALGO-

RITHM, INTEGER RELATION, PSLQ ALGORITHM
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Fermat 4n �1 Theorem
Every PRIME p OF THE FORM p �4n �1 is a sum of two
SQUARE NUMBERS in one unique way (up to the order
of SUMMANDS). The theorem was stated by Fermat,
but the first published proof was by Euler.

The first few primes p which are 1 or 2 (mod 4) are 2,
5, 13, 17, 29, 37, 41, 53, 61, ... (Sloane’s A002313)
(with the only prime congruent to 2 mod 4 being 2).
The numbers (x, y ) such that x2 �y2 equal these
primes are (1, 1), (1, 2), (2, 3), (1, 4), (2, 5), (1, 6), ...
(Sloane’s A002331 and A002330).

See also SIERPINSKI’S PRIME SEQUENCE THEOREM,
SQUARE NUMBER
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Fermat Compositeness Test
The COMPOSITENESS TEST consisting of the applica-
tion of FERMAT’S LITTLE THEOREM

Fermat Conic
A PLANE CURVE OF THE FORM y �xn : For n �0, the
curve is a generalized PARABOLA; for n B0 it is a
generalized HYPERBOLA.

See also CONIC SECTION, HYPERBOLA, PARABOLA

Fermat Difference Equation
PELL EQUATION

Fermat Diophantine Equation
PELL EQUATION

Fermat Elliptic Curve Theorem
The only whole number solution to the DIOPHANTINE

EQUATION

y3 �x2 �2

is y �3, x �95: This theorem was offered as a
problem by Fermat , who suppressed his own proof.

Fermat Equation
The DIOPHANTINE EQUATION

xn �yn �zn :

The assertion that this equation has no nontrivial
solutions for n �2 has a long and fascinating history
and is known as FERMAT’S LAST THEOREM.

See also FERMAT’S LAST THEOREM

Fermat Number
A BINOMIAL NUMBER OF THE FORM Fn �22n 

�1 : The
first few for n � 0, 1, 2, ... are 3, 5, 17, 257, 65537,
4294967297, ... (Sloane’s A000215). The number of
DIGITS for a Fermat number is

D(n) � log 22n 

�1
� �� 

�1
& '

: log 22n� �
�1

& '
� 2n log2 �1b c: (1)

Being a Fermat number is the NECESSARY (but not
SUFFICIENT) form a number

Nn�2n�1 (2)

must have in order to be PRIME. This can be seen by
noting that if Nn�2n�1 is to be PRIME, then n
cannot have any ODD factors b or else Nn would be a
factorable number OF THE FORM

2n�1� 2að Þb�1� 2a�1ð Þ

 2a(b�1)�2a(b�2)�2a(b�3)�. . .�1
� 

: (3)

Therefore, for a PRIME Nn; n must be a POWER of 2. No
two Fermat numbers have a common divisor greater
than 1 (Hardy and Wright 1979, p. 14).

Fermat conjectured in 1650 that every Fermat num-
ber is PRIME and Eisenstein (1844) proposed as a
problem the proof that there are an infinite number of
Fermat primes (Ribenboim 1996, p. 88). At present,
however, only COMPOSITE Fermat numbers Fn are
known for n]5: An anonymous writer proposed that
numbers OF THE FORM 22�1; 222

�1; 2222

�1 were
PRIME. However, this conjecture was refuted when
Selfridge (1953) showed that

F16�2216

�1�22222

�1 (4)

is COMPOSITE (Ribenboim 1996, p. 88). Numbers OF

THE FORM a2n

�b2n

are called generalized Fermat
numbers (Ribenboim 1996, pp. 359�/60).

Fermat numbers satisfy the RECURRENCE RELATION

Fm�F0F1 . . . Fm�1�2: (5)

/Fn can be shown to be PRIME IFF it satisfies PÉPIN’S

TEST



3(Fn�1)=2��1(mod Fn): (6)

PÉPIN’S THEOREM

322n�1

��1(mod Fn) (7)

is also NECESSARY and SUFFICIENT.

In 1770, Euler showed that any FACTOR of Fn must
have the form

2n�1K�1; (8)

where K is a POSITIVE INTEGER. In 1878, Lucas
increased the exponent of 2 by one, showing that
FACTORS of Fermat numbers must be OF THE FORM

2n�2L�1: (9)

If

F�p1p2 . . . pr (10)

is the factored part of Fn�FC (where C is the
cofactor to be tested for primality), compute

A�3Fn�1 (mod Fn) (11)

B�3F�1 (mod Fn) (12)

R�A�B (mod C): (13)

Then if R�0; the cofactor is a PROBABLE PRIME to the
base 3F ; ; otherwise C is COMPOSITE.

In order for a POLYGON to be circumscribed about a
CIRCLE (i.e., a CONSTRUCTIBLE POLYGON), it must have
a number of sides N given by

N�2kF0 . . . Fn; (14)

where the Fn are distinct Fermat primes (as stated by
Gauss and first published by Wantzel 1836). This is
equivalent to the statement that the trigonometric
functions sin(kp=N); cos(kp=N); etc., can be computed
in terms of finite numbers of additions, multiplica-
tions, and square root extractions IFF N is of the
above form. The only known Fermat PRIMES are

F0�3

F1�5

F2�17

F3�257

F4�65537

and it seems unlikely that any more exist.

Factoring Fermat numbers is extremely difficult as a
result of their large size. In fact, only F5 to F11 have
been complete factored, as summarized in the follow-
ing table. Written out explicitly, the complete factor-
izations are

F5�641�6700417

F6�274177�67280421310721

F7�59649589127497217�5704689200685129054721

F8�1238926361552897

�93461639715357977769163 � � �

� � � 558199606896584051237541638188580280321

F9�2424833

�74556028256478842083373957362004 � � �

� � � 54918783366342657�P99

F10�45592577�6487031809�46597757852200185 � � �

� � � 43264560743076778192897�P252

F11�319489�974849�167988556341760475137

�3560841906445833920513�P564:

Here, the final large PRIME is not explicitly given
since it can be computed by dividing Fn by the other
given factors.

The following table summarizes the properties of
completely factored Fermat numbers.

/Fn/ Digits Factors Digits Reference

5 10 2 3, 7 Euler 1732

6 20 2 6, 14 Landry 1880

7 39 2 7, 22 Morrison and
Brillhart 1975

8 78 2 16, 62 Brent and Pollard
1981

9 155 3 7, 49, 99 Manasse and
Lenstra (In Cipra
1993)

10 309 4 8, 10, 40,
252

Brent 1995

11 617 5 6, 6, 21,
22, 564

Brent 1988

Tables of known factors of Fermat numbers are given
by Keller (1983), Brillhart et al. (1988), Young and
Buell (1988), Riesel (1994), and Pomerance (1996).
Young and Buell (1988) discovered that F20 is COM-

POSITE, and Crandall et al. (1995) that F22 is
COMPOSITE. In 1999, Crandall et al. showed that F24

is COMPOSITE. A current list of the known factors of
Fermat numbers is maintained by Keller, and repro-
duced in the form of a Mathematica notebook by
Weisstein. In these tables, since all factors are OF THE

FORM k2n�1; the known factors are expressed in the
concise form (k, n ). The number of factors for Fermat



numbers Fn for n � 0, 1, 2, ... are 1, 1, 1, 1, 1, 2, 2, 2,
2, 3, 4, 5, ....

See also CULLEN NUMBER, PÉ PIN’S TEST, PÉ PIN’S

THEOREM, POCKLINGTON’S THEOREM, POLYGON,
PROTH’S THEOREM, SELFRIDGE-HURWITZ RESIDUE,
WOODALL NUMBER
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Fermat Number (Lucas)
A number OF THE FORM 2n�1 obtained by setting
x�1 in a FERMAT POLYNOMIAL is called a MERSENNE

NUMBER.

See also FERMAT-LUCAS NUMBER, MERSENNE NUM-

BER



Fermat Points
In a given ACUTE TRIANGLE DABC; the Fermat point
X (or "first Fermat point" F1 ; also called the Torricelli
point) is the point which minimizes the sum of
distances from A , B , and C ,

AXj j�BXj j�CXj j: (1)

This problem is called FERMAT’S PROBLEM or STEI-

NER’S PROBLEM (Courant and Robbins 1941) and was
proposed by Fermat to Torricelli. Torricelli’s solution
was published by his pupil Viviani in 1659 (Johnson
1929).

If all ANGLES of the TRIANGLE are less than 1208 /

2p=3ð Þ; then the Fermat point is the interior point X
from which each side subtends an ANGLE of 1208, i.e.,

�BXC ��CXA ��AXB �120( : (2)

The Fermat point can be constructed by drawing
EQUILATERAL TRIANGLES on the outside of the given
TRIANGLE and connecting opposite VERTICES. The
three diagonals in the figure then intersect in the
Fermat point. Similarly, the second Fermat point F2

is constructed using equilateral triangles pointing
inwards. The Fermat points are also known as the
isogonic centers, since they are ISOGONAL CONJU-

GATES of the ISODYNAMIC POINTS.

The TRIANGLE CENTER FUNCTIONS of the Fermat
points are

a1 �csc A �
1

3 
p

 !
(3)

bc c2a2 �(c2 �a2 �b2)2
h i

a2b2 �(a2 �b2 �c2)2
h i

 4 D�
ffiffiffi
3

p
(b2 �c2 �d2)

h i
(4)

a2 �csc A �
1

3 
p

 !
(5)

The ANTIPEDAL TRIANGLE of F1 is EQUILATERAL and
has AREA

D?�2 D 1 �cot v cot
p
3

 !" #
; (6)

where v is the BROCARD ANGLE. The ANTIPEDAL

TRIANGLE of F2 is also an EQUILATERAL and has AREA

2 D� �1 �cot v cot
1

3
p

 !" #
: (7)

Given three POSITIVE REAL NUMBERS l;m;n; the
"generalized" Fermat point is the point P of a given
ACUTE TRIANGLE DABC such that

l�PA�m�PB�n�PC (8)

is a minimum (Greenberg and Robertello 1965, van de
Lindt 1966, Tong and Chua 1995)

See also BROCARD ANGLE, EQUILATERAL TRIANGLE,
FERMAT POINTS, ISODYNAMIC POINTS, ISOGONAL CON-

JUGATE, LESTER CIRCLE
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Fermat Polynomial
The POLYNOMIALS obtained by setting p(x)�3x and
q(x)��2 in the LUCAS POLYNOMIAL SEQUENCES. The
first few Fermat polynomials are

F(x)�1

F2(x)�3x

F3(x)�9x2�2

F4(x)�27x3�12x



F5(x) �81x4 �54x2 �4;

and the first few Fermat-Lucas polynomials are

f1(x) �3x

f2(x) �9x2 �4

f3 ¼ 27x3 �18x

f4(x) �81x4 �72x2 �8

f5(x) �243x5 �270x3 �60x:

Fermat and Fermat-Lucas POLYNOMIALS satisfy

Fn(1) �Fn

fn(1) �fn

where Fn are FERMAT NUMBERS and fn are FERMAT-

LUCAS NUMBERS.

Fermat Prime
A FERMAT NUMBER Fn �22n �1 which is PRIME.

See also CONSTRUCTIBLE POLYGON, FERMAT NUMBER

Fermat Pseudoprime
A Fermat pseudoprime to a base a , written psp(a ), is
a COMPOSITE NUMBER n such that an�1 �1ðmod nÞ
(i.e., it satisfies FERMAT’S LITTLE THEOREM, some-
times with the requirement that n must be ODD;
Pomerance et al. 1980). psp(2)s are called POULET

NUMBERS or, less commonly, SARRUS NUMBERS or
FERMATIANS (Shanks 1993). The first few EVEN

psp(2)s (including the PRIME 2 as a pseudoprime)
are 2, 161038, 215326, ... (Sloane’s A006935).

If base 3 is used in addition to base 2 to weed out
potential COMPOSITE NUMBERS, only 4709 COMPOSITE

NUMBERS remain B25 �109 : Adding base 5 leaves
2552, and base 7 leaves only 1770 COMPOSITE NUM-

BERS.

See also CARMICHAEL NUMBER, FERMAT’S LITTLE

THEOREM, POULET NUMBER, PSEUDOPRIME
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Fermat Quotient
The Fermat quotient for a number a and a PRIME base
p is defined as

qp(a) �
ap �1 � 1

p
� (1)

If p¶ab ; then

qp(ab) �qp(a) �qp(b) (2)

qp(p 91) ��1 (3)

qp(2) �
1

p
1 �

1

2 
�

1

3 
�

1

4 
�� � �� 1

p � 1

 !
(4)

all (mod p ). The quantity qp(2) �(2p �1 �1)=p is
known to be SQUARE for only two PRIMES: the so-
called WIEFERICH PRIMES 1093 and 3511 (Lehmer
1981, Crandall 1986).

See also WIEFERICH PRIME
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Fermat’s Algorithm
FERMAT’S FACTORIZATION METHOD

Fermat’s Congruence
FERMAT’S LITTLE THEOREM

Fermat’s Conjecture
FERMAT’S LAST THEOREM

Fermat’s Divisor Problem
In 1657, Fermat posed the problem of finding solu-
tions to

s(x3)�y2 (1)

and

s(x2)�y3; (2)

where s(n) is the DIVISOR FUNCTION (Dickson 1952).

The first few solutions to s(x3)�y2 are (x; y)�(1; 1);
(7, 20), (751530, 1292054400) (Sloane’s A008849 and
A048948) .... Lucas stated that there are an infinite



number of solutions (Dickson 1952, p. 56), but only
solutions up to the fourth are known to be complete.

The first few solutions to s(x2) �y3 are (x ; y) �(1; 1);
(43098, 1729), ... (Sloane’s A008850 and A048949),
with only solutions up to the second known to be
complete.

See also DIVISOR FUNCTION, WALLIS’S PROBLEM
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Fermat’s Factorization Method
Given a number n , look for INTEGERS x and y such
that n �x2 �y2 : Then

n �(x �y)(x �y) (1)

and n is factored. Any ODD NUMBER can be repre-
sented in this form since then n � ab , a and b are
ODD, and

a �x �y (2)

b �x �y: (3)

Adding and subtracting,

a �b �2x (4)

a �b �2y; (5)

so solving for x and y gives

x �
1

2
(a �b) (6)

y �
1

2 
(a �b): (7)

Therefore,

x2 �y2 �
1

4
a �bð Þ2� a �bð Þ2

h i
�ab : (8)

As the first trial for x , try x1

ffiffiffi
n

p
d e; where xd e is the

CEILING FUNCTION. Then check if

Dx1 �x2
1 �n (9)

is a SQUARE NUMBER. There are only 22 combinations
of the last two digits which a SQUARE NUMBER can
assume, so most combinations can be eliminated. If
Dx1 is not a SQUARE NUMBER, then try

x2 �x1 �1 ; (10)

so

Dx2 �x2
2 �n

� x1 �1ð Þ2�n �x2
1 �2x1 �1 �n

�Dx1 �2x1 �1: (11)

Continue with

Dx3 �x2
3 �n

� x2 �1ð Þ2�n �x2
2 �2x2 �1 �n �Dx2 �2x2 �1

�Dx2 þ 2x1 þ 3; (12)

so subsequent differences are obtained simply by
adding two.

Maurice Kraitchik sped up the ALGORITHM by looking
for x and y satisfying

x2 �y2(mod n); (13)

i.e., n½(x2 �y2) : This congruence has uninteresting
solutions x �9y(mod n) and interesting solutions

/x f9y(modn) : It turns out that if n is ODD and
DIVISIBLE by at least two different PRIMES, then at
least half of the solutions to x2 �y2(mod n) with xy
COPRIME to n are interesting. For such solutions,
(n, x�y ) is neither n nor 1 and is therefore a
nontrivial factor of n (Pomerance 1996). This ALGO-

RITHM can be used to prove primality, but is not
practical. In 1931, Lehmer and Powers discovered
how to search for such pairs using CONTINUED

FRACTIONS. This method was improved by Morrison
and Brillhart (1975) into the CONTINUED FRACTION

FACTORIZATION ALGORITHM, which was the fastest
ALGORITHM in use before the QUADRATIC SIEVE factor-
ization method was developed.

See also PRIME FACTORIZATION ALGORITHMS, SMOOTH

NUMBER
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Fermat’s Last Theorem
A theorem first proposed by Fermat in the form of a
note scribbled in the margin of his copy of the ancient
Greek text Arithmetica by Diophantus. The scribbled
note was discovered posthumously, and the original is
now lost. However, a copy was preserved in a book
published by Fermat’s son. In the note, Fermat
claimed to have discovered a proof that the DIOPHAN-

TINE EQUATION xn�yn�zn has no INTEGER solutions
for n �2.



The full text of Fermat’s statement, written in Latin,
reads "Cubum autem in duos cubos, aut quadrato-
quadratum in duos quadrato-quadratos, et generali-
ter nullam in infinitum ultra quadratum potestatem
in duos eiusdem nominis fas est dividere cuius rei
demonstrationem mirabilem sane detexi. Hanc mar-
ginis exiguitas non caperet" (Nagell 1951, p. 252). In
translation, "It is impossible for a cube to be the sum
of two cubes, a fourth power to be the sum of two
fourth powers, or in general for any number that is a
power greater than the second to be the sum of two
like powers. I have discovered a truly marvelous
demonstration of this proposition that this margin is
too narrow to contain."

As a result of Fermat’s marginal note, the proposition
that the DIOPHANTINE EQUATION

xn�yn�zn; (1)

where x , y , z , and n are INTEGERS, has no NONZERO

solutions for n � 2 has come to be known as Fermat’s
Last Theorem. It was called a "THEOREM" on the
strength of Fermat’s statement, despite the fact that
no other mathematician was able to prove it for
hundreds of years.

Note that the restriction n � 2 is obviously necessary
since there are a number of elementary formulas for
generating an infinite number of PYTHAGOREAN

TRIPLES (x; y; z) satisfying the equation for n � 2,

x2�y2�z2: (2)

A first attempt to solve the equation can be made by
attempting to factor the equation, giving

zn=2�yn=2
� �

zn=2�yn=2
� �

�xn: (3)

Since the product is an exact POWER,

zn=2�yn=2�2n�1pn

zn=2�yn=2�2qn or
zn=2�yn=2�2pn

zn=2�yn=2�2n�1qn:

��
(4)

Solving for y and z gives

zn=2�2n�2pn�qn

yn=2�2n�2pn�qn or
zn=2�pn�2n�2qn

yn=2�pn�2n�2qn;

��
(5)

which give

z� 2n�2pn�qnð Þ2=n

y� 2n�2pn�qnð Þ2=n or
z� pn�2n�2qnð Þ2=n

y� pn�2n�2qnð Þ2=n
:

((
(6)

However, since solutions to these equations in RA-

TIONAL NUMBERS are no easier to find than solutions
to the original equation, this approach unfortunately
does not provide any additional insight.

It is sufficient to prove Fermat’s Last Theorem by
considering PRIME POWERS only, since the arguments
can otherwise be written

xmð Þp� ymð Þp� zmð Þp
; (7)

so redefining the arguments gives

zp�yp�zp: (8)

The so-called "first case" of the theorem is for
exponents which are RELATIVELY PRIME to x , y , and
z ( p¶x; y; z) and was considered by Wieferich. Sophie
Germain proved the first case of Fermat’s Last
Theorem for any ODD PRIME p when 2p�1 is also a
PRIME. Legendre subsequently proved that if p is a
PRIME such that 4p�1; 8p�1; 10p�1; 14p�1; or
16p�1 is also a PRIME, then the first case of Fermat’s
Last Theorem holds for p . This established Fermat’s
Last Theorem for p B100. In 1849, Kummer proved it
for all REGULAR PRIMES and COMPOSITE NUMBERS of
which they are factors (Vandiver 1929, Ball and
Coxeter 1987).

Kummer’s attack led to the theory of IDEALS, and
Vandiver developed VANDIVER’S CRITERIA for deciding
if a given IRREGULAR PRIME satisfies the theorem.
Genocchi (1852) proved that the first case is true for p
if (p;p�3) is not an IRREGULAR PAIR. In 1858,
Kummer showed that the first case is true if either
(p;p�3) or (p; p�5) is an IRREGULAR PAIR, which was
subsequently extended to include (p; p�7) and (p;p�
9) by Mirimanoff (1905). Vandiver (1920ab) pointed
out gaps and errors in Kummer’s memoir which, in
his view, invalidate Kummer’s proof of Fermat’s Last
Theorem for the irregular primes 37, 59, and 67,
although he claims Mirimanoff’s proof of FLT for
exponent 37 is still valid.

Wieferich (1909) proved that if the equation is solved
in integers RELATIVELY PRIME to an ODD PRIME p ,
then

2p�1�1 mod p2
� �

: (9)

(Ball and Coxeter 1987). Such numbers are called
WIEFERICH PRIMES. Mirimanoff (1909) subsequently
showed that

3p�1�1 mod p2
� �

(10)

must also hold for solutions RELATIVELY PRIME to an
ODD PRIME p , which excludes the first two WIEFERICH

PRIMES 1093 and 3511. Vandiver (1914) showed

5p�1�1 mod p2
� �

; (11)

and Frobenius extended this to

11p�1; 17p�1�1 mod p2
� �

: (12)

It has also been shown that if p were a PRIME OF THE

FORM 6x�1; then

7p�1; 13p�1; 19p�1�1 mod p2
� �

; (13)

which raised the smallest possible p in the "first case"
to 253,747,889 by 1941 (Rosser 1941). Granville and
Monagan (1988) showed if there exists a PRIME p
satisfying Fermat’s Last Theorem, then



qp �1 �1 mod p2
� �

(14)

for q � 5, 7, 11, ..., 71. This establishes that the first
case is true for all PRIME exponents up to
714,591,416,091,398 (Vardi 1991).

The "second case" of Fermat’s Last Theorem (for
p ½x; y ; z) proved harder than the first case.

Euler proved the general case of the theorem for
n �3, Fermat n �4, Dirichlet and Lagrange n �5. In
1832, Dirichlet established the case n �14. The n �7
case was proved by Lamé (1839; Wells 1986, p. 70),
using the identity

X �Y �Zð Þ7� X7 �Y7 �Z7
� �

�7 X �Yð Þ X �Zð Þ Y �Zð Þ

 X2 �Y2 �Z2 �XY �XZ �YZ
� �2

�XYZ X �Y �Zð Þ
h i

:

(15)

Although some errors were present in this proof,
these were subsequently fixed by Lebesgue (1840).
Much additional progress was made over the next 150
years, but no completely general result had been
obtained. Buoyed by false confidence after his proof
that PI is TRANSCENDENTAL, the mathematician Lin-
demann proceeded to publish several proofs of Fer-
mat’s Last Theorem, all of them invalid (Bell 1937,
pp. 464 �/65). A prize of 100,000 German marks,
known as the Wolfskehl Prize, was also offered for
the first valid proof (Ball and Coxeter 1987, p. 72;
Barner 1997; Hoffman 1998, pp. 193 �/94 and 199).

A recent false alarm for a general proof was raised by
Y. Miyaoka (Cipra 1988) whose proof, however,
turned out to be flawed. Other attempted proofs
among both professional and amateur mathemati-
cians are discussed by vos Savant (1993), although
vos Savant erroneously claims that work on the
problem by Wiles (discussed below) is invalid. By
the time 1993 rolled around, the general case of
Fermat’s Last Theorem had been shown to be true for
all exponents up to 4 �106 (Cipra 1993). However,
given that a proof of Fermat’s Last Theorem requires
truth for all exponents, proof for any finite number of
exponents does not constitute any significant pro-
gress towards a proof of the general theorem
(although the fact that no counterexamples were
found for this many cases is highly suggestive).

In 1993, a bombshell was dropped. In that year, the
general theorem was partially proven by Andrew
Wiles (Cipra 1993, Stewart 1993) by proving the
SEMISTABLE case of the TANIYAMA-SHIMURA CONJEC-

TURE. Unfortunately, several holes were discovered in
the proof shortly thereafter when Wiles’ approach via
the TANIYAMA-SHIMURA CONJECTURE became hung up
on properties of the SELMER GROUP using a tool called
an EULER SYSTEM. However, the difficulty was cir-
cumvented by Wiles and R. Taylor in late 1994 (Cipra
1994, 1995ab) and published in Taylor and Wiles
(1995) and Wiles (1995). Wiles’ proof succeeds by (1)
replacing ELLIPTIC CURVES with Galois representa-

tions, (2) reducing the problem to a CLASS NUMBER

FORMULA, (3) proving that FORMULA, and (4) tying up
loose ends that arise because the formalisms fail in
the simplest degenerate cases (Cipra 1995a).

The proof of Fermat’s Last Theorem marks the end of
a mathematical era. Since virtually all of the tools
which were eventually brought to bear on the
problem had yet to be invented in the time of Fermat,
it is interesting to speculate about whether he
actually was in possession of an elementary proof of
the theorem. Judging by the temerity with which the
problem resisted attack for so long, Fermat’s alleged
proof seems likely to have been illusionary. This
conclusion is further supported by the fact that
Fermat searched for proofs for the cases n �4 and
n�5, which would have been superfluous had he
actually been in possession of a general proof.

See also ABC CONJECTURE, BEAL’S CONJECTURE,
BOGOMOLOV-MIYAOKA-YAU INEQUALITY, EULER SYS-

TEM, FERMAT-CATALAN CONJECTURE, GENERALIZED

FERMAT EQUATION, MORDELL CONJECTURE, PYTHA-

GOREAN TRIPLE, RIBET’S THEOREM, SELMER GROUP,
SOPHIE GERMAIN PRIME, SZPIRO’S CONJECTURE, TA-

NIYAMA-SHIMURA CONJECTURE, VOJTA’S CONJECTURE,
WARING FORMULA
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Fermat’s Lesser Theorem
FERMAT’S LITTLE THEOREM

Fermat’s Little Theorem
If p is a PRIME NUMBER and a a NATURAL NUMBER,
then

ap�a mod pð Þ: (1)

Furthermore, if p¶a (p does not divide a ), then there
exists some smallest exponent d such that

ad�1�0 mod pð Þ (2)

and d divides p�1: Hence,

ap�1�1�0 mod pð Þ: (3)

This is a generalization of the CHINESE HYPOTHESIS

and a special case of EULER’S THEOREM. It is some-
times called FERMAT’S PRIMALITY TEST and is a
NECESSARY but not SUFFICIENT test for primality.
Although it was presumably proved (but suppressed)
by Fermat, the first proof was published by Euler in
1749.

The theorem is easily proved using mathematical
INDUCTION. Suppose p½ap�a: Then examine

a�1ð Þp� a�1ð Þ: (4)

From the BINOMIAL THEOREM,



a �1ð Þp

�ap �
p
1

� �
ap �1 �

p
2

� �
ap �2 �� � �� p

p �1

� �
a �1 :

(5)

Rewriting,

a �1ð Þp�ap �1

�
p
1

� �
ap �1 �

p
2

� �
ap �2 �:::�

p
p �1

� �
a : (6)

But p divides the right side, so it also divides the left
side. Combining with the induction hypothesis gives
that p divides the sum

a �1ð Þp�ap �1½ 
� ap �að Þ� a �1ð Þp� a �1ð Þ; (7)

as assumed, so the hypothesis is true for any a . The
theorem is sometimes called FERMAT’S SIMPLE THEO-

REM. WILSON’S THEOREM follows as a COROLLARY of
Fermat’s little theorem.

Fermat’s little theorem shows that, if p is PRIME,
there does not exist a base a Bp with (a; p) �1 such
that ap �1 �1 possesses a nonzero residue modulo p . If
such base a exists, p is therefore guaranteed to be
composite. However, the lack of a nonzero residue in
Fermat’s little theorem does not guarantee that p is
PRIME. The property of unambiguously certifying
composite numbers while passing some PRIMES

make Fermat’s little theorem a COMPOSITENESS TEST

which is sometimes called the FERMAT COMPOSITE-

NESS TEST. A number satisfying Fermat’s little theo-
rem for some nontrivial base and which is not known
to be composite is called a PROBABLE PRIME.

COMPOSITE NUMBERS known as FERMAT PSEUDO-

PRIMES (or sometimes simply "PSEUDOPRIMES") have
zero residue for some as and so are not identified as
composite. Worse still, there exist numbers known as
CARMICHAEL NUMBERS (the smallest of which is 561)
which give zero residue for any choice of the base a
RELATIVELY PRIME to p . However, FERMAT’S LITTLE

THEOREM CONVERSE provides a criterion for certifying
the primality of a number. A table of the smallest
PSEUDOPRIMES P for the first 100 bases a follows
(Sloane’s A007535; Beiler 1966, p. 42 with typos
corrected).

a P a P a P a P a P

2 341 22 69 42 205 62 63 82 91

3 91 23 33 43 77 63 341 83 105

4 15 24 25 44 45 64 65 84 85

5 124 25 28 45 76 65 112 85 129

6 35 26 27 46 133 66 91 86 87

7 25 27 65 47 65 67 85 87 91

8 9 28 45 48 49 68 69 88 91

9 28 29 35 49 66 69 85 89 99

10 33 30 49 50 51 70 169 90 91

11 15 31 49 51 65 71 105 91 115

12 65 32 33 52 85 72 85 92 93

13 21 33 85 53 65 73 111 93 301

14 15 34 35 54 55 74 75 94 95

15 341 35 51 55 63 75 91 95 141

16 51 36 91 56 57 76 77 96 133

17 45 37 45 57 65 77 247 97 105

18 25 38 39 58 133 78 341 98 99

19 45 39 95 59 87 79 91 99 145

20 21 40 91 60 341 80 81 100 153

21 55 41 105 61 91 81 85

See also BINOMIAL THEOREM, CARMICHAEL NUMBER,
CHINESE HYPOTHESIS, COMPOSITE NUMBER, COMPO-

SITENESS TEST, EULER’S THEOREM, FERMAT’S LITTLE

THEOREM CONVERSE, FERMAT PSEUDOPRIME, MODU-

LO MULTIPLICATION GROUP, PRATT CERTIFICATE,
PRIMALITY TEST, PRIME NUMBER, PSEUDOPRIME,
RELATIVELY PRIME, TOTIENT FUNCTION, WIEFERICH

PRIME, WILSON’S THEOREM, WITNESS
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Fermat’s Little Theorem Converse
The converse of FERMAT’S LITTLE THEOREM is also
known as LEHMER’S THEOREM. It states that, if an
INTEGER x is PRIME to m and xm�1�1 mod mð Þ and



there is no INTEGER e Bm �1 for which xe �

1 mod mð Þ; then m is PRIME. Here, x is called a
WITNESS to the primality of m . This theorem is the
basis for the PRATT PRIMALITY CERTIFICATE.

See also FERMAT’S LITTLE THEOREM, PRATT CERTIFI-

CATE, PRIMALITY CERTIFICATE, WITNESS
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Fermat’s Polygonal Number Theorem
In 1638, Fermat proposed that every POSITIVE IN-

TEGER is a sum of at most three TRIANGULAR NUM-

BERS, four SQUARE NUMBERS, five PENTAGONAL

NUMBERS, and n n -POLYGONAL NUMBERS. Fermat
claimed to have a proof of this result, although
Fermat’s proof has never been found. Gauss proved
the triangular case, and noted the event in his diary
on July 10, 1796, with the notation

� � E Y RHKA num ¼ Dþ Dþ D:

This case is equivalent to the statement that every
number OF THE FORM 8m �3 is a sum of three ODD

SQUARES (Duke 1997). More specifically, a number is
a sum of three SQUARES IFF it is not OF THE FORM

4b 8m �7ð Þ for b ]0, as first proved by Legendre in
1798.

Euler was unable to prove the square case of Fermat’s
theorem, but he left partial results which were
subsequently used by Lagrange. The square case
was finally proved by Jacobi and independently by
Lagrange in 1772. It is therefore sometimes known as
LAGRANGE’S FOUR-SQUARE THEOREM. In 1813, Cauchy
proved the proposition in its entirety.

See also FIFTEEN THEOREM, LAGRANGE’S FOUR-

SQUARE THEOREM, SUM OF SQUARES FUNCTION,
VINOGRADOV’S THEOREM, WARING’S PROBLEM
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Fermat’s Primality Test
FERMAT’S LITTLE THEOREM

Fermat’s Principle of Conjunctive
Probability
The probability that two events will both happen is
hk , where h is the probability that the first event will
happen, and k is the probability that the second event
will happen when the first even is known to have
happened.

See also CONDITIONAL PROBABILITY
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Fermat’s Problem
In a given ACUTE TRIANGLE DABC ; locate a point
whose distances from A , B , and C have the smallest
possible sum. The solution is the point from which
each side subtends an angle of 1208, known as the
first FERMAT POINT.

See also ACUTE TRIANGLE, FERMAT POINTS

Fermat’s Right Triangle Theorem
The AREA of a RATIONAL RIGHT TRIANGLE cannot be a
SQUARE NUMBER. This statement is equivalent to "a
CONGRUUM cannot be a SQUARE NUMBER."

See also CONGRUUM, RATIONAL TRIANGLE, RIGHT

TRIANGLE, SQUARE NUMBER

Fermat’s Simple Theorem
FERMAT’S LITTLE THEOREM

Fermat’s Spiral

An ARCHIMEDEAN SPIRAL with m � 2 having polar



equation

r �a u1 =2 ;

discussed by Fermat in 1636 (MacTutor Archive). It is
also known as the PARABOLIC SPIRAL. For any given
POSITIVE value of u; there are two corresponding
values of r of opposite signs. The resulting spiral is
therefore symmetrical about the origin. The CURVA-

TURE is

k uð Þ�

3a2

4u
� a2 u

a2

4u
� a2 u

 !3 =2 :

See also ARCHIMEDEAN SPIRAL, FERMAT’S SPIRAL

INVERSE CURVE
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Fermat’s Spiral Inverse Curve
The INVERSE CURVE of FERMAT’S SPIRAL with the
origin taken as the INVERSION CENTER is the LITUUS.
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Fermat’s Theorem
A PRIME p can be represented in an essentially
unique manner in the form x2 �y2 for integral x and
y IFF p �1 mod 4ð Þ or p � 2. It can be restated by
letting

Q x; yð Þ�x2 �y2 ;

then all RELATIVELY PRIME solutions (x, y ) to the
problem of representing Q x; yð Þ�m for m any IN-

TEGER are achieved by means of successive applica-
tions of the GENUS THEOREM and COMPOSITION

THEOREM. There is an analog of this theorem for
EISENSTEIN INTEGERS.

See also EISENSTEIN INTEGER, SQUARE NUMBER
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Fermat’s Two-Square Theorem
FERMAT’S THEOREM

Fermat-Catalan Conjecture
The conjecture that there are only finitely many
triples of RELATIVELY PRIME integer powers xp ; yq ; zr

for which

xp �yq �zr

with

1

p 
�

1

q 
�

1

r 
B1:

Darmon and Merel (1997) have shown that there are
no relatively prime solutions (x; x; 3) with x ]3 : Ten
solutions are known,

1 �23 �32

25 �72 �34

73 �132 �29

27 �173 �712

35 �114 �1222

177 �762713 �210639282

14143�22134592�657

92623�153122832�1137

438�962223�300429072

338�15490342�156133

(Mauldin 1997).

See also FERMAT’S LAST THEOREM

References
Darmon, H. and Granville, A. "On the Equations zm�F(x; y)

and Axp�Byq�Czr:/" Bull. London Math. Soc. 27, 513�/43,
1995.

Darmon, H. and Merel, L. "Winding Quotients and Some
Variants of Fermat’s Last Theorem." J. reine angew.
Math. 490, 81�/00, 1997.

Mauldin, R. D. "A Generalization of Fermat’s Last Theorem:
The Beal Conjecture and Prize Problem." Not. Amer.
Math. Soc. 44, 1436�/437, 1997.

Fermat-Euler Theorem
FERMAT’S LITTLE THEOREM



Fermatian
POULET NUMBER

Fermat-Lucas Number
A number OF THE FORM 2n �1 obtained by setting x
� 1 in a FERMAT-LUCAS POLYNOMIAL. The first few
are 3, 5, 9, 17, 33, ... (Sloane’s A000051).

See also FERMAT NUMBER (LUCAS)
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Fermi-Dirac Distribution
A distribution which arises in the study of half-
integral spin particles in physics,

R kð Þ� ka

ek � m � 1 
:

Its integral is

g
�

0

kadk

ek � m � 1 
�e m G s �1ð ÞF�em ; s �1 ; 1ð Þ;

where F z; s ;að Þ is the LERCH TRANSCENDENT.

Fern
BARNSLEY’S FERN

Ferrari’s Identity

a2 �2ac �2bc �b2
� �4

� b2 �2ab �2ac �c2
� �4

� c2 �2ab �2bc �a2
� �4

�2 a2 �b2 �c2 �ab �ac �bc
� �4

:

See also DIOPHANTINE EQUATION–4TH POWERS
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Ferrars Diagram
FERRERS DIAGRAM
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Ferrers Diagram

A Ferrers diagram represents PARTITIONS as patterns
of dots, with the nth row having the same number of
dots as the nth term in the PARTITION. The spelling
"Ferrars" (Skiena 1990, pp. 53 and 78) is sometimes
also used, and the diagram is sometimes called a
graphical representation or Ferrers graph (Andrews
1998, p. 6). A Ferrers diagram of the PARTITION

n �a �b �:::�c ;

for a list a , b , ..., c of k POSITIVE INTEGERS with a ]
b ]. . .]c is therefore the arrangement of n dots or
square boxes in k rows, such that the dots or boxes
are left-justified, the first row is of length a , the
second row is of length b , and so on, with the kth row
of length c . The above diagram corresponds to one of
the possible partitions of 100.

See also CONJUGATE PARTITION, DURFEE SQUARE,
SELF-CONJUGATE PARTITION, YOUNG DIAGRAM
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Ferrers Graph
FERRERS DIAGRAM
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Ferrers Graph Polygon

A SELF-AVOIDING POLYGON containing three corners of
its minimal bounding rectangle. The anisotropic area
and perimeter generating function G x; yð Þ and partial
generating functions Hm yð Þ; connected by

G(x; y; q) �
X
m]1

Hm y; qð Þxm ;

satisfy the self-reciprocity and inversion relations

Hm(1=y; 1=q) �(�1)mym�2q(m3�3m)=2Hm(y; q)

and

G(x; y) �y2G(�x=y; 1 =y) �0

(Bousquet-Mélou et al. 1999).

See also LATTICE POLYGON, SELF-AVOIDING POLYGON
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Ferrers’ Function
An alternative name for an associated LEGENDRE

POLYNOMIAL.

See also LEGENDRE POLYNOMIAL
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Ferrier’s Prime
According to Hardy and Wright (1979), the largest
PRIME found before the days of electronic computers is
the 44-digit number

F �
1

17
(2148 �1)

�20988936657440586486151264256610222593863921;

which was found using only a mechanical calculator.
Mathematica can verify primality of this number in a
(small) fraction of a second, showing how far the art of
numerical computation has advanced in the inter-
vening years,

In[1]: �
PrimeQ[(2^148 � 1)/17] // Timing

Out[1] �
{0.0333333 Second, True}

See also PRIME NUMBER

References
Hardy, G. H. and Wright, E. M. An Introduction to the

Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, pp. 16 �/2, 1979.

Feuerbach Circle
NINE-POINT CIRCLE

Feuerbach Point

The point F at which the INCIRCLE and NINE-POINT

CIRCLE are tangent. It has TRIANGLE CENTER FUNC-

TION

a�1�cos B�Cð Þ:

See also FEUERBACH’S THEOREM
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Feuerbach’s Conic Theorem
The LOCUS of the centers of all CONICS through the
VERTICES and ORTHOCENTER of a TRIANGLE (which are
RECTANGULAR HYPERBOLAS when not degenerate), is a
CIRCLE through the MIDPOINTS of the sides, the points
half way from the ORTHOCENTER to the VERTICES, and
the feet of the ALTITUDE.

See also ALTITUDE, CONIC SECTION, FEUERBACH’S

THEOREM, KIEPERT’S HYPERBOLA, MIDPOINT, ORTHO-

CENTER, RECTANGULAR HYPERBOLA
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Feuerbach’s Theorem
There are two theorems commonly known as Feuer-
bach’s theorem. The first states that CIRCLE which
passes through the feet of the PERPENDICULARS

dropped from the VERTICES of any TRIANGLE on the
sides opposite them passes also through the MID-

POINTS of these sides as well as through the MIDPOINT

of the segments which join the VERTICES to the point
of intersection of the PERPENDICULAR. Such a circle is
called a NINE-POINT CIRCLE.

The proposition most frequently called Feuerbach’s
theorem states that the NINE-POINT CIRCLE of any
TRIANGLE is TANGENT internally to the INCIRCLE and
TANGENT externally to the three EXCIRCLES. This
theorem was first published by Feuerbach (1822).
Many proofs have been given (Elder 1960), with the
simplest being the one presented by McClelland
(1891, p. 225) and Lachlan (1893, p. 74).

See also EXCIRCLE, FEUERBACH POINT, HART CIRCLE,
INCIRCLE, MIDPOINT, NINE-POINT CIRCLE, PERPENDI-

CULAR, TANGENT
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plane. Paris: Gauthier-Villars, pp. 307 �/09, 1900.
Sawayama, Y. "Démonstration élémentaire du théorème de

Feuerbach." L’enseign. math. 7, 479 �/82, 1905.
Sawayama, Y. "8 nouvelles démonstrations d’un théorème
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Feynman Point
The sequence of six 9s which begins at the 762nd
decimal place of PI,

p �3:14159 . . . 134 999999|fflfflfflffl{zfflfflfflffl}
six 9s

837 . . .

(Wells 1986, p. 51). The positions of the first occur-
rences of strings of 1, 2, ... consecutive 9s are 5, 44,
762, 762, 762, 762, 1722776, ... (Sloane’s A048940).
There is no string of seven 9s in the first million digits
of PI.

See also PI DIGITS
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FFT
FAST FOURIER TRANSFORM

Fiber
A fiber of a map f : X 0 Y is the PREIMAGE of an
element y �Y : That is,



f �1(y) � x � X such that f (x) �yf g:

For instance, let X and Y be the COMPLEX NUMBERS C:
When f (z) �z2 ; every fiber consists of two points
z;�zf g; except for the fiber over 0 ; which has one

point. Note that a fiber may be the EMPTY SET.

In special cases, the fiber may be independent, in
some sense, of the choice of y � Y : For instance, if f is a
COVERING MAP, then the fibers are all DISCRETE and
have the same CARDINALITY. The example f (z) �z2 is
a covering map away from zero, i.e., f (z) �z2 from the
punctured plane C � 0f g to itself has a fiber consist-
ing of two points.

When p : E 0 M is a FIBER BUNDLE, then every fiber
is ISOMORPHIC, in whatever CATEGORY is being used.
For instance, when E is a REAL VECTOR BUNDLE of
RANK k , every fiber is isomorphic to Rk :/

See also COMPLEX NUMBER, COVERING MAP, FIBER

BUNDLE, MAP, RANK (BUNDLE), WHITNEY SUM

Fiber Bundle

A fiber bundle (also called simply a BUNDLE) with
FIBER F is a MAP f : E 0 B where E is called the
TOTAL SPACE of the fiber bundle and B the BASE SPACE

of the fiber bundle. The main condition for the MAP to
be a fiber bundle is that every point in the BASE SPACE

b � B has a NEIGHBORHOOD U such that f �1(U) is
HOMEOMORPHIC to U �F in a special way. Namely, if

h : f �1(U) 0 U �F

is the HOMEOMORPHISM, then

projU(h �f f �1(U)j j;

where the MAP projU means projection onto the U
component. The homeomorphisms h which "commute
with projection" are called local TRIVIALIZATIONS for
the fiber bundle f . In other words, E looks like the
product B �F (at least locally), except that the fibers
f �1(x) for x � B may be a bit "twisted."
A fiber bundle is the most general kind of BUNDLE.
Special cases are often described by replacing the
word "fiber" with a word that describes the fiber being
used, e.g., VECTOR BUNDLES and PRINCIPAL BUNDLES.

Examples of fiber bundles include any product B �
F 0 B (which is a bundle over B with FIBER F ), the
MÖ BIUS STRIP (which is a fiber bundle over the CIRCLE

with FIBER given by the unit interval [0,1]; i.e, the
BASE SPACE is the CIRCLE), and S3 (which is a bundle
over S2 with fiber S1) : A special class of fiber bundle
is the VECTOR BUNDLE, in which the FIBER is a VECTOR

SPACE. A basic example of a nontrivial bundle is the
MÖ BIUS STRIP, which is a fiber bundle with the circle
as its base, B �S �1 ; and the interval F �(�1; 1) as its
fiber.

Some of the properties of graphs of functions f : B 0
F carry over to fiber bundles. A GRAPH of such a
function sits in B �F as (b; f (b)) : A graph always
projects ONTO the base B and is ONE-TO-ONE.

A fiber bundle E is a TOTAL SPACE and, like B �F ; it
has a projection p : E 0 B : The PREIMAGE, p�1(b) ; of
any point b is isomorphic to F . Unlike B �F ; there is
no canonical projection from E to F . Instead, maps to
F only make sense locally on B . Near any point b in
the base B , there is a TRIVIALIZATION of E in which
there are actual functions from a neighborhood to F .

These local functions can sometimes be patched
together to give a (GLOBAL) SECTION s : B 0 E such
that the projection of s is the identity. This is
analogous to the map from a domain X of a function
f : X 0 Y to its graph in X �Y by f̃ (x) �(x; f (x)):/

A fiber bundle also comes with a GROUP ACTION on the
fiber. This group action represents the different ways
the fiber can be viewed as equivalent. For instance, in
topology, the GROUP might be the group of HOME-

OMORPHISMS of the fiber. The group on a vector
bundle is the group of INVERTIBLE LINEAR MAPS,
which reflects the equivalent descriptions of a VECTOR

SPACE using different BASES.

Fiber bundles are not always used to generalize
functions. Sometimes they are convenient descrip-
tions of interesting manifolds. A common example in
GEOMETRIC TOPOLOGY is a torus bundle on the circle.

See also BUNDLE, FIBER SPACE, FIBRATION, GEO-

METRIC TOPOLOGY, PRINCIPAL BUNDLE, SHEAF, TAN-

GENT BUNDLE, VECTOR BUNDLE

Fiber Direct Sum

See also DIRECT SUM
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Fiber Space
A fiber space, depending on context, means either a
FIBER BUNDLE or a FIBRATION.

See also FIBER BUNDLE, FIBRATION



Fibonacci
FIBONACCI NUMBER, FIBONACCI POLYNOMIAL
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Fibonacci Coefficient
The coefficient defined by

m
k

* +
F

�
FmFm�1 � � �Fm�k�1

F1F2 � � �Fk

;

where m
0

� 
F
�1 and Fn is a FIBONACCI NUMBER. This

coefficient satisfies

2
n
m

* +
F

�Ln

m �1
n

* +
�Lm�n

m �1
n �1

* +
F

;

where Ln is a LUCAS NUMBER.

See also FIBONACCI NUMBER, LUCAS NUMBER
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Fibonacci Dual Theorem
Let Fn be the nth FIBONACCI NUMBER. Then the
sequence Fnf g�n�2� 1; 2; 3; 5; 8; . . .f g is COMPLETE, even
if one is restricted to subsequences in which no two
consecutive terms are both passed over (until the
desired total is reached; Brown 1965, Honsberger
1985).

See also COMPLETE SEQUENCE, FIBONACCI NUMBER.
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Fibonacci Hyperbolic Functions
Let

c�1�f�
1

2
(3�

ffiffiffi
5

p
):2:618034 (1)

where f is the GOLDEN RATIO, and

a ¼ ln f:0:4812118: (2)

Define the Fibonacci hyperbolic sine by

sFh(x)�
cx � c�xffiffiffi

5
p (3)

�
f2x � f�2xffiffiffi

5
p (4)

�
2ffiffiffi
5

p sinh[2xa]: (5)

The function satisfies

sFh(�x)��sFh(x); (6)

and for n �Z; sFh(n)�F2n where Fn is a FIBONACCI

NUMBER.

Define the Fibonacci hyperbolic cosine by

cFh xð Þ�cx�1=2 � c� x�1=2ð Þffiffiffi
5

p (7)

�
f 2x�1ð Þ � f� 2x�1ð Þffiffiffi

5
p (8)

�
2ffiffiffi
5

p cosh 2x�1ð Þa½ Þ: (9)

This function satisfies

cFh(�x)�cFh(x�1); (10)

and for n �Z; cFh(n)�F2n�1 where Fn is a FIBONACCI

NUMBER.

Similarly, the Fibonacci hyperbolic tangent is defined



by

sFh(x) �
cFh(x)

cFh(x) 
;

and for x �Z ; cFh(n) �F2n =F2n �1 :/
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Fibonacci Identity
Since

a �ibð Þ c �idð Þj j�a �ibj j c �dij j  (1)

j(ac �bd) �i(bc �ad) j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �d2

p
; (2)

it follows that

(a2 �b2)(c2 �d2) � ac �bdð Þ2� bc �adð Þ2
�e2 �f 2 : (3)

This identity implies the 2-dimensional CAUCHY’S

INEQUALITY.

See also CAUCHY’S INEQUALITY, EULER FOUR-SQUARE

IDENTITY, LEBESGUE IDENTITY
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Fibonacci Matrix
A SQUARE MATRIX related to the FIBONACCI NUMBERS.
The simplest is the FIBONACCI Q -MATRIX.

Fibonacci n-Step Number
An n -step Fibonacci sequence is given by defining
Fk �0 for k 50; F1 �F2 �1; F3 �2; and

Fk �
Xk

i �1

Fn �i (1)

for k �3. The case n �1 corresponds to the degen-
erate 1, 1, 2, 2, 2, 2 ..., n �2 to the usual FIBONACCI

NUMBERS 1, 1, 2, 3, 5, 8, ... (Sloane’s A000045), n �3
to the TRIBONACCI NUMBERS 1, 1, 2, 4, 7, 13, 24, 44, 81,
... (Sloane’s A000073), n �4 to the TETRANACCI

NUMBERS 1, 1, 2, 4, 8, 15, 29, 56, 108, ... (Sloane’s
A000078), etc.

The limit limk 0�Fk =Fk�1 is given by solving

xn(2 �x) �1; (2)

or equivalently

xn �xn�1 �xn�2 �� � ��x �1 �0; (3)

for x and then taking the REAL ROOT x �1. For EVEN

n , there are exactly two real roots, one greater than 1
and one less than 1, and for ODD n , there is exactly
one real root, which is always ]1:/

If n �2, equation (2) reduces to

x2(2 �x) �1 (4)

x3 �2x2 �1 �(x �1) x2 �x �1
� �

�0; (5)

giving solutions

x �1 ;
1

2
1 9

ffiffiffi
5

p� �
: (6)

The ratio is therefore

x �
1

2
1 �

ffiffiffi
5

p� �
� f �1 :618:::; (7)

which is the GOLDEN RATIO, as expected.

The analytic solutions for n�1, 2, ... are given by

x1�1

x2�
1

2
1�

ffiffiffi
5

p� �

x3�
1

3
1� 19�3

ffiffiffiffiffiffi
33

p� �1=3

� 19�3
ffiffiffiffiffiffi
33

p� �1=3
* +

and numerically by 1, 1.61803, 1.83929, 1.92756,
1.96595, ..., approaching 2 as n 0 �:/

See also FIBONACCI NUMBER, TRIBONACCI NUMBER
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Fibonacci Number
The sequence of numbers Fn defined by the Un in the
LUCAS SEQUENCE, which can be viewed as a particu-
lar case of the FIBONACCI POLYNOMIALS Fn(x) with
Fn�Fn(1): They are companions to the LUCAS NUM-

BERS and satisfy the same RECURRENCE RELATION,

Fn�Fn�2�Fn�1 (1)

for n�3, 4, ..., with F1�F2�1: The first few
Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, ...
(Sloane’s A000045). The Fibonacci numbers give the
number of pairs of rabbits n months after a single
pair begins breeding (and newly born bunnies are
assumed to begin breeding when they are two months
old), as first described by Leonardo of Pisa in his book
Liber Abaci. Kepler also described the Fibonacci
numbers (Kepler 1966; Wells 1986, pp. 61�/2 and 65).



The ratios of successive Fibonacci numbers Fn=Fn�1

approaches the GOLDEN RATIO f as n approaches
infinity, as first proved by Scottish mathematician
Robert Simson in 1753 (Wells 1986, p. 62). The ratios
of alternate Fibonacci numbers are given by the
CONVERGENTS to f�2; where f is the GOLDEN RATIO,
and are said to measure the fraction of a turn
between successive leaves on the stalk of a plant
(PHYLLOTAXIS): 1/2 for elm and linden, 1/3 for beech
and hazel, 2/5 for oak and apple, 3/8 for poplar and
rose, 5/13 for willow and almond, etc. (Coxeter 1969,
Ball and Coxeter 1987). The Fibonacci numbers are
sometimes called PINE CONE NUMBERS (Pappas 1989,
p. 224). The role of the Fibonacci numbers in botany
is sometimes called LUDWIG’S LAW (Szymkiewicz
1928; Wells 1986, p. 66; Steinhaus 1983, p. 299).

Another RECURRENCE RELATION for the Fibonacci
numbers is

Fn�1�
Fn 1 �

ffiffiffi
5

p� �
� 1

2

$ %
� fFn�

1

2

$ %
; (2)

where xb c is the FLOOR FUNCTION and f is the GOLDEN

RATIO. This expression follows from the more general
RECURRENCE RELATION that

Fnþ1 Fnþ2 � � � Fnþk

Fnþkþ1 Fnþkþ2 � � � Fnþ2k

n n ::: n
Fnþkðk�1Þþ1 Fnþkðk�1Þþ2 � � � Fnþk2

,,,,,,,,

,,,,,,,, ¼ 0: (3)

The GENERATING FUNCTION for the Fibonacci num-
bers is

g(x)�
X�
n�0

Fnxn�
x

1 � x � x2

�x�x2�2x3�3x4�5x5�:::: (4)

By plugging in x�1=10; this gives the curious
addition tree illustrated below,

X�
n�0

Fn

10n
�

10

89
; (5)

so

X�
n�0

Fn

10n�1
�

1

89
(6)

Yuri Matiyasevich (1970) showed that there is a

polynomial P in n , m , and a number of other
variables x , y , z , ... having the property that n�
F2m IFF there exist integers x , y , z , ... such that
p(n;m; x; y; z; . . .)�0: This led to the proof of the
impossibility of the tenth of HILBERT’S PROBLEMS

(does there exist a general method for solving DIO-

PHANTINE EQUATIONS?) by Julia Robinson and Martin
Davis in 1970 (Reid 1997, p. 107).

The Fibonacci number Fn�1 gives the number of ways
for 2�1 DOMINOES to cover a 2�n CHECKERBOARD,
as illustrated in the following diagrams (Dickau).

The number of ways of picking a SET (including the
EMPTY SET) from the numbers 1, 2, ..., n without
picking two consecutive numbers is Fn�2: The number
of ways of picking a set (including the EMPTY SET)
from the numbers 1, 2, ..., n without picking two
consecutive numbers (where 1 and n are now con-
secutive) is Ln�Fn�1�Fn�1; where Ln is a LUCAS

NUMBER. The probability of not getting two heads in a
row in n tosses of a COIN is Fn�2=2n (Honsberger 1985,
pp. 120�/22). Fibonacci numbers are also related to
the number of ways in which n COIN TOSSES can be
made such that there are not three consecutive heads
or tails. The number of ideals of an n -element FENCE

POSET is the Fibonacci number Fn:/

Given a RESISTOR NETWORK of n 1-/V resistors, each
incrementally connected in series or parallel to the
preceding resistors, then the net resistance is a
RATIONAL NUMBER having maximum possible denomi-
nator of Fn�1:/

The Fibonacci numbers are given in terms of the
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND by

Fn�in�1Un�1 �
1

2
i

 !
: (7)

Sum identities include



Xn

k�1

Fk�Fn�2�1: (8)

F1�F3�F5�. . .�F2k�1�F2k�2 (9)

1�F2�F4�F6�. . .�F2k�F2k�1 (10)

Xn

k�1

F2
k �FnFn�1 (11)

F2n�F2
n�1�F2

n�1 (12)

F3n�F3
n�1�F3

n�F3
n�1: (13)

There are a number of particular pretty algebraic
identities involving the Fibonacci numbers, including

F2
n�1�4FnFn�1�F2

n�2 (14)

(Brousseau 1972), CATALAN’S IDENTITY

F2
n�Fn�rFn�r� �1ð Þn�rF2

r ; (15)

D’OCAGNE’S IDENTITY

FmFn�1�FnFm�1� �1ð ÞnFm�n; (16)

and the GELIN-CESÀRO IDENTITY

F4
n�Fn�2Fn�1Fn�1Fn�2�1: (17)

Letting r�1 in (15) gives CASSINI’S IDENTITY

Fn�1Fn�1�F2
n� �1ð Þn

; (18)

sometimes also called Simson’s formula since it was
also discovered by Simson (Coxeter and Greitzer
1967, p. 41; Coxeter 1969, pp. 165�/68; Petkovsek et
al. 1996, p. 12).

The Fibonacci numbers obey the negation formula

F�n� �1ð Þn�1Fn; (19)

the addition formula

Fm�n�
1

2
FmLn�LmFnð Þ; (20)

where Ln is a LUCAS NUMBER, the subtraction formula

Fm�n�
1

2
(�1) FmLn�LmFnð Þ; (21)

the fundamental identity

L2
n�5F2

n�4 �1ð Þn (22)

conjugation relation

Fn�
1

5
Ln�1�Ln�1

� �
; (23)

successor relation

Fn�1�
1

2
Fn�Lnð Þ; (24)

double-angle formula

F2n�FnLn; (25)

multiple-angle recurrence

Fkn�LkFk(n�1)� �1ð ÞkFk(n�2); (26)

multiple-angle formulas

Fkn�
1

2k�1

X(k�1)=2b c

i�0

k
2i�1

� �
5iF2i�1

n Lk�1�2i
n (27)

�Fn

X(k�1)=2b c

i�0

k�1�i
i

� �
�1ð Þi(n�1)Lk�1�2i

n (28)

�
Ln

P(k�2)=2
i�0

k�1�i
i

� �
�1ð Þin5k=2�1�iFk�1�2i

n for k even

P k=2b c
i�0

k

k � i

k�i
i

� �
�1ð Þin5 k=2b c�iFk�2i

n for k odd

8>>><
>>>:

(29)

�
Xk

i�0

k
i

� �
FiF

i
nFk�i

n�1; (30)

product expansions

FmFn�
1

5
Lm�n� �1ð ÞnLm�n

� 
(31)

and

FmLn�Fm�n� �1ð ÞnFm�n; (32)

square expansion,

F2
n�

1

5
L2n�2 �1ð Þn½ 
; (33)

and power expansion

Fk
n�

1

2:5�k=2�

Xk

i�0

k
i

� �
�1ð Þi(n�1)

�
F(k�2i)n for k odd
L(k�2i)n for k even:

�
(34)

Honsberger (1985, p. 107) gives the general relations

Fn�m�Fn�1Fm�FnFm�1 (35)

F(k�1)n�Fn�1Fkn�FnFkn�1 (36)

Fn�FlFn�l�1�Fl�1Fn�l: (37)

In the case l�n�l�1; then l�(n�1)=2 and for n
ODD,

Fn�F2
(n�1)=2�F2

ðn�1Þ=2: (38)

Similarly, for n EVEN,



Fn�F2
n=2�1�F2

n=2�1: (39)

Letting k�(n�1)=2 gives the identities

F2k�1�F2
k�1�F2

k (40)

F2
n�2�F2

n�1�FnFn�3 (41)

F2
n�F2

n�1�3F2
n�2�2Fn�2Fn�3: (42)

Sum FORMULAS for Fn include

Fn�
1

2n�1

n
1

� �
�5

n
3

� �
�52 n

5

� �
�. . .

* +
(43)

Fn�1�
n
0

� �
�

n�1
1

� �
�

n�2
2

� �
�. . . (44)

(Wells 1986, p. 63). Additional identities can be found
throughout the Fibonacci Quarterly journal. A list of
47 generalized identities are given by Halton (1965).

In terms of the LUCAS NUMBER Ln;

F2n�FnLn (45)

F2n L2
2n�1

� �
�F6n (46)

Fm�p� �1ð Þp�1Fm�p�FpLm (47)

Xa�4n

k�a�1

Fk�Fa�4n�2�Fa�2�F2nLa�2n�2 (48)

(Honsberger 1985, pp. 111�/13). A remarkable iden-
tity is

exp L1x�
1

2
L2x2�

1

3
L3x3�. . .

 !

�F1�F2x�F3x3�. . . (49)

(Honsberger 1985, pp. 118�/19). It is also true that

L2
n � �1ð ÞaL2

n�a

F2
n � �1ð ÞaF2

n�a

�5 (50)

for a ODD, and

L2
n � L2

n�a � 8 �1ð Þn

F2
n � F2

n�a

�5 (51)

for a EVEN (Freitag 1996).

The equation (1) is a LINEAR RECURRENCE SEQUENCE

xn�Axx�1�Bxn�2 n]3; (52)

so the closed form for Fn is given by

Fn�
an � bn

a� b
; (53)

where a and b are the roots of x2�Ax�B: Here, A�
B�1; so the equation becomes

x2�x�1�0; (54)

which has ROOTS

x�
1

2
19

ffiffiffi
5

p� �
: (55)

The closed form is therefore given by

Fn�
1 �

ffiffiffi
5

p� �n
� 1 �

ffiffiffi
5

p� �n

2n
ffiffiffi
5

p ; (56)

This is known as BINET’S FIBONACCI NUMBER FOR-

MULA (Wells 1986, p. 62). Another closed form is

Fn�
1ffiffiffi
5

p 1 �
ffiffiffi
5

p

2

 !n" #
�

fnffiffiffi
5

p
" #

; (57)

where x½ 
 is the NINT function (Wells 1986, p. 62).

From (1), the RATIO of consecutive terms is

Fn

Fn�1

�1�
Fn�2

Fn�1

�1�
1

Fn�1

Fn�2

�1�
1

1 �
1

Fn�3

Fn�2

� 1; 1; . . . ;
F2

F1

" #

� 1; 1; . . . ; 1½ 
;|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n�1

(58)

which is just the first few terms of the CONTINUED

FRACTION for the GOLDEN RATIO f: Therefore,

lim
n0�

Fn

Fn�1

�f: (59)

The "SHALLOW DIAGONALS" of PASCAL’S TRIANGLE sum
to Fibonacci numbers (Pappas 1989),

Xn

k�1

k
n�k

� �

�

�1ð Þn
3F2 1; 2; 1 � n;

1

2
3 � nð Þ; 2 �

1

2
n;�

1

4

 !
p 2 � 3n � n2ð Þ

�Fn�1; (60)



where 3F2 a; b; c; d; e; zð Þ is a GENERALIZED HYPERGEO-

METRIC FUNCTION.

Guy (1990) notes the curious fact that e n�1ð Þ=2
. /

for n
� 0, 1, ... gives 1, 1, 2, 5, 8, 13, 21, 34, 55, ..., but then
continues 91, 149, ... (Sloane’s A005181). Taking the
product of the first n Fibonacci numbers and adding 1
for n � 1, 2, ... gives the sequence 2, 2, 3, 77, 31, 241,
... (Sloane’s A052449). If these, 2, 2, 3, 7, 31, 241,
3121, ... (Sloane’s A053413) are prime, i.e., the terms
1, 2, 3, 4, 5, 6, 7, 8, 22, 28, ... (Sloane’s A053408).

The sequence of final digits in Fibonacci numbers
repeats in cycles of 60. The last two digits repeat in
300, the last three in 1500, the last four in 15,000, etc.
The number of Fibonacci numbers between n and 2n
is either 1 or 2 (Wells 1986, p. 65).

Cesàro derived the finite sums

Xn

k�0

n
k

� �
Fk�F2n (61)

Xn

k�0

n
k

� �
2kFk�F3n (62)

(Honsberger 1985, pp. 109�/10). The Fibonacci num-
bers satisfy the power recurrence

Xt�1

j�0

�1ð Þj j�1ð Þ=2 t�1
j

* +
F

Ft
n�j�0; (63)

where a
b

� 
F

is a FIBONACCI COEFFICIENT, the reciprocal
sum

Xn

k�1

�1ð Þk

FkFk�a

�
Fn

Fa

Xa

k�1

�1ð Þk

FkFk�n

; (64)

the convolution

Xn

k�0

FkFn�k�
1

5
nLn�Fnð Þ; (65)

the partial fraction decomposition

1

Fn�aFn�bFn�c

�
A

Fn�a

�
B

Fn�b

�
C

Fn�c

; (66)

where

A�
�1ð Þn�a

Fb�aFc�a

(67)

B�
�1ð Þn�b

Fc�bFa�b

(68)

C�
�1ð Þn�c

Fa�cFb�c

; (69)

and the summation formula

Xn

k�0

xkFak�b�
g(n � 1) � g(0)

1 � Lax � �1ð Þax2
; (70)

where

g(n)� �1ð ÞaFa n�1ð Þ�bxn�1�Fan�bxn: (71)

Infinite sums include

X�
n�1

�1ð Þn

FnFn�2

�2�
ffiffiffi
5

p
(72)

(Clark 1995) and

X�
n�1

�1ð Þn�1

Fn�1Fn�2

�f�2 (73)

X�
n�1

1overF2nF2n�2�f�2 (74)

where f is the GOLDEN RATIO (Wells 1986, p. 65).

For n]3; FnjFm IFF njm (Wells 1986, p. 65). LnjLm IFF

n divides into m an EVEN number of times. Fm;Fnð Þ�
F m;nð Þ (Michael 1964; Honsberger 1985, pp. 131�/32).
No ODD Fibonacci number is divisible by 17 (Hon-
sberger 1985, pp. 132 and 242). No Fibonacci number
> 8 is ever OF THE FORM p�1 or p�1 where p is a
PRIME NUMBER (Honsberger 1985, p. 133).

Consider the sum

sk�
Xk

n�2

1

Fn�1Fn�1

�
Xk

n�2

1

Fn�1Fn

�
1

FnFn�1

 !
: (75)

This is a TELESCOPING SUM, so

sk�1�
1

Fk�1Fk�2

; (76)

thus

S� lim
k0�

sk�1 (77)

(Honsberger 1985, pp. 134�/35). Using BINET’S FIBO-

NACCI NUMBER FORMULA, it also follows that

Fn�r

Fn

�
an�r � bn�r

an � bn
�

an�r

an

1 �
b

a

 !n�r

1 �
b

a

 !n ; (78)

where

a�
1

2
1�

ffiffiffi
5

p� �
(79)

b�
1

2
1�

ffiffiffi
5

p� �
(80)

so



lim
n0�

Fn�r

Fn

� ar : (81)

S?�
X�
n�1

Fn

Fn�1Fn�2

�1 (82)

(Honsberger 1985, pp. 138 and 242 �/43). The MILLIN

SERIES has sum

Sƒ�
X�
n�0

1

F2n

�
1

2
7 �

ffiffiffi
5

p� �
(83)

(Honsberger 1985, pp. 135 �/37).

The Fibonacci numbers are COMPLETE. In fact, drop-
ping one number still leaves a COMPLETE SEQUENCE,
although dropping two numbers does not (Honsberger
1985, pp. 123 and 126). Dropping two terms from the
Fibonacci numbers produces a sequence which is not
even WEAKLY COMPLETE (Honsberger 1985, p. 128).
However, the sequence

F ?n �Fn � �1ð Þn (84)

is WEAKLY COMPLETE, even with any finite subse-
quence deleted (Graham 1964). F2

n

0 1
is not COM-

PLETE, but F2
n

0 1
� F2

n

0 1
are. 2N �1 copies of FN

n

0 1
are

COMPLETE.

For a discussion of SQUARE Fibonacci numbers, see
Cohn (1964), who proved that the only SQUARE

NUMBER Fibonacci numbers are 1 and F12 �144
(Cohn 1964, Guy 1994). Ming (1989) proved that the
only TRIANGULAR Fibonacci numbers are 1, 3, 21, and
55. The Fibonacci and LUCAS NUMBERS have no
common terms except 1 and 3. The only CUBIC

Fibonacci numbers are 1 and 8.

FnFn �3 ; 2Fn�1Fn�2 ;F2n �3 �F2
n�1 �F2

n�2

� �
(85)

is a PYTHAGOREAN TRIPLE.

F2
4n �8F2n F2n �F6nð Þ� 3F4nð Þ2 (86)

is always a SQUARE NUMBER (Honsberger 1985,
p. 243).

In 1975, James P. Jones showed that the Fibonacci
numbers are the POSITIVE INTEGER values of the
POLYNOMIAL

P(x; y) ��y5 �2y4x �y3x2 �2y2x3 �y x4 �2
� �

(87)

for GAUSSIAN INTEGERS x and y (Le Lionnais 1983). If
n and k are two POSITIVE INTEGERS, then between nk

and nk �1 ; there can never occur more than n
Fibonacci numbers (Honsberger 1985, pp. 104 �/05).

Every Fn that is PRIME has a PRIME index n , with the
exception of F4 �3: However, the converse is not true
(i.e., not every prime index p gives a PRIME Fp) : The
first few PRIME Fibonacci numbers Fn are 2, 3, 5, 13,
89, 233, 1597, 28657, 514229, ... (Sloane’s A005478),
which occur for n � 3, 4, 5, 7, 11, 13, 17, 23, 29, 43,

47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, ...
(Sloane’s A001605; Dubner and Keller 1999). Gard-
ner’s statement that F531 is prime is incorrect,
especially since 531 is not even PRIME (Gardner
1979, p. 161). It is not known if there are an INFINITE

number of Fibonacci primes.

The Fibonacci numbers Fn ; are SQUAREFUL for n � 6,
12, 18, 24, 25, 30, 36, 42, 48, 50, 54, 56, 60, 66, ..., 372,
375, 378, 384, ... (Sloane’s A037917) and SQUAREFREE

for n � 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, ... (Sloane’s
A037918). 4 F6nj and 25 F25nj for all n , and there is at
least one n 52m such that m Fn:j No SQUAREFUL

Fibonacci numbers Fp are known with p PRIME.

See also CASSINI’S IDENTITY, CATALAN’S IDENTITY,
D’OCAGNE’S IDENTITY, FAST FIBONACCI TRANSFORM,
FIBONACCI COEFFICIENT, FIBONACCI DUAL THEOREM,
FIBONACCI N -STEP NUMBER, FIBONACCI POLYNOMIAL,
FIBONACCI Q -MATRIX, GELIN-CESÀ RO IDENTITY, GEN-

ERALIZED FIBONACCI NUMBER, INVERSE TANGENT,
LINEAR RECURRENCE SEQUENCE, LUCAS SEQUENCE,
NEAR NOBLE NUMBER, PELL SEQUENCE, RABBIT

CONSTANT, RANDOM FIBONACCI SEQUENCE, STOLARS-

KY ARRAY, TETRANACCI NUMBER, TRIBONACCI NUM-

B E R , W Y T H O F F  A R R A Y , Z E C K E N D O R F

REPRESENTATION, ZECKENDORF’S THEOREM
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Fibonacci Polynomial

The W POLYNOMIALS obtained by setting p(x)�x and
q(x)�1 in the LUCAS POLYNOMIAL SEQUENCE. (The
corresponding w POLYNOMIALS are called LUCAS

POLYNOMIALS.) The Fibonacci polynomials are defined
by the RECURRENCE RELATION

Fn�1(x)�xFn(x)�Fn�1(x); (1)

with F1(x)�1 and F2(x)�x: They are also given by



the explicit sum formula

Fn(x) �
X(n �1)=2b c

j�0

n �j �1
j

� �
xn �2j�1 ; (2)

where xb c is the FLOOR FUNCTION and n
m

� �
is a

BINOMIAL COEFFICIENT. The first few Fibonacci poly-
nomials are

F1(x) �1

F2(x) �x

F3(x) �x2 �1

F4(x) �x3 �2x

F5(x) �x4 �3x2 �1:

The Fibonacci polynomials are normalized so that

Fn(1) �Fn ; (3)

where the Fn/s are FIBONACCI NUMBERS.
The Fibonacci polynomials are related to the MOR-

GAN-VOYCE POLYNOMIALS by

F2n�1(x) �bn x2
� �

(4)

F2n �n2(x) �xBn x2
� �

(5)

(Swamy 1968).

See also BRAHMAGUPTA POLYNOMIAL, FIBONACCI

NUMBER, MORGAN-VOYCE POLYNOMIAL
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Fibonacci Pseudoprime
Consider a LUCAS SEQUENCE with P � 0 and Q �91:
A Fibonacci pseudoprime is a COMPOSITE NUMBER n
such that

Vn �P (mod n) :

There exist no EVEN Fibonacci pseudoprimes with
parameters P �1 and Q ��1 (Di Porto 1993) or P �
Q �1 (André-Jeannin 1996). André-Jeannin (1996)
also proved that if (P ;Q) "(1;�1) and (P;Q) "(1; 1);
then there exists at least one EVEN Fibonacci pseu-
doprime with parameters P and Q .

See also PSEUDOPRIME
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Fibonacci Q-Matrix
A FIBONACCI MATRIX OF THE FORM

M �
m 1
1 0

* +
� (1)

If U and V are defined as BINET FORMS

Un �mUn�1 �Un�2 U0 �0;U1 �1ð Þ (2)

Vn �mVn �1 �Vn�2 V0 �2;V1 �mð Þ; (3)

then

M �
Un�1 Un

Un Un�1

* +
(4)

M �1 �M �ml �
0 1
1 �m

* +
� (5)

Defining

Q �
F2 F1

F1 F0

* +
�

1 1
1 0

* +
; (6)

then

Qn �
Fn�1 Fn

Fn Fn�1

* +
(7)

(Honsberger 1985, pp. 106 �/07).

See also BINET FORMS, FIBONACCI NUMBER
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Fibonacci Sequence
FIBONACCI NUMBER

Fibration
If f : E 0 B is a FIBER BUNDLE with B a PARACOMPACT

TOPOLOGICAL SPACE, then f satisfies the HOMOTOPY

LIFTING PROPERTY with respect to all TOPOLOGICAL

SPACES. In other words, if g : [0; 1] �X 0 B is a
HOMOTOPY from g0 to g1 ; and if g ?0 is a LIFT of the
MAP g0 with respect to f , then g has a LIFT to a MAP g?
with respect to f . Therefore, if you have a HOMOTOPY

of a MAP into B , and if the beginning of it has a LIFT,
then that LIFT can be extended to a LIFT of the
HOMOTOPY itself.

A fibration is a MAP between TOPOLOGICAL SPACES f :
E 0 B such that it satisfies the HOMOTOPY LIFTING

PROPERTY.

See also FIBER BUNDLE, FIBER SPACE



Fiedler Vector
The EIGENVECTOR corresponding to the second smal-
lest EIGENVALUE (i.e., the ALGEBRAIC CONNECTIVITY)
of the LAPLACIAN MATRIX of a graph G . The Fiedler
vector is used in SPECTRAL GRAPH PARTITIONING.

See also ALGEBRAIC CONNECTIVITY, CONNECTED

GRAPH, LAPLACIAN MATRIX, SPECTRAL GRAPH PARTI-

TIONING
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Field
A field is any set of elements which satisfies the FIELD

AXIOMS for both addition and multiplication and is a
commutative DIVISION ALGEBRA. An archaic name for
a field is RATIONAL DOMAIN. The French term for a
field is corps and the German word is Körper , both
meaning "body." A field with a finite number of
members is known as a FINITE FIELD or Galois field.

Because the identity condition must be different for
addition and multiplication, every field must have at
least two elements. Examples include the COMPLEX

NUMBERS (/C) ; RATIONAL NUMBERS /(Q) ; and REAL

NUMBERS /(R) ; but not the INTEGERS (F), which form
only a RING. It has been proven by Hilbert and
Weierstrass that all generalizations of the field
concept to triplets of elements are equivalent to the
field of COMPLEX NUMBERS.

See also ADJUNCTION, CHARACTERISTIC (FIELD),
COEFFICIENT FIELD, CYCLOTOMIC FIELD, DIVISION

ALGEBRA, EXTENSION FIELD, FIELD AXIOMS, FINITE

FIELD, FUNCTION FIELD, LOCAL FIELD, MAC LANE’S

THEOREM, MODULE, NUMBER FIELD, PYTHAGOREAN

FIELD, QUADRATIC FIELD, RING, SKEW FIELD, SPLIT-

TING FIELD, SUBFIELD, VECTOR FIELD
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Field Axioms
The field axioms are generally written in additive and
multiplicative pairs.

Name Addition Multiplication

Commutativity /a �b �b �a/ ab � ba

Associativity /(a �b) �c �a �(b �c)/ /(ab)c �a(bc)/

Distributivity /a(b �c) �ab �ac/ /(a �b)c �ac �bc/

Identity /a �0 �a �0 �a/ /a �1 �a �1 �a/

Inverses /a �(�a) �0 �(�a) �a/ /aa�1�1�a�1a if a"0/

See also ALGEBRA, FIELD
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Field Extension
EXTENSION FIELD

Fields Medal
Portions of this entry contributed by MICHEL BARRAN

The mathematical equivalent of the Nobel Prize
(there is no Nobel Prize in mathematics) which is
awarded by the International Mathematical Union
every four years to one or more outstanding research-
ers. "Fields Medals" are more properly known by
their official name, "International medals for out-
standing discoveries in mathematics."

The Field medals were first proposed at the 1924
International Congress of Mathematicians in Tor-
onto, where a resolution was adopted stating that at
each subsequent conference, two gold medals should
be awarded to recognize outstanding mathematical
achievement. Professor J. C. Fields, a Canadian
mathematician who was secretary of the 1924 Con-
gress, later donated funds establishing the medals
which were named in his honor. Consistent with
Fields’ wish that the awards recognize both existing
work and the promise of future achievement, it was
agreed to restrict the medals to mathematicians not
over forty at the year of the Congress. In 1966 it was
agreed that, in light of the great expansion of
mathematical research, up to four medals could be
awarded at each Congress.

The Fields Medal is the highest scientific award for
mathematicians, and is presented every four years at
the International Congress of Mathematicians, to-



gether with a prize of 15,000 Canadian dollars. The
first Fields Medal was awarded in 1936 at the World
Congress in Oslo. The Fields Medal is made of gold,
and shows the head of Archimedes (287 �/12 BC)
together with a quotation attributed to him: "Transire
suum pectus mundoque potiri" ("Rise above oneself
and grasp the world"). The reverse side bears the
inscription: "Congregati ex toto orbe mathematici ob
scripta insignia tribuere" ("the mathematicians as-
sembled here from all over the world pay tribute for
outstanding work").

Nobel prizes were created in the will of the Swedish
chemist and inventor of dynamite Alfred Nobel, but
Nobel, who was an inventor and industrialist, did not
create a prize in mathematics because he was not
particularly interested in mathematics or theoretical
science. In fact, his will speaks of prizes for those
"inventions or discoveries" of greatest practical ben-
efit to mankind. While it is commonly stated that
Nobel decided against a Nobel prize in math because
of anger over the romantic attentions of a famous
mathematician (often claimed to be Gosta Mittag-
Leffler ) to a women in his life, there is no historical
evidence to support the story. Furthermore, Nobel
was a lifelong batchelor, although he did has a
Viennese woman named Sophie Hess as his mistress
(Lopez-Ortiz).

The following table summarizes Fields Medals win-
ners together with their institutions.

year winners

1936 Lars Valerian Ahlfors (Harvard University)

Jesse Douglas (Massachusetts Institute of Tech-

nology)

1950 Laurent Schwartz (University of Nancy)

Alte Selberg (Institute for Advanced Study,

Princeton)

1954 Kunihiko Kodaira (Princeton University)

Jean-Pierre Serre (University of Paris)

1958 Klaus Friedrich Roth (University of London)

René Thom (University of Strasbourg)

1962 Lars V. Hörmander (University of Stockholm)

John Willard Milnor (Princeton University)

1966 Michael Francis Atiyah (Oxford University)

Paul Joseph Cohen (Stanford University)

Alexander Grothendieck (University of Paris)

Stephen Smale (University of California, Berke-

ley)

1970 Alan Baker (Cambridge University)

Heisuke Hironaka (Harvard University)

Serge P. Novikov (Moscow University)

John Griggs Thompson (Cambridge University)

1974 Enrico Bombieri (University of Pisa)

David Bryant Mumford (Harvard University)

1978 Pierre René Deligne (Institut des Hautes É tudes

Scientifiques)

Charles Louis Fefferman (Princeton University)

Gregori Alexandrovitch Margulis (Moscow Uni-

versity)

Daniel G. Quillen (Massachusetts Institute of

Technology)

1982 Alain Connes (Institut des Hautes É tudes

Scientifiques)

William P. Thurston (Princeton University)

Shing-Tung Yau (Institute for Advanced Study,

Princeton)

1986 Simon Donaldson (Oxford University)

Gerd Faltings (Princeton University)

Michael Freedman (University of California, San

Diego)

1990 Vladimir Drinfeld (Phys. Inst. Kharkov)

Vaughan Jones (University of California, Ber-

keley)

Shigefumi Mori (University of Kyoto?)

Edward Witten (Institute for Advanced Study,

Princeton)

1994 Pierre-Louis Lions (Université de Paris-Dau-

phine)

Jean-Christophe Yoccoz (Université de Paris-

Sud)

Jean Bourgain (Institute for Advanced Study,

Princeton)

Efim Zelmanov (University of Wisconsin)

1998 Richard E. Borcherds (Cambridge University)

W. Timothy Gowers (Cambridge University)

Maxim Kontsevich (IHES Bures-sur-Yvette)

Curtis T. McMullen (Harvard University)

See also BURNSIDE PROBLEM, MATHEMATICS PRIZES,
POINCARÉ CONJECTURE, ROTH’S THEOREM, TAU CON-

JECTURE
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Fifteen Theorem
A theorem due to Conway et al. (1997) which states
that, if a positive definite QUADRATIC FORM with
INTEGER MATRIX entries represents all natural num-
bers up to 15, then it represents all natural numbers.
This theorem contains LAGRANGE’S FOUR-SQUARE

THEOREM, since every number up to 15 is the sum of
at most four SQUARES.

See also INTEGER MATRIX, INTEGER-MATRIX FORM,
LAGRANGE’S FOUR-SQUARE THEOREM, QUADRATIC

FORM
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Figurate Number

A number which can be represented by a regular
geometrical arrangement of equally spaced points. If
the arrangement forms a REGULAR POLYGON, the
number is called a POLYGONAL NUMBER. The poly-
gonal numbers illustrated above are called triangu-
lar, square, pentagonal, and hexagon numbers,

respectively. Figurate numbers can also form other
shapes such as centered polygons, L-shapes, 3-dimen-
sional solids, etc.
The nth regular r -polytopic number is given by

Pr(n)�
n�r�1

n

� �
�

1

r!
n(r);

where n
k

� �
is a BINOMIAL COEFFICIENT and n(k) is a

RISING FACTORIAL, so

P2(n)�
1

2
n(n�1)

are the TRIANGULAR NUMBERS,

P3(n)�
1

6
n(n�1)(n�2)

the TETRAHEDRAL NUMBERS,

P4(n)�
1

24
n(n�1)(n�1)(n�3)

the PENTATOPE NUMBERS, and so on (Dickson 1952,
p. 7).

The following table lists the most common types of
figurate numbers.

Name FORMULA

BIQUADRATIC NUMBER /n4
/

CENTERED CUBE NUMBER /(2n�1)(n2�n�1)/

CENTERED PENTAGONAL NUM-

BER

/

1

2
(5n2�5n�2)/

CENTERED SQUARE NUMBER /n2�(n�1)2
/

CENTERED TRIANGULAR NUM-

BER

/

1

2
(3n2�3n�2)/

CUBIC NUMBER /n3
/

DECAGONAL NUMBER /4n2�3n/

GNOMONIC NUMBER /2n�1/

Hauy OCTAHEDRAL NUMBER /

1

3
(2n�1)(2n2�2n�3)/

Hauy RHOMBIC DODECAHE-

DRAL NUMBER

/(2n�1)(8n2�14n�7)/

HEPTAGONAL NUMBER /

1

2
n(5n�3)/

HEX NUMBER /3n2�3n�1/

HEPTAGONAL PYRAMIDAL NUM-

BER

/

1

6
n(n�1)(5n�2)/

HEXAGONAL NUMBER /n(2n�1)/

HEXAGONAL PYRAMIDAL NUM-

BER

/

1

6
n(n�1)(4n�1)/



OCTAGONAL NUMBER /n(3n �2)/

OCTAHEDRAL NUMBER /

1

3
n(2n2 �1)/

PENTAGONAL NUMBER /

1

2
n(3n �1)/

PENTAGONAL PYRAMIDAL NUM-

BER

/

1

2
n2(n �1)/

PENTATOPE NUMBER /

1

24
n(n �1)(n �2)(n �3)/

PRONIC NUMBER /n(n �1)/

RHOMBIC DODECAHEDRAL

NUMBER

/(2n �1)(2n2 �2n �1)/

SQUARE NUMBER /n2
/

SQUARE PYRAMIDAL NUMBER /

1

6
n(n �1)(2n �1)/

STELLA OCTANGULA NUMBER /n(2n2 �1)/

TETRAHEDRAL NUMBER /

1

6
n(n �1)(n �2)/

TRIANGULAR NUMBER /

1

2
n(n �1)/

TRUNCATED OCTAHEDRAL

NUMBER

/16n3 �33n2 �24n �6/

TRUNCATED TETRAHEDRAL

NUMBER

/

1

6
n 23n2 �27n �10
� �

/

See also BIQUADRATIC NUMBER, CENTERED CUBE

NUMBER, CENTERED PENTAGONAL NUMBER, CEN-

TERED POLYGONAL NUMBER, CENTERED SQUARE

NUMBER, CENTERED TRIANGULAR NUMBER, CUBIC

NUMBER, DECAGONAL NUMBER, FIGURATE NUMBER

TRIANGLE, GNOMONIC NUMBER, HEPTAGONAL NUM-

BER, HEPTAGONAL PYRAMIDAL NUMBER, HEX NUM-

BER, HEX PYRAMIDAL NUMBER, HEXAGONAL NUMBER,
HEXAGONAL PYRAMIDAL NUMBER, NEXUS NUMBER,
OCTAGONAL NUMBER, OCTAHEDRAL NUMBER, PENTA-

GONAL NUMBER, PENTAGONAL PYRAMIDAL NUMBER,
PENTATOPE NUMBER, POLYGONAL NUMBER, PRONIC

NUMBER, PYRAMIDAL NUMBER, RHOMBIC DODECAHE-

DRAL NUMBER, SQUARE NUMBER, SQUARE PYRAMIDAL

NUMBER, STELLA OCTANGULA NUMBER, TETRAHE-

DRAL NUMBER, TRIANGULAR NUMBER, TRUNCATED

OCTAHEDRAL NUMBER, TRUNCATED TETRAHEDRAL

NUMBER
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Figurate Number Triangle
A PASCAL’S TRIANGLE written in a square grid and
padded with zeroes, as written by Jakob Bernoulli
(Smith 1984). The figurate number triangle therefore
has entries

aij �
i
j

� �
:

where i is the row number, j the column number, and
i
j

� �
a BINOMIAL COEFFICIENT. Written out explicitly

(beginning each row with j � 0),

1 0 0 0 0 0 0 � � �
1 1 0 0 0 0 0 � � �
1 2 1 0 0 0 0 � � �
1 3 3 1 0 0 0 � � �
1 4 6 4 1 0 0 � � �
1 5 10 10 5 1 0 � � �
1 6 15 20 15 6 1 � � �
1 7 21 35 35 21 7

:::
n n n n n n n :::

2
6666666666664

3
7777777777775

Then we have the sum identities

Xi

j�0

aij�2i

Xi

j�1

aij�2i�1

Xn

i�0

aij�a(n�1);(j�1)�
n � 1

j � 1
anj:

See also BINOMIAL COEFFICIENT, FIGURATE NUMBER,
PASCAL’S TRIANGLE
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Figure Eight Knot
FIGURE-OF-EIGHT KNOT

Figure Eight Surface
EIGHT SURFACE



Figure-of-Eight Knot

The knot 04 �/01, which is the unique PRIME KNOT of
four crossings, and which is a 2-EMBEDDABLE KNOT. It
is AMPHICHIRAL. It is also known as the FLEMISH

KNOT and SAVOY KNOT, and it has BRAID WORD

s1 s
�1
2 s1 s

�1
2 :/
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Figures
A number x is said to have "n figures" if it takes n
DIGITS to express it. The number of figures is there-
fore equal to one more than the POWER of 10 in the
SCIENTIFIC NOTATION representation of the number.
The word is most frequently used in reference to
monetary amounts, e.g., a "six-figure salary" would
fall in the range of $100,000 to $999,999.

See also DIGIT, SCIENTIFIC NOTATION, SIGNIFICANT

FIGURES

Filon’s Integration Formula
A formula for NUMERICAL INTEGRATION,

g
xn

x0

f (x) cos(tx)dx

�h fa(th) f2n sin tx2nð Þ�f0 sin tx0ð Þ½ 
� b(th)C2n

� g(th)C2n�1 �
2

45
th4S?2n�1 g�Rn ; (1)

where

C2n �
Xn

i�0

f2i cos tx2ið Þ�1

2
f2n cos tx2nð Þ½

�f0 cos tx0ð Þ
  (2)

C2n�1 �
Xn

i�1

f2i�1 cos tx2i�1ð Þ  (3)

S ?2n �1 �
Xn

i�1

f (3)
2i �1 sin(tx2i �1) (4)

a( u) �
1

u 
�

sin(2u)

2u2
�

2 sin2 u

u3 
(5)

b( u) �2
1 � cos2 u

u2 �
sin(2u)

u3

" #
(6)

g(u) �4
sin u

u3 �
cos u

u2

 !
; (7)

and the remainder term is

Rn �
1

90
nh5f (4)(j) �O th7

� �
: (8)

See also NUMERICAL INTEGRATION
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Filter
Let S be a nonempty set, then a filter on S is a
nonempty collection F of subsets of S having the
following properties:

1. fiQF ;/
2. If A;B � F ; then A S B � F ;/
3. If A � F and A ⁄B ⁄S then B � F/

If S is an infinite set, then the collection FS �fA ⁄
S : S �A is finite g is a filter called the COFINITE (or
Fréchet) filter on S .

In signal processing, a filter is a function or procedure
which removes unwanted parts of a signal. The
concept of filtering and filter functions is particularly
useful in engineering. One particularly elegant
method of filtering FOURIER TRANSFORMS a signal
into frequency space, performs the filtering operation
there, then transforms back into the original space
(Press et al. 1992).

See also COFINITE FILTER, REMEZ ALGORITHM, SA-

VITZKY-GOLAY FILTER, ULTRAFILTER, WIENER FILTER
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Fine’s Equation
The Q -SERIES identity

Y
n�1

1 � q2nð Þ 1 � q3nð Þ 1 � q8nð Þ 1 � q12nð Þ
1 � qnð Þ 1 � q24nð Þ

�1 �
X
N �1

E1;5 ;7;11(N; 24)qN ;

where E1;5 ;7 ;11(N; 24) is the sum of the DIVISORS of N
CONGRUENT to 1, 5, 7, and 11 (mod 24) minus the sum
of DIVISORS of N CONGRUENT to -1, -5, -7, and -11 (mod
24).

See also Q -SERIES

Finite
A SET which contains a NONNEGATIVE integral num-
ber of elements is said to be finite. A SET which is not
finite is said to be INFINITE. A finite or COUNTABLY

INFINITE set is said to be COUNTABLE. While the
meaning of the term "finite" is fairly clear in common
usage, precise definitions of FINITE and INFINITE are
needed in technical mathematics and especially in
SET THEORY.

See also COUNTABLE SET, COUNTABLY INFINITE,
INFINITE, SET THEORY, UNCOUNTABLY INFINITE

Finite Difference
The finite difference is the discrete analog of the
DERIVATIVE. The finite FORWARD DIFFERENCE of a
function fp is defined as

Dfp�fp�1�fp; (1)

and the finite BACKWARD DIFFERENCE as

9fp�fp�fp�1: (2)

If the values are tabulated at spacings h , then the
notation

fp�f x0�phð Þ�f (x) (3)

is used. The kth FORWARD DIFFERENCE would then be
written as Dkfp; and similarly, the kth BACKWARD

DIFFERENCE as 9kfp:/

However, when fp is viewed as a discretization of the
continuous function f (x); then the finite difference is
sometimes written

Df (x)�f x�
1

2

 !
�f x�

1

2

 !
�2II(x)+f (x); (4)

where + denotes CONVOLUTION and II(x) is the odd
IMPULSE PAIR. The finite difference operator can
therefore be written

D̃�2II+: (5)

An nth POWER has a constant nth finite difference.
For example, take n�3 and make a DIFFERENCE

TABLE,

x
1
2
3
4
5

x3

1
8
27
64
125

D
7
19
37
61

D2

12
18
24

D3

6
6

D4

0
: (6)

The D3 column is the constant 6.

Finite difference formulas can be very useful for
extrapolating a finite amount of data in an attempt
to find the general term. Specifically, if a function f (n)
is known at only a few discrete values n � 0, 1, 2, ...
and it is desired to determine the analytical form of f ,
the following procedure can be used if f is assumed to
be a POLYNOMIAL function. Denote the nth value in
the SEQUENCE of interest by an: Then define bn as the
FORWARD DIFFERENCE Dn�an�1�an; cn as the second
FORWARD DIFFERENCE D2

n�bn�1�bn; etc., construct-
ing a table as follows

a0�f (0) a1�f (1) a2�f (2) . . . ap�f (p)

b0�a1�a0 b1�a2�a1 . . . bp�1�ap�ap�1

c0�b1�b0 . . . . . .

::: (7)

Continue computing d0 ; e0; etc., until a 0 value is
obtained. Then the POLYNOMIAL function giving the
values an is given by

f (n)�
Xp

k�0

ak

n
k

� �

�a0�b0n�
c0n(n � 1)

2
�

d0n(n � 1)(n � 2)

2 � 3
�. . . (8)

When the notation D0�a0; D
2
0�b0; etc., is used, this

beautiful equation is called NEWTON’S FORWARD

DIFFERENCE FORMULA. To see a particular example,
consider a SEQUENCE with first few values of 1, 19,
143, 607, 1789, 4211, and 8539. The difference table is
then given by

1 19 143 607 1789 4211 8539

18 124 464 1182 2422 4328

106 340 718 1240 1906

234 378 522 666



144 144 144

0 0

Reading off the first number in each row gives a0 �1;
b0 �18; c0 �106; d0 �234; e0 �144: Plugging these in
gives the equation

f (n) �1 �18n �53n(n �1) �39n(n �1)(n �2)

�6n(n �1)(n �2)(n �3); (9)

which simplifies to f (n) �6n4 �3n3 �2n2 �7n �1;
and indeed fits the original data exactly!

Beyer (1987) gives formulas for the derivatives

hn dnf (x0 � ph)

dxn
�hn dnfp

dxn 
�

dnfp

dpn 
(10)

(Beyer 1987, pp. 449 �/51) and integrals

g
x�

x0

f (x)dx �hg
n

0

fpdp (11)

(Beyer 1987, pp. 455 �/56) of finite differences.

Finite differences lead to DIFFERENCE EQUATIONS,
finite analogs of DIFFERENTIAL EQUATIONS. In fact,
UMBRAL CALCULUS displays many elegant analogs of
well-known identities for continuous functions. Com-
mon finite difference schemes for PARTIAL DIFFEREN-

TIAL EQUATIONS include the so-called Crank-
Nicholson, Du Fort-Frankel, and Laasonen methods.

See also BACKWARD DIFFERENCE, BESSEL’S FINITE

DIFFERENCE FORMULA, DIFFERENCE EQUATION, DIF-

FERENCE TABLE, EVERETT’S FORMULA, FINITE ELE-

MENT METHOD, FORWARD DIFFERENCE, GAUSS’S

BACKWARD FORMULA, GAUSS’S FORWARD FORMULA,
INTERPOLATION, JACKSON’S DIFFERENCE FAN, NEW-

TON’S BACKWARD DIFFERENCE FORMULA, NEWTON-

COTES FORMULAS, NEWTON’S DIVIDED DIFFERENCE

INTERPOLATION FORMULA, NEWTON’S FORWARD DIF-

FERENCE FORMULA, QUOTIENT-DIFFERENCE TABLE,
STEFFENSON’S FORMULA, STIRLING’S FINITE DIFFER-

ENCE FORMULA, UMBRAL CALCULUS
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Finite Element Method
A method for solving an equation by approximating
continuous quantities as a set of quantities at discrete
points, often regularly spaced into a so-called GRID or
MESH. Because finite element methods can be adapted
to problems of great complexity and unusual geome-
try, they are an extremely powerful tool in the
solution of important problems in heat transfer, fluid
mechanics, and mechanical systems. Furthermore,
the availability of fast and inexpensive computers
allows problems which are intractable using analytic
or mechanical methods to be solved in a straightfor-
ward manner using finite element methods.

See also FINITE DIFFERENCE, LATTICE POINT
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Finite Field
A finite field is a FIELD with a finite ORDER (number of
elements), also called a Galois field. The order of a
finite field is always a PRIME or a POWER of a PRIME

(Birkhoff and Mac Lane 1996). For each PRIME

POWER, there exists exactly one (with the usual
caveat that "exactly one" means "exactly one up to
an ISOMORPHISM") finite field GF(/pn); often written as
Fpn in current usage.



GF(p ) is called the PRIME FIELD of order p , and is the
FIELD of RESIDUE CLASSES modulo p , where the p
elements are denoted 0, 1, ..., p �1 : a � b in GF(p )
means the same as a �b(modp) : Note, however, that
2 �2 �0(mod4) in the RING of residues modulo 4, so 2
has no reciprocal, and the RING of residues modulo 4
is distinct from the finite field with four elements.
Finite fields are therefore denoted GF(/pn) ; instead of
GF(k ), where k �pn ; for clarity.

The finite field GF(2) consists of elements 0 and 1
which satisfy the following addition and multiplica-
tion tables.

/�/ 0 1

0 0 1

1 1 0

/�/ 0 1

0 0 0

1 0 1

If a subset S of the elements of a finite field F
satisfies the axioms above with the same operators of
F , then S is called a SUBFIELD. Finite fields are used
extensively in the study of ERROR-CORRECTING CODES.

When n �1, GF(/pn) can be REPRESENTED AS the FIELD

of EQUIVALENCE CLASSES of POLYNOMIALS whose
COEFFICIENTS belong to GF(p ). Any IRREDUCIBLE

POLYNOMIAL of degree n yields the same FIELD up to
an ISOMORPHISM. For example, for GF(23), the mod-
ulus can be taken as x3 �x2 �1; x3 �x �1 ; or any
other IRREDUCIBLE POLYNOMIAL of degree 3. Using
the modulus x3 �x �1; the elements of GF(23)–writ-
ten 0, x0 ; x1 ; ...–can be REPRESENTED AS POLYNOMIALS

with degree less than 3. For instance,

x3 ��x �1 �x �1

x4 �x(x3) �x(x �1) �x3 �x

x5 �x x2 �x
� �

�x3 �x2 �x2 �x �1 �x2 �x �1

x6 �x(x2 �x �1) �x3 �x2 �x �x2 �1 �x2 �1

x7 �x(x2 þ 1) �x3 þ x ��1 �1 �x0 :

Now consider the following table which contains
several different representations of the elements of
a finite field. The columns are the power, polynomial
representation, triples of polynomial representation
COEFFICIENTS (the vector representation), and the
binary INTEGER corresponding to the vector represen-
tation (the regular representation).

Power Polynomial Vector Regular

0 0 (000) 0

/x0
/ 1 (001) 1

/x1
/ x (010) 2

/x2
/ /x2

/ (100) 4

/x3
/ /x �1/ (011) 3

/x4
/ /x2 �x/ (110) 6

/x5
/ /x2 �x �1/ (111) 7

/x6
/ /x2 �1/ (101) 5

The set of POLYNOMIALS in the second column is
CLOSED under ADDITION and MULTIPLICATION modulo
x3 �x �1; and these operations on the set satisfy the
AXIOMS of finite field. This particular finite field is
said to be an extension field of degree 3 of GF(2),
written GF(23), and the field GF(2) is called the base
field of GF(23). If an IRREDUCIBLE POLYNOMIAL gen-
erates all elements in this way, it is called a PRIMITIVE

POLYNOMIAL. For any PRIME or PRIME POWER q and
any POSITIVE INTEGER n , there exists a primitive
irreducible polynomial of degree n over GF(q ).

For any element c of GF(q ), cq�c; and for any
NONZERO element d of GF(q ), dq�1�1: There is a
smallest POSITIVE INTEGER n satisfying the sum
condition e�e�. . .�e�0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

for some element e in

GF(q ),. This number is called the CHARACTERISTIC of
the finite field GF(q ). The CHARACTERISTIC is a PRIME

NUMBER for every finite field, and it is true that

(x�y)p�xp�yp

over a finite field with characteristic p .

See also CHARACTERISTIC (FIELD), FIELD, HADAMARD

MATRIX, IRREDUCIBLE POLYNOMIAL, PRIMITIVE POLY-

NOMIAL, RING, SUBFIELD
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Finite Game
A GAME in which each player has a finite number of
moves and a finite number of choices at each move.

See also GAME, HYPERGAME, ZERO-SUM GAME
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Finite Group
A GROUP of finite ORDER. Examples of finite groups
are the MODULO MULTIPLICATION GROUPS and the
POINT GROUPS. The CLASSIFICATION THEOREM of finite
SIMPLE GROUPS states that the finite SIMPLE GROUPS

can be classified completely into one of five types.

The following table gives the numbers and names of
the first few groups of ORDER h . In the table, NA
denotes the number of non-Abelian groups, A denotes
the number of ABELIAN GROUPS, and N the total
number of groups. In addition, Zn denotes a CYCLIC

GROUP of ORDER n , An an ALTERNATING GROUP, Dn a
DIHEDRAL GROUP, Q8 the group of the QUATERNIONS,
T the cubic group, and � denotes GROUP DIRECT

PRODUCT.

h Name A NA N

1 FINITE GROUP E 1 0 1

2 FINITE GROUP Z2 1 0 1

3 FINITE GROUP Z3 1 0 1

4 FINITE GROUP Z2 Z2, FINITE

GROUP Z4

2 0 2

5 FINITE GROUP Z5 1 0 1

6 FINITE GROUP Z6, FINITE GROUP

D3

1 1 2

7 FINITE GROUP Z7 1 0 1

8 FINITE GROUP Z2 Z2 Z2, FINITE

GROUP Z2 Z4, FINITE GROUP Z8,
FINITE GROUP Q8, FINITE GROUP

D4

3 2 5

9 /Z3�Z3;Z9/ 2 0 2

10 /Z10;D5/ 1 1 2

11 /Z11/ 1 0 1

12 /Z2�Z6;Z12;A4;D6;T/ 2 3 5

13 /Z13/ 1 0 1

14 /Z14;D7/ 1 1 2

15 /Z15/ 1 0 1

The problem of determining the nonisomorphic finite
groups of order h was first considered by Cayley
(1854). There is no known FORMULA to give the
number of possible finite groups g(h) as a function
of the ORDER h . However, there are simple formulas
for special forms of h .

g(1)�1 (1)

g(p)�1 (2)

g(pq)�
1 if p¶(q�1)
2 if p½(q�1)

�
(3)

g p2
� �

�2 (4)

g p3
� �

�5; (5)

where p and q�p are distinct primes. In addition,
there is a beautiful algorithm due to Hölder (Hölder
1895, Alonso 1976) for determining g(h) for square-
free h , namely

g(h)�
X
d½n

Y
p½d
p"1

pop(n=d) � 1

p � 1
; (6)

where op(m) is the number of primes p such that q½m
and p½(q�1) (Dennis).

Miller (1930) gave the number of groups for orders 1�/

00, including an erroneous 297 as the number of
groups of ORDER 64. Senior and Lunn (1934, 1935)
subsequently completed the list up to 215, but
omitted 128 and 192. The number of groups of ORDER

64 was corrected in Hall and Senior (1964). James et
al. (1990) found 2328 groups in 115 ISOCLINISM

families of ORDER 128, correcting previous work,
and O’Brien (1991) found the number of groups of
ORDER 256. Currently, the number of groups is known
for orders up to 2000, excluding 1024 (Besche and
Eick 1999a), with the difficult cases of orders 512
(g(512)�10; 494; 213; Eick and O’Brien 1999b) and
768 (Besche and Eick 2000) now put to rest. The
numbers of nonisomorphic finite groups N of each
ORDER h for the first few hundred orders are given in
the table below (Sloane’s A000001–the very first
sequence). The number of nonisomorphic groups of
orders 2n for n�0, 1, ... are 1, 1, 2, 5, 14, 51, 267,
2328, 56092, ... (Sloane’s A000679).

The smallest orders h for which there exist n�1, 2, ...
nonisomorphic groups are 1, 4, 75, 28, 8, 42, ...
(Sloane’s A046057). The incrementally largest num-
ber of nonisomorphic finite groups are 1, 2, 5, 14, 15,
51, 52, 267, 2328, ... (Sloane’s A046058), which occur
for orders 1, 4, 8, 16, 24, 32, 48, 64, 128, ... (Sloane’s
A046059). Dennis has conjectured that the number of
groups g(h) of order h assumes every positive integer
as a value an infinite number of times.

It is simple to determine the number of ABELIAN

GROUPS using the KRONECKER DECOMPOSITION THEO-



REM, and there is at least one ABELIAN GROUP for
every finite order h . The number A of ABELIAN

GROUPS of ORDER h�1, 2, ... are given by 1, 1, 1, 2,
1, 1, 1, 3, ... (Sloane’s A000688). The following table
summarizes the total number of finite groups N and
the number of Abelian finite groups A for orders h
from 1 to 400. A table of orders up to 1000 is given by
Royle; the GAP software package includes a table of
the number of finite groups up to order 2000,
excluding 1024.

h N A h N A h N A h N A

1 1 1 51 1 1 101 1 1 151 1 1

2 1 1 52 5 2 102 4 1 152 12 3

3 1 1 53 1 1 103 1 1 153 2 2

4 2 2 54 15 3 104 14 3 154 4 1

5 1 1 55 2 1 105 2 1 155 2 1

6 2 1 56 13 3 106 2 1 156 18 2

7 1 1 57 2 1 107 1 1 157 1 1

8 5 3 58 2 1 108 45 6 158 2 1

9 2 2 59 1 1 109 1 1 159 1 1

10 2 1 60 13 2 110 6 1 160 238 7

11 1 1 61 1 1 111 2 1 161 1 1

12 5 2 62 2 1 112 43 5 162 55 5

13 1 1 63 4 2 113 1 1 163 1 1

14 2 1 64 267 11 114 6 1 164 5 2

15 1 1 65 1 1 115 1 1 165 2 1

16 14 5 66 4 1 116 5 2 166 2 1

17 1 1 67 1 1 117 4 2 167 1 1

18 5 2 68 5 2 118 2 1 168 57 3

19 1 1 69 1 1 119 1 1 169 2 2

20 5 2 70 4 1 120 47 3 170 4 1

21 2 1 71 1 1 121 2 2 171 5 2

22 2 1 72 50 6 122 2 1 172 4 2

23 1 1 73 1 1 123 1 1 173 1 1

24 15 3 74 2 1 124 4 2 174 4 1

25 2 2 75 3 2 125 5 3 175 2 2

26 2 1 76 4 2 126 16 2 176 42 5

27 5 3 77 1 1 127 1 1 177 1 1

28 4 2 78 6 1 128 2328 15 178 2 1

29 1 1 79 1 1 129 2 1 179 1 1

30 4 1 80 52 5 130 4 1 180 37 4

31 1 1 81 15 5 131 1 1 181 1 1

32 51 7 82 2 1 132 10 2 182 4 1

33 1 1 83 1 1 133 1 1 183 2 1

34 2 1 84 15 2 134 2 1 184 12 3

35 1 1 85 1 1 135 5 3 185 1 1

36 14 4 86 2 1 136 15 3 186 6 1

37 1 1 87 1 1 137 1 1 187 1 1

38 2 1 88 12 3 138 4 1 188 4 2

39 2 1 89 1 1 139 1 1 189 13 3

40 14 3 90 10 2 140 11 2 190 4 1

41 1 1 91 1 1 141 1 1 191 1 1

42 6 1 92 4 2 142 2 1 192 1543 11

43 1 1 93 2 1 143 1 1 193 1 1

44 4 2 94 2 1 144 197 1 194 2 1

45 2 2 95 1 1 145 1 1 195 2 1

46 2 1 96 230 7 146 2 1 196 17 4

47 1 1 97 1 1 147 6 2 197 1 1

48 52 5 98 5 2 148 5 2 198 10 2

49 2 2 99 2 2 149 1 1 199 1 1

50 2 2 100 16 4 150 13 2 200 52 6

h N A h N A h N A h N A

201 2 1 251 1 1 301 2 1 351 14 3

202 2 1 252 46 4 302 2 1 352 195 7

203 2 1 253 2 1 303 1 1 353 1 1

204 12 2 254 2 1 304 42 5 354 4 1

205 2 1 255 1 1 305 2 1 355 2 1

206 2 1 256 56092 22 306 10 2 356 5 2

207 2 2 257 1 1 307 1 1 357 2 1

208 51 5 258 6 1 308 9 2 358 2 1

209 1 1 259 1 1 309 2 1 359 1 1

210 12 1 260 15 2 310 6 1 360 162 6

211 1 1 261 2 2 311 1 1 361 2 2

212 5 2 262 2 1 312 61 3 362 2 1

213 1 1 263 1 1 313 1 1 363 3 2

214 2 1 264 39 3 314 2 1 364 11 2



215 1 1 265 1 1 315 4 2 365 1 1

216 177 9 266 4 1 316 4 2 366 6 1

217 1 1 267 1 1 317 1 1 367 1 1

218 2 1 268 4 2 318 4 1 368 42 5

219 2 1 269 1 1 319 1 1 369 2 2

220 15 2 270 30 3 320 1640 11 370 4 1

221 1 1 271 1 1 321 1 1 371 1 1

222 6 1 272 54 5 322 4 1 372 15 2

223 1 1 273 5 1 323 1 1 373 1 1

224 197 7 274 2 1 324 176 10 374 4 1

225 6 4 275 4 2 325 2 2 375 7 3

226 2 1 276 10 2 326 2 1 376 12 3

227 1 1 277 1 1 327 2 1 377 1 1

228 15 2 278 2 1 328 15 3 378 60 3

229 1 1 279 4 2 329 1 1 379 1 1

230 4 1 280 40 3 330 12 1 380 11 2

231 2 1 281 1 1 331 1 1 381 2 1

232 14 3 282 4 1 332 4 2 382 2 1

233 1 1 283 1 1 333 5 2 383 1 1

234 16 2 284 4 2 334 2 1 384 20169 15

235 1 1 285 2 1 335 1 1 385 2 1

236 4 2 286 4 1 336 228 5 386 2 1

237 2 1 287 1 1 337 1 1 387 4 2

238 4 1 288 1045 14 338 5 2 388 5 2

239 1 1 289 2 2 339 1 1 389 1 1

240 208 5 290 4 1 340 15 2 390 12 1

241 1 1 291 2 1 341 1 1 391 1 1

242 5 2 292 5 2 342 18 2 392 44 6

243 67 7 293 1 1 343 5 3 393 1 1

244 5 2 294 23 2 344 12 3 394 2 1

245 2 2 295 1 1 345 1 1 395 1 1

246 4 1 296 14 3 346 2 1 396 30 4

247 1 1 297 5 3 347 1 1 397 1 1

248 12 3 298 2 1 348 12 2 398 2 1

249 1 1 299 1 1 349 1 1 399 5 1

250 15 3 300 49 4 350 10 2 400 221 10

See also ABELIAN GROUP, ABHYANKAR’S CONJECTURE,

ALTERNATING GROUP, BURNSIDE’S LEMMA, BURNSIDE

PROBLEM, CHEVALLEY GROUPS, CLASSIFICATION THE-

OREM, COMPOSITION SERIES, CONTINUOUS GROUP,
DIHEDRAL GROUP, DISCRETE GROUP, FEIT-THOMPSON

THEOREM, GROUP, INFINITE GROUP, JORDAN-HÖ LDER

THEOREM, KRONECKER DECOMPOSITION THEOREM,
LIE GROUP, LIE-TYPE GROUP, LINEAR GROUP, MOD-

ULO MULTIPLICATION GROUP, ORDER (GROUP),
ORTHOGONAL GROUP, P -GROUP, POINT GROUPS, SIM-

PLE GROUP, SPORADIC GROUP, SYMMETRIC GROUP,
SYMPLECTIC GROUP, TWISTED CHEVALLEY GROUPS,
UNITARY GROUP
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Finite Group D3

The DIHEDRAL GROUP D3 is one of the two groups of
ORDER 6. It is the non-Abelian group of smallest
ORDER. Examples of D3 include the POINT GROUPS

known as C3h; C3v; S3; D3; the symmetry group of the
EQUILATERAL TRIANGLE, and the group of permuta-
tion of three objects. Its elements Ai satisfy A3

i �1;
and four of its elements satisfy A2

i �1; where 1 is the
IDENTITY ELEMENT. The CYCLE GRAPH is shown above,
and the MULTIPLICATION TABLE is given below (Cotton
1990, p. 12).

/D3/ 1 A B C D E

1 1 A B C D E

A A 1 D E B C

B B E 1 D C A

C C D E 1 A B

D D C A B E 1

E E B C A 1 D

The CONJUGACY CLASSES are f1g (which is always in a
class by itself), fA;B;Cg;

A�1AA�A (1)

B�1AB�C (2)

C�1AC�B (3)

D�1AD�C (4)

E�1AE�B; (5)

and fD;Eg;

A�1DA�E (6)

B�1DB�D: (7)

A reducible 2-D representation using REAL MATRICES

can be found by performing the spatial rotations
corresponding to the symmetry elements of C3v: Take
the Z -AXIS along the C3 axis.

I�Rz(0)�
1 0
0 1

* +
(8)



A�Rz
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3
P

 !
�
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 !
sin
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�sin
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 !
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2
�

1

2
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7775 (9)

B�Rz
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2

1

2

ffiffiffi
3

p

�
1

2

ffiffiffi
3

p
�
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2
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3
7775 (10)

C�Rc(P)�
�1 0
0 1

* +
(11)

D�RD(P)�CB�

1

2
�

1

2

ffiffiffi
3

p

�
1

2

ffiffiffi
3

p
�

1

2

2
6664

3
7775 (12)

E�RE(P)�CA�

1

2

1

2

ffiffiffi
3

p

1

2

ffiffiffi
3

p
�

1

2

2
6664

3
7775 (13)

To find the irreducible representation, note that there
are three CONJUGACY CLASSES. GROUP rule 5 requires
that there be three irreducible representations satis-
fying

h�l2
1�l2

2�l2
3�6; (14)

so it must be true that

l1�l2�1; l3�2: (15)

By GROUP rule 6, we can let the first representation
have all 1s.

/D3/ 1 A B C D E

/G1/ 1 1 1 1 1 1

To find a representation orthogonal to the totally
symmetric representation, we must have three �1
and three �1 CHARACTERS. We can also add the
constraint that the components of the IDENTITY

ELEMENT 1 be positive. The three CONJUGACY CLASSES

have 1, 2, and 3 elements. Since we need a total of
three �1/s and we have required that a �1 occur for
the CONJUGACY CLASS of ORDER 1, the remaining �1s
must be used for the elements of the CONJUGACY

CLASS of ORDER 2, i.e., D and E .

/D3/ 1 A B C D E

/G1/ 1 1 1 1 1 1

/G2/ 1 �1 �1 �1 1 1

Using GROUP rule 1, we see that

12�12�x2
3(1)�6 (16)

so the final representation for 1 has CHARACTER 2.
Orthogonality with the first two representations
(GROUP rule 3) then yields the following constraints:

1�1�2�1�2�x2�1�3�x3�2�2x2�3x3�0 (17)

1�1�2�1�2�x2�(�1)�3�x3�2�2x2�3x3�0: (18)

Solving these simultaneous equations by adding and
subtracting (18) from (17), we obtain x2��1; x3�0:
The full CHARACTER TABLE is then

/D3/ 1 A B C D E

/G1/ 1 1 1 1 1 1

/G2/ 1 �1 �1 �1 1 1

/G3/ 2 0 0 0 �1 �1

Since there are only three CONJUGACY CLASSES, this
table is conventionally written simply as

/D3/ 1 /A�B�C/ D � E

/G1/ 1 1 1

/G2/ 1 �1 1

/G3/ 2 0 �1

Writing the irreducible representations in matrix
form then yields

1�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 (19)

A�

1 0 0 0
0 1 0 0

0 0 �
1

2
�

1

2

ffiffiffi
3

p

0 0
1

2

ffiffiffi
3

p
�

1

2

2
66666664

3
77777775

(20)



B �

1 0  0  0
0 1  0  0

0 0  �
1

2

1

2

ffiffiffi
3

p

0 0 �
1

2

ffiffiffi
3

p
�

1

2

2
66666664

3
77777775

(21)

C �

1 0  0 0
0 �1 0 0
0 0 �1 0
0 0  0 1

2
664

3
775 (22)

D �

1 0  0  0
0 1  0  0

0 0  �
1

2

1

2

ffiffiffi
3

p

0 0 �
1

2

ffiffiffi
3

p
�

1

2

2
66666664

3
77777775

(23)

E �

1 0  0  0
0 �1 0  0

0 0
1

2

1

2

ffiffiffi
3

p

0 0
1

2

ffiffiffi
3

p
�

1

2

2
66666664

3
77777775

(24)

See also DIHEDRAL GROUP, FINITE GROUP D4, FINITE

GROUP Z6

Finite Group D4

The DIHEDRAL GROUP D4 is one of the two non-Abelian
groups of the five groups total of ORDER 8. It is
sometimes called the octic group. Examples of D4

include the symmetry group of the SQUARE. The
CYCLE GRAPH is shown above.

See also DIHEDRAL GROUP, FINITE GROUP D3, FINITE

GROUP Z8, FINITE GROUP Z2Z2Z2, FINITE GROUP

Z2Z4, FINITE GROUP Z8
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Finite Group e
The unique (and trivial) group of ORDER 1 is denoted
eh i: It is (trivially) ABELIAN and CYCLIC. Examples

include the POINT GROUP C1 and the integers modulo
1 under addition.

/ eh i/ 1

1 1

Its only conjugacy class is f1g:/

Finite Group Q8

One of the two non-Abelian groups of the five groups
total of ORDER 8. The group Q8 has the MULTIPLICA-

TION TABLE of 91; i ; j ; k; where 1, i , j , and k are the
QUATERNIONS. The CYCLE GRAPH is shown above.

See also FINITE GROUP D4, FINITE GROUP Z2Z2Z2,
FINITE GROUP Z2Z4, FINITE GROUP Z8, QUATERNION

Finite Group Z2

The unique group of ORDER 2. Z2 is both ABELIAN and
CYCLIC. Examples include the POINT GROUPS Cs; Ci;
and C2; the integers modulo 2 under addition, and the
MODULO MULTIPLICATION GROUPS M3; M4; and M6:
The elements Ai satisfy A2

i �1; where 1 is the
IDENTITY ELEMENT. The CYCLE GRAPH is shown above,
and the MULTIPLICATION TABLE is given below.

/Z2/ 1 A

1 1 A

A A 1

The CONJUGACY CLASSES are f1g and fAg: The
irreducible representation for the C2 group is f1;�1g:/



Finite Group Z2Z2

One of the two groups of ORDER 4. The name of this
group derives from the fact that it is a GROUP DIRECT

PRODUCT of two Z2 SUBGROUPS. Like the group Z4;
Z2�Z2 is an ABELIAN GROUP. Unlike Z4; however, it
is not CYCLIC. In addition to satisfying A4

i �1 for each
element Ai; it also satisfies A2

i �1; where 1 is the
IDENTITY ELEMENT. Examples of the Z2�Z2 group
include the VIERGRUPPE, POINT GROUPS D2; C2h; and
C2v; and the MODULO MULTIPLICATION GROUPS M8 and
M12: That M8; the RESIDUE CLASSES prime to 8 given
by f1; 3; 5; 7g; are a group of type Z2�Z2 can be
shown by verifying that

12�1 32�9�1 52�25�1

72�49�1 (mod 8)
(1)

and

3�5�15�7 3�7�21�5 5�7�35�3 (mod 8): (2)

/Z2�Z2 is therefore a MODULO MULTIPLICATION

GROUP.
The CYCLE GRAPH is shown above, and the multi-
plication table for the Z2�Z2 group is given below
(Cotton 1990, p. 11).

/Z2�Z2/ 1 A B C

1 1 A B C

A A 1 C B

B B C 1 A

C C B A 1

The CONJUGACY CLASSES are f1g; fAg;

A�1AA�A (3)

B�1AB�A (4)

C�1AC�A; (5)

/fBg;

A�1BA�B (6)

C�1BC�B; (7)

and fCg:/

Now explicitly consider the elements of the C2v POINT

GROUP.

/C2v/ E /C2/ /sv/ /sv/

E E /C2/ /sv/ /s?v/

/C2/ /C2/ E /s?v/ /sv/

/sv/ /sv/ /s?v/ E /C2/

/s?v/ /s?v/ /sv/ /C2/ E

In terms of the VIERGRUPPE elements

V I /V1/ /V2/ /V3/

I /V1/ /V2/ /V3/ /V4/

/V1/ /V1/ I /V3/ /V2/

/V2/ /V2/ /V3/ I /V1/

/V3/ /V3/ /V2/ /V1/ I

A reducible representation using 2-D REAL MATRICES

is

1�
1 0
0 1

* +
(8)

A�
�1 0
0 �1

* +
(9)

B�
0 1
1 0

* +
(10)

C�
0 �1
�1 0

* +
: (11)

Another reducible representation using 3-D REAL

MATRICES can be obtained from the symmetry ele-
ments of the D2 group (1, C2(z); C2(y); and C2(x)) or
C2v group (1, C2; sv; and s?v): Place the C2 axis along
the Z -AXIS, sv in the x -y plane, and s?v in the y -z
plane.

1�E�E�
1 0 0
0 1 0
0 0 1

2
4

3
5 (12)

A�Rx(P)�sv�
1 0 0
0 �1 0
0 0 1

2
4

3
5 (13)

C�Rz(P)�C2�
�1 0 0
0 �1 0
0 0 1

2
4

3
5 (14)



B �Ry( P) � s ?n �
�1 0 0
0 1 0
0 0 1

2
4

3
5: (15)

In order to find the irreducible representations, note
that the traces are given by x(1) �3 ; x C2ð Þ��1 and
x svð Þ� x s?

vð Þ�1 Therefore, there are at least three
distinct CONJUGACY CLASSES. However, we see from
the MULTIPLICATION TABLE that there are actually
four CONJUGACY CLASSES, so GROUP rule 5 requires
that there must be four irreducible representations.
By GROUP rule 1, we are looking for POSITIVE

INTEGERS which satisfy

l2
1 �l2

2 �l2
3 �l2

4 �4: (16)

The only combination which will work is

l1 �l2 �l3 �l4 �1; (17)

so there are four one-dimensional representations.
GROUP rule 2 requires that the sum of the squares
equal the ORDER h �4, so each 1-D representation
must have CHARACTER 91. GROUP rule 6 requires
that a totally symmetric representation always exists,
so we are free to start off with the first representation
having all 1s. We then use orthogonality (GROUP rule
3) to build up the other representations. The simplest
solution is then given by

/C2v/ 1 /C2/ /sv/ /s?v/

/ G1/ 1 1  1 1

/ G2/ 1 -1 -1 1

/ G3/ 1 -1  1 -1

/ G4/ 1 1 -1 -1

These can be put into a more familiar form by
switching G1 and G3 ; giving the CHARACTER TABLE

/C2v/ 1 /C2/ /sv/ /s?v/

/ G3/ 1 -1  1 -1

/ G2/ 1 -1 -1 1

/ G1/ 1 1  1 1

/ G4/ 1 1 -1 -1

The matrices corresponding to this representation are
now

1 �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 (18)

C2 �

�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 (19)

sv �

1 0 0 0
0 �1 0  0
0 0 1 0
0 0 0 �1

2
664

3
775 (20)

sv ?�

�1 0 0  0
0 1 0 0
0 0 1 0
0 0 0 �1

2
664

3
775 (21)

which consist of the previous representation with an
additional component. These matrices are now ortho-
gonal, and the order equals the matrix dimension. As
before, x svð Þ� x s1

vð Þ:/

See also CYCLIC GROUP, FINITE GROUP Z4
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Finite Group Z2Z2Z2

One of the three Abelian groups of the five groups
total of ORDER 8. Examples include the MODULO

MULTIPLICATION GROUP M24 : The elements Ai of this
group satisfy A2

i �1; where 1 is the IDENTITY ELE-

MENT. The CYCLE GRAPH is shown above.

See also FINITE GROUP D4, FINITE GROUP Q8, FINITE

GROUP Z2Z4, FINITE GROUP Z8

Finite Group Z2Z4

One of the three Abelian groups of the five groups
total of ORDER 8. Examples include the MODULO

MULTIPLICATION GROUPS M15; M16; M20; and M30:
The elements Ai of this group satisfy A4

i �1; where



1 is the IDENTITY ELEMENT, and four of the elements
satisfy A2

i �1: The CYCLE GRAPH is shown above.

See also FINITE GROUP D4, FINITE GROUP Q8, FINITE

GROUP Z2Z2Z2, FINITE GROUP Z8

Finite Group Z3

The unique group of ORDER 3. It is both ABELIAN and
CYCLIC. Examples include the POINT GROUPS C3 and
D3 and the integers under addition modulo 3. The
elements Ai of the group satisfy A3

i �1 where 1 is the
IDENTITY ELEMENT. The CYCLE GRAPH is shown above,
and the MULTIPLICATION TABLE is given below (Cotton
1990, p. 10).

/Z3/ 1 A B

1 1 A B

A A B 1

B B 1 A

The CONJUGACY CLASSES are f1g; fAg;

A�1AA �A

B �1AB �A;

and fB g;

A�1BA �B

B �1BB �B:

The irreducible representation (CHARACTER TABLE) is
therefore

/G/ 1 A B

/G1/ 1 1 1

/G2/ 1 1 �1

/G3/ 1 �1 1

See also CYCLIC GROUP

References
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Finite Group Z4

One of the two groups of ORDER 4. Like Z2�Z2; it is
ABELIAN, but unlike Z2�Z2; it is a CYCLIC. Examples
include the POINT GROUPS C4 and S4 and the MODULO

MULTIPLICATION GROUPS M5 and M10: Elements Ai of
the group satisfy A4

i �1; where 1 is the IDENTITY

ELEMENT, and two of the elements satisfy A2
i �1:/

The CYCLE GRAPH is shown above. The MULTIPLICA-

TION TABLE for this group may be written in three
equivalent ways*/denoted here by Z(1)

4 ; Z(2)
4 ; and

Z(3)
4 /*/by permuting the symbols used for the group

elements. (Cotton 1990, p. 11).

/Z(1)
4 / 1 A B C

1 1 A B C

A A B C 1

B B C 1 A

C C 1 A B

The MULTIPLICATION TABLE for Z(2)
4 is obtained from

Z(1)
4 by interchanging A and B .

/Z(2)
4 / 1 A B C

1 1 A B C

A A 1 C B

B B C A 1

C C B 1 A

The MULTIPLICATION TABLE for Z(3)
4 is obtained from

Z(1)
4 by interchanging A and C .

/Z(3)
4 / 1 A B C

1 1 A B C

A A C 1 B

B B 1 C A

C C B A 1



The CONJUGACY CLASSES of Z4 are f1g; fAg;

A�1AA �A (1)

B�1AB �A (2)

C �1AC �A; (3)

/fB g;

A�1BA �B (4)

B �1BB �B (5)

C �1BC �B ; (6)

and fC g:/
The group may be given a reducible representation
using COMPLEX NUMBERS

1 �1 (7)

A �i (8)

B ��1 (9)

C ��i; (10)

or REAL MATRICES

1 �
1 0
0 1

* +
(11)

A �
0 �1
1 0

* +
(12)

B �
�1 0
0 �1

* +
(13)

C �
0 1
�1 0

* +
: (14)

See also CYCLIC GROUP, FINITE GROUP Z2Z2
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Finite Group Z5

The unique GROUP of ORDER 5, which is ABELIAN.
Examples include the POINT GROUP C5 and the
integers mod 5 under addition. The elements Ai

satisfy A5
i �1; where 1 is the IDENTITY ELEMENT.

The CYCLE GRAPH is shown above, and the MULTI-

PLICATION TABLE is illustrated below.

/Z5/ 1 A B C D

1 1 A B C D

A A B C D 1

B B C D 1 A

C C D 1 A B

D D 1 A B C

The CONJUGACY CLASSES are f1g; fAg; fB g; fCg; and
fDg:/

See also CYCLIC GROUP

Finite Group Z6

One of the two groups of ORDER 6 which, unlike D3; is
ABELIAN. It is also a CYCLIC. It is isomorphic to Z2�
Z3:: Examples include the POINT GROUPS C6 and S6;
the integers modulo 6 under addition, and the
MODULO MULTIPLICATION GROUPS M7; M9; and M14:
The elements Ai of the group satisfy A6

i �1; where 1 is
the IDENTITY ELEMENT, three elements satisfy A3

i �1;
and two elements satisfy A2

i �1: The CYCLE GRAPH is
shown above, and the MULTIPLICATION TABLE is given
below.

/Z6/ 1 A B C D E

1 1 A B C D E

A A B C D E /1/

B B C D E 1 A

C C D E 1 A B

D D E 1 A B C

E E 1 A B C D



The CONJUGACY CLASSES are f1g; fAg; fB g; fCg; fDg;
and fE g:/

See also CYCLIC GROUP, FINITE GROUP D3

Finite Group Z7

The unique GROUP of ORDER 7. It is ABELIAN and
CYCLIC. Examples include the POINT GROUP C7 and
the integers modulo 7 under addition. The elements
Ai of the group satisfy A7

i �1; where 1 is the IDENTITY

ELEMENT. The CYCLE GRAPH is shown above.

/Z7/ 1 A B C D E F

1 1 A B C D E F

A A B C D E F 1

B B C D E F 1 A

C C D E F 1 A B

D D E F 1 A B C

E E F 1 A B C D

F F 1 A B C D E

The CONJUGACY CLASSES are f1g; fAg; fB g; fCg; fDg;
fE g; and fF g:/

See also CYCLIC GROUP

Finite Group Z8

One of the three Abelian groups of the five groups
total of ORDER 8. An example is the residue classes
modulo 17 which QUADRATIC RESIDUES, i.e.,
f1; 2; 4; 8; 9; 13 ; 15 ; 16 g under multiplication modulo

17. The elements Ai satisfy A8
i �1; four of them

satisfy A4
i �1; and two satisfy A2

i �1: The CYCLE

GRAPH is shown above.

See also CYCLIC GROUP, FINITE GROUP D4, FINITE

GROUP Q 8, FINITE GROUP Z 2Z 4, FINITE GROUP

Z2Z2Z2

Finite Mathematics
The branch of mathematics which does not involve
infinite sets, limits, or continuity.

See also COMBINATORICS, DISCRETE MATHEMATICS
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Finite Order
An ENTIRE FUNCTION f is said to be of finite order if
there exist numbers a; r > 0 such that

½f (z)½5exp ½z ½að Þ

for all ½z½ > r : The INFIMUM of all numbers a for which
this inequality holds is called the ORDER of f , denoted
l � l(f ) :/

See also ENTIRE FUNCTION, ORDER (FUNCTION)

References
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Finite Projective Plane
PROJECTIVE PLANE

Finite Simple Group
SIMPLE GROUP

Finite Simple Group Classification
Theorem
CLASSIFICATION THEOREM

Finitely Generated
A GROUP G is said to be finitely generated if there
exists a finite set of GENERATORS for G .

See also GENERATOR (GROUP)

Finite-to-One Factor
A MAP c : M 0 M; where M is a MANIFOLD, is a finite-
to-one factor of a MAP C : X 0 X if there exists a



continuous ONTO MAP P : X 0 M such that c( P�
P( C and P�1(x) ƒX is finite for each x � M :/

Finsler Geometry
The geometry of FINSLER SPACE.

Finsler Manifold
FINSLER SPACE

Finsler Metric
A continuous real function L(x; y) defined on the
TANGENT BUNDLE T(M) of an n -D DIFFERENTIABLE

MANIFOLD M is said to be a Finsler metric if

1. L(x; y) is DIFFERENTIABLE at x "y;/
2. L(x ; ly) � ½l ½L(x; y) for any element (x; y) � T(M)
and any REAL NUMBER l ;/
3. Denoting the METRIC

gij(x; y) �
1

2

@2 L(x; y)½ 
2

@yi @yj
;

then /gij/ is a POSITIVE DEFINITE MATRIX.

A DIFFERENTIABLE MANIFOLD M with a Finsler metric
is called a FINSLER SPACE.

See also DIFFERENTIABLE MANIFOLD, FINSLER SPACE,
TANGENT BUNDLE
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Finsler Space
A general space based on the LINE ELEMENT

ds �F x1 ; . . . ; xn; dx1 ; . . . ;dxn
� �

;

with F(x; y) > 0 for y "0 a function on the TANGENT

BUNDLE T(M) ; and homogeneous of degree 1 in y .
Formally, a Finsler space is a DIFFERENTIABLE MANI-

FOLD possessing a FINSLER METRIC. Finsler geometry
is RIEMANNIAN GEOMETRY without the restriction
that the LINE ELEMENT be quadratic and OF THE FORM

F2 �gij(x)dxidxj :

A compact boundaryless Finsler space is locally
Minkowskian IFF it has 0 "flag curvature."

See also FINSLER METRIC, HODGE’S THEOREM, RIE-

MANNIAN GEOMETRY, TANGENT BUNDLE
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Finsler-Hadwiger Theorem

Let the SQUARES IABCD and IAB ?C?D ? share a
common VERTEX A . The midpoints Q and S of the
segments B?D and BD? together with the centers of
the original squares R and T then form another
square IQRST : This theorem is a special case of the
FUNDAMENTAL THEOREM OF DIRECTLY SIMILAR FIG-

URES (Detemple and Harold 1996).

See also DIRECTLY SIMILAR, FUNDAMENTAL THEOREM

OF DIRECTLY SIMILAR FIGURES, SQUARE
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First Curvature
CURVATURE

First Derivative Test

Suppose f (x) is CONTINUOUS at a STATIONARY POINT

x0:/

1. If f ?(x) > 0 on an OPEN INTERVAL extending left
from x0 and f ?(x)B0 on an OPEN INTERVAL extend-



ing right from x0 ; then f (x) has a RELATIVE

MAXIMUM (possibly a GLOBAL MAXIMUM) at x0 :/
2. If f ?(x) B0 on an OPEN INTERVAL extending left
from x0 and f ?(x) > 0 on an OPEN INTERVAL extend-
ing right from x0 ; then f (x) has a RELATIVE

MINIMUM (possibly a GLOBAL MINIMUM) at x0 :/
3. If f ?ðxÞ has the same sign on an OPEN INTERVAL

extending left from x0 and on an OPEN INTERVAL

extending right from x0 ; then f (x) does not have a
RELATIVE EXTREMUM at x0 :/

See also EXTREMUM, GLOBAL MAXIMUM, GLOBAL

MINIMUM, INFLECTION POINT, MAXIMUM, MINIMUM,
RELATIVE EXTREMUM, RELATIVE MAXIMUM, RELATIVE

MINIMUM, SECOND DERIVATIVE TEST, STATIONARY

POINT
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First Digit Law
BENFORD’S LAW

First Digit Phenomenon
BENFORD’S LAW

First Fundamental Form
Let M be a REGULAR SURFACE with vp ;wp points in
the TANGENT SPACE MP of M . Then the first funda-
mental form is the INNER PRODUCT of tangent vectors,

I vp ;wp

� �
�vp �wp : (1)

The first fundamental form satisfies

I axu �bxv ;axu �bxvð Þ�Ea2 �2Fab �Gb2 : (2)

The first fundamental form (or LINE ELEMENT) is
given explicitly by the RIEMANNIAN METRIC

ds2 �Edu2 �2Fdudv �Gdv2 : (3)

It determines the ARC LENGTH of a curve on a surface.
The coefficients are given by

E �xuu �
@x

@u

,,,,,
,,,,,
2

(4)

F �xuv �
@x

@u 
�
@x

@v 
(5)

G �xvv �
@x

@v

,,,,,
,,,,,
2

: (6)

The coefficients are also denoted guu �E; guv �F ; and
gvv �G : In CURVILINEAR COORDINATES (where F � 0),
the quantities

hu �
ffiffiffiffiffiffiffi
guu

p
�

ffiffiffiffi
E

p
(7)

hv �
ffiffiffiffiffiffiffi
gvv

p
�

ffiffiffiffi
G

p
(8)

are called SCALE FACTORS.

See also FUNDAMENTAL FORMS, SECOND FUNDAMEN-

TAL FORM, THIRD FUNDAMENTAL FORM
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First Kind
Special functions which arise as solutions to second
order ordinary differential equations are commonly
said to be "of the first kind" if they are nonsingular at
the origin, while the corresponding linearly indepen-
dent solutions which are singular are said to be "of
the second kind." Common examples of functions of
the first kind defined in this way include the BESSEL

FUNCTION OF THE FIRST KIND, CHEBYSHEV POLYNO-

MIAL OF THE FIRST KIND, CONFLUENT HYPERGEO-

METRIC FUNCTION OF THE FIRST KIND, HANKEL

FUNCTION OF THE FIRST KIND, and so on.

The term "first kind" is also used in a more general
context to distinguish between two or more types of
mathematical objects which, however, all satisfy
some common overall property. Examples of objects
of this kind include the CHRISTOFFEL SYMBOL OF THE

FIRST KIND, ELLIPTIC INTEGRAL OF THE FIRST KIND,
FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND,
STIRLING NUMBER OF THE FIRST KIND, VOLTERRA

INTEGRAL EQUATION OF THE FIRST KIND, and so on.

See also BESSEL FUNCTION OF THE FIRST KIND,
CHEBYSHEV POLYNOMIAL OF THE FIRST KIND, CON-

FLUENT HYPERGEOMETRIC FUNCTION OF THE FIRST

KIND, ELLIPTIC INTEGRAL OF THE FIRST KIND,
FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND,
HANKEL FUNCTION OF THE FIRST KIND, SECOND KIND,
SPECIAL FUNCTION, STIRLING NUMBER OF THE FIRST

KIND, THIRD KIND, VOLTERRA INTEGRAL EQUATION OF

THE FIRST KIND

First Multiplier Theorem
Let D be a planar Abelian DIFFERENCE SET and t be
any DIVISOR of n . Then t is a numerical multiplier of
D , where a multiplier is defined as an automorphism
a of a GROUP G which takes D to a translation g�D of
itself for some g �G: If a is OF THE FORM a : x 0 tx for
t �Z relatively prime to the order of G , then a is called
a numerical multiplier.
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First-Countable Space
A TOPOLOGICAL SPACE in which every point has a
countable BASE for its neighborhood system.

Fischer Groups
The SPORADIC GROUPS Fi22 ; Fi23 ; and Fi?24 : These
groups were discovered during the investigation of
3-TRANSPOSITION GROUPS.

See also SPORADIC GROUP
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Fischer’s Baby Monster Group
BABY MONSTER GROUP

Fish Bladder
LENS

Fisher Index
The statistical INDEX

PB �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PLPP ;

p
where PL is LASPEYRES’ INDEX and PP is PAASCHE’S

INDEX.

See also INDEX
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Fisher Kurtosis

g2 �b2 �
m4

m2
2

�3 �
m4

s4 
�3;

where mi is the ith MOMENT about the MEAN and s �ffiffiffiffiffi
m2

p
is the STANDARD DEVIATION.

See also FISHER SKEWNESS, KURTOSIS, PEARSON

KURTOSIS

Fisher Sign Test
A robust nonparametric test which is an alternative
to the PAIRED T -TEST. This test makes the basic
assumption that there is information only in the
signs of the differences between paired observations,
not in their sizes. Take the paired observations,
calculate the differences, and count the number of
�sn � and �/s n� ; where

N �n��n�

is the sample size. Calculate the BINOMIAL COEFFI-

CIENT

B �
N
n�

� �
:

Then B =2N gives the probability of getting exactly
this many �s and �s if POSITIVE and NEGATIVE

values are equally likely. Finally, to obtain the P -

VALUE for the test, sum all the COEFFICIENTS that are
5B and divide by 2N :/

See also HYPOTHESIS TESTING

Fisher Skewness

g1 �
m3

m
3 =2
2

�
m3

s3 
;

where mi is the i MOMENT about the MEAN, and s �ffiffiffiffiffi
m2

p
is the STANDARD DEVIATION.

See also FISHER KURTOSIS, MOMENT, SKEWNESS,
STANDARD DEVIATION

Fisher’s Block Design Inequality
A balanced incomplete BLOCK DESIGN (v , k , l; r , b )
exists only for b ]v (or, equivalently, r ]k):/

See also BRUCK-RYSER-CHOWLA THEOREM
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Fisher’s Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�Duxx�u�u2:
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Fisher’s Estimator Inequality
Given T an UNBIASED ESTIMATOR of /u/ so that /
T��u/.
Then



var(T) ]
1

N g
�

��

@(ln f )

@ u

" #2

f dx

;

where var is the VARIANCE.

Fisher’s Exact Test
A STATISTICAL TEST used to determine if there are
nonrandom associations between two CATEGORICAL

VARIABLES.

Let there exist two such variables X and Y , with m
and n observed states, respectively. Now form an n �
m MATRIX in which the entries aij represent the
number of observations in which x � i and y � j .
Calculate the row and column sums Ri and Cj ;
respectively, and the total sum

N �
X

i

Ri �
X

j

Cj (1)

of the MATRIX. Then calculate the CONDITIONAL

PROBABILITY of getting the actual matrix given the
particular row and column sums, given by

Pcutoff �
R1!R2! . . . Rm!ð Þ C1!C2! . . . Cn!ð Þ

N!
Q

i ;j aij! 
; (2)

which is a multivariate generalization of the HYPER-

GEOMETRIC probability function. Now find all possible
MATRICES of NONNEGATIVE INTEGERS consistent with
the row and column sums Ri and Cj : For each one,
calculate the associated CONDITIONAL PROBABILITY

using (2), where the sum of these probabilities must
be 1.

To compute the P -VALUE of the test, the tables must
then be ordered by some criterion that measures
dependence, and those tables that represent equal or
greater deviation from independence than the ob-
served table are the ones whose probabilities are
added together. There are a variety of criteria that
can be used to measure dependence. In the 2 �2 case,
which is the one Fisher looked at when he developed
the exact test, either the Pearson chi-square or the
difference in proportions (which are equivalent) is
typically used. Other measures of association, such as
the likelihood-ratio-test, G -squared, or any of the
other measures typically used for association in
contingency tables, can also be used.

The test is most commonly applied to 2 �2 MATRICES,
and is computationally unwieldy for large m or n . For
tables larger than 2 �2 ; the difference in proportion
can no longer be used, but the other measures
mentioned above remain applicable (and in practice,
the Pearson statistic is most often used to order the
tables). In the case of the 2 �2 matrix, the P -VALUE of
the test can be simply computed by the sum of all P -
values which are 5Pcutoff :/

For an example application of the 2 �2 test, let X be a
journal, say either Mathematics Magazine or Science ,
and let Y be the number of articles on the topics of
mathematics and biology appearing in a given issue
of one of these journals. If Mathematics Magazine has
five articles on math and one on biology, and Science
has none on math and four on biology, then the
relevant matrix would be

Math: Mag : Science
math 5 0 R1 �5

biology 1 4 R2 �5
C1 �6 C2 �4 N �10 :

Computing Pcutoff gives

Pcutoff �
5!26!4!

10! 5!0!1!4!ð Þ
�0:0238;

and the other possible matrices and their Ps are

4 1
2 3

* +
P �0 :2381

3 2
3 2

* +
P �0 :4762

2 3
4 1

* +
P �0 :2381

1 4
5 0

* +
P �0:0238;

which indeed sum to 1, as required. The sum of P -
values less than or equal to Pcutoff �0:0238 is then
0.0476 which, because it is less than 0.05, is SIG-

NIFICANT. Therefore, in this case, there would be a
statistically significant association between the jour-
nal and type of article appearing.

Fisher’s Theorem
Let A be a sum of squares of n independent normal
standardized variates xi; and suppose A�B�C
where B is a quadratic form in the xi; distributed as
CHI-SQUARED with h DEGREES OF FREEDOM. Then C is
distributed as x2 with n�h DEGREES OF FREEDOM and
is independent of B . The converse of this theorem is
known as COCHRAN’S THEOREM.

See also CHI-SQUARED DISTRIBUTION, COCHRAN’S

THEOREM

Fisher’s z’-Transformation
Let r be the CORRELATION COEFFICIENT. Then defin-
ing

z?�tanh�1r (1)

z�tanh�1p; (2)



gives

sz?�(N �3)�1=2 (3)

var(z ?) �
1

n 
�

4 � r2

2n2
�. . .  (4)

g1 �

r r2 �
9

16

,,,,,
,,,,,

n3 =2 
(5)

g2 �
32 � 3r4

16N
; (6)

where n �N �1:/

See also CORRELATION COEFFICIENT
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Fisher’s z-Distribution

g(z) �
2nn1 =2

1 nn2 =2
2

B
n1

2
;
n2

2

 ! en1z

n1e2z � n2ð Þ n1 �n1ð Þ=2 (1)

(Kenney and Keeping 1951). This general distribution
includes the CHI-SQUARED DISTRIBUTION and STU-

DENT’S T -DISTRIBUTION as special cases. Let u2 and
v2 be INDEPENDENT UNBIASED ESTIMATORS of the
VARIANCE of a NORMALLY DISTRIBUTED variate. Define

z �ln
u

v

 !
�

1

2
ln

u2

v2

 !
: (2)

Then let

F �
u2

v2 
�

Ns2
1

n1

Ns2
2

n2

(3)

so that n1F =n2 is a ratio of CHI-SQUARED variates

n1F

n2

�
x2 n1ð Þ
x2 n2ð Þ

; (4)

which makes it a ratio of GAMMA DISTRIBUTION

variates, which is itself a BETA PRIME DISTRIBUTION

variate,

g
n1

2

 !

g
n2

2

 !� b?
n1

2
;
n2

2

 !
(5)

giving

f (F) �

n1F

n2

 !n1 =2 �1

1 �
n1F

n2

 !� n1 �n2ð Þ=2
n1

n2

B
n1

2
;
n2

2

 ! : (6)

The MEAN is

Fh i� n2

n2 � 2 
; (7)

and the MODE is

n2

n2 � 2

n1 � 2

n1

: (8)

See also BETA DISTRIBUTION, BETA PRIME DISTRIBU-

TION, CHI-SQUARED DISTRIBUTION, GAMMA DISTRIBU-

TION, NORMAL DISTRIBUTION, STUDENT’S T -

DISTRIBUTION
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Fisher-Behrens Problem
The determination of a test for the equality of MEANS

for two NORMAL DISTRIBUTIONS with different VAR-

IANCES given samples from each. There exists an
exact test which, however, does not give a unique
answer because it does not use all the data. There
also exist approximate tests which do not use all the
data.

See also NORMAL DISTRIBUTION
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Fisher-Tippett Distribution

Also called the EXTREME VALUE DISTRIBUTION and
LOG-WEIBULL DISTRIBUTION. It is the limiting distri-
bution for the smallest or largest values in a large
sample drawn from a variety of distributions.

P(x) �
e(a�x)=b �e(a�x) =b

b 
(1)

D(x) �e�e(a�x)=b : (2)

These can be computed directly be defining

z �exp
a � x

b

 !
(3)

x �a �b ln z (4)

dz ��
1

b
exp

a � x

b

 !
dx: (5)

Then the MOMENTS about the origin are

m?n �g
�

��

xnP(x)dx

�
1

b g
�

��

xnexp
a � x

b

 !
exp �e(a �x)=b

� 
dx

��g
0

�

(a �b ln z)ne �zdz

�g
�

0

(a �b ln z)ne �zdz

�
Xn

k �0

n
k

� �
(�1)kan�kbkg

�

0

(ln z)ke �zdz

�
Xn

k �0

n
k

� �
an�kbkI(k); (6)

where I(k) are EULER-MASCHERONI INTEGRALS. Plug-

ging in the EULER-MASCHERONI INTEGRALS I(k) gives

m?0 �1 (7)

m ?1 �a �bg (8)

m ?2 �a2 �2ab g �b2 g2 �
1

6 
p2

 !
(9)

m?3 �a3 �3a2bg �3ab2 g2 �
1

6 
p2

 !

�b3 g3 �
1

2 
gp2 �2z(3)

" #
(10)

m?4 �a4 �4a3b g �6a2b2 g2 �
1

6 
p2

 !

�4ab3 g3 �
1

2 
gp2 �2z(3)

" #

�b4 g4 � g2 p2 �
3

20 
p4 �8gz(3)

" #
; (11)

where g is the EULER-MASCHERONI CONSTANT and z(3)
is APÉ RY’S CONSTANT. The corresponding moments
about the mean m � m?1 are therefore

m2 �
1

6
b2 p2 (12)

m3 �2z(3)b3 (13)

m4 ¼
3

20
b4 p2 ; (14)

giving MEAN, VARIANCE, SKEWNESS, and KURTOSIS of

m �a �b g (15)

s2 � m2 � m2
1 �

1

6 
p2b2 (16)

g1 �
m3

s3 
�

12
ffiffiffi
6

p
z(3)

p3 
(17)

g2 �
m4

s4
�3�

12

5
: (18)

The CHARACTERISTIC FUNCTION is

f(t)�G(1�ibt)eiat; (19)

where G(z) is the GAMMA FUNCTION (Abramowitz and
Stegun 1972, p. 930).
The special case of the Fisher-Tippett distribution
with a � 0, b � 1 is called GUMBEL’S DISTRIBUTION.

See also EULER-MASCHERONI INTEGRALS, GUMBEL’S

DISTRIBUTION



Fitting Subgroup
The unique smallest NORMAL NILPOTENT SUBGROUP of
H , denoted F(H) : The generalized fitting subgroup is
defined by F � Hð Þ�F Hð ÞE Hð Þ; where E Hð Þ is the
commuting product of all components of H , and F is
the fitting subgroup of H .

Fitzhugh-Nagumo Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut �uxx �u(u �a)(1 �u) �w

wt �eu :
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Five Circles Theorem
MIQUEL FIVE CIRCLES THEOREM

Five Cubes
CUBE 5-COMPOUND

Five Disks Problem

Given five equal DISKS placed symmetrically about a
given center, what is the smallest RADIUS r for which
the RADIUS of the circular AREA covered by the five
disks is 1? The answer is r � f �1 �1=f �
0:6180339 . . . ; where f is the GOLDEN RATIO, and

the centers ci of the disks i � 1, ..., 5 are located at

ci �

1

f
cos

2pi

5

 !
1

f
sin

2pi

5

 !
2
66664

3
77775:

The GOLDEN RATIO enters here through its connection
with the regular PENTAGON. If the requirement that
the disks be symmetrically placed is dropped (the
general DISK COVERING PROBLEM), then the RADIUS for
n �5 disks can be reduced slightly to 0.609383...
(Neville 1915).

See also ARC, CIRCLE COVERING, DISK COVERING

PROBLEM, FIVE CIRCLES THEOREM, FLOWER OF LIFE,
SEED OF LIFE
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Five Tetrahedra Compound
TETRAHEDRON 5-COMPOUND

Fixed
When referring to a planar object, "fixed" means that
the object is regarded as fixed in the plane so that it
may not be picked up and flipped. As a result, MIRROR

IMAGES are not necessarily equivalent for fixed
objects.

See also FREE, MIRROR IMAGE

Fixed Element
FIXED POINT (MAP)

Fixed Point
A point which does not change upon application of a
MAP, system of DIFFERENTIAL EQUATIONS, etc.

See also FIXED POINT (DIFFERENTIAL EQUATIONS),
FIXED POINT (GROUP), FIXED POINT (MAP), FIXED

POINT THEOREM

References
Shashkin, Yu. A. Fixed Points. Providence, RI: Amer. Math.

Soc., 1991.

Fixed Point (Differential Equations)
Points of an AUTONOMOUS system of ordinary differ-
ential equations at which



dx1

dt
�f1 x1 ; . . . ; xnð Þ�0

n
dxn

dt
�fn x1 ; . . . ; xnð Þ�0

8>>>>><
>>>>>:

If a variable is slightly displaced from a FIXED POINT,
it may (1) move back to the fixed point ("asymptoti-
cally stable" or "superstable"), (2) move away ("un-
stable"), or (3) move in a neighborhood of the fixed
point but not approach it ("stable" but not "asympto-
tically stable"). Fixed points are also called CRITICAL

POINTS or EQUILIBRIUM POINTS. If a variable starts at
a point that is not a CRITICAL POINT, it cannot reach a
critical point in a finite amount of time. Also, a
trajectory passing through at least one point that is
not a CRITICAL POINT cannot cross itself unless it is a
CLOSED CURVE, in which case it corresponds to a
periodic solution.

A fixed point can be classified into one of several
classes using LINEAR STABILITY analysis and the
resulting STABILITY MATRIX.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), HYPERBOLIC FIXED POINT (DIFFERENTIAL

EQUATIONS), STABLE IMPROPER NODE, STABLE

NODE, STABLE SPIRAL POINT, STABLE STAR, UN-

STABLE IMPROPER NODE, UNSTABLE NODE, UNSTABLE

SPIRAL POINT, UNSTABLE STAR

Fixed Point (Group)
The set of points of X fixed by a GROUP ACTION are
called the group’s set of fixed points, defined by

x : gx �x for all g � Gf g:

In some cases, there may not be a group action, but a
single operator T . Then {x:x � X, Tx=x } still makes
sense even when T is not invertible (as is the case in a
GROUP ACTION).

See also FIXED POINT, GROUP, GROUP ACTION
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Fixed Point (Map)
A point x+ which is mapped to itself under a MAP G , so
that x+�G(x+) : Such points are sometimes also called
INVARIANT POINTS, or FIXED ELEMENTS (Woods 1961).
Stable fixed points are called elliptical. Unstable fixed
points, corresponding to an intersection of a stable
and unstable invariant MANIFOLD, are called HYPER-

BOLIC (or SADDLE). Points may also be called asymp-
totically stable (a.k.a. superstable).

See also CRITICAL POINT, INVOLUTORY

References
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Fixed Point (Transformation)
FIXED POINT (MAP)

Fixed Point Theorem
If g is a continuous function g(x) � a; b½ 
 FOR ALL x �
[a; b]; then g has a FIXED POINT in [a, b ]. This can be
proven by noting that

g(a) ]a g(b) 5b

g(a) �a ]0 g(b) �b 50:

Since g is continuous, the INTERMEDIATE VALUE

THEOREM guarantees that there exists a c � [a ; b]
such that

g(c) �c �0;

so there must exist a c such that

g(c) �c ;

so there must exist a FIXED POINT � [a ; b]:/

See also BANACH FIXED POINT THEOREM, BROUWER

FIXED POINT THEOREM, HAIRY BALL THEOREM,
KAKUTANI’S FIXED POINT THEOREM, LEFSHETZ FIXED

POINT FORMULA, LEFSHETZ TRACE FORMULA, POIN-

CARÉ -BIRKHOFF FIXED POINT THEOREM, SCHAUDER

FIXED POINT THEOREM

References
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Flag
A collection of FACES of an n -D POLYTOPE or SIMPLI-

CIAL COMPLEX, one of each DIMENSION 0, 1, ..., n�1;
which all have a common nonempty INTERSECTION. In
normal 3-D, the flag consists of a half-plane, its
bounding RAY, and the RAY’s endpoint.

Flag Manifold
For any SEQUENCE of INTEGERS 0Bn1B. . .Bnk; there
is a flag manifold of type (/n1; ..., nk) which is the
collection of ordered pairs of vector SUBSPACES of
Rnk (V1; ..., Vk) with dim(Vi)�ni and Vi a SUBSPACE of
Vi�1: There are also COMPLEX flag manifolds with
COMPLEX subspaces of Cnk instead of REAL SUBSPACES

of a REAL nk/-space.



These flag manifolds admit the structure of MANI-

FOLDS in a natural way and are used in the theory of
LIE GROUPS.

See also GRASSMANN MANIFOLD
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Flat
A set in Rd formed by translating an affine subspace
or by the intersection of a set of HYPERPLANES.

See also FLAT (MANIFOLD)

Flat (Manifold)

See also FLAT

Flat Norm
The flat norm on a CURRENT is defined by

F(S) �g Area T �vol R : S �T �@Rg;f

where @R is the boundary of R .

See also COMPACTNESS THEOREM, CURRENT
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Flat Space Theorem
If it is possible to transform a coordinate system to a
form where the metric elements g mn are constants
independent of xm ; then the space is flat.

Flat Surface
A REGULAR SURFACE and special class of MINIMAL

SURFACE for which the GAUSSIAN CURVATURE

vanishes everywhere. A TANGENT DEVELOPABLE, GEN-

ERALIZED CONE, and GENERALIZED CYLINDER are all
flat surfaces.

See also GAUSSIAN CURVATURE, MINIMAL SURFACE,
PLANE
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Flat-Ring Cyclide Coordinates

A coordinate system similar to TOROIDAL COORDI-

NATES but with fourth-degree instead of second-
degree surfaces for constant m so that the toroids of
circular CROSS SECTION are replaced by flattened
rings, and the spherical bowls are replaced by
cyclides of rotation for constant n: The transformation
equations are

x�
a

L
sn m dn n cosc (1)

y�
a

L
sn m dn n sinc (2)

z�
a

L
cn m dn m sn n cn n; (3)

where

L�1�dn2
m sn2n (4)

and with m � [0;K]; n � [0;K ?]; and c � [0; 2P): Surfaces
of constant m are given by the flat-ring cyclides

x2�y2�z2
� �2

�
a2

k4

 1 � k2ð Þ2�2 1 � k2ð Þdn2
m� 1 � k2ð Þdn4

m

dn2
m cn2m

z2

�a2 sn2m�
1

sn2m

 !
x2�y2
� �

�
a4

k2

�0; (5)



surfaces of constant n by the cyclides of rotation

dn2 
n

a2
x2 �y2
� �

�
cn2 n

a2 sn2 n
z2

" #2

�
2cn2 n

a2sn2 n 
z2 �

2dn2 
n

a2

 x2 �y2
� �

�1

�0; (6)

and surfaces of constant c by the half-planes

tan c �
x

y 
: (7)

See also CYCLIDIC COORDINATES, TOROIDAL COORDI-

NATES
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Flattening
The flattening of a SPHEROID (also called OBLATENESS)
is denoted � or f . It is defined as

��

a � c

a
� 1 �

c

a
oblate

c � a

a
�

c

a 
�1 prolate ;

8>>><
>>>:

where c is the polar RADIUS and a is the equatorial
RADIUS.

See also ECCENTRICITY, ELLIPSOID, OBLATE SPHER-

OID, PROLATE SPHEROID, SPHEROID

Flemish Knot
FIGURE-OF-EIGHT KNOT

Fletcher Point

The intersection Fl of the GERGONNE LINE and the
SODDY LINE. In the above figure, D?; E ?; and F ? are the

NOBBS POINTS, I is the INCENTER, Ge is the GER-

GONNE POINT, and S and S? are the SODDY POINTS.

See also GERGONNE LINE, SODDY LINE, SODDY POINTS
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Fleury’s Algorithm
An elegant algorithm for constructing an EULERIAN

CIRCUIT (Skiena 1990, p. 193).

See also EULERIAN CIRCUIT
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Flexagon
An object created by FOLDING a piece of paper along
certain lines to form loops. The number of states
possible in an n -FLEXAGON is a CATALAN NUMBER. By
manipulating the folds, it is possible to hide and
reveal different faces.

See also FLEXATUBE, FOLDING, HEXAFLEXAGON, TET-

RAFLEXAGON
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Flexatube

A FLEXAGON-like structure created by connecting the
ends of a strip of four squares after folding along 458



diagonals. Using a number of folding movements, it is
possible to flip the flexatube inside out so that the
faces originally facing inward face outward. Gardner
(1961) illustrated one possible solution, and Stein-
haus (1983) gives a second.

See also FLEXAGON, HEXAFLEXAGON, TETRAFLEXAGON
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Flexible Graph
A GRAPH G is said to be flexible if the vertices of G can
be moved continuously so that (1) the distances
between adjacent vertices are unchanged, and (2) at
least two nonadjacent vertices change their mutual
distances. A graph which is not flexible is said to be
RIGID.

See also RIGID GRAPH
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Flexible Polyhedron
Although the RIGIDITY THEOREM states that if the
faces of a convex POLYHEDRON are made of metal
plates and the EDGES are replaced by hinges, the
POLYHEDRON would be RIGID, concave polyhedra need
not be RIGID. A nonrigid polyhedron may be "SHAKY"
(infinitesimally movable) or flexible (continuously
movable; Wells 1991).

In 1897, Bricard constructed several self-intersecting
flexible octahedra (Cromwell 1997, p. 239). Connelly
(1978) found the first example of a true flexible
polyhedron, consisting of 18 triangular faces (Crom-
well 1997, pp. 242 �/44). Mason discovered a 34-sided
flexible polyhedron constructed by erecting a pyramid
on each face of a CUBE adjoined square ANTIPRISM

(Cromwell 1997). Kuiper and Deligne modified Con-
nelly’s polyhedron to create a flexible polyhedron
having 18 faces and 11 vertices (Cromwell 1997,

p. 245), and Steffen found a flexible polyhedron with
only 14 triangular faces and 9 vertices (shown above;
Cromwell 1997, pp. 244 �/47; Mackenzie 1998). Mak-
simov (1995) proved that Steffen’s is the simplest
possible flexible polyhedron composed of only trian-
gles (Cromwell 1997, p. 245).

Connelly et al. (1997) proved that a flexible polyhe-
dron must keep its VOLUME constant, confirming the
so-called BELLOWS CONJECTURE (Mackenzie 1998).

See also BELLOWS CONJECTURE, POLYHEDRON, QUAD-

RICORN, RIGID POLYHEDRON, RIGIDITY THEOREM,
SHAKY POLYHEDRON
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Flip Bifurcation
Let f : R�R 0 R be a one-parameter family of C3

maps satisfying

f (0; 0)�0

@f

@x

" #
m�0;x�0

��1

@2f

@x2

" #
m�o;x�0

B0

@3f

@x3

" #
m�0;x�0

B0:

Then there are intervals m1; 0ð Þ; 0;m2ð Þ; and o > 0 such
that

1. If m � (0;m2); then fm(x) has one unstable fixed
point and one stable orbit of period two for x �
(�e; e); and
2. If m � m1;0

� �
; then fm(x) has a single stable fixed

point for x � (�e; e):/

This type of BIFURCATION is known as a flip bifurca-
tion. An example of an equation displaying a flip
bifurcation is



f ðx Þ ¼  m �x �x2 :

See also BIFURCATION

References
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems.

New York: Wiley, pp. 27 �/0, 1990.

Floating-Point Arithmetic
ARITHMETIC performed on real numbers by computers
or other automated devices using a fixed number of
bits.

ARITHMETIC
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Floor
FLOOR FUNCTION

Floor Function

The function floor function xb c; also called the great-
est integer function, gives the largest INTEGER less
than or equal to x . In many computer languages, the
floor function is called the INTEGER PART function and
is denoted int(x). The name and symbol for the floor
function were coined by K. E. Iverson (Graham et al.
1990).
Unfortunately, in many older and current works (e.g.,
Steinhaus 1983, p. 300; Shanks 1993; Ribenboim

1996; Hilbert and Cohn-Vossen 1999, p. 38; Hardy
1999, p. 18), the symbol x½ 
 is used instead of xb c
(Graham et al. 1990, p. 67). Because of the elegant
symmetry of the floor function and CEILING FUNCTION

symbols xb c and xd e; and because x½ 
 is such a useful
symbol when interpreted as an IVERSON BRACKET, the
use of x½ 
 to denote the floor function should be
deprecated. In this work, the symbol x½ 
 is used to
denote the NEAREST INTEGER FUNCTION since it
naturally falls between the xb c and xd e symbols.

Since usage concerning fractional part/value and
integer part/value can be confusing, the following
table gives a summary of names and notations used
(D. W. Cantrell). Here, S&O indicates Spanier and
Oldham (1987).

notation name S&O Graham

et al.

Mathema-

tica

/ xb c/ integer-

value

/Int(x)/ floor or

integer

part

Floor[ x ]

/sgn(x) xj jb c/ integer-

part

/Ip(x)/ no name Integer-

Part

[ x ]

/x � xb c/ fractional-

value

/frac(x)/ fractional

part or xf g/
no name

/sgn(x) xj j� xj jb cð Þ/ fractional-

part

/FP(x)/ no name Fractio-

nalPart

[ x ]

There are infinitely many integers OF THE FORM

(3=2)nb c and (4=3)nb c which are composite, where xb c
is the FLOOR FUNCTION (Forman and Shapiro, 1967;
Guy 1994, p. 220). The first few composite (3=2)nb c
occur for n�8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 23, ... (Sloane’s A046037), and the few composite
(4=3)nb c occur for n�5, 8, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, ... (Sloane’s A046038). Numbers OF THE

FORM frac (3=2)nð Þ; where frac(x) is the FRACTIONAL

PART also appear in WARING’S PROBLEM.

See also CEILING FUNCTION, FRACTIONAL PART, INT,
IVERSON BRACKET, NEAREST INTEGER FUNCTION,
QUOTIENT, SHIFT TRANSFORMATION, STAIRCASE

FUNCTION
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Floquet Analysis
Given a system of periodic ORDINARY DIFFERENTIAL

EQUATIONS OF THE FORM

d

dt

x
y
vx

vy

2
664
3
775��

0
0
Fxx

Fxy

0
0
Fyy

Fyy

�1
0
0
0

0
�1
0
0

2
664

3
775

x
y
vx

vy

2
664
3
775; (1)

the solution can be written as a LINEAR COMBINATION

of functions OF THE FORM

x(t)
y(t)
vx

vy

2
664

3
775�

x0

y0

vx0

vy0

2
664

3
775e mtP m(t) ; (2)

where Pm(t) is a function periodic with the same
period T as the equations themselves. Given an
ORDINARY DIFFERENTIAL EQUATION OF THE FORM

ẍ �g(t)x �0; (3)

where g(t) is periodic with period T , the ODE has a
pair of independent solutions given by the REAL and
IMAGINARY PARTS of

x �w(t)eic(t) (4)

ẋ �( ̇w �iwċ)ei c (5)

ẍ � ẅ �i ̇wċ �i( ̇wċ �wc̈ �iwċ2)
� 

eic

� ( ̈w �wċ2) �i(2 ̇wċ �wc̈)
� 

eic : (6)

Plugging these into (3) gives

ẅ �2i ̇wċ �w(g �ic̈ �ċ2) �0; (7)

so the REAL and IMAGINARY PARTS are

ẅ �w(g �ċ2) �0 (8)

2 ̇wċ �wc̈ �0: (9)

From (9),

2 ̇w

w
�

c̈

ċ 
�2

d

dt
(ln w) �

d

dt
[ln(ċ)]

�
d

dt
ln(ċw2) �0: (10)

Integrating gives

ċ �
c

w2 
; (11)

where C is a constant which must equal 1, so c is
given by

c �g
t

to

dt

w2 
: (12)

The REAL solution is then

x(t) �w(t) cos [ c(t)]; (13)

so

ẋ � ẇ cos c �w c sin c � ẇ
x

w
�wċ sin c

�ẇ
x

w
�w

1

w2
sin c�ẇ

x

w
�

1

w
sin c (14)

and

1�cos2c�sin2c�x2w�2� w ẇ
x

w
�ẋ

 !" #2

�x2w�2�(ẇx�wẋ)2
�i(x; ẋ; t); (15)

which is an integral of motion. Therefore, although
w(t) is not explicitly known, an integral I always
exists. Plugging (10) into (8) gives

ẅ�g(t)w�
1

w3
�0; (16)

which, however, is not any easier to solve than (3).

See also FLOQUET’S THEOREM, HILL’S DIFFERENTIAL

EQUATION
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Floquet’s Theorem
Let Q(x) be a real or complex piecewise-continuous
function of the real variable x defined for all values of
x that is periodic with minimum period p so that

Q(x � p) �Q(x) : (1)

Then the differential equation

yn �Q(x)y �0 (2)

has two continuously differentiable solutions y1(x)
and y2(x) ; and the characteristic equation is

r2 �[y1( p) �y
0

2( p)] r �1 �0 ; (3)

with eigenvalues r1 �eiap and r2 �e �iap . The
Floquet’s theorem states that if the roots r1 and r2

are different from each other, then (2) has two
linearly independent solutions

f1(x) �eiaxp1(x) (4)

f2(x) �e �iaxp2(x) ; (5)

where p1(x) and p2(x) are period with period p
(Magnus and Winkler 1979, p. 4).

See also FLOQUET ANALYSIS, HILL’S DIFFERENTIAL

EQUATION
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Flow
An ACTION with G �R: Flows are generated by
VECTOR FIELDS and vice versa.

See also ACTION, AMBROSE-KAKUTANI THEOREM,
ANOSOV FLOW, AXIOM A FLOW, CASCADE, GEODESIC

FLOW, SEMIFLOW

Flow Line
A flow line for a map on a VECTOR FIELD F is a path
s(t) such that s?(t) �F(s(t)) :/

Flower
DAISY, FLOWER OF LIFE, ROSE

Flower of Life

One of the beautiful arrangements of CIRCLES found
at the Temple of Osiris at Abydos, Egypt (Rawles
1997). The CIRCLES are placed with six-fold symme-
try, forming a mesmerizing pattern of CIRCLES and
LENSES.

See also CIRCLE COVERING, FIVE DISKS PROBLEM,
REULEAUX TRIANGLE, SEED OF LIFE, VENN DIAGRAM
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Flowsnake
PEANO-GOSPER CURVE

Flowsnake Fractal
GOSPER ISLAND

Floyd’s Algorithm
An algorithm for finding the shortest path between
two VERTICES.

See also DIJKSTRA’S ALGORITHM

Fluent
Newton’s term for a variable in his method of
FLUXIONS (differential calculus).

See also CALCULUS, FLUXION

References
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Fluxion
The term for DERIVATIVE in Newton’s CALCULUS.

See also CALCULUS, DERIVATIVE, FLUENT
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Flype

A 1808 rotation of a TANGLE. The word "flype" is
derived from the old Scottish verb meaning "to turn
or fold back." Tait (1898) used this word to indicate a
different knot transformation than the one under-
stood in the modern definition, illustrated above
(Hoste et al. 1998).

See also FLYPING CONJECTURE, TANGLE
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Flyping Conjecture
Also called the TAIT FLYPING CONJECTURE. Given two
reduced alternating projections of the same KNOT,
they are equivalent on the SPHERE IFF they are
related by a series of FLYPES. The conjecture was
proved by Menasco and Thistlethwaite (1991, 1993)
using properties of the JONES POLYNOMIAL. It allows
all possible REDUCED alternating projections of a
given ALTERNATING KNOT to be drawn.

See also ALTERNATING KNOT, FLYPE, REDUCIBLE

CROSSING, TAIT’S KNOT CONJECTURES
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The following table gives properties of different types of
conic sections, where k is the

Focal Parameter
The distance p (sometimes also denoted k ) from the
FOCUS to the DIRECTRIX of a CONIC SECTION. The
following table gives the focal parameter for the
different types of conics, where a is the SEMIMAJOR

AXIS, c is the distances from the origin to the FOCUS,
and e is the ECCENTRICITY.

conic e /p(a; b)/ /p(a ; c)/ /p(a; e)/

ELLIPSE /0 Be B1/ /

b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p / /

a2 � c2

c
/ /

a(1 � e2)

e
/

PARABOLA e � 1 /2a/ /2a/ /2a/

HYPERBOLA e � 1 /

b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p / /

c2 � a2

c
/ /

a e2 � 1ð Þ
e

/

See also CONIC SECTION, DIRECTRIX (CONIC SECTION),
ECCENTRICITY, FOCUS

Focus

A point related to the construction and properties of
CONIC SECTIONS. HYPERBOLAS and noncircular EL-

LIPSES have two distinct foci and two associated
DIRECTRICES, each DIRECTRIX being PERPENDICULAR

to the line joining the two foci (Eves 1965, p. 275).

See also DIRECTRIX (CONIC SECTION), ELLIPSE, ELLIP-

SOID, FOCAL PARAMETER, HYPERBOLA, HYPERBOLOID,
PARABOLA, PARABOLOID, REFLECTION PROPERTY
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Foias Constant
A problem listed in a fall issue of Gazeta Matematica
in the mid-1970s posed the question if x1 > 0 and

xn�1� 1�
1

xn

 !n

(1)

for n � 1, 2, ..., then are there any values for which
xn 0 �/? The problem, listed as one given on an
entrance exam to prospective freshman in the mathe-
matics department at the University of Bucharest,
was solved by C. Foias.

It turns out that there exists exactly one real number

a:1:187452351126501 (2)



such that if x1 � a; then xn 0 �: However, no analytic
form is known for this constant, either as the root of a
function or as a combination of other constants.
Moreover, in this case,

lim
n0�

xn

ln n

n
�1; (3)

which can be rewritten as

lim
n0�

xn

p(n) 
�1 ; (4)

where p(n) is the PRIME COUNTING FUNCTION. How-
ever, Ewing and Foias (2000) believe that this
connection with the PRIME NUMBER THEOREM is
fortuitous.

Foias also discovered that the problem stated in the
journal was a misprint of the actual exam problem,
which used the recurrence xn�1 � 1 �1=xnð Þxn (Ewing
and Foias 2000). In this form, the recurrence con-
verges to

x�:2:2931662874118610315080282912508 (5)

for all starting values of x1 ; which is simply the root of

x � 1 �
1

x

 !x

: (6)

See also GROSSMAN’S CONSTANT
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Fold Bifurcation
Let f : R �R 0 R be a one-parameter family of C2

MAP satisfying

f (0; 0) �0

@f

@x

" #
m�0 ;x�0

�0

@2f

@x2

" #
m�0 ;x�0

�0

@f

@ m

" #
m�0 ;x�0

�0 ;

then there exist intervals m1 ; 0ð Þ; 0 ; m2ð Þ and o > 0
such that

1. If m � m1 ; 0ð Þ; then fm(x) has two fixed points in
(�e ; e) with the positive one being unstable and the
negative one stable, and
2. If m � (0; m2) ; then f m(x) has no fixed points in
(�e ; e) :/

This type of BIFURCATION is known as a fold bifurca-
tion, sometimes also called a SADDLE-NODE BIFURCA-

TION or TANGENT BIFURCATION. An example of an
equation displaying a fold bifurcation is

x
:
� m �x2

(Guckenheimer and Holmes 1997, p. 145).

See also BIFURCATION
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Fold Catastrophe

A catastrophe which can occur for one control factor
and one behavior axis. It is the universal unfolding of
the singularity f (x) �x3 and has the equation
F(x;u)�x3�ux:/

See also CATASTROPHE THEORY
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Folding
The points accessible from c by a single fold which
leaves a1; ..., an fixed are exactly those points interior
to or on the boundary of the intersection of the
CIRCLES through c with centers at ai; for i � 1, ...,
n . Given any three points in the plane a , b , and c ,
there is an EQUILATERAL TRIANGLE with VERTICES x ,
y , and z for which a , b , and c are the images of x , y ,
and z under a single fold.



Given any four points in the plane a , b , c , and d ,
there is some SQUARE with VERTICES x , y , z , and w for
which a , b , c , and d are the images of x , y , z , and w
under a sequence of at most three folds. In addition,
any four collinear points are the images of the
VERTICES of a suitable SQUARE under at most two
folds. Every five (six) points are the images of the
VERTICES of suitable regular PENTAGON (HEXAGON)
under at most five (six) folds. Wells (1991) illustrates
a PENTAGON, HEXAGON, HEPTAGON, and OCTAGON

constructed using paper folding.

The least number of folds required for n ]4 is not
known, but some bounds are. In particular, every set
of n points is the image of a suitable REGULAR n -gon
under at most F(n) folds, where

F(n) 5

1

2 
(3n �2) for n even

1

2 
(3n �3) for n odd:

8>>><
>>>:

The first few values are 0, 2, 3, 5, 6, 8, 9, 11, 12, 14,
15, 17, 18, 20, 21, ... (Sloane’s A007494).

See also FLEXAGON, MAP FOLDING, ORIGAMI, RUDIN-

SHAPIRO SEQUENCE, STAMP FOLDING
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Foliation
Let Mn be an n -MANIFOLD and let F � Faf g denote a
PARTITION of Mn into DISJOINT path-connected SUB-

SETS. Then F is called a foliation of Mn of codimension
c (with 0 Bc Bn) if there exists a COVER of Mn by
OPEN SETS U , each equipped with a HOMEOMORPHISM

h : U 0 Rn or h : U 0 Rn
� which throws each none-

mpty component of Fa S U onto a parallel translation
of the standard HYPERPLANE Rn�c in Rn : Each Fa is
then called a LEAF and is not necessarily closed or
compact.

See also CONFOLIATION, COVER, HOMEOMORPHISM,
LEAF (FOLIATION), MANIFOLD, REEB FOLIATION
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Folium

The word "folium" means leaf-shaped. The polar
equation is

r �cos u(4a sin2 u �b) :

If b ]4a ; it is a single folium. If b �0, it is a BIFOLIUM.
If 0 Bb B4a ; it is a TRIFOLIUM. The simple folium is
the PEDAL CURVE of the DELTOID where the PEDAL

POINT is one of the CUSPS.

See also BIFOLIUM, FOLIUM OF DESCARTES, KEPLER’S

FOLIUM, QUADRIFOLIUM, ROSE, TRIFOLIUM
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Folium of Descartes

A plane curve proposed by Descartes to challenge
Fermat’s extremum-finding techniques. In para-
metric form,

x �
3at

1 � t3 
(1)

y �
3at2

1 � t3 
: (2)

The curve has a discontinuity at t ��1. The left wing
is generated as t runs from �1 to 0, the loop as t runs
from 0 to �; and the right wing as t runs from �� to
�1.

The CURVATURE and TANGENTIAL ANGLE of the folium
of Descartes, illustrated above, are

k(t) �
2 1 � t3ð Þ4

3 1 � 4t2 � 4t3 � 4t5 � 4t6 � t8ð Þ3 =2 (3)

f(t) �
1

2
p �tan�1 1 � 2t3

t4 � 2t

 !
�tan �1 2t3 � 1

t4 � 2t

 !" #
:

17 �4
ffiffiffiffiffiffi
18

p
(4)

Converting the PARAMETRIC EQUATIONS to POLAR

COORDINATES gives

r2 �
3atð Þ2 1 � t2ð Þ

1 � t3ð Þ2 (5)

u �tan�1 y

x

 !
�tan�1t; (6)

so

du �
dt

1 � t2 
: (7)

The AREA enclosed by the curve is

A ¼ 1

2 g r2 du ¼ 1

2 g
�

0

(3at)2(1 � t2)

(1 � t3)2

dt

1 � t2

�
3

2 
a2 g

�

0

3t2dt

1 � t3ð Þ2 : (8)

Now let u �1 �t3 so du �3t2dt

A �
3

2 
a2 g

�

1

du

u2 
�

3

2 
a2 �

1

u

" #�
1

�
3

2
a2(�0 �1) �

3

2 
a2 (9)

In CARTESIAN COORDINATES,

x3 �y3 �
3atð Þ3 1 � t3ð Þ

1 � t3ð Þ3 �
3atð Þ3

1 � t3ð Þ2 �3axy (10)

(MacTutor Archive). The equation of the ASYMPTOTE

is

y ��a �x: (11)
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Folkman Graph
A graph which is EDGE-TRANSITIVE but not VERTEX-

TRANSITIVE, and has the minimum possible number of
nodes (20) for a nontrivial graph satisfying these
properties (Skiena 1990, p. 186).

See also EDGE-TRANSITIVE GRAPH, VERTEX-TRANSI-

TIVE GRAPH
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Fontené Theorems

1. If the sides of the PEDAL TRIANGLE of a point P
meet the corresponding sides of a TRIANGLE

DO1O2O3 at X1 ; X2 ; and X3 ; respectively, then
P1X1 ; P2X2 ; P3X3 meet at a point L common to the
CIRCLES O1O2O3 and P1P2P3 : In other words, L is
one of the intersections of the NINE-POINT CIRCLE of
A1A2A3 and the PEDAL CIRCLE of P .
2. If a point moves on a fixed line through the
CIRCUMCENTER, then its PEDAL CIRCLE passes
through a fixed point on the NINE-POINT CIRCLE.
3. The PEDAL CIRCLE of a point is tangent to the
NINE-POINT CIRCLE IFF the point and its ISOGONAL

CONJUGATE lie on a LINE through the ORTHOCEN-

TER. FEUERBACH’S THEOREM is a special case of this
theorem.

See also CIRCUMCENTER, FEUERBACH’S THEOREM,
ISOGONAL CONJUGATE, NINE-POINT CIRCLE, ORTHO-

CENTER, PEDAL CIRCLE
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Foot
PERPENDICULAR FOOT

Football
LEMON

For All
If a proposition P is true for all B , this is written P �B:
� is one of the two so-called QUANTIFIERS.

In Mathematica 4.0, the command ForAllRealQ[i-
neqs , vars ] can be used to determine if the system of
real equations and inequalities ineqs is satisfied for
all real values of the variables vars .

See also ALMOST ALL, EXISTS, IMPLIES, QUANTIFIER,
UNIVERSAL QUANTIFIER

Forced Polygon
HAPPY END PROBLEM

Forcing
A technique in SET THEORY invented by P. Cohen
(1963, 1964, 1966) and used to prove that the AXIOM

OF CHOICE and CONTINUUM HYPOTHESIS are indepen-
dent of one another in ZERMELO-FRAENKEL SET

THEORY.

See also AXIOM OF CHOICE, CONTINUUM HYPOTHESIS,
SET THEORY, ZERMELO-FRAENKEL SET THEORY
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Ford Circle

Pick any two INTEGERS h and k , then the CIRCLE

C(h ; k) of RADIUS 1= 2k2ð Þ centered at h=k ;91= 2k2ð Þð Þ
is known as a Ford circle. No matter what and how
many hs and ks are picked, none of the Ford circles
intersect (and all are tangent to the X -AXIS). This can
be seen by examining the squared distance between
the centers of the circles with (h, k ) and h

0
; k

0� �
;

d2�
h

0

k0 �
h

k

 !2

�
1

2k02
�

1

2k2

 !2

: (1)

Let s be the sum of the radii

s�r1�r2�
1

2k2
�

1

2k02
; (2)

then

d2�s2�
h

0
k � hk

0� �2
�1

k2k02
: (3)

But h
0
k�k

0
h

� �2
]1; so d2�s2]0 and the distance

between circle centers is ] the sum of the CIRCLE

RADII, with equality (and therefore tangency) IFF

h
0
k�k

0
h

,, ,,�1: Ford circles are related to the FAREY



SEQUENCE (Conway and Guy 1996).

If h1 =k1 ; h2 =k2 ; and h3 =k3 are three consecutive terms
in a FAREY SEQUENCE, then the circles c(h1 ; k1) and
c(h2 ; k2) are tangent at

a1 �
h2

k2

�
k1

k2 k2
2 � k2

1ð Þ
;

1

k2
2 � k2

1

 !
(4)

and the circles c(h2 ; k2) and C h3 ; k3ð Þ intersect in

a2 �
h2

k2

�
k3

k2 k2
2 � k2

3ð Þ
;

1

k2
2 � k2

3

 !
: (5)

Moreover, a1 lies on the circumference of the SEMI-

CIRCLE with diameter h1 =k1 ; 0ð Þ� h2 =k2 ; 0ð Þ and a2

lies on the circumference of the SEMICIRCLE with
diameter h2 =k2 ; 0ð Þ� h3 =k3 ; 0ð Þ (Apostol 1997, p. 101).

See also ADJACENT FRACTION, APOLLONIAN GASKET,
FAREY SEQUENCE, STERN-BROCOT TREE
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Ford’s Theorem
Let a , b , and k be INTEGERS with k ]1 : For j � 0, 1,
2, let

Sj �
X

i�j ðmod 3 Þ
ð�1Þj k

i

� �
ak�ibi :

Then

2ða2 þ ab þ b2 Þ2k

¼ ðS0 � S1 Þ
4 þ ðS1 � S2 Þ

4 �ðS2 � S0 Þ
4

See also BHARGAVA’S THEOREM, DIOPHANTINE EQUA-

TION–4TH POWERS
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Forest

An acyclic graph (i.e., a GRAPH without any CIRCUITS).
Forests therefore consist only of (possibly discon-
nected) TREES, hence the name "forest." A forest with
k components and n nodes has n �k EDGES. The
numbers of forests on n � 1, 2, ... nodes are 1, 2, 3, 6,
10, 20, 37, ... (Sloane’s A005195). A graph can be
tested to determine if it is acyclic using AcylicQ[g ]
in the Mathematica add-on package Discrete-
Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘).
CONNECTED forests are TREES.

See also ACYCLIC DIGRAPH, CONNECTED GRAPH,
GRAPH CYCLE, TREE
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Fork
A fork of a TREE T is a node of T which is the endpoint
of two or more BRANCHES.

See also BRANCH, TREE

Form
CANONICAL FORM, CUSP FORM, DIFFERENTIAL K -

FORM, FORM (GEOMETRIC), FORM (POLYNOMIAL),



MODULAR FORM, NORMAL FORM, PFAFFIAN FORM,
QUADRATIC FORM

Form (Geometric)
A 1-D geometric object such as a PENCIL or RANGE.

Form (Polynomial)
A HOMOGENEOUS POLYNOMIAL in two or more vari-
ables.

See also DIFFERENTIAL K -FORM, DISCONNECTED FORM

Formal Logic
SYMBOLIC LOGIC

Formal Power Series
A formal power series of a FIELD F is an infinite
sequence a0 ;a1 ; a2 ; :::f g over F . Equivalently, it is a
function from the set of nonnegative integers to F ,
0; 1; 2; :::f g 0 F: A formal power series is often written

a0 �a1x �a2x2 �:::�anxn �:::;

but with the understanding that no value is assigned
to the symbol x .

See also POWER SERIES
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Formosa Theorem
CHINESE REMAINDER THEOREM

Formula
A mathematical equation or a formal logical expres-
sion. The correct Latin plural form of formula is
"formulae," although the less pretentious-sounding
"formulas" is more commonly used.

See also EQUALITY, EQUATION, IDENTITY
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Fortunate Prime

Let

Xk �1 �pk#;

where pk is the kth PRIME and p is the PRIMORIAL, and
let qk be the NEXT PRIME (i.e., the smallest PRIME

greater than Xk) ;

qk �p1� p(xk) �p1 �p(1�pk#)

where p(n) is the PRIME COUNTING FUNCTION. Then
R. F. Fortune conjectured that Fk �qk �Xk �1 is
PRIME for all k . The first values of Fk are 3, 5, 7, 13,
23, 17, 19, 23, ... (Sloane’s A005235), and all known
values of Fk are indeed PRIME (Guy 1994). The indices
of these primes are 2, 3, 4, 6, 9, 7, 8, 9, 12, 18, .... In
numerical order with duplicates removed, the For-
tunate primes are 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61,
67, 71, 79, 89, ... (Sloane’s A046066).

See also ANDRICA’S CONJECTURE, PRIMORIAL
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Forward Difference
The forward difference is a FINITE DIFFERENCE de-
fined by

Dan�an�1�an: (1)

Higher order differences are obtained by repeated
operations of the forward difference operator,

Dkan�Dk�1an�1�Dk�1an; (2)

so

D2an�D2
n�D(Dn)�D(an�1�an)

�Dn�1�Dn�an�2�2an�1�an: (3)

In general,



Dk
n �Dkan �

Xk

i�0

(�1)i k
i

� �
an�k�i ; (4)

where k
m

� �
is a BINOMIAL COEFFICIENT (Sloane and

Plouffe 1985, p. 10).

NEWTON’S FORWARD DIFFERENCE FORMULA expresses
an as the sum of the nth forward differences

an �a0 �n D0 �
1

2!
n(n �1)D2

0 �
1

3! 
n(n �1)(n �2)D3

0

�. . .  (5)

where Dn
0 is the first nth difference computed from

the difference table. Furthermore, if the differences
am ; Dam ; D

2am ; ..., are known for some fixed value of
m , then a formula for the nth term is given by

an�m �
Xn

k�0

n
k

� �
Dkam (6)

(Sloane and Plouffe 1985, p. 10).

See also BACKWARD DIFFERENCE, CENTRAL DIFFER-

ENCE, DIFFERENCE EQUATION, DIVIDED DIFFERENCE,
RECIPROCAL DIFFERENCE
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Fountain
An (n, k ) fountain is an arrangement of n coins in
rows such that exactly k coins are in the bottom row
and each coin in the (i �1)/st row touches exactly two
in the i th row. A generalized Rogers-Ramanujan-type
continued fraction is closely related to the enumera-
tion of coins in a fountain (Berndt 1991, 1985).
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Four Coins Problem

Given three coins of possibly different sizes which are
arranged so that each is tangent to the other two, find
the coin which is tangent to the other three coins. The
solution is the inner SODDY CIRCLE, illustrated above.

See also APOLLONIUS CIRCLES, APOLLONIUS’ PRO-

BLEM, ARBELOS, BEND (CURVATURE), CIRCUMCIRCLE,
COIN, DESCARTES CIRCLE THEOREM, HART’S THEO-

REM, PAPPUS CHAIN, SODDY CIRCLES, SPHERE PACK-

ING, STEINER CHAIN, TANGENT CIRCLES
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Four Conics Theorem

If two intersections of each pair of three conics S1; S2;
and S3 lie on a conic , then the lines joining the
other two intersections of each pair are CONCURRENT

(Evelyn et al. 1974, pp. 23 and 25).

The dual theorem states that if two common tangents



of each pair of three conics touch a fourth conic, then
the remaining common tangents of each pair inter-
sect in three COLLINEAR points (Evelyn et al. 1974,
pp. 24 �/5).

See also CONIC SECTION, THREE CONICS THEOREM
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Four Dog Problem
MICE PROBLEM

Four Exponentials Conjecture
Let x1 and x2 be two linearly independent complex
numbers, and let y1 and y2 be two linearly indepen-
dent complex numbers. Then the four exponential
conjecture posits that at least one of

ex1y1 ; ex1y2 ; ex2y1 ; ex2y2

is TRANSCENDENTAL (Waldschmidt 1979, p. 3.5). The
corresponding statement obtained by replacing y1 ; y2

with y1 ; y2 ; y3 has been proven and is known as the SIX

EXPONENTIALS THEOREM.

See also HERMITE-LINDEMANN THEOREM, SIX EXPO-

NENTIALS THEOREM, TRANSCENDENTAL NUMBER
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Four Travelers Problem
Let four LINES in a PLANE represent four roads in
GENERAL POSITION, and let one traveler Ti be walking
along each road at a constant (but not necessarily
equal to any other traveler’s) speed. Say that two
travelers Ti and Tj have "met" if they were simulta-
neously at the intersection of their two roads. Then if
T1 has met all other three travelers (/T2 ; T3 ; and T4)
and T2 ; in addition to meeting T1 ; has met T3 and T4 ;
then T3 and T4 have also met!
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Four-Bug Problem
MICE PROBLEM

Four-Color Problem
FOUR-COLOR THEOREM

Four-Color Theorem
The four-color theorem states that any map in a
PLANE can be colored using four-colors in such a way
that regions sharing a common boundary (other than
a single point) do not share the same color. This
problem is sometimes also called GUTHRIE’S PROBLEM

after F. Guthrie, who first conjectured the theorem in
1853. The CONJECTURE was then communicated to de
Morgan and thence into the general community. In
1878, Cayley wrote the first paper on the conjecture.

Fallacious proofs were given independently by Kempe
(1879) and Tait (1880). Kempe’s proof was accepted
for a decade until Heawood showed an error using a
map with 18 faces (although a map with nine faces
suffices to show the fallacy). The HEAWOOD CONJEC-

TURE provided a very general assertion for map
coloring, showing that in a GENUS 0 SPACE (i.e., either
the SPHERE or PLANE), six colors suffice. This number
can easily be reduced to five, but reducing the
number of colors all the way to four proved very
difficult. (The KLEIN BOTTLE is the sole exception to
the HEAWOOD CONJECTURE, requiring five colors
instead of the six expected for a surface of genus 0.)

Finally, Appel and Haken (1977) announced a com-
puter-assisted proof that four colors were SUFFICIENT.
However, because part of the proof consisted of an
exhaustive analysis of many discrete cases by a
computer, some mathematicians do not accept it.
However, no flaws have yet been found, so the proof
appears valid. A potentially independent proof has
recently been constructed by N. Robertson,
D. P. Sanders, P. D. Seymour, and R. Thomas.

Martin Gardner (1975) played an April Fool’s joke by
(incorrectly) claiming that the map of 110 regions
illustrated above requires five colors and constitutes
a counterexample to the four-color theorem. However,
the coloring of Wagon (1998; 1999, pp. 535�/36)
clearly shows that this map is, in fact, four-colorable.

See also CHROMATIC NUMBER, ERRERA GRAPH, GRAPH



COLORING, HEAWOOD CONJECTURE, KITTELL GRAPH,
MAP COLORING, SIX-COLOR THEOREM, TORUS COLOR-

ING
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Four-Dimensional Geometry
4-DIMENSIONAL GEOMETRY

Fourier Analysis
FOURIER SERIES

Fourier Cosine Series
If f (x) is an EVEN FUNCTION, then bn�0 and the
FOURIER SERIES collapses to

f (x)�
1

2
a0�

X�
n�1

an cos(nx); (1)

where

a0�
1

pg
p

�p

f (x)dx�
2

pg
p

0

f (x)dx (2)

an�
1

pg
p

�p

f (x) cos(nx)dx

�
2

pg
p

0

f (x) cos(nx)dx (3)

where the last equality is true because

f (x) cos(nx)�f (�x) cos(�nx) (4)

Letting the range go to L ,

a0�
2

Lg
L

0

f (x)dx (5)

an�
2

Lg
L

0

f (x) cos
npx

L

 !
dx: (6)

See also EVEN FUNCTION, FOURIER COSINE TRANS-

FORM, FOURIER SERIES, FOURIER SINE SERIES



Fourier Cosine Transform
The Fourier cosine transform is the REAL PART of the
full complex FOURIER TRANSFORM,

Fc f (x)½ 
�R F f (x)½ 
½ 
:

In Mathematica 4.0, the Fourier cosine transform
Fc(k) of a function f (x) is implemented as Four-
ierCosTransform[f , x , k ], and different choices of a
and b can be used by passing the optional Four-
ierParameters- � {a , b } option. In this work, a � 0
and b ��2p:/
In version 4.1, the discrete Fourier cosine transform
of a list l of real numbers can be computed using
FourierCos[l ] in the Mathematica add-on package
LinearAlgebra‘FourierTrig‘ (which can be
loaded with the command BBLinearAlgebra‘).

See also FOURIER SINE TRANSFORM, FOURIER TRANS-

FORM
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Fourier Integral
FOURIER TRANSFORM

Fourier Matrix
The n �n SQUARE MATRIX F/n with entries given by

Fjk �e2 pijk=n � vjk (1)

for j ; k �0; 1, 2, ..., n �1; where I is the IMAGINARY

NUMBER i �
ffiffiffiffiffiffi
�1

p
; and normalized by 1

ffiffiffi
n

p
to make it a

UNITARY. The Fourier matrix F2 is given by

F2 �
1ffiffiffi
2

p 1 1
1 i2

* +
; (2)

and the F4 matrix by

F4 �
1ffiffiffi
4

p
1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

2
664

3
775

�
1

2

1 1
1 i

1 �1
1 �i

2
664

3
775

1 1
1 i2

1 1
1 i2

2
664

3
775

1
1

1
1

2
664

3
775:

(3)

In general,

F2n � 
In Dn

In �Dn

* +
Fn

Fn

* +
even-odd
shuffle

* +
; (4)

with

Fn

Fn

* +
�

In=2 Dn=2

In=2 �Dn=2

*
In=2 Dn=2

In=2 �Dn=2

+

�

Fn=2

Fn=2

Fn=2

Fn=2

2
664

3
775

even-odd
0 ; 2(mod4)
even-odd

1 ; 3(mod4)

2
664

3
775; (5)

where In is the n �n IDENTITY MATRIX and Dn is the
DIAGONAL MATRIX with entries 1, v; ..., vn�1 : Note
that the factorization (which is the basis of the FAST

FOURIER TRANSFORM) has two copies of F2 in the
center factor MATRIX.

See also FAST FOURIER TRANSFORM, FOURIER TRANS-

FORM
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Fourier Series
Fourier series are expansions of PERIODIC FUNCTIONS

f (x) in terms of an infinite sum of SINES and COSINES

OF THE FORM

f (x)�
X�
n�0

a?n cos(nx)�
X�
n�0

b?n sin(nx): (1)

Fourier series make use of the ORTHOGONALITY

relationships of the SINE and COSINE functions, which
can be used to calculate the coefficients an and bn in
the sum. The computation and study of Fourier series
is known as HARMONIC ANALYSIS.

To compute a Fourier series, use the integral iden-
tities

g
p

�p
sin(mx) sin(nx)dx�pdmn for n;m"0 (2)

g
p

�p
cos(mx) cos(nx)dx�pdmn for n;m"0 (3)

g
p

�p
sin(mx) cos(nx)dx�0 (4)

g
p

�p
sin(mx)dx�0 (5)

g
p

�p
cos(mx)dx�0; (6)

where dmn is the KRONECKER DELTA. Now, expand
your function f (x) as an infinite series OF THE FORM



f (x)�
X�
n�0

a?n cos(nx)�
X�
n�0

b?n sin(nx)

�
1

2
a0�

X�
n�1

an cos(nx)�
X�
n�1

bn sin(nx) (7)

where we have relabeled the a0�2a?0 term for future
convenience but set bn�b?n and left an�a?n for n]1:
Assume the function is periodic in the interval �p; p½ 
:
Now use the orthogonality conditions to obtain

g
p

�p

f (x)dx

�g
p

�p

X�
n�1

an cos(nx)�
X�
n�1

bn sin(nx)�
1

2
a0

" #
dx

�
X�
n�1
g

p

�p

an cos(nx)�bn sin(nx)½ 
dx�
1

2
a0g

p

�p

dx

�
X�
n�1

0�0ð Þ�pa0�pa0 (8)

and

g
p

�p

f (x) sin(mx)dx

�g
p

�p

X�
n�1

an cos(nx)�
X�
n�1

bn sin(nx)�
1

2
a0

" #

�sin(mx)dx

�
X�
n�1
g

p

�p

an cos(nx) sin(mx)�bn sin(nx) sin(mx)½ 
dx

�
1

2
a0g

p

�p

sin(mx)dx

�
X�
n�1

0�bnpdmnð Þ�0�pbn; (9)

so

g
p

�p

f (x) cos(mx)dx�g
p

�p

X�
n�1

an cos(nx)

"

�
X�
n�1

bn sin(nx)�
1

2
a0
 cos(mx)dx

�
X�
n�1
g

p

�p

an cos(nx) cos(mx)½

�bn sin(nx) cos(mx)
dx�
1

2
a0g

p

�p

cos(mx)dx

�
X�
n�1

anpdmn�0ð Þ�0�pan: (10)

Plugging back into the original series then gives

a0�
1

pg
p

�p

f (x)dx (11)

an�
1

pg
p

�p

f (x) cos(nx)dx (12)

bn�
1

pg
p

�p

f (x) sin(nx)dx (13)

for n � 1, 2, 3, .... The series expansion converges to
the function f̄ (equal to the original function at points
of continuity or to the average of the two limits at
points of discontinuity)

f̄ �

1

2
limx0x0�

f (x)�limx0x0�
f (x)

h i
for �pBx0Bp

1

2
limx0p� f (x)�limx0p� f (x)½ 


for x0��p; p

8>>>>>>><
>>>>>>>:

(14)

if the function satisfies the DIRICHLET CONDITIONS.

Near points of discontinuity, a "ringing" known as the
GIBBS PHENOMENON, illustrated above, occurs. For a
function f (x) periodic on an interval [�L;L]; use a
change of variables to transform the interval of
integration to [�1; 1]: Let

x�
px?

L
(15)

dx�
p dx?

L
: (16)

Solving for x?; x?�Lx=p: Plugging this in gives

f (x?)�1
2a0�

X�
n�1

an cos
npx?

L

 !
�
X�
n�1

bn sin
npx?

L

 !
(17)

a0�
1

Lg
L

�L

f (x?) dx?

an�
1

Lg
L

�L

f (x?) cos
npx?

L

 !
dx?

bn�
1

Lg
L

�L

f (x?) sin
npx?

L

 !
dx?

8>>>>>>>>>><
>>>>>>>>>>:

(18)



If a function is EVEN so that f (x) �f (�x); then
f (x) sin(nx) is ODD. (This follows since sin(nx) is ODD

and an EVEN FUNCTION times an ODD FUNCTION is an
ODD FUNCTION.) Therefore, bn �0 for all n . Similarly,
if a function is ODD so that f (x) ��f (�x); then
f (x) cos(nx) is ODD. (This follows since cos(nx) is
EVEN and an EVEN FUNCTION times an ODD FUNCTION

is an ODD FUNCTION.) Therefore, an �0 for all n .

Because the SINES and COSINES form a COMPLETE

ORTHOGONAL BASIS, the SUPERPOSITION PRINCIPLE

holds, and the Fourier series of a LINEAR COMBINA-

TION of two functions is the same as the LINEAR

COMBINATION of the corresponding two series. The
COEFFICIENTS for Fourier series expansions for a few
common functions are given in Beyer (1987, pp. 411 �/

12) and Byerly (1959, p. 51).

The notion of a Fourier series can also be extended to
COMPLEX COEFFICIENTS. Consider a real-valued func-
tion f (x): Write

f ðxÞ ¼
X�

n���

Aneinx: (19)

Now examine

g
p

�p
f (x)e �imx dx �g

p

�p

X�
n���

Aneinx

 !
e �imx dx

�
X�

n ���

Ang
p

�p
ei(n�m)x dx

�
X�

n���

Ang
p

�p
cos (n �m)x½ 
�i sin (n �m)x½ 
f g dx

�
X�

m���

An2pdmn �2 pAm ; (20)

so

An ¼
1

2p g
p

�p
f (x)e �inx dx: (21)

The COEFFICIENTS can be expressed in terms of those
in the FOURIER SERIES

An �
1

2pg
p

�p
f (x) cos(nx) �i sin(nx)½ 
 dx

�

1

2pg
p

�p
f (x) cos(nx) �i sin(nx)½ 
 dx n B0

1

2pg
p

�p
f (x) dx n �0

1

2pg
p

�p
f (x) cos(nx) �i sin(nx)½ 
 dx n > 0

8>>>>>>>><
>>>>>>>>:

�

1
2(an �ibn Þ for n B0
1
2a0 for n �0
1
2(an �ibn Þ for n �0

8><
>: (22)

For a function periodic in [�L =2; L =2]; these become

f (x) �
X�

n���

Anei(2pnx=L) (23)

An�
1

Lg
L=2

�L=2

f (x)e�i(2pnx=L) dx: (24)

These equations are the basis for the extremely
important FOURIER TRANSFORM, which is obtained
by transforming An from a discrete variable to a
continuous one as the length L 0 �:/

See also DIRICHLET FOURIER SERIES CONDITIONS,
FOURIER COSINE SERIES, FOURIER SINE SERIES,
FOURIER TRANSFORM, GIBBS PHENOMENON, LEBES-

GUE CONSTANTS (FOURIER SERIES), LEGENDRE SER-

IES, RIESZ-FISCHER THEOREM, SCHLÖ MILCH’S SERIES

References
Arfken, G. "Fourier Series." Ch. 14 in Mathematical Meth-

ods for Physicists, 3rd ed. Orlando, FL: Academic Press,
pp. 760�/93, 1985.

Beyer, W. H. (Ed.). CRC Standard Mathematical Tables,
28th ed. Boca Raton, FL: CRC Press, 1987.

Brown, J. W. and Churchill, R. V. Fourier Series and
Boundary Value Problems, 5th ed. New York: McGraw-
Hill, 1993.

Byerly, W. E. An Elementary Treatise on Fourier’s Series,
and Spherical, Cylindrical, and Ellipsoidal Harmonics,
with Applications to Problems in Mathematical Physics.
New York: Dover, 1959.

Carslaw, H. S. Introduction to the Theory of Fourier’s Series
and Integrals, 3rd ed., rev. and enl. New York: Dover,
1950.

Davis, H. F. Fourier Series and Orthogonal Functions. New
York: Dover, 1963.

Dym, H. and McKean, H. P. Fourier Series and Integrals.
New York: Academic Press, 1972.

Folland, G. B. Fourier Analysis and Its Applications. Pacific
Grove, CA: Brooks/Cole, 1992.

Groemer, H. Geometric Applications of Fourier Series and
Spherical Harmonics. New York: Cambridge University
Press, 1996.

Körner, T. W. Fourier Analysis. Cambridge, England: Cam-
bridge University Press, 1988.

Körner, T. W. Exercises for Fourier Analysis. New York:
Cambridge University Press, 1993.

Krantz, S. G. "Fourier Series." §15.1 in Handbook of Com-
plex Analysis. Boston, MA: Birkhäuser, pp. 195�/02, 1999.
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Fourier Series */Power Series
For f (x) �xk on the INTERVAL [�L;L) and periodic
with period 2L ; the FOURIER SERIES is given by

an �
1

L g
L

�L

xk cos
npx

L

 !
dx

�
2Lk

1 � k 
1F2

1 �1
2k

1
2

1
2(3 �k)

; �1
4 p

2n2

 !

bn �
1

L g
L

�L

xk sin
npx

L

 !
dx

�
2npLk

2 � k 
1F2

1 �1
2k

3
2 2�1

2k
; �1

4 p
2n2

 !
;

where 1F2(a; b; c; x) is a generalized HYPERGEO-

METRIC FUNCTION.

Fourier Series */Sawtooth Wave

Consider a string of length 2L plucked at the right
end, then

a0 �
1

L g
2L

0

x

2L
dx �

1

2L2

1
2x

2
h iL

0
�

1

4L2 
(2L)2 �1

an �
1

L g
2L

0

x

2L
cos

n px

L

 !
dx

�
2n p cos(n p) � sin(np)½ 
 sin(np)

n2 p2 
�0

bn �
1

L g
2L

0

x

2L
sin

npx

L

 !
dx

�
�2n p cos(2np) � sin(2n p)

2n2 p2 
��

1

np
:

The Fourier series is therefore

f (x) �1
2 �

1

p

X�
n�1

1

n
sin

npx

L

 !
:

See also FOURIER SERIES, FOURIER SERIES–SQUARE

WAVE, SAWTOOTH WAVE

Fourier Series */Square Wave

Consider a square wave of length 2L: Since the
function is ODD, a0 �an �0; and

bn �
2

L g
L

0

sin
npx

L

 !
dx

�
4

np
sin2(1

2np) �
4

np
0 n even
1 n odd

:

�

The Fourier series is therefore

f (x) �
4

p

X�
n �1 ;3 ;5;...

1

n
sin

npx

L

 !
:

See also FOURIER SERIES, FOURIER SERIES–SAWTOOTH

WAVE, SQUARE WAVE

Fourier Series*/Triangle

Let a string of length 2L have a y -displacement of
unity when it is pinned an x -distance which is (/(1=m))/
th of the way along the string. The displacement as a
function of x is then

fm(x)�

mx

2L
05x5

2L

m

m

1 � m

x

2L
�1

 !
2L

m
5x52L:

8>>>><
>>>>:



The COEFFICIENTS are therefore

a0 �
1

L g
2L=m

0

nx

2L
dx �g

2L

2L=m

n

1 � n

x

2L 
�1

 !
dx

" #

�1

an �

m 1 � m � cos(2 pn) � m cos
2np
m

 !" #
2(m � 1)n2 p2

�

m2 cos
2np
m

 !
� 1

" #
2(m � 1)m2 p2

bn �

m msin
2pn

m

 !
� sin(2pn)

" #
2(m � 1)n2 p2

�

m2 sin
2pn

m

 !
2(m � 1)n2 p2 

:

The Fourier series is therefore

fm(x) �1
2 �

m2

2(m � 1)p2

�
X�
n�1

1

n2
cos

2np
m

 !
�1

" #
cos

npx

L

 !(

�

sin
2pn

m

 !
n2

sin
n px

L

 !:
:

If m �2, then an and bn simplify to

an ��
4

n2 p2 
sin2 1

2np
� �

��
4

n2 p2

0 n �0; 2 ; . . .
1 n �1; 3 ; . . .

�

bn �0;

giving

f2(x) �1
2 �

4

p2

X�
n�1 ;3;5 ;...

1

n2
cos

npx

L

 !
:

See also FOURIER SERIES

Fourier Series */Triangle Wave

Consider a triangle wave of length 2L : Since the
function is ODD, a0 �an �0; and

bn �
2

L

�
g

L =2

0

x

L =2
sin

npx

L

 !
dx

�g
0

L =2

1 �
2

L
x �

1

2
L

 !" #
sin

npx

L

 !
dx

:
dx

�
32

p2n2 
cos

1

4
np

 !
sin3 1

4 
np

 !

�
32

p2n2

0 n �0; 4; . . .
1
4 n �1 ; 5; . . .

0 n �2; 6; . . .
�1

4 n �3; 7 ; . . .

8>><
>>:

�
8

p2n2

(�1)(n�1)=2 for n odd
0 for n even:

�

The Fourier series is therefore

f (x)�
8

p2

X�
n�1;3;5;...

(�1)(n�1)=2

n2
sin

npx

L

 !
:

See also FOURIER SERIES

Fourier Sine Series
If f (x) is an ODD FUNCTION, then an ¼ 0 and the
FOURIER SERIES collapses to

f (x)�
X�
n�1

bn sin(nx); (1)

where

bn�
1

pg
p

�p
f (x) sin(nx) dx�

2

pg
p

0

f (x) sin(nx) dx (2)

for n�1, 2, 3, .... The last EQUALITY is true because

f (x) sin(nx)� �f (�x)½ 
�sin(�nx)½ 


�f (�x) sin(�nx): (3)

Letting the range go to L ,



bn �
2

L g
L

0

f (x)sin
npx

L

 !
dx: (4)

See also FOURIER COSINE SERIES, FOURIER SERIES,
FOURIER SINE TRANSFORM

Fourier Sine Transform
The Fourier sine transform is the IMAGINARY PART of
the full complex FOURIER TRANSFORM,

Fs f (x)½ 
�I F f (x)½ 
½ 
:

In Mathematica 4.0, the Fourier sine transform Fs(k)
of a function f (x) is implemented as FourierSin-
Transform[f , x , k ], and different choices of a and b
can be used by passing the optional FourierPara-
meters- � {a , b } option. In this work, a �0 and
b ��2p:/
In version 4.1, the discrete Fourier sine transform of
a list l of real numbers can be computed using
FourierSin[l ] in the Mathematica add-on package
LinearAlgebra‘FourierTrig‘ (which can be
loaded with the command BBLinearAlgebra‘).

See also FOURIER COSINE TRANSFORM, FOURIER

TRANSFORM
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Fourier Transform
The Fourier transform is a generalization of the
COMPLEX FOURIER SERIES in the limit as L 0 �:
Replace the discrete An with the continuous F(k)dk
while letting n=L 0 k: Then change the sum to an
INTEGRAL, and the equations become

f (x)�g
�

��

F(k)e2pikxdk (1)

F(k)�g
�

��

f (x)e�2pikxdx: (2)

Here,

F(k)�F[f (x)]�g
�

��

f (x)e�2pikxdx (3)

is called the forward /(�i) Fourier transform, and

f (x)�F�1[F(k)]�g
�

��

F(k)e2pikxdk (4)

is called the inverse /(�i) Fourier transform. The
notation fffl(k) and f�(x) are sometimes used for the

Fourier transform and inverse Fourier transform,
respectively (Krantz 1999, p. 202).

Note that some authors (especially physicists) prefer
to write the transform in terms of angular frequency
v�2pn instead of the oscillation frequency n: How-
ever, this destroys the symmetry, resulting in the
transform pair

HðvÞ ¼ F½hðtÞ
 ¼ g
�

��

hðtÞe�ivtdt (5)

h(t)�F�1[H(v)]�
1

2pg
�

��

H(v)eivtdv: (6)

To restore the symmetry of the transforms, the
convention

g(y)�F[f (t)]�
1ffiffiffiffiffiffi
2p

p g
�

��

f (t)e�iytdt (7)

f (t)�F�1[g(y)]�
1ffiffiffiffiffiffi
2p

p g
�

��

g(y)eiytdy (8)

is sometimes used (Mathews and Walker 1970,
p. 102). In general, the Fourier transform pair may
be defined using two arbitrary constants a and b as

F(v)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b½

(2p)1�a

s
g

�

��

f (t)eibvtdt (9)

f (t)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b½

(2p)1�a

s
g

�

��

F(v)e�ibvtdw: (10)

In Mathematica 4.0, the Fourier transform F(k) of a
function f (x) is implemented as FourierTrans-
form[f , x , k ], and different choices of a and b can
be used by passing the optional FourierPara-
meters-� {a , b } option. By default, Mathematica
takes FourierParameters as (0; 1): Unfortunately,
a number of other conventions are in widespread use.
For example, (0; 1) is used in modern physics, (1;�1)
is used in pure mathematics and systems engineer-
ing, (1; 1) is used in probability theory for the
computation of the CHARACTERISTIC FUNCTION,
(�1; 1) is used in classical physics, and (0;�2p) is
used in signal processing. In this work, following
Bracewell (1999, pp. 6�/), it is always assumed that
a�0 and b��2p unless otherwise stated. This
choice often results in greatly simplified transforms
of common functions such as 1, cos(2pk0x); etc.

Since any function can be split up into EVEN and ODD

portions E(x) and O(x);

f (x)�1
2[f (x)�f (�x)]�1

2[f (x)�f (�x)]�E(x)�O(x);

(11)

a Fourier transform can always be expressed in terms
of the FOURIER COSINE TRANSFORM and FOURIER SINE

TRANSFORM as



F[f (x)]�g
�

��

E(x) cos(2pkx)dx

�ig
�

��

O(x) sin(2pkx)dx: (12)

A function f (x) has a forward and inverse Fourier
transform such that

f (x)�
g

�

��

e2pikx g
�

��

f (x)e�2pikxdx

* +
dk

for f (x) continuous at x
1
2 f (x�)�f (x�)
� 

for f (x) discontinous at x;

8>>>><
>>>>:

(13)

provided that

1. f
�

��
½f (x)½dx exists.

2. There are a finite number of discontinuities.
3. The function has bounded variation. A SUFFI-

CIENT weaker condition is fulfillment of the
LIPSCHITZ CONDITION

(Ramirez 1985, p. 29). The smoother a function (i.e.,
the larger the number of continuous DERIVATIVES),
the more compact its Fourier transform.

The Fourier transform is linear, since if f (x) and g(x)
have Fourier transforms F(k) and G(k); then

g [af (x)�bg(x)]e�2pikxdx

�ag
�

��

f (x)e�2pikxdx�bg
�

��

g(x)e�2pikxdx

aF(k)�bG(k): (14)

Therefore,

F[af (x)�bg(x)]�aF[f (x)]�bF(g(x)]

�aF(k)�bG(k): (15)

The Fourier transform is also symmetric since F(k)�
F[f (x)] implies F(�k)�F[f (�x)]:/

Let f + g denote the CONVOLUTION, then the trans-
forms of convolutions of functions have particularly
nice transforms,

F(f + g)�F[f ]F[g] (16)

F[fg]�F[f ] + F[g] (17)

F�1[F(f )F(g)]�f + g (18)

F�1[F(f ) + F(g)]�fg: (19)

The first of these is derived as follows:

F[f + g]�g
�

��
g

�

��

e�2pikxf (x?)g(x

�x?)dx?dx

�g
�

��
g

�

��

e�2pikx?f (x?)dx?
� 

 e�2pik(x�x?)g(x�x?)dx
� 

� g
�

��

e�2pikx?f (x?)dx?
* +

g
�

��

e�2pikxƒg(xƒ)dxƒ

* +
�F[f ]F[g]; (20)

where xƒ�x�x?:/

There is also a somewhat surprising and extremely
important relationship between the AUTOCORRELA-

TION and the Fourier transform known as the
WIENER-KHINTCHINE THEOREM. Let F[f (x)]�F(k);
and f̄ denote the COMPLEX CONJUGATE of f , then the
Fourier transform of the ABSOLUTE SQUARE of F(k) is
given by

F[jF(k)j2]�g
�

��

f (t)f (t�x)dt: (21)

The Fourier transform of a DERIVATIVE f ?ðxÞ of a
function f (x) is simply related to the transform of the
function f (x) itself. Consider

F f ?(x)½ 
�g
�

��

f ?(x)e�2pikxdx: (22)

Now use INTEGRATION BY PARTS

g vdu�[uv]�gudv (23)

with

du�f ?(x)dx v�e�2pikx (24)

u�f (x) dv��2pike�2pikxdx; (25)

then

F f ?(x)½ 
� f (x)e�2pikx
� �

��
�g

�

��

f (x)(�2pike�2pikxdx):

(26)

The first term consists of an oscillating function times
f (x): But if the function is bounded so that

lim
x09�

f (x)�0 (27)

(as any physically significant signal must be), then
the term vanishes, leaving

F f ?(x)½ 
�2pikg
�

��

f (x)e�2pikxdx�2pikF f (x)½ 
: (28)

This process can be iterated for the nth DERIVATIVE to
yield

F f (n)(x)
� 

�(2pik)nF f (x)½ 
: (29)

The important MODULATION THEOREM of Fourier
transforms allows F cos(2pk0x)f (x)½ 
 to be expressed
in terms of F[f (x)]�F(k) as follows,



F cos(2pk0x)f (x)½ 
�g
�

��

f (x) cos(2pk0x)e �2 pikxdx

�1
2g

�

��

f (x)e2 pik0xe �2pikxdx �1
2g

�

��

f (x)e�2 pik0xe �2pikxdx

�1
2g

�

��

f (x)e �2 pi(k �k0)xdx �1
2g

�

��

f (x)e �2pi(k�k0)xdx

�1
2 F(k �k0) �F(k �k0)½ 
: (30)

Since the DERIVATIVE of the Fourier transform is
given by

F ?(k) �
d

dx
F f (x)½ 
�g

�

��

(�2pix)f (x)e �2 pikxdx; (31)

it follows that

F ?(0) ��2 pig
�

��

xf (x)dx: (32)

Iterating gives the general FORMULA

mn �g
�

��

xnf (x)dx �
F(n)(0)

( �2pi)n : (33)

The VARIANCE of a FOURIER TRANSFORM is

s2
f �
(xf �
xf �)2 �; (34)

and it is true that

sf �g � sf � sg : (35)

If f (x) has the Fourier transform F(k) ; then the
Fourier transform has the shift property

g
�

��

f (x �x0)e�2 pikxdx

�g
�

��

f (x �x0)e �2pi(x�x0)ke �2 pi(kx0)d(x �x0)

�e �2 pikx0 F(k) ; (36)

so f (x �x0) has the Fourier transform

F f (x �x0)½ 
�e�2 pikx0 F(k) : (37)

If f (x) has a Fourier transform F(k) ; then the Fourier
transform obeys a similarity theorem.

g
�

��

f (ax)e �2 pikxdx �
1

aj jg
�

��

f (ax)e �2 pi(ax)(k =a)d(ax)

�
1

aj j
F

k

a

 !
; (38)

so f (ax) has the Fourier transform aj j�1F ðk=aÞ:/

The "equivalent width" of a Fourier transform is

wo �
g

�

��

f (x)dx

f (0)
�

F(0)

g
�

��

F(k)dx

: (39)

The "autocorrelation width" is

wa �
g

�

��

f + f̄ dx

f + f̄
� 

0

�
g

�

��

fdxg
�

��

f̄ dx

g
�

��

f ̄f dx

; (40)

where /f + g/ denotes the CROSS-CORRELATION of f and
g and f̄ is the COMPLEX CONJUGATE.

Any operation on f (x) which leaves its AREA un-
changed leaves F(0) unchanged, since

g
�

��

f (x)dx �F f (0)½ 
�f (0) : (41)

In 2-D, the Fourier transform becomes

F(x; y) �g
�

��
g

�

��

f (kx ; ky)e �2 pi(kxx�kyy)dkxdky (42)

F(kx ; ky) �g
�

��
g

�

��

f (x; y)e2pi(kxx�kyy)dxdy : (43)

Similarly, the n -D Fourier transform can be defined
for k, x �Rn by

F(x)�g
�

��

� � �g
�

��|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

f (k)e�2pik�xdnk (44)

f (k)�g
�

��

� � �g
�

��|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

F(x)e�2pik�xdnx: (45)

See also AUTOCORRELATION, CONVOLUTION, DISCRETE

FOURIER TRANSFORM, FAST FOURIER TRANSFORM,
FOURIER SERIES, FOURIER-STIELTJES TRANSFORM,
FOURIER TRANSFORM–1, FOURIER TRANSFORM–CO-

SINE, FOURIER TRANSFORM–DELTA FUNCTION, FOUR-

IER TRANSFORM–EXPONENTIAL FUNCTION, FOURIER

TRANSFORM–GAUSSIAN, FOURIER TRANSFORM–HEAVI-

SIDE STEP FUNCTION, FOURIER TRANSFORM–INVERSE

FUNCTION, FOURIER TRANSFORM–LORENTZIAN FUNC-

TION, FOURIER TRANSFORM–RAMP FUNCTION, FOUR-

IER TRANSFORM–RECTANGLE FUNCTION, HANKEL

TRANSFORM, HARTLEY TRANSFORM, INTEGRAL TRANS-

FORM, LAPLACE TRANSFORM, STRUCTURE FACTOR,
WINOGRAD TRANSFORM
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Fourier Transform*/1
The FOURIER TRANSFORM of the CONSTANT FUNCTION

f (x)�1 is given by

F[1]�g
�

��

e�2pikxdx�d(k);

according to the definition of the DELTA FUNCTION.

See also DELTA FUNCTION, FOURIER TRANSFORM

Fourier Transform*/Cosine

F cos 2pk0xð Þ½ 
�g
�

��

e2pikx e2pik0x � e�2pik0x

2

 !
dx

�1
2g

�

��

e�2pi k�k0ð Þx�e�2pi k�k0ð Þx� 
dx

�1
2 d k�k0ð Þ�d k�k0ð Þ½ 
;

where d(x) is the DELTA FUNCTION.

See also COSINE, FOURIER TRANSFORM, FOURIER

TRANSFORM–SINE

Fourier Transform*/Delta Function
The FOURIER TRANSFORM of the DELTA FUNCTION is
given by

F d x�x0ð Þ½ 
�g
�

��

d x�x0ð Þe�2pikxdx�e�2pikx0 :

See also DELTA FUNCTION, FOURIER TRANSFORM

Fourier Transform*/Exponential
Function
The FOURIER TRANSFORM of e�k0 ½x½ is given by

F e�k0 ½x½
� 

�g
�

��

e�k0 ½x½e�2pikxdx

�g
0

��

e�2pikxe2pxk0 dx�g
�

0

e�2pikxe�2pk0xdx

�g
0

��

cos(2pkx)�i sin(2kx)½ 
e2pk0xdx:

�g
�

0

cos(2pkx)�i sin(2pkx)½ 
e�2pk0xdx: (1)

Now let u��x so du��dx; then

F e�k0 ½x½
� 

�g
�

0

cos(2pku)�i sin(2pku)½ 
e�2pk0udu

�g
�

0

cos(2pku)�i sin(2pku)½ 
e�2pk0udu

¼ 2g
�

0

cos(2pku)e�2pkoudu; (2)

which, from the DAMPED EXPONENTIAL COSINE INTE-

GRAL, gives



F e�2 pk0 xj j� 
�

1

p
k0

k2 � k2
0

; (3)

which is a LORENTZIAN FUNCTION.

See also DAMPED EXPONENTIAL COSINE INTEGRAL,
EXPONENTIAL FUNCTION, FOURIER TRANSFORM, LOR-

ENTZIAN FUNCTION

Fourier Transform */Gaussian
The FOURIER TRANSFORM of a GAUSSIAN FUNCTION

f (x) �e �ax2 

is given by

F(k) �g
�

��

e�ax2 

e �2 pikxdx

�g
�

��

e �ax2 

[cos(2pkx) �i sin(2pix)]dx

�g
�

��

e �ax2 

cos(2pkx)dx �ig
�

��

e�ax2 

sin(2pkx)dx:

The second integrand is ODD, so integration over a
symmetrical range gives 0. The value of the first
integral is given by Abramowitz and Stegun (1972,
p. 302, equation 7.4.6), so

F(k) �

ffiffiffi
p
a

s
e �p2k2 =a ;

and a GAUSSIAN transforms to a GAUSSIAN.

See also GAUSSIAN FUNCTION, FOURIER TRANSFORM
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Fourier Transform */Heaviside Step
Function
The FOURIER TRANSFORM of the HEAVISIDE STEP

FUNCTION H(x) is given by

F[H(x)] �g
�

��

e �2 pikxH(x)dx �
1

2
d(k) �

i

pk

" #
;

where d(k) is the DELTA FUNCTION.

See also FOURIER TRANSFORM, HEAVISIDE STEP

FUNCTION

Fourier Transform */Inverse Function
The FOURIER TRANSFORM of the GENERALIZED FUNC-

TION 1 =x is given by

F �PV
1

px

 !
��

1

p
PV g

�

��

e �2 pikx

x
dx (1)

�PVg
�

��

cos(2pkx) � i sin(2pkx)

x 
dx (2)

�
�

2i

p g
�

0

sin(2pkx)

x
dx for k B0

2i

p g
�

0

sin(2pkx)

x
dx for k > 0

8>>><
>>>: (3)

�
�i for k B0
i for k > 0 ;

�
(4)

where PV denotes the CAUCHY PRINCIPAL VALUE.
Equation (4) can also be written as the single
equation

F �PV
i

px

 !
�i 1 �2H(�k)½ 
; (5)

where H(x) is the HEAVISIDE STEP FUNCTION. The
integrals follow from the identity

g
�

0

sin(2 pkx)

x
dx �g

�

0

sin(2pkx)

2pkx
d(2pkx)

�g
�

0

sinc z dz�
1

2 
p: (6)

See also FOURIER TRANSFORM

Fourier Transform*/Lorentzian Function

F
1

p

1
2G

(x � x0)2 � 1
2G
� �2

2
64

3
75�e�2pikx0�Gp kj j:

This transform arises in the computation of the
CHARACTERISTIC FUNCTION of the CAUCHY DISTRIBU-

TION.

See also FOURIER TRANSFORM, LORENTZIAN FUNCTION

Fourier Transform*/Ramp Function
Let R(x) be the RAMP FUNCTION, then the FOURIER

TRANSFORM of R(x) is given by

F R(x)½ 
�g
�

��

e�2pikxR(x)dx�pid?(2pk)�
1

4p2k2
;

where d?(x) is the DERIVATIVE of the DELTA FUNCTION.

See also RAMP FUNCTION



Fourier Transform */Rectangle Function
Let P(x) be the RECTANGLE FUNCTION, then the
FOURIER TRANSFORM is

F II(x)½ 
�sinc( pk) ;

where sinc(x) is the SINC FUNCTION.

See also FOURIER TRANSFORM, RECTANGLE FUNCTION,
SINC FUNCTION

Fourier Transform */Sine

F sin(2 pk0x)½ 
�g
�

��

e �2pikx e2pik0x � e�2pik0x

2i

 !
dx

�1
2ig

�

��

�e �2 pi(k�k0)x �e �2pi(k�k0)x
� 

dt

�1
2i d(k �k0) � d(k �k0)½ 
;

where d(x) is the DELTA FUNCTION.

See also FOURIER TRANSFORM, FOURIER TRANSFORM–

COSINE, SINE

Fourier-Bessel Series
BESSEL FUNCTION FOURIER EXPANSION, SCHLÖ MIL-

CH’S SERIES

Fourier-Bessel Transform
HANKEL TRANSFORM

Fourier-Budan Theorem
For any real a and b such that b > a; let p( a) "0 and
p(b) "0 be real polynomials of degree n , and v(x)
denote the number of sign changes in the sequence

p(x) ;p ?(x); :::; p(n)(x)
0 1

: Then the number of zeros in
the interval a; b½ 
 (each zero counted with proper
multiplicity) equals v( a) �v( b) minus an even non-
negative integer.
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Fourier-Mellin Integral
The inverse of the LAPLACE TRANSFORM

F(t) �L�1 f (s)½ 
� 1

2pi g  
g�i�

g�i�

estf (s)ds

f (s) �L F(t)½ 
�g
�

0

F(t)e �stdt :

See also BROMWICH INTEGRAL, LAPLACE TRANSFORM

Fourier-Stieltjes Transform
Let f (x) be a positive definite, measurable function on
the INTERVAL (��;�) : Then there exists a monotone
increasing, real-valued bounded function a(t) such
that

f (x) �g
�

��

eitxda(t)

for "ALMOST ALL" x . If a(t) is nondecreasing and
bounded and f (x) is defined as above, then f (x) is
called the Fourier-Stieltjes transform of a(t) ; and is
both continuous and positive definite.

See also FOURIER TRANSFORM, LAPLACE TRANSFORM
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Four-Knot
FIGURE-OF-EIGHT KNOT

Four-Square Theorem
LAGRANGE’S FOUR-SQUARE THEOREM

Four-Vector
A four-element vector

am�

a0

a1

a2

a3

2
664

3
775; (1)

which transforms under a LORENTZ TRANSFORMATION

like the POSITION FOUR-VECTOR. This means it obeys

a?m�Lm
vav (2)

am � bm�ambm (3)

am � bm�a?mb?m (4)

where Lm
m is the LORENTZ TENSOR. Multiplication of

two four-vectors with the METRIC gmn gives products OF

THE FORM

gmnx
mxv�(x0)2�(x1)2�(x2)2�(x3)2: (5)

In the case of the POSITION FOUR-VECTOR, x0�ct
(where c is the speed of light) and this product is an
invariant known as the spacetime interval.



See also GRADIENT FOUR-VECTOR, LORENTZ TRANS-

FORMATION, POSITION FOUR-VECTOR, QUATERNION,
TENSOR, VECTOR
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Four-Vertex Theorem
A closed embedded smooth PLANE CURVE has at least
four vertices, where a vertex is defined as an
extremum of CURVATURE.

See also CURVATURE
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Fox’s H-Function
A very general function defined by

H(z) �Hm;n
p;q z

(a1 ; a1) ; . . . ; (ap ; ap)
(b1 ; b1) ; . . . ; (bp ; bp)

,,,,
+*

�
1

2pi gC

Pm
j�1 G(bj � bis)Pn

j�1 G(1 � aj � ajs)

Pq
j�m�1 G(1 � bj � bjs)Pqp

j�n�1 G(aj � ajs)

zsds ;

where 0 5m 5q; 0 5n 5p ; aj ; bj > 0; and aj ; bj are
COMPLEX NUMBERS such that the pole of G(bj � bjs) for
j �1, 2, ..., m coincides with any POLE of G(1 �aj �
ajs) for j �1, 2, ..., n . In addition C , is a CONTOUR in
the complex s -plane from v �i � to v �i � such that
(bj�k)=bj and (aj�1�k)=aj lie to the right and left of
C , respectively.

A. Kilbas has derived a complete description for the
asymptotic expansion of the H -function.

See also KAMPE DE FERIET FUNCTION, MACROBERT’S

E -FUNCTION, MEIJER’S G -FUNCTION
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F-Polynomial
KAUFFMAN POLYNOMIAL F

Frac
FRACTIONAL PART

Fractal

An object or quantity which displays SELF-SIMILARITY,
in a somewhat technical sense, on all scales. The
object need not exhibit exactly the same structure at
all scales, but the same "type" of structures must
appear on all scales. A plot of the quantity on a log-log
graph versus scale then gives a straight line, whose
slope is said to be the FRACTAL DIMENSION. The
prototypical example for a fractal is the length of a
coastline measured with different length RULERS. The
shorter the RULER, the longer the length measured, a
PARADOX known as the COASTLINE PARADOX.
Illustrated above are the fractals known as the
GOSPER ISLAND, KOCH SNOWFLAKE, BOX FRACTAL,
SIERPINSKI SIEVE, BARNSLEY’S FERN, and MANDEL-

BROT SET.

See also BACKTRACKING, BARNSLEY’S FERN, BOX

FRACTAL, BUTTERFLY FRACTAL, CACTUS FRACTAL,
CANTOR SET, CANTOR SQUARE FRACTAL, CAROTID-

KUNDALINI FRACTAL, CESÀ RO FRACTAL, CHAOS GAME,
CIRCLES-AND-SQUARES FRACTAL, COASTLINE PARA-

DOX, DRAGON CURVE, FAT FRACTAL, FATOU SET,
FRACTAL DIMENSION, GOSPER ISLAND, H-FRACTAL,
HÉ NON MAP, ITERATED FUNCTION SYSTEM, JULIA

FRACTAL, KAPLAN-YORKE MAP, KOCH ANTISNOW-

FLAKE, KOCH SNOWFLAKE, LÉ VY FRACTAL, LÉ VY

TAPESTRY, LINDENMAYER SYSTEM, MANDELBROT

SET, MANDELBROT TREE, MENGER SPONGE, MINKOWS-



KI SAUSAGE, MIRA FRACTAL, NESTED SQUARE, NEW-

TON’S METHOD, PENTAFLAKE, PYTHAGORAS TREE,
RABINOVICH-FABRIKANT EQUATION, SAN MARCO

FRACTAL, SIERPINSKI CARPET, SIERPINSKI CURVE,
SIERPINSKI SIEVE, STAR FRACTAL, ZASLAVSKII MAP
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Fractal Dimension
The term "fractal dimension" is sometimes used to
refer to what is more commonly called the CAPACITY

DIMENSION (which is, roughly speaking, the exponent
D in the expression n(e)�e�D; where n(e) is the
minimum number of OPEN SETS of diameter e needed
to cover the set). However, it can more generally refer
to any of the dimensions commonly used to charac-
terize fractals (e.g., CAPACITY DIMENSION, CORRELA-

TION DIMENSION, INFORMATION DIMENSION,
LYAPUNOV DIMENSION, MINKOWSKI-BOULIGAND DI-

MENSION).

See also BOX-COUNTING DIMENSION, CAPACITY DI-

MENSION, CORRELATION DIMENSION, FRACTAL DIMEN-

SION, HAUSDORFF DIMENSION, INFORMATION

DIMENSION, LYAPUNOV DIMENSION, MINKOWSKI-BOU-

LIGAND DIMENSION, POINTWISE DIMENSION, Q -DIMEN-

SION
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Fractal Land
CAROTID-KUNDALINI FRACTAL

Fractal Process
A 1-D MAP whose increments are distributed accord-
ing to a NORMAL DISTRIBUTION. Let y(t�Dt) and y(t�
Dt) be values, then their correlation is given by the
BROWN FUNCTION

r�22H�1�1:

When H�1=2; r�0 and the fractal process corre-
sponds to 1-D Brownian motion. If H > 1=2; then
r �0 and the process is called a PERSISTENT PROCESS.



If H B1=2 ; then r B0 and the process is called an
ANTIPERSISTENT PROCESS.

See also ANTIPERSISTENT PROCESS, PERSISTENT PRO-

CESS
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Fractal Sequence
Given an INFINITIVE SEQUENCE fxng with associated
array a(i; j); then fxng is said to be a fractal sequence

1. If i�1�xn; then there exists mBn such that
i�xm;/
2. If hB i , then, for every j , there is exactly one k
such that a(i; j)Ba(h; k)Ba(i; j�1):/

(As i and j range through N , the array A�a(i; j);
called the associative array of x , ranges through all of
N .) An example of a fractal sequence is 1, 1, 1, 1, 2, 1,
2, 1, 3, 2, 1, 3, 2, 1, 3, ....

If fxng is a fractal sequence, then the associated array
is an INTERSPERSION. If x is a fractal sequence, then
the UPPER-TRIMMED SUBSEQUENCE is given by l(x)�x;
and the LOWER-TRIMMED SUBSEQUENCE V(x) is an-
other fractal sequence. The SIGNATURE of an IRRA-

TIONAL NUMBER is a fractal sequence.

See also INFINITIVE SEQUENCE
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Fractal Valley
CAROTID-KUNDALINI FUNCTION

Fractile
QUANTILE

Fraction
A RATIONAL NUMBER expressed in the form a=b (in-
line notation) or a

b
(traditional "display" notation),

where a is called the NUMERATOR and b is called the
DENOMINATOR. When written in-line, the slash "/"
between NUMERATOR and DENOMINATOR is called a
SOLIDUS.

A PROPER FRACTION is a fraction such that a=bB1;
and a LOWEST TERMS FRACTION is a fraction with
common terms canceled out of the NUMERATOR and
DENOMINATOR.

The Egyptians expressed their fractions as sums (and
differences) of UNIT FRACTIONS. Conway and Guy
(1999) give a table of Roman NOTATION for fractions,

in which multiples of 1/12 (the UNCIA) were given
separate names.

See also ADJACENT FRACTION, ANOMALOUS CANCEL-

LATION, COMMON FRACTION, COMPLEX FRACTION,
CONTINUED FRACTION, DENOMINATOR, EGYPTIAN

FRACTION, FAREY SEQUENCE, GOLDEN RULE, HALF,
LOWEST TERMS FRACTION, MATRIX FRACTION, MED-

IANT, MIXED FRACTION, NUMERATOR, PANDIGITAL

FRACTION, PROPER FRACTION, PYTHAGOREAN FRAC-

TION, QUARTER, RATIONAL NUMBER, SOLIDUS, UNIT

FRACTION
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Fractional Calculus
The study of an extension of derivatives and integrals
to noninteger orders. Fractional calculus is based on
the definition of the FRACTIONAL INTEGRAL as

D�nf (t)�
1

G(n)g
t

0

(t�j)n�1f (j)dj;

where G(v) is the GAMMA FUNCTION. From this
equation, FRACTIONAL DERIVATIVES can also be de-
fined.

See also DERIVATIVE, FRACTIONAL DERIVATIVE, FRAC-

TIONAL DIFFERENTIAL EQUATION, FRACTIONAL INTE-

GRAL, INTEGRAL, MULTIPLE INTEGRAL
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Fractional Derivative
The fractional derivative of f (t) of order m > 0 (if it
exists) can be defined in terms of the FRACTIONAL

INTEGRAL D�nf (t) as

Dmf (t)�Dm D�(m�m)f (t)
� 

; (1)

where m is an integer] md e; where xd e is the CEILING

FUNCTION. The SEMIDERIVATIVE corresponds to
m�1=2:/



The fractional derivative of the function tl is given by

Dmtl �Dm D�(m� m)tl
� 

¼ Dn Gðl þ 1 Þ
Gðl þ m � m þ 1Þ 

tlþm� m

" #

¼ Gðl þ 1 Þðl � m þ m Þðl � m þ m � 1Þ � � � ðl � m þ 1 Þ
Gð1 þ m þ l � mÞ 

t l� m

¼ Gðl þ 1Þð1 þ l � m Þm

Gð1 þ m þ l � m Þ
tl� m

¼ Gðl þ 1Þ
Gðl � m þ 1 Þ

tl� m (2)

for l >�1; m > 0 : The fractional derivative of the
CONSTANT FUNCTION f (t) �c is then given by

D mc �c lim
l 00

G( l � 1)

G( l � m � 1) 
tl� m �

ct �m

G(1 � m) 
: (3)

The fractional derivate of the ET -FUNCTION is given
by

DrEt( n ;a) �Et(n � r ;a) (4)

for n > 0; r "0:/

It is always true that, for m ; n > 0 ;

D� mD� nf (t) �D�(m� n) (5)

but not always true that

DmDn �Dm� n (6)

A FRACTIONAL INTEGRAL can also be similarly defined.
The study of fractional derivatives and integrals is
called FRACTIONAL CALCULUS.

See also FRACTIONAL CALCULUS, SEMIDERIVATIVE
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Fractional Differential Equation
The solution to the differential equation

D2v �aDv �bD0
� 

y(t) �0

is

y(t) �

ea(t) �e b(t)
for a " b

te at ;
Pq �1

k ��(q �1) a
k q � kj jð ÞD1 �(k�1)v te a

qtð Þ
for a � b "0

t2v �1

G(2v)
for a � b �0;

8>>>>>>>><
>>>>>>>>:

where

q �
1

v

eb(t) �
Xq �1

k �0

bq �k �1Et �kv ; bqð Þ;

/Et(a ; x) is the ET -FUNCTION, and G(n) is the GAMMA

FUNCTION.

See also FRACTIONAL CALCULUS
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Fractional Fourier Transform

The fractional Fourier transform is generally under-
stood to correspond to a rotation in time-frequency
phase space, where the usual FOURIER TRANSFORM

corresponds to a rotation of 908 (/p=2 radians). A
fractional Fourier transform can be used to detect
frequencies which are not INTEGER multiples of the
lowest DISCRETE FOURIER TRANSFORM frequency.

See also DISCRETE FOURIER TRANSFORM, FOURIER

TRANSFORM
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Fractional Integral
Denote the nth DERIVATIVE Dn and the n -fold INTE-

GRAL D�n: Then

D�1f (t)�g
t

0

f (j)dj: (1)

Now, if the equation

D�nf (t)�
1

(n � 1)!g
t

0

(t�j)n�1f (j) dj (2)

for the MULTIPLE INTEGRAL is true for n , then



D�(n�1)f (t) �D-1 1

(n � 1)! g
t

0

(t � j)n�1f (j) dj

" #

�g
t

0

1

(n � 1)! g
x

0

(x � j)n�1f ( j)dj

" #
dx : (3)

Interchanging the order of integration gives

D�(n�1)f (t) �
1

n! g
t

0

(t � j)nf ( j) dj: (4)

But (2) is true for n �1, so it is also true for all n by
INDUCTION. The fractional integral of f (t) of order n >
0 can then be defined by

D �nf (t) �
1

G(v) g
t

0

(t � j)v �1f (j)dj; (5)

where G( n) is the GAMMA FUNCTION.

The fractional integral of order 1/2 is called a SEMI-

INTEGRAL.

The fractional integral can only be given in terms of
elementary functions for a small number of functions.
For example,

D� ntl �
G( l � 1)

G( l � n � 1)
tl� n for l >�1; n > 0 (6)

D �neat �
1

G( n)
eat g

t

0

xn�1e �axdx

�
a� neat g(n ;at)

G( n)
��Et( n ;a); (7)

where g(a ; x) is a lower incomplete GAMMA FUNCTION

and Et( n ;a) is the ET -FUNCTION. From (6), the frac-
tional integral of the CONSTANT FUNCTION f (t) �c is
given by

D� nc �c lim
l00

G(l� 1)

G(l� n� 1)
tl�n�

tm

G(n� 1)
: (8)

A FRACTIONAL DERIVATIVE can also be similarly
defined. The study of fractional derivatives and
integrals is called FRACTIONAL CALCULUS.

See also FRACTIONAL CALCULUS, SEMI-INTEGRAL
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Fractional Part
The function frac x giving the fractional (noninteger)
part of a REAL NUMBER x . The symbol xf g is some-
times used instead of frac x (Graham et al. 1994,
p. 70), but this notation is not used in this work due to
possible confusion with the SET containing the ele-
ment x .

Unfortunately, there is no universal agreement on
the meaning of frac x for x B0 and there are two
common definitions. Let xb c be the FLOOR FUNCTION,
then the Mathematica command Fractional-
Part[x ] is defined as

frac x�
x� xb c
x� xb c�1

x]0
xB0

�
(1)

(left figure). This definition has the benefit that
frac x�int x�x; where int x is the INTEGER PART of
x . Although Spanier and Oldham (1987) use the same
definition as Mathematica , they mention the formula
only very briefly and then say it will not be used
further. Graham et al. (1994, p. 70), and perhaps
most other mathematicians, use the different defini-
tion

frac x�x� xb c; (2)

(right figure).

Since usage concerning fractional part/value and
integer part/value can be confusing, the following
table gives a summary of names and notations used
(D. W. Cantrell). Here, S&O indicates Spanier and
Oldham (1987).

notation name S&O Graham et

al.

Mathematica

/ xb c/ integer-

value

/Int(x)/ floor or in-

teger part

Floor[ x ]



/sgn(x) xj jb c/ integer-

part

/Ip(x)/ no name Integer-

Part[ x ]

/x � xb c/ fractional-

value

/frac(x)/ fractional

part or xf g/
no name

/sgn(x) xj j� xj jb cð Þ/ fractional-

part

/FP(x)/ no name Fractional

Part[ x ]

The (possibly scaled) periodic waveform correspond-
ing to the latter definition is known as the SAWTOOTH

WAVE.

The fractional part of 1=x has the interesting analytic
integrals

g
1

1 =2

frac
1

x

 !
dx �g

1

1=2

1

x 
�1

 !
dx �ln 2 �1

2 (3)

g
1=2

1 =3

frac
1

x

 !
dx �g

1=2

1 =3

1

x 
�2

 !
dx �ln 3 �ln 2 �1

3 (4)

g
1=3

1 =4

frac
1

x

 !
dx �g

1=3

1 =4

1

x 
�3

 !
dx

�ln 4 �ln 3 �1
4 : (5)

The integral

I �g
1

0

frac
1

x

 !
dx (6)

is therefore a TELESCOPING SUM given by

I ¼ g
1

0

frac
1

x

 !
dx ¼ lim

n0�
ln n �

Xn

k¼2

1

k

" #

�1 � g � lim
n0�

ln n � C0(1 �n)ð Þ; (7)

where g is the EULER-MASCHERONI CONSTANT and
Ck(x) is the POLYGAMMA FUNCTION. The quantity on
the right is 0, so

I �1 � g : (8)

A consequence of WEYL’S CRITERION is that the
sequence ffrac(nx)g is dense and EQUIDISTRIBUTED

in the interval [0; 1] for irrational x , where n �1, 2, ...
(finch).

Hardy and Littlewood (1914) proved that the se-
quence frac xnð Þf g is EQUIDISTRIBUTED for almost all
real numbers x �1 (i.e., the exceptional set has
LEBESGUE MEASURE ZERO). Exceptional numbers in-
clude the positive integers, 1 �

ffiffiffi
2

p
(Finch), and the

GOLDEN RATIO f : The plots above illustrate the
distribution of frac xnð Þ for x �e , f; and 1 �

ffiffiffi
2

p
:

Candidate members of the measure one set are easy
to find, but difficult to proven. However, Levin has
explicitly constructed such an example (Drmota and
Tichy 1997).

The properties of frac (3=2)nð Þf g; the simplest such
sequence for a rational number x �1 have been
extensively studied (Finch). For example,
frac (3=2)nð Þf g has infinitely many ACCUMULATION

POINTS in both [0; 1=2] and [1=2; 1] (Pisot 1938,
Vijayaraghavan 1941). Furthermore, Flatto et al.
(1995) proved that any subinterval of [0; 1] containing
all but at most finitely many ACCUMULATION POINTS

of frac (3=2)nð Þ must have length at least 1/3. Surpris-
ingly, the sequence frac (3=2)nð Þf g is also connected
with the COLLATZ PROBLEM and with WARING’S

PROBLEM.

In particular, WARING’S PROBLEM can be solved
completely if the inequality

frac
3

2

 !n" #
51�

3

4

 !n

(9)

holds. No counterexample to this inequality is known,
and it is even believed that can be extended to

3

4

 !n

Bfrac
3

2

 !n" #
B1�

3

4

 !n

(10)

for n �7 (Finch; Bennett 1993, 1994). Furthermore,
the constant 3/4 can be decreased to 0.5769 (Beukers
1981 and Dubitskas 1990). Unfortunately, these
inequalities have not been proved.

See also BEATTY SEQUENCE, CEILING FUNCTION,
EQUIDISTRIBUTED SEQUENCE, FLOOR FUNCTION, IN-

TEGER PART, NEAREST INTEGER FUNCTION, ROUND,
SAWTOOTH WAVE, SHIFT TRANSFORMATION, TRUN-

CATE, WHOLE NUMBER
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Fractran
Fractran is an algorithm applied to a given list f1 ; f2 ;
..., fk of FRACTIONS. Given a starting INTEGER N , the
Fractran algorithm proceeds by repeatedly multi-
plying the integer at a given stage by the first
element ft given an integer PRODUCT. The algorithm
terminates when there is no such ft :/

The list

17

91 
;
78

85 
;
19

51 
;
23

38 
;
29

33 
;
77

29 
;
95

23 
;
77

19 
;

1

17 
;
11

13 
;
13

11 
;
15

2
;
1

7 
;
55

1

with starting integer N �2 generates a sequence 2,
15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, ...
(Sloane’s A007542). Conway (1987) showed that the
only other powers of 2 which occur are those with
PRIME exponent: 22, 23, 25, 27, ....
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Frame
A closed curve associated with a knot which is
displaced along the normal by a small amount. For
K is parameterized by xm(s) for 0 5s 5L along the
length of the knot by parameter s , the frame Kf

associated with K is

ym �xm(s) � enm(s);

where e is a small parameter, n m(s) is a unit VECTOR

FIELD normal to the curve at s .

See also FRAMEWORK
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Framework
Consider a finite collection of points p �(p1 ; :::; pn);
pi �Rd EUCLIDEAN SPACE (known as a CONFIGURA-

TION) and a graph G whose VERTICES correspond to
pairs of points that are constrained to stay the same
distance apart. Then the graph G together with the
configuration p , denoted G(p) ; is called a framework.

See also BAR (EDGE), CONFIGURATION, RIGID GRAPH,
TENSEGRITY
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Franel Number
One of the numbers an

k�0
n
k

� �3
; where n

k

� �
is a BINOMIAL

COEFFICIENT. The first few values for n �0, 1, ... are
1, 2, 10, 56, 346, ... (Sloane’s A000172).

See also BINOMIAL SUMS
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Franklin Graph

The 12-vertex graph illustrated above which provides
the minimal coloring of the KLEIN BOTTLE using six
colors, providing the sole counterexample to the
HEAWOOD CONJECTURE.

See also HEAWOOD CONJECTURE, KLEIN BOTTLE
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Franklin Magic Square

Benjamin Franklin constructed the above 8 �8 PAN-

MAGIC SQUARE having MAGIC CONSTANT 260. Any half-
row or half-column in this square totals 130, and the
four corners plus the middle total 260. In addition,
bent diagonals (such as 52 �/-5 �/4 �/0 �/7 �/3 �/6) also total
260 (Madachy 1979, p. 87).

See also MAGIC SQUARE, PANMAGIC SQUARE
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Fransén-Robinson Constant

F �g
�

0

dx

G(x) 
�2 :8077702420:::;

where G(x) is the GAMMA FUNCTION. The above plots
show the functions G(x) and 1=G(x): No closed-form
expression in terms of other constants in known for
F .

See also GAMMA FUNCTION
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F-Ratio
The RATIO of two independent estimates of the
VARIANCE of a NORMAL DISTRIBUTION.

See also F -DISTRIBUTION, NORMAL DISTRIBUTION,
VARIANCE

F-Ratio Distribution
F -DISTRIBUTION

Frattini Extension
If F is a group, then the extensions G of F of order o
with G=f(G) $F ; where f(G) is the FRATTINI SUB-

GROUP, are called Frattini extensions.

See also FRATTINI FACTOR, FRATTINI SUBGROUP
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Frattini Factor
A group given by G =f(G); where f(G) is the FRATTINI

SUBGROUP of a given group G .

See also FRATTINI EXTENSION, FRATTINI SUBGROUP
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Frattini Subgroup
The intersection f(G) of all maximal subgroups of a
given group G .

See also FRATTINI EXTENSION, FRATTINI FACTOR

References
Besche, H.-U. and Eick, B. "Construction of Finite Groups."

J. Symb. Comput. 27, 387�/04, 1999.
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Fréchet Bounds
Any bivariate distribution function with marginal
distribution functions F and G satisfies

max fF(x) �G(y) �1; 0 g5H(x; y) 5min fF(x) ;G(y)g:

Fréchet Derivative
A function f is Fréchet differentiable at a if

lim
x0a

f (x) � f (a)

x � a

exists. This is equivalent to the statement that f has
a removable DISCONTINUITY at a , where

f(x) �
f (x) � f (a)

x � a
:

Every function which is Fréchet differentiable is also
Carathéodory differentiable.

See also CARATHÉ ODORY DERIVATIVE, DERIVATIVE

Fréchet Filter
COFINITE FILTER

Fréchet Space
A complete metrizable space, sometimes also with the
restriction that the space be locally convex. A Fréchet
space is a TOPOLOGICAL VECTOR SPACE which is
COMPLETE. Its topology is also defined by a COUNTA-

BLE family of SEMINORMS.

For example, the space of SMOOTH FUNCTIONS on [0; 1]
is a Fréchet space. Its topology is the C -INFINITY

TOPOLOGY, which is given by the countable family of
SEMINORMS,

fk ka�sup Dafj j:

Because fn 0 f in this topology implies that f is
smooth, i.e.,

D afn 0 Daf ;

any CAUCHY SEQUENCE has a limit in the space of
SMOOTH FUNCTIONS, i.e., it is COMPLETE.

See also BANACH SPACE, HILBERT SPACE, TOPOLOGI-

CAL VECTOR SPACE

Fredholm Alternative

See also SPECTRAL THEORY

Fredholm Integral Equation of the First
Kind
An INTEGRAL EQUATION OF THE FORM

f (x) �g
�

��

K(x; t) f(t)dt

f(x) �
1

2 pg
�

��

F(v)

K(v)
e �ivxd v:

See also FREDHOLM INTEGRAL EQUATION OF THE

SECOND KIND, INTEGRAL EQUATION, VOLTERRA INTE-

GRAL EQUATION OF THE FIRST KIND, VOLTERRA

INTEGRAL EQUATION OF THE SECOND KIND

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, p. 865, 1985.

Fredholm Integral Equation of the Second
Kind
An INTEGRAL EQUATION OF THE FORM

f(x) �f (x) � lg
�

��

K(x; t)f(t)dt

f(x) �
1ffiffiffiffiffiffi
2p

p g
�

��

F(t)e�ixtdt

1 �
ffiffiffiffiffiffi
2p

p
lK(t)

:

See also FREDHOLM INTEGRAL EQUATION OF THE

FIRST KIND, INTEGRAL EQUATION, NEUMANN SERIES

(INTEGRAL EQUATION), VOLTERRA INTEGRAL EQUA-

TION OF THE FIRST KIND, VOLTERRA INTEGRAL

EQUATION OF THE SECOND KIND

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, p. 865, 1985.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-

ling, W. T. "Fredholm Equations of the Second Kind."
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Scientific Computing, 2nd ed. Cambridge, England: Cam-
bridge University Press, pp. 782�/85, 1992.

Fredholm’s Theorem
This entry contributed by VIKTOR BENGTSSON

Fredholm’s theorem states that, if A is an m�n
matrix, then the ORTHOGONAL COMPLEMENT of the
ROW SPACE of A is the NULLSPACE of A; and the
ORTHOGONAL COMPLEMENT of the COLUMN SPACE of A
is the NULLSPACE of A;

(Row A)� Null A

(Col A)�Null A:



See also COLUMN SPACE, NULLSPACE, ORTHOGONAL

DECOMPOSITION, ROW SPACE

Free
When referring to a planar object, "free" means that
the object is regarded as capable of being picked up
out of the plane and flipped over. As a result, MIRROR

IMAGES are equivalent for free objects.

The word "free" is also used in technical senses to
refer to a FREE GROUP, FREE SEMIGROUP, FREE TREE,
FREE VARIABLE, etc.

In ALGEBRAIC TOPOLOGY, a free abstract mathemati-
cal object is generated by n elements in a "free
manner" ("FREELY"), i.e., such that the n elements
satisfy no nontrivial relations among themselves. To
make this more formal, an algebraic GADGET X is
freely generated by a SUBSET G if, for any function
f : G 0 Y where Y is any other algebraic GADGET,
there exists a unique HOMOMORPHISM (which has
different meanings depending on what kind of GAD-

GETS you’re dealing with) g : X 0 Y such that g
restricted to G is f .

If the algebraic GADGETS are VECTOR SPACES, then G
freely generates X IFF G is a BASIS for X . If the
algebraic GADGETS are ABELIAN GROUPS, then G
freely generates X IFF X is a DIRECT SUM of the
INTEGERS, with G consisting of the standard BASIS.

See also FIXED, FREE GROUP, FREE VARIABLE,
FREELY, GADGET, MIRROR IMAGE, RANK

Free Abelian Group
A free Abelian group is a group G with a subset which
generates the group G with the only relation being
ab �ba . That is, it has no TORSION. All such groups
are a DIRECT PRODUCT of the INTEGERS Z ; and have
rank given by the number of copies of Z : For example,
Z �Z � (n;m)f g is a free Abelian group of rank 2. A
minimal subset b1 ; ..., bn that generates a free Abelian
group is called a basis, and gives G as

G �Zb1 �� � ��Zbn :

A free Abelian group is an ABELIAN GROUP, but is not
a FREE GROUP (except when it has rank one, i.e., Z):
Free Abelian groups are the FREE MODULES in the
case when the RING is the ring of integers Z:/

See also ABELIAN GROUP, FREE GROUP, FREE MOD-

ULE, GROUP, TORSION (GROUP)

Free Action
A group action G �X 0 X is called free when there
are no FIXED POINTS. That is, for any point x there is
at least one transformation which does not fix x . The
group is said to act freely.

The basic example of a free group action is the action
of a group on itself by left multiplication L : G �G 0
G : As long as the group has more than the IDENTITY

ELEMENT, there is no element h which satisfies
gh �h for all g . An example of a free action which
is not TRANSITIVE is the action of S1 on S3 

ƒC2 by
eiu � Z1 ;Z2ð Þ� eiuZ1 ; e

i uZ2ð Þ; which defines the HOPF

FIBRATION.

See also EFFECTIVE ACTION, FREE ACTION, GROUP,
ISOTROPY GROUP, MATRIX GROUP, ORBIT (GROUP),
QUOTIENT SPACE (LIE GROUP), REPRESENTATION,
TOPOLOGICAL GROUP, TRANSITIVE GROUP ACTION

Free Group
The generators of a group G are defined to be the
smallest subset of group elements such that all other
elements of G can be obtained from them and their
inverses. A GROUP is a free group if no relation exists
between its generators (other than the relationship
between an element and its inverse required as one of
the defining properties of a group). For example, the
additive group of whole numbers is free with a single
generator, 1.

See also FREE ABELIAN GROUP, FREE SEMIGROUP

Free Semigroup
A SEMIGROUP with a noncommutative product in
which no PRODUCT can ever be expressed more simply
in terms of other ELEMENTS.

See also FREE GROUP, SEMIGROUP

Free Tree
A TREE which is not ROOTED, i.e., a normal TREE with
no node singled out for special treatment (Skiena
1990, p. 107).

See also ROOTED TREE, TREE

References
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rics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, 1990.

Free Variable
An occurrence of a variable in a LOGIC FORMULA

which is not inside the scope of a QUANTIFIER.

See also BOUND, QUANTIFIER, SENTENCE

References
Curry, H. B. Foundations of Mathematical Logic. New York:

Dover, p. 112, 1977.



Freely
A group acts freely if there are no FIXED POINTS. A
point which is fixed by every group element would not
be free to move.

See also EFFECTIVE ACTION, FIXED POINT (GROUP),
FREE ACTION, GROUP, GROUP ACTION, ISOTROPY

GROUP, MATRIX GROUP, ORBIT (GROUP), QUOTIENT

SPACE (LIE GROUP), REPRESENTATION, TOPOLOGICAL

GROUP, TRANSITIVE

Freemish Crate

An IMPOSSIBLE FIGURE box which can be drawn but
not built.

References
Fineman, M. The Nature of Visual Illusion. New York:

Dover, pp. 120 �/22, 1996.
Jablan, S. "Are Impossible Figures Possible?" http://mem-

bers.tripod.com/~modularity/kulpa.htm.
Pappas, T. "The Impossible Tribar." The Joy of Mathe-

matics. San Carlos, CA: Wide World Publ./Tetra, p. 13,
1989.

Freeth’s Nephroid

A STROPHOID of a CIRCLE with the POLE O at the
CENTER of the CIRCLE and the fixed point P on the
CIRCUMFERENCE of the CIRCLE. In a paper published
by the London Mathematical Society in 1879,
T. J. Freeth described it and various other STRO-

PHOIDS (MacTutor Archive). If the line through P
PARALLEL to the Y -AXIS cuts the NEPHROID at A , then
ANGLE AOP is 3 p=7; so this curve can be used to

construct a regular HEPTAGON. The POLAR equation is

r �a 1 �2 sin 1
2 u
� �h i

:

See also STROPHOID

References
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York: Dover, pp. 175 and 177 �/78, 1972.
MacTutor History of Mathematics Archive. "Freeth’s Ne-
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Frégier’s Theorem

Pick any point P on a CONIC SECTION, and draw a
series of RIGHT ANGLES having this point as their
vertices. Then the line segments connecting the rays
of the RIGHT ANGLES where they intersect the conic
section concur in a point p ?; as illustrated above.

See also CONIC SECTION, RIGHT ANGLE

References
Weisstein, E. W. "Plane Geometry." MATHEMATICA NOTE-

BOOK PLANEGEOMETRY.M.
Wells, D. The Penguin Dictionary of Curious and Interesting

Geometry. Middlesex, England: Penguin Books, p. 83,
1991.

Freiman’s Constant
The end of the last gap in the LAGRANGE SPECTRUM,
given by

F �
2221564096 � 283748

ffiffiffiffiffiffiffiffi
462

p

491993569
�4 :5278295661 . . . :

REAL NUMBERS greater than F are members of the
MARKOV SPECTRUM.

See also LAGRANGE SPECTRUM, MARKOV SPECTRUM

References
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York: Springer-Verlag, pp. 188�/89, 1996.



French Curve

French curves are plastic (or wooden) templates
having an edge composed of several different curves.
French curves are used in drafting (or were before
computer-aided design) to draw smooth curves of
almost any desired curvature in mechanical draw-
ings. Several typical French curves are illustrated
above.
While an undergraduate at MIT, Feynman (1997,
p. 23) used a French curve to illustrate the fallacy of
learning without understanding. When he pointed
out to his colleagues in a mechanical drawing class
the "amazing" fact that the TANGENT at each point on
the curve was horizontal, none of his classmates
realized that this was trivially true, since the DERI-

VATIVE (tangent) at an extremum (lowest or highest
point) of any curve is zero (horizontal), as they had
already learned in CALCULUS class.

See also CORNU SPIRAL

References
Feynman, R. P. and Leighton, R. "Who Stole the Door?" In

‘Surely You’re Joking, Mr. Feynman!’: Adventures of a
Curious Character. New York: W. W. Norton, 1997.

French Metro Metric
The French metro metric is an example for disproving
apparently intuitive but false properties of METRIC

SPACES. The metric consists of a distance function on
the plane such that for all a; b �R2 ;

d(a; b) �
a �bj j if a �cb for some c �R

aj j�bj j  otherwise ;

�
where aj j is the normal distance function on the
plane. This metric has the property that for r B aj j;
the OPEN BALL of radius r around a is an open line
segment along vector a , while for r > aj j; the OPEN

BALL is the union of a line segment and an OPEN DISK

around the origin.

Frenet Formulas
Also known as the Serret-Frenet formulas, these
vector differential equations relate inherent proper-
ties of a parametrized curve. In matrix form, they can
be written

Ṫ
Ṅ
Ḃ

2
4
3
5� 0 k 0

�k 0 t

0 �t 0

2
4

3
5 T

N
B

2
4
3
5;

where T is the unit TANGENT VECTOR, N is the unit
NORMAL VECTOR, B is the unit BINORMAL VECTOR, t is
the TORSION, k is the CURVATURE, and ẋ denotes
dx=ds :/

See also CENTRODE, FUNDAMENTAL THEOREM OF

SPACE CURVES, NATURAL EQUATION
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Frequency Curve

A smooth curve which corresponds to the limiting
case of a HISTOGRAM computed for a frequency
distribution of a continuous distribution as the
number of data points becomes very large.

See also FREQUENCY DISTRIBUTION, FREQUENCY

POLYGON, GAUSSIAN FUNCTION

References
Kenney, J. F. and Keeping, E. S. "Frequency Curves." §2.5 in

Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ:
Van Nostrand, pp. 26�/8, 1962.

Frequency Distribution
The tabulation of raw data obtained by dividing it
into CLASSES of some size and computing the number
of data elements (or their fraction out of the total)
falling within each pair of CLASS BOUNDARIES. The
following table shows the frequency distribution of
the data set illustrated by the histogram below.



class

interval

class

mark

absolute

frequency

relative

frequency

cumulative

absolute

frequency

relative

cumulative

frequency

0.00 �/9.99 5 1 0.01 1 0.01

10.00 �/9.99 15 3 0.03 4 0.04

20.00 �/9.99 25 8 0.08 12 0.12

30.00 �/9.99 35 18 0.18 30 0.30

40.00 �/9.99 45 24 0.24 54 0.54

50.00 �/9.99 55 22 0.22 76 0.76

60.00 �/9.99 65 15 0.15 91 0.91

70.00 �/9.99 75 8 0.08 99 0.99

80.00 �/9.99 85 0 0.00 99 0.99

90.00 �/9.99 95 1 0.01 100 1.00

See also ABSOLUTE FREQUENCY, CLASS, CUMULATIVE

FREQUENCY, CLASS BOUNDARIES, HISTOGRAM, RELA-

TIVE FREQUENCY, RELATIVE CUMULATIVE FREQUENCY

References
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NJ: Van Nostrand, pp. 12 �/9, 1962.

Frequency Polygon

A distribution of values of a discrete variate repre-
sented graphically by plotting points (x1 ; f1) ; (x2 ; f2) ; ...,
(xk ; fk); and drawing a set of straight line segments

connecting adjacent points. It is usually preferable to
use a HISTOGRAM for grouped distributions.

See also FREQUENCY CURVE, FREQUENCY DISTRIBU-

TION, HISTOGRAM, OGIVE

References
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Fresnel Integrals

In physics, the Fresnel integrals are most often
defined by

C(u)�iS(u)�g
u

0

eipx2=2dx

�g
u

0

cos 1
2px2
� �

dx�ig
u

0

sin 1
2px2
� �

dx; (1)

so

C(u)�g
u

0

cos 1
2px2
� �

dx (2)

S(u)�g
u

0

sin 1
2px2
� �

dx: (3)



The Fresnel integrals are implemented in Mathema-
tica as FresnelC[z ] and FresnelC[z ]
They satisfy

C(9�) ��1
2 (4)

S(9�) �1
2 : (5)

Related functions are defined as

C1(z) �

ffiffiffi
2

p

s
g

x

0

cos t2dt (6)

S1(z) �

ffiffiffi
2

p

s
g

x

0

sin t2dt (7)

C2(z) �
1ffiffiffiffiffiffi
2p

p g
cos tffiffi

t
p dt (8)

S2(z) �
1ffiffiffiffiffiffi
2p

p g
sin tffiffi

t
p dt: (9)

An asymptotic expansion for x �1 gives

C(u) :
1

2 
�

1

pu
sin 1

2 pu2
� �

(10)

S(u) :
1

2 
�

1

pu
cos 1

2 pu2
� �

: (11)

Therefore, as u 0 �; C(u) �1=2 and S(u) �1=2 : The
Fresnel integrals are sometimes alternatively defined
as

x(t) �g
t

0

cos v2
� �

dv (12)

y(t) �g
t

0

sin v2
� �

dv: (13)

Letting x �v2 so dx �2v dv�2
ffiffiffi
x

p
dv ; and dv �

x�1 =2dx=2

x(t) �1
2g

ffiffi
t

p

0

x�1=2 cos x dx  (14)

y(t) �1
2g

ffiffi
t

p

0

x�1=2 sin x dx: (15)

In this form, they have a particularly simple expan-
sion in terms of SPHERICAL BESSEL FUNCTIONS OF THE

FIRST KIND. Using

j0(x) �
sin x

x 
(16)

n1(x) ��j �1(x) ��
cos x

x
; (17)

where n1(x) is a SPHERICAL BESSEL FUNCTION OF THE

SECOND KIND

x t2
� �

��1
2g

t

0

n1(x)x1=2dx

�1
2g

t

0

j�1(x)x1=2dx�x1=2
X�
n�0

j2n(x) (18)

y t2
� �

�1
2g

t

0

j0(x)x1=2dx

�x1=2
X�
n�0

j2n�1(x): (19)

See also CORNU SPIRAL
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Fresnel’s Elasticity Surface

A QUARTIC SURFACE given by

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x2�b2y2�c2z2

p
;

where

r2�x?2�y?2�z?2;

also known as Fresnel’s wave surface. It was intro-
duced by Fresnel in his studies of crystal optics. The
image above shows one particular case of the Fresnel
surface (JavaView).



See also QUARTIC SURFACE
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Fresnel’s Wave Surface
FRESNEL’S ELASTICITY SURFACE

FresnelC
FRESNEL INTEGRALS

FresnelS
FRESNEL INTEGRALS

Frey Curve
Let ap �bp �cp be a solution to FERMAT’S LAST

THEOREM. Then the corresponding Frey curve is

y2 �x x�apð Þ x �bpð Þ: (1)

Frey showed that such curves cannot be MODULAR, so
if the TANIYAMA-SHIMURA CONJECTURE were true,
Frey curves couldn’t exist and FERMAT’S LAST THEO-

REM would follow with b EVEN and a ��1 (mod4):
Frey curves are SEMISTABLE. Invariants include the
DISCRIMINANT

ap �0ð Þ2 �bp �0ð Þ ap �(�b)p½ 
2�a2pb2pc2p : (2)

The MINIMAL DISCRIMINANT is

D�2 �8a2pb2pc2p ; (3)

the CONDUCTOR is

N �
Y
l½abc

l; (4)

and the J -INVARIANT is

j �
28 a2p � b2p � apbpð Þ3

a2pb2pc2p 
�

28 c2p � bpcpð Þ3

(abc)2p : (5)

See also ELLIPTIC CURVE, FERMAT’S LAST THEOREM,
TANIYAMA-SHIMURA CONJECTURE
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Frey Elliptic Curve
FREY CURVE

Friend
A friend of a number n is another number m such
that (m , n ) is a FRIENDLY PAIR.

See also FRIENDLY PAIR, SOLITARY NUMBER
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Friendly Giant Group
MONSTER GROUP

Friendly Number
AMICABLE PAIR, FRIENDLY NUMBER

Friendly Pair
Define

X
(n)�

s(n)

n
;

where s(n) is the DIVISOR FUNCTION. Then a PAIR of
distinct numbers (k, m ) is a friendly pair (and k is
said to be a FRIEND of m ) ifX

(k)�
X

(m):

For example, (4320, 4680) are a friendly pair, since
s(4320)�15120; s(4680)�16380; and

X
(4320)�

15120

4320
�

7

2

X
(4680)�

16380

4680
�

7

2
:

The first few friendly pairs, ordered by smallest
maximum element are (6, 28), (30, 140), (80, 200),
(40, 224), (12, 234), (84, 270), (66, 308), ... (Sloane’s
A050972 and A050973).

Numbers which do not have FRIENDS are called
SOLITARY NUMBERS. A sufficient (but not necessary)
condition for n to be a SOLITARY NUMBER is that
(s(n);n)�1; where (a, b ) is the GREATEST COMMON

DIVISOR of a and b .



Hoffman (1998, p. 45) uses the term "friendly num-
bers" to describe AMICABLE PAIRS.

See also ALIQUOT SEQUENCE, AMICABLE PAIR,
FRIEND, SOLITARY NUMBER
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Frieze Pattern
In general, a frieze consists of repeated copies of a
single motif.

b
a d

c

Conway and Guy (1996) define a frieze pattern as an
arrangement of numbers at the intersection of two
sets of perpendicular diagonals such that a �d �
b �c �1 (for an additive frieze pattern) or ad �bc �1
(for a multiplicative frieze pattern) in each diamond.

See also TESSELLATION, TILING
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Frivolous Theorem of Arithmetic
Almost all natural numbers are very, very, very large.

See also LARGE NUMBER
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Frobenius Map
A map x�xp where p is a PRIME.

Frobenius Method
If x0 is an ordinary point of the ORDINARY DIFFER-

ENTIAL EQUATION, expand y in a TAYLOR SERIES about
x0; letting

y�
X�
n�0

anxn: (1)

Plug y back into the ODE and group the COEFFI-

CIENTS by POWER. Now, obtain a RECURRENCE RELA-

TION for the nth term, and write the TAYLOR SERIES in
terms of the an/s. Expansions for the first few
derivatives are

y�
X�
n�0

anxn (2)

y?�
X�
n�1

nanxn�1�
X�
n�0

(n�1)an�1xn (3)

yƒ�
X�
n�2

n(n�1)anxn�2�
X�
n�0

(n�2)(n�1)an�2xn: (4)

If x0 is a regular singular point of the ORDINARY

DIFFERENTIAL EQUATION,

P(x)yƒ�Q(x)y?�R(x)y�0; (5)

solutions may be found by the Frobenius method or
by expansion in a LAURENT SERIES. In the Frobenius
method, assume a solution OF THE FORM

y�xk
X�
n�0

anxn; (6)

so that

y�xk
X�
n�0

anxn�
X�
n�0

anxn�k (7)

y?�
X�
n�0

an(n�k)xk�n�1 (8)

yƒ�
X�
n�0

an(n�k)(n�k�1)xk�n�2: (9)

Now, plug y back into the ODE and group the
COEFFICIENTS by POWER to obtain a recursion FOR-

MULA for the an/th term, and then write the TAYLOR

SERIES in terms of the an/s. Equating the a0 term to 0
will produce the so-called INDICIAL EQUATION, which
will give the allowed values of k in the TAYLOR

SERIES.

FUCHS’S THEOREM guarantees that at least one POWER

SERIES solution will be obtained when applying the
Frobenius method if the expansion point is an
ordinary, or regular, SINGULAR POINT. For a regular
SINGULAR POINT, a LAURENT SERIES expansion can
also be used. Expand y in a LAURENT SERIES, letting

y ¼ c�nx�n�� � ��c0�c1x�� � ��cnxn�� � � ð10Þ

Plug y back into the ODE and group the COEFFI-

CIENTS by POWER. Now, obtain a recurrence FORMULA

for the cn/th term, and write the TAYLOR EXPANSION in
terms of the cn/s.



See also FUCHS’S THEOREM, ORDINARY DIFFERENTIAL

EQUATION
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Frobenius Pseudoprime
Let f (x) be a MONIC POLYNOMIAL of degree d with
discriminant D: Then an ODD INTEGER n with
(n; f (0)D) �1 is called a Frobenius pseudoprime with
respect to f (x) if it passes a certain algorithm given by
Grantham (1996). A Frobenius pseudoprime with
respect to a POLYNOMIAL f (x) �Z[x] is then a compo-
site Frobenius probably prime with respect to the
POLYNOMIAL x �a :/

While 323 is the first LUCAS PSEUDOPRIME with
respect to the Fibonacci polynomial x2 �x �1; the
first Frobenius pseudoprime is 5777. If f (x) �x3 �
rx2 �sx �1; then any Frobenius pseudoprime n with
respect to f (x) is also a PERRIN PSEUDOPRIME. Gran-
tham (1997) gives a test based on Frobenius pseudo-
primes which is passed by COMPOSITE NUMBERS with
probability at most 1/7710.

See also PERRIN PSEUDOPRIME, PSEUDOPRIME,
STRONG FROBENIUS PSEUDOPRIME
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Frobenius Theorem
Let A �aij be a MATRIX with POSITIVE COEFFICIENTS so
that aij > 0 for all i ; j �1; 2, ..., n , then A has a
POSITIVE EIGENVALUE l0 ; and all its EIGENVALUES lie
on the CLOSED DISK

½z ½5 l0 :

See also CLOSED DISK, OSTROWSKI’S THEOREM
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Frobenius Triangle Identities
Let CL;M be a PADÉ APPROXIMANT. Then

C(L �1)=MS(L �1)=M �CL=(M �1)SL=(M �1) �CL =MSL=M (1)

CL=(M �1)S(L�1)=M �C(L�1)=MSL =(M �1) �C(L�1)=(M �1)XSL =M

(2)

C(L�1)=MSL =M �CL =MS(L �1)=M �C(L�1)=(M �1)xSL =(M �1) (3)

CL=(M �1)SL =M �CL =MSL=(M �1) �C(L�1)=(M �1)xS(L�1)=M ;

(4)

where

SL =M �G(x)PL(x) �H(x)QM(x) (5)

and C is the C -DETERMINANT.

See also C -DETERMINANT, PADÉ APPROXIMANT
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Frobenius-König Theorem
The PERMANENT of an n �n INTEGER MATRIX with all
entries either 0 or 1 is 0 IFF the MATRIX contains an
r�s submatrix of 0s with r�s�n�1: This result
follows from the KÖNIG-EGEVÁRY THEOREM.

See also INTEGER MATRIX, KÖNIG-EGEVÁRY THEOREM,
PERMANENT

Frobenius-Perron Equation

rn�1(x)�grn(y)d x�M(y)½ 
dy;

where d(x) is a DELTA FUNCTION, M(x) is a map, and r

is the NATURAL INVARIANT.

See also NATURAL INVARIANT, PERRON-FROBENIUS

OPERATOR
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Frontier
BOUNDARY

Frucht Graph

The smallest CUBIC GRAPH whose automorphism



group consists only of the IDENTITY ELEMENT (Skiena
1990, p. 185).

See also CUBIC GRAPH, GRAPH AUTOMORPHISM
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Frugal Number
WASTEFUL NUMBER

Frullani’s Integral
If S? is continuous and the integral converges,

g
�

0

f (ax) � f (bx)

x
dx � f (0) �f ( �)½ 
 ln

b

a

 !
:
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Frustum
The portion of a solid which lies between two
PARALLEL PLANES cutting the solid. Degenerate cases
are obtained for finite solids by cutting with a single
PLANE only.

See also CONICAL FRUSTUM, PYRAMIDAL FRUSTUM,
SPHERICAL SEGMENT

Fubini Principle
If the average number of envelopes per pigeonhole is
a , then some pigeonhole will have at least a envel-
opes. Similarly, there must be a pigeonhole with at
most a envelopes.

See also PIGEONHOLE PRINCIPLE

Fubini Theorem
This entry contributed by RONALD M. AARTS

A theorem that establishes a connection between a
MULTIPLE INTEGRAL and a REPEATED one. Under
certain assumptions the following equality holds:

ggRm�n

f (x; y)d(x ; y) �gRn

dygRm

f (x; y)dx:

See also MULTIPLE INTEGRAL, REPEATED INTEGRAL
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Fuchs’s Theorem
At least one POWER SERIES solution will be obtained
when applying the FROBENIUS METHOD if the expan-
sion point is an ordinary, or regular, SINGULAR POINT.
The number of ROOTS is given by the ROOTS of the
INDICIAL EQUATION.
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Fuchsian System
A system of linear differential equations

dy

dz 
�A(z)y;

with A(z) an ANALYTIC n �n MATRIX, for which the
MATRIX A(z) is ANALYTIC in C_ fa1 ; . . . ;aN g and has a
POLE of order 1 at aj for j �1, ..., N . A system is
Fuchsian IFF there exist n �n matrices B1 ; ..., BN

with entries in Z such that

A(z) �
XN

j�1

Bj

z � aj

XN

j�1

Bj �v :

Fuglede’s Conjecture
Fuglede (1974) conjectured that a domain V admits a
SPECTRUM IFF it is possible to tile Rd by a family of
translates of V: Fuglede proved the conjecture in the
special case that the tiling set or the spectrum are
lattice subsets of Rd and Iosevich et al. (1999) proved
that no smooth symmetric convex body V with at least
one point of nonvanishing GAUSSIAN CURVATURE can
admit an orthogonal basis of exponentials. However,
the general conjecture is still far from being proved
(Iosevich et al. 1999).

See also SPECTRUM (OPERATOR)
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Fuhrmann Center
The center of the FUHRMANN CIRCLE, given by the
MIDPOINT of the line joining the NAGEL POINT and
ORTHOCENTER (which forms a DIAMETER of the FUHR-

MANN CIRCLE).

See also FUHRMANN CIRCLE, NAGEL POINT, ORTHO-

CENTER

Fuhrmann Circle

The CIRCUMCIRCLE of the FUHRMANN TRIANGLE. The
ORTHOCENTER H , NAGEL POINT Na , and at least six
other noteworthy points lie on the Fuhrmann circle
(Honsberger 1995, p. 49). In particular, HNa is a
DIAMETER of the Fuhrmann circle. It also passes
through the points T , U , and V which are a distance
2r along the ALTITUDES from the vertices, where r is
the INRADIUS of DABC (Honsberger 1995, p. 52).

See also ALTITUDE, FUHRMANN TRIANGLE, INRADIUS,
MID-ARC POINTS, NAGEL POINT, ORTHOCENTER
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Fuhrmann Triangle

The Fuhrmann triangle of a TRIANGLE DABC is the
TRIANGLE DFCFBFA formed by reflecting the MID-ARC

POINTS MAB ; MAC ; MBC about the lines AB , AC , and
BC . The CIRCUMCIRCLE of the Fuhrmann triangle is
called the FUHRMANN CIRCLE, and the lines FAMBC ;
FBMAC ; and FCMAB CONCUR at the CIRCUMCENTER O .

See also FUHRMANN CENTER, FUHRMANN CIRCLE,
MID-ARC POINTS
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Fuhrmann’s Theorem

Let the opposite sides of a convex CYCLIC HEXAGON be
a , a?; b , b?; c , and c?; and let the DIAGONALS e , f , and g
be so chosen that a , a?; and e have no common VERTEX

(and likewise for b , b?; and f ), then

efg�aa?e�bb?f �cc?g�abc�a?b?c?:



This is an extension of PTOLEMY’S THEOREM to the
HEXAGON.

See also CYCLIC HEXAGON, HEXAGON, PTOLEMY’S

THEOREM
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Full Angle

An ANGLE equal to 360 8.

See also ACUTE ANGLE, ANGLE, OBTUSE ANGLE,
REFLEX ANGLE, RIGHT ANGLE, STRAIGHT ANGLE

Full Reptend Prime
A PRIME p for which 1=p has a maximal period
DECIMAL EXPANSION of p �1 DIGITS, sometimes called
a long prime (Conway and Guy 1996, pp. 157 �/63 and
166 �/71). A prime is full reptend IFF 10 is a PRIMITIVE

ROOT modulo p . No general method is known for
finding full reptend primes. The first few numbers
with maximal decimal expansions are 7, 17, 19, 23,
29, 47, 59, 61, 97, ... (Sloane’s A001913).

See also DECIMAL EXPANSION, PRIMITIVE ROOT
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Full Width at Half Maximum
The full width at half maximum (FWHM) is a
parameter commonly used to describe the width of a
"bump" on a curve or function. It is given by the
distance between points on the curve at which the
function reaches half its maximum value. The follow-
ing table gives the analytic and numerical full widths
for several common curves.

Function Formula FWHM

Bartlett /1 �
½x½

a
/ a

Blackman /0 :810957a/

Connes / 1 �
x2

a2

� �
/ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffiffiffiffi
2a

pp
/

Cosine /cos
px

2a

� �
/ /

4

3 
a/

Gaussian /e�x2=(2s2)
/ /2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
s/

Hamming /1 :05543a/

Hanning a

Lorentzian /

1

2 
G

x2 �
1

2 
G

� �2/ /G/

Welch /1 �
x2

a2
/ /

ffiffiffi
2

p
a/

See also APODIZATION FUNCTION, MAXIMUM

Fuller Dome
GEODESIC DOME

Function
A relation which uniquely associates members of one
SET with members of another SET. More formally, a
function from A to B is an object f such that every
a �A is uniquely associated with an object f (a) �B: A
function is therefore a MANY-TO-ONE (or sometimes
ONE-TO-ONE) relation. Examples of functions include
sin x (MANY-TO-ONE), x (ONE-TO-ONE), x2 (two-to-one
except for the single point x�0), etc. The term "MAP"
is synonymous with function.

Several notations are commonly used to represent
functions. The most rigorous notation is f : x 0 f (x);
which specifies that f is function acting upon a single
number x (i.e., f is a univariate, or one-variable,
function) and returning a value f (x): To be even more
precise, a notation like " f : R 0 R; where f (x)�x2

/" is
sometimes used to explicitly specify the domain and
range of the function. The slightly different "maps to"



notation f : x �f (x) is sometimes also used when the
function is explicitly considered as a "map."

Generally speaking, the symbol f refers to the func-
tion itself, while f (x) refers to the value taken by the
function when evaluated at a point x . However,
especially in more introductory texts, the notation
f (x) is commonly used to refer to the function f itself
(as opposed to the value of the function evaluated at
x ). In this context, the argument x is considered to be
a DUMMY VARIABLE whose presence indicates that the
function f takes a single argument (as opposed to
f (x; y); etc.). While this notation is deprecated by
professional mathematicians, it is the more familiar
one for most nonprofessionals. Therefore, unless
indicated otherwise by context, the notation f (x) is
taken in this work to be a shorthand for the more
rigorous f : x 0 f (x):/

Poincaré remarked with regard to the proliferation of
pathological functions, "Formerly, when one invented
a new function, it was to further some practical
purpose; today one invents them in order to make
incorrect the reasoning of our fathers, and nothing
more will ever be accomplished by these inventions."
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Function Element
A function element is an ORDERED PAIR (f, U ) where U
is a disk D Z0 ; rð Þ and f is an ANALYTIC FUNCTION

defined on U . If W is an OPEN SET, then a function
element in W is a pair (f, U ) such that U ⁄W :/
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Function Field
A finite extension K �Z(z)(w) of the FIELD C(z) of
RATIONAL FUNCTIONS in the indeterminate z , i.e., w is
a ROOT of a POLYNOMIAL a0 �a1 a �a2 a

2 �:::�an a
n ;

where ai �C(z): Function fields are sometimes called
algebraic function fields.

See also LOCAL FIELD, NUMBER FIELD, RIEMANN

SURFACE

Function of the First Kind
FIRST KIND

Function of the Second Kind
SECOND KIND

Function of the Third Kind
THIRD KIND

Function Space
/f (I) is the collection of all real-valued continuous
functions defined on some interval I . f (n)(I) is the
collection of all functions � f (I) with continuous nth
DERIVATIVES. A function space is a TOPOLOGICAL

VECTOR SPACE whose "points" are functions.

See also FUNCTIONAL, FUNCTIONAL ANALYSIS, OPERA-

TOR

Functional
A functional is a real-valued function on a VECTOR

SPACE V , usually of functions. For example, the
ENERGY functional on the UNIT DISK D assigns a
number to any differentiable function f : D 0 R ;

E(f ) : gD ½½9f ½½2dA:

For the functional to be continuous, it is necessary for
the VECTOR SPACE V of functions to have an appro-
priate TOPOLOGY. The widespread use of functionals
in applications, such as the CALCULUS OF VARIATIONS,
gave rise to FUNCTIONAL ANALYSIS.

The reason the term "functional" is used is because V
can be a space of functions, e.g.,

V �ff : [0; 1] 0 R such that f is continuous g

in which case T(f ) �f (0) is a LINEAR FUNCTIONAL on
V .

See also CALCULUS OF VARIATIONS, COERCIVE FUNC-

TIONAL, CURRENT, ELLIPTIC FUNCTIONAL, EULER-

LAGRANGE DIFFERENTIAL EQUATION, FUNCTIONAL

ANALYSIS, FUNCTIONAL EQUATION, GENERALIZED

FUNCTION, LAPLACIAN, LAX-MILGRAM THEOREM, LIN-

EAR FUNCTIONAL, OPERATOR, RIESZ REPRESENTATION

THEOREM, VECTOR SPACE

Functional Analysis
A branch of mathematics concerned with infinite
dimensional spaces (mainly FUNCTION SPACES) and
mappings between them. The SPACES may be of
different, and possibly INFINITE, DIMENSIONS. These



mappings are called OPERATORS or, if the range is on
the REAL line or in the COMPLEX PLANE, FUNCTIONALS.

See also FUNCTIONAL, FUNCTIONAL EQUATION, GEN-

ERALIZED FUNCTION, OPERATOR
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Functional Calculus
An early name for CALCULUS OF VARIATIONS. The
term is also sometimes used in place of PREDICATE

CALCULUS.

Functional Congruence
A CONGRUENCE OF THE FORM

f (x) �g(x)( mod n)

where f (x) and g(x) are both INTEGER POLYNOMIALS.
Functional congruences are sometimes also called
"identical congruences" (Nagell 1951, p. 74).

See also CONGRUENCE
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Functional Derivative
A generalization of the concept of the DERIVATIVE to
GENERALIZED FUNCTIONS.

Functional Distribution
GENERALIZED FUNCTION

Functional Equation
An equation OF THE FORM f (x; y; :::) �0; where f
contains a finite number of independent variables,
known functions, and unknown functions which are

to be solved for. Many properties of functions can be
determined by studying the types of functional
equations they satisfy. For example, the GAMMA

FUNCTION G(z) satisfies the functional equations

G(1 �z) �z G(z)

G(1 �z) ��zG(�z) :

See also ABEL’S DUPLICATION FORMULA, ABEL’S

FUNCTIONAL EQUATION, FUNCTIONAL ANALYSIS
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Functional Graph
A functional graph is a DIGRAPH in which each vertex
has outdegree one, and can therefore be specified by a
function mapping f1 ; :::; ng onto itself. Functional
graphs are implemented as FunctionalGraph[f , n ]
in the Mathematica add-on package Discrete-
Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘).
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Functor
A function between CATEGORIES which maps objects
to objects and MORPHISMS to MORPHISMS. Functors
exist in both covariant and contravariant types.

See also CATEGORY, EILENBERG-STEENROD AXIOMS,
MORPHISM, SCHUR FUNCTOR

Fundamental Class
The canonical generator of the nonvanishing HOMOL-

OGY GROUP on a TOPOLOGICAL MANIFOLD.

See also CHERN NUMBER, PONTRYAGIN NUMBER,
STIEFEL-WHITNEY NUMBER

Fundamental Continuity Theorem
Given two UNIVARIATE POLYNOMIALS of the same
order whose first p COEFFICIENTS (but not the first
p�1) are 0 where the COEFFICIENTS of the second
approach the corresponding COEFFICIENTS of the first
as limits, the second POLYNOMIAL will have exactly p



roots that increase indefinitely. Furthermore, exactly
k ROOTS of the second will approach each ROOT of
multiplicity k of the first as a limit.
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Fundamental Discriminant
/�D is a fundamental discriminant if D is a POSITIVE

INTEGER which is not DIVISIBLE by any square of an
ODD PRIME and which satisfies D�3 (mod 4) or
D�4; 8 (mod 16):/

See also DISCRIMINANT
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Fundamental Forms
There are three types of so-called fundamental forms.
The most important are the first and second (since
the third can be expressed in terms of these). The
fundamental forms are extremely important and
useful in determining the metric properties of a
surface, such as LINE ELEMENT, AREA ELEMENT,
NORMAL CURVATURE, GAUSSIAN CURVATURE, and
MEAN CURVATURE. Let M be a REGULAR SURFACE

with vP;wP points in the TANGENT SPACE MP of M .
Then the FIRST FUNDAMENTAL FORM is the INNER

PRODUCT of tangent vectors,

I vP;wPð Þ�vP �wP: (1)

For M �R3; the SECOND FUNDAMENTAL FORM is the
symmetric bilinear form on the TANGENT SPACE MP;

II vp;wp

� �
�S vp

� �
�wp; (2)

where S is the SHAPE OPERATOR. The THIRD FUNDA-

MENTAL FORM is given by

III vp;wp

� �
�S vp

� �
�S wp

� �
: (3)

The FIRST and SECOND FUNDAMENTAL FORMS satisfy

I aXu�bXv;aXu�bXvð Þ�Ea2�2Fab�Gb2 (4)

II aXu�bXv;aXu�bXvð Þ�ea2�2fab�gb2 (5)

where x : U 0 R3 is a REGULAR PATCH and xu and xv

are the partial derivatives of x with respect to
parameters u and v , respectively. Their ratio is
simply the NORMAL CURVATURE

k vp

� �
�

II vp

� �
I vp

� � (6)

for any nonzero TANGENT VECTOR. The third funda-
mental form is given in terms of the first and second
forms by

III�2HII�KI�0; (7)

where H is the MEAN CURVATURE and K is the
GAUSSIAN CURVATURE.

The first fundamental form (or LINE ELEMENT) is
given explicitly by the RIEMANNIAN METRIC

ds2�Edu2�2Fdudv�Gdv2: (8)

It determines the ARC LENGTH of a curve on a surface.
The coefficients are given by

E�xuu�
@x

@u

,,,,,
,,,,,
2

(9)

F�xuv�
@x

@u
�
@x

@v
(10)

G�xvv�
@x

@v

,,,,,
,,,,,
2

: (11)

The coefficients are also denoted guu�E; guv�F; and
gvv�G: In CURVILINEAR COORDINATES (where F�0),
the quantities

hu�
ffiffiffiffiffiffiffi
guu

p
�

ffiffiffiffi
E

p
(12)

hv�
ffiffiffiffiffiffiffi
gvv

p
�

ffiffiffiffi
G

p
(13)

are called SCALE FACTORS.

The second fundamental form is given explicitly by

e du2�2f dudv�g dv2 (14)

where

e�
X

i

Xi

@2xi

@u2
(15)

f �
X

i

Xi

@2xi

@u@v
(16)

g�
X

i

Xi

@2xi

@v2
; (17)

and Xi are the DIRECTION COSINES of the surface
normal. The second fundamental form can also be
written

e��Nu �xu�N�xuu (18)

f ��Nv �xu�N�xuv�Nvu �xvu

�Nu �xv (19)



g ��Nv �xv �N �xvv ; (20)

where N is the NORMAL VECTOR, or

e �
det(xuuxuxv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG � F2
p (21)

f �
det(xuvxuxv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG � F2
p (22)

g �
det(xvvxuxv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG � F2
p : (23)

See also ARC LENGTH, AREA ELEMENT, FIRST FUNDA-

MENTAL FORM, GAUSSIAN CURVATURE, GEODESIC,
KÄ HLER MANIFOLD, LINE OF CURVATURE, LINE ELE-

MENT, MEAN CURVATURE, NORMAL CURVATURE, RIE-

MANNIAN METRIC, SCALE FACTOR, SECOND

FUNDAMENTAL FORM, SURFACE AREA, THIRD FUNDA-

MENTAL FORM, WEINGARTEN EQUATIONS
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Fundamental Group
The fundamental group of an ARCWISE-CONNECTED

set X is the GROUP formed by the sets of EQUIVALENCE

CLASSES of the set of all LOOPS, i.e., paths with initial
and final points at a given BASEPOINT p , under the
EQUIVALENCE RELATION of HOMOTOPY. The IDENTITY

ELEMENT of this group is the set of all paths HOMO-

TOPIC to the degenerate path consisting of the point p .
The fundamental groups of HOMEOMORPHIC spaces
are ISOMORPHIC. In fact, the fundamental group only
depends on the HOMOTOPY TYPE of X . The funda-
mental group of a TOPOLOGICAL SPACE was introduced
by Poincaré (Munkres 1993, p. 1).

The following is a table of the fundamental group for
some common spaces, where p1 denotes the funda-
mental group, H1 is the first integral HOMOLOGY, �
denotes the GROUP DIRECT PRODUCT, Z denotes the
RING of integers, and Zn is the CYCLIC GROUP of order
n .

space symbol /p1/ /H1/

CIRCLE /S1
/ /Z/ /Z/

figure eight /Z
‘

Z/ /Z�Z/

SPHERE /S2
/ 0 0

TORUS /T/ /Z�Z/ /Z�Z/

TORUS of genus g /ag/ /Fg/ /Z2g
/

REAL PROJECTIVE

PLANE

/RP2
/ /Z2/ /Z2/

KLEIN BOTTLE /

Z
‘

Z

aba�1bð Þ/ /Z�Z2/

COMPLEX PROJECTIVE

SPACE

/CPn
/ 0 0

n -torus /Tn
/ /Zn

/ /Zn
/

The group product a + b of LOOP a and LOOP b is given
by the path of a followed by the path of b . The
identity element is represented by the constant path,
and the inverse of a is given by traversing a in the
opposite direction. The fundamental group is inde-
pendent of the choice of basepoint because any loop
through p is HOMOTOPIC to a loop through any other
point q . So it makes sense to say the "fundamental
group of X ."

The diagram above shows that a loop followed by the
opposite loop is homotopic to the constant loop, i.e.,
the identity. That is, it starts by traversing the path
a , and then turns around and goes the other way,
a�1: The composition is deformed, or homotoped, to
the constant path, along the original path a .

A space with a trivial fundamental group (i.e., every
loop is homotopic to the constant loop), is called
SIMPLY CONNECTED. For instance, any CONTRACTIBLE

space, like EUCLIDEAN SPACE, is simply connected.
The SPHERE is SIMPLY CONNECTED, but not CONTRAC-

TIBLE. By definition, the UNIVERSAL COVER X̃ is
simply connected, and loops in X lift to paths in X̃:
The lifted paths in the universal cover define the
DECK TRANSFORMATIONS, which form a GROUP iso-
morphic to the fundamental group.

The underlying set of the fundamental group of X is
the set of based HOMOTOPY CLASSES from the circle to
X , denoted S1;X

� 
: For general spaces X and Y , there

is no natural group structure on [X, Y ], but when
there is, X is called a H -SPACE. Besides the circle,
every SPHERE Sn is a H -SPACE, defining the HOMO-

TOPY GROUPS. In general, the fundamental group is
NON-ABELIAN. However, the higher HOMOTOPY

GROUPS are Abelian. In some special cases, the
fundamental group is Abelian. For example, the



animation above shows that a + b �b + a in the
TORUS. The red path goes before the green path.
The animation is a homotopy between the loop that
goes around the inside first and the loop that goes
around the outside first.

Since the first integral HOMOLOGY H 1(X ;Z) of X is
also represented by loops, which are the only 1-
dimensional objects with no boundary, there is a
GROUP HOMOMORPHISM

a : p1(X) 0 H1(X ;Z) ;

which is SURJECTIVE. In fact, the KERNEL of a is the
COMMUTATOR SUBGROUP and a is called ABELIANIZA-

TION.

The fundamental group of X can be computed using
VAN KAMPEN’S THEOREM, when X can be written as a
union X �@i Xi of spaces whose fundamental groups
are known.

When f : X 0 Y is a continuous map, then the
fundamental group pushes forward. That is, there is
a map f+ : p1(X) 0 p1(Y) defined by taking the image
of loops from X . The pushforward is natural, i.e.,
(f (g)+�f+(g + whenever the composition of two
maps is defined.

See also ALGEBRAIC FUNDAMENTAL GROUP, CAYLEY

GRAPH, CONNECTED SET, DECK TRANSFORMATION,
HOMOLOGY, HOMOTOPY GROUP, GROUP, MILNOR’S

THEOREM, UNIVERSAL COVER, VAN KAMPEN’S THEO-

REM
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Fundamental Homology Class
FUNDAMENTAL CLASS

Fundamental Lemma of Calculus of
Variations
If

g
b

a

M(x)h(x) dx �0

/�h(x) with CONTINUOUS second PARTIAL DERIVATIVES,
then

M(x) �0

on the OPEN INTERVAL (a, b ).

Fundamental Polytope
PRIMITIVE POLYTOPE

Fundamental Region
Let G be a SUBGROUP of the MODULAR GROUP GAMMA.
Then an open subset RG of the UPPER HALF-PLANE H
is called a fundamental region of G if

1. No two distinct points of RG are equivalent
under G ,
2. If t � H ; then there is a point t? in the closure of
RG such that t ? is equivalent to t under G .

A fundamental region RG of the MODULAR GROUP

GAMMA is given by t � H such that tj j > 1 and ½t �t̄ ½B
1; illustrated above, where t is the COMPLEX CON-

JUGATE of t (Apostol 1997, p. 31). Borwein and
Borwein (1987, p. 113) define the boundaries of the
region slightly differently by including the boundary
points with R[ t] 50 :/

See also MODULAR GROUP GAMMA, MODULAR GROUP

LAMBDA, UPPER HALF-PLANE, VALENCE
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Fundamental System
A set of ALGEBRAIC INVARIANTS for a QUANTIC such
that any invariant of the QUANTIC is expressible as a
POLYNOMIAL in members of the set. In 1868, Gordan
proved the existence of finite fundamental systems of
algebraic invariants and covariants for any binary
QUANTIC. In 1890, Hilbert (1890) proved the HILBERT

BASIS THEOREM, which is a finiteness theorem for the
related concept of SYZYGIES.

See also HILBERT BASIS THEOREM, SYZYGY
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Fundamental Theorem of Algebra
Every POLYNOMIAL EQUATION having COMPLEX COEF-

FICIENTS and degree ]1 has at least one COMPLEX

ROOT. This theorem was first proven by Gauss. It is
equivalent to the statement that a POLYNOMIAL P(z) of
degree n has n values zi (some of them possibly
degenerate) for which P zið Þ�0 : Such values are
called POLYNOMIAL ROOTS. An example of a POLYNO-

MIAL with a single ROOT of multiplicity > 1 is z2 �
2z �1 �(z �1)(z �1); which has z �1 as a ROOT of
multiplicity 2.

For RINGS more general than the complex polyno-
mials C[x]; there does not necessarily exist a unique
factorization. However, a PRINCIPAL RING is a struc-
ture for which the proof of the unique factorization
property is sufficiently easy while being quite general
and common.

See also DEGENERATE, FRIVOLOUS THEOREM OF

ARITHMETIC, POLYNOMIAL, POLYNOMIAL FACTORIZA-

TION, POLYNOMIAL ROOTS, PRINCIPAL RING
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Fundamental Theorem of Arithmetic
Any POSITIVE INTEGER can be represented in exactly
one way as a PRODUCT of PRIMES. The theorem is also
called the UNIQUE FACTORIZATION THEOREM. The
fundamental theorem of arithmetic is a COROLLARY

of the first of EUCLID’S THEOREMS (Hardy and Wright
1979).

See also ABNORMAL NUMBER, EUCLID’S THEOREMS,
INTEGER, PRIME NUMBER
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Fundamental Theorem of Curves
The CURVATURE and TORSION functions along a SPACE

CURVE determine it up to an orientation-preserving
ISOMETRY.

Fundamental Theorem of Directly Similar
Figures
Let F0 and F1 denote two DIRECTLY SIMILAR figures in
the plane, where P1 � F1 corresponds to P1 � F0 under
the given similarity. Let r � (0; 1); and define Fr �
(1 �r)P0 �rP1 : P0 � F0 ; P1 � F1f g: Then /Fr/ is also

directly similar to F0 :/

See also DIRECTLY SIMILAR, FINSLER-HADWIGER THE-

OREM
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Fundamental Theorem of Gaussian
Quadrature
The ABSCISSAS of the N -point GAUSSIAN QUADRATURE

FORMULA are precisely the ROOTS of the ORTHOGONAL

POLYNOMIAL for the same INTERVAL and WEIGHTING

FUNCTION.

See also GAUSSIAN QUADRATURE

Fundamental Theorem of Genera
Consider h�(d) proper equivalence classes of forms
with discriminant d equal to the field discriminant,
then they can be subdivided equally into 2r�1 genera
of h�(d) =2r �1 forms which form a SUBGROUP of the
proper equivalence class group under composition
(Cohn 1980, p. 224), where r is the number of distinct
prime divisors of d . This theorem was proved by
Gauss in 1801.

See also GENUS (FORM), GENUS THEOREM
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Fundamental Theorem of Number Theory
FUNDAMENTAL THEOREM OF ARITHMETIC



Fundamental Theorem of Plane Curves
Two unit-speed plane curves which have the same
CURVATURE differ only by a EUCLIDEAN MOTION.

See also FUNDAMENTAL THEOREM OF SPACE CURVES
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Fundamental Theorem of Projective
Geometry
A PROJECTIVITY is determined when three points of
one RANGE and the corresponding three points of the
other are given.

See also PROJECTIVE GEOMETRY

Fundamental Theorem of Riemannian
Geometry
On a RIEMANNIAN MANIFOLD, there is a unique
CONNECTION which is TORSION-free and compatible
with the METRIC. This CONNECTION is called the LEVI-

CIVITA CONNECTION.

See also COVARIANT DERIVATIVE, LEVI-CIVITA CON-

NECTION, RIEMANNIAN MANIFOLD, RIEMANNIAN ME-

TRIC

Fundamental Theorem of Space Curves
If two single-valued continuous functions k(s) (CUR-

VATURE) and t(s) (TORSION) are given for s �0, then
there exists EXACTLY ONE SPACE CURVE, determined
except for orientation and position in space (i.e., up to
a EUCLIDEAN MOTION), where s is the ARC LENGTH, k
is the CURVATURE, and t is the TORSION.

See also ARC LENGTH, CURVATURE, EUCLIDEAN MO-

TION, FUNDAMENTAL THEOREM OF PLANE CURVES,
TORSION (DIFFERENTIAL GEOMETRY)
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Fundamental Theorems of Calculus
The first fundamental theorem of calculus states
that, if f is CONTINUOUS on the CLOSED INTERVAL [a,
b ] and F is the ANTIDERIVATIVE (INDEFINITE INTE-

GRAL) of f on [a, b ], then

g
b

a

f (x)dx �F(b) �F(a) : (1)

The second fundamental theorem of calculus lets f be
CONTINUOUS on an OPEN INTERVAL I and lets a be any
point in I . If F is defined by

F(x) �g
x

a

f (t)dt; (2)

then

F ?(x) �f (x) (3)

at each point in I .

The fundamental theorem of calculus along curves
states that if f (z) has a CONTINUOUS ANTIDERIVATIVE

F(z) in a region R containing a parameterized curve
g : z �z(t) for a 5t 5 b; then

g
g

f (z)dz�F z(b)ð Þ�F z(a)ð Þ: (4)

See also CALCULUS, DEFINITE INTEGRAL, INDEFINITE

INTEGRAL, INTEGRAL
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Fundamental Unit
In a REAL QUADRATIC FIELD, there exists a special
UNIT h known as the fundamental unit such that all
units r are given by r�9hm; for m�0, 9 1, 9 2, ....
The notation o0 is sometimes used instead of h

(Zucker and Robertson 1976). The fundamental units
for REAL QUADRATIC FIELDS Q(

ffiffiffiffi
D

p
) may be computed

from the fundamental solution of the PELL EQUATION

T2�DU2�94;

where the sign is taken such that the solution (T, U )
has smallest possible positive T (LeVeque 1977; Cohn
1980, p. 101; Hua 1982; Borwein and Borwein 1986,
p. 294). If the positive sign is taken, then one solution
is simply given by (T;U)�(2x; 2y); where (x, y ) is the
solution to the PELL EQUATION

x2�Dy2�1

However, this need not be the minimal solution. For
example, the solution to Pell equation

x2�21y2�1

is (x; y)�(55; 12); so (T;U)�(2x; 2y)�(110; 24); but
(T;U)�(5; 1) is the minimal solution. Given a mini-
mal (T, U ) (Sloane’s A048941 and A048942), the
fundamental unit is given by



h �
1

2 
(T �U

ffiffiffiffi
D

p
)

(Cohn 1980, p. 101).

The following table gives fundamental units for small
D .

D / h(D)/ D /h(D)/

2 /1 �
ffiffiffi
2

p
/ 54 /485 �66

ffiffiffiffiffiffi
54

p
/

3 /2 �
ffiffiffi
3

p
/ 55 /89 �12

ffiffiffiffiffiffi
55

p
/

5 /

1

2
(1 �

ffiffiffi
5

p
)/ 56 /15 �2

ffiffiffiffiffiffi
56

p
/

6 /5 �2
ffiffiffi
6

p
/ 57 /151 �20

ffiffiffiffiffiffi
57

p
/

7 /8 �3
ffiffiffi
7

p
/ 58 /99 �13

ffiffiffiffiffiffi
58

p
/

8 /

1

2
(1 �2

ffiffiffi
8

p
)/ 59 /530 �69

ffiffiffiffiffiffi
59

p
/

10 /3 �
ffiffiffiffiffiffi
10

p
/ 60 /

1

2 
(8 �

ffiffiffiffiffiffi
60

p
)/

11 /10 �3
ffiffiffiffiffiffi
11

p
/ 61 /

1

2
(39 �5

ffiffiffiffiffiffi
61

p
)/

12 /7 �2
ffiffiffiffiffiffi
12

p
/ 62 /63 �8

ffiffiffiffiffiffi
62

p
/

13 /

1

2
(3 �

ffiffiffiffiffiffi
13

p
)/ 63 /8 �

ffiffiffiffiffiffi
63

p
/

14 /15 �4
ffiffiffiffiffiffi
14

p
/ 65 /8 �

ffiffiffiffiffiffi
65

p
/

15 /4 �
ffiffiffiffiffiffi
15

p
/ 66 /65 �8

ffiffiffiffiffiffi
66

p
/

17 /4 �
ffiffiffiffiffiffi
17

p
/ 67 /48842 �5967

ffiffiffiffiffiffi
67

p
/

18 /17 �4
ffiffiffiffiffiffi
18

p
/ 68 /

1

2 
(8 �

ffiffiffiffiffiffi
68

p
)/

19 /170 �39
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19

p
/ 69 /

1

2
(25 �3
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69

p
)/

20 /

1

2
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p
)/ 70 /251 �30
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/
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1
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p
)/ 71 /3480 �413
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p
/
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p
/ 72 /17 �2
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p
/

23 /24 �5
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23

p
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p
/

24 /5 �
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p
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p
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p
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28 /

1

2
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p
)/ 77 /

1
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p
)/

29 /

1

2
(5 �

ffiffiffiffiffiffi
29

p
)/ 78 /53 �6

ffiffiffiffiffiffi
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p
/

30 /11 �2
ffiffiffiffiffiffi
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p
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ffiffiffiffiffiffi
79

p
/

31 /1520 �273
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p
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ffiffiffiffiffiffi
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p
/

32 /

1

2
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ffiffiffiffiffiffi
32

p
)/ 82 /9 �

ffiffiffiffiffiffi
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p
/

33 /23 �4
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p
/ 83 /82 �9

ffiffiffiffiffiffi
83

p
/

34 /35 �6
ffiffiffiffiffiffi
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p
/ 84 /55 �6

ffiffiffiffiffiffi
84

p
/
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See also PELL EQUATION, REAL QUADRATIC FIELD,
UNIT
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Funnel

The funnel surface is a REGULAR SURFACE and SUR-

FACE OF REVOLUTION defined by the Cartesian equa-
tion

Z �
1

2
ln x2 �y2
� �

(1)

and the PARAMETRIC EQUATIONS

x(u; v) �u cos v (2)

y(u; v) �u sin v (3)

z(u; v) �ln u (4)

for u �0 and v � [0; 2 p) : The coefficients of the FIRST

FUNDAMENTAL FORM are

E �1 �
1

u2 
(5)

F �0 (6)

G �u2 ; (7)

the coefficients of the SECOND FUNDAMENTAL FORM

are

e ��
1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p (8)

f �0 (9)

g �
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2
p ; (10)

the AREA ELEMENT is

dA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �u2

p
du ffldv; (11)

and the Gaussian and mean curvatures are

K ��
1

1 � u2ð Þ2 (12)

H �
1

2u 1 � u2ð Þ3 =2 : (13)

Both the surface area and volume of the solid are
infinite.

See also GABRIEL’S HORN, PSEUDOSPHERE, SINCLAIR’S

SOAP FILM PROBLEM
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Fuss’s Problem
BICENTRIC POLYGON

Futile Game
A GAME which permits a draw ("tie") when played
properly by both players.

See also CATEGORICAL GAME, FAIR GAME, GAME
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Fuzzy Logic
An extension of two-valued LOGIC such that state-
ments need not be TRUE or FALSE, but may have a
degree of truth between 0 and 1. Such a system can be
extremely useful in designing control logic for real-
world systems such as elevators.

See also ALETHIC, FALSE, LOGIC, TRUE
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G

Gabor Function

The computer animation format MPEG-7 uses Gabor
functions to specify texture descriptors.
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Gabriel’s Horn

The SURFACE OF REVOLUTION of the function y �1=x
about the X -AXIS for x ]1: It has FINITE VOLUME

V �g
�

1

py2 dx � p g
�

1

dx

x2

� p �
1

x

" #�
1

� p[0 �(�1)] � p;

but INFINITE SURFACE AREA, since

S �g
�

1

2py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y ?2

q
dx

�2p g
�

1

y dx�2p g
�

1

dx

x
�2p[ln x] �1

�2 p[ln ��0] ��:

This leads to the paradoxical consequence that while
Gabriel’s horn can be filled up with p cubic units of
paint, an INFINITE number of square units of paint are
needed to cover its surface!

See also FUNNEL, PSEUDOSPHERE

Gabriel’s Staircase
The SUM

X�
k �1

krk �
r

(1 � r)2 ;

valid for 0 Br B1:/

Gadget
A term of endearment used by ALGEBRAIC TOPOLO-

GISTS when talking about their favorite power tools
such as ABELIAN GROUPS, BUNDLES, HOMOLOGY

GROUPS, HOMOTOPY GROUPS, K -THEORY, MORSE THE-

ORY, OBSTRUCTIONS, stable homotopy theory, VECTOR

SPACES, etc.

See also ABELIAN GROUP, ALGEBRAIC TOPOLOGY,
BUNDLE, FREE, HOMOLOGY GROUP, HOMOTOPY

GROUP, K -THEORY, OBSTRUCTION, MORSE THEORY,
VECTOR SPACE

References
Page, W. Topological Uniform Structures. New York: Dover,

1994.

Galerkin Method
A method of determining coefficients ak in a power
series solution

y(x) �y0(x) �
Xn

k �1

ak yk(x)

of the ORDINARY DIFFERENTIAL EQUATION L[y(x)] �0
so that the DIFFERENTIAL OPERATOR L[y(x)] is ortho-
gonal to every yk(x) for k �1, ..., n .
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Gale-Ryser Theorem
Let p and q be PARTITIONS of a POSITIVE INTEGER,
then there exists a (0,1)-matrix (i.e., a BINARY MATRIX)
such that c() �p ; r() �q IFF q is dominated by p�:/

See also BINARY MATRIX, PARTITION
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Galilean Transformation
A transformation from one reference frame to another
moving with a constant VELOCITY v with respect to
the first for classical motion. However, special rela-
tivity shows that the transformation must be mod-
ified to the LORENTZ TRANSFORMATION for relativistic
motion. The forward Galilean transformation is

t?
x?
y?
z ?

2
664
3
775�

1 0 0 0
�v 1 0 0

0 0 1 0
0 0 0 1

2
664

3
775

t
x
y
z

2
664
3
775;

and the inverse transformation is

t
x
y
z

2
664
3
775�

1 0 0 0
v 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

t?
x?
y?
z?

2
664
3
775:

See also LORENTZ TRANSFORMATION

Gall Isographic Projection

A CYLINDRICAL EQUIDISTANT PROJECTION with stan-
dard parallel f1 �45�:/

See also CYLINDRICAL EQUIDISTANT PROJECTION

Gall Orthographic Projection

A CYLINDRICAL EQUAL-AREA PROJECTION with stan-
dard parallel of 458.

See also BALTHASART PROJECTION, BEHRMANN CY-

LINDRICAL EQUAL-AREA PROJECTION, CYLINDRICAL

EQUAL-AREA PROJECTION, EQUAL-AREA PROJECTION,
GALL ISOGRAPHIC PROJECTION, LAMBERT AZIMUTHAL

EQUAL-AREA PROJECTION, PETERS PROJECTION,
STEREOGRAPHIC PROJECTION, TRISTAN EDWARDS PRO-

JECTION
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Gall Stereographic Projection
GALL ORTHOGRAPHIC PROJECTION

Gallows
Schroeder (1991) calls the CEILING FUNCTION symbols
� and � the "gallows" because of their similarity in
appearance to the structure used for hangings.

See also CEILING FUNCTION
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Gallucci’s Theorem
If three SKEW LINES all meet three other SKEW LINES,
any TRANSVERSAL to the first set of three meets any
TRANSVERSAL to the second set of three.

See also SKEW LINES, TRANSVERSAL LINE

Galois Extension
This entry contributed by NICOLAS BRAY



An extension F of a field K is said to be a Galois
extension of K , if for every x � F �K ; there is an
element of the GALOIS GROUP of the extension which
does not fix x (i.e., there exits s � AutKF such that
s(x) "x)):/

See also GALOIS EXTENSION FIELD

Galois Extension Field
If K is the SPLITTING FIELD over a FIELD F of a
separable POLYNOMIAL f (x) ; then the EXTENSION

FIELD K =F is a Galois extension field.

See also EXTENSION FIELD, GALOIS EXTENSION,
SPLITTING FIELD
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Galois Field
FINITE FIELD

Galois Group
Let L be a FIELD EXTENSION of K , denoted L=K ; and
let G be the set of AUTOMORPHISMS of L =K ; that is, the
set of AUTOMORPHISMS s of L such that s(x) �x for
every x � K ; so that K is fixed. Then G is a GROUP of
transformations of L , called the Galois group of L=K :/

The Galois group of (C =R) consists of the IDENTITY

ELEMENT and COMPLEX CONJUGATION. These func-
tions both take a given REAL to the same real.

See also ABHYANKAR’S CONJECTURE, FINITE GROUP,
GROUP

References
Birkhoff, G. and Mac Lane, S. "The Galois Group." §15.2 in A

Survey of Modern Algebra, 5th ed. New York: Macmillan,
pp. 397 �/01, 1996.

Jacobson, N. Basic Algebra I, 2nd ed. New York: W. H.
Freeman, p. 234, 1985.

Galois Imaginary
A mathematical object invented to solve irreducible
CONGRUENCES OF THE FORM

F(x) �0 (mod p) ;

where p is PRIME.

Galois Theory
If there exists a ONE-TO-ONE correspondence between
two SUBGROUPS and SUBFIELDS such that

G(E(G?)) �G ?

E(G(E ?)) �E ?;

then E is said to have a Galois theory.

See also ABEL’S IMPOSSIBILITY THEOREM, SUBFIELD
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Galois’s Theorem
An algebraic equation is algebraically solvable IFF its
GROUP is SOLVABLE. In order that an irreducible
equation of PRIME degree be solvable by radicals, it
is NECESSARY and SUFFICIENT that all its ROOTS be
rational functions of two ROOTS.

See also ABEL’S IMPOSSIBILITY THEOREM, SOLVABLE

GROUP

Galoisian
An algebraic extension E of F for which every
IRREDUCIBLE POLYNOMIAL in F which has a single
ROOT in E has all its ROOTS in E is said to be
Galoisian. Galoisian extensions are also called algeb-
raically normal.

Gambler’s Ruin
Let two players each have a finite number of pennies
(say, n1 for player one and n2 for player two). Now,
flip one of the pennies (from either player), with each
player having 50% probability of winning, and give
the penny to the winner. Now repeat the process until
one player has all the pennies.

If the process is repeated indefinitely, the probability
that one of the two player will eventually lose all his
pennies must be 100%. In fact, the chances P1 and P2

that players one and two, respectively, will be
rendered penniless are

P1�
n2

n1 � n2

P2�
n1

n1 � n2

;

i.e., your chances of going bankrupt are equal to the
ratio of pennies your opponent starts out to the total
number of pennies.

Therefore, the player starting out with the smallest
number of pennies has the greatest chance of going
bankrupt. Even with equal odds, the longer you
gamble, the greater the chance that the player
starting out with the most pennies wins. Since
casinos have more pennies than their individual
patrons, this principle allows casinos to always
come out ahead in the long run. And the common
practice of playing games with odds skewed in favor



of the house makes this outcome just that much
quicker.

See also COIN TOSSING, MARTINGALE, SAINT PETERS-

BURG PARADOX
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Game
A game is defined as a conflict involving gains and
losses between two or more opponents who follow
formal rules. The study of games belongs to a branch
of mathematics known as GAME THEORY.

See also BOARD, CARDS, CATEGORICAL GAME, DRAW,
FAIR GAME, FINITE GAME, FUTILE GAME, GAME

THEORY, HYPERGAME, UNFAIR GAME
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Game Expectation
Let the elements in a PAYOFF MATRIX be denoted aij ;
where the is are player A’s STRATEGIES and the js are
player B’s STRATEGIES. Player A can get at least

min
j5n

aij (1)

for STRATEGY i . Player B can force player A to get no
more than maxj5m aij for a STRATEGY j . The best
STRATEGY for player A is therefore

max
i5m

min
j5n

aij ; (2)

and the best STRATEGY for player B is

min
j5n

max
i5m

aij : (3)

In general,

max
i 5m

min
j5n

aij 5min
j5n

max
i5m

aij : (4)

Equality holds only if a SADDLE POINT is present, in
which case the quantity is called the VALUE of the
game.

See also GAME, PAYOFF MATRIX, SADDLE POINT

(GAME), STRATEGY, VALUE

Game Matrix
PAYOFF MATRIX

Game of Life
LIFE

Game Theory
A branch of MATHEMATICS and LOGIC which deals
with the analysis of GAMES (i.e., situations involving
parties with conflicting interests). In addition to the
mathematical elegance and complete "solution" which
is possible for simple games, the principles of game
theory also find applications to complicated games
such as cards, checkers, and chess, as well as real-
world problems as diverse as economics, property
division, politics, and warfare.

See also BOREL DETERMINACY THEOREM, CATEGORI-

CAL GAME, CHECKERS, CHESS, DECISION THEORY,
EQUILIBRIUM POINT, FINITE GAME, FUTILE GAME,
GAME EXPECTATION, GO, HI-Q, IMPARTIAL GAME,
MEX, MINIMAX THEOREM, MIXED STRATEGY, NASH

EQUILIBRIUM, NASH’S THEOREM, NIM, NIM-VALUE,
PARTISAN GAME, PAYOFF MATRIX, PEG SOLITAIRE,
PERFECT INFORMATION, SADDLE POINT (GAME), SAFE,
SPRAGUE-GRUNDY FUNCTION, STRATEGY, TACTIX, TIT-

FOR-TAT, UNSAFE, VALUE, WYTHOFF’S GAME, ZERO-

SUM GAME
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Gamma
GAMMA FUNCTION, INCOMPLETE GAMMA FUNCTION

Gamma Distribution

A general type of STATISTICAL DISTRIBUTION which is
related to the BETA DISTRIBUTION and arises naturally
in processes for which the waiting times between
POISSON DISTRIBUTED events are relevant. Gamma
distributions have two free parameters, labeled a and
u; a few of which are illustrated above.
Given a POISSON DISTRIBUTION with a rate of change
l; the DISTRIBUTION FUNCTION D(x) giving the waiting
times until the hth Poisson event is

D(x)�P(X5x)�1�P(x > x)�1�
Xh�1

k�0

(lx)ke�lx

k!

�1�e�lx
Xh�1

k�0

(lx)k

k!
�1�

G(h; xl)

G(h)
(1)

for x � [0; �); where G(x) is a complete GAMMA FUNC-

TION, and G(a; x) an INCOMPLETE GAMMA FUNCTION.
With h an integer, this distribution is a DISCRETE

DISTRIBUTION known as the ERLANG DISTRIBUTION.
The probability function P(x) is then obtained by
differentiating D(x);

P(x)�D?(x)�le�lx
Xh�1

k�0

(lx)k

k!
�e�lx

Xh�1

k�0

k(lx)k�1
l

k!

�le�lx�le�lx
Xh�1

k�1

(lx)k

k!
�e�lx

Xh�1

k�1

k(lx)k�1
l

k!

�le�lx�le�lx
Xh�1

k�1

k(lx)k�1

k!
�

(lx)k

k!

" #

�le�lx 1�
Xh�1

k�1

(lx)k�1

(k � 1)!
�

(lx)k

k!

" #( )

�le�lx 1� 1�
(lx)h�1

(h � 1)!

" #( )
�

l(lx)h�1

(h � 1)!
e�lx: (2)

Now let a�h (not necessarily an integer) and define
u�1=l to be the time between changes. Then the
above equation can be written

P(x)
xa�1e�x=u

G(a)ua
(3)

for x � [0; �): The CHARACTERISTIC FUNCTION describ-
ing this distribution is

f(t)�F
x�x=uxa�1

G(a)ua
[1
2(1�sgn x)]

( )
�(1�itu)�a; (4)

where F[f ] is the FOURIER TRANSFORM with para-
meters a�b�1; and the MOMENT-GENERATING FUNC-

TION is

M(t)�g
�

0

etxxa�1e�x=u dx

G(a)ua
�g

�

0

xa�1e�(1�ut)x=u dx

G(a)ua
: (5)

giving moments about 0 of

m?r�
urG(a� r)

G(a)
(6)

(Papoulis 1984, p. 147).

In order to explicitly find the MOMENTS of the
distribution using the MOMENT-GENERATING FUNC-

TION, let

y�
(1 � ut)x

u
(7)

dy�
1 � ut

u
dx; (8)

so

M(t)�g
�

0

uy

1 � ut

 !a�1
e�y

G(a)ua

u dy

1 � ut

�
1

(1 � ut)aG(a) g
�

0

ya�1e�y dy



�
1

(1 � ut)a
; (9)

giving the logarithmic MOMENT-GENERATING FUNC-

TION as

R(t)�ln M(t)��a ln(1�ut) (10)

R?(t)�
au

1 � ut
(11)

Rƒ(t)�
au2

(1 � ut)2 : (12)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are
then

m�R?(0)�au (13)

s2�Rƒ(0)au2 (14)

g1�
2ffiffiffi
a

p (15)

g2�
6

a
: (16)

The gamma distribution is closely related to other
statistical distributions. If X1; X2; ..., Xn are indepen-
dent random variates with a gamma distribution
having parameters (a1; u); (a2; u); ..., (an; u); then
an

i�1 Xi is distributed as gamma with parameters

a�
Xn

i�1

ai (17)

u�u: (18)

Also, if X1 and X2 are independent random variates
with a gamma distribution having parameters (a1; u)
and (a2; u); then X1=(X1�X2) is a BETA DISTRIBUTION

variate with parameters (a1; a2): Both can be derived
as follows.

P(x; y)�
1

G(a1)G(a2)
ex1�x2 xa1�1

1 xa2�1
2 : (19)

Let

u�x1�x2 x1�uv (20)

v�
x1

x1 � x2

x2�u(1�v); (21)

then the JACOBIAN is

J
x1; x2

u; v

 !
�

v u
1�v �u

����
������u; (22)

so

g(u; v) du dv�f (x; y) dx dy�f (x; y)u du dv: (23)

g(u; v)�
u

G(a1)G(a2)
e�u(uv)a1�1ua2�1(1�v)a2�1

�
1

G(a1)G(a2)
e�uua1�a2�1va1�1(1�v)a2�1: (24)

The sum X1�X2 therefore has the distribution

f (u)�f (x1�x2)�g
1

0

g(u; v) dv�
e�uua1�a2�1

G(a1 � a2)
; (25)

which is a gamma distribution, and the ratio
X1=(X1�X2) has the distribution

h(v)�h
x1

x1 � x2

 !
�g

�

0

g(u; v) du

�
va1�1(1 � v)a2�1

B(a1; a2)
; (26)

where B is the BETA FUNCTION, which is a BETA

DISTRIBUTION.

If X and Y are gamma variates with parameters a1

and a2; the X=Y is a variate with a BETA PRIME

DISTRIBUTION with parameters a1 and a2: Let

u�x�y v�
x

y
; (27)

then the JACOBIAN is

J
u; v

x; y

 !
�

1 1
1

y
�

x

y2

������
��������

x � y

y2
��

(1 � v)2

u
; (28)

so

dx dy�
u

(1 � v)2 du dv (29)

g(u; v)�
1

G(a1)G(a2)
e�u uv

1 � v

 !a1�1
u

1 � v

 !a2�1

� u

(1 � v)2

�
1

G(a1)G(a2)
e�uua1�a2�1 va2�1(1�v)�a1�a2 : (30)

The ratio X=Y therefore has the distribution

h(v)�g
�

0

(g(u; v) du�
va1�1(1 � v)�a1�a2

B(a1; a2)
; (31)

which is a BETA PRIME DISTRIBUTION with parameters
(a1; a2):/

The "standard form" of the gamma distribution is
given by letting y�x=u; so dy�dx=u and

P(y) dy�
xa�1e�x=u

G(a)ua
dx�

(uy)a�1e�y

G(a)ua
(u dy)



�
ya �1e �y

G( a)
dy; (32)

so the MOMENTS about 0 are

vr �
1

G( a) g
�

0

e �xxa�1 �r dx �
G( a � r)

G(a)
�(a)r ; (33)

where (a)r is the POCHHAMMER SYMBOL. The MO-

MENTS about m � m1 are then

m1 � a (34)

m2 � a (35)

m3 �2a (36)

m4 �3 a2 �6 a: (37)

The MOMENT-GENERATING FUNCTION is

M(t) �
1

(1 � t) a 
; (38)

and the CUMULANT-GENERATING FUNCTION is

K(t) � a ln(1 �t) � a(t �1
2 t

2 �1
3 t

3 �. . .); (39)

so the CUMULANTS are

kr � aG(r) : (40)

If x is a NORMAL variate with MEAN m and STANDARD

DEVIATION s; then

y�
(x � m)2

2s2
(41)

is a standard gamma variate with parameter a�1=2:/

See also BETA DISTRIBUTION, CHI-SQUARED DISTRIBU-

TION, ERLANG DISTRIBUTION
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Gamma Function

The complete gamma function G(n) is defined to be an
extension of the FACTORIAL to COMPLEX and REAL

NUMBER arguments. It is related to the FACTORIAL by
G(n)�(n�1)!: It is ANALYTIC everywhere except at
z�0, �1, �2, ..., and the residue at z��k is

Res
z��k

G(z)�
(�1)k

k!
: (1)

There are no points z at which G(z)�0: The gamma
function is implemented in Mathematica as Gam-
ma[z ].
The gamma function can be defined as a DEFINITE

INTEGRAL for R[z] > 0 (Euler’s integral form)

G(z)�g
�

0

tz�1e�t dt (2)

�2g
�

0

e�t2

t2z�1 dt; (3)

or

G(z)�g
1

0

ln
1

t

 !" #z�1

dt: (4)

Plots of the real and imaginary parts of G(z) in the
complex plane are illustrated above.



INTEGRATING (2) by parts for a REAL argument, it can
be seen that

G(x)�g
�

0

tx�1e�t dt

�[�tx�1e�t]�0 �g
�

0

(x�1)tx�2e�t dt

�(x�1)g
�

0

tx�2e�t dt�(x�1)G(x�1): (5)

If x is an INTEGER n�1, 2, 3, ... then

G(n)�(n�1)G(n�1)�(n�1)(n�2)G(n�2)

�(n�1)(n�2) � � � 1�(n�1)!; (6)

so the gamma function reduces to the FACTORIAL for a
POSITIVE INTEGER argument.

The second of BINET’S LOG GAMMA FORMULAS is

ln G(a)�(a�1
2)ln a�a�1

2 ln(2p)

�2 g
�

0

tan(z
a
)

e2pz � 1
dz (7)

for R[a] > 0 (Whittaker and Watson 1990, p. 251).
Another formula for ln G(z) is given by MALMSTÉN’S

FORMULA, and ln G(z) is implemented in Mathematica
as LogGamma[z ]. The gamma function can also be
defined by an INFINITE PRODUCT form (Weierstrass
Form)

G(z)� zegz
Y�
r�1

1�
z

r

 !
e�z=r

" #�1

; (8)

where g is the EULER-MASCHERONI CONSTANT (Krantz
1999, p. 157). This can be written

G(z)�
1

z
exp

X�
k�1

(�1)ksk

k
zk

" #
; (9)

where

s1�g (10)

sk�z(k) (11)

for k]2; where z(z) is the RIEMANN ZETA FUNCTION

(Finch). Taking the logarithm of both sides of (8),

�ln[G(z)]�ln z�gz�
X�
n�1

ln 1�
z

n

 !
�

z

n

" #
: (12)

Differentiating,

�
G?(z)

G(z)
�

1

z
�g�

X�
n�1

1

n

1 �
z

n

�
1

n

0
BBB@

1
CCCA

�
1

z
�g�

X�
n�1

1

n � z
�

1

n

 !
(13)

G?(z)��G(z)
1

z
�g�

X�
n�1

1

n � z
�

1

n

 !" #
(14)

�G(z)C(z)�G(z)c0(z) (15)

G?(1)��G(1)

� 1�g� (1
2�1)�(1

3�
1
2)�. . .�

1

n � 1
�

1

n

 !
�. . .

" #( )

��(1�g�1)��g (16)

G?(n)��G(n)

� 1

n
�g�

1

1 � n
�1

 !
�

1

2 � n
�

1

2

 !"(

�
1

3 � n
�

1

3

 !
�. . .

��

��(n�1)!
1

n
�g�

Xn

k�1

1

k

 !
; (17)

where C(z) is the DIGAMMA FUNCTION and c0(z) is the
POLYGAMMA FUNCTION. nth derivatives are given in
terms of the POLYGAMMA FUNCTIONS cn; cn�1; ..., c0:/

The minimum value x0 of G(x) for REAL POSITIVE x�x0

is achieved when

G?(x0)�G(x0)c0(x0)�0 (18)

c0(x0)�0; (19)

This can be solved numerically to give x0�1:46163 . . .
(Sloane’s A030169; Wrench 1968), which has CONTIN-

UED FRACTION [1, 2, 6, 63, 135, 1, 1, 1, 1, 4, 1, 38, ...]
(Sloane’s A030170). At x0; G(x0) achieves the value
0.8856031944... (Sloane’s A030171), which has CON-

TINUED FRACTION [0, 1, 7, 1, 2, 1, 6, 1, 1, ...] (Sloane’s
A030172).

The Euler limit form is

1

G(z)
�z lim

m0�
e(1�1=2�...�1=m�ln m)z

h i

� lim
m0�

Ym
n�1

1�
z

n

 !
e�z=n

( )" #

�
1

z

Y�
n�1

1�
1

n

 !z

1�
z

n

 !�1
2
4

3
5; (20)

so

G(z)� lim
n0�

1 � 2 � 3 � � �n
z(z � 1)(z � 2) � � � (z � n)

nz (21)

(Krantz 1999, p. 156). One over the gamma function
is also given by



1

G(z)
�z exp gz�

X�
k�2

(�1)k
z(k)zk

k

" #
; (22)

where g is the EULER-MASCHERONI CONSTANT and z(z)
is the RIEMANN ZETA FUNCTION (Wrench 1968). An
ASYMPTOTIC SERIES for /1=G(z)/ is given by

1

G(z)
	z�gz2� 1

12(6g
2�p2)z3� 1

12[2g
3�gp2�4z(3)]z4

�. . . : (23)

Writing

1

G(z)
�
X�
k�1

akzk; (24)

the ak satisfy

an�na1an�a2an�1�
Xn

k�2

(�1)k
z(k)an�k (25)

(Bourget 1883, Isaacson and Salzer 1942, Wrench
1968). Wrench (1968) numerically computed the
coefficients for the series expansion about 0 of

1

z(1 � z)G(z)

�1�(g�1)z� 1�1
2(g�2)g� 1

12 p
2

h i
z2�. . . : (26)

The LANCZOS APPROXIMATION for z �0 is

G(z�1)�(z�g�1
2)

z�1=2ez�g�1=2
ffiffiffiffiffiffi
2p

p

� c0�
c1

z � 1
�

c2

z � 2
�. . .�

cn

z � n
�o

" #
;

(27)

where g is the EULER-MASCHERONI CONSTANT.

The gamma function satisfies the FUNCTIONAL EQUA-

TIONS

G(1�z)�zG(z) (28)

G(1�z)��zG(�z): (29)

Additional identities are

G(x)G(�x)��
p

x sin(px)
(30)

G(x)G(1�x)�
p

sin(px)
(31)

ln[G(x�iy�1)]

�ln(x2�y2)�i tan�1 y

x

 !
�ln[G(x�iy)] (32)

½(ix)!½2�
px

sinh(px)
(33)

½(n�ix)!½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px

sinh(px)

s Yn

s�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�x2

p
: (34)

For integer n � 1, 2, ..., the first few values of G(n)
are 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ...
(Sloane’s A000142). For half integer arguments, /

G(n=2)/ has the special form

G 1
2 n
� �

�
(n � 2)!!

ffiffiffi
p

p

2(n�1)=2
; (35)

where n !! is a DOUBLE FACTORIAL. The first few values
for n�1, 3, 5, ..., are therefore

G(1
2)�

ffiffiffi
p

p
(36)

G(3
2)�

1
2

ffiffiffi
p

p
(37)

G(5
2)�

3
4

ffiffiffi
p

p
; (38)

/15
ffiffiffi
p

p
=8; 105

ffiffiffi
p

p
=16/, ... (Sloane’s A001147 and

A000079; Wells 1986, p. 40). In general, for n a
POSITIVE INTEGER n � 1, 2, ...

G 1
2�n
� �

�
1 � 3 � 5 � � � (2n � 1)

2n

ffiffiffi
p

p

�
(2n � 1)!!

2n

ffiffiffi
p

p
(39)

G(1
2�n)�

(�1)n2n

1 � 3 � 5 � � � (2n � 1)

ffiffiffi
p

p

�
(�1)n2n

(2n � 1)!!

ffiffiffi
p

p
: (40)

For /R[x]��1
2/,

½(�1
2�iy)!½2�

p

cosh(py)
: (41)

Gamma functions of argument 2z can be expressed
using the LEGENDRE DUPLICATION FORMULA

G(2z)�(2p)�1=222z�1=2G(z)G(z�1
2): (42)

Gamma functions of argument 3z can be expressed
using a triplication FORMULA

G(3z)�(2p)�133z�1=2G(z)G(z�1
3)G(z�2

3): (43)

The general result is the GAUSS MULTIPLICATION

FORMULA

G(z)G(z�1
n
) � � �G(z�n�1

n
)�(2p)(n�1)=2n1=2�nzG(nz): (44)

The gamma function is also related to the RIEMANN

ZETA FUNCTION z(z) by

G
s

2

 !
p�s=2z(s)�G

1 � s

2

 !
p�(1�s)=2z(1�s): (45)



Borwein and Zucker (1992) give a variety of identities
relating gamma functions to square roots and ELLIP-

TIC INTEGRAL SINGULAR VALUES /kn/, i.e., MODULI /kn/

such that

K ?(kn)

K(kn)
�

ffiffiffi
n

p
; (46)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND and /K ?(k)�K(k)?�K(
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
)/ is the com-

plementary integral. M. Trott has developed an algo-
rithm for automatically generating hundreds of such
identities.

G(1
3)�27=93�1=12p1=3[K(k3)]1=3 (47)

G(1
4)�2p1=4[K(k1)]1=2 (48)

G(1
6)�2�1=331=2p�1=2[G(1

3)]
2 (49)

G(1
8)G(3

8)�(
ffiffiffi
2

p
�1)1=2213=4p1=2K(k2) (50)

G(1
8)

G(3
8)
�2(

ffiffiffi
2

p
�1)1=2

p�1=4[K(k1)]1=2 (51)

G( 1
12)�2�1=433=8(

ffiffiffi
3

p
�1)1=2

p�1=2G(1
4)G(1

3) (52)

G( 5
12)�21=43�1=8(

ffiffiffi
3

p
�1)1=2

p1=2
G(1

4)

G(1
3)

(53)

G( 1
24)G(11

24)

G( 5
24)G( 7

24)
�

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3

pq
(54)

G( 1
24)G( 5

24)

G( 7
24)G(11

24)
�4 � 31=4(

ffiffiffi
3

p
�

ffiffiffi
2

p
)p�1=2K(k1) (55)

G( 1
24)G( 7

24)

G( 5
24)G(11

24)
�225=1831=3(

ffiffiffi
2

p
�1)p�1=3[K(k3)]2=3 (56)

G( 1
24)G( 5

24)G( 7
24)G(11

24)

�384(
ffiffiffi
2

p
�1)(

ffiffiffi
3

p
�

ffiffiffi
2

p
)(2�

ffiffiffi
3

p
)p[K(k6)]2 (57)

G( 1
10)�2�7=1051=4(

ffiffiffi
5

p
�1)1=2

p�1=2G(1
5)G(2

5) (58)

G( 3
10)�2�3=5(

ffiffiffi
5

p
�1)p1=2

G(1
5)

G(2
5)

(59)

G( 1
15)G( 4

15)G( 7
15)

G( 2
15)

�2 � 31=251=6 sin( 2
15 p)[G(1

3)]
2 (60)

G( 1
15)G( 2

15)G( 7
15)

G( 4
15)

�22 � 32=5 sin(1
5 p) sin( 4

15 p)[G(1
5)]

2 (61)

G( 2
15)G( 4

15)G( 7
15)

G( 1
15)

�
2�3=23�1=551=4(

ffiffiffi
5

p
� 1)1=2[G(2

5)]
2

sin( 4
15 p)

(62)

G( 1
15)G( 2

15)G( 4
15)

G( 7
15)

�60(
ffiffiffi
5

p
�1) sin( 7

15 p)[K(k15)]2 (63)

G( 1
20)G( 9

20)

G( 3
20)G( 7

20)
�2�151=4(

ffiffiffi
5

p
�1) (64)

G( 1
20)G( 3

20)

G( 7
20)G( 9

20)
�24=5(10�2

ffiffiffi
5

p
)1=2

p�1 sin( 7
20 p) sin( 9

20 p)

� [G(1
5)]

2 (65)

G( 1
20)G( 7

20)

G( 3
20)G( 9

20)
�23=5(10�2

ffiffiffi
5

p
)1=2

p�1 sin( 3
20 p) sin( 9

20 p)

� [G(2
5)]

2 (66)

G( 1
20)G( 3

20)G( 7
20)G( 9

20)�160(
ffiffiffi
5

p
�2)1=2

p[K(k5)]2: (67)

Several of these are also given in Campbell (1966,
p. 31).

A few curious identities include

Y8

n�1

G 1
3 n
� �

�
640

36

pffiffiffi
3

p
 !3

(68)

[G 1
4

� �
]4

16p2
�

32

32 � 1

52 � 1

52

72

72 � 1
� � � (69)

G?(1)

G(1)
�

G? 1
2

� �
G 1

2

� ��2 ln 2 (70)

(Magnus and Oberhettinger 1949, p. 1). Ramanujan
also gave a number of fascinating identities:

G2(n � 1)

G(n � xi � 1)G(n � xi � 1)
�
Y�
k�1

1�
x2

(n � k)2

" #
(71)

f(m; n)f(n; m)�
G3(m � 1)G3(n � 1)

G(2m � n � 1)G(2n � m � 1)

�
cosh p(m � n)

ffiffiffi
3

p !
� cos[p(m � n)]

2p2(m2 � mn � n2)
; (72)

where

f(m; n)�
Y�
k�1

1�
m � n

k � m

 !3
2
4

3
5; (73)

Y�
k�1

1�
n

k

 !3
2
4

3
5Y�

k�1

1�3
n

n � 2k

 !2
2
4

3
5



�
G 1

2 n
� �

G 1
2(n � 1)
h i cosh pn

ffiffiffi
3

p" #
� cos(pn)

2n�2 p3 =2n 
(74)

(Berndt 1994).

Ramanujan gave the infinite sums

1 �9 1
4

� �4

�17
1 � 5

4 � 8

 !4

�25
1 � 5 � 9

4 � 8 � 12

 !4

�. . .

�
X�
k�0

(8k �1)
G k � 1

4

� �
k!G 1

4

� �
2
4

3
54

�
23=2ffiffiffi

p
p

G 3
4

� �h i2 (75)

and

1 �5 1
2

� �5

�9
1 � 3

2 � 4

 !5

�13
1 � 3 � 5

2 � 4 � 6

 !5

�. . .

�
X�
k �0

(�1)k(4k �1)
(2k � 1)!!

(2k)!!

" #5

� 2

G 3
4

� �h i4 : (76)

(Hardy 1923; Hardy 1924; Whipple 1926; Watson
1931; Bailey 1935; Hardy 1999, p. 7).

The following ASYMPTOTIC SERIES is occasionally
useful in probability theory (e.g., the 1-D RANDOM

WALK):

G J � 1
2

� �
G(J)

�
ffiffiffiffi
J

p
1 �

1

8J 
�

1

128J2 
�

5

1024J3 
�

21

32768J4 
�. . .

 !
(77)

(Graham et al. 1994). This series also gives a nice
asymptotic generalization of STIRLING NUMBERS OF

THE FIRST KIND to fractional values.

It has long been known that G(1
4) p

�1 =4 is TRANSCEN-

DENTAL (Davis 1959), as is G(1
3) (Le Lionnais 1983),

and Chudnovsky has apparently recently proved that
G(1

4) is itself TRANSCENDENTAL.

The complete gamma function G(x) can be generalized
to the upper INCOMPLETE GAMMA FUNCTION G(a; x)
and lower INCOMPLETE GAMMA FUNCTION g(a; x):/

See also BAILEY’S THEOREM, BARNES’ G -FUNCTION,
BINET’S FIBONACCI NUMBER FORMULA, BOHR-MOL-

LERUP THEOREM, DIGAMMA FUNCTION, DOUBLE GAM-

MA FUNCTION, FRANSÉ N-ROBINSON CONSTANT GAUSS

MULTIPLICATION FORMULA, INCOMPLETE GAMMA

FUNCTION, KNAR’S FORMULA, LAMBDA FUNCTION,
LANCZOS APPROXIMATION, LEGENDRE DUPLICATION

FORMULA, MALMSTÉ N’S FORMULA, MELLIN’S FORMU-

LA, MU FUNCTION, NU FUNCTION, PEARSON’S FUNC-

TION, POLYGAMMA FUNCTION, REGULARIZED GAMMA

FUNCTION, STIRLING’S SERIES, SUPERFACTORIAL
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Gamma Group
MODULAR GROUP

Gamma Matrices
DIRAC MATRICES

Gamma Statistic

gr �
kr

sr�2 
;

where kr are CUMULANTS and s is the STANDARD

DEVIATION.

See also KURTOSIS, SKEWNESS

Gamma-Modular Function
The GAMMA GROUP G is the set of all transformations
w OF THE FORM

w(t) �
at � b

ct � d 
;

where a , b , c , and d are INTEGERS and ad �bc �1: G/-
modular functions are then defined as in Borwein and
Borwein (1987, p. 114).

See also JACOBI THETA FUNCTIONS, KLEIN’S ABSO-

LUTE INVARIANT, LAMBDA GROUP
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GammaRegularized
REGULARIZED GAMMA FUNCTION

Garage Door
ASTROID

Gårding’s Inequality
Gives a lower bound for the inner product (Lu, u ),
where L is a linear elliptic real differential operator of
order m , and u has compact support.
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Garman-Kohlhagen Formula

Vt �e �y tStN(d1) �e �rtKN(d2) ;

where N is the cumulative NORMAL DISTRIBUTION and

d1 ; d2 �
log St

K

� �
� r � y 9 1

2 s
2

� �
t

s
ffiffiffi
t

p :

If y �0, this is the standard form of the Black-Scholes
formula.

See also BLACK-SCHOLES THEORY
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Garsia-Haiman Conjecture
N ! THEOREM

Garsia-Milne Involution Principle
Let C�C�@C� (where C�SC��f) be the DISJOINT

UNION of two finite components C� and C�: Let a and
b be two involutions on C , each of whose fixed points
lie in C�: Let Fa (respectively, Fb) denote the fixed
point set of a (respectively, b): Stipulate that a(C��
Fa)ƒC� and a(C�)ƒC�; and similarly b(C��Fb)ƒ
C� and b(C�)ƒC� (i.e., outside the fixed point sets),
both a and b map each component into the other.
Then either a cycle of the PERMUTATION D�ab

contains no fixed points of either a or b; or it contains
exactly one element of Fa and one of Fb:/

References
Andrews, G. E. "q -Series and Schur’s Theorem" and "Bres-

soud’s Proof of Schur’s Theorem." §6.2�/.3 in q -Series:
Their Development and Application in Analysis, Number
Theory, Combinatorics, Physics, and Computer Algebra.
Providence, RI: Amer. Math. Soc., pp. 53�/8, 1986.

Gasket
APOLLONIAN GASKET, SIERPINSKI GASKET



Gasser-Mü ller Technique
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Gate Function
Bracewell’s term for the RECTANGLE FUNCTION.
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Gauche Conic
SKEW CONIC

Gauge Theory
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Gaullist Cross

A CROSS also called the CROSS OF LORRAINE or
PATRIARCHAL CROSS.

See also CROSS, DISSECTION

Gauss Equations
If x is a regular patch on a REGULAR SURFACE in R3

with normal N̂ ; then

xuu �G1
11xu �G2

11xv �e ̂N (1)

xuv �G1
12xu �G2

12xv �f N̂ (2)

xvv �G1
22xu �G2

22xv �g ̂N ; (3)

where e , f , and g are coefficients of the second
FUNDAMENTAL FORM and Gk

ij are CHRISTOFFEL SYM-

BOLS OF THE SECOND KIND.

See also CHRISTOFFEL SYMBOL OF THE SECOND KIND,
FUNDAMENTAL FORMS, MAINARDI-CODAZZI EQUA-

TIONS
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Gauss Integral
Consider two closed oriented SPACE CURVES f1 : C1 0
R3 and f2 : C2 0 R3 ; where C1 and C2 are distinct
CIRCLES, f1 and f2 are differentiable C1 functions, and
f1(C1) and f2(C3) are disjoint loci. Let Lk(f1 ; f2) be the
LINKING NUMBER of the two curves, then the Gauss
integral is

Lk(f1 ; f2) �
1

4 p gC1 � C2

dS :

See also CALUGAREANU THEOREM, LINKING NUMBER
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Gauss Map
The Gauss map is a function from an ORIENTABLE

SURFACE M in EUCLIDEAN SPACE to a SPHERE. It
associates to every point on the surface its oriented
NORMAL VECTOR. For a COMPACT SURFACE M in 3-
space, the Gauss map of M has DEGREE given by half
the EULER CHARACTERISTIC of the surface

ggM

K dA�2px(M) �
X

ai �g
@T

kg ds ;

where this formula holds only for ORIENTABLE SUR-

FACES.

See also CURVATURE, NIRENBERG’S CONJECTURE,
PATCH
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Gauss Measure
The standard Gauss measure of a finite dimensional
REAL HILBERT SPACE H with norm ½½� ½½H has the BOREL

MEASURE

mH(dh)�(
ffiffiffiffiffiffi
2p

p
)�dim(H)exp(1

2½½h½½
2
H)lH(dh);

where lH is the LEBESGUE MEASURE on H .



Gauss Multiplication Formula

(2np)(n�1)=2n1 =2 �nz G(nz)

�G(z) G z �
1

n

 !
G z �

2

n

 !
� � �G z �

n � 1

n

 !

�
Yn �1

k�0

G z �
k

n

 !
;

where G(z) is the GAMMA FUNCTION.

See also GAMMA FUNCTION, LEGENDRE DUPLICATION

FORMULA, POLYGAMMA FUNCTION
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Gauss Plane
COMPLEX PLANE

Gauss’s Backward Formula

fp � f0 �p d�1=2 �G �2 d
2
0 �G3 d

3
�1=2 �G �4 d

4
0

�G5 d
5
�1=2 � . . . ;

for p � [0; 1]; where d is the CENTRAL DIFFERENCE and

G�
2n�

p�n
2n

$ %

G2n�1�
p�n
2n�1

$ %
;

where n
k

" #
is a BINOMIAL COEFFICIENT.

See also CENTRAL DIFFERENCE, GAUSS’S FORWARD

FORMULA
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Gauss’s Circle Problem

Count the number of LATTICE POINTS N(r) inside the
boundary of a CIRCLE of RADIUS r with center at the
origin. The exact solution is given by the SUM

N(r)�1�4 rb c�4
Xrb c

i�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�i2

pj k
(1)

�1�4
Xr2

i�1

(�1)i�1 r2

2i � 1

$ %
(2)

(Hilbert and Cohn-Vossen 1999, p. 39). The first few
values for r�0, 1, ... are 1, 5, 13, 29, 49, 81, 113, 149,
... (Sloane’s A000328).
The series for N(r) is intimately connected with r(n);
the number of representations of n by two squares,
since

N(r)�
Xr2

n�0

r(n) (3)

(Hardy 1999, p. 67). N(r) is also closely connected
with the LEIBNIZ SERIES since

1

4

N(r)

r2
�

1

r2

" #
�1�

1

3
�

1

5
�

1

7
�. . .9

1

r
; (4)

so taking the limit r 0 � gives

1
4p�1�1

3�
1
5�

1
7�

1
9�. . . (5)

(Hilbert and Cohn-Vossen 19991, p. 39).

Gauss showed that

N(r)�pr2�E(r); (6)

where

½E(r)½52
ffiffiffi
2

p
pr (7)



(Hardy 1999, p. 67). Writing ½E(r) ½5Cru ; the best
bounds on u are

1=2 B u 546 =73 :0 :630137

(Huxley 1990). The lower limit 1/2 was obtained
independently by Hardy and Landau in 1915. The
following table summarizes incremental improve-
ments in the upper limit (Hardy 1999, p. 81).

/u/ approx. citation

46/73 0.63014 Huxley 1990

7/11 0.63636

24/37 0.64864 Cheng 1963

34/53 0.64150 Vinogradov

37/56 0.66071 Littlewood and Walfisz 1924

2/3 0.66667 Sierpinski1906, van der
Corput 1923

The problem has also been extended to CONICS,
ellipsoids (Hardy 1915), and higher dimensions.

See also CIRCLE LATTICE POINTS, DIRICHLET DIVISOR

PROBLEM, LEIBNIZ SERIES, SUM OF SQUARES FUNC-

TION
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Gauss’s Class Number Conjecture
In his monumental treatise Disquisitiones Arithme-
ticae, Gauss conjectured that the CLASS NUMBER

h(�d) of an IMAGINARY QUADRATIC FIELD with DIS-

CRIMINANT �d tends to infinity with d . A proof was
finally given by Heilbronn (1934), and Siegel (1936)
showed that for any e > 0; there exists a constant ce >
0 such that

h(�d) > ced)1=2�e

as d 0 �: However, these results were not effective
in actually determining the values for a given m of a
complete list of fundamental discriminants �d such
that h(�d)�m; a problem known as GAUSS’S CLASS

NUMBER PROBLEM.

Goldfeld (1976) showed that if there exists a "Weil
curve" whose associated DIRICHLET L -SERIES has a
zero of at least third order at s�1, then for any e > 0;
there exists an effectively computable constant ce
such that

h(�d) > ce(ln d)1�e:

Gross and Zaiger (1983) showed that certain curves
must satisfy the condition of Goldfeld, and Goldfeld’s
proof was simplified by Oesterlé (1985).

See also CLASS NUMBER, GAUSS’S CLASS NUMBER

PROBLEM, HEEGNER NUMBER

References
Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary

Quadratic Fields with Small Odd Class Number." http://
www.math.uiuc.edu/Algebraic-Number-Theory/0009/.
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Gauss’s Class Number Problem
For a given m , determine a complete list of funda-
mental DISCRIMINANTS �d such that the CLASS NUM-

BER is given by h(�d)�m: Heegner (1952) gave a
solution for m�1, but it was not completely accepted
due to a number of apparent gaps. However, subse-



quent examination of Heegner’s proof showed it to be
"essentially" correct (Conway and Guy 1996). Conway
and Guy (1996) therefore call the nine values of n(�d)
having h(�d) �1 where �d is the DISCRIMINANT

corresponding to an QUADRATIC FIELD a �b
ffiffiffiffiffiffiffi
�n

p

(n ��1, �2, �3, �7, �11, �19, �43, �67, and
�163; Sloane’s A003173) the HEEGNER NUMBERS.
The HEEGNER NUMBERS have a number of fascinating
properties.

Stark (1967) and Baker (1966) gave independent
proofs of the fact that only nine such numbers exist;
both proofs were accepted. Baker (1971) and Stark
(1975) subsequently and independently solved the
generalized class number problem completely for
m �2. Oesterlé (1985) solved the case m �3, and
Arno (1992) solved the case m �4. Wagner (1996)
solve the cases n �5, 6, and 7. Arno et al. (1993)
solved the problem for ODD m satisfying 5 5m 523:
In his thesis, M. Watkins has solved the problem for
all m 516:/

See also CLASS NUMBER, GAUSS’S CLASS NUMBER

CONJECTURE, HEEGNER NUMBER

References
Arno, S. "The Imaginary Quadratic Fields of Class Number

4." Acta Arith. 40, 321 �/34, 1992.
Arno, S.; Robinson, M. L.; and Wheeler, F. S. "Imaginary

Quadratic Fields with Small Odd Class Number." Dec.
1993. http://www.math.uiuc.edu/Algebraic-Number-The-
ory/0009/.

Baker, A. "Linear Forms in the Logarithms of Algebraic
Numbers. I." Mathematika 13, 204 �/16, 1966.

Baker, A. "Imaginary Quadratic Fields with Class Number
2." Ann. Math. 94, 139 �/52, 1971.

Conway, J. H. and Guy, R. K. "The Nine Magic Discrimi-
nants." In The Book of Numbers. New York: Springer-
Verlag, pp. 224 �/26, 1996.

Goldfeld, D. M. "Gauss’ Class Number Problem for Imagin-
ary Quadratic Fields." Bull. Amer. Math. Soc. 13, 23�/7,
1985.

Heegner, K. "Diophantische Analysis und Modulfunktio-
nen." Math. Z. 56, 227 �/53, 1952.

Heilbronn, H. A. and Linfoot, E. H. "On the Imaginary
Quadratic Corpora of Class-Number One." Quart. J.
Math. (Oxford) 5, 293 �/01, 1934.

Ireland, K. and Rosen, M. A Classical Introduction to
Modern Number Theory, 2nd ed. New York: Springer-
Verlag, p. 192, 1990.

Lehmer, D. H. "On Imaginary Quadratic Fields whose Class
Number is Unity." Bull. Amer. Math. Soc. 39, 360, 1933.

Montgomery, H. and Weinberger, P. "Notes on Small Class
Numbers." Acta. Arith. 24, 529 �/42, 1974.
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Gauss’s Constant
The RECIPROCAL of the ARITHMETIC-GEOMETRIC MEAN

of 1 and
ffiffiffi
2

p
;

G �
1

M(1;
ffiffiffi
2

p
) 

(1)

�
2

p g
1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p dx (2)

�
2

p g 
p =2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2 u

p (3)

�

ffiffiffi
2

p

p
K

1ffiffiffi
2

p
 !

(4)

�
1

(2p)3=2 [G(1
4)]

2 (5)

�0 :83462684167 . . . (6)

(Sloane’s A014549), where K(k) is the complete
ELLIPTIC INTEGRAL OF THE FIRST KIND and G(z) is
the GAMMA FUNCTION. Gauss’s constant has CONTIN-

UED FRACTION [0, 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15,
...] (Sloane’s A053002).

The inverse of Gauss’s constant is given by

1

G
�1:1981402347355922074399 . . . (7)

(Sloane’s A053004), and has [1, 5, 21, 3, 4, 14, 1, 1, 1,
1, 1, 3, 1, 15, 1, ...] (Sloane’s A053003).

See also ARITHMETIC-GEOMETRIC MEAN, GAUSS-KUZ-

MIN-WIRSING CONSTANT, PYTHAGORAS’S CONSTANT
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Gauss’s Criterion
Let p be an ODD PRIME and b a POSITIVE INTEGER not
divisible by p . Then for each POSITIVE ODD INTEGER

2k�1Bp; let rk be



rk �(2k �1)b (modp)

with 0 Brk Bp ; and let t be the number of EVEN rk/s.
Then

(b=p) �(�1)t ;

where (b=p) is the LEGENDRE SYMBOL.
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Gauss’s Cyclotomic Formula
Let p � 3 be a PRIME NUMBER, then

4
xp � yp

x � y
�R2(x; y) �(�1)(p �1)=2pS2(x; y) ;

where R(x; y) and S(x; y) are HOMOGENEOUS POLY-

NOMIALS in x and y with integer COEFFICIENTS. Gauss
(1965, p. 467) gives the coefficients of R and S up to
p �23.

Kraitchik (1924) generalized Gauss’s formula to odd
SQUAREFREE integers n �3. Then Gauss’s formula
can be written in the slightly simpler form

4Fn(z) �A2
n(z) �(�1)(n�1)=2nz2B2

n(z) ;

where An(z) and Bn(z) have integer coefficients and
are of degree f(n) =2 and f(n) =2 �2; respectively,
with f(n) the TOTIENT FUNCTION and Fn(z) a CYCLO-

TOMIC POLYNOMIAL. In addition, An(z) is symmetric if
n is EVEN; otherwise it is antisymmetric. Bn(z) is
symmetric in most cases, but it antisymmetric if n is
OF THE FORM 4k �3 (Riesel 1994, p. 436). The follow-
ing table gives the first few An(z) and Bn(z)/s (Riesel
1994, pp. 436 �/42).

n /An(z)/ /Bn(z)/

5 /2z2 �z �2/ 1

7 /2z3 �z2 �z �2/ /z �1/

11 /2z5 �z4 �2z3 �2z2 �z �2/ /z3 �1/

See also AURIFEUILLEAN FACTORIZATION, CYCLO-

TOMIC POLYNOMIAL, LUCAS’S THEOREM
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Gauss’s Digamma Theorem
At rational arguments p =q; the DIGAMMA FUNCTION

c0(p =q) is given by

c0

p

q

 !
��g �ln(2q) �1

2 p cot
p

q
p

 !

�2
Xq =2d e�1

k �1

cos
2ppk

q

 !
ln sin

pk

q

 !" #
(1)

for 0 Bp Bq (Knuth 1997, p. 94). These give the
special values

co(
1
2) ��g �2 ln 2 (2)

c0(1
3) �

1
6(�6g � p

ffiffiffi
3

p
�9 ln 3) (3)

c0(2
3) �

1
6(�6g � p

ffiffiffi
3

p
�9 ln 3) (4)

c0(1
4) �

1
2(�2 g � p �6 ln 2) (5)

c0(3
4) �

1
2(�2 g � p �6 ln 2) (6)

c0(1
6) ��g �1

2

ffiffiffi
3

p
p �2 ln 2�3

2 ln 3) (7)

c0(5
6) ��g �1

2

ffiffiffi
3

p
p �2 ln 2�3

2 ln 3) (8)

c0(1) ��g ; (9)

where g is the EULER-MASCHERONI CONSTANT.

See also DIGAMMA FUNCTION
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Gauss’s Double Point Theorem
If a sequence of DOUBLE POINTS is passed as a CLOSED

CURVE is traversed, each DOUBLE POINT appears once
in an EVEN place and once in an ODD place.

References
Rademacher, H. and Toeplitz, O. The Enjoyment of Mathe-

matics: Selections from Mathematics for the Amateur.
Princeton, NJ: Princeton University Press, pp. 61�/6,
1957.

Gauss’s Equation (Radius Derivatives)
Expresses the second derivatives of the RADIUS

VECTOR r in terms of the CHRISTOFFEL SYMBOL OF

THE SECOND KIND.



rij �Gk
ijrk �(rij � n)n :

Gauss’s Formulas
Let a SPHERICAL TRIANGLE have sides a , b , and c with
A , B , and C the corresponding opposite angles. Then

sin[1
2(a � b)]

sin(1
2 c)

�
sin[1

2(A � B)]

cos(1
2 C) 

(1)

sin[1
2(a � b)]

sin(1
2 c)

�
cos[1

2(A � B)]

sin(1
2 C) 

(2)

cos[1
2(a � b)]

cos(1
2 c)

�
sin[1

2(A � B)]

cos(1
2 C) 

(3)

cos[1
2(a � b)]

cos(1
2 c)

�
cos[1

2(A � B)]

sin(1
2 C)

: (4)

These formulas are also known as Delambre’s analo-
gies (Smart 1960, p. 22).

See also SPHERICAL TRIGONOMETRY
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Gauss’s Forward Formula

fp �f0 �pd1=2 �G2 d
2
0 �G3 d

3
1=2 �G4 d

4
0 �G5 d

5
1=2

� . . . ;

for p � [0; 1]; where d is the CENTRAL DIFFERENCE and

G2n �
p �n �1

2n

$ %

G2n�1 �
p �n
2n �1

$ %
;

where n
k

" #
is a BINOMIAL COEFFICIENT.

See also CENTRAL DIFFERENCE, GAUSS’S BACKWARD

FORMULA
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Gauss’s Harmonic Function Theorem
If a function f is HARMONIC in a SPHERE, then the
value of f at the center of the SPHERE is the
ARITHMETIC MEAN of its value on the surface.

Gauss’s Hypergeometric Theorem

2F1(a ; b; c; 1)�
(c � b)�a

(c)�a

�
G(c) G(c � a � b)

G(c � a) G(c � b)

for R[c �a �b] > 0; where 2F1(a ; b; c; x) is a
(Gauss) HYPERGEOMETRIC FUNCTION. If a is a NEGA-

TIVE INTEGER �n; this becomes

2F1(�n; b; c; 1)�
(c � b)n

(c)n

;

which is known as the VANDERMONDE THEOREM.

See also DOUGALL’S FORMULA, GENERALIZED HYPER-

GEOMETRIC FUNCTION, HYPERGEOMETRIC FUNCTION,
THOMAE’S THEOREM, VANDERMONDE THEOREM
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Gauss’s Inequality
If a distribution has a single MODE at m0; then

P(½x�m0½]lt)5
4

9l2 ;

where

t2�s2�(m�m0)2:

Gauss’s Interpolation Formula

f (x):tn(x)�
X2n

k�0

fkzk(x);

where tn(x) is a trigonometric POLYNOMIAL of degree n



such that tn(xk) �fk for k � 0, ..., 2n; and

zk(x) �
sin 1

2(x � x0)
h i

� � � sin 1
2(x � xk�1)
h i

sin 1
2(xk � x0)
h i

� � � sin 1
2(xk � xk�1)
h i

�
sin 1

2(x � xk �1)
h i

� � � sin 1
2(x � x2n)
h i

sin 1
2(xk � xk �1)
h i

� � � sin 1
2(xk � x2n)
h i :
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Gauss’s Lemma
Let the multiples m , 2m; ..., [(p �1)=2]m of an
INTEGER such that p¶m be taken. If there are an
EVEN NUMBER r of least POSITIVE RESIDUES mod p of
these numbers > p=2 ; then m is a QUADRATIC RESIDUE

of p . If r is ODD, m is a QUADRATIC NONRESIDUE.
Gauss’s lemma can therefore be stated as (m½p) �
(�1)r ; where (m½p) is the LEGENDRE SYMBOL. It was
proved by Gauss as a step along the way to the
QUADRATIC RECIPROCITY THEOREM (Nagell 1951).

Another result known as Gauss’s lemma states that
for any two integer a and b , suppose d½ab : Then if d is
RELATIVELY PRIME to a , then d divides b (Séroul
2000, p. 10).

See also LEGENDRE SYMBOL, QUADRATIC RECIPROCITY

THEOREM
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Gauss’s Machin-Like Formula
The MACHIN-LIKE FORMULA

1
4 p �12 cot �1 18 �8 cot �1 57 �5 cot �1 239:

Gauss’s Mean-Value Theorem
Let f (z) be an ANALYTIC FUNCTION in ½z �a½BR: Then

f (z) �
1

2p g
2 p

0

f (z �rei u) du

for 0 Br BR:/

Gauss’s Polynomial Identity
For even h ,

1 �
1 � xh

1 � x
�

(1 � xh)(1 � xh�1)

(1 � x)(1 � x2)

�
(1 � xh)(1 � xh�1)(1 � xh�2)

(1 � x)(1 � x2)(1 � x3)
�. . .

�(1 �x)(1 �x3)(1 �x5) � � � (1 �xh�1) (1)

(Nagell 1951, p. 176). Writing out explicitly,

Xh

n �0

( �1)n Pn�1
k �0(1 � xh�k)

Pn
k�1

�
Y(h�1)=2

k �0

1 �x2k �1 : (2)

For example, for h � 2,

1 �
1 � x2

1 � x
�

(1 � x)(1 � x2)

(1 � x)(1 � x2) 
�2 �

1 � x2

1 � x
�1 �x; (3)

and for h �4,

1 �
1 � x4

1 � x
�

(1 � x4)(1 � x3)

(1 � x)(1 � x2)

�
(1 � x4)(1 � x3)(1 � x2)

(1 � x)(1 � x2)(1 � x3)

�
(1 � x)(1 � x2)(1 � x3)(1 � x4)

(1 � x)(1 � x2)(1 � x3)(1 � x4)

�2 �
2(1 � x4)

1 � x
�

(1 � x3)(1 � x4)

(1 � x)(1 � x2)

�(1 �x)(1 �x3) : (4)

See also Q -SERIES
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Gauss’s Polynomial Theorem
If an INTEGER POLYNOMIAL

f (x) �xN �C1xN �1 �C2xN �2 �. . .�CN

is divisible into a product of two POLYNOMIALS f � cf

c�xm�a1xm�1�. . .�am

f�xn�b1xn�1�. . .�bn;

then the COEFFICIENTS of these POLYNOMIALS are
INTEGERS.

See also ABEL’S IRREDUCIBILITY THEOREM, ABEL’S

LEMMA, KRONECKER’S POLYNOMIAL THEOREM, POLY-

NOMIAL, SCHÖ NEMANN’S THEOREM
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Gauss’s Reciprocity Theorem
QUADRATIC RECIPROCITY THEOREM

Gauss’s Test
If un > 0 and given B(n) a bounded function of n as
n 0 �; express the ratio of successive terms as

un

un �1

�����
������1 �

h

n 
�

B(n)

nr

for r �1. The SERIES converges for h �1 and diverges
for h 51 (Courant and John 1999, p. 567).

See also CONVERGENCE TESTS
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Gauss’s Theorem
DIVERGENCE THEOREM, GAUSS’S DIGAMMA THEOREM,
GAUSS’S DOUBLE POINT THEOREM, GAUSS’S HYPER-

GEOMETRIC THEOREM, GAUSS’S THEOREMA EGREGIUM

Gauss’s Theorema Egregium
Gauss’s theorema egregium states that the GAUSSIAN

CURVATURE of a surface embedded in 3-space may be
understood intrinsically to that surface. "Residents"
of the surface may observe the GAUSSIANCURVATURE

of the surface without ever venturing into full 3-
dimensional space; they can observe the curvature of
the surface they live in without even knowing about
the 3-dimensional space in which they are embedded.

In particular, GAUSSIAN CURVATURE can be measured
by checking how closely the ARC LENGTH of small
RADIUS CIRCLES correspond to what they should be in
EUCLIDEAN SPACE, 2pr : If the ARC LENGTH of CIRCLES

tends to be smaller than what is expected in EU-

CLIDEAN SPACE, then the space is positively curved; if
larger, negatively; if the same, 0 GAUSSIAN CURVA-

TURE.

Gauss (effectively) expressed the theorema egregium
by saying that the GAUSSIAN CURVATURE at a point is
given by �R(v; w)v; w where R is the RIEMANN

TENSOR, and v and w are an orthonormal basis for
the TANGENT SPACE.

See also CHRISTOFFEL SYMBOL OF THE SECOND KIND,
GAUSS EQUATIONS, GAUSSIAN CURVATURE
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Gauss’s Transformation
If

(1 �x sin2 a)sin b �(1 �x)sin a;

then

(1 �x) g 
a

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2 sin2 f

q �g 
b

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

4x

(1 � x)2 sin2 f

s :

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
LANDEN’S TRANSFORMATION

Gauss-Bodenmiller Theorem
The CIRCLES on the DIAGONALS of a COMPLETE QUAD-

RILATERAL as DIAMETERS are COAXAL. Furthermore,
the ORTHOCENTERS of the four TRIANGLES of a COM-

PLETE QUADRILATERAL are COLLINEAR on the RADICAL

AXIS of the COAXAL CIRCLES.

See also COAXAL CIRCLES, COLLINEAR, COMPLETE

QUADRILATERAL, DIAGONAL (POLYGON), ORTHOCEN-

TER, RADICAL AXIS
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Gauss-Bolyai-Lobachevsky Space
A non-Euclidean space with constant NEGATIVE

GAUSSIAN CURVATURE.

See also LOBACHEVSKY-BOLYAI-GAUSS GEOMETRY,
NON-EUCLIDEAN GEOMETRY

Gauss-Bonnet Formula
The Gauss-Bonnet formula has several formulations.
The simplest one expresses the total GAUSSIAN

CURVATURE of an embedded triangle in terms of the
total GEODESIC CURVATURE of the boundary and the
JUMP ANGLES at the corners.

More specifically, if M is any 2-D RIEMANNIAN

MANIFOLD (like a surface in 3-space) and if T is an
embedded triangle, then the Gauss-Bonnet formula
states that the integral over the whole triangle of the
GAUSSIAN CURVATURE with respect to AREA is given
by 2p minus the sum of the JUMP ANGLES minus the



integral of the GEODESIC CURVATURE over the whole of
the boundary of the triangle (with respect to ARC

LENGTH),

ggT

K dA�2p�
X

ai�g
@T

kg ds; (1)

where K is the GAUSSIAN CURVATURE, dA is the AREA

measure, the ai/s are the JUMP ANGLES of @T; and kg is
the GEODESIC CURVATURE of @T; with ds the ARC

LENGTH measure.

The next most common formulation of the Gauss-
Bonnet formula is that for any compact, boundaryless
2-D RIEMANNIAN MANIFOLD, the integral of the
GAUSSIAN CURVATURE over the entire MANIFOLD

with respect to AREA is 2p times the EULER CHAR-

ACTERISTIC of the MANIFOLD,

ggM

K dA�2px(M): (2)

This is somewhat surprising because the total GAUS-

SIAN CURVATURE is differential-geometric in charac-
ter, but the EULER CHARACTERISTIC is topological in
character and does not depend on differential geo-
metry at all. So if you distort the surface and change
the curvature at any location, regardless of how you
do it, the same total curvature is maintained.

Another way of looking at the Gauss-Bonnet theorem
for surfaces in 3-space is that the GAUSS MAP of the
surface has DEGREE given by half the EULER CHAR-

ACTERISTIC of the surface

ggM

K dA�2px(M)�
X

ai�g
@M

kg ds; (3)

which works only for ORIENTABLE SURFACES where M
is COMPACT. This makes the Gauss-Bonnet theorem a
simple consequence of the POINCARE-HOPF INDEX

THEOREM, which is a nice way of looking at things if
you’re a topologist, but not so nice for a differential
geometer. This proof can be found in Guillemin and
Pollack (1974). Millman and Parker (1977) give a
standard differential-geometric proof of the Gauss-
Bonnet theorem, and Singer and Thorpe (1996) give a
GAUSS’S THEOREMA EGREGIUM-inspired proof which is
entirely intrinsic, without any reference to the ambi-
ent EUCLIDEAN SPACE.

A general Gauss-Bonnet formula that takes into
account both formulas can also be given. For any
compact 2-D RIEMANNIAN MANIFOLD with corners, the
integral of the GAUSSIAN CURVATURE over the 2-
MANIFOLD with respect to AREA is 2p times the EULER

CHARACTERISTIC of the MANIFOLD minus the sum of
the JUMP ANGLES and the total GEODESIC CURVATURE

of the boundary.
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Gauss-Bonnet Theorem
GAUSS-BONNET FORMULA

Gaussian Approximation Algorithm
ARITHMETIC-GEOMETRIC MEAN

Gaussian Bivariate Distribution
The Gaussian bivariate distribution is given by

P(x1; x2)�
1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p exp �
z

2(1 � r2)

" #
; (1)

where

z�
(x1 � m1)2

s2
1

�
2r(x1 � m1)(x2 � m2)

s1s2

�
(x2 � m2)2

s2
2

; (2)

and

r�cor(x1; x2)�
s12

s1s2

(3)

is the CORRELATION of x1 and x2 (Kenney and Keeping
1951, pp. 92 and 202�/05; Whittaker and Robinson
1967, p. 329). The Gaussian bivariate distribution is
implemented in Mathematica as MultinormalDis-
tribution[{mu1 , mu2 }, {{sigma11 , sigma12 },
{sigma12 , sigma22 }}, {x1 , x2 }] in the Mathematica
add-on package Statistics‘MultinormalDis-
tribution‘ (which can be loaded with the command
BBStatistics‘).

The MARGINAL PROBABILITIES are then

P(x1)�g
�

��

P(x1; x2) dx2 �
1

s1

ffiffiffiffiffiffi
2p

p e�(x1�m1)2=(2s2
1
) (4)

and

P(x2)�g
�

��

P(x1; x2) dx1

�
1

s2

ffiffiffiffiffiffi
2p

p exp �
(x2 � m2)2

2s2
2ð Þ

" #
(5)

(Kenney and Keeping 1951, p. 202).

Let z1 and z2 be two independent Gaussian variables
with MEANS mi�0 and s2

i �1 for i�1, 2. Then the
variables a1 and a2 defined below are Gaussian
bivariates with unit VARIANCE and CROSS-CORRELA-

TION COEFFICIENT r :



a1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2

s
z1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2

s
z2 (6)

a2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2

s
z1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

2

s
z2 � (7)

To derive the Gaussian bivariate probability function,
let X1 and X2 be normally and independently dis-
tributed variates with MEAN 0 and VARIANCE 1, then
define

Y1�m1�s11X1�s12X2 (8)

Y2�m2�s21X1�s22X2 (9)

(Kenney and Keeping 1951, p. 92). The variates Y1

and Y2 are then themselves normally distributed with
MEANS m1 and m2; VARIANCES

s2
1�s2

11�s2
12 (10)

s2
2�s2

21�s2
22; (11)

and COVARIANCE

V12�s11s21�s12s22: (12)

The COVARIANCE matrix is defined by

Vij�
s2

1 rs1s2

rs1s2 s2
2

* �
; (13)

where

r�
V12

s1s2

�
s11s21 � s12s22

s1s2

� (14)

Now, the joint probability density function for x1 and
x2 is

f (x1; x2) dx1 dx2�
1

2p
e�(x2

1�x2
2)=2 dx1dx2; (15)

but from (8) and (9), we have

y1 �m1

y2 �m2

* �
�

s11 s12

s21 s22

* �
x1

x2

* �
� (16)

As long as

s11 s12

s21 s22

* �
"0; (17)

this can be inverted to give

x1

x2

* �
�

s11 s12

s21 s22

* ��1
y1 �m1

y2 �m2

* �

�
1

s11s22 � s12s21

s22 �s12

�s21 s11

* �
y1 �m1

y2 �m2

* �
: (18)

Therefore,

x2
1�x2

2�
s22(y1 � m1) � s12(y2 � m2)½ �2

(s11s22 � s12s21)2

�
�s21(y1 � m1) � s11(y2 � m2)½ �2

(s11s22 � s12s21)2 ; (19)

and expanding the NUMERATOR of (19) gives

s2
22(y1�m1)2�2s12s22(y1�m1)(y2�m2)�s2

12(y2�m2)2

�s2
22(y1�m1)2�2s11s21(y1�m1)(y2�m2)

�s2
11(y2�m2)2; (20)

so

(x2
1�x2

2)(s11s22�s12s21)2

�(y1�m1)2(s2
21�s2

22)�2(y1�m1)(y2�m2)

� (s11s21�s12s22)�(y2�m2)2(s2
21�s2

12)

�s2
2(y1�m1)2�2(y1�m1)(y2�m2)(rs1s2)�s2

1(y2�m2)2

�s2
1s

2
2

(y1 � m1)2

s2
1

�
2r(y1 � m1)(y2 � m2)

s1s2

�
(y2 � m2)2

s2
2

" #
� (21)

Now, the DENOMINATOR of (19) is

s2
11s

2
21�s2

11s
2
22�s2

12s
2
21�s2

12s
2
22�s2

11s
2
21

�2s11s12s21s22�s2
12s

2
22

�(s11s22�s12s21)2; (22)

so

1

1 � r2
�

1

1 �
V2

12

s2
1s

2
2

�
s2

1s
2
2

s2
1s

2
2 � V2

12

�
s2

1s
2
2

(s2
11 � s2

12)(s2
21 � s2

22) � (s11s21 � s12s22)2

� (23)

can be written simply as

1

1 � r2
�

s2
1s

2
2

(s11s22 � s12s21)2 ; (24)

and

x2
1�x2

2�
1

1 � r2

� (y1 � m1)2

s2
1

�
2r(y1 � m1)(y2 � m2)

s1s2

�
(y2 � m2)2

s2
2

" #
:

(25)

Solving for x1 and x2 and defining

r?�
s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
s11s22 � s12s21

(26)

gives



x1�
s22(y1 � m1) � s12(y2 � m2)

r?
(27)

x2�
�s21(y1 � m1) � s11(y2 � m2)

r?
� (28)

But the JACOBIAN is

J
x1; x2

y1; y2

 !
�

@x1

@y1

@x1

@y2

@x2

@y1

@x2

@y2

���������

���������
�

s22

r?
�

s12

r?

�
s21

r?

s11

r?

���������

���������
�

1

r?2
(s11s22�s12s21)�

1

r?
�

1

s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p ; (29)

so

dx1 dx2�
dy1dy2

s1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p (30)

and

1

2p
e�(x2

1�x2
2)=2 dx1 dx2

�
1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p exp �
z

2(1 � r2)

" #
dy1 dy2; (31)

where

z�
(y1 � m1)2

s2
1

�
2r(y1 � m1)(y2 � m2)

s1s2

�
(y2 � m2)2

s2
2

: (32)

Q.E.D.

In the singular case that

s11 s12

s21 s22

����
�����0 (33)

(Kenney and Keeping 1951, p. 94), it follows that

s11s12�s12s21 (34)

y1�mu1�s11x1�s12x2 (35)

y2�m1�
s12s21

s11

x2�m2�
s11s21x1 � s12s21x2

s11

�m2�
s21

s11

(s11x1�s12x2); (36)

so

y1�m1�x3 (37)

y2�m2�
s21

s11

x3; (38)

where

x3�y1�m1�
s11

s21

(y2�m2): (39)

The CHARACTERISTIC FUNCTION of the Gaussian bi-
variate distribution is given by

f(t1; t2)�g
�

��
g

�

��

ei(t1x1�t2x2)P(x1; x2) dx1 dx2

�N g
�

��
g

�

��

ei(t1x1�t2x2)exp �
z

2(1 � r2)

" #
dx1 dx2; (40)

where

z�
(x1 � m1)2

s2
1

�
2r(x1 � m1)(x2 � m2)

s1s2

�
(x2 � m2)2

s2
2

" #

(41)

and

N�
1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p : (42)

Now let

u�x1�m1 (43)

w�x2�m2: (44)

Then

f(t1; t2)

�N? g
�

��

eit2w exp �
1

2(1 � r2)

w2

s2
2

" # !
g

�

��

evet1u dudw;

(45)

where

v��
1

2(1 � r2)

1

s2
1

u2�
2rs1w

s2

u

" #

N?�
ei(t1m1�t2m2)

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p : (46)

COMPLETE THE SQUARE in the inner integral

g
�

��

exp �
1

2(1 � r2)

1

s2
1

u2�
2rs1w

s2

u

" #( )
et1u du

�g
�

��

exp �
1

2s2
1(1 � r2)

u�
r1s1w

s2

" #2
8<
:

9=
;

� 1

2s2
1(1 � r2)

r1s1w

s2

 !2
8<
:

9=
;eit1u du: (47)

Rearranging to bring the exponential depending on w
outside the inner integral, letting

v�u�r
s1w

s2

; (48)



and writing

eit1u �cos(t1u) �i sin(t1u) (49)

gives

f(t1 ; t2) �N ? g
�

��

eit2w exp �
1

2 s2
2(1 � r2)

w2

" #

�exp
r2

2s2
2(1 � r2) 

w2

" #
g

�

��

exp �
1

2s2
2(1 � r2) 

v2

" #

� cos t1 v �
rs1w

s2

 !" #
�i sin t1 v �

rs1w

s2

 !" #( )
dvdw:

(50)

Expanding the term in braces gives

cos(t1v)cos
rs1wt1

s2

 !
�sin(t1v)sin

rs1w

s2t1

 !" #

�i sin(t1v)cos
rs1w

s2t1

 !
�cos(t1v)sin

rs1wt1

s2

 !" #

� cos
rs1wt1

s2

 !
�i sin

rs1wt1

s2

 !" #

� [cos(t1v) �i sin(t1v)]

�exp
i rs1w

s2

t1

 !
[cos(t1v) �i sin(t1v)] : (51)

But e �ax2 

sin(bx) is ODD, so the integral over the sine
term vanishes, and we are left with

f(t1 ; t2) �N ? g
�

��

eit2w exp �
w2

2s2
2

" #
exp

r2w2

2s2
2(1 � r2)

" #

�exp
i rs1wt1

s2

" #
dw g

�

��

exp �
v2

2s2
1(1 � r2)

" #
cos(t1v) dv

�N ? g
�

��

exp iw t2 �t1 r
s1

s2

 ! !" #
exp �

w2

2 s2
2

" #
dw

g
�

��

exp �
v2

2 s2
1(1 � r2)

" #
cos(t1v) dv : (52)

Now evaluate the GAUSSIAN INTEGRAL

g
�

��

eikxe �ax2 

dx �g
�

��

e �ax2 

cos(kx) dx

�

ffiffiffi
p

a

s
e �k2 =4a (53)

to obtain the explicit form of the CHARACTERISTIC

FUNCTION,

f(t1 ; t2) �
ei(t1 m1 �t2 �m2)

2ps1 s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
� s2

ffiffiffiffiffiffi
2p

p
exp �1

4 t2 � r s1

s2
t1

� �2

2s2
2

* �1 �
� s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p(1 �p2)

p
exp[�2

12s2
1(1 � r2)]

n o
�ei(t1m1�t2m2) expf�1

2[t
2
2s

2
2�2rs1s2t1t2�r2s2

1t2
1

�(1�r2)s2
1t2

1]g

�exp[i(t1m1�t2m2)�1
2(s

2
1t2

1�2rs1s2t1t2�s2
1t2

1)]: (54)

See also BOX-MULLER TRANSFORMATION, GAUSSIAN

DISTRIBUTION, GAUSSIAN MULTIVARIATE DISTRIBU-

TION, NORMAL DISTRIBUTION, PRICE’S THEOREM
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Gaussian Brackets
A notation published by Gauss in Disquisitiones
Arithmeticae and defined by

½ ��1 (1)

a1½ ��a1 (2)

a1; a2½ �� a1½ �a2�½ � (3)

[a1; a2; . . . ; an]

�[a1; a2; . . . ; an�1]an�[a1; a2; . . . ; an�2]: (4)

Gaussian brackets are useful for treating CONTINUED

FRACTIONS because

1

a1 �
1

a2 �
1

a3 � . . . �
1

an

�
a2; an½ �
a1; an½ �

: (5)

The NOTATION [x] conflicts with that of GAUSSIAN

POLYNOMIALS and the NINT function.
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Gaussian Coefficient
Q -BINOMIAL COEFFICIENT

Gaussian Coordinate System
A coordinate system which has a METRIC satisfying
gii��1 and @gij=@xj�0:/

Gaussian Curvature
An intrinsic property of a space independent of the
coordinate system used to describe it. The Gaussian
curvature of a REGULAR SURFACE in R3 at a point p is
formally defined as

K(p)�det(S(p)); (1)

where S is the SHAPE OPERATOR and det denotes the
DETERMINANT.

If x : U 0 R3 is a REGULAR PATCH, then the Gaussian
curvature is given by

K�
eg � f 2

EG � F2
; (2)

where E , F , and G are coefficients of the first
FUNDAMENTAL FORM and e , f , and g are coefficients
of the second FUNDAMENTAL FORM (Gray 1997,
p. 377). The Gaussian curvature can be given entirely
in terms of the first FUNDAMENTAL FORM

ds2�E du2�2F du dv�G dv2 (3)

and the DISCRIMINANT

g�EG�F2 (4)

by

K�
1ffiffiffi
g

p
@

@v

ffiffiffi
g

p

E
G2

11

 !
�

@

@u

ffiffiffi
g

p

E
G2

12

 !" #
; (5)

where Gk
ij are the CONNECTION COEFFICIENTS. Equiva-

lently,

K�
1

g2

E F
@F

@v
�

1

2

@G

@u

F G
1

2

@G

@v
1

2

@E

@u
k23 k33

��������������

��������������
�

1

g2

E F
1

2

@E

@v

F G
1

2

@G

@u
1

2

@E

@v

1

2

@G

@v
0

��������������

��������������
; (6)

where

k23�
@F

@u
�

1

2

@E

@v
(7)

k33��
1

2

@2E

@v2
�

@2F

@u@v
�

1

2

@2G

@u2
: (8)

Writing this out,

K�
1

2g
2

@2F

@u@v
�

@2E

@v2
�

@2G

@u2

" #

�
G

4g2

@E

@u
2

@F

@v
�

@G

@u

 !
�

@E

@v

 !2
2
4

3
5� F

4g2

� @E

@u

@G

@v
�2

@E

@v

@G

@u
� 2

@F

@u
�

@E

@v

 !
2

@F

@v
�

@G

@u

 !" #

�
E

4g2

@G

@v
2

@F

@u
�

@E

@v

 !
�

@G

@u

 !2
2
4

3
5: (9)

The Gaussian curvature is also given by

K�
det(xuuxuxv)det(xvvxuxv) � [det(xuvxuxv)]

2

[½xu½
2½xv½

2 � (xu � xv)2]2 (10)

(Gray 1997, p. 380), as well as

K�
[N̂N̂1N̂2]ffiffiffi

g
p �

eij[N̂T̂T̂i]jffiffiffi
g

p ; (11)

where eij is the LEVI-CIVITA SYMBOL, N̂ is the unit
NORMAL VECTOR and T̂ is the unit TANGENT VECTOR.
The Gaussian curvature is also given by

K��
R

2
�k1k2�

1

R1R2

; (12)

where R is the CURVATURE SCALAR, k1 and k2 the
PRINCIPAL CURVATURES, and R1 and R2 the PRINCIPAL

RADII OF CURVATURE. For a MONGE PATCH with z�
h(u; v);

K�
huuhvv � h2

uv

(1 � h2
u � h2

v)2 : (13)

The Gaussian curvature K and MEAN CURVATURE H
satisfy

H2]K ; (14)

with equality only at UMBILIC POINTS, since

H2�K�1
4(k1�k2)2: (15)

If p is a point on a REGULAR SURFACE MƒR3 and vp

and wp are tangent vectors to M at p, then the
Gaussian curvature of M at p is related to the SHAPE

OPERATOR S by

S(vP)�S(wP)�K(p)vP�wP: (16)

Let Z be a nonvanishing VECTOR FIELD on M which is
everywhere PERPENDICULAR to M , and let V and W be
VECTOR FIELDS tangent to M such that V�W�Z;
then



K �
Z � (DVZ � DWZ)

2½Z ½4 
(17)

(Gray 1997, p. 410).

For a SPHERE, the Gaussian curvature is K �1=a2 :
For EUCLIDEAN SPACE, the Gaussian curvature is
K �0. For GAUSS-BOLYAI-LOBACHEVSKY SPACE, the
Gaussian curvature is K ��1=a2 : A FLAT SURFACE is
a REGULAR SURFACE and special class of MINIMAL

SURFACE on which Gaussian curvature vanishes
everywhere.

A point p on a REGULAR SURFACE M �R3 is classified
based on the sign of K(p) as given in the following
table (Gray 1997, p. 375), where S is the SHAPE

OPERATOR.

Sign Point

/K(p) > 0/ ELLIPTIC POINT

/K(p) B0/ HYPERBOLIC POINT

/K(p) �0 but S(p) "0/ PARABOLIC POINT

/K(p) �0 and S(p) �0/ PLANAR POINT

A surface on which the Gaussian curvature K is
everywhere POSITIVE is called SYNCLASTIC, while a
surface on which K is everywhere NEGATIVE is called
ANTICLASTIC. Surfaces with constant Gaussian cur-
vature include the CONE, CYLINDER, KUEN SURFACE,
PLANE, PSEUDOSPHERE, and SPHERE. Of these, the
CONE and CYLINDER are the only FLAT SURFACES OF

REVOLUTION.

See also ANTICLASTIC, BRIOSCHI FORMULA, DEVELOP-

ABLE SURFACE, ELLIPTIC POINT, FLAT SURFACE,
HYPERBOLIC POINT, INTEGRAL CURVATURE, MEAN

CURVATURE, METRIC TENSOR, MINIMAL SURFACE,
PARABOLIC POINT, PLANAR POINT, SYNCLASTIC, UM-

BILIC POINT
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Gaussian Curve
GAUSSIAN DISTRIBUTION

Gaussian Differential Equation
HYPERGEOMETRIC DIFFERENTIAL EQUATION

Gaussian Distribution

The Gaussian probability distribution with MEAN m

and STANDARD DEVIATION s is a normalized GAUSSIAN

FUNCTION OF THE FORM

P(x)�
1

s
ffiffiffiffiffiffi
2p

p e�(x�m)2=(2s2); (1)

where P(x) dx gives the probability that a variate
with a Gaussian distribution takes on a value in the
range [x; x�dx]: Statisticians commonly call this
distribution the NORMAL DISTRIBUTION and, because
of its curved flaring shape, social scientists refer to it
as the "bell curve." The distribution P(x) is properly
normalized for x � (�� �) since

g
�

��

P(x) dx�1: (2)

The cumulative DISTRIBUTION FUNCTION, which gives
the probability that a variate will assume a value5x;
is then the integral of the GAUSSIAN FUNCTION,

D(x)�g
x

��

P(x) dx�
1

s
ffiffiffiffiffiffi
2p

p g
x

��

e�(x�m)2=(2s2) dx: (3)

Gaussian distributions have many convenient proper-
ties, so random variates with unknown distributions
are often assumed to be Gaussian, especially in
physics and astronomy. Although this can be a
dangerous assumption, it is often a good approxima-
tion due to a surprising result known as the CENTRAL

LIMIT THEOREM. This theorem states that the MEAN of
any set of variates with any distribution having a
finite MEAN and VARIANCE tends to the Gaussian
distribution. Many common attributes such as test
scores, height, etc., follow roughly Gaussian distribu-
tions, with few members at the high and low ends and
many in the middle. Gaussian distributions are
frequently invoked in situations where they may not
be applicable. As Lippmann stated, "Everybody be-
lieves in the exponential law of errors: the experi-
menters, because they think it can be proved by
mathematics; and the mathematicians, because they
believe it has been established by observation" (Whit-
taker and Robinson 1967, p. 179).
Making the transformation

z�
x � m

s
; (4)

so that dz�dx=s; gives a variate with VARIANCE s2�
1 and MEAN m�0; transforming P(x) dx into



P(z) dz�
1ffiffiffiffiffiffi
2p

p e�z2=2 dz: (5)

The distribution having this probability function is
known as a standard NORMAL DISTRIBUTION, and z
defined in this way is known as a Z -SCORE.

The NORMAL DISTRIBUTION FUNCTION F(z) gives the
probability that a standard normal variate assumes a
value in the interval [0; z];

F(z)�
1ffiffiffiffiffiffi
2p

p g
z

0

e�x2=2 dx�1
2 erf

zffiffiffi
2

p
 !

; (6)

where ERF is a function sometimes called the error
function. Neither F(z) nor ERF can be expressed in
terms of finite additions, subtractions, multiplica-
tions, and ROOT EXTRACTIONS, and so both must be
either computed numerically or otherwise approxi-
mated. The value of a for which P(x) falls within the
interval [�a; a] with a given probability P is called
the P CONFIDENCE INTERVAL.

The Gaussian distribution is also a special case of the
CHI-SQUARED DISTRIBUTION, since making the substi-
tution

1
2 z�

(x � m)2

2s2
(7)

gives

d(1
2 z)�

(x � m)

s2
dx�

ffiffiffi
z

p

s
dx: (8)

Now, the real line x � (�� �) is mapped onto the
half-infinite interval z � [0; �) by this transforma-
tion, so an extra factor of 2 must be added to d(z=2);
transforming P(x) dx into

P(z) dz�
1

s
ffiffiffiffiffiffi
2p

p e�z=2 sffiffiffi
z

p 2(1
2 dz)�

e�z=2z�1=2

21=2G 1
2

� � dz (9)

(Kenney and Keeping 1951, p. 98), where use has
been made of the identity G(1=2)�

ffiffiffi
p

p
: As promised,

(9) is a CHI-SQUARED DISTRIBUTION in z with r�1
(and also a GAMMA DISTRIBUTION with a�1=2 and
(u�2)):/

The ratio X=Y of independent Gaussian-distributed
variates with zero MEAN is distributed with a CAUCHY

DISTRIBUTION. This can be seen as follows. Let X and
Y both have MEAN 0 and standard deviations of sx

and sy; respectively, then the joint probability density
function is the GAUSSIAN BIVARIATE DISTRIBUTION

with r�0;

f (x; y)�
1

2psxsy

e�[x2=(2s2
x )�y2=(2s2

y )]: (10)

From RATIO DISTRIBUTION, the distribution of U�
Y=X is

P(u)�g
�

��

xj jf (x; ux) dx

�
1

2psxsy
g

�

��

xj je�[x2=(2s2
x )�u2x2=(2s2

y )] dx

�
1

psxsy
g

�

0

x exp �x2 1

2s2
x

�
u2

2s2
y

 !" #
dx: (11)

But

g
�

0

xe�ax2

dx

� �
1

2a
e�ax2

" #�
0

�
1

2a
[0�(�1)]�

1

2a
; (12)

so

P(u)�
1

psxsy

1

2
1

2s2
x

�
u2

2s2
y

 !�
1

p

sxsy

u2s2
x � s2

y

�
1

p

sy

sx

u2 �
sy

sx

 !2 ; (13)

which is a CAUCHY DISTRIBUTION with MEAN m�0 and
full width

G�
2sy

sx

: (14)

The CHARACTERISTIC FUNCTION for the Gaussian
distribution is

f(t)�eimt�s2t2=2; (15)

and the MOMENT-GENERATING FUNCTION is

M(t)� etxh i�g
�

��

etx

s
ffiffiffiffiffiffi
2p

p e�(x�m)2=2s2

dx:

�
1

s
ffiffiffiffiffiffi
2p

p g
�

��

exp �
1

2s2
[x2�2(m�s2t)x�m2]

( )
dx:

(16)

COMPLETING THE SQUARE in the exponent,

1

2s2
[x2�2(m�s2t)x�m2]

�
1

2s2
f[x�(m�s2t)]2�[m2�(m�s2t)2]g (17)

Let

y�x�(m�s2t) (18)

dy�dx (19)



a�
1

2s2
: (20)

The integral then becomes

M(t)�
1

s
ffiffiffiffiffiffi
2p

p g
�

��

exp �ay2�
2ms2t � s4t2

2s2

" #
dy

�
1

s
ffiffiffiffiffiffi
2p

p g
�

��

exp[�ay2�mt�1
2 s

2t2] dy

�
1

s
ffiffiffiffiffiffi
2p

p emt�s2t2=2 g
�

��

e�ay2

dy

�
1

s
ffiffiffiffiffiffi
2p

p
ffiffiffi
p

a

s
emt�s2t2=2�

ffiffiffiffiffiffiffiffiffiffiffi
2s2p

p

s
ffiffiffiffiffiffi
2p

p emt�s2t2=2

�emt�s2t2=2; (21)

so

M?(t)�(m�s2t)emt�s2t2=2 (22)

M?(t)�s2emt�s2t2=2�emt�s2t2=2(m�ts2)2; (23)

and

m�M?(0)�m (24)

s2�M??(0)�[M?(0)]2�(s2�m2)�m2�s2: (25)

These can also be computed using

R(t)�ln[M(t)]�mt�1
2 s

2t2 (26)

R?(t)�m�s2t (27)

Rƒ(t)�s2; (28)

yielding, as before,

m�R?(0)�m (29)

s2�Rƒ(0)�s2: (30)

The raw moments can also be computed directly by
computing the MOMENTS about the origin m?n� xnh i;

m?n�
1

s
ffiffiffiffiffiffi
2p

p g
�

��

xne�(x�m)2=2s2

dx: (31)

(Papoulis 1984, pp. 147�/48). Now let

u�
x � mffiffiffiffiffiffi

2s
p (32)

du�
dxffiffiffiffiffiffi
2s

p (33)

x�su
ffiffiffi
2

p
�m; (34)

giving the raw moments in terms of GAUSSIAN

INTEGRALS,

m?n�

ffiffiffiffiffiffi
2s

p

s
ffiffiffiffiffiffi
2p

p g
�

��

xne�u2

du�
1ffiffiffi
p

p g
�

��

xne�u2

du: (35)

Evaluating these integrals gives

m?0�1 (36)

m?1�m (37)

m?2�m2�s2 (38)

m?3�m(m2�3s2) (39)

m?4�m4�6m2s2�3s4: (40)

Now find the MOMENTS about the MEAN,

m1�0 (41)

m2�s2 (42)

m3�0 (43)

m4�3s4; (44)

so the VARIANCE, SKEWNESS, and KURTOSIS are given
by

var(x)�s2 (45)

g1�
m3

s3
�0 (46)

g2�
m4

s4
�3�

3s4

s4
�3�0 (47)

Cramer showed in 1936 that if X and Y are INDE-

PENDENT variates and X�Y has a Gaussian distribu-
tion, then both X and Y must be Gaussian (CRAMER’S

THEOREM). An easier result states that the sum of n
variates each with is Gaussian distribution also has a
Gaussian distribution. This follows from the result

Pn(x)�F�1f[f(t)]ng�e�(x�nm)2=(2ns2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pns2

p ; (48)

where f(t) is the CHARACTERISTIC FUNCTION and
F�1[f ] is the inverse FOURIER TRANSFORM, taken
with parameters a�b�1:/

The VARIANCE of the SAMPLE VARIANCE s2 for a
general distribution is given by

var(s2)�
(N � 1)[(N � 1)m?4 � (N � 3)m?2

2]

N3
; (49)

which simplifies in the case of a Gaussian distribu-
tion to

var(s2)�
2(N � 1)(m4 � 2Nm2s2 � Ns4)

N3
(50)

which, if m�0; further simplifies to



var(s2) �
2s4(N � 1)

N2 
(51)

(Kenney and Keeping 1951, p. 164).

The CUMULANT-GENERATING FUNCTION for a Gaussian
distribution is

K(h) �ln(e n1hes
2h2 =2) � n1h �1

2 s
2h2 ; (52)

so

k1 � n1 (53)

k2 � s2 (54)

kr �0 for r > 2: (55)

For Gaussian variates, kr �0 for r �2, so the var-
iance of K -STATISTIC k3 is

var(k3) �
k6

N 
�

9 k2 k4

N � 1 
�

9 k2
3

N � 1 
�

6k3
2

N(N � 1)(N � 2)

�
6k3

2

N(N � 1)(N � 2) 
: (56)

Also,

var(k4) �
24k4

2N(N � 1)2

(N � 3)(N � 2)(N � 3)(N � 5)
(57)

var(g1) �
6N(N � 1)

(N � 2)(N � 1)(N � 3)
(58)

var(g2) �
24N(N � 1)2

(N � 3)(N � 2)(N � 3)(N � 5) 
; (59)

where

g1 �
k3

k3=2
2

(60)

g2 �
k4

k2
2

: (61)

If P(x) is a Gaussian distribution, then

D(x) �
1

2
1 �erf

x � m

s
ffiffiffi
2

p
 !" #

; (62)

so variates xi with a Gaussian distribution can be
generated from variates yi having a UNIFORM DIS-

TRIBUTION in (0,1) via

xi � s
ffiffiffi
2

p
erf �1(2yi �1) � m: (63)

However, a simpler way to obtain numbers with a
Gaussian distribution is to use the BOX-MULLER

TRANSFORMATION.

The Gaussian distribution is an approximation to the
BINOMIAL DISTRIBUTION in the limit of large numbers,

P(n1) �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pNpq
p exp �

(n1 � Np)2

2Npq

" #
; (64)

where n1 is the number of steps in the POSITIVE

direction, N is the number of trials ( (N �n1 �n2));
and p and q are the probabilities of a step in the
POSITIVE direction and NEGATIVE direction (/
(q �1 �p)):/

The differential equation having a Gaussian distribu-
tion as its solution is

dy

dx
�

y(m� x)

s2
; (65)

since

dy

y
�

m� x

s2
dx (66)

ln
y

yo

 !
��

1

2s2
(m�x)2 (67)

y�y0e�(x�m)2=2s2

: (68)

This equation has been generalized to yield more
complicated distributions which are named using the
so-called PEARSON SYSTEM.

See also BINOMIAL DISTRIBUTION, BOX-MULLER

TRANSFORMATION, CENTRAL LIMIT THEOREM, ERF,
GAUSSIAN BIVARIATE DISTRIBUTION, GAUSSIAN DIS-

TRIBUTION–LINEAR COMBINATION OF VARIATES, GAUS-

SIAN FUNCTION, LOGIT TRANSFORMATION, NORMAL

DEVIATES, NORMAL DISTRIBUTION, NORMAL DISTRI-

BUTION FUNCTION, PEARSON SYSTEM, RATIO DISTRI-

BUTION, Z -SCORE
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Gaussian Distribution Linear
Combination of Variates
If x is NORMALLY DISTRIBUTED with MEAN m and
VARIANCE s2; then a linear function of x ,

y�ax�b; (1)

is also NORMALLY DISTRIBUTED. The new distribution
has MEAN am�b and VARIANCE a2s2; as can be



derived using the MOMENT-GENERATING FUNCTION

M(t) � et(ax �b)
4 5

�etb eatxh i�etbe mat �s2(at)2 =2

etb �mat �s2a2t2 =2 �e(b�a m)t �a2 s2t2 =2 ; (2)

which is of the standard form with

m ?�b �a (3)

s?2 �a2 s2 : (4)

For a weighted sum of independent variables

y �
Xn

i �1

aixi ; (5)

the expectation is given by

M(t) � eyth i� exp t
Xn

i�1

aixi

 !* +

� ea1tx1 ea2tx2 � � � eantxnh i�
Yn

i�1

eaitxih i

�
Yn

i �1

exp(ai mit �
1
2 a

2
i s

2
i t

2) : (6)

Setting this equal to

exp( mt �1
2 s

2t2) (7)

gives

m �
Xn

i�1

ai mi (8)

s2 �
Xn

i�1

a2
i s

2
i : (9)

Therefore, the MEAN and VARIANCE of the weighted
sums of n RANDOM VARIABLES are their weighted
sums.

If xi are INDEPENDENT and NORMALLY DISTRIBUTED

with MEAN 0 and VARIANCE s2 ; define

yi �
X

j

cijxj ; (10)

where c obeys the ORTHOGONALITY CONDITION

cikcjk � dij ; (11)

with dij the KRONECKER DELTA. Then yi are also
independent and normally distributed with MEAN 0
and VARIANCE s2:/

See also GAUSSIAN DISTRIBUTION

Gaussian Elimination
A method for solving MATRIX EQUATIONS OF THE FORM

Ax�b: (1)

To perform Gaussian elimination starting with the
system of equations

a11 a12 � � � a1k

a21 a22 � � � a2k

n n ::: n
ak1 ak2 � � � akk

2
664

3
775

x1

x2

n
xk

2
664

3
775�

b1

b2

n
bk

2
664

3
775; (2)

compose the "augmented matrix equation"

a11 a12 � � � a1k

a21 a22 � � � a2k

n n ::: n
ak1 ak2 � � � akk

b1

b2

n
bk

��������
3
775

x1

x2

n
xk

2
664

3
775:

2
664 (3)

Here, the COLUMN VECTOR in the variables x is
carried along for labeling the matrix rows. Now,
perform ELEMENTARY ROW AND COLUMN OPERATIONS

to put the augmented matrix into the UPPER TRIAN-

GULAR form

a?11 a?12 � � � a?1k

0 a?22 � � � a?2k

n n ::: n
0 0 � � � a?kk

b?1
b?2
n

b?k

��������
3
775:

2
664 (4)

Solve the equation of the kth row for xk; then
substitute back into the equation of the (k�1)/st row
to obtain a solution for xk�1; etc., according to the
formula

xi�
1

a?ii
b?i�

Xk

j�i�1

a?ijxj

 !
: (5)

For example, consider the MATRIX EQUATION

9 3 4
4 3 4
1 1 1

2
4

3
5 x1

x2

x3

2
4

3
5� 7

8
3

2
4
3
5: (6)

In augmented form, this becomes

9 3 4
4 3 4
1 1 1

7
8
3

������
3
5 x1

x2

x3

2
4

3
5:

2
4 (7)

Switching the first and third rows gives

1 1 1
4 3 4
9 3 4

3
8
7

������
3
5 x1

x2

x3

2
4

3
5:

2
4 (8)

Subtracting 9 times the first row from the third row
gives



1 1 1
4 3 4
0 �6 �5

3
8

�20

������
3
5 x1

x2

x3

2
4

3
5:

2
4 (9)

Subtracting 4 times the first row from the second row
gives

1 1 1
0 �1 0
0 �6 �5

3
�4

�20

������
3
5 x1

x2

x3

2
4

3
5:

2
4 (10)

Finally, adding �6 times the second column to the
third one gives

1 1 1
0 �1 0
0 0 �5

3
�4

4

������
3
5 x1

x2

x3

2
4

3
5:

2
4 (11)

Restoring the transformed matrix equation gives

1 1 1
0 �1 0
0 0 �5

2
4

3
5 x1

x2

x3

2
4

3
5� 3

�4
4

2
4

3
5; (12)

which can be solved immediately to give x3 ��4=5;
back-substituting to obtain x2 �4 (which actually
follows trivially in this example), and then again
back-substituting to find x1��1=5/

See also CONDENSATION, ELEMENTARY ROW AND

COLUMN OPERATIONS, GAUSS-JORDAN ELIMINATION,
LU DECOMPOSITION, MATRIX EQUATION, SQUARE

ROOT METHOD
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Gaussian Function

In 1-D, the Gaussian function is the function from the
GAUSSIAN DISTRIBUTION,

f (x)�
1

s
ffiffiffiffiffiffi
2p

p e�(x�m)2=2s2

; (1)

sometimes also called the FREQUENCY CURVE. The
FULL WIDTH AT HALF MAXIMUM (FWHM) for a Gaus-
sian is found by finding the half-maximum points x0:
The constant scaling factor can be ignored, so we
must solve

e�(x0�m)2=2s2

�1
2 f (xmax) (2)

But f (xmax) occurs at xmax�m; so

e�(x0�m)2=2s2

�1
2 f (m)�1

2: (3)

Solving,

e�(x0�m)2=2s2

�2�1 (4)

�
(x0 � m)2

2s2
��ln 2 (5)

(x0�m)2�2s2 ln 2 (6)

x09s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
�m: (7)

The FULL WIDTH AT HALF MAXIMUM is therefore given



by

FWHM �x��x �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
s :2:3548s : (8)

In 2-D, the circular Gaussian function is the distribu-
tion function for uncorrelated variables x and y
having a GAUSSIAN BIVARIATE DISTRIBUTION and
equal STANDARD DEVIATION s � sx � sy ;

f (x; y) �
1

2ps2 
e �[(x� mz)

2�(y�my)2]=2s2 

: (9)

The corresponding elliptical Gaussian function corre-
sponding to sx " sy is given by

f (x; y) �
1

2psx sy

e �[(x � mz)
2 =2s2

z�(y�my)2 =2 s2
y ] : (10)

The Gaussian function can also be used as an
APODIZATION FUNCTION, shown above with the corre-
sponding INSTRUMENT FUNCTION.
The HYPERGEOMETRIC FUNCTION is also sometimes
known as the Gaussian function.

See also ERF, ERFC, FOURIER TRANSFORM–GAUSSIAN,
GAUSSIAN BIVARIATE DISTRIBUTION, GAUSSIAN DIS-

TRIBUTION, NORMAL DISTRIBUTION
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Gaussian Hypergeometric Series
HYPERGEOMETRIC FUNCTION

Gaussian Integer
A COMPLEX NUMBER a �bi where a and b are
INTEGERS. The Gaussian integers are members of
the IMAGINARY QUADRATIC FIELD Q(

ffiffiffiffiffiffi
�1

p
) and form a

RING often denoted Z[i]: The sum, difference, and
product of two Gaussian integers are Gaussian
integers, but (a �bi) ½(c �di) only if there is an e �fi
such that

(a �bi)(e �fi) �(ae �bf ) �(af �be)i �c �di :

Gaussian integers can be uniquely factored in terms
of other Gaussian integers (known as GAUSSIAN

PRIMES) up to POWERS of i and rearrangements. The
units of Z[i] are 9 1 and 9i; and the norm of a
Gaussian integer is defined by

n(x �iy) �x2 �y2 :

Every Gaussian integer is within nj j=
ffiffiffi
2

p
of a multiple

of a Gaussian integer n .

See also COMPLEX NUMBER, EISENSTEIN INTEGER,
GAUSSIAN PRIME, INTEGER, OCTONION
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Gaussian Integral
The Gaussian integral, also called the PROBABILITY

INTEGRAL and closely related to the ERF function, is
the integral of the 1-D GAUSSIAN FUNCTION over
(��; �): It can be computed using the trick of
combining two 1-D Gaussians

g
�

��

e�x2

dx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�

��

e�y2 dy

$ %
g

�

��

e�x2 dx

$ %s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�

��
g

�

��

e�(x2�y2)dy dx

s
(1)

and switching to POLAR COORDINATES,

g
�

��

e�x2

dx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2p

0 g
�

0

e�r2 r dr du

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �1

2 e�r2

h i�
0

r
�

ffiffiffi
p

p
: (2)

However, a simple proof can also be given which does
not require transformation to POLAR COORDINATES

(Nicholas and Yates 1950).

The integral from 0 to a finite upper limit a can be
given by the CONTINUED FRACTION

g
a

0

e�t2

dt�1
2

ffiffiffi
p

p
erfa



1
2

ffiffiffi
p

p
�

e�a2

2a�

1

a�

2

2a

3

a�

4

2a � . . .
; (3)

first stated by Laplace, proved by Jacobi, and redis-
covered by Ramanujan (Watson 1928; Hardy 1999,
pp. 8�/).

The general class of integrals OF THE FORM

In(a)�g
�

0

e�ax2

xn dx (4)

can be solved analytically by setting

x�a�1=2y (5)

dx�a�1=2dy (6)

y2�ax2: (7)

Then

In(a)�a�1=2g
�

0

e�y2

(a�1=2y)n dy

�a�(n�1)=2g
�

0

e�y2

yn dy: (8)

For n�0, this is just the usual Gaussian integral, so

I0(a)�
ffiffiffi
p

p

2
a�1=2�

1

2

ffiffiffiffiffi
p

a
:

s
(9)

For n�1, the integrand is integrable by quadrature,

I1(a)�a�1g
�

0

e�y2y dy�a�1 �1
2 e�y2

h i�
0
�1

2 a�1: (10)

To compute In(a) for n �1, use the identity

�
@

@a
In�2(a)��

@

@a g
�

0

e�ax2

xn�2 dx

��g
�

0

�x2e�ax2

xn�2 dx

�g
�

0

e�ax2

xn dx�In(a): (11)

For n�2s EVEN,

In(a)� �
@

@a

 !
In�2(a)� �

@

@a

 !2

In�4

�. . .� �
@

@a

 !n=2

I0(a)

�
@n=2

@an=2
I0(a)�

ffiffiffi
p

p

2

@n=2

@an=2
a�1=2; (12)

so

g
�

0

x2se�ax2

dx�
(s � 1

2)!

2as�1=2
�

(2s � 1)!!

2s�1as

ffiffiffi
p

a

s
: (13)

If n�2s�1 is ODD, then

In(a)� �
@

@a

 !
In�2(a)� �

@

@a

 !2

In�4(a)

�. . .� �
@

@a

 !(n�1)=2

I1(a)

�
@(n�1)=2

@a(n�1)=2
I1(a)�

1

2

@(n�1)=2

@a(n�1)=2
a�1; (14)

so

g
�

0

x2s�1e�ax2

dx�
s!

2as�1
: (15)

The solution is therefore

g
�

0

e�ax2

xn dx

�

(n � 1)!!

2n=2�1an=2

ffiffiffi
p

a

s
for n even

1
2 (n � 1)
h i

!

2a(n�1=2)
for n odd:

8>>>>><
>>>>>:

(16)

The first few values are therefore

I0(a)�
1

2

ffiffiffi
p

a

s
(17)

I1(a)�
1

2a
(18)

I2(a)�
1

4a

ffiffiffi
p

a

s
(19)

I3(a)�
1

2a2
(20)

I4(a)�
3

8a2

ffiffiffi
p

a

s
(21)

I5(a)�
1

a3
(22)

I6(a)�
15

16a3

ffiffiffi
p

a

s
: (23)

A related, often useful integral is

Hn(a)�
1ffiffiffi
p

p g
�

��

e�ax2

xn dx; (24)



which is simply given by

Hn(a) �
2In(a)ffiffiffi

p
p for n even

0 for n odd:

8<
: 

(25)

The more general integral of xne �ax2�bx has the
following closed forms

g
�

��

xne �ax2�bx dx

�i �na�(n�1)=2
ffiffiffi
p

p
eb2 =(4a)U(�1

2 n; 1
2; �b2 =4a) (26)

�

ffiffiffi
p

a

s
eb2 =(4a)

Xn�1

k �0

n!

k!(n � 2k)!

(2b)n�2k

(4a)n�k (27)

�

ffiffiffi
p

a

s
eb2 =(4a)

Xn�1

k �0

n
2kð Þ(2k �1)!!(2a)k �nbn�2k (28)

for integer n �0 (F. Pilolli), where U(a; b; x) is a
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE SEC-

OND KIND and n
k

" #
is a BINOMIAL COEFFICIENT.

See also DIFFERENTIATING UNDER THE INTEGRAL

SIGN, ERF, GAUSSIAN DISTRIBUTION, GAUSSIAN FUNC-

TION
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Gaussian Joint Variable Theorem
Also called the MULTIVARIATE THEOREM. Given an
EVEN number of variates from a NORMAL DISTRIBU-

TION with MEANS all 0,

x1x2h i� x1h i x2h i; (1)

x1x2x3x4h i� x1x2h i x3x4h i� x1x3h i x2x4h i� x1x4h i
x2x3h i; (2)

etc. Given an ODD number of variates,

x1h i�0; (3)

x1x2x3h i�0; (4)

etc.

Gaussian Mountain Range
CAROTID-KUNDALINI FUNCTION

Gaussian Multinormal Distribution
GAUSSIAN MULTIVARIATE DISTRIBUTION

Gaussian Multivariate Distribution
A Gaussian p -variate multinormal (or multivariate)
distribution is a generalization of the GAUSSIAN

BIVARIATE DISTRIBUTION. The p -multivariate distri-
bution with mean vector m and COVARIANCE MATRIX S
is denoted Np( m; Sigma) : The Gaussian multivariate
distribution is implemented in Mathematica as Mul-
tinormalDistribution[{mu1 , mu2 , ...},
{{sigma11 , sigma12 , ...}, {sigma12 , sigma22 , ...}...},
{x1 , x2 , ...}] in the Mathematica add-on package
Statistics‘MultinormalDistribution‘ (which
can be loaded with the command BBStatistics‘)
(where the matrix a is symmetrical since sij�sji):/

See also GAUSSIAN BIVARIATE DISTRIBUTION, GAUS-

SIAN DISTRIBUTION, JOINT THEOREM, MULTIVARIATE

THEOREM

Gaussian Polynomial
Q -BINOMIAL COEFFICIENT, Q -BRACKET

Gaussian Prime

Gaussian primes are GAUSSIAN INTEGERS z�a�bi
satisfying one of the following properties.

1. If both a and b are nonzero then, a�bi is a
Gaussian prime IFF a2�b2 is an ordinary PRIME.
2. If a � 0, then bi is a Gaussian prime IFF bj j is
an ordinary PRIME and b�3:/
3. If b � 0, then a is a Gaussian prime IFF aj j is an
ordinary PRIME and a�3:/

The above plot of the COMPLEX PLANE shows the
Gaussian primes as filled squares.

The primes which are also Gaussian primes are 3, 7,
11, 19, 23, 31, 43, ... (Sloane’s A002145). The Gaus-
sian primes with aj j; bj j55 are given by�5�4i;�5�
2i; �5�2i; �5�4i; �4�5i; �4�i; �4�i; �4�5i;
�3�2i; -3, �3�2i; �2�5i; �2�3i; �2�i; �2�i;
�2�3i;�2�5i;�1�4i;�1�2i;�1�i;�1�i;�1�
2i;�1�4i;�3i; 3i; 1�4i; 1�2i; 1�i; 1�i; 1�2i; 1�



4i ; 2 �5i ; 2 �3i ; 2 �i; 2 �i; 2 �3i ; 2 �5i; 3 �2i ; 3; 3 �
2i ; 4 �5i; 4 �i; 4 �i ; 4 �5i ; 5 �4i; 5 �2i ; 5 �2i ; 5 �4i:/

See also EISENSTEIN INTEGER, GAUSSIAN INTEGER,
MOAT-CROSSING PROBLEM
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Gaussian Quadrature
Seeks to obtain the best numerical estimate of an
integral by picking optimal ABSCISSAS xi at which to
evaluate the function f (x): The FUNDAMENTAL THEO-

REM OF GAUSSIAN QUADRATURE states that the opti-
mal ABSCISSAS of the m -point GAUSSIAN QUADRATURE

FORMULAS are precisely the roots of the orthogonal
POLYNOMIAL for the same interval and WEIGHTING

FUNCTION. Gaussian quadrature is optimal because it
fits all POLYNOMIALS up to degree 2m exactly. Slightly
less optimal fits are obtained from RADAU QUADRA-

TURE and LAGUERRE QUADRATURE.

/W(x)/ interval /xi are roots of

1 /(�1; 1)/ /Pn(x)/

/e�t
/ /(0; �)/ /Ln(x)/

/e�t2
/ /(��; �)/ /Hn(x)/

/(1�t2)�1=2
/ /(�1; 1)/ /Tn(x)/

/(1�t2)1=2
/ /(�1; 1)/ /Un(x)/

/x1=2
/ /(0; 1)/ /x�1=2P2n�1(

ffiffiffi
x

p
)/

/x�1=2
/ /(0; 1)/ /Pn

ffiffiffi
x

p
ð Þ/

To determine the weights corresponding to the
Gaussian ABSCISSAS xi; compute a LAGRANGE INTER-

POLATING POLYNOMIAL for f (x) by letting

p(x)�
Ym
j�1

(x�xj) (1)

(where Chandrasekhar 1967 uses F instead of p); so

p?(xj)�
dp

dx

" #
x�xj

�
Ym
i�1

i"j

(xj�xi): (2)

Then fitting a LAGRANGE INTERPOLATING POLYNOMIAL

through the m points gives

f(x)�
Xm

j�1

p(x)

(x � xj)p?(xj)
f (xj) (3)

for arbitrary points x . We are therefore looking for a
set of points xj and weights wj such that for a
WEIGHTING FUNCTION W(x);

g
b

a

f(x)W(x) dx�g
b

a

Xm

j�1

p(x)W(x)

(x � xj)p?(xj)
dx f (xj)

�
Xm

j�1

wjf (xj); (4)

with WEIGHT

wj�
1

p?(xj) g
b

a

p(x)W(x)

x � xj

dx: (5)

The weights wj are sometimes also called the CHRIS-

TOFFEL NUMBER (Chandrasekhar 1967). For orthogo-
nal POLYNOMIALS fj(x) with j�1, ..., n ,

fj(x)�Ajp(x) (6)

(Hildebrand 1956, p. 322), where An is the COEFFI-

CIENT of xn in fn(x); then

wj�
1

f?n(xj) g
b

a

W(x)
f(x)

x � xj

dx

��
An�1gn

Anf?n(xj)fn�1(x)
; (7)

where

gm�g [fm(x)]2W(x) dx: (8)

Using the relationship

fn�1(xi)��
An�1An�1

A2
n

gn

gn�1

fn�1(xi) (9)

(Hildebrand 1956, p. 323) gives

wj�
An

An�1

gn�1

f?n(xj)fn�1(xj)
: (10)

(Note that Press et al. 1992 omit the factor An=An�1:/)



In Gaussian quadrature, the weights are all POSITIVE.
The error is given by

En �
f (2n)( j)

(2n)! g
b

a

W(x)[p(x)]2 dx �
gn

A2
n

f (2n)( j)

(2n)!
; (11)

where a B j Bb (Hildebrand 1956, pp. 320 �/21).

Other curious identities are

Xm

k �0

[ fk(x)]2

gk

�
Am

Am�1 gm

[ f?m�1(x)fm(x) � f?m(x) fm�1(x)] (12)

and

Xm

k �0

[fk(x)]2

gk
��

Am f?m(xi)fm�1(xi)

Am�1 gm

�
1

wi

(13)

(Hildebrand 1956, p. 323).

In the NOTATION of Szego (1975), let x1n B. . .Bxnn be
an ordered set of points in [a, b ], and let l1n ; ..., lnn be
a set of REAL NUMBERS. If f (x) is an arbitrary function
on the CLOSED INTERVAL [a, b ], write the MECHANICAL

QUADRATURE as

Qn(f ) �
Xn

n�1

lnnf (xnn) : (14)

Here xnn are the ABSCISSAS and lnn are the COTES

NUMBERS.

See also CHEBYSHEV QUADRATURE, CHEBYSHEV-

GAUSS QUADRATURE, CHEBYSHEV-RADAU QUADRA-

TURE, FUNDAMENTAL THEOREM OF GAUSSIAN QUAD-

RATURE, HERMITE-GAUSS QUADRATURE, JACOBI-

GAUSS QUADRATURE, LAGUERRE-GAUSS QUADRATURE,
LEGENDRE-GAUSS QUADRATURE, LOBATTO QUADRA-

TURE, MEHLER QUADRATURE, RADAU QUADRATURE
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Gaussian Sum
A sum OF THE FORM

S(p ; q) �
Xq �1

r�0

e �pir2p=q ; (1)

where p and q are RELATIVELY PRIME INTEGERS. The
symbol 8 is sometimes used instead of S . Although
the restriction to RELATIVELY PRIME INTEGERS is often
useful, it is not necessary, and Gaussian sums can be
written so as to be valid for all integer q (Borwein and
Borwein 1987, pp. 83 and 86).

If (n ; n?) �1; then

S(m; nn?) �S(mn?; n)S(mn ; n?) (2)

(Nagell 1951, p. 178). Gauss showed that

S(1; q)�
1 � iq

1 � i

ffiffiffi
q

p
(3)

for ODD q . Written explicitly

S(1; q)�

(i�1)
ffiffiffi
q

p
for q�0 (mod 4)ffiffiffi

q
p

for q�1 (mod 4)
0 for q�2 (mod 4)

i
ffiffiffi
q

p
for q�3 (mod 4)

8>><
>>: (4)

(Nagell 1951, p. 177).

For p and q of opposite PARITY (i.e., one is EVEN and
the other is ODD), SCHAAR’S IDENTITY states

1ffiffiffi
q

p
Xq�1

r�0

e�pir2=q�
e�pi=4ffiffiffi

p
p

Xp�1

r�0

epir2q=p: (5)

Such sums are important in the theory of QUADRATIC

RESIDUES.

See also KLOOSTERMAN’S SUM, QUADRATIC RESIDUE,
SCHAAR’S IDENTITY, SINGULAR SERIES
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Gauss-Jackson Method
A method for numerical solution of a second-order
ordinary differential equation

yƒ�f (x ; y)

first expounded by Gauss. It proceeds by introducing
a function d �2f whose second differences are f . The
advantage of this method is that summation to get
d�2 can be done exactly and that each rounding-off
error in the correction term arises only a single time
(Jeffreys and Jeffreys 1988, p. 300).
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Gauss-Jacobi Mechanical Quadrature
If x1 Bx2 B. . .Bxn denote the zeros of pn(x); there
exist REAL NUMBERS l1 ; l2 ; . . .  ; ln such that

g
b

a

r(x) da(x) � l1 r(x1) � l2 r(x2) �. . .� ln r(xn) ;

for an arbitrary POLYNOMIAL of order 2n �1 and the
l ?ns are called CHRISTOFFEL NUMBERS. The distribu-
tion da(x) and the INTEGER n uniquely determine
these numbers ln :/
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Gauss-Jordan Elimination
A method for finding a MATRIX INVERSE. To apply
Gauss-Jordan elimination, operate on a MATRIX

[A I] �

a11 � � �  a1n 1 0  � � �  0
a21 � � �  a2n 0 1  � � �  0
n ::: n n n ::: n

an1 � � �  ann 0 0  � � �  1

2
664

3
775;

where I is the IDENTITY MATRIX, to obtain a MATRIX OF

THE FORM

1 0 � � �  0 b11 � � �  b1n

0 1 � � �  0 b21 � � �  b2n

n n  ::: n n  ::: n
0 0 � � �  1 bn1 � � �  bnn

2
664

3
775:

The MATRIX

B �

b11 � � �  b1n

b21 � � �  b2n

n ::: n
bn1 � � �  bnn

2
664

3
775

is then the MATRIX INVERSE of A: The procedure is

numerically unstable unless PIVOTING (exchanging
rows and columns as appropriate) is used. Picking the
largest available element as the pivot is usually a
good choice.

See also CONDENSATION, GAUSSIAN ELIMINATION, LU
DECOMPOSITION, MATRIX EQUATION
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Gauss-Kronrod Quadrature

An adaptive GAUSSIAN QUADRATURE method for
numerical integration in which error is estimation
based on evaluation at special points known as
"Kronrod points." By suitably picking these points,
abscissas from previous iterations can be reused as
part of the new set of points, whereas usual GAUSSIAN

QUADRATURE would require recomputation of all
abscissas at each iteration. This is particularly
important when some specified degree of accuracy is
needed but the number of points needed to achieve
this accuracy is not known ahead of time. Kronrod
(1964) showed how to pick Kronrod points optimally
from Gauss-Legendre quadrature, and Patterson
(1968, 1969) showed how to compute continued
extensions of this kind (Press et al. 1992, p. 154).

With Method-�Automatic, the Mathematica NIn-
tegrate command uses Gauss-Kronrod quadrature
for 1-D integrals.

See also GAUSSIAN QUADRATURE, NUMERICAL INTE-

GRATION, QUADRATURE
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Gauss-Kummer Series

2F1(�1
2; �

1
2; 1; h2)

�
X�
n �0

1
2

n

$ %2

h2n �1 �1
4 h

2 � 1
64 h

4 � 1
256 h

6 �. . .

(Sloane’s A056981 and A056982), where

2F1(a ; b; c; x) is a HYPERGEOMETRIC FUNCTION. This
can be derived using KUMMER’S QUADRATIC TRANS-

FORMATION. The Gauss-Kummer series is closely
related to the PERIMETER of an ellipse.

See also ELLIPSE
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Gauss-Kuzmin-Wirsing Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let x0 be a random number from [0; 1] written as a
simple CONTINUED FRACTION

x0�0�
1

a1 �
1

a2 �
1

a3 � . . .

: (1)

Define the SHIFT TRANSFORMATION by

xn�0�
1

an�1 �
1

an�2 �
1

an�3 � . . .

: (2)

�
1

xn�1

�
1

xn�1

$ %
; (3)

where xb c is the FLOOR FUNCTION. In a letter to
Laplace dated January 30, 1812, Gauss said that he
could prove by a simple argument that if F(n; x) is the
probability that xnBx; then

lim
n0�

F(n; x)�
ln(1 � x)

ln 2
(4)

(Rockett and Szüsz 1992, pp. 151�/52).

However, Gauss was unable to describe the behavior
of the correction term in

F(n; x)�
ln(1 � x)

ln 2
�e(n): (5)

Kuzmin (1928) published the first analysis of the
asymptotic behavior of F(n; x); obtaining

F(n; x)�
ln(1 � x)

ln 2
�O(q

ffiffi
n

p
) (6)

with 0BqB1: Using a different method, Lévy (1929)
obtained

F(n; x)�
ln(1 � x)

ln 2
�O(qn) (7)

with q�0:7: Wirsing (1974) subsequently showed,
among other results, that

lim
n0�

F(n; x) �
ln(1 � x)

ln 2

(�l)n �C(x); (8)

where l�0:3036630029 . . . and C(x) is an analytic
function with C(0)�C(1)�0: This constant is con-
nected to the efficiency of the EUCLIDEAN ALGORITHM

(Knuth 1981).

See also CONTINUED FRACTION, EUCLIDEAN ALGO-

RITHM, SHIFT TRANSFORMATION
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Gauss-Laguerre Quadrature
LAGUERRE-GAUSS QUADRATURE

Gauss-Manin Connection
A connection defined on a smooth ALGEBRAIC VARIETY

defined over the COMPLEX NUMBERS.
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Gauss-Salamin Formula
BRENT-SALAMIN FORMULA

GCD
GREATEST COMMON DIVISOR

GCD-Closed Set
A set S is said to be GCD-closed if GCD(xi ; xj) � S for
1 5i ; j 5n:/

See also BOURQUE-LIGH CONJECTURE
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Gear Curve

A curve resembling a gear with n teeth given by the
PARAMETRIC EQUATIONS

x �r cos t

y �r sin t;

where

r �a �
1

b
tanh[b sin(nt)] :

The above curve has n �12, a �1, and b �10.

Gear Graph
A WHEEL GRAPH with a VERTEX added between each
pair of adjacent VERTICES.

Gegenbauer Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

(1 �x2)yƒ�2(m �1)xy?�( n � m)(n � m �1)y �0 (1)

sometimes called the hyperspherical differential
equation (Iyanaga and Kawada 1980, p. 1480; Zwil-
linger 1997, p. 123). The solution to this equation is

y �(x2 �1)� m=2[C1Pm
n (x) �C2Qm

n (x)]; (2)

where Pm
n (x) is an associated LEGENDRE FUNCTION OF

THE FIRST KIND and Q mn (x) is an associated LEGENDRE

FUNCTION OF THE SECOND KIND.

A number of other forms of this equation are some-
times also known as the ultraspherical or Gegen-
bauer differential equation, including

(1 �x2)yƒ�(2m �1)xy?�n( n �2m)y �0: (3)

The general solutions to this equation are

y �(x2 �1)(1�2 m)=4

� [C1P1 =2 � m

�1 =2 �m� n(x) �C2Q1 =2� m

�1 =2 � m� n(x)] : (4)

However, if m is an integer, then the second part of
this equation no longer provides a solution, and the
solutions are known as the GEGENBAUER POLYNO-

MIALS C(m)
n (x); also known as ultraspherical polyno-

mials (possibly depending on normalization).

The form

(1�x2)yƒ�(2m�3)xy?�ly�0 (5)

is also given by Infeld and Hull (1951, pp. 21�/8) and
Zwillinger (1997, p. 122). It has the solution

y�(x2�1)�(2m�1)=4

� C1P1=2�m

�1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�m)2�l

p (x)�C2Q1=2�m

�1=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�m)2�l

p (x)

* �
:

(6)

See also GEGENBAUER POLYNOMIAL
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Gegenbauer Function
GEGENBAUER POLYNOMIAL

Gegenbauer Polynomial
The Gegenbauer polynomials C(l)

n (x) are solutions to
the GEGENBAUER DIFFERENTIAL EQUATION for INTE-

GER n and lB1=2: They are generalizations of the
associated LEGENDRE POLYNOMIALS to (n�2)/-D
space, and are proportional to (or, depending on the



normalization, equal to) the ultraspherical polyno-
mials P(l)

n (x) :/

Following Szego, in this work, Gegenbauer polyno-
mials are given in terms of the JACOBI POLYNOMIALS

P( a; b)
n (x) with a � b � l �1=2 by

C( l)
n (x) �

G(l � 1
2)

G(2l)

G(n � 2l)

G(n � l � 1
2) 

P( l�1 =2 ; l �1 =2)
n (x) (1)

(Szego 1975, p. 80), thus making them equivalent to
the Gegenbauer polynomials implemented in Mathe-
maticaas GegenbauerC[n , lambda , x ]. These poly-
nomials are also given by the GENERATING FUNCTION

1

(1 � 2xt � t2) l 
�
X�
n�0

C(l)
n (x)tn : (2)

The first few Gegenbauer polynomials are

C( l)
0 (x) �1 (3)

C(l)
1 (x) �2 lx (4)

C(l)
2 (x) ��l �2l(1 � l)x2 (5)

C( l)
3 (x) ��2 l(1 � l)x �4

3 l(1 � l)(2 � l)x3 : (6)

In terms of the HYPERGEOMETRIC FUNCTIONS,

C(l)
n (x) �

n �2 l �1
n

$ %
�2F1(�n ; n �2l; l �1

2 ;
1
2(1 �x)) (7)

�2n n � l �1
n

$ %
(x �1)n

2F1

� �n ; �n � l �1
2; �2n �2l �1;

2

1 � x

 !
(8)

�
n �2 l �1

n

$ %
x � 1

2

 !n

2F1

� �n; �n � l �1
2 ; l �

1
2 ;

x � 1

x � 1

 !
: (9)

They are normalized by

g
1

�1

(1 �x2) l�1 =2[C(l)
n ]2 dx

�21 �2l p
G(n � 2l)

(n � l) G2( l) G(n � 1) 
: (10)

Derivative identities include

d

dx
C(l)

n (x) �2lC( l�1)
n �1 (x) (11)

(1 �x2)
d

dx
[C(l)

n ] �[2(n � l)]�1[(n �2l �1)

�(n �2l)C( l)
n�1(x) �n(n �1)C( l)

n �1(x)] (12)

��nxC(l)
n (x) �(n �2l �1)C(l)

n�1(x) (13)

�(n �2l)xC(l)
n (x) �(n �1)C(l)

n�1(x) (14)

nC(l)
n (x) �x

d

dx 
[C(l)

n (x)] �
d

dx 
[C(l)

n�1(x)] (15)

(n �2l)C( l)
n (x) �

d

dx 
[C( l)

n �1(x)] �x
d

dx 
[C(l)

n (x)] (16)

d

dx
[C(l)

n�1(x) �C(l)
n�1(x)] �2(n � l)C(l)

n C(l)
n (x) (17)

�2l[C(l �1)
n (x) �C(l�1)

n�2 (x)] (18)

(Szego 1975, pp. 80 �/3).

A RECURRENCE RELATION is

nC(l)
n (x) �2(n � l �1)xC(l)

n�1(x)

�(n �2 l �2)C(l)
n�2(x) (19)

for n �2, 3, ....

Special double-/n FORMULAS also exist

C( l)
2n (x)�

2n�2l�1
2n

$ %
2F1(�n; n�l; l�1

2; 1�x2) (20)

�(�1)n
n�l�1

n

$ %
2F1(�n; n�l; 1

2 ; x2) (21)

C(l)
2n�1(x)�

2n�2l
2n�1

$ %
x2F1(�n; n�l�1; l�1

2; 1�x2) (22)

�(�1)n2l
n�l

n

$ %
x2F1(�n; n�l�1 ; 3

2; x2): (23)

Koschmieder (1920) gives representations in terms of
ELLIPTIC FUNCTIONS for l��3=4 and l��2=3:/

See also BIRTHDAY PROBLEM, CHEBYSHEV POLYNO-

MIAL OF THE SECOND KIND, ELLIPTIC FUNCTION,
GEGENBAUER DIFFERENTIAL EQUATION, HYPERGEO-

METRIC FUNCTION, JACOBI POLYNOMIAL
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Gegenbauer C
ULTRASPHERICAL POLYNOMIAL

Gelfand Space
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Gelfand Transform
The Gelfand transform x � ̂x is defined as follows. If
f : B 0 C is linear and multiplicative in the senses

f(ax �by) �a f(x) �bf(y)

and

f(xy) � f(x) f(y);

where B is a commutative BANACH ALGEBRA, then
write x̂(f) � f(x) : The Gelfand transform is automa-
tically bounded.

For example, if B �L1(R) with the usual norm, then B
is a BANACH ALGEBRA under convolution and the
Gelfand transform is the FOURIER TRANSFORM. (In
fact, R may be replaced by any locally compact
Abelian group, and then B has a unit if and only if
the group is discrete.)

See also BANACH ALGEBRA
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Gelfond’s Theorem
Also called the Gelfond-Schneider theorem, Gelfond’s
theorem states that ab is TRANSCENDENTAL if

1. a is ALGEBRAIC "0; 1 and
2. b is ALGEBRAIC and IRRATIONAL.

This provides a partial solution to the seventh of
HILBERT’S PROBLEMS. Gelfond’s theorem is implied by
SCHANUEL’S CONJECTURE (Chow 1999).

See also ALGEBRAIC NUMBER, HILBERT’S PROBLEMS,
IRRATIONAL NUMBER, SCHANUEL’S CONJECTURE,
TRANSCENDENTAL NUMBER
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Gelfond-Schneider Constant
The number 2

ffiffi
2

p
�2 :66514414 . . . which is known to

be TRANSCENDENTAL by GELFOND’S THEOREM.
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Gelfond-Schneider Theorem
GELFOND’S THEOREM

Gelin-Cesàro Identity
The identity

F4
n�Fn�2Fn�1Fn�1Fn�2�1;

where Fn is a FIBONACCI NUMBER.

See also FIBONACCI NUMBER

Genaille Rods
Numbered rods which can be used to perform multi-
plication.

See also NAPIER’S BONES
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Genera
FUNDAMENTAL THEOREM OF GENERA



General Confluent Hypergeometric
Differential Equation

yƒ�
2a

x
�2f ?�

bh?

h
�h ?�

hƒ

h

 !
y?

�
bh ?

h
�h?�

hƒ

h?

 !
a

x 
�f ?

 !
�

a(a � 1)

x2
�

2af ?

x

"

�f ƒ�f ?2 �
ah ?2

h

�
�0:

See also CONFLUENT HYPERGEOMETRIC DIFFERENTIAL

EQUATION
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General Linear Group
The general linear group GLn(q) is the set of n �n
MATRICES with entries in the FIELD Fq which have
NONZERO DETERMINANT.

See also LANGLANDS RECIPROCITY, PROJECTIVE GEN-

ERAL LINEAR GROUP, PROJECTIVE SPECIAL LINEAR

GROUP, SPECIAL LINEAR GROUP
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General Orthogonal Group
The general orthogonal group GOn(q; F) is the SUB-

GROUP of all elements of the PROJECTIVE GENERAL

LINEAR GROUP that fix the particular nonsingular
QUADRATIC FORM F . The determinant of such an
element is 9 1.

See also PROJECTIVE GENERAL LINEAR GROUP
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General Position

An arrangement of points with no three COLLINEAR,
or of lines with no three CONCURRENT.

See also CONCURRENT, ORDINARY LINE, NEAR-PENCIL
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General Prismatoid
A solid such that the AREA Ay of any section parallel to
and a distance y from a fixed PLANE can be expressed
as

Ay �ay3 �by2 �cy �d:

The volume of such a solid is the same as for a
PRISMATOID,

V �1
6 h(A1 �4M �A2):

Examples include the CONE, CONICAL FRUSTUM, CY-

LINDER, PRISMATOID, PYRAMIDAL FRUSTUM, SPHERE,
SPHERICAL SEGMENT, and SPHEROID.

See also PRISMATOID, PRISMOID
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General Quantifier
The FOR ALL QUANTIFIER �:/

See also EXISTENTIAL QUANTIFIER, EXISTS, FOR ALL,
QUANTIFIER

General Unitary Group
The general unitary group GUn(q) is the SUBGROUP of
all elements of the GENERAL LINEAR GROUP GL(q2)
that fix a given nonsingular Hermitian form. This is
equivalent, in the canonical case, to the definition of
GUn as the group of UNITARY MATRICES.
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Generalized Completeness Theorem
The proposition that every CONSISTENT generalized
theory has a MODEL. The theorem is true if the AXIOM

OF CHOICE is assumed.

See also AXIOM OF CHOICE
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Generalized Cone

A RULED SURFACE is called a generalized cone if it can
be parameterized by x(u; v) �p �vy(u) ; where p is a
fixed point which can be regarded as the vertex of the
cone. A generalized cone is a REGULAR SURFACE

wherever vy �y?"0: The above surface is a general-
ized cone over a CARDIOID. A generalized cone is a
FLAT SURFACE, and is sometimes called "conical sur-
face."

See also CONE
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Generalized Cylinder

A RULED SURFACE is called a generalized cylinder if it
can be parameterized by x(u; v) �vp �y(u); where p
is a fixed point. A generalized cylinder is a REGULAR

SURFACE wherever y?�p "0: The above surface is a
generalized cylinder over a CARDIOID. A generalized

cylinder is a FLAT SURFACE, and is sometimes called a
"cylindrical surface."

See also CYLINDER
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Generalized Diameter
The farthest DISTANCE between two points on the
boundary of a closed figure. The diameter of a SUBSET

E of a EUCLIDEAN SPACE Rn is therefore given by

diam E �supf½x �y½ : x; y � Eg;

where sup denotes the SUPREMUM (Croft et al. 1991).

See also BLASCHKE’S THEOREM, BORSUK’S CONJEC-

TURE, DIAMETER
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Generalized Euclidean Algorithm
INTEGER RELATION

Generalized Fermat Equation
A generalization of the equation whose solution is
desired in FERMAT’S LAST THEOREM

xn �yn �zn

to

xn �yn �czn

for x , y , z , and c positive constants, with trivial
solutions having x �0, y �0, or z �0 being excluded.

n �1 is trivial to solve by taking x �y �c and z �2.
n �2 is more difficult, but can be solved by noting
that solutions exist for values of c which can be
written as a sum of two SQUARES, the first few of
which are 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26,
... (Sloane’s A001481).

See also FERMAT’S LAST THEOREM, SQUARE NUMBER
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Generalized Fibonacci Number
A generalization of the FIBONACCI NUMBERS defined
by 1 �G1 �G2 �. . .�Gc �1 and the RECURRENCE RE-

LATION

Gn �Gn�1 �Gn�c : (1)

These are the sums of elements on successive diag-
onals of a left-justified PASCAL’S TRIANGLE beginning
in the left-most column and moving in steps of c �1
up and 1 right. The case c �2 equals the usual
FIBONACCI NUMBER. These numbers satisfy the iden-
tities

G1 �G2 �G3 �. . .�Gn �Gn�3 �1 (2)

G3 �G6 �G9 �. . .�G3k �G3k �1 �1 (3)

G1 �G4 �G7 �. . .�G3k �1 �G3k �2 (4)

G2 �G5 �G8 �. . .�G3k �2 �G3k �3 (5)

(Bicknell-Johnson and Spears 1996). For the special
case c �3,

Gn�w �Gw �2Gn �Gw�3Gn�1 �Gw �1Gn�2 : (6)

Bicknell-Johnson and Spears (1996) give many
further identities.

Horadam (1965) defined the generalized Fibonacci
numbers fwn g as wn �wn(a ; b; p; q) ; where a , b , p ,
and q are INTEGERS, w0 �a ; w1 �b; and wn �pwn�1 �
qwn�2 for n ]2 : They satisfy the identities

wnwn�2r �eqnUr �w2
n�r (7)

4wnw2
n�1wn�2 �(wqn)2 �(wnwn�2 �w2

n�1)2 (8)

wnwn�1wn�3wn�4

�w4
n�2 �eqn(p2 �q)w2

n�2 �e2q2n�1p2 (9)

4wnwn�1wn�2wn�4wn�5wn�6

�e2q2n(wnU4U5 �wn�1U2U6 �wnU1U8)2

�(wn�1wn�2wn�6 �wnwn �4wn�5)2 ; (10)

where

e �pab �qa2 �b2 (11)

Un �wn(0; 1; p; q) (12)

(Dujella 1996). The final above result is due to
Morgado (1987) and is called the MORGADO IDENTITY.

Another generalization of the Fibonacci numbers is
denoted xn : Given x1 and x2 ; define the generalized
Fibonacci number by xn �xn�2 �xn�1 for n ]3 ;

Xn

i�1

xn �xn�2 �x2 (13)

X10

i�1

xn �11x7 (14)

x2
n �xn�1xn �2 �(�1)n(x2

2 �x2
1 �x1x2); (15)

where the plus and minus signs alternate.

See also FIBONACCI N -STEP NUMBER, FIBONACCI

NUMBER
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Generalized Function
DISTRIBUTION (GENERALIZED FUNCTION)

Generalized Helicoid
The SURFACE generated by a twisted curve C when
rotated about a fixed axis A and, at the same time,
displaced PARALLEL to A so that the velocity of
displacement is always proportional to the ANGULAR

VELOCITY of ROTATION.

See also GENERALIZED HELIX, HELICOID, HELIX
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Generalized Helix
The GEODESICS on a general cylinder generated by
lines PARALLEL to a line l with which the TANGENT

makes a constant ANGLE.

See also HELIX

Generalized Hyperbolic Functions
In 1757, V. Riccati first recorded the generalizations
of the HYPERBOLIC FUNCTIONS defined by

F an;r(x) �
X�
k �0

ak

(nk � r)!
xnk �r ; (1)

for r �0, ..., n �1; where a is COMPLEX, with the value
at x �0 defined by

F an ;0(0) �1 : (2)

This is called the a/-hyperbolic function of order n of
the rth kind. The functions F an;r satisfy

f (k)(x) � af (x) ; (3)

where

f (k)(0) �
0 k "r; 0 5k 5n �1;
1 k �r:

1
(4)

In addition,

d

dx
F an; r(x) �

F an;r�1(x) for 0 Br 5n �1
aF an;n�1(x) for r �0:

1
(5)

The functions give a generalized EULER FORMULA

e
ffiffi
a

p
�
Xn�1

r�0

(
ffiffiffi
a

p
)rF an; r(x): (6)

Since there are n nth roots of a; this gives a system of
n linear equations. Solving for F an; r gives

F an; r(x) �
1

n
(
ffiffiffi
a

p
) �r 
Xn�1

k �0

v�rk
n exp( vk

n

ffiffiffiffiffi
ax

p
) ; (7)

where

vn �exp
2pi

n

 !
(8)

is a PRIMITIVE ROOT OF UNITY.

The LAPLACE TRANSFORM is

g
�

0

e�stF an;r(at) dt �
sn �r�1ar

sn � aan

: (9)

The generalized hyperbolic function is also related to
the MITTAG-LEFFLER FUNCTION Eg(x) by

F1
n ;0(x) �En(xn): (10)

The values n �1 and n �2 give the exponential and

circular/hyperbolic functions (depending on the sign
of a) ; respectively.

F a1 ;0(x) �eax (11)

F a2 ;0(x) �cosh(
ffiffiffi
a

p
x) (12)

F a2 ;1(x) �
sinh(

ffiffiffi
a

p
x)ffiffiffi

a
p : (13)

For a �1; the first few functions are

F1
1;0(x) �ex

F1
2 ;0(x) �cosh x

F1
2;1(x) �sinh x

F1
3 ;0(x) �1

3[e
x �2e�x =2 cos(1

2

ffiffiffi
3

p
x)]

F1
3;1(x)�1

3 ex�2e�x=2 cos 1
2

ffiffiffi
3

p
x�1

3 p
� �h i

F1
3;2(x)�1

3 ex�2e�x=2 cos 1
2

ffiffiffi
3

p
x�1

3 p
� �h i

F1
4;0(x)�1

2(cosh x�cos x)

F1
4;1(x)�1

2(sinh x�sin x)

F1
4;2(x)�1

2(cosh x�cos x)

F1
4;3(x)�1

2(sinh x�sin x):

See also HYPERBOLIC FUNCTIONS, MITTAG-LEFFLER

FUNCTION
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Generalized Hypergeometric Differential
Equation
The GENERALIZED HYPERGEOMETRIC FUNCTION

F(x)� p Fq

a1; a2; . . . ; ap

b1; b2; . . . ; bq
; x

* �
satisfies the equation

D̃(D̃�b1�1) � � � (D̃�bq�1)F(x)



�x( D̃ � a1)( D̃ � a2) � � � ( D̃ � ap)F(x) ;

where D̃ is the DIFFERENTIAL OPERATOR.

See also GENERALIZED HYPERGEOMETRIC FUNCTION
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Generalized Hypergeometric Function
The generalized hypergeometric function is given by
a HYPERGEOMETRIC SERIES, i.e., a series for which the
ratio of successive terms can be written

ak�1

ak

�
P(k)

Q(k)

�
(k � a1)(k � a2) � � � (k � ap)

(k � b1)(k � b2) � � � (k � bq)(k � 1)
x: (1)

(The factor of k�1 in the DENOMINATOR is present for
historical reasons of notation.) The resulting general-
ized hypergeometric function is written

X
k�0

akxk�p Fq

a1; a2; . . . ; ap

b1; b2; . . . ; bq
; x

* �
(2)

�
X�
k�0

(a1)k(a2)k � � � (ap)k

(b1)kb(b2)k � � � (bq)k

xk

k!
; (3)

where (a)k is the POCHHAMMER SYMBOL or RISING

FACTORIAL

(a)k�
G(a � k)

G(a)
�a(a�1) � � � (a�k�1): (4)

This notation was introduced by Barnes (1907)
(Hardy 1999, p. 111). If the argument x�1, then
the function is abbreviated

pFq

a1; a2; . . . ; ap

b1; b2; . . . ; bq

* �
�p Fq

a1; a2; . . . ; ap

b1; b2; . . . ; bq
; x

* �
: (5)

The KAMPE DE FERIET FUNCTION is a generalization of
the generalized hypergeometric function to two vari-
ables.

The generalized hypergeometric function Fn(x)�

pFq
a1 ; a2 ; ...; ap

b1 ; b2 ; ...; bq
; x

h i
satisfies

qFn(x)�n[Fn�1(x)�Fn(x)] (6)

for any of its numerator parameters n�ak; and

qFn(x)�(n�1)[Fn�1(x)�Fn(x)] (7)

for any of its denominator parameters n�bk; where

q�z
d

dz
(8)

(Rainville 1971, Koepf 1998, p. 27).

/ 2F1(a; b; c; z) is "the" HYPERGEOMETRIC FUNCTION,
and 1F1(a; b; z)�M(z) is the CONFLUENT HYPERGEO-

METRIC FUNCTION. A function OF THE FORM

0F1(; b; z) is called a CONFLUENT HYPERGEOMETRIC

LIMIT FUNCTION.

The generalized hypergeometric function

p�1Fp

a1; a2; . . . ; ap�1

b1; b2; . . . ; bp
; z

* �
(9)

is a solution to the DIFFERENTIAL EQUATION

[q (q�b�1) � � � (q�bp�1)�z(q�a1)

� (q�a2) � � � (q�ap�1)]y

�0: (10)

The other linearly independent solution is

z1�b1
p�1Fp

� 1�a1�b1; 1�a2�b2; . . . ; 1�ap�1�b1

2�b1; 1�b2�b1; . . . ; 1�bp�b1
; z

* �
: (11)

A generalized hypergeometric function q�1Fp con-
verges absolutely on the unit circle if

R
Xq

j�1

bj�
Xq�1

j�1

aj

 !
> 0 (12)

(Rainville 1971, Koepf 1998).

Many sums can be written as generalized hypergeo-
metric functions by inspection of the ratios of con-
secutive terms in the generating HYPERGEOMETRIC

SERIES. For example, for

f (n)�
X

k

(�1)k 2n
k

$ %2

; (13)

the ratio of successive terms is

ak�1

ak

�
(�1)k�1 2n

k � 1

$ %2

(�1)k 2n
k

$ %2 ��
(k � 2n)2

(k � 1)2 ; (14)

yielding

f (n)�2 F1
�2n; �2n

1
; �1

* �
�2 F1(�2n; �2n; 1; �1) (15)

(Petkovsek 1996, pp. 44�/5).

Gosper (1978) discovered a slew of unusual hypergeo-
metric function identities, many of which were sub-
sequently proven by Gessel and Stanton (1982). An
important generalization of Gosper’s technique,
called ZEILBERGER’S ALGORITHM, in turn led to the



powerful machinery of the WILF-ZEILBERGER PAIR

(Zeilberger 1990).

Special hypergeometric identities include GAUSS’S

HYPERGEOMETRIC THEOREM

2F1(a ; b ; c; 1)�
G(c)G(c � a � b)

G(c � a)G(c � b)
(16)

for R[c �a �b] > 0; KUMMER’S FORMULA

2F1(a; b; c; �1) �
G(1

2 b � 1)G(b � a � 1)

G(b � 1)G(1
2 b � a � 1) 

; (17)

where a �b �c �1 and b is a positive integer,
SAALSCHÜ TZ’S THEOREM

3F2(a ; b ; c; d; e; 1)�
(d � a)½c½(d � b) ½c½
(d)½c½(d � a � b) ½c½

(18)

for d �e �a �b �c �1 with c a negative integer and
(a)n the POCHHAMMER SYMBOL, DIXON’S THEOREM

3F2(a; b; c; d ; e; 1)

�
(1
2 a)!(a � b)!(a � c)!(1

2 a � b � c)!

a!(1
2 a � b)!(1

2 a � c)!(a � b � c)! 
; (19)

where 1 �a=2 �b �c has a positive REAL PART, d �
a �b �1 ; and e �a �c �1 ; the CLAUSEN FORMULA

4F3
a; b; c ; d

e ; f ; g
; 1

* �
�

(2a)½d½(a � b) ½d½(2b) ½d½
(2a � 2b)½d½a ½d ½b½d½

; (20)

for a �b �c �d �1 =2; e �a �b �1=2 ; a �f �d �1 �
b �g; d a nonpositive integer, and the DOUGALL-

RAMANUJAN IDENTITY

7F6
a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7

b1 ; b2 ; b3 ; b4 ; b5 ; b6
; 1

* �

�
(a1 � 1)n(a1 � a2 � a3 � 1)n

(a1 � a2 � 1)n(a1 � a3 � 1)n

� (a1 � a2 � a4 � 1)n(a1 � a3 � a4 � 1)

(a1 � a4 � 1)n(a1 � a2 � a3 � a4 � 1)n

; (21)

where n �2a1 �1 �a2 �a3 �a4 �a5 ; a6 �1 �a1 =2;
a7 ��n; and bi �1 �a1 �ai�1 for i � 1, 2, ..., 6. For
all these identities, (a)n is the POCHHAMMER SYMBOL.

Gessel (1994) found a slew of new identities using
WILF-ZEILBERGER PAIRS, including the following:

5F4

�a �b; n �1 ; n �c �1 ; 2n �a �b �1; n �1
2(3 �a �b)

n �a �b �c �1; n �a �b �1 ; 2n �2 ; n �1
2(1 �a �b)

; 1

" #

�0
(22)

3F2

�3n; 2
3 �c ; 3n �2

3
2; 1 �3c

; 3
4

" #
�

(c � 2
3)n(1

3)n

(1 � c)n(4
3)n

(23)

3F2

�3b; �3
2n;

1
2(1 �3n)

�3n; 2
3 �b �n

; 4
3

" #
�

(1
3 � b)n

(1
3 � b)n

(24)

4F3

3
2 �

1
5 n;

2
3; �n; 2n �2

n �11
6 ;

4
3;

1
5 n �1

2

; 2
27

" #
�

(5
2)n(11

6 )n

(3
2)n(7

2)n

(25)

(Petkovsek et al. 1996, pp. 135 �/37).

The following table gives various named identities
ordered by the orders (p, q ) of the pFq/s they involve.
Bailey (1935) gives a large number of such identities.

/ 2F1/ GAUSS’S HYPERGEOMETRIC THEOREM, KUM-

MER’S THEOREM, ORR’S THEOREM, RAMANU-

JAN’S HYPERGEOMETRIC IDENTITY

/ 3F2/ DARLING’S PRODUCTS, DIXON’S THEOREM,
RAMANUJAN’S HYPERGEOMETRIC IDENTITY,
SAALSCHÜ TZ’S THEOREM, THOMAE’S THEO-

REM, WATSON’S THEOREM, WHIPPLE’S IDEN-

TITY

/ 4F3/ CLAUSEN FORMULA, WHIPPLE’S TRANSFOR-

MATION

/ 5F4/ DOUGALL’S THEOREM

/ 6F5/ WHIPPLE’S IDENTITY

/ 7F6/ DOUGALL-RAMANUJAN IDENTITY, WHIPPLE’S

TRANSFORMATION

/ 9F8/ BAILEY’S TRANSFORMATION

Nørlund (1955) gave the general transformation

nFn�1
a1; a2; . . . ; an

b1; b2; . . . ; bn�1
; xz

* �

�(1�z)�a1

X�
n�0

(a1)n
n!

n Fn

�n; a2; a3; . . . ; an

b1; b2; . . . ; bn�1
; x

* �

� z

z � 1

 !n

; (26)

where (a)n is the POCHHAMMER SYMBOL. This identity
is based on the transformation due to Euler

X�
n�0

(a)n

n!
anzn�(1�z)�a

X�
n�0

(a)n

n!
Dna0

z

1 � z

 !n

; (27)

where D is the FORWARD DIFFERENCE and

Dka0�
Xk

m�0

(�1)m k
m

$ %
ak�m (28)

(Nørlund 1955).

See also CARLSON’S THEOREM, CLAUSEN FORMULA,
CONFLUENT HYPERGEOMETRIC FUNCTION, CONFLU-

ENT HYPERGEOMETRIC LIMIT FUNCTION, DIXON’S



THEOREM, DOUGALL-RAMANUJAN IDENTITY, DOU-

GALL’S THEOREM, GOSPER’S ALGORITHM, HEINE HY-

PERGEOMETRIC SERIES, HYPERGEOMETRIC FUNCTION,
HYPERGEOMETRIC IDENTITY, HYPERGEOMETRIC SER-

IES, JACKSON’S IDENTITY, K -BALANCED, KAMPE DE

FERIET FUNCTION, KUMMER’S THEOREM, LAURICELLA

FUNCTIONS, NEARLY-POISED, RAMANUJAN’S HYPER-

GEOMETRIC IDENTITY, SAALSCHÜ TZ’S THEOREM,
SAALSCHÜ TZIAN, SISTER CELINE’S METHOD, THOMAE’S

THEOREM, WATSON’S THEOREM, WELL-POISED, WHIP-

PLE’S IDENTITY, WHIPPLE’S TRANSFORMATION, WILF-

ZEILBERGER PAIR, ZEILBERGER’S ALGORITHM
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Generalized Matrix Inverse
MOORE-PENROSE GENERALIZED MATRIX INVERSE

Generalized Mean
A generalized version of the MEAN

m(t) �
1

n

Xn

k �1

at
k

 !1=t

(1)

with parameter t which gives the GEOMETRIC MEAN,
ARITHMETIC MEAN, and HARMONIC MEAN as special
cases:

lim
t00

m(t) �G (2)

m(1) �A (3)

m(�1) �H : (4)

See also MEAN

Generalized Polygon

Let O be an incidence geometry, i.e., a set with a
symmetric, reflexive binary relation I . Let e and f be
elements of O . Let an incidence plane be an incidence
geometry whose object set is the disjoint union of two
sets P and L such that for e ; f � P or e ; f � L; (e ; f ) � I
only if e � f . Then a generalized polygon is an
incidence plane such that for all e ; f � O;

1. There exists a CHAIN of length at most n from e
to f , and.
2. There exists at most one irreducible CHAIN of
length less than n from e to f .

(Feit and Higman 1964).

The only CUBIC generalized polygons are the general-
ized 2-gon K3; 3 (UTILITY GRAPH), generalized triangle
PG2; 2 (HEAWOOD GRAPH), generalized quadrangle W2

(the LEVI GRAPH), and generalized hexagon GH2; 2

(Feit and Higman 1964, Royle).

See also CAGE GRAPH, MOORE GRAPH
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Generalized Remainder Method
An algorithm for computing a UNIT FRACTION.

See also UNIT FRACTION
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Generating Function
A POWER SERIES

f (x) �
X�
n�0

anxn (1)

whose COEFFICIENTS give the SEQUENCE fa0 ; a1 ; . . .g:
The Mathematica function PowerSum in the Mathe-
matica add-on package DiscreteMath‘RSolve‘
(which can be loaded with the command
BBDiscreteMath‘) gives the generating function
of a given expression, and ExponentialPowerSum in
the Mathematica add-on package DiscreteMath‘R-
Solve‘ (which can be loaded with the command
BBDiscreteMath‘) gives the so-called EXPONEN-

TIAL GENERATING FUNCTION. The generating function
f (x) is sometimes said to "ENUMERATE" an (Hardy
1999, p. 85).

Generating functions for the first few powers a(p)
n are

given in the following table.

/np
/ /f (x)/ series

1 /
x

1�x
/ /x �x2 �x3 �. . ./

n /
x

(1�x)2/ /x �2x2 �3x3 �4x4 �. . ./

/n2
/ /

x(x �1)
(1�x)3/ /x �4x2 �9x3 �16x4 �. . ./

/n3
/ /

x(x2 �4x �1)
(1�x)4 / /x �8x2 �27x3 �. . ./

/n4
/ /

x(x �1)(x2 �10x �1)
(1�x)5 / /x �16x2 �81x3 �. . ./

There are many beautiful generating functions for
special functions in number theory. A few particu-
larly nice examples are

f (x) �
1Q�

k�1 1 � xk 
�1 �x �2x2 �3x3 �. . .  (2)

for the PARTITION FUNCTION P , and

f (x) �
X�
n�0

Fnxn �
x

1 � x � x2

�x �x2 �2x3 �3x4 �. . .  (3)

for the FIBONACCI NUMBERS Fn :/

The generating function of G(t) of a sequence of
numbers f (n) given by the Z -TRANSFORM of f (n) in
the variable 1=t (Germundsson 2000).

See also CUMULANT-GENERATING FUNCTION, ENU-

MERATE, EXPONENTIAL GENERATING FUNCTION, MO-

MENT-GENERATING FUNCTION, RECURRENCE

RELATION, Z -TRANSFORM
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Generation
In population studies, the direct offspring of a
reference population (roughly) constitutes a single
generation. For a CELLULAR AUTOMATON, the funda-
mental unit of time during which the rules of
reproduction are applied once is called a generation.

Generator (Digitaddition)
An INTEGER used to generate a DIGITADDITION. A
number can have more than one generator. If a
number has no generator, it is called a SELF NUMBER.

Generator (Group)
A member of a CYCLIC GROUP, the POWERS of which
generate the entire GROUP.



See also FINITELY GENERATED
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Generic Character
For a form Q , the generic character xi(Q) OF THE

FORM is defined as the values of xi(m) where
(m; 2d) �1 and Q represents m : x1(Q); x2(Q); ...,
xr(Q) (Cohn 1980, p. 223). The characters apply to the
class of properly equivalent forms as they represent
the same numbers.

See also GENUS (FORM)
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Generic Cylindrical Algebraic
Decomposition
A CYLINDRICAL ALGEBRAIC DECOMPOSITION that omits
sets of measure zero. Generic cylindrical algebraic
decompositions are generally much quicker to com-
pute than are normal decompositions. Generic cylind-
rical algebraic decomposition is implemented in
Mathematica as GenericCyclindricalAlgeb-
raicDecomposition[ineqs , vars ].

See also CYLINDRICAL ALGEBRAIC DECOMPOSITION
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Genetic Algorithm
An adaptive STOCHASTIC OPTIMIZATION ALGORITHM

involving search and optimization that was first used
by John Holland. Holland created an electronic
organism as a binary string ("chromosome"), and
then used genetic and evolutionary principles of
fitness-proportionate selection for reproduction (in-
cluding random crossover and mutation) to search
enormous solution spaces efficiently. So-called ge-
netic programming languages apply the same princi-
ples, using an expression tree instead of a bit string
as the "chromosome."

See also CELLULAR AUTOMATON, DIFFERENTIAL EVO-

LUTION, EVOLUTION STRATEGIES, OPTIMIZATION THE-

ORY, STOCHASTIC OPTIMIZATION
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Genocchi Number
A number given by the GENERATING FUNCTION

2t

et � 1 
�
X�
n�1

Gn

tn

n! 
:

It satisfies G1 �1 ; G3 �G5 �G7 �. . .�0; and even
coefficients are given by

G2n �2 1�22n
" #

B2n �2nE2n�1(0) ;

where Bn is a BERNOULLI NUMBER and En(x) is an
EULER POLYNOMIAL. The first few Genocchi numbers
for n EVEN are �1, 1, �3, 17, �155, 2073, ...
(Sloane’s A001469).

See also BERNOULLI NUMBER, EULER POLYNOMIAL
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Gentle Diagonal
PASCAL’S TRIANGLE

Gentle Giant Group
MONSTER GROUP

Genus (Curve)
One of the PLÜ CKER CHARACTERISTICS, defined by

p �1
2(n �1)(n �2) �( d � k) �1

2(m �1)(m �2) �( t � i) ;

where m is the class, n the order, d the number of
nodes, k the number of CUSPS, i the number of
stationary tangents (INFLECTION POINTS), and t the
number of BITANGENTS.

See also RIEMANN CURVE THEOREM
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Genus (Form)
Consider the forms Q for which the GENERIC CHAR-

ACTERS xi(Q) are equal to some preassigned array of
signs ei�1 or �1,



e1 ; e2 ; . . . ; er ;

subject to
Qr

i�1 ei �1: There are 2r�1 possible arrays,
where r is the number of distinct prime divisors of a
field discriminant d , and the set of forms correspond-
ing to each array is called a genus of forms. The forms
for which all ei �1 are called the principal genus of
forms, and each genus is also a collection of proper
EQUIVALENCE CLASSES (Cohn 1980, pp. 223 �/24).

See also EQUIVALENCE CLASS, FUNDAMENTAL THEO-

REM OF GENERA, GENERIC CHARACTER

References
Cohn, H. "Compositions, Order, and Genera." Ch. 8 in

Advanced Number Theory. New York: Dover, pp. 212 �/

30, 1980.

Genus (Knot)
The least genus of any SEIFERT SURFACE for a given
KNOT. The UNKNOT is the only KNOT with genus 0.

Genus (Surface)
A topologically invariant property of a surface defined
as the largest number of nonintersecting simple
closed curves that can be drawn on the surface
without separating it. Roughly speaking, it is the
number of HOLES in a surface. The genus of a surface,
also called the geometric genus, is related to the
EULER CHARACTERISTIC x by

x �2 �2g :

See also EULER CHARACTERISTIC
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Genus Theorem
The DIOPHANTINE EQUATION

x2 �y2 �p

can be solved for p a PRIME IFF p �1 (mod4) or p �2.
The representation is unique except for changes of
sign or rearrangements of x and y . This theorem is
intimately connected with the QUADRATIC RECIPRO-

CITY THEOREM, and generalizes to the QUARTIC RE-

CIPROCITY THEOREM.

See also COMPOSITION THEOREM, DIOPHANTINE EQUA-

TION–4TH POWERS, FERMAT’S THEOREM, FUNDAMEN-

TAL THEOREM OF GENERA, GENUS (FORM), QUADRATIC

RECIPROCITY THEOREM

Geocentric Latitude
An AUXILIARY LATITUDE given by

fg�tan�1 1�e2
" # !

tan f]:

The series expansion is

fg�f�e2 sin 2fð Þ�1
2 e2

2 sin 4fð Þ�1
3 e3

2 sin 6fð Þ�. . . ;

where

e2�
e2

2 � e2
:

See also LATITUDE
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Geodesic
Given two points on a surface, the geodesic is defined
as the shortest path on the surface connecting them.
Geodesics also preserve a direction on a surface
(Tietze 1965, pp. 26�/7) and have many other inter-
esting properties. The NORMAL VECTOR to any point of
a GEODESIC arc lies along the normal to a surface at
that point (Weinstock 1974, p. 65).

Furthermore, no matter how badly a SPHERE is
distorted, there exist an infinite number of closed
geodesics on it. This general result, demonstrated in
the early 1990s, extended earlier work by Birkhoff,
who proved in 1917 that there exists at least one
closed geodesic on a distorted sphere, and Lyusternik
and Schnirelmann, who proved in 1923 that there
exist at least three closed geodesics on such a sphere
(Cipra 1993, p. 28).

For a surface given parametrically by x�x(u; v); y�
y(u; v); and z�z(u; v); the geodesic can be found by
minimizing the ARC LENGTH

L�g ds�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2�dy2�dz2

p
: (1)

But

dx�
@x

@u
du�

@x

@v
dv (2)

dx2�
@x

@u

 !2

du2�2
@x

@u

@x

@v
du dv�

@x

@v

 !2

dv2; (3)

and similarly for dy2 and dz2: Plugging in,



L�g
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2
2
4

3
5 du2

8<
:

�2
@x

@u

@x

@v
�

@y

@u

@y

@v
�

@z

@u

@z

@v

" #
du dv

�
@x

@v

 !2

�
@y

@v

 !2

�
@z

@v

 !2
2
4

3
5 dv2

�1=2

: (4)

This can be rewritten as

L�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�2Qv?�Rv?2

q
du (5)

�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pu?2�2Qu?�R

p
dv; (6)

where

v?�
dv

du
(7)

u?�
du

dv
(8)

and

P�
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2

(9)

Q�
@x

@u

@x

@v
�

@y

@u

@y

@v
�

@z

@u

@z

@v
(10)

R�
@x

@v

 !2

�
@y

@v

 !2

�
@z

@v

 !2

: (11)

Taking derivatives,

@L

@v
�1

2 P�2Qv?�Rv?2
" #�1=2 @P

@v
�2

@Q

@v
v?�

@R

@v
v?2

 !

(12)

@L

@v?
�1

2 P�2Qv?�Rv?2
" #�1=2

2Q�2Rv?ð Þ; (13)

so the EULER-LAGRANGE DIFFERENTIAL EQUATION

then gives

@P

@v
� 2v?

@Q

@v
� v?2

@R

@v

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 2Qv? � Rv?2

p �
d

du

Q � Rv?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 2Qv? � Rv?2

p !

�0: (14)

In the special case when P , Q , and R are explicit
functions of u only,

Q � Rv?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 2Qv? � Rv?2

p �c1 (15)

Q2 � 2QRv? � R2v?2

P � 2Qv? � Rv?2
�c2

1 (16)

v?2R R�c2
1

" #
�2v?Q R�c2

1

" #
� Q2�Pc2

1

" #
�0 (17)

v?�
1

2R(R � c2
1)

� 2Q c2
1�R

" #
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2 R�c2

1ð Þ�4R R�c2
1ð Þ Q2�Pc2

1ð Þ
q* �

:

(18)

Now, if P and R are explicit functions of u only and
Q�0,

v?�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R R � c2

1ð ÞPc2
1

p
2R R � c2

1ð Þ
�c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

R R � c2
1ð Þ

s
; (19)

so

v�c1 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

R R � c2
1ð Þ

s
du: (20)

In the case Q�0 where P and R are explicit
functions of v only, then

@P

@v
� v?2

@R

@v

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � Rv?2

p �
d

du

Rv?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � Rv?2

p !
�0; (21)

so

@P

@v
�v?2

@R

@v

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�Rv?2

p
R

vƒffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � Rv?2

p � �1
2

� � v? 2Rv0vƒð Þ
P � Rv?2
" #3=2

" #

�0 (22)

@P

@v
�v?2

@R

@v
�2Rvƒ�

2R2v?2vƒ

P � Rv?2
�0 (23)

Rv?2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � Rv?2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�Rv?2

p
�c1 (24)

Rv02� P�Rv?2
" #

�c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�Rv?2

p
(25)

p

c1

 !2

�P�Rv?2 (26)

P2 � c2
1P

Rc2
1

�v?2; (27)

and



u �c1 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

P2 � c2
1P

s
dv: (28)

For a SURFACE OF REVOLUTION in which y �g(x) is
rotated about the X -AXIS so that the equation of the
surface is

y2 �z2 �g2(x) ; (29)

the surface can be parameterized by

x �u (30)

y �g(u) cos v (31)

z �g(u) sin v : (32)

The equation of the geodesics is then

v �c1 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g?(u)½ �2

q
du

g(u)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(u)½ �2�c2

1

q : (33)

See also ELLIPSOID GEODESIC, GEODESIC CURVATURE,
GEODESIC DOME, GEODESIC EQUATION, GEODESIC

MAPPING, GEODESIC TRIANGLE, GRAPH GEODESIC,
GREAT CIRCLE, HARMONIC MAP, OBLATE SPHEROID

GEODESIC, PARABOLOID GEODESIC
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Geodesic Curvature
For a unit speed curve on a surface, the length of the
surface-tangential component of acceleration is the
geodesic curvature kg : Curves with kg �0 are called
GEODESICS. For a curve parameterized as a(t) �
x(u(t) ; v(t)) ; the geodesic curvature is given by

kg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG �F2

p
�G2

11u ?3 �G1
22v?3 �(2G2

12 �G1
11)u?2v?

 
�(2G1

12 �G2
22)u?v?2 �uƒv?�v ƒu?�;

where E , F , and G are coefficients of the first
FUNDAMENTAL FORM and Gk

ij are CHRISTOFFEL SYM-

BOLS OF THE SECOND KIND.

See also GEODESIC
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Geodesic Dome

A TRIANGULATION of a PLATONIC SOLID or other
POLYHEDRON to produce a close approximation to a
SPHERE (or HEMISPHERE). The nth order geodesation
operation replaces each polygon of the polyhedron by
the projection onto the CIRCUMSPHERE of the order-n
regular tessellation of that polygon. The above figure
shows geodesations of orders 1 to 3 (from top to
bottom) of the TETRAHEDRON, CUBE, OCTAHEDRON,
DODECAHEDRON, and ICOSAHEDRON (from left to
right), computed using Geodesate[poly , n ] in the
Mathematica add-on package Graphics‘Polyhe-
dra‘ (which can be loaded with the command
BBGraphics‘).

R. Buckminster Fuller designed the first geodesic
dome (i.e., geodesation of a HEMISPHERE). Fuller’s
dome was constructed from an ICOSAHEDRON by
adding ISOSCELES TRIANGLES about each VERTEX and
slightly repositioning the VERTICES. In such domes,
neither the VERTICES nor the centers of faces neces-
sarily lie at exactly the same distances from the
center. However, these conditions are approximately
satisfied.

In the geodesic domes discussed by Kniffen (1994),
the sum of VERTEX angles is chosen to be a constant.
Given a PLATONIC SOLID, let e?�2e=v be the number
of EDGES meeting at a VERTEX and n be the number of
EDGES of the constituent POLYGON. Call the angle of
the old VERTEX point A and the angle of the new
VERTEX point F . Then

A�B (1)

2e?A�nF (2)



2A �F �180�: (3)

Solving for A gives

2A �
2e ?

n
A �2A 1 �

e ?

n

 !
�180� (4)

A �90 �
n

e ? � n 
; (5)

and

F �
2e ?

n
A �180� e ?

e ? � n 
: (6)

The VERTEX sum is

S�nF �180� e?n

e ? � n 
: (7)

Solid f v /e ?/ n A  F  /a/

TETRAHEDRON 3 3 458 908 2708

CUBE 24 14 3 4 /51 3
7
�
/ /81 3

7
�
/ /308 4

7
�
/

OCTAHEDRON 4 3 /38 4
7
�
/ /108 4

7
�
/ /308 4

7
�
/

DODECAHEDRON 60 32 3 5 /56 1
4
�
/ /71 1

4
�
/ /337 1

2
�
/

ICOSAHEDRON 5 3 /33 3
4
�
/ /118 3

4
�
/ /337 1

2
�
/

Wenninger and Messer (1996) give general formulas
for solving any geodesic chord factor and dihedral
angle in a geodesic dome.

See also SPHERE, SPHERICAL TRIANGLE, TRIANGULAR

SYMMETRY GROUP
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183 �/92, 1996.

Wenninger, M. "Geodesic Domes." Ch. 4 in Spherical Mod-
els. New York: Dover, pp. 80 �/24, 1999.

Geodesic Equation

d t2 ��hab dj 
a dj b ;

or

d2 ja

dr2 
�0 :

See also GEODESIC

Geodesic Flow
A type of FLOW technically defined in terms of the
TANGENT BUNDLE of a MANIFOLD.

See also DYNAMICAL SYSTEM

Geodesic Mapping
A geodesic mapping f : M 0 N between two RIEMAN-

NIAN MANIFOLDS is a DIFFEOMORPHISM sending GEO-

DESICS of M into GEODESICS of N , whose inverse also
sends GEODESICS to GEODESICS (Ambartzumian 1982,
p. 26).

See also BELTRAMI’S THEOREM, GEODESIC
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Geodesic Triangle
A TRIANGLE formed by the arcs of three GEODESICS on
a smooth surface.

See also INTEGRAL CURVATURE, SPHERICAL TRIANGLE

Geodetic Latitude
LATITUDE

Geodetic Number
Let I(x; y) denote the set of all vertices lying on an (x,
y )-GRAPH GEODESIC in G , then a set S with I(S) �
V(G) is called a geodetic set in G and is denoted g(G):/

See also HULL NUMBER
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Geometric Construction
In antiquity, geometric constructions of figures and
lengths were restricted to the use of only a STRAIGHT-

EDGE and COMPASS (or in Plato’s case, a COMPASS

only; a so-called MASCHERONI CONSTRUCTION).
Although the term "RULER" is sometimes used instead
of "STRAIGHTEDGE," no markings which could be used
to make measurements were allowed according to the
Greek prescription. Furthermore, the "COMPASS"
could not even be used to mark off distances by
setting it and then "walking" it along, so the COMPASS

had to be considered to automatically collapse when
not in the process of drawing a CIRCLE.

Because of the prominent place Greek geometric
constructions held in Euclid’s ELEMENTS , these con-
structions are sometimes also known as EUCLIDEAN

CONSTRUCTIONS. Such constructions lay at the heart
of the GEOMETRIC PROBLEMS OF ANTIQUITY of CIRCLE

SQUARING, CUBE DUPLICATION, and TRISECTION of an
ANGLE. The Greeks were unable to solve these
problems, but it was not until hundreds of years later
that the problems were proved to be actually im-
possible under the limitations imposed.

Simple algebraic operations such as a�b; a�b; ra
(for r a RATIONAL NUMBER), a=b; ab , and

ffiffiffi
x

p
can be

performed using geometric constructions (bold 1982,
Courant and Robbins 1996). Other more complicated
constructions, such as the solution of APOLLONIUS’

PROBLEM and the construction of INVERSE POINTS can
also accomplished.

One of the simplest geometric constructions is the
construction of a BISECTOR of a LINE SEGMENT,
illustrated above.

The Greeks were very adept at constructing POLY-

GONS, but it took the genius of Gauss to mathemati-
cally determine which constructions were possible
and which were not. As a result, Gauss determined
that a series of POLYGONS (the smallest of which has
17 sides; the HEPTADECAGON) had constructions un-
known to the Greeks. Gauss showed that the CON-

STRUCTIBLE POLYGONS (several of which are
illustrated above) were closely related to numbers
called the FERMAT PRIMES.

Wernick (1982) gave a list of 139 sets of three located
points from which a TRIANGLE was to be constructed.
Of Wernick’s original list of 139 problems, 20 had not
yet been solved as of 1996 (Meyers 1996).

It is possible to construct RATIONAL NUMBERS and
EUCLIDEAN NUMBERS using a STRAIGHTEDGE and
COMPASS construction. In general, the term for a
number which can be constructed using a COMPASS

and STRAIGHTEDGE is a CONSTRUCTIBLE NUMBER.
Some IRRATIONAL NUMBERS, but no TRANSCENDENTAL

NUMBERS, can be constructed.

It turns out that all constructions possible with a
COMPASS and STRAIGHTEDGE can be done with a
COMPASS alone, as long as a line is considered
constructed when its two endpoints are located. The
reverse is also true, since Jacob Steiner showed that
all constructions possible with STRAIGHTEDGE and
COMPASS can be done using only a straightedge, as
long as a fixed CIRCLE and its center (or two inter-
secting CIRCLES without their centers, or three non-
intersecting CIRCLES) have been drawn beforehand.
Such a construction is known as a STEINER CON-

STRUCTION.

GEOMETROGRAPHY is a quantitative measure of the
simplicity of a geometric construction. It reduces
geometric constructions to five types of operations,
and seeks to reduce the total number of operations
(called the "SIMPLICITY"rpar; needed to effect a geo-
metric construction.

Dixon (1991, pp. 34�/1) gives approximate construc-
tions for some figures (the HEPTAGON and NONAGON)
and lengths (PI) which cannot be rigorously con-
structed. Ramanujan (1913�/4) and Olds (1963) give
geometric constructions for 355=113:p: Gardner
(1966, pp. 92�/3) gives a geometric construction for



3 � 16
113 �3 :1415929 . . . : p:

Kochansky’s approximate construction for p yields
KOCHANSKY’S APPROXIMATIONffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

40

3
�2

ffiffiffi
3

p
s

�3 :141533 . . . : p

Steinhaus (1983, p. 143). Constructions for p are
approximate (but inexact) forms of CIRCLE SQUARING.

See also CIRCLE SQUARING, COMPASS, CONSTRUCTI-

BLE NUMBER, CONSTRUCTIBLE POLYGON, CUBE DU-

PLICATION, ELEMENTS, FERMAT PRIME, GEOMETRIC

PROBLEMS OF ANTIQUITY, GEOMETROGRAPHY, KO-

CHANSKY’S APPROXIMATION, MASCHERONI CONSTRUC-

TION, MATCHSTICK CONSTRUCTION, NAPOLEON’S

PROBLEM, NEUSIS CONSTRUCTION, PLANE GEOMETRY,
POLYGON, PONCELET-STEINER THEOREM, RECTIFICA-

TION, SIMPLICITY, STEINER CONSTRUCTION, STRAIGHT-

EDGE, TRISECTION
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Geometric Distribution

A DISCRETE DISTRIBUTION for n�1, 2, ... with prob-
ability function

P(n)�qn�1P (1)

�p(1�p)n�1; (2)

where 0BpB1 and (q�1�p): P(n) is normalized,
since

X�
n�1

P(n)�
X�
n�1

qn�1p�p
X�
n�0

qn�
p

1 � q
�

p

p
�1 (3)

The corresponding DISTRIBUTION FUNCTION is

D(n)�
Xn

k�1

P(k)�1�qn: (4)



The MOMENT-GENERATING FUNCTION is given by

f(t) �p 1 �(1 �p)eit
 !�1

; (5)

or

M(t) � etnh i�
X�
n�1

etnpqn�1 �p
X�
n �0

et(n�1)qn

�pet
X�
n�0

ettð Þn�
pet

1 � etq 
(6)

M ?(t) �
pet

1 � etqð Þ2 (7)

M ƒ(t) �
pet 1 � qetð Þ

1 � etqð Þ3 (8)

M §(t) �
pet 1 � 4et(1 � p) � e2t(1 � p)2
h i

1 � et � etpð Þ4 : (9)

Therefore, the RAW MOMENTS are

M ?(0) � m?1 � m �
p

(1 � q)2 �
p

p2 
�

1

p
(10)

M ƒ(0) � m?2 �
p(1 � q)

(1 � q)3 �
p(2 � p)

p3
�

2 � p

p2 
(11)

M §(0) � m ?3 �
6 � 6p � p2ð Þ

p3 
(12)

M4(0) � m?4 �
(p � 2) �p2 � 12p � 12ð Þ

p4 
; (13)

giving CENTRAL MOMENTS

m2 �
q

p2 
(14)

m3 �
(p � 1)(p � 2)

p3 
(15)

m4 �
(p � 1) �p2 � 9p � 9ð Þ

p4 
; (16)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

given by

m � m?1 �
1

p 
(17)

s2 � m2 �
q

p2 
(18)

g1 �
m3

m
3 =2
2

�
2 � pffiffiffi

q
p (19)

g2 �
m4

m2
2

�3 �
p2 � 6p � 6

1 � p
: (20)

In fact, the moments of the distribution are given
analytically in terms of the POLYLOGARITHM function,

m ?k �
X�
n�1

p(n)nk �
X�
n �1

p(1 �p)n�1nk

�
pLi�k(1 � p)

1 � p
: (21)

For the case p �1=2 (corresponding to the distribu-
tion of the number of COIN TOSSES needed to win in
the SAINT PETERSBURG PARADOX) the formula (21)
gives

m ?k jp �1=2 �Li �k
1
2

� �
: (22)

The first few raw moments are therefore 2, 6, 26, 150,
1082, ... (Sloane’s A000629), which have EXPONENTIAL

GENERATING FUNCTIONS f (x) ��ln 2 �exð Þ and g(x) �
ex = 2 �exð Þ: From (22), the MEAN, VARIANCE, SKEW-

NESS, and KURTOSIS are

m�2 (23)

s2�2 (24)

g1�
3
2

ffiffiffi
2

p
(25)

g2�
13
2 : (26)

The first CUMULANT of the geometric distribution is

k1�
1 � p

p
; (27)

and subsequent CUMULANTS are given by the RECUR-

RENCE RELATION

kr�1�(1�p)
dkr

dp
: (28)

See also SAINT PETERSBURG PARADOX

References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.

Boca Raton, FL: CRC Press, pp. 531�/32, 1987.



Sloane, N. J. A. Sequences A000629 in "An On-Line Version
of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Spiegel, M. R. Theory and Problems of Probability and
Statistics. New York: McGraw-Hill, p. 118, 1992.

Geometric Dual Graph

Given a PLANAR GRAPH G , its geometric dual G� is
constructed by placing a vertex in each region of G
(including the exterior region) and, if two regions
have an edge x in common, joining the corresponding
vertices by an edge X � crossing only x . The result is
always a planar PSEUDOGRAPH. However, an abstract
graph with more than one embedding on the sphere
can give rise to more than one dual.
Whitney showed that the geometric dual graph and
COMBINATORIAL DUAL GRAPH are equivalent (Harary
1994, p. 115), and so may simply be called "the" DUAL

GRAPH.

See also COMBINATORIAL DUAL GRAPH, DUAL GRAPH
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Geometric Genus
GENUS (SURFACE)

Geometric Invariant Theory
INVARIANT

Geometric Mean
The geometric mean of a sequence aif gn

i�1 is defined
by

G a1 ; . . .  ; anð Þ�
Yn

i�1

ai

 !1 =n

: (1)

Thus,

G a1 ; a2ð Þ� ffiffiffiffiffiffiffiffiffiffi
a1a2

p
(2)

G a1 ; a2 ; a3ð Þ� a1a2a3ð Þ1 =3
; (3)

and so on.

Hoehn and Niven (1985) show that

G a1 �c ; a2 �c; . . . ; an �cð Þ
�c �G a1 ; a2 ; . . .  ; anð Þ (4)

for any POSITIVE constant c .

See also ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC

MEAN, CARLEMAN’S INEQUALITY, HARMONIC MEAN,
MEAN, ROOT-MEAN-SQUARE
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Geometric Mean Index
The statistical INDEX

PG �
Y pn

p0

 !vo" #1 =S vo

;

where pn is the price per unit in period n , qn is the
quantity produced in period n , and vn �pnqn the
value of the n units.

See also INDEX
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Geometric Probability
The study of the probabilities involved in geometric
problems, e.g., the distributions of length, area,
volume, etc. for geometric objects under stated con-
ditions.

See also BERTRAND’S PROBLEM, BUFFON-LAPLACE

NEEDLE PROBLEM, BUFFON’S NEEDLE PROBLEM, CIR-

CLE INSCRIBING, COMPUTATIONAL GEOMETRY, INTE-

GRAL GEOMETRY, POINT PICKING, STOCHASTIC

GEOMETRY, SYLVESTER’S FOUR-POINT PROBLEM
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Geometric Problems of Antiquity
The Greek problems of antiquity were a set of
geometric problems whose solution was sought using
only COMPASS and STRAIGHTEDGE:

1. CIRCLE SQUARING.
2. CUBE DUPLICATION.
3. TRISECTION of an ANGLE.

Only in modern times, more than 2,000 years after
they were formulated, were all three ancient pro-
blems proved insoluble using only COMPASS and
STRAIGHTEDGE.

Another ancient geometric problem not proved im-
possible until 1997 is ALHAZEN’S BILLIARD PROBLEM.
As Ogilvy (1990) points out, constructing the general
REGULAR POLYHEDRON was really a "fourth" unsolved
problem of antiquity.

See also ALHAZEN’S BILLIARD PROBLEM, CIRCLE

SQUARING, COMPASS, CONSTRUCTIBLE NUMBER, CON-

STRUCTIBLE POLYGON, CUBE DUPLICATION, GEO-

METRIC CONSTRUCTION, REGULAR POLYHEDRON,
STRAIGHTEDGE, TRISECTION
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Geometric Progression
GEOMETRIC SEQUENCE

Geometric Realization
If the ABSTRACT SIMPLICIAL COMPLEX S is isomorphic
with the VERTEX SCHEME of the SIMPLICIAL COMPLEX

K , then K is said to be a geometric realization of S ,
and is uniquely determined up to a linear isomorph-
ism.

See also ABSTRACT SIMPLICIAL COMPLEX, VERTEX

SCHEME

References
Munkres, J. R. Elements of Algebraic Topology. Perseus

Press, 1993.

Geometric Sequence
A geometric sequence is a SEQUENCE akf g; k�1, 2, ...,
such that each term is given by a multiple r of the
previous one. Another equivalent definition is that a
sequence is geometric IFF it has a zero BIAS. If the
multiplier is r , then the kth term is given by

ak�rak�1�r2ak�2�a0rk:

Without loss of generality, take a0�1; giving

ak�rk:

Geometric Series
A geometric series ak ak is a series for which the ratio
of each two consecutive terms ak�1=ak is a constant
function of the summation index k . The more general
case of the ratio a RATIONAL FUNCTION of the
summation index k produces a series called a HYPER-

GEOMETRIC SERIES.

For the simplest case of the ratio ak�1=ak�r equal to
a constant r , the terms ak are OF THE FORM ak�a0rk:
Letting a0�1; the GEOMETRIC SEQUENCE akf gn

k�0

with constant ½r½B1 is given by

Sn�
Xn

k�0

ak�
Xn

k�0

rk (1)

is given by



Sn �
Xn

k�0

rk �1 �r �r2 �. . .�rn : (2)

Multiplying both sides by r gives

rSn �r �r2 �r3 �. . .�rn�1 ; (3)

and subtracting (3) from (2) then gives

(1 �r)Sn �(1 �r �r2 �. . . rn)

�(r �r2 �r3 �. . .�rn�1)

�1 �rn�1 ; (4)

so

Sn �
Xn

k�0

rk �
1 � rn�1

1 � r
: (5)

For �1 Br B1; the sum converges as n 0 �;/ in which
case

S �S��
X�
k�0

rk �
1

1 � r 
(6)

Similarly, if the sums are taken starting at k �1
instead of k �0,

Xn

k �1

rk �
r 1 � rnð Þ

1 � r 
(7)

X�
k �1

rk �
r

1 � r 
; (8)

the latter of which is valid for ½r ½B1:/

See also ARITHMETIC SERIES, GABRIEL’S STAIRCASE,
HARMONIC SERIES, HYPERGEOMETRIC SERIES, ST.

IVES PROBLEM, WHEAT AND CHESSBOARD PROBLEM
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Geometrization Conjecture
THURSTON’S GEOMETRIZATION CONJECTURE

Geometrography
A quantitative measure of the simplicity of a GEO-

METRIC CONSTRUCTION which reduces geometric con-
structions to five steps. It was devised by È . Lemoine.

/S1/ Place a STRAIGHTEDGE’s EDGE through a given
POINT,

/S2/ Draw a straight LINE,
/C1 Place a POINT of a COMPASS on a given POINT,
/C2 Place a POINT of a COMPASS on an indeterminate
POINT on a LINE,

/C3/ Draw a CIRCLE.

Geometrography seeks to reduce the number of
operations (called the "SIMPLICITY"rpar; needed to
effect a construction. If the number of the above
operations are denoted /m1 ; m2/, n1 ; n2 ; and

/n3/, respectively, then the SIMPLICITY is/

m1 �m2 �n1 �n2 �n3/ and the symbol is/

m1S1 �m2S2 �n1C1 �n2C2 �n3C3/. It is apparently
an unsolved problem to determine if a given GEO-

METRIC CONSTRUCTION is of the smallest possible
simplicity.

See also SIMPLICITY
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Geometry
Geometry is the study of figures in a SPACE of a given
number of dimensions and of a given type. The most
common types of geometry are PLANE GEOMETRY

(dealing with objects like the LINE, CIRCLE, TRIANGLE,
and POLYGON), SOLID GEOMETRY (dealing with objects
like the LINE, SPHERE, and POLYHEDRON), and SPHE-

RICAL GEOMETRY (dealing with objects like the SPHE-

RICAL TRIANGLE and SPHERICAL POLYGON). Geometry
was part of the QUADRIVIUM taught in medieval
universities.

Historically, the study of geometry proceeds from a
small number of accepted truths (AXIOMS or POSTU-

LATES), then builds up true statements using a
systematic and rigorous step-by-step PROOF. How-
ever, there is much more to geometry than this
relatively dry textbook approach, as evidenced by
some of the beautiful and unexpected results of
PROJECTIVE GEOMETRY (not to mention Schubert’s
powerful but questionable ENUMERATIVE GEOMETRY).

The late mathematician E. T. Bell has described
geometry as follows (Coxeter and Greitzer 1967,
p. 1): "With a literature much vaster than those of
ALGEBRA and ARITHMETIC combined, and at least as
extensive as that of ANALYSIS, geometry is a richer
treasure house of more interesting and half-forgotten



things, which a hurried generation has no leisure to
enjoy, than any other division of mathematics." While
the literature of ALGEBRA, ARITHMETIC, and ANALYSIS

has grown extensively since Bell’s day, the remainder
of his commentary holds even more so today.

Formally, a geometry is defined as a complete locally
homogeneous RIEMANNIAN METRIC. In R2 ; the possible
geometries are Euclidean planar, hyperbolic planar,
and elliptic planar. In R3 ; the possible geometries
include Euclidean, hyperbolic, and elliptic, but also
include five other types.

See also ABSOLUTE GEOMETRY, AFFINE GEOMETRY,
CARTESIAN COORDINATES, COMBINATORIAL GEOME-

TRY, COMPUTATIONAL GEOMETRY, COORDINATE GEO-

METRY, DIFFERENTIAL GEOMETRY, DISCRETE

GEOMETRY, ENUMERATIVE GEOMETRY, FINSLER GEO-

METRY, INVERSIVE GEOMETRY, KAWAGUCHI GEOME-

TRY, MINKOWSKI GEOMETRY, NIL GEOMETRY, NON-

EUCLIDEAN GEOMETRY, ORDERED GEOMETRY, PLANE

GEOMETRY, PROJECTIVE GEOMETRY, SOL GEOMETRY,
SOLID GEOMETRY, SPHERICAL GEOMETRY, STOCHAS-

TIC GEOMETRY, THURSTON’S GEOMETRIZATION CON-

JECTURE
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Geometry of Position
PROJECTIVE GEOMETRY

Gergonne Line

The perspective line for the CONTACT TRIANGLE DDEF
and its TANGENTIAL TRIANGLE DABC: It is determined
by the NOBBS POINTS D?; E?; and F?:/

In addition to the NOBBS POINTS, the FLETCHER POINT

and EVANS POINT also lie on the Gergonne line where
it intersects the SODDY LINE and EULER LINE, respec-



tively. The D and D ? coordinates are given by

D �B �
f

e
C

D?�B �
f

e
C ;

so BDCD? form a HARMONIC RANGE. The equation of
the Gergonne line is

a

d 
�

b

e 
�

g

f
�0:

See also CONTACT TRIANGLE, EULER LINE, EVANS

POINT, FLETCHER POINT, NOBBS POINTS, SODDY LINE,
TANGENTIAL TRIANGLE
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Gergonne Point

The common point Ge of the CONCURRENT lines from
the CONTACT TRIANGLE TRIANGLE’S INCIRCLE to the
opposite VERTICES. It has TRIANGLE CENTER FUNCTION

a �[a(b �c �a)] �1 �1
2 sec2 A:

The Gergonne point Ge is the ISOTOMIC CONJUGATE

POINT of the NAGEL POINT Na . The CONTACT TRIAN-

GLE and TANGENTIAL TRIANGLE are perspective from
the Gergonne point, and the Gergonne point of a
triangle is the SYMMEDIAN POINT of its CONTACT

TRIANGLE (Honsberger 1995).

See also ADAMS’ CIRCLE, CONTACT TRIANGLE, GER-

GONNE LINE, NAGEL POINT
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Gergonne’s Theorem
The internal (external) bisecting plane of a DIHEDRAL

ANGLE of a TETRAHEDRON divides the opposite edge in
the ratio of the areas of the adjacent faces.
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Germain Primes
SOPHIE GERMAIN PRIME

Gerono Lemniscate
EIGHT CURVE

Gergorin Circle Theorem
Gives a region in the COMPLEX PLANE containing all
the EIGENVALUES of a COMPLEX SQUARE MATRIX.
Define

Ri�
Xn

i�1

j"i

½ai;j½; (1)

then each EIGENVALUE of the MATRIX of order n is in
at least one of the disks

fz : ½z�aii½5Rig: (2)



The theorem can be made stronger as follows. Let r
be an INTEGER with /1 5r 5n/, then each EIGENVALUE

of is either in one of the disks /G1

fz : ½z �ajj ½5S(r�1)
j g; (3)

or in one of the regions

z :
Xr

i�1

½z �aii ½5
Xr

i�1

Ri

( )
; (4)

where /S(r�1)
j / is the sum of magnitudes of the /r �1/

largest off-diagonal elements in column j .

References
Brualdi, R. A. and Mellendorf, S. "Regions in the Complex

Plane Containing the Eigenvalues of a Matrix." Amer.
Math. Monthly 101, 975 �/85, 1994.

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,
Series, and Products, 6th ed. San Diego, CA: Academic
Press, pp. 1120 �/121, 2000.

Piziak, R. and Turner, D. "Exploring Gerschgorin Circles
and Cassini Ovals." Mathematica Educ. 3, 13�/1, 1994.

Taussky-Todd, O. "A Recurring Theorem on Determinants."
Amer. Math. Monthly 56, 672 �/76, 1949.

G-Function

As defined by Erdélyi et al. (1981, p. 20), the G -
function is given by

G(z) � c0(1
2 �hz) � c0(1

2 z) ; (1)

where c0(z) is the DIGAMMA FUNCTION. Integral

representations are given by

G(z) �2 g
1

0

tz�1

1 � t
dt (2)

�2 g
�

0

e �zt

1 � e�t
dt (3)

for R[z] > 0: G(z) is also given by the series

G(z) �2
X�
n�0

(�1)n

z � n
; (4)

and in terms of the HYPERGEOMETRIC FUNCTION by

G(z) �2z�1
2F1(1; z; 1�z; �1): (5)

It obeys the functional relations

G(1�z)�2z�1�G(z) (6)

G(1�z)�2p csc(pz)�G(z) (7)

G(mz)�

�
2

m

Xm�1

r�0

(�1)r
c0(z�

r

m
) for m even

1

m

Xm�1

r�0

(�1)rG(z�
r

m
) for m odd:

8>>>><
>>>>:

(8)

See also BARNES’ G -FUNCTION, DIGAMMA FUNCTION,
MEIJER’S G -FUNCTION, RAMANUJAN G - AND G -FUNC-

TIONS
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Ghost

If the sampling of an interferogram is modulated at a
definite frequency instead of being uniformly
sampled, spurious spectral features called "ghosts"
are produced (Brault 1985). Periodic ruling or sam-
pling errors introduce a modulation superposed on
top of the expected fringe pattern due to uniform
stage translation. Because modulation is a multi-
plicative process, spurious features are generated in
spectral space at the sum and difference of the true



fringe and ghost fringe frequencies, thus throwing
power out of its spectral band.
Ghosts are copies of the actual spectrum, but appear
at reduced strength. The above shows the power
spectrum for a pure sinusoidal signal sampled by
translating a Fourier transform spectrometer mirror
at constant speed. The small blips on either side of
the main peaks are ghosts.

In order for a ghost to appear, the process producing
it must exist for most of the interferogram. However,
if the ruling errors are not truly sinusoidal but vary
across the length of the screw, a longer travel path
can reduce their effect.

See also JITTER
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Gibbs Constant
WILBRAHAM-GIBBS CONSTANT

Gibbs Effect
GIBBS PHENOMENON

Gibbs Phenomenon

An overshoot of FOURIER SERIES and other EIGEN-

FUNCTION series occurring at simple DISCONTINU-

ITIES. it can be removed with the LANCZOS SIGMA

FACTOR.

See also FOURIER SERIES
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Gift Wrap Theorem
No subspace of Rn can be homeomorphic to Sn :/
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Gigantic Prime
A PRIME with 10,000 or more decimal digits. As of
Nov. 15, 1995, 127 were known.

See also TITANIC PRIME
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Gilbrat’s Distribution

A CONTINUOUS DISTRIBUTION in which the LOGARITHM

of a variable x has a NORMAL DISTRIBUTION,

P(x)�
1

x
ffiffiffiffiffiffi
2p

p e�(ln x)2=2; (1)

defined over the interval [0; �): It is a special case of
the LOG NORMAL DISTRIBUTION

P(x)�
1

Sx
ffiffiffiffiffiffi
2p

p e�(ln x�M)2=(2S2) (2)

with S � 1 and M � 0, and so has distribution
function

D(x)�
1

2
1�erf

ln xffiffiffi
2

p
 !" #

: (3)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are



then given by

m �
ffiffiffi
e

p
(4)

s2 �e(e �1) (5)

g1 �(e �2)
ffiffiffiffiffiffiffiffiffiffiffi
e �1

p
(6)

g2 �e4 �2e3 �3e2 �3: (7)

See also LOG NORMAL DISTRIBUTION

Gilbreath’s Conjecture
Let the DIFFERENCE of successive PRIMES be defined
by dn �pn�1 �pn ; and dk

n by

dk
n �

dn for k �1
½dk �1

n �1 �dk �1
n ½ for k > 1:

1
N. L. Gilbreath claimed that dk

1 �1 for all k (Guy
1994). It has been verified for k B63,419 and all
PRIMES up to p(1013) ; where p(x) is the PRIME COUNT-

ING FUNCTION.

See also PRIME DIFFERENCE FUNCTION
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Gill’s Method
A formula for numerical solution of differential
equations,

yn �1 �yn �
1
6[k1 �(2 �

ffiffiffi
2

p
)k2 �(2 �

ffiffiffi
2

p
)k3 �k4]

�O(h5);

where

k1�hf (xn; yn)

k2�hf (xn�
1
2 h; yn�

1
2 k1)

k3�hf [xn�
1
2 h; yn�

1
2(�1�

ffiffiffi
2

p
)k1�(1�1

2

ffiffiffi
2

p
)k2]

k4�hf [xn�h; yn�
1
2

ffiffiffi
2

p
k2�(1�1

2

ffiffiffi
2

p
)k3]:

See also ADAMS’ METHOD, MILNE’S METHOD, PREDIC-

TOR-CORRECTOR METHODS, RUNGE-KUTTA METHOD
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Gingerbreadman Map

A 2-D piecewise linear MAP defined by

xn�1�1�yn� ½xn½

yn�1�xn:

The map is chaotic in the filled region above and
stable in the six hexagonal regions. Each point in the
interior hexagon defined by the vertices (0, 0), (1, 0),
(2, 1), (2, 2), (1, 2), and (0, 1) has an orbit with period
six (except the point (1, 1), which has period 1). Orbits
in the other five hexagonal regions circulate from one
to the other. There is a unique orbit of period five,
with all others having period 30. The points having
orbits of period five are (-1, 3), (-1, -1), (3, -1), (5, 3),
and (3, 5), indicated in the above figure by the black
line. However, there are infinitely many distinct
periodic orbits which have an arbitrarily long period.
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Gini Coefficient
This entry contributed by CHRISTIAN DAMGAARD

The Gini coefficient (or Gini ratio) G is a summary
statistic of the LORENZ CURVE and a measure of
inequality in a population. The Gini coefficient is
most easily calculated from unordered size data as
the "relative mean difference," i.e., the mean of the
difference between every possible pair of individuals,
divided by the mean size m;



G �
Pn

i �1

Pn
j�1 ½xi � xj ½

2n2 m

Alternatively, if the data is ordered by increasing size
of individuals, G is given by

G �
Pn

i�1(2i � n � 1)x?i
n2 m

:

The Gini coefficient ranges from a minimum value of
zero, when all individuals are equal, to a theoretical
maximum of one in an infinite population in which
every individual except one has a size of zero. It has
been shown that the sample Gini coefficients defined
above need to be multiplied by n=(n �1) in order to
become UNBIASED ESTIMATORS for the population
coefficients.

See also LORENZ ASYMMETRY COEFFICIENT, LORENZ

CURVE
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Ginzburg-Landau Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �(1 �ia)uxx �(1 �ic)u �(1 �id) ½u½2u:
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Girard’s Spherical Excess Formula
Let a SPHERICAL TRIANGLE D have angles A , B , and C .
Then the SPHERICAL EXCESS is given by

D�A �B �C � p:

See also ANGULAR DEFECT, L’HUILIER’S THEOREM,
SPHERICAL EXCESS, SPHERICAL TRIANGLE
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Girko’s Circular Law

Let l be (possibly complex) EIGENVALUES of a set of
random n �n REAL MATRICES with entries indepen-
dent and taken from a standard normal distribution.
Then as n 0 �; l =

ffiffiffi
n

p
is uniformly distributed on the

UNIT DISK in the COMPLEX PLANE. For small n , the
distribution shows a concentration along the REAL

LINE accompanied by a slight paucity above and below
(with interesting embedded structure). However, as
n 0 �; the concentration about the line disappears
and the distribution becomes truly uniform.

See also EIGENVALUE, MATRIX
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Girth
The length of the shortest GRAPH CYCLE (if any) in a
GRAPH. Acyclic graphs are considered to have infinite
girth (Skiena 1990, p. 191). The girth of a graph may
be found using Girth[g ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘). The following table gives
examples of graphs with various girths.



girth example

3 TETRAHEDRAL GRAPH, COMPLETE GRAPH Kn/

4 CUBICAL GRAPH, UTILITY GRAPH

5 PETERSEN GRAPH

6 HEAWOOD GRAPH

7 MCGEE GRAPH

8 LEVI GRAPH

See also CAGE GRAPH, GRAPH CIRCUMFERENCE,
GRAPH CYCLE, MOORE GRAPH
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Giuga Number
Any COMPOSITE NUMBER n with p½(n=p �1) for all
PRIME DIVISORS p of n . n is a Giuga number IFF

Xn�1

k �1

k f(n) ��1 (mod n)

where f is the TOTIENT FUNCTION and IFF

X
p ½n

1

p 
�
Y
p½n

1

p
�N:

n is a Giuga number IFF

nBf(n) ��1 (mod n) ;

where Bk is a BERNOULLI NUMBER and f is the
TOTIENT FUNCTION. Every counterexample to Giuga’s
conjecture is a contradiction to ARGOH’S CONJECTURE

and vice versa. The smallest known Giuga numbers
are 30 (3 factors), 858, 1722 (4 factors), 66198 (5
factors), 2214408306, 24423128562 (6 factors),
432749205173838, 14737133470010574, 5508433913
09130318 (7 factors),

244197000982499715087866346, 5540799146170708
01288578559178 (8 factors), ... (Sloane’s A007850).

It is not known if there are an infinite number of
Giuga numbers. All the above numbers have sum
minus product equal to 1, and any Giuga number of
higher order must have at least 59 factors. The
smallest ODD Giuga number must have at least nine
PRIME FACTORS.

See also ARGOH’S CONJECTURE, BERNOULLI NUMBER,
PRIMARY PSEUDOPERFECT NUMBER, TOTIENT FUNC-

TION
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Giuga Sequence
A finite, increasing sequence of INTEGERS

fn1 ; . . . ; nm g such that

Xm

i�1

1

ni

�
Ym
i�1

1

ni

�N:

A sequence is a Giuga sequence IFF it satisfies

ni ½(n1 � � �ni �1 � ni�1 � nm �1)

for i �1, ..., m . There are no Giuga sequences of
length 2, one of length 3 (/f2; 3; 5g) ; two of length 4
( f2; 3; 7; 41g and f2 ; 3; 11 ; 13 g) ; 3 of length 5
( f2; 3; 7; 43; 1805g; f2; 3; 7; 83; 85g; and
f2; 3; 11; 17 ; 59 g) ; 17 of length 6, 27 of length 7,
and hundreds of length 8. There are infinitely many
Giuga sequences. It is possible to generate longer
Giuga sequences from shorter ones satisfying certain
properties.

See also CARMICHAEL SEQUENCE
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Giuga’s Conjecture
If n �1 and

n½1n�1�2n�1�. . .�(n�1)n�1�1;

is n necessarily a PRIME? In other words, defining

sn�
Xn�1

k�1

kn�1;

does there exist a COMPOSITE n such that
sn��1(modn)/? It is known that sn��1(modn) IFF

for each prime divisor p of n , (p�1)½(n=p�1) and
p½(n=p�1) (Giuga 1950, Borwein et al. 1996); there-
fore, any counterexample must be SQUAREFREE. A
composite INTEGER n satisfies sn��1(modn) IFF it is
both a CARMICHAEL NUMBER and a GIUGA NUMBER.
Giuga showed that there are no exceptions to the
conjecture up to 101000. This was later improved to
101700 (Bedocchi 1985) and 1013800 (Borwein et al.
1996).

See also ARGOH’S CONJECTURE
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GL
GENERAL LINEAR GROUP

Glaisher
GLAISHER-KINKELIN CONSTANT

Glaisher Constant
GLAISHER-KINKELIN CONSTANT

Glaisher-Kinkelin Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Define

K(n) �00112233 � � � (n �1)n�1 (1)

G(n) �
[ G(n)]n

K(n)
�

1 if n �0
0!1!2! � � � (n �1)! if n > 0 :

1
(2)

where G(n) is BARNES’ G -FUNCTION and K(n) is the K -

FUNCTION. Then

lim
n0�

K(n � 1)

nn2 =2�n=2�1 =12e�n2 =4 
�A (3)

(Voros 1987) and

lim
n0�

G(n)

nn2 =2 �1=12(2p)n=2e �3n2 =4 
�

e1 =12

A
; (4)

where

A �exp[ 1
12 � z?(�1)] �1:28242713 . . . (5)

is called the Glaisher-Kinkelin constant (Voros 1987)
and z?(z) is the derivative of the RIEMANN ZETA

FUNCTION (Kinkelin 1860, Glaisher 1877, 1878,
1893, 1894). The constant A is implemented in
Mathematica 4.0 as Glaisher.

Glaisher (1877) also obtained

A �27=36 p�1 =6exp
1

3 
�

2

3 g
1 =2

0

ln[G(x �1)] dx

( )
: (6)

Glaisher (1894) showed that

11 =121 =231 =941 =1651 =25 . . .�
A12

2pe g

 !p2 =6

(7)

11 =131 =951 =2571 =4991 =81 . . .�
A12

24 =3 peg

 !p2 =8

(8)

11=151 =12591 =729 . . .

31 =2771 =343111=1331 . . .
�

A

25=32 p1 =32e3 =32 � g=48�s=4

 !p3

; (9)

where

s �
z(3)

3 � 4 � 5

1

43 
�

z(5)

5 � 6 � 7

1

45 
�

z(7)

7 � 8 � 9

1

47

�. . . (10)

The constant appears in a number of sums and
integrals, especially those involving GAMMA FUNC-

TIONS and ZETA FUNCTIONS (Wolfram 1999, p. 757).

See also BARNES’ G -FUNCTION, HYPERFACTORIAL, K -

FUNCTION
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Glide
A product of a REFLECTION in a line and TRANSLATION

along the same line.

See also REFLECTION, TRANSLATION

References
Addington, S. "The Four Types of Symmetry in the Plane."

http://forum.swarthmore.edu/sum95/suzanne/symsu-
san.html.

Glide Reflection
GLIDE

Glissette
The LOCUS of a point P (or the envelope of a line) fixed
in relation to a curve C which slides between fixed
curves. For example, if C is a line segment and P a
point on the line segment, then P describes an
ELLIPSE when C slides so as to touch two ORTHOGO-

NAL straight LINES. The glissette of the LINE SEGMENT

C itself is, in this case, an ASTROID.



See also ROULETTE
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Global

See also LOCAL

Global Analytic Continuation
Analytic continuation gives an equivalence relation
between function elements, and the equivalence
classes induced by this relation are called global
analytic functions.

See also ANALYTIC CONTINUATION, DIRECT ANALYTIC

CONTINUATION
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Global Extremum
A GLOBAL MINIMUM or GLOBAL MAXIMUM. It is
impossible to construct an algorithm that will find a
global extremum for an arbitrary function.

See also LOCAL EXTREMUM

Global Field
A global field is either a NUMBER FIELD, a FUNCTION

FIELD on an ALGEBRAIC CURVE, or an extension of
TRANSCENDENCE DEGREE one over a FINITE FIELD.
From a modern point of view, a global field may refer
to a FUNCTION FIELD on a complex ALGEBRAIC CURVE

as well as one over a FINITE FIELD. A global field
contains a canonical SUBRING, either the ALGEBRAIC

INTEGERS or the POLYNOMIALS. By choosing a PRIME

IDEAL in its SUBRING, a global field can be TOPOLOGI-

CALLY COMPLETED to give a LOCAL FIELD. For exam-
ple, the RATIONAL NUMBERS are a global field. By
choosing a PRIME NUMBER p , the RATIONALS can be
completed in the P -ADIC NORM to form the P -ADIC

NUMBERS Qp :/

A global field is called global because of the special
case of a complex ALGEBRAIC CURVE, for which the
field consists of global functions, (i.e., functions that
are defined everywhere). These functions differ from
functions defined near a point, whose completion is
called a LOCAL FIELD. Under favorable conditions, the

local information can be patched together to yield
global information (e.g., the HASSE PRINCIPLE).

See also ALGEBRAIC CURVE, CLASS FIELD, FIELD,
FUNCTION FIELD, HASSE PRINCIPLE, LOCAL FIELD,
NUMBER FIELD, RIEMANN SURFACE
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Global Maximum
The largest overall value of a set, function, etc., over
its entire range. It is impossible to construct an
algorithm that will find a global maximum for an
arbitrary function.

See also GLOBAL MINIMUM, LOCAL MAXIMUM, MAX-

IMUM

Global Minimum
The smallest overall value of a set, function, etc., over
its entire range. It is impossible to construct an
algorithm that will find a global minimum for an
arbitrary function.

See also GLOBAL MAXIMUM, KUHN-TUCKER THEOREM,
LOCAL MINIMUM, MINIMUM

Global Optimization
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Globe
A SPHERE which acts as a model of a spherical (or
ellipsoidal) celestial body, especially the Earth, and
on which the outlines of continents, oceans, etc. are
drawn.

See also LATITUDE, LONGITUDE, SPHERE

Glome
A 3-sphere

x2�y2�z2�w2�r2

(as opposed to the usual 2-SPHERE). The term derives
from the Latin ‘glomus’ meaning ‘ball of string.’

See also HYPERSPHERE, SPHERE

Glove Problem
Let there be m doctors and n5m patients, and let all
mn possible combinations of examinations of patients



by doctors take place. Then what is the minimum
number of surgical gloves needed G(m; n) so that no
doctor must wear a glove contaminated by a patient
and no patient is exposed to a glove worn by another
doctor? In this problem, the gloves can be turned
inside out and even placed on top of one another if
necessary, but no "decontamination" of gloves is
permitted. The optimal solution is

g(m; n) �

2 m �n �2
1
2(m �1) n �1 ; m �2k �1

1
2(m) �2

3 n
l m

otherwise ;

8><
>:

where xd e is the CEILING FUNCTION (Vardi 1991). The
case m �n �2 is straightforward since two gloves
have a total of four surfaces, which is the number
needed for mn �4 examinations.
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Glue Vector
A VECTOR specifying how layers are stacked in a
LAMINATED LATTICE.

Gnomon
A shape which, when added to a figure, yields another
figure SIMILAR to the original.
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Gnomon Magic Square
A 3�3 array of numbers in which the elements in
each 2 �2 corner have the same sum.

See also MAGIC SQUARE
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Gnomonic Number
A FIGURATE NUMBER OF THE FORM gn �2n �1 which
are the areas of square gnomons, obtained by remov-
ing a SQUARE of side n �1 from a SQUARE of side n ,

gn �n2 �(n �1)2 �2n �1:

The gnomonic numbers are therefore equivalent to
the ODD NUMBERS, and the first few are 1, 3, 5, 7, 9,
11, ... (Sloane’s A005408). The GENERATING FUNCTION

for the gnomonic numbers is

x(1 � x)

(x � 1)2 �x�3x2�5x3�7x4�. . . :

See also FIGURATE NUMBER, ODD NUMBER
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Gnomonic Projection

A nonconformal MAP PROJECTION obtained by project-
ing points P1 (or P2) on the surface of sphere from a
sphere’s center O to point P in a plane that is tangent
to the south pole S (Coxeter 1969, p. 93). Since this
projection obviously sends ANTIPODAL POINTS P1 and
P2 to the same point P in the plane, it can only be
used to project one HEMISPHERE as a time. In a
gnomonic projection, ORTHODROMES are straight
LINES.

The transformation equations for a point at LATITUDE



f and LONGITUDE l are given by

x �
cos f sin ( l � l0)

cos c 
(1)

y �
cos f1 sin f � sin f1 cos f cos ( l � l0)

cos c 
; (2)

where l0 is the central longitude, f1 is the central
latitude, and c is the angular distance of the point (x,
y ) from the center of the projection, given by

cos c �sin f1sin f �cos f1 cos f cos(l � l0) : (3)

The inverse FORMULAS are

f �sin�1 cos f sin f1 �
y sin u cos u cos f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p !

; (4)

l � l0

�tan�1 x sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
cos f1 cos u � y sin f1 sin u

 !
;

(5)

where

u �tan �1(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
) : (6)

See also STEREOGRAPHIC PROJECTION

References
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New

York: Wiley, pp. 93 and 289 �/90, 1969.
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

Washington, DC: Math. Assoc. Amer., pp. 150 �/53, 1967.
Snyder, J. P. Map Projections--A Working Manual. U. S.

Geological Survey Professional Paper 1395. Washington,
DC: U. S. Government Printing Office, pp. 164 �/68, 1987.

G-Number
EISENSTEIN INTEGER

Go
There are estimated to be about 4:63 �10170 possible
positions on a 19 �19 board (Beeler et al. , Flam-
menkamp). The number of n -move Go games are 1,
362, 130683, 47046242, ... (Sloane’s A007565).
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Goat Grazing Problem
GOAT PROBLEM

Goat Problem

Let a circular field of unit radius be fenced in, and tie
a goat to a point on the interior of the fence with a
chain of length r . What length of chain must be used
in order to allow the goat to graze exactly one half the
area of the field?
The answer is obtained by using the equation for a
CIRCLE-CIRCLE INTERSECTION

A �r2 cos �1 d2 � r2 � R2

2dr

 !

�R2 cos�1 d2 � R2 ��r2

2dR

 !

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�d�r�R)(d�r�R)(d�r�R)(d�r�R)

p
(1)

with R�d�1 and A�p=2 (i.e., half of pR2): This
leads to the equation

�1
2 r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�r2

p
�r2 cos�1(1

2 r)�cos�1(1�1
2 r2)�1

2 p; (2)

which cannot be solved exactly, but which has
approximate solution

r:1:15872847: (3)

See also CIRCLE-CIRCLE INTERSECTION, LENS

Göbel’s Sequence
Consider the RECURRENCE RELATION

xn�
1 � x2

0 � x2
1 � . . . � x2

n�1

n
; (1)

with x0�1: The first few iterates of xn are 1, 2, 3, 5,



10, 28, 154, ... (Sloane’s A003504). The terms grow
extremely rapidly, but are given by the asymptotic
formula

xn :(n2 �2n �1 �4n�1 �21n �2 �137n�3

�. . .)C2n 

; (2)

where

C �1 :04783144757641122955990946274313755459:::
(3)

(Zagier). It is more convenient to work with the
transformed sequence

sn �2 �x2
1 �x2

2 �. . .�x2
n�1 �nxn ; (4)

which gives the new recurrence

sn�1 �sn �
s2

n

n2 
(5)

with initial condition s1 �2: Now, sn�1 will be non-
integral IFF n¶sn : The smallest p for which sp f0
(mod p ) therefore gives the smallest nonintegral sp �1 :
In addition, since p¶sp ; xp �sp =p is also the smallest
nonintegral xp :/

For example, we have the sequences fsn (modk)gk
n �1 :

2; 6 �2 ; 5
4 �0 ; 0; 0 (mod 5) (6)

2 ; 6 ; 15 �1; 5
4 �0; 0; 0; 0 (mod 7) (7)

2; 6; 15 �4; 52
9 �7 ; 161

16 �8; 264
5

�0; 0; . . . ; 0 (mod 11) (8)

Testing values of k shows that the first nonintegral xn

is x43 : Note that a direct verification of this fact is
impossible since

x43 :5 :4093 �10178485291567 (9)

(calculated using the asymptotic formula) is much too
large to be computed and stored explicitly.

A sequence even more striking for assuming integer
values only for many terms is the 3-Göbel sequence

xn �
1 � x3

0 � x3
1 � . . .  � x3

n�1

n 
: (10)

The first few terms of this sequence are 1, 2, 5, 45,
22815, ... (Sloane’s A005166).

The Göbel sequences can be generalized to k powers
by

xn �
1 � xk

0 � xk
1 � . . .  � xk

n�1

n 
: (11)

See also SOMOS SEQUENCE
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Goblet Illusion

An ILLUSION in which the eye alternately sees two
black faces, or a white goblet.
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Gödel Number
A Gödel number is a unique number associated with a
statement about arithmetic. It is formed as the
PRODUCT of successive PRIMES raised to the POWER

of the number corresponding to the individual sym-
bols that comprise the sentence. For example, the
statement (	x)(x �sy) that reads "there EXISTS an x
such that x is the immediate SUCCESSOR of y" is coded

(28)(34)(513)(79)(118)(1313)(175)(197)(2316)(299);

where the numbers in the set (8, 4, 13, 9, 8, 13, 5, 7,
16, 9) correspond to the symbols that make up
(	x)(x�sy):/

See also GÖ DEL’S INCOMPLETENESS THEOREM
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Gödel’s Completeness Theorem
If T is a set of AXIOMS in a first-order language, and a
statement p holds for any structure M satisfying T ,
then p can be formally deduced from T in some
appropriately defined fashion.

See also GÖ DEL’S INCOMPLETENESS THEOREM, LÖ W-

ENHEIM-SKOLEM THEOREM
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Gödel’s Incompleteness Theorem
Informally, Gödel’s incompleteness theorem states
that all CONSISTENT axiomatic formulations of NUM-

BER THEORY include undecidable propositions (Hof-
stadter 1989). This is sometimes called Gödel’s first
incompleteness theorem, and answers in the negative
HILBERT’S PROBLEM asking whether mathematics is
"complete" (in the sense that every statement in the
language of NUMBER THEORY can be either proved or
disproved). Formally, Gödel’s theorem states, "To
every v/-consistent recursive class k of FORMULAS,
there correspond recursive class-signs r such that
neither (v Gen r ) nor Neg(v Gen r ) belongs to Flg(/k);
where v is the FREE VARIABLE of r" (Gödel 1931).

A statement sometimes known as Gödel’s second
incompleteness theorem states that if NUMBER THE-

ORY is consistent, then a proof of this fact does not
exist using the methods of first-order PREDICATE

CALCULUS. Stated more colloquially, any formal sys-
tem that is interesting enough to formulate its own
consistency can prove its own consistency IFF it is
inconsistent.

Gerhard Gentzen showed that the consistency and
completeness of arithmetic can be proved if "transfi-
nite" induction is used. However, this approach does
not allow proof of the consistency of all mathematics.

See also CONSISTENCY, GÖ DEL’S COMPLETENESS THE-

OREM, HILBERT’S PROBLEMS, KREISEL CONJECTURE,
NATURAL INDEPENDENCE PHENOMENON, NUMBER

THEORY, RICHARDSON’S THEOREM, UNDECIDABLE
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Gödel, K. "Uuml;ber Formal Unentscheidbare Sätze der
Principia Mathematica und Verwandter Systeme, I."
Monatshefte für Math. u. Physik 38, 173 �/98, 1931.
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Gog Triangle
MONOTONE TRIANGLE

Golay-Rudin-Shapiro Sequence
RUDIN-SHAPIRO SEQUENCE

Goldbach Conjecture
Goldbach’s original conjecture (sometimes called the
"ternary" Goldbach conjecture), written in a June 7,
1742 letter to Euler, states that every INTEGER > 5 is
the SUM of three PRIMES (Dickson 1957, p. 421). As re-
expressed by Euler, an equivalent of this CONJECTURE

(called the "strong" or "binary" Goldbach conjecture)
asserts that all POSITIVE EVEN INTEGERS ]4 can be
expressed as the SUM of two PRIMES. According to
Hardy (1999, p. 19), "It is comparatively easy to make
clever guesses; indeed there are theorems, like ‘Gold-
bach’s Theorem’, which have never been proved and
which any fool could have guessed."

Schnirelman (1939) proved that every EVEN number
can be written as the sum of not more than 300,000
PRIMES (Dunham 1990), which seems a rather far cry
from a proof for two PRIMES! Pogorzelski (1977)
claimed to have proven the Goldbach conjecture, but
his proof is not generally accepted (Shanks 1993). The
following table summarizes bounds n such that the
strong Goldbach conjecture has been shown to be true
for numbersBn:/

bound reference

/1�104
/ Desboves 1885

/1�105
/ Pipping 1938

/1�108
/ Stein and Stein 1965ab

/2�1010
/ Granville et al. 1989

/4�1011
/ Sinisalo 1993

/1�1014
/ Deshouillers et al. 1998

/4�1014
/ Richstein 2000 (quoted in Peterson

2000)

The conjecture that all ODD numbers]9 are the SUM

of three ODD PRIMES is called the "weak" Goldbach
conjecture. Vinogradov proved that all ODD INTEGERS

starting at some sufficiently large value are the SUM

of three PRIMES (Guy 1994). The original "sufficiently
large" N]3315

:ee16:573

:3:25�106;846;168 was subse-
quently reduced to ee11:503

:3:33�1043; 000 by Chen
and Wang (1989). Chen (1973, 1978) also showed
that all sufficiently large EVEN NUMBERS are the sum
of a PRIME and the PRODUCT of at most two PRIMES

(Guy 1994, Courant and Robbins 1996).

It has been shown that if the weak Goldbach
conjecture is false, then there are only a FINITE

number of exceptions. A stronger version of the
weak conjecture, namely that every odd number > 5
can be expressed as the sum of a prime plus twice a
prime has been formulated by C. Eaton. This con-
jecture has been verified for n5109 (Corbit).



Other variants of the Goldbach conjecture include the
statements that every EVEN number ]6 is the SUM of
two ODD PRIMES, and every INTEGER > 17 the sum of
exactly three distinct PRIMES. Let R(n) be the number
of representations of an EVEN INTEGER n as the sum
of two PRIMES. Then the "extended" Goldbach con-
jecture states that

R(n) 	2
Y

2

Y
k �2

pk ½n

pk � 1

pk � 2 g
x

2

dx

(ln x)2 ;

where
Q

2 is the TWIN PRIMES CONSTANT (Halberstam
and Richert 1974).

If the Goldbach conjecture is true, then for every
number m , there are PRIMES p and q such that

f(p) � f(q) �2m;

where f(x) is the TOTIENT FUNCTION (Guy 1994,
p. 105).

Vinogradov (1937ab, 1954) proved that every suffi-
ciently large ODD NUMBER is the sum of three PRIMES

(Nagell 1951, p. 66), and Estermann (1938) proves
that almost all EVEN NUMBERS are the sums of two
PRIMES.

See also CHEN’S THEOREM, DE POLIGNAC’S CONJEC-

TURE, GOLDBACH NUMBER, PRIME PARTITION, SCHNIR-

ELMANN’S THEOREM, WARING’S PRIME NUMBER

CONJECTURE
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Goldbach Number
A positive integer which is the sum of two ODD PRIMES

is called a Goldbach number (Li 1999). Let E(x) (the
"exceptional set of Goldbach numbers") denote the
number of even numbers not exceeding x which



cannot be written as a sum of two primes. Then the
GOLDBACH CONJECTURE is equivalent to proving that
E(x) �2 for every x ]4 : Li (1999) proved that for
sufficiently large x ,

E(x)�O(x0:921):

See also GOLDBACH CONJECTURE
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Goldbach’s Theorem
GOLDBACH CONJECTURE

Golden Mean
GOLDEN RATIO

Golden Ratio
A number often encountered when taking the ratios
of distances in simple geometric figures such as the
PENTAGRAM, DECAGON and DODECAGON. It is denoted
f; or sometimes t (which is an abbreviation of the
Greek "tome," meaning "to cut"). f is also known as
the DIVINE PROPORTION, GOLDEN MEAN, and GOLDEN

SECTION and is a PISOT-VIJAYARAGHAVAN CONSTANT.
It has surprising connections with CONTINUED FRAC-

TIONS and the EUCLIDEAN ALGORITHM for computing
the GREATEST COMMON DIVISOR of two INTEGERS.

Given a RECTANGLE having sides in the ratio 1 : f; f
is defined such that partitioning the original RECTAN-

GLE into a SQUARE and new RECTANGLE results in a
new RECTANGLE having sides with a ratio 1 : f: Such
a RECTANGLE is called a GOLDEN RECTANGLE, and
successive points dividing a GOLDEN RECTANGLE into
SQUARES lie on a LOGARITHMIC SPIRAL. This figure is
known as a WHIRLING SQUARE.

This means that

1

f� 1
�f (1)

f2�f�1�0: (2)

So, by the QUADRATIC EQUATION,

f�1
2(19

ffiffiffiffiffiffiffiffiffiffiffi
1�4

p
)�1

2(1�
ffiffiffi
5

p
) (3)

�1:618033988749894848204586834365638117720 . . .
(4)

(Sloane’s A001622). The golden ratio is given by the
INFINITE SERIES

f�
13

8
�
X�
n�0

(�1)n�1(2n � 1)!

(n � 2)!n!42n�3
(5)

(B. Roselle).

A geometric definition can be given in terms of the
above figure. Let the ratio x�BC=AB: The NUMERA-

TOR and DENOMINATOR can then be taken as AB�a
and BC�x without loss of generality. Now define the
position of B by

AB

BC
�

BC

AC
: (6)

Plugging in gives

1

x
�

x

1 � x
; (7)

or

x2�x�1�0; (8)

which can be solved using the QUADRATIC EQUATION

to obtain

f�x�
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�1)2 � 4(1)(�1)

p
2

�1
2(1�

ffiffiffi
5

p
); (9)

where the plus sign has been taken to give the
solution with x �1.

/f is the "most" IRRATIONAL number because it has a
CONTINUED FRACTION representation

f�[1; 1; 1; . . .] (10)

(Sloane’s A000012; Williams 1979, p. 52; Steinhaus
1983, p. 45). Another infinite representation in terms
of a NESTED RADICAL is

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�. . .

pqrs
: (11)

Ramanujan gave the curious CONTINUED FRACTION

identities



1

(
ffiffiffiffiffiffiffiffiffiffi
f
ffiffiffi
5

pq
)e2p=5

�1�
e�2p

1 �
e�4p

1 �
e�6p

1 �
e�8p

1 �
e�10p

1 � . . .

(12)

1ffiffiffi
5

p

1 � [53=4(f� 1)5=2 � 1] � f

( )
e2p=

ffiffi
5

p

�1�
e�2p

ffiffi
5

p

1 �
e�4p

ffiffi
5

p

1 �
e�6p

ffiffi
5

p

1 �
e�8p

ffiffi
5

p

1 �
e�10p

ffiffi
5

p

1 � . . .

(13)

(Ramanathan 1984).

The SINE of certain complex numbers involving f

gives particularly simplex answers,

sin(i ln f)�1
2 i (14)

sin(1
2 p�i ln f)�1

2

ffiffiffi
5

p
(15)

(Hoey). A curious approximation due to D. Barron is
given by

f:1
2 Kg�19=7p2=7�g; (16)

where K is CATALAN’S CONSTANT and g is the EULER-

MASCHERONI CONSTANT, which is good to two digits.

Steinhaus (1983, pp. 48�/9) considers the distribution
of the FRACTIONAL PARTS of nf in the intervals
bounded by 0, 1=n; 2=n; ..., (n�1)=n; 1, and notes
that they are much more uniformly distributed than
would be expected due to chance (i.e., frac(nf) is close
to an EQUIDISTRIBUTED SEQUENCE). In particular, the
number of empty intervals for n�1, 2, ..., are a mere
0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 2, 2, ... (Sloane’s
A036412). The values of n for which no bins are left
blank are then given by 1, 2, 3, 4, 5, 6, 8, 10, 13, 16,
21, 34, 55, 89, 144, ... (Sloane’s A036413). Steinhaus
(1983) remarks that the highly uniform distribution
has its roots in the CONTINUED FRACTION for f:/

The legs of a GOLDEN TRIANGLE are in a golden ratio
to its base. In fact, this was the method used by
Pythagoras to construct f: Euclid used the following
construction.

Draw the SQUARE IABCD; call E the MIDPOINT of
AC , so that AE�EC�x: Now draw the segment BE ,
which has length

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22�12

p
�x

ffiffiffi
5

p
; (17)

and construct EF with this length. Now construct
FG�EF , then

f�
FC

CD
�

EF � CE

CD
�

x(
ffiffiffi
5

p
� 1)

2x
�1

2(
ffiffiffi
5

p
�1): (18)

The ratio of the CIRCUMRADIUS to the length of the
side of a DECAGON is also f;

R

s
�1

2 csc
p

10

 !
�1

2(1�
ffiffiffi
5

p
)�f: (19)

Similarly, the legs of a GOLDEN TRIANGLE (an ISO-

SCELES TRIANGLE with a VERTEX ANGLE of 368) are in a
golden ratio to the base. Bisecting a GAULLIST CROSS

also gives a golden ratio (Gardner 1961, p. 102).

In the figure above, three TRIANGLES can be IN-

SCRIBED in the RECTANGLE 
ABCD of arbitrary
aspect ratio 1 : r such that the three RIGHT TRIANGLES

have equal areas by dividing AB and BC in the
golden ratio. Then

KDADE�
1
2 � r(1�f) � 1�1

2 rf2 (20)

KDBEF�
1
2 � rf � f�1

2 rf2 (21)

KDCDF�
1
2(1�f)� r�1

2 rf2; (22)

which are all equal.



The golden ratio also satisfies the RECURRENCE

RELATION

fn � fn�1 � fn�2 ; (23)

so taking n �0 gives

f � f�1 �1 : (24)

The powers of the golden ratio also satisfy

fn �Fn f �Fn �1 ; (25)

where Fn is a FIBONACCI NUMBER (Wells 1986, p. 39).

For the difference equations

x0 �1

xn �1 �
1

xn�1

for n �1; 2 ; 3 ;

8<
: 

(26)

/f is also given by

f � lim
n 0�

xn : (27)

In addition,

f � lim
n0�

Fn

Fn�1

; (28)

where Fn is the nth FIBONACCI NUMBER, as first
proved by Scottish mathematician Robert Simson in
1753 (Wells 1986, p. 62).

The SUBSTITUTION MAP

0 0 01 (29)

1 0 0 (30)

gives

0 0 01 0 010 0 01001 0 . . . ; (31)

giving rise to the sequence

0100101001001010010100100101 . . . (32)

(Sloane’s A003849). Here, the zeros occur at positions
1, 3, 4, 6, 8, 9, 11, 12, ... (Sloane’s A000201), and the
ones occur at positions 2, 5, 7, 10, 13, 15, 18, ...
(Sloane’s A001950). These are complementary
BEATTY SEQUENCES generated by nfb c and nf2

> ?
:

The sequence also has many connections with the
FIBONACCI NUMBERS.

Salem showed that the set of PISOT-VIJAYARAGHAVAN

CONSTANTS is closed, with f the smallest accumula-
tion point of the set (Le Lionnais 1983).

See also BERAHA CONSTANTS, DECAGON, FIVE DISKS

PROBLEM, GOLDEN RATIO CONJUGATE, GOLDEN REC-

TANGLE, GOLDEN TRIANGLE, ICOSIDODECAHEDRON,
NOBLE NUMBER, PENTAGON, PENTAGRAM, PHI NUM-

BER SYSTEM, PHYLLOTAXIS, PISOT-VIJAYARAGHAVAN

CONSTANT, SECANT METHOD
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Golden Ratio Conjugate
The quantity

fC�
1

f
�f�1�

ffiffiffi
5

p
� 1

2
:0:6180339887; (1)



where f is the GOLDEN RATIO. The golden ratio
conjugate is sometimes also called the SILVER RATIO.
A quantity similar to the FEIGENBAUM CONSTANT can
be found for the nth CONTINUED FRACTION represen-
tation

[a0 ; a1 ; a2 ; . . .]: (2)

Taking the limit of

dn �
sn � sn�1

sn � sn�1

(3)

gives

d � lim
n0�

�1 � f �2 � fC : (4)

See also GOLDEN RATIO, SILVER RATIO

Golden Rectangle

Given a RECTANGLE having sides in the ratio 1 : f ; the
GOLDEN RATIO f is defined such that partitioning the
original RECTANGLE into a SQUARE and new RECTAN-

GLE results in a new RECTANGLE having sides with a
ratio 1 : f: Such a RECTANGLE is called a golden
rectangle, and successive points dividing a golden
rectangle into SQUARES lie on a LOGARITHMIC SPIRAL

(Wells 1986, p. 39). The spiral is not actually tangent
at these points, however, but passes through them
and intersects the adjacent side, as illustrated below.

If the top left corner of the original square is

positioned at (0, 0), the center of the spiral occurs at
the position

x0 �
X�
n�0

1

f4n 
�

1

f4n �1 
�

1

f4n�2 
�

1

f4n�3

 !

�(1 � f�1 � f�2 � f�3)
X�
n�0

1

f4n 
�

2 f � 1

f � 2

� 1
10(5 �3

ffiffiffi
5

p
) :1:17082 (1)

y0 �
X�
n�0

�
1

f4n 
�

1

f4n�1 �
1

f4n�2 �
1

f4n�3

 !

�(�1 � f �1 � f�2 � f�3)
X�
n�0

�
1

2 � f

� 1
10(

ffiffiffi
5

p
�5) :�0:276393 ; (2)

and the parameters of the spiral aeb u are given by

a �(4
5)

1=4 
f(tan�1 2)= p (3)

b �
2 ln f

p
:0 :306349 : (4)

See also GOLDEN RATIO, GOLDEN TRIANGLE, LOGA-

RITHMIC SPIRAL, RECTANGLE
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Golden Root
GOLDEN RATIO

Golden Rule
The mathematical golden rule states that, for any
FRACTION, both NUMERATOR and DENOMINATOR may
be multiplied by the same number without changing
the fraction’s value.

See also DENOMINATOR, FRACTION, NUMERATOR
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Golden Section
GOLDEN RATIO

Golden Theorem
QUADRATIC RECIPROCITY THEOREM

Golden Triangle

An ISOSCELES TRIANGLE with VERTEX angles 36 8. Such
TRIANGLES occur in the PENTAGRAM and DECAGON.
The legs are in a GOLDEN RATIO to the base. For such
a TRIANGLE,

sin(18 �) �sin( 1
10 p) �

1
2 b

l 
(1)

b �2a sin( 1
10 p) �2a

ffiffiffi
5

p
� 1

4
�1

2 a(
ffiffiffi
5

p
�1) (2)

b �l �1
2 a(

ffiffiffi
5

p
�1) (3)

b � a

a
�

ffiffiffi
5

p
� 1

2
� f: (4)

Kimberling (1991) defines a second type of golden
triangle in which the ratio of angles is f : 1; where f
is the GOLDEN RATIO.

See also DECAGON, GOLDEN RATIO, GOLDEN RECTAN-

GLE, ISOSCELES TRIANGLE, PENTAGRAM
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Goldschmidt Solution
The discontinuous solution of the SURFACE OF REVO-

LUTION AREA minimization problem for surfaces con-
necting two CIRCLES. When the CIRCLES are
sufficiently far apart, the usual CATENOID is no longer
stable and the surface will break and form two
surfaces with the CIRCLES as boundaries.

See also CALCULUS OF VARIATIONS, SURFACE OF

REVOLUTION

Göllnitz’s Theorem
Let A(n) denote the number of PARTITIONS of n into
parts�2; 5; 11 (mod 12), let B(n) denote the number
of PARTITIONS of n into distinct parts�2; 4; 5 (mod
6), and let C(n) denote the number of PARTITIONS of n
of the form

n�b1�b2�. . .�bt; (1)

where bi�bi�1]6; with strict inequality if bi�0; 1
or 3 (mod 6), and bt"1; 3: Then

A(n)�B(n)�C(n) (2)

(Andrews 1986, p. 101).

The values of A(n)�B(n)�C(n) for n�1, 2, ... are 0,
1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8,
9, ... (Sloane’s A056970). For example, for n�24,
there are eight partitions satisfying these conditions,
as summarized in the following table.

/A(24)�8/ /B(24)�8/ /C(24)�8/

/17�5�2/ 22�2 24

/14�5�5/ 20�4 22�2

/14�2�2�2�2�2/ /17�5�2/ 20�4

/11�11�2/ 16�8 19�5

/11�5�2�2�2�2/ 14�10 18�6

/5�5�5�5�2�2/ /14�8�2/ /17�/

/5�5�2�2�2�2�2/

/�2�2/

/11�8�5/ 16�8

/2�2�2�2�2�2�2/

/�2�2�2�2�2/

/10�8�4�2/ /14�8�2/

The identity A(n)�B(n) can be established using the
identity

X�
n�0

B(n)qn�
Y�
n�0

(1�q6n�2)(1�q6n�4)(1�q6n�5) (3)

�
Y�
n�0

(1 � q12n�4)(1 � q12n�8)(1 � q12n�10)

(1 � q6n�2)(1 � q6n�4)(1 � q6n�5)
(4)



�
Y�
n�0

1

(1 � q12n�2)(1 � q12n�5)(1 � q12n�11)
(5)

�
X�
n�0

A(n)qn (6)

(Andrews 1986, p. 101). The assertion B(n) �C(n) is
significantly more difficult, and no simple proof is
known. However, it can be established with the aid of
computer algebra and the following refinement of the
Göllnitz theorem.

Let B(n; m) denote the number of partitions of n into
m distinct parts �2 ; 4; 5; 4, 5 (mod 6). Let C(n; m)
denote the number of partitions of n of the form

n �b1 �b2 �. . .�bn ; (7)

where bi �bi�1 ]6 ; with strict inequality if bi �0; 1, 3
(mod 6), where bs "1; 3, and m is the number of bi �

2; 4; 5 plus twice the number of bi�0; 1; 3: Then
B(n; m)�C(n; m) for each n and m (Göllnitz 1967;
Andrews 1986, p. 102).

See also SCHUR’S PARTITION THEOREM
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Göllnitz-Gordon Identities

X�
n�0

qn2

(�q; q2)n

(q2; q2)n

�
1

(q; q8)�(q4; q8)�(q7; q8)�

X�
n�0

qn(n�2)(�q; q2)n

(q2; q2)n

�
1

(q3; q8)�(q4; q8)�(q5; q8)�
:
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Göllnitz, H. "Partitionen mit Differenzenbedingungen." J.

reine angew. Math. 225, 154�/90, 1967.
Gordon, B. "Some Continued Fractions of the Rogers-

Ramanujan Type." Duke Math. J. 32, 741�/48, 1965.
Gordon, B. and McIntosh, R. J. "Some Eighth Order Mock

Theta Functions." To appear in J. London Math. Soc.
2000.
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Golomb Constant
GOLOMB-DICKMAN CONSTANT

Golomb Ruler

An n -mark Golomb ruler is a set of n distinct
nonnegative integers (a1; a2; . . . ; an); called "marks,"
such that the positive differences ½ai�aj½; computed
over all possible pairs of different integers, are
distinct. Let an be the largest integer in an n -mark
Golomb ruler. Then an optimal Golomb ruler with n
marks is an n -mark Golomb ruler having largest
mark an characterized by the property that there
exist no other n -mark Golomb rulers having smaller
an: In such a case, an is the called the "length" of the
optimal n -mark ruler.
For example, the set (0, 1, 3, 7) is 4-mark Golomb
ruler since its differences are (1�1�/, 2�3�/, 3�3�/,
4�7�/, 6�7�/, 7�7�/), all of which are distinct.
However, the unique optimal Golomb 4-mark ruler
is (0, 1, 4, 6), which measures the distances (1, 2, 3, 4,
5, 6) (and is therefore also a PERFECT RULER). As a
further example, it turns out that the length of an
optimal 6-mark Golomb ruler is 17. In fact, there are
a total of four distinct 6-mark Golomb rulers, all of
length 17, one of which is given by (0, 1, 4, 10, 12, 17).

In general, the lengths of the optimal n -mark Golomb
rulers for n�2, 3, 4, ... are 1, 3, 6, 11, 17, 25, 34, ...
(Sloane’s A003022, Vanderschel and Garry).
Although the lengths of the optimal n -mark Golomb
rulers are not known for n]23; the known 21, 22,
and 23-mark rulers were proved optimal by the
Golomb ruler search project in 1998 and 1999. The
number of inequivalent optimal n -mark Golomb
rulers for n�2, 3, ... are 1, 1, 1, 2, 4, 5, 1, 1, 1, ...
(Sloane’s A036501), and the number of distances in
an optimal n -mark ruler is given by the TRIANGULAR

NUMBER Tn�n(n�1)=2; so for n�1, 2, ..., the first
few are 0, 1, 3, 6, 10, 15, ... (Sloane’s A000217).

The following table gives the optimal Golomb rulers
for small n . A more complete table is maintained by
J. B. Shearer.

n optimal rulers

2 (0, 1)

3 (0, 1, 3)

4 (0, 1, 4, 6)



5 (0, 1, 4, 9, 11), (0, 3, 4, 9, 11)

6 (0, 1, 4, 10, 12, 17), (0, 1, 4, 10, 15, 17), (0, 3, 5,
9, 16, 17),

(0, 4, 6, 9, 16, 17)

7 (0, 1, 4, 10, 18, 23, 25), (0, 2, 3, 10, 16, 21, 25),

(0, 2, 6, 9, 14, 24, 25), (0, 1, 7, 11, 20, 23, 25),
(0, 3, 4, 12, 18, 23, 25)

8 (0, 1, 4, 9, 15, 22, 32, 34)

See also PERFECT DIFFERENCE SET, PERFECT RULER,
RULER, TAYLOR’S CONDITION, WEIGHING
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Golomb-Dickman Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let P be a PERMUTATION of n elements, and let ai be
the number of CYCLES of length i in this PERMUTA-

TION. Picking P at RANDOM gives

X�
j�1

aj

* +
�
Xn

i�1

1

i
�ln n�g�O

1

n

 !
(1)

var
X�
j�1

aj

 !
�
Xn

i�1

i � 1

i2
�ln n�g�1

6 p
2�O

1

n

 !
(2)

lim
n0�

P(a1�0)�
1

e
(3)

(Shepp and Lloyd 1966, Wilf 1990). Goncharov (1942)
showed that

lim
n0�

P(aj�k)�
1

k!
e�1=jj�k; (4)

which is a POISSON DISTRIBUTION, and

lim
n0�

P
X�
j�1

aj�ln n

 !
(ln n)�1=2

5x

" #
�F(x); (5)

which is a NORMAL DISTRIBUTION, g is the EULER-

MASCHERONI CONSTANT, and F(x) is the NORMAL

DISTRIBUTION FUNCTION.

Let

M(a)�max
f

j : aj > 0g; (6)

i.e., the length of the longest cycle in P: Then Golomb
(1959) derived

l� lim
n0�

�M(a)�

n
�0:6243299885 . . . ; (7)

which is known as the GOLOMB CONSTANT or Golomb-
Dickman constant. Knuth (1981) asked for the con-
stants b and c such that

lim
n0�

nb �M(a)��ln�1
2 l

h i
�c; (8)

and Gourdon (1996) showed that

�M(a)��l(n�1
2)�

eg

24n
�

1
48 eg � 1

8(�1)n

n2

�
17

3840 eg � 1
8(�1)n � 1

6 j1�2n � 1
6 j2�n

n3
; (9)

where

j�e2pi=3: (10)

/l can be expressed in terms of the function f (x)
defined by f (x)�1 for 15x52 and

df

dx
��

f (x � 1)

x � 1
(11)



for x �2, by

l �g
�

1

f (x)

x2
dx : (12)

Shepp and Lloyd (1966) derived

l �g
�

0

exp �x �g
�

x

e �y

y
dy

 !

�g
1

0

exp g
x

0

dy

ln y

 !
dx: (13)

Mitchell (1968) computed l to 53 decimal places.

Surprisingly enough, there is a connection between l
and PRIME FACTORIZATION (Knuth and Pardo 1976,
Knuth 1981, pp. 367 �/68, 395, and 611). Dickman
(1930) investigated the probability P(x; n) that the
largest PRIME FACTOR p of a random INTEGER between
1 and n satisfies p Bnx for x � (0; 1): He found that

F(x) � lim
n0�

P(x; n)

�
1 if x ]1

g
x

0

F
t

1 � t

 !
dt

t
if 0 5x 51:

8<
: 

(14)

Dickman then found the average value of x such that
p �nx ; obtaining

m � lim
n0�

�x�� lim
n0�

ln p

ln n

* +
�g

1

0

x
dF

dx
dx

�g
1

0

F
1

1 � t

 !
dt �0:62432999; (15)

which is l :/
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Golygon

A PLANE path on a set of equally spaced LATTICE

POINTS, starting at the ORIGIN, where the first step is
one unit to the north or south, the second step is two
units to the east or west, the third is three units to the
north or south, etc., and continuing until the ORIGIN

is again reached. No crossing or backtracking is
allowed. The simplest golygon is (0, 0), (0, 1), (2, 1),
(2, �2), ( �2, �2), ( �2, �7), ( �8, �7), ( �8, 0), (0, 0).
A golygon can be formed if there exists an EVEN

INTEGER n such that

91 93 9. . .9(n �1) �0 (1)

92 94 9. . .9n �0 (2)

(Vardi 1991). Gardner proved that all golygons are OF

THE FORM n �8k: The number of golygons of length n
(EVEN), with each initial direction counted separately,
is the PRODUCT of the COEFFICIENT of xn2=8 in

(1�x)(1�x3) � � � (1�xn�1); (3)

with the COEFFICIENT of xn(n=2�1)=8 in

(1�x)(1�x2) � � � (1�xn=2): (4)

The number of golygons N(n) of length 8n for the first
few n are 4, 112, 8432, 909288, ... (Sloane’s A006718)
and is asymptotic to

N(n)	
3 � 28n�4

pn2(4n � 1)
(5)

(Sallows et al. 1991, Vardi 1991).

See also CANONICAL POLYGON, LATTICE PATH, LAT-

TICE POLYGON
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Gomory’s Theorem
Regardless of where one white and one black square
are deleted from an ordinary 8 �8 CHESSBOARD, the
reduced board can always be covered exactly with 31
DOMINOES (of dimension 2 �1):/

See also CHESSBOARD

Gompertz Constant

G �g
�

0

e �u

1 � u
du ��e ei(�1)

�0:596347362 . . . ;

where ei(x) is the EXPONENTIAL INTEGRAL. Stieltjes
showed it has the CONTINUED FRACTION representa-
tion

G �
1

2�

12

4 �

22

6�

32

8�
� � � :

See also EXPONENTIAL INTEGRAL
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Gompertz Curve
The function defined by

y �abqx 

:

It is used in actuarial science for specifying a
simplified mortality law (Kenney and Keeping 1962,
p. 241). Using s(x) as the probability that a newborn
will achieve age x , the Gompertz law is

s(x) �exp[�m(cx �1)] ;

for c �1, x ]0 (Gompertz 1832).

See also LAW OF GROWTH, LIFE EXPECTANCY, LOGIS-

TIC GROWTH CURVE, MAKEHAM CURVE, POPULATION

GROWTH
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Gon
GRADIAN

Gonal Number
POLYGONAL NUMBER

Good Binomial Coefficient
A BINOMIAL COEFFICIENT

N
k

" #
with k ]2 is called good

if its LEAST PRIME FACTOR satisfies

lpf
N
k

$ %
> k

(Erdoset al. 1993). This is equivalent to the require-
ment that

GCD
N
k

$ %
; k!

$ %
�1:

The first few good binomial coefficients are therefore
3
2

" #
; 5

4

" #
; 6

2

" #
; 7

2

" #
; 7

3

" #
; 7

4

" #
; 7

6

" #
; 10

2

" #
; .... Good binomial

coefficients are closely related to the ERDOS-SELF-

RIDGE FUNCTION g(k); which gives the least integer
N > k �1 such that N

k

" #
is good.

See also BINOMIAL COEFFICIENT, DEFICIENCY, ERDOS-

SELFRIDGE FUNCTION, EXCEPTIONAL BINOMIAL COEF-

FICIENT
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Good Path
P -GOOD PATH

Good Prime
A PRIME pn is called "good" if

p2
n > pn�ipn�i

for all 1 5i 5n �1 (there is a typo in Guy 1994 in
which the is are replaced by 1s). There are infinitely
many good primes, and the first few are 5, 11, 17, 29,
37, 41, 53, ... (Sloane’s A028388).

See also ANDRICA’S CONJECTURE, LANDAU’S PRO-

BLEMS, PÓ LYA CONJECTURE
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Goodman’s Formula
A two-coloring of a COMPLETE GRAPH Kn of n nodes
which contains exactly the number of MONOCHRO-



MATIC FORCED TRIANGLES and no more (i.e., a mini-
mum of R �B where R and B are the number of red
and blue TRIANGLES) is called an EXTREMAL GRAPH.
Goodman (1959) showed that for an extremal graph,

R �B �

1
3 m(m �1)(m �2) for n �2m
2
3 m(m �1)(4m �1) for n �4m �1
2
3 m(m �1)(4m �1) for n �4m �3:

8><
>:

Schwenk (1972) rewrote the equation in the form

R �B �
n
3

$ %
� 1

2 n
1
4(n �1)2
j kj k

;

where n
k

" #
is a BINOMIAL COEFFICIENT and xb c is the

FLOOR FUNCTION.

See also BLUE-EMPTY GRAPH, EXTREMAL GRAPH,
MONOCHROMATIC FORCED TRIANGLE
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Goodstein Sequence
Given a HEREDITARY REPRESENTATION of a number n
in BASE b , let B[b](n) be the NONNEGATIVE INTEGER

which results if we syntactically replace each b by
b �1 (i.e., B[b] is a base change operator that ‘bumps
the base’ from b up to b �1): The HEREDITARY

REPRESENTATION of 266 in base 2 is

266 �28 �23 �2

�222 �1 

�22 �1 �2 ;

so bumping the base from 2 to 3 yields

B[2](266) �333�1 

�33�1 �3:

Now repeatedly bump the base and subtract 1,

G0(266) �266 �222 �1 

�22 �1 �2

G1(266) �B[2](266) �1 �333 �1 

�33 �1 �2

G2(266) �B[3](G1) �1 �444�1 

�44 �1 �1

G3(266) �B[4](G2) �1 �555�1 

�55 �1 �1

G4(266) �B[5](G3) �1 �666�1 

�66 �1 �1

�666�1 

�5 � 66 �5 � 65 �. . .�5 � 6 �5

G5(266) �B[6](G4) �1

�777�1 

�5 � 77 �5 � 75 �. . .�5 � 7 �4;

etc. Starting this procedure at an INTEGER n gives the
Goodstein sequence fGk(n) g: Amazingly, despite the
apparent rapid increase in the terms of the sequence,

GOODSTEIN’S THEOREM states that Gk(n) is 0 for any n
and any sufficiently large k .

See also GOODSTEIN’S THEOREM, HEREDITARY REPRE-

SENTATION
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Goodstein’s Theorem
For all n , there exists a k such that the kth term of
the GOODSTEIN SEQUENCE Gk(n) �0: In other words,
every GOODSTEIN SEQUENCE converges to 0.

The secret underlying Goodstein’s theorem is that the
HEREDITARY REPRESENTATION of n in base b mimics
an ordinal notation for ordinals less than some
number. For such ordinals, the base bumping opera-
tion leaves the ordinal fixed whereas the subtraction
of one decreases the ordinal. But these ordinals are
well ordered, and this allows us to conclude that a
Goodstein sequence eventually converges to zero.

Goodstein’s theorem cannot be proved in PEANO

ARITHMETIC (i.e., formal NUMBER THEORY).

See also NATURAL INDEPENDENCE PHENOMENON,
PEANO ARITHMETIC
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Googol
A LARGE NUMBER equal to 10100 (i.e., a 1 with 100
zeros following it). Written out explicitly,

10000000000000000000000000000000000000000000-
00000000000000000000000000000000000000000000-
0000000000000.

See also GOOGOLPLEX, LARGE NUMBER
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Googolplex
A LARGE NUMBER equal to 1010100 

(i.e., 1 with a GOOGOL

number of 0s written after it).

See also GOOGOL, LARGE NUMBER
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Gordian Distance
A metric characterizing the difference between two
knots K and K ? in S3 :/
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Gordon Function
Another name for the CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND, defined by

G(1 � c)

G(1 � a)
e � pc �

sin[ p(a � c)]

sin(pa)

" #
1F1(a; c; z)

(

�2
G(c � 1)

G(c � a)
z1 �c

1F1(a �c �1; 2 �c; z)

�
;

where G(x) is the GAMMA FUNCTION and 1F1(a; b; z) is
the CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

FIRST KIND.

See also CONFLUENT HYPERGEOMETRIC FUNCTION OF

THE SECOND KIND
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Gordon Matrix
PRIME ARRAY

Gordon-Luecke Theorem
Two distinct knots cannot have the same exterior. Or,
equivalently, a knot is completely determined by its
KNOT EXTERIOR (Adams 1994, p. 261). The question
was first posed by Tietze in 1908, and finally proved
by Gordon and Luecke (1989).

See also KNOT EXTERIOR
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Gorenstein Ring
An algebraic RING which appears in treatments of
duality in ALGEBRAIC GEOMETRY. Let A be a local
ARTINIAN RING with m ƒA its maximal IDEAL. Then A
is a Gorenstein ring if the ANNIHILATOR of m has
DIMENSION 1 as a VECTOR SPACE over K �A=m:/

See also CAYLEY-BACHARACH THEOREM
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Gosper Island

A modification of the KOCH SNOWFLAKE which has
FRACTAL DIMENSION

D �
2 ln 3

ln 7
�1:12915 . . . :

The term "Gosper island" was used by Mandelbrot
(1977) because this curve bounds the space filled by
the PEANO-GOSPER CURVE; Gosper and Gardner use
the term FLOWSNAKE FRACTAL instead. Gosper islands
can TILE the PLANE.

See also KOCH SNOWFLAKE, PEANO-GOSPER CURVE
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Gosper’s Algorithm
An ALGORITHM for finding closed form HYPERGEO-

METRIC IDENTITIES. The algorithm treats sums whose
successive terms have ratios which are RATIONAL

FUNCTIONS. Not only does it decide conclusively
whether there exists a hypergeometric sequence zn

such that

tn�zn�1�zn; (1)

but actually produces zn if it exists. If not, it produces
an�1

k�0 tk: An outline of the algorithm follows (Petkov-
sek 1996):



1. For the ratio r(n) �tn�1 =tn which is a RATIONAL

FUNCTION of n .
2. Write

r(n) �
a(n)

b(n)

c(n � 1)

c(n)
; (2)

where a(n) ; b(n) ; and c(n) are polynomials satisfy-
ing

GCD(a(n) ; b(n �h)) �1 (3)

for all nonnegative integers h .
3. Find a nonzero polynomial solution x(n) of

a(n)x(n �1) �b(n �1)x(n) �c(n) ; (4)

if one exists.
4. Return b(n �1)x(n) =c(n)tn and stop.

Petkovsek et al. (1996) describe the algorithm as "one
of the landmarks in the history of computerization of
the problem of closed form summation." Gosper’s
algorithm is vital in the operation of ZEILBERGER’S

ALGORITHM and the machinery of WILF-ZEILBERGER

PAIRS.

See also HYPERGEOMETRIC IDENTITY, SISTER CELINE’S

METHOD, WILF-ZEILBERGER PAIR, ZEILBERGER’S AL-

GORITHM
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Gosper’s Method
GOSPER’S ALGORITHM

Gossip Problem
GOSSIPING

Gossiping
This entry contributed by RONALD M. AARTS

Gossiping and broadcasting are two problems of
information dissemination described for a group of
individuals connected by a communication network.
In gossiping, every person in the network knows a
unique item of information and needs to communicate
it to everyone else. In broadcasting, one individual
has an item of information which needs to be com-
municated to everyone else (Hedetniemi et al. 1988).

A popular formulation assumes there are n people,
each one of whom knows a scandal which is not
known to any of the others. They communicate by
telephone, and whenever two people place a call, they
pass on to each other as many scandals as they know.
How many calls are needed before everyone knows
about all the scandals? Denoting the scandal-sprea-
ders as A , B , C , and D , a solution for n�4 is given by
fA; Bg; fC; Dg; fA; Cg; fB; Dg: The n�4 solution
can then be generalized to n �4 by adding the pair
fA; Xg to the beginning and end of the previous
solution, i.e., fA; Eg; fA; Bg; fC; Dg; fA; Cg; fB; Dg;
fA; Eg:/
Gossiping (which is also called total exchange or all-
to-all communication) was originally introduced in
discrete mathematics as a combinatorial problem in
GRAPH THEORY, but it also has applications in com-
munications and distributed memory multiprocessor
systems (Bermond et al. 1998). Moreover, the gossip
problem is implicit in a large class of parallel
computation problems, such as linear system solving,
the DISCRETE FOURIER TRANSFORM, and SORTING.
Surveys are given in Hedetniemi et al. (1988) and
Hromkovic et al. (1995).

Let f (n) be the number of minimum calls necessary to
complete gossiping among n people, where any pair of
people may call each other. Then f (1)�0; f (2)�1;
f (3)�3; and

f (n)�2n�4

for n]4: This result was proved by (Tijdeman 1971),
as well as many others.

In the case of one-way communication ("polarized
telephones"), e.g., where communication is done by
letters or telegrams, the graph becomes a DIRECTED

GRAPH and the minimum number of calls becomes

f (n)�2n�2

for n]4 (Harary and Schwenk 1974).
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Gould and Hsu Matrix Inversion Formula
Let (ai) be a sequence of complex numbers and let the
LOWER TRIANGULAR MATRICES F �(F(n; k)) and G �
(G(n; k)) be defined as

F(n ; k) �
Qn�1

j�k (aj � k)

(n � k)!

and

G(n; k) �(�1)n�k ak � k

an � n

Qn
j�k�1(aj � n)

(n � k)!
;

where the product over an EMPTY SET is 1. Then F
and G are MATRIX INVERSES (Bhatnagar 1995,
pp. 15 �/6 and 50 �/1). The KRATTENTHALER MATRIX

INVERSION FORMULA is a generalization of this result.

See also KRATTENTHALER MATRIX INVERSION FORMU-

LA
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Gould Polynomial
The polynomials Gn(x; a ; b) given by the associated
SHEFFER SEQUENCE with

f (t) �eat(ebt �1);

where b "0: The INVERSE FUNCTION (and therefore
GENERATING FUNCTION) cannot be computed algeb-
raically, but the GENERATING FUNCTION

X�
k�0

Gk(x; a; b)

k!
tk �exf �1(t) (1)

can be given in terms of the sum

f �1(t) �
X�
k �1

1

b

�(b �ak) =b
k �1

$ %
tk

k
: (2)

This results in

Gn(x; a ; b) �
x

x � an

x � an

b

 !
n

where (x)n is a FALLING FACTORIAL. The first few are

G0(x; a ; b) �1

G1(x; a ; b) �
x

b

G2(x; a; b) ��
(2a � b � x)

b2

G3(x; a ; b) �
(3a � b � x)(3a � 2b � x)x

b3

G4(x; a; b)

��
(4a � b � x)(4a � 2b � x)(4a � 3b � x)x

b4 
:

The binomial identity obtained from the SHEFFER

SEQUENCE gives the generalized CHU-VANDERMONDE

IDENTITY

x � y

x � y � an

(x �y �an) =b
n

$ %

�
Xn

k �0

x

x � ak

y

y � a(n � k)

x � ak

b
k

0
@

1
A y � a(n � k)

a
n �k

0
@

1
A (3)

(Roman 1984, p. 69).

In the special case a ��b=2; the function f (t) simpli-
fies to

f (t)�ebt=2�e�bt=2�2 sinh(1
2 bt); (4)

which gives the GENERATING FUNCTION

X�
k�0

Gk(x;�1
2 b; b)

k!
tk�exp

2x sinh�1(1
2 t)

b

" #
; (5)

giving the polynomials

G0(x; �b=2; b)�1

G1(x; �b=2; b)�
x

b

G2(x; �b=2; b)�
x2

b2

G3(x; �b=2; b)��
(b � 2x)x(b � 2x)

4b3

G4(x; �b=2; b)��
(b � x)x2(b � x)

b4
:

See also CENTRAL FACTORIAL, FALLING FACTORIAL,
SHEFFER SEQUENCE
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Goursat Problem
For the HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

uxy �F(x; y; u; p; q) (1)

p �ux (2)

q �uy (3)

on a domain V; Goursat’s problem asks to find a
solution u(x; y) of (3) from the BOUNDARY CONDITIONS

u(0; t) � f(t) (4)

u(t; 1) � c(t) (5)

f(1) � f(0) (6)

for 0 5t 51 that is regular in V and continuous in the
closure V̄; where f and c are specified continuously
differentiable functions.

The linear Goursat problem corresponds to the solu-
tion of the equation

L̃u �uxy �aux �buy �cu �f ; (7)

which can be effected using the so-called RIEMANN

FUNCTION R(x; y; j; h) : The use of the RIEMANN

FUNCTION to solve the linear Goursat problem is
called the RIEMANN METHOD.

See also BOUNDARY VALUE PROBLEM, HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATION, FUNCTION, RIE-

MANN METHOD
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Goursat’s Surface

A general QUARTIC SURFACE defined by

x4 �y4 �z4 �a(x2 �y2 �z2)2 �b(x2 �y2 �z2) �c

(Gray 1997, p. 314). The above two images correspond
to a �b �0 ; c ��1, and a �0, b ��2, c ��1,
respectively.

The related surface

xn �yn �zn �1

for n ]2 an even integer is considered by Gray (1997,
p. 292), and might appropriately be called a SUPER-

ELLIPSOID.

See also CHMUTOV SURFACE, CUBE, SUPERELLIPSOID,
TOOTH SURFACE
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Graceful Graph
A LABELED GRAPH which can be "gracefully num-
bered" is called a graceful graph. Label the nodes with
distinct NONNEGATIVE INTEGERS. Then label the
EDGES with the absolute differences between node
values. If the EDGE numbers then run from 1 to e , the
graph is gracefully numbered. In order for a graph to
be graceful, it must be without loops or multiple
EDGES.



Golomb showed that the number of EDGES connecting
the EVEN-numbered and ODD-numbered sets of nodes
is (e �1 =)2b c; where e is the number of EDGES. In
addition, if the nodes of a graph are all of EVEN

ORDER, then the graph is graceful only if (e �1=)2b c is
EVEN. The only ungraceful simple graphs with 55
nodes are shown below.

There are exactly e! graceful graphs with e EDGES

(Sheppard 1976), where e!=2 of these correspond to
different labelings of the same graph. Golomb (1974)
showed that all complete bipartite graphs are grace-
ful. CATERPILLAR GRAPHS; COMPLETE GRAPHS K2 ; K3 ;

K4 �W4 �T (and only these; Golomb 1974); CYCLIC

GRAPHS Cn when n �0 or 3(mod 4); when the number
of consecutive chords k �2, 3, or n �3 (Koh and
Punnim 1982), or when they contain a Pk chord
(Delorme et al. 1980, Koh and Yap 1985, Punnim
and Pabhapote 1987); GEAR GRAPHS; PATH GRAPHS;
the PETERSEN GRAPH; POLYHEDRAL GRAPHS T �K4 �
W4 ; C , O , D , and I (Gardner 1983); STAR GRAPHS; the
THOMSEN GRAPH (Gardner 1983); and WHEEL GRAPHS

(Frucht 1988) are all graceful.

Some graceful graphs have only one numbering, but
others have more than one. It is conjectured that all

trees are graceful (Bondy and Murty 1976), but this
has only been proved for trees with516 VERTICES. It
has also been conjectured that all unicyclic graphs are
graceful.

See also HARMONIOUS GRAPH, LABELED GRAPH
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Graceful Permutation
A graceful permutation s on n letters is a PERMUTA-

TION such that

f½ s(i) � s(i �1)½ : i �1; 2; . . . ; n �1 g
�f1; 2; . . . ; n �1g:

For example, there are four graceful permutations on
f1; 2; 3; 4g : f1; 4 ; 2; 3 g; f2; 3 ; 1; 4 g; f3; 2; 4; 1 g; and
f4; 1; 3; 2g: The number of graceful permutations on
n letters for n �1, 2, ... are 1, 2, 4, 4, 8, 24, 32, 40, ...
(Sloane’s A006967).
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Grade
GRADIAN

Graded Algebra
If A is a GRADED MODULE and there EXISTS a degree-
preserving linear map f : A A 0 A; then (A; f) is
called a graded algebra.

COHOMOLOGY is a graded algebra. In addition, the
GRADING SET is MONOID having a compatibility rela-
tion such that if A is in the a grading of the algebra
M , and B is in the b grading of the algebra M , then
AB is in the ab grading of the algebra (where A and
B are multiplied in M , and a and b are multiplied in
the index monoid). For example, cohomology of a
space is a graded algebra over the integers (i.e., a

GRADED RING), since if A is an n -dimensional coho-
mology class and B is an m -dimensional cohomology
class, then the CUP PRODUCT AB is an m �n dimen-
sional cohomology class.

The GROUP RING of a GROUP G over a RING R is a
graded R -algebra with grading G .

See also COHOMOLOGY, GRADED MODULE, GRADED

RING, GROUP RING
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Graded Module
A decomposition of a MODULE into a DIRECT SUM of
SUBMODULES. The INDEX SET for the collection of
SUBMODULES is then called the GRADING SET.

Graded modules arise naturally in HOMOLOGY. In
particular, for every integer i , there exists an ith
HOMOLOGY GROUP of a space Hi(X) ; and usually the
"total homology" of the space is considered to be the
direct sum of all the Hi(X)/s. This makes the "total"
homology of X a module graded over the integers.

See also GRADED ALGEBRA

Graded Ring
A GRADED ALGEBRA over the integers Z: COHOMOLOGY

of a space is a graded ring.

See also GRADED ALGEBRA

Gradian
A unit of angular measure in which the angle of an
entire CIRCLE is 400 gradians. A RIGHT ANGLE is
therefore 100 gradians. A gradian is sometimes also
called a GON or a GRADE.

See also DEGREE, RADIAN
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Gradient
The gradient is a VECTOR operator denoted 9 and
sometimes also called DEL or NABLA. It is most often
applied to a real function of three variables
f (u1; u2; u3); and may be denoted

9f �grad(f ): (1)

For general CURVILINEAR COORDINATES, the gradient
is given by

9f�
1

h1

@f

@u1

û1�
1

h2

@f

@u2

û2�
1

h3

@f

@u3

û3; (2)

which simplifies to



9f(x; y; z) �
@ f

@x
x̂ �

@ f

@y
ŷ �

@ f

@z
ẑ (3)

in CARTESIAN COORDINATES.

The direction of 9f is the orientation in which the
DIRECTIONAL DERIVATIVE has the largest value and
9fj j is the value of that DIRECTIONAL DERIVATIVE.

Furthermore, if 9f "0; then the gradient is PERPEN-

DICULAR to the LEVEL CURVE through (x0 ; y0) if z �
f (x; y) and PERPENDICULAR to the level surface
through (x0 ; y0 ; z0) if F(x; y ; z) �0:/

In TENSOR notation, let

ds2 �gm dx2
m (4)

be the LINE ELEMENT in principal form. Then

9 �ea �e b �9  a �e b �
1ffiffiffiffiffiffi
ga

p
@

@xa

�e b : (5)

For a MATRIX /A/,

9jAxj�(Ax)T
A

jAx j
: (6)

For expressions giving the gradient in particular
coordinate systems, see CURVILINEAR COORDINATES.

See also CONVECTIVE DERIVATIVE, CURL, DIVER-

GENCE, LAPLACIAN, VECTOR DERIVATIVE
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Gradient Descent Method
STEEPEST DESCENT METHOD

Gradient Four-Vector
The 4-dimensional version of the GRADIENT, encoun-
tered frequently in general relativity and special
relativity, is

9m �

1

c

@

@t
@

@x
@

@y
@

@z

2
66666666666664

3
77777777777775
;

which can be written

( 9 
m)2 

�I

2 ;

where I2 is the D’ALEMBERTIAN.

See also D’ALEMBERTIAN, GRADIENT, TENSOR, VECTOR
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Gradient Theorem

g
a

b

( 9f ) � ds �f (b) �f (a);

where 9 is the GRADIENT, and the integral is a LINE

INTEGRAL. It is this relationship which makes the
definition of a scalar potential function f so useful in
gravitation and electromagnetism as a concise way to
encode information about a VECTOR FIELD.

See also DIVERGENCE THEOREM, GREEN’S THEOREM,
LINE INTEGRAL, POINCARÉ ’S THEOREM

Grading Set
The INDEX SET for the collection of SUBMODULES in a
GRADED MODULE.

See also GRADED MODULE

Graeco-Latin Square
EULER SQUARE

Graeco-Roman Square
EULER SQUARE

Graeffe Iteration
GRAEFFE’S METHOD

Graeffe’s Method
A ROOT-finding method which was among the most
popular methods for finding roots of UNIVARIATE

POLYNOMIALS in the 19th and 20th centuries. It was
invented independently by Graeffe, dandelin, and
Lobachevsky (Householder 1959, Malajovich and
Zubelli 1999). Graeffe’s method has a number of
drawbacks, among which are that its usual formula-
tion leads to exponents exceeding the maximum
allowed by floating-point arithmetic and also that it
can map well-conditioned polynomials into ill-condi-
tioned ones. However, these limitations are avoided
in an efficient implementation by Malajovich and
Zubelli (1999).

The method proceeds by multiplying a POLYNOMIAL

f (x) by f (�x) and noting that

f (x)�(x�a1)(x�a2) � � � (x�an) (1)

f (�x)�(�1)n(x�a1)(x�a2) � � � (x�an) (2)

so the result is

f (x)f (�x)�(�1)n(x2�a2
1)(x2�a2

2) � � � (x2�a2
n): (3)

repeat n times, then write this in the form



yn �b1yn�1 �. . .�bn �0 (4)

where y �x2 n : Since the coefficients are given by
NEWTON’S RELATIONS

b1 ��(y1 �y2 �. . .�yn) (5)

b2 �(y1y2 �y1y3 �. . .�yn�1yn) (6)

bn �(�1)ny1y2 � � � yn ; (7)

and since the squaring procedure has separated the
roots, the first term is larger than rest. Therefore,

b1 :�y1 (8)

b2 :y1y2 (9)

bn :(�1)ny1y2 � � � yn ; (10)

giving

y1 :�b1 (11)

y2 :�
b2

b1

(12)

yn :�
bn

bn�1

: (13)

Solving for the original roots gives

a1 :
ffiffiffiffiffiffiffiffi
�b1

p
(14)

a2 :

ffiffiffiffiffiffiffiffiffi
�

b2

b1

s
(15)

an :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

bn

bn�1

s
: (16)

This method works especially well if all roots are real.
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Graham’s Biggest Little Hexagon

The largest possible (not necessarily regular) HEXA-

GON for which no two of the corners are more than
unit distance apart. In the above figure, the heavy
lines are all of unit length. The AREA of the hexagon is
A�0:674981 . . . ; where A is the second-largest real
ROOT of

4096A10�8192A9�3008A8�30; 848A7�21; 056A6

�146; 496A5�221; 360A4�1232A3�144; 464A2

�78; 488A�11; 993

�0:

Note that the sign of the A9 is positive, not negative
as erroneously given in Conway and Guy (1996).

See also CALABI’S TRIANGLE
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Graham’s Number
The smallest dimension n of a HYPERCUBE such that if
the lines joining all pairs of corners are two-colored, a
PLANAR COMPLETE GRAPH K4 of one color will be
forced. Stated colloquially, this is equivalent to con-
sidering every possible committee from some number
of people n and enumerating every pair of commit-
tees. Now assign each pair of committees to one of two
groups, and find the smallest n that will guarantee
that there are four committees in which all pairs fall
in the same group and all the people belong to an even
number of committees (Hoffman 1998, p. 54).



An answer was proved to exist by R. L. Graham and
B. L. Rothschild. However, although the actual an-
swer is believed to be 6, the best bound proved is

64

3 ���� 3|fflfflffl{zfflfflffl}
3 �3|{z}
n|fflffl{zfflffl}

3 �3

8>>>>>>><
>>>>>>>:

where � is stacked ARROW NOTATION. It is less than
3 0 3 0 3 0 3; where CHAINED ARROW NOTATION has
been used.

See also ARROW NOTATION, CHAINED ARROW NOTA-

TION, EXTREMAL GRAPH THEORY, RAMSEY THEORY,
SKEWES NUMBER

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, pp. 61 �/2, 1996.
Gardner, M. "Mathematical Games." Sci. Amer. 237, 18�/8,

Nov. 1977.
Hoffman, P. The Man Who Loved Only Numbers: The Story

of Paul Erdos and the Search for Mathematical Truth.
New York: Hyperion, pp. 18 and 54, 1998.

Gram Determinant
The DETERMINANT

G(f1 ; f2 ; . . .  ; fn)

�

g f 2
1 dt g f1f2 dt . . .  g f1fn dt

g f2f1 dt g f 2
2 dt . . .  g f2fn dt

n n ::: n

g f1fn dt g f1fn dt � � � g f 2
n dt

��������������

��������������
:

See also GRAM-SCHMIDT ORTHONORMALIZATION,
WRONSKIAN
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Gram Matrix
Given m points with n -D vector coordinates vi ; let M
be the n �m matrix whose jth column consists of the
coordinates of the vector vj ; with j �1, ..., m . Then
define the m �m Gram matrix of dot products aij �
vi � vj as

A �MTM ;

where AT denotes the TRANSPOSE. The Gram matrix
determines the vectors vi up to ISOMETRY.

Gram Series

G(x) �1 �
X�
k�1

(ln x)k

kk! z(k � 1) 
;

where z(z) is the RIEMANN ZETA FUNCTION (Hardy
1999, p. 24). This approximation to the PRIME COUNT-

ING FUNCTION is 10 times better than Li(x) for x B109

but has been proven to be worse infinitely often by
Littlewood (Ingham 1990). An equivalent formulation
due to Ramanujan is

G(x) �
4

p

X�
k �1

( �1)k�1k

B2k(2k � 1)

ln x

2p

 !2k�1

	 p(x)

(Berndt 1994; Hardy 1999, p. 23), where B2k is a
BERNOULLI NUMBER. The integral analog, also found
by Ramanujan, is

J(x) �g
�

0

(ln x)t dt

tG(t � 1)z(t � 1) 
	 p(x)

(Berndt 1994; Hardy 1999, p. 23).
The Gram series is equivalent to the RIEMANN PRIME

NUMBER FORMULA (Hardy 1999, pp. 24 �/5).

See also RIEMANN PRIME NUMBER FORMULA
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Gram’s Inequality
Let f1(x); ..., fn(x) be REAL INTEGRABLE FUNCTIONS over
the CLOSED INTERVAL [a, b ], then the DETERMINANT of
their integrals satisfies



g
b

a

f 2
1 (x) dx g

b

a

f1(x)f2(x) dx � � � g
b

a

f1(x)fn(x) dx

g
b

a

f2(x)f1(x) dx g
b

a

f 2
2 (x) dx � � � g

b

a

f2(x)fn(x) dx

n n ::: n

g
b

a

fn(x)f1(x) dx g
b

a

fn(x)f2(x) dx � � � g
b

a

fn(x)fn(x) dx

���������������

���������������
]0:

See also GRAM-SCHMIDT ORTHONORMALIZATION
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Gram-Charlier Series
EDGEWORTH SERIES

Gram-Schmidt Orthonormalization
A procedure which takes a nonorthogonal set of
LINEARLY INDEPENDENT functions and constructs an
ORTHOGONAL BASIS over an arbitrary interval with
respect to an arbitrary WEIGHTING FUNCTION w(x):/

Given an original set of linearly independent func-
tions fung

�

n�0; let fcng
�

n�0 denote the orthogonalized
(but not normalized) functions, ffng

�

n�0 denote the
orthonormalized functions, and define

c0(x)�u0(x) (1)

f0(x)�
c0(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g c2
0(x)w(x) dx

s : (2)

Then take

c1(x)�u1(x)�a10f0(x); (3)

where we require

g c1f0w dx�g u1f0w dx�a10g f2
0w dx�0: (4)

By definition,

g f2
0w dx�1; (5)

so

a10��g u1f0w dx: (6)

The first orthogonalized function is therefore

c1�u1(x)� g u1f0w dx

* �
f0; (7)

and the corresponding normalized function is

f1�
c1(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g c2

1w dx

s : (8)

By mathematical induction, it follows that

fi(x)�
ci(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g c2

i w dx

s ; (9)

where

ci(x)�ui�ai0f0�ai1f1 . . .�ai; i�1fi�1 (10)

and

aij��g uifjw dx: (11)

If the functions are normalized to Nj instead of 1, then

g
b

a

[fj(x)]2w dx�N2
j (12)

fi(x)�Ni

ci(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g c2

i w dx

s (13)

aij��
g uifjw dx

N2
j

: (14)

ORTHOGONAL POLYNOMIALS are especially easy to
generate using GRAM-SCHMIDT ORTHONORMALIZA-

TION. Use the notation

xi½xj

4 5
� xi½w½xj

4 5
�g

b

a

xi(x)xj(x)w(x) dx; (15)

where w(x) is a WEIGHTING FUNCTION, and define the
first few POLYNOMIALS,

p0(x)�1 (16)

p1(x)� x�
xp0½p0h i
p0½p0h i

" #
p0: (17)

As defined, p0 and p1 are ORTHOGONAL POLYNOMIALS,
as can be seen from

p0½p1h i� x�
xp0½p0h i
p0½p0h i

" #
p0

* +
� xp0h i� xp0½p0h i

p0½p0h i
p0h i

� xp0h i� xp0h i�0: (18)

Now use the RECURRENCE RELATION

pi�1(x)� x�
xpi½pih i
pi½pih i

" #
pi�

pi½pih i
pi�1½pi�1h i

" #
pi�1 (19)

to construct all higher order POLYNOMIALS.



To verify that this procedure does indeed produce
ORTHOGONAL POLYNOMIALS, examine

pi �1 ½pi

4 5
� x �

xpi ½pih i
pi ½pih i

" #
pi ½pi

* +

�
pi ½pih i

pi�1 ½pi�1h i
pi�1 ½pi

* +

� xpi ½pih i� xpi ½pih i
pi ½pih i

pi ½pih i� pi ½pih i
pi�1 ½pi�1h i

� pi�1 ½pih i

��
pi ½pih i

pi�1 ½pi�1h i
pi�1 ½pih i

��
pi ½pih i

pi�1 ½pi�1h i
�

pi�1 ½pj�1

4 5
pj�2 ½pj�2

4 5 pj �2 ½pj�1

4 5" #

�. . .�(�1)j pj ½pj

4 5
p0 ½p0h i

p0 ½p1h i�0 ; (20)

since p0 ½p1h i�0: Therefore, all the POLYNOMIALS pi(x)
are orthogonal.

Many common ORTHOGONAL POLYNOMIALS of mathe-
matical physics can be generated in this manner.
Unfortunately, the process turns out to be numeri-
cally unstable (Golub and van Loan 1989).

See also GRAM DETERMINANT, GRAM’S INEQUALITY,
LATTICE REDUCTION, ORTHOGONAL POLYNOMIALS
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Granny Knot

A COMPOSITE KNOT of seven crossings consisting of a
KNOT SUM of TREFOILS. The granny knot has the same

ALEXANDER POLYNOMIAL (x2�x�1)2 as the SQUARE

KNOT.

Graph

A mathematical object composed of points known as
VERTICES or NODES and lines connecting some (possi-
bly empty) SUBSET of them, known as EDGES. For-
mally, a graph is a binary relation on a set of vertices.
If this relation is symmetric, the graph is said to be
UNDIRECTED; otherwise, the graph is said to be
DIRECTED. Graphs in which at most one edge connects
any two nodes are said to be SIMPLE GRAPHS. Vertices
are usually not allowed to be self-connected, but this
restriction is sometimes relaxed to allow such "loops."
The edges of a graph may be assigned specific values
or labels, in which case the graph is called a LABELED

GRAPH.
The study of graphs is known as GRAPH THEORY, and
was first studied systematically by D. König in the
1930s (Gardner 1984, p. 91). As Gardner (1984, p. 91)
notes, "The confusion of this term with the ‘GRAPHS’ of
analytic geometry is regrettable, but the term has
stuck."

Graphs are 1-D COMPLEXES, and there are always an
EVEN NUMBER of ODD NODES in a graph. GRAPH SUMS,
differences, powers, UNIONS, and PRODUCTS can be
defined, as can GRAPH EIGENVALUES.

The number of nonisomorphic simple undirected



graphs with v NODES for v �1, 2, ..., are 1, 2, 4, 11, 34,
156, 1044, ... (Sloane’s A000088; see above figure).
The PÓLYA ENUMERATION THEOREM can be used to
determine these numbers. In order to apply the
PÓLYA ENUMERATION THEOREM, define the quantity

hj�
p!Qp

i�1 iji ji!
; (1)

where p! is the FACTORIAL of p , and the related
polynomial

Zp(S)�
X

i

hji

Yp

k�1

f (ji)k

k ; (2)

where the ji�(j1; . . . ; jp)i are all of the p -VECTORS

satisfying

j1�2j2�3j3�. . .�pjp�p: (3)

For example, for p � 3, the three possible values of j
are

j1�(3; 0; 0); since (1 � 3)�(2 � 0)�(3 � 0)�3;

giving hj1
�

3!

(133!)(200!)(300!)
�1 (4)

j2�(1; 1; 0); since (1 � 1)�(2 � 1)�(3 � 0)�3;

giving hj2
�

3!

(111!)(211!)(300!)
�3; (5)

j3�(0; 0; 1); since (1 � 0)�(2 � 0)�(3 � 1)�3

giving hj3
�

3!

(100!)(200!)(311!)
�2: (6)

Therefore,

Z3(S)�f 3
1 �3f1f2�2f3: (7)

For small p , the first few values of Zp(S) are given by

Z2(S)�f 2
1 �f2 (8)

Z3(S)�f 3
1 �3f1f2�2f3 (9)

Z4(S)�f 4
1 �6f 2

1 f2�3f 2
2 �8f1f3�6f4 (10)

Z5(S)�f 5
1 �10f 3

1 f2�15f1f 2
2 �20f 2

1 f3�20f2f3

�30f1f4�24f5 (11)

Z6(S)�f 6
1 �15f 4

1 f2�45f 2
1 f 2

2 �15f 3
2 �40f 3

1 f3�120f1f2f3

�40f 2
3 �90f 2

1 f4�90f2f4�144f1f5�120f6 (12)

Z7(S)�f 7
1 �21f 5

1 f2�105f 3
1 f 2

2 �105f1f 3
2 �70f 4

1 f3

�420f 2
1 f2f3�210f 2

2 f3�280f1f 2
3 �210f 3

1 f4

�630f1f2f4�420f3f4�504f 2
1 f5�504f2f5

�840f1f6�720f7: (13)

Application of the PÓLYA ENUMERATION THEOREM

then gives the formula

Z(R)�
1

p!

X
(j)

hj

Y(p�1)=2b c

n�0

g
nj2n�1�(2n�1) j2n�1

2ð Þ
2n�1

�
Yp=2b c

n�1

[(gng2n)n�1]j2n g
2n j2n

2ð Þ
2n

�
Yp

q�1

Yp

r�q�1

g
jqjrGCD(q; r)

LCM(q; r) ; (14)

where xb c is the FLOOR FUNCTION, n
m

" #
is a BINOMIAL

COEFFICIENT, LCM is the LEAST COMMON MULTIPLE,
GCD is the GREATEST COMMON DIVISOR, and the SUM

(j) is over all ji satisfying the sum identity described
above. The first few generating functions Zp(R) are

Z2(R)�2g1 (15)

Z3(R)�g3
1�3g1g2�2g3 (16)

Z4(R)�g6
1�9g2

1g2
2�8g2

3�6g2g4 (17)

Z5(R)�g10
1 �10g4

1g3
2�15g2

1g4
2�20g1g3

3�30g2g2
4

�24g2
5�20g1g3g6 (18)

Z6(R)�g15
1 �15g7

1g4
2�60g3

1g6
2�40g3

1g4
3�40g5

3

�180g1g2g3
4�144g3

5�120g1g2g2
3g6

�120g3g2
6 (19)

Z7(R)�g21
1 �21g11

1 g5
2�105g5

1g8
2�105g3

1g9
2�70g6

1g5
3

�280g7
3�210g3

1g2g4
4�630g1g2

2g4
4�504g1g4

5

�420g2
1g2

2g3
3g6�210 g2

1g2
2g3g2

6�840 g3g3
6

�720 g3
7�504 g1g2

5g10�420 g2g3g4g12: (20)

Letting gi�1�xi then gives a POLYNOMIAL Si(x);
which is a GENERATING FUNCTION for (i.e., the terms
of xi give) the number of graphs with i EDGES. The
total number of graphs having i edges is Si(1): The
first few Si(x) are

S2�1�x (21)

S3�1�x�x2�x3 (22)

S4�1�x�2x2�3x3�2x4�x5�x6 (23)

S5�1�x�2x2�4x3�6x4�6x5�6x6�4x7�2x8

�x9�x10 (24)

S6�1�x�2x2�5x3�9x4�15x5�21x6�24x7

�24x8�21x9�15x10�9x11�5x12�2x13

�x14�x15 (25)



S7 �1 �x �2x2 �5x3 �10x4 �21x5 �21x6 �24x7

�41x6 �65x7 �97x8 �131x9 �148x10 �148x11

�131x12 �97x13 �65x14 �41x15 �21x16 �10x17

�5x18 �2x19 �x20 �x21 ; (26)

giving the number of graphs with n nodes as 1, 2, 4,
11, 34, 156, 1044, ... (Sloane’s A000088). King and
Palmer (cited in Read 1981) have calculated Sn up to
n �24, for which

S24 �195; 704; 906; 302; 078; 447; 922; 174; 862; 416; � � �

� � � 726; 256; 004; 122; 075; 267; 063; 365; 754; 368: (27)

See also BIPARTITE GRAPH, CATERPILLAR GRAPH,
CAYLEY GRAPH, CIRCULANT GRAPH, COCKTAIL PARTY

GRAPH, COMPARABILITY GRAPH, COMPLEMENT GRAPH,
COMPLETE GRAPH, CONE GRAPH, CONNECTED GRAPH,
COXETER GRAPH, CUBICAL GRAPH, DE BRUIJN GRAPH,
DEGREE SEQUENCE, DIGRAPH, DIRECTED GRAPH,
DODECAHEDRAL GRAPH, EULER GRAPH, EXTREMAL

GRAPH, GEAR GRAPH, GRACEFUL GRAPH, GRAPH

DIAMETER, GRAPH THEORY, HANOI GRAPH, HARARY

GRAPH, HARMONIOUS GRAPH, HOFFMAN-SINGLETON

GRAPH, ICOSAHEDRAL GRAPH, INTERVAL GRAPH, ISO-

MORPHIC GRAPHS, LABELED GRAPH, LADDER GRAPH,
LATTICE GRAPH, MATCHSTICK GRAPH, MINOR GRAPH,
MOORE GRAPH, MULTIGRAPH, NULL GRAPH, OCTAHE-

DRAL GRAPH, PATH GRAPH, PETERSEN GRAPH, PLANAR

GRAPH, PSEUDOGRAPH, RANDOM GRAPH, REGULAR

GRAPH, SEQUENTIAL GRAPH, SIMPLE GRAPH, STAR

GRAPH, SUBGRAPH, SUPERGRAPH, SUPERREGULAR

GRAPH, SYLVESTER GRAPH, TETRAHEDRAL GRAPH,
THOMASSEN GRAPH, TOURNAMENT, TRIANGULAR

GRAPH, TURAN GRAPH, TUTTE’S GRAPH, UNIVERSAL

GRAPH, UTILITY GRAPH, WEB GRAPH, WHEEL GRAPH
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Graph (Function)

Given a FUNCTION f (x1; . . . ; xn) defined on a DOMAIN

U , the graph of f is defined as the set of points (which
often form a CURVE or SURFACE) showing the values
taken by f over U (or some portion of U ). Technically,
for real functions,

graph f (x)�f(x; f (x)) �R2 : x �Ug

graph f (x1; . . . ; xn)�

f(x1; . . . ; xn; f (x1; . . . ; xn)) �Rn�1 : (x1; . . . ; xn) �Ug:

A graph is sometimes also called a PLOT. Commenting
on the unfortunate choice of the word "graph" in the
completely different context of so-called GRAPH THE-

ORY, Gardner (1984, p. 91) notes, "The confusion of
this term with the ‘graphs’ of analytic geometry is
regrettable, but the term has stuck."

2-D and 3-D graphs can be produced in Mathematica
using the commands Plot[f , {x , xmin , xmin }] and
Plot3D[f , {x , xmin , xmin }, {y , ymin , ymax }], respec-
tively.

Several examples of continuous functions which are
notoriously difficult to graph are shown above:
sin(1=x); the FRACTIONAL PART frac(1=x); and the
WEIERSTRASS FUNCTION. Good routines for plotting
graphs use adaptive algorithms which plot more
points in regions where the function varies most
rapidly (Wagon 1991, Math Works 1992, Heck 1993,
Wickham-Jones 1994). Tupper (1996) has developed
an algorithm that rigorously proves the pixels it
generates are "on" if and only if there exists a
mathematical point within the region of space repre-
sented by that pixel that is a solution to the relation
being graphed. Although this method attempts to
produce graphs that satisfy strict mathematical



relationships, the problem of graphing is ultimately
intractable, so no fixed algorithm can produce correct
graphs for arbitrary relations.

See also CURVE, DATA CUBE, EXTREMUM, GRAPH,
HISTOGRAM, MAXIMUM, MINIMUM
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Graph Automorphism
An automorphism of a GRAPH is a GRAPH ISOMORPH-

ISM with itself. The sets of automorphisms define a
PERMUTATION GROUP. For every GROUP G; there exists
a GRAPH whose automorphism group is isomorphic to
G (Frucht 1939; Skiena 1990, p. 185). The automorph-
ism groups of a graph characterize its symmetries,
and are therefore very useful in determining certain
of its properties.

The automorphism group of a GRAPH COMPLEMENT is
the same as that for the original graph.

See also FRUCHT GRAPH, GRAPH ISOMORPHISM, ISO-

MORPHIC GRAPHS
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Graph Cartesian Product

The Cartesian graph product G �G1IG2 of graphs
G1 and G2 with disjoint point sets V1 and V2 and edge
sets X1 and X2 is the graph with point set V1 �V2 and
u �(u1 ; u2) adjacent with v �(v1 ; v2) whenever [u1 �
v1 and u2 adj v2] or [u2 �v2 and u1 adj v1] (Harary
1994, p. 22).
Graph Cartesian products can be computed using
GraphProduct[G1 , G2 ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also GRAPH COMPOSITION, GRAPH PRODUCT,
VIZING CONJECTURE
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Graph Categorical Product
This entry contributed by NICOLAS BRAY

The GRAPH PRODUCT denoted G�H and defined by
the adjacency relations ( g adj g? and h adj h?):/

See also GRAPH PRODUCT



Graph Center

The center of a GRAPH G is the set of vertices of GRAPH

ECCENTRICITY equal to the GRAPH RADIUS (i.e., the set
of CENTRAL POINTS). In the above illustration, center
nodes are shown in red. The following table gives the
number of n -node simple unlabeled graphs having k
center nodes.

k Sloane n � 1, 2, ...

1 A052437 1, 0, 1, 2, 8, 29, 180, ...

2 A052438 0, 2, 0, 2, 4, 19, 84, ...

3 A052439 0, 0, 3, 0, 4, 18, 119, ...

4 A052340 0, 0, 0, 7, 0, 18, 118, ...

5 A052341 0, 0, 0, 0, 18, 0, 129, ...

6 0, 0, 0, 0, 0, 72, 0, ...

7 0, 0, 0, 0, 0, 0, 414, ...

See also BICENTERED TREE, CENTRAL POINT, CEN-

TERED TREE, GRAPH ECCENTRICITY, GRAPH RADIUS
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Graph Circumference
The length of any longest cycle in a GRAPH.

See also GIRTH
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Graph Coloring
The assignment of labels or colors to the edges or
vertices of a graph. The most common types of graph
colorings are EDGE COLORING and VERTEX COLORING.

See also EDGE COLORING, FOUR-COLOR THEOREM, K -

COLORING, VERTEX COLORING
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Graph Complement

The complement of a graph Gn on n nodes is the
graph G?n (sometimes denoted Ḡn) on the same nodes,
but with the vertices in Gn omitted and the omitted
vertices in Gn included. The GRAPH SUM Gn �G?n is
therefore the COMPLETE GRAPH Kn : A graph comple-
ment can be given by the Mathematica command
GraphComplement[graph ] in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

See also COMPLETE GRAPH, GRAPH SUM, SELF-COM-

PLEMENTARY GRAPH
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Graph Composition

The composition G �G1[G2] of graphs G1 and G2 with
disjoint point sets V1 and V2 and edge sets X1 and X2

is the graph with point set V1 �V2 and u �(u1 ; u2)
adjacent with v �(v1 ; v2) whenever [u1 adj v1] or
[u1 �v1 and u2 adj v2] (Harary 1994, p. 22).

See also GRAPH PRODUCT
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Graph Contraction

The contraction of an edge fvi ; vj g of a GRAPH is the
graph obtained by replacing the two nodes v1 and v2

with a single node v such that v is adjacent to the
union of the nodes to which v1 and v2 were originally
adjacent. The figure above shows a random graph
contracted on vertices v7 and v9 : Graph contraction
can be implemented using Contract[g , {v1 , v2 }] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘).
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Graph Cycle
A cycle of a GRAPH is a subset of the EDGE-set of the
GRAPH which forms a CHAIN, the first node of which is
also the last. This type of cycle is also called a
CIRCUIT. Cycle graphs can be constructed using
Cycle[n ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

The minimum number of swaps between vertices in a
random circular embedding of a cycle to put in its
standard configuration is considered by Björner and
Wachs (1982) and (Stanley 1986).

See also ACYCLIC DIGRAPH, CHAIN (GRAPH), CYCLE

GRAPH, EULERIAN CIRCUIT, EULERIAN GRAPH, FOR-

EST, HAMILTONIAN CIRCUIT, HAMILTONIAN GRAPH,
WALK
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Graph Diameter

The length maxu; v d(u; v) of the "longest shortest
path" (i.e., the longest GRAPH GEODESIC) between any
two VERTICES (u, v ) of a GRAPH. In other words, a
graph’s diameter is the largest number of vertices
which must be traversed in order to travel from one
vertex to another when paths which backtrack,
detour, or loop are excluded from consideration. The
above RANDOM GRAPHS on 10 vertices have diameters
3, 4, 5, and 7, respectively.

See also DIAMETER, GRAPH, GRAPH ECCENTRICITY,
GRAPH GEODESIC, MOORE GRAPH, PERIPHERAL POINT
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Graph Difference
The graph difference of graphs G and H is the graph
with ADJACENCY MATRIX given by the difference of
adjacency matrices of G and H . A graph difference is
defined when the orders of G and H are the same,
and can be computed using GraphDifference[g , h ]



in the Mathematica add-on package Discrete-
Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘).

See also GRAPH SUM

References
Skiena, S. "Sum and Difference." §4.1.2 in Implementing

Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley, p. 131,
1990.

Graph Eccentricity

The eccentricity of a node v in a CONNECTED GRAPH G
is length maxu d(u; v) of the longest of all the shortest
paths between v and every other point in G . The
maximum eccentricity is the GRAPH DIAMETER. The
minimum graph eccentricity is called the GRAPH

RADIUS.

See also CENTRAL POINT, GRAPH CENTER, GRAPH

DIAMETER, GRAPH RADIUS, PERIPHERAL POINT
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Graph Eigenvalue
The eigenvalues of a GRAPH are defined as the
EIGENVALUES of its ADJACENCY MATRIX. The set of
eigenvalues of a GRAPH is called a GRAPH SPECTRUM.

See also GRAPH SPECTRUM
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Graph Embedding

A particular drawing of a GRAPH (with sometimes
added constraint that the embedding be planar , i.e.,
has no crossing edges). The above figure shows the
first several circular embeddings of the CUBICAL

GRAPH.

While the underlying object is independent of the
embedding, a clever choice of embedding can lead to
particularly illuminating diagrams. For example, the
circular embedding of the CUBICAL GRAPH depicted
above illustrates this graph’s inherent symmetries.

Skiena (1990) considers a number of different types of
embeddings, including circular, ranked, radial,
rooted, and spring.

See also EMBEDDING
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Graph Genus
The genus of a graph is the minimum number of
handles that must be added to the plane to embed the
graph without any crossings.

See also CROSSING NUMBER (GRAPH), PLANAR GRAPH
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Graph Geodesic

A shortest path between two VERTICES (u, v ) of a
GRAPH (Skiena 1990, p. 225). There may be more than
one different shortest paths, all of the same length.
Graph geodesics may be found using a BREADTH-FIRST

TRAVERSAL (Moore 1959) or using DIJKSTRA’S ALGO-

RITHM (Skiena 1990, p. 225). A graph geodesic can be
found using ShortestPath[g , s , e ] in the Mathema-
tica add-on package DiscreteMath‘Combinator-

ica‘ (which can be loaded with the command
BBDiscreteMath‘).
The length of the maximum graph geodesic in a given
graph is called the GRAPH DIAMETER.

See also ALL-PAIRS SHORTEST PATH, GRAPH DIA-

METER
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Graph Intersection

Let S be a set and F �fS1 ; . . . ; Sp g a nonempty
family of distinct nonempty subsets of S whose union
is @ 

p
i�1 Si �S: The intersection graph of F is denoted

V(F) and defined by V(V(F)) �F ; with Si and Sj

adjacent whenever i "j and Si S Sj "¥: Then a
GRAPH G is an intersection graph on S if there exists
a family F of subsets for which G and V(F) are
ISOMORPHIC GRAPHS (Harary 1994, p. 19). Graph
intersections can be computed using GraphInter-
section[g , h ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

See also GRAPH UNION, INTERSECTION NUMBER

References
Harary, F. Graph Theory. Reading, MA: Addison-Wesley,

1994.
Skiena, S. "Unions and Intersections." §4.1.1 in Implement-

ing Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica. Reading, MA: Addison-Wesley,
pp. 129 �/31, 1990.

Graph Isomorphism
An isomorphism between two graphs is a one-to-one
mapping between their two sets of vertices.

See also GRAPH AUTOMORPHISM, ISOMORPHIC GRAPHS
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Graph Join

The join G �G1 �G2 of graphs G1 and G2 with
disjoint point sets V1 and V2 and edge sets X1 and
X2 is the GRAPH UNION G1 @ G2 together with all the
edges joining V1 and V2 (Harary 1994, p. 21). Graph
joins can be computed using GraphJoin[G1 , G2 ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘).
A complete k -partite graph ki; j; ... is the graph join of
empty graphs on i , j , ... nodes. A WHEEL GRAPH is the
join of a CYCLE GRAPH and the singleton graph.
Finally, a STAR GRAPH is the join of an EMPTY GRAPH

and the singleton graph (Skiena 1990, p. 132).

See also GRAPH SUM, GRAPH UNION
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Graph Lexographic Product
This entry contributed by NICOLAS BRAY

The GRAPH PRODUCT denoted G+H and defined by the
adjacency relations ( g adj g ?) or (/g �g ? and h adj h?):/

See also GRAPH PRODUCT

Graph Power

The kth power of a GRAPH G is a graph with the same
set of vertices as G and an edge between two vertices
IFF there is a path of length at most k between them
(Skiena 1990, p. 229). Since a path of length two
between vertices u and v exists for every vertex w
such that fu; w g and fw; vg are edges in G , the
square of the ADJACENCY MATRIX of G counts the
number of such paths. Similarly, the (u, v )th element
of the kth power of the ADJACENCY MATRIX of G gives
the number of paths of length k between vertices u
and v . The graph kth power is then defined as the
graph whose adjacency matrix given by the sum of
the first k powers of the ADJACENCY MATRIX,

adj(Gk) �
Xk

i�1

[adj(G)]i ;

which counts all paths of length up to k (Skiena 1990,
p. 230).
Raising any graph to the power of its GRAPH

DIAMETER gives a COMPLETE GRAPH. The square of
any BICONNECTED GRAPH is HAMILTONIAN (Fleischner
1974, Skiena 1990, p. 231). Mukhopadhyay (1967)
has considered "square root graphs," whose square
gives a given graph G (Skiena 1990, p. 253).

See also ADJACENCY MATRIX, PÓ SA’S THEOREM,
SEYMOUR CONJECTURE
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Graph Product
This entry contributed by NICOLAS BRAY

In general, a graph product of two graphs G and H is
a new graph whose VERTEX SET is V(G) �V(H) and
where, for any two vertices (g, h ) and (g ?; h?) in the
product, the adjacency of those two vertices is
determined entirely by the adjacency (or equality, or
non-adjacency) of g and g ?; and that of h and h?: There
are 3 �3 �1 �8 cases to be decided (three possibili-
ties for each, with the case where both are equal
eliminated) and thus there are 28 �256 different
types of graph products that can be defined.

The most commonly used graph products, given by
conditions sufficient and necessary for adjacency, are
summarized in the following table (Hartnell and Rall
1998). Note that the terminology is not quite stan-
dardized, so these products may actually be referred
to by different names by different sources. Many
other graph products can be found in Jensen and Toft
(1994).

graph product
name

symbol definition

GRAPH CARTESIAN

PRODUCT

/GIH/ (/g �g ? and h adj h?)
or (/g adj g ? and
h �h ?)/

GRAPH CATEGORI-

CAL PRODUCT

/G �H/ ( g adj g ? and
h adj h?)/

GRAPH LEXO-

GRAPHIC PRODUCT

/G � H/ (/g adj g?) or (/g �g ?
and h adj h ?)/

GRAPH STRONG

PRODUCT

/GGH/ (/g �g ? and h adj h?)
or (/g adj g ? and h �
h ?) or (/g adj g? and
h adj h?)/

See also GRAPH CARTESIAN PRODUCT
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Graph Radius

The minimum GRAPH ECCENTRICITY of any VERTEX in
a GRAPH.

See also CENTRAL POINT, GRAPH CENTER, GRAPH

ECCENTRICITY
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Graph Section
A section of a GRAPH obtained by finding its intersec-
tion with a PLANE.

Graph Spectrum
The set of GRAPH EIGENVALUES is called the spectrum
of the graph. The spectrum of a graph may be
computed using Spectrum[g ] in the Mathematica
add-on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

Two nonisomorphic graphs can share the same
spectrum, e.g., the GRAPH UNION C4@K1 and STAR

GRAPH S5 (Skiena 1990, p. 85). The maximum degree
of a CONNECTED GRAPH G is an eigenvalue of G IFF G
is a REGULAR GRAPH.

See also GRAPH EIGENVALUE
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Graph Strong Product
This entry contributed by NICOLAS BRAY

The GRAPH PRODUCT denoted GGH and defined by
the adjacency relations (/g �g ? and h adj h?) or
(g adj g ? and h �h?) or (g adj g ? and h adj h ?):/

See also GRAPH PRODUCT

Graph Sum

The graph sum of graphs G and H is the graph with
ADJACENCY MATRIX given by the sum of adjacency
matrices of G and H . A graph sum is defined when
the orders of G and H are the same, and can be
computed using GraphSum[g , h ] in the Mathematica
add-on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

See also GRAPH DIFFERENCE, GRAPH JOIN, GRAPH

UNION
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Graph Theory
The mathematical study of the properties of the
formal mathematical structures called GRAPHS.

See also ADJACENCY MATRIX, ADJACENCY RELATION,
ARTICULATION VERTEX, BLUE-EMPTY COLORING,
BRIDGE, CHROMATIC NUMBER, CHROMATIC POLYNO-

MIAL, CIRCUIT RANK, CROSSING NUMBER (GRAPH),
CYCLOMATIC NUMBER, DEGREE, DIJKSTRA’S ALGO-

RITHM, ECCENTRICITY, EDGE COLORING, EDGE CON-

NECTIVITY, EULERIAN CIRCUIT, EULERIAN TRAIL,
FACTOR (GRAPH), FLOYD’S ALGORITHM, GIRTH, GRAPH

CYCLE, GRAPH DIAMETER, GRAPH RADIUS, GRAPH

TWO-COLORING, GROUP THEORY, HAMILTONIAN CIR-

CUIT, HASSE DIAGRAM, HUB, INDEGREE, INTEGRAL

DRAWING, ISTHMUS, JOIN (GRAPH), LOCAL DEGREE,
MONOCHROMATIC FORCED TRIANGLE, OUTDEGREE,
PARTY PROBLEM, PÓ LYA ENUMERATION THEOREM,
PÓ LYA POLYNOMIAL,RAMSEY NUMBER, RE-ENTRANT

CIRCUIT, SEPARATING EDGE, TAIT COLORING, TAIT

CYCLE, TRAVELING SALESMAN PROBLEM, TREE, TUT-

TE’S THEOREM, UNICURSAL CIRCUIT, VERTEX COLOR-

ING, VERTEX DEGREE, WALK
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Graph Thickness
The thickness of a GRAPH G is the minimum number
of PLANAR SUBGRAPHS of g whose GRAPH UNION is g
(skiena 1990, p. 251).
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Graph Two-Coloring
Assignment of each EDGE of a GRAPH to one of two
color classes ("red" or "green").

See also BLUE-EMPTY GRAPH, MONOCHROMATIC

FORCED TRIANGLE

Graph Union

The union G �G1 @ G2 of graphs G1 and G2 with
disjoint point sets V1 and V2 and edge sets X1 and X2

is the graph with V �V1 @ V2 and X �X1 @ X2 (Har-
ary 1994, p. 21). Graph unions can be computed using
GraphUnion[g , h ] in the Mathematica add-on pack-
age DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

See also GRAPH INTERSECTION, GRAPH JOIN
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Graphic Sequence
A graphic sequence is a sequence of numbers which
can be the DEGREE SEQUENCE of some GRAPH. A
sequence can be checked to determine if it is graphic
using GraphicQ[g ] in the Mathematica add-on pack-
age DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

Erdos and Gallai (1960) proved that a DEGREE

SEQUENCE fd1 ; . . . ; dn g is graphic IFF the sequence
obeys the property

Xr

i�1

di 5r(r �1) �
Xn

i�r�1

min(r ; di)

for each integer r B n (Skiena 1990, p. 157), and this
condition also generalizes to DIRECTED GRAPHS. In
addition, Hakimi (1962) and Havel (1955) showed
that if a DEGREE SEQUENCE is graphic, then there
exists a GRAPH G such that the node of highest degree
is adjacent to the D(G) next highest degree vertices of
G , where D(G) is the maximum degree of G .

No degree sequence can be graphic if all the degrees
occur with multiplicity 1 (Behzad and Chartrand
1967, p. 158; Skiena 1990, p. 158). Any degree se-
quence whose sum is EVEN can be realized by a
MULTIGRAPH having loops (Hakimi 1962; Skiena
1990, p. 158).

See also DEGREE SEQUENCE, GRAPHICAL PARTITION,
VERTEX DEGREE
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Graphical Partition

A partition fa1; . . . ; ang is called graphical if there
exists a GRAPH G having DEGREE SEQUENCE

fa1; . . . ; ang: The number of graphical partitions on
n -node graphs is therefore the same as the number of
n -node graphs with no ISOLATED POINTS. A graphical
partition of order p is one for which the sum of
degrees is p . A p -graphical partition only exists for



EVEN p .

It is possible for two topologically distinct graphs to
have the same DEGREE SEQUENCE.
For n �2, 4, 6, ..., the numbers of graphical partitions
pg(n) are 1, 2, 5, 9, 17, ... (Sloane’s A000569).

Erdos and Richmond (1989) showed that

lim inf
n0�

ffiffiffiffiffiffi
2n

p
pg(2n) ]

pffiffiffi
6

p

and

lim sup
n

pg(2n) 50:4258:

See also CUT, DEGREE SEQUENCE, SPECTRAL GRAPH

PARTITIONING
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Graphical Representation
FERRERS DIAGRAM

Graphoid
A graphoid consists of a set M of elements together
with two collections C and D of nonempty subsets of
M , called circuits and cocircuits respectively, such
that

1. For any C �C and D �D; ½C S D ½"1;/
2. No circuit properly contains another circuit and
no cocircuit properly contains another cocircuit,
3. For any painting of M with colors exactly one
element green and the rest either red or blue,
there exists either (a) a circuit C containing the
green element and no red elements, or (b) a
cocircuit D containing the green element and no
blue elements.

See also MATROID
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Grassmann Algebra
EXTERIOR ALGEBRA

Grassmann Coordinates
An (m�1)/-D SUBSPACE W of an (n�1)/-D VECTOR

SPACE V can be specified by an (m�1)�(n�1)
MATRIX whose rows are the coordinates of a BASIS of
W . The set of all n�1

m�1

� �
(m�1)�(m�1) MINORS of this

MATRIX are then called the Grassmann (or sometimes
Plücker; Stofli 1991) coordinates of w , where a

b

" #
is a

BINOMIAL COEFFICIENT. Hodge and Pedoe (1952) give
a thorough treatment of Grassmann coordinates.

See also CHOW COORDINATES
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Grassmann Manifold
A special case of a FLAG MANIFOLD. A Grassmann
manifold is a certain collection of vector SUBSPACES of
a VECTOR SPACE. In particular, gn; k is the Grassmann
manifold of k -dimensional subspaces of the VECTOR

SPACE Rn: It has a natural MANIFOLD structure as an
orbit-space of the STIEFEL MANIFOLD vn;k of orthonor-
mal k -frames in Gn: One of the main things about
Grassmann manifolds is that they are classifying
spaces for VECTOR BUNDLES.

Gray Code
An encoding of numbers so that adjacent numbers
have a single DIGIT differing by 1. A BINARY Gray code
with n DIGITS corresponds to a HAMILTONIAN PATH on
an n -D HYPERCUBE (including direction reversals).
The term Gray code is often used to refer to a
"reflected" code, or more specifically still, the binary
reflected Gray code.



To convert a BINARY number d1d2 � � �dn �1dn to its
corresponding binary reflected Gray code, start at the
right with the digit dn (the nth, or last, DIGIT). If the
dn�1 is 1, replace dn by 1 �dn; otherwise, leave it
unchanged. Then proceed to dn �1 : Continue up to the
first DIGIT d1 ; which is kept the same since d0 is
assumed to be a 0. The resulting number
g1g2 � � � gn�1gn is the reflected binary Gray code.

To convert a binary reflected Gray code g1g2 � � � gn�1gn

to a BINARY number, start again with the nth digit,
and compute

X
n

�
Xn�1

i �1

gi (mod 2):

If an is 1, replace gn by 1 �gn; otherwise, leave it the
unchanged. Next compute

X
n�1

�
Xn�2

i �1

gi (mod 2);

and so on. The resulting number d1d2 � � �dn�1dn is the
BINARY number corresponding to the initial binary
reflected Gray code.

The code is called reflected because it can be gener-
ated in the following manner. Take the Gray code 0,
1. Write it forwards, then backwards: 0, 1, 1, 0. Then
append 0s to the first half and 1s to the second half:
00, 01, 11, 10. Continuing, write 00, 01, 11, 10, 10, 11,
01, 00 to obtain: 000, 001, 011, 010, 110, 111, 101, 100,
... (Sloane’s A014550). Each iteration therefore dou-
bles the number of codes. The Gray codes correspond-
ing to the first few nonnegative integers are given in
the following table.

0 0 20 11110 40 111100

1 1 21 11111 41 111101

2 11 22 11101 42 111111

3 10 23 11100 43 111110

4 110 24 10100 44 111010

5 111 25 10101 45 111011

6 101 26 10111 46 111001

7 100 27 10110 47 111000

8 1100 28 10010 48 101000

9 1101 29 10011 49 101001

10 1111 30 10001 50 101011

11 1110 31 10000 51 101010

12 1010 32 110000 52 101110

13 1011 33 110001 53 101111

14 1001 34 110011 54 101101

15 1000 35 110010 55 101100

16 11000 36 110110 56 100100

17 11001 37 110111 57 100101

18 11011 38 110101 58 100111

19 11010 39 110100 59 100110

The binary reflected Gray code is closely related to
the solutions of the TOWERS OF HANOI and BAGUE-

NAUDIER, as well as to Hamiltonian circuits of
hypercube graphs (Skiena 1990, p. 149).

See also BAGUENAUDIER, BINARY, HILBERT CURVE,
RYSER FORMULA, THUE-MORSE SEQUENCE, TOWERS

OF HANOI
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Gray Graph

A CUBIC GRAPH on 54 vertices that is EDGE- but not



VERTEX-TRANSITIVE; the smallest known such exam-
ple. It was discovered by Marion C. Gray in 1932, and
was first published by Bouwer (1968). It has GIRTH 8,
GRAPH DIAMETER 6, has Aut Gj j�1296 ; and is the Levi
graph of two dual, triangle-free, point-, line-, and flag-
transitive, non-self-dual 273 configurations (Maruvic
and Pisanski 2000). The symmetric embedding illu-
strated above is due to (Maruvic and Pisanski 2000).
It can be constructed by taking three copies of the
COMPLETE BIPARTITE GRAPH K3;3 and, for a particular
edge e , subdividing e in each of the three copies,
joining the resulting three vertices to a new vertex,
and repeating with each edge.

See also COMPLETE BIPARTITE GRAPH, CUBIC GRAPH,
EDGE-TRANSITIVE GRAPH, VERTEX-TRANSITIVE GRAPH
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Grazing Goat Problem
GOAT PROBLEM

Great Circle

A great circle is a SECTION of a SPHERE which contains
a DIAMETER of the SPHERE (Kern and Bland 1948,
p. 87). Sections of the sphere that do not contain a
diameter are called SMALL CIRCLES.

The shortest path between two points on a SPHERE,

also known as an ORTHODROME, is a segment of a
great circle. To find the great circle (GEODESIC)
distance between two points located at LATITUDE d

and LONGITUDE l of (d1; l1) and (d2; l2) on a SPHERE

of RADIUS a , convert SPHERICAL COORDINATES to
CARTESIAN COORDINATES using

ri�a
cos li cos di

sin li cos di

sin di

2
4

3
5: (1)

(Note that the LATITUDE d is related to the COLATI-

TUDE f of SPHERICAL COORDINATES by d�90��f; so
the conversion to CARTESIAN COORDINATES replaces
sin f and cos f by cos d and sin d; respectively.) Now
find the ANGLE a between r1 and r2 using the DOT

PRODUCT,

cos a� r̂1 � r̂2

�cos d1 cos d2(sin l1 sin l2�cos l1 cos l2)

�sin d1 sin d2

�cos d1 cos d2 cos(l1�l2)�sin d1 sin d2: (2)

The great circle distance is then

d�a cos�1[cos d1 cos d2 cos(l1�l2)

�sin d1 sin d2]: (3)

For the Earth, the equatorial RADIUS is a:6378 km,
or 3963 (statute) miles. Unfortunately, the FLATTEN-

ING of the Earth cannot be taken into account in this
simple derivation, since the problem is considerably
more complicated for a SPHEROID or ELLIPSOID (each
of which has a RADIUS which is a function of
LATITUDE). This leads to extremely complicated ex-
pressions for OBLATE SPHEROID GEODESICS and GEO-

DESICS on other ELLIPSOIDS.

A great circle becomes a straight line in a GNOMONIC

PROJECTION (Steinhaus 1983, pp. 220�/21).

The equation of the great circle can be explicitly
computed using the GEODESIC formalism. Writing

u�l (4)

v�d�1
2 p�f (5)

gives the P , Q , and R parameters of the GEODESIC

(which are just combinations of the PARTIAL DERIVA-

TIVES) as

P�
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2

�a2 sin2 v (6)

Q�
@x

@u

@x

@v
�

@y

@u

@y

@v
�

@z

@u

@z

@v
�0 (7)

R�
@x

@v

 !2

�
@y

@v

 !2

�
@z

@v

 !2

�a2: (8)



The GEODESIC differential equation then becomes

cos v sin4 v �2 cos v sin2 vv ?2 �cos vv ?4 �sin vv ƒ

�0: (9)

However, because this is a special case of Q �0 with
P and R explicit functions of v only, the GEODESIC

solution takes on the special form

v �c1 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

P2 � c2
1P

s
dv �c1 g

dv

a2 sin4 v � c2
1 sin2 v

�g
dv

sin v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c1

 !2

sin2 v � 1

vuut

��tan �1 cos vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c1

 !2

�1

vuut

2
6666664

3
7777775�c2 (10)

(Gradshteyn and Ryzhik 2000, p. 174, eqn. 2.599.6),
which can be rewritten as

v ��sin�1 cot vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c1

 !2

�1

vuut

0
BBBBBB@

1
CCCCCCA�c2 : (11)

It therefore follows that

(sin c2)a sin v cos u �(cos c2)a sin v sin u

�
a cos vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

c1

 !2

�1

vuut
�0 : (12)

This equation can be written in terms of the CARTE-

SIAN COORDINATES as

x sin c2 �y cos c2 �
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

c1

 !2

�1

vuut �0; (13)

which is simply a PLANE passing through the center of
the SPHERE and the two points on the surface of the
SPHERE.

See also GEODESIC, GREAT SPHERE, LOXODROME,
MIKUSINSKI’S PROBLEM, OBLATE SPHEROID GEODESIC,
ORTHODROME, POINT-POINT DISTANCE–2-D, PSEUDO-

CIRCLE, SMALL CIRCLE, SPHERE
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Great Cubicuboctahedron

The UNIFORM POLYHEDRON U14 whose DUAL POLYHE-

DRON is the GREAT HEXACRONIC ICOSITETRAHEDRON.
It has WYTHOFF SYMBOL 34½43 and is Wenninger model
W77: Its faces are 8f3g�6f4g�6f8

3g: It is a FACETED

version of the CUBE. The CIRCUMRADIUS of a great
cubicuboctahedron with unit edge length is

r�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
2

pq
:

The CONVEX HULL of the great cubicuboctahedron is
the Archimedean TRUNCATED CUBE A9; whose dual is
the SMALL TRIAKIS OCTAHEDRON, so the dual of the
great cubicuboctahedron (i.e., the GREAT HEXACRONIC

ICOSITETRAHEDRON) is one of the stellations of the
SMALL TRIAKIS OCTAHEDRON (Wenninger 1983, p. 57).
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Wenninger, M. J. Polyhedron Models. Cambridge, England:
Cambridge University Press, pp. 118 �/19, 1989.

Great Deltoidal Hexecontahedron

The DUAL of the uniform GREAT RHOMBICOSIDODECA-

HEDRON U67 and Wenninger dual W105 :/

See also DUAL POLYHEDRON, GREAT RHOMBICOSIDO-

DECAHEDRON (UNIFORM)
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Great Deltoidal Icositetrahedron
The DUAL of the uniform GREAT RHOMBICUBOCTAHE-

DRON and Wenninger dual W85 :/

References
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Great Dirhombicosidodecacron
The DUAL of the GREAT DIRHOMBICOSIDODECAHEDRON

U75 and Wenninger dual W119 :/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 139, 1983.

Great Dirhombicosidodecahedron

The UNIFORM POLYHEDRON U75 whose DUAL is the
GREAT DIRHOMBICOSIDODECACRON. This POLYHEDRON

is exceptional because it cannot be derived from
SCHWARZ TRIANGLES and because it is the only UNI-

FORM POLYHEDRON with more than six POLYGONS

surrounding each VERTEX (four SQUARES alternating
with two TRIANGLES and two PENTAGRAMS). This
unique polyhedron has features in common with both
snub forms and hemipolyhedra, and its octagrammic
faces pass through the origin.
It has pseudo-WYTHOFF SYMBOL 3

2
5
3 3

5
2 :

��� Its faces are
40 f3g�60 f4g�24 f5

2 g; and its CIRCUMRADIUS for unit
edge length is

R �1
2

ffiffiffi
2

p
:

See also UNIFORM POLYHEDRON
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Great Disdyakis Dodecahedron

The DUAL of the GREAT TRUNCATED CUBOCTAHEDRON

U20 and Wenninger dual W93 :/

See also DUAL POLYHEDRON, GREAT TRUNCATED

CUBOCTAHEDRON
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Great Disdyakis Triacontahedron

The DUAL of the GREAT TRUNCATED ICOSIDODECAHE-

DRON U68 and Wenninger dual W108 :/

See also DUAL POLYHEDRON, GREAT TRUNCATED

ICOSIDODECAHEDRON
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Great Ditrigonal Dodecacronic
Hexecontahedron

The DUAL of the GREAT DITRIGONAL DODECICOSIDODE-

CAHEDRON U42 and Wenninger dual W81 :/

See also DUAL POLYHEDRON, GREAT DITRIGONAL

DODECICOSIDODECAHEDRON

References
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Great Ditrigonal Dodecicosidodecahedron

The UNIFORM POLYHEDRON U42 whose DUAL is the
GREAT DITRIGONAL DODECACRONIC HEXECONTAHE-

DRON. It has WYTHOFF SYMBOL 35½53: Its faces are
20f3g�12f5g�12f10

3 g; and its CIRCUMRADIUS for unit
edge length is

R�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34�6

ffiffiffi
5

pq
:

The CONVEX HULL of the great ditrigonal dodecicosi-
dodecahedron is a regular DODECAHEDRON, whose
dual is the ICOSAHEDRON, so the dual of the great
ditrigonal dodecicosidodecahedron (the GREAT TRIAM-

BIC ICOSAHEDRON) is one of the ICOSAHEDRON STELLA-

TIONS (Wenninger 1983, p. 42).
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Great Ditrigonal Icosidodecahedron

The UNIFORM POLYHEDRON U47 whose DUAL is the
GREAT TRIAMBIC ICOSAHEDRON. It has WYTHOFF

SYMBOL 3
2½35: Its faces are 20f3g�12f5g; and its

CIRCUMRADIUS for unit edge length is

R�1
2

ffiffiffi
3

p
:

The CONVEX HULL of the great triambic icosahedron is
a regular DODECAHEDRON, whose dual is the ICOSA-

HEDRON, so the dual of the great ditrigonal icosido-
decahedron (the GREAT TRIAMBIC ICOSAHEDRON) is
one of the ICOSAHEDRON STELLATIONS.
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Great Dodecacronic Hexecontahedron

The DUAL of the GREAT DODECICOSIDODECAHEDRON

U61 and Wenninger dual W99 :/

See also DUAL POLYHEDRON, GREAT DODECICOSIDO-

DECAHEDRON
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Great Dodecadodecahedron
DODECADODECAHEDRON

Great Dodecahedron

The KEPLER-POINSOT SOLID which is the DUAL of the
SMALL STELLATED DODECAHEDRON. It is also UNIFORM

POLYHEDRON U35 and Wenninger model W20 : Its
SCHLÄ FLI SYMBOL is f5; 5

2 g; and its WYTHOFF SYMBOL

is 5
2 ½25: Its faces are 12f5 g: Its CIRCUMRADIUS for unit

edge length is

R �1
2 5

1 =4 f1 =2a �1
4 5

1 =4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1 �

ffiffiffi
5

p
)

q
;

where f is the GOLDEN RATIO. It can be constructed by
CUMULATION of a unit edge-length ICOSAHEDRON by a
pyramid with height �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6(7 �3

ffiffiffi
5

pq
:: This gives side of

lengths

s1 �
1
2(
ffiffiffi
5

p
�1) � f �1 (1)

s2 �1 (2)

The result solid has SURFACE AREA and VOLUME

S �15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
(3)

V �5
4(
ffiffiffi
5

p
�1): (4)

Schläfli (1901, p. 134) did not recognize the great
dodecahedron because it, like the SMALL STELLATED

DODECAHEDRON, satisfies

N0 �N1 �N2 �12 �30 �12 ��6; (5)

where N0 is the number of vertices, N1 the number of
edges, and N2 the number of faces (Coxeter 1973,
p. 172), thus violating the POLYHEDRAL FORMULA.

The CONVEX HULL of the great dodecahedron is a
regular ICOSAHEDRON and the dual of the ICOSAHE-

DRON is the DODECAHEDRON, so the dual of the great
dodecahedron (the SMALL STELLATED DODECAHE-

DRON) is one of the DODECAHEDRON STELLATIONS

(Wenninger 1983, pp. 35 and 40)

See also DODECAHEDRON, GREAT ICOSAHEDRON,
GREAT STELLATED DODECAHEDRON, KEPLER-POINSOT

SOLID, SMALL STELLATED DODECAHEDRON, STELLA-

TION
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Great Dodecahedron-Small Stellated
Dodecahedron Compound
A POLYHEDRON COMPOUND in which the GREAT

DODECAHEDRON is interior to the SMALL STELLATED

DODECAHEDRON.

See also POLYHEDRON COMPOUND

Great Dodecahemicosacron

The DUAL of the GREAT DODECAHEMICOSAHEDRON U65

and Wenninger dual W102 : When rendered, the SMALL

DODECAHEMICOSACRON and great dodecahemicosa-
cron appear the same.

See also DUAL POLYHEDRON, GREAT DODECAHEMICO-

SAHEDRON, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 107, 1983.

Great Dodecahemicosahedron

The UNIFORM POLYHEDRON U65 whose DUAL is the
GREAT DODECAHEMICOSACRON. It has WYTHOFF SYM-

BOL 5
4 5½3: Its faces are 10f6 g�6f5g�6f5

4 g: It is a
FACETED DODECADODECAHEDRON. The CIRCUMRADIUS

for unit edge length is R �2.

References
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Great Dodecahemidodecacron

The DUAL of the GREAT DODECAHEMIDODECAHEDRON

U70 and Wenninger dual W107 : When rendered, the
great dodecahemidodecacron and GREAT ICOSIHEMI-

DODECACRON look the same, both consisting of a
compound of six infinite f10 =3g prisms.

See also DUAL POLYHEDRON, GREAT DODECAHEMIDO-

DECAHEDRON, UNIFORM POLYHEDRON
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Great Dodecahemidodecahedron

The UNIFORM POLYHEDRON U70 whose DUAL is the
GREAT DODECAHEMIDODECACRON. It has WYTHOFF

SYMBOL 5
3

5
2½

5
3: Its faces are 12f5

2g�6f10
3 g: Its CIRCUM-

RADIUS for unit edge length is

R�f�1;

where f is the GOLDEN RATIO.
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Great Dodecicosacron
The DUAL of the GREAT DODECICOSAHEDRON and
Wenninger dual W101 :/
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Great Dodecicosahedron

The UNIFORM POLYHEDRON U63 whose DUAL is the
GREAT DODECICOSACRON. It has WYTHOFF SYMBOL

3 5
3 ½

3
2

5
2
j:

Its faces are 20 f6g�12 f10
3 g: Its CIRCUMRADIUS for

unit edge length is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 �6

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 156 �/57, 1989.

Great Dodecicosidodecahedron

The UNIFORM POLYHEDRON U61 whose DUAL is the
GREAT DODECACRONIC HEXECONTAHEDRON. Its WYTH-

OFF SYMBOL is 2 5
2½3: Its faces are 20f6g�12f5

2 g; and

its CIRCUMRADIUS for unit edge length is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58 �18

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 148, 1989.

Great Hexacronic Icositetrahedron
The DUAL of the GREAT CUBICUBOCTAHEDRON and
Wenninger model W77 :/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 58, 1983.

Great Hexagonal Hexecontahedron
The DUAL of the GREAT SNUB DODECICOSIDODECAHE-

DRON and Wenninger dual W115 :/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 1356 1983.

Great Icosacronic Hexecontahedron

The DUAL of the GREAT ICOSICOSIDODECAHEDRON U48

and Wenninger dual W88:/

See also DUAL POLYHEDRON, GREAT ICOSICOSIDODE-

CAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 65, 1983.



Great Icosahedron

One of the KEPLER-POINSOT SOLIDS whose DUAL is the
GREAT STELLATED DODECAHEDRON. It is also UNIFORM

POLYHEDRON U53; Wenninger model W22; and has
SCHLÄFLI SYMBOL f3; 5

2g and WYTHOFF SYMBOL 35
2½

5
3:

Its faces are 20f3g�12f5
2g�12f10

3 g:/

The great icosahedron can most easily be constructed
by building a "squashed" dodecahedron (top right
figure) from the corresponding net (top left). Then,
using the net shown in the bottom left figure, build 12
PENTAGRAMMIC PYRAMIDS (bottom middle figure) and
affix them into the dimples (bottom right). This
method of construction is given in Cundy and Rollett
(1989, pp. 98�/9). If the edge lengths of the dodecahe-
dron are unity, then the height of the pentagrammic
pyramid (above the dodecahedron faces) is given by
solving the equation for the SLANT HEIGHT of a
PENTAGONAL PYRAMID

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2� 1

10(5�
ffiffiffi
5

p
)a2

q
(1)

with a�1, giving

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(5�2

ffiffiffi
5

p
)

q
: (2)

The distance from the center of the dodecahedron to
the apex of a pyramid is then given by

H�h�r�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(25�11

ffiffiffi
5

p
)

q
; (3)

where r is the INRADIUS of the DODECAHEDRON.

The dimensions of the pentagrammic pyramid can be
by examining a triangular section of the great
icosahedron. In this triangle, each side is divided in
the ratios f : 1 : f; and lines are drawn as shown.
Then the light shaded portions on the left and right
correspond to sides of two pyramids and the center
shaded portion is the "lip" of the pyramid between the
first two pyramids. Furthermore, the filled portion of
the diagram corresponds to one face of the ICOSAHE-

DRON inscribed in the great icosahedron. In the
notation of the figure above,

½MP½� 1
10

ffiffiffiffiffiffi
15

p
(4)

½MT2½�
1
2

ffiffiffi
3

p
(5)

½T1T3½�
1
2(
ffiffiffi
5

p
�1)�f�1 (6)

½CP2½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(7�3

ffiffiffi
5

p
)

q
(7)

½PA2½�
1
5

ffiffiffiffiffiffi
10

p
: (8)

The great icosahedron constructed from the DODECA-

HEDRON with unit edge lengths has edge lengths
(where edges are interpreted to be broken where
facial plane intersect) given by

s1�
1
5

ffiffiffiffiffiffi
10

p
(9)

s2�1 (10)

s3�
1
2(1�

ffiffiffi
5

p
) (11)

s4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5(7�3

ffiffiffi
5

p
)

q
: (12)

Its CIRCUMRADIUS is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(25�11

ffiffiffi
5

p
)

q
; (13)

and the SURFACE AREA and VOLUME are then

S�3
ffiffiffi
3

p
(5�4

ffiffiffi
5

p
) (14)



V �1
4(25 �9

ffiffiffi
5

p
) : (15)

The CONVEX HULL of the great icosahedron is a
regular ICOSAHEDRON and the dual of the ICOSAHE-

DRON is the DODECAHEDRON, so the dual of the great
icosahedron is one of the DODECAHEDRON STELLA-

TIONS (Wenninger 1983, p. 40)

See also GREAT DODECAHEDRON, GREAT STELLATED

DODECAHEDRON, KEPLER-POINSOT SOLID, SMALL

STELLATED DODECAHEDRON, TRUNCATED GREAT ICO-

SAHEDRON

References
Cundy, H. and Rollett, A. "The Great Icosahedron. 35 =2 :/"
§3.6.4 in Mathematical Models, 3rd ed. Stradbroke,
England: Tarquin Pub., pp. 96 �/9, 1989.

Fischer, G. (Ed.). Plate 106 in Mathematische Modelle/
Mathematical Models, Bildband/Photograph Volume.
Braunschweig, Germany: Vieweg, p. 105, 1986.

Weisstein, E. W. "Polyhedra." MATHEMATICA NOTEBOOK

POLYHEDRA.M.
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 40, 1983.
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 154, 1989.

Great Icosahedron-Great Stellated
Dodecahedron Compound

A POLYHEDRON COMPOUND of the GREAT ICOSAHE-

DRON and GREAT STELLATED DODECAHEDRON most
easily constructed by adding the VERTICES OF THE

FORMer to the latter.

See also GREAT ICOSAHEDRON, GREAT STELLATED

DODECAHEDRON, POLYHEDRON COMPOUND

References
Cundy, H. and Rollett, A. "Great Icosahedron Plus Great

Stellated Dodecahedron." §3.10.4 in Mathematical Models,
3rd ed. Stradbroke, England: Tarquin Pub., pp. 132�/33,
1989.

Wenninger, M. J. Dual Models. Cambridge, England: Cam-
bridge University Press, pp. 51�/3 1983.

Great Icosicosidodecahedron

The UNIFORM POLYHEDRON U48 whose DUAL is the
GREAT ICOSACRONIC HEXECONTAHEDRON. It has
WYTHOFF SYMBOL 3

2 5½3: Its faces are 20f3g�20f6g�
12f5g: Its CIRCUMRADIUS for unit edge length is

R�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34�6

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 137�/39, 1989.

Great Icosidodecahedron

A UNIFORM POLYHEDRON U54 whose DUAL is the GREAT

RHOMBIC TRIACONTAHEDRON (also called the GREAT

STELLATED TRIACONTAHEDRON). It is a STELLATED

ARCHIMEDEAN SOLID. It has SCHLÄFLI SYMBOL
3
5

2

n o
/

and WYTHOFF SYMBOL 2½3 5
2: Its faces are 20f3g�

12f5
2g: Its CIRCUMRADIUS for unit edge length is

R�f�1;

where f is the GOLDEN RATIO.

References
Cundy, H. and Rollett, A. "Great Icosidodecahedron. (3 � 5

2)
2
/"

§3.9.2 in Mathematical Models, 3rd ed. Stradbroke,
England: Tarquin Pub., p. 124, 1989.



Wenninger, M. J. Polyhedron Models. Cambridge, England:
Cambridge University Press, p. 147, 1989.

Great Icosihemidodecacron

The DUAL of the GREAT ICOSIHEMIDODECAHEDRON U71

and Wenninger dual W106 : When rendered, the GREAT

DODECAHEMIDODECACRON and great icosihemidode-
cacron look the same, both consisting of a compound
of six infinite f10=3g prisms.

See also DUAL POLYHEDRON, GREAT ICOSIHEMIDODE-

CAHEDRON, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 107, 1983.

Great Icosihemidodecahedron

The UNIFORM POLYHEDRON U71 whose DUAL is the
GREAT ICOSIHEMIDODECACRON. It has WYTHOFF SYM-

BOL 3
2 3½

5
3 : Its faces are 20f3 g�6f10

3 g: For unit edge
length, its CIRCUMRADIUS is

R � f�1 ;

where f is the GOLDEN RATIO.

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 164, 1989.

Great Inverted Pentagonal
Hexecontahedron
The DUAL of the GREAT INVERTED SNUB ICOSIDODECA-

HEDRON U69 and Wenninger dual W116 :/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 126, 1983.

Great Inverted Retrosnub
Icosidodecahedron
GREAT RETROSNUB ICOSIDODECAHEDRON

Great Inverted Snub Icosidodecahedron

The UNIFORM POLYHEDRON U69 whose DUAL is the
GREAT INVERTED PENTAGONAL HEXECONTAHEDRON. It
has WYTHOFF SYMBOL ½2 3 5

2 : Its faces are 80 f3g�
12 f5

2g: For unit edge length, it has CIRCUMRADIUS

R �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 22 =3 � 16x � 21 =3x2

8 � 22 =3 � 10x � 21 =3x2

s

�0:816080674799923;

where

x � 49 �27
ffiffiffi
5

p
�3

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
93 �49

ffiffiffi
5

pq$ %1 =3

:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 179, 1989.

Great Pentagonal Hexecontahedron

The DUAL of the GREAT SNUB ICOSIDODECAHEDRON U57

and Wenninger dual W113:/

See also DUAL POLYHEDRON, GREAT SNUB ICOSIDO-

DECAHEDRON



References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 123, 1983.

Great Pentagrammic Hexecontahedron
The DUAL of the GREAT RETROSNUB ICOSIDODECAHE-

DRON and Wenninger dual W117 :/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 128, 1983.

Great Pentakis Dodecahedron

The DUAL of the SMALL STELLATED TRUNCATED DODE-

CAHEDRON U58 and Wenninger dual W97 :/

See also DUAL POLYHEDRON, SMALL STELLATED

TRUNCATED DODECAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 70, 1983.

Great Quasitruncated Icosidodecahedron
GREAT TRUNCATED ICOSIDODECAHEDRON

Great Retrosnub Icosidodecahedron

The UNIFORM POLYHEDRON U74 ; also called the GREAT

INVERTED RETROSNUB ICOSIDODECAHEDRON, whose

DUAL is the GREAT PENTAGRAMMIC HEXECONTAHE-

DRON. It has WYTHOFF SYMBOL ½2 3
2

5
3: Its faces are

80 f3g�12 f5
2 g: For unit edge length, it has CIRCUMRA-

DIUS

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 � x

1 � x

s
:0:5800015;

where x is the smaller NEGATIVE root of

x3 �2x2 � f �2 �0;

with f the GOLDEN MEAN.

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 189 �/93, 1989.

Great Rhombic Triacontahedron

A ZONOHEDRON which is the DUAh OHEDROeM. 263.409 Tw 3.4144 0 Twhichi Tf
ON�ICOSIDODECTw 7.17285 



Great Rhombicosidodecahedron
(Archimedean)

The 62-faced ARCHIMEDEAN SOLID A2 with faces
30 f4g�20 f6g�12 f10 g: It is also known as the
rhombitruncated icosidodecahedron, and is some-
times improperly called the truncated icosidodecahe-
dron, a name which is inappropriate since
TRUNCATION would yield RECTANGULAR instead of
SQUARE. The great rhombicosidodecahedron is also
UNIFORM POLYHEDRON U28 and Wenninger model
W16 : It has SCHLÄ FLI SYMBOL t 3

5

H I
and WYTHOFF

SYMBOL 2 3 5½:/

Its DUAL is the DISDYAKIS TRIACONTAHEDRON, also
called the HEXAKIS ICOSAHEDRON. The INRADIUS of the
dual, MIDRADIUS of the solid and dual, and CIRCUM-

RADIUS of the solid for a �1 are

r � 1
241(105 �6

ffiffiffi
5

p
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 �12

ffiffiffi
5

pq
:3:73665

r �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30�12

ffiffiffi
5

pq
:3:76938

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31�12

ffiffiffi
5

pq
:3:80239:

See also SMALL RHOMBICOSIDODECAHEDRON

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, p. 137, 1987.
Cundy, H. and Rollett, A. "Great Rhombicosidodecahedron

or Truncated Icosidodecahedron. 4:6:10:/" §3.7.12 in Math-
ematical Models, 3rd ed. Stradbroke, England: Tarquin
Pub., pp. 112�/13, 1989.

Wenninger, M. J. "The Rhombitruncated Icosidodecahe-
dron." Model 16 in Polyhedron Models. Cambridge,
England: Cambridge University Press, p. 30, 1989.

Great Rhombicosidodecahedron (Uniform)

The UNIFORM POLYHEDRON U67; also called the QUA-

SIRHOMBICOSIDODECAHEDRON, whose DUAL is the
GREAT DELTOIDAL HEXECONTAHEDRON. It has SCHLÄ-

FLI SYMBOL r’
3
5

2

n o
: It has WYTHOFF SYMBOL 3 5

2½2: Its
faces are 20f3g�30f4g�12f5

2g: For unit edge length,
its CIRCUMRADIUS is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11�4

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 162�/63, 1989.



Great Rhombicuboctahedron
(Archimedean)

The 26-faced ARCHIMEDEAN SOLID A3 consisting of
faces 12f4 g�8f6 g�6f8 g: It is sometimes (impro-
perly) called the truncated cuboctahedron, and is also
called the rhombitruncated cuboctahedron. It is UNI-

FORM POLYHEDRON U11 and Wenninger model W15 : It
has SCHLÄ FLI SYMBOL t 3

4

H I
and WYTHOFF SYMBOL

2 3 4½:/

The SMALL CUBICUBOCTAHEDRON is a FACETED ver-
sion of the great rhombicuboctahedron.

Its DUAL is the DISDYAKIS DODECAHEDRON, also called
the HEXAKIS OCTAHEDRON. The INRADIUS r of the
dual, MIDRADIUS r of the solid and dual, and CIRCUM-

RADIUS R of the solid for a �1 are

r � 3
97(14 �

ffiffiffi
2

p
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 �6

ffiffiffi
2

pq
:2 :20974

r �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 �6

ffiffiffi
2

pq
:2:26303

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 �6

ffiffiffi
2

pq
:2 :31761 :

Additional quantities are

t �tan(1
8 p) �

ffiffiffi
2

p
�1

l �2t �2(
ffiffiffi
2

p
�1)

h �1 �l sin(1
4 p) �3 �

ffiffiffi
2

p
:

The distances between the solid center and centroids
of the square and octagonal faces are

r4�
1
2(3�

ffiffiffi
2

p
) (1)

r8�
1
2(1�2

ffiffiffi
2

p
): (2)

The SURFACE AREA and VOLUME are

S�12(2�
ffiffiffi
2

p
�

ffiffiffi
3

p
) (3)

V�22�14
ffiffiffi
2

p
: (4)

See also ARCHIMEDEAN SOLID, GREAT RHOMBICUBOC-

TAHEDRON (UNIFORM), GREAT TRUNCATED CUBOCTA-

H E D R O N , S M A L L  R H O M B I C U B O C T A H E D R O N ,
OCTATETRAHEDRON

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, p. 138, 1987.
Cundy, H. and Rollett, A. "Great Rhombicuboctahedron or

Truncated Cuboctahedron. 4:6:8:/" §3.7.6 in Mathematical
Models, 3rd ed. Stradbroke, England: Tarquin Pub.,
p. 106, 1989.

Wenninger, M. J. "The Rhombitruncated Cuboctahedron."
Model 15 in Polyhedron Models. Cambridge, England:
Cambridge University Press, p. 29, 1989.

Great Rhombicuboctahedron (Uniform)

The UNIFORM POLYHEDRON U17; also known as the
QUASIRHOMBICUBOCTAHEDRON, whose DUAL is the
GREAT DELTOIDAL ICOSITETRAHEDRON. It has SCHLÄ-

FLI SYMBOL r’ f3
4g; WYTHOFF SYMBOL 3

2 4½2; and is
Wenninger model W85: Its faces are 18f4g�8f3=2g:
Its CIRCUMRADIUS for unit edge length is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
2

pq
:



The CONVEX HULL of the great cubicuboctahedron is
the Archimedean TRUNCATED CUBE A9 ; whose dual is
the SMALL TRIAKIS OCTAHEDRON, so the dual of the
great rhombicuboctahedron (i.e., the GREAT DELTOI-

DAL ICOSITETRAHEDRON) is one of the stellations of the
SMALL TRIAKIS OCTAHEDRON (Wenninger 1983, p. 57).

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 57 and 59, 1983.
Wenninger, M. J. Model 85 in Polyhedron Models. Cam-

bridge, England: Cambridge University Press, pp. 132 �/

33, 1989.

Great Rhombidodecacron

The DUAL of the GREAT RHOMBIDODECAHEDRON U73

and Wenninger dual W109:/

See also DUAL POLYHEDRON, GREAT RHOMBIDODECA-

HEDRON, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 88, 1983.

Great Rhombidodecahedron

The UNIFORM POLYHEDRON U73 whose DUAL is the
Great Rhombidodecacron. It has WYTHOFF SYMBOL

2 5
3½

3
2

5
4
j:

Its faces are 30f4g�12f10
3 g: Its CIRCUMRADIUS for

unit edge length is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11�4

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 168�/70, 1989.

Great Rhombihexacron

The DUAL of the GREAT RHOMBIHEXAHEDRON U21 and
Wenninger dual W103:/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 60, 1983.



Great Rhombihexahedron

The UNIFORM POLYHEDRON U21 whose DUAL is the
GREAT RHOMBIHEXACRON. It is Wenninger model
W103: Maeder gives its WYTHOFF SYMBOL as 4

3
3
2 2½;

and its faces as 6f4g�3f8
3g�3f8

5g�6f4
3g; while Wen-

ninger (1989) gives the WYTHOFF SYMBOL as

2 4
3

3
2

4
2
j

and its faces as 12f4g�6f8
3g: The CIRCUMRADIUS for a

great rhombihexahedron of unit edge length is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
2

pq
:

The CONVEX HULL of the great rhombihexahedron is
the Archimedean TRUNCATED CUBE A9; whose dual is
the SMALL TRIAKIS OCTAHEDRON, so the dual of the
great rhombihexahedron (i.e., the GREAT RHOMBIHEX-

ACRON) is one of the stellations of the SMALL TRIAKIS

OCTAHEDRON (Wenninger 1983, p. 57).

References
Maeder, R. E. Polyhedra.m and PolyhedraExamples

Mathematica notebooks. http://www.inf.ethz.ch/depart-
ment/TI/rm/programs.html.

Wenninger, M. J. Dual Models. Cambridge, England: Cam-
bridge University Press, p. 57 and 160, 1983.

Wenninger, M. J. "Great Rhombihexahedron." Model 103 in
Polyhedron Models. Cambridge, England: Cambridge
University Press, pp. 159�/60, 1989.

Great Snub Dodecicosidodecahedron

The UNIFORM POLYHEDRON U64 whose DUAL is the
GREAT HEXAGONAL HEXECONTAHEDRON. It has WYTH-

OFF SYMBOL ½3 5
3

5
2: Its faces are 80f3g�24f5

2g: Its
CIRCUMRADIUS for unit edge length is

R�1
2

ffiffiffi
2

p
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 183�/85, 1989.

Great Snub Icosidodecahedron

The UNIFORM POLYHEDRON U57 whose DUAL is the
GREAT PENTAGONAL HEXECONTAHEDRON. It has
WYTHOFF SYMBOL ½2 3 5

3: Its faces are 80f3g�12f5
2g:

For unit edge length, it has CIRCUMRADIUS

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 � x

1 � x

s
:0:6450202;

where x is the most NEGATIVE ROOT of

x3�2x2�f�2�0;

with f the GOLDEN RATIO.

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 186�/88, 1989.

Great Sphere
The great sphere on the surface of a HYPERSPHERE is
the 3-D analog of the GREAT CIRCLE on the surface of a
SPHERE. Let 2h be the number of reflecting SPHERES,
and let great spheres divide a HYPERSPHERE into g 4-
D TETRAHEDRA. Then for the POLYTOPE with SCHLÄ-



FLI SYMBOL fp; q; r g;

64h

g
�12 �p �2q �r �

4

p 
�

4

r
:

See also GREAT CIRCLE

Great Stellapentakis Dodecahedron

The DUAL of the GREAT TRUNCATED ICOSAHEDRON U55

and Wenninger dual W95 :/

See also DUAL POLYHEDRON, GREAT TRUNCATED

ICOSAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 75, 1983.

Great Stellated Dodecahedron

One of the KEPLER-POINSOT SOLIDS. It is also UNI-

FORM POLYHEDRON U52 ; Wenninger model W41 ; and is
the third DODECAHEDRON STELLATION (Wenninger
1989). Its DUAL is the GREAT ICOSAHEDRON. The great
stellated dodecahedron has SCHLÄ FLI SYMBOL f5

2 ; 3g
and WYTHOFF SYMBOL 3½2 5

2 : Its faces are 12 f5
2g: Its

CIRCUMRADIUS for unit edge length is

R �1
2

ffiffiffi
3

p
f�1 �1

4

ffiffiffi
3

p
(
ffiffiffi
5

p
�1): (1)

The easiest way to construct a great stellated dode-
cahedron is by CUMULATION, i.e., to making 20
TRIANGULAR PYRAMIDS with side length f �
(1 �

ffiffiffi
5

p
)=2 (the GOLDEN RATIO) times the base and

attaching them to the sides of an ICOSAHEDRON. The
height of these pyramids is then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6(7 �3

ffiffiffi
5

p
)

q
:/

Cumulating a DODECAHEDRON to construct a great
stellated dodecahedron produces a solid with edge
lengths

s1 �1 (2)

s2 � f �1
2(1 �

ffiffiffi
5

p
): (3)

The SURFACE AREA and VOLUME of such a great
stellated dodecahedron are

S �15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
(4)

V �5
4(3 �

ffiffiffi
5

p
): (5)

The CONVEX HULL of the great stellated dodecahedron
is a regular DODECAHEDRON and the dual of the
DODECAHEDRON is the ICOSAHEDRON, so the dual of
the great stellated dodecahedron (i.e., the GREAT

ICOSAHEDRON) is one of the ICOSAHEDRON STELLA-

TIONS (Wenninger 1983, p. 40)

See also DODECAHEDRON, DODECAHEDRON STELLA-

TIONS, GREAT DODECAHEDRON, GREAT ICOSAHEDRON,
GREAT STELLATED TRUNCATED DODECAHEDRON, KE-

PLER-POINSOT SOLID, SMALL STELLATED DODECAHE-

DRON, STELLATION
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Weisstein, E. W. "Polyhedra." MATHEMATICA NOTEBOOK

POLYHEDRA.M.
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 39 �/0, 1983.
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 35 and 40, 1989.

Great Stellated Triacontahedron
GREAT RHOMBIC TRIACONTAHEDRON

Great Stellated Truncated Dodecahedron

The UNIFORM POLYHEDRON U66 ; also called the QUASI-

TRUNCATED GREAT STELLATED DODECAHEDRON, whose
DUAL is the GREAT TRIAKIS ICOSAHEDRON. It has
SCHLÄ FLI SYMBOL t’ f5

2 ; 3 g and WYTHOFF SYMBOL

2 3½53: Its faces are 20 f3g�12f10
3 g: Its CIRCUMRADIUS

for unit edge length is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74 �30

ffiffiffi
5

pq
:

References
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Great Triakis Icosahedron

The DUAL of the GREAT STELLATED TRUNCATED DODE-

CAHEDRON U66 and Wenninger dual W104 :/

See also DUAL POLYHEDRON, GREAT STELLATED

TRUNCATED DODECAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 77, 1983.

Great Triakis Octahedron

The DUAL of the STELLATED TRUNCATED HEXAHEDRON

U19 and Wenninger dual W92/

See also DUAL POLYHEDRON, SMALL TRIAKIS OCTAHE-

DRON, STELLATED TRUNCATED HEXAHEDRON
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Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 57, 1983.

Great Triambic Icosahedron

The DUAL of the GREAT DITRIGONAL ICOSIDODECAHE-

DRON U47 and Wenninger model /W87/ whose appear-
ance is the same as the MEDIAL TRIAMBIC

ICOSAHEDRON (the dual of the DITRIGONAL DODECA-

DODECAHEDRON), since internal vertices are hidden
from view (Wenninger 1983, p. 42). The MEDIAL

TRIAMBIC ICOSAHEDRON has hidden pentagrammic
faces, while the great triambic icosahedron has
hidden triangular faces (Wenninger 1983, pp. 45,
47, and 48�/0).

The CONVEX HULL of the GREAT DITRIGONAL ICOSIDO-

DECAHEDRON is a regular DODECAHEDRON, whose
dual is the ICOSAHEDRON, so the dual of the GREAT

DITRIGONAL ICOSIDODECAHEDRON (the great triambic



icosahedron) is one of the ICOSAHEDRON STELLATIONS

(Wenninger 1983, p. 42).

See also DUAL POLYHEDRON, GREAT DITRIGONAL

ICOSIDODECAHEDRON, ICOSAHEDRON STELLATIONS,
MEDIAL TRIAMBIC ICOSAHEDRON
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in Polyhedron Models. New York: Cambridge University
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Great Truncated Cuboctahedron

The UNIFORM POLYHEDRON U20 ; also called the quasi-
truncated cuboctahedron, whose DUAL is the GREAT

DISDYAKIS DODECAHEDRON. Its faces consist of 8f6 g�
12 f4g�6 f8

3g: It has SCHLÄ FLI SYMBOL t’ f3
4 g and

WYTHOFF SYMBOL 4
3 2 3½: Its CIRCUMRADIUS for unit

edge length is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 �6

ffiffiffi
2

pq
:

References
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Great Truncated Icosahedron

The UNIFORM POLYHEDRON U55 ; also called the TRUN-

CATED GREAT ICOSAHEDRON, whose DUAL is the GREAT

STELLAPENTAKIS DODECAHEDRON. It has SCHLÄ FLI

SYMBOL t f3; 5
2g and WYTHOFF SYMBOL 2 5

2 ½3: Its faces
are 20f6 g�12 f5

2g: Its CIRCUMRADIUS for unit edge
length is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58 �18

ffiffiffi
5

pq
:

References
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Great Truncated Icosidodecahedron

The UNIFORM POLYHEDRON U68 ; also called the GREAT

QUASITRUNCATED ICOSIDODECAHEDRON, whose DUAL

is the GREAT DISDYAKIS TRIACONTAHEDRON. It has
SCHLÄ FLI SYMBOL t?

3
5

2

n o
/ and WYTHOFF SYMBOL 235

3 j:
Its faces are 20f6 g�30f4g�12 f10

3 g: Its CIRCUMRA-

DIUS for unit edge length is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 �12

ffiffiffi
5

pq
:

References
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Greater
A quantity a is said to be greater than b if a is larger
than b , written a � b . If a is greater than or EQUAL

to b , the relationship is written a ]b : If a is MUCH

GREATER than b , this is written a �b : Statements
involving greater than and LESS than symbols are
called INEQUALITIES.

See also EQUAL, GREATER THAN/LESS THAN SYMBOL,
INEQUALITY, LESS, MUCH GREATER

Greater Than/Less Than Symbol
When applied to a system possessing a length R at
which solutions in a variable r change character
(such as the gravitational field of a sphere as r runs
from the interior to the exterior), the symbols

r��max(r; R)

rB�min(r; R)

are sometimes used.

See also EQUAL, GREATER, LESS



Greatest Common Denominator
GREATEST COMMON DIVISOR

Greatest Common Divisor

The greatest common divisor GCD(a; b) of two
positive integers a and b , sometimes written (a, b ),
is the largest DIVISOR common to a and b . For
example, GCD(3; 5)�1; GCD(12; 60)�12; and
GCD(12; 90)�6: The greatest common divisor
GCD(a; b; c; . . .) can also be defined for three or
more positive integers as the largest divisor shared by
all of them. The plot above shows GCD(1; b) with
rational b�m=n:/
The greatest common divisor of a and b is imple-
mented in Mathematica as GCD[a , b , ...].

If d is the greatest common divisor of a and b , then d
is the largest possible integer satisfying

a�dx (1)

b�dy (2)

with x and y positive integers. Therefore, there exists
an INTEGER RELATION between a and b OF THE FORM

ay�bx�0: (3)

The EUCLIDEAN ALGORITHM can be used to find the
greatest common divisor of two integers.

The notion can also be generalized to more general
RINGS than simply the integers Z: However, even for
EUCLIDEAN RINGS, the notion of GCD of two elements
of a ring is not the same as the GCD of two ideals of a
ring. This is sometimes a source of confusion when
studying rings other than Z; such as polynomial rings
in several variables.

To compute the GCD, write the PRIME FACTORIZA-

TIONS of a and b ,

a�
Y

i

pai

i (4)

b�
Y

i

pbi

i ; (5)

where the pi/s are all PRIME FACTORS of a and b , and if
pi does not occur in one factorization, then the
corresponding exponent is taken as 0. Then the
greatest common divisor GCD(a; b) is given by

GCD(a; b)�
Y

i

pmin(ai ; bi)
i ; (6)

where min denotes the MINIMUM. For example, con-

sider GCD(12; 30):

12�22 � 31 � 50 (7)

30�21 � 31 � 51; (8)

so

GCD(12; 30)�21 � 31 � 50�6: (9)

The GCD is DISTRIBUTIVE

GCD(ma; mb)�m GCD(a; b) (10)

GCD(ma; mb; mc)�m GCD(a; b; c); (11)

and ASSOCIATIVE

GCD(a; b; c)�GCD(GCD(a; b); c)

�GCD(a; GCD(b; c)) (12)

GCD(ab; cd)�GCD(a; c)GCD(b; d)

�GCD
a

GCD(a; c)
;

d

GCD(b; d)

 !

�GCD
c

GCD(a; c)
;

b

GCD(b; d)

 !
: (13)

If a�a1GCD(a; b) and b�b1GCD(a; b); then

GCD(a; b)�GCD(a1 GCD(a; b); b1 GCD(a; b))

�GCD(a; b) GCD(a1; b1); (14)

so GCD(a1; b1)�1 and a1 and b1 are said to be
RELATIVELY PRIME. The GCD is also IDEMPOTENT

GCD(a; a)�a; (15)

COMMUTATIVE

GCD(a; b)�GCD(b; a); (16)

and satisfies the ABSORPTION LAW

LCM(a; GCD(a; b))�a: (17)

The probability that two INTEGERS picked at random
are RELATIVELY PRIME is [z(2)]�1�6=p2; where z(z) is
the RIEMANN ZETA FUNCTION. Polezzi (1997) observed
that GCD(m; n)�k; where k is the number of
LATTICE POINTS in the PLANE on the straight LINE

connecting the VECTORS (0, 0) and (m, n ) (excluding
(m, n ) itself). This observation is intimately con-
nected with the probability of obtaining RELATIVELY

PRIME integers, and also with the geometric inter-
pretation of a REDUCED FRACTION y=x as a string
through a LATTICE of points with ends at (1,0) and (x,
y ). The pegs it presses against (xi; yi) give alternate
CONVERGENTS yi=xi of the CONTINUED FRACTION for
y=x; while the other CONVERGENTS are obtained from
the pegs it presses against with the initial end at (0,
1).



Knuth showed that

gcd(2p �1; 2q �1) �2gcd(p ; q) �1: (18)

The extended greatest common divisor of two INTE-

GERS m and n can be defined as the greatest common
divisor GCD(m; n) of m and n which also satisfies the
constraint GCD(m; n) �rm �sn for r and s given
INTEGERS. It is used in solving LINEAR DIOPHANTINE

EQUATIONS.

See also BÉ ZOUT NUMBERS, BÉ ZOUT’S THEOREM,
DIRICHLET FUNCTION, EUCLID’S ORCHARD, EUCLI-

DEAN ALGORITHM, GAUSS’S LEMMA, LEAST COMMON

MULTIPLE, LEAST PRIME FACTOR, ORCHARD-PLANTING

PROBLEM, STAR OF DAVID THEOREM
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Greatest Common Divisor Theorem
Given m and n , it is possible to choose c and d such
that cm �dn is a common factor of m and n .

Greatest Common Factor
GREATEST COMMON DIVISOR

Greatest Dividing Exponent
The greatest dividing exponent gde(n; b) of a base b
with respect to a number n is the largest integer
value of k such that bk n;j where bk 5n : It is
implemented as the Mathematica command Inte-
gerExponent[n , b ].

See also DIVIDE, EVEN PART, ODD PART

Greatest Integer Function
FLOOR FUNCTION

Greatest Lower Bound
INFIMUM

Greatest Prime Factor

For an INTEGER n ]2; let gpf (x) denote the greatest
prime factor of n , i.e., the number pk in the factoriza-
tion

n �pa1

1 . . . pak

k ;

with pi Bpj for i B j . For n �2, 3, ..., the first few are
2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, ... (Sloane’s
A006530). The greatest multiple prime factors for
SQUAREFUL integers are 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2,
3, ... (Sloane’s A046028).
The probability that the GREATEST PRIME FACTOR of a
RANDOM integer n is greater than

ffiffiffi
n

p
is ln 2

(Schroeppel 1972).

See also DICKMAN FUNCTION, DISTINCT PRIME FAC-

TORS, FACTOR, LEAST COMMON MULTIPLE, LEAST

PRIME FACTOR, MANGOLDT FUNCTION, PRIME FAC-

TORS, TWIN PEAKS
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Grebe Point
SYMMEDIAN POINT

Greedy Algorithm
An algorithm used to recursively construct a SET of
objects from the smallest possible constituent parts.

Given a SET of k INTEGERS (/a1; a2; ..., ak) with a1B

a2B. . .Bak; a greedy algorithm can be used to find a



VECTOR of coefficients (/c1 ; c2 ; ..., ck) such that

Xk

i �1

ciai �c � a �n ; (1)

where c � a is the DOT PRODUCT, for some given
INTEGER n . This can be accomplished by letting ci �
0 for i �1, ..., k �1 and setting

ck �
n

ak

$ %
; (2)

where xb c is the floor function. Now define the
difference between the representation and n as

D�n �c � a : (3)

If D�0 at any step, a representation has been found.
Otherwise, decrement the NONZERO ai term with least
i , set all aj �0 for j B i , and build up the remaining
terms from

cj �
Dj

ak

" #
(4)

for j �i �1 ; ..., 1 until D�0 or all possibilities have
been exhausted.

For example, MCNUGGET NUMBERS are numbers
which are representable using only (a1 ; a2 ; a3) �
(6; 9; 20): Taking n �62 and applying the algorithm
iteratively gives the sequence (0, 0, 3), (0, 2, 2), (2, 1,
2), (3, 0, 2), (1, 4, 1), at which point D�0: 62 is
therefore a MCNUGGET NUMBER with

62 �(1 � 6) �(4 � 9) �(1 � 20): (5)

If any INTEGER n can be represented with ci �0 or 1
using a sequence (/a1 ; a2 ; ...), then this sequence is
called a COMPLETE SEQUENCE.

A greedy algorithm can also be used to break down
arbitrary fractions into UNIT FRACTIONS in a finite
number of steps. For a FRACTION a =b; find the least
INTEGER x1 such that 1=x1 5a=b ; i.e.,

x1 �
bd e
a

; (6)

where xd e is the CEILING FUNCTION. Then find the
least INTEGER x2 such that 1=x2 5a=b �1=x1 : Iterate
until there is no remainder. The ALGORITHM gives two
or fewer terms for 1=n and 2 =n; three or fewer terms
for 3 =n; and four or fewer for 4 =n:/

See also COMPLETE SEQUENCE, INTEGER RELATION,
LEVINE-O’SULLIVAN GREEDY ALGORITHM, MCNUGGET

NUMBER, REVERSE GREEDY ALGORITHM, SQUARE

NUMBER, SYLVESTER’S SEQUENCE, UNIT FRACTION

Greek Cross

An irregular DODECAHEDRON CROSS in the shape of a
PLUS SIGN.

See also CROSS, DISSECTION, DODECAHEDRON, LATIN

CROSS, PLUS SIGN, SAINT ANDREW’S CROSS
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Greek Problems
GEOMETRIC PROBLEMS OF ANTIQUITY

Green Space
A G -SPACE provides local notions of harmonic, hyper-
harmonic, and superharmonic functions. When there
exists a nonconstant superharmonic function greater
than 0, it is a called a Green space. Examples are Rn

(for n ]3) and any bounded domain of Rn :/

See also G -SPACE

Green’s Function
A Green’s function is an integrating kernal which can
be used to solve an inhomogeneous differential
equation with boundary conditions. It serves roughly
an analogous role in partial differential equations as
does FOURIER ANALYSIS in the solution of ordinary
differential equations.

As a special case, consider the 1-D DIFFERENTIAL

OPERATOR

L̃�D̃n�an�1(t)D̃n�1�. . .�a1(t)D̃�a0(t); (1)

with ai(t) CONTINUOUS for i�0, 1, ..., n�1 on the
interval I , and assume we wish to find the solution
y(t) to the equation

L̃y(t)�h(t); (2)

where h(t) is a given CONTINUOUS FUNCTION on I . To
solve equation (2), we look for a function g : Cn(I)�
C(I) such that L̃(g(h))�h; where

y(t)�g(h(t)): (3)

This is a CONVOLUTION equation OF THE FORM

y�g+h; (4)

so the solution is

y(t)�g
t

t0

g(t�x)h(x) dx; (5)

and the function g(t) is called the Green’s function for



L̃ on I . Now, note that if we take h(t) � d(t); then

y(t) �g
t

t0

g(t �x)d(x) dx �g(t) ; (6)

so the Green’s function g(t) can be defined by

L̃g(t) � d(t): (7)

However, the Green’s function is determined un-
iquely only if some initial or boundary conditions
are given.

For an arbitrary linear differential operator L̃ in 3-D,
the Green’s function G(r ; r ?) is defined by analogy
with the 1-D case by

L̃G(r; r?) � d(r �r?) : (8)

The solution to L̃f �f is then

f(r) �g G(r; r?)f (r?)d3r ?: (9)

Explicit expressions for G(r; r?) can often be found in
terms of a basis of given eigenfunctions fn(r1) by
expanding the Green’s function

G(r1 ; r2 ) �
X�
n�0

an(r2)fn(r1) (10)

and DELTA FUNCTION,

d3(r1 �r2) �
X�
n�0

bn fn(r1): (11)

Multiplying both sides by fm(r2) and integrating over
r1 space,

g  fm(r2) d3(r1 �r2)d3r1

�
X�
n�0

bng  fm(r2)fn(r1)d3r1 (12)

fm(r2) �
X�
n �0

bn dnm �bm ; (13)

so

d3(r1 �r2) �
X�
n�0

fn(r1) fn(r2) : (14)

By plugging in the differential operator, solving for
the an/s, and substituting into G , the original non-
homogeneous equation then can be solved.

The coefficient S of ln(1 =r) in all normalized funda-
mental Green’s function solutions

f(x; y; x0 ; y0)

�S(x; y; x0 ; y0) ln(1 =r) �T(x; y; x0 ; y0) (15)

with

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x �x0)2 �(y �y0)2

q
(16)

of the ELLIPTIC PARTIAL DIFFERENTIAL EQUATION

Ku �uxx �vyy �A(x; y)ux �B(x; y)uy �C(x; y)u

�0 (17)

with analytic coefficients is an analytic function of
four variables and is equal to the RIEMANN FUNCTION

S �R�( j; h; j0 ; h0) of the conjugate equation

K �v �v( j; h) �(av)(j) �(bv)( h) �cv �0 (18)

which can be produced from Ku�0 by the change of
variables

j�x�iy (19)

h�x�iy (20)

j0�x0�iy0 (21)

h0�x0�iy0 (22)

4a(j; h)�A(x; y)�iB(x; y) (23)

4b(j; h)�A(x; y)�iB(x; y) (24)

4c(j; h)�C(x; y) (25)

(Garabedian 1964, Marichev 1990).

See also GREEN’S FUNCTION–HELMHOLTZ DIFFEREN-

TIAL EQUATION, GREEN’S FUNCTION–POISSON’S EQUA-

TION, RIEMANN METHOD
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Green’s Function*/Helmholtz Differential
Equation
The inhomogeneous HELMHOLTZ DIFFERENTIAL EQUA-

TION is

92c(r)�k2c(r)�r(r); (1)

where the Helmholtz operator is defined as L̃�92�
k2: The Green’s function is then defined by

(92�k2)G(r1; r2)�d3(r1�r2): (2)

Define the basis functions fn as the solutions to the
homogeneous HELMHOLTZ DIFFERENTIAL EQUATION

92fn(r)�k2
nfn(r)�0: (3)

The Green’s function can then be expanded in terms



of the fn/s,

G(r1; r2)�
X�
n�0

an(r2)fn(r1); (4)

and the DELTA FUNCTION as

d3(r1�r2)�
X�
n�0

fn(r1)fn(r2): (5)

Plugging (4) and (5) into (2) gives

92
X�
n�0

an(r2)fn(r1)

" #
�k2

X�
n�0

an(r2)fn(r1)

�
X�
n�0

fn(r1)fn(r2): (6)

Using (3) gives

�
X�
n�0

an(r2)k2
nfn(r1)�k2

X�
n�0

an(r2)fn(r1)

�
X�
n�0

fn(r1)fn(r2) (7)

X�
n�0

an(r2)fn(r1)(k2�k2
n)�

X�
n�0

fn(r1)fn(r2): (8)

This equation must hold true for each n , so

an(r2)fn(r1)(k2�k2
n)�fn(r1)fn(r2) (9)

an(r2)�
fn(r2)

k2 � k2
n

; (10)

and (4) can be written

G(r1; r2)�
X�
n�0

fn(r1)fn(r2)

k2 � k2
n

: (11)

The general solution to (1) is therefore

c(r1)�g G(r1; r2)r(r2)d3r2

�
X�
n�0
g

fn(r1)fn(r2)r(r2)

k2 � k2
n

d3r2: (12)
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Green’s Function*/Poisson’s Equation
POISSON’S EQUATION equation is

92f�4pr; (1)

where f is often called a potential function and r a

density function, so the differential operator in this
case is L̃�92: As usual, we are looking for a Green’s
function G(r1; r2) such that

92G(r1; r2)�d3(r1; r2): (2)

But from LAPLACIAN,

92 1

r � r?j j

 !
��4pd3(r�r?); (3)

so

G(r; r?)��
1

4p r � r?j j
; (4)

and the solution is

f(r)�g G(r; r?)[4pr(r?)]d3r?��g
r(r?)d3r?

r � r?j j
: (5)

Expanding G(r1; r2) in the SPHERICAL HARMONICS Ym
l

gives

G(r1; r2 )

�
X�
l�0

Xl

m��l

1

2l � 1

rl
B

rl�1
>

Ym
l (u1; f1)Ỹm

t (u2; f2); (6)

where rB and r> are GREATER THAN/LESS THAN

SYMBOLS. this expression simplifies to

g(r1; r2 )�
1

4p

X�
l�0

rl
B

rl�1
>

pl(cos g); (7)

where pl are LEGENDRE POLYNOMIALS, and cos g�

r1 � r2: Equations (6) and (7) give the addition
theorem for LEGENDRE POLYNOMIALS.

In CYLINDRICAL COORDINATES, the Green’s function is
much more complicated,

G(r1; r2)�
1

2p2

X�
m���

g
�

0

Im(krB)Km

�(kr >)eim(f1�f2)cos[k(z1�z2)] dk: (8)

where Im(x) and Km(x) are MODIFIED BESSEL FUNC-

TIONS OF THE FIRST and SECOND KINDS (Arfken 1985).
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Green’s Identities
Green’s identities are a set of three vector derivative/
integral identities which can be derived starting with
the vector derivative identities

9 � (c9f)�c92f�(9c)�(9f) (1)

and



9 � ( f 9c) � f 92 c �( 9f) �( 9c) ; (2)

where 9� is the DIVERGENCE, 9 is the GRADIENT, 92 is
the LAPLACIAN, and a � b is the DOT PRODUCT. From
the DIVERGENCE THEOREM,

gV

( 9�F) dV �gS

F � da: (3)

Plugging (2) into (3),

gS

f( 9c) � da �gV

[f 92 c �( 9f) �(9 c)] dV : (4)

This is Green’s first identity.

Subtracting (2) from (1),

9 � ( f9 c � c9 f) � f 92 c � c92 f: (5)

Therefore,

gV

( f92 c � c92 f) dV �gS

(f 9c � c9 f) � da: (6)

This is Green’s second identity.

Let u have continuous first PARTIAL DERIVATIVES and
be HARMONIC inside the region of integration. Then
Green’s third identity is

u(x; y) �
1

2p GC

ln
1

r

 !
@u

@n 
�u

@

@n
ln

1

r

 !" #
ds (7)

(Kaplan 1991, p. 361).
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Green’s Theorem
Green’s theorem is a vector identity which is equiva-
lent to the CURL THEOREM in the PLANE. Over a region
D in the plane with boundary @D ;

g
@D

f (x ; y) dx �g(x; y) dy �ggD

@g

@x 
�

@f

@y

 !
dx dy

g
@D

F � ds �ggD

( 9�F) � k dA:

If the region D is on the left when traveling around
@D ; then AREA of D can be computed using

A �1
2 g

@D

x dy�y dx:

See also CURL THEOREM, DIVERGENCE THEOREM
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Greene’s Method
A method for predicting the onset of widespread
CHAOS. It is based on the hypothesis that the dissolu-
tion of an invariant torus can be associated with the
sudden change from stability to instability of nearly
closed orbits (Tabor 1989, p. 163).

See also OVERLAPPING RESONANCE METHOD
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Greenwood-Gleason Graph

Kalbfleisch and Stanton (1968) showed that in a 3-
edge coloring of the COMPLETE GRAPH K16 without
monochromatic triangles, the subgraph induced by
the edges of any one color is isomorphic to the graph
illustrated above, known as the Greenwood-Gleason
graph.

References
Bondy, J. A. and Murty, U. S. R. Graph Theory with

Applications. New York: North Holland, p. 242, 1976.
Kalbfleisch, J. and Stanton, R. "On the Maximal Triangle-

Free Edge-Chromatic Graph in Three Colors." J. Combin.
Th. 5, 9�/0, 1968.

Gregory Number
A number

tx�tan�1 1

x

 !
�cot�1 x;

where x is an INTEGER or RATIONAL NUMBER, tan�1 x
is the INVERSE TANGENT, and cot�1 x is the INVERSE

COTANGENT. Gregory numbers arise in the determi-
nation of MACHIN-LIKE FORMULAS. Every Gregory
number tx can be expressed uniquely as a sum of tn/s
where the ns are STøRMER NUMBERS.
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Gregory’s Formula

There are at least two formulas associated with
Gregory. The first is a series PI FORMULA found by
Gregory and Leibniz and obtained by plugging x �1
into the LEIBNIZ SERIES,

p

4 
�1 �

1

3 
�

1

5 
�� � �

(Wells 1986, p. 50). The formula, also called the
LEIBNIZ SERIES, converges very slowly, but its con-
vergence can be accelerated using certain transfor-
mations, in particular

p �
X�
k �1

3k � 1

4k
z(k �1);

where z(z) is the RIEMANN ZETA FUNCTION (Vardi
1991).
The second is the formula

g
y

0

p(u)du �
X
k]0

(eyt � 1)k p(x)j i
k! (et �1)kp(x) ;

*

discovered by Gregory in 1670 and reported to be the
earliest formula in NUMERICAL INTEGRATION (Jordan
1950, Roman 1984).

See also LEIBNIZ SERIES, MACHIN’S FORMULA, MA-

CHIN-LIKE FORMULAS, NUMERICAL INTEGRATION, PI

FORMULAS
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Gregory-Newton Formula
NEWTON’S FORWARD DIFFERENCE FORMULA

Grelling’s Paradox
A semantic PARADOX, also called the HETEROLOGICAL

PARADOX, which arises by defining "heterological" to

mean "a word which does not describe itself." The
word "heterological" is therefore heterological IFF it is
not.

See also RUSSELL’S PARADOX
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Grenz-Formel
An equation derived by Kronecker:

X
?

�

x; y; z���

(x2 �y2 �dz2) �s

�4z(s)h(s) �
2p

s � 1

z(2s � 2)

ds�1
�

2ps

G(s)
d(1�s)=2

�
X�
n �1

n(s �1)=2
X
u2 ½n

r
n

u2

 !
u2a�2 g

�

0

e p
ffiffiffiffi
nd

p
(y�y�1)ys�2 dy;

where r(n) is the SUM OF SQUARES FUNCTION, z(z) is
the RIEMANN ZETA FUNCTION, h(z) is the DIRICHLET

ETA FUNCTION, G(z) is the GAMMA FUNCTION, and the
primed sum omits terms with zero DENOMINATOR

(Selberg and Chowla 1967).

See also DIRICHLET ETA FUNCTION, EPSTEIN ZETA

FUNCTION, SUM OF SQUARES FUNCTION
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Grid
This entry contributed by DANIEL SCOTT UZNANSKI

A grid usually refers to two or more infinite sets of
evenly-spaced parallel lines at particular angles to
each other in a plane, or the intersections of such
lines. The two most common types of grid are
orthogonal grids, with two sets of lines perpendicular
to each other, and isometric grids, with three sets of
lines at 60-degree angles to each other. It should be



noted that in most grids with three or more sets of
lines, every intersection includes one element of each
set.

There are other types of planar grids, like hexagonal
grids, which are formed by tessellating regular
hexagons in the plane. These are often found in
strategy and role-playing games because of the lack
of single points of contact characteristic of isometric
and orthogonal grids. The collection of cells created by
a grid is often called a "BOARD" when these cells are
used as resting places for pieces in a game.

Grids can be generalized into n -D space by using the
centers of packed n -spheres or n -cubes as the points.

See also BOARD, FINITE ELEMENT METHOD, LATTICE

POINT
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Grid Graph

An m �n grid graph Gm;n is the product of PATH

GRAPHS on m and n vertices. A grid graph Gn;1 is
called a PATH GRAPH. The grid graph G2 ;2 is the CYCLE

GRAPH C4 :/
A grid graph is HAMILTONIAN if either the number of
rows or columns is even (Skiena 1990, p. 148). Grid
graphs are also bipartite (Skiena 1990, p. 148).

See also PATH GRAPH
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Griffiths Points
"The" Griffiths point Gr is the fixed point in GRIF-

FITHS’ THEOREM. Given four points on a CIRCLE and a
line through the center of the CIRCLE, the four
corresponding Griffiths points are COLLINEAR (Tabov
1995).

The points

Gr �I �4Ge

Gr ?�I �4Ge;

are known as the first and second Griffiths points,
where I is the INCENTER and Ge is the GERGONNE

POINT (Oldknow 1996). The Griffiths points lie on the
SODDY LINE.

See also GERGONNE POINT, GRIFFITHS’ THEOREM,
INCENTER, OLDKNOW POINTS, RIGBY POINTS, SODDY

LINE
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Griffiths’ Theorem

When a point P moves along a line through the
CIRCUMCENTER of a given TRIANGLE D; the PEDAL

CIRCLE of P with respect to D passes through a fixed
point (the GRIFFITHS POINT) on the NINE-POINT CIRCLE

of D:/
See also CIRCUMCENTER, GRIFFITHS POINTS, NINE-

POINT CIRCLE, PEDAL CIRCLE

Grimm’s Conjecture
Grimm conjectured that if n�1; n�2; ..., n�k are all
COMPOSITE NUMBERS, then there are distinct PRIMES

pij
such that pij

½(n�j) for 15j5k:/
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Grinberg Formula
A formula satisfied by all HAMILTONIAN CIRCUITS

with n nodes. Let fj be the number of regions inside
the circuit with j sides, and let gj be the number of



regions outside the circuit with j sides. If there are d
interior diagonals, then there must be d �1 regions

[# regions in interior] �d �1 �f2 �f3 �. . .�fn : (1)

Any region with j sides is bounded by j EDGES, so such
regions contribute jfj to the total. However, this
counts each diagonal twice (and each EDGE only
once). Therefore,

2f2 �3f3 �. . . nfn �2d �n: (2)

Take (2) minus 2�/(1),

f3 �2f4 �3f5 �. . .�(n �2)fn �n �2 : (3)

Similarly,

g3 �2g4 �. . .�(n �2)gn �n �2; (4)

so

(f3 �g3) �2(f4 �g4) �3(f5 �g5) �. . .�(n �2)(fn �gn)

�0: (5)

Gröbner Basis
A Gröbner basis for a system of POLYNOMIALS is an
equivalence system that possesses useful properties,
for example, that another polynomial f is a combina-
tion of those in the system IFF the remainder of f with
respect to the system is 0. (Here, the division
algorithm requires an ORDER of a certain type on
the MONOMIALS.) Furthermore, the set of polynomials
in a Gröbner basis have the same collection of roots as
the original polynomials. For linear functions in any
number of variables, a Gröbner basis is equivalent to
GAUSSIAN ELIMINATION.

Gröbner bases are pervasive in the construction of
symbolic algebra algorithms, and Gröbner bases with
respect to LEXICOGRAPHIC ORDER are very useful for
solving equations and for elimination of variables.
The algorithm for computing Gröbner bases is known
as BUCHBERGER’S ALGORITHM. The determination of a
Gröbner basis is very roughly analogous to computing
an ORTHONORMAL BASIS from a set of BASIS VECTORS

and can be described roughly as a combination of
GAUSSIAN ELIMINATION (for linear systems) and the
EUCLIDEAN ALGORITHM (for UNIVARIATE POLYNOMIALS

over a FIELD).

The time and memory required to calculate a Gröbner
basis depend very much on the variable ordering,
MONOMIAL ordering, and on which variables are
regarded as constants. Gröbner bases are used
implicitly in many routines in Mathematica , and
can be called explicitly with the command Groeb-
nerBasis[{poly1 , poly2 , ...}, {x1 , x2 , ...}].

See also BUCHBERGER’S ALGORITHM, COMMUTATIVE

ALGEBRA, EUCLIDEAN ALGORITHM, GAUSSIAN ELIM-

INATION, MONOMIAL, ORTHONORMAL BASIS
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Groemer Packing
A honeycomb-like packing that forms HEXAGONS.

See also GROEMER THEOREM
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Groemer Theorem
Given n CIRCLES and a PERIMETER p , the total AREA of
the CONVEX HULL is

AConvex Hull �2
ffiffiffi
3

p
(n �1) �p(1 �1

2

ffiffiffi
3

p
) � p(

ffiffiffi
3

p
�1)

Furthermore, the actual AREA equals this value IFF

the packing is a GROEMER PACKING. The theorem was
proved in 1960 by Helmut Groemer.

See also CONVEX HULL



Gronwall’s Theorem
Let s(n) be the DIVISOR FUNCTION. Then

lim
n0�

s(n)

n ln ln n 
�e g ;

where g is the EULER-MASCHERONI CONSTANT. Rama-
nujan independently discovered a less precise version
of this theorem (Berndt 1994). Robin (1984) showed
that the validity of the inequality

s(n) Begn ln ln n

for n ]5041 is equivalent to the RIEMANN HYPOTH-

ESIS.
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Gross
A DOZEN DOZEN, or the SQUARE NUMBER 144.

See also 12, DOZEN, DUODECIMAL

Grössencharakter
In the original formulation, a quantity associated
with ideal class groups. According to Chevalley’s
formulation, a Grössencharakter is a MULTIPLICATIVE

CHARACTER of the group of ADÉ LES that is trivial on
the diagonally embedded k �; where k is a NUMBER

FIELD.

See also ADÉ LE, MULTIPLICATIVE CHARACTER
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Grossman’s Constant
Define the sequence a0 �1 ; a1 �x; and

an�2 �
an

1 � an �1

for n ]0: Janssen and Tjaden (1987) showed that this

sequence converges for exactly one value of x , x �
0:73733830336929 . . . ; confirming Grossman’s conjec-
ture. However, no analytic form is known for this
constant, either as the root of a function or as a
combination of other constants.

See also FOIAS CONSTANT
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Grothendieck’s Constant
Let A be an n �n REAL SQUARE MATRIX and let xi and
yj be real numbers with xij j; yij jB0: Then Grothen-
dieck showed that there exists a constant K indepen-
dent of both A and n satisfying

j X
1 5i; j5n

aij �xi ; yj �j5K (1)

in which the vectors xi and yj have a norm B1 in any
HILBERT SPACE. The Grothendieck constant is the
smallest REAL NUMBER for which this inequality has
been proven. Krivine (1977) showed that

1:676 . . . 5KG 51:782 . . . ; (2)

and has postulated that

KG �
p

2ln(1 �
ffiffiffi
2

p
) 
�1:7822139 . . . ; (3)

which is related to KHINTCHINE’S CONSTANT.
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Grothendieck’s Theorem
Let E and F be paired spaces with S a family of
absolutely convex bounded sets of F such that the
sets of S generate F and, if B1 ;B2 � S; then there
exists a B3 � S such that B3 ‡B1 and B3 ‡B2 : Then ES

is complete IFF algebraic linear functional f (y) of F
that is weakly continuous on every B �S is expressed
as f (y)��x; y� for some x �E: When ES is not
complete, the space of all linear functionals satisfying
this condition gives the completion ÊS of ES:/

See also MACKEY’S THEOREM
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Ground Set
A PARTIALLY ORDERED SET is defined as an ordered
pair P �(X ;5) : Here, X is called the GROUND SET of P
and 5 is the PARTIAL ORDER of P .

See also PARTIAL ORDER, PARTIALLY ORDERED SET

Group
A group G is a finite or infinite set of elements
together with a BINARY OPERATION which together
satisfy the four fundamental properties of closure,
associativity, the identity property, and the inverse
property. The operation with respect to which a group
is defined is often called the "group operation," and a
set is said to be a group "under" this operation.
Elements A , B , C , ... with binary operation between
A and B denoted AB form a group if

1. Closure: If A and B are two elements in G , then
the product AB is also in G .
2. Associativity: The defined multiplication is
associative, i.e., for all /A; B; C �G/,/(AB)C�A(BC)/.
3. Identity: There is an IDENTITY ELEMENT I (a.k.a.
1; E , or e ) such that IA�AI�A for every element
A �G:/
4. Inverse: There must be an inverse or reciprocal
of each element. Therefore, the set must contain
an element B�A�1 such that AA�1�A�1A�I for
each element of G .

A group is therefore a MONOID for which every
element is invertible, and a group must contain at
least one element.

The study of groups is known as GROUP THEORY. If
there are a finite number of elements, the group is
called a FINITE GROUP and the number of elements is
called the ORDER of the group. A subset of a group
that is CLOSED under the group operation and the
inverse operation is called a SUBGROUP. SUBGROUPS

are also groups, and many commonly encountered
groups are in fact special subgroups of some more
general larger group.

A basic example of a FINITE GROUP is the SYMMETRIC

GROUP an; which is the group of PERMUTATIONS (or
"under permutation") of n objects. The simplest
infinite group is the set of INTEGERS under usual
ADDITION. For continuous groups, one can consider
the real numbers or the set of n�n invertible
MATRICES. These last two are examples of LIE

GROUPS.

One very common type of group is the CYCLIC GROUPS.
This group is isomorphic to the group of integers
(modulo n ), is denoted Zn; Zn; or Z=nZ; and is defined
for every integer n �1. It is CLOSED under addition,
associative, and has unique inverses. The numbers
from 0 to n�1 represent its elements, with the
IDENTITY ELEMENT represented by 0; and the inverse
of i is represented by n�i:/

A map between two groups which preserves the
identity and the group operation is called a HOMO-

MORPHISM. If a homomorphism has an inverse which
is also a homomorphism, then it is called an ISO-

MORPHISM and the two groups are called isomorphic.
Two groups which are isomorphic to each other are
considered to be "the same" when viewed as abstract
groups. For example, the group of rotations of a
square, illustrated below, is the CYCLIC GROUP Z4:/

In general, a GROUP ACTION is when a group acts on a
set, permuting its elements, so that the map from the
group to the PERMUTATION GROUP of the set is a
homomorphism. For example, the rotations of a
square are a SUBGROUP of the PERMUTATIONS of its
corners. One important GROUP ACTION for any group
G is its action on itself by CONJUGATION. These are
just some of the possible GROUP AUTOMORPHISMS.
Another important kind of GROUP ACTION is a REPRE-

SENTATION of a group, where the group acts on a
VECTOR SPACE by INVERTIBLE LINEAR MAPS. When the
FIELD of the VECTOR SPACE is the complex numbers,
sometimes a representation is called a CG MODULE.

GROUP ACTIONS, and in particular representations,
are very important in applications, not only to group
theory, but also to physics and chemistry. Since a
group can be thought of as an abstract mathematical
object, the same group may arise in different con-
texts. It is therefore useful to think of a representa-
tion of the group as one particular incarnation of the
group, which may also have other representations.
An IRREDUCIBLE REPRESENTATION of a group is a
representation for which there exists no UNITARY

TRANSFORMATION which will transform the represen-



tation MATRIX into block diagonal form. The irreduci-
ble representations have a number of remarkable
properties, as formalized in the GROUP ORTHOGONAL-

ITY THEOREM.

See also GROUP THEORY, SEMIGROUP

Group Action
A GROUP G is said to act on a space X when there is a
map f : G �X 0 X such that the following conditions
hold for all elements x � X :

1. f(e ; x) �x where e is the identity element of G .
2. f(g ; f(h; x)) � f(gh ; x) for all g ; h � G:/

In this case, G is called a TRANSFORMATION GROUP, X
is a called a G -set, and f is called the group action.

(5 7 9 3 4 6 8 2 0 1)

In a group action, a GROUP permutes the elements of
X . The identity does nothing, while a composition of
actions corresponds to the action of the composition.
For example, as illustrated above, the SYMMETRIC

GROUP S10 acts on the digits 0 to 9 by permutations.

For a given x , the set fgxg; where the group action
moves x , is called the ORBIT of x . The SUBGROUP

which fixes x is the ISOTROPY GROUP of x .

For example, the group Z2 �f[0] ; [1]g acts on the real
numbers by multiplication by (�1)n : The identity
leaves everything fixed, while [1] sends x to (�x):
Note that [1] � [1] �[0]; which corresponds to �(�x) �
x: For x "0; the orbit of x is fx; �xg; and the isotropy
subgroup is trivial, f[0]g: The only FIXED POINT of this
action is x � 0.

In a REPRESENTATION, a group acts by invertible
LINEAR TRANSFORMATIONS of a VECTOR SPACE V . In
fact, a representation is a GROUP HOMOMORPHISM

from G to GL(V) ; the GENERAL LINEAR GROUP of V .
Some groups are described in a representation, such
as the SPECIAL LINEAR GROUP, although they may
have different representations.

Historically, the first group action studied was the
action of the GALOIS GROUP on the roots of a POLY-

NOMIAL. However, there are numerous examples and
applications of group actions in many branches of
mathematics, including ALGEBRA, TOPOLOGY, GEOME-

TRY, NUMBER THEORY, and ANALYSIS, as well as the
sciences, including chemistry and physics.

See also BLOCK (GROUP ACTION), EFFECTIVE ACTION,
FREE ACTION, GALOIS GROUP, GROUP, ISOTROPY

GROUP, MATRIX GROUP, ORBIT (GROUP), PRIMITIVE

(GROUP ACTION), QUOTIENT SPACE (LIE GROUP),
REPRESENTATION, TOPOLOGICAL GROUP, TRANSITIVE
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Group Convolution
The convolution of two COMPLEX-valued functions on
a GROUP G is defined as

(a+b)(g)�
X
k �G

a(k)b(k�1g)

where the SUPPORT (set which is not zero) of each
function is finite.
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Group Direct Product

Given two GROUPS G and H , there are several ways to
form a new group. The simplest is the direct product,
denoted G�H: As a set, the group direct product is
the CARTESIAN PRODUCT of ordered pairs (g, h ), and
the group operation is componentwise, so

(g1; h1)�(g2; h2)�(g1g2; h1h2):

For example, R�R is isomorphic to R2 under VECTOR

ADDITION. In a similar fashion, one can take the direct
product of any number of groups by taking the
Cartesian product and operating componentwise.
Note that G is ISOMORPHIC to the SUBGROUP of
elements g; eH where eH is the IDENTITY ELEMENT in
H . Similarly, H can be realized as a SUBGROUP. The
intersection of these two subgroups is the identity
(eG; eH); and the two subgroups are NORMAL.

Like the RING DIRECT PRODUCT, the group direct
product has the UNIVERSAL PROPERTY that if any
group X has a HOMOMORPHISM to G and a homo-
morphism to H , then these homomorphisms factor
through G�H in a unique way.

If one has REPRESENTATIONS RG of G and RH of H ,
then there is a representation RGRH sometimes
called the EXTERNAL TENSOR PRODUCT, given by the
TENSOR PRODUCT : In this case, the group CHAR-

ACTER satisfies



x(g h) � xRG(g) xRH(h) :

See also CARTESIAN PRODUCT, EXTERNAL TENSOR

PRODUCT, HOMOMORPHISM, REPRESENTATION, SUB-

GROUP, UNIVERSAL PROPERTY
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ed. Boston, MA: Birkhäuser, pp. 251 �/52, 1994.

Group Homomorphism
A group homomorphism is a map f : G 0 H between
two groups such that

1. The group operation is preserved:
f (g1g2) �f (g1)f (g2)/
2. The identity is mapped to the identity:
f (eG) �eH ;/

where the product on the left-hand side is in G and on
the right-hand side in H . Note that a homomorphism
must preserve the inverse map because f (g)f (g �1) �
f (gg �1) �f (eG) �eH ; so f (g) �1 �f (g �1) :/

In particular, the image of G is a SUBGROUP of H and
the kernel, i.e., f �1(eH) is a SUBGROUP of G . The
kernel is actually a NORMAL SUBGROUP, as is the
PREIMAGE of any NORMAL SUBGROUP of H . Hence, any
homomorphism from a SIMPLE GROUP must be IN-

JECTIVE.

See also HOMOMORPHISM, GROUP, NORMAL SUB-

GROUP, REPRESENTATION

Group Orthogonality Theorem
Let G be a representation for a GROUP of ORDER h ,
then

X
R

Gi(R)mn Gj(R)m?n?��
hffiffiffiffiffiffi
lilj

q dij dmm?  dnn?:

The proof is nontrivial and may be found in Eyring et
al. (1944).

See also CHARACTER (GROUP), GROUP, IRREDUCIBLE

REPRESENTATION
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Group Representation
GROUP, IRREDUCIBLE REPRESENTATION, REPRESENTA-

TION

Group Residue Theorem
If two groups are residual to a third, every group
residual to one is residual to the other. The Gambier

extension of this theorem states that if two groups are
pseudoresidual to a third, then every group pseudor-
esidual to the first with an excess greater than or
equal to the excess of the first minus the excess of the
second is pseudoresidual to the second, with an excess
]0:/
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Group Ring
The set of sums ax axx ranging over a multiplicative
GROUP and ai are elements of a FIELD with all but a
finite number of ai �0 : Group rings are GRADED

ALGEBRAS.

See also GRADED ALGEBRA

Group Theory
The study of GROUPS. Gauss developed but did not
publish parts of the mathematics of group theory, but
Galois is generally considered to have been the first to
develop the theory. Group theory is a powerful formal
method for analyzing abstract and physical systems
in which SYMMETRY is present and has surprising
importance in physics, especially quantum me-
chanics.

See also FINITE GROUP, GROUP, HIGHER DIMEN-

SIONAL GROUP THEORY, PLETHYSM, SYMMETRY
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Groupoid
There are at least two definitions of "groupoid"
currently in use.

The first type of groupoid is an algebraic structure on
a SET with a BINARY OPERATOR. The only restriction
on the operator is closure (i.e., applying the BINARY

OPERATOR to two elements of a given set S returns a
value which is itself a member of S ). Associativity,
commutativity, etc., are not required (Rosenfeld 1968,
pp. 88 �/03). A groupoid can be empty. The numbers of
nonisomorphic groupoids of this type having n ele-
ments are 1, 1, 10, 3330, 178981952, ... (Sloane’s
A001329), and the numbers of nonisomorphic and
nonantiisomorphic groupoids are 1, 7, 1734,
89521056, ... (Sloane’s A001424). An associative
groupoid is called a SEMIGROUP.

The second type of groupoid is an algebraic structure
first defined by Brandt (1926) and also known as a
VIRTUAL GROUP. A groupoid with base B is a set G
with mappings a and b from G onto B and a partially
defined binary operation (g ; h) �gh ; satisfying the
following four conditions:

1. gh is defined only when b(g) � a(h) for certain
maps a and b from G onto R2 with a : (x ; g ; y) �x
and b : (x; g ; y) �y/

2. ASSOCIATIVITY: If either (gh)k or g(hk) is defined,
then so is the other and (gh)k �g(hk) :/
3. For each g in G , there are left and right
IDENTITY ELEMENTS lg and rg such that
lgg �g �grg :/
4. Each g in G has an inverse g �1 for which gg �1 �
lg and g�1g � rg/

(Weinstein 1996). A groupoid is a small CATEGORY

with every morphism invertible.

See also BINARY OPERATOR, INVERSE SEMIGROUP, LIE

ALGEBROID, LIE GROUPOID, MONOID, QUASIGROUP,
SEMIGROUP, TOPOLOGICAL GROUPOID
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Growth
A general term which refers to an increase (or
decrease in the case of the oxymoron "negative
growth") in a given quantity.

See also LAW OF GROWTH, LIFE EXPECTANCY, POPU-

LATION GROWTH

Growth Function
BLOCK GROWTH

Growth Spiral
LOGARITHMIC SPIRAL

Grünbaum Graph

Grünbaum conjectured that for every m �1, n �2,
there exists an m -regular, m -chromatic graph of
GIRTH at least n . This result is trivial for n �2 and
m �2; 3; but only two other such graphs are known:
the Grünbaum graph illustrated above, and the
CHVÁTAL GRAPH.

See also CHVÁ TAL GRAPH
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Grundy’s Game
A special case of NIM played by the following rules.
Given a heap of size n , two players alternately select
a heap and divide it into two unequal heaps. A player
loses when he cannot make a legal move because all
heaps have size 1 or 2. Flammenkamp gives a table of
the extremal SPRAGUE-GRUNDY VALUES for this game.
The first few values of Grundy’s game are 0, 0, 0, 1, 0,
2, 1, 0, 2, ... (Sloane’s A002188).
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Grundy-Sprague Number
NIM-VALUE

G-Space
A G -space is a special type of HAUSDORFF SPACE.
Consider a point x and a HOMEOMORPHISM of an open
NEIGHBORHOOD V of x onto an OPEN SET of Rn : Then a
space is a G -space if, for any two such NEIGHBOR-

HOODS v? and v ƒ; the images of v?@ v ƒ under the
different HOMEOMORPHISMS are ISOMETRIC. If n �2,
the HOMEOMORPHISMS need only be conformal (but
not necessarily orientation-preserving).

Hsiang (2000, p. 1) terms a space X with a topological
(resp. differentiable, linear) transformation of a given
GROUP G a topological (resp. differentiable, linear) G -
space.

See also GREEN SPACE
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G-Transform
The G -transform of a function f (x) is defined by the
integral

(Gf )(x) � Gmn
pq j ap

" #
bq

" #jf (t)

 !
(x) (1)

�
1

2pi g  s G
bmð Þ�s ; 1 �(a)n �s

an�1
p

� �
�s ; 1 � bm�1

q

� �
�s

" #
f �(s)x�sds ;

(2)

where Gmn
pq is MEIJER’S G -FUNCTION,

G
bmð Þ�s ; 1 � anð Þ�s

an�1
p

� �
�s ; 1 � bm�1

q

� �
�s

" #

�G
b1 �s; . . . ; bm �s; 1 �a1 �s; . . . ; 1 �an �s

an�1 �s; . . . ; ap �s; 1 �bm �1 �s ; . . . ; 1 �bq �s

* �
(3)

�
Qm

j �1 G(bj � s)
Qn

j �1 G 1 � aj � s
" #Qp

j �n�1 G(aj � s)
Qq

j �m �1 G 1 � bj � sð Þ
; (4)

/f �(s) is the MELLIN TRANSFORM of a function f (x); s is
the CONTOUR s �f1=2 �i �; 1=2 �i�g; anð Þ�
a1 ; a2 ; . . . ; an ; (an�1

p ) �an�1 ; an �2 ; . . .  ; ap ; bmð Þ�
b1 ; . . . bm ; (b

m�1
q ) �bm�1 ; . . . ; bq ; and the components

of the vectors (ap) and (bq) are complex numbers
satisfying the conditions R ap

 !
"1=2; 3=2; 5=2; :::/

and R bq

 !
"�1=2; �3=2; �5=2; :::/.

See also MEIJER’S G -FUNCTION, W -TRANSFORM

References
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. "Definition

of the G -Transform. The Spaces M
�1
c; g and L(c; g)

2 and Their
Characterization." §36.1 in Fractional Integrals and Deri-
vatives. Yverdon, Switzerland: Gordon and Breach,
pp. 704�/09, 1993.

Gudermannian Function

The ODD FUNCTION denoted either g(x) or gd(x) which
arises in the inverse equations for the MERCATOR

PROJECTION. f(y)�gd(y) expresses the LATITUDE f in
terms of the vertical position y in this projection, so



the Gudermannian function is defined by

gd(x) �g
x

0

dt

cosh t 
(1)

�tan �1(sinh x) (2)

2 tan�1(ex) �1
2 p (3)

The INVERSE FUNCTION of the Gudermannian func-
tion y �gd�1 

f gives the vertical position y in the
MERCATOR PROJECTION in terms of the LATITUDE f; so

gd�1(x) �g
x

0

dt

cos t 
(4)

�ln[tan(1
4 p �

1
2 x)] (5)

�ln(sec x �tan x) : (6)

The derivatives of the function and its inverse are
given by

d

dx
gd(x) �sech x (7)

d

dx
gd�1(x) �sec x: (8)

The Gudermannian connects the TRIGONOMETRIC and
HYPERBOLIC FUNCTIONS via

sin(gd x) �tanh x (9)

cos(gd x) �sech x (10)

tan(gd x) �sinh x (11)

cot(gd x) �csch x (12)

sec(gd x) �cosh x (13)

csc(gd x) �coth x: (14)

The Gudermannian is related to the EXPONENTIAL

FUNCTION by

ex �sec(gd x) �tan(gd x) (15)

�tan(1
4 p �

1
2 gd x) (16)

�
1 � sin(gd x)

cos(gd x) 
(17)

(Beyer 1987, p. 164; Zwillinger 1995, p. 485).
Other fundamental identities are

tanh(1
2 x) �tan(1

2 gd x) (18)

i gd�1 x �gd �1(ix) :

If gd(x �iy) �a �ib; then

tan a �
sinh x

cos y 
(19)

tanh b �
sin y

cosh x 
(20)

tanh x �
sin a

cosh b 
(21)

tan y �
sin b

cosh a 
(22)

(Beyer 1987, p. 164; Zwillinger 1995, p. 485).

See also EXPONENTIAL FUNCTION, HYPERBOLIC FUNC-

TIONS, HYPERBOLIC SECANT, MERCATOR PROJECTION,
SECANT, TRACTRIX, TRIGONOMETRIC FUNCTIONS
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Guldinus Theorem
PAPPUS’S CENTROID THEOREM

Gumbel’s Distribution
A special case of the FISHER-TIPPETT DISTRIBUTION

with a �0, b �1. The MEAN, VARIANCE, SKEWNESS,
and KURTOSIS are

m � g

s2 �1
6 p

2

g1 �
12

ffiffiffi
6

p
z(3)

p3

g2 �
12
5 :

where g is the EULER-MASCHERONI CONSTANT, and
z(3) is APÉRY’S CONSTANT.

See also FISHER-TIPPETT DISTRIBUTION

Guthrie’s Problem
The problem of deciding if four colors are sufficient to
color any map on a PLANE or SPHERE.

See also COLORING, FOUR-COLOR THEOREM

Gutschoven’s Curve
KAPPA CURVE

Guy’s Conjecture
Guy’s conjecture, which has not yet been proven or
disproven, states that the CROSSING NUMBER for a



COMPLETE GRAPH of order n is

1

4

n

2

$ %
n � 1

2

$ %
n � 2

2

$ %
n � 3

2

$ %
;

where xb c is the FLOOR FUNCTION, which can be
rewritten

1
64 n(n �2)2(n �4) for n even
1
64(n �1)2(n �3)2 for n odd:

(

The first few values are 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, ...
(Sloane’s A000241).

See also CROSSING NUMBER (GRAPH)
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Gyrate Bidiminished
Rhombicosidodecahedron

JOHNSON SOLID J82 :/

References
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Gyrate Rhombicosidodecahedron

JOHNSON SOLID J72 :/
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Gyrobicupola

A BICUPOLA in which the bases are in opposite
orientations.

See also BICUPOLA, PENTAGONAL GYROBICUPOLA,
SQUARE GYROBICUPOLA

Gyrobifastigium

JOHNSON SOLID J26 ; consisting of two joined triangu-
lar PRISMS.

Gyrobirotunda
A BIROTUNDA in which the bases are in opposite
orientations.

Gyrocupolarotunda
A CUPOLAROTUNDA in which the bases are in opposite
orientations.

See also ORTHOCUPOLAROTUNDA

Gyroelongated Cupola
A n -gonal CUPOLA adjoined to a 2n/-gonal ANTIPRISM.

See also GYROELONGATED PENTAGONAL CUPOLA,
GYROELONGATED SQUARE CUPOLA, GYROELONGATED

TRIANGULAR CUPOLA



Gyroelongated Dipyramid
GYROELONGATED PYRAMID, GYROELONGATED SQUARE

DIPYRAMID

Gyroelongated Pentagonal Bicupola

JOHNSON SOLID J46; which consists of a PENTAGONAL

ROTUNDA adjoined to a decagonal ANTIPRISM.

Gyroelongated Pentagonal Birotunda

JOHNSON SOLID J48:/
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Gyroelongated Pentagonal Cupola

JOHNSON SOLID J24:/
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Gyroelongated Pentagonal Cupolarotunda

JOHNSON SOLID J47:/
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Gyroelongated Pentagonal Pyramid

JOHNSON SOLID J11:/
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Gyroelongated Pentagonal Rotunda

JOHNSON SOLID J25:/
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Gyroelongated Pyramid

An n -gonal pyramid adjoined to the top of an n -gonal
ANTIPRISM. In the 3-gonal gyroelongated pyramid, the
pyramid and lateral antiprism are coplanar. How-
ever, the 4-gonal and 5-gonal gyroelongated pyramids
correspond to JOHNSON SOLIDS J10 and J11 ; respec-
tively.

See also ANTIPRISM, ELONGATED PYRAMID, GYROE-

LONGATED DIPYRAMID, GYROELONGATED PENTAGO-

NAL PYRAMID, GYROELONGATED SQUARE DIPYRAMID,
GYROELONGATED SQUARE PYRAMID

Gyroelongated Rotunda
GYROELONGATED PENTAGONAL ROTUNDA

Gyroelongated Square Bicupola

JOHNSON SOLID J45 :/
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Gyroelongated Square Cupola

JOHNSON SOLID J23 :/
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Gyroelongated Square Dipyramid

One of the eight convex DELTAHEDRA built up from 16
equilateral triangles. It consists of two oppositely
faced SQUARE PYRAMIDS rotated 458 to each other and
separated by a 4-ANTIPRISM. It is JOHNSON SOLID /J17/.

If the centroid is at the origin and the sides are of unit
length, the equations of the 4-ANTIPRISM give height
of the middle points as 92�5 =4 : Adding the height of
the SQUARE PYRAMIDS gives apex heights of 9(2�5 =4 �
2�1=2): The SURFACE AREA and VOLUME of the solid are

S�4
ffiffiffi
3

p

V�
21=4

3
(1�

ffiffiffi
2

p
�21=4):

See also ANTIPRISM, DELTAHEDRON, SNUB DISPHE-

NOID, SQUARE PYRAMID



Gyroelongated Square Pyramid

JOHNSON SOLID J10 :/
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Gyroelongated Triangular Bicupola

JOHNSON SOLID J44 :/
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Gyroelongated Triangular Cupola

JOHNSON SOLID J22 :/
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Gyroid
An infinitely connected periodic MINIMAL SURFACE

containing no straight lines.

See also MINIMAL SURFACE
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HA Measurement
INNER QUERMASS

Haar Condition
This entry contributed by RONALD M. AARTS

A set of VECTORS in n -space is said to satisfy the Haar
condition if every set of n vectors is LINEARLY

INDEPENDENT (Cheney 1999). Expressed otherwise,
each selection of n vectors from such a set is a basis
for n -space. A system of functions satisfying the Haar
condition is sometimes termed a Tchebycheff system
(Cheney 1999).
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Haar Function

Define

c(x) �

1 05x 51
2

�1 1
2 5x 51

0 otherwise

8><
>: (1)

and

cjk(x) � c 2jx �k
� �

; (2)

where the FUNCTIONS plotted above are

c00 � c(x)

c10 � c(2x)

c11 � c(2x �1)

c20 � c(4x)

c21 � c(4x �1)

c22 � c(4x �2)

c23 � c(4x �3):

Then a FUNCTION f (x) can be written as a series
expansion by

f (x) �c0 �
X�
j �0

X2j �1

k �0

cjk cjk(x): (3)

The FUNCTIONS cjk and c are all ORTHOGONAL in
[0; 1]; with

g
1

0

f(x) fjk(x) dx �0 (4)

g
1

0

fjk(x)flm(x) dx �0: (5)

These functions can be used to define WAVELETS. Let
a FUNCTION be defined on n intervals, with n a POWER

of 2. Then an arbitrary function can be considered as
an n -VECTOR f, and the COEFFICIENTS in the expan-
sion b can be determined by solving the MATRIX

EQUATION

f �Wnb (6)

for b, where W is the MATRIX of c basis functions. For
example, the fourth-order Haar function WAVELET

MATRIX is given by

W4�

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

2
664

3
775

�

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

2
664

3
775

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
664

3
775

1 1 0 0
1 �1 0 0
0 0 1 0
0 0 0 1

2
664

3
775:

See also WAVELET, WAVELET MATRIX, WAVELET

TRANSFORM
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Haar Integral
The INTEGRAL associated with the HAAR MEASURE.

See also HAAR MEASURE

Haar Measure
Any locally compact Hausdorff topological group has
a unique (up to scalars) NONZERO left invariant
measure which is finite on compact sets. If the group
is Abelian or compact, then this measure is also right
invariant and is known as the Haar measure.

Haar Transform
A 1-D transform which makes use of the HAAR

FUNCTIONS.

See also H-TRANSFORM, HAAR FUNCTION
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Haberdasher’s Problem

With four cuts, DISSECT an EQUILATERAL TRIANGLE

into a SQUARE. First proposed by Dudeney (1907) and
discussed in Gardner (1961, p. 34), Stewart (1987,
p. 169), and Wells (1991, pp. 61 �/2). The solution can
be hinged so that the three pieces collapse into either
the TRIANGLE or the SQUARE. Two of the hinges bisect
sides of the triangle, while the third hinge and the
corner of the large piece on the base cut the base in
the approximate ratio 0:982 : 2 : 1:018:/

See also DISSECTION
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Habiro Move

A KNOT MOVE illustrated above. Two knots cannot be
distinguished using VASSILIEV INVARIANTS of order 5

n IFF they are related by a sequence of such moves
(Habiro 2000). There is a correspondence between the
Habiro move and solution of the BAGUENAUDIER

puzzle (Przytycki and Sikora 2000).

See also BAGUENAUDIER, KNOT MOVE
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Hadamard Design
A SYMMETRIC BLOCK DESIGN (/4n �3 ; 2n �1 ; n ) which
is equivalent to a HADAMARD MATRIX of order 4n �4:
It is conjectured that Hadamard designs exist for all
integers n �0, but this has not yet been proven. This
elusive proof (or disproof) remains one of the most
important unsolved problems in COMBINATORICS.

See also HADAMARD MATRIX, SYMMETRIC BLOCK

DESIGN
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Hadamard Factorization Theorem
Let f be an ENTIRE FUNCTION of FINITE ORDER l and

aj

� �
the zeros of f , listed with MULTIPLICITY, then the

rank p of f is defined as the least positive integer such
that X

an"0

anj j�(p�1)
B�: (1)

Then the canonical Weierstrass product is given by

f (z)�eg(z)P(z); (2)

and g has degree q5l: The genus m of f is then
defined as max(p; q); and the Hadamard factorization
theory states that an ENTIRE FUNCTION of FINITE

ORDER l is also of finite genus m; and

m5l: (3)
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Hadamard Gap Theorem
OSTROWSKI-HADAMARD GAP THEOREM



Hadamard Matrix

A class of SQUARE MATRIX invented by Sylvester
(1867) under the name of ANALLAGMATIC PAVEMENT.
A Hadamard matrix is a SQUARE MATRIX containing
only 1s and �1s such that when any two columns or
rows are placed side by side, HALF the adjacent cells
are the same SIGN and half the other (excepting from
the count an L -shaped "half-frame" bordering the
matrix on two sides which is composed entirely of 1s).
When viewed as pavements, cells with 1s are colored
black and those with �1s are colored white. There-
fore, the n �n Hadamard matrix Hn must have n(n �
1)=2 white squares ( �1s) and n(n �1)=2 black
squares (1s).
A Hadamard matrix of order n is a solution to
HADAMARD’S MAXIMUM DETERMINANT PROBLEM, i.e.,
has the maximum possible DETERMINANT (in absolute
value) of any n �n COMPLEX MATRIX with elements
aij

�� ��51 (Brenner 1972), namely nn=2 : An equivalent
definition of the Hadamard matrices is given by

HnH
T
n �nI n; (1)

where In is the n �n IDENTITY MATRIX. A Hadamard
matrix of order 4n �4 corresponds to a HADAMARD

DESIGN (/4n �3 ; 2n �1; n ).

Hadamard (1893) remarked that a NECESSARY condi-
tion for a Hadamard matrix to exist is that n �1, 2, or
a positive multiple of 4 (Brenner 1972). PALEY’S

THEOREM guarantees that there always exists a
Hadamard matrix Hn when n is divisible by 4 and
OF THE FORM 2 e pm �1ð Þ; where p is an ODD PRIME. In
such cases, the MATRICES can be constructed using a
PALEY CONSTRUCTION. The PALEY CLASS k is unde-
fined for the following values of m B1000: 92, 116,
156, 172, 184, 188, 232, 236, 260, 268, 292, 324, 356,
372, 376, 404, 412, 428, 436, 452, 472, 476, 508, 520,
532, 536, 584, 596, 604, 612, 652, 668, 712, 716, 732,
756, 764, 772, 808, 836, 852, 856, 872, 876, 892, 904,
932, 940, 944, 952, 956, 964, 980, 988, 996.

Sawade (1985) constructed H268: It is conjectured (and
verified up to n B428) that Hn exists for all n
DIVISIBLE by 4 (van Lint and Wilson 1993). However,
the proof of this CONJECTURE remains an important
problem in CODING THEORY. The number of Hada-
mard matrices of order 4n are 1, 1, 1, 5, 3, 60, 487, ...
(Sloane’s A007299).

If Hn and H m are known, then H nm can be obtained by
replacing all 1s in Hm by Hn and all �1s by �H n: For
n 5100; Hadamard matrices with n �12, 20, 28, 36,
44, 52, 60, 68, 76, 84, 92, and 100 cannot be built up
from lower order Hadamard matrices.

H2�
1 1

�1 1

� �
(2)

H4�
H2 H2

�H2 H2

� �
�

1 1
�1 1

� �
1 1

�1 1

� �
�

1 1
�1 1

� �
1 1

�1 1

� �
2
664

3
775

�

1 1 1 1
�1 1 �1 1
�1 �1 1 1

1 �1 �1 1

2
664

3
775: (3)

/H8 can be similarly generated from H4: Hadamard
matrices can also be expressed in terms of the WALSH

FUNCTIONS Cal and Sal

H8�

Cal(0; t)
Sal(4; t)
Sal(2; t)
Cal(2; t)
Sal(1; t)
Cal(3; t)
Cal(1; t)
Sal(3; t)

2
66666666664

3
77777777775
: (4)

Hadamard matrices can be used to make ERROR-

CORRECTING CODES.

See also HADAMARD DESIGN, HADAMARD’S MAXIMUM

DETERMINANT PROBLEM, INTEGER MATRIX, PALEY

CONSTRUCTION, PALEY’S THEOREM, WALSH FUNCTION
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Hadamard Transform
A FAST FOURIER TRANSFORM-like ALGORITHM which
produces a hologram of an image.

Hadamard’s Determinant Problem
HADAMARD’S MAXIMUM DETERMINANT PROBLEM

Hadamard’s Inequality
Let A�aik be an arbitrary n�n nonsingular MATRIX

with REAL elements and DETERMINANT Aj j; then

Aj j25
Yn

i�1

Xn

k�1

a2
ik

 !
:

See also HADAMARD’S THEOREM
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Hadamard’s Maximum Determinant
Problem
Find the largest possible DETERMINANT (in absolute
value) for any n�n matrix whose elements are taken
from some set. Hadamard (1893) proved that the
DETERMINANT of any COMPLEX n�n matrix A with
entries in the closed UNIT DISK aij

�� ��51 satisfies

detAj j5nn=2; (1)

with equality attained by the VANDERMONDE MATRIX

of the n ROOTS OF UNITY (Faddeev and Sominskii
1965, p. 331; Brenner 1972). The first few values for
max(detAn) for n�1, 2, ... are 1, 2, 3

ffiffiffi
3

p
; 16, 25

ffiffiffi
5

p
;

216, ..., and the squares of these are 1, 4, 27, 256,
3125, ... (Sloane’s A000312). A matrix having such a
maximal determinant is known as a HADAMARD

MATRIX (Brenner 1972).

For real entries, Hadamard’s bound can be improved
for real matrices to

detAj j5(n � 1)(n�1)=2

2n
(2)

(Faddeev and Sominskii 1965, problem 523; Brenner
1972).

For an n�n BINARY MATRIX, i.e., a (0,1)-matrix, the
largest possible determinants bn for n�1, 2, ... are 1,
1, 2, 3, 5, 9, 32, 56, 144, 320, 1458, 3645, 9477, ...
(Sloane’s A003432). The numbers of distinct n�n
binary matrices having the largest possible determi-
nant are 1, 3, 3, 60, ... (Sloane’s A051752).

n matrices

1 /[1]/

2 1 0
0 1

� �
1 0
1 1

� �
1 1
0 1

� �

3 0 1 1
1 0 1
1 1 0

2
4

3
5; 1 0 1

1 1 0
0 1 1

2
4

3
5; 1 1 0

0 1 1
1 0 1

2
4

3
5

For an n�n (�1; 1)/-matrix, the largest possible
determinants an for n � 1, 2, ... are 1, 2, 4, 16, 48,
160, ... (Sloane’s A003433; Ehrlich and Zeller 1962,
Ehrlich 1964). The numbers of distinct n�n (�1; 1)/-
matrices having the largest possible determinant are
1, 4, 96, 384, .... an is related to the largest possible
(0; 1)/-matrix determinant bn�1 by



an �2n�1 bn�1 (3)

(Williamson 1946, Brenner 1972).

n matrices

1 [1]

2 �1 �1
1 �1

� �
;
�1 1
�1 �1

� �
;

1 �1
1 �1

� �
;

1 1
�1 1

� �

For an n �n (�1 ; 0; 1)/-matrix, the largest possible
determinants gn are the same as an (Ehrlich 1964,
Brenner 1972). The numbers of n �n (�1; 0; 1)/-
matrices having maximum determinants are 1, 4,
240, ... (Sloane’s A051753).

See also DETERMINANT, HADAMARD MATRIX, INTEGER

MATRIX
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Hadamard’s Theorem
Let Aj j be an n �n DETERMINANT with COMPLEX (or
REAL) elements aij ; then Aj j"0 if

aiij j >
Xn

j�1

j"i

aij

�� ��:

See also HADAMARD’S INEQUALITY
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Hadamard-Vallée Poussin Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

The sum of RECIPROCALS of PRIMES diverges, but

lim
n0�

Xp(n)

k�1

1

pk

�ln(ln n)

" #
�g�

X�
k�1

ln 1�
1

pk

 !
�

1

pk

" #

�C1�0:2614972128:::; (1)

where p(n) is the PRIME COUNTING FUNCTION and g is
the EULER-MASCHERONI CONSTANT (Le Lionnais
1983). Hardy and Wright (1985) show that, if /v(n)/ is
the number of distinct PRIME FACTORS of n , then

lim
n0�

1

n

Xn

k�1

v(k)�ln(ln n)

" #
�C1: (2)

Furthermore, if V(n) is the total number of PRIME

FACTORS of n , then

lim
n0�

1

n

Xn

k�1

V(k)�ln(ln n)

" #
�C1�

X�
k�1

1

pk(pk � 1)

�1:0346538819::: : (3)

Similarly,

lim
n0�

Xp(n)

k�1

ln pk

pk

�ln n

 !
��g�

X�
j�2

X�
k�1

ln pk

pj
k

��C2

��1:3325822757::: : (4)
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Hadwiger Problem
What is the largest number of subcubes (not necessa-
rily different) into which a CUBE cannot be divided by
plane cuts? The answer is 47.

See also CUBE DISSECTION, CUTTING

Hadwiger’s Principal Theorem
The VECTORS 9a1 ; ..., 9an in a 3-space form a
normalized EUTACTIC STAR IFF Tx �x for all x in
the 3-space.

Hafner-Sarnak-McCurley Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given two randomly chosen n �n INTEGER MATRICES,
what is the probability D(n) that the corresponding
DETERMINANTS are RELATIVELY PRIME? Hafner et al.
(1993) showed that

D(n) �
Y�
k �1

1 � 1 �
Yn

j �1

1 �p �j
k

� �" #2
8<
:

9=
;; (1)

where pn is the nth PRIME.

The case /D1/ is just the probability that two random
INTEGERS are RELATIVELY PRIME,

D(1) �
6

p2 
�0:6079271019 . . . (2)

No analytic results are known for n ]2: Approximate
values for the first few n are given by

D(2) :0 :453103 (3)

D(3) :0 :397276 (4)

D(4) :0 :373913 (5)

D(5) :0:363321 : (6)

Vardi (1991) computed the limit

s � lim
n0�

D(n) �0 :3532363719 . . . : (7)

The speed of convergence is roughly 
0 :57n (Flajolet
and Vardi 1996).

See also INTEGER MATRIX, RELATIVELY PRIME
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Hahn Polynomial
The orthogonal polynomials defined by

h(a; b)
n (x; N)�

(�1)n(N � x � n)n(b� x � 1)n

n!

�3F2
�n;�x; a�N�x

N�x�n;�b�x�n
; 1

� �
(1)

�
(�1)n(N � n)n(b� 1)n

n!

�3F2
�n;�x; a�b�n�1

b�1; 1�N
; 1

� �
; (2)

where (x)n is the POCHHAMMER SYMBOL and

3F2(a; b; c; d; e; z) is a GENERALIZED HYPERGEO-

METRIC FUNCTION (Koepf 1998). The first few are
given by

h(a; b)
0 (x; N)�1

h(a; b)
1 (x; N)�x(a�b�2)�(N�1)(b�1):

Koekoek and Swarttouw (1998) define another Hahn
polynomial

Qn(x; a; b; N)� 3 F2
�n; n�a�b�1;�x

a�1;�N
; 1

� �
; (3)

the dual Hahn polynomial

Rn(l(x); g; d; N)

� 3 F2
�n;�x; x�g�d�1

g�1;�N
; 1

� �
; (4)

the continuous Hahn polynomial

pn(x; a; b; c; d)�in (a � c)n(a � d)n

n!



�3F2
�n ; n �a �b �c �d �1 ; a �ix

a �c ; a �d 
; 1

� �
; (5)

and the continuous dual Hahn polynomial

Sn(x2; a; b; c)

(a � b)n(a � c)n

� 3 F2
�n; a �ix; a �ix

a �b; a �c
; 1

� �
; (6)

for n �0, 1, ..., N , and where

l(x) �x(x � g � d �1): (7)
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Hahn-Banach Theorem
A linear FUNCTIONAL defined on a SUBSPACE of a
VECTOR SPACE V and which is dominated by a
sublinear function defined on V has a linear exten-
sion which is also dominated by the sublinear func-
tion.
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Hailstone Number
Sequences of INTEGERS generated in the COLLATZ

PROBLEM. For example, for a starting number of 7, the
sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1, 4, 2, 1, .... Such sequences are called
hailstone sequences because the values typically rise
and fall, somewhat analogously to a hailstone inside a
cloud.

While a hailstone eventually becomes so heavy that it
falls to ground, every starting INTEGER ever tested
has produced a hailstone sequence that eventually
drops down to the number 1 and then "bounces" into
the small loop 4, 2, 1, ....

See also COLLATZ PROBLEM
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Hairy Ball Theorem
There does not exist an everywhere NONZERO tangent
VECTOR FIELD on the 2-SPHERE S2 : This implies that
somewhere on the surface of the Earth, there is a
point with zero horizontal wind velocity. The theorem
can be generalized to the statement that the n -sphere
Sn has a nonzero tangent vector field IFF n is ODD.

See also FIXED POINT THEOREM
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Hajnal-Szemerédi Theorem
Every GRAPH with n vertices and maximum VERTEX

DEGREE D(G) 5k is (k �1)/-colorable with all color
classes of size n=(k �1)b c or n =(k �1)d e; where xb c is
the FLOOR FUNCTION and xd e is the CEILING FUNCTION.

See also SEYMOUR CONJECTURE
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Hajós Number
The Hajós number h(G) of a GRAPH G is the maximum
k such that G contains a subdivision of the COMPLETE

GRAPH Kk :/
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Half
The UNIT FRACTION /1=2:/

See also QUARTER, SQUARE ROOT, UNIT FRACTION

Half-Angle Formulas
Formulas expressing trigonometric functions of an
angle x=2 in terms of functions of an angle x ,

sin 1
2 x
� �

�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos x

2

s
(1)



cos 1
2 x
� �

�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos x

2

s
(2)

tan 1
2 x
� �

�
sin x

1 � cos x 
(3)

�
1 � cos x

sin x 
(4)

�
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � tan2 x

p
tan x 

(5)

�
tan x sin x

tan x � sin x 
: (6)

The corresponding hyperbolic function double-angle
formulas are

sinh 1
2 x
� �

�sgn x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh x � 1

2

s
(7)

cosh 1
2 x
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh x � 1

2

s
(8)

tanh 1
2 x
� �

�
sinh x

cosh x � 1 
(9)

�
cosh x � 1

sinh x
: (10)

See also DOUBLE-ANGLE FORMULAS, HYPERBOLIC

FUNCTIONS, MULTIPLE-ANGLE FORMULAS, PROSTHA-

PHAERESIS FORMULAS, TRIGONOMETRIC ADDITION

FORMULAS, TRIGONOMETRIC FUNCTIONS, TRIGONOME-

TRY

Half-Closed Interval

An INTERVAL in which one endpoint is included but
not the other. A half-closed interval is denoted [a, b )
or (a, b ] and is also called a HALF-OPEN INTERVAL. The
non-standard notation [a; b[ and ]a ; b] is sometimes
also used.

See also CLOSED INTERVAL, INTERVAL, OPEN INTER-

VAL

Half-Normal Distribution

A NORMAL DISTRIBUTION with MEAN 0 and STANDARD

DEVIATION 1=u limited to the domain x � [0; �):

P(x) �
2u

p
e �x2 u2 = p (1)

D(x) �erf
uxffiffiffi
p

p
 !

: (2)

The MOMENTS are

m1 �
1

u 
(3)

m2 �
p

2u2 (4)

m3 �
p

u3 (5)

m4 �
3 p2

4u4 ; (6)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m�
1

u
(7)

s2�
p� 2

2u2
(8)

g1�2

ffiffiffi
2

p

s
(9)

g2�0: (10)

See also NORMAL DISTRIBUTION

Half-Open Interval
HALF-CLOSED INTERVAL

Half-Period Ratio
The ratio t�v1=v2 of the two half-periods v1 and v2

of an ELLIPTIC FUNCTION (Whittaker and Watson
1990, p. 475). The notation t is sometimes used
instead of t: The half-period ratio is most commonly
encountered in the definition of the NOME q as
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q(k) �e pi t �e � pK ?(k)=K(k) �e �pK
ffiffiffiffiffiffiffiffiffi
1 �k2

pð Þ=K(k) (1)

(Borwein and Borwein 1987, pp. 41, 109, and 114;
Whittaker and Watson 1990, p. 463) where K(k) is
the complete ELLIPTIC INTEGRAL OF THE FIRST KIND,
m �k2 is the PARAMETER, k is the MODULUS, K ?(k) �
K(k?) ; and k? is the complementary MODULUS.

/t is defined such that the IMAGINARY PART I[t] > 0:/

See also JACOBI THETA FUNCTIONS, MODULAR ANGLE,
MODULUS (ELLIPTIC INTEGRAL), INVERSE NOME,
NOME, PARAMETER
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Half-Plane
This entry contributed by DANIEL SCOTT UZNANSKI

A half-plane is a planar region consisting of all points
on one side of an infinite straight line, and no points
on the other side.

See also HALF-SPACE, LOWER HALF-PLANE, PLANE,
UPPER HALF-PLANE

Half-Space

A half-space is that portion of an n -dimensional
SPACE obtained by removing that part lying on one
side of an (n �1)/-dimensional hyperplane. For exam-
ple, half a Euclidean space is given by the 3-dimen-
sional region satisfying x �0, ��By B�;
��Bz B�; while a HALF-PLANE is given by the 2-
dimensional region satisfying x �0, /��By B�:/

See also HALF-PLANE, SIEGEL’S UPPER HALF-SPACE

Half-Turn
A ROTATION through 1808 (/p radians).

See also ROTATION
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Hall’s Theorem
There exists a system of distinct representatives for a
family of sets S1 ; S2 ; ..., Sm IFF the union of any k of
these sets contains at least k elements for all k from 1
to m (Harary 1994, p. 53).
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Halley’s Irrational Formula
A ROOT-finding ALGORITHM which makes use of a
third-order TAYLOR SERIES

f (x) �f xnð Þ�f ? xnð Þ x �xnð Þ�1
2 f ƒ xnð Þ x �xnð Þ2�. . . : (1)

A ROOT of f (x) satisfies f (x) �0 ; so

0 :f xnð Þ�f ? xnð Þ xn�1 �xn

� �
�1

2 f ƒ xnð Þ xn �1 �xn

� �2
: (2)

Using the QUADRATIC EQUATION then gives

xn�1 �xn �
�f ? xnð Þ9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ? xnð Þ½ �2�2f xnð Þf ƒ xnð Þ

q
f ƒ xnð Þ

: (3)

Picking the plus sign gives the iteration function

Cf (x) �x �

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

2f (x)f ƒ(x)

[f ?(x)]2

s
f ƒ(x)

f ?(x)

: (4)

This equation can be used as a starting point for
deriving HALLEY’S METHOD.

If the alternate form of the QUADRATIC EQUATION is
used instead in solving (2), the iteration function
becomes instead

Cf (x) �x �
2f (x)

f ?(x) 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[f ?(x)]2 � 2f (x)f ƒ(x)

q : (5)

This form can also be derived by setting n �2 in
LAGUERRE’S METHOD. Numerically, the SIGN in the
DENOMINATOR is chosen to maximize its ABSOLUTE

VALUE. Note that in the above equation, if f ƒ(x) �0;
then NEWTON’S METHOD is recovered. This form of
Halley’s irrational formula has cubic convergence,
and is usually found to be substantially more stable
than NEWTON’S METHOD. However, it does run into
difficulty when both f (x) and f ?(x) or f ?(x) and f ƒ(x) are
simultaneously near zero.

See also HALLEY’S METHOD, HOUSEHOLDER’S METH-

OD, LAGUERRE’S METHOD, NEWTON’S METHOD
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Halley’s Method
Also known as the TANGENT HYPERBOLAS METHOD or
HALLEY’S RATIONAL FORMULA. As in HALLEY’S IRRA-

TIONAL FORMULA, take the second-order TAYLOR

POLYNOMIAL

f (x) �f xnð Þ�f ? xnð Þ x �xnð Þ�1
2 f ƒ xnð Þ x �xnð Þ2�. . . : (1)

A ROOT of f (x) satisfies f (x) �0; so

0 :f xnð Þ�f ? xnð Þ xn�1 �xn

� �
�1

2 f ƒ xnð Þ xn�1 �xn

� �2
: (2)

Now write

0 �f xnð Þ� xn�1 �xn

� �
� f ? xnð Þ�1

2 f ƒ xnð Þ xn�1 �xn

� �h i
; (3)

giving

xn�1 �xn �
f xnð Þ

f ? xnð Þ� 1
2 f ƒ xnð Þ xn�1 � xn

� � : (4)

Using the result from NEWTON’S METHOD,

xn�1 �xn ��
f xnð Þ
f ? xnð Þ

: (5)

gives

xn�1 �xn �
2f (xn)f ?(xn)

2[f ?(xn)]2 � f (xn)f ƒ(xn) 
; (6)

so the iteration function is

Hf (x) �x �
2f (x)f ?(x)

2[f ?(x)]2 � f (x)f ƒ(x) 
: (7)

This satisfies H ?f ( a) �H ƒf (a) �0 where a is a ROOT, so it
is third order for simple zeros. Curiously, the third
derivative

H §f ( a) ��
f §( a)

f ?( a)
�

3

2

f ƒ( a)

f ?(a)

" #2
8<
:

9=
; 

(8)

is the SCHWARZIAN DERIVATIVE. Halley’s method may
also be derived by applying NEWTON’S METHOD to
ff ?�1 =2 : It may also be derived by using an OSCULAT-

ING CURVE OF THE FORM

y(x) �
x � xnð Þ� c

a x � xnð Þ� b 
: (9)

Taking derivatives,

f xnð Þ�c

b 
(10)

f ? xnð Þ�b � ac

b2 
(11)

f ƒ xnð Þ�2a(ac � b)

b3
; (12)

which has solutions

a ��
f ƒ xnð Þ

2 f ? xnð Þ½ �2�f xnð Þf ƒ xnð Þ  
(13)

b �
2f ? xnð Þ

2 f ? xnð Þ½ �2�f xnð Þf ƒ xnð Þ  
(14)

c �
2f xnð Þf ? xnð Þ

2 f ? xnð Þ½ �2�f xnð Þf ƒ xnð Þ
; (15)

so at a ROOT, y xn�1

� �
�0 and

xn �1 �xn �c ; (16)

which is Halley’s method.

See also HALLEY’S IRRATIONAL FORMULA, HOUSE-

HOLDER’S METHOD, LAGUERRE’S METHOD, NEWTON’S

METHOD
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Halley’s Rational Formula
HALLEY’S METHOD

Hall-Janko Group
The SPORADIC GROUP HJ , also denoted J2:/

See also JANKO GROUPS

Hall-Littlewood Polynomial
Let n be an integer such that n]l1; where l�
l1; l2; . . .ð Þ is a PARTITION of n� lj j if l1]l2]. . .]0;

where li are a sequence of positive integers stabiliz-
ing 0 such that ai li�n: Also let mi(l) be the number
of parts of l of size i . Then the PERMUTATION w �Sn;
where Sn is the symmetric group, acts on the vari-
ables x1; ..., xn by sending xi to xw(i): Letting t be a
COMPLEX NUMBER, the Hall-Littlewood polynomials
are defined by



Pl(x1 ; . . .  ; xn; t)

�
1Q

i]0

Qmi( l)
r�1

1 � tr

1 � t

X
w �Sn

w xl1

1 � � � xln
n

Y
iBj

xi � txj

xi � xj

 !
:

These polynomials interpolate between the Schur
functions (with t �0) and the monomial symmetric
functions (with t �1; Fulman 1999).
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Halm’s Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

(1 �x2)2 �yƒ� ly �0

(Hille 1969, p. 357; Zwillinger 1997, p. 122).
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Halphen Constant
ONE-NINTH CONSTANT

Halphen’s Transformation

A curve and its polar reciprocal with regard to the
fixed CONIC have the same Halphen transformation.
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Halting Problem
The determination of whether a TURING MACHINE will
come to a halt given a particular input program. This
problem is UNDECIDABLE, as first proved by Turing.

See also BUSY BEAVER, CHAITIN’S CONSTANT, TURING

MACHINE, UNDECIDABLE
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Ham Sandwich Theorem
The volumes of any n n -D solids can always be
simultaneously bisected by a (n �1)/-D HYPERPLANE.
Proving the theorem for n �2 (where it is known as
the PANCAKE THEOREM) is simple and can be found in
Courant and Robbins (1978). The theorem was proved
for n �3 by Stone and Tukey (1942).

See also CUTTING, PANCAKE THEOREM
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Hamburger Moment Problem
This entry contributed by RONALD M. AARTS

A NECESSARY and SUFFICIENT condition that there
should exist at least one nondecreasing function a(t)
such that

mn �g
�

��

tn da(t)

for n �0, 1, 2, ..., with all the integrals converging, is
that sequence mnf g�0 is positive (Widder 1941, p. 129).
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Hamel Basis
This entry contributed by KEVIN O’BRYANT

A basis for the real numbers R ; considered as a
VECTOR SPACE over the rationals Q; i.e., a set of real
numbers Uaf g such that every real number b has a
unique representation of the form

b�
Xn

i�1

riUai;

where ri is rational and n depends on b:/

The AXIOM OF CHOICE is equivalent to the statement:
"Every VECTOR SPACE has a BASIS," and this is the
only justification for the existence of a Hamel basis.

See also AXIOM OF CHOICE, BASIS, BASIS (VECTOR

SPACE)



Hamilton’s Equations
The equations defined by

q̇ �
@H

@p 
(1)

ṗ ��
@H

@q 
(2)

where ẋ �dx=dt and H is the so-called Hamiltonian,
are called Hamilton’s equations. These equations
frequently arise in problems of celestial mechanics.

The vector form of these equations is

ẋi �Hpi
(t; x; p) (3)

ṗi �Hxi
(t; x; p) (4)

(Zwillinger 1997, p. 136; Iyanaga and Kawada 1980,
p. 1005).

Another formulation related to Hamilton’s equation is

p �
@L

@ ̇q
; (5)

where L is the so-called Lagrangian.
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Hamilton’s Rules
The rules for the MULTIPLICATION of QUATERNIONS.

See also QUATERNION

Hamilton-Connected Graph

A graph G is Hamilton-connected if every two
vertices of G are connected by a HAMILTONIAN PATH

(Bondy and Murty 1976, p. 61). All COMPLETE GRAPHS

are Hamilton-connected. The numbers of Hamilton-
connected simple graphs on n �1, 2, ... nodes are 1, 1,
1, 1, 3, 13, 116, ... (Sloane’s A057865).

See also HAMILTONIAN GRAPH, HAMILTONIAN PATH,
HYPOTRACEABLE GRAPH, TRACEABLE GRAPH
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Hamiltonian Circuit
A GRAPH CYCLE (i.e., closed loop) through a GRAPH

that visits each node exactly once (Skiena 1990,
p. 196). A graph possessing a Hamiltonian circuit is
said to be a HAMILTONIAN GRAPH. The Hamiltonian
circuit is named after Sir William Rowan Hamilton,
who devised a puzzle in which such a path along the
EDGES of an ICOSAHEDRON was sought (the ICOSIAN

GAME).

All PLATONIC SOLIDS have a Hamiltonian circuit, as
illustrated above.



Although not explicitly stated by Gardner (1957), all
ARCHIMEDEAN SOLIDS have Hamiltonian circuits as
well, several of which are illustrated above. The
Archimedean dual RHOMBIC DODECAHEDRON is Ha-
miltonian (Gardner 1984, p. 98). All PLANAR 4-con-
nected graphs also have Hamiltonian circuits.

The number of Hamiltonian circuits on an n -HYPER-

CUBE is 2, 8, 96, 43008, ... (Sloane’s A006069; Gardner
1986, pp. 23 �/4).

In general, the problem of finding a Hamiltonian
circuit is NP-COMPLETE (Garey and Johnson 1983), so
the only known way to determine whether a given
general GRAPH has a Hamiltonian circuit is to under-
take an exhaustive search.

See also CHVÁ TAL’S THEOREM, DIRAC’S THEOREM,
EULERIAN CIRCUIT, EULER GRAPH, GRINBERG FOR-

MULA, HAMILTONIAN GRAPH, HAMILTONIAN PATH,
ICOSIAN GAME, KOZYREV-GRINBERG THEORY, ORE’S

THEOREM, PÓ SA’S THEOREM, SMITH’S NETWORK THE-

OREM, TOUR, UNICURSAL CIRCUIT

References
Bollobás, B. Graph Theory: An Introductory Course. New

York: Springer-Verlag, p. 12, 1979.
Chartrand, G. Introductory Graph Theory. New York:

Dover, p. 68, 1985.
Gardner, M. "Mathematical Games: About the Remarkable

Similarity between the Icosian Game and the Towers of
Hanoi." Sci. Amer. 196, 150 �/56, May 1957.

Gardner, M. The Sixth Book of Mathematical Games from
Scientific American. Chicago, IL: University of Chicago
Press, pp. 96 �/7, 1984.

Gardner, M. "The Binary Gray Code." In Knotted Doughnuts
and Other Mathematical Entertainments. New York:
W. H. Freeman, pp. 23 �/4, 1986.

Garey, M. R. and Johnson, D. S. Computers and Intract-
ability: A Guide to the Theory of NP-Completeness. New
York: W. H. Freeman, 1983.

Lederberg, J. "Hamilton Circuits of Convex Trivalent Poly-
hedra (up to 18 Vertices)." Amer. Math. Monthly 74, 522 �/

27, 1967.
Ore, O. "A Note on Hamiltonian Circuits." Amer. Math.

Monthly 67, 55, 1960.
Skiena, S. "Hamiltonian Cycles." §5.3.4 in Implementing

Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley,
pp. 196 �/98, 1990.

Sloane, N. J. A. Sequences A006069/M1903 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Hamiltonian Cycle
HAMILTONIAN CIRCUIT

Hamiltonian Graph

A GRAPH possessing a HAMILTONIAN CIRCUIT. By
convention, the trivial graph on a single node is
considered Hamiltonian, but the connected graph on
two nodes is not. The numbers of simple Hamiltonian
graphs on n nodes for n �1, 2, ... are then 1, 0, 1, 3, 8,
48, 383, ... (Sloane’s A003216).
Testing whether a graph is Hamiltonian is an NP-

COMPLETE PROBLEM (Skiena 1990, p. 196). An algo-
rithm to test graphs is implemented as Hamilto-
nianQ[g ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

All Hamiltonian graphs are BICONNECTED, although
the converse is not true (Skiena 1990, p. 197). If the
sums of the degrees of nonadjacent vertices in a graph
G is greater than the number of nodes n for all
subsets of nonadjacent vertices, then G is Hamilto-
nian (Ore 1960; Skiena 1990, p. 197).

See also BARNETTE’S CONJECTURE, BICUBIC GRAPH,
CHVÁ TAL’S THEOREM, EULERIAN GRAPH, HAMILTO-

NIAN CIRCUIT, HAMILTON-CONNECTED GRAPH, HAMIL-

T O N I A N  P A T H , H Y P O H A M I L T O N I A N  G R A P H ,
HYPOTRACEABLE GRAPH, ORE GRAPH, TAIT’S HAMIL-

TONIAN GRAPH CONJECTURE, TUTTE CONJECTURE
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Hamiltonian Group
A non-Abelian GROUP all of whose SUBGROUPS are
self-conjugate.
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Hamiltonian Integer
A LINEAR COMBINATION of basis QUATERNIONS with
integer coefficients.

See also QUATERNION
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Hamiltonian Map
Consider a 1-D Hamiltonian MAP OF THE FORM

H(p; q) �1
2 p

2 �V(q); (1)

which satisfies HAMILTON’S EQUATIONS

q̇ �
@H

@p 
(2)

ṗ ��
@H

@q
: (3)

Now, write

q̇i �
qi�1 � qi

� �
Dt

; (4)

where

qi �q(t) (5)

qi�1 �q(t �Dt): (6)

Then the equations of motion become

qi �1 �qi �pi Dt (7)

pi�1 �pi �Dt
@V

@qi

 !
q �qi

(8)

Note that equations (7) and (8) are not AREA-PRESER-

VING, since

@(qi �1 ; pi�1)

@(qi ; pi)
� 1 �Dt

@2V

@q2
i

Dt 1

������
�������1 �(Dt)2 @

2V

@q2
i

"1 : (9)

However, if we take instead of (7) and (8),

qi�1 �qi �pi Dt (10)

pi�1 �pi �Dt
@V

@qi

 !
q �qi �1

(11)

@ qi�1 ; pi�1

� �
@ qi ; pið Þ

�
1 �Dt

@

@qi

@V

@q

 !
q�qi �1

Dt 1

�������
�������

�1 �( Dt)2 @
2V

@q2
i

�1; (12)

which is AREA-PRESERVING.

See also AREA-PRESERVING MAP

Hamiltonian Path
A path between two vertices of a GRAPH that visits
each vertex exactly once. A Hamiltonian path that is
also a GRAPH CYCLE is called a HAMILTONIAN CIRCUIT

(or Hamiltonian cycle). Every TOURNAMENT has an
ODD NUMBER of Hamiltonian paths (Rédei 1934; Szele
1943; Skiena 1990, p. 175).

The number of Hamiltonian paths on an n -HYPER-

CUBE is 0, 0, 48, 48384, ... (Sloane’s A006070; Gardner
1986, pp. 23�/4).

See also HAMILTONIAN CIRCUIT, HAMILTONIAN

GRAPH, TOURNAMENT
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Hamiltonian System
A system of variables which can be written in the
form of HAMILTON’S EQUATIONS.

Hammer’s X-Ray Problems
Let a homogeneous solid contain a convex hole K and
take x-rays so that the "darkness" at each point on a
photographic plate determines the length of the chord
of K along the line of propagation of an x-ray. Then



how many x-ray pictures must be taken to exactly
reconstruct K if

1. The x-rays originate from a point source,
2. The x-rays originate from a source at infinity
and so are parallel?

See also RADON TRANSFORM
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Hammer-Aitoff Equal-Area Projection
A MAP PROJECTION whose inverse is defined using the
intermediate variable

z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

4 x
� �2

� 1
2 y
� �2

r
:

Then the longitude and latitude are given by

l �2 tan�1 zx

2 2z2 � 1ð Þ

" #

f �sin�1 (yz) :

See also EQUAL-AREA PROJECTION

Hamming Code
A binary Hamming code Hr of length n �2r �1 (with
r ]2) is a linear code with parity-check matrix H
whose columns consist of all nonzero binary vectors of
length r , each used once. Hr is an (n �2r �1; k �
2r �1 �r ; d �3) code. Hamming codes are PERFECT

single ERROR-CORRECTING CODES.

See also ERROR-CORRECTING CODE, PERFECT CODE
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Hamming Function

An APODIZATION FUNCTION chosen to minimize the
height of the highest sidelobe (Hamming and Tukey,
Blackman and Tukey 1959). The Hamming function
is given by

A(x) �0:54 �0:46 cos
px

a

 !
; (1)

and its FULL WIDTH AT HALF MAXIMUM is 1:05543a:
The corresponding INSTRUMENT FUNCTION is

I(k) �
a(1:08 � 0:64a2k2) sinc(2 pak)

1 � 4a2k2 
: (2)

This APODIZATION FUNCTION is close to the one
produced by the requirement that the APPARATUS

FUNCTION goes to 0 at ka �5 =4: From APODIZATION

FUNCTION, a general symmetric apodization function
A(x) can be written as a FOURIER SERIES

A(x) �a0 �2
X�
n �1

an cos
npx

b

 !
; (3)

where the COEFFICIENTS satisfy

a0 �2
X�
n�1

an �1: (4)

The corresponding apparatus function is

I(t) �2b a0 sinc(2 pkb)f

�
X�
n�1

[sinc(2 pkb �n p) �sinc(2pkb �np)] g: (5)

To obtain an APODIZATION FUNCTION with zero at
ka �3=4; use

a0 �2a1 �1 ; (6)

so

a0 sinc 5
2 p
� �

�a1 sinc 7
2 p
� �

�sinc 3
2 p
� �

�0
h

(7)

1 �2a1ð Þ 2

5p 
�a1

2

7p 
�

2

3 p

 !
� 1 �2a1ð Þ1

5 �a1
1
7 �

1
3

� �
�0 (8)

a1
1
7 �

1
3 �

2
5

� �
�1

5 (9)

a1 �
1
5

2
5 �

1
7 �

1
3

�
7 � 3

2 � 3 � 7 � 3 � 5 � 5 � 7

�21
92 :0:2283 (10)

a0 �1 �2a1 �
92 � 2 � 21

92
�

92 � 42

92

�50
92�

25
46:0:5435: (11)

The FWHM is 1.81522, the peak is 1.08, the peak
NEGATIVE and POSITIVE sidelobes (in units of the
peak) are�0:00689132 and 0.00734934, respectively.

See also APODIZATION FUNCTION, HANNING FUNC-

TION, INSTRUMENT FUNCTION
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Handedness
Objects which are identical except for a mirror
reflection are said to display handedness and to be
CHIRAL.

See also AMPHICHIRAL, CHIRAL, ENANTIOMER, MIR-

ROR IMAGE

Handkerchief Surface

A surface given by the PARAMETRIC EQUATIONS

x(u; v) �u

y(u; v) �v

z(u; v) �1
3 u

3 �uv2 �2 u2 �v2
� �

:
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Handle

A handle is a topological structure which can be
thought of as the object produced by puncturing a

surface twice, attaching a ZIP around each puncture
travelling in opposite directions, pulling the edges of
the zips together, and then zipping up.
Handles are to MANIFOLDS as CELLS are to CW-

COMPLEXES. If M is a MANIFOLD together with a
(k �1)/-SPHERE Sk �1 embedded in its boundary with a
trivial TUBULAR NEIGHBORHOOD, we attach a k -
handle to M by gluing the tubular NEIGHBORHOOD

of the (k �1)/-SPHERE Sk �1 to the TUBULAR NEIGHBOR-

HOOD of the standard (k �1)/-SPHERE Sk�1 in the
dim(M )-dimensional DISK. In this way, attaching a
k -handle is essentially just the process of attaching a
fattened-up k -DISK to M along the (k �1)/-SPHERE

Sk�1 : The embedded DISK in this new MANIFOLD is
called the k -handle in the UNION of M and the handle.

DYCK’S THEOREM states that HANDLES and cross-
handles are equivalent in the presence of a CROSS-

CAP.

See also CAP, CLASSIFICATION THEOREM OF SUR-

FACES, CROSS-CAP, CROSS-HANDLE, HANDLEBODY,
SURGERY, TUBULAR NEIGHBORHOOD
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Handlebody
A handlebody of type (n, k ) is an n -D MANIFOLD that
is attained from the standard n -DISK by attaching
only k -D HANDLES.

See also HANDLE, HEEGAARD SPLITTING, SURGERY
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Handsome Number
POWERFUL NUMBER

Hankel Contour

The CONTOUR Ce illustrated above.

See also HANKEL FUNCTION
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Hankel Function
There are two types of functions known as Hankel
functions. The more common one is a COMPLEX



FUNCTION (also called a Bessel function of the third
kind, or Weber Function) which is a LINEAR COMBINA-

TION of BESSEL FUNCTIONS OF THE FIRST and SECOND

KINDS. These are called the HANKEL FUNCTIONS OF

THE FIRST and SECOND KINDS.

Another type of Hankel function is defined by the
CONTOUR INTEGRAL

He(z) �gCo

(�w)z�1e �w

1 � e�w
dw

for I[w] B0; arg(�w)j jBp; e "2pk > 0 ; where Ce is a
HANKEL CONTOUR. The RIEMANN ZETA FUNCTION can
be expressed in terms of He(z) as

z(z) ��
He(z)

2i sin (pz)G(z)

for 0 B e B2p and R[z] > 1; where G(z) is the GAMMA

FUNCTION (Krantz 1999, p. 160).

See also HANKEL CONTOUR, HANKEL FUNCTION OF

THE FIRST KIND, HANKEL FUNCTION OF THE SECOND

KIND, SPHERICAL HANKEL FUNCTION OF THE FIRST

KIND, SPHERICAL HANKEL FUNCTION OF THE SECOND

KIND, THIRD KIND
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Hankel Function of the First Kind

H(1)
n (z) �Jn(z) �iYn(z) ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND

and Yn(z) is a BESSEL FUNCTION OF THE SECOND KIND.
Hankel functions of the first kind can be REPRE-

SENTED AS a CONTOUR INTEGRAL over the UPPER HALF-

PLANE using

H(1)
n (z) �

1

i p g
�

0[upper half plane]

e(z=2)(t�1=t)

tn�1
dt:

The plots above show the structure of H(1)
0 (z) in the

COMPLEX PLANE.

See also BESSEL FUNCTION OF THE FIRST KIND,
BESSEL FUNCTION OF THE SECOND KIND, DEBYE’S

ASYMPTOTIC REPRESENTATION, HANKEL FUNCTION OF

THE SECOND KIND, MACDONALD FUNCTION, WATSON-

NICHOLSON FORMULA, WEYRICH’S FORMULA
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Hankel Function of the Second Kind

H(2)
n (z)�Jn(z)�iYn(z);

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND

and Yn(z) is a BESSEL FUNCTION OF THE SECOND KIND.
Hankel functions of the second kind can be REPRE-

SENTED AS a CONTOUR INTEGRAL using

H(2)
n (z)�

1

ip g
0

��[lower half plane]

e(z=2)(t�1=t)

tn�1
dt:



The plots above show the structure of H(2)
0 (z) in the

COMPLEX PLANE.

See also BESSEL FUNCTION OF THE FIRST KIND,
BESSEL FUNCTION OF THE SECOND KIND, HANKEL

FUNCTION OF THE FIRST KIND, WATSON-NICHOLSON

FORMULA
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Hankel Matrix
A MATRIX Hn where the first row (and column)
consists of the integers 1, 2, ..., n , the second row
(and column) is given by 2, 3, ..., n , 0, and so on, with
the nth row (and column) given by n ,

0 ; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�1

:

A Hankel matrix can be given by HankelMatrix[m ,
n ] in the Mathematica add-on package LinearAl-
gebra‘MatrixManipulation‘ (which can be
loaded with the command BBLinearAlgebra‘).
The first few such matrices are

H2� 
1 2
2 0

� �

H3�
1 2 3
2 3 0
3 0 0

2
4

3
5

H4�

1 2 3 4
2 3 4 0
3 4 0 0
4 0 0 0

2
664

3
775:

The elements of the Hankel matrix are given expli-
citly by

hij �
0 if i �j �1 > n
i �j �1 otherwise :

,
The DETERMINANT of Hn is given by det(Hn) �
(�1) n=2b cnn; where nb c is the FLOOR FUNCTION, so the
first few values are 1, �4, �27, 256, 3125, �46656,
�823543, 16777216, ... (Sloane’s A000312).

See also TRIANGULAR MATRIX
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Hankel Transform
Equivalent to a 2-D FOURIER TRANSFORM with a
radially symmetric KERNEL, and also called the FOUR-

IER-BESSEL TRANSFORM.

g(u; v)�F[f (r)]�g
�

��
g

�

��

f (r)e�2pi(ux�vy) dx dy: (1)

Let

x�iy�reiu (2)

u�iv�qeif (3)

so that

x�r cos u (4)

y�r sin u (5)

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
(6)

u�q cos f (7)

v�q sin f (8)

q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�v2

p
: (9)

Then

g(q)�g
�

0 g
2p

0

f (r)e�2pirq(cos f cos u�sin f sin u)r dr du

�g
�

0 g
2p

0

f (r)e�2pirq cos(u�f)r dr du

�g
�

0 g
2p�f

�f

f (r)e�2pirq cos ur dr du

�g
�

0 g
2p

0

f (r)e�2pirq cos ur dr du

�g
�

0

f (r) g
2p

0

e�2pirq cos udu

" #
r dr

�2p g
�

0

f (r)J0(2pqr)r dr; (10)

where J0(z) is a zeroth order BESSEL FUNCTION OF

THE FIRST KIND.

Therefore, the Hankel transform pairs are

g(q)�2p g
�

0

f (x)J0(2pqr)r dr (11)

f (r)�2p g
�

0

g(q)J0(2pqr)q dq: (12)

The following table gives Hankel transforms for a
number of common functions (Bracewell 1999,
p. 249). Here, Jn(x) is a BESSEL FUNCTION and

Q
a(r)

is a RECTANGLE FUNCTION equal to 1 for 05r5a and
0 otherwise, and



M(x) �2 p x�3 g
x

0

J0(x) dx �x�2J0(x)

� �
(13)

�
p2

x2
J1(x)H0(x) �J0(x)H1(x)½ �; (14)

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND,
Hn(x) is a STRUVE FUNCTION and Ln(x) is a MODIFIED

STRUVE FUNCTION.

/f (r)/ /g(q)/

/

Q
a(r)/ /

aJ1(2paq)

q
/

/

sin(2par)

r
/ /

Q
(q=(2a))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � q2

p /

/
1
2 d(r �a)/ /paJ0(2paq)/

/M(ar)/ /aL
q

2a

� �
/

/e � pr2

/ /e �pq2

/

/ a2 �r2ð Þ�1=2
/ /

e �2 paq

q
/

/ a2 �r2ð Þ�1=3
/ /

2pe �2paq

a
/

/

1

a2 � r2
/ /2pK0(2paq)/

/

2a2

a2 � r2ð Þ2/ /4p2aqK1(2paq)/

/

4a4

a2 � r2ð Þ3/ /4p3a2q2K2(2paq)/

/ a2 �r2ð Þ
Q

a(r)/ /

a2

pq2 
J2(2paq)/

/

1

r
/ /

1

q
/

/e �ar
/ /

2pa

a2 � 4 p2q2ð Þ3 =2/

/

e �ar

r
/ /

2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4 p2q2

p /

/

d(r)

2pr
/ /1/

/r2e� pr2
/ /

e �pq2 1 � pq2ð Þ
p

/

/�r2f (r)/ /

d2f

dq2 
�

1

q

dF

dq

� �
�92f/

See also BESSEL FUNCTION OF THE FIRST KIND,
FOURIER TRANSFORM, LAPLACE TRANSFORM
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Hankel’s Integral

Jm(x) �
xm

2m�1
ffiffiffi
p

p
G m � 1

2

� � g 1

0

cos (xt)

� 1 �t2
� �m �1=2

dt ;

where Jm(x) is a BESSEL FUNCTION OF THE FIRST KIND

and G(z) is the GAMMA FUNCTION. Hankel’s integral
can be derived from SONINE’S INTEGRAL.

See also POISSON INTEGRAL, SONINE’S INTEGRAL

Hankel’s Symbol
The symbol defined by

(v; n)

�
2�2n 4v2 � 1ð Þ 4v2 � 32ð Þ � � �  4v2 � 2n � 1ð Þ2

h in o
n!

(1)

�
( �1)n cos(pv) G 1

2 � n � v
� �

G 1
2 � n � v
� �

xn! 
; (2)

where G(z) is the GAMMA FUNCTION. If v is an integer,
then this simplifies to

(v; n) �
( �1)n�v G 1

2 � n � v
� �

G 1
2 � n � v
� �

pn! 
; (3)

given incorrectly by Erdélyi et al. (1981, p. 52).

See also KRAMP’S SYMBOL, POCHHAMMER SYMBOL
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Hann Function
HANNING FUNCTION

Hanning Function

An APODIZATION FUNCTION, also called the HANN

FUNCTION, frequently used to reduce ALIASING in



FOURIER TRANSFORMS. The illustrations above show
the Hanning function, its INSTRUMENT FUNCTION, and
a blowup of the INSTRUMENT FUNCTION sidelobes. It is
named after the Austrian meteorologist Julius von
Hann (Blackman and Tukey 1959, pp. 98 �/9). The
Hanning function is given by

f (x) �cos2 px

2a

 !
�1

2 �
1
2 cos

px

a

 !
: (1)

The INSTRUMENT FUNCTION for Hanning apodization
can also be written

a sinc(2 pka) �1
2 sinc(2 pka � p) �1

2 sinc(2 pka � p)
h i

:

(2)

Its FULL WIDTH AT HALF MAXIMUM is a . It has
APPARATUS FUNCTION

A(x) �g
a

�a

1
2 �

1
2 cos

px

a

 !" #
e�2 pikx dx

�1
2 g

a

�a

e �2 pikx dx �1
2 g

a

�a

e �2 pikx dx

�1
2 A1 �A2ð Þ: (3)

The first integral is

I1 �g
a

�a

e �2pikx dx �
sin(2pka)

pk
�2a sinc(2 pka) : (4)

The second integral can be rewritten

I2 �g
0

�a

cos
px

a

 !
e �2 pikx dx �g

0

�a

cos
px

a

 !
e �2pikx dx

�g
a

0

cos
px

a

 !
e2pikx �e �2 pikx
� �

dx

�2g
a

0

cos
px

a

 !
cos(2pkx) dx

�2
sin p

a 
� 2 pk

� �
x

2 p
a 
� 2pk

� � �
sin p

a 
� 2pk

� �
x

2 p
a 
� 2pk

� �
8<
:

9=
;

a

0

�a
sin( p � 2 pka)

p � 2pka
�

sin( p � 2pka)

p � 2pka

" #

�
a

p

sin(2pka)

1 � 2ka
�

sin(2pka)

1 � 2ka

" #

�a[sinc(p �2pka) �sinc(p �2 pka)]: (5)

Combining (4) and (5) gives

A(x)

�a sinc(2pka) �1
2 sinc( p �2pka) �1

2 sinc( p �2pka)
h i

:

(6)

To find the extrema, define x �2pka and rewrite (6)
as

A(x) �a sin x �1
2 sinc(x � p) �1

2 sinc(x � p)
h i

: (7)

Then solve

dA

dx 
�

p2 �x3 cos x � 3x2 sin x � p2x cos x � p2 sin xð Þ
x2 p2 � x2ð Þ2

�0 (8)

to find the extrema. The roots are x �7 :42023 and
10.7061, giving a peak NEGATIVE sidelobe of
�0:026708 and a peak POSITIVE sidelobe (in units of
a ) of 0.00843441. The peak in units of a is 1, and the
full-width at half maximum is given by setting (7)
equal to /1=2/ and solving for x , yielding

x1 =2 �2 pk1 =2a � p: (9)

Therefore, with L �2a; the FULL WIDTH AT HALF

MAXIMUM is

FWHM �2k1=2 �
1

a 
�

2

L 
: (10)

See also APODIZATION FUNCTION, HAMMING FUNC-

TION
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Hanoi Graph

A GRAPH Hn arising in conjunction with the TOWERS

OF HANOI problem. The above figure is the Hanoi
graph H3:/

See also TOWERS OF HANOI



Hanoi Towers
TOWERS OF HANOI

Hansen Chain
An ADDITION CHAIN for which there is a SUBSET H of
members such that each member of the chain uses
the largest element of H which is less than the
member.

See also ADDITION CHAIN, BRAUER CHAIN, HANSEN

NUMBER
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Hansen Number
A number n for which a shortest chain exists (which
is also a HANSEN CHAIN) is called a Hansen number.
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Hansen’s Problem
A SURVEYING PROBLEM: from the position of two
known but inaccessible points A and B , determine
the position of two unknown accessible points P and
P? by bearings from A , B , P ? to P and A , B , P to P?:/

See also SURVEYING PROBLEMS
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Hansen-Bessel Formula

Jn(z)
1

2p g  
p

�p

eiz cos tein(t� p=2) dt

�
i�n

p g  
p

0

eiz cos t cos(nt) dt

�
1

p g  
p

0

cos(z sin t �nt) dt

for n �0, 1, 2, ..., where Jn(z) is a BESSEL FUNCTION

OF THE FIRST KIND.
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Happy End Problem
The problem of determining the smallest number of
points g(n) in GENERAL POSITION in the plane (i.e., no
three of which are COLLINEAR), which always deter-
mine a CONVEX POLYGON of n sides. The problem was
so-named by Erdos when two investigators who first
worked on the problem, E. Klein and G. Szekeres,
became engaged and subsequently married (Hoffman
1998, p. 76).

E. Klein proved that g(4) �5 by showing that any
arrangement of five points must fall into one of the
three cases (left figure), and E. Makai proved g(5) �9
after demonstrating that a counterexample could be
found for eight points (right figure; Hoffman 1998,
pp. 75 �/6). Erdos and Szekeres (1935) showed that
g(n) exists and derived the bound

2n�2 �1 5g(n) 5
2n �4
n �2

� �
�1 ; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT. For n ]4; this

has since been reduced to

g(n) 5
2n �4
n �2

� �
(2)

by Chung and Graham (1998),

g(n) 5
2n �4
n �2

� �
�7 �2n (3)

by Kleitman and Pachter (1998), and

g(n)5
2n�5
n�2

� �
�2 (4)

by Tóth and Valtr (1998). For g(6); these bounds give
71, 70, 65, and 37, respectively (Hoffman 1998, p. 78).
The values of (4) for n�6, 7, ... are 37, 128, 464, 1718,
... (Sloane’s A052473).

See also CONVEX HULL, CONVEX POLYGON
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Happy Number
Let the sum of the SQUARES of the DIGITS of a POSITIVE

INTEGER s0 be represented by s1 : In a similar way, let
the sum of the SQUARES of the DIGITS of s1 be
represented by s2 ; and so on. If si �1 for some i ]1;
then the original INTEGER s0 is said to be happy.

Once it is known whether a number is happy (or not),
then any number in the sequence s1 ; s2 ; s3 ; ... will also
be happy (or not). A number which is not happy is
called UNHAPPY. Unhappy numbers have EVENTUALLY

PERIODIC sequences of si which do not reach 1 (e.g., 4,
16, 37, 58, 89, 145, 42, 20, 4, ...).

Any PERMUTATION of the DIGITS of an UNHAPPY or
happy number must also be unhappy or happy. This
follows from the fact that ADDITION is COMMUTATIVE.
The first few happy numbers are 1, 7, 10, 13, 19, 23,
28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, ...
(Sloane’s A007770). These are also the numbers
whose 2-RECURRING DIGITAL INVARIANT sequences
have period 1.

The first few happy primes are 7, 13, 19, 23, 31, 79,
97, 103, 109, 139, ... (Sloane’s A035497).

See also KAPREKAR NUMBER, RECURRING DIGITAL

INVARIANT , UNHAPPY NUMBER
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Harada-Norton Group
The SPORADIC GROUP HN.
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Harary Graph

The smallest K -CONNECTED GRAPH Hk ; n with n
VERTICES, having kn =2d e edges, where xd e is the
CEILING FUNCTION (Skiena 1990, p. 179). When n or
k is even, Hk ; n is a CIRCULANT GRAPH. Hn�1; n is the
COMPLETE GRAPH Kn (Skiena 1990, p. 180).

See also K -CONNECTED GRAPH
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Harary-Read Number
POLYHEX

Harborth’s Tiling

A TILING consisting of a RHOMBUS such that 17
rhombuses fit around a point and a second tile in
the shape of six rhombuses stuck together. These two
tiles can fill the plane in exactly four different ways.



Two tiles which tile the plane in n ways can be
constructed using a rhombus of a shape such that
6n �7 pack around a point together with a complex
piece made by sticking 2n �2 rhombuses together
(Wells 1991).
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Hard Hexagon Entropy Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A constant related to the HARD SQUARE ENTROPY

CONSTANT. This constant is given by

kh � lim
N 0�

[G(N)]1 =N �1:395485972 . . . ; (1)

where G(N) is the number of configurations of
nonattacking KINGS on an n �n CHESSBOARD with
regular hexagonal cells, where N �n2 : Amazingly, kh

is algebraic and given by

kh � k1 k2 k3 k4 ; (2)

where

k1 �4�135 =411�5 =12c �2 (3)

k2 � 1 �
ffiffiffiffiffiffiffiffiffiffiffi
1 �c

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �c �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �c �c2

pq� �2

(4)

k3 � �1 �
ffiffiffiffiffiffiffiffiffiffiffi
1 �c

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �c �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �c �c2

pq� �2

(5)

k4 �
ffiffiffiffiffiffiffiffiffiffiffi
1 �a

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �a �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �a �a2

pq� ��1 =2

(6)

a ��124
363 111 =3 (7)

b � 2501
11979 331 =2 (8)

c � 1
4 �

3
8 a (b �1)1 =3 �(b �1)1 =3
h in o1 =3

: (9)

(Baxter 1980, Joyce 1988).
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Hard Lefschetz Theorem

See also LEFSCHETZ THEOREMS

Hard Square Entropy Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let F(m; n) be the number of m �n BINARY MATRICES

with no adjacent 1s (in either columns or rows). For
n �1, 2, ..., F(n ; n) is given by 2, 7, 63, 1234, ...
(Sloane’s A006506).

The hard square entropy constant is defined by

k � lim
n0�

[F(n; n)]1 =n2 

�1:503048082 . . . :

The quantity ln k arises in statistical physics (Baxter
et al. 1980, Pearce and Seaton 1988), and is known as
the entropy per site of hard squares. A related
constant known as the HARD HEXAGON ENTROPY

CONSTANT can also be defined.

See also BINARY MATRIX
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Hardy Function
RIEMANN-SIEGEL FUNCTIONS

Hardy Space
If 0 Bp B�; then the Hardy space Hp(D) is the class
of functions holomorphic on the disk D and satisfying
the growth condition

fk kHp sup
0BrB1

1

2p g
2p

0

f reiu
� ��� ��p du

" #1=p

B�;

where fk kHp is the Hardy norm.

See also BERGMAN SPACE
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Hardy Z-Function
RIEMANN-SIEGEL FUNCTIONS

Hardy’s Inequality
Let anf g be a NONNEGATIVE SEQUENCE and f (x) a
NONNEGATIVE integrable FUNCTION. Define

An �
Xn

k �1

ak (1)

and

F(x) �g
x

0

f (t) dt (2)

and take p �1. For sums,

X�
n �1

An

n

 !p

B
p

p � 1

 !pX�
n�1

anð Þp (3)

(unless all an �0); and for integrals,

g
�

0

F(x)

x

" #p

dx B
p

p � 1

 !p

g
�

0

[f (x)]p dx (4)

(unless f is identically 0).

See also CARLEMAN’S INEQUALITY
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Inequality." §9.8 in Inequalities, 2nd ed. Cambridge,
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Kaluza, T. and Szego, G. "Uuml;ber Reihen mit lauter
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Hardy’s Rule
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi �1 �xi ; so f1 �f x1ð Þ; f2 �
f x2ð Þ; ..., f7 �f x7ð Þ: Then Hardy’s rule approximating
the integral of f (x) is given by the NEWTON-COTES-like
formula

g
x7

x1

f (x) dx � 1
100 h 28f1 �162f2 �220f4 �162f6 �28f7ð Þ:

See also BODE’S RULE, DURAND’S RULE, NEWTON-

COTES FORMULAS, SHOVELTON’S RULE, SIMPSON’S 3/8

RULE, SIMPSON’S RULE, TRAPEZOIDAL RULE, WED-

DLE’S RULE
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Hardy-Littlewood Conjectures
The first Hardy-Littlewood conjecture is called the K -

TUPLE CONJECTURE. It states that the asymptotic
number of PRIME CONSTELLATIONS can be computed
explicitly.

The second Hardy-Littlewood conjecture states that

p(x �y) � p(x) 5 p(y)

for all x and y , where p(x) is the PRIME COUNTING

FUNCTION. Although it is not obvious, Richards (1974)
proved that this conjecture is incompatible with the
first Hardy-Littlewood conjecture.

See also PRIME CONSTELLATION, PRIME COUNTING

FUNCTION
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Hardy-Littlewood Constants
PRIME CONSTELLATION

Hardy-Littlewood k-Tuple Conjecture
PRIME PATTERNS CONJECTURE



Hardy-Littlewood Tauberian Theorem
Let an ]0 and suppose

X�
n�1

ane �an 

1

a

as a 0 0�: Then X
n5x

an 
x

as x 0 �: This theorem is a step in the proof of the
PRIME NUMBER THEOREM, but has subsequently been
superseded by an approach due to Wiener (Hardy
1999, p. 34).

See also TAUBERIAN THEOREM
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Hardy-Ramanujan Number
The smallest nontrivial TAXICAB NUMBER, i.e., the
smallest number representable in two ways as a sum
of two CUBES. It is given by

1729 �13 �123 �93 �103 :

The number derives its name from the following story
G. H. Hardy told about Ramanujan. "Once, in the
taxi from London, Hardy noticed its number, 1729.
He must have thought about it a little because he
entered the room where Ramanujan lay in bed and,
with scarcely a hello, blurted out his disappointment
with it. It was, he declared, ‘rather a dull number,’
adding that he hoped that wasn’t a bad omen. ‘No,
Hardy,’ said Ramanujan, ‘it is a very interesting
number. It is the smallest number expressible as
the sum of two [POSITIVE] cubes in two different
ways"’ (Hofstadter 1989, Kanigel 1991, Snow 1993;
Hardy 1999, pp. 13 and 68).

See also DIOPHANTINE EQUATION–3RD POWERS, TAXI-

CAB NUMBER
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Hardy-Ramanujan Theorem
Let v(n) be the number of DISTINCT PRIME FACTORS of
n . If  C(x) tends steadily to infinity with x , then

ln ln x �C(x)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln x

p
B v(n) Bln ln x �C(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln x

p

for ALMOST ALL numbers n Bx . "ALMOST ALL" means
here the frequency of those INTEGERS n in the
interval 1 5n 5x for which

v(n) �ln ln xj j > C(x)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln x

p

approaches 0 as x 0 �:/

See also DISTINCT PRIME FACTORS, ERDOS-KAC THE-

OREM

Harmonic
The word "harmonic" has several distinct meanings
in mathematics, none of which is obviously related to
the others. SIMPLE HARMONIC MOTION or "harmonic
oscillation" refers to oscillations with a sinusoidal
waveform. Such functions satisfy the differential
equation

d2x

dt2
�v2x�0; (1)

which has solution

x�A cos(vt�f1)�B sin(vt�f2): (2)

The word HARMONIC ANALYSIS is therefore used to
describe FOURIER ANALYSIS, which breaks an arbi-
trary function into a superposition of sinusoids.

In complex analysis, a HARMONIC FUNCTION refers to
a real-valued function f (x; y) which satisfies LAPLA-

CE’S EQUATION

92f (x; y)�0; (3)

where 92 is the LAPLACIAN. Although this definition is
similar to that of harmonic oscillation, it omits the
second term in the differential equation. The HELM-

HOLTZ DIFFERENTIAL EQUATION is obtained if it is
added back in,

92f (x; y)�k2f (x; y)�0: (4)

For distances along a line segment, a HARMONIC

RANGE is a set of four COLLINEAR points A , B , C ,
and D arranged such that

AB : BC�2 : 1 (5)

AD : DC�6 : 3: (6)



This use of the term probably arises from the use of
"harmonics" to refer to ratios of notes in small
integers producing an attractive sound, known in
music theory as "harmony."

For a set of data points xi ; the HARMONIC MEAN is
defined by

1

H 
�

1

n

Xn

i �1

1

xi

: (7)

The connection of this use of "harmonic" with the
preceding ones is not obvious.

See also HARMONIC FORM, HARMONIC FUNCTION,
HARMONIC RANGE, SIMPLE HARMONIC MOTION

Harmonic Addition Theorem
To convert an equation OF THE FORM

f ( u) �a cos u �b sin u (1)

to the form

f ( u) �c cos(u � d) ; (2)

expand (2) using the trigonometric addition formulas
to obtain

f ( u) �c cos u cos d �c sin u sin d: (3)

Now equate the COEFFICIENTS of (1) and (3)

a �c cos d (4)

b ��c sin d ; (5)

so

tan d ��
b

a 
(6)

a2 �b2 �c2 ; (7)

and we have

d �tan �1 �
b

a

 !
(8)

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
: (9)

Given two general sinusoidal functions with fre-
quency v :

c1 �A1 sin vt � d1ð Þ  (10)

c2 �A2 sin vt � d2ð Þ; (11)

their sum c can be expressed as a sinusoidal function
with frequency v

c � c1 � c2

�A1 sin( vt) cos d1 �sin d1 cos(vt)½ �
�A2 sin( vt) cos d2 �sin d2 cos(vt)½ �

� A1 cos d1 �A2 cos d2½ � sin( vt)

� A1 sin d1 �A2 sin d2½ � cos(vt) : (12)

Now, define

A cos d �A1 cos d1 �A2 cos d2 (13)

A sin d �A1 sin d1 �A2 sin d2 : (14)

Then (12) becomes

A cos d sin(vt) �A sin d cos(vt) �A sin( vt � d) : (15)

Square and add (13) and (14)

A2 �A2
1 �A2

2 �2A1A2 cos d2 � d1ð Þ: (16)

Also, divide (14) by (13)

tan d �
A1 sin d1 � A2 sin d2

A1 cos d1 � A2 cos d2

; (17)

so

c �A sin( vt � d) ; (18)

where A and d are defined by (16) and (17).

This procedure can be generalized to a sum of n
harmonic waves, giving

c �
Xn

i �1

Ai cos vt � dið Þ�A cos(vt � d) ; (19)

where

A2�
Xn

i�1

Xn

j�1

AiAj cos di�dj

� �
(20)

�
Xn

i�1

A2
i �2

Xn

i�1

Xn

j>1

AiAj cos di�dj

� �
(21)

and

tan d�
Pn

i�1 Ai sin diPn
i�1 Ai cos di

: (22)

Harmonic Analysis
FOURIER SERIES

Harmonic Brick
A right-angled PARALLELEPIPED with dimensions a�
ab�abc; where a , b , and c are INTEGERS.

See also BRICK, DE BRUIJN’S THEOREM, EULER BRICK



Harmonic Conjugate Function
The harmonic conjugate to a given function u(x; y) is
a function v(x; y) such that

f (x; y) �u(x; y) �iv(x; y)

is COMPLEX DIFFERENTIABLE (i.e., satisfies the CAU-

CHY-RIEMANN EQUATIONS). It is given by

v(z) �g
z

z0

ux dy �uy dx �C ;

where ux �@u =@x; uy �@u=@y; and C is a CONSTANT

OF INTEGRATION.

Note that ux dy �uy dx is a CLOSED FORM since u is
HARMONIC, uxx �vyy �0: The LINE INTEGRAL is WELL

DEFINED on a SIMPLY CONNECTED domain because it is
closed. However, on a domain which is not simply
connected (such as the punctured disk), the harmonic
conjugate may not exist.

See also CAUCHY-RIEMANN EQUATIONS, COMPLEX

DIFFERENTIABLE, HARDY SPACE, HARMONIC FUNC-

TION, HILBERT TRANSFORM, SIMPLY CONNECTED
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Harmonic Conjugate Points

Given COLLINEAR points W , X , Y , and Z , Y and Z are
harmonic conjugates with respect to W and X if

WYj j
YXj j

�
WZj j
XZj j

:

The distances between such points are said to be in
HARMONIC RATIO, and the LINE SEGMENT depicted
above is called a HARMONIC SEGMENT. Harmonic
points divide a LINE SEGMENT internally and exter-
nally in the same ratio. If WZj j�1 ; then

WYj j�a(1 � a)

1 � a

WXj j� 2a

a � 1 
:

Harmonic conjugate points are also defined for a
TRIANGLE. If W and X have TRILINEAR COORDINATES

a : b : g and a? : b? : g ?; then the TRILINEAR COORDI-

NATES of the harmonic conjugates are

Y � a � a? : b � b? : g � g ?

Z � a � a? : b � b? : g � g?

(Kimberling 1994).

See also HARMONIC RANGE, HARMONIC RATIO, POLAR,
POLE (INVERSION)
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Harmonic Coordinates
Harmonic coordinates satisfy the condition

Gl �g mv Gl
mv �0 ; (1)

or equivalently,

@

@xk

ffiffiffi
g

p
g lk

� �
�0: (2)

It is always possible to choose such a system. Using
the D’ALEMBERTIAN,

I

2 f � g lk f; l

� �
; k
�g lk

@2f

@xl@xk
�Gl @f

@xl
: (3)

But since Gl�0 for harmonic coordinates, the result
is a generalization of the harmonic equation

92x�0 (4)

to

I

2xm�0: (5)

See also D’ALEMBERTIAN
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Harmonic Decomposition
A polynomial function of the elements of a VECTOR x
can be uniquely decomposed into a sum of HARMONIC

POLYNOMIALS times POWERS of xj j:/

See also HARMONIC FUNCTION

Harmonic Divisor Number
A number n for which the HARMONIC MEAN of the
DIVISORS of n , i.e., nd(n)=s(n); is an INTEGER, where
d(n) is the number of POSITIVE integral DIVISORS of n
and s(n) is the DIVISOR FUNCTION. For example, the



divisors of n �140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35,
70, and 140, giving

d(140) �12

s(140) �336

140d(140)

s(140)
�

140 � 12

336
�5 ;

so 140 is a harmonic divisor number. Harmonic
divisor numbers are also called ORE NUMBERS. Garcia
(1954) gives the 45 harmonic divisor numbers less
than 107. The first few are 1, 6, 140, 270, 672, 1638, ...
(Sloane’s A007340).

For distinct PRIMES p and q , harmonic divisor
numbers are equivalent to EVEN PERFECT NUMBERS

for numbers OF THE FORM prq : Mills (1972) proved
that if there exists an ODD POSITIVE harmonic divisor
number n , then n has a prime-POWER factor greater
than 107.

Another type of number called "harmonic" is the
HARMONIC NUMBER.

See also DIVISOR FUNCTION, HARMONIC NUMBER
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Harmonic Equation
LAPLACE’S EQUATION

Harmonic Function
Any REAL FUNCTION u(x; y) with continuous second
PARTIAL DERIVATIVES which satisfies LAPLACE’S EQUA-

TION,

92u(x; y)�0; (1)

is called a harmonic function. Harmonic functions are
called POTENTIAL FUNCTIONS in physics and engineer-

ing. Potential functions are extremely useful, for
example, in electromagnetism, where they reduce
the study of a 3-component VECTOR FIELD to a 1-
component SCALAR FUNCTION. A scalar harmonic
function is called a SCALAR POTENTIAL, and a vector
harmonic function is called a VECTOR POTENTIAL.

To find a class of such functions in the PLANE, write
the LAPLACE’S EQUATION in POLAR COORDINATES

urr�
1

r
ur�

1

r2
uuu�0; (2)

and consider only radial solutions

urr�
1

r
ur�0: (3)

This is integrable by quadrature, so define v�du=dr;

dv

dr
�

1

r
v�0 (4)

dv

v
��

dr

r
(5)

ln
v

A

 !
��ln r (6)

v

A
�

1

r
(7)

v�
du

dr
�

A

r
(8)

du�A
dr

r
; (9)

so the solution is

u�A ln r: (10)

Ignoring the trivial additive and multiplicative con-
stants, the general pure radial solution then becomes

u�ln (x�a)2�(y�b)2
h i1=2

�1
2 ln (x�a)2�(y�b)2

h i
: (11)

Other solutions may be obtained by differentiation,
such as

u�
x � a

(x � a)2 � (y � b)2 (12)

v�
y � b

(x � a)2 � (y � b)2 ; (13)

u�ex sin y (14)

v�ex cos y; (15)



and

tan �1 y � b

x � a

 !
: (16)

Harmonic functions containing azimuthal depen-
dence include

u �rn cos(nu) (17)

v �rn sin(nu) : (18)

The POISSON KERNEL

u(r ; R; u; f) �
R2 � r2

R2 � 2rR cos(u � f) � r2
(19)

is another harmonic function.

See also CONFORMAL MAPPING, DIRICHLET PROBLEM,
HARMONIC ANALYSIS, HARMONIC DECOMPOSITION,
HARNACK’S INEQUALITY, HARNACK’S PRINCIPLE, KEL-

VIN TRANSFORMATION, LAPLACE’S EQUATION, POISSON

INTEGRAL, POISSON KERNEL, SCALAR POTENTIAL,
SCHWARZ REFLECTION PRINCIPLE, SUBHARMONIC

FUNCTION, VECTOR POTENTIAL
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Harmonic Homology
A PERSPECTIVE COLLINEATION with center O and axis
o not incident is called a HOMOLOGY. A HOMOLOGY is
said to be harmonic if the points A and A? on a line
through O are harmonic conjugates with respect to O
and o � a: Every PERSPECTIVE COLLINEATION of period
two is a harmonic homology.

See also HOMOLOGY (GEOMETRY), PERSPECTIVE COL-

LINEATION
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Harmonic Logarithm
For all INTEGERS n and NONNEGATIVE INTEGERS t , the
harmonic logarithms l(t)

n (x) of order t and degree n
are defined as the unique functions satisfying

1. l(t)
n (x) �(ln x)t ;/

2. l(t)
n (x) has no constant term except l(0)

0 (x) �1;/

3.
d

dx
l(t)

n (x) � nb el(t)
n�1(x) ;/

where the "ROMAN SYMBOL" / nb e/ is defined by

nb e �
n for n "0
1 for n �0

,
(1)

(Roman 1992). This gives the special cases

l(0)
n (x) �

xn for n ]0
0 for n B0

,
(2)

l(1)
n (x) �

xn(ln x �Hn) for n ]0
xn for n B0;

,
(3)

where Hn is a HARMONIC NUMBER

Hn �
Xn

k�1

1

k 
: (4)

The harmonic logarithm has the INTEGRAL

g l(1)
n (x) dx �

1

n � 1b e
l(1)

n�1(x) : (5)

The harmonic logarithm can be written

l(t)
n (x) � nb e! D̃�n(ln x)t ; (6)

where D̃ is the DIFFERENTIAL OPERATOR, (so D̃�n is
the nth INTEGRAL). Rearranging gives

D̃k l(t)
n (x) �

nb e!
n � kb e

$ ’
!l(t)

n�k(x) : (7)

This formulation gives an analog of the BINOMIAL

THEOREM called the LOGARITHMIC BINOMIAL FORMU-

LA. Another expression for the harmonic logarithm is

l(t)
n (x)�xn

Xt

j�0

(�1)j(t)jc
(j)
n (ln x)t�j; (8)

where (t)j�t(t�1) � � � (t�j�1) is a POCHHAMMER

SYMBOL and c(j)
n is a two-index HARMONIC NUMBER

(Roman 1992).

See also LOGARITHM, ROMAN FACTORIAL
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Harmonic Map
A map u : M 0 N; between two COMPACT RIEMAN-

NIAN MANIFOLDS, is a harmonic map if it is a critical
point for the energy functional



gM

duj j2 d mM :

The norm of the differential duj j is given by the
metric on M and N and dmM is the measure on M .
Typically, the class of allowable maps lie in a fixed
HOMOTOPY CLASS of maps.

The EULER-LAGRANGE DIFFERENTIAL EQUATION for
the energy functional is a non-linear ELLIPTIC PAR-

TIAL DIFFERENTIAL EQUATION. For example, when M
is the circle, then the Euler-Lagrange equation is the
same as the geodesic equation. Hence, u is a closed
geodesic iff u is harmonic. The map from the circle to
the equator of the standard 2-sphere is a harmonic
map, and so are the maps that take the circle and
map it around the equator n times, for any integer n .
Note that these all lie in the same HOMOTOPY CLASS.
A higher dimensional example is a MEROMORPHIC

FUNCTION on a compact RIEMANN SURFACE, which is a
harmonic map to the RIEMANN SPHERE.

A harmonic map may not always exist in a HOMOTOPY

CLASS, and if it does it may not be unique. When N is
negatively curved, a harmonic representative exists
for each HOMOTOPY CLASS, and is also unique. For
surfaces, the harmonic maps have been classified,
and are precisely the holomorphic maps and the anti-
holomorphic maps. Thus by HODGE’S THEOREM for
surfaces, there are no non-trivial harmonic maps
from the SPHERE to the TORUS.

A harmonic map between RIEMANNIAN MANIFOLDS

can be viewed as a generalization of a GEODESIC when
the domain DIMENSION is one, or of a HARMONIC

FUNCTION when the range is a EUCLIDEAN SPACE.

See also BOCHNER IDENTITY, CALCULUS OF VARIA-

TIONS, CURVATURE, EUCLIDEAN SPACE, EULER-LA-

GRANGE DIFFERENTIAL EQUATION, GEODESIC,
HARMONIC FUNCTION, HODGE’S THEOREM, HOMOTOPY

CLASS, RIEMANNIAN MANIFOLD, RIEMANN SURFACE
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Harmonic Mean
The harmonic mean H x1 ; . . . ; xnð Þ of n points xi

(where i �1, ..., n ) is

1

H 
�

1

n

Xn

i �1

1

xi

: (1)

The special cases of n �2 and n �3 are therefore
given by

H x1 ; x2ð Þ� 2x1x2

x1 � x2

(2)

H x1 ; x2 ; x3ð Þ� 3x1x2x3

x1x2 � x1x3 � x2x3

; (3)

and so on.

The VOLUME-to-SURFACE AREA ratio for a cylindrical
container with height h and radius r and the MEAN

CURVATURE of a general surface are related to the
harmonic mean.

Hoehn and Niven (1985) show that

H a1 �c; a2 �c ; . . . ; an �cð Þ
> c �H a1 ; a2 ; . . . ; anð Þ (4)

for any POSITIVE constant c .

See also ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC

MEAN, GEOMETRIC MEAN, HARMONIC-GEOMETRIC

MEAN, HARMONIC RANGE, ROOT-MEAN-SQUARE
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Harmonic Mean Index
The statistical INDEX

PH �

P
v0P v0p0

pn

�
P

p0q0P p2
0q0

pn

;

where pn is the price per unit in period n , qn is the
quantity produced in period n , and vn�pnqn the
value of the n units, and subscripts 0 indicate the
reference year.

See also INDEX
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Harmonic Number
A number OF THE FORM

Hn�
Xn

k�1

1

k
: (1)

This can be expressed analytically as

Hn�g�c0(n�1); (2)



where g is the EULER-MASCHERONI CONSTANT and
C(x)�c0(x) is the DIGAMMA FUNCTION. The number
formed by taking alternate signs in the sum also has
an analytic solution

H?n�
Xn

k�1

(�1)k�1

k
(3)

�ln 2�1
2(�1)n

c0
1
2 n�1

2

� �
�c0

1
2 n�1
� �h i

: (4)

The first few harmonic numbers Hn are 1, 3=2; 11=6;
25=12; 137=60; ... (Sloane’s A001008 and A002805).
The harmonic numbers are implemented in Mathe-
matica 4.0 as HarmonicNumber[n ].

The harmonic number Hn is never an INTEGER except
for H1; which can be proved by using the strong
triangle inequality to show that the 2-ADIC VALUE of
Hn is greater than 1 for n �1. This result was proved
in 1915 by Taeisinger, and the more general results
that any number of consecutive terms not necessarily
starting with 1 never sum to an integer was proved by
Kürschák in 1918 (Hoffman 1998, p. 157).

The harmonic numbers have ODD NUMERATORS and
EVEN DENOMINATORS. The nth harmonic number is
given asymptotically by

Hn
ln n�g�
1

2n
; (5)

where g is the EULER-MASCHERONI CONSTANT (Con-
way and Guy 1996). Gosper gave the interesting
identity

X�
i�0

ziHi

i!
��ez

X�
k�1

(�z)k

kk!
�ez[ln z�G(0; z)�g]; (6)

where G(0; z) is the incomplete GAMMA FUNCTION and
g is the EULER-MASCHERONI CONSTANT. Borwein and
Borwein (1995) show that

X�
n�1

H2
n

(n � 1)2�
11
4 z(4)� 11

360 p
4 (7)

X�
n�1

H2
n

n2
�17

4 z(4)� 17
360 p

4 (8)

X�
n�1

Hn

n3
�5

4 z(4)� 1
72 p

4; (9)

where z(z) is the RIEMANN ZETA FUNCTION. The first of
these had been previously derived by de Doelder
(1991), and the last by Euler (1775). These identities
are corollaries of the identity

1

p g
p

0

x2 ln 2 cos 1
2 x
� �h in o2

dx�11
2 z(4)� 11

180 p
4 (10)

(Borwein and Borwein 1995). Additional identities

due to Euler are

X�
n�1

Hn

n2
�2z(3) (11)

2
X�
n�1

Hn

nm
�(m�2)z(m�1)

�
Xm�2

n�1

z(m�n)z(n�1) (12)

for m�2, 3, ... (Borwein and Borwein 1995), where
z(3) is APÉRY’S CONSTANT. These sums are related to
so-called EULER SUMS.

There is an unexpected connection between the
harmonic numbers and the RIEMANN HYPOTHESIS.

Harmonic numbers of order r can be defined by the
relationship

H(r)
n �

Xn

k�1

1

kr
: (13)

These number are built into Mathematica 4.0 as
HarmonicNumber [n , r ]. These numbers obey the
unexpected identity

9H(n)
8 �19H(n)

9 �10H(n)
10 �

Xn�1

k�1

H(n�k)
8 H(k)

9 �H(n�k)
9 H(k)

9

2
�H(n�k)

8 H(k)
10 �H(n�k)

9 H(k)
10 ��0 (14)

(M. Trott).

Conway and Guy (1996) define the second harmonic
number by

H2
n�

Xn

i�1

Hi�(n�1) Hn�1�1
� �

�(n�1) Hn�1�H1

� �
; (15)

the third harmonic number by

H3
n�

Xn

i�1

H(2)
i �

n�2
2

� �
Hn�2�H2

� �
; (16)

and the nth harmonic number by

Hk
n�

n�k�1
k�1

� �
(Hn�k�1�Hk�1): (17)

A slightly different definition of a two-index harmonic
number c(j)

n is given by Roman (1992) in connection
with the HARMONIC LOGARITHM. Roman (1992) de-
fines this by

c(0)
n �

1 for n]0
0 for nB0

,
(18)

c(j)
0 �

1 for j�0
0 for j"0

,
(19)



plus the RECURRENCE RELATION

cn(j)
n �c(j�1)

n �nc(j)
n�1 : (20)

For general n �0 and j �0, this is equivalent to

c(j)
n �

Xn

i�1

1

i
c(j�1)

i ; (21)

and for n �0, it simplifies to

c(j)
n �

Xn

i�1

n
i

� �
(�1)i�1i �j : (22)

For n B0, the harmonic number can be written

c(j)
n �(�1)j �n �!s(�n; j) ; (23)

where nb e! is the ROMAN FACTORIAL and s is a
STIRLING NUMBER OF THE FIRST KIND.

A separate type of number sometimes also called a
"harmonic number" is a HARMONIC DIVISOR NUMBER

(or ORE NUMBER).

See also APÉ RY’S CONSTANT, EULER SUM, HARMONIC

LOGARITHM, HARMONIC SERIES, ORE NUMBER, RAMA-

NUJAN FUNCTION, UNIT FRACTION
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Harmonic Progression
HARMONIC SERIES

Harmonic Range

A set of four COLLINEAR points A , B , C , and D

arranged such that

AB : BC �2 : 1

AD : DC �6 : 3:

Hardy (1967) uses the term HARMONIC SYSTEM OF

POINTS to refer to a harmonic range.

See also BIVALENT RANGE, EULER LINE, GERGONNE

LINE, HARMONIC CONJUGATE POINTS, SODDY LINE
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Harmonic Ratio
HARMONIC RANGE

Harmonic Segment
HARMONIC CONJUGATE POINTS

Harmonic Series
The SUM

X�
k�1

1

k
(1)

is called the harmonic series. It can be shown to
DIVERGE using the INTEGRAL TEST by comparison with
the function 1=x: The divergence, however, is very
slow. The generalization of the harmonic series

z(n)�
X�
k�1

1

kn
(2)

is known as the RIEMANN ZETA FUNCTION.

The sum

X�
k�1

1

pk

(3)

taken over all PRIMES pk also diverges (Wells 1986,
p. 41) with asymptotic behavior



Xx

k �1

1

pk


ln ln x �O(1) (4)

(Hardy 1999, p. 50).

Rather surprisingly, the ALTERNATING SERIES

X�
k�1

( �1)k �1

k
�ln 2 (5)

converges to the natural logarithm of 2. An explicit
formula for the partial sum of the alternating series is
given by

Xn

k �1

(�1)k�1

k

�ln 2 �1
2(�1)n 

c0
1
2 �

1
2 n

� �
� c0 1 �1

2 n
� �h i

: (6)

Gardner (1984) notes that this series never reaches
an integral sum.

The sum of the first few terms of the harmonic series
is given analytically by the nth HARMONIC NUMBER

Hn �
Xn

j�1

1

j
� g � c0(n �1); (7)

where g is the EULER-MASCHERONI CONSTANT and
C(x) � c0(x) is the DIGAMMA FUNCTION. The number of
terms needed to exceed 1, 2, 3, ... are 1, 4, 11, 31, 83,
227, 616, 1674, 4550, 12367, 33617, 91380, 248397, ...
(Sloane’s A004080). Using the analytic form shows
that after 2:5 �108 terms, the sum is still less than
20. Furthermore, to achieve a sum greater than 100,
more than 1:509 �1043 terms are needed! Written
explicitly, the number of terms is
15,092,688,622,113,788,323,693,563,264,538,101,449,
859,497 (Gardner 1984, p. 167).

Progressions OF THE FORM

1

a1

;
1

a1 � d 
;

1

a1 � 2d 
; . . .  (8)

are also sometimes called harmonic series (Beyer
1987).

The partial sums of the harmonic series are plotted in
the left figure above, together with two related series.

See also ARITHMETIC SERIES, BERNOULLI’S PARADOX,
BOOK STACKING PROBLEM, EULER SUM, MERTENS

CONSTANT, Q-HARMONIC SERIES, ZIPF’S LAW
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Harmonic System of Points
HARMONIC RANGE

Harmonic-Geometric Mean
Let

an�1 �
2an bn

an � bn

bn �1 �
ffiffiffiffiffiffiffiffiffiffi
an bn

p
;

then

H(a0 ; b0) � lim
n 0�

an �
1

M a�1
0 ; b�1

0

� � ;
where M is the ARITHMETIC-GEOMETRIC MEAN.

See also ARITHMETIC MEAN, ARITHMETIC-GEOMETRIC

MEAN, GEOMETRIC MEAN, HARMONIC MEAN

Harmonious Graph
A connected LABELED GRAPH with n EDGES in which
all VERTICES can be labeled with distinct INTEGERS

(mod n ) so that the sums of the PAIRS of numbers at
the ends of each EDGE are also distinct (mod n ). The
LADDER GRAPH, FAN, WHEEL GRAPH, PETERSEN GRAPH,
TETRAHEDRAL GRAPH, DODECAHEDRAL GRAPH, and
ICOSAHEDRAL GRAPH are all harmonious (Graham
and Sloane 1980).

See also GRACEFUL GRAPH, LABELED GRAPH, POST-

AGE STAMP PROBLEM, SEQUENTIAL GRAPH
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Harmonograph

A device consisting of two coupled pendula, usually
oscillating at right angles to each other, which are
attached to a pen. The resulting damped SIMPLE

HARMONIC MOTION can produce beautiful, complicated
curves which eventually terminate in a point as the
motion of the pendula is damped by friction. In the
absence of friction, the figures produced by a harmo-
nograph would be LISSAJOUS CURVES.

See also LISSAJOUS CURVE, SIMPLE HARMONIC MO-

TION, SPIROGRAPH
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Harnack’s Inequality
Let D �D(z0 ; R) be an OPEN DISK, and let u be a
HARMONIC FUNCTION on D such that u(z) ]0 for all
z � D: Then for all z � D ; we have

0 5u(z) 5
R

R � z � z0j j

 !2

u(z0) :

See also HARMONIC FUNCTION, HARNACK’S PRINCIPLE,
LIOUVILLE’S CONFORMALITY THEOREM
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Harnack’s Principle
Let u1 5u2 5. . .  be  HARMONIC FUNCTIONS on a con-
nected open set U ⁄C : Then either uj 0 � uniformly
on compact sets or there is a finite-values HARMONIC

FUNCTION u on U such that uj 0 u uniformly on
compact sets.

See also HARMONIC FUNCTION, HARNACK’S INEQUAL-

ITY
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Harnack’s Theorems
Let si be the orders of singular points on a curve
(Coolidge 1959, p. 56). Harnack’s first theorem states
that a real irreducible curve of order n cannot have
more than

1
2(n�1)(n�2)�

X
si(si�1)�1

circuits (Coolidge 1959, p. 57).

Harnack’s second theorem states that there exists a
curve of every order with the maximum number of
circuits compatible with that order and with a certain
number of double points, provided that number is not
permissible for a curve of lower order (Coolidge 1959,
p. 61).
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Harry Dym Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�uxxxu
3:
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Harshad Number
A POSITIVE INTEGER which is DIVISIBLE by the sum of
its DIGITS, also called a Niven number (Kennedy et al.
1980) or a multidigital number (Kaprekar 1955). The
first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21,
24, ... (Sloane’s A005349). Grundman (1994) proved
that there is no sequence of more than 20 consecutive
Harshad numbers, and found the smallest sequence
of 20 consecutive Harshad numbers, each member of
which has 44,363,342,786 digits.

Grundman (1994) defined an n -Harshad (or n -Niven)
number to be a POSITIVE INTEGER which is DIVISIBLE

by the sum of its digits in base n]2: Cai (1996)
showed that for n�2 or 3, there exists an infinite
family of sequences of consecutive n -Harshad num-
bers of length 2n:/

Define an all-Harshad (or all-Niven) number as a
positive integer which is divisible by the sum of its



digits in all bases n ]2: Then only 1, 2, 4, and 6 are
all-Harshad numbers (A. Kertesz).
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Hart Circle

The CIRCLE H which touches the INCIRCLES I , IA ; IB ;
and IC of a CIRCULAR TRIANGLE ABC and its ASSO-

CIATED TRIANGLES. It is either externally tangent to I
and internally tangent to incircles of the ASSOCIATED

TRIANGLES IA ; IB ; and IC (as in the above figure), or
vice versa. The Hart circle has several properties
which are analogous to the properties on the NINE-

POINT CIRCLE of a linear triangle. There are eight
Hart circles associated with a given CIRCULAR TRIAN-

GLE.
The Hart circle of any CIRCULAR TRIANGLE and the
Hart circles of the three ASSOCIATED TRIANGLES have

a common tangent circle which touches the former in
the opposite sense to that which it touches the latter
(Lachlan 1893, p. 254). In addition, the CIRCUMCIR-

CLE of any CIRCULAR TRIANGLE is the Hart circle of the
CIRCULAR TRIANGLE formed by the circumcircles of the
inverse associated triangles (Lachlan 1893, p. 254).

See also ASSOCIATED TRIANGLES, CIRCLE, CIRCULAR

TRIANGLE
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Hart’s Inversor

A LINKAGE which draws the inverse of a given curve.
It can also convert circular to linear motion. The rods
satisfy AB�CD and BC�DA , and O , P , and P?
remain COLLINEAR. Coxeter (1969, p. 428) shows that
if AO�mAB; then

OP�OP?�m(1�m)(AD2�AB2):

See also LINKAGE, PEAUCELLIER INVERSOR
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Hart’s Theorem
Any one of the eight APOLLONIUS CIRCLES of three
given CIRCLES is TANGENT to a CIRCLE H known as a



HART CIRCLE, as are the other three APOLLONIUS

CIRCLES having (1) like contact with two of the given
CIRCLES and (2) unlike contact with the third.

See also APOLLONIUS CIRCLES, HART CIRCLE
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Hartley Transform
An INTEGRAL TRANSFORM which shares some features
with the FOURIER TRANSFORM, but which (in the
discrete case), multiplies the KERNEL by

cos
2pkn

N

 !
�sin

2pkn

N

 !
(1)

instead of

e �2pikn=N �cos
2pkn

N

 !
�i sin

2 pkn

N

 !
: (2)

The Hartley transform produces REAL output for a
REAL input, and is its own inverse. It therefore can
have computational advantages over the DISCRETE

FOURIER TRANSFORM, although analytic expressions
are usually more complicated for the Hartley trans-
form.

The discrete version of the Hartley transform can be
written explicitly as

H[a] �
1ffiffiffiffiffi
N

p
XN �1

n�0

an cos
2pkn

N

 !
�sin

2pkn

N

 !" #
(3)

�RF[a] �IF[a] ; (4)

where F denotes the FOURIER TRANSFORM. The
Hartley transform obeys the CONVOLUTION property

H[a +b]k �
1
2 AkBk � ĀkB̄k �AkB̄k � ĀkBk

� �
; (5)

where

ā0 �a0 (6)

ān=2 �an=2 (7)

āk �an�k (8)

(Arndt). Like the FAST FOURIER TRANSFORM, there is a
"fast" version of the Hartley transform. A decimation
in time algorithm makes use of

Hleft
n [a] �Hn=2 a

even½ ��XHn=2 aodd
2 3

(9)

Hright
n [a] �Hn=2 a

even½ ��XHn=2 aodd
2 3

; (10)

where X denotes the sequence with elements

an cos
pn

N

 !
� ̄an sin

pn

N

 !
: (11)

A decimation in frequency algorithm makes use of

Heven
n [a] �Hn=2 aleft �aright

2 3
; (12)

Hodd
n [a] �Hn=2 X aleft �aright

� �2 3
: (13)

The DISCRETE FOURIER TRANSFORM

Ak �F[a] �
XN �1

n�0

e �2 pikn=Nan (14)

can be written

Ak

A�k

� �
�
XN �1

n�0

e �2pikn=N 0
0 e�2pikn=N

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F
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� �
(15)
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� �
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N

 !
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N

 !
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N

 !
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N

 !
2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

� 1

2

1�i 1�i
1�i 1�i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

an

an

� �
; (16)

so

F�T�1HT: (17)

See also DISCRETE FOURIER TRANSFORM, FAST FOUR-

IER TRANSFORM, FOURIER TRANSFORM
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Haruki’s Theorem

Given three circles, each intersecting the other two in
two points, the line segments connecting their points
of intersection satisfy

ace

bdf
�1

(Honsberger 1995).

See also CIRCULAR TRIANGLE, TRIQUETRA, VENN

DIAGRAM
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Hash Function
A hash function H projects a value from a set with
many (or even an infinite number of) members to a
value from a set with a fixed number of (fewer)
members. Hash functions are not reversible. A hash
function H might, for instance, be defined as /

y�H(x)� 10x (mod 1)b c/, where x �R; y � [0; 9]; and
xb c is the FLOOR FUNCTION.

Hash functions can be used to determine if two
objects are equal (possibly with a fixed average
number of mistakes). Other common uses of hash
functions are CHECKSUMS over a large amount of data
(e.g., the CYCLIC REDUNDANCY CHECK [CRC]) and
finding an entry in a database by a key value. The
UNIX c-shell (csh) uses a hash table to store the
location of executable programs. As a result adding
new executables in a user’s search path requires
regeneration of the hash table using the rehash
command before these programs can be executed
without specifying the complete path.

To illustrate the use of hash functions in database
lookups, consider a database consisting of an array

containing an index n , a name, and a telephone
number, with names listed in arbitrary order.

n Name Number

0 Parker 12345

1 (empty)

2 Davis 43534

3 Harris 32452

4 Corea 46532

5 Hancock 96562

6 Brecker 37811

7 (empty)

/N�1/ Marsalis 54323

To look up Hancock from this array, you would start
at the beginning of the array, compare the names,
then try the next until the names match. This very
simple algorithm finds any entry in 1 to N steps,
giving an average seek time of N=2: The seek time is
therefore proportional to N . A much faster result can
generally be achieved, if the database is sorted.

n Name

0 Brecker

1 Corea

2 Davis

3 Hancock

4 Harris

5 Marsalis

6 Parker

7 (empty)

/N�1/ (empty)

An efficient algorithm on this sorted array first
checks entry N=2; and then recursively uses bisection
to check entries in intervals [0; N=2�1] or [N=2�
1; N�1]; depending wether the most recently
looked-up name precedes or succeeds the name
sought. The average seek time of this procedure this
is proportional to ln N:/

The idea behind using a hash function here is that
although the possible number of combinations of
characters in a name is quite large, only a subset of



them is usually found in practice (i.e., names such as
"Kwqrst" are much less common than names like
"Jones.") Therefore, when you insert an entry into the
database at an index that can somehow be calculated
using a key (which is also available at the time you
search for it), you might be able to find it later at the
first location you check.

Consider the following simple example in which the
hash function H is simply the sum of ASCII codes of
characters in a name (considered to be all in lower-
case) computed mod N �13.

Name H

Brecker 6

Corea 2

Davis 2

Hancock 12

Harris 12

Marsalis 2

Parker 8

The above example illustrates that the hash function
can give the same results for different keys. This
difficulty is typically circumvented by introducing a
second hash function H2 whose results are designed
to be completely different from that of H . For
illustrative purposes, let H2 be one plus the bitwise
exclusive or of all codes in a name (again taken as all
lower-case) mod N �1 : This gives the following table.

Name /H2/

Brecker 11

Corea 3

Davis 10

Hancock 4

Harris 8

Marsalis 3

Parker 8

A new index can then be calculated as the sum of the
first index and H2 (mod N ) until an empty slot is
found where new data can be stored. Note that when
using H2 as an offset to walk through the database, it
is not, in general, guaranteed that any key will
eventually reach any slot. However, for certain values
of N , namely N a PRIME NUMBER, such behavior is

guaranteed, so N is always chosen to be PRIME. After
computing H2 with N �13 (a PRIME), the above phone
list would look like this for names added in alphabetic
order.

Index Key Compares To Find

0 (empty)

1 (empty)

2 Corea 1

3 Hancock 2

4 (empty)

5 Marsalis 2

6 Brecker 1

7 Harris 2

8 Parker 1

9 (empty)

10 (empty)

11 (empty)

12 Davis 2

The average seek time for locating a name in this
table depends on the kind of data, N , and the quality
of the hash functions used. However, for reasonable
choices of hash functions, it will be much smaller
than ln N :/

See also COLLISION-FREE HASH FUNCTION, CRYPTO-

GRAPHIC HASH FUNCTION, CYCLIC REDUNDANCY

CHECK, ONE-WAY HASH FUNCTION, HASH TABLE,
UNIVERSAL HASH FUNCTION

Hash Table
A database accessed by one or more HASH FUNCTIONS.

See also HASH FUNCTION

HashLife
A LIFE ALGORITHM that achieves remarkable speed by
storing subpatterns in a HASH FUNCTION table, and
using them to skip forward, sometimes thousands of
generations at a time. HashLife takes tremendous
amounts of memory and can’t show patterns at every
step, but can quickly calculate the outcome of a
pattern that takes millions of generations to com-
plete.

See also HASH FUNCTION, LIFE



Hasse Diagram
A graphical rendering of a PARTIALLY ORDERED SET

displayed via the COVER relation of the PARTIALLY

ORDERED SET with an implied upward orientation. A
point is drawn for each element of the POSET, and line
segments are drawn between these points according
to the following two rules:

1. If x By in the poset, then the point correspond-
ing to x appears lower in the drawing than the
point corresponding to y .
2. The line segment between the points corre-
sponding to any two elements x and y of the poset
is included in the drawing IFF x covers y or y
covers x .

Hasse diagrams are also called UPWARD DRAWINGS.

A Hasse diagram of a GRAPH may be generated using
HasseDiagram[g ] in the Mathematica add-on pack-
age DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).
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Hasse Principle
A collection of equations satisfies the Hasse principle
if, whenever one of the equations has solutions in R
and all the Qp ; then the equations have solutions in
the RATIONALS Q: Examples include the set of
equations

ax2 �bxy �cy2 �0

with a , b , and c INTEGERS, and the set of equations

x2 �y2 �a

for a rational. The trivial solution x �y �0 is usually
not taken into account when deciding if a collection of
homogeneous equations satisfies the Hasse principle.
The Hasse principle is sometimes called the local-
global principle.

See also GLOBAL FIELD, LOCAL FIELD

Hasse’s Algorithm
COLLATZ PROBLEM

Hasse’s Conjecture
Define the ZETA FUNCTION of a VARIETY over a
NUMBER FIELD by taking the product over all PRIME

IDEALS of the ZETA FUNCTIONS of this VARIETY reduced
modulo the PRIMES. Hasse conjectured that this
product has a MEROMORPHIC continuation over the
whole plane and a functional equation.

See also MEROMORPHIC FUNCTION, PRIME IDEAL
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Hasse’s Resolution Modulus Theorem
The JACOBI SYMBOL (a =y) � x(y) as a CHARACTER can
be extended to the KRONECKER SYMBOL (f (a) =y) �
x�(y) so that x�(y) � x(y) whenever x(y) "0 : When y is
RELATIVELY PRIME to f (a) ; then x �(y) "0; and for
NONZERO values x�(y1) � x �(y2) IFF y1 �y2mod �f (a):
In addition, f (a)j j is the minimum value for which the
latter congruence property holds in any extension
symbol for x(y) :/

See also CHARACTER (NUMBER THEORY), JACOBI

SYMBOL, KRONECKER SYMBOL
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Hasse-Davenport Relation
Let F be a FINITE FIELD with q elements, and let Fs be
a FIELD containing F such that Fs : F½ ��s : Let x be a
nontrivial MULTIPLICATIVE CHARACTER of F and x?�
x(NFs =F a character of Fs : Then

�g(x)ð Þs��g x ?ð Þ;

where g(x) is a GAUSSIAN SUM.

See also GAUSSIAN SUM, MULTIPLICATIVE CHARACTER
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Hasse-Minkowski Theorem
Two nonsingular forms are equivalent over the
rationals IFF they have the same DETERMINANT and
the same P -SIGNATURES for all p .

Hat
The hat is a CARET-shaped symbol most commonly
used to denote a UNIT VECTOR (e.g., v̂) or an ESTIMA-

TOR (e.g., x̂): The symbol x̂ is voiced "x -hat." The hat
symbol is more commonly known as the circumflex
(Bringhurst 1997, p. 274).

See also BAR, CARET, ESTIMATOR, MACRON, UNIT

VECTOR
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Hat-Box Theorem
ARCHIMEDES’ HAT-BOX THEOREM

Haupt-Exponent
The smallest exponent e for which be �1 (mod 1);
where b and n are given numbers, is called the
haupt-exponent (or sometimes "ORDER") of b (mod n ).
The number of bases having a haupt-exponent e is
f(e) ; where f(e) is the TOTIENT FUNCTION. Cunning-
ham (1922) published the haupt-exponents for primes
to 25409 and bases 2, 3, 5, 6, 7, 10, 11, and 12.

Haupt-exponents exists for n which are not factors of
b . For example, the haupt-exponent of 10 (mod 7) is 6,
since

106 �1 (mod 7):

The haupt-exponent of 10 mod an integer n relatively
prime to 10 gives the period of the DECIMAL EXPAN-

SION of the reciprocal of n (Glaisher 1878, Lehmer
1941). For example, the haupt-exponent of 10 (mod
13) is 6, and

1
13 �0:0769230 ;

which has period 6. The haupt-exponent of 2 mod an
integer n relatively prime to 2 gives the multiplica-
tive order of 2 (mod 2n �1) (Golomb 1961).

The following table gives the first few haupt-expo-
nents for bases b (mod p ) with p �1, 2, ....

b Sloane haupt-exponents

2 A002326 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20,
18, ...

3 A050975 1, 2, 4, 6, 2, 4, 5, 3, 6, 4, 16, 18, 4, 5,
...

4 A050976 1, 2, 3, 3, 5, 6, 2, 4, 9, 3, 11, 10, 9,
14, ...

5 A050977 1, 2, 1, 2, 6, 2, 6, 5, 2, 4, 6, 4, 16, 6,
9, ...

6 A050978 1, 2, 10, 12, 16, 9, 11, 5, 14, ...

7 A050979 1, 1, 2, 4, 1, 2, 3, 4, 10, 2, 12, 4, 2,
16, ...

8 A050980 2, 4, 1, 2, 10, 4, 4, 8, 6, 2, 11, 20, 6,
28, ...

9 A050981 1, 1, 2, 3, 1, 2, 5, 3, 3, 2, 8, 9, 2, 5,
11, ...

10 A002329 1, 6, 1, 2, 6, 16, 18, 6, 22, 3, 28, ...

See also COMPLETE RESIDUE SYSTEM, MULTIPLICA-

TIVE ORDER, ORDER (MODULO), ORDER (POLYNOMIAL),
PRIMITIVE ROOT
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Hausdorff
HAUSDORFF SPACE

Hausdorff Axioms
The axioms formulated by Hausdorff (1914) for his
concept of a TOPOLOGICAL SPACE. These axioms
describe the properties satisfied by subsets of ele-
ments x in a NEIGHBORHOOD SET E of x .

1. There corresponds to each point x at least one
NEIGHBORHOOD U(x) ; and each NEIGHBORHOOD

U(x) contains the point x .
2. If U(x) and V(x) are two NEIGHBORHOODS of the
same point x , there must exist a NEIGHBORHOOD

W(x) that is a subset of both.
3. If the point y lies in U(x) ; there must exist a
NEIGHBORHOOD U(y) that is a SUBSET of U(x) :/
4. For two different points x and y , there are two
corresponding NEIGHBORHOODS U(x) and U(y) with
no points in common.

See also HAUSDORFF SPACE, TOPOLOGICAL SPACE
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Hausdorff Dimension
Informally, SELF-SIMILAR objects with parameters N
and s are described by a power law such as

N�sd;

where

d�
ln N

ln s

is the "DIMENSION" of the scaling law, known as the
Hausdorff dimension.

Formally, let A be a SUBSET of a METRIC SPACE X .
Then the Hausdorff dimension D(A) of A is the



INFIMUM of d ]0 such that the d -dimensional HAUS-

DORFF MEASURE of A is 0 (which need not be an
INTEGER).

In many cases, the Hausdorff dimension correctly
describes the correction term for a resonator with
FRACTAL PERIMETER in Lorentz’s conjecture. How-
ever, in general, the proper dimension to use turns
out to be the MINKOWSKI-BOULIGAND DIMENSION

(Schroeder 1991).

See also CAPACITY DIMENSION, FRACTAL, FRACTAL

DIMENSION, MINKOWSKI-BOULIGAND DIMENSION,
SELF-SIMILARITY
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Hausdorff Measure
Let X be a METRIC SPACE, A be a SUBSET of X , and d a
number ]0 : The d -dimensional Hausdorff measure of
A , Hd(A) ; is the INFIMUM of POSITIVE numbers y such
that for every r �0, A can be covered by a countable
family of closed sets, each of diameter less than r ,
such that the sum of the dth POWERS of their
diameters is less than y . Note that Hd(A) may be
infinite, and d need not be an INTEGER.
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Hausdorff Moment Problem
MOMENT PROBLEM

Hausdorff Paradox
For n ]3; there exist no additive finite and invariant
measures for the group of displacements in Rn :/
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Hausdorff Space
A TOPOLOGICAL SPACE in which any two points have
disjoint NEIGHBORHOODS. A space that is Hausdorff is
sometimes said to "have Hausdorff topology" or "be
Hausdorff."

See also HAUSDORFF MEASURE, TOPOLOGICAL SPACE
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Hausdorff Topology
HAUSDORFF SPACE

Hausdorff-Besicovitch Dimension
CAPACITY DIMENSION

Hauy Construction

The construction of polyhedra using identical build-
ing blocks. The illustrations above show such con-
structions for the OCTAHEDRON and RHOMBIC

DODECAHEDRON. In Book XIII of the ELEMENTS ,
Euclid used a Hauy construction to build the DODE-

CAHEDRON (Wells 1991).

See also OCTAHEDRAL NUMBER, OCTAHEDRON, RHOM-

BIC DODECAHEDRAL NUMBER, RHOMBIC DODECAHE-

DRON
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Haversine

hav(x)�1
2 vers(x)�1

2(1�cos x);

where vers(x) is the VERSINE and cos x is the COSINE.
Using a trigonometric identity, the haversine is equal



to

hav(x) �sin2(1
2 x) :

See also COSINE, COVERSINE, EXSECANT, SPHERICAL

TRIGONOMETRY, VERSINE
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h-Cobordism
An h -cobordism is a COBORDISM W between two
MANIFOLDS M1 and M2 such that W is SIMPLY

CONNECTED and the inclusion maps M1 0 W and
M2 0 W are HOMOTOPY equivalences.

h-Cobordism Theorem
If W is a SIMPLY CONNECTED, COMPACT MANIFOLD

with a boundary that has two components, M1 and
M2 ; such that inclusion of each is a HOMOTOPY

equivalence, then W is DIFFEOMORPHIC to the product
M1 �[0; 1] for dim M1ð Þ]5: In other words, if M and
M ? are two simply connected MANIFOLDS of DIMEN-

SION ]5 and there exists an H -COBORDISM W between
them, then W is a product M �I and M is DIFFEO-

MORPHIC to M ?:/

The proof of the h -cobordism theorem can be accom-
plished using SURGERY. A particular case of the h -
cobordism theorem is the POINCARÉ CONJECTURE in
dimension n ]5: Smale proved this theorem in 1961.

See also DIFFEOMORPHISM, POINCARÉ CONJECTURE,
SURGERY
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Heads-Minus-Tails Distribution

A fair COIN is tossed an even 2n number of times. Let
D � H �Tj j be the absolute difference in the number
of heads and tails obtained. Then the probability
distribution is given by

P(D �2k) �

1
2

� �2n 2n
n

� �
k �0

2 1
2

� �2n 2n
n �k

� �
k �1 ; 2; . . . ;

8>><
>>:

where P(D �2k �1) �0: The most probable value of
D is D �2, and the expectation value is

Dnh i�
n

2n
n

� �
22n �1

:

The generating function for Dh i is given byX
Dnh ixn�1 �(1 �x) �3 =2 �1 �3

2 x �15
8 x2 �35

16 x
3 �. . .

(Sloane’s A001803 and A046161; Abramowitz and
Stegun 1972, Prévost 1933; Hughes 1995). These
numbers also arise in 1-D RANDOM WALKS.

See also BERNOULLI DISTRIBUTION, COIN, COIN

TOSSING, RANDOM WALK–1-D
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Heap
A SEQUENCE anf gN

n�1 forms a (binary) heap if it
satisfies a j=2b c5aj for 25j5N; where xb c is the
FLOOR FUNCTION, which is equivalent to /aiBa2i/ and



ai Ba2i�1 for 1 5i 5(i �1)=2: The first member must
therefore be the smallest. A heap can be viewed as a
labeled BINARY TREE in which the label of the i th node
is smallest than the labels of any of its descendents
(Skiena 1990, p. 35). Heaps support arbitrary inser-
tion and seeking/deletion of the minimum value in
O(ln n) times per update (Skiena 1990, p. 38).

A list can be converted to a heap in O(n) times using
an algorithm due to Floyd (1964). A binary heap can
be generated from a PERMUTATION p using Heapi-
fy[p ] in the Mathematica add-on package Discre-
teMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘). For ex-
ample, given the RANDOM PERMUTATION

f6; 2; 7; 9; 5; 3; 4; 8; 10; 1g; Floyd’s algorithm
gives the heap f1; 2; 3; 8 ; 5 ; 7 ; 4 ; 9 ; 10 ; 6 g (left
figure). The right figure shows a heap containing 30
elements.

A PERMUTATION can be tested to see if it is a heap
using the following Mathematica functions.

BBDiscreteMath‘Combinatorica‘;

HeapQ[a_List?PermutationQ] : � Module[{i, n

� Length[a]},

And @@ Table[a[[Floor[i/2]]] B a[[i]], {i,

2, n}]

]

n heaps

1 {1}

2 {1, 2}

3 {1, 2, 3}, {1, 3, 2}

4 {1, 2, 3, 4}, {1, 2, 4, 3}, {1, 3, 2, 4}

The numbers of heaps on n �1, 2, ... elements are 1,
1, 2, 3, 8, 20, 80, 896, 3360, ... (Sloane’s A056971), the
first few of which are summarized in the above table.
The number of heaps of l levels (or equivalently, the
number of heaps of 2l �1 elements) is given by the
RECURRENCE RELATION

Sl �
2l �2

2l �1 �1

� �
S2

l�1

with S1 �1 (Skiena 1990, p. 36), the values of which
for l �1, 2, ... are 1, 2, 80, 21964800,
74836825861835980800000, ... (Sloane’s A056972).

See also BINARY TREE, COMPLETE BINARY TREE,
HEAPSORT, PRIORITY QUEUE
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Heapsort
An O(n lg n) SORTING ALGORITHM which is not quite
as fast as QUICKSORT. It is a "sort-in-place" algorithm
and requires no auxiliary storage, which makes it
particularly concise and elegant to implement.

See also HEAP, QUICKSORT, SORTING
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Heart Surface

A heart-shaped surface given by the SEXTIC EQUATION

2x2�2y2�z2�1
� �3

�1
10 x2z3�y2z3�0:

See also ARCHIMEDEAN SPIRAL, BONNE PROJECTION,
CARDIOID, PIRIFORM
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Heat Conduction Equation
A PARTIAL DIFFERENTIAL diffusion equation OF THE

FORM

@T

@t
�k92T: (1)

Physically, the equation commonly arises in situa-
tions where k is the thermal diffusivity and T the
temperature.

The 1-D heat conduction equation is

@T

@t
�k

@2T

@x2
: (2)

This can be solved by SEPARATION OF VARIABLES using

T(x; t)�X(x)T(t): (3)

Then

X
dT

dt
�kT

d2X

dx2
: (4)

Dividing both sides by kXT gives

1

kT

dT

dt
�

1

X

d2X

dx2
��

1

l2
; (5)

where each side must be equal to a constant.
Anticipating the exponential solution in T , we have
picked a negative separation constant so that the
solution remains finite at all times and l has units of
length. The T solution is

T(t)�Ae�kt=l2

; (6)

and the X solution is

X(x)�C cos
x

l

 !
�D sin

x

l

 !
: (7)

The general solution is then

T(x; t)�T(t)X(x)

�Ae�kt=l2

C cos
x

l

 !
�D sin

x

l

 !" #

�e�kt=l2

D cos
x

l

 !
�E sin

x

l

 !" #
: (8)

If we are given the boundary conditions

T(0; t)�0 (9)

and

T(L; t)�0; (10)

then applying (9) to (8) gives

D cos
x

l

 !
�0[D�0; (11)

and applying (10) to (8) gives

E sin
L

l

 !
�0[

L

l
�np[l�

L

np
; (12)

so (8) becomes

Tn(x; t)�Ene�k(np=L)2t sin
npx

L

 !
: (13)

Since the general solution can have any n ,

T(x; t)�
X�
n�1

cn sin
npx

L

 !
e�k(np=L)2t: (14)

Now, if we are given an initial condition T(x; 0); we
have

T(x; 0)�
X�
n�1

cn sin
npx

L

 !
: (15)

Multiplying both sides by sin(mpx=L) and integrating
from 0 to L gives

g
L

0

sin
mpx

L

 !
T(x; 0) dx

�g
L

0

X�
n�1

cn sin
mpx

L

 !
sin

npx

L

 !
dx: (16)

Using the ORTHOGONALITY of sin(nx) and sin(mx);

X�
n�1

cn g
L

0

sin
npx

L

 !
sin

mpx

L

 !
dx�

X�
n�1

1
2 pdmncn

�1
2 pcm�g

L

0

sin
mpx

L

 !
T(x; 0) dx; (17)

so

cn�
2

p g
L

0

sin
mpx

L

 !
T(x; 0) dx: (18)

If the boundary conditions are replaced by the
requirement that the derivative of the temperature
be zero at the edges, then (9) and (10) are replaced by

@T

@x j
(0; t)

�0 (19)

@T

@x j
(L; t)

�0: (20)

Following the same procedure as before, a similar



answer is found, but with sine replaced by cosine:

T(x; t) �
X�
n�1

cn cos
n px

L

 !
e � k(np =L)2t ; (21)

where

cn �
2

p g
L

0

cos
mpx

L

 !
@T(x; 0)

@x j
t�0

dx: (22)

Heat Conduction EquationDisk
To solve the HEAT CONDUCTION EQUATION on a 2-D
disk of radius R �1, try to separate the equation
using

T(r; u; t) �R(r) U(u)T(t) : (1)

Writing the u and r terms of the LAPLACIAN in
SPHERICAL COORDINATES gives

92 �
d2R

dr2 
�

2

r

dR

dr
�

1

r2

d2 U
du2 ; (2)

so the HEAT CONDUCTION EQUATION becomes

RU
k

d2T

dt2 
�

d2R

dr2
UT �

2

r

dR

dr
UT �

1

r2

d2 U
du2 RT : (3)

Multiplying through by r2 =RUT gives

r2

kT

d2T

dt2 
�

r2

R

d2R

dr2 
�

2r

R

dR

dr
�

d2 U
du2

1

U
: (4)

The u term can be separated.

d2 U
du2

1

U
��n(n �1); (5)

which has a solution

U( u) �A cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n �1)

p
u

h i
�B sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n �1)

p
u

h i
: (6)

The remaining portion becomes

r2

kT

d2T

dt2 
�

r2

R

d2R

dr2 
�

2r

R

dR

dr
�n(n �1): (7)

Dividing by r2 gives

1

kT

d2T

dt2 
�

1

R

d2R

dr2 
�

2

rR

dR

dr
�

n(n � 1)

r2
��

1

l2 
; (8)

where a NEGATIVE separation constant has been
chosen so that the t portion remains finite

T(t) �Ce � kt=l2 

: (9)

The radial portion then becomes

1

R

d2R

dr2 
�

2

rR

dR

dr
�

n(n � 1)

r2
�

1

l2 �0 (10)

r2 d2R

dr2 
�2r

dR

dr
�

r2

l2 �n(n �1)

" #
R �0 ; (11)

which is the SPHERICAL BESSEL DIFFERENTIAL EQUA-

TION. If the initial temperature is T(r ; 0) �0 and the
boundary condition is T(1; t) �1; the solution is

T(r ; t) �1 �2
X�
n�1

J0( anr)

anJ1( an)
e a

2
nt ; (12)

where an is the nth POSITIVE zero of the BESSEL

FUNCTION OF THE FIRST KIND J0(x) :/

Heaviside Calculus
The study, first developed by Boole, of SHIFT-INVAR-

IANT OPERATORS which are polynomials in the DIF-

FERENTIAL OPERATOR D̃: Heaviside calculus can be
used to solve any ORDINARY DIFFERENTIAL EQUATION

OF THE FORM

p(D̃)f (x)�g(x)

with p(0)"0; and is frequently implemented using
LAPLACE TRANSFORMS.

See also DIFFERENTIAL OPERATOR, LAPLACE TRANS-

FORM, SHIFT-INVARIANT OPERATOR
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Heaviside Step Function

A discontinuous "step" function also called the unit
step, and defined by

H(x)�
0 xB0
1
2 x�0

1 x > 0:

8<
: (1)

It is related to the BOXCAR FUNCTION byY
(x)�H x�1

2

� �
�H x�1

2

� �
(2)



and can be defined in terms of the SGN function by

H(x)�1
2[1�sgn(x)]: (3)

The shorthand notation

Hc(x)�H(x�c) (4)

is sometimes also used. The Heaviside step function is
given by the Mathematica command UnitStep[x ].
The DERIVATIVE is given by

d

dx
H(x)�d(x); (5)

where d(x) is the DELTA FUNCTION, and the step
function is related to the RAMP FUNCTION /R(x)/ by

d

dx
R(x)��H(x) (6)

R(x)�xH(x) (7)

R(x)�H(x) + H(x); (8)

where + denotes CONVOLUTION.

Bracewell (1999) gives many identities, some of which
include the following. Letting + denote the CONVOLU-

TION,

H(x) + f (x)�g
x

��

f (x?) dx? (9)

H(t) + H(t)�g
�

��

H(u)H(t�u) du (10)

�H(0)g
�

0

H(t�u) du

�H(0)H(t)g
t

0

du�tH(t): (11)

In addition,

H(ax�b)�H x�
b

a

 !
H(a)�H �x�

b

a

 !
H(�a)

�

H x�
b

a

 !
a > 0

H �x�
b

a

 !
aB0:

8>>>><
>>>>:

(12)

The Heaviside step function can be defined by the
following limits,

H(x)�lim
t00

1
2�

1

p
tan�1 x

t

 !" #
(13)

�
1ffiffiffi
p

p lim
t00 g

�

�x

t�1e�u2=t2

du

�
1

2
lim
t00

erfc �
x

t

 !
(14)

�
1

p
lim
t00 g

x

��

t�1 sinc
u

t

 !
du

�
1

p
lim
t00 g

x

��

1

u
sin

u

t

 !
(15)

�
1

2
�

1

p
lim
t00

si
px

t

 !
(16)

�lim
t00

1
2 ex=t for x50

1�1
2 e�x=t for x]0

(
(17)

�lim
t00

1

1 � e�x=t
(18)

�lim
t00

ee�x=t

(19)

�
1

2
lim
t00

1�tanh
x

t

 !" #
(20)

�lim
t00 g

x

��

t�1L
x � 1

2t

t

 !
dx; (21)

where erfc(x) is the ERFC function, si(x) is the SINE

INTEGRAL, sinc x is the SINC FUNCTION, and L(x) is the
one-argument TRIANGLE FUNCTION. The first four of
these are illustrated above for t�0:2; 0.1, and 0.01.

Of course, any monotonic function with constant
unequal horizontal asymptotes is a Heaviside step
function under appropriate scaling and possible
reflection. The FOURIER TRANSFORM of the Heaviside
step function is given by



F[H(x)] �g
�

��

e �2 pikxH(x) dx �
1

2
d(k) �

i

pk

" #
; (22)

where d(k) is the DELTA FUNCTION.

See also ABSOLUTE VALUE, BOXCAR FUNCTION, DELTA

FUNCTION, FOURIER TRANSFORM–HEAVISIDE STEP

FUNCTION, RAMP FUNCTION, RAMP FUNCTION, REC-

TANGLE FUNCTION, SGN, SQUARE WAVE, TRIANGLE

FUNCTION
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Heawood Conjecture
The bound for the number of colors which are
SUFFICIENT for MAP COLORING on a surface of GENUS

g ,

g(g) � 1
2(7 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48g �1

p
)

j k
is the best possible, where xb c is the FLOOR FUNCTION.
g(g) is called the CHROMATIC NUMBER, and the first
few values for g �0, 1, ... are 4, 7, 8, 9, 10, 11, 12, 12,
13, 13, 14, ... (Sloane’s A000934).

The fact that g(g) is also NECESSARY was proved by
Ringel and Youngs (1968) with two exceptions: the
SPHERE (PLANE), and the KLEIN BOTTLE. When the
FOUR-COLOR THEOREM was proved in 1976, the KLEIN

BOTTLE was left as the only exception, in that the
Heawood formula gives seven, but the correct bound
is six (as demonstrated by the FRANKLIN GRAPH). The
four most difficult cases to prove in the FOUR-COLOR

THEOREM were g �59, 83, 158, and 257.

See also CHROMATIC NUMBER, FOUR-COLOR THEO-

REM, FRANKLIN GRAPH, MAP COLORING, SIX-COLOR

THEOREM, TORUS COLORING
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Heawood Graph

The seven-color torus map on 14 nodes illustrated
above. The Heawood graph is a CAGE GRAPH and is 4-
transitive, but not 5-transitive (Harary 1994, p. 173).
The Heawood graph is the point/line INCIDENCE

GRAPH on the FANO PLANE (Royle).

See also CAGE GRAPH, FANO PLANE, SZILASSI POLY-

HEDRON, TORUS COLORING
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Hebesphenomegacorona

JOHNSON SOLID J89:/
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Hecke Algebra
An associative RING, also called a HECKE RING, which
has a technical definition in terms of commensurable
SUBGROUPS.

Hecke L-Function
A generalization of the EULER L -FUNCTION associated
with a GRÖ SSENCHARAKTER.

See also EULER L -FUNCTION, GRÖ SSENCHARAKTER,
HECKE L -SERIES
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Hecke L-Series

See also HECKE L -FUNCTION
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Hecke Operator
A family of operators mapping each SPACE Mk of
MODULAR FORMS onto itself. For a fixed integer k and
any POSITIVE INTEGER n , the Hecke operator Tn is
defined on the set Mk of entire modular forms of
weight k by

(Tnf )(t) �nk�1
X
djn

d�k
Xd�1

b �0

f
nt � bd

d2

 !
: (1)

For n a PRIME p , the operator collapses to

(Tpf )(t) �pk �1f (p t) �
1

p

Xp �1

b�0

t � b

p

 !
: (2)

If f � Mk has the FOURIER SERIES

f (t) �
X�
m�0

c(m)e2 pim t ; (3)

then Tnf has FOURIER SERIES

Tnfð Þ(t) �
X�
m�0

gn(m)e2 pim t ; (4)

where

gn(m) �
X

d½(n; m)

dk �1c
mn

d2

 !
(5)

(Apostol 1997, p. 121).

If (m; n) �1; the Hecke operators obey the composi-
tion property

TmTn �Tmn : (6)

Any two Hecke operators T(n) and T(m) on Mk

COMMUTE with each other, and moreover

T(m)T(n) �
X

d½(m; n)

dk �1T
mn

d2

 !
(7)

(Apostol 1997, pp. 126 �/27).

Each Hecke operator Tn has eigenforms when the
dimension of Mk is 1, so for k �4, 6, 8, 10, and 14, the
eigenforms are the EISENSTEIN SERIES G4 ; G6 ; G8 ; G10 ;
and G14 ; respectively. Similarly, each Tn has eigen-
forms when the dimension of the set of CUSP FORMS

Mk; 0 is 1, so for k�12, 16, 18, 20, 22, and 26, the
eigenforms are D; DG4; DG6; DG8; DG10; and DG14;
respectively, where D is the MODULAR DISCRIMINANT

of the WEIERSTRASS ELLIPTIC FUNCTION (Apostol
1997, p. 130).

See also HECKE ALGEBRA, MODULAR FORM
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Hecke Ring
HECKE ALGEBRA

Hectogon

A 100-sided POLYGON, virtually indistinguishable in
appearance from a CIRCLE except at very high
magnification.

Hedgehog
An envelope parameterized by its GAUSS MAP. The
PARAMETRIC EQUATIONS for a hedgehog are

x�p(u) cos u�p?(u) sin u

y�p(u) sin u�p?(u) cos u:

A plane convex hedgehog has at least four VERTICES

where the CURVATURE has a stationary value. A plane
convex hedgehog of constant width has at least six
VERTICES (Martinez-Maure 1996).
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Heegaard Diagram
A diagram expressing how the gluing operation that
connects the HANDLEBODIES involved in a HEEGAARD

SPLITTING proceeds, usually by showing how the
meridians of the HANDLEBODY are mapped.

See also HANDLEBODY, HEEGAARD SPLITTING
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Heegaard Splitting
A Heegaard splitting of a connected orientable 3-
MANIFOLD M is any way of expressing M as the UNION

of two (3,1)-HANDLEBODIES along their boundaries.
The boundary of such a (3,1)-HANDLEBODY is an
orientable SURFACE of some GENUS, which determines
the number of HANDLES in the (3,1)-HANDLEBODIES.
Therefore, the HANDLEBODIES involved in a Heegaard
splitting are the same, but they may be glued
together in a strange way along their boundary. A
diagram showing how the gluing is done is known as
a HEEGAARD DIAGRAM.
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Heegner Number
The values of �d for which IMAGINARY QUADRATIC

FIELDS Q(
ffiffiffiffiffiffiffi
�d

p
) are uniquely factorable into factors OF

THE FORM a �b
ffiffiffiffiffiffiffi
�d

p
): Here, a and b are half-integers,

except for d �1 and 2, in which case they are
INTEGERS. The Heegner numbers therefore corre-
spond to DISCRIMINANTS �d which have CLASS NUM-

BER h(�d) equal to 1, except for Heegner numbers �1
and �2, which correspond to d ��4 and �8,
respectively.

The determination of these numbers is called GAUSS’S

CLASS NUMBER PROBLEM, and it is now known that
there are only nine Heegner numbers: �1, �2, �3,
�7, �11, �19, �43, �67, and �163 (Sloane’s
A003173), corresponding to discriminants �4, �8,
�3, �7, �11, �19, �43, �67, and �163, respec-
tively.

Heilbronn and Linfoot (1934) showed that if a larger
d existed, it must be 109 : Heegner (1952) published a
proof that only nine such numbers exist, but his proof
was not accepted as complete at the time. Subsequent
examination of Heegner’s proof show it to be "essen-
tially" correct (Conway and Guy 1996).

The Heegner numbers have a number of fascinating
connections with amazing results in PRIME NUMBER

theory. In particular, the J -FUNCTION provides stun-
ning connections between e , p; and the ALGEBRAIC

INTEGERS. They also explain why Euler’s PRIME-

GENERATING POLYNOMIAL n2 �n �41 is so surpris-
ingly good at producing PRIMES.

See also CLASS NUMBER, DISCRIMINANT (BINARY

QUADRATIC FORM), GAUSS’S CLASS NUMBER PROBLEM,
J -FUNCTION, PRIME-GENERATING POLYNOMIAL, QUAD-

RATIC FIELD, RAMANUJAN CONSTANT
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Heesch Number
The Heesch number of a closed plane figure is the
maximum number of times that figure can be com-
pletely surrounded by copies of itself. The determina-
tion of the maximum possible (finite) Heesch number
is known as HEESCH’S PROBLEM. The Heesch number
of a TRIANGLE, QUADRILATERAL, regular HEXAGON, or
any other shape that can TILE or TESSELLATE the
plane, is infinity. Conversely, any shape with infinite
Heesch number must tile the plane (Eppstein).

A tile invented by R. Ammann has Heesch number is
three (Senechal 1995), and Mann has found an
infinite family of tiles with Heesch number five
(illustrated above), the largest (finite) number known.

See also HEESCH’S PROBLEM, TILING
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Heesch’s Problem
How many times can a shape be completely sur-
rounded by copies of itself without being able to TILE

the entire plane, i.e., what is the maximum (finite)
HEESCH NUMBER?
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Height
The vertical length of an object from top to bottom.

See also LENGTH (SIZE), POLYNOMIAL HEIGHT, WIDTH

(SIZE)

Heilbronn Triangle Problem
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given any arrangement of n points within a UNIT

SQUARE, let Hn be the smallest value for which there
is at least one TRIANGLE formed from three of the
points with AREA5Hn: The first few values are

H3�
1
2

H4�
1
2

H5�
1
9

ffiffiffi
3

p

H6�
1
8

H7]
1

12

H8]
1
4(2�

ffiffiffi
3

p
)

H9]
1

21

H10]
1

32(3
ffiffiffiffiffiffi
17

p
�11)

H11]
1
27

H12]
1
33

H13]0:030

H14]0:022

H15]0:020

H16]0:0175:

Komlós et al. (1981, 1982) have shown that there are
constants c such that

c ln n

n2
5Hn5

C

n8=7 � e
;

for any e > 0 and all sufficiently large n .

Using an EQUILATERAL TRIANGLE of unit AREA instead
gives the constants

h3�1

h4�
1
3

h5�3�2
ffiffiffi
2

p

h6�
1
8:
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Heine Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

y??�
1

2

1

x � a1

�
2

x � a3

 !
y?�

1

4

� A0 � A1x � A2x2 � A3x3

(x � a1)(x � a2)2(x � a3)2

" #
y

�0

(Moon and Spencer 1961, p. 157; Zwillinger 1997,
p. 123).
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Heine Hypergeometric Series
Q -HYPERGEOMETRIC FUNCTION

Heine-Borel Theorem
If a CLOSED SET of points on a line can be covered by a
set of intervals so that every point of the set is an
interior point of at least one of the intervals, then
there exist a finite number of intervals with the
covering property.

The Heine-Borel theorem gives the BOLZANO-WEIER-

STRASS THEOREM as a special case.

See also BOLZANO-WEIERSTRASS THEOREM
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Heisenberg Ferromagnet Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

St �S �Sxx :
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Heisenberg Group
The Heisenberg group Hn in n COMPLEX variables is
the GROUP of all (z, t ) with z �Cn and t �R having
multiplication

(w ; t)(z; t?) �(w �z; t �t?�I[w �z])

where w � is the adjoint. The Heisenberg group is
ISOMORPHIC to the group of MATRICES

1 zT 1
2 zj j2�it

0 1  z
0 0  1

2
4

3
5;

and satisfies

(z; t) �1 �(�z ;�t):

Every finite-dimensional unitary representation is
trivial on Z and therefore factors to a REPRESENTA-

TION of the quotient Cn :/

See also NIL GEOMETRY
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Heisenberg Space
The boundary of COMPLEX HYPERBOLIC 2-SPACE.

See also HYPERBOLIC SPACE

Held Group
The SPORADIC GROUP He.
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Helen of Geometers
CYCLOID

Helicoid

The MINIMAL SURFACE having a HELIX as its bound-
ary. It is the only RULED MINIMAL SURFACE other than
the PLANE (Catalan 1842, do Carmo 1986). For many
years, the helicoid remained the only known example
of a complete embedded MINIMAL SURFACE of finite
topology with infinite CURVATURE. However, in 1992 a
second example, known as HOFFMAN’S MINIMAL SUR-

FACE and consisting of a helicoid with a HOLE, was
discovered (Sci. News 1992). The helicoid is the only
non-rotary surface which can glide along itself
(Steinhaus 1983, p. 231).

The equation of a helicoid in CYLINDRICAL COORDI-

NATES is

z�cu: (1)

In CARTESIAN COORDINATES, it is

y

x
�tan

z

c

 !
: (2)

It can be given in parametric form by

x�u cos v (3)

y�u sin v (4)

z�cv; (5)



which has an obvious generalization to the ELLIPTIC

HELICOID. Writing z ��cu instead of z �cv gives a
CONE instead of a helicoid.

The FIRST FUNDAMENTAL FORM coefficients of the
helicoid are given by

E �1 (6)

F �0 (7)

G2 �c2 �u2 ; (8)

and the SECOND FUNDAMENTAL FORM coefficients are

e �0 (9)

f ��
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � u2
p (10)

g �0; (11)

giving AREA ELEMENT

dS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �u2

p
du L dv : (12)

Integrating over v � [0; u] and u � [0; r] then gives

S �g  
u

0 g
r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �u2

p
du dv

�1
2 u r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �r2

p
�c2 ln

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � r2

p

c

 !" #
: (13)

The GAUSSIAN CURVATURE is given by

K ��
c2

(c2 � u2)2 ; (14)

and the MEAN CURVATURE is

H �0 (15)

making the helicoid a MINIMAL SURFACE.

The helicoid can be continuously deformed into a
CATENOID by the transformation

x(u ; v) �cos a sinh v sin u �sin a cosh v cos u (16)

y(u; v) ��cos a sinh v cos u �sin a cosh v sin u (17)

z(u ; v) �u cos a �v sin a; (18)

where a �0 corresponds to a helicoid and a � p=2 to a
CATENOID.

If a twisted curve C (i.e., one with TORSION t "0)
rotates about a fixed axis A and, at the same time, is
displaced parallel to A such that the speed of
displacement is always proportional to the angular
velocity of rotation, then C generates a GENERALIZED

HELICOID.

See also CALCULUS OF VARIATIONS, CATENOID, CONE,
ELLIPTIC HELICOID, GENERALIZED HELICOID, HELIX,
HOFFMAN’S MINIMAL SURFACE, HYPERBOLIC HELI-

COID, MINIMAL SURFACE
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Helix

A helix is also called a CURVE OF CONSTANT SLOPE. It
can be defined as a curve for which the TANGENT

makes a constant ANGLE with a fixed line. The
shortest path between two points on a cylinder (one



not directly above the other) is a fractional turn of a
helix, as can be seen by cutting the cylinder along one
of its sides, flattening it out, and noting that a
straight line connecting the points becomes helical
upon re-wrapping (Steinhaus 1983, p. 229). It is for
this reason that squirrels chasing one another up and
around tree trunks follow helical paths.

Helices come in enantiomorphous left- (coils counter-
clockwise as it "goes away") and right-handed forms
(coils clockwise). Standard screws, nuts, and bolts are
all right-handed, as are both the helices in a double-
stranded molecule of DNA (Gardner 1984, pp. 2 �/).
Large helical structures in animals (such as horns)
usually appear in both mirror-image forms, although
the teeth of a male narwhal, usually only one which
grows into a tusk, are both left-handed (Bonner 1951;
Gardner 1984, p. 3; Thompson 1992). Gardner (1984)
contains a fascinating discussion of helices in plants
and animals, including an allusion to Shakespeare’s
A Midsummer Night’s Dream.

The helix is a SPACE CURVE with PARAMETRIC EQUA-

TIONS

x �r cos t (1)

y �r sin t (2)

z �ct ; (3)

where r is the radius of the helix and c is a constant
giving the vertical separation of the helix’s loops. The
CURVATURE of the helix is given by

k �
r

r2 � c2 
; (4)

and the LOCUS of the centers of CURVATURE of a helix
is another helix. The ARC LENGTH is given by

s �g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 �y?2 �z ?2

q
dt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �c2

p
t: (5)

The TORSION of a helix is given by

t �
1

r2(r2 � c2)

�r sin t �r cos t r sin t
r cos t �r sin t �r cos t

c 0 0

������
������

�
c

r2 � c2 
; (6)

so

k

t 
�

r

r2 � c2

c

r2 � c2

�
r

c 
; (7)

which is a constant. In fact, LANCRET’S THEOREM

states that a NECESSARY and SUFFICIENT condition
for a curve to be a helix is that the ratio of CURVATURE

to TORSION be constant. The OSCULATING PLANE of the
helix is given by

z1 �r cos t z2 �r sin t z3 �ct
�r sin t r cos t c
�r cos t �r sin t 0

������
�������0 (8)

z1c sin t �z2c cos t �(z3 �ct)r �0: (9)

The MINIMAL SURFACE of a helix is a HELICOID.

See also GENERALIZED HELIX, HELICOID, SPHERICAL

HELIX, SPIRAL
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Helly Number
Given a Euclidean n -space,

Hn �n �1:

See also EUCLIDEAN SPACE, HELLY’S THEOREM

Helly’s Theorem
If F is a family of more than n bounded closed convex
sets in Euclidean n -space Rn ; and if every Hn (where
Hn is the HELLY NUMBER) members of F have at least
one point in common, then all the members of F have
at least one point in common.

See also CARATHÉ ODORY’S FUNDAMENTAL THEOREM,
HELLY NUMBER
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Helmholtz Differential Equation
An ELLIPTIC PARTIAL DIFFERENTIAL EQUATION given
by

92 c �k2 c �0 ; (1)

where c is a SCALAR FUNCTION and 92 is the scalar
LAPLACIAN, or

92A �k2A �0; (2)

where A is a VECTOR FUNCTION and 92 is the vector
Laplacian (Moon and Spencer 1988, pp. 136 �/43).

When k �0, the Helmholtz differential equation
reduces to LAPLACE’S EQUATION. When k2 B0 (i.e.,
for imaginary k ), the equation becomes the space part
of the diffusion equation.

The Helmholtz differential equation can be solved by
SEPARATION OF VARIABLES in only 11 coordinate
systems, 10 of which (with the exception of CONFOCAL

PARABOLOIDAL COORDINATES) are particular cases of
the CONFOCAL ELLIPSOIDAL system: CARTESIAN, CON-

FOCAL ELLIPSOIDAL, CONFOCAL PARABOLOIDAL, CON-

ICAL, CYLINDRICAL, ELLIPTIC CYLINDRICAL, OBLATE

SPHEROIDAL, PARABOLOIDAL, PARABOLIC CYLINDRICAL,
PROLATE SPHEROIDAL, and SPHERICAL COORDINATES

(Eisenhart 1934). LAPLACE’S EQUATION (the Helm-
holtz differential equation with k �0) is separable in
the two additional BISPHERICAL COORDINATES and
TOROIDAL COORDINATES.

If Helmholtz’s equation is separable in a 3-D coordi-
nate system, then Morse and Feshbach (1953,
pp. 509 �/10) show that

h1h2h3

h2
n

�fn(un)gn(ui ; uj) ; (3)

where i "j "n: The LAPLACIAN is therefore OF THE

FORM

92 �
1

h1h2h3

g1(u2 ; u3)
@

@u1

f1(u1)
@

@u1

" #(

�g2(u1 ; u3)
@

@u2

f2(u2)
@

@u2

" #

�g3(u1 ; u3)
@

@u3

f3(u3)
@

@u3

" #7
; (4)

which simplifies to

92 �
1

h2
1f1

@

@u1

f1(u1)
@

@u1

" #
�

1

h2
2f2

@

@u2

f2(u2)
@

@u2

" #

�
1

h2
3f3

@

@u3

f3(u3)
@

@u3

" #
: (5)

Such a coordinate system obeys the ROBERTSON

CONDITION, which means that the STÄ CKEL DETERMI-

NANT is OF THE FORM

S �
h1h2h3

f1(u1)f2(u2)f3(u3) 
: (6)

See also LAPLACE’S EQUATION, POISSON’S EQUATION,
SEPARATION OF VARIABLES, SPHERICAL BESSEL DIF-

FERENTIAL EQUATION, STÄ CKEL DETERMINANT
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Helmholtz Differential Equation */Bipolar
Coordinates
In BIPOLAR COORDINATES, the HELMHOLTZ DIFFEREN-

TIAL EQUATION is not separable, but LAPLACE’S EQUA-

TION is.

See also LAPLACE’S EQUATION–BIPOLAR COORDINATES

Helmholtz Differential Equation */

Bispherical Coordinates
The HELMHOLTZ DIFFERENTIAL EQUATION is not se-
parable in BISPHERICAL COORDINATES.

See also BISPHERICAL COORDINATES, HELMHOLTZ

DIFFERENTIAL EQUATION, LAPLACE’S EQUATION–BI-

SPHERICAL COORDINATES

Helmholtz Differential Equation*/

Cartesian Coordinates
In 2-D CARTESIAN COORDINATES, attempt SEPARATION

OF VARIABLES by writing

F(x; y)�X(x)Y(y); (1)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

d2X

dx2
Y�

d2Y

dy2
X�k2XY�0: (2)



Dividing both sides by XY gives

1

X

d2X

dx2 
�

1

Y

d2Y

dy2 
�k2 �0 : (3)

This leads to the two coupled ordinary differential
equations with a separation constant m2 ;

1

X

d2X

dx2 
�m2 (4)

1

Y

d2Y

dy2 
��(m2 �k2); (5)

where X and Y could be interchanged depending on
the boundary conditions. These have solutions

X �Amemx �Bme�mx (6)

Y �Cmei
ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
y�Dme �i

ffiffiffiffiffiffiffiffiffiffi
m2�k2

p
y

�Em sin(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �k2

p
y) �Fm cos(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �k2

p
y) : (7)

The general solution is then

F(x; y) �
X�
m�1

(Amemx �Bme �mx)

�[Em sin(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �k2

p
y) �Fm cos(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �k2

p
y)] : (8)

In 3-D CARTESIAN COORDINATES, attempt SEPARATION

OF VARIABLES by writing

F(x; y; z) �X(x)Y(y)Z(z) ; (9)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

d2X

dx2
YZ �

d2Y

dy2
XZ �

d2Z

dz2
XY �k2XY �0: (10)

Dividing both sides by XYZ gives

1

X

d2X

dx2 
�

1

Y

d2Y

dy2 
�

1

Z

d2Z

dz2 
�k2 �0: (11)

This leads to the three coupled differential equations

1

X

d2X

dx2 
�t2 (12)

1

Y

d2Y

dy2 
�m2 (13)

1

Z

d2Z

dz2 
�(k2 �l2 �m2) ; (14)

where X , Y , and Z could be permuted depending on
boundary conditions. The general solution is there-
fore

F(x; y; z)�
X�
l�1

X�
m�1

(Ale
lx�Ble

�lx)(Cmemy�Dme�my)

�(Elme�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�l2�m2

p
z�Flmei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�l2�m2

p
z): (15)

See also CARTESIAN COORDINATES, HELMHOLTZ DIF-

FERENTIAL EQUATION
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Helmholtz Differential Equation*/

Circular Cylindrical Coordinates
In CYLINDRICAL COORDINATES, the SCALE FACTORS are
hr�1; hu�r; hz�1; so the LAPLACIAN is given by

92F�
1

r

@

@r
r
@F

@r

 !
�

1

r2

@2F

@u2 �
@2F

@z2
: (1)

Attempt SEPARATION OF VARIABLES in the HELMHOLTZ

DIFFERENTIAL EQUATION

92F�k2F�0 (2)

by writing

F(r; u; z)�R(r)U(u)Z(z); (3)

then combining (1) and (2) gives

d2R

dr2
UZ�

1

r

dR

dr
UZ�

1

r2

d2U
du2 RZ�

d2Z

dz2
RU�k2RUZ

�0: (4)

Now multiply by r2=(RUZ);

r2

R

d2R

dr2
�

r

R

dR

dr

 !
�

1

U
d2U
du2 �

r2

Z

d2Z

dz2
�k2r2�0; (5)

so the equation has been separated. Since the solution
must be periodic in u from the definition of the
circular cylindrical coordinate system, the solution
to the second part of (5) must have a NEGATIVE

separation constant

1

U
d2u

du2
��m2; (6)

which has a solution

U(u)�Cm cos(mu)�Dm sin(mu): (7)

Plugging (7) back into (5) gives

r2

R

d2R

dr2
�

r

R

dR

dr
�m2�

r2

Z

d2Z

dz2
�k2r2�0; (8)

and dividing through by r2 results in



1

R

d2R

dr2 
�

1

rR

dR

dr
�

m2

r2 
�

1

Z

d2Z

dz2 
�k2 �0 : (9)

The solution to the second part of (9) must not be
sinusoidal at /9�/ for a physical solution, so the
differential equation has a POSITIVE separation con-
stant

1

Z

d2Z

dz2 
�n2 ; (10)

and the solution is

Z(z) �Ene �nx �Fnenx : (11)

Plugging (11) back into (9) and multiplying through
by R yields

d2R

dr2 
�

1

r

dR

dr
� n2 �k2 �

m2

r2

 !
R �0 (12)

But this is just a modified form of the BESSEL

DIFFERENTIAL EQUATION, which has a solution

R(r) �AmnJm(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 �k2

p
r) �BmnYm(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 �k2

p
r) ; (13)

where Jn(x) and Yn(x) are BESSEL FUNCTIONS OF THE

FIRST and SECOND KINDS, respectively. The general
solution is therefore

F(r ; u ; z) �
X�
m�o

X�
n�0

[AmnJm(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �n2

p
r)

�BmnYm(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �n2

p
r)]

�[Cm cos(mu) �Dm sin(mu)](Ene �nz �Fnenz) : (14)

In the notation of Morse and Feshbach (1953), the
separation functions are /f1(r) �r/, f2( u) �1; f3(z) �1/, so
the STÄ CKEL DETERMINANT is 1.

The HELMHOLTZ DIFFERENTIAL EQUATION is also
separable in the more general case of k2 OF THE FORM

k2(r; u; z)�f (r)�
g(u)

r2
�h(z)�k?2: (15)

See also CYLINDRICAL COORDINATES, HELMHOLTZ

DIFFERENTIAL EQUATION
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Helmholtz Differential Equation*/

Confocal Ellipsoidal Coordinates
Using the NOTATION of Byerly (1959, pp. 252�/53),
LAPLACE’S EQUATION can be reduced to

92F�(m2�n2)
@2F

@a2
�(l2�n2)

@2F

@b2
�(l2�m2)

@2F

@g2

�0; (1)

where

a�c g
l

c

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l2 � b2)(l2 � c2)

p
�F

b

c
;
p

2

 !
�F

b

c
; sin�1 c

l

 ! !
(2)

b�c g
m

b

dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c2 � m2)(m2 � b2)

p

�F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b2�c2

p
; sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

m2

1 �
b2

c2

vuuuuuut
0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA (3)

g�c g
n

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b2 � n2)(c2 � n2)

p

�F
b

c
; sin�1 n

b

 ! !
: (4)

In terms of a; b; and g;

l�c dc a;
b

c

 !
(5)

m�b nd b;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

c2

s !
(6)

n�b sn g;
b

c

 !
: (7)

Equation (1) is not separable using a function OF THE

FORM

F�L(a)M(b)N(g); (8)

but it is if we let

1

L

d2L

da2
�
X

akl
k (9)

1

M

d2M

db2
�
X

bkm
k (10)

1

N

d2N

dg2
�
X

ckn
k: (11)

These give



a0 ��b0 �c0 (12)

a2 ��b2 �c2 ; (13)

and all others terms vanish. Therefore (1) can be
broken up into the equations

d2L

da2 
�(a0 �a2 l

2)L (14)

d2M

db2 ��(a0 �a2 m
2)M (15)

d2N

dg2 
�(a0 �a2 n

2)N : (16)

For future convenience, now write

a0 ��(b2 �c2)p (17)

a2 �m(m �1); (18)

then

d2L

da2 
�[m(m �1)l2 �(b2 �c2)p]L �0 (19)

d2M

db2 
�[m(m �1)m2 �(b2 �c2)p]M �0 (20)

d2N

dg2 
�[m(m �1)n2 �(b2 �c2)p]N �0 : (21)

Now replace a; b; and g to obtain

( l2 �b2)( l2 �c2)
d2L

dl2 
� l( l2 �b2 � l2 �c2)

dL

dl

�[m(m �1)l2 �(b2 �c2)p]L �0 (22)

( m2 �b2)(m2 �c2)
d2M

dm2 
� m( m2 �b2 � m2 �c2)

dM

dm

�[m(m �1)m2 �(b2 �c2)p]M �0 (23)

( n2 �b2)( n2 �c2)
d2N

dn2 
� n(n2 �b2 � n2 �c2)

dN

dn

�[m(m �1)n2 �(b2 �c2)p]N �0: (24)

Each of these is a LAMÉ ’S DIFFERENTIAL EQUATION,
whose solution is called an ELLIPSOIDAL HARMONIC.
Writing

L(l) �Ep
m( l) (25)

M( l) �Ep
m(m) (26)

N( l) �Ep
m( n) (27)

gives the solution to (1) as a product of ELLIPSOIDAL

HARMONICS Ep
m(x):

F �Ep
m( l)Ep

m(m)Ep
m( n) : (28)

See also CONFOCAL ELLIPSOIDAL COORDINATES,
HELMHOLTZ DIFFERENTIAL EQUATION
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Helmholtz Differential Equation */

Confocal Paraboloidal Coordinates
As shown by Morse and Feshbach (1953), the HELM-

HOLTZ DIFFERENTIAL EQUATION is separable in CON-

FOCAL PARABOLOIDAL COORDINATES.

See also CONFOCAL PARABOLOIDAL COORDINATES,
HELMHOLTZ DIFFERENTIAL EQUATION
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Helmholtz Differential Equation*/Conical
Coordinates
In CONICAL COORDINATES, LAPLACE’S EQUATION can
be written

@2V

@a2
�

@2V

@b2
�(m2�n2)

@

@l
l2 @V

@l

 !
�0; (1)

where

a�g
m

a

dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(m2 � a2)(b2 � m2)

p (2)

b�g
n

0

dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � n2)(b2 � n2)

p (3)

(Byerly 1959). Letting

V�U(u)R(r) (4)

breaks (1) into the two equations,

d

dr
r2 dR

dr

 !
�m(m�1)R (5)



@2U

@ a2 
�

@2U

@ b2 �m(m �1)(m2 � n2)U �0 (6)

Solving these gives

R(r) �Arm �Br �m�1 (7)

U(u) �Ep
m( m)Ep

m( n); (8)

where Ep
m are ELLIPSOIDAL HARMONICS. The regular

solution is therefore

V �ArmEp
m(m)Ep

m(n) ; (9)

However, because of the cylindrical symmetry, the
solution Ep

m( m)Ep
m( n) is an mth degree SPHERICAL

HARMONIC.

See also CONICAL COORDINATES, HELMHOLTZ DIFFER-

ENTIAL EQUATION
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Helmholtz Differential Equation*/Elliptic
Cylindrical Coordinates
In ELLIPTIC CYLINDRICAL COORDINATES, the SCALE

FACTORS are hu�hv�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 u�sin2 v

p
; hz�1; and

the separation functions are f1(u)�f2(v)�f3(z)�1;
giving a STÄCKEL DETERMINANT of S�(sin2 v�
sinh2 u): The Helmholtz differential equation is

1

sinh2 u � sin2 v

@2F

@u2
�

@2F

@v2

 !
�

@2F

@z2
�k2F�0: (1)

Attempt SEPARATION OF VARIABLES by writing

F(u; v; z)�U(u)V(v)Z(z); (2)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

Z

sinh2 u � sin2 v
V

d2U

du2
�U

d2V

dv2

 !
�UV

d2Z

dz2

�k2UVZ

�0: (3)

Now divide by UVZ to give

1

sinh2 u � sin2 v

1

U

@2U

@u2
�

1

V

@2V

@v2

 !
�

1

Z

@2Z

@z2
�k2

�0: (4)

Separating the Z part,

1

Z

d2Z

dz2
��(k2�m2) (5)

1

sinh2 u � sin2 v

1

U

@2U

@u2
�

1

V

@2V

@v2

 !
�m2 (6)

so

@2Z

dz2
��(k2�m2)Z; (7)

which has the solution

Z(z)�Akm cos(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�m2

p
z)�Bkm sin(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�m2

p
z): (8)

Rewriting (6) gives

1

U

d2U

du2
�m2 sinh2 u

 !
�

1

V

d2V

dv2
�m2 sin2 v

 !

�0; (9)

which can be separated into

1

U

d2U

du2
�m2 sinh2 u�c (10)

c�
1

V

d2V

dv2
�m2 sin2 v�0; (11)

so

d2U

du2
�(c�m2 sinh2 u)U�0 (12)

d2V

dv2
�(c�m2 sin2 v)V�0: (13)

Now use

sinh2 u�1
2[cosh (2u)�1] (14)

sin2 v�1
2[1�cos (2v)] (15)

to obtain

d2U

du2
�fc�1

2m
2[cosh (2u)�1]gU�0 (16)

d2V

dv2
�fc�1

2m
2[1�cos (2v)]gV�0: (17)

Regrouping gives



d2U

du2 
�[(c �1

2m
2) �1

2m
2cosh (2u)]U �0 (18)

d2V

dv2 
�[(c �1

2m
2) �1

2m
2cos (2v)]V �0: (19)

Let a �c �m2 =2 and q ��m2 =4 ; then these become

d2V

dv2 
�[a �2q cos (2v)]V �0 (20)

d2U

du2 
�[a �2q cosh (2u)]U �0: (21)

Here, (20) is the MATHIEU DIFFERENTIAL EQUATION

and (21) is the modified MATHIEU DIFFERENTIAL

EQUATION. These solutions are known as MATHIEU

FUNCTIONS.

See also ELLIPTIC CYLINDRICAL COORDINATES, HELM-

HOLTZ DIFFERENTIAL EQUATION, MATHIEU DIFFEREN-

TIAL EQUATION, MATHIEU FUNCTION
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Helmholtz Differential Equation */Oblate
Spheroidal Coordinates
As shown by Morse and Feshbach (1953) and Arfken
(1970), the HELMHOLTZ DIFFERENTIAL EQUATION is
separable in OBLATE SPHEROIDAL COORDINATES.

See also HELMHOLTZ DIFFERENTIAL EQUATION, OB-

LATE SPHEROIDAL COORDINATES
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Helmholtz Differential Equation*/

Parabolic Coordinates
The SCALE FACTORS are hu�hv�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�v2

p
; hu�uv

and the separation functions are fu(u)�u; f2(v)�v;
f3(u)�1; given a STÄCKEL DETERMINANT of S�u2�
v2: The LAPLACIAN is

1

u2 � v2

1

u

@F

@u
�

@2F

@u2
�

1

v

@F

@v
�

@2F

@v2

 !
�

1

u2v2

@2F

@u2 �k2F

�0: (1)

Attempt SEPARATION OF VARIABLES by writing

F(u; v; u)�U(u)V(v)U(u); (2)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

1

u2 � v2
VU

1

u

dU

du
�

d2U

du2

 !
�UU

1

v

dV

dv
�

d2V

dv2

 !" #

�
UV

u2v2

d2U
du2 �k2UVU�0: (3)

Now multiply through by u2v2=(UVU);

u2v2

u2 � v2

1

U

1

u

dU

du
�

d2U

du2

 !
�

1

V

1

v

dV

dv
�

d2V

dv2

 !" #

�
1

U
d2U
du2 �k2u2v2�0: (4)

Separating the U part gives

1

U
d2u

du2��m2; (5)

which has solution

U(u)�Am cos(mu)�Bm sin(mu): (6)

Plugging (5) back into (4) and multiplying by (u2�
v2)=(u2v2) gives

1

U

1

u

dU

du
�

d2U

du2

 !
�

1

V

1

v

dV

dv
�

d2V

dv2

 !" #

�m2 u2 � v2

u2v2
�k2(u2�v2) (7)

Rewriting,

1

U

1

u

dU

du
�d2U

du2

 !
�

1

V

1

v

dV

dv
�

d2V

dv2

 !" #

�m2 1

v2
�

1

u2

 !
�k2(u2�v2): (8)

This can be rearranged into two terms, each contain-
ing only u or v ,



1

U

1

u

dU

du 
�

d2U

du2

 !
�k2u2 �

m2

u2

" #

�
1

V

1

v

dV

dv 
�

d2V

dv2

 !
�k2v2 �

m2

v2

" #
(9)

and so can be separated by letting the first part equal
c and the second equal �c; giving

d2U

du2 
�

1

u

dU

du 
� k2u2 �

m2

u2 
�c

 !
U �0 (10)

d2V

dv2 
�

1

v

dV

dv 
� k2v2 �

m2

v2 
�c

 !
V �0 : (11)

See also HELMHOLTZ DIFFERENTIAL EQUATION, PARA-

BOLIC COORDINATES
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Helmholtz Differential Equation */

Parabolic Cylindrical Coordinates
In PARABOLIC CYLINDRICAL COORDINATES, the SCALE

FACTORS are hu �hv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �v2

p
; hz �1 and the se-

paration functions are f1(u) �f2(v) �f3(z) �1; giving
STÄ CKEL DETERMINANT of s �u2 �v2 : the HELMHOLTZ

DIFFERENTIAL EQUATION is

1

u2 � v2

@2f

@u2 
�

@2f

@v2

 !
�

@2f

@z2 
�k2f �0: (1)

attempt SEPARATION OF VARIABLES by writing

f (u; v; z) �u(u)v(v)z(z) ; (2)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

1

u2 � v2
VZ

d2U

du2 
�UZ

d2V

dv2

 !
�UV

d2Z

dz2 
�k2UVZ

�0: (3)

Divide by UVZ ,

1

u2 � v2

1

U

d2U

du2 
�

1

V

d2V

dv2

 !
�

1

Z

d2Z

dz2 
�k2 �0 : (4)

Separating the Z part,

1

Z

d2Z

dz2 
��(k2 �m2) (5)

1

u2 � v2

1

U

d2U

du2 
�

1

V

d2V

dv2

 !
�k2 �0: (6)

1

U

d2U

du2 
�

1

V

d2V

dv2 
�k2(u2 �v2) �0; (7)

so

@2Z

dz2 
��(k2 �m2)Z ; (8)

which has solution

Z(z) �A cos(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
z) �B sin(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
z); (9)

and

1

U

d2U

du2 
�k2u2

 !
�

1

V

d2V

dv2 
�k2v2

 !
�0 : (10)

This can be separated

1

U

d2U

du2
�k2u2�c (11)

1

V

d2V

dv2
�k2v2��c; (12)

so

d2U

du2
�(c�k2u2)U�0 (13)

d2V

dv2
�(c�k2v2)V�0: (14)

These are the WEBER DIFFERENTIAL EQUATIONS, and
the solutions are known as PARABOLIC CYLINDER

FUNCTIONS.

See also HELMHOLTZ DIFFERENTIAL EQUATION, PARA-

BOLIC CYLINDER FUNCTION, PARABOLIC CYLINDRICAL

COORDINATES, WEBER DIFFERENTIAL EQUATIONS
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Helmholtz Differential Equation*/Polar
Coordinates
In 2-D POLAR COORDINATES, attempt SEPARATION OF

VARIABLES by writing

F(r; u)�R(r)U(u); (1)



then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

d2R

dr2 
U�

1

r

dR

dr
U�

1

r2

d2 U
du2 R �k2RU�0: (2)

Divide both sides by RU

r2

R

d2R

dr2 
�

r

R

dR

dr

 !
�

1

U
d2 U
d u2 

�k2

 !
�0: (3)

The solution to the second part of (3) must be periodic,
so the differential equation is

d2 U
du2

1

U
��(k2 �m2) ; (4)

which has solutions

U(u) �c1ei
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
u�c2e �i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
u

�c3 sin(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u) �c4 cos(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u): (5)

Plug (4) back into (3)

r2Rƒ�rR ?�m2R �0: (6)

This is an EULER DIFFERENTIAL EQUATION with a �1
and b ��m2 : The roots are r �9m: So for m �0, r �0
and the solution is

R(r) �c1 �c2 In r : (7)

But since In r blows up at r �0, the only possible
physical solution is R(r) �c1 : When m �0, r �9m; so

R(r) �c1rm �c2r �m : (8)

But since r �m blows up at r �0, the only possible
physical solution is Rm(r) �c1rm : The solution for R is
then

Rm(r) �cmrm (9)

for m �0, 1, ...and the general solution is

F(r ; u) �
X�
m�0

[amrm sin(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u)

�bmrm cos(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u)] : (10)
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Helmholtz Differential Equation */Prolate
Spheroidal Coordinates
As shown by Morse and Feshbach (1953) and Arfken
(1970), the HELMHOLTZ DIFFERENTIAL EQUATION is
separable in PROLATE SPHEROIDAL COORDINATES.

See also HELMHOLTZ DIFFERENTIAL EQUATION, PRO-

LATE SPHEROIDAL COORDINATES
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Helmholtz Differential Equation*/

Spherical Coordinates
In SPHERICAL COORDINATES, the SCALE FACTORS are
hr�1; hu�r sin f; hf�r; and the separation func-
tions are f1(r)�r2; f2(u)�1; f3(f)�sin f; giving a
STÄCKEL DETERMINANT of S�1. The LAPLACIAN is

92�
1

r2

@

@r
r2 @

@r

 !
�

1

r2 sin2 f

@2

@u2�
1

r2 sin f

@

@f

� sin f
@

@f

 !
: (1)

To solve the HELMHOLTZ DIFFERENTIAL EQUATION in
SPHERICAL COORDINATES, attempt SEPARATION OF

VARIABLES by writing

F(r; u; f)�R(r)U(u)F(f): (2)

Then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

d2R

dr2
FU�

2

r

dR

dr
FU�

1

r2 sin2 f

d2U
du2

FR

�
cos f

r2 sin f

dF
df

UR�
1

r2

d2F
df2

UR

�0: (3)

Now divide by RUF;

r2 sin2 f

FRU
FU

d2R

dr2
�

2

r

r2 sin2 f

FRU
FU

dR

dr

�
1

r2 sin2 f

r2 sin2 f

FRU
FR

d2U
du2

�
cos f

r2 sin f

r2 sin2 f

FUR

dF
df

UR

�
1

r2

r2 sin2 f

FRU
d2F
df2 UR�0 (4)



r2 sin2 f

R

d2R

dr2
�

2r sin2 f

R

dR

dr

 !
�

1

U
d2U
du2

 !

�
cos f sin f

F
dF
df

�
sin2 f

F
d2F
df2

 !
�0: (5)

The solution to the second part of (5) must be
sinusoidal, so the differential equation is

d2U
du2

1

U
��m2; (6)

which has solutions which may be defined either as a
COMPLEX function with m���; ..., �

U(u)�Ameimu; (7)

or as a sum of REAL sine and cosine functions with
m���; ..., �

U(u)�Sm sin(mu)�Cm cos(mu): (8)

Plugging (6) back into (7),

r2

R

d2R

dr2
�

2r

R

dR

dr
�

1

sin2 f
m2�

cos f sin f

F

 !
dF
df

�
sin2f

F
d2F
df2

�0: (9)

The radial part must be equal to a constant

r2

R

d2R

dr2
�

2r

R

dR

dr
�l(l�1) (10)

r2 d2R

dr2
�2r

dR

dr
�l(l�1)R: (11)

But this is the EULER DIFFERENTIAL EQUATION, so we
try a series solution OF THE FORM

R�
X�
n�0

anrn�c (12)

Then

r2
X�
n�0

(n�c)(n�c�1)anrn�c�2

�2r
X�
n�0

(n�c)anrn�c�1

�l(l�1)
X�
n�0

anrn�c�0 (13)

X�
n�0

(n�c)(n�c�1)anrn�c�2
X�
n�0

(n�c)anrn�c

�l(l�1)
X�
n�0

anrn�c�0 (14)

X�
n�0

[(n�c)(n�c�1)�l(l�1)]anrn�c�0: (15)

This must hold true for all POWERS of r . For the rc

term (with n � 0),

c(c�1)�l(l�1); (16)

which is true only if c�l;�l�1 and all other terms
vanish. So an�0 for n"l; �l�1: Therefore, the
solution of the R component is given by

Rl(r)�Alr
l�Blr

�l�1: (17)

Plugging (17) back into (9),

l(l�1)�
m2

sin2 f
�

cos f

sin f

1

F
dF
df

�
1

F
d2F
df2�0 (18)

Fƒ
cos f

sin f
F?� l(l�1)�

m2

sin2 f

" #
F�0; (19)

which is the associated LEGENDRE DIFFERENTIAL

EQUATION for x�cos f and m�0, ..., l . The general
COMPLEX solution is therefore

X�
t�0

Xl

m��l

(Alr
l�Blr

�l�1)Pm
l (cos f)e�imu

�
X�
t�0

Xl

m��1

(Alr
l�Blr

�l�1)Ym
l (u; f) (20)

where

Ym
l (u; f)�Pm

l (cos f)e�imu (21)

are the (COMPLEX) SPHERICAL HARMONICS. The gen-
eral REAL solution is

X�
t�0

Xl

m�0

(Alr
l�Blr

�l�1)Pm
l (cos f)

� [Sm sin(mu)�Cm cos(mu)]: (22)

Some of the normalization constants of Pm
l can be

absorbed by Sm and Cm; so this equation may appear
in the form

X�
t�0

Xl

m�0

(Alr
l�Blr

�l�1)Pm
l (cos f)

� [Sm
l sin(mu)�Cm

l cos(mu)]

�
X�
l�0

Xl

m�0

(Alr
l�Blr

�l�1)

�[Sm
l Ym(o)

l (u; f)�Cm
l Ym(e)

l (u; f)]; (23)

where

Ym(0)
l (u; f)�Pm

l (cos u)sin(mu) (24)

Ym(e)
l (u; f)�Pm

l (cos u)cos(mu) (25)



are the EVEN and ODD (real) SPHERICAL HARMONICS. If
azimuthal symmetry is present, then U( u) is constant
and the solution of the F component is a LEGENDRE

POLYNOMIAL Pl(cos f) : The general solution is then

F(r; f) �
X�
l �0

(Alr
lBlr

�l�1)Pl(cos f): (26)

Actually, the equation is separable under the more
general condition that k2 is OF THE FORM

k2(r ; u; f) �f (r) �
g( u)

r2
�

h(f)

r2 sin u 
�k?2 : (27)

See also HELMHOLTZ DIFFERENTIAL EQUATION, SPHE-

RICAL COORDINATES, SPHERICAL HARMONIC
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Helmholtz Differential Equation */

Spherical Surface
On the surface of a SPHERE, attempt SEPARATION OF

VARIABLES in SPHERICAL COORDINATES by writing

F(u ; f) �U( u) F(f); (1)

then the HELMHOLTZ DIFFERENTIAL EQUATION be-
comes

1

sin2 f

d2 U
du2 F�

cos f

sin f

dF
df

U�
d2 F
df2 U�k2 UF�0: (2)

Dividing both sides by FU;

cos f sin f

F
dF
d f 

�
sin2 f

F
d2 F
df2

 !
�

1

U
d2 U
du2 �k2

 !

�0; (3)

which can now be separated by writing

d2 U
du2

1

U
��(k2 �m2) : (4)

The solution to this equation must be periodic, so m
must be an INTEGER. The solution may then be
defined either as a COMPLEX function

U( u) �Amei
ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
u�Bme �i

ffiffiffiffiffiffiffiffiffiffi
k2�m2

p
u (5)

for m ���; ..., �; or as a sum of REAL sine and cosine

functions

U( u) �Sm sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u

� �
�Cm cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �m2

p
u

� �
(6)

for m � 0, ..., �: Plugging (4) into (3) gives

cos f sin f

F
dF
df 

�
sin2 f

F
d2 F
df2 

�m2 �0 (7)

Fƒ�
cos f

sin f
F?�

m2

sin2 f
F�0; (8)

which is the LEGENDRE DIFFERENTIAL EQUATION for
x �cos f with

m2 �l(l �1); (9)

giving

l2 �l �m2 �0 (10)

l �1
2(�1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4m2

p
) : (11)

Solutions are therefore LEGENDRE POLYNOMIALS with
a COMPLEX index. The general COMPLEX solution is
then

F(u ; f) �
X�

m���

Pl(cos f)(Ameimu �Bme �imu) ; (12)

and the general REAL solution is

F( u; f) �
X�
m�0

Pl(cos f)

� [Sm sin(mu) �Cm cos(mu)]: (13)

Note that these solutions depend on only a single
variable m . However, on the surface of a sphere, it is
usual to express solutions in terms of the SPHERICAL

HARMONICS derived for the 3-D spherical case, which
depend on the two variables l and m .

Helmholtz Differential Equation*/

Toroidal Coordinates
The HELMHOLTZ DIFFERENTIAL EQUATION is not se-
parable in TOROIDAL COORDINATES

See also HELMHOLTZ DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION–TOROIDAL COORDINATES, TOROI-

DAL COORDINATES

Helmholtz’s Theorem
Any VECTOR FIELD v satisfying

[9 � v]��0 (1)

[9�v]��0 (2)

may be written as the sum of an IRROTATIONAL part



and a SOLENOIDAL part,

v ��9 f �9�A ; (3)

where for a VECTOR FIELD F ,

f ��gV

9 � F

4 p r? � rj j
d3r ? (4)

A �gV

9� F

4p r ? � rj j
d3r?: (5)

See also IRROTATIONAL FIELD, SOLENOIDAL FIELD,
VECTOR FIELD
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Helson-Szego Measure
An absolutely continuous measure on @D whose
density has the form exp(x � ̄y) ; where x and y are
real-valued functions in L � ; yk k�B p=2; exp is the
EXPONENTIAL FUNCTION, and yk k is the NORM.

Hemicylindrical Function
A function Sn(z) which satisfies the RECURRENCE

RELATION

Sn�1(z) �Sn�1(z) �2S ?n(z)

together with

S1(z) ��S ?0(z)

is called a hemicylindrical function.
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Hemisphere

Half of a SPHERE cut by a PLANE passing through its
CENTER. A hemisphere of RADIUS r can be given by the
usual SPHERICAL COORDINATES

x �r cos u sin f (1)

y �r sin u sin f (2)

z �r cos f; (3)

where u � [0; 2p) and f � [0; p=2]: All CROSS SECTIONS

passing through the Z -AXIS are SEMICIRCLES.

The VOLUME of the hemisphere is

V�pg
r

0

(r2�z2) dz�2
3 pr3: (4)

The weighted mean of z over the hemisphere is

�z	�p g
r

0

z(r2�z2) dz�1
4 pr2: (5)

The CENTROID is then given by

z̄�
�z	

V
�3

8 r (6)

(Beyer 1987).

See also SEMICIRCLE, SPHERE
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Hemispherical Function

The hemisphere function is defined as

H(x; y) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a �x2 �y2

p
for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
5a

0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
> a:

,
Watson (1966) defines a hemispherical function as a
function S which satisfies the RECURRENCE RELA-

TIONS

Sn�1(z) �Sn�1(z) �2S ?n(z)

with

S1(z) ��S ?0(z)

See also CYLINDER FUNCTION, CYLINDRICAL FUNC-

TION
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Hempel’s Paradox
A purple cow is a confirming instance of the hypoth-
esis that all crows are black.
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Hendecagon

An 11-sided polygon, also variously known as the
undecagon or unidecagon. The term "hendecagon" is
preferable to the other two since it uses the Greek
prefix and suffix instead of mixing a Roman prefix
and Greek suffix. The regular 11-sided POLYGON has
SCHLÄ FLI SYMBOL f11g:/
The hendecagon cannot be constructed using the
classical Greek rules of GEOMETRIC CONSTRUCTION,
but Conway and Guy (1996) give a NEUSIS CONSTRUC-

TION based on TRISECTION.

See also DECAGON, DODECAGON, TRIGONOMETRY

VALUES PI/11
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Henneberg’s Minimal Surface

A MINIMAL SURFACE and double ALGEBRAIC SURFACE

of 15th order and fifth class which can be given by
PARAMETRIC EQUATIONS

x(u; v)�2 sinh u cos v�2
3 sinh(3u) cos(3v) (1)

y(u; v)�2 sinh u sin v�2
3 sinh(3u) sin(3v) (2)

z(u; v)�2 cosh(2u) cos(2v): (3)

The coefficients of the FIRST FUNDAMENTAL FORM of
this parameterization are given by

E�8 cosh2 u[cosh(4u)�cos(4v)] (4)

F�0 (5)



G �8 cosh2 u[cosh(4u) �cos(4v)]; (6)

and the coefficients of the SECOND FUNDAMENTAL

FORM are

e ��4 cos(2v) sinh(2u) (7)

f �4 cosh 2uð Þ sin 2vð Þ  (8)

g �4 sinh(2u) cos(2v); (9)

giving AREA ELEMENT

dS �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2[cos(4v) �cosh(4u)]

p
(10)

and GAUSSIAN and MEAN CURVATURES are

K �
sech4 u

8[cos(4v) � cosh(4u)] 
(11)

H �0: (12)

The surface can also be obtained from the ENNEPER-

WEIERSTRASS PARAMETERIZATION with

f �2 �2z�4 (13)

g �z ; (14)

which gives a parameterization OF THE FORM

x �
2(r2 � 1)cos f

r
�

2(r6 � 1)cos(3f)

3r3 
(15)

y ��
6r2(r2 � 1)sin f � 2(r6 � 1)sin(3 f)

3r3 
(16)

z �
2(r4 � 1)cos(2 f)

r2 
(17)

Henneberg’s minimal surface is a NONORIENTABLE

SURFACE defined over the UNIT DISK. It is an immer-
sion of the REAL PROJECTIVE PLANE that has been
multiply PUNCTURED (once at the origin and four
times at each of the roots of the metric). Conse-
quently, it is not a COMPLETE SURFACE. The total
curvature is �2p:/

See also ENNEPER-WEIERSTRASS PARAMETERIZATION,
MINIMAL SURFACE
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Hénon Attractor
HÉ NON MAP

Hénon Map

A quadratic 2-D MAP given by the equations

xn�1 �1 � ax2
n �yn (1)

yn�1 � bxn (2)

or

xn�1 �xn cos a �(yn �x2
n)sin a (3)

yn �1 �xn sin a �(yn �x2
n)cos a: (4)

The above map is for a �1 :4 and b �0:3: The Hénon
map has CORRELATION EXPONENT 1.25 9 0.02 (Grass-
berger and Procaccia 1983) and CAPACITY DIMENSION

1.261 9 0.003 (Russell et al. 1980). Hitzl and Zele
(1985) give conditions for the existence of periods 1 to
6.

See also BOGDANOV MAP, LOZI MAP, QUADRATIC MAP

References
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Hénon-Heiles Equation
A nonlinear nonintegrable HAMILTONIAN SYSTEM

with

ẍ��
@V

@x
(1)



ÿ ��
@V

@y
; (2)

where the potential energy function is defined by the
polar equation

V(r ; u) �1
2 r

2 �1
3 r

3 sin(3u) ; (3)

giving Cartesian potential

V(x; y) �1
2 x2 �y2 �2x2y �2

3 y
3

� �
: (4)

The total energy of the system is then given by

E �V(x; y) �1
2(ẋ

2 � ̇y2) ; (5)

which is conserved during motion.

Integrating the above coupled ordinary differential
equations from an arbitrary starting point with x(t �
0) �0 and E �1=8 gives the motion illustrated above.
Computing the values of t at which x �0 and plotting
y(t) vs. ẏ(t) at these values gives a so-called SURFACE

OF SECTION. The surfaces of section shown below
correspond to E �1 =12 and E �1=8:/

The Hamiltonian for a generalized Hénon-Heiles
potential is

H �1
2(p

2
x �p2

y �Ax2 �By2) �Dx2y �1
3 Cy3: (6)

The equations of motion are integrable only for

1. D=C�0;/
2. D=C��1; A=B�1;/
3. D=C��1=6; and
4. D=C��1=16; A=B�1=6:/

See also STANDARD MAP, SURFACE OF SECTION
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Henry VIII Prime
TRUNCATABLE PRIME

Hensel’s Lemma
An important result in VALUATION THEORY which
gives information on finding roots of POLYNOMIALS.
Hensel’s lemma is formally stated as follow. Let
(K ; �j j) be a complete NON-ARCHIMEDEAN FIELD, and
let R be the corresponding VALUATION RING. Let f (x)
be a POLYNOMIAL whose COEFFICIENTS are in R and
suppose a0 satisfies

f (a0)j jB f ?(a0)j j2; (1)

where f ? is the (formal) DERIVATIVE of f . Then there
exists a unique element a �R such that f (a)�0 and

a�a0j j5 f (a0)

f ?(a0)

�����
�����: (2)

Less formally, if f (x) is a POLYNOMIAL with "INTEGER"
COEFFICIENTS and f (a0) is "small" compared to f ?(a0);
then the equation f (x)�0 has a solution "near" a0: In
addition, there are no other solutions near a0;
although there may be other solutions. The proof of
the LEMMA is based around the Newton-Raphson
method and relies on the non-Archimedean nature
of the valuation.

Consider the following example in which Hensel’s
lemma is used to determine that the equation x2��1
is solvable in the 5-adic numbers Q5 (and so we can
embed the GAUSSIAN INTEGERS inside Q5 in a nice
way). Let K be the 5-adic numbers Q5; let f (x)�
x2�1; and let a0�2: Then we have f (2)�5 and
f ?(2)�4; so

f (2)j j5�1
5B f ?(2)j j25�1; (3)

and the condition is satisfied. Hensel’s lemma then
tells us that there is a 5-adic number a such that a2�
1�0 and

a�2j j5B� 5
4

��� ���
5
�1

5: (4)

Similarly, there is a 5-adic number b such that b2�
1�0 and

b�3j j5B� 10
7

��� ���
5
�1

5: (5)



Therefore, we have found both the square roots of �1
in Q5 : It is possible to find the roots of any POLY-

NOMIAL using this technique.

See also P -ADIC NUMBER, VALUATION THEORY
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Henstock-Kurzweil Integral
HK INTEGRAL

Heptacontagon
A 70-sided POLYGON.

Heptadecagon

The REGULAR POLYGON of 17 sides is called the
HEPTADECAGON, or sometimes the HEPTAKAIDECAGON.
Gauss proved in 1796 (when he was 19 years old) that
the heptadecagon is CONSTRUCTIBLE with a COMPASS

and STRAIGHTEDGE. Gauss’s proof appears in his
monumental work Disquisitiones Arithmeticae. The
proof relies on the property of irreducible POLYNO-

MIAL equations that ROOTS composed of a finite
number of SQUARE ROOT extractions only exist when
the order of the equation is a product OF THE FORM

2a3bFc � Fd � � �Fe; where the Fn are distinct PRIMES OF

THE FORM

Fn�22n�1;

known as FERMAT PRIMES. Constructions for the
regular TRIANGLE (31), SQUARE (22), PENTAGON (/221

�
1); HEXAGON (/2131); etc., had been given by Euclid, but
constructions based on the FERMAT PRIMES]17 were
unknown to the ancients. The first explicit construc-
tion of a heptadecagon was given by Erchinger in

about 1800.

The following elegant construction for the heptade-
cagon (Yates 1949, Coxeter 1969, Stewart 1977, Wells
1992) was first given by Richmond (1893).

1. Given an arbitrary point O , draw a CIRCLE

centered on O and a DIAMETER drawn through O .
2. Call the right end of the DIAMETER dividing the
CIRCLE into a SEMICIRCLE P1:/
3. Construct the DIAMETER PERPENDICULAR to the
original DIAMETER by finding the PERPENDICULAR

BISECTOR OB .
4. Construct J a QUARTER the way up OB .
5. Join JP1 and find E so that
OJE is a QUARTER

of
OJP1:/
6. Find F so that
EJF is 458.
7. Construct the SEMICIRCLE with DIAMETER FP1:/
8. This SEMICIRCLE cuts OB at K .
9. Draw a SEMICIRCLE with center E and RADIUS

EK .
10. This cuts the extension of OP1 at N4:/
11. Construct a line PERPENDICULAR to OP1

through N4:/
12. This line meets the original SEMICIRCLE at P4:/
13. You now have points P1 and P4 of a heptade-
cagon.
14. Use P1 and P4 to get the remaining 15 points of
the heptadecagon around the original CIRCLE by
constructing P1; P4; P7; P10; P13; P16 [filled circles],
P2; P5; P8; P11; P14; P17 [single-ringed filled circles],
P3; P6; P9; P12; and P15 [double-ringed filled
circles].
15. Connect the adjacent points Pi for i � 1 to 17,
forming the heptadecagon.

This construction, when suitably streamlined, has
SIMPLICITY 53. The construction of Smith (1920) has a
greater SIMPLICITY of 58. Another construction due to



Tietze (1965) and reproduced in Hall (1970) has a
SIMPLICITY of 50. However, neither Tietze (1965) nor
Hall (1970) provides a proof that this construction is
correct. Both Richmond’s and Tietze’s constructions
require extensive calculations to prove their validity.
De Temple (1991) gives an elegant construction
involving the CARLYLE CIRCLES which has GEOMETRO-

GRAPHY symbol 8S1 �4S2 �22C1 �11C3 and SIMPLI-

CITY 45. The construction problem has now been
automated to some extent (Bishop 1978).

See also 257-GON, 65537-GON, COMPASS, CONSTRUCTI-

BLE POLYGON, FERMAT NUMBER, FERMAT PRIME,
REGULAR POLYGON, STRAIGHTEDGE, TRIGONOMETRY

VALUES PI/17
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Heptagon

The regular seven-sided POLYGON, illustrated above,
which has SCHLÄFLI SYMBOL 7f g: According to Bank-
off and Garfunkel (1973), "since the earliest days of
recorded mathematics, the regular heptagon has been
virtually relegated to limbo." Nevertheless, Thébault
(1913) discovered many beautiful properties of the
heptagon, some of which are discussed by Bankoff
and Garfunkel (1973).

Although the regular heptagon is not a CONSTRUCTI-

BLE POLYGON using the classical rules of Greek
GEOMETRIC CONSTRUCTION, it is constructible using
a NEUSIS CONSTRUCTION (Johnson 1975; left figure
above). To implement the construction, place a mark
X on a ruler AZ , and then build a SQUARE of side
length AX . Then construct the perpendicular bisector
at M to BC , and draw an arc centered at C of radius
CE . Now place the marked ruler so that it passes
through B , X lies on the arc, and A falls on the
perpendicular bisector. Then 2u�
BAC�p=7; and
two such triangles give the vertex angle 2p=7 of a
regular heptagon. Conway and Guy (1996) give a
NEUSIS CONSTRUCTION for the heptagon. In addition,
the regular heptagon can be constructed using seven
identical toothpicks to form 1:3:3 triangles (Finlay
1959, Johnson 1975, Wells 1991; right figure above).
Bankoff and Garfunkel (1973) discuss the heptagon,
including a purported discovery of the NEUSIS CON-

STRUCTION by Archimedes (Heath 1931). Madachy
(1979) illustrates how to construct a heptagon by
folding and knotting a strip of paper, and the regular



heptagon can also be constructed using a CONCHOID

OF NICOMEDES.
Although the regular heptagon not constructible
using classical techniques, Dixon (1991) gives con-
structions for several angles very close to 360( =7:
While the ANGLE subtended by a side is 360( =7 :
51 :428571( ; Dixon gives constructions containing
angles of 2 sin �1(

ffiffiffi
3

p
=4) :51:3178813( ; tan �1(5=4) :

51 :340192( ; and
30( �sin �1

ffiffiffi
3

p
�1

� �
=2Þ:51:470701( :/

In the regular heptagon with unit CIRCUMRADIUS and
center O , construct the MIDPOINT MAB of AB and the
MID-ARC POINT XCB of the arc CB , and let MOX be the
MIDPOINT of OXCB : Then /MOX �MAB �1=

ffiffiffi
2

p
/ (Bankoff

and Garfunkel 1973).

In the regular heptagon, construct the points XCB ;

MAB ; and MOX as above. Also construct the midpoint
MOX and construct J along the extension of MABB
such that MABJ �MABXCB : Note that the APOTHEM

OMAB of the heptagon has length r �cos(p=7): Then

1. The length x �MABMOF is equal to
ffiffiffi
2

p
r �ffiffiffi

2
p

cos(p=7); and also to the largest root of

8x6 �20x4 �12x2 �1 �0;

2. /MOJ �
ffiffiffi
6

p
=2/, and

3. MABMOX is tangent to the CIRCUMCIRCLE of
DMOFOMAB/

(Bankoff and Garfunkel 1973).

Construct a HEPTAGONAL TRIANGLE DABC in a reg-
ular heptagon with center O , and let BN and AM
bisect 
ABC and 
BAC; respectively, with M and N
both lying on the circumcircle. Also define the mid-
points MMO; MNO; MMC; and MNC: Then

MN�1
2 MMOMNO�

1
2 MMCMNC (1)

�
ffiffiffi
2

p
MNOMMC (2)

MMOMMC�MNOMNC�
1
2 (3)

MMOMNC�
1
2

ffiffiffi
2

p
(4)

(Bankoff and Garfunkel 1973).

See also CONCHOID OF NICOMEDES, EDMONDS’ MAP,
HEPTAGON THEOREM, HEPTAGONAL TRIANGLE, NEU-

SIS CONSTRUCTION, TRIGONOMETRY VALUES PI/7
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Heptagon Theorem

Let H be a heptagon with seven vertices given in
cyclic order inscribed in a CONIC. Then the PASCAL

LINES of the seven HEXAGONS obtained by omitting
each vertex of H in turn and keeping the remaining
vertices in the same cyclic order are the sides of a
HEPTAGON I which circumscribes a CONIC.
Moreover, the BRIANCHON POINTS of the seven HEXA-

GONS obtained by omitting the sides of I one at a time
and keeping the remaining sides in the natural cyclic
order are the vertices of the original HEPTAGON.

See also BRIANCHON POINT, CONIC SECTION, HEPTA-

GON, HEXAGON, PASCAL LINES
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Heptagonal Hexagonal Number
A number which is simultaneously a HEPTAGONAL

NUMBER Hepn and HEXAGONAL NUMBER Hexm : Such
numbers exist when

1
2 n(5n �3) �m(2m �1): (1)

COMPLETING THE SQUARE and rearranging gives

(10n �3)2 �5(4m �1)2 �4 : (2)

Substituting x �10n �3 and y �4m �1 gives the
Pell-like quadratic Diophantine equation

x2 �5y2 �4; (3)

which has solutions (x; y) �(3; 1); (7, 3), (18, 8), (47,
21), (123, 55), .... The integer solutions in m and n are
then given by (n; m) �(1; 1); (221, 247), (71065,
79453), (22882613, 25583539), ... (Sloane’s A048902
and A048901), corresponding to the heptagonal hex-

agonal numbers 1, 121771, 12625478965,
1309034909945503, ... (Sloane’s A048903).

See also HEPTAGONAL NUMBER, HEXAGONAL NUMBER
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Heptagonal Number

A FIGURATE NUMBER OF THE FORM n(5n �3)=2 : The
first few are 1, 7, 18, 34, 55, 81, 112, ... (Sloane’s
A000566). The GENERATING FUNCTION for the hepta-
gonal numbers is

x(4x � 1)

(1 � x)3 �x�7x2�18x3�34x4�. . . :

See also HEPTAGONAL HEXAGONAL NUMBER, HEPTA-

GONAL PENTAGONAL NUMBER, HEPTAGONAL SQUARE

NUMBER, HEPTAGONAL TRIANGULAR NUMBER, OCTA-

GONAL HEPTAGONAL NUMBER
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Heptagonal Pentagonal Number
A number which is simultaneously a HEPTAGONAL

NUMBER Hn and PENTAGONAL NUMBER Pm: Such
numbers exist when

1
2 n(5n�3)�1

2 m(3m�1): (1)

COMPLETING THE SQUARE and rearranging gives

3(10n�3)2�5(6m�1)2�22: (2)

Substituting x�10n�3 and y�6m�1 gives the
Pell-like quadratic Diophantine equation

3x2�5y2�22; (3)

which has solutions (x; y)�(3; 1); (7, 5), (17, 13), (53,
41), (133, 103), .... The integer solutions in m and n
are then given by (n; m)�(1; 1); (42, 54), (2585,
3337), (160210, 206830), (9930417, 12820113) ...



(Sloane’s A046198 and A046199), corresponding to
the heptagonal pentagonal numbers 1, 4347,
16701685, 64167869935, 246532939589097, ... (Sloa-
ne’s A048900).

See also HEPTAGONAL NUMBER, PENTAGONAL NUM-

BER
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Heptagonal Pyramidal Number
A PYRAMIDAL NUMBER OF THE FORM n(n �1)(5n �
2)=6; The first few are 1, 8, 26, 60, 115, ... (Sloane’s
A002413). The GENERATING FUNCTION for the hepta-
gonal pyramidal numbers is

x(4x � 1)

(x � 1)4 �x �8x2 �26x3 �60x4 �. . .
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Heptagonal Square Number
A number which is simultaneously a HEPTAGONAL

NUMBER Hn and SQUARE NUMBER Sm : Such numbers
exist when

1
2 n(5n �3) �m2 : (1)

COMPLETING THE SQUARE and rearranging gives

(10n �3)2 �40m2 �9 : (2)

Substituting x �10n �3 and y �2m gives the Pell-
like quadratic Diophantine equation

x2 �10y2 �9 ; (3)

which has basic solutions (x; y) �(7; 2); (13, 4), and
(57, 18). Additional solutions can be obtained from the
unit PELL EQUATION, and correspond to integer
solutions when (n; m) �(1; 1); (6, 9), (49, 77), (961,
1519), ... (Sloane’s A046195 and A046196), corre-
sponding to the heptagonal square numbers 1, 81,
5929, 2307361, 168662169, 12328771225, ... (Sloane’s
A036354).

See also HEPTAGONAL NUMBER, SQUARE NUMBER
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Heptagonal Triangle

The unique (modulo rotations) SCALENE TRIANGLE

formed from three vertices of a regular HEPTAGON,
having vertex angles p=7; 2p=7; and 4p=7: There are a
number of amazing formulas connecting the sides and
angles of the heptagonal triangle (Bankoff and
Garfunkel 1973).
The AREA of the TRIANGLE is

A�1
4

ffiffiffi
7

p
R2; (1)

where R is the triangle’s CIRCUMRADIUS. The sum of
squares of sides of the heptagonal triangle is equal to
7R2 (Bankoff and Garfunkel 1973). The ratio x�r=R
of INRADIUS r to CIRCUMRADIUS R is given by the
positive root of

8x3�28x2�14x�7�0: (2)

Also,

1

a2
�

1

b2
�

1

c2
�

2

R2
: (3)

The BROCARD ANGLE V satisfies

cot V�
ffiffiffi
7

p
; (4)

and the EXRADIUS ra is equal to the radius of the NINE-

POINT CIRCLE of DABC:/

a is half the HARMONIC MEAN of the other two sides,

a�
bc

b � c
(5)

b2�a2�ac; (6)

and so on for all permutations of variables (Bankoff
and Garfunkel 1973). Also,

b2

a2
�

c2

b2
�

a2

c2
�5: (7)

If ha; hb; and hc are the altitudes, then

ha�hb�hc (8)

h2
a�h2

b�h2
c �

1
2(a

2�b2�c2): (9)

If A?; B?; and C? are the feet of the altitudes, then



BA? � A?C �1
4 ac (10)

and so on (Bankoff and Garfunkel 1973). The internal
angle bisectors of C and B are equal to the difference
of the adjacent sides and the external angle bisector
of A is equal to the sum of adjacent sides.

The triangle DDEF joining the feet of the angle
bisectors of the heptagonal triangle is an ISOSCELES

TRIANGLE with DF �EF .

The ORTHIC TRIANGLE DHAHBHC and MEDIAN TRIAN-

GLE MAMBMC are congruent and perspective. In
addition both are similar to DABC; to the PEDAL

TRIANGLE DPAPBPC of DABC with respect to the NINE-

POINT CENTER N , and to the triangle DIIBIC formed by
the INCENTER I and the exterior angle bisectors IB

and IC (Bankoff and Garfunkel 1973).

There are also a slew of curious trigonometric
identities involving the angles of the heptagonal
triangle:

sin A sin B sin C �1
8

ffiffiffi
7

p
(11)

sin2 A �sin2 B � sin2 C �7
4 (12)

sin(2A) �sin(2B) �sin(2C) �1
2

ffiffiffi
7

p
(13)

sin2 A sin2 B sin2 C � 7
64 (14)

sin2 A sin2 B �sin2 A sin2 C �sin2 B sin2 C �7
8 (15)

cos A cos B cos C ��1
8 (16)

cos2 A �cos2 B �cos2 C �5
4 (17)

cos2 A cos2 B �cos2 A cos2 C �cos2 B cos2 C �3
8 (18)

cos(2A) �cos(2B) �cos(2C) ��1
2 (19)

sin A �sin B �sin C �1
2

ffiffiffiffiffiffi
14

p
(20)

tan A tan B tan C ��
ffiffiffi
7

p
(21)

cot A �cot B �cot C �
ffiffiffi
7

p
(22)

csc2 A �csc2 B �csc2 C �8 (23)

sec2 A �sec2 B �sec2 C �24 (24)

cot2 A �cot2 B �cot2 C �5 (25)

tan2 A �tan2 B �tan2 C �21 (26)

sec4 A �sec4 B �sec4 C �416 (27)

cos4 A �cos4 B �cos4 C �13
16 (28)

sin4 A �sin4 B �sin4 C �21
16 (29)

csc4 A �csc4 B �csc4 C �32 (30)

sec(2A) �sec(2B) �sec(2C) ��4 (31)

(Bankoff and Garfunkel 1973).

Finally, the heptagonal triangle satisfies the miscel-
laneous properties:

1. The first BROCARD POINT corresponds to the
NINE-POINT CENTER and the second BROCARD POINT

lies on the NINE-POINT CIRCLE.
2. OH �R

ffiffiffi
2

p
; where O is the CIRCUMCENTER, H is

the ORTHOCENTER, and R is the CIRCUMRADIUS.
3. IH �(R2 �4r2) =2; where I is the INCENTER and r
is the INRADIUS.
4. The two tangents from the ORTHOCENTER H to
the CIRCUMCIRCLE of the heptagonal triangle are
mutually perpendicular.
5. The center of the CIRCUMCIRCLE of the TANGEN-

TIAL TRIANGLE corresponds with the symmetric
point of O with respect to H .
6. The ALTITUDE from B is half the length of the
internal bisector of the angle A .

See also HEPTAGON

References
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Heptagonal Triangular Number
A number which is simultaneously a HEPTAGONAL

NUMBER Hn and TRIANGULAR NUMBER Tm: Such
numbers exist when

1
2 n(5n�3)�1

2 m(m�1): (1)

COMPLETING THE SQUARE and rearranging gives

10n�3ð Þ2�5 2m�1ð Þ2�4: (2)

Substituting x�10n�3 and y�2m�1 gives the
Pell-like quadratic Diophantine equation

x2�5y2�4; (3)



which has basic solutions (x; y) �(3; 1); (7, 3), and
(18, 8). Additional solutions can be obtained from the
unit PELL EQUATION, and correspond to integer
solutions when (n; m) �(1; 1); (5, 10), (221, 493),
(1513, 3382), ... (Sloane’s A046193 and A039835),
corresponding to the heptagonal triangular numbers
1, 55, 121771, 5720653, 12625478965, ... (Sloane’s
A046194).

See also HEPTAGONAL NUMBER, TRIANGULAR NUMBER

References
Sloane, N. J. A. Sequences A039835, A046193, and A046194
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Heptagram

One of the two 7-sided STAR POLYGONS 7=2f g and
7=3f g; illustrated above.

See also HEPTAGON, STAR POLYGON
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Heptahedral Graph

A POLYHEDRAL GRAPH on seven nodes. There are 34
nonisomorphic heptahedral graphs, as first enumer-
ated by Kirkman (1862) and Hermes (1899ab, 1900,
1901; Federico 1969; Duijvestijn and Federico 1981).

See also HEPTAHEDRON, POLYHEDRAL GRAPH
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Math. 123, 312 �/42, 1901.
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Heptahedron
A heptahedron is a POLYHEDRON with seven faces.
There are 34 topologically distinct convex heptahe-
dra, corresponding to the HEPTAHEDRAL GRAPHS.

The "regular" heptahedron is a one-sided surface
made from four TRIANGLES and three QUADRILAT-

ERALS. It is topologically equivalent to the ROMAN

SURFACE (Wells 1991). While all of the faces are
regular and vertices equivalent, the heptahedron is
self-intersecting and is therefore not considered an
ARCHIMEDEAN SOLID.

There are three semiregular heptahedra: the PENTA-

GONAL PRISM and PENTAGRAMMIC PRISM (illustrated
above), and a FACETED version of the OCTAHEDRON

(Holden 1991).

See also ARCHIMEDEAN SOLID, HEPTAHEDRAL GRAPH,
OCTAHEDRON, POLYHEDRON, QUADRILATERAL, ROMAN

SURFACE, SZILASSI POLYHEDRON
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Heptakaidecagon
HEPTADECAGON

Heptaparallelohedron
CUBOCTAHEDRON

Heptiamond
One of the 24 7-polyiamonds.

See also HEPTIAMOND TILING, POLYIAMOND

References
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Scientific American. Chicago, IL: University of Chicago
Press, pp. 246, 248, and 250 �/51, 1984.

Heptiamond Tiling

See also HEPTIAMOND, HEXIAMOND TILING, OCTIA-

MOND TILING, PENTIAMOND TILING

References
Vichera, M. "Polyiamonds." http://alpha.ujep.cz/~vicher/puz-
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Heptic Surface
An ALGEBRAIC SURFACE of degree 7.

See also ALGEBRAIC SURFACE

Heptomino

The heptominoes are the 7-POLYOMINOES. There are

108 FREE, 760 FIXED, and 196 one-sided heptominoes.

There is a single heptomino containing a hole (illu-
strated above), making heptominoes the smallest
polyominoes for which the existence of a hole is
possible.

See also DOMINO, HERSCHEL, HEXOMINO, OCTOMINO,
PENTOMINO, PI HEPTOMINO, POLYOMINO, TETROMINO,
TRIOMINO

Herbrand Function

References
Koch, H. Number Theory: Algebraic Numbers and Func-
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Herbrand’s Theorem
Let an ideal class be in A if it contains an IDEAL

whose lth power is PRINCIPAL. Let i be an ODD

INTEGER 1 5i 5l and define j by i �j �1: Then A1 �
�e 	: If i ]3 and l¶Bj ; then Ai ��e 	:/

See also IDEAL
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Hereditary Representation
The representation of a number as a sum of powers of
a BASE b , followed by expression of each of the
exponents as a sum of powers of b , etc., until the
process stops. For example, the hereditary represen-
tation of 266 in base 2 is

266�28�23�2

�222�1

�22�1�2:

See also GOODSTEIN SEQUENCE, GOODSTEIN’S THEO-

REM
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Heredity
A property of a SPACE which is also true of each of its
SUBSPACES. Being "COUNTABLE" is hereditary, but
having a given GENUS is not.

Hermann Grid Illusion

A regular 2-D arrangement of squares separated by
vertical and horizontal "canals." Looking at the grid
produces the illusion of gray spots in the white AREA

between square VERTICES. The illusion was noted by
Hermann (1870) while reading a book on sound by
J. Tyndall.

References
Fineman, M. The Nature of Visual Illusion. New York:

Dover, pp. 139 �/40, 1996.

Hermann’s Formula
The MACHIN-LIKE FORMULA

1
4 p �2 tan�1(1

2) �tan �1(1
7) :

The other 2-term MACHIN-LIKE FORMULAS are EU-

LER’S MACHIN-LIKE FORMULA, HUTTON’S FORMULA,
and MACHIN’S FORMULA.

Hermann-Hering Illusion

The illusion in view by staring at the small black dot
for a half minute or so, then switching to the white
dot. The black squares appear stationary when
staring at the white dot, but a fainter grid of moving
squares also appears to be present.

Hermann-Mauguin Symbol
A symbol used to represent the POINT and SPACE

GROUPS (e.g., 2=m3̄): Some symbols have abbreviated
form. The equivalence between Hermann-Mauguin
symbols (a.k.a. "crystallographic symbols"rpar; and
SCHÖ NFLIES SYMBOLS for the POINT GROUPS is given
by Cotton (1990).

See also POINT GROUPS, SCHÖ NFLIES SYMBOL, SPACE

GROUPS
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Hermit Point
ISOLATED POINT

Hermite Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

The Hermite constant is defined for DIMENSION n as
the value

gn �
supf minxi

f (x1 ; x2 ; . . .  ; xn)

[discriminant(f )]1 =n

(Le Lionnais 1983). In other words, they are given by

gn �4
dn

Vn

 !2 =n

;

where dn is the maximum lattice PACKING DENSITY for
HYPERSPHERE PACKING and Vn is the CONTENT of the
n -HYPERSPHERE. The first few values of (gn)n are 1, /
4=3/, 2, 4, 8, 64/3, 64, 256, ... (Sloane’s A007361 and
A007362). Values for larger n are not known.

For sufficiently large n ,

1

2pe
5

gn

n
5

1:744 . . .

2pe
:

See also DISCRIMINANT, HYPERSPHERE PACKING,
KISSING NUMBER, SPHERE PACKING
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Hermite Differential Equation
The second-order ordinary linear differential equa-
tion

d2y

dx2
�2x

dy

dx
�ly�0: (1)

This differential equation has an irregular singular-



ity at �: It can be solved using the series method

X�
n�0

(n�2)(n�1)an�2xn�
X�
n�1

2nanxn�
X�
n�0

lanxn

�0 (2)

(2a2�la0)�
X�
n�1

[(n�2)(n�1)]an�2�2nan�lan]xn

�0: (3)

Therefore,

a2��
la0

2
(4)

and

an�2�
2n � l

(n � 2)(n � 1)
an (5)

for n�1, 2, .... Since (4) is just a special case of (5),

an�2�
2n � l

(n � 2)(n � 1)
an (6)

for n�0, 1, ....

The linearly independent solutions are then

y1

�a0 1�
l

2!
x2�

(4 � l)l

4!
x4�

(8 � l)(4 � l)l

6!
x6�. . .

" #

(7)

y2�a1 x�
(2 � l)

3!
x3�

(6 � l)(2 � l)

5!
x5�. . .

" #
: (8)

These can be done in closed form as

y�a0 1F1(�1
4 l; 1

2; x2)�a1x 1F1(�1
4(l�2); 3

2; x2) (9)

�a0 1F1(�1
4 l; 1

2; x2)�a2Hl=2(x); (10)

where 1F1(a; b; x) is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE FIRST KIND and Hn(x) is a HERMITE

POLYNOMIAL. In particular, for l�0; 2, 4, ..., the
solutions can be written

yl�0�a0�
1
2

ffiffiffi
p

p
a1 erfi(x) (11)

yl�2�a0 ex2

�
ffiffiffi
p

p
x erfi(x)

h i
�xa1 (12)

yl�4�
1
4f2ex2

xa1�(2x2�1)[4a0�
ffiffiffi
p

p
a1 erfi(x)]g; (13)

where erfi(x) is the ERFI function.

If l�0; then Hermite’s differential equation becomes

y??�2xy?�0; (14)

which is OF THE FORM P2(x)y??�P1(x)y?�0 and so has
solution

y�c1 g
dx

exp g P1

P2
dx

� ��c2

�c1 g
dx

exp g (�2x) dx
�c2

�c1 g
dx

e�x2
�c2�c1 erfi(x)�c2: (15)

Hermite Interpolation
HERMITE’S INTERPOLATING POLYNOMIAL

Hermite Polynomial

A set of ORTHOGONAL POLYNOMIALS Hn(x); illustrated
above for x � [0; 1] and n�1, 2, ..., 5. Roman (1984,
pp. 87�/3) defines a generalized Hermite polynomial
H(n)

n (x) of variance n:/
The Hermite polynomials are a SHEFFER SEQUENCE

with

g(t)�et2=4 (1)

f (t)�1
2 t (2)

(Roman 1984, p. 30), giving the GENERATING FUNC-

TION

exp(2xt�t2)�
X�
n�0

Hn(x)tn

n!
: (3)

Using a TAYLOR SERIES shows that

Hn(x)�
@

@t

 !n

exp(2xt�t2)

" #
t�0

� ex2 @

@t

 !n

e�(x�t)2

" #
t�0

: (4)

Since @f (x�t)=@t��@f (x�t)=@x;

Hn(x)�(�1)nex2 @

@x

 !n

e�(x�t)2

" #
t�0



�(�1)nex2 dn

dxn
e�x2

: (5)

Now define operators

Õ1��ex2 d

dx
e�x2

(6)

Õ2�ex2=2 x�
d

dx

 !
e�x2=2: (7)

It follows that

Õ1f ��ex2 d

dx
[fe�x2

]�2xf �
df

dx
(8)

Õ2f �ex2=2 x�
d

dx

 !
[fe�x2=2]

�xf �xf �
df

dx
�2xf �

df

dx
; (9)

so

Õ1�Õ2; (10)

and

�ex2 d

dx
e�x2

�ex2=2 x�
d

dx

 !
e�x2=2 (11)

(Arfken 1985, p. 720), which means the following
definitions are equivalent:

exp(2xt�t2)�
X�
n�0

Hn(x)tn

n!
(12)

Hn(x)�(�1)nex2 dn

dxn
e�x2

(13)

Hn(x)�ex2=2 x�
d

dx

 !n

e�x2=2 (14)

(Arfken 1985, pp. 712�/13 and 720).

The Hermite polynomials may be written as

Hn(x)�(2x)n
2F0(�n=2; �(n�1)=2; ; �1=x2) (15)

(Koekoek and Swarttouw 1998), or

Hn(x)�2nU(�1
2n;

1
2; x2); (16)

where U(a; b; x) is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND. The Hermite poly-
nomials are related to the derivative of the ERROR

FUNCTION by

Hn(z)�(�1)2

ffiffiffi
p

p

2
ez2 dn�1

dzn�1
erf (z): (17)

They have a CONTOUR INTEGRAL representation

Hn(x)�
n!

2pi g e�t2�2txt�n�1 dt: (18)

They are orthogonal in the range (��; �) with
respect to the WEIGHTING FUNCTION /e�x2

g
�

��

Hm(x)Hn(x)e�x2

dx�dmn2nn!
ffiffiffi
p

p
: (19)

The first few POLYNOMIALS are

H0(x)�1

H1(x)�2x

H2(x)�4x2�2

H3(x)�8x3�12x

H4(x)�16x4�48x2�12

H5(x)�32x5�160x3�120x

H6(x)�64x6�480x4�720x2�120

H7(x)�128x7�1344x5�3360x3�1680x

H8(x)�256x8�3584x6�13440x4�13440x2�1680

H9(x)�512x9�9216x7�48348x5�80640x3�30240x

H10(x)�1024x10�23040x8�161280x6�403200x4

�302400x2�30240:

The Hermite polynomials obey the orthogonality
conditions

g
�

��

un(x)
dum

dx
dx�

a
ffiffiffiffiffiffiffi
n�1

2

q
m�n�1

�a
ffiffi
n
2

q
m�n�1

0 otherwise

8>><
>>: (20)

g
�

��

um(x)un(x) dx�dmn (21)

g
�

��

um(x)xun(x) dx�

1
a

ffiffiffiffiffiffiffi
n�1

2

q
m�n�1

1
a

ffiffi
n
2

q
m�n�1

0 otherwise

8>><
>>: (22)

g
�

��

um(x)x2un(x) dx

�

2n�1
2a2 m�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n�1)(n�2)

p

2a2 m�n�2

0 m"n"n92

8><
>: (23)



g
�

��

e �x2 

HaHbH g dx

�
ffiffiffi
p

p 2s a!b!g!

(s � a)!(s � b)!(s � g)! 
; (24)

if a � b � g �2s is EVEN and s ] a; s ] b; and s ] g:
Otherwise, the last integral is 0 (Szego 1975, p. 390).

They also satisfy the RECURRENCE RELATIONS

Hn�1(x) �2xHn(x) �2nHn �1(x) (25)

H ?n(x) �2nHn�1(x): (26)

By solving the HERMITE DIFFERENTIAL EQUATION, the
series

H2k(x) �(�1)k2k(2k �1)!!

� 1 �
Xk

j�1

( �4k)( �4k � 4) � � � (�4k � 4j � 4)

(2j)! 
x2j

" #

(27)

H2k�1(x) �(�1)k2k �1(2k �1)!!

� x �
Xk

j�1

( �4k)(�4k � 4) � � � ( �4k � 4j � 4)

(2j � 1)! 
x2j�1

" #

(28)

are obtained, where the products in the numerators
are equal to

(�4k)(�4k �4) � � � (�4k �4j �4) �4j(�k)j ; (29)

with (x)n the POCHHAMMER SYMBOL.

The DISCRIMINANT is

Dn �23n(n�1)=2
Yn

k �1

kk (30)

(Szego 1975, p. 143), a normalized form of the
HYPERFACTORIAL, the first few values of which are
1, 32, 55296, 7247757312, 92771293593600000, ...
(Sloane’s A054374). The table of RESULTANTS is given
by {0}, { �8, 0}, {0, �2048, 0}, {192, 16384, 28311552,
0}, ... (Sloane’s A054373).

Two interesting identities involving Hn(x �y) are
given by

Xn

k�0

n
k

� �
Hk(x)Hn�k(y) �2n=2Hn(2�1=2(x �y)) (31)

and

Xn

k �0

n
k

� �
Hk(x)(2y)n�k �Hn(x �y) (32)

(G. Colomer).

A set of associated functions is defined by

un(x) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p1=2n!2n

s
Hn(ax)e �a2x2 =2 : (33)

A class of generalized Hermite POLYNOMIALS gm
n (x)

satisfying

emxt �tm 

�
X�
n �0

gm
n (x)tn (34)

was studied by Subramanyan (1990). A class of
related POLYNOMIALS defined by

hn;m � gm
n

2x

m

 !
(35)

and with GENERATING FUNCTION

e2xt�tm

�
X�
n�0

hn;m(x)tn (36)

was studied by Djordjevic (1996). They satisfy

Hn(x)�n!hn; 2(x): (37)

A modified version of the HERMITE POLYNOMIAL is
sometimes defined by

Hen(x)�Hn

xffiffiffi
2

p
 !

: (38)

See also MEHLER’S HERMITE POLYNOMIAL FORMULA,
WEBER FUNCTIONS
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Hermite, C. Oeuvres complètes, Tome III. Paris: Hermann,
p. 432, 1912.

Iyanaga, S. and Kawada, Y. (Eds.). "Hermite Polynomials."
Appendix A, Table 20.IV in Encyclopedic Dictionary of
Mathematics. Cambridge, MA: MIT Press, pp. 1479�/480,
1980.



Jeffreys, H. and Jeffreys, B. S. "The Parabolic Cylinder,
Hermite, and Hh Functions" §23.08 in Methods of Math-
ematical Physics, 3rd ed. Cambridge, England: Cambridge
University Press, pp. 620 �/22, 1988.

Koekoek, R. and Swarttouw, R. F. "Hermite." §1.13 in The
Askey-Scheme of Hypergeometric Orthogonal Polynomials
and its q -Analogue. Delft, Netherlands: Technische Uni-
versiteit Delft, Faculty of Technical Mathematics and
Informatics Report 98 �/7, pp. 50 �/1, 1998. ftp://www.twi.-
tudelft.nl/publications/tech-reports/1998/DUT-TWI-98 �/

7.ps.gz.
Roman, S. "The Hermite Polynomials." §4.2.1 in The Umbral

Calculus. New York: Academic Press, pp. 87 �/3, 1984.
Rota, G.-C.; Kahaner, D.; Odlyzko, A. "Hermite Polyno-

mials." §10 in "On the Foundations of Combinatorial
Theory. VIII: Finite Operator Calculus." J. Math. Anal.
Appl. 42, 684 �/60, 1973.

Sansone, G. "Expansions in Laguerre and Hermite Series."
Ch. 4 in Orthogonal Functions, rev. English ed. New York:
Dover, pp. 295 �/85, 1991.

Sloane, N. J. A. Sequences A054373 and A054374 in "An
On-Line Version of the Encyclopedia of Integer Se-
quences." http://www.research.att.com/~njas/sequences/
eisonline.html.

Spanier, J. and Oldham, K. B. "The Hermite Polynomials
Hn(x) :/" Ch. 24 in An Atlas of Functions. Washington, DC:
Hemisphere, pp. 217 �/23, 1987.

Subramanyan, P. R. "Springs of the Hermite Polynomials."
Fib. Quart. 28, 156 �/61, 1990.

Szego, G. Orthogonal Polynomials, 4th ed. Providence, RI:
Amer. Math. Soc., 1975.

Hermite Quadrature
HERMITE-GAUSS QUADRATURE

Hermite’s Interpolating Polynomial
Let l(x) be an nth degree POLYNOMIAL with zeros at
x1 ; ..., xn : Then the fundamental Hermite interpolat-
ing polynomials of the first and second kinds are
defined by

h(1)
n (x) � 1 �

l ??(xn)

l ?(xn)

" #
[ln(x)]2 (1)

and

h(2)
n (x) �(x �xn)[l n(x)]2 (2)

for n �1, 2, .., .n . These polynomials have the proper-
ties

h(1)
n (xm) � d nm (3)

h(1)?
n (xm) �0 (4)

h(2)
n (xm) �0 (5)

h(2)?
n (xm) � dnm : (6)

for m; n �1; 2, ..., n . Now let f1 ; ..., fn and f ?1 ; ..., f 
?
n be

values. Then the expansion

Wn(x) �
Xn

n�1

fnh
(1)
n (x) �

Xn

n�1

f ?nh
(2)
n (x) (7)

gives the unique Hermite interpolating fundamental

polynomial for which

Wn(xn) �f n (8)

W ?n(xn) �f ?n : (9)

If f ?n �0; these are called STEP POLYNOMIALS.

The fundamental polynomials satisfy

h1(x) �. . .�hn(x) �1 (10)

and

Xn

n�1

xnh
(1)
n (x) �

Xn

n�1

h(2)
n (x) �x: (11)

Also, if da(x) is an arbitrary distribution on the
interval [a, b ], then

g
b

a

h(1)
n (x) da(x) � ln (12)

g
b

a

h(1)?
n (x) da(x) �0 (13)

g
b

a

xh(1) ?
n (x) da(x) �0 (14)

g
b

a

h(2)
n (x) da(x) �0 (15)

g
b

a

h(2)?
n (x) da(x) � ln (16)

g
b

a

xh(2)?
n (x) da(x) � lnxn ; (17)

where ln are CHRISTOFFEL NUMBERS.

See also CHRISTOFFEL NUMBER, LAGRANGE INTERPO-

LATING POLYNOMIAL
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Hermite’s Theorem
E is TRANSCENDENTAL.

See also E , TRANSCENDENTAL NUMBER.

Hermite-Gauss Quadrature
Also called HERMITE QUADRATURE. A GAUSSIAN QUAD-

RATURE over the interval (��; �) with WEIGHTING

FUNCTION W(x)�e�x2

(Abramowitz and Stegun 1972,
p. 890). The ABSCISSAS for quadrature order n are
given by the roots of the HERMITE POLYNOMIALS

Hn(x); which occur symmetrically about 0. The
WEIGHTS are



wi ��
An�1 gn

AnH ?n(xi)Hn�1(xi) 
�

An

An�1

gn�1

Hn�1(x1)H ?n(xi) 
; (1)

where An is the COEFFICIENT of xn in Hn(x): For
HERMITE POLYNOMIALS,

An �2n ; (2)

so

An�1

An

�2: (3)

Additionally,

gn �
ffiffiffi
p

p
2nn!; (4)

so

wi ��
2n�1n!

ffiffiffi
p

p

Hn�1(xi)H ?n(xi)

�
2n(n � 1)!

ffiffiffi
p

p

Hn�1(xi)H ?n(xi) 
: (5)

Using the RECURRENCE RELATION

H ?n(x) �2nHn �1(x) �2xHn(x) �Hn�1(x) (6)

yields

H ?n(xi) �2nHn �1(xi) ��Hn�1(xi) (7)

and gives

wi �
2n�1n!

ffiffiffi
p

p

[H ?n(xi)]
2 �

2n �1n!
ffiffiffi
p

p

[Hn�1(xi)]
2 : (8)

The error term is

E �
n!

ffiffiffi
p

p

2n(2n)!
f (2n)( j) : (9)

Beyer (1987) gives a table of ABSCISSAS and weights
up to n �12.

n /xi/ /wi/

2 9 0.707107 0.886227

3 0 1.18164

9 1.22474 0.295409

4 9 0.524648 0.804914

9 1.65068 0.0813128

5 0 0.945309

9 0.958572 0.393619

9 2.02018 0.0199532

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/ /wi/

2 /91
2

ffiffiffi
2

p
/ /

1
2

ffiffiffi
p

p
/

3 0  /
2
3

ffiffiffi
p

p
/

/91
2

ffiffiffi
6

p
/ /

1
6

ffiffiffi
p

p
/

4 /9
ffiffiffiffiffiffiffiffiffiffi
3 �
ffiffi
6

p

2

q
/ /

ffiffi
p

p

4(3 �
ffiffi
6

p
)
/

/9
ffiffiffiffiffiffiffiffiffiffi
3 �
ffiffi
6

p

2

q
/ /

ffiffi
p

p

4(3 �
ffiffi
6

p
)
/
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HermiteH
HERMITE POLYNOMIAL

Hermite-Lindemann Theorem
Let ai and A1 be ALGEBRAIC NUMBERS such that the Ai/

s differ from zero and the ai/s differ from each other.
Then the expression

A1ea1 �A2ea2 �A3ea3 �. . .

cannot equal zero. The theorem was proved by
Hermite (1873) in the special case of the Ai/s and ai/s
RATIONAL INTEGERS, and subsequently proved for
algebraic numbers by Lindemann (1882). The proof
was subsequently simplified by Weierstrass (1885)
and Gordan (1893).

See also ALGEBRAIC NUMBER, CONSTANT PROBLEM,
FOUR EXPONENTIALS CONJECTURE, INTEGER RELA-

TION, LINDEMANN-WEIERSTRASS THEOREM, SIX EXPO-

NENTIALS THEOREM
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Hermitian Conjugate
ADJOINT

Hermitian Form

A combination of variables x and y given by

axx̄ �bxȳ � b̄x̄y �cyȳ;

where b̄ ; x̄ and ȳ are COMPLEX CONJUGATES.

Hermitian Inner Product
A Hermitian inner product on a COMPLEX VECTOR

SPACE V is a complex-valued BILINEAR FORM on V
which is ANTILINEAR in the second slot, and is positive
definite. That is, it satisfies the following properties,
where z̄ denotes the COMPLEX CONJUGATE of z .

1. �u �v; w 	��u; w	��v; w 	/

2. �u; v �w 	��u; v	��u; w	/

3. � au; v	� a�u; v	/

4. �u; av	� ̄a�u; v	/

5. �u; v	��v ; u	/

6. �u; u	]0; with equality only if u �0

The basic example is the form

h(z ; w) �
X

zi w̄i (1)

on Cn ; where z �(z1 ; . . . ; zn) and w �(w1 ; . . . ; wn):
Note that by writing zk �xk �iyk ; it is possible to
consider Cn 


R2n ; in which case R[h] is the Euclidean
INNER PRODUCT and I[h] is a nondegenerate alter-
nating BILINEAR FORM, i.e., a SYMPLECTIC FORM.
Explicitly, in C2 ; the standard Hermitian form is
expressed below.

h((z11 ; z12) ; (z21 ; z22)) �x11 ; x21 �x12x22 �y11y21

�y12y22 �i(x21y11 �x11y21 �x22y12 �x12y22) : (2)

A generic Hermitian inner product has its REAL PART

symmetric positive definite, and its IMAGINARY PART

symplectic by properties 5 and 6. A matrix H �( hij)
defines an antilinear form, satisfying 1 �/, by �ei ; ej 	�
hij IFF H is a HERMITIAN MATRIX. It is positive definite
(satisfying 6) when R[H] is a POSITIVE DEFINITE

MATRIX. In matrix form,

�v; w	�vTH ̄w (3)

and the canonical Hermitian inner product is when H
is the IDENTITY MATRIX.

See also COMPLEX NUMBER, HERMITIAN METRIC,
INNER PRODUCT, POSITIVE DEFINITE QUADRATIC

FORM, SYMPLECTIC FORM, UNITARY BASIS, UNITARY

GROUP, UNITARY MATRIX, VECTOR SPACE

Hermitian Matrix
A SQUARE MATRIX is called Hermitian if it is SELF-

ADJOINT. Therefore, a Hermitian matrix is defined as
one for which

A �A� (1)

where A � denotes the ADJOINT MATRIX. For example,

A �
1 1�i 2i

1 �i 5 �3
�2i �3 0

2
4

3
5 (2)

is a Hermitian matrix.

An INTEGER or REAL MATRIX is Hermitian iff it is
SYMMETRIC. A matrix m can be tested to see if it is
Hermitian using the Mathematica function

HermitianQ[m_List?MatrixQ] : � (m ���
Conjugate@Transpose@m)

Hermitian matrices have REAL EIGENVALUES whose
EIGENVECTORS form a UNITARY BASIS. For REAL

MATRICES, Hermitian is the same as SYMMETRIC.

Any MATRIX C which is not Hermitian can be
expressed as the sum a Hermitian matrix and a
SKEW HERMITIAN MATRIX using

C �1
2
(C �C�) �1

2
(C �C�): (3)

Let U be a UNITARY MATRIX and A be a Hermitian
matrix. Then the ADJOINT MATRIX of a SIMILARITY

TRANSFORMATION is

(UAU�1) �[(UA)(U �1)]��(U �1) �(UA) �

�(U �) �(A�U �) �UAU ��UAU�1 : (4)

The specific matrix

H(x; y; z) �
z x�iy

x �iy �z

� �
�xP1 �yP2 �zP3 ; (5)

where Pi are PAULI SPIN MATRICES, is sometimes
called "the" Hermitian matrix.

See also ADJOINT MATRIX, HERMITIAN OPERATOR,
NORMAL MATRIX, PAULI SPIN MATRICES, SKEW HER-

MITIAN MATRIX, SYMMETRIC MATRIX
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Hermitian Metric
A Hermitian metric on a COMPLEX VECTOR BUNDLE

assigns a HERMITIAN INNER PRODUCT to every FIBER.
The basic example is the TRIVIAL BUNDLE p : U�
Ck 0 U; where U is an OPEN SET in Rn: Then a
positive definite HERMITIAN MATRIX H defines a



Hermitian metric by

�v ; w 	�vTH ̄w ;

where w̄ is the COMPLEX CONJUGATE of w . By a
PARTITION OF UNITY, any COMPLEX VECTOR BUNDLE

has a Hermitian metric.

In the special case of a COMPLEX MANIFOLD, the
complexified TANGENT BUNDLE TM �C may have a
Hermitian metric, in which case its REAL PART is a
RIEMANNIAN METRIC and its IMAGINARY PART is a
nondegenerate ALTERNATING MULTILINEAR FORM v:
When v is CLOSED, i.e., in this case a SYMPLECTIC

FORM, then v is a KÄ HLER FORM.

On a HOLOMORPHIC VECTOR BUNDLE with a Hermitian
metric h , there is a unique connection compatible
with h and the complex structure. Namely, it must be
9�@�@̄; where @s�h�1@hs in a TRIVIALIZATION.

See also COMPLEX GEOMETRY, COMPLEX MANIFOLD,
COMPLEX VECTOR BUNDLE, HOLOMORPHIC VECTOR

BUNDLE, KÄ HLER FORM, KÄ HLER MANIFOLD, RIEMAN-

NIAN METRIC, SYMPLECTIC FORM, UNITARY GROUP

Hermitian Operator
A Hermitian OPERATOR L̄ is one which satisfies

g
b

a

v̄L̄u dx�g
b

a

uL̄v̄ dx: (1)

where z̄ denotes a COMPLEX CONJUGATE. As shown in
STURM-LIOUVILLE THEORY, if L̄ is SELF-ADJOINT and
satisfies the boundary conditions

v̄pu?½x�a� v̄pu?½x�b; (2)

then it is automatically Hermitian. Hermitian opera-
tors have REAL EIGENVALUES, ORTHOGONAL EIGEN-

FUNCTIONS, and the corresponding EIGENFUNCTIONS

form a COMPLETE set when L̄ is second-order and
linear.

In order to prove that EIGENVALUES must be REAL and
EIGENFUNCTIONS ORTHOGONAL, consider

L̄ui�liwui�0: (3)

Assume there is a second EIGENVALUE lj such that

L̄uj�ljwuj�0 (4)

L̄ūj�l̄jwūj�0: (5)

Now multiply (3) by ūj and (5) by ui

ūjL̃u
i
�ūjlwui�0 (6)

uiL̃ūj�uil̄jwūj�0 (7)

ūiL̃ui�uiL̃ūj�(l̄j�li)wuiūj: (8)

Now integrate

g
b

a

ūjL̃ui�g
b

a

uiL̃ūj�(l̄j�li) g
b

a

wuiūj: (9)

But because L̄ is Hermitian, the left side vanishes.

(l̄j�li) g
b

a

wuiūj�0: (10)

If EIGENVALUES li and lj are not degenerate, then
f

b

a
wuiūj�0; so the EIGENFUNCTIONS are ORTHOGO-

NAL. If the EIGENVALUES are degenerate, the EIGEN-

FUNCTIONS are not necessarily orthogonal. Now take i
� j .

(l̄i�li) g
b

a

wuiūi�0: (11)

The integral cannot vanish unless ui�0; so we have
l̄i�li and the EIGENVALUES are real.

For a Hermitian operator Õ;

�f½Õc	��f½Õc	��Õf½c	: (12)

In integral notation,

g Ãfc dx�g f̄Ãc dx: (13)

Given Hermitian operators Ã and B̃;

�f½ÃB̃c	��Ãf½B̃c	��B̃Ãf½c	��f½B̃Ãc	: (14)

Because, for a Hermitian operator Ã with EIGENVA-

LUE a ,

�c½Ãc	��Ãc½c	 (15)

a�c½c	�ā�c½c	: (16)

Therefore, either �c½c	�0 or a�ā: But �c½c	�0 IFF

c�0; so

�c½c	"0; (17)

for a nontrivial EIGENFUNCTION. This means that a�
a�; namely that Hermitian operators produce REAL

expectation values. Every observable must therefore
have a corresponding Hermitian operator. Further-
more,

�cn½Ãcm	��Ãcn½cm	 (18)

am�cn½cm	�ān�cn½cm	�an�cn½cm	; (19)

since an�ān: Then

(am�an)�cn½cm	�0 (20)

For am"an (i.e., cn"cm);

�cn½cm	�0: (21)

For am�an (i.e., cn�cm);

�cn½cm	��cn½cn	�1: (22)

Therefore,



�cn ½cm 	� dnm ; (23)

so the basis of EIGENFUNCTIONS corresponding to a
Hermitian operator are ORTHONORMAL.

Define the Hermitian conjugate operator Ã� by

� Ãc½c 	��c½ Ã� c	: (24)

For a Hermitian operator, Ã � Ã�: Furthermore,
given two Hermitian operators Ã and B̃ ;

�c2 ½( Ã B̃)� c1 	��( Ã B̃)c2 ½ c1 	�� B̃c2 ½ Ã�c1 	

��c2 ½ B̃ � Ã�c1 	; (25)

so

( Ã B̃)��  B̃ � Ã�: (26)

By further iterations, this can be generalized to

( Ã B̃ � � �  Z̃) ��  Z̃� � � �  B̃ � Ã�: (27)

Given two Hermitian operators Ã and B̃ ;

( Ã B̃)��  B̃ � Ã��  B̃ Ã � Ã B̃ �[ B̃; Ã] ; (28)

the operator Ã B̃ equals ( Ã B̃) �; and is therefore
Hermitian, only if

[ B̃; Ã] �0 : (29)

Given an arbitrary operator Ã;

�c1 ½( Ã � Ã�) c2 	��( Ã �� Ã)c1 ½ c2 	

��( Ã � Ã�) c1 ½ c2 	; (30)

so Ã � Ã� is Hermitian.

�c1½i(Ã�Ã�)c2	���i(Ã��Ã)c1½c2	

��i(Ã�Ã�)c1½c2	; (31)

so is Hermitian. Similarly,

�c1½(ÃÃ�)c2	��Ã�c1½Ã�c2	��(ÃÃ�)c1½c2	; (32)

so ÃÃ� is Hermitian.

See also ADJOINT, HERMITIAN MATRIX, SELF-ADJOINT,
STURM-LIOUVILLE THEORY
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Heron Triangle
HERONIAN TRIANGLE

Heron’s Formula
Gives the AREA of a TRIANGLE in terms of the lengths
of the sides a , b , and c and the SEMIPERIMETER

s�1
2(a�b�c): (1)

Heron’s formula then states

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s�a)(s�b)(s�c)

p
: (2)

Heron’s formula may be stated beautifully using a
CAYLEY-MENGER DETERMINANT as

�16D2�

0 a b c
a 0 c b
b c 0 a
c b a 0

��������

���������
0 1 1 1
1 0 c2 b2

1 c2 0 a2

1 b2 a2 0

��������

��������: (3)

Expressing the side lengths a , b , and c in terms of the
radii a?; b?; and c ’ of the mutually tangent circles
centered on the TRIANGLE vertices (which define the
SODDY CIRCLES),

a�b?�c? (4)

b�a?�c? (5)

c�a?�b?; (6)

gives the particularly pretty form

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a?b?c?(a?�b?�c?)

p
: (7)

Heron’s proof (Dunham 1990) is ingenious but ex-
tremely convoluted, bringing together a sequence of
apparently unrelated geometric identities and relying
on the properties of CYCLIC QUADRILATERALS and
RIGHT TRIANGLES. Heron’s proof can be found in
Proposition 1.8 of his work Metrica (ca. 100 BC-100
AD). This manuscript had been lost for centuries
until a fragment was discovered in 1894 and a
complete copy in 1896 (Dunham 1990, p. 118). More
recently, writings of the Arab scholar Abu’l Raihan
Muhammed al-Biruni have credited the formula to
Heron’s predecessor Archimedes prior to 212 BC (van
der Waerden 1961, pp. 228 and 277; Coxeter and
Greitzer 1967, p. 59; Kline 1972; Bell 1986, p. 58;
Dunham 1990, p. 127).

A much more accessible algebraic proof proceeds from
the LAW OF COSINES,



cos A �
b2 � c2 � a2

2bc
: (8)

Then

sin A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a4 � b4 � c4 � 2b2c2 � 2c2a2 � 2a2b2

p

2bc 
;

(9)

giving

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s �a)(s �b)(s �c)

p
(10)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2ab)2 �(a2 �b2 �c2)2

q
(11)

�1
2 bc sin A (12)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a �b �c)(�a �b �c)(a �b �c)(a �b �c)

p
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(b2c2 �c2a2 �a2b2) �(a4 �b4 �c4)

p
(13)

(Coxeter 1969). Heron’s formula contains the PYTHA-

GOREAN THEOREM as a degenerate case.

See also BRAHMAGUPTA’S FORMULA, BRETSCHNEIDER’S

FORMULA, CAYLEY-MENGER DETERMINANT, HERO-

NIAN TETRAHEDRON, HERONIAN TRIANGLE, SODDY

CIRCLES, SSS THEOREM, TRIANGLE
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Heronian Mean
The Heronian mean of two numbers m and n is
defined as

HM(a; b) �1
3(a �

ffiffiffiffiffiffi
ab

p
�b) ;

which arises in the determination of the volume of a
PYRAMIDAL FRUSTUM.

See also PYRAMIDAL FRUSTUM
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Heronian Tetrahedron
A TETRAHEDRON with RATIONAL sides, FACE AREAS,
and VOLUME. The smallest examples have pairs of
opposite sides (148, 195, 203), (533, 875, 888), (1183,
1479, 1804), (2175, 2296, 2431), (1825, 2748, 2873),
(2180, 2639, 3111), (1887, 5215, 5512), (6409, 6625,
8484), and (8619, 10136, 11275).

See also HERON’S FORMULA, HERONIAN TRIANGLE
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Heronian Triangle
A TRIANGLE with RATIONAL side lengths and RATIONAL

AREA. Brahmagupta gave a parametric solution for
integer Heronian triangles (the three side lengths
and area can be multiplied by their LEAST COMMON

MULTIPLE to make them all INTEGERS): side lengths
c(a2�b2); b(a2�c2); and (b�c)(a2�bc); giving SEMI-

PERIMETER

s�a2(b�c) (1)

and AREA

D�abc(a�b)(a2�bc): (2)

The first few integer Heronian triangles sorted by
increasing maximal side lengths, are ((3, 4, 5), (5, 5,
6), (5, 5, 8), (6, 8, 10), (10, 10, 12), (5, 12, 13), (10, 13,
13), (9, 12, 15), (4, 13, 15), (13, 14, 15), (10, 10, 16), ...
(Sloane’s A055594, A055593, and A055592), having
areas 6, 12, 12, 24, 48, 30, 60, 54, ... (Sloane’s
A055595). The first few integer Heronian SCALENE

TRIANGLES, sorted by increasing maximal side
lengths, are (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12,
15), (4, 13, 15), (13, 14, 15), (9, 10, 17), ... (Sloane’s
A046128, A046129, and A046130), having areas 6, 24,
30, 54, 24, 84, 36, ... (Sloane’s A046131).

Schubert (1905) claimed that Heronian triangles with
two rational MEDIANS do not exist (Dickson 1952).
This was shown to be incorrect by Buchholz and
Rathbun (1997), who discovered the triangles given in
the following table, where mi are MEDIAN lengths and
A is the area.

a b c /m1/ /m2/ A

73 51 26 /
35
2/ /

97
2/ 420

626 875 291 572 /
433
2 / 55440



4368 1241 3673 1657 /
7975

2 / 2042040

14791 14384 11257 /
21177

2 / 11001 75698280

28779 13816 15155 /
3589

2 / 21937 23931600

1823675 185629 1930456 /
2048523

2 / /
3751059

2 / 142334216640

See also HERON’S FORMULA, MEDIAN (TRIANGLE),
PYTHAGOREAN TRIPLE, TRIANGLE
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Herschel

A HEPTOMINO shaped like the astronomical symbol for
Uranus (which was discovered by William Herschel ).

See also HEPTOMINO

Herschfeld’s Convergence Theorem
For real, NONNEGATIVE terms xn and REAL p with 0 B
p B1 ; the expression

lim
k0�

x0 �(x1 �(x2 �(. . . �(xk)p)p)p)p

converges IFF (xn)pn 

is bounded.

See also NESTED RADICAL
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Hesse’s Theorem
If two pairs of opposite VERTICES of a COMPLETE

QUADRILATERAL are pairs of CONJUGATE POINTS,
then the third pair of opposite VERTICES is likewise
a pair of CONJUGATE POINTS.

See also COMPLETE QUADRILATERAL

Hessenberg Matrix
A matrix OF THE FORM

a11 a12 a13 � � �  a1(n �1) a1n

a21 a22 a23 � � �  a2(n �1) a2n

0 a32 a33 � � �  a3(n �1) a3n

0 0 a43 � � �  a4(n �1) a4n

0 0 0 � � �  a5(n �1) a5n

n n n ::: n n
0 0 0 0 a(n �1)(n�1) a(n �1)n

0 0 0 0  an(n�1) ann

2
66666666664

3
77777777775
:

See also TOEPLITZ MATRIX, TRIANGULAR MATRIX
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Hessian Covariant

H � ½aa ?a ƒ½axn�2 a ?xn �2 a ƒxn �2 �0:

The nonsingular inflections of a curve are its non-
singular intersections with the Hessian.
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Hessian Determinant
The DETERMINANT

Hf (x; y) �

@2f

@x2

@2f

@x@y

@2f

@y@x

@2f

@y2

���������

���������
appearing in the SECOND DERIVATIVE TEST as
D�Hf (x; y):/

See also SECOND DERIVATIVE TEST
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Heteroclinic Point
If intersecting stable and unstable MANIFOLDS (SE-

PARATRICES) emanate from FIXED POINTS of different
families, they are called heteroclinic points.

See also HOMOCLINIC POINT, MANIFOLD, SEPARATRIX

Heterogeneous Numbers
Two numbers are heterogeneous if their PRIME

FACTORS are distinct. For example, 6 �2 �3 and 24 �
23 �3 are not heterogeneous since their factors are
each (2, 3).

See also DISTINCT PRIME FACTORS, HOMOGENEOUS

NUMBERS
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Heterological Paradox
GRELLING’S PARADOX

Heteromecic Number
PRONIC NUMBER

Heteroscedastic
A set of STATISTICAL DISTRIBUTIONS having different
VARIANCES.

See also HOMOSCEDASTIC, VARIANCE

Heterosquare

A heterosquare is an n �n ARRAY of the integers from
1 to n2 such that the rows, columns, and diagonals
have different sums. (By contrast, in a MAGIC SQUARE,
they have the same sum.) There are no heterosquares
of order two, but heterosquares of every ODD order
exist. They can be constructed by placing consecutive
INTEGERS in a SPIRAL pattern (Fults 1974, Madachy
1979).
An ANTIMAGIC SQUARE is a special case of a hetero-
square for which the sums of rows, columns, and

main diagonals form a SEQUENCE of consecutive
integers.

See also ANTIMAGIC SQUARE, MAGIC SQUARE, TALIS-

MAN SQUARE
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Heuman Lambda Function

L0(f ½m) �
F( f½1 � m)

K(1 � m)
�

2

p
K(m)Z( f½1 �m) ;

where f is the AMPLITUDE, m is the PARAMETER, Z is
the JACOBI ZETA FUNCTION, and F(f ½m?) and K(m) are
incomplete and complete ELLIPTIC INTEGRALS OF THE

FIRST KIND.

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
JACOBI ZETA FUNCTION
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Heun’s Differential Equation
A natural extension of the RIEMANN P -DIFFERENTIAL

EQUATION given by

d2w

dx2 
�

g

x
�

d

x � 1
�

o

x � a

 !
dw

dx
�

abx � q

x(x � 1)(x � a)
w

�0

where

a�b�g�d�o�1�0:

See also RIEMANN P -DIFFERENTIAL EQUATION
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Heuristic
(1) Based on or involving trial and error. (2) Convin-
cing without being rigorous.

See also PARADOX, PROOF

Hex (Polyhex)
POLYHEX

Hex Game
A two-player GAME. There is a winning strategy for
the first player if there is an even number of cells on
each side; otherwise, there is a winning strategy for
the second player.
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Hex Number

The CENTERED HEXAGONAL NUMBER given by

Hn �1 �6Tn �2Hn�1 �Hn �2 �6 �3n2 �3n �1;

where Tn is the nth TRIANGULAR NUMBER. The first
few hex numbers are 1, 7, 19, 37, 61, 91, 127, 169, ...
(Sloane’s A003215). The GENERATING FUNCTION of the
hex numbers is

x(x2 � 4x � 1)

(1 � x)3 �x �7x2 �19x3 �37x4 �. . . :

The first TRIANGULAR hex numbers are 1 and 91, and
the first few SQUARE ones are 1, 169, 32761, 6355441,

... (Sloane’s A006051). SQUARE hex numbers are
obtained by solving the DIOPHANTINE EQUATION

3x2 �1 �y2 :

The only hex number which is SQUARE and TRIANGU-

LAR is 1. There are no CUBIC hex numbers.

See also MAGIC HEXAGON, CENTERED PENTAGONAL

NUMBER, CENTERED SQUARE NUMBER, STAR NUMBER,
TALISMAN HEXAGON
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Hex Pyramidal Number
A FIGURATE NUMBER which is equal to the CUBIC

NUMBER n3 : The first few are 1, 8, 27, 64, ... (Sloane’s
A000578).
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Hexa
POLYHEX

Hexabolo
A 6-POLYABOLO.

Hexacontagon
A 60-sided POLYGON.

Hexacronic Icositetrahedron
GREAT HEXACRONIC ICOSITETRAHEDRON, SMALL HEX-

ACRONIC ICOSITETRAHEDRON

Hexad
A SET of six.

See also MONAD, QUARTET, QUINTET, TETRAD, TRIAD



Hexadecagon

A 16-sided POLYGON, sometimes also called a HEX-

AKAIDECAGON. The regular hexadecagon is a CON-

STRUCTIBLE POLYGON, and the INRADIUS r ,
CIRCUMRADIUS R , and area A of the regular hexade-
cagon of side length 1 are

r �1
2(1 �

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2 �

ffiffiffi
2

p
)

q
)

R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(4 �2

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 �14

ffiffiffi
2

pq
)

r

A �4(1 �
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2 �

ffiffiffi
2

p
)

q
):

See also POLYGON, REGULAR POLYGON, TRIGONOME-

TRY VALUES PI/16

Hexadecimal
The base 16 notational system for representing REAL

NUMBERS. The digits used to represent numbers using
hexadecimal NOTATION are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F. The following table gives the
hexadecimal equivalents of the first few decimal
numbers.

1 1 11 B 21 15

2 2 12 C 22 16

3 3 13 D 23 17

4 4 14 E 24 18

5 5 15 F 25 19

6 6 16 10 26 1A

7 7 17 11 27 1B

8 8 18 12 28 1C

9 9 19 13 29 1D

10 A 20 14 30 1E

The hexadecimal system is particularly important in
computer programming, since four bits (each consist-
ing of a one or zero) can be succinctly expressed using

a single hexadecimal digit. Two hexadecimal digits
represent numbers from 0 to 255, a common range
used, for example, to specify colors. Thus, in the HTML
language of the web, colors are specified using three
pairs of hexadecimal digits RRGGBB, where RR is the
amount of red, GG the amount of green, and BB the
amount of blue.

In HEXADECIMAL, numbers with increasing digits are
called METADROMES, those with nondecreasing digits
are called PLAINDRONES, those with nonincreasing
digits are called NIALPDROMES, and those with de-
creasing digits are called KATADROMES.

See also BASE (NUMBER), BINARY, DECIMAL, DIGIT,
KATADROME, METADROME, NIALPDROME, OCTAL,
PLAINDROME, QUATERNARY, TERNARY, VIGESIMAL
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Hexaflexagon
A FLEXAGON made by folding a strip into adjacent
EQUILATERAL TRIANGLES. The number of states pos-
sible in a hexaflexagon is the CATALAN NUMBER

C4�42:/

See also FLEXAGON, FLEXATUBE, TETRAFLEXAGON

References
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed.

Stradbroke, England: Tarquin Pub., pp. 205�/07, 1989.
Gardner, M. "Hexaflexagons." Ch. 1 in The Scientific Amer-

ican Book of Mathematical Puzzles & Diversions. New
York: Simon and Schuster, pp. 1�/4, 1959.

Gardner, M. "Tetraflexagons." Ch. 2 in The Second Scientific
American Book of Mathematical Puzzles & Diversions: A
New Selection. New York: Simon and Schuster, pp. 24�/1,
1961.

Maunsell, F. G. "The Flexagon and the Hexaflexagon."
Math. Gazette 38, 213�/14, 1954.

Wheeler, R. F. "The Flexagon Family." Math. Gaz. 42, 1�/,
1958.

Hexafrob
POLYHEX

Hexagon

A six-sided POLYGON. In proposition IV.15, Euclid
showed how to inscribe a regular hexagon in a
CIRCLE. The INRADIUS r , CIRCUMRADIUS R , and AREA



A can be computed directly from the formulas for a
general REGULAR POLYGON with side length s and
n �6 sides,

r �1
2 s cot

p

6

 !
�1

2

ffiffiffi
3

p
s (1)

R �1
2 s csc

p

6

 !
�s (2)

A �1
4 ns2 cot

p

6

 !
�3

2

ffiffiffi
3

p
s2 : (3)

Therefore, for a regular hexagon,

R

r
�sec

p

6

 !
�

2ffiffiffi
3

p ; (4)

so

AR

Ar

�
R

r

 !2

�
4

3 
: (5)

A PLANE PERPENDICULAR to a C3 axis of a CUBE

(Gardner 1960), DODECAHEDRON, or ICOSAHEDRON

cuts the solid in a regular HEXAGONAL CROSS SECTION

(Holden 1991, pp. 22 �/3 and 27). For the CUBE, the
PLANE passes through the MIDPOINTS of opposite sides
(Steinhaus 1983, p. 170; Cundy and Rollett 1989,
p. 157; Holden 1991, pp. 22 �/3). Since there are four
such axes for the CUBE and OCTAHEDRON, there are
four possible HEXAGONAL CROSS SECTIONS. A HEXA-

GON is also obtained when the cube is viewed from
above a corner along the extension of a space diagonal
(Steinhaus 1983, p. 170).

Take seven CIRCLES and close-pack them together in a
hexagonal arrangement. The PERIMETER obtained by
wrapping a band around the CIRCLE then consists of
six straight segments of length d (where d is the
DIAMETER) and 6 arcs with total length 1 =6 of a
CIRCLE. The PERIMETER is therefore

p �(12 �2 p)r �2(6 � p)r : (6)

Given an arbitrary hexagon, take each three con-
secutive vertices, and mark the fourth point of the
PARALLELOGRAM sharing these three vertices. Taking
alternate points then gives two congruent triangles,
as illustrated above (Wells 1991).

Given an arbitrary hexagon, connecting the centroids
of each consecutive three sides gives a hexagon with
equal and parallel sides known as the CENTROID

HEXAGON (Wells 1991).

See also CENTROID HEXAGON, COSINE HEXAGON,
CUBE, CYCLIC HEXAGON, DISSECTION, DODECAHE-

DRON, GRAHAM’S BIGGEST LITTLE HEXAGON, HEPTA-

GON THEOREM, HEXAGON POLYIAMOND, HEXAGRAM,
LEMOINE HEXAGON, MAGIC HEXAGON, OCTAHEDRON,
PAPPUS’S HEXAGON THEOREM, PASCAL’S THEOREM,
TALISMAN HEXAGON, TUCKER HEXAGON
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Hexagon Polyiamond

A 6-POLYIAMOND.

See also HEXAGON
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Hexagon Tiling

There are at least three aperiodic tilings of HEXA-

GONS, given by the following types:

A �B �C �360� a �d
A �B �D �360� a �d; c �e

A �C �E a�b ; c �d; e �f
(1)

(Gardner 1988). Note that the periodic hexagonal
TESSELLATION is a degenerate case of all three tilings
with

A �B �C �D �E �F a�b �c �d �e �f (2)

Amazingly, the number of PLANE PARTITIONS

PL(a; b; c) contained in an a �b �c box also gives
the number of hexagon tilings by RHOMBI for a
hexagon of side lengths a , b , c , a , b , c (David and
Tomei 1989, Fulmek and Krattenthaler 2000). The
asymptotic distribution of rhombi in a random hexa-

gon tiling by rhombi was given by Cohn et al. (1998).
A variety of enumerations for various explicit posi-
tions of rhombi are given by Fulmek and Krattentha-
ler (1998, 2000).

See also PLANE PARTITION, TILING

References
Cohn, H.; Larsen, M.; and Propp, J. "The Shape of a Typical

Boxed Plane Partition." New York J. Math. 4, 137 �/66,
1998.

David, G. and Tomei, C. "The Problem of the Calissons."
Amer. Math. Monthly 96, 429 �/31, 1989.

Gardner, M. "Tilings with Convex Polygons." Ch. 13 in Time
Travel and Other Mathematical Bewilderments. New
York: W. H. Freeman, pp. 162 �/76, 1988.

Fulmek, M. and Krattenthaler, C. "The Number of Rhombus
Tilings of a Symmetric Hexagon which Contains a Fixed
Rhombus on the Symmetry Axis, I." Ann. Combin. 2, 19�/

0, 1998.
Fulmek, M. and Krattenthaler, C. "The Number of Rhombus

Tilings of a Symmetric Hexagon which Contains a Fixed
Rhombus on the Symmetry Axes, II." Europ. J. Combin.
21, 601 �/40, 2000.

Hexagon Triangle Picking
The mean area of a TRIANGLE picked inside a regular
HEXAGON with unit area is Ā �289=3888 (Woolhouse
1867, Pfiefer 1989). This is a special case of a general
POLYGON TRIANGLE PICKING result due to Alikoski
(1939).

See also DISK TRIANGLE PICKING, POLYGON TRIANGLE

PICKING, SQUARE TRIANGLE PICKING, SYLVESTER’S

FOUR-POINT PROBLEM, TRIANGLE TRIANGLE PICKING
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Hexagonal Close Packing
SPHERE PACKING

Hexagonal Number

A FIGURATE NUMBER and 6-POLYGONAL NUMBER OF

THE FORM n(2n�1): The first few are 1, 6, 15, 28, 45,



... (Sloane’s A000384). The GENERATING FUNCTION of
the hexagonal numbers

x(3x � 1)

(1 � x)3 �x �6x2 �15x3 �28x4 �. . . :

Every hexagonal number is a TRIANGULAR NUMBER

since

r(2r �1) �1
2(2r �1)[(2r �1) �1]:

In 1830, Legendre (1979) proved that every number
larger than 1791 is a sum of four hexagonal numbers,
and Duke and Schulze-Pillot (1990) improved this to
three hexagonal numbers for every sufficiently large
integer. The numbers 11 and 26 can only be REPRE-

SENTED AS a sum using the maximum possible of six
hexagonal numbers:

11 �1 �1 �1 �1 �1 �6

26 �1 �1 �6 �6 �6 �6:

See also FIGURATE NUMBER, HEX NUMBER, HEPTA-

GONAL HEXAGONAL NUMBER, HEXAGONAL PENTAGO-

NAL NUMBER, OCTAGONAL HEXAGONAL NUMBER,
TRIANGULAR NUMBER
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Hexagonal Pentagonal Number
A number which is simultaneously PENTAGONAL and
HEXAGONAL. Let Pn denote the nth PENTAGONAL

NUMBER and Hm the mth SQUARE NUMBER, then a
number which is both pentagonal and hexagonal
satisfies the equation Pn �Hm ; or

1
2 n(3n �1) �m(2m �1): (1)

COMPLETING THE SQUARE and rearranging gives

(6n �1)2 �3(4m �1)2 ��2: (2)

Therefore, defining

x �2n �1 (3)

y �2m (4)

gives the Pell-like equation

x2 �3y2 ��2 (5)

The first few solutions are (x; y) �(1; 1); (5, 3), (19,
11), (71, 74), (265, 153), (989, 571), .... These give the
solutions (n; m); (1, 1), (/10=3/, 3), (12, /21 =2/), (/133=3/, /
77 =2/), (165, 143), ..., of which the integer solutions are
(1, 1), (165, 143), (31977, 27693), (6203341, 5372251),
... (Sloane’s A046178 and A046179), corresponding to
the pentagonal hexagonal numbers 1, 40755,
1533776805, 57722156241751, ... (Sloane’s A046180).

See also HEXAGONAL NUMBER, PENTAGONAL NUMBER
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Hexagonal Prism

A PRISM composed of hexagonal faces. The regular
right hexagonal prism has SURFACE AREA and VO-

LUME

S �3(2 �
ffiffiffi
3

p
)

V �3
2

ffiffiffi
3

p
:

See also HEXAGON, PRISM

Hexagonal Pyramid
A PYRAMID with a hexagonal base. The SLANT HEIGHT

of a hexagonal pyramid is a special case of the
formula for a regular n -gonal PYRAMID with n �6,
given by

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �a2

p
; (1)

where h is the height and a is the length of a side of
the base.

See also HEXAGON, PYRAMID



Hexagonal Pyramidal Number
A PYRAMIDAL NUMBER OF THE FORM n(n �1)(4n �
1)=6; The first few are 1, 7, 22, 50, 95, ... (Sloane’s
A002412). The GENERATING FUNCTION of the hexago-
nal pyramidal numbers is

x(3x � 1)

(x � 1)4 �x �7x2 �22x3 �50x4 �. . . :
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Hexagonal Scalenohedron

An irregular DODECAHEDRON which is also a TRAPE-

ZOHEDRON.

See also DODECAHEDRON, TRAPEZOHEDRON

References
Cotton, F. A. Chemical Applications of Group Theory, 3rd

ed. New York: Wiley, p. 63, 1990.

Hexagonal Square Number
Let Hn denote the nth HEXAGONAL NUMBER and Sm

the mth SQUARE NUMBER, then a number which is
both hexagonal and square satisfies the equation
Hn �Sm ; or

n(2n �1) �m2 : (1)

COMPLETING THE SQUARE and rearranging gives

(4n �1)2 �8m2 �1: (2)

Therefore, defining

x �4n �1 (3)

y �2m (4)

gives the PELL EQUATION

x2 �2y2 �1: (5)

The first few solutions are (x; y) �(3; 2); (17, 12), (99,
70), (577, 408), .... These give the solutions (n; m) �
(1; 1); (/9=2/, 6), (25, 35), (/289=2/, 204), ..., giving the
integer solutions (1, 1), (25, 35), (841, 1189), (28561,

40391), ... (Sloane’s A008844 and A046176). The
corresponding hexagonal square numbers are 1,
1225, 1413721, 1631432881, 1882672131025, ... (Sloa-
ne’s A046177).

See also HEXAGONAL NUMBER, SQUARE NUMBER
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Hexagram

The STAR POLYGON f6 =2g; also known as the STAR OF

DAVID.

See also DISSECTION, PENTAGRAM, SOLOMON’S SEAL

KNOT, STAR FIGURE, STAR OF LAKSHMI

Hexagrammum Mysticum Theorem
PASCAL’S THEOREM

Hexahedral Graph

A POLYHEDRAL GRAPH on six vertices. There are seven
topologically distinct hexahedral graphs (Gardner
1966, p. 233), of which three are the PENTAGONAL

PYRAMID (first figure), TRIANGULAR PRISM (second
figure), and OCTAHEDRON/square dipyramid/TRIANGU-

LAR ANTIPRISM (last figure). The hexahedral graphs
were first enumerated by Steiner (1828; Duijvestijn
and Federico 1981).

See also HEXAHEDRON, POLYHEDRAL GRAPH
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Hexahedron
A hexahedron is a POLYHEDRON with six faces. The
regular hexahedron is the CUBE, although there are
seven topologically different CONVEX hexahedra (Guy
1994, p. 189). Steiner (1828) was the first to enumer-
ate the hexahedra (Duijvestijn and Federico 1981).

There are exactly two hexahedra composed of iden-
tical REGULAR POLYGONS: the regular TRIANGULAR

DIPYRAMID (six EQUILATERAL TRIANGLES; left figure)
and the CUBE (six SQUARES; right figure).

See also CUBE, HEXAHEDRAL GRAPH, POLYHEDRON,
TRIANGULAR DIPYRAMID
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Hexahemioctacron

The DUAL POLYHEDRON of the CUBOHEMIOCTAHEDRON

U15 and Wenninger dual W78 : When rendered, the
OCTAHEMIOCTACRON and hexahemioctacron appear
the same.

See also DUAL POLYHEDRON, CUBOHEMIOCTAHEDRON,
OCTAHEMIOCTACRON, UNIFORM POLYHEDRON
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Hexahemioctahedron

(6n �1)2 �3(4m �1)2 ��2:

The DUAL POLYHEDRON of the CUBOHEMIOCTAHEDRON

2n �1: When rendered, the OCTAHEMIOCTACRON and
hexahemioctahedron appear the same.

See also DUAL POLYHEDRON, CUBOHEMIOCTAHEDRON,
OCTAHEMIOCTACRON, UNIFORM POLYHEDRON

Hexakaidecagon
HEXADECAGON

Hexakis Icosahedron
DISDYAKIS TRIACONTAHEDRON

Hexakis Octahedron
DISDYAKIS DODECAHEDRON

Hexecontahedron
A 60-faced POLYHEDRON. Taking the RHOMBIC TRIA-

CONTAHEDRON, placing a plane along each edge which
is perpendicular to the plane of symmetry in which
the edge lies, and taking the solid bounded by these
planes gives a hexecontahedron (Steinhaus 1999).

See also DELTOIDAL HEXECONTAHEDRON, PENTAGO-

NAL HEXECONTAHEDRON, PENTAKIS DODECAHEDRON,
SMALL RHOMBICOSIDODECAHEDRON, SNUB DODECA-

HEDRON, TRIAKIS ICOSAHEDRON, TRUNCATED DODE-

CAHEDRON, TRUNCATED ICOSAHEDRON
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Hexiamond

A POLYIAMOND composed of six equilateral triangles.
The 12 hexiamonds are illustrated above. They are



given the names BAR, CROOK, CROWN, SPHINX, SNAKE,
YACHT, CHEVRON, SIGNPOST, LOBSTER, HOOK, HEXA-

GON, and BUTTERFLY.

See also POLYIAMOND, HEXIAMOND TILING
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Hexiamond Tiling

There are a number of tilings of various shapes by all
the 12 order n �6 polyiamonds, summarized in the
following table. Several of these (starred in the table
below) are also illustrated above (Beeler 1972).
Beeler’s numbers for the side 6 parallelogram of
base 6 and side 4 trapezoid (156 and 76, respectively),
differ from those quoted in Gardner (1984, p. 182) of
155 and 74, respectively.

Size Solutions

side 9 D with inverted side 3 D hole 0

side 6 trapezoid with bases 3 and 9 0

two side 6 triangles 0

/3 �12 rhomboid 0

/4 �9 rhomboid* 37

side 4 trapezoid with bases 7 and 11* 76

side 6 parallelogram of base 6* 156

triangle of side 9 with 1, 2, 2 corners
removed*

5885

trefoil* several

The following table gives the number of solutions to
various hexiamond tilings using fewer than 12 pieces.
Those indicated with asterisks (*) have a solution
illustrated above.

Size Pieces Solutions

2-hexagon /]1/

3-hexagon* 9 /]15/

equilateral D/ 0

hexagonal ring 0

6-point star* 8 1

triangular ring 0

/2�3 rhomboid 0

/2�6 rhomboid* 4 1

/3�3 rhomboid 3 0

/3�4 rhomboid 4 many

/3�5 rhomboid 5 many

/3�6 rhomboid 6 many

/3�7 rhomboid 7 many

/3�8 rhomboid 8 many

/3�9 rhomboid 9 many

/3�10 rhomboid 10 many

/3�11 rhomboid* 11 24

/4�6 rhomboid 8 /]1/

/5�6 rhomboid 10 many

See also HEPTIAMOND TILING, HEXIAMOND, OCTIA-

MOND TILING, PENTIAMOND TILING, POLYHEX TILING,
POLYIAMOND, POLYOMINO TILING
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Hexlet

Consider two mutually tangent (externally) SPHERES

A and B together with a larger sphere C inside which
A and B are internally tangent. Then construct a
chain of spheres each tangent externally to A , B and
internally to C (so that C encloses the chain as well
as the two original spheres). Surprisingly, every such
chain closes into a "necklace" after six SPHERES,
regardless of where the first SPHERE is placed.
This beautiful and amazing result due to Soddy
(1937) is a special case of KOLLROS’ THEOREM. It can
be demonstrated using INVERSION of six identical
spheres around an equal center sphere, all of which
are sandwiched between two planes (Wells 1991,
pp. 120 and 232). This result was given in a SANGAKU

PROBLEM from Kanagawa Prefecture in 1822, more
than a century before it was published by Soddy
(Rothman 1998).

Moreover, the centers of the six spheres in the
necklace and their six points of contact all lie in a
plane. Furthermore, there are two planes which
touch each of the six spheres, one on either side of
the necklace. Finally, the radii ri of the spheres are
related by

1

r1

�
1

r4

�
1

r2

�
1

r3

�
1

r3

�
1

r6

(Rothman 1998).

Soddy’s BOWL OF INTEGERS contains an infinite
number of nested hexlets. The centers of a Soddy
hexlet always lie on an ELLIPSE (Ogilvy 1990, p. 63).

See also BOWL OF INTEGERS, COXETER’S LOXODROMIC

SEQUENCE OF TANGENT CIRCLES, DAISY, KOLLROS’

THEOREM, SEVEN CIRCLES THEOREM, STEINER CHAIN,
TANGENT SPHERES
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HexLife
An alternative LIFE game similar to Conway’s, which
is played on a hexagonal grid. No set of rules has yet
emerged as uniquely interesting.

See also HIGHLIFE

Hexomino

One of the 35 6-POLYOMINOES.

See also DOMINO, HEPTOMINO, OCTOMINO, PENTOMI-

NO, POLYOMINO, TETROMINO, TRIOMINO
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Heyting Algebra

An ALGEBRA which is a special case of a LOGOS.

See also LOGOS, TOPOS

H-Fractal

The FRACTAL illustrated above.
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H-Function
FOX’S H -FUNCTION

Hh Function

Let

Z(x) �
1ffiffiffiffiffiffi
2p

p e �x2 =2 (1)

Q(x) �
1ffiffiffiffiffiffi
2 p

p g
�

x

e �t2 =2 dt (2)

�
1

2
1 �erf

xffiffiffi
2

p
 !" #

; (3)

where /Z(x)/ and /Q(x)/ are closely related to the NORMAL

DISTRIBUTION FUNCTION, then

Hh�n(x) �(�1)n�1
ffiffiffiffiffiffi
2p

p
Z(n�1)(x) (4)

Hhn(x) �
( �1)n

n!
Hh�1(x)

dn

dxn

Q(x)

Z(x)

" #
: (5)

The first few values are

Hh�3(x) �e �x2 =2(x2 �1) (6)

Hh�2(x) �e �x2 =2x (7)

Hh�1(x) �e �x2 =2 (8)

Hh0(x) �0 (9)

Hh1(x) �e �x2 =2 �

ffiffiffi
p

2

s
x erfc

xffiffiffi
2

p
 !

(10)

Hh2(x) �
1

4
�2xe �x2 =2 �

ffiffiffiffiffiffi
2p

p
(x2 �1)erfc

xffiffiffi
2

p
 !" #

(11)

Hh3(x)

�
1

12
2e�x2 =2(x2 �2) �

ffiffiffiffiffiffi
2p

p
x(x2 �3)erfc

xffiffiffi
2

p
 !" #

: (12)

See also NORMAL DISTRIBUTION FUNCTION, TETRA-

CHORIC FUNCTION
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Higher Arithmetic
An archaic term for NUMBER THEORY.

Higher Dimensional Group Theory
The term "higher dimensional group theory" was
introduced by Brown (1982), and refers to a method
for obtaining new homotopical information by gen-
eralizing to higher dimensions the fundamental
group of a space with a base point.

See also GROUP THEORY, LOW-DIMENSIONAL TOPOL-

OGY
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Higher Geometry
PROJECTIVE GEOMETRY

Highest Common Divisor
GREATEST COMMON DIVISOR



Highest Weight Theorem
A theorem proved by É . Cartan in 1913 which
classifies the irreducible representations of COMPLEX

semisimple LIE ALGEBRAS.
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HighLife
An alternate set of LIFE rules similar to Conway’s, but
with the additional rule that six neighbors generate a
birth. Most of the interest in this variant is due to the
presence of a so-called replicator.

See also HEXLIFE, LIFE

Highly Abundant Number
HIGHLY COMPOSITE NUMBER

Highly Composite Number
A COMPOSITE NUMBER (also called a SUPERABUNDANT

NUMBER) is a number n which has more FACTORS

than any other number less than n . In other words, /
s(n) =n/ exceeds /s(k) =k/ for all k Bn , where s(n) is the
DIVISOR FUNCTION. They were called highly composite
numbers by Ramanujan, who found the first 100 or
so, and superabundant numbers by Alaoglu and
Erdos (1944).

There are an infinite number of highly composite
numbers, and the first few are 2, 4, 6, 12, 24, 36, 48,
60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520,
5040, ... (Sloane’s A002182). Ramanujan (1915) listed
102 up to 6746328388800 (but omitted 293, 318, 625,
600, and 29331862500). Robin (1983) gives the first
5000 highly composite numbers, and a comprehensive
survey is given by Nicholas (1988).

If

N �2a2 3a3 � � �pap (1)

is the PRIME FACTORIZATION of a highly composite
number, then

1. The PRIMES 2, 3, ..., p form a string of
consecutive PRIMES,
2. The exponents are nonincreasing, so /

a2 ]a3 ]. . .]ap/, and
3. The final exponent /ap/ is always 1, except for the
two cases /N �4 �22

/ and /N �36 �22 � 32
/, where it

is 2.

Let /Q(x)/ be the number of highly composite numbers /

5x/. Ramanujan (1915) showed that

lim
x0�

Q(x)

ln x 
��: (2)

Erdos (1944) showed that there exists a constant /

c1 �0/ such that

Q(x) ](ln x)1 �c1 (3)

Nicholas proved that there exists a constant /c2�0/

such that

Q(x)(ln x)c2 : (4)

See also ABUNDANT NUMBER, ROUND NUMBER,
ROUNDNESS, SMOOTH NUMBER
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Higman-Sims Group
The SPORADIC GROUP HS.
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Hilbert Basis
A Hilbert basis for the VECTOR SPACE of square
summable sequences /(an)�a1/, a2; ... is given by the
standard basis /ei/, where /ei�din/, with /din/ the KRO-

NECKER DELTA. Then



(an) �
X

aiei ;

with /ajai j
2 
B�/. Although strictly speaking, the /ei/ are

not a BASIS because there exist elements which are
not a finite LINEAR COMBINATION, they are given the
special term "Hilbert basis."

In general, a HILBERT SPACE V has a Hilbert basis/ei/ if
the /ei/ are an ORTHONORMAL BASIS and every element
v � V can be written

v �
X�
i�1

aiei

for some /ai/ with / ajai j
2 
B�/.

See also BASIS (VECTOR SPACE), FOURIER SERIES,
HILBERT SPACE, L2-SPACE, ORTHONORMAL SET

Hilbert Basis Theorem
If R is a NOETHERIAN RING, then S �R[X] is also a
NOETHERIAN RING.

See also ALGEBRAIC VARIETY, FUNDAMENTAL SYSTEM,
NOETHERIAN RING, SYZYGY
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Hilbert Curve

A LINDENMAYER SYSTEM invented by Hilbert (1891)
whose limit is a PLANE-FILLING CURVE which fills a
square. Traversing the VERTICES of an n -D HYPER-

CUBE in GRAY CODE order produces a generator for
the n -D Hilbert curve (Goetz). The Hilbert curve can
be simply encoded with initial string "L", STRING

REWRITING rules "L" - � " �RF-LFL-FR �RFR �FL-
", and angle 908 (Peitgen and Saupe 1988, p. 278).

A related curve is the Hilbert II curve, shown above
(Peitgen and Saupe 1988, p. 284). It is also a
LINDENMAYER SYSTEM and the curve can be encoded
with initial string "X", STRING REWRITING rules "X" -
� "XFYFX�F�YFXFY-F-XFYFX", "Y" - � "YFX-
FY-F-XFYFX�F�YFXFY", and angle 908.

See also LINDENMAYER SYSTEM, PEANO CURVE,
PLANE-FILLING CURVE, SIERPINSKI CURVE, SPACE-

FILLING CURVE
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Hilbert Function
Let /G�fp1 ; . . . ; pm gƒP2

/ be a collection of m distinct
points. Then the number of conditions imposed by G
on forms of degree d is called the Hilbert function /hG/

of G. If curves X1 and X2 of degrees d and e meet in a
collection G of /d � e/ points, then for any k , the number
/hG(k)/ of conditions imposed by on forms of degree k
is independent of X1 and X2 and is given by

hG(k) �
k �2

2

� �
�

k �d �2
2

� �
�

k �e �2
2

� �

�
k �d �e �2

2

� �
;

where the BINOMIAL COEFFICIENT /(a
2)/ is taken as 0 if

a B2 (Cayley 1843).
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Hilbert Hotel
Let a hotel have a DENUMERABLE set of rooms
numbered 1, 2, 3, .... Then any finite number n of
guests can be accommodated without evicting the
current guests by moving the current guests from
room i to room /i �n/. Furthermore, a DENUMERABLE

number of guests can be similarly accommodated by
moving the existing guests from i to /2i/, freeing up a
DENUMERABLE number of rooms /2i�1/.

See also CARDINAL NUMBER, DENUMERABLE SET
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Hilbert Matrix
A MATRIX H with elements

Hij �(i �j �1)�1

for /i ; j �1/, 2, ..., n . Hilbert matrices are given by
HilbertMatrix[m , n ] in the Mathematica add-on
package LinearAlgebra‘MatrixManipulation‘
(which can be loaded with the command
BBLinearAlgebra‘). Although the MATRIX IN-

VERSE is given analytically by

(H �1)ij �
(�1)i�j

i � j � 1

(n � i � 1)!(n � j � 1)!

[(i � 1)!(j � 1)!]2(n � i)!(n � j)! 
;

Hilbert matrices are difficult to invert numerically.
The DETERMINANTS for the first few values of Hn are
given in the following table, and the numerical values
for n �1, 2, ... are given by one divided by 1, 12, 2160,
6048000, 266716800000, ... (Sloane’s A005249).

n det(/H)/

1 1

2 8.33333 �10 �2

3 4.62963 �10 �4

4 1.65344 �10 �7

5 3.74930 �10 �12

6 5.36730 �10 �18
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Hilbert Number
GELFOND-SCHNEIDER CONSTANT

Hilbert Polynomial
Let G be an ALGEBRAIC CURVE in a projective space of
DIMENSION n , and let p be the PRIME IDEAL defining
G, and let / x(p; m)/ be the number of linearly indepen-
dent forms of degree m modulo p . For large m , /

x(p ; m)/ is a POLYNOMIAL known as the Hilbert
polynomial.
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Hilbert Space
A Hilbert space is a VECTOR SPACE H with an INNER

PRODUCT /�f ; g	/ such that the NORM defined by

½f ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f ; f 	

p
turns H into a COMPLETE METRIC SPACE. If the INNER

PRODUCT does not so define a NORM, it is instead
known as an INNER PRODUCT SPACE.

Examples of FINITE-dimensional Hilbert spaces in-
clude

1. The REAL NUMBERS Rn with /�v; u	/ the vector
DOT PRODUCT of v and u .
2. The COMPLEX NUMBERS Cn with /�v; u	/ the
vector DOT PRODUCT of v and the COMPLEX CON-

JUGATE of u .

An example of an INFINITE-dimensional Hilbert space
is /L2

/, the SET of all FUNCTIONS /f : R 0 R/ such that the
INTEGRAL of /f 2

/ over the whole REAL LINE is FINITE. In
this case, the INNER PRODUCT is

�f ; g	�g
�

��

f (x)g(x) dx:

A Hilbert space is always a BANACH SPACE, but the
converse need not hold.

See also BANACH SPACE, COMPLETE SET OF FUNC-

TIONS, HILBERT BASIS, L2-NORM, L2-SPACE, LIOU-

VILLE SPACE, PARALLELOGRAM LAW, VECTOR SPACE
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Hilbert Symbol
For any two nonzero P -ADIC NUMBERS a and b , the
Hilbert symbol is defined as

(a; b)� 1 if z2�ax2�by2 has a nonzero solution
�1 otherwise:

,

If the p -adic field is not clear, it is said to be the



Hilbert symbol of a and b relative to k . The field can
also be the reals (/p ��/). The Hilbert symbol satisfies
the following formulas:

1. /(a ; b) �(b; a)/.
2. /(a ; c2) �1/ for any c .
3. /(a ; �a) �1/.
4. /(a ; 1 �a) �1/.
5. /(a ; b) �1 [(aa?; b) �(a?; b)/.
6. /(a ; b) �(a; �ab) �(a ; (1 �a)b)/.

The Hilbert symbol depends only the values of a and
b modulo squares. So the symbol is a map /

k�=k �2 �k�=k�2 0 f1; �1g/.

Hilbert showed that for any two nonzero rational
numbers a and b ,

1. /(a ; b)v �1/ for almost every prime v .
2. /

Q
(a ; b)v �1/ where v ranges over every prime,

including /v ��/ corresponding to the reals.

See also DIOPHANTINE EQUATION–2ND POWERS,
FIELD, P -ADIC NUMBER, SYMMETRIC BILINEAR FORM

(GENERAL FIELDS), VECTOR SPACE
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Hilbert Transform
The INTEGRAL TRANSFORM

g(y) �H[f (x)] �
1

p g
�

��

f (x) dx

x � y

f (x) �H�1[g(y)] �
1

p g
�

��

g(y) dy

y � x
;

where the CAUCHY PRINCIPAL VALUE is taken in each
of the integrals.

In the following table, / P(x)/ is the RECTANGLE FUNC-

TION, sinc x is the SINC FUNCTION, d(x) is the DELTA

FUNCTION, /P(x)/ and /II(x)/ are IMPULSE SYMBOLS, and

1F1(a; b; x) is a CONFLUENT HYPERGEOMETRIC FUNC-

TION OF THE FIRST KIND.

/f (x)/ /g(y)/

/sin x/ /cos y/

/cos x/ /�sin y/

/

sin x

x
/ /

cos y � 1

y
/

/P(x)/ 1

p
ln

y � 1
2

y � 1
2

�����
�����

1

1 � x2 
�

y

1 � y2

sinc ? x �p sinc y �1
2p sinc2(1

2 py)

/d(x)/
�

1

py

/P(x)/ y

p(1
4 � y2)

/II(x)/
�

1

2 p(1
4 � y2)

/e �x2

/

�
2yffiffiffi
p

p 1 F1(a; b; x)

See also ABEL TRANSFORM, FOURIER TRANSFORM,
INTEGRAL TRANSFORM, TITCHMARSH THEOREM, WI-

ENER-LEE TRANSFORM
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Hilbert’s Axioms
The 21 assumptions which underlie the GEOMETRY

published in Hilbert’s classic text Grundlagen der
Geometrie. The eight INCIDENCE AXIOMS concern
collinearity and intersection and include the first of
EUCLID’S POSTULATES. The four ORDERING AXIOMS

concern the arrangement of points, the five CONGRU-

ENCE AXIOMS concern geometric equivalence, and the
three CONTINUITY AXIOMS concern continuity. There
is also a single parallel axiom equivalent to Euclid’s
PARALLEL POSTULATE.

See also CONGRUENCE AXIOMS, CONTINUITY AXIOMS,
INCIDENCE AXIOMS, ORDERING AXIOMS, PARALLEL

POSTULATE
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Hilbert’s Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.



Extend HILBERT’S INEQUALITY by letting /p ; q �1/ and

1

p 
�

1

q 
]1 ; (1)

so that

0 B l �2 �
1

p 
�

1

q 
51: (2)

Levin (1937) and Steckin (1949) showed that

X�
m�1

X�
n�1

ambn

(m � n)l

5 p csc
p(q � 1)

lq

" #( )l X�
m�1

(am)p

" #1 =p X�
n �1

(an)q

" #1 =q

(3)

and

g
�

0 g
�

0

f (x)g(y)

(x � y) l 
dx dy B p csc

p(q � 1)

p

" #l

� g
�

0

[f (x)]p dx

� �1 =p

g
�

0

[g(x)]q dx

� �1 =q

: (4)

Mitrinovic et al. (1991) indicate that this constant is
the best possible.

See also HILBERT’S INEQUALITY
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Hilbert’s Inequality
Given a POSITIVE SEQUENCE anf g;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X�
j���

X�
n���

n"j

an

j � n

�����������

�����������

2

vuuuuuuuuut
5 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX�
n���

½an ½
2

vuut ;

where the an/s are REAL and "square summable."

Another INEQUALITY known as Hilbert’s applies to
NONNEGATIVE sequences anf g and bnf g/,

X�
m�1

X�
n�1

ambn

m � n 
B p csc

p

p

 ! X�
m�1

ap
m

 !1 =p X�
n�1

bq
n

 !1 =q

unless all an or all /bn/ are 0. If f (x) and g(x) are
NONNEGATIVE integrable functions, then the integral

form is

g
�

0 g
�

0

f (x)g(y)

x � y
dx dy B p csc

p

p

 !

� g
�

0

[f (x)]p dx

� �1 =p

g
�

0

[g(x)]q dx

� �1 =q

:

The constant /p csc( p=P)/ is the best possible, in the
sense that counterexamples can be constructed for
any smaller value.
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Hilbert’s Nullstellensatz
Let K be an algebraically closed field and let I be an
IDEAL in /K(x)/, where /x(x1 ; x2 ; . . . ; xn/ is a finite set of
indeterminates. Let /p � K(x)/ be such that for any /

(c1 ; . . . ; cn/ in /Kn
/, if every element of vanishes

when evaluated if we set each (/xi �ci/), then p also
vanishes. Then /pi

/ lies in I for some j . Colloquially,
the theory of algebraically closed fields is a complete
model.

See also ALGEBRAIC SET, IDEAL

References
Becker, T. and Weispfenning, V. "The Hilbert Nullstellen-
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Hilbert’s Problems
A set of (originally) unsolved problems in mathe-
matics proposed by Hilbert. Of the 23 total, ten were
presented at the Second International Congress in
Paris in 1900. These problems were designed to serve
as examples for the kinds of problems whose solutions
would lead to the furthering of disciplines in mathe-
matics.

1a. Is there a transfinite number between that of a
DENUMERABLE SET and the numbers of the CON-

TINUUM? This question was answered by Gödel
and Cohen to the effect that the answer depends
on the particular version of SET THEORY assumed.
1b. Can the CONTINUUM of numbers be considered
a WELL ORDERED SET? This question is related to
Zermelo’s AXIOM OF CHOICE. In 1963, the AXIOM OF

CHOICE was demonstrated to be independent of all
other AXIOMS in SET THEORY, so there appears to be



no universally valid solution to this question
either.
2. Can it be proven that the AXIOMS of logic are
consistent? GÖ DEL’S INCOMPLETENESS THEOREM

indicated that the answer is "no," in the sense
that any formal system interesting enough to
formulate its own consistency can prove its own
consistency IFF it is inconsistent.
3. Give two TETRAHEDRA which cannot be decom-
posed into congruent TETRAHEDRA directly or by
adjoining congruent TETRAHEDRA. Max Dehn
showed this could not be done in 1902 by inventing
the theory of DEHN INVARIANTS, and W. F. Kagon
obtained the same result independently in 1903.
4. Find GEOMETRIES whose AXIOMS are closest to
those of EUCLIDEAN GEOMETRY if the ORDERING

and INCIDENCE AXIOMS are retained, the CONGRU-

ENCE AXIOMS weakened, and the equivalent of the
PARALLEL POSTULATE omitted. This problem was
solved by G. Hamel.
5. Can the assumption of differentiability for
functions defining a continuous transformation
GROUP be avoided? (This is a generalization of
the CAUCHY FUNCTIONAL EQUATION.) Solved by
John von Neumann in 1930 for bicompact groups.
Also solved for the ABELIAN case, and for the
solvable case in 1952 with complementary results
by Montgomery and Zipin (subsequently combined
by Yamabe in 1953). Andrew Glean showed in
1952 that the answer is also "yes" for all locally
bicompact groups.
6. Can physics be axiomized?
7. Let /a "1 "0/ be ALGEBRAIC and b IRRATIONAL. Is /

ab/ then TRANSCENDENTAL (Wells 1986, p. 45)? /ab/ is
known to be transcendental for the special case of
b an ALGEBRAIC NUMBER, as proved in 1934 by
Aleksander Gelfond in a result now known as
GELFOND’S THEOREM (Courant and Robins 1996).
However, the case of general irrational b has not
been resolved.
8. Prove the RIEMANN HYPOTHESIS. The CONJEC-

TURE has still been neither proved nor disproved.
9. Construct generalizations of the RECIPROCITY

THEOREM of NUMBER THEORY.
10. Does there exist a universal algorithm for
solving DIOPHANTINE EQUATIONS? The impossibil-
ity of obtaining a general solution was proven by
Julia Robinson and Martin Davis in 1970, follow-
ing proof of the result that the relation /n �F2m/

(where/F2m/ is a FIBONACCI NUMBER) is Diophantine
by Yuri Matijasevich (Matiyasevich 1970; Davis
1973; Davis and Hersh 1973; Davis 1982; Matiya-
sevich 1993; Reid 1997, p. 107). More specifically,
Matiyasevich showed that there is a polynomial P
in n , m , and a number of other variables x , y , z , ...

having the property that /n �F2m/ IFF there exist
integers x , y , z , ... such that /P(n ; m; x; y; z ; . . .)�0/.
11. Extend the results obtained for quadratic fields
to arbitrary INTEGER algebraic fields.
12. Extend a theorem of Kronecker to arbitrary
algebraic fields by explicitly constructing Hilbert
class fields using special values. This calls for the
construction of HOLOMORPHIC FUNCTIONS in sev-
eral variables which have properties analogous to
the exponential function and elliptic modular
functions (Holzapfel 1995).
13. Show the impossibility of solving the general
seventh degree equation by functions of two vari-
ables.
14. Show the finiteness of systems of relatively
integral functions.
15. Justify Schubert’s ENUMERATIVE GEOMETRY

(Bell 1945).
16. Develop a topology of real algebraic curves and
surfaces. The TANIYAMA-SHIMURA CONJECTURE

postulates just this connection. See Gudkov and
Utkin (1978), Ilyashenko and Yakovenko (1995),
and Smale (2000).
17. Find a representation of definite form by
SQUARES.
18. Build spaces with congruent POLYHEDRA.
19. Analyze the analytic character of solutions to
variational problems.
20. Solve general BOUNDARY VALUE PROBLEMS.
21. Solve differential equations given a MONO-

DROMY GROUP. More technically, prove that there
always exists a FUCHSIAN SYSTEM with given
singularities and a given MONODROMY GROUP.
Several special cases had been solved, but a
NEGATIVE solution was found in 1989 by B. Boli-
bruch (Anasov and Bolibruch 1994).
22. Uniformization.
23. Extend the methods of CALCULUS OF VARIA-

TIONS.

See also GELFOND’S THEOREM, RIEMANN HYPOTHESIS,
TANIYAMA-SHIMURA CONJECTURE, UNSOLVED PRO-

BLEMS
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Hilbert’s Theorem
Every MODULAR SYSTEM has a MODULAR SYSTEM BASIS

consisting of a finite number of POLYNOMIALS. Stated
another way, for every order n there exists a
nonsingular curve with the maximum number of
circuits and the maximum number for any one nest.
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Hilbert-Schmidt Norm
The Hilbert-Schmidt norm of a MATRIX A is defined as

½A½2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ij

a2ij:

s

Hilbert-Schmidt Theory
The study of linear integral equations of the Fred-
holm type with symmetric kernels

K(x; t)�K(t; x):
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Hill Determinant
A DETERMINANT which arises in the solution of the
second-order ORDINARY DIFFERENTIAL EQUATION

x2 d2c

dx2
�x

dc

dx
� 1

4 h2x2�1
2 h2�b�

h2

4x2

 !
c�0: (1)

Writing the solution as a POWER SERIES

c�
X�

n���

anxs�2n (2)

gives a RECURRENCE RELATION

h2an�1�[2h2�4b�16(n�1
2 s)2]an�h2an�1�0: (3)

The value of s can be computed using the Hill
determinant

D(s)�

::: n n n n U

� � � (s�2)�a2

4�a2
b2

4�a2 0 0 � � �
� � � 0 �b2

a2 �s2�a2

a2 �b2

a2 � � �
� � � 0 0 � b2

1�a2
(s�1)2�a2

1�a2 � � �
U n n n n :::

�����������

�����������
(4)

where

s�1
2 s (5)

a2�1
4 b�1

8 h2 (6)

b�1
4 h; (7)

and/s/ is the variable to solve for. The determinant can
be given explicitly by the amazing formula

D(s)�D(0)�
sin2(ps=2)

sin2 1
2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b � 1

2 h2
q� � ; (8)

where



D(0) �

::: n n n n U

� � �  1 h2

144�2h2 �4b 
0 0 � � �

� � � h2

64 �2h2 �4b 
1 h2

64 �2h2 �4b 
0 � � �

� � �  0 h2

16 �2h2 �4b 
1 h2

16 �2h2 �4b
� � �

� � �  0 0 h2

2h2 �4b 
1 � � �

� � �  0 0 0 h2

16 �2h2 �4b

:::
U n n n

����������������

����������������
(9)

leading to the implicit equation for s ,

sin2 1
2 ps
� �

�D(0)sin2 1
2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �1

2 h
2

q� �
: (10)

See also HILL’S DIFFERENTIAL EQUATION
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Hill’s Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

d2y

dx2 
� u0 �2

X�
n �1

un cos(2nx)

" #
y �0 ; (1)

where / un/ are fixed constants. A general solution can
be given by taking the "DETERMINANT" of an infinite
MATRIX.

If only the n �0 term is present, the equation have
solution

y �C1 sin(x
ffiffiffiffiffi
u0

p
) �C2 cos(x

ffiffiffiffiffi
u0

p
) : (2)

If terms /n 51/ are included, the equation becomes the
MATHIEU DIFFERENTIAL EQUATION, which has solu-
tion

y �C1C(a; �1
2 b; x) �C2S a; �1

2 b; x
� �

: (3)

If terms /n 52/ are included, it becomes the WHIT-

TAKER-HILL DIFFERENTIAL EQUATION.

See also HILL DETERMINANT, WHITTAKER-HILL DIF-

FERENTIAL EQUATION
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Hillam’s Theorem
If /f : [a ; b] 0 [a ; b]/ (where [a, b ] denotes the CLOSED

INTERVAL from a to b on the REAL LINE) satisfies a
LIPSCHITZ CONDITION with constant K , i.e., if

½f (x) �f (y) ½5K ½x �y½

for all /x; y � [a; b]/, then the iteration scheme

xn�1 �(1 � l)xn � lf (xn) ;

where /l �1=(K �1)/, converges to a FIXED POINT of f .
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Hindu Check
CASTING OUT NINES

Hinge

The upper and lower hinges are descriptive statistics
of a set of N data values, where N is OF THE FORM /

N �4n �5/ with n �0, 1, 2, .... The hinges are
obtained by ordering the data in increasing order
a1 ; :::; aN ; and writing them out in the shape of a "w"
as illustrated above. The values at the bottom legs are
called the hinges H1 and H2 (and the central peak is
the MEDIAN). In this ordering,

H1�an�2�a(N�3)=4

M�a2n�3�a(N�1)=2

H2�a3n�4�a(3N�1)=4:

For N OF THE FORM /4n�5/, the hinges are identical to
the QUARTILES. The difference H2�H1 is called the H-

SPREAD.

See also H-SPREAD, HABERDASHER’S PROBLEM, MED-

IAN (STATISTICS), ORDER STATISTIC, QUARTILE, TRI-

MEAN
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Hinged Tessellation

A TESSELLATION which can be thought of consisting of
a number of pieces which are hinged at their vertices
and therefore can be opened or closed to yield a series
of tessellations. Examples above are given by Wells
(1991).

See also BRACED SQUARE, TESSELLATION
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Hippias’ Quadratrix
QUADRATRIX OF HIPPIAS

Hippopede

A curve also known as a HORSE FETTER and given by

the polar equation

r2�4b(a�b sin2 u):
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Hi-Q
A triangular version of PEG SOLITAIRE with 15 holes
and 14 pegs. Numbering hole 1 at the apex of the
triangle and thereafter from left to right on the next
lower row, etc., the following table gives possible
ending holes for a single peg removed (Beeler 1972).
Because of symmetry, only the first five pegs need be
considered. Also because of symmetry, removing peg
2 is equivalent to removing peg 3 and flipping the
board horizontally.

remove possible ending pegs

1 1, 7 � 10, 13

2 2, 6, 11, 14

4 3 � 12, 4, 9, 15

5 13
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Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial
Intelligence Laboratory, Memo AIM-239, p. 29, Feb. 1972.

Hirota Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�iau�ib(uxx�2h½u2½u)�cux�d(uxxx�6h½u½2)�0:
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Hirota-Satsuma Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut�
1
2 uxxx�3uux�6wwx

wt��wxxx�3uwx:
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Histogram

The grouping of data into BINS (spaced apart by the
so-called CLASS INTERVAL) plotting the number of
members in each bin versus the bin number. The
above histogram shows the number of variates in bins
with CLASS INTERVAL 1 for a sample of 100 real
variates with a UNIFORM DISTRIBUTION from 0 and
10. Therefore, bin 1 gives the number of variates in
the range 0 �/, bin 2 gives the number of variates in
the range 1 �/, etc.

See also BAR CHART, BIN, CLASS INTERVAL, FRE-

QUENCY DISTRIBUTION, FREQUENCY POLYGON, OGIVE,
PIE CHART, SHEPPARD’S CORRECTION

Kenney, J. F. and Keeping, E. S. "Histograms." §2.4
in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton,
NJ: Van Nostrand, pp. 25 �/6, 1962.

Hitch
A KNOT that secures a rope to a post, ring, another
rope, etc., but does not keep its shape by itself.

See also CLOVE HITCH, KNOT, LINK, LOOP (KNOT)
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Hitting Set
VERTEX COVER

Hjelmslev’s Theorem
When all the points P on one line are related by an
ISOMETRY to all points P? on another, the MIDPOINTS of
the segments /PP ?/ are either distinct and COLLINEAR

or COINCIDENT.

HJLS Algorithm
An algorithm for finding INTEGER RELATIONS whose
running time is bounded by a polynomial in the

number of real variables (Ferguson and Bailey
1992). Unfortunately, it is numerically unstable and
therefore requires extremely high numeric precision.
The cause of this instability is not known, but is
believed to derive from its reliance on GRAM-SCHMIDT

ORTHONORMALIZATION (Ferguson and Bailey 1992),
which is known to be numerically unstable (Golub
and van Loan 1989).

Rössner, C. and Schnorr (1994) have developed a
stable variation of HJLS (Ferguson et al. 1999).

See also FERGUSON-FORCADE ALGORITHM, INTEGER

RELATION, LLL ALGORITHM, PSLQ ALGORITHM,
PSOS ALGORITHM
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HK Integral

A type of integral named after Henstock and Kurz-
weil. Every LEBESGUE INTEGRABLE function is HK
integrable with the same value.
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H-Matrix
HADAMARD MATRIX

Hoax Number
A COMPOSITE NUMBER defined analogously to a SMITH

NUMBER except that the SUM of the number’s DIGITS

equals the sum of the DIGITS of its distinct PRIME

FACTORS (excluding 1). The first few hoax numbers
are 22, 58, 84, 85, 94, 136, 160, 166, 202, 234, ...
(Sloane’s A019506), and the corresponding sums of
digits are 4, 13, 12, 13, 13, 10, 7, 13, 4, 9, 7, ...
(Sloane’s A050223).

See also SMITH NUMBER
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Hodge Conjecture
The Hodge conjecture asserts that, for particularly
nice types of spaces called PROJECTIVE ALGEBRAIC

VARIETIES, the pieces called HODGE CYCLES are
actually rational linear combinations of geometric
pieces called algebraic cycles.

See also HODGE CYCLE, PROJECTIVE ALGEBRAIC

VARIETY
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Hodge Cycle

See also HODGE CONJECTURE

Hodge Diamond

See also HODGE STAR

Hodge Identities
KÄ HLER IDENTITIES

Hodge Star
On an oriented n -D RIEMANNIAN MANIFOLD, the
Hodge star is a linear FUNCTION which converts
alternating DIFFERENTIAL K -FORMS to alternating
(n �k)/-forms. If w is an alternating K -FORM, its
Hodge star is given by

w(v1 ; . . . ; vk) �( �w)(vk �1 ; . . .  ; vn)

when v1 ; ..., vn is an oriented orthonormal basis.

See also HODGE DIAMOND, STOKES’ THEOREM

Hodge’s Theorem
On a COMPACT oriented FINSLER MANIFOLD without
boundary, every COHOMOLOGY class has a UNIQUE

harmonic representation. The DIMENSION of the
SPACE of all harmonic forms of degree p is the pth
BETTI NUMBER of the MANIFOLD.

See also BETTI NUMBER, COHOMOLOGY, DIMENSION,
FINSLER MANIFOLD
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Hoehn’s Theorem

A geometric theorem related to the PENTAGRAM and
also called the PRATT-KASAPI THEOREM.

½V1W1 ½

½W2V3 ½

½V2W2 ½

½W3V4 ½

½V3W3 ½

½W4V5 ½

½V4W4 ½

½W5V1 ½

½V5W5 ½

½W1V2 ½
�1

½V1W2 ½

½W1V3 ½

½V2W3 ½

½W2V4 ½

½V3W4 ½

½W3V5 ½

½V4W5 ½

½W4V1 ½

½V5W1 ½

½W5V2 ½
�1:

In general, it is also true that

ViWij j
Wi�1Vi�2

�� ��� ViVi�1Vi �4

�� ��
ViVi�1Vi�2Vi�4

�� �� ViVi �1Vi�2Vi �3

�� ��
Vi�2Vi �3Vi�1

�� �� :

This type of identity was generalized to other figures
in the plane and their duals by Pinkernell (1996).

See also CEVA’S THEOREM, MENELAUS’ THEOREM
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Hoffman’s Minimal Surface
A MINIMAL EMBEDDED SURFACE discovered in 1992
consisting of a HELICOID with a HOLE and HANDLE

(Science News 1992). It has the same topology as a
PUNCTURED sphere with a handle, and is only the
second complete embedded minimal surface of finite
topology and infinite total curvature discovered (the
HELICOID being the first).

A three-ended MINIMAL SURFACE of GENUS 1 is some-
times also called Hoffman’s minimal surface (Peter-
son 1988).

See also HELICOID, MINIMAL SURFACE
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Hoffman-Singleton Graph

The only REGULAR GRAPH of VERTEX DEGREE 7,
DIAMETER 2, and GIRTH 5. It is the unique (7; 5)/-
MOORE GRAPH (and is therefore also a (7,5)-CAGE

GRAPH), and contains many copies of the PETERSEN

GRAPH. It can be constructed from the 10 5-cycles
illustrated above, with vertex i of Pj joined to vertex
i �jk (mod 5) of Qk (Robertson 1969; Bondy and
Murty 1976, p. 239; Wong 1982). (Note the correction
of Wong’s j �jk to i �jk :/)

Other constructions are given by (Benson and Losey
1971; Biggs 1993, p. 163), and a RADIAL EMBEDDING is
illustrated above.

See also CAGE GRAPH, HOFFMAN-SINGLETON THEO-

REM, MOORE GRAPH, PETERSEN GRAPH
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Hoffman-Singleton Theorem
Let G be a k -regular graph with GIRTH 5 and GRAPH

DIAMETER 2. (Such a graph is a MOORE GRAPH). Then,
k � 2, 3, 7, or 57. A proof of this theorem is difficult
(Hoffman and Singleton 1960, Feit and Higman 1964,
Damerell 1973, Bannai and Ito 1973), but can be
found in Biggs (1993).

See also HOFFMAN-SINGLETON GRAPH, MOORE GRAPH
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Hofstadter Figure-Figure Sequence
Define F(1)�1 and S(1)�2 and write

F(n)�F(n�1)�S(n�1);

where the sequence S(n)f g consists of those integers
not already contained in F(n)f g: For example, F(2)�
F(1)�S(1)�3; so the next term of S(n) is S(2)�4;
giving F(3)�F(2)�S(2)�7: The next integer is 5, so
S(3)�5 and F(4)�F(3)�S(3)�12: Continuing in
this manner gives the "figure" sequence F(n) as 1, 3,
7, 12, 18, 26, 35, 45, 56, ... (Sloane’s A005228) and the
"space" sequence as 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, ...
(Sloane’s A030124).
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Hofstadter G-Sequence
The sequence defined by G(0)�0 and

G(n)�n�G(G(n�1)):

The first few terms are 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8,
9, 9, ... (Sloane’s A005206).
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Hofstadter H-Sequence
The sequence defined by H(0) �0 and

H(n) �n �H(H(H(n �1))):

The first few terms are 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9,
10, 10, 11, 12, 13, 13, 14, ... (Sloane’s A005374).
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Hofstadter Male-Female Sequences
The pair of sequences defined by F(0) �1 ; M(0) �0;
and

F(n) �n �M(F(n �1))

M(n) �n �F(M(n �1)):

The first few terms of the "male" sequence M(n) are 0,
1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, ... (Sloane’s
A005379), and the first few terms of the "female"
sequence F(n) are 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9,
... (Sloane’s A005378).
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Hofstadter Point
The r -HOFSTADTER TRIANGLE of a given TRIANGLE

DABC is perspective to DABC; and the PERSPECTIVE

CENTER is called the Hofstadter point. The TRIANGLE

CENTER FUNCTION is

a �
sin(rA)

sin(r � rA) 
:

As r 0 0; the TRIANGLE CENTER FUNCTION approaches

a �
A

a
;

and as r 0 1 ; the TRIANGLE CENTER FUNCTION ap-
proaches

a �
a

A 
:

See also HOFSTADTER TRIANGLE
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Hofstadter Sequences
Let b1 �1 and b2 �2 and for n ]3; let /bn/ be the least
INTEGER > bn�1 which can be expressed as the SUM of
two or more consecutive terms. The resulting se-
quence is 1, 2, 3, 5, 6, 8, 10, 11, 14, 16, ... (Sloane’s
A005243). Let c1 �2 and c2 �3; form all possible
expressions OF THE FORM cicj �1 for 1 5i Bj 5n;
and append them. The resulting sequence is 2, 3, 5,
9, 14, 17, 26, 27, ... (Sloane’s A005244).

See also HOFSTADTER-CONWAY $10,000 SEQUENCE,
HOFSTADTER’S Q -SEQUENCE, SUM-FREE SET
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Hofstadter Triangle
For a NONZERO REAL NUMBER r and a TRIANGLE

DABC ; swing LINE SEGMENT BC about the vertex B
towards vertex A through an ANGLE rB . Call the line
along the rotated segment L . Construct a second line
L? by rotating LINE SEGMENT BC about vertex C
through an ANGLE rC . Now denote the point of
intersection of L and L ? by A(r): Similarly, construct
B(r) and /C(r)/. The TRIANGLE having these points as
vertices is called the Hofstadter r -triangle. Kimber-
ling (1994) showed that the Hofstadter triangle is
perspective to DABC; and calls PERSPECTIVE CENTER

the HOFSTADTER POINT.

See also HOFSTADTER POINT
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Hofstadter’s Q-Sequence

The INTEGER SEQUENCE given by

Q(n) �Q(n �Q(n �1)) �Q(n �Q(n �2));

with Q(1) �Q(2) �1: The first few values are 1, 1, 2,
3, 3, 4, 5, 5, 6, 6, ... (Sloane’s A005185; illustrated
above). These numbers are sometimes called Q -

NUMBER.
There are currently no rigorous analyses or detailed
predictions of the rather erratic behavior of Q(n) (Guy
1994). It has, however, been demonstrated that the
chaotic behavior of the Q -numbers shows some signs
of order, namely that they exhibit approximate
PERIOD DOUBLING, SELF-SIMILARITY and SCALING

(Pinn 1998). These properties are shared with the
related sequence

D(n) �D(D(n �1)) �D(n �1 �D(n �2))

with D(1) �D(2) �1; which exhibits exact PERIOD

DOUBLING (Pinn 1998). The chaotic regions of D(n)
are separated by predictable smooth behavior.

See also HOFSTADTER-CONWAY $10,000 SEQUENCE,
MALLOWS’ SEQUENCE, PERIOD DOUBLING
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Hofstadter-Conway $10,000 Sequence
The INTEGER SEQUENCE defined by the RECURRENCE

RELATION

a(n) �a(a(n �1)) �a(n �a(n �1))

with a(1) �a(2) �1: The first few values are 1, 1, 2, 2,
3, 4, 4, 4, 5, 6, ... (Sloane’s A004001). Plotting a(n) =n
against n gives the BATRACHION plotted below. Con-
way (1988) showed that lim n 0�a(n) =n �1=2 and
offered a prize of $10,000 to the discoverer of a value
of n for which a(i) =i �1=2j jB1 =20 for i � n . The prize
was subsequently claimed by Mallows, after adjust-
ment to Conway’s "intended" prize of $1,000 (Schroe-
der 1991), who found n � 1489.

/a(n)=n takes a value of 1/2 for n OF THE FORM 2k with
k�1, 2, .... Pickover (1996) gives a table of analogous
values of n corresponding to different values of
a(n)=n�1=2j jB e:/

See also BLANCMANGE FUNCTION, HOFSTADTER’S Q -

SEQUENCE, MALLOWS’ SEQUENCE
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Hölder Condition
A function f(t) satisfies the Hölder condition on two
points t1 and t2 on an arc L when

f(t2) � f(t1)j j5A t2 �t1j jm;

with A and m POSITIVE REAL constants.

See also LIPSCHITZ CONDITION

Hölder Integral Inequality
If

C(r)

with p , q � 1, then

t1

with equality when

t2

If f(t2) � f(t1)j j5A t2 �t1j jm; this inequality becomes
SCHWARZ’S INEQUALITY.
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Hölder Sum Inequality
If

C(r)

with p , q � 1, then

1

p 
�

1

q 
�1

with equality when q > 1: If f(t2) � f(t1)j j5
A t2 �t1j jm; this becomes CAUCHY’S INEQUALITY.
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Hölder’s Inequalities
Let

1

p 
�

1

q 
�1 (1)

with p , q � 1. Then Hölder’s inequality for integrals
states that

g
b

a

f (x)g(x)j j dx

5 g
b

a

f (x)j jp dx

" #1 =p

g
b

a

g(x)j jq dx

" #1 =q

; (2)

with equality when

g(x)j j�c f (x)j jp�1:

If p�q�2; this inequality becomes SCHWARZ’S IN-

EQUALITY.

Similarly, Hölder’s inequality for sums states that

Xn

k�1

akbkj j5
Xn

k�1

akj jp
 !1=p Xn

k�1

bkj jq
 !1=q

; (3)

with equality when bkj j�c akj jp�1: If p�q�2; this
becomes CAUCHY’S INEQUALITY.

See also CAUCHY’S INEQUALITY, SCHWARZ’S INEQUAL-

ITY
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Holditch’s Theorem

Let a CHORD of constant length be slid around a
smooth, closed, convex curve C , and choose a point on
the CHORD which divides it into segments of lengths p
and q . This point will trace out a new closed curve C ?;
as illustrated above. Provided certain conditions are
met, the area between C and C ? is given by ppq; as
first shown by Holditch in 1858.
The Holditch curve for a CIRCLE of RADIUS R is
another CIRCLE which, from the theorem, has RADIUS

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �pq :

p
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Hole
A hole in a mathematical object is a TOPOLOGICAL

structure which prevents the object from being con-
tinuously shrunk to a point. When dealing with
TOPOLOGICAL SPACES, a DISCONNECTIVITY is inter-
preted as a hole in the space. Examples of holes are
things like the "donut hole" in the center of the
TORUS, a domain removed from a plane, and the

portion missing from EUCLIDEAN SPACE after cutting
a KNOT out from it.

Singular HOMOLOGY GROUPS form a MEASURE of the
hole structure of a SPACE, but they are one particular
measure and they don’t always detect all holes.
HOMOTOPY GROUPS of a SPACE are another measure
of holes in a SPACE, as well as BORDISM GROUPS, K -

THEORY, COHOMOTOPY GROUPS, and so on.

There are many ways to measure holes in a space.
Some holes are picked up by HOMOTOPY GROUPS that
are not detected by HOMOLOGY GROUPS, and some
holes are detected by HOMOLOGY GROUPS that are not
picked up by HOMOTOPY GROUPS. (For example, in the
TORUS, HOMOTOPY GROUPS "miss" the two-dimen-
sional hole that is given by the TORUS itself, but the
second HOMOLOGY GROUP picks that hole up.) In
addition, HOMOLOGY GROUPS don’t detect the varying
hole structures of the complement of KNOTS in 3-
space, but the first HOMOTOPY GROUP (the funda-
mental group) does.

See also BRANCH CUT, BRANCH POINT, CORK PLUG,
CROSS-CAP, GENUS (SURFACE), PEG, PRINCE RUPERT’S

CUBE, SINGULAR POINT (FUNCTION), SPHERICAL RING,
TORUS

Holographic Projection
EQUAL-AREA PROJECTION

Holography
The mathematical study of a nonlinear equation
f (8 ) �y; where f maps from a HILBERT SPACE X to a
HILBERT SPACE Y and y � Y which abstracts the
construction of optical holograms.
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Holomorphic Function
A synonym for ANALYTIC FUNCTION, regular function,
differentiable function, complex differentiable func-
tion, and holomorphic map (Krantz 1999, p. 16). The
word derives from the Greek olo& (holos ), meaning
"whole," and mor8  h (morphe ), meaning "form" or
"appearance."

Many mathematicians prefer the term "holomorphic
function" (or "holomorphic map") to "analytic func-
tion" (Krantz 1999, p. 16), while "analytic" appears to
be in widespread use among physicists, engineers,
and in some older texts (Morse and Feshbach 1953,
pp. 356�/74; Knopp 1996, pp. 83�/11; Whittaker and
Watson 1990, p. 83).

See also ANALYTIC FUNCTION, COMPLEX DIFFERENTI-

ABLE, HOLONOMIC FUNCTION, HOMEOMORPHIC, MER-

OMORPHIC FUNCTION
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Holomorphic Line Bundle
A COMPLEX LINE BUNDLE is a VECTOR BUNDLE p : E 0
M whose FIBERS p�1(m) are a copy of C : p is a
holomorphic line bundle if it is a HOLOMORPHIC MAP

between COMPLEX MANIFOLDS and its TRANSITION

FUNCTIONS are HOLOMORPHIC.

On a compact RIEMANN SURFACE, a DIVISOR anipi

determines a LINE BUNDLE. For example, consider
2p �q on X . Around p there is a COORDINATE CHART

U given by the HOLOMORPHIC FUNCTION zp with
zp(p) �0: Similarly, zq is a HOLOMORPHIC FUNCTION

defining a disjoint chart V around q with zq(q) �0:
Then letting W �X �fp ; q g; the RIEMANN SURFACE is
covered by X �U @ V @ W : The LINE BUNDLE corre-
sponding to 2p �q is then defined by the following
TRANSITION FUNCTIONS,

gUW(x) �zp(x)2 defined for x � U S W

gVW(x) �zq(x) �1 defined for x � V S W :

See also CHERN CLASS, HERMITIAN METRIC, HOLO-

MORPHIC FUNCTION, HOLOMORPHIC TANGENT BUN-

DLE, HOLOMORPHIC VECTOR BUNDLE, LINE BUNDLE,
RIEMANN-ROCH THEOREM, RIEMANN SURFACE, VEC-

TOR BUNDLE

Holomorphic Map
HOLOMORPHIC FUNCTION

Holomorphic Tangent Bundle
The holomorphic tangent bundle to a COMPLEX MANI-

FOLD is given by its complexified tangent vectors
which are of type (1; 0): In a CHART z �(z1 ; . . . ; zn);
the bundle is spanned by the local SECTIONS @=@zk :
The antiholomorphic sections are spanned by @=@z̄k ;
of type (0; 1); where z̄ denotes the COMPLEX CON-

JUGATE.

See also COMPLEX STRUCTURE, CR-STRUCTURE, HER-

MITIAN METRIC, HOLOMORPHIC LINE BUNDLE, HOLO-

MORPHIC VECTOR BUNDLE, TANGENT BUNDLE

Holomorphic Vector Bundle
A COMPLEX VECTOR BUNDLE is a VECTOR BUNDLE p :
E 0 M whose FIBERS p�1(m) are a copy of Ck : p is a
holomorphic vector bundle if it is a HOLOMORPHIC MAP

between COMPLEX MANIFOLDS and its TRANSITION

FUNCTIONS are HOLOMORPHIC. The simplest example
is a HOLOMORPHIC LINE BUNDLE, where the fiber is
simply a copy of C:/

See also COMPLEX MANIFOLD, HERMITIAN METRIC,
HOLOMORPHIC FUNCTION, HOLOMORPHIC LINE BUN-

DLE, HOLOMORPHIC TANGENT BUNDLE, VECTOR BUN-

DLE

Holonomic Constant
A limiting value of a HOLONOMIC FUNCTION near a
SINGULAR POINT. Holonomic constants include
APÉ RY’S CONSTANT, CATALAN’S CONSTANT, PÓ LYA’S

RANDOM WALK CONSTANTS for d �2, and PI.

Holonomic Function
A solution of a linear homogeneous ORDINARY DIFFER-

ENTIAL EQUATION with POLYNOMIAL COEFFICIENTS.

See also HOLOMORPHIC FUNCTION, HOLONOMIC CON-

STANT
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Holonomy
A general concept in CATEGORY THEORY involving the
globalization of topological or differential structures.
The term derives from the Greek olo& (holos ) "whole"
and nomo& (nomos ) "law, rule."

See also HOLONOMY GROUP, MONODROMY



Holonomy Group

On a RIEMANNIAN MANIFOLD M , tangent vectors can
be moved along a path by PARALLEL TRANSPORT,
which preserves VECTOR ADDITION and SCALAR MULTI-

PLICATION. So a closed loop at a base point p , gives
rise to a INVERTIBLE LINEAR MAP of TMp ; the tangent
vectors at p . It is possible to compose closed loops by
following one after the other, and to invert them by
going backwards. Hence, the set of linear transforma-
tions arising from PARALLEL TRANSPORT along closed
loops is a GROUP, called the holonomy group.

Since PARALLEL TRANSPORT preserves the RIEMAN-

NIAN METRIC, the holonomy group is contained in the
ORTHOGONAL GROUP O(n) : Moreover, if the manifold
is ORIENTABLE, then it is contained in the SPECIAL

ORTHOGONAL GROUP. A generic RIEMANNIAN METRIC

on an ORIENTABLE MANIFOLD has holonomy group
SO(n) ; but for some special metrics it can be a
subgroup, in which case the manifold is said to have
special holonomy.

A KÄ HLER MANIFOLD is a 2n/-dimensional MANIFOLD

whose holonomy lies in the UNITARY GROUP U(n) ƒ
O(2n) : A CALABI-YAU MANIFOLD is a SIMPLY CON-

NECTED 2n/-dimensional manifold with holonomy in
the SPECIAL UNITARY GROUP. A 4n/-dimensional mani-
fold with holonomy group Sp(n) ; the QUATERNIONIC

UNITARY GROUP, is called a HYPER-KÄ HLER MANIFOLD,
and one with holonomy Sp(n)Sp(1) is called a QUA-

TERNION KÄ HLER MANIFOLD. The possible groups that
can arise as a holonomy group of the metric compa-
tible LEVI-CIVITA CONNECTION were classified by
Berger. The other possibilities for a nonproduct,
nonsymmetric MANIFOLD are the LIE GROUPS G2 ;

Spin(7) ; and Spin(9) :/

On a FLAT MANIFOLD, two homotopic loops give the
same linear transformation. Consequently, the hol-
onomy group is a REPRESENTATION of the FUNDAMEN-

TAL GROUP of M . In general though, the CURVATURE of
M changes the PARALLEL TRANSPORT between homo-
topic loops. In fact, there is a formula for the
difference as an integral of the curvature.

See also CALABI-YAU MANIFOLD, CONNECTION (PRIN-

CIPAL BUNDLE), CONNECTION (VECTOR BUNDLE),
CURVATURE FORM, HOMOGENEOUS SPACE, KÄ HLER

MANIFOLD, PARALLEL TRANSPORT, QUATERNION,

REPRESENTATION, TANGENT BUNDLE
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Holyhedron
A polyhedron whose faces and holes are all finite-
sided polygons and which contains at least one hole
whose boundary shares no point with a face bound-
ary. D. Wilson coined the term in 1997, although no
actual holyhedron was known until 1999, when a
holyhedron of GENUS approximately 54,000,000 was
(apparently) constructed (Vinson 2000). J. H. Con-
way believes the construction to be correct, although
he believes that the minimal GENUS should be closer
to 100.

See also POLYHEDRON
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Homalographic Projection
EQUAL-AREA PROJECTION

Home Plate

Home plate in the game of BASEBALL is an irregular
PENTAGON. However, the Little League rulebook’s
specification of the shape of home plate (Kreutzer
and Kerley 1990), illustrated above, is not physically
realizable, since it requires the existence of a (12, 12,
17) RIGHT TRIANGLE, whereas

122 �122 �288 "289 �172

(Bradley 1996).

See also BASEBALL, BASEBALL COVER
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Home Prime
The prime HP(n) reached starting from a number n ,
concatenating its prime factors, and repeating until a
prime is reached. For example, for n � 9,

9 �3 �3 0 33 �3 �11 0 311;

so 311 is the home prime of 9. For n �2, 3, ..., the first
few are 2, 3, 211, 5, 23, 7, 3331113965338635107, 311,
773, ... (Sloane’s A037274). Probabilistic arguments
give exactly zero for the chance that the sequence of
integers starting at a given number n contains no
prime (J. H. Conway, Sloane), so a home prime
should exist for every positive integer.

Since prime numbers have trivial home primes
(themselves), we can restrict attention to composite
numbers. The number of steps to arrive at a home
prime for composite numbers 4, 6, 8, 9, ... are 1, 13, 2,
4, 1, 5, 4, 4, 1, 15, 1, ... (Sloane’s A037271), and the
primes they reach are 211, 23,
3331113965338635107, 311, 773, 223, ... (Sloane’s
A037272). The largest home prime for n B100 is
HP(49) �HP(77); although its value is not known.
After 55 steps, the sequence reaches 3 �73 �C105;
where C105 is the 105-digit composite number. This
number was factored by P. Leyland in November
1999, and subsequently reached a number C137 in
December 1999. In June 2000, Leyland factored this
number as well, and proceeded a few steps to obtain a
C131; which has not yet been factored. The next
largest HP(n) for n B100 is

HP(80) �313; 169; 138; 727; 147; 145; 210; 044;

974; 146; 858; 220; 729; 781; 791; 489:

There are about 50 unknown HP(n) with 100 Bn B
1000 (Hoey).
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Homeoid
A shell bounded by two similar ELLIPSOIDS having a
constant ratio of axes. Given a CHORD passing
through a homeoid, the distance between inner and
outer intersections is equal on both sides. Since a
spherical shell is a symmetric case of a homeoid, this
theorem is also true for spherical shells (CONCENTRIC

CIRCLES in the PLANE), for which it is easily proved by
symmetry arguments.

See also CHORD, ELLIPSOID

Homeomorphic
There are two possible definitions:

1. Possessing similarity of form,
2. Continuous, ONE-TO-ONE, ONTO, and having a
continuous inverse.

The most common meaning is possessing intrinsic
topological equivalence. Two objects are homeo-
morphic if they can be deformed into each other by
a continuous, invertible mapping. Such a HOMEO-

MORPHISM ignores the space in which surfaces are
embedded, so the deformation can be completed in a
higher dimensional space than the surface was
originally embedded. MIRROR IMAGES are homeo-
morphic, as are MÖ BIUS STRIP with an EVEN number
of half-twists, and MÖ BIUS STRIP with an ODD number
of half-twists.

In CATEGORY THEORY terms, homeomorphisms are
ISOMORPHISMS in the CATEGORY of TOPOLOGICAL

SPACES and CONTINUOUS MAPS.

See also HOMEOMORPHIC, HOMOMORPHIC, ISOGENY,
POLISH SPACE
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Homeomorphic Type
The following three pieces of information completely
determine the homeomorphic type of a surface (Mas-
sey 1967):

1. Orientability,
2. Number of boundary components,
3. EULER CHARACTERISTIC.

See also ALGEBRAIC TOPOLOGY, EULER CHARACTER-

ISTIC
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Homeomorphically Irreducible Tree
SERIES-REDUCED TREE

Homeomorphism
An EQUIVALENCE RELATION and one-to-one correspon-
dence between points in two geometric figures or
topological spaces which is continuous in both direc-
tions, also called a continuous transformation. A
homeomorphism which also preserves distances is
called an ISOMETRY. AFFINE TRANSFORMATIONS are
another type of common geometric homeomorphism.



The similarity in meaning and form of the words
"HOMOMORPHISM" and "homeomorphism" is unfortu-
nate and a common source of confusion.

See also AFFINE TRANSFORMATION, HOMEOMORPHIC,
HOMEOMORPHIC TYPE, HOMOMORPHISM, ISOMETRY,
TOPOLOGICALLY CONJUGATE
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Homeomorphism Group
The homeomorphism group of a TOPOLOGICAL SPACE

X is the set of all HOMEOMORPHISMS f : X 0 X ; which
forms a GROUP by composition.

See also GROUP, INFINITE GROUP, TOPOLOGICAL

SPACE

HOMFLY Polynomial
A 2-variable oriented KNOT POLYNOMIAL PL(a; z)
motivated by the JONES POLYNOMIAL (Freyd et al.
1985). Its name is an acronym for the last names of its
co-discoverers: Hoste, Ocneanu, Millett, Freyd, Lick-
orish, and Yetter (Freyd et al. 1985). Independent
work related to the HOMFLY polynomial was also
carried out by Prztycki and Traczyk (1987). HOMFLY
polynomial is defined by the SKEIN RELATIONSHIP

a �1PL �(a ; z) �aPL�(a; z) �zPL0
(a; z) (1)

(Doll and Hoste 1991), where v is sometimes written
instead of a (Kanenobu and Sumi 1993) or, with a
slightly different relationship, as

aPL�(a; z) � a�1PL�
( a; z) �zPL0

( a; z) (2)

(Kauffman 1991). It is also defined as PL(l; m) in
terms of SKEIN RELATIONSHIP

lPL��l�1PL ��mPL0
�0 (3)

(Lickorish and Millett 1988). It can be regarded as a
nonhomogeneous POLYNOMIAL in two variables or a
homogeneous POLYNOMIAL in three variables. In
three variables the SKEIN RELATIONSHIP is written

xPL�(x; y; z) �yPL�(x; y; z) �zPL0
(x; y; z) �0 : (4)

It is normalized so that Punknot �1: Also, for n
unlinked unknotted components,

PL(x; y; z) � �
x � y

z

 !n �1

: (5)

This POLYNOMIAL usually detects CHIRALITY but does

not detect the distinct ENANTIOMERS of the KNOTS 09 �/

42, 10 �/48, 10 �/71, 10 �/91, 10 �/04, and 10 �/25 (Jones 1987).
The HOMFLY polynomial of an oriented KNOT is the
same if the orientation is reversed. It is a general-
ization of the JONES POLYNOMIAL V(t) ; satisfying

V(t) �P(a �t; z �t1 =2 �t�1=2) (6)

V(t) �P(l �it�1 ; m �i(t�1 =2 �t1 =2)): (7)

It is also a generalization of the ALEXANDER POLY-

NOMIAL 9(z) ; satisfying

9(z) �P(a �1 ; z �t1=2 �t�1 =2) : (8)

The HOMFLY POLYNOMIAL of the MIRROR IMAGE K �
of a KNOT K is given by

PK �(l; m) �PK (l
�1 ; m) ; (9)

so P usually but not always detects CHIRALITY.

A split union of two links (i.e., bringing two links
together without intertwining them) has HOMFLY
polynomial

P(L1 @ L2) ��(l �l�1)m�1P(L1)P(L2) : (10)

Also, the composition of two links

P(L1#L2) �P(L1)P(L2) ; (11)

so the POLYNOMIAL of a COMPOSITE KNOT factors into
POLYNOMIALS of its constituent knots (Adams 1994).

MUTANTS have the same HOMFLY polynomials. In
fact, there are infinitely many distinct KNOTS with the
same HOMFLY POLYNOMIAL (Kanenobu 1986). Ex-
amples include (05�/01, 10�/32), (08�/08, 10�/29) (08�/16, 10�/

56), and (10�/25, 10�/56) (Jones 1987). Incidentally, these
also have the same JONES POLYNOMIAL.

M. B. Thistlethwaite has tabulated the HOMFLY
polynomial for KNOTS up to 13 crossings.

See also ALEXANDER POLYNOMIAL, JONES POLYNO-

MIAL, KNOT POLYNOMIAL
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Homoclinic Point
A point where a stable and an unstable SEPARATRIX

(invariant MANIFOLD) from the same fixed point or
same family intersect. Therefore, the limits

lim
k0�

f k(X)

and

lim
k 0��

f k(X)

exist and are equal.

Refer to the above figure. Let X be the point of
intersection, with X ? ahead of X on one MANIFOLD and
X ƒ ahead of X of the other. The mapping of each of
these points TX ? and TX ƒ must be ahead of the
mapping of X , TX . The only way this can happen is if
the MANIFOLD loops back and crosses itself at a new
homoclinic point. Another loop must be formed, with
T2X another homoclinic point. Since T2X is closer to
the hyperbolic point than TX , the distance between
T2X and TX is less than that between X and TX .
Area preservation requires the AREA to remain the
same, so each new curve (which is closer than the
previous one) must extend further. In effect, the loops
become longer and thinner. The network of curves
leading to a dense AREA of homoclinic points is known
as a homoclinic tangle or tendril. Homoclinic points
appear where CHAOTIC regions touch in a hyperbolic
FIXED POINT.

A small DISK centered near a homoclinic point
includes infinitely many periodic points of different
periods. Poincaré showed that if there is a single
homoclinic point, there are an infinite number. More
specifically, there are infinitely many homoclinic
points in each small disk (Nusse and Yorke 1996).

See also HETEROCLINIC POINT, MANIFOLD, SEPARA-

TRIX
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Homogeneous Barycentric Coordinates
AREAL COORDINATES

Homogeneous Cartesian Coordinates
HOMOGENEOUS COORDINATES

Homogeneous Coordinates
Homogeneous coordinates (x1; x2; x3) of a finite point
(x, y ) in the plane are any three numbers for which

x1

x3

�x (1)

x2

x3

�y: (2)

Coordinates /(x1; x2; 0) for which

x2

x3

�l (3)

describe the POINT AT INFINITY in the direction of
slope l:/

In homogeneous coordinates, the equation of a LINE

a1x�a2y�a3�0 (4)

is given by

a1x1�a2x2�a3x3�0: (5)

Two points expressed using homogeneous coordinates
(a1; a2; a3) and (b1; b2; b3) are identical IFF

a2 a3

b2 b3

����
�����a3 a1

b3 b1

����
�����a1 a2

b1 b2

����
�����0: (6)

Two lines expressed using homogeneous coordinates

a1x1�a2x2�a3x3�0 (7)

b1x1�b2x2�b3x3�0 (8)

are identical IFF

a2 a3

b2 b3

����
�����a3 a1

b3 b1

����
�����a1 a2

b1 b2

����
�����0: (9)

The intersection of the two lines above is given by

x1�
a2 a3

b2 b3

����
���� (10)

x2�
a3 a1

b3 b1

����
���� (11)



x3 � 
a1 a2

b1 b2

����
����: (12)

See also TRILINEAR COORDINATES
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Homogeneous Function
A function which satisfies

f (tx; ty) �tnf (x; y)

for a fixed n . MEANS, the WEIERSTRASS ELLIPTIC

FUNCTION, and TRIANGLE CENTER FUNCTIONS are
homogeneous functions. A transformation of the
variables of a TENSOR changes the TENSOR into
another whose components are linear homogeneous
functions of the components of the original TENSOR.

See also EULER’S HOMOGENEOUS FUNCTION THEOREM

Homogeneous Ideal
A homogeneous ideal I in a GRADED RING R ��Ai is
an IDEAL generated by a set of homogeneous ele-
ments, i.e., each one is contained in only one of the Ai :
For example, the POLYNOMIAL RING C[x] ��Ai is a
GRADED RING, where Ai �faxi g: The IDEAL I ��x2 	;
i.e., all polynomials with no constant or linear terms,
is a homogeneous ideal in C[x]: Another homogeneous
ideal is I ��x2 �y2 �z2 ; xy �yz �zx ; z5 	 in C[x; y; z]:/

Given any finite set of polynomials in n variables, the
process of homogenization converts them to homo-
geneous polynomials in n �1 variables. If f �
f (x1 ; . . . ; xn) is a polynomial of degree d then

f h(x0 ; x1 ; . . . ; xn) �xd
0f (x1 =x0 ; . . . ; xn =x0)

is the homogenization of f . Similarly, if I is an IDEAL

in C x1 ; . . . ; xn½ �; then Ih � f h
� ��f � I g is its homogeni-

zation and is a homogeneous ideal. For example, if
f �x3

1 �2x1x2 �3 then f h �x3
1 �2x0x1x2 �3x3

0 : Note
that in general, if I ��f1 ; . . .  ; fk 	 then Ih may have
more elements than �f h

1 ; . . . ; f h
k 	: However, if f1 ; ..., fk

form a GRÖ BNER BASIS using a graded monomial
order, then Ih ��f h

1 ; . . .  ; f h
k 	: A polynomial is easily

dehomogenized by setting the extra variable x0 �1 :/

Here is a Mathematica function which takes a
polynomial, in variables vars , and homogenizes it
with the variable x0 .

(*dg finds the degree of the polynomial f*)

dg[f_?PolynomialQ, {vars_?AtomQ}] : �
Exponent[f, vars];

dg[f_?PolynomialQ, vars_?ListQ] : �

Max[MapIndexed[(dg[#1, Rest[vars]] � #2 - 1

&), CoefficientList[f, First[vars]]]]; (*uses

dg � degree of polynomial above*)

Homogenize[f_?PolynomialQ, vars_?ListQ,

x0_?AtomQ] : �
Expand[x0 ^ dg[f, vars] f /. Map[(#1 - � #1/

x0 &), vars]]

Here is a Mathematica function which dehomo-
genizes a polynomial in the variable x0 .

Dehomogenize[f_?PolynomialQ, x0_?AtomQ] : � f

/. x0 - � 1

The AFFINE VARIETY V corresponding to a homoge-
neous ideal has the property that x � V IFF cx � V for
all COMPLEX c . Therefore, a homogeneous ideal
defines an ALGEBRAIC VARIETY in COMPLEX PROJEC-

TIVE SPACE.

See also ALGEBRAIC VARIETY, CATEGORY THEORY,
COMMUTATIVE ALGEBRA, CONIC SECTION, IDEAL,
PRIME IDEAL, PROJECTIVE VARIETY, SCHEME, ZARISKI

TOPOLOGY
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Homogeneous Numbers
Two numbers are homogeneous if they have identical
PRIME FACTORS. An example of a homogeneous pair is
(6, 72), both of which share PRIME FACTORS 2 and 3:

6 �2 � 3

72 �23 � 32 :

See also HETEROGENEOUS NUMBERS, PRIME FACTORS,
PRIME NUMBER
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Homogeneous Polynomial
A multivariate polynomial (i.e., a POLYNOMIAL in
more than one variable) with all terms having the
same degree. For example, x3 �xyz �y2z �z3 is a
homogeneous polynomial of degree three. SYMMETRIC

POLYNOMIALS are always homogeneous.

See also FORM (POLYNOMIAL), POLYNOMIAL, SYM-

METRIC POLYNOMIAL

Homogeneous Space
A homogeneous space M is a SPACE with a TRANSITIVE

GROUP ACTION by a LIE GROUP. Because a TRANSITIVE

GROUP ACTION implies that there is only one ORBIT, M
is ISOMORPHIC to the QUOTIENT SPACE G=H where H



is the ISOTROPY GROUP Gx : The choice of x � M does not
affect the isomorphism type of G=Gx because all of the
ISOTROPY GROUPS are CONJUGATE.

Many common spaces are homogeneous spaces, such
as the HYPERSPHERE,

Sn 
O(n �1)=O(n) ; (1)

and the COMPLEX PROJECTIVE SPACE

C’n 
U(n �1)=U(n) �U(1) : (2)

The real GRASSMANNIAN of k -dimensional SUBSPACES

in Rn�k is

O(n �k)=O(n) �O(k) : (3)

The projection p : G 0 G=H makes G a PRINCIPAL

BUNDLE on G =H with FIBER H . For example, p :
SO(3) 0 SO(3)=SO(2) 
S2 is a SO(2) BUNDLE, i.e., a
CIRCLE BUNDLE, on the sphere. The SUBGROUP

SO(2) �
1 0  0
0 cos t �sin t
0 sin t cos t

2
4

3
5 (4)

acts on the right, and does not affect the first column
so p(v1v2v3) �v1 �S2 is WELL DEFINED.

See also EFFECTIVE ACTION, FREE ACTION, GROUP,
ISOTROPY GROUP, MATRIX GROUP, ORBIT (GROUP),
QUOTIENT SPACE (LIE GROUP), REPRESENTATION,
TOPOLOGICAL GROUP, TRANSITIVE
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Homographic
Any two ranges ABC . . .f g and fA?B?C ? . . .g which are
situated on the same or different lines are said to be
homographic when the CROSS-RATIO of any four points
on one range is equal to the CROSS-RATIO of the
corresponding points of the other range.

See also CROSS-RATIO, MÖ BIUS TRANSFORMATION
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Homography
A CIRCLE-preserving transformation composed of an
EVEN number of inversions.

See also ANTIHOMOGRAPHY

Homological Algebra
An abstract ALGEBRA concerned with results valid for
many different kinds of SPACES. MODULES are the
basic tools used in homological algebra.

See also MODULE
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Homological Projection
EQUAL-AREA PROJECTION

Homologous Points
The extremities of PARALLEL RADII of two CIRCLES are
called homologous with respect to the SIMILITUDE

CENTER collinear with them.

See also ANTIHOMOLOGOUS POINTS, INVARIABLE

POINT, SIMILITUDE CENTER
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Homologous Triangles
PERSPECTIVE TRIANGLES

Homolographic Equal-Area Projection
MOLLWEIDE PROJECTION

Homology

Homology is a concept which is used in many
branches of algebra and topology. The basic example
is degree one integral homology for a domain in R2 : In
this case, a HOMOLOGY CLASS is represented by a
finite sum or difference of closed loops. For example,
consider the loops in the twice PUNCTURED plane R2 �
f(0; 0); (1; 0)g; illustrated above.
The equality a � b � g holds in homology because the
difference is the BOUNDARY of a COMPACTLY SUP-

PORTED region. The homology of a space is an
algebraic object which reflects the topology. The
algebraic tools used are called HOMOLOGICAL ALGE-

BRA, and in that language, the homology is a DERIVED

FUNCTOR, the homology of a LONG EXACT SEQUENCE.

See also BOUNDARY (HOMOLOGY), COHOMOLOGY,
DERIVED FUNCTOR, HOMOLOGY CLASS, HOMOLOGY

(GEOMETRY), HOMOLOGY GROUP, INTERSECTION

(HOMOLOGY), POINCARE DUALITY



Homology (Chain)
For every p , the kernel of @P : CP 0 CP�1 is called the
group of cycles,

ZP �fc � CP : @(c) �0g: (1)

The letter Z is short for the German word for cycle,
"Zyklus." The image @(CP�1) is contained in the group
of cycles because @( @�0; and is called the group of
boundaries,

BP �fc � CP : there exists b � CP�1 such that @(b)

�c g: (2)

The quotients HP �ZP =BP are the HOMOLOGY GROUPS

of the chain.

Given a SHORT EXACT SEQUENCE of CHAIN COMPLEXES

0 0 A� 0 B � 0 C � 0 0; (3)

there is a LONG EXACT SEQUENCE in homology.

. . .  0 HP(A) 0 HP(B) 0 HP(C) 0
d

HP�1(A) 0 . . . : (4)

In particular, a cycle a in AP with @a �0; is mapped to
a cycle b in BP : Similarly, a boundary @a ? in AP gets
mapped to a boundary @b? in BP : Consequently, the
map between homologies HP(A) 0 HP(B) is well-
defined. The only map which is not that obvious is
d; called the CONNECTING HOMOMORPHISM, which is
well-defined by the SNAKE LEMMA.

Proofs of this nature are (with a modicum of humor)
referred to as DIAGRAM CHASING.

See also CHAIN COMPLEX, CHAIN EQUIVALENCE,
CHAIN HOMOMORPHISM, CHAIN HOMOTOPY, COCHAIN

COMPLEX, HOMOLOGY, SNAKE LEMMA
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Homology (Geometry)
A PERSPECTIVE COLLINEATION in which the center and
axis are not incident. The term was first used by
Poncelet (Cremona 1960, p. ix).

See also ELATION, HARMONIC HOMOLOGY, PERSPEC-

TIVE COLLINEATION, PERSPECTIVE TRIANGLES
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Homology (Topology)
Historically, the term "homology" was first used in a
topological sense by Poincaré. To him, it meant pretty

much what is now called a COBORDISM, meaning that
a homology was thought of as a relation between
MANIFOLDS mapped into a MANIFOLD. Such MANI-

FOLDS form a homology when they form the boundary
of a higher-dimensional MANIFOLD inside the MANI-

FOLD in question.

To simplify the definition of homology, Poincaré
simplified the spaces he dealt with. He assumed
that all the spaces he dealt with had a triangulation
(i.e., they were "SIMPLICIAL COMPLEXES"). Then in-
stead of talking about general "objects" in these
spaces, he restricted himself to subcomplexes, i.e.,
objects in the space made up only on the simplices in
the TRIANGULATION of the space. Eventually, Poin-
caré’s version of homology was dispensed with and
replaced by the more general SINGULAR HOMOLOGY.
SINGULAR HOMOLOGY is the concept mathematicians
mean when they say "homology."

In modern usage, however, the word homology is used
to mean HOMOLOGY GROUP. For example, if someone
says "X did Y by computing the homology of Z ," they
mean "X did Y by computing the HOMOLOGY GROUPS

of Z ." But sometimes homology is used more loosely
in the context of a "homology in a SPACE," which
corresponds to singular homology groups.

Singular homology groups of a SPACE measure the
extent to which there are finite (compact) boundary-
less GADGETS in that SPACE, such that these GADGETS

are not the boundary of other finite (compact)
GADGETS in that SPACE.

A generalized homology or cohomology theory must
satisfy all of the EILENBERG-STEENROD AXIOMS with
the exception of the DIMENSION AXIOM.

See also COHOMOLOGY, DIMENSION AXIOM, EILEN-

BERG-STEENROD AXIOMS, GADGET, GRADED MODULE,
HOMOLOGICAL ALGEBRA, HOMOLOGY GROUP, SIMPLI-

CIAL COMPLEX, SIMPLICIAL HOMOLOGY, SINGULAR

HOMOLOGY
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Homology Axis
PERSPECTIVE AXIS

Homology Center
PERSPECTIVE CENTER

Homology Class

A homology class in a singular homology theory is
represented by a finite LINEAR COMBINATION of geo-



metric subobjects with zero boundary. Such a linear
combination is considered to be HOMOLOGOUS to zero
if it is the boundary of something having dimension
one greater. For instance, two points that can be
connected by a path comprise the boundary for that
path, so any two points in a component are homo-
logous and represent the same homology class.

See also COHOMOLOGY, COHOMOLOGY CLASS, HOMOL-

OGY, HOMOLOGY GROUP, INTERSECTION (HOMOLOGY)

Homology Group
The term "homology group" usually means a singular
homology group, which is an ABELIAN GROUP which
partially counts the number of HOLES in a TOPOLOGI-

CAL SPACE. In particular, singular homology groups
form a MEASURE of the HOLE structure of a SPACE, but
they are one particular measure and they don’t
always pick up everything.

In addition, there are "generalized homology groups"
which are not singular homology groups.

See also HOMOLOGY (TOPOLOGY)
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Homomorphic
Related to one another by a HOMOMORPHISM.

Homomorphism
A term used in CATEGORY THEORY to mean a general
MORPHISM. The term derives from the Greek omo
(omo ) "alike" and mor 8  vsi& (morphosis ), "to form" or
"to shape." The similarity in meaning and form of the
words "homomorphism" and "HOMEOMORPHISM" is
unfortunate and a common source of confusion.

If G and H are GROUPS, then a group homomorphism
of G into H is a function f : G 0 H which preserves
the group operation, i.e., for all g1 ; g2 � G;

(g1g2) f �(g1) f(g2) f

(Yale 1988, p. 18).

See also GROUP HOMOMORPHISM, HOMEOMORPHISM,
MORPHISM, RING HOMOMORPHISM

References
Yale, P. B. Geometry and Symmetry. New York: Dover,

1988.

Homomorphism (Ring)

See also RING

Homoscedastic
A set of STATISTICAL DISTRIBUTIONS having the same
VARIANCE.

See also HETEROSCEDASTIC

Homothecy
A SIMILARITY TRANSFORMATION which preserves or-
ientation, also called a homothety.

See also HOMOTHETIC, SIMILARITY TRANSFORMATION
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Homothetic
Two figures are homothetic if they are related by an
EXPANSION or CONTRACTION. This means that they lie
in the same plane and corresponding sides are
PARALLEL; such figures have connectors of corre-
sponding points which are CONCURRENT at a point
known as the HOMOTHETIC CENTER. The HOMOTHETIC

CENTER divides each connector in the same ratio k ,
known as the SIMILITUDE RATIO. For figures which are
similar but do not have PARALLEL sides, a SIMILITUDE

CENTER exists.

See also CONTRACTION (GEOMETRY), DIRECTLY SIMI-

LAR, EXPANSION, HOMOTHECY, HOMOTHETIC CENTER,
INVERSELY SIMILAR, PANTOGRAPH, PERSPECTIVE, SI-

MILAR, SIMILITUDE RATIO
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Homothetic Center

The meeting point of lines that connect corresponding
points from HOMOTHETIC figures. In the above figure,
O is the homothetic center of the HOMOTHETIC figures
ABCDE and A?B?C ?D?E ?: For figures which are
similar but do not have PARALLEL sides, a SIMILITUDE

CENTER exists (Johnson 1929, pp. 16 �/0).

Given two nonconcentric CIRCLES, draw RADII PARAL-

LEL and in the same direction. Then the line joining
the extremities of the RADII passes through a fixed
point on the line of centers which divides that line
externally in the ratio of RADII. This point is called the
external homothetic center, or external center of
similitude (Johnson 1929, pp. 19 �/0 and 41).
If RADII are drawn PARALLEL but instead in opposite
directions, the extremities of the RADII pass through a
fixed point on the line of centers which divides that
line internally in the ratio of RADII (Johnson 1929,
pp. 19 �/0 and 41). This point is called the internal
homothetic center, or internal center of similitude
(Johnson 1929, pp. 19 �/0 and 41).

The position of the homothetic centers for two circles
of radii ri ; centers (xi ; yi); and segment angle u are
given by solving the simultaneous equations

y �y2 �
y2 � y1

x2 � x1

(x �x2)

y �y9
2 �

y9
2 � y9

1

x9
2 � x9

1

(x �x9
2 )

for (x, y ), where

x9
i �xi �(�1)iri cos u

y9
i �yi �(�1)iri sin u ;

and the plus signs give the external homothetic
center, while the minus signs give the internal
homothetic center.

As the above diagrams show, as the angles of the
parallel segments are varied, the positions of the
homothetic centers remain the same. This fact pro-
vides a (slotted) LINKAGE for converting circular
motion with one radius to circular motion with
another.

The six homothetic centers of three circles lie three by
three on four lines (Johnson 1929, p. 120), which
"enclose" the smallest circle.

The homothetic center of triangles is the PERSPECTIVE

CENTER of HOMOTHETIC TRIANGLES. It is also called
the SIMILITUDE CENTER (Johnson 1929, pp. 16�/7).

See also APOLLONIUS’ PROBLEM, HOMOTHETIC, PER-

SPECTIVE, SIMILITUDE CENTER
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Homothetic Position
Two similar figures with PARALLEL homologous LINES

and connectors of HOMOLOGOUS POINTS CONCURRENT

at the HOMOTHETIC CENTER are said to be in homo-
thetic position. If two SIMILAR figures are in the same
plane but the corresponding sides are not PARALLEL,
there exists a self-HOMOLOGOUS POINT which occupies
the same homologous position with respect to the two
figures.

Homothetic Triangles
Nonconcurrent TRIANGLES with PARALLEL sides are
always HOMOTHETIC. Homothetic triangles are al-



ways PERSPECTIVE TRIANGLES. Their PERSPECTIVE

CENTER is called their HOMOTHETIC CENTER.

Homothety
HOMOTHECY

Homotopic

Two mathematical objects are said to be homotopic
when they are the "same" in a certain abstract sense.
For instance, the real line is homotopic to a single
point, as is any TREE. However, the circle is not
CONTRACTIBLE, but is homotopic to a solid torus. The
basic version of homotopy is between maps. Two maps
f0 : X 0 Y and f1 : X 0 Y are homotopic if there is a
CONTINUOUS MAP

F : X �[0; 1] 0 Y

such that F(x; 0) �f0(x) and F(x; 1) �f1(x):/

Whether or not two subsets are homotopic depends on
the ambient space. For example, in the plane, the unit
circle is homotopic to a point, but not in the PUNCTU-

RED plane R2 �0: The puncture can be thought of as
an obstacle.

However, there is a way to compare two spaces via
homotopy without ambient spaces. Two spaces X and
Y are homotopy equivalent if there are maps f : X 0
Y and g : X 0 Y such that the composition f (g is
homotopic to the IDENTITY MAP of Y and g(f is
homotopic to the IDENTITY MAP of X . For example,
the circle is not homotopic to a point, for then the
constant map would be homotopic to the identity map
of a circle, which is impossible because they have
different DEGREES.

See also HOMEOMORPHISM, HOMOTOPY, HOMOTOPY

CLASS, HOMOTOPY GROUP, HOMOTOPY TYPE, TOPO-

LOGICAL SPACE

Homotopy
A continuous transformation from one FUNCTION to
another. A homotopy between two functions f and g
from a SPACE X to a SPACE Y is a continuous MAP G
from X �[0; 1] Y such that G(x; 0) �f (x) and
G(x; 1) �g(x) ; where � denotes set pairing. Another
way of saying this is that a homotopy is a path in the
mapping SPACE Map(X ; Y) from the first FUNCTION to
the second.

See also H -COBORDISM
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Homotopy Axiom
One of the EILENBERG-STEENROD AXIOMS which
states that, if f : (X ; A) 0 (Y ; B) is HOMOTOPIC to g :
(X ; A) 0 (Y ; B) ; then their INDUCED MAPS f� :
Hn(X ; A) 0 Hn(Y ; B) and g� : Hn(X ; A) 0 Hn(Y ; B)
are the same.

Homotopy Class
Given two TOPOLOGICAL SPACES M and N , place an
equivalence relationship on the CONTINUOUS MAPS f :
M 0 N using homotopies, and write f1 
f2 if f1 is
HOMOTOPIC to f2 : Roughly speaking, two maps are
HOMOTOPIC if one can be deformed into the other.
This equivalence relation is transitive because these
homotopy deformations can be composed (i.e., one can
follow the other).

A simple example is the case of CONTINUOUS MAPS

from one CIRCLE to another circle. Consider the
number of ways an infinitely stretchable string can
be tied around a tree trunk. The string forms the first
circle, and the tree trunk’s surface forms the second
circle. For any integer n , the string can be wrapped
around the tree n times, for positive n clockwise, and
negative n counterclockwise. Each integer n corre-
sponds to a homotopy class of maps from S1 to S1 :/

After the string is wrapped around the tree n times, it
could be deformed a little bit to get another CONTIN-

UOUS MAP, but it would still be in the same homotopy
class, since it is HOMOTOPIC to the original map.
Conversely, any map wrapped around n times can be
deformed to any other.

See also HOMOTOPY, HOMOTOPY GROUP, TOPOLOGI-

CAL SPACE

Homotopy Group
The homotopy groups generalize the FUNDAMENTAL

GROUP to maps from higher dimensional spheres,
instead of from the circle. The nth homotopy group of
a TOPOLOGICAL SPACE X is the set of HOMOTOPY

CLASSES of maps from the HYPERSPHERE to X , with



a GROUP structure, and is denoted pn(X) : The FUNDA-

MENTAL GROUP is p1(X) ; and, as in the case of p1 ; the
maps Sn 0 X must pass through a BASEPOINT p � X :
For n �1, the homotopy group pn(X) is an ABELIAN

GROUP.

The group operations are not as simple as those for
the FUNDAMENTAL GROUP. Consider two maps a :
Sn 0 X and b : Sn 0 X ; which pass through p � X :
The product a+b : Sn 0 X is given by mapping the
equator to the BASEPOINT p . Then the northern
hemisphere is mapped to the sphere by collapsing
the equator to a point, and then it is mapped to X by
a . The southern hemisphere is similarly mapped to X
by b . The diagram above shows the product of two
spheres.

The identity element is represented by the constant
map e(x) �p : The choice of direction of a loop in the
fundamental group corresponds to a ORIENTATION of
Sn in a homotopy group. Hence the inverse of a map a
is given by switching orientation for the sphere. By
describing the sphere in n �1 coordinates, switching
the first and second coordinate changes the orienta-
tion of the sphere. Or as a HYPERSURFACE, Sn 

ƒRn�1 ;

switching orientation reverses the roles of inside and
outside. The above diagram shows that a +�a is
homotopic to the constant map, i.e., the identity. It
begins by expanding the equator in a +�a ; and then
the resulting map is contracted to the BASEPOINT.

As with the FUNDAMENTAL GROUP, the homotopy
groups do not depend on the choice of BASEPOINT.
But the higher homotopy groups are always ABELIAN.
The above diagram shows an example of a+b �b +a:
The BASEPOINT is fixed, and because n �1 the map
can be rotated. When n �1, i.e., the FUNDAMENTAL

GROUP, it is impossible to rotate the map while
keeping the BASEPOINT fixed.

A space with pi �0 for all i 5n is called n -connected.
If X is n �1/-connected, n �1, then the HUREWICZ

HOMOMORPHISM pn(X) 0 Hn(X) from the nth-homo-
topy group to the nth-homology group is an ISO-

MORPHISM.

When f : X 0 Y is a CONTINUOUS MAP, then f� :
pn(X) 0 pn(Y) is defined by taking the images under
f of the spheres in X . The pushforward is natural, i.e.,
(f (g)��f �(g � whenever the composition of two maps
is defined. In fact, given a FIBRATION,

F 0 E 0 B

where B is PATH-CONNECTED, there is a LONG EXACT

SEQUENCE of homotopy groups

. . .  0 pn(F) 0 pn(E) 0 pn(B) 0 pn�1(F) 0 . . .  0 p0(B)

�0:

See also ABELIAN GROUP, COHOMOTOPY GROUP,
FREUDENTHAL SUSPENSION THEOREM, FUNDAMENTAL

GROUP, HOMOTOPY EXCISION, HUREWICZ HOMO-

MORPHISM, HYPERSPHERE, GROUP, RELATIVE HOMO-

TOPY GROUP, WEAK EQUIVALENCE
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Homotopy Theory
The branch of ALGEBRAIC TOPOLOGY which deals with
HOMOTOPY GROUPS. Homotopy methods can be used
to solve systems of polynomials by embedding the
polynomials in a family of systems that define the
deformation of the original problem into a simpler one
whose solutions are known.

See also ALGEBRAIC TOPOLOGY, HOMOTOPY GROUP
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Honaker’s Constant
PALINDROMIC PRIME

Honeycomb
A TESSELLATION in n -D, for n]3: The only regular
honeycomb in 3-D is f4; 3; 4g; which consists of eight
cubes meeting at each VERTEX. The only quasiregular
honeycomb (with regular cells and semiregular VER-

TEX FIGURES) has each VERTEX surrounded by eight



TETRAHEDRA and six OCTAHEDRA and is denoted
3

3 ; 4

n o
:/

Ball and Coxeter (1987) use the term "sponge" for a
solid which can be parameterized by INTEGERS p , q ,
and n which satisfy the equation

2 sin
p

p

 !
sin

p

q

 !
�cos

p

n

 !
:

The possible sponges are fp ; q ng�f6; 6 3g;jj f6; 4 4g;j
f4; 6 4g;j f3; 6 6g;j and f4; 4 �g:j /

There are many semiregular honeycombs, such as
3; 3

4

� �
; in which each VERTEX consists of two OCTAHE-

DRA f3; 4g and four CUBOCTAHEDRA
3
4

� �
:/

See also HONEYCOMB CONJECTURE, MENGER SPONGE,
SIERPINSKI SPONGE, TESSELLATION, TETRIX, TILING
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Honeycomb Conjecture

Any partition of the plane into regions of equal area
has PERIMETER as least that of the regular hexagonal
honeycomb TILING. Pappus refers to the problem in
his fifth book, but the conjecture was finally proven
by Hales (1999).

See also PERIMETER, TESSELLATION, TILING
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Hoof
CYLINDRICAL WEDGE

Hook

One of the 12 6-POLYIAMONDS.

See also POLYIAMOND
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Hook Length Formula
A FORMULA for the number of YOUNG TABLEAUX

associated with a given YOUNG DIAGRAM. In each
box, write the sum of one plus the number of boxes
horizontally to the right and vertically below the box
(the "hook length"). The number of tableaux is then n!
divided by the product of all "hook lengths". The
NumberOfTableaux in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘) function in Mathematica im-
plements the hook length formula.

See also YOUNG DIAGRAM, YOUNG TABLEAU
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Hopf Algebra
Let a graded module A have a multiplication f and a
co-multiplication c: Then if f and c have the unity of
k as unity and c : (A; f) 0 (A; f)�(A; f) is an
algebra homomorphism, then (A; f; c) is called a
Hopf algebra.

Hopf Bifurcation
The BIFURCATION of a FIXED POINT to a LIMIT CYCLE

(Tabor 1989).
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Hopf Circle
HOPF MAP

Hopf Fibration
HOPF MAP

Hopf Link

The LINK 02 �/2 �/1 which has JONES POLYNOMIAL

V(t) ��t �t�1

and HOMFLY POLYNOMIAL

P(z ; a) �z�1( a�1 � a�3) �za�1 :

It has BRAID WORD s2
1 :/

Hopf Map
The first example discovered of a MAP from a higher-
dimensional SPHERE to a lower-dimensional SPHERE

which is not null-HOMOTOPIC. Its discovery was a
shock to the mathematical community, since it was
believed at the time that all such maps were null-
HOMOTOPIC, by analogy with HOMOLOGY GROUPS.

The Hopf map f : S3 0 S2 arises in many contexts,
and can be generalized to a map S7 0 S4 : For any
point p in the sphere, its PREIMAGE f �1(p) is a circle
S1 in S3 : There are several descriptions of the Hopf
map, also called the Hopf fibration.

As a SUBMANIFOLD of R4 ; the 3-SPHERE is

S3 �f(X1 ; X2 ; X3 ; X4) : X2
1 �X2

2 �X2
3 �X2

4 �1g (1)

and the 2-SPHERE is a SUBMANIFOLD of R3 ;

S2 �f(x1 ; x2 ; x3) : x2
1 �x2

2 �x2
3 �1g: (2)

The Hopf map takes points (/X1 ; X2 ; X3 ; X4) on a 3-
sphere to points on a 2-sphere (/x1 ; x2 ; x3)

x1 �2(X1X2 �X3X4) (3)

x2 �2(X1X4 �X2X3) (4)

x3 �(X2
1 �X2

3 ) �(X2
2 �X2

4 ) : (5)

Every point on the 2-SPHERE corresponds to a CIRCLE

called the HOPF CIRCLE on the 3-SPHERE.

By STEREOGRAPHIC PROJECTION, the 3-sphere can be
mapped to R3 ; where the point at infinity corresponds
to the north pole. As a map, from R3 ; the Hopf map
can be pretty complicated. The diagram above shows
some of the preimages f �1(p); called HOPF CIRCLES.
The straight red line is the circle through infinity.

By associating R4 with C2 ; the map is given by
f (z ; w) �z =w ; which gives the map to the RIEMANN

SPHERE.

The Hopf fibration is a FIBRATION

S1 0 S3 0 S2 ; (6)

and is in fact a PRINCIPAL BUNDLE. The ASSOCIATED

VECTOR BUNDLE

L �S3 �C=U(1) ; (7)

where

((z; w); v) 
((eitz ; eitw) ; eitv) (8)

is a complex LINE BUNDLE on S2: In fact, the set of line
bundles on the sphere forms a group under TENSOR

PRODUCT, and the bundle L generates all of them.
That is, every line bundle on the sphere is L�k for
some k .

The sphere S3 is the LIE GROUP of unit QUATERNIONS,
and can be identified with the SPECIAL UNITARY

GROUP SU(2); which is the SIMPLY CONNECTED double
cover of SO(3): The Hopf bundle is the quotient map
S2

$SU(2)=U(1):/

See also FIBRATION, FIBER BUNDLE, HOMOGENEOUS

SPACE, PRINCIPAL BUNDLE, STEREOGRAPHIC PROJEC-

TION, VECTOR BUNDLE
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Hopf Trace Theorem
Let K be a finite complex, and let f : CP(K) 0 CP(K)
be a chain map, thenX

P

(�1)PTr( f; CP(K)) �
X

P

(�1)PTr( f�; HP(K) =TP(K)) :
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Hopf’s Theorem
A NECESSARY and SUFFICIENT condition for a MEA-

SURE which is quasi-invariant under a transforma-
tion to be equivalent to an invariant PROBABILITY

MEASURE is that the transformation cannot (in a
measure theoretic sense) compress the SPACE.

Horizontal
Oriented in position PERPENDICULAR to up-down, and
therefore PARALLEL to a flat surface.

See also VERTICAL

Horizontal Cusp
SPINODE

Horizontal Cylinder
CYLINDRICAL SEGMENT

Horizontal Tank
CYLINDRICAL SEGMENT

Horizontally Convex Polyomino
ROW-CONVEX POLYOMINO

Horizontal-Vertical Illusion
VERTICAL-HORIZONTAL ILLUSION

Horn Angle
The configuration formed by two curves starting at a
point, called the vertex V , in a common direction.
Horn angles are concrete illustrations of NON-ARCHI-

MEDEAN GEOMETRIES.

See also NON-ARCHIMEDEAN GEOMETRY
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Horn Cyclide

The INVERSION of a HORN TORUS. If the INVERSION

CENTER lies on the TORUS, then the horn cyclide
degenerates to a PARABOLIC HORN CYCLIDE.

See also CYCLIDE, HORN TORUS, INVERSION, PARA-

BOLIC CYCLIDE, RING CYCLIDE, SPINDLE CYCLIDE,
TORUS

Horn Function
The 34 distinct convergent hypergeometric series of
order two enumerated by Horn (1931) and corrected
by Borngässer (1933). There are 14 complete series
for which p�p?�q�q?�2;
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H3( a; b; g ; x; y) �
X
m; n

(a)2m�n(b)n
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(of which F1 ; F2 ; F3 ; and F4 are precisely APPELL

HYPERGEOMETRIC FUNCTIONS), and 20 confluent ser-
ies with p 5p?�2; q 5q?�2; and p, q not both 2,
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X
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xmyn (25)
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X
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xmyn (26)
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X
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(Erdélyi et al. 1981, pp. 224�/26).

See also APPELL HYPERGEOMETRIC FUNCTION, KAMPÉ

DE FÉ RIET FUNCTION, LAURICELLA FUNCTIONS
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Horn Torus



One of the three STANDARD TORI given by the PARA-

METRIC EQUATIONS

x �(c �a cos v)cos u (1)

y �(c �a cos v)sin u (2)

z �a sin v (3)

with a �c . The INVERSION of a horn torus is a HORN

CYCLIDE (or PARABOLIC HORN CYCLIDE). The above
figures show a horn torus (left), a cutaway (middle),
and a CROSS SECTION of the horn torus through the
xz -plane (right).

See also CYCLIDE, HORN CYCLIDE, RING TORUS,
SPINDLE TORUS, STANDARD TORI, TORUS
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Horn’s Theorem
This entry contributed by FRED MANBY

Let

X �fx1 ]x2 ] � � �]xn ½xi �Rg (1)

and

Y �fy1 ]y2 ] � � �]yn ½yi �Rg: (2)

Then there exists an n �n HERMITIAN MATRIX with
eigenvalues X and diagonal elements Y IFF

Xt

i �1

(xi �yi) ]0 �1 5t 5n (3)

and with equality for t�n . The theorem is sometimes
also known as Schur’s theorem.

See also HERMITIAN MATRIX, MAJORIZATION, STO-

CHASTIC MATRIX

References
Horn, A. "Doubly Stochastic Matrices and the Diagonal of a

Rotation Matrix." Amer. J. Math. 76, 620�/30, 1954.
Lieb, E. H "Variational Principle for Many-Fermion Sys-

tems." Phys. Rev. Lett. 46, 457�/59, 1981.

Horned Sphere
ALEXANDER’S HORNED SPHERE, ANTOINE’S HORNED

SPHERE

Horner’s Method
A method for finding roots of a polynomial equation
f (x)�0: Now find an equation whose roots are the
roots of this equation diminished by r , so

0�f (x�r)

�f (r)�xf ?(r)�1
2 x2f ƒ(r)�1

3 x3f§(r)�. . . : (1)

The expressions for f (r); f ?(r); ... are then found as in
the following example, where

f (x)�Ax5�Bx4�Cx3�Dx2�Ex�F: (2)

Write the coefficients A , B , ..., F in a horizontal row,
and let a new letter shown as a denominator stand for
the sum immediately above it so, in the following
example, P�Ar�B: The result is the following table.

A B C D E F

/

Ar

P
/ /

Pr

Q
/ /

Qr

R
/ /

Rr

S
/ /

Sr

v
/

/

Ar

T
/ /

Tr

U
/ /

Ur

R
/ /

Vr

x
/

/

Ar

W
/ /

Wr

X
/ /

Xr

c
/

/

Ar

Y
/ /

Yr

f
/

/

Ar

u
/

Solving for the quantities u; f; c; x; and v gives

u�5Ar�B�
1

4!
f (iv)(r) (3)

f�10Ar2�4Br�C�
1

3!
f§(r) (4)

c�10Ar3�6Br2�3Cr�D�
1

2!
f ƒ(r) (5)

x�5Ar4�4Br3�3Cr2�2Dr�E�f ?(r) (6)

v�Ar5�Br4�Cr3�Dr2�Er�F�f (r); (7)

so the equation whose roots are the roots of f (x)�0;
each diminished by r , is

0�Ax5�ux4�fx3�cx2�xx�v (8)

(Whittaker and Robinson 1967).

To apply the procedure, first determine the integer
part of the root through whatever means are needed,
then reduce the equation by this amount. This gives
the second digit, by which the equation is once again
reduced (after suitable multiplication by 10) to find
the third digit, and so on.



1 �4 0 5(1 �10 �500 2000(3
1

�3

�3

�3

�3

2

3

�7

�21

�521

�1563

437
1

�2

�2

�5

3

�4

�12

�523
1

�1

3

�1

To see the method applied, consider the problem of
finding the smallest positive root of

x3 �4x2 �5 �0: (9)

This root lies between 1 and 2, so diminish the
equation by 1, resulting in the left table shown above.
The resulting diminished equation is

x3 �x2 �5x �2 �0 ; (10)

and roots which are ten times the roots of this
equation satisfy the equation

x3 �10x2 �500x �2000 �0 : (11)

The root of this equation between 1 and 10 lies
between 3 and 4, so reducing the equation by 3
produces the right table shown above, giving the
transformed equation

x3 �x2 �533 �437 �0: (12)

This procedure can be continued to yield the root as
approximately 1.3819659.

Horner’s process really boils down to the construction
of a DIVIDED DIFFERENCE table (Whittaker and Ro-
binson 1967).

See also DIVIDED DIFFERENCE, NEWTON’S METHOD

References
Boyer, C. B. and Merzbacher, U. C. A History of Mathe-

matics, 2nd ed. New York: Wiley, pp. 202 �/04, 256, and
307, 1991.

Horner, W. G. Philos. Trans. 1, 308, 1819.
Pena, J. M. and Sauer, T. SIAM J. Numer. Anal. 37, 1186,

2000.
Ruffini, P. Sopra la determinazione della radici. Modena,

Italy, 1804.
Ruffini, P. Memorie di Mat. e di Fis. della Soc. Italiana delle

Scienze. Verona, Italy, 1813.
Séroul, R. "Evaluation of Polynomials: Horner’s Method."
§10.6 in Programming for Mathematicians. Berlin:
Springer-Verlag, pp. 216 �/62, 2000.

Whittaker, E. T. and Robinson, G. "The Ruffini-Horner
Method." §53 in The Calculus of Observations: A Treatise
on Numerical Mathematics, 4th ed. New York: Dover,
pp. 100 �/06, 1967.

Horner’s Rule
A rule for POLYNOMIAL computation which both
reduces the number of necessary multiplications
and results in less numerical instability due to
potential subtraction of one large number from
another. The rule simply factors out POWERS of x ,

giving

anxn �an�1xn �1 �. . .�a0 �((anx �an�1)x �. . .)x �a0 :

Horner’s rule can be implemented to form a POLY-

NOMIAL from a list of coefficients in Mathematica as
follows.

PolynomialFromCoefs[l_List, x_] : � Fold[x#1 �
#2 &, 0, l]

See also POLYNOMIAL
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Horocycle
The LOCUS of a point which is derived from a fixed
point Q by continuous parallel displacement.
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Horse Fetter
HIPPOPEDE

Horseshoe Map
SMALE HORSESHOE MAP

Horton Graph

A graph on 93 nodes providing a counterexample to
Tutte’s conjecture that every 3-regular 3-connected



bipartite graph is HAMILTONIAN. Two smaller coun-
terexamples, each on 78 nodes, are now known
(Ellingham 1981, 1982; Ellingham and Horton 1983;
Owens 1983).

See also HAMILTONIAN GRAPH
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Hotelling T2 Distribution
A univariate distribution proportional to the F -

DISTRIBUTION. If the vector d is Gaussian multi-
variate-distributed with zero mean and unit covar-
iance matrix

X
m; n

( a)2m�n( b)n

( d)mm!n!
xmyn

and H11( a; b; g ; d; x; y) is an

X
m; n

(a)m�n( b)n( g)n

( d)mm!n!
xmyn

matrix with a WISHART DISTRIBUTION with unit scale
matrix and m degrees of freedom X �fx1 > x2 ] � � �]
xn ½xi �R g; then /Y �fy1 ]y2 ]� � �]yn jyi �R g/ has the
Hotelling a

t

i�1(xi �yi) ]0 �1 5t 5n distribution
with parameters p and m , denoted t �n: This
distribution is commonly used to describe the sample
Mahalanobis distance between two populations, and
is implemented as HotellingTSquareDistribu-
tion[p , m ] in the Mathematica add-on package
Statistics‘MultinomialDistribution‘ (which
can be loaded with the command
BBStatistics‘), where p is the dimensionality
parameter and m is the number of degrees of free-
dom.

See also F -DISTRIBUTION, WISHART DISTRIBUTION

References
NIST/SEMATECH. "Hotelling T Squared." §6.5.4.3 in

NIST/Sematech Engineering Statistics Internet Hand-
book. http://www.itl.nist.gov/div898/handbook/pmc/sec-
tion5/pmc543.htm.

Hotelling T-Squared Distribution
A univariate distribution proportional to the F -

DISTRIBUTION. If the vector d is Gaussian multi-
variate-distributed with zero mean and unit covar-
iance matrix Np(0; I) and M is an m �p matrix with a
WISHART DISTRIBUTION with unit scale matrix and m
degrees of freedom Wp(I; m); then mdT

M �1d has the
Hotelling T2 distribution with parameters p and m ,
denoted T2(p; m) : This distribution is commonly used
to describe the sample Mahalanobis distance between
two populations, and is implemented as Hotel-
lingTSquareDistribution[p , m ] in the Mathema-
tica add-on package
Statistics‘MultinomialDistribution‘ (which
can be loaded with the command
BBStatistics‘), where p is the dimensionality
parameter and m is the number of degrees of free-
dom.

See also F -DISTRIBUTION, HOTELLING’S T -SQUARED

TEST, WISHART DISTRIBUTION
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Hotelling’s T-Squared Test

See also HOTELLING T -SQUARED DISTRIBUTION
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Hough Transform
A technique used to detect boundaries in digital
images.

Householder’s Method
A ROOT-finding algorithm based on the iteration
formula

xn�1 �xn �
f (xn)

f ?(xn)
1 �

f (xn)f ƒ(xn)

2[f ?(xn)]2

( )
:

This method, like NEWTON’S METHOD, has poor con-
vergence properties near any point where the DERI-

VATIVE f ?(x)�0:/

See also HALLEY’S IRRATIONAL FORMULA, HALLEY’S

METHOD, NEWTON’S METHOD
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Howe’s Theorem
Let P be a PRIMITIVE POLYTOPE with eight vertices.
Then there is a unimodular map that maps P to the
polyhedron whose vertices are (0, 0, 0), (1, 0, 0), (0, 1,
0), (0, 0, 1), (0, 1, 1), (1, a , b ), (1, c , d ), and (1, a �c;
b �d) with a; b; c ; d �Z; a ; b ; c ; d ]0 ; and ad �bc �
1: Furthermore, any primitive polyhedron with fewer
than eight vertices can be embedded in one with eight
vertices.

See also PRIMITIVE POLYTOPE
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Howell Design
Let S be a set of n �1 symbols, then a Howell design
H(s ; 2n) on symbol set S is an s �s array H such that

1. Every cell of H is either empty or contains an
unordered pair of symbols from S ,
2. Every symbol of S occurs once in each row and
column of H , and
3. Every unordered pair of symbols occurs in at
most one cell of H .

References
Colbourn, C. J. and Dinitz, J. H. (Eds.). "Howell Designs."

Ch. 26 in CRC Handbook of Combinatorial Designs. Boca
Raton, FL: CRC Press, pp. 381 �/85, 1996.

H-Spread
The difference H2 �H1 ; where H1 and H2 are HINGES.
It is the same as the INTERQUARTILE RANGE for N �
5, 9, 13, ... points.

See also HINGE, INTERQUARTILE RANGE, STEP
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h-Statistic

An unbiased estimator for a MOMENT of a distribu-
tion.

See also K -STATISTIC

H-Transform
A 2-D generalization of the HAAR TRANSFORM which is
used for the compression of astronomical images. The
algorithm consists of dividing the 2N �2N image into
blocks of 2 �2 pixels, calling the pixels in the block
a00 ; a10 ; a01 ; and a11 : For each block, compute the four
coefficients

h0 �
1
2(a11 �a10 �a01 �a00)

hx �
1
2(a11 �a10 �a01 �a00)

hy �
1
2(a11 �a10 �a01 �a00)

hc �
1
2(a11 �a10 �a01 �a00) :

Construct a 2N �1 �2N �1 image from the h0 values,
and repeat until only one h0 value remains. The H-
transform can be performed in place and requires
about 16N2 =3 additions for an N �N image.

See also HAAR TRANSFORM
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Hub
The central point in a WHEEL GRAPH Wn : The hub has
DEGREE n�1:/

See also WHEEL GRAPH
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Huffman Coding
A lossless data compression algorithm which uses a
small number of bits to encode common characters.
Huffman coding approximates the probability for
each character as a POWER of 1/2 to avoid complica-
tions associated with using a nonintegral number of
bits to encode characters using their actual probabil-
ities.



Huffman coding works on a list of weights fwi g by
building an EXTENDED BINARY TREE with minimum
weighted PATH LENGTH and proceeds by finding the
two smallest ws, w1 and w2 ; viewed as external nodes,
and replacing them with an internal node of weight
w1 �w2 : The procedure is them repeated stepwise
until the root node is reached. An individual external
node can then encoded by a binary string of 0s (for left
branches) and 1s (for right branches).

The procedure is summarized below for the weights 2,
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, and 41 given by
the first 13 primes, and the resulting tree is shown
above (Knuth 1997, pp. 402 �/03). As is clear from the
diagram, the paths to the larger weights are shorter
than those to the smaller weights. In this example,
the number 13 would be encoded as 1010.

2 3 5 7 11 13 17 19 23 29 31 37 41

5  5  7 11 13 17 19 23 29 31 37  41

10  7 11 13 17 19 23 29 31 37  41

17 11 13 17 19 23 29 31 37 41

17 24 17 19 23 29 31 37 41

24 34 19 23 29 31 37 41

24 34 42 29 31 37 41

34 42 53 31 37 41

42 53 65 37 41

42 53 65 78

95 65 78

95 143

238

The following Mathematica code can be used to
construct the list of internal nodes and table of
iterations.

HuffmanStep[l0_List] : � Module[

{

l � l0,

s2 � Take[Select[Sort[l0], Positive], 2]

},

l[[Take[Flatten[Position[l, #] & /@ s2], 2]]]

� 0;

l[[Last[Position[l, 0]]]] � Plus @@ s2;

{l, s2}

] HuffmanList[l_List] : � Module[{},

Plus @@@ Last /@

NestWhileList[HuffmanStep[First[#]] &,

HuffmanStep[l], Length[Union[First[#]]]

� 2 &]

] HuffmanTable[l_List] : �
NestWhileList[First[HuffmanStep[#]] &, l,

Length[Union[#]] � 2 &]
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Hull
AFFINE HULL, CONVEX HULL

Hull Number
Let a set of vertices A in a CONNECTED GRAPH G be
called convex if for every two vertices x; y �A; the
vertex set of every (x, y ) GRAPH GEODESIC lies
completely in A . Also define the convex hull A⁄

V(G) of a GRAPH G with vertex set V(G) as the
smallest CONVEX SET in G containing A . Then the
smallest cardinality of a set A whose convex hull is
V(G) is called the hull number of G , denoted h(G):/

See also GEODETIC NUMBER
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Humbert’s Theorem
The NECESSARY and SUFFICIENT condition that an
ALGEBRAIC CURVE has an algebraic INVOLUTE is that
the ARC LENGTH is a two-valued algebraic function of
the coordinates of the extremities. Furthermore, this
function is a ROOT of a QUADRATIC EQUATION whose
COEFFICIENTS are rational functions of x and y .

See also ALGEBRAIC CURVE, INVOLUTE
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Hundkurve
TRACTRIX

Hundred
/100 �102 : Madachy (1979) gives a number of alge-
braic equations using the digits 1 to 9 which evaluate
to 100, such as

(7 �5)2 �96 �8 �4 �3 �1 �100
32 �91 �7 �8 �6 �5 �4 �100ffiffiffi
9

p
�6 �72 �(1)(3!) �8 �45 �100

123 �45 �67 �89 �100;

and so on.

See also 10, BILLION, HUNDRED, LARGE NUMBER,
MILLION, THOUSAND

References
Madachy, J. S. Madachy’s Mathematical Recreations. New

York: Dover, pp. 156 �/59, 1979.

Hunt’s Surface

A SEXTIC SURFACE given by the implicit equation

4(x2 �y2 �z2 �13)3 �27(3x2 �y2 �4z2 �12)2 �0:
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Huntington Axiom
An axiom proposed by Huntington (1933) as part of
his definition of a BOOLEAN ALGEBRA,

H(x; y) �!(!x �y) �!(!x �!y) �x; (1)

where !x denotes NOT and x �y denotes OR. Taken
together, the three axioms consisting of (1), commu-
tativity

x �y �y �x (2)

and associativity

(x �y) �z �x �(y �z) ; (3)

are equivalent to the axioms of BOOLEAN ALGEBRA.

The Huntington operator can be defined in Mathe-
matica by

Huntington : � Function[{x, y}, ! (! x \[Or] y)

\[Or] ! (! x \[Or] ! y)]

That the Huntington axiom is a true statement in
BOOLEAN ALGEBRA can be verified by examining its
TRUTH TABLE.

x y /H(x; y)/

T T T

T F T

F T F

F F F

See also BOOLEAN ALGEBRA, ROBBINS ALGEBRA,
ROBBINS AXIOM, WINKLER CONDITIONS, WOLFRAM

AXIOM
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Huntington Equation
An equation proposed by Huntington (1933) as part of
his definition of a BOOLEAN ALGEBRA,

f : (X; A) 0 (Y ; B)

See also ROBBINS ALGEBRA, ROBBINS EQUATION

H
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Hurwitz Equation
The DIOPHANTINE EQUATION

x2
1 �x2

2 �. . .�x2
n �ax1x2 � � � xn

which has no INTEGER solutions for a�n .

See also LAGRANGE NUMBER (DIOPHANTINE EQUA-

TION)
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Hurwitz Number
A number with a CONTINUED FRACTION whose terms
are the values of one or more POLYNOMIALS evaluated
on consecutive INTEGERS and then interleaved. This
property is preserved by MÖBIUS TRANSFORMATIONS

(Gosper 1972, p. 44).
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Hurwitz Polynomial
A POLYNOMIAL with REAL POSITIVE COEFFICIENTS and
ROOTS which are either NEGATIVE or pairwise con-
jugate with NEGATIVE REAL PARTS.

Hurwitz Zeta Function
A generalization of the RIEMANN ZETA FUNCTION with
a FORMULA

z(s; a)�
X�
k�0

1

(k � a)s ; (1)

where any term with k�a�0 is excluded. The
Hurwitz zeta function can also be given by the
functional equation

z s;
p

q

 !
�2G(1�s)

� (2pq)s�1
Xq

n�1

sin
ps

2
�

2pnp

q

 !
z 1�s;

n

q

 !

(2)

(Apostol 1976, Miller and Adamchik), or the integral

z(s; a)�1
2 a�s�

a1�s

s � 1

�2 g
�

0

(a2�y2)�s=2 sin s tan�1 y

a

 !" #( )
dy

e2xy � 1
:

(3)

If R zj jB 0 and 0Ba51; then

z(z; a)�
2G(1 � z)

(2p)1�z

� sin
pz

2

 !X�
n�1

cos(2pan)

n1�z
�cos

pz

2

 !X�
n�1

sin(2pan)

n1�z

" #

(4)

(Hurwitz 1882; Whittaker and Watson 1990, pp. 268�/

69). The Hurwitz zeta function satisfies

z(0; a)�1
2�a (5)

d

ds
z(0; a)�ln[G(a)]�1

2 ln(2p) (6)

d

ds
z(0; 0)�1

2 ln(2p); (7)

where G(z) is the GAMMA FUNCTION.

In the limit,

lim
s01

z(s; a)�
1

s � 1
�

G?(a)

G(a)
(8)

(Whittaker and Watson 1990, p. 271; Allouche 1992).

The POLYGAMMA FUNCTION cm(z) can be expressed in
terms of the Hurwitz zeta function by

cm(z)�(�1)m�1m!z(1�m; z): (9)

For POSITIVE INTEGERS k , p , and q�p ,

z? �2k�1; p
q

� �
�

[c(2k) � ln(2pq)]B2k(p=q)

2k
�

[c(2k) � ln(2p)]B2k

q2k2k

�
(�1)k�1

p

(2pq)2k

Xq�1

n�1

sin
2ppn

q

 !
c(2k�1)

n

q

 !

�
(�1)k�12(2k � 1)!

(2pq)2k

Xq�1

n�1

cos
2ppn

q

 !
z? 2k;

n

q

 !

�
z?(�2k � 1)

q2k
; (10)

where Bn is a BERNOULLI NUMBER, Bn(x) a BERNOULLI

POLYNOMIAL, cn(z) is a POLYGAMMA FUNCTION, and
z(z) is a RIEMANN ZETA FUNCTION (Miller and Adam-
chik). Miller and Adamchik also give the closed-form



expressions

z ?(�2k �1; 1
2) ��

B2k ln 2

4kk
�

(22k �1) z?(�2k � 1)

22k �1 
(11)

z? �2k �1;
1=3
2=3

� �

��
(9k � 1)B2k pffiffiffi
3

p
(32k�1 � 1)8k 

�
B2k ln 3

(32k �1)4k
(12)

z? �2k �1;
1=4
3=4

� �

��
(4k � 1)B2k p

4k�1k
�

(4k �1 � 1)B2k ln 2

23k�1k 
(13)

z? �2k �1;
1=6
5=6

� �
��

(9k � 1)(22k �1 � 1)B2k pffiffiffi
3

p
(62k �1)8k

�
B2k(32k �1 � 1)ln 2

(62k �1)4k
�

B2k(22k�1 � 1)ln 3

(62k �1)4k

�
(�1)k(22k �1 � 1)c2k �1(1

3)

2
ffiffiffi
3

p
(12p)2k �1 (14)

In these equations, z?(z0 ; a) means dz(z; a)=dz ½z�z0
;

z?(z0) means dz(z) =dz½z�z0
; and the upper and lower

fractions on the left side of the equations correspond
to the plus and minus signs, respectively, on the right
side.

Gauss gave

G?(p=q)

G(p =q)
��g �ln(2q) �1

2 p cot
pp

q

 !

�2
X

0 BnBq =2

cos
2 ppn

q

 !
ln sin

pn

q

 !" #
(15)

(Allouche 1992, Knuth 1997, p. 94).

See also HURWITZ’S FORMULA, KHINTCHINE’S CON-

STANT, POLYGAMMA FUNCTION, PSI FUNCTION, RIE-

MANN ZETA FUNCTION, ZETA FUNCTION
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Hurwitz’s Formula

z(1 �s ; a) �
G(s)

(2 p)s [e �pis=2F(a ; s) �e pis=2F(�a ; s)];

where z(z; a) is a HURWITZ ZETA FUNCTION, G(z) is the
GAMMA FUNCTION, and F(a; s) is the PERIODIC ZETA

FUNCTION.

See also GAMMA FUNCTION, HURWITZ ZETA FUNC-

TION, PERIODIC ZETA FUNCTION
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Hurwitz’s Irrational Number Theorem
As Lagrange showed, any IRRATIONAL NUMBER a has
an infinity of rational approximations p=q which
satisfy

a�
p

q

�����
�����B 1ffiffiffi

5
p

q2
: (1)

Furthermore, if there are no integers a; b; c; d with
ad�bcj j�1 and a�aa�b

da�c
(corresponding to values of a



associated with the GOLDEN RATIO f through their
CONTINUED FRACTIONS), then

a�
p

q

�����
�����B 1ffiffiffi

8
p

q2 
; (2)

and if values of a associated with the SILVER RATIO

1 �
ffiffiffi
2

p
are also excluded, then

a�
p

q

�����
�����B 5ffiffiffiffiffiffiffiffi

221
p 1

q2 
: (3)

In general, even tighter bounds OF THE FORM

a�
p

q

�����
�����B 1

Lnq2
(4)

can be obtained for the best rational approximation
possible for an arbitrary irrational number a; where
the Ln are called LAGRANGE NUMBERS and get steadily
larger for each "bad" set of irrational numbers which
is excluded.

See also CONTINUED FRACTION, IRRATIONALITY MEA-

SURE,

Hurwitz’s Root Theorem
Let ff (x)g be a SEQUENCE of ANALYTIC FUNCTIONS

REGULAR in a region G , and let this sequence be
UNIFORMLY CONVERGENT in every CLOSED SUBSET of
G . If the ANALYTIC FUNCTION

lim
n 0�

fn(x) �f (x)

does not vanish identically, then if x � a is a zero of
f (x) of order k , a NEIGHBORHOOD x �aj jB d of x � a
and a number N exist such that if n � N , fn(x) has
exactly k zeros in x �aj jB d:/

See also ARGUMENT PRINCIPLE, ROOT
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Hurwitz-Radon Theorem
Determined the possible values of r and n for which
there is an IDENTITY OF THE FORM

(x2
1 �. . .�x2

r )(y
2
1 �. . .�y2

r ) �z2
1 �. . .�z2

n :

Hutton’s Formula
The MACHIN-LIKE FORMULA

1
4 p �2 tan�1 1

3

� �
�tan �1 1

7

� �
:

The other two-term MACHIN-LIKE FORMULAS are

EULER’S MACHIN-LIKE FORMULA, HERMANN’S FOR-

MULA, and MACHIN’S FORMULA.

Hutton’s Method
LAMBERT’S METHOD

Hyperasymptotic Series

See also ASYMPTOTIC SERIES, SUPERASYMPTOTIC

SERIES
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Hyperbola

A hyperbola is a CONIC SECTION defined as the LOCUS

of all points P in the PLANE the difference of whose
distances r1�F1P and r2�F2P from two fixed points
(the FOCI F1 and F2) separated by a distance 2c is a
given POSITIVE constant k ,

r2�r1�k (1)

(Hilbert and Cohn-Vossen 1999, p. 3). Letting P fall
on the left x -intercept requires that

k�(c�a)�(c�a)�2a; (2)

so the constant is given by k�2a; i.e., twice the
distance between the x -intercepts (left figure above).
The hyperbola has the important property that a ray
originating at a FOCUS F1 reflects in such a way that
the outgoing path lies along the line from the other
FOCUS through the point of intersection (right figure
above).

The special case of the RECTANGULAR HYPERBOLA,
corresponding to a hyperbola with eccentricity e�

ffiffiffi
2

p
;

was first studied by Menaechmus. Euclid and Aris-
taeus wrote about the general hyperbola, but only
studied one branch of it. The hyperbola was given its
present name by Apollonius, who was the first to
study both branches. The FOCUS and DIRECTRIX were
considered by Pappus (MacTutor Archive). The hy-
perbola is the shape of an orbit of a body on an escape
trajectory (i.e., a body with positive energy), such as



some comets, about a fixed mass, such as the sun.

The hyperbola can be constructed by connecting the
free end X of a rigid bar F1X; where F1 is a FOCUS,
and the other FOCUS F2 with a string F2PX: As the bar
AX is rotated about F1 and P is kept taut against the
bar (i.e., lies on the bar), the LOCUS of P is one branch
of a hyperbola (left figure above; Wells 1991). A
theorem of Apollonius states that for a line segment
tangent to the hyperbola at a point T and intersecting
the asymptotes at points P and Q , then OP�OQ is
constant, and PT � QT (right figure above; Wells
1991).

Let the point P on the hyperbola have Cartesian
coordinates (x, y ), then the definition of the hyperbola
r2�r1�2a gives

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�c)2�y2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�c)2�y2

q
�2a: (3)

Rearranging and completing the square gives

x2(c2�a2)�a2y2�a2(c2�a2); (4)

and dividing both sides by a2(c2�a2) results in

x2

a2
�

y2

c2 � a2
�1: (5)

By analogy with the definition of the ELLIPSE, define

b2�c2�a2; (6)

so the equation for a hyperbola with SEMIMAJOR AXIS

a parallel to the X -AXIS and SEMIMINOR AXIS b
parallel to the Y -AXIS is given by

x2

a2
�

y2

b2
�1: (7)

or, for a center at the point (x0; y0) instead of (0; 0);

(x � x0)2

a2
�

(y � y0)2

b2
�1: (8)

Unlike the ELLIPSE, no points of the hyperbola
actually lie on the SEMIMINOR AXIS, but rather the
ratio b=a determines the vertical scaling of the
hyperbola. The ECCENTRICITY e of the hyperbola
(which always satisfies e � 1) is then defined as

e�
c

a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2

a2

s
: (9)

In the standard equation of the hyperbola, the center
is located at (x0; y0); the FOCI are at (x09c; y0); and
the vertices are at (x09a; y0): The so-called ASYMP-

TOTES (shown as the dashed lines in the above
figures) can be found by substituting 0 for the 1 on
the right side of the general equation (8),

y�9
b

a
(x�x0)�y0; (10)

and therefore have SLOPES 9b=a:/

The special case a�b (the left diagram above) is
known as a RIGHT HYPERBOLA because the ASYMP-

TOTES are PERPENDICULAR.

The hyperbola can also be defined as the LOCUS of
points whose distance from the FOCUS F is propor-
tional to the horizontal distance from a vertical line L
known as the DIRECTRIX, where the ratio is �1.
Letting r be the ratio and d the distance from the
center at which the directrix lies, then

d�
a2

c
(11)



r �
a

c
: (12)

Like noncircular ELLIPSES, hyperbolas have two
distinct FOCI and two associated DIRECTRICES, each
DIRECTRIX being PERPENDICULAR to the line joining
the two foci (Eves 1965, p. 275).

The FOCAL PARAMETER of the hyperbola is

p �
b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p (13)

�
c2 � a2

c 
(14)

�
a(e2 � 1)

e
: (15)

In POLAR COORDINATES, the equation of a hyperbola
centered at the ORIGIN (i.e., with x0 �y0 �0) is

r2 �
a2b2

b2 cos2 u � a2 sin2 u 
: (16)

In POLAR COORDINATES centered at a FOCUS,

r �
a(e2 � 1)

1 � e cos u 
: (17)

The two-center BIPOLAR COORDINATES equation with
origin at a FOCUS is

r1 �r2 �92a: (18)

The PARAMETRIC EQUATIONS for the hyperbola are

x �9a cosh t (19)

y �b sinh t: (20)

The CURVATURE and TANGENTIAL ANGLE are

k(t) ��[cosh(2t)]�3 =2 (21)

f(t) ��tan�1(tanh t) : (22)

The LOCUS of the apex of a variable CONE containing
an ELLIPSE fixed in 3-space is a hyperbola through the
FOCI of the ELLIPSE. In addition, the LOCUS of the apex
of a CONE containing that hyperbola is the original
ELLIPSE. Furthermore, the ECCENTRICITIES of the
ELLIPSE and hyperbola are reciprocals.

See also CONIC SECTION, ELLIPSE, HYPERBOLA EVO-

LUTE, HYPERBOLA INVERSE CURVE, HYPERBOLA PED-

AL CURVE, HYPERBOLOID, JERABEK’S HYPERBOLA,
KIEPERT’S HYPERBOLA, PARABOLA, QUADRATIC

CURVE, RECTANGULAR HYPERBOLA, REFLECTION

PROPERTY, RIGHT HYPERBOLA
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Hyperbola Evolute
The EVOLUTE of a RECTANGULAR HYPERBOLA is the
LAMÉ CURVE

(ax)2=3�(by)2=3�(a�b)2=3:

From a point between the two branches of the
EVOLUTE, two NORMALS can be drawn to the HYPER-

BOLA. However, from a point beyond the EVOLUTE,
four NORMALS can be drawn.

Hyperbola Inverse Curve

For a HYPERBOLA with a�b with INVERSION CENTER



at the center, the INVERSE CURVE

x �
2k cos t

a[3 � cos(2t)] 
(1)

y �
k sin(2t)

a[3 � cos(2t)] 
(2)

is a LEMNISCATE.

For an INVERSION CENTER at the VERTEX, the INVERSE

CURVE

x �a �
4k cos t sin2 1

2 t
� �

a[5 � 4 cos t � cos(2t) � 2 sin(2t)]
(3)

y �a �
k(tan t � 1)

a[(sec t � 1)2 � (tan t � 1)2]
(4)

is a RIGHT STROPHOID.

For an INVERSION CENTER at the FOCUS, the INVERSE

CURVE

x �ae �
k cos t(1 � e cos t)

a(cos t � e)2 (5)

y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
k sin(2t)

2a(cos t � e)2 (6)

is a LIMAÇ ON, where e is the ECCENTRICITY.

For a HYPERBOLA with a �
ffiffiffi
3

p
b and INVERSION CEN-

TER at the VERTEX, the INVERSE CURVE

x �b �
2k cos t(

ffiffiffi
3

p
� cos t)

b[9 � 4
ffiffiffi
3

p
cos t � cos(2t) � 2 sin(2t)]

(7)

y �b �
k(tan t � 1)

b
ffiffiffi
3

p
sec t � 1

� �2
�(tan t � 1)2

h i (8)

is a MACLAURIN TRISECTRIX.
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Hyperbola Pedal Curve

The PEDAL CURVE of a HYPERBOLA with the PEDAL

POINT at the FOCUS is a CIRCLE (left figure; Hilbert
and Cohn-Vossen 1999, p. 26). The PEDAL CURVE of a
RECTANGULAR HYPERBOLA with PEDAL POINT at the
center is a LEMNISCATE (right figure).

See also HYPERBOLA, PEDAL CURVE
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Hyperbolic Automorphism
ANOSOV AUTOMORPHISM

Hyperbolic Cosecant

The hyperbolic cosecant is defined as

csch x�
1

sinh x
�

2

e2 � e�x
:

See also BERNOULLI NUMBER, BIPOLAR COORDINATES,
BIPOLAR CYLINDRICAL COORDINATES, COSECANT,
HELMHOLTZ DIFFERENTIAL EQUATION–TOROIDAL CO-

ORDINATES, HYPERBOLIC SINE, POINSOT’S SPIRALS,
SURFACE OF REVOLUTION, TOROIDAL FUNCTION
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Hyperbolic Cosine

The hyperbolic cosine is defined as

cosh x �1
2(e

x �e �x) :

The notation ch x is sometimes also used (Gradshteyn
and Ryzhik 2000, p. xxix). This function describes the
shape of a hanging cable, known as the CATENARY.

See also BIPOLAR COORDINATES, BIPOLAR CYLINDRI-

CAL COORDINATES, BISPHERICAL COORDINATES, CA-

TENARY, CATENOID, CHI, CONICAL FUNCTION,
CORRELATION COEFFICIENT–GAUSSIAN BIVARIATE DIS-

TRIBUTION, COSINE, CUBIC EQUATION, DE MOIVRE’S

IDENTITY, ELLIPTIC CYLINDRICAL COORDINATES, EL-

SASSER FUNCTION, HYPERBOLIC GEOMETRY, HYPER-

BOLIC LEMNISCATE FUNCTION, HYPERBOLIC SINE,
HYPERBOLIC SECANT, HYPERBOLIC TANGENT, INVER-

SIVE DISTANCE, LAPLACE’S EQUATION–BIPOLAR COOR-

DINATES, LAPLACE’S EQUATION–BISPHERICAL

COORDINATES, LAPLACE’S EQUATION–TOROIDAL COOR-

DINATES, LEMNISCATE FUNCTION, LORENTZ GROUP,
MATHIEU DIFFERENTIAL EQUATION, MEHLER’S BESSEL

FUNCTION FORMULA, MERCATOR PROJECTION, MOD-

IFIED BESSEL FUNCTION OF THE FIRST KIND, OBLATE

SPHEROIDAL COORDINATES, PROLATE SPHEROIDAL

COORDINATES, PSEUDOSPHERE, RAMANUJAN COS/

COSH IDENTITY, SINE-GORDON EQUATION, SURFACE

OF REVOLUTION, TOROIDAL COORDINATES
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Hyperbolic Cosine Integral
CHI

Hyperbolic Cotangent

The hyperbolic cotangent is defined as

coth x �
ex � e �x

ex � e �x 
�

e2x � 1

e2x � 1 
:

The notation cth x is sometimes also used (Gradsh-
teyn and Ryzhik 2000, p. xxix). The LAURENT SERIES

of coth x is given by

coth x�
1

x
�1

3 x� 1
45 x3�. . . :

See also BERNOULLI NUMBER, BIPOLAR COORDINATES,
BIPOLAR CYLINDRICAL COORDINATES, COTANGENT,
HYPERBOLIC TANGENT, LAPLACE’S EQUATION–TOROI-

DAL COORDINATES, LEBESGUE CONSTANTS (FOURIER

SERIES), PROLATE SPHEROIDAL COORDINATES, SUR-

FACE OF REVOLUTION, TOROIDAL COORDINATES, TOR-

OIDAL FUNCTION
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Hyperbolic Cube

A hyperbolic version of the Euclidean CUBE.

See also HYPERBOLIC DODECAHEDRON, HYPERBOLIC

ICOSAHEDRON, HYPERBOLIC OCTAHEDRON, HYPER-

BOLIC TETRAHEDRON
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Hyperbolic Cylinder

A QUADRATIC SURFACE given by the equation

x2

a2 
�

y2

b2 
��1 :

See also ELLIPTIC PARABOLOID, PARABOLOID
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Hyperbolic Disk
POINCARÉ HYPERBOLIC DISK

Hyperbolic Dodecahedron

A hyperbolic version of the Euclidean DODECAHE-

DRON.

See also HYPERBOLIC CUBE, HYPERBOLIC ICOSAHE-

DRON, HYPERBOLIC OCTAHEDRON, HYPERBOLIC TET-

RAHEDRON
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Hyperbolic Fixed Point (Differential
Equations)
A FIXED POINT for which the STABILITY MATRIX has
EIGENVALUES l1B0Bl2; also called a SADDLE POINT.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, STABLE IMPROPER NODE,
STABLE SPIRAL POINT, STABLE STAR, UNSTABLE

IMPROPER NODE, UNSTABLE NODE, UNSTABLE SPIRAL

POINT, UNSTABLE STAR
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Hyperbolic Fixed Point (Map)
A FIXED POINT of a LINEAR TRANSFORMATION (MAP) for
which the rescaled variables satisfy



( d � a)2 �4bg > 0 :

See also ELLIPTIC FIXED POINT (MAP), LINEAR

TRANSFORMATION, PARABOLIC FIXED POINT

Hyperbolic Functions
The hyperbolic functions sinh, cosh, tanh, csch, sech,
coth (HYPERBOLIC SINE, HYPERBOLIC COSINE, etc.)
share many properties with the corresponding CIR-

CULAR FUNCTIONS. The hyperbolic functions arise in
many problems of mathematics and mathematical
physics in which integrals involving

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
arise

(whereas the CIRCULAR FUNCTIONS involve
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
) :/

For instance, the HYPERBOLIC SINE arises in the
gravitational potential of a cylinder and the calcula-
tion of the Roche limit. The HYPERBOLIC COSINE

function is the shape of a hanging cable (the so-called
CATENARY). The HYPERBOLIC TANGENT arises in the
calculation of magnetic moment and rapidity of
special relativity. All three appear in the Schwarzs-
child metric using external isotropic Kruskal coordi-
nates in general relativity. The HYPERBOLIC SECANT

arises in the profile of a laminar jet. The HYPERBOLIC

COTANGENT arises in the Langevin function for
magnetic polarization.

The hyperbolic functions are defined by

sinh z �
ez � e �z

2
��sinh(�z) (1)

cosh z �
ez � e �z

2
�cosh(�z) (2)

tanh z �
ez � e �z

ez � e �z 
�

e2z � 1

e2z � 1 
(3)

csch z �
2

ez � e �z 
(4)

sech z �
2

ez � e�z 
(5)

coth z �
ez � e �z

ez � e �z 
�

e2z � 1

e2z � 1 
: (6)

For purely IMAGINARY arguments,

sinh(iz) �i sin z (7)

cosh(iz) �cos z : (8)

The hyperbolic functions satisfy many identities
analogous to the trigonometric identities (which can
be inferred using OSBORNE’S RULE) such as

cosh2 x �sinh2 x �1 (9)

cosh x �sinh x �ex (10)

cosh x�sinh x�e�x: (11)

See also Beyer (1987, p. 168). Some HALF-ANGLE

FORMULAS are

tanh
z

2

 !
�

sinh x � i sin y

cosh x � cos y
(12)

coth
z

2

 !
�

sinh x � i sin y

cosh x � cos y
: (13)

Some DOUBLE-ANGLE FORMULAS are

sinh(2x)�2 sinh x cosh x (14)

cosh(2x)�2 cosh2 x�1�1�2 sinh2 x (15)

Identities for COMPLEX arguments include

sinh(x�iy)�sinh x cosh y�i cosh x sin y (16)

cosh(x�iy)�cosh x cos y�i sinh x sin y: (17)

The ABSOLUTE SQUARES for COMPLEX arguments are

sinh(z)j j2�sinh2 x�sin2 y (18)

cosh(z)j j2�sinh2 x�cos2 y: (19)

Integrals involving hyperbolic functions include

g
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p �ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p
�

ffiffiffi
a

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p
�

ffiffiffi
a

p

�����
����� (20)

�ln
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p
�

ffiffiffi
a

p
)2

(a � bx) � a

�����
�����

�ln
(a � bx) � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(a � bx)

p
� a

bx

�����
�����: (21)

If b �0, then

g
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p �ln
2a � bx � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(a � bx)

p

bx

�����
����� (22)

�ln
2a

bx
�1

 !
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

bx

a

bx
�1

 !vuut
������

������: (23)

Let z�2a=bx�1; and a=bx�(z�1)=2 and

g
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � bx

p �ln z�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(z�1)1

2(z�1)
qh i

�ln z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z�1)(z�1)

ph i
(24)

�ln z�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�1

p� �
�cosh�1(z) (25)

�cosh�1 1�
2a

bx

 !
(26)



�2 tanh �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a � bx

s !
: (27)

See also DOUBLE-ANGLE FORMULAS, FIBONACCI HY-

PERBOLIC FUNCTIONS, HALF-ANGLE FORMULAS, HY-

PERBOLIC COS ECANT, HYPERBOLIC COS INE,
HYPERBOLIC COTANGENT, GENERALIZED HYPERBOLIC

FUNCTIONS, HYPERBOLIC SECANT, HYPERBOLIC SINE,
HYPERBOLIC TANGENT, INVERSE HYPERBOLIC FUNC-

TIONS, OSBORNE’S RULE
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Hyperbolic Geometry
A NON-EUCLIDEAN GEOMETRY, also called LOBA-

CHEVSKY-BOLYAI-GAUSS GEOMETRY, having constant
SECTIONAL CURVATURE -1. This GEOMETRY satisfies all
of EUCLID’S POSTULATES except the PARALLEL POSTU-

LATE, which is modified to read: For any infinite
straight LINE L and any POINT P not on it, there are
many other infinitely extending straight LINES that
pass through P and which do not intersect L .

In hyperbolic geometry, the sum of ANGLES of a
TRIANGLE is less than 1808, and TRIANGLES with the
same angles have the same areas. Furthermore, not
all TRIANGLES have the same ANGLE sum (cf. the AAA
THEOREM for TRIANGLES in Euclidean 2-space). There
are no similar triangles in hyperbolic geometry. The
best-known example of a hyperbolic space are
SPHERES in Lorentzian 4-space. The POINCARÉ HYPER-

BOLIC DISK is a hyperbolic 2-space. Hyperbolic geo-
metry is well understood in 2-D, but not in 3-D.

Geometric models of hyperbolic geometry include the
KLEIN-BELTRAMI MODEL, which consists of an OPEN

DISK in the Euclidean plane whose open chords
correspond to hyperbolic lines. A 2-D model is the
POINCARÉ HYPERBOLIC DISK. Felix Klein constructed
an analytic hyperbolic geometry in 1870 in which a
POINT is represented by a pair of REAL NUMBERS

(x1 ; x2) with

x2
1 �x2

2 B1

(i.e., points of an OPEN DISK in the COMPLEX PLANE)

and the distance between two points is given by

d(x; X) �a cosh �1 1 � x1X1 � x2X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1 � x2
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � X2

1 � X2
2

p" #
:

The geometry generated by this formula satisfies all
of EUCLID’S POSTULATES except the fifth. The METRIC

of this geometry is given by the CAYLEY-KLEIN-

HILBERT METRIC,

g11�
a2(1 � x2

2)

(1 � x2
1 � x2

2)2

g12�
a2x1x2

(1 � x2
1 � x2

2)2

g22�
a2(1 � x2

1)

(1 � x2
1 � x2

2)2 :

Hilbert extended the definition to general bounded
sets in a EUCLIDEAN SPACE.

See also ELLIPTIC GEOMETRY, EUCLIDEAN GEOMETRY,
HYPERBOLIC METRIC, KLEIN-BELTRAMI MODEL, NON-

EUCLIDEAN GEOMETRY, PSEUDOSPHERE, SCHWARZ-

PICK LEMMA
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Hyperbolic Helicoid

The surface with parametric equations

x�
sinh v cos(tu)

1 � cosh u cosh v
(1)

y�
sinh v sin(tu)

1 � cosh u cosh v
(1)



z �
cosh v sinh(u)

1 � cosh u cosh v 
: (3)

where t is a constant (the torsion).

See also HELICOID
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Hyperbolic Icosahedron

A hyperbolic version of the Euclidean ICOSAHEDRON.

See also HYPERBOLIC CUBE, HYPERBOLIC DODECAHE-

DRON, HYPERBOLIC OCTAHEDRON, HYPERBOLIC POLY-

HEDRON, HYPERBOLIC TETRAHEDRON
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Hyperbolic Inverse Functions
INVERSE HYPERBOLIC FUNCTIONS

Hyperbolic Knot
A hyperbolic knot is a KNOT that has a complement
that can be given a metric of constant curvature -1.
All hyperbolic knots are PRIME KNOTS (Hoste et al.
1998).

KNOTS which are not hyperbolic are either TORUS

KNOTS or SATELLITE KNOTS, as proved by Thurston in
1978. Of the prime knots with 16 or fewer crossings,
all but 32 are hyperbolic. Of these 32, 12 are torus
knots and the remaining 20 are satellites of the
TREFOIL KNOT (Hoste et al. 1998). The nonhyperbolic
knots with nine or fewer crossings are all torus knots,

including 03 �/01 (the (3; 2)/-TORUS KNOT), 05 �/01, 07 �/01,
08 �/19 (the (4; 3)/-TORUS KNOT), and 09 �/01.

The following table gives the number of nonhyper-
bolic and hyperbolic knots of n crossing starting with
n �3.

type Sloane counts

torus A051764 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 2, 1

satellite A051765 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 6, 10

nonhyperbolic A052407 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
3, 3, 8, 11

hyperbolic A052408 0, 1, 1, 3, 6, 20, 48, 164,
551, 2176, 9985, 46969,
253285, 1388694

Almost all hyperbolic knots can be distinguished by
their hyperbolic volumes (exceptions being 05 �/02 and
a certain 12-crossing knot; see Adams 1994, p. 124). It
has been conjectured that the smallest hyperbolic
volume is 2.0298..., that of the FIGURE-OF-EIGHT KNOT.
MUTANT KNOTS have the same hyperbolic knot
volume.

The KNOT SYMMETRY group of a hyperbolic knot must
be either a finite CYCLIC GROUP or a finite DIHEDRAL

GROUP (Riley 1979, Kodama and Sakuma 1992, Hoste
et al. 1998).

See also MUTANT KNOT, SATELLITE KNOT, TORUS

KNOT
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Hyperbolic Lemniscate Function
By analogy with the LEMNISCATE FUNCTIONS, hyper-
bolic lemniscate functions can also be defined

arcsinhlemn x �g
x

0

(1 �t4)1 =2 dt (1)

arccoshlemn x �g
1

0

(1 �t4)1 =2 dt: (2)

Let 0 5 u 5 p=2 and 0 5v 51; and write

um

2
�g

v

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ; (3)

where m is the constant obtained by setting u � p=2
and v �1. Then

m �
2

p
K

1ffiffiffi
2

p
 !

; (4)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, and Ramanujan showed

2 tan�1 v � u �
X�
n�1

sin(2nu)

n cosh(np) 
; (5)

1
8 p �

1
2 tan �1(v2) �

X�
n�0

( �1)ncos[(2n � 1)u]

(2n � 1)cosh 1
2(2n � 1)p
h i (6)

and

ln
1 � v

1 � v

 !
�ln tan 1

4 p �
1
2 u

� �h i

�4
X�
n�0

( �1)n sin[(2n � 1)u]

(2n � 1)[e(2n�1)p � 1]
(7)

(Berndt 1994).

See also LEMNISCATE FUNCTION

References
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York:

Springer-Verlag, pp. 255 �/58, 1994.

Hyperbolic Map
A linear MAP Rn is hyperbolic if none of its EIGENVA-

LUES has modulus 1. This means that Rn can be
written as a DIRECT SUM of two A -invariant SUB-

SPACES Es and Eu (where s stands for stable and u for
unstable). This means that there exist constants C �
0 and 0 B l B1 such that

Anvk k5C ln vk k  if v � Es

A�nvk k5C ln vk k  if v � Eu

for n �0, 1, ....

See also PESIN THEORY

Hyperbolic Metric
The METRIC for the POINCARÉ HYPERBOLIC DISK, a
model for HYPERBOLIC GEOMETRY. The hyperbolic
metric is invariant under conformal maps of the
disk onto itself.

See also HYPERBOLIC GEOMETRY, POINCARÉ HYPER-

BOLIC DISK
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Hyperbolic Octahedron

A hyperbolic version of the Euclidean OCTAHEDRON,
which is a special case of the ASTROIDAL ELLIPSOID

with a�b�c�1: It is given by the PARAMETRIC

EQUATIONS

x�(cos u cos v)3

y�(sin u cos v)3

z�sin3 v

for u � [�p=2; p=2] and v � [�p; p]:/
The FIRST FUNDAMENTAL FORM coefficients are

E�9a6 cos2 u sin2 u cos6 v (1)

F�9
4 a6 cos5 v sin v sin(4u) (2)

G�9a6 cos2 v sin2 v[cos2 v(cos6 u�sin6 u)

�sin2 v]; (3)

the SECOND FUNDAMENTAL FORM coefficients are

e�
24a3 cos2 u sin2 u csc(2u)cos3 v sin vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 � cos(4u) � [7 � cos(4u)]cos(2v)
p (4)

f �0 (5)

g�
24a3 cos2 u sin2 u csc(2u)cos3 v sin vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 � cos(4u) � [7 � cos(4u)]cos(2v)
p ; (6)

the AREA ELEMENT is



dA �9
8 a

6 cos4 v sin v sin(2u)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 �cos(4u) �[7 �cos(4u)cos(2v)

p
; (7)

and the GAUSSIAN CURVATURE is

K �
256 sec4 v

9a6 f[7 � cos(4u)]cos(2v) � cos(4u) � 9g2 : (8)

The MEAN CURVATURE is given by a complicated
expression.

See also ASTROIDAL ELLIPSOID, HYPERBOLIC CUBE,
HYPERBOLIC DODECAHEDRON, HYPERBOLIC ICOSAHE-

DRON, HYPERBOLIC TETRAHEDRON
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Hyperbolic Paraboloid

The QUADRATIC and DOUBLY RULED SURFACE given by
the Cartesian equation

z �
y2

b2 
�

x2

a2 
(1)

(left figure). An alternative form is

z �xy (2)

(right figure; Fischer 1986), which has PARAMETRIC

EQUATIONS

x(u; v) �u (3)

y(u; v) �v (4)

z(u; v) �uv (5)

(Gray 1997, pp. 297 �/98).

The coefficients of the FIRST FUNDAMENTAL FORM are

E �1 �v2 (6)

F �uv (7)

G �1 �u2 ; (8)

and the SECOND FUNDAMENTAL FORM coefficients are

e �0 (9)

f �(1 �u2 �v2) �1=2 (10)

g �0; (11)

giving SURFACE AREA element

dS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �u2 �v2

p
: (12)

The GAUSSIAN CURVATURE is

K ��(1 �u2 �v2) �2 (13)

and the MEAN CURVATURE is

H �
uv

(1 � u2 � v2)3 =2 : (14)

Three skew lines always define a one-sheeted HYPER-

BOLOID, except in the case where they are all parallel
to a single PLANE but not to each other. In this case,
they determine a hyperbolic paraboloid (Hilbert and
Cohn-Vossen 1999, p. 15).

See also DOUBLY RULED SURFACE, ELLIPTIC PARA-

BOLOID, PARABOLOID, RULED SURFACE, SADDLE,
SKEW QUADRILATERAL
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Hyperbolic Partial Differential Equation
A PARTIAL DIFFERENTIAL EQUATION of second-order,
i.e., one OF THE FORM



Auxx �2Buxy �Cuyy �Dux �Euy �F �0; (1)

is called hyperbolic if the MATRIX

Z �
A B
B C

� �
(2)

satisfies det/(Z) B0: The WAVE EQUATION is an exam-
ple of a hyperbolic partial differential equation.
Initial-boundary conditions are used to give

u(x; y; t) �g(x; y; t) for x � @V; t > 0 (3)

u(x; y; 0) �v0(x; y) in V (4)

ut(x; y; 0) �v1(x; y) in V; (5)

where

uxy �f (ux ; ut ; x ; y) (6)

holds in V:/

See also ELLIPTIC PARTIAL DIFFERENTIAL EQUATION,
PARABOLIC PARTIAL DIFFERENTIAL EQUATION, PAR-

TIAL DIFFERENTIAL EQUATION

Hyperbolic Plane
In the hyperbolic plane H2 ; a pair of LINES can be
PARALLEL (diverging from one another in one direc-
tion and intersecting at an IDEAL POINT at infinity in
the other), can intersect, or can be HYPERPARALLEL

(diverge from each other in both directions).

See also EUCLIDEAN PLANE, RIEMANN SPHERE, RIGID

MOTION
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Hyperbolic Point
A point p on a REGULAR SURFACE M �R3 is said to be
hyperbolic if the GAUSSIAN CURVATURE K(p) B0 or
equivalently, the PRINCIPAL CURVATURES k1 and k2 ;
have opposite signs.

See also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN

CURVATURE, HYPERBOLIC FIXED POINT (DIFFEREN-

TIAL EQUATIONS), HYPERBOLIC FIXED POINT (MAP),
PARABOLIC POINT, PLANAR POINT, SYNCLASTIC
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Hyperbolic Polyhedron
A POLYHEDRON in a HYPERBOLIC GEOMETRY.

See also HYPERBOLIC CUBE, HYPERBOLIC DODECAHE-

DRON, HYPERBOLIC ICOSAHEDRON, HYPERBOLIC OCTA-

HEDRON, HYPERBOLIC TETRAHEDRON

References
Hodgson, C. D. and Riven, I. "A Characterization of Compact

Convex Polyhedra in Hyperbolic 3-Space." Invent. Math.
111, 77�/11, 1993.

Kellerhals, R. " Shape and Size Through Hyperbolic Eyes."
Math. Intell. 17, 21�/0, 1995.

Kellerhals, R. "Nichteuklidische Geometrie und Volumina
hyperbolischer Polyeder." Math. Semesterber. 43, 155 �/68,
1996.

Ratcliffe, J. G. Foundations of Hyperbolic Manifolds. New
York: Springer-Verlag, 1994.

Rivin, I. " A Characterization of Ideal Polyhedra in Hyper-
bolic 3-Space." Ann. Math. 143, 51�/0, 1996.

Thurston, W. P. and Levy, S. (Eds.). Three-Dimensional
Geometry and Topology, Vol. 1. Princeton, NJ: Princeton
University Press, 1997.

Trott, M. "The Cover Image: Hyperbolic Platonic Bodies."
§8.3.10 in The Mathematica Guidebook, Vol. 2: Graphics
in Mathematica. New York: Springer-Verlag, 2000.

Hyperbolic Rotation
Also known as the a Lorentz transformation or
Procrustian stretch, a hyperbolic transformation
leaves each branch of the HYPERBOLA x?y?�xy invar-
iant and transforms CIRCLES into ELLIPSES with the
same AREA.

x?�m�1x

y?�my:

See also CROSSED HYPERBOLIC ROTATION
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Hyperbolic Secant

The hyperbolic secant is defined as



sech x �
1

cosh x 
�

2

ex � e�x 
; (1)

where cosh x is the HYPERBOLIC COSINE. It has a
MAXIMUM at x �0 and inflection points at
x �9sech�1 1

ffiffiffi
2

p� �
:0:881374 :/

Equating coefficients of u0 ; u4 ; and u8 in the RAMA-

NUJAN COS/COSH IDENTITY

1 �2
X�
n �1

cos(nu)

cosh(np)

" #�2

� 1 �2
X�
n�1

cosh(nu)

cosh(np)

" #�2

�
2G4 3

4

� �
p 

(2)

gives the amazing identities

X�
n�1

sech( pn) �
1

2

ffiffiffi
p

p

G 3
4

� �h i2 �1

8><
>:

9>=
>; (3)

X�
n�1

n4 sech(pn) �
18 G 3

4

� �h i2

ffiffiffi
p

p
X�
n�1

n2 sech(pn)

" #2

(4)

X�
n�1

n8 sech(pn)

�
168[ G(3

4)]
2ffiffiffi

p
p

X�
n�1

n2 sech(pn)

" #X�
n�1

n6 sech(pn)

�
63000[G(3

4)]
6

p3 =2

X�
n�1

n2 sech(pn)

" #4

: (5)

See also BENSON’S FORMULA, CATENARY, CATENOID,
EULER NUMBER, HYPERBOLIC COSINE, OBLATE SPHER-

OIDAL COORDINATES, PSEUDOSPHERE, SECANT, SUR-

FACE OF REVOLUTION, TRACTRIX, TRACTROID
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Hyperbolic Sine

The hyperbolic sine is defined as

sinh x �1
2(e

x �e�x) :

The notation sh x is sometimes also used (Gradshteyn
and Ryzhik 2000, p. xxix).

See also BETA EXPONENTIAL FUNCTION, BIPOLAR

COORDINATES, BIPOLAR CYLINDRICAL COORDINATES,
BISPHERICAL COORDINATES, CATENARY, CATENOID,
CONICAL FUNCTION, CUBIC EQUATION, DE MOIVRE’S

IDENTITY, DIXON-FERRAR FORMULA, ELLIPTIC CYLIND-

RICAL COORDINATES, ELSASSER FUNCTION, GUDER-

MANNIAN FUNCTION, HELICOID, HELMHOLTZ

DIFFERENTIAL EQUATION–ELLIPTIC CYLINDRICAL CO-

ORDINATES, HYPERBOLIC COSECANT, LAPLACE’S EQUA-

TION–BISPHERICAL COORDINATES, LAPLACE’S

EQUATION–TOROIDAL COORDINATES, LEBESGUE CON-

STANTS (FOURIER SERIES), LORENTZ GROUP, MERCA-

TOR PROJECTION, MILLER CYLINDRICAL PROJECTION,
MODIFIED BESSEL FUNCTION OF THE SECOND KIND,
MODIFIED SPHERICAL BESSEL FUNCTION, MODIFIED

STRUVE FUNCTION, NICHOLSON’S FORMULA, OBLATE

SPHEROIDAL COORDINATES, PARABOLA INVOLUTE,
PARTITION FUNCTION P , POINSOT’S SPIRALS, PROLATE

SPHEROIDAL COORDINATES, RAMANUJAN’S TAU FUNC-

TION, SCHLÄ FLI’S FORMULA, SHI, SINE, SINE-GORDON

EQUATION, SURFACE OF REVOLUTION, TOROIDAL CO-

ORDINATES, TOROIDAL FUNCTION, TRACTRIX, WAT-

SON’S FORMULA
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Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,
Series, and Products, 6th ed. San Diego, CA: Academic
Press, 2000.

Spanier, J. and Oldham, K. B. "The Hyperbolic Sine sinh(x)
and Cosine cosh(x) Functions." Ch. 28 in An Atlas of
Functions. Washington, DC: Hemisphere, pp. 263 �/71,
1987.

Hyperbolic Sine Integral
SHI

Hyperbolic Space
HYPERBOLIC GEOMETRY

Hyperbolic Spiral

An ARCHIMEDEAN SPIRAL with POLAR equation

r �
a

u 
:

The hyperbolic spiral originated with Pierre Varignon
in 1704 and was studied by Johann Bernoulli between
1710 and 1713, as well as by Cotes in 1722 (MacTutor
Archive).

See also ARCHIMEDEAN SPIRAL, SPIRAL
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Hyperbolic Spiral Inverse Curve
Taking the pole as the INVERSION CENTER, the
HYPERBOLIC SPIRAL inverts to ARCHIMEDES’ SPIRAL

r �a u:

Hyperbolic Spiral Roulette
The ROULETTE of the pole of a HYPERBOLIC SPIRAL

rolling on a straight line is a TRACTRIX.

Hyperbolic Substitution
A substitution which can be used to transform
integrals involving square roots into a more tractable
form.

Form Substitution

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �a2

p
/ /x �a sinh u/

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �a2

p
/ /x�a cosh u/

See also INTEGRAL, TRIGONOMETRIC SUBSTITUTION

Hyperbolic Tangent

By way of analogy with the usual TANGENT

tan x�
sin x

cos x
;

the hyperbolic tangent is defined as

tanh x�
sinh x

cosh x
�

ex � e�x

ex � e�x
�

e2x � 1

e2x � 1
;

where sinh x is the HYPERBOLIC SINE and cosh x is the
HYPERBOLIC COSINE. The notation th x is sometimes
also used (Gradshteyn and Ryzhik 2000, p. xxix).
The hyperbolic tangent can be written using a
CONTINUED FRACTION as



tanh x �
x

1 �
x2

3 �
x3

5 � � � �

:

See also BERNOULLI NUMBER, CATENARY, CORRELA-

TION COEFFICIENT–GAUSSIAN BIVARIATE DISTRIBU-

TION, FISHER’S Z ’-TRANSFORMATION, HYPERBOLIC

COTANGENT, LORENTZ GROUP, MERCATOR PROJEC-

TION, OBLATE SPHEROIDAL COORDINATES, PSEUDO-

SPHERE, SURFACE OF REVOLUTION, TANGENT,
TRACTRIX, TRACTROID
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Hyperbolic Tetrahedron

A hyperbolic version of the Euclidean TETRAHEDRON.

See also HYPERBOLIC CUBE, HYPERBOLIC DODECAHE-

DRON, HYPERBOLIC ICOSAHEDRON, HYPERBOLIC OCTA-

HEDRON, REULEAUX TETRAHEDRON
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Hyperbolic Umbilic Catastrophe

A CATASTROPHE which can occur for three control
factors and two behavior axes. The hyperbolic umbilic
is the universal unfolding of the function germ
f (x; y) �x3 �y3 : The CODIMENSION of f is 3, and
therefore the universal unfolding F of f has three
unfolding parameters.

See also CATASTROPHE THEORY, ELLIPTIC UMBILIC

CATASTROPHE
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Hyperboloid
A QUADRATIC SURFACE which may be one- or two-
sheeted. The one-sheeted hyperboloid is a SURFACE OF

REVOLUTION obtained by rotating a HYPERBOLA about
the perpendicular bisector to the line between the
FOCI, while the two-sheeted hyperboloid is a SURFACE

OF REVOLUTION obtained by rotating a HYPERBOLA

about the line joining the FOCI (Hilbert and Cohn-
Vossen 1991, p. 11).

The one-sheeted circular hyperboloid is a DOUBLY

RULED SURFACE. When oriented along the Z -AXIS, the
one-sheeted circular hyperboloid has CARTESIAN CO-

ORDINATES equation

x2

a2
�

y2

a2
�

z2

c2
�1; (1)

and parametric equation



x�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
cos v (2)

y�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
sin v (3)

z�cu (4)

for v � [0; 2p) (left figure). Other parameterizations
include

x(u; v)�a(cos u�v sin u) (5)

y(u; v)�a(sin u9v sin u) (6)

z(u; v)�9cv; (7)

(middle figure), or

x(u; v)�a cosh v cos u (8)

y(u; v)�a cosh v sin u (9)

z(u; v)�c sinh v (10)

(right figure).

A hyperboloid of one sheet is also obtained as the
envelope of a CUBE rotated about a space diagonal
(Steinhaus 1983, pp. 171�/72). Three skew lines al-
ways define a one-sheeted hyperboloid, except in the
case where they are all parallel to a single PLANE but
not to each other (Hilbert and Cohn-Vossen 1999,
p. 15).

The VOLUME of a one-sheeted hyperboloid of height h ,
waist radius a , and top and bottom radii R is

V�pha2 1�
h2

12b2

 !
(11)

�1
3ph(2a2�R2); (12)

where

R2�a2 1�
h2

4b2

 !
(13)

(Harris and Stocker 1998). An obvious generalization
gives the one-sheeted ELLIPTIC HYPERBOLOID.

The hyperboloid of one sheet can be constructed by
connecting two concentric vertically offset rings wire
tilted wires, as illustrated above (Steinhaus 1983,
pp. 242�/43; Hilbert and Cohn-Vossen 1999, p. 11).
Surprisingly, when the wires are fastened together so
that rotation but not sliding is permitted, the frame-
work can be expanded and collapsed as one ring is
rotated relative to the other (Hilbert and Cohn-
Vossen 1999, pp. 16�/7 and 29�/1).

A two-sheeted circular hyperboloid oriented along the
Z -AXIS has CARTESIAN COORDINATES equation

x2

a2
�

y2

a2
�

z2

c2
��1: (14)

The PARAMETRIC EQUATIONS are

x�a sinh u cos v (15)

y�a sinh u sin v (16)

z�9c cosh u (17)

for v � [0; 2p): Note that the plus and minus signs in z
correspond to the upper and lower sheets. The two-
sheeted circular hyperboloid oriented along the X -

AXIS has Cartesian equation



x2

a2 
�

y2

a2 
�

z2

c2 
�1 (18)

and PARAMETRIC EQUATIONS

x �9a cosh u cosh v (19)

y �a sinh u cosh v (20)

z �c sinh v (21)

(Gray 1997, p. 406). The VOLUME of a two-sheeted
hyperboloid of half-separation a , height h , and radius
R is

V �
2ph2b2

a2
(a �1

3 h) (22)

� ph R2�
h2b2

3a2

 !
; (23)

where

R2 �
hb2

a2
(2a �h) (24)

(Harris and Stocket 1998). Again, an obvious general-
ization gives the two-sheeted ELLIPTIC HYPERBOLOID.

The SUPPORT FUNCTION of the hyperboloid of one
sheet

x2

a2 
�

y2

b2 
�

z2

c2 
�1 (25)

is

h �
x2

a4 
�

y2

b4 
�

z2

c4

 !�1 =2

; (26)

and the GAUSSIAN CURVATURE is

K ��
h4

a2b2c2 
: (27)

The SUPPORT FUNCTION of the hyperboloid of two
sheets

x2

a2 
�

y2

b2 
�

z2

c2 
�1 (28)

is

h �
x2

a4 
�

y2

b4 
�

z2

c4

 !�1 =2

; (29)

and the GAUSSIAN CURVATURE is

K �
h4

a2b2c2 
(30)

(Gray 1997, p. 414).

See also CATENOID, CONFOCAL QUADRICS, DOUBLY

RULED SURFACE, ELLIPSOID, ELLIPSOIDAL COORDI-

NATES, ELLIPTIC HYPERBOLOID, HYPERBOLA, HYPER-

BOLOID EMBEDDING, PARABOLOID, RULED SURFACE
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Hyperboloid Embedding
A 4-HYPERBOLOID has NEGATIVE CURVATURE, with

R2�x2�y2�z2�w2 (1)

2x
dx

dw
�2y

dy

dw
�2z

dz

dw
�2w�0: (2)

Since

r�xx̂�yŷ�zẑ; (3)

dw�
x dx � y dy � z dz

w
�

r � drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p : (4)

To stay on the surface of the HYPERBOLOID, the LINE

ELEMENT is given by

ds2�dx2�dy2�dz2�dw2

�dx2�dy2�dz2�
r2 dr2

r2 � R2

�dr2�r2 dV2�
dr2

1 � R2

r2

: (5)

Hypercomplex Number
There are at least two definitions of hypercomplex
numbers. CLIFFORD ALGEBRAISTS call their higher
dimensional numbers hypercomplex, even though
they do not share all the properties of complex
numbers and no classical function theory can be
constructed over them.



According to van der Waerden (1985), a hypercomplex
number is a number having properties departing
from those of the REAL and COMPLEX NUMBERS. The
most common examples are BIQUATERNIONS, EXTER-

IOR ALGEBRAS, GROUP algebras, MATRICES, OCTO-

NIONS, and QUATERNIONS. One type of hypercomplex
number due to Davenport (1996) and sometimes
called "the" hypercomplex numbers are defined ac-
cording to the multiplication table

ij �ji �k (1)

jk �kj ��i (2)

ki �ik ��j; (3)

and therefore satisfy

i2 �j2 ��1 (4)

k2 �1 : (5)

Unlike QUATERNIONS, multiplication of these hyper-
complex numbers is commutative, and unlike real
and complex numbers, not all nonzero hypercomplex
numbers have a multiplicative inverse. An applica-
tion of this sort of hypercomplex number can be found
in the julia_fractal command in POVRay .

See also BIQUATERNION, CAYLEY NUMBER, CLIFFORD

ALGEBRA, COMPLEX NUMBER, EXTERIOR ALGEBRA,
GROUP, MATRIX, OCTONION, QUATERNION, REAL

NUMBER, WEIERSTRASS’S THEOREM
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Hypercube

The generalization of a 3-CUBE to n -D, also called a
MEASURE POLYTOPE. It is a regular POLYTOPE with
mutually PERPENDICULAR sides, and is therefore an
ORTHOTOPE. It is denoted gn and has SCHLÄ FLI

SYMBOL

f4 ; 3; 3|ffl{zffl}
n �2

g:

The number of k -cubes contained in an n -cube can be
found from the COEFFICIENTS of (2k �1)n :/

The 1-hypercube is a LINE SEGMENT, the 2-hypercube
is the SQUARE, and the 3-hypercube is the CUBE. The
hypercube in R4 ; called a TESSERACT, has the SCHLÄ -

FLI SYMBOL f4; 3; 3g and VERTICES (91; 91; 91; 91):
The above figures show two visualizations of the
TESSERACT. The figure on the left is a projection of the
TESSERACT in 3-space (Gardner 1977; Williams 1979,
p. 26), which also appears on the cover of Born (1926),
and the figure on the right is the GRAPH of the
TESSERACT symmetrically projected into the PLANE

(Coxeter 1973). A TESSERACT has 16 VERTICES, 32
EDGES, 24 SQUARES, and eight CUBES. The dual of the
4-hypercube is the 16-CELL.

The above figures show the graphs for the n -hyper-
cubes with n�2 to 7. All hypercubes are HAMILTO-

NIAN, and any HAMILTONIAN CIRCUIT of a labeled
hypercube defines a GRAY CODE (Skiena 1990, p. 149).

See also CROSS POLYTOPE, CUBE, GLOME, HAMILTO-

NIAN GRAPH, HYPERCUBE LINE PICKING, HYPER-

SPHERE, ORTHOTOPE, PARALLELEPIPED, POLYTOPE,
SIMPLEX, TESSERACT
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Hypercube Line Picking
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let two points x and y be picked randomly from a
unit n -dimensional HYPERCUBE. The expected dis-
tance between the points D(N) is then

D(N) �g
1

0

� � � g
1

0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2n

[(x1 �y1)2

�(x2 �y2)2 �. . .�(xn �yn)]1 =2 dx1 � � �dxndy1 . . . dyn :

(1)

This MULTIPLE INTEGRAL has been evaluated analyti-
cally only for small values of n . The case D(1)
corresponds to the POINT-POINT DISTANCE between
two random points in the interval [0; 1]:/

The function D(n) satisfies

1
3 n

1 =2 5D(n) 5 1
6 n
� �1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
1 �2 1�

3

5n

 !1 =2
2
4

3
5

vuuut (2)

(Anderssen et al. 1976). The first few numerical and
analytic results for D(n) are

D(1) �1
3

D(2) � 1
15[

ffiffiffi
2

p
�2 �5 ln(1 �

ffiffiffi
2

p
)] �0:521405433 . . .

D(3) � 1
105[4 �17

ffiffiffi
2

p
�6

ffiffiffi
3

p
�21 ln(1 �

ffiffiffi
2

p
)

�42 ln(2 �
ffiffiffi
3

p
) �7 p]

�0:661707182 . . .

D(4) �0:77766 . . .

D(5) �0:87852 . . .

D(6) �0:96895 . . .

D(7) �1:05159 . . .

D(8) �1:12817 . . .

See also CUBE LINE PICKING, SQUARE TRIANGLE

PICKING
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Hypercube Triangulation
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Hyperdeterminant
A technically defined extension of the ordinary
DETERMINANT to "higher dimensional" HYPERMA-

TRICES. Cayley (1845) originally coined the term,
but subsequently used it to refer to an ALGEBRAIC

INVARIANT of a multilinear form. The hyperdetermi-
nant of the 2 �2 �2 HYPERMATRIX A �aijk (for
i ; j ; k �0 ; 1) is given by

det(A) �(a2
000a2

111 �a2
001a2

110 �a2
010a2

101 �a2
011a2

100)

�2(a000a001a110a111 �a000a010a101a111 �a000a011a100a111

�a001a010a101a110 �a001a011a110a100 �a010a011a101a100)

�4(a000a011a101a110 �a001a010a100a111) :

The above hyperdeterminant vanishes IFF the follow-
ing system of equations in six unknowns has a
nontrivial solution,

a000x0y0 �a010x0y1 �a100x1y0 �a110x1y1 �0

a001x0y0 �a011x0y1 �a101x1y0 �a111x1y1 �0

a000x0z0 �a001x0z1 �a100x1z0 �a101x1z1 �0

a010x0z0 �a011x0z1 �a110x1z0 �a111x1z1 �0

a000y0z0 �a001y0z1 �a010y1z0 �a011y1z1 �0

a100y0z0 �a101y0z1 �a110y1z0 �a111y1z1 �0:

Glynn (1998) has found the only known multiplicative
hyperdeterminant in dimension larger than two.

See also DETERMINANT, HYPERMATRIX
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Hyperedge
A connection between two or more vertices of a
HYPERGRAPH. A hyperedge connecting just two ver-
tices is simply a usual EDGE.

See also EDGE (GRAPH), HYPERGRAPH

Hyperellipse

yn =m �c
x

a

�����
�����
n =m

�c �0;

with n=m > 2 : If n=m B2; the curve is a HYPOELLIPSE.

See also ELLIPSE, HYPOELLIPSE, SUPERELLIPSE
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Hyperelliptic Function
ABELIAN FUNCTION

Hyperelliptic Integral
ABELIAN INTEGRAL

Hyperfactorial
The function defined by

H(n) �K(n �1) �112233 � � �nn ;

where K(n) is the K -FUNCTION and the first few
values for n � 1, 2, ... are 1, 4, 108, 27648,
86400000, 4031078400000, 3319766398771200000,
... (Sloane’s A002109), and these numbers are called
hyperfactorials by Sloane and Plouffe (1995).

See also BARNES’ G -FUNCTION, GLAISHER-KINKELIN

CONSTANT, K -FUNCTION
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Hyperfinite Set
One of the most useful tools in NONSTANDARD ANALY-

SIS is the concept of a hyperfinite set. To understand a
hyperfinite set, begin with an arbitrary infinite set X
whose members are not sets, and form the SUPER-

STRUCTURE S(X) over X . Assume that X includes the
natural numbers as elements, let N denote the set of
natural numbers as elements of X , and let �S(X) be
an ENLARGEMENT of S(X) : By the TRANSFER PRINCI-

PLE, the ordering B on N extends to a strict linear

ordering on �N; which can be denoted with the
symbol "/B:/" Since �S(X) is an enlargement of S(X);
it satisfies the CONCURRENCY PRINCIPLE, so that there
is an element n of �N such that if n �N; then n B n:
This follows because the relation B is a CONCURRENT

RELATION on the set of natural numbers.

Any member n of �N is called an infinite nonstandard
natural number, and for any set A � �S(X) ; if A is in
one-to-one correspondence with any element of �N;
then A is called a hyperfinite set in �S(X) : Because
there are infinite nonstandard natural numbers in
any enlargement �S(X) of S(X); there are hyperfinite
sets that are not finite, in any such enlargement.
Such hyperfinite sets can be used to study infinite
structures satisfying various finiteness conditions.
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Hypergame
A two-player game in which player 1 chooses any
FINITE GAME and player 2 moves first. A PSEUDOPAR-

ADOX then arises as to whether the hypergame is
itself a FINITE GAME.

See also FINITE GAME, GAME

Hypergeometric Differential Equation

x(x �1)
d2y

dx2 
�[(1 � a � b)x � g]

dy

dx 
� aby �0:

It has REGULAR SINGULAR POINTS at 0, 1, and �:
Every ORDINARY DIFFERENTIAL EQUATION of second-
order with at most three REGULAR SINGULAR POINTS

can be transformed into the hypergeometric differ-
ential equation.

See also CONFLUENT HYPERGEOMETRIC DIFFERENTIAL



EQUATION, CONFLUENT HYPERGEOMETRIC FUNCTION,
GENERALIZED HYPERGEOMETRIC FUNCTION, HYPER-

GEOMETRIC FUNCTION
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Hypergeometric Distribution
Let there be n ways for a successful and m ways for
an unsuccessful trial out of a total of n�m possibi-
lities. Take N samples and let xi equal 1 if selection i
is successful and 0 if it is not. Let x be the total
number of successful selections,

x�
XN

i�1

xi: (1)

The probability of i successful selections is then

P(x�i)�

[# ways for i successes][# ways for N � i unsuccesses]

[total number of ways to select]

�

n
i

� �
m

N � i

� �
n � m

N

� � �

n!

i!(n � i!)

m!

(m � i � N)!(N � i)!
(n � m)!

N!(N � n � m)!

�
n!m!N!(N � m � n)!

i!(n � i)!(m � i � N)!(N � i)!(n � m)!
: (2)

The i th selection has an equal likelihood of being in
any trial, so the fraction of acceptable selections p is

p�
n

n � m
(3)

P(xi�1)�
n

n � m
�p: (4)

The expectation value of x is

m��x	�
XN

i�1

xi

* +
�
XN

i�1

�xi	

�
XN

i�1

n

n � m
�

nN

n � m
�Np: (5)

The VARIANCE is

var(x)�
XN

i�1

var(xi)�
XN

i�1

XN

j�1

j"1

cov(xi; xj): (6)

Since xi is a BERNOULLI variable,

var(xi)�p(1�p)�
n

n � m
1�

n

n � m

 !

�
n

n � m
1�

n

n � m

 !

�
n

n � m

n � m � n

n � m

 !
�

nm

(n � m)2 ; (7)

so

XN

i�1

var(xi)�
Nnm

(n � m)2 : (8)

For iB j , the COVARIANCE is

cov(xi; xj)��xixj	��xi	�xj	: (9)

The probability that both i and j are successful for
i"j is

P(xi�1; xj�1)�P(xi�1)P(xj�1½xi�1)

�
n

n � m

n � 1

n � m � 1

�
n(n � 1)

(n � m)(n � m � 1)
: (10)

But since xi and xj are random BERNOULLI variables
(each 0 or 1), their product is also a BERNOULLI

variable. In order for xixj to be 1, both xi and xj must
be 1,

�xixj	�P(xixj�1)�P(xi�1; xj�1)

�
n

n � m

n � 1

n � m � 1

�
n(n � 1)

(n � m)(n � m � 1)
: (11)

Combining (11) with

�xi	�xj	�
n

n � m

n

n � m
�

n2

(n � m)2 ; (12)

gives

cov(xi; xj)�
(n � m)(n2 � n) � n2(n � m � 1)

(n � m)2(n � m � 1)

�
n3 � mn2 � n2 � mn � n3 � n2m � n2

(n � m)2(n � m � 1)

��
mn

(n � m)2(n � m � 1)
: (13)

There are a total of N2 terms in a double summation



over N . However, i � j for N of these, so there are a
total of N2�N�N(N�1) terms in the COVARIANCE

summation

XN

i�1

Xn

j�1

j"i

cov(xi; xj)��
N(N � 1)mn

(n � m)2(n � m � 1)
: (14)

Combining equations (6), (8), (11), and (14) gives the
VARIANCE

var(x)�
Nmn

(n � m)2�
N(N � 1)mn

(n � m)2(n � m � 1)

�
Nmn

(n � m)2 1�
N � 1

n � m � 1

 !

�
Nmn

(n � m)2

N � m � 1 � N � 1

n � m � 1

 !

�
Nmn(n � m � N)

(n � m)2(n � m � 1)
; (15)

so the final result is

�x	�Np (16)

and, since

1�p�
m

n � m
(17)

and

np(1�p)�
mn

(n � m)2 ; (18)

we have

s2�var(x)�Np(1�p) 1�
N � 1

n � m � 1

 !

�
mnN(m � n � N)

(m � n)2(m � n � 1)
: (19)

The SKEWNESS is

g1�
q � pffiffiffiffiffiffiffiffiffi

npq
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N � m

s
N � 2n

N � 2

 !

�
(m � n)(m � n � 2N)

m � n � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � n � 1

mnN(m � n � N)

s
; (20)

and the KURTOSIS is given by the complicated expres-
sion

g2�
F(m; n; N)

mnN(�3 � m � n)(�2 � m � n)(�m � n � N)
;

(21)

where

F(m; n; N)�m3�m5�3m2n�6m3n�m4n�3mn2

�12m2n2�8m3n2�n3�6mn3�8m2n3

�mn4�n5�6m3N�6m4N�18m2nN

�6m3nN�18mn2N�24m2n2N�6n3N

�6mn3N�6n4N�6m2N2�6m3N2

�24mnN2�12m2nN2�6n2N2

�12mn2N2�6n3N2: (22)

The GENERATING FUNCTION is

f(t)�

m
N

� �
n � m

N

� �
2 F1(�N; �n; m�N�1; eit); (23)

where 2F1(a; b; c; z) is the HYPERGEOMETRIC FUNC-

TION.

If the hypergeometric distribution is written

hn(x; s)�

np
x

� �
nq

s � x

� �
n
s

� � ; (24)

then

Xs

x�0

hn(x; s)ux�A 2F1(�s; �np; nq�s�1; u): (25)
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Hypergeometric Function
A GENERALIZED HYPERGEOMETRIC FUNCTION

pFq(a1; . . . ; ap; b1; . . . ; bq; x) is a function which
can be defined in the form of a HYPERGEOMETRIC

SERIES, i.e., a series for which the ratio of successive
terms can be written

ck�1

ck

�
P(k)

Q(k)

�
(k � a1)(k � a2) � � � (k � ap)

(k � b1)(k � b2) � � � (k � bq)(k � 1)
x: (1)

(The factor of k�1 in the DENOMINATOR is present for
historical reasons of notation.)



The function 2F1(a; b; c; x) corresponding to p�2,
q�1 is the first hypergeometric function to be
studied (and, in general, arises the most frequently
in physical problems), and so is frequently known as
"the" hypergeometric equation or, more explicitly,
Gauss’s hypergeometric function (Gauss 1812;
Barnes 1908). To confuse matters even more, the
term "hypergeometric function" is less commonly
used to mean CLOSED FORM, and "hypergeometric
series" is sometimes used to mean hypergeometric
function.

The hypergeometric functions are solutions to the
HYPERGEOMETRIC DIFFERENTIAL EQUATION, which has
a REGULAR SINGULAR POINT at the ORIGIN. To derive
the hypergeometric function based on the HYPERGEO-

METRIC DIFFERENTIAL EQUATION, plug

y�
X�
n�0

Anzn (2)

y?�
X�
n�0

nAnzn�1 (3)

yƒ�
X�
n�0

n(n�1)Anzn�2 (4)

into

z(1�z)yƒ�[c�(a�b�1)z]y?�aby�0 (5)

to obtain

X�
n�0

n(n�1)Anzn�1�
X�
n�0

n(n�1)Anzn

�c
X�
n�0

nAnzn�1�(a�b�1)
X�
n�0

nAnzn

�ab
X�
n�0

Anzn�0 (6)

X�
n�2

n(n�1)Anzn�1�
X�
n�0

n(n�1)Anzn

�c
X�
n�1

nAnzn�1�(a�b�1)
X�
n�1

nAnzn

�ab
X�
n�0

Anzn�0 (7)

X�
n�0

(n�1)nAn�1zn�
X�
n�0

n(n�1)Anzn

�c
X�
n�0

(n�1)An�1zn�(a�b�1)
X�
n�0

nAnzn

�ab
X�
n�0

Anzn�0 (8)

X�
n�0

[n(n�1)An�1�n(n�1)An�c(n�1)An�1

�
X�
n�0

f(n�1)(n�c)An�1

�[n(n�1�a�b�1)�ab]Angzn�0 (9)

X�
n�0

f(n�1)(n�c)An�1

�[n2�(a�b)n�ab]Angzn�0; (10)

so

An�1�
(n � a)(n � b)

(n � 1)(n � c)
An (11)

and

y�A0 1�
ab

1!c
z�

a(a � 1)b(b � 1)

2!c(c � 1)
z2�. . .

" #
: (12)

This is the regular solution and is denoted

2F1(a; b; c; z)�1�
ab

1!c
z�

a(a � 1)b(b � 1)

2!c(c � 1)
z2�. . .

�
X�
n�0

(a)n(b)n

(c)n

zn

n!
; (13)

where (a)n are POCHHAMMER SYMBOLS. The hypergeo-
metric series is convergent for REAL �1BzB1; and
for z�91 if c > a�b: The complete solution to the
HYPERGEOMETRIC DIFFERENTIAL EQUATION is

y�A 2F1(a; b; c; z)

�Bz1�c
2F1(a�1�c; b�1�c; 2�c; z): (14)

Derivatives are given by

d 2F1(a; b; c; z)

dz
�

ab

c
2 F1(a�1; b�1; c�1; z) (15)

d2
2F1(a; b; c; z)

dz2

�
a(a � 1)b(b � 1)

c(c � 1)
2 F1(a�2; b�2; c�2; z) (16)

(Magnus and Oberhettinger 1949, p. 8).

An integral giving the hypergeometric function is

2F1(a; b; c; z)

�
G(c)

G(b)G(c � b) g
1

0

tb�1(1 � t)c�b�1

(1 � tz)a dt (17)

as shown by Euler in 1748 (Bailey 1935, pp. 4�/).



Barnes (1908) gave the CONTOUR INTEGRAL

2F1(a; b; c; z)

�
1

2pi g
i�

�i�

G(a � s)G(b � s)G(�s)

G(c � s)
(�z)s ds;

(18)

where arg(�z)j jB p and the path is curved (if neces-
sary) to separate the poles s��a�n; s��b�n; ...
(n�0, 1, ...) from the poles s�0, 1 ... (Bailey 1935,
pp. 4�/; Whittaker and Watson 1990).

A hypergeometric function can be written using
EULER’S HYPERGEOMETRIC TRANSFORMATIONS

t 0 t (19)

t 0 1�t (20)

t 0 (1�z�tz)�1 (21)

t 0
1 � t

1 � tz
(22)

in any one of four equivalent forms

2F1(a; b; c; z)�(1�z)�a
2F1(a; c�b; c; z=(z�1))

nbsp; (23rpar

�(1�z)�b
2F1(c�a; b; c; z=(z�1))

nbsp; (24rpar

�(1�z)c�a�b
2F1(c�a; c�b; c; z)

nbsp; (25rpar

It can also be written as a linear combination

2F1(a; b; c; z)

�
G(c)G(c � a � b)

G(c � a)G(c � b)
2 F1(a; b; a�b�1�c; 1�z)

�
G(c)G(a � b � c)

G(a)G(b)

� (1�z)c�a�b
2F1(c�a; c�b; 1�c�a�b; 1

�z) (26)

(Barnes 1908; Bailey 1935, pp. 3�/; Whittaker and
Watson 1990, p. 291).

Kummer found all six solutions (not necessarily
regular at the origin) to the HYPERGEOMETRIC DIFFER-

ENTIAL EQUATION,

u1(x)�2 F1(a; b; c; z) (27)

u2(x)�2 F1(a; b; a�b�1�c; 1�z) (28)

u3(x)�z�a
2F1(a; a�1�c; a�1�b; z�1) (29)

u4(x)�z�b
2F1(b�1�c; b; b�1�a; z�1) (30)

u5(x)�z1�c
2F1(b�1�c; a�1�c; 2�c; z) (31)

u6(x)�(1�z)c�a�b
2F1(c�a; c�b; c�1�a�b; 1

�z) (32)

(Abramowitz and Stegun 1972, p. 563).

Applying EULER’S HYPERGEOMETRIC TRANSFORMA-

TIONS to the Kummer solutions then gives all 24
possible forms which are solutions to the HYPERGEO-

METRIC DIFFERENTIAL EQUATION

u(1)
1 (x)�2 F1(a; b; c; z) (33)

u(2)
1 (x)�(1�z)c�a�b

2F1(c�a; c�b; c; z) (34)

u(3)
1 (x)�(1�z)�a

2F1(a; c�b; c; z=(z�1)) (35)

u(4)
1 (x)�(1�z)�b

2F1(c�a; b; c; z=(z�1)) (36)

u(1)
2 (x)�2 F1(a; b; a�b�1�c; 1�z) (37)

u(2)
2 (x)�z1�c

2F1(a�1�c; b�1�c; a�b�1�c; 1

�z) (38)

u(3)
2 (x)�z�a

2F1(a; a�1�c; a�b�1�c; 1

�z�1) (39)

u(4)
2 (x)�z�b

2F1(b�1�c; b; a�b�1�c; 1

�z�1) (40)

u(1)
3 (x)�(�z)�a

2F1(a; a�1�c; a�1�b; z�1) (41)

u(2)
3 (x)�(�z)b�c

� (1�z)c�a�b
2F1(1�b; c�b; a�1

�b; z�1) (42)

u(3)
3 (x)�(1�z)�a

2F1(a; c�b; a�1�b; (1�z)�1) (43)

u(4)
3 (x)�(�z)1�c

� (1�z)c�a�1
2F1(a�1�c; 1�b; a�1

�b; (1�z)�1) (44)

u(1)
4 (x)�(�z)�b

2F1(b�1�c; b; b�1�a; z�1) (45)

u(2)
4 �(�z)a�c

� (1�z)c�a�b
2F1(1�a; c�a; b�1

�a; z�1) (46)

u(3)
4 (x)�(1�z)�b

2F1(b; c�a; b�1�a; (1�z)�1) (47)

u(4)
4 (x)�(�z)1�c

� (1�z)c�b�1
2F1(b�1�c; 1�a; b�1

�a; (1�z)�1) (48)



u(1)
5 (x) �z1�c

2F1(a �1 �c ; b �1 �c; 2�c; z) (49)

u(2)
5 �z1 �c(1 �z)c�a �b

2F1(1 �a ; 1 �b; 2�c; z) (50)

u(3)
5 (x) �z1 �c(1 �z)c�a�1

2F1(a �1 �c ; 1 �b; 2

�c; z=(z �1)) (51)

u(4)
5 (x) �z1 �c(1 �z)c�b�1

2F1(b �1 �c; 1 �a; 2

�c; z =(z �1)) (52)

u(1)
6 (x) �(1 �z)c�a �b

2F1(c �a; c �b; c �1 �a �b; 1

�z) (53)

u(2)
6 (x) �z1 �c(1 �z)c�a �b

2F1(1 �a ; 1 �b; c �1 �a

�b; 1�z) (54)

u(3)
6 (x) �za�c(1 �z)c �a �b

2F1(c �a; 1 �a; c �1 �a

�b; 1�z�1) (55)

u(4)
6 (x) �zb �c(1 �z)c�a�b

2F1(c �b; 1 �b; c �1 �a

�b; 1�z�1) (56)

(Kummer 1836; Erdélyi et al. 1981, pp. 105 �/06).

Goursat (1881) and Erdélyi et al. (1981) give many
hypergeometric transformation formulas, including
several cubic transformations.

Many functions of mathematical physics can be
expressed as special cases of the hypergeometric
functions. For example,

2F1(�l ; l �1; 1; (1 �z) =2) �Pl(z); (57)

where Pl(z) is a LEGENDRE POLYNOMIAL.

(1 �z)n �2 F1(�n; b; b; �z) (58)

ln(1 �z) �z2F1(1; 1; 2; �z) (59)

Complete ELLIPTIC INTEGRALS and the RIEMANN P -

SERIES can also be expressed in terms of

2F1(a ; b; c; z): Special values include

2F1(a ; b; a �b �1; �1)

�2 �a
ffiffiffi
p

p G(1 � a � b)

G 1 � 1
2 a � b

� �
G 1

2 �
1
2 a

� � (60)

2F1(1; �a; a; �1) �
ffiffiffi
p

p

2

G(a)

G a � 1
2

� ��1 (61)

2F1 a ; b; c; 1
2

� �
�2a

2F1(a; c �b; c; �1) (62)

2F1 a; b; 1
2(a �b �1); 1

2

� �

�
G 1

2

� �
G 1

2(1 � a � b)
h i

G 1
2(1 � a)
h i

G 1
2(1 � b)
h i (63)

2F1 a ; 1 �a; c; 1
2

� �
�

G 1
2 c
� �

G 1
2(c � 1)
h i

G 1
2(a � c)
h i

G 1
2(1 � c � a)
h i (64)

2F1(a; b; c; 1)�
G(c) G(c � a � b)

G(c � a) G(c � b) 
: (65)

KUMMER’S FIRST FORMULA gives

2F1
1
2 �m �k; �n; 2m �1; 1
� �

�
G(2m � 1)G m � 1

2 � k � n
� �

G m � 1
2 � k

� �
G(2m � 1 � n)

; (66)

where m "�1=2; �1, �3=2 ; .... Many additional
identities are given by Abramowitz and Stegun
(1972, p. 557).

Hypergeometric functions can be generalized to GEN-

ERALIZED HYPERGEOMETRIC FUNCTIONS

nFm(a1; . . . ; an; b1; . . . ; bm; z): (67)

A function OF THE FORM 1F1(a; b; z) is called a
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE FIRST

KIND, and a function OF THE FORM 0F1(a; b; z) is
called a CONFLUENT HYPERGEOMETRIC LIMIT FUNC-

TION.

See also APPELL HYPERGEOMETRIC FUNCTION,
BARNES’ LEMMA, BRADLEY’S THEOREM, CAYLEY’S

HYPERGEOMETRIC FUNCTION THEOREM, CLAUSEN

FORMULA, CLOSED FORM, CONFLUENT HYPERGEO-

METRIC FUNCTION OF THE FIRST KIND, CONFLUENT

HYPERGEOMETRIC FUNCTION OF THE SECOND KIND,
CONFLUENT HYPERGEOMETRIC LIMIT FUNCTION, CON-

TIGUOUS FUNCTION, DARLING’S PRODUCTS, GENERAL-

IZED HYPERGEOMETRIC FUNCTION, GOSPER’S

ALGORITHM, HYPERGEOMETRIC IDENTITY, HYPERGEO-

METRIC SERIES, JACOBI POLYNOMIAL, KUMMER’S FOR-

MULAS, KUMMER’S QUADRATIC TRANSFORMATION,
KUMMER’S RELATION, ORR’S THEOREM, PFAFF TRANS-

FORMATION, Q -HYPERGEOMETRIC FUNCTION, RAMANU-

JAN’S HYPERGEOMETRIC IDENTITY, SAALSCHÜ TZIAN,
SISTER CELINE’S METHOD, ZEILBERGER’S ALGORITHM
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Hypergeometric Identity
A relation expressing a sum potentially involving
BINOMIAL COEFFICIENTS, FACTORIALS, RATIONAL FUNC-

TIONS, and power functions in terms of a simple
result. Thanks to results by Fasenmyer, Gosper,
Zeilberger, Wilf, and Petkovsek, the problem of
determining whether a given hypergeometric sum is
expressible in simple closed form and, if so, finding
the form, is now (subject to a mild restriction)
completely solved. The algorithm which does so has
been implemented in several computer algebra
packages and is called ZEILBERGER’S ALGORITHM.

See also BINOMIAL SUMS, GENERALIZED HYPERGEO-

METRIC FUNCTION, GOSPER’S ALGORITHM, HYPERGEO-

METRIC SERIES, SISTER CELINE’S METHOD, WILF-

ZEILBERGER PAIR, ZEILBERGER’S ALGORITHM
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Hypergeometric Polynomial
JACOBI POLYNOMIAL

Hypergeometric Series
A hypergeometric series ak ck is a series for which
c0�1 and the ratio of consecutive terms is a RATIONAL

FUNCTION of the summation index k , i.e., one for
which

ck�1

ck

�
P(k)

Q(k)
; (1)

with P(k) and Q(k) POLYNOMIALS. In this case, ck is
called a HYPERGEOMETRIC TERM (Koepf 1998, p. 12).
The functions generated by hypergeometric series are
called HYPERGEOMETRIC FUNCTIONS or, more gener-
ally, GENERALIZED HYPERGEOMETRIC FUNCTIONS. If
the polynomials are completely factored, the ratio of
successive terms can be written

ck�1

ck

�
P(k)

Q(k)

�
(k � a1)(k � a2) � � � (k � ap)

(k � b1)(k � b2) � � � (k � bq)(k � 1)
x; (2)

where the factor of k�1 in the DENOMINATOR is
present for historical reasons of notation, and the



resulting GENERALIZED HYPERGEOMETRIC FUNCTION is
written

pFq

a1 a2 � � �  ap

b1 b2 � � �  bq
; x

� �
�
X
k�0

ckxk : (3)

If p �2 and q �1, the function becomes a traditional
HYPERGEOMETRIC FUNCTION 2F1(a ; b; c; x) :/

Many sums can be written as GENERALIZED HYPER-

GEOMETRIC FUNCTIONS by inspections of the ratios of
consecutive terms in the generating hypergeometric
series.

See also BINOMIAL SUMS, GENERALIZED HYPERGEO-

METRIC FUNCTION, GEOMETRIC SERIES, HYPERGEO-

METRIC FUNCTION, HYPERGEOMETRIC IDENTITY,
HYPERGEOMETRIC TERM
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Hypergeometric Summation
The analytic summation of a HYPERGEOMETRIC SER-

IES. Powerful general techniques of hypergeometric
summation include GOSPER’S ALGORITHM, SISTER

CELINE’S METHOD, WILF-ZEILBERGER PAIRS, and ZEIL-

BERGER’S ALGORITHM.

See also BINOMIAL SUMS, GOSPER’S ALGORITHM,
SISTER CELINE’S METHOD, WILF-ZEILBERGER PAIR,
ZEILBERGER’S ALGORITHM
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Hypergeometric Term
Given a HYPERGEOMETRIC SERIES ak ck ; ck is called a
hypergeometric term (Koepf 1998, p. 12).

See also HYPERGEOMETRIC SERIES
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Hypergeometric0F1
CONFLUENT HYPERGEOMETRIC LIMIT FUNCTION

Hypergeometric0F1Regularized
CONFLUENT HYPERGEOMETRIC LIMIT FUNCTION

Hypergeometric1F1
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

FIRST KIND

Hypergeometric2F1
HYPERGEOMETRIC FUNCTION

HypergeometricU
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

SECOND KIND

Hypergraph
A hypergraph is a GRAPH in which generalized edges
(called HYPEREDGES) may connect more than two
nodes.

See also GRAPH, HYPEREDGE, MULTIGRAPH, PSEUDO-

GRAPH
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Hypergroup
A MEASURE ALGEBRA which has many properties
associated with the convolution MEASURE ALGEBRA

of a GROUP, but no algebraic structure is assumed for
the underlying SPACE.
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Hyper-Kähler Manifold

See also KÄ HLER MANIFOLD

Hypermatrix
A generalization of the MATRIX to an n1 �n2 �� � �
array of numbers.

See also HYPERDETERMINANT
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Hyperparallel
Two lines in HYPERBOLIC GEOMETRY which diverge
from each other in both directions.

See also ANTIPARALLEL, IDEAL POINT, PARALLEL



Hyperperfect Number
A number n is called k -hyperperfect if

n �1 �k
X

i

di �1 �k[ s(n) �n �1];

where s(n) is the DIVISOR FUNCTION and the summa-
tion is over the PROPER DIVISORS with 1 Bdi Bn:
Rearranging gives

ks(n) �(k �1)n �k �1:

Taking k �1 gives the usual PERFECT NUMBERS.

If k �1 is an odd integer, and p �(3k �1)=2 and q �
3k �4 �2p �3 are prime, then p2q is k -hyperperfect.
McCranie (2000) conjectures that all k -hyperperfect
numbers for odd k �1 are in fact of this form.
Similarly, if p and q are distinct odd primes such
that k(p �q) �pq �1 for some integer k , then n � pq
is k -hyperperfect. Finally, if k �0 and p �k �1 is
prime, then if q �pi �p �1 is prime for some i �1 B
then n �pi�1q is k -hyperperfect (McCranie 2000).

The first few hyperperfect numbers (excluding PER-

FECT NUMBERS) are 21, 301, 325, 697, 1333, ...
(Sloane’s A007592). If PERFECT NUMBERS are in-
cluded, the first few are 6, 21, 28, 301, 325, 496, ...
(Sloane’s A034897), whose corresponding values of k
are 1, 2, 1, 6, 3, 1, 12, ... (Sloane’s A034898). The
following table gives the first few k -hyperperfect
numbers for small values of k . McCranie (2000) has
tabulated all hyperperfect numbers less than 1011.

k Sloane k -hyperperfect number

1 A000396 6 ,28, 496, 8128, ...

2 A007593 21, 2133, 19521, 176661, ...

3 325, ...

4 1950625, 1220640625, ...

6 A028499 301, 16513, 60110701, ...

10 159841, ...

11 10693, ...

12 A028500 697, 2041, 1570153, 62722153, ...

See also PERFECT NUMBER
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Hyperplane
Let a1 ; a2 ; ..., an be SCALARS not all equal to 0. Then
the SET S consisting of all VECTORS

X �

x1

x2

n
xn

2
664

3
775

in Rn such that

a1x1 �a2x2 �. . .�anxn �0

is a SUBSPACE of Rn called a hyperplane.

More generally, a hyperplane is any CODIMENSION-1
vector SUBSPACE of a VECTOR SPACE. Equivalently, a
hyperplane V in a VECTOR SPACE W is any SUBSPACE

such that W =V is 1-dimensional. Equivalently, a
hyperplane is the KERNEL of any NONZERO linear
MAP from the VECTOR SPACE to the underlying FIELD.

Hyperreal Number
Hyperreal numbers are an extension of the REAL

NUMBERS to include certain classes of infinite and
infinitesimal numbers. A hyperreal number x is said
to be finite IFF xj jB n for some INTEGER n . x is said to
be infinitesimal IFF xj jB 1=n for all INTEGERS n .

See also AX-KOCHEN ISOMORPHISM THEOREM, NON-

STANDARD ANALYSIS
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Hyperspace
A SPACE having DIMENSION n �3.

Hypersphere
The n -hypersphere (often simply called the n -sphere)
is a generalization of the CIRCLE (n�2) and SPHERE

(n�3) to dimensions n]4: It is therefore defined as
the set of n -tuples of points (/x1; x2; ..., xn) such that

x2
1�x2

2�. . .�x2
n�R2; (1)

where R is the RADIUS of the hypersphere. The
CONTENT Vn (i.e., n -D VOLUME) of an n -hypersphere
of RADIUS R is given by



Vn�g
R

0

Snrn�1 dr�
SnRn

n
; (2)

where Sn is the hyper-SURFACE AREA of an n -sphere of
unit radius. But, for a unit hypersphere, it must be
true that

Sn g
�

0

e�r2

rn�1 dr

�g
�

��

� � �g
�

��|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

e�(x2
1
�����x2

n) dx1 � � � dxm

� g
�

��

e�x2

dx

� �n

: (3)

But the GAMMA FUNCTION can be defined by

G(m)�2 g
�

0

e�r2

r2m�1 dr; (4)

so

1
2 SnG 1

2 n
� �

� G 1
2

� �h in

�(p1=2)n (5)

Sn�
2pn=2

G 1
2 n
� � : (6)

Special forms of G 1
2 n
� �

for n an integer allow the
above expression to be written as

Sn�

2(n�1)=2p(n�1)=2

(n � 2)!!
for n odd

2pn=2

1
2 n � 1
� �

!
for n even;

8>>>><
>>>>:

(7)

where n! is a FACTORIAL and n!! is a DOUBLE

FACTORIAL.

Equation (6) gives the RECURRENCE RELATION

Sn�2�
2pSn

n
: (8)

Using G(n�1)�nG(n) then gives

Vn�
SnRn

n
�

pn=2Rn

1
2 n
� �

G 1
2 n
� �� pn=2Rn

G 1 � 1
2 n

� � (9)

(Sommerville 1958, p. 136; Conway and Sloane 1993).

Strangely enough, the hyper-SURFACE AREA and
CONTENT reach MAXIMA and then decrease towards

0 as n increases. The point of MAXIMAL hyper-SUR-

FACE AREA satisfies

dSn

dn
�

pn=2 ln p� c0
1
2 n
� �h i

G 1
2 n
� � �0; (10)

where c0(x)�C(x) is the DIGAMMA FUNCTION. The
point of MAXIMAL CONTENT satisfies

dVn

dn
�

pn=2 ln p� c0 1 � 1
2 n

� �h i
2G 1 � 1

2 n
� � �0: (11)

Neither can be solved analytically for n , but the
numerical solutions are n�7:25695 . . . for hyper-
SURFACE AREA and n�5:25695 . . . for CONTENT (Wells
1986, p. 67). As a result, the 7-D and 5-D hyper-
spheres have MAXIMAL hyper-SURFACE AREA and
CONTENT, respectively (Le Lionnais 1983; Wells
1986, p. 60).

n /Vn/ /Vsphere=Vcube/ /Sn/

0 1 1 0

1 2 1 2

2 /p/ /
1
4 p/ /2p/

3 /
4
3 p/ /

1
6 p/ /4p/

4 /
1
2 p

2
/ /

1
32 p

2
/ /2p2

/

5 /
8
15 p

2
/ /

1
60 p

2
/ /

8
3 p

2
/

6 /
1
6 p

3
/ /

1
384 p

3
/ /p3

/

7 /
16

105 p
3
/ /

1
840 p

3
/ /

16
15 p

3
/

8 /
1
24 p

4
/ /

1
6144 p

4
/ /

1
3 p

4
/

9 /
32

945 p
4
/ /

1
15120 p

4
/ /

32
105 p

4
/

10 /
1

120 p
5
/ /

1
122880 p

5
/ /

1
12 p

5
/

In 4-D, the generalization of SPHERICAL COORDINATES

is defined by

x1�R sin c sin f cos u (12)

x2�R sin c sin f sin u (13)

x3�R sin c cos f (14)

x4�R cos c: (15)

The equation for a 4-sphere is

x2
1�x2

2�x2
3�x2

4�R2; (16)

and the LINE ELEMENT is

ds2�R2[dc2�sin2 c(df2�sin2 f du2)]: (17)

By defining r�R sin c; the LINE ELEMENT can be
rewritten



ds2 �
dr2

1 � r2

R2

� ��r2(d f2 �sin2 f d u2) : (18)

The hyper-SURFACE AREA is therefore given by

S4 �g  
p

0

R dcg  
p

0

R sin c dfg
2 p

0

R sin c sin f df

�2p2R3 : (19)

See also CIRCLE, GLOME, HYPERCUBE, HYPERSPHERE

PACKING, HYPERSPHERE POINT PICKING, MAZUR’S

THEOREM, PEG, SPHERE, TESSERACT
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Hypersphere Packing
The analog of face-centered cubic packing is the
densest lattice packing in 4- and 5-D. In 8-D, the
densest lattice packing is made up of two copies of
face-centered cubic. In 6- and 7-D, the densest lattice
packings are CROSS SECTIONS of the 8-D case. In 24-D,
the densest packing appears to be the LEECH LATTICE.
For high dimensions ( 
1000-D), the densest known
packings are nonlattice. The densest lattice packings
in n -D have been rigorously proved to have PACKING

DENSITY 1, p= 2
ffiffiffi
3

p� �
; p= 3

ffiffiffi
2

p� �
; p2 =16 ; p2 = 15

ffiffiffi
2

p� �
;

p3 = 48
ffiffiffi
3

p� �
; p3 =105; and p4 =384 (Hilbert and Cohn-

Vossen 1999, p. 47; Finch).

The densest known non-lattice packings of hyper-
spheres in dimensions up to 10 are given by Conway
and Sloane (1995). However, there are no proofs that
any packing in dimensions greater than 3 is optimal
(Sloane 1998).

The largest number of UNIT CIRCLES which can touch
a given UNIT CIRCLE is six. For SPHERES, the max-
imum number is 12. Newton considered this question
long before a proof was published in 1874. The
maximum number of hyperspheres that can touch
another in n -D is the so-called KISSING NUMBER.

The following example illustrates the sometimes
counterintuitive properties of hypersphere packings.
Draw unit n -spheres in an n -D space centered at all
91 coordinates. Now place an additional HYPER-

SPHERE at the origin tangent to the other HYPER-

SPHERES. For values of n between 2 and 8, the central
HYPERSPHERE is contained inside the HYPERCUBE

with VERTICES at the centers of the other spheres.
However, for n �9, the central HYPERSPHERE just
touches the HYPERCUBE of centers, and for n �9, the
central HYPERSPHERE is partially outside the HYPER-

CUBE.

This fact can be demonstrated by finding the distance
from the origin to the center of one of the n HYPER-

SPHERES, which is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(91)2�. . .�(91)2

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

�
ffiffiffi
n

p
:

The radius of the central sphere is therefore
ffiffiffi
n

p
�1:

Now, the distance from the origin to the center of a
FACET bounding the HYPERCUBE is always 2 (two
hypersphere radii), so the center HYPERSPHERE is
tangent to the hypercube when

ffiffiffi
n

p
�1�2; or n�9,

and partially outside it for n �9.

See also CIRCLE PACKING, ELLIPSOID PACKING, KE-

PLER CONJECTURE, KISSING NUMBER, LEECH LATTICE,
PEG, SPHERE PACKING
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Hypersphere Point Picking
Marsaglia (1972) has given a simple method for
selecting points with a uniform distribution on the
surface of a 4-sphere. This is accomplished by picking
two pairs of points (x1; x2) and (x3; x4); rejecting any
points for which x2

1�x2
2]1 and x2

3�x2
4]1: Then the

points

x�x1 (1)

y�x2 (2)

z�x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1 � x2
2

x3
2 � x2

4

s
(3)



w �x4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

1 � x2
2

x3
2 � x2

4

s
(4)

have a uniform distribution on the surface of the
hypersphere. This extends the method of Marsaglia
(1972) for SPHERE POINT PICKING.

See also SPHERE POINT PICKING
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Hyperspherical Differential Equation
ULTRASPHERICAL DIFFERENTIAL EQUATION

Hypersurface
A generalization of an ordinary two-dimensional sur-
face embedded in three-dimensional space to an
(n �1)/-dimensional surface embedded in n -dimen-
sional space. A hypersurface is therefore the set of
solutions to a single equation

f (x1 ; . . . ; xn) �0

and so it has CODIMENSION one. For instance, the n -
dimension HYPERSPHERE

n
corresponds to the equa-

tion x2
1�. . .�x2

n�1:/

See also HYPERSPHERE, SURFACE

Hypervolume
CONTENT

Hypocycloid

The curve produced by fixed point P on the CIRCUM-

FERENCE of a small CIRCLE of RADIUS b rolling around
the inside of a large CIRCLE of RADIUS a�b . A
hypocycloid is a HYPOTROCHOID with h�b . To derive
the equations of the hypocycloid, call the ANGLE by
which a point on the small CIRCLE rotates about its
center q ; and the ANGLE from the center of the large
CIRCLE to that of the small CIRCLE f: Then

(a�b)f�bq ; (1)

so

q�
a � b

b
f: (2)

Call r�a�2b: If x(0)�r; then the first point is at
minimum radius, and the Cartesian parametric
equations of the hypocycloid are

x�(a�b)cos f�b cos q

�(a�b)cos f�b cos
a � b

b
f

 !
(3)

y�(a�b)sin f�b sin q

�(a�b)sin f�b sin
a � b

b
f

 !
: (4)

If x(0)�a instead so the first point is at maximum
radius (on the CIRCLE), then the equations of the
hypocycloid are

x�(a�b)cos f�b cos
a � b

b
f

 !
(5)

y�(a�b)sin f�b sin
a � b

b
f

 !
: (6)

An n -cusped non-self-intersecting hypocycloid has
a=b�n: A 2-cusped hypocycloid is a LINE SEGMENT

(Steinhaus 1983, p. 145), as can be seen by setting
a�b in equations (3) and (4) and noting that the
equations simplify to

x�a sin f (7)

y�0: (8)

A 3-cusped hypocycloid is called a DELTOID or TRICUS-

POID, and a 4-cusped hypocycloid is called an ASTROID.
If a=b is rational, the curve closes on itself and has b
cusps. If a=b is IRRATIONAL, the curve never closes
and fills the entire interior of the CIRCLE.



n -hypocycloids can also be constructed by beginning
with the DIAMETER of a CIRCLE, offsetting one end by a
series of steps while at the same time offsetting the
other end by steps n times as large in the opposite
direction and extending beyond the edge of the
CIRCLE. After traveling around the CIRCLE once, an
n -cusped hypocycloid is produced, as illustrated
above (Madachy 1979).

Let r be the radial distance from a fixed point. For
RADIUS OF TORSION r and ARC LENGTH s , a hypocy-
cloid can given by the equation

s2�r2�16r2 (9)

(Kreyszig 1991, pp. 63�/4). A hypocycloid also satis-
fies

sin2 c�
r2

a2 � r2

a2 � r2

r2
; (10)

where

r
dr

du
�tan c (11)

and c is the ANGLE between the RADIUS VECTOR and
the TANGENT to the curve.

The ARC LENGTH of the hypocycloid can be computed
as follows

x?��(a�b)sin f�(a�b)sin
a � b

b
f

 !

�(a�b) sin f�sin
a � b

b
f

 !" #
(12)

y?�(a�b)cos f�(a�b)cos
a � b

a
f

 !

�(a�b) cos f�cos
a � b

b
f

 !" #
(13)

x?2�y?2�(a�b)2 sin2 f�2 sin f sin
a � b

b
f

 !"

�sin2 a � b

b
f

 !
�cos2 f�2 cos f cos

a � b

b
f

 !

�cos2 a � b

b
f

� #

�(a�b)2 2�2 sin f sin
a � b

a
f

 !"(

�cos f cos
a � b

b
f

�� )

�2(a�b)2 1�cos f�
a � b

b
f

 !" #

�4(a�b)21
2 1�cos

a

b
f

 !" #

�4(a�b)2sin2 af

2b

 !
; (14)

so

ds�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
df�2(a�b)sin

af

2b

 !
df (15)

for f5(b=2a)p: Integrating,

s(f)�g
f

0

ds�2(a�b) �
2b

a
cos

af

2b

 !" #f
0

�
4b(a � b)

a
�cos

a

2b
f

 !
�1

" #

�
8b(a � b)

a
sin2 a

4b
f

 !
: (16)

The length of a single cusp is then

s 2p
b

a

 !
�

8b(a � b)

a
sin2 p

2

 !
�

8b(a � b)

a
: (17)

If n�a=b is rational, then the curve closes on itself
without intersecting after n cusps. For n�a=b and
with x(0)�a; the equations of the hypocycloid become

x�
1

n
[(n�1)cos f�cos[(n�1)f] a; (18)

y�
1

n
[(n�1)sin f�sin[(n�1)f] a; (19)

and



sn�n
8b(bn � b)

nb
�8b(n�1)�

8a(n � 1)

n
: (20)

Compute

xy?�yx?� (a�b)cos f�b cos
a � b

a
f

 !" #
(b�a)

� sin f�sin
a � b

b
f

 !" #

� (a�b)sin f�b sin
a � b

b
f

 !" #
(a�b)

� cos f�cos
a � b

b
f

 !" #

�2(a2�3ab�2b2)sin2 af

2b

 !
: (21)

The AREA of one cusp is then

A�1
2 g

2pb=a

0

(xy?�yx?) df

�(a2�3ab�2b2)
at � b sin at

b

� �
2a

2
4

3
52pb=a

a

�(a2�3ab�2b2)
a 2p b

a

� �
2a

2
4

3
5

�
b(a2 � 3ab � 2b2)

a
p: (22)

If n�a=b is rational, then after n cusps,

An�np
b(a2 � 3ab � 2b2)

a

�np

a

n
a2 � 3a a

n
� 2

a2

n2

 !
a

�
n2 � 3n � 2

n2
pa2�

(n � 1)(n � 2)

n2
pa2: (23)

The equation of the hypocycloid can be put in a form
which is useful in the solution of CALCULUS OF

VARIATIONS problems with radial symmetry. Consider
the case x(0)�r; then

r2�x2�y2

� (a�b)2cos2 f�2(a�b)b cos f cos
a � b

b
f

 !"

�b2 cos2 a � b

b
f

 !
�(a�b)2sin2 f

�2(a�b)b sin f sin
a � b

b
f

 !

�b2 sin2 a � b

b
f

 !�

� (a�b)2�b2�2(a�b)b cos f cos
a � b

b
f

 !"(

�sin f sin
a � b

b
f

 !�7

�(a�b)2�b2�2(a�b)b cos
a

b
f

 !
: (24)

But r�a�2b; so b�(a�r)=2; which gives

(a�b)2�b2� a�1
2(a�r)

h i2

� 1
2(a�r)
h i2

� 1
2(a�r)
h i2

� 1
2(a�r)
h i2

�1
4(a

2�2ar�r2�a2�2ar�r2)

�1
2(a

2�r2) (25)

2(a�b)b�2 a�1
2(a�r)

h i
1
2(a�r)

�1
2(a�r)(a�r)�1

2(a
2�r2): (26)

Now let

2Vt�
a

b
f; (27)

so

f�
a � r

a
Vt (28)

f

a � r
�

Vt

a
; (29)

then

r2�1
2(a

2�r2)�1
2(a

2�r2)cos
a

b
f

 !

�1
2(a

2�r2)�1
2(a

2�r2)cos(2Vt): (30)

The POLAR ANGLE is

tan u�
y

x
�

(a � b)sin f� b sin a�b
a

f
� �

(a � b)cos f� b cos a�b
a

f
� � : (31)

But



b �1
2(a � r) (32)

a �b �1
2(a � r) (33)

a � b

b
�

a � r

a � r 
; (34)

so

tan u �
1
2(a � r)sin f � 1

2(a � r)sin a� r
z� r

f
� �

1
2(a � r)cos f � 1

2(a � r)cos a �r
a �r 

f
� �

�
(a � r)sin a � r

a
Vt

� �
� (a � r)sin a � r

a
Vt

� �
(a � r)cos a � r

a
Vt

� �
� (a � r)cos a �r

a
Vt

� �

�
a sin a �r

a
Vt

� �
� sin a�r

a
Vt

� �h i
� r sin a �r

a
Vt

� �
� sin a �r

a
Vt

� �h i
a cos a �r

a
Vt

� �
� cos a�r

a
Vt

� �h i
� r cos a �r

a
Vt

� �
� cos a �r

a
Vt

� �h i

�
2a sin( Vt)cos r

q Vt
� �

� 2r cos( Vt)sin r
a Vt
� �

2a sin( Vt)sin r
q
Vt

� �
� 2 r cos( Vt)sin r

a
Vt

� �

�
a tan( Vt) � r tan r

a
Vt

� �
a tan(Vt)tan r

a
Vt

� �
� r

: (35)

Computing

tan u �
r

a
Vt

 !

�
a tan( Vt) � r tan r

a
Vt

� �
� tan r

a
Vt

� �h i
a tan( Vt)tan r

a
Vt

� �
� r

h i
a tan( Vt)tan r

a
Vt

� �
� r

h i
� a tan( Vt) � r tan r

a
Vt

� �h i
tan r

a
Vt

� �

�
a tan( Vt) 1 � tan2 r

a
Vt

� �h i
r 1 � tan2 r

a
Vt

� �h i

�
a

r
tan( Vt) ; (36)

then gives

u �tan �1 a

r
tan(Vt)

" #
�

r

a
Vt: (37)

Finally, plugging back in gives

u �tan�1 a

r
tan

a

a � r
f

 !" #
�

r

a

a

a � r
f

�tan�1 a

r
tan

a

a � r
f

 !" #
�

r

a � r
f (38)

This form is useful in the solution of the SPHERE WITH

TUNNEL problem, which is the generalization of the
BRACHISTOCHRONE PROBLEM, to find the shape of a
tunnel drilled through a SPHERE (with gravity vary-
ing according to Gauss’s law in a gravitational field
such that the travel time between two points on the
surface of the SPHERE under the force of gravity is
minimized.

See also ASTROID, CYCLOID, DELTOID, EPICYCLOID
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Hypocycloid Evolute

For x(0)�a;

x�
a

a � 2b
(a�b)cos f�b cos

a � b

b
f

 !" #

y�
a

a � 2b
(a�b)sin f�b sin

a � b

b
f

 !" #
:

If a=b�n; then

x�
1

n � 2
[(n�1)cos f�cos[(n�1)f]a

y�
1

n � 2
[(n�1)sin f�sin[(n�1)f]a:



This is just the original HYPOCYCLOID scaled by the
factor (n �2)=n and rotated by 1 =(2n) of a turn.

Hypocycloid Involute

The HYPOCYCLOID

x �
a

a � 2b
(a �b)cos f �b cos

a � b

b
f

 !" #

y �
a

a � 2b
(a �b)sin f �b sin

a � b

b
f

 !" #

has INVOLUTE

x �
a � 2b

a
(a �b)cos f �b cos

a � b

b
f

 !" #

y �
a � 2b

a
(a �b)sin f �b sin

a � b

b
f

 !" #
;

which is another HYPOCYCLOID.

Hypocycloid Pedal Curve

The PEDAL CURVE for a PEDAL POINT at the center is a
ROSE.

Hypocycloid–3-Cusped
DELTOID

Hypocycloid–4-Cusped
ASTROID

Hypoellipse

yn =m �c
x

a

�����
�����
n =m

�c �0;

with n=m B2: If n=m > 2; the curve is a HYPEREL-

LIPSE.

See also ELLIPSE, HYPERELLIPSE, SUPERELLIPSE
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Hypohamiltonian Graph

A graph G is hypohamiltonian if G is not HAMILTO-

NIAN, but G �v is HAMILTONIAN for every v � V
(Bondy and Murty 1976, p. 61). The PETERSEN

GRAPH, which has ten nodes and is illustrated above,
is the smallest hypohamiltonian graph (Herz et al.
1967; Bondy and Murty 1976, p. 61). There are no
hypohamiltonian graphs with 11 or 12 vertices.
However, there exists a hypohamiltonian graph on
p vertices for every p ]13 with the possible excep-
tions of p �14, 17, 19. Thomassen (1973) found
hypohamiltonian graphs on p �20 and 25 vertices,
which had previously been open.
A graph can be tested to see if it is hypohamiltonian
using the following Mathematica function.

BBDiscreteMath‘Combinatorica‘;

HypohamiltonianQ[g_Graph] :� !

HamiltonianQ[g] && HamiltonianQ /@ And @@

(DeleteVertex[g, #] & /@ Range[V[g]])

See also HAMILTONIAN GRAPH, HYPOTRACEABLE

GRAPH, TRACEABLE GRAPH
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Lindgren, W. F. "An Infinite Class of Hypohamiltonian
Graphs." Amer. Math. Monthly 74, 1087 �/089, 1967.

Thomassen, C. "Hypohamiltonian and Hypotraceable
Graphs." Disc. Math. 9, 91�/6, 1974.

Hypotenuse
The longest LEG of a RIGHT TRIANGLE (which is the
side opposite the RIGHT ANGLE). The word derives
from the Greek hypo- ("under") and teinein ("to
stretch").

Hypothesis
A proposition that is consistent with known data, but
has been neither verified nor shown to be false. It is
synonymous with CONJECTURE.

See also BOURGET’S HYPOTHESIS, CHINESE HYPOTH-

ESIS, CONTINUUM HYPOTHESIS, HYPOTHESIS TESTING,
NESTED HYPOTHESIS, NULL HYPOTHESIS, POSTULATE,
RAMANUJAN’S HYPOTHESIS, RIEMANN HYPOTHESIS,
SCHINZEL’S HYPOTHESIS, SOUSLIN’S HYPOTHESIS

Hypothesis Testing
The use of statistics to determine the probability that
a given hypothesis is true.

See also BONFERRONI CORRECTION, ESTIMATE, FISHER

SIGN TEST, PAIRED T -TEST, PERMUTATION TESTS,
STATISTICAL TEST, TYPE I ERROR, TYPE II ERROR,
WILCOXON SIGNED RANK TEST
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Hypotraceable Graph
G is a hypotraceable graph if G has no HAMILTONIAN

PATH (i.e., it is not a TRACEABLE GRAPH), but G �v has
a HAMILTONIAN PATH (i.e., is a TRACEABLE GRAPH) for
every v � V (Bondy and Murty 1976, p. 61).

T. Gallai conjectured that there exist no hypotrace-
able graphs (there are none on seven or fewer nodes),
but the THOMASSEN GRAPH, illustrated above, pro-
vides a counterexample (Bondy and Murty 1973,
pp. 239 �/40). However, a hypotraceable graph with
40 vertices was found by Horton (Grünbaum 1973,
Thomassen 1974). Thomassen (1974) showed that for
p �34, 37, 39, 40, and all p ]42; there exists a
hypotraceable graph with p vertices. The smallest
of these, the so-called THOMASSEN GRAPH, is illu-
strated above.

Walter (1969) gave an example of a connected graph
in which the longest paths do not have a vertex in
common, a property shared by hypotraceable graphs.

See also HAMILTON-CONNECTED GRAPH, THOMASSEN

GRAPH, TRACEABLE GRAPH
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Hypotrochoid



The ROULETTE traced by a point P attached to a
CIRCLE of radius b rolling around the inside of a fixed
CIRCLE of radius a , where P is a distance h 5b from
the center of the interior circle. The PARAMETRIC

EQUATIONS for a hypotrochoid are

x �(a �b) cos t �h cos
a � b

b
t

 !
; (1)

y �(a �b) sin t �h sin
a � b

b
t

 !
; (2)

Special cases include the HYPOCYCLOID with h �b ,
the ELLIPSE with a�2b; and the ROSE with

a�
2nh

n � 1
(3)

b�
(n � 1)h

n � 1
: (4)

See also EPITROCHOID, HYPOCYCLOID, SPIROGRAPH,
TROCHOID
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Hypotrochoid Evolute

The EVOLUTE of the HYPOTROCHOID is illustrated
above.

Hyzer’s Illusion
FREEMISH CRATE



I

i
"The" IMAGINARY NUMBER i (also called the IMAGIN-

ARY UNIT) is defined as the SQUARE ROOT of �1, i.e.,
i �

ffiffiffiffiffiffi
�1

p
: Although there are two possible square roots

of any number, the square roots of a negative number
cannot be distinguished until one of the two is defined
as the imaginary unit, at which point �i and �i can
then be distinguished. Since either choice is possible,
there is no ambiguity in defining i as "the" square
root of �1.

In Mathematica , the imaginary number is implemen-
ted as I. For some reason engineers and physicists
prefer the symbol J to i , probably because the symbol
i (or I ) is commonly used to denote current.

Numbers OF THE FORM iy , where y is a REAL NUMBER,
are called IMAGINARY NUMBERS. Numbers OF THE

FORM z �x �iy where x and y are REAL NUMBERS

are called COMPLEX NUMBERS, and when z is used to
denote a COMPLEX NUMBER, it is sometimes (in older
texts) called an "AFFIX."

The SQUARE ROOT of i is

ffiffi
i

p
�9

i � 1ffiffiffi
2

p ; (1)

since

1ffiffiffi
2

p (i �1)

" #2

�1
2(i

2 �2i �1) �i : (2)

This can be immediately derived from the EULER

FORMULA with x � p=2;

i �eip=2 (3)

ffiffi
i

p
�

ffiffiffiffiffiffiffiffiffi
eip=2

p
�eip=4 �cos 1

4 p
� �

�i sin 1
4 p
� �

�
1 � iffiffiffi

2
p : (4)

The PRINCIPAL VALUE of ii is

ii � ei p=2
� �i

�ei2 p=2 �e �p=2 �0 :207879 . . . (5)

(Wells 1986, p. 26).

See also COMPLEX NUMBER, I, IMAGINARY IDENTITY,
IMAGINARY NUMBER, REAL NUMBER, SURREAL NUM-

BER
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I
The double-struck capital letter I, l ; is a symbol
sometimes used instead of Z for the RING of INTEGERS.

See also I , Z

Iamond
POLYIAMOND

Ice Fractal

Z

A FRACTAL (square, triangle, etc.) based on a simple
generating motif. The above plots show the ice
triangle, antitriangle, square, and antisquare. The
base curves and motifs for the fractals illustrated
above are shown below.

See also FRACTAL
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Icosagon

A 20-sided POLYGON. The regular icosagon is a
CONSTRUCTIBLE POLYGON, and the regular icosagon
of unit side length has INRADIUS r , CIRCUMRADIUS R ,
and area A given by

r �1
2 1 �

ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq	 


R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
5

p
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 �22

ffiffiffi
5

pqr

A �5 1�
ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq	 

:s

The SWASTIKA is an irregular icosagon.

See also SWASTIKA, TRIGONOMETRY VALUES PI/20

Icosahedral Equation
Hunt (1996) gives the "dehomogenized" icosahedral
equation as

z20 �1
� �

�228 z15 �z5
� �

�494z10
� �3

�1728uz5 z10 �11z5 �1
� �5

�0 :

Other forms include

I(u; v ;Z) �u5v5 u10 �11u5v5 �v10
� �5

� u30 �v30 �10005 u20v10 �u10v20
� ��

�522 u25v5 �u5v25
� �

�2Z �0

and

I(z ; 1; z) �z5 �1 �11z5 �z10
� �5

� 1 �z30 �10005 z10 �z20
� �

�522 �z5 �z25
� �� 2

z �0:
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Icosahedral Graph

The PLATONIC GRAPH whose nodes have the connec-
tivity of the ICOSAHEDRON. The icosahedral graph has
12 vertices, 30 edges, vertex connectivity 5, edge
connectivity 5, GRAPH DIAMETER 3, GRAPH RADIUS 3,
and GIRTH 3.

See also CUBICAL GRAPH, DODECAHEDRAL GRAPH,
OCTAHEDRAL GRAPH, PLATONIC GRAPH, TETRAHE-

DRAL GRAPH

References
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Icosahedral Group
The POINT GROUP Ih of symmetries of the ICOSAHE-

DRON and DODECAHEDRON having order 60. The
icosahedral group consists of the symmetry opera-
tions E , 12C5 ; 12C2

5 ; 20C3 ; 15C2 ; i , 12S10 ; 12S3
10 ; 20S6 ;

and 15s (Cotton 1990). The icosahedron group is a
SUBGROUP of the SPECIAL ORTHOGONAL GROUP SO(3):/

See also BIPOLYHEDRAL GROUP, DODECAHEDRON,
ICOSAHEDRON, OCTAHEDRAL GROUP, POINT GROUPS,
POLYHEDRAL GROUP, SPECIAL ORTHOGONAL GROUP,
TETRAHEDRAL GROUP
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Icosahedron



A PLATONIC SOLID P5 having 12 VERTICES, 30 EDGES,
and 20 equivalent EQUILATERAL TRIANGLE faces,
20f3g: It is also UNIFORM POLYHEDRON U22 and
Wenninger model W4: It is described by the SCHLÄFLI

SYMBOL f3; 5g and WYTHOFF SYMBOL 5½23:/

The icosahedron has the ICOSAHEDRAL GROUP Ih of
symmetries. The connectivity of the vertices is given
by the ICOSAHEDRAL GRAPH.

The DUAL POLYHEDRON of the icosahedron is the
DODECAHEDRON, so the centers of the faces of an
icosahedron form a DODECAHEDRON, and vice versa
(Steinhaus 1983, pp. 199�/01). There are 59 distinct
icosahedra when each TRIANGLE is colored differently
(Coxeter 1969).

Taken eight at a time, the centers of the faces of an
icosahedron comprise the vertices of a CUBE. This

leads to the beautiful CUBE 5-COMPOUND and is the
basis for JESSEN’S ORTHOGONAL ICOSAHEDRON.

A plane PERPENDICULAR to a C5 axis of an icosahedron
cuts the solid in a regular DECAGONAL CROSS SECTION

(Holden 1991, pp. 24�/5).

The long diagonals of the faces of the RHOMBIC

TRIACONTAHEDRON give the edges of an icosahedron
(Steinhaus 1983, pp. 209�/10).

The following table gives polyhedra which can be
constructed by CUMULATION of an icosahedron by
pyramids of given heights h .

h /(r�h)=h/ Result

/
1
6

ffiffiffi
3

p ffiffiffi
5

p
�3

� �
/ /3

ffiffiffi
5

p
�2

� �
/ GREAT DODECAHE-

DRON

/
1

15

ffiffiffiffiffiffi
15

p
/ /

1
5(10�3

ffiffiffi
5

p
)/ SMALL TRIAMBIC

ICOSAHEDRON

/
1
3

ffiffiffi
6

p
/ /1�3

ffiffiffi
2

p
�

ffiffiffiffiffiffi
10

p
/ 60-faced star DEL-

TAHEDRON

/
1
6

ffiffiffi
3

p
(3�

ffiffiffi
5

p
)/ 3 GREAT STELLATED

DODECAHEDRON

A construction for an icosahedron with side length
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pp
=5 places the end vertices at (0; 0;91)

and the central vertices around two staggered CIR-

CLES of RADII 2
5

ffiffiffi
5

p
and heights 91

5

ffiffiffi
5

p
: By a suitable

rotation, the VERTICES of an icosahedron of side
length 2 can also be placed at (0;9f;91); (91; 0;9f);
and (9f;91; 0); where f is the GOLDEN RATIO. These
points divide the EDGES of an OCTAHEDRON into
segments with lengths in the ratio f : 1: Another
orientation of the icosahedron places two opposite
triangular faces in an orientation parallel to the xy -
plane. In this orientation, the distance h0 from the top



plane to the triangle T of vertices below it is h0�ffiffiffi
3

p
=3; equal to the circumradius of a face. The

circumradius RT of T is given by

RT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6(3 �

ffiffiffi
5

p
) :

q
(1)

To derive the VOLUME of an icosahedron having edge
length a , consider the orientation so that two VER-

TICES are oriented on top and bottom. The vertical
distance between the top and bottom PENTAGONAL

DIPYRAMIDS is then given by

z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �x2 ;

q
(2)

where

l �1
2

ffiffiffi
3

p
a (3)

is the height of an ISOSCELES TRIANGLE, and the
SAGITTA x �R?�r ? of the pentagon is

x �1
2a

1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 �10

ffiffiffi
5

p
a ;

q
(4)

giving

x2 � 1
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
a2 : (5)

Plugging (3) and (5) into (2) gives

z � 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 �10

ffiffiffi
5

pq
a ; (6)

which is identical to the radius of a PENTAGON of side
a . The CIRCUMRADIUS is then

R �h �1
2z ; (7)

where

h � 1
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 �10

ffiffiffi
5

pq
a (8)

is the height of a PENTAGONAL DIPYRAMID. Therefore,

R2 �(h �1
2z)2 �1

8(5 �
ffiffiffi
5

p
)a2 : (9)

Taking the square root gives the CIRCUMRADIUS

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8(5 �

ffiffiffi
5

p
)

q
a �1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pq
a :0:95105a: (10)

The INRADIUS is

r � 1
12(3

ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
)a :0 :75576a: (11)

The square of the MIDRADIUS is

r2 � 1
2z
� �2

�x2
1 �

1
8(3 �

ffiffiffi
5

p
)a2 ; (12)

so

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8(3 �

ffiffiffi
5

p
)

q
a �1

4(1 �
ffiffiffi
5

p
)a :0:80901a : (13)

The DIHEDRAL ANGLE is

a �cos�1(�1
3

ffiffiffi
5

p
) :138:19( : (14)

The AREA of one face is the AREA of an EQUILATERAL

TRIANGLE

A �1
4a

2
ffiffiffi
3

p
: (15)

The volume can be 



Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, p. 163, 1991.

Wenninger, M. J. "The Icosahedron." Model 4 in Polyhedron
Models. Cambridge, England: Cambridge University
Press, pp. 17�/8, 1989.

Icosahedron Stellations
Applying the STELLATION process to the ICOSAHEDRON

gives

20�30�60�20�60�120�12�30�60�60

cells of ten different shapes and sizes in addition to
the ICOSAHEDRON itself. After application of five
restrictions due to J. C. P. Miller to define which
forms should be considered distinct, 59 stellations
are found to be possible. Miller’s restrictions are

1. The faces must lie in the twenty bounding
planes of the icosahedron.
2. The parts of the faces in the twenty planes must
be congruent, but those parts lying in one place
may be disconnected.
3. The parts lying in one plane must have threefold
rotational symmetry with or without reflections.
4. All parts must be accessible, i.e., lie on the
outside of the solid.
5. Compounds are excluded that can be divided
into two sets, each of which has the full symmetry
of the whole.

Of these, 32 have full icosahedral symmetry and 27
are ENANTIOMERIC forms. Four are POLYHEDRON

COMPOUNDS, one is a KEPLER-POINSOT SOLID, and
one is the DUAL POLYHEDRON of an ARCHIMEDEAN

SOLID.

n name

1 ICOSAHEDRON

2 SMALL TRIAMBIC ICOSAHEDRON

3 OCTAHEDRON 5-COMPOUND

4 ECHIDNAHEDRON

11 GREAT ICOSAHEDRON

13 MEDIAL TRIAMBIC ICOSAHEDRON

13 GREAT TRIAMBIC ICOSAHEDRON

18 TETRAHEDRON 10-COMPOUND

36 TETRAHEDRON 5-COMPOUND





See also ARCHIMEDEAN SOLID STELLATION, DODECA-

HEDRON STELLATIONS, STELLATION
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Icosian Game

The problem of finding a HAMILTONIAN CIRCUIT along
the edges of an DODECAHEDRON, i.e., a path such that
every vertex is visited a single time, no edge is visited
twice, and the ending point is the same as the
starting point (left figure). The puzzle was distributed
commercially as a pegboard with holes at the nodes of
the DODECAHEDRAL GRAPH, illustrated above (right
figure). The Icosian Game was invented in 1857 by
William Rowan Hamilton. Hamilton sold it to a
London game dealer in 1859 for 25 pounds, and the
game was subsequently marketed in Europe in a
number of forms (Gardner 1957).

See also HAMILTONIAN CIRCUIT, DODECAHEDRAL

GRAPH, DODECAHEDRON
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Icosidodecadodecahedron

The UNIFORM POLYHEDRON U44 whose DUAL POLYHE-

DRON is the MEDIAL ICOSACRONIC HEXECONTAHEDRON.
It has WYTHOFF SYMBOL 5

35½3: Its faces are 20f6g�
12f5

2g�12f5g: Its CIRCUMRADIUS for unit edge length
is

R�1
2

ffiffiffi
7

p
:
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Icosidodecagon

A 32-sided polygon. The regular icosidodecagon is a
CONSTRUCTIBLE POLYGON, and the regular icosidode-
cahedron of side length 1 has INRADIUS r , CIRCUMRA-

DIUS R , and AREA A

r �1
2 1 �

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2 �

ffiffiffi
2

p
)
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�
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ffiffiffiffiffi
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p
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ffiffiffiffiffi
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ffiffiffi
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2 �

ffiffiffi
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A �8 1�
ffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(2 �

ffiffiffi
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See also TRIGONOMETRY VALUES PI/32

Icosidodecahedron

An icosidodecahedron is a 32-faced POLYHEDRON.

"The" icosidodecahedron is the 32-faced ARCHIME-

DEAN SOLID A4 with faces 20 f3g�12 f5g: It is one of
the two convex QUASIREGULAR POLYHEDRA. It also
UNIFORM POLYHEDRON U24 and Wenninger model

W12 : It has SCHLÄ FLI SYMBOL
3
5

� �
and WYTHOFF

SYMBOL 2½35:/

The DUAL POLYHEDRON is the RHOMBIC TRIACONTAHE-

DRON. The VERTICES of an icosidodecahedron of EDGE

length 2f�1 are (92; 0 ; 0); (0;92; 0); (0; 0;92);
(91;9f�1 ;91); (91;9f;9f�1) ; (9f�1 ;91;9f) : The
30 VERTICES of an OCTAHEDRON 5-COMPOUND form
an icosidodecahedron (Ball and Coxeter 1987). FA-

CETED versions include the SMALL ICOSIHEMIDODECA-

HEDRON and SMALL DODECAHEMIDODECAHEDRON.

The faces of the icosidodecahedron consist of 20
triangles and 12 pentagons. Furthermore, its 60
edges are bisected perpendicularly by those of the
reciprocal RHOMBIC TRIACONTAHEDRON (Ball and
Coxeter 1987).

The INRADIUS r of the dual, MIDRADIUS r of the solid
and dual, and CIRCUMRADIUS R of the solid for a �1
are

r �1
8(5 �3

ffiffiffiffiffi
5)

p
:1:46353

r �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
:1:53884

R �1
2(1 �

ffiffiffi
5

p
) � f :1:61803:

The SURFACE AREA and VOLUME for an icosidodecahe-
dron are given by

S �5
ffiffiffi
3

p
�3

ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
(1)

V �1
645 �17

ffiffiffi
5

p
(2)

The distance to the centers of the triangular and
pentagonal faces are

r3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6 7�3

ffiffiffi
5

p� �r
(3)

r5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 5�2

ffiffiffi
5

p� �
:

r
(4)

See also ARCHIMEDEAN SOLID, GREAT ICOSIDODECA-

HEDRON, ICOSIDODECAHEDRON, QUASIREGULAR POLY-

HEDRON, SMALL ICOSIHEMIDODECAHEDRON, SMALL

DODECAHEMIDODECAHEDRON
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Icosidodecahedron Stellation
The first stellation is a DODECAHEDRON-ICOSAHEDRON

COMPOUND.
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Icosidodecahedron-Rhombic
Triacontahedron Compound

The POLYHEDRON COMPOUND of the ICOSIDODECAHE-

DRON and its dual, the RHOMBIC TRIACONTAHEDRON.
The compound can be constructed from an ICOSIDO-

DECAHEDRON of unit edge length by midpoint CUMU-

LATION with heights

h3 �
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffi
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pq	 
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(1)
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1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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5(5 �2

ffiffiffi
5

p� �r
: (2)

The resulting solid has edge lengths

s1 �
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 5 �

ffiffiffi
5

p� �r
(3)

s2 �
1
2 (4)

s3 �
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
(5)

s4 �
1
4 1 �

ffiffiffi
5

p� �
; (6)

CIRCUMRADIUS

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 5�2

ffiffiffi
5

p� �r
; (7)

SURFACE AREA S given by the largest positive root of

�612530859375 �147622500000x �36267750000x2

�8164800000x3 �450360000x4 �82944000x5

�230400x6 �184320x7 �4096x8 �0 (8)

and VOLUME

V � 5
16(27 �10

ffiffiffi
5

p
) : (9)

See also CUMULATION, ICOSIDODECAHEDRON, POLY-

HEDRON COMPOUND, RHOMBIC TRIACONTAHEDRON

Icosidodecatruncated Icosidodecahedron
ICOSITRUNCATED DODECADODECAHEDRON

Icositetragon

A 24-sided POLYGON. The regular icositetragon is
constructible. For side length 1, the INRADIUS r ,
CIRCUMRADIUS R , and AREA A are given by

r �1
2(2 �

ffiffiffi
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ffiffiffi
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ffiffiffi
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3
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ffiffiffi
6

p
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See also TRIGONOMETRY VALUES PI/24

Icositetrahedron
A 24-faced POLYHEDRON.

See also DELTOIDAL ICOSITETRAHEDRON, PENTAGO-

NAL ICOSITETRAHEDRON, SMALL RHOMBICUBOCTAHE-

DRON, SMALL TRIAKIS OCTAHEDRON, SNUB CUBE,
TETRAKIS HEXAHEDRON, TRUNCATED OCTAHEDRON

Icositruncated Dodecadodecahedron

The UNIFORM POLYHEDRON U45 also called the ICOSI-



DODECATRUNCATED ICOSIDODECAHEDRON whose DUAL

POLYHEDRON is the TRIDYAKIS ICOSAHEDRON. It has
WYTHOFF SYMBOL 35

35½: Its faces are 20 f6g�12 f10 g�
12 f10

3 g: Its CIRCUMRADIUS for unit edge length is

R �2 :
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Ida Surface
A 3-D shadow of a 4-D KLEIN BOTTLE.

See also KLEIN BOTTLE
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Ideal
A subset I of elements in a RING R which forms an
additive GROUP and has the property that, whenever
x belongs to R and y belongs to I; then xy and yx
belong to I: For example, the set of EVEN INTEGERS is
an ideal in the RING of INTEGERS Z: Given an ideal I;
it is possible to define a FACTOR RING R=I: Ideals are
commonly denoted using a Gothic typeface.

An ideal may be viewed as a lattice and specified as
the finite list of algebraic integers that form a basis
for the lattice. Any two bases for the same lattice are
equivalent. Ideals have multiplication, and this is
basically the KRONECKER PRODUCT of the two bases.
From the perspective of ALGEBRAIC GEOMETRY, ideals
correspond to VARIETIES.

For any ideal I; there is an ideal Ii such that

IIi�z; (1)

where z is a PRINCIPAL IDEAL, (i.e., an ideal of rank 1).
Moreover there is a finite list of ideals Ii such that
this equation may be satisfied for every I: The size of
this list is known as the CLASS NUMBER. In effect, the
above relation imposes an EQUIVALENCE RELATION on
ideals, and the number of ideals modulo this relation
is the CLASS NUMBER. When the CLASS NUMBER is 1,
the corresponding number RING has unique factoriza-
tion and, in a sense, the class number is a measure of
the failure of unique factorization in the original
number ring.

Dedekind (1871) showed that every NONZERO ideal in
the domain of INTEGERS of a FIELD is a unique product
of PRIME IDEALS, and in fact all ideals of Z are of this
form and therefore PRINCIPAL IDEALS.

Ideals can be added, multiplied and intersected. The
union of ideals usually is not an ideal since it may not
be closed under addition. From the perspective of

ALGEBRAIC GEOMETRY, the addition of ideals corre-
sponds to the intersection of VARIETIES and the
intersection of ideals corresponds to the union of
varieties. Also, the multiplication of ideals corre-
sponds to the union of varieties.

Intersection and multiplication are different, for
instance consider the ideal a�(x) in Z[x; y]: Then

a2�a � a� x2
� �

: (2)

Sometimes they are the same. If b� yh i; then

ab�aS b� xyh i: (3)

There is also an analog of division, the IDEAL

QUOTIENT (a : b); and there is an analog of the
RADICAL, also called the RADICAL r(a): Given a ring
homomorphism f : A 0 B; ideals in A EXTEND to
ideals in B , while ideals in B CONTRACT to ideals in A .

The following formulas summarize operations on
ideals, where rc denotes CONTRACT, re denotes EXTEN-

SION, and (a : b) denotes an IDEAL QUOTIENT.

a(b�c)�ab�ac (4)

(a : b)bƒa (5)

(S ai : b)�S (ai : b) (6)

(a :
X

bi)�S (a : bi) (7)

aƒr(a) (8)

r(r(a))�r(a) (9)

rðabÞ ¼ rðaS bÞ ¼ rðaÞS rðbÞ ð10Þ

r(a�b)�r(r(a)�r(b)) (11)

aƒaec (12)

bceƒb (13)

bc�bcec (14)

ae�aece (15)

a1�a2ð Þe�ae
1�ae

2 (16)

bc
1�bc

2ƒ b1�b2ð Þc (17)

a1S a2ð Þe
ƒae

1S ae
2 (18)

bc
1S bc

2� b1S b2ð Þc (19)

ae
1a

e
2� a1a2ð Þe (20)

bc
1b

c
2ƒ b1b2ð Þc (21)

a1 : a2ð Þe
ƒ(ae

1 : ae
2) (22)

b1 : b2ð Þc
ƒ(bc

1 : bc
2) (23)

r að Þe
ƒr(ae) (24)



r bð Þc�r(bc) (25)

See also ALGEBRAIC GEOMETRY, CLASS NUMBER,
CONTRACTION (IDEAL), DIVISOR THEORY, EXTENSION

(IDEAL), HERBRAND’S THEOREM, HILBERT’S NULLSTEL-

LENSATZ, HOMOGENEOUS IDEAL, IDEAL NUMBER, IN-

TEGRAL DOMAIN, IDEAL QUOTIENT, JOSEPH IDEAL,
MAXIMAL IDEAL, PRIME IDEAL, PRINCIPAL IDEAL,
RADICAL, VARIETY
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Halter-Koch, F. Ideal Systems: An Introduction to Multi-
plicative Ideal Theory. New York: Dekker, 1998.

Koch, H. "Dedekind’s Theory of Ideals." Ch. 3 in Number
Theory: Algebraic Numbers and Functions. Providence,
RI: Amer. Math. Soc., pp. 65 �/02, 2000.

Malgrange, B. Ideals of Differentiable Functions. London:
Oxford University Press, 1966.

Ideal (Partial Order)
An ideal I of a PARTIAL ORDER P is a subset of the
elements of P which satisfy the property that if y � 1
and x By , then x � I : For k disjoint chains in which
the ith chain contains ni elements, there are (1 �
n1)(1 �n2) � � � (1 �nk) ideals. The number of ideals of a
n -element FENCE POSET is the FIBONACCI NUMBER Fn :/
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Ideal Function
DISTRIBUTION (GENERALIZED FUNCTION)

Ideal Number
A type of number involving the ROOTS OF UNITY which
was developed by Kummer while trying to solve
FERMAT’S LAST THEOREM. Although factorization
over the INTEGERS is unique (the FUNDAMENTAL

THEOREM OF ALGEBRA), factorization is not unique
over the COMPLEX NUMBERS. Over the ideal numbers,
however, factorization in terms of the COMPLEX

NUMBERS becomes unique. Ideal numbers were so
powerful that they were generalized by Dedekind into
the more abstract IDEALS in general RINGS which are
a key part of modern abstract ALGEBRA.

See also DIVISOR THEORY, FERMAT’S LAST THEOREM,
IDEAL
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Ideal Point
A type of POINT AT INFINITY in which parallel lines in
the HYPERBOLIC PLANE intersect at infinity in one
direction, while diverging from one another in the
other.

See also HYPERPARALLEL

Ideal Quotient
The ideal quotient ( a : b) is an analog of division for
IDEALS in a COMMUTATIVE RING R ,

( a : b) �fx � R : xbƒag:

The ideal quotient is always another ideal.

However, this operation is not exactly like division.
For example, when R is the ring of integers, then

12h i : 2h ið Þ� 6h i; which is nice, while 12h i : 5h ið Þ�
12h iÞ; which is not as nice.

See also ALGEBRAIC GEOMETRY, ALGEBRAIC NUMBER

THEORY, IDEAL

Idele
The multiplicative subgroup of all elements in the
product of the multiplicative groups k�

n whose abso-
lute value is 1 at all but finitely many n ; where k is a
number FIELD and n a PLACE.

See also ADÉ LE
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lysis, Part II." Not. Amer. Math. Soc. 43, 537 �/49, 1996.

Idemfactor
DYADIC

Idempotent
An OPERATOR Ā such that Ā2 � Ā or an element of an
ALGEBRA x such that x2 �x:/

See also AUTOMORPHIC NUMBER, BOOLEAN ALGEBRA,
GROUP, IDEMPOTENT MATRIX, SEMIGROUP

Idempotent Matrix
A PERIODIC MATRIX with period 1, so that A2 �A :/

See also IDEMPOTENT, NILPOTENT MATRIX, PERIODIC

MATRIX



Idempotent Number
The idempotent numbers are given by

Bn;k(1; 2 ; 3; . . .)�
n
k

	 

kn�k ;

where Bn;k is a BELL POLYNOMIAL and n
k

� �
is a

BINOMIAL COEFFICIENT. A table of the first few is
given below.

n �1 n � 2 n � 3 n � 4 n � 5 n �6 n � 7

k A000027 A001788 A036216 A040075 A050982 A050988 A050989

1 1

2 2 1

3 3 6 1

4 4 24 12 1

5 5 80 90 20 1

6 6 240 540 240 30 1

7 7 672 2835 2240 525 42 1

8 8 1792 13608 17920 7000 1008 56

9 9 4608 61236 129024 78750 18144 1764

10 10 11520 262440 860160 787500 272160 41160

See also BELL POLYNOMIAL, LAH NUMBER
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M4161, A036216, A040075, A050982, A050988, and
A050989 in "An On-Line Version of the Encyclopedia of
Integer Sequences." http://www.research.att.com/~njas/
sequences/eisonline.html.

Identical Congruence
FUNCTIONAL CONGRUENCE

Identity
An identity is a mathematical relationship equating
one quantity to another (which may initially appear
to be different).

See also ABEL’S DIFFERENTIAL EQUATION IDENTITY,
ANDREWS-SCHUR IDENTITY, BAC-CAB IDENTITY,
BEAUZAMY AND DÉ GOT’S IDENTITY, BELTRAMI IDEN-

TITY, BIANCHI IDENTITIES, BOCHNER IDENTITY, BRAH-

MAGUPTA IDENTITY, CASSINI’S IDENTITY, CAUCHY-

LAGRANGE IDENTITY, CHRISTOFFEL-DARBOUX IDEN-

TITY, CHU-VANDERMONDE IDENTITY, DE MOIVRE’S

IDENTITY, DOUGALL-RAMANUJAN IDENTITY, EULER

FOUR-SQUARE IDENTITY, EULER IDENTITY, EULER

POLYNOMIAL IDENTITY, FERRARI’S IDENTITY, FIBONAC-

CI IDENTITY, FROBENIUS TRIANGLE IDENTITIES,
GREEN’S IDENTITIES, HYPERGEOMETRIC IDENTITY,
IMAGINARY IDENTITY, JACKSON’S IDENTITY, JACOBI

IDENTITIES, JACOBI’S DETERMINANT IDENTITY, JOR-

DAN IDENTITY, LAGRANGE’S IDENTITY, LE CAM’S

IDENTITY, LEIBNIZ IDENTITY, LIOUVILLE POLYNOMIAL

IDENTITY, MATRIX POLYNOMIAL IDENTITY, MORGADO

IDENTITY, NEWTON’S IDENTITIES, QUINTUPLE PRO-

DUCT IDENTITY,RAMANUJAN 6 �10-8  IDENTITY,RAMANU-

JAN COS/COSH IDENTITY, RAMANUJAN’S IDENTITY,
RAMANUJAN’S SUM IDENTITY, REZNIK’S IDENTITY,
ROGERS-RAMANUJAN IDENTITIES, SCHAAR’S IDENTITY,
STREHL IDENTITIES, SYLVESTER’S DETERMINANT IDEN-

TITY, TRINOMIAL IDENTITY, VISIBLE POINT VECTOR

IDENTITY, WATSON QUINTUPLE PRODUCT IDENTITY,
WORPITZKY’S IDENTITY

References
Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. "Identities."
§2.2 in A �B. Wellesley, MA: A. K. Peters, pp. 21 �/2,
1996.

Identity Element
The identity element I (also denoted E , e , or I) of a
GROUP or related mathematical structure S is the
unique element such that IA �AI �A for every
element A � S : The symbol "E" derives from the
German word for unity, "Einheit." An identity ele-
ment is also called a unit element.

See also BINARY OPERATOR, GROUP, INVOLUTION

(GROUP), MONOID

Identity Function

The function f (x)�x which assigns every REAL



NUMBER x to the same REAL NUMBER x . It is identical
to the IDENTITY MAP.

Identity Map
The MAP which assigns every member of a set A to the
same element idA : It is identical to the IDENTITY

FUNCTION.

See also DONKIN’S THEOREM, IDENTITY FUNCTION,
ZERO MAP

Identity Matrix
The identity matrix is a very special BINARY MATRIX

denoted I (or I) and defined such that

I(X) �X (1)

for all VECTORS X. The identity matrix is

Iij � dij (2)

for i ; j �1 ; 2; ..., n , where dij is the KRONECKER DELTA.
Written explicitly,

I �

1 0 � � �  0
0 1 � � �  0
n n  ::: n
0 0 � � �  1

2
664

3
775: (3)

The notation E (an abbreviation for the German term,
"Einheitsmatrix") is sometimes also used (Courant
and Hilbert 1989, p. 7).

"Square root of identity" matrices can be defined for In
by solving

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n � � � ::: n
an1 an2 � � �  ann

2
664

3
775

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n � � � ::: n
an1 an2 � � �  ann

2
664

3
775

�

1 0 � � �  0
0 1 � � �  0
n n  ::: 0
0 0 � � �  1

2
664

3
775: (4)

For n �2, the resulting matrices are

I1 =2
2 �

91 0
0 91

" #
;
91 0
c �1

" #
;

91 b
0 �1

" #
;
�d

1 � d2

c2

c d

2
4

3
5: (5)

"Cube root of identity" matrices can take on even
more complicated forms. However, one simple class of
such matrices is called K -MATRICES.

See also BINARY MATRIX, IDENTITY MATRIX, K -MA-

TRIX, ZERO MATRIX

References
Ayres, F. Jr. Theory and Problems of Matrices. New York:
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Identity Operator
The OPERATOR Ī which takes a REAL NUMBER to the
same REAL NUMBER Īr �r:/

See also IDENTITY FUNCTION, IDENTITY MAP

Identity Transformation
IDENTITY MAP

Identric Mean
This entry contributed by RONALD M. AARTS

The identric mean is defined by

I(a; b) �
1

e

bb

aa

 !1 =(b�a)

for a 	0, b 	0, and a "b: The identric mean has
been investigated intensively and many remarkable
inequalities for I(a ; b) have been published (Bullen et
al. 1988, Alzer 1993).
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Idoneal Number
A POSITIVE value of D for which the fact that a
number is a MONOMORPH (i.e., the number is expres-
sible in only one way as x2 �Dy2 or x2 �Dy2 where x2

is RELATIVELY PRIME to Dy2) guarantees it to be a
PRIME, POWER of a PRIME, or twice one of these. The
numbers are also called EULER’S IDONEAL NUMBERS,
or SUITABLE NUMBERS.

The 65 idoneal numbers found by Gauss and Euler
and conjectured to be the only such numbers (Shanks
1969) are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18,
21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60,
70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133,
165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312,
330, 345, 357, 385, 408, 462, 520, 760, 840, 1320,
1365, and 1848 (Sloane’s A000926).

See also MONOMORPH
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Iff
If and only if (i.e., NECESSARY and SUFFICIENT). The
terms "JUST IF" or "EXACTLY WHEN" are sometimes
used instead. A iff B is written symbolically as A l
B : A iff B is also equivalent to A [B; together with
B [A; where the symbol [denotes "IMPLIES."

J. H. Conway believes that the word originated with
P. Halmos and was transmitted through Kelley
(1975). Halmos has stated, "To the best of my knowl-
edge, I did invent the silly thing, but I wouldn’t swear
to it in a court of law. So there–give me credit for it
anyway" (D. Asimov 1997).

See also EQUIVALENT, EXACTLY ONE, IMPLIES, NE-

CESSARY, SUFFICIENT
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Ill-Conditioned Matrix
A MATRIX is ill-conditioned if the CONDITION NUMBER

is too large (and SINGULAR if it is INFINITE).

See also CONDITION NUMBER, SINGULAR MATRIX,
SINGULAR VALUE DECOMPOSITION
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Ill Defined
A solution to a PARTIAL DIFFERENTIAL EQUATION that
is not a continuous function of its values on the
boundary is said to be ill defined. Otherwise, a
solution is called WELL DEFINED.

The term "ill defined" is also used informally to mean
AMBIGUOUS.

See also AMBIGUOUS, WELL DEFINED

Illumination Problem
In the early 1950s, Ernst Straus asked

1. Is every POLYGONAL region illuminable from
every point in the region?
2. Is every POLYGONAL region illuminable from at
least one point in the region?

Here, illuminable means that there is a path from
every point to every other by repeated reflections.
Tokarsky (1995) showed that unilluminable rooms
exist in the plane and 3-D, but question (2) remains
open. The smallest known counterexample to (1) in
the PLANE has 26 sides.

See also ART GALLERY THEOREM
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Illusion
An object or drawing which appears to have proper-
ties which are physically impossible, deceptive, or
counterintuitive.

See also BENHAM’S WHEEL, BLACK DOT ILLUSION,
BULLSEYE ILLUSION, FREEMISH CRATE, GOBLET ILLU-

SION, HERMANN GRID ILLUSION, HERMANN-HERING

ILLUSION, HYZER’S ILLUSION, IMPOSSIBLE FIGURE,
IRRADIATION ILLUSION, KANIZSA TRIANGLE, MÜ LLER-

LYER ILLUSION, NECKER CUBE, ORBISON’S ILLUSION,
PARALLELOGRAM ILLUSION, PENROSE STAIRWAY, POG-

GENDORFF ILLUSION, PONZO’S ILLUSION, RABBIT-DUCK

ILLUSION, TRIBAR, TRIBOX, VERTICAL-HORIZONTAL

ILLUSION, YOUNG GIRL-OLD WOMAN ILLUSION, ZÖ LL-

NER’S ILLUSION
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Im
IMAGINARY PART

Image
RANGE (IMAGE)



Imaginary Axis

The axis in the COMPLEX PLANE corresponding to zero
REAL PART, R z½ ��0:/

See also COMPLEX PLANE, IMAGINARY LINE, REAL

AXIS

Imaginary Identity
I

Imaginary Line
A "line" having imaginary coefficients in its equations
which can arise in algebraic geometry.

See also IMAGINARY AXIS, LINE, REAL LINE

Imaginary Number
A COMPLEX NUMBER which has zero REAL PART, so
that it can be written as a REAL NUMBER multiplied by
the "IMAGINARY UNIT" I (equal to the SQUARE ROOTffiffiffiffiffiffi
�1

p
) :/

See also COMPLEX NUMBER, GALOIS IMAGINARY,
GAUSSIAN INTEGER, I , IMAGINARY PART, IMAGINARY

UNIT, REAL NUMBER
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Imaginary Part

The imaginary part I[z] of a COMPLEX NUMBER z �

x �iy is the REAL NUMBER multiplying I , so I x �iy½ ��
y: In terms of z itself,

I z½ ��z � z̄

2i
;

where z̄ is the COMPLEX CONJUGATE of z . The
imaginary part is implemented in Mathematica as
Im[z ].

See also ABSOLUTE SQUARE, ARGUMENT (COMPLEX

NUMBER), COMPLEX CONJUGATE, COMPLEX PLANE,
MODULUS (COMPLEX NUMBER), REAL PART
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Imaginary Point
A pair of values x and y one or both of which is
COMPLEX.
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Imaginary Quadratic Field
A QUADRATIC FIELD Q(

ffiffiffiffi
D

p
) with D B0.

See also JUGENDTRAUM, QUADRATIC FIELD

Imaginary Unit
The IMAGINARY NUMBER i �

ffiffiffiffiffiffi
�1

p
; i.e., the SQUARE

ROOT of �1. The imaginary unit is denoted and
commonly referred to as "I ." Although there are two
possible square roots of any number, the square roots
of a negative number cannot be distinguished until
one of the two is defined as the imaginary unit, at
which point �i and �i can then be distinguished.
Since either choice is possible, there is no ambiguity
in defining i as "the" square root of �1. In Mathe-
matica , the imaginary unit is implemented as I.

See also COMPLEX NUMBER, I , IMAGINARY NUMBER,
UNIT

Immanant
For an n�n matrix, let S denote any permutation e1;
e2; ..., en of the set of numbers 1, 2, . . ., n , and let
x(l)(S) be the character of the symmetric group
corresponding to the partition (l): Then the imma-
nant amnj j(l) is defined as

amnj j(l)�
X

x(l)(S)PS

where the summation is over the n! permutations of



the SYMMETRIC GROUP and

PS �a1e1
a2e2

� � � anen
:

See also DETERMINANT, PERMANENT
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Immersed Minimal Surface
ENNEPER’S MINIMAL SURFACE

Immersion
A special nonsingular MAP from one MANIFOLD to
another such that at every point in the domain of the
map, the DERIVATIVE is an injective linear map. This
is equivalent to saying that every point in the DOMAIN

has a NEIGHBORHOOD such that, up to DIFFEOMORPH-

ISMS of the TANGENT SPACE, the map looks like the
inclusion map from a lower-dimensional EUCLIDEAN

SPACE to a higher-dimensional EUCLIDEAN SPACE.

See also BOY SURFACE, EVERSION, SMALE-HIRSCH

THEOREM, SUBMERSION
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Immersion Theorem
SMALE-HIRSCH THEOREM

Impartial Game
A GAME in which the possible moves are the same for
each player in any position. All positions in all
impartial GAMES form an additive ABELIAN GROUP.
For impartial games in which the last player wins
(normal form games), the nim-value of the sum of two
GAMES is the nim-sum of their nim-values. If the last
player loses, the GAME is said to be in misère form and
the analysis is much more difficult.

See also FAIR GAME, GAME, PARTISAN GAME

Implicit Function
A function which is not defined explicitly, but rather
is defined in terms of an algebraic relationship (which

can not, in general, be "solved" for the function in
question). For example, the ECCENTRIC ANOMALY E of
a body orbiting on an ELLIPSE with ECCENTRICITY e is
defined implicitly in terms of the mean anomaly M by
KEPLER’S EQUATION

M �E �e sin E :

Implicit Function Theorem
Given

F1(x; y; z;u ; v;w) �0 (1)

F2(x; y; z;u ; v;w) �0 (2)

F3(x; y; z;u ; v;w) �0 (3)

if the JACOBIAN

JF(u; v ;w) �
@(F1 ;F2 ;F3)

@(u; v ;w)
"0; (4)

then u , v , and w can be solved for in terms of x , y ,
and z and PARTIAL DERIVATIVES of u , v , w with
respect to x , y , and z can be found by differentiating
implicitly.

More generally, let A be an OPEN SET in Rn�k and let
f : A 0 Rn be a C t FUNCTION. Write f in the form
f (x; y); where x and y are elements of Rk and Rn :
Suppose that (a , b ) is a point in A such that f (a ; b) �0
and the DETERMINANT of the n �n MATRIX whose
elements are the DERIVATIVES of the n component
FUNCTIONS of f with respect to the n variables,
written as y , evaluated at (a, b ), is not equal to
zero. The latter may be rewritten as

rank(Df (a ; b)) �n: (5)

Then there exists a NEIGHBORHOOD B of a in Rk and a
unique C t FUNCTION g : B 0 Rn such that g(a) �b and
f (x; g(x))�0 for all x �B:/

See also CHANGE OF VARIABLES THEOREM, JACOBIAN
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Implies
The CONNECTIVE in PROPOSITIONAL CALCULUS which
has the meaning "‘if A is true, then B is also true." In
formal terminology, the term CONDITIONAL is often
used to refer to this connective (Mendelson 1997,
p. 13). The symbol used to denote "implies" is A[B;
A‡B (Carnap 1958, p. 8; Mendelson 1997, p. 13), or
A 0 B: In Mathematica 4.0, the command Implies-
RealQ[ineqs1 , ineqs2 ] can be used to determine if the
system of real algebraic equations and inequalities
ineqs1 implies the system of real algebraic equations
and inequalities ineqs2 .



/A [B is an abbreviation for !A �B ; where !A denotes
NOT and �denoted OR. [is a binary operator that is
implement in Mathematica as Implies[A , B ], and
can not be extended to more than two arguments.

/A [B has the following TRUTH TABLE (Carnap 1958,
p. 10; Mendelson 1997, p. 13).

A B /A [B/

T T T

T F F

F T T

F F T

If A [B and B [A (i.e, A [B fflB [A) ; then A and B
are said to be EQUIVALENT, a relationship which is
written symbolically as A UB; A XB ; or A �B (Car-
nap 1958, p. 8).

See also CONNECTIVE, EQUIVALENT, EXISTS, FOR ALL,
QUANTIFIER
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Impossible Figure
A class of ILLUSION in which an object which is
physically unrealizable is apparently depicted.

See also FREEMISH CRATE, HOME PLATE, ILLUSION,
NECKER CUBE, PENROSE STAIRWAY, TRIBAR
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Impredicative
Definitions about a SET which depend on the entire
SET.

Improper Divisor
A DIVISOR which is not a PROPER DIVISOR.

See also DIVISOR, PROPER DIVISOR

Improper Fraction
A FRACTION p=q > 1 : A FRACTION with p =q B1 is
called a PROPER FRACTION. Therefore, the special
cases 1/1, 2/2, 3/3, etc. are generally considered to
be improper.

See also FRACTION, MIXED FRACTION, PROPER FRAC-

TION

Improper Integral
An INTEGRAL which has either or both limits INFINITE

or which has an INTEGRAND which approaches IN-

FINITY at one or more points in the range of integra-
tion.

See also DEFINITE INTEGRAL, INDEFINITE INTEGRAL,
INTEGRAL, PROPER INTEGRAL
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Improper Node
A FIXED POINT for which the STABILITY MATRIX has
equal nonzero EIGENVECTORS.

See also STABLE IMPROPER NODE, UNSTABLE IMPRO-

PER NODE

Improper Rotation
The SYMMETRY OPERATION corresponding to a ROTA-

TION followed by an INVERSION OPERATION, also called
a ROTOINVERSION. This operation is denoted n̄ for an
improper rotation by 3608/n so the CRYSTALLOGRAPHY

RESTRICTION gives only 1̄; 2̄; 3̄; 4̄; 6̄ for crystals. The



MIRROR PLANE symmetry operation is (x; y; z) 0
(x; y;�z); etc., which is equivalent to 2̄:/

See also INVERSION OPERATION, ROTATION, SYMME-

TRY OPERATION

Impulse Pair

The even impulse pair is the FOURIER TRANSFORM of
cos(pk) ;

P(x) �1
2 d x �1

2

� �
�1

2d x �1
2

� �
: (1)

It satisfies

P(x) + f (x) �1
2 f x�1

2

� �
�1

2 f x�1
2

� �
; (2)

where + denotes CONVOLUTION, and

g
�

��

P(x)dx �1: (3)

The odd impulse pair is the FOURIER TRANSFORM of
i sin( ps);

II(x) �1
2 d x �1

2

� �
�1

2d x �1
2

� �
: (4)

Impulse Symbol
Bracewell’s term for the DELTA FUNCTION.

See also DELTA FUNCTION, IMPULSE PAIR
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Inaccessible Cardinal
An inaccessible cardinal is a CARDINAL NUMBER which
cannot be expressed in terms of a smaller number of
smaller cardinals.

See also CARDINAL NUMBER

Inaccessible Cardinals Axiom
INACCESSIBLE CARDINAL, LEBESGUE MEASURABILITY

PROBLEM

Inadmissible
A word or string which is not ADMISSIBLE.

In-and-Out Curve

A curve created by starting with a circle, dividing it
into six arcs, and flipping three alternating arcs. The
process is then repeated an infinite number of times.

Incenter

The center I of a TRIANGLE’S INCIRCLE. It can be found
as the intersection of ANGLE BISECTORS, and it is the
interior point for which distances to the sides of the
triangle are equal. It has TRILINEAR COORDINATES

1:1:1 and homogeneous BARYCENTRIC COORDINATES

(a; b; c): The distance between the incenter and
CIRCUMCENTER is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(R�2r)

p
:/

The incenter lies on the NAGEL LINE and SODDY LINE.
The incenter lies on the EULER LINE only for an
ISOSCELES TRIANGLE. For an EQUILATERAL TRIANGLE,
the CIRCUMCENTER O , CENTROID G , NINE-POINT CEN-

TER F , ORTHOCENTER H , and DE LONGCHAMPS POINT

Z all coincide with I .

The incenter and EXCENTERS of a TRIANGLE are an
ORTHOCENTRIC SYSTEM. The POWER of the incenter
with respect to the CIRCUMCIRCLE is

p�
a1a2a3

a1 � a2 � a3

(johnson 1929, p. 190). if the incenters of the TRIAN-

GLES DA1H2H3; DA2H3A1; and DA3H1H2 are X1; X2;
and X3; then X2X3 is equal and parallel to I2I3; where
Hi are the FEET of the ALTITUDES and Ii are the
incenters of the TRIANGLES. Furthermore, X1; X2; X3;
are the reflections of I with respect to the sides of the
TRIANGLE DI1I2I3 (Johnson 1929, p. 193).



See also CENTROID (ORTHOCENTRIC SYSTEM), CIRCUM-

CENTER, CYCLIC QUADRILATERAL, EXCENTER, GER-

GONNE POINT, INCIRCLE, INRADIUS, ORTHOCENTER,
NAGEL LINE
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Incenter-Excenter Circle

Given a triangle DA1A2A3 ; the points A1 ; I , and J1 lie
on a line, where I is the INCENTER and J1 is the
EXCENTER corresponding to A1 : Furthermore, the
CIRCLE with IJ1 as the DIAMETER has P as its center,
where P is the intersection of A1J1 with the CIRCUM-

CIRCLE of DA1A2A3 ; and passes through A2 and A3 :
This CIRCLE has RADIUS

r �1
2a1 sec 1

2 a1

� �
�2R sin 1

2 a1

� �
:

It arises because IJ1J2J3 forms an ORTHOCENTRIC

SYSTEM.

See also CIRCUMCIRCLE, EXCENTER, EXCENTER-EX-

CENTER CIRCLE, INCENTER, ORTHOCENTRIC SYSTEM
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Incidence Axioms
The eight of HILBERT’S AXIOMS which concern colli-
nearity and intersection; they include the first four of
EUCLID’S POSTULATES.

See also ABSOLUTE GEOMETRY, CONGRUENCE AXIOMS,
CONTINUITY AXIOMS, EUCLID’S POSTULATES, HIL-

BERT’S AXIOMS, ORDERING AXIOMS, PARALLEL POSTU-

LATE

References
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Incidence Matrix

The incidence matrix of a GRAPH gives the (0,1)-
MATRIX which has a row for each vertex and column
for each edge, and (v; e)�1 IFF vertex v is incident
upon edge e (Skiena 1990, p. 135). The physicist
Kirchhoff (1847) was the first to define the incidence
matrix. The incidence matrix of a graph can be
computed using IncidenceMatrix[g ] in the Math-
ematica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘).

The incidence matrix C of a graph and ADJACENCY

MATRIX L of its LINE GRAPH are related by

L�CTC�2I;

where I is the IDENTITY MATRIX (Skiena 1990, p. 136).

For a k -D POLYTOPE Pk; the incidence matrix is
defined by

hk
ij�

1 if Pi
k�1 belongs to Pi

k

0 if Pi
k�1 does not belong Pi

k

$

The ith row shows which Pk/s surround Pi
k�1; and the

jth column shows which Pk�1/s bound Pj
k: Incidence

matrices are also used to specify PROJECTIVE PLANES.
The incidence matrices for a TETRAHEDRON ABCD are



/h0
/ 1 A B C

1 1 1 1 1

/ h1
/ AD BD CD BC AC AB

A 1 0 0 0 1 1

B 0 1 0 1 0 1

C 0 0 1 1 1 0

D 1 1 1 0 0 0

/ h2
/ BCD ACD ABD ABC

AD 0 1 1 0

BD 1 0 1 0

CD 1 1 0 0

BC 1 0 0 1

AC 0 1 0 1

AB 0 0 1 1

/h3
/ ABCD

BCD 1

ACD 1

ABD 1

ABC 1

See also ADJACENCY MATRIX, K -CHAIN, K -CIRCUIT,
INTEGER MATRIX
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Incident
Two objects which touch each other are said to be
incident.

See also CONCUR, TANGENT CURVES

Incircle

The INSCRIBED CIRCLE of a TRIANGLE DABC: The
center I of the incircle is called the INCENTER and
the RADIUS r the INRADIUS. The points of intersection
of the incircle with T are the VERTICES of the PEDAL

TRIANGLE of T with the INCENTER as the PEDAL POINT

(cf. TANGENTIAL TRIANGLE). This TRIANGLE is called
the CONTACT TRIANGLE.

There are four CIRCLES that are tangent all three
sides (or their extensions) of a given TRIANGLE: the
incircle I and three EXCIRCLES J1; J2; and J3: These
four circles are, in turn, all touched by the NINE-POINT

CIRCLE N .
The TRILINEAR COORDINATES of the INCENTER are 1 :
1 : 1: The INRADIUS r and horizontal position of the
INCENTER xI for a given triangle with two angles A
and C and adjacent side of length b is given by
simultaneously solving the equations

tan 1
2A
� �

�
r

xI

(1)

tan 1
2C
� �

�
r

b � xI

; (2)

giving



r�
tan 1

2A
� �

tan 1
2C
� �

tan 1
2A
� �

� tan 1
2C
� � b (3)

xI�
tan 1

2C
� �

tan 1
2A
� �

� tan 1
2C
� � b; (4)

whereas the ALTITUDE height h and horizontal posi-
tion xh of the ALTITUDE, are given by

h�
tan C

tan A � tan C
b (5)

xh�
tan A tan C

tan A � tan C
b: (6)

The AREA D of the TRIANGLE DABC is given by

D�DBIC�DAIC�DAIB

�1
2ar�1

2br�1
2cr�1

2(a�b�c)r�sr; (7)

where s is the SEMIPERIMETER, so the INRADIUS is

r�
D
s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s � a)(s � b)(s � c)

s

s
(8)

Using the incircle of a TRIANGLE as the INVERSION

CENTER, the sides of the TRIANGLE and its CIRCUM-

CIRCLE are carried into four equal CIRCLES (Honsber-
ger 1976, p. 21). Pedoe (1995, p. xiv) gives a
GEOMETRIC CONSTRUCTION for the incircle.

Let a triangle DABC have INCIRCLE with INCENTER I
and let the incircle be tangent to DABC at TA; TC;
(and TB; not shown). Then the lines CI , TATC; and the
perpendicular to CI through A CONCUR in a point P
(Honsberger 1995).

Given a triangle, draw a CEVIAN to one of the bases
which divides it into two triangles having congruent
incircles. The positions and sizes of these two cir-
cumcircles can then be determined by simultaneously
solving the eight equations

x1�
tan 1

2u12

� �
tan 1

2u11 � tan 1
2u12

� �� �d1 (9)

x2�
tan 1

2u22

� �
tan 1

2u21

� �
� tan 1

2u22

� �d2 (10)

a�
tan 1

2u11

� �
tan 1

2u12

� �
tan 1

2u11

� �
� tan 1

2u12

� �d1 (11)

a�
tan 1

2u21

� �
tan 1

2u22

� �
tan 1

2u21

� �
� tan 1

2u22

� �d2 (12)

h�
tan u11 tan u12

tan u11 � tan u12

d1 (13)

h�
tan u21 tan u22

tan u21 � tan u22

d2 (14)

d�d1�d2 (15)

p�u12�u21 (16)

for the eight variables d1; d2; u12; u21; a , x1; x2; and h ,
with u11; u22; and d given. Generalizing to n con-
gruent circles gives the 4n equations

xi�
tan 1

2ui2

� �
tan 1

2ui1

� �
� tan 1

2ui2

� �di (17)

a�
tan 1

2ui1

� �
tan 1

2ui2

� �
tan 1

2ui1

� �
� tan 1

2ui2

� �di (18)

h�
tan ui1 tan ui2

tan ui1 � tan ui2

di (19)

for i�1, . . ., n ,

ui2�ui�1;1�p (20)

for i�1, . . ., n�1; and

d�
Xn

i�1

di (21)

to be solved for the unknowns di and xi (n of them), ui1

and ui2 (/n�2 of each for i�2, . . ., n�1); and u12; un1;
a , and h , a total of n�n�2(n�2)�4�4n un-
knowns.

Given an arbitrary TRIANGLE, let n�1 Cevians be
drawn from one of its vertices so all of the n triangles



so determined have equal incircles. Then the incircles
determined by spanning 2, 3, . . ., n �1 adjacent
triangles are also equal (Wells 1991, p. 67).

See also CIRCUMCIRCLE, CONGRUENT INCIRCLES

POINT, CONTACT TRIANGLE, EQUAL INCIRCLES THEO-

REM, EXCIRCLE, INCENTER, INRADIUS, JAPANESE THE-

OREM, SEVEN CIRCLES THEOREM, TANGENT CIRCLES,
TANGENTIAL TRIANGLE, TRIANGLE TRANSFORMATION

PRINCIPLE
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Inclusion Map
Given a SUBSET B of a SET A , the INJECTION f : B 0 A
defined by f (b) �b for all b � B is called the inclusion
map.

See also LONG EXACT SEQUENCE OF A PAIR AXIOM

Inclusion-Exclusion Principle
Let Aj j denote the CARDINALITY of set A , then it
follows immediately that

A @ Bj j�Aj j�Bj j� A S Bj j;

where @ denotes UNION, and S denotes INTERSECTION.

This formula can be generalized in the following
beautiful manner. Let A �fAi g

p
i�1 be a P -SYSTEM of

S consisting of sets A1 ; . . ., Ap ; then

A1 @ A2 @ . . .@ Ap

%% %%� X
15i5p

Aij j�
X

1 5i1B i2 5p

Ai1 S Ai2j j

�
X

15i1 B i2 B i3 5p

Ai1 S Ai2 S Ai3j j�. . .

�(�1)p �1 Ai1 S Ai2 S . . .S Ap

%% %%;
where the sums are taken over K -SUBSETS of A : This
formula holds for infinite sets S as well as finite sets
(Comtet 1972, p. 177).

The principle of inclusion-exclusion was used by
Nicholas Bernoulli to solve the recontres problem of
finding the number of DERANGEMENTS (Bhatnagar
1995, p. 8).

The following Mathematica programs give a list of
the subsets appearing under each sum and the
contribution each sum makes to the total.

BB  DiscreteMath‘Combinatorica‘;

InclusionExclusionSubets[a_List] : �
Module[{n, p � Length[a]},

Table[Intersection @@ a[[#]] & /@

KSubsets[Range[p], n],

{n, p}]

] InclusionExclusionTerms[a_List] : �
Module[{n, p � Length[a]},

Table[(-1)^(n - 1)Plus @@ Length /@

(Intersection @@ a[[#]] & /@

KSubsets[Range[p], n]),

{n, p}]

]

For example, for the three subsets A1 �f2; 3 ; 7; 9 ; 10g;
A2 �f1 ; 2; 3 ; 9g; and A3 �f2 ; 4; 9 ; 10g of S �
f1; 2; . . . ; 10g; the following table summarizes the
terms appearing the sum.

# term set length

1 /A1/ {2, 3, 7, 9, 10} 5

/A2/ {1, 2, 3, 9} 4

/A3/ {2, 4, 9, 10} 4

2 /A1SA2/ {2, 3, 9} 3

/A1SA3/ {2, 9, 10} 3

/A2SA3/ {2, 9} 2

3 /A1SA2SA3/ {2, 9} 2

/ A1@A2@A3j j is therefore equal to (5�4�4)�(3�
3�2)�2�7; corresponding to the seven elements
A1@A2@A3�f1; 2; 3; 4; 7; 9; 10g:/

See also BAYES’ THEOREM
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Inclusive Disjunction
A DISJUNCTION that remains true if either or both of
its arguments are true. This is equivalent to the OR
CONNECTIVE.

By contrast, the EXCLUSIVE DISJUNCTION is true if
only one, but not both, of its arguments are true, and
is false if neither or both are true, which is equivalent
to the XOR connective.

See also DISJUNCTION, EXCLUSIVE DISJUNCTION, OR,
XOR

Incommensurate
Two lengths are called incommensurate or incom-
mensurable if their ratio cannot be expressed as a
ratio of whole numbers. IRRATIONAL NUMBERS and
TRANSCENDENTAL NUMBERS are incommensurate with
the integers.

See also FRACTION, IRRATIONAL NUMBER, PYTHAGOR-

AS’S CONSTANT, TRANSCENDENTAL NUMBER

Incomparable Rectangles
Two RECTANGLES, neither of which will fit inside the
other, are said to be incomparable. This is equivalent
to one rectangle being both longer and narrower. At
least seven and at most eight mutually incomparable
rectangles are needed to tile a given rectangle (Wells
1991).

See also RECTANGLE
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Incomplete Beta Function
A generalization of the complete BETA FUNCTION

defined by

B(z; a ; b) �g
z

0

ua �1(1 �u)b �1du

�za 1

a 
�

1 � b

a � 1
z �. . .�

(1 � b) � � � (n � b)

n!(a � n)
zn �. . .

" #
:

The symbol Bz(a ; b) is sometimes also used. The
incomplete beta function B(z; a ; b) reduces to the use
BETA FUNCTION B(a; b) when z �1,

B(1; a; b) �B(a ; b)

The incomplete beta function is implemented in
Mathematica as Beta[z , a , b ].

See also BETA FUNCTION, REGULARIZED BETA FUNC-

TION

Incomplete Gamma Function
The "complete" GAMMA FUNCTION G(x) can be general-
ized to the incomplete gamma function G(a ; x) such
that G(a) �G(a; 0): This "upper" incomplete gamma
function is given by

G(a ; x) �g
�

x

ta �1e �tdt: (1)

For a an INTEGER n

G(n; x) �(n �1)!e �x
Xn �1

s�0

xs

s! 
�(n �1)!e �xen �1(x); (2)

where es is the EXPONENTIAL SUM FUNCTION. The
lower incomplete gamma function is given by

g(a ; x) �g
x

0

ta �1e �tdt

a �1xae �x
1F1(1; 1 �a; x)

a �1xa
1F1(a; 1�a; �x) ; (3)

where 1F1(a; b; x) is the CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE FIRST KIND. For a an INTEGER n ,

g(n; x) �(n �1)! 1 �e �x
Xn �1

k�0

xk

k!

 !

�(n �1)! 1 �e �xen�1(x)½ �: (4)

The function G(a ; z) is denoted Gamma[a , z ] and the
function g(a ; z) is denoted Gamma[a , 0, z ] in Mathe-
matica . By definition, the two incomplete functions
satisfy

G(a ; x) �g(a; x) �G(a): (5)

See also GAMMA FUNCTION, REGULARIZED GAMMA

FUNCTION

Incompleteness
A formal theory is said to be incomplete if it contains
fewer theorems than would be possible while still
retaining CONSISTENCY.

See also CONSISTENCY, GÖ DEL’S INCOMPLETENESS

THEOREM
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Increasing Function
A function f (x) increases on an INTERVAL I if f (b) >
f (a) for all b 	a , where a; b � I : Conversely, a function
f (x) decreases on an INTERVAL I if f (b) Bf (a) for all
b 	a with a ; b � I :/

If the DERIVATIVE f ?(x) of a CONTINUOUS FUNCTION f (x)
satisfies f ?(x) > 0 on an OPEN INTERVAL (a, b ), then
f (x) is increasing on (a, b ). However, a function may
increase on an interval without having a derivative
defined at all points. For example, the function x1 =3 is
increasing everywhere, including the origin x �0,
despite the fact that the DERIVATIVE is not defined
at that point.

See also DECREASING FUNCTION, DERIVATIVE, NON-

DECREASING FUNCTION, NONINCREASING FUNCTION
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Increasing Sequence
For a SEQUENCE anf g; if an�1 �an > 0 for n ]x; then
an is increasing for n ]x: Conversely, if an�1 �an B0
for n ]x; then an is DECREASING for n ]x:/

If an > 0 and an�1 =an > 1 for all n ]x; then an is
increasing for n ]x: Conversely, if an > 0 and
an�1 =an B1 for all n ]x; then an is decreasing for
n ]x:/

See also DECREASING SEQUENCE, SEQUENCE

Indecomposable
A P -FORM a is indecomposable if it cannot be written
as the WEDGE PRODUCT of ONE-FORMS

a � b1 ffl. . .ffl bp :

A p -form that can be written as such a product is
called DECOMPOSABLE.

See also DECOMPOSABLE, DIFFERENTIAL K -FORM

Indefinite Integral
An INTEGRAL

g f (x)dx

without upper and lower limits, also called an ANTI-

DERIVATIVE. The first FUNDAMENTAL THEOREM OF

CALCULUS allows DEFINITE INTEGRALS to be computed
in terms of indefinite integrals. If F is the indefinite
integral for f (x) ; then

g
b

a

f (x)dx �F(b) �F(a) :

The question of which definite integrals can be

expressed in terms of elementary function is not
susceptible to any established theory. In fact, the
problem belongs to transcendence theory, which
appears to be "infinitely hard." For example, there
are definite integrals that are equal to the EULER-

MASCHERONI CONSTANT g : However, the problem of
deciding whether g can be expressed in terms of the
values at rational values of elementary functions
involves the decision as to whether g is rational or
algebraic, which is not known.

See also ANTIDERIVATIVE, CALCULUS, DEFINITE INTE-

GRAL, FUNDAMENTAL THEOREMS OF CALCULUS, INTE-

GRAL

Indefinite Quadratic Form
A QUADRATIC FORM Q(x) is indefinite if it is less than
0 for some values and greater than 0 for others. The
QUADRATIC FORM, written in the form (x;Ax) ; is
indefinite if EIGENVALUES of the MATRIX A are of
both signs.

See also POSITIVE DEFINITE QUADRATIC FORM, POSI-

TIVE SEMIDEFINITE QUADRATIC FORM
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Indefinite Summation Operator
The indefinite summation operator D�1 for discrete
variables, is the equivalent of integration for contin-
uous variables. If DY(x) �y(x) then D�1y(x) �Y(x) :/

Indegree
The number of inward directed EDGES from a given
VERTEX in a DIRECTED GRAPH.

See also LOCAL DEGREE, OUTDEGREE

Independence Axiom
A rational choice between two alternatives should
depend only on how they differ.

Independence Complement Theorem
If sets E and F are INDEPENDENT, then so are E and
F?; where F? is the complement of F (i.e., the set of all
possible outcomes not contained in F ). Let @ denote
"or" andS denote "and." Then

P(E)�P EF@EF?ð Þ (1)

�P(EF)�P EF?ð Þ�P EFSEF?ð Þ; (2)

where AB is an abbreviation for ASB: But E and F
are independent, so

P(EF)�P(E)P(F): (3)

Also, since F and F? are complements, they contain no



common elements, which means that

P EFS EF ?ð Þ�0 (4)

for any E . Plugging (4) and (3) into (2) then gives

P(E) �P(E)P(F) �P EF?ð Þ: (5)

Rearranging,

P EF?ð Þ�P(E)[1 �P(F)] �P(E)P F?ð Þ; (6)

Q.E.D.

See also INDEPENDENT SET

Independence Number
The independence number a(G) of a graph is the
cardinality of the largest INDEPENDENT SET. For-
mally,

a(G) �max Uj j : U ƒV independentð Þ

for a GRAPH G , where Uj j denotes the CARDINALITY of
the set U . The independence number of the DE

BRUIJN GRAPH of order n is given by 1, 2, 3, 7, 13,
28, . . . (Sloane’s A006946).

By definition, the independence number of a graph G
plus the number of elements in a minimal VERTEX

COVER of G equals the number of vertices in the
graph.

See also INDEPENDENT SET, VERTEX COVER

References
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Independent Equations
LINEARLY INDEPENDENT

Independent Events
Two events A and B are called independent if their
probabilities satisfy P(AB) �P(A)P(B) (Papoulis 1984,
p. 40).

See also EVENT, INDEPENDENT STATISTICS

References
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Independent Sequence
STRONGLY INDEPENDENT, WEAKLY INDEPENDENT

Independent Set
Two sets A and B are said to be independent if their
INTERSECTION A S B �¥; where ¥ is the EMPTY SET.

For example, fA;B ;Cg and fD ;E g are independent,
but fA;B ;C g and fC ;D; Eg are not. Independent sets
are also called DISJOINT or mutually exclusive.

An independent set of a GRAPH G is a subset of the
vertices such that no two vertices in the subset
represent an edge of G . Given a VERTEX COVER of a
GRAPH, all vertices not in the cover define an
independent set (Skiena 1990, p. 218). The INDEPEN-

DENCE NUMBER of a graph is the cardinality of the
largest independent set. A maximum independent set
of a graph can be computed using MaximumInde-
pendentSet[g ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).
An independent set of edges can be defined similarly
(Skiena 1990, p. 219). Gallai (1959) showed that the
size of the minimum EDGE COVER plus the side of the
maximum number of independent edges equals the
number of vertices of a graph.

See also CLIQUE, DISJOINT SETS, EDGE COVER, EMPTY

SET, INDEPENDENCE NUMBER, INTERSECTION, VENN

DIAGRAM, VERTEX COVER
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Gallai, T. "Ü ber extreme Punkt- und Kantenmengen." Ann.

Univ. Sci. Budapest, Eotvos Sect. Math. 2, 133 �/38, 1959.
Skiena, S. "Maximum Independent Set" §5.6.3 in Implement-
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Independent Statistics
Two variates A and B are statistically independent
IFF the CONDITIONAL PROBABILITY P(A½B) of A given B
satisfies

P(A½B) �P(A); (1)

in which case the probability of A and B is just

P(A;B) �P(A S B) �P(A)P(B) : (2)

Similarly, n events A1 ; A2 ; . . ., An are independent IFF

p S
n

i�1
Ai

	 

�
Yn

i�1

P(Ai): (3)

Statistically independent variables are always UN-

CORRELATED, but the converse is not necessarily true.

See also BAYES’ FORMULA, CONDITIONAL PROBABIL-

ITY, INDEPENDENT EVENTS, INDEPENDENCE COMPLE-

MENT THEOREM, UNCORRELATED



Independent Vertices
A set of VERTICES A of a GRAPH with EDGES V is
independent if it contains no EDGES.

See also INDEPENDENCE NUMBER

Indeterminate
Not definitively or precisely determined. Certain
forms of LIMITS are said to be indeterminate when
merely knowing the limiting behavior of individual
parts of the expression is not sufficient to actually
determine the overall limit. For example, a LIMIT OF

THE FORM 0/0, i.e., limx00 f (x)=g(x) where
limx00 f (x) �limx00 g(x) �0; is indeterminate since
the value of the overall limit actually depends on
the limiting behavior of the combination of the two
functions (e.g. limx00 x=x �1; while limx00 x

2 =x �0):/

See also AMBIGUOUS, LIMIT, TRIVIAL, UNDEFINED,
WELL DEFINED

Indeterminate Problems
DIOPHANTINE EQUATION

Index
The word "index" has a very large number of
completely different meanings in mathematics. Most
commonly, it is used in the context of an INDEX SET,
where it means a quantity which can take on a set of
values and is used to designate one out of a number of
possible values associated with this value. For exam-
ple, the subscript i in the symbol ai could be called the
index of a .

In a RADICAL
ffiffiffi
x

p
; the quantity n is called the index.

The word index has a special meaning in economics,
where it refers to a single quantity used to quantify
the "average" value of a possibly complicated set of
quantities. In this context, it is sometimes called an
INDEX NUMBER.

In TOPOLOGY, INDEX THEORY refers to the study of
topological invariants of MANIFOLDS.

See also INDEX LOWERING, INDEX RAISING, INDEX SET,
MANIFOLD, MULTIPLICATIVE ORDER, STATISTICAL IN-

DEX

Index (Extension Field)
DEGREE (EXTENSION FIELD

Index (Modulo)
MULTIPLICATIVE ORDER

Index (Residue)
MULTIPLICATIVE ORDER

Index (Subgroup)
This entry contributed by NICOLAS BRAY

For a SUBGROUP H of a GROUP G , the index of H ,
denoted (G : H) ; is the CARDINALITY of the set of LEFT

COSETS of H in G (which is equal to the CARDINALITY

of the set of RIGHT COSETS of H in G ).

See also COSET, LAGRANGE’S GROUP THEOREM, LEFT

COSET, RIGHT COSET

Index (Tensor)

See also INDEX LOWERING, INDEX RAISING

Index Law
EXPONENT LAWS

Index Lowering
The indices of a CONTRAVARIANT TENSOR Aj can be
lowered, turning it into a COVARIANT TENSOR Ai ; by
multiplication by a so-called METRIC TENSOR, e.g.,

gijA
j �Ai :

See also CONTRAVARIANT TENSOR, COVARIANT TEN-

SOR, INDEX RAISING, INDEX (TENSOR), TENSOR

Index Number
A STATISTIC which assigns a single number to several
individual statistics in order to quantify trends. The
best-known index in the United States is the con-
sumer price index, which gives a sort of "average"
value for inflation based on price changes for a group
of selected products. The Dow Jones and NASDAQ
indexes for the New York and American Stock
Exchanges, respectively, are also index numbers.

Let pn be the price per unit in period n , qn be the
quantity produced in period n , and vn�pnqn be the
value of the n units. Let qa be the estimated relative
importance of a product. There are several types of
indices defined, among them those listed in the
following table.

Index Abbr. Formula

BOWLEY INDEX /PB/ /
1
2 PL�PPð Þ/

FISHER INDEX /PF/ /

ffiffiffiffiffiffiffiffiffiffiffiffi
PLPP

p
/

GEOMETRIC MEAN INDEX /PG/ /

Q pn

p0

	 
v0
" #1=Sv0

/



HARMONIC MEAN INDEX /PH/ /

ap0q0

a
p2

0q0

nm

/

LASPEYRES’ INDEX /PL/ /

apnq0

ap0q0

/

MARSHALL-EDGEWORTH

INDEX

/PME/ /

apn(q0 � qn)

a(v0 � vn) 
/

MITCHELL INDEX /PM/ /

apnqn

ap0qn

/

PAASCHE’S INDEX /PP/ /

apnqn

ap0qn

/

WALSH INDEX /PW/ /

a
ffiffiffiffiffiffiffiffiffiffi
q0qn

p
pn

a
ffiffiffiffiffiffiffiffiffiffi
q0qa

p
pn

/

See also BOWLEY INDEX, FISHER INDEX, GEOMETRIC

MEAN INDEX, HARMONIC MEAN INDEX, LASPEYRES’

INDEX, MARSHALL-EDGEWORTH INDEX, MITCHELL IN-

DEX, PAASCHE’S INDEX, WALSH INDEX
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Index Raising
The indices of a COVARIANT TENSOR Aj can be raised,
forming a CONTRAVARIANT TENSOR Ai ; by multiplica-
tion by a so-called METRIC TENSOR, e.g.,

gijAj �Ai (1)

See also CONTRAVARIANT TENSOR, COVARIANT TEN-

SOR, INDEX LOWERING, INDEX (TENSOR), TENSOR

Index Set
A SET whose members index (label) members of
another set. For example, in the set A �@k �K Ak ; the
set K is an index set of the set A .

See also SET

Index Theory
A branch of TOPOLOGY dealing with topological
invariants of MANIFOLDS.
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Indicator

References
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1971.

Indicatrix
A spherical image of a curve. The most common
indicatrix is DUPIN’S INDICATRIX.

See also DUPIN’S INDICATRIX

Indicial Equation
The RECURRENCE RELATION obtained during applica-
tion of the FROBENIUS METHOD of solving a second-
order ordinary differential equation. The indicial
equation (also called the CHARACTERISTIC EQUATION)
is obtained by noting that, by definition, the lowest
order term xk (that corresponding to n �0) must have
a COEFFICIENT of zero. For an example of the
construction of an indicial equation, see BESSEL

DIFFERENTIAL EQUATION.

1. If the two ROOTS are equal, only one solution can
be obtained.
2. If the two ROOTS differ by a noninteger, two
solutions can be obtained.
3. If the two ROOTS differ by an INTEGER, the larger
will yield a solution. The smaller may or may not.

References
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Indifference Principle
INSUFFICIENT REASON PRINCIPLE

Individual
One of the basic objects treated in a given formal
language system. The term is sometimes also used as
a synonym for URELEMENT.

See also URELEMENT
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Induced Map
If f : (X ; A) 0 (Y ;B) is homotopic to g : (X ;A) 0
(Y ; B) ; then f+ : Hn(X ;A) 0 Hn(Y ;B) and g + :
Hn(X ;A) 0 Hn(Y ;B) are said to be the induced maps.

See also EILENBERG-STEENROD AXIOMS

Induced Norm
NATURAL NORM

Induced Representation
If a SUBGROUP H of G has a REPRESENTATION f :
H �W 0 W ; then there is a unique induced repre-
sentation of G on a VECTOR SPACE V . The original
space W is contained in V , and in fact,

V ��s �G =H sW ;

where sW is a copy of W . The induced representation
on V is denoted IndG

H :/

Alternatively, the induced representation is the /CG/-
MODULE

IndG
H #CG 	CH W : (1)

Also, it can be viewed as W -valued functions on G
which commute with the H action.

IndG
H #ff : G 0 W : hf (g) �f (hg)g: (2)

The induced representation is also determined by its
UNIVERSAL PROPERTY:

HomH(W ; Res U) �HomG(Ind W ;U) ; (3)

where U is any representation of G . Also, the induced
representation satisfies the following formulas.

1. Ind �Wi �	Ind Wi :/
2. U 	Ind W �Ind(Res(U) 	W) for any REPRESEN-

TATION U .
3. IndG

H(W) �IndG
K (IndK

H W) when H 5K 5G :/

Some of the CHARACTERS of G can be calculated from
the CHARACTERS of H , as induced representations,
using FROBENIUS RECIPROCITY. ARTIN’S RECIPROCITY

THEOREM says that the induced representations of
CYCLIC SUBGROUPS of a FINITE GROUP G generates a
LATTICE of finite index in the lattice of VIRTUAL

CHARACTERS. BRAUER’S THEOREM says that the vir-
tual characters are generated by the induced repre-
sentations from P -ELEMENTARY SUBGROUPS.

See also ARTIN’S RECIPROCITY THEOREM, FROBENIUS

RECIPROCITY, GROUP, IRREDUCIBLE REPRESENTATION,
REPRESENTATION, RESTRICTION (REPRESENTATION),
TENSOR PRODUCT (VECTOR SPACE), VECTOR SPACE

References
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Induced Subgraph

An induced subgraph is a subset of the edges of a
GRAPH G together with any edges whose endpoints
are both in this subset. The figure above illustrates
the subgraph induced on the COMPLETE GRAPH K5 by
the vertex subset f1; 2 ; 3; 5 ; 7; 10 g: An induced sub-
graph that is a COMPLETE GRAPH is called a CLIQUE.
Any induced subgraph of a COMPLETE GRAPH forms a
CLIQUE. An induced subgraph can be computed using
InduceSubgraph[g ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also CLIQUE, SUBGRAPH
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Induction
The use of the INDUCTION PRINCIPLE in a PROOF.
Induction used in mathematics is often called MATH-

EMATICAL INDUCTION.

See also PRINCIPLE OF STRONG INDUCTION, PRINCIPLE

OF TRANSFINITE INDUCTION, PRINCIPLE OF WEAK

INDUCTION
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Induction Axiom
The fifth of PEANO’S AXIOMS, which states: If a SET S
of numbers contains zero and also the successor of
every number in S , then every number is in S .

See also PEANO’S AXIOMS

Induction Principle
The truth of an INFINITE sequence of propositions Pi

for i�1, . . ., � is established if (1) P1 is true, and (2)
Pk IMPLIES Pk�1 for all k .
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Inequality
A mathematical statement that one quantity is
greater than or less than another. "a is less than b"
is denoted a Bb , and "a is greater than b" is denoted
a 	b . "a is less than or equal to b" is denoted a 5b;
and "a is greater than or equal to b" is denoted a ]b:
The symbols a �b and a �b are used to denote "a is
much less than b" and "a is much greater than b ,"
respectively.

Solutions to the inequality x �aj j Bb consist of the
set fx : a �b Bx �a �b g; or equivalently fx : a �b B
x Ba �bg: Solutions to the inequality x �aj j > b
consist of the set fx : x �a > b g@ fx : x �a B�b g: If
a and b are both POSITIVE or both NEGATIVE and
a Bb , then 1=a > 1=b: The portions of the xy -plane
satisfying a number of specific inequalities are illu-
strated above.

In Mathematica 4.0, the command InequalityIn-
stance[ineqs , vars ] can be used to find a real
solution of the system of real equations and inequal-
ities ineqs in the variables vars or return the EMPTY

SET if no such solution exists. Solution of inequalities
can be performed using [ineqs , vars ], in the Mathe-
matica add-on package Algebra‘Inequality-
Solve‘ (which can be loaded with the command
BBAlgebra‘) or directly using CylindricalAl-
gebraicDecomposition[ineqs , vars ].

See also CYLINDRICAL ALGEBRAIC DECOMPOSITION,
EQUALITY, EXISTS, FOR ALL, INEQUATION, QUANTI-

FIER, STRICT INEQUALITY
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2nd ed. Cambridge, England: Cambridge University
Press, 1952.

Kazarinoff, N. D. Geometric Inequalities. New York: Ran-
dom House, 1961.

Mitrinovic, D. S. Analytic Inequalities. New York: Springer-
Verlag, 1970.

Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Classical &
New Inequalities in Analysis. Dordrecht, Netherlands:
Kluwer, 1993.

Mitrinovic, D. S.; Pecaric, J. E.; Fink, A. M. Inequalities
Involving Functions & Their Integrals & Derivatives.
Dordrecht, Netherlands: Kluwer, 1991.

Mitrinovic, D. S.; Pecaric, J. E.; and Volenec, V. Recent
Advances in Geometric Inequalities. Dordrecht, Nether-
lands: Kluwer, 1989.

Weisstein, E. W. "Books about Inequalities." http://
www.treasure-troves.com/books/Inequalities.html.

Inequation
While an equality

A �B

states that two mathematical expressions are equal,
an inequation

A "B

states that two expressions are not equal.

See also EQUATION, INEQUALITY, STRICT INEQUALITY

Inexact Differential
An infinitesimal which is not the differential of an
actual function and which cannot be expressed as

dz �
@z

@x

 !
y

dx �
@z

@y

 !
z

dy;

the way an EXACT DIFFERENTIAL can. Inexact differ-
entials are denoted with a bar through the d . The
most common example of an inexact differential is the
change in heat dQ encountered in thermodynamics.

See also EXACT DIFFERENTIAL, PFAFFIAN FORM
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Inf
INFIMUM, INFIMUM LIMIT



Infimum
Portions of this entry contributed by JEROME R.

BREITENBACH

The infimum is the greatest lower bound of a SET S ,
defined as a quantity m such that no member of the
SET is less than m , but if e is any POSITIVE quantity,
however small, there is always one member that is
less than m � e (Jeffreys and Jeffreys 1988). When it
exists (which is not required by this definition, e.g., R
does not exist), the infimum is denoted inf S or
inf x �S x: The infimum can be computed using the
Mathematica 4.0 command Infimum[f , constr , vars ].

More formally, the infimum inf S for S a (nonempty)
SUBSET of the extended reals R �R @ f9�g is the
largest value y �R such that for all x � S we have x ]y:
Using this definition, infS always exists and, in
particular, R ���:/

Whenever an infimum exists, its value is unique.

See also INFIMUM LIMIT, LOWER BOUND, SUPREMUM
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Infimum Limit
Given a sequence of real numbers an ; the infimum
limit, also called the lower limit but more often simply
pronounced ‘lim-inf’ and written liminf is the limit of

An �inf
k >n

ak

as n 0 �: Note that by definition, An is nondecreas-
ing, and so either has a limit or tends to �: For
example, suppose an �(�1)n =n; then for n odd, An �
�1=n; and for n even, An ��1=(n �1): Another
example is an �sin n; in which case An is a constant
sequence An ��1 :/

When lim sup an �lim inf an ; the sequence converges
to the real number

lim an �lim sup an �lim inf an :

Otherwise, the sequence does not converge.

See also INFIMUM, LIMIT, LOWER LIMIT, SUPREMUM

Infinary Divisor
/px is an infinary divisor of py (with y 	0) if px ½y�1py :
This generalizes the concept of the K -ARY DIVISOR.

See also INFINARY PERFECT NUMBER, K -ARY DIVISOR
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Infinary Multiperfect Number
Let s�(n) be the SUM of the INFINARY DIVISORS of a
number n . An infinary k -multiperfect number is a
number n such that s�(n) �kn: Cohen (1990) found
13 infinary 3-multiperfects, seven 4-multiperfects,
and two 5-multiperfects.

See also INFINARY PERFECT NUMBER
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Infinary Perfect Number
Let s�(n) be the SUM of the INFINARY DIVISORS of a
number n . An infinary perfect number is a number n
such that s�(n) �2n: Cohen (1990) found 14 such
numbers. The first few are 6, 60, 90, 36720, . . .
(Sloane’s A007357).

See also INFINARY MULTIPERFECT NUMBER
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Infinite
Greater than any assignable quantity of the sort in
question. In mathematics, the concept of the infinite
is made more precise through the notion of an
INFINITE SET.

See also COUNTABLE SET, COUNTABLY INFINITE,
FINITE, INFINITE SET, INFINITESIMAL, INFINITY

Infinite Group
A group having an infinite number of elements. Some
infinite groups, such as the integers or rationals, are
not CONTINUOUS GROUPS.

See also CONTINUOUS GROUP, FINITE GROUP



Infinite Product
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A PRODUCT involving an INFINITE number of terms.
Such products can converge. In fact, for POSITIVE an;
the PRODUCT

Q�

n�1 an converges to a NONZERO number
IFF a�

n�1ln an converges.

Infinite products can be used to define the COSINE

cos x�
Y�
n�1

1�
4x2

p2(2n � 1)2

" #
; (1)

GAMMA FUNCTION

G(z)� zegz
Y�
r�1

1�
z

r

 !
e�z=r

" #�1

; (2)

SINE, and SINC FUNCTION. They also appear in the
POLYGON CIRCUMSCRIBING CONSTANT

k�
Y�
n�3

1

cos
p
n

 ! : (3)

An interesting infinite product formula due to Euler
which relates p and the nth PRIME pn is

p�
2

P�
i�n 1 �

sin 1
2ppn

� �
pn

2
4

3
5 (4)

�
2

P�
i�n 1 �

(�1)(pn � 1)=2

pn

" # (5)

(Blatner 1997). KNAR’S FORMULA gives a functional
equation for the GAMMA FUNCTION G(x) in terms of the
infinite product

G(1�v)�22v
Y�
m�1

p�1=2G 1
2�2�mv
� �h i

: (6)

The class of products

Y�
n�2

n2 � 1

n2 � 1
�p csch p (7)

Y�
n�2

n3 � 1

n3 � 1
�2

3 (8)

Y�
n�2

n4 � 1

n4 � 1

��1
2p sinh p csc �1ð Þ1=4p

h i
csc �1ð Þ3=4p
h i

; (9)

the first of which is given in Borwein and Corless
(1999), can be done analytically.

The first few products

Y�
k�1

(1 � k�1)2

1 � 2k�1
�2 (10)

Y�
k�1

1 � k�1 � k�2ð Þ2

1 � 2k�1 � 3k�2

�
3
ffiffiffi
2

p
cosh2 1

2p
ffiffiffi
3

p� �
csch p

ffiffiffi
2

p� �
p

(11)

Y�
k�1

1 � k�1 � k�2 � k�3ð Þ2
1 � 2k�1 � 3k�2 � 4k�3

�
sinh2 pP3

i�1G xið Þ
p2

; (12)

Y�
k�1

1 � k�1 � k�2 � k�3 � k�4ð Þ2

1 � 2k�1 � 3k�2 � 4k�3 � 5k�4
�
Y4

i�1

G yið Þ
G zið Þ

(13)

where xi; yi; and zi are the roots of

x3�5x2�10x�10�0 (14)

y4�6y3�15y2�20y�15�0; (15)

and

z4�5z3�10z2�10z�5�0; (16)

respectively, can also be done analytically. Note that
(15) and (16) were unknown to Borwein and Corless
(1999).

The product

Y�
n�1

1�
1

np

 !
(17)

has closed form expressions for small POSITIVE inte-
gral p]2;

Y�
n�1

1�
1

n2

 !
�

sinh p
p

(18)

Y�
n�1

1�
1

n3

 !
�

1

p
cosh 1

2p
ffiffiffi
3

p� �
(19)

Y�
n�1

1�
1

n4

 !
�

cosh p
ffiffiffi
2

p� �
� cos p

ffiffiffi
2

p� �
2p2

(20)

Y�
n�1

1�
1

n5

 !
� G exp 2

5pi
� �h i

G exp 6
5pi
� �h i%%% %%%�2

(21)

The D -ANALOG expression

�!½ �d�
Y�
n�3

1�
2d

nd

 !
(22)

also has closed form expressions,



Y�
n�3

1�
4

n2

 !
�

1

6
(23)

Y�
n�3

1�
8

n3

 !
�

sinh p
ffiffiffi
3

p� �
42p

ffiffiffi
3

p (24)

Y�
n�3

1�
16

n4

 !
�

sinh 2pð Þ
120p

(25)

Y�
n�3

1�
32

n5

 !
� G exp 1

5pi
� �h i

G 2 exp 7
5pi
� �h i%%% %%%�2

(26)

General expressions for infinite products of this type
include

Y�
n�1

1�
z

n

 !2N
2
4

3
5�sin pzð Þ

pz2N�1

YN�1

k�1

G ze2pi k�Nð Þ=(2N)
� �%% %%�2

(27)

Y�
n�1

1�
z

n

 !2N
2
4

3
5� 1

z2N

YN
k�1

G zepi 2 k�Nð Þ�1½ �= 2Nð Þ� �%% %%�2
(28)

Y�
n�1

1�
z

n

 !2N�1
2
4

3
5

�
1

G 1 � zð Þz2N

YN
k�1

G zepi 2(k�Nð Þ�1= 2N�1ð Þ� �%% %%�2
(29)

Y�
n�1

1�
z

n

 !2N�1
2
4

3
5

�
1

G 1 � zð Þz2N

YN
k�1

G ze2pi k�N�1ð Þ=2N�1
� �%% %%�2

(30)

where G zð Þ is the GAMMA FUNCTION and zj j denotes
the MODULUS (Kahovec). (27) and (28) can also be
rewritten as

Y�
n�1

1�
z

n

 !2N
2
4

3
5�sin pzð Þ

p3z2

sinh pzð Þ
pz

 !mod N�1;2ð Þ

�
Y
N=2��1

k�1

cosh2 pz sin
kp
N

 !" #

�cos2 pz cos
kp
N

 !" #
(31)

Y�
n�1

1�
z

n

 !2N
2
4

3
5� 1

p2z2

sinh pzð Þ
pz

 !mod N;2ð Þ

�
Y�N=2

k�1

cosh2 pz sin
2k � 1ð Þp

2N

 !" #

�cos2 pz cos
2k � 1ð Þp

2N

 !" #
; (32)

where xb c is the FLOOR FUNCTION, xd e is the CEILING

FUNCTION, and mod a;mð Þ is the modulus of a (mod m )
(Kahovec).

Infinite products OF THE FORM

Y�
k�1

1�
1

nk

 !
(33)

converge for n]2: I am not aware of any analytic
expressions, but the first few such products are
numerically given by

Y�
k�1

1�
1

2k

 !
:0:28878809508660242128 (34)

Y�
k�1

1�
1

3k

 !
:0:56012607792794894497 (35)

Y�
k�1

1�
1

4k

 !
:0:68853753712033971546 (36)

Y�
k�1

1�
1

5k

 !
:0:76033279587123242010: (37)

A class of infinite products derived from the BARNES’

G -FUNCTION is given by

Y�
n�1

1�
z

n

 !n

e�z�z2= 2nð Þ�
G zð Þ
2pð Þp=2 e z z�1ð Þ�gz2½ �=2; (38)

where g is the EULER-MASCHERONI CONSTANT. The
first few cases are

Y�
n�1

1�
1

n

 !n

e1=(2n)�1�
e1�g=2ffiffiffiffiffiffi

2p
p (39)

Y�
n�1

1�
2

n

 !n

e4=(2n)�2�
e3�2g

2p
(40)

Y�
n�1

1�
3

n

 !n

e9=(2n)�3�
e6�9g=2

2pð Þ3=2 (41)



Y�
n�1

1 �
4

n

 !n

e16 =(2n)�3 �
e10 �8g

2p2
: (42)

The interesting identities

x
Y�
n�1

(1 � x2n)8

(1 � x2n�1)8 �
X�
n�1

23b(n) s3(Od(n))xn (43)

(Ewell 1995, 1999), where b(n) is the exponent of the
exact power of 2 dividing n , Od(n) is the ODD PART of
n , sk(n) is the DIVISOR FUNCTION of n , and rk(n) is the
SUM OF SQUARES FUNCTION, and

Y�
n�1

(1 �x2n�1)8 �
Y�
n�1

(1 �x2n�1)8 �16x
Y�
n�1

(1 �x2n)8

(44)

(Ewell 1998, 1999) arise is connection with the TAU

FUNCTION.

See also ARTIN’S CONSTANT, BARNES’ G -FUNCTION,
COSINE, D -ANALOG, DEDEKIND ETA FUNCTION, DI-

RICHLET ETA FUNCTION, EULER IDENTITY, EULER-

MASCHERONI CONSTANT, EULER’S PENTAGONAL NUM-

BER THEOREM, EULER PRODUCT, GAMMA FUNCTION,
INFINITE SERIES, JACOBI TRIPLE PRODUCT, KNAR’S

FORMULA, POLYGON CIRCUMSCRIBING CONSTANT,
POLYGON INSCRIBING CONSTANT, POWER TOWER, Q -

FUNCTION, Q -SERIES, RIEMANN ZETA FUNCTION, SINE,
STEPHENS’ CONSTANT
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Infinite Series
A SERIES with an INFINITE number of terms is called
an infinite series. A (possibly infinite) series for which
the ratio of each two consecutive terms ak�1=ak is a
constant function of the summation index k . The
more general case of the ratio a RATIONAL FUNCTION

of the summation index k produces a series called a
HYPERGEOMETRIC SERIES.

A particular infinite series identity is given by

X�
k�1;3;5;...

e�kx sin(ky)

k
�

1

2
tan�1 sin y

sinh x

 !
(1)

for x 	0. Apostol (1997, p. 25) gives the analytic sum

X�
n�1;3;5;...

n4k�1

1 � enp
�

24k�1 � 1

8k � 4
B4k�2; (2)

where Bk is a BERNOULLI NUMBER.

Infinite series of the following type can also be
computed analytically,

X�
k�0

xk

 !p

�(1�x)�p (3)

�
1

(p � 1)!

X�
n�0

(n � p � 1)!

n!
xn: (4)

�
1

(p � 1)!

X�
n�0

(n�1)p�1xn; (5)

where (n)p is a POCHHAMMER SYMBOL.

An infinite series of the following form can be done in
closed form.

X�
k�1

1

[1 � k2p2]n�
pn(e)

2n�1n!(e2 � 1)n ; (6)

where Pn(e2) is an nth order polynomial in e2: The
first few polynomials are

P1�1

P2��e4�8e2�3

P3��5e6�41e4�31e2�11

P4��33e8�286e6�344e4�250e2�63:

The related infinite series can also be done in closed
form.



X�
k�1

1

1 � k � 1
2

� �2

p2

" #n

�
Qn(e)

2n�1n!(e2 � 1)n �
4n

(4 � p2)n ; (7)

where Qn(e2) is an nth order polynomial in e2 : The
first few polynomials are

Q1 �e2 �1

Q2 �e4 �4e2 �1

Q3 �3e6 �17e4 �7e2 �3

Q4 �15e8 �94e6 �56e4 �58e2 �15

Q5 �105e10 �657e8 �578e6 �982e4 �503 �105:

See also ABSOLUTE CONVERGENCE, CONDITIONAL

CONVERGENCE, CONVERGENT SERIES, DIVERGENT

SERIES, GEOMETRIC SERIES, HYPERGEOMETRIC SER-

IES, INFINITE PRODUCT, SERIES
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Infinite Set
A SET of S elements is said to be infinite if the
elements of a PROPER SUBSET S0 can be put into ONE-

TO-ONE correspondence with the elements of S . An
infinite set whose elements can be put into a ONE-TO-

ONE correspondence with the set of INTEGERS is said
to be COUNTABLY INFINITE; otherwise, it is called
UNCOUNTABLY INFINITE.

See also ALEPH-0, ALEPH-1, CARDINAL NUMBER,
COUNTABLY INFINITE, CONTINUUM, FINITE, INFINITE,
INFINITY, ORDINAL NUMBER, TRANSFINITE NUMBER,
UNCOUNTABLY INFINITE
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Infinite Sum
An infinite sum identity is given by

z4 �5z3 �10z2 �10z �5 �0 ;

for
Y�
n�1

1 �
1

np

 !
:

See also INFINITE PRODUCT

Infinitesimal
A quantity which yields 0 after the application of
some LIMITING process. The understanding of infini-
tesimals was a major roadblock to the acceptance of
CALCULUS and its placement on a firm mathematical
foundation.

See also INFINITE, INFINITY, NONSTANDARD ANALYSIS
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Infinitesimal Analysis
An archaic term for CALCULUS.

Infinitesimal Matrix Change
Let B ; A; and e be square matrices with e small, and
define

B �A(I �e) ; (1)

where I is the IDENTITY MATRIX. Then the inverse of B
is approximately

BB�1�(I�e)A�1: (2)

This can be seen by multiplying

BB�1�(A�Ae)(A�1�eA�1)

�AA�1�AeA�1�AeA�1�Ae2A�1

�I�Ae2A�1
:1: (3)

Note that if we instead let B?�A�e; and look for an
inverse OF THE FORM B?�1�A�1�C; we obtain

BB0�1�(A�e)(A�1�C)�AA�1�AC�eA�1�eC

�I�AC�e(C�A�1)�I: (4)

In order to eliminate the e term, we require C��A�1:
However, then AC��I; so BB�1�0 so there can be no
inverse of this form.

The exact inverse of B0 can be found as follows.

B0�A(I�e)�A(I�A�1e); (5)

so



B?�1 �[A(I �A�1e)] �1 : (6)

Using a general MATRIX INVERSE identity then gives

B ?�1 � I �A �1e
� ��1

A �1 : (7)

Infinitesimal Rotation
An infinitesimal transformation of a VECTOR r is
given by

r ?�(I �e)r ; (1)

where the MATRIX e is infinitesimal and I is the
IDENTITY MATRIX. (Note that the infinitesimal trans-
formation may not correspond to an inversion, since
inversion is a discontinuous process.) The COMMU-

TATIVITY of infinitesimal transformations e1 and e2 is
established by the equivalence of

I �e1ð Þ(I �e2) �I2 �e1I �Ie2 �e1e2 :I �e1 �e2 (2)

(I �e2)(I �e1) �I2 �e2I �Ie1 �e2e1 :I �e2 �e1 : (3)

Now let

A �I �e; (4)

The inverse A�1 is then I �e; since

AA �1 �(I �e)(I �e) �I2 �e2 :I: (5)

Since we are defining our infinitesimal transforma-
tion to be a rotation, ORTHOGONALITY of ROTATION

MATRICES requires that

AT �A �1 ; (6)

but

A �1 �I �e (7)

(I �e)T �IT �eT �I �eT ; (8)

so e ��eT and the infinitesimal rotation is ANTISYM-

METRIC. It must therefore have a MATRIX OF THE FORM

e �
0 dV3 �dV2

�dV3 0 dV1

dV2 �dV1 0

2
4

3
5: (9)

The differential change in a vector r upon application
of the ROTATION MATRIX is then

dr �r?�r �(I �e)r �r �er : (10)

Writing in MATRIX form,

dr �
x
y
z

2
4
3
5 0 dV3 �dV2

�d V3 0 dV1

d V2 �dV1 0

2
4

3
5

�
y dV3 �z dV2

z dV1 �x dV3

x dV2 �y dV1

2
4

3
5 (11)

� y dV3 �z dV2ð Þx̂ � z dV1 �x dV3ð Þŷ

� x dV2 �ydV1ð Þẑ �r �d V: (12)

Therefore,

dr

dt

 !
rotation ; body

�r �
dV
dt

�r � v; (13)

where

v �
dV
dt

�n̂
df

dt
: (14)

The total rotation observed in the stationary frame
will be a sum of the rotational velocity and the
velocity in the rotating frame. However, note that
an observer in the stationary frame will see a velocity
opposite in direction to that of the observer in the
frame of the rotating body, so

dr

dt

 !
space

�
dr

dt

 !
body

�v �r : (15)

This can be written as an operator equation, known
as the ROTATION OPERATOR, defined as

d

dt

 !
space

�
d

dt

 !
body

�v �: (16)

See also ACCELERATION, EULER ANGLES, ROTATION,
ROTATION MATRIX, ROTATION OPERATOR

Infinitive Sequence
A sequence xnf g is called an infinitive sequence if, for
every i , xn �i for infinitely many n . Write a(i ; j) for
the jth index n for which xn �i : Then as i and j range
through N , the array A �a(i ; j) ; called the associative
array of x , ranges through all of N .

See also FRACTAL SEQUENCE
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Infinitude of Primes
EUCLID’S THEOREMS

Infinity
An unbounded number greater than every REAL

NUMBER, most often denoted as �: The symbol �

had been used as an alternative to M (1,000) in
ROMAN NUMERALS until 1655, when John Wallis
suggested it be used instead for infinity.

Infinity is a very tricky concept to work with, as
evidenced by some of the counterintuitive results
which follow from Georg Cantor’s treatment of



INFINITE SETS. Informally, 1 =��0; a statement
which can be made rigorous using the LIMIT concept,

lim
x0�

1

x 
�0 :

Similarly,

lim
x 00�

1

x 
��;

where the notation 0� indicates that the LIMIT is
taken from the POSITIVE side of the REAL LINE.

See also ALEPH, ALEPH-0, ALEPH-1, CARDINAL NUM-

BER, COMPLEX INFINITY, CONTINUUM, CONTINUUM

HYPOTHESIS, HILBERT HOTEL, INFINITE, INFINITE

SET, INFINITESIMAL, LINE AT INFINITY, L’HOSPITAL’S

RULE, POINT AT INFINITY, TRANSFINITE NUMBER,
UNCOUNTABLY INFINITE, ZERO
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Inflection Point
A point on a curve at which the SIGN of the
CURVATURE (i.e., the concavity) changes. The FIRST

DERIVATIVE TEST can sometimes distinguish inflection
points from EXTREMA for DIFFERENTIABLE functions
f (x) :/

See also CURVATURE, DIFFERENTIABLE, EXTREMUM,
FIRST DERIVATIVE TEST, STATIONARY POINT

Information Dimension
Define the "information function" to be

I ��
XN

i�1

Pi( e) ln Pi(e)½ �; (1)

where Pi(e) is the NATURAL MEASURE, or probability
that element i is populated, normalized such that

XN

i�1

Pi( e) �1: (2)

The information dimension is then defined by

dinf �� lim
e00 �

I

ln(e)

� lim
e00�

XN

i�1

Pi( e) ln Pi( e)½ �
ln( e)

: (3)

If every element is equally likely to be visited, then
Pi( e) is independent of i , and

XN

i �1

Pi(e) �NPi( e) �1; (4)

so

Pi( e) �
1

N
; (5)

and

dinf � lim
e00�

XN

i�1

1

N
ln

1

N

 !
ln e

� lim
e00�

ln N�1ð Þ
ln e

�� lim
e00�

ln N

ln e
�dcap; (6)

where dcap is the CAPACITY DIMENSION.

See also CORRELATION EXPONENT
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Information Entropy
ENTROPY



Information Theory
The branch of mathematics dealing with the efficient
and accurate storage, transmission, and representa-
tion of information.

See also CODING THEORY, COMPRESSION, ENTROPY
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Initial Ordinal
An ORDINAL NUMBER is called an initial ordinal if
every smaller ordinal has a smaller CARDINALITY

(Moore 1982, p. 248; Rubin 1967, p. 271). The va/s
ordinal numbers are just the transfinite initial
ordinals (Rubin 1967, p. 272).

This PROPER CLASS can be well ordered and put into
one-to-one correspondence with the ORDINAL NUM-

BERS. For any two WELL ORDERED SETS that are
ORDER ISOMORPHIC, there is only one order isomorph-
ism between them. Let f be that isomorphism from
the ordinals to the transfinite initial ordinals, then

va �f ( a);

where v0 � v:/

See also ORDINAL NUMBER
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Initial Segment
Let (A;5) be a WELL ORDERED SET. Then the set fa �
A : a Bkg for some k � A is called an initial segment of
A (Rubin 1967, p. 161; Dauben 1990, pp. 196 �/97;
Moore 1982, pp. 90 �/1). This term was first used by
Cantor, who also proved that if (A;5) and (B ;5) are
WELL ORDERED SETS that are not ORDER ISOMORPHIC,
then exactly one of the following statements is true:

1. A is ORDER ISOMORPHIC to an initial segment of
B , or
2. B is ORDER ISOMORPHIC to an initial segment of
A

(Dauben 1990, p. 198).

See also WELL ORDERED SET
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Initial Value Problem
An initial value problem is a problem that has its
conditions specified at some time t �t0 : Usually, the
problem is an ORDINARY DIFFERENTIAL EQUATION or a
PARTIAL DIFFERENTIAL EQUATION. For example,

@2u

@t2 
�92u �f in V

u �u0 t �t0

u �u1 on @V;

8>><
>>:

where @V denotes the boundary of V; is an initial
value problem.

See also BOUNDARY CONDITIONS, BOUNDARY VALUE

PROBLEM, PARTIAL DIFFERENTIAL EQUATION
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Injection
ONE-TO-ONE

Injective
A MAP is injective when it is ONE-TO-ONE, i.e., f is
injective when x "y IMPLIES f (x) "f (y) :/

See also ONE-TO-ONE, SURJECTIVE

Injective Patch
An injective patch is a PATCH such that x(u1 ; v1) �
x(u2 ; v2) implies that u1 �u2 and v1 �v2 : An example
of a PATCH which is injective but not REGULAR is the
function defined by (u3 ; v3 ;uv) for u ; v � (�1; 1): How-
ever, if x : U 0 Rn is an injective regular patch, then
x maps U diffeomorphically onto x(U):/

See also PATCH, REGULAR PATCH
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Inner Automorphism Group
A particular type of AUTOMORPHISM GROUP which
exists only for GROUPS. For a GROUP G , the inner
automorphism group is defined by

Inn(G) �fsa : a � G gƒAut(G)

where sa is an AUTOMORPHISM of G defined by

sa(x) �axa �1 :

See also AUTOMORPHISM, AUTOMORPHISM GROUP

Inner Product
DOT PRODUCT, HERMITIAN INNER PRODUCT, INTERIOR

PRODUCT, L2-INNER PRODUCT

Inner Product Space
An inner product space is a VECTOR SPACE which has
an INNER PRODUCT. If the INNER PRODUCT defines a
NORM, then the inner product space is called a
HILBERT SPACE.

See also HILBERT SPACE, INNER PRODUCT, NORM

Inner Quermass
The largest area of intersection of a solid body by a
plane parallel to a given plane, also called the "HA
measurement."

See also BRIGHTNESS, CROSS SECTION, SHADOW,
STEREOLOGY
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Inradius
The radius of a TRIANGLE’S INCIRCLE or of a POLY-

HEDRON’s INSPHERE, denoted r (or sometimes r): For
a TRIANGLE,

r�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b � c � a)(c � a � b)(a � b � c)

a � b � c

s
(1)

�
D
s

(2)

4R sin 1
2A
� �

sin 1
2B
� �

sin 1
2C
� �

; (3)

where D is the AREA of the TRIANGLE, a , b , and c are
the side lengths, s is the SEMIPERIMETER, R is the
CIRCUMRADIUS, and A , B , and C are the angles
opposite sides a , b , and c (Johnson 1929, p. 189). If
two triangle side lengths a and b are known, together
with the inradius r , then the length of the third side c
can be found by solving (1) for c , resulting in a CUBIC

EQUATION.

Equation (2) can be derived easily using TRILINEAR

COORDINATES. Since the INCENTER is equally spaced
from all three sides, its trilinear coordinates are 1:1:1,
and its exact trilinear coordinates are r : r : r: The
ratio k of the exact trilinears to the homogeneous
coordinates is given by

k�
2D

a � b � c
�

D
s
: (4)

But since k�r in this case,

r�k�
D
s
; (5)

Q.E.D.

Other equations involving the inradius include

Rr�
abc

4s
(6)

D2�rr1r2r3 (7)

cos A�cos B�cos C�1�
r

R
(8)

a2�b2�c2�4rR�8R2; (9)

where ri are the EXRADII (Johnson 1929, pp. 189�/91).

As shown in RIGHT TRIANGLE, the inradius of a RIGHT

TRIANGLE side lengths a , b , and c is given by

r�
ab

a � b � c
(10)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(c�a)(c�b)

q
(11)

�1
2(a�b�c); (12)

where c is the HYPOTENUSE.

Let d be the distance between inradius r and
CIRCUMRADIUS R , d�rR: Then

R2�d2�2Rr (13)



1

R � d 
�

1

R � d 
�

1

r 
(14)

(Mackay 1886 �/7; Casey 1888, pp. 74 �/5). These and
many other identities are given in Johnson (1929,
pp. 186 �/90).

For a PLATONIC SOLID or ARCHIMEDEAN SOLID, the
inradius of the solid is also the inradius of the DUAL

POLYHEDRON. Expressing the MIDRADIUS r and CIR-

CUMRADIUS R in terms of the midradius gives

r �
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � 1
4a

2
q (15)

r �
R2 � 1

4a
2

R 
(16)

for an ARCHIMEDEAN SOLID.

See also CARNOT’S THEOREM, CIRCUMRADIUS, JAPA-

NESE THEOREM, MIDRADIUS
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Inscribed
A geometric figure which touches only the sides (or
interior) of another figure.

See also CIRCUMSCRIBED, INCENTER, INCIRCLE, IN-

RADIUS

Inscribed Angle

The ANGLE with VERTEX on a CIRCLE’s CIRCUMFER-

ENCE formed by two points on a CIRCLE’s CIRCUMFER-

ENCE. For ANGLES with the same endpoints,

uc �2ui ;

where uc is the CENTRAL ANGLE.

See also CENTRAL ANGLE
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Inside-Outside Theorem
Let P(z) and Q(z) be UNIVARIATE POLYNOMIALS in a
complex variable z , and let the DEGREES of P and Q
satisfy deg(Q)]deg(P�2): Then

g
g

P(z)

Q(z)
dz�2pi

X
ai �A

Res
z�ai

P(z)

Q(z)
(1)

��2pi
X
bi �B

Res
z�bi

P(z)

Q(z)
; (2)

where g is a simple closed clockwise-oriented CON-

TOUR, A is the set of ROOTS of Q inside of g; and B is
the set of ROOTS of Q outside of g:/

The first equality is an instance of the RESIDUE

THEOREM. On the RIEMANN SPHERE, the simple closed
CONTOUR g splits the sphere into two regions. After
the change of variables w�1=z; the point zero is
mapped to infinity and vice versa. What was the
"inside" of g becomes the outside of g in the new
coordinate. The second equality is the RESIDUE

THEOREM applied to the MEROMORPHIC ONE-FORM a�
P=Q dz in the coordinate w , with a minus sign
because g travels clockwise after the coordinate
change. The hypothesis on the degrees of P and Q
ensure that a does not have a POLE at z��:/

The above diagram shows two different points of view
of the contour g and the poles of the MEROMORPHIC

ONE-FORM P=Q dz on the RIEMANN SPHERE. The usual
point of view is centered at z�0, but the role of inside
and outside is switched from the point of view of z�
�: The poles inside are labeled blue and outside are
green.

The theorem also follows from taking the CONTOUR

INTEGRAL at infinity, i.e., a circle of large radius R .
The hypothesis on the degree says that this integral
tends to zero. Hence it must actually be zero, because
at some point the circle contains all of the poles of /



P=Q/. This is a special case of the fact that on a
COMPACT RIEMANN SURFACE, in this case the RIE-

MANN SPHERE, the sum of the RESIDUES of a MER-

OMORPHIC ONE-FORM is zero.

See also CONTOUR, CONTOUR INTEGRAL, JACOBIAN,
RESIDUE (COMPLEX ANALYSIS), RESIDUE THEOREM,
RIEMANN SPHERE, ROOT

Insphere

A SPHERE INSCRIBED in a given solid. The figures
above depict the inspheres of the Platonic solids.

See also CIRCUMSPHERE, MIDSPHERE

Instrument Function
The finite FOURIER COSINE TRANSFORM of an APODIZA-

TION FUNCTION, also known as an APPARATUS FUNC-

TION. The instrument function I xð Þ corresponding to a
given APODIZATION FUNCTION A xð Þ is then given by

I(k) �g
a

�a

cos(2 pkx)A(x)dx:

See also APODIZATION FUNCTION, FOURIER COSINE

TRANSFORM

Insufficient Reason Principle
A principle, also called the indifference principle, that
was first enunciated by Johann Bernoulli. The in-
sufficient reason principle states that, if we are
ignorant of the ways an event can occur and therefore
have no reason to believe that one way will occur
preferentially to another, it will occur equally likely
in any way.

Int
INTEGER PART

Integer
One of the numbers . . ., -2, -1, 0, 1, 2, . . .. The SET of
INTEGERS forms a RING which is denoted Z: A given
INTEGER n may be NEGATIVE ( a �Z�) ; NONNEGATIVE

n �Z �ð Þ; ZERO (n �0), or POSITIVE n �Z ��Nð Þ: The
set of integers is denoted Integers in Mathematica ,
and a number x can be tested to see if it is an integer
using the command Element[x , Integers]. Numbers
that are integers are sometimes described as "inte-
gral" (instead of integer-valued), but this practice
may lead to unnecessary confusions with the INTE-

GRALS of INTEGRAL CALCULUS.

The RING Z of integers has CARDINALITY of ALEPH-0.
The GENERATING FUNCTION for the NONNEGATIVE

INTEGERS is

f (x) �
x

(1 � x)2 �x �2x2 �3x3 �4x4 �. . . :

There are several symbols used to perform operations
having to do with conversion between REAL NUMBERS

and integers. The symbol xb c ("FLOOR x") means "the
largest integer not greater than x ," i.e., int(x) in
computer parlance. The symbol x½ � means "the near-
est integer to x" (NINT), i.e., nint(x) in computer
parlance. The symbol xd e ("CEILING x") means the
smallest integer not smaller x ," or -int(-x), where
int(x) is the INTEGER PART of x .

The German mathematician and logician Kronecker
vociferously opposed the work of Georg Cantor on
infinite sets and summarized his view that ARITH-

METIC and ANALYSIS should be based on whole
numbers only by saying, "God made the natural
numbers; all else is the work of man" (Bell 1986,
p. 477).

See also ALGEBRAIC INTEGER, ALMOST INTEGER,
COMPLEX NUMBER, COUNTING NUMBER, CYCLOTOMIC

INTEGER, EISENSTEIN INTEGER, FRACTIONAL PART,
GAUSSIAN INTEGER, INTEGER PART, N, NATURAL

NUMBER, NEGATIVE, POSITIVE, RADICAL INTEGER,
REAL NUMBER, WHOLE NUMBER, Z, Z-, Z�, Z*, ZERO

References
Bell, E. T. Men of Mathematics. New York: Simon and

Schuster, 1986.

Integer Array

See also INTEGER SEQUENCE
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Integer Bowl
BOWL OF INTEGERS

Integer Cuboid
EULER BRICK

Integer Division
DIVISION in which the fractional part (remainder) is
discarded is called integer division and is sometimes
denoted \. Integer division can be defined as /

a_b��a=b/, where "/" denotes normal division and
xb c is the FLOOR FUNCTION. For example,



10=3 ¼ 3 þ 1=3

10_3 ¼ 3:

Integer Exponent
GREATEST DIVIDING EXPONENT

Integer Factorization
PRIME FACTORIZATION

Integer Function
A FUNCTION defined for all positive integers, some-
times also called an "arithmetical function" (Nagell
1951, p. 26).

See also COMPLEX MATRIX, REAL MATRIX
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Integer Matrix
A MATRIX whose entries are all integers. Special cases
which arise frequently are those having only (1;�1)
as entries (e.g., HADAMARD MATRIX), BINARY MATRICES

having only (0; 1) as entries (e.g., ADJACENCY MATRIX,
FROBENIUS-KÖ NIG THEOREM, GALE-RYSER THEOREM,
HADAMARD’S MAXIMUM DETERMINANT PROBLEM, HARD

SQUARE ENTROPY CONSTANT, IDENTITY MATRIX, INCI-

DENCE MATRIX, LAM’S PROBLEM), and those having
(�1; 0; 1) as entries (e.g., ALTERNATING SIGN MATRIX,
C -MATRIX).

The ZERO MATRIX could be considered a degenerate
case of an integer matrix.

See also ALTERNATING SIGN MATRIX, (-1,0,1)-MATRIX,
(-1,1)-MATRIX, (0,1)-MATRIX, COMPLEX MATRIX, FROBE-

NIUS-KÖ NIG THEOREM, GALE-RYSER THEOREM, C -

MATRIX, FIFTEEN THEOREM, GALE-RYSER THEOREM,
HADAMARD’S MAXIMUM DETERMINANT PROBLEM, HA-

DAMARD MATRIX, HAFNER-SARNAK-MCCURLEY CON-

STANT, HARD SQUARE ENTROPY CONSTANT, IDENTITY

MATRIX, INCIDENCE MATRIX, INTEGER-MATRIX FORM,
INTERSPERSION, LAM’S PROBLEM, MORTAL, MORTAL-

ITY PROBLEM, REAL MATRIX, SMITH NORMAL FORM,
SPECIAL MATRIX, UNIT MATRIX, ZERO MATRIX

Integer-Matrix Form
Let Q xð Þ�Q xð Þ�Q x1 ; x2 ; . . . ; xnð Þ be an integer-va-
lued n -ary QUADRATIC FORM, i.e., a POLYNOMIAL with
integer COEFFICIENTS which satisfies Q xð Þ > 0 for
REAL x "0: Then Q xð Þ can be represented by

Q(x) �xTAx;

where

A �
1

2

@2Q(x)

@xi @xj

is a POSITIVE SYMMETRIC MATRIX (Duke 1997). If A has
POSITIVE entries, then Q xð Þ is called an integer-
matrix form. Conway et al. (1997) have proven that,
if a POSITIVE integer-matrix quadratic form repre-
sents each of 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it
represents all POSITIVE INTEGERS.

See also FIFTEEN THEOREM
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Integer Module
ABELIAN GROUP

Integer Part

The function int x gives the integer part of x . In many
computer languages, the function is denoted int(x).
It is related to the FLOOR and CEILING FUNCTIONS xb c
and xd e by

int x�
xb c for x]�

xd e for xB0

$
The integer part function satisfies

int(�x)��int(x)

and is implemented in Mathematica as Integer-
Part[x ]. This definition is chosen so that int x�
frac x�x; where frac x is the FRACTIONAL PART.
Although Spanier and Oldham (1987) use the same
definition as Mathematica , they mention the formula
only very briefly and then say it will not be used
further. Graham et al. (1994), and perhaps most



other mathematicians, use the term "integer" part
interchangeably with the FLOOR FUNCTION xb c:/
Since usage concerning fractional part/value and
integer part/value can be confusing, the following
table gives a summary of names and notations used
(D. W. Cantrell). Here, S&O indicates Spanier and
Oldham (1987).

notation name S&O Graham
et al.

Mathematica

/ xb c/ integer-
value

/Int(x)/ floor or
integer
part

Floor[ x ]

/sgn xð Þ  xj jb c/ integer-
part

/Ip xð Þ/ no name Integer-
Part[ x ]

/x � xb c/ fractional-
value

/frac xð Þ/ fractional
part or
{x }

no name

/sgn xð Þ xj j� xj jb cð Þ/ fractional-
part

/Fp(x)/ no name Fractional-
Part[ x ]

See also CEILING FUNCTION, FLOOR FUNCTION, FRAC-

TIONAL PART, INTEGER, NEAREST INTEGER FUNCTION
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Integer Polynomial
A POLYNOMIAL OF THE FORM

f (x) �anxn �an�1xn�1 �. . .�a1x �a0

having coefficients ai that are all integers. An integer
polynomial gives integer values for all integer argu-
ments of x (Nagell 1951, p. 73). The set of integer
polynomials is denoted Z x½ �:/
An integer polynomial is called primitive if the
GREATEST COMMON DIVISOR a0 �a1 ; . . . ;an �1:ð Þ: In-
teger polynomials are sometimes called "integral
polynomials," which is an unfortunately confusing
choice of nomenclature.

See also INTEGER-REPRESENTING POLYNOMIAL, POLY-

NOMIAL, PRIME DIVISOR
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Integer Relation
A set of REAL NUMBERS x1; . . ., xn is said to possess an
integer relation if there exist integers ai such that

a1x1�a2x2�� � ��anxn�0;

with not all ai�0: For historical reasons, integer
relation algorithms are sometimes called generalized
Euclidean algorithms or multidimensional continued
fraction algorithms.

An interesting example of such a relation is the 17-
VECTOR (1, x , x2; . . ., x16) with x�31=4�22=4; which
has an integer relation (1, 0, 0, 0, -3860, 0, 0, 0, -666,
0, 0, 0, -20, 0, 0, 0, 1), i.e.,

1�3860x4�666x8�20x12�x16�0:

This is a special case of finding the polynomial of
degree n�rs satisfied by x�31=r�21=s:/

Integer relation algorithms can be used to solve
SUBSET SUM PROBLEMS, as well as to determine if a
given numerical constant is equal to a root of a
univariate polynomial of degree n or less (Bailey
and Ferguson 1989, Ferguson and Bailey 1992).

One of the simplest cases of an integer relation
between two numbers is the one inherent in the
definition of the GREATEST COMMON DIVISOR. The
well-known EUCLIDEAN ALGORITHM solves this pro-
blem, as well as the more general problem of an
integer relation between two real numbers, yielding
either an exact relation or an infinite sequence of
approximate relations (Ferguson et al. 1999).
Although attempts were made to generalize the
algorithm to n]3 by Hermite (1850), Jacobi (1868),
Poincaré (1884), Perron (1907), Brun (1919, 1920,
1957), and Szekeres (1970), all such routines were
known to fail in certain cases (Ferguson and Forcade
1979, Forcade 1981, Hastad et al. 1989). The first
successful integer relation algorithm was developed
by Ferguson and Forcade (1979) (Ferguson and
Bailey 1992, Ferguson et al. 1999).

Algorithms for finding integer relations include the
FERGUSON-FORCADE ALGORITHM, HJLS ALGORITHM,
LLL ALGORITHM, PSLQ ALGORITHM, PSOS ALGO-

RITHM, and the algorithm of Lagarias and Odlyzko
(1985). Perhaps the simplest (and unfortunately most
inefficient) such algorithm is the GREEDY ALGORITHM.

Plouffe’s "Inverse Symbolic Calculator" site includes a
huge database of 54 million REAL NUMBERS which are
algebraically related to fundamental mathematical
constants. The FERGUSON-FORCADE ALGORITHM has
shown that there are no algebraic equations of degree
58 with integer coefficients having Euclidean norms
below certain bounds for e=p; e�p; ln p; g; eg; g=e; g=p;
and ln g; where E is the base for the NATURAL

LOGARITHM, p is PI, and g is the EULER-MASCHERONI

CONSTANT (Bailey 1988).

Constant Bound

/e=p;/ /6:1030�1014
/



/e �p;/ /2:2753 �1014
/

/ln p;/ /8:7697 �109
/

/ g/ /3:5739 �109
/

/e g ;/ /1:6176 �1017
/

/ g =e ;/ /1:8440 �1011
/

/ g =p/ /6:5403 �109
/

/ln g/ /2:6881 �1010
/

See also CONSTANT PROBLEM, FERGUSON-FORCADE

ALGORITHM, GREEDY ALGORITHM, HERMITE-LINDE-

MANN THEOREM, HJLS ALGORITHM, KNAPSACK PRO-

B L E M , L A T T I C E  R E D U C T I O N , L I N D E M A N N -

WEIERSTRASS THEOREM, LLL ALGORITHM, PSLQ
ALGORITHM, PSOS ALGORITHM, RICHARDSON’S THEO-

REM, REAL NUMBER, SUBSET SUM PROBLEM
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Integer-Representing Polynomial
A polynomial that represents integers for all integer
values of the variables. An INTEGER POLYNOMIAL is a
special case of such a polynomial. In general, every
integer representing polynomial f (x) of degree n in
the variable x can be written in the form

f (x)�A0�A1
x
1

	 

�A2

x
2

	 

�. . .�An

x
n

	 

;

where n
k

� �
is a BINOMIAL COEFFICIENT and A0; A1; . . .,

An are integers (Nagell 1951, p. 121).

See also INTEGER POLYNOMIAL

References
Nagell, T. "Polynomials Representing Integers." §35 in

Introduction to Number Theory. New York: Wiley,
pp. 115�/20 and 121, 1951.

Integer Sequence
A SEQUENCE whose terms are INTEGERS. The most
complete printed references for such sequences are
Sloane (1973) and its update, Sloane and Plouffe
(1995). Sloane also maintains the sequences from
both works together with many additional sequences
in an on-line listing. In this listing, sequences are
identified by a unique 6-DIGIT A-number. Sequences
appearing in Sloane and Plouffe (1995) are ordered
lexicographically and identified with a 4-DIGIT M-
number, and those appearing in Sloane (1973) are
identified with a 4-DIGIT N-number.

Sloane’s huge (and enjoyable) database is accessible
by either e-mail or web browser. To look up sequences
by e-mail, send a message to either mailto:sequen-
ces@research.att.com or mailto:superseeker@re-
search.att.com containing lines OF THE FORM

lookup 5 14 42 132 . . . (note that spaces must be
used instead of commas). To use the browser version,



point to http://www.research.att.com/~njas/se-
quences/eisonline.html.

Integer sequences can be analyzed by a variety
techniques (Sloane and Plouffe 1995, p. 26), including
the application a data compression algorithm (Bell et
al. 1990) and computation of the DISCRETE FOURIER

TRANSFORM (Loxton 1989). There are also a large
number of transformations which relate integer
sequences to one another, including the EULER

TRANSFORM, EXPONENTIAL TRANSFORM, MÖ BIUS

TRANSFORM, and others (Bower, Sloane).

See also ARONSON’S SEQUENCE, COMBINATORICS,
CONSECUTIVE NUMBER SEQUENCES, CONWAY SE-

QUENCE, EBAN NUMBER, EULER TRANSFORM, HOF-

STADTER-CONWAY $10,000 SEQUENCE, HOFSTADTER’S

Q -SEQUENCE, INTEGER ARRAY, LEVINE-O’SULLIVAN

SEQUENCE, LOOK AND SAY SEQUENCE, MALLOW’S

SEQUENCE, MIAN-CHOWLA SEQUENCE, MÖ BIUS

TRANSFORMATION, MORSE-THUE SEQUENCE, NEW-

MAN-CONWAY SEQUENCE, NUMBER, PADOVAN SE-

QUENCE, PERRIN SEQUENCE, RATS SEQUENCE,
SEQUENCE, SMARANDACHE SEQUENCES

References
Aho, A. V. and Sloane, N. J. A. "Some Doubly Exponential

Sequences." Fib. Quart. 11, 429 �/37, 1973.
Bell, T. C.; Cleary, J. G.; and Witten, I. H. Text Compres-

sion. Englewood Cliffs, NJ: 1990.
Bernstein, M. and Sloane, N. J. A. "Some Canonical Se-

quences of Integers." Linear Algebra Appl. 226//228, 57�/

2, 1995.
Bower, C. G. "Further Transformations of Integer Se-

quences." http://www.research.att.com/~njas/sequences/
transforms2.html.

Cameron, P. J. "Some Sequences of Integers." Disc. Math.
75, 89�/02, 1989.

Ding, C.; Helleseth, T.; and Niederreiter, H. (Eds.). Se-
quences and Their Applications: Proceedings of SETA’ 98.
New York: Springer-Verlag, 1999.
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Integers
INTEGER

Integrable
A function for which the INTEGRAL can be computed is
said to be integrable.

See also DIFFERENTIABLE, INTEGRABLE (DIFFEREN-

TIAL IDEAL), INTEGRAL, INTEGRATION, LOCALLY IN-

TEGRABLE

Integrable (Differential Ideal)
A DIFFERENTIAL IDEAL is an IDEAL I in the RING of
smooth FORMS on a MANIFOLD M . That is, it is closed
under addition, scalar multiplication, and WEDGE

PRODUCT with an arbitrary form. The IDEAL I is
called integrable if, whenever a � I; then also da � I;
where d is the EXTERIOR DERIVATIVE.

For example, in R3; the IDEAL

I� a1ydx�a2dxffldy�a3ydxffldz�a4dxffldyffldzf g;
(1)

where the ai are arbitrary smooth functions, is an
integrable differential ideal. However, if the second
term were of the form a2ydxffldy; then the ideal
would not be integrable because it would not contain
d ydxð Þ��dxffldy:/

Given an integral differential ideal I on M , a SMOOTH

MAP f : X 0 M is called integral if the PULLBACK of
every form a vanishes on X , i.e., f�a�0: In coordi-
nates, an integral manifold solves a system of PARTIAL

DIFFERENTIAL EQUATIONS. For example, using I
above, a map f � f1; f2; f3ð Þ from an OPEN SET in R2 is
integral if



f2

@f1

@x
�0 (2)

f2

@f1

@y
�0 (3)

@f1

@x

@f2

@y 
�

@f1

@y

@f2

@x
�0 (4)

f2

@f1

@x

@f3

@y 
�

@f1

@y

@f3

@x

 !
�0 (5)

Conversely, any system of PARTIAL DIFFERENTIAL

EQUATIONS can be expressed as an integrable differ-
ential ideal on a JET BUNDLE. For instance, @f =@x �g
on R corresponds to I � df �gdxh i on R2� x; fð Þf g:/

See also DIFFERENTIAL K -FORM, INTEGRABLE, JET

BUNDLE, PARTIAL DIFFERENTIAL EQUATION, WEDGE

PRODUCT

Integral
An integral is a mathematical object which can be
interpreted as an AREA or a generalization of AREA.
Integrals, together with DERIVATIVES, are the funda-
mental objects of CALCULUS. Other words for integral
include ANTIDERIVATIVE and PRIMITIVE. The RIEMANN

INTEGRAL is the simplest integral definition and the
only one usually encountered in physics and elemen-
tary CALCULUS. In fact, according to Jeffreys and
Jeffreys (1988, p. 29), "it appears that cases where
these methods [i.e., generalizations of the Riemann
integral] are applicable and Riemann’s [definition of
the integral] is not are too rare in physics to repay the
extra difficulty." The RIEMANN INTEGRAL of the
function f (x) over x from a to b is written

g
b

a

f (x)dx: (1)

Every definition of an integral is based on a parti-
cular MEASURE. For instance, the RIEMANN INTEGRAL

is based on JORDAN MEASURE, and the LEBESGUE

INTEGRAL is based on LEBESGUE MEASURE. The
process of computing an integral is called INTEGRA-

TION (a more archaic term for INTEGRATION is QUAD-

RATURE), and the approximate computation of an
integral is termed NUMERICAL INTEGRATION.

There are two classes of (Riemann) integrals: DEFI-

NITE INTEGRALS such as (1), which have upper and
lower limits, and INDEFINITE INTEGRALS, such as

g f (x)dx (2)

which are written without limits. The first FUNDA-

MENTAL THEOREM OF CALCULUS allows DEFINITE

INTEGRALS to be computed in terms of INDEFINITE

INTEGRALS, since if F is the INDEFINITE INTEGRAL for

f (x); then

g
b

a

f (x)dx�F(b)�F(a): (3)

WOLFRAM RESEARCH maintains a web site which will
integrate many common (and not so common) func-
tions. However, Mathematica 4.0 cannot solve some
simple indefinite integrals such as

g
d

dx
x
ffiffiffiffiffiffiffiffiffiffiffi
sin x

p� �" #
dx�g

x cos x

2
ffiffiffiffiffiffiffiffiffiffiffi
sin x

p �
ffiffiffiffiffiffiffiffiffiffiffi
sin x

p
 !

dx (4)

g
d

dx
Li2(x ln x)

" #
dx

��g
(ln x � 1) ln(1 � x ln x)

x ln x

" #
dx; (5)

where Li2(x) is the DILOGARITHM. Consider integrals
of this form

I(a)�g
p=2

0

dx

1 � (tan x)a;
(6)

can be done trivially by taking advantage of the
trigonometric identity

tan 1
2p�x
� �

�cot x (7)

Letting z�(tan x)a;

I(a)�g
p=4

0

dx

1 � z
�g

p=2

p=4

dx

1 � z

�g
p=4

0

dx

1 � z
�g

p=4

0

dx

1 �
1

z

�g
p=4

0

1

1 � z
�

1

1 �
1

z

0
BBB@

1
CCCAdx�g

p=4

0

dx

�1
4p (8)

However, Mathematica 3.0 gives an incorrect answer
of p1�2

ffiffi
3

p
=

ffiffiffi
3

p
� 4

ffiffi
3

p� �
to

Ið
ffiffiffi
3

p
Þ ¼ g

p=2

0

dx

1 þ ðtan xÞ
ffiffi
3

p ¼ 1
4p; ð9Þ

although integrals of this type remain unevaluated in
Mathematica 4.0. Some care is therefore needed in
the use of symbolic computer algebra packages for
integration. This caveat is further illustrated by the
example of the integral



fðaÞ ¼ g
p

0

lnð1�2a cos x þ a2Þdx ¼ 2p ln jaj ð10Þ

that has a simple analytic from for aj j > 1 (Woods
1926) using the LEIBNIZ INTEGRAL RULE. However,
Mathematica 4.0 gives a very complicated solution
because it does not recognize the simple form above.

There are a wide range of methods available for
NUMERICAL INTEGRATION. Good sources for such
techniques include Press et al. (1992) and Hildebrand
(1956). The most straightforward numerical integra-
tion technique uses the NEWTON-COTES FORMULAS

(also called QUADRATURE FORMULAS), which approx-
imate a function tabulated at a sequence of regularly
spaced INTERVALS by various degree POLYNOMIALS. If
the endpoints are tabulated, then the 2- and 3-point
formulas are called the TRAPEZOIDAL RULE and
SIMPSON’S RULE, respectively. The 5-point formula is
called BODE’S RULE. A generalization of the TRAPE-

ZOIDAL RULE is ROMBERG INTEGRATION, which can
yield accurate results for many fewer function eva-
luations.

If the analytic form of a function is known (instead of
its values merely being tabulated at a fixed number of
points), the best numerical method of integration is
called GAUSSIAN QUADRATURE. By picking the optimal
ABSCISSAS at which to compute the function, Gaus-
sian quadrature produces the most accurate approx-
imations possible. However, given the speed of
modern computers, the additional complication of
the GAUSSIAN QUADRATURE formalism often makes
it less desirable than the brute-force method of simply
repeatedly calculating twice as many points on a
regular grid until convergence is obtained. An ex-
cellent reference for GAUSSIAN QUADRATURE is Hil-
debrand (1956).

Here is a list of common INDEFINITE INTEGRALS:

g xrdx�
xr�1

r � 1
�C (11)

g
dx

x
�ln xj j�C (12)

g axdx�
ax

ln a
�C (13)

g sin xdx��cos x�C (14)

g cos xdx�sin x�C (15)

g tan xdx�ln sec xj j�C (16)

g csc xdx�ln csc x�cot xj j�C (17)

�ln tan 1
2x
� �h i

�C (18)

1
2ln

1 � cos x

1 � cos x

 !
�C (19)

g sec xdx ¼ lnjsec x þ tan xj þ C ð20Þ

�gd�1(x)�C (21)

g cot xdx�ln sin xj j�C (22)

g sec2 xdx�tan x�C (23)

g csc2 xdx��cot x�C (24)

g sec x tan xdx�sec x�C (25)

g cos�1xdx�x cos�1 x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�C (26)

g sin�1 xdx�x sin�1 x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�C (27)

g tan�1 xdx�x tan�1 x�1
2ln 1�x2
� �

�C (28)

g
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p �sin�1 x

a

 !
�C (29)

g
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ��cos�1 x

a

 !
�C (30)

g
dx

a2 � x2
�

1

a

 !
tan�1 x

a

 !
�C (31)

g
dx

a2 � x2
��

1

a
cot�1 x

a

 !
�C (32)

g
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p ��
1

a
sec�1 x

a

 !
�C (33)

g
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p ��
1

a
csc�1 x

a

 !
�C (34)

g sin2(ax)dx�
x

2
�

1

4a
sin(2ax)�C (35)

g sn u du�k�1ln(dn u�k cn u)�C (36)

g sn2 u du�
u � E(u)

k2
�C (37)



g cn u du�k�1 sin�1(k sn u)�C (38)

g dn u du�sin�1(sn u)�C; (39)

where sin x is the SINE; cos x is the COSINE; tanx is the
TANGENT; csc x is the COSECANT; sec x is the SECANT;
cot x is the COTANGENT; cos�1 x is the INVERSE

COSINE; sin�1 x is the INVERSE SINE; tan�1 x is the
INVERSE TANGENT; sn u; cn u; and dn u are JACOBI

ELLIPTIC FUNCTIONS; E(u) is a complete ELLIPTIC

INTEGRAL OF THE SECOND KIND; and gd(x) is the
GUDERMANNIAN FUNCTION.

To derive (16), let u�cos x; so du��sin xdx and

g tan x�g
sin u

cos x
dx��g

du

u

��ln uj j�C��ln cos xj j�C

�ln cos xj j�1�C�ln sec xj j�C: (40)

To derive (17), let u�csc x�cot x; so du�
(�csc x cot x�csc2 x)dx and

g csc xdx�g csc x
csc x � cot x

csc x � cot x
dx

�g
csc2 x � cot x csc x

csc x � cot x
dx

�g
du

u
�ln uj j�C

�ln csc x�cot xj j�C: (41)

To derive (20), let

u�sec x�tan x; (42)

so

du� sec x tanx�sec2 x
� �

dx (43)

and

g sec xdx�g sec x
sec x � tan x

sec x � tan x
dx

¼ g
sec2 x þ sec x tan x

sec x þ tan x
dx

�g
du

u
�ln uj j�C

�ln sec x�tan xj j�C: (44)

To derive (22), let u�sin x; so du�cos xdx and

g cot xdx�g
cos x

sin x
dx�g

du

u

�ln uj j�C�ln sin xj j�C: (45)

Integral identities include

dx

dy
�

1

dy

dx

(46)

d2x

dy2
��

d2y

dx2

dy

dx

 !�3

(47)

d3x

dy3
� 3

d2y

dx2

 !2

�
d3y

dx3

dy

dx

2
4

3
5 dy

dx

 !�5

(48)

Differentiating integrals leads to some useful and
powerful identities, for instance

d

dxg
x

a

f x?ð Þdx?�f (x); (49)

which is the first FUNDAMENTAL THEOREM OF CALCU-

LUS. Other derivative-integral identities include

d
dxg

b

x

f x?ð Þdx?��f (x); (50)

the LEIBNIZ INTEGRAL RULE

d

dxg
b

a

f (x; t)dt�g
b

a

@

@x
f (x; t)dt (51)

(Kaplan 1992, p. 275), and its generalization

d

dxg
v(x)

u(x)

f (x; t)dt

�v?(x)f (x; v(x))�u?f (x;u(x))�g
v(x)

u(x)

@

@x
f (x; t)dt (52)

(Leibniz 1992, p. 258). If f (x; t) is singular or INFINITE,
then

d

dxg
x

a

f (x; t)dx

�
1

x � ag
x

a

(x�a)
@f

@x
�(t�a)

@f

@x
�f

" #
dt (53)

Other integral identities include

g
x

0

dtng
tn

0

dtn�1 � � �g
t3

0

dt2g
t2

0

f t1ð Þdt1

�
1

(n � 1)!g
x

0

(x�t)n�1f (t)dt (54)

@

@xk

xjJk

� �
�djkJk�xj

@

@xk

Jk�J�r9 � J (55)

gV

Jd3r�gV

@

@xk

xiJkð Þ�gV

r9 � Jd3r



�gV

r9 � Jd3r (56)

and the amusing integral identity

g
�

��

F(f (x))dx�g
�

��

F(x)dx; (57)

where F is any function and

f (x)�x�
X�
n�0

an

x � bn

(58)

as long as an]0 and bn is real (Glasser 1983).

Integrals OF THE FORM

g
b

a

f (x)dx (59)

with one INFINITE LIMIT and the other NONZERO may
be expressed as finite integrals over transformed
functions. If f (x) decreases at least as fast as 1=x2;
then let

t�
1

x
(60)

dt��
dx

x2
(61)

dx��x2dt��
dt

t2
; (62)

and

g
b

a

f (x)dx��g
1=b

1=a

1

t2
f

1

t

 !
dt�g

1=a

1=b

1

t2
f

1

t

 !
dt: (63)

If f (x) diverges as (x�a)g for g � [0; 1]; let

x�t1=(1�g)�a (64)

dx�
1

1 � g
t1=(1�g)�1dt�

1

1 � g
t[1�(1�g)]=(1�g)dt

�
1

g� 1
tg=(1�g)dt (65)

t�(x�a)1�g; (66)

and

g
b

a

f (x)dx�
1

1 � g
�g

(b�a)1�g

0

tg(1�g)f t1=(1�g)�a
� �

dt: (67)

If f (x) diverges as (x�b)g for g � [0; 1]; let

x�b�t1=(1�g) (68)

dx��
1

g� 1
tg=(1�g)dt (69)

t�(b�x)1�g; (70)

and

g
b

a

f (x)dx�
1

1 � g
�g

(b�a)1�g

0

tg=(1�g)f (b�t1=(1�g)dt: (71)

If the integral diverges exponentially, then let

t�e�x (72)

dt��e�xdx (73)

x��ln t; (74)

and

g
�

a

f (x)dx�g
e�a

0

f (�ln t)
dt

t
: (75)

Integrals with rational exponents can often be solved
by making the substitution u�x1=n; where n is the
LEAST COMMON MULTIPLE of the DENOMINATOR of the
exponents.

Integration rules include

g
a

a

f (x)dx�0 (76)

g
b

a

f (x)dx��g
a

b

f (x)dx: (77)

For c � (a; b);

g
b

a

f (x)dx�g
c

a

f (x)dx�g
b

c

f (x)dx: (78)

If g? is continuous on [a, b ] and f is continuous and
has an antiderivative on an INTERVAL containing the
values of g(x) for a5x5b; then

g
b

a

f g(x)ð Þg?(x)dx�g
g(b)

g(a)

f (u)du: (79)

Liouville showed that the integrals

g e�x2

dx g
ex

x
dx g

sin x

x
dxg

dx

ln x
(80)

cannot be expressed as terms of a finite number of
elementary functions. Other irreducibles include

g xxdx g x�xdx g
ffiffiffiffiffiffiffiffiffiffiffi
sin x

p
dx: (81)

Chebyshev proved that if U , V , and W are RATIONAL

NUMBERS, then

g xU A�BxV
� �W

dx (82)

is integrable in terms of elementary functions IFF

(U�1)=V; W , or W�(U�1)=V is an INTEGER (Ritt
1948, Shanks 1993).



See also A -INTEGRABLE, ABELIAN INTEGRAL, CALCU-

LUS, CHEBYSHEV-GAUSS QUADRATURE, CHEBYSHEV

QUADRATURE, DARBOUX INTEGRAL, DEFINITE INTE-

GRAL, DENJOY INTEGRAL, DERIVATIVE, DOUBLE EX-

PONENTIAL INTEGRATION, EULER INTEGRAL,
FUNDAMENTAL THEOREM OF GAUSSIAN QUADRATURE,
GAUSS-JACOBI MECHANICAL QUADRATURE, GAUSSIAN

QUADRATURE, HAAR INTEGRAL, HERMITE-GAUSS

QUADRATURE, HERMITE QUADRATURE, HK INTEGRAL,
INDEFINITE INTEGRAL, INTEGRATION, JACOBI-GAUSS

QUADRATURE, JACOBI QUADRATURE, LAGUERRE-

GAUSS QUADRATURE, LAGUERRE QUADRATURE, LE-

BESGUE INTEGRAL, LEBESGUE-STIELTJES INTEGRAL,
LEGENDRE-GAUSS QUADRATURE, LEGENDRE QUADRA-

TURE, LEIBNIZ INTEGRAL RULE, LOBATTO QUADRA-

T U R E, ME CH A NIC AL  QU AD RA T UR E, ME H L ER

QUADRATURE, NEWTON-COTES FORMULAS, NUMERI-

CAL INTEGRATION, PERRON INTEGRAL, QUADRATURE,
RADAU QUADRATURE, RECURSIVE MONOTONE STABLE

QUADRATURE, RIEMANN-STIELTJES INTEGRAL, ROM-

BERG INTEGRATION, RIEMANN INTEGRAL, STIELTJES

INTEGRAL
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Integral Brick
EULER BRICK

Integral Calculus
That portion of "the" CALCULUS dealing with INTE-

GRALS.

See also CALCULUS, DIFFERENTIAL CALCULUS, INTE-

GRAL

Integral Cohomology Class

See also COHOMOLOGY CLASS

Integral Cuboid
EULER BRICK

Integral Current
A RECTIFIABLE CURRENT whose boundary is also a
RECTIFIABLE CURRENT.

Integral Curvature
Given a GEODESIC TRIANGLE (a triangle formed by the
arcs of three GEODESICS on a smooth surface),

gABC

K da�A �B �C �p:

Given the EULER CHARACTERISTIC x;

ggK da�2px

so the integral curvature of a closed surface is not
altered by a topological transformation.

See also GAUSS-BONNET FORMULA, GEODESIC TRIAN-

GLE

Integral Domain
A RING that is COMMUTATIVE under multiplication,
has an IDENTITY ELEMENT, and has no divisors of 0.

The INTEGERS form an integral domain.

See also FIELD, IDEAL, RING
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Integral Drawing
A GRAPH drawn such that the EDGES have only
INTEGER lengths. It is conjectured that every PLANAR

GRAPH has an integral drawing.
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Integral Equation
If the limits are fixed, an integral equation is called a
Fredholm integral equation. If one limit is variable, it
is called a Volterra integral equation. If the unknown



function is only under the integral sign, the equation
is said to be of the "first kind." If the function is both
inside and outside, the equation is called of the
"second kind." A Fredholm equation of the first kind
is OF THE FORM

f ðx Þ ¼ g
b

a

K ðx; tÞfðtÞdt: ð1Þ

A Fredholm equation of the second kind is OF THE

FORM

f(x) �f (x) �g
b

a

K(x; t)f(t)dt: (2)

A Volterra equation of the first kind is OF THE FORM

f (x) �g
x

a

K(x; t) f(t)dt : (3)

A Volterra equation of the second kind is OF THE FORM

f(x) �f (x) �g
x

a

K(x; t) f(t)dt; (4)

where the functions K(x ; t) are known as KERNELS.
Integral equations may be solved directly if they are
SEPARABLE. Otherwise, a NEUMANN SERIES must be
used.

A KERNEL is separable if

K(x; t) � l
Xn

j�1

Mj(x)Nj(t) : (5)

This condition is satisfied by all POLYNOMIALS and
many TRANSCENDENTAL FUNCTIONS. a FREDHOLM

INTEGRAL EQUATION OF THE SECOND KIND with separ-
able KERNEL may be solved as follows:

f(x) �f (x) �g
b

a

K(x; t) f(t)dt

�f (x) � l
Xn

j�1

Mj(x)g
b

a

Nj(t)f(t)dt

�f (x) � l
Xn

j �1

cjMj(x) ; (6)

where

cj �g
b

a

Nj(t) f(t)dt: (7)

Now multiply both sides of (7) by Ni(x) and integrate
over dx .

g
b

a

f(x)Ni(x)dx

�g
b

a

f (x)Ni(x)dx � l
Xn

j�1

cjg
b

a

Mj(x)Ni(x)dx: (8)

By (7), the first term is just ci: Now define

bi�g
b

a

Ni(x)f (x)dx (9)

aij�g
b

a

Ni(x)Mj(x)dx; (10)

so (8) becomes

ci�bi�l
Xn

j�1

aijcj (11)

Writing this in matrix form,

C�B�lAC; (12)

so

(I�lA)C�B (13)

C�(I�lA)�1B (14)

See also FREDHOLM INTEGRAL EQUATION OF THE

FIRST KIND, FREDHOLM INTEGRAL EQUATION OF THE

SECOND KIND, VOLTERRA INTEGRAL EQUATION OF THE

FIRST KIND, VOLTERRA INTEGRAL EQUATION OF THE

SECOND KIND
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Integral Function
ENTIRE FUNCTION

Integral Geometry

See also GEOMETRIC PROBABILITY, STOCHASTIC GEO-

METRY

Integral of Motion
A function of the coordinates which is constant along
a trajectory in PHASE SPACE. The number of DEGREES

OF FREEDOM of a DYNAMICAL SYSTEM such as the
DUFFING DIFFERENTIAL EQUATION can be decreased
by one if an integral of motion can be found. In
general, it is very difficult to discover integrals of
motion.

Integral Polyhedron
PRIMITIVE POLYTOPE

Integral Polynomial
INTEGER POLYNOMIAL

Integral Sign
The symbol f used to denote an INTEGRAL ff (x)dx : The
symbol was invented by Leibniz and chosen to be a
stylized script "S" to stand for "summation."

See also INTEGRAL, INTEGRATION UNDER THE INTE-

GRAL SIGN

Integral Test
Let auk be a series with POSITIVE terms and let f (x) be
the function that results when k is replaced by x in
the FORMULA for uk : If f is decreasing and continuous
for x ]1 and

lim
x 0�

f (x) �0;

then

X�
k �1

uk

and

g
�

t

f (x)dx

both converge or diverge, where 1 5t 5�: The test is
also called the CAUCHY INTEGRAL TEST or MACLAURIN

INTEGRAL TEST.

See also CONVERGENCE TESTS
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Integral Transform
A general integral transform is defined by

g( a) �g
b

a

f (t)K( a; t)dt;

where K( a; t) is called the KERNEL of the transform.

See also BUSCHMAN TRANSFORM, FOURIER TRANS-

FORM, FOURIER-STIELTJES TRANSFORM, G -TRANS-

FORM, H-TRANSFORM, HADAMARD TRANSFORM,
HANKEL TRANSFORM, HARTLEY TRANSFORM, HOUGH

TRANSFORM, KONTOROVICH-LEBEDEV TRANSFORM,
MEHLER-FOCK TRANSFORM, MEIJER TRANSFORM,
NARAIN G -TRANSFORM, OPERATIONAL MATHEMATICS,
RADON TRANSFORM, STIELTJES TRANSFORM, W -

TRANSFORM, WAVELET TRANSFORM, Z -TRANSFORM
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Integrand
The quantity being INTEGRATED, also called the
KERNEL. For example, in ff (x)dx; f (x) is the integrand.

See also INTEGRAL, INTEGRATION

Integrating Factor
A FUNCTION by which an ORDINARY DIFFERENTIAL

EQUATION is multiplied in order to make it integrable.

See also ORDINARY DIFFERENTIAL EQUATION
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Integration
The process of computing or obtaining an INTEGRAL. A
more archaic term for integration is QUADRATURE.

See also CONTOUR INTEGRATION, INTEGRAL, INTEGRA-

TION BY PARTS, MEASURE THEORY, NUMERICAL IN-

TEGRATION
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Integration (Form)
A DIFFERENTIAL K -FORM can be integrated on an n -
dimensional MANIFOLD. The basic example is an n -
form a in the open unit ball in Rn : Since a is a TOP-

DIMENSIONAL FORM, it can be written a �fdx1 ffl. . .ffl
dxn and so

gB

a �gB

f dm; (1)

where the integral is the LEBESGUE INTEGRAL.

On a MANIFOLD M covered by COORDINATE CHARTS Ui ;
there is a PARTITION OF UNITY ri such that

1. ri is SUPPORTED in Ui and
2. a ri �1:/

Then

gM

a �
X
gUi

ri a; (2)

where the right-hand side is WELL DEFINED because
each integration takes place in a COORDINATE CHART.
The integral of the n -form a is WELL DEFINED because,
under a change of coordinates g : X 0 Y ; the integral
transforms according to the determinant of the
JACOBIAN, while an n -form pulls back by the deter-
minant of the JACOBIAN. Hence,

gX

g �(a) �gX

Jj jj jf (g(x)) �gY

f (y) (3)

is the same integral in either COORDINATE CHART.

For example, it is possible to integrate the 2-form

a �z dxffldy �y dxffldz �x dyffldz (4)

on the SPHERE S2 : Because a point has MEASURE ZERO,
it is enough to integrate a on S2 �(0 ; 0; 1); which can
be covered by STEREOGRAPHIC PROJECTION f : R2 0
S2 �(0; 0; 1): Since

f(x; y)�
2x

1 � r2
;

2y

1 � r2
;
1 � r2

1 � r2

 !
(5)

the PULLBACK MAP of a is

f�(a)�
4

1 � r2ð Þ2 dxffldy; (6)

the integral of a on S2 is

gg
4

(1 � r2)2 2pr du�4p: (7)

Note that this computation is done more easily by
STOKES’ THEOREM, because da�3dxffldyffldz:/

See also DE RHAM COHOMOLOGY, STOKES’ THEOREM,
SUBMANIFOLD, TOP-DIMENSIONAL FORM, VOLUME

FORM

Integration by Parts
Integration by parts is a technique for performing
definite integration fu dv by expanding the differen-
tial of a product of functions d(uv) and expressing the
original integral in terms of a known integral fv du:
A single integration by parts starts with

d(uv)�u dv�v du; (1)

and integrates both sides,

gd(uv)�uv�gu dv�g v du: (2)

Rearranging gives

gu dv�uv�g v du; (3)

so

g
b

a

u dv�[uv]b
a�g

f (b)

f (a)

v du; (4)

where [f ]b
a�f (b)�f (a):/

This procedure can also be applied n times to
f f (n)(x)g(x)dx:

u�g(x) dv�f (n)(x)dx (5)

du�g?(x)dx v�f (n�1)(x): (6)

Therefore,

g f (n)g(x)dx�g(x)f (n�1)(x)�g f (n�1)(x)g?(x)dx: (7)

But

g f (n�1)(x)g?(x)dx�g?(x)f (n�2)(x)�g f (n�2)(x)gƒ(x)dx (8)



g f (n�2)(x)g ƒ(x)dx

�g ƒ(x)f (n �3)(x) �g f (n�3)(x)g(3)(x)dx; (9)

so

g f (n)(x)g(x)dx �g(x)f (n�1)(x) �g ?(x)f (n�2)(x)

�g(x)f (n�3)(x) �. . .�(�1)ng f (x)g(n)(x)dx: (10)

Now consider this in the slightly different form
f f (x)g(x)dx: Integrate by parts a first time

u �f (x) dv �g(x)dx (11)

du �f ?(x)dx v �g g(x)dx; (12)

so

g f (x)g(x)dx �f (x) g g(x)dx �g g g(x)dx

" #
f ?(x)dx: (13)

Now integrate by parts a second time,

u �f ?(x) dv �g g(x)dx (14)

du �f ƒ(x)dx v �gg g(x)(dx)2 ; (15)

so

g f (x)g(x)dx �f (x) g g(x)dx �f ?(x)gg g(x)(dx)2

�g gg g(x)(dx)2

" #
f ƒ(x)dx: (16)

Repeating a third time,

g f (x)g(x)dx �f (x)g g(x)dx �f ?(x) gg g(x)(dx)2

�f ƒ(x)ggg g(x)(dx)3 �g ggg g(x)(dx)3

" #
f ???(x)dx : (17)

Therefore, after n applications,

g f (x)g(x)dx �f (x)g g(x)dx �f ?(x) gg g(x)(dx)2

�f ƒ(x)ggg g(x)(dx)3 �. . .

þ(�1)n�1f (n)(x)g � � �g|fflfflffl{zfflfflffl}
n�1

g(x)(dx)n �1

�(�1)ng g � � �g|fflfflffl{zfflfflffl}
n�1

g(x)(dx)n �1

2
664

3
775f (n�1)(x)dx:

(18)

If f n�1(x) �0 (e.g., for an nth degree POLYNOMIAL),
the last term is 0, so the sum terminates after n
terms and

g f (x)g(x)dx �f (x) g g(x)dx

�f ?(x)gg g(x)(dx)2 �f ƒ(x)ggg g(x)(dx)3 �. . .

�(�1)n �1f (n)(x)g � � �g|fflfflffl{zfflfflffl}
n �1

g(x)(dx)n�1 : (19)

See also INTEGRAL, INTEGRATION, SUMMATION BY

PARTS
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Integration Constant
CONSTANT OF INTEGRATION

Integration Lattice
A discrete subset of Rs which is CLOSED under
addition and subtraction and which contains Zs as a
SUBSET.

See also LATTICE, POINT LATTICE
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Integration Theory
MEASURE THEORY

Integration Under the Integral Sign
The use of the identity

g
b

a

dxg
a

a0

f (x; a)da�g
a

a0

dag
b

a

f (x; a)dx (1)

to compute an INTEGRAL. For example, consider

g
1

0

xadx�
1

a� 1
(2)

for a >�1: Multiplying by da and integrating be-
tween a and b gives



g
b

c

dag
1

0

xadx �g
b

a

da

a � 1 
�ln

b � 1

a � 1

 !
: (3)

But the left-hand side is equal to

g
1

0

dag
b

a

x ada �g
1

0

xb � xa

ln x
dx; (4)

so it follows that

g
1

0

xb � xa

ln x
dx �ln

b � 1

a � 1

 !
(5)

(Woods 1926, pp. 145 �/146).

See also INTEGRAL, INTEGRAL SIGN, INTEGRATION,
LEIBNIZ INTEGRAL RULE
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Intension
A definition of a SET by mentioning a defining
property.

See also EXTENSION (SET)
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Interchange Graph
LINE GRAPH

Interest
Interest is a fee (or payment) made for the borrowing
(or lending) of money. The two most common types of
interest are SIMPLE INTEREST, for which interest is
paid only on the initial PRINCIPAL, and COMPOUND

INTEREST, for which interest earned can be re-in-
vested to generate further interest.

See also COMPOUND INTEREST, CONVERSION PERIOD,
PRESENT VALUE, RULE OF 72, SIMPLE INTEREST

References
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Interior
That portion of a region lying "inside" a specified
boundary. For example, the interior of the SPHERE is a
BALL.

See also EXTERIOR

Interior Angle Bisector
ANGLE BISECTOR

Interior Product
The interior product is a dual notion of the EXTERIOR

PRODUCT in an EXTERIOR ALGEBRA LV ; where V is a
VECTOR SPACE. Given an ORTHONORMAL BASIS fei g of
V , the forms

fei1
ffl. . .ffleip

gi1 B. . .Bip (1)

are an ORTHONORMAL BASIS for LpV : They define a
metric on the EXTERIOR ALGEBRA, �a; b�: The interior
product with a form g is the ADJOINT of the EXTERIOR

PRODUCT with g : That is,

a � g; bh i� a; b ffl gh i  (2)

for all b: For example,

e1 ffle2 � e3 �0 (3)

and

e1 ffle2 ffle3 ffle4 � e1 ffle4 �e2 ffle3 ; (4)

where the ei are ORTHONORMAL, are two interior
products.

An inner product on V gives an isomorphism e : V #
V � with the DUAL SPACE V �: The interior product is
the composition of this isomorphism with CONTRAC-

TION.

See also CONTRACTION (TENSOR), EXTERIOR ALGEBRA,
EXTERIOR PRODUCT, INNER PRODUCT, WEDGE PRO-

DUCT

Intermediate Value Theorem
If f is continuous on a CLOSED INTERVAL [a, b ], and c
is any number between f (a) and f (b) inclusive, then
there is at least one number x in the CLOSED

INTERVAL such that f (x) �c :/

See also WEIERSTRASS INTERMEDIATE VALUE THEO-

REM

Internal Bisectors Problem
STEINER-LEHMUS THEOREM

Internal Contact
TANGENT INTERNALLY

Internal Knot
One of the "knots" tp�1; . . ., tm�p�1 of a B-SPLINE with
control points P0; . . ., Pn and KNOT VECTOR

T�ft0; t1; . . . ; tmg;

where



p �m �n �1:

See also B-SPLINE, KNOT VECTOR

Internal Path Length

The sum I over all internal (circular) nodes of the
paths from the root of an EXTENDED BINARY TREE to
each node. For example, in the tree above, the
external path length is 11 (Knuth 1997, p. 399 �/

400). The internal and EXTERNAL PATH LENGTHS are
related by

E �I �2n;

where n is the number of internal nodes.

See also EXTENDED BINARY TREE, EXTERNAL PATH

LENGTH
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Internally Tangent
TANGENT INTERNALLY

Interpolation
The computation of points or values between ones
that are known or tabulated using the surrounding
points or values.

See also AITKEN INTERPOLATION, BESSEL’S INTERPO-

LATION FORMULA, EVERETT INTERPOLATION, EXTRA-

P O L A T I O N , F I N I T E  D I F F E R E N C E , G A U S S ’ S

INTERPOLATION FORMULA, HERMITE INTERPOLATION,
LAGRANGE INTERPOLATING POLYNOMIAL, NEWTON-

COTES FORMULAS, NEWTON’S DIVIDED DIFFERENCE

INTERPOLATION FORMULA, OSCULATING INTERPOLA-

TION, THIELE’S INTERPOLATION FORMULA

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Interpolation."
§25.2 in Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 878 �/882, 1972.

Iyanaga, S. and Kawada, Y. (Eds.). "Interpolation." Appen-
dix A, Table 21 in Encyclopedic Dictionary of Mathe-
matics. Cambridge, MA: MIT Press, pp. 1482 �/1483, 1980.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. "Interpolation and Extrapolation." Ch. 3 in
Numerical Recipes in FORTRAN: The Art of Scientific

Computing, 2nd ed. Cambridge, England: Cambridge
University Press, pp. 99 �/122, 1992.

Whittaker, E. T. and Robinson, G. "Interpolation with Equal
Intervals of the Argument." Ch. 1 in The Calculus of
Observations: A Treatise on Numerical Mathematics, 4th
ed. New York: Dover, pp. 1 �/34, 1967.

Interquartile Range
Divide a set of data into two groups (high and low) of
equal size at the MEDIAN if there is an EVEN number of
data points, or two groups consisting of points on
either side of the MEDIAN itself plus the MEDIAN if
there is an ODD number of data points. Find the
MEDIANS of the low and high groups, denoting these
first and third quartiles by Q1 and Q3 : The inter-
quartile range is then defined by

IQR �Q3 �Q1 :

See also H -SPREAD, HINGE, MEDIAN (STATISTICS),
QUARTILE

Interradius
MIDRADIUS

Intersecting Circles
CIRCLE-CIRCLE INTERSECTION

Intersecting Cylinders
STEINMETZ SOLID

Intersecting Lines
LINE-LINE INTERSECTION

Intersecting Spheres
SPHERE-SPHERE INTERSECTION

Intersection
The intersection of two SETS A and B is the SET of
elements common to A and B . This is written A S B;
and is pronounced "A intersection B " or "A cap B ."
The intersection of sets A1 through An is written
S 

n
i�1 Ai :/

The intersection of two LINES AB and CD is written
AB S CD: The intersection of two or more geometric
objects is the point (points, lines, etc.) at which they
CONCUR.

See also AND, CIRCLE-CIRCLE INTERSECTION, CIRCLE-

LINE INTERSECTION, CONCUR, CONCURRENT, CONE-

SPHERE INTERSECTION, CONIC SECTION, CYLINDRICAL

SECTION, LINE-LINE INTERSECTION, SPHERE-SPHERE

INTERSECTION, SPIRIC SECTION, STEINMETZ SOLID,
TORIC SECTION, TOTAL INTERSECTION THEOREM,
UNION, VENN DIAGRAM, VIVIANI’S CURVE



Intersection (Homology)
When two cycles intersect TRANSVERSALLY X1 S X2 �
Y on a SMOOTH MANIFOLD M , then Y is a cycle.
Moreover, the homology class that Y represents
depends only on the HOMOLOGY CLASS of X1 and X2 :
The sign of Y is determined by the orientations on M ,
X1 ; and X2 :/

For example, two curves can intersect in one point on
a surface transversally, since

dim X1 �dim X2 �1 �1 �2 �dim M �0 :

The curves can be deformed so that they intersect
three times, but two of those intersections sum to zero
since two intersect positively and one intersects
negatively, i.e., with the ORIENTATION of the curves
being the reverse orientation of the ambient space.

On the torus illustrated above, the cycles intersect in
one point.

The binary operation of intersection makes homology
on a MANIFOLD into a RING. That is, it plays the role of
multiplication, which respects the grading. When a �
Hn�p and a � Hn�q ; then a S b � Hn�(p �q) : In fact,
intersection is the dual to the CUP PRODUCT in
POINCARÉ DUALITY. That is, if a � Hp is the POINCARÉ

DUAL to A � Hn�p and b � Hq is the dual to B � Hn�q

then a ffl b � Hp �q is the dual to A S B � Hn�(p �q) :/

Without the notion of TRANSVERSALITY, intersections
are not well-defined in HOMOLOGY. On a more general
space, even a manifold with singularities, the homol-
ogy does not have a natural ring structure.

See also CODIMENSION, CUP PRODUCT, HOMOLOGY,
MANIFOLD, ORIENTATION (MANIFOLD), ORIENTATION

(VECTOR SPACE), POINCARE DUALITY, TRANSVERSAL

INTERSECTION

Intersection Array
Given a DISTANCE-REGULAR GRAPH G with integers
bi ; ci ; i �0; . . . ;d such that for any two vertices x; y � G
at distance i �d(x; y) ; there are exactly ci neighbors of
y � Gi�1(x) and bi neighbors of y � Gi�1(x) ; the se-

quence

i(g) �fb0 ; b1 ; . . . ; bd�1; c1 ; . . .  ; cd g

is called the intersection array of G .

References
Bendito, E.; Carmona, A.; and Encinas, A. M. "Shortest
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21, 153 �/166, 2000.

Intersection Detection

See also TESSELLATION

References
Skiena, S. S. "Intersection Detection" §8.6.8 in The Algo-
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Intersection Graph
GRAPH INTERSECTION

Intersection Number
The intersection number v(G) of a given GRAPH G is
the minimum number of elements in a set S such that
G is an intersection graph on S .

See also GRAPH INTERSECTION
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Interspersion
An ARRAY A �aij ; i ; j ]1 of POSITIVE INTEGERS is
called an interspersion if

1. The rows of A comprise a PARTITION of the
POSITIVE INTEGERS,
2. Every row of A is an INCREASING SEQUENCE,
3. Every column of A is a (possibly FINITE)
INCREASING SEQUENCE,
4. If (uj) and (vj) are distinct rows of A and if p and
q are any indices for which up Bvq Bup �1 ; then
up �1 Bvq �1 Bup �2 :/

If an array A �aij is an interspersion, then it is a
DISPERSION. If an array A �a(i ; j) is an interspersion,
then the sequence xnf g given by fxn �i : n �(i ; j) g for
some j is a FRACTAL SEQUENCE. Examples of inter-
spersion are the STOLARSKY ARRAY and WYTHOFF

ARRAY.

See also DISPERSION (SEQUENCE), FRACTAL SE-

QUENCE, STOLARSKY ARRAY
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Intersphere
MIDSPHERE

Interval

A collection of points on a LINE SEGMENT. If the
endpoints a and b are FINITE and are included, the
interval is called CLOSED and is denoted [a, b ]. If one
of the endpoints is 9�; then the interval still contains
all of its LIMIT POINTS, so [a;�) and (��; b] are also
closed intervals. If the endpoints are not included, the
interval is called OPEN and denoted (a, b ). If one
endpoint is included but not the other, the interval is
denoted [a, b ) or (a, b ] and is called a HALF-CLOSED (or
HALF-OPEN) interval.
The non-standard notation ]a; b[ for an OPEN INTER-

VAL and [a ; b[ or ]a ; b] for a HALF-CLOSED INTERVAL is
sometimes also used.

See also CLOSED INTERVAL, HALF-CLOSED INTERVAL,
LIMIT POINT, OPEN INTERVAL, PENCIL

Interval Graph
A GRAPH G �(V ; E) is an interval graph if it captures
the INTERSECTION RELATION for some set of INTERVALS

on the REAL LINE. Formally, P is an interval graph
provided that one can assign to each v � V an interval
Iv such that Iu S Iv is nonempty precisely when uv � E:
An interval graph on a list l can be generated using
IntervalGraph[l ] in the Mathematica add-on pack-
age DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

STAR GRAPHS are interval graphs, but CYCLE GRAPHS

are not (Skiena 1990, p. 164). Determining if a graph
is an interval graph and realizing it can be done in
O(n) time (Booth and Lueker 1976; Skiena 1990,
p. 164).

See also COMPARABILITY GRAPH
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Interval Order
A POSET P �(X ;5) is an interval order if it is
ISOMORPHIC to some set of INTERVALS on the REAL

LINE ordered by left-to-right precedence. Formally, P
is an interval order provided that one can assign to
each x � X an INTERVAL [xL ; xR] such that xR ByL in
the REAL NUMBERS IFF x By in P .

See also PARTIALLY ORDERED SET
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Intrinsic Curvature
A CURVATURE such as GAUSSIAN CURVATURE which is
detectable to the "inhabitants" of a surface and not
just outside observers. An EXTRINSIC CURVATURE, on
the other hand, is not detectable to someone who can’t
study the 3-dimensional space surrounding the sur-
face on which he resides.

See also CURVATURE, EXTRINSIC CURVATURE, GAUS-

SIAN CURVATURE

Intrinsic Equation
An equation which specifies a CURVE in terms of
intrinsic properties such as ARC LENGTH, RADIUS OF

CURVATURE, and TANGENTIAL ANGLE instead of with
reference to artificial coordinate axes. Intrinsic equa-
tions are also called NATURAL EQUATIONS.

See also CESÀ RO EQUATION, NATURAL EQUATION,
WHEWELL EQUATION
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Intrinsic Variety

See also VARIETY



Intrinsically Linked

A GRAPH is intrinsically linked if any embedding of it
in 3-D contains a nontrivial link. A GRAPH is intrinsi-
cally linked IFF it contains one of the seven PETERSEN

GRAPHS (Robertson et al. 1993).
The COMPLETE GRAPH K6 (left) is intrinsically linked
because it contains at least two linked TRIANGLES.
The COMPLETE K -PARTITE GRAPH K3;3 ;1 (right) is also
intrinsically linked.

See also COMPLETE GRAPH, COMPLETE K -PARTITE

GRAPH, PETERSEN GRAPH
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Invaginatum
A negative-height (inward-pointing) PYRAMID used in
CUMULATION. The term was introduced by B. Grün-
baum.

See also CUMULATION, ELEVATUM

Invariable Point
Three concurrent homologous lines pass respectively
through three fixed points on the SIMILITUDE CIRCLE

which are known as the invariable points.

See also HOMOLOGOUS POINTS, SIMILITUDE CIRCLE
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Invariant
A quantity which remains unchanged under certain
classes of transformations. Invariants are extremely
useful for classifying mathematical objects because
they usually reflect intrinsic properties of the object
of study.

See also ADIABATIC INVARIANT, ALEXANDER INVAR-

IANT, ALGEBRAIC INVARIANT, ARF INVARIANT, GEO-

METRIC INVARIANT THEORY, INTEGRAL OF MOTION,
INVARIANT (ELLIPTIC FUNCTION), KNOT POLYNOMIAL
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Invariant (Elliptic Function)
The invariants of a WEIERSTRASS ELLIPTIC FUNCTION

�(z½ v1 ; v2) are defined by the EISENSTEIN SERIES

g2(v1 ; v2) �60
X

?
m;n

V�4
m;n

g3( v1 ; v2) �140
X

?
m;n

V�5
m;n :

Here,

Vmn( v1; v2) �2mv1 �2nv2 ;

where v1 and v2 are the periods of the ELLIPTIC

FUNCTION.

Writing gi(t) �gi(1; t) ;

g2( t) �g2(1; t) � v4
1(v1 ; v2) (1)

g3( t) �g3(1; t) � v6
1( v1 ; v2); (2)

and the invariants have the FOURIER SERIES

g2(t) �
4p4

4
1 �240

X�
k�1

s3(k)e2 pikt

" #
(3)

g3(t) �
8p6

27
1 �504

X�
k�1

s5(k)e2 pikt

" #
(4)

where t � v2 =v2 and sk(n) is the DIVISOR FUNCTION

(Apostol 1997).

See also DEDEKIND ETA FUNCTION, EISENSTEIN

SERIES, MODULAR DISCRIMINANT, TAU FUNCTION,
WEIERSTRASS ELLIPTIC FUNCTION
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Invariant Density
NATURAL INVARIANT

Invariant Factor
The polynomials in the DIAGONAL of the SMITH

NORMAL FORM or RATIONAL CANONICAL FORM of a
MATRIX are called its invariant factors.

See also RATIONAL CANONICAL FORM, SMITH NORMAL

FORM
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Invariant Factors
The polynomials in the DIAGONAL of the SMITH

NORMAL FORM of a MATRIX.
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Invariant Manifold
When stable and unstable invariant MANIFOLDS

intersect, they do so in a HYPERBOLIC FIXED POINT

(SADDLE POINT). The invariant MANIFOLDS are then
called SEPARATRICES. A HYPERBOLIC FIXED POINT is
characterized by two ingoing stable MANIFOLDS and
two outgoing unstable MANIFOLDS. In integrable
systems, incoming Ws and outgoing Wu MANIFOLDS

all join up smoothly.

A stable invariant MANIFOLD Ws of a FIXED POINT Y �
is the set of all points Y0 such that the trajectory
passing through Y0 tends to Y � as j 0 �:/

An unstable invariant MANIFOLD Wu of a FIXED POINT

Y � is the set of all points Y0 such that the trajectory
passing through Y0 tends to Y � as j 0��:/

See also HOMOCLINIC POINT

Invariant Point
FIXED POINT (TRANSFORMATION)

Invariant Series
An invariant series of a GROUP G is a NORMAL SERIES

I �A01 A11 . . . 1 Ar �G

such that each Ai1G ; where H1G means that H is a
NORMAL SUBGROUP of G .

See also COMPOSITION SERIES, NORMAL SERIES

References
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Invariant Subgroup
NORMAL SUBGROUP

Inverse Cosecant

The function csc�1 x; also denoted arccsc(x ), where
csc x is the COSECANT and the SUPERSCRIPT -1 denotes
an INVERSE FUNCTION, not the multiplicative inverse.
The inverse cosecant is implemented as ArcCsc[x ] in
Mathematica . The inverse cosecant satisfies

csc �1 x �sec �1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(1)

for POSITIVE or NEGATIVE x , and

csc �1 x �p�csc �1(�x) (2)

for x ]0 : The inverse cosecant has TAYLOR SERIES

about infinity of

csc �1 x �x�1 �1
6x

�3 � 3
40x

�5 � 5
112x

�7 þ . . . : (3)

The inverse cosecant is given in terms of other
inverse trigonometric functions by

csc �1 x �cos �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x

 !
(4)

�cot�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p� �
(5)

�1
2p�sec�1 x��1

2p�sec�1(�x) (6)

�sin�1 1

x

 !
(7)

for x]0:/

See also COSECANT, INVERSE SINE, SINE
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Inverse Cosine

The function cos �1 x; where cos x is the COSINE and
the superscript -1 denotes the INVERSE FUNCTION, not
the multiplicative inverse. The notation arccos x or
Arccosx is sometimes also used. The inverse cosine is
implemented as ArcCos[x ] in Mathematica . The
inverse cosine satisfies

cos �1 x �p�cos�1(�x) (1)

for POSITIVE and NEGATIVE x , and

cos�1 x �
1
2p�cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p� �
for 0 5x 51

1
2p �cos �1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p� �
for �1 5x 50:

8<
: 

(2)

The MACLAURIN SERIES for the inverse cosine with
�1 5x 51 is

cos�1 x �1
2 p�x �1

6x
3 � 3

40x
5 � 5

112x
7 � 35

1152x
9 �. . . : (3)

The inverse cosine is given in terms of other inverse
trigonometric functions by

cos �1 x �cot �1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
 !

(4)

�1
2 p�sin�1(�x) �1

2 p�sin�1 x (5)

¼ 1
2 p�tan�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p

 !
(6)

for POSITIVE or NEGATIVE x , and

cos�1 x�csc�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
 !

(7)

�sec�1 1

x

 !
(8)

�sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p� �
(9)

�tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x

 !
(10)

for x]0:/

See also COSINE, INVERSE SECANT
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Inverse Cotangent

The function cot�1 x; also denoted arccot(x ), where
cot x is the COTANGENT and the superscript -1 denotes
an INVERSE FUNCTION and not the multiplicative
inverse. The inverse cotangent is implemented as
ArcCot[x ] in Mathematica .
The MACLAURIN SERIES of the inverse cotangent is
given by

cot�1 x�1
2p�x�1

3x
3�1

5x
5�1

7x
7�1

9x
9�. . . ; (1)

and LAURENT SERIES by



cot �1 x �x�1 �1
3x

�3 �1
5x

�5 �1
7x

�7 �1
9x

�9 �. . . : (2)

Euler derived the INFINITE series

cot �1 x �x
1

x2 � 1 
�

2

3(x2 � 1)2 �
2 � 4

3 � 5(x2 � 1)3 �. . .

" #

(3)

(Wetherfield 1996).

The inverse cotangent satisfies

cot �1 x �tan�1 1

x

 !
(4)

��cot �1(�x) (5)

for POSITIVE and NEGATIVE x , and

cot �1 x �cos�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(6)

�1
2p�cot �1 1

x

 !
(7)

¼ csc �1(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1)

p
(8)

�sec�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x

 !
(9)

¼ sin�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(10)

�1
2 p�sin�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

 !
(11)

¼ 1
2 p�tan�1(�x) (12)

¼ 1
2 p�tan �1 x (13)

for x ]0:/

A number

tx �cot �1 x; (14)

where x is an INTEGER or RATIONAL NUMBER, is
sometimes called a GREGORY NUMBER. Lehmer
(1938a) showed that cot �1(a=b) can be expressed as
a finite sum of inverse cotangents of INTEGER argu-
ments

cot �1 a

b

 !
�
Xk

i�1

(�1)i�1cot �1 ni ; (15)

where

ni �
ai

bi

$ %
; (16)

with xb c the FLOOR FUNCTION, and

ai�1 �ain �i �bi (17)

bi�1 �ai �nibi ; (18)

with a0 �a and b0 �b; and where the recurrence is
continued until bk �1 �0: If an INVERSE TANGENT sum
is written as

tan �1 n �
X
k�1

fk tan�1 nk �f tan �1 1 ; (19)

then equation (15) becomes

cot �1 n �
X
k �1

fk cot �1 nk �c cot�1 1 ; (20)

where

c �2 �f �2
X
k�1

fk : (21)

Inverse cotangent sums can be used to generate
MACHIN-LIKE FORMULAS.

An interesting inverse cotangent identity attributed
to Charles Dodgson (Lewis Carroll) by Lehmer
(1938b; Bromwich 1965, Castellanos 1988ab) is

cot �1(p �r) �tan �1(p �q) �tan �1 p ; (22)

where

1�p2�qr: (23)

Other inverse cotangent identities include

2 cot�1(2x)�cot�1 x�cot�1(4x3�3x) (24)

3 cot�1(3x)�cot�1 x�cot�1 27x4 � 18x2 � 1

8x

 !
; (25)

as well as many others (Bennett 1926, Lehmer
1938b).

See also COTANGENT, INVERSE TANGENT, MACHIN’S

FORMULA, MACHIN-LIKE FORMULAS, TANGENT
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Inverse Curve
Given a CIRCLE C with CENTER O and RADIUS k , then
two points P and Q are inverse with respect to C if
OP � OQ �k2 : If P describes a curve C1 ; then Q
describes a curve C2 called the inverse of C1 with
respect to the circle C (with INVERSION CENTER O ).
The PEAUCELLIER INVERSOR can be used to construct
an inverse curve from a given curve.

If the POLAR equation of C is r( u) ; then the inverse
curve has polar equation

r �
k2

r( u) 
:

If O � x0 ; y0ð Þ and P � f (t) ; g(t)ð Þ; then the inverse has
equations

x �x0 �
k2 f � x0ð Þ

f � x0ð Þ2� g � y0ð Þ2

y �y0 �
k2 g � y0ð Þ

f � x0ð Þ2� g � y0ð Þ2 :

Curve INVERSION

CENTER

Inverse Curve

ARCHIMEDEAN

SPIRAL

ORIGIN ARCHIMEDEAN

SPIRAL

CARDIOID CUSP PARABOLA

CIRCLE any point another CIRCLE

CISSOID OF

DIOCLES

CUSP PARABOLA

COCHLEOID ORIGIN QUADRATRIX OF

HIPPIAS

EPISPIRAL ORIGIN ROSE

FERMAT’S SPIRAL ORIGIN LITUUS

HYPERBOLA center LEMNISCATE

HYPERBOLA VERTEX RIGHT STROPHOID

HYPERBOLA with
a �

ffiffiffi
3

p
/

VERTEX MACLAURIN TRI-

SECTRIX

LEMNISCATE center HYPERBOLA

LITUUS ORIGIN FERMAT’S SPIRAL

LOGARITHMIC

SPIRAL

ORIGIN LOGARITHMIC

SPIRAL

MACLAURIN TRI-

SECTRIX

FOCUS TSCHIRNHAUSEN’S

CUBIC

PARABOLA FOCUS CARDIOID

PARABOLA VERTEX CISSOID OF

DIOCLES

QUADRATRIX OF

HIPPIAS

COCHLEOID

RIGHT STRO-

PHOID

ORIGIN the same RIGHT

STROPHOID IN-

VERSE CURVE

SINUSOIDAL

SPIRAL

ORIGIN SINUSOIDAL SPIRAL

TSCHIRNHAUSEN

CUBIC

SINUSOIDAL SPIRAL

See also INVERSION, INVERSION CENTER, INVERSION

CIRCLE, PEAUCELLIER INVERSOR, RECIPROCAL, RECI-

PROCATION
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Inverse Elliptic Nome
INVERSE NOME

Inverse Filter
A linear DECONVOLUTION ALGORITHM.

Inverse Fourier Transform
FOURIER TRANSFORM

Inverse Function
Given a FUNCTION f (x); its inverse f �1(x) is defined by

f (f �1(x)) �f �1(f (x)) �x:

Therefore, f (x) and f�1(x) are reflections about the
line y�x .

See also COMPOSITION, INVERSE FUNCTION THEOREM,
SERIES REVERSION
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Inverse Function Theorem
Given a SMOOTH FUNCTION f : Rn 0 Rn; if the JACO-

BIAN is invertible at 0; then there is a NEIGHBORHOOD

U containing 0 such that f : U 0 f (U) is a DIFFEO-



MORPHISM. That is, there is a smooth inverse
f �1 : f (U) 0 U :/

See also DIFFEOMORPHISM, IMPLICIT FUNCTION THE-

OREM, JACOBIAN
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Inverse Hyperbolic Cosecant

The INVERSE FUNCTION of the HYPERBOLIC COSECANT,
denoted csch �1 z : It can be defined for complex z by

csch�1 z �ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

1

z2

s
�

1

z

 !
; (1)

or for real x by

csch�1 x �ln
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x

 !
: (2)

The inverse hyperbolic cosecant is implemented as
ArcCsch[x ] in Mathematica .
The inverse hyperbolic cosecant has TAYLOR SERIES

csch �1 x �(ln 2 �ln x) �1
4x

2 � 3
32x

4 � 5
96x

6 �. . . (3)

csch�1 1

x

 !
�x �1

6x
3 � 3

40x
5 � 5

112x
7 �. . . : (4)

See also HYPERBOLIC COSECANT, INVERSE HYPER-

BOLIC FUNCTIONS

Inverse Hyperbolic Cosine

The INVERSE FUNCTION of the HYPERBOLIC COSINE,
denoted cosh �1 z : It can be defined for complex z by

cosh �1 z �ln z �
ffiffiffiffiffiffiffiffiffiffiffi
z �1

p ffiffiffiffiffiffiffiffiffiffiffi
z �1

p� �
; (1)

and for real x by

cosh�1 x �ln x 9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1

p� �
: (2)

The inverse cosine is implemented as ArcCosh[x ] in
Mathematica .

The inverse hyperbolic cosine has the TAYLOR SERIES

cosh �1 x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x �1)

p
� 1 � 1

12(x �1) � 3
160(x �1)2 � 5

896(x�1)3�. . .
h i

(3)

cosh�1 1

x

 !
�(ln 2�ln x)�1

4x
2� 3

32x
4� 5

96x
6�. . . : (4)

See also HYPERBOLIC COSINE, INVERSE HYPERBOLIC

FUNCTIONS



Inverse Hyperbolic Cotangent

The INVERSE FUNCTION of the HYPERBOLIC COTAN-

GENT, denoted coth �1 x: It can be defined for complex
z as

coth �1 z �
1

2
ln 1 �

1

z

 !
�ln 1 �

1

z

 !" #
; (1)

and for real x as

coth �1 x �
1

2 
ln

x � 1

x � 1

 !
: (2)

The inverse hyperbolic cotangent is implemented as
ArcCoth[x ] in Mathematica .
It has the special values

coth �1 0 ��1
2i p (3)

coth �1 1 �� (4)

coth �1 
��0: (5)

coth �1 i ��1
4 pi (6)

and the MACLAURIN SERIES

coth �1 1

x

 !
�x �1

3x
3 �1

5x
5 �1

7x
7 �. . . : (7)

See also HYPERBOLIC COTANGENT, INVERSE HYPER-

BOLIC FUNCTIONS, INVERSE HYPERBOLIC TANGENT

Inverse Hyperbolic Functions
The INVERSE of the HYPERBOLIC FUNCTIONS, denoted
cosh �1 x; coth �1 x; csch�1 x; sech�1 x; sinh�1 x; and
tanh �1 x: They are defined by

sinh �1 z �ln z �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �1

p� �
(1)

cosh�1 z �ln z 9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �1

p� �
(2)

tanh�1 z �1
2 ln

1 � z

1 � z

 !
(3)

csch�1 z �ln
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

z

 !
(4)

sech�1 z �ln
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

z

 !
(5)

coth �1 z �1
2 ln

z � 1

z � 1

 !
: (6)

See also HYPERBOLIC FUNCTIONS, INVERSE HYPER-

BOLIC COSECANT, INVERSE HYPERBOLIC COSINE, IN-

V E R S E  H Y P E R B O L I C  C O T A N G E N T , I N V E R S E

HYPERBOLIC SECANT, INVERSE HYPERBOLIC SINE,
INVERSE HYPERBOLIC TANGENT
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Inverse Hyperbolic Secant

The INVERSE FUNCTION of the HYPERBOLIC SECANT,



denoted sech �1 x: It can be defined for complex z as

sec �1 z �ln

ffiffiffiffiffiffiffiffiffiffiffi
1

z 
�1

s ffiffiffiffiffiffiffiffiffiffiffi
1

z 
�1

s
�

1

z

 !
; (1)

and for real x as

sech�1 x �ln
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x

 !
: (2)

The inverse hyperbolic secant is implemented as
ArcSech[x ] in Mathematica .
It has MACLAURIN SERIES

sech�1 x �(ln 2 �ln x) �1
4x

2 � 3
32x

4 � 5
96x

6 � 35
1024x

8 �. . .

(Sloane’s A052468 and A052469) and

sech�1 1

x

 !
�i 1

2p�x �1
6x

3 � 3
40x

5 �. . .
� �

: (3)

See also HYPERBOLIC SECANT, INVERSE HYPERBOLIC

FUNCTIONS
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Inverse Hyperbolic Sine

The INVERSE FUNCTION of the HYPERBOLIC SINE,
denoted sinh�1 x: It can be defined for complex z as

sinh �1 z �ln(z �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �z2

p
) :

The inverse hyperbolic sine is implemented as Arc-
Sinh[x ] in Mathematica .
It has a MACLAURIN SERIES

sinh�1 x �x �1
6x

3 � 3
40x

5 � 5
112x

7 � 35
1152x

9 �. . . (1)

sinh �1 1

x

 !
�(ln 2 �ln x) �1

4x
2 � 3

32x
4 � 5

96x
6�. . . : (2)

See also HYPERBOLIC SINE, INVERSE HYPERBOLIC

FUNCTIONS

Inverse Hyperbolic Tangent

The INVERSE FUNCTION of the HYPERBOLIC TANGENT,
denoted tanh�1 x: It can be defined for complex z as

tanh�1 z�1
2[ln(1�z)�ln(1�z)]; (1)

and for real x as

tanh�1 x�
1

2
ln

1 � x

1 � x

 !
: (2)

The inverse hyperbolic tangent is implemented as
ArcTanh[x ] in Mathematica .
It has special values

tanh�1 0�0 (3)

tanh�1 1�� (4)

tanh�1
���1

2pi (5)

tanh�1 i�1
4pi (6)

and MACLAURIN SERIES



tanh�1 x �x �1
3x

3 �1
5x

5 þ 1
7x

7 þ 1
9x

9 �. . . : (7)

See also HYPERBOLIC TANGENT, INVERSE HYPERBOLIC

COTANGENT, INVERSE HYPERBOLIC FUNCTIONS

Inverse Laplace Transform
BROMWICH INTEGRAL, LAPLACE TRANSFORM

Inverse Matrix
MATRIX INVERSE

Inverse Nome

Solving the NOME q for the PARAMETER m gives

m(q) �
q 4

2(0; q)

q 4
3(0; q) 

;

where q i(z ; q) is a JACOBI THETA FUNCTION. The
inverse nome is implemented as InverseElliptic-
NomeQ[q ] in Mathematica . It satisfies

lim
q00�

dm

dq
�16:

See also JACOBI THETA FUNCTIONS, NOME

Inverse Oblate Spheroidal Coordinates

A system of coordinates obtained by INVERSION of the
oblate spheroids and one-sheeted hyperboloids in
OBLATE SPHEROIDAL COORDINATES. The inverse oblate
spheroidal coordinates (h; u;c) are given by the
transformation equations

x�
a cosh h sin u cos c

cosh2
h� cos2 u

(1)

y�
a cosh h sin u sin c

cosh2
h� cos2 u

(2)

z�
a sinh h cos u

cos2 h� cos2 u
; (3)

where h]0; u � [0; p]; and c � [0; 2p): Surfaces of
constant h are given by the cyclides of rotation

x2�y2�z2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

cosh2
h
�

z2

sinh2
h

s
; (4)

surfaces of constant u by the cyclides of rotation

x2�y2�z2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

sin2 u
�

z2

cos2 u

s
; (5)

and surfaces of constant c by the half-planes

tan c�
y

x
: (6)



The metric coefficients are given by

ghh �
a2 cosh2 

h � sin2 u
� �
cosh2 

h � cos2 u
� � (7)

guu �
a2 cosh2 

h � sin2 u
� �
cosh2 

h � cos2 u
� � (8)

gcc �
a2 cosh2 

h sin2 u

cosh2 
h � cos2 u

� �2 : (9)

See also INVERSE PROLATE SPHEROIDAL COORDI-

NATES, PROLATE SPHEROIDAL COORDINATES

References
Moon, P. and Spencer, D. E. "Inverse Oblate Spheroidal

Coordinate (h; u; c):/" Fig. 4.06 in Field Theory Handbook,
Including Coordinate Systems, Differential Equations,
and Their Solutions, 2nd ed. New York: Springer-Verlag,
pp. 119 �/121, 1988.

Inverse Permutation
An inverse permutation is a permutation in which
each number and the number of the place which it
occupies are exchanged. For example,

p1 �f3; 8; 5; 10 ; 9 ; 4; 6 ; 1; 7; 2g

p2 �f8; 10; 1 ; 6; 3 ; 7; 9 ; 2; 5; 4g

are inverse permutations, since the positions of 1, 2,
3, 4, 5, 6, 7, 8, 9, and 10 in p1 are p2 ; and the positions
of 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 in p2 are likewise p1

(Muir 1960, p. 5). The inverse permutation of a given
PERMUTATION can be computed using InversePer-
mutation[p ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).
Inverse permutations are sometimes also called con-
jugate or reciprocal permutations (Muir 1960, p. 4).

See also PERMUTATION, PERMUTATION INVERSION,
SELF-CONJUGATE PARTITION
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Inverse Points

Points, also called polar reciprocals, which are trans-
formed into each other through INVERSION about a
given INVERSION CIRCLE C (or INVERSION SPHERE).
The points P and P? are inverse points with respect to
the INVERSION CIRCLE if

OP � OP0�OQ2 �k2

(Wenninger 1983, p. 2). In this case, P ? is called the
POLE and the line L through P and perpendicular to
OP is called the POLAR. In the above figure, the
quantity k2 is called the POWER of the point P relative
to the circle C .
The point P? which is the inverse point of a given
point P with respect to an INVERSION CIRCLE C may
be constructed geometrically using a COMPASS only
(Coxeter 1969, p. 78; Courant and Robbins 1996,
pp. 144 �/145).

Inverse points can also be taken with respect to an
INVERSION SPHERE, which is a natural extension of
geometric INVERSION from the plane to 3-dimensional
space.

See also GEOMETRIC CONSTRUCTION, INVERSION,
INVERSION CIRCLE, INVERSION SPHERE, LIMITING

POINT, POLAR, POLE (INVERSION), POWER (CIRCLE)
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Inverse Problem
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Inverse Prolate Spheroidal Coordinates

A system of coordinates obtained by INVERSION of the
prolate spheroids and two-sheeted hyperboloids in
PROLATE SPHEROIDAL COORDINATES. The inverse pro-
late spheroidal coordinates ( h; u ; c) are given by the
transformation equations

x �
a sinh h sin u cos c

cosh2 
h � sin2 u 

(1)

y �
a sinh h sin u sin c

cosh2 
h � sin2 u 

(2)

z �
a cosh h cosh u

cosh2 
h � sin2 u 

; (3)

with h ]0; u � [0; p] ; and c � [0; 2 p) : Surfaces of con-
stant h are given by the cyclides of rotation

x2 �y2 �z2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

sinh2 
h 
�

z2

cosh2 
h

s
; (4)

surfaces of constant u by the cyclides of rotation

x2 �y2 �z2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

x2 � y2

sin2 u
�

z2

cosh2 
u 
;

s
(5)

and surfaces of constant c by the half-planes

tan c �
y

x 
: (6)

The metric coefficients are given by

ghh �
a2(sinh2 

h � sin2 u)

(cosh2 
h � sin2 u)2 (7)

guu �
a2(sinh2 

h � sin2 u)

(cosh2 
h � sin2 u)2 (8)

gcc �
a2 sinh2 

h sinh2 
u

(cosh2 
h � sin2 u)2 : (9)

See also INVERSE OBLATE SPHEROIDAL COORDINATES,
OBLATE SPHEROIDAL COORDINATES
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Inverse Proportion
INVERSELY PROPORTIONAL

Inverse Quadratic Interpolation
The use of three prior points in a ROOT-finding
ALGORITHM to estimate the zero crossing.

Inverse Scattering Method
A method which can be used to solve the initial value
problem for certain classes of nonlinear PARTIAL

DIFFERENTIAL EQUATIONS. The method reduces the
initial value problem to a linear INTEGRAL EQUATION

in which time appears only implicitly. However, the
solutions u(x; t) and various of their derivatives must
approach zero as x 09� (Infeld and Rowlands
2000).

See also ABLOWITZ-RAMANI-SEGUR CONJECTURE,
BÄ CKLUND TRANSFORMATION
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Inverse Secant

The function sec�1 x; where sec x is the SECANT and
the superscript -1 denotes the INVERSE FUNCTION, not
the multiplicative inverse. The inverse secant is
implemented as ArcSec[x ] in Mathematica . The
inverse secant satisfies

sec�1 x �csc �1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(1)

for POSITIVE or NEGATIVE x , and

sec �1 x �p�sec�1(�x) (2)

for x ]0: The inverse secant has a TAYLOR SERIES

about infinity of

sec�1 x �1
2 p�x�1 �1

6x
�3 � 3

40x
�5 � 5

112x �7 �. . . : (3)

The inverse secant is given in terms of other inverse
trigonometric functions by

sec �1 x �cos �1 1

x

 !
(4)

�cot �1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(5)

�1
2p �csc �1 x ��1

2 p�csc �1 �xð Þ  (6)

�sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x

 !
(7)

�tan�1(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1)

p
(8)

for x ]0:/

See also INVERSE COSECANT, SECANT
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Inverse Semigroup
This entry contributed by NICOLAS BRAY

A SEMIGROUP S is said to be an inverse semigroup if,
for every a in S , there is a unique b (called the
inverse of a ) such that a �aba and b �bab . This is
equivalent to the condition that every element has at
least one inverse and that the IDEMPOTENTS of S
COMMUTE (Lawson 1999). Note that if b is an inverse
of a , then ba is an IDEMPOTENT.

See also SEMIGROUP
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Inverse Sine

The function sin�1 x; where sin x is the SINE and the
superscript -1 denotes the INVERSE FUNCTION, no t
the multiplicative inverse. The notation arcsin x or
Arcsin x is sometimes also used. The inverse sine is



implemented as ArcSin[x ] in Mathematica . The
inverse sine satisfies

sin�1 x ��sin�1(�x) (1)

for POSITIVE and NEGATIVE x , and

sin�1 x �
1
2 p�sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p� �
for 0 5x 51

�1
2p�sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p� �
for �1 5x 50:

8<
: 

(2)

The MACLAURIN SERIES for the inverse sine with �1 5
x 51 is given by

sin�1 x �x �1
6x

3 � 3
40x

5 � 5
112x

7 � 35
1152x

9 �. . . : (3)

The inverse sine is given in terms of other inverse
trigonometric functions by

sin�1 x �cos �1 �xð Þ�1
2p�

1
2 p�cos�1 x (4)

�1
2 p�cot �1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p
 !

(5)

�tan �1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
 !

(6)

for POSITIVE or NEGATIVE x , and

sin�1 x �cos �1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p� �
(7)

�cot �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x

 !
(8)

�csc�1 1

x
(9)

�sec�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
 !

(10)

for x]0:/

See also INVERSE COSINE, SINE
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Inverse Tangent

The inverse tangent is also called the arctangent and
is denoted either tan�1 x or arctan x , and is the
INVERSE FUNCTION of the TANGENT tanx: The inverse
tangent is implemented as ArcTan[x ] in Mathemati-
ca .
The ARGUMENT of a COMPLEX NUMBER z�x�iy is
often written as

u�tan�1 y

x

 !
; (1)

where u; sometimes also denoted f; corresponds to
the counterclockwise ANGLE from the POSITIVE REAL

AXIS, i.e., the value of u such that x�cos u and y�
sin u: This special kind of INVERSE TANGENT takes
into account the quadrant in which z lies and is
returned by the FORTRAN command ATAN2(X,Y) and
the Mathematica command ArcTan[x , y ], and is
often restricted to the range �pBu5p: In the
degenerate case when x�0,

f�
�1

2p if yB0

undefined if y�0
1
2p if y > 0:

8><
>: (2)

/tan�1 x has the MACLAURIN SERIES for�15x51 of

tan�1 x�
X�
n�0

�1ð Þnx2n�1

2n � 1

�x�1
3x

3�1
5x

5�1
7x

7�. . . : (3)

A more rapidly converging form due to Euler is given
by



tan�1 x�
X�
n�0

22n n!ð Þ2

(2n � 1)!

x2n�1

1 � x2ð Þn�1 (4)

(Castellanos 1988).

The inverse tangent satisfies

tan�1 x��tan�1(�x) (5)

for POSITIVE and NEGATIVE x , and

tan�1 x�1
2p�tan�1 1

x

 !
(6)

for x]0: The inverse tangent is given in terms of
other inverse trigonometric functions by

tan�1 x�1
2p�cos�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

 !
(7)

�cot�1(�x)�1
2p�

1
2p�cot�1 x (8)

�sin�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(9)

for POSITIVE or NEGATIVE x , and

tan�1 x�cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
 !

(10)

�cot�1 1

x

 !
(11)

�csc�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x

 !
(12)

�sec�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p� �
(13)

for x]0:/

In terms of the HYPERGEOMETRIC FUNCTION,

tan�1 x�x 2F1 1; 1
2;

3
2;�x2

� �
(14)

�
x

1 � x2 2F1 1; 1; 3
2;

x2

1 � x2

 !
(15)

(Castellanos 1988). Castellanos (1986, 1988) also
gives some curious formulas in terms of the FIBO-

NACCI NUMBERS,

tan�1 x�
X�
n�0

�1nð Þf2n�1t2n�1

5n(2n � 1)
(16)

�5
X�
n�0

�1ð Þnf 2
2n�1

(2n � 1) u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p� �2n�1 (17)

�
X�
n�0

�1ð Þn5n�2F3
2n�1

(2n � 1) v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 5

p� �2n�1 ; (18)

where

t�
2x

1 �

ffiffiffiffiffiffiffiffi
4x2

5

s (19)

u�
5

4x
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

24

25
x2

s !
; (20)

and v is the largest POSITIVE ROOT of

8xv4�100v3�450xv2�875v�625x�0: (21)

The inverse tangent satisfies the addition FORMULA

tan�1 x�tan�1 y�tan�1 x � y

1 � xy

 !
(22)

as well as the more complicated FORMULAS

tan�1 1

a � b

 !

�tan�1 1

a

 !
�tan�1 b

a2 � ab � 1

 !
(23)

tan�1 1

a

 !
�2 tan�1 1

2a

 !
�tan�1 1

4a3 � 3a

 !
(24)

tan�1 1

p

 !
�tan�1 1

p � q
�tan�1 q

p2 � pq � 1

 !
; (25)

the latter of which was known to Euler. The inverse
tangent FORMULAS are connected with many inter-
esting approximations to PI

tan�1(1�x)

�1
4p�

1
2x�

1
4x

2� 1
12x

3� 1
40x

5� 1
48x

6� 1
112x

7�. . . : (26)

Euler gave

tan�1 x�
y

x

2

3
y�

2 � 4

3 � 5
y2�

2 � 4 � 6

3 � 5 � 7
y3�. . .

 !
; (27)

where

y�
x2

1 � x2
: (28)

The inverse tangent has CONTINUED FRACTION repre-
sentations

tan�1 x�
x

1 �
x2

3 �
4x2

5 �
9x2

7 �
16x2

9 � . . .

(29)



�
x

1 �
x2

3 � x2 �
9x2

5 � 3x2 �
25x2

7 � 5x2 � . . .

(30)

To find tan�1 x numerically, the following ARITH-

METIC-GEOMETRIC MEAN-like ALGORITHM can be
used. Let

a0 � 1 �x2
� ��1 =2

(31)

b0 �1: (32)

Then compute

ai�1 �
1
2 ai �bið Þ  (33)

bi�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ai�1bi

q
; (34)

and the inverse tangent is given by

tan �1 x � lim
n0�

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
an

(35)

(Acton 1990).

An inverse tangent tan�1 n with integral n is called
reducible if it is expressible as a finite sum OF THE

FORM

tan�1 n �
X
k �1

fk tan �1 nk ; (36)

where fk are POSITIVE or NEGATIVE INTEGERS and ni

are INTEGERS Bn : tan �1 m is reducible IFF all the
PRIME FACTORS of 1 �m2 occur among the PRIME

FACTORS of 1 �n2 for n �1,  . . .,  m �1: A second
NECESSARY and SUFFICIENT condition is that the
largest PRIME factor of 1 �m2 is less than 2m:
Equivalent to the second condition is the statement
that every GREGORY NUMBER tx �cot �1 x can be
uniquely expressed as a sum in terms of tm/s for which
m is a STØRMER NUMBER (Conway and Guy 1996). To
find this decomposition, write

arg(1 �in) �arg
Y
k �1

1 �nkið Þfk ; (37)

so the ratio

r �
Q

k �1 1 � nkið Þfk

1 � in 
(38)

is a RATIONAL NUMBER. Equation (38) can also be
written

r2 1 �n2
� �

�
Y
k�1

1 �n2
k

� �fk : (39)

Writing (36) in the form

tan�1 n �
X
k �1

fk tan�1 nk �f tan�1 1 (40)

allows a direct conversion to a corresponding INVERSE

COTANGENT FORMULA

cot �1 n �
X
k �1

fk cot �1 nk �ccot�1 1 ; (41)

where

c �2 �f �2
X
k �1

fr : (42)

Todd (1949) gives a table of decompositions of tan�1 n
for n 5342: Conway and Guy (1996) give a similar
table in terms of STøRMER NUMBERS.

Arndt and Gosper give the remarkable inverse
tangent identity

sin
X2n�1

k�1

tan�1 ak

 !

�
�1ð Þn

2n � 1

P2n�1
k�1

Q2n�1
j�1 aj � tan

p(j � k)

2n � 1

 !" #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ2n�1

j�1 a2
j � 1

� �r : (43)

See also INVERSE COTANGENT, TANGENT
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Inverse Tangent Integral

The inverse tangent integral Ti2(x) is defined in terms
of the DILOGARITHM Li2(x) by

Li2(ix)�1
4Li2 �x2

� �
�i Ti2(x) (1)

(Lewin 1958, p. 33). It has the series

Ti2(x)�
X�
k�1

�1ð Þk�1 x2k�1

2k � 1ð Þ2 (2)

and gives in closed form the sum

X�
n�1

sin (4n � 2)x½ �
2n � 1ð Þ2 �Ti2(tan x)�x ln(tan x) (3)

that was considered by Ramanujan (Lewin 1958,
p. 39). The inverse tangent integral can be expressed
in terms of the DILOGARITHM as

Ti2(x)�
1

2i
Li2(ix)�Li2(�ix)½ �; (4)

in terms of LEGENDRE’S CHI-FUNCTION as

Ti2(x)��ix2(ix); (5)

in terms of the LERCH TRANSCENDENT by

Ti2(x)�1
4xF �x2; 2; 1

2

� �
; (6)

and as the integral

Ti2(x)�g
x

0

tan�1 x?ð Þ
x?

dx?: (7)

/Ti2(x) has derivative

dTi2(x)

dx
�

tan�1 x

x
: (8)

It satisfies the identities

Ti2(x)�Ti2

1

x

 !
�1

2p sgn(x) ln xj j (9)

1
2Ti2

2x

1 � x2

 !
�Ti2(x)�Ti2(�x; 1)�Ti2(x; 1); (10)

where

Ti2(x; a)�g
x

0

tan�1 x?

a � x?
dx? (11)

is the generalized inverse tangent function.
/Ti2(x) has the special value

Ti2(1)�K ; (12)

where K is CATALAN’S CONSTANT, and the functional
relationships

3 Ti2(1)�2 Ti2
1
2

� �
�Ti2

1
3

� �
�1

2Ti2
3
4

� �
�1

2p ln 2; (13)

the two equivalent identities

3 Ti 2�
ffiffiffi
3

p� �
�2 Ti2(1)�1

4p ln 2�
ffiffiffi
3

p� �
(14)

Ti2 tan 1
12p
� �� �

�2
3Ti2 tan 1

4p
� �� �

� 1
12p ln tan 1

12p
� �� �

; (15)

and

3 Ti 2�
ffiffiffi
3

p� �
�2 Ti2(1)�5

4p ln 2�
ffiffiffi
3

p� �
(16)

(Lewin 1958, p. 39). The triplication formula is given
by

1
3Ti2

3x � x3

1 � 3x2

 !
�Ti2(x)�Ti2

1 � x
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffi
3 � x

p
 !

�Ti2

1 � x
ffiffiffi
3

pffiffiffi
3

p
� x

 !
�1

6p ln

ffiffiffi
3

p
� x

� �
1 � x

ffiffiffi
3

p� �
1 � x

ffiffiffi
3

p� � ffiffiffi
3

p
� x

� �
 !

; ð17Þ

which leads to

Ti2 tan 1
24p
� �� �

�Ti2 tan 5
24p
� �� �

�2
3Ti2 tan 1

8p
� �� �

�1
6p ln

tan 5
24p
� �

tan 1
8p
� �

0
@

1
A�0 (18)

and the algebraic form



Ti2

ffiffiffi
3

p
�

ffiffiffi
2

pffiffiffi
2

p
� 1

 !
�Ti2

ffiffiffi
3

p
�

ffiffiffi
2

pffiffiffi
2

p
� 1

 !
�2

3Ti2

ffiffiffi
2

p
�1

� �

�1
6 p ln

ffiffiffi
2

p
� 1ffiffiffi

3
p

�
ffiffiffi
2

p� � ffiffiffi
2

p
� 1

� �
 !

(19)

(Lewin 1958, p. 41).

See also DILOGARITHM, LEGENDRE’S CHI-FUNCTION,
LERCH TRANSCENDENT
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Inverse Trigonometric Functions
INVERSE FUNCTIONS of the TRIGONOMETRIC FUNC-

TIONS written cos�1 x; cot �1 x; csc �1 x; sec �1 x;
sin�1 x; and tan �1 x: As noted by Feynman (1997),
the notation f �1x is unfortunate because it conflicts
with the common interpretation of a superscripted
quantity as indicating a power, i.e.,
f �1x � 1=fð Þx �x =f :/

The inverse trigonometric functions are generally
defined on the following domains.

Function Domain

/sin�1 x/ /�1
2 p5y 51

2 p/

/cos�1 x/ /0 5y 5p/

/tan�1 x/ /�1
2 pBy B1

2 p/

/csc �1 x/ /0 5y 51
2 p or p5y 5

3 p
2

/

/sec�1 x/ /0 5y 5p/

/cot �1 x/ /0 5y 51
2 p or �p5y 5�1

2 p/

Inverse-forward identities are

tan�1(cot x) �1
2 p�x (1)

sin�1(cos x) �1
2 p�x (2)

sec �1(csc x) �1
2p�x; (3)

and forward-inverse identities are

cos sin�1 x
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
(4)

cos tan �1 x
� �

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p (5)

sin cos�1 x
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
(6)

sin tan�1 x
� �

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p (7)

tan cos �1 x
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x 
(8)

tan sin �1 x
� �

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p : (9)

Inverse sum identities include

sin�1 x �cos�1 x �1
2p (10)

tan �1 x �cot�1 x �1
2 p (11)

sec �1 x �csc �1 x �1
2 p; (12)

where (10) follows from

x �sin sin�1 x
� �

�cos 1
2p�sin�1 x
� �

: (13)

Complex inverse identities in terms of LOGARITHMS

include

sin�1(z)��i ln iz9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

p� �
(14)

cos�1(z)��i ln z9i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

p� �
(15)

tan�1(z)��i ln
1 � izffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
 !

(16)

�1
2i ln

1 � iz

1 � iz

 !
: (17)

See also INVERSE COSECANT, INVERSE COSINE, IN-

VERSE COTANGENT, INVERSE SECANT, INVERSE SINE,
INVERSE TANGENT
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InverseEllipticNomeQ
INVERSE NOME



InverseJacobiCD
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiCN
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiCS
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiDC
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiDN
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiDS
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiNC
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiND
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiNS
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiSC
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiSD
JACOBI ELLIPTIC FUNCTIONS

InverseJacobiSN
JACOBI ELLIPTIC FUNCTIONS

Inversely Proportional
Two quantities y and x are said to be inversely
proportional (or "in inverse proportion") if y is given
by a constant multiple of 1=x; i.e., y �c=x for c a
constant. This relationship is commonly written
y 8 x�1 :/

See also DIRECTLY PROPORTIONAL, PROPORTIONAL

Inversely Similar

Two figures are said to be SIMILAR when all corre-

sponding ANGLES are equal, and are inversely similar
when all corresponding ANGLES are equal and de-
scribed in the opposite rotational sense.

See also DIRECTLY SIMILAR, HOMOTHETIC, SIMILAR
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InverseWeierstrassP
WEIERSTRASS ELLIPTIC FUNCTION

Inversion

Inversion is the process of transforming points P to a
corresponding set of points P? known as their INVERSE

POINTS. Two points P and P? are said to be inverses
with respect to an INVERSION CIRCLE having INVER-

SION CENTER O� x0; y0ð Þ and INVERSION RADIUS k if P?
is the foot of the altitude of DOQP; where Q is a point
on the circle such that OQ�PQ: The analogous
notation of inversion can be carried to in 3-dimen-
sional space with respect to an INVERSION SPHERE.
If P and P? are inverse points, then the line L through
P and perpendicular to OP is sometimes called a
"POLAR" with respect to point P , known as the "POLE".
In addition, the curve to which a given curve is
transformed under inversion is called its INVERSE

CURVE (or more simply, its "inverse"). This sort of
inversion was first systematically investigated by
Jakob Steiner.

From similar triangles, it immediately follows that
the inverse points P and P? obey

OP

k
�

k

OP?
; (1)

or

k2�OP�OP? (2)

(Coxeter 1969, p. 78), where the quantity k2 is known
as the POWER (Coxeter 1969, p. 81).

The general equation for the inverse of the point (x, y )
relative to the INVERSION CIRCLE with INVERSION



CENTER x0 ; y0ð Þ and INVERSION RADIUS k is given by

x?�x0 �
k2 x � x0ð Þ

x � x0ð Þ2� y � y0ð Þ2 (3)

y?�y0 �
k2 y � y0ð Þ

x � x0ð Þ2� y � y0ð Þ2 : (4)

In vector form,

x?�x0 �
k2 x � x0ð Þ

x � x0j j2
: (5)

Note that a point on the CIRCUMFERENCE of the
INVERSION CIRCLE is its own inverse point. In addi-
tion, any ANGLE inverts to an opposite ANGLE.

Treating LINES as CIRCLES of INFINITE RADIUS, all
CIRCLES invert to CIRCLES (Lachlan 1893, p. 221).
Furthermore, any two nonintersecting circles can be
inverted into concentric circles by taking the INVER-

SION CENTER at one of the two so-called LIMITING

POINTS of the two circles (Coxeter 1969), and any two
circles can be inverted into themselves or into two
equal circles (Casey 1888, pp. 97 �/98). ORTHOGONAL

CIRCLES invert to ORTHOGONAL CIRCLES (Coxeter
1969). The INVERSION CIRCLE itself, circles orthogonal
to it, and lines through the INVERSION CENTER are
invariant under inversion. Furthermore, inversion is
a CONFORMAL MAP, so angles are preserved.

The property that inversion transforms circles and
lines to circles or lines (and that inversion is con-
formal) makes it an extremely important tool of plane
analytic geometry. By picking a suitable inversion
circle, it is often possible to transform one geometric
configuration into another simpler one in which a
proof is more easily effected. The illustration above
shows examples of the results of geometric inversion.

The inverse of a CIRCLE of RADIUS a with CENTER (x,
y ) with respect to an inversion circle with INVERSION

CENTER x0 ; y0ð Þ and INVERSION RADIUS k is another
CIRCLE with CENTER

x?�x0 �s x�x0ð Þ  (6)

y?�y0 �s y�y0ð Þ  (7)

and RADIUS

r ?� sj ja ; (8)

where

s �
k2

x � x0ð Þ2� y � y0ð Þ2�a2
: (9)

These equations can also be naturally extended to
inversion with respect to a sphere in 3-dimensional
space.

The above plot shows a CHESSBOARD centered at (0, 0)
and its inverse about a small circle also centered at (0,
0) (Gardner 1984, pp. 244�/245; Dixon 1991).

See also ARBELOS, CONFORMAL MAP, CYCLIDE, HEX-

LET, INVERSE CURVE, INVERSE POINTS, INVERSION

CIRCLE, INVERSION OPERATION, INVERSION RADIUS,
INVERSION SPHERE, INVERSIVE DISTANCE, INVERSIVE



GEOMETRY, LIMITING POINT, MIDCIRCLE, PAPPUS

CHAIN, PEAUCELLIER INVERSOR, PERMUTATION INVER-

SION, POLAR, POLE (INVERSION), POWER (CIRCLE),
RADICAL LINE, STEINER CHAIN, STEINER’S PORISM
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Inversion Center
The point that INVERSION OF A CURVE is performed
with respect to.

See also INVERSE POINTS, INVERSION CIRCLE, INVER-

SION RADIUS, INVERSIVE DISTANCE, LIMITING POINT,
POLAR, POLE (INVERSION), POWER (CIRCLE)

Inversion Circle
The CIRCLE with respect to which an INVERSE CURVE

is computed or relative to which INVERSE POINTS are
computed. In 3-D, INVERSE POINTS can be computed
relative to an INVERSION SPHERE.

See also INVERSE POINTS, INVERSION CENTER, INVER-

SION RADIUS, INVERSION SPHERE, INVERSIVE DIS-

TANCE, MIDCIRCLE, POLAR, POLE (INVERSION),
POWER (CIRCLE)

Inversion Number
In DETERMINANT EXPANSION BY MINORS, the minimal
number of TRANSPOSITIONS of adjacent columns in a
SQUARE MATRIX needed to turn the matrix represent-
ing a permutation of /f1; 2 ; . . . ; ng/ into the IDENTITY

MATRIX.

See also DETERMINANT EXPANSION BY MINORS,
TRANSPOSITION
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Inversion Operation
The SYMMETRY OPERATION ðx; y; z Þ 0 ð�x;�y;�zÞ:
When used in conjunction with a ROTATION, it
becomes an IMPROPER ROTATION.

Inversion Poset
A relation between permutations p and q that exists
if there is a sequence of TRANSPOSITIONS such that
each transposition increases the number of inversions
(Stanton and White 1986; Skiena 1990, p. 162).

See also PERMUTATION
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Inversion Radius
The RADIUS used in performing an INVERSION with
respect to an INVERSION CIRCLE.

See also INVERSE POINTS, INVERSION CENTER, INVER-

SION CIRCLE, INVERSIVE DISTANCE, POLAR, POLE

(INVERSION), POWER (CIRCLE)

Inversion Semigroup
INVERSE SEMIGROUP

Inversion Sphere
The SPHERE with respect to which INVERSE POINTS are
computed (i.e., with respect to which geometrical
INVERSION is performed). For example, the CYCLIDES

are inversions in a sphere of TORI. The center of the
inversion sphere is called the INVERSION CENTER, and
its radius is called the INVERSION RADIUS. When DUAL

POLYHEDRA are being considered, the inversion
sphere is commonly called the MIDSPHERE (or inter-
sphere, or reciprocating sphere).

In 2-D, the inversion sphere collapses to an INVER-

SION CIRCLE.

See also CYCLIDE, INVERSE POINTS, INVERSION,
INVERSION CENTER, INVERSION CIRCLE, INVERSION

RADIUS, INVERSIVE DISTANCE, MIDCIRCLE, MID-

SPHERE, POLAR, POLE (INVERSION), POWER (CIRCLE)

Inversion Statistic

See also WEIGHTED INVERSION STATISTIC
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Inversion Vector
The number of elements greater than i to the left of i
in a PERMUTATION gives the i th element of the
inversion vector (Skiena 1990, p. 27). A PERMUTATION

p can be converted to an inversion vector using
ToInversionVector[p ] in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘), and an inversion vector v
can be converted to a PERMUTATION using ToInver-
sionVector[v ].

See also PERMUTATION INVERSION
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Inversive Distance
The inversive distance is the NATURAL LOGARITHM of
the ratio of two concentric circles into which the given
circles can be inverted. Let c be the distance between
the centers of two nonintersecting CIRCLES of RADII a
and b Ba . Then the inversive distance is

d �cosh�1 a2 � b2 � c2

2ab

%%%%%
%%%%%

(Coxeter and Greitzer 1967).

The inversive distance between the SODDY CIRCLES is
given by

d �2 cosh �1 2;

and the CIRCUMCIRCLE and INCIRCLE of a TRIANGLE

with CIRCUMRADIUS R and INRADIUS r are at inver-
sive distance

d �2 sinh�1 1

2

ffiffiffiffi
r

R

s !

(Coxeter and Greitzer 1967, pp. 130 �/131).
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Inversive Geometry
The GEOMETRY resulting from the application of the
INVERSION operation. It can be especially powerful for
solving apparently difficult problems such as STEI-

NER’S PORISM and APOLLONIUS’ PROBLEM.

See also HEXLET, INVERSE CURVE, INVERSION, PEAU-

CELLIER INVERSOR, POLAR, POLE (INVERSION), POWER

(CIRCLE), RADICAL LINE
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Inverted Funnel
FUNNEL, SINCLAIR’S SOAP FILM PROBLEM



Inverted Snub Dodecadodecahedron

The UNIFORM POLYHEDRON U60 whose DUAL POLYHE-

DRON is the MEDIAL INVERTED PENTAGONAL HEXECON-

TAHEDRON. It has WYTHOFF SYMBOL j25
35: Its faces are

12 f5
3g�60f3 g�12 f5g: It has CIRCUMRADIUS for unit

edge length of

R :0 :8516302:
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Invertible Knot

A knot which can be deformed via an AMBIENT

ISOTOPY into itself but with the orientation reversed.
No noninvertible knots were known until Trotter
(1964) discovered an infinite family, the smallest of
which had nine crossings. The simplest noninvertible
knot is 08 �/017, illustrated above. The following table
gives the numbers of noninvertible and invertible
knots of n crossings.

type Sloane counts

noninvertible A052403 0, 0, 0, 0, 0, 0, 0, 1, 2, 33,
187, 1144, 6919, 38118,
226581, 1309875, . . .

invertible A052402 0, 0, 1, 1, 2, 3, 7, 20, 47,
132, 365, 1032, 3069,
8854, 26712, 78830, . . .

No general technique is known for determining if a
KNOT is invertible. Burde and Zieschang (1985) give a
tabulation from which it is possible to extract the
noninvertible knots up to 10 crossings.

See also AMPHICHIRAL KNOT
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Invertible Linear Map
An invertible linear transformation T : V 0 W is a
map between VECTOR SPACES V and W with an
inverse map which is also a LINEAR TRANSFORMATION.
When T is given by MATRIX MULTIPLICATION, i.e.,
T(v) �Av ; then T is invertible IFF A is a INVERTIBLE

MATRIX. Note that the dimensions of V and W must be
the same.

See also INVERTIBLE MATRIX, LINEAR TRANSFORMA-

TION, MATRIX, VECTOR SPACE

Invertible Linear Transformation
INVERTIBLE LINEAR MAP

Invertible Matrix
NONSINGULAR MATRIX

Invertible Polynomial Map
A POLYNOMIAL MAP ff ; with f � f1 ; . . . ; fnð Þ �
K X1 ; . . . ; Xn½ �ð Þm in a FIELD K is called invertible if

there exist g1 ; . . . ; gm � K X1 ; . . . ; xn½ � such that
gi f1 ; . . . ; fnð Þ�Xi for 1 5n 5n so that fg(ff �idkn

(Becker and Weispfenning 1993, p. 330). GRÖ BNER

BASES provide a means to decide for given f whether
or not ff is invertible.

See also JACOBIAN CONJECTURE, POLYNOMIAL MAP
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Involuntary
A LINEAR TRANSFORMATION of period two. Since a
LINEAR TRANSFORMATION has the form,

l? ¼ alþ b

glþ d
; (1)

applying the transformation a second time gives

lƒþ al?þ b

gl?þ d
¼ ða2 þ bgÞlþ bðaþ dÞ

ðaþ dÞglþ bgþ d2
; (2)

For an involuntary, /lƒ ¼ l/, so



g ða þ dÞl2 þ ðd2 � a2 Þl �ða þ dÞb ¼ 0: (3)

Since each COEFFICIENT must vanish separately,

ag þ gd ¼ 0 (4)

d2 � a2 ¼ 0 (5)

ab þ bd ¼ 0: ð6Þ

The first equation gives /d ¼9a/. Taking / d ¼ a/ would
require /g ¼ b ¼ 0/, giving /l ¼ l ?/, the identity transfor-
mation. Taking / d ¼�a/ gives /d ¼�a/, so

l ? ¼ al þ b

gl � a 
(7)

the general form of an INVOLUTION.

See also CROSS-RATIO, INVOLUTION (LINE)
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Involute

Attach a string to a point on a curve. Extend the
string so that it is tangent to the curve at the point of
attachment. Then wind the string up, keeping it
always taut. The LOCUS of points traced out by the
end of the string is the involute of the original curve,
and the original curve is called the EVOLUTE of its
involute. Although a curve has a unique EVOLUTE, it
has infinitely many involutes corresponding to differ-
ent choices of initial point. An involute can also be
thought of as any curve ORTHOGONAL to all the
TANGENTS to a given curve.

The equation of the involute is

ri �r �s ̂T ; (1)

where T̂ is the TANGENT VECTOR

T̂ �

dr

dt

dr

dt

%%%%%
%%%%%

(2)

and s is the ARC LENGTH

s �gds �g
ds

dt
dt �g

ffiffiffiffiffiffiffiffi
ds2

p

dt
dt �g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ?2 �g ?2

q
dt: (3)

This can be written for a parametrically represented
function f (t) ; g(t)ð Þ as

x(t) �f �
sf ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g?2
p (4)

y(t) �g �
sg ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g ?2
p : (5)

The following table lists the involutes of some
common curves, some of which are illustrated above.

Curve Involute

ASTROID ASTROID 1/2 as large

CARDIOID CARDIOID 3 times as
large

CATENARY TRACTRIX

CIRCLE CATACAUSTIC for a
point source

LIMAÇ ON

CIRCLE CIRCLE INVOLUTE (a
SPIRAL)

CYCLOID equal CYCLOID

DELTOID DELTOID 1/3 as large

ELLIPSE ELLIPSE INVOLUTE

EPICYCLOID reduced EPICYCLOID

HYPOCYCLOID similar HYPOCY-

CLOID

LOGARITHMIC SPIRAL equal LOGARITHMIC

SPIRAL

NEILE’S PARABOLA PARABOLA

NEPHROID CAYLEY’S SEXTIC

NEPHROID NEPHROID 2 times as
large

See also ENVELOPE, EVOLUTE, HUMBERT’S THEOREM,
ROULETTE
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Involution
An OPERATOR of period 2, i.e., an OPERATOR + which
satisfies að Þ�ð Þ��a :/

Involution (Group)
An element of order 2 in a GROUP (i.e., an element A
of a GROUP such that A2 �I ; where I is the IDENTITY

ELEMENT).

See also GROUP, IDENTITY ELEMENT

Involution (Line)
Pairs of points of a line, the product of whose
distances from a FIXED POINT is a given constant.
This is more concisely defined as a PROJECTIVITY of
period two.

If AA?;BB?;CC ?f g is a range in involution, then the
ranges AA?; BCf g and A?A;B ?C ?f g are EQUICROSS, and
conversely.

See also EQUICROSS, INVOLUTORY

References
Casey, J. A Sequel to the First Six Books of the Elements of

Euclid, Containing an Easy Introduction to Modern
Geometry with Numerous Examples, 5th ed., rev. enl.
Dublin: Hodges, Figgis, & Co., p. 133, 1888.

Lachlan, R. "Theory of Involutions" and "Involution." Ch. 5
and §426 �/427 in An Elementary Treatise on Modern Pure
Geometry. London: Macmillian, pp. 272 �/274, 1893.

Involution (Operator)
An OPERATOR of period 2, i.e., an OPERATOR 3̄ which
satisfies

sin�1 x �x �1
6x

3 � 3
40x

5 � 5
112x

7 � 35
1152x

9 �. . . :

Involution (Permutation)
An involution of a SET S is a PERMUTATION of S which
does not contain any CYCLES of length > 2 (i.e., it

consists exclusively of fixed points and TRANSPOSI-

TIONS). Involutions are in one-to-one correspondence
with self-conjugate permutations (i.e, permutations
that are their own INVERSE PERMUTATION). For
example, the unique permutation involution on 1
element is f1g; the two involution permutations on 2
elements are f1; 2g and f2; 1g; and the four involution
permutations on 3 elements are f1; 2; 3g; f1; 3 ; 2g;
f2; 1; 3g; and f3; 2; 1g: A PERMUTATION p can be tested
to determine if it is a permutation using Involu-
tionQ[p ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

The PERMUTATION MATRICES of an involution are
SYMMETRIC. The number of involutions on n elements
is the same as the number of distinct YOUNG

TABLEAUX on n elements (Skiena 1990, p. 32).

In general, the number of involution permutations on
n letters is given by the formula

I(n) �1 �
X(n�2)=2b c

k �0

1

(k � 1)!

n �2i
2

	 

; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT (Muir 1960,

p. 5), or alternatively by

I(n) �n!
Xnb c

k �0

1

2kk!(n � 2k)! 
(2)

(Skiena 1990, p. 32). Although the number of involu-
tions on n symbols cannot be expressed as a fixed
number of hypergeometric terms (Petkovsek et al.
1996, p. 160), it can be written in terms of the
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE SEC-

OND KIND U(a ; b; z) as

I(n) � �ið Þn2n=2U �1
2n;

1
2 ;�

1
2

� �
: (3)

Breaking this up into n even and odd gives

I(n)�
�2ð ÞkU �k; 1

2;�
1
2

� �
for n�2k

�2ð ÞkU �k; 3
2;�

1
2

� �
for n�2k�1

8<
: (4)

The number of involutions I(n) of a SET containing the
first n integers is given by the RECURRENCE RELATION

IðnÞ ¼ Iðn�1Þ þ ðn�1ÞIðn�2Þ ð5Þ

(Muir 1960, pp. 3�/7; Skiena 1990, p. 32). For n�1, 2,
. . ., the first few values of I(n) are 1, 2, 4, 10, 26, 76, . . .
(Sloane’s A000085).

See also CYCLE (PERMUTATION), INVERSE PERMUTA-

TION, PERMUTATION, PERMUTATION MATRIX, YOUNG

TABLEAU
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Involution (Transformation)
A TRANSFORMATION of period 2.

Involution Principle
GARSIA-MILNE INVOLUTION PRINCIPLE

Involutory
A LINEAR TRANSFORMATION of period two. Since a
LINEAR TRANSFORMATION has the form,

l ?�
al � b

gl � d
; (1)

applying the transformation a second time gives

lƒ�
al ? � b

gl ? � d 
�

a2 � bgð Þl � ba � dð Þ
a � dð Þgl � bg � d2 : (2)

For an involutory, l ƒ� l ; so

g a� dð Þl2 � d2 � a2
� �

l � a � dð Þb �0: (3)

Since each COEFFICIENT must vanish separately,

g a� dð Þ�0 (4)

d2 � a2 �0 (5)

b a� dð Þ�0: (6)

Equation (5) requires d �9a: Taking d � a in turn
requires that g � b �0; giving l � l ?; i.e., the IDENTITY

MAP, while taking d ��a gives d ��a; so

l ?�
al � b

gl � a
; (7)

which is the general form of an INVOLUTION.

See also CROSS-RATIO, INVOLUTION (LINE)
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Involutory Matrix
A SQUARE MATRIX A such that A2 � l ; where I is the
IDENTITY MATRIX. An involutory matrix is its own
MATRIX INVERSE.

References
Ayres, F. Jr. Theory and Problems of Matrices. New York:

Schaum, p. 11, 1962.

Irradiation Illusion

The ILLUSION shown above which was discovered by
Helmholtz in the 19th century. Despite the fact that
the two above figures are identical in size, the white
hole looks bigger than the black one in this ILLUSION.

See also ILLUSION
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Irrational Number
A number which cannot be expressed as a FRACTION

p=q for any INTEGERS p and q . The most famous
irrational number is

ffiffiffi
2

p
; sometimes called PYTHAGOR-

AS’S CONSTANT. Legend has it that the Pythagorean
philosopher Hippasus used geometric methods to
demonstrate the irrationality of

ffiffiffi
2

p
while at sea

and, upon notifying his comrades of his great dis-
covery, was immediately thrown overboard by the
fanatic Pythagoreans . Other examples include

ffiffiffi
3

p
; e ,

p; etc.

Every TRANSCENDENTAL NUMBER is irrational. Num-
bers OF THE FORM n1=m are irrational unless n is the
mth POWER of an INTEGER. Numbers OF THE FORM

lognm; where log is the LOGARITHM, are irrational if m
and n are INTEGERS, one of which has a PRIME factor
which the other lacks. er is irrational for rational r"
0: cos r is irrational for every nonnegative rational
number r (Niven 1956, Stevens 1999), and cos(u) (for
u measured in degrees) is irrational for every rational
0�BuB90� with the exception of u�60� (Niven
1956). tanr is irrational for every rational r"0
(Stevens 1999).

The irrationality of E was proven by Lambert in 1761;
for the general case, see Hardy and Wright (1979,



p. 46). pn is irrational for POSITIVE integral n . The
irrationality of PI itself was proven by Lambert in
1760; for the general case, see Hardy and Wright
(1979, p. 47). APÉ RY’S CONSTANT z(3) (where z(z) is the
RIEMANN ZETA FUNCTION) was proved irrational by
Apéry (Apéry 1979, van der Poorten 1979). In addi-
tion, T. Rivoal (2000) recently proved that there are
infinitely many integers n such that z(2n �1) is
irrational.

From GELFOND’S THEOREM, a number OF THE FORM ab

is TRANSCENDENTAL (and therefore irrational) if a is
ALGEBRAIC "0; 1 and b is irrational and ALGEBRAIC.
This establishes the irrationality of e p (since �1ð Þ�i�
eipð Þ�i�e p)) ; 2

ffiffi
2

p
; and e p: Nesterenko (1996) proved

that p�e p is irrational. In fact, he proved that p; e p

and G 1 =4ð Þ are ALGEBRAICALLY INDEPENDENT, but it
was not previously known that p�e p was irrational.

Given a POLYNOMIAL equation

xm �cm�1xm�1 �. . .�c0 ; (1)

where ci are INTEGERS, the roots xi are either integral
or irrational. If cos 2 uð Þ is irrational, then so are cos u;
sin u; and tan u:/

Irrationality has not yet been established for 2e ; pe ;
p
ffiffi
2

p
; or g (where g is the EULER-MASCHERONI CON-

STANT).

QUADRATIC SURDS are irrational numbers which have
periodic CONTINUED FRACTIONS.

HURWITZ’S IRRATIONAL NUMBER THEOREM gives
bounds OF THE FORM

a�
p

q 
B

1

lnq2

%%%%%
%%%%% (2)

for the best rational approximation possible for an
arbitrary irrational number a; where the ln are called
LAGRANGE NUMBERS and get steadily larger for each
"bad" set of irrational numbers which is excluded.

The SERIES

X�
n�1

sk(n)

n!
; (3)

where sk(n) is the DIVISOR FUNCTION, is irrational for
k�1 and 2, and the series

X�
n�1

1

2n � 1
�
X�
n�1

d(n)

2n
; (4)

where d(n) is the number of divisors of n , is also
irrational (Guy 1994).

See also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER,
ALMOST INTEGER, DIRICHLET FUNCTION, E , FERGU-

SON-FORCADE ALGORITHM, GELFOND’S THEOREM,
HURWITZ’S IRRATIONAL NUMBER THEOREM, NEAR

NOBLE NUMBER, NOBLE NUMBER, PI, PYTHAGORAS’S

CONSTANT, PYTHAGORAS’S THEOREM, Q-HARMONIC

SERIES, QUADRATIC IRRATIONAL NUMBER, RATIONAL

NUMBER, SEGRE’S THEOREM, TRANSCENDENTAL NUM-

BER
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Irrationality Measure
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let x be a REAL NUMBER, and let R be the SET of
POSITIVE REAL NUMBERS for which

x�
p

q

%%%%%
%%%%%Bq�r (1)

has (at most) finitely many solutions p=q for p and q
INTEGERS. Then the irrationality measure, sometimes
called the Liouville-Roth constant, is defined as the
threshold at which LIOUVILLE’S APPROXIMATION THE-

OREM kicks in and x is no longer approximable by
RATIONAL NUMBERS,

r(x)�inf
r �R

r: (2)

There are three regimes:



r(x) �1 x is rational
r(x) �2 x is algebraic
r(x) ]3 x is transcendental

8<
: 

(3)

Exact values include

r(L) ��

r(e) �2;

where L is LIOUVILLE’S CONSTANT. The best known
upper bounds for other common constants are sum-
marized in the following table, where z(3) is APÉ RY’S

CONSTANT, Lnq(2) and hq(1) are Q -HARMONIC SERIES,
and the lower bounds are 2.

constant
x

upper
bound

reference

/ p/ 8.0161 Hata (1992)

/ p2
/ 6.3489 Hata (1992)

/ln 2/ 4.13

/ z(3)/ 7.377956 Hata (2000)

/Lnq(2)/ 4.80 Amdeberhan and Zeil-
berger (1998)

/hq(1)/ 4.80 Amdeberhan and Zeil-
berger (1998)

See also LIOUVILLE’S APPROXIMATION THEOREM,
ROTH’S THEOREM, THUE-SIEGEL-ROTH THEOREM
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Irrationality Sequence
A sequence of POSITIVE INTEGERS anf g such that /

a 1=ðanbn Þ/ is IRRATIONAL for all integer sequences /

fbn g/. Erdos showed that /f22n g ¼ f1; 2; 4; 16; 256; . . . ; g/

(Sloane’s A001146) is an irrationality sequence.
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Irreducible Matrix
A SQUARE MATRIX which is not REDUCIBLE is said to be
irreducible.

See also REDUCIBLE MATRIX

Irreducible Polynomial
A POLYNOMIAL is said to be irreducible if it cannot be
factored into nontrivial polynomials over the same
FIELD.

For example, in the FIELD of rational polynomials Q x½ �
(i.e., polynomials f (x) with rational coefficients), a f (x)
is said to be irreducibility if there do not exist two
nonconstant polynomials g(x) and h(x) in x with
rational coefficients such that

f (x)�g(x)h(x)

(Nagell 1951, p. 160). Similarly, in the FINITE FIELD

GF(2), x2�x�1 is irreducible, but x2�1 is not, since
(x�1)(x�1)�x2�2x�1�x2�1 (mod 2). A polyno-
mial can be tested to see if it is primitive using the
Mathematica function

IrreducibleQ[p_,n_] :� SameQ[Factor[p, Modu-

lus-	n], p]

In general, the number of irreducible polynomials of
degree n over the FINITE FIELD GF(q ) is given by

Lq(n)�
1

n

X
d½n

m
n

d

 !
qd;

where m(n) is the MÖBIUS FUNCTION.

The number of irreducible polynomials of degree n
over GF(2) is equal to the number of n -bead fixed
aperiodic NECKLACES of two colors and the number of
binary LYNDON WORDS of length n . The first few
values for n�1, 2, . . . are 2, 1, 2, 3, 6, 9, 18, . . .
(Sloane’s A001037). The following table lists the
irreducible polynomials (mod 2) of degrees 1 through
5.



n irreducible polynomials

1 1, x

2 /1 �x �x2
/

3 /1 �x �x3 ; 1 �x2 �x3
/

4 /1 �x �x4 ; 1 �x �x2 �x3 �x4 ; 1 �x3 �x4
/

5 /1 �x2 �x5 ; 1 �x �x2 �x3 �x5 ; 1 �x3 �x5 ; /

/1 �x �x3 �x4 �x5 ; 1 �x2 �x3 �x4 �x5 ;
1 �x �x2 �x4 �x5

/

See also FIELD, FINITE FIELD, LYNDON WORD,
NECKLACE, POLYNOMIAL, PRIMITIVE POLYNOMIAL
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Irreducible Representation
An irreducible representation of a GROUP is a REPRE-

SENTATION that has no nontrivial invariant sub-
spaces. For example, the ORTHOGONAL GROUP O(n)
has an irreducible representation on Rn :/

Any representation of a finite or SEMISIMPLE LIE

GROUP breaks up into a DIRECT SUM of irreducible
representations. But in general, this is not the case,
e.g., (R;�) has a representation on R2 by

f(a) �
1 a
0 1

" #
;

i.e., f(a)(x; y) �(x �ay ; y) : But the subspace y �0 is
fixed, hence f is not irreducible, but there is no
complementary invariant subspace.

The irreducible representation has a number of
remarkable properties, as formalized in the GROUP

ORTHOGONALITY THEOREM. Let the ORDER of a GROUP

be h , and the dimension of the ith representation (the
order of each constituent matrix) be li (a POSITIVE

INTEGER). Let any operation be denoted R , and let the
mth row and nth column of the matrix corresponding
to a matrix R in the ith IRREDUCIBLE REPRESENTA-

TION be Gi(R)mn : The following properties can be
derived from the GROUP ORTHOGONALITY THEOREM,

X
R

Gi(R)mn Gj(R)�m?n?�
hffiffiffiffiffiffi
lilj

q dij dmm?  dnn?: (1)

1. The DIMENSIONALITY THEOREM:

h �
X

i

l2
i �l2

1 �l2
2 �l2

3 �. . .�
X

i

x2
i (I) ; (2)

where each li must be a POSITIVE INTEGER and x is
the CHARACTER (trace) of the representation.
2. The sum of the squares of the CHARACTERS in
any IRREDUCIBLE REPRESENTATION i equals h ,

h �
X

R

x2
i (R) : (3)

3. ORTHOGONALITY of different representationsX
R

xi(R) xi(R) �0 for i "j : (4)

4. In a given representation, reducible or irredu-
cible, the CHARACTERS of all MATRICES belonging to
operations in the same class are identical (but
differ from those in other representations).
5. The number of IRREDUCIBLE REPRESENTATIONS

of a GROUP is equal to the number of CONJUGACY

CLASSES in the GROUP. This number is the dimen-
sion of the G MATRIX (although some may have zero
elements).
6. A one-dimensional representation with all 1s
(totally symmetric) will always exist for any
GROUP.
7. A 1-D representation for a GROUP with elements
expressed as MATRICES can be found by taking the
CHARACTERS of the MATRICES.
8. The number ai of IRREDUCIBLE REPRESENTA-

TIONS xi present in a reducible representation c is
given by

ai�
1

h

X
R

x(R)xi(R); (5)

where h is the ORDER of the GROUP and the sum
must be taken over all elements in each class.
Written explicitly,

ai�
1

h

X
R

x(R)x?i(R)nR; (6)

where x?i is the CHARACTER of a single entry in the
CHARACTER TABLE and nR is the number of ele-
ments in the corresponding CONJUGACY CLASS.

Irreducible representations can be indicated using
MULLIKEN SYMBOLS.

See also CHARACTER (GROUP), CHARACTER TABLE,
FINITE GROUP, GROUP, GROUP ORTHOGONALITY THE-

OREM, ITÔ ’S THEOREM, MULLIKEN SYMBOLS, REPRE-

SENTATION, REPRESENTATION (LIE ALGEBRA),



SEMISIMPLE LIE GROUP UNITARY TRANSFORMATION,
VECTOR SPACE, WEDDERBURN’S THEOREM
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Irreducible Semiperfect Number
PRIMITIVE PSEUDOPERFECT NUMBER

Irreducible Tensor
Given a general second RANK TENSOR Aij and a
METRIC gij ; define

u �Aijg
ij �Ai

i (1)

vi � eijkAjk (2)

sij �
1
2 Aij �Aji

� �
�1

3gijA
k
k ; (3)

where dij is the KRONECKER DELTA and eijk is the LEVI-

CIVITA SYMBOL. Then

sij �
1
3 ugij �

1
2 eijk v

k

� 1
2 Aij �Aji

� �
�1

3gijA
k
k

h i
�1

3A
k
kgij �

1
2eijk e

lmkAlm

� 
�1

2 Aij �Aji

� �
�1

2 dl
i d

m
j � d 

m
i d 

l
j

� �
Alm

�1
2 Aij �Aji

� �
�1

2 Aij �Aji

� �
�Aij ; (4)

where u; vi ; and sij are TENSORS of RANK 0, 1, and 2.

See also TENSOR
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Irreducible Variety
An ALGEBRAIC VARIETY is called irreducible if it
cannot be written as the union of nonempty algebraic
varieties. For example, the set of solutions to xy �0 is
reducible because it is the union of the solutions to
x �0 and the solutions to y �0.

See also ALGEBRAIC SET, ALGEBRAIC VARIETY, PRO-

JECTIVE VARIETY

Irredundant Ramsey Number
Let G1 ; G2 ; . . .,  Gt be a t -EDGE coloring of the
COMPLETE GRAPH Kn ; where for each i �1, 2, . . ., t , /
Gi/ is the spanning SUBGRAPH of Kn consisting of all

EDGES colored with the ith color. The irredundant
Ramsey number s q1 ; . . . ; qtð Þ is the smallest INTEGER

n such that for any t -EDGE coloring of Kn ; the
COMPLEMENT GRAPH Gi has an irredundant set of
size qi for at least one i �1, . . ., t . Irredundant
Ramsey numbers were introduced by Brewster et
al. (1989) and satisfy

s q1 ; � � � qtð Þ5R q1 ; . . . qtð Þ:

For a summary, see Mynhardt (1992).

s Bounds Reference

/s(3; 3)/ 6 Brewster et al. 1989

/s(3; 4)/ 8 Brewster et al. 1989

/s(3; 5)/ 12 Brewster et al. 1989

/s(3; 6)/ 15 Brewster et al. 1990

/s(3; 7)/ 18 Chen and Rousseau 1995,
Cockayne et al. 1991

/s(4; 4)/ 13 Cockayne et al. 1992

/s(3; 3; 3)/ 13 Cockayne and Mynhardt 1994
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Irreflexive
A RELATION R on a SET S is irreflexive provided that
no element is related to itself; in other words, xRx for
no x in S .

See also RELATION



Irregular Pair
If p divides the NUMERATOR of the BERNOULLI

NUMBER B2k for 0 B2k Bp �1; then (p; 2k) is called
an irregular pair. For p B30000, the irregular pairs
of various forms are p �16843 for (p ;p �3); p �37 for
(p;p �5); none for (p;p �7); and p �67 ; 877 for
(p;p �9):/

See also BERNOULLI NUMBER, IRREGULAR PRIME
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Irregular Prime
PRIMES for which Kummer’s theorem on the unsolva-
bility of FERMAT’S LAST THEOREM does not apply. An
irregular prime p divides the NUMERATOR of one of
the BERNOULLI NUMBERS B0 ; B2 ; . . .,  Bp �3 ; as shown
by Kummer in 1850. The FERMAT EQUATION has no
solutions for REGULAR PRIMES.

An INFINITE number of irregular primes exist, as
proven in 1915 by Jensen. The first few irregular
primes are 37, 59, 67, 101, 103, 131, 149, 157, . . .
(Sloane’s A000928). Of the 283,145 PRIMES less than
4 �106 ; 111,597 (or 39.41%) are irregular. The con-
jectured FRACTION is 1 �e �1 =2 :39:35% (Ribenboim
1996, p. 415).

See also BERNOULLI NUMBER, FERMAT’S LAST THEO-

REM, IRREGULAR PAIR, REGULAR PRIME
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Irregular Singularity
Consider a second-order ORDINARY DIFFERENTIAL

EQUATION

yƒ�P(x)y?�Q(x)y �0:

If P(x) and Q xð Þ remain FINITE at x �x0 ; then x0 is
called an ORDINARY POINT. If either P(x) or Q xð Þ
diverges as x 0 x0 ; then x0 is called a singular point.
If P(x) diverges more quickly than 1= x �x0ð Þ; so
x �x0ð ÞP(x) approaches INFINITY as x 0 x0 ; or Q xð Þ

diverges more quickly than 1= x �x0ð Þ2Q so that
x �x0ð Þ2Q(x) goes to INFINITY as x 0 x0 ; then x0 is

called an IRREGULAR SINGULARITY (or ESSENTIAL

SINGULARITY).

See also ORDINARY POINT, REGULAR SINGULAR POINT,
SINGULAR POINT (DIFFERENTIAL EQUATION)

References
Arfken, G. "Singular Points." §8.4 in Mathematical Methods

for Physicists, 3rd ed. Orlando, FL: Academic Press,
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Irrotational Field
A VECTOR FIELD v for which the CURL vanishes,

9�v�0:

See also BELTRAMI FIELD, CONSERVATIVE FIELD,
POINCARÉ ’S THEOREM, SOLENOIDAL FIELD, VECTOR

FIELD

Isarithm
EQUIPOTENTIAL CURVE

ISBN

Publisher Digits

Addison-Wesley 0�/201

Amer. Math. Soc. 0�/821

Birkhäuser Basel 3�/7643

Birkhäuser Boston 0�/8176

Cambridge University Press 0�/521

CRC Press 0�/8493

Dover 0�/486

McGraw-Hill 0�/070



Oxford University Press 0 �/198

Springer-Verlag Berlin 3 �/540

Springer-Verlag New York 0 �/387

Tarquin Publications 0 �/906212

Wiley 0 �/471

The International Standard Book Number (ISBN) is a
10-digit CODE which is used to uniquely identify a
book. The digits di are arranged in four groups, which
are sometimes (but not always) separated by hy-
phens. The first group is a single digit which codes
country or language in which a publisher is incorpo-
rated: 0 for English, 2 for French, 3 for German, 4 for
Japanese, 8 for Indian publishers, etc. The next group
of digits specifies the publisher, and may range in
length from two to seven digits, with fewer digits used
for larger publishers. Some publishers with offices in
more than one country (at least when different
languages are spoken in those countries) have multi-
ple publisher codes and initial digits.

The third group of digits specifies an individual book,
and may be from one to six digits in length. The
actual number is eight minus the number of digits in
the publisher group, so that small publishers may
have only 10 books, while large ones can have up to a
millions books. The last digit d10 is a check digit
which may be in the range 0 �/9 or X (where X is the
ROMAN NUMERAL for 10). The check digit is computed
from the equation

10d1 �9d2 �8d3 �. . .�2d9 �d10 �0 (mod 11) :

For example, the number for this book is 0 �/8493 �/

9640 �/9, and

10 �0 �9 �8 �8 �4 �7 �9 �6 �3 �5 �9

�4 �6 �3 �4 �2 �0 �1 �9 �275 �25 �11 �0 (mod 11) :

as required.

The ISBN is error-detecting, but not error-correcting
(unless it is known that only a single digit is
erroneous). The ISBN detects any single-digit error,
as well as any two-digit error resulting from trans-
posing two digits.

See also CODE, CODING THEORY, UPC
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Iseki’s Formula
Let R z½ � > 0; 0 5 a; b 51 ; and

L(a; b; z) �
X�
r�0

l((r � a)z �i b) � l((r �1 � a)z �i b)½ �;

(1)

where

l(x) ��ln 1 �e �2 px
� �

�
X�
m�1

e �2 pmx

m
: (2)

Then if either 0 5 a 51 and 0 B b B1 ; or 0 B a B1 and
0 5 b 51;

L( a; b; z)

�L 1 � b; a; z�1
� �

�pz
X2

n�0

2
n

	 

(iz)�nB2�n( a)Bn( b);

(3)

where Bk(x) is a BERNOULLI POLYNOMIAL, and the
second term on the right side can be written explicitly
as

�pz a2a�1
6

� �
�

p
z

b2�b�1
6

� �
�2pi a�1

2

� �
(b�h): (4)

See also DEDEKIND ETA FUNCTION
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I-Signature
SIGNATURE (RECURRENCE RELATION)



Island

If an integrable QUASIPERIODIC system is slightly
perturbed so that it becomes nonintegrable, only a
finite number of n -CYCLES remain as a result of MODE

LOCKING. One will be elliptical and one will be
hyperbolic.
Surrounding the ELLIPTIC FIXED POINT is a region of
stable ORBITS which circle it, as illustrated above in
the STANDARD MAP with K �1:5: As the map is
iteratively applied, the island is mapped to a similar
structure surrounding the next point of the elliptic
cycle. The map thus has a chain of islands, with the
FIXED POINT alternating between ELLIPTIC (at the
center of the islands) and HYPERBOLIC (between
islands). Because the unperturbed system goes
through an INFINITY of rational values, the perturbed
system must have an INFINITE number of island
chains.

See also MODE LOCKING, ORBIT (MAP), QUASIPERIO-

DIC FUNCTION

Isobaric Polynomial
A POLYNOMIAL in which the sum of SUBSCRIPTS is the
same in each term.

See also HOMOGENEOUS POLYNOMIAL

Isochronous Curve
SEMICUBICAL PARABOLA, TAUTOCHRONE PROBLEM

Isoclinal
ISOCLINAL LINE, ISOCLINAL PLANE, ISOCLINE

Isoclinal Line
A line making equal angles with the edges of a
TRIHEDRON is called an isoclinal line of the TRIHE-

DRON.

See also ISOCLINAL PLANE, TRIHEDRON

References
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Modern Pure Solid Geometry. New York: Chelsea, pp. 32 �/

37, 1979.

Isoclinal Plane
A PLANE making equal angles with the three edges of
a TRIHEDRON.

See also ISOCLINAL LINE, TETRAHEDRON
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Isocline
A graphical method of solving an ORDINARY DIFFER-

ENTIAL EQUATION OF THE FORM

dy

dx 
�f (x; y)

by plotting a series of curves f (x; y) �[const] ; then
drawing a curve PERPENDICULAR to each curve such
that it satisfies the initial condition. This curve is the
solution to the ORDINARY DIFFERENTIAL EQUATION.

See also ISOCLINAL LINE, ISOCLINAL PLANE
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Isoclinic Groups
Two GROUPS G and H are said to be isoclinic if there
are isomorphisms G=Z(G) 0 H=Z(H) and G? 0 H?;
where Z(G) is the CENTER of the group, which identify
the two commutator maps.
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Isodynamic Points

The first and second isodynamic points of a TRIANGLE

DABC can be constructed by drawing the triangle’s
ANGLE BISECTORS and EXTERIOR ANGLE BISECTORS.
Each pair of bisectors intersects a side of the triangle
(or its extension) in two points Di1 and Di2 ; for i �1, 2,
3. The three CIRCLES having D11D12 ; D21D22 ; and
D31D32 as DIAMETERS are the APOLLONIUS CIRCLES C1 ;
C2 ; and C3 : The points S and S0 in which the three
APOLLONIUS CIRCLES intersect are the first and
second isodynamic points, respectively.
S and S 0 have TRIANGLE CENTER FUNCTIONS

a �sin A 91
3 p

� �
;

respectively. The ANTIPEDAL TRIANGLES of both points
are EQUILATERAL and have AREAS

D?�2D cot v cot 1
3 p
� �h i

;

where v is the BROCARD ANGLE.

The isodynamic points are ISOGONAL CONJUGATES of
the FERMAT POINTS. They lie on the BROCARD AXIS.
The distances from either isodynamic point to the
VERTICES are inversely proportional to the sides. The
PEDAL TRIANGLE of either isodynamic point is an
EQUILATERAL TRIANGLE. An INVERSION with either
isodynamic point as the INVERSION CENTER trans-
forms the triangle into an EQUILATERAL TRIANGLE.

The CIRCLE which passes through both the isody-
namic points and the CENTROID of a TRIANGLE is
known as the PARRY CIRCLE.

See also APOLLONIUS CIRCLES, BROCARD AXIS, CEN-

TROID (TRIANGLE), FERMAT POINTS, PARRY CIRCLE
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Isoenergetic Nondegeneracy
The condition for isoenergetic nondegeneracy for a
Hamiltonian

H �H0(I)�� H1(I ; u)

is

@2H0

@Ii @Ij

@H0

@Ii

@H0

@Ij

0

%%%%%%%%%

%%%%%%%%%
"0;

which guarantees the EXISTENCE on every energy
level surface of a set of invariant tori whose comple-
ment has a small MEASURE.
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Isogeny
A rational homomorphism 8G 0 G ? defined over a
FIELD is called an isogeny when dim G �dim G ?: Two
GROUPS G and G ? are then called isogenous if there
exists a third group G ƒ and isogenies Gƒ 0 G and
G ƒ 0 G ?:/

See also HOMEOMORPHIC

References
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Isogonal Conjugate

The isogonal conjugate X�1 of a point X in the plane
of the TRIANGLE DABC is constructed by reflecting the
lines AX , BX , and CX about the ANGLE BISECTORS at
A , B , and C . The three reflected lines then CONCUR at
the isogonal conjugate (Honsberger 1995, pp. 55�/56).
The TRILINEAR COORDINATES of the isogonal conjugate
of the point with coordinates

a : b : g



are

a�1 : b�1 : g �1 :

In the above figure with P and Q isogonal conjugates,

x

y 
�

s

r 
(1)

(Honsberger 1995, pp. 54 �/55).
Isogonal conjugation maps the interior of a TRIANGLE

onto itself. This mapping transforms lines onto CONIC

SECTIONS that CIRCUMSCRIBE the TRIANGLE. The type
of CONIC SECTION is determined by whether the line d
meets the CIRCUMCIRCLE C ?;

1. If d does not intersect C?; the isogonal transform
is an ELLIPSE;
2. If d is tangent to C ?; the transform is a
PARABOLA;
3. If d cuts C ?; the transform is a HYPERBOLA,
which is a RECTANGULAR HYPERBOLA if the line
passes through the CIRCUMCENTER

(Casey 1893, Vandeghen 1965).

The isogonal conjugate of a point on the CIRCUMCIR-

CLE is a POINT AT INFINITY (and conversely). The sides
of the PEDAL TRIANGLE of a point are PERPENDICULAR

to the connectors of the corresponding VERTICES with
the isogonal conjugate. The isogonal conjugate of a set
of points is the LOCUS of their isogonal conjugate
points.

The product of ISOTOMIC and isogonal conjugation is a
COLLINEATION which transforms the sides of a TRIAN-

GLE to themselves (Vandeghen 1965).

See also ANTIPEDAL TRIANGLE, COLLINEATION, ISO-

GONAL LINE, ISOTOMIC CONJUGATE POINT, LINE AT

INFINITY, SYMMEDIAN
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Isogonal Line

The line L? through a TRIANGLE VERTEX obtained by
reflecting an initial line L (also through a VERTEX)
about the ANGLE BISECTOR. If three lines from the
VERTICES of a TRIANGLE DABC are CONCURRENT at
X �L1L2L3 ; then their isogonal lines are also CON-

CURRENT, and the point of concurrence X ?�L ?1L?2L?3 is
called the ISOGONAL CONJUGATE point.

See also ISOGONAL CONJUGATE
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Isogonic Centers
FERMAT POINTS

Isograph
The substitution of reiu for z in a POLYNOMIAL p(z):
p(z) is then plotted as a function of u for a given r in
the COMPLEX PLANE. By varying r so that the curve
passes through the ORIGIN, it is possible to determine
a value for one ROOT of the POLYNOMIAL.

Isohedral Tiling
Let S(T) be the group of symmetries which map a
MONOHEDRAL TILING T onto itself. The TRANSITIVITY



CLASS of a given tile T is then the collection of all tiles
to which T can be mapped by one of the symmetries of
S(T) : If T has k TRANSITIVITY CLASSES, then T is said
to be k -isohedral. Berglund (1993) gives examples of
k -isohedral tilings for k �1, 2, and 4.

See also ANISOHEDRAL TILING
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Isohedron

S(T)

A convex POLYHEDRON with symmetries acting tran-
sitively on its faces. Every isohedron has an EVEN

number of faces (Grünbaum 1960). The isohedra
make fair DICE, and there are 30 of them, many of
which are PLATONIC SOLIDS, ARCHIMEDEAN SOLIDS, or
duals of ARCHIMEDEAN SOLIDS.

The 30 isohedra are the CUBE, DISDYAKIS DODECAHE-

DRON, DELTOIDAL HEXECONTAHEDRON, DELTOIDAL

ICOSITETRAHEDRON, DISDYAKIS TRIACONTAHEDRON,
DODECAHEDRON, dyakis dodecahedron, hexakis tetra-

hedron, ICOSAHEDRON, isosceles tetrahedron, octahe-
dral pentagonal dodecahedron, OCTAHEDRON,
PENTAGONAL HEXECONTAHEDRON, PENTAGONAL ICOSI-

TETRAHEDRON, PENTAKIS DODECAHEDRON, RHOMBIC

DODECAHEDRON, RHOMBIC TRIACONTAHEDRON, sca-
lene tetrahedron, tetragonal pentagonal dodecahe-
dron, TETRAHEDRON, TETRAKIS HEXAHEDRON,
trapezoidal dihedron, trapezoidal dihedron (skewed),
trapezoidal dodecahedron, TRIAKIS ICOSAHEDRON,
TRIAKIS OCTAHEDRON, TRIAKIS TETRAHEDRON, trian-
gular dihedron, triangular dihedron (skewed in-out),
triangular dihedron (skewed up-down).

A 2-D LAMINA such as a COIN can also be viewed as a
degenerate case of a fair 2-sided solid.

See also COIN, DICE, POLYHEDRON
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Isolated Point
An isolated point on a curve, also known as an
ACNODE or HERMIT POINT, is a point which has no
other points in its NEIGHBORHOOD.

An isolated point of a GRAPH is a node of degree 1
(Harary 1994, p. 15). The number of n -node graphs
with no isolated points are 0, 1, 2, 7, 23, 122, 888, . . .
(Sloane’s A002494), the first few of which are illu-
strated below.



An isolated point of a DISCRETE SET S is a member of
S (Krantz 1999, p. 63).

See also ENDPOINT, NEIGHBORHOOD
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Isolated Singular Point
ISOLATED SINGULARITY

Isolated Singularity
An isolated singularity is a SINGULARITY for which
there exists a (small) REAL NUMBER e such that there
are no other SINGULARITIES within a NEIGHBORHOOD

of radius e centered about the SINGULARITY. Isolated
singularities are also known as conic double points.

The types of isolated singularities possible for CUBIC

SURFACES have been classified (Schläfli 1864, Cayley
1869, Bruce and Wall 1979) and are summarized in
the following table from Fischer (1986).

Name Symbol Normal Form COXETER

DIAGRAM

conic dou-

ble point

/C2/ /x2 �y2 �z2
/ /A1/

biplanar

double

point

/B3/ /x2 �y2 �z3
/ /A2/

biplanar

double

point

/B4/ /x2 �y2 �z4
/ /A3/

biplanar

double

point

/B5/ /x2 �y2 �z5
/ /A4/

biplanar

double

point

/B6/ /x2 �y2 �z6
/ /A5/

uniplanar

double

point

/U6/ /x2 �z y2 �z2ð Þ/ /D4/

uniplanar

double

point

/U7/ /x2�z y2�z3ð Þ/ /D5/

uniplanar

double

point

/U8/ /x2�y3�z4
/ /E6/

elliptic

cone point

– /xy2�4z3�g2x2y�g3x3
/ /Ẽ6/

See also CUBIC SURFACE, RATIONAL DOUBLE POINT,
SINGULAR POINT (FUNCTION)
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Isolating Integral
An integral of motion which restricts the PHASE SPACE

available to a DYNAMICAL SYSTEM.

Isometric
A METRIC SPACE X is isometric to a METRIC SPACE Y if
there is a BIJECTION f between X and Y that
preserves distances. That is, d(a; b)�d(f (a); f (b)): In
the context of RIEMANNIAN GEOMETRY, two manifolds
M and N are isometric if there is a DIFFEOMORPHISM

such that the RIEMANNIAN METRIC from one pulls
back to the metric on the other. Since the GEODESICS

define a distance, a RIEMANNIAN METRIC makes the
MANIFOLD M a METRIC SPACE. An isometry between
Riemannian manifolds is also an isometry between
the two manifolds, considered as metric spaces.

Isometric spaces are considered isomorphic. For
instance, the circle of radius one around the origin
is isometric to the circle of radius one around (0; 3):/



See also ISOMETRIC LATITUDE, ISOMETRY, METRIC

SPACE, RIEMANNIAN METRIC, TOPOLOGICAL SPACE

Isometric Latitude
An AUXILIARY LATITUDE which is directly proportional
to the spacing of parallels of LATITUDE from the
equator on an ellipsoidal MERCATOR PROJECTION. It
is defined by

c �ln tan 1
4 p�

1
2f

� � 1 � e sin f

1 � e sin f

 !e=2
%%%%%%

%%%%%%; (1)

where the symbol t is sometimes used instead of c:
The isometric latitude is related to the CONFORMAL

LATITUDE by

c �ln tan 1
4 p�

1
2x

� �
: (2)

The inverse is found by iterating

f �2 tan �1 exp( c)
1 � e sin f

1 � e sin f

 !e=2
2
4

3
5�1

2p; (3)

with the first trial as

f0 �2 tan�1 ec
� �

�1
2 p: (4)

See also LATITUDE
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Isometry
A BIJECTIVE MAP between two METRIC SPACES that
preserves distances, i.e.,

d(f (x) ; f (y)) �d(x; y) ;

where f is the MAP and d(a ; b) is the DISTANCE

function. Isometries are sometimes also called con-
gruence transformations. Two figures that can be
transformed into each other by an isometry are said
to be CONGRUENT (Coxeter and Greitzer 1967, p. 80).

An isometry of the PLANE is a linear transformation
which preserves length. Isometries include ROTATION,
TRANSLATION, REFLECTION, GLIDES, and the IDENTITY

MAP. If an isometry has more than one FIXED POINT, it
must be either the identity transformation or a
reflection. Every isometry of period two (two applica-
tions of the transformation preserving lengths in the
original configuration) is either a reflection or a half-
turn rotation. Every isometry in the plane is the

product of at most three reflections (at most two if
there is a FIXED POINT). Every finite group of
isometries has at least one FIXED POINT.

See also CONGRUENT, DISTANCE, EUCLIDEAN MOTION,
GLIDE, HJELMSLEV’S THEOREM, IDENTITY MAP, ISO-

METRIC, LENGTH (CURVE), REFLECTION, ROTATION,
TRANSLATION

References
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

Washington, DC: Math. Assoc. Amer., p. 80, 1967.
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved

Problems in Geometry. New York: Springer-Verlag, p. 3,
1991.

Gray, A. "Isometries and Conformal Maps of Surfaces." §15.2
in Modern Differential Geometry of Curves and Surfaces
with Mathematica, 2nd ed. Boca Raton, FL: CRC Press,
pp. 346 �/351, 1997.

Isomorphic
The term "isomorphic" means "having the same
form," and is used in many branches of mathematics
to identify mathematical objects which have the same
structural properties. Objects which may be repre-
sented (or "embedded") differently but which have the
same essential structure are often said to be "iden-
tical up to an isomorphism." The statement "A is
isomorphic to B" is denoted A $B (Harary 1994,
p. 161).

See also ISOMORPHIC GRAPHS, ISOMORPHIC GROUPS,
ORDER ISOMORPHIC, ISOMORPHIC POSETS, ISOMORPH-

ISM
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Isomorphic Graphs
Two GRAPHS which contain the same number of
VERTICES connected in the same way are said to be
isomorphic. Formally, two graphs G and H with
VERTICES Vn � 1; 2; . . .  ;nf g are said to be isomorphic
if there is a PERMUTATION p of Vn such that fu; vg is in
the set of EDGES E(G) IFF fp(u) ;p(v) g is in the set of
EDGES E(H) :/

Determining if two GRAPHS are isomorphic is thought
to be an NP-HARD PROBLEM (Skiena 1990, p. 181),
although this has not been proved. However, a
polynomial-time algorithm is known when the max-
imum VERTEX DEGREE is bounded by a constant (Luks
1980; Skiena 1990, p. 181). The equivalence or none-
quivalence of two graphs can be ascertained using
IsomorphicQ[g1 , g2 ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also GRAPH, GRAPH AUTOMORPHISM, GRAPH

ISOMORPHISM, GRAPH THEORY, ULAM’S CONJECTURE
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Isomorphic Groups
Two GROUPS are isomorphic if the correspondence
between them is ONE-TO-ONE and the "multiplication"
table is preserved. For example, the POINT GROUPS C2

and D1 are isomorphic GROUPS, written C2 $D1 or
C2 XD1 (Shanks 1993).

See also JORDAN-HÖ LDER THEOREM
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Isomorphic Posets
Two POSETS are said to be isomorphic if their
"structures" are entirely analogous. Formally, POSETS

P �(X ;5) and Q �(X ;5 ?) are isomorphic if there is a
BIJECTION f from X to X ? such that x 5x? precisely
when f (x) 5 ? f (x?) :/

Isomorphism
Isomorphism is a very general concept which appears
in several areas of mathematics. The word derives
from the Greek iso (iso ), meaning "equal," and
mor 8  vsi& (morphosis ), meaning "to form" or "to
shape." Formally, an isomorphism is BIJECTIVE

MORPHISM. Informally, an isomorphism is a map
which preserves sets and relations among elements.
"A is isomorphic to B" is written A $B: Unfortu-
nately, this symbol is also used to denote geometric
CONGRUENCE.

A space isomorphism is a VECTOR SPACE in which
addition and scalar multiplication are preserved. An
isomorphism of a TOPOLOGICAL SPACE is called a
HOMEOMORPHISM.

Two groups G1 and G2 with binary operators �and �
are isomorphic if there exists a map f : G1 0 G2

which satisfies

f (x �y) �f (x) �f (y) :

An isomorphism preserves the identities and inverses
of a GROUP. An isomorphism of a GROUP onto itself is
called an AUTOMORPHISM.

See also AUTOMORPHISM, AX-KOCHEN ISOMORPHISM

THEOREM, HOMEOMORPHISM, ISOMORPHIC GRAPHS,
ISOMORPHIC GROUPS, MORPHISM

Isoperimetric Inequality
Let a PLANE figure have AREA A and PERIMETER p .
Then

Q �
4pA

p2
51;

where Q is known as the ISOPERIMETRIC QUOTIENT.
The equation becomes an EQUALITY only for a CIRCLE.

See also ISOPERIMETRIC QUOTIENT

References
Osserman, R. "Isoperimetric Inequalities." Appendix 3, §3 in

A Survey of Minimal Surfaces. New York: Dover, pp. 147�/

148, 1986.
Solomon, H. Geometric Probability. Philadelphia, PA: SIAM,

p. 35, 1978.

Isoperimetric Point

The point S? which makes the PERIMETERS of the
TRIANGLES DBS?C; DCS?A; and DAS?B equal. The
isoperimetric point exists IFF the largest ANGLE of
the triangle satisfies

max(A;B;C)B2 sin�1 4
5

� �
:1:85459 rad:106:26�;

or equivalently

a�b�c > 4R�r;

where a , b , and c are the side lengths of DABC; r is
the INRADIUS, and R is the CIRCUMRADIUS. The
isoperimetric point is also the center of the outer
SODDY CIRCLE of DABC and has TRIANGLE CENTER



FUNCTION

a �1 �
2D

a(b � c � a) 
�sec 1

2A
� �

cos 1
2B
� �

cos 1
2C
� �

�1:

See also EQUAL DETOUR POINT, PERIMETER, SODDY

CIRCLES
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Isoperimetric Problem
Find a closed plane curve of a given PERIMETER which
encloses the greatest AREA. The solution is a CIRCLE.
If the class of curves to be considered is limited to
smooth curves, the isoperimetric problem can be
stated symbolically as follows: find an arc with
PARAMETRIC EQUATIONS x �x(t) ; y �y(t) for t � t1 ; t2j j
such that x(t1) �x(t2) ; y(t1) �y(t2) (where no further
intersections occur) constrained by

l �g
t2

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 �y?2

q	 

dt

such that

A �1
2g

t2

t1

xy?�x?yð Þdt

is a MAXIMUM.

Zenodorus proved that the AREA of the CIRCLE is
larger than that of any POLYGON having the same
PERIMETER, but the problem was not rigorously solved
until Steiner published several proofs in 1841 (Wells
1991).

See also CIRCLE, DIDO’S PROBLEM, DOUBLE BUBBLE,
ISOPERIMETRIC QUOTIENT, ISOPERIMETRIC THEOREM,
ISOVOLUME PROBLEM, PERIMETER
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Isoperimetric Quotient
Portions of this entry contributed by HERMANN KRE-

MER

The isoperimetric quotient of a closed curve is defined
as the ratio of the curve area to the area of a circle
with same perimeter as the curve,

Q �
4pA

p2
; (1)

where A is the area of the plane figure and p is its
PERIMETER. The ISOPERIMETRIC INEQUALITY gives Q 5
1; with equality only in the case of the CIRCLE.

For a regular n -gon with INRADIUS r , the area is given
by

A�nr2 tan
p
n

 !
; (2)

edge length by

a�2r tan
p
n

 !
; (3)

and the perimeter is given by

p�na�2nr tan
p
n

 !
: (4)

Thus,

Qn�
p

n tan
p
n

 ! ; (5)

which converges to 1 for n 0 �:/

See also ISOPERIMETRIC INEQUALITY
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Isoperimetric Theorem
Of all convex n -gons of a given PERIMETER, the one
which maximizes AREA is the regular n -gon.

See also ISOPERIMETRIC INEQUALITY, ISOPERIMETRIC

PROBLEM

Isopleth
EQUIPOTENTIAL CURVE

Isoptic Curve
For a given curve C , consider the locus of the point P
from where the TANGENTS from P to C meet at a fixed
given ANGLE. This is called an isoptic curve of the
given curve.

Curve Isoptic

CYCLOID curtate or prolate CYCLOID

EPICYCLOID EPITROCHOID

HYPOCYCLOID HYPOTROCHOID

PARABOLA HYPERBOLA

SINUSOIDAL SPIRAL SINUSOIDAL SPIRAL

See also ORTHOPTIC CURVE
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Isosceles Tetrahedron
A nonregular TETRAHEDRON in which each pair of
opposite EDGES are equal such that all triangular
faces are congruent. A TETRAHEDRON is isosceles IFF

the sum of the face angles at each VERTEX is 1808, and
IFF its INSPHERE and CIRCUMSPHERE are concentric.

The only way for all the faces of a general TETRA-

HEDRON to have the same PERIMETER or to have the
same AREA is for them to be fully congruent, in which
case the tetrahedron is isosceles. If the CIRCUMCEN-

TER and the INCENTER of a general TETRAHEDRON

coincide, then the TETRAHEDRON is isosceles (Altshil-
ler-Court 1930, p. 97).

See also CIRCUMSPHERE, INSPHERE, ISOSCELES TRI-

ANGLE, TETRAHEDRON
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arêtes opposées sont égales deux a deux, et solution de la
question 1272." Nouvelle ann. de math. 39, 133 �/138,
1880.

Lemoine, E. Z. Math. u. Physik 29, 321, 1884.
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Isosceles Trapezoid

A TRAPEZOID in which the base angles are equal.

See also TRAPEZOID
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Isosceles Triangle

A TRIANGLE with two equal sides (and two equal
ANGLES). The name derives from the Greek iso (same)
and skelos (LEG). The height of the above isosceles
triangle can be found from the PYTHAGOREAN THEO-

REM as

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�1

4a
2

q
: (1)



The AREA is therefore given by

A �1
2ah �1

2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �1

4a
2

q
: (2)

There is a surprisingly simple relationship between
the AREA and VERTEX ANGLE u: As shown in the above
diagram, simple TRIGONOMETRY gives

h �R cos 1
2 u
� �

(3)

a �R sin 1
2 u
� �

; (4)

so the AREA is

A �1
2(2a)h �ah �R2 cos 1

2 u
� �

sin 1
2u
� �

�1
2R

2 sin u : (5)

Erecting similar isosceles triangles on the edges of an
initial triangle DABC gives another triangle DA?B ?C?
such that AA?; BB?; and CC ? concur. The triangles are
therefore PERSPECTIVE TRIANGLES.
No set of n 	6 points in the PLANE can determine
only ISOSCELES TRIANGLES.

See also ACUTE TRIANGLE, EQUILATERAL TRIANGLE,
INTERNAL BISECTORS PROBLEM, ISOSCELES TETRAHE-

DRON, ISOSCELIZER, KIEPERT’S PARABOLA, OBTUSE

TRIANGLE, POINT PICKING, PONS ASINORUM, RIGHT

TRIANGLE, SCALENE TRIANGLE, STEINER-LEHMUS

THEOREM

Isoscelizer

An isoscelizer of an (interior) ANGLE A in a TRIANGLE

DABC is a LINE through points IABIAC where IAB lies
on AB and IAC on AC such that DAIABIAC is an
ISOSCELES TRIANGLE. An isoscelizer is therefore a line
perpendicular to an ANGLE BISECTOR, and if the angle
is A , the line is known as an A -isoscelizer. There are
obviously an infinite number of isoscelizers for any
given angle. Isoscelizers were invented by P. Yff in
1963.
Through any point P draw the line parallel to BC as
well as the corresponding ANTIPARALLEL. Then the A -
isoscelizer through P bisects the angle formed by the
parallel and the antiparallel. Another way of saying
this is that an isoscelizer is a line which is both
parallel and antiparallel to itself (P. Yff).

Let u1 � u1x ;u1y

� �
and u2 � u2x ;u2y

� �
be the unit

vectors from a given vertex v � vx ; vy

� �
; let X �(x; y)

be a point in the interior of a triangle through which
an isoscelizer passes, and the side lengths of the
isosceles triangle be l . Then setting the POINT-LINE

DISTANCE from the vector u1;u2ð Þ to the point x equal
to 0 gives

y2�y1ð Þ x0�x1ð Þ� x2�x1ð Þ y0�y1ð Þ�0 (1)

l u2y�u1y

� �
x�vxð Þ�lu1x½ �

�l u2x�u1xð Þ y�vy

� �
�lu1y

� 
�0 (2)

l�
x � vxð Þ u2y � u1y

� �
� y � vy

� �
u2x � u1xð Þ

u1xu2y � u2xu1y

: (3)

See also ANGLE BISECTOR, ANTIPARALLEL, CONGRU-

ENT ISOSCELIZERS POINT, ISOSCELES TRIANGLE, YFF

CENTER OF CONGRUENCE, YFF CENTRAL TRIANGLE



Isospectral Manifolds

DRUMS that sound the same, i.e., have the same
eigenfrequency spectrum. Two drums with differing
AREA, PERIMETER, or GENUS can always be distin-
guished. However, Kac (1966) asked if it was possible
to construct differently shaped drums which have the
same eigenfrequency spectrum. This question was
answered in the affirmative by Gordon et al. (1992).
Two such isospectral manifolds are shown in the right
figure above (Cipra 1992).

Furthermore, pairs of separate drums (having the
same total area) can be constructed which have the
same eigenfrequency spectrum when played together
(illustrated above). Therefore, you cannot hear the
shape of a two-piece band (Zwillinger 1995, p. 426).
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Isothermal Parameterization
A parameterization is isothermal if, for z �u �iv and

fk(z) �
@xk

@u
�i

@xk

@v
;

the identity

f2
1( z) � f2

2(z) � f2
3( z) �0

holds.

See also MINIMAL SURFACE, TEMPERATURE
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Isotomic Conjugate Point
The point of concurrence Q of the ISOTOMIC LINES

relative to a point P . The isotomic conjugate a? : b? : g?
of a point with TRILINEAR COORDINATES a : b : g is

a2 a
� ��1

: b2 b
� ��1

: c2 g
� ��1

: (1)

The isotomic conjugate of a LINE d having trilinear
equation

la �mb �ng (2)

is a CONIC SECTION circumscribed on the TRIANGLE

DABC (Casey 1893, Vandeghen 1965). The isotomic
conjugate of the LINE AT INFINITY having trilinear
equation

a a �bb �c g �0 (3)

is STEINER’S ELLIPSE

b? g ?

a
�

g ?a?

b
�

a?b?

c
�0 (4)

(Vandeghen 1965). The type of CONIC SECTION to
which d is transformed is determined by whether the
line d meets STEINER’S ELLIPSE E .

1. If d does not intersect E , the isotomic transform
is an ELLIPSE.
2. If d is tangent to E , the transform is a
PARABOLA.
3. If d cuts E , the transform is a HYPERBOLA,
which is a RECTANGULAR HYPERBOLA if the line
passes through the isotomic conjugate of the
ORTHOCENTER

(Casey 1893, Vandeghen 1965).

There are four points which are isotomically self-
conjugate: the CENTROID M and each of the points of
intersection of lines through the VERTICES PARALLEL

to the opposite sides. The isotomic conjugate of the
EULER LINE is called JERABEK’S HYPERBOLA (Casey
1893, Vandeghen 1965).

Vandeghen (1965) calls the transformation taking
points to their isotomic conjugate points the CEVIAN

TRANSFORM. The product of isotomic and ISOGONAL is
a COLLINEATION which transforms the sides of a
TRIANGLE to themselves (Vandeghen 1965).

See also CEVIAN TRANSFORM, GERGONNE POINT,
ISOGONAL CONJUGATE, JERABEK’S HYPERBOLA, NA-

GEL POINT, STEINER’S ELLIPSE
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Isotomic Lines

Given a point P in the interior of a TRIANGLE

DA1A2A3 ; draw the CEVIANS through P from each
VERTEX which meet the opposite sides at P1 ; P2 ; and
P3 : Now, mark off point Q1 along side A2A3 such that
A3P1 �A2Q1 ; etc., i.e., so that Qi and Pi are equi-
distance from the MIDPOINT of AjAk : The lines A1Q1 ;
A2Q2 ; and A3Q3 then coincide in a point Q known as
the ISOTOMIC CONJUGATE POINT.

See also CEVIAN, ISOTOMIC CONJUGATE POINT, MID-

POINT

Isotone Map
A MAP which is monotone increasing and therefore
order-preserving.

Isotope
To rearrange without cutting or pasting.

Isotopy
A HOMOTOPY from one embedding of a MANIFOLD M in
N to another such that at every time, it is an
embedding. The notion of isotopy is category inde-
pendent, so notions of topological, piecewise-linear,

smooth, isotopy (and so on) exist. When no explicit
mention is made, "isotopy" usually means "smooth
isotopy."

See also AMBIENT ISOTOPY, REGULAR ISOTOPY

Isotropic Line
A LINE in the COMPLEX PLANE with SLOPE 9i:/

References
Graustein, W. C. Introduction to Higher Geometry. New

York: Macmillan, p. 121, 1930.

Isotropic Tensor
A TENSOR which has the same components in all
rotated coordinate systems. All rank-0 TENSORS (SCA-

LARS) are isotropic, but no rank-1 TENSORS (VECTORS)
are. The unique rank-2 isotropic tensor is the KRO-

NECKER DELTA. The number of isotropic tensors of
rank 0, 1, 2, . . . are 1, 0, 1, 1, 3, 6, 15, 36, 91, 232, . . .
(Sloane’s A005043). These numbers are called the
Motzkin sum numbers and are given by the RECUR-

RENCE RELATION

a(n) �
(n � 1)[2a(n � 1) � 3a(n � 2)]

n � 1

with a(1) �0 and a(2) �1:/

Starting at rank 5, SYZYGIES play a role in restricting
the number of isotropic tensors. In particular, SYZY-

GIES occur at rank 5, 7, 8, and all higher ranks.

See also KRONECKER DELTA, SCALAR, SYZYGY, TEN-

SOR, VECTOR
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Isotropy Group
Some elements of a GROUP G ACTING on a space X
may fix a point x . These group elements form a
SUBGROUP called the isotropy group, defined by

Gx�fg �G such that gx�xg:

For example, consider the group SO(3) of all rotations
of a sphere S2: Let x be the north pole (0; 0; 1): Then a
rotation which does not change x must turn about the
usual axis, leaving the north pole and the south pole
fixed. These rotations correspond to the action of the
circle group S1 on the equator.



When two points x and y are on the same ORBIT, say
y �gx , then the isotropy groups are CONJUGATE

SUBGROUPS. More precisely, Gy �gGxg
�1 : In fact,

any subgroup conjugate to Gx occurs as an isotropy
group Gy to some point y on the same orbit as x .

See also EFFECTIVE ACTION, FREE ACTION, GROUP

ACTION, MATRIX GROUP, ORBIT (GROUP), QUOTIENT

SPACE (LIE GROUP), REPRESENTATION, TOPOLOGICAL

GROUP, TRANSITIVE
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Isovolume Problem
Find the surface enclosing the maximum VOLUME per
unit SURFACE AREA, I �V =S: The solution is a
SPHERE, which has

Isphere �
4
3pr3

4 pr2 
�1

3r :

The fact that a sphere solves the isovolume problem
was only proved as recently as 1882 by Schwarz
(Haas 2000).

See also DIDO’S PROBLEM, DOUBLE BUBBLE, ISOPERI-

METRIC PROBLEM, SPHERE, SURFACE AREA, VOLUME
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Isthmus
BRIDGE

Iterated Exponential
POWER TOWER

Iterated Function System
A finite set of contraction maps vi for i �1, 2, . . ., N ,
each with a contractivity factor s B1, which map a
compact METRIC SPACE onto itself. It is the basis for
FRACTAL image compression techniques.

See also BARNSLEY’S FERN, SELF-SIMILARITY
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Iterated Radical
NESTED RADICAL

Iteration
The repeated application of a transformation.

See also ITERATED FUNCTION SYSTEM, ITERATION

SEQUENCE, POWER TOWER
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Iteration Sequence
A SEQUENCE aj

� �
of POSITIVE INTEGERS is called an

iteration sequence if there EXISTS a strictly INCREAS-

ING SEQUENCE skf g of POSITIVE INTEGERS such that
a1 �s1 ]2 and aj �saj�1

for j �2, 3, . . .. A NECESSARY

and SUFFICIENT condition for aj

� �
to be an iteration

sequence is

aj ]2aj�1 �aj�2

for all j ]3 :/
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Itô’s Lemma
Let W(u) be a WIENER PROCESS. Then

Vt �V0 �g
t

0

fx(W(u) ;u)dW(u) �g
t

0

ft(W(u) ;u)du

�1
2g

t

0

fxx(W(u);u)du;

where Vt�f (W(t); t) for 05t�T�t5T; and
f �C2;1((0;�)�[0;T]):/

See also WIENER PROCESS
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Itô’s Theorem
The dimension d of any IRREDUCIBLE REPRESENTA-

TION of a GROUP G must be a DIVISOR of the index of
each maximal normal ABELIAN SUBGROUP of G .

See also ABELIAN GROUP, IRREDUCIBLE REPRESENTA-

TION, SUBGROUP
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Iverson Bracket
Let S be a mathematical statement, then the Iverson
bracket is defined by

[S] �
0 if S is false
1 if S is true:

$
This notation conflicts with the brackets sometimes

used to denote the FLOOR FUNCTION. (However,
because of the elegant symmetry of the FLOOR FUNC-

TION and CEILING FUNCTION symbols xb c and xd e; the
use of x½ � to denote the FLOOR FUNCTION should be
deprecated.) The Iverson bracket is implemented in
Mathematica 4.1 as Boole[S ].

See also CEILING FUNCTION, FLOOR FUNCTION
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Iwasawa’s Theorem
Every finite-dimensional LIE ALGEBRA of character-
istic p "0 has a FAITHFUL finite-dimensional repre-
sentation.

See also ADO’S THEOREM, LIE ALGEBRA
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J

j
The symbol used by engineers and some physicists to
denote I , the IMAGINARY NUMBER

ffiffiffiffiffiffi
�1

p
: j is probably

preferred over i because the symbol i (or I ) is
commonly used to denote current.

Jack Polynomial
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Jackknife

See also BOOTSTRAP METHODS, PERMUTATION TESTS,
RESAMPLING STATISTICS

Jackson’s Difference Fan
If, after constructing a DIFFERENCE TABLE, no clear
pattern emerges, turn the paper through an ANGLE of
60 8 and compute a new table. If necessary, repeat the
process. Each ROTATION reduces POWERS by 1, so the
sequence fkn g multiplied by any POLYNOMIAL in n is
reduced to 0s by a k -fold difference fan.
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Jackson’s Identity
The Q -HYPERGEOMETRIC FUNCTION identity

r f ?s
a; q

ffiffiffi
a

p
;�q

ffiffiffi
a

p
; 1=b ; 1=c ; 1=d; 1=e ; 1 =fffiffiffi

a
p

;�
ffiffiffi
a

p
;abq ;acq ;adq;aeq ;afq

� �

�
aqð Þm

q aqdeð Þm
q adecð Þm

q aqcdð Þm
q

aqcð Þm
q aqdð Þm

q aqeð Þm
q aqcdeð Þm

q

;

where

a2bcdefq �1;

/r f?s is a Q -HYPERGEOMETRIC FUNCTION, and one of b , c ,
d , e , or f is equal to qm (Hardy 1999, pp. 108 �/09).
This identity includes the DOUGALL-RAMANUJAN

IDENTITY as a special case.

See also DOUGALL-RAMANUJAN IDENTITY, Q -HYPER-

GEOMETRIC FUNCTION
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Jackson’s Theorem
Jackson’s theorem is a statement about the error
En(f ) of the best uniform approximation to a REAL

FUNCTION f xð Þ on [�1; 1] by REAL POLYNOMIALS of
degree at most n . Let f xð Þ be of bounded variation in
[�1; 1] and let M ? and V ? denote the least upper bound
of f xð Þj j and the total variation of f xð Þ in [�1; 1];
respectively. Given the function

F xð Þ�F �1ð Þ�g
x

�1

f xð Þdx; (1)

then the coefficients

an �
1
2 2n �1ð Þg

1

�1

F xð ÞPn xð Þdx (2)

of its LEGENDRE SERIES, where Pn(x) is a LEGENDRE

POLYNOMIAL, satisfy the inequalities

anj jB

6ffiffiffi
p

p M ?�V ?ð Þn�3 =2 for n ]1

4ffiffiffi
p

p M ?�V ?ð Þn�3 =2 for n ]1

8>>><
>>>:

(3)

Moreover, the LEGENDRE SERIES of F xð Þ converges
uniformly and absolutely to F xð Þ in [�1; 1]:/

Bernstein strengthened Jackson’s theorem to

2nE2n( a) 5
4n

p 2n � 1ð Þ
B

2

p
�0:6366: (4)

A specific application of Jackson’s theorem shows
that if

a(x) � xj j; (5)

then

En(a)5
6

n
: (6)

See also LEGENDRE SERIES, PICONE’S THEOREM
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Jacobi Algorithm
A method which can be used to solve a TRIDIAGONAL

MATRIX equation with largest absolute values in each
row and column dominated by the diagonal element.
Each diagonal element is solved for, and an approx-
imate value plugged in. The process is then iterated
until it converges. This algorithm is a stripped-down
version of the JACOBI METHOD of matrix diagonaliza-
tion.

See also JACOBI METHOD, TRIDIAGONAL MATRIX
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Jacobi Differential Equation

1�x2
� 	

yƒ� b�a�(a�b�2)x½ �y?
�n(n�a�b�1)y�0 (1)

or

d

dx
1�xð Þa�1 1�xð Þb�1y?

h i
�n(n�a�b�1)

	 1�xð Þa 1�xð Þby�0: (2)

The solutions are JACOBI POLYNOMIALS P a;bð Þ
n (x) or, in

terms of hypergeometric functions, as

y(x)�C1 2F1 �n;n�1�a�b; 1�a; 1
2(x�1)

� 

�2a x�1ð Þ�aC2 2F1 �n�a;n�1�b; 1�a; 1
2(1�x)

� 
:

(3)

The equation (2) can be transformed to

d2y

dx2
�
�
1

4

1 � a2

1 � xð Þ2�
1

4

1 � b2

1 � xð Þ2

�
n n � a� b� 1ð Þ� 1

2 a� 1ð Þ b� 1ð Þ
1 � x2

�
u�0; (4)

where

u(x)� 1�xð Þ a�1ð Þ=2 1�xð Þ(b�1)=2P a;bð Þ
n (x); (5)

and

d2u

du2�
1
4 � a2

4 sin2 1
2u
� � 1

4 � b2

4 cos2 1
2u
� � n�

a� b� 1

2

 !2
2
4

3
5u

�0; (6)

where

u(u)�sina�1=2 1
2u
� 

cosb�1=2 1
2u
� 

P a;bð Þ
n cos uð Þ: (7)

Zwillinger (1997, p. 123) gives a related differential

equation he terms Jacobi’s equation

x(1�x)yƒ� g�(a�1)x½ �y?�n a�nð Þy�0 (8)

(Iyanaga and Kawada 1980, p. 1480), which has
solution

y�C1 2F1(�n;n�a; g; x)

��1ð Þ�gx1�gC2 2F1(1�n�g; 1�n�a�g; 2�g; x): (9)

Zwillinger (1997, p. 120; duplicated twice) also gives
another types of ordinary differential equation called
a Jacobi equation,

a1�b1x�c1yð Þ xy?�yð Þ� a2�b2x�c2yð Þy?

� a3�b3x�c3yð Þ�0 (10)

(Ince 1956, p. 22).
In the CALCULUS OF VARIATIONS, the PARTIAL DIFFER-

ENTIAL EQUATION

d

dx
Vh?�Vh�

d

dx
fy?yh�fy?yh?
� 	

� fyyh�fyy?h?
� 	

�0; (11)

where

V x; h; h?ð Þ�1
2 fyyh

2�2fyy?hh?�fy?yh?
2

� 	
(12)

is called the Jacobi differential equation.
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Jacobi Differential Equation (Calculus of
Variations)

u(x)� 1�xð Þ a�1ð Þ=2 1�xð Þ(b�1)=2P a;bð Þ
n (x);

where

d2u

du2�
1
4 � a2

4 sin2 1
2u
� � 1

4 � b2

4 cos2 1
2u
� � n�

a� b� 1

2

 !2
2
4

3
5u

�0;

This equations arises in the CALCULUS OF VARIATIONS.
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Jacobi Elliptic Functions
The Jacobi elliptic functions are standard forms of
ELLIPTIC FUNCTIONS. The three basic functions are



denoted cn(u; k); dn(u; k); and sn(u; k); where k is
known as the MODULUS. The arise from the inversion
of the ELLIPTIC INTEGRAL OF THE FIRST KIND,

u�F(f; k)�g
f

o

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k2 sin2 t

p ; (1)

where 0Bk2B1; k�mod u is the MODULUS, and f�
am(u; k)�am(u) is the AMPLITUDE, giving

f�F�1(u; k)�am(u; k)�am(u): (2)

From this, it follows that

sin f�sin(am(u; k))�sin(am u)�sn(u; k)�sn(u) (3)

cos f�cos(am(u; k))�cos(am u)�cn(u; k)�cn(u) (4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin2 f

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sin2(am(u; k))

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2 sn2 u

p
�dn(u; k)�dn(u): (5)

These functions are doubly periodic generalizations of
the trigonometric functions satisfying

sn(u; 0)�sin u (6)

cn(u; 0)�cos u (7)

dn(u; 0)�1: (8)

In terms of JACOBI THETA FUNCTIONS,

sn(u; k)�
q3

q4

q1 uq�2
3

� 	
q4 uq�2

3

� 	 (9)

cn(u; k)�
q 4

q 2

q 2 uq�2
3

� 	
q 4 uq�2

3

� 	 (10)

dn(u; k)�
q 4

q 3

q 3 uq�2
3

� 	
q 4 uq�2

3

� 	 (11)

(Whittaker and Watson 1990, p. 492), where q i�

q i(0) (Whittaker and Watson 1990, p. 464). Ratios of
Jacobi elliptic functions are denoted by combining the
first letter of the NUMERATOR elliptic function with
the first of the DENOMINATOR elliptic function. The
multiplicative inverses of the elliptic functions are
denoted by reversing the order of the two letters.
These combinations give a total of 12 functions: cd,
cn, cs, dc, dn, ds, nc, nd, ns, sc, sd, and sn. The
AMPLITUDE f is defined in terms of sn u by

y�sin f�sn(u; k): (12)

The k argument is often suppressed for brevity so, for
example, sn(u; k) can be written as sn u:/

The Jacobi elliptic functions are periodic in K(k) and
K ?(k) as

sn u�2mK�2niK ?; kð Þ� �1ð Þm sn(u; k) (13)

cn u�2mK�2niK ?; kð Þ� �1ð Þm�n cn(u; k) (14)

dn u�2mK�2niK ?; kð Þ� �1ð Þn dn(u; k); (15)

where K(k) is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, K ?(k)�K k?ð Þ; and k?�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
(Whittaker

and Watson 1990, p. 503).

The cn x; dn x; and sn x functions may also be defined
as solutions to the differential equations

d2y

dx2
�� 1�k2

� 	
y�2k2y3 (16)

d2y

dx2
�� 1�2k2

� 	
y�2k2y3 (17)

d2y

dx2
� 2�k2
� 	

y�2y3: (18)

The standard Jacobi elliptic functions satisfy the
identities

sn2 u�cn2 u�1 (19)

k2 sn2 u�dn2 u�1 (20)

k2 cn2 u�k?2�dn2 u (21)

cn2 u�k?2 sn2 u�dn2 u: (22)

Special values include

cn(0; k)�cn(0)�1 (23)

cn(K(k); k)�cn(K(k))�0 (24)

dn(0; k)�dn(0)�1 (25)

dn(K(k); k)�dn(K(k))�k?�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
; (26)

sn(0; k)�sn(0)�0 (27)

sn(K(k); k)�sn(K(k))�1; (28)

where K�K(k) is a complete ELLIPTIC INTEGRAL OF

THE FIRST KIND and k?�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
is the complemen-

tary MODULUS (Whittaker and Watson 1990, pp. 498�/

99), and

cn(u; 1)�sech u (29)

dn(u; 1)�sech u (30)

sn(u; 1)�tanh u: (31)

In terms of integrals,

u�g
sn u

0

1�t2
� 	�1=2

1�k2t2
� 	�1=2

dt (32)

�g
�

ns u

t2�1
� 	�1=2

t2�l2
� 	�1=2

dt (33)

�g
1

cn u

1�t2
� 	�1=2

k?2�k2t2
� 	�1=2

dt (34)



�g
nc u

1

t2�1
� 	�1=2

k?2t2�k2
� 	�1=2

dt (35)

�g
1

dn u

1�t2
� 	�1=2

t2�k?2
� 	�1=2

dt (36)

�g
nd u

1

t2�1
� 	�1=2

1�k?2t2
� 	�1=2

dt (37)

�g
sc u

0

1�t2
� 	�1=2

1�k?2t2
� 	�1=2

dt (38)

�g
�

cs u

t2�1
� 	�1=2

t2�k?2
� 	�1=2

dt (39)

�g
sd u

0

1�k?2t2
� 	�1=2

1�k2t2
� 	�1=2

dt (40)

�g
�

ds u

t2�k?2
� 	�1=2

t2�k2
� 	�1=2

dt (41)

�g
cd u

1

1�t2
� 	�1=2

1�k2t2
� 	�1=2

dt (42)

�g
1

dc u

t2�1
� 	�1=2

t2�k2
� 	�1=2

dt (43)

(Whittaker and Watson 1990, p. 494).

Jacobi elliptic functions addition formulas include

sn(u�v)�
sn u cn v dn v � sn v cn u dn u

1 � k2 sn2 u sn2 v
(44)

cn(u�v)�
cn u cn v � sn u sn v dn u dn v

1 � k2 sn2 u sn2 v
(45)

dn(u�v)�
dn u dn v � k2sn u sn v cn u cn v

1 � k2 sn2 u sn2 v
: (46)

Extended to integral periods,

sn(u�K)�
cn u

dn u
(47)

cn(u�K)�
k? sn u

dn u
(48)

dn(u�K)�
k?

dn u
(49)

sn(u�2K)��sn u (50)

cnðu þ 2KÞ ¼�cn u ð51Þ

dn(u�2K)�dn u (52)

For COMPLEX arguments,

sn(u�iv)�
sn(u; k) dn v; k?ð Þ

1 � dn2(u; k) sn2 v; k?ð Þ

�
i cn(u; k) dn(u; k) sn v; k?ð Þ cn v; k?ð Þ

1 � dn2(u; k) sn2 v; k?ð Þ
(53)

cn(u�iv)�
cn(u; k) cn v; k?ð Þ

1 � dn2(u; k) sn2 v; k?ð Þ

�
i sn(u; k) dn(u; k) sn v; k?ð Þ dn v; k?ð Þ

1 � dn2(u; k) sn2 v; k?ð Þ
(54)

dn(u�iv)�
dn(u; k) cn v; k?ð Þ dn v; k?ð Þ
1 � dn2(u; k) sn2 v; k?ð Þ

�
ik2 sn(u; k) cn(u; k) sn v; k?ð Þ

1 � dn2(u; k) sn2 v; k?ð Þ
(55)

DERIVATIVES of the Jacobi elliptic functions include

d sn u

du
�cn u dn u (56)

d cn u

du
��sn u dn u (57)

d dn u

du
��k2 sn u cn u (58)

(Hille 1969, p. 66; Zwillinger 1997, p. 136).

Double-period formulas involving the Jacobi elliptic
functions include

sn(2u)�
2 sn u cn u dn u

1 � k2 sn4 u
(59)

cn(2u)�
1 � 2 sn2 u � k2 sn4 u

1 � k2 sn4 u
(60)

dn(2u)�
1 � 2k2 sn2 u � k2 sn4 u

1 � k2 sn4 u
: (61)

Half-period formulas involving the Jacobi elliptic
functions include

sn 1
2K
� 

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � k?
p (62)

cn 1
2K
� 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k?

1 � k?

s
(63)

dn 1
2K
� 

�
ffiffiffiffi
k?

p
: (64)

Squared formulas include

sn2 u�
1 � cn(2u)

1 � dn(2u)
(65)

cn2 u�
dn(2u) � cn(2u)

1 � dn(2u)
(66)



dn2 u �
dn(2u) � cn(2u)

1 � cn(2u)
: (67)

See also AMPLITUDE, ELLIPTIC FUNCTION, JACOBI

DIFFERENTIAL EQUATION, JACOBI’S IMAGINARY TRANS-

FORMATION, JACOBI FUNCTION OF THE SECOND KIND,
JACOBI THETA FUNCTIONS, WEIERSTRASS ELLIPTIC

FUNCTION
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Jacobi Function of the First Kind
JACOBI POLYNOMIAL

Jacobi Function of the Second Kind

Q a; bð Þ
n (x) �2�n�1 x �1ð Þ�a x �1ð Þ�b

�g
1

�1

1 �tð Þn�a 1 �tð Þn� b x �tð Þ�n�1dt:

In the exceptional case n �0, a� b �1 �0 ; a non-
constant solution is given by

Q að Þ(x) �ln(x �1) �p�1 sin pað Þ x �1ð Þ�a x �1ð Þ� b

�g
1

�1

1 � tð Þa 1 � tð Þb

x � t
ln(1 �t)dt:

See also JACOBI DIFFERENTIAL EQUATION, JACOBI

POLYNOMIAL
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Jacobi Identities
"The" Jacobi identity is a relationship

[A; [B; C]] �[B; [C ;A]] �[C ; [A;B]] �0; (1)

between three elements A , B , and C , where [A, B ] is
the COMMUTATOR. The elements of a LIE ALGEBRA

satisfy this identity.

Relationships between the Q -FUNCTIONS Qi are also
known as Jacobi identities:

Q1Q2Q3 �1 ; (2)

equivalent to the JACOBI TRIPLE PRODUCT (Borwein
and Borwein 1987, p. 65) and

Q8
2 �16qQ8

1 �Q8
3 ; (3)

where

q �e �pK ? kð Þ=K kð Þ; (4)

/K �K(k) is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, and K ?(k) �K k?ð Þ�K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

p� 
: Using

WEBER FUNCTIONS

f1�q�1=24Q3 (5)

f2�21=2q1=12Q1 (6)

f �q�1=24Q2; (7)

(5) and (6) become

f1f2f �
ffiffiffi
2

p
(8)

f 8�f 8
1 �f 8

2 (9)

(Borwein and Borwein 1987, p. 69).

See also COMMUTATOR, JACOBI TRIPLE PRODUCT,
PARTITION FUNCTION Q , Q -FUNCTION, WEBER FUNC-

TIONS
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Jacobi Matrix
JACOBI ROTATION MATRIX, JACOBIAN

Jacobi Method
A method of diagonalizing a MATRIX A using JACOBI

ROTATION MATRICES Ppq : It consists of a sequence of
ORTHOGONAL SIMILARITY TRANSFORMATIONS OF THE

FORM

A ?�PT
pqAPpq ;

each of which eliminates one off-diagonal element.
Each application of Ppq affects only rows and columns
of A ; and the sequence of such matrices is chosen so as
to eliminate the off-diagonal elements.

See also JACOBI ALGORITHM, JACOBI ROTATION MA-

TRIX
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Jacobi Polynomial
Also known as the HYPERGEOMETRIC POLYNOMIALS,
they occur in the study of ROTATION GROUPS and in
the solution to the equations of motion of the
symmetric top. They are solutions to the JACOBI

DIFFERENTIAL EQUATION. Plugging

y�
X�
n�0

an x�1ð Þv (1)

into the differential equation gives the RECURRENCE

RELATION

g�n(n�a�b�1)½ �an�2(n�1)(n�a�1)an�1�0 (2)

for n�0; 1, ..., where

g�n(n�a�b�1): (3)

Solving the RECURRENCE RELATION gives

P a�bð Þ
n (x)�

�1ð Þn

2nn!
1�xð Þ�a 1�xð Þ�b dn

dxn

	 1�xð Þa�n 1�xð Þb�n
h i

(4)

for a;b >�1: They form a complete orthogonal
system in the interval [�1; 1] with respect to the
weighting function

wn(x)� 1�xð Þa 1�xð Þb; (5)

and are normalized according to

P a;bð Þ
n (1)�

n�a
n

� �
; (6)

where n
k

� 	
is a BINOMIAL COEFFICIENT. Jacobi poly-

nomials can also be written

Pa;b
n �

G(2n � a� b� 1)

n!G(n � a� b� 1)
Gn a�b�1;b�1; 1

2(x�1)
� 

;

(7)

where G(z) is the GAMMA FUNCTION and

Gn(p; q; x)�
n!G(n � p)

G(2n � p)
P p�q;q�1ð Þ

n (2x�1): (8)

Jacobi polynomials are ORTHOGONAL satisfying

g
1

�1

P a;bð Þ
m P a;bð Þ

n 1�xð Þa 1�xð Þbdx

�
2a�b�1

2n � a� b� 1

G(n � a� 1)G(n � b� 1)

n!G(n � a� b� 1)
dmn: (9)

The COEFFICIENT of the term xn in P a;bð Þ
n (x) is given by

An�
G(2n � a� b� 1)

2nn!G(n � a� b� 1)
: (10)

They satisfy the RECURRENCE RELATION

2(n�1)(n�a�b�1)(2n�a�b)P a;bð Þ
n�1 xð Þ

� (2n�a�b�1) a2�b2
� 	

� 2n�a�bð Þ3x
� �

P a;bð Þ
n xð Þ

�2(n�a)(n�b)(2n�a�b�2)P a;bð Þ
n�1 xð Þ; (11)

where mð Þn is the RISING FACTORIAL

mð Þn�m(m�1) � � � (m�n�1)�
(m � n � 1)!

(m � 1)!
: (12)

The DERIVATIVE is given by

d

dx
P a;bð Þ

n xð Þ
� �

�1
2 n�a�b�1ð ÞP a�1;b�1ð Þ

n�1 xð Þ: (13)

The ORTHOGONAL POLYNOMIALS with WEIGHTING

FUNCTION b�xð Þa x�að Þb on the CLOSED INTERVAL

[a, b ] can be expressed in the form

const:½ �P a;bð Þ
n 2

x � a

b � a
�1

 !
(14)

(Szego 1975, p. 58).

Special cases with a�b are

P a;að Þ
2n xð Þ�G(2n� a� 1)G(n� 1)

G(n� a� 1)G(2n� 1)
P a;�1=2ð Þ

n 2x2�1
� 	

(15)

� �1ð Þn G(2n� a� 1)G(n� 1)

G(n� a� 1)G(2n� 1)
P �1=2;að Þ

n 1�2x2
� 	

(16)



P a;að Þ
2n�1 xð Þ�G(2n� a� 2)G(n� 1)

G(n� a� 1)G(2n� 2)
xP a;1=2ð Þ

n 2x2�1
� 	

(17)

� �1ð Þn G(2n� a� 2)G(n� 1)

G(n� a� 1)G(2n� 2)
xP 1=2;að Þ

n 1�2x2
� 	

: (18)

Further identities are

P a�1;bð Þ
n xð Þ� 2

2n � a� b� 2

	 n � a� 1ð ÞP a;bð Þ
n � n � 1ð ÞP a;bð Þ

n�1 xð Þ
1 � x

(19)

P a�b�1ð Þ
n xð Þ� 2

2n � a� b� 2

	 n � b� 1ð ÞP a;bð Þ
n xð Þ� n � 1ð ÞP a;bð Þ

n�1 xð Þ
1 � x

(20)

Xn

n�0

2n� a� b� 1

2a�b�1

	 G(n� 1)G(n� a� b� 1)

G(n� a� 1)G(n� b� 1)
P a;bð Þ

n xð ÞQ a;bð Þ
n yð Þ

�
1

2

y � 1ð Þ�a y � 1ð Þ�b

y � x
�

2�a�b

2n � a� b� 2

	 G(n � 2)G(n � a� b� 2)

G(n � a� 1)G(n � b� 1)

�
P a;bð Þ

n�1 xð ÞQ a;bð Þ
n yð Þ� P a;bð Þ

n xð ÞQa;b
n�1 yð Þ

x � y
(21)

(Szego 1975, p. 79).

The KERNEL POLYNOMIAL is

K a;bð Þ
n (x; y)�

2�a�b

2n � a� b� 2

	 G(n � 2)G(n � a� b� 2)

G(n � a� 1)G(n � b� 1)

�
P a;bð Þ

n�1 xð ÞP a;bð Þ
n yð Þ� P a;bð Þ

n xð ÞP a;bð Þ
n�1 yð Þ

x � y
(22)

(Szego 1975, p. 71).

The DISCRIMINANT is

D a;bð Þ
n �2�n n�1ð Þ

Yn

n�1

nn�2n�2 n�að Þn�1
n�bð Þn�1

	 n�n�a�bð Þn�n (23)

(Szego 1975, p. 143).

For a�b�0; P 0;0ð Þ
n xð Þ reduces to a LEGENDRE POLY-

NOMIAL. The GEGENBAUER POLYNOMIAL

Gn(p; q; x)�
n!G(n � p)

G(2n � p)
P p�q;q�1ð Þ

n 2x�1ð Þ (24)

and CHEBYSHEV POLYNOMIAL OF THE FIRST KIND can
also be viewed as special cases of the Jacobi poly-
nomials. In terms of the HYPERGEOMETRIC FUNCTION,

Pða;bÞ
n ðxÞ ¼ n þ a

n

� �
2F1ð�n;n þ aþ b; aþ 1; 1

2ð1�xÞÞ

(25)

�
a� 1ð Þn

n!
2 F1 �n;n�a�b; a�1; 1

2 1�xð Þ
� 

(26)

�
n�a

n

� �
x � 1

2

 !2

	2F1 �n;�n�b; a�1;
x � 1

x � 1

 !
; (27)

where að Þn is the POCHHAMMER SYMBOL (Koekoek
1998).

Let N1 be the number of zeros in x � (�1; 1); N2 the
number of zeros in x � (��;�1); and N3 the number of
zeros in x � (1;�): Define Klein’s symbol

E(u)�
0 if u50
ub c if u positive and nonintegral

u�1 if u�1; 2 . . . ;

8<
: (28)

where xb c is the FLOOR FUNCTION, and

X(a;b)�E 1
2 2n�a�b�1j j�aj j�bj j�1ð Þ
h i

(29)

Y(a;b)�E 1
2 �2n�a�b�1j j�aj j�bj j�1ð Þ
h i

(30)

Z(a;b)�E 1
2 �2n�a�b�1j j�aj j�bj j�1ð Þ
h i

: (31)

If the cases a��1;�2, ...,�n; b��1;�2, ...,�n; and
n�a�b��1; �2, ..., �n are excluded, then the
number of zeros of P a;bð Þ

n in the respective intervals are

N1 a;bð Þ

�
2 1

2 X�1ð Þ
j k

for �1ð Þn n�a

n

� �
n�b

n

� �
> 0

2 1
2X
j k

�1 for �1ð Þn n�a

n

� �
n�b

n

� �
B0

8>><
>>: (32)

N2 a;bð Þ

�
2 1

2 Y�1ð Þ
j k

for
2n�a�b

n

� �
n�b

n

� �
> 0

2 1
2Y
j k

�1 for
2n�a�b

n

� �
n�b

n

� �
B0

8>><
>>: (33)

N3 a;bð Þ



�
2 1

2 Z �1ð Þ
j k

for
2n � a � b

n

� �
n � a

n

� �
> 0

2 1
2Z
j k

�1 for
2n � a � b

n

� �
n � a

n

� �
B0

8>><
>>: (34)

(Szego 1975, pp. 144 �/46).

The first few POLYNOMIALS are

P a ; bð Þ
0 xð Þ�1 (35)

P a ;bð Þ
1 xð Þ�1

2 2 a �1ð Þ� a � b �2ð Þ x �1ð Þ½ � (36)

P a ; bð Þ
2 xð Þ�1

8½4 a �1ð Þ 2ð Þ�4 a � b �3ð Þ a �2ð Þ x �1ð Þ

� a � b �3ð Þ 2ð Þðx �1)2 �; (37)

where mð Þn is a RISING FACTORIAL (Abramowitz and
Stegun 1972, p. 793).

See Abramowitz and Stegun (1972, pp. 782 �/93) and
Szego (1975, Ch. 4) for additional identities.

See also CHEBYSHEV POLYNOMIAL OF THE FIRST KIND,
GEGENBAUER POLYNOMIAL, JACOBI FUNCTION OF THE

SECOND KIND, RISING FACTORIAL, ZERNIKE POLYNO-

MIAL
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Jacobi Quadrature
JACOBI-GAUSS QUADRATURE

Jacobi Rotation Matrix
A MATRIX used in the JACOBI TRANSFORMATION

method of diagonalizing MATRICES. The Jacobi rota-
tion matrix Ppq contains 1s along the DIAGONAL,
except for the two elements cos f in rows and
columns p and q . In addition, all off-diagonal ele-
ments are zero except the elements sin f and �sin f:
The rotation angle f for an initial matrix A is chosen
such that

cot(2 f) �
aqq � app

2apq

:

Then the corresponding Jacobi rotation matrix which
annihilates the off-diagonal element apq is

Ppq �

1 0
::: n U

cos f � � �  0 � � �  sin f
� � �  0 � � �  1 � � �  0 � � �

�sin f � � �  0 � � �  cos f
U n :::

0 1

2
666666664

3
777777775

See also JACOBI TRANSFORMATION
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Jacobi Symbol
The product of LEGENDRE SYMBOLS n=pið Þ for each of
the PRIME FACTORS pi such that m�

Q
i pi; denoted

n=mð Þ or n
m

� 
: When m is a PRIME, the Jacobi symbol

reduces to the LEGENDRE SYMBOL. (The Legendre
symbol is equal to 91 depending on whether m is a
QUADRATIC RESIDUE modulo m .) Analogously to the
Legendre symbol, the Jacobi symbol is commonly
generalized to have value

n

m

 !
�0 if m n;j (1)

giving

n

n

 !
�0 (2)

as a special case. Note that the Jacobi symbol is not
defined for m50 or m EVEN. The Jacobi symbol is
implemented in Mathematica as JacobiSymbol[n ,
m ].

Use of the Jacobi symbol provides the generalization
of the QUADRATIC RECIPROCITY THEOREM

m

n

 !
n

m

 !
� �1ð Þ m�1ð Þ n�1ð Þ=4 (3)

for m and n RELATIVELY PRIME ODD INTEGERS with
n]3 (Nagell 1951, pp. 147�/48). Written another
way,



m

n

 !
� �1ð Þ m�1ð Þ n�1ð Þ=4 n

m

 !
(4)

or

n

m

 !
�

m

n

 !
for m or n �1 mod 4ð Þ

�
m

n

 !
for m; n �3 mod 4ð Þ

:

8>>>><
>>>>:

(5)

The Jacobi symbol satisfies the same rules as the
LEGENDRE SYMBOL

n

m

 !
n

m?

 !
�

n

mm?ð Þ

 !
(6)

n

m

 !
n?

m

 !
�

nn?ð Þ
m

 !
(7)

n2

m

 !
�

n

m2

 !
�1 if (m;n) �1 (8)

n

m

 !
�

n?

m

 !
if n �n? mod mð Þ  (9)

�1

m

 !
� �1ð Þ m�1ð Þ=2�

1 for m �1 mod 4ð Þ
�1 for m ��1 mod 4ð Þ

"
(10)

2

m

 !
� �1ð Þ m2�1ð Þ=8�

1 for m �91 mod 8ð Þ
�1 for m �93 mod 8ð Þ

"
(11)

Bach and Shallit (1996) show how to compute the
Jacobi symbol in terms of the SIMPLE CONTINUED

FRACTION of a RATIONAL NUMBER n=m:/

See also KRONECKER SYMBOL, LEGENDRE SYMBOL,
QUADRATIC RESIDUE

References
Bach, E. and Shallit, J. Algorithmic Number Theory, Vol. 1:

Efficient Algorithms. Cambridge, MA: MIT Press,
pp. 343 �/44, 1996.

Guy, R. K. "Quadratic Residues. Schur’s Conjecture." §F5 in
Unsolved Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 244 �/45, 1994.

Nagell, T. "Jacobi’s Symbol and the Generalization of the
Reciprocity Law." §42 in Introduction to Number Theory.
New York: Wiley, pp. 145 �/49, 1951.

Riesel, H. "Jacobi’s Symbol." Prime Numbers and Computer
Methods for Factorization, 2nd ed. Boston, MA: Birkhäu-
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Jacobi Tensor

Jm
nab�Jm

nba�
1
2 Rm

anb�Rm
bna

� 
;

where R is the RIEMANN TENSOR.

See also RIEMANN TENSOR

Jacobi Theta Function
THETA FUNCTIONS

Jacobi Theta Functions
The Jacobi theta functions are the elliptic analogs of
the EXPONENTIAL FUNCTION, and may be used to
express the JACOBI ELLIPTIC FUNCTIONS. The theta
functions are quasi-doubly periodic, and are most
commonly denoted qn z; qð Þ in modern texts, although
the notations Un z; qð Þ and un z; qð Þ (Borwein and
Borwein 1987) are sometimes also used. Whittaker
and Watson (1990, p. 487) gives a table summarizing
notations used by various earlier writers. The theta
functions are given in Mathematica by Ellip-
ticTheta[n , z , q ].

The theta functions may be expressed in terms of the
NOME q , denoted qn z; qð Þ; or the HALF-PERIOD RATIO t;
denoted qn z tj Þ;ð where qj j B 1 and q and t are related
by

q�eipt: ð1Þ

Let the many-valued function ql be interpreted to
stand for elpit: Then for a complex number z , the
Jacobi theta functions are defined as

q 1 z; qð Þ�
X�

n���

�1ð Þn�1=2q n�1=2ð Þ2

e 2n�1ð Þiz (2)

q2 z; qð Þ�
X�

n���

q n�1=2ð Þ2

e 2n�1ð Þiz (3)

q 3 z; qð Þ�
X�

n���

qn2

e2niz (4)

q 4 z; qð Þ�
X�

n���

�1ð Þnqn2

e2niz: (5)

Writing the doubly infinite sums as singly infinite
sums gives the slightly less symmetrical forms

q1 z; qð Þ�2
X�
n�0

�1ð Þnq n�1=2ð Þ2

sin[(2n�1)z] (6)

�2q1=4
X�
n�0

�1ð Þnqn n�1ð Þ sin[(2n�1)z] (7)

q 2 z; qð Þ�2
X�
n�0

q n�1=2ð Þ2

cos[(2n�1)z] (8)

�2q1=4
X�
n�0

qn n�1ð Þ cos[(2n�1)z] (9)

q 3 z; qð Þ�1�2
X�
n�0

qn2

cos 2nzð Þ (10)



q 4 z; qð Þ�1�2
X�
n�0

�1ð Þnqn2

cos(2nz) (11)

(Whittaker and Watson 1990, p. 463�/64). Explicitly
writing out the series gives

q 1 z; qð Þ�2q1=4 sin z�2q9=4 sin(3z)�2q25=4 sin(5z)

�. . . (12)

q 2 z; qð Þ�2q1=4 cos z�2q9=4 cos(3z)�2q25=4 cos(5z)

�. . . (13)

q 3 z; qð Þ�1�2q cos(2z)�2q4 cos(4z)�2q9 cos(6z)

�. . . (14)

q4 z; qð Þ�1�2q cos 2zð Þ�2q4 cos 4zð Þ�2q9 cos 6zð Þ
�. . . (15)

(Borwein and Borwein 1987, p. 52; Whittaker and
Watson 1990, p. 464). q 1(z; q) is an ODD FUNCTION of
z , while the other three are even functions of z .

The following table illustrates the quasi-double per-
iodicity of the Jacobi theta functions.

/q i/ /q i z�pð Þ=q i zð Þ/ /q i z�tpð Þ=q i zð Þ/

/q 1/ �1 /�N/

/q 2/ �1 N

/q 3/ 1 N

/q 4/ 1 /�N/

Here,

N�q�1e�2iz: (16)

The quasi-periodicity can be established as follows for
the specific case of q 4;

q 4 z�p; qð Þ�
X�

n���

�1ð Þnqn2

e2nize2nip

�
X�

n���

�1ð Þnqn2

e2niz�q 4 z; qð Þ (17)

q 4 z�pt; qð Þ�
X�

n���

�1ð Þnqn2

e2nipte2niz

�
X�

n���

�1ð Þnqn2

q2ne2niz

��q�1e�2iz
X�

n���

�1ð Þn�1q n�1ð Þ2

q2 n�1ð Þiz

��q�1e�2iz
X�

n���

�1ð Þnqn2

q2niz

��q�1e�2izq 4 z; qð Þ: (18)

The Jacobi theta functions can be written in terms of
each other:

q1 z; qð Þ��ieiz�pit=4q 4 z�1
4pt; q

� 
(19)

q 2 z; qð Þ�q 1 z�1
2p; q

� 
(20)

q 3 z; qð Þ�q 4 z�1
2p; q

� 
(21)

Any Jacobi theta function of given arguments can be
expressed in terms of any other two Jacobi theta
functions with the same arguments.

Define

q i qð Þ�q i z�0; qð Þ (22)

to be the Jacobi theta functions with argument z�0,
plotted above. Then the doubly infinite sums (2) to (5)
take on the particularly simple forms

q 1 qð Þ�0 (23)

q 2 qð Þ�
X�

n���

q n�1=2ð Þ2

(24)

q 3 qð Þ�
X�

n���

qn2

(25)

q 4 qð Þ�
X�

n���

�1ð Þnqn2

(26)

(Borwein and Borwein 1987, p. 33).

The plots above show the Jacobi theta functions
plotted as a function of argument z and NOME q
restricted to real values.



Particularly beautiful plots are obtained by examin-
ing the REAL and IMAGINARY PARTS of q i z; qð Þ for fixed
z in the complex plane for qj j B 1; illustrated above.

The Jacobi theta functions satisfy an almost bewil-
deringly large number of identities involving the four
functions, their derivatives, multiples of their argu-
ments, and sums of their arguments. Among the
unusual identities given by Whittaker and Watson
(1990) are

q 3 z; qð Þ�q 3 2z; q4
� 	

�q 2 2z; q4
� 	

(27)

q 3 z; qð Þ�q 3 2z; q4
� 	

�q 2 2z; q4
� 	

(28)

(Whittaker and Watson 1990, p. 464) and

q ?k z � pð Þ
q k z � pð Þ

�
q ?k zð Þ
q k zð Þ

(29)

q ?k z � pgð Þ
q k z � pgð Þ

��2i�
q ?k zð Þ
qk zð Þ

(30)

(Whittaker and Watson 1990, p. 465), for k�1, ..., 4,
where q k zð Þ�q k z; qð Þ and q i�q i 0; qð Þ: A class of
identities involving the squares of Jacobi theta func-
tions are

q 2
1 zð Þq 2

4�q 2
3 zð Þq 2

2�q 2
2 zð Þq 2

3 (31)

q 2
2 zð Þq 2

4�q 2
4 zð Þq 2

2�q 2
1 zð Þq 2

3 (32)

q 2
3 zð Þq 2

4�q 2
4 zð Þq 2

3�q 2
1 zð Þq 2

2 (33)

q 2
4 zð Þq 2

4�q 2
3 zð Þq 2

3�q 2
2 zð Þq 2

2 (34)

(Whittaker and Watson 1990, p. 466). Taking z�0 in
(34) gives the special case

q 4
4�q 4

3�q 4
2; (35)

which is the only identity of this type.

In addition,

q3 xð Þ�
X�

n���

xn2

�1�2x�2x4�2x9�. . . (36)

q 2
3 xð Þ�1

�4
x

1 � x
�

x3

1 � x3
�

x5

1 � x5
�

x7

1 � x7
�. . .

 !

(37)

q 4
3 xð Þ�1

�8
x

1 � x
�

2x2

1 � x2
�

3x3

1 � x3
�

4x4

1 � x4
�. . .

 !

(38)

The Jacobi theta functions obey addition rules such
as

q 1 y�zð Þq 1 y�zð Þq 2
4�q 2

3 yð Þq 2
2 zð Þ�q2

2 yð Þq 2
3 zð Þ

�q 2
1 yð Þq 2

4 zð Þ�q 2
4 yð Þq 2

1 zð Þ (39)

q 2 y�zð Þq 2 y�zð Þq2
4�q 2

4 yð Þq 2
2 zð Þ�q 2

1 yð Þq 2
3 zð Þ

�q2
2 yð Þq 2

4 yð Þ�q 2
3 yð Þq 2

1 zð Þ (40)

q 3 y�zð Þq 3 y�zð Þq2
4�q 2

4 yð Þq 2
3 zð Þ�q 2

1 yð Þq 2
2 zð Þ

�q 2
3 yð Þq 2

4 zð Þ�q 2
2 yð Þq 2

1 zð Þ (41)

q 4 y�zð Þq 4 y�zð Þq2
4�q 2

3 yð Þq 2
3 zð Þ�q 2

2 yð Þq 2
2 zð Þ

�q 2
4 yð Þq 2

4 zð Þ�q 2
1 yð Þq 2

1 zð Þ (42)

(Whittaker and Watson 1990, p. 487), and

q 3 y�zð Þq 3 y�zð Þq2
2�q 2

3 yð Þq 2
2 zð Þ�q 2

4 yð Þq 2
1 zð Þ

�q 2
2 yð Þq 2

3 zð Þ�q 2
1 yð Þq2

4 zð Þ

q 3 y�zð Þq 3 y�zð Þq2
3�q 2

1 yð Þq 2
1 zð Þ�q 2

3 yð Þq 2
3 zð Þ

�q 2
2 yð Þq 2

2 zð Þ�q 4 yð Þq2
4 zð Þ

q 4 y�zð Þq 4 y�zð Þq2
2�q 2

4 yð Þq 2
2 zð Þ�q 2

3 yð Þq 2
1 zð Þ

�q 2
2 yð Þq 2

4 zð Þ�q 2
1 yð Þq 2

3 zð Þ (43)

q 4 y�zð Þq 4 y�zð Þq2
3�q 2

4 yð Þq 2
3 zð Þ�q 2

2 yð Þq 2
1 zð Þ

�q 2
3 yð Þq 2

4 zð Þ�q 2
1 yð Þq 2

2 zð Þ (44)

(Whittaker and Watson 1990, p. 488).

q 1 y9zð Þq2 y	zð Þq 3q 4

�q 1 yð Þq 2 yð Þq 3 zð Þq 4 zð Þ9q 3 yð Þq 4 yð Þq 1 zð Þq 2 zð Þ (45)

q 1 y9zð Þq3 y	zð Þq 2q 4

�q 1 yð Þq 3 yð Þq 2 zð Þq 4 zð Þ9q 2 yð Þq 4 yð Þq 1 zð Þq 3 zð Þ (46)

q 1 y9zð Þq4 y	zð Þq 2q 3

�q 1 yð Þq 4 yð Þq 2 zð Þq 3 zð Þ9q 2 yð Þq 3 yð Þq 1 zð Þq 4 zð Þ (47)

q 2 y9zð Þq3 y	zð Þq 2q 3

�q 2 yð Þq 3 yð Þq 2 zð Þq 3 zð Þ	q 1 yð Þq 4 yð Þq 1 zð Þq 4 zð Þ (48)



q 2 y9zð Þq 4 y	zð Þq 2q 4

�q 2 yð Þq4 yð Þq 2 zð Þq 4 zð Þ	q 1 yð Þq 3 yð Þq 1 zð Þq 3 zð Þ (49)

q 3 y9zð Þq 4 y9zð Þq 3q 4

�q 3 yð Þq4 yð Þq 3 zð Þq 4 zð Þ	q 1 yð Þq 2 yð Þq 1 zð Þq 2 zð Þ (50)

(Whittaker and Watson 1990, p. 488).

There are also a series of DUPLICATION FORMULAS

q3 2zð Þq3
3�q 4

3 zð Þ�q 4
1 zð Þ (51)

q 2 2zð Þq 2q
2
4�q2

2 zð Þq 2
4 zð Þ�q 2

1 zð Þq 2
3 zð Þ (52)

q 3 2zð Þq 3q
2
4�q2

3 zð Þq 2
4 zð Þ�q 2

1 zð Þq 2
2 zð Þ (53)

q4 2zð Þq3
4�q 4

3 zð Þ�q 4
2 zð Þ (54)

¼ q 4
4ðzÞ�q 4

1ðzÞ ð55Þ

q 1 2zð Þq 2q 3q4�2q 1 zð Þq 2 zð Þq 3 zð Þq 4 zð Þ (56)

(Whittaker and Watson 1990, p. 488).

Ratios of Jacobi theta function derivatives to the
functions themselves have the simple forms

q ?1 zð Þ
q 1 zð Þ

�cot z�4
X�
n�1

q2n

1 � q2n
sin(2nz) (57)

q ?2 zð Þ
q 2 zð Þ

��tan z�4
X�
n�1

�1ð Þn q2n

1 � q2n
sin(2nz) (58)

q ?3 zð Þ
q 3 zð Þ

�4
X�
n�1

�1ð Þn qn

1 � q2n
sin(2nz) (59)

q ?4 zð Þ
q 4 zð Þ

�
X�
n�1

q2n�1 sin(2z)

1 � 2q2n�1 cos(2z) � q4n�2
(60)

�
X�
n�1

4qn sin(2nz)

1 � q2n
(61)

(Whittaker and Watson 1990, p. 489).

The Jacobi theta functions can be expressed as
products instead of sums by

q 1 zð Þ�2Gq1=4 sin z
Y�
n�1

1�2q2n cos(2z)�q4n
� �

(62)

q2 zð Þ�2Gq1=4 cos z
Y�
n�1

1�2q2n cos(2z)�q4n
� �

(63)

q 3 zð Þ�G
Y�
n�1

1�2q2n�1 cos(2z)�q4n�2
� �

(64)

q 4 zð Þ�G
Y�
n�1

1�2q2n�1 cos(2z)�q4n�2
� �

; (65)

where

G�
Y�
n�1

1�q2n
� 	

(66)

(Whittaker and Watson 1990, pp. 469�/70).

The Jacobi theta functions satisfy the PARTIAL DIF-

FERENTIAL EQUATION

1
4pi

@2y

@z2
�

@y

@t
�0; (67)

where y�q i z tj Þ:ð Ratios of the Jacobi theta functions
with q 4 in the DENOMINATOR also satisfy differential
equations

d

dz

q 1 zð Þ
q 4 zð Þ

" #
�q 2

4

q2 zð Þq 3 zð Þ
q 2

4 zð Þ
(68)

d

dz

q 2 zð Þ
q 4 zð Þ

" #
��q 2

3

q 1 zð Þq 3 zð Þ
q 2

4 zð Þ
(69)

d

dz

q 3 zð Þ
q 4 zð Þ

" #
�q 2

2

q1 zð Þq 2 zð Þ
q 2

4 zð Þ
(70)

JACOBI’S IMAGINARY TRANSFORMATION expresses
q i z=t�1=tj Þð in terms of q i z tj Þ:ð There are a large
number of beautiful identities involving Jacobi theta
functions of arguments w , x , y , and z and w?; x?; y?;
and z?; related by

2w?��w�x�y�z (71)

2x?�w�x�y�z (72)

2y?�w�x�y�z (73)

2z?�w�x�y�z (74)

(Whittaker and Watson 1990, pp. 467�/69, 488, and
490). Using the notation

q i w�p=2; qð Þq j x�p=2; qð Þq k y; qð Þq l z; qð Þ� ijkl½ � (75)

q i w?; qð Þq j x?; qð Þq k y?�p=2; qð Þq l z?�p=2; qð Þ�ijkl;

(76)

gives a whopping 288 identities of the form

9a1a2a3a4½ �9 b1b2b3b4½ ��9a?1a?2a?3a?49b?1b?2b?3b?4: (77)

The complete ELLIPTIC INTEGRALS OF THE FIRST and
SECOND KINDS can be expressed using Jacobi theta
functions. Let

j�
q 1 zð Þ
q 4 zð Þ

; (78)

and plug into (68)

dj

dz

 !2

� q 2
2�j2q 2

3

� 	
q 2

3�j2q 2
2

� 	
: (79)

Now write



j
q 3

q 2

�y (80)

and

z q 2
3 �u: (81)

Then

dy

du

 !2

� 1 �y2
� 	

1 �k2y2
� 	

; (82)

where the MODULUS is defined by

k �k(q) �
q 2

2 qð Þ
q 2

3 qð Þ
: (83)

Define also the complementary MODULUS

k?�k? qð Þ�q 2
4 �qð Þ
q 2

3 qð Þ
: (84)

Now, since

q 4
2 �q4

4 �q 4
3 ; (85)

we have shown

k2 �k?2 �1 : (86)

The solution to the equation is

y �
q 3

q 2

q 1(uq�2
3 jr Þ

q 4 u q�2
3 jr

� 	�sn(u; k) ; (87)

which is a JACOBI ELLIPTIC FUNCTION with periods

4K(k) �2pq 2
3(q) (88)

and

2iK ?(k) �pr q 2
3(q): (89)

Here, K is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND,

K(k) �1
2 pq

2
3(q) : (90)

The Jacobi theta functions provide analytic solutions
to many tricky problems in mathematics and math-
ematical physics. For example, the Jacobi theta
functions are related to the SUM OF SQUARES FUNC-

TION r2(n) giving the number of representations of n
by two squares via

q 2
3(q) �

X�
n �0

r2(n)qn (91)

q2
4(q) �

X�
n�0

�1ð Þnr2(n)qn (92)

(Borwein and Borwein 1987, p. 34). The general
QUINTIC EQUATION is solvable in terms of Jacobi theta
functions, and these functions also provide a uni-

formly convergent form of the GREEN’S FUNCTION for
a rectangular region (Oberhettinger and Magnus
1949). Finally, Jacobi theta functions can be used to
uniformize all elliptic and hyperelliptic curves, the
classical example being

y2�x x4�1
� 	

�0; (93)

with

x��
q 3ð0j12tÞ
q 4ð0j12tÞ

(94)

y�
iq 1u2

3 ð0j12tÞq
2
2ð0j12tÞ

q5u2
4 ð0j12tÞ

: (95)

See also BLECKSMITH-BRILLHART-GERST THEOREM,
ELLIPTIC FUNCTION, ETA FUNCTION, EULER’S PENTA-

GONAL NUMBER THEOREM, HALF-PERIOD RATIO, JA-

COBI ELLIPTIC FUNCTIONS, JACOBI TRIPLE PRODUCT,
LANDEN’S FORMULA, MOCK THETA FUNCTION, MOD-

ULAR EQUATION, MODULAR TRANSFORMATION, MOR-

DELL INTEGRAL, NEVILLE THETA FUNCTIONS, NOME,
POINCARÉ -FUCHS-KLEIN AUTOMORPHIC FUNCTION,
QUINTUPLE PRODUCT IDENTITY, RAMANUJAN THETA

FUNCTIONS, SCHRÖ TER’S FORMULA, SUM OF SQUARES

FUNCTION, THETA FUNCTIONS, WEBER FUNCTIONS
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Jacobi Transformation
JACOBI METHOD

Jacobi Triple Product
The Jacobi triple product is the beautiful identity

Y�
n�1

1�x2n
� 	

1�x2n�1z2
� 	

1�
x2n�1

z2

 !

�
X�

m���

xm2

z2m: (1)

In terms of the Q -FUNCTION, (1) is written

Q1Q2Q3�1; (2)

which is one of the two JACOBI IDENTITIES. In Q -

SERIES notation, the Jacobi triple product identity is
written

q;�xq;�1=x; qð Þ��
X�

k���

xkq k2�kð Þ=2 (3)

for 0B qj j B1 and x"0 (Gasper and Rahman 1990,
p. 12; Leininger and Milne 1997). Another form of the
identity is

X�
n���

�1ð Þnanq n2�nð Þ=2

�
Y�
n�1

1�aqn�1
� 	

1�a�1qn
� 	

1�qnð Þ (4)

(Hirschhorn 1999).

Dividing (4) by 1�a and letting a 0 1 gives the
limiting case

q; qð Þ3
��

X�
n�0

�1ð Þn(2n�1)qn n�1ð Þ=2 (5)

�1
2

X�
n���

�1ð Þn(2n�1)qn n�1ð Þ=2 (6)

(Jacobi 1829; Hardy and Wright 1979; Leininger and
Milne 1997; Hardy 1999, p. 87; Hirschhorn 1999).

For the special case of z�1, (1) becomes

8 (x)�G(1)�
Y�
n�1

1�x2n�1
� 	2

1�x2n
� 	

�
X�

m���

xm2

�1�2
X�
m�1

xm2

; (7)

where 8 xð Þ is the one-variable RAMANUJAN THETA

FUNCTION. In terms of the two-variable RAMANUJAN

THETA FUNCTION f (a; b); the Jacobi triple product is
equivalent to

f (a; b)� �a; abð Þ� �b; abð Þ� ab; abð Þ� (8)

(Berndt et al. ).

One method of proof for the Jacobi identity proceeds
by defining the function

F(z)�
Y�
n�1

1�x2n�1z2
� 	

1�
x2n�1

z2

 !

� 1�xz2
� 	

1�
x

z2

 !
1�x3z2
� 	

1�
x3

z2

 !
1�x5z2
� 	

	 1�
x5

z2

 !
� � � ; (9)

Then

F(xz)� 1�x3z2
� 	

1�
1

xz2

 !
1�x5z2
� 	

1�
x

z2

 !

� 1�x7z2
� 	

1�
x3

z2

 !
� � � : (10)

Taking (10)} (9),

F(xz)

F(z)
� 1�

1

xz2

 !
1

1 � xz2

 !

�
xz2 � 1

xz2

1

1 � xz2
�

1

xz2
; (11)

which yields the fundamental relation

xz2F(xz)�F(z): (12)

Now define

G(z)�F(z)
Y�
n�1

1�x2n
� 	

(13)

G(xz)�F(xz)
Y�
n�1

1�x2n
� 	

: (14)

Using (12), (14) becomes

G(xz)�
F(z)

xz2

Y�
n�1

1�x2n
� 	

�
G(z)

xz2
; (15)



so

G(z) �xz2G(xz) : (16)

Expand G in a LAURENT SERIES. Since G is an EVEN

FUNCTION, the LAURENT SERIES contains only even
terms.

G(z) �
X�

m���

amz2m : (17)

Equation (16) then requires that

X�
m���

amz2m �xz2
X�

m���

am xzð Þ2m

�
X�

m���

amx2m�1z2m�2 : (18)

This can be re-indexed with m?�m �1 on the left
side of (18)

X�
m���

amz2m �
X�

m���

amx2m�1z2m ; (19)

which provides a RECURRENCE RELATION

am �am�1x2m�1 ; (20)

so

a1 �a0x (21)

a2 �a1x3 �a0x3 �1 �a0x4 �a0x22 

(22)

a3 �a2x5 �a0x5 �4 �a0x9 �a0x32 

: (23)

The exponent grows greater by (2m �1) for each
increase in m of 1. It is given by

Xm

n�1

(2m �1) �2
m m � 1ð Þ

2
�m �m2 : (24)

Therefore,

am �a0xm2 

: (25)

This means that

G(z) �a0

X�
m���

xm2 

z2m : (26)

The COEFFICIENT a0 must be determined by going
back to (9) and (13) and letting z �1. Then

F(1) �
Y�
n �1

1 �x2n�1
� 	

1 �x2n�1
� 	

�
Y�
n�1

1 �x2n �1
� 	2

(27)

G(1) �F(1)
Y�
n�1

1 �x2n
� 	

�
Y�
n�1

1 �x2n�1
� 	2 Y�

n�1

1 �x2n
� 	

�
Y�
n�1

1 �x2n �1
� 	2

1 �x2n
� 	

; (28)

since multiplication is ASSOCIATIVE. It is clear from
this expression that the a0 term must be 1, because
all other terms will contain higher POWERS of x .
Therefore,

a0�1; (29)

so we have the Jacobi triple product,

G(z)�
Y�
n�1

1�x2n
� 	

1�x2n�1z2
� 	

1�
x2n�1

z2

 !

�
X�

m���

xm2

z2m: (30)

See also EULER IDENTITY, JACOBI IDENTITIES, PARTI-

TION FUNCTION Q , Q -FUNCTION, QUINTUPLE PRO-

DUCT IDENTITY, RAMANUJAN PSI SUM, RAMANUJAN

THETA FUNCTIONS, SCHRÖ TER’S FORMULA, THETA

FUNCTIONS
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Jacobi Zeta Function
Denoted zn(u; k) or Z(u) :

Z ðfjmÞ�Eðf jmÞ�E(m)F ðf jmÞ
K(m)

;

where f is the AMPLITUDE, m is the PARAMETER, and
F f mj Þð and K(m) are ELLIPTIC INTEGRALS OF THE

FIRST KIND, and e(m) is an ELLIPTIC INTEGRAL OF THE

SECOND KIND. See Gradshteyn and Ryzhik (2000,
p. xxxi) for expressions in terms of THETA FUNCTIONS.
The Jacobi zeta functions is implemented in Mathe-
matica as JacobiZeta[phi , m ].

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
ELLIPTIC INTEGRAL OF THE SECOND KIND, HEUMAN

LAMBDA FUNCTION, ZETA FUNCTION
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Jacobi’s Curvature Theorem
The principal normal indicatrix of a closed SPACE

CURVE with nonvanishing curvature bisects the AREA

of the unit sphere if it is embedded.

Jacobi’s Determinant Identity
Let

A �
B D
E C

� �
(1)

A �1 �
W X
Y Z

� �
; (2)

where B and W are k �k MATRICES. Then

det Zð Þ det Að Þ�det B : (3)

The proof follows from equating determinants on the
two sides of the block matrices

B D
E C

� �
I X
O Z

� �
�

B O
E I

� �
; (4)

where I is the IDENTITY MATRIX and O is the ZERO

MATRIX.
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Jacobi’s Imaginary Transformation
Transformations which relate elliptic functions to
other elliptic functions of the same type but having
different arguments. In the case of the JACOBI

ELLIPTIC FUNCTIONS sn u; cn u; and dn u; the trans-
formations are

sn(iu ; k) �i
sn u; k?ð Þ
cn u; k ?ð Þ  

(1)

cn(iu ; k) �
1

cn u; k?ð Þ  
(2)

dn(iu ; k) �
dn u; k?ð Þ
cn u; k?ð Þ

; (3)

where k is the MODULUS, and k?�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

p
is the

COMPLEMENTARY MODULUS (Abramowitz and Stegun
1972; Whittaker and Watson 1990, p. 505).

In the case of the JACOBI THETA FUNCTIONS, Jacobi’s
imaginary transformation gives

q 1 z j tð Þ��i �itð Þ�1 =2ei t?z2 =pq1 z t ? t ?j Þð (4)

q 2 z jtð Þ� �itð Þ�1 =2ei t?z2 =pq 4 zt ? t?j Þð (5)

q 3 z jtð Þ� �itð Þ�1 =2ei t?z2 =pq 3 zt ? t?j Þð (6)

q 4 zj tð Þ� �itð Þ�1 =2ei t?z2 =pq2 z t ? tj Þ;ð (7)

where

t ?��
1

t ? 
(8)

and �itð Þ�1 =2 is interpreted as satisfying arg �i tð Þj jB
p=2 (Whittaker and Watson 1990, p. 475). These
transformations were first obtained by Jacobi
(1828), but Poisson (1827) had previously obtained a
formula equivalent to one of the four, and from which
the other three follow from elementary algebra
(Whittaker and Watson 1990, p. 475).

See also JACOBI ELLIPTIC FUNCTIONS, JACOBI THETA

FUNCTIONS
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Jacobi’s Theorem
Let Mr be an r -rowed MINOR of the nth order
DETERMINANT Aj j associated with an n�n MATRIX

A�aij in which the rows i1; i2; ..., ir are represented
with columns k1; k2; ..., kr: Define the complementary
minor to Mr as the (n�k)/-rowed MINOR obtained from
Aj j by deleting all the rows and columns associated
with Mr and the signed complementary minor M rð Þ to
Mr to be

M rð Þ� �1ð Þi1�i2�...�ir�k1�k2�...�kr

�complementary minor to Mr½ �:

Let the MATRIX of cofactors be given by

D�

A11 A12 � � � A1n

A21 A22 � � � A2n

n n ::: n
An1 An2 � � � Ann

%%%%%%%%

%%%%%%%%
;

with Mr and M?r the corresponding r -rowed minors of
Aj j and D; then it is true that

M?r� Aj jr�1M rð Þ:
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JacobiAmplitude
AMPLITUDE

Jacobian
Given a set y�f(x) of n equations in n variables x1;
..., xn; written explicitly as

y�

f1(x)
f2(x)
n

fn(x)

2
664

3
775; (1)

or more explicitly as

y1�f1 x1; . . . ; xnð Þ
n
yn�fn x1; . . . ; xnð Þ;

8<
: (2)

the Jacobian matrix, sometimes simply called "the
Jacobian" (Simon and Blume 1994) is defined by

J x1; . . . ; xnð Þ�

@y1

@x1

� � � @y1

@xn

n ::: n
@yn

@x1

� � � @yn

@xn

2
666664

3
777775: (3)

The Jacobian matrix can be computed using the
Mathematica command

JacobianMatrix[fns_List, vars_List] :�
Outer[D, fns, vars]

The DETERMINANT of J is the Jacobian determinant
(confusingly, often called "the Jacobian" as well) and
is denoted

J�
@ y1; . . . ; ynð Þ
@ x1; . . . ; xnð Þ

%%%%%
%%%%%: (4)

It can be computed using the Mathematica command

JacobianDeterminant[fns_List, vars_List] :�
Module[

{

nf � Length[fns],

nv � Length[vars],

j � JacobianMatrix[fns, vars]

},

Which[

nf � nv, Sqrt[Det[Transpose[j].j]],

nf �� nv, Det[j],

nf B nv, Sqrt[Det[j.Transpose[j]]]

]

]

Taking the differential

dy�yxdx (5)

shows that J is the DETERMINANT of the MATRIX yx;
and therefore gives the ratios of n -D volumes (CON-

TENTS) in y and x ,

dy1 � � �dyn�j @ y1; . . . ; ynð Þ
@ x1; . . . ; xnð Þ jdx1 � � �dxn: (6)

The concept of the Jacobian can also be applied to n
functions in more than n variables. For example,
considering f (u; v;w) and g(u; v;w); the Jacobians

@(f ; g)

@(u; v)
� jfu fv

gu gv
j (7)

@(f ; g)

@(u;w)
� jfu fw

gu gw
j (8)

can be defined (Kaplan 1984, p. 99).

For the case of n�3 variables, the Jacobian takes the
special form

Jf (x1; x2; x3)�j @y

@x1

�
@y

@x2

�
@y

@x3
j; (9)



where a �b is the DOT PRODUCT and b �c is the CROSS

PRODUCT, which can be expanded to give

j @ y1 ; y2 ; y3ð Þ
@ x1 ; x2 ; x3ð Þ j�

@y1

@x1

@y1

@x2

@y1

@x3

@y2

@x1

@y2

@x2

@y2

@x3

@y3

@x1

@y3

@x2

@y3

@x3

%%%%%%%%%%%%%%

%%%%%%%%%%%%%%
: (10)

See also CHANGE OF VARIABLES THEOREM, CURVI-

LINEAR COORDINATES, IMPLICIT FUNCTION THEOREM
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Jacobian Conjecture
If det F ?(x)½ ��1 for a POLYNOMIAL MAP F (where det is
the DETERMINANT), then F is BIJECTIVE with poly-
nomial inverse (i.e., F is an INVERTIBLE POLYNOMIAL

MAP).

See also INVERTIBLE POLYNOMIAL MAP, POLYNOMIAL

MAP
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Jacobian Curve
The Jacobian of a linear net of curves of order n is a
curve of order 3(n �1): It passes through all points
common to all curves of the net. It is the LOCUS of
points where the curves of the net touch one another
and of singular points of the curve.

See also CAYLEYIAN CURVE, HESSIAN COVARIANT,
STEINERIAN CURVE
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Jacobian Determinant
JACOBIAN

Jacobian Group
The Jacobian group of a 1-D linear series is given by
intersections of the base curve with the JACOBIAN

CURVE of itself and two curves cutting the series.
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Jacobian Matrix
JACOBIAN

Jacobi-Anger Expansion

eiz cos u �
X�

n���

inJn(z)ein u ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
The identity can also be written

eiz cos u �J0(z) �2
X�
n�1

inJn(z) cos(nu) :

This expansion represents an expansion of plane
waves into a series of cylindrical waves.

See also BESSEL FUNCTION OF THE FIRST KIND

JacobiCD
JACOBI ELLIPTIC FUNCTIONS

JacobiCN
JACOBI ELLIPTIC FUNCTIONS

JacobiCS
JACOBI ELLIPTIC FUNCTIONS

JacobiDC
JACOBI ELLIPTIC FUNCTIONS

JacobiDN
JACOBI ELLIPTIC FUNCTIONS

JacobiDS
JACOBI ELLIPTIC FUNCTIONS

Jacobi-Gauss Quadrature
Also called JACOBI QUADRATURE or MEHLER QUAD-

RATURE. A GAUSSIAN QUADRATURE over the interval
[�1; 1] with WEIGHTING FUNCTION

W(x)� 1�xð Þa 1�xð Þb: (1)

The ABSCISSAS for quadrature order n are given by
the roots of the JACOBI POLYNOMIALS P a;bð Þ

n (x): The
weights are

wi��
An�1gn

AnP a;bð Þ?
n xið ÞP a;bð Þ

n�1 xið Þ

�
An

An�1

gn�1

P a;bð Þ
n�1 xið ÞP a;bð Þ?

n xið Þ
; (2)



where An is the COEFFICIENT of xn in P a; bð Þ
n (x): For

JACOBI POLYNOMIALS,

An

G(2n � a� b � 1)

2nn!G(n � a� b � 1) 
; (3)

where G(z) is a GAMMA FUNCTION. Additionally,

gn �
1

22n n!ð Þ2

22n�a� b�1n!

2n � a� b � 1

	 G(n � a� 1)G(n � b � 1)

G(n � a� b � 1)
; (4)

so

wi �
2n � a� b � 2

n � a� b � 1

G(n � a� 1)G(n � b � 1)

G(n � a� b � 1)

	 22n�a� b�1n!

V ?n xið ÞVn�1 xið Þ  
(5)

�
G(n � a� 1)G(n � b � 1)

G(n � a� b � 1)

22n�a� b�1n!

1 � x2
i

� 	
V ?n xið Þ½ �2 ; (6)

where

Vm �P a; bð Þ
n (x)

2nn!

�1ð Þn : (7)

The error term is

En �
G(n � a� 1)G(n � b � 1)G(n � a� b � 1)

2n � a� b � 1ð Þ G 2n � a� b � 1ð Þ½ �2

	 22n �a� b�1n!

2nð Þ!
f 2nð Þ jð Þ  (8)

(Hildebrand 1959).
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JacobiNC
JACOBI ELLIPTIC FUNCTIONS

JacobiND
JACOBI ELLIPTIC FUNCTIONS

JacobiNS
JACOBI ELLIPTIC FUNCTIONS

JacobiP
JACOBI POLYNOMIAL

JacobiSC
JACOBI ELLIPTIC FUNCTIONS

JacobiSD
JACOBI ELLIPTIC FUNCTIONS

JacobiSN
JACOBI ELLIPTIC FUNCTIONS

JacobiZeta
JACOBI ZETA FUNCTION

Jacobson Canonical Form

Let A be a matrix with the elementary divisors of its
characteristic matrix expressed as powers of its
irreducible polynomials in the field F[l] ; and consider
an elementary divisor p lð Þ½ �q: If q �1, then

Cq(p) �

C(p) M 0 � � �  0 0
0 C(p) M � � �  0 0
n :::

:::
:::

::: n
0 0 0 � � �  C(p) M
0 0 0 � � �  0 C(p)

2
66664

3
77775;

where M is a matrix of the same order as C(p) having
the element 1 in the lower left-hand corner and zeros
everywhere else.

Ayres, F. Jr. Theory and Problems of Matrices. New
York: Schaum, pp. 205�/06, 1962.

Jacobson Radical
A special ideal in a COMMUTATIVE RING R . The
Jacobson radical is the intersection of the maximal
ideals in R . It could be the zero ideal, as in the case of
the integers.

See also ALGEBRAIC GEOMETRY, ALGEBRAIC NUMBER

THEORY, IDEAL, NILRADICAL, RADICAL (IDEAL)

Jacobsthal Number
The Jacobsthal numbers are the numbers obtained by
the Un/s in the LUCAS SEQUENCE with P�1 and
Q��2, corresponding to a�2 and b��1. They
and the Jacobsthal-Lucas numbers (the Vn/s) satisfy
the RECURRENCE RELATION

Jn�Jn�1�2Jn�2: (1)

The Jacobsthal numbers satisfy J0�0 and J1�1 and
are 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... (Sloane’s
A001045). The Jacobsthal-Lucas numbers satisfy j0�
2 and j1�1 and are 2, 1, 5, 7, 17, 31, 65, 127, 257, 511,
1025, ... (Sloane’s A014551). The properties of these
numbers are summarized in Horadam (1996). They
are given by the closed form expressions

Jn�
Xn�1ð Þ=2½ �

r�0

n�1�r
r

� �
2r (2)



jn�
Xn=2½ �

r�0

n

n � r

n�r
r

� �
2r; (3)

where xb c is the FLOOR FUNCTION and n
k

� 	
is a

BINOMIAL COEFFICIENT. The Binet forms are

Jn�
1
3 an�bnð Þ�1

3 2n� �1ð Þn½ � (4)

jn�an�bn�2n� �1ð Þn
: (5)

The GENERATING FUNCTIONS are

X�
i�1

Jix
i�1� 1�x�2x2

� 	�1
(6)

X�
i�1

jix
i�1�(1�4x) 1�x�2x2

� 	�1
: (7)

The Simson FORMULAS are

Jn�1Jn�1�J2
n� �1ð Þn2n�1 (8)

jn�1jn�1�j2
n�9 �1ð Þn�12n�1��9 Jn�1Jn�1�J2

n

� 	
: (9)

Summation FORMULAS include

Xn

i�2

Ji�
1
2 Jn�2�3
� 	

: (10)

Xn

i�1

ji�
1
2 jn�2�5
� 	

: (11)

Interrelationships are

jnJn�J2n (12)

jn�Jn�1�2Jn�1 (13)

9Jn�jn�1�2jn�1 (14)

jn�1�jn�3 Jn�1�Jn

� 	
�3�2n (15)

jn�1�jn�3 Jn�1�Jn

� 	
�4 �1ð Þn�1

�2n�2 �1ð Þn�1 (16)

jn�1�2jn�3 2Jn�Jn�1

� 	
�3 �1ð Þn�1 (17)

2jn�1�jn�1�3 2Jn�1�Jn�1

� 	
�6 �1ð Þn�1 (18)

jn�r�jn�r�3 Jn�r�Jn�r

� 	
�4 �1ð Þn�r (19)

�2n�r 22r�1
� 	

�2 �1ð Þn�r (20)

jn�r�jn�r�3 Jn�r�Jn�r

� 	
�2n�r 22r�1

� 	
(21)

jn�3Jn�2 �1ð Þn (22)

3Jn�jn�2n�1 (23)

Jn�jn�2Jn�1 (24)

jn�2jn�2�j2
n��9 Jn�2Jn�2�Jn

� 	2
�9 �1ð Þn2n�2 (25)

Jmjn�Jnjm�2Jm�n (26)

jmjn�9JmJn�2jm�n (27)

j2
n�9J2

n�2j2n (28)

Jmjn�Jnjm� �1ð Þn2n�1Jm�n (29)

jmjn�9JmJn� �1ð Þn2n�1jm�n (30)

j2
n�9J2

n� �1ð Þn2n�2 (31)

(Horadam 1996).
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Jacobsthal Polynomial
The Jacobsthal polynomials are the POLYNOMIALS

obtained by setting p(x)�1 and q(x)�2x in the LUCAS

POLYNOMIAL SEQUENCE. The first few Jacobsthal
polynomials are

J1 xð Þ�1

J2 xð Þ�1

J3 xð Þ�1�2x

J4 xð Þ�1�4x

J5 xð Þ�4x2�6x�1;

and the first few Jacobsthal-Lucas polynomials are

j1 xð Þ�1

j2 xð Þ�4x�1

j3 xð Þ�6x�1

j4 xð Þ�8x2�8x�1

j5 xð Þ�20x2�10x�1:

Jacobsthal and Jacobsthal-Lucas polynomials satisfy

Jn 1ð Þ�Jn

jn 1ð Þ�jn

where Jn is a JACOBSTHAL NUMBER and jn is a
JACOBSTHAL-LUCAS NUMBER.

Jacobsthal-Lucas Number
JACOBSTHAL NUMBER

Jacobsthal-Lucas Polynomial
JACOBSTHAL POLYNOMIAL



Jaco-Shalen-Johannson Torus
Decomposition
Irreducible orientable COMPACT 3-MANIFOLDS have a
canonical (up to ISOTOPY) minimal collection of
disjointly EMBEDDED incompressible TORI such that
each component of the 3-MANIFOLD removed by the
TORI is either "atoroidal" or "Seifert-fibered."

Janko Groups
The SPORADIC GROUPS J1 ; J2 ; J3 and J4 : The Janko
group J2 is also known as the HALL-JANKO GROUP.

See also SPORADIC GROUP
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Japanese Temple Problem
SANGAKU PROBLEM

Japanese Theorem

Let a convex CYCLIC POLYGON be TRIANGULATED in
any manner, and draw the INCIRCLE to each TRIANGLE

so constructed. Then the sum of the INRADII is a
constant independent of the TRIANGULATION chosen.
This theorem can be proved using CARNOT’S THEO-

REM. In the above figures, for example, the INRADII of
the left triangulation are 0.142479, 0.156972,
0.232307, 0.498525, and the INRADII of the right
triangulation are 0.157243, 0.206644, 0.312037,
0.354359, giving a sum of 1.03028 in each case.
According to an ancient custom of Japanese mathe-
maticians, this theorem was a SANGAKU PROBLEM

inscribed on tablets hung in a Japanese temple to
honor the gods and the author in 1800 (Johnson
1929).

The converse is also true: if the sum of INRADII does
not depend on the TRIANGULATION of a POLYGON, then
the POLYGON is CYCLIC.

See also CARNOT’S THEOREM, CYCLIC POLYGON,
INCIRCLE, INRADIUS, SANGAKU PROBLEM, TRIANGULA-

TION
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Japanese Triangulation Theorem
JAPANESE THEOREM

Jarnick’s Inequality
Given a CONVEX plane region with AREA A and
PERIMETER p , then

N �Aj j B p ;

where N is the number of enclosed LATTICE POINTS.

See also LATTICE POINT, NOSARZEWSKA’S INEQUALITY

j-Conductor
FREY CURVE

Jeep Problem
Maximize the distance a jeep can penetrate into the
desert using a given quantity of fuel. The jeep is
allowed to go forward, unload some fuel, and then
return to its base using the fuel remaining in its tank.
At its base, it may refuel and set out again. When it
reaches fuel it has previously stored, it may then use
it to partially fill its tank. This problem is also called
the EXPLORATION PROBLEM (Ball and Coxeter 1987).

Given n�f (with 05f B1) drums of fuel at the edge
of the desert and a jeep capable of holding one drum
(and storing fuel in containers along the way), the
maximum one-way distance which can be traveled
(assuming the jeep travels one unit of distance per
drum of fuel expended) is

d�
f

2n � 1
�
Xn

i�1

1

2i � 1

�
f

2n � 1
�1

2 g�2 ln 2�c0
1
2�n
� h i

;

where g is the EULER-MASCHERONI CONSTANT and
cn zð Þ the POLYGAMMA FUNCTION.

For example, the farthest a jeep with n�1 drum can
travel is obviously 1 unit. However, with n�2 drums
of gas, the maximum distance is achieved by filling up
the jeep’s tank with the first drum, traveling 1/3 of a



unit, storing 1/3 of a drum of fuel there, and then
returning to base with the remaining 1/3 of a tank. At
the base, the tank is filled with the second drum. The
jeep then travels 1/3 of a unit (expending 1/3 of a
drum of fuel), refills the tank using the 1/3 of a drum
of fuel stored there, and continues an additional 1
unit of distance on a full tank, giving a total distance
of 4/3. The solutions for n �1, 2, ... drums are 1, 4/3,
23/15, 176/105, 563/315, ..., which can also be written
as a(n) =b(n) ; where

a(n) �
1

1 
�

1

3 
�. . .�

1

2n � 1

 !
LCM 1; 3 ; 5; . . . ; 2n �1ð Þ

b(n) �LCM 1; 3 ; 5; . . . ; 2n �1ð Þ

(Sloane’s A025550 and A025547).

See also HARMONIC NUMBER
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Jenkins’ Theorem
This entry contributed by RONALD M. AARTS

A theorem in the theory of univalent CONFORMAL

MAPPINGS of families of domains on a RIEMANN SUR-

FACE, containing an inequality for the coefficients of
the mapping functions, as well as conditions to be
satisfied by the function so that the inequality
becomes an equality. Jenkins’ theorem is an exact
expression and generalization of TEICHMÜLLER’S

PRINCIPLE (Jenkins 1958, Jenkins 1964).

See also CONFORMAL MAPPING, TEICHMÜ LLER’S PRIN-

CIPLE

References
Jenkins, J. A. Univalent Functions and Conformal Map-

ping. New York: Springer-Verlag, 1958.
Jenkins, J. A. "Some Area Theorems and a Special Coeffi-

cient Theorem." Illinois J. Math. 8, 80�/9, 1964.

Jenkins-Traub Method
A complicated POLYNOMIAL ROOT-finding algorithm
which is used in the IMSL † (IMSL, Houston, TX)
library and which Press et al. (1992) describe as
"practically a standard in black-box POLYNOMIAL

ROOT-finders."
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Jensen Polynomial
Let f xð Þ be a real ENTIRE FUNCTION OF THE FORM

f (x)�
X�
k�0

gk

xk

k!
;

where the gk/s are POSITIVE and satisfy TURÁN’S

INEQUALITIES

g2
k�gk�1gk�1]0

for k�1, 2, .... The Jensen polynomial g(t) associated
with f xð Þ is then given by

gn tð Þ�
Xn

k�0

n
k

� �
gktk;

where a
b

� 	
is a BINOMIAL COEFFICIENT.
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Jensen’s Formula
Portions of this entry contributed by RONALD M.

AARTS

A relation connecting the values of a MEROMORPHIC

FUNCTION inside a disk with its boundary values on
the circumference and with its zeros and poles
(Jensen 1899, Levin 1980). Let f be holomorphic on
a NEIGHBORHOOD of the CLOSED DISK D̄(0; r) and
f (0)"0; a1; ..., ak be the zeros of f in the OPEN DISK

D(0; r) counted according to their multiplicities, and
assume that f "0 on @D(0; r): Then



ln f (0)j j�
Xk

j�1

ln
r

aj

%%%%%
%%%%%� 1

2pg
2 p

0

ln f rei u
� 	%% %%du

(Krantz 1999, p. 118).

See also CONTOUR INTEGRAL, JENSEN’S INEQUALITY,
MAHLER MEASURE
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Jensen’s Inequality
For a REAL CONTINUOUS CONCAVE FUNCTION

P
f xið Þ
n

5f

P
xi

n

 !
(1)

if f is concave down,

P
f xið Þ
n

]f

P
xi

n

 !
(2)

if f is concave up, and

P
f xið Þ
n

�f

P
xi

n

 !
(3)

IFF x1 �x2 �. . .�xn : A special case is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2 � � � xn

p
5

x1 � x2 � . . .  � xn

n
; (4)

with equality IFF x1 �x2 �. . .�xn :/

See also CONCAVE FUNCTION, JENSEN’S FORMULA
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Jensen’s Theorem
This entry contributed by RONALD M. AARTS

For fixed v � v1 ; . . . ; vmð Þ; the function

vk kp�
Xm

i�1

vij jp
" #1=p

is a DECREASING FUNCTION of p (Cheney 1999).
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Jerabek’s Hyperbola
The ISOGONAL CONJUGATE of the EULER LINE. It
passes through the vertices of a TRIANGLE, the
ORTHOCENTER, CIRCUMCENTER, the SYMMEDIAN

POINT, and the ISOGONAL CONJUGATE points of the
NINE-POINT CENTER and DE LONGCHAMPS POINT.

See also CIRCUMCENTER, DE LONGCHAMPS POINT,
EULER LINE, ISOGONAL CONJUGATE, SYMMEDIAN

POINT, NINE-POINT CENTER, ORTHOCENTER
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Jerk
The jerk j is defined as the time DERIVATIVE of the
VECTOR ACCELERATION a,

j�
da

dt
:

See also ACCELERATION, VELOCITY



Jessen’s Orthogonal Icosahedron

A SHAKY POLYHEDRON constructed by replacing six
pairs of adjacent triangles in an ICOSAHEDRON (whose
edges form a SKEW QUADRILATERAL) with pairs of
ISOSCELES TRIANGLES sharing a common base. The
polyhedron can be constructed by dividing the sides of
the ICOSAHEDRON in the GOLDEN RATIO (as used in the
construction of the ICOSAHEDRON along the edges of
the OCTAHEDRON), but reversing the long and short
segments.

The centers of the eight EQUILATERAL TRIANGLES

which remain are then the vertices of a CUBE. The
polyhedron can be deformed infinitesimally by pinch-
ing the angles between the isosceles triangles whose
bases act as hinges. If the polyhedron is constructed
using paper and tape instead of entirely rigid faces, it

is possible to collapse the isosceles triangles onto one
another, resulting in an OCTAHEDRON.

See also FLEXIBLE POLYHEDRON, RIGID POLYHEDRON,
RIGIDITY THEOREM, SHAKY POLYHEDRON
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j-Function

The j -function is defined as

j(q)�1728J
ffiffiffi
q

pð Þ; (1)

where

J(q)�
4

27

1 � l(q) � l2(q)
� �
l2(q) 1 � l(q)½ �2

3

(2)

is KLEIN’S ABSOLUTE INVARIANT, l(q) the ELLIPTIC

LAMBDA FUNCTION

l(q)�k2(q)�
q 2(q)

q 3(q)

" #4

; (3)

/q i a JACOBI THETA FUNCTION, and 1728�123: This
function can also be specified in terms of the WEBER

FUNCTIONS f , f1; f2; g2; and g3 as

j(z)�
f 24(z) � 16½ �3

f 24(z)
(4)

�
f 24
1 (z) � 16½ �3

f 24
1 (z)

(5)

�
f 24
2 (z) � 16½ �3

f 24
2 (z)

(6)

�g3
2(z) (7)

�g2
3(z)�1728 (8)

(Weber 1902, p. 179; Atkin and Morain 1993).
The j -function is a MEROMORPHIC FUNCTION on the
UPPER HALF-PLANE which is invariant with respect to



the SPECIAL LINEAR GROUP /SLð2; ZÞ/. It has a FOURIER

SERIES

j(q)�
X�

n���

cnqn; (9)

for the NOME

q�e2pit (10)

with I[t] > 0: The coefficients in the expansion of the
j -function satisfy:

1. cn�0 for n B�1 and c�1�1;/
2. all cn/s are INTEGERS with fairly limited growth
with respect to n , and
3. j(q) is an ALGEBRAIC NUMBER, sometimes a
RATIONAL NUMBER, and sometimes even an INTE-

GER at certain very special values of q (or t):/

The latter result is the end result of the massive and
beautiful theory of COMPLEX multiplication and the
first step of Kronecker’s so-called "JUGENDTRAUM."

Then all of the COEFFICIENTS in the LAURENT SERIES

j(q)�
1

q
�744�196884q�21493760q2�864299970q3

�20245856256q4�333202640600q5�. . . ð11Þ

(Sloane’s A000521) are POSITIVE INTEGERS (Rankin
1977, Apostol 1997). Berwick calculated the first
seven c(n) in 1916, Zuckerman found the first 24 in
1939, and van Wijngaarden gave the first 100 in 1963.

Some remarkable sum formulas involving j(q) for t �

H; where H is the UPPER HALF-PLANE, and c(n)
include

504
X�
n�0

s5(n)qn

" #2

� j(q)�123
� �X�

n�1

t(n)xn; (12)

where sk(n) is the DIVISOR FUNCTION and s5(0)�
�1=504: In addition,

504ð Þ2
Xn

k�0

s5(k)s5(n�k)

�t(n�1)�984t(n)�
Xn�1

k�1

c(k)t(n�k) (13)

65520

691
s11(n)�t(n)½ �

�t(n�1)�24t(n)�
Xn�1

k�1

c(k)t(n�k); (14)

where t(n) is the TAU FUNCTION (Lehmer 1942;
Apostol 1997, p. 92). The latter leads immediately to
the remarkable congruence

t(n)�s11(n) (mod 691): (15)

Lehmer (1942) showed that

(n�1)c(n)�0 mod 24ð Þ (16)

for all n]1; and Lehner (1949) and Apostol (1997,
pp. 22, 74, and 90�/1) demonstrated that

c(2n)�0 mod 211
� 	

(17)

c(3n)�0 mod 35
� 	

(18)

c(5n)�0 mod 52
� 	

(19)

c(7n)�0 (mod 7) (20)

c(11n)�0 (mod 11): (21)

More generally,

c 2anð Þ�0 mod 23a�8
� 	

(22)

c 3anð Þ�0 mod 32a�3
� 	

(23)

c 5anð Þ�0 mod 5a�1
� 	

(24)

c 7anð Þ�0 mod 7að Þ (25)

(Lehner 1949; Apostol 1997, p. 91). Congruences of
this type cannot exist for 13, but Newman (1958)
showed

c(13np)�c(13n)c(13p)�p�1c
13n

p

 !
�0 (mod 13);

(26)

where p�1p�1 (mod 13) and c(x)�0 if x is not an
integer (Apostol 1997, p. 91). Congruences for c(kn)
have been generalized by Atkin and O’Brien (1967).

An asymptotic formula for c(n) was discovered by
Petersson (1932), and subsequently independently
rediscovered by Rademacher (1938):

c(n)�
e4p

ffiffi
n

pffiffiffi
2

p
n3=4

: (27)

Let d be a POSITIVE SQUAREFREE INTEGER, and define

t�
i
ffiffiffi
d

p
for d�1 or 2 (mod 4)

1
2 1�i

ffiffiffi
d

p� 
for d�3 (mod 4):

(
(28)

Then the NOME is

q�eipr� e2pi i
ffiffi
d

pð Þ for d�1 or 2 mod 4ð Þ
e2pi 1�i

ffiffi
d

pð Þ=2 for d�3 mod 4ð Þ

(

� e�2p
ffiffi
d

p
for d�1 or 2 mod 4ð Þ

�e�p
ffiffi
d

p
for d�3 mod 4ð Þ:

"
(29)

It then turns out that j(q) is an ALGEBRAIC INTEGER of
degree h(�d); where h(�d) is the CLASS NUMBER of the
DISCRIMINANT �d of the QUADRATIC FIELD Q

ffiffiffi
n

p
ð Þ

(Silverman 1986). The first term in the LAURENT



SERIES is then q �1 �e�2 p
ffiffi
n

p
or �e �p

ffiffi
n

p
; and all the later

terms are POWERS of q �1 ; which are small numbers.
The larger n , the faster the series converges. If
h(�d) �1 ; then j(q) is a ALGEBRAIC INTEGER of degree
1, i.e., just a plain INTEGER. Furthermore, the
INTEGER is a perfect CUBE.

The numbers whose LAURENT SERIES give INTEGERS

are those with CLASS NUMBER 1. But these are
precisely the HEEGNER NUMBERS -1, -2, -3, -7, -11,
-19, -43, -67, -163. The greater (in ABSOLUTE VALUE)
the HEEGNER NUMBER d , the closer to an INTEGER is
the expression e p

ffiffiffiffiffiffi
�n

p
; since the initial term in j(q) is

the largest and subsequent terms are the smallest.
The best approximations with h(�d) �1 are therefore

e p
ffiffiffiffi
43

p
:9603 �744 �2:2 �10 �4 (30)

e p
ffiffiffiffi
67

p
:52803 �744 �1 :3 �10 �6 (31)

e p
ffiffiffiffiffiffi
163

p
:6403203 �744 �7 :5 �10 �13 : (32)

The exact values of j(q) corresponding to the
HEEGNER NUMBERS are

j �e �pð Þ�123 (33)

j e�2 p
ffiffi
2

p� 
�203 (34)

j �e �p
ffiffi
3

p� 
�03 (35)

j �e �p
ffiffi
7

p� 
��153 (36)

j �e � p
ffiffiffiffi
11

p� 
��323 (37)

j �e �p
ffiffiffiffi
19

p� 
��963 (38)

j �e �p
ffiffiffiffi
43

p� 
��9603 (39)

j �e �p
ffiffiffiffi
67

p� 
��52803 (40)

j �e �p
ffiffiffiffiffiffi
163

p� 
��6403203 : (41)

(The number 5280 is particularly interesting since it
is also the number of feet in a mile.) The ALMOST

INTEGER generated by the last of these, e p
ffiffiffiffiffiffi
163

p
(corre-

sponding to the field Q
ffiffiffiffiffiffiffiffiffiffiffiffi
�163

p� 	
and the IMAGINARY

QUADRATIC FIELD of maximal discriminant), is some-
times known as the RAMANUJAN CONSTANT. However,
this attribution is historically fallacious since this
amazing property of e p

ffiffiffiffiffiffi
163

p
was first noted by Hermite

(1859) and does not seem to appear in any of the
works of Ramanujan.

/e p
ffiffiffiffi
22

p
; e p

ffiffiffiffi
37

p
; and ep

ffiffiffiffi
58

p
are also ALMOST INTEGERS.

These correspond to binary quadratic forms with
discriminants -88, -148, and -232, all of which have
CLASS NUMBER two and were noted by Ramanujan
(Berndt 1994).

It turns out that the j -function also is important in
the CLASSIFICATION THEOREM for finite simple groups,
and that the factors of the orders of the SPORADIC

GROUPS, including the celebrated MONSTER GROUP,
are also related.

See also ALMOST INTEGER, HEEGNER NUMBER, IMA-

GINARY QUADRATIC FIELD, KLEIN’S ABSOLUTE INVAR-

IANT, RAMANUJAN CONSTANT, WEBER FUNCTIONS
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Jinc Function

The jinc function is defined as

jinc(x) �
J1(x)

x
;

where J1(x) is a BESSEL FUNCTION OF THE FIRST KIND,
and satisfies limx00 jinc(x) �1=2: The DERIVATIVE of
the jinc function is given by

jinc ?(x) ��
J2(x)

x
:

The function is sometimes normalized by multiplying
by a factor of 2 so that jinc(0) �1 (Siegman 1986,
p. 729).

See also BESSEL FUNCTION OF THE FIRST KIND, SINC

FUNCTION
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j-Invariant
An invariant of an ELLIPTIC CURVE given in the form

y2 �x3 �ax �b

which is closely related to the DISCRIMINANT and
defined by

j(E) �
2833a3

4a3 � 27b2 
:

The determination of j as an ALGEBRAIC INTEGER in
the QUADRATIC FIELD Q(j) is discussed by Greenhill
(1891), Weber (1902), Berwick (1928), Watson (1938),

Gross and Zaiger (1985), and Dorman (1988). The
norm of j in Q(j) is the CUBE of an INTEGER in Z :/

See also DISCRIMINANT (ELLIPTIC CURVE), ELLIPTIC

CURVE, FREY CURVE
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Jitter
A SAMPLING phenomenon produced when a waveform
is not sampled uniformly at an interval t each time,
but rather at a series of slightly shifted intervals t �
Dti such that the average Dtih i�0:/

See also GHOST, SAMPLING

Joachimsthal’s Equation
Using CLEBSCH-ARONHOLD NOTATION, an algebraic
curve satisfies

jn
1an

y � jn�1
1 j2an�1

y ax �
1
2n(n �1)jn�2

1 j2
2an�2

y a2
x �. . .

�nj1 j
n �1
2 aya

n�1
x � jn

2an
x �0:
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Johnson Bound

A bound on error-correcting codes.

Johnson Circle
The CIRCUMCIRCLE in JOHNSON’S THEOREM.

See also JOHNSON’S THEOREM

Johnson Solid
The Johnson solids are the CONVEX POLYHEDRA

having regular faces and equal edge lengths (with
the exception of the completely regular PLATONIC

SOLIDS, the "SEMIREGULAR" ARCHIMEDEAN SOLIDS,
and the two infinite families of PRISMS and ANTI-

PRISMS). There are 28 simple (i.e., cannot be dissected



into two other regular-faced polyhedra by a plane)
regular-faced polyhedra in addition to the PRISMS and
ANTIPRISMS (Zalgaller 1969), and Johnson (1966)
proposed and Zalgaller (1969) proved that there exist
exactly 92 Johnson solids in all.

There is a near-Johnson solid which can be con-
structed by inscribing regular nonagons inside the
eight triangular faces of a regular octahedron, then
joining the free edges to the 24 triangles and finally
the remaining edges of the triangles to six squares,
with one square for each octahedral vertex. It turns
out that the triangles are not quite equilateral,
making the edges that bound the squares a slightly
different length from that of the enneagonal edge.
However, because the differences in edge lengths are
so small, the flexing of an average model allows the
solid to be constructed with all edges equal (Ol-
shevsky).

A database of solids and VERTEX NETS of these solids
is maintained on the Bell Laboratories Netlib server,
but a few errors exist in several entries. A concate-
nated and corrected version of the files is given by
Weisstein, together with Mathematica code to display
the solids and nets. The following table summarizes
the names of the Johnson solids and gives their
images and nets.

1. SQUARE PYRAMID

2. PENTAGONAL PYRAMID

3. TRIANGULAR CUPOLA

4. SQUARE CUPOLA

5. PENTAGONAL CUPOLA

6. PENTAGONAL ROTUNDA

7. ELONGATED TRIANGULAR PYRAMID

8. ELONGATED SQUARE PYRAMID

9. ELONGATED PENTAGONAL PYRAMID



10. GYROELONGATED SQUARE PYRAMID

11. GYROELONGATED PENTAGONAL PYRAMID

12. TRIANGULAR DIPYRAMID

13. PENTAGONAL DIPYRAMID

14. ELONGATED TRIANGULAR DIPYRAMID

15. ELONGATED SQUARE DIPYRAMID

16. ELONGATED PENTAGONAL DIPYRAMID

17. GYROELONGATED SQUARE DIPYRAMID

18. ELONGATED TRIANGULAR CUPOLA

19. ELONGATED SQUARE CUPOLA

20. ELONGATED PENTAGONAL CUPOLA

21. ELONGATED PENTAGONAL ROTUNDA



22. GYROELONGATED TRIANGULAR CUPOLA

23. GYROELONGATED SQUARE CUPOLA

24. GYROELONGATED PENTAGONAL CUPOLA

25. GYROELONGATED PENTAGONAL ROTUNDA

26. GYROBIFASTIGIUM

27. TRIANGULAR ORTHOBICUPOLA

28. SQUARE ORTHOBICUPOLA

29. SQUARE GYROBICUPOLA

30. PENTAGONAL ORTHOBICUPOLA

31. PENTAGONAL GYROBICUPOLA

32. PENTAGONAL ORTHOCUPOLARONTUNDA

33. PENTAGONAL GYROCUPOLAROTUNDA

34. PENTAGONAL ORTHOBIROTUNDA



35. ELONGATED TRIANGULAR ORTHOBICUPOLA

36. ELONGATED TRIANGULAR GYROBICUPOLA

37. ELONGATED SQUARE GYROBICUPOLA

38. ELONGATED PENTAGONAL ORTHOBICUPOLA

39. ELONGATED PENTAGONAL GYROBICUPOLA

40. ELONGATED PENTAGONAL ORTHOCUPOLAROTUNDA

41. ELONGATED PENTAGONAL GYROCUPOLAROTUNDA

42. ELONGATED PENTAGONAL ORTHOBIROTUNDA

43. ELONGATED PENTAGONAL GYROBIROTUNDA

44. GYROELONGATED TRIANGULAR BICUPOLA

45. GYROELONGATED SQUARE BICUPOLA

46. GYROELONGATED PENTAGONAL BICUPOLA



47. GYROELONGATED PENTAGONAL CUPOLAROTUNDA

48. GYROELONGATED PENTAGONAL BIROTUNDA

49. AUGMENTED TRIANGULAR PRISM

50. BIAUGMENTED TRIANGULAR PRISM

51. TRIAUGMENTED TRIANGULAR PRISM

52. AUGMENTED PENTAGONAL PRISM

53. BIAUGMENTED PENTAGONAL PRISM

54. AUGMENTED HEXAGONAL PRISM

55. PARABIAUGMENTED HEXAGONAL PRISM

56. METABIAUGMENTED HEXAGONAL PRISM

57. TRIAUGMENTED HEXAGONAL PRISM

58. AUGMENTED DODECAHEDRON



59. PARABIAUGMENTED DODECAHEDRON

60. METABIAUGMENTED DODECAHEDRON

61. TRIAUGMENTED DODECAHEDRON

62. METABIDIMINISHED ICOSAHEDRON

63. TRIDIMINISHED ICOSAHEDRON

64. AUGMENTED TRIDIMINISHED ICOSAHEDRON

65. AUGMENTED TRUNCATED TETRAHEDRON

66. AUGMENTED TRUNCATED CUBE

67. BIAUGMENTED TRUNCATED CUBE

68. AUGMENTED TRUNCATED DODECAHEDRON

69. PARABIAUGMENTED TRUNCATED DODECAHEDRON

70. METABIAUGMENTED TRUNCATED DODECAHEDRON



71. TRIAUGMENTED TRUNCATED DODECAHEDRON

72. GYRATE RHOMBICOSIDODECAHEDRON

73. PARABIGYRATE RHOMBICOSIDODECAHEDRON

74. METABIGYRATE RHOMBICOSIDODECAHEDRON

75. TRIGYRATE RHOMBICOSIDODECAHEDRON

76. DIMINISHED RHOMBICOSIDODECAHEDRON

77. PARAGYRATE DIMINISHED RHOMBICOSIDODECAHE-

DRON

78. METAGYRATE DIMINISHED RHOMBICOSIDODECAHE-

DRON

79. BIGYRATE DIMINISHED RHOMBICOSIDODECAHE-

DRON

80. PARABIDIMINISHED RHOMBICOSIDODECAHEDRON

81. METABIDIMINISHED RHOMBICOSIDODECAHEDRON

82. GYRATE BIDIMINISHED RHOMBICOSIDODECAHE-

DRON

83. TRIDIMINISHED RHOMBICOSIDODECAHEDRON



84. SNUB DISPHENOID

85. SNUB SQUARE ANTIPRISM

86. SPHENOCORONA

87. AUGMENTED SPHENOCORONA

88. SPHENOMEGACORONA

89. HEBESPHENOMEGACORONA

90. DISPHENOCINGULUM

91. BILUNABIROTUNDA

92. TRIANGULAR HEBESPHENOROTUNDA

The number of constituent n -gons ({n }) for each
Johnson solid are given in the following table.

/Jn/ {3} {4} {5} {6} {8} {10} /Jn/ {3} {4} {5} {6} {8} {10}

1 4 1 47 35 5 7

2 5 1 48 40 12

3 4 3 1 49 6 2

4 4 5 1 50 10 1

5 5 5 1 1 51 14

6 10 6 1 52 4 4 2

7 4 3 53 8 3 2

8 4 5 54 4 5 2

9 5 5 1 55 8 4 2

10 12 1 56 8 4 2

11 15 1 57 12 3 2

12 6 58 5 11

13 10 59 10 10

14 6 3 60 10 10

15 8 4 61 15 9

16 10 5 62 10 2

17 16 63 5 3

18 4 9 1 64 7 3

19 4 13 1 65 8 3 3



20 5 15 1 1 66 12 5 5

21 10 10 6 1 67 16 10 4

22 16 3 1 68 25 5 1 11

23 20 5 1 69 30 10 2 10

24 25 5 1 1 70 30 10 2 10

25 30 6 1 71 35 15 3 9

26 4 4 72 20 30 12

27 8 6 73 20 30 12

28  8 10  74 20 30 12

29  8 10  75 20 30 12

30 10 10 2 76 15 25 11 1

31 10 10 2 77 15 25 11 1

32 15 5 7 78 15 25 11 1

33 15 5 7 79 15 25 11 1

34 20 12 80 10 20 10 2

35  8 12  81 10 20 10  2

36  8 12  82 10 20 10  2

37 8 18 83 5 15 9 3

38 10 20 2 84 12

39 10 20 2 85 24 2

40 15 15 7 86 12 2

41 15 15 7 87 16 1

42 20 10 12 88 16 2

43 20 10 12 89 18 3

44 20 6 90 20 4

45 24 10 91 8 2 4

46 30 10 2 92 13 3 3 1

See also ANTIPRISM, ARCHIMEDEAN SOLID, CONVEX

POLYHEDRON, KEPLER-POINSOT SOLID, POLYHEDRON,
PLATONIC SOLID, PRISM, UNIFORM POLYHEDRON
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Johnson’s Equation
The PARTIAL DIFFERENTIAL EQUATION

@

@x
u1 �uux �

1
2uxxx �

u

2t

 !
�

3a2

2t2 
uyy �0

which arises in the study of water waves.
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Johnson’s Theorem

Let three equal CIRCLES with centers C1; C2; and C3

intersect in a single point O and intersect pairwise in
the points P , Q , and R . Then the CIRCUMCIRCLE J of
DPQR (the so-called JOHNSON CIRCLE) is congruent to
the original three.

See also CIRCUMCIRCLE, JOHNSON CIRCLE
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Join (Graph)

Let x and y be distinct nodes of G which are not
joined by an EDGE. Then the graph /Guxy/ which is
formed by adding the EDGE (x, y ) to G is called a join
of G .

Join (Spaces)
Let X and Y be TOPOLOGICAL SPACES. Then their join
is the factor space

X + Y �(X �Y �I) =�;

where � is the EQUIVALENCE RELATION

(x; y; t) �(x?; y?; t?) U
t �t?�0 and x �x?

or
t �t?�1 and y �y:

8<
:

See also CONE (SPACE), SUSPENSION

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, p. 6, 1976.

Joint Denial
The term used in PROPOSITIONAL CALCULUS for the
NOR CONNECTIVE. The notation A ¡B is used for this
connective.

See also ALTERNATIVE DENIAL, NAND
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Joint Distribution Function
A joint distribution function is a DISTRIBUTION FUNC-

TION D(x; y) in two variables defined by

D(x; y) �P(X 5x;Y 5y) (1)

Dx(x) � lim
y 0�

D(x; y) (2)

Dy(y) � lim
x 0�

D(x; y) (3)

so that the joint probability function satisfies

D (x ; y) � C½ �� gg
(X ;Y) � C

P(X ;Y)dXdY (4)

D(x � A; y � B) �gY � BgX � A

P(X ; Y)dXdY (5)

D(x; y) �P X � (��; x] ;Y � (��; y]f g

�g
z

��
g

y

��

P(X ;Y)dXdY (6)

D a5x 5a �da ; b 5y 5b �dbð Þ

�g
b�db

b g
a�da

a

P X;Yð ÞdXdY :P a; bð Þda db : (7)

Two random variables X and Y are independent IFF

D(x; y) �Dx(x)Dy(y) (8)

for all x and y and

P(x; y) �
@2D(x; y)

@x @y
: (9)

A multiple distribution function is OF THE FORM

D x1 ; . . . ; xnð Þ�P X1 5x1 ; . . . ; Xn 5xnð Þ: (10)

See also DISTRIBUTION FUNCTION
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Joint Probability Density Function
JOINT DISTRIBUTION FUNCTION

Joint Theorem
GAUSSIAN JOINT VARIABLE THEOREM

Joke Number
HOAX NUMBER, SMITH NUMBER

Jonah Formula
A formula for the generalized CATALAN NUMBER pdqi :
The general formula is

n �q
k �1

� �
�
Xk

i�1
p dqi

n �pi
k �i

� �
;

where n
k

� 	
is a BINOMIAL COEFFICIENT, although

Jonah’s original formula corresponded to p �2,
q�0 (Hilton and Pederson 1991).

See also BINOMIAL COEFFICIENT, CATALAN NUMBER
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Jones Polynomial
The second KNOT POLYNOMIAL discovered. Unlike the
first-discovered ALEXANDER POLYNOMIAL, the Jones
polynomial can sometimes distinguish handedness
(as can its more powerful generalization, the HOM-
FLY POLYNOMIAL). Jones polynomials are LAURENT

POLYNOMIALS in t assigned to an R3
KNOT. The Jones

polynomials are denoted VL(t) for LINKS, VK (t) for
KNOTS, and normalized so that

Vunknot(t)�1: (1)

For example, the Jones polynomial of the TREFOIL

KNOT is given by

Vtrefoil tð Þ�t�t3�t4: (2)

If a LINK has an ODD number of components, then VL

is a LAURENT POLYNOMIAL over the INTEGERS; if the
number of components is EVEN, VL(t) is t1=2 times a
LAURENT POLYNOMIAL. The Jones polynomial of a
KNOT SUM L1#L2 satisfies

VL1#L2
� VL1

� 
VL2

� 
: (3)

The SKEIN RELATIONSHIP for under- and overcrossings
is

t�1VL�
�tVL�

� t1=2�t�1=2
� 	

VL0
: (4)

Combined with the link sum relationship, this allows
Jones polynomials to be built up from simple knots
and links to more complicated ones.

Some interesting identities from Jones (1985) follow.
For any LINK L ,

VL(�1)�DL(�1); (5)

where DL is the ALEXANDER POLYNOMIAL, and

VL(1)� �2ð Þp�1; (6)

where p is the number of components of L . For any
KNOT K ,

VK e2pi=3
� 	

�1 (7)

and

d

dt
VK (1)�0 (8)

Let K� denote the MIRROR IMAGE of a KNOT K . Then

VK+ (t)�VK t�1
� 	

: (9)

For example, the right-hand and left-hand TREFOIL

KNOTS have polynomials

Vtrefoil(t)�t�t3�t4 (10)

Vtrefoil+ (t)�t�1�t�3�t�4: (11)

Jones defined a simplified trace invariant for knots by

WK (t)�
1 � VK (t)

1 � t3ð Þ(1 � t)
: (12)

The ARF INVARIANT of WK is given by

Arf (K)�WK (i) (13)

(Jones 1985), where I is
ffiffiffiffiffiffi
�1

p
: A table of the W

polynomials is given by Jones (1985) for knots of up to
eight crossings, and by Jones (1987) for knots of up to
10 crossings. (Note that in these papers, an additional
polynomial which Jones calls V is also tabulated, but
it is not the conventionally defined Jones polynomial.)

Jones polynomials were subsequently generalized to
the two-variable HOMFLY POLYNOMIALS, the rela-
tionship being

V(t)�P a�t; x�t1=2�t�1=2
� 	

(14)

V(t)�P l�it;m�i t�1=2�t1=2
� 	� 	

: (15)

They are related to the KAUFFMAN POLYNOMIAL F by

V(t)�F �t�3=4; t�1=4�t1=4
� 	

: (16)

Jones (1987) gives a table of BRAID WORDS and W
polynomials for knots up to 10 crossings. Jones
polynomials for KNOTS up to nine crossings are given
in Adams (1994) and for oriented links up to nine
crossings by Doll and Hoste (1991). All PRIME KNOTS

with 10 or fewer crossings have distinct Jones
polynomials. It is not known if there is a nontrivial
knot with Jones polynomial 1. The Jones polynomial
of an (m, n )-TORUS KNOT is

t(m � 1)(n � 1)=2 1 � tm�1 � tn�1 � tm�nð Þ
1 � t2

(17)

Let k be one component of an oriented LINK L . Now
form a new oriented LINK L� by reversing the
orientation of k . Then

VL��t�3lV Lð Þ; (18)

where V is the Jones polynomial and l is the LINKING

NUMBER of k and L�k: No such result is known for
HOMFLY POLYNOMIALS (Lickorish and Millett 1988).

Birman and Lin (1993) showed that substituting the
POWER SERIES for ex as the variable in the Jones
polynomial yields a POWER SERIES whose COEFFI-

CIENTS are VASSILIEV INVARIANTS.

Let L be an oriented connected LINK projection of n
crossings, then



n ]span V(L) ; (19)

with equality if L is ALTERNATING and has no
REMOVABLE CROSSING (Lickorish and Millett 1988).

There exist distinct KNOTS with the same Jones
polynomial. Examples include (05 �/01, 10 �/32), (08 �/08,
10 �/29), (08 �/16, 10 �/56), (10 �/25, 10 �/56), (10 �/22, 10 �/35), (10 �/

41, 10 �/94), (10 �/43, 10 �/91), (10 �/59, 10 �/06), (10 �/60, 10 �/83),
(10 �/71, 10 �/04), (10 �/73, 10 �/86), (10 �/81, 10 �/09), and (10 �/37,
10 �/55) (Jones 1987). Incidentally, the first four of
these also have the same HOMFLY POLYNOMIAL.

Witten (1989) gave a heuristic definition in terms of a
topological quantum field theory, and Sawin (1996)
showed that the "quantum group" Uq sl2ð Þ gives rise to
the Jones polynomial.

See also ALEXANDER POLYNOMIAL, HOMFLY POLY-

NOMIAL, KAUFFMAN POLYNOMIAL F , KNOT, LINK,
VASSILIEV INVARIANT
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Jonquière’s Function
POLYGAMMA FUNCTION

Jordan Algebra
A NONASSOCIATIVE ALGEBRA named after physicist
Pascual Jordan which satisfies

xy �yx (1)

and

(xx)(xy) �x((xx)y)): (2)

The latter is equivalent to the so-called JORDAN

IDENTITY

(xy)x2 �x yx2
� 	

(3)

(Schafer 1996, p. 4). An ASSOCIATIVE ALGEBRA A with
associative product xy can be made into a Jordan
algebra A� by the JORDAN PRODUCT

x � y �1
2(xy �yx): (4)

Division by 2 gives the nice identity x � x �xx; but it
must be omitted in characteristic p �2.

Unlike the case of a LIE ALGEBRA, not every Jordan
algebra is isomorphic to a SUBALGEBRA of some A�:
Jordan algebras which are isomorphic to a subalgebra
are called SPECIAL JORDAN ALGEBRAS, while those
that are not are called EXCEPTIONAL JORDAN ALGE-

BRAS.

See also ANTICOMMUTATOR, NONASSOCIATIVE ALGE-

BRA
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Jordan Basis
Given a matrix A ; a Jordan basis satisfies

Abi;1 � libi;1

and

Abi;j�libi;j�bi;j�1;

and provides the means by which any COMPLEX

MATRIX A can be written in JORDAN CANONICAL FORM.

See also JORDAN BLOCK, JORDAN CANONICAL FORM

Jordan Block
A matrix, also called a canonical box matrix, having
zeros everywhere except along the DIAGONAL and
SUPERDIAGONAL, with each element of the DIAGONAL

consisting of a single number l; and each element of
the SUPERDIAGONAL consisting of a 1. For example,



l 1 0 � � �  0 0
0 l 1

::: 0 0
0 0  l

::: 0 0
0 0 0  

::: 0 0
n :::

:::
:::

::: 1
0 0 0 � � �  0 l

2
6666664

3
7777775

(Ayres 1962, p. 206). A JORDAN CANONICAL FORM

consists of one or more Jordan blocks.

The convention that 1s be along the SUBDIAGONAL

instead of the SUPERDIAGONAL is sometimes adopted
instead (Faddeeva 1958, p. 50).

See also DIAGONAL MATRIX, JORDAN CANONICAL

FORM, SUBDIAGONAL
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Jordan Canonical Form
A BLOCK MATRIX in which the blocks consist of
CANONICAL BOX MATRICES with possibly differing
constants li ; also called classical canonical form. For
example,

l1 1 0 � � �  0
0 l1 1

::: 0
0 0 l1

::: 0
n :::

:::
::: 1

0 0 0 � � �  l1 :::
lk 1 0 � � �  0
0 lk 1

::: 0
0 0 lk

::: 0
n :::

:::
::: 1

0 0 0 � � �  lk

2
66666666666666664

3
77777777777777775

(Ayres 1962, p. 206). A specific example is given by

5 1 0  0  0  0
0 5 0  0  0  0
0 0 5  0  0  0
0 0 0 1�2i 1 0
0 0 0 0 1�2i 1
0 0 0 0  0 1�2i

2
6666664

3
7777775
;

which has three JORDAN BLOCKS.

Any COMPLEX MATRIX A can be written in Jordan
canonical form by finding a JORDAN BASIS bi;j for each
JORDAN BLOCK. In fact, any matrix with coefficients
in an algebraically closed FIELD can be put into
Jordan canonical form. The dimensions of the blocks
corresponding to the EIGENVALUE l can be recovered
by the sequence

ai �dim Null A � lð Þi
:

The convention that the submatrices have 1s on the
SUBDIAGONAL instead of the SUPERDIAGONAL is also
used sometimes (Faddeeva 1958, p. 50).

See also JORDAN BASIS, JORDAN BLOCK, JORDAN

MATRIX DECOMPOSITION

References
Ayres, F. Jr. Theory and Problems of Matrices. New York:

Schaum, p. 206, 1962.
Faddeeva, V. N. Computational Methods of Linear Algebra.

New York: Dover, p. 50, 1958.

Jordan Curve

A Jordan curve is a plane curve which is topologically
equivalent to (a HOMEOMORPHIC image of) the UNIT

CIRCLE, i.e., it is SIMPLE and CLOSED.
It is not known if every Jordan curve contains all four
VERTICES of some SQUARE, but it has been proven true
for "sufficiently smooth" curves and closed convex
curves (Schnirelman 1944; Steinhaus 1990, p. 104).
For every TRIANGLE T and Jordan curve J , J has an
INSCRIBED TRIANGLE similar to T .

See also CARATHÉ ODORY’S THEOREM, CLOSED CURVE,
JORDAN CURVE THEOREM, SQUARE INSCRIBING, SIM-

PLE CURVE, UNIT CIRCLE
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Jordan Curve Theorem
If J is a simple closed curve in R2 ; then R2 �J has two
components (an "inside" and "outside"), with J the
BOUNDARY of each.

See also JORDAN CURVE, SCHÖ NFLIES THEOREM
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Jordan Decomposition Theorem
Let V"(0) be a finite dimensional VECTOR SPACE over
the COMPLEX NUMBERS, and let A be a linear operator



on V . Then V can be expressed as a DIRECT SUM of
cyclic subspaces.
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Jordan Identity
The identity

(xy)x2 �x yx2
� 	

satisfied by elements x and y in a JORDAN ALGEBRA.

See also JORDAN ALGEBRA
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Jordan Matrix Decomposition
The Jordan matrix decomposition is the decomposi-
tion of a square matrix M into the form

M �SJS�1 ; (1)

where M and J are SIMILAR MATRICES, J is a matrix of
JORDAN CANONICAL FORM, and S �1 is the MATRIX

INVERSE of S : In other words, M is a SIMILARITY

TRANSFORMATION of a matrix J in JORDAN CANONICAL

FORM. The proof that any square matrix can be
brought into JORDAN CANONICAL FORM is rather
complicated (Turnbull and Aitken 1932; Faddeeva
1958, p. 49; Halmos 1958, p. 112).

Jordan decomposition is also associated with the
MATRIX EQUATION AX �XB and the special case A �B:/

The Jordan matrix decomposition is implemented in
Mathematica as JordanDecomposition[m ], and
returns a list {s , j }. Note that Mathematica takes
the CANONICAL BOX MATRICES in the JORDAN CANONI-

CAL FORM to have 1s along the SUPERDIAGONAL

instead of the SUBDIAGONAL. For example, a Jordan
decomposition of

M �

2 4 �6 0
4 6 �3 �4
0 0 4 0
0 4 �6 2

2
664

3
775 (2)

is given by

S �

1 �1
4 0 1

0 1
4 3 1

0  0 2 0
1  0 0 1

2
664

3
775 (3)

J �

2 1 0 0
0 2 0 0
0 0 4 0
0 0 0 6

2
664

3
775; (4)

See also JORDAN CANONICAL FORM, MATRIX DECOM-

POSITION, SIMILAR MATRICES
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Jordan Measure
Let the set M correspond to a bounded, NONNEGATIVE

function f on an interval 05f xð Þ5c for x � [a; b]: The
Jordan measure, when it exists, is the common value
of the outer and inner Jordan measures of M .

The outer Jordan measure is the greatest lower
bound of the areas of the covering of M , consisting
of finite unions of RECTANGLES. The inner Jordan
measure of M is the difference between the AREA

c(a�b) of the RECTANGLE S with base [a, b ] and
height c , and the outer measure of the complement of
M in S .
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Jordan Measure Decomposition
If m is a REAL MEASURE (i.e., a MEASURE that takes on
real values), then one can decompose it according to
where it is positive and negative. The positive varia-
tion is defined by

m��1
2 mj j�mð Þ; (1)

where /jmj/ is the TOTAL VARIATION MEASURE. Similarly,
the negative variation is

m��1
2 mj j�mð Þ: (2)

Then the Jordan decomposition of m is defined as

m�m��m�: (3)

When m already is a positive measure then m�m�:



More generally, if m is ABSOLUTELY CONTINUOUS, i.e.,

m(E) �gE

fdx; (4)

then so are m� and m�: The positive and negative
variations can also be written as

m�(E) �gE

f �dx (5)

and

m�(E) �gE

f �dx; (6)

where f �f ��f � is the decomposition of f into its
positive and negative parts.

The Jordan decomposition has a so-called minimum
property. In particular, given any positive measure l;
the measure m has another decomposition

m � m�� lð Þ� m �� lð Þ: (7)

The Jordan decomposition is minimal with respect to
these changes. One way to say this is that any
decomposition m � l1 � l2 must have l1 ] m � and
l2 ] m�:/

See also MEASURE, POLAR REPRESENTATION (MEA-

SURE), TOTAL VARIATION MEASURE
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Jordan Polygon
SIMPLE POLYGON

Jordan Product
The Jordan product of quantities x and y is defined by

x � y�1
2(xy�yx):

See also ANTICOMMUTATOR, JORDAN ALGEBRA

Jordan’s Inequality

For 05x5p=2

2

p
x5sin x5x:
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Jordan’s Lemma
Jordan’s lemma shows the value of the INTEGRAL

I�g
�

��

f (x)eiaxdx (1)

along the REAL AXIS is 0 for "nice" functions which
satisfy lim

R0�
f Reiuð Þj j � 0: This is established using a

CONTOUR INTEGRAL IR which satisfies

lim
R0�

IRj j5p
a

lim
R0�

e�0: (2)

To derive the lemma, write

x�Reiu�R cos u�i sin uð Þ (3)

dx�iReiudu (4)

and define the CONTOUR INTEGRAL

IR�g
p

0

f Reiu
� 	

eiaR cos u�aR sinuiReiudu (5)

Then

IRj j� Rg
p

0

f Reiu
� 	%% %% eiaR cos u

%% %% e�aR sin u
%% %% ij j eiu

%% %%du
�Rg

p

0

f Reiu
� 	%% %%e�aR sin udu:

�2Rg
p=2

0

f Reiu
� 	%% %%e�aR sin udu: (6)

Now, if lim
R0�

f Reiuð Þj j� 0; choose an e such that
f Reiuð Þj j5e; so

IRj j52Reg
p=2

0

e�aR sin udu: (7)

But, for u � 0; p=2½ �;

2

p
u5sin u; (8)

so

IRj j52Reg
p=2

0

e�2aRu=pdu



�2eR
1 � e �aR

2aR

p

�
p e
a

1 �e �aR
� 	

: (9)

As long as limR0� f (z)j j� 0; Jordan’s lemma

lim
R0�

IRj j5p
a

lim
R0�

e �0 (10)

then follows.

See also CONTOUR INTEGRATION
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Jordan’s Symmetric Group Theorem
A primitive subgroup of the SYMMETRIC GROUP Sn is
equal to either the ALTERNATING GROUP An or Sn

whenever it contains at least one PERMUTATION which
is a q -cycle for some prime q 5n �3 :/
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Jordan-Hölder Theorem
The composition QUOTIENT GROUPS belonging to two
COMPOSITION SERIES of a FINITE GROUP G are, apart
from their sequence, ISOMORPHIC in pairs. In other
words, if

I ƒHs ƒ. . .ƒH2 ƒH1 ƒG

is one COMPOSITION SERIES and

I ƒKt ƒ. . .ƒK2 ƒK1 ƒG

is another, then t �s , and corresponding to any
composition quotient group Kj =Kj�1 ; there is a com-
position QUOTIENT GROUP Hi =Hi�1 such that

Kj

Kj�1

$
Hi

Hi�1

:

This theorem was proven in 1869 �/889.

See also COMPOSITION SERIES, FINITE GROUP, ISO-

MORPHIC GROUPS

References
Lomont, J. S. Applications of Finite Groups. New York:

Dover, p. 26, 1993.
Scott, W. R. §2.5.8 in Group Theory. New York: Dover, p. 37,

1987.

Joseph Ideal

See also IDEAL
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Josephus Problem
Given a group of n men arranged in a CIRCLE under
the edict that every mth man will be executed going
around the CIRCLE until only one remains, find the
position L(n;m) in which you should stand in order to
be the last survivor (Ball and Coxeter 1987). The list
giving the place in the execution sequence of the first,
second, etc. man can be given by Josephus[m , n ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘). To obtain the or-
dered list of men who are consecutively slaughtered,
InversePermutation in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘) can be applied to the output
of Josephus.

The following array gives the original position of the
last survivor out of a group of n�1, 2, ..., if every mth
man is killed:

1
2 1
3 3 2
4 1 1 2
5 3 4 1 2
6 5 1 5 1 4
7 7 4 2 6 3 5
8 1 7 6 3 1 4 4
9 3 1 1 8 7 2 3 8
10 5 4 5 3 3 9 1 7 8

(Sloane’s A032434). The survivor for m�2 can be
given analytically by

L(n; 2)�1�2n�21��lg n�;

where nb c is the FLOOR FUNCTION and LG is the
LOGARITHM to base 2. The first few solutions are
therefore 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 1, ...
(Sloane’s A006257).

The original position of the second-to-last survivor is
given in the following table for n�2, 3, ...:>

1 1
2 1 1
3 1 1 2
4 3 2 1 2
5 1 1 5 1 4
6 3 1 2 1 3 4
7 1 4 6 3 1 3 4
8 3 1 1 2 7 1 3 7
9 5 4 5 3 3 8 1 6 4

(Sloane’s A032435).



The original position of the second-to-last survivor is
given in the following table for n �2, 3, ...:>

1 1 1
2 1 1 1
3 1 2 1 2
4 1 1 3 1 2
5 3 1 2 1 1 2
6 1 4 3 3 1 1 2
7 3 1 1 2 4 1 1 2
8 1 4 1 3 3 5 1 1 4

(Sloane’s A032436).

The original Josephus problem consisted of a CIRCLE

of 41 men with every third man killed (n �41, m �3).
In order for the lives of the last two men to be spared,
they must be placed at positions 31 (last) and 16
(second-to-last). The complete list in order of execu-
tion is 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 1, 5,
10, 14, 19, 23, 28, 32, 37, 41, 7, 13, 20, 26, 34, 40, 8, 17,
29, 38, 11, 25, 2, 22, 4, 35, 16, 31.

Another version of the problem considers a CIRCLE of
two groups (say, "A" and "B") of 15 men each (giving a
total of 30 men), with every ninth man cast over-
board. To save all the members of the "A" group, the
men must be placed at positions 1, 2, 3, 4, 10, 11, 13,
14, 15, 17, 20, 21, 25, 28, 29. Written out explicitly,
the order is

AAAABBBBBAABAAABABBAABBBABBAAB :

This sequence of letters can be remembered with the
aid of the MNEMONIC "From numbers’ aid and art,
never will fame depart." Consider the vowels only,
assign a �1, e �2, i �3, o �4, u �5, and alternately
add a number of letters corresponding to a vowel
value, so 4A (o), 5B (u), 2A (e), etc. (Mott-Smith 1954,
§149, pp. 94 and 209 �/10; Ball and Coxeter 1987).

If instead every tenth man is thrown overboard, the
men from the "A" group must be placed in positions 1,
2, 4, 5, 6, 12, 13, 16, 17, 18, 19, 21, 25, 28, 29. Written
out explicitly,

AABAAABBBBBAABBAAAABABBBABBAAB

which can be constructed using the Latin MNEMONIC

"Rex paphi cum gente bona dat signa serena" (Ball
and Coxeter 1987).

Mott-Smith (1954, §153, pp. 96 and 212) discusses a
card game called "Out and Under" in which cards at
the top of a deck are alternately discarded and placed
at the bottom. This is a Josephus problem with
parameter m�2, and Mott-Smith hints at the above
closed-form solution.

See also KIRKMAN’S SCHOOLGIRL PROBLEM, NECK-

LACE

References
Bachet, C. G. Problem 23 in Problèmes plaisans et délect-
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Joyce Sequence
The sequence of numbers giving the number of digits
in /nnn

/. The sequence /nnn

/ for n �1, 2, ... is 1, 16,
7625597484987, ... (Sloane’s A002488; Rossier 1948),
so the Joyce sequence is 1, 2, 13, 155, 2185, 36306, ...
(Sloane’s A054382). Laisant (1906) found the term
j(9) ; and Uhler (1947) published the logarithm of this
number to 250 decimal places (Wells 1986, p. 208).

The sequence is named in honor of the following
excerpt from the "Ithaca" chapter of James Joyce’s
Ulysses : "Because some years previously in 1886
when occupied with the problem of the quadrature
of the circle he had learned of the existence of a
number computed to a relative degree of accuracy to
be of such magnitude and of so many places, e.g., the
9th power of the 9th power of 9, that, the result
having been obtained, 33 closely printed volumes of
1000 pages each of innumerable quires and reams of
India paper would have to be requisitioned in order to
contain the complete tale of its printed integers of
units, tens, hundreds, thousands, tens of thousands,
hundreds of thousands, millions, tens of millions,
hundreds of millions, billions, the nucleus of the
nebula of every digit of every series containing
succinctly the potentiality of being raised to the
utmost kinetic elaboration of any power of any of its
powers."
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Jug
THREE JUG PROBLEM

Jugendtraum
The German mathematician Kronecker proved that
all the Galois extensions of the RATIONALS Q with

ABELIAN Galois groups are SUBFIELDS of cyclotomic
fields Q(mn); where mn is the group of nth ROOTS OF

UNITY. He then sought to find a similar function
whose division values would generate the Abelian
extensions of an arbitrary NUMBER FIELD. He dis-
covered that the J -FUNCTION works for IMAGINARY

QUADRATIC FIELDS K , but the completion of this
problem, known as Kronecker’s Jugendtraum
("dream of youth"), for more general FIELDS remains
one of the great unsolved problems in NUMBER

THEORY.

See also IMAGINARY QUADRATIC FIELD, J -FUNCTION
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Juggling
The throwing and catching of multiple objects such
that at least one is always in the air. Some aspects of
juggling turn out to be quite mathematical. The best
examples are the two-handed asynchronous juggling
sequences known as "SITESWAPS."

See also SITESWAP
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Julia Fractal
JULIA SET

Julia Set
Let R(z) be a RATIONAL FUNCTION

R(z)�
P(z)

Q(z)
; (1)

where /z �C�/, z �C� is the RIEMANN SPHERE C@ �f g;
and P and Q are POLYNOMIALS without common
divisors. The "filled-in" Julia set JR is the set of
points z which do not approach infinity after R(z) is
repeatedly applied (corresponding to a STRANGE

ATTRACTOR). The true Julia set J is the boundary of
the filled-in set (the set of "exceptional points"). There
are two types of Julia sets: connected sets (FATOU

SET) and CANTOR SETS (FATOU DUST).



Quadratic Julia sets are generated by the quadratic
mapping

zn�1 �z2
n �c (2)

for fixed c . For almost every c , this transformation
generates a FRACTAL. Examples are shown above for
various values of c . The resulting object is not a
fractal for c � -2 (Dufner et al. 1998, pp. 224 �/26) and
c �0 (Dufner et al. 1998, pp. 125 �/26), although it
does not seem to be known if these two are the only
such exceptional values.

The special case of c on the boundary of the
MANDELBROT SET is called a DENDRITE FRACTAL (top
left figure, computed using c � i ), /c ¼�0 :123 þ 0:745i/
is called DOUADY’S RABBIT FRACTAL (left figure), /

c ¼�0:75/ is called the SAN MARCO FRACTAL (middle
figure), and /c ¼�0 :391 �0:587i/ is the SIEGEL DISK

FRACTAL (right figure). Julia sets can be rendered in
Mathematica using the following code.

JuliaSet[n_:50,c_,rmax_:3.,{{x1_,x2_},{y1_,-

y2_}},opts___]: �
DensityPlot[-Length[

FixedPointList[#^2�c&,x�I y,n,SameTest-

�(Abs[#2] �rmax&)]],

{x,x1,x2},{y,y1,y2},opts,PlotPoints-

�200,Mesh- �False,

Frame- �False,AspectRatio- �Automatic

]

The equation for the quadratic Julia set is a CON-

FORMAL MAPPING, so angles are preserved. Let J be
the JULIA SET, then x?�x leaves J invariant. If a
point P is on J , then all its iterations are on J . The
transformation has a two-valued inverse. If b �0 and
y is started at 0, then the map is equivalent to the
LOGISTIC MAP. The set of all points for which J is
connected is known as the MANDELBROT SET.

For a Julia set Jc with /c �1/, the CAPACITY DIMENSION

is

dcapacity ¼ 1 þ jcj2

4 ln 2
þ Oðjc j3 Þ: ð3Þ

For small c , Jc is also a JORDAN CURVE, although its
points are not COMPUTABLE.

See also DENDRITE FRACTAL, DOUADY’S RABBIT

FRACTAL, FATOU DUST, FATOU SET, MANDELBROT

SET, NEWTON’S METHOD, SAN MARCO FRACTAL,
SIEGEL DISK FRACTAL, STRANGE ATTRACTOR
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Jump
A point of DISCONTINUITY, also called a LEAP.

See also DISCONTINUITY, JUMP ANGLE, JUMPING

CHAMPION
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Jump Angle
A GEODESIC TRIANGLE with oriented boundary yields
a curve which is piecewise DIFFERENTIABLE. Further-
more, the TANGENT VECTOR varies continuously at all
but the three corner points, where it changes sud-
denly. The angular difference of the tangent vectors
at these corner points are called the jump angles.

See also ANGULAR DEFECT, GAUSS-BONNET FORMULA

Jumping Champion

An integer /jðn Þ/ is called a JUMPING CHAMPION if /jðnÞ/ is
the most frequently occurring difference between
consecutive PRIMES /5n/ (Odlyzko et al. ). This term
was coined by J. H. Conway in 1993. There are
occasionally several jumping champions in a range.
The scatter plots above show the jumping champions
for small n , and the ranges of number having given
jumping champion sets are summarized in the follow-
ing table.

j(n) n

1 3

1, 2 5

2 7�/00, 103 �/06, 109 �/12, ...

2, 4 101 �/02, 107 �/08, 113 �/30, ...

4 131 �/38, ...

2, 4, 6 179 �/80, 467 �/90, ...

2, 6 379 �/88, 421 �/32, ...

6 389 �/20, ...

Odlyzko et al. give a table of jumping champions for
n 51000; consisting mainly of 2, 4, and 6. 6 is the
jumping champion up to about n :1:74 �1035 ; at
which point 30 dominates. At n :10425 ; 210 becomes
champion, and subsequent PRIMORIALS are conjec-
tured to take over at larger and larger n . Erdos and
Straus (1980) proved that the jumping champions
tend to infinity under the assumption of a quantita-
tive form of the k -tuples conjecture.

Wolf gives a table of approximate values ñ at which
the PRIMORIAL pnð Þ will become a champion. An

estimate for ñ is given by

ñ �nn�o(n) :

See also PRIME DIFFERENCE FUNCTION, PRIME GAPS,
PRIME NUMBER, PRIMORIAL
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Jumping Octahedron
A bistable eight-sided polyhedron discovered by
Wunderlich and Schwabe (1986).

See also FLEXIBLE POLYHEDRON, MULTISTABLE, RIGID

POLYHEDRON
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Jung’s Theorem
Every finite set of points with SPAN d has an
enclosing CIRCLE with RADIUS no greater than

ffiffiffi
3

p
d=3:/

In 3-D, a generalization of the theorem states that
every set of points with SPAN d has an enclosing
SPHERE with RADIUS no greater than

ffiffiffi
6

p
d=4 (Smar-

andache 1992, 1996).

See also SPAN (GEOMETRY)
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Just If
IFF



Just One
EXACTLY ONE

Just Rigid
A FRAMEWORK is called "just rigid" if it is RIGID, but
ceases to be so when any single bar is removed. Lamb
(1928, pp. 93 �/4) proved that a NECESSARY (but not
SUFFICIENT) condition that a graph be just rigid is
that

E �2V �3;

where E is the number of edges (bars) and V is the
node of vertices (i.e., pivots; Coxeter and Greitzer
1967, p. 56).

See also RIGID GRAPH

References
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

Washington, DC: Math. Assoc. Amer., p. 56, 1967.
Lamb, H. Statics, Including Hydrostatics and the Elements

of the Theory of Elasticity, 3rd ed. London: Cambridge
University Press, 1928.



K

Kabon Triangles
The largest number N(n) of nonoverlapping TRIAN-

GLES which can be produced by n straight LINE

SEGMENTS. The first few terms are 1, 2, 5, 7, 11, 15,
21, ... (Sloane’s A006066).
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Kac Formula
The expected number of REAL zeros En of a RANDOM

POLYNOMIAL of degree n if the coefficients are
independent and distributed normally is given by

En �
1

p g
�

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(t2 � 1)2 �
(n � 1)2t2n

(t2n�2 � 1)2

s
dt (1)

�
4

p g
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

(1 � t2)2 �
(n � 1)2t2n

(1 � t2n�2)2

s
dt: (2)

(Kac 1943, Edelman and Kostlan 1995). Another form
of the equation is given by

En �
1

p g
�

��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2

@x @y
ln

1 � (xy)n�1

1 � xy

" #
x�y �t

dt

vuut (3)

(Kostlan 1993, Edelman and Kostlan 1995). As n 0
�;

En �
2

p
ln n �C1 �

2

pn 
�O(n�2) ; (4)

where

C1 �
2

p
ln 2 �g

�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2 
�

4e �2x

(1 � e�2x)2

s
�

1

x � 1

" #
dx

( )

�0 :6257358072 . . . : (5)

The initial term was derived by Kac (1943).

See also RANDOM POLYNOMIAL
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Kac Matrix
The (n �1) �(n �1) TRIDIAGONAL MATRIX (also called
the CLEMENT MATRIX) defined by

Sn �

0 n 0 0 � � �  0
1 0 n �1 0  � � �  0
0 2  0  n �2 � � �  0
n n :::

:::
::: n

0 0  0  n �1 0 1
0 0  0  0  n 0

2
6666664

3
7777775
:

The EIGENVALUES are 2k �n for k �0, 1, ..., n .

Kadomtsev-Petviashvili Equation
The PARTIAL DIFFERENTIAL EQUATION

3
4 Uy �Wx �0; (1)

where

Wy �Ut �
1
4 Uxxx �

3
2 UUx �0 (2)

(Krichever and Novikov 1980; Novikov 1999). Zwil-
linger (1997, p. 131) and Calogero and Degasperis
(1982, p. 54) give the equation as

@

@x
(ut �uxxx �6uux) 9uyy �0: (3)

The modified Kadomtsev-Petviashvili equation is
given by

uxt �uxxx �3uyy �6u2
xuxx �6uyuxx (4)

(Clarkson 1986; Zwillinger 1997, p. 133).

See also KADOMTSEV-PETVIASHVILI-BURGERS EQUA-

TION, KORTEWEG-DE VRIES EQUATION, KRICHEVER-

NOVIKOV EQUATION
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Kadomtsev-Petviashvili-Burgers Equation
The so-called generalized Kadomtsev-Petviashvili-
Burgers equation is the PARTIAL DIFFERENTIAL EQUA-

TION

@

@x
ut �

Ju

2t
�J1uux �J2uxx �J3uxxx

 !
�J4(t)uyy �0

(Brugarino 1986; Zwillinger 1997, p. 131).

See also KADOMTSEV-PETVIASHVILI EQUATION
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Kähler Form
A CLOSED TWO-FORM v on a COMPLEX MANIFOLD M
which is also the negative IMAGINARY PART of a
HERMITIAN METRIC h �g �iv is called a Kähler
form. In this case, M is called a KÄ HLER MANIFOLD

and g , the REAL PART of the HERMITIAN METRIC, is
called a KÄ HLER METRIC. The Kähler form combines
the metric and the COMPLEX STRUCTURE, indeed

g(X ; Y) � v(X ; JY) ; (1)

where J is the ALMOST COMPLEX STRUCTURE induced
by multiplication by i . Since the Kähler form comes
from a HERMITIAN METRIC, it is preserved by J , i.e.,
since h(X ; Y) �h(JX ; JY): The equation dv �0 im-
plies that the metric and the complex structure are
related. It gives M a KÄ HLER STRUCTURE, and has
many implications.

On C2 ; the Kähler form can be written as

v ��1
2 i(dz1 ffldz1 �dz2 ffldz2) �dx1 ffldy1

�dx2 ffldy2 ; (2)

where zn �xn �iyn : In general, the Kähler form can
be written in coordinates

v �
X

gi ̄k dzi ffldz̄k ; (3)

where gi ̄k is a HERMITIAN METRIC, the REAL PART of
which is the KÄ HLER METRIC. Locally, a Kähler form
can be written as @ @̄f ; where f is a function called a
KÄ HLER POTENTIAL. The Kähler form is a real (1 ; 1)/-
COMPLEX FORM.

Since the Kähler form v is closed, it represents a
COHOMOLOGY CLASS in DE RHAM COHOMOLOGY. On a
COMPACT MANIFOLD, it cannot be EXACT because
vn =n! "0 is the volume form determined by the
metric. In the special case of a PROJECTIVE VARIETY,

the Kähler form represents an INTEGRAL COHOMOL-

OGY CLASS. That is, it integrates to an integer on any
one-dimensional submanifold, i.e., an ALGEBRAIC

CURVE. The KODAIRA EMBEDDING THEOREM says
that if the Kähler form represents an INTEGRAL

COHOMOLOGY CLASS on a compact manifold, then it
must be a PROJECTIVE VARIETY. There exist Kähler
forms which are not projective algebraic, but it is an
open question whether or not any KÄ HLER MANIFOLD

can be deformed to a PROJECTIVE VARIETY (in the
compact case).

A Kähler form satisfies WIRTINGER’S INEQUALITY,

½v(X ; Y)½5 ½X fflY ½; (4)

where the right-hand side is the volume of the
parallelogram formed by the tangent vectors X and
Y . Corresponding inequalities hold for the EXTERIOR

POWERS of v: Equality holds IFF X and Y form a
complex subspace. Therefore, v is a CALIBRATION

FORM, and the complex submanifolds of a Kähler
manifold are CALIBRATED SUBMANIFOLDS. In particu-
lar, the complex submanifolds are locally volume
minimizing in a Kähler manifold. For example, the
graph of a holomorphic function is a locally area-
minimizing surface in C2

#R4:/

See also CALABI-YAU SPACE, CALIBRATION FORM,
COMPLEX MANIFOLD, COMPLEX PROJECTIVE SPACE,
DOLBEAULT COHOMOLOGY, KÄ HLER IDENTITIES, KÄ H-

LER MANIFOLD, KÄ HLER METRIC, KÄ HLER POTENTIAL,
KÄ HLER STRUCTURE, KODAIRA EMBEDDING THEOREM,
PROJECTIVE VARIETY, SYMPLECTIC FORM, WIRTIN-

GER’S INEQUALITY
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Kähler Identities
A collection of identities which hold on a KÄHLER

MANIFOLD, also called the Hodge identities. Let v be a
KÄHLER FORM, d�@�@̄ be the EXTERIOR DERIVATIVE,
where /@̄/ is the DEL BAR OPERATOR, [A; B]�AB�BA
be the COMMUTATOR of two differential operators, and
A� denote the FORMAL ADJOINT of A . The following
operators also act on DIFFERENTIAL FORMS on a
KÄHLER MANIFOLD:

L(a)�afflv (1)

L(a)�L�(a)�a�v (2)

dc��JdJ; (3)

where J is the ALMOST COMPLEX STRUCTURE, J2��I;



and /�/ denotes the INTERIOR PRODUCT. Then

[L ; @̄] �[L; @] �0 (4)

[ L; @̄�] �[ L; @�] �0 (5)

[L; @̄�] ��i @ (6)

[L; @�] �i ̄@ (7)

[L; @̄] ��i @� (8)

[ L; @] �i ̄@: (9)

In addition,

d�dc ��dcd��d�Ld ���dc Ldc (10)

ddc ���dc �d �dc �Ldc ���dLd (11)

@ @̄���@̄�@��i ̄@�L ̄@���i @L@ (12)

@̄@���@� ̄@�i @�L @��i ̄@L ̄@: (13)

These identities have many implications. For in-
stance, the two operators

Dd �dd��d�d (14)

and

D@̄� @̄ @̄��  ̄@� ̄@ (15)

(called Laplacians because they are elliptic operators)
satisfy Dd �2D@̄ : At this point, assume that M is also
a COMPACT MANIFOLD. Along with HODGE’S THEOREM,
this equality of Laplacians proves the HODGE DECOM-

POSITION. The operators L and L commute with these
Laplacians. By HODGE’S THEOREM, they act on coho-
mology, which is represented by HARMONIC FORMS.
Moreover, defining

H �[L; L] �
X

(p �q �n) Pp ; q ; (16)

where Pp ; q is projection onto the (p, q )-DOLBEAULT

COHOMOLOGY, they satisfy

[L; L] �H (17)

[H ; L] ��2L (18)

[H ; L] �2 L: (19)

In other words, these operators provide a REPRESEN-

TATION of the SPECIAL LINEAR LIE ALGEBRA sl2(C) on
the complex cohomology of a compact Kähler mani-
fold. In effect, this is the content of the HARD

LEFSCHETZ THEOREM.

See also CALIBRATED MANIFOLD, COMPLEX MANI-

FOLD, COMPLEX PROJECTIVE SPACE, HARD LEFSCHETZ

THEOREM, HODGE’S THEOREM, KÄ HLER FORM, KÄ H-

LER MANIFOLD, KÄ HLER POTENTIAL, KÄ HLER STRUC-

TURE, PROJECTIVE VARIETY, RIEMANNIAN METRIC,
SYMPLECTIC MANIFOLD
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Kähler Manifold
A COMPLEX MANIFOLD for which the EXTERIOR DERI-

VATIVE of the fundamental form V associated with the
given HERMITIAN METRIC vanishes, so dV�0: In
other words, it is a complex manifold with a KÄ HLER

STRUCTURE. It has a KÄ HLER FORM, so it is also a
SYMPLECTIC MANIFOLD. It has a KÄ HLER METRIC, so it
is also a RIEMANNIAN MANIFOLD.

The simplest example of a Kähler manifold is a
RIEMANN SURFACE, which is a COMPLEX MANIFOLD of
dimension 1. In this case, the IMAGINARY PART of any
HERMITIAN METRIC must be a CLOSED FORM since all
2-forms are CLOSED on a two real dimensional MANI-

FOLD.

See also CALIBRATED MANIFOLD, COMPLEX MANI-

FOLD, COMPLEX PROJECTIVE SPACE, HYPER-KÄ HLER

MANIFOLD, KÄ HLER FORM, KÄ HLER IDENTITIES, KÄ H-

LER METRIC, KÄ HLER POTENTIAL, KÄ HLER STRUC-

TURE, PROJECTIVE VARIETY, QUATERNION KÄ HLER

MANIFOLD RIEMANNIAN METRIC, SYMPLECTIC MANI-

FOLD
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Kähler Metric
A Kähler metric is a RIEMANNIAN METRIC g on a
COMPLEX MANIFOLD which gives M a KÄHLER STRUC-

TURE, i.e., it is a KÄHLER MANIFOLD with a KÄHLER

FORM. However, the term "Kähler metric" can also
refer to the corresponding HERMITIAN METRIC h�
g�iv; where v is the KÄHLER FORM, defined by
v(X; Y)�g(JX; Y): Here, the operator J is the
ALMOST COMPLEX STRUCTURE, a linear map on tan-
gent vectors satisfying J2��I; induced by multi-
plication by i . In coordinates zk�xk�iyk; the



operator J satisfies J(@=@xk) �@=@yk and
J(@=@yk) ��@=@xk :/

The operator J depends on the COMPLEX STRUCTURE,
and on a KÄ HLER MANIFOLD, it must preserve the
Kähler metric. For a metric to be Kähler, one
additional condition must also be satisfied, namely
that it can be expressed in terms of the metric and the
complex structure. Near any point p , there exists
holomorphic coordinates zk �xk �iyk such that the
metric has the form

g �
X

dxk �dxk �dyk �dyk �O(½z½2);

where � denotes the TENSOR PRODUCT; that is, it
vanishes up to order two at p . Hence, any geometric
equation in Cn involving only the first derivatives can
be defined on a Kähler manifold. Note that a generic
metric can be written to vanish up to order two, but
not necessarily in holomorphic coordinates, using a
GAUSSIAN COORDINATE SYSTEM.

See also CALIBRATED MANIFOLD, COMPLEX MANI-

FOLD, COMPLEX PROJECTIVE SPACE, KÄ HLER FORM,
KÄ HLER IDENTITIES, KÄ HLER MANIFOLD, KÄ HLER

POTENTIAL, KÄ HLER STRUCTURE, PROJECTIVE VARI-

ETY, RIEMANNIAN METRIC, SYMPLECTIC MANIFOLD

References
Griffiths, P. and Harris, J. Principles of Algebraic Geometry.

New York: Wiley, pp. 106 �/126, 1994.
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Kähler Potential
The Kähler potential is a real-valued function f on a
KÄ HLER MANIFOLD for which the KÄ HLER FORM v can
be written as v �i @ @̄f : Here, the operators

@�
X @

@zk

dzk (1)

and

@̄�
X @

@ ̄zk

dz̄k (2)

are called the del and DEL BAR OPERATOR, respec-
tively.

For example, in Cn ; the function f � ½z ½2 =2 is a Kähler
potential for the standard Kähler form, because

i @ @̄(1
2 ½z½

2) �1
2 i @ @̄

X
zk z̄k

�1
2 i@

X
zk dz̄k

�1
2 i
X

dzkffldz̄k�v:

See also CALIBRATED MANIFOLD, COMPLEX MANI-

FOLD, COMPLEX PROJECTIVE SPACE, KÄ HLER FORM,
KÄ HLER IDENTITIES, KÄ HLER MANIFOLD, KÄ HLER

METRIC, KÄ HLER STRUCTURE, PROJECTIVE VARIETY,
RIEMANNIAN METRIC, SYMPLECTIC MANIFOLD

References
Griffiths, P. and Harris, J. Principles of Algebraic Geometry.

New York: Wiley, pp. 106�/126, 1994.
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Kähler Structure
A Kähler structure on a COMPLEX MANIFOLD M
combines a RIEMANNIAN METRIC on the underlying
REAL MANIFOLD with the COMPLEX STRUCTURE. Such a
structure brings together geometry and complex
analysis, and the main examples come from ALGE-

BRAIC GEOMETRY. When M has n complex dimen-
sions, then it has 2n real dimensions. A Kähler
structure is related to the UNITARY GROUP U(n);
which embeds in SO(2n) as the orthogonal matrices
that preserve the ALMOST COMPLEX STRUCTURE (mul-
tiplication by ‘i ’). In a COORDINATE CHART, the COM-

PLEX STRUCTURE of M defines a multiplication by i
and the metric defines orthogonality for tangent
vectors. On a Kähler manifold, these two notions
(and their derivatives) are related.

The following are elements of a Kähler structure,
with each condition SUFFICIENT for a Kähler structure
to exist.

1. A KÄHLER METRIC. Near any point p , there
exists holomorphic coordinates zk�xk�iyk such
that the metric has the form

g�
X

dxk�dxk�dyk�dyk�O(½z½2); (1)

where � denotes the TENSOR PRODUCT; that is, it
vanishes up to order two at p . Hence any geo-
metric equation in Cn involving only the first
derivatives can be defined on a KÄHLER MANIFOLD.
Note that a generic metric can be written to vanish
up to order two, but not necessarily in holomorphic
coordinates, using a GAUSSIAN COORDINATE SYS-

TEM.
2. A KÄHLER FORM v is a real CLOSED nondegene-
rate TWO-FORM, i.e., a SYMPLECTIC FORM, for which
v(X; JX) > 0 for nonzero tangent vectors X . More-
over, it must also satisfy v(JX; JY)�v(X; Y);
where J is the ALMOST COMPLEX STRUCTURE



induced by multiplication by i . That is,

J
@

@xk

 !
�

@

@yk

(2)

and

J
@

@yk

 !
��

@

@xk

: (3)

Locally, a Kähler form can be written as @ @̄f ;
where f is a function called a KÄ HLER POTENTIAL.
The Kähler form is a real (1; 1)/-FORM.
3. A HERMITIAN METRIC h �g �iv where the REAL

PART is a KÄ HLER METRIC, as in item (1) above, and
where the IMAGINARY PART is a KÄ HLER FORM, as
in item (2).
4. A metric for which the ALMOST COMPLEX

STRUCTURE J is PARALLEL. Since PARALLEL TRANS-

PORT is always an isometry, a HERMITIAN METRIC

is well-defined by PARALLEL TRANSPORT along
paths from a base point. The HOLONOMY GROUP is
contained in the UNITARY GROUP.

It is easy to see that a complex SUBMANIFOLD of a
KÄ HLER MANIFOLD inherits its Kähler structure, and
so must also be Kähler. The main source of examples
are PROJECTIVE VARIETIES, complex submanifolds of
COMPLEX PROJECTIVE SPACE which are solutions to
algebraic equations.

There are several deep consequences of the Kähler
condition. For example, the KÄ HLER IDENTITIES, the
HODGE DECOMPOSITION of COHOMOLOGY, and the
LEFSCHETZ THEOREMS depend on the Kähler condi-
tion for compact manifolds.

See also CALIBRATED MANIFOLD, COMPLEX MANI-

FOLD, COMPLEX PROJECTIVE SPACE, COMPLEX STRUC-

TURE, KÄ HLER FORM, KÄ HLER IDENTITIES, KÄ HLER

MANIFOLD, KÄ HLER METRIC, KÄ HLER POTENTIAL,
PROJECTIVE VARIETY, RIEMANN SURFACE, SYMPLEC-

TIC MANIFOLD
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Kakeya Needle Problem
What is the plane figure of least AREA in which a line
segment of width 1 can be freely rotated (where
translation of the segment is also allowed)? When
the figure is restricted to be convex, Cunningham and
Schoenberg (1965) found there is still no minimum
AREA, although Wells (1991) states that Kakeya

discovered that the smallest convex region is an
EQUILATERAL TRIANGLE of unit height. The smallest
simple convex domain in which one can put a segment
of length 1 which will coincide with itself when
rotated by 1808 is

1
24(5 �2

ffiffiffi
2

p
)p �0:284258 . . .

(Le Lionnais 1983).

For a general convex shape, Besicovitch (1928) proved
that there is no MINIMUM AREA. This can be seen by
rotating a line segment inside a DELTOID, star-shaped
5-oid, star-shaped 7-oid, etc. Another iterative con-
struction which tends to as small an area as desired is
called a PERRON TREE (Falconer 1990, Wells 1991).

See also CURVE OF CONSTANT WIDTH, LEBESGUE

MINIMAL PROBLEM, PERRON TREE, REULEAUX POLY-

GON, REULEAUX TRIANGLE
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Kakeya Set
KAKEYA NEEDLE PROBLEM

Kakutani’s Fixed Point Theorem
Every correspondence that maps a compact convex
subset of a locally convex space into itself with a
closed graph and convex nonempty images has a fixed
point.

See also FIXED POINT THEOREM

Kakutani’s Problem
COLLATZ PROBLEM



Kalman Filter
An ALGORITHM in CONTROL THEORY introduced by
R. Kalman in 1960 and refined by Kalman and
R. Bucy. It is an ALGORITHM which makes optimal
use of imprecise data on a linear (or nearly linear)
system with Gaussian errors to continuously update
the best estimate of the system’s current state.

See also WIENER FILTER
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KAM Theorem
KOLMOGOROV-ARNOLD-MOSER THEOREM

Kampé de Fériet Function
A SPECIAL FUNCTION generalizes the GENERALIZED

HYPERGEOMETRIC FUNCTION to two variables and
includes the APPELL HYPERGEOMETRIC FUNCTION

F1( a; b; b?; g; x ; y) as a special case. The Kampe de
Feriet function can represent derivatives of GENERAL-

IZED HYPERGEOMETRIC FUNCTIONS with respect to
their parameters, as well as indefinite integrals of
two and three MEIJER’S G -FUNCTIONS. Exton and
Krupnikov (1998) have derived a large collection of
formulas involving this function.

Kampé de Fériet functions are written in the notation

Fp ; r; t
q ; s; u

cp

dq
j ar

bs
j at

bu 
j x; y

 !
: (1)

Special cases include

F1; 1; 1
1; 0; 0

1 =2
3 =2 j 1=2

� j�1=2
� j x ; y

 !

�
1ffiffiffi
x

p E sin�1(
ffiffiffi
x

p
);

ffiffiffiffiffiffiffiffi
y=x

p� �
(2)

F1; 1; 1
1; 0; 0

1 =2
3 =2 j 1=2

� j�1=2
� j x; y

 !

�
1ffiffiffi
x

p F sin �1(
ffiffiffi
x

p
);

ffiffiffiffiffiffiffiffi
y=x

p� �
(3)

for x "0 and ½x½; ½y½51 ; where E(x; k) is the incom-
plete ELLIPTIC INTEGRAL OF THE SECOND KIND and
F(x; k) is the incomplete ELLIPTIC INTEGRAL OF THE

FIRST KIND, as well as

F1 ; 1 ; 1
1 ; 0 ; 0

1=2
1 j 1� j 1=2

� j x; y

 !
�

2

p
P(1; x;

ffiffiffi
y

p
) (4)

for ½x½; ½y½B1; where P(n; x; k) is the incomplete
ELLIPTIC INTEGRAL OF THE THIRD KIND (Exton and
Krupnikov 1998, p. 1). Additional identities are given
by

F1�p; r; t
q; s; u

0; cp

dq
j ar

bs
j at

bu
j x; y

 !
�1 (5)

Fp; r; t
q; s; u

cp

dq
j ar

bs
j at

bu
j x; 0

 !
�Fp�r

q�s

cp; ar

dq; ds
j x

 !
(6)

Fp; r;1� t
q; s; u

cp

dq
j ar

bs
j 0; at

bu
j x; y

 !
�Fp�r

q�s

cp; ar

dq; ds
j x

 !
(7)

(Exton and Krupnikov 1998, p. 3).

See also APPELL HYPERGEOMETRIC FUNCTION, FOX’S

H -FUNCTION, GENERALIZED HYPERGEOMETRIC FUNC-

TION, HORN FUNCTION, LAURICELLA FUNCTIONS,
MACROBERT’S E -FUNCTION, MEIJER’S G -FUNCTION
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Kampyle of Eudoxus

A curve studied by Eudoxus in relation to the
classical problem of CUBE DUPLICATION. It is given



by the polar equation

r cos2 u �a;

and the PARAMETRIC EQUATIONS

x �a sec t

y �a tan t sec t

with t � [�p=2; p=2]:/
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Kanizsa Triangle

An optical ILLUSION, illustrated above, in which the
eye perceives a white upright EQUILATERAL TRIANGLE

where none is actually drawn.

See also ILLUSION
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Kantorovich Inequality
Suppose x1 Bx2 B. . .Bxn are given POSITIVE num-
bers. Let l1 ; ..., ln ]0 and an

j�1 lj �1: Then

Xn

j�1

ljxj

 ! Xn

j�1

ljx
�1
j

 !
5A2G �2 ; (1)

where

A �1
2(x1 �xn) (2)

G �
ffiffiffiffiffiffiffiffiffi
x1xn

p
(3)

are the ARITHMETIC and GEOMETRIC MEAN, respec-
tively, of the first and last numbers. The Kantorovich
inequality is central to the study of convergence
properties of descent methods in optimization (Luen-
berger 1984).

See also ARITHMETIC MEAN, GEOMETRIC MEAN
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Kaplan-Yorke Conjecture
There are several versions of the Kaplan-Yorke
conjecture, with many of the higher dimensional
ones remaining unsettled. The original Kaplan-Yorke
conjecture (Kaplan and Yorke 1979) proposed that,
for a two-dimensional mapping, the CAPACITY DIMEN-

SION D equals the KAPLAN-YORKE DIMENSION DKY ;

D �DKY �dLya �1 �
s1

s2

;

where s1 and s2 are the LYAPUNOV CHARACTERISTIC

EXPONENTS. This was subsequently proven to be true
in 1982. A later conjecture held that the KAPLAN-

YORKE DIMENSION is generically equal to a probabil-
istic dimension which appears to be identical to the
INFORMATION DIMENSION (Frederickson et al. 1983).
This conjecture is partially verified by Ledrappier
(1981). For invertible 2-D maps, n � s �D ; where n is
the CORRELATION EXPONENT, s is the INFORMATION

DIMENSION, and D is the CAPACITY DIMENSION (Young
1984).

See also CAPACITY DIMENSION, KAPLAN-YORKE DI-

MENSION, LYAPUNOV CHARACTERISTIC EXPONENT,
LYAPUNOV DIMENSION
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Kaplan-Yorke Dimension

DKY 
 j �
s1 � . . .  � sj

½sj �1 ½
;

where s1 5 sn are LYAPUNOV CHARACTERISTIC EXPO-

NENTS and j is the largest INTEGER for which

l1 �. . .� lj ]0:

If n � s �D ; where n is the CORRELATION EXPONENT, s
the INFORMATION DIMENSION, and D the HAUSDORFF

DIMENSION, then

D 5DKY

(Grassberger and Procaccia 1983).
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Kaplan-Yorke Map

xn�1 �2xn

yn�1 �ayn �cos(4 pxn);

where xn ; yn are computed mod 1. (Kaplan and Yorke
1979). The Kaplan-Yorke map with a �0:2 has
CORRELATION EXPONENT 1.4290.02 (Grassberger Pro-
caccia 1983) and CAPACITY DIMENSION 1.43 (Russell et
al. 1980).
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Kappa Curve

A curve also known as GUTSCHOVEN’S CURVE which
was first studied by G. van Gutschoven around 1662

(MacTutor Archive). It was also studied by Newton
and, some years later, by Johann Bernoulli. It is
given by the Cartesian equation

(x2 �y2)y2 �a2x2 ; (1)

by the polar equation

r �a cot u ; (2)

and the PARAMETRIC EQUATIONS

x �a cos t cot t (3)

y �a cos t: (4)
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Kaprekar Number
Consider an n -digit number k . Square it and add the
right n digits to the left n or n�1 digits. If the
resultant sum is k , then k is called a Kaprekar
number. The first few are 1, 9, 45, 55, 99, 297, 703, ...
(Sloane’s A006886).

92�81 8�1�9

2972�88; 209 88�209�297:

See also DIGITAL ROOT, DIGITADDITION, HAPPY NUM-

BER, KAPREKAR ROUTINE, NARCISSISTIC NUMBER,
RECURRING DIGITAL INVARIANT

References
Iannucci, D. E.. "The Kaprekar Numbers." J. Integer Se-

quences 3, No. 00.1.2, 2000. http://www.research.att.com/
~njas/sequences/JIS/VOL3/iann2a.html.

Sloane, N. J. A. Sequences A006886/M4625 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Wells, D. The Penguin Dictionary of Curious and Interesting
Numbers. Middlesex, England: Penguin Books, p. 73,
1986.

Kaprekar Routine
A routine discovered in 1949 by D. R. Kaprekar for 4-
digit numbers, but which can be generalized to k -
digit numbers. To apply the Kaprekar routine to a
number n , arrange the digits in descending /(n?) and
ascending /(nƒ) order. Now compute K(n)
n?�nƒ and
iterate. The algorithm reaches 0 (a degenerate case),
a constant, or a cycle, depending on the number of
digits in k and the value of n .

For a 3-digit number n in base 10, the Kaprekar
routine reaches the number 495 in at most six



iterations. In base r , there is a unique number ((r �
2)=2; r �1; r =2)r to which n converges in at most (r �
2)=2 iterations IFF r is EVEN. For any 4-digit number
n in base-10, the routine terminates on the number
6174 after seven or fewer steps (where it enters the 1-
cycle K(6174) �6174):/

2. 0, 0, 9, 21, f(45); (49)g; ...,
3. 0, 0, (32, 52), 184, (320, 580, 484), ...,
4. 0, 30, f201; (126 ; 138)g; (570, 765), {(2550),
(3369), (3873)}, ...,
5. 8, (48, 72), 392, (1992, 2616, 2856, 2232), (7488,
10712, 9992, 13736, 11432), ...,
6. 0, 105, (430, 890, 920, 675, 860, 705), {5600,
(4305, 5180)}, {(27195), (33860), (42925), (16840,
42745, 35510)}, ...,
7. 0, (144, 192), (1068, 1752, 1836), (9936, 15072,
13680, 13008, 10608), (55500, 89112, 91800,
72012, 91212, 77388), ...,
8. 21, 252, {(1589, 3178, 2723), (1022, 3122, 3290,
2044, 2212)}, {(17892, 20475), (21483, 25578,
26586, 21987)}...,
9. (16, 48), (320, 400), {(2256, 5312, 3856),(3712,
5168, 5456)}, {41520,(34960, 40080, 55360, 49520,
42240)}, ...,
10. 0, 495, 6174, {(53955, 59994), (61974, 82962,
75933, 63954), (62964, 71973, 83952, 74943)}, ...,

See also 196-ALGORITHM, KAPREKAR NUMBER, RATS
SEQUENCE
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Kaps-Rentrop Methods
A generalization of the RUNGE-KUTTA METHOD for
solution of ORDINARY DIFFERENTIAL EQUATIONS, also
called ROSENBROCK METHODS.

See also RUNGE-KUTTA METHOD
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Kapteyn Series
A series OF THE FORM

X�
n�0

anJn �n[( n �n)z] ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
Examples include Kapteyn’s original series

1

1 � z 
�1 �2

X�
n �0

Jn(nz)

and

z2

2(1 � z2)
�
X�
n�0

J2n(2nz):

See also BESSEL FUNCTION OF THE FIRST KIND,
LEMON, NEUMANN SERIES (BESSEL FUNCTION)
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Karatsuba Multiplication
It is possible to perform MULTIPLICATION of LARGE

NUMBERS in (many) fewer operations than the usual
brute-force technique of "long multiplication." As
discovered by Karatsuba and Ofman (1962), MULTI-

PLICATION of two n -DIGIT numbers can be done with a
BIT COMPLEXITY of less than n2 using identities OF

THE FORM

(a�b � 10n)(c�d � 10n)

�ac�[(a�b)(c�d)�ac�bd]10n�bd � 102n: (1)

Proceeding recursively then gives BIT COMPLEXITY

O(nlg 3); where lg 3�1:58 . . .B2 (Borwein et al.
1989). The best known bound is O(n lg n lg n) steps
for n�1 (Schönhage and Strassen 1971, Knuth
1981). However, this ALGORITHM is difficult to imple-
ment, but a procedure based on the FAST FOURIER

TRANSFORM is straightforward to implement and
gives BIT COMPLEXITY O((lg n)2�en) (Brigham 1974,
Borodin and Munro 1975, Knuth 1981, Borwein et al.
1989).

As a concrete example, consider MULTIPLICATION of
two numbers each just two "digits" long in base w ,

N1�a0�a1w (2)



N2 �b0 �b1w ; (3)

then their PRODUCT is

P 
N1N2 �a0b0 �(a0b1 �a1b0)w �a1b1w2

�p0 �p1w �p2w2 : (4)

Instead of evaluating products of individual digits,
now write

q0 �a0b0 (5)

q1 �(a0 �a1)(b0 �b1) (6)

q2 �a1b1 : (7)

The key term is q1 ; which can be expanded, re-
grouped, and written in terms of the pj as

q1 �p1 �p0 �p2 : (8)

However, since p0 �q0 ; and p2 �q2 ;/ it immediately
follows that

p0 �q0 (9)

p1 �q1 �q0 �q2 (10)

p2 �q2 ; (11)

so the three "digits" of p have been evaluated using
three multiplications rather than four. The technique
can be generalized to multidigit numbers, with the
trade-off being that more additions and subtractions
are required.

Now consider four-"digit" numbers

N1 �a0 �a1w �a2w2 �a3w3 ; (12)

which can be written as a two-"digit" number repre-
sented in the base w2 ;

N1 �(a0 �a1w) �(a2 �a3w) + w2 : (13)

The "digits" in the new base are now

a ?0 �a0 �a1w (14)

a?1 �a2 �a3w; (15)

and the Karatsuba algorithm can be applied to N1

and N2 in this form. Therefore, the Karatsuba
algorithm is not restricted to multiplying two-digit
numbers, but more generally expresses the multi-
plication of two numbers in terms of multiplications
of numbers of half the size. The asymptotic speed the
algorithm obtains by recursive application to the
smaller required subproducts is O(nlg 3) (Knuth 1981).

When this technique is recursively applied to multi-
digit numbers, a point is reached in the recursion
when the overhead of additions and subtractions
makes it more efficient to use the usual O(n2) MULTI-

PLICATION algorithm to evaluate the partial products.
The most efficient overall method therefore relies on a

combination of Karatsuba and conventional multi-
plication.

See also COMPLEX MULTIPLICATION, MULTIPLICATION,
STRASSEN FORMULAS
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Karnaugh Map
In combinatorial logic minimization, a device known
as a Karnaugh map is frequently used. It is similar to
a TRUTH TABLE, but the various variables are repre-
sented along two axes, and are arranged in such a
way that only one input bit changes in going from one
square to an adjacent square.

See also TRUTH TABLE

k-ary Divisor
Let a DIVISOR d of n be called a 1-ary divisor if d �nd
(i.e., d is RELATIVELY PRIME to n=d) : Then d is called a
k -ary divisor of n , written d ½kn; if the GREATEST

COMMON (k �1)/-ary divisor of d and (n=d) is 1.

In this notation, d½½n is written d½0n; and d½½n is
written d½1n: px is an INFINARY DIVISOR of py (with
y �0) if px½y �1py:/

See also BIUNITARY DIVISOR, DIVISOR, GREATEST

COMMON DIVISOR, INFINARY DIVISOR, UNITARY DIVI-

SOR
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Katadrome
A katadrome is a number whose HEXADECIMAL digits
are in strict descending order. The first few are 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 33, 48, 49,
... (Sloane’s A023797), corresponding to 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E, F, 10, 20, 21, 30, 31, ....

See also DIGIT, HEXADECIMAL, METADROME, NIALP-

DROME, PLAINDROME
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Katona’s Problem
Find the minimum number f (n) of SUBSETS in a
SEPARATING FAMILY for a SET of n elements, where a
SEPARATING FAMILY is a SET of SUBSETS in which each
pair of adjacent elements is found separated, each in
one of two DISJOINT SUBSETS. For example, the 26
letters of the alphabet can be separated by a family of
nine:

(abcdefghi) (jklmnopqr) (stuvwxyz)
(abcjklstu) (defmnovwx) (ghipqryz)

(adgjmpsvy) (behknqtwz) (cfilorux)
:

The problem was posed by Katona (1973) and solved
by C. Mao-Cheng in 1982,

f (n) �min 2p �3 log3

n

2p

 !& ’
: p �0; 1; 2

( )
;

where xd e is the CEILING FUNCTION. f (n) is nonde-
creasing, and the values for n �1, 2, ... are 0, 2, 3, 4,
5, 5, 6, 6, 6, 7, ... (Sloane’s A007600). The values at
which f (n) increases are 1, 2, 3, 4, 5, 7, 10, 13, 19, 28,
37, ... (Sloane’s A007601), so f (26) �9 ; as illustrated
in the preceding example.

See also SEPARATING FAMILY
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Kauffman Polynomial F
A semi-oriented 2-variable KNOT POLYNOMIAL defined
by

FL(a ; z) �a �w(L) ½L½h i; (1)

where L is an oriented LINK DIAGRAM, w(L) is the
WRITHE of L , ½L ½ is the unoriented diagram corre-
sponding to L , and �L � is the BRACKET POLYNOMIAL.
It was developed by Kauffman by extending the BLM/

HO POLYNOMIAL Q to two variables, and satisfies

F(1; x) �Q(x) : (2)

The Kauffman POLYNOMIAL is a generalization of the
JONES POLYNOMIAL V(t) since it satisfies

V(t) �F(�t�3 =4 ; t�1=4 �t1 =4) ; (3)

but its relationship to the HOMFLY POLYNOMIAL is
not well understood. In general, it has more terms
than the HOMFLY POLYNOMIAL, and is therefore
more powerful for discriminating KNOTS. It is a semi-
oriented POLYNOMIAL because changing the orienta-
tion only changes F by a POWER of a . In particular,
suppose L � is obtained from L by reversing the
orientation of component k , then

FL ��a4 lFL ; (4)

where l is the LINKING NUMBER of k with L �k
(Lickorish and Millett 1988). F is unchanged by
MUTATION.

FL1�FL2
�F(L1)F(L2) (5)

FL1@L2
�[(a�1 �a)x�1 �1]FL1

FL2
: (6)

M. B. Thistlethwaite has tabulated the Kauffman 2-
variable POLYNOMIAL for KNOTS up to 13 crossings.

See also KAUFFMAN POLYNOMIAL X
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Kauffman Polynomial X
A 1-variable KNOT POLYNOMIAL denoted X or L:

LL(A)
(�A3)�w(L)�L�; (1)

where �L� is the BRACKET POLYNOMIAL and w(L) is
the WRITHE of L . This POLYNOMIAL is invariant under
AMBIENT ISOTOPY, and relates MIRROR IMAGES by



LL ��LL(A�1) : (2)

It is identical to the JONES POLYNOMIAL with the
change of variable

L(t�1 =4) �V(t) : (3)

The X POLYNOMIAL of the MIRROR IMAGE K � is the
same as for K but with A replaced by A�1 :/

See also KAUFFMAN POLYNOMIAL F
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Kaup’s Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

fx �2fgc(x �t)

gt �2fgc(x �t) :
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k-Automatic Set
AUTOMATIC SET

k-Balanced
A GENERALIZED HYPERGEOMETRIC FUNCTION

pFq

a1 ; a2 ; . . . ; ap

b1 ; b2 ; . . . ; bq
; z

� �
;

is said to be k -balanced if

Xq

i�1

bi �k �
Xp

i�1

ai :

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
NEARLY-POISED, SAALSCHÜ TZIAN, WELL-POISED
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k-Chain
Any sum of a selection of Pk/s, where Pk denotes a k -D
POLYTOPE.

See also K -CIRCUIT, POLYTOPE

k-Circuit
A K -CHAIN whose bounding (K -1)-CHAIN vanishes.

See also K -CHAIN

k-Coloring
A k -coloring of a GRAPH G is an assignment of one of k
possible colors to each vertex of G (i.e, a VERTEX

COLORING) such that no two adjacent vertices receive
the same color.

See also CHROMATIC NUMBER, CHROMATIC POLYNO-

MIAL, COLORING, EDGE COLORING, VERTEX COLORING
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k-Connected Graph
A graph G is said to be k -connected if there does not
exist a set of k �1 vertices whose removal disconnects
the graph, i.e., the VERTEX CONNECTIVITY of G is ]k
(Skiena 1990, p. 177). Therefore, a CONNECTED GRAPH

is 1-connected, and a BICONNECTED GRAPH is 2-
connected (Skiena 1990, p. 177).

The following table gives the numbers of k -connected
graphs for n -node graphs. Note that there is a unique
n -connected n -node graph, namely, the COMPLETE

GRAPH Kn : The WHEEL GRAPH is the basic 3-connected
graph (Tutte 1961; Skiena 1990, p. 179).

k k -connected graphs on 1, 2, ... nodes

1 1, 1, 2, 6, 21, 112, 853, ...

2 0, 1, 1, 3, 10, 56, 468, ...

3 0, 0, 1, 1, 3, 17, 136, ...

4  0, 0, 0, 1, 1, 4, 25, ...

5  0, 0, 0, 0, 1, 1, 4, ...

6  0, 0, 0, 0, 0, 1, 1, ...

7  0, 0, 0, 0, 0, 0, 1, ...

8  0, 0, 0, 0, 0, 0, 0, ...

See also BARNETTE’S CONJECTURE, BICONNECTED

GRAPH, CONNECTED GRAPH, DISCONNECTED GRAPH,
HARARY GRAPH, K -EDGE-CONNECTED GRAPH, MEN-

GER’S N -ARC THEOREM, POLYHEDRAL GRAPH
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k-Edge-Connected Graph
A graph is k -edge-connected if there does not exist a
set of k edges whose removal disconnects the graph
(Skiena 1990, p. 177). The maximum edge connectiv-
ity of a given graph is the smallest degree of any node,
since deleting these edges disconnects the graph.
Complete bipartite graphs have maximum edge con-
nectivity. The following table gives the numbers of k -
edge-connected graphs for n -node graphs.

k Sloane n �1, 2, ...

0 A000719 0, 1, 2, 5, 13, 44, 191, ...

1 A052446 0, 1, 1, 3, 10, 52, 351, ...

2 A052447 0, 0, 1, 2, 8, 41, 352, ...

3 A052448 0, 0, 0, 1, 2, 15, 121, ...

4  0, 0, 0, 0, 1, 3, 25, ...

5  0, 0, 0, 0, 0, 1, 3, ...

6  0, 0, 0, 0, 0, 0, 1, ...

See also K -CONNECTED GRAPH
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Kei

The IMAGINARY PART of

e � npi=2Kn(xepi =4) �ker n(x) �i kei n(x) ;

where Kn(z) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND.

The special case n �0 gives the plots shown above.

See also BEI, BER, KER, KELVIN FUNCTIONS
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Keith Number
A Keith number is an n -digit INTEGER N such that if a
Fibonacci-like sequence (in which each term in the
sequence is the sum of the n previous terms) is
formed with the first n terms taken as the decimal
digits of the number N , then N itself occurs as a term
in the sequence. For example, 197 is a Keith number
since it generates the sequence 1, 9, 7, 17, 33, 57, 107,
197, ... (Keith). Keith numbers are also called REPFI-

GIT NUMBERS.

There is no known general technique for finding
Keith numbers except by exhaustive search. Keith
numbers are much rarer than the PRIMES, with only
52 Keith numbers withB15 digits: 14, 19, 28, 47, 61,
75, 197, 742, 1104, 1537, 2208, 2580, 3684, 4788,
7385, 7647, 7909, ... (Sloane’s A007629). The number
of Keith numbers having n�1, 2, ... digits are 0, 6, 2,
9, 7, 10, 2, 3, 2, 0, 2, 4, 2, 3, 3, 3, 5, 3, 5, ... (Sloane’s
A050235; Keith), so there are only 71 less than 1019.
It is not known if there are an INFINITE number of
Keith numbers.



The known prime Keith numbers are 19, 47, 61, 197,
1084051, 74596893730427, ... (Sloane’s A048970).
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Keller’s Conjecture
Keller conjectured that tiling an n -D space with n -D
HYPERCUBES of equal size yields an arrangement in
which at least two hypercubes have an entire (n �1)/-
D "side" in common. The CONJECTURE has been
proven true for n �1 to 6, but disproven for n ]10:/
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Kelvin Differential Equation
The second-order complex ORDINARY DIFFERENTIAL

EQUATION

x2yƒ�xy?�(ix2 � n2)y �0 (1)

(Abramowitz and Stegun 1972, p. 379; Zwillinger
1997, p. 123), whose solutions can be given in terms
of the KELVIN FUNCTIONS

y �bern x �i bei n (2)

�ber� n x �i bei �n (3)

�kern x �i kein (4)

�ker� n x �i kei� n (5)

(Abramowitz and Stegun 1972, p. 379).

See also KELVIN FUNCTIONS

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Kelvin Func-

tions." §9.9 in Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, 9th print-
ing. New York: Dover, pp. 379 �/381, 1972.

Zwillinger, D. Handbook of Differential Equations, 3rd ed.
Boston, MA: Academic Press, p. 123, 1997.

Kelvin Functions
Kelvin defined the Kelvin functions BEI and BER

according to

bern(x) �i bei n(x) �Jn(xe3pi=4) (1)

�e npiJn(xe� pi=4) ; (2)

�e npi=2In(xe pi=4) (3)

�e3npi=2In(xe �3 pi =4); (4)

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND

and In(x) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND. These functions satisfy the KELVIN

DIFFERENTIAL EQUATION.

Similarly, the functions KEI and KER by

kern(x) �i kein(x) �e � npi=2Kn(xe pi=4) ; (5)

where Kn(x) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND. For the special case n�0;

J0 i
ffiffi
i

p
x

� �
�J0

1
2

ffiffiffi
2

p
(i�1)x

� �

ber(x)�i bei(x): (6)

See also BEI, BER, KEI, KELVIN DIFFERENTIAL

EQUATION, KER
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Kelvin Problem
KELVIN’S CONJECTURE

Kelvin Transformation
Let D be a DOMAIN in Rn for n]3: Then the
transformation



v(x?1 ; . . . ; x?n) �
a

r ?

 !n�2

u
a2x?1
r ?2 

; . . . ;
a2x?n
r ?2

 !

onto a domain D ?; where

r ?2 �x?1
2�. . .�x?n

2

is called a Kelvin transformation. If u(x1 ; . . . ; xn) is a
HARMONIC FUNCTION on D , then v(x?1 ; . . . ; x?n) is also
HARMONIC on D ?:/

See also HARMONIC FUNCTION
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Kelvin’s Conjecture
What space-filling arrangement of similar polyhedral
cells of equal volume has minimal SURFACE AREA?
Kelvin (Thomson 1887) proposed that the solution
was the 14-sided TRUNCATED OCTAHEDRON. The iso-
perimetric quotient for the TRUNCATED OCTAHEDRON

is given by

Q �
36 pV3

S2
�

36p 8
ffiffiffi
2

p� �2

6 � 12
ffiffiffi
3

p� �3

�
64p

3 1 � 2
ffiffiffi
3

p� �3 :0:753367 :

Despite one hundred years of failed attempts and
Weyl’s (1952) opinion that the TRUNCATED OCTAHE-

DRON could not be improved upon, Weaire and Phelan
(1994) discovered a space-filling unit cell consisting of
six 14-sided polyhedra and two 12-sided polyhedra
that has 0.3% less SURFACE AREA.

See also SPACE-FILLING POLYHEDRON, TRUNCATED

OCTAHEDRON
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Kempe Linkage
A double rhomboid LINKAGE which gives rectilinear
motion from circular without an inversion.

See also PEAUCELLIER INVERSOR
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Kepler Conjecture
In 1611, Kepler proposed that close packing (cubic or
hexagonal) is the densest possible SPHERE PACKING

(has the greatest h) ; and this assertion is known as
the Kepler conjecture. Finding the densest (not
necessarily periodic) packing of spheres is known as
the KEPLER PROBLEM.

Buckminster Fuller (1975) claimed to have a proof,
but it was really a description of face-centered cubic
packing, not a proof of its optimality (Sloane 1998). A
second putative proof of the Kepler conjecture was
put forward by W.-Y. Hsiang (Cipra 1991, Hsiang
1992, Hsiang 1993, Cipra 1993), but was subse-
quently determined to be flawed (Conway et al.
1994, Hales 1994, Sloane 1998). According to
J. H. Conway, nobody who has read Hsiang’s proof
has any doubts about its validity: it is nonsense.

Soon thereafter, Hales (1997a) published a detailed
plan describing how the Kepler conjecture might be
proved using a significantly different approach from
earlier attempts and making extensive use of compu-
ter calculations. Hales subsequently completed a full
proof, which appears in a series of papers totaling
more than 250 pages (Cipra 1998) The proof relies
extensively on methods from the theory of global
optimization, linear programming, and interval ar-
ithmetic. The computer files containing the computer
code and data files for combinatorics, interval arith-
metic, and linear programs require over 3 gigabytes
of space for storage.

See also DODECAHEDRAL CONJECTURE, KEPLER PRO-

BLEM, KISSING NUMBER, SPHERE PACKING

References
Buckminster Fuller, R. Synergetics. London: Macmillan,

1975.
Cipra, B. "Gaps in a Sphere Packing Proof?" Science 259,

895, 1993.
Cipra, B. "Packing Challenge Mastered at Last." Science

281, 1267, 1998.
Cipra, B. "Music of the Spheres." Science 251, 1028, 1991.
Conway, J. H.; Hales, T. C.; Muder, D. J.; and Sloane,

N. J. A. "On the Kepler Conjecture." Math. Intel. 16, 5,
Spring 1994.

Eppstein, D. "Sphere Packing and Kissing Numbers." http://
www.ics.uci.edu/~eppstein/junkyard/spherepack.html.

Ferguson, S. P. "Sphere Packings. V." http://www.math.l-
sa.umich.edu/~samf/MyStuff/Research/draft.ps.gz.



Ferguson, S. P. and Hales, T. C. "A Formulation of the
Kepler Conjecture." http://www.math.lsa.umich.edu/
~hales/countdown/form.ps.

Hales, T. C. "The Kepler Conjecture." http://www.math.l-
sa.umich.edu/~hales/countdown/.

Hales, T. C. "An Overview of the Kepler Conjecture." http://
www.math.lsa.umich.edu/~hales/countdown/sphere0.ps.

Hales, T. C. "Recent Progress on the Kepler Conjecture."
http://www.math.lsa.umich.edu/~hales/countdown/re-
cent.ps.

Hales, T. C. "The Sphere Packing Problem." J. Comput.
Appl. Math. 44, 41�/76, 1992.

Hales, T. C. "Remarks on the Density of Sphere Packings in
3 Dimensions." Combinatori 13, 181 �/197, 1993.

Hales, T. C. "The Status of the Kepler Conjecture." Math.
Intel. 16, 47�/58, Summer 1994.

Hales, T. C. "Sphere Packings. I." Disc. Comput. Geom. 17,
1 �/51, 1997a. http://www.math.lsa.umich.edu/~hales/
countdown/sphere1.ps.

Hales, T. C. "Sphere Packings. II." Disc. Comput. Geom. 18,
135 �/149, 1997b. http://www.math.lsa.umich.edu/~hales/
countdown/sphere2.ps.

Hales, T. C. "Sphere Packings. III." http://www.math.lsa.u-
mich.edu/~hales/countdown/sphere3.ps.

Hales, T. C. "Sphere Packings. IV." http://www.math.lsa.u-
mich.edu/~hales/countdown/sphere4.ps.

Hales, T. C. "Sphere Packings. VI." http://www.math.lsa.u-
mich.edu/~hales/countdown/sphere6.ps.

Hsiang, W.-Y. "On Soap Bubbles and Isoperimetric Regions
in Noncompact Symmetrical Spaces. 1." Tôhoku Math. J.
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Kepler Problem
Finding the densest not necessarily periodic SPHERE

PACKING.

See also KEPLER CONJECTURE, SPHERE PACKING

Kepler Solid
KEPLER-POINSOT SOLID

Kepler’s Equation

Kepler’s equation gives the relation between the polar
coordinates of a celestial body (like a planet) and the
time elapsed from a given initial point. Kepler’s

equation is of fundamental importance in celestial
mechanics, but cannot be directly inverted in terms of
simple functions in order to determine where the
planet will be at a given time.
Let M be the mean anomaly (a parameterization of
time) and E the ECCENTRIC ANOMALY (a parameter-
ization of polar angle) of a body orbiting on an ELLIPSE

with ECCENTRICITY e , then

M�E�e sin E: (1)

For M not a multiple of p; Kepler’s equation has a
unique solution, but is a TRANSCENDENTAL EQUATION

and so cannot be inverted and solved directly for E
given an arbitrary M . However, many algorithms
have been derived for solving the equation as a result
of its importance in celestial mechanics.

Writing a E as a POWER SERIES in e gives

E�M�
X�
n�1

anen; (2)

where the coefficients are given by the LAGRANGE

INVERSION THEOREM as

an�
1

2n�1n!

Xn=2b c

k�0

(�1)k n
k

� �

� (n�2k)n�1 sin[(n�2k)M] (3)

(Wintner 1941, Moulton 1970, Henrici 1974, Finch).
Surprisingly, this series diverges for

e > 0:6627434193 . . . ; (4)

a value known as the LAPLACE LIMIT. In fact, E
converges as a GEOMETRIC SERIES with ratio

r�
e

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p exp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p� �
(5)

(Finch).

There is also a series solution in BESSEL FUNCTIONS

OF THE FIRST KIND,

E�M�
X�
n�1

2

n
Jn(ne) sin(nM): (6)

This series converges for all e B1 like a GEOMETRIC

SERIES with ratio

r�
e

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p exp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p� �
: (7)

The equation can also be solved by letting c be the
ANGLE between the planet’s motion and the direction
PERPENDICULAR to the RADIUS VECTOR. Then

tan c�
e sin Effiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p : (8)

Alternatively, we can define e in terms of an inter-



mediate variable f

e 
sin f; (9)

then

sin 1
2(v �E)
h i

�

ffiffiffi
r

p

s
sin 1

2 f
� �

sin v (10)

sin 1
2(v �E)
h i

�

ffiffiffi
r

p

s
cos 1

2 f
� �

sin v: (11)

Iterative methods such as the simple

Ei�1 �M �e sin Ei (12)

with E0 �0 work well, as does NEWTON’S METHOD,

Ei�1 �Ei �
M � e sin Ei � Ei

1 � e cos Ei

: (13)

In solving Kepler’s equation, Stieltjes required the
solution to

ex(x �1) �e �x(x �1); (14)

which is 1.1996678640257734... (Goursat 1959, Le
Lionnais 1983).

See also ECCENTRIC ANOMALY
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Kepler’s Folium

The plane curve with implicit equation

[(x�b)2�y2][x(x�b)�y2]�4a(x�b)y2:
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Kepler-Poinsot Solid

The Kepler-Poinsot solids are the four regular CON-

CAVE POLYHEDRA with intersecting facial planes.
They are composed of regular CONCAVE POLYGONS

and were unknown to the ancients. Kepler discovered
two and described them in his work Harmonice
Mundi in 1619. These two were subsequently redis-
covered by Poinsot, who also discovered the other two,
in 1809. As shown by Cauchy, they are stellated
forms of the DODECAHEDRON and ICOSAHEDRON.

The Kepler-Poinsot solids, illustrated above, are
known as the GREAT DODECAHEDRON, GREAT ICOSA-

HEDRON, GREAT STELLATED DODECAHEDRON, and
SMALL STELLATED DODECAHEDRON. These names
probably originated with Arthur Cayley, who first
used them in 1859. Cauchy (1813) proved that these
four exhaust all possibilities for regular star polyhe-
dra (Ball and Coxeter 1987).

A table listing these solids, their DUALS, and COM-

POUNDS is given below. Like the five Platonic solids,
duals of the Kepler-Poinsot solids are themselves
Kepler-Poinsot solids (Wenninger 1983, pp. 39 and
43�/45).



n solid UNIFORM

POLYHEDRON

SCHLÄ FLI

SYMBOL

WYTHOFF

SYMBOL

POINT

GROUP

1 GREAT DODECA-

HEDRON

/U35/ / 5; 5
2

n o
/ /

5
2 ½ 25/ /Ih/

2 GREAT ICOSAHE-

DRON

/U53/ / 3; 5
2

n o
/ /3 5

2 ½
5
3/ /Ih/

3 GREAT STEL-

LATED DODECA-

HEDRON

/U52/ /
5
2; 3
n o

/ /3 ½ 2 5
2/ /Ih/

4 SMALL STEL-

LATED DODECA-

HEDRON

/U34/ /
5
2; 5
n o

/ /5 ½ 2 5
2/ /Ih/

The polyhedra f5
2 ; 5g and f5 ; 5

2 g fail to satisfy the
POLYHEDRAL FORMULA

V �E �F �2;

where V is the number of vertices, E the number of
edges, and F the number of faces, despite the fact
that the formula holds for all ordinary polyhedra
(Ball and Coxeter 1987). This unexpected result led
none less than Schläfli (1860) to erroneously conclude
that they could not exist.

In 4-D, there are 10 Kepler-Poinsot solids, and in n -D
with n ]5 ; there are none. In 4-D, nine of the solids
have the same VERTICES as f3; 3; 5g; and the tenth
has the same as f5; 3; 3g: Their SCHLÄ FLI SYMBOLS

are f5
2 5; 3 g; f3; 5; 5

2g; f5 ; 5
2 ; 5g; f5

2 ; 3 ; 5 g; f5; 3; 5
2g;

f5
2 ; 5 ; 5

2 g; f5; 5
2; 3g; f3; 5

2 ; 5 g; f5
2 ; 3; 3g; and f3 ; 3 ; 5

2 g:/
Coxeter et al. (1954) have investigated star "Archi-
medean" polyhedra.

See also ARCHIMEDEAN SOLID, DELTAHEDRON, JOHN-

SON SOLID, PLATONIC SOLID, POLYHEDRON COM-

POUND, UNIFORM POLYHEDRON
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Ker

The REAL PART of

e�npi=2Kn(xepi=4)�kern(x)�i kein(x);

where Kn(x) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND.

The special case n�0 gives the plots shown above.

See also BEI, BER, KEI, KELVIN FUNCTIONS
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Keratoid Cusp

The PLANE CURVE given by the Cartesian equation

y2 �x2y �x5 :
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Kernel (Integral)
The function K( a; t) in an INTEGRAL or INTEGRAL

TRANSFORM

g( a) �g
b

a

f (t)K( a; t) dt:

Whittaker and Robinson (1967, p. 376) use the term
nucleus for kernel.

See also BERGMAN KERNEL, INTEGRAL, POISSON

KERNEL

References
Whittaker, E. T. and Robinson, G. The Calculus of Observa-

tions: A Treatise on Numerical Mathematics, 4th ed. New
York: Dover, p. 376, 1967.

Kernel (Linear Algebra)
NULLSPACE

Kernel Polynomial
The function

Kn(x0 ; x) �Kn(x; x0) �Kn(x̄; x̄0)

which is useful in the study of many POLYNOMIALS.
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Kervaire’s Characterization Theorem
Let G be a GROUP, then there exists a piecewise linear
KNOT Kn�2 in Sn for n ]5 with G � p1(Sn �K) IFF G
satisfies

1. G is finitely presentable,
2. The Abelianization of G is infinite cyclic,
3. The normal closure of some single element is all
of G ,
4. H2(G) �0; the second homology of the group is
trivial.
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Ket
A CONTRAVARIANT VECTOR, denoted cj i: The ket is
DUAL to the COVARIANT BRA one-forms ch j: Taken
together, the BRA and ket form an ANGLE BRACKET

(bra�ket �bracket) c½ ch i: The ket is commonly
encountered in quantum mechanics.

See also ANGLE BRACKET, BRA, BRACKET PRODUCT,
CONTRAVARIANT VECTOR, COVARIANT VECTOR, DIF-

FERENTIAL K -FORM, ONE-FORM
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k-Factor
A k -factor of a GRAPH is a k -regular SUBGRAPH of
order n . k -factors are a generalization of complete
matchings. A PERFECT MATCHING is a 1-factor (Skiena
1990, p. 244).

See also MATCHING
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k-Factorable Graph
A GRAPH G is k -factorable if it is the union of disjoint
K -FACTORS (Skiena 1990, p. 244).

See also K -FACTOR
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k-Form
DIFFERENTIAL K -FORM



K-Function

For positive integer n , the K -function is defined by

K(n) 
00112233 � � � (n �1)n�1 (1)

and is related to the BARNES’ G -FUNCTION by

K(n) �
[ G(n)]n�1

G(n)
; (2)

where G(n) is defined by

G(n) �
1 if n �0
0!1!2! � � � (n �2)! if n > 0 :

"
(3)

The K -function is given by the integral

K(z) �(2p)�(z�1)=2exp
z
2

� �
�g

z�1

0

ln(t!) dt

" #
(4)

and the closed-form expression

K(z) �exp[ z?(�1; z) � z?(�1)] ; (5)

where z(z) is the RIEMANN ZETA FUNCTION, z?(z) its
DERIVATIVE, z(a ; z) is the HURWITZ ZETA FUNCTION,
and

z?(a ; z) 

dz(s ; z)

ds

" #
s�a

: (6)

/K(z) also has a STIRLING-like series

K(z �1) �(21 =3 p1z)1=12z
z �1

2

� �

�exp 1
4 z

2 � 1
12 �

B4

2 � 3 � 4z2 
�

B6

4 � 5 � 6z4 
�. . .

 !
; (7)

where

p1 
 K 1
2

� �h i8

(8)

�e�(ln 2)=3�12 z?(�1) (9)

�22 =3 pe g�1 � z?(2)= z(2) ; (10)

and g is the EULER-MASCHERONI CONSTANT (Gosper).
The first few values of K(n) for n �1, 2, ... are 1, 1, 1,
4, 108, 27648, 86400000, 4031078400000, ... (Sloane’s
A002109). These numbers are called HYPERFACTOR-

IALS by Sloane and Plouffe (1995).

See also BARNES’ G -FUNCTION, GLAISHER-KINKELIN

CONSTANT, HYPERFACTORIAL, STIRLING’S SERIES
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K-Graph
The GRAPH obtained by dividing a set of VERTICES

f1; . . . ; ng into k �1 pairwise disjoint subsets with
VERTICES of degree n1 ; ..., nk �1 ; satisfying

n �n1 �. . .�nk �1 ;

and with two VERTICES joined IFF they lie in distinct
VERTEX sets. Such GRAPHS are denoted Kn1 ; ...; nk

:/

See also BIPARTITE GRAPH, COMPLETE GRAPH, COM-

PLETE K -PARTITE GRAPH, K -PARTITE GRAPH

Khinchin
KHINTCHINE’S CONSTANT

Khinchin Constant
KHINTCHINE’S CONSTANT

Khintchine’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let

x�[a0; a1; . . .]�a0�
1

a1 �
1

a2 �
1

a3 � . . .

(1)

be the SIMPLE CONTINUED FRACTION of a REAL NUM-

BER x , where the numbers ai are the PARTIAL

QUOTIENTS. Khintchine (1934) considered the limit
of the GEOMETRIC MEAN

Gn(x)�(a1a2 � � �an)1=n (2)



as n 0 �: Amazingly enough, this limit is a constant
independent of x–except if x belongs to a set of
MEASURE 0-given by

K�2:685452001 . . . (3)

(Sloane’s A002210), as proved in Kac (1959). The
constant is built into Mathematica 4.0 as Khinchin.

The values Gn(x) are plotted above for n�1 to 500
and x�p; 1=p; sin 1; the EULER-MASCHERONI CON-

STANT g; and the COPELAND-ERDOS CONSTANT. REAL

NUMBERS x for which limn0� Gn(x)"K include x�e ,ffiffiffi
2

p
;
ffiffiffi
3

p
; and the GOLDEN RATIO f; plotted below.

The CONTINUED FRACTION for K is [2, 1, 2, 5, 1, 1, 2, 1,
1, ...] (Sloane’s A002211; Havermann). It is not known
if K is IRRATIONAL, let alone TRANSCENDENTAL. Bailey
et al. (1995) have computed K to 7350 DIGITS.

Explicit expressions for K include

K�
Y�
n�1

1�
1

n(n � 2)

" #ln n=ln 2

(4)

ln 2 ln K� 1
12 p

2�1
2(ln 2)2�g

p

0

ln(u½cot u½) du

u
(5)

ln K�
1

ln 2

X�
m�1

hm�1

m
[z(2m)�1]; (6)

where z(z) is the RIEMANN ZETA FUNCTION and

hm�
Xm

j�1

(�1)j�1

j
(7)

(Shanks and Wrench 1959). Gosper gave

ln K�
1

ln 2

X�
j�2

(�1)j(2 � 2j)z?(j)

j
; (8)

where z?(z) is the DERIVATIVE of the RIEMANN ZETA

FUNCTION. An extremely rapidly converging sum also
due to Gosper is

ln K�
1

ln 2

X�
k�0

"
�ln(k�1)[ln(k�3)

�2 ln(k�2)�ln(k�1)]

�
(�1)k(2 � 2k�2)

k � 2

� ln(k � 1)

(k � 1)k�2�z?(k�2; k�2)

" #

�ln(k�1)
Xk�2

s�1

(�1)s(2 � 2s)

(k � 1)ss

" #$
;

(9)

where z(s; a) is the HURWITZ ZETA FUNCTION.

Khintchine’s constant is also given by the integral

ln 2 ln 1
2 K
� �

�g
1

0

1

x(1 � x)
ln

px(1 � x2)

sin(px)

" #
dx: (10)

If Pn=Qn is the nth CONVERGENT of the CONTINUED

FRACTION of x , then

lim
n0�

(Qn)1=n� lim
n0�

Pn

x

 !1=n

�ep
2=(12 ln 2):3:27582 (11)

for almost all REAL x (Lévy 1936, Finch). This number
is sometimes called the LÉVY CONSTANT, and the
argument of the exponential is sometimes called the
KHINTCHINE-LÉVY CONSTANT.

Define the following quantity in terms of the kth
partial quotient qk;

M(s; n; x)�
1

n

Xn

k�1

qs
k

 !1=s

: (12)

Then

lim
n0�

M(1; n; x)�� (13)

for almost all real x (Khintchine, Knuth 1981, Finch),
and

M(1; n; x)�O(ln n): (14)

Furthermore, for s B1, the limiting value



lim
n0�

M(s ; n ; x) �K(s) (15)

exists and is a constant K(s) with probability 1
(Rockett and Szüsz 1992, Khintchine 1997).

See also CONTINUED FRACTION, CONVERGENT,
KHINTCHINE-LÉ VY CONSTANT, LÉ VY CONSTANT, PAR-

TIAL QUOTIENT, SIMPLE CONTINUED FRACTION
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Khintchine-Lévy Constant
A constant related to KHINTCHINE’S CONSTANT and
defined by

KL

p2

12 ln 2
�1:1865691104 . . . :

See also KHINTCHINE’S CONSTANT, LÉ VY CONSTANT
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Khovanski’s Theorem
If f1; . . . ; fm : Rn 0 R are exponential polynomials,
then fx �Rn : f1(x)�� � � fn(x)�0g has finitely many
connected components.
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Kiepert’s Conics
KIEPERT’S HYPERBOLA, KIEPERT’S PARABOLA

Kiepert’s Hyperbola
A curve which is related to the solution of LEMOINE’S

PROBLEM and its generalization to ISOSCELES TRIAN-

GLES constructed on the sides of a given TRIANGLE.
The VERTICES of the constructed TRIANGLES are

A?��sin f : sin(C�f) : sin(B�f) (1)

B?�sin(C�f) :�sin f : sin(A�f) (2)

C?�sin(B�f) : sin(A�f) :�sin f; (3)

where f is the base ANGLE of the ISOSCELES TRIANGLE.
Kiepert showed that the lines connecting the VER-

TICES of the given TRIANGLE and the corresponding
peaks of the ISOSCELES TRIANGLES CONCUR. The
TRILINEAR COORDINATES of the point of concurrence
are

sin(B�f) sin(C�f) : sin(C�f) sin(A�f) :

sin(A�f) sin(B�f): (4)

The LOCUS of this point as the base ANGLE varies is
given by the curve

sin(B � C)

a
�

sin(C � A)

b
�

sin(A � B)

g

�
bc(b2 � c2)

a
�

ca(c2 � a2)

b
�

ab(a2 � b2)

g
�0: (5)

Writing the TRILINEAR COORDINATES as

ai�disi; (6)

where di is the distance to the side opposite ai of
length si and using the POINT-LINE DISTANCE FOR-

MULA with (x0; y0) written as (x, y ),

di�
j(yi�2 � yi�1)(x � xi�1)

si

�
(xi�2 � xi�1)(y � yi�1)j

si

; (7)

where y4
y1 and y5
y2 gives the FORMULA



X3

i�1

si �1si�2(s2
i�1 �s2

i�2)

� si

(yi�2 � yi �1)(x � xi�1) � (xi�2 � xi �1)(y � yi�1) 
�0 (8)

X3

i�1

(s2
i�1 � s2

i �2)

(yi�2 � yi �1)(x � xi�1) � (xi�2 � xi �1)(y � yi�1)

�0: (9)

Bringing this equation over a common DENOMINATOR

then gives a quadratic in x and y , which is a CONIC

SECTION (in fact, a HYPERBOLA). The curve can also be
written as csc(A �t) : csc(B �t) : csc(C �t) ; as t varies
over [�p=4; p=4]:/

Kiepert’s hyperbola passes through the triangle’s
CENTROID M (/f �0); ORTHOCENTER H (/f � p=2);
VERTICES A (/f ��a if a 5 p=2 and f � p � a if a >
p=2); B (/ f ��b) ; C (/ f ��g); FERMAT POINTS F1 (/f �
p=3) and F2 (/f ��p=3); ISOGONAL CONJUGATE of the
BROCARD MIDPOINT (/f � v) ; and BROCARD’S THIRD

POINT Z3 (/f � v) ; where v is the BROCARD ANGLE

(Eddy and Fritsch 1994, p. 193).

The ASYMPTOTES of Kiepert’s hyperbola are the
SIMSON LINES of the intersections of the BROCARD

AXIS with the CIRCUMCIRCLE. Kiepert’s hyperbola is a
RECTANGULAR HYPERBOLA. In fact, all nondegenerate
conics through the VERTICES and ORTHOCENTER of a
TRIANGLE are RECTANGULAR HYPERBOLAS the centers
of which lie halfway between the FERMAT POINTS and
on the NINE-POINT CIRCLE. The LOCUS of centers of
these HYPERBOLAS is the NINE-POINT CIRCLE.

The ISOGONAL CONJUGATE curve of Kiepert’s hyper-
bola is the BROCARD AXIS. The center of the INCIRCLE

of the TRIANGLE constructed from the MIDPOINTS of
the sides of a given TRIANGLE lies on Kiepert’s
hyperbola of the original TRIANGLE.

See also BROCARD ANGLE, BROCARD AXIS, BROCARD

POINTS, CENTROID (TRIANGLE), CIRCUMCIRCLE, FER-

MAT POINTS, ISOGONAL CONJUGATE, ISOSCELES TRI-

ANGLE, KIEPERT’S PARABOLA, LEMOINE’S PROBLEM,
NINE-POINT CIRCLE, ORTHOCENTER, SIMSON LINE
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Kiepert’s Parabola

Let three similar ISOSCELES TRIANGLES DA?BC;
DAB?C; and DABC? be constructed on the sides of a
TRIANGLE DABC: Then DABC and DA?B?Cƒ are PER-

SPECTIVE TRIANGLES, and the ENVELOPE of their
PERSPECTIVE AXIS as the vertex angle of the erected
triangles is varied is a PARABOLA known as Kiepert’s
parabola. It has equation

sin A(sin2 B � sin2 C)

u
�

sin B(sin2 C � sin2 A)

v

�
sin C(sin2 A � sin2 B)

w
�0 (1)

a(b2 � c2)

u
�

b(c2 � a2)

v
�

c(a2 � b2)

w
�0; (2)

where [u; v; w] are the TRILINEAR COORDINATES for a
line tangent to the parabola.

Kiepert’s parabola is tangent to the sides of the
TRIANGLE (or their extensions), the line at infinity,
and the LEMOINE LINE. The FOCUS has TRIANGLE

CENTER FUNCTION



a �csc(B �C) : (3)

The EULER LINE of a triangle is the DIRECTRIX of
Kiepert’s parabola. In fact, the DIRECTRICES of all
parabolas inscribed in a TRIANGLE pass through the
ORTHOCENTER. The BRIANCHON POINT for Kiepert’s
parabola is the STEINER POINT of DABC:/

See also BRIANCHON POINT, ENVELOPE, EULER LINE,
ISOSCELES TRIANGLE, LEMOINE LINE, PARABOLA,
STEINER POINTS

Kieroid
Let the center B of a CIRCLE of RADIUS a move along a
line BA . Let O be a fixed point located a distance c
away from AB . Draw a SECANT LINE through O and
D , the MIDPOINT of the chord cut from the line DE
(which is parallel to AB ) and a distance b away. Then
the LOCUS of the points of intersection of OD and the
CIRCLE P1 and P2 is called a kieroid.

Special Case Curve

b �0 CONCHOID OF NICOMEDES

b �a CISSOID plus asymptote

/b �a ��c/ STROPHOID plus ASYMPTOTE
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Killing Form
The Killing form is an INNER PRODUCT on a finite
dimensional LIE ALGEBRA g defined by

B(X ; Y) �Tr(ad)(X) ad(Y)) (1)

in the ADJOINT REPRESENTATION, where ad(X) is the
adjoint representation of X . (1) is adjoint-invariant in
the sense that

B(ad(X)Y ; Z) ��B(Y ; ad(X)Z) : (2)

When g is a SEMISIMPLE LIE ALGEBRA, the Killing
form is NONDEGENERATE.

For example, the SPECIAL LINEAR LIE ALGEBRA sl2(C)
has three basis vectors fX ; Y ; H g; where [X ; Y] �/

2H :

X �
0 1
1 0

� �
(3)

Y �
0 �1
1 0

� �
(4)

H �
1 0
0 �1

� �
: (5)

The other brackets are given by [X ; H] �2Y and
[Y ; H] �2X : In the adjoint representation, with the
ordered basis fX; Y ; Hg; these elements are repre-
sented by

ad(X)�
0 0 0
0 0 2
0 2 0

2
4

3
5 (6)

ad(Y)�
0 0 2
0 0 0

�2 0 0

2
4

3
5 (7)

ad(H)�
0 �2 0

�2 0 0
0 0 0

2
4

3
5; (8)

and so B(u; v)�uTBv where

B�
8 0 0
0 �8 0
0 0 8

2
4

3
5: (9)

See also CARTAN MATRIX, INNER PRODUCT, LIE

ALGEBRA, SEMISIMPLE LIE ALGEBRA, SIGNATURE

(MATRIX), SPECIAL LINEAR LIE ALGEBRA, WEYL

GROUP
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Killing Vectors
If any set of points is displaced by Xi dxi where all
distance relationships are unchanged (i.e., there is an
ISOMETRY), then the VECTOR FIELD is called a Killing
vector.

gab�
@x?c

@xa

@x?d

@xb
gcd(x?); (1)

so let

x?a�xa�exa (2)

@x?a

@xb
�da

b�exa
;b (3)

gab(x)�(dc
a�exc

;a)(dd
b�exd

;b)gcd(xe�eXe)

�(dc
a�exc

;a)(dd
b�exd

;b)[gcd(x)�eXegcd(x);e�. . .]



�gab(x) � e[gadXd 
;b �gbdXd 

;a �Xegab ;e] �O( e2)

�gab �LXgab

�g?ab ; (4)

where L is the LIE DERIVATIVE.

An ordinary derivative can be replaced with a
COVARIANT DERIVATIVE in a LIE DERIVATIVE, so we
can take as the definition

gab; c�0 (5)

gabgbc � dc
a ; (6)

which gives KILLING’S EQUATION

LXgab �Xa; b �Xb; a �2X(a; b) �0; (7)

where X(a; b) denotes the SYMMETRIC TENSOR part and
Xa; b is a COVARIANT DERIVATIVE.

A Killing vector Xb satisfies

gbcXc; ab �RabXb �0 (8)

Xa; bc �RabcdXd (9)

Xa; b
;b �Ra

c X
c �0 ; (10)

where Rab is the RICCI TENSOR and Rabcd is the
RIEMANN TENSOR.

A 2-sphere with METRIC

ds2 �du2 �sin2 u df2 (11)

has three Killing vectors, given by the angular
momentum operators

L̃x ��cos f
@

@ u 
�cot u sin f

@

@ f 
(12)

L̃y �sin f
@

@ u 
�cot u cos f

@

@ f 
(13)

L̃z �
@

@ f 
: (14)

The Killing vectors in Euclidean 3-space are

x1 �
@

@x 
(15)

x2 �
@

@y 
(16)

x3 �
@

@z 
(17)

x4 �y
@

@z 
�z

@

@y 
(18)

x5 �z
@

@x 
�x

@

@z 
(19)

x6 �x
@

@y 
�y

@

@x 
: (20)

In MINKOWSKI SPACE, there are 10 Killing vectors

X mi �am
i for i �1; 2; 3; 4 (21)

X0
k �0 (22)

Xl
k � elkmxm for k �1 ; 2 ; 3 (23)

Xk
m � d[0zk]

m for k �1; 2 ; 3 : (24)

The first group is TRANSLATION, the second ROTATION,
and the final corresponds to a "boost. "

See also KILLING’S EQUATION, LIE DERIVATIVE

Killing’s Equation
The equation defining KILLING VECTORS.

LXgab �Xa; b �Xb; a �2X(a; b) �0;

where L is the LIE DERIVATIVE and Xb; a is a
COVARIANT DERIVATIVE.

See also KILLING VECTORS, LIE DERIVATIVE
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Kilroy Curve

The curve defined by the Cartesian equation

f (x) �ln
sin x

x

%%%%%
%%%%%� ln sinc xj j:

The Kilroy curve arises in the study of spread spectra
plotted on a logarithmic (decibel) scale, and is so
named because it resembles Kilroy looking over a
wall.

See also SINC FUNCTION



Kimberling Sequence
A sequence generated by beginning with the POSITIVE

INTEGERS, then iteratively applying the following
algorithm:

1. In iteration i , discard the i th element,
2. Alternately write the i �k and i �k/th elements
until k � i ,
3. Write the remaining elements in order.

The first few iterations are therefore

The diagonal elements form the sequence 1, 3, 5, 4,
10, 7, 15, ... (Sloane’s A007063).

See also PERFECT SHUFFLE, SHUFFLE
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Kimberling Shuffle
KIMBERLING SEQUENCE

King Walk
DELANNOY NUMBER

Kings Problem

The problem of determining how many nonattacking
kings can be placed on an n �n CHESSBOARD. For
n �8, the solution is 16, as illustrated above (Mada-
chy 1979). In general, the solutions are

K(n) �
1
4 n

2 n even
1
4(n �1)2 n odd

(
(1)

(Madachy 1979), giving the sequence of doubled
squares 1, 1, 4, 4, 9, 9, 16, 16, ... (Sloane’s A008794).

This sequence has GENERATING FUNCTION

1 � x2

(1 � x2)2(1 � x)

�1 �x �4x2 �4x3 �9x4 �9x5 �. . . : (2)

The minimum number of kings needed to attack or
occupy all squares on an 8 �8 CHESSBOARD is nine,
illustrated above (Madachy 1979).

See also BISHOPS PROBLEM, CHESS, HARD HEXAGON

ENTROPY CONSTANT, KNIGHTS PROBLEM, QUEENS

PROBLEM, ROOKS PROBLEM
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Kinney’s Set
A set of plane MEASURE 0 that contains a CIRCLE of
every RADIUS.
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Kinoshita-Terasaka Knot
The KNOT with BRAID WORD

s3
1 s

2
3 s2 s

�1
3 s�2

1 s2 s 
�1
1 s�1

3 s�1
2 :

Its JONES POLYNOMIAL is

t�4(�1 �2t �2t2 �2t3 �t6 �2t7 �2t8 �2t9 �t10) ;

the same as for CONWAY’S KNOT. It has the same
ALEXANDER POLYNOMIAL as the UNKNOT.

See also CONWAY’S KNOT, KNOT, UNKNOT
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Kinoshita-Terasaka Mutants
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Kirby Calculus
The manipulation of DEHN SURGERY descriptions by a
certain set of operations.

See also DEHN SURGERY
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Kirby’s List
A list of problems in low-dimensional TOPOLOGY

maintained by R. C. Kirby. The list currently runs
about 380 pages.
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Kirkman Points
The 60 PASCAL LINES of a HEXAGON inscribed in a
conic intersect three at a time through 20 STEINER

POINTS, and also three at a time in 60 points known as
Kirkman points. Each STEINER POINT lines together
with three Kirkman points on a total of 20 lines
known as CAYLEY LINES. There is a dual relationship
between the 60 Kirkman points and the 60 PASCAL

LINES.

See also CAYLEY LINES, PASCAL LINES, PASCAL’S

THEOREM, PLÜ CKER LINES, SALMON POINTS, STEINER

POINTS
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Kirkman Triple System
A Kirkman triple system of order v �6n �3 is a
STEINER TRIPLE SYSTEM with parallelism (Ball and
Coxeter 1987), i.e., one with the following additional
stipulation: the set of b �(2n �1)(3n �1) triples is
partitioned into (3n �1) components such that each
component is a (2n �1)/-subset of triples and each of
the v elements appears exactly once in each compo-
nent. The STEINER TRIPLE SYSTEMS of order 3 and 9
are Kirkman triple systems with n �0 and 1. Solu-
tion to KIRKMAN’S SCHOOLGIRL PROBLEM requires
construction of a Kirkman triple system of order
n �2.

Ray-Chaudhuri and Wilson (1971) showed that there
exists at least one Kirkman triple system for every
NONNEGATIVE order n . Earlier editions of Ball and
Coxeter (1987) gave constructions of Kirkman triple
systems with 9 5v B99: For n �1, there is a single
unique (up to an isomorphism) solution, while there
are 7 different systems for n �2 (Mulder 1917, Cole
1922, Ball and Coxeter 1987).

See also STEINER TRIPLE SYSTEM
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Kirkman’s Schoolgirl Problem
In a boarding school there are fifteen schoolgirls who
always take their daily walks in rows of threes. How
can it be arranged so that each schoolgirl walks in the
same row with every other schoolgirl exactly once a
week? Solution of this problem is equivalent to
constructing a KIRKMAN TRIPLE SYSTEM of order
n�2. The following table gives one of the 7 distinct
(up to permutations of letters) solutions to the
problem.

Sun Mon Tue Wed Thu Fri Sat

ABC ADE AFG AHI AJK ALM ANO

DHL BIK BHJ BEG CDF BEF BDG



EJN CMO CLN CMN BLO CIJ CHK

FIO FHN DIM DJO EHM DKN EIL

GKM GJL EKO FKL GIN GHO FJM

(The table of Dörrie 1965 contains four omissions in
which the a1 �B and a2 �C entries for Wednesday
and Thursday are written simply as a .)

See also JOSEPHUS PROBLEM, KIRKMAN TRIPLE SYS-

TEM, STEINER TRIPLE SYSTEM
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Kiss Surface

The QUINTIC SURFACE given by the equation

1
2 x5�1

2 x4�(y2�z2)�0:

See also QUINTIC SURFACE
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Kissing Circles Problem
DESCARTES CIRCLE THEOREM, SODDY CIRCLES

Kissing Number

The number of equivalent HYPERSPHERES in n -D
which can touch an equivalent HYPERSPHERE without
any intersections, also sometimes called the NEWTON

NUMBER, CONTACT NUMBER, COORDINATION NUMBER,
or LIGANCY. Newton correctly believed that the
kissing number in 3-D was 12, but the first proofs
were not produced until the 19th century (Conway
and Sloane 1993, p. 21) by Bender (1874), Hoppe
(1874), and Günther (1875). More concise proofs were
published by Schütte and van der Waerden (1953)
and Leech (1956). After packing 12 spheres around
the central one (which can be done, for example, by
arranging the spheres so that their points of tangency
with the central sphere correspond to the vertices of
an ICOSAHEDRON), there is a significant amount of
free space left (above figure), although not enough to
fit a 13th sphere.
Exact values for lattice packings are known for n�1
to 9 and n�24 (Conway and Sloane 1992, Sloane and
Nebe). Odlyzko and Sloane (1979) found the exact
value for 24-D.

The arrangement of n points on the surface of a
sphere, corresponding to the placement of n identical
spheres around a central sphere (not necessarily of
the same radius) is called a SPHERICAL PACKING.

The following table gives the largest known kissing
numbers in DIMENSION D for lattice (L ) and non-
lattice (NL ) packings (if a nonlattice packing with
higher number exists). In nonlattice packings, the
kissing number may vary from sphere to sphere, so
the largest value is given below (Conway and Sloane
1993, p. 15). A more extensive and up-to-date tabula-
tion is maintained by Sloane and Nebe.

D L NL D L NL

1 2 13 /]918/ ]1,130



2 6  14 ]1,422 ]1,582

3 12  15 ]2,340

4 24  16 ]4,320

5 40  17 ]5,346

6 72  18 ]7,398

7 126 19 ]10,668

8 240 20 ]17,400

9 272 /]306/ 21 ]27,720

10 /]336/ /]500/ 22 /]49 ; 896/

11 /]438/ /]582/ 23 ]93,150

12 /]756/ /]840/ 24 196,560

The lattices having maximal packing numbers in 12-
and 24-D have special names: the COXETER-TODD

LATTICE and LEECH LATTICE, respectively. The gen-
eral form of the lower bound of n -D lattice densities
given by

h ]
z(n)

2n�1 
;

where z(n) is the RIEMANN ZETA FUNCTION, is known
as the MINKOWSKI-HLAWKA THEOREM.

See also COXETER-TODD LATTICE, HERMITE CON-

STANTS, HYPERSPHERE PACKING, KEPLER CONJEC-

TURE, LEECH LATTICE, MINKOWSKI-HLAWKA

THEOREM, SPHERE PACKING
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Kite

A planar convex QUADRILATERAL consisting of two
adjacent sides of length a and the other two sides of
length b . The RHOMBUS is a special case of the kite,
and the LOZENGE is a special case of the RHOMBUS.
The AREA of a kite is given by

A �1
2 pq ;

where p and q are the lengths of the DIAGONALS,
which are PERPENDICULAR.

See also LOZENGE, PARALLELOGRAM, PENROSE TILES,
QUADRILATERAL, RHOMBUS
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Kittell Graph

A planar 23-node graph which tangles the Kempe
chains in Kempe’s algorithm and thus provides an
example of how Kempe’s supposed proof of the FOUR-

COLOR THEOREM fails.

See also ERRERA GRAPH, FOUR-COLOR THEOREM
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Klarner’s Theorem
An a �b RECTANGLE can be packed with 1 �n strips
IFF n½a or n½b :/

See also BOX-PACKING THEOREM, CONWAY PUZZLE, DE

BRUIJN’S THEOREM, RECTANGLE, SLOTHOUBER-

GRAATSMA PUZZLE
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Klarner-Rado Sequence
The thinnest sequence which contains 1, and when-
ever it contains x , also contains 2x; 3x �2; and 6x �3 :
1, 2, 4, 5, 8, 9, 10, 14, 15, 16, 17, ... (Sloane’s A005658).

See also DOUBLE-FREE SET
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Klee’s Identity

X
k]0

(�1)k n
k

� �
n �k

m

� �
�(�1)n n

m�n

� �
;

where n
k

� �
is a BINOMIAL COEFFICIENT.

See also BINOMIAL SUMS
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Klein Bottle

A closed NONORIENTABLE SURFACE of EULER CHAR-

ACTERISTIC 0 (Dodson and Parker 1997, p. 125) that
has no inside or outside. It can be constructed by
gluing both pairs of opposite edges of a RECTANGLE

together giving one pair a half-twist, but can be
physically realized only in 4-D, since it must pass
through itself without the presence of a HOLE. Its
TOPOLOGY is equivalent to a pair of CROSS-CAPS with
coinciding boundaries (Francis and Weeks 1999). It
can be cut in half along its length to make two
MÖBIUS STRIPS (Dodson and Parker 1997, p. 88), but
can also be cut into a single MÖBIUS STRIP (Gardner
1984, pp. 14 and 17).

The above picture is an IMMERSION of the Klein bottle
in R3 (3-space). There is also another possible IMMER-

SION called the "figure-8" IMMERSION (Geometry
Center).

The equation for the usual IMMERSION is given by the
implicit equation

(x2�y2�z2�2y�1)[(x2�y2�z2�2y�1)2�8z2]

�16xz(x2�y2�z2�2y�1)�0 (1)

(Stewart 1991). Nordstrand gives the parametric
form

x�cos u cos 1
2 u
� � ffiffiffi

2
p

�cos v
� �

�sin 1
2 u
� �

sin v cos v
h i

(2)

y�sin u cos 1
2 u
� � ffiffiffi

2
p

�cos v
� �

�sin 1
2 u
� �

sin v cos v
h i

(3)

z��sin 1
2 u
� � ffiffiffi

2
p

�cos v
� �

�cos 1
2 u
� �

sin v cos v: (4)



The "figure-8" form of the Klein bottle is obtained by
rotating a figure eight about an axis while placing a
twist in it, and is given by PARAMETRIC EQUATIONS

x(u; v) � a �cos 1
2 u
� �

sin(v) �sin 1
2 u
� �

sin(2v)
h i

cos(u)

(5)

y(u; v) � a �cos 1
2 u
� �

sin(v) �sin 1
2 u
� �

sin(2v)
h i

sin(u)

(6)

z(u; v) �sin 1
2 u
� �

sin(v) �cos 1
2 u
� �

sin(2v) (7)

for u � [0; 2 p); v � [0; 2 p) ; and a �2 (Gray 1997).

The image of the CROSS-CAP map of a TORUS centered
at the ORIGIN is a Klein bottle (Gray 1997, p. 339).
The MÖ BIUS SHORTS are topologically equivalent to a
Klein bottle with a hole (Gramain 1984, Stewart
2000).

Any set of regions on the Klein bottle can be colored
using six colors only (Franklin 1934, Saaty and
Kainen 1986), providing the sole exception to the
HEAWOOD CONJECTURE (Bondy and Murty 1976,
p. 244).

See also CROSS-CAP, ETRUSCAN VENUS SURFACE,
FRANKLIN GRAPH, HEAWOOD CONJECTURE, IDA SUR-

FACE, MAP COLORING, MÖ BIUS SHORTS, MÖ BIUS STRIP
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Klein Bottle Dissection
Every MÖ BIUS STRIP DISSECTION of unequal squares
can be glued along its edge to produce a dissection of
the Klein bottle. There are no other ways to tile a
Klein bottle with six or fewer squares, the situation is
unknown for seven or eight squares, but it is known
that other types of dissections do exists for nine
squares (Stewart 1997).

See also CYLINDER DISSECTION, MÖ BIUS STRIP DIS-

SECTION, PERFECT SQUARE DISSECTION, TORUS DIS-

SECTION
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Klein Four-Group
VIERGRUPPE

Klein Quartic
A 3-holed TORUS. In 1879, Felix Klein discovered that
the surface has a 366-fold symmetry, the maximum
possible for a surface of its type.

See also QUARTIC SURFACE
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Klein’s Absolute Invariant

Let v1 and v2 be periods of a DOUBLY PERIODIC

FUNCTION, with t � v2 =v1 the HALF-PERIOD RATIO a
number with I[ t] "0 : Then Klein’s absolute invariant
(also called Klein’s modular function) is defined as

J( v1 ; v2) 

g3

2(v1 ; v2)

D( v1 ; v2) 
; (1)

where g2 and g3 are the invariants of the WEIER-

STRASS ELLIPTIC FUNCTION with MODULAR DISCRIMI-

NANT

D
g3
2 �27g2

3 (2)

(Klein 1877). If t � H ; where H is the UPPER HALF-

PLANE, then

J( t) 
J(1; t) �J(v1 ; v2) (3)

is a function of the ratio t only, as are g2 ; g3 ; and D:
Furthermore, g2( t) ; g3( t); D(t) ; and J( t) are analytic in
H (Apostol 1997, p. 15).

/J(t) is invariant under a UNIMODULAR TRANSFORMA-

TION, so

J
a t � b

c t � d

 !
�J( t); (4)

and J( t) is a MODULAR FUNCTION. J( t) takes on the
special values

J( r �e2 pi=3) �0 (5)

J(i) �1 (6)

J(i �) ��: (7)

Every RATIONAL FUNCTION of J is a MODULAR FUNC-

TION, and every MODULAR FUNCTION can be expressed

as a RATIONAL FUNCTION of J (Apostol 1997, p. 40).
The FOURIER SERIES of J(t) ; modulo a constant
multiplicative factor, is called the J -FUNCTION.

Klein’s invariant can be given explicitly by

J(q) 

4

27

[1 � l(q) � l2(q)]3

l2(q)[1 � l(q)]2 �
[E4(q)]3

[E4(q)]3 � [E6(q)]2 (8)

(Klein 1878/79, Cohn 1994), where q 
eipt is the
NOME, l(q) is the ELLIPTIC LAMBDA FUNCTION

l(q) 
k2(q) �
q 2(q)

q 3(q)

" #4

; (9)

/q i(q) is a JACOBI THETA FUNCTION, and the Ei(q) are
RAMANUJAN-EISENSTEIN SERIES.

See also ELLIPTIC LAMBDA FUNCTION, J -FUNCTION,
JACOBI THETA FUNCTIONS, LAMBDA ELLIPTIC FUNC-

TION, PI, RAMANUJAN-EISENSTEIN SERIES
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Klein’s Equation
If a real ALGEBRAIC CURVE has no singularities except
nodes and CUSPS, BITANGENTS, and INFLECTION

POINTS, then

n �2t ?2 � i?�m �2d ?2 � k ?;

where n is the order, t? is the number of conjugate
tangents, i? is the number of REAL inflections, m is the
class, d? is the number of REAL conjugate points, and
k? is the number of REAL CUSPS. This is also called
KLEIN’S THEOREM.

See also PLÜ CKER’S EQUATION
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Klein’s Modular Function
KLEIN’S ABSOLUTE INVARIANT

Klein’s Theorem
KLEIN’S EQUATION

Klein-Beltrami Model
The Klein-Beltrami model of HYPERBOLIC GEOMETRY

consists of an OPEN DISK in the Euclidean plane
whose open chords correspond to hyperbolic lines.
Two lines l and m are then considered parallel if their
chords fail to intersect and are PERPENDICULAR under
the following conditions,

1. If at least one of l and m is a diameter of the
DISK, they are hyperbolically perpendicular IFF

they are perpendicular in the Euclidean sense.
2. If neither is a diameter, l is perpendicular to m
IFF the Euclidean line extending l passes through
the pole of m (defined as the point of intersection of
the tangents to the disk at the "endpoints" of m ).

There is an isomorphism between the POINCARÉ

HYPERBOLIC DISK model and the Klein-Beltrami
model. Consider a Klein disk in Euclidean 3-space
with a SPHERE of the same radius seated atop it,
tangent at the ORIGIN. If we now project chords on the
disk orthogonally upward onto the SPHERE’s lower
HEMISPHERE, they become arcs of CIRCLES orthogonal
to the equator. If we then stereographically project
the SPHERE’s lower HEMISPHERE back onto the plane
of the Klein disk from the north pole, the equator will
map onto a disk somewhat larger than the Klein disk,
and the chords of the original Klein disk will now be
arcs of CIRCLES orthogonal to this larger disk. That is,
they will be Poincaré lines. Now we can say that two
Klein lines or angles are congruent IFF their corre-
sponding Poincaré lines and angles under this iso-
morphism are congruent in the sense of the Poincaré
model.

See also HYPERBOLIC GEOMETRY, POINCARÉ HYPER-

BOLIC DISK

Klein-Erdos-Szekeres Problem
HAPPY END PROBLEM

Klein-Gordon Equation
The PARTIAL DIFFERENTIAL EQUATION

1

c2

@2 c

@t2 
�

@2 c

@x2 
� m2 c (1)

that arises in mathematical physics.

The quasilinear Klein-Gordon equation is given by

utt � a2uxx � g2u � bu3 (2)

(Nayfeh 1972, p. 76; Zwillinger 1997, p. 133), and the

nonlinear Klein-Gordon equation by

Xn

i�1

uxixi
� lup �0 (3)

(Matsumo 1987; Zwillinger 1997, p. 133).

See also LIOUVILLE’S EQUATION, SINE-GORDON EQUA-

TION, WAVE EQUATION
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Klein-Gordon-Maxwell Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

92s�(½a½2�1)s�0

92a�9(9 � a)�s2a�a:
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Kleinian Group
A finitely generated discontinuous group of linear
fractional transformation acting on a domain in the
COMPLEX PLANE.
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KleinInvariantJ
KLEIN’S ABSOLUTE INVARIANT

Kloosterman’s Sum

S(u; v; n)

X

n

exp
2pi(uh � vh̄)

n

" #
; (1)

where h runs through a complete set of residues
RELATIVELY PRIME to n , and h̄ is defined by

hh̄
1 (mod n): (2)



If (n; n) �1 (if n and (n?) are RELATIVELY PRIME), then

S(u; v; n)S(u; v ?; n?) �S(u; vn?2 �v?n2 ; nn?) : (3)

Kloosterman’s sum essentially solves the problem
introduced by Ramanujan of representing sufficiently
large numbers by QUADRATIC FORMS ax2

1 �bx2
2 �cx2

3 �
dx2

4 : Weil improved on Kloosterman’s estimate for
Ramanujan’s problem with the best possible estimate

½S(u; v; n)½52
ffiffiffi
n

p
(4)

(Duke 1997).

See also GAUSSIAN SUM
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k-Matrix
A k -matrix is a kind of CUBE ROOT of the IDENTITY

MATRIX (distinct from the IDENTITY MATRIX) which is
defined by the COMPLEX MATRIX

k �
0 0 �i
i 0 0
0 1  0

2
4

3
5:

It satisfies

k3 �I

where I is the IDENTITY MATRIX.

See also COMPLEX MATRIX, CUBE ROOT, IDENTITY

MATRIX, QUATERNION

K-Means Clustering Algorithm
An algorithm for partitioning (or clustering) N data
points into K disjoint subsets Sj containing Nj data
points so as to minimize the sum-of-squares criterion

J �
XK

j�1

X
n �Sj

½½xn � mj ½½
2 ;

where xn is a vector representing the nth data point
and mj is the CENTROID of the data points in Sj : In
general, the algorithm does not achieve a GLOBAL

MINIMUM of J over the assignments. In fact, since the
algorithm uses discrete assignment rather than a set

of continuous parameters, the "minimum" it reaches
cannot even be properly called a LOCAL MINIMUM.
Despite these limitations, the algorithm is used fairly
frequently as a result of its ease of implementation.

The algorithm consists of a simple re-estimation
procedure as follows. First, the data points are
assigned at random to the K sets. Then the centroid
is computed for each set. These two steps are
alternated until a stopping criterion is met, i.e.,
when there is no further change in the assignment
of the data points.

See also GLOBAL MINIMUM, LOCAL MINIMUM, MINI-

MUM
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Knapsack Problem
Given a SUM and a set of WEIGHTS, find the WEIGHTS

which were used to generate the SUM. The values of
the weights are then encrypted in the sum. This
system relies on the existence of a class of knapsack
problems which can be solved trivially (those in which
the weights are separated such that they can be
"peeled off" one at a time using a GREEDY-like
algorithm), and transformations which convert the
trivial problem to a difficult one and vice versa.
Modular multiplication is used as the TRAPDOOR

ONE-WAY FUNCTION. The simple knapsack system
was broken by Shamir in 1982, the Graham-Shamir
system by Adleman, and the iterated knapsack by
Ernie Brickell in 1984.

See also SUBSET SUM PROBLEM , TRAPDOOR ONE-WAY

FUNCTION

References
Coppersmith, D. "Knapsack Used in Factoring." §4.6 in Open

Problems in Communication and Computation (Ed.
T. M. Cover and B. Gopinath). New York: Springer-Ver-
lag, pp. 117 �/119, 1987.

Honsberger, R. Mathematical Gems III. Washington, DC:
Math. Assoc. Amer., pp. 163 �/166, 1985.

Knar’s Formula
The INFINITE PRODUCT identity

G(1 �v) �22v
Y�
m�1

p�1 =2 G 1
2�2�mv
� �h i

;

where G(x) is the GAMMA FUNCTION.

See also GAMMA FUNCTION, INFINITE PRODUCT

References
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Kneser-Sommerfeld Formula
Let Jn(z) be a BESSEL FUNCTION OF THE FIRST KIND,
Nn(z) a NEUMANN FUNCTION, and j n; n(z)/ the zeros of
z� nJn(z) in order of ascending REAL PART. Then for 0 B
x BX B1 and R[z] > 0 ;

pJn(xz)

4Jn(z) 
[Jn(z)Nn(Xz) �N n(z)J n(Xz)]

�
X�
n�1

Jn(j n; nx)Jn(j n; nX)

(z2 � j2
n; n)J ?2n; n(jn; n) 

:
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Knight’s Tour

A knight’s tour of a CHESSBOARD (or any other grid) is
a sequence of moves by a knight CHESS piece (which
may only make moves which simultaneously shift one
square along one axis and two along the other) such
that each square of the board is visited exactly once
(i.e., a HAMILTONIAN CIRCUIT). If the final position is a
knight’s move away from the first position, the tour is
called re-entrant. The above figures shows six
knight’s tours on an 8 �8 CHESSBOARD, all but the
first of which are re-entrant. The final tour has the
additional property that it is a SEMIMAGIC SQUARE

with row and column sums of 260 and main diagonal
sums of 348 and 168 (Steinhaus 1983, p. 30).
BACKTRACKING algorithms (in which the knight is
allowed to move as far as possible until it comes to a
blind alley, at which point it backs up some number of
steps and then tries a different path) can be used to
find knight’s tours, but such methods can be very
slow. Warnsdorff (1823) proposed an algorithm that
finds a path without any backtracking by computing
ratings for "successor" steps at each position. Here,
successors of a position are those squares that have
not yet been visited and can be reached by a single
move from the given position. The rating is highest

for the successor whose number of successors is least.
In this way, squares tending to be isolated are visited
first and therefore prevented from being isolated
(Roth). The time needed for this algorithm grows
roughly linearly with the number of squares of the
chessboard, but unfortunately computer implementa-
tion show that this algorithm runs into blind alleys
for chessboards bigger than 76 �76 ; despite the fact
that it works well on smaller boards (Roth).

Recently, Conrad et al. (1994) discovered another
linear time algorithm and proved that it solves the
problem for all n ]5: The Conrad et al. algorithm
works by decomposition of the chessboard into smal-
ler chessboards (not necessarily square) for which
explicit solutions are known. This algorithm is rather
complicated because it has to deal with many special
cases, but has been implemented in Mathematica by
A. Roth. Example tours are illustrated above for n �n
boards with n �5 to 8.

Löbbing and Wegener (1996) computed the number of
cycles covering the directed knight’s graph for an 8 �
8 CHESSBOARD. They obtained a2 ; where
a �2,849,759,680, i.e., 8,121,130,233,753,702,400.
They also computed the number of undirected tours,
obtaining an incorrect answer 33,439,123,484,294
(which is not divisible by 4 as it must be), and so
are currently redoing the calculation.

The following results are given by Kraitchik (1942).
The number of possible tours on a 4k �4k board for
k �3, 4, ... are 8, 0, 82, 744, 6378, 31088, 189688,
1213112, ... (Kraitchik 1942, p. 263). There are 14
tours on the 3�7 rectangle, two of which are
symmetrical. There are 376 tours on the 3�8
rectangle, none of which is closed. There are 16
symmetric tours on the 3�9 rectangle and 8 closed
tours on the 3�10 rectangle. There are 58 symmetric
tours on the 3�11 rectangle and 28 closed tours on
the 3�12 rectangle. There are five doubly symmetric
tours on the 6�6 square. There are 1728 tours on the
5�5 square, 8 of which are symmetric. The longest
"uncrossed" knight’s tours on an n�n board for n�3,
4, ... are 2, 5, 10, 17, 24, 35, ... (Sloane’s A003192).

See also CHESS, HAMILTONIAN CIRCUIT, KINGS PRO-

BLEM, KNIGHTS PROBLEM, MAGIC TOUR, QUEENS

PROBLEM, TOUR
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Wegener, I. and Löbbing, M. "The Number of Knight’s Tours
Equals 33,439,123,484,294--Counting with Binary Deci-
sion Diagrams." Electronic J. Combinatorics 3, R5 1�/4,
1996. http://www.combinatorics.org/Volume_3/volu-
me3.html#R5.

Knights of the Round Table
NECKLACE

Knights Problem

The problem of determining how many nonattacking
knights K(n) can be placed on an n �n CHESSBOARD.
For n �8, the solution is 32 (illustrated above). In
general, the solutions are

K(n)�
1
2 n2 n > 2 even
1
2(n

2�1) n > 1 odd;

(

giving the sequence 1, 4, 5, 8, 13, 18, 25, ... (Sloane’s
A030978, Dudeney 1970, p. 96; Madachy 1979).

The minimal number of knights needed to occupy or
attack every square on an n�n CHESSBOARD is given
by 1, 4, 4, 4, 5, 8, 10, ... (Sloane’s A006075). The
number of such solutions are given by 1, 1, 2, 3, 8, 22,
3, ... (Sloane’s A006076).

See also BISHOPS PROBLEM, CHESS, KINGS PROBLEM,
KNIGHT’S TOUR, QUEENS PROBLEM, ROOKS PROBLEM
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Knödel Numbers
For every k ]1 ; let Ck be the set of COMPOSITE

NUMBERS n �k such that if 1 Ba Bn; GCD(a ; n) �1
(where GCD is the GREATEST COMMON DIVISOR), then
an�k 
1 (mod n): C1 is the set of CARMICHAEL NUM-

BERS. Makowski (1962/1963) proved that there are
infinitely many members of Ck for k ]2:/

k Sloane /Ck/

1 A002997 561, 1105, 1729, 2465, 2821, 6601,
8911, ...

2 A050990 4, 6, 8, 10, 12, 14, 22, 24, 26, 30, ...

3 A050991 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, ...

4 A050992 6, 8, 12, 16, 20, 24, 28, 40, 44, 48, ...

5 A050993 25, 65, 85, 145, 165, 185, 205, ...

See also CARMICHAEL NUMBER, D -NUMBER, GREAT-

EST COMMON DIVISOR
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Knot
A knot is defined as a closed, non-self-intersecting
curve embedded in 3-D. A knot is a single component
LINK. Knot theory was given its first impetus when
Lord Kelvin proposed a theory that atoms were vortex
loops, with different chemical elements consisting of
different knotted configurations (Thompson 1867).
P. G. Tait then cataloged possible knots by trial and
error. Much progress has been made in the interven-
ing years.

Klein proved that knots cannot exist in an EVEN-
numbered dimensional space ]4: It has since been
shown that a knot cannot exist in any dimension]4:
Two distinct knots cannot have the same KNOT

COMPLEMENT (Gordon and Luecke 1989), but two
LINKS can! (Adams 1994, p. 261). Schubert (1949)
showed that every knot can be uniquely decomposed
(up to the order in which the decomposition is
performed) as a KNOT SUM of a class of knots known
as PRIME KNOTS, which cannot themselves be further
decomposed. Combining PRIME KNOTS gives no new
knot types for knots of three to five crossing, but one
additional COMPOSITE KNOT each for knots of six and
seven crossings.

Knots are most commonly cataloged based on the
minimum number of crossings present (the so-called
CROSSING NUMBER. Thistlethwaite has used DOWKER

NOTATION to enumerate the number of PRIME KNOTS

of up to 13 crossings, and ALTERNATING KNOTS up to
14 crossings. In this compilation, MIRROR IMAGES are
counted as a single knot type. Hoste et al. (1998)
subsequently tabulated all prime knots up to 16
crossings. Hoste and Weeks are currently begun
compiling a list of 17-crossing knots (Hoste et al.
1998).

The following table gives the number of distinct
PRIME, ALTERNATING, NONALTERNATING, TORUS, and
SATELLITE KNOTS, in addition to the number of chiral
noninvertible c , � amphichiral noninvertible, � am-
phichiral noninvertible, chiral invertible i , and fully
amphichiral and invertible knots a for n�3 to 16
(Hoste et al. 1998).

n prime alt. nonalt. torus sat.

Sloane A002863 A002864 A051763 A051764 A051765

3 1 1 0 1 0

4 1 1 0 0 0

5 2 2 0 1 0

6 3 3 0 0 0

7 7 7 0 1 0

8 21 18 3 1 0

9 49 41 8 1 0

10 165 123 42 1 0

11 552 367 185 1 0

12 2176 1288 888 0 0

13 9988 4878 5110 1 2

14 46972 19536 27436 1 2

15 253293 85263 168030 2 6

16 1388705 379799 1008906 1 10

n c /�/ /�/ i a

Sloane A051766 A051767 A051768 A051769 A052400

3 0 0 0 1 0

4 0 0 0 0 1

5 0 0 0 2 0

6 0 0 0 2 1

7 0 0 0 7 0

8 0 0 1 16 4

9 2 0 0 47 0

10 27 0 6 125 7

11 187 0 0 365 0



12 1103 1 40 1015 17

13 6919 0 0 3069 0

14 37885 6 227 8813 41

15 226580 0 1 26712 0

16 1308449 65 1361 78717 113

A pictorial enumeration of PRIME KNOTS of up to 10
crossings appears in Rolfsen (1976, Appendix C).
Note, however, that in this table, the PERKO PAIR

10 �/161 and 10 �/162 are actually identical, and the
uppermost crossing in 10 �/144 should be changed
(Jones 1987). The kth knot having n crossings in
this (arbitrary) ordering of knots is given the symbol
nk : Another possible representation for knots uses the
BRAID GROUP. A knot with n �1 crossings is a member
of the BRAID GROUP n .

There is no general ALGORITHM to determine if a
tangled curve is a knot or if two given knots are
interlocked. Haken (1961) and Hemion (1979) have
given ALGORITHMS for rigorously determining if two
knots are equivalent, but they are too complex to
apply even in simple cases (Hoste et al. 1998).

If a knot is AMPHICHIRAL, the "amphichirality" is
A �1, otherwise A �0 (Jones 1987). ARF INVARIANTS

are designated a . BRAID WORDS are denoted b (Jones
1987). CONWAY’S KNOT NOTATION C for knots up to 10
crossings is given by Rolfsen (1976). Hyperbolic
volumes are given (Adams, Hildebrand, and Weeks
1991; Adams 1994). The BRAID INDEX i is given by
Jones (1987). ALEXANDER POLYNOMIALS D are given in
Rolfsen (1976), but with the POLYNOMIALS for 10 �/083

and 10 �/086 reversed (Jones 1987). The ALEXANDER

POLYNOMIALS are normalized according to Conway,
and given in abbreviated form [a1 ; a2 ; . . .  for
a1 �a2(x�1 �x) �. . . :/

The JONES POLYNOMIALS W for knots of up to 10
crossings are given by Jones (1987), and the JONES

POLYNOMIALS V can be either computed from these,
or taken from Adams (1994) for knots of up to 9
crossings (although most POLYNOMIALS are associated
with the wrong knot in the first printing). The JONES

POLYNOMIALS are listed in the abbreviated form
fnga0a1 . . .  for  t�n(a0 �a1t �. . .); and correspond
either to the knot depicted by Rolfsen or its MIRROR

IMAGE, whichever has the lower POWER of t�1 : The
HOMFLY POLYNOMIAL P(l; m) and KAUFFMAN POLY-

NOMIAL F (A , X ) are given in Lickorish and Millett
(1988) for knots of up to 7 crossings.

M. B. Thistlethwaite has tabulated the HOMFLY
POLYNOMIAL and KAUFFMAN POLYNOMIAL F for KNOTS

of up to 13 crossings.

03 �/001 04 �/001 05 �/001 05 �/002 06 �/001 06 �/002 06 �/003 07 �/001

07 �/002 07 �/003 07 �/004 07 �/005 07 �/006 07 �/007 08 �/001 08 �/002

08 �/003 08 �/004 08 �/005 08 �/006 08 �/007 08 �/008 08 �/009 08 �/010

08 �/011 08 �/012 08 �/013 08 �/014 08 �/015 08 �/016 08 �/017 08 �/018

08 �/019 08 �/020 08 �/021 09 �/001 09 �/002 09 �/003 09 �/004 09 �/005

09 �/006 09 �/007 09 �/008 09 �/009 09 �/010 09 �/011 09 �/012 09 �/013

09 �/014 09 �/015 09 �/016 09 �/017 09 �/018 09 �/019 09 �/020 09 �/021

09 �/022 09 �/023 09 �/024 09 �/025 09 �/026 09 �/027 09 �/028 09 �/029

09 �/030 09 �/031 09 �/032 09 �/033 09 �/034 09 �/035 09 �/036 09 �/037

09 �/038 09 �/039 09 �/040 09 �/041 09 �/042 09 �/043 09 �/044 09 �/045

09 �/046 09 �/047 09 �/048 09 �/049 10 �/001 10 �/002 10 �/003 10 �/004

10 �/005 10 �/006 10 �/007 10 �/008 10 �/009 10 �/010 10 �/011 10 �/012

10 �/013 10 �/014 10 �/015 10 �/016 10 �/017 10 �/018 10 �/019 10 �/020

10 �/021 10 �/022 10 �/023 10 �/024 10 �/025 10 �/026 10 �/027 10 �/028

10 �/029 10 �/030 10 �/031 10 �/032 10 �/033 10 �/034 10 �/035 10 �/036

10 �/037 10 �/038 10 �/039 10 �/040 10 �/041 10 �/042 10 �/043 10 �/044

10 �/045 10 �/046 10 �/047 10 �/048 10 �/049 10 �/050 10 �/051 10 �/052

10 �/053 10 �/054 10 �/055 10 �/056 10 �/057 10 �/058 10 �/059 10 �/060

10 �/061 10 �/062 10 �/063 10 �/064 10 �/065 10 �/066 10 �/067 10 �/068

10 �/069 10 �/070 10 �/071 10 �/072 10 �/073 10 �/074 10 �/075 10 �/076

10�/077 10�/078 10�/079 10�/080 10�/081 10�/082 10�/083 10�/084

10�/085 10�/086 10�/087 10�/088 10�/089 10�/090 10�/091 10�/092

10�/093 10�/094 10�/095 10�/096 10�/097 10�/098 10�/099 10�/100

10�/101 10�/102 10�/103 10�/104 10�/105 10�/106 10�/107 10�/108

10�/109 10�/110 10�/111 10�/112 10�/113 10�/114 10�/115 10�/116

10�/117 10�/118 10�/119 10�/120 10�/121 10�/122 10�/123 10�/124

10�/125 10�/126 10�/127 10�/128 10�/129 10�/130 10�/131 10�/132

10�/133 10�/134 10�/135 10�/136 10�/137 10�/138 10�/139 10�/140

10�/141 10�/142 10�/143 10�/144 10�/145 10�/146 10�/147 10�/148

10�/149 10�/150 10�/151 10�/152 10�/153 10�/154 10�/155 10�/156

10�/157 10�/158 10�/159 10�/160 10�/161 10�/162 10�/163 10�/164

10�/165 10�/166

See also ALEXANDER POLYNOMIAL, ALEXANDER’S

HORNED SPHERE, AMBIENT ISOTOPY, AMPHICHIRAL

KNOT, ANTOINE’S NECKLACE, BEND (KNOT), BENNE-

QUIN’S CONJECTURE, BORROMEAN RINGS, BRAID

GROUP, BRUNNIAN LINK, BURAU REPRESENTATION,
CHEFALO KNOT, CLOVE HITCH, COLORABLE, CON-

WAY’S KNOT, CROOKEDNESS, DEHN’S LEMMA, DOWKER

NOTATION, FIGURE-OF-EIGHT KNOT, GRANNY KNOT,
HITCH, INVERTIBLE KNOT, JONES POLYNOMIAL, KI-

NOSHITA-TERASAKA KNOT, KNOT POLYNOMIAL, KNOT

SUM, LINKING NUMBER, LOOP (KNOT), MARKOV’S

THEOREM, MENASCO’S THEOREM, MILNOR’S CONJEC-

TURE, NASTY KNOT, ORIENTED KNOT, PRETZEL KNOT,
PRIME KNOT, REIDEMEISTER MOVES, RIBBON KNOT,
RUNNING KNOT, SATELLITE KNOT, SCHÖ NFLIES THE-

OREM, SHORTENING, SIGNATURE (KNOT), SKEIN RELA-

TIONSHIP, SLICE KNOT, SLIP KNOT, SMITH

CONJECTURE, SOLOMON’S SEAL KNOT, SPAN (LINK),
SPLITTING, SQUARE KNOT, STEVEDORE’S KNOT, STICK

NUMBER, STOPPER KNOT, TAIT’S KNOT CONJECTURES,
TAME KNOT, TANGLE, TORSION NUMBER, TORUS

KNOT, TREFOIL KNOT, UNKNOT, UNKNOTTING NUM-

BER, VASSILIEV INVARIANT, WHITEHEAD LINK
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Knot Complement
Let R3 be the space in which a KNOT K sits. Then the
space "around" the knot, i.e., everything but the knot
itself, is denoted R3�K and is called the knot
complement of K (Adams 1994, p. 84).

If a knot complement is hyperbolic (in the sense that
it admits a complete Riemannian metric of constant
GAUSSIAN CURVATURE -1), then this metric is unique
(Prasad 1973, Hoste et al. 1998).

See also COMPLEMENT, COMPRESSIBLE SURFACE,
KNOT, KNOT EXTERIOR
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Knot Curve

(x2 �1)2 �y2(3 �2y) :
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Knot Determinant
The determinant of a knot is ½D(�1)½; where D(z) is the
ALEXANDER POLYNOMIAL.

Knot Diagram

A picture of a projection of a KNOT onto a PLANE.
Usually, only double points are allowed (no more than
two points are allowed to be superposed), and the
double or crossing points must be "genuine crossings"
which transverse in the plane. This means that
double points must look like the above left diagram,
and not the above right one. Also, it is usually
demanded that a knot diagram contain the informa-
tion if the crossings are overcrossings or undercross-
ings so that the original knot can be reconstructed.
The knot diagram of the TREFOIL KNOT is illustrated
below.

KNOT POLYNOMIALS can be computed from knot
diagrams. Such POLYNOMIALS often (but not always)
allow the knots corresponding to given diagrams to be
uniquely identified.

See also NUGATORY CROSSING, REDUCED KNOT DIA-

GRAM, REIDEMEISTER MOVES
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Knot Exterior
The exterior of a knot K is the complement of an open
solid TORUS knotted like K . The removed open solid
TORUS is called a TUBULAR NEIGHBORHOOD (Adams
1994, p. 258).

See also KNOT COMPLEMENT, GORDON-LUECKE THE-

OREM, TUBULAR NEIGHBORHOOD
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Knot Invariant
A knot invariant is a function from the set of all
KNOTS to any other set such that the function does not
change as the knot is changed (up to isotopy). In other
words, a knot invariant always assigns the same
value to equivalent knots (although different knots
may have the same knot invariant). Standard knot
invariants include the FUNDAMENTAL GROUP of the
KNOT COMPLEMENT, numerical knot invariants (such
as VASSILIEV INVARIANTS), polynomial invariants
(KNOT POLYNOMIALS such as the ALEXANDER POLY-

NOMIAL, JONES POLYNOMIAL, KAUFFMAN POLYNOMIAL

F , and KAUFFMAN POLYNOMIAL X ), and torsion
invariants (such as the TORSION NUMBER).

See also ARF INVARIANT, KNOT, KNOT POLYNOMIAL,
LINK INVARIANT, TORSION NUMBER, VASSILIEV INVAR-

IANT
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Knot Linking
In general, it is possible to link two n -D HYPER-

SPHERES in (n�2)/-D space in an infinite number of
inequivalent ways. In dimensions greater than n�2
in the piecewise linear category, it is true that these
spheres are themselves unknotted. However, they
may still form nontrivial links. In this way, they are
something like higher dimensional analogs of two 1-
spheres in 3-D. The following table gives the number
of nontrivial ways that two n -D HYPERSPHERES can be
linked in k -D.

D of spheres D of space Distinct Linkings

23 40 239

31 48 959

102 181 3



102 182 10438319

102 183 3

Two 10-D HYPERSPHERES link up in 12, 13, 14, 15, and
16-D, then unlink in 17-D, link up again in 18, 19, 20,
and 21-D. The proof of these results consists of an
"easy part" (Zeeman 1962) and a "hard part" (Ravenel
1986). The hard part is related to the calculation of
the (stable and unstable) HOMOTOPY GROUPS of
SPHERES.
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Knot Move
An operation on a knot or link diagram which
preserves its crossing number. Thistlethwaite used
13 different moves in generating a list of 16-crossing
alternating knots (Hoste et al. 1998). While these
moves eliminate all duplicate knots up to 13 crossings
with only a single exception, there are 9,868 dupli-
cates in his list of 1,018,774 16-crossing knots (Hoste
et al. 1998).

See also FLYPE, HABIRO MOVE, MARKOV MOVES, PASS

MOVE, PERKO MOVE, POKE MOVE, REIDEMEISTER

MOVES, SLIDE MOVE, TWIST MOVE
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Knot Polynomial
A knot invariant in the form of a POLYNOMIAL such as
the ALEXANDER POLYNOMIAL, BLM/HO POLYNOMIAL,
BRACKET POLYNOMIAL, CONWAY POLYNOMIAL, HOM-
FLY POLYNOMIAL, JONES POLYNOMIAL, KAUFFMAN

POLYNOMIAL F , KAUFFMAN POLYNOMIAL X , and VAS-

SILIEV INVARIANT.

See also KNOT, LINK
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Knot Problem
The problem of deciding if two KNOTS in 3-space are
equivalent such that one can be continuously de-
formed into another.

Knot Shadow
A KNOT DIAGRAM which does not specify whether
crossings are under- or overcrossings.

Knot Sum
Two oriented knots (or links) can be summed by
placing them side by side and joining them by
straight bars so that orientation is preserved in the
sum. This operation is denoted #, so the knot sum of
knots K1 and K2 is written

K1 # K2 �K2 # K1 :

The KNOT SUM of any number of knots cannot be the
UNKNOT unless each knot in the sum is the UNKNOT

(Schubert 1949; Steinhaus 1983, p. 265).

See also CONNECTED SUM
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Knot Symmetry
A symmetry of a knot K is a homeomorphism of R3

which maps K onto itself. More succinctly, a knot
symmetry is a homeomorphism of the pair of spaces
(R3; K): Hoste et al. (1998) consider four types of
symmetry based on whether the symmetry preserves
or reverses orienting of R3 and K ,

1. preserves R3; preserves K (identity operation),
2. preserves R3; reverses K ,
3. reverses R3; preserves K ,
4. reverses R3; reverses K .

This then gives the five possible classes of symmetry
summarized in the table below.

class symmetries knot symmetries

c 1 chiral, noninvertible

/�/ 1, 3 /� amphichiral, noninvertible

/�/ 1, 4 /� amphichiral, noninvertible

i 1, 2 chiral, invertible

a 1, 2, 3, 4 /� and� amphichiral, inver-
tible

In the case of HYPERBOLIC KNOTS, the symmetry
group must be finite and either CYCLIC or DIHEDRAL

(Riley 1979, Kodama and Sakuma 1992, Hoste et al.
1998). The classification is slightly more complicated
for nonhyperbolic knots. Furthermore, all knots with
58 crossings are either amphichiral or invertible



(Hoste et al. 1998). Any symmetry of a prime
alternating link must be visible up to flypes in any
alternating diagram of the link (Bonahon and Sie-
bermann, Menasco and Thistlethwaite 1993, Hoste et
al. 1998).

The following tables (Hoste et al. 1998) give the
numbers of n -crossing knots belonging to cyclic
symmetry groups Zk (Sloane’s A052411 for Z1 and
A052412 for Z2) and dihedral symmetry groups Dk

(Sloane’s A052415 through A052422). Of knots with
16 or fewer crossings, there are only one each having
symmetry groups Z3 ; D14 ; and D16 (above left). There
are only two knots with symmetry group D9 ; one
hyperbolic (above right), and one a satellite knot. In
addition, there are 2, 4, and 10 satellite knots having
14-, 15-, and 16-crossings, respectively, which belong
to the dihedral group D�:/

n /Z1/ /Z2/ /Z3/ /Z4/

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 2 0 0 0

10 24 3 0 0

11 173 14 0 0

12 1047 57 0 0

13 6709 210 0 0

14 37177 712 0 2

15 224311 2268 1 0

16 1301492 7011 0 11

n /D1/ /D2/ /D3/ /D4/ /D5/ /D6/ /D7/ /D8/ /D9/ /D10/ /D14/ /D16/

1  0  0 0 0 0 0 0 0 0 0 0 0

2  0  0 0 0 0 0 0 0 0 0 0 0

3  0  0 0 0 0 0 0 0 0 0 0 0

4  0  0 1 0 0 0 0 0 0 0 0 0

5  0  1 0 0 0 0 0 0 0 0 0 0

6  0  2 0 1 0 0 0 0 0 0 0 0

7  0  4 0 2 0 0 0 0 0 0 0 0

8  4 12 0 3 0 0 0 1 0 0 0 0

9 13 23 3 4 0 3 0 0 0 0 0 0

10 66 62 1 5 0 1 0 0 0 1 0 0

11 217 134 2 11 0 0 0 0 0 0 0 0

12 728 309 6 18 0 8 1 2 0 0 0 0

13 2391 647 1 21 2 3 1 2 0 0 0 0

14 7575 1463 4 31 2 2 0 0 0 0 1 0

15 23517 3065 50 53 3 12 0 2 1 4 0 0

16 73263 6791 15 89 0 10 1 8 1 1 0 1

See also AMPHICHIRAL KNOT, CHIRAL KNOT, KNOT
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Knot Theory
The mathematical study of KNOTS. Knot theory
considers questions such as the following:

1. Given a tangled loop of string, is it really
knotted or can it, with enough ingenuity and/or
luck, be untangled without having to cut it?
2. More generally, given two tangled loops of
string, when are they deformable into each other?
3. Is there an effective algorithm (or any algorithm
to speak of) to make these determinations?

Although there has been almost explosive growth in
the number of important results proved since the



discovery of the JONES POLYNOMIAL, there are still
many "knotty" problems and conjectures whose an-
swers remain unknown.

See also KNOT, LINK

Knot Vector
B-SPLINE

Knuth Number
The numbers defined by the RECURRENCE RELATION

Kn�1 �1 �min(2K n=2b c; 3K n=3b c) ;

with K0 �1: The first few values for n �0, 1, 2, ... are
1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, ... (Sloane’s A007448).
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Köbe Function

The function

fu(z) 

z

(1 � ei uz)2 (1)

defined on the UNIT DISK ½z½B1: For u � [0; 2p) ; the
Köbe function is a SCHLICHT FUNCTION

f (z) �z �
X�
j�2

ajz
j (2)

with ½aj ½�j for all j (Krantz 1999, p. 149). For u �0;

f0(z) �
z

(z � 1)2 ; (3)

illustrated above.

See also KÖ BE’S ONE-FOURTH THEOREM, SCHLICHT

FUNCTION
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Köbe’s One-Fourth Theorem
If f is a SCHLICHT FUNCTION and D(z0 ; r) is the OPEN

DISK of radius r centered at z0; then

f (D(0; 1))–D(0; 1=4);

where–denotes a (not necessarily proper) SUPERSET

(Krantz 1999, p. 150).

See also KÖ BE FUNCTION, SCHLICHT FUNCTION
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Koch Antisnowflake

A FRACTAL derived from the KOCH SNOWFLAKE. The
base curve and motif for the fractal are illustrated
below.

The AREA after the nth iteration is

An�An�1�
1

3

ln�1

a

D
3n

;

where D is the area of the original EQUILATERAL



TRIANGLE, so from the derivation for the KOCH

SNOWFLAKE,

A 
 lim
n 0�

An �(1 �3
5)D�

2
5D:

See also EXTERIOR SNOWFLAKE, FLOWSNAKE FRAC-

TAL, KOCH SNOWFLAKE, PENTAFLAKE, SIERPINSKI

CURVE
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Koch Island
KOCH SNOWFLAKE

Koch Snowflake

A FRACTAL, also known as the KOCH ISLAND, which
was first described by Helge von Koch in 1904. It is
built by starting with an EQUILATERAL TRIANGLE,
removing the inner third of each side, building
another EQUILATERAL TRIANGLE at the location where
the side was removed, and then repeating the process
indefinitely. The Koch snowflake can be simply
encoded as a LINDENMAYER SYSTEM with initial string
"F-F-F", STRING REWRITING rule "F" -� "F�F-
F�F", and angle 608. The zeroth through third
iterations of the construction are shown above. The
fractal can also be constructed using a base curve and
motif, illustrated below.

Let Nn be the number of sides, Ln be the length of a
single side, ln be the length of the PERIMETER, and An

the snowflake’s AREA after the nth iteration. Further,
denote the AREA of the initial n�0 TRIANGLE D; and

the length of an initial n�0 side 1. Then

Nn�3 � 4n (1)

Ln�
1
3

� �n

�3�n (2)

ln
NnLn�3 4
3

� �n

(3)

An�An�1�
1
4 NnL2

nD�An�1�
3 � 4n

4

1

3

 !2n

D

�An�1�
3 � 4n�1

9n
D�An�1�

3 � 44�1

9 � 9n�1
D

�An�1�
1
3

4
9

� �n�1

D: (4)

The CAPACITY DIMENSION is then

dcap�� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln(3 � 4)n

ln(3�n)

� lim
n0�

ln 3 � n ln 4

n ln 3
�

ln 4

ln 3
�

2 ln 2

ln 3

�1:261859507 . . . : (5)

Now compute the AREA explicitly,

A0�D (6)

A1�A0�
1

3

4

9

 !0

D�D 1�
1

3

4

9

 !0
8<
:

9=
; (7)

A2�A1�
1

3

4

9

 !1

D�D 1�
1

3

4

9

 !0

�
4

9

 !1
2
4

3
5

8<
:

9=
; (8)

An� 1�
1

3

Xn

k�0

4

9

 !k
2
4

3
5D; (9)

so as n 0 �;

A
A�� 1�
1

3

X�
k�1

4

9

 !k
2
4

3
5� 1�1

3

1

1 � 4
9

 !
D

�8
5 D: (10)

Some beautiful TILINGS, a few examples of which are
illustrated above, can be made with iterations toward



Koch snowflakes.

In addition, two sizes of Koch snowflakes in AREA

ratio 1:3 TILE the PLANE, as shown above (Mandel-
brot).

Another beautiful modification of the Koch snowflake
involves inscribing the constituent triangles with
filled-in triangles, possibly rotated at some angle.
Some sample results are illustrated above for 3 and 4
iterations.

See also CESÀ RO FRACTAL, EXTERIOR SNOWFLAKE,
GOSPER ISLAND, KOCH ANTISNOWFLAKE, PEANO-GOS-

PER CURVE, PENTAFLAKE, SIERPINSKI SIEVE
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Kochansky’s Approximation

The approximation for PI given by

p:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40

3
�2

ffiffiffi
3

p
s

�1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
120�18

ffiffiffi
3

pq
�3:141533 . . . :

In the above figure, let OA�AF�1; and construct
the circle centered at A�(0; 0) of radius 1. This
intersects O at point B�(�

ffiffiffi
3

p
=2; 1=2): Now con-

struct the circle about B with radius 1. The circles
A and B intersect in C�(�

ffiffiffi
3

p
=2; �1=2); and the line



CO intersects the perpendicular to OA through A in
the point D �(�

ffiffiffi
3

p
=3; 0): Now construct the point

E �(3 �
ffiffiffi
3

p
=3; 0) to be a distance 3 along DA . The

line segment EF is then of length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 � 3 �1

2

ffiffiffi
3

p� �2
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�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40

3
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ffiffiffi
3

p
s

:

This construction was given by the Polish Jesuit
priest Kochansky (Steinhaus 1983).

See also GEOMETRIC CONSTRUCTION, PI
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Kodaira Embedding Theorem
A theorem which states that if a KÄ HLER FORM

represents an INTEGRAL COHOMOLOGY CLASS on a
COMPACT MANIFOLD, then it must be a PROJECTIVE

VARIETY.

See also KÄ HLER FORM

Koenigs-Poincaré Theorem
Let G denote the group of GERMS of holomorphic
diffeomorphisms of (C; 0): Then if ½ l ½"1; then Gl is a
conjugacy class, i.e., all f � Gl are linearizable.
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Kolakoski Sequence
The self-describing sequence consisting of "blocks" of
single and double 1s and 2s, where a "block" is a
single or double digit that is different from the digit in
the preceding block. To construct the sequence, start
with the single digit 1 (the first "block"). Here, the
single 1 means that block of length one follows the
first block. Therefore, require that the next block is 2,
giving the sequence 12.

Now, the 2 means that the next (third) block will have
length two, so append 11 and obtain the sequence
1211. We have added two 1s, so the fourth and fifth
blocks have length one each, giving 12112 and then
121121. As a result of adding 21, we obtain
121121221. As a result of adding 221, we obtain
12112122122112, and so on, giving the sequence 1, 2,
1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, ... (Sloane’s A006928).
The sequence after successive iterations is given by 1,
12, 1211, 121121, 121121221, ..., and the lengths of
this sequence after steps n �1, 2, ... are given by 1, 2,
4, 6, 9, 14, 22, ... (Sloane’s A042942).

If the sequence is started with 1, 2, 2 and the above
procedure is undertaken beginning with the last 2,
then the virtually identical sequence 1, 2, 2, 1, 1, 2, 1,
2, 2, 1, 2, 2, 1, 1, 2, ... (Sloane’s A000002) is obtained.
(It is the same as Sloane’s A006928, except that the
second 2 is doubled.) When presented in this form, the
term a(n) gives the length of the nth RUN in the
sequence. The lengths after steps n �1, 2, ... are then
1, 2, 3, 5, 7, 10, 15, ... (Sloane’s A001083), essentially
one less than Sloane’s A042942.

The question of whether the number of 1s is "asymp-
totically" equal to the number of 2s is unsettled,
although the above plot (which shows the fraction of
1s as a function of number of digits) is certainly
consistent with 1 and 2 being equidistributed.

See also RUN
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Kollros’ Theorem
For every ring containing p SPHERES, there exists a
ring of q SPHERES, each touching each of the p
SPHERES, where



1

p 
�

1

q 
�

1

3 
:

The HEXLET is a special case with p �3.

See also HEXLET, SPHERE
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Kolmogorov Complexity
The complexity of a pattern parameterized as the
shortest ALGORITHM required to reproduce it. Also
known as ALGORITHMIC COMPLEXITY.
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Kolmogorov Constant
The exponent 5/3 in the spectrum of homogeneous
turbulence, k�5 =3 :/
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Kolmogorov Criterion
STRONG LAW OF LARGE NUMBERS

Kolmogorov Entropy
Also known as METRIC ENTROPY. Divide PHASE SPACE

into D -dimensional HYPERCUBES of CONTENT eD : Let
Pi0 ; ... ; in

be the probability that a trajectory is in
HYPERCUBE i0 at t �0, i1 at t �T , i2 at t �2T ; etc.
Then define

Kn �hK ��
X

i0 ; ... ; in

Pi0 ; ... ; in
ln Pi0 ; ... ; in

; (1)

where KN �1 �KN is the information needed to predict
which HYPERCUBE the trajectory will be in at (n �1)T
given trajectories up to nT . The Kolmogorov entropy
is then defined by

K
lim
T00

lim
e00�

lim
N0�

1

NT

XN�1

n�0

(Kn�1�Kn): (2)

The Kolmogorov entropy is related to LYAPUNOV

CHARACTERISTIC EXPONENTS by

hK �gp

X
si>0

si dm: (3)

See also HYPERCUBE, LYAPUNOV CHARACTERISTIC

EXPONENT
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Kolmogorov-Arnold-Moser Theorem
A theorem outlined in 1954 by Kolmogorov which was
subsequently proved in the 1960s by Arnold and
Moser (Tabor 1989, p. 105). It gives conditions under
which CHAOS is restricted in extent. Moser’s 1962
proof was valid for TWIST MAPS

u?�u�2pf (I)�g(u; I) (1)

I?�I�f (u; I): (2)

In 1963, Arnold produced a proof for Hamiltonian
systems

H�H0(I)�eH1(I): (3)

The original theorem required perturbations e�

10�48; although this has since been significantly
increased. Arnold’s proof required C�; and Moser’s
original proof required C333: Subsequently, Moser’s
version has been reduced to C6; then C2�e; although
counterexamples are known for C2: Conditions for
applicability of the KAM theorem are:

1. small perturbations,
2. smooth perturbations, and
3. sufficiently irrational WINDING NUMBER.

Moser considered an integrable Hamiltonian function
H0 with a TORUS T0 and set of frequencies v having
an incommensurate frequency vector v� (i.e., v � k"

0 for all INTEGERS ki): Let H0 be perturbed by some
periodic function H1: The KAM theorem states that, if
H1 is small enough, then for almost every v� there
exists an invariant TORUS T(v�) of the perturbed
system such that T(v�) is "close to" T0(v�): Moreover,
the TORI T(v�) form a set of POSITIVE measures whose
complement has a measure which tends to zero as
½H1½ 0 0: A useful paraphrase of the KAM theorem is,
"For sufficiently small perturbation, almost all TORI

(excluding those with rational frequency vectors) are
preserved." The theorem thus explicitly excludes TORI

with rationally related frequencies, that is, n�1
conditions of the form

v � k�0: (4)

These TORI are destroyed by the perturbation. For a
system with two DEGREES OF FREEDOM, the condition
of closed orbits is

s�
v1

v2

�
r

s
: (5)

For a QUASIPERIODIC ORBIT, s is IRRATIONAL. KAM
shows that the preserved TORI satisfy the irration-



ality condition

v1

v2

�
r

s

%%%%%
%%%%% > K( e)

s2 :5 
(6)

for all r and s , although not much is known about
K( e) :/

The KAM theorem broke the deadlock of the small
divisor problem in classical perturbation theory, and
provides the starting point for an understanding of
the appearance of CHAOS. For a HAMILTONIAN SYS-

TEM, the ISOENERGETIC NONDEGENERACY condition

@2H0

@Ij @Ij

%%%%%
%%%%%"0 (7)

guarantees preservation of most invariant TORI under
small perturbations e �1: The Arnold version states
that

Xn

k�1

mk vk

%%%%%
%%%%% > K( e)

Xn

k �1

½mk ½

 !�n�1

(8)

for all mk �Z: This condition is less restrictive than
Moser’s, so fewer points are excluded.

See also CHAOS, HAMILTONIAN SYSTEM, QUASIPERIO-

DIC FUNCTION, TORUS
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Kolmogorov-Sinai Entropy
KOLMOGOROV ENTROPY, METRIC ENTROPY

Kolmogorov-Smirnov Test
A goodness-of-fit test for any STATISTICAL DISTRIBU-

TION. The test relies on the fact that the value of the
sample cumulative density function is asymptotically
normally distributed.

To apply the Kolmogorov-Smirnov test, calculate the
cumulative frequency (normalized by the sample size)
of the observations as a function of class. Then
calculate the cumulative frequency for a true dis-
tribution (most commonly, the NORMAL DISTRIBU-

TION). Find the greatest discrepancy between the
observed and expected cumulative frequencies, which
is called the "D -STATISTIC." Compare this against the
critical D -STATISTIC for that sample size. If the
calculated D -STATISTIC is greater than the critical
one, then reject the NULL HYPOTHESIS that the
distribution is of the expected form. The test is an
R -ESTIMATE.

See also ANDERSON-DARLING STATISTIC, D -STATISTIC,
KUIPER STATISTIC, NORMAL DISTRIBUTION, R -ESTI-

MATE
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König’s Theorem
If an ANALYTIC FUNCTION has a single simple POLE at
the RADIUS OF CONVERGENCE of its POWER SERIES,
then the ratio of the coefficients of its POWER SERIES

converges to that POLE.

See also POLE
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König-Egeváry Theorem
A theorem on BIPARTITE GRAPHS.

See also BIPARTITE GRAPH, FROBENIUS-KÖ NIG THEO-

REM

Königsberg Bridge Problem

The Königsberg bridges cannot all be traversed in a
single trip without doubling back. This problem was
solved by Euler (1736), and represented the begin-
ning of GRAPH THEORY.

See also CIRCUIT, EULERIAN CIRCUIT, GRAPH THEORY,
UNICURSAL CIRCUIT
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Kontorovich-Lebedev Transform
The forward and inverse Kontorovich-Lebedev trans-
forms are defined by

Kix[f (t)]�g
�

0

Kix(t)f (t) dt

K�1
ix [g(t)]�

2

p2x g
�

0

t sinh(pt)Kit(x)g(t) dt;

respectively, where Kn(z) is a MODIFIED BESSEL

FUNCTION OF THE SECOND KIND with imaginary index
/n�ix/.
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Kontsevich Integral
This entry contributed by SERGEI DUZHIN AND

S. CHMUTOV

Kontsevich’s integral is a far-reaching generalization
of the GAUSS INTEGRAL for the LINKING NUMBER, and
provides a tool to construct the UNIVERSAL VASSILIEV

INVARIANT of a KNOT. In fact, any VASSILIEV KNOT

INVARIANT can be derived from it.

To construct the Kontsevich integral, represent the
three-dimensional space R3 as a DIRECT PRODUCT of a
complex line C with coordinate z and a real line R

with coordinate t . The integral is defined for MORSE

KNOTS, i.e., knots K embedded in R3�Cz�Rt in such
a way that the coordinate t is a MORSE FUNCTION on
K , and its values belong to the GRADED COMPLETION

Ā of the ALGEBRA OF CHORD DIAGRAMS A:/

The Kontsevich integral Z(K) of the knot K is defined
as

Z(K)�
X�
m�0

1

(2pi)m g
tmin B t1 B ...B tmB tmax

tj are noncritical

X
P�f(zj ; z?j)g

(�1)¡Dp

�ffl
m

j�1

dzj � dz?j
zj � z?j

; (1)

where the ingredients of this formula have the
following meanings. The real numbers tmin and tmax

are the minimum and the maximum of the function t
on K .

The integration domain is the m -dimensional simplex
tminBt1B. . .BtmBtmax divided by the critical values
into a certain number of connected components. For
example, for the embedding of the unknot and m�2
(left figure), the corresponding integration domain
has six connected components, illustrated in the right
figure above.

The number of summands in the integrand is con-
stant in each connected component of the integration
domain, but can be different for different components.
In each plane ft�tjgƒR3; choose an unordered pair
of distinct points (zj; tj) and (z?j; tj) on K so that zj(tj)
and z?t(tj) are continuous functions. Denote by P�
f(zj; z?j)g the set of such pairs for j�1, ..., m , then the
integrand is the sum over all choices of P . In the
example above, for the component ftminBt1B

tc1
; tc2

Bt2Btmaxg; we have only one possible pair of
points on the levels ft�t1g and ft�t2g: Therefore,
the sum over P for this component consists of only
one summand. In contrast, in the component ftminB

t1Btc1
; tc1

Bt2Btc2
g; we still have only one possibility

for the level ft�t1g; but the plane ft�t2g intersects
our knot K in four points. So we have 4

2

� �
�6 possible

pairs (z2; z?2); and the total number of summands is
six (see the picture below).

For a pairing P the symbol " /¡/ " denotes the number of
points (zj; tj) or (z?j; tj) in P where the coordinate t
decreases along the ORIENTATION of K .



Fix a pairing P , consider the knot K as an oriented
circle, and connect the points (zj; tj) and (z?j; tj) by a
chord to obtain a chord diagram with m chords. The
corresponding element of the algebra A is denoted
DP: In the picture above, one of the possible pairings,
the corresponding CHORD DIAGRAM with the sign
(�1)¡; and the number of summands of the integrand
(some of which are equal to zero in A due to a ONE-

TERM RELATION) are shown for each connected com-
ponent.

Over each connected component, /zj and z?j are SMOOTH

FUNCTIONS in tj:/ By

ffl
m

j�1

dzj � dz?j
zj � z?j

we mean the PULLBACK of this form to the integration
domain of variables t1; ..., tm: The integration domain
is considered with the ORIENTATION of the space Rm

defined by the natural order of the coordinates t1; ...,
tm:/

By convention, the term in the Kontsevich integral
corresponding to m�0 is the (only) CHORD DIAGRAM

of order 0 with coefficient one. It represents the unit
of the algebra A:/

The Kontsevich integral is convergent thanks to ONE-

TERM RELATIONS. It is invariant under DEFORMATIONS

of the knot in the class of MORSE KNOTS. Unfortu-
nately, the Kontsevich integral is not invariant under
deformations that change the number of critical
points of the function t . However, the formula shows
how the integral changes under such deformations:

In the above equation, the graphical arguments of Z
represent two embeddings of an arbitrary knot,
differing only in the illustrated fragment,

H is the hump (i.e, the UNKNOT embedded in R3 in the
specified way; illustrated above), and the product is
the product in the completed algebra Ā of CHORD

DIAGRAMS. The last equality allows the definition of
the UNIVERSAL VASSILIEV INVARIANT by the formula

I(K)�
Z(K)

Z(H)c=2 ; (2)

where c denotes the number of critical points of K
and quotient means division in the algebra Ā

according to the rule (1�a)�1�1�a�a2�a3�. . . :
The UNIVERSAL VASSILIEV INVARIANT I(K) is invariant
under an arbitrary DEFORMATION of K .

Consider a function w on the set of CHORD DIAGRAMS

with m chords satisfying ONE- AND FOUR-TERM RELA-

TIONS (a WEIGHT SYSTEM). Applying this function to
the UNIVERSAL VASSILIEV INVARIANT w(I(K)); we get a
numerical knot invariant. This invariant will be a
VASSILIEV INVARIANT of order m , and any VASSILIEV

INVARIANT can be obtained in this way.

The Kontsevich integral behaves in a nice way with
respect to the natural operations on knots, such as
mirror reflection, changing the orientation of the
knot, and mutation of knots. In a proper normal-
ization it is multiplicative under the CONNECTED SUM

of knots:

I?(K1 # K2)�I?(K1)I?(K2); (3)

where I?(K)�Z(H)I(K): For any knot K the coeffi-
cients in the expansion of Z(K) over an arbitrary basis
consisting of CHORD DIAGRAMS are rational (Kontse-
vich 1993, Le and Murakami 1996).

The task of computing the Kontsevich integral is very
difficult. The explicit expression of the universal
Vassiliev invariant I(K) is currently known only for
the UNKNOT,

I(O)�exp
X�
n�0

b2nw2n

 !
(4)

�1�
X�
n�0

b2nw2n

 !
�

1

2

X�
n�0

b2nw2n

 !2

�. . . : (5)

(Bar-Natan et al. 1997). Here, b2n are MODIFIED

BERNOULLI NUMBERS, i.e., the coefficients of the
TAYLOR SERIES

X�
n�0

b2nx2n�
1

2
ln

ex=2 � e�x=2

1
2 x

 !
(6)



(/b2 �1 =48; b4 ��1=5760; ...; Sloane’s A057868), and
w2n are the wheels , i.e., diagrams of the form

The linear combination is understood as an element
of the ALGEBRA OF CHINESE CHARACTERS B; which is
isomorphic to the ALGEBRA OF CHORD DIAGRAMS A:
Expressed through CHORD DIAGRAMS, the beginning
of this series looks as follows:

The Kontsevich integral was invented by Kontsevich
(1993), and detailed expositions can be found in
Arnol’d (1994), Bar-Natan (1995), and Chmutov and
Duzhin (2000).

See also CHORD DIAGRAM, GAUSS INTEGRAL, MORSE

KNOT, VASSILIEV INVARIANT
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Kontsevich’s Integral

See also VASSILIEV INVARIANT

Korselt’s Criterion
n DIVIDES an �a for all INTEGERS a IFF n is SQUARE-

FREE and (p �1)½n=p �1 for all PRIME DIVISORS p of n .
CARMICHAEL NUMBERS satisfy this CRITERION.

See also CARMICHAEL NUMBER
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Korteweg de Vries Equation
The PARTIAL DIFFERENTIAL EQUATION

K0�1

See also KADOMTSEV-PETVIASHVILI EQUATION, KRICH-

EVER-NOVIKOV EQUATION
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Korteweg-de Vries Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�uxxx�6uux�0 (1)

(Lamb 1980; Zwillinger 1997, p. 131), often abbre-
viated "KdV."

The so-called generalized KdV equation is given by

ut�uux�uxxxxx�0 (2)

(Boyd 1986; Zwillinger 1997, p. 131). The so-called
deformed KdV equation is given by

ut�
@

@x
uxx�2hu3�

3

2

uu2
x

h� u2

 !
�0 (3)

(Dodd and Fordy 1983; Zwillinger 1997, p. 133), and
the modified KdV equation is given by

ut�uxxx96u2ux�0 (4)

(Calogero and Degasperis 1982, p. 51; Tabor 1990,
p. 304; Zwillinger 1997, p. 133), or

ut�uxxx�
1
8 u3

x�ux(Aeu�B�Ce�u)�0 (5)

(Dodd and Fordy 1983; Zwillinger 1997, p. 133).

The cylindrical KdV equation is given by

ut�uxxx�6uux�
u

2t
�0 (6)

(Calogero and Degasperis 1982, p. 50; Zwillinger
1997, p. 131), and the spherical KdV by

ut�uxxx�6uux�
u

t
�0 (7)



(Calogero and Degasperis 1982, p. 51; Zwillinger
1997, p. 132).

See also KADOMTSEV-PETVIASHVILI EQUATION, KOR-

TEWEG-DE VRIES-BURGER EQUATION, KRICHEVER-NO-

VIKOV EQUATION, REGULARIZED LONG-WAVE

EQUATION, SOLITON
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Korteweg-de Vries-Burger Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �2uux � nuxx � muxxx �0:

See also KORTEWEG-DE VRIES EQUATION
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Kovalevskaya Exponent
LEADING ORDER ANALYSIS

Kovalevskaya Top Equations
The system of ORDINARY DIFFERENTIAL EQUATIONS

dm

dt
� lm �m � g �1

dg

dt 
� lg �m:
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Kozyrev-Grinberg Theory
A theory of HAMILTONIAN CIRCUITS.

See also GRINBERG FORMULA, HAMILTONIAN CIRCUIT

k-Partite Graph
A k -partite graph is a GRAPH whose VERTICES can be
partitioned into k DISJOINT SETS so that no two
vertices within the same set are adjacent.

See also COMPLETE K -PARTITE GRAPH, K -GRAPH
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Kramers Equation
The PARTIAL DIFFERENTIAL EQUATION

Pt �Pxx �uPx �
@

@x 
f[u �F(x)]P g:
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Kramers Rate
The characteristic escape rate from a stable state of a
potential in the absence of signal.

See also STOCHASTIC RESONANCE
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Kramp’s Symbol
The symbol defined by

ca =b 
c(c �b)(c �2b) � � � [c �(a �1)b] (1)

�ba c

b

 !
a

(2)

�

ba G a �
c

b

 !

G
c

b

 ! ; (3)

where (a)n is the POCHHAMMER SYMBOL and G(z) is
the GAMMA FUNCTION. Note that the definition by
Erdélyi et al. (1981, p. 52) incorrectly gives the
PREFACTOR of (3) as ba �1 :/

See also HANKEL’S SYMBOL, POCHHAMMER SYMBOL
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Krattenthaler Matrix Inversion Formula
Let (ai) and (bi) be sequences of complex numbers
such that bj "bk for j "k; and let the LOWER TRIAN-

GULAR MATRICES F �(F(n; k)) and G �(G(n; k)) be
defined as

F(n; k) �
Qn�1

j�k (aj � k)Qn
j�k �1(bj � bk)

and

G(n ; k) �
ak � bk

an � bn

Qn
j�k �1(aj � bn)Qn�1

j�k (bj � bn)
;

where the product over an EMPTY SET is 1. Then F
and G are MATRIX INVERSES (Bhatnagar 1995,
pp. 16 �/17). This result simplifies to the GOULD AND

HSU MATRIX INVERSION FORMULA when bk �k; to
Carlitz’s q -analog for bk �qk (Carlitz 1972), and to
Bressoud’s matrix theorem for bk �q�k �aqk and
ak ��(aq �j =b) �bqj (Bressoud 1983).

The formula can be extended to a summation theorem
which generalizes Gosper’s bibasic sum (Gasper and
Rahman 1990, p. 240; Bhatnagar 1995, p. 19).

See also GOULD AND HSU MATRIX INVERSION FOR-

MULA
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Krawtchouk Polynomial
Let a(x) be a STEP FUNCTION with the JUMP

j(x)�
N
x

� �
pxqN�x (1)

at x�0, 1, ..., N , where p > 0; q > 0; and p�q�1:
Then the Krawtchouk polynomial is defined by

k(p)
n (x; N)�

Xn

n�0

(�1)n�n N�x
n�n

� �
x
n

� �
pn�nqn; (2)

�(�1)n N
n

� �
pn

2F1(�n; �x;�N; 1=p) (3)

�
(�1)npn

n!

G(N � x � 1)

G(N � x � n � 1)

�2F1(�n; �x; N�x�n�1; (p�1)=p): (4)

for n�0, 1, ..., N . The first few Krawtchouk poly-
nomials are

k(p)
0 (x; N)�1

k(p)
1 (x; N)��Np�x

k(p)
2 (x; N)�1

2[N
2p2�x(2p�x�1)�Np(p�2x)]:

Koekoek and Swarttouw (1998) define the Krawtch-
ouk polynomial without the leading coefficient as

Kn(x; p; N)� 2 F1(�n; �x;�N; 1=p): (5)

The Krawtchouk polynomials have WEIGHT FUNCTION

w�
N!pxqN�x

G(1 � x)G(N � 1 � x)
; (6)

where G(x) is the GAMMA FUNCTION, RECURRENCE

RELATION

(n�1)k(p)
n�1(x; N)�pq(N�n�1)k(p)

n�1(x; N)

�[x�n�(N�2)]k(p)
n (x; N); (7)

and squared norm



N!

n!(N � n)!
(pq)n : (8)

It has the limit

lim
n0�

2

Npq

 !n=2

n!k(p)
n (Np �

ffiffiffiffiffiffiffiffiffiffiffiffi
2Npq

p
s ; N) �Hn(s); (9)

where Hn(x) is a HERMITE POLYNOMIAL.

The Krawtchouk polynomials are a special case of the
MEIXNER POLYNOMIALS OF THE FIRST KIND.

See also MEIXNER POLYNOMIAL OF THE FIRST KIND,
ORTHOGONAL POLYNOMIALS
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Kreisel Conjecture
A CONJECTURE in DECIDABILITY theory which postu-
lates that, if there is a uniform bound to the lengths of
shortest proofs of instances of S(n) ; then the universal
generalization is necessarily provable in PEANO AR-

ITHMETIC. The CONJECTURE was proven true by
M. Baaz in 1988 (Baaz and Pudlák 1993).

See also DECIDABLE
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Krichever-Novikov Equation
The PARTIAL DIFFERENTIAL EQUATION

ut

ux

�
1

4

uxxx

ux

�
3

8

u2
xx

u2
x

�
3

2

p(u)

u2
x

;

where

p(u) �1
4(4u3 �g2u �g3) :

The special cases p(u) �(u �e1)2(u �e2) and p(u) �u3

can be reduced to the KORTEWEG-DE VRIES EQUATION

by a change of variables.

See also KADOMTSEV-PETVIASHVILI EQUATION, KOR-

TEWEG-DE VRIES EQUATION
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Kronecker Decomposition Theorem
Every FINITE ABELIAN GROUP can be written as a
GROUP DIRECT PRODUCT of CYCLIC GROUPS of PRIME

POWER ORDERS. In fact, the number of nonisomorphic
ABELIAN FINITE GROUPS a(n) of any given ORDER n is
given by writing n as

n�
Y

i

pai

i ;

where the pi are distinct PRIME FACTORS, then

a(n)�
Y

i

P(ai);

where P(n) is the PARTITION FUNCTION. This gives 1,
1, 1, 2, 1, 1, 1, 3, 2, ... (Sloane’s A000688).

See also ABELIAN GROUP, FINITE GROUP, ORDER

(GROUP), PARTITION FUNCTION P
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Kronecker Delta
The simplest interpretation of the Kronecker delta is
as the discrete version of the DELTA FUNCTION defined
by

dij

0 for i"j
1 for i�j:

"
(1)

It has the COMPLEX GENERATING FUNCTION



dmn �
1

2pi g zm�n�1 dz ; (2)

where m and n are INTEGERS. In 3-space, the
Kronecker delta satisfies the identities

dii �3 (3)

dij eijk �0 (4)

eipq ejpg �2 dij (5)

eijk epqk � dip djq � diq djp ; (6)

where EINSTEIN SUMMATION is implicitly assumed,
i ; j �1 ; 2 ; 3 ; and eijk is the PERMUTATION SYMBOL.

Technically, the Kronecker delta is a TENSOR defined
by the relationship

dk
l

@x?i
@xk

@xl

@x?j
�

@x?i
@xk

@xk

@x?j
�

@x?j
@x?j

: (7)

Since, by definition, the coordinates xi and xj are
independent for i "j ;

@x?i
@x?j

� d?j
i; (8)

so

d?j
i�

@x?i
@xk

@xl

@x?j
@k

l ; (9)

and di
j is really a mixed second-RANK TENSOR. It

satisfies

djk
ab � eabi e

jki � dj
a d

k
b � dk

a d
j
b (10)

dabjk �gajgbk �gakgbj (11)

eaij e
bij � dbi

ai �2db
a : (12)

The generalization of the Kronecker delta viewed as a
tensor is called the PERMUTATION TENSOR.

See also DELTA FUNCTION, PERMUTATION SYMBOL,
PERMUTATION TENSOR

Kronecker Product
MATRIX DIRECT PRODUCT

Kronecker Symbol
An extension of the JACOBI SYMBOL (n=m) to all
INTEGERS. It is variously written as (n=m) or (n

m
)

(Cohn 1980) or (n½m) (Dickson 1957). The Kronecker
symbol can be computed using the normal rules for
the JACOBI SYMBOL

ab

cd

 !
�

a

cd

 !
b

cd

 !
�

ab

c

 !
ab

d

 !

�
a

c

 !
b

c

 !
a

d

 !
b

d

 !
(1)

plus additional rules for m ��1,

(n=�1) �
�1 for n B0

1 for n > 0 ;

"
(2)

and m �2. The definition for (n=2) is variously
written as

(n=2) �
0 for n even
1 for n odd ; n 
91 (mod 8)

�1 for n odd ; n 
93 (mod 8)

8<
: 

(3)

or

(n=2) 


0 for 4½n
1 for n 
1 (mod 8)

�1 for n 
5 (mod 8)
undefined otherwise

8>><
>>: (4)

(Cohn 1980). Cohn’s form "undefines" (n=2) for SINGLY

EVEN NUMBERS n 
2 (mod 4) and n 
�1; 3 (mod 8);
probably because no other values are needed in
applications of the symbol involving the DISCRIMI-

NANTS d of QUADRATIC FIELDS, where m �0 and d
always satisfies d 
0 ; 1 (mod 4):/

The KRONECKER SYMBOL is a REAL CHARACTER mod-
ulo n , and is, in fact, essentially the only type of REAL

PRIMITIVE CHARACTER (Ayoub 1963).

See also CHARACTER (NUMBER THEORY), CLASS

NUMBER, DIRICHLET L -SERIES, JACOBI SYMBOL, LE-

GENDRE SYMBOL, PRIMITIVE CHARACTER, QUADRATIC

RESIDUE
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Kronecker’s Algorithm
A POLYNOMIAL FACTORIZATION algorithm that pro-
ceeds by considering the vector of coefficients of a
polynomial P , calculating bi �P(i) =ai ; constructing
the LAGRANGE INTERPOLATING POLYNOMIALS from the
conditions A(i)�ai and B(i)�bi; and checking to see
which are factorizations.

See also POLYNOMIAL FACTORIZATION
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Kronecker’s Approximation Theorem
If u is a given IRRATIONAL NUMBER, then the sequence
of numbers fnu g; where fxg
x � xb c; is DENSE in the
unit interval. Explicitly, given any a; 0 5 a 51 ; and
given any e > 0; there exists a POSITIVE INTEGER k
such that

½fkug� a½B e:

Therefore, if h � k ub c; it follows that /jku �h � ajB e/.
The restriction on a can be removed as follows. Given
any real a; any irrational u ; and any e > 0; there exist
integers h and k with k �0 such that

½ku �h � a½B e:

See also RATIONAL APPROXIMATION

References
Apostol, T. M. "Kronecker’s Approximation Theorem: The

One-Dimensional Case" and "Extension of Kronecker’s
Theorem to Simultaneous Approximation." §7.4 and 7.5 in
Modular Functions and Dirichlet Series in Number
Theory, 2nd ed. New York: Springer-Verlag, pp. 148 �/

155, 1997.

Kronecker’s Constant
MERTENS CONSTANT

Kronecker’s Polynomial Theorem
An algebraically soluble equation of ODD PRIME

degree which is irreducible in the natural FIELD

possesses either

1. Only a single REAL ROOT, or
2. All REAL ROOTS.

See also ABEL’S IRREDUCIBILITY THEOREM, ABEL’S

LEMMA, SCHÖ NEMANN’S THEOREM
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Krull Dimension
If R is a RING (commutative with 1), the height of a
PRIME IDEAL p is defined as the SUPREMUM of all n so
that there is a chain p0 ƒ� � � pn�1 ƒpn �p where all pi

are distinct PRIME IDEALS. Then, the Krull dimension
of R is defined as the SUPREMUM of all the heights of
all its PRIME IDEALS.

See also PRIME IDEAL
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Kruskal’s Algorithm
An ALGORITHM for finding a GRAPH’s spanning TREE of
minimum length.

See also KRUSKAL’S TREE THEOREM
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Kruskal’s Tree Theorem
A theorem which plays a fundamental role in compu-
ter science because it is one of the main tools for
showing that certain orderings on TREES are well-
founded. These orderings play a crucial role in
proving the termination of rewriting rules and the
correctness of the Knuth-Bendix equational comple-
tion procedures.

See also KRUSKAL’S ALGORITHM, NATURAL INDEPEN-

DENCE PHENOMENON, TREE
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KS Entropy
METRIC ENTROPY

k-Statistic
The ith k -statistic ki is an UNBIASED ESTIMATOR of the
CUMULANT ki of a given DISTRIBUTION, i.e., ki is
defined so that �ki��ki; where �x� denotes the
EXPECTATION VALUE of x (Kenney and Keeping
1951, p. 189). For a SAMPLE SIZE n , the first few k -
statistics are given by

k1�m (1)

k2�
n

n � 1
m2 (2)

k3�
n2

(n � 1)(n � 2)
m3 (3)

k4�
n2[(n � 1)m4 � 3(n � 1)m2

2]

(n � 1)(n � 2)(n � 3)
; (4)

where m is the sample MEAN, m2 is the SAMPLE

VARIANCE, and mi is the sample i th CENTRAL MOMENT



(Kenney and Keeping 1951, pp. 109�/110, 163�/165,
and 189; Kenney and Keeping 1962).

The k -statistics can be obtained by defining the sums
of the r th powers of the data points as

sr

Xn

i�1

Xr
i ; (5)

then the CENTRAL MOMENTS mi are given in terms of
the sr by

m2��
s2

1

n2
�

s2

n
(6)

m3�
2s3

1

n3
�

3s1s2

n2
�

s3

n
(7)

m4��
3s4

1

n4
�

6s2
1s2

n3
�

4s1s3

n2
�

s4

n
: (8)

Taking the raw expectations of these equations and
expressing the answers in terms of moments mi using

mi�
si

n
(9)

then gives the expectation values of the observed
central moments mi in terms of the population central
moments as

�m2��
n � 1

n
m2 (10)

�m3��
(n � 1)(n � 2)

n2
m3 (11)

�m4��
(n � 1)[(n2 � 3n � 3)m4 � 3(2n � 3)m2

2]

n3
; (12)

together with

�m2
2��

(n � 1)[(n � 1)m4 � (n2 � 2n � 3)m2
2]

n3
(13)

(Kenney and Keeping 1951, p. 189). Solving for the
population central moments mi in terms of the
expectation values of the observed central moments
then gives the formulas for the k -statistics, e.g., (10)
becomes

m2�
n

n � 1
�m2�; (14)

so

k2�
n

n � 1
m2 (15)

is an UNBIASED ESTIMATOR for k2�m2:/

In terms of the power sums, the k -statistics can then
be written as

k2�
ns2 � s2

1

n(n � 1)
(16)

k3�
2s3

1 � 3ns1s2 � n2s3

n(n � 1)(n � 2)
(17)

k4�
�6s4

1 � 12ns2
1s2 � 3n(n � 1)s2

2 � 4n(n � 1)s1s3 � n2(n � 1)s4

n(n � 1)(n � 2)(n � 3)
:

(18)

The VARIANCE var(k2) of k2 is given by the second
central expectation of k2 which, when expressed in
terms of CUMULANTS, becomes

var(k2)�
k4

n
�

2k2
2

n � 1
: (19)

The UNBIASED ESTIMATOR of var(k2) is

v̂ar(k2)�
2k2

2n � (n � 1)k4

n(n � 1)
(20)

(Kenney and Keeping 1951, p. 189).

The VARIANCE of k3 can be expressed in terms of
CUMULANTS by

var(k3)�
k6

n
�

9k2k4

n � 1
�

9k2
3

n � 1
�

6nk3
2

(n � 1)(n � 2)
; (21)

and the UNBIASED ESTIMATOR for var(k3) is

v̂ar(k3)�
6k2

2n(n � 1)

(n � 2)(n � 1)(n � 3)
(22)

(Kenney and Keeping 1951, p. 190).

For a finite population, let a SAMPLE SIZE n be taken
from a population size N . Then UNBIASED ESTIMATORS

M1 for the population MEAN m; M2 for the population
VARIANCE m2; G1 for the population SKEWNESS g1; and
G2 for the population KURTOSIS g2 are

M1�m (23)

M2�
N � n

n(N � 1)
m2 (24)

G1�
N � 2n

N � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

n(N � n)

s
g1 (25)

G2�
(N � 1)(N2 � 6Nn � N � 6n2)g2

n(N � 2)(N � 3)(N � n)

�
6N(Nn � N � n2 � 1)

n(N � 2)(N � 3)(N � n)
(26)

(Church 1926, p. 357; Carver 1930; Irwin and Ken-
dall 1944; Kenney and Keeping 1951, p. 143), where
g1 is the sample SKEWNESS and g2 is the sample
KURTOSIS.



See also CUMULANT, GAUSSIAN DISTRIBUTION, H -

STATISTIC, KURTOSIS, MEAN, MOMENT, SKEWNESS,
STATISTIC, UNBIASED ESTIMATOR, VARIANCE
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k-Subset
A k -subset is a SUBSET of a set on n elements
containing exactly k elements. The number of k -
subsets on n elements is therefore given by the
BINOMIAL COEFFICIENT

n
k

� �
: For example, there are

3
2

� �
�3 2-subsets of f1; 2; 3g; namely f1 ; 2g; f1; 3g;

and f2 ; 3 g: The k -subsets on a list can be enumerated
using KSubsets[list , k ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

The total number of distinct k -subsets on a set of n
elements (i.e., the number of SUBSETS) is given by

Xn

k �0

n
k

� �
�2n :

See also BINOMIAL COEFFICIENT, COMBINATION, P -

SYSTEM, PERMUTATION, SUBSET
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K-Theory
A branch of mathematics which brings together ideas
from ALGEBRAIC GEOMETRY, LINEAR ALGEBRA, and
NUMBER THEORY. In general, there are two main
types of K -theory: topological and algebraic.

Topological K -theory is the "true" K -theory in the
sense that it came first. Topological K -theory has to
do with VECTOR BUNDLES over TOPOLOGICAL SPACES.
Elements of a K -theory are STABLE EQUIVALENCE

classes of VECTOR BUNDLES over a TOPOLOGICAL

SPACE. You can put a RING structure on the collection

of STABLY EQUIVALENT bundles by defining ADDITION

through the WHITNEY SUM, and MULTIPLICATION

through the TENSOR PRODUCT of VECTOR BUNDLES.
This defines "the reduced real topological K -theory of
a space."

"The reduced K -theory of a space" refers to the same
construction, but instead of REAL VECTOR BUNDLES,
COMPLEX VECTOR BUNDLES are used. Topological K -
theory is significant because it forms a generalized
COHOMOLOGY theory, and it leads to a solution to the
vector fields on spheres problem, as well as to an
understanding of the J -homeomorphism of HOMO-

TOPY THEORY.

Algebraic K -theory is somewhat more involved. Swan
(1962) noticed that there is a correspondence between
the CATEGORY of suitably nice TOPOLOGICAL SPACES

(something like regular HAUSDORFF SPACES) and C*-

ALGEBRAS. The idea is to associate to every SPACE the
C*-ALGEBRA of CONTINUOUS MAPS from that SPACE to
the REALS.

A VECTOR BUNDLE over a SPACE has sections, and
these sections can be multiplied by CONTINUOUS

FUNCTIONS to the REALS. Under Swan’s correspon-
dence, VECTOR BUNDLES correspond to modules over
the C*-ALGEBRA of CONTINUOUS FUNCTIONS, the MOD-

ULES being the modules of sections of the VECTOR

BUNDLE. This study of MODULES over C*-ALGEBRA is
the starting point of algebraic K -theory.

The QUILLEN-LICHTENBAUM CONJECTURE connects
algebraic K -theory to Étale cohomology.

See also C*-ALGEBRA
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k-Tuple Conjecture
The first of the HARDY-LITTLEWOOD CONJECTURES.
The k -tuple conjecture states that the asymptotic
number of PRIME CONSTELLATIONS can be computed
explicitly. In particular, unless there is a trivial
divisibility condition that stops p , /p�a1; :::; p�ak/

from consisting of PRIMES infinitely often, then such
PRIME CONSTELLATIONS will occur with an asymptotic
density which is computable in terms of a1; ..., ak: Let
0Bm1Bm2B. . .Bmk; then the k -tuple conjecture
predicts that the number of PRIMES p5x such that



p �2m1 ; p �2m2 ; ..., p �2mk are all PRIME is

P(x; m1 ; m2 ; . . . ; mk)

�C(m1 ; m2 ; . . . ; mk)g
x

2

dt

lnk �1 t 
; (1)

where

C(m1 ; m2 ; . . . ; mk)

�2k
Y

q

1 �
w(q; m1 ; m2 ; . . . ; mk)

q

1 �
1

q

 !k �1 ; (2)

the product is over ODD PRIMES q , and

w(q; m1 ; m2 ; . . . ; mk) (3)

denotes the number of distinct residues of 0, m1 ; ...,
mk (mod q ) (Halberstam and Richert 1974, Odlyzko).
If k �1, then this becomes

C(m) �2
Y

q

q(q � 2)

(q � 1)2

Y
q jm

q � 1

q � 2 
: (4)

This conjecture is generally believed to be true, but
has not been proven (Odlyzko et al. ). The following
special case of the conjecture is sometimes known as
the PRIME PATTERNS CONJECTURE. Let S be a FINITE

set of INTEGERS. Then it is conjectured that there
exist infinitely many k for which fk �s : s � S g are all
PRIME IFF S does not include all the RESIDUES of any
PRIME. The TWIN PRIME CONJECTURE is a special case
of the prime patterns conjecture with S�f0; 2g: This
conjecture also implies that there are arbitrarily long
ARITHMETIC PROGRESSIONS of PRIMES.

See also ARITHMETIC PROGRESSION, DIRICHLET’S

THEOREM, HARDY-LITTLEWOOD CONJECTURES, K -TU-

PLE CONJECTURE, PRIME ARITHMETIC PROGRESSION,
PRIME CONSTELLATION, PRIME QUADRUPLET, PRIME

PATTERNS CONJECTURE, TWIN PRIME CONJECTURE,
TWIN PRIMES
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Kuen Surface

A special case of ENNEPER’S NEGATIVE CURVATURE

SURFACES which can be given parametrically by

x�
2(cos u � u sin u) sin v

1 � u2 sin2 v
(1)

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p
cos(u � tan�1 u) sin v

1 � u2 sin2 v
(2)

y�
2(sin u � u cos u) sin v

1 � u2 sin2 v
(3)

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p
sin(u � tan�1 u) sin v

1 � u2 sin2 v
(4)

z�ln tan 1
2v
� �h i

�
2 cos v

1 � u2 sin2 v
(5)

for v � 0; p½ Þ; u � [0; 2p) (Reckziegel et al. 1986; Gray
1997, p. 496).

The coefficients of the FIRST FUNDAMENTAL FORM are

E�
16u2 sin2 v

[2 � u2 � u2 cos2(2v)]2 (6)

F�0 (7)

G�csc2 v�
16u2 sin2 v

[2 � u2 � u2 cos2(2v)]2 ; (8)

the SECOND FUNDAMENTAL FORM coefficients are

e�
4u[2 � u2 � u2 cos2(2v)] sin v

[2 � u2 � u2 cos2(2v)]2 ; (9)

f �0 (10)

g�
4u[2 � u2 � u2 cos2(2v)] csc v

[2 � u2 � u2 cos2(2v)]2 ; (11)

and the surface area element is

dS�
4u[2 � u2 � u2 cos2(2v)]

[2 � u2 � u2 cos2(2v)]2 : (12)

The GAUSSIAN and MEAN CURVATURES are



K ��1 (13)

H ��
csc v

4u

�
1

4
u sin v 1 �

8

2 � u2 � u2 cos(2v)

" #
; (14)

so the Kuen surface has constant NEGATIVE GAUSSIAN

CURVATURE, and the PRINCIPAL CURVATURES are

k1 �
4u sin v

2 � u2 � u2 cos(2v) 
(15)

k2 ��
[2 � u2 � u2 cos(2v)] csc v

4u 
(16)

(Gray 1997, p. 496).

See also ENNEPER’S NEGATIVE CURVATURE SURFACES
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Española 2, 1999.
Fischer, G. (Ed.). Plate 86 in Mathematische Modelle/

Mathematical Models, Bildband/Photograph Volume.
Braunschweig, Germany: Vieweg, p. 82, 1986.

Gray, A. "Kuen’s Surface." §21.6 in Modern Differential
Geometry of Curves and Surfaces with Mathematica, 2nd
ed. Boca Raton, FL: CRC Press, pp. 496 �/497, 1997.

JavaView. "Classic Surfaces from Differential Geometry:
Kuen." http://www-sfb288.math.tu-berlin.de/vgp/java-
view/demo/surface/common/PaSurface_Kuen.html.
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Kuhn-Tucker Theorem
A theorem in nonlinear programming which states
that if a regularity condition holds and f and the
functions hj are convex, then a solution x0 which
satisfies the conditions hj for a VECTOR of multipliers
l is a GLOBAL MINIMUM. The Kuhn-Tucker theorem is
a generalization of LAGRANGE MULTIPLIERS. FARKAS’S

LEMMA is key in proving this theorem.

See also FARKAS’S LEMMA, LAGRANGE MULTIPLIER

Kuiper Statistic
A statistic defined to improve the KOLMOGOROV-

SMIRNOV TEST in the TAILS.

See also ANDERSON-DARLING STATISTIC
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Kulikowski’s Theorem
For every POSITIVE INTEGER n , there exists a SPHERE

which has exactly n LATTICE POINTS on its surface.
The SPHERE is given by the equation

(x �a)2 �(y �b)2 �(z �
ffiffiffi
2

p
)2 �c2 �2;

where a and b are the coordinates of the center of the
so-called SCHINZEL CIRCLE

x �1
2

� �2

�y2 �1
4 5

k �1 for n �2k even

x �1
3

� �2

�y2 �1
9 5

2k for n�2k�1 odd

8><
>:

and c is its RADIUS.

See also CIRCLE LATTICE POINTS, LATTICE POINT,
SCHINZEL’S THEOREM
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Kullback-Leibler Distance
RELATIVE ENTROPY

Kummer Extension
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Kummer Group
A GROUP of LINEAR FRACTIONAL TRANSFORMATIONS

which transform the arguments of Kummer solutions
to the HYPERGEOMETRIC DIFFERENTIAL EQUATION into
each other. Define

A(z)�1�z

B(z)�1=z;

then the elements of the group are
fI; A; B; AB; BA; ABA�BABg::/



Kummer Surface

The Kummer surfaces are a family of QUARTIC

SURFACES given by the algebraic equation

(x2 �y2 �z2 � m2w2)2 � lpqrs �0; (1)

where

l 

3 m2 � 1

3 � m2
; (2)

p , q , r , and s are the TETRAHEDRAL COORDINATES

p �w �z �
ffiffiffi
2

p
x (3)

q �w �z �
ffiffiffi
2

p
x (4)

r �w �z �
ffiffiffi
2

p
y (5)

s �w �z �
ffiffiffi
2

p
y; (6)

and w is a parameter which, in the above plots, is set
to w �1. The above plots correspond to m2 �1 =3

(3x2 �3y2 �3z2 �1)2 �0 ; (7)

(double sphere), 2/3, 1

x4 �2x2y2 �y4 �4x2z �4y2z �4x2z2 �4y2z2 �0 (8)

(ROMAN SURFACE),
ffiffiffi
2

p
;
ffiffiffi
3

p

[(z �1)2 �2x2][y2 �(z �1)2] �0 (9)

(four planes), 2, and 5. The case 0 5 m2 51 =3 corre-
sponds to four real points.
The following table gives the number of ORDINARY

DOUBLE POINTS for various ranges of m2 ; correspond-
ing to the preceding illustrations.

/0 5 m2 51
3/ 4 12

/ m2 �1
3/

/
1
3 5 m2 B1/ 4 12

/ m2 �1/

/1 B m2 B3/ 16 0

/ m2 �3/

/ m2 > 3/ 16 0

The Kummer surfaces can be represented parame-
trically by hyperelliptic THETA FUNCTIONS. Most of
the Kummer surfaces admit 16 ORDINARY DOUBLE

POINTS, the maximum possible for a QUARTIC SUR-

FACE. A special case of a Kummer surface is the
TETRAHEDROID.

Nordstrand gives the implicit equations as

x4�y4�z4�x2�y2�z2�x2y2�x2z2�y2z2�1�0

(10)

or

x4�y4�z4�a(x2�y2�z2)�b(x2y2�x2z2�y2z2)

�cxyz�1�0: (11)

See also QUARTIC SURFACE, ROMAN SURFACE, TETRA-

HEDROID
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Kummer, E. "Über die Flächen vierten Grades mit sechs-
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Kummer’s Conjecture
A conjecture concerning PRIMES.

Kummer’s Differential Equation
CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUA-

TION

Kummer’s Formulas
Kummer’s first formula is

2F1
1
2�m�k; �n; 2m�1; 1
� �

�
G(2m � 1)G m � 1

2 � k � n
� �

G(m � 1
2 � k)G 2m � 1 � nð Þ

; (1)



where 2F1(a; b; c; z) is the HYPERGEOMETRIC FUNC-

TION with m "�1=2 ; �1, �3=2 ; ..., and G(z) is the
GAMMA FUNCTION. The identity can be written in the
more symmetrical form as

2F1(a ; b; c; �1) �
G 1

2 b � 1
� �

G(b � a � 1)

G(b � 1)G 1
2 b � a � 1
� � ; (2)

where a �b �c �1 and b is a positive integer (Bailey
1935, p. 35; Petkovsek et al. 1996; Koepf 1998, p. 32;
Hardy 1999, p. 106). If b is a negative integer, the
identity takes the form

2F1(a ; b; c; �1) �2 cos 1
2 pb
� �G bj jð ÞG(b � a � 1)

G 1
2 b � a � 1
� � (3)

(Petkovsek et al. 1996).

Kummer’s second formula is

1F1
1
2 �m; 2m �1; z
� �

�M0 ;m(z)

�zm�1 =2 1 �
X�
p �1

z2p

24pp!(m � 1)(m � 2) � � � (m � p)

" #
;

(4)

where 1F1(a; b; z) is the CONFLUENT HYPERGEO-

METRIC FUNCTION and m "�1 =2; �1, �3=2 ; ....

See also CONFLUENT HYPERGEOMETRIC FUNCTION,
HYPERGEOMETRIC FUNCTION

References
Bailey, W. N. Generalised Hypergeometric Series. Cam-

bridge, England: Cambridge University Press, 1935.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects

Suggested by His Life and Work, 3rd ed. New York:
Chelsea, 1999.

Koepf, W. Hypergeometric Summation: An Algorithmic
Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, 1998.

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A �B. Well-
esley, MA: A. K. Peters, pp. 42 �/43 and 126, 1996.

Kummer’s Function
CONFLUENT HYPERGEOMETRIC FUNCTION

Kummer’s Quadratic Transformation
A transformation of a HYPERGEOMETRIC FUNCTION,

2F1 a; b; 2b;
4z

(1 � z)2

 !

�(1 �z)2a
2F1 a; a �1

2 � b; b �1
2; z2

� �
:

Kummer’s Relation
An identity which relates HYPERGEOMETRIC FUNC-

TIONS,

2F1 2a ; 2b; a �b �1
2; x

� �
� 2 F1(a ; b; a �b �1

2; 4x(1 �x)):

Kummer’s Series
HYPERGEOMETRIC FUNCTION

Kummer’s Series Transformation
Let a�

k �0 ak �a and a�
k �0 ck �c be convergent series

such that

lim
k 0�

ak

ck

� l "0:

Then

a � lc �
X�
k �0

1 � l
ck

ak

 !
ak :
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Kummer’s Test
Given a SERIES of POSITIVE terms ui and a sequence of
finite POSITIVE constants ai ; let

r 
 lim
n0�

an

un

un�1

�an�1

 !
:

1. If r > 0 ; the series converges.
2. If rB0; the series diverges.
3. If r�0; the series may converge or diverge.

The test is a general case of BERTRAND’S TEST, the
ROOT TEST, GAUSS’S TEST, and RAABE’S TEST. With
an�n and an�1�n�1; the test becomes RAABE’S

TEST.

See also CONVERGENCE TESTS, RAABE’S TEST

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, pp. 285�/286, 1985.
Jingcheng, T. "Kummer’s Test Gives Characterizations for

Convergence or Divergence of All Series." Amer. Math.
Monthly 101, 450�/452, 1994.

Samelson, H. "More on Kummer’s Test." Amer. Math.
Monthly 102, 817�/818, 1995.



Kummer’s Theorem
The identity

2F1(x; �x; x �n �1; �1) �
G(x � n � 1)G 1

2 n � 1
� �

G x � 1
2 n � 1

� �
G(n � 1)

;

or equivalently

2F1( a; b; 1� a � b; �1) �
G(1 � a � b) G 1 � 1

2 a
� �

G 1 � að ÞG 1 � 1
2 a � b

� � ;
where 2F1(a; b; c; z) is a HYPERGEOMETRIC FUNCTION

and G(z) is the GAMMA FUNCTION. This formula was
first stated by Kummer (1836, p. 53).

See also SAALSCHÜ TZ’S THEOREM
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Kupershmidt Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �uxxxxx �
5
2 uxxxu �25

4 uxxux �
5
4 u

2ux :
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Kuramoto-Sivashinsky Equation
The PARTIAL DIFFERENTIAL EQUATION

u1 �94u �92u �1
2 92u
%% %%2�0 ;

where 92 is the LAPLACIAN and 94 is the BIHARMONIC

OPERATOR.
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Kuratowski Reduction Theorem
Every nonplanar graph is a SUPERGRAPH of an
expansion of the UTILITY GRAPH UG �K3 ;3 (i.e., the
COMPLETE BIPARTITE GRAPH on two sets of three
vertices) or the COMPLETE GRAPH K5 : This theorem
was also proven earlier by Pontryagin (1927 �/1928),
and later by Frink and Smith (1930). Kennedy et al.

(1985) give a detailed history of the theorem, and
there exists a generalization known as the ROBERT-

SON-SEYMOUR THEOREM.

See also COMPLETE BIPARTITE GRAPH, COMPLETE

GRAPH, PLANAR GRAPH, ROBERTSON-SEYMOUR THEO-

REM, UTILITY GRAPH
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Kuratowski’s Closure-Component Problem
Let X be an arbitrary TOPOLOGICAL SPACE. Denote the
CLOSURE of a SUBSET A of X by A� and the COMPLE-

MENT of A by A?: Then at most 14 different SETS can
be derived from A by repeated application of closure
and complementation (Berman and Jordan 1975, Fife
1991). The problem was first proved by Kuratowski
(1922) and popularized by Kelley (1955).

See also KURATOWSKI REDUCTION THEOREM
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Kuratowski’s Theorem
KURATOWSKI REDUCTION THEOREM

Kurschák’s Theorem
The AREA of the DODECAGON (n �12) inscribed in a
UNIT CIRCLE with R �1 is

A �1
2 nR2 sin

2p

n

 !
�3 : (1)

See also DODECAHEDRON
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Kurschák’s Tile

An attractive tiling of the SQUARE composed of two
types of triangular tiles. It consists of 16 EQUILATERAL

TRIANGLES and 32 15 8-158-150 8 ISOSCELES TRIANGLES

arranged in the shape of a DODECAGON.

The composition of Kürschák’s tile is motivated by
drawing inward-pointing EQUILATERAL TRIANGLES on
each side of a UNIT SQUARE and then connecting
adjacent vertices to form a smaller SQUARE rotated
45 8 with respect to the original SQUARE. Joining the
midpoints of the square together with the intersec-
tions of the EQUILATERAL TRIANGLES then gives a
DODECAGON (Wells 1991) with CIRCUMRADIUS

R�sin
p

12

 !
�1

4(
ffiffiffi
6

p
�

ffiffiffi
2

p
):

See also DODECAGON, EQUILATERAL TRIANGLE, ISO-

SCELES TRIANGLE
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Kurtosis
The degree of peakedness of a distribution, also called
the "excess" or "excess coefficient." Kurtosis is a
normalized form of the fourth CENTRAL MOMENT of a
distribution. There are several flavors of kurtosis



commonly encountered, including FISHER KURTOSIS

(denoted g2 or b2) and PEARSON KURTOSIS (denoted b2

or a4): If not specifically qualified, then term "kurto-
sis" is generally taken to refer to FISHER KURTOSIS. A
distribution with a high peak (g2 > 0) is called
LEPTOKURTIC, a flat-topped curve ( g2 B0) is called
PLATYKURTIC, and the normal distribution ( g2 �0) is
called MESOKURTIC.

Let mi denote the ith CENTRAL MOMENT. Then the
FISHER KURTOSIS is defined by

g2 

m4

m2
2

�3 �
m4

s4 
�3; (1)

where s2 is the VARIANCE. Similarly, the PEARSON

KURTOSIS is defined by

b2 

m4

m2
2

�
m4

s4 
: (2)

An ESTIMATOR for the FISHER KURTOSIS g2 is given by

ĝ2 �
k4

k2
2

; (3)

where the ks are K -STATISTIC. For a normal distribu-
tion, the variance of this estimator is

var(g2) :
24

N
: (4)

The following table lists the FISHER KURTOSIS for a
number of common distributions.

distribution FISHER KURTOSIS

BERNOULLI

DISTRIBUTION

1

1 � p 
�

1

p 
�6

BETA

DISTRIBUTION

6[a3 � a2(1 � 2b) � b2(1 � b) � 2ab(2 � b)]

ab(2 � a � b)(3 � a � b)

BINOMIAL

DISTRIBUTION

6p2 � 6p � 1

np(1 � p)

CHI-SQUARED

DISTRIBUTION

12

r

EXPONENTIAL

DISTRIBUTION

6

FISHER-TIPPETT

DISTRIBUTION

/
12
5/

GAMMA

DISTRIBUTION

6

a

GEOMETRIC

DISTRIBUTION

5 �p �
1

1 � p

HALF-NORMAL

DISTRIBUTION

8( p � 3)

(p � 2)2

LAPLACE

DISTRIBUTION

3

LOG NORMAL

DISTRIBUTION

e4S2 

�2e3S2 

�3e2S2 

�6

MAXWELL

DISTRIBUTION

�4
3

NEGATIVE

BINOMIAL

DISTRIBUTION

6 � p(6 � p)

r(1 � p)

NORMAL

DISTRIBUTION

0

POISSON

DISTRIBUTION

1

n

RAYLEIGH

DISTRIBUTION

6p(4 � p) � 16

(p� 4)2

STUDENT’S T -

DISTRIBUTION

6

n � 4

continuous

UNIFORM

DISTRIBUTION

�6
5

discrete

UNIFORM

DISTRIBUTION

6(n2 � 1)

5(n2 � 1)

See also FISHER KURTOSIS, MEAN, PEARSON KURTO-

SIS, SKEWNESS, STANDARD DEVIATION

References
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
p. 928, 1972.

Darlington, R. B. "Is Kurtosis Really Peakedness?" Amer.
Statist. 24, 19�/22, 1970.

Dodge, Y. and Rousson, V. "The Complications of the Fourth
Central Moment." Amer. Statist. 53, 267�/269, 1999.

Kenney, J. F. and Keeping, E. S. "Kurtosis." §7.12 in
Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ:
Van Nostrand, pp. 102�/103, 1962.

Moors, J. J. A. "The Meaning of Kurtosis: Darlington Reex-
amined." Amer. Statist. 40, 283�/284, 1986.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. "Moments of a Distribution: Mean, Variance,
Skewness, and So Forth." §14.1 in Numerical Recipes in
FORTRAN: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press,
pp. 604�/609, 1992.

Rupert, D. "What is Kurtosis? An Influence Function
Approach." Amer. Statist. 41, 1�/5, 1987.



L

L1-Norm
A VECTOR NORM defined for a VECTOR

x �

x1

x2

n
xn

2
664

3
775;

with COMPLEX entries by

xk k1�
Xn

r�1

½xr ½:

The vector norm xk k1 is implemented as Vector-
Norm[m , 1] in the Mathematica add-on package
LinearAlgebra‘MatrixMultiplication‘ (which
can be loaded with the command
BBLinearAlgebra‘).

See also L1-SPACE, L2-NORM, L -INFINITY-NORM, VEC-

TOR NORM
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Press, pp. 1114 �/125, 2000.

L1-Space

See also L1-NORM

L2-Function
Informally, an L2

/-function is a function f : X 0 R that
is SQUARE INTEGRABLE, i.e.,

½½f ½½2 �gX

½f ½2 dm

with respect to the MEASURE m; exists (and is finite),
in which case ½½f ½½ is its L2-NORM. Here X is a MEASURE

SPACE and the integral is the LEBESGUE INTEGRAL.
The collection of L2 functions on X is called L2(X) (ell-
two) of L2-SPACE, which is a HILBERT SPACE.

On the unit interval (0; 1); the functions f (x) �1=xp

are in L2 for p B1=2: However, the function f (x) �
x�1 =2 is not in L2 since

g
1

0

(x�1=2)2 dx �g
1

0

dx

x

does not exist.

More generally, there are L2
/-COMPLEX FUNCTIONS

obtained by replacing the ABSOLUTE VALUE of a
REAL NUMBER in the definition with the NORM of the
COMPLEX NUMBER. In fact, this generalizes to func-
tions from a MEASURE SPACE X to any NORMED SPACE.

/L2
/-functions play an important role in many areas of

ANALYSIS. They also arise in physics, and especially
quantum mechanics, where probabilities are given as
the integral of the absolute square of a wavefunction
c: In this and in the context of energy density, L2

/-
functions arise due to the requirement that these
quantities remain finite.

See also HILBERT SPACE, LEBESGUE INTEGRAL, LP -

SPACE, L 2-SPACE, MEASURE, MEASURE SPACE,
SQUARE INTEGRABLE

L2-Inner Product
The L2

/-inner product of two REAL FUNCTIONS f and g
on a MEASURE SPACE X with respect to the MEASURE m

is given by

�f ; g �L2 �gX

fg dm ;

sometimes also called the bracket product, where the
symbol �f ; g� are called ANGLE BRACKETS. If the
functions are COMPLEX, the generalization of the
HERMITIAN INNER PRODUCT

gX

f ḡ dm

is used.

See also ANGLE BRACKET, BRA, HILBERT SPACE, KET,
LEBESGUE INTEGRAL, L2-FUNCTION, L2-SPACE

L2-Norm
A VECTOR NORM defined for a VECTOR

x�

x1

x2

n
xn

2
664

3
775; (1)

with COMPLEX entries by

xk k2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

r�1

½xr½
2

vuut : (2)

This discrete norm for a vector is sometimes called
the l2/-norm, while the L2/-norm (denoted with an
upper-case L ) is reserved for application with a
function f(x); where it is defined by

fk k2
�f � f��f½f��g ½f(x)½2 dx; (3)

with �f ½g� denoting an ANGLE BRACKET.



The L2/-norm xk k2 is also called the Euclidean norm,
and is implemented as VectorNorm[m , 2] in the
Mathematica add-on package LinearAlgebra‘Ma-
trixMultiplication‘ (which can be loaded with
the command BBLinearAlgebra‘).

See also ANGLE BRACKET, COMPLETE SET OF FUNC-

TIONS, L1-NORM, L2-SPACE, L -INFINITY-NORM, PAR-

ALLELOGRAM LAW, VECTOR NORM
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L2-Space
On a MEASURE SPACE X , the set of SQUARE INTEGR-

ABLE L2-FUNCTIONS is an L2
/-space. Taken together

with the L2-INNER PRODUCT (a.k.a. BRACKET PRO-

DUCT) with respect to a MEASURE m;

�f ; g��gX

fg dm (1)

the L2
/-space forms a HILBERT SPACE. The functions in

an L2
/-space satisfy

�f j c��g c̄f dx (2)

and

�fj c���c f�j (3)

�f l1 c1 � l2 c2 �� l1 � f c1 �� l2 � f c2 �jjj (4)

�l1 f1 � l2 f2 c�� l̄1 �f1 c�� l̄2 �f2 c�j
���� (5)

� c c� �R ]0j (6)

½�c1 c2 �½
2 5�c1 c1 �� c2 c2 �:jj

�� (7)

The inequality (7) is called SCHWARZ’S INEQUALITY.

The basic example is when X �R with LEBESGUE

MEASURE. Another important example is when X is
the positive integers, in which case it is denoted as l2 ;
or "little ell-two." These are the square summable
SERIES.

Strictly speaking, L2
/-space really consists of EQUIVA-

LENCE CLASSES of functions. Two functions represent
the same L2

/-function if the set where they differ has
measure zero. It is not hard to see that this makes
�f ; g� an inner product, because �f ; f ��0 if and
only if f �0 ALMOST EVERYWHERE. A good way to
think of an L2

/-function is as a density function, so
only its integral on sets with positive measure matter.

In practice, this does not cause much trouble, except
that some care has to be taken with boundary
conditions in DIFFERENTIAL EQUATIONS. The problem
is that for any particular point p , the value /f (p)/ isn’t
WELL DEFINED for an L2

/-function f .

If an L2
/-function in EUCLIDEAN SPACE can be repre-

sented by a continuous function f , then f is the only
continuous representative. In such a case, it is not
harmful to consider the L2

/-function as the continuous
function f . Also, it is often convenient to think of
L2(Rn) as the COMPLETION of the CONTINUOUS func-
tions with respect to the L2-NORM.

See also BRACKET PRODUCT, COMPLETION, HILBERT

SPACE, L2-NORM, LP -SPACE, L -FUNCTION, LEBESGUE

INTEGRAL, LEBESGUE MEASURE, MEASURE, MEASURE

SPACE, RIESZ-FISCHER THEOREM, SCHWARZ’S IN-

EQUALITY

Labeled Graph

A labeled graph G �(V ; E) is a finite series of
VERTICES V with a set of EDGES E of 2-SUBSETS of
V . Given a VERTEX set Vn �f1; 2; . . . ; ng; the number
of vertex-labeled graphs is given by 2n(n�1)=2 : Two
graphs G and H with VERTICES Vn �f1; 2 ; . . . ; n g are
said to be ISOMORPHIC if there is a PERMUTATION p of
Vn such that fu; vg is in the set of EDGES E(G) IFF

fp(u); p(v)g is in the set of EDGES E(H):/

The term "labeled graph" when used without qualifi-
cation means a graph with each node labeled differ-
ently (but arbitrarily), so that all nodes are
considered distinct for purposes of enumeration. The
total number of (not necessarily connected) labeled n -
node graphs is given 1, 2, 8, 64, 1024, 32768, ...
(Sloane’s A006125; illustrated above), and the num-
bers of connected labeled graphs on n -nodes are given
by the LOGARITHMIC TRANSFORM of the preceding
sequence, 1, 1, 4, 38, 728, 26704, ... (Sloane’s
A001187; Sloane and Plouffe 1995, p. 19).

See also 15 PUZZLE, A -CORDIAL GRAPH, CONNECTED

GRAPH, CORDIAL GRAPH, EDGE-GRACEFUL GRAPH,
ELEGANT GRAPH, EQUITABLE GRAPH, GRACEFUL

GRAPH, GRAPH, H -CORDIAL GRAPH, HARMONIOUS

GRAPH, LABELED TREE, MAGIC GRAPH, ORIENTED



GRAPH, SUPER-EDGE-GRACEFUL GRAPH, TAYLOR’S

CONDITION, UNLABELED GRAPH, WEIGHTED TREE
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Labeled Tree

A TREE with its nodes labeled. The number of labeled
trees on n nodes is nn �2 ; the first few values of which
are 1, 1, 3, 16, 125, 1296, ... (Sloane’s A000272).
Cayley (1889) provided the first proof of the number
of labeled trees (Skiena 1990, p. 151), and a con-
structive proof was subsequently provided by Prüfer
(1918). Prüfer’s result gives an encoding for labeled
trees known as PRÜ FER CODE (indicated underneath
the trees above, where the trees are depicted using an
embedding with root at the node labeled 1).
The probability that a random labeled tree is CEN-

TERED is asymptotically equal to 1/2 (Szekeres 1983;
Skiena 1990, p. 167).

See also LABELED GRAPH, PRÜ FER CODE, TREE
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Lacunarity
Quantifies deviation from translational invariance by
describing the distribution of gaps within a set at
multiple scales. The more lacunar a set, the more
heterogeneous the spatial arrangement of gaps.

Lacunary Function
This entry contributed by JONATHAN DEANE

A function that has a NATURAL BOUNDARY.

See also NATURAL BOUNDARY
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Ladder
ASTROID, CROSSED LADDERS PROBLEM, CROSSED LAD-

DERS THEOREM, LADDER GRAPH

Ladder Graph

A GRAPH consisting of two rows of paired nodes each
connected by an EDGE. Its complement is the COCK-

TAIL PARTY GRAPH.

See also COCKTAIL PARTY GRAPH

Lagerstrom Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
k

x
y?�ey?y�0:
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Lagrange Bracket
Let F and G be infinitely differentiable functions of x ,
u , and p . Then the Lagrange bracket is defined by

[F ; G] �
Xn

n�1

@F

@pn

@G

@xp

�pn

@G

@u

 !
�

@G

@pn

@F

@xn

�pn

@F

@u

 !" #
:

(1)

The Lagrange bracket satisfies

[F ; G] ��[G ; F] (2)

[[F ; G]; H] �[[G ; H]; F] �[[H ; F] ; G]

�
@F

@u
[G ; H] �

@G

@u
[H ; F] �

@H

@u
[F ; G]: (3)

If F and G are functions of x and p only, then the
Lagrange bracket [F, G ] collapses the POISSON

BRACKET (F, G ).

See also LIE BRACKET, POISSON BRACKET
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Lagrange-Bürmann Expansion
LAGRANGE INVERSION THEOREM

Lagrange-Bürmann Theorem
LAGRANGE INVERSION THEOREM

Lagrange Expansion
Let y �f (x) and y0 �f (x0) where f ?(x0) "0; then

x �x0 �
X�
k�1

(y � y0)k

k!

dk �1

dxk �1

x � x0

f (x) � y0

" #k
8<
:

9=
;

x�x0

g(x) �g(x0) �
X�
k �1

(y � y0)k

k!

� dk�1

dxk �1
g ?(x)

x � x0

f (x) � y0

 !k
2
4

3
5

8<
:

9=
;

x�x0

:

Expansions of this form were first considered by
Lagrange (1770; Lagrange 1868, pp. 680�/93).

See also BÜ RMANN’S THEOREM, MACLAURIN SERIES,
TAYLOR SERIES, TEIXEIRA’S THEOREM
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Lagrange Interpolating Polynomial

The Lagrange interpolating polynomial is the POLY-

NOMIAL of degree n�1 which passes through the n
points y1�f (x1); y2�f (x2); ..., yn�f (xn): It is given by

P(x)�
Xn

j�1

Pj(x); (1)

where

Pj(x)�
Yn

k�1

k"j

x � xk

xj � xk

yj: (2)

Written explicitly,

P(x)�
(x � x2)(x � x3) � � � (x � xn)

(x1 � x2)(x1 � x3) � � � (x1 � xn)
y1

�
(x � x1)(x � x3) � � � (x � xn)

(x2 � x1)(x2 � x3) � � � (x2 � xn)
y2�� � �

�
(x � x1)(x � x2) � � � (x � xn�1)

(xn � x1)(xn � x2) � � � (xn � xn�1)
yn: (3)

The formula was first published by Waring (1779),
rediscovered by Euler in 1783, and published by
Lagrange in 1795 (Jeffreys and Jeffreys 1988).
For n � 3 points,

P(x)�
(x � x2)(x � x3)

(x1 � x2)(x1 � x3)
y1�

(x � x1)(x � x3)

(x2 � x1)(x2 � x3)
y2

�
(x � x1)(x � x2)

(x3 � x1)(x3 � x2)
y3 (4)



P ?(x) �
2x � x2 � x3

(x1 � x2)(x1 � x3)
y1 �

2x � x1 � x3

(x2 � x1)(x2 � x3)
y2

�
2x � x1 � x2

(x3 � x1)(x3 � x2)
y3 (5)

Note that the function P(x) passes through the points
(xi ; yi); as can be seen for the case n �3,

P(x1) �
(x1 � x2)(x1 � x3)

(x1 � x2)(x1 � x3)
y1 �

(x1 � x1)(x1 � x3)

(x2 � x1)(x2 � x3)
y2

�
(x1 � x1)(x1 � x2)

(x3 � x1)(x3 � x2)
y3 �y1 (6)

P(x2) �
(x2 � x2)(x2 � x3)

(x1 � x2)(x1 � x3)
y1 �

(x2 � x1)(x2 � x3)

(x2 � x1)(x2 � x3)
y2

�
(x2 � x1)(x2 � x2)

(x3 � x1)(x3 � x2)
y3 �y2 (7)

P(x3) �
(x3 � x2)(x3 � x3)

(x1 � x2)(x1 � x3)
y1 �

(x3 � x1)(x3 � x3)

(x2 � x1)(x2 � x3)
y2

�
(x3 � x1)(x3 � x2)

(x3 � x1)(x3 � x2)
y3 �y3 : (8)

Generalizing to arbitrary n ,

P(xj) �
Xn

k �1

Pk(xj) �
Xn

k �1

djkyk �yj : (9)

The Lagrange interpolating polynomials can also be
written using what Szego (1975) called Lagrange’s
fundamental interpolating polynomials. Let

p(x) �
Yn

k �1

(x �xk) ; (10)

p(xj) �
Yn

k �1

(xj �xk) ; (11)

p?(xj) �
dp

dx

" #
x �xj

�
Yn

k�1

k "j

(xj �xk) (12)

so that p(x) is an nth degree POLYNOMIAL with zeros
at x1 ; ..., xn : Then define the fundamental polynomials
by

pn(x) �
p(x)

p?(xn)(x � xn) 
; (13)

which satisfy

pn(xm) � d nm ; (14)

where dnm is the KRONECKER DELTA. Now let y1 �
P(x1); ..., yn �P(xn) ; then the expansion

P(x) �
Xn

k �1

pk(x)yk �
Xn

k �1

p(x)

(x � xk) p?(xk)
yk (15)

gives the unique Lagrange interpolating polynomial
assuming the values yk at xk : More generally, let da(x)
be an arbitrary distribution on the interval [a, b ],
fpn(x) g the associated ORTHOGONAL POLYNOMIALS,
and l1(x) ; ..., ln(x) the fundamental POLYNOMIALS

corresponding to the set of zeros of a polynomial
Pn(x): Then

g
b

a

ln(x)lm(x) da(x)�lmdnm (16)

for n; m�1; 2, ..., n , where ln are CHRISTOFFEL

NUMBERS.

Lagrange interpolating polynomials give no error
estimate. A more conceptually straightforward
method for calculating them is NEVILLE’S ALGORITHM.

See also AITKEN INTERPOLATION, HERMITE’S INTER-

POLATING POLYNOMIAL, LEBESGUE CONSTANTS (LA-

GRANGE INTERPOLATION), NEVILLE’S ALGORITHM,
NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FOR-

MULA
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Lagrange Interpolation
LAGRANGE INTERPOLATING POLYNOMIAL

Lagrange Inversion Theorem
Let z be defined as a function of w in terms of a
parameter a by

z�w�af(z):



Then any function of z can be expressed as a POWER

SERIES in a which converges for sufficiently small a
and has the form

F(z) �F(w) �
a

1
f(w)F ?(w) �

a2

1 � 2

@

@w 
f[ f(w)]2F ?(w) g

�. . .�
an�1

(n � 1)!

@n

@wn 
f[ f(w)]n�1F ?(w) g�. . . :

See also BÜ RMANN’S THEOREM, SCHUR-JABOTINSKY

THEOREM
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Lagrange Multiplier
Used to find the EXTREMUM of f (x1 ; x2 ; . . .  ; xn) sub-
ject to the constraint g(x1 ; x2 ; . . . ; xn) �C; where f
and g are functions with continuous first PARTIAL

DERIVATIVES on the OPEN SET containing the curve
g(x1 ; x2 ; . . . ; xn) �0 ; and 9g "0 at any point on the
curve (where 9 is the GRADIENT). For an EXTREMUM to
exist,

df �
@f

@x1

dx1 �
@f

@x2

dx2 �. . .�
@f

@xn

dxn �0: (1)

But we also have

dg �
@g

@x1

dx1 �
@g

@x2

dx2 �. . .�
@g

@xn

dxn �0: (2)

Now multiply (2) by the as yet undetermined para-
meter l and add to (1),

@f

@x1

� l
@q

@x1

 !
dx1 �

@f

@x2

� l
@q

@x2

 !
dx2

�. . .�
@f

@xn

� l
@q

@xn

 !
dxn �0: (3)

Note that the differentials are all independent, so we
can set any combination equal to 0, and the remain-
der must still give zero. This requires that

@f

@xk

� l
@g

@xk

�0 (4)

for all k �1, ..., n . The constant l is called the
Lagrange multiplier. For multiple constraints, g1 �
0; g2 �0; ...,

9f � l1 9g1 � l2 9g2 �. . . : (5)

See also KUHN-TUCKER THEOREM
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Lagrange Number (Diophantine Equation)
Given a FERMAT DIFFERENCE EQUATION (a quadratic
DIOPHANTINE EQUATION)

x2 �r2y2 �4

with r a QUADRATIC SURD, assign to each solution x ½y
the Lagrange number

z �1
2(x �yr) :

The product and quotient of two Lagrange numbers
are also Lagrange numbers. Furthermore, every
Lagrange number is a POWER of the smallest La-
grange number with an integral exponent.

See also PELL EQUATION
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Lagrange Number (Rational
Approximation)
HURWITZ’S IRRATIONAL NUMBER THEOREM gives the
best rational approximation possible for an arbitrary
irrational number�b as

f

The
ffiffiffi
8

p
are called Lagrange numbers and get steadily

larger for each "bad" set of irrational numbers which
is excluded.

n Exclude /

ffiffiffi
8

p
/



1 none /

ffiffiffi
2

p
/

2 /

ffiffiffiffiffiffiffiffi
221

p

5
/ /

ffiffiffiffiffiffiffiffiffiffiffi
9 �

4

3

s
;/

3 /m/ /f (x) �f (x0) �(x �x0)f ?(x0)

�
(x � x0)2

2!
f ƒ(x0) �. . .

/

Lagrange numbers are OF THE FORM

�
(x � x0)n

n!
f (n)(x0) �Rn ;

where m is a MARKOV NUMBER. The Lagrange
numbers form a SPECTRUM called the LAGRANGE

SPECTRUM.

See also HURWITZ’S IRRATIONAL NUMBER THEOREM,
IRRATIONALITY MEASURE, LIOUVILLE’S APPROXIMA-

TION THEOREM, MARKOV NUMBER, ROTH’S THEOREM,
SPECTRUM SEQUENCE, THUE-SIEGEL-ROTH THEOREM
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Lagrange Polynomial
LAGRANGE INTERPOLATING POLYNOMIAL

Lagrange Remainder
Given a TAYLOR SERIES

f (x) �f (x0) �(x �x0)f ?(x0) �
(x � x0)2

2!
f ƒ(x0) �. . .

�
(x � x0)n

n!
f (n)(x0) �Rn ; (1)

the error Rn after n terms is given by

Rn �g
x

x0

f (n�1)(t)
(x � t)n

n!
dt: (2)

Using the MEAN-VALUE THEOREM, this can be bounded
by

Rn �
f (n�1)(x�)

(n � 1)!
(x �x0)n�1 (3)

for some x� � (x0 ; x) (Abramowitz and Stegun 1972,
p. 880).

Note that the Lagrange remainder Rn is also some-
times taken to refer to the remainder when terms up
to the (n �1)/st power are taken in the TAYLOR SERIES,

and that a notation in which h 0 x �x0 ; x� 0 a � uh;
and x �x� 0 1 � u is sometimes used (Blumenthal
1926; Whittaker and Watson 1990, pp. 95 �/6).

See also CAUCHY REMAINDER, SCHLÖ MILCH REMAIN-

DER, TAYLOR SERIES
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Lagrange Resolvent
A quantity involving primitive cube ROOTS OF UNITY

which can be used to solve the CUBIC EQUATION.
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Lagrange’s Continued Fraction Theorem
The REAL ROOTS of quadratic expressions with inte-
gral COEFFICIENTS have periodic CONTINUED FRAC-

TIONS, as first proved by Lagrange.

See also CONTINUED FRACTION

Lagrange’s Equation
The PARTIAL DIFFERENTIAL EQUATION

(1 �f 2
y )fxx �2fxfyfxy �(1 �f 2

x )fyy �0;

whose solutions are called MINIMAL SURFACES. This
corresponds to the MEAN CURVATURE H equalling 0
over the surface.

D’ALEMBERT’S EQUATION

y �xf (y?) �g(y?)

is sometimes also known as Lagrange’s equation
(Zwillinger 1997, pp. 120 and 265�/68).

See also D’ALEMBERT’S EQUATION, MEAN CURVATURE,
MINIMAL SURFACE
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Lagrange’s Four-Square Theorem
A theorem also known as BACHET’S CONJECTURE

which was stated but not proven by Diophantus. It
states that every POSITIVE INTEGER can be written as
the SUM of at most four SQUARES. Although the
theorem was proved by Fermat using infinite descent,
the proof was suppressed. Euler was unable to prove
the theorem. The first published proof was given by
Lagrange in 1770 and made use of the EULER FOUR-

SQUARE IDENTITY.

Lagrange proved that g(2) �4; where 4 may be
reduced to 3 except for numbers OF THE FORM 4n(8k �
7); as proved by Legendre in 1798 (Nagell 1951,
p. 194; Wells 1986, pp. 48 and 56; Hardy 1999,
p. 12; Savin 2000).

See also DIOPHANTINE EQUATION–2ND POWERS, EU-

LER FOUR-SQUARE IDENTITY, FERMAT’S POLYGONAL

NUMBER THEOREM, FIFTEEN THEOREM, LEBESGUE

IDENTITY, SUM OF SQUARES FUNCTION, VINOGRADOV’S

THEOREM, WARING’S PROBLEM
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Lagrange’s Group Theorem
This entry contributed by NICOLAS BRAY

Also known as Lagrange’s lemma. The most general
form of Lagrange’s theorem states that for a GROUP

G , a SUBGROUP H of G , and a subgroup K of H , (G :
K)�(G : H)(H : K); where the products are taken as
cardinalities (thus the theorem holds even for INFI-

NITE GROUPS) and (GH) denotes the INDEX. A fre-

quently stated corollary (which follows from taking
K�feg; where e is the IDENTITY ELEMENT) is that the
order of G is equal to the product of the order of H
and the INDEX of H .

The corollary is easily proven in the case of G being a
FINITE GROUP, as the LEFT COSETS of H form a
partition of G , and so the number of blocks in the
partition (which is (G : H)) multiplied by the number
of elements in each partition (which is just the order
of H ).

For a FINITE GROUP G , this corollary gives that the
order of H must divide the order of G . Then, because
the order of an element x of G is the order of the cyclic
subgroup generated by x , we must have that the
order of any element of G divides the order of G .

The converse of Lagrange’s theorem is not, in general,
true (Gallian 1993, 1994).
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Lagrange’s Identity
The algebraic identity

Xn

k�1

akbk

 !2

�
Xn

k�1

a2
k

 ! Xn

k�1

b2
k

 !
�

X
15kBj5n

(akbj�ajbk)2 (1)

(Mitrinovic 1970, p. 41). In determinant form,

(a1�� � ��an�1) � (b1�� � ��bn�1)

�
a1 � b1 � � � a1 � bn�1

n ::: n
an�1 � b1 � � � an�1 � bn�1

������
������; (2)

where Aj j is the DETERMINANT of A: Lagrange’s
identity is a special case of the BINET-CAUCHY

IDENTITY, and CAUCHY’S INEQUALITY in n -D follows
from it. It can be coded in Mathematica as follow.

BBDiscreteMath‘Combinatorica‘;

CauchyLagrangeId[n_] :� Module[

{aa � Array[a, n], bb � Array[b, n]},

Plus @@ (aa^2)Plus @@ (bb^2) ��
Plus @@ ((a[#1]b[#2] - a[#2]b[#1])^2 & @@@

KSubsets[Range[n], 2]) �



(aa.bb)^2

]

Plugging in gives the n �2 and n �3 identities

(a2
1 �a2

2)(b2
1 �b2

2) �(a1b1 �a2b2)2 �(a1b2 �a2b1)2 (3)

(a2
1 �a2

2 �a2
3)(b2

1 �b2
2 �b2

3) �(a1b1 �a2b2 �a3b3)2

�[(a1b2 �a2b1)2 �(a1b3 �a3b1)2 �(a2b3 �a3b2)2] : (4)

See also BINET-CAUCHY IDENTITY, CAUCHY’S INEQUAL-

ITY, VECTOR TRIPLE PRODUCT, VECTOR QUADRUPLE

PRODUCT
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Lagrange’s Inequality
CAUCHY’S INEQUALITY

Lagrange’s Lemma
LAGRANGE’S FOUR-SQUARE THEOREM

Lagrange Spectrum
A SPECTRUM formed by the LAGRANGE NUMBERS. The
only ones less than three are the LAGRANGE NUM-

BERS, but the last gaps end at FREIMAN’S CONSTANT.
REAL NUMBERS larger than FREIMAN’S CONSTANT are
in the MARKOV SPECTRUM.

See also FREIMAN’S CONSTANT, LAGRANGE NUMBER

(RATIONAL APPROXIMATION), MARKOV SPECTRUM,
SPECTRUM SEQUENCE
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Lagrangian Coefficient
COEFFICIENTS which appear in LAGRANGE INTERPO-

LATING POLYNOMIALS where the points are equally
spaced along the ABSCISSA.

Lagrangian Derivative
CONVECTIVE DERIVATIVE

Laguerre Differential Equation

xyƒ�(1�x)y?�ly�0: (1)

The Laguerre differential equation is a special case of
the more general "associated Laguerre differential

equation"

xyƒ�(n�1�x)y?�ly�0 (2)

(Iyanaga and Kawada 1980, p. 1481; Zwillinger 1997,
p. 124) with n�0: The general solution is

t�C1U(�l; 1�n; x)�C2Ln
l(x); (3)

where U(a; b; x) is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE FIRST KIND and Ln
l(x) is an asso-

ciated LAGUERRE POLYNOMIAL.

Note that in the special case l�0; the associated
Laguerre differential equation is OF THE FORM

yƒ(x)�P(x)y?(x)�0; (4)

so the solution can be found using an INTEGRATING

FACTOR

m�exp g P(x) dx

� �
�exp g

n� 1 � x

x
dx

 !

�exp[(n�1) ln x�x]�xn�1e�x; (5)

as

y�C1 g
dx

m
�C2�C1 g

ex

xn�1
dx�C2 (6)

�C2�C1x�nE1�n(�x); (7)

where En(x) is the EN -FUNCTION.

The associated Laguerre differential equation has a
REGULAR SINGULAR POINT at 0 and an IRREGULAR

SINGULARITY at �: It can be solved using a series
expansion,

x
X�
n�2

n(n�1)anxn�2�(n�1)
X�
n�1

nanxn�1

�x
X�
n�1

nanxn�1�l
X�
n�0

anxn�0 (8)

X�
n�2

n(n�1)anxn�1�(n�1)
X�
n�1

nanxn�1

�
X�
n�1

nanxn�l
X�
n�0

anxn�0 (9)

X�
n�1

(n�1)nan�1xn�(n�1)
X�
n�0

(n�1)an�1xn

�
X�
n�1

nanxn�l
X�
n�0

anxn�0 (10)



[(n �1)a1 � la0]

�
X�
n�1

f[(n �1)n �( n �1)(n �1)]an�1 �nan � lan gxn

�0 (11)

[(n �1)a1 � la0]

�
X�
n �1

[(n �1)(n � n �1)an�1 �(l �n)an]xn �0: (12)

This requires

a1 ��
l

n � 1
a0 (13)

an�1 �
n � l

(n � 1)(n � n � 1)
an (14)

for n �1. Therefore,

an�1 �
n � l

(n � 1)(n � n � 1)
an (15)

for n �1, 2, ..., so

y �a0 1 �
l

n � 1
x �

l(1 � l)

2(n � 1)( n � 2)
x2

"

�
l(1 � l)(2 � l)

2 � 3(n � 1)(n � 2)(n � 3) 
�� � �

�
: (16)

If l is a POSITIVE INTEGER, then the series terminates
and the solution is a POLYNOMIAL, known as an
associated LAGUERRE POLYNOMIAL (or, if n�0; simply
a LAGUERRE POLYNOMIAL).

See also LAGUERRE POLYNOMIAL
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Laguerre-Gauss Quadrature
Also called GAUSS-LAGUERRE QUADRATURE or LA-

GUERRE QUADRATURE. A GAUSSIAN QUADRATURE

over the interval [0; �) with WEIGHTING FUNCTION

W(x)�e�x (Abramowitz and Stegun 1972, p. 890).
The ABSCISSAS for quadrature order n are given by
the ROOTS of the LAGUERRE POLYNOMIALS Ln(x): The
weights are

wi��
An�1gn

AnL?n(xi)Ln�1(xi)
�

An

An�1

gn�1

Ln�1(xi)L?n(xi)
; (1)

where An is the COEFFICIENT of xn in Ln(x): For
LAGUERRE POLYNOMIALS,

An�
(�1)n

n!
; (2)

where n! is a FACTORIAL, so

An�1

An

��
1

n � 1
(3)

An

An�1

��
1

n
: (4)

Additionally,

gn�g
�

0

W(x)[Ln(x)]2 dx�1; (5)

so

wi�
1

(n � 1)L?n(xi)Ln�1(xi)
��

1

nLn�1(xi)L?n(xi)
: (6)

Using the RECURRENCE RELATION

xL?n(x)�nLn(x)�nLn�1(x)

�(x�n�1)Ln(x)�(n�1)Ln�1(x) (7)

which, since xi is a root of Ln(x); gives

nLn(x)�(x�n�1)Ln(x)�0; (8)

so (7) becomes

xiL?n(xi)��nLn�1(xi)�(n�1)Ln�1(xi) (9)

gives

wi�
1

xi[L?n(xi)]
2�

xi

(n � 1)2[Ln�1(xi)]
2 : (10)

The error term is

E�
(n!)2

(2n)!
f (2n)(j) (11)

(Abramowitz and Stegun 1972, p. 890).

Beyer (1987) gives a table of ABSCISSAS and weights
up to n�6.

n /xi/ /wi/

2 0.585786 0.853553

3.41421 0.146447

3 0.415775 0.711093

2.29428 0.278518

6.28995 0.0103893

4 0.322548 0.603154

1.74576 0.357419

4.53662 0.0388879



9.39507 0.000539295

5 0.26356 0.521756

1.4134 0.398667

3.59643 0.0759424

7.08581 0.00361176

12.6408 0.00002337

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/ /wi/

2 /2 �
ffiffiffi
2

p
/ /

1
4 2 �

ffiffiffi
2

p� �
/

/2 �
ffiffiffi
2

p
/ /

1
4 2 �

ffiffiffi
2

p� �
/

For the associated Laguerre polynomial Lb
n(x) with

WEIGHTING FUNCTION w(x) �xbe �x ;

An �
( �1)n

n! 
(12)

is the coefficient of xn in Lb
n(x) and

gn �g
�

0

xbe�x[Lb
n(x)]2 dx �

G(n � b � 1)

n!
; (13)

where G(z) is the GAMMA FUNCTION. The weights are
then

wi �
G(n � b)xi

n!(n � b)[Lb
n �1(xi)]

2 �
G(n � b � 1)xi

n!(n � 1)2[L bn�1(xi)]
2 ; (14)

and the error term is

En�
n!G(n � b� 1)

(2n)!
f (2n)(j): (15)

See also GAUSSIAN QUADRATURE
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LaguerreL
LAGUERRE POLYNOMIAL

Laguerre Polynomial

Solutions Ln(x) to the LAGUERRE DIFFERENTIAL EQUA-

TION with n�0 are called Laguerre polynomials,
illustrated above for x � [0; 1] and n�1, 2, ..., 5.
The Rodrigues formula for the Laguerre polynomials
is

Ln(x)�
ex

n!

dn

dxn
(xne�x) (1)

and the GENERATING FUNCTION for Laguerre polyno-
mials is

g(x; z)�

exp �
zz

1 � z

 !

1 � z
�1�(�x�1)z

� 1
2 x2�2x�1
� �

z2� �1
6 x3�3

2 x2�3x�1
� �

z3�. . . :

(2)

A CONTOUR INTEGRAL is given by

Ln(x)�
1

2pi g
e�xz=(1�z)

(1 � z)zn�1
dz: (3)

The Laguerre polynomials satisfy the RECURRENCE

RELATIONS

(n�1)Ln�1(x)�(2n�1�x)Ln(x)�nLn�1(x) (4)

(Petkovsek et al. 1996) and

xL?n(x)�nLn(x)�nLn�1(x): (5)

The first few Laguerre polynomials are

L0(x)�1

L1(x)��x�1

L2(x)�1
2(x

2�4x�2)

L3(x)�1
6(�x3�9x2�18x�6):

Solutions to the associated LAGUERRE DIFFERENTIAL

EQUATION with n"0 are called associated Laguerre
polynomials Lk

n(x) or, in older literature, Sonine



polynomials (Sonine 1880, p. 41; Whittaker and
Watson 1990, p. 352). In terms of the unassociated
Laguerre polynomials,

Ln(x)�L0
n(x): (6)

The Rodrigues formula for the associated Laguerre
polynomials is

Lk
n(x)�

exx�k

n!

dn

dxn
(e�xxn�k) (7)

�(�1)k dk

dxk
[Ln�k(x)] (8)

�
(�1)nx�(k�1)=2

n!
ex=2Wk=2�n�1=2; k=2(x) (9)

�
Xn

m�0

(�1)m (n � k)!

(n � m)!(k � m)!m!
xm; (10)

where Wk; m(x) is a WHITTAKER FUNCTION. The asso-
ciated Laguerre polynomials are a SHEFFER SE-

QUENCE with

g(t)�(1�t)�k�1 (11)

f (t)�
t

t � 1
; (12)

giving the GENERATING FUNCTION

g(x; z)�

exp �
zz

1 � z

 !

(1 � z)k�1

�1�(k�1�x)z�1
2[x

2�2(k�2)x�(k�1)(k�2)]z2

�. . . :

(13)

where the usual factor of n! in the denominator has
been suppressed (Roman 1984, p. 31). Many interest-
ing properties of the associated Laguerre polynomials
follow from the fact that f�1(t)�f (t) (Roman 1984,
p. 31).

The associated Laguerre polynomials are given ex-
plicitly by the formula

L(k)
n (x)�

1

n!

Xn

i�0

n!

i!

k�n
n�i;

� �
(�x)i; (14)

where n
k

� �
is a BINOMIAL COEFFICIENT, and have

Sheffer identity

1

n!
L(k)

n (x�y)�
Xn

i�0

n
i

� �
1

i!
L(k)

i (x)
1

(n � i)!
L(�1)

n�i (y) (15)

(Roman 1984, p. 31). The associated Laguerre poly-
nomial can also be written as

L(k)
n (x)�

(k � 1)n

n!
1 F1(�n; k�1; x); (16)

where (a)n is the POCHHAMMER SYMBOL and

1F1(a; b; x) is a CONFLUENT HYPERGEOMETRIC FUNC-

TION (Koekoek and Swarttouw 1998).

The associated Laguerre polynomials are orthogonal
over [0; �) with respect to the WEIGHTING FUNCTION

xne�x:

g
�

0

e�xxkLk
n(x)Lk

m(x) dx�
(n � k)!

n!
dmn; (17)

where dmn is the KRONECKER DELTA. They also satisfy

g
�

0

e�xxk�1[Lk
n(x)]2 dx�

(n � k)!

n!
(2n�k�1): (18)

RECURRENCE RELATIONS include

Xn

n�0

L(k)
n (x)�L(k�1)

n (x) (19)

and

L(k)
n (x)�L(k�1)

n (x)�L(k�1)
n�1 (x): (20)

The DERIVATIVE is given by

d

dx
L(k)

n (x)��L(k�1)
n�1 (x)

�x�1 nL(k)
n (x)�(n�k)L(k)

n�1(x):
 

(21)

An interesting identity is

X�
n�0

L(k)
n (x)

G(n � k � 1)
wn�ew(xw)�k=2Jk 2

ffiffiffiffiffiffiffi
xw

p� �
; (22)

where G(z) is the GAMMA FUNCTION and Jk(z) is the
BESSEL FUNCTION OF THE FIRST KIND (Szego 1975,
p. 102). An integral representation is

e�xxk=2L(k)
n (x)�

1

n! g
�

0

e�ttn�k=2Jk 2
ffiffiffiffiffi
tx

p� �
dt (23)

for n�0, 1, ...and k ��1. The DISCRIMINANT is

D(k)
n �

Yn

n�1

nn�2n�2(n�k)n�1 (24)

(Szego 1975, p. 143). The KERNEL POLYNOMIAL is



K (k)
n (x; y) �

n � 1

G(k � 1)

� n �k
n

� ��1

� L(k)
n (x)L(k)

n �1(y) � L(k)
n�1(x)Ln(k)(y)

x � y 
; (25)

where n
k

� �
is a BINOMIAL COEFFICIENT (Szego 1975,

p. 101).

The first few associated Laguerre polynomials are

Lk
0(x) �1

Lk
1(x) ��x �k �1

Lk
2(x) �1

2[x
2 �2(k �2)x �(k �1)(k �2)]

Lk
3(x) �1

6[�x3 �3(k �3)x2 �3(k �2)(k �3)x

�(k �1)(k �2)(k �3)] :

See also LAGUERRE DIFFERENTIAL EQUATION, SONINE

POLYNOMIAL
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Laguerre Quadrature
A GAUSSIAN QUADRATURE-like FORMULA for numer-
ical estimation of integrals. It fits exactly all POLY-

NOMIALS of degree 2m �1 :/
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Laguerre’s Method
A ROOT-finding algorithm which converges to a
COMPLEX ROOT from any starting position.

Pn(x) �(x �x1)(x �x2) � � � (x �xn) (1)

ln Pn(x)j j�ln x �x1j j�ln x �x2j j�. . .�ln x �xnj j (2)

P?n(x)�(x�x2) � � � (x�xn)�(x�x1) � � � (x�xn)�. . .

�Pn(x)
1

x � x1

�. . .�
1

x � xn

 !
(3)

d ln Pn(x)j j
dx

�
1

x � x1

�
1

x � x2

�. . .�
1

x � xn

�
P?n(x)

Pn(x)
�G(x) (4)

�
d2 ln Pn(x)j j

dx2
�

1

(x � x1)2�
1

(x � x2)2�. . .�
1

(x � xn)2

�
P?n(x)

Pn(x)

" #2

�
Pƒn(x)

Pn(x)
�H(x): (5)

Now let a�x�x1 and b�x�x1: Then

G�
1

a
�

n � 1

b
(6)

H�
1

a2
�

n � 1

b2
; (7)

so

a�
n

max G 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n � 1)(nH � G2)

p ! : (8)

Setting n�2 gives HALLEY’S IRRATIONAL FORMULA.

See also HALLEY’S IRRATIONAL FORMULA, HALLEY’S

METHOD, NEWTON’S METHOD, ROOT
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Laguerre’s Repeated Fraction
The CONTINUED FRACTION

(x � 1)n � (x � 1)n

(x � 1)n � (x � 1)n �
n

x�

n2 � 1

3x�

n2 � 22

5x � . . .
:
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Lah Number
The numbers

Bn; k(1!; 2! ; 3! ; . . .)�
n �1
k �1

� �
n!

k! 
;

where Bn; k is a BELL POLYNOMIAL.

See also BELL POLYNOMIAL, IDEMPOTENT NUMBER
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Laisant’s Recurrence Formula
The RECURRENCE RELATION

(n �1)An�1 �(n2 �1)An �(n �1)An�1 �4(�1)n

with A(1)�A(2)�1 which solves the MARRIED COU-

PLES PROBLEM.

See also MARRIED COUPLES PROBLEM

Lakshmi Star
STAR OF LAKSHMI

L-Algebraic Number
An L -algebraic number is a number u � (0; 1) which
satisfies

Xn

k�0

ckL(uk)�0; (1)

where L(x) is the ROGERS L -FUNCTION and ck are
integers not all equal to 0 (Gordon and Mcintosh
1997). Loxton (1991, p. 289) gives a slew of similar
identities having rational coefficients

Xn

k�0

ek

k
L(uk)�0 (2)

instead of integers.

The only known L -algebraic numbers of order 1 are

L(0)�0 (3)

L(1�r)�2
5 (4)

L 1
2

� �
�1

2 (5)

L(r)�3
5 (6)

L(1)�1 (7)

(Loxton 1991, pp. 287 and 289; Bytsko 1999), where
r�

ffiffiffi
5

p
�1

� �
=2:/

The only known rational L -algebraic numbers are/1=2/

and /1=3/:

L 1
64

� �
�2L 1

8

� �
�6L 1

4

� �
�2L(1)�0 (8)

L 1
9

� �
�6L 1

3

� �
�2L(1)�0 (9)

(Lewin 1982, pp. 317�/18; Gordon and McIntosh
1997).

There are a number of known quadratic L -algebraic
numbers. Watson (1937) found

L(a)�L(a2)� 1
42 p

2 (10)

2L(b)�L(b2)� 5
21 p

2 (11)

2L(g)�L(g2)� 4
21 p

2; (12)

where a;�b; and�1=g are the roots of

x3�2x2�1�0; (13)

so that

a�1
2 sec 2

7 p
� �

(14)

b�1
2 sec 1

7 p
� �

(15)

g�2 cos 3
7 p
� �

(16)

(Loxton 1991, pp. 287�/88).



Higher order algebraic identities include

5L(d3) �5L( d) �L(1) �0; (17)

L( d12) �2L( d6) �6L(d4) �4L(d3) �3L( d2) �4L( d)

�4L(1) �0 (18)

3L( k3) �9L( k2) �9K( k) �7L(1) �0 (19)

3L( l6) �6L(l3) �27L( l2) �18L( l)2L(1) �0 (20)

3L( m6) �6L( m3) �27L( m2) �18L( m) �2L(1) �0 (21)

2L(a3) �2L(a2) �11L(a) �3L(1) �0 (22)

2L(b6) �4L(b3) �15L(b2) �22L(b) �6L(1) �0 (23)

2L(c6) �4L(c3) �15L(c2) �22L(c) �4L(1) �0;

where

d �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �2

ffiffiffi
5

pq
�1

� �
(24)

k �1
2 sec 1

9 p
� �

(25)

l �1
2 sec 2

9 p
� �

(26)

m �2 cos 4
9 p
� �

(27)

a �2
ffiffiffi
3

p
cos

5p

18

 !
�2 (28)

b �2
ffiffiffi
3

p
cos

11 p

18

 !
�2 (29)

c �2
ffiffiffi
3

p
cos

7p

18

 !
�1 (30)

(Gordon and McIntosh 1997).

See also DILOGARITHM, ROGERS L -FUNCTION
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Lal’s Constant
Let P(N) denote the number of PRIMES OF THE FORM

n2 �1 for 1 5n 5N ; then

P(N) 
0:68641 li(N) ; (1)

where li(N) is the LOGARITHMIC INTEGRAL (Shanks
1960, pp. 321 �/32). Let Q(N) denote the number of
PRIMES OF THE FORM n4 �1 for 1 5n 5N ; then

Q(N) 
1
4 s1 li(N) �0:66974 li(N) (2)

(Shanks 1961, 1962). Let R(N) denote the number of
pairs of PRIMES (n �1)2 �1 and (n �1)2 �1 for n 5
N �1 ; then

R(N) 
0:487621 li2(N); (3)

where

li2(N) �g
N

2

dn

(ln n)2 (4)

(Shanks 1960, pp. 201 �/03). Finally, let S(N) denote
the number of pairs of PRIMES (n �1)4 �1 and (n �
1)4 �1 for n 5N �1 ; then

S(N) 
 l li2(N) (5)

(Lal 1967), where l is called Lal’s constant. Shanks
(1967) showed that l :0 :79220:/
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Laman’s Theorem
Let a GRAPH G have exactly 2n�3 EDGES, where n is
the number of VERTICES in G . Then G is "generically"
RIGID in R2

IFF e?52n?�3 for every SUBGRAPH of G
having n? VERTICES and e? EDGES.

See also RIGID GRAPH
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Lambda Calculus
Developed by Alonzo Church and Stephen Kleene to
address the COMPUTABLE NUMBER problem. In the
lambda calculus, l is defined as the ABSTRACTION

OPERATOR. Three theorems of lambda calculus are l/-
conversion, a/-conversion, and h/-conversion.



See also ABSTRACTION OPERATOR, COMPUTABLE NUM-

BER
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Lambda Elliptic Function
ELLIPTIC LAMBDA FUNCTION

Lambda Function

The lambda function defined by Jahnke and Emden
(1945) is

Ln(z) �G(n �1)
Jn(z)
1
2 z
� �n (1)

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND

and G(x) is the GAMMA FUNCTION. L0(z) �J0(z) ; and
taking n �1 gives the special case

L1(z) �
J1(z)

1
2 z

�2 jinc(z) ; (2)

where jinc(z) is the JINC FUNCTION.
A two-variable lambda function is defined as

l(x ; y) �g
y

0

G(t � 1) dt

xt
; (3)

where G(z) is the GAMMA FUNCTION (McLachlan et al.
1950, p. 9; Prudnikov et al. 1990, p. 798; Gradshteyn
and Ryzhik 2000, p. 1109).

The MANGOLDT FUNCTION is sometimes called the
lambda function.

See also AIRY FUNCTIONS, DIRICHLET LAMBDA FUNC-

TION, ELLIPTIC LAMBDA FUNCTION, JINC FUNCTION,
MANGOLDT FUNCTION, MU FUNCTION, NU FUNCTION
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Lambda Group
MODULAR GROUP LAMBDA

Lambda Modular Function
ELLIPTIC LAMBDA FUNCTION

Lambert Azimuthal Equal-Area Projection

A special case of a CYLINDRICAL EQUAL-AREA PROJEC-

TION with standard parallel of fs �0( :

x �k? cos f sin( l � l0) (1)

y �k?[cos f1 sin f �sin f1 cos f cos( l � l0)]; (2)

where

k ?�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 � sin f1 sin f � cos f1 cos f cos(l � l0)

s
: (3)

The inverse FORMULAS are

f�sin�1 cos c sin f1�
y sin c cos f1

r

 !
(4)

l�l0�tan�1 x sin c

r cos f1 cos c � y sin f1 sin c

 !
; (5)

where

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
(6)

c�2 sin�1 1
2 r
� �

: (7)

See also AZIMUTHAL PROJECTION, BALTHASART PRO-

JECTION, BEHRMANN CYLINDRICAL EQUAL-AREA PRO-

JECTION, CYLINDRICAL EQUAL-AREA PROJECTION,
EQUAL-AREA PROJECTION, GALL ORTHOGRAPHIC PRO-

JECTION, PETERS PROJECTION, TRISTAN EDWARDS

PROJECTION
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Lambert Conformal Conic Projection

Let l be the longitude, l0 the reference longitude, f
the latitude, f0 the reference latitude, and f1 and f2

the standard parallels. Then the transformation of
SPHERICAL COORDINATES to the plane via the Lambert
conformal conic projection is given by

x � r sin[n( l � l0)] (1)

y � r0 � r cos[n(l � l0)] ; (2)

where

r �F cotn 1
4 p �

1
2 f

� �
(3)

r0 �F cotn 1
4 p �

1
2 f0

� �
(4)

F �
cos f1 tann 1

4 p �
1
2 f1

� �
n 

(5)

n �
ln(cos f1 secf2)

ln tan 1
4 p �

1
2 f2

� �
cot 1

4 p �
1
2 f1

� �h i : (6)

The inverse formulas are

f �2 tan�1 F

r0

 !1 =n
2
4

3
5�1

2 p (7)

l � l0 �
u

n 
; (8)

where

r �sgn(n)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �(r0 �y)2

q
(9)

u �tan�1 x

r0 � y

 !
; (10)

with F , r0 ; and n as defined above.

See also CONFORMAL PROJECTION, CONIC PROJECTION
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Lambert Cylindrical Equal-Area
Projection

A CYLINDRICAL EQUAL-AREA PROJECTION with stan-
dard parallel fs�0�:/

See also CYLINDRICAL EQUAL-AREA PROJECTION

Lambert Series
A series OF THE FORM

F(x)�
X�
n�1

an

xn

1 � xn

(1)

for jxjB1: Then

F(x)�
X�
n�1

an

X�
m�1

xmn�
X�
N�1

bNxN ; (2)

where

bN�
X
n½N

an: (3)

Some beautiful series of this type include

X�
n�1

m(n)xn

1 � xn
�x (4)

X�
n�1

f(n)xn

1 � xn
�

x

(1 � x)2 (5)

X�
n�1

xn

1 � xn
�
X�
n�1

d(n)xn (6)

X�
n�1

nkxn

1 � xn
�
X�
n�1

sk(n)xn (7)

X�
n�1

4(�1)n�1xn

1 � xn
�
X�
n�1

r(n)xn (8)

X�
n�1

l(n)xn

1 � xn
�
X�
n�1

xn2

; (9)

where m(n) is the MÖBIUS FUNCTION, f(n) is the
TOTIENT FUNCTION, d(n)�s0(n) is the number of
divisors of n , sk(n) is the DIVISOR FUNCTION, r(n) is



the number of representations of n in the form n �
A2 �B2 where A and B are rational integers (Hardy
and Wright 1979), and l(n) is the LAMBDA FUNCTION.

See also DIVISOR FUNCTION, LAMBDA FUNCTION,
MÖ BIUS FUNCTION, MÖ BIUS TRANSFORM, TOTIENT

FUNCTION

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Number Theore-

tic Functions." §24.3.1 in Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical
Tables, 9th printing. New York: Dover, pp. 826 �/27, 1972.

Apostol, T. M. Modular Functions and Dirichlet Series in
Number Theory, 2nd ed. New York: Springer-Verlag,
pp. 24 �/5, 1997.

Erdos, P. "On Arithmetical Properties of Lambert Series." J.
Indian Math. Soc. 12, 63�/6, 1948.

Hardy, G. H. and Wright, E. M. An Introduction to the
Theory of Numbers, 5th ed. Oxford, England: Clarendon
Press, pp. 257 �/58, 1979.

Lambert’s Method
A ROOT-finding method also called BAILEY’S METHOD

and HUTTON’S METHOD If g(x) �xd �r ; then

Hg(x) �
(d � 1)xd � (d � 1)r

(d � 1)xd � (d � 1)r
x:
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Lambert’s Transcendental Equation
An equation proposed by Lambert (1758) and studied
by Euler in 1779 (Euler 1921).

xa�xb�(a�b)vxa�b:

When a 0 b; the equation becomes

ln x�vxb;

which has the solution

x�exp �
W(�bv)

b

" #
;

where W(x) is LAMBERT’S W -FUNCTION.

See also LAMBERT’S W -FUNCTION
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Lambert’s W-Function

The inverse of the function

f (W)�WeW ; (1)

also called the omega function. The plots above show
the function along the REAL AXIS (left figure) and its
RIEMANN SURFACE (right figure). The principal value
of the Lambert W -function is implemented in Math-
ematica as ProductLog[z ]. Different branches of the
function are available as ProductLog[k , z ], where k
is any integer and k�0 corresponds to the principal
value.

Lambert’s W -function can be used to analytically
express the value of the POWER TOWER h(x)�x����
xxU ; where xxx

is an abbreviation for x(xx); as

h(x)��
W(�ln x)

ln x
: (2)

/W(1) is called the OMEGA CONSTANT and can be
considered a sort of "GOLDEN RATIO" of exponentials
since

exp[�W(1)]�W(1); (3)

giving

ln
1

W(1)

" #
�W(1): (4)

Lambert’s W -Function has the series expansion

W(x)�
X�
n�1

(�1)n�1nn�2

(n � 1)!
xn�x�x2�3

2 x3�8
3 x4

�125
24 x5�54

5 x6�16807
720 x7�. . . (5)

The LAGRANGE INVERSION THEOREM gives the equiva-
lent series expansion

W0(z)�
X�
n�1

(�n)n�1

n!
zn; (6)

where n! is a FACTORIAL. However, this series oscil-



lates between ever larger POSITIVE and NEGATIVE

values for REAL z H0:4; and so cannot be used for
practical numerical computation. An asymptotic FOR-

MULA which yields reasonably accurate results for z H
3 is

W(z) �Ln z �ln Ln z �
X�
k �0

X�
m�0

ckm(ln Ln z)m�1

� (Ln z) �k �m�1

�L1 �L2 �
L2

L1

�
L2(�2 � L2)

2L2
1

�
L2 6 � 9L2 � 2L2

2ð Þ
6L3

1

�
L2 �12 � 36L2 � 22L2

2 � 3L3
2ð Þ

12L4
1

�
L2 60 � 300L2 � 350L2

2 � 125L3
2 � 12L4

2ð Þ
60L5

1

�O
L2

L1

 !6
2
4

3
5; (7)

where

L1 �Ln z (8)

L2 �ln Ln z (9)

(Corless et al. 1996), correcting a typographical error
in de Bruijn (1961). Another expansion due to Gosper
is the DOUBLE SUM

W(x) �a �
X�
n�0

Xn

k �0

S1(n; k)

ln x
a

� �
� a

h ik �1

(n � k � 1)!

8><
>:

9>=
>;

� 1 �
ln x

a

� �
a

2
4

3
5

n

; (10)

where S1 is a nonnegative STIRLING NUMBER OF THE

FIRST KIND and a is a first approximation which can
be used to select between branches. Lambert’s W -
function is two-valued for �1=e 5x B0 : For W(x) ]�1;
the function is denoted W0(x) or simply W(x) ; and this
is called the principal branch. For W(x) 5�1; the
function is denoted W�1(x): The DERIVATIVE of W is

W ?(x) �
1

[1 � W(x)] exp[W(x)] 
�

W(x)

x[1 � W(x)]
(11)

for x "0: For the principal branch when z �0,

ln W(z) �ln z �W(z) (12)

See also ABEL POLYNOMIAL, DIGIT-SHIFTING CON-

STANTS, LAMBERT’S TRANSCENDENTAL EQUATION,
OMEGA CONSTANT, POWER TOWER
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Lamé Curve
There are two curves commonly known as the Lamé
curve: the ELLIPSE EVOLUTE and the SUPERELLIPSE.

See also ELLIPSE EVOLUTE, SUPERELLIPSE

Lamé Function
ELLIPSOIDAL HARMONIC

Lamé’s Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

(x2�b2)(x2�c2)
d2z

dx2
�x(x2�b2�x2�c2)

dz

dx

�[m(m�1)x2�(b2�c2)p]z�0: (1)

(Byerly 1959, p. 255). The solution is denoted Ep
m(x)

and is known as a LAMÉ FUNCTION or an ELLIPSOIDAL

HARMONIC. Whittaker and Watson (1990, pp. 554�/55)
give the alternative forms

4Dl

d

dl
Dl

dL
dl

" #
�[n(n�1)l�C]L (2)



d2 L
dl2 �

1
2

a2 � l 
�

1
2

b2 � l 
�

1
2

c2

" #
dL
dl

�
[n(n � 1)l � C] L

4Dl

(3)

d2 L
du2 

� n(n �1)�(u) �C �1
3 n(n �1)(a2 �b2 �c2)

h i
L

(4)

d2 L
dz2 

�n(n �1)k2 sn2(z; k) �AL (5)

(Whittaker and Watson 1990, pp. 554 �/55; Ward
1997; Zwillinger 1997, p. 124). Here, � is a WEIER-

STRASS ELLIPTIC FUNCTION, sn(z; k) is a JACOBI

ELLIPTIC FUNCTION, and

L( u) �
Ym
q�1

( u � uq) (6)

Dl �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � l)(b2 � l)(c2 � l)

p
(7)

A �
C � 1

3 n(n � 1)(a2 � b2 � c2) � e3n(n � 1)

e1 � e3

: (8)

Two other equations named after Lamé are given by

y ƒ�1
2

1

x � a1

�
1

x � a2

�
1

x � a3

" #
y?

�1
4

A0 � A1x

(x � a1)(x � a2)(x � a3)

" #
y �0 (9)

and

yƒ�1
2

1

x 
�

1

x � a2

�
1

x � a3

" #
y?

�1
4

a2
2 � a2

3ð Þq � p(p � 1)x � kx2

x(x � a2)(x � a3)

" #
y �0 (10)

(Moon and Spencer 1961, p. 157; Zwillinger 1997,
p. 124).

See also ELLIPSOIDAL WAVE EQUATION, LAMÉ ’S

DIFFERENTIAL EQUATION TYPES, WANGERIN DIFFER-

ENTIAL EQUATION
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Lamé’s Differential Equation Types
Whittaker and Watson (1990, pp. 539 �/40) write
Lamé’s differential equation for ELLIPSOIDAL HARMO-

NICS of the four types as

4 d( u)
d

d u
f ( u)

d l( u)

du

" #
�[2m(2m �1)u �c] l( u) (1)

4d(u)
d

du
f ( u)

d l( u)

d u

" #

�[(2m �1)(2m �2)u �c] l(u) (2)

4d(u)
d

du
f ( u)

d l( u)

d u

" #

�[(2m �2)(2m �3)u �c] l(u) (3)

4 d( u)
d

du
f ( u)

dl(u)

du

" #

�[(2m �3)(2m �4)u �c]l( u) ; (4)

where

d( u) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 � u)(b2 � u)(c2 � u)

p
(5)

l( u) �
Ym
q �1

( u � uq) : (6)

See also LAMÉ ’S DIFFERENTIAL EQUATION
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Lamé’s Theorem
If a is the smallest INTEGER for which there is a
smaller INTEGER b such that a and b generate a
EUCLIDEAN ALGORITHM remainder sequence with n
steps, then a is the FIBONACCI NUMBER/Fn�2/. Further-
more, the number of steps in the EUCLIDEAN ALGO-

RITHM never exceeds 5 times the number of digits in
the smaller number.

See also EUCLIDEAN ALGORITHM
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Lamina

A 2-D planar closed surface L which has a mass M
and a surface density s(x; y) (in units of mass per
areas squared) such that

M �gL

s(x; y) dx dy:

The CENTER OF MASS of a lamina is called its
CENTROID.

See also CENTROID (GEOMETRIC), CROSS SECTION,
SOLID

Laminated Lattice
A LATTICE which is built up of layers of n -D lattices in
(n �1)/-D space. The VECTORS specifying how layers
are stacked are called GLUE VECTORS.

See also GLUE VECTOR, LATTICE
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Lamp Paradox
THOMPSON LAMP PARADOX

Lam’s Problem
Given a 111 �111 BINARY MATRIX, fill 11 spaces in
each row in such a way that all columns also have 11
spaces filled. Furthermore, each pair of rows must
have exactly one filled space in the same column. This
problem is equivalent to finding a PROJECTIVE PLANE

of order 10. Using a computer program, Lam et al.
(1989) showed that no such arrangement exists.

Lam’s problem is equivalent to finding nine orthogo-
nal LATIN SQUARES of order 10.

See also BINARY MATRIX, LATIN SQUARE, PROJECTIVE

PLANE
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Lancret Equation

ds2
N �ds2

T�ds2
B;

where N is the NORMAL VECTOR, T is the TANGENT,
and B is the BINORMAL VECTOR.

Lancret’s Theorem
A NECESSARY and SUFFICIENT condition for a curve to
be a HELIX is that the ratio of CURVATURE to TORSION

be constant.

Lanczos Algorithm
An algorithm for computing the eigenvalues and
eigenvectors for large symmetric sparse matrices.
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Lanczos Approximation
An approximation for the GAMMA FUNCTION G(z�1)
with z �0 is given by

G(z�1)�
ffiffiffiffiffiffi
2p

p

� z�s�1
2

� �z�1=2

e�(z�s�1=2)
X�
k�0

gkHk(z);

(1)

where s is an arbitrary constant such that R[z�s�
1=2] > 0;

gk�
esok(�1)kffiffiffiffiffiffi

2p
p

Xk

r�0

(�1)r k
r

� �
(k)r

e

r � s� 1
2

 !r�1=2

(2)

where (k)r is a POCHHAMMER SYMBOL and

ok�
1 for k�0
2 otherwise;

'
(3)

and

Hk(z)�
1

(z � 1)k(z � 1)�k

(4)

�
(�1)k(�z)k

(z � 1)k

; (5)

with H0(z)�1 (Lanczos 1964; Luke 1969, p. 30). gk

satisfies

X�
k�0

gk�1; (6)

and if z is a POSITIVE INTEGER, then gk satisfies the
identity



Xn

k�0

( �1)k(�n)k

(n � 1)k

gk �
en� s�1 =2n!ffiffiffiffiffiffi

2p
p

(n � s � 1=2)n�1 =2 (7)

(Luke 1969, p. 30).

A similar result is given by

ln[ G(z)] � z �1
2

� �
ln z �z �1

2 ln(2p)

�1
2

c1

z � 1 
�

c2

2(z � 1)(z � 2) 
�. . .

" #
(8)

where

cn �g
1

0

(x)n(2x �1) dx; (9)

with (x)n a POCHHAMMER SYMBOL. The first few
values of cn are

c1 �
1
6

c2 �
1
3

c3 �
59
60

c4 �
58
15

c5 �
533
28

(Sloane’s A054379 and A054380; Whittaker and
Watson 1990, p. 253). Note that Whittaker and
Watson incorrectly give c4 as 227/60.

Yet another related result gives

ln[ G(z)] � z �1
2

� �
ln z �z �1

2 ln(2p)

�1
2

1

2 � 3

X�
r�1

1

(z � r)2 �
2

3 � 4

X�
r�1

1

(z � r)3

"

�
3

4 � 5

X�
r�1

1

(z � r)4 �. . .

�
(10)

(Whittaker wand Watson 1990, p. 261).

See also GAMMA FUNCTION
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Lanczos Sigma Factor
Writing a FOURIER SERIES as

f ( u) �1
2 a0 �

Xm

n�1

sin c
np

2m

 !
[an cos(nu) �bn sin(nu)];

where m is the last term and the sinc x terms are the
Lanczos s factor, removes the GIBBS PHENOMENON

(Acton 1990).

See also FOURIER SERIES, GIBBS PHENOMENON, SINC

FUNCTION

References
Acton, F. S. Numerical Methods That Work, 2nd printing.

Washington, DC: Math. Assoc. Amer., p. 228, 1990.

Landau Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let F be the set of COMPLEX analytic functions f
defined on an open region containing the closure of
the unit disk D �fz : ½z½B1 g satisfying f (0) �0 and
df =dz(0) �1: For each f in F , let (f ) be the SUPREMUM

of all numbers r such that f (D) contains a disk of
radius r . Then

L �inf fl(f ) : f � F g:

This constant is called the Landau constant, or the
BLOCH-LANDAU CONSTANT. Robinson (1938, unpub-
lished) and Rademacher (1943) derived the bounds

1
2 BL 5

G 1
3

� �
G 5

6

� �
G 1

6

� � �0 :5432588 . . . ;

where G(z) is the GAMMA FUNCTION, and conjectured
that the second inequality is actually an equality,

L �
G 1

3

� �
G 5

6

� �
G 1

6

� � �0:5432588 . . . :

See also BLOCH CONSTANT
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Landau-Kolmogorov Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let ½½f ½½ be the SUPREMUM of ½f (x)½; a real-valued
function f defined on (0; �): If f is twice differenti-
able and both f and f ƒ are bounded, Landau (1913)
showed that



½½f ?½½52½½f ½½1=2½½f ƒ½½1=2; (1)

where the constant 2 is the best possible. Schoenberg
(1973) extended the result to the nth derivative of f
defined on (0; �) if both f and f (n) are bounded,

½½f (k)½½5C(n; k)½½f ½½1�k=n½½f (n)½½k=n: (2)

An explicit FORMULA for C(n; k) is not known, but
particular cases are

C(3; 1)�
243

8

 !1=3

(3)

C(3; 2)�241=3 (4)

C(4; 1)�4:288 . . . (5)

C(4; 2)�5:750 . . . (6)

C(4; 3)�3:708 . . . : (7)

Let ½½f ½½ be the SUPREMUM of ½f (x)½; a real-valued
function f defined on (��; �): If f is twice differenti-
able and both f and f ƒ are bounded, Hadamard (1914)
showed that

½½f ?½½5
ffiffiffi
2

p
½½f ½½1=2½½f ƒ½½1=2; (8)

where the constant
ffiffiffi
2

p
is the best possible. Kolmo-

gorov (1962) determined the best constants C(n; k)
for

½½f (k)½½5C(n; k)½½f ½½1�k=n½½f (n)½½k=n (9)

in terms of the FAVARD CONSTANTS

an�
4

p

X�
j�0

(�1)j

2j � 1

" #n�1

(10)

by

C(n; k)�an�ka�1�k=n
n � (11)

Special cases derived by Shilov (1937) are

C(3; 1)�
9

8

 !1=3

(12)

C(3; 2)�31=3 (13)

C(4; 1)�
512

375

 !1=4

(14)

C(4; 2)�

ffiffiffi
6

5

s
(15)

C(4; 3)�
24

5

 !1=4

(16)

C(5; 1)�
1953125

1572864

 !1=5

(17)

C(5; 2)�
125

72

 !1=5

: (18)

For a real-valued function f defined on (��; �);
define

½½f ½½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�

��

[f (x)]2 dx

s
: (19)

If f is n differentiable and both f and f (n) are bounded,
Hardy et al. (1934) showed that

½½f (k)½½5 ½½f ½½1�k=n½½f (n)½½k=n; (20)

where the constant 1 is the best possible for all n and
0BkBn:/

For a real-valued function f defined on (0; �); define

½½f ½½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�

0

[f (x)]2 dx

s
: (21)

If f is twice differentiable and both f and f ƒ are
bounded, Hardy et al. (1934) showed that

½½f ?½½5
ffiffiffi
2

p
½½f ½½1=2½½f (n)½½1=2; (22)

where the constant
ffiffiffi
2

p
is the best possible. This

inequality was extended by Ljubic (1964) and Kupcov
(1975) to

½½f (k)½½5C(n; k)½½f ½½1�k=n½½f (n)½½k=n (23)

where C(n; k) are given in terms of zeros of POLY-

NOMIALS. Special cases are

C(3; 1)�C(3; 2)�31=2[2(21=2�1)]�1=3

�1:84420 . . . (24)

C(4; 1)�C(4; 3)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31=4 � 3�3=4

a

s

�2:27432 . . . (25)

C(4; 2)�

ffiffiffi
2

b

s
�2:97963 . . . (26)

C(4; 3)�
24

5

 !1=4

(27)

C(5; 1)�C(5; 4)�2:70247 . . . (28)

C(5; 2)�C(5; 3)�4:37800 . . . ; (29)

where a is the least POSITIVE ROOT of

x8�6x4�8x2�1�0 (30)

and b is the least POSITIVE ROOT of



x4�2x2�4x�1�0 (31)

(Franco et al. 1985, Neta 1980). The constants C(n; 1)
are given by

C(n; 1)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n � 1)1=n � (n � 1)�1�1=n

c

vuut ; (32)

where c is the least POSITIVE ROOT of

g
c

0 g
�

0

dx dy

(x2n � yx2 � 1)
ffiffiffi
y

p �
p2

2n
: (33)

An explicit FORMULA of this type is not known for
k �1.

The cases p�1, 2, � are the only ones for which the
best constants have exact expressions (Kwong and
Zettl 1992, Franco et al. 1983).
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Landau-Lifshitz Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

Ut�U � Uxx�U � AU:
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Landau-Ramanujan Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let S(x) denote the number of POSITIVE INTEGERS not
exceeding x which can be expressed as a sum of two
squares, then

lim
x0�

ffiffiffiffiffiffiffiffiffi
ln x

p

x
S(x)�K ; (1)

as proved by Landau (1908). Ramanujan indepen-
dently stated the theorem in the slightly different
form that the number of numbers between A and x
which are either squares of sums of two squares is

S(x)�Kg
x

A

dtffiffiffiffiffiffiffiffi
ln t

p �u(x); (2)

where K:0:764 and u(x) is very small compared with
the previous integral (Hardy 1999, p. 8; Moree and
Cazaran 1999). However, the convergence to the
constant K is very slow.

The exact value for

K�0:764223653 . . . (3)

(sometimes denoted l) is given by

K�
1ffiffiffi
2

p
Y

p prime

�3(mod 4)

1�
1

p2

 !�1=2

(4)

(Landau 1908; Le Lionnais 1983, p. 31; Berndt 1994;
Hardy 1999; Moree and Cazaran 1999). An equivalent
formula is given by

K�
p

4

Y
p prime

�1(mod 4)

1�
1

p2

 !�1=2

: (5)

Flajolet and Vardi (1996) give a beautiful FORMULA

with fast convergence

K�
1ffiffiffi
2

p
Y�
n�1

1�
1

22n

 !
z(2n)

b(2n)

" #1=(2n�1)

; (6)

where



b(s) �
1

4s
z s ; 1

4

� �
�& s ; 3

4

� �h i
(7)

is the DIRICHLET BETA FUNCTION, and z(z ; a) is the
HURWITZ ZETA FUNCTION. Landau proved the even
stronger fact

lim
x0�

(ln x)3=2

Kx
S(x)

Kxffiffiffiffiffiffiffiffiffi
ln x

p
" #

�C ; (8)

where

C �
1

2
1 �ln

peg

L

 !" #
�

1

4

d

ds
ln

Y
p prime

p �4k �3

1

p�2s

0
BBBBBB@

1
CCCCCCA

2
6666664

3
7777775

s�1

�0 :581948659 . . . : (9)

Here,

L �5:2441151086 . . . (10)

is the ARC LENGTH of a LEMNISCATE with a �1 (the
LEMNISCATE CONSTANT to within a factor of 2 or 4),
and g is the EULER-MASCHERONI CONSTANT.

Landau’s method of proof can be extended to show
that

B(x) 
K
xffiffiffiffiffiffiffiffiffi
ln x

p (11)

has an ASYMPTOTIC SERIES

B(x) �K
xffiffiffiffiffiffiffiffiffi
ln x

p

� 1 �
C1

ln x 
�

C2

(ln x)2 �. . .�
Cn

(ln x)n �O
1

(ln x)n�1

 !" #
;

(12)

where n can be arbitrarily large and the Cj are
constants (Moree and Cazaran 1999).

See also SQUARE NUMBER
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Landau’s Problems
The four "unattackable" problems mentioned by
Landau in the 1912 Fifth Congress of Mathemati-
cians in Cambridge. The four were

1. The GOLDBACH CONJECTURE,
2. TWIN PRIME CONJECTURE,
3. The conjecture that there exists a PRIME p such
that n2 Bp B(n �1)2 for every n (Hardy and
Wright 1979, p. 415; Ribenboim 1996, pp. 397 �/

98), and
4. The conjecture that there are infinitely many
PRIMES p OF THE FORM p �n2 �1 (Hardy and
Wright 1979, p. 19; Ribenboim 1996, pp. 206 �/08).

The first few PRIMES p which are OF THE FORM p �
n2 �1 are given by 2, 5, 17, 37, 101, 197, 257, 401, ...
(Sloane’s A002496). These correspond to n �1, 2, 4, 6,
10, 14, 16, 20, ... (Sloane’s A005574; Hardy and
Wright 1979, p. 19).

Although it is not know if there always exists a PRIME

p such that n2BpB(n�1)2; Chen (1975) has shown
that a number P which is either a PRIME or SEMI-

PRIME does always satisfy this inequality. Moreover,
there is always a prime between n�nu and n where
u�23=42 (Iwaniec and Pintz 1984; Hardy and Wright
1979, p. 415). The smallest PRIMES between n2 and
(n�1)2 for n�1, 2, ..., are 2, 5, 11, 17, 29, 37, 53, 67,
83, ... (Sloane’s A007491).

See also GOLDBACH CONJECTURE, GOOD PRIME,
PRIME NUMBER, TWIN PRIME CONJECTURE
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Landau Symbol
Let f (z) be a function "0 in an interval containing
z �0. Let g(z) be another function also defined in this
interval such that g(z) =f (z) 0 0 as z 0 0: Then g(z) is
said to be o(f (z)):/

See also ASYMPTOTIC NOTATION

Landen’s Formula

q 3(z; t) q4(z; t)

q 4(2z ; 2t)
�

q 3(0; t) q 4(0; t)

q 4(0; 2t)
�

q2(z; t)q 4(z; t)

q 1(2z ; 2t)
;

where q i are JACOBI THETA FUNCTIONS. This trans-
formation was used by Gauss to show that ELLIPTIC

INTEGRALS could be computed using the ARITHMETIC-

GEOMETRIC MEAN.

See also JACOBI THETA FUNCTIONS

Landen’s Identity
The DILOGARITHM identity

Li2(�x) ��Li2

x

1 � x

 !
�1

2[ln(1 �x)]2 :

See also DILOGARITHM
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Landen’s Transformation
If x sin a �sin(2b � a); then

(1 �x)g 
a

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2 sin2 f

q

�2 g 
b

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

4x

(1 � x)2 sin2

s
f

:

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
GAUSS’S TRANSFORMATION
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Lane-Emden Differential Equation

A second-order ORDINARY DIFFERENTIAL EQUATION

arising in the study of stellar interiors, also called
the polytropic differential equations. It is given by

1

j2

d

dj
j2 du

dj

 !
�un�0 (1)

1

j2
2j

du

dj
�j2 d2u

dj2

 !
�un�

d2u

dj2
�

2 du

j dj
�un�0 (2)

(Zwillinger 1997, pp. 124 and 126). It has the BOUND-

ARY CONDITIONS

u(0)�1 (3)

du

dj

" #
j�0

�0: (4)

Solutions u(j) for n�0, 1, 2, 3, and 4 are shown
above. The cases n�0, 1, and 5 can be solved
analytically (Chandrasekhar 1967, p. 91); the others
must be obtained numerically.
For n�0 ( (g��)); the LANE-EMDEN DIFFERENTIAL

EQUATION is



1

j2

d

dj
j2 du

dj

 !
�1�0 (5)

(Chandrasekhar 1967, pp. 91�/2). Directly solving
gives

d

dj
j2 du

dj

 !
�1��j2 (6)

g d j2 du

dj2

 !
��g j2 dj (7)

j2 du

dj
�c1�

1
3 j

3 (8)

du

dj
�

c1 �
1
3 j

3

j2 (9)

u(j)�g du�g
c1 �

1
3 j

3

j2
dj (10)

u(j)�u0�c1j
�1�1

6 j
2: (11)

The BOUNDARY CONDITION u(0)�1 then gives u0�1
and c1�0; so

u1(j)�1�1
6 j

2; (12)

and u1(j) is PARABOLIC.

For n�1 /(g�2); the differential equation becomes

1

j2

d

dj
j2 du

dj

 !
�u�0 (13)

d

dj
j2 du

dj

 !
�uj2�0; (14)

which is the SPHERICAL BESSEL DIFFERENTIAL EQUA-

TION

d

dr
r2 dR

dr

 !
�[k2r2�n(n�1)]R�0 (15)

with k�1 and n�0, so the solution is

u(j)�Aj0(j)�Bn0(j): (16)

Applying the BOUNDARY CONDITION u(0)�1 gives

u2(j)�j0(j)�
sin j

j
; (17)

where j0(x) is a SPHERICAL BESSEL FUNCTION OF THE

FIRST KIND (Chandrasekhar 1967, pp. 92).

For n�5, make Emden’s transformation

u�Axv z (18)

v�
2

n � 1
; (19)

which reduces the Lane-Emden equation to

d2z

dt2
�(2v�1)

dz

dt
�v(v�1)z�An�1zn�0 (20)

(Chandrasekhar 1967, p. 90). After further manipu-
lation (not reproduced here), the equation becomes

d2z

dt2
�1

4 z(1�z4) (21)

and then, finally,

u5(j)� 1�1
3 j

2
� ��1=2

: (22)
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Langford’s Problem
Arrange copies of the n digits 1, ..., n such that there
is one digit between the 1s, two digits between the 2s,
etc. For example, the unique (modulo reversal) n�3
solution is 231213, and the unique (again modulo
reversal) n�4 solution is 23421314. Solutions to
Langford’s problem exist only if n�0; 3(mod 4); so
the next solutions occur for n�7. There are 26 of
these, as exhibited by Lloyd (1971). In lexicographi-
cally smallest order (i.e., small digits come first), the
first few Langford sequences are 231213, 23421314,
14156742352637, 14167345236275, 15146735423627,
... (Sloane’s A050998).

The number of solutions for n�3, 4, 5, ... (modulo
reversal of the digits) are 1, 1, 0, 0, 26, 150, 0, 0,
17792, 108144, ... (Sloane’s A014552). No formula is
known for the number of solutions of a given order
nf0; 3 (mod 4)::/
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Langlands Conjectures
LANGLANDS PROGRAM

Langlands Program
A grand unified theory of mathematics which in-
cludes the search for a generalization of ARTIN

RECIPROCITY (known as LANGLANDS RECIPROCITY) to
non-Abelian Galois extensions of NUMBER FIELDS. In a
January 1967 letter to André Weil, Langlands pro-
posed that the mathematics of algebra (Galois repre-
sentations) and analysis (AUTOMORPHIC FORMS) are
intimately related, and that congruences over FINITE

FIELDS are related to infinite-dimensional representa-
tion theory. In particular, Langlands conjectured that
the transformations behind general reciprocity laws
could be represented by means of MATRICES (Mack-
enzie 2000).

In 1998, three mathematicians proved Langlands’
conjectures for LOCAL FIELDS, and in a November
1999 lecture at the Institute for Advanced Study at
Princeton University, L. Lafforgue presented a proof
of the conjectures for FUNCTION FIELDS. This leaves
only the case of NUMBER FIELDS as unresolved
(Mackenzie 2000).

Langlands was a co-recipient of the 1996 Wolf Prize
for the web of conjectures underlying this program.

See also ARTIN RECIPROCITY, AUTOMORPHIC FORM,
ENDOSCOPY, LANGLANDS RECIPROCITY, RECIPROCITY

THEOREM, TANIYAMA-SHIMURA CONJECTURE
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Langlands Reciprocity
The conjecture that the ARTIN L -FUNCTION of any n -D
GALOIS GROUP representation is an L -FUNCTION

obtained from the GENERAL LINEAR GROUP GL1(A) :/

See also ARTIN L -FUNCTION
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Langton’s Ant
A CELLULAR AUTOMATON for which the COHEN-KUNG

THEOREM guarantees that the ant’s trajectory is
unbounded.

See also CELLULAR AUTOMATON, COHEN-KUNG THEO-

REM

References
Stewart, I. "The Ultimate in Anty-Particles." Sci. Amer. 271,

104�/07, 1994.

Laplace-Beltrami Operator
A self-adjoint elliptic differential operator defined
somewhat technically as

D�dd�dd;

where d is the EXTERIOR DERIVATIVE and d and d are
adjoint to each other with respect to the INNER

PRODUCT.
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Laplace Distribution

Also called the DOUBLE EXPONENTIAL DISTRIBUTION. It
is the distribution of differences between two inde-
pendent variates with identical EXPONENTIAL DISTRI-

BUTIONS (Abramowitz and Stegun 1972, p. 930).

P(x)�
1

2b
e�½x�m½=b (1)

D(x)�1
2[1�sgn(x�m)(1�e�½x�m½=b)]: (2)

The MOMENTS about the MEAN mn are related to the
MOMENTS about 0 by

mn�
Xn

j�0

n
j

� �
(�1)n�j

m?jm
n�j; (3)



where n
k

� �
is a BINOMIAL COEFFICIENT, so

mn �
Xn

j�0

Xj=2b c

k�0

(�1)n�j n
j

� �
j
2k

� �
b2k mn �2k G(2k �1)

�
n!bn

0
for n even
for n odd;

'
(4)

where xb c is the FLOOR FUNCTION and G(2k �1) is the
GAMMA FUNCTION. The MOMENTS can also be com-
puted using the CHARACTERISTIC FUNCTION,

f(t) �g
�

��

eitxP(x)dx �
1

2b g
�

��

eitxe�½x� m½=b dx: (5)

Using the FOURIER TRANSFORM OF THE EXPONENTIAL

FUNCTION

F[e �2 pk0 ½x ½] �
1

p

k0

k2 � k2
0

(6)

gives

f(t) �
eimt

2b

2
b

t2 � 1
b

� �2 �
eimt

1 � b2t2 
(7)

(Abramowitz and Stegun 1972, p. 930). The MOMENTS

are therefore

mn �(�i)n 
f(0) �(�i)n dn f

dtn

" #
t�0

: (8)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m � m (9)

s2 �2b2 (10)

g1 �0 (11)

g2 �3: (12)
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Laplace-Everett Formula
EVERETT’S FORMULA

Laplace Limit
The value e �0:6627434193 . . . (Sloane’s A033259) for
which Laplace’s formula for solving KEPLER’S EQUA-

TION begins diverging. The constant is defined as the
value e at which the function

f (x) �
x exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p� �
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

equals f (l) �1 : The CONTINUED FRACTION of e is given
by [0, 1, 1, 1, 27, 1, 1, 1, 8, 2, 154, ...] (Sloane’s
A033260). The positions of the first occurrences of n
in the CONTINUED FRACTION of e are 2, 10, 35, 13, 15,
32, 101, 9, ... (Sloane’s A033261). The incrementally
largest terms in the CONTINUED FRACTION are 1, 27,
154, 1601, 2135, ... (Sloane’s A033262), which occur at
positions 2, 5, 11, 19, 1801, ... (Sloane’s A033263).

See also ECCENTRIC ANOMALY, KEPLER’S EQUATION
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Laplace-Mehler Integral

pn(cos u)�
1

p g
2p

0

(cos u�i sin u cos f)n df

�

ffiffiffi
2

p

p g
u

0

cos n � 1
2

� �
f

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos f� cos u

p df

�

ffiffiffi
2

p

p g
p

u

sin n � 1
2

� �
f

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u� cos f

p df:
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Laplace’s Equation
The scalar form of Laplace’s equation is the PARTIAL

DIFFERENTIAL EQUATION

92c�0: (1)

Note that the operator 92 is commonly written as D by
mathematicians (Krantz 1999, p. 16). Laplace’s equa-
tion is a special case of the HELMHOLTZ DIFFERENTIAL

EQUATION

92c�k2c�0 (2)

with k�0, or POISSON’S EQUATION

92c��4pr (3)

with r�0: The vector Laplace’s equation is given by

92F�0: (4)



A FUNCTION c which satisfies Laplace’s equation is
said to be HARMONIC. A solution to Laplace’s equation
has the property that the average value over a
spherical surface is equal to the value at the center
of the SPHERE (GAUSS’S HARMONIC FUNCTION THEO-

REM). Solutions have no local maxima or minima.
Because Laplace’s equation is linear, the superposi-
tion of any two solutions is also a solution.

A solution to Laplace’s equation is uniquely deter-
mined if (1) the value of the function is specified on all
boundaries (DIRICHLET BOUNDARY CONDITIONS) or (2)
the normal derivative of the function is specified on
all boundaries (NEUMANN BOUNDARY CONDITIONS).

Coordinate
System

Variables Solution Func-
tions

CARTESIAN /X(x)Y(y)Z(z)/ EXPONENTIAL

FUNCTIONS, CIR-

CULAR FUNC-

TIONS, HYPER-

BOLIC FUNCTIONS

CIRCULAR CY-

LINDRICAL

/R(r)U( u)Z(z)/ BESSEL FUNC-

TIONS, EXPONEN-

TIAL FUNCTIONS,
CIRCULAR FUNC-

TIONS

CONICAL ELLIPSOIDAL

HARMONICS,
POWER

ELLIPSOIDAL /L(l)M( m)N( n)/ ELLIPSOIDAL

HARMONICS

ELLIPTIC CY-

LINDRICAL

/U(u)V(v)Z(z)/ MATHIEU FUNC-

TION, CIRCULAR

FUNCTIONS

OBLATE SPHER-

OIDAL

/L(l)M( m)N( n)/ LEGENDRE POLY-

NOMIAL, CIRCU-

LAR FUNCTIONS

PARABOLIC BESSEL FUNC-

TIONS, CIRCULAR

FUNCTIONS

PARABOLIC CY-

LINDRICAL

PARABOLIC CY-

LINDER FUNC-

TIONS, BESSEL

FUNCTIONS, CIR-

CULAR FUNC-

TIONS

PARABOLOIDAL /U(u)V(v) U( u)/ CIRCULAR FUNC-

TIONS

PROLATE

SPHEROIDAL

/L(l)M( m)N( n)/ LEGENDRE POLY-

NOMIAL, CIRCU-

LAR FUNCTIONS

SPHERICAL /R(r)U( u) F(f)/ LEGENDRE POLY-

NOMIAL, POWER,
CIRCULAR FUNC-

TIONS

Laplace’s equation can be solved by SEPARATION OF

VARIABLES in all 11 coordinate systems that the
HELMHOLTZ DIFFERENTIAL EQUATION can. The form
these solutions take is summarized in the table above.
In addition to these 11 coordinate systems, separation
can be achieved in two additional coordinate systems
by introducing a multiplicative factor. In these
coordinate systems, the separated form is

c �
X1(u1)X2(u2)X3(u3)

R(u1 ; u2 ; u3)
; (5)

and setting

h1h2h3

h2
i

�gi(ui �1 ; ui �2)fi(ui)R
2 ; (6)

where hi are SCALE FACTORS, gives the Laplace’s
equation

X3

i �1

1

h2
i Xi

1

fi

d

dui

fi

dXi

dui

 !" #

�
X3

i�1

1

h2
i R

1

fi

@

@ui

fi

@R

@ui

 !" #
: (7)

If the right side is equal to �k2
1 =F(u1 ; u2 ; u3) ; where

k1 is a constant and F is any function, and if

h1h2h3 �Sf1f2f3R2F ; (8)

where S is the STÄ CKEL DETERMINANT, then the
equation can be solved using the methods of the
HELMHOLTZ DIFFERENTIAL EQUATION. The two sys-
tems where this is the case are BISPHERICAL and
TOROIDAL, bringing the total number of separable
systems for Laplace’s equation to 13 (Morse and
Feshbach 1953, pp. 665�/66).

In 2-D BIPOLAR COORDINATES, Laplace’s equation is
separable, although the HELMHOLTZ DIFFERENTIAL

EQUATION is not.

Zwillinger (1997, p. 128) calls

(a0x�b0)y(n)�(a1x�b1)y(n�1)�. . .�(anx�bn)y

�0 (9)

the Laplace equations.

See also BOUNDARY CONDITIONS, HARMONIC EQUA-

TION, HARMONIC FUNCTION, HELMHOLTZ DIFFEREN-

TIAL EQUATION, PARTIAL DIFFERENTIAL EQUATION,
POISSON’S EQUATION, SEPARATION OF VARIABLES,
STÄ CKEL DETERMINANT
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Laplace’s Equation */Bipolar Coordinates
In 2-D BIPOLAR COORDINATES, LAPLACE’S EQUATION is

(cosh v � cos u)2

a2

@F2

@u2 
�

@F2

@v2

 !
�0; (1)

which simplifies to

@F2

@u2 
�

@F2

@v2 
�0 ; (2)

so LAPLACE’S EQUATION is separable, although the
HELMHOLTZ DIFFERENTIAL EQUATION is not.

See also BIPOLAR COORDINATES, LAPLACE’S EQUATION

Laplace’s Equation */Bispherical
Coordinates
In BISPHERICAL COORDINATES, LAPLACE’S EQUATION

becomes

92f �
sin u

(cosh v � cos u)3

@

@u

sin u

cosh v � cos u

@f

@u

 !"

�
@

@v

sin u

cosh v � cos u

@f

@v

 !
�

@

@ f

� csc u

cosh v � cos u

@f

@ f

 !�
: (1)

Attempt SEPARATION OF VARIABLES by plugging in the
trial solution

f u; v; fð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh v �cos u

p
U(u)V(v)C( c) ; (2)

then divide the result by csc2 u(cosh v �cos u)5 =2

U(u)V(v) F(f) to obtain

�1
4 sinh2 u �cos u sin u

U ?(u)

U(u)
�sin2 u

U ƒ(u)

U(u)

�sin2 u
V ƒ(v)

V(v)
�

Fƒ(f)

F( f)
�0: (3)

The function F( f) then separates with

Fƒ( f)

F( f)
��m2 ; (4)

giving solution

C(c) �
sin
cos 

(mf) �
X�
k�1

[Ak sin(mc) �Bk cos(mc)] : (5)

Plugging C( c) back in and dividing by sin2 u gives

cot u
U ?(u)

U(u)
�

U ƒ(u)

U(u)
�

m2

sin2 u 
�

1

4 
�

V ƒ(v)

V(v)
�0 : (6)

The function V(v) then separates with

V ƒ(v)

V(v)
��n2 ; (7)

giving solution

V(v) �
sin
cos 

(nv) �
X�
k �1

[Ck sin(nv) �Dk cos(nv)]: (8)

Plugging V(v) back in and multiplying by V(v) gives

U ƒ(u) �cot uU ?(u) �
m2

sin2 u
� n2�1

4

� �" #
U(u)�0; (9)

so LAPLACE’S EQUATION is partially separable in
BISPHERICAL COORDINATES. However, the HELMHOLTZ

DIFFERENTIAL EQUATION cannot be separated in this
manner.

See also BISPHERICAL COORDINATES, LAPLACE’S EQUA-

TION
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Laplace’s Equation */Spherical
Coordinates
Laplace’s Equation–Spherical

HELMHOLTZ DIFFERENTIAL EQUATION–SPHERICAL CO-

ORDINATES

Laplace’s Equation */Toroidal Coordinates
In TOROIDAL COORDINATES, LAPLACE’S EQUATION be-
comes

92f �
sinh u

cosh u � cos vð Þ3

@

@u

sinh u

cosh u � cos v

@f

@u

 !"

�
@

@v

sinh u

cosh u � cos v
@f
@v

 !
�

@

@ f

� csch u

cosh u � cos v

@f

@ f

 !�
(1)

Attempt SEPARATION OF VARIABLES by plugging in the
trial solution

f u; v ; fð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh u �cos u

p
U(u)V(v) C( c); (2)

then divide the result by csch2 u(cosh u �cos v)5 =2

U(u)V(v) F(f) to obtain

1
4 sinh2 u �cosh u sinh u

U ?(u)

U(u)
�sin2 u

U ƒ(u)

U(u)

�sinh2 u
V ƒ(v)

V(v)
�

Fƒ( f)

F(f)
�0: (3)

The function F( f) then separates with

Fƒ( f)

F( f)
��m2 ; (4)

giving solution

C(c) �
sin
cos 

(mf) �
X�
k�1

[Ak sin(mc) �Bk cos(mc)]: (5)

Plugging C( c) back in and dividing by sinh2 u gives

coth u
U ?(u)

U(u)
�

U ƒ(u)

U(u)
�

m2

sinh2 u 
�

1

4 
�

V ƒ(v)

V(v)
�0 : (6)

The function V(v) then separates with

V ƒ(v)

V(v)
��n2 ; (7)

giving solution

V(v) �
sin
cos 

(nv) �
X�
k �1

[Ck sin(nv) �Dk cos(nv)]: (8)

Plugging V(v) back in and multiplying by V(v) gives

U ƒ(u) �coth uU ?(u) �
m2

sinh2 u 
� n2 �1

4

� �" #
U(u)

�0; (9)

which can also be written

1

sinh u

d

du
sinh u

dU

du

 !
�

m2

sinh2 u
� n2�1

4

� �" #
U

�0 (10)

(Arfken 1970, pp. 114�/15). LAPLACE’S EQUATION is
partially separable, although the HELMHOLTZ DIFFER-

ENTIAL EQUATION is not.

See also LAPLACE’S EQUATION, LAPLACIAN, TOROIDAL

COORDINATES
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Laplace Series
A function f (u; f) expressed as a double sum of
SPHERICAL HARMONICS is called a Laplace series.
Taking f as a COMPLEX FUNCTION,

f (u; f)�
X�
l�0

Xl

m��1

almYm
l (u; f): (1)

Now multiply both sides by Ȳm?
l? sin u and integrate

over du and df:

g
2p

0 g
p

0

f (u; f)Ȳm?
l? sin u du df

�
X�
l�0

Xl

m��1

alm g
2p

0 g
p

0

Ȳm?
l? (u; f)Ym

l (u; f) sin u du df:

(2)

Now use the ORTHOGONALITY of the SPHERICAL

HARMONICS

g
2p

0 g
p

0

Ym
l (u; f)Ȳm?

l? sin u du df�dmm?dll?; (3)

so (2) becomes



g
2p

0 g  
p

0

f ( u; f) Ȳm?
l? sin u du df �

X�
l�0

Xl

m��1

alm dmm?  dll ?

�alm ; (4)

where dmn is the KRONECKER DELTA.

For a REAL series, consider

f (u ; f) �
X�
l�0

Xl

m��1

[Cm
l cos(mf)

�Sm
l sin(mf)]Pm

l (cos u) : (5)

Proceed as before, using the orthogonality relation-
ships

g
2 p

0 g  
p

0

Pm
l (cos u) cos(mf)Pm?

l? (cos u) cos(m? f)

�sin( u) du d f ��
2 p(l � m)!

(2l � 1)(l � m)!
dmm?  dll? (6)

g
2 p

0 g  
p

0

Pm
l (cos u) sin(mf)Pm?

l ? (cos u) sin(m? f)

�sin u du df ��
2p(l � m)!

(2l � 1)(l � m)!
dmm?  dll ?: (7)

So Cm
l and Sm

l are given by

Cm
l ��

(2l � 1)(l � m)!

2p(l � m)! g
2 p

0 g  
p

0

f (u ; f)

�Pm
l cos u cos(mf) sin u du df (8)

Sm
l ��

(2l � 1)(l � m)!

2p(l � m)! g
2 p

0 g  
p

0

f ( u; f)

�Pm
l cos u sin(mf) sin u du df: (9)

Laplace’s Integral

Pn(x) �
1

p g  
p

0

du

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
cos u

� �n �1 du

�
1

p g  
p

0

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �1

p
cos u

� �n

du:

It can be evaluated in terms of the HYPERGEOMETRIC

FUNCTION.

Laplace’s Problem
BUFFON-LAPLACE NEEDLE PROBLEM

Laplace-Stieltjes Transform
An integral transform which is often written as an
ordinary LAPLACE TRANSFORM involving the DELTA

FUNCTION. The LAPLACE TRANSFORM and DIRICHLET

SERIES are special cases of the Laplace-Stieltjes
transform (Apostol 1997, p. 162).

See also DIRICHLET SERIES, LAPLACE TRANSFORM
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Laplace Transform
The Laplace transform is an INTEGRAL TRANSFORM

perhaps second only to the FOURIER TRANSFORM in its
utility in solving physical problems. Due to its useful
properties, the Laplace transform is particularly
useful in solving linear ORDINARY DIFFERENTIAL

EQUATIONS such as those arising in the analysis of
electronic circuits.

The (one-sided) Laplace transform L (not to be
confused with the LIE DERIVATIVE) is defined by

L(s)�L f (t)½ ��g
�

0

f (t)e�st dt; (1)

where f (t) is defined for t]0: The one-sided Laplace
transform is implemented in Mathematica as La-
placeTransform[expr , t , s ].

A two-sided Laplace transform is sometimes also
defined by

L(s)�L f (t)j j�g
�

��

f (t)e�st dt: (2)

The Laplace transform existence theorem states that,
if f (t) is PIECEWISE CONTINUOUS function on every
finite interval in [0; �) satisfying

f (t)j j5Meat (3)

for all t � [0; �); then L f (t)½ � exists for all s�a . The
Laplace transform is also UNIQUE, in the sense that,
given two functions F1(t) and F2(t) with the same
transform so that

L F1(t)½ ��L F2(t)½ ��f (s); (4)

then LERCH’S THEOREM guarantees that the integral

g
a

0

N(t) dt�0 (5)

vanishes for all a �0 for a NULL FUNCTION defined by

N(t)�F1(t)�F2(t): (6)

The Laplace transform is LINEAR since

L[af (t)�bg(t)]�g
�

0

[af (t)�bg(t)]e�st dt



�a g
�

0

f (t)e�st dt �b g
�

0

g(t)e �st dt

�aL[f (t)] �bL[g(t)] : (7)

The inverse Laplace transform is given by the
BROMWICH INTEGRAL (see also DUHAMEL’S CONVOLU-

TION PRINCIPLE). A table of several important Laplace
transforms follows.

/f (t)/ /L f (t)½ �/ Range

1 /

1

s
/ s � 0

t /

1

s2
/ s � 0

/tn
/ /

n!

sn�1
/ /n �Z > 0/

/ta
/ /

G(a � 1)

sa�1
/ a � 0

/eat
/ /

1

s � a
/ s � a

/cos(vt)/ /

s

s2 �v2
/ s � 0

/sin(vt)/ /

v

s2 �v2
{\it s} \hskip -1.80\ma-

threl{{\tf="DM5"\char21}}\hskip -

1.80 0\cr/cosh(vt)/

/

s

s2 �v2
/

/s > aj j/

/sinh(vt)/ /

v

s2 �v2
/ /s > aj j/

/eat sin(bt)/ /

b

(s � a)2 � b2
/ s � a

/eat cos(bt)/ /

s � a

(s � a)2 � b2
/ s � a

/d(t�c)/ /e�cs
/ c � 0

/Hc(t)/ /

e�cs

s
/ s � 0

/J0(t)/ /

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p /

/Jn(t)/ /
2
F1

1
2(n � 1); 1

2(n � 2); n � 1;�s�2
� �

2nsn�1
/

In the above table, J0(t) is the zeroth order BESSEL

FUNCTION OF THE FIRST KIND, d(t) is the DELTA

FUNCTION, and Hc(t) is the HEAVISIDE STEP FUNCTION.
The Laplace transform has many important proper-
ties.

The Laplace transform of a CONVOLUTION is given by

L[f (t)+ g(t)]�L(f (t))L(g(t)) (8)

L�1[F(s)G(s)]�L�1(F(s))+ L�1(G(s)): (9)

Now consider DIFFERENTIATION. Let f (t) be continu-
ously differentiable n�1 times in [0; �): If f (t)j j5
Meat; then

L[f (n)(t)]�snL(f (t))�sn�1f (0)�sn�2f ?(0)�. . .

�f (n�1)(0): (10)

This can be proved by INTEGRATION BY PARTS,

L[f ?(t)]� lim
a0� g

a

0

e�stf ?(t) dt

� lim
a0�

[e�stf (t)]a
0�s g

a

0

e�stf (t) dt

' .

� lim
a0�

[e�saf (a)�f (0)�s g
a

0

e�stf (t) dt

/ �

�sL[f (t)]�f (0): (11)

Continuing for higher order derivatives then gives

L[f ƒ(t)]�s2L[f (t)]�sf (0)�f ?(0): (12)

This property can be used to transform differential
equations into algebraic equations, a procedure
known as the HEAVISIDE CALCULUS, which can then
be inverse transformed to obtain the solution. For
example, applying the Laplace transform to the
equation

f ƒ(t)�a1f ?(t)�a0f (t)�0 (13)

gives

fs2L[f (t)]�sf (0)�f ?(0)g�a1fsL[f (t)]�f (0)g

�a0L[f (t)]�0 (14)

L[f (t)](s2�a1s�a0)�sf (0)�f ?(0)�a1f (0)�0; (15)

which can be rearranged to

L[f (t)]�
sf (0) � [f ?(0) � a1f (0)]

s2 � a1s � a0

: (16)

If this equation can be inverse Laplace transformed,
then the original differential equation is solved.

Consider EXPONENTIATION. If L[f (t)]�F(s) for s > a;
then L(eatf (t))�F(s�a) for s > a�a:

F(s�a)�g
�

0

f (t)e�(s�a)t dt�g
�

0

[f (t)eat]e�st dt

�L[eatf (t)]: (17)

Consider INTEGRATION. If f (t) is PIECEWISE CONTIN-

UOUS and f (t)j j5Meat; then



L g
t

0

f (t) dt

" #
�

1

s
L[f (t)]: (18)

The inverse transform is known as the BROMWICH

INTEGRAL, or sometimes the FOURIER-MELLIN INTE-

GRAL.

See also BROMWICH INTEGRAL, FOURIER-MELLIN IN-

TEGRAL, FOURIER TRANSFORM, INTEGRAL TRANSFORM,
LAPLACE-STIELTJES TRANSFORM, OPERATIONAL

MATHEMATICS

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Laplace Trans-

forms." Ch. 29 in Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 9th
printing. New York: Dover, pp. 1019�/030, 1972.

Arfken, G. Mathematical Methods for Physicists, 3rd ed.
Orlando, FL: Academic Press, pp. 824�/63, 1985.

Churchill, R. V. Operational Mathematics. New York:
McGraw-Hill, 1958.

Doetsch, G. Introduction to the Theory and Application of the
Laplace Transformation. Berlin: Springer-Verlag, 1974.

Franklin, P. An Introduction to Fourier Methods and the
Laplace Transformation. New York: Dover, 1958.

Jaeger, J. C. and Newstead, G. H. An Introduction to the
Laplace Transformation with Engineering Applications.
London: Methuen, 1949.

Henrici, P. Applied and Computational Complex Analysis,
Vol. 2: Special Functions, Integral Transforms, Asympto-
tics, Continued Fractions. New York: Wiley, pp. 322�/50,
1991.

Krantz, S. G. "The Laplace Transform." §15.3 in Handbook
of Complex Analysis. Boston, MA: Birkhäuser, pp. 212�/
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Laplacian
The Laplacian operator for a SCALAR function /f/ is
defined by

92f�
1

h1 h2 h3

@

@u1

h2h3

h1

@

@u1

 !"

�
@

@u2

h1h3

h2

@

@u2

 !
�

@

@u3

h1h2

h3

@

@u3

 !�
f (1)

in VECTOR notation, where the hi are the SCALE

FACTORS of the coordinate system. In TENSOR nota-
tion, the Laplacian is written

92f�(glkf;l);k�glk @2f

@xl@xk
�Gl @f

@xl

�
1ffiffiffi
g

p
@

@xj

ffiffiffi
g

p
gij @f

@xi

 !
; (2)

where g;k is a COVARIANT DERIVATIVE and

Gl�1
2 gmnglk @gkm

@xn
�

@gkn

@xm
�

@gmn

@xk

 !
: (3)

Note that the operator 92 is commonly written as D by
mathematicians (Krantz 1999, p. 16).

The following table gives the form of the Laplacian in
several common coordinate systems.

coordinate system /92
/

CARTESIAN COORDI-

NATES

/
@2

@x2
�

@2

@y2
�

@2

@z2
/

CYLINDRICAL COOR-

DINATES

/
1

r

@

@r
r
@f

@r

� �
�

1

r2

@2f

@u2�
@2f

@z2
/

PARABOLIC COORDI-

NATES

/
1

uv(u2 � v2)

@

@u
uv

@f

@u

� �
�

@

@v
uv

@f

@v

� �/ �
/

/�
1

u2v2

@2f

@u2/

PARABOLIC CYLINDRI-

CAL COORDINATES

/
1

u2 � v2

@2f

@u2
�

@2f

@v2

� �
�

@2f

@z2
/

SPHERICAL COORDI-

NATES

/
1

r2

@

@r
r2 @

@r

� �
�

1

r2 sin2
f

@2

@u2/

/�
1

r2 sin f

@

@f
sin f

@

@f

� �
/

The finite difference form is

92c(x; y; z)�
1

h2
c(x�h; y; z)�c(x�h; y; z)½

�c(x; y�h; z)�c(x; y�h; z)�c(x; y; z�h)

�c(x; y; z�h)�6c(x; y; z)�: (4)

For a pure radial function g(r);

92g(r)�9 �[9g(r)]



�9 �
@g(r)

@r
r̂ �

1

r

@g(r)

@ u
û �

1

r sin u

@g(r)

@ f
f̂

" #

�9 � r̂
dg

dr

 !
: (5)

Using the VECTOR DERIVATIVE identity

9 �(fA) �f ( 9 � A) �( 9f ) �(A) ; (6)

so

92g(r) �9 �[ 9g(r)] �
dg

dr
9 � r̂ �9

dg

dr

 !
� r̂

�
2

r

dg

dr 
�

d2g

dr2 
: (7)

Therefore, for a radial power law,

92rn �
2

r
nrn�1 �n(n �1)rn�2 �[2n �n(n �1)]rn�2

�n(n �1)rn�2 : (8)

A vector Laplacian can also be defined for a VECTOR A
by

92A �9( 9 � A) �9�( 9�A) (9)

in vector notation. The notation � is sometimes also
used for a vector Laplacian (Moon and Spencer 1988,
p. 3). In tensor notation, A is written Am ; and the
identity becomes

92Am �A; l
m; l �(g lkAm; l); k

�g l k; kAm; l �g lkAm; lk : (10)

Similarly, a TENSOR Laplacian can be given by

92Aab �A; l
ab; l : (11)

An identity satisfied by the Laplacian is

92 xAj j� Aj j22 � (xA)AT
�� ��2
xAj j3 ; (12)

where Aj j2 is the HILBERT-SCHMIDT NORM, x is a row
VECTOR, and AT is the MATRIX TRANSPOSE of A :/

To compute the LAPLACIAN of the inverse distance
function 1=r ; where r � r �r?j j; and integrate the
LAPLACIAN over a volume,

gV

92 1

r � r ?j j

 !
d3r: (13)

This is equal to

gV

92 1

r
d3r �gV

9 � 9
1

r

 !
d3r �gS

9
1

r

 !
� da

�gS

@

@r

1

r

 !
r̂ � da �gS

�
1

r2
r̂ � da

��4p
R2

r2 
; (14)

where the integration is over a small SPHERE of
RADIUS R . Now, for r �0 and R 0 0; the integral
becomes 0. Similarly, for r �R and R 0 0; the
integral becomes �4p: Therefore,

92 1

r � r?j j

 !
��4pd3(r�r?); (15)

where d(x) is the DELTA FUNCTION.

The tensor Laplacian is given by

9 �(9c)�
1

g1=2
(g1=2gikc; k);i; (16)

where gij is the METRIC TENSOR, g�det(gij); and A; k is
the COMMA DERIVATIVE (Arfken 1985, p. 185).

See also ANTILAPLACIAN, D’ALEMBERTIAN, HELM-

HOLTZ DIFFERENTIAL EQUATION, LAPLACE’S EQUA-

TION, VECTOR LAPLACIAN
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Laplacian Determinant Expansion by
Minors
DETERMINANT EXPANSION BY MINORS

Laplacian Expansion
DETERMINANT EXPANSION BY MINORS

Laplacian Matrix
The Laplacian matrix L(G) of a graph G , where G�
(N; E) is an undirected, unweighted graph without
self edges (i, i ) or multiple edges from one node to
another, is an Nj j� Nj j SYMMETRIC MATRIX with one
row and column for each node. It is defined as follows,

Lij(G)�
degree of node i if i�j
�1 if i"j and � edge(i; j)
0 otherwise:

8<
:

A normalized version of the Laplacian matrix, de-
noted L; is similar defined by



Lij(G) �

1 if i �j and dj "0

�
1ffiffiffiffiffiffiffiffiffi
didj

q if i and j are adjacent

0 otherwise :

8>>><
>>>:

See also ALGEBRAIC CONNECTIVITY, FIEDLER VECTOR,
SPECTRAL GRAPH PARTITIONING
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Large Number
There are a wide variety of large numbers which crop
up in mathematics. Some are contrived, but some
actually arise in proofs. Often, it is possible to prove
existence theorems by deriving some potentially huge
upper limit which is frequently greatly reduced in
subsequent versions (e.g., GRAHAM’S NUMBER, KOL-

MOGOROV-ARNOLD-MOSER THEOREM, MERTENS CON-

JECTURE, SKEWES NUMBER, WANG’S CONJECTURE).

Large decimal numbers beginning with 109 are
named according to two mutually conflicting nomen-
clatures: the American system (in which the prefix
stands for n in 103�3n) and the British system (in
which the prefix stands for n in 106n) : However, it
should be noted that in more recent years, the
"American" system is now widely used in England
as well as in the United States. The following table
gives the names assigned to various POWERS of 10

(Woolf 1982).

American British power
of 10

MILLION million 106

BILLION milliard 109

TRILLION billion 1012

QUADRILLION 1015

QUINTILLION trillion 1018

SEXTILLION 1021

SEPTILLION quadrillion 1024

OCTILLION 1027

NONILLION quintillion 1030

DECILLION 1033

UNDECILLION sexillion 1036

DUODECILLION 1039

TREDECILLION septillion 1042

QUATTUORDECILLION 1045

QUINDECILLION octillion 1048

SEXDECILLION 1051

SEPTENDECILLION nonillion 1054

OCTODECILLION 1057

NOVEMDECILLION decillion 1060

VIGINTILLION 1063

undecillion 1066

duodecillion 1072

tredecillion 1078

quattuordecillion 1084

quindecillion 1090

sexdecillion 1096

septendecillion 10102

octodecillion 10108

novemdecillion 10114

vigintillion 10120

centillion 10303

centillion 10600

See also 10, ACKERMANN NUMBER, ARROW NOTATION,
BARNES’ G -FUNCTION, BILLION, CIRCLE NOTATION,
EDDINGTON NUMBER, ERDOS-MOSER EQUATION, FRI-

VOLOUS THEOREM OF ARITHMETIC, GÖ BEL’S SE-

QUENCE, GOOGOL, GOOGOLPLEX, GRAHAM’S NUMBER,
HUNDRED, HYPERFACTORIAL, JUMPING CHAMPION,
LAW OF TRULY LARGE NUMBERS, MEGA, MEGISTRON,
MILLION, MONSTER GROUP, MOSER, N -PLEX, POWER

TOWER, SKEWES NUMBER, SMALL NUMBER, STEIN-

HAUS-MOSER NOTATION, STRONG LAW OF LARGE

NUMBERS, SUPERFACTORIAL, THOUSAND, WEAK LAW

OF LARGE NUMBERS, ZILLION
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Large Prime
GIGANTIC PRIME, LARGE NUMBER, TITANIC PRIME

Largest Prime Factor
GREATEST PRIME FACTOR

Laspeyres’ Index
The statistical INDEX

PL �

P
Pnq0P
p0q0

;

where pn is the price per unit in period n and qn is the
quantity produced in period n .

See also INDEX
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Latent Root
EIGENVALUE

Latent Vector
EIGENVECTOR

Latin Cross

An irregular DODECAHEDRON CROSS in the shape of a
dagger $: The six faces of a CUBE can be cut along
seven EDGES and unfolded into a Latin cross (i.e., the
Latin cross is the NET of the CUBE). Similarly, eight
hypersurfaces of a HYPERCUBE can be cut along 17
SQUARES and unfolded to form a 3-D Latin cross.

Another cross also called the Latin cross is illustrated
above. It is a GREEK CROSS with flared ends, and is
also known as the crux immissa or cross patée.

See also CROSS, DISSECTION, DODECAHEDRON, GREEK

CROSS, MALTESE CROSS

Latin-Graeco Square
EULER SQUARE

Latin Rectangle
A k�n Latin rectangle is a k�n MATRIX with
elements aij � f1; 2; . . . ; ng such that entries in each
row and column are distinct. If k�n , the special case
of a LATIN SQUARE results. A normalized Latin
rectangle has first row f1; 2; . . . ; ng and first column
f1; 2; . . . ; kg: Let L(k; n) be the number of normal-
ized k�n Latin rectangles, then the total number of
k�n Latin rectangles is

N(k; n)�
n!(n � 1)!L(k; n)

(n � k)!

(McKay and Rogoyski 1995), where n! is a FACTORIAL.
Kerewala (1941) found a RECURRENCE RELATION for
L(3; n); and Athreya, Pranesachar, and Singhi (1980)
found a summation FORMULA for L(4; n):/

The asymptotic value of L(o(n6=7); n) was found by
Godsil and McKay (1990). The numbers of k�n Latin
rectangles are given in the following table from
McKay and Rogoyski (1995). The entries L(1; n) and
L(n; n) are omitted, since

L(1; n)�1

L(n; n)�L(n�1; n);

but L(1; 1) and L(2; 1) are included for clarity. The
values of L(k; n) are given as a "wrap-around" series
by Sloane’s A001009.

n k /L(k; n)/

1 1 1

2 1 1

3 2 1

4 2 3

4 3 4

5 2 11

5 3 46

5 4 56

6 2 53

6 3 1064

6 4 6552

6 5 9408

7 2 309

7 3 35792

7 4 1293216



7 5 11270400

7 6 16942080

8 2 2119

8 3 1673792

8 4 420909504

8 5 27206658048

8 6 335390189568

8 7 535281401856

9 2 16687

9 3 103443808

9 4 207624560256

9 5 112681643083776

9 6 12952605404381184

9 7 224382967916691456

9 8 377597570964258816

10 2 148329

10 3 8154999232

10 4 147174521059584

10 5 746988383076286464

10 6 870735405591003709440

10 7 177144296983054185922560

10 8 4292039421591854273003520

10 9 7580721483160132811489280
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Latin Square
An n�n Latin square is a LATIN RECTANGLE with
k�n . Specifically, a Latin square consists of n sets of
the numbers 1 to n arranged in such a way that no
orthogonal (row or column) contains the same two
numbers. The numbers of Latin squares of order
n�1, 2, ... are 1, 2, 12, 576, 161280, ... (Sloane’s
A002860). For example, the two Latin squares of
order two are given by

1 2
2 1

/ �
;

2 1
1 2

/ �
; (1)

the 12 Latin squares of order three are given by

1 2 3
2 3 1
3 1 2

2
4

3
5; 1 2 3

3 1 2
2 3 1

2
4

3
5; 1 3 2

2 1 3
3 2 1

2
4

3
5; 1 3 2

3 2 1
2 1 3

2
4

3
5;

2 1 3
1 3 2
3 2 1

2
4

3
5; 2 1 3

3 2 1
1 3 2

2
4

3
5; 2 3 1

1 2 3
3 1 2

2
4

3
5; 2 3 1

3 1 2
1 2 3

2
4

3
5;

3 2 1
1 3 2
2 1 3

2
4

3
5; 3 2 1

2 1 3
1 3 2

2
4

3
5; 3 1 2

1 2 3
2 3 1

2
4

3
5; 3 1 2

2 3 1
1 2 3

2
4

3
5; (2)

and two of the whopping 576 Latin squares of order 4
are given by

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

2
664

3
775 and

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

2
664

3
775: (3)

A pair of Latin squares is said to be orthogonal if the
n2 pairs formed by juxtaposing the two arrays are all
distinct. For example, the two Latin squares

3 2 1
2 1 3
1 3 2

2
4

3
5 2 3 1

1 2 3
3 1 2

2
4

3
5 (4)

are orthogonal.

A normalized, or reduced, Latin square is a Latin
square with the first row and column given by
f1; 2; . . . ; ng: General FORMULAS for the number of
normalized n�n Latin squares L(n; n) are given by
Nechvatal (1981), Gessel (1987), and Shao and Wei
(1992). The total number of Latin squares N(n; n) of
order n can then be computed from

N(n; n)�n!(n�1)!L(n; n): (5)

The numbers of normalized Latin squares of order
n�1, 2, ..., are 1, 1, 1, 4, 56, 9408, ... (Sloane’s
A000315). McKay and Rogoyski (1995) give the
number of normalized LATIN RECTANGLES L(k; n) for
n�1, ..., 10, as well as estimates for L(n; n) with
n�11, 12, ..., 15.



n /L(n ; n)/

11 /5 :36 �1033
/

12 /1 :62 �1044
/

13 /2 :51 �1056
/

14 /2 :33 �1070
/

15 /1:5 �1086
/

See also 36 OFFICER PROBLEM, EULER SQUARE, KIRK-

MAN TRIPLE SYSTEM, LAM’S PROBLEM, PARTIAL LATIN

SQUARE, QUASIGROUP, SOMA
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Latitude
The latitude of a point on a SPHERE is the elevation of
the point from the PLANE of the equator. The latitude
d is related to the COLATITUDE (the polar angle in
SPHERICAL COORDINATES) by  d � f �90 �: More gener-
ally, the latitude of a point on an ELLIPSOID is the
ANGLE between a LINE PERPENDICULAR to the surface
of the ELLIPSOID at the given point and the PLANE of
the equator (Snyder 1987).

The equator therefore has latitude 0 8, and the north
and south poles have latitude 990�; respectively.
Latitude is also called GEOGRAPHIC LATITUDE or
GEODETIC LATITUDE in order to distinguish it from
several subtly different varieties of AUXILIARY LATI-

TUDES.

The shortest distance between any two points on a
SPHERE is the so-called GREAT CIRCLE distance, which

can be directly computed from the latitudes and
LONGITUDES of the two points.

See also AUXILIARY LATITUDE, COLATITUDE, CONFOR-

MAL LATITUDE, GREAT CIRCLE, ISOMETRIC LATITUDE,
LATITUDE, LONGITUDE, SPHERICAL COORDINATES
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Lattice
A lattice is a system K such that /	A � K ; A ƒA; and if
A ƒB and B ƒA; then A �B , where ƒ means "is
included in." Lattices offer a natural way to formalize
and study the ordering of objects using a general
concept known as the POSET (partially ordered set).
The study of lattices is called LATTICE THEORY. Note
that this type of lattice is distinct from the regular
array of points known as a POINT LATTICE (or
informally as a mesh or grid).

The following inequalities hold for any lattice:

(x ffly) �(x fflz) 5x ffl(y �z)

x �(y fflz) 5(x �y) ffl(x �z)

(x ffly) �(y fflz) �(z fflx) 5(x �y) ffl(y �z) ffl(z �x)

(x ffly) �(x fflz) 5x ffl(y �(x fflz))

(Grätzer 1971, p. 35). The first three are the distri-
butive inequalities, and the last is the modular
identity.

See also DISTRIBUTIVE LATTICE, INTEGRATION LAT-

TICE, LATTICE THEORY, MODULAR LATTICE, POINT

LATTICE, TORIC VARIETY

Lattice Algebraic System
A generalization of the concept of SET UNIONS and
INTERSECTIONS.

Lattice Animal
A distinct (including reflections and rotations) ar-
rangement of adjacent squares on a grid, also called a
FIXED POLYOMINO.

See also ANIMAL, PERCOLATION THEORY, POLYOMINO
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Lattice Basis Reduction
LATTICE REDUCTION



Lattice Distribution
A DISCRETE DISTRIBUTION of a random variable such
that every possible value can be represented in the
form a �bn ; where a; b "0 and n is an INTEGER.
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Lattice Graph

The lattice graph with n nodes on a side is denoted
L(n) :/

See also TRIANGULAR GRAPH

Lattice Groups
In the plane, there are 17 lattice groups, eight of
which are pure translation. In R3 ; there are 32 POINT

GROUPS and 230 SPACE GROUPS. In R4 ; there are 4783
space lattice groups.

See also POINT GROUPS, SPACE GROUPS, WALLPAPER

GROUPS

Lattice Invariant
INVARIANT (ELLIPTIC FUNCTION)

Lattice Path
A path composed of connected horizontal and vertical
line segments, each passing between adjacent LAT-

TICE POINTS. A lattice path is therefore a SEQUENCE of
points P0 ; P1 ; ..., Pn with n ]0 such that each Pi is a
LATTICE POINT and Pi�1 is obtained by offsetting one
unit east (or west) or one unit north (or south).

The number of paths of length a �b from the ORIGIN

(0,0) to a point (a, b ) which are restricted to east and
north steps is given by the BINOMIAL COEFFICIENT

a�b
a

� �
:/

See also BALLOT PROBLEM, DYCK PATH, FABER

POLYNOMIAL, GOLYGON, KINGS PROBLEM, LATTICE

POINT, P -GOOD PATH, RANDOM WALK, STAIRCASE

WALK
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Lattice Point
A POINT at the intersection of two or more grid lines in
a POINT LATTICE.

See also POINT LATTICE

Lattice Polygon

A POLYGON whose vertices are points of a POINT

LATTICE. Regular lattice n -gons exists only for n �3,
4, and 6 (Schoenberg 1937, Klamkin and Chrestenson
1963, Maehara 1993). A lattice n -gon in the plane can
be equiangular to a regular polygon only for n �4 and
8 (Scott 1987, Maehara 1993).
Maehara (1993) presented a NECESSARY and SUFFI-

CIENT condition for a polygon to be angle-equivalent
to a lattice polygon in Rn : In addition, Maehara (1993)
proved that cos2( au �S u) is a RATIONAL NUMBER for
any collection S of interior angles of a lattice polygon.

See also BAR GRAPH POLYGON, CANONICAL POLYGON,
CONVEX POLYGON, CONVEX POLYOMINO, FERRERS

GRAPH POLYGON, GOLYGON, POINT LATTICE, POLY-
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LatticeReduce
LLL ALGORITHM

Lattice Reduction
The process of finding a reduced set of basis vectors
for a given LATTICE having certain special properties.
Lattice reduction algorithms are used in a number of
modern number theoretical applications, including in
the discovery of a SPIGOT ALGORITHM for PI. Although
determining the shortest basis is possibly an NP-

COMPLETE PROBLEM, algorithms such as the LLL
ALGORITHM can find a short basis in polynomial
time with guaranteed worst-case performance.

The LLL ALGORITHM of lattice reduction is implemen-
ted in Mathematica using the function LatticeR-
educe. Recognize[x , n , t ] in the Mathematica add-
on package NumberTheory‘Recognize‘ (which can
be loaded with the command BBNumberTheory‘)
also calls this routine in order to find a polynomial of
degree at most n in a variable t such that x is an
approximate zero of the polynomial.

When used to find integer relations, a typical input to
the algorithm consists of an augmented n �n IDEN-

TITY MATRIX with the entries in the last column
consisting of the n elements (multiplied by a large
positive constant w to penalize vectors that do not
sum to zero) between which the relation is sought.
For example, if an equality OF THE FORM

a1x �a2y �a3z �0

is known to exist, then doing a lattice reduction on
the matrix

m �
1 0 0 wx
0 1 0 wy
0 0 1 wz

2
4

3
5

will produce a new matrix in which one or more
entries in the last column being close to zero. This
row then gives the coefficients fa1; a2; a3; 0g of the
identity. An example lattice reduction calculation is
illustrated in both Borwein and Corless (1999) and
Borwein and Lisonek.

See also GRAM-SCHMIDT ORTHONORMALIZATION, IN-

TEGER RELATION, LLL ALGORITHM, PSLQ ALGORITHM
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Lattice and Its Reciprocal Lattice." Combinatorica 10,
333�/48, 1990.

Schnorr, C. P. "A More Efficient Algorithm for Lattice Basis
Reduction." J. Algorithms 9, 47�/2, 1988.

Schnorr, C. P. and Euchner, M. "Lattice Basis Reduction:
Improved Practical Algorithms and Solving Subset Sum
Problems." In Fundamentals of Computation Theory
(Gosen 1991). Berlin: Springer-Verlag, pp. 68�/5, 1991.

Lattice Sum
Cubic lattice sums include the following:

b2(2s)�
X

?
�

i; j���

(�1)i�j

(i2 � j2)s (1)

b3(2s)�
X

?
�

i; j; k���

(�1)i�j�k

(i2 � j2 � k2)s (2)

bn(2s)�
X

?
�

k1 ; ...; kn���

(�1)k1�...�kn

(k2
1 � . . . � k2

n)s ; (3)

where the prime indicates that summation over the
original (0; 0); (0; 0; 0); ... is excluded (Borwein and
Borwein 1986, p. 288).

As shown in Borwein and Borwein (1987, pp. 288�/

01), these have closed forms for even n

b2(2s)��4b(s)h(s) (4)

b4(2s)��8h(s)h(s�1) (5)

b8(2s)��16z(s)h(s�3); for R[s] > 1 (6)

where b(z) is the DIRICHLET BETA FUNCTION, h(z) is
the DIRICHLET ETA FUNCTION, and z(z) is the RIEMANN

ZETA FUNCTION. The lattice sums evaluated at s�1
are called the MADELUNG CONSTANTS. An additional
form for b2(2s) is given by

b2(2s)�
X�
n�1

(�1)nr2(n)

ns
(7)

for R[s] > 1=3; where r2(n) is the SUM OF SQUARES

FUNCTION, i.e., the number of representations of n by
two squares (Borwein and Borwein 1986, p. 291).
Borwein and Borwein (1986) prove that b8(2) con-
verges (the closed form for b8(2s) above does not apply
for s�1), but its value has not been computed. A
number of other related DOUBLE SERIES can be
evaluated analytically.

For hexagonal sums, Borwein and Borwein (1987,
p. 292) give



h2(2s) �
4

3

X�
m; n ���

� sin[(n � 1)u]sin[(m � 1)u] � sin(n u)sin[(m � 1)u]

n � 1
2 m

� �2

�3 1
2 m
� �2

/ �s ;

(8)

where u �2p=3: This MADELUNG CONSTANT is expres-
sible in closed form for s �1 as

h2(2) � p ln 3
ffiffiffi
3

p
: (9)

Other interesting analytic lattice sums are given by

X�
k ; m; n���

( �1)k �m�n

k � 1
6

� �2

m � 1
6

� �2

n � 1
6

� �2
/ �s

�12s b(2s �1); (10)

giving the special case

X�
k ; m; n ���

(�1)k�m�n

k � 1
6

� �2

m � 1
6

� �2

n � 1
6

� �2
/ �1 =2 �

ffiffiffi
3

p
(11)

(Borwein and Borwein 1986, p. 303), and

X�
k ; m; n���

(�1)k�m�n�1

( ½k ½� ½m½� ½n½)s �2h(s) �4h(s �2) (12)

(Borwein and Borwein 1986, p. 305).

See also BENSON’S FORMULA, DOUBLE SERIES, MADE-

LUNG CONSTANTS
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Lattice Theory
Lattice theory is the study of sets of objects known as
LATTICES. It is an outgrowth of the study of BOOLEAN

ALGEBRAS, and provides a framework for unifying the
study of classes or ordered sets in mathematics. The
study of lattice theory was given a great boost by a

series of papers and subsequent textbook written by
Birkhoff (1967).

See also BOOLEAN ALGEBRA, LATTICE
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Latus Rectum
Twice the SEMILATUS RECTUM of a CONIC SECTION.

See also PARABOLA, SEMILATUS RECTUM
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Laurent Polynomial
A Laurent polynomial with COEFFICIENTS in the
FIELD F is an algebraic object that is typically
expressed in the form

. . .�a�nt�n �a �(n�1)t 
�(n�1) �. . .

�a�1t�1 �a0 �a1t �. . .�antn �. . . ;

where the ai are elements of F; and only finitely many
of the ai are NONZERO. A Laurent polynomial is an
algebraic object in the sense that it is treated as a
POLYNOMIAL except that the indeterminant "t" can
also have NEGATIVE POWERS.

Expressed more precisely, the collection of Laurent
polynomials with COEFFICIENTS in a FIELD F form a
RING, denoted F[t; t�1]; with RING operations given by
componentwise addition and multiplication according
to the relation

atn � btm �abtn�m

for all n and m in the INTEGERS. Formally, this is
equivalent to saying that F[t; t�1] is the GROUP RING

of the INTEGERS and the FIELD F: This corresponds to
F[t] (the POLYNOMIAL ring in one variable for F) being
the GROUP RING or MONOID ring for the MONOID of
natural numbers and the FIELD F:/

See also POLYNOMIAL, PRINCIPAL PART
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Laurent Series

Let there be two circular contours C2 and C1; with the
radius of C1 larger than that of C2: Let z0 be interior
to C1 and C2; and z be between C1 and C2: Now create
a cut line Cc between C1 and C2; and integrate around
the path C�C1�Cc�C2�Cc; so that the plus and
minus contributions of Cc cancel one another, as
illustrated above. From the CAUCHY INTEGRAL FOR-

MULA,

f (z)�
1

2pi gC

f (z?)

z? � z
dz?

�
1

2pi gC1

f (z?)

z? � z
dz?�

1

2pi gCc

f (z?)

z? � z
dz?

�
1

2pi gC1

f (z?)

z? � z
�

1

2pi gCc

f (z?)

z? � z
dz?

�
1

2pigC1

f (z?)

z? � z
dz?�

1

2pi gC2

f (z?)

z? � z
dz?: (1)

Now, since contributions from the cut line in opposite
directions cancel out,

f (z)�
1

2pi gC1

f (z?)

(z? � z0) � (z � z0)
dz?

�
1

2pi gC2

f (z?)

(z? � z0) � (z � z0)
dz?

�
1

2pi gC1

f (z?)

(z? � z0) 1 � z�z0

z?�z0

� � dz?

�
1

2pi gC2

f (z?)

(z � z0) z?�z0

z�z0
� 1

� � dz?

�
1

2pi gC1

f (z?)

(z? � z0) 1 � z�z0

z?�z0

� � dz?

�
1

2pi gC2

f (z?)

(z � z0) 1 � z?�z0

z�z0

� � dz? (2)

For the first integral, ½z?�z0½ > ½z�z0½: For the sec-
ond, ½z?�z0½B ½z�z0½: Now use the TAYLOR EXPANSION

(valid for ½t½B1)

1

1 � t
�
X�
n�0

tn (3)

to obtain

f (z)�
1

2pi gC1

f (z?)

z? � z0

X�
n�0

z � z0

z � z0

 !n

dz?

"

�gC2

f (z?)

z � z0

X�
n�0

z? � z0

z � z0

 !n

dz?�

�
1

2pi

X�
n�0

(z�z0)n gC1

f (z?)

(z? � z0)n�1 dz?

�
1

2pi

X�
n�0

(z�z0)�n�1 gC2

(z?�z0)nf (z?) dz?

�
1

2pi

X�
n�0

(z�z0)n gC1

f (z?)

(z? � z0)n�1 dz?

�
1

2pi

X�
n�1

(z�z0)�n gC2

(z?�z0)n�1f (z?) dz?; (4)

where the second term has been re-indexed. Re-
indexing again,

f (z)�
1

2pi

X�
n�0

(z�z0)n gC1

f (z?)

(z? � z0)n�1 dz?

�
1

2pi

X�1

n���

(z�z0) gC2

f (z?)

(z? � z0)n�1 dz?: (5)

Now, use the CAUCHY INTEGRAL THEOREM, which
requires that any CONTOUR INTEGRAL of a function
which encloses no POLES has value 0. But 1=(z?�
z0)n�1 is never singular inside C2 for n]0; and
1=(z?�z0)n�1 is never singular inside C1 for n5�1:
Similarly, there are no POLES in the closed cut Cc�
Cc: We can therefore replace C1 and C2 in the above
integrals by C without altering their values, so

f (z)�
1

2pi

X�
n�0

(z�z0)n gC

f (z?)

(z? � z0)n�1 dz?

�
1

2pi

X�1

n���

(z�z0)n gC

f (z?)

(z? � z0)n�1 dz?

�
1

2pi

X�
n���

(z�z0)n gC

f (z?)

(z? � z0)n�1 dz?

�
X�

n���

an(z�z0)n: (6)

The only requirement on C is that it encloses z , so we
are free to choose any contour g that does so. The



RESIDUES an are therefore defined by

an �
1

2 pi g  g
f (z?)

(z ? � z0)n�1 dz ?: (7)

See also MACLAURIN SERIES, PRINCIPAL PART, RESI-

DUE (COMPLEX ANALYSIS), TAYLOR SERIES
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Lauricella Functions
This entry contributed by RONALD M. AARTS

Lauricella functions are generalizations of the Gauss
hypergeometric functions to multiple variables. Four
such generalizations were investigated by Lauricella
(1893), and more fully by Appell and Kampé de Fériet
(1926, p. 117). Let n be the number of variables, then
the Lauricella functions are defined by

F(n)
A (a; b1 ; . . . ; bn; c1 ; . . . ; cn; x1 ; . . . xn)

�
X (a ; m1 � . . .  � mn)(b1 ; m1) � � � (bn ; mn)xm1

1 � � � xmn
n

(c1 ; m1) � � � (cn ; mn)m1! � � �mn!

(1)

F(n)
B (a1 ; . . . ; an ; b1 ; . . .  ; bn; c; x1 ; . . . ; xn)

�
X (a1 ; m1) � � � (an ; mn)(b1 ; m1) � � � (bn ; mn)xm1

1 � � � xmn
n

(c ; m1 � . . . mn)m1! � � �mn!

(2)

F(n)
C (a ; b; c1 ; . . . ; cn; x1 ; . . . ; xn)

�
X (a1 ; m1 � . . . mn)(b ; m1 � . . . mn)xm1

1 � � � xmn
n

(c1 ; m1) � � � (cn ; mn)m1! � � �mn!

(3)

F(n)
D (a ; b1 ; . . .  ; bn; c; x1 ; . . . ; xn)

�
X (a ; m1 � . . .  � mn)(b1 ; m1) � � � (bn ; mn)xm1

1 � � � xmn
n

(c ; m1 � . . . mn)m1! � � �mn! 
:

(4)

If n �2, then these functions reduce to the APPELL

HYPERGEOMETRIC FUNCTIONS F2 ; F3 ; F4 ; and F1 ;
respectively. If n �1, all four become the Gauss
hypergeometric function 2F1 (Exton 1978, p. 29).

See also APPELL HYPERGEOMETRIC FUNCTION, GEN-

ERALIZED HYPERGEOMETRIC FUNCTION, HORN FUNC-

TION, KAMPÉ DE FÉ RIET FUNCTION
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Law
A law is a mathematical statement which always
holds true. Whereas "laws" in physics are generally
experimental observations backed up by theoretical
underpinning, laws in mathematics are generally
THEOREMS which can formally be proven true under
the stated conditions. However, the term is also
sometimes used in the sense of an empirical observa-
tion, e.g., BENFORD’S LAW.

See also ABSORPTION LAW, BENFORD’S LAW, CONTRA-

DICTION LAW, DE MORGAN’S DUALITY LAW, DE MOR-

GAN’S LAWS, ELLIPTIC CURVE GROUP LAW, EXCLUDED

MIDDLE LAW, EXPONENT LAWS, GIRKO’S CIRCULAR

LAW, LAW OF COSINES, LAW OF SINES, LAW OF

TANGENTS, LAW OF TRULY LARGE NUMBERS, MOR-

RIE’S LAW, PARALLELOGRAM LAW, PLATEAU’S LAWS,
QUADRATIC RECIPROCITY LAW, STRONG LAW OF

LARGE NUMBERS, STRONG LAW OF SMALL NUMBERS,
SYLVESTER’S INERTIA LAW, TRICHOTOMY LAW, VEC-

TOR TRANSFORMATION LAW, WEAK LAW OF LARGE

NUMBERS, ZIPF’S LAW

Law of Anomalous Numbers
BENFORD’S LAW

Law of Cancellation
CANCELLATION LAW



Law of Cosines

Let a , b , and c be the lengths of the legs of a
TRIANGLE opposite ANGLES A , B , and C . Then the
law of cosines states

c2 �a2 �b2 �2ab cos C : (1)

This law can be derived in a number of ways. The
definition of the DOT PRODUCT incorporates the law of
cosines, so that the length of the VECTOR from X to Y
is given by

½X �Y ½2 �(X �Y) � (X �Y) (2)

�X � X �2X � Y �Y � Y (3)

� ½X ½2 �½Y ½2 �2½X ½½Y ½cos u; (4)

where u is the ANGLE between X and Y.

The formula can also be derived using a little
geometry and simple algebra. From the above dia-
gram,

c2 �(a sin C)2 �(b �a cos C)2

�a2 sin2 C �b2 �2ab cos C �a2 cos2 C

�a2 �b2 �2ab cos C: (5)

The law of cosines for the sides of a SPHERICAL

TRIANGLE states that

cos a �cos b cos c �sin b sin c cos A (6)

cos b �cos c cos a �sin c sin a cos B (7)

cos c �cos a cos b �sin a sin b cos C (8)

(Beyer 1987). The law of cosines for the angles of a

SPHERICAL TRIANGLE states that

cos A ��cos B cos C �sin B sin C cos a (9)

cos B ��cos C cos A �sin C sin A cos b (10)

cos C ��cos A cos B �sin A sin B cos c (11)

(Beyer 1987).
For similar triangles, a generalized law of cosines is
given by

aa ?�bb ?�cc?�(bc?�b ?c)cos A (12)

(Lee 1997). Furthermore, consider an arbitrary TET-

RAHEDRON A1A2A3A4 with triangles T1 �DA2A3A4 ;
T2 �DA1A3A4 ; T3 �DA1A2A4 ; and T4 �A1A2A3 : Let
the areas of these triangles be s1 ; s2 ; s3 ; and s4 ;
respectively, and denote the DIHEDRAL ANGLE with
respect to Ti and Tj for i "j �1; 2; 3 ; 4 by  uij : Then

sk �
X

j"k
1 5i54

si cos uki ; (13)

which gives the law of cosines in a tetrahedron,

s2
k �

X
i "k

1 5j54

s2
j �2

X
i ; j"k

15i ;j54

sisj cos uij (14)

(Lee 1997). A corollary gives the nice identity

s1s?1 �s2s ?2 �s3s ?3 �s4s ?4 �(s2s?3 �s ?2s3)cos u23

�(s3s?4 �s ?3s4)cos u34 �(s2s ?4 �s ?2s4)cos u24 (15)

See also LAW OF SINES, LAW OF TANGENTS
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Law of Exponents
EXPONENT LAWS

Law of Growth
An exponential growth law OF THE FORM

y�arx

characterizing a quantity which increases at a fixed
rate proportionally to itself.

See also GROWTH, LOGISTIC GROWTH CURVE, POPULA-

TION GROWTH
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Law of Indices
EXPONENT LAWS

Law of Large Numbers
STRONG LAW OF LARGE NUMBERS, WEAK LAW OF

LARGE NUMBERS

Law of Sines

Let a , b , and c be the lengths of the LEGS of a
TRIANGLE opposite ANGLES A , B , and C . Then the law
of sines states that

a

sin A 
�

b

sin B 
�

c

sin C 
�2R; (1)

where R is the radius of the CIRCUMCIRCLE. Other
related results include the identities

a(sin B �sin C) �b(sin C �sin A) �c(sin A �sin B)

�0 (2)

a �b cos C �c cos B; (3)

the LAW OF COSINES

cos A �
c2 � b2 � a2

2bc
; (4)

and the LAW OF TANGENTS

a � b

a � b 
�

tan 1
2(A � B)
h i

tan 1
2(A � B)
h i : (5)

The law of sines for oblique SPHERICAL TRIANGLES

states that

sin a

sin A 
�

sin b

sin B 
�

sin c

sinC 
: (6)

See also LAW OF COSINES, LAW OF TANGENTS

References
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
p. 79, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.
Boca Raton, FL: CRC Press, p. 148, 1987.

Coxeter, H. S. M. and Greitzer, S. L. "The Extended Law of
Sines." §1.1 in Geometry Revisited. Washington, DC:
Math. Assoc. Amer., pp. 1 �/, 1967.

Law of Small Numbers
STRONG LAW OF SMALL NUMBERS

Law of Tangents
Let a TRIANGLE have sides of lengths a , b , and c and
let the ANGLES opposite these sides by A , B , and C .
The law of tangents states

a � b

a � b 
�

tan 1
2(A � B)
h i

tan 1
2(A � B)
h i :

An analogous result for oblique SPHERICAL TRIANGLES

states that

tan 1
2(a � b)
h i

tan 1
2(a � b)
h i�tan 1

2(A � B)
h i

tan 1
2(A � B)
h i :

See also LAW OF COSINES, LAW OF SINES
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Law of Truly Large Numbers
With a large enough sample, any outrageous thing is
likely to happen (Diaconis and Mosteller 1989).
Littlewood (1953) considered an event which occurs
one in a million times to be "surprising." Taking this
definition, close to 100,000 surprising events are
"expected" each year in the United States alone and,
in the world at large, "we can be absolutely sure that
we will see incredibly remarkable events" (Diaconis
and Mosteller 1989).



See also COINCIDENCE, FRIVOLOUS THEOREM OF

ARITHMETIC, STRONG LAW OF LARGE NUMBERS,
STRONG LAW OF SMALL NUMBERS
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Lax-Milgram Theorem
Let f be a bounded COERCIVE bilinear FUNCTIONAL on
a HILBERT SPACE H . Then for every bounded linear
FUNCTIONAL f on H , there exists a unique xf � H such
that

f (x) � f(x; xf )

for all x � H :/
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Lax Pair
A pair of linear OPERATORS L and A associated with a
given PARTIAL DIFFERENTIAL EQUATION which can be
used to solve the equation. However, it turns out to be
very difficult to find the L and A corresponding to a
given equation, so it is actually simpler to postulate a
given L and A and determine to which PARTIAL

DIFFERENTIAL EQUATION they correspond (Infeld and
Rowlands 2000).

See also PARTIAL DIFFERENTIAL EQUATION

References
Infeld, E. and Rowlands, G. "Integrable Equations in Two

Space Dimensions as Treated by the Zakharov-Shabat
Method." §7.10 in Nonlinear Waves, Solitons, and Chaos,
2nd ed. Cambridge, England: Cambridge University
Press, pp. 192 �/99, 2000.

Layer
P -LAYER

LCM
LEAST COMMON MULTIPLE

Leading Digit Phenomenon
BENFORD’S LAW

Leading Order Analysis
A procedure for determining the behavior of an nth
order ORDINARY DIFFERENTIAL EQUATION at a REMO-

VABLE SINGULARITY without actually solving the
equation. Consider

dny

dzn 
�F

dn�1y

dzn�1 
; . . . ;

dy

dx 
; y; z

 !
; (1)

where F is ANALYTIC in z and rational in its other
arguments. Proceed by making the substitution

y(z) �a(z �z0) a (2)

with a B1 : For example, in the equation

d2y

dz2 
�6y2 �Ay; (3)

making the substitution gives

aa( a �1)(z �z0)a �2 �6a2(z �z0)2a �Aa(az �z0)a : (4)

The most singular terms (those with the most
NEGATIVE exponents) are called the "dominant bal-
ance terms," and must balance exponents and COEF-

FICIENTS at the SINGULARITY. Here, the first two
terms are dominant, so

a �2 �2a [ a ��2 (5)

6a �6a2 [a �1 ; (6)

and the solution behaves as y(z) �(z �z0) �2 : The
behavior in the NEIGHBORHOOD of the SINGULARITY

is given by expansion in a LAURENT SERIES, in this
case,

y(z) �
X�
j�0

aj(z �z0)j�2 : (7)

Plugging this series in yields

X�
j�0

aj(j �2)(j �3)(z �z0)j �4

�6
X�
j�0

X�
k �0

ajak(z �z0)j�k �4 �A
X�
j�0

aj(z �z0)j�2 : (8)

This gives RECURRENCE RELATIONS, in this case with
a6 arbitrary, so the (z �z0)6 term is called the
resonance or KOVALEVSKAYA EXPONENT. At the reso-
nances, the COEFFICIENT will always be arbitrary. If
no resonance term is present, the POLE present is not
ordinary, and the solution must be investigated using
a PSI FUNCTION.

See also PSI FUNCTION

References
Tabor, M. Chaos and Integrability in Nonlinear Dynamics:

An Introduction. New York: Wiley, p. 330, 1989.

Leaf (Foliation)
Let Mn be an n -MANIFOLD and let F�fFag denote a
PARTITION of M into DISJOINT path-connected SUB-



SETS. Then if F is a FOLIATION of M , each Fa is called a
leaf and is not necessarily closed or compact.

See also FOLIATION

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, p. 284, 1976.

Leaf (Tree)

An unconnected end of a TREE (i.e., a node of VERTEX

DEGREE 1). The following tables gives the total
numbers of leaves for various classes of graphs on
n �1, 2, ... nodes. For ROOTED TREES, the ROOT NODE

is not counted as a leaf.

graph type Sloane leaf count for n �1, 2,
...nodes

GRAPH A055540 0, 2, 4, 14, 38, 153, 766,
...

TREE A003228 0, 2, 2, 5, 9, 21, 43, 101, ...

LABELED

TREE

A055541 0, 2, 6, 36, 320, 3750, ...

ROOTED

TREE

A003227 1, 1, 3, 8, 22, 58, 160, 434,
1204, ...

See also BRANCH, CHILD, FORK, ROOT NODE, TREE

References
Robinson, R. W. and Schwenk, A. J. "The Distribution of

Degrees in a Large Random Tree." Discr. Math. 12, 359�/

72, 1975.
Sloane, N. J. A. Sequences A003227/M2744, A003228/

M0351, A055540, and A055541 in "An On-Line Version
of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Leakage
ALIASING

Leap
JUMP

Least Bound
SUPREMUM

Least Common Multiple

The least common multiple of two numbers a and b ,
denoted LCM(a; b) or [a, b ], is the smallest number
m for which there exist positive integers na and nb

such that

naa�nbb�m: (1)

The least common multiple LCM(a; b; c; . . .) of more
than two numbers is similarly defined. The plot above
shows LCM(1; r) for rational r�m=n; which is
equivalent to the NUMERATOR of the reduced form of
m=n:/
The least common multiple of a , b , c , ..., is denoted
LCM[a , b , c , ...] in Mathematica .

The least common multiple of two numbers a and b
can be obtained by finding the PRIME FACTORIZATION

of each

a�pa1

1 � � �pan
n (2)

b�pb1

1 � � �pbn
n ; (3)

where the p
i
/s are all PRIME FACTORS of a and b , and if

p
i

does not occur in one factorization, then the
corresponding exponent is taken as 0. The least
common multiple is then given by

LCM(a; b)�
Yn

i�1

pmax(ai; bi)
i : (4)

For example, consider LCM(12; 30):

12�22 � 31 � 50 (5)

30�21 � 31 � 51; (6)

so

LCM(12; 30)�22 � 31 � 51�60: (7)

Let m be a common multiple of a and b so that

m�ha�kb: (8)



Write a �a1 GCD(a ; b) and b �b1 GCD(a ; b) ; where
a1 and b1 are RELATIVELY PRIME by definition of the
GREATEST COMMON DIVISOR GCD(a1 ; b1) �1: Then
ha1 �kb1 ; and from the DIVISION LEMMA (given that
ha1 is DIVISIBLE by b1 and GCD(b1 ; a1) �1); we have
h is DIVISIBLE by b1 ; so

h �nb1 (9)

m �ha �nb1a �n
ab

GCD(a ; b) 
: (10)

The smallest m is given by n � 1,

LCM(a; b) �
ab

GCD(a ; b) 
; (11)

so

GCD(a ; b)LCM(a ; b) �ab (12)

The LCM is IDEMPOTENT

LCM(a ; a) �a (13)

COMMUTATIVE

LCM(a; b) �LCM(b; a) ; (14)

ASSOCIATIVE

LCM(a ; b ; c) �LCM(LCM(a ; b) ; c)

�LCM(a; LCM(b; c)) ; (15)

DISTRIBUTIVE

LCM(ma; mb; mc) �m LCM(a ; b ; c) ; (16)

and satisfies the ABSORPTION LAW

GCD(a ; LCM(a ; b)) �a: (17)

It is also true that

LCM(ma; mb) �
GCD(ma)GCD(mb)

GCD(ma; mb)
�m

ab

GCD(a; b)

�m LCM(a; b) : (18)

See also GREATEST COMMON DIVISOR, MANGOLDT

FUNCTION, RELATIVELY PRIME
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Less than x ." §E2 in Unsolved Problems in Number
Theory, 2nd ed. New York: Springer-Verlag, pp. 200 �/01,
1994.

Nagell, T. "Least Common Multiple and Greatest Common
Divisor." §5 in Introduction to Number Theory. New York:
Wiley, pp. 16 �/9, 1951.

Least Common Multiple Matrix
Let S �fx1 ; . . . ; xn g be a set of n distinct POSITIVE

INTEGERS. Then the matrix [S]n having the LEAST

COMMON MULTIPLE LCM(xi ; xj) of xi and xj as its i, jth

entry is called the least common multiple matrix on
S .

See also BOURQUE-LIGH CONJECTURE

References
Hong, S. "On the Bourque-Ligh Conjecture of Least Common

Multiple Matrices." J. Algebra 218, 216 �/28, 1999.

Least Deficient Number
A number for which

s(n) �2n �1:

A number is least deficient IFF it is a POWERS of 2: 1, 2,
4, 8, 16, 32, 64, ... (Sloane’s A000079).

See also DEFICIENT NUMBER, QUASIPERFECT NUMBER

References
Sloane, N. J. A. Sequences A000079/M1129 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Least Divisor
LEAST PRIME FACTOR

Least Period
The smallest n for which a point x0 is a PERIODIC

POINT of a function f so that f n(x0)�x0: For example,
for the FUNCTION f (x)��x; all points x have period 2
(including x�0). However, x�0 has a least period of
1. The analogous concept exists for a PERIODIC

SEQUENCE, but not for a PERIODIC FUNCTION. The
least period is also called the exact period.

Least Prime Factor
Let n �1 be any integer and let LD(n) be the least
integer greatest than 1 that divides n . Then LD(n) is
a prime number, and if n is not prime, then
[LD(n)]2

5n (Séroul 2000, p. 7).

For an INTEGER n]2; let lpf (x) denote the LEAST

PRIME FACTOR of n , i.e., the number p1 in the
factorization



n �pa1

1 � � �pak

k ;

with pi Bpj for i B j . For n �2, 3, ..., the first few are
2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, ... (Sloane’s
A020639). The above plot of the least prime factor
function can be seen to resemble a jagged terrain of
mountains, which leads to the appellation of "TWIN

PEAKS" to a PAIR of INTEGERS (x, y ) such that

1. x By ,
2. lpf (x) �lpf (y) ;/
3. For all z , x Bz By IMPLIES lpf (z) Blpf (x):/

The least multiple prime factors for SQUAREFUL

integers are 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, ...
(Sloane’s A046027).

Erdos et al. (1993) consider the least prime factor of
the BINOMIAL COEFFICIENTS, and define what they
term GOOD BINOMIAL COEFFICIENTS and EXCEPTIONAL

BINOMIAL COEFFICIENTS. They also conjecture that

lpf
N
k

� �
5max(N=k; 29): (1)

See also ALLADI-GRINSTEAD CONSTANT, DISTINCT

PRIME FACTORS, ERDOS-SELFRIDGE FUNCTION, EU-

CLID-MULLIN SEQUENCE, EXCEPTIONAL BINOMIAL

COEFFICIENT, FACTOR, GOOD BINOMIAL COEFFICIENT,
GREATEST PRIME FACTOR, LEAST COMMON MULTIPLE,
MANGOLDT FUNCTION, PRIME FACTORS, TWIN PEAKS
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Least Squares Fitting

A mathematical procedure for finding the best fitting
curve to a given set of points by minimizing the sum
of the squares of the offsets ("the residuals"rpar; of
the points from the curve. The sum of the squares of
the offsets is used instead of the offset absolute values
because this allows the residuals to be treated as a
continuous differentiable quantity. However, because
squares of the offsets are used, outlying points can

have a disproportionate effect on the fit, a property
which may or may not be desirable depending on the
problem at hand.

In practice, the vertical offsets from a line are almost
always minimized instead of the perpendicular off-
sets. This allows uncertainties of the data points
along the x - and y -axes to be incorporated simply,
and also provides a much simpler analytic form for
the fitting parameters than would be obtained using a
fit based on perpendicular distances. In addition, the
fitting technique can be easily generalized from a
best-fit line to a best-fit polynomial when sums of
vertical distances are used (which is not the case
using perpendicular distances). For a reasonable
number of noisy data points, the difference between
vertical and perpendicular fits is quite small.

The linear least squares fitting technique is the
simplest and most commonly applied form of LINEAR

REGRESSION and provides a solution to the problem of
finding the best fitting straight line through a set of
points. In fact, if the functional relationship between
the two quantities being graphed is known to within
additive or multiplicative constants, it is common
practice to transform the data in such a way that the
resulting line is a straight line, say by plotting T vs.ffiffiffi

l
p

instead of T vs. l in the case of analyzing the
period T of a pendulum as a function of its length l .
For this reason, standard forms for EXPONENTIAL,
LOGARITHMIC, and POWER laws are often explicitly
computed. The formulas for linear least squares
fitting were independently derived by Gauss and
Legendre.

For NONLINEAR LEAST SQUARES FITTING to a number
of unknown parameters, linear least squares fitting
may be applied iteratively to a linearized form of the
function until convergence is achieved. Depending on
the type of fit and initial parameters chosen, the
nonlinear fit may have good or poor convergence
properties. If uncertainties (in the most general case,
error ellipses) are given for the points, points can be
weighted differently in order to give the high-quality
points more weight.

The residuals of the best-fit line for a set of n points
using unsquared perpendicular distances di of points
(xi; yi) are given by



R��
Xn

i�1

di: (1)

Since the perpendicular distance from a line y�a�
bx to point i is given by

di�
½yi � (a � bxi)½ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
p ; (2)

the function to be minimized is

R��
Xn

i�1

½yi � (a � bxi)½ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p : (3)

Unfortunately, because the absolute value function
does not have continuous derivatives, minimizing R�

is not amenable to analytic solution. However, if the
square of the perpendicular distances

R2
��

Xn

i�1

[yi � (a � bxi)]
2

1 � b2
(4)

is minimized instead, the problem can be solved in
closed form. R2

� is a minimum when (suppressing the
indices)

@R2
�

@a
�

2

1 � b2

X
[y�(a�bx)](�1)�0 (5)

and

@R2
�

@b
�

2

1 � b2

X
[y�(a�bx)](�x)

�
X [y � (a � bx)]2(�1)(2b)

(1 � b2)2

�0: (6)

The former gives

a�
P

y � b
P

x

n
� ȳ�bx̄; (7)

and the latter

(1�b2)
X

[y�(a�bx)]x�b
X

[y�(a�bx)]2�0: (8)

But

[y�(a�bx)]2�y2�2(a�bx)y�(a�bx)2

�y2�2ay�2bxy�a2�2abx�b2x2; (9)

so (8) becomes

(1�b2)
X

xy�a
X

x�b
X

x2
� �

�b
X

y2�2a
X

y�2b
�

�
X

xy�a2
X

1�2ab
X

x�b2
X

x2Þ�0 (10)

[(1�b2)(�b)�b(b2)]
X

x2�[(1�b2)�2b2]
X

xy

�b
X

y2�[�a(1�b2)�2ab2]
X

x�2ab
X

y

�ba2
X

1�0 (11)

�b
X

x2�(1�b2)
X

xy�b
X

y2�a(b2�1)
X

x

�2ab
X

y�ba2n�0: (12)

Plugging (7) into (12) then gives

�b
X

x2�(1�b2)
X

xy�b
X

y2�1
n
(b2�1)

�
X

y�b
X

x
� �X

x

�
2

n

X
y�b

X
x

� �
b
X

y

�
1

n
b
X

y�b
X

x
� �2

�0 (13)

After a fair bit of algebra, the result is

b2�

P
y2 �

P
x2 � 1

n

P
xð Þ2�

P
yð Þ2

h i
1
n

P
x
P

y �
P

xy
b�1

�0: (14)

So define

B�
1

2

P
y2 � 1

n

P
yð Þ2

h i
�

P
x2 � 1

n

P
xð Þ2

h i
1
n

P
x
P

y �
P

xy

�
1

2

P
y2 � nȳ2ð Þ�

P
x2 � nx̄2ð Þ

nx̄ȳ �
P

xy
; (15)

and the QUADRATIC FORMULA gives

b��B9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2�1

p
; (16)

with a found using (7). Note the rather unwieldy form
of the best-fit parameters in the formulation. In
addition, minimizing R2

� for a second- or higher-order
POLYNOMIAL leads to polynomial equations having
higher order, so this formulation cannot be extended.

Vertical least squares fitting proceeds by finding the
sum of the squares of the vertical deviations R2 of a
set of n data points

R2�
X

[yi�f (xi; a1; a2; . . . ; an)]2 (17)

from a function f . Note that this procedure does not
minimize the actual deviations from the line (which
would be measured perpendicular to the given func-
tion). In addition, although the unsquared sum of
distances might seem a more appropriate quantity to
minimize, use of the absolute value results in dis-
continuous derivatives which cannot be treated ana-
lytically. The square deviations from each point are
therefore summed, and the resulting residual is then
minimized to find the best fit line. This procedure



results in outlying points being given disproportio-
nately large weighting.

The condition for R2 to be a minimum is that

@(R2)

@ai

�0 (18)

for i�1, ..., n . For a linear fit,

f (a; b)�a�bx; (19)

so

R2(a; b)�
Xn

i�1

[yi�(a�bxi)]
2 (20)

@(R2)

@a
��2

Xn

i�1

[yi�(a�bxi)]�0 (21)

@(R2)

@b
��2

Xn

i�1

[yi�(a�bxi)]xi�0: (22)

These lead to the equations

na�b
X

x�
X

y (23)

a
X

x�b
X

x2�
X

xy; (24)

where the subscripts have been dropped for concise-
ness. In MATRIX form,

n
P

xP
x
P

x2

/ �
a
b

/ �
�

P
yP
xy

/ �
; (25)

so

a
b

/ �
�

n
P

xP
x
P

x2

/ ��1 P
yP
xy

/ �
: (26)

The 2�2 MATRIX INVERSE is

a
b

/ �
�

1

n
P

x2 �
P

xð Þ2

�
P

y
P

x2�
P

x
P

xy
n
P

xy�
P

x
P

y

/ �
; (27)

so

a�
P

y
P

x2 �
P

x
P

xy

n
P

x2 �
P

xð Þ2 (28)

�
ȳ
P

x2 � x̄
P

xyP
x2 � nx̄2

(29)

b�
n
P

xy �
P

x
P

y

n
P

x2 �
P

xð Þ2 (30)

�
P

xy � nx̄ȳP
x2 � nx̄2

(31)

(Kenney and Keeping 1962). These can be rewritten

in a simpler form by defining the sums of squares

ssxx�
Xn

i�1

(xi�x̄)2�
X

x2
� �

�nx̄2 (32)

ssyy�
Xn

i�1

(yi�ȳ)2�
X

y2
� �

�nȳ2 (33)

ssxy�
Xn

i�1

(xi�x̄)(yi�ȳ)�
X

xy
� �

�nx̄ȳ; (34)

which are also written as

s2
x�ssxx (35)

s2
y�ssyy (36)

cov(x; y)�ssxy: (37)

Here, cov(x; y) is the COVARIANCE and s2
x and s2

y are
variances. Note that the quantities a xy and a x2 can
also be interpreted as the DOT PRODUCTSX

x2�x � x (38)

X
xy�x � y: (39)

In terms of the sums of squares, the REGRESSION

COEFFICIENT b is given by

b�
cov(x; y)

s2
x

�
ssxy

ssxx

; (40)

and a is given in terms of b using (24) as

a�ȳ�bx̄: (41)

The overall quality of the fit is then parameterized in
terms of a quantity known as the CORRELATION

COEFFICIENT, defined by

r2�
ss2

xy

ssxxssyy

; (42)

which gives the proportion of ssyy which is accounted
for by the regression.

The STANDARD ERRORS for a and b are

SE(a)�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�

x̄2

ssxx

s
(43)

SE(b)�
sffiffiffiffiffiffiffiffi
ssxx

p : (44)

Let ŷi be the vertical coordinate of the best-fit line
with x -coordinate xi; so

ŷi�a�bxi; (45)

then the error between the actual vertical point yi and
the fitted point is given by



ei �yi � ̂yi : (46)

Now define s2 as an estimator for the variance in ei ;

s2 �
Xn

i�1

e2
i

n � 2 
: (47)

Then s can be given by

s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ssyy � bssxy

n � 2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ssyy �

ss2
xy

ssxx

n � 2

vuut (48)

(Acton 1966, pp. 32 �/5; Gonick and Smith 1993,
pp. 202 �/04).

Generalizing from a straight line (i.e., first degree
polynomial) to a kth degree POLYNOMIAL

y �a0 �a1x �. . .�akxk ; (49)

the residual is given by

R2 �
Xn

i�1

[yi �(a0 �a1xi �. . .�akxk
i )]

2 : (50)

The PARTIAL DERIVATIVES (again dropping super-
scripts) are

@(R2)

@a0

��2
X

[y �(a0 �a1x �. . .�akxk)] �0 (51)

@(R2)

@a1

��2
X

[y �(a0 �a1x �. . .�akxk)]x �0 (52)

@(R2)

@ak

��2
X

[y �(a0 �a1x �. . .�akxk)]xk �0: (53)

These lead to the equations

a0n �a1

X
x �. . .�ak

X
xk �

X
y (54)

a0

X
x �a1

X
x2 �. . .�ak

X
xk �1 �

X
xy (55)

a0

X
xk �a1

X
xk �1 �. . .�ak

X
x2k

�
X

xky (56)

or, in MATRIX form

n
P

x � � �
P

xkP
x

P
x2 � � �

P
xk�1

n n ::: nP
xk

P
xk �1 � � �

P
x2k

2
664

3
775

a0

a1

n
ak

2
664

3
775

�

P
yP
xy
nP
xky

2
664

3
775: (57)

This is a VANDERMONDE MATRIX. We can also obtain
the MATRIX for a least squares fit by writing

1 x1 � � �  xk
1

1 x2 � � �  xk
2

n n  ::: n
1 xn � � �  xk

n

2
664

3
775

a0

a1

n
ak

2
664

3
775�

y1

y2

n
yn

2
664

3
775: (58)

Premultiplying both sides by the TRANSPOSE of the
first MATRIX then gives

1 1 � � �  1
x1 x2 � � �  xn

n n ::: n
xk

1 xk
2 � � �  xk

n

2
664

3
775

1 x1 � � �  xk
1

1 x2 � � �  xk
2

n n  ::: n
1 xn � � �  xk

n

2
664

3
775

a0

a1

n
ak

2
664

3
775

�

1 1 � � �  1
x1 x2 � � �  xn

n n ::: n
xk

1 xk
2 � � �  xk

n

2
664

3
775

y1

y2

n
yn

2
664

3
775; (59)

so

n
P

x � � �
P

xnP
x

P
x2 � � �

P
xn�1

n n ::: nP
xn

P
xn�1 � � �

P
x2n

2
664

3
775

a0

a1

n
ak

2
664

3
775

�

P
yP
xy
nP
xky

2
664

3
775: (60)

As before, given m points (xi ; yi) and fitting with
POLYNOMIAL COEFFICIENTS a0 ; ..., an gives

y1

y2

n
ym

2
664

3
775�

1 x1 x2
1 � � �  xn

1

1 x2 x2
2 � � �  xn

2

n n  ::: n
1 xm x2

m � � �  xn
m

2
664

3
775

a0

a1

n
an

2
664

3
775; (61)

In MATRIX notation, the equation for a polynomial fit
is given by

y �Xa: (62)

This can be solved by premultiplying by the MATRIX

TRANSPOSE XT;

XTy�XTXa: (63)

This MATRIX EQUATION can be solved numerically, or
can be inverted directly if it is well formed, to yield
the solution vector

a�(XTX)�1
XTy: (64)

Setting m�1 in the above equations reproduces the
linear solution.

See also CORRELATION COEFFICIENT, INTERPOLATION,
LEAST SQUARES FITTING–EXPONENTIAL, LEAST

SQUARES FITTING–LOGARITHMIC, LEAST SQUARES FIT-

TING–POWER LAW, MOORE-PENROSE GENERALIZED

MATRIX INVERSE, NONLINEAR LEAST SQUARES FIT-

TING, REGRESSION COEFFICIENT, SPLINE
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Least Squares Fitting */Exponential

To fit a functional form

y �AeBx ; (1)

take the LOGARITHM of both sides

ln y �ln A �Bx : (2)

The best-fit values are then

a �
P

ln y
P

x2 �
P 

x
P

x ln y

n
P

x2 �
P

xð Þ2 (3)

b �
n
P

x ln y �
P 

x
P

ln y

n
P

x2 �
P

xð Þ2 ; (4)

where B �b and A �exp(a) :/
This fit gives greater weights to small y values so, in
order to weight the points equally, it is often better to
minimize the functionX

y(ln y �a �bx)2 : (5)

Applying LEAST SQUARES FITTING gives

a
X

y�b
X

xy�
X

y ln y (6)

a
X

xy�b
X

x2y�
X

xy ln y (7)

P
y

P
xyP

xy
P

x2y

/ �
a
b

/ �
�

P
y ln yP
xy ln y

/ �
: (8)

Solving for a and b ,

a�
P

(x2y)
P

(y ln y) �
P

(xy)
P

(xy ln y)P
y
P

(x2y) �
P

xyð Þ2 (9)

b�
P

y
P

(xy ln y) �
P

(xy)
P

(y ln y)P
y
P

(x2y) �
P

xyð Þ2 : (10)

In the plot above, the short-dashed curve is the fit
computed from (3) and (4) and the long-dashed curve
is the fit computed from (9) and (10).

See also LEAST SQUARES FITTING, LEAST SQUARES

FITTING–LOGARITHMIC, LEAST SQUARES FITTING–

POWER LAW

Least Squares Fitting*/Logarithmic

Given a function OF THE FORM

y�a�b ln x; (1)

the COEFFICIENTS can be found from LEAST SQUARES



FITTING as

b �
n
P

(y ln x) �
P 

y
P

(ln x)

n
P

(ln x)2
h i

�
P

(ln x)½ Þ2 
(2)

a �
P

y � b
P

(ln x)

n
: (3)

See also LEAST SQUARES FITTING, LEAST SQUARES

FITTING–EXPONENTIAL, LEAST SQUARES FITTING–

POWER LAW

Least Squares Fitting */Power Law

Given a function OF THE FORM

y �AxB ; (1)

LEAST SQUARES FITTING gives the COEFFICIENTS as

b �
n
P

(ln x ln y) �
P

(ln x)
P

(ln y)

n
P

[(ln x)2] �
P

ln xð Þ2 (2)

a �
P

(ln y) � b
P

(ln x)

n
; (3)

where B�b and A�exp(a):/

See also LEAST SQUARES FITTING, LEAST SQUARES

FITTING–EXPONENTIAL, LEAST SQUARES FITTING–

LOGARITHMIC

Least Universal Exponent
CARMICHAEL FUNCTION

Least Upper Bound
SUPREMUM

Lebesgue Constants (Fourier Series)
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Assume a function f is integrable over the interval
[�p; p] and Sn(f ; x) is the nth partial sum of the
FOURIER SERIES of f , so that

ak�
1

p g
p

�p

f (t)cos(kt) dt (1)

bk�
1

p g
p

�p

f (t)sin(kt) dt (2)

and

Sn(f ; x)�1
2 a0�

Xn

k�1

[ak cos(kx)�bk sin(kx)]

( )
: (3)

If

½f (x)½51 (4)

for all x , then

Sn(f ; x)5
1

p g
p

0

sin 1
2(2n � 1)u
h i��� ���
sin 1

2 u
� � du�Ln; (5)

and Ln is the smallest possible constant for which this
holds for all continuous f . The first few values of Ln

are

L0�1 (6)

L1�
1

3
�

2
ffiffiffi
3

p

p
�1:435991124 . . . (7)

L2�
1

5
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 � 2

ffiffiffi
5

pp
p

�1:642188435 . . . (8)

L3�
1

7
�

1

p
4 sin 2

7 p
� �

�2 sin 4
7 p
� �

�16
3 sin 6

7 p
� �h

�2 sin 8
7 p
� �

�2
3 sin 12

7 p
� �

�4
3 sin 18

7 p
� �

�

�1:778322861 . . . : (9)

L4�
39

ffiffiffi
3

p

18p
�

1

9
�

1

pi
�4 sin 2

9 p
� �

�2 sin 4
9 p
� �h

�5 sin 8
9 p
� �

�3 sin 16
9 p
� �

�sin 32
9 p
� ��

(10)

�1:880080599 . . . :

Some sum FORMULAS for Ln include

Ln�
1

2n � 1
�

2

p

Xn

k�1

1

k
tan

pk

2n � 1

 !

�
16

p2

X�
k�1

X(2n�1)k

j�1

1

4k2 � 1

1

2j � 1
(11)

(Zygmund 1959) and integral FORMULAS include

Ln�4 g
�

0

tanh[(2n � 1)x]

tanh x

dx

p2 � 4x2



�
4

p2 g
�

0

sinh[(2n � 1)x]

sinh x
ln coth 1

2(2n�1)x
h in o

dx

(12)

(Hardy 1942). For large n ,

4

p2
ln nBLnB3�

4

p2
ln n: (13)

This result can be generalized for an r -differentiable
function satisfying

drf

dxr

�����
�����51 (14)

for all x . In this case,

f (x)�Sn(f ; x)j j5Ln; r�
4

p2

ln n

nr
�O

1

nr

 !
; (15)

where

Ln; r�

1

p g
p

�p

X�
k�n�1

sin(kx)

kr

�����
����� dx for r]1 odd

1

p g
p

�p

X�
k�n�1

cos(kx)

kr

�����
����� dx for r]1 even

8>>>><
>>>>:

(16)

(Kolmogorov 1935, Zygmund 1959).

Watson (1930) showed that

lim
n0�

Ln�
4

p2
ln(2n�1)

" #
�c; (17)

where

c�
8

p2

X�
k�1

ln k

4k2 � 1

 !
�

4

p2

G? 1
2

� �
G 1

2

� � (18)

�
8

p2

X�
j�0

l(2j � 2) � 1

2j � 1

" #
�

4

p2
(2 ln 2�g) (19)

�0:9894312738:::; (20)

where G(z) is the GAMMA FUNCTION, l(z) is the
DIRICHLET LAMBDA FUNCTION, and g is the EULER-

MASCHERONI CONSTANT.
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Lebesgue Constants (Lagrange
Interpolation)
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Define the nth Lebesgue constant for the LAGRANGE

INTERPOLATING POLYNOMIAL by

Ln(X)� max
�15x51

Xn

k�1

Y
j"k

x � xj

xk � xj

�����
�����: (1)

It is true that

Ln >
4

p2
ln n�1: (2)

The efficiency of a Lagrange interpolation is related
to the rate at which Ln increases. Erdos (1961) proved
that there exists a POSITIVE constant such that

Ln >
2

p
ln n�C (3)

for all n . Erdos (1961) further showed that

LnB
2

p
ln n�4; (4)

so (3) cannot be improved upon.
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Lebesgue Covering Dimension
An important DIMENSION and one of the first dimen-
sions investigated. It is defined in terms of covering
sets, and is therefore also called the COVERING

DIMENSION. Another name for the Lebesgue covering
dimension is the TOPOLOGICAL DIMENSION.

A SPACE has Lebesgue covering dimension m if for
every open COVER of that space, there is an open
COVER that refines it such that the refinement has
order at most m�1: Consider how many elements of
the cover contain a given point in a base space. If this
has a maximum over all the points in the base space,
then this maximum is called the order of the cover. If
a SPACE does not have Lebesgue covering dimension
m for any m , it is said to be infinite dimensional.

Results of this definition are:

1. Two homeomorphic spaces have the same
dimension,
2. Rn has dimension n ,
3. A TOPOLOGICAL SPACE can be embedded as a
closed subspace of a EUCLIDEAN SPACE IFF it is
LOCALLY COMPACT, HAUSDORFF, SECOND COUNTA-



BLE, and is finite-dimensional (in the sense of the
LEBESGUE DIMENSION), and
4. Every compact metrizable m -dimensional TOPO-

LOGICAL SPACE can be embedded in R2m�1 :/

See also LEBESGUE MINIMAL PROBLEM
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Lebesgue Decomposition (Measure)
Any COMPLEX MEASURE l decomposes into an ABSO-

LUTELY CONTINUOUS measure la and a SINGULAR

MEASURE lc ; with respect to some positive measure
m: This is the LEBESGUE DECOMPOSITION

l � la � lc :

See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, FUNDAMENTAL THEOREMS OF CALCULUS, LE-

BESGUE MEASURE, POLAR REPRESENTATION

(MEASURE), RADON-NIKODYM THEOREM, SINGULAR

MEASURE
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Lebesgue Dimension
LEBESGUE COVERING DIMENSION

Lebesgue Identity

(a2 �b2 �c2 �d2)2

�(a2 �b2 �c2 �d2)2 �(2ac �2bd)2 �(2ad �2bc)2

(Nagell 1951, pp. 194 �/95).

See also DIOPHANTINE EQUATION–2ND POWERS, EU-

LER FOUR-SQUARE IDENTITY
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Lebesgue Integrable
A real-valued function f defined on the reals R is
called Lebesgue integrable if there exists a SEQUENCE

of STEP FUNCTIONS ffn g such that the following two
conditions are satisfied:

1. a�
n�1 f fnj jB�;/

2. f (x) �a�
n�1 fn(x) for every x �R such that

a�
n�1 f fnj jB�:/

Here, the above integral denotes the ordinary RIE-

MANN INTEGRAL. Note that this definition avoids
explicit use of the LEBESGUE MEASURE.

See also INTEGRAL, LEBESGUE INTEGRAL, RIEMANN

INTEGRAL, STEP FUNCTION

Lebesgue Integral
The LEBESGUE INTEGRAL is defined in terms of upper
and lower bounds using the LEBESGUE MEASURE of a
SET. It uses a LEBESGUE SUM Sn � hi m(Ei) where hi is
the value of the function in subinterval i , and m(Ei) is
the LEBESGUE MEASURE of the SET Ei of points for
which values are approximately hi : This type of
integral covers a wider class of functions than does
the RIEMANN INTEGRAL.

The Lebesgue integral of a function f over a MEASURE

SPACE X is written

gX

f ;

or sometimes

gX

f dm

to emphasize that the integral is taken with respect
to the MEASURE m:/

See also A -INTEGRABLE, COMPLETE FUNCTIONS, IN-

TEGRAL, MEASURE, MEASURE SPACE
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Lebesgue Measurability Problem
A problem related to the CONTINUUM HYPOTHESIS

which was solved by Solovay (1970) using the IN-

ACCESSIBLE CARDINALS AXIOM. It has been proven by
Shelah and Woodin (1990) that use of this AXIOM is
essential to the proof.

See also CONTINUUM HYPOTHESIS, INACCESSIBLE

CARDINALS AXIOM, LEBESGUE MEASURE
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Lebesgue Measure
An extension of the classical notions of length and
AREA to more complicated sets. Given an open set S �
ak(ak ; bk) containing DISJOINT intervals,

mL(S) �
X

k

(bk �ak) :

Given a CLOSED SET S?�[a ; b] �ak(ak ; bk) ;

mL(S ?) �(b �a) �
X

k

(bk �ak):

A unit LINE SEGMENT has Lebesgue measure 1; the
CANTOR SET has Lebesgue measure 0. The MIN-

KOWSKI MEASURE of a bounded, CLOSED SET is the
same as its Lebesgue measure (Ko 1995).

See also CANTOR SET, MEASURE, RIESZ-FISCHER

THEOREM
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Lebesgue Minimal Problem

Find the plane LAMINA of least AREA A which is
capable of covering any plane figure of unit GENERAL-

IZED DIAMETER. A UNIT CIRCLE is too small, but a
HEXAGON circumscribed on the UNIT CIRCLE is larger
than necessary. Pál (1920) showed that the hexagon
can be reduced by cutting off two EQUILATERAL

TRIANGLES on the corners of the hexagon which are
tangent to the hexagon’s INCIRCLE (Wells 1991; left
figure above). Sprague subsequently demonstrated
that an additional small curvilinear region could be
removed (Wells 1991; right figure above). These

constructions give upper bounds.

The HEXAGON having INRADIUS r�1=2 (giving a
DIAMETER of 1) has side length

a�2r tan
p

n

 !
�1

3

ffiffiffi
3

p
; (1)

and the area of this HEXAGON is

A1�nr2 tan
p

n

 !
�1

2

ffiffiffi
3

p
:0:866025: (2)

In the above figure, the SAGITTA is given by

s�r tan
p

n

 !
tan

p

2n

 !
�1

6 2
ffiffiffi
3

p
�3

� �
; (3)

and the other distances by

b�s tan
p

3

 !
�

ffiffiffi
3

p
s (4)

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�b2

p
�2s; (5)

so the area of one of the equilateral triangles removed
in Pál’s reduction is

AD�bs�
ffiffiffi
3

p
s2� 1

12 7
ffiffiffi
3

p
�12

� �
:0:0773505; (6)

so the area left after removing two of these triangles
is

A2�A1�2AD�
2
3 3�

ffiffiffi
3

p� �
:0:845299: (7)

Computing the area of the region removed in Spra-
gue’s construction is more involved. First, use similar
triangles

a � h

h
�

r2

r1

(8)



together with r1 �r2 �r to obtain

r2 �
2r(a � h)

a
�

ffiffiffi
3

p
�1: (9)

Then

x �r2 cos
p

3

 !
�1

2

ffiffiffi
3

p
�1

� �
; (10)

and the angle u is given by

u �cos�1 x

2r

 !
�cos�1 1

2

ffiffiffi
3

p
�1

� �h i
; (11)

and the angle f is just

f � u �1
3 p: (12)

The distance h? is

h?�2r tan f (13)

l �2r sec f; (14)

and the area between the triangle and sector is

dA(1)
3 �rh �1

2(2r)2 
f �2r2(tan f � f) �1

2(tan f � f)

:0:000554738 : (15)

The area of the small triangle is

dA(2)
3 �1

2(l �2r)(h �h?)

�1
6(sec f �1)(2

ffiffiffi
3

p
�3 �3 tan f)

:0 :0000264307; (16)

so the total area remaining is

A3 �A2 �2(dA(1)
3 �dA(2)

3 ) �0:844137 : (17)

It is also known that a lower bound for the AREA is
given by

A > 1
8 p �

1
4

ffiffiffi
3

p
:0:825712 (18)

(Ogilvy 1990).

See also AREA, BORSUK’S CONJECTURE, GENERALIZED

DIAMETER, KAKEYA NEEDLE PROBLEM
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Lebesgue-Radon Integral
LEBESGUE-STIELTJES INTEGRAL

Lebesgue’s Dominated Convergence
Theorem
Suppose that ffn g is a sequence of MEASURABLE

FUNCTIONS, that fn 0 f ; as n 0 �; and that ½fn ½5g
for all n , where g is integrable. Then f is integrable,
and

g f dm�lim
n0� g fn dm:

See also ALMOST EVERYWHERE CONVERGENCE, MEA-

SURE THEORY, POINTWISE CONVERGENCE
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Lebesgue Singular Integrals

Un(f )�g
b

a

f (x)Kn(x) dx;

where fKn(x)g is a SEQUENCE of CONTINUOUS FUNC-

TIONS.

Lebesgue-Stieltjes Integral
Let a(x) be a monotone increasing function and define
an INTERVAL I�(x1; x2): Then define the NONNEGA-

TIVE function

U(I)�a(x2�0)�a(x1�0):

The LEBESGUE INTEGRAL with respect to a MEASURE

constructed using U(I) is called the Lebesgue-
Stieltjes integral, or sometimes the LEBESGUE-RADON

INTEGRAL.
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Lebesgue Sum

Sn�
X

i

him(Ei);



where m(Ei) is the MEASURE of the SET Ei of points on
the X -AXIS for which f (x) : hi :/

Le Cam’s Identity
Let Sn be the sum of n random variates Xi with a
BERNOULLI DISTRIBUTION with P(Xi �1) �pi : Then

X�
k �0

P(Sn �k) �
e �l lk

k!

�����
�����B 2

Xn

i �1

p2
i ;

where

l �
Xn

i �1

pi :

See also BERNOULLI DISTRIBUTION
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Leech Lattice
A 24-D Euclidean lattice. An AUTOMORPHISM of the
Leech lattice modulo a center of two leads to the
CONWAY GROUP Co1 : Stabilization of the 1- and 2-D
sublattices leads to the CONWAY GROUPS Co2 and Co3 ;
the HIGMAN-SIMS GROUP HS and the MCLAUGHLIN

GROUP McL .

The Leech lattice appears to be the densest HYPER-

SPHERE PACKING in 24-D, and results in each HYPER-

SPHERE touching 195,560 others. The number of
vectors with norm n in the Leech lattice (i.e., its
"theta series"rpar; is given by

u(n) �65520
691 [s11(n) � t(n)] ; (1)

where s11 is the DIVISOR FUNCTION giving the sum of
the 11th powers of the DIVISORS of n and t(n) is the
TAU FUNCTION (Conway and Sloane 1993, p. 135). The
first few values for n � 1, 2, ... are 0, 196560,
16773120, 398034000, ... (Sloane’s A008408). This is
an immediate consequence of the theta function for
Leech’s lattice being a weight 12 MODULAR FORM and
having no vectors of norm two. u(n) has the generat-
ing function

f (q) �[E2(q)]3 �720q2
Y�
m�1

(1 �q2m)24 (2)

� 1 �240
X�
m�1

s3(m)q2m

 !3

�720q2
Y�
m�1

(1 �q2m)24 (3)

1 �196560q4 �16773120q6 �3980034000q8

�. . .  ; (4)

where E2(q) is the RAMANUJAN-EISENSTEIN SERIES

which is the theta series of the E8 lattice (Sloane’s
A004009).

See also BARNES-WALL LATTICE, CONWAY GROUPS,
COXETER-TODD LATTICE, EISENSTEIN SERIES, HIG-

MAN-SIMS GROUP, HYPERSPHERE, HYPERSPHERE

PACKING, KISSING NUMBER, MCLAUGHLIN GROUP,
TAU FUNCTION
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Lefschetz Number
If K is a finite complex and h : Kj j 0 Kj j is a
continuous map, then

L(h) �
X

(�1)pTr(h�; Hp(K)=Tp(K))

is the Lefschetz number of the map h .

See also EULER NUMBER (FINITE COMPLEX)
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Press, p. 125, 1993.

Lefschetz Theorems
Each DOUBLE POINT assigned to an irreducible ALGE-

BRAIC CURVE whose GENUS is NONNEGATIVE imposes
exactly one condition.

See also HARD LEFSCHETZ THEOREM
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Lefshetz Fixed Point Formula
Let K be a finite complex, let h : Kj j 0 Kj j be a
continuous map. If L(h) "0; then h has a fixed point.

See also LEFSHETZ TRACE FORMULA
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Lefshetz Trace Formula
A formula which counts the number of FIXED POINTS

for a topological transformation.

Left Coset
Consider a countable SUBGROUP H with ELEMENTS hi

and an element x not in H , then xhi for i �1, 2, ... are
the left cosets of the SUBGROUP H with respect to x .

See also COSET, RIGHT COSET

Left Half-Plane

The portion of the COMPLEX PLANE z �x �iy with
REAL PART R[z] B0 :/

See also COMPLEX PLANE, LOWER HALF-PLANE, RIGHT

HALF-PLANE, UPPER HALF-PLANE

Left-Handed Coordinate System

A three-dimensional COORDINATE SYSTEM in which
the axes do not satisfy the RIGHT-HAND RULE.

See also CROSS PRODUCT, RIGHT-HAND RULE, RIGHT-

HANDED COORDINATE SYSTEM

Leg
A leg of a TRIANGLE is one of its sides. For a RIGHT

TRIANGLE, the term "leg" generally refers to a side
other than the one opposite the RIGHT ANGLE, which is
termed the HYPOTENUSE.

See also HYPOTENUSE, TRIANGLE

Legendre Addition Theorem
SPHERICAL HARMONIC ADDITION THEOREM

Legendre Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

(1�x2)
d2y

dx2
�2x

dy

dx
�l(l�1)y�0; (1)

which can be rewritten

d

dx
(1�x2)

dy

dx

" #
�l(l�1)y�0: (2)

The above form is a special case of the associated
Legendre differential equation with m�0. The Le-
gendre differential equation has REGULAR SINGULAR

POINTS at �1, 1, and �:/

If the variable x is replaced by cos u; then the
Legendre differential equation becomes

d2y

du2
�

cos u

sin u

dy

du
�l(l�1)y�0; (3)

as is derived below for the associated Legendre
differential equation with m�0.

Since the Legendre differential equation is a second-
order ORDINARY DIFFERENTIAL EQUATION, it has two
linearly independent solutions. A solution Pl(x) which
is regular at the origin is called a LEGENDRE FUNC-

TION OF THE FIRST KIND, while a solution Ql(x) which
is singular at the origin is called a LEGENDRE

FUNCTION OF THE SECOND KIND. If l is an integer,
the function of the first kind reduces to a polynomial
known as the LEGENDRE POLYNOMIAL.

The Legendre differential equation can be solved
using the standard method of making a series
expansion,

y�
X�
n�0

anxn (4)

y?�
X�
n�0

nanxn�1 (5)

yƒ�
X�
n�0

n(n�1)anxn�2: (6)

Plugging in,

(1�x2)
X�
n�0

n(n�1)anxn�2�2x
X�
n�0

nanxn�1

�l(l�1)
X�
n�0

anxn�0 (7)

X�
n�0

n(n�1)anxn�2�
X�
n�0

n(n�1)anxn



�2x
X�
n�0

nanxn�1�l(l�1)
X�
n�0

anxn�0 (8)

X�
n�0

n(n�1)anxn�2�
X�
n�0

n(n�1)anxn

�2
X�
n�0

nanxn�l(l�1)
X�
n�0

anxn�0 (9)

X�
n�0

(n�2)(n�1)an�2xn�
X�
n�0

n(n�1)anxn

�2
X�
n�0

nanxn�l(l�1)
X�
n�0

anxn�0 (10)

X�
n�0

f(n�1)(n�2)an�2�[�n(n�1)

�2n�l(l�1)]ang�0; (11)

so each term must vanish and

(n�1)(n�2)an�2�[�n(n�1)�l(l�1)]an�0 (12)

an�2�
n(n � 1) � l(l � 1)

(n � 1)(n � 2)
an

��
[l � (n � 1)](l � n)

(n � 1)(n � 2)
an: (13)

Therefore,

a2��
l(l � 1)

1 � 2
a0 (14)

a4��
(l � 2)(l � 3)

3 � 4
a2

�(�1)2 [(l � 2)l][(l � 1)(l � 3)]

1 � 2 � 3 � 4
a0 (15)

a6��
(l � 4)(l � 5)

5 � 6
a4

�(�1)3 [(l � 4)(l � 2)l][(l � 1)(l � 3)(l � 5)]

1 � 2 � 3 � 4 � 5 � 6
a0; (16)

so the EVEN solution is

y1(x)�1�
X�
n�1

(�1)n

� [(l � 2n � 2) . . . (l � 2)l][(l � 1)(l � 3) . . . (l � 2n � 1)]

(2n)!
x2n:

(17)

Similarly, the ODD solution is

y2(x)�x�
X�
n�1

(�1)n

� [(l � 2n � 1) � � � (l � 3)(l � 1)][(l � 2)(l � 4) � � � (l � 2n)

(2n � 1)!
x2m�1:

(18)

If l is an EVEN INTEGER, the series y1(x) reduces to a
POLYNOMIAL of degree l with only EVEN POWERS of x
and the series y2(x) diverges. If l is an ODD INTEGER,
the series y2(x) reduces to a POLYNOMIAL of degree l
with only ODD POWERS of x and the series y1(x)
diverges. The general solution for an INTEGER l is
then given by the LEGENDRE POLYNOMIALS

Pn(x)�cn

y1(x) for l even
y2(x) for l odd;

'
(19)

where cn is chosen so as to yield the normalization
Pn(1)�1:/

The associated Legendre differential equation is

d

dx
(1�x2)

dy

dx

" #
� l(l�1)�

m2

1 � x2

" #
y�0; (20)

which can be written

(1�x2)
d2y

dx
�2x

dy

dx
� l(l�1)�

m2

1 � x2

" #
y�0 (21)

(Abramowitz and Stegun 1972; Zwillinger 1997,
p. 124). The solutions Pm

l (x) to this equation are
called the associated Legendre polynomials (if l is
an integer), or associated Legendre functions of the
first kind (if l is not an integer). The complete
solution is

y�C1Pm
l (x)�C2Qm

l (x); (22)

where Qm
l (x) is a LEGENDRE FUNCTION OF THE SECOND

KIND.

The associated Legendre differential equation is often
written in a form obtained by setting x�cos u: Using
the identities

dy

dx
�

dy

d(cos u)
��

1

sin u

dy

du
(23)

x
dy

dx
��

cos u

sin u

dy

du
; (24)

d2y

dx2
�

1

sin u

d

du

1

sin u

dy

du

 !

�
1

sin u

�cos u

sin2 u

 !
dy

du
�

1

sin2 u

d2y

du2 ; (25)

and

1�x2�1�cos2 u�sin2 u; (26)



therefore gives

(1 �x2)
d2y

dx2 
�sin2 u

1

sin u

�cos u

sin2 u

 !
dy

d u 
�

1

sin2 u

d2y

du2

�
d2y

du2 �
cos u

sin u

dy

du 
: (27)

Plugging (23) into (27) and the result back into (21)
gives

d2y

d u2 �
cos u

sin u

dy

d u

 !
�2

cos u

sin u

dy

du 
� l(l �1) �

m2

sin2 u

" #
y

�0 (28)

d2y

du2 
�

cos u

sin u

dy

du 
� l(l �1) �

m2

sin2 u

" #
y �0 : (29)

Moon and Spencer (1961, p. 155) call

(1 �x2)yƒ�2xy?� k2a2(x2 �1) �p(p �1) �
q2

x2 � 1

" #
y

�0 (30)

The Legendre wave function (Zwillinger 1997, p.124).

See also LEGENDRE FUNCTION OF THE FIRST KIND,
LEGENDRE FUNCTION OF THE SECOND KIND, LE-

GENDRE POLYNOMIAL
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Legendre Duplication Formula
GAMMA FUNCTIONS of argument 2z can be expressed
in terms of GAMMA FUNCTIONS of smaller arguments.
From the definition of the BETA FUNCTION,

B(m; n) �
G(m) G(n)

G(m � n) 
�g

1

0

um�1(1 �u)n�1 du: (1)

Now, let m �n �z ; then

G(z) G(z)

G(2z)
�g

1

0

uz�1(1 �u)z�1 du (2)

and u �(1 �x) =2; so du �dx=2 and

G(z) G(z)

G(2z)
�g

1

0

1 � x

2

 !z �1

1 �
1 � x

2

 !z�1

(1
2 dx)

�
1

2 g
1

0

1 � x

2

 !z�1
1 � x

2

 !z�1

dx

�
1

21 �2(z�1) g
1

0

(1 �x2)z�1 dx

�21 �2x g
1

0

(1 �x2)z�1 dx: (3)

Now, use the BETA FUNCTION identity

B(m; n) �2 g
1

0

x2z�1(1 �x2)z�1 dx (4)

to write the above as

G(z) G(z)

G(2z)
�21 �2zB(1

2 ; z) �21 �2z
G(1

2)G(z)

G(z � 1
2) 
: (5)

Solving for G(2x);

G(2z) �
G(z)G(z � 1

2)2
2z�1

G(1
2)

�
G(z) G(z � 1

2)2
2z�1ffiffiffi

p
p

�(2p) �1 =222z �1 =2 G(z)G(z �1
2) ; (6)

since G(1
2) �

ffiffiffi
p

p
:/

See also GAMMA FUNCTION, GAUSS MULTIPLICATION

FORMULA
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Legendre Function of the First Kind
The (associated) Legendre function of the first kind
Pm

n (z) is the solution to the LEGENDRE DIFFERENTIAL

EQUATION which is regular at the origin. For m, n
integers and z real, the Legendre function of the first
kind simplifies to a polynomial, called the LEGENDRE

POLYNOMIAL. The associated Legendre function of
first kind is given by the Mathematica command
LegendreP[n , m , z ], and the unassociated function
by LegendreP[n , z ].

See also LEGENDRE DIFFERENTIAL EQUATION, LE-

GENDRE FUNCTION OF THE SECOND KIND, LEGENDRE

POLYNOMIAL



Legendre Function of the Second Kind

The second solution Q1(x) to the LEGENDRE DIFFER-

ENTIAL EQUATION. The Legendre functions of the
second kind satisfy the same RECURRENCE RELATION

as the LEGENDRE POLYNOMIALS. The Legendre func-
tions of the second kind are implemented in Mathe-
matica as LegendreQ[l , x ]. The first few are

Q0(x) �
1

2
ln

1 � x

1 � x

 !

Q1(x) �
x

2
ln

1 � x

1 � x

 !
�1

Q2(x) �
3x2 � 1

4
ln

1 � x

1 � x

 !
�

3x

2

Q3(x) �
5x3 � 3x

4
ln

1 � x

1 � x

 !
�

5x2

2
�

2

3 
:

The associated Legendre functions of the second kind
Qm

l (x) are the second solution to the associated
Legendre differential equation, and are implemented
in Mathematica as LegendreQ[l , m , x ] Qm

v(x) has
DERIVATIVE about 0 of

dQ mn (x)

dx

" #
x�0

�
2m

ffiffiffi
p

p
cos[1

2 p(n � m)]G(1
2 n �

1
2 m � 1)

G(1
2 n �

1
2 m �

1
2)

(Abramowitz and Stegun 1972, p. 334). The LOGA-

RITHMIC DERIVATIVE is

d ln Qm
l (z)

dz

" #
z�0

�2expf1
2 pi sgn(I[z])g

[1
2(l� m)]![1

2(l� m)]!

[1
2(l� m� 1)]![1

2(l� m� 1)]!

(Binney and Tremaine 1987, p. 654).

See also LEGENDRE DIFFERENTIAL EQUATION, LE-

GENDRE FUNCTION OF THE FIRST KIND, LEGENDRE

POLYNOMIAL
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Legendre-Gauss Quadrature
Also called "the" GAUSSIAN QUADRATURE or LE-

GENDRE QUADRATURE. A GAUSSIAN QUADRATURE

over the interval [�1; 1] with WEIGHTING FUNCTION

W(x)�1: The ABSCISSAS for quadrature order n are
given by the roots of the LEGENDRE POLYNOMIALS

Pn(x); which occur symmetrically about 0. The
weights are

wi��
An�1gn

AnP?n(xi)Pn�1(xi)
�

An

An�1

gn�1

Pn�1(xi)P?n(xi)
; (1)

where An is the COEFFICIENT of xn in Pn(x): For
LEGENDRE POLYNOMIALS,

An�
(2n)!

2n(n!)2 ; (2)

so

An�1

An

�
[2(n � 1)]!

2n�1[(n � 1)!]2

2n(n!)2

(2n)!

�
(2n � 1)(2n � 2)

2(n � 1)2 �
2n � 1

n � 1
: (3)

Additionally,

gn�
2

2n � 1
; (4)

so

wi��
2

(n � 1)Pn�1(xi)P?n(xi)
�

2

nPn�1(xi)P?n(xi)
: (5)

Using the RECURRENCE RELATION

(1�x2)P?n(x)�nxPn(x)�nPn�1(x)

�(n�1)xPn(x)�(n�1)Pn�1(x) (6)

gives



wi ��
2

(1 � x2)[P ?n(xi)]
2 �

2(1 � x2
i )

(n � 1)2[Pn�1(xi)]
2 : (7)

The error term is

E �
22n�1(n!)4

(2n � 1)[(2n)!]3 f (2n)( j): (8)

Beyer (1987) gives a table of ABSCISSAS and weights
up to n �16, and Chandrasekhar (1960) up to n �8
for n EVEN.

n /xi/ /wi/

2 9 0.57735 1.000000

3 0 0.888889

9 0.774597 0.555556

4 9 0.339981 0.652145

9 0.861136 0.347855

5 0 0.568889

9 0.538469 0.478629

9 0.90618 0.236927

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/ /wi/

2 /91
3

ffiffiffi
3

p
/ 1

3 0  /
8
9/

/91
5

ffiffiffiffiffiffi
15

p
/ /

5
9/

4 /91
35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525 �70

ffiffiffiffiffiffi
30

pp
/ /

1
36(18 �

ffiffiffiffiffiffi
30

p
)/

/91
35

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
525 �70

ffiffiffiffiffiffi
30

pp
/ /

1
36(18 �

ffiffiffiffiffiffi
30

p
)/

5 0  /
128
225/

/91
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
245 �14

ffiffiffiffiffiffi
70

pp
/ /

1
900(322 �13

ffiffiffiffiffiffi
70

p
)/

/91
21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
245 �14

ffiffiffiffiffiffi
70

pp
/ /

1
900(322 �13

ffiffiffiffiffiffi
70

p
)/
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Legendre-Jacobi Elliptic Integral
Any of the three standard forms in which an ELLIPTIC

INTEGRAL can be expressed.

See also ELLIPTIC INTEGRAL OF THE FIRST KIND,
ELLIPTIC INTEGRAL OF THE SECOND KIND, ELLIPTIC

INTEGRAL OF THE THIRD KIND

LegendreP
LEGENDRE FUNCTION OF THE FIRST KIND, LEGENDRE

POLYNOMIAL

Legendre Polynomial

The Legendre polynomials, sometimes called Le-
gendre functions of the first kind, Legendre coeffi-
cients, or ZONAL HARMONICS (Whittaker and Watson
1990, p. 302), are solutions to the LEGENDRE DIFFER-

ENTIAL EQUATION. If l is an INTEGER, they are
POLYNOMIALS. The Legendre polynomials Pn(x) are
illustrated above for x � [0; 1] and n�1, 2, ..., 5.
The Legendre polynomials are a special case of the
ULTRASPHERICAL FUNCTIONS with a�1=2; a special
case of the JACOBI POLYNOMIALS P(a; b)

n with a�b�0;
and can be written as a HYPERGEOMETRIC FUNCTION

using Murphy’s formula

Pn(x)�P(0; 0)
n (x)� 2 F1(�n; n�1; 1; 1

2(1�x)) (1)

(Bailey 1933; Bailey 1935, p. 101; Koekoek and
Swarttouw 1998).

The Rodrigues formula provides the GENERATING

FUNCTION

Pl(x)�
l

2ll!

dl

dxl
(x2�1)l; (2)

which yields upon expansion

Pl(x)�
1

2l

Xl=2b c

k�0

(�1)k(2l � 2k)!

k!(l � k)!(l � 2k)!
xl�2k (3)

�
1

2l

Xl=2b c

k�0

(�1)k l
k

� �
2l�2k

l

� �
xl�2k (4)

where rb c is the FLOOR FUNCTION. Additional sum
formulas include



Pl(x)�
1

2l

Xl

k�0

l
k

� �2

(x�1)l�k(x�1)k (5)

�
Xl

k�0

l
k

� �
�l�1

k

� �
1 � x

2

 !k

(6)

(Koepf 1998, p. 1). In terms of HYPERGEOMETRIC

FUNCTIONS, these can be written

Pn(x)�
x � 1

2

 !n

2F1(�n; �n; 1; (x�1)=(x�1)) (7)

Pn(x)�
2n
n

� �
xn

2n 2 F1(�n=2; (1�n)=2; 1=2�n; x�2) (8)

Pn(x)� 2 F1(�n; n�1; 1; (1�x)=2) (9)

(Koepf 1998, p. 3).

A GENERATING FUNCTION for Pn(x) is given by

g(t; x)�(1�2xt�t2)�1=2�
X�
n�0

Pn(x)tn: (10)

Take @g=@t;

�1
2(1�2xt�t2)�3=2(�2x�2t)�

X�
n�0

nPn(x)tn�1: (11)

Multiply (11) by 2t;

�t(1�2xt�t2)�3=2(�2x�2t)�
X�
n�0

2nPn(x)tn (12)

and add (10) and (12),

(1�2xt�t2)�3=2[(2xt�2t2)�(1�2xt�t2)]

�
X�
n�0

(2n�1)Pn(x)tn (13)

This expansion is useful in some physical problems,
including expanding the Heyney-Greenstein phase
function and computing the charge distribution on a
SPHERE. Another GENERATING FUNCTION is given by

X�
n�0

Pn(x)

n!
zn�exzJ0(z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
); (14)

where J0(x) is a zeroth order BESSEL FUNCTION OF

THE FIRST KIND (Koepf 1998, p. 2).

The Legendre polynomials satisfy the RECURRENCE

RELATION

(l�1)Pl�1(x)�(2l�1)xPl(x)�lPl�1(x)�0 (15)

(Koepf 1998, p. 2).

The Legendre polynomials are orthogonal over
(�1; 1) with WEIGHTING FUNCTION 1 and satisfy

g
1

�1

Pn(x)Pm(x) dx�
2

2n � 1
dmn; (16)

where dmn is the KRONECKER DELTA.

A COMPLEX GENERATING FUNCTION is

Pl(x)�
1

2pi g (1�2zx�z2)�1=2z�l�1 dz; (17)

and the Schläfli integral is

Pl(x)�
(�1)l

2l

1

2pi g
(1 � z2)l

(z � x)l�1 dz: (18)

Additional integrals (Byerly 1959, p. 172) include

g
1

0

Pm(x) dx

�
0 m even"0

(�1)(m�1)=2 m!!

m(m � 1)(m � 1)!!
m odd

8<
: (19)

g
1

0

Pm(x)Pn(x) dx

�

0
m; n both even or odd m"n

(�1)(m�n�1)=2

� m!n!

2m�n�1(m � n)(m � n � 1)(1
2m)!f[1

2(n � 1)]!g2

m even; n odd
1

2n � 1
m�n:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(20)

Integrals with weighting functions x and x2 are given
by

g
1

�1

xPL(x)PN(x) dx�
2(L�1)

(2L�1)(2L�3) N�L�1
2L

(2L�1)(2L�1) N�L�1

(
(21)

g
1

�1

x2PL(x)PN(x) dx

�

2(L�1)(L�2)
(2L�1)(2L�3)(2L�5) N�L�2

2(L2�2L�1)
(2L�1)(2L�1)(2L�3) N�L

2L(L�1)
(2L�3)(2L�1)(2L�1) N�L�2

8><
>: (22)

(Arfken 1985, p. 700). An additional identity is

1�[Pn(x)]2�
Xn

n�1

1 � x2

1 � x2
n

Pn(x)

P?n(xn)(x � xn)

" #2

; (23)

where xn is the n/th root of Pn(x) (Szego 1975, p. 348).



The first few Legendre polynomials are

P0(x)�1
P1(x)�x

P2(x)�1
2(3x2�1)

P3(x)�1
2(5x3�3x)

P4(x)�1
8(35x4�30x2�3)

P5(x)�1
8(63x5�70x3�15x)

P6(x)� 1
16(231x6�315x4�105x2�5):

The first few POWERS in terms of Legendre polyno-
mials are

x�P1

x2�1
3[P0(x)�2P2(x)]

x3�1
5[3P1(x)�2P3(x)]

x4� 1
35[7P0(x)�20P2(x)�8P4(x)]

x5� 1
63[27P1(x)�28P3(x)�8P5(x)]

x6� 1
231[33P0(x)�110P2(x)�72P4(x)�16P6(x)]:

For Legendre polynomials and POWERS up to expo-
nent 12, see Abramowitz and Stegun (1972, p. 798).

The Legendre POLYNOMIALS can also be generated
using GRAM-SCHMIDT ORTHONORMALIZATION in the
OPEN INTERVAL (�1; 1) with the WEIGHTING FUNCTION

1.

P0(x)�1 (24)

P1(x)� x�
g

1

�1

x dx

g
1

�1

dx

2
6664

3
7775 � 1

�x�
1
2[x

2]1
�1

[x]1
�1

�x�
1
2(1 � 1)

1 � (�1)
�x (25)

P2(x)� x�
g

1

�1

x3 dx

g
1

�1

x2 dx

2
6664

3
7775� g

1

�1

x2 dx

g
1

�1

dx

2
6664

3
7775�1

� x�
1
4[x

4]1
�1

1
3[x

3]1
�1

" #
x�

1
3[x

3]1
�1

[x]1
�1

�x2�1
3 (26)

P3(x)� x�
g

1

�1

x(x2 � 1
3)

2 dx

g
1

�1

(x2 � 1
3)

2 dx

2
6664

3
7775(x2�1

3)

�
g

1

�1

(x2 � 1
3)

2 dx

g
1

�1

x2 dx

2
6664

3
7775x

�x x2�1
3�

(1
5 �

2
9 �

1
9)x

1
3

" #

�x3�1
3x�3(1

5�
1
9)

�x3�x(1
3�

3
5�

1
3)�x3�3

5x: (27)

Normalizing so that Pn(1)�1 gives the expected
Legendre polynomials.

The "shifted" Legendre polynomials are a set of
functions analogous to the Legendre polynomials,
but defined on the interval (0, 1). They obey the
ORTHOGONALITY relationship

g
1

0

P̄m(x)P̄n(x) dx�
1

2n � 1
dmn: (28)

The first few are

P̄0(x)�1
P̄1(x)�2x�1

P̄2(x)�6x2�6x�1
P̄3(x)�20x3�30x2�12x�1:

The associated Legendre polynomials Pm
l (x) are solu-

tions to the associated LEGENDRE DIFFERENTIAL

EQUATION, where l is a POSITIVE INTEGER and m�0,
..., l . They can be given in terms of the unassociated
polynomials by

Pm
l (x)�(�1)m(1�x2)m=2 dm

dxm
Pl(x)

�
(�1)m

2ll!
(1�x2)m=2 dl�m

dxl�m
(x2�1)l; (29)

where Pl(x) are the unassociated LEGENDRE POLYNO-

MIALS. Note that some authors (e.g., Arfken 1985,
p. 668) omit the CONDON-SHORTLEY PHASE (�1)m;
while others include it (e.g., Abramowitz and Stegun
1972, Press et al. 1992, and the LegendreP[l , m , z ]
command of Mathematica ). Abramowitz and Stegun
(1972, p. 332) use the notation

Plm(X)�(�1)mPl
m(x) (30)

to distinguish these two cases.

Associated polynomials are sometimes called FER-

RERS’ FUNCTIONS (Sansone 1991, p. 246). If m�0,
they reduce to the unassociated POLYNOMIALS. The
associated Legendre functions are part of the SPHE-

RICAL HARMONICS, which are the solution of LAPLA-

CE’S EQUATION in SPHERICAL COORDINATES. They are
ORTHOGONAL over [�1; 1] with the WEIGHTING FUNC-

TION 1

g
1

�1

Pm
l (x)Pm

l? (x) dx�
2

2l � 1

(l � m)!

(l � m)!
dll?; (31)

and ORTHOGONAL over [�1; 1] with respect to m with
the WEIGHTING FUNCTION (1�x2)�2



g
1

�1

Pm
l (x)Pm?

l (x)
dx

1 � x2 
�

(l � m)!

m(l � m)!
dmm?: (32)

The associated Legendre polynomials also obey the
following RECURRENCE RELATIONS

(l �m)Pm
l (x)

�x(2l �1)Pm
l�1(x) �(l �m �1)Pm

l �2(x): (33)

Letting x �cos u (commonly denoted m in this con-
text),

dPm
l (m)

du
�

l mPm
l ( m) � (l � m)Pm

l �1( m)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

p (34)

(2l �1)mPm
l ( m)

�(l �m)Pm
l�1( m) �(l �m �1)Pm

l�1( m) : (35)

An identity relating associated POLYNOMIALS with
NEGATIVE m to the corresponding functions with
POSITIVE m is

P �m
l (x) �(�1)m (l � m)!

(l � m)!
Pm

l (x): (36)

Additional identities are

Pl
l(x) �(�1)l(2l �1)!!(1 �x2)1 =2 (37)

Pl
l�1(x) �x(2l �1)Pl

l(x): (38)

Written in terms of x and using the convention
without a leading factor of (�1)m (Arfken 1985,
p. 669), the first few associated Legendre polynomials
are

P0
0(x) �1

P0
1(x) �x

P1
1(x) ��(1 �x2)1=2

P0
2(x) �1

2(3x2 �1)

P1
2(x) ��3x(1 �x2)1 =2

P2
2(x) �3(1 �x2)

P0
3(x) �1

2x(5x2 �3)

P1
3(x) �3

2(1 �5x2)(1 �x2)1 =2

P2
3(x) �15x(1 �x2)

P3
3(x) ��15(1 �x2)3 =2

P0
4(x) �1

8(35x4 �30x2 �3)

P1
4(x) �5

2x(3 �7x2)(1 �x2)1 =2

P2
4(x) �15

2 (7x2 �1)(1 �x2)

P3
4(x) ��105x(1 �x2)3 =2

P4
4(x) �105(1 �x2)2

P0
5(x) �1

8x(63x4 �70x2 �15) :

Written in terms x �cos u (commonly written m �
cos u) ; the first few become

P0
0(cos u) �1

P0
1(cos u) �cos u

P1
1(cos u) ��sin u

P0
2(cos u) �1

2(3 cos2 u �1)

P1
2(cos u) ��3 sin u cos u

P2
2(cos u) �3 sin2 u

P0
3(cos u) �1

2 cos u(5 cos2 u �3)

P1
3(cos u) ��3

2(5 cos2 u �1)sin u

P2
3(cos u) �15 cos u sin2 u

P3
3(cos u) ��15 sin3 u:

The derivative about the origin is

dPm
n (x)

dx

" #
x �0

�
2m�1 sin[1

2p( n � m)] G(1
2n�

1
2m� 1)

p�1=2G(1
2n�

1
2m� 1

2)
(39)

(Abramowitz and Stegun 1972, p. 334), and the
logarithmic derivative is

d ln Pm
l (z)

dz

" #
z�0

�2 tan[1
2p(l�m)]

�
[1
2(l� m)]![1

2(l� m)]!

[1
2(l� m� 1)]![1

2(l� m� 1)]!
: (40)

(Binney and Tremaine 1987, p. 654).

See also CONDON-SHORTLEY PHASE, CONICAL FUNC-

TION, KINGS PROBLEM, LAPLACE’S INTEGRAL, LA-

PLACE-MEHLER INTEGRAL, LEGENDRE FUNCTION OF

THE FIRST KIND, LEGENDRE FUNCTION OF THE

SECOND KIND, SUPER CATALAN NUMBER, TOROIDAL

FUNCTION, TURÁ N’S INEQUALITIES, ULTRASPHERICAL

POLYNOMIAL, ZONAL HARMONIC
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Legendre Polynomial of the Second Kind
LEGENDRE FUNCTION OF THE SECOND KIND

LegendreQ
LEGENDRE FUNCTION OF THE SECOND KIND

Legendre Quadrature
LEGENDRE-GAUSS QUADRATURE

Legendre Relation
Let E(k) and K(k) be complete ELLIPTIC INTEGRALS OF

THE FIRST and SECOND KINDS, with E ?(k) and K ?(k) the
complementary integrals. Then

E(k)K ?(k) �E ?(k)K(k) �K(k)K ?(k) �1
2 p:
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Legendre’s Chi-Function
Portions of this entry contributed by Joe Keane .

The function defined by

xn(z) �
X�
k�0

z2k �1

(2k � 1)n 
(1)

for integral n �2; 3, .... It is related to the POLYLOGA-

RITHM by

xn(z) �1
2[Lin(z) �Lin(�z)] (2)

�Lin(z) �2 � nLi n(z
2) (3)

and to the LERCH TRANSCENDENT by

xn(z)�2�nzF(z2; n; 1
2): (4)

It takes the special values

x2(i)�iK (5)

x2(
ffiffiffi
2

p
�1)� 1

16 p
2�1

4[ln(
ffiffiffi
2

p
�1)]2 (6)

x2(1
2(
ffiffiffi
5

p
�1))� 1

12 p
2�3

4[ln(1
2(
ffiffiffi
5

p
�1))]2 (7)

x2(
ffiffiffi
5

p
�2)� 1

24 p
2�3

4[ln(1
2(
ffiffiffi
5

p
�1))]2 (8)

x2(�1)��1
8 p

2 (9)

x2(1)�1
8 p

2; (10)

where I is the imaginary unit and K is CATALAN’S

CONSTANT (Lewin, p. 19). Other special values in-
clude

xn(1)�l(n) (11)

xn(1)�ib(n); (12)

where l(n) is the DIRICHLET LAMBDA FUNCTION and
b(n) is the DIRICHLET BETA FUNCTION.

See also LERCH TRANSCENDENT, POLYLOGARITHM
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Legendre’s Constant

The number 1.08366 in Legendre’s guess at the PRIME

NUMBER THEOREM

p(n) �
n

ln n � A(n)

with limn0� A(n) :1:08366 : This expression is cor-
rect to leading term only, since it is actually true that
this limit approaches 1 (Rosser and Schoenfeld 1962,
Panaitopol 1999).

See also PRIME COUNTING FUNCTION
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Legendre Series
Because the LEGENDRE FUNCTIONS OF THE FIRST KIND

form a COMPLETE ORTHOGONAL BASIS, any FUNCTION

may be expanded in terms of them

f (x) �
X�
n�0

anPn(x): (1)

Now, multiply both sides by Pm(x) and integrate

g
1

�1

Pm(x)f (x) dx �
X�
n�0

an g
1

�1

Pn(x)Pm(x) dx: (2)

But

g
1

�1

Pn(x)Pm(x) dx �
2

2m � 1
dmn ; (3)

where dmn is the KRONECKER DELTA, so

g
1

�1

Pm(x)f (x) dx �
X�
n�0

an

2

2m � 1
dmn

�
2

2m � 1
am (4)

and

am �
2m � 1

2 g
1

�1

Pm(x)f (x) dx: (5)

See also FOURIER SERIES, JACKSON’S THEOREM,
LEGENDRE POLYNOMIAL, MACLAURIN SERIES, PICO-

NE’S THEOREM, TAYLOR SERIES

Legendre’s Factorization Method
A PRIME FACTORIZATION ALGORITHM in which a
sequence of TRIAL DIVISORS is chosen using a QUAD-

RATIC SIEVE. By using QUADRATIC RESIDUES of N , the
QUADRATIC RESIDUES of the factors can also be found.

See also PRIME FACTORIZATION ALGORITHMS, QUAD-

RATIC RESIDUE, QUADRATIC SIEVE, TRIAL DIVISOR

Legendre’s Formula
Counts the number of POSITIVE INTEGERS less than or
equal to a number x which are not divisible by any of
the first a PRIMES,

f(x; a)� xb c�
X x

pi

$ %
�
X x

pipj

$ %
�
X x

pipjpk

$ %

�. . . ; (1)

where xb c is the FLOOR FUNCTION. Taking a�x gives

f(x; x)�p(x)�p(
ffiffiffi
x

p
)�1

� xb c�
X

pi5
ffiffi
x

p

x

pi

$ %
�

X
piBpj5

ffiffi
x

p

x

pipj

$ %

�
X

piBpjBpk5
ffiffi
x

p

x

p
i
pjpk

$ %
�. . . ; (2)

where p(n) is the PRIME COUNTING FUNCTION. Legen-
dre’s formula holds since one more than the number
of PRIMES in a range equals the number of INTEGERS

minus the number of composites in the interval.

Legendre’s formula satisfies the RECURRENCE RELA-

TION

f(x; a)�f(x; a�1)�f
x

pa

; a�1

 !
: (3)



Let mk �p1 p2 � � �pk ; then

f(mk ; k) � mkb c�
X mk

pi

$ %
�
X mk

pipj

$ %
�. . .

�mk �
X mk

pi

�
X mk

pipj

�. . .

�mk 1 �
1

p � 1

 !
1 �

1

p2

 !
� � �  1 �

1

pk

 !

�
Yk

i�1

(pi �1) � f(mk) ; (4)

where f(n) is the TOTIENT FUNCTION, and

f(smk �t; k) �sf(mk) � f(t; k) ; (5)

where 0 5t 5mk : If t > mk =2 ; then

f(t; k) � f(mk) � f(mk �t �1 ; k): (6)

Note that f(n; n) is not practical for computing p(n)
for large arguments. A more efficient modification is
MEISSEL’S FORMULA.

See also LEHMER’S FORMULA, MAPES’ METHOD, MEIS-

SEL’S FORMULA, PRIME COUNTING FUNCTION
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Legendre’s Quadratic Reciprocity Law
QUADRATIC RECIPROCITY LAW

Legendre Sum
LEGENDRE’S FORMULA

Legendre Symbol
The Legendre symbol is a number theoretic function
(m

n) which is defined to be equal to 9 1 depending on
whether m is a QUADRATIC RESIDUE modulo n . The
definition is sometimes generalized to have value 0 if
m½n;

m

n

 !
�(m½n)

�

0 if m½n
1 if m is a quadratic residue modulo n
�1 if m is a quadratic nonresidue modulo n:

8<
:

(1)

If n is an ODD PRIME, then the JACOBI SYMBOL reduces
to the Legendre symbol. The Legendre symbol is
implemented in Mathematica via the JACOBI SYMBOL,
JacobiSymbol[n , m ].

The Legendre symbol obeys the identity

ab

p

 !
�

a

p

 !
b

p

 !
: (2)

Particular identities include

�1

p

 !
�(�1)(p �1)=2 (3)

2

p

 !
�(�1)(p2�1)=8 (4)

3

p

 !
�

1 if p �1(mod 6)
�1 if p �5(mod 6)

'
(5)

5

p

 !
�

1 if p�91(mod 10)
�1 if p�97(mod 10)

'
(6)

(Nagell 1951, p. 144), as well as the general

q

p

 !
�

p

q

 !
(�1)[(p�1)=2][(q�1)=2]: (7)

See also JACOBI SYMBOL, KRONECKER SYMBOL, QUAD-

RATIC RECIPROCITY THEOREM, QUADRATIC RESIDUE
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Legendre Transform
The Legendre transform of a sequence ckf g is the
sequence akf g with terms given by

an�
Xn

k�0

ck

n
k

� �
n�k

k

� �
;

where n
k

� �
is a BINOMIAL COEFFICIENT (Jin and Dick-

inson 2000). Strehl (1994) and Schmidt (1995) showed
that

Xn

k�0

n
k

� �2
n�k

k

� �2

�
Xn

k�0

n
k

� �
n�k

k

� �Xk

j�0

k
j

� �3

:
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Legendre Transformation
Given a function of two variables

df �
@f

@x
dx �

@f

@y
dy �u dx�v dy; (1)

change the differentials from dx and dy to du and dy
with the transformation

g �f �ux (2)

dg �df �u dx�x du�u dx�v dy�u dx�x du

�v dy�x du: (3)

Then

x ��
@g

@u 
: (4)

v �
@g

@y 
: (5)

Lehmer Continued Fraction
A CONTINUED FRACTION OF THE FORM

b0 �
e1

b1 �
e2

b2 �
e3

b3 � :::

where (bi; ei�1)�(1; 1) or (2, �1) for x � 1; 2½ Þ an
IRRATIONAL NUMBER (Lehmer 1994, Dajani and
Kraaikamp 1999).

See also CONTINUED FRACTION

References
Dajani, K. and Kraaikamp, C. "The Mother of All Continued

Fractions." http://www.math.uu.nl/publications/preprints/
1106.ps.gz.

Lehmer, J. "Semiregular Continued Fractions whose Partial
Denominators are 1 or 2." In The Mathematical Legacy of
Wilhelm Magnus: Groups, Geometry, and Special Func-
tions. Conference on the Legacy of Wilhelm Magnus May
1�/, 1992 (Brooklyn, NY) (Ed. W. Abikoff, J. S. Birman,
and K. Kuiken). Providence, RI: Amer. Math. Soc., 1994.

Lehmer Method
LEHMER-SCHUR METHOD

Lehmer Number
A number generated by a generalization of a LUCAS

SEQUENCE. Let a and b be COMPLEX NUMBERS with

a�b�
ffiffiffiffi
R

p
(1)

ab�Q; (2)

where Q and R are RELATIVELY PRIME NONZERO

INTEGERS and a=b is a ROOT OF UNITY. Then the
Lehmer numbers are

Un(
ffiffiffiffi
R

p
; Q)�

an � bn

a� b
; (3)

and the companion numbers

Vn

ffiffiffiffi
R

p
; Q

� �
�

an � bn

a� b
for n odd

an�bn for n even

8<
: (4)
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Lehmer-Schur Method
An ALGORITHM which isolates ROOTS in the COMPLEX

PLANE by generalizing 1-D bracketing.
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Lehmer’s Conjecture
LEHMER’S MAHLER MEASURE PROBLEM

Lehmer’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Lehmer (1938) showed that every POSITIVE IRRA-

TIONAL NUMBER x has a unique infinite continued
cotangent representation OF THE FORM

x�cot
X�
k�0

�1ð Þkcot�1 bk

" #
;

where the bk/s are NONNEGATIVE and

bk](bk�1)2�bk�1�1:



The case for which the convergence is slowest occurs
when the inequality is replaced by equality, giving
c0 �0 and

ck �(ck �1)2 �ck �1 �1

for k ]1: The first few values are ck are 0, 1, 3, 13,
183, 33673, ... (Sloane’s A024556), resulting in the
constant

j �cot(cot�1 0 �cot�1 1 �cot�1 3 �cot �1 13

�cot �1 183 �cot �1 33673 �cot �1 1133904603

�cot �1 1285739649838492213 �. . .�(�1)kck . . .)

�cot 1
4 p �cot �1 3 �cot �1 13
�

�cot �1 183 �cot �1 33673 �cot �1 1133904603

�cot �1 1285739649838492213 �. . .�(�1)kck . . .)

�0:59263271 . . .

(Sloane’s A030125). j is not an ALGEBRAIC NUMBER of
degree less than 4; but Lehmer’s approach cannot
show whether or not j is TRANSCENDENTAL.

See also ALGEBRAIC NUMBER, TRANSCENDENTAL

NUMBER
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Lehmer’s Formula
A FORMULA related to MEISSEL’S FORMULA.

p(x)� xb c�
Xa

i�1

x

pi

$ %
�

X
15i5j5a

x

pipj

$ %
�. . .

�1
2(b�a�2)(b�a�1)�

X
a5i5b

p
x

pi

 !

�
Xc

i�a�1

Xbi

j�i

p
x

pipj

 !
�(j�1)

" #
;

where xb c is the FLOOR FUNCTION,

a�p(x1=4)

b�p(x1=2)

bi� p
ffiffiffiffiffiffiffiffiffi
x=pi

p� �

c�p(x1=3);

and p(n) is the PRIME COUNTING FUNCTION.
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Lehmer’s Mahler Measure Problem
Portions of this entry contributed by KEVIN O’BRYANT

An UNSOLVED PROBLEM in mathematics attributed to
Lehmer that concerns the minimum MAHLER MEA-

SURE M1(P) for a UNIVARIATE POLYNOMIAL P(x) that is
not a product of CYCLOTOMIC POLYNOMIALS. Lehmer
conjectured that if P(x) is such a polynomial with
integer coefficients, then

M1(P)]M1(1�x�x3�x4�x5�x6�x7�x9�x10)

�m�; (1)

where m�:1:1762 is the largest positive root of this
polynomial. The roots of this polynomial, plotted in
the left figure above, are very special, since 8 of the 10
lie on the UNIT CIRCLE in the COMPLEX PLANE. The
roots of the polynomials (represented by half their
coefficients) giving the two next smallest known
Mahler measures are also illustrated above (Mos-
singhoff, p. S11).

The best current bound is that of Smyth (1971), who
showed that M(F) > u1; where F is a nonzero non-
reciprocal polynomial that is not a product of CYCLO-

TOMIC POLYNOMIALS (Everest 1999), and u1:1:324 is
the real root of x3�x�1�0: Generalizations of
Smyth’s result have been constructed by Lloyd-Smith
(1985) and Dubickas (1997).

In general, the smallest MAHLER MEASURES occur for
polynomials with integers coefficients that are small
in absolute value. The histogram above shows the
distribution of measures for random (�1, 0, 1)-poly-



nomials of random orders 1 to 10. Mossinghoff (1998)
gives a table of the smallest known Mahler measures
for polynomial degrees up to d �24.

See also MAHLER MEASURE
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Lehmer’s Phenomenon

The appearance of nontrivial zeros (i.e., those along
the CRITICAL STRIP with R[z] �1 =2) of the RIEMANN

ZETA FUNCTION z(z) very close together. An example is
the pair of zeros z 1

2 �(7005 �t)i
� �

given by t1 :

0:0606918 and t2 :0:100055 ; illustrated above in
the plot of j z(1

2 �(7005 �t)i) j2 :/

See also CRITICAL STRIP, RIEMANN ZETA FUNCTION
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Lehmer’s Problem
LEHMER’S MAHLER MEASURE PROBLEM, LEHMER’S

TOTIENT PROBLEM

Lehmer’s Theorem
FERMAT’S LITTLE THEOREM CONVERSE

Lehmer’s Totient Problem
Do there exist any COMPOSITE NUMBERS n such that
f(n) ½(n �1); where f(n) is the TOTIENT FUNCTION? No
such numbers are known. In 1932, Lehmer showed
that such an n must be ODD and SQUAREFREE, and
that the number of distinct PRIME FACTORS d(7) ]7:
This was subsequently extended to d(n) ]11 : The
best current results are n > 1020 and d(n) ]14 (Cohen
and Hagis 1980), if 30¶n ; then d(n) ]26 (Wall 1980),
and if 3½n then d(n) ]213 and n ]5:5 �10570 (Lieu-
wens 1970).

See also LEHMER’S MAHLER MEASURE PROBLEM,
TOTIENT FUNCTION
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Lehmus’ Theorem
STEINER-LEHMUS THEOREM

Leibniz Criterion
Also known as the ALTERNATING SERIES TEST. Given a
SERIES

X�
n�1

(�1)n�1an

with an > 0; if an is monotonic decreasing as n 0 �

and

lim
n0�

an�0

then the series CONVERGES.

Leibniz Harmonic Triangle
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(Sloane’s A003506). In the Leibniz harmonic triangle,
each FRACTION is the sum of numbers below it, with
the initial and final entry on each row one over the
corresponding entry in PASCAL’S TRIANGLE. The DE-

NOMINATORS in the second diagonals are 6, 12, 20, 30,
42, 56, ... (Sloane’s A007622).

See also CATALAN’S TRIANGLE, CLARK’S TRIANGLE,
EULER’S TRIANGLE, LOSSNITSCH’S TRIANGLE, NUMBER

TRIANGLE, PASCAL’S TRIANGLE, SEIDEL-ENTRINGER-

ARNOLD TRIANGLE
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Leibniz Identity

dn

dxn 
(uv) �

dnu

dxn
v �

n
1

� �
dn�1u

dxn�1

dv

dx 
� . . .� 

n
r

� �

� dn�ru

dxn�r

dnv

dxr 
�. . .�u

dnv

dxn

where n
k

� �
is a BINOMIAL COEFFICIENT. This can also be

written explicitly as

Dnf (t)g(t) �
Xn

k�0

n
k

� �
Dkf (t)Dn�kg(t)

(Roman 1980).

See also FAÁ DI BRUNO’S FORMULA
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Leibniz Integral Rule

@

@z g
b(z)

a(z)

f (x; z) dx

�g
b(z)

a(z)

@f

@z
dx �f (b(z) ; z)

@b

@z 
�f (a(z) ; z)

@a

@z
:

The differentiation of a definite integral whose limits
are functions of the differential variable. The rule can
be used to evaluate certain unusual definite integrals
such as

f( a) �g  
p

0

ln(1 �2a cos x � a2) dx �2 p ln ½a½

for ½a½ > 1 (Woods 1926). Although the symbolic
mathematics program Mathematica gives an analy-

tic solution to this integral, it gives the solution in a
much more complicated form.
Feynman (1997) recalled seeing the method in Woods
(1926) and remarked "So because I was self-taught
using that book, I had peculiar methods for doing
integrals," and "I used that one damn tool again and
again."

See also DERIVATIVE, INTEGRAL, INTEGRATION UNDER

THE INTEGRAL SIGN
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Leibniz Series
The SERIES for the INVERSE TANGENT,

tan �1 x �x �1
3 x

3 �1
5 x

5 �. . .  :

Plugging in x �1 gives GREGORY’S FORMULA

1
4 p �1 �1

3 �
1
5 �

1
7 �

1
9 �. . . :

This series is intimately connected with the number
of representations of n by k squares rk(n); and also
with GAUSS’S CIRCLE PROBLEM (Hilbert and Cohn-
Vossen 1999, pp. 27�/9).

See also GAUSS’S CIRCLE PROBLEM, GREGORY’S FOR-

MULA, SUM OF SQUARES FUNCTION
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References
Morosawa, S.; Nishimura, Y.; Taniguchi, M.; and Ueda, T.

"Lelong’s Theorem." §8.2 in Holomorphic Dynamics. Cam-
bridge, England: Cambridge University Press, pp. 270�/

76, 2000.



Lemarié’s Wavelet
A wavelet used in multiresolution representation to
analyze the information content of images. The
WAVELET is defined by

H(v) � 2(1 �u)4 315 � 420u � 126u2 � 4u3

315 � 420v � 126v2 � 4v3

" #1 =2

;

where

u �sin2 1
2 v
� �

v �sin2 v

(Mallat 1989).

See also WAVELET
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Lemma
A short THEOREM used in proving a larger THEOREM.
Related concepts are the AXIOM, PORISM, POSTULATE,
PRINCIPLE, and THEOREM.

See also ABEL’S LEMMA, ARCHIMEDES’ LEMMA,
BARNES’ LEMMA, BLICHFELDT’S LEMMA, BOREL-CAN-

TELLI LEMMA, BURNSIDE’S LEMMA, DANIELSON-LANC-

ZOS LEMMA, DEHN’S LEMMA, DILWORTH’S LEMMA,
DIRICHLET’S LEMMA, DIVISION LEMMA, FARKAS’S

LEMMA, FATOU’S LEMMA, FUNDAMENTAL LEMMA OF

CALCULUS OF VARIATIONS, GAUSS’S LEMMA, HENSEL’S

LEMMA, ITÔ ’S LEMMA, JORDAN’S LEMMA, LAGRANGE’S

LEMMA, NEYMAN-PEARSON LEMMA, POINCARÉ ’S HO-

LOMORPHIC LEMMA, POINCARÉ ’S LEMMA, PÓ LYA-

BURNSIDE LEMMA, RIEMANN-LEBESGUE LEMMA,
SCHUR’S LEMMA, SCHUR’S REPRESENTATION LEMMA,
SCHWARZ-PICK LEMMA, SPIJKER’S LEMMA, ZORN’S

LEMMA

Lemma That Is Not Burnside’s
CAUCHY-FROBENIUS LEMMA, PÓLYA ENUMERATION

THEOREM

Lemniscate

A polar curve also called LEMNISCATE OF BERNOULLI

which is the LOCUS of points the product of whose

distances from two fixed points (called the FOCI) a
distance 2a away is the constant a2: Letting the FOCI

be located at (9a; 0); the Cartesian equation is

[(x�a)2�y2][(x�a)2�y2]�a4; (1)

which can be rewritten

x4�y4�2x2y2�2a2(x2�y2): (2)

Letting a?�
ffiffiffi
2

p
a; the POLAR COORDINATES are given

by

r2�a2 cos(2u): (3)

An alternate form is

r2�a2 sin(2u) (4)

The PARAMETRIC EQUATIONS for the lemniscate are

x�
a cos t

1 � sin2 t
: (5)

y�
a sin t cos t

1 � sin2 t
: (6)

The bipolar equation of the lemniscate is

rr0�1
2 a2; (7)

and in PEDAL COORDINATES with the PEDAL POINT at
the center, the equation is

pa2�r3: (8)

The two-center BIPOLAR COORDINATES equation with
origin at a FOCUS is

r1r2�c2: (9)

The lemniscate can also be generated as the ENVEL-

OPE of circles centered on a RECTANGULAR HYPERBOLA

and passing through the center of the HYPERBOLA

(Wells 1991).
Jakob Bernoulli published an article in Acta Erudi-
torum in 1694 in which he called this curve the
lemniscus (Latin for "a pendant ribbon"). Jakob
Bernoulli was not aware that the curve he was
describing was a special case of CASSINI OVALS which



had been described by Cassini in 1680. The general
properties of the lemniscate were discovered by
G. Fagnano in 1750 (MacTutor Archive). Gauss’s
and Euler’s investigations of the ARC LENGTH of the
curve led to later work on ELLIPTIC FUNCTIONS.

The lemniscate is the INVERSE CURVE of the HYPER-

BOLA with respect to its center.

The CURVATURE of the lemniscate is

k �
3
ffiffiffi
2

p
costffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 � cos(2t)
p : (10)

The ARC LENGTH is more problematic. Using the polar
form,

ds2 �dr2 �r2 d u2 (11)

so

ds �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

du

dr

 !2
vuut dr : (12)

But we have

2r dr�2a2 sin(2u) du (13)

r
dr

du 
�

r2

a2 sin(2u) 
(14)

r
du

dr

 !2

�
r4

a4 sin2(2u) 
�

r4

a4[1 � cos2(2u)]

�
r4

a4 � r4 
; (15)

so

ds �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

r4

a4 � r4

s
dr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4

a4 � r4

s
dr �

a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � r4

p dr

�
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r
a

� �4
r ; (16)

and

L �g
a

0

ds �2 g
a

0

ds

dr
dr �2 g

a

0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r

a

� �4
r : (17)

Let t �r =a; so dt �dr =a ; and

L �2a g
1

0

(1 �t4)�1 =2 dt (18)

which, as shown in LEMNISCATE FUNCTION, is given
analytically by

L �
ffiffiffi
2

p
aK

1ffiffiffi
2

p
 !

�
G2 1

4

� �
23 =2

ffiffiffi
p

p a : (19)

If a �1, then

L �5 :2441151086::: (20)

which is related to GAUSS’S CONSTANT M by

L �
2 p

M
: (21)

The quantity L=2 or L =4 is called the LEMNISCATE

CONSTANT and plays a role for the lemniscate analo-
gous to that of p for the CIRCLE.

The AREA of one loop of the lemniscate is

A�1
2 g r2 du�1

2 a2 g
p=4

�p=4

cos(2u) du

�1
4 a2 sin(2u)½ ��p=4

�p=4

�1
2 a2[sin(2u)]p=4

0 �1
2 a2 sin p

2

� �
�sin 0

h i
�1

2 a2: (22)

See also LEMNISCATE FUNCTION, LICHTENFELS MINI-

MAL SURFACE
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Lemniscate (Mandelbrot Set)

A curve on which points of a MAP zn (such as the
MANDELBROT SET) diverge to a given value rmax at the
same rate. A common method of obtaining lemnis-
cates is to define an INTEGER called the COUNT which
is the largest n such that ½zn ½Br where r is usually
taken as r �2. Successive COUNTS then define a series
of lemniscates, which are called EQUIPOTENTIAL

CURVES by Peitgen and Saupe (1988).

See also COUNT, MANDELBROT SET
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Lemniscate Case
The case of the WEIERSTRASS ELLIPTIC FUNCTION with
invariants g2 �1 and g3 �0:/

See also EQUIANHARMONIC CASE, WEIERSTRASS EL-

LIPTIC FUNCTION, PSEUDOLEMNISCATE CASE
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Lemniscate Constant
Let

L �
1ffiffiffiffiffiffi
2 p

p G 1
4

� �h i2

�5 :2441151086 . . .

be the ARC LENGTH of a LEMNISCATE with a � 1. Then
the lemniscate constant is the quantity L=2 (Abra-
mowitz and Stegun 1972), or L =4 �1:311028777 . . .
(Todd 1975, Le Lionnais 1983). Todd (1975) cites
T. Schneider (1937) as proving L to be a TRANSCEN-

DENTAL NUMBER.

See also LEMNISCATE
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Lemniscate Function
The lemniscate functions arise in rectifying the ARC

LENGTH of the LEMNISCATE. The lemniscate functions
were first studied by Jakob Bernoulli and Giulio
Fagnano. A historical account is given by Ayoub
(1984), and an extensive discussion by Siegel (1969).
The lemniscate functions were the first functions
defined by inversion of an integral, which was first
done by Gauss.

L�2a g
1

0

(1�t4)�1=2 dt: (1)

Define the functions

f(x)�arcsinlemn x g
x

0

(1�t4)�1=2 dt (2)

f?(x)�arccoslemn x�g
1

x

(1�t4)�1=2 dt; (3)

where

6�
L

a
; (4)

and write

x�sinlemn f (5)

x�coslemn f?: (6)

There is an identity connecting f and f? since

f(x)�f?(x)�
L

2a
�1

2 6 ; (7)

so

sinlemn f�coslemn 1
2 6�f
� �

: (8)

These functions can be written in terms of JACOBI

ELLIPTIC FUNCTIONS,

u�g
sd(u; k)

0

[(1�k?2y2)(1�k2y2)]�1=2 dy: (9)

Now, if k�k?�1=
ffiffiffi
2

p
; then



u�g
sd(u; 1=

ffiffi
2

p
)

0

1�1
2 y2

� �
1�1

2 y2
� �h i�1=2

dy

�g
sd(u; 1=

ffiffi
2

p
)

0

1�1
4 y4

� ��1=2

dy: (10)

Let t�y=
ffiffiffi
2

p
so dy�

ffiffiffi
2

p
dt;

u�
ffiffiffi
2

p
g

sd(u; 1=
ffiffi
2

p
)=
ffiffi
2

p

0

(1�t4)�1=2 dt (11)

uffiffiffi
2

p �g
sd(u; 1=

ffiffi
2

p
)=
ffiffi
2

p

0

(1�t4)�1=2 dt (12)

u�g
sd(u

ffiffi
2

p
; 1=

ffiffi
2

p
)=
ffiffi
2

p

0

(1�t4)�1=2 dt (13)

and

sinlemnf�
1ffiffiffi
2

p sd f
ffiffiffi
2

p
;

1ffiffiffi
2

p
 !

: (14)

Similarly,

u�g
1

cn(u; k)

(1�t2)�1=2(k?2�k2t2)�1=2 dt

�g
1

cn(u; 1=
ffiffi
2

p
)

(1�t2)�1=2 1
2�

1
2 t2

� ��1=2

dt

�
ffiffiffi
2

p
g

1

cn(u; 1=
ffiffi
2

p
)

(1�t4)�1=2 dt (15)

uffiffiffi
2

p �g
1

cn(u; 1=
ffiffi
2

p
)

(1�t4)�1=2 dt (16)

u�g
1

cn(u
ffiffi
2

p
; 1=

ffiffi
2

p
)

(1�t4)�1=2 dt; (17)

and

coslemnf�cn f
ffiffiffi
2

p
;

1ffiffiffi
2

p
 !

: (18)

We know

coslemn 1
2 6
� �

�cn 1
2 6

ffiffiffi
2

p
;

1ffiffiffi
2

p
 !

�0: (19)

But it is true that

cn(K; k)�0; (20)

so

K
1ffiffiffi
2

p
 !

�1
2

ffiffiffi
2

p
6�

1ffiffiffi
2

p 6 (21)

G2 1
4

� �
4
ffiffiffi
p

p �
1ffiffiffi
2

p 6 (22)

L�a6�a
ffiffiffi
2

p G2 1
4

� �
4
ffiffiffi
p

p �
G2 1

4

� �
23=2

ffiffiffi
p

p a: (23)

By expanding (1�t4)�1=2 in a BINOMIAL SERIES and
integrating term by term, the arcsinlemn function
can be written

f(x)�g
v

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t4

p �
X�
n�0

1
2

� �
n
x4n�1

n!(4n � 1)
; (24)

where (a)n is the RISING FACTORIAL (Berndt 1994).
Ramanujan gave the following inversion FORMULA for
f(x): If

umffiffiffi
2

p �
X�
n�0

1
2

� �
n
x4n�1

n!(4n � 1)
; (25)

where

m�
G2 1

4

� �
2p3=2

(26)

is the constant obtained by letting x�1 and u�p=2;
and

v�2�1=2sd(mu); (27)

then

m2

2x2
�csc2 u�

1

p
�8

X�
n�1

n cos(2nu)

e2pn � 1
(28)

(Berndt 1994). Ramanujan also showed that if 0B
uBp=2; then

�
mffiffiffi
2

p
X�
n�0

1
2

� �
n
v4n�1

n!(4n � 1)

�cot u�
u

p
�4

X�
n�1

sin(2nu)

22pn � 1
; (29)

ln v�1
6 p�

1
2 ln 2�

X�
n�0

1
4

� �
n
v4n

3
4

� �
n
4n

�ln(sin u)�
u2

2p
�2

X�
n�1

cos(2nu)

n(e2pn � 1)
; (30)

1
2 tan�1 v�

X�
n�0

sin[(2n � 1)u]

(2n � 1)cosh 1
2(2n � 1)p
h i ; (31)

1
4 cos�1(v2)�

X�
n�0

(�1)ncos[(2n � 1)u]

(2n � 1)cosh 1
2(2n � 1)p
h i ; (32)

and



ffiffiffi
2

p

4 m

X�
n�0

22n(n!)2

(2n � 1)!(4n � 3)
v4n�3

�
pu

8
�
X�
n�0

( �1)nsin[(2n � 1)u]

(2n � 1)2cosh 1
2(2n � 1)p
h i (33)

(Berndt 1994).

A generalized version of the lemniscate function can
be defined by letting 0 5 u 5 p=2 and 0 5v 51 : Write

2
3 um �g

v

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t6

p ; (34)

where m is the constant obtained by setting u � p=2
and v �1. Then

m �
ffiffiffi
p

p

G 2
3

� �
G 5

6

� � ; (35)

and Ramanujan showed

4m2

9v2 
�csc2 u �

2

p
ffiffiffi
3

p �8
X�
n �1

( �1)n�1n cos(2n u)

e pn
ffiffi
3

p
� ( �1)n (36)

(Berndt 1994).

See also ELLIPTIC FUNCTION, ELLIPTIC INTEGRAL,
HYPERBOLIC LEMNISCATE FUNCTION
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Lemniscate Inverse Curve
The INVERSE CURVE of a LEMNISCATE in a CIRCLE

centered at the origin and touching the LEMNISCATE

where it crosses the X -AXIS produces a RECTANGULAR

HYPERBOLA (Wells 1991).

See also RECTANGULAR HYPERBOLA
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Lemniscate of Bernoulli
LEMNISCATE

Lemniscate of Gerono
EIGHT CURVE

Lemoine Axis
LEMOINE LINE

Lemoine Circle

Draw lines P1Q1 ; P2Q2 ; and P3Q3 through the
SYMMEDIAN POINT K and parallel to the sides of the
triangle DA1A2A3 : The points where the parallel lines
intersect the sides of DA1A2A3 then lie on a CIRCLE

known as the Lemoine circle, or sometimes the
TRIPLICATE-RATIO CIRCLE (Tucker 1883). This circle
has center at the MIDPOINT Z of OK , where O is the
CIRCUMCENTER, and RADIUS

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �r2

c

q
�1

2 R sec v;

where R is the CIRCUMRADIUS, rc is RADIUS of the
COSINE CIRCLE, and v is the BROCARD ANGLE of the
original triangle (Johnson 1929, p. 274). The Lemoine
circle and BROCARD CIRCLE are concentric, and the
triangles DQ1P3K ; DKQ3P2 ; and DP1KQ2 are similar
to DA1A3A2 (Tucker 1883).
The Lemoine circle divides any side into segments
proportional to the squares of the sides

A2P2 : P2Q3 : Q3A3 �a2
3 : a

2
1 : a

2
2

Furthermore, the chords cut from the sides by the
Lemoine circle are proportional to the squares of the
sides.

The COSINE CIRCLE is sometimes called the second
Lemoine circle. The Lemoine circle is a special case of
a TUCKER CIRCLE.

See also COSINE CIRCLE, LEMOINE HEXAGON, LE-

MOINE LINE, SYMMEDIAN POINT, TAYLOR CIRCLE,
TUCKER CIRCLES
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Lemoine Hexagon

The closed self-intersecting cyclic hexagon formed by
joining the adjacent PARALLELS in the construction of
the LEMOINE CIRCLE. The sides of this hexagon have
the property that, in addition to Q1P2 A1A2 ;k
Q2P3 A2A3 ;k and Q3P2 A1A3 ;k the remaining sides
Q1P1 ; Q2P2 ; and Q3P3 are ANTIPARALLEL to A2A3 ;
A1A3 ; and A1A2 ; respectively. The Lemoine hexagon is
a special case of a TUCKER HEXAGON.

See also COSINE HEXAGON, LEMOINE CIRCLE, TUCKER

HEXAGON

Lemoine Line
The Lemoine line, also called the LEMOINE AXIS, is the
perspectivity axis of a TRIANGLE and its TANGENTIAL

TRIANGLE, and also the TRILINEAR POLAR of the
CENTROID of the triangle vertices. It is also the POLAR

of K with regard to its CIRCUMCIRCLE, and is PERPEN-

DICULAR to the BROCARD AXIS.

The centers of the APOLLONIUS CIRCLES L1 ; L2 ; and L3

are COLLINEAR on the LEMOINE LINE. This line is
PERPENDICULAR to the BROCARD AXIS OK and is the
RADICAL AXIS of the CIRCUMCIRCLE and the BROCARD

CIRCLE. It has equation

a

a 
�

b

b 
�

g

c

in terms of TRILINEAR COORDINATES (Oldknow 1996).

See also APOLLONIUS CIRCLES, BROCARD AXIS, CEN-

TROID (TRIANGLE), CIRCUMCIRCLE, COLLINEAR, LE-

MOINE CIRCLE, SYMMEDIAN POINT, POLAR, RADICAL

AXIS, SYMMEDIAN, TANGENTIAL TRIANGLE, TRILINEAR

POLAR
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Lemoine Point
SYMMEDIAN POINT

Lemoine’s Problem
Given the vertices of the three EQUILATERAL TRIAN-

GLES placed on the sides of a TRIANGLE T , construct
T . The solution can be given using KIEPERT’S HYPER-

BOLA.

See also KIEPERT’S HYPERBOLA

Lemon

A SURFACE OF REVOLUTION defined by Kepler. It
consists of less than half of a circular ARC rotated
about an axis passing through the endpoints of the
ARC. The equations of the upper and lower boundaries
in the xz plane are

z9�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �(x �r)2

q
for R � r and x � [�(R �r) ; R �r] : The CROSS

SECTION of a lemon is a LENS. The lemon is the inside
surface of a SPINDLE TORUS. The American football is
shaped like a lemon.

See also APPLE, LENS, OVAL, PROLATE SPHEROID,
SPINDLE TORUS
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Length (Curve)
Let g(t) be a smooth curve in a MANIFOLD M from x to
y with g(0) �x and g(1) �y: Then g?(t) � Tg(t) where Tx

is the TANGENT SPACE of M at x . The length of g with
respect to the Riemannian structure is given by

g
1

0

½½g ?(t) ½½g(t) dt:

See also ARC LENGTH, DISTANCE

Length (Number)
The length of a number n in base b is the number of
DIGITS in the base-b numeral for n , given by the
formula

L(n ; b) � logb(n)b c�1;

where xb c is the FLOOR FUNCTION.

The MULTIPLICATIVE PERSISTENCE of an n -DIGIT is
sometimes also called its length.

See also CONCATENATION, DIGIT, FIGURES, MULTI-

PLICATIVE PERSISTENCE

Length (Partial Order)
For a PARTIAL ORDER, the size of the longest CHAIN is
called the length.

See also WIDTH (PARTIAL ORDER)

Length (Size)
The longest dimension of a 3-D object.

See also HEIGHT, WIDTH (SIZE)

Length Distribution Function
A function giving the distribution of the interpoint
distances of a curve. It is defined by

p(r) �
1

N

X
ij

drij�r:

See also RADIUS OF GYRATION
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Length-Preserving Transformation
ISOMETRY

Lengyel’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let L denote the partition lattice of the SET

f1; 2; . . . ; ng: The MAXIMUM element of L is

M�ff1; 2; . . . ; ngg (1)

and the MINIMUM element is

m�ff1g; f2g; . . . ; fngg: (2)

Let Zn denote the number of chains of any length in L
containing both M and m . Then Zn satisfies the
RECURRENCE RELATION

Zn�
Xn�1

k�1

s(n; k)Zk; (3)

where s(n; k) is a STIRLING NUMBER OF THE SECOND

KIND. Lengyel (1984) proved that the QUOTIENT

r(n)�
Zn

(n!)2(2 ln 2)�nn1�(ln 2)=3
(4)

is bounded between two constants as n 0 �; and
Flajolet and Salvy (1990) improved the result of Babai
and Lengyel (1992) to show that

L� lim
n0�

r(n)�1:0986858055 . . . : (5)
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Lens

A figure composed of two equal and symmetrically
placed circular ARCS. It is also known as the FISH

BLADDER (Pedoe 1995, p. xii) or VESICA PISCIS. The
latter term is often used for the particular lens
formed by the intersection of two unit CIRCLES whose



centers are offset by a unit distance (Rawles 1997). In
this case, the height of the lens is given by letting
d �r �R �1 in the equation for a CIRCLE-CIRCLE

INTERSECTION

a �
1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2R2 �(d2 �r2 �R2)2

q
; (1)

giving a �
ffiffiffi
3

p
: The AREA of the VESICA PISCIS is given

by plugging d �R into the CIRCLE-CIRCLE INTERSEC-

TION area equation with r �R ,

A �2R2 cos�1 d

2R

 !
�1

2 d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 �d2

p
; (2)

giving

A �1
6 4 p �3

ffiffiffi
3

p� �
:1:22837 : (3)

Renaissance artists frequently surrounded images of
Jesus with the vesica piscis (Rawles 1997). An
asymmetrical lens is produced by a CIRCLE-CIRCLE

INTERSECTION for unequal CIRCLES.

A lens-shaped region also arises in the study of
BESSEL FUNCTIONS. Letting z �ei u ; the inequality

z exp(1 � z2)

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
�����

�����51

holds in the region illustrated above. This region can
be parameterized in terms of a variable u as

r2 �
2u

sinh(2u) 
(4)

sin2 u �sinh u(u cosh u �sinh u) : (5)

As u increases from u to its maximum value of
1.19967874... (the root of sinh u(u cosh u �sinh u) �
0); r decreases from 1 to 0.6627434... (Plummer 1960,
p. 47; Watson 1966, p. 270). This curve is very
important in the theory of KAPTEYN SERIES.

See also CIRCLE, CIRCLE-CIRCLE INTERSECTION, DOU-

BLE BUBBLE, FLOWER OF LIFE, GOAT PROBLEM,
KAPTEYN SERIES, LEMON, LUNE, REULEAUX TRIAN-

GLE, SECTOR, SEED OF LIFE, SEGMENT, VENN DIA-

GRAM
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Lens Space
A lens space L(p ; q) is the 3-MANIFOLD obtained by
gluing the boundaries of two solid TORI together such
that the meridian of the first goes to a (p, q )-curve on
the second, where a (p, q )-curve has p meridians and
q longitudes.
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Lenstra Elliptic Curve Method
A method of factoring INTEGERS using ELLIPTIC

CURVES.
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Léon Anne’s Theorem

Pick a point O in the interior of a QUADRILATERAL

which is not a PARALLELOGRAM. Join this point to
each of the four VERTICES, then the LOCUS of points O
for which the sum of opposite TRIANGLE areas is half
the QUADRILATERAL AREA is the line joining the
MIDPOINTS M1 and M2 of the DIAGONALS.

See also DIAGONAL (POLYGON), MIDPOINT, QUADRI-

LATERAL
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Leonardo’s Paradox
In the depiction of a row of identical columns parallel
to the plane of a PERSPECTIVE drawing, the outer
columns should appear wider even though they are
farther away.

See also PERSPECTIVE, VANISHING POINT, ZEEMAN’S

PARADOX
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Leptokurtic
A distribution with a high peak so that the KURTOSIS

satisfies g2 > 0:/

See also KURTOSIS

LerchPhi
LERCH TRANSCENDENT

Lerch’s Theorem
If there are two functions F1(t) and F2(t) with the
same integral transform

T[F1(t)] �T[F2(t)] �f (s) ; (1)

then a NULL FUNCTION can be defined by

d0(t) �F1(t) �F2(t) (2)

so that the integral

g
a

0

d0(t) dt �0 (3)

vanishes for all a �0.

See also NULL FUNCTION

Lerch Transcendent
A generalization of the HURWITZ ZETA FUNCTION and
POLYLOGARITHM function. Many sums of reciprocal
POWERS can be expressed in terms of it. It is defined
by

F(z ; s ; a) �
X�
k �0

zk

(a � k)s ; (1)

where any term with a �k �0 is excluded. The Lerch
transcendent is given by the Mathematica command
LerchPhi[z , s , a ].

The Lerch transcendent can be used to express the
DIRICHLET BETA FUNCTION

b(s) �
X�
k�0

(�1)k(2k �1)�s2 �s F �1; s ; 1
2

� �
; (2)

the integral of the FERMI-DIRAC DISTRIBUTION

g
�

0

ks

ek � m � 1
dk �e m G(s �1)F(�e m ; s �1; 1); (3)

where G(z) is the GAMMA FUNCTION, and to evaluate
the DIRICHLET L -SERIES.

See also DIRICHLET BETA FUNCTION, DIRICHLET L -

SERIES, FERMI-DIRAC DISTRIBUTION, HURWITZ ZETA

FUNCTION, LEGENDRE’S CHI-FUNCTION, POLYLOGA-

RITHM
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Less
A quantity a is said to be less than b if a is smaller
than b , written a B b . If a is less than or EQUAL to b ,
the relationship is written a 5b: If a is MUCH LESS

than b , this is written a �b : Statements involving
GREATER than and less than symbols are called
INEQUALITIES.

See also EQUAL, GREATER, INEQUALITY, MUCH GREAT-

ER, MUCH LESS

Lester Circle

The CIRCUMCENTER C , NINE-POINT CENTER N , and the
first and second FERMAT POINTS F1 and F2 of a
triangle lie on a circle known as the Lester circle.

See also CIRCUMCENTER, FERMAT POINTS, NINE-POINT

CENTER
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L-Estimate
A ROBUST ESTIMATION based on LINEAR COMBINA-

TIONS of ORDER STATISTICS. Examples include the
MEDIAN and TUKEY’S TRIMEAN.

See also M -ESTIMATE, R -ESTIMATE
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Press, pp. 694 �/00, 1992.

Letter-Value Display
A method of displaying simple statistical parameters
including HINGES, MEDIAN, and upper and lower
values.

References
Tukey, J. W. Explanatory Data Analysis. Reading, MA:

Addison-Wesley, p. 33, 1977.

Leudesdorf Theorem
Let t(m) denote the set of the f(m) numbers less than
and RELATIVELY PRIME to m , where f(n) is the
TOTIENT FUNCTION. Then if

Sm �
X
t(m)

1

t
;

then

Sm �0(mod m2) if 2¶m; 3¶m

Sm �0 mod 1
3 m

2
� �

if 2¶m; 3¶m

Sm �0 mod 1
2 m

2
� �

2¶m; 3¶m; m not a power of 2

Sm �0 mod 1
6 m

2
� �

if 2¶m; 3¶m

Sm �0 mod 1
4 m

2
� �

if m �2a :

8>>>>>>>><
>>>>>>>>:

See also BAUER’S IDENTICAL CONGRUENCE, TOTIENT

FUNCTION
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Level Curve
A LEVEL SET in 2-D.

See also CONTOUR PLOT, EQUIPOTENTIAL CURVE,
LEVEL SURFACE

Level Set
The level set of c is the SET of points

f(x1 ; . . . ; xn) � U : f (x1 ; . . .  ; xn) �c g �Rn ;

and is in the DOMAIN of the function. If n �2, the level
set is a plane curve (a LEVEL CURVE). If n �3, the level
set is a surface (a level surface).

See also CONTOUR PLOT, EQUIPOTENTIAL CURVE,
LEVEL CURVE, LEVEL SURFACE

References
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Geometry of Curves and Surfaces with Mathematica, 2nd
ed. Boca Raton, FL: CRC Press, pp. 291 �/93, 1997.

Level Surface
A LEVEL SET in 3-D.

Levenberg-Marquardt Method
Levenberg-Marquardt is a popular alternative to the
Gauss-Newton method of finding the minimum of a
function F(x) that is a sum of squares of nonlinear
functions,

F(x) �
1

2

Xm

i�1

[fi(x)]2 :

Let the JACOBIAN of fi(x) be denoted Ji(x); then the
Levenberg-Marquardt method searches in the direc-
tion given by the solution p to the equations

(JT
k J) � l kI) pk��JT

k fk;

where lk are nonnegative scalars and I is the
IDENTITY MATRIX. The method has the nice property
that, for some scalar D related to lk ; the vector pk is
the solution of the constrained subproblem of mini-
mizing ½½Jkp �fk ½½

2
2 =2 subject to ½½p ½½2 5D (Gill et al.

1981, p. 136).

The method is used by the Mathematica 4.0 com-
mand FindMinimum[f , {x , x0 }] when given the
Method- �LevenbergMarquardt option.

See also MINIMUM, OPTIMIZATION
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Leviathan Number
The number (10666)! ; where 666 is the BEAST NUMBER

and n! denotes a FACTORIAL. The number of trailing
zeros in the Leviathan number is 25 �10664 �143
(Pickover 1995).

See also 666, APOCALYPSE NUMBER, APOCALYPTIC

NUMBER, BEAST NUMBER
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Levi-Civita Connection
On a RIEMANNIAN MANIFOLD M , there is a canonical
CONNECTION called the Levi-Civita connection (pro-
nounced le-ve shi-vit-), sometimes also known as the
Riemannian connection or COVARIANT DERIVATIVE. As
a CONNECTION on the TANGENT BUNDLE, it provides a
well-defined method for differentiating VECTOR

FIELDS, forms, or any other kind of TENSOR. The
theorem asserting the existence of the Levi-Civita
connection, which is the unique TORSION-free CON-

NECTION 9 on the TANGENT BUNDLE TM compatible
with the metric, is called the FUNDAMENTAL THEOREM

OF RIEMANNIAN GEOMETRY.

These properties can be described as follows. Let X ,
Y , and Z be any VECTOR FIELDS, and �; � denote the
METRIC. Recall that vector fields act as DERIVATIONS

on the ring of smooth functions by the DIRECTIONAL

DERIVATIVE, and that this action extends to an action
on vector fields. The notation [X, Y ] is the COMMU-

TATOR of vector fields, XY �YX : The Levi-Civita
connection is torsion-free, meaning

9X 9Y Z �9Y 9XZ �9[X ; Y]Z ; (1)

and is compatible with the metric

X(Y ; Z) ��9XY ; Z���Y ; 9XZ�: (2)

In coordinates, the Levi-Civita connection can be
described using the CHRISTOFFEL SYMBOLS OF THE

SECOND KIND Gk
i; j : In particular, if ei �@=@xi ; then

Gk
i; j ��9ei

ej ; ek �; (3)

or in other words,

9ei
ej �

X
k

Gk
i; jek : (4)

As a CONNECTION on the TANGENT BUNDLE TM ; it
induces a connection on the DUAL BUNDLE T �M and
on all their TENSOR PRODUCTS TMk �TM �l : Also,
given a SUBMANIFOLD N it restricts to TN to give
the Levi-Civita connection from the restriction of the
metric to N .

The Levi-Civita connection can be used to describe
many intrinsic geometric objects. For instance, a path
c : R 0 M is a geodesic IFF 9ċ(t) ċ(t) �0 where ċ is the

path’s TANGENT VECTOR. On a more general path c ,
the equation 9ċ(t)v(t)�0 defines PARALLEL TRANSPORT

for a VECTOR FIELD v along c . The SECOND FUNDA-

MENTAL FORM II of a submanifold N is given by
pQ(9TN where TN is the TANGENT BUNDLE of N and
pQ is projection onto the NORMAL BUNDLE Q . The
CURVATURE of M is given by 9(9:/

See also CHRISTOFFEL SYMBOL, CONNECTION, COVAR-

IANT DERIVATIVE, CURVATURE, FUNDAMENTAL THEO-

REM OF RIEMANNIAN GEOMETRY, GEODESIC,
PRINCIPAL BUNDLE, RIEMANNIAN MANIFOLD, RIEMAN-

NIAN METRIC

References
Carmo, M. Differential Geometry of Curves and Surfaces.

Englewood Cliffs, NJ: Prentice-Hall, pp. 441�/42, 1976.
Gallot, S.; Hulin, D.; and Lafontaine, J. §II.B in Riemannian

Geometry. New York: Springer-Verlag, 1980.
Lee, J. M. Riemannian Manifolds: An Introduction to

Curvature. New York: Springer-Verlag, pp. 65�/1, 1997.
Sternberg, S. Differential Geometry. New York: Chelsea,

1983.

Levi-Civita Density
PERMUTATION SYMBOL

Levi-Civita Symbol
PERMUTATION SYMBOL

Levi-Civita Tensor
PERMUTATION TENSOR

Levi Graph

The unique 8-CAGE GRAPH (right figure) consisting of
the union of the two leftmost subgraphs illustrated
above. It has 45 nodes, 15 edges, and all nodes have
degree 3. The Levi graph is a GENERALIZED POLYGON

which is the point/line INCIDENCE GRAPH of the
generalized quadrangle W2: The graph is a 4-arc
transitive cubic graph, was first discovered by Tutte
(1947), and is also called the Tutte-Coxeter graph



(Bondy and Murty 1976, p. 237).

An alternative embedding is illustrated above.

See also CAGE GRAPH
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Levine-O’Sullivan Greedy Algorithm
For a sequence fxi g; the Levine-O’Sullivan greedy
algorithm is given by

x1 �1

xi � max
1 5j5i �1

(j �1)(i � xj)

for i �1.

See also GREEDY ALGORITHM, LEVINE-O’SULLIVAN

SEQUENCE
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Levine-O’Sullivan Sequence
The sequence generated by the LEVINE-O’SULLIVAN

GREEDY ALGORITHM: 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28,

32, 36, 40, 45, 50, 55, 60, 65, ... (Sloane’s A014011).
The reciprocal sum of this sequence is conjectured to
bound the reciprocal sum of all A -SEQUENCE.
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Lévy Constant
Let pn =qn be the nth CONVERGENT of a REAL NUMBER

x . Then almost all REAL NUMBERS satisfy

L � lim
n0�

(qn)1 =n �e p
2 =(12 ln 2) �3:27582291872 . . .

See also CONTINUED FRACTION, KHINTCHINE’S CON-

STANT, KHINTCHINE-LÉ VY CONSTANT
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Lévy Distribution

F[PN(k)] �F[exp(�N ½k½b)];

where F is the FOURIER TRANSFORM of the probabil-
ity PN(k) for N -step addition of random variables.
Lévy showed that b � (0 ; 2) for P(x) to be NONNEGA-

TIVE. The Lévy distribution has infinite variance and
sometimes infinite mean. The case b �1 gives a
CAUCHY DISTRIBUTION, while b �2 gives a GAUSSIAN

DISTRIBUTION.

See also CAUCHY DISTRIBUTION, GAUSSIAN DISTRIBU-

TION, LÉ VY FLIGHT

Lévy Dragon
LÉ VY FRACTAL

Lévy Flight
RANDOM WALK trajectories which are composed of
self-similar jumps. They are described by the LÉ VY

DISTRIBUTION.

See also LÉ VY DISTRIBUTION
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Lévy Fractal

A FRACTAL curve, also called the C-CURVE (Gosper
1972). The base curve and motif are illustrated below.

Duvall and Keesling (1999) proved that the HAUS-

DORFF DIMENSION of the boundary of the Lévy fractal
is rigorously greater than one, obtaining an estimate
of 1.934007183.

See also LÉ VY TAPESTRY
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Lévy, P. "Plane or Space Curves and Surfaces Consisting of
Parts Similar to the Whole." In Classics on Fractals (Ed.
G. A. Edgar). Reading, MA: Addison-Wesley, pp. 181 �/39,
1993.

Weisstein, E. W. "Fractals." MATHEMATICA NOTEBOOK FRAC-

TAL.M.

Lévy Function
BROWN FUNCTION

Lévy Process
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Lévy Tapestry

The FRACTAL curve illustrated above, with base curve
and motif illustrated below.

See also LÉ VY FRACTAL
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Lewis Regulator
The ORDINARY DIFFERENTIAL EQUATION

y??�(1� ½y½)y?�y�0:
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Lew k-Gram
Diagrams invented by Lewis Carroll which can be
used to determine the number of minimal MINIMAL

COVERS of n numbers with k members.
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Lexicographic Order
An ordering for the Cartesian product � of any two
sets A and B with order relations BA and BB;
respectively, such that if (a1; b1) and (a2; b2) both
belong to A�B; then (a1; b1)B(a2; b2) IFF either



1. a1 BAa2 ; or
2. a1 �a2 and b1 BBb2 :/

The lexicographic order can be readily extended to
cartesian products of arbitrary length by recursively
applying this definition, i.e., by observing that
A �B �C �A �(B �C) :/

When applied to PERMUTATIONS, lexicographic order
is increasing numerical order (or equivalently, alpha-
betic order for lists of symbols; Skiena 1990, p. 4). For
example, the PERMUTATIONS of f1; 2; 3g in lexico-
graphic order are 123, 132, 213, 231, 312, and 321.

When applied to subsets, two subsets are ordered by
their smallest elements (Skiena 1990, p. 44). For
example, the subsets of f1 ; 2 ; 3g in lexicographic
order are fg; f1g; f1; 2g; f1 ; 2; 3g; f1; 3g; f2 g; f2; 3g;
f3g:/
Lexicographic order is sometimes called dictionary
order.

See also ORDER (ORDERING), MONOMIAL ORDER,
TRANSPOSITION ORDER
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Lexis Ratio

L �
s

sB

;

where s is the VARIANCE in a set of s LEXIS TRIALS and
sB is the VARIANCE assuming BERNOULLI TRIALS. If
L B1, the trials are said to be SUBNORMAL, and if
L �1, the trials are said to be SUPERNORMAL.

See also BERNOULLI TRIAL, LEXIS TRIALS, SUBNOR-

MAL, SUPERNORMAL

Lexis Trials
n sets of s trials each, with the probability of success
p constant in each set.

var
x

n

 !
�spq �s(s �1)s2

p ;

where s2
p is the VARIANCE of p

i
:/

See also BERNOULLI TRIAL, LEXIS RATIO

L-Function
ARTIN L -FUNCTION, DIRICHLET L -SERIES, EULER L -

FUNCTION, HECKE L -FUNCTION

Lg
The LOGARITHM to BASE 2 is denoted lg ; i.e.,

lg x �log2 x:

Care is needed in interpreting this symbol, however,
since Russian literature uses lg x to denote the base-
10 logarithm denoted in this work by log x:/

See also BASE (LOGARITHM), E, LN, LOGARITHM,
NAPIERIAN LOGARITHM, NATURAL LOGARITHM

L’Hospital’s Cubic
TSCHIRNHAUSEN CUBIC

L’Hospital’s Rule
Let lim stand for the LIMIT limx0c; limx0c� ; limx0c� ;
limx0�; or limx0��; and suppose that lim f (x) and lim
g(x) are both ZERO or are both9�: If

lim
f ?(x)

g?(x)

has a finite value or if the LIMIT is9�; then

lim
f (x)

g(x)
�lim

f ?(x)

g?(x)
:

L’Hospital’s rule occasionally fails to yield useful
results, as in the case of the function limu0� u(u2�
1)�1=2: Repeatedly applying the rule in this case gives
expressions which oscillate and never converge,

lim
u0�

u

(u2 � 1)1=2� lim
u0�

1

u(u2 � 1)�1=2

� lim
u0�

(u2 � 1)1=2

u
� lim

u0�

u(u2 � 1)�1=2

1

� lim
u0�

u

(u2 � 1)1=2 :

(The actual LIMIT is 1.)
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L’Huilier’s Theorem
Let a SPHERICAL TRIANGLE have sides of length a , b ,
and c , and SEMIPERIMETER s . Then the SPHERICAL

EXCESS E is given by



tan 1
4 E
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 1

2 s
� �

tan 1
2(s �a)
h i

tan 1
2(s �b)
h i

tan 1
2(s �c)
h ir

:

See also GIRARD’S SPHERICAL EXCESS FORMULA,
SPHERICAL EXCESS, SPHERICAL TRIANGLE
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Liar’s Paradox
The paradox of a man who states "I am lying." If he is
lying, then he is telling the truth, and vice versa.
Another version of this paradox is the EPIMENIDES

PARADOX. Such paradoxes are often analyzed by
creating so-called "metalanguages" to separate state-
ments into different levels on which truth and falsity
can be assessed independently. For example, Ber-
trand Russell noted that, "The man who says, ‘I am
telling a lie of order n ’ is telling a lie, but a lie of order
n �1/" (Gardner 1984, p. 222).

See also EPIMENIDES PARADOX, EUBULIDES PARADOX
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Lichnerowicz Conditions
Second and higher derivatives of the METRIC TENSOR

gab need not be continuous across a surface of
discontinuity, but gab and gab ; c must be continuous
across it.

Lichnerowicz Formula

D �Dc �9�9c �1
4 Rc �1

2 F �L ( c) ;

where D is the Dirac operator D : G(W �) 0 G(W �) ; 9
is the COVARIANT DERIVATIVE on SPINORS, R is the
CURVATURE SCALAR, and F �L is the self-dual part of
the curvature of L .

See also LICHNEROWICZ-WEITZENBOCK FORMULA
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Lichnerowicz-Weitzenbock Formula

D �Dc �9�9 c �1
4 Rc;

where D is the Dirac operator D : G(S�) 0 G(S �) ; 9 is
the COVARIANT DERIVATIVE on SPINORS, and R is the
CURVATURE SCALAR.

See also LICHNEROWICZ FORMULA

References
Donaldson, S. K. "The Seiberg-Witten Equations and 4-

Manifold Topology." Bull. Amer. Math. Soc. 33, 45�/0,
1996.

Lichtenfels Minimal Surface

A MINIMAL SURFACE that contains LEMNISCATES as
geodesics which is given by the parametric equations

x�R
ffiffiffi
2

p
cos 1

2 z
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2
3 z
� �r/ �

(1)

y�R �
ffiffiffi
2

p
sin 1

3 z
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2
3 z
� �r/ �

(2)

z�R �1
3

ffiffiffi
2

p
i g

z

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2

3 z
� �r

2
664

3
775 (3)

�R �i
ffiffiffi
2

p
F

ffiffi
1
3

q
z; 2

� �h i
; (4)



where F(x; x) is an incomplete ELLIPTIC INTEGRAL OF

THE FIRST KIND and z�u �iv is a COMPLEX NUMBER.
A given LEMNISCATE is the intersection of the surface
with the xy -plane. The surface is periodic in the
direction of the axis with period

v �2 g
1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

2 t
2

q �2K 1
2

� �
; (5)

where K(x) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND.

See also LEMNISCATE, MINIMAL SURFACE
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Lie Algebra
A NONASSOCIATIVE ALGEBRA obeyed by objects such as
the LIE BRACKET and POISSON BRACKET. Elements f ,
g , and h of a Lie algebra satisfy

[f ; f ] �0 (1)

[f �g ; h] �[f ; h] �[g; h] ; (2)

and

[f ; [g ; h]] �[g; [h ; f ]] �[h; [f ; g]] �0 (3)

(the JACOBI IDENTITY). The relation [f ; f ] �0 implies

[f ; g] ��[g; f ]: (4)

For characteristic not equal to two, these two rela-
tions are equivalent.

The binary operation of a Lie algebra is the bracket

[fg; h] �f [g; h] �g[f ; h] : (5)

An ASSOCIATIVE ALGEBRA A with associative product
xy can be made into a Lie algebra A� by the Lie
product

[x; y] �xy �yx: (6)

Every Lie algebra L is isomorphic to a SUBALGEBRA of
some A� where the associative algebra A may be
taken to be the linear operators over a VECTOR SPACE

V (the POINCARÉ -BIRKHOFF-WITT THEOREM; Jacobson
1979, pp. 159 �/60). If L is finite dimensional, then V
can be taken to be finite dimensional (ADO’S THEOREM

for characteristic p �0; IWASAWA’S THEOREM for
characteristic p "0):/

The classification of finite dimensional simple Lie
algebras over an algebraically closed field of char-
acteristic 0 can be accomplished by (1) determining
matrices called CARTAN MATRICES corresponding to

indecomposable simple systems of roots and (2)
determining the simple algebras associated with
these matrices (Jacobson 1979, p. 128). This is one
of the major results in Lie algebra theory, and is
frequently accomplished with the aid of diagrams
called DYNKIN DIAGRAMS.

See also ADO’S THEOREM, DERIVATION ALGEBRA,
DYNKIN DIAGRAM, JACOBI IDENTITIES, LIE ALGEB-

ROID, LIE BRACKET, IWASAWA’S THEOREM, POINCARÉ -

BIRKHOFF-WITT THEOREM, POISSON BRACKET, RE-

DUCED ROOT SYSTEM, ROOT SYSTEM, WEYL GROUP
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Lie Algebroid
The infinitesimal algebraic object associated with a
LIE GROUPOID. A Lie algebroid over a MANIFOLD B is a
VECTOR BUNDLE A over B with a LIE ALGEBRA

structure [ ; ] (LIE BRACKET) on its SPACE of smooth
sections together with its ANCHOR r:/

See also LIE ALGEBRA
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Liebmann’s Theorem
A SPHERE is rigid.

See also SPHERE
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Lie Bracket
The commutation operation

[a ; b] �ab �ba

corresponding to the LIE PRODUCT.

See also LAGRANGE BRACKET, POISSON BRACKET

Lie Commutator
LIE PRODUCT

Lie Derivative
The Lie derivative of TENSOR Tab with respect to the
VECTOR FIELD X is defined by



LXTab � lim
dx 00

T ?ab(x?) � Tab(x)

dx
: (1)

Explicitly, it is given by

LXTab �TabXd
;b �TbdXd

;a �Tab ; eX
e ; (2)

where X;a is a COMMA DERIVATIVE. The Lie derivative
of a METRIC TENSOR gab with respect to the VECTOR

FIELD X is given by

LXgab �Xa; b �Xb; a �2X(a; b) ; (3)

where X(a; b) denotes the SYMMETRIC TENSOR part and
Xa; b is a COVARIANT DERIVATIVE.

See also COVARIANT DERIVATIVE, KILLING’S EQUA-

TION, KILLING VECTORS, LIE DERIVATIVE (SPINOR)

Lie Derivative (Spinor)
The Lie derivative of a SPINOR c is defined by

LX c(x) �lim
t 00

c̃t(x) � c(x)

t
;

where c̃t is the image of c by a one-parameter group
of isometries with X its generator. For a VECTOR

FIELD Xa and a COVARIANT DERIVATIVE 9a ; the Lie
derivative of c is given explicitly by

LX c �Xa 9a c �
1
8( 9aXb �9bXa) ga gb c;

where ga and gb are DIRAC MATRICES (Choquet-Bruhat
and DeWitt-Morette 2000).

See also COVARIANT DERIVATIVE, DIRAC MATRICES,
LIE DERIVATIVE, SPINOR
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Lie Group
A Lie group is a DIFFERENTIABLE MANIFOLD obeying
the group properties and that satisfies the additional
condition that the group operations are continuous.

The simplest examples of Lie groups are one-dimen-
sional. Under addition, the REAL LINE is a Lie group.
After picking a specific point to be the IDENTITY

ELEMENT, the CIRCLE is also a Lie group. Another
point on the circle at angle u from the identity then
acts by rotating the circle by the angle u: In general, a
Lie group may have a more complicated group
structure, such as the ORTHOGONAL GROUP O(n) (i.e.,
the n �n orthogonal matrices), or the GENERAL

LINEAR GROUP GL(n) (i.e., the n �n invertible ma-
trices). The LORENTZ GROUP is also a Lie group.

The TANGENT SPACE at the identity of a Lie group
always has the structure of a LIE ALGEBRA, and this
LIE ALGEBRA determines the local structure of the Lie

group via the EXPONENTIAL MAP. For example, the
function eit gives the EXPONENTIAL MAP from the
circle’s tangent space (i.e., the reals), to the circle,
thought of as a the UNIT CIRCLE in C: A more difficult
example is the exponential map eA from SKEW SYM-

METRIC n �n matrices to the SPECIAL ORTHOGONAL

GROUP SO(n) ; the subset of O(n) with determinant 1:/

The topology of a Lie group is fairly restricted. For
example, there always exists a nonvanishing VECTOR

FIELD. This structure has allowed complete classifica-
tion of the finite dimensional SEMISIMPLE LIE GROUPS

and their representations.

See also COMPACT GROUP, CONTINUOUS GROUP,
GROUP,DIFFERENTIABLE MANIFOLD, LIE ALGEBRA,
LIE GROUPOID, LIE-TYPE GROUP, LORENTZ GROUP,
NIL GEOMETRY, ORTHOGONAL GROUP, SEMISIMPLE

LIE GROUP, SOL GEOMETRY, TANGENT SPACE, VECTOR

FIELD
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Lie Groupoid
A GROUPOID G over B for which G and B are
differentiable manifolds and a; b; and multiplication
are differentiable maps. Furthermore, the derivatives
of a and b are required to have maximal RANK

everywhere. Here, a and b are maps from G onto R2

with a : (x; g; y)z and b : (x; g; y)y/

See also LIE ALGEBROID, NILPOTENT LIE GROUP,
SEMISIMPLE LIE GROUP, SOLVABLE LIE GROUP
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Liénard’s Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

y??�f (x)y?�y�0:
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Lie Product
The multiplication operation corresponding to the LIE

BRACKET.

Lie-Type Group
A finite analog of LIE GROUPS. The Lie-type groups
include the CHEVALLEY GROUPS [/PSL(n; q);
PSU(n; q) ; PSp(2n; q) ; P Ve(n; q)] ; TWISTED CHEVAL-

LEY GROUPS, and the TITS GROUP.

See also CHEVALLEY GROUPS, FINITE GROUP, LIE

GROUP, LINEAR GROUP, ORTHOGONAL GROUP, SIMPLE

GROUP, SYMPLECTIC GROUP, TITS GROUP, TWISTED

CHEVALLEY GROUPS, UNITARY GROUP
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Life
The most well-known CELLULAR AUTOMATON, in-
vented by John Conway and popularized in Martin
Gardner’s Scientific American column starting in
October 1970. The game was originally played (i.e.,
successive generations were produced) by hand with
counters, but implementation on a computer greatly
increased the ease of exploring patterns.

The Life CELLULAR AUTOMATON is run by placing a
number of filled cells on a 2-D grid. Each generation
then switches cells on or off depending on the state of
the cells that surround it. The rules are defined as
follows. All eight of the cells surrounding the current
one are checked to see if they are on or not. Any cells
that are on are counted, and this count is then used to
determine what will happen to the current cell.

1. Death: if the count is less than 2 or greater than
3, the current cell is switched off.
2. Survival: if (a) the count is exactly 2, or (b) the
count is exactly 3 and the current cell is on, the
current cell is left unchanged.
3. Birth: if the current cell is off and the count is
exactly 3, the current cell is switched on.

Hensel gives a JAVA APPLET implementing the Game
of Life on his web page. Weisstein gives an extensive
alphabetical tabulation of life forms and terms.

A pattern which does not change from one generation
to the next is known as a still life , and is said to have
period 1. Conway originally believed that no pattern
could produce an infinite number of cells, and offered
a $50 prize to anyone who could find a counter-
example before the end of 1970 (Gardner 1983,
p. 216). Many counterexamples were subsequently
found, including guns and puffer trains.

A Life pattern which has no father pattern is known
as a Garden of Eden (for obvious biblical reasons).
The first such pattern was not found until 1971, and

at least 3 are now known. It is not, however, known if
a pattern exists which has a father pattern , but no
grandfather pattern (Gardner 1983, p. 249).

Rather surprisingly, Gosper and J. H. Conway inde-
pendently showed that Life can be used to generate a
UNIVERSAL TURING MACHINE (Berlekamp et al. 1982,
Gardner 1983, pp. 250�/53).

Similar CELLULAR AUTOMATON games with different
rules are HEXLIFE and HIGHLIFE. HASHLIFE is a life
ALGORITHM that achieves remarkable speed by stor-
ing subpatterns in a hash table, and using them to
skip forward, sometimes thousands of generations at
a time.

See also CELLULAR AUTOMATON, HASHLIFE, HEXLIFE,
HIGHLIFE
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Life Expectancy
An lx table is a tabulation of numbers which is used to
calculate life expectancies.

x /nx/ /dx/ /lx/ /qx/ /Lx/ /Tx/ /ex/

0 1000 200 1.00 0.20 0.90 2.70 2.70

1 800 100 0.80 0.12 0.75 1.80 2.25

2 700 200 0.70 0.29 0.60 1.05 1.50



3 500 300 0.50 0.60 0.35 0.45 0.90

4 200 200 0.20 1.00 0.10 0.10 0.50

5 0 0 0.00 – 0.00 0.00 –

/S/ 1000 2.70

x : Age category (x�0, 1, ..., k ). These values can
be in any convenient units, but must be chosen so
that no observed lifespan extends past category
k�1:/

/nx : Census size, defined as the number of indivi-
duals in the study population who survive to the
beginning of age category x . Therefore, n0�N (the
total population size) and nk�0:/

/dx : nx�nx�1; ak
i�0 di�n0: Crude death rate, which

measures the number of individuals who die
within age category x .

/lx : �nx=n0: Survivorship, which measures the
proportion of individuals who survive to the
beginning of age category x .

/qx : �dx=nx; qk�1�1: Proportional death rate, or
"risk," which measures the proportion of indivi-
duals surviving to the beginning of age category x
who die within that category.

/Lx : �(lx�lx�1)=2: Midpoint survivorship, which
measures the proportion of individuals surviving
to the midpoint of age category x . Note that the
simple averaging formula must be replaced by a
more complicated expression if survivorship is
nonlinear within age categories. The sum ak

i�0 Lx

gives the total number of age categories lived by
the entire study population.

/Tx : Tx�1�Lx�1; T0�ak
i�0 Lx: Measures the total

number of age categories left to be lived by all
individuals who survive to the beginning of age
category x .

/ex : �Tx=lx; ek�1�1=2: Life expectancy, which is
the mean number of age categories remaining
until death for individuals surviving to the begin-
ning of age category x .

For all x , ex�1�1 > ex: This means that the total
expected lifespan increases monotonically. For in-
stance, in the table above, the one-year-olds have an
average age at death of 2.25�1�3.25, compared to
2.70 for newborns. In effect, the age of death of older
individuals is a distribution conditioned on the fact
that they have survived to their present age.

It is common to study survivorship as a semilog plot
of lx vs. x , known as a SURVIVORSHIP CURVE. A so-
called lxmx table can be used to calculate the mean
generation time of a population. Two lxmx tables are
illustrated below.

Population 1

x /lx/ /mx/ /lxmx/ /xlxmx/

0 1.00 0.00 0.00 0.00

1 0.70 0.50 0.35 0.35

2 0.50 1.50 0.75 1.50

3 0.20 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00

/R0�1:10/ /S�1:85/

T�
P

xlxmxP
lxmx

�
1:85

1:10
�1:68

r�
ln R0

T
�

ln 1:10

1:68
�0:057:

Population 2

x /lx/ /mx/ /lxmx/ /xlxmx/

0 1.00 0.00 0.00 0.00

1 0.70 0.00 0.00 0.00

2 0.50 2.00 1.00 2.00

3 0.20 0.50 0.10 0.30

4 0.00 0.00 0.00 0.00

/R0�1:10/ /S�2:30/

T�
P

xlxmxP
lxmx

�
2:30

1:10
�2:09

r�
ln R0

T
�

ln 1:10

2:09
�0:046:

x : Age category (x�0, 1, ..., k ). These values can
be in any convenient units, but must be chosen so
that no observed lifespan extends past category
k�1 (as in an lx table).

/lx : �nx=n0: Survivorship, which measures the
proportion of individuals who survive to the
beginning of age category x (as in an lx table).

/mx : The average number of offspring produced by
an individual in age category x while in that age
category . ak

i�0 mx therefore represents the average
lifetime number of offspring produced by an
individual of maximum lifespan.

/lxmx : The average number of offspring produced
by an individual within age category x weighted by
the probability of surviving to the beginning of
that age category. ak

i�0 lxmx therefore represents



the average lifetime number of offspring produced
by a member of the study population. It is called
the net reproductive rate per generation and is
often denoted R0 :/

/xlxmx : A column weighting the offspring counted
in the previous column by their parents’ age when
they were born. Therefore, the ratio T �
a(xlxmx) =a(lxmx) is the mean generation time of
the population.

The MALTHUSIAN PARAMETER r measures the repro-
ductive rate per unit time and can be calculated as
r �(ln R0)=T : For an exponentially increasing popu-
lation, the population size N(t) at time t is then given
by

N(t) �N0ert :

In the above two tables, the populations have iden-
tical reproductive rates of R0 �1:10 : However, the
shift toward later reproduction in population 2
increases the generation time, thus slowing the rate
of POPULATION GROWTH. Often, a slight delay of
reproduction decreases POPULATION GROWTH more
strongly than does even a fairly large reduction in
reproductive rate.

See also GOMPERTZ CURVE, LOGISTIC GROWTH CURVE,
MAKEHAM CURVE, MALTHUSIAN PARAMETER, POPULA-

TION GROWTH, SURVIVORSHIP CURVE
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Lift
Given a MAP f from a SPACE X to a SPACE Y and
another MAP g from a SPACE Z to a SPACE Y , a lift is a
MAP h from X to Z such that gh � f . In other words, a
lift of f is a MAP h such that the diagram (shown
below) commutes.

If f is the identity from Y to Y , a MANIFOLD, and if g is
the BUNDLE PROJECTION from the TANGENT BUNDLE to
Y , the lifts are precisely VECTOR FIELDS. If g is a
bundle projection from any FIBER BUNDLE to Y , then
lifts are precisely sections. If f is the identity from Y
to Y , a MANIFOLD, and g a projection from the
orientation double cover of Y , then lifts exist IFF Y
is an orientable MANIFOLD.

If f is a MAP from a CIRCLE to Y , an n -MANIFOLD, and
g the bundle projection from the FIBER BUNDLE of
alternating K -FORMS on Y , then lifts always exist IFF

Y is orientable. If f is a MAP from a region in the

COMPLEX PLANE to the COMPLEX PLANE (complex
analytic), and if g is the exponential MAP, lifts of f
are precisely LOGARITHMS of f .

See also LIFTING PROBLEM

Lifting Problem
Given a MAP f from a SPACE X to a SPACE Y and
another MAP g from a SPACE Z to a SPACE Y , does
there exist a MAP h from X to Z such that gh � f? If
such a map h exists, then h is called a LIFT of f .

See also EXTENSION PROBLEM, LIFT

Ligancy
KISSING NUMBER

Likelihood
The hypothetical PROBABILITY that an event which
has already occurred would yield a specific outcome.
The concept differs from that of a probability in that a
probability refers to the occurrence of future events,
while a likelihood refers to past events with known
outcomes.

See also LIKELIHOOD RATIO, MAXIMUM LIKELIHOOD,
NEGATIVE LIKELIHOOD RATIO, PROBABILITY

Likelihood Ratio
A quantity used to test NESTED HYPOTHESES. Let H ?
be a NESTED HYPOTHESIS with n? DEGREES OF FREE-

DOM within H (which has n DEGREES OF FREEDOM),
then calculate the MAXIMUM LIKELIHOOD of a given
outcome, first given H ?; then given H . Then

LR �
[likelihood H ?]

[likelyhood H] 
:

Comparison of this ratio to the critical value of the
CHI-SQUARED DISTRIBUTION with n �n ? DEGREES OF

FREEDOM then gives the SIGNIFICANCE of the increase
in LIKELIHOOD.

The term likelihood ratio is also used (especially in
medicine) to test nonnested complementary hypoth-
eses as follows,

LR�
[true positive rate]

[false positive rate]
�

[sensitivity]

1 � [specificity]
:

See also NEGATIVE LIKELIHOOD RATIO, SENSITIVITY,
SPECIFICITY

Limaçon of Pascal
LIMAÇON



Limaçon

The limaçon is a polar curve OF THE FORM

r �b �a cos u

also called the LIMAÇ ON OF PASCAL. It was first
investigated by Dürer, who gave a method for draw-
ing it in Underweysung der Messung (1525). It was
rediscovered by É tienne Pascal, father of Blaise
Pascal, and named by Gilles-Personne Roberval in
1650 (MacTutor Archive). The word "limaçon" comes
from the Latin limax , meaning "snail."
If b ]2a ; we have a convex limaçon. If 2a > b > a; we
have a dimpled limaçon. If b � a , the limaçon
degenerates to a CARDIOID. If b B a , we have limaçon
with an inner loop. If b �a =2; it is a TRISECTRIX (but
not the MACLAURIN TRISECTRIX) with inner loop of
AREA

Ainner loop �
1
4 a

2 p �3

ffiffiffi
3

2

s !
;

and AREA between the loops of

Abetween loops �
1
4 a

2 p �3
ffiffiffi
3

p� �
(MacTutor Archive).

The limaçon can be generated by specifying a fixed
point P , then drawing a sequences of circles with
centers on a given circle which all pass through P .
The ENVELOPE of these curves is a limaçon. If the
fixed point is on the CIRCUMFERENCE of the circle,
then the ENVELOPE is a CARDIOID.

The limaçon is an ANALLAGMATIC CURVE, and is also
the CATACAUSTIC of a CIRCLE when the RADIANT POINT

is a finite (NONZERO) distance from the CIRCUMFER-

ENCE, as shown by Thomas de St. Laurent in 1826
(MacTutor Archive). The limaçon is the CONCHOID of
a CIRCLE with respect to a point on its CIRCUMFER-

ENCE (Wells 1991).

See also CARDIOID
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Limaçon Evolute

The CATACAUSTIC of a CIRCLE for a RADIANT POINT is
the limaçon evolute. It has PARAMETRIC EQUATIONS

x �
a[4a2 � 4b2 � 9ab cos t � ab cos(3t)]

4(2a2 � b2 � 3ab cos t)

y �
a2b sin3 t

2a2 � b2 � 3ab cos t 
:

Limb
A limb of a TREE at a vertex v is the union of one or
more BRANCHES at v in the tree. v is then called the
base of the limb.

See also BRANCH, TREE
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Lim Inf
INFIMUM LIMIT

Limit
A function f (z) is said to have a limit limz0a f (z)�c if,
for all e > 0; there exists a d > 0 such that ½f (z)�c½Be
whenever 0B ½z�a½Bd: This form of definition is
sometimes called an EPSILON-DELTA DEFINITION. Lim-
its may be taken from below

lim
z0a�

�lim
x�a

(1)



or from above

lim
z0a �

�lim
z¡a

: (2)

if the two are equal, then "the" limit is said to exist

lim
z0a

� lim
z0a �

� lim
z0a �

: (3)

A LOWER LIMIT h

lower lim
n0�

Sn � lim
n0�

Sn �h (4)

is said to exist if, for every e > 0 ; ½Sn �h½Be for
infinitely many values of n and if no number less
than h has this property.

An UPPER LIMIT k

upper lim
n0�

Sn � lim
n0�

Sn �k (5)

is said to exist if, for every e > 0 ; ½Sn �h½Be for
infinitely many values of n and if no number larger
than k has this property.

INDETERMINATE limit forms of types �=� and 0=0
can often be computed with L’HOSPITAL’S RULE. Types
0 � � can be converted to the form 0=0 by writing

f (x)g(x) �
f (x)

1 =g(x) 
: (6)

Types 00, �0 ; and 1� are treated by introducing a
dependent variable

y �f (x)g(x) (7)

so that

ln y �g(x)ln[f (x)]; (8)

then calculating lim ln y: The original limit then
equals elim ln y ;

L �lim f (x)g(x) �elim ln y (9)

The INDETERMINATE form ��� is also frequently
encountered.

See also CENTRAL LIMIT THEOREM, CONTINUOUS,
DERIVATIVE, DISCONTINUITY, INDETERMINATE, INFI-

MUM LIMIT, L’HOSPITAL’S RULE, LIMIT COMPARISON

TEST, LIMIT TEST, LOWER LIMIT, PINCHING THEOREM,
SQUEEZING THEOREM, SUPREMUM LIMIT, UPPER LIM-

IT
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Limit Comparison Test
Let aak and abk be two SERIES with POSITIVE terms
and suppose

lim
k 0�

ak

bk

� r:

If r is finite and r > 0; then the two SERIES both
CONVERGE or DIVERGE.

See also CONVERGENCE TESTS, LIMIT, LIMIT TEST

Limit Cycle
An attracting set to which orbits or trajectories
converge and upon which trajectories are periodic.

See also HOPF BIFURCATION

Limiting Point

A point about which INVERSION of two circles pro-
duced CONCENTRIC CIRCLES. Every pair of distinct
circles has two limiting points.

The limiting points correspond to the POINT CIRCLES

of a COAXAL SYSTEM, and the limiting points of a
COAXAL SYSTEM are INVERSE POINTS with respect to
any circle of the system.
To find the limiting point of two circles of radii r and
R with centers separated by a distance d , set up a
coordinate system centered on the circle of radius R
and with the other circle centered at (d; 0): Then the
equation for the position of the center of the inverted
circles with inversion center (x0; 0);



x?�x0 �
k2(x � x0)

(x � x0)2 � (y � y0)2 � a2
; (1)

becomes

x?1 �x0 �
k2(d � x0)

(d � x0)2 � r2
(2)

x?2 �x0 �
k2(0 � x0)

(0 � x0)2 � R2
(3)

for the first and second circles, respectively. Setting
x?1 �x?2 gives

d � x0

(d � x0)2 � r2
�

�x0

x2
0 � R2

; (4)

and solving using the quadratic equation gives the
positions of the limiting points as

x?�
d2 � r2 � R2 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d2 � r2 � R2)2 � 4d2R2

p
2d 

: (5)

See also COAXAL SYSTEM, CONCENTRIC CIRCLES,
INVERSE POINTS, INVERSION CENTER, POINT CIRCLE

References
Casey, J. A Sequel to the First Six Books of the Elements of

Euclid, Containing an Easy Introduction to Modern
Geometry with Numerous Examples, 5th ed., rev. enl.
Dublin: Hodges, Figgis, & Co., p. 43, 1888.

Durell, C. V. Modern Geometry: The Straight Line and
Circle. London: Macmillan, pp. 123 and 130, 1928.

Limit Ordinal
An ORDINAL NUMBER a > 0 is called a limit ordinal IFF

it has no immediate PREDECESSOR, i.e., if there is no
ORDINAL NUMBER b such that b �1 � a (Ciesielski
1997, p. 46; Moore 1982, p. 60; Rubin 1967, p. 182;
Suppes 1972, p. 196). The first limit ordinal is v:/

See also ORDINAL NUMBER, SUCCESSOR
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Limit Point
A number x such that for all e > 0; there exists a
member of the SET y different from x such that ½y �
x½Be: The topological definition of limit point P of A
is that P is a point such that every OPEN SET around it
intersects A .

See also ACCUMULATION POINT, CLOSED SET, OPEN

SET
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Limit Test
If lim an "0 or this LIMIT does not exist as n tends to
infinity, then the INFINITE SERIES a an does not
CONVERGE. For example, a�

n �1(�1)n does not converge
by the limit test. The limit test is inconclusive when
the limit is zero.

See also CONVERGENT SERIES, CONVERGENCE TESTS,
LIMIT, LIMIT COMPARISON TEST, SEQUENCE, SERIES

Limit Theorem
CENTRAL LIMIT THEOREM, LEBESGUE’S DOMINATED

CONVERGENCE THEOREM LINDEBERG-FELLER CEN-

TRAL LIMIT THEOREM, MONOTONE CONVERGENCE

THEOREM, POINTWISE CONVERGENCE

Lim Sup
SUPREMUM LIMIT

Lindeberg Condition
A SUFFICIENT condition on the LINDEBERG-FELLER

CENTRAL LIMIT THEOREM. Given random variates X1;
X2; ..., let �Xi��0; the VARIANCE s2

i of Xi be finite, and
VARIANCE of the distribution consisting of a sum of Xi/s

Sn�X1�X2�. . .�Xn (1)

be

s2
n�

Xn

i�1

s2
i : (2)

In the terminology of Zabell (1995), let

Ln(e)�
Xn

k�1

Xk

sn

 !2

:
½Xk½

sn

]e

* +
; (3)

where /�f : g�/ denotes the EXPECTATION VALUE of f
restricted to outcomes g , then the Lindeberg condi-
tion is

lim
n0�

Ln(e)�0 (4)

for all e > 0 (Zabell 1995).

In the terminology of Feller (1971), the Lindeberg
condition assumed that for each t �0,

1

s2
n

Xn

k�1
g½y½] tsn

y2Fkfdyg 0 0; (5)

or equivalently



1

s2
n

Xn

k �1
g½y ½B tsn

y2Fk fdy g 0 1: (6)

Then the distribution

Sn ��
X1 � . . .  � Xn

sn

(7)

tends to the NORMAL DISTRIBUTION with zero expecta-
tion and unit variance (Feller 1971, p. 256). The
Lindeberg condition (5) guarantees that the indivi-
dual variances s2

k are small compared to their sum s2
n

in the sense that for given e > 0 for for all SUFFI-

CIENTLY LARGE n , sk =sn Be for k �1, ..., n (Feller
1971, p. 256).

See also CENTRAL LIMIT THEOREM, FELLER-LÉ VY

CONDITION
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Lindeberg-Feller Central Limit Theorem
If the random variates X1 ; X2 ; ... satisfy the LINDE-

BERG CONDITION, then for all a Bb ,

lim
n 0�

P aB
Sn

sn

Bb

 !
�F(b) �F(a) ;

where F is the NORMAL DISTRIBUTION FUNCTION.

See also BERRY-ESSÉ EN THEOREM, CENTRAL LIMIT

THEOREM, FELLER-LÉ VY CONDITION, NORMAL DISTRI-

BUTION FUNCTION
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Lindelof’s Theorem
The SURFACE OF REVOLUTION generated by the ex-
ternal CATENARY between a fixed point a and its
conjugate on the ENVELOPE of the CATENARY through
the fixed point is equal in AREA to the surface of
revolution generated by its two Lindelof TANGENTS,
which cross the axis of rotation at the point a and are
calculable from the position of the points and CATEN-

ARY.

See also CATENARY, ENVELOPE, SURFACE OF REVOLU-

TION

Lindemann-Weierstrass Theorem
If a1 ; ..., an are linearly independent over Q; then e a1 ;
..., e an are ALGEBRAICALLY INDEPENDENT over Q: The
Lindemann-Weierstrass theorem is implied by SCHA-

NUEL’S CONJECTURE (Chow 1999).

See also ALGEBRAICALLY INDEPENDENT, HERMITE-

LINDEMANN THEOREM, SCHANUEL’S CONJECTURE
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Lindenmayer System
A STRING REWRITING system which can be used to
generate FRACTALS with DIMENSION between 1 and 2.
The term L-system is often used as an abbreviation.

See also ARROWHEAD CURVE, DRAGON CURVE EXTER-

IOR SNOWFLAKE, FRACTAL, HILBERT CURVE, KOCH

SNOWFLAKE, PEANO CURVE, PEANO-GOSPER CURVE,
SIERPINSKI CURVE, STRING REWRITING
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Line
Euclid defined a line as a "breadthless length," and a
straight line as a line which "lies evenly with the
points on itself" (Kline 1956, Dunham 1990). Lines
are intrinsically 1-dimensional objects, but may be
embedded in higher dimensional SPACES. An infinite
line passing through points A and B is denoted  AB: A



LINE SEGMENT terminating at these points is denoted
AB: A line is sometimes called a STRAIGHT LINE or,
more archaically, a RIGHT LINE (Casey 1893), to
emphasize that it has no curves anywhere along its
length.

Harary (1994) called an edge of a graph a "line."

Consider first lines in a 2-D PLANE. The line with X -

INTERCEPT a and Y -INTERCEPT b is given by the
intercept form

x

a
�

y

b
�1: (1)

The line through (x1; y1) with SLOPE m is given by the
point-slope form

y�y1�m(x�x1): (2)

The line with y -intercept b and slope m is given by
the slope-intercept form

y�mx�b: (3)

The line through (x1; y1) and (x2; y2) is given by the
two point form

y�y1�
y2 � y1

x2 � x1

(x�x1): (4)

Other forms are

a(x�x1)�b(y�y1)�0 (5)

ax�by�c�0 (6)

x y 1
x1 y1 1
x2 y2 1

������
�������0: (7)

A line in 2-D can also be REPRESENTED AS a VECTOR.
The VECTOR along the line

ax�by�0 (8)

is given by

t
�b
a

/ �
; (9)

where t �R: Similarly, VECTORS OF THE FORM

t
a
b

/ �
(10)

are PERPENDICULAR to the line. Three points lie on a
line if

x1 y1 1
x2 y2 1
x3 y3 1

������
�������0: (11)

The ANGLE between lines

A1x�B1y�C1�0 (12)

A2x�B2y�C2�0 (13)

is

tan u�
A1B2 � A2B1

A1A2 � B1B2

: (14)

The line joining points with TRILINEAR COORDINATES

a1 : b1 : g1 and a2 : b2 : g2 is the set of point a : b : g
satisfying

a b g

a1 b1 g1

a2 b2 g2

������
�������0 (15)

(b1g2�g1b2)a�(g1a2�a1g2)b�(a1b2�b1a2)g

�0: (16)

Three lines CONCUR if their TRILINEAR COORDINATES

satisfy

l1a�m1b�n1g�0 (17)

l2a�m2b�n2g�0 (18)

l3a�m3b�n3g�0; (19)

in which case the point is

m2n3�n2m3 : n2l3�l2n3 : l2m3�m2l3; (20)

or if the COEFFICIENTS of the lines

A1x�B1y�C1�0 (21)

A2x�B2y�C2�0 (22)

A3x�B3y�C3�0 (23)

satisfy

A1 B1 C1

A2 B2 C2

A3 B3 C3

������
�������0: (24)

Two lines CONCUR if their TRILINEAR COORDINATES

satisfy

l1 m1 n1

l2 m2 n2

l3 m3 n3

������
�������0: (25)

The line through P1 is the direction (a1; b1; c1) and
the line through P2 in direction (a2; b2; c2) intersect
IFF

x2�x1 y2�y1 z2�z1

a1 b1 c1

a2 b2 c2

������
�������0: (26)

The line through a point a? : b? : g? PARALLEL to

la�mb�ng�0 (27)

is



a b g

a? b? g ?
bn �cm cl �an am �bl

������
�������0 : (28)

The lines

l a �mb �ng �0 (29)

l ?a �m?b �n ?g �0 (30)

are PARALLEL if

a(mn?�nm?) �b(nl ?�ln ?) �c(lm ?�ml?) �0 (31)

for all (a; b; c) ; and PERPENDICULAR if

2abc(ll?�mm ?�nn?) �(mn ?�m?m)cos A

�(nl ?�n?l)cos B �(lm ?�l?m)cos C �0 (32)

for all (a ; b; c) (Sommerville 1924). The line through
a point a? : b? : g ? PERPENDICULAR to (32) is given by

a b g

a? b? g ?
l �m cos C m�n cos A n�l cos B
�n cos B �l cos C �m cos A

��������

��������
�0 : (33)

In 3-D SPACE, the line passing through the point
(x0 ; y0 ; z0) and PARALLEL to the NONZERO VECTOR

v �
a
b
c

2
4
3
5 (34)

has PARAMETRIC EQUATIONS

x �x0 �at (35)

y �y0 �bt (36)

z �z0 �ct ; (37)

written concisely as

x �x0 �vt: (38)

Similarly, the line in 3-D passing through (x1 ; y1) and
(x2 ; y2) has parametric vector equation

x �x1 �(x2 �x1)t; (39)

where this parametrization corresponds to x(t �0) �
x1 and x(t �1) �x2 :/

See also ASYMPTOTE, BRANCH LINE, BROCARD LINE,
CAYLEY LINES, COLLINEAR, CONCUR, CRITICAL LINE,
DESARGUES’ THEOREM, ERDOS-ANNING THEOREM,
EULER LINE, FLOW LINE, GERGONNE LINE, IMAGIN-

ARY LINE, ISOGONAL LINE, ISOTROPIC LINE, LEMOINE

LINE, LINE-LINE INTERSECTION, LINE-PLANE INTER-

SECTION, LINE SEGMENT, ORDINARY LINE, PASCAL

LINES, PEDAL LINE, PENCIL, PHILO LINE, POINT,
POINT-LINE DISTANCE–2-D, POINT-LINE DISTANCE–3-

D, PLANE, PLÜ CKER LINES, POLAR LINE, POWER LINE,
RADICAL LINE, RANGE (LINE SEGMENT), RAY, REAL

LINE, RHUMB LINE, SECANT LINE, SIMSON LINE, SKEW

LINES, SODDY LINE, SOLOMON’S SEAL LINES, STEINER

SET, STEINER’S THEOREM, SYLVESTER’S LINE PRO-

BLEM, SYMMEDIAN, TANGENT LINE, TRANSVERSAL

LINE, TRILINEAR LINE, WORLD LINE
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Linear Algebra
The study of linear sets of equations and their
transformation properties. Linear algebra allows the
analysis of ROTATIONS in space, LEAST SQUARES

FITTING, solution of coupled differential equations,
determination of a circle passing through three given
points, as well as many other problems in mathe-
matics, physics, and engineering.

The MATRIX and DETERMINANT are extremely useful
tools of linear algebra. One central problem of linear
algebra is the solution of the matrix equation

Ax�b

for x. While this can, in theory, be solved using a
MATRIX INVERSE

x�A�1b;

other techniques such as GAUSSIAN ELIMINATION are
numerically more robust.

See also CONTROL THEORY, CRAMER’S RULE, DETER-

MINANT, GAUSSIAN ELIMINATION, LINEAR TRANSFOR-

MATION, MATRIX, VECTOR
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Linear Algebraic Group
A linear algebraic group is a GROUP which is also an
AFFINE VARIETY. In particular, its elements satisfy
polynomial equations. For example, GL(n) ; the GEN-

ERAL LINEAR GROUP, is a linear algebraic group
because an INVERTIBLE MATRIX is given by n2 entries
that satisfy the polynomial det an �1 : The group
operations are required to be given by REGULAR

RATIONAL FUNCTIONS. The linear algebraic groups
are similar to the LIE GROUPS, except that linear
algebraic groups may be defined over any FIELD,
including those of positive CHARACTERISTIC.

See also AFFINE VARIETY, ALGEBRAIC GROUP, FORMAL

GROUP, GROUP, GROUP SCHEME, LIE ALGEBRA, LIE

GROUP, VARIETY

Linear Approximation
A linear approximation to a function f (x) at a point x0

can be computed by taking the first term in the

TAYLOR SERIES

f (x0 �Dx) �f (x0) �f ?(x0) Dx �. . .  :

See also MACLAURIN SERIES, TAYLOR SERIES

Linear Code
A linear code over a FINITE FIELD with q elements Fq

is a linear SUBSPACE C ƒFn
q : The vectors forming the

SUBSPACE are called code words. When code words are
chosen such that the distance between them is
maximized, the code is called error-correcting since
slightly garbled vectors can be recovered by choosing
the nearest code word.

See also CODE, CODING THEORY, ERROR-CORRECTING

CODE, GRAY CODE, HUFFMAN CODING, ISBN, UPC

Linear Combination
A sum of the elements from some set with constant
coefficients placed in front of each. For example, a
linear combination of the VECTORS x, y, and z is given
by

ax �by �cz ;

where a , b , and c are constants.

See also BASIS, BASIS (VECTOR SPACE), SPAN (VECTOR

SPACE)

Linear Congruence Equation
A linear congruence equation

ax�b (mod m) (1)

is solvable IFF the CONGRUENCE

b�0 (mod d) (2)

is solvable, where d�GCD(a; m) is the GREATEST

COMMON DIVISOR. Let one solution to the original
equation be x0Bm=d: Then the solutions are x�x0;
x0�m=d; x0�2m=d; ..., x0�(d�1)m=d: If d�1, then
there is only one solutionBm: The solution of a linear
congruence can be found in Mathematica using
Solve[ax��b && Modulus��m , x ].

Solution to a linear congruence equation is equivalent
to finding the value of a fractional CONGRUENCE, for
which a greedy-type algorithm exists. In particular,
(1) can be rewritten as

x�
b

a
(mod m) (3)

which can also be written

x

b
�

1

a
(mod m): (4)

In this form, the solution x can be found as Mod[by ,



m ] of the solution y returned by the Mathematica
command y �PowerMod[a , -1, m ].

See also CHINESE REMAINDER THEOREM, CONGRU-

ENCE, CONGRUENCE EQUATION, QUADRATIC CONGRU-

ENCE EQUATION
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Linear Congruence Method
A METHOD for generating RANDOM (PSEUDORANDOM)
numbers using the linear RECURRENCE RELATION

Xn�1 �aXn �c (mod m);

where a and c must assume certain fixed values and
X0 is an initial number known as the SEED.

See also PSEUDORANDOM NUMBER, RANDOM NUMBER,
SEED
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Linear Diophantine Equation
DIOPHANTINE EQUATION

Linear Equation
An algebraic equation OF THE FORM

y�ax�b

involving only a constant and a first-order (linear)
term.

See also LINE, POLYNOMIAL, QUADRATIC EQUATION

Linear Equation System
When solving a system of n linear equations with
k�n unknowns, use MATRIX operations to solve the
system as far as possible. Then solve for the first (k�
n) components in terms of the last n components to
find the solution space.

Linear Extension
A linear extension of a PARTIALLY ORDERED SET P is a
PERMUTATION of the elements p1; p2; ... of P such that
iB j IMPLIES piBpj: For example, the linear exten-
sions of the PARTIALLY ORDERED SET ((1; 2); (3; 4)) are
1234, 1324, 1342, 3124, 3142, and 3412, all of which
have 1 before 2 and 3 before 4.
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Linear Fractional Transformation
A transformation OF THE FORM

w�f (z)�
az � b

cz � d
; (1)

where a , b , c , d �C and

ad�bc"0; (2)

is a CONFORMAL MAPPING called a linear fractional
transformation. The transformation can be extended
to the entire extended COMPLEX PLANE C+�C@ f�g
by defining

f �
d

c

 !
�� (3)

f (�)�
a

c
(4)

(Apostol 1997, p. 26). The linear fractional transfor-
mation is linear in both w and z , and analytic
everywhere except for a simple POLE at z��d=c:/

Every linear fractional transformation except f (z)�z
has one or two FIXED POINTS. The linear fractional
transformation sends CIRCLES and lines to CIRCLES or
lines. Linear fractional transformations preserve
symmetry. The CROSS-RATIO is invariant under a
linear fractional transformation. A linear fractional
transformation is a composition of translations, rota-
tions, magnifications, and inversions.

To determine a particular linear fractional transfor-
mation, specify the map of three points which
preserve orientation. A particular linear fractional
transformation is then uniquely determined. To
determine a general linear fractional transformation,
pick two symmetric points a and aS: Define b�f (a);
restricting b as required. Compute bS: f (aS) then
equals bS since the linear fractional transformation
preserves symmetry (the SYMMETRY PRINCIPLE). Plug
in a and aS into the general linear fractional trans-
formation and set equal to b and bS: Without loss of
generality, let c�1 and solve for a and b in terms of
b: Plug back into the general expression to obtain a
linear fractional transformation.



See also CAYLEY TRANSFORM, MÖ BIUS TRANSFORM,
MODULAR GROUP GAMMA, SCHWARZ’S LEMMA, SYM-

METRY PRINCIPLE, UNIMODULAR TRANSFORMATION
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§2.1 in Hyperbolic Geometry. New York: Springer-Verlag,
pp. 19 �/5, 1999.
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Linear Function
A linear function is a function f which satisfies

f (x �y) �f (x) �f (y)

and

f (ax) � af (x)

for all x and y in the DOMAIN, and all SCALARS a:/

See also BILINEAR FUNCTION, FUNCTION, VECTOR

SPACE

Linear Functional
A linear functional on a REAL VECTOR SPACE V is a
function T : V 0 R; which satisfies the following
properties.

1. /T(v �w) �T(v) �T(w)/, and
2. /T( av) � aT(v)/.

When V is a COMPLEX VECTOR SPACE, then T is a
linear map into the COMPLEX NUMBERS.

DISTRIBUTIONS are a special case of linear func-
tionals, and have a rich theory surrounding them.

See also DISTRIBUTION (GENERALIZED FUNCTION),
DUAL SPACE, FUNCTIONAL, VECTOR SPACE

Linear Group

See also GENERAL LINEAR GROUP, LIE-TYPE GROUP,
PROJECTIVE GENERAL LINEAR GROUP, PROJECTIVE

SPECIAL LINEAR GROUP, SPECIAL LINEAR GROUP
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Linear Group Theorem
Any linear system of point-groups on a curve with
only ordinary singularities may be cut by ADJOINT

CURVES.
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Linear Map
LINEAR TRANSFORMATION

Linear Operator
An operator L̃ is said to be linear if, for every pair of
functions f and g and SCALAR t ,

L̃(f �g) � L̃f � L̃g

and

L̃(tf ) �t L̃f :

See also LINEAR TRANSFORMATION, OPERATOR

Linear Ordinary Differential Equation
ORDINARY DIFFERENTIAL EQUATION–FIRST-ORDER,
ORDINARY DIFFERENTIAL EQUATION–SECOND-ORDER

Linear Programming
The problem of maximizing a linear function over a
convex polyhedron, also known as OPERATIONS RE-

SEARCH, OPTIMIZATION THEORY, or CONVEX OPTIMIZA-

TION THEORY. Linear programming is extensively
used in economics and engineering. Examples from
economics include Leontief’s input-output model, the
determination of shadow prices, etc., while an exam-
ple of an engineering application would be maximiz-
ing profit in a factory that manufactures a number of
different products from the same raw material using
the same resources.

Linear programming can be solved using the SIMPLEX

METHOD (Wood and Dantzig 1949, Dantzig 1949)
which runs along EDGES of the visualization solid to
find the best answer. In 1979, L. G. Khachian found a
O(x5) POLYNOMIAL-time ALGORITHM. A much more
efficient POLYNOMIAL-time ALGORITHM was found by
Karmarkar (1984). This method goes through the
middle of the solid and then transforms and warps,
and offers many advantages over the simplex method.
Karmarkar’s method is patented, so it has not
received much detailed discussion.

See also CRISS-CROSS METHOD, ELLIPSOIDAL CALCU-

LUS, KUHN-TUCKER THEOREM, LAGRANGE MULTI-

PLIER, OPTIMIZATION, OPTIMIZATION THEORY,
STOCHASTIC OPTIMIZATION, VERTEX ENUMERATION
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Linear Recurrence Sequence
RECURRENCE SEQUENCE

Linear Regression
The fitting of a straight LINE through a given set of
points according to some specified goodness-of-fit
criterion. The most common form of linear regression
is LEAST SQUARES FITTING.

See also LEAST SQUARES FITTING, MULTIPLE REGRES-

SION, NONLINEAR LEAST SQUARES FITTING
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Linear Space
VECTOR SPACE

Linear Stability
Consider the general system of two first-order ORDIN-

ARY DIFFERENTIAL EQUATIONS

ẋ�f (x; y) (1)

ẏ�g(x; y): (2)

Let x0 and y0 denote FIXED POINTS with ẋ� ẏ�0; so

f (x0; y0)�0 (3)

g(x0; y0)�0: (4)

Then expand about (x0; y0) so

dẋ�fx(x0; y0)dx�fy(x0; y0)dy�fxy(x0; y0)dxdy

�� � � (5)

dẏ�gx(x0; y0)dx�gy(x0; y0)dy�gxy(x0; y0)dxdy

�� � � (6)

To first-order, this gives

d

dt

dx
dy

/ �
�

fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

/ �
dx
dy

/ �
; (7)

where the 2�2 MATRIX is called the STABILITY

MATRIX.

In general, given an n -D MAP x?�T(x); let x0 be a
FIXED POINT, so that

T(x0)�x0: (8)

Expand about the fixed point,

T(x0�dx)�T(x0)�
@T

@x
dx�O(dx)2

�T(x0)�dT; (9)

so

dT�
@T

@x
dx�Adx: (10)

The map can be transformed into the principal axis
frame by finding the EIGENVECTORS and EIGENVALUES

of the MATRIX A

(A�lI)dx�0; (11)

so the DETERMINANT

A�lIj j�0: (12)

The mapping is

dx?
princ�

l1 � � � 0
n ::: n
0 � � � ln

2
4

3
5: (13)

When iterated a large number of times,

dT?princ 0 0 (14)

only if R(li)j jB1 for i�1, ..., n but 0 � if any lij j >
1: Analysis of the EIGENVALUES (and EIGENVECTORS)
of A therefore characterizes the type of FIXED POINT.
The condition for stability is R(li)j jB1 for i�1, ..., n .

See also FIXED POINT, LYAPUNOV FUNCTION, NON-

LINEAR STABILITY, STABILITY MATRIX



References
Tabor, M. "Linear Stability Analysis." §1.4 in Chaos and

Integrability in Nonlinear Dynamics: An Introduction.
New York: Wiley, pp. 20 �/1, 1989.

Linear Transformation
A linear transformation between two VECTOR SPACES

V and W is a MAP T : V 0 W such that the following
hold:

1. T(v1 �v2) �T(v1)T(v2) for any VECTORS v1 and
v2 in V , and
2. T(av) � aT(v) for any SCALAR a:/

A linear transformation may not be INJECTIVE or
ONTO. When V and W have the same DIMENSION, it is
possible for T to be invertible, meaning there exists a
T �1 such that TT �1 �I : It is always the case that
T(0) �0: Also, a linear transformation always maps
LINES to LINES (or to zero).

nbsp

The main example of a linear transformation is given
by MATRIX MULTIPLICATION. Given an n �m MATRIX A;
define /T(v) �Av/, where v is written as a COLUMN

VECTOR (with m coordinates). For example, consider

A �
0 1
�1 3
4 0

2
4

3
5; (1)

then T is a linear transformation from R2 to R3 ;
defined by,

T(x; y) �(y;�2x �2y; x): (2)

Another example is /T(x; y) �(1:4x �y; 0:8x)/. The
homotopy from the identity transformation to T is
illustrated above.

When V and W are FINITE dimensional, a general
linear transformation can be written as a matrix
multiplication only after specifying a BASIS for V and

W . When V and W have an INNER PRODUCT, and their
BASES, fv1 ; � � � ; vm g and fw; � � � ; wn g; are ORTHONOR-

MAL, it is easy to write the corresponding matrix A �
(aij) : In particular, aij � wi ; T(vj)

: ;
: Note that when

using the standard basis for Rn and Rm ; the jth
column corresponds to the image of the jth standard
basis vector.

When V and W are INFINITE dimensional, then it is
possible for a linear transformation to not be CON-

TINUOUS. For example, let V be the space of poly-
nomials in one variable, and T be the DERIVATIVE.
Then T x3ð Þ�nxn �1 ; which is not CONTINUOUS because
xn =n 0 0 while T(xn =n) does not converge.

Linear 2-D transformations have a simple classifica-
tion. Consider the 2-D linear transformation

rx?1 �a11x1 �a12x2 (3)

rx?2 �a21x1 �a22x2 : (4)

Now rescale by defining l �x1 =x2 and l ?�x?1 =x?2 : Then
the above equations become

l ?�
al � b

gl � d 
(5)

where ad � bg "0 and a; b; g and d are defined in
terms of the old constants. Solving for l gives

l�
dl? � b

�gl? � a
; (6)

so the transformation is ONE-TO-ONE. To find the
FIXED POINTS of the transformation, set l�l? to
obtain

gl2�(d�a)l�b�0: (7)

This gives two fixed points which may be distinct or
coincident. The fixed points are classified as follows.

variables type

/(d�a)2�4bg > 0/ HYPERBOLIC FIXED POINT

/(d�a)2�4bgB0/ ELLIPTIC FIXED POINT

/(d�a)2�4bg�0/ PARABOLIC FIXED POINT

See also BASIS (VECTOR SPACE), ELLIPTIC FIXED

POINT (MAP), GENERAL LINEAR GROUP, HYPERBOLIC

FIXED POINT (MAP), INVERTIBLE LINEAR MAP, INVOL-

UTORY, LINEAR OPERATOR, MATRIX, MATRIX MULTI-

PLICATION, PARABOLIC FIXED POINT, VECTOR SPACE
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Linear Weighted Moment
L -MOMENT

Linearly Dependent Curves
Two curves f and c satisfying

f � c �0

are said to be linearly dependent. Similarly, n curves
fi ; i � 1, ..., n are said to be linearly dependent if

Xn

i�1

fi �0:

See also BERTINI’S THEOREM, STUDY’S THEOREM

References
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New

York: Dover, pp. 32 �/4, 1959.

Linearly Dependent Functions
The n functions f1(x) ; f2(x) ; ..., fn(x) are linearly
dependent if, for some c1 ; c2 ; ..., cn �R not all zero,

cifi(x) �0 (1)

(where EINSTEIN SUMMATION is used) for all x in some
interval I . If the functions are not linearly dependent,
they are said to be linearly independent. Now, if the
functions �Rn�1 ; we can differentiate (1) up to n �1
times. Therefore, linear dependence also requires

cif ?i �0 (2)

cif ƒi �0 (3)

cif
(n�1)
i �0; (4)

where the sums are over i �1, ..., n . These equations
have a nontrivial solution IFF the DETERMINANT

f1 f2 � � �  fn

f ?1 f ?2 � � �  f ?2
n n ::: n

f (n�1)
1 f (n �1)

2 � � �  f (n�1)
n

��������

��������
�0 ; (5)

where the DETERMINANT is conventionally called the
WRONSKIAN and is denoted W(f1 ; f2 ; . . . ; fn): If the
WRONSKIAN "0 for any value c in the interval I , then
the only solution possible for (2) is ci �0 (i � 1, ..., n ),
and the functions are linearly independent. If, on the
other hand, W �0 for a range, the functions are
linearly dependent in the range. This is equivalent to
stating that if the vectors V[f1(c)]; ..., V[fn(c)] defined
by

V[fi(x)] �

fi(x)
f ?i(x)
f ƒi(x)
n

f n �1
i (x)

2
66664

3
77775 (6)

are linearly independent for at least one c � I ; then the
functions fi are linearly independent in I .

References
Sansone, G. "Linearly Independent Functions." §1.2 in

Orthogonal Functions, rev. English ed. New York: Dover,
pp. 2�/, 1991.

Linearly Dependent Sequences
Sequences x(1)

n ; x(2)
n ; ..., x(k)

n are linearly independent if
constants c1; c2; ..., ck (not all zero) exist such that

Xk

i�1

cix
(i)
n �0

for n�0, 1, ....

See also CASORATIAN

References
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Linearly Dependent Vectors
n VECTORS X1; X2; ..., Xn are linearly dependent IFF

there exist SCALARS c1; c2; ..., cn; not all zero, such that

ciXi�0; (1)

where EINSTEIN SUMMATION is used and i�1, ..., n . If
no such SCALARS exist, then the vectors are said to be
linearly independent. In order to satisfy the CRITER-

ION for linear dependence,

c1

x11

x12

n
xn1

2
664

3
775�c2

x12

x22

n
xn2

2
664

3
775�� � ��cn

x1n

x2n

n
xnn

2
664

3
775�

0
0
n
0

2
664
3
775 (2)

x11 x12 � � � x1n

x21 x22 � � � x2n

n n ::: n
xn1 xn2 � � � xnn

2
664

3
775

c1

c2

n
cn

2
664
3
775�

0
0
n
0

2
664
3
775: (3)

In order for this MATRIX equation to have a nontrivial
solution, the DETERMINANT must be 0, so the VECTORS

are linearly dependent if

x11 x12 � � � x1n

x21 x22 � � � x2n

n n ::: n
xn1 xn2 � � � xnn

2
664

3
775�0; (4)

and linearly independent otherwise.

Let p and q be n -D VECTORS. Then the following three
conditions are equivalent (Gray 1997).



1. p and q are linearly dependent.

2.
p � p p � q
q � p q � q

����
�����0:/

3. The 2 �n MATRIX
p
q

h i
has rank less than two.

References
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Linearly Independent
Two or more functions, equations, or vectors f1 ; f2 ; ...,
which are not linearly dependent, i.e., cannot be
expressed in the form

a1f1 �a2f2 �� � ��anfn �0

with a1 ; a2 ; ... constants which are not all zero are
said to be linearly independent.

See also LINEARLY DEPENDENT CURVES, LINEARLY

DEPENDENT FUNCTIONS, LINEARLY DEPENDENT VEC-

TORS, MAXIMALLY LINEARLY INDEPENDENT

Linearly Ordered Set
TOTAL ORDER

Line at Infinity
The straight line on which all POINTS AT INFINITY lie.
The line at infinity is given in terms of TRILINEAR

COORDINATES by

aa �bb �c g �0 ;

which follows from the fact that a REAL TRIANGLE will
have POSITIVE AREA, and therefore that

2D�a a �bb �c g > 0:

Instead of the three reflected segments concurring for
the ISOGONAL CONJUGATE of a point X on the
CIRCUMCIRCLE of a TRIANGLE, they become parallel
(and can be considered to meet at infinity). As X
varies around the CIRCUMCIRCLE, X �1 varies through
a line called the line at infinity. Every line is
PERPENDICULAR to the line at infinity.

Poncelet was the first to systematically employ the
line at infinity (Graustein 1930).

See also POINT AT INFINITY
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Line Bisector

The line bisecting a given LINE SEGMENT P1P2 can be
constructed geometrically, as illustrated above.

References
Courant, R. and Robbins, H. "How to Bisect a Segment and
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Line Bundle
A line bundle is a special case of a VECTOR BUNDLE in
which the fiber is either R; in the case of a real line
bundle, or C ; in the case of a complex line bundle.

See also MANIFOLD, PRINCIPAL BUNDLE, TRIVIAL

BUNDLE, VECTOR BUNDLE

Line-Circle Intersection
CIRCLE-LINE INTERSECTION

Line Connectivity
EDGE CONNECTIVITY

Line Element
Also known as the first FUNDAMENTAL FORM

ds2 �gabdxadxb :

In the principal axis frame for 3-D,

ds2 �gaa(dxa)2 �gbb(dxb)2 �gcc(dxc)2 :

At ORDINARY POINTS on a surface, the line element is
positive definite.

See also AREA ELEMENT, FUNDAMENTAL FORMS,
VOLUME ELEMENT



Line Graph

A LINE GRAPH L(G) (also called an interchange graph)
of a graph G is obtained by associating a vertex with
each edge of the graph and connecting two vertices
with an edge IFF the corresponding edges of G meet at
one or both endpoints. In the three examples above,
the original graphs are the COMPLETE GRAPHS K3 ; K4 ;
and K5 :/
The line graph of a GRAPH with n nodes, e edges, and
vertex degrees di contains n ?�e nodes and

e ?�1
2

Xn

i�1

d2
i �e

edges (Skiena 1990, p. 137). The INCIDENCE MATRIX C

of a graph and ADJACENCY MATRIX L of its line graph
are related by

L �CTC �2I ;

where I is the IDENTITY MATRIX (Skiena 1990, p. 136).

A graph is a line graph IFF if does not contain any of
the above graphs as SUBGRAPHS (van Rooij and Wilf
1965; Beineke 1968; Skiena 1990, p. 138). Of the nine,
one has four nodes (the STAR GRAPH S4 �K1 ; 3) ; two
have five nodes, and six have six nodes (including the
WHEEL GRAPH W6) :/

The only CONNECTED GRAPH that is isomorphic to its
line graph is a CYCLE GRAPH Cn (Skiena 1990, p. 137).
Whitney (1932) showed that, with the exception of K3

and K1 ; 3 ; any two CONNECTED GRAPHS with iso-
morphic line graphs are isomorphic (Skiena 1990,
p. 138).

The line graph of an EULERIAN GRAPH is both
Eulerian and HAMILTONIAN (Skiena 1990, p. 138).
More information about cycles of line graphs is given
by Harary and Nash-Williams (1965) and Chartrand
(1968).

See also TOTAL GRAPH
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Line Integral
The line integral of a VECTOR FIELD F(x) on a curve s

is defined by

g
s

F � ds�g
b

a

F(s(t))� s?(t) dt; (1)

where a � b denotes a DOT PRODUCT. In Cartesian
coordinates, the line integral can be written

g
s

F � ds�gC

F1 dx�F2 dy�F3 dz; (2)

where

F�

F1(x)
F2(x)
F3(x)

2
4

3
5: (3)

For z COMPLEX and g : z�z(t) a path in the COMPLEX

PLANE parameterized by t � [a; b];

g
g

f dz�g
b

a

f (z(t))z?(t) dt: (4)

POINCARÉ’S THEOREM states that if 9�F�0 in a
simply connected neighborhood U(x) of a point x,
then in this neighborhood, F is the GRADIENT of a
SCALAR FIELD f(x);

F(x)��9f(x) (5)

for x �U(x); where 9 is the gradient operator. Conse-



quently, the GRADIENT THEOREM gives

g
s

F � ds � f(x1) � f(x2) (6)

for any path s located completely within U(x);
starting at x1 and ending at x2 :/

This means that if 9�F �0 (i.e., F(x) is an IRROTA-

TIONAL FIELD in some region), then the line integral is
path-independent in this region. If desired, a Carte-
sian path can therefore be chosen between starting
and ending point to give

g
(x; y; z)

(a; b; c)

F1 dx �F2 dy �F3 dz

�g
(x ; b ; c)

(a ; b ; c)

F1 dx �g
(x; y ; c)

(x ; b ; c)

F2 dy �g
(x; y ; z)

(x ; y; c)

F3 dz : (7)

If 9 � F �0 (i.e., F(x) is a DIVERGENCELESS FIELD,
a.k.a. SOLENOIDAL FIELD), then there exists a VECTOR

FIELD A such that

F �9�A ; (8)

where A is uniquely determined up to a gradient field
(and which can be chosen so that /9 � A �0/).

See also CONSERVATIVE FIELD, CONTOUR INTEGRAL,
GRADIENT THEOREM, IRROTATIONAL FIELD, PATH

INTEGRAL, POINCARÉ ’S THEOREM
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Line-Line Intersection

The INTERSECTION of two LINES L1 and L2 in 2-D with,
L1 containing the points (x1 ; y1) and (x2 ; y2) ; and L2

containing the points (x3 ; y3) and (x4 ; y4) ; is given by

x �

x1 y1

x2 y2

����
���� x1 1

x2 1

����
����

x3 y3

x4 y4

����
���� x3 1

x4 1

����
����

��������

��������
x1 1
x2 1

����
���� y1 1

y2 1

����
����

x3 1
x4 1

����
���� y3 1

y4 1

����
����

��������

��������

�

x1 y1

x2 y2

����
����x1 � x2

x3 y3

x4 y4

����
����x3 � x4

��������

��������
x1 � x2 y1 � y2

x3 � x4 y3 � y4

����
����

(1)

y �

x1 y1

x2 y2

����
���� y1 1

y2 1

����
����

x3 y3

x4 y4

����
���� y3 1

y4 1

����
����

��������

��������
x1 1
x2 1

����
���� y1 1

y2 1

����
����

x3 1
x4 1

����
���� y3 1

y4 1

����
����

��������

��������

�

x1 y1

x2 y2

����
����y1 � y2

x3 y3

x4 y4

����
����y3 � y4

��������

��������
x1 � x2 y1 � y2

x3 � x4 y3 � y4

����
����
: (2)

In 3-D, let the two lines pass through points given by
the vectors (/p1 ; q1) and (/p2 ; q2) and define

v1 �
q1 � p1

q1 � p1j j  
(3)

v2 �
q2 � p2

q2 � p2j j  
(4)

v12 �v1 �v2 (5)

s1 �det(p2 �p1 v2 v12) (6)

s2�det(p2�p1 v1 v12): (7)

Then the point of intersection p of the two lines is
given by

p�1
2(p1�v1s1�p2�v2s2) (8)

(Glassner).

See also CONCUR, CONCURRENT, INTERSECTION, LINE,
LINE-PLANE INTERSECTION
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Line Line Picking
POINT-POINT DISTANCE–1-D

Line of Curvature
A curve on a surface whose tangents are always in the
direction of PRINCIPAL CURVATURE. The equation of
the lines of curvature can be written

g11 g12 g22

b11 b12 b22

du2 �du dv dv2

������
�������0;



where g and b are the COEFFICIENTS of the first and
second FUNDAMENTAL FORMS.

See also DUPIN’S THEOREM, FUNDAMENTAL FORMS,
PRINCIPAL CURVATURES

Line-Plane Intersection

The PLANE determined by the points x1 ; x2 ; and x3

and the LINE passing through the points x4 and x5

intersect in a point which can be determined by
solving the four simultaneous equations

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

��������

��������
�0 (1)

x �x4 �(x4 �x5)t (2)

y �y4 �(y4 �y5)t (3)

z �z4 �(z4 �z5)t (4)

for x , y , z , and t , giving

t �

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

��������

��������
1 1 1  0
x1 x2 x3 x5 � x4

y1 y2 y3 y5 � y4

z1 z2 z3 z5 � z4

��������

��������

: (5)

This value can then be plugged back in to (2), (3), and
(4) to give the point of intersection /(x; y; z)/.

See also LINE, LINE-LINE INTERSECTION, PLANE

Line Segment

A closed interval corresponding to a FINITE portion of
an infinite LINE. Line segments are generally labeled

with two letters corresponding to their endpoints, say
A and B , and then written AB . The length of the line
segment is indicated with an overbar, so the length of
the line segment AB would be written AB :/
Curiously, the number of points in a line segment
(ALEPH-1) is equal to that in an entire 1-D SPACE (a
LINE), and also to the number of points in an n -D
SPACE, as first recognized by Georg Cantor.

See also ALEPH-1, COLLINEAR, CONTINUUM, LINE,
RANGE (LINE SEGMENT), RAY

References
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Line Space
LIOUVILLE SPACE

L-Infinity-Norm
A VECTOR NORM defined for a VECTOR

x �

x1

x2

n
xn

2
664

3
775;

with COMPLEX entries by

xk k��max
i

½xi ½:

The vector norm ½x½� is implemented as Vector-
Norm[m , Infinity] in the Mathematica add-on pack-
age LinearAlgebra‘MatrixMultiplication‘
(which can be loaded with the command
BBLinearAlgebra‘).

See also L1-NORM, L2-NORM, VECTOR NORM
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L-Infinity-Space
The SPACE called L� (ell-infinity) generalizes the LP -

SPACES to p ��: No integration is used to define
them, and instead, the norm on L� is given by the
ESSENTIAL SUPREMUM.

More precisely,

fk k��ess sup½f ½

is the norm which makes L � a BANACH SPACE. It is
the space of all essentially bounded functions. The
space of bounded continuous functions is not DENSE

in L�:/

See also BANACH SPACE, COMPLETION, DENSE, ESSEN-

TIAL SUPREMUM, LP -SPACE, L2-SPACE, MEASURE,
MEASURABLE FUNCTION, MEASURE SPACE



Link
Formally, a link is one or more disjointly embedded
CIRCLES in 3-space. More informally, a link is an
assembly of KNOTS with mutual entanglements.
Kuperberg (1994) has shown that a nontrivial KNOT

or link in R3 has four COLLINEAR points (Eppstein).
Doll and Hoste (1991) list POLYNOMIALS for oriented
links of nine or fewer crossings.

A listing of the first few simple links follows, ar-
ranged by CROSSING NUMBER. The numbers of non-
trivial 2-component links of 0, 1, 2, ... crossings are 1,
0, 1, 0, 1, 1, 3, 8, 16, 61, ... (Sloane’s A048952). The
numbers of nontrivial 3-component links of 6, 7, ...
crossings are 3, 1, 10, 21, ... (Sloane’s A048953). The
number of nontrivial 4-component links of 8, 9, ...
crossings are 3, 1, ....

00 �/2 �/1 02�/2 �/1 04�/2 �/1 05�/2 �/1 06�/2 �/1 06�/2 �/2 06�/2 �/3 07�/2 �/

1 07�/2 �/2 07�/2 �/3 07�/2 �/4 07�/2 �/5 07�/2 �/6 07�/2 �/7 07�/2 �/8 08�/

2 �/1 08�/2 �/2 08�/2 �/3 08�/2 �/4 08�/2 �/5 08�/2 �/6 08�/2 �/7 08�/2 �/8

08 �/2 �/9 08�/2 �/0 08�/2 �/1 08�/2 �/2 08�/2 �/3 08�/2 �/4 08�/2 �/5 08�/2 �/

6 09�/2 �/1 09�/2 �/2 09�/2 �/3 09�/2 �/4 09�/2 �/5 09�/2 �/6 09�/2 �/7 09�/

2 �/8 09�/2 �/9 09�/2 �/0 09�/2 �/1 09�/2 �/2 09�/2 �/3 09�/2 �/4 09�/2 �/5

09 �/2 �/6 09�/2 �/7 09�/2 �/8 09�/2 �/9 09�/2 �/0 09�/2 �/1 09�/2 �/2 09�/2 �/

3 09�/2 �/4 09�/2 �/5 09�/2 �/6 09�/2 �/7 09�/2 �/8 09�/2 �/9 09�/2 �/0 09�/

2 �/1 09�/2 �/2 09�/2 �/3 09�/2 �/4 09�/2 �/5 09�/2 �/6 09�/2 �/7 09�/2 �/8

09 �/2 �/9 09�/2 �/0 09�/2 �/1 09�/2 �/2 09�/2 �/3 09�/2 �/4 09�/2 �/5 09�/2 �/

6 09�/2 �/7 09�/2 �/8 09�/2 �/9 09�/2 �/0 09�/2 �/1 09�/2 �/2 09�/2 �/3 09�/

2 �/4 09�/2 �/5 09�/2 �/6 09�/2 �/7 09�/2 �/8 09�/2 �/9 09�/2 �/0 09�/2 �/1

06 �/3 �/1 06�/3 �/2 06�/3 �/3 07�/3 �/1 08�/3 �/1 08�/3 �/2 08�/3 �/3 08�/3 �/

4 08�/3 �/5 08�/3 �/6 08�/3 �/7 08�/3 �/8 08�/3 �/9 08�/3 �/0 09�/3 �/1 09�/

3 �/2 09�/3 �/3 09�/3 �/4 09�/3 �/5 09�/3 �/6 09�/3 �/7 09�/3 �/8 09�/3 �/9

09 �/3 �/0 09�/3 �/1 09�/3 �/2 09�/3 �/3 09�/3 �/4 09�/3 �/5 09�/3 �/6 09�/3 �/

7 09�/3 �/8 09�/3 �/9 09�/3 �/0 09�/3 �/1 08�/4 �/1 08�/4 �/2 08�/4 �/3 09�/

4 �/1

See also ANDREWS-CURTIS LINK, BORROMEAN RINGS,
BRUNNIAN LINK, HOPF LINK, KNOT, ORIENTED LINK,
WHITEHEAD LINK
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Link (Simplicial Complex)
The set St v �St v; where St v is a CLOSED STAR and
St v is a STAR, is called the link of v in a SIMPLICIAL

COMPLEX K and is denoted Lkv (Munkres 1993,
p. 11).

See also CLOSED STAR, SIMPLICIAL COMPLEX, STAR
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Link Complement
KNOT COMPLEMENT

Link Diagram

A planar diagram depicting a LINK (or KNOT) as a
sequence of segments with gaps representing under-
crossings and solid lines overcrossings. In such a
diagram, only two segments should ever cross at a
single point. Link diagrams for the TREFOIL KNOT and
FIGURE-OF-EIGHT KNOT are illustrated above.

Link Invariant
A link invariant is a function from the set of all LINKS

to any other set such that the function does not
change as the link is changed (up to isotopy). In other
words, a link invariant always assigns the same value
to equivalent links (although different knots may
have the same link invariant). When the link has a
single component and therefore generates to a KNOT,
the invariant is called a KNOT INVARIANT.

See also KNOT, KNOT INVARIANT, LINK

Linkage
Sylvester, Kempe and Cayley developed the geometry
associated with the theory of linkages in the 1870s.
Kempe proved that every finite segment of an
algebraic curve can be generated by a linkage in the
manner of WATT’S CURVE.

See also HART’S INVERSOR, KEMPE LINKAGE, PANTO-

GRAPH, PEAUCELLIER INVERSOR, SARRUS LINKAGE,
WATT’S PARALLELOGRAM
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Linking Number
A LINK INVARIANT defined for a two-component
oriented LINK as the sum of �1 crossings and �1
crossing over all crossings between the two links
divided by 2. For components a and b;

Lk( a; b) �1
2

X
p � a �b

e(p);

where a�b is the set of crossings of a with b; and e(p)
is the sign of the crossing. The linking number of a
splittable two-component link is always 0.

See also CALUGAREANU THEOREM, GAUSS INTEGRAL,
JONES POLYNOMIAL, LINK, TWIST, WRITHE
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Links Curve

The curve given by the Cartesian equation

(x2�y2�3x)2�4x2(2�x):

The origin of the curve is a TACNODE.
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Linnik’s Constant
The constant L in LINNIK’S THEOREM. Heath-Brown
(1992) has shown that L55:5; and Schinzel, Sier-
pinski, and Kanold (Ribenboim 1989) have conjec-
tured that L�2.
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Linnik’s Theorem
Let p(d; a) be the smallest PRIME in the arithmetic
progression fa�kdg for k an INTEGER > 0: Let

p(d)�max p(d; a)

such that 15aBd and (a; d)�1: Then there exists a
d0]2 and an L � 1 such that p(d)BdL for all d > d0:
L is known as LINNIK’S CONSTANT.
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Lin’s Method
An ALGORITHM for finding ROOTS for QUARTIC EQUA-

TIONS with COMPLEX ROOTS.
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Lin-Tsien Equation
The PARTIAL DIFFERENTIAL EQUATION

2utx�uxuxx�uyy�0:
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Linus Sequence

The sequence composed of 1s and 2s obtained by
starting with the number 1, and picking subsequent
elements to avoid repeating the longest possible
substring. The first few terms are 1, 2, 1, 1, 2, 2, 1,
2, 1, 1, 2, 1, 2, 2, ... (Sloane’s A006345). The SALLY

SEQUENCE gives the length of the run that was
avoided.

See also SALLY SEQUENCE
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Liouville Function

The function

l(n)�(�1)r(n); (1)

where r(n) is the number of not necessarily distinct
PRIME FACTORS of n , with r(1)�0: The first few
values of l(n) are 1, �1, �1, 1, �1, 1, �1, �1, 1,
1, �1, �1, .... The Liouville function is connected

with the RIEMANN ZETA FUNCTION by the equation

z(2s)

z(s)
�
X�
n�1

l(n)

ns
(2)

(Lehman 1960).

The CONJECTURE that the SUMMATORY FUNCTION

L(n)�
Xn

k�1

l(n) (3)

satisfies L(n)50 for n]2 is called the PÓLYA CON-

JECTURE and has been proved to be false. The first n
for which L(n)�0 are for n�2, 4, 6, 10, 16, 26, 40, 96,
586, 906150256, ... (Sloane’s A028488), and
n�906150257 is, in fact, the first counterexample
to the PÓLYA CONJECTURE (Tanaka 1980). However, it
is unknown if L(x) changes sign infinitely often
(Tanaka 1980). The first few values of L(n) are 1, 0,
�1, 0, �1, 0, �1, �2, �1, 0, �1, �2, �3, �2, �1,
0, �1, �2, �3, �4, ... (Sloane’s A002819). L(n) also
satisfies

Xx

n�1

L
x

n

 !
�

ffiffiffi
x

p< =
; (4)

where xb c is the FLOOR FUNCTION (Lehman 1960).
Lehman (1960) also gives the formulas

L(x)�
Xx=w

m�1

m(m)

�
ffiffiffiffiffi
x

m

s$ %
�
Xv�1

k�1

l(k)
x

km

$ %
�

x

mv

$ % !( )

�
Xx=v

l�x=w�1

L
x

l

 ! Xx=w

m½l
m�1

m(m) (5)

and

L(x)�
Xg

k�1

M
x

k2

 !
�
Xx=g2

l�1

m(l)

ffiffiffi
x

l

s$ %
�M

x

g2

 !

�
ffiffiffiffiffi
x

g2

s$ %
; (6)



where k , l , and m are variables ranging over the
POSITIVE INTEGERS, m(n) is the MÖ BIUS FUNCTION,
M(x) is MERTENS FUNCTION, and v , w , and x are
POSITIVE real numbers with v Bw Bx:/

See also PÓ LYA CONJECTURE, PRIME FACTORS, RIE-

MANN ZETA FUNCTION
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Liouville MeasureY
i

dpi dqi ;

where pi and qi are momenta and positions of
particles.

See also LIOUVILLE’S PHASE SPACE THEOREM, PHASE

SPACE

Liouville Number
A Liouville number is a TRANSCENDENTAL NUMBER

which has very close RATIONAL NUMBER approxima-
tions. An IRRATIONAL NUMBER b is a Liouville number
if, for any n , there exist an infinite number of pairs of
INTEGERS p and q such that

0 B b�
p

q

�����
�����B 1

qn 
:

LIOUVILLE’S CONSTANT is an example of a Liouville
number. Mahler (1953) proved that p is not a
Liouville number.

See also LIOUVILLE’S CONSTANT, LIOUVILLE’S APPROX-

IMATION THEOREM, ROTH’S THEOREM, TRANSCENDEN-

TAL NUMBER
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Liouville Polynomial Identity

6(x2
1 �x2

2 �x2
3 �x2

4) �(x1 �x2)4 �(x1 �x3)4 �(x2 �x3)4

�(x1 �x4)4 �(x2 �x4)4 �(x3 �x4)4 �(x1 �x2)4

�(x1 �x3)4 �(x2 �x3)4 �(x1 �x4)4 �(x2 �x4)4

�(x3 �x4)4 :

This is proven in Rademacher and Toeplitz (1957).

See also WARING’S PROBLEM
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Liouville-Roth Constant
IRRATIONALITY MEASURE

Liouville’s Approximation Theorem
For any ALGEBRAIC NUMBER x of degree n ]2 ; a
RATIONAL approximation x �p =q must satisfy

x �
p

q

�����
����� > 1

qn�1

for sufficiently large q . Writing r �n �1 leads to the
definition of the IRRATIONALITY MEASURE of a given
number. Apostol (1997) states the theorem in the
slightly modified form that for all integers p and q
with q �0, there exists a positive constant C(x)
depending only on x such that

x �
p

q

�����
����� > C(x)

qn
:

See also DIRICHLET’S APPROXIMATION THEOREM,
IRRATIONALITY MEASURE, LAGRANGE NUMBER (RA-

TIONAL APPROXIMATION), LIOUVILLE’S CONSTANT,
LIOUVILLE NUMBER, MARKOV NUMBER, ROTH’S THE-

OREM, THUE-SIEGEL-ROTH THEOREM
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Liouville’s Boundedness Theorem
A bounded ENTIRE FUNCTION in the COMPLEX PLANE C

is constant. The FUNDAMENTAL THEOREM OF ALGEBRA

follows as a simple corollary.

See also COMPLEX PLANE, ENTIRE FUNCTION, FUNDA-

MENTAL THEOREM OF ALGEBRA
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Liouville’s Conformality Theorem
In SPACE, the only CONFORMAL MAPPINGS are inver-
sions, SIMILARITY TRANSFORMATIONS, and CONGRU-

ENCE TRANSFORMATIONS. Or, restated, every ANGLE-
preserving transformation is a SPHERE-preserving
transformation.

See also CONFORMAL MAP

Liouville’s Conic Theorem
The lengths of the TANGENTS from a point P to a
CONIC C are proportional to the CUBE ROOTS of the
RADII OF CURVATURE of C at the corresponding points
of contact.

See also CONIC SECTION

Liouville’s Constant

L �
X�
n�1

10�n!

�0 :110001000000000000000001 . . .

(Sloane’s A012245). Liouville’s constant is a decimal
fraction with a 1 in each decimal place corresponding
to a FACTORIAL n!; and ZEROS everywhere else.
Liouville (1844) constructed an infinite class of
TRANSCENDENTAL NUMBERS using CONTINUED FRAC-

TIONS, but the above number was the first decimal
constant to be proven TRANSCENDENTAL (Liouville
1850). However, Cantor subsequently proved that
"almost all" real numbers are in fact transcendental.
Liouville’s constant nearly satisfies

10x6 �75x3 �190x �21 �0;

but plugging x �L into this equation gives
�0:0000000059 . . . instead of 0.

See also LIOUVILLE NUMBER
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Liouville’s Elliptic Function Theorem
An ELLIPTIC FUNCTION with no POLES in a FUNDA-

MENTAL CELL is a constant.

See also ELLIPTIC FUNCTION, FUNDAMENTAL CELL,
POLE
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Liouville’s Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�g(y)y?2 �f (x)y?�0 (1)

is called Liouville’s equation (Goldstein and Braun
1973; Zwillinger 1997, p. 124), as are the PARTIAL

DIFFERENTIAL EQUATIONS

Xn

i�1

uxixi
�e lu �0 (2)

(Matsumo 1987; Zwillinger 1997, p. 133) and

uxt �e hu (3)

(Calogero and Degasperis 1982, p. 60; Zwillinger
1997, p. 133).

See also KLEIN-GORDON EQUATION
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Liouville Space
Also known as LINE SPACE or "extended" HILBERT

SPACE, it is the SET DIRECT PRODUCT of two HILBERT

SPACES.

See also HILBERT SPACE, SET DIRECT PRODUCT

Liouville’s Phase Space Theorem
States that for a nondissipative HAMILTONIAN SYS-

TEM, phase space density (the AREA between phase
space contours) is constant. This requires that, given
a small time increment dt ,

q1 �q(t0 �dt) �q0 �
@H(q0 ; p0 ; t)

@p0

dt �O(dt2) (1)

p1 �p(t0 �dt) �p0 �
@H(q0 ; p0 ; t)

@q0

dt �O(dt2) ; (2)

the JACOBIAN be equal to one:

@(q1 ; p1)

@(q0 ; p0) 
�

@q1

@q0

@p1

@q0

@q1

@p0

@p1

@p0

���������

���������

�
1 �

@2H

@q0 @p0

dt �
@2H

@q2
0

dt

@2H

@p2
0

dt 1 �
@2H

@q0 @p0

dt

���������

���������
�O(dt2)

�1 �O(dt2) : (3)

Expressed in another form, the integral of the LIOU-

VILLE MEASURE,

YN
i�1
g dpi dqi ; (4)

is a constant of motion. SYMPLECTIC MAPS of HAMIL-

TONIAN SYSTEMS must therefore be AREA preserving
(and have DETERMINANTS equal to 1).

See also LIOUVILLE MEASURE, PHASE SPACE
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Liouville’s Principle
Let F be a differential field with constant field K . For
f � F ; suppose that the equation g?�f (i.e., g �f f ) has
a solution g � G ; where G is an elementary extension
of F having the same constant FIELD K . Then there
exist v0 ; v1 ; ..., vm � F and constants c1 ; ..., cm � K such
that

f �v?0 �
Xm

i �1

ci

v ?i
vi

;

In other words, such that

g f �v0 �
Xm

i �1

ciln vi :

See also ELEMENTARY FUNCTION
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Liouville’s Sphere-Preserving Theorem
LIOUVILLE’S CONFORMALITY THEOREM

Liouvillian Number
A member of the smallest algebraically closed SUB-

FIELD L of C which is CLOSED under the exponentia-
tion and logarithm operations.

See also ELEMENTARY NUMBER
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Lipschitz Condition
A function f (x) satisfies the Lipschitz condition of
order a at x �0 if

½f (h) �f (0) ½5B ½h½ b

for all ½h½B e; where B and b are independent of h ,
b > 0; and a is an UPPER BOUND for all b for which a
finite B exists.

See also HILLAM’S THEOREM, HÖ LDER CONDITION,
LIPSCHITZ FUNCTION
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Lipschitz Function
A function f such that

½f (x)�f (y)½5C½x�y½

for all x and y , where C is a constant independent of x
and y , is called a Lipschitz function. For example, any
function with a bounded first derivative must be
Lipschitz.



See also LIPSCHITZ CONDITION
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Lipschitz’s Integral

g
�

0

e�axJ0(bx) dx �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p ;

where J0(z) is the zeroth order BESSEL FUNCTION OF

THE FIRST KIND.
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Lissajous Curve

Lissajous curves are the family of curves described by
the PARAMETRIC EQUATIONS

x(t) �A cos(vxt � dx) (1)

y(t) �B cos(vyt � dy) ; :  (2)

sometimes also written in the form

x(t) �a sin(nt �c) (3)

y(t) �b sin t: (4)

They are sometimes known as BOWDITCH CURVES

after Nathaniel Bowditch, who studied them in
1815. They were studied in more detail (indepen-
dently) by Jules-Antoine Lissajous in 1857 (MacTutor
Archive). Lissajous curves have applications in phy-
sics, astronomy, and other sciences. The curves close
IFF vx =vy is RATIONAL.
Lissajous curves are a special case of the HARMONO-

GRAPH with damping constants b1 � b2 �0:/

See also HARMONOGRAPH
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Lissajous Figure
LISSAJOUS CURVE

List
An DATA STRUCTURE consisting of an ordered SET of
elements, each of which may be a number, another
list, etc. A list is usually denoted (/a1 ; a2 ; ..., an) or
fa1 ; a2 ; . . .  ; an g; and may also be interpreted as a
VECTOR. Multiplicity matters in a list, so (1, 1, 2) and
(1, 2) are not equivalent.

See also MULTISET, QUEUE, SET, STACK, STRING,
VECTOR

Little Moment Problem
MOMENT PROBLEM

Lituus

An ARCHIMEDEAN SPIRAL with m��2, having polar
equation

r2u�a2:

Lituus means a "crook," in the sense of a bishop’s
crosier. The lituus curve originated with Cotes in
1722. Maclaurin used the term lituus in his book
Harmonia Mensurarum in 1722 (MacTutor Archive).
The lituus is the locus of the point P moving such that
the AREA of a circular SECTOR remains constant.
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Lituus Inverse Curve
The INVERSE CURVE of the LITUUS is an ARCHIMEDEAN

SPIRAL with m �2, which is FERMAT’S SPIRAL.

See also ARCHIMEDEAN SPIRAL, FERMAT’S SPIRAL,
LITUUS

LLL Algorithm
A LATTICE REDUCTION algorithm, named after dis-
coverers Lenstra, Lenstra, and Lovasz (1982), that
produces a lattice basis of "short" vectors. It was
noticed by Lenstra et al. (1928) that the algorithm
could be used to obtain factors of univariate poly-
nomials, which amounts to the determination of
INTEGER RELATIONS. However, this application of the
algorithm, which later came to be one of its primary
applications, was not stressed in the original paper.

The Mathematica command LatticeReduce[ma-
trix ] implements the LLL algorithm to perform
LATTICE REDUCTION. Mathematica ’s implementation
requires the input to consist of rational numbers, so
Rationalize may need to be called first.

More recently, other algorithms such as PSLQ, which
can be significant faster than LLL, have been devel-
oped for finding INTEGER RELATIONS. PSLQ achieves
its performance because of clever techniques that
allow machine arithmetic to be used at many inter-
mediate steps, whereas LLL must use moderate
precision (although generally not as much as the
HJLS ALGORITHM).

See also FERGUSON-FORCADE ALGORITHM, HJLS
ALGORITHM, INTEGER RELATION, LATTICE REDUC-

TION, PSLQ ALGORITHM, PSOS ALGORITHM

References
Borwein, J. M. and Corless, R. M. "Emerging Tools for

Experimental Mathematics." Amer. Math. Monthly 106,
899 �/09, 1999.

Borwein, J. M. and Lisonek, P. "Applications of Integer
Relation Algorithms." To appear in Disc. Math. http://
www.cecm.sfu.ca/preprints/1997pp.html.

Cohen, H. A Course in Computational Algebraic Number
Theory. New York: Springer-Verlag, 1993.

Lenstra, A. K.; Lenstra, H. W.; and Lovasz, L. "Factoring
Polynomials with Rational Coefficients." Math. Ann. 261,
515 �/34, 1982.

Matthews, K. "Keith Matthews’ LLL Page." http://
www.maths.uq.edu.au/~krm/lll.html.

Mignotte, M. Mathematics for Computer Algebra. New York:
Springer-Verlag, 1991.

L-Moment
A type of statistic which can be useful for determining
asymmetry and tailedness of a population.

See also MOMENT, ORDER STATISTIC
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Ln
The LOGARITHM to BASE E , also called the NATURAL

LOGARITHM, is denoted ln ; i.e.,

ln x �loge x:

See also BASE (LOGARITHM), E, LG, LOGARITHM,
NAPIERIAN LOGARITHM, NATURAL LOGARITHM

Lobachevsky-Bolyai-Gauss Geometry
HYPERBOLIC GEOMETRY

Lobachevsky’s Formula

Given a point P and a LINE AB , draw the PERPENDI-

CULAR through P and call it PC . Let PD be any other
line from P which meets CB in D . In a HYPERBOLIC

GEOMETRY, as D moves off to infinity along CB , then
the line PD approaches the limiting line PE , which is
said to be parallel to CB at P . The angle �CPE which
PE makes with PC is then called the ANGLE OF

PARALLELISM for perpendicular distance x , and is
given by Y

(x) �2 tan�1(e �x) ;

which is called Lobachevsky’s formula.

See also ANGLE OF PARALLELISM, HYPERBOLIC GEO-

METRY
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Lobatto Quadrature
Also called RADAU QUADRATURE (Chandrasekhar
1960). A GAUSSIAN QUADRATURE with WEIGHTING

FUNCTION W(x)�1 in which the endpoints of the
interval [�1; 1] are included in a total of n ABSCISSAS,
giving r�n�2 free abscissas. ABSCISSAS are symme-
trical about the origin, and the general FORMULA is

g
1

�1

f (x) dx�w1f (�1)�wnf (1)�
Xn�1

i�2

wif (xi): (1)

The free ABSCISSAS xi for i�2, ..., n�1 are the roots



of the POLYNOMIAL P?n�1(x) ; where P(x) is a LEGENDRE

POLYNOMIAL. The weights of the free abscissas are

wi ��
2n

(1 � x2
i )P ƒn�1(xi)P?m(xi) 

(2)

�
2

n(n � 1)[Pn�1(xi)]
2 ; (3)

and of the endpoints are

w1 ; n �
2

n(n � 1) 
: (4)

The error term is given by

E ��
n(n � 1)322n�1[(n � 2)!]4

(2n � 1)[(2n � 1)!]3 f (2n�2)(j) ; (5)

for j � (�1; 1): Beyer (1987) gives a table of para-
meters up to n �11 and Chandrasekhar (1960) up to
n �9 (although Chandrasekhar’s m3; 4 for m �5 is
incorrect).

n /xi/ /wi/

3 0 1.33333

9 1 0.333333

4 9 0.447214 0.833333

9 1 0.166667

5 0 0.711111

9 0.654654 0.544444

9 1 0.100000

6 9 0.285232 0.554858

9 0.765055 0.378475

9 1 0.0666667

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/ /wi/

3 0  /
4
3/

9 1 /
1
3/

4 /91
5

ffiffiffi
5

p
/ /

1
6/

9 1 /
5
6/

5 0  /
32
45/

/91
7

ffiffiffiffiffiffi
21

p
/ /

49
90/

9 1 /
1
10/

See also CHEBYSHEV QUADRATURE, RADAU QUADRA-

TURE
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Lobster

One of the 12 6-POLYIAMONDS.

See also POLYIAMOND
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Local

A mathematical property P holds locally if P is true
near every point. In many different areas of mathe-
matics, this notion is very useful. For instance, the
sphere, and more generally a MANIFOLD, is locally
Euclidean. For every point on the sphere, there is a
NEIGHBORHOOD which is the same as a piece of
EUCLIDEAN SPACE.

The description of local as "near every point" has a
different interpretation in algebra. For instance,
given a RING R and a PRIME IDEAL p , there is the
LOCAL RING Rp; which often is simpler to study. It is
possible to understand the original ring better by
patching together the information from the local
rings.



What ties all the notions of local together is the
concept of a topology, a collection of open sets. For a
SUBMANIFOLD of Euclidean space, or for the set of
ideals of a ring, the topology is chosen as is appro-
priate.

A property P holds locally on a TOPOLOGICAL SPACE if
every point has a NEIGHBORHOOD on which P holds.
This concept is useful on any topological space.

See also GLOBAL, LOCAL FIELD, LOCAL RING, MANI-

FOLD, TOPOLOGICAL SPACE

Local Cell
The POLYHEDRON resulting from letting each SPHERE

in a SPHERE PACKING expand uniformly until it
touches its neighbors on flat faces.

See also LOCAL DENSITY, SPHERE PACKING

Local Class Field Theory
The study of NUMBER FIELDS by embedding them in a
LOCAL FIELD is called local class field theory. Informa-
tion about an equation in a LOCAL FIELD may give
information about the equation in a GLOBAL FIELD,
such as the rational numbers or a NUMBER FIELD (e.g.,
the HASSE PRINCIPLE).

Local class field theory is termed "local" because the
local fields are LOCALIZED at a PRIME IDEAL in the
RING of ALGEBRAIC INTEGERS. The methods of using
CLASS FIELDS have developed over the years, from the
LEGENDRE SYMBOL, to the CHARACTERS of ABELIAN

EXTENSIONS of a number field, and is applied to LOCAL

FIELDS.

See also ABELIAN EXTENSION, CLASS FIELD, FIELD,
GLOBAL FIELD, HASSE PRINCIPLE, LOCAL FIELD,
NUMBER FIELD, UNIQUE FACTORIZATION
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Local Degree
The degree of a VERTEX of a GRAPH is the number of
EDGES which touch the VERTEX, also called the LOCAL

DEGREE. The VERTEX degree of a point A in a GRAPH,
denoted r(A) ; satisfies

Xn

i�1

r(Ai) �2E;

where E is the total number of EDGES. Directed
graphs have two types of degrees, known as the
INDEGREE and OUTDEGREE.

See also INDEGREE, OUTDEGREE

Local Density
Let each SPHERE in a SPHERE PACKING expand
uniformly until it touches its neighbors on flat faces.
Call the resulting POLYHEDRON the LOCAL CELL. Then
the local density is given by

r �
Vsphere

Vlocal cell

:

When the LOCAL CELL is a regular DODECAHEDRON,
then

rdodecahedron �
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pp
15

ffiffiffiffiffiffi
10

p ffiffiffi
5

p
� 2

� ��0:7547 . . . :

See also LOCAL CELL, LOCAL DENSITY CONJECTURE,
SPHERE PACKING

Local Density Conjecture
The CONJECTURE that the maximum LOCAL DENSITY

is given by rdodecahedron :/

See also DODECAHEDRAL CONJECTURE, LOCAL DEN-

SITY

Local Extremum
A LOCAL MINIMUM or LOCAL MAXIMUM.

See also EXTREMUM, GLOBAL EXTREMUM

Local Field
A FIELD which is complete with respect to a discrete
VALUATION is called a local field if its FIELD of RESIDUE

CLASSES is FINITE. The HASSE PRINCIPLE is one of the
chief applications of local field theory.

See also FUNCTION FIELD, HASSE PRINCIPLE, NUMBER

FIELD, VALUATION
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Local-Global Principle
HASSE PRINCIPLE

Local Group Theory
The study of a FINITE GROUP G using the LOCAL

SUBGROUPS of G . Local group theory plays a critical
role in the CLASSIFICATION THEOREM.

See also SYLOW THEOREMS

Local Maximum
The largest value of a set, function, etc., within some
local neighborhood.



See also GLOBAL MAXIMUM, LOCAL MINIMUM, MAX-

IMUM, PEANO SURFACE

Local Minimum
The smallest value of a set, function, etc., within some
local neighborhood.

See also GLOBAL MINIMUM, LOCAL MAXIMUM, MINI-

MUM

Local Ring
A NOETHERIAN RING R with a JACOBSON RADICAL

which has only a single MAXIMAL IDEAL. One property
of a local ring R is that the SUBSET R �m is precisely
the set of UNITS, where m is the MAXIMAL IDEAL. This
follows because, in a ring, any nonunit belongs to at
least one MAXIMAL IDEAL.

See also JACOBSON RADICAL, MAXIMAL IDEAL,
NOETHERIAN RING, RESIDUE FIELD, UNIT (RING)
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Local Subgroup
A normalizer of a nontrivial SYLOW P -SUBGROUP of a
GROUP G .

See also LOCAL GROUP THEORY

Local Surface
PATCH

Locally Compact
A TOPOLOGICAL SPACE X is locally compact if every
point has a NEIGHBORHOOD which is itself contained
in a COMPACT SET. Many familiar topological spaces
are locally compact, including the EUCLIDEAN SPACE.
Of course, any COMPACT SET is locally compact. Some
common spaces are not locally compact, such as
infinite dimensional BANACH SPACES. For instance,
the L2-SPACE of SQUARE INTEGRABLE functions is not
locally compact.

See also COMPACT SET, LOCALLY COMPACT GROUP,
NEIGHBORHOOD, TOPOLOGICAL SPACE

Locally Convex Space
LOCALLY PATHWISE-CONNECTED

Locally Finite Complex
A SIMPLICIAL COMPLEX K is said to be locally finite if
each vertex of K belongs only to finitely many
SIMPLICES of K .
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Locally Finite Space
A locally finite SPACE is one for which every point of a
given space has a NEIGHBORHOOD that meets only
finitely many elements of the COVER.

Locally Integrable
A function is called locally integrable if, around every
point in the domain, there is a NEIGHBORHOOD on
which the function is INTEGRABLE. The space of
locally integrable functions is denoted L1

loc : Any
integrable function is also locally integrable. One
possibility for a nonintegrable function which is
locally integrable is if it does not decay at infinity.
For instance, f (x) �1 is locally integrable on R ; as is
any CONTINUOUS FUNCTION.

See also FRECHET SPACE, INTEGRABLE, LEBESGUE

INTEGRABLE, L1-SPACE

Locally Pathwise-Connected
A SPACE X is locally pathwise-connected if for every
NEIGHBORHOOD around every point in X , there is a
smaller, PATHWISE-CONNECTED NEIGHBORHOOD.

See also ARCWISE-CONNECTED, PATHWISE-CON-

NECTED

Locally Pathwise-Connected Space
A SPACE X is locally pathwise-connected if for every
NEIGHBORHOOD around every point in X , there is a
smaller, PATHWISE-CONNECTED NEIGHBORHOOD.

Lochs’ Theorem
For a real number x � (0; 1); let m be the number of
terms in the CONVERGENT to a CONTINUED FRACTION

that are required to represent n decimal places of x .
Then for almost all x ,

lim
n0�

m

n
�

6 ln 2 ln 10

p2
�0:97027014 . . .

(Lochs 1964). Therefore, the CONTINUED FRACTION is
only slightly more efficient at representing real
numbers than is the decimal expansion. The set of x
for which this statement does not hold is of measure
0.

See also CONTINUED FRACTION

References
Kintchine, A. "Zur metrischen Kettenbruchtheorie." Com-

pos. Math. 3, 276�/85, 1936.
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Loculus of Archimedes
STOMACHION

Locus
The set of all points (usually forming a curve or
surface) satisfying some condition. For example, the
locus of points in the plane equidistant from a given
point is a CIRCLE, and the set of points in 3-space
equidistant from a given point is a SPHERE.
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Log
COMMON LOGARITHM, LOGARITHM, NATURAL LOGA-

RITHM

Log Likelihood Procedure
A method for testing NESTED HYPOTHESES. To apply
the procedure, given a specific model, calculate the
LIKELIHOOD of observing the actual data. Then
compare this likelihood to a nested model (i.e., one
in which fewer parameters are allowed to vary
independently).

Log Normal Distribution

A CONTINUOUS DISTRIBUTION in which the LOGARITHM

of a variable has a NORMAL DISTRIBUTION. It is a
general case of GILBRAT’S DISTRIBUTION, to which the
log normal distribution reduces with S �1 and M �0.
The probability density and cumulative distribution
functions for the log normal distribution are

P(x) �
1

Sx
ffiffiffiffiffiffi
2 p

p e�(ln x �M)2 =(2S2) (1)

D(x) �
1

2
1 �erf

ln x � M

S
ffiffiffi
2

p
 !" #

; (2)

where erf (x) is the ERF function. This distribution is
normalized, since letting y �ln x gives dy �dx=x and

x �ey ; so

g
�

0

P(x) dx �
1

S
ffiffiffiffiffiffi
2p

p g
�

��

e�(y�M)2 =2s2 

dy �1: (3)

The RAW MOMENTS are

m?1 �eM �S2 =2 (4)

m?2 �e2(M �S)2 

(5)

m?3 �e3M �9S2 =2 (6)

m ?4 �e4M �8S2 

; (7)

and the CENTRAL MOMENTS are

m2 �e2M �S2 

(eS2 

�1) (8)

m3 �e3M �3S2 =2(eS2 

�1)2(eS2 

�2) (9)

m4 �e4M �2S2 

(eS2 

�1)2(e4S2 �2e3S2 

�3e2S2 

�3): (10)

Therefore, the MEAN, VARIANCE, SKEWNESS, and
KURTOSIS are given by

m �eM �S2 =2 (11)

s2 �eS2�2M(eS2 

�1) (12)

g1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eS2 �1

p
(2 �eS2 

) (13)

g2 �e4S2 

�2e3S2 

�3e2S2 

�6: (14)

These can be found by direct integration

m �
1

S
ffiffiffiffiffiffi
2p

p g
�

0

e�(ln x �M)2 =(2S2) dx

�
1

S
ffiffiffiffiffiffi
2p

p g
�

��

e�(�y �M)2 =2S2 

ey dy

�eM�S2=2; (15)

and similarly for s2:/
Examples of variates which have approximately log
normal distributions include the size of silver parti-
cles in a photographic emulsion, the survival time of
bacteria in disinfectants, the weight and blood pres-
sure of humans, and the number of words written in
sentences by George Bernard Shaw.

See also GILBRAT’S DISTRIBUTION, WEIBULL DISTRIBU-

TION
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Logarithm

The logarithm logb x for a BASE b and a number x is
defined to be the INVERSE FUNCTION of taking x to the
POWER b . Therefore, for any x and b ,

x �blogb x ; (1)

or equivalently,

x �logb(bx): (2)

Whereas power of trigonometric functions are de-
noted using notations like sink x ; lnk x is less com-
monly used in favor of the notation (ln x)k :/
For any BASE, the logarithm function has a SINGU-

LARITY at x �0. In the above plot, the solid curve is
the logarithm to BASE e (the NATURAL LOGARITHM),
and the dotted curve is the logarithm to BASE 10
(LOG).

Logarithms are used in many areas of science and
engineering in which quantities vary over a large
range. For example, the decibel scale for the loudness
of sound, the Richter scale of earthquake magnitudes,
and the astronomical scale of stellar brightnesses are
all logarithmic scales.

The logarithm can also be defined for COMPLEX

arguments, as shown above. If the logarithm is taken
as the forward function, the function taking the BASE

to a given POWER is then called the ANTILOGARITHM.

For x �log N ; xb c is called the CHARACTERISTIC and
x � xb c is called the MANTISSA. Division and multi-
plication identities follow from these

xy �blogb xblogb y �blogb x�logb y ; (3)

from which it follows that

logb(xy) �logb x �logb y (4)

logb

x

y

 !
�logb x �logb y (5)

logb x
n �n logb x: (6)

There are a number of properties which can be used
to change from one logarithm BASE to another

a �aloga b=loga b �(aloga b)1 =loga b �b1 =loga b (7)

logb a �
1

loga b 
(8)

logb x �logb ylogy x
� �

�logy x logb y (9)

logb x �
logn x

logn b 
(10)

ax �bx =loga b �bx logb a : (11)

The logarithm BASE E is called the NATURAL LOGA-

RITHM and is denoted ln x (LN). The logarithm BASE 10
is denoted log x (LOG), (although mathematics texts
often use log x to mean ln x) : The logarithm BASE 2 is
denoted lg x (LG).

An interesting property of logarithms follows from
looking for a number y such that

logb(x �y) ��logb(x �y) (12)

x �y �
1

x � y
(13)

x2�y2�1 (14)

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
; (15)

so

logb x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p� �
��logb x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p� �
: (16)

Numbers OF THE FORM loga b are IRRATIONAL if a and
b are INTEGERS, one of which has a PRIME factor
which the other lacks. A. Baker made a major step
forward in TRANSCENDENTAL NUMBER theory by prov-
ing the transcendence of sums of numbers OF THE

FORM a ln b for a and b ALGEBRAIC NUMBERS.

See also ANTILOGARITHM, BASE (LOGARITHM), COLO-

GARITHM, E , EXPONENTIAL FUNCTION, HARMONIC

LOGARITHM, LG, LN, LOG, LOGARITHMIC SERIES,
LOGARITHMIC NUMBER, NAPIERIAN LOGARITHM, NAT-

URAL LOGARITHM, POWER
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Logarithmic Binomial Formula
LOGARITHMIC BINOMIAL THEOREM

Logarithmic Binomial Theorem
For all integers n and ½x½Ba ;

l(t)
n (x �a) �

X�
k �0

n
k

> ?
lt

n�k(a)xk ;

where l(t)
n is the HARMONIC LOGARITHM and n

k

< @
is a

ROMAN COEFFICIENT. For t �0, the logarithmic bino-
mial theorem reduces to the classical BINOMIAL

THEOREM for POSITIVE n , since l(0)
1 (a) �cn�k for n ]

k; l(0)
n�k(a) �0 for n Bk , and n

k

< @
� 

n
k

� �
when n ]k ]0:/

Similarly, taking t �1 and n B0 gives the NEGATIVE

BINOMIAL SERIES. Roman (1992) gives expressions
obtained for the case t �1 and n ]0 which are not
obtainable from the BINOMIAL THEOREM.

See also HARMONIC LOGARITHM, ROMAN COEFFICIENT
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Logarithmic Derivative
The logarithmic derivative of a function f is defined
as the DERIVATIVE of the LOGARITHM of a function. For
example, the DIGAMMA FUNCTION is defined as the
logarithmic derivative of the GAMMA FUNCTION,

C(z)�
d

dz
ln G(z):

See also DERIVATIVE, DIGAMMA FUNCTION, LOGA-

RITHM, POLYGAMMA FUNCTION
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Logarithmic Distribution

A CONTINUOUS DISTRIBUTION for a variate x � [a; b]
with probability function

P(x)�
ln x

b(ln b � 1) � a(ln a � 1)
(1)

and distribution function

D(x)�
a(1 � ln a) � x(1 � ln x)

a(1 � ln a) � b(1 � ln b)
: (2)

The moments about zero are given by

m?n�
an�1[1 � (n � 1)ln a] � bn�1[1 � (n � 1)ln b]

(n � 1)2[a(1 � ln a) � b(1 � ln b)]
;

(3)

giving MEAN

m�
a2(1 � 2 ln a) � b2(1 � 2 ln b)

4[a(1 � ln a) � b(1 � ln b)]
: (4)

The VARIANCE, SKEWNESS, and KURTOSIS are compli-
cated expressions involving the m?n:/

Logarithmic Integral

The logarithmic integral is defined by

li(x)�g
x

0

du

ln u
: (1)



This function is implemented in Mathematica as
LogIntegral[x ]. The logarithmic integral obeys
the identity

li(xm) � g �ln ln x �lnm �
X�
n �1

(ln x)n

n � n!mn 
(2)

(Bromwich and MacRobert 1991, p. 334; Hardy 1999,
p. 25).
The form of this function appearing in the PRIME

NUMBER THEOREM is defined so that Li(2) �0 :

Li(x) �g
x

2

du

ln u 
(3)

�li(x) �li(2) :li(x) �1 :04516 (4)

�ei(ln x) ; (5)

where ei(x) is the EXPONENTIAL INTEGRAL. (Note that
the NOTATION Lin(z) is also used for the POLYLOGA-

RITHM.) Nielsen (1965, pp. 3 and 11) showed and
Ramanujan independently discovered (Berndt 1994)
that

g
x

m

dt

ln t 
� g �ln ln x �

X�
k �1

(ln x)k

k!k
; (6)

where g is the EULER-MASCHERONI CONSTANT and m is
SOLDNER’S CONSTANT. Another FORMULA due to Ra-
manujan which converges more rapidly is

g
x

m

dt

ln t 
� g �ln ln x

�
ffiffiffi
x

p X�
n�0

( �1)n�1(ln x)n

n!2n�1

X[(n �1)=2]

k�0

1

2k � 1
(7)

(Berndt 1994).

See also POLYLOGARITHM, PRIME CONSTELLATION,
PRIME NUMBER THEOREM, SKEWES NUMBER
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Logarithmic Number
A COEFFICIENT of the MACLAURIN SERIES of

1

ln (1 � x) 
�

1

x 
�1

2 �
1

12 �
1
24x

2 � 19
720x

3 � 3
160x

4 �. . .

(Sloane’s A002206 and A002207), the multiplicative
inverse of the MERCATOR SERIES function ln (1 �x) :/

See also MERCATOR SERIES
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Logarithmic Series

X�
k �1

(�1)kln k �1
2 ln

1
2 p
� �

X�
k �1

ln k �1
2 ln(2 p):

See also LOGARITHM
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Logarithmic Spiral

A curve whose equation in POLAR COORDINATES is



given by

r �aeb u ; (1)

where r is the distance from the ORIGIN, u is the angle
from the X -AXIS, and a and b are arbitrary constants.
The logarithmic spiral is also known as the GROWTH

SPIRAL, EQUIANGULAR SPIRAL, and SPIRA MIRABILIS. It
can be expressed parametrically using

cos u �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � tan2 u
p �

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2

x2

q �
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p �

x

r 
; (2)

which gives

x �r cos u �a cos uebu (3)

y �x tan u �r sin u �a sin uebu : (4)

The logarithmic spiral can be constructed from
equally spaced rays by starting at a point along one
ray, and drawing the perpendicular to a neighboring
ray. As the number of rays approached infinity, the
sequence of segments approaches the smooth loga-
rithmic spiral (Hilton et al. 1997, pp. 2 �/).
The logarithmic spiral was first studied by Descartes
in 1638 and Jakob Bernoulli. Bernoulli was so
fascinated by the spiral that he had one engraved
on his tombstone (although the engraver did not draw
it true to form) together with the words "eadem
mutata resurgo" ("I shall arise the same though
changed"rpar;. Torricelli worked on it independently
and found the length of the curve (MacTutor Ar-
chive).

The rate of change of RADIUS is

dr

du 
�abebu �br; (5)

and the ANGLE between the tangent and radial line at
the point (r; u) is

c �tan�1 r
dr
du

 !
�tan �1 1

b

 !
�cot �1b : (6)

So, as b 0 0; c 0 p=2 and the spiral approaches a
CIRCLE.

If P is any point on the spiral, then the length of the
spiral from P to the origin is finite. In fact, from the
point P which is at distance r from the origin
measured along a RADIUS vector, the distance from
P to the POLE along the spiral is just the ARC LENGTH.
In addition, any RADIUS from the origin meets the
spiral at distances which are in GEOMETRIC PROGRES-

SION (MacTutor Archive).

The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

of the logarithmic spiral are

s�g ds�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

q
dt�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p

b
ebu

�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p

b
(7)

k�
x?yƒ� y?xƒ

(x?2 � y?2)3=2� a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

p
ebu

� ��1

(8)

f�g k(s) ds�u: (9)

The CESÀRO EQUATION is

k�
1

bs
: (10)

On the surface of a SPHERE, the analog is a LOXO-

DROME. This SPIRAL is related to FIBONACCI NUMBERS

and the GOLDEN RATIO.

See also GOLDEN RECTANGLE, LOGARITHMIC SPIRAL

CAUSTIC CURVE, LOGARITHMIC SPIRAL EVOLUTE,
LOGARITHMIC SPIRAL INVERSE CURVE, LOGARITHMIC

SPIRAL PEDAL CURVE, LOGARITHMIC SPIRAL RADIAL

CURVE, MICE PROBLEM, SPIRAL, WHIRL
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Logarithmic Spiral Caustic Curve
The CAUSTIC of a LOGARITHMIC SPIRAL, where the pole
is taken as the RADIANT POINT, is an equal LOGARITH-

MIC SPIRAL.

Logarithmic Spiral Evolute
In POLAR COORDINATES r�r(u); the RADIUS OF CUR-

VATURE is given by

R�
(r2 � r2

u)
3=2

r2 � 2r2r2
u � rruu

; (1)

so plugging in the equation of the LOGARITHMIC

SPIRAL and its derivatives

r�aebu (2)

ru�abebu (3)

ruu�ab2ebu (4)

gives

R�a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

p
ebu: (5)

To find the VELOCITY VECTOR, compute

x
y

/ �
� aebu cos u

aebu sin u

/ �

x?
y?

/ �
� abebu cos u�aebu sin u

abebu sin u�aebu cos u

/ �

�aebu b cosu�sin u

b sin u�cos u

/ �
; (6)

so

½r?½�aebu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b cos u�sin u)2�(b sin u�cos u)2

q

�aebu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

p
; (7)

and the TANGENT VECTOR is given by

T̂�
r?

½r?½
�

1

aebu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p aebu cos u

aebu sin u

/ �

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
p cos u

sin u

/ �
: (8)

The coordinates of the EVOLUTE are therefore

j��abebu sin u (9)

h��abebu cos u: (10)

Therefore, the EVOLUTE is another logarithmic spiral
with a?�ab; as first shown by Johann Bernoulli.

In some cases, the EVOLUTE is identical to the
original, as can be demonstrated by making the
substitution to the new variable

u�f�1
2 p92np: (11)

Then the above equations become

j��abeb(f�p=292np)sin(f�p=292np)

�abebfeb(�p=292np) cosf (12)

h�abeb(f�p=292np)cos(f�p=292np)

�abebfeb(�p=292np)sin f; (13)

which are equivalent to the form of the original
equation if

be
b �1

2 p92np

� �
�1 (14)

ln b�b �1
2 p92np

� �
�0 (15)

ln b

b
�1

2 p�2np�� 2n�1
2

� �
p; (16)

where only solutions with the minus sign in � exist.
Solving gives the values summarized in the following
table.

n /bn/ /c�cot�1bn/

1 0.2744106319... /74�39?18:53ƒ/

2 0.1642700512... /80�40?16:80ƒ/

3 0.1218322508... /83�03?13:53ƒ/

4 0.0984064967... /84�22?47:53ƒ/

5 0.0832810611... /85�14?21:60ƒ/

6 0.0725974881... /85�50?51:92ƒ/

7 0.0645958183... /86�18?14:64ƒ/

8 0.0583494073... /86�39?38:20ƒ/

9 0.0533203211... /86�56?52:30ƒ/

10 0.0491732529... /87�11?05:45ƒ/
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Logarithmic Spiral Inverse Curve
The INVERSE CURVE of the LOGARITHMIC SPIRAL

r�eau

with INVERSION CENTER at the origin and inversion
radius k is the LOGARITHMIC SPIRAL



r �ke�a u :

Logarithmic Spiral Pedal Curve

The PEDAL CURVE of a LOGARITHMIC SPIRAL with
parametric equation

f �eat cos t (1)

g �eat sin t (2)

for a PEDAL POINT at the pole is an identical
LOGARITHMIC SPIRAL

x �
(a sin t � cos t)eat

1 � a2 
(3)

y �
(sin t � a cos t)eat

1 � a2 
(4)

so

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�

eatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � a2

p : (5)

Logarithmic Spiral Radial Curve

The RADIAL CURVE of the LOGARITHMIC SPIRAL is
another LOGARITHMIC SPIRAL.

Logarithmic Transform
The inverse transform

X�
n �1

anxn

n!
�ln 1 �

X�
n�1

bnxn

n!

 !

of the EXPONENTIAL TRANSFORM

1 �
X�
n�1

bnxn

n!
�exp

X�
n �1

anxn

n!

 !

which relate sequences a1 ; a2 ; ... and b1 ; b2 ; ....

See also EXPONENTIAL TRANSFORM
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Logarithmically Concave Function
A function f (x) is logarithmically concave on the
interval [a, b ] if f �0 and ln f (x) is CONCAVE on [a,
b ]. The definition can also be extended to Rk 0 (0; �)
functions (Dharmadhikari and Joag-Dev 1988, p. 18).

See also CONCAVE FUNCTION, LOGARITHMICALLY

CONVEX FUNCTION
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Logarithmically Convex Function
A function f (x) is logarithmically convex on the
interval [a, b ] if f �0 and ln f (x) is CONVEX on [a,
b ]. If f (x) and g(x) are logarithmically convex on the
interval [a, b ], then the functions f (x) �g(x) and
f (x)g(x) are also logarithmically convex on [a, b ].
The definition can also be extended to Rk 0 (0; �)
functions (Dharmadhikari and Joag-Dev 1988, p. 18).

See also CONVEX FUNCTION, LOGARITHMICALLY CON-

CAVE FUNCTION
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Logconcave Function
LOGARITHMICALLY CONCAVE FUNCTION

Logconvex Function
LOGARITHMICALLY CONVEX FUNCTION

LogGamma
GAMMA FUNCTION

Logic
The formal mathematical study of the methods,
structure, and validity of mathematical deduction
and proof.

In Hilbert’s day, formal logic sought to devise a
complete, consistent formulation of mathematics



such that propositions could be formally stated and
proved using a small number of symbols with WELL

DEFINED meanings. The difficulty of formal logic was
demonstrated in the monumental Principia Mathe-
matica (1925) of Whitehead and Russell’s , in which
hundred of pages of symbols were required before the
statement 1�1 �2 could be deduced. In 1931, Gödel
unexpectedly showed that Hilbert’s goal to be im-
possible, and this proved only the first of a number of
difficult and counterintuitive results which have
since been demonstrated.

A very simple form of logic is the study of "TRUTH

TABLES" and digital logic circuits in which one or more
outputs depend on a combination of circuit elements
(AND, OR, NAND, NOR, NOT, XOR, etc.; "gates")
and the input values. In such a circuit, values at each
point can take on values of only TRUE (1) or FALSE (0).
DE MORGAN’S DUALITY LAW is a useful principle for
the analysis and simplification of such circuits.

A generalization of this simple type of logic in which
possible values are TRUE, FALSE, and "undecided" is
called THREE-VALUED LOGIC. A further generalization
called FUZZY LOGIC treats "truth" as a continuous
quantity ranging from 0 to 1.

See also ABSORPTION LAW, ALETHIC, BOOLEAN ALGE-

BRA, BOOLEAN CONNECTIVE, BOUND, CALIBAN PUZ-

ZLE, CONTRADICTION LAW, DE MORGAN’S DUALITY

LAW, DE MORGAN’S LAWS, DEDUCIBLE, EXCLUDED

MIDDLE LAW, FREE, FUZZY LOGIC, GÖ DEL’S INCOM-

PLETENESS THEOREM, KHOVANSKI’S THEOREM, LOGI-

CAL PARADOX, LOGOS, LÖ WENHEIM-SKOLEM

THEOREM, METAMATHEMATICS, MODEL THEORY,
QUANTIFIER, SENTENCE, TARSKI’S THEOREM, TAUTOL-

OGY, THREE-VALUED LOGIC, TOPOS, TRUTH TABLE,
TURING MACHINE, UNIVERSAL TURING MACHINE,
VENN DIAGRAM, WILKIE’S THEOREM
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Logical And
AND

Logical Connective
CONNECTIVE

Logical Not
NEGATION SIGN, NOT

Logical Or
OR

Logical Paradox
PARADOX

LogIntegral
Logarithmic Integral

Logistic Distribution

P(x)�
e(x�m)=b

½b½[1 � e(x�m)=b]2 (1)

D(x)�
1

1 � e(m�x)=½b½
; (2)

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS

are

m�m (3)

s2�1
3 p

2b2 (4)

g1�0 (5)

g2�
6
5: (6)

See also LOGISTIC EQUATION, LOGISTIC GROWTH

CURVE
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Logistic Equation
The logistic equation (sometimes called the VERHULST

MODEL since it was first published in 1845 by the
Belgian P.-F. Verhulst) is defined by

xn�1�rxn(1�xn); (1)

where r (sometimes also denoted m) is a POSITIVE

constant (the "biotic potential"). Let an initial point x0

lie in the interval [0; 1]: Now find appropriate
conditions on r which keep points in the interval.
The maximum value xn�1 can take is found from

dxn�1

dxn

�r(1�2xn)�0; (2)

so the largest value of xn�1 occurs for xn�1=2:
Plugging this in, max(xn�1)�r=4: Therefore, to keep
the MAP in the desired region, we must have r � (0; 4]:
The JACOBIAN is

J�
dxn�1

dxn

�����
������½r(1�2xn)½; (3)

and the MAP is stable at a point x0 if J(x0)B1:/

Now find the FIXED POINTS of the MAP, which occur
when xn�1�xn: For convenience, drop the n subscript
on xn

f (x)�rx(1�x)�x (4)

x[1�r(1�x)]�x(1�r�rx)�rx[x�(1�r�1)]

�0; (5)

so the FIXED POINTS are x(1)
1 �0 and x(1)

2 �1�r�1:/

An interesting thing happens if a value of r greater
than 3 is chosen. The map becomes unstable and we
get a PITCHFORK BIFURCATION with two stable orbits
of period two corresponding to the two stable FIXED

POINTS of f 2(x): The fixed points of order two must
satisfy xn�2�xn; so

xn�2�rxn�1(1�xn�1)

�r[rxn(1�xn)][1�rxn(1�xn)]

�r2xn(1�xn)(1�rxn�rx2
n)�xn: (6)

For convenience, drop the n subscripts and rewrite

xfr2[1�x(1�r)�2rx2�rx3]�1g�0 (7)

x[�r3x3�2r3x2�r2(1�r)x�(r2�1)]�0 (8)

�r3x[x�(1�r�1)][x2�(1�r�1)x�r�1(1�r�1)]

�0: (9)

Notice that we have found the first-order FIXED

POINTS as well, since two iterations of a first-order

FIXED POINT produce a trivial second-order FIXED

POINT. The true 2-CYCLES are given by solutions to
the quadratic part

x(2)
9 �1

2[(1�r�1)9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�r�1)2�4r�1(1�r�1)

q
]

�1
2[(1�r�1)9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2r�1�r�2�4r�1�4r�2

p
]

�1
2[(1�r�1)9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2r�1�3r�2

p
]

�1
2[(1�r�1)9r�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r�3)(r�1)

p
]: (10)

These solutions are only REAL for r]3; so this is
where the 2-CYCLE begins. Note that the 2-cycle can
also be found by computing the DISCRIMINANT of

f 2(x) � x

f (x) � x
�r2x2�r(1�r)x�(1�r)�0; (11)

which is

(1 � r)(3 � r)

r2
: (12)

When this equals 0, two roots coincide, so r2�3 is the
onset of period doubling.

Now look for the onset of the 3-CYCLE. To eliminate
the 1-CYCLES, consider

f 3(x) � x

f (x) � x
�0: (13)

This gives

1�r�r2�(r4�2r3�2r2�r)x

�(2r5�3r4�3r3�r2)x2

�(r6�5r5�3r4�r3)x3�(3r6�4r5�r4)x4

�(3r6�r5)x5�r6x5�0: (14)

The ROOTS of this equation are all IMAGINARY for r
less than some cutoff r3; at which point two of them
convert to REAL roots. The value of r3 can be found by
computing the DISCRIMINANT of (14),

D�
(r2 � 5r � 7)2(r2 � 2r � 7)3(1 � r � r2)2

r30
: (15)

When the DISCRIMINANT is zero, two roots coincide.
This happens at r3�1�2

ffiffiffi
2

p
; so the 3-CYCLE starts at

r3:/

To find the onset of the 4-CYCLE, eliminate the 2- and
1-CYCLES by considering

f 4(x) � x

f 2(x) � x
�0: (16)

This gives

1�r2�(�r2�r3�r4�r5)x



�(2r3�r4�4r5�r6�2r7)x2

�(�r3�5r5�4r6�5r7�4r8�r9)x3

�(2r5�6r6�4r7�14r8�5r9�3r10)x4

�(�4r6�r7�18r8�12r9�12r10�3r11)x5

�(r6�10r8�17r9�18r10�15r11�r12)x6

�(�2r8�14r9�12r10�30r11�6r12)x7

�(6r9�3r10�30r11�15r12)x8

�(�r9�15r11�20r12)x9�(3r11�15r12)x10 (17)

The value of r4 can be found by computing the
DISCRIMINANT of (17),

D�
(r2 � 1)3(r2 � 4r � 5)3

r132

�(r6�6r5�3r4�28r3�9r2�54r�135); (18)

which has roots at r4�1�
ffiffiffi
6

p
; as well as at the 2nd

root of

r6�6r5�3r4�28r3�9r2�54r�135�0:

The 4-CYCLE therefore starts at
r4�1�

ffiffiffi
6

p
�3:449489 . . . :/

The onset of 5-cycles can be found analogously, and
gives a messy 22nd-order polynomial in r whose real
positive roots are 3.73817, 3.90557, and 3.99026.

In general, the set of n�1 equations which can be
solved to give the onset of an arbitrary n -cycle (Saha
and Strogatz 1995) is

x2�rx1(1�x1)
x3�rx2(1�x2)
n
xn�rxn�1(1�xn�1)
x1�rxn(1�xn)
rn
Qn

k�1(1�2xk)�1:

8>>>>>><
>>>>>>:

(19)

The first n of these give f (x); f 2(x); ..., f n(x); and the
last uses the fact that the onset of period n occurs by
a TANGENT BIFURCATION, so the nth DERIVATIVE is 1.
For small n , these can be solved exactly, but the
complexity rapidly increases with n

For n�2, the solutions (x1; x2; r) are given by (0, 0,
9 1) and (/2=3; 2=3; 3), so the first BIFURCATION occurs
at r2�3:/

For n�3,

d[f 3(x)]

dx
�

d[f 3(x)]

d[f 2(x)]

d[f 2(x)]

d[f (x)]

d[f (x)]

dx

�
d[f (z)]

dz

d[f (y)]

dy

d[f (x)]

dx

�r3(1�2z)(1�2y)(1�2x): (20)

Solving the resulting CUBIC EQUATION using compu-
ter algebra gives

r�1�2
ffiffiffi
2

p
(21)

and x1; x2; x3 the 2nd, 4th, and 5th roots of the sextic

343x6�980x5�868x4�134x3�161x2�70x�7

�0; (22)

giving numerical roots

x1:0:514355 (23)

x2:0:956318 (24)

x3:0:159929 (25)

r:3:828427: (26)

Saha and Strogatz (1995) give a simplified algebraic
treatment for the 3-cycle which involves solving

r3(1�2a�4b�8g)�1; (27)

together with three other simultaneous equations,
where

a�x1�x2�x3 (28)

b�x1x2�x1x3�x2x3 (29)

g�x1x2x3: (30)

Further simplifications still are provided in Bech-
hoeffer (1996) and Gordon (1996), but neither of these
techniques generalizes easily to higher CYCLES. Bech-
hoeffer (1996) expresses the three additional equa-
tions as

2a�3�r�1 (31)

4b�3
2�5r�1�3

2 r�2 (32)

8g��1
2�

7
2 r�1�5

2 r�2�5
2 r�3; (33)

giving

r2�2r�7�0: (34)

This has the positive solution found previously,
r3�1�2

ffiffiffi
2

p
:/

Gordon (1996) derives not only the value for the onset
of the 3-CYCLE, but also an upper bound for the r -
values supporting stable period-3 orbits. This value is
obtained by solving the CUBIC EQUATION

s3�11s2�37s�108�0 (35)

for s , then

r?�1�
ffiffiffi
s

p
(36)

�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11
3 �

1915
54 �5

2

ffiffiffiffiffiffiffiffi
201

p� �1=3

� 1915
54 �5

2

ffiffiffiffiffiffiffiffi
201

p� �1=3
r

�3:841499007543 . . . (37)



The illustration above shows the logistic map. A table
of the CYCLE type and value of rn at which the cycle 2n

appears is given below.

n cycle (/2n)/ /rn/

1 2  3

2 4 3.449490

3 8 3.544090

4 16 3.564407

5 32 3.568750

6 64 3.56969

7 128 3.56989

8 256 3.569934

9 512 3.569943

10 1024 3.5699451

11 2048 3.569945557

/�/ ACC. PT. 3.569945672

For additional values, see Rasband (1990, p. 23). Note
that the table in Tabor (1989, p. 222) is incorrect, as is
the n �2 entry in Lauwerier (1991). The period
doubling BIFURCATIONS come faster and faster (8,
16, 32, ...), then suddenly break off. Beyond a certain
point known as the ACCUMULATION POINT, periodicity
gives way to CHAOS, as illustrated below. In the
middle of the complexity, a window suddenly appears
with a regular period like 3 or 7 as a result of MODE

LOCKING. The period-3 BIFURCATION occurs at r �
1 �2

ffiffiffi
2

p
�3:828427 ; and PERIOD DOUBLINGS then

begin again with CYCLES of 6, 12, ...and 7, 14, 28, ...,
and then once again break off to CHAOS.

It is relatively easy to show that the logistic map is
chaotic on an invariant Cantor set for r > 2 �

ffiffiffi
5

p
:

4:236 (Devaney 1989, pp. 31 �/0; Gulik 1992, pp. 112 �/

26; Holmgren 1996, pp. 69 �/5), but in fact, it is also
chaotic for all r �4 (Robinson 1995, pp. 33 �/7; Kraft
1999).

The logistic equation has CORRELATION EXPONENT

0.50090.005 (Grassberger and Procaccia 1983), CA-

PACITY DIMENSION 0.538 (Grassberger 1981), and
INFORMATION DIMENSION 0.5170976 (Grassberger
and Procaccia 1983).

See also BIFURCATION, FEIGENBAUM CONSTANT, LO-

GISTIC DISTRIBUTION, LOGISTIC EQUATION R �4, LO-

GISTIC GROWTH CURVE, PERIOD THREE THEOREM,
QUADRATIC MAP
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Logistic Equation r �4
With r �4, the LOGISTIC EQUATION becomes

xn�1 �4xn(1 �xn); (1)

which is equivalent to the TENT MAP with m �1 : Now
let

x �sin2(1
2 py) �1

2[1 �cos(py)] (2)

ffiffiffi
x

p
�sin 1

2 py
� �

(3)

y �
2

p
sin�1 ffiffiffi

x
p� �

; (4)

so

dy

dx 
�

2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 � x

p 1
2 x

�1 =2 �
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(1 � x)

p : (5)

Manipulating (2) gives

sin2 1
2 pyn�1

� �
�4 1

2[1 �cos(pyn)] 1 �1
2 1 �1

2(1 �cos(pyn)
h in o

�2[1 �cos(py �1 �cos2( pyn)sin2( pyn) ; (6)

so

1
2 pyn�1 �9yn �sp (7)

yn�1 �92yn �
1
2 s : (8)

But y � [0; 1] : Taking yn � [0; 1=2]; then s �0 and

yn�1 �2yn : (9)

For y � [1=2 ; 1]; s �1 and

yn�1 �2 �2yn : (10)

Combining gives

yn�1 �
2yn for yn � 0 ; 1

2

h i
2 �2yn for yn �

1
2 ; 1
h i

;

8<
: 

(11)

which can be written

yn �1 �1 �2 xn �
1
2

��� ���; (12)

which is just the TENT MAP with m �1; whose NATURAL

INVARIANT in y is

r(y) �1 : (13)

Transforming back to x therefore gives

r(x) �
dy

dx

�����
�����r(y(x)) �

2

p

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 � x

p 1
2 x

�1 =2

�
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(1 � x)

p : (14)

This can also be derived from

r(x) � lim
N 0�

1

N

XN

i �1

d(xi �x) �
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(1 � x)

p ; (15)

where d(x) is the DELTA FUNCTION.

See also LOGISTIC EQUATION, TENT MAP
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Logistic Growth Curve
The POPULATION GROWTH law which arises frequently
in biology and is given by the differential equation

dN

dt
�

r(K � N)

K
; (1)

where r is the MALTHUSIAN PARAMETER and K is the
so-called CARRYING CAPACITY (i.e., the maximum
sustainable population). Rearranging and integrating
both sides gives

g
N

N0

dN

K � N 
�

r

K g
t

0

dt (2)

ln
N0 � K

N � K

 !
�

r

K
t (3)

N(t)�K�(N0�K)e�rt=K : (4)

The curve

y�
a

1 � bqx
(5)

is sometimes also known as the logical curve.

See also GOMPERTZ CURVE, LAW OF GROWTH, LIFE

EXPECTANCY, LOGISTIC EQUATION, MAKEHAM CURVE,
MALTHUSIAN PARAMETER, POPULATION GROWTH
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Logistic Map
LOGISTIC EQUATION

Logit Transformation

The function

z �f (x) �ln
x

1 � x

 !
:

This function has an inflection point at x �1=2 ; where

f ƒ(x) �
2x � 1

x2(x � 1)2 �0:

Applying the logit transformation to values obtained
by iterating the LOGISTIC EQUATION generates a
sequence of RANDOM NUMBERS having distribution

Pz �
1

p(ex=2 � e �x=2) 
;

which is very close to a GAUSSIAN DISTRIBUTION.
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Logos
A generalization of a HEYTING ALGEBRA which re-
places BOOLEAN ALGEBRA in "intuitionistic" LOGIC.

See also TOPOS

Log-Series Distribution
The terms in the series expansion of ln(1 � u) about
u �0 are proportional to this distribution.

P(n) ��
un

n ln(1 � u) 
(1)

D(n) �
Xn

i �1

P(i) �
u1 �n F( u; 1; 1 � n) � ln(1 � u)

ln(1 � u) 
; (2)

where F is the LERCH TRANSCENDENT. The MEAN,
VARIANCE, SKEWNESS, and KURTOSIS

m �
u

(u � 1) ln(1 � u) 
(3)

s2 ��
u[ u � ln(1 � u)]

( u � 1)2[ln(1 � u)]2 (4)

g1 �
2 u2 � 3u ln(1 � u) � (1 � u) ln2(1 � u)

ln(1 � u)[ u � ln(1 � u)]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u[u � ln(1 � u)]

p

�ln(1 � u) (5)

g2 �
6 u3 � 12 u2 ln(1 � u) � u(7 � 4u) ln2(1 � u)

u[ u � ln(1 � u)]2

�
(1 � 4 u � u2)ln3(1 � u)

u[ u � ln(1 � u)]2 : (6)

Log-Weibull Distribution
FISHER-TIPPETT DISTRIBUTION

Lommel Differential Equation
A generalization of the BESSEL DIFFERENTIAL EQUA-

TION

z2 d2y

dz2 
�z

dy

dz 
�(z2 � n2)y �kz m�1

(Watson 1966, p. 345; Zwillinger 1997, p. 125;
Gradshteyn and Ryzhik 2000, p. 986). A further
generalization gives

z2 d2y

dz2 
�z

dy

dz 
�(z2 � n2)y �9kz m�1 :

The solutions are LOMMEL FUNCTIONS.

See also LOMMEL FUNCTION
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Lommel Function
There are several functions called "Lommel func-
tions." One type of Lommel function is the solution to
the LOMMEL DIFFERENTIAL EQUATION with a PLUS

SIGN, given by

y�ksm;n(z); (1)

where



s(�)
m; n(z) � 1

2p Yn(z) g
z

0

z mJn(z) dz �Jn(z) g
z

0

z mYn(z) dz

/ �
:

(2)

Here, Jn(z) and Y n(z) are BESSEL FUNCTIONS OF THE

FIRST and SECOND KINDS (Watson 1966, p. 346). If a
minus sign precedes k , then the solution is

s �m; n �I n(z) g
c1

z

z mKn(z) dz �J n(z)g
z

c2

z mIn(z) dz; (3)

where Kn(z) and In(z) are MODIFIED BESSEL FUNCTIONS

OF THE FIRST and SECOND KINDS.

Lommel functions of two variables are related to the
BESSEL FUNCTION OF THE FIRST KIND and arise in the
theory of diffraction and, in particular, Mie scattering
(Watson 1966, p. 537),

Un(w ; z) �
X�
m�0

(�1)m w

z

 !n�2m

Jn�2m(z) (4)

Vn(w; z) �
X�
m�0

(�1)m w

z

 !�n�2m

J�n �2m(z) : (5)

See also LOMMEL DIFFERENTIAL EQUATION, LOMMEL

POLYNOMIAL
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Lommel Polynomial

Rm; n(z) �

G( n � m)

G( n)(z =2)m 2 F3(1
2(1 �m);�1

2 m; n ;�m; 1 � n �m; z2)

� pz

2 sin( np)
[J n�m(z)J� n�1(z) �(�1)mJ� n�m(z)Jn �1(z)];

where G(z) is a GAMMA FUNCTION, Jn(x) is a BESSEL

FUNCTION OF THE FIRST KIND, and 2F3(a; b; c ; d; e; z)
is a GENERALIZED HYPERGEOMETRIC FUNCTION.

See also LOMMEL FUNCTION
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Lommel’s Integrals

( b2 � a2)g xJn( ax)Jn( bx) dx

�x[ aJ ?n(ax)Jn( bx) � bJ ?n(bx)Jn(ax)]

g xJ2
n( ax) dx �1

2 x
2[J2

n( ax) �Jn �1( ax)Jn �1( ax)] ;

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND.
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Long Cross
DAGGER

Long Division

Long division is an algorithm for dividing two
numbers, obtaining the QUOTIENT one DIGIT at a
time. The above example shows how the division of /
123456 =17/ is performed to obtain the result
7262.11....

See also DIVISION
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Longest Increasing Scattered
Subsequence
The longest increasing scattered subsequence is the
longest subsequence of increasing terms, where inter-
vening nonincreasing terms may be dropped. Finding
the largest scattered subsequence is a much harder
problem. The longest increasing scattered subse-
quence of a PARTITION can be found using Long-
estIncreasingSubsequence[p ] in the
Mathematica add-on package DiscreteMath‘Com-



binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘). For example, the long-
est increasing scattered subsequence of the
PERMUTATION f6; 3; 4; 8; 10; 5; 7; 1; 9; 2 g is
f3; 4; 5; 7; 9g; whereas the longest contiguous sub-
sequence is f3; 4 ; 8 ; 10 g:/
Any sequence of n2 �1 distinct integers must contain
either an increasing or decreasing scattered subse-
quence of length n �1 (Erdos and Szekeres 1935;
Skiena 1990, p. 75).

See also LONGEST INCREASING SUBSEQUENCE, PER-

MUTATION
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Longest Increasing Subsequence
The longest increasing subsequence of a given se-
quence is the subsequence of increasing terms con-
taining the largest number of elements. For example,
the longest increasing subsequence of the PERMUTA-

TION f6 ; 3 ; 4 ; 8; 10 ; 5 ; 7 ; 1; 9; 2g is f3; 4; 8; 10g:/

See also LONGEST INCREASING SCATTERED SUBSE-

QUENCE
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Long Exact Sequence

See also LONG EXACT SEQUENCE OF A PAIR AXIOM

Long Exact Sequence of a Pair Axiom
One of the EILENBERG-STEENROD AXIOMS. It states
that, for every pair (X, A ), there is a natural long
exact sequence

. . .  0 Hn(A) 0 Hn(X) 0 Hn(X ; A) 0 Hn �1(A)

0 . . . ; (1)

where the MAP Hn(A) 0 Hn(X) is induced by the
INCLUSION MAP A 0 X and Hn(X) 0 Hn(X ; A) is
induced by the INCLUSION MAP (X ; f) 0 (X ; A) : The
MAP Hn(X ; A) 0 Hn�1(A) is called the BOUNDARY MAP.

See also EILENBERG-STEENROD AXIOMS

Longimeter
A longimeter is a transparent sheet of plastic with a
regular grid of lines inclined at an angle of 308 to the

sides of the sheet. By counting the number of squares
occupied by a linear feature on a map (such as a river)
for six different rotations of the sheet, the length of
the feature can be determined.

See also COASTLINE PARADOX
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Longitude
The azimuthal coordinate on the surface of a SPHERE

(/ u in SPHERICAL COORDINATES) or on a SPHEROID (in
PROLATE or OBLATE SPHEROIDAL COORDINATES). Long-
itude is defined such that 0��360�: Lines of constant
longitude are generally called MERIDIANS. The other
angular coordinate on the surface of a SPHERE is
called the LATITUDE.

The shortest distance between any two points on a
SPHERE is the so-called GREAT CIRCLE distance, which
can be directly computed from the LATITUDE and
longitudes of two points.

See also GREAT CIRCLE, LATITUDE, MERIDIAN, OBLATE

SPHEROIDAL COORDINATES, PROLATE SPHEROIDAL

COORDINATES

Longitudinal Data
Data resulting from the observation of a population
on a number of variables over time. Whenever
observations are made more than once, the data is
considered to be longitudinal.
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Long Prime
FULL REPTEND PRIME

Look and Say Sequence
The INTEGER SEQUENCE beginning with a single digit
in which the next term is obtained by describing the
previous term. Starting with 1, the sequence would be
defined by "1, one 1, two 1s, one 2 one 1," etc., and the
result is 1, 11, 21, 1211, 111221, 312211, 13112221,
1113213211, ... (Sloane’s A005150).

Starting the sequence instead with the digit d for 25
d59 gives d , 1d , 111d , 311d , 13211d , 111312211d ,
31131122211d , 1321132132211d , ... The sequences
for d�2 and 3 are Sloane’s A006751 and A006715. n



terms of the look and say sequence (given as lists of
digits) starting with digit d can be implemented in
Mathematica as follows.

RunLengthEncode[x_List] : � (Through[{First,

Length}[#]] &) /@ Split[x]

LookAndSay[n_Integer?Positive, d_:1] : �
NestList[Flatten[Reverse /@

RunLengthEncode[#]] &, {d}, n - 1]

The number of DIGITS in the nth term the sequence
for 1 5d 59 is given by the sequence 1, 2, 2, 4, 6, 6, 8,
10, 14, 20, 26, 34, 46, 62, ... (Sloane’s A005341), which
is asymptotic to C ln ; where C is a constant and

l �1 :303577269034296 . . .

(Sloane’s A014715) is CONWAY’S CONSTANT, given by
the unique positive real root of the POLYNOMIAL

0 �x71 �x69 �2x68 �x67 �2x66 �2x65 �x64 �x63 �x62

�x61 �x60 �x59 �2x58 �5x57 �3x56 �2x55 �10x54

�3x53 �2x52 �6x51 �6x50 �x49 �9x48 �3x47

�7x46 �8x45 �8x44 �10x43 �6x42 �8x41 �4x40

�12x39 �7x38 �7x37 �7x36 �x35 �3x34 �10x33

�x32 �6x31 �2x30 �10x29 �3x28 �2x27 �9x26

�3x25 �14x24 �8x23 �7x21 �9x20 �3x19 �4x18

�10x17 �7x16 �12x15 �7x14 �2x13 �12x12 �4x11

�2x10 �5x9 �x7 �7x6 �7x5 �4x4 �12x3 �6x2

�3x �6 :

In fact, the constant is even more general than this,
applying to all starting sequences (i.e., even those
starting with arbitrary starting digits), with the
exception of 22, a result which follows from the
COSMOLOGICAL THEOREM. Conway discovered that
strings sometimes factor as a concatenation of two
strings whose descendants never interfere with one
another. A string with no nontrivial splittings is
called an "element," and other strings are called
"compounds." Every string of 1s, 2s, and 3s eventually
"decays" into a compound of 92 special elements,
named after the chemical elements.

See also CONWAY’S CONSTANT, COSMOLOGICAL THEO-

REM, RUN-LENGTH ENCODING
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Loop
A path whose initial and final points coincide in a
fixed point p known as the BASEPOINT.

Loop (Algebra)
A QUASIGROUP with an IDENTITY ELEMENT e such that
xe �x and ex �x for any x in the QUASIGROUP. All
GROUPS are loops.

See also GROUP, QUASIGROUP
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Loop (Graph)

A degenerate edge of a graph which joins a vertex to
itself, also called a self-loop. A SIMPLE GRAPH cannot
contain any loops, but a PSEUDOGRAPH can contain
both multiple edges and loops.

See also PSEUDOGRAPH, SIMPLE GRAPH
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Loop (Knot)
A KNOT or HITCH which holds its form rigidly.

References
Owen, P. Knots. Philadelphia, PA: Courage, p. 35, 1993.

Loop Space
Let YX be the set of continuous mappings f : X 0 Y:
Then the TOPOLOGICAL SPACE for YX supplied with a
compact-open topology is called a MAPPING SPACE, and



if Y �I is taken as the interval (0 ; 1); then YI �V(Y)
is called a loop space (or SPACE OF CLOSED PATHS).

See also MACHINE, MAPPING SPACE, MAY-THOMASON

UNIQUENESS THEOREM
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Lopez Minimal Surface

See also MINIMAL SURFACE

Lorentz Group
The Lorentz group is the GROUP L of time-preserving
linear ISOMETRIES of MINKOWSKI SPACE R4 with the
pseudo-Riemannian metric

dr2 ��dt2 �dx2 �dy2 �dz2 :

It is also the GROUP of ISOMETRIES of 3-D HYPERBOLIC

SPACE. It is time-preserving in the sense that the unit
time VECTOR (1; 0; 0; 0) is sent to another VECTOR

(t; x; y; z) such that t �0.

A consequence of the definition of the Lorentz group
is that the full GROUP of time-preserving isometries of
MINKOWSKI R4 is the GROUP DIRECT PRODUCT of the
group of translations of R4 (i.e., R4 itself, with
addition as the group operation), with the Lorentz
group, and that the full isometry group of the
MINKOWSKI R4 is a group extension of Z2 by the
product L �R4 :/

The Lorentz group is invariant under space rotations
and LORENTZ TRANSFORMATIONS.

See also LORENTZ TENSOR, LORENTZ TRANSFORMA-

TION
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Lorentz Tensor
The TENSOR in the LORENTZ TRANSFORMATION given
by

L �

g �gb 0 0
�gb g 0 0

0 0 1 0
0 0 0 1

2
664

3
775; (1)

where beta and gamma are defined by

b �
v

c 
(2)

g �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
q : (3)

See also LORENTZ GROUP, LORENTZ TRANSFORMATION

Lorentz Transformation
A 4-D transformation satisfied by all FOUR-VECTORS

an;

a?m�Lm
nan: (1)

In the theory of special relativity, the Lorentz
transformation replaces the GALILEAN TRANSFORMA-

TION as the valid transformation law between refer-
ence frames moving with respect to one another at
constant VELOCITY. Let xn be the POSITION FOUR-

VECTOR with x0�ct; and let the relative motion be
along the x1 axis with VELOCITY v . Then (1) becomes

x?m�Lm
nxn; (2)

where the LORENTZ TENSOR is given by

L�

L0
0 L0

1 L0
2 L0

3

L1
0 L1

1 L1
2 L1

3

L2
0 L2

1 L2
2 L2

3

L3
0 L3

1 L3
2 L3

3

2
664

3
775�

g �gb 0 0
�gb g 0 0

0 0 1 0
0 0 0 1

2
664

3
775: (3)

Here,

b�
v

c
(4)

g�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
q : (5)

Written explicitly, the transformation between xn and
xn? coordinate is

x0?�g(x0�bx1) (6)

x1?�g(x1�bx0) (7)

x2?�x2 (8)

x3?�x3: (9)

The DETERMINANT of the upper left 2�2 MATRIX in (3)
is

D�(g)2�(�gb)2�g2(1�b2)�
g2

g2
�1; (10)

so

L�1�

(L�1)0
0 (L�1)0

1 (L�1)0
2 (L�1)0

3

(L�1)1
0 (L�1)1

1 (L�1)1
2 (L�1)1

3

(L�1)2
0 (L�1)2

1 (L�1)2
2 (L�1)2

3

(L�1)3
0 (L�1)3

1 (L�1)3
2 (L�1)3

3

2
6664

3
7775



�

g gb 0 0
gb g 0 0
0 0 1 0
0 0 0 1

2
664

3
775: (11)

A Lorentz transformation along the x1
/-axis can also

be written

x0 ?

x1 ?

x2 ?

x3 ?

2
664

3
775

cosh u �sinh u 0 0
�sinh u cosh u 0 0

0 0 1 0
0 0 0 1

2
664

3
775

x0

x1

x2

x3

2
664

3
775: (12)

where u is called the rapidity,

x0 �ct ; (13)

and

tanh u � b �
v

c 
(14)

cosh u � g �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
q (15)

sinh u � gb: (16)

See also HYPERBOLIC ROTATION, LORENTZ GROUP,
LORENTZ TENSOR
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Lorentzian Distribution
CAUCHY DISTRIBUTION

Lorentzian Function

The Lorentzian function is the singly peaked function

given by

L(x) �
1

p

1
2 G

(x � x0)2 � 1
2 G
� �2 : (1)

It is normalized to that

g
�

��

L(x) �1: (2)

It has a maximum at x �x0 ; where

L?(x) ��
16(x � x0) G

p[4(x � x0)2 � G2] 
�0 : (3)

Its value at the maximum is

L(x0) �
2

p G
: (4)

It is equal to half its maximum at

x � x0 9
1
2 G

� �
; (5)

and so has FULL WIDTH AT HALF MAXIMUM G: The
function has inflection points at

Lƒ(x) �16 G
12(x � x0)2 � G2

p[4(x � x0)2 � G2] 
�0 ; (6)

giving

x1 �x0 �
1
6

ffiffiffi
3

p
G; (7)

where

L(x1) �
3

2p G
: (8)

The Lorentzian function gives the shape of certain
types of spectral lines and is the distribution function
in the CAUCHY DISTRIBUTION. The Lorentzian func-
tion has FOURIER TRANSFORM

F
1

p

1
2 G

(x � x0)2 � (1
2 G)2

" #
�e�2pikx0�Gp kj j: (9)

See also CAUCHY DISTRIBUTION, DAMPED EXPONEN-

TIAL COSINE INTEGRAL, FOURIER TRANSFORM–LOR-

ENTZIAN FUNCTION

Lorentzian Inner Product
The standard Lorentzian inner product on R4 is given
by

�dx2
0�dx2

1�dx2
2�dx2

3; (1)

i.e, for vectors v and w,

�v; w���v0w0�v1w1�v2w2�v3w3: (2)



The Lorentzian inner product is used in special
relativity as a measurement, replacing distances,
which is independent of reference frame. The vari-
ables x1 ; x2 ; and x3 can be thought of as space
variables, and the x0 variable as the time variable.
Sometimes, the time variable is labelled t instead of
x0 and when used in special relativity, x0 �ct; where c
is the speed of light. The formula (1) uses the
convention that units are chosen so that the speed
of light has the value c �1 in order to simplify
formulas.

For a vector v, the sign of �v; v� determines the type
of v. If it is positive, then v is a space-like vector. If it
is zero, then v is called a null vector, or light-like
vector. If it is negative, then v is called a time-like
vector. After a change of variables, it is possible to
rewrite the Lorentzian inner product as above where
t is in the direction of a given time-like vector v with
�v; v���1 : Such a change of variables corresponds
to a change in reference frame. Altogether, these form
the LORENTZ GROUP, also called the ORTHOGONAL

GROUP O(3; 1):/

See also ORTHOGONAL GROUP

Lorenz Asymmetry Coefficient
This entry contributed by CHRISTIAN DAMGAARD

The Lorenz asymmetry coefficient is a summary
statistic of the Lorenz curve that measures the degree
of asymmetry of a LORENZ CURVE. The Lorenz
asymmetry coefficient is defined as

S �F( m) �L( m) ; (1)

where the functions F and L are defined as for the
Lorenz curve. If S �1, then the point where the
LORENZ CURVE is parallel with the line of equality is
above the axis of symmetry. Correspondingly, if
S B1, then the point where the LORENZ CURVE is
parallel to the line of equality is below the axis of
symmetry.

The sample statistic S can be calculated from ordered
size data using the following equations

d�
m� x?m

x?m�1 � x?m
(2)

F(m)�
m � d

n
(3)

L(m)�
Lm � dx?m�1

Ln

; (4)

where m is the number of individuals with a size less
than m:/

See also GINI COEFFICIENT, LORENZ CURVE

References
Damgaard, C. and Weiner, J. "Describing Inequality in

Plant Size or Fecundity." Ecology 81, 1139�/142, 2000.

Lorenz Attractor
The Lorenz attractor is a STRANGE ATTRACTOR that
arises in a simplified system of equations describing
the 2-D flow of fluid of uniform depth H , with an
imposed temperature difference DT; under gravity g ,
with buoyancy a; thermal diffusivity k; and kinematic
viscosity n: The full equations are

@

@t
(92f)�

@c

@z

@

@x
(92c)�

@c

@x

@

@z
(92c)�n92(92c)

�ga
dT

dx
(1)

@T

@t
�

@T

@z

@c

@x
�

@u

@x

@c

@z
�k92T�

DT

H

@c

@x
: (2)

Here, c is the "stream function," as usual defined
such that

u�
@c

@x
; v�

@c

@x
: (3)

In the early 1960s, Lorenz accidentally discovered the
chaotic behavior of this system when he found that,
for a simplified system, periodic solutions OF THE

FORM

c�c0 sin
pax

H

 !
sin

pz

H

 !
(4)

u�u0 cos
pax

H

 !
sin

pz

H

 !
(5)

grew for Rayleigh numbers larger than the critical
value, Ra > Rac: Furthermore, vastly different re-
sults were obtained for very small changes in the
initial values, representing one of the earliest dis-
coveries of the so-called BUTTERFLY EFFECT.

Lorenz included the following terms in his system of
equations,

X�c118 convective intensity (6)

Y�T11

8DT between descending and ascending currents

(7)

Z�T02

8D vertical temperature profile from linearity;

(8)

and obtained the simplified equations

Ẋ�s(Y�X) (9)



Ẏ ��XZ �rX �Y (10)

Ż �XY �bZ; (11)

now known as the LORENZ EQUATIONS, where Ẋ �
dX =dt; Ẏ �dY =dt; Ż �dZ=dt; and

s �
n

k 
�Prandtl number (12)

r �
Ra

Rac

�normalized Rayleigh number (13)

b �
4

1 � a2 
�geometric factor : (14)

Lorenz took b �8=3 and s �10:/

The CRITICAL POINTS at (0, 0, 0) correspond to no
convection, and the CRITICAL POINTS atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b(r �1)
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(r �1)

p
; r �1

� �
(15)

and

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(r �1)

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(r �1)

p
; r �1

� �
(16)

correspond to steady convection. This pair is stable
only if

r �
s(s � b � 3)

s � b � 1
; (17)

which can hold only for POSITIVE r if s > b �1: The
Lorenz attractor has a CORRELATION EXPONENT of
2.05 9 0.01 and CAPACITY DIMENSION 2.06 9 0.01
(Grassberger and Procaccia 1983). For more details,
see Lichtenberg and Lieberman (1983, p. 65) and
Tabor (1989, p. 204).

See also BUTTERFLY EFFECT, LORENZ EQUATIONS,
RÖ SSLER MODEL

References
Gleick, J. Chaos: Making a New Science. New York: Penguin

Books, pp. 27 �/1, 1988.

Grassberger, P. and Procaccia, I. "Measuring the Strange-
ness of Strange Attractors." Physica D 9, 189 �/08, 1983.

Lichtenberg, A. and Lieberman, M. Regular and Stochastic
Motion. New York: Springer-Verlag, 1983.

Lorenz, E. N. "Deterministic Nonperiodic Flow." J. Atmos.
Sci. 20, 130 �/41, 1963.

Lorenz, E. N. "On the Prevalence of Aperiodicity in Simple
Systems." In Global Analysis: Proceedings of the Biennial
Seminar of the Canadian Mathematical Congress Held at
the University of Calgary, Alberta., June 12 �/7 (Ed.
M. Grmela and J. E. Marsden). New York: Springer-Ver-
lag, pp. 53 �/5, 1979.

Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Chaos and
Fractals: New Frontiers of Science. New York: Springer-
Verlag, pp. 697 �/08, 1992.

Smale, S. "Mathematical Problems for the Next Century." In
Mathematics: Frontiers and Perspectives 20000821820702
(Ed. V. Arnold, M. Atiyah, P. Lax, and B. Mazur). Provi-
dence, RI: Amer. Math. Soc., 2000.

Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and
Strange Attractors. New York: Springer-Verlag, 1982.

Stewart, I. "The Lorenz Attractor Exists." Nature 406, 948 �/

49, 2000.
Tabor, M. Chaos and Integrability in Nonlinear Dynamics:

An Introduction. New York: Wiley, 1989.
Viana, M. "What’s New on Lorenz Strange Attractors."

Math. Intell. 22, 6�/9.
Wells, D. The Penguin Dictionary of Curious and Interesting

Geometry. London: Penguin, pp. 142 �/43, 1991.

Lorenz Curve
This entry contributed by CHRISTIAN DAMGAARD

The Lorenz curve is used in economics and ecology to
describe inequality in wealth or size. The Lorenz
curve is a function of the cumulative proportion of
ordered individuals mapped onto the corresponding
cumulative proportion of their size. Given a sample of
n ordered individuals with x?i the size of individual i
and x?1 Bx?2 B. . .Bx?n ; then the sample Lorenz curve is
the polygon joining the points (h=n; Lh =Ln) ; where h
� 0, 1, 2, ...n , L0 �0; and Lh �ah

i�1 x?i : Alternatively,
the Lorenz curve can be expressed as

L(y) �
g

y

0

x dF(x)

m
;

where F(y) is the cumulative distribution function of
ordered individuals and m is the average size.

If all individuals are the same size, the Lorenz curve
is a straight diagonal line, called the line of equality.
If there is any inequality in size, then the Lorenz
curve falls below the line of equality. The total
amount of inequality can be summarized by the
GINI COEFFICIENT (also called the Gini ratio), which
is the ratio between the area enclosed by the line of
equality and the Lorenz curve, and the total trian-
gular area under the line of equality. The degree of
asymmetry around the axis of symmetry is measured
by the so-called LORENZ ASYMMETRY COEFFICIENT.

See also GINI COEFFICIENT, LORENZ ASYMMETRY

COEFFICIENT
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Lorenz Equations
The system of ordinary differential equations

Ẋ � s(Y �X) (1)

Ẏ �rX �Y �XZ (2)

Ż �XY �bZ ; (3)

See also LORENZ ATTRACTOR
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Lorenz System
LORENZ ATTRACTOR, LORENZ EQUATIONS

Lorraine Cross
GAULLIST CROSS

Lo Shu

The unique MAGIC SQUARE of order three. The Lo Shu
is an ASSOCIATIVE MAGIC SQUARE, but not a PANMAGIC

SQUARE.

See also ASSOCIATIVE MAGIC SQUARE, MAGIC SQUARE,
PANMAGIC SQUARE
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Lossnitsch’s Triangle

1

1 1

1 1 1

1 2 2 1

1 2 4 2 1

1 3 6 6 3 1

1 3 9 10 9 3 1

1 4 12 19 19 12 4 1

1 4 16 28 38 28 16 4 1

1 5 20 44 66 66 44 20 5 1

1 5 25 60 110 126 110 60 25 5 1

A PASCAL’S TRIANGLE-like array of numbers for which
each term is the sum of the two numbers immediately
above it, except that, numbering the rows by n �0, 1,
2, ... and the entries in each row by k �0, 1, 2, ..., if n
is EVEN and k is ODD, subtract n =2�1

(k�1)=2

� �
: Analytically,

a(n ; k) �a(n �1; k �1) �a(n �1; k) �
n=2 �1

(k �1)=2

� �
;

where the last term is present only if n is EVEN and k
is ODD.
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Los’ Theorem
Let I be a set, and let U be an ULTRAFILTER on I , let f
be a formula of a given language L , and let fAi : i � I g
be any collection of structures which is indexed by the
set I . Denote by [x]U the EQUIVALENCE CLASS of x
under U; for any element x of the product

Q
i � I Ai:

Then the ULTRAPRODUCT
Q

i � I A
� �

=U satisfies f via a
valuation s�[(xi)i � I]U in

Q
i � I A

� �
=U if and only if

Tarski’s recursive definition of SATISFACTION holds,

i � I : Aiffixi
f

n o
�U:

See also NONSTANDARD ANALYSIS, TRANSFER PRINCI-

PLE
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Lost in a Forest Problem
The problem of finding the strategy to guarantee
reaching the boundary of a given region ("forest") in
the shortest distance (i.e., a strategy having the best
worst-case performance). For example, one simple
strategy would consist of walking in a straight line in
a random direction until encountering a boundary.
Although this straightforward approach is indeed the
best for some simple geometries, other approaches
(e.g., walking in a spiral, alternating left and right
turns after traveling some fixed distance, etc.) might
be optimal for forests with more complicated bound-
aries.
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Lotka-Volterra Equations

An ecological model which assumes that a population
x increases at a rate dx �Ax dt; but is destroyed at a
rate dx ��Bxy dt: Population y decreases at a rate
dy ��Cy dt; but increases at dy �Dxy dt; giving the
coupled differential equations

dx

dt 
�Ax �Bxy (1)

dy

dt 
��Cy �Dxy : (2)

Critical points occur when dx=dt �dy=dt �0 ; so

A �By �0 (3)

�C �Dx �0 : (4)

The sole STATIONARY POINT is therefore located at
(x; y) �(C=D ; A=B) :/
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Lovász Number
Let q (G) be the Lovász number of a GRAPH of G . Then

v(G) 5q ( Ḡ) 5 x(G) ;

where v(G) is the CLIQUE NUMBER and x(G) is the
minimum number of colors needed to color the
VERTICES of G . This is the SANDWICH THEOREM.

See also CLIQUE NUMBER, COLORING, SANDWICH

THEOREM
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Love Transform
The INTEGRAL TRANSFORM

(Kf )(x) �g
�

��

(x � t)c�1
�

G(c)
2 F1 a ; b; c; 1�

t

x

 !
f (t) dt;

where G(x) is the GAMMA FUNCTION, 2F1(a ; b; c; z) is
a HYPERGEOMETRIC FUNCTION, where ya

� denotes the
TRUNCATED POWER FUNCTION.
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Low-Dimensional Topology
Low-dimensional topology usually deals with objects
that are 2-, 3-, or 4-dimensional in nature. Properly
speaking, low-dimensional topology should be part of
DIFFERENTIAL TOPOLOGY, but the general machinery
of ALGEBRAIC and DIFFERENTIAL TOPOLOGY gives only
limited information. This fact is particularly notice-
able in dimensions three and four, and so alternative
specialized methods have evolved.

See also ALGEBRAIC TOPOLOGY, DIFFERENTIAL TOPOL-

OGY, HIGHER DIMENSIONAL GROUP THEORY, TOPOL-

OGY
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Löwenheim-Skolem Theorem
A fundamental result in MODEL THEORY which states
that if a countable theory has a model, then it has a
countable model. Furthermore, it has a model of
every CARDINALITY greater than or equal to �0

(ALEPH-0). This theorem established the existence of
"nonstandard" models of arithmetic.

See also ALEPH-0, CARDINALITY, GÖ DEL’S COMPLETE-

NESS THEOREM, MODEL THEORY
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Lower Bound
A function f is said to have a lower bound c if c 5f (x)
for all x in its DOMAIN. The GREATEST LOWER BOUND is
called the INFIMUM.

See also INEQUALITY, INFIMUM, SUPREMUM, UPPER

BOUND

Lower Central Series (Lie Algebra)
The lower central series of a LIE ALGEBRA g is the
sequence of subalgebras recursively defined by

gk �1 �[g; gk]; (1)

with g0 �g: The sequence of subspaces is always
decreasing with respect to inclusion or dimension,
and becomes stable when g is finite dimensional. The
notation [ a; b] means the linear span of elements of
the form [A, B ], where A � a and B � b:/

When the lower central series ends in the zero
subspace, the Lie algebra is called NILPOTENT. For
example, consider the LIE ALGEBRA of strictly UPPER

TRIANGULAR MATRICES, then

g0�

0 a12 a13 a14 a15

0 0 a23 a24 a25

0 0 0 a34 a35

0 0 0 0 a45

0 0 0 0 0

2
66664

3
77775 (2)

g1�

0 0 a13 a14 a15

0 0 0 a24 a25

0 0 0 0 a35

0 0 0 0 0
0 0 0 0 0

2
66664

3
77775 (3)

g2�

0 0 0 a14 a15

0 0 0 0 a25

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775 (4)

g3�

0 0 0 0 a15

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775; (5)

and g4�0: By definition, gkƒgk; where gk is the term
in the COMMUTATOR SERIES, as can be seen by the
example above.

In contrast to the NILPOTENT LIE ALGEBRAS, the
SEMISIMPLE LIE ALGEBRAS have a constant lower
central series. Others are in between, e.g.,

[gln; gln]�sln; (6)

which is semisimple, because the TRACE satisfies

Tr(AB)�Tr(BA): (7)

Here, gln is a general linear Lie algebra and sln is the
SPECIAL LINEAR LIE ALGEBRA.

Here are some Mathematica functions for determin-
ing the lower central series, when given a list of
matrices which is a basis for g:/

MatrixBasis[a_-

List]:�Partition[#1,Length[a[[1]]]]&/@

LatticeReduce[Flatten/@a]

LieCommutator[a_,b_]:�a.b-b.a

NextLCS[gold_List,{}]�{};

NextLCS[gold_List,g_List]:�
MatrixBasis[Flatten[Outer[LieCommutator,gold,-



g,1],1]] kthLCS[g_List,

k_Integer]: �Nest[NextLCS[g,#1]&,g,k]

For example,

gl5 �Flatten[Table[ReplacePart[

Ta-

ble[0,{i,5},{j,5}],1,{k,l}],{k,5},{l,5}],1];

sl5 �kthLCS[gl5, 1]

See also COMMUTATOR SERIES (LIE ALGEBRA), LIE

ALGEBRA, LIE GROUP, LOWER CENTRAL SERIES

(GROUP), NILPOTENT LIE GROUP, REPRESENTATION

(LIE ALGEBRA), REPRESENTATION (NILPOTENT LIE

GROUP), UNIPOTENT

Lower Denjoy Sum
LOWER SUM

Lower Factorial
FALLING FACTORIAL

Lower Half-Disk

The unit lower half-disk is the portion of the COMPLEX

PLANE satisfying zj j51; I z½ �B0f g:/
See also DISK, REAL AXIS, SEMICIRCLE, UNIT DISK,
LOWER HALF-PLANE, UPPER HALF-DISK

Lower Half-Plane

The portion of the COMPLEX PLANE fx �iy : x ; y �

(��; �) g satisfying y �I[z] B0 ; i.e., fx �iy :/
/x � (��; �) ; y � ( �; 0)g:/
See also COMPLEX PLANE, HALF-PLANE, LEFT HALF-

PLANE, LOWER HALF-DISK, RIGHT HALF-PLANE,
UPPER HALF-PLANE

Lower Integral

The limit of a LOWER SUM, when it exists, as the MESH

SIZE approaches 0.

See also LOWER SUM, RIEMANN INTEGRAL, UPPER

INTEGRAL

Lower Limit
Let the least term h of a SEQUENCE be a term which is
smaller than all but a finite number of the terms
which are equal to h . Then h is called the lower limit
of the SEQUENCE.

A lower limit of a SERIES

lower lim
n 0�

Sn � lim
n0�

Sn �h

is said to exist if, for every e > 0 ; ½Sn �h½Be for
infinitely many values of n and if no number less
than h has this property.

See also INFIMUM LIMIT, LIMIT, SUPREMUM LIMIT,
UPPER LIMIT
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Lower Sum

For a given function f (x) over a partition of a given
interval, the lower sum is the sum of box areas
f x�

kð ÞDxk using the smallest value of the function
f x�

kð Þ) in each subinterval Dxk :/

See also LOWER INTEGRAL, RIEMANN INTEGRAL,
UPPER SUM

Lower Triangular Matrix
A TRIANGULAR MATRIX L OF THE FORM

Lij �
aij for i ]j
0 for i Bj:

'

Written explicitly,

L �

a11 0 � � �  0
a21 a22 � � �  0
n n ::: 0

an1 an2 � � �  ann

2
664

3
775

A lower triangular matrix with elements f[i,j]
below the diagonal can be formed using LowerDia-
gonalMatrix[f , n ] in the Mathematica add-on pack-
age LinearAlgebra‘MatrixMultiplication‘
(which can be loaded with the command
BBLinearAlgebra‘).

See also TRIANGULAR MATRIX, UPPER TRIANGULAR

MATRIX

References
Ayres, F. Jr. Theory and Problems of Matrices. New York:

Schaum, p. 10, 1962.

Lower-Trimmed Subsequence
The lower-trimmed subsequence of x �fxn g is the
sequence V(x) obtained by subtracting 1 from each xn

and then removing all 0s. If x is a FRACTAL SEQUENCE,
then V(x) is a FRACTAL SEQUENCE. If x is a SIGNATURE

SEQUENCE, then V(x) �x:/

See also SIGNATURE SEQUENCE, UPPER-TRIMMED

SUBSEQUENCE
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Lowest Divisor Function
LEAST PRIME FACTOR

Lowest Terms Fraction
REDUCED FRACTION

Löwner’s Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

y?��y
1 � k(x)y

1 � k(x)y 
:

References
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Loxodrome
A path, also known as a RHUMB LINE, which cuts a
MERIDIAN on a given surface at any constant ANGLE

but a RIGHT ANGLE. If the surface is a SPHERE, the
loxodrome is a SPHERICAL SPIRAL. The loxodrome is
the path taken when a compass is kept pointing in a
constant direction. It is a straight line on a MERCATOR

PROJECTION or a LOGARITHMIC SPIRAL on a polar
projection (Steinhaus 1983, pp. 218 �/19). The loxo-
drome is not the shortest distance between two points
on a sphere.

See also GREAT CIRCLE, SPHERE, SPHERICAL SPIRAL
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Lozenge

An equilateral PARALLELOGRAM whose ACUTE ANGLES

are 45 8. Sometimes, the restriction to 458 is dropped,
and it is required only that two opposite angles are
acute and the other two obtuse. The term RHOMBUS is
commonly used for an arbitrary equilateral parallelo-
gram.

See also KITE, PARALLELOGRAM, QUADRILATERAL,
RHOMBUS

Lozenge Method
A method for constructing MAGIC SQUARES of ODD

order.



See also MAGIC SQUARE

Lozi Map
A 2-D map similar to the HÉ NON MAP which is given
by the equations

xn�1 �1 � a½xn ½�yn

yn�1 � bxn :

See also HÉ NON MAP
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Lp’-Balance Theorem
If every component L of X =Op ?(X) satisfies the
"Schreler property," then

Lp ?(Y) 5Lp?(X)

for every p -local SUBGROUP Y of X , where Lp ? is the P -

LAYER.

See also P -LAYER, SUBGROUP

L-Polyomino

The order n ]2 L-polyomino consists of a vertical line
of n SQUARES with a single additional SQUARE

attached at the bottom.

See also L-POLYOMINO, SKEW POLYOMINO, SQUARE,
SQUARE POLYOMINO, STRAIGHT POLYOMINO

Lp-Space
The set of Lp

/-functions generalizes L2-SPACE. Instead
of SQUARE INTEGRABLE, the MEASURABLE FUNCTION f
must be p -integrable for f to be in Lp :/

On a MEASURE SPACE X , the Lp norm of a function f is

fk kLp� gX

fj jp
� �1 =p

:

The Lp
/-functions are the functions for which this

integral converges. For p "2; the space of Lp
/-func-

tions is a BANACH SPACE which is not a HILBERT

SPACE.

The Lp
/-space on Rn ; and in most other cases, is the

COMPLETION of the continuous functions with COM-

PACT SUPPORT using the Lp norm. As in the case of an
L2-SPACE, an Lp

/-function is really an equivalence
class of functions which agree ALMOST EVERYWHERE.
It is possible for a sequence of functions fn to converge
in Lp but not in Lp ? for some other p ?; e.g., fn �
(1 �x2)�1 =2 �1 =n converges in L2(R) but not L1(R):
However, if a sequence converges in Lp and in Lp ?;
then its limit must be the same in both spaces.

For p �1, the DUAL SPACE to Lp is given by integrat-
ing against functions in Lq ; where 1=p �1 =q �1: This
makes sense because of HÖ LDER’S INEQUALITY FOR

INTEGRALS. In particular, the only Lp
/-space which is

SELF-DUAL is L2 :/

While the use of Lp functions is not as common as L2 ;
they are very important in ANALYSIS and PARTIAL

DIFFERENTIAL EQUATIONS. For instance, some OPERA-

TORS are only BOUNDED in Lp for some p �2.

See also BANACH SPACE, COMPLETION, HILBERT

SPACE, LEBESGUE INTEGRAL, LP -SPACE, L2-SPACE,
MEASURE, MEASURE SPACE

LQ Decomposition

The orthogonal decomposition of a matrix into lower
trapezoidal matrices.
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L-Series
DIRICHLET L -SERIES, ROGERS L -FUNCTION

L-System
LINDENMAYER SYSTEM

Lubbock’s Formula

f0�f1=m�f2=m�. . .�fr

m f0�f1�. . .�frð Þ�1
2(m�2) fr�f0ð Þ

�
m2 � 1

12m
(Dfr�1�Df0)�

m2 � 1

24m
(D2fr�2�D2f0)

�
(m2 � 1)(19m2 � 1)

720m3
(D3fr�3�D3f0)

�
(m2 � 1)(9m2 � 1)

480m3
(D4fr�4�D4f0):
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Lucas Correspondence
The correspondence which relates the HANOI GRAPH

to the ISOMORPHIC GRAPH of the ODD BINOMIAL

COEFFICIENTS in PASCAL’S TRIANGLE, where the ad-
jacencies are determined by adjacency (either hor-
izontal or diagonal) in PASCAL’S TRIANGLE. The proof
of the correspondence is given by the LUCAS CORRE-

SPONDENCE THEOREM.

See also BINOMIAL COEFFICIENT, HANOI GRAPH,
PASCAL’S TRIANGLE
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Lucas Correspondence Theorem
Let p be PRIME and

r �rmpm �. . .�r1p �r0 (0 5ri Bp) (1)

k �kmpm �. . .�k1p �k0 (0 5ki Bp); (2)

then

r
k

� �
�
Ym
i�0

ri

ki

� �
(mod p) : (3)

This is proved in Fine (1947).
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Lucas-Lehmer Residue
LUCAS-LEHMER TEST

Lucas-Lehmer Test
A MERSENNE NUMBER Mp is prime IFF Mp divides
sp �2 ; where s0 �4 and

si �s2
i�1 �2(mod 2p �1) (1)

for i ]1: The first few terms of this series are 4, 14,
194, 37634, 1416317954, ... (Sloane’s A003010). The
remainder when sp �2 is divided by Mp is called the
LUCAS-LEHMER RESIDUE for p . The LUCAS-LEHMER

RESIDUE is 0 IFF Mp is PRIME. This test can also be
extended to arbitrary INTEGERS.

A generalized version of the Lucas-Lehmer test lets

N �1 �
Yn

j �1

q 
bj

j ; (2)

with qj the distinct PRIME FACTORS, and bj their
respective POWERS. If there exists a LUCAS SEQUENCE

Un such that

GCD(U(N �1)=qj
; N) �1 (3)

for j �1, ..., n and

UN �1 �0 (mod N); (4)

then N is a PRIME. The test is particularly simple for
MERSENNE NUMBERS, yielding the conventional Lu-
cas-Lehmer test.

See also LUCAS SEQUENCE, MERSENNE NUMBER,
RABIN-MILLER STRONG PSEUDOPRIME TEST
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Lucas’ Married Couples Problem
MARRIED COUPLES PROBLEM

Lucas Number
The numbers produced by the V recurrence in the
LUCAS SEQUENCE with (P; Q)�(1;�1) are called
Lucas numbers. They are the companions to the
FIBONACCI NUMBERS Fn and satisfy the same recur-
rence

Ln�Ln�1�Ln�2; (1)

where L1�1; L2�3: The first few are 1, 3, 4, 7, 11,
18, 29, 47, 76, 123, ... (Sloane’s A000204).

The analog of BINET’S FIBONACCI NUMBER FORMULA

for Lucas numbers is

Ln�
1 �

ffiffiffi
5

p

2

 !n

�
1 �

ffiffiffi
5

p

2

 !n

: (2)

Another formula is

Ln�[fn]; (3)

where f is the GOLDEN RATIO and [x] denotes the NINT

function. Given Ln;

Ln�1�
Ln 1 �

ffiffiffi
5

p� �
� 1

2

$ %
; (4)

where xb c is the FLOOR FUNCTION,

L2
n�Ln�1Ln�1�5(�1)n; (5)

and

Xn

k�0

L2
k�LnLn�1�2: (6)

The Lucas numbers obey the negation formula



L�n�(�1)nLn; (7)

the addition formula

Lm�n�
1
2(5FmFn�LmLn); (8)

where Fn is a FIBONACCI NUMBER, the subtraction
formula

Lm�n�
1
2(�1) LmLn�5FmFnð Þ; (9)

the fundamental identity

L2
n�5F2

n�4(�1)n; (10)

conjugation relation

Ln�Fn�1�Fn�1; (11)

successor relation

Ln�1�
1
2 5Fn�Lnð Þ; (12)

double-angle formula

L2n�
1
2(5F2

n�L2
n); (13)

multiple-angle recurrence

Lkn�LkLk(n�1)�(�1)kLk(n�2); (14)

multiple-angle formulas

Lkn�
1

2k�1

Xk=2b c

i�0

k
2i

� �
5iF2i

n Lk�2i
n (15)

�
Xk=2b c

i�0

k

k � i

k�i
i

� �
(�1)i(n�1)Lk�2i

n (16)

�

Pk=2
i�0

k
k�i

k�i
i

� �
(�1)in5k=2�iFk�2i

n for k even

Ln

P k=2b c
i�0

k�1�i
i

� �
(�1)in5 k=2b c�iFk�1�2i

n for k odd

(

(17)

�
Xk

i�0

k
i

� �
LiF

i
nFk�i

n�1; (18)

product expansions

FmLn�Fm�n�(�1)nFm�n (19)

and

FmFn�
1
5[Lm�n�(�1)nLm�n]; (20)

square expansion,

L2
n�L2n�2(�1)n; (21)

and power expansion

Lk
n�

1

2

Xk

i�0

k
i

� �
(�1)inL(k�2i)n: (22)

The Lucas numbers satisfy the power recurrence

Xt�1

j�0

(�1)j(j�1)=2 t�1
j

/ �
F

Lt
n�j�0; (23)

where a
b

 !
F

is a FIBONACCI COEFFICIENT, the reciprocal
sum

Xn

k�1

(�1)k

LkLk�a

�
Fn

Fa

Xa

k�1

(�1)k

LkLk�n

; (24)

the convolution

Xn

k�0

LkLn�k�(n�2)Ln�Fn; (25)

the partial fraction decomposition

�
5

Ln�aLn�bLn�c

�
A

Ln�a

�
B

Ln�b

�
C

Ln�c

; (26)

where

A�
(�1)n�a

Fb�aFc�a

(27)

B�
(�1)n�b

Fc�bFa�b

(28)

C�
(�1)n�c

Fa�cFb�c

; (29)

and the summation formula

Xn

k�0

xkLak�b�
g(n � 1) � g(0)

1 � Lax � (�1)ax2
; (30)

where

g(n)�(�1)aLa(n�1)�bxn�1�Lan�bxn: (31)

Let p be a PRIME > 3 and k be a POSITIVE INTEGER.
Then L2pk ends in a 3 (Honsberger 1985, p. 113).
Analogs of the Cesàro identities for FIBONACCI NUM-

BERS are

Xn

k�0

n
k

� �
Lk�L2n (32)

Xn

k�0

n
k

� �
2kLk�L3n; (33)

where n
k

� �
is a BINOMIAL COEFFICIENT.

/Ln Fmj (/Ln DIVIDES Fm) IFF n DIVIDES into m an EVEN

number of times. Ln Lmj IFF n divides into m an ODD

number of times. 2nLn always ends in 2 (Honsberger
1985, p. 137).



Defining

Dn �

3 i 0 0  � � �  0 0
i 1 i 0 � � �  0 0
0 i 1 i � � �  0 0
0 0 i 1 � � �  0 0
n n n n  ::: n n
0 0 0 0  � � �  1 i
0 0 0 0  0  i 1

��������������

��������������
�Ln�1 (34)

gives

Dn �Dn�1 �Dn�2 (35)

(Honsberger 1985, pp. 113 �/14).

The number of ways of picking a set (including the
EMPTY SET) from the numbers 1, 2, ..., n without
picking two consecutive numbers (where 1 and n are
now consecutive) is Ln (Honsberger 1985, p. 122).

The only SQUARE NUMBERS in the Lucas sequence are
1 and 4, as proved by John H. E. Cohn (Alfred 1964).
The only TRIANGULAR Lucas numbers are 1, 3, and
5778 (Ming 1991). The only Lucas CUBIC NUMBER is 1.
The first few Lucas PRIMES Ln occur for n �2, 4, 5, 7,
8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113,
313, 353, ... (Dubner and Keller 1999, Sloane’s
A001606).

See also FIBONACCI NUMBER
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Lucas Polynomial
The w POLYNOMIALS obtained by setting p(x) �x and
q(x) �1 in the LUCAS POLYNOMIAL SEQUENCE. The
first few are

F1(x) �x

F2(x) �x2 �2

F3(x) �3x3 �3x

F4(x) �x4 �4x2 �2

F5(x) �x5 �5x3 �5x:

The corresponding W POLYNOMIALS are called FIBO-

NACCI POLYNOMIALS. The Lucas polynomials satisfy

Ln(1)�Ln;

where the Ln/s are LUCAS NUMBERS.

See also FIBONACCI POLYNOMIAL, LUCAS NUMBER,
LUCAS POLYNOMIAL SEQUENCE

Lucas Polynomial Sequence
A pair of generalized POLYNOMIALS which generalize
the LUCAS SEQUENCE to POLYNOMIALS is given by

Wk
n(x)�

Dk(x)[an(x) � (�1)kbn(x)]

D(x)
(1)

wk
n(x)�Dk(x) an(x)�(�1)kbn(x)

h i
; (2)

where

a(x)�b(x)�p(x) (3)

a(x)b(x)��q(x) (4)

a(x)�b(x)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x)�4q(x)

p
�D(x) (5)

(Horadam 1996). Setting n�0 gives

Wk
0 (x)�Dk(x)

1 � (�1)k

D(x)
(6)

wk
0(x)�Dk(x)[1�(�1)k]; (7)

giving

W0
0 (x)�0 (8)

w0
0(x)�2: (9)

The sequences most commonly considered have k�0,
giving

Wn(x)�W0
n(x)�

an(x) � bn(x)

a(x) � b(x)
(10)



�
p(x) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x) � 4q(x)

ph in

� p(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x) � 4q(x)

ph in

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x) � 4q2(x)

p
(11)

wn(x) �w0
n(x) �an(x) �bn(x) (12)

p(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x) � 4q(x)

ph in

� p(x) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2(x) � 4q(x)

ph in

2n 
:

(13)

The w polynomials satisfy the RECURRENCE RELATION

wn(x) �p(x)wn�1(x) �q(x)wn�2(x) : (14)

Special cases of the W and w polynomials are given in
the following table.

/p(x)/ /q(x)/ Polynomial 1 Polynomial 2

x 1 FIBONACCI Fn(x)/ LUCAS Ln(x)/

/2x/ 1 PELL Pn(x)/ PELL-LUCAS Qn(x)/

1 /2x/ JACOBSTHAL Jn(x)/ JACOBSTHAL jn(x)/

/3x/ �2 FERMAT Fn(x)/ FERMAT-LUCAS

fn(x)/

/2x/ �1 CHEBYSHEV POLY-

NOMIAL OF THE

SECOND KIND

Un�1(x)/

CHEBYSHEV POLY-

NOMIAL OF THE

FIRST KIND 2Tn(x)/

See also CHEBYSHEV POLYNOMIAL OF THE FIRST KIND,
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND,
FERMAT POLYNOMIAL, FIBONACCI POLYNOMIAL, JA-

COBSTHAL POLYNOMIAL, LUCAS POLYNOMIAL, LUCAS

SEQUENCE, PELL POLYNOMIAL
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Lucas Pseudoprime
When P and Q are INTEGERS such that D �P2 �4Q "
0; define the LUCAS SEQUENCE Ukf g by

Uk �
ak � bk

a � b

for k ]0; with a and b the two ROOTS of x2 �Px �Q �
0: Then define a Lucas pseudoprime as an ODD

COMPOSITE number n such that n¶Q; the JACOBI

SYMBOL (D=n) ��1; and n Un�1 ::
��

/

There are no EVEN Lucas pseudoprimes (Bruckman
1994). The first few Lucas pseudoprimes are 705,
2465, 2737, 3745, ... (Sloane’s A005845).

See also EXTRA STRONG LUCAS PSEUDOPRIME, LUCAS

SEQUENCE, PSEUDOPRIME, STRONG LUCAS PSEUDO-

PRIME
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Lucas Sequence
Let P , Q be POSITIVE INTEGERS. The ROOTS of

x2�Px�Q�0 (1)

are

a�1
2 P�

ffiffiffiffi
D

p� �
(2)

b�1
2 P�

ffiffiffiffi
D

p� �
; (3)

where

D�P2�4Q; (4)

so

a�b�P (5)

ab�1
4(P

2�D)�Q (6)

a�b�
ffiffiffiffi
D

p
: (7)

Then define

Un(P; Q)�
an � bn

a � b
(8)

Vn(P; Q)�an�bn: (9)

The first few values are therefore

U0(P; Q)�0 (10)

U1(P; Q)�1 (11)

V0(P; Q)�2 (12)

V1(P; Q)�P: (13)

The sequences

U(P; Q)�fUn(P; Q) : n]1g (14)

V(P; Q)�fVn(P; Q) : n]1g (15)

are called Lucas sequences, where the definition is
usually extended to include

U�1�
a�1 � b�1

a � b
�

�1

ab
��

1

Q
: (16)

For (P; Q)�(1;�1); the Un are the FIBONACCI NUM-



BERS and Vn are the LUCAS NUMBERS. For (P; Q) �
(2;�1); the PELL NUMBERS and Pell-Lucas numbers
are obtained. (P; Q) �(1;�2) produces the JA-

COBSTHAL NUMBERS and Pell-Jacobsthal Numbers.

The Lucas sequences satisfy the general RECURRENCE

RELATIONS

Um�n �
am�n � bm�n

a � b

�
(am � bm)(an � bn)

a � b
�

anbn(am�n � bm�n)

a � b

�UmVn �anbnUm�n (17)

Vm�n �am�n �bm�n

�(am �bm)(an �bn) �anbn(am�n �bm�n)

�VmVn �anbnVm�n : (18)

Taking n �1 then gives

Um(P ; Q) �PUm�1(P ; Q) �QUm�2(P; Q) (19)

Vm(P; Q) �PVm�1(P ; Q) �QVm�2(P; Q) : (20)

Other identities include

U2n �UnVn (21)

U2n�1 �Un�1Vn �Qn (22)

V2n �V2
n �2(ab)n �V2

n �2Qn (23)

V2n�1 �Vn �1Vn �PQn : (24)

These formulas allow calculations for large n to be
decomposed into a chain in which only four quantities
must be kept track of at a time, and the number of
steps needed is 
lg n : The chain is particularly
simple if n has many 2s in its factorization.

The Us in a Lucas sequence satisfy the CONGRUENCE

Upn�1[p�(D=p)] �0 (mod pn) (25)

if

GCD(2QcD ; p) �1 ; (26)

where

P2 �4Q2 �c2D: (27)

This fact is used in the proof of the general LUCAS-

LEHMER TEST.

See also FIBONACCI NUMBER, JACOBSTHAL NUMBER,
LUCAS-LEHMER TEST, LUCAS NUMBER, LUCAS POLY-

NOMIAL SEQUENCE, PELL NUMBER, RECURRENCE

SEQUENCE, SYLVESTER CYCLOTOMIC NUMBER
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Lucas’s Theorem
Let n ]3 be a SQUAREFREE integer, and Fn(z) a
CYCLOTOMIC POLYNOMIAL. Then

Fn(z) �U2
n(z) �(�1)(n �1)=2nzV2

n(z) ; (1)

where Un(z) and Vn(z) are INTEGER POLYNOMIALS of
degree f(n) =2 and f(n) =2 �1 ; respectively. This
identity can be expressed as

Fn((�1)(n �1)=2z) �C2
n(z) �nzD2

n(z) for n odd
Fn=2(�z2) �C2

n(z) �nzD2
n(z) n �4k �2

F1(�z2) �C2
2(z) �2zD2

2(z) for n �2;

8<
: 

(2)

with Cn(z) and Dn(z) SYMMETRIC POLYNOMIALS. The
following table gives the first few Cn(z) and Dn(z)/s
(Riesel 1994, pp. 443 �/56).

n /Cn(z)/ /Dn(z)/

2 /z �1/ 1

3 /z �1/ 1

5 /z2 �3z �1/ /z �1/

6 /z2 �3z �1/ /z �1/

7 /z3 �3z2 �3z �1/ /z2�z�1/

10 /z4�5z3�7z2�5z�1/ /z3�2z2�2z�1/

See also CYCLOTOMIC POLYNOMIAL, GAUSS’S CYCLO-

TOMIC FORMULA
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Lucky Number
Write out all the ODD numbers: 1, 3, 5, 7, 9, 11, 13, 15,
17, 19, .... The first ODD number > 1 is 3, so strike out
every third number from the list: 1, 3, 7, 9, 13, 15, 19,
.... The first ODD number greater than 3 in the list is
7, so strike out every seventh number: 1, 3, 7, 9, 13,
15, 21, 25, 31, ....

Numbers remaining after this procedure has been
carried out completely are called lucky numbers. The
first few are 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, ...
(Sloane’s A000959). Many asymptotic properties of
the PRIME NUMBERS are shared by the lucky numbers.
The asymptotic density is 1=ln N; just as the PRIME



NUMBER THEOREM, and the frequency of TWIN PRIMES

and twin lucky numbers are similar. A version of the
GOLDBACH CONJECTURE also seems to hold.

It therefore appears that the SIEVING process ac-
counts for many properties of the PRIMES.

See also GOLDBACH CONJECTURE, LUCKY NUMBER OF

EULER, PRIME NUMBER, PRIME NUMBER THEOREM,
SIEVE
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Lucky Number of Euler
A number p such that the PRIME-GENERATING POLY-

NOMIAL

n2 �n �p

is PRIME for n �0, 1, ..., p �2 : Such numbers are
related to the COMPLEX QUADRATIC FIELD in which the
RING of INTEGERS is factorable. Specifically, the Lucky
numbers of Euler (excluding the trivial case p �3) are
those numbers p such that the QUADRATIC FIELD

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4p

p� �
has CLASS NUMBER 1 (Rabinowitz 1913,

Le Lionnais 1983, Conway and Guy 1996).

As established by Stark (1967), there are only nine
numbers �d such that h(�d) �1 (the HEEGNER

NUMBERS �2, �3, �7, �11, �19, �43, �67, and
�163), and of these, only 7, 11, 19, 43, 67, and 163 are
of the required form. Therefore, the only Lucky
numbers of Euler are 2, 3, 5, 11, 17, and 41 (Le
Lionnais 1983, Sloane’s A014556), and there does not
exist a better PRIME-GENERATING POLYNOMIAL of
Euler’s form.

See also CLASS NUMBER, HEEGNER NUMBER, PRIME-

GENERATING POLYNOMIAL
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LUCY
A nonlinear DECONVOLUTION technique used in de-
convolving images from the Hubble Space Telescope
before corrective optics were installed.

See also DECONVOLUTION, MAXIMUM ENTROPY METH-

OD

LU Decomposition
A procedure for decomposing an N�N matrix A into
a product of a LOWER TRIANGULAR MATRIX L and an
UPPER TRIANGULAR MATRIX U;

LU�A: (1)

LU decomposition is implemented in Mathematica as
LUDecomposition[m ].

Written explicitly for a 3�3 MATRIX, the decomposi-
tion is

l11 0 0
l21 l22 0
l31 l32 l33

2
4

3
5 u11 u12 u13

0 u22 u23

0 0 u33

2
4

3
5� a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 (2)

l11u11 l11u12 l11u13

l21u11 l21u22�l22u22 l21u13�l22u23

l31u11 l31u12�l32u22 l31u13�l32u23�l33u23

2
4

3
5

�
a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5: (3)

This gives three types of equations

iBj li1u1j�li2u2j�. . .�liiuij�aij (4)

i�j li1u1j�li2u2j�. . .�liiujj�aij (5)

i > j li1u1j�li2u2j�. . .�lijujj�aij: (6)

This gives N2 equations for N2�N unknowns (the
decomposition is not unique), and can be solved using
CROUT’S METHOD. To solve the MATRIX equation

Ax�(LU)x�L(Ux)�b; (7)

first solve Ly�b for y. This can be done by forward
substitution

y1�
b1

l11

(8)



yi �
1

lii

bi �
Xi �1

j �1

lijyj

 !
(9)

for i �2, ..., N . Then solve Ux �y for x. This can be
done by back substitution

xN �
yN

uNN

(10)

xi �
1

uii

yi �
XN

j�i�1

uijxj

 !
(11)

for i �N �1; ..., 1:/

See also LOWER TRIANGULAR MATRIX, MATRIX DE-

COMPOSITION, CHOLESKY DECOMPOSITION, QR DE-

COMPOSITION, TRIANGULAR MATRIX, UPPER

TRIANGULAR MATRIX
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Ludolph’s Constant
PI

Ludwig’s Inversion Formula
Expresses a function in terms of its RADON TRANS-

FORM,

f (x; y) �R�1(Rf )(x; y)

�
1

p

1

2p g
�

��

@
@p

(Rf )(p; a)

x cos a � y sin a � p
dp d a:

See also RADON TRANSFORM

Ludwig’s Law
FIBONACCI NUMBER

Lukács Theorem
Let r(x) be an mth degree POLYNOMIAL which is
NONNEGATIVE in [�1 ; 1]: Then r(x) can be represented
in the form

[A(x)]2 �(1 �x2)[B(x)]2 for m even
(1 �x)[C(x)]2 �(1 �x)[D(x)]2 for m odd ;

'

where A(x) ; B(x) ; C(x); and D(x) are REAL POLYNO-

MIALS whose degrees do not exceed m .
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Lune

A figure bounded by two circular ARCS of unequal
RADII. Hippocrates of Chios SQUARED the above left
lune, as well as two others, in the fifth century BC.
Two more SQUARABLE lunes were found by T. Clausen
in the 19th century (Dunham 1990 attributes these
discoveries to Euler in 1771). In the 20th century,
N. G. Tschebatorew and A. W. Dorodnow proved that
these are the only five squarable lunes (Shenitzer and
Steprans 1994). The left lune above is squared as
follows,

Ahalf small circle �
1
2 p

rffiffiffi
2

p
 !2

�1
4 pr2

Alens �Aquarter big circle �Atriangle

�1
4 pr2�1

2 r2

Alune�Ahalf small circle�Alens�
1
2 r2

�Atriangle;

so the lune and TRIANGLE have the same AREA. In the
right figure, A1�A2�AD:/

For the above lune,

Alune�2ADOBC:

See also ANNULUS, ARC, CIRCLE, SALINON, SPHERICAL

LUNE
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Lunule
LUNE

Lü roth’s Theorem
If x and y are nonconstant rational functions of a
parameter, the curve so defined has GENUS 0.
Furthermore, x and y may be expressed rationally
in terms of a parameter which is rational in them.
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Lusin Area Integral
If V⁄C is a DOMAIN and 8 : V 0 C is a ONE-TO-ONE

ANALYTIC FUNCTION, then 8 ( V) is a DOMAIN, and

area(8 ( V)) �gV 8 ?(z)j j2 dx dy

(Krantz 1999, p. 150).

See also AREA INTEGRAL
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Lusin’s Theorem
Let f (x) be a finite and MEASURABLE FUNCTION in
(��; �); and let e be freely chosen. Then there is a
function g(x) such that

1. g(x) is continuous in (��; �) ;/
2. The MEASURE of fx : f (x) "g(x)g is Be;/
3. M gj j; R1ð Þ5M fj j; R1ð Þ;/

where M(f ; S) denotes the upper bound of the
aggregate of the values of f (P) as P runs through
all values of S .
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Lusternik-Schnirelmann Theorem
LYUSTERNIK-SCHNIRELMANN THEOREM

LUX Method
A method for constructing MAGIC SQUARES of SINGLY

EVEN order n]6:/

See also MAGIC SQUARE

Lyapunov Characteristic Exponent
The Lyapunov characteristic exponent [LCE] gives
the rate of exponential divergence from perturbed
initial conditions. To examine the behavior of an orbit

around a point X�(t); perturb the system and write

X(t)�X�(t)�U(t); (1)

where U(t) is the average deviation from the unper-
turbed trajectory at time t . In a CHAOTIC region, the
LCE s is independent of X�(0): It is given by the
OSEDELEC THEOREM, which states that

si�lim
t0�

1

t
ln U(t)j j: (2)

For an n -dimensional mapping, the Lyapunov char-
acteristic exponents are given by

si� lim
N0�

ln li(N)j j (3)

for i�1, ..., n , where li is the LYAPUNOV CHARACTER-

ISTIC NUMBER.

One Lyapunov characteristic exponent is always 0,
since there is never any divergence for a perturbed
trajectory in the direction of the unperturbed trajec-
tory. The larger the LCE, the greater the rate of
exponential divergence and the wider the correspond-
ing SEPARATRIX of the CHAOTIC region. For the
STANDARD MAP, an analytic estimate of the width of
the CHAOTIC zone by Chirikov (1979) finds

dI�Be�AK�1=2: (4)

Since the Lyapunov characteristic exponent increases
with increasing K , some relationship likely exists
connecting the two. Let a trajectory (expressed as a
MAP) have initial conditions (x0; y0) and a nearby
trajectory have initial conditions (x?; y?)�
(x0�dx; y0�dy): The distance between trajectories
at iteration k is then

dk� x?�x0; y?�y0ð Þk k; (5)

and the mean exponential rate of divergence of the
trajectories is defined by

s1� lim
k0�

1

k
ln

dk

d0

 !
: (6)

For an n -dimensional phase space (MAP), there are n
Lyapunov characteristic exponents s1]s2]. . . >
sn:: However, because the largest exponent s1 will
dominate, this limit is practically useful only for
finding the largest exponent. Numerically, since dk

increases exponentially with k , after a few steps the
perturbed trajectory is no longer nearby. It is there-
fore necessary to renormalize frequently every t
steps. Defining

rkr�
dkr

d0

; (7)

one can then compute



s1 � lim
k 0�

1

nr

Xn

k �1

ln rkr : (8)

Numerical computation of the second (smaller) Lya-
punov exponent may be carried by considering the
evolution of a 2-D surface. It will behave as

e(s1�s2)t ; (9)

so s2 can be extracted if s1 is known. The process may
be repeated to find smaller exponents.

For HAMILTONIAN SYSTEMS, the LCEs exist in addi-
tive inverse pairs, so if s is an LCE, then so is �s: One
LCE is always 0. For a 1-D oscillator (with a 2-D
phase space), the two LCEs therefore must be s1 �
s2 �0; so the motion is QUASIPERIODIC and cannot be
CHAOTIC. For higher order HAMILTONIAN SYSTEMS,
there are always at least two 0 LCEs, but other LCEs
may enter in plus-and-minus pairs l and �l: If they,
too, are both zero, the motion is integrable and not
CHAOTIC. If they are NONZERO, the POSITIVE LCE l
results in an exponential separation of trajectories,
which corresponds to a CHAOTIC region. Notice that it
is not possible to have all LCEs NEGATIVE, which
explains why convergence of orbits is never observed
in HAMILTONIAN SYSTEMS.

Now consider a dissipative system. For an arbitrary
n -D phase space, there must always be one LCE
equal to 0, since a perturbation along the path results
in no divergence. The LCEs satisfy ai si B0 : There-
fore, for a 2-D phase space of a dissipative system,
s1 �0; s2 B0: For a 3-D phase space, there are three
possibilities:

1. (Integrable): s1 �0 ; s2 �0; s3 B0 ;/
2. (Integrable): s1 �0 ; s2 ; s3 B0 :;/
3. (CHAOTIC): s1 �0 ; s2 > 0; s3 B�s2 B0:/

See also CHAOS, HAMILTONIAN SYSTEM, LYAPUNOV

CHARACTERISTIC NUMBER, OSEDELEC THEOREM
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Lyapunov Characteristic Number
Given a LYAPUNOV CHARACTERISTIC EXPONENT si ; the
corresponding Lyapunov characteristic number li is
defined as

li �esi : (1)

For an n -dimensional linear MAP,

Xn�1 �MX n: (2)

The Lyapunov characteristic numbers l1 ; ..., ln are
the EIGENVALUES of the MAP MATRIX. For an arbitrary
MAP

xn�1 �f1(xn ; yn) (3)

yn �1 �f2(xn ; yn) ; (4)

the Lyapunov numbers are the EIGENVALUES of the
limit

lim
n 0�

[J(xn ; yn)J(xn�1 ; yn�1) � � �J(x1 ; y1)]1=n ; (5)

where J(x; y) is the JACOBIAN

J(x; y) �

@f1(x; y)

@x

@f1(x; y)

@y
@f2(x; y)

@x

@f2(x; y)

@y

���������

���������
: (6)

If li for all i , the system is not CHAOTIC. If  l "0 and
the MAP is AREA-PRESERVING (HAMILTONIAN), the
product of EIGENVALUES is 1.

See also ADIABATIC INVARIANT, CHAOS, LYAPUNOV

CHARACTERISTIC EXPONENT

Lyapunov Condition
If the third MOMENT exists for a STATISTICAL DISTRI-

BUTION of xi and the LEBESGUE INTEGRAL is given by

r3
n �

Xn

i �1
g

�

��

xj j3 dFi(x) ;

then if

lim
n0�

rn

sn

�0;

the CENTRAL LIMIT THEOREM holds.

See also CENTRAL LIMIT THEOREM

Lyapunov Dimension
For a 2-D MAP with s2 > s1 ;

dLya �1 �
s1

s2

;

where sn are the LYAPUNOV CHARACTERISTIC EXPO-

NENTS.

See also CAPACITY DIMENSION, KAPLAN-YORKE CON-

JECTURE
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Lyapunov Function
This entry contributed by MARTIN KELLER-RESSEL

A Lyapunov function is a SCALAR FUNCTION V(y)
defined on a region D that is continuous, positive
definite (i.e., V(0) �0; V(y) > 0 for all y "0); and has
continuous first-order PARTIAL DERIVATIVES at every
point of D . The derivative of V with respect to the
system y?�f (y) ; written as V �(y) is defined as the DOT

PRODUCT

V �(y) �9V(y) � F(y) :

The existence of a Lyapunov function for which
V �(y) 50 on some region D containing the origin,
guarantees the stability of the zero solution of y?�
f (y) ; while the existence of a Lyapunov function for
which V �(y) is negative definite (i.e., V �(0) �0;
V �(y) B0 for all y "0) on some region D containing
the origin guarantees the asymptotical stability of the
zero solution of y?�f (y)/

For example, given the system

y?�z

z?��y �2z

and the Lyapunov function V(y; z) �(y2 �z2) =2; we
obtain

V �(y; z) �yz �z(�y �2z) ��2z2 ;

which is nonnegative on every region containing the
origin, and thus the zero solution is stable.

See also LINEAR STABILITY, NONLINEAR STABILITY
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Lyapunov’s First Theorem
A NECESSARY and SUFFICIENT condition for all the
EIGENVALUES of a REAL n �n matrix A to have
NEGATIVE REAL PARTS is that the equation

ATV �VA ��1

has as a solution where V is an n �n matrix and
(x; Vx) is a POSITIVE DEFINITE QUADRATIC FORM.
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Lyapunov’s Second Theorem
If all the EIGENVALUES of a REAL MATRIX A have REAL

PARTS, then to an arbitrary negative definite quad-
ratic form (x; Wx) with x �x(t) there corresponds a
positive definite quadratic form (x; Vx) such that if
one takes

dx

dt 
�AAx;

then (x; Vx) and (x; Wx) satisfy

d

dt 
(x; Vx) �(x; Wx):
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Lyndon Word
A Lyndon word is an aperiodic notation for represent-
ing a NECKLACE.

See also DE BRUIJN SEQUENCE, IRREDUCIBLE POLY-

NOMIAL, NECKLACE
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Lyons Group
The SPORADIC GROUP Ly.

See also SPORADIC GROUP
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Lyusternik-Schnirelmann Theorem
If a sphere is covered by three closed sets, then one of
them must contain a pair of ANTIPODAL POINTS.
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MacDonald Function

A modified HANKEL FUNCTION.

Macdonald Polynomial

See also N ! THEOREM

References
Haiman, M. "Macdonald Polynomials and Geometry." In

New Perspectives in Algebraic Combinatorics (Ed.
L. J. Billera, A. Björner, C. Greene, R. E. Simion, and
R. P. Stanley). Cambridge, England: Cambridge Univer-
sity Press, pp. 207 �/54, 1999.

Macdonald, I. G. Symmetric Functions and Hall Polyno-
mials, 2nd ed. Oxford, England: Oxford University Press,
1995.

Zabrocki, M. "Macdonald Polynomials." http://www.lacim.u-
qam.ca/~zabrocki/MPWP.html.

Macdonald’s Constant-Term Conjecture
Macdonald’s constant term conjectures are related to
ROOT SYSTEMS of LIE ALGEBRAS (Macdonald 1982,
Andrews 1986). They can be regarded as general-
izations of DYSON’S CONJECTURE (Dyson 1962), its q -
analog due to Andrews, and Mehta’s conjecture
(Mehta 1991). The simplest of these states that if R
is a ROOT SYSTEM, then the constant term in
Pa �R 1 �e að Þk; where k is a NONNEGATIVE INTEGER, is
Pl

i�1
kdl

k

� �
; where the dl are fixed integer parameters of

the ROOT SYSTEM R corresponding to the fundamental
invariants of the WEYL GROUP W of R (Andrews 1986,
p. 41).

Opdam (1989) proved the q �1 case for all root
systems. The general conjecture had remained "al-
most proved" for some time, since the infinite families
were accomplished by Zeilberger-Bressoud (/An) ; Ka-
dell (/Bn ; Dn) Gustafson (/BCn ; Cn) ; while the excep-
tional cases were done by Zeilberger and
(independently) Habsieger (/G2) ; Zeilberger (/G2 dual),
and Garvan and Gonnet (/F4 and F4 dual), using
Zeilberger’s method. This left only the three root
systems (/E6 ; E7 ; E8) which were infeasible to address
using existing computers. In the meanwhile, how-
ever, Cherednik (1993) proved the constant term
conjectures for all root systems using a methodology
not dependent on classification.

A special case of the constant-term conjecture is given
by the assertion that the constant term in

Y
1Bi"j5n

1�
xi

xj

 !k

(1)

is (nk)!=(k!)n: Another special case asserts that the
constant term in

Y
i55n

(xi; q)a(q=xi; q)a

" #

�
Y

15i5j5n

(xixj; q)b

q

xixj

; q

 !
b

xi

xj

; q

 !
b

qxj

xi

; q

 !
b

(2)

is

(q; q)nb

[(q; q)b]n

Y
15j5n�1

(q; q)2a�2jb(q; q)2jb

(q; q)a�(n�j�1)n(q; q)a�jb

(3)

(Andrews 1986, p. 41).

See also DYSON’S CONJECTURE, ROOT SYSTEM, WEYL

GROUP
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Macdonald’s Plane Partition Conjecture
Macdonald’s plane partition conjecture proposes a
formula for the number of CYCLICALLY SYMMETRIC

PLANE PARTITIONS (CSPPs) of a given integer whose
YOUNG DIAGRAMS fit inside an n�n�n box. Macdo-
nald gave a product representation for the power
series whose coefficients qn were the number of such
partitions of n .

Let D(p) be the set of all integer points (i; j; k) in the
first OCTANT such that a PLANE PARTITION p�(aij) is
defined and 15k5aij: Then p is said to be cyclically
symmetric if D(p) is invariant under the mapping
(i; j; k) 0 (j; k; i): Let M(m; n) be the number of
cyclically symmetric partitions of n such that none
of i; j; aij exceed m . Let Bm be the box containing all
integer points (i; j; k) such that 15i; j; k5m; then
M(m; n) is the number of cyclically symmetric plane
partitions of n such that D(p)⁄Bm: Now, let Cm be
the set of all the orbits in Bm: Finally, for each point
p�(i; j; k) in Bm; let its height

ht(p)�i�j�k�2 (1)

and for each j in Cm; let ½j½ be the number of points in
j (either 1 or 3) and write



ht( j) �
X
p � j

ht(p): (2)

Then Macdonald conjectured that

X
n]0

M(m; n)qn �
Y
j �Cm

1 � q ½j ½�ht(j)

1 � qht(j) 
(3)

�
Ym
i�1

1 � q3i�1

1 � q3i�2

Ym
j�i

1 � q3(m�i�j�1)

1 � q3(2i�j�1)

" #
; (4)

(Mills et al. 1982, Macdonald 1995), where the latter
form is due to Andrews (1979).

Andrews (1979) proved the q �1 case, giving the total
number of CSPPs fitting inside an n �n �n box. The
general case was proved by Mills et al. (1982).

See also CYCLICALLY SYMMETRIC PLANE PARTITION,
DYSON’S CONJECTURE, PLANE PARTITION, ROOT SYS-

TEM, ZEILBERGER-BRESSOUD THEOREM
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Machine
A method for producing infinite LOOP SPACES and
spectra.

See also GADGET, LOOP SPACE, MAY-THOMASON

UNIQUENESS THEOREM, TURING MACHINE

Machin-Like Formulas
Machin-like formulas have the form

m cot�1 u�n cot�1 v�1
4 kp; (1)

where u , v , and k are POSITIVE INTEGERS and m and
n are NONNEGATIVE INTEGERS. Some such FORMULAS

can be found by converting the INVERSE TANGENT

decompositions for which cn"0 in the table of Todd
(1949) to INVERSE COTANGENTS. However, this gives

only Machin-like formulas in which the smallest term
is 9 1.

Machin-like formulas can be derived by writing

cot�1 z�
1

2i
ln

z � i

z � i

 !
(2)

and looking for ak and uk such thatX
k

ak cot�1 uk�
1
4 p; (3)

so

Y
k

uk � i

uk � i

 !ak

�e2pi=4�i: (4)

Machin-like formulas exist IFF (4) has a solution in
INTEGERS. This is equivalent to finding INTEGER

values such that

(1�i)k(u�i)m(v�i)n (5)

is REAL (Borwein and Borwein 1987, p. 345). An
equivalent formulation is to find all integral solutions
to one of

1�x2�2yn (6)

1�x2�yn (7)

for n�3, 5, ....

There are only four such FORMULAS,

1
4 p�4 tan�1 1

5

	 

�tan�1 1

239

	 

(8)

1
4 p�tan�1 1

2

	 

�tan�1 1

3

	 

(9)

1
4 p�2 tan�1 1

2

	 

�tan�1 1

7

	 

(10)

1
4 p�2 tan�1 1

3

	 

�tan�1 1

7

	 

; (11)

known as MACHIN’S FORMULA, EULER’S MACHIN-LIKE

FORMULA, HERMANN’S FORMULA, and HUTTON’S FOR-

MULA. These follow from the identities

5 � i

5 � i

 !4
239 � i

239 � i

 !�1

�i (12)

2 � i

2 � i

 !
3 � i

3 � i

 !
�i (13)

2 � i

2 � i

 !
7 � i

7 � i

 !�1

�i (14)

3 � i

3 � i

 !
7 � i

7 � i

 !
�i: (15)

Machin-like formulas with two terms can also be



generated which do not have integral arc cotangent
arguments such as Euler’s

1
4 p�5 tan�1 1

7

	 

�2 tan�1 3

79

	 

(16)

(Wetherfield 1996), and which involve inverse
SQUARE ROOTS, such as

p

2
�2 tan�1 1ffiffiffi

2
p
 !

�tan�1 1ffiffiffi
8

p
 !

: (17)

Three-term Machin-like formulas include GAUSS’S

MACHIN-LIKE FORMULA

1
4 p�12 cot�1 18�8 cot�1 57�5 cot�1 239; (18)

STRASSNITZKY’S FORMULA

1
4 p�cot�1 2�cot�1 5�cot�1 8; (19)

and the following,

1
4 p�6 cot�1 8�2 cot�1 57�cot�1 239 (20)

1
4 p�4 cot�1 5�1 cot�1 70�cot�1 99 (21)

1
4 p�1 cot�1 2�1 cot�1 5�cot�1 8 (22)

1
4 p�8 cot�1 10�1 cot�1 239�4 cot�1 515 (23)

1
4 p�5 cot�1 7�4 cot�1 53�2 cot�1 4443: (24)

The first is due to Størmer, the second due to
Rutherford, and the third due to Dase.

Using trigonometric identities such as

cot�1 x�2 cot�1(2x)�cot�1 4x3�3x
� �

; (25)

it is possible to generate an infinite sequence of
Machin-like formulas. Systematic searches therefore
most often concentrate on formulas with particularly
"nice" properties (such as "efficiency").

The efficiency of a FORMULA is the time it takes to
calculate p with the POWER SERIES for arctangent

p�a1 cot b1ð Þ�a2 cot b2ð Þ�. . . ; (26)

and can be roughly characterized using Lehmer’s
"measure" formula

e�
X 1

log10 bi

: (27)

The number of terms required to achieve a given
precision is roughly proportional to e , so lower e -
values correspond to better sums. The best currently
known efficiency is 1.51244, which is achieved by the
6-term series

1
4 p�183 cot�1 239�32 cot�1 1023�68 cot�1 5832

�12 cot�1 110443�12 cot�1 4841182

�100 cot�1 6826318 (28)

discovered by C.-L. Hwang (1997). Hwang (1997) also
discovered the remarkable identities

1
4 p�P cot�1 2�M cot�1 3�L cot�1 5�K cot�1 7

�(N�K�L�2M�3P�5) cot�1 8

�(2N�M�P�2�L) cot�1 18

�(2P�3�M�L�K�N) cot�1 57�N cot�1 239;

(29)

where K , L , M , N , and P are POSITIVE INTEGERS, and

1
4 p�(N�2) cot�1 2�N cot�1 3

�(N�1) cot�1 N: (30)

The following table gives the number N(n) of Machin-
like formulas of n terms in the compilation by
Wetherfield and Hwang. Except for previously known
identities (which are included), the criteria for inclu-
sion are the following:

1. first termB8 digits: measureB1:8:/
2. first term�8 digits: measureB1:9:/
3. first term�9 digits: measureB2:0:/
4. first term�10 digits: measureB2:0:/

n /N(n)/ /min e/

1 1 0

2 4 1.85113

3 106 1.78661

4 39 1.58604

5 90 1.63485

6 120 1.51244

7 113 1.54408

8 18 1.65089

9 4 1.72801

10 78 1.63086

11 34 1.6305

12 188 1.67458

13 37 1.71934

14 5 1.75161

15 24 1.77957

16 51 1.81522



17 5 1.90938

18 570 1.87698

19 1 1.94899

20 11 1.95716

21 1 1.98938

Total 1500 1.51244

See also EULER’S MACHIN-LIKE FORMULA, GAUSS’S

MACHIN-LIKE FORMULA, GREGORY NUMBER, HER-

MANN’S FORMULA, HUTTON’S FORMULA, INVERSE CO-

TANGENT, MACHIN’S FORMULA, PI, STøRMER NUMBER,
STRASSNITZKY’S FORMULA
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Machin’s Formula

1
4 p �4 tan �1 1

5

	 

�tan �1 1

239

	 

:

There are a whole class of MACHIN-LIKE FORMULAS

with various numbers of terms (although only four
such formulas with only two terms). The properties of

these formulas are intimately connected with COTAN-

GENT identities.

See also 239, GREGORY NUMBER, MACHIN-LIKE FOR-

MULAS, PI

Mackey’s Theorem
Let E and F be paired spaces with S a family of
absolutely convex bounded sets of F such that the
sets of S generate F and, if B1 ; B2 � S ; there exists a
B3 � S such that B3 ‡B1 and B3 ‡B2 : Then the dual
space of ES is equal to the union of the weak
completions of lB ; where l > 0 and B � S:/

See also GROTHENDIECK’S THEOREM
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Iyanaga, S. and Kawada, Y. (Eds.). "Mackey’s Theorem."
§407M in Encyclopedic Dictionary of Mathematics. Cam-
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Mac Lane’s Theorem
A theorem which treats constructions of FIELDS of
CHARACTERISTIC p .

See also CHARACTERISTIC (FIELD), FIELD

Maclaurin-Bézout Theorem
The Maclaurin-Bézout theorem says that two curves
of degree n intersect in n2 points, so two CUBICS

intersect in nine points. This means that n(n �3)=2
points do not always uniquely determine a single
curve of order n .

See also CRAMÉ R-EULER PARADOX

Maclaurin-Cauchy Theorem
If f (x) is positive and decreases to 0, then an EULER

CONSTANT

gf � lim
n0


Xn

k�1

f (k)�g
n

a

f (x) dx

" #

can be defined. If f (x)�1=x; then

g� lim
n0


Xn

k�1

1

k
�g

n

1

dx

x

 !
� lim

n0


Xn

k�1

1

k
�ln n

 !
;

where g is the EULER-MASCHERONI CONSTANT.

Maclaurin Integral Test
INTEGRAL TEST

Maclaurin Polynomial
MACLAURIN SERIES



Maclaurin Series
A series expansion of a function about 0,

f (x)�f (0)�f ?(0)x�
f ƒ(0)

2!
x2�

f (3)(0)

3!
x3�. . .

�
f (n)(0)

n!
xn�. . . ; (1)

named after the Scottish mathematician Maclaurin.
Maclaurin series for common functions include

1

1 � x
�1�x�x2�x3�x4�x5�. . .

for �1BxB1 (2)

cn(x; k)�1�1
2 x2� 1

24 1�4k2
� �

x4�. . . (3)

cos x�1�1
2 x2� 1

24 x4� 1
720 x6�. . .

for �
BxB
 (4)

cos�1 x�1
2 p�x�1

6 x3� 3
40 x5� 5

112 x7�. . .

for �1BxB1 (5)

cosh x�1�1
2 x2� 1

24 x4� 1
720 x6� 1

40;320 x8�. . . (6)

cosh�1(1�x)�
ffiffiffiffiffiffi
2x

p
1�1

2 x� 3
160 x2� 5

896 x3�. . .
	 


(7)

cot x�x�1�1
3 x� 1

45 x3� 2
945 x5� 1

4725 x7�. . . (8)

cot�1 x�1
2 p�x�1

3 x3�1
5 x5�1

7 x7�1
9 x9�. . . (9)

cot�1 1

x

 !
�x�1

3 x3�1
5 x5�1

7 x7�1
9 x9�. . . (10)

coth x�x�1�1
3 x� 1

45 x4� 2
945 x5� 1

4725 x7�. . . (11)

coth�1(1�x)�1
2 ln 2�1

2 ln x�1
4 x� 1

16 x2�. . . (12)

csc x�x�1�1
6 x� 7

360 x3� 31
15120 x5�. . . (13)

csch x�x�1�1
6 x� 7

360 x3� 31
15120 x5�. . . (14)

csch�1 x�ln 2�ln x�1
4 x2� 3

32 x4� 5
96 x6�. . . (15)

dn(x; k)�1�1
2 k2x2� 1

24 k2 4�k2
� �

x4�. . . (16)

erf x�
1ffiffiffi
p

p 2x�2
3 x3�1

5 x5� 1
21 x7�. . .

	 

(17)

ex�1�x�1
2 x2�1

6 x3� 1
24 x4�. . .

for �
BxB
 (18)

2F1(a; b; g; x)

�1�
ab

1g
x�

a(a� 1)b(b� 1)

2g(g� 1)
x2�. . . (19)

ln(1�x)�x�1
2 x2�1

3 x3�1
4 x4�. . .

for �1BxB1 (20)

ln
1 � x

1 � x

 !
�2x�2

3 x3�2
5 x5�2

7 x7�. . .

for �1BxB1 (21)

sec x�1�1
2 x2� 5

24 x4� 61
720 x6� 277

8064 x8�. . . (22)

sech x�1�1
2 x2� 5

24 x4� 61
720 x6� 277

8064 x8�. . . (23)

sech�1 x�ln 2�ln x�1
4 x2� 3

32 x4�. . . (24)

sin x�x�1
6 x3� 1

120 x5� 1
5040 x7�. . .

for �
BxB
 (25)

sin�1 x�x�1
6 x3� 3

40 x5� 5
112 x7� 35

112 x9�. . . (26)

sinh x�x�1
6 x3� 1

120 x5� 1
5040 x7� 1

362;880 x9�. . . (27)

sinh�1 x�x�1
6 x3� 3

40 x5� 5
112 x7� 35

1152 x9�. . . (28)

sn(x; k)�x�1
6 1�k2
� �

x3� 1
120 1�14k2�k4
� �

x5�. . .

(29)

tan x�x�1
3 x3� 2

15 x5� 17
315 x7� 62

2835 x9�. . . (30)

tan�1 x�x�1
3 x3�1

5 x5�1
7 x7�. . .

for �1BxB1 (31)

tan�1(1�x)�1
4 p�

1
2 x�1

4 x2� 1
12 x3� 1

40 x5�. . . (32)

tanh x�x�1
3 x3� 2

15 x5� 17
315 x7� 62

2835 x9�. . . (33)

tanh�1 x�x�1
3 x3�1

5 x5�1
7 x7�1

9 x9�. . . (34)

The explicit forms for some of these are

1

1 � x
�
X

n�0

xn (35)

cos x�
X

n�0

(�1)n

(2n)!
x2n (36)

cosh x�
X

n�0

1

(2n)!
x2n (37)

csc x�
X

n�0

(�1)n�12(22n�1 � 1)B2n

(2n)!
x2n�1 (38)



ex �
X

n�0

1

n!
xn (39)

ln (1 �x) �
X

n�1

(�1)n�1

n
xn (40)

ln
1 � x

1 � x

 !
�
X

n�1

2

(2n � 1)
x2n�1 (41)

sec x �
X

n�0

( �1)nE2n

(2n)!
x2n (42)

sin x �
X

n�0

(�1)n

(2n � 1)!
x2n�1 (43)

sinh x �
X

n�0

1

(2n � 1)!
x2n�1 (44)

tan x �
X

n�0

( �1)n22n�2(22n�2 � 1)B2n�2

(2n � 2)! 
x2n�1 (45)

tan�1x �
X

n�1

(�1)n �1

(2n � 1)
x2n�1 (46)

tanh �1x �
X

n�1

1

2n � 1
x2n �1 ; (47)

where Bn are BERNOULLI NUMBERS and En are EULER

NUMBERS.

See also ALCUIN’S SEQUENCE, LAGRANGE EXPANSION,
LAGRANGE REMAINDER, LEGENDRE SERIES, TAYLOR

SERIES
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Maclaurin Trisectrix

A curve first studied by Colin Maclaurin in 1742. It
was studied to provide a solution to one of the
GEOMETRIC PROBLEMS OF ANTIQUITY, in particular
TRISECTION of an ANGLE, whence the name trisectrix.

The Maclaurin trisectrix is an ANALLAGMATIC CURVE,
and the origin is a CRUNODE.
The Maclaurin trisectrix has CARTESIAN equation

y2 �
x2(x � 3a)

a � x
; (1)

or the PARAMETRIC EQUATIONS

x �a
t2 � 3

t2 � 1 
(2)

y �a
t(t2 � 3)

t2 � 1
: (3)

The ASYMPTOTE has equation x � a , and the center of
the loop is at (�2a ; 0): If P is a point on the loop so
that the line CP makes an ANGLE of 3a with the
negative Y -AXIS, then the line OP will make an ANGLE

of a with the negative Y -AXIS.

The Maclaurin trisectrix is sometimes defined in-
stead as

x x2 �y2
� �

�a y2 �3x2
� �

(4)

y2 �
x2(3a � x)

a � x 
(5)

r �
2a sin(3u)

sin(2u)
: (6)

Another form of the equation is the POLAR EQUATION

r �a sec 1
3 u
	 


; (7)

where the origin is inside the loop and the crossing
point is on the NEGATIVE X -AXIS.

The tangents to the curve at the origin make angles of
960� with the X -AXIS. The AREA of the loop is

Aloop�3
ffiffiffi
3

p
a2; (8)

and the NEGATIVE x -intercept is (�3a; 0) (MacTutor
Archive).

The Maclaurin trisectrix is the PEDAL CURVE of the
PARABOLA where the PEDAL POINT is taken as the
reflection of the FOCUS in the DIRECTRIX.

See also RIGHT STROPHOID, TSCHIRNHAUSEN CUBIC
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Maclaurin Trisectrix Inverse Curve

The INVERSE CURVE of the MACLAURIN TRISECTRIX

with INVERSION CENTER at the NEGATIVE x -intercept
is a TSCHIRNHAUSEN CUBIC.

MacMahon’s Prime Number of
Measurement
PRIME NUMBER OF MEASUREMENT

MacRobert’s E-Function

E p; ar : rs : xð Þ

�
G aq �1

� �
G r1 � a1ð ÞG r2 � a2ð Þ � � �G rq � aq

� �
�
Yq

m�1
g




0

l rm�a m�1
m 1 � l m

� ��rm dlm

�
Yp �q�1

n�2
g




0

e �lq�n l
aq�n �1

q � n dlq� n

�g



0

e � lp l ap�1
p 1 �

lq�2 lq �3 � � � lp

1 � l1ð Þ � � �  1 � lq

� �
x

" #�aq�1

dlp ;

where G(z) is the GAMMA FUNCTION and other details
are discussed by Gradshteyn and Ryzhik (2000).

See also FOX’S H -FUNCTION, KAMPÉ DE FÉ RIET

FUNCTION, MEIJER’S G -FUNCTION
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Macron
A macron is a BAR placed over a single symbol or
character, such as x̄: The symbol z̄ is sometimes used
to denote the following operations.

1. The COMPLEX CONJUGATE.
2. NEGATION of a logical expression.
3. Infrequently, ADJOINT operator.

A bar placed over multiple symbols or characters is
called a VINCULUM.

See also BAR, HAT, VINCULUM
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Madelung Constants
The quantities obtained from cubic, hexagonal, etc.,
LATTICE SUMS, evaluated at s �1, are called Made-
lung constants. For cubic LATTICE SUMS, they are
expressible in closed form for EVEN indices,

b2(2) ��4b(1)h(1) ��4
p

4
ln 2 ��p ln 2 (1)

b4(2) ��8h(1)h(0) ��8 ln 2  � 1
2 ��4 ln 2; (2)

where b(n) is the DIRICHLET BETA FUNCTION and h(n)
is the DIRICHLET ETA FUNCTION. b3(1) is given by
BENSON’S FORMULA,

�b3(1) �
X

?



i; j; k ��


( �1)i�j�k �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 � j2 � k2

p
�12p

X

m; n �1 ; 3 ; ...

sech2 1
2 p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �n2

p	 

; (3)

where the prime indicates that summation over (0, 0,
0) is excluded. b3(1) is sometimes called "the" Made-
lung constant, corresponds to the Madelung constant
for a 3-D NaCl crystal, and is numerically equal to
�1:74756 . . . :/

For hexagonal LATTICE SUM, h2(2) is expressible in
closed form as

h2(2)�p ln 3
ffiffiffi
3

p
: (4)

See also BENSON’S FORMULA, LATTICE SUM
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Maeder’s Owl Minimal Surface
BOUR’S MINIMAL SURFACE

Maehly’s Procedure
A method for finding ROOTS which defines

Pj(x) �
P(x)

(x � x1) � � � (x � xj) 
; (1)

so the derivative is

P?j(x) �
P ?(x)

x � x1ð Þ � � � x � xj

� �
�

P(x)

x � x1ð Þ � � �  x � xj

� � Xj

i �1

x �xið Þ�1 (2)

One step of NEWTON’S METHOD can then be written as

xk �1 �xk �
P xkð Þ

P? xkð Þ� P xkð Þ
Pj

i �1 xk � xið Þ�1 : (3)

Magic Circles

A set of n magic circles is a numbering of the
intersections of the n CIRCLES such that the sum
over all intersections is the same constant for all
circles. The above sets of three and four magic circles
have magic constants 14 and 39 (Madachy 1979).

Another type of magic circle arranges the number 1,
2, ..., n in a number of rings, which each ring
containing the same number of elements and corre-
sponding elements being connected with radial lines.
One of the numbers (which is subsequently ignored)
is placed at the center. In a magic circle arrangement,
the rings have equal sums and this sum is also equal
to the sum of elements along each diameter (exclud-
ing the central number). Three magic circles using
the numbers 1 to 33 are illustrated above. (Hung).

See also MAGIC GRAPH, MAGIC SQUARE
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Magic Constant
The number

M2(n)�
1

n

Xn2

k�1

k�1
2 n n2�1
� �

to which the n numbers in any horizontal, vertical, or
main diagonal line must sum in a MAGIC SQUARE. The
first few values are 1, 5, 15, 34, 65, 111, 175, 260, ...
(Sloane’s A006003). The magic constant for an nth
order magic square starting with an INTEGER A and
with entries in an increasing ARITHMETIC SERIES with
difference D between terms is

M2(n; A; D)�1
2 n 2a�D n2�1

� �� �
(Hunter and Madachy 1975, Madachy 1979). In a
PANMAGIC SQUARE, in addition to the main diagonals,
the broken diagonals also sum to M2(n):/

For a MAGIC CUBE, MAGIC TESSERACT, etc., the magic
d -D constant is



Md(n) �
1

nd�1

Xnd

k �1

k �1
2n nd �1
� �

:

The first few magic constants are summarized in the
following table.

n /M2(n)/ /M3(n)/ /M4(n)/

Sloane A006003 A027441 A021003

1 1 1 1

2 5 9 17

3 15 42 123

4 34 130 514

5 65 315 1565

There is a corresponding multiplicative magic con-
stant for MULTIPLICATION MAGIC SQUARES.

A similar magic constant M(j)
n of degree k is defined

for MAGIC SERIES and MULTIMAGIC SERIES as 1=n
times the sum of the first n2 kth powers,

M(k)
n �

1

n

Xn2

i �1

ik �
H(�p)

n2

n
;

where H(k)
n is a HARMONIC NUMBER of order k . The

following table gives the first few values.

n k�1 k �2 k �3 k �4

Sloane A006003 A052459 A052460 A052461

1 1 1 1 1

2 5 15 50 177

3 15 95 675 5111

4 34 374 4624 60962

5 65 1105 21125 430729

See also MAGIC CUBE, MAGIC GEOMETRIC CONSTANTS,
MAGIC HEXAGON, MAGIC SERIES, MAGIC SQUARE,
MULTIMAGIC SERIES, MULTIPLICATION MAGIC

SQUARE, PANMAGIC SQUARE
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Magic Cube
An n �n �n 3-D version of the MAGIC SQUARE in
which the n2 rows, n2 columns, n2 pillars (or "files"),
and four space diagonals each sum to a single number
M3(n) known as the MAGIC CONSTANT. If the CROSS

SECTION diagonals also sum to M3(n); the magic cube
is called a PERFECT MAGIC CUBE; if they do not, the
cube is called a SEMIPERFECT MAGIC CUBE, or some-
times an ANDREWS CUBE (Gardner 1988). A pandia-
gonal cube is a perfect or SEMIPERFECT MAGIC CUBE

which is magic not only along the main space
diagonals, but also on the broken space diagonals.

A magic cube using the numbers 1, 2, ..., n3 ; if it
exists, has MAGIC CONSTANT

M3(n) �1
2 n n3 �1
� �

:

For n �1, 2, ..., the magic constants are 1, 9, 42, 130,
315, 651, ... (Sloane’s A027441).

The above SEMIPERFECT MAGIC CUBES of orders three
(Hunter and Madachy 1975, p. 31; Ball and Coxeter
1987, p. 218) and four (Ball and Coxeter 1987, p. 220)
have magic constants 42 and 130, respectively. There
is a trivial SEMIPERFECT MAGIC CUBE of order one, but
no semiperfect cubes of orders two or three exist.
Semiperfect cubes of ODD order with n ]5 and
DOUBLY EVEN order can be constructed by extending
the methods used for MAGIC SQUARES.

Semiperfect pandiagonal cubes exist for all orders 8n
and all ODD n �8 (Ball and Coxeter 1987). A perfect
pandiagonal magic cube has been constructed by
Planck (1950), cited in Gardner (1988).

See also BIMAGIC CUBE, MAGIC CONSTANT, MAGIC

GRAPH, MAGIC HEXAGON, MAGIC SQUARE, MAGIC

TESSERACT, PERFECT MAGIC CUBE, SEMIPERFECT

MAGIC CUBE
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Magic Geometric Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let E be a compact connected subset of d -dimen-
sional EUCLIDEAN SPACE. Gross (1964) and Stadje
(1981) proved that there is a unique REAL NUMBER

a(E) such that for all x1; x2; ..., xn �E; there exists y �E
with

1

n

Xn

j�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k�1

xj; k�yk

� �2

vuut �a(E): (1)

The magic constant m(E) of E is defined by

m(E)�
a(E)

diam(E)
; (2)

where

diam(E)�max
u; v �E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k�1

uk�vkð Þ2

vuut : (3)

These numbers are also called DISPERSION NUMBERS

and RENDEZVOUS VALUES. For any E , Gross (1964)
and Stadje (1981) proved that

1
25m(E)B1: (4)

If I is a subinterval of the LINE and D is a circular
DISK in the PLANE, then

m(I)�m(D)�1
2: (5)

If C is a CIRCLE, then

m(C)�
2

p
�0:6366 . . . (6)

An expression for the magic constant of an ELLIPSE in
terms of its SEMIMAJOR and SEMIMINOR AXES lengths
is not known. Nikolas and Yost (1988) showed that for
a REULEAUX TRIANGLE T

0:66752765m(T)50:6675284: (7)

Denote the MAXIMUM value of m(E) in n -D space by
M(n): Then

/M(1)/ /
1
2/

/M(2)/
m(T)5M(2)5

2 �
ffiffiffi
3

p

3
ffiffiffi
3

p B0:7182336

/M(d)/ d

d � 1
5M(d)5

[G(1
2d)]22d�2

ffiffiffiffiffiffi
2d

p

G(d � 1
2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d � 1)p

p B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

d � 1

s

where G(z) is the GAMMA FUNCTION (Nikolas and Yost
1988).

An unrelated quantity characteristic of a given MAGIC

SQUARE is also known as a MAGIC CONSTANT.
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Magic Graph
An edge-magic graph is a LABELED GRAPH with e
EDGES labeled with distinct elements / 1; 2; . . . ; ef g/ so
that the sum of the EDGE labels at each VERTEX is the
same.



A vertex-magic graph labeled VERTICES which give
the same sum along every straight line segment. No
magic pentagrams can be formed with the number 1,
2, ..., 10 (Trigg 1960; Langman 1962, pp. 80 �/3;
Dongre 1971; Richards 1975; Buckley and Rubin
1977 �/8; Trigg 1998), but 168 almost magic penta-
grams (in which the sums are the same for four of the
five lines) can. The figure above show a magic
pentagram with sums 24 built using the labels 1, 2,
3, 4, 5, 6, 8, 9, 10, and 12 (Madachy 1979).

See also ANTIMAGIC GRAPH, LABELED GRAPH, MAGIC

CIRCLES, MAGIC CONSTANT, MAGIC CUBE, MAGIC

HEXAGON, MAGIC SQUARE
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Magic Hexagon

An arrangement of close-packed HEXAGONS contain-
ing the numbers 1, 2, ..., Hn �3n(n �1) �1; where Hn

is the nth HEX NUMBER, such that the numbers along
each straight line add up to the same sum. In the
above magic hexagon, each line (those of lengths 3, 4,
and 5) adds up to 38. This is the only magic hexagon
of the counting numbers for any size hexagon, as
proved by Trigg (Gardner 1984, p. 24). It was dis-
covered by C. W. Adams, who worked on the problem
from 1910 to 1957.

Trigg showed that the magic constant for an order n
hexagon would be

9 n4 � 2n3 � 2n2 � nð Þ� 2

2(2n � 1)
;

which requires 5=(2n�1) to be an integer for a
solution to exist. But this is an integer for only
n�1 (the trivial case of a single hexagon) and Adam’s
n�3 (Gardner 1984, p. 24).

See also HEX NUMBER, HEXAGON, MAGIC GRAPH,
MAGIC SQUARE, TALISMAN HEXAGON
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Magic Labeling
It is conjectured that every TREE with e edges whose
nodes are all trivalent or monovalent can be given a
"magic" labeling such that the INTEGERS 1, 2, ..., e can
be assigned to the edges so that the SUM of the three
meeting at a node is constant.

See also MAGIC CONSTANT, MAGIC CUBE, MAGIC

GRAPH, MAGIC HEXAGON, MAGIC SQUARE
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Magic Number
DIGITAL ROOT, MAGIC CONSTANT

Magic Pentagram
MAGIC GRAPH

Magic Series
A set n distinct numbers taken from the interval
1; n2½ 
 form a magic series if their sum is the nth

MAGIC CONSTANT

Mn �
1
2 n n2 �1
� �

(Kraitchik 1942, p. 143). The numbers of magic series
of orders n �1, 2, ..., are 1, 2, 8, 86, 1394, ... (Sloane’s
A052456). The following table gives the first few
magic series of small order.

n magic series

1 / f1g/

2 / f1; 4g; f2; 3g/

3 / f1; 5; 9g; f1; 6; 8 g; f2 ; 4 ; 9 g; f2 ; 5 ; 8g;
f2; 6; 7g; f3; 4; 8g; f3 ; 5 ; 7 g; f4 ; 5 ; 6g/

If the sum of the kth powers of these number is the
MAGIC CONSTANT of degree k for all k � [1; p]; then
they are said to form a pth order MULTIMAGIC SERIES.
Here, the magic constant M(j)

n of degree k is defined as
1=n times the sum of the first n2 kth powers,

M(k)
n �

1

n

Xn2

i �1

ik �
H(�p)

n2

n
;

where H(k)
n is a HARMONIC NUMBER of order k .

See also MAGIC CONSTANT, MAGIC SQUARE, MULTI-

MAGIC SERIES
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Magic Square

A (normal) magic square consists of the distinct
POSITIVE INTEGERS 1, 2, ..., n2 such that the sum of
the n numbers in any horizontal, vertical, or main
diagonal line is always the same MAGIC CONSTANT

M2(n)�
1

n

Xn2

k�1

k�1
2 n n2�1
� �

:

The unique normal square of order three was known
to the ancient Chinese, who called it the LO SHU. A
version of the order 4 magic square with the numbers
15 and 14 in adjacent middle columns in the bottom
row is called DÜRER’S MAGIC SQUARE. Magic squares
of order 3 through 8 are shown above.
The MAGIC CONSTANT for an nth order magic square
starting with an INTEGER A and with entries in an
increasing ARITHMETIC SERIES with difference D
between terms is

M2(n; A; D)�1
2 n 2a�D n2�1

� �� �
(Hunter and Madachy 1975). If every number in a
magic square is subtracted from n2�1; another
magic square is obtained called the complementary
magic square. Squares which are magic under multi-
plication instead of addition can be constructed and
are known as MULTIPLICATION MAGIC SQUARES. In
addition, squares which are magic under both addi-
tion and multiplication can be constructed and are



known as ADDITION-MULTIPLICATION MAGIC SQUARES

(Hunter and Madachy 1975).

A square that fails to be magic only because one or
both of the main diagonal sums do not equal the
MAGIC CONSTANT is called a SEMIMAGIC SQUARE. If all
diagonals (including those obtained by wrapping
around) of a magic square sum to the MAGIC CON-

STANT, the square is said to be a PANMAGIC SQUARE

(also called a DIABOLIC SQUARE or PANDIAGONAL

SQUARE). If replacing each number ni by its square
n2

i produces another magic square, the square is said
to be a BIMAGIC SQUARE (or DOUBLY MAGIC SQUARE). If
a square is magic for ni; n2

i ; and n3
i ; it is called a

TREBLY MAGIC SQUARE. If all pairs of numbers
symmetrically opposite the center sum to n2�1; the
square is said to be an ASSOCIATIVE MAGIC SQUARE.

Kraitchik (1942) gives general techniques of con-
structing EVEN and ODD squares of order n . For n
ODD, a very straightforward technique known as the
Siamese method can be used, as illustrated above
(Kraitchik 1942, pp. 148�/49). It begins by placing a 1
in any location (in the center square of the top row in
the above example), then incrementally placing sub-
sequent numbers in the square one unit above and to
the right. The counting is wrapped around, so that
falling off the top returns on the bottom and falling off
the right returns on the left. When a square is
encountered which is already filled, the next number
is instead placed below the previous one and the
method continues as before. The method, also called
de la Loubere’s method, is purported to have been
first reported in the West when de la Loubere
returned to France after serving as ambassador to
Siam.

A generalization of this method uses an "ordinary
vector" (x, y ) which gives the offset for each non-
colliding move and a "break vector" (u, v ) which gives
the offset to introduce upon a collision. The standard

Siamese method therefore has ordinary vector (1, �1)
and break vector (0, 1). In order for this to produce a
magic square, each break move must end up on an
unfilled cell. Special classes of magic squares can be
constructed by considering the absolute sums u�vj j;
(u�x)�(v�y)j j; u�vj j; and (u�x)�(v�y)j j�
u�y�x�vj j: Call the set of these numbers the
sumdiffs (sums and differences). If all sumdiffs are
RELATIVELY PRIME to n and the square is a magic
square, then the square is also a PANMAGIC SQUARE.
This theory originated with de la Hire. The following
table gives the sumdiffs for particular choices of
ordinary and break vectors.

Ordinary
Vector

Break
Vector

Sumdiffs Magic
Squares

Panmagic
Squares

(1, -1) (0, 1) (1, 3) /2k�1/ none

(1, -1) (0, 2) (0, 2) /6k91/ none

(2, 1) (1, -2) (1, 2, 3, 4) /6k91/ none

(2, 1) (1, -1) (0, 1, 2, 3) /6k91/ /6k91/

(2, 1) (1, 0) (0, 1, 2) /2k�1/ none

(2, 1) (1, 2) (0, 1, 2, 3) /6k91/ none

A second method for generating magic squares of ODD

order has been discussed by J. H. Conway under the
name of the "lozenge" method. As illustrated above, in
this method, the ODD numbers are built up along
diagonal lines in the shape of a DIAMOND in the
central part of the square. The EVEN numbers which
were missed are then added sequentially along the
continuation of the diagonal obtained by wrapping
around the square until the wrapped diagonal
reaches its initial point. In the above square, the first
diagonal therefore fills in 1, 3, 5, 2, 4, the second
diagonal fills in 7, 9, 6, 8, 10, and so on.



An elegant method for constructing magic squares of
DOUBLY EVEN order n�4m is to draw xs through each
4�4 subsquare and fill all squares in sequence. Then
replace each entry aij on a crossed-off diagonal by
n2�1ð Þ�aij or, equivalently, reverse the order of the

crossed-out entries. Thus in the above example for
n�8, the crossed-out numbers are originally 1, 4, ...,
61, 64, so entry 1 is replaced with 64, 4 with 61, etc.

A very elegant method for constructing magic squares
of SINGLY EVEN order n�4m�2 with m]1 (there is
no magic square of order 2) is due to J. H. Conway,
who calls it the "LUX" method. Create an array
consisting of m�1 rows of Ls, 1 row of Us, and m�
1 rows of Xs, all of length n=2�2m�1: Interchange
the middle U with the L above it. Now generate the
magic square of order 2m�1 using the Siamese
method centered on the array of letters (starting in
the center square of the top row), but fill each set of
four squares surrounding a letter sequentially accord-
ing to the order prescribed by the letter. That order is
illustrated on the left side of the above figure, and the
completed square is illustrated to the right. The
"shapes" of the letters L, U, and X naturally suggest
the filling order, hence the name of the algorithm.

It is an unsolved problem to determine the number of
magic squares of an arbitrary order, but the number
of distinct magic squares (excluding those obtained by

rotation and reflection) of order n�1, 2, ... are 1, 0, 1,
880, 275305224, ... (Sloane’s A006052; Madachy 1979,
p. 87). The 880 squares of order four were enumer-
ated by Frenicle de Bessy in the seventeenth century,
and are illustrated in Berlekamp et al. (1982,
pp. 778�/83). The number of 6�6 squares is not
known, but Pinn and Wieczerkowski (1998) estimated
it to be (1:774590:0016)�1019 using Monte Carlo
simulation and methods from statistical mechanics.

The above magic squares consist only of PRIMES and
were discovered by E. Dudeney (1970) and
A. W. Johnson, Jr. (Gardner 1984, p. 86; Dewdney
1988). Madachy (1979, pp. 93�/6) and Rivera discuss
other magic squares composed of PRIMES.

Benjamin Franklin constructed the above 8�8 PAN-

MAGIC SQUARE having MAGIC CONSTANT 260. Any half-
row or half-column in this square totals 130, and the
four corners plus the middle total 260. In addition,
bent diagonals (such as 52�/5�/4�/0�/7�/3�/6) also total
260 (Madachy 1979, p. 87).

In addition to other special types of magic squares, a
3�3 square whose entries are consecutive PRIMES,



illustrated above, has been discovered by H. Nelson
(Rivera).

According to a 1913 proof of J. N. Murray (cited in
Gardner 1984, pp. 86 �/7), the smallest magic square
composed of consecutive primes starting with 3 and
including the number 1 is of order 12.

Variations on magic squares can also be constructed
using letters (either in defining the square or as
entries in it), such as the ALPHAMAGIC SQUARE and
TEMPLAR MAGIC SQUARE.

Various numerological properties have also been
associated with magic squares. Pivari associates the
squares illustrated above with Saturn, Jupiter, Mars,
the Sun, Venus, Mercury, and the Moon, respectively.
Attractive patterns are obtained by connecting con-
secutive numbers in each of the squares (with the
exception of the Sun magic square).

See also ADDITION-MULTIPLICATION MAGIC SQUARE

ALPHAMAGIC SQUARE, ANTIMAGIC SQUARE, ASSOCIA-

TIVE MAGIC SQUARE, BIMAGIC SQUARE, BORDER

SQUARE, DÜ RER’S MAGIC SQUARE, EULER SQUARE,
FRANKLIN MAGIC SQUARE, GNOMON MAGIC SQUARE,

HETEROSQUARE, LATIN SQUARE, MAGIC CIRCLES,
MAGIC CONSTANT, MAGIC CUBE, MAGIC HEXAGON,
MAGIC LABELING, MAGIC SERIES, MAGIC TESSERACT,
MAGIC TOUR, MULTIMAGIC SQUARE, MULTIPLICATION

MAGIC SQUARE, PANMAGIC SQUARE, SEMIMAGIC

SQUARE, TALISMAN SQUARE, TEMPLAR MAGIC

SQUARE, TRIMAGIC SQUARE
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ku.ac.jp/~msuzuki/MagicSquare.html.

Weisstein, E. W. "Magic Squares." MATHEMATICA NOTEBOOK
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Weisstein, E. W. "Books about Magic Squares." http://

www.treasure-troves.com/books/MagicSquares.html.
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1986.

Magic Star
MAGIC GRAPH

Magic Tesseract
A magic tesseract is a 4-D generalization of the 2-D
MAGIC SQUARE and the 3-D MAGIC CUBE. A magic
tesseract has MAGIC CONSTANT

M4(n) �1
2 n n4 �1
� �

;

so for n �1, 2, ..., the magic tesseract constants are 1,
17, 123, 514, 1565, 3891, ... (Sloane’s A021003).

Berlekamp et al. (1982, p. 783) give a magic TESSER-

ACT. J. Hendricks has constructed magic tesseracts of
orders three, four, five (Hendricks 1999a, pp. 128 �/

29), and six (Heinz). M. Houlton has used Hendricks’
techniques to construct magic tesseracts of orders 5,
7, and 9.

There are 58 distinct magic tesseracts of order three,
modulo rotations and reflections (Heinz, Hendricks
1999), one of which is illustrated above. Each of the
27 rows (e.g., 1 �/2 �/0), columns (e.g., 1 �/0 �/2), pillars
(e.g., 1 �/4 �/8), and files (e.g., 1 �/8 �/4) sum to the magic
constant 123.

Hendricks (1968) has constructed a pan-4-agonal
magic tesseract of order 4. No pan-4-agonal magic
tesseract of order five is known, and Andrews (1960)
and Schroeppel (1972) state that no such tesseract
can exist.

The smallest perfect magic tesseract is of order 16,
having MAGIC CONSTANT 524,296, and has been
constructed by Hendricks (Peterson 1999).

n -dimensional magic hypercubes of order 3 are
known for n�5, 6, 7, and 8 (Hendricks). Hendricks
has also constructed a perfect 16th order magic
tesseract (where perfect means that all hyperplanes
are perfect).

See also MAGIC CUBE, MAGIC SQUARE
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Magic Tour
Let a chess piece make a TOUR on an n �n CHESS-

BOARD whose squares are numbered from 1 to n2

along the path of the chess piece. Then the TOUR is
called a magic tour if the resulting arrangement of
numbers is a MAGIC SQUARE. If the first and last
squares traversed are connected by a move, the tour
is said to be closed (or "re-entrant"); otherwise it is
open. The MAGIC CONSTANT for the 8 �8 CHESSBOARD

is 260.

Magic KNIGHT’S TOURS are not possible on n �n
boards for n ODD, and are believed to be impossible
for n �8. The "most magic" knight tour known on the
8 �8 board is the SEMIMAGIC SQUARE illustrated in
the above left figure (Ball and Coxeter 1987, p. 185)
having main diagonal sums of 348 and 168. Combin-
ing two half-knights’ tours one above the other as in
the above right figure does, however, give a MAGIC

SQUARE (Ball and Coxeter 1987, p. 185).

The above illustration shows a 16�16 closed magic
KNIGHT’S TOUR (Madachy 1979).

A magic tour for king moves is illustrated above
(Coxeter 1987, p. 186).

See also CHESSBOARD, KNIGHT’S TOUR, MAGIC

SQUARE, SEMIMAGIC SQUARE, TOUR
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Magnetic Pole Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�g(y)y?2�f (x)y?�0:
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The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
m(m � 1) � 1

4 � m � 1
2

	 

cos x

sin2 x 
� l �1

2

	 
2
4

3
5y �0 :
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Magog Triangle
A NUMBER TRIANGLE of order n with entries 1 to n
such that entries are nondecreasing across rows and
down columns and all entries in column j are less
than or equal to j . An example is

1
1 1
1 1 1
1 1 1 3
1 1 2 4 5:

Magog triangles are in 1-to-1 correspondence with
CYCLICALLY SYMMETRIC PLANE PARTITIONS.

See also CYCLICALLY SYMMETRIC PLANE PARTITION,
MONOTONE TRIANGLE
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Mahler-Lech Theorem
Let K be a FIELD of CHARACTERISTIC 0 (e.g., the
rationals Q) and let unf g be a SEQUENCE of elements
of K which satisfies a difference equation OF THE

FORM

0 �c0un �c1un�1 �. . .�ckun �k ;

where the COEFFICIENTS ci are fixed elements of K .
Then, for any c � K ; we have either un �c for only
finitely many values of n , or un �c for the values of n
in some ARITHMETIC PROGRESSION.

The proof involves embedding certain FIELDS inside
the P -ADIC NUMBERS Qp for some PRIME p , and using
properties of zeros of POWER SERIES over Qp (STRASS-

MAN’S THEOREM).

See also ARITHMETIC PROGRESSION, P -ADIC NUMBER,
STRASSMAN’S THEOREM

Mahler Measure
This entry contributed by KEVIN O’BRYANT

For a polynomial P x1 ; x2 ; . . . ; xkð Þ; the Mahler mea-
sure of P is defined by

Mk(P)

�exp g
1

0

. . .g
1

0

ln P e2pit1 ; . . . ; e2 pitk
� ��� �� dt1 � � �dtk

" #
: (1)

Using JENSEN’S FORMULA, it can be shown that for
P(x) �a

Qn
i�1 x � aið Þ;

M1(P) � aj j
Yn

i�1

max 1; aij jf g  (2)

(Borwein and Erdélyi 1995, p. 271).

Specific cases are given by

M1(ax �b) �max aj j; bj jf g  (3)

M2(1 �x �y) �M1 max 1; 1 �xj jf gð Þ (4)

M2(1 �x �y �xy) �M1 max 1 �xj j; 1 �xj jf gð Þ (5)

(Borwein and Erdélyi 1995, p. 272).

A product of CYCLOTOMIC POLYNOMIALS has Mahler
measure 1. LEHMER’S MAHLER MEASURE PROBLEM

conjectures that a particular univariate polynomial
has the smallest possible Mahler measure other than
1.

The Mahler measure for a univariate polynomial can
be computed in Mathematica as follows.

MahlerMeasure[p_, x_] : � Module[

{roots � x /. {ToRules[Roots[p �� 0,

x]]}},

Abs[Function[x, p][0]] Times @@

(Max[Abs[#], 1] & /@ roots)

]

See also JENSEN’S FORMULA, LEHMER’S MAHLER

MEASURE PROBLEM
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Mahler Polynomial

Polynomials sn(x) which form the SHEFFER SEQUENCE

for

f �1(t) �1 �t �et ;

where f �1(t) is the INVERSE FUNCTION of f (t) ; and have
GENERATING FUNCTION

X

k �0

sk(x)

k!
tk �ex 1 �t�etð Þ:

The first few are

s0(x) �1
s1(x) �0
s2(x) ��x
s3(x) ��x
s4(x) �3x2 �x
s5(x) �10x2 �x:
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Mahler’s Measure
For a POLYNOMIAL ,

c � K

It is related to JENSEN’S INEQUALITY.

See also JENSEN’S INEQUALITY

Mainardi-Codazzi Equations
PETERSON-MAINARDI-CODAZZI EQUATIONS

Main Diagonal
DIAGONAL

Majorant
A function used to study ORDINARY DIFFERENTIAL

EQUATIONS.

Major Axis
SEMIMAJOR AXIS

Majorization
This entry contributed by SERGE BELONGIE

Let x � x1 ; x2 ; . . . ; xnð Þ and y � y1 ; y2 ; . . . ; ynð Þ be
nonincreasing sequences of real numbers. Then x
majorizes y if, for each k �1, 2, ..., n ,

Xk

i �1

xi ]
Xk

i�1

yi ;

with equality if k �n . Note that some caution is
needed when consulting the literature, since the
direction of the inequality is not consistent from
reference to reference. An order-free characterization
along the lines of HORN’S THEOREM is also readily
available.

If P/ is a doubly stochastic matrix, then y �Px iff y is
majorized by x . Intuitively, if x majorizes y , then y is
more "mixed" than x . HORN’S THEOREM relates the
eigenvalues of a HERMITIAN MATRIX A to its diagonal
entries using majorization. Given two vectors l; v �
Rn ; then l majorizes v iff there exists a HERMITIAN

MATRIX A with eigenvalues li and diagonal entries vi :/

See also BIRKHOFF’S THEOREM, HORN’S THEOREM,
SCHUR CONVEXITY
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Major Triangle Center
A TRIANGLE CENTER a : b : g is called a major center if
the TRIANGLE CENTER FUNCTION a �
f (a ; b; c; A; B; C) is a function of ANGLE A alone,
and therefore b and g of B and C alone, respectively.

See also REGULAR TRIANGLE CENTER, TRIANGLE

CENTER
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Makeham Curve
The function defined by

y�ksxbqx

which is used in actuarial science for specifying a
simplified mortality law (Kenney and Keeping 1962,
pp. 241�/42). Using s(x) as the probability that a
newborn will achieve age x , the Makeham law
(1860) uses



s(x) �exp �Ax �B cx �1ð Þð Þ

for B �0, A ]�B ; c �1, x ]0 :/

See also GOMPERTZ CURVE, LAW OF GROWTH, LIFE

EXPECTANCY, LOGISTIC GROWTH CURVE, POPULATION

GROWTH
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Malfatti Circles
Three circles packed inside a RIGHT TRIANGLE which
are each tangent to the other two and to two sides of
the TRIANGLE. Although these circles were for many
years thought to provide the solutions to MALFATTI’S

RIGHT TRIANGLE PROBLEM, they were subsequently
shown never to provide the solution.

See also APOLLONIAN GASKET, MALFATTI’S RIGHT

TRIANGLE PROBLEM, SODDY CIRCLES

Malfatti Points
AJIMA-MALFATTI POINTS

Malfatti’s Right Triangle Problem
In 1803, Malfatti asked for the three columns (of
possibly different sizes) which, when carved out of a
right triangular prism, would have the largest possi-
ble total CROSS SECTION. This is equivalent to finding
the maximum total AREA of three CIRCLES which can
be packed inside a RIGHT TRIANGLE of any shape
without overlapping. Malfatti gave the solution as
three CIRCLES (the MALFATTI CIRCLES) tangent to
each other and to two sides of the TRIANGLE. In
1930, it was shown that the MALFATTI CIRCLES were
not always the best solution. Then Goldberg (1967)
showed that, even worse, they are never the best
solution. Wells (1991) illustrates specific cases where
alternative solutions are clearly optimal.

See also CIRCLE PACKING, MALFATTI’S TANGENT

TRIANGLE PROBLEM

References
Eves, H. A Survey of Geometry, rev. ed. Boston, MA: Allyn &

Bacon, p. 245, 1965.
Goldberg, M. "On the Original Malfatti Problem." Math.

Mag. 40, 241 �/47, 1967.
Ogilvy, C. S. Excursions in Geometry. New York: Dover,

pp. 145 �/47, 1990.
Rothman, T. "Japanese Temple Geometry." Sci. Amer. 278,

85 �/1, May 1998.

Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, 1991.

Malfatti’s Tangent Triangle Problem

Draw within a given TRIANGLE three CIRCLES, each of
which is TANGENT to the other two and to two sides of
the TRIANGLE. Denote the three CIRCLES so con-
structed GA ; GB ; and GC : Then GA is tangent to AB
and AC , GB is tangent to BC and BA , and GC is
tangent to AC and BC .

See also AJIMA-MALFATTI POINTS, MALFATTI’S RIGHT

TRIANGLE PROBLEM
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Malliavin Calculus
An infinite-dimensional DIFFERENTIAL CALCULUS on
the WIENER SPACE. Also called STOCHASTIC CALCULUS

OF VARIATIONS.

Mallows’ Sequence
An INTEGER SEQUENCE given by the RECURRENCE

RELATION



a(n) �a(a(n �2)) �a(n �a(n �2))

with a(1) �a(2) �1: The first few values are 1, 1, 2, 3,
3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, ...
(Sloane’s A005229).

See also HOFSTADTER-CONWAY $10,000 SEQUENCE,
HOFSTADTER’S Q -SEQUENCE
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Malmstén’s Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

yƒ�
r

z
y ?� Azm �

s

z2

 !
y:
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Malmstén’s Formula
The integral representation of ln[G(z)] by

ln[(z)] �g
z

1

c0(z ?) dz?

�g



0

(z �1) �
1 � e�(z�1)t

1 � e �t

" #
e�t

t
dt;

where G(z) is the GAMMA FUNCTION and c0(z) is the
DIGAMMA FUNCTION.

See also BINET’S LOG GAMMA FORMULAS, GAMMA

FUNCTION
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Maltese Cross

An irregular DODECAHEDRON CROSS shaped like a �
sign but whose points flange out at the end: w: The
conventional proportions as computed on a 5 �5 grid
as illustrated above.

See also CROSS, DISSECTION, DODECAHEDRON, MAL-

TESE CROSS CURVE
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Maltese Cross Curve

The plane curve with Cartesian equation

xy(x2 �y2) �x2 �y2

and polar equation

r2 �
1

cos u sin u(cos2 u � sin2 u)

(Cundy and Rollett 1989, p. 71), so named for its
resemblance to the MALTESE CROSS.

See also MALTESE CROSS
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Malthusian Parameter
The parameter a in the exponential POPULATION

GROWTH equation

N1(t)�N0eat:

See also LIFE EXPECTANCY, POPULATION GROWTH



Maltitude

A perpendicular drawn to a side of a QUADRILATERAL

from the MIDPOINT Mi of the opposite side. If the
QUADRILATERAL is CYCLIC, then the maltitudes are
concurrent in a point T , known as the ANTICENTER,
which is on the line connecting the CIRCUMCENTER O
an the centroid G of the vertices. Furthermore,
OM �2OGM :/

See also ALTITUDE, ANTICENTER, BRAHMAGUPTA’S

THEOREM, CYCLIC QUADRILATERAL, MIDPOINT, QUAD-

RILATERAL
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Mandelbar Set
A FRACTAL set analogous to the MANDELBROT SET or
its generalization to a higher power with the variable
z replaced by its COMPLEX CONJUGATE z̄:/

See also MANDELBROT SET

Mandelbrot Set

The set obtained by the QUADRATIC RECURRENCE

zn�1�z2
n�C; (1)

where points C for which the orbit z0�0 does not
tend to infinity are in the SET. It marks the set of
points in the COMPLEX PLANE such that the corre-

sponding JULIA SET is CONNECTED and not COMPUTA-

BLE. The Mandelbrot set was originally called a MU

MOLECULE by Mandelbrot.
J. Hubbard and A. Douady proved that the Mandel-
brot set is CONNECTED. Shishikura (1994) proved that
the boundary of the Mandelbrot set is a FRACTAL with
HAUSDORFF DIMENSION 2. However, it is not yet
known if the Mandelbrot set is pathwise-connected.
If it is pathwise-connected, then Hubbard and Doua-
dy’s proof implies that the Mandelbrot set is the
image of a CIRCLE and can be constructed from a DISK

by collapsing certain arcs in the interior (Douady
1986).

The AREA of the set is known to lie between 1.5031
and 1.5702; it is estimated as 1.50659....

Decomposing the COMPLEX coordinate z�x�iy and
z0�a�ib gives

x?�x2�y2�a (2)

y?�2xy�b: (3)

In practice, the limit is approximated by

lim
n0


znj j: lim
n0nmax

znj jB rmax: (4)

Beautiful computer-generated plots can be created by
coloring nonmember points depending on how quickly
they diverge to rmax: A common choice is to define an
INTEGER called the COUNT to be the largest n such
that znj jB r; where r is usually taken as r�2, and to
color points of different COUNT different colors. The
boundary between successive COUNTS defines a series
of "LEMNISCATES," called EQUIPOTENTIAL CURVES by
Peitgen and Saupe (1988), Ln(C)j j� r which have
distinctive shapes. The first few LEMNISCATES are

L1(C)�C (5)

L2(C)�C(C�1) (6)

L3(C)�C� C�C2
� �2

(7)

L4(C)�C� C�C2
� �2
h i2

: (8)

When written in CARTESIAN COORDINATES, the first
three of these are

r2�x2�y2 (9)

r2� x2�y2
� �

x�1ð Þ2�y2
h i

(10)

r2� x2�y2
� �

1�2x�5x2�6x3�6x4�4x5�x6
�

�3y2�2xy2�8x2y2�8x3y2�3x4y2�2y4�4xy4

�3x2y4�y6Þ (11)

which are a CIRCLE, an OVAL, and a PEAR CURVE. In
fact, the second LEMNISCATE L2 can be written in
terms of a new coordinate system with x?�x�1=2 as



x?�1
2

	 
2

�y2

� �
x?�1

2

	 
2

�y2

� �
�r2 ; (12)

which is just a CASSINI OVAL with a �1=2 and b2 �r:
The LEMNISCATES grow increasingly convoluted with
higher COUNT and approach the Mandelbrot set as
the COUNT tends to infinity.

The kidney bean-shaped portion of the Mandelbrot
set is bordered by a CARDIOID with equations

4x �2 cos t �cos(2t) (13)

4y �2 sin t �sin(2t): (14)

The adjoining portion is a CIRCLE with center at
(�1; 0) and RADIUS 1=4 : One region of the Mandelbrot
set containing spiral shapes is known as SEA HORSE

VALLEY because the shape resembles the tail of a sea
horse.

Generalizations of the Mandelbrot set can be con-
structed by replacing z2

n with zk
n or (z̄n)k ; where k is a

POSITIVE INTEGER and z̄ denotes the COMPLEX CON-

JUGATE of z . The following figures show the FRACTALS

obtained for k�2, 3, and 4 (Dickau). The plots on the
right have z replaced with z̄ and are sometimes called
"MANDELBAR SETS."

See also CACTUS FRACTAL, FRACTAL, JULIA SET,
LEMNISCATE (MANDELBROT SET), MANDELBAR SET,
QUADRATIC MAP, RANDELBROT SET, SEA HORSE

VALLEY
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05, 1994.
Wells, D. The Penguin Dictionary of Curious and Interesting

Geometry. London: Penguin, pp. 146�/48, 1991.



Mandelbrot Tree

The FRACTAL illustrated above.
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Mangoldt Function

The function defined by

L(n) �
ln p if n �pk for p a prime
0 otherwise ;

 
(1)

sometimes also called the lambda function. exp( L(n))
is also given by [1, 2, ..., n ]/[1, 2, ..., n �1]; where
[a; b; c ; . . .] denotes the LEAST COMMON MULTIPLE.
The first few values of exp((n)) for n �1, 2, ..., plotted
above, are 1, 2, 3, 2, 5, 1, 7, 2, ... (Sloane’s A014963).
The Mangoldt function is related to the RIEMANN

ZETA FUNCTION z(z) by

�
z?(s)

z(s)
�
X

n�1

L(n)

ns
; (2)

where R[s] > 1 (Hardy 1999, p. 28; Krantz 1999,

p. 161).

The SUMMATORY Mangoldt function, illustrated
above, is defined by

c(x) �
X
n5x

L(n) ; (3)

where L(n) is the MANGOLDT FUNCTION, and is also
known as the second CHEBYSHEV FUNCTION. c(x) has
the explicit formula

c(x) �x �
X
r

xr

r
�ln(2 p) �1

2 ln(1 �x2) ; (4)

where the second SUM is over all complex zeros r of
the RIEMANN ZETA FUNCTION z(s) ; i.e., those in the
CRITICAL STRIP so 0 BR r½ 
B1; and interpreted as

lim
t 0


X
I( r)j jBt

xr

r
: (5)

Vardi (1991, p. 155) also gives the interesting formula

ln x½ 
!ð Þ� c(x) � c 1
2 x
	 


� c 1
3 x
	 


�. . . ; (6)

where [x] is the NINT function and n! is a FACTORIAL.
Vallée Poussin’s version of the PRIME NUMBER THEO-

REM states that

c(x) �x �O xe �a
ffiffiffiffiffiffi
ln x

p	 

(7)

for some a (Davenport 1980, Vardi 1991). The PRIME

NUMBER THEOREM is equivalent to the statement that

c(x)�x�o(x) (8)

as x 0 
 (Dusart 1999). The RIEMANN HYPOTHESIS is
equivalent to

c(x)�x�O
ffiffiffi
x

p
(ln x)2

	 

(9)

(Davenport 1980, p. 114; Vardi 1991).

See also BOMBIERI’S THEOREM, CHEBYSHEV FUNC-

TIONS, GREATEST PRIME FACTOR, LAMBDA FUNCTION,
LEAST COMMON MULTIPLE, LEAST PRIME FACTOR,
RIEMANN FUNCTION
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Manhattan Distance
The distance between two points (x, y ) and (u, v )
given by the METRIC

d� x�uj j� y�vj j

(Skiena 1990, p. 227).

See also METRIC
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Manifold
A manifold is a TOPOLOGICAL SPACE which is LOCALLY

EUCLIDEAN (i.e., around every point, there is a
NEIGHBORHOOD which is topologically the same as
the OPEN UNIT BALL in Rn): To illustrate this idea,
consider the ancient belief that the Earth was flat as
contrasted with the modern evidence that it is round.
This discrepancy arises essentially from the fact that
on the small scales that we see, the Earth does indeed
look flat (although the Greeks did notice that the last
part of a ship to disappear over the horizon was the
mast). In general, any object which is nearly "flat" on
small scales is a manifold, and so manifolds constitute
a generalization of objects we could live on in which
we would encounter the round/flat Earth problem, as
first codified by Poincaré. More formally, any object
that can be "charted" is a manifold.

As a TOPOLOGICAL SPACE, a manifold can be COMPACT

or not compact, and CONNECTED or disconnected.
Typically, by "manifold," one means a manifold with-
out boundary. However, an author will sometimes be
more precise and use the term OPEN MANIFOLD (for a
noncompact manifold without boundary) or CLOSED

MANIFOLD (for a COMPACT MANIFOLD without bound-
ary).

If a manifold contains its own boundary, it is called,
not surprisingly, a "MANIFOLD WITH BOUNDARY." The
closed unit ball in Rn is a manifold with boundary,
and its boundary is the unit sphere. The concept can
be generalized to manifolds with corners. By defini-
tion, every point on a manifold has a neighborhood
together with a HOMEOMORPHISM of that neighbor-
hood with an OPEN BALL in Rn: In addition, a manifold
must have a SECOND COUNTABLE TOPOLOGY. Unless
otherwise indicated, a manifold is assumed to have
finite DIMENSION n , for n a positive integer.

DIFFERENTIABLE MANIFOLDS are manifolds for which
overlapping charts "relate smoothly" to each other,
meaning that the inverse of one followed by the other
is an infinitely differentiable map from EUCLIDEAN

SPACE to itself. Manifolds arise naturally in a variety
of mathematical and physical applications as "global
objects." For example, in order to precisely describe
all the configurations of a robot arm or all the possible
positions and momenta of a rocket, an object is
needed to store all of these parameters. The objects
that crop up are manifolds. From the geometric
perspective, manifolds represent the profound idea
having to do with global versus local properties.

The basic example of a manifold is EUCLIDEAN SPACE,
and many of its properties carry over to manifolds. In
addition, any smooth boundary of a subset of Eu-
clidean space, like the circle or the sphere, is a
manifold. Manifolds are therefore of interest in the
study of GEOMETRY, TOPOLOGY, and ANALYSIS.

One of the goals of topology is to find ways of
distinguishing manifolds. For instance, a circle is
topologically the same as any closed loop, no matter
how different these two manifolds may appear.
Similarly, the surface of a coffee mug with a handle
is topologically the same as the surface of the donut,
and this type of surface is called a (one-handled)
TORUS.

A SUBMANIFOLD is a subset of a manifold which is
itself a manifold, but has smaller dimension. For
example, the equator of a sphere is a submanifold.
Many common examples of manifolds are submani-



folds of Euclidean space. In fact, Whitney showed in
the 1930s that any manifold can be EMBEDDED in RN ;
where N �2n �1:/

A manifold may be endowed with more structure than
a locally Euclidean topology. For example, it could be
SMOOTH, COMPLEX, or even ALGEBRAIC (in order of
specificity). A smooth manifold with a METRIC is
called a RIEMANNIAN MANIFOLD, and one with a
SYMPLECTIC STRUCTURE is called a SYMPLECTIC MANI-

FOLD. Finally, a COMPLEX MANIFOLD with a KÄ HLER

STRUCTURE is called a KÄ HLER MANIFOLD.

See also ALGEBRAIC MANIFOLD, COBORDANT MANI-

FOLD, COMPACT MANIFOLD, COMPLEX MANIFOLD,
CONNECTED SUM DECOMPOSITION, COORDINATE

CHART, DIFFERENTIABLE MANIFOLD, EUCLIDEAN

SPACE, FLAG MANIFOLD, GRASSMANN MANIFOLD,
HEEGAARD SPLITTING, ISOSPECTRAL MANIFOLDS,
JACO-SHALEN-JOHANNSON TORUS DECOMPOSITION,
KÄ HLER MANIFOLD, LIE GROUP, MANIFOLD WITH

BOUNDARY, POINCARÉ CONJECTURE, POISSON MANI-

FOLD, PRIME MANIFOLD, RIEMANNIAN MANIFOLD,
SET, SMOOTH MANIFOLD, SPACE, STIEFEL MANIFOLD,
STRATIFIED MANIFOLD, SUBMANIFOLD, SURGERY,
SYMPLECTIC MANIFOLD, TANGENT BUNDLE, TANGENT

VECTOR (MANIFOLD), THURSTON’S GEOMETRIZATION

CONJECTURE, TOPOLOGICAL MANIFOLD, TOPOLOGICAL

SPACE, TRANSITION FUNCTION, WHITEHEAD MANI-

FOLD, WIEDERSEHEN MANIFOLD
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Mannheim’s Theorem
The four planes determined by the four altitudes of a
TETRAHEDRON and the orthocenters of the corre-
sponding faces pass through the MONGE POINT of
the TETRAHEDRON.

See also MONGE POINT, TETRAHEDRON
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Mann’s Theorem
This entry contributed by KEVIN O’BRYANT

A theorem widely circulated as the "/ a/-/b conjecture"
and proved by Mann (1942). It states that if A and B
are sets of integers each containing 0, then

s(A �B) ]min f1; s(A) � s(B) g:

Here, A �B denotes the DIRECT SUM, i.e., A �B �
fa �b : a � A; b � Bg; and s is the SCHNIRELMANN

DENSITY.

Mann’s theorem is best possible in the sense that A �
B �f0 ; 1 ; 11 ; 12 ; 13; . . .g satisfies s(A �B) �/

/s(A) � s(B) :/

Mann’s theorem implies SCHNIRELMANN’S THEOREM

as follows. Let P �f0 ; 1 g@ fp : p prime g; then
Mann’s theorem proves that s(P �P �P �P) >
2s(P �P) ; so as more and more copies of the primes
are included, the SCHNIRELMANN DENSITY increases
at least linearly, and so reaches 1 with at most 2 �
1=( s(P �P)) copies of the primes. Since the only sets
with SCHNIRELMANN DENSITY 1 are the sets contain-
ing all positive integers, SCHNIRELMANN’S THEOREM

follows.

See also SCHNIRELMANN DENSITY, SCHNIRELMANN’S

THEOREM
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MANOVA
MANOVA ("multiple analysis of variance") is a
procedure for testing the equality of mean vectors of
more than two populations. The technique is analo-
gous to ANOVA for univariate data, except that
groups are compared on multiple response variables
simultaneously. While F -tests can be used in the
uniseriate case to assess the hypothesis under con-
sideration, there is no single test statistic in the
multivariate case that is optimal in all situations
(Everitt and Wykes 1999, p. 125).

See also ANOVA
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Mantissa
For a REAL NUMBER x , the mantissa is defined as the
POSITIVE FRACTIONAL PART x � xb c�frac(x) ; where xb c
denotes the FLOOR FUNCTION.

See also CHARACTERISTIC (REAL NUMBER), FLOOR

FUNCTION, SCIENTIFIC NOTATION



Many-to-One

A FUNCTION f which may (but does not necessarily)
associate a given member of the RANGE of f with more
than one member of the DOMAIN of f . For example,
TRIGONOMETRIC FUNCTIONS such as sin x are many-
to-one since sin x �sin(2p �x) �sin(4 p �x) �� � � :/
See also DOMAIN, ONE-TO-ONE, RANGE (IMAGE)

Many Valued Logic
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Map
A way of associating unique objects to every point in a
given SET. So a map from A �B is an object f such
that for every A � B ; there is a unique object f (a) � B:
The terms FUNCTION and MAPPING are synonymous
with map.

the following table gives several common types of
complex maps.

Mapping FORMULA Domain

Inversion /f (z) �
1

z
/

Magnification /f (z) �az/ /a �R "0/

Magnification
�Rotation

/f (z) �az/ /a �C "0/

MÖ BIUS

TRANSFORMATION

/f (z) �
az � b

cz � d
/ /a; b; c ; d �C/

ROTATION /f (z) �ei uz/ /u �R/

TRANSLATION /f (z) �z �a/ /a �C/

See also 2X MOD 1 MAP, ARNOLD’S CAT MAP, BAKER’S

MAP, BOUNDARY MAP, CONFORMAL MAP, FUNCTION,
GAUSS MAP, GINGERBREADMAN MAP, HARMONIC MAP,
HÉ NON MAP, IDENTITY MAP, INCLUSION MAP, KA-

PLAN-YORKE MAP, LOGISTIC MAP, MANDELBROT SET,
MAP PROJECTION, PULLBACK MAP, QUADRATIC MAP,

SYMPLECTIC MAP, TANGENT MAP, TENT MAP, TRANS-

FORMATION, ZASLAVSKII MAP
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Map-Airy Distribution

A probability distribution having density

P(x) �2e �2x3 =3 x Ai x2
� �

�Ai? x2
� �� �

;

where Ai(x) is the AIRY FUNCTION and Ai?(x) �
dAi(x) =dx: The corresponding distribution function is

D(x) �1
3 �2x5 2

F2
7
6 ;

5
3 ;

7
3;

8
3; �

4
3 x

3
	 

15 � 32=3 G 5

3

	 


�x4 2
F2

5
6 ;

4
3;

5
3 ;

7
3; �

4
3 x

3
	 


6 � 31 =3 4
3

	 


�x2 2
F2

1
6 ;

2
3;

1
3 ;

5
3; �

4
3 x

3
	 


32 =3 G 2
3

	 


�2x
2
F2 �1

6 ;
1
3; �

1
3 ;

4
3; �

4
3 x

3
	 


31 =3 G 1
3

	 

(M. Trott). The density is normalized with

g



�


A(x) dx �1:

The MEAN is 0, but the second moment m2 is
undefined.

See also AIRY FUNCTIONS
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Map Coloring
Given a map with GENUS g �0, Heawood showed in
1890 that the maximum number Nu of colors neces-
sary to color a map (the CHROMATIC NUMBER) on an
unbounded surface is



Nu �
1
2 7 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48g �1

p	 
j k
� 1

2 7 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49 �24 x

p	 
j k
;

where xb c is the FLOOR FUNCTION, g is the GENUS, and
x is the EULER CHARACTERISTIC. This is the HEAWOOD

CONJECTURE. In 1968, for any orientable surface
other than the SPHERE (or equivalently, the PLANE)
and any nonorientable surface other than the KLEIN

BOTTLE, Nu was shown to be not merely a maximum,
but the actual number needed (Ringel and Youngs
1968).

When the FOUR-COLOR THEOREM was proven, the
Heawood FORMULA was shown to hold also for all
orientable and nonorientable surfaces with the ex-
ception of the KLEIN BOTTLE. For this case, the actual
number of colors N needed is six–one less than Nu �7
(Franklin 1934; Saaty 1986, p. 45).

surface g /Nu/ N

KLEIN BOTTLE 1 7 6

MÖ BIUS STRIP /
1
2/ 6 6

PLANE 0 4 4

PROJECTIVE PLANE /
1
2/ 6 6

SPHERE 0 4 4

TORUS 1 7 7

See also CHROMATIC NUMBER, FOUR-COLOR THEO-

REM, HEAWOOD CONJECTURE, SIX-COLOR THEOREM,
TORUS COLORING
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Mapes’ Method
A method for computing the PRIME COUNTING FUNC-

TION. Define the function

Tk(x; a) �(�1)b0�b1�...�ba �1
x

p b0

1 p b1

2 � � � pba �1
a

$ %
; (1)

where xb c is the FLOOR FUNCTION and the bi are the

binary digits (0 or 1) in

k �2a �1 ba �1 �2a �2 ba �2 �. . .�21 b1 �20 b0 : (2)

The LEGENDRE SUM can then be written

f(x; a) �
X2a �1

k�0

Tk(x ; a): (3)

The first few values of Tk(x; a) are

T0(x; 3) � xb c  (4)

T1(x; 3) ��
x

p1

$ %
(5)

T2(x; 3) ��
x

p2

$ %
(6)

T3(x; 3)�
x

p1p2

$ %
(7)

T4(x; 3)�
x

p3

$ %
(8)

T5(x; 3)�
x

p1p3

$ %
(9)

T6(x; 3)�
x

p2p3

$ %
(10)

T7(x; 3)��
x

p1p2p3

$ %
: (11)

Mapes’ method takes time �x0:7; which is slightly
faster than the LEHMER-SCHUR METHOD.

See also LEHMER-SCHUR METHOD, PRIME COUNTING

FUNCTION
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ser, p. 23, 1994.

Map Folding
A general FORMULA giving the number of distinct
ways of folding an N�m�n rectangular map is not
known. A distinct folding is defined as a permutation
of N numbered cells reading from the top down.
Lunnon (1971) gives values up to n�28.

n /1�n/ /2�n/ /3�n/ /4�n/ /5�n/

1 1 1



2 2  8

3 6 60 1368

4 16 1980 300608

5 59 19512 18698669

6 144 15552

The limiting ratio of the number of 1 �(n �1) strips
to the number of 1 �n strips is given by

lim
n0


[1 � (n � 1)]

[1 � n]
� [3:3868 ; 3:9821]:

See also STAMP FOLDING
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Mapping (Function)
MAP

Mapping Space
Let YX be the set of continuous mappings f : X 0 Y :
Then the TOPOLOGICAL SPACE for YX supplied with a
compact-open topology is called a mapping space.

See also LOOP SPACE
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Map Projection
A projection which maps a SPHERE (or SPHEROID) onto
a PLANE. Map projections are generally classified into
groups according to common properties (cylindrical
vs. conical, conformal vs. area-preserving, etc.),
although such schemes are generally not mutually
exclusive. Early compilers of classification schemes
include Tissot (1881), Close (1913), and Lee (1944).
However, the categories given in Snyder (1987)
remain the most commonly used today, and Lee’s
terms authalic and aphylactic are not commonly
encountered.

No projection can be simultaneously CONFORMAL and
AREA-PRESERVING.

See also AIRY PROJECTION, ALBERS EQUAL-AREA

CONIC PROJECTION, AXONOMETRY, AZIMUTHAL EQUI-

DISTANT PROJECTION, AZIMUTHAL PROJECTION,
BALTHASART PROJECTION, BEHRMANN CYLINDRICAL

EQUAL-AREA PROJECTION, BONNE PROJECTION, CAS-

SINI PROJECTION, CHROMATIC NUMBER, CONIC EQUI-

D I S T A N T  PR O J E C T I O N, CO N I C  PR O J E C T I O N,
CYLINDRICAL EQUAL-AREA PROJECTION, CYLINDRICAL

EQUIDISTANT PROJECTION, CYLINDRICAL PROJECTION,
ECKERT IV PROJECTION, ECKERT VI PROJECTION,
FOUR-COLOR THEOREM, GALL ISOGRAPHIC PROJEC-

TION, GALL ORTHOGRAPHIC PROJECTION, GNOMONIC

PROJECTION, GUTHRIE’S PROBLEM, HAMMER-AITOFF

EQUAL-AREA PROJECTION, LAMBERT AZIMUTHAL

EQUAL-AREA PROJECTION, LAMBERT CONFORMAL

CONIC PROJECTION, MAP COLORING, MERCATOR PRO-

JECTION, MILLER CYLINDRICAL PROJECTION, MOLL-

WEIDE PROJECTION, ORTHOGRAPHIC PROJECTION,
PETERS PROJECTION, POLYCONIC PROJECTION, PSEU-

DOCYLINDRICAL PROJECTION, RECTANGULAR PROJEC-

TION, SINUSOIDAL PROJECTION, SIX-COLOR THEOREM,
STEREOGRAPHIC PROJECTION, TRISTAN EDWARDS PRO-

JECTION, VAN DER GRINTEN PROJECTION, VERTICAL

PERSPECTIVE PROJECTION
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Marcus’s Theorem
A COMPACT MANIFOLD admits a LORENTZIAN STRUC-

TURE IFF its EULER CHARACTERISTIC vanishes. There-
fore, every noncompact manifold admits a
LORENTZIAN STRUCTURE.

See also EULER CHARACTERISTIC, LORENTZIAN STRUC-

TURE
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Marginal Analysis
Let R(x) be the revenue for a production x , C(x) the
cost, and P(x) the profit. Then

P(x) �R(x) �C(x) ;

and the marginal profit for the x0/th unit is defined by

P ? x0ð Þ�R? x0ð Þ�C ? x0ð Þ;

where P ?(x) ; R?(x); and C ?(x) are the DERIVATIVES of
P(x) ; R(x) ; and C(x); respectively.

See also DERIVATIVE

Marginal Probability
Let S be partitioned into r �s disjoint sets Ei and Fj

where the general subset is denoted Ei S Fj : Then the
marginal probability of Ei is

P Eið Þ�
Xs

j�1

P Ei S Fj

� �
:

See also CONDITIONAL PROBABILITY, DISTRIBUTION

FUNCTION, JOINT DISTRIBUTION FUNCTION, PROBABIL-

ITY FUNCTION

Markoff Chain
MARKOV CHAIN

Markoff Number
MARKOV NUMBER

Markoff’s Formulas
Formulas obtained from differentiating NEWTON’S

FORWARD DIFFERENCE FORMULA,

f ? a0 �phð Þ�1

h

�
D0 �

1
2(2p �1)D2

0

�1
6 3p2 �6p �2
� �

D3
0 �. . .�

d

dp

p
n

� �
Dn

0

�
�R?n ;

where

R?n �hnf (n�1)( j)
d

dp

p
n �1

� �
�hn �1 p

n �1

� �

� d

dp
f (n�1)( j) ; (1)

/
n
k

� �
is a BINOMIAL COEFFICIENT, and a0 B j Ban :

Abramowitz and Stegun (1972) and Beyer (1987)

give derivatives hnf (n)
0 in terms of Dk and derivatives

in terms of dk and 9k :/

See also FINITE DIFFERENCE
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Markov Algorithm
An ALGORITHM which constructs allowed mathema-
tical statements from simple ingredients.

Markov Chain

A collection of random variables Xtf g (where the
index t runs through 0, 1, ...) having the property
that, given the present, the future is conditionally
independent of the past. In other words,

P Xt �j ½X0 �i0 ; X1 �i1 ; . . . Xt �1 �it �1ð Þ
�P Xt �j½Xt�1 �it �1ð Þ:

If a MARKOV SEQUENCE of random variates xn take
the discrete values a1 ; ..., aN ; then

P xn �ain
½xn�1 �ain �1

; . . . ; x1 �a1

	 

�P xn �ain

½xn�1 �ain�1

	 

;

and the sequence xn is called a Markov chain
(Papoulis 1984, p. 532).

A SIMPLE RANDOM WALK is an example of a Markov
chain.

See also MARKOV SEQUENCE, MONTE CARLO METHOD,
RANDOM WALK
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Markov Matrix
STOCHASTIC MATRIX

Markov Moves
A type I move (CONJUGATION) takes AB 0 BA for A ,
B � Bn where Bn is a BRAID GROUP.

A type II move (STABILIZATION) takes A 0 Abn or A 0
Ab�1

n for A � Bn and bn ; Abn ; and Ab �1
n � Bn�1 :/

See also BRAID GROUP, CONJUGATION, KNOT MOVE,
REIDEMEISTER MOVES, STABILIZATION

Markov Number
The Markov numbers m are the union of the
solutions (x; y; z) to the DIOPHANTINE EQUATION

x2 �y2 �z2 �3xyz;

and are related to LAGRANGE NUMBERS Ln by

Ln �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 �

4

n2

s
:

The first few solutions are (x; y; z) �(1; 1; 1); (1, 1,
2), (1, 2, 5), (1, 5, 13), (2, 5, 29), .... All solutions can be
generated from the first two of these since the
equation is a quadratic in each of the variables, so
one integer solution leads to a second, and it turns out
that all solutions (other than the first two singular
ones) have distinct values of x , y , and z , and share
two of their three values with three other solutions
(Guy 1994, p. 166). The Markov numbers are then
given by 1, 2, 5, 13, 29, 34, ... (Sloane’s A002559).

The Markov numbers for triples (x; y; z) in which one
term is 5 are 1, 2, 13, 29, 194, 433, ... (Sloane’s
A030452), whose terms are given by the RECURRENCE

RELATION

a(n) �15a(n �2) �a(n �4); (1)

with a(0) �1; a(1) �2; a(2) �13; and a(3) �29 :/

The solutions can be arranged in an infinite tree with
two smaller branches on each trunk. It is not known if
two different regions can have the same label.
Strangely, the regions adjacent to 1 have alternate
FIBONACCI NUMBERS 1, 2, 5, 13, 34, ..., and the regions
adjacent to 2 have alternate PELL NUMBERS 1, 5, 29,
169, 985, ....

Let M(N) be the number of TRIPLES with x 5y 5z 5
N ; then

M(n) �C(ln N)2 �O((ln N)1 � e) ;

where C :0:180717105 (Guy 1994, p. 166).

See also HURWITZ EQUATION, HURWITZ’S IRRATIONAL

NUMBER THEOREM, IRRATIONALITY MEASURE, LA-

GRANGE NUMBER (RATIONAL APPROXIMATION) LIOU-

VILLE’S APPROXIMATION THEOREM, ROTH’S THEOREM,
SEGRE’S THEOREM, THUE-SIEGEL-ROTH THEOREM
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Markov Process
A random process whose future probabilities are
determined by its most recent values. A STOCHASTIC

PROCESS x(t) is called Markov if for every n and

t1 Bt2 . . .Btn

we have

P(x(tn) 5xn x(tn�1) ; . . . ; x(t1))j

�P(x(tn)5xn x(tn�1)):j

This is equivalent to

P(x(tn)5xn x(t) for all t5tn�1)j

�P(x(tn)5xn x(tn�1))j

(Papoulis 1984, p. 535).

See also DOOB’S THEOREM
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Markov Sequence
A sequence X1 ; X2 ; ... of random variates is called
Markov (or Markoff) if, for any n ,

F(Xn Xn�1 ; Xn�2 ; . . . ; X1) �F(Xn Xn�1) ;jj

i.e., if the conditional distribution F of Xn assuming
Xn�1 ; Xn�2 ; ..., X1 equals the conditional distribution
F of Xn assuming only Xn�1 (Papoulis 1984, pp. 528 �/

29). The transitional densities of a Markov sequence
satisfy the CHAPMAN-KOLMOGOROV EQUATION.

See also CHAPMAN-KOLMOGOROV EQUATION, MARKOV

CHAIN
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Markov’s Inequality
If x takes only NONNEGATIVE values, then

P(x ]a) 5
xh i
a

:

To prove the theorem, write

xh i�g



0

xf (x) dx �g
a

0

xf (x) dx �g



a

xf (x) dx:

Since P(x) is a probability density, it must be ]0 : We
have stipulated that x ]0 ; so

xh i�g
a

0

xf (x) dx �g



a

xf (x) dx

]g



0

xf (x) dx ]g



0

af (x) dx

�ag



0

f (x) dx �aP(x ]a);

Q.E.D.

Markov Spectrum
A SPECTRUM containing the REAL NUMBERS larger
than FREIMAN’S CONSTANT.

See also FREIMAN’S CONSTANT, SPECTRUM SEQUENCE
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Markov’s Theorem
Published by A. A. Markov in 1935, Markov’s theo-
rem states that equivalent BRAIDS expressing the
same LINK are mutually related by successive appli-
cations of two types of MARKOV MOVES. Markov’s
theorem is difficult to apply in practice, so it is
difficult to establish the equivalence or nonequiva-
lence of LINKS having different BRAID representations.

See also BRAID, LINK, MARKOV MOVES
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Marriage Theorem
If a group of men and women may date only if they
have previously been introduced, then a complete set
of dates is possible IFF every subset of men has
collectively been introduced to at least as many
women, and vice versa (Hall 1935; Chartrand 1985,
p. 121; Skiena 1990, p. 240).

See also MATCHING
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Married Couples Problem
Also called the MÉNAGE PROBLEM. In how many ways
can n married couples be seated around a circular
table in such a manner than there is always one man
between two women and none of the men is next to
his own wife? The solution (Ball and Coxeter 1987,
p. 50) uses DISCORDANT PERMUTATIONS and can be
given in terms of LAISANT’S RECURRENCE FORMULA

(n�1)An�1�(n2�1)An�(n�1)An�1�4(�1)n; (1)

with A1�A2�1: A closed form expression due to
Touchard (1934) is

An�
Xn

k�0

2n

2n � k

2n�k
k

� �
(n�k)!(�1)k; (2)

where n
k

� �
is a BINOMIAL COEFFICIENT (Vardi 1991).

The sum can be evaluated explicitly as

An�
npI�n(2) csc(np)

e2

�
4(�1)n

n2 � 1
2 F2(1; 3

2; 2�n; 2�n; 2�n; �4); (3)



where 2F2(a; b; c ; d; x) is a GENERALIZED HYPERGEO-

METRIC FUNCTION.

The first few values of An are �1, 1, 0, 2, 13, 80, 579,
... (Sloane’s A000179), which are sometimes called
MÉ NAGE NUMBERS. The desired solution is then 2n!An :
The numbers An can be considered a special case of a
restricted ROOKS PROBLEM.

See also DISCORDANT PERMUTATION, LAISANT’S RE-

CURRENCE FORMULA, ROOKS PROBLEM
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Marshall-Edgeworth Index
The statistical INDEX

PME �

P
pn(q0 � qn)P
(v0 � vn)

;

where pn is the price per unit in period n , qn is the
quantity produced in period n , and vn �pnqn is the
value of the n units.

See also INDEX
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Martingale
A sequence of random variates X0 ; X1 ; ... with finite
means such that the conditional expectation of Xn�1

given X0 ; X1 ; X2 ; ..., Xn is equal to Xn ; i.e.,

xn�1 X0 ; . . . ; Xnj i�Xn

%
(Feller 1971, p. 210). The term was first used to
describe a type of wagering in which the bet is
doubled or halved after a loss or win, respectively.

The concept of martingales is due to Lévy, and it was
developed extensively by Doob.

A 1-D RANDOM WALK with steps equally likely in
either direction /(p �q �1=2) is an example of a
martingale.

See also ABSOLUTELY FAIR, GAMBLER’S RUIN, RAN-

DOM WALK–1-D, SAINT PETERSBURG PARADOX
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Mascheroni Constant
EULER-MASCHERONI CONSTANT

Mascheroni Construction
A geometric construction done with a movable COM-

PASS alone. All constructions possible with a COMPASS

and STRAIGHTEDGE are possible with a movable
COMPASS alone, as was proved by Mascheroni
(1797). Mascheroni’s results are now known to have
been anticipated largely by Mohr (1672).

An example of a Mascheroni construction of the
midpoint M of a LINE SEGMENT specified by two
points A and B illustrated above (Steinhaus 1983,
Wells 1991). Without loss of generality, take AB�1.

1. Construct circles centered at A and B passing
through B and A . These are unit circles centered
at (0, 0) and (1, 0).
2. Locate C , the indicated intersection of circles A
and B , and draw a circle centered on C passing
through points A and B . This circle has center (1/
2,

ffiffiffiffiffiffi
3=

p
2) and radius 1.

3. Locate D , the indicated intersection of circles B
and C , and draw a circle centered on C passing



through points B and C . This circle has center (3/
2,

ffiffiffiffiffiffi
3=

p
2) and radius 1.

4. Locate E , the indicated intersection of circles B
and D , and draw a circle centers on E passing
through point C . This circle has center (2, 0) and
radius

ffiffiffi
3

p
:/

5. Locate F and G , the intersections of circles AE
and EC . These points are located at positions (5/4,
9

ffiffiffiffiffiffi
39

p
=4):/

6. Locate M , the intersection of circles F and G .
This point has position (1/2, 0), and is therefore the
desired MIDPOINT of AB :/

Pedoe (1995, pp. xviii-xix) also gives a Mascheroni
solution.

See also COMPASS, GEOMETRIC CONSTRUCTION, NEU-

SIS CONSTRUCTION, STEINER CONSTRUCTION,
STRAIGHTEDGE
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Maschke’s Theorem
If a MATRIX GROUP is reducible, then it is completely
reducible, i.e., if the MATRIX GROUP is equivalent to
the MATRIX GROUP in which every MATRIX has the
reduced form

D(1)
i Xi

0 D(2)
i

� �
;

then it is equivalent to the MATRIX GROUP obtained by
putting Xi �0 :/

See also MATRIX GROUP
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Mason’s abc Theorem
MASON’S THEOREM

Mason’s Theorem
Let there be three POLYNOMIALS a(x) ; b(x) ; and c(x)
with no common factors such that

a(x) �b(x) �c(x) :

Then the number of distinct ROOTS of the three
POLYNOMIALS is one or more greater than their
largest degree. The theorem was first proved by
Stothers (1981).

Mason’s theorem may be viewed as a very special case
of a Wronskian estimate (Chudnovsky and Chud-
novsky 1984). The corresponding Wronskian identity
in the proof by Lang (1993) is

c3 + W(a; b; c) �W(W(a; c); W(b ; c));

so if a , b , and c are linearly dependent, then so are
W(a ; c) and W(b; c) : More powerful Wronskian esti-
mates with applications toward Diophantine approx-
imation of solutions of linear differential equations
may be found in Chudnovsky and Chudnovsky (1984)
and Osgood (1985).

The RATIONAL FUNCTION case of FERMAT’S LAST

THEOREM follows trivially from Mason’s theorem
(Lang 1993, p. 195).

See also ABC CONJECTURE
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Masser-Gramain Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let f (z) be an ENTIRE FUNCTION such that f (n) is an
INTEGER for each POSITIVE INTEGER n . Then Pólya
(1915) showed that if



lim sup
r0


ln Mr

r
Bln 2 �0:693 . . . ; (1)

where

Mr �sup
zj j5r

f (x)j j  (2)

is the SUPREMUM, then f is a POLYNOMIAL. Further-
more, ln 2 is the best constant (i.e., counterexamples
exist for every smaller value).

If f (z) is an ENTIRE FUNCTION with f (n) a GAUSSIAN

INTEGER for each GAUSSIAN INTEGER n , then Gelfond
(1929) proved that there exists a constant a such that

lim sup
r0


ln Mr

r2
B a (3)

implies that f is a POLYNOMIAL. Gramain (1981, 1982)
showed that the best such constant is

a �
p

2e 
�0:578 . . . (4)

Maser (1980) proved the weaker result that f must be
a POLYNOMIAL if

lim sup
r0


ln Mr

r2
B a0 �

1
2 exp �d �

4c

p

 !
; (5)

where

c � gb(1) � b?(1) �0:642454398948114 . . . ; (6)

/g is the EULER-MASCHERONI CONSTANT, b(z) is the
DIRICHLET BETA FUNCTION,

d � lim
n0


Xn

k �2

1

prk2 
�ln n

 !
; (7)

and rk is the minimum NONNEGATIVE r for which
there exists a COMPLEX NUMBER z for which the
CLOSED DISK with center z and radius r contains at
least k distinct GAUSSIAN INTEGERS. Gosper gave

c � p �ln[G(1
4)] �

3
4 p �

1
2 ln 2 �1

2 g
n o

: (8)

Gramain and Weber (1985, 1987) have obtained

1:811447299 B d B1 :897327177; (9)

which implies

0:1707339 B a0 B0:1860446: (10)

Gramain (1981, 1982) conjectured that

a0 �
1

2e 
; (11)

which would imply

d �1 �
4c

p
�1:822825249 . . . : (12)
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Matching
A matching on a GRAPH G is a set of edges of G such
that no two of them share a vertex in common. The
largest possible matching consists of n=2 edges, and
such a matching is called a perfect matching.
Although not all graphs have perfect matchings, a
maximum matching exists for each graph.

The maximum matching in a BIPARTITE GRAPH can be
found using BipartiteMatching[g ] in the Mathe-
matica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘). The maximum matching on a
general graph can be found using MaximalMatch-
ing[g ] in the same package.

See also BERGE’S THEOREM, MARRIAGE THEOREM,
PERFECT MATCHING, STABLE MARRIAGE PROBLEM
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Match Problem

Given n matches (i.e., rigid unit line segments), find
the number of topologically distinct planar arrange-
ments which can be made (Gardner 1991). In this
problem, two matches laid end-to-end with no third
match at their meeting point are considered equiva-
lent to a single match, so triangles are equivalent to
squares, n -match tails are equivalent to 1-match
tails, etc.
Solutions to the match problem are PLANAR TOPOLO-

GICAL GRAPHS on e edges, and the first few values for
e �1, 1, 3, 5, 10, 19, 39, ... (Sloane’s A003055).

See also CIGARETTES, MATCHSTICK GRAPH, PLANAR

GRAPH, POLYNEMA, TOPOLOGICAL GRAPH
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Matchstick Construction
Every point which can be constructed with a
STRAIGHTEDGE and COMPASS, and no other points,
can be constructed using identical matchsticks (i.e.,
identical movable line segments). Wells (1991) gives
matchstick constructions which bisect a line segment
and construct a SQUARE.

See also GEOMETRIC CONSTRUCTION, MASCHERONI

CONSTRUCTION, NEUSIS CONSTRUCTION, STEINER

CONSTRUCTION
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Matchstick Graph
A PLANAR GRAPH whose EDGES are all unit line
segments. The minimal number of EDGES for match-
stick graphs of various degrees are given in the table
below. The minimal degree 1 matchstick graph is a
single EDGE, and the minimal degree 2 graph is an
EQUILATERAL TRIANGLE.

n e  v

1 1  2

2 3  3

3 12  8

4 /542

Mathematical Induction
INDUCTION

Mathematics
Mathematics is a broad-ranging field of study in
which the properties and interactions of idealized
objects are examined. Whereas mathematics began
merely as a calculational tool for computation and
tabulation of quantities, it has blossomed into an
extremely rich and diverse set of tools, terminologies,
and approaches which range from the purely abstract
to the utilitarian.

Bertrand Russell once whimsically defined mathe-
matics as "The subject in which we never know what
we are talking about nor whether what we are saying
is true" (Bergamini 1969).

The term "mathematics" is often shortened to "math"
in informal American speech and, consistent with the
British penchant for adding superfluous letters,
"maths" in British English.

See also METAMATHEMATICS
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Mathematics Contests
There are several regular mathematics competitions
available to students. The International Mathemati-
cal Olympiad is perhaps the largest, while the
William Lowell Putnam Competition is another im-
portant contest.

The International Mathematical Olympiad (IMO) is
the yearly world championship of mathematics for



high school students and is held in a different country
each year. The first IMO was held in 1959 in
Romania, but the contest has gradually expanded to
include students from more than 80 different coun-
tries.

The William Lowell Putnam Mathematics Competi-
tion is a North American math contest for college
students. Each year, on the first Saturday in Decem-
ber, more than 2000 students spend six hours in two
sittings trying to solve 12 problems. The majority of
the problems are very difficult, in the sense that their
solution may require a nonstandard and creative
approach. It is very rare for students to be able to
solve all the problems, let alone the majority of them.
The test can be taken both by individual and by
teams, and the winners or their schools receive a
small monetary compensation. Results for a given
exam usually become available in early April of the
following year.

The International Mathematical Contest in Modeling
(MCM) is a competition that challenges teams of
undergraduate students to clarify, analyze, and
propose solutions to open-ended problems. Problems
are chosen with the advice of experts in industry and
government, and the best papers are submitted to be
published in professional journals.

See also MATHEMATICS PRIZES, UNSOLVED PROBLEMS
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Mathematics Prizes
Several prizes are awarded periodically for outstand-
ing mathematical achievement. There is no Nobel
Prize in mathematics, and the most prestigious
mathematical award is known as the FIELDS MEDAL.
In rough order of importance, other awards are the
$100,000 Wolf Prize of the Wolf Foundation of Israel,
the Leroy P. Steele Prize of the American Mathema-
tical Society, followed by the Bôcher Memorial Prize,
Frank Nelson Cole Prizes in Algebra and Number
Theory, and the Delbert Ray Fulkerson Prize, all
presented by the American Mathematical Society.

The Clay Mathematics Institute of Cambridge, Mas-
sachusetts (CMI) has named seven "Millennium Prize
Problems," selected by focusing on important classic
questions in mathematics that have resisted solution
over the years. A $7 million prize fund has been
established for the solution to these problems, with $1
million allocated to each. The problems consist of the
RIEMANN HYPOTHESIS, POINCARÉ CONJECTURE,
HODGE CONJECTURE, SWINNERTON-DYER CONJEC-

TURE, solution of the Navier-Stokes equation, formu-
lation of Yang-Mills theory , and determination of
whether NP-PROBLEMS are actually P-PROBLEMS.

See also FIELDS MEDAL, MATHEMATICS CONTESTS,
UNSOLVED PROBLEMS, WOLFSKEHL PRIZE
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Mathematics Problems
HILBERT’S PROBLEMS, LANDAU’S PROBLEMS, PROBLEM

MathieuC
MATHIEU FUNCTION

MathieuCharacteristicA
MATHIEU CHARACTERISTIC EXPONENT

MathieuCharacteristicB
MATHIEU CHARACTERISTIC EXPONENT

Mathieu Characteristic Exponent
MATHIEU CHARACTERISTIC EXPONENT

MathieuCPrime
MATHIEU FUNCTION

Mathieu Differential Equation

d2V

dv2
�[a�2q cos(2v)]V�0 (1)

(Abramowitz and Stegun 1972; Zwillinger 1997,
p. 125), having solution

y�C1C(a; q; v)�C2S(a; q; v); (2)

where C(a; q; v) and S(a; q; v) are MATHIEU FUNC-

TIONS. The equation arises in separation of variables
of the HELMHOLTZ DIFFERENTIAL EQUATION in ELLIP-

TIC CYLINDRICAL COORDINATES. Whittaker and Wat-



son (1990) use a slightly different form to define the
MATHIEU FUNCTIONS.
The modified Mathieu differential equation

d2U

du2 
�[a �2q cosh(2u)]U �0 (3)

(Iyanaga and Kawada 1980, p. 847; Zwillinger 1997,
p. 125) arises in SEPARATION OF VARIABLES of the
HELMHOLTZ DIFFERENTIAL EQUATION in ELLIPTIC

CYLINDRICAL COORDINATES, and has solutions

y �C1C(a ; q;�iu) �C2S(a; q �iu) : (4)

The associated Mathieu differential equation is given
by

yƒ�[(1 �2r) cot x]y?�(a �k2 cos2 x)y �0 (5)

(Ince 1956, p. 403; Zwillinger 1997, p. 125).

See also HILL’S DIFFERENTIAL EQUATION, MATHIEU

FUNCTION, WHITTAKER-HILL DIFFERENTIAL EQUA-

TION
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Mathieu Function
The Mathieu functions are the solutions to the
MATHIEU DIFFERENTIAL EQUATION

d2V

dv2 
�[a �2q cos(2v)]V �0: (1)

Even solutions are denoted C(a ; q ; z) and odd solu-
tions by S(a ; q ; z): These are returned by the Math-
ematica functions MathieuC[a , q , z ] and
MathieuS[a , q , z ], respectively. These functions
appear in physical problems involving elliptical
shapes or periodic potentials. The Mathieu functions
have the special values

C(a; 0; z) �cos(
ffiffiffi
a

p
z) (2)

S(a ; 0; z) �sin(
ffiffiffi
a

p
z) : (3)

For nonzero q , the Mathieu functions are only
periodic in z for certain values of a . Such character-
istic values are given by the Mathematica functions
MathieuCharacteristicA[r , q ] and Mathieu-
CharacteristicB[r , q ] with r an integer or rational
number. These values are often denoted ar and br : For
integer r , the even and odd Mathieu functions with
characteristic values ar and br are often denoted
cer(z ; q) and ser(z; q) ; respectively (Abramowitz and
Stegun 1972, p. 725). The left plot above shows ar for
r �0, 1, ..., 4 and the right plot shows br for r �1, ...,
4.

Whittaker and Watson (1990, p. 405) define the
Mathieu function based on the equation

d2u

dz2 
�[a �16q cos(2z)]u �0: (4)

This equation is closely related to HILL’S DIFFEREN-

TIAL EQUATION. For an EVEN Mathieu function,

G(h)�l g
p

�p

ek cos h cos uG(u) du; (5)

where k�
ffiffiffiffiffiffiffiffi
32q

p
: For an ODD Mathieu function,

G(h)�l g
p

�p

sin(k sin h sin u)G(u) du: (6)

Both EVEN and ODD functions satisfy

G(h)�l g
p

�p

eik sin h sin uG(u) du: (7)

Letting z�cos2 z transforms the MATHIEU DIFFEREN-

TIAL EQUATION to

4z(1�z)
d2u

dz2 �2(1�2z)
du

dz
�(a�16q�32qz)u�0:

(8)

See also MATHIEU CHARACTERISTIC EXPONENT,
MATHIEU DIFFERENTIAL EQUATION
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Paris: Gauthier-Villars, 1926.

Mechel, F. P. Mathieu Functions: Formulas, Generation,
Use. Stuttgart, Germany: Hirzel, 1997.

Morse, P. M. and Feshbach, H. Methods of Theoretical
Physics, Part I. New York: McGraw-Hill, pp. 562 �/68
and 633 �/42, 1953.

Whittaker, E. T. and Watson, G. N. A Course in Modern
Analysis, 4th ed. Cambridge, England: Cambridge Uni-
versity Press, 1990.

Mathieu Groups
The first SIMPLE SPORADIC GROUPS discovered. M11 ;
M12 ; M22 ; M23 ; M24 were discovered in 1861 and 1873
by Mathieu. Frobenius showed that all the Mathieu
groups are SUBGROUPS of M24 :/

The Mathieu groups are most simply defined as
AUTOMORPHISM GROUPS of STEINER SYSTEMS, as sum-
marized in the following table.

Mathieu group Steiner system

/M11/ /S(4; 5; 11)/

/M12/ /S(5; 6; 12)/

/M22/ /S(3; 6; 22)/

/M23/ /S(4; 7; 23)/

/M24/ /S(5; 8; 24)/

/M11 and M23 are TRANSITIVE PERMUTATION GROUPS of
11 and 23 elements. The ORDERS of the Mathieu
groups are

M11j j� 24 � 32 � 5 � 11

M12j j� 26 � 33 � 5 � 11

M22j j� 27 � 32 � 5 � 7 � 11

M23j j� 27 � 32 � 5 � 7 � 11 � 23

M24j j� 210 � 33 � 5 � 7 � 11 � 23:

See also AUTOMORPHISM GROUP, SIMPLE GROUP,
SPORADIC GROUP, STEINER SYSTEM, TRANSITIVE

GROUP, WITT GEOMETRY
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MathieuS
MATHIEU FUNCTION

MathieuSPrime
MATHIEU FUNCTION

Matrix
The TRANSFORMATION given by the system of equa-
tions

x?1�a11x1�a12x2�. . .�a1nxn

x?2�a21x1�a22x2�. . .�a2nxn

n

x?m�am1x1�am2x2�. . .�amnxn

is denoted by the MATRIX EQUATION

x?1
x?2
n

x?m

2
664

3
775�

a11 a12 � � � a1n

a21 a22 � � � a2n

n n ::: n
am1 am2 � � � amn

2
664

3
775

x1

x2

n
xn

2
664

3
775:

In concise notation, this could be written

x?�Ax;

where x? and x are VECTORS and A is called an m�n
matrix. An m�n matrix consists of m rows and n
columns, and the set of m�n matrices with real
coefficients is sometimes denoted Rm�n: To remember
which index refers to which direction, identify the
indices of the last (i.e., lower right) term, so the
indices m, n of the last element in the above matrix
identifies it as an m�n matrix.

A matrix is said to be SQUARE if m�n , and RECTAN-

GULAR if m"n: An m�1 matrix is called a COLUMN

VECTOR, and a 1�n matrix is called a ROW VECTOR.
Special types of SQUARE MATRICES include the IDEN-

TITY MATRIX /I; with A2A3 (where dij is the KRONECKER

DELTA) and the DIAGONAL MATRIX aij�cidij (where ci

are a set of constants).

For every linear transformation there exists one and
only one corresponding matrix. Conversely, every
matrix corresponds to a unique linear transforma-
tion. The matrix is an important concept in mathe-
matics, and was first formulated by Sylvester and
Cayley.



Two matrices may be added (MATRIX ADDITION) or
multiplied (MATRIX MULTIPLICATION) together to yield
a new matrix. Other common operations on a single
matrix are diagonalization, inversion (MATRIX IN-

VERSE), and transposition (matrix TRANSPOSE). The
DETERMINANT det(A) or ½A½ of a matrix A is a very
important quantity which appears in many diverse
applications. Matrices provide a concise notation
which is extremely useful in a wide range of problems
involving linear equations (e.g., LEAST SQUARES FIT-

TING).

See also ADJACENCY MATRIX, ADJUGATE MATRIX,
ALTERNATING SIGN MATRIX, ANTISYMMETRIC MATRIX,
BLOCK MATRIX, BOHR MATRIX, BOURQUE-LIGH CON-

JECTURE, CARTAN MATRIX, CIRCULANT MATRIX, CON-

DITION NUMBER, CRAMER’S RULE, DETERMINANT,
DIAGONAL MATRIX, DIRAC MATRICES, EIGENVECTOR,
ELEMENTARY MATRIX, ELEMENTARY ROW AND COL-

UMN OPERATIONS, EQUIVALENT MATRIX, FOURIER

MATRIX, GRAM MATRIX, HILBERT MATRIX, HYPERMA-

TRIX, IDENTITY MATRIX, ILL-CONDITIONED MATRIX,
INCIDENCE MATRIX, IRREDUCIBLE MATRIX, KAC MA-

TRIX, LEAST COMMON MULTIPLE MATRIX, LU DECOM-

POSITION, MARKOV MATRIX, MATRIX ADDITION,
MATRIX DECOMPOSITION THEOREM, MATRIX INVERSE,
MATRIX MULTIPLICATION, MCCOY’S THEOREM, MINI-

MAL MATRIX, NORMAL MATRIX, PAULI MATRICES,
PERMUTATION MATRIX, POSITIVE DEFINITE MATRIX,
RANDOM MATRIX, RATIONAL CANONICAL FORM, RE-

DUCIBLE MATRIX, ROTH’S REMOVAL RULE, SHEAR

MATRIX, SINGULAR MATRIX, SKEW SYMMETRIC MA-

TRIX, SMITH NORMAL FORM, SPARSE MATRIX, SPECIAL

MATRIX, SQUARE MATRIX, STOCHASTIC MATRIX, SUB-

MATRIX, SYMMETRIC MATRIX, TOURNAMENT MATRIX
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Matrix Addition
Denote the sum of two MATRICES A and B (of the same
dimensions) by C �A �B : The sum is defined by
adding entries with the same indices

cij �aij �bij

over all i and j . For example,

a11 a12

a21 a22

� �
�

b11 b12

b21 b22

� �
�

a11 �b11 a12 �b12

a21 �b21 a22 �b22

� �
:

Matrix addition is therefore both COMMUTATIVE and
ASSOCIATIVE.

See also MATRIX, MATRIX MULTIPLICATION

Matrix Decomposition
Matrix decomposition refers to the transformation of
a given matrix (often assumed to be a SQUARE MATRIX)
into a given canonical form.

See also CHOLESKY DECOMPOSITION, JORDAN MATRIX

DECOMPOSITION, MATRIX DECOMPOSITION THEOREM,
LQ DECOMPOSITION, LU DECOMPOSITION, ORTHOGO-

NAL DECOMPOSITION, QR DECOMPOSITION, SCHUR

DECOMPOSITION, SINGULAR VALUE DECOMPOSITION

Matrix Decomposition Theorem
Let P be a MATRIX of EIGENVECTORS of a given MATRIX

A and D a MATRIX of the corresponding EIGENVALUES.
Then A can be written

A �PDP �1 ; (1)

where D is a DIAGONAL MATRIX and the columns of P
are ORTHOGONAL VECTORS. If P is not a SQUARE

MATRIX, then it cannot have a MATRIX INVERSE.
However, if P is m �n (with m �n ), then A can be
written using a so-called SINGULAR VALUE DECOMPO-

SITION OF THE FORM

A �UDVT ; (2)

where U and V are n �n SQUARE MATRICES with
ORTHOGONAL columns so that

UTU �VTV �1: (3)

See also SINGULAR VALUE DECOMPOSITION
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Matrix Diagonalization
Diagonalizing a MATRIX is equivalent to finding the
EIGENVECTORS and EIGENVALUES. The EIGENVALUES

make up the entries of the diagonalized MATRIX, and
the EIGENVECTORS make up the new set of axes
corresponding to the DIAGONAL MATRIX.

See also DIAGONAL MATRIX, EIGENVALUE, EIGENVEC-

TOR
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Matrix Direct Product
The matrix direct product gives the MATRIX of the
LINEAR TRANSFORMATION induced by the TENSOR

PRODUCT of the original VECTOR SPACES. More pre-
cisely, suppose that

S : V1 0 W1 (1)

and

T : V2 0 W2 (2)

are given by S(x) �Ax and T(y) �By: Then

S �T : V1 �V2 0 W1 �W2 (3)

is determined by

S �T(x �y) �(Ax) �(By) �(A �B)(x �y): (4)

Given an m �n MATRIX A and a p �q MATRIX B; their
direct product C �A �B is an (mp) �(nq) MATRIX with
elements defined by

cab �aijbkl ; (5)

where

a �p(i �1) �k (6)

b �q(j �1) �l: (7)

In Mathematica , the matrix direct product can be
formed using the following code.

BBLinearAlgebra‘MatrixManipulation‘;

MatrixDirectProduct[a_List?MatrixQ,

b_List?MatrixQ] : �
BlockMatrix[Outer[Times, a, b]]

]

For example, the matrix direct product of the 2 �2
MATRIX A and the 3 �2 MATRIX B is given by the
following 6 �4 MATRIX,

A �B �
a11B a12B

a21B a22B

� �
(8)

�

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a11b31 a11b32 a12b31 a12b32

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

a21b31 a21b32 a22b31 a22b32

2
6666664

3
7777775: (9)

See also DIRECT PRODUCT, MATRIX MULTIPLICATION,
TENSOR DIRECT PRODUCT
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Matrix Direct Sum
The construction of a BLOCK MATRIX from a set of
SQUARE MATRICES, i.e.,

�n
i �1 Ai�diag(A1 ; A2 ; . . . ; A n) �

A1

A2 :::
An

2
664

3
775:

See also BLOCK MATRIX

References
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Schaum, pp. 13 �/4, 1962.

Matrix Equality
Two MATRICES A and B are said to be equal IFF

aij �bij

for all i, j . Therefore,

1 2
3 4

� �
�

1 2
3 4

� �
;

while

1 2
3 4

� �
"

0 2
3 4

� �
:

See also EQUIVALENT MATRIX

Matrix Equation
Nonhomogeneous matrix equations OF THE FORM

Ax�b (1)

can be solved by taking the MATRIX INVERSE to obtain

x�A�1b: (2)

This equation will have a nontrivial solution IFF the
DETERMINANT det(A)"0: In general, more numeri-
cally stable techniques of solving the equation include
GAUSSIAN ELIMINATION, LU DECOMPOSITION, or the
SQUARE ROOT METHOD.

For a homogeneous n�n MATRIX equation

a11 a12 � � � a1n

a21 a22 � � � a2n

n n ::: n
an1 an2 � � � ann

2
664

3
775

x1

x2

n
xn

2
664

3
775�

0
0
n
0

2
664
3
775 (3)

to be solved for the xi/s, consider the DETERMINANT



a11 a12 � � �  a1n

a21 a22 � � �  a2n

n n ::: n
an1 an2 � � �  ann

��������

��������: (4)

Now multiply by x1 ; which is equivalent to multi-
plying the first column (or any column) by x1 ;

x1

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n n ::: n
an1 an2 � � �  ann

��������

���������
a11x1 a12 � � �  a1n

a21x1 a22 � � �  a2n

n n ::: n
an1x1 an2 � � �  ann

��������

��������: (5)

The value of the DETERMINANT is unchanged if
multiples of columns are added to other columns. So
add x2 times column 2, ..., and xn times column n to
the first column to obtain

x1

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n n ::: n
an1 an2 � � �  ann

��������

��������

�

a11x1 �a12x2 �. . .�a1nxn a12 � � �  a1n

a21x1 �a22x2 �. . .�a2nxn a22 � � �  a2n

n n ::: n
an1x1 �an2x2 �. . .�annxn an2 � � �  ann

��������

��������: (6)

But from the original MATRIX, each of the entries in
the first columns is zero since

ai1x1 �ai2x2 �. . .�ainxn �0; (7)

so

0 a12 � � �  a1n

0 a22 � � �  a2n

n n  ::: n
0 an2 � � �  ann

��������

��������� 0: (8)

Therefore, if there is an x1 "0 which is a solution, the
DETERMINANT is zero. This is also true for x2 ; ..., xn ; so
the original homogeneous system has a nontrivial
solution for all xi/s only if the DETERMINANT is 0. This
approach is the basis for CRAMER’S RULE.

Given a numerical solution to a matrix equation, the
solution can be iteratively improved using the follow-
ing technique. Assume that the numerically obtained
solution to

Ax �b (9)

is x1 �x � dx1 ; where dx1 is an error term. The first
solution therefore gives

Ax1�A(x�dx1)�b�db (10)

Adx1�db; (11)

where db is found by solving (10)

db�Ax1�b: (12)

Combining (11) and (12) then gives

dx1�A�1db�A�1(Ax1�b)�x1�A�1b: (13)

See also CRAMER’S RULE, GAUSSIAN ELIMINATION, LU
DECOMPOSITION, MATRIX, MATRIX ADDITION, MATRIX

INVERSE, MATRIX MULTIPLICATION, NORMAL EQUA-

TION, SQUARE ROOT METHOD

MatrixExp
MATRIX EXPONENTIAL

Matrix Exponential
The POWER SERIES that defines the EXPONENTIAL MAP

ex also defines a map between MATRICES. In particu-
lar,

exp(A)�eA�
X

n�0

An

n!
(1)

�I�A�
AA

2!
�

AAA

3!
�. . . ; (2)

converges for any SQUARE MATRIX A , where I is the
IDENTITY MATRIX. The matrix exponential is imple-
mented in Mathematica as MatrixExp[m ].

In some cases, it is a simple matter to express the
exponent. For example, when A is a DIAGONAL

MATRIX, exponentiation can be performed simply by
exponentiating each of the diagonal elements. For
example, given a diagonal matrix

A�

a1 0 � � � 0
0 a2 � � � 0
n n ::: n
0 0 � � � ak

2
664

3
775; (3)

The matrix exponential is given by

exp(A)�

ea1 0 � � � 0
0 ea2 � � � 0
n n ::: n
0 0 � � � eak

2
664

3
775: (4)

Since most matrices are DIAGONALIZABLE, it is easiest
to diagonalize the matrix before exponentiating it.

When A is a NILPOTENT MATRIX, the exponential is
given by a MATRIX POLYNOMIAL because some power
of A vanishes. For example, when

A�
0 x z
0 0 y
0 0 0

2
4

3
5; (5)

then

exp(A)�
1 x z�1

2xy

0 1 y
0 0 1

2
4

3
5 (6)

and A3�0:/



For the ZERO MATRIX A �0;

e0 �I ; (7)

i.e., the IDENTITY MATRIX. In general,

eAe�A �e0 �I ; (8)

so the exponential of a matrix is always invertible,
with inverse the exponent of the negative of the
matrix. However, in general, the formula

eAeB �eA �B (9)

holds only when A and B COMMUTE, i.e.,

[A; B] �AB �BA �0: (10)

For example,

exp
0 �x
0 0

� �
�

0 0
x 0

� �� �
�

cos x �sin x
sin x cos x

� �
; (11)

while

exp
0 �x
0 0

� �� �
exp

0 0
x 0

� �� �
�

1 �x
0 1

� �
1 0
x 1

� �

� 1 �x2 �x
x 1

� �
: (12)

See also EXPONENTIAL FUNCTION, EXPONENTIAL MAP,
MATRIX, MATRIX POWER

Matrix Fraction
A pair of matrices ND�1 or D �1N ; where N is the
matrix NUMERATOR and D is the DENOMINATOR.

See also FRACTION

Matrix Group
A GROUP in which the elements are SQUARE MATRICES,
the group multiplication law is MATRIX MULTIPLICA-

TION, and the group inverse is simply the MATRIX

INVERSE. Every matrix group is equivalent to a
unitary matrix group (Lomont 1987, pp. 47 �/8).

See also MASCHKE’S THEOREM
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Matrix Inverse
The inverse of a SQUARE MATRIX A; sometimes called a
reciprocal matrix, is a matrix A�1 such that

AA �1 �I; (1)

where I is the IDENTITY MATRIX. Courant and Hilbert
(1989, p. 10) use the notation Ă to denote the inverse
matrix.

A SQUARE MATRIX A has an inverse IFF the DETERMI-

NANT ½A ½"0 (Lipschutz 1991, p. 45) A matrix posses-
sing an inverse is called NONSINGULAR, or invertible.
The matrix inverse of a SQUARE MATRIX m may be
taken in Mathematica using the function Inver-
se[m ].

For a 2 �2 MATRIX

A �
a b
c d

� �
; (2)

the inverse is

A�1 �
1

½A½

d �b
�c a

� �
�

1

ad� bc

d �b
�c a

� �
: (3)

For a 3 �3 MATRIX,

A�1 �
1

½A½

a22 a23

a32 a33

����
���� a13 a12

a33 a32

����
���� a12 a13

a22 a23

����
����

a23 a21

a33 a31

����
���� a11 a13

a31 a33

����
���� a13 a11

a23 a21

����
����

a21 a22

a31 a32

����
���� a12 a11

a32 a31

����
���� a11 a12

a21 a22

����
����

2
66666664

3
77777775
: (4)

A general n �n matrix can be inverted using methods
such as the GAUSS-JORDAN ELIMINATION, GAUSSIAN

ELIMINATION, or LU DECOMPOSITION.

The inverse of a PRODUCT AB of MATRICES A and B can
be expressed in terms of A �1 and B�1 : Let

C �AB : (5)

Then

B�A�1AB�A�1C (6)

and

A�ABB�1�CB�1: (7)

Therefore,

C�AB�(CB�1)(A�1C)�CB�1A�1C; (8)

so

CB�1A�1�I; (9)

where I is the IDENTITY MATRIX, and

B�1A�1�C�1�(AB)�1: (10)

See also GAUSS-JORDAN ELIMINATION, GAUSSIAN

ELIMINATION, LU DECOMPOSITION, MATRIX, MATRIX

ADDITION, MATRIX MULTIPLICATION, MOORE-PEN-

ROSE GENERALIZED MATRIX INVERSE, NONSINGULAR

MATRIX, SINGULAR MATRIX, STRASSEN FORMULAS

References
Ayres, F. Jr. Theory and Problems of Matrices. New York:

Schaum, p. 11, 1962.



Ben-Israel, A. and Greville, T. N. E. Generalized Inverses:
Theory and Applications. New York: Wiley, 1977.

Courant, R. and Hilbert, D. Methods of Mathematical
Physics, Vol. 1. New York: Wiley, 1989.

Lipschutz, S. "Invertible Matrices." Schaum’s Outline of
Theory and Problems of Linear Algebra, 2nd ed. New
York: McGraw-Hill, pp. 44 �/5, 1991.

Nash, J. C. Compact Numerical Methods for Computers:
Linear Algebra and Function Minimisation, 2nd ed.
Bristol, England: Adam Hilger, pp. 24 �/6, 1990.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. "Is Matrix Inversion an /N3

/ Process?" §2.11 in
Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed. Cambridge, England: Cambridge
University Press, pp. 95 �/8, 1992.

Rosser, J. B. "A Method of Computing Exact Inverses of
Matrices with Integer Coefficients." J. Res. Nat. Bur.
Standards Sect. B. 49, 349 �/58, 1952.

Matrix Multiplication
The product C of two MATRICES A and B is defined by

cik �aijbjk ; (1)

where j is summed over for all possible values of i and
k . Therefore, in order for multiplication to be defined,
the dimensions of the MATRICES must satisfy

(n �m)(m �p) �(n �p) ; (2)

where (a �b) denotes a MATRIX with a rows and b
columns. Writing out the product explicitly,

c11 c12 � � �  c1p

c21 c22 � � �  c2p

n n ::: n
cn1 cn2 � � �  cnp

2
664

3
775

�

a11 a12 � � �  a1m

a21 a22 � � �  a2m

n n ::: n
an1 an2 � � �  anm

2
664

3
775

b11 b12 � � �  b1p

b21 b22 � � �  b2p

n n ::: n
bm1 bm2 � � �  bmp

2
664

3
775;

(3)

where

c11 �a11b11 �a12b21 �. . .�a1mbm1

c12 �a11b12 �a12b22 �. . .�a1mbm2

c1p �a11b1p �a12b2p �. . .�a1mbmp

c21 �a21b11 �a22b21 �. . .�a2mbm1

c22 �a21b12 �a22b22 �. . .�a2mbm2

c2p �a21b1p �a22b2p �. . .�a2mbmp

cn1 �an1b11 �an2b21 �. . .�anmbm1

cn2 �an1b12 �an2b22 �. . .�anmbm2

cnp �an1b1p �an2b2p �. . .�anmbmp :

Matrix multiplication is ASSOCIATIVE, as can be seen
by taking

[(ab)c]ij �(ab)ikckj �(ailblk)ckj : (4)

Now, since ail ; blk ; and ckj are SCALARS, use the
ASSOCIATIVITY of SCALAR MULTIPLICATION to write

(ailblk)ckj �ail(blkckj) �ail(bc)lj �[a(bc)]ij : (5)

Since this is true for all i and j , it must be true that

(ab)c �a(bc) : (6)

That is, matrix multiplication is ASSOCIATIVE. How-
ever, matrix multiplication is not , in general, COM-

MUTATIVE (although it is COMMUTATIVE if A and B are
DIAGONAL and of the same dimension).

The product of two BLOCK MATRICES is given by
multiplying each block

o o
o o

o
o o o
o o o
o o o

2
6666664

3
7777775

x x
x x

x
x x x
x x x
x x x

2
6666664

3
7777775

�

o o
o o

� �
x x
x x

� �
[o][x]

o o o
o o o
o o o

2
4

3
5 x x x

x x x
x x x

2
4

3
5

2
666664

3
777775:

(7)

See also LINEAR TRANSFORMATION, MATRIX, MATRIX

ADDITION, MATRIX INVERSE, STRASSEN FORMULAS
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Matrix Norm
Given a SQUARE MATRIX A with COMPLEX (or REAL)
entries, a MATRIX NORM ½A½ is a NONNEGATIVE number
associated with A having the properties

1. ½½A½½ > 0 when A"0 and ½½A½½�0 IFF A�0;/
2. ½½kA½½� ½k½½½A½½ for any SCALAR k ,
3. ½½A�B½½5 ½½A½½�½½B½½;/
4. ½½AB½½5 ½½A½½½½B½½/

For an n�n MATRIX A and an n�n UNITARY MATRIX

U;

½½AU½½� ½½UA½½� ½½A½½:

Let l1; ..., ln be the EIGENVALUES of A; then

1

½½A�1½½
5 ½l½5 ½½A½½:

The MAXIMUM ABSOLUTE COLUMN SUM NORM ½½A½½1;
SPECTRAL NORM ½½A½½2; and MAXIMUM ABSOLUTE ROW

SUM NORM ½½A½½
 satisfy

½½A½½225 ½½A½½15 ½½A½½
:



Matrix norms are implemented as MatrixNorm[m ,
p ] in the Mathematica add-on package LinearAl-
gebra‘MatrixMultiplication‘ (which can be
loaded with the command BBLinearAlgebra‘),
where p � 1, 2, or 
:/

For a SQUARE MATRIX, the SPECTRAL NORM, which is
the SQUARE ROOT of the maximum EIGENVALUE of A �A

(where A� is the ADJOINT MATRIX), is often referred to
as "the" matrix norm.

See also COMPATIBLE, HILBERT-SCHMIDT NORM, MAX-

IMUM ABSOLUTE COLUMN SUM NORM, MAXIMUM

ABSOLUTE ROW SUM NORM, NATURAL NORM, NORM,
POLYNOMIAL NORM, SPECTRAL NORM, SPECTRAL

RADIUS, VECTOR NORM
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Matrix p-Norm
MATRIX NORM

Matrix Polynomial
A polynomial with matrix coefficients. An nth order
matrix polynomial in a variable t is given by

P(t) �A0 �A1 t�A2 t
2�. . .�A nt

n; (1)

where Ak are p �p square matrices.

If the entries of the matrices are real independent
variates with a standard normal distribution, then
the expected number of real solutions is given by

En; p �
ffiffiffi
p

p
E

G(1
2(p � 1))

G(1
2 p)

; (2)

where

En �

ffiffiffi
2

p Pn=2 �1

k �0

(4k � 1)!!

(4k)!!
for n even

1 �
ffiffiffi
2

p P(n�1)=2
k �1

(4k � 3)!!

(4k � 2)!!
for n odd

8>>><
>>>: (3)

(Edelman and Kostlan 1995).

See also CAYLEY-HAMILTON THEOREM, MATRIX

POWER, NILPOTENT MATRIX, POLYNOMIAL MATRIX
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Matrix Polynomial Identity
CAYLEY-HAMILTON THEOREM

Matrix Power
The power An of a MATRIX A for n a nonnegative
integer is defined as the MATRIX PRODUCT of n copies
of A ;

An�A � � �A|fflfflffl{zfflfflffl}
n

:

A matrix to the zeroth power is defined to be the
IDENTITY MATRIX of the same dimensions, A0 �I : The
MATRIX INVERSE is commonly denoted A �1 ; which
should not be interpreted to mean 1=A :/

See also MATRIX EXPONENTIAL, MATRIX MULTIPLICA-

TION, MATRIX POLYNOMIAL, NILPOTENT MATRIX,
PERIODIC MATRIX

Matrix Product
The result of a MATRIX MULTIPLICATION.

See also PRODUCT

Matrix Transpose
TRANSPOSE

Matrix Tree Theorem
The number of nonidentical SPANNING TREES of a
GRAPH G is equal to any COFACTOR of the DEGREE

MATRIX of G minus the ADJACENCY MATRIX of G
(Skiena 1990, p. 235).

See also SPANNING TREE
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galvanischer Ströme geführt wird." Ann. Phys. Chem. 72,
497�/08, 1847.

Skiena, S. Implementing Discrete Mathematics: Combinato-
rics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, p. 235, 1990.

Matroid
Roughly speaking, a matroid is a finite set together
with a generalization of a concept from linear algebra
that satisfies a natural set of properties for that
concept. For example, the finite set could be the rows
of a MATRIX, and the generalizing concept could be
linear dependence and independence of any subset of
rows of the MATRIX.

Formally, a matroid consists of a finite set M of
elements together with a family C�fC1; C1; . . .g of
nonempty subsets of M , called circuits, which satisfy
the axioms



1. No PROPER SUBSET of a circuit is a circuit,
2. If x � C1 S C2 and C1 "C2 ; then C1 @ C2 �fxg
contains a circuit.

(Harary 1994, p. 40).

An equivalent definition considers a matroid as a
finite set M of elements together with a family of
subsets of M , called independent sets, such that

1. The EMPTY SET is independent,
2. Every SUBSET of an independent set is indepen-
dent,
3. For every subset A of M , all maximal indepen-
dent sets contained in A have the same number of
elements.

(Harary 1994, pp. 40 �/1).

The number of simple matroids (or COMBINATORIAL

GEOMETRIES) with n �0, 1, ... points are 1, 1, 2, 4, 9,
26, 101, 950, ... (Sloane’s A002773), and the number of
matroids on n �0, 1, ... points are 1, 2, 4, 8, 17, 38, 98,
306, 1724, ... (Sloane’s A055545; Oxley 1993, p. 473).
(The value for n �5 given by Oxley 1993, p. 42, is
incorrect.)

See also COMBINATORIAL GEOMETRY, GRAPHOID,
ORIENTED MATROID
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Maurer Rose

/n �4; d �120; n �6 ; d �72: A Maurer rose is a plot
of a "walk" along an n - (or 2n/-) leafed ROSE in steps of
a fixed number d degrees, including all cosets.

See also STARR ROSE
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Max
MAXIMUM

Maximal Ideal
A maximal ideal of a RING R is an IDEAL I , not equal
to R , such that there are no IDEALS "in between" I and
R . In other words, if J is an IDEAL which contains I as
a SUBSET, then either J �I or J �R . For example, nZ

is a maximal ideal of Z IFF n is PRIME, where Z is the
RING of INTEGERS.

Only in a LOCAL RING is there just one maximal ideal.
For instance, in the integers, a� ph i is a maximal
ideal whenever p is prime.

A maximal ideal m is always a PRIME IDEAL, and the
QUOTIENT RING A=m is always a FIELD. In general, not
all prime ideals are maximal.

See also IDEAL, MAXIMAL IDEAL THEOREM, PRIME

IDEAL, QUOTIENT RING, REGULAR LOCAL RING, RING

Maximal Ideal Theorem
The proposition that every PROPER IDEAL of a BOO-

LEAN ALGEBRA can be extended to a MAXIMAL IDEAL. It
is equivalent to the BOOLEAN REPRESENTATION THE-

OREM, which can be proved without using the AXIOM

OF CHOICE (Mendelson 1997, p. 121).

See also BOOLEAN REPRESENTATION THEOREM
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Maximally Linearly Independent
A set of VECTORS is maximally linearly independent if
including any other VECTOR in the VECTOR SPACE

would make it LINEARLY DEPENDENT (i.e., if any other
VECTOR in the SPACE can be expressed as a LINEAR

COMBINATION of elements of a maximal set–the
BASIS).

See also BASIS, LINEARLY DEPENDENT VECTORS,
VECTOR, VECTOR SPACE

Maximal Sum-Free Set
A maximal sum-free set is a set fa1 ; a2 ; . . . ; an g of
distinct NATURAL NUMBERS such that a maximum l of
them satisfy aij

�aik
"am for 1 5j Bk 5l ; 1 5m 5n :/

See also MAXIMAL ZERO-SUM-FREE SET
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Maximal Tori Theorem
Let T be a maximal torus of a group G , then T
intersects every CONJUGACY CLASS of G , i.e., every
element g � G is conjugate to a suitable element in T .
The theorem is due to É . Cartan.
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Maximal Zero-Sum-Free Set
A set having the largest number k of distinct residue
classes modulo m so that no SUBSET has zero sum.

See also MAXIMAL SUM-FREE SET
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Maximum
The largest value of a set, function, etc. The max-
imum value of a set of elements A �fai g

N
i �1 is denoted

max A or maxi ai ; and is equal to the last element of a
sorted (i.e., ordered) version of A . For example, given
the set f3; 5; 4; 1g; the sorted version is f1 ; 3; 4; 5g;

so the maximum is 5. The maximum and MINIMUM

are the simplest ORDER STATISTICS.

A continuous FUNCTION may assume a maximum at a
single point or may have maxima at a number of
points. A GLOBAL MAXIMUM of a FUNCTION is the
largest value in the entire RANGE of the FUNCTION,
and a LOCAL MAXIMUM is the largest value in some
local neighborhood.

For a function f (x) which is CONTINUOUS at a point x0 ;
a NECESSARY but not SUFFICIENT condition for f (x) to
have a RELATIVE MAXIMUM at x �x0 is that x0 be a
CRITICAL POINT (i.e., f (x) is either not DIFFERENTIABLE

at x0 or x0 is a STATIONARY POINT, in which case
f ?(x0) �0):/

The FIRST DERIVATIVE TEST can be applied to CON-

TINUOUS FUNCTIONS to distinguish maxima from
MINIMA. For twice differentiable functions of one
variable, f (x) ; or of two variables, f (x; y) ; the SECOND

DERIVATIVE TEST can sometimes also identify the
nature of an EXTREMUM. For a function f (x) ; the
EXTREMUM TEST succeeds under more general condi-
tions than the SECOND DERIVATIVE TEST.

See also CRITICAL POINT, EXTREMUM, EXTREMUM

TEST, FIRST DERIVATIVE TEST, GLOBAL MAXIMUM,
INFLECTION POINT, LOCAL MAXIMUM, MIDRANGE,
MINIMUM, ORDER STATISTIC, SADDLE POINT (FUNC-

TION), SECOND DERIVATIVE TEST, STATIONARY POINT
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Maximum Absolute Column Sum Norm
The NATURAL NORM induced by the L1-NORM is called
the maximum absolute column sum norm and is
defined by

Ak k1�max
j

Xn

i�1

½aij½

for a MATRIX A: This MATRIX NORM is implemented as
MatrixNorm[m , 1] in the Mathematica add-on pack-
age LinearAlgebra‘MatrixMultiplication‘



(which can be loaded with the command
BBLinearAlgebra‘).

See also L1-NORM, MATRIX NORM, MAXIMUM ABSO-

LUTE ROW SUM NORM, SPECTRAL NORM

Maximum Absolute Row Sum Norm
The NATURAL NORM induced by the L -INFINITY-NORM

is called the maximum absolute row sum norm and is
defined by

Ak k
�max
i

Xn

j �1

½aij ½

for a MATRIX A: This MATRIX NORM is implemented as
MatrixNorm[m , Infinity] in the Mathematica add-on
package LinearAlgebra‘MatrixMultiplica-
tion‘ (which can be loaded with the command
BBLinearAlgebra‘).

See also L -INFINITY-NORM, MATRIX NORM, MAXIMUM

ABSOLUTE COLUMN SUM NORM, SPECTRAL NORM

Maximum Clique Problem
PARTY PROBLEM

Maximum Entropy Method
A DECONVOLUTION ALGORITHM (sometimes abbre-
viated MEM) which functions by minimizing a
smoothness function ("ENTROPY") in an image. Max-
imum entropy is also called the ALL-POLES MODEL or
AUTOREGRESSIVE MODEL. For images with more than
a million pixels, maximum entropy is faster than the
CLEAN algorithm.

MEM is commonly employed in astronomical synth-
esis imaging. In this application, the resolution
depends on the signal-to-noise ratio, which must be
specified. Therefore, resolution is image dependent
and varies across the map. MEM is also biased, since
the ensemble average of the estimated noise is
NONZERO. However, this bias is much smaller than
the NOISE for pixels with a SNR �1 : It can yield
super-resolution, which can usually be trusted to an
order of magnitude in SOLID ANGLE.

Two definitions of "ENTROPY" normalized to the flux
in the image are

H1 �
X

k

ln
Ik

Mk

 !
(1)

H2 ��
X

k

Ik ln
Ik

Mke

 !
; (2)

where Mk is a "default image" and Ik is the smoothed
image. Several unnormalized entropy measures
(Cornwell 1982, p. 3) are given by

H3 ��
X

fi ln(fi) (3)

H4 �
X

ln(fi) (4)

H5 ��
X 1

ln(fi) 
(5)

H6 ��
X 1

[ln(fi)]
2 (6)

H7 �
X ffiffiffiffiffiffiffiffiffiffiffi

ln(fi)
p

: (7)

See also DECONVOLUTION, LUCY
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Maximum Flow, Minimum Cut Theorem
The maximum flow between vertices vi and vj in a
GRAPH G is exactly the weight of the smallest set of
edges to disconnect G with vi and vj in different
components (Ford and Fulkerson 1962; Skiena 1990,
p. 178).

See also NETWORK FLOW
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Maximum Independent Set Problem

This problem is NP-COMPLETE (Garey and Johnson
1983).
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Maximum Likelihood
The procedure of finding the value of one or more
parameters for a given statistic which makes the
known LIKELIHOOD distribution a MAXIMUM. The
maximum likelihood estimate for a parameter m is
denoted m̂:/

For a BERNOULLI DISTRIBUTION,

d

du

N
Np

� �
uNp (1�u)Nq

� �
�Np(1�u)�uNq�0; (1)

so maximum likelihood occurs for u�p: If p is not
known ahead of time, the likelihood function is

f (x1; . . . ; xn½p)�P(X1�x1; . . . ; Xn�xn½p)

�px1 (1�p)1�x1 � � �pxn (1�p)1�x1n�pS xi (1�p)S(1�xi)

�pS xi (1�p)n�S xi ; (2)

where x�0 or 1, and i�1, ..., n .

ln f �
X

xi ln p� n�
X

xi

	 

ln(1�p) (3)

d(ln f )

dp
�
P

xi

p
�

n �
P

xi

1 � p
�0 (4)

X
xi�p

X
xi�np�p

X
xi (5)

p̂�
P

xi

n
: (6)

For a GAUSSIAN DISTRIBUTION,

f (x1; . . . ; xn½m; s)�
Y 1

s
ffiffiffiffiffiffi
2p

p e�(xi�m)2=2s2

�
(2p)�n=2

sn
exp �

P
(xi � m)2

2s2

" #
(7)

ln f ��1
2 n ln(2p)�n ln s�

P
(xi � m)2

2s2
(8)

@(ln f )

@m
�
P

(xi � m)

s2
�0 (9)

gives

m̂�
P

xi

n
: (10)

@(ln f )

@s
��

n

s
�
P

(xi � m)2

s3
(11)

gives

ŝ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(xi � m̂)2

n

s
: (12)

Note that in this case, the maximum likelihood
STANDARD DEVIATION is the sample STANDARD DEVIA-

TION, which is a BIASED ESTIMATOR for the population
STANDARD DEVIATION.

For a weighted GAUSSIAN DISTRIBUTION,

f (x1; . . . ; xn½m; s)�
Y 1

si

ffiffiffiffiffiffi
2p

p e�(xi�m)2=2s2
i

�
(2p)�n=2

sn
exp �

P
(xi � m)2

2s2

" #
(13)

ln f ��1
2 n ln(2p)�n

X
ln si�

X (xi � m)2

2s2
i

(14)

@(ln f )

@m
�
X (xi � m)

s2
i

�
X xi

s2
i

�m
X 1

s2
i

�0 (15)

gives

m̂�

P xi

s2
iP 1

s2
i

: (16)

The VARIANCE of the MEAN is then

s2
m�

X
s2

i

@m

@xi

 !2

: (17)

But

@m

@xi

�
@

@xi

P
(xi=s

2
i )P

(1=s2
i )
�

1=s2
iP

(1=s2
i )
: (18)

so

s2
m�

X
s2

i

1=s2
iP

(1=s2
i )

 !2

X 1=s2
iP

(1=s2
i )

� �2� 1P
(1=s2

i )
: (19)

For a POISSON DISTRIBUTION,

f (x1; . . . ; xn½l)�
e�llx1

x1!
� � � e�llxn

xn!
�

e�nll
P

xi

x1! � � � xn!
(20)

ln f ��nl�(ln l)
X

xi�ln
Y

xi!
	 


(21)

d(ln f )

l
��n�

P
xi

l
�0 (22)



l̂ �
P

xi

n
: (23)

See also BAYESIAN ANALYSIS
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Maximum Modulus Principle
Let U ⁄C be a DOMAIN, and let f be an ANALYTIC

FUNCTION on U . Then if there is a point z0 � U such
that ½f (z0) ½] ½f (z) ½ for all z � U ; then f is constant. The
following slightly sharper version can also be formu-
lated. Let U ⁄C be a DOMAIN, and let f be an
ANALYTIC FUNCTION on U . Then if there is a point z0 �

U at which ½f ½ has a LOCAL MAXIMUM, then f is
constant.

Furthermore, let U ⁄C be a bounded domain, and let
f be a continuous function on the CLOSED SET Ū that
is analytic on U . Then the maximum value of ½f ½ on Ū
(which always exists) occurs on the boundary @U : In
other words,

max
Ū

½f ½�max
@U

½f ½:

The maximum modulus theorem is not always true on
an unbounded domain.

See also MINIMUM MODULUS PRINCIPLE, MODULUS

(COMPLEX NUMBER)
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Birkhäuser, pp. 76 �/7, 1999.

Max Sequence
A sequence defined from a FINITE sequence a0 ; a1 ; ...,
an by defining an �1 �maxi(ai �an�i):/

See also MEX SEQUENCE
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Maxwell Distribution

The distribution of speeds of molecules in thermal
equilibrium as given by statistical mechanics. The
probability and cumulative distributions over the
range x � [0; 
) are

P(x) �

ffiffiffi
2

p

s
a3 =2x2e�ax2 =2 (1)

D(x) �
2 g(3

2 ;
1
2ax2)ffiffiffi
p

p (2)

�erf x

ffiffiffi
a

2

s !
�e�ax2 =2

ffiffiffiffiffiffi
2a

p

s
; (3)

where g(a ; x) is an incomplete GAMMA FUNCTION and
erf (x) is ERF. The RAW MOMENTS are

m?n �
21�n=2a �n=2 G(1

2(3 � n))ffiffiffi
p

p : (4)

m ?�2

ffiffiffiffiffiffi
2

pa

s
(5)

m?2 �
3

a 
(6)

m?3 �8

ffiffiffiffiffiffiffiffi
2

a3 p

s
(7)

m?4 �
15
2 (8)

(Papoulis 1984, p. 149), and the MEAN, VARIANCE,
SKEWNESS, and KURTOSIS are given by

m�2

ffiffiffiffiffiffi
2

pa

s
(9)

s2�
3p� 8

pa
(10)

g1�
8

3

ffiffiffiffiffiffi
2

3p

s
(11)

g2��4
3: (12)

See also EXPONENTIAL DISTRIBUTION, GAUSSIAN DIS-

TRIBUTION, RAYLEIGH DISTRIBUTION
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Maxwell Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

describing classical electromagnetism and therefore
of central importance in physics. In the so-called cgs
system of units, the Maxwell equations are given by

9 � D �4pr (1)

9�E ��
1

c

@B

@t 
(2)

9 � B �0 (3)

9�H �
4p

c
J �

1

c

@D

@t
; (4)

where D is the effective electric field in a dielectric , r
is the charge density, E is the electric field, c is the
speed of light, B is the imposed magnetic field, H is
the effective magnetic field in a dielectric, and J is the
current density. As usual, 9 � V is the DIVERGENCE

and 9�V is the CURL.

In the MKS system of units, the equations are written

9 � D�
r

e0

(5)

9�E��
@B

@t
(6)

9 � B�0 (7)

9�H�m0J�e0m0

@D

@t
; (8)

where e0 is the permittivity of free space and m0 is the
permeability of free space.

See also DIRAC EQUATION
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Maxwell’s Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

describing electromagnetism. In the so-called cgs
system of units, they are given by

9 � D (1)

4pr (2)

9�E (3)

�
1

c

@B

@t
(4)

where D is the electric induction, r is the charge
density, B is the magnetic field, H is the magnetic
induction, c is the speed of light, J is the current
density, and E is the electric field.
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May’s Theorem
Simple majority vote is the only procedure which is
ANONYMOUS, DUAL, and MONOTONIC.
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May-Thomason Uniqueness Theorem
For every infinite LOOP SPACE MACHINE E , there is a
natural equivalence of spectra between EX and
Segal’s spectrum BX:/
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Maze
A maze is a drawing of impenetrable line segments
(or curves) with "paths" between them. The goal of
the maze is to start at one given point and find a path
which reaches a second given point.
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Mazur’s Theorem
The generalization of the SCHÖ NFLIES THEOREM to n -
D. A smoothly embedded n -HYPERSPHERE in an
(n �1)/-HYPERSPHERE separates the (n �1)/-HYPER-

SPHERE into two components, each HOMEOMORPHIC

to (n �1)/-BALLS. It can be proved using MORSE

THEORY.

See also BALL, HYPERSPHERE, MORSE THEORY

M’Cay Circle
MCCAY CIRCLE

McCay Circle

The three circumcircles through the CENTROID G of a
given triangle DA1A2A3 and the pairs of the vertices of
the second BROCARD TRIANGLE are called the McCay
circles (Johnson 1929, p. 306).

If the VERTEX A1 of a TRIANGLE describes a NEUBERG

CIRCLE N1 ; then its CENTROID G describes one of the
McCay circles (Johnson 1929, p. 290), which has
RADIUS,

r �1
6a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2 v �3

p
;

1/3 that of the NEUBERG CIRCLE, where a1 is the
length of the edge A2A3 and v is the BROCARD ANGLE

(Johnson 1929, p. 307). In the above figure, the inner
triangle is the second BROCARD TRIANGLE of DA1A2A3 ;
whose two indicated edges are concyclic with G on the
McCay circle.

See also BROCARD TRIANGLES, CIRCLE, CONCURRENT,
MEDIAN POINT, NEUBERG CIRCLE
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McCoy’s Theorem
If two SQUARE n�n MATRICES A and B are simulta-
neously upper triangularizable by similarity trans-
forms, then there is an ordering a1; ..., an of the
EIGENVALUES of A and b1; ..., bn of the EIGENVALUES of
B so that, given any POLYNOMIAL p(x; y) in noncom-
muting variables, the EIGENVALUES of p(A; B) are the
numbers p(ai; bi) with i�1, ..., n . McCoy’s theorem
states the converse: If every POLYNOMIAL exhibits the
correct EIGENVALUES in a consistent ordering, then A

and B are simultaneously triangularizable.
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McGee Graph

The unique 7-CAGE GRAPH (right figure) consisting of
the union of the two leftmost subgraphs illustrated
above. It has 24 nodes, 36 edges, and all nodes have
degree 3. Its AUTOMORPHISM GROUP is of size 32. The
graph is not vertex-transitive, having orbits of length
8 and 16. It was discovered by McGee (1960) and



proven unique by Tutte (1966) (Wong 1982).

An alternative embedding is illustrated above.

See also CAGE GRAPH
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McLaughlin Group
The SPORADIC GROUP McL.
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McMahon’s Theorem
PRICE’S THEOREM

McNugget Number
A number which can be obtained by adding together
orders of McDonald’s † Chicken McNuggetsTM (prior
to consuming any), which originally came in boxes of
6, 9, and 20. All integers are McNugget numbers
except 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22,
23, 25, 28, 31, 34, 37, and 43. Since the Happy
MealTM-sized nugget box (4 to a box) can now be
purchased separately, the modern McNugget num-
bers are LINEAR COMBINATIONS of 4, 6, 9, and 20.
These new-fangled numbers are much less interest-
ing than before, with only 1, 2, 3, 5, 7, and 11
remaining as non-McNugget numbers.

The GREEDY ALGORITHM can be used to find a
McNugget expansion of a given INTEGER.

See also COMPLETE SEQUENCE, GREEDY ALGORITHM
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Mean
A mean is HOMOGENEOUS and has the property that a
mean m of a set of numbers xi satisfies

min(x1 ; . . . ; xn) 5 m 5max(x1 ; . . . ; xn) :

There are several statistical quantities called means,
e.g., ARITHMETIC-GEOMETRIC MEAN, GEOMETRIC MEAN,
HARMONIC MEAN, QUADRATIC MEAN, ROOT-MEAN-

SQUARE. However, the quantity referred to as "the"
mean is the ARITHMETIC MEAN, also called the
AVERAGE.

An interesting empirical relationship between the
mean, median, and mode which appears to hold for
unimodal curves of moderate asymmetry is given by

mean �mode :3(mean �median)

(Kenney and Keeping 1962, p. 53), which is the basis
for the definition of the PEARSON MODE SKEWNESS.

See also ARITHMETIC-GEOMETRIC MEAN, AVERAGE,
GENERALIZED MEAN, GEOMETRIC MEAN, HARMONIC

MEAN, PEARSON MODE SKEWNESS, QUADRATIC MEAN,
REVERSION TO THE MEAN, ROOT-MEAN-SQUARE
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Mean Absolute Deviation
The mean absolute deviation (often inaccurately
called the MEAN DEVIATION), is defined by

M :A :D �
1

N

XN

i�1

fi ½xi � ̄x½;

where the SAMPLE SIZE is N , the samples have values
xi; the MEAN is x̄; and fi is an ABSOLUTE FREQUENCY.

See also MEAN DEVIATION
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Mean Caliper Diameter
MEAN TANGENT DIAMETER



Mean Cluster Count Per Site
S -CLUSTER

Mean Cluster Density
S -CLUSTER

Mean Curvature
Let k1 and k2 be the PRINCIPAL CURVATURES, then
their MEAN

H �1
2( k1 � k2) (1)

is called the mean curvature. Let R1 and R2 be the
radii corresponding to the PRINCIPAL CURVATURES,
then the MULTIPLICATIVE INVERSE of the mean curva-
ture H is given by the MULTIPLICATIVE INVERSE of the
HARMONIC MEAN,

H �
1

2

1

R1

�
1

R2

 !
�

R1 � R2

2R1R2

: (2)

In terms of the GAUSSIAN CURVATURE K ,

H �1
2(R1 �R2)K : (3)

The mean curvature of a REGULAR SURFACE in R3 at a
point p is formally defined as

H(p) �1
2 Tr(S(p)) (4)

where S is the SHAPE OPERATOR and Tr(S) denotes
the TRACE. For a MONGE PATCH with z �h(x; y) ;

H �
(1 � h2

v)huu � 2huhvhuv � (1 � h2
u)hvv

2(1 � h2
u � h2

v)3=2 (5)

(Gray 1997, p. 399).

If x : U 0 R3 is a REGULAR PATCH, then the mean
curvature is given by

H �
eG � 2fF � gE

2(EG � F2)
; (6)

where E , F , and G are coefficients of the first
FUNDAMENTAL FORM and e , f , and g are coefficients
of the second FUNDAMENTAL FORM (Gray 1997,
p. 377). It can also be written

H �
det(xuuxuxv)½xu ½

2 � 2 det(xuvxuxv)(xu � xv)

2[½xu ½
2 ½xv ½� (xu � xv)2]3=2

�
det(xvvxuxv)½xu ½

2

2[½xu ½
2 ½xv ½

2 � (xu � xv)
2]3 =2 (7)

Gray (1997, p. 380).

The GAUSSIAN and mean curvature satisfy

H2 ]K ; (8)

with equality only at UMBILIC POINTS, since

H2 �K �1
4( k1 � k2)2 : (9)

If p is a point on a REGULAR SURFACE M ƒR3 and vp

and wp are tangent vectors to M at p, then the mean
curvature of M at p is related to the SHAPE OPERATOR

S by

S(vp) �wp �vp �S(wp) �2H(p)vp �wp (10)

Let Z be a nonvanishing VECTOR FIELD on M which is
everywhere PERPENDICULAR to M , and let V and W be
VECTOR FIELDS tangent to M such that V �W �Z;
then

H ��
Z � (DvZ � W � V � DWZ)

2 ½Z ½3 
(11)

(Gray 1997, p. 410).

Wente (1985, 1986, 1987) found a nonspherical finite
surface with constant mean curvature, consisting of a
self-intersecting three-lobed toroidal surface. A fa-
mily of such surfaces exists.

See also GAUSSIAN CURVATURE, LAGRANGE’S EQUA-

TION, MINIMAL SURFACE, PRINCIPAL CURVATURES,
SHAPE OPERATOR
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Mean Deviation
The MEAN of the ABSOLUTE DEVIATIONS,

MD�
1

N

XN

i�1

½xi�x̄½;

where x̄ is the MEAN of the distribution.

See also ABSOLUTE DEVIATION

Mean Distribution
For an infinite population with MEAN m; VARIANCE s2;
SKEWNESS g1; and KURTOSIS g2; the corresponding
quantities for the distribution of means are



mx̄ � m (1)

s2
x̄ �

s2

N 
(2)

g1 ; x̄ �
g1ffiffiffiffiffi
N

p (3)

g2 ; x̄ �
g2

N
: (4)

For a population of M (Kenney and Keeping 1962,
p. 181),

m(M)
x̄ � m (5)

s2(M) �
s2

N

M � N

M � 1
: (6)
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Mean Run Count Per Site
S -RUN

Mean Run Density
S -RUN

Mean Square Error
ROOT-MEAN-SQUARE

Mean Tangent Diameter
This entry contributed by ROD MACKERT

The mean tangent diameter of a solid, also known as
the mean caliper diameter, is the caliper dimension
obtained by averaging over all orientations.

See also INNER QUERMASS, STEREOLOGY
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Mean-Value Property
Let a function h : U 0 R be continuous on an OPEN

SET U ⁄C : Then h is said to have the ez0
/-property if,

for each z0 � U ; there exists an ez0
> 0 such that

D̄(z0 ; ez0
) ⁄U ; where D̄ is a closed disk, and for every

0 B e B ez0
;

h(z0) �
1

2p g
2p

0

h(z0 � eeiu) du:

If h has the mean-value property, then h is harmonic.

See also HARMONIC FUNCTION
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Mean-Value Theorem
Let f (x) be DIFFERENTIABLE on the OPEN INTERVAL (a,
b ) and CONTINUOUS on the CLOSED INTERVAL [a, b ].
Then there is at least one point c in (a, b ) such that

f ?(c) �
f (b) � f (a)

b � a
:

See also EXTENDED MEAN-VALUE THEOREM, GAUSS’S

MEAN-VALUE THEOREM
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Measurable Function
A function f : X 0 R is measurable if, for every real
number a , the set

fx �X such that f (x) > ag

is MEASURABLE. When X�R with LEBESGUE MEA-

SURE, or more generally any BOREL MEASURE, then all
CONTINUOUS functions are measurable. In fact, prac-
tically any function that can be described is measur-
able. Measurable functions are CLOSED under
addition and multiplication, but not composition.

The measurable functions form one of the most
general classes of REAL FUNCTIONS. They are one of
the basic objects of study in ANALYSIS, both because of
their wide practical applicability and the aesthetic
appeal of their generality. Whether a function f : X 0
R is measurable depends on the MEASURE m on X , and,
in particular, it only depends on the SIGMA ALGEBRA

of MEASURABLE SETS in X . Sometimes, the MEASURE

on X may be assumed to be a standard measure. For
instance, a measurable function on R is usually
measurable with respect to LEBESGUE MEASURE.

From the point of view of MEASURE THEORY, subsets
with measure zero do not matter. Often, instead of
actual real-valued functions, EQUIVALENCE CLASSES of
functions are used. Two functions are equivalent if



the subset of the domain X where they differ has
MEASURE ZERO.

See also BOREL MEASURE, LEBESGUE MEASURE,
MEASURE, MEASURE SPACE, MEASURE THEORY,
REAL FUNCTION, SIGMA ALGEBRA

Measurable Set
If F is a SIGMA ALGEBRA and A is a SUBSET of X , then
A is called measurable if A is a member of F . X need
not have, a priori, a topological structure. Even if it
does, there may be no connection between the open
sets in the topology and the given SIGMA ALGEBRA.

See also MEASURABLE SPACE, SIGMA ALGEBRA

Measurable Space
A SET considered together with the SIGMA ALGEBRA on
the SET.

See also MEASURABLE SET, MEASURE SPACE, SIGMA

ALGEBRA

Measure
The terms "measure," "measurable," etc., have very
precise technical definitions (usually involving SIGMA

ALGEBRAS) which makes them a little difficult to
understand. However, the technical nature of the
definitions is extremely important, since it gives a
firm footing to concepts which are the basis for much
of ANALYSIS (including some of the slippery under-
pinnings of CALCULUS).

For example, every definition of an INTEGRAL is based
on a particular measure: the RIEMANN INTEGRAL is
based on JORDAN MEASURE, and the LEBESGUE

INTEGRAL is based on LEBESGUE MEASURE. The study
of measures and their application to INTEGRATION is
known as MEASURE THEORY.

A measure is formally defined as a NONNEGATIVE MAP

m : F 0 R (the reals) such that m(¥) �0 and, if An is
a COUNTABLE SEQUENCE in F and the An are pairwise
DISJOINT, then

m @
n

An

� �
�
X

n

m(An)

If, in addition, m(X) �1 for X a MEASURE SPACE, then
m is said to be a PROBABILITY MEASURE.

A measure m may also be defined on SETS other than
those in the SIGMA ALGEBRA F . By adding to F all sets
to which m assigns measure zero, we again obtain a
SIGMA ALGEBRA and call this the "completion" of F
with respect to m . Thus, the completion of a SIGMA

ALGEBRA is the smallest SIGMA ALGEBRA containing F
and all sets of measure zero.

See also ALMOST EVERYWHERE, BOREL MEASURE,
ERGODIC MEASURE, EULER MEASURE, GAUSS MEA-

SURE, HAAR MEASURE, HAUSDORFF MEASURE, HEL-

SON-SZEGO MEASURE, INTEGRAL, JORDAN MEASURE,
LEBESGUE MEASURE, LIOUVILLE MEASURE, MAHLER

MEASURE, MEASURABLE SPACE, MEASURE ALGEBRA,
MEASURE SPACE, MINKOWSKI MEASURE, NATURAL

MEASURE, PROBABILITY MEASURE, RADON MEASURE,
WIENER MEASURE
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Measure Algebra
A Boolean SIGMA ALGEBRA which possesses a MEA-

SURE.

Measure Polytope
HYPERCUBE

Measure-Preserving Transformation
ENDOMORPHISM

Measure Space
A measure space is a MEASURABLE SPACE possessing a
NONNEGATIVE MEASURE. Examples of measure spaces
include n -D EUCLIDEAN SPACE with LEBESGUE MEA-

SURE and the unit interval with LEBESGUE MEASURE

(i.e., probability).

See also LEBESGUE MEASURE, MEASURABLE SPACE

Measure Theory
The mathematical theory of how to perform INTEGRA-

TION in arbitrary MEASURE SPACES.

See also ALMOST EVERYWHERE CONVERGENCE, CAN-

TOR SET, FATOU’S LEMMA, FRACTAL, INTEGRAL, IN-

TEGRATION, LEBESGUE’S DOMINATED CONVERGENCE

THEOREM, MEASURABLE FUNCTION, MEASURABLE

SET, MEASURABLE SPACE, MEASURE, MEASURE

SPACE, MONOTONE CONVERGENCE THEOREM, POINT-

WISE CONVERGENCE
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Measure Zero
A set of points capable of being enclosed in intervals
whose total length is arbitrarily small.

See also ALMOST EVERYWHERE
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Mechanical Quadrature
GAUSSIAN QUADRATURE

Mecon
Buckminster Fuller’s term for the TRUNCATED OCTA-

HEDRON.

See also DYMAXION

Medial Axis
The boundaries of the cells of a VORONOI DIAGRAM.

Medial Circle

The CIRCUMCIRCLE of the MEDIAL TRIANGLE

DM1M2M3 of a given triangle DA1A2A3 :/

See also CIRCUMCIRCLE, MEDIAL TRIANGLE, MEDIAN

(TRIANGLE), SPIEKER CIRCLE

Medial Deltoidal Hexecontahedron

The DUAL of the RHOMBIDODECADODECAHEDRON U38

and Wenninger dual W76 :/

See also DUAL POLYHEDRON, RHOMBIDODECADODECA-

HEDRON
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Medial Disdyakis Triacontahedron
The 30-faced DUAL of the TRUNCATED DODECADODE-

CAHEDRON and Wenninger dual W98 :/

See also ARCHIMEDEAN SOLID, ICOSIDODECAHEDRON,
TRUNCATED DODECADODECAHEDRON
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Medial Hexagonal Hexecontahedron

The DUAL of the SNUB ICOSIDODECADODECAHEDRON

U44 and Wenninger dual W112 :/

See also DUAL POLYHEDRON, SNUB ICOSIDODECADO-

DECAHEDRON
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Medial Icosacronic Hexecontahedron
The DUAL of the ICOSIDODECADODECAHEDRON and
Wenninger dual /W83/.
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Medial Inverted Pentagonal
Hexecontahedron

The DUAL of the INVERTED SNUB DODECADODECAHE-

DRON U60 and Wenninger dual W114 :/

See also DUAL POLYHEDRON, INVERTED SNUB DODE-

CADODECAHEDRON
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Medial Pentagonal Hexecontahedron

The DUAL of the SNUB DODECADODECAHEDRON U40

and Wenninger dual W111 :/

See also DUAL POLYHEDRON, SNUB DODECADODECA-

HEDRON
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Medial Rhombic Triacontahedron

A ZONOHEDRON which is the DUAL of the DODECADO-

DECAHEDRON U36 and Wenninger dual W73 : The
medial rhombic triacontahedron contains interior
pentagrammic vertices which are, however, hidden
from view (Wenninger 1983, p. 41). The solid is also
called the SMALL STELLATED TRIACONTAHEDRON. The
CONVEX HULL of the DODECADODECAHEDRON is an
ICOSIDODECAHEDRON and the dual of the ICOSIDODE-

CAHEDRON is the RHOMBIC TRIACONTAHEDRON, so the
dual of the DODECADODECAHEDRON (i.e., the medial
rhombic triacontahedron) is one of the RHOMBIC

TRIACONTAHEDRON STELLATIONS (Wenninger 1983,
p. 41).

See also DUAL POLYHEDRON, DODECADODECAHEDRON,
RHOMBIC TRIACONTAHEDRON STELLATIONS
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Medial Triambic Icosahedron

The DUAL of the DITRIGONAL DODECADODECAHEDRON

U41 and Wenninger dual W80; whose outward appear-



ance is the same as the GREAT TRIAMBIC ICOSAHEDRON

(the dual of the GREAT DITRIGONAL ICOSIDODECAHE-

DRON), since the internal vertices are hidden from
view. The medial triambic icosahedron has hidden
pentagrammic faces, while the GREAT TRIAMBIC ICO-

SAHEDRON has hidden triangular faces (Wenninger
1983, pp. 45 and 47 �/0).

The CONVEX HULL of the SMALL DITRIGONAL ICOSIDO-

DECAHEDRON is a regular DODECAHEDRON, whose
dual is the ICOSAHEDRON, so the dual of the SMALL

DITRIGONAL ICOSIDODECAHEDRON (i.e., the medial
triambic icosahedron) is one of the ICOSAHEDRON

STELLATIONS (Wenninger 1983, p. 42).

See also DUAL POLYHEDRON, DITRIGONAL DODECADO-

DECAHEDRON, GREAT TRIAMBIC ICOSAHEDRON, ICOSA-

HEDRON STELLATIONS, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 41 and 46, 1983.
Wenninger, M. J. "Ninth Stellation of the Icosahedron." §34

in Polyhedron Models. New York: Cambridge University
Press, p. 55, 1989.

Medial Triangle

The TRIANGLE DM1M2M3 formed by joining the MID-

POINTS of the sides of a TRIANGLE DA1A2A3 : The
medial triangle is sometimes also called the AUXILI-

ARY TRIANGLE (Dixon 1991). The medial triangle has
TRILINEAR COORDINATES

A?�0 : b�1 : c �1

B ?�a�1 : 0 : c�1

C?�a �1 : b �1 : 0:

The medial triangle DM ?1M ?2M ?3 of the medial triangle

DM1M2M3 of a TRIANGLE DA1A2A3 is similar to
DA1A2A3 :/
The INCIRCLE of the medial triangle is called the
SPIEKER CIRCLE, and its INCENTER is called the
SPIEKER CENTER. The CIRCUMCIRCLE of the medial
triangle is called the MEDIAL CIRCLE.

See also ANTICOMPLEMENTARY TRIANGLE, CLEAVANCE

CENTER, CLEAVER, SPIEKER CENTER, SPIEKER CIRCLE
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Medial Triangle Locus Theorem

Given an original triangle (thick line), find the
MEDIAL TRIANGLE (outer thin line) and its INCIRCLE.
Take the PEDAL TRIANGLE (inner thin line) of the
MEDIAL TRIANGLE with the INCENTER as the PEDAL

POINT. Now pick any point on the original triangle,
and connect it to the point located a half-PERIMETER

away (gray lines). Then the locus of the MIDPOINTS of
these lines (the 
s in the above diagram) is the PEDAL

TRIANGLE.
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Median (Statistics)
The middle value of a distribution (if the sample size
N is odd) or average of the two middle items (if N is
even), denoted m1=2 or x̃: For a normal population, the
mean m is the most efficient (in the sense that no
other unbiased statistic for estimating m can have
smaller VARIANCE) estimate (Kenney and Keeping
1962, p. 211). The efficiency of the median, measured
as the ratio of the variance of the mean to the
variance of the median, depends on the sample size
N�2n�1 as



4n

p(2n �) 
; (1)

which tends to the value 2=p :0:637 as N becomes
large (Kenney and Keeping 1962, p. 211). Although,
the median is less efficient than the MEAN, it is less
sensitive to outliers than the MEAN

For large N samples with population median x̃0 ;

mx̄ � ̃x0 (2)

s2
x̄ �

1

8Nf 2(x̃0) 
: (3)

The median is an L -ESTIMATE (Press et al. 1992).

An interesting empirical relationship between the
mean, median, and mode which appears to hold for
unimodal curves of moderate asymmetry is given by

mean �mode :3(mean �median) (4)

(Kenney and Keeping 1962, p. 53), which is the basis
for the definition of the PEARSON MODE SKEWNESS.

See also MEAN, MIDRANGE, MODE, ORDER STATISTIC,
PEARSON MODE SKEWNESS
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Median (Tetrahedron)
The lines joining the vertices of a TETRAHEDRON to the
centroids of the opposite faces are called medians.

See also COMMANDINO’S THEOREM, TETRAHEDRON
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Median (Triangle)

The median of a triangle is the CEVIAN from one of its
VERTICES to the MIDPOINT of the opposite side. The
three medians of any TRIANGLE are CONCURRENT

(Casey 1888, p. 3), meeting in the TRIANGLE’S CEN-

TROID (Durell 1928), which has TRILINEAR COORDI-

NATES 1=a : 1=b : 1=c: In addition, the medians of a
TRIANGLE divide one another in the ratio 2:1 (Casey
1888, p. 3). A median also bisects the AREA of a
TRIANGLE.
Let mi denote the length of the median of the ith side
ai : Then

m2
1 �

1
4(2a2

2 �2a2
3 �a2

1) (1)

m2
1 �m2

2 �m2
3 �

3
4(a

2
1 �a2

2 �a2
3) (2)

(Casey 1888, p. 23; Johnson 1929, p. 68). The AREA of
a TRIANGLE can be expressed in terms of the medians
by

A �4
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm(sm �m1)(sm �m2)(sm �m3)

p
; (3)

where

sm �
1
2(m1 �m2 �m3) : (4)

A median triangle is a TRIANGLE whose sides are
equal and PARALLEL to the medians of a given
TRIANGLE. The median triangle of the median triangle
is similar to the given TRIANGLE in the ratio 3/4.

See also BIMEDIAN, COMEDIAN TRIANGLES, COMMAN-

DINO’S THEOREM, EXMEDIAN, EXMEDIAN POINT, HER-

ONIAN TRIANGLE, MEDIAL TRIANGLE
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Median Point
CENTROID (TRIANGLE)

Mediant
Given a FAREY SEQUENCE with consecutive terms h=k
and h?=k?; then the mediant is defined as the reduced
form of the fraction (h �h?) =(k �k?) :/

See also FAREY SEQUENCE
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Mediating Plane
MEDIATOR

Mediator
The PLANE through the MIDPOINT of a LINE SEGMENT

and perpendicular to that segment, also called a
mediating plane. The term "mediator" was introduced
by J. Neuberg (Altshiller-Court 1979, p. 298).

See also MIDPOINT, PLANE

References
Altshiller-Court, N. Modern Pure Solid Geometry. New

York: Chelsea, p. 1, 1979.

Meeussen Sequence
A Meeussen sequence is an increasing sequence of
positive integers (/m1 ; m2 ; ...) such that m1 �1; every
nonnegative integer is the sum of a subset of the fmi g;
and each integer mi �1 is the sum of a unique such
subset. Cook and Kleber (2000) show that Meeussen
sequences are isomorphic to TOURNAMENT SE-

QUENCES.

See also TOURNAMENT SEQUENCE
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Mega
A LARGE NUMBER defined as

where the CIRCLE NOTATION denotes "n in n
squares," and triangles and squares are expanded in
terms of STEINHAUS-MOSER NOTATION (Steinhaus

1983, pp. 28 �/9). Here, the typographical error of
Steinhaus has been corrected.

See also CIRCLE NOTATION, LARGE NUMBER, MEGIS-

TRON, MOSER, STEINHAUS-MOSER NOTATION
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Megistron
A very LARGE NUMBER defined in terms of CIRCLE

NOTATION by Steinhaus (1983) as .

See also MEGA, MOSER
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Mehler-Dirichlet Integral

Pn(cos a)�

ffiffiffi
2

p

p g
a

0

cos[(n � 1
2)f]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos f� cos a
p df;

where Pn(x) is a LEGENDRE POLYNOMIAL.

Mehler-Fock Transform
The integral transform defined by

g(x)�g



1

t1=4�n=2(t�1)1=4�n=2Pn�1=2
�1=2�ix(2t�1)f (t) dt

(Samko et al. 1993, p. 761) or

g(x)�g



1

Pk
�1=2�ix(t)f (t) dt

(Samko et al. 1993, p. 24), where /Pn(z)/ is a LEGENDRE

POLYNOMIAL.
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Mehler Quadrature
JACOBI-GAUSS QUADRATURE

Mehler’s Bessel Function Formula

J0(x)�
2

p g



0

sin(x cosh t) dt;



where J0(x) is a zeroth order BESSEL FUNCTION OF

THE FIRST KIND.
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Mehler’s Hermite Polynomial Formula

X

n �0

Hn(x)Hn(y)

n!
1
2 w
	 
n

�(1 �4w2) �1=2exp
2xyw � (x2 � y2)w2

1 � w2

" #
;

where Hn(x) is a HERMITE POLYNOMIAL.
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Meijer’s G-Function
A very general function which reduces to simpler
special functions in many common cases. Meijer’s G -
function is defined by

Gm;n
p;q x 

a1 ; . . . ; ap

b1 ; . . . ; bp

����
�
�

�
1

2pi g  gL

Qm
j�1 G(bj � z)

Qn
j �1 G(1 � aj � z)Qq

j�m�1 G(1 � bj � z)
Qq

j�n�1 G(qj � z)
xz dz ;

(1)

where G(z) is the GAMMA FUNCTION. The CONTOUR gL

lies between the POLES of G(1 �ai �z) and the POLES

of G(bi �z) (Wolfram 1999, p. 772; Gradshteyn and
Ryzhik 2000, pp. 896 �/03 and 1068 �/071). Prudnikov
et al. (1990) contains an extensive nearly 200-page
listing of formulas for the Meijer G -function. The
function is built into Mathematica 4.0 as Mei-
jerG[{{a1 , ..., an }, {a(n�1) , ..., ap }}, {{b1 , ..., bm },
{b(m�1) , ..., bq }}, z ].

Special cases include

G21
12 z

1; 1
1; 0

����
�
�ln(z�1)

�
(2)

G21
12

�
z

1; 1
1; 1

����
�
�

z

z � 1
(3)

G02
10

1
2zj01

2

� �
�

cos(
ffiffiffiffiffi
2z

p
)ffiffiffi

p
p (4)

G10
01(z½1�a)�e�1=zz�a: (5)

See also BARNES’ G -FUNCTION, FOX’S H -FUNCTION, G -

TRANSFORM, KAMPE DE FERIET FUNCTION, MACRO-

BERT’S E -FUNCTION, RAMANUJAN G - AND G -FUNC-

TIONS
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Meijer Transform
The INTEGRAL TRANSFORM

(Kf )(x)�g



�


ffiffiffiffiffi
xt

p
Kn(xt)f (t) dt

where Kn(x) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND.
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Meissel’s Formula
A modification of LEGENDRE’S FORMULA for the PRIME

COUNTING FUNCTION p(x) : It starts with

xb c�1 �
X

15i 5a

x

pi

$ %
�

X
1 5i5j5a

x

pipj

$ %

�
X

15i5j5k 5a

x

pipjpk

$ %
�. . .� p(x) �a �P2(x; a)

�P3(x; a) �. . . ; (1)

where xb c is the FLOOR FUNCTION, P2(x; a) is the
number of INTEGERS pipj 5x with a �1 5j 5j; and
P3(x; a) is the number of INTEGERS pipjpk Bx with a �
1 5i 5j 5k: Identities satisfied by the Ps include

P2(x; a) �
X

p
x

pi

 !
�(i �1)

" #
(2)

for pa Bpi 5
ffiffiffi
x

p
and

P3(x; a) �
X
i>a

P2

x

pi

; a

 !

�
Xc

i�a �1

Xp(
ffiffiffiffiffiffi
x=pi

p
)

j�i

p
x

pipj

 !
�(j �1)

" #
: (3)

Meissel’s formula is

p(x) � xb c�
Xc

i �1

x

pi

$ %
�

X
15i5j5c

x

pipj

$ %
�. . .

�1
2(b �c �2)(b �c �1) �

X
c5i5b

p
x

pi

 !
; (4)

where

b�p(x1=2) (5)

c�p(x1=3): (6)

Taking the derivation one step further yields LEH-

MER’S FORMULA.

See also LEGENDRE’S FORMULA, LEHMER’S FORMULA,
PRIME COUNTING FUNCTION
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Meixner-Pollaczek Polynomial
The hypergeometric orthogonal polynomial defined
by

P(l)
n (x; f)�

(2l)n

n!
einf

2F1(�n; l�ix; 2l; 1�e�2if);

where (x)n is the POCHHAMMER SYMBOL. The first few
are given by

P(l)
0 (x; f)�1

P(l)
1 (x; f)�2(l cos f�x sin f)

P(l)
2 (x; f)�x2�l2�(l2�l�x2) cos(2f)

�(1�2l)x sin (2f):
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Meixner Polynomial of the First Kind
Polynomials mk(x; b; c) which form the SHEFFER

SEQUENCE for

g(t)�
1 � c

1 � cet

 !b

(1)

f (t)�
1 � et

c�1 � et
(2)

and have GENERATING FUNCTION

X mk(x; b; c)

k!
tk� 1�

t

c

 !
(1�t)�x�b: (3)

The are given in terms of the HYPERGEOMETRIC

SERIES by

m(g;m)
n (x)�(g)n 2F1(�n; �x; g; 1�m�1); (4)

where (x)n is the POCHHAMMER SYMBOL (Koepf 1998,
p. 115). The first few are

m0(x; b; c)�1

m1(x; b; c)�b�x 1�
1

c

 !

m2(x; b; c)

�
b(b � 1)c2 � (c � 1)(2bc � c � 1)x � (c � 1)2x2

c2
:

Koekoek and Swarttouw (1998) defined the Meixner
polynomials without the POCHHAMMER SYMBOL as



M ?n(x; b; c) � 2 F1(�n ; �x; b; 1�1=c) : (5)

The KRAWTCHOUK POLYNOMIALS are a special case of
the Meixner polynomials of the first kind.

See also KRAWTCHOUK POLYNOMIAL, MEIXNER POLY-

NOMIAL OF THE SECOND KIND, SHEFFER SEQUENCE
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Meixner Polynomial of the Second Kind
The polynomials Mk(x; d; h) which form the SHEFFER

SEQUENCE for

g(t) �f[1 � df (t)]2 �[f (t)]2 gh =2 (1)

f (t) �tan
t

1 � dt

 !
(2)

which have GENERATING FUNCTION

X

k �0

Mk(x; d; h)

k!
tk

�[(1 � dt)2] � h =2exp
x tan�1 t

1 � d tan�1 t

 !
: (3)

The first few are

M0(x; d ; h) �1
M1(x; d ; h) �x � dh

M2(x; d ; h) �x2 �2d(1 � h)x � h[( h �1)d2 �1]:

See also MEIXNER POLYNOMIAL OF THE FIRST KIND,
SHEFFER SEQUENCE
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Mellin-Barnes Integral
A type of integral containing gamma functions in
their integrands. A typical such integral is given by

f (z) �
1

2pi g 
g�i


g�i 


G(a1 � A1s) . . .G(an � Ans)

G(c1 � C1s) . . .G(cp � Cps)

�
G(b1 � B1s) . . .G(bn � Bns)

G(d1 � D1s) . . .G(dq � Dqs)
zs ds ;

where g is real, Aj ; Bj ; Cj ; and Dj are positive, and the
CONTOUR is a straight line parallel to the IMAGINARY

AXIS with indentations if necessary to avoid poles of
the integrand.
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Mellin’s Formula

eyc0(x) G(x)

G(x � g)
�
Y

n �0

1 �
g

n � x

 !
e �y =(n�x) ; (1)

where c0(x) is the DIGAMMA FUNCTION, G(x) is the
GAMMA FUNCTION, and g is the EULER-MASCHERONI

CONSTANT.

See also DIGAMMA FUNCTION, GAMMA FUNCTION
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Mellin Transform
The INTEGRAL TRANSFORM defined by

f(z)�g



0

tz�1f (t) dt (1)

f (t)�
1

2pi g
c�i


c�i


t�zf(z) dz: (2)



The transform f(z) exists if the integral

g



0

½f (x) ½xk �1 dx (3)

is bounded for some k �0, in which case the inverse
f (t) exists with c �k . The functions f(z) and f (t) are
called a Mellin transform pair, and either can be
computed if the other is known.

The following table gives Mellin transforms of com-
mon functions (Bracewell 1999, p. 255). Here, d is the
DELTA FUNCTION, H(x) is the HEAVISIDE STEP FUNC-

TION, G(z) is the GAMMA FUNCTION, B(z; a; b) is the
INCOMPLETE BETA FUNCTION, erfc z is the complemen-
tary error function ERFC, and Si(z) is the SINE

INTEGRAL.

/f (t)/ /f(z)/ convergence

/ d(t �a)/ /az �1
/

/H(t �a)/ /�
az

z
/ /a > 0; z B0/

/H(a �t)/ /

az

z
/ /a > 0; z > 0/

/tnH(t �a)/ /�
an�z

n � z
/ /a > 0;/

/ R[z �n] B0/

/tnH(a �t)/ /

an�z

n � z
/ /a > 0;/

/ R[n �z] > 0/

/e�at
/ /a�z G(z)/ /R[a] ; R[z] > 0/

/e�t2

/ /
1
2 G

1
2 z
	 


/ /R[z] > 0/

/sin t/ /G(z) sin 1
2 pz
	 


/ /�1 BR[z] B1/

/cos t/ /G(z) cos 1
2 pz
	 


/ /0 BR[z] B1/

/

1

1 � t
/ /p csc(pz)/ /0 BR[z] B1/

/

1

(1 � t)a/ /

G(a � z) G(z)

G(a)
/ /R[a �z] > 0;/

/ R[z] > 0/

/

1

1 � t2
/ /

1
2 p csc 1

2 pz
	 


/ /0 BR[z] B2/

/(1 �t)a �1H(1 �t)/ /

G(a) G(z)

G(a � z)
/ /R[a] ; R[z] > 0/

/(t �1)�aH(t �1)/ /

G(1 � a) G(a � z)

G(1 � x)
/ /R[a �z] > 0;/

/ R[a] B1/

/ln(1�t)/ /

p csc(pz)

z
/ /�1BR[z]B0/

/
1
2p�tan�1 t/ /

p sec(1
2pz)

2z
/ /0BR[z]B1/

/erfc t/ /

G(1
2(1 � z))ffiffiffi

p
p

z
/ /R[z] > 0/

/Si(t)/ /�
1

z
G(z) sin(1

2pz)/ /R[z] >�1/

/

ta

1 � t
H(t�a)/ /�B(a�1; 1�a�z; 0)/ /a > 1; R[a�z]B1/

See also FOURIER TRANSFORM, INTEGRAL TRANSFORM,
STRASSEN FORMULAS

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, p. 795, 1985.
Bracewell, R. The Fourier Transform and Its Applications,

3rd ed. New York: McGraw-Hill, pp. 254�/57, 1999.
Gradshteyn, I. S. and Ryzhik, I. M. "Mellin Transform."
§17.41 in Tables of Integrals, Series, and Products, 6th ed.
San Diego, CA: Academic Press, pp. 1193�/197, 2000.

Morse, P. M. and Feshbach, H. Methods of Theoretical
Physics, Part I. New York: McGraw-Hill, pp. 469�/71,
1953.

Oberhettinger, F. Tables of Mellin Transforms. New York:
Springer-Verlag, 1974.

Prudnikov, A. P.; Brychkov, Yu. A.; and Marichev, O. I.
"Evaluation of Integrals and the Mellin Transform." Itogi
Nauki i Tekhniki, Seriya Matemat. Analiz 27, 3�/46, 1989.

Zwillinger, D. (Ed.). CRC Standard Mathematical Tables
and Formulae. Boca Raton, FL: CRC Press, p. 567, 1995.

Melnikov-Arnold Integral

Am(l)�g



�


cos 1
2 mf(t)�lt
h i

dt;

where the function

f(t)�4 tan�1(et)�p

describes the motion along the pendulum SEPARA-

TRIX. Chirikov (1979) has shown that this integral has
the approximate value

Am(l):

4p(2l)m�1

G(m)
e�pl=2 for l > 0

4e�p½l½=2

(2½l½)m�1 G(m�1) sin(pm) for lB0:

8>>><
>>>:
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Melodic Sequence
If a1 ; a2 ; a3 ; ... is an ARTISTIC SEQUENCE, then 1=a1 ;
1=a2 ; 1=a3 ; ... is a melodic sequence. The RECURRENCE

RELATION obeyed by melodic series is

bi�3 �
bib

2
i�2

b2
i�1

�
b2

i�2

bi�1

�bi�2 :

See also ARTISTIC SEQUENCE
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MEM
MAXIMUM ENTROPY METHOD

Memoryless
A variable x is memoryless with respect to t if, for all
s with t "0;

P(x > s �t½x > t) �P(x > s): (1)

Equivalently,

P(x > s � t; x > t)

P(x > t)
�P(x > s) (2)

P(x > s �t) �P(x > s)P(x > t) : (3)

The EXPONENTIAL DISTRIBUTION, which satisfies

P(x > t) �e � lt (4)

P(x > s �t) �e � l(s�t) ; (5)

and therefore

P(x > s �t) �P(x > s)P(x > t) �e � lse � lt �e �l(s�t) ; (6)

is the only memoryless random distribution.

See also EXPONENTIAL DISTRIBUTION

Ménage Number
MARRIED COUPLES PROBLEM

Ménage Problem
MARRIED COUPLES PROBLEM

Menasco’s Theorem
For a BRAID with M strands, R components, P
positive crossings, and N negative crossings,

P �N 5U��M �R if P ]N
P �N 5U��M �R if P 5N ;

 
where U9 are the smallest number of positive and
negative crossings which must be changed to cross-
ings of the opposite sign. These inequalities imply

BENNEQUIN’S CONJECTURE. Menasco’s theorem can be
extended to arbitrary knot diagrams.

See also BENNEQUIN’S CONJECTURE, BRAID, UNKNOT-

TING NUMBER
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Menelaus’ Theorem

For TRIANGLES in the PLANE,

AD � BE � CF �BD � CE � AF : (1)

For SPHERICAL TRIANGLES,

sin AD � sin BE � sin CF

�sin BD � sin CF � sin AF (2)

This can be generalized to n -gons P �[V1 ; . . .  ; Vn];
where a transversal cuts the side ViVi�1 in Wi for
i �1, ..., n , by

Yn

i�1

ViWi

WiVi�1

" #
�(�1)n : (3)

Here, ADICD and

AB

CD

" #
(4)

is the ratio of the lengths [A, B ] and [C, D ] with a
PLUS or MINUS SIGN depending if these segments have
the same or opposite directions (Grünbaum and
Shepard 1995). The case n�3 is PASCH’S AXIOM.

See also CEVA’S THEOREM, HOEHN’S THEOREM,
PASCH’S AXIOM
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Menger’s n-Arc Theorem
Let G be a GRAPH with A and B two disjoint n -tuples
of VERTICES. Then either G contains n pairwise
disjoint AB -paths, each connecting a point of A and
a point of B , or there exists a set of fewer than n
VERTICES that separate A and B .

Harary (1994, pp. 47) states the theorem as "the
minimum number of points separating two nonadja-
cent points s and t is the maximum number of
disjoint s �t paths." Skiena (1990, p. 178) states the
theorem as "a graph is K -CONNECTED GRAPH IFF every
pair of vertices is joined by at least k vertex-disjoint
paths" (Menger 1927, Whitney 1932).

See also K -CONNECTED GRAPH
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Menger Sponge

A FRACTAL which is the 3-D analog of the SIERPINSKI

CARPET. Let Nn be the number of filled boxes, Ln the
length of a side of a hole, and Vn the fractional
VOLUME after the nth iteration.

Nn �20n (1)

Ln �
1
3

	 
n

�3 �n (2)

Vn �L3
nNn �

20
27

	 
n

: (3)

The CAPACITY DIMENSION is therefore

dcap �� lim
n0


ln Nn

ln Ln

�� lim
n0


ln (20n)

ln (3�n) 
�

ln 20

ln 3

�
ln(25 � 5)

ln 3
�

2 ln 2 � ln 5

ln 3
�2:726833028 . . . (4)

J. Mosely is leading an effort to construct a large
Menger sponge out of old business cards.

See also SIERPINSKI CARPET, TETRIX
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Menger’s Theorem
MENGER’S N -ARC THEOREM

Menn’s Surface

A surface given by the PARAMETRIC EQUATIONS

x(u; v)�u

y(u; v)�v

x(u; v)�au4�u2v�v2:
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Mensuration Formula
A mensuration formula is simply a formula for
computing the length-related properties of an object
(such as AREA, CIRCUMRADIUS, etc., of a POLYGON)
based on other known lengths, areas, etc. Beyer
(1987) gives a collection of such formulas for various
plane and solid geometric figures.
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Mercator Projection

The following equations place the X -AXIS of the
projection on the equator and the Y -AXIS at LONG-

ITUDE l0; where l is the LONGITUDE and f is the
LATITUDE.

x�l�l0 (1)

y�ln[tan(1
4p�

1
2f)] (2)

�1
2 ln

1 � sin f

1 � sin f

 !
(3)

�sinh�1(tan f) (4)

�tanh�1(sin f) (5)

�ln(tan f�sec f): (6)

The inverse FORMULAS are

f�2 tan�1(ey)�1
2 p (7)

�tan�1(sinh y) (8)

�gd y (9)

l�x�l0; (10)

where gd y is the GUDERMANNIAN FUNCTION. LOXO-

DROMES are straight lines and GREAT CIRCLES are
curved.

An oblique form of the Mercator projection is illu-
strated above. It has equations

x�
tan�1[tan f cos fp � sin fp sin(l� l0)]

cos(l� l0)
(11)

y�1
2 ln

1 � A

1 � A

 !
�tanh�1 A; (12)

where

lp�

tan�1 cos f1 sin f2 cos l1 � sin f1 cos f2 cos l2

sin f1 cos f2 sin l2 � cos f1 sin f2 sin l1

 !

(13)

fp�tan�1 �
cos(lp � l1)

tan f1

 !
(14)

A�sin fp sin f�cos fp cos f sin(l�l0): (15)

The inverse FORMULAS are

f�sin�1 sin fp tanh y�
cos fp sin x

cosh y

 !
(16)

l�l0�tan�1 sin fp sin x � cos fp sinh y

cos x

 !
: (17)



There is also a transverse form of the Mercator
projection, illustrated above (Deetz and Adams
1934, Snyder 1987). It is given by the equations

x �1
2 ln

1 � B

1 � B

 !
�tanh �1 B (18)

y �tan �1 tan f

cos(l � l0)

" #
� f0 (19)

f �sin�1 sin D

cosh x

 !
(20)

l � l0 �tan �1 sinh x

cos D

 !
; (21)

where

B �cos f sin( l � l0) (22)

D �y � f0 : (23)

Finally, the "universal transverse Mercator projec-
tion" is a MAP PROJECTION which maps the SPHERE

into 60 zones of 68 each, with each zone mapped by a
transverse Mercator projection with central MERIDIAN

in the center of the zone. The zones extend from 80 8 S
to 848 N (Dana).

See also GUDERMANNIAN FUNCTION, SPHERICAL SPIR-

AL

References
Dana, P. H. "Map Projections." http://www.colorado.edu/

geography/gcraft/notes/mapproj/mapproj_f.html.
Deetz, C. H. and Adams, O. S. Elements of Map Projection

with Applications to Map and Chart Construction, 4th ed.
Washington, DC: U. S. Coast and Geodetic Survey Special
Pub. 68, 1934.

Snyder, J. P. Map Projections--A Working Manual. U. S.
Geological Survey Professional Paper 1395. Washington,
DC: U. S. Government Printing Office, pp. 38 �/5, 1987.

Mercator Series
The TAYLOR SERIES for the NATURAL LOGARITHM

ln(1 �x) �x �1
2 x

2 �1
3 x

3 �. . .

which was found by Newton, but independently
discovered and first published by Mercator in 1668.

See also LOGARITHMIC NUMBER, NATURAL LOGA-

RITHM

Mercer’s Theorem
RIEMANN-LEBESGUE LEMMA

Meredith Graph

A counterexample to the conjecture that every 4-
regular 4-connected graph is HAMILTONIAN.

See also HAMILTONIAN GRAPH
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Mergelyan’s Theorem
Mergelyan’s theorem can be stated as follows (Krantz
1999). Let K⁄C be compact and suppose C�_K has
only finitely many connected components. If f �C(K)
is holomorphic on the interior of K and if e > 0; then
there is a RATIONAL FUNCTION r(z) with poles in C�_K
such that

max
z �K

½f (z)�r(z)½Be: (1)

A consequence is that if P�fD1; D2; . . .g is an
infinite set of disjoint OPEN DISKS Dn of radius rn

such that the union is almost the unit DISK. Then

X

n�1

rn�
: (2)

Define

Mx(P)�
X

n�1

rx
n: (3)

Then there is a number e(P) such that Mx(P) diverges
for xBe(P) and converges for x > e(P): The above
theorem gives



1 Be(P) B2: (4)

There exists a constant which improves the inequal-
ity, and the best value known is

S �1:306951 . . . : (5)

See also RUNGE’S THEOREM

References
Krantz, S. G. "Mergelyan’s Theorem." §11.2 in Handbook of

Complex Analysis. Boston, MA: Birkhäuser, pp. 146 �/47,
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Mergelyan-Wesler Theorem
MERGELYAN’S THEOREM

Meridian
A line of constant LONGITUDE on a SPHEROID (or
SPHERE). More generally, a meridian of a SURFACE OF

REVOLUTION is the intersection of the surface with a
PLANE containing the axis of revolution.

See also LATITUDE, LONGITUDE, PARALLEL (SURFACE

OF REVOLUTION), SURFACE OF REVOLUTION
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Meromorphic Function
A meromorphic function is a single-valued function
that is ANALYTIC in all but possibly a discrete subset
of its domain, and at those singularities it must go to
infinity like a POLYNOMIAL (i.e., these exceptional
points must be POLES and not ESSENTIAL SINGULA-

RITIES). A simpler definition states that a mero-
morphic function is a function f (z) OF THE FORM

f (z) �
g(z)

h(z)

where /g(z)/ and /h(z)/ are ENTIRE FUNCTIONS with /

h(z) "0/ (Krantz 1999, p. 64).

A meromorphic function therefore has only possibly
finite, isolated POLES and zeros and no ESSENTIAL

SINGULARITIES in its domain. A meromorphic function
with an infinite number of poles is exemplified by /

csc(1 =z)/ on the PUNCTURED/U �D_ f0g/, where D is the
open unit disk.

An equivalent definition of a meromorphic function is
a complex analytic MAP to the RIEMANN SPHERE.

The word derives from the Greek /mo ro&/ (meros ),
meaning "part," and /mo r8  h/ (morphe ), meaning
"form" or "appearance."

See also ANALYTIC FUNCTION, ENTIRE FUNCTION,
ESSENTIAL SINGULARITY, HOLOMORPHIC FUNCTION,
POLE, REAL ANALYTIC FUNCTION, RIEMANN SPHERE
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Mersenne Number
A number OF THE FORM

Mn �2n �1 (1)

for n an INTEGER is known as a Mersenne number.
The Mersenne numbers are therefore 2-REPDIGITS,
and also the numbers obtained by setting x �1 in a
FERMAT POLYNOMIAL. The first few are 1, 3, 7, 15, 31,
63, 127, 255, ... (Sloane’s A000225).

The number of digits D in the Mersenne number Mn

is

D � log 2n �1ð Þ�1b c; (2)

where xb c is the FLOOR FUNCTION, which, for large n ,
gives

D : n log 2 �1b c: 0 :301029n �1b c
� 0:301029nb c�1: (3)

In order for the Mersenne number Mn to be PRIME, n
must be PRIME. This is true since for COMPOSITE n
with factors r and s , n �rs . Therefore, 2n �1 can be
written as 2rs �1 ; which is a BINOMIAL NUMBER and
can be factored. Since the most interest in Mersenne
numbers arises from attempts to factor them, many
authors prefer to define a Mersenne number as a
number of the above form

Mp�2p�1 (4)

but with p restricted to PRIME values.

The search for MERSENNE PRIMES is one of the most
computationally intensive and actively pursued areas
of advanced and distributed computing.

See also CUNNINGHAM NUMBER, DOUBLE MERSENNE

NUMBER, EBERHART’S CONJECTURE, FERMAT NUM-

BER, LUCAS-LEHMER TEST, MERSENNE PRIME, PER-

FECT NUMBER, REPUNIT, RIESEL NUMBER, SIERPINSKI

NUMBER OF THE SECOND KIND, SOPHIE GERMAIN

PRIME, SUPERPERFECT NUMBER, WHEAT AND CHESS-

BOARD PROBLEM, WIEFERICH PRIME
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Mersenne Prime
A MERSENNE NUMBER which is PRIME is called a
Mersenne prime. In order for the Mersenne number
Mn defined by

Mn�2n�1

for n an INTEGER to be PRIME, n must be PRIME. This
is true since for COMPOSITE n with factors r and s ,
n�rs . Therefore, 2n�1 can be written as 2rs�1;
which is a BINOMIAL NUMBER and can be factored.
Every MERSENNE PRIME gives rise to a PERFECT

NUMBER. The first few Mersenne primes are 3, 7,
31, 127, 8191, 131071, 524287, 2147483647, ... (Sloa-
ne’s A000668) corresponding to n�2, 3, 5, 7, 13, 17,
19, 31, 61, 89, ... (Sloane’s A000043).

If n�3 (mod 4) is a PRIME, then 2n�1 DIVIDES Mn

IFF 2n�1 is PRIME. It is also true that PRIME divisors
of 2p�1 must have the form 2kp�1 where k is a
POSITIVE INTEGER and simultaneously of either the
form 8n�1 or 8n�1 (Uspensky and Heaslet). A
PRIME factor p of a Mersenne number Mq�2q�1 is
a WIEFERICH PRIME IFF p2½2q�1; Therefore, MERS-

ENNE PRIMES are not WIEFERICH PRIMES. All known
Mersenne numbers Mp with p PRIME are SQUARE-

FREE. However, Guy (1994) believes that there are Mp

which are not SQUAREFREE.

TRIAL DIVISION is often used to establish the COMPO-

SITENESS of a potential Mersenne prime. This test
immediately shows Mp to be COMPOSITE for p�11, 23,
83, 131, 179, 191, 239, and 251 (with small factors 23,
47, 167, 263, 359, 383, 479, and 503, respectively). A
much more powerful primality test for Mp is the
LUCAS-LEHMER TEST.

It has been conjectured that there exist an infinite
number of Mersenne primes, although finding them
is computationally very challenging. The table below
gives the index p of known Mersenne primes (Sloa-
ne’s A000043) Mp; together with the number of digits,
discovery years, and discoverer. A similar table has

been compiled by C. Caldwell. Note that the region
after the 35th known Mersenne prime has not been
completely searched, so identification of "the" 36th
and larger Mersenne primes are tentative. L. Welsh
maintains an extensive bibliography and history of
Mersenne numbers. G. Woltman has organized a
distributed search program via the Internet in which
hundreds of volunteers use their personal computers
to perform pieces of the search.

# p Digits Year Discoverer (Reference)

1 2 1 Antiquity

2 3 1 Antiquity

3 5 2 Antiquity

4 7 3 Antiquity

5 13 4 1461 Reguis 1536, Cataldi 1603

6 17 6 1588 Cataldi 1603

7 19 6 1588 Cataldi 1603

8 31 10 1750 Euler 1772

9 61 19 1883 Pervouchine 1883, Seelhoff 1886

10 89 27 1911 Powers 1911

11 107 33 1913 Powers 1914

12 127 39 1876 Lucas 1876

13 521 157 1952 Lehmer 1952 �/, Robinson 1952

14 607 183 1952 Lehmer 1952 �/, Robinson 1952

15 1279 386 1952 Lehmer 1952 �/, Robinson 1952

16 2203 664 1952 Lehmer 1952 �/, Robinson 1952

17 2281 687 1952 Lehmer 1952 �/, Robinson 1952

18 3217 969 1957 Riesel 1957

19 4253 1281 1961 Hurwitz 1961

20 4423 1332 1961 Hurwitz 1961

21 9689 2917 1963 Gillies 1964

22 9941 2993 1963 Gillies 1964

23 11213 3376 1963 Gillies 1964

24 19937 6002 1971 Tuckerman 1971

25 21701 6533 1978 Noll and Nickel 1980

26 23209 6987 1979 Noll 1980

27 44497 13395 1979 Nelson and Slowinski 1979

28 86243 25962 1982 Slowinski 1982

29 110503 33265 1988 Colquitt and Welsh 1991

30 132049 39751 1983 Slowinski 1988

31 216091 65050 1985 Slowinski 1989

32 756839 227832 1992 Gage and Slowinski 1992

33 859433 258716 1994 Gage and Slowinski 1994

34 1257787 378632 1996 Slowinski and Gage

35 1398269 420921 1996 Armengaud, Woltman, et al.

36? 2976221 895832 1997 Spence (Devlin 1997)



37? 3021377 909526 1998 Clarkson, Woltman, et al.

38? 6972593 2098960 1999 Hajratwala 1999

See also CUNNINGHAM NUMBER, DOUBLE MERSENNE

NUMBER, FERMAT-LUCAS NUMBER, FERMAT NUMBER,
FERMAT NUMBER (LUCAS), FERMAT POLYNOMIAL,
LUCAS-LEHMER TEST, MERSENNE NUMBER, PERFECT

NUMBER, REPUNIT, SUPERPERFECT NUMBER
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Mertens Conjecture
Given MERTENS FUNCTION defined by

M(n)�
Xn

k�1

m(k); (1)

where m(n) is the MÖBIUS FUNCTION, Mertens (1897)
conjecture states that

M(x)j jB x1=2 (2)

for x �1. The conjecture has important implications,
since the truth of any equality OF THE FORM

M(x)j j5cx1=2 (3)

for any fixed c (the form of Mertens conjecture with
c�1) would imply the RIEMANN HYPOTHESIS. In 1885,
Stieltjes claimed that he had a proof that M(x)x�1=2

always stayed between two fixed bounds. However, it
seems likely that Stieltjes was mistaken.

Mertens conjecture was proved false by Odlyzko and
te Riele (1985). Their proof is indirect and does not
produce a specific counterexample, but it does show
that

lim sup
x0


M(x)x�1=2 > 1:06 (4)



lim inf
x0


M(x)x�1 =2 B�1:009: (5)

Odlyzko and te Riele (1985) believe that there are no
counterexamples to Mertens conjecture for x 51020 ;
or even 1030. Pintz (1987) subsequently showed that
at least one counterexample to the conjecture occurs
for x 51065 ; using a weighted integral average of
M(x) =x and a discrete sum involving nontrivial zeros
of the RIEMANN ZETA FUNCTION.

It is still not known if

lim sup
x0


M(x)j jx�1=2 �
; (6)

although it seems very probable (Odlyzko and te Riele
1985).

See also MERTENS FUNCTION, MÖ BIUS FUNCTION,
RIEMANN HYPOTHESIS
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Mertens Constant
N.B. Portions of this entry based on a detailed online
essay by S. Finch.

A constant related to the TWIN PRIMES CONSTANT

which appears in HARMONIC SERIES for the SUM of
reciprocal PRIMES

Xx

p prime

1

p 
�ln ln x �B1 �o(1) ; (1)

which is given by

B1 � g �
X

p prime

ln 1 �p �1
� �

�
1

p

" #
:0:2614972128; (2)

where g is the EULER-MASCHERONI CONSTANT (Rosser

and Schoenfeld 1962; Le Lionnais 1983; Ellison and
Ellison 1985; Hardy and Wright 1985). According to
Lindqvist and Peetre (1997), this was shown inde-
pendently by Meissel in 1866 and Mertens (1874). (2)
is equivalent to

Y
p 5x

1 �
1

p

 !
�

e� g

ln x 
; (3)

where g is the EULER-MASCHERONI CONSTANT (Hardy
1999, p. 57). Knuth (1998) gives 40 digits of B1 ; and
Gourdon and Sebah give 100 digits. The constant is
sometimes known as Kronecker’s constant (Schroeder
1997).

A rapidly converging series for B1 is given by

B1 � g �
X

m�2

m(m)

m
ln z(m)½ 
; (4)

where g is the EULER-MASCHERONI CONSTANT, z(n) is
the RIEMANN ZETA FUNCTION, and m(n) is the MÖ BIUS

FUNCTION (Flajolet and Vardi 1996, Schroeder 1997,
Knuth 1998).

The constant B1 also occurs in the SUMMATORY

FUNCTION of the number of DISTINCT PRIME FACTORS

v(k) ;

Xn

k �2

v(k) �n ln ln n �B1n �o(n) (5)

(Hardy and Wright 1979, p. 355).

The related constant

B2�g�
X

p prime

ln 1�p�1
� �

�
1

p � 1

" #
:1:034653 (6)

appears in the SUMMATORY FUNCTION of the DIVISOR

FUNCTION s0(n)�V(n);

Xn

k�2

V(k)�n ln ln n�B2�o(n) (7)

(Hardy and Wright 1979, p. 355).

Another related series is

lim
n0


Xp(n)

k�1

ln pk

pk

�ln n

 !
��g�

X

j�2

X

k�1

ln pk

pj
k

��C2��1:3325822757 . . . (8)

(Rosser and Schoenfeld 1962, Montgomery 1971,
Finch).

See also BRUN’S CONSTANT, HARMONIC SERIES, PRIME

FACTORS, PRIME NUMBER, TWIN PRIMES CONSTANT
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Mertens Function

The summary function

M(n) �
Xn

k�1

m(k) ; (1)

where m(n) is the MÖ BIUS FUNCTION. The first few
values are 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, ...
(Sloane’s A002321). The first few values of n at which
M(n) �0 are 2, 39, 40, 58, 65, 93, 101, 145, 149, 150, ...
(Sloane’s A028442).
The Mertens function is related to the number of
SQUAREFREE integers up to n , which is the sum from 1
to n of the absolute value of m(k) ;

Xn

k �1

m(k)j j� 6

p2
n �O

ffiffiffi
n

p� �
: (2)

The Mertens function obeys

Xx

n�1

M
x

n

 !
�1 (3)

(Lehman 1960). The analytic form is unsolved,
although MERTENS CONJECTURE that

M(x)j jB x1 =2 (4)

has been disproved.

Lehman (1960) gives an algorithm for computing
M(x) with O x2=3 �e

� �
operations, while the Lagarias-

Odlyzko (1987) algorithm for computing the PRIME

COUNTING FUNCTION p(x) can be modified to give M(x)
in O x3=5� e

� �
operations.

See also MERTENS CONJECTURE, MÖ BIUS FUNCTION,
SQUAREFREE
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Mertens Theorem

lim
x0


Q
25p5x
p prime

1 �
1

p

 !
e�g

ln x

�1;

where g is the EULER-MASCHERONI CONSTANT and
e�g�0:56145 . . . :/

See also EULER PRODUCT
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Mertz Apodization Function

An asymmetrical APODIZATION FUNCTION defined by

M(x; b; d) �

0 for x B�b
(x �b) =(2b) for �b Bx Bb
1 for b Bx Bb �2d
0 for x Bb �2d;

8>><
>>:

where the two-sided portion is 2b long (total) and the
one-sided portion is b �2d long (Schnopper and
Thompson 1974, p. 508). The APPARATUS FUNCTION is

MA(k ; b; d) �
sin[2pk(b � 2d)]

2pk

�i
cos[2 pk(b � 2d)]

2pk
�

sin(2b)

4p2k2b

( )
:

References
Schnopper, H. W. and Thompson, R. I. "Fourier Spectro-

meters." In Methods of Experimental Physics 12A. New
York: Academic Press, pp. 491 �/29, 1974.

Mesh

See also FINITE ELEMENT METHOD, LATTICE POINT,
MESH SIZE
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Mesh Size
When a CLOSED INTERVAL [a, b ] is partitioned by
points a Bx1 Bx2 B. . .Bxn�1 Bb ; the lengths of the
resulting intervals between the points are denoted
Dx1 ; Dx2 ; ..., Dxn ; and the value max Dxk is called the
mesh size of the partition.

See also INTEGRAL, LOWER SUM, RIEMANN INTEGRAL,
UPPER SUM

Mesokurtic
A distribution with zero KURTOSIS g2 �0ð Þ:/

See also KURTOSIS, LEPTOKURTIC

M-Estimate
A ROBUST ESTIMATION based on maximum likelihood
argument.

See also L -ESTIMATE, R -ESTIMATE
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Metabiaugmented Dodecahedron

JOHNSON SOLID J60:/
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Metabiaugmented Hexagonal Prism

JOHNSON SOLID J56:/
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Metabiaugmented Truncated
Dodecahedron

JOHNSON SOLID J70 :/
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Metabidiminished Icosahedron

JOHNSON SOLID J62 :/
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Metabidiminished
Rhombicosidodecahedron

JOHNSON SOLID J81 :/
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Metabigyrate Rhombicosidodecahedron

JOHNSON SOLID J74 :/
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Metacyclic Group

See also CYCLIC GROUP
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Metadrome
A metadrome is a number whose HEXADECIMAL digits
are in strict ascending order. The first few are 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, ...
(Sloane’s A023784). The first few numbers which are
not metadromes are 16, 17, 32, 33, 34, ..., correspond-
ing to 1016; 1116; 2016; 2116; 2216; ....

See also DIGIT, HEXADECIMAL, KATADROME, NIALP-

DROME, PLAINDROME
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Metagyrate Diminished
Rhombicosidodecahedron

JOHNSON SOLID J78 :/
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Metalogic
METAMATHEMATICS

Metamathematics
The branch of LOGIC dealing with the study of the
combination and application of mathematical sym-
bols, sometimes called METALOGIC. Metamathematics
is the study of MATHEMATICS itself, and one of its
primary goals is to determine the nature of mathe-
matical reasoning (Hofstadter 1989).

See also LOGIC, MATHEMATICS
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Meteorology Theorem
Somewhere on the Earth, there is a pair of ANTIPODAL

POINTS having simultaneously the same temperature
and pressure.
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Method
A particular way of doing something, sometimes also
called an ALGORITHM or PROCEDURE. (According to
Petkovsek et al. (1996), "a method is a trick that has
worked at least twice.")
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Method of Exclusions
A method used by Gauss to solve the quadratic
DIOPHANTINE EQUATION OF THE FORM

mx2 �ny2 �A

(Dickson 1992, pp. 391 and 407).
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Method of False Position

An ALGORITHM for finding ROOTS which retains that
prior estimate for which the function value has
opposite sign from the function value at the current
best estimate of the root. In this way, the method of
false position keeps the root bracketed (Press et al.
1992).
Using the two-point form of the line

y�y1�
f xn�1ð Þ� f x1ð Þ

xn�1 � x1

xn�x1ð Þ

with y�0, using y1�f x1ð Þ; and solving for xn there-
fore gives the iteration

xn�x1�
xn�1 � x1

f xn�1ð Þ� f x1ð Þ
f x1ð Þ:

See also BRENT’S METHOD, RIDDERS’ METHOD, SE-

CANT METHOD
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Method of Reduction
METHOD OF EXCLUSIONS

Metric
A NONNEGATIVE function g(x; y) describing the "DIS-

TANCE" between neighboring points for a given SET. A
metric satisfies the TRIANGLE INEQUALITY

g(x; y) �g(y; z) ]g(x; z) (1)

and is SYMMETRIC, so

g(x ; y) �g(y; x): (2)

A metric also satisfies

g(x; x) �0: (3)

A SET possessing a metric is called a METRIC SPACE.
When viewed as a TENSOR, the metric is called a
METRIC TENSOR.

See also CAYLEY-KLEIN-HILBERT METRIC, DISTANCE,
FRENCH METRO METRIC, FUNDAMENTAL FORMS, HY-

PERBOLIC METRIC, METRIC ENTROPY, METRIC EQUIVA-

LENCE PROBLEM, METRIC SPACE, METRIC TENSOR,
PART METRIC, RIEMANNIAN METRIC, ULTRAMETRIC

References
Gray, A. "Metrics on Surfaces." Ch. 15 in Modern Differ-

ential Geometry of Curves and Surfaces with Mathema-
tica, 2nd ed. Boca Raton, FL: CRC Press, pp. 341 �/58,
1997.

Metric Entropy
Also known as KOLMOGOROV ENTROPY, KOLMOGOROV-

SINAI ENTROPY, or KS Entropy. The metric entropy is
0 for nonchaotic motion and > 0 for CHAOTIC motion.

References
Ott, E. Chaos in Dynamical Systems. New York: Cambridge

University Press, p. 138, 1993.

Metric Equivalence Problem

1. Find a complete system of invariants, or
2. decide when two METRICS differ only by a
coordinate transformation.

The most common statement of the problem is, "Given
METRICS g and g?; does there exist a coordinate
transformation from one to the other?" Christoffel
and Lipschitz (1870) showed how to decide this
question for two RIEMANNIAN METRICS.

The solution by É . Cartan requires computation of
the 10th order COVARIANT DERIVATIVES. The demon-
stration was simplified by A. Karlhede using the

TETRAD formalism so that only seventh order COVAR-

IANT DERIVATIVES need be computed. however, in
many common cases, the first or second-order DERI-

VATIVES are SUFFICIENT to answer the question.

References
Karlhede, A. and Lindström, U. "Finding Space-Time Geo-

metries without Using a Metric." Gen. Relativity Gravita-
tion 15, 597 �/10, 1983.

Metric Space
A SET S with a global distance FUNCTION (the METRIC

g ) which, for every two points x, y in S , gives the
DISTANCE between them as a NONNEGATIVE REAL

NUMBER g(x; y) : A metric space must also satisfy

1. g(x; y) �0 IFF x �y ,
2. g(x; y) �g(y; x) ;/
3. The TRIANGLE INEQUALITY g(x; y)�/

/g(y; z)]g(x; z):/

See also UNIVERSAL METRIC SPACE
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Munkres, J. R. Topology: A First Course. Englewood Cliffs,

NJ: Prentice-Hall, 1975.
Rudin, W. Principles of Mathematical Analysis. New York:

McGraw-Hill, 1976.

Metric Tensor
A TENSOR, also called a RIEMANNIAN METRIC, which is
symmetric and POSITIVE DEFINITE. Very roughly, the
metric tensor gij is a function which tells how to
compute the distance between any two points in a
given SPACE. Its components can be viewed as multi-
plication factors which must be placed in front of the
differential displacements dxi in a generalized PYTHA-

GOREAN THEOREM

ds2�g11 dx2
1�g12 dx1 dx2�g22 dx2

2�. . . : (1)

In EUCLIDEAN SPACE, gij�dij where d is the KRO-

NECKER DELTA (which is 0 for i"j and 1 for i� j ),
reproducing the usual form of the PYTHAGOREAN

THEOREM

ds2�dx2
1�dx2

2�. . . : (2)

The metric tensor is defined abstractly as an INNER

PRODUCT of every TANGENT SPACE of a MANIFOLD such
that the INNER PRODUCT is a symmetric, nondegene-
rate, BILINEAR FORM on a VECTOR SPACE. This means
that it takes two VECTORS v; w as arguments and
produces a REAL NUMBER v; wh i such that

kv; wh i�k v; wh i� v; kwh i (3)

v�w; xh i� v; xh i� w; xh i (4)

v; w�xh i� v; wh i� v; xh i (5)

v; wh i� w; vh i (6)



v; vh i]0 ; (7)

with equality IFF v �0:/

In coordinate NOTATION (with respect to the basis),

g ab � �e a � �eb (8)

gab � �ea � �e b : (9)

gmn �
@ ja

@xm

@ jb

@xn
hab ; (10)

where hab is the MINKOWSKI METRIC. This can also be
written

g �DT hD ; (11)

where

Dam �
@ ja

@xm 
(12)

DT
am �D ma : (13)

@

@xm
gilg

lk �
@

@xm
dk

i (14)

gives

gil

@glk

@xm 
��glk @gil

@xm 
: (15)

The metric is POSITIVE DEFINITE, so a metric’s
DISCRIMINANT is POSITIVE. For a metric in 2-space,

g �g11g22 �g2
12 > 0: (16)

The ORTHOGONALITY of CONTRAVARIANT and COVAR-

IANT metrics stipulated by

gikgij � d
j
k (17)

for i �1, ..., n gives n linear equations relating the 2n
quantities gij and gij : therefore, if n metrics are
known, the others can be determined.

in 2-space,

g11 �
g22

g 
(18)

g12 �g21 ��
g12

g 
(19)

g22 �
g11

g
: (20)

if g is symmetric, then

gab �g ba (21)

g ab �g ba : (22)

in EUCLIDEAN SPACE (and all other symmetric

SPACES),

g ba �g ba � db
a ; (23)

so

gaa �
1

gaa 
: (24)

The ANGLE f between two parametric curves is given
by

cos f �r̂1 � r̂2 �
r1

g1

�
r2

g2

�
g12

g1g2

; (25)

so

sin f �
ffiffiffi
g

p

g1g2

(26)

and

r1 �r2j j�g1g2 sin f �
ffiffiffi
g

p
: (27)

The LINE ELEMENT can be written

ds2 �dxi dxi �gij dqi dqj (28)

where EINSTEIN SUMMATION has been used. But

dxi �
@xi

@q1

dq1 �
@xi

@q2

dq2 �
@xi

@q3

dq3 �
@xi

@qj

dqj ; (29)

so

gij �
X

k

@2xk

@qi @qj

: (30)

For ORTHOGONAL coordinate systems, gij �0 for i "j;
and the LINE ELEMENT becomes (for 3-space)

ds2 �g11 dq2
1 �g22 dq2

2 �g33 dq2
3

� h1 dq1ð Þ2� h2 dq2ð Þ2� h3 dq3ð Þ2
; (31)

where hi �
ffiffiffiffiffi
gii

p
are called the SCALE FACTORS.

See also CURVILINEAR COORDINATES, DISCRIMINANT

(METRIC), LICHNEROWICZ CONDITIONS, LINE ELE-

MENT, METRIC, METRIC EQUIVALENCE PROBLEM,
MINKOWSKI SPACE, SCALE FACTOR, SPACE

Metropolis Algorithm
SIMULATED ANNEALING

Mex
The MINIMUM excluded value. The mex of a SET S of
NONNEGATIVE INTEGERS is the least NONNEGATIVE

INTEGER not in the set.

See also MEX SEQUENCE
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Mex Sequence
A sequence defined from a FINITE sequence a0 ; a1 ; ...,
an by defining an�1 �mexi ai �an�ið Þ; where mex is
the MEX (minimum excluded value).

See also MAX SEQUENCE, MEX
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Mian-Chowla Sequence
The sequence produced by starting with a1 �1 and
applying the GREEDY ALGORITHM in the following
way: for each k ]2; let ak be the least INTEGER

exceeding ak �1 for which aj �ak are all distinct,
with 1 5j 5k: This procedure generates the sequence
1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204,
252, 290, ... (Sloane’s A005282). The RECIPROCAL sum
of the sequence,

S �
X

i�1

1

ai

satisfies

2 :158435 5S 52:158677

(R. Lewis).

See also A -SEQUENCE, B2-SEQUENCE
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Mice Problem

n mice start at the corners of a regular n -gon of unit
side length, each heading towards its closest neigh-
boring mouse in a counterclockwise direction at

constant speed. The mice each trace out a LOGARITH-

MIC SPIRAL, meet in the center of the POLYGON, and
travel a distance

dn �
1

1 � cos
2p

n

 ! :

The first few values for n �2, 3, ..., are

1
2 ;

2
3 ; 1; 1

5 5 �
ffiffiffi
5

p	 

; 2;

1

1 � cos
2p

7

 ! ;

2 �
ffiffiffi
2

p
;

1

1 � cos
2 p

9

 ! ; 3 �
ffiffiffiffi
5;

p
. . .  ;

giving the numerical values 0.5, 0.666667, 1, 1.44721,
2, 2.65597, 3.41421, 4.27432, 5.23607, .... The curve
formed by connecting the mice at regular intervals of
time is an attractive figure called a WHIRL.

The problem is also variously known as the (three,
four, etc.) (bug, dog, etc.) problem. It can be general-
ized to irregular polygons and mice traveling at
differing speeds (Bernhart 1959). Miller (1871) con-
sidered three mice in general positions with speeds
adjusted to keep paths similar and the triangle
similar to the original.

See also APOLLONIUS PURSUIT PROBLEM, PURSUIT

CURVE, SPIRAL, TRACTRIX, WHIRL
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Microlocal Analysis
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Mid-Arc Points

The mid-arc points MAB ; MAC ; and MBC of a TRIANGLE

DABC are the points on the CIRCUMCIRCLE of the
triangle which lie half-way along each of the three
ARCS determined by the vertices (Johnson 1929).
These points arise in the definition of the FUHRMANN

CIRCLE and FUHRMANN TRIANGLE, and lie on the
extensions of the PERPENDICULAR BISECTORS of the
triangle sides drawn from the CIRCUMCENTER O .
Kimberling (1988, 1994) and Kimberling and Veld-
kamp (1987) define the mid-arc points as the POINTS

which have TRIANGLE CENTER FUNCTIONS

a1 � cos 1
2 B
	 


�cos 1
2 C
	 
h i

sec 1
2 A
	 


a2 � cos 1
2 B
	 


�cos 1
2 C
	 
h i

csc 1
2 A
	 


:

See also ARC, CYCLIC QUADRILATERAL, FUHRMANN

CIRCLE, FUHRMANN TRIANGLE

References
Johnson, R. A. Modern Geometry: An Elementary Treatise on

the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, pp. 228 �/29, 1929.

Kimberling, C. "Problem 804." Nieuw Archief voor Wiskunde
6, 170, 1988.

Kimberling, C. "Central Points and Central Lines in the
Plane of a Triangle." Math. Mag. 67, 163 �/87, 1994.

Kimberling, C. and Veldkamp, G. R. "Problem 1160 and
Solution." Crux Math. 13, 298 �/99, 1987.

Midcircle

The midcircle of two given CIRCLES is the CIRCLE

which would INVERT the circles into each other. Dixon
(1991) gives constructions for the midcircle for four of
the five possible configurations. In the case of the two
given CIRCLES tangent to each other, there are two
midcircles.

See also INVERSION, INVERSION CIRCLE
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Middlespoint
MITTENPUNKT

Midpoint

The point on a LINE SEGMENT dividing it into two
segments of equal length. The midpoint of a line
segment is easy to locate by first constructing a LENS

using circular arcs, then connecting the cusps of the
LENS. The point where the cusp-connecting line
intersects the segment is then the midpoint (Pedoe
1995, p. xii). It is more challenging to locate the
midpoint using only a COMPASS (i.e., a MASCHERONI

CONSTRUCTION).
In a RIGHT TRIANGLE, the midpoint of the HYPOTE-

NUSE is equidistant from the three VERTICES (Dun-
ham 1990).



Given a TRIANGLE da1a2a3 with AREA d ; locate the
midpoints mi : now inscribe two triangles dp1p2p3 and
dq1q2q3 with VERTICES Pi and Qi placed so that
PiMi �QiMi : Then DP1P2P3 and DQ1Q2Q3 have equal
areas

DP �DQ

�D 1 �
m1

a1

�
m2

a2

�
m3

a3

 !
�

m2m2

a2a3

�
m3m1

a3a1

�
m1m2

a1a2

" #
;

where ai are the sides of the original triangle and mi

are the lengths of the MEDIANS (Johnson 1929).

See also ANTICENTER, ARCHIMEDES’ MIDPOINT THEO-

REM, BIMEDIAN, BRAHMAGUPTA’S THEOREM, BROCARD

MIDPOINT, CIRCLE-POINT MIDPOINT THEOREM, CLEA-

VER, DROZ-FARNY THEOREM, LINE SEGMENT, MAL-

TITUDE, MASCHERONI CONSTRUCTION, MEDIAN

(TRIANGLE), MEDIATOR, MIDPOINT ELLIPSE
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Midpoint Ellipse
The unique ELLIPSE tangent to the MIDPOINTS of a
TRIANGLE’S LEGS. The midpoint ellipse has the max-
imum AREA of any INSCRIBED ELLIPSE (Chakerian
1979). Under an AFFINE TRANSFORMATION, the mid-
point ellipse can be transformed into the INCIRCLE of
an EQUILATERAL TRIANGLE.

See also AFFINE TRANSFORMATION, ELLIPSE, INCIR-

CLE, MIDPOINT, TRIANGLE
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Midpoint Polygon

A DERIVED POLYGON with side ratios chosen as r �1=2
so that inscribed polygons are constructed by con-
necting the midpoints of the base polygon. For a
TRIANGLE P , the midpoint-inscribed polygons P1 ; P2 ;
... are similar triangles. For a QUADRILATERAL P , the
midpoint-inscribed polygon P1 is a PARALLELOGRAM

known as the VARIGNON PARALLELOGRAM, and P1 ; P3 ;
P5 ; ... are similar parallelograms, as are P2 ; P4 ; P6 ; ....

See also DERIVED POLYGON, MIDPOINT, VARIGNON

PARALLELOGRAM, VARIGNON’S THEOREM
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Midradius

The RADIUS r of the MIDSPHERE of a POLYHEDRON,
also called the interradius. Let P be a point on the
original polyhedron and P? the corresponding point P
on the dual. Then because P and P? are INVERSE

POINTS, the radii r�OP?; R�OP , and r�OQ satisfy

rR�r2:

The above figure shows a plane section of a mid-
sphere.
Let r be the INRADIUS the dual polyhedron, R
CIRCUMRADIUS of the original polyhedron, and a the
side length of the original polyhedron. (For a PLA-

TONIC SOLID or ARCHIMEDEAN SOLID, r is not only the
INRADIUS of the dual polyhedron, but also the INRA-

DIUS of the original polyhedron.) For a REGULAR

POLYHEDRON with SCHLÄFLI SYMBOL fq; pg; the
DUAL POLYHEDRON is fp; qg: Then

r2� a csc
p

p

 !" #2

�R2�a2�r2 (1)



r2 � a cot
p

p

 !" #2

�R2 : (2)

Furthermore, let u be the ANGLE subtended by the
EDGE of an ARCHIMEDEAN SOLID. Then

r �1
2 a cos 1

2 u
	 


cot 1
2 u
	 


(3)

r �1
2 a cot 1

2 u
	 


(4)

R �1
2 a csc 1

2 u
	 


; (5)

so

r : r : R �cos 1
2 u
	 


: 1 : sec 1
2 u
	 


(6)

(Cundy and Rollett 1989). Expressing the midradius
in terms of the INRADIUS r and CIRCUMRADIUS R gives

r �1
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �a2

pq

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �1

4 a
2

q
(7)

for an ARCHIMEDEAN SOLID.
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Midrange

midrange[f (x)] �1
2 fmax[f (x)] �min[f (x)]g:

See also MAXIMUM, MEAN, MEDIAN (STATISTICS),
MINIMUM
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Midsphere

The SPHERE with respect to which the VERTICES of a
POLYHEDRON are the POLES of the planes of the faces
of the DUAL POLYHEDRON (and vice versa), also called
the intersphere, reciprocating sphere, or INVERSION

SPHERE. The midsphere touches all EDGES of a
SEMIREGULAR or REGULAR POLYHEDRON, as well as
the edges of the dual of that solid (Cundy and Rollett
1989, p. 117). The radius r of the midsphere is called

the MIDRADIUS. The figure above shows the Platonic
solids and their duals, with the CIRCUMSPHERE of the
solid, MIDSPHERE, and INSPHERE of the dual super-
posed.

See also CIRCUMSPHERE, DUAL POLYHEDRON, IN-

SPHERE, MIDRADIUS, POLE (INVERSION)
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Midvalue
CLASS MARK

Midy’s Theorem
If the period of a REPEATING DECIMAL for a =p has an
EVEN number of digits, the sum of the two halves is a
string of 9s, where p is PRIME and a =p is a REDUCED

FRACTION.

See also DECIMAL EXPANSION, REPEATING DECIMAL
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Mikusinski’s Problem
Is it possible to cover completely the surface of a
SPHERE with congruent, nonoverlapping arcs of
GREAT CIRCLES? Conway and Croft (1964) proved
that it can be covered with half-open arcs, but not
with open arcs. They also showed that the PLANE can
be covered with congruent closed and half-open
segments, but not with open ones.
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Milin Conjecture
An INEQUALITY which IMPLIES the correctness of the
ROBERTSON CONJECTURE (Milin 1971). de Branges
(1985) proved this conjecture, which led to the proof of
the full BIEBERBACH CONJECTURE.

See also BIEBERBACH CONJECTURE, ROBERTSON CON-

JECTURE
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Mill Curve

The n -roll mill curve is given by the equation

xn �
n
2

� �
xn�2y2 �

n
4

� �
xn�4y4 �� � ��an ;

where n
k

� �
is a BINOMIAL COEFFICIENT.
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Miller-Aškinuze Solid
ELONGATED SQUARE GYROBICUPOLA

Miller Cylindrical Projection

A MAP PROJECTION given by the following transforma-
tion,

x � l � l0 (1)

y �5
4 ln tan 1

4 p �
2
5 f

	 
h i
(2)

�5
4 sinh�1 tan 4

5 f
	 
h i

: (3)

Here x and y are the plane coordinates of a projected
point, l is the longitude of a point on the globe, l0 is

central longitude used for the projection, and f is the
latitude of the point on the globe. The inverse
FORMULAS are

f �5
2 tan�1 e4y=5

� �
�5

8 p �
5
4 tan �1 sinh 4

5 y
	 
h i

(4)

l � l0 �x: (5)

See also EQUIDISTANT PROJECTION, MILLER EQUIDI-

STANT PROJECTION
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Miller Equidistant Projection

Several CYLINDRICAL EQUIDISTANT PROJECTIONS were
devised by R. Miller. Miller’s projections have stan-
dard parallels of f1 �37�30 ? (giving minimal overall
scale distortion), f1�43� (giving minimal scale dis-
tortion over continents), and f1�50�28? (Miller
1949).

See also CYLINDRICAL EQUIDISTANT PROJECTION,
MILLER CYLINDRICAL PROJECTION
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Miller’s Algorithm
For a catastrophically unstable recurrence in one
direction, any seed values for consecutive xj and xj�1

will converge to the desired sequence of functions in
the opposite direction times an unknown normal-
ization factor.

Miller’s Primality Test

If a number fails this test, it is not a PRIME. If the
number passes, it may be a PRIME. A number passing
Miller’s test is called a STRONG PSEUDOPRIME to base
a . If a number n does not pass the test, then it is
called a WITNESS for the COMPOSITENESS of n . If n is
an ODD, POSITIVE COMPOSITE NUMBER, then n passes
Miller’s test for at most (n �1)=4 bases with 1 5a 5
�1 (Long 1995). There is no analog of CARMICHAEL

NUMBERS for STRONG PSEUDOPRIMES.

The only COMPOSITE NUMBER less than 2:5 �1013

which does not have 2, 3, 5, or 7 as a WITNESS is
3215031751. Miller showed that any composite n has
a WITNESS less than 70(ln n)2 if the RIEMANN HYPOTH-

ESIS is true.

See also ADLEMAN-POMERANCE-RUMELY PRIMALITY

TEST, STRONG PSEUDOPRIME
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Miller’s Solid
ELONGATED SQUARE GYROBICUPOLA

Milliard
In British, French, and German usage, one milliard
equals 109. American usage does not have a number
called the milliard, instead using the term BILLION to
denote 109.

See also BILLION, LARGE NUMBER, MILLION, TRILLION

Millin Series
The series with sum

S?�
X

n�0

1

F2n

�1
2 7 �

ffiffiffi
5

p	 

;

where /Fk/ is a FIBONACCI NUMBER (Honsberger 1985).

See also FIBONACCI NUMBER
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Million
The number 1,000,000 �106. While one million in the
"American" system of numbers means the same thing
as one million in the "British" system, the words
BILLION, TRILLION, etc., refer to different numbers in
the two naming systems. Fortunately, in recent
years, the "American" system has become common
in both the United States and Britain.

While Americans may say "Thanks a million" to
express gratitude, Norwegians offer "Thanks a thou-
sand" ("tusen takk").

See also BILLION, LARGE NUMBER, MILLIARD, THOU-

SAND, TRILLION

Mills’ Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Mills (1947) proved the existence of a constant

u�1:306377883863080690 . . . (1)

(Sloane’s A051021) such that

f (n)� u3n6 7
(2)

is PRIME for all n/]1; where xb c is the FLOOR FUNC-

TION. It is not, however, known if u is IRRATIONAL.
The first few values of f (n) are 2, 11, 1361,
2521008887, ... (Sloane’s A051254).

Mills’ proof was based on the following theorem by
Hoheisel (1930) and Ingham (1937). Let pn be the nth
PRIME, then there exists a constant K such that

pn�1�pnBKp5=8
n (3)

for all n . This has more recently been strengthened to

pn�1�pnBKp1051=1920
n (4)

(Mozzochi 1986). If the RIEMANN HYPOTHESIS is true,
then Cramér (1937) showed that

pn�1�pn�O ln pn

ffiffiffiffiffi
pn

p� �
(5)

(Finch).

Hardy and Wright (1979) and Ribenboim (1996) point
out that, despite the beauty of such PRIME FORMULAS,
they do not have any practical consequences. In fact,
unless the exact value of u is known, the PRIMES

themselves must be known in advance to determine u:
The numbers generated by f (n) grow very rapidly,
with the first few being 2, 11, 1361, ....

A generalization of Mills’ theorem to an arbitrary
sequence of POSITIVE INTEGERS is given as an exercise



by Ellison and Ellison (1985). Consequently, infi-
nitely many values for u other than the number
1:3063 . . . are possible.

See also CEILING FUNCTION, PRIME FORMULAS, PRIME

NUMBER
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Mills-Robbins-Rumsey Determinant
Formula

det
i �j � m

2i �j

� �n�1

i; j �0

�2�n
Yn�1

k�0

D2k(2 m);

where m is an indeterminate, D0( m) �2;

D2j( m) �
(m � 2j � 2)j

1
2 m2j � 3

2

	 

j�1

(j)j
1
2 m � j � 3

2

	 

j�1

;

for j �1, 2, ..., and (x)j �x(x �1) � � � (x �j �1) is the
RISING FACTORIAL (Mills et al. 1987, Andrews and
Burge 1993).
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Milne’s Method
A PREDICTOR-CORRECTOR METHOD for solution of
ORDINARY DIFFERENTIAL EQUATIONS. The third-order
equations for predictor and corrector are

yn�1 �yn�3 �
4
3 h(2y?n �y?n �1 �2y?n �2) �O(h5)

yn�1 �yn�1 �
1
3 h(y?n�1 �4y?n �y?n �1) �O(h5):

Abramowitz and Stegun (1972) also give the fifth
order equations and formulas involving higher deri-
vatives.

See also ADAMS’ METHOD, GILL’S METHOD, PREDIC-

TOR-CORRECTOR METHODS, RUNGE-KUTTA METHOD
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Milnor’s Conjecture
The UNKNOTTING NUMBER for a TORUS KNOT (p, q ) is
(p �1)(q �1)=2: This 40-year-old CONJECTURE was
proved (Adams 1994) in Kronheimer and Mrowka
(1993, 1995).

See also TORUS KNOT, UNKNOTTING NUMBER
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Milnor’s Theorem
If a COMPACT MANIFOLD M has NONNEGATIVE RICCI

CURVATURE, then its FUNDAMENTAL GROUP has at
most POLYNOMIAL growth. On the other hand, if M
has NEGATIVE curvature, then its FUNDAMENTAL

GROUP has exponential growth in the sense that n( l)
grows exponentially, where n( l) is (essentially) the
number of different "words" of length l which can be
made in the FUNDAMENTAL GROUP.
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Min
MINIMUM

Mincut
Let G �(V ; E) be a (not necessarily simple) UNDIR-

ECTED edge-weighted graph with nonnegative
weights. A cut C of G is any nontrivial subset of V ,
and the weight of the cut is the sum of weights of
edges crossing the cut. A mincut is then defined as a
cut of G of minimum weight. The problem is NP-
complete for general graphs, but polynomial-time
solvable for trees.

See also BOOLEAN FUNCTION, WEIGHTED GRAPH
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Minimal Cover
A minimal cover is a COVER for which removal of any
single member destroys the covering property. For
example, of the five COVERS of f1; 2g; namely
ff1g; f2 gg; ff1; 2gg; ff1 g; f1 ; 2 gg; ff2g; f1; 2gg;
and ff1g; f2g; f1; 2gg; only ff1 g; f2 gg and ff1; 2gg
are minimal covers. Similarly, the minimal covers of
f1; 2; 3g are given by ff1g; f2g; f3gg; ff1 ; 2 g; f3gg;
ff1; 3g; f2gg; ff1; 2g; f2; 3gg; ff1; 2g; f2; 3gg;
ff1; 2; 3gg; ff1 ; 2 g; f1 ; 3 gg; ff1 ; 2 g; f2 ; 3 gg: The
number of minimal covers of n members for n �1,
2, ..., are 1, 2, 8, 49, 462, 6424, 129425, ... (Sloane’s
A046165).

Let m(n ; k) be the number of minimal covers of
f1; . . . ; ng with k members. Then

m(n; k) �
1

k!

Xak

m�k

2k �k �1
m �k

� �
m!s(n; m) ;

where n
k

� �
is a BINOMIAL COEFFICIENT, s(n; m) is a

STIRLING NUMBER OF THE SECOND KIND, and

ak �min(n; 2k �1):

Special cases include m(n ; 1) �1 and m(n; 2) �s(n �
1; 3): The table below gives the a triangle of m(n ; k)
(Sloane’s A035348).

n k� 1 k � 2 k � 3 k � 4 k � 5 k � 6 k � 7

Sloane Sloane’s

A000392

Sloane’s

A003468

Sloane’s

A016111

Sloane’s

A046166

Sloane’s

A046167

Sloane’s

A057668

1 1

2 1  1

3 1  6  1

4 1 25 22 1

5 1 90 305 65 1

6 1 301 3410 2540 171 1

7 1 966 33621 77350 17066 420 1

8 1 3925 305382 2022951 1298346 100814 988

See also COVER, LEW K -GRAM, STIRLING NUMBER OF

THE SECOND KIND
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Minimal Discriminant
FREY CURVE

Minimal Matrix
A MATRIX with 0 DETERMINANT whose DETERMINANT

becomes NONZERO when any element on or below the
diagonal is changed from 0 to 1. An example is

M �

1 �1 0 0
0 0 �1 0
1 1 1 �1
0 0 1 0

2
664

3
775:

There are 2n �1 minimal SPECIAL MATRICES of size
n�n:/

See also SPECIAL MATRIX
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Minimal Polynomial (Matrix)
The minimal polynomial of a matrix A is the poly-
nomial in A of smallest degree n such that

p(A)�
Xn
i�0

ciA
i�0: (1)

The minimal polynomial divides any polynomial q
with q(A)�0 and, in particular, it divides the CHAR-

ACTERISTIC POLYNOMIAL. If the CHARACTERISTIC POLY-

NOMIAL factors as

char(A)(x)�(x�l1)
n1 . . . (x�lk)

nk ; (2)

then its minimal polynomial is

p(x)�(x�l1)m1 . . . (x�lk)mk (3)

with 15mi5ni:/

For example, the CHARACTERISTIC POLYNOMIAL of the
n�n ZERO MATRIX is (�1)nxn; and its minimal poly-
nomial is x . The CHARACTERISTIC POLYNOMIAL and
minimal polynomial of

0 1
0 0

� �
(4)

are the same (up to scalar multiple), x2:/

The following Mathematica command will find the
minimal polynomial for the SQUARE MATRIX a in the
variable x .

MinPolyMatrix[a_List,x_]:�



Modu-

le[{i,n �1,qu �{},mnm �{Flatten[IdentityMatr-

{Flatten[IdentityMatrix[Length[a]]]}},

While[Length[qu] ��0,

AppendTo[mnm,Flatten[MatrixPower[a,n]]];

qu �NullSpace[Transpose[mnm]];

n��
];

First[qu].Table[x^i,{i,0,n-1}]

]

See also CAYLEY-HAMILTON THEOREM, CHARACTERIS-

TIC POLYNOMIAL, MINIMAL POLYNOMIAL (ALGEBRAIC

NUMBER), RATIONAL CANONICAL FORM

References
Dummit, D. and Foote, R. Abstract Algebra. Englewood

Cliffs, NJ: Prentice-Hall, 1991.
Herstein, I. §6.7 in Topics in Algebra, 2nd ed. New York:

Wiley, 1975.
Jacobson, N. §3.10 in Basic Algebra I. New York:

W. H. Freeman, 1985.

Minimal Residue
The value b or b �m; whichever is smaller in
ABSOLUTE VALUE, where a �b (mod m) :/

See also RESIDUE (CONGRUENCE)

Minimal Set
A SET for which the dynamics can be generated by the
dynamics on any SUBSET.

Minimal Surface
Minimal surfaces are defined as surfaces with zero
MEAN CURVATURE. A minimal surface parametrized
as x �(u ; v ; h(u; v)) therefore satisfies LAGRANGE’S

EQUATION,

1 �f 2
v

� �
fuu �2fufvfuv � 1 �f 2

u

� �
fvv �0 :

Finding a minimal surface of a boundary with
specified constraints is a problem in the CALCULUS

OF VARIATIONS and is sometimes known at PLATEAU’S

PROBLEM. Minimal surfaces may also be character-
ized as surfaces of minimal SURFACE AREA for given
boundary conditions. A PLANE is a trivial MINIMAL

SURFACE, and the first nontrivial examples (the
CATENOID and HELICOID) were found by Meusnier in
1776 (Meusnier 1785). The problem of finding the
minimum bounding surface of a SKEW QUADRILAT-

ERAL was solved by Schwarz (1890).

Note that while a SPHERE is a "minimal surface" in
the sense that it minimizes the surface area-to-
volume ratio, it does not qualify as a minimal surface
in the sense used by mathematicians.

Euler proved that a minimal surface is planar IFF its
GAUSSIAN CURVATURE is zero at every point so that it
is locally SADDLE-shaped. The EXISTENCE of a solution

to the general case was independently proven by
Douglas (1931) and Radó (1933), although their
analysis could not exclude the possibility of singula-
rities. Osserman (1970) and Gulliver (1973) showed
that a minimizing solution cannot have singularities.

The only known complete (boundaryless), embedded
(no self-intersections) minimal surfaces of finite
topology known for 200 years were the CATENOID,
HELICOID, and PLANE. Hoffman discovered a three-
ended GENUS 1 minimal embedded surface, and
demonstrated the existence of an infinite number of
such surfaces. A four-ended embedded minimal sur-
face has also been found. L. Bers proved that any
finite isolated SINGULARITY of a single-valued para-
meterized minimal surface is removable.

A surface can be parameterized using a ISOTHERMAL

PARAMETERIZATION. Such a parameterization is mini-
mal if the coordinate functions xk are HARMONIC, i.e.,
fk( z) are ANALYTIC. A minimal surface can therefore
be defined by a triple of ANALYTIC FUNCTIONS such
that fk fk �0: The REAL parameterization is then
obtained as

xk�Rg fk(z) dz: (1)

But, for an ANALYTIC FUNCTION f and a MEROMORPHIC

FUNCTION g , the triple of functions

f1(z)�f (1�g2) (2)

f2(z)�if (1�g2) (3)

f3(z)�2fg (4)

are ANALYTIC as long as f has a zero of order]m at
every POLE of g of order m . This gives a minimal
surface in terms of the ENNEPER-WEIERSTRASS PARA-

METERIZATION

Rg
f (1�g2)
if (1�g2)

2fg

2
4

3
5 dz: (5)

See also BERNSTEIN MINIMAL SURFACE THEOREM,
BOUR’S MINIMAL SURFACE, BUBBLE, CALCULUS OF

VARIATIONS, CATALAN’S SURFACE, CATENOID, COM-

PLETE MINIMAL SURFACE, COSTA MINIMAL SURFACE,
DOUBLE BUBBLE, ENNEPER’S MINIMAL SURFACE, EN-

NEPER-WEIERSTRASS PARAMETERIZATION, FLAT SUR-

FACE, GYROID, HELICOID, HENNEBERG’S MINIMAL

SURFACE, HOFFMAN’S MINIMAL SURFACE, IMMERSED

MINIMAL SURFACE, LICHTENFELS MINIMAL SURFACE,
LOPEZ MINIMAL SURFACE, MEAN CURVATURE, NIR-

ENBERG’S CONJECTURE, OLIVEIRA’S MINIMAL SUR-

FACE, PARAMETERIZATION, PLANE, PLATEAU’S LAWS,
PLATEAU’S PROBLEM, SCHERK’S MINIMAL SURFACES,
SCHWARZ’S MINIMAL SURFACE, SURFACE AREA, TRI-

NOID
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Radó, T. "On the Problem of Plateau." Ergeben. d. Math. u.
ihrer Grenzgebiete. Berlin: Springer-Verlag, 1933.

Schwarz, H. A. Gesammelte Mathematische Abhandlungen,
2nd ed. New York: Chelsea.

Weisstein, E. W. "Books about Minimal Surfaces." http://
www.treasure-troves.com/books/MinimalSurfaces.html.

Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, pp. 185 �/87, 1991.

Minimax Approximation
A minimization of the MAXIMUM error for a fixed
number of terms.

See also REMEZ ALGORITHM

Minimax Polynomial
The approximating POLYNOMIAL which has the smal-
lest maximum deviation from the true function. It is
closely approximated by the CHEBYSHEV POLYNO-

MIALS OF THE FIRST KIND.

Minimax Theorem
The fundamental theorem of GAME THEORY which
states that every FINITE, ZERO-SUM, two-person GAME

has optimal MIXED STRATEGIES. It was proved by John
von Neumann in 1928.

Formally, let X and Y be MIXED STRATEGIES for
players A and B. Let A be the PAYOFF MATRIX. Then

max
X

min
Y

XTAY �min
Y

max
X

XTAY �v;

where v is called the VALUE of the GAME and X and Y
are called the solutions. It also turns out that if there
is more than one optimal MIXED STRATEGY, there are
infinitely many.

See also GAME, GAME THEORY, MIXED STRATEGY
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Minimize
INFIMUM

Minimum
The smallest value of a set, function, etc. The
minimum value of a set of elements A�faig

N
i�1 is

denoted minA or mini ai; and is equal to the first
element of a sorted (i.e., ordered) version of A . For
example, given the set f3; 5; 4; 1g; the sorted version
is f1; 3; 4; 5g; so the minimum is 1. The MAXIMUM

and minimum are the simplest ORDER STATISTICS.

A continuous FUNCTION may assume a minimum at a
single point or may have minima at a number of
points. A GLOBAL MINIMUM of a FUNCTION is the
smallest value in the entire RANGE of the FUNCTION,
while a LOCAL MINIMUM is the smallest value in some
local neighborhood.

For a function f (x) which is CONTINUOUS at a point x0;
a NECESSARY but not SUFFICIENT condition for f (x) to
have a RELATIVE MINIMUM at x�x0 is that x0 be a
CRITICAL POINT (i.e., f (x) is either not DIFFERENTIABLE

at x0 or x0 is a STATIONARY POINT, in which case
f ?(x0)�0):/

The FIRST DERIVATIVE TEST can be applied to CON-

TINUOUS FUNCTIONS to distinguish minima from
MAXIMA. For twice differentiable functions of one
variable, f (x); or of two variables, f (x; y); the SECOND

DERIVATIVE TEST can sometimes also identify the
nature of an EXTREMUM. For a function f (x); the
EXTREMUM TEST succeeds under more general condi-
tions than the SECOND DERIVATIVE TEST.



See also CONJUGATE GRADIENT METHOD, CRITICAL

POINT, EXTREMUM, FIRST DERIVATIVE TEST, GLOBAL

MAXIMUM, INFLECTION POINT, LOCAL MAXIMUM,
MAXIMUM, MIDRANGE, ORDER STATISTIC, SADDLE

POINT (FUNCTION), SECOND DERIVATIVE TEST, STA-

TIONARY POINT, STEEPEST DESCENT METHOD
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Minimum Clique
CLIQUE

Minimum Gossip Graph
GOSSIPING

Minimum Modulus Principle
Let f be ANALYTIC on a DOMAIN U ⁄C; and assume
that f never vanishes. Then if there is a point z0 � U
such that ½f z0ð Þ½5 ½f (z)½ for all z � U ; then f is constant.

Let U ⁄C be a bounded domain, let f be a continuous
function on the closed set Ū that is analytic on U , and
assume that f never vanishes on Ū : Then the
minimum value of ½f ½ on Ū (which always exists)
must occur on @U : In other words,

min
Ū

½f ½�min
@U

½f ½:

See also MAXIMUM MODULUS PRINCIPLE, MODULUS

(COMPLEX NUMBER)
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Minimum Spanning Tree
The minimum spanning tree of a WEIGHTED GRAPH is
a set of n �1 edges of minimum total weight which
form a SPANNING TREE of the graph. When a graph is

unweighted, any SPANNING TREE is a minimum
spanning tree.

The minimum spanning tree can be found in poly-
nomial time. Common algorithms include those due
to Prinn (1957) and Kruskal (1956). The problem can
also be formulated using MATROIDS (Papadimitriou
and Steiglitz 1982). The minimum spanning tree can
be found using the command MinimumSpanning-
Tree[g ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

See also SPANNING TREE
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Minimum Vertex Cover
VERTEX COVER

Minkowski-Bouligand Dimension
In many cases, the HAUSDORFF DIMENSION correctly
describes the correction term for a resonator with
FRACTAL PERIMETER in Lorentz’s conjecture. How-
ever, in general, the proper dimension to use turns
out to be the Minkowski-Bouligand dimension
(Schroeder 1991).

Let F(r) be the AREA traced out by a small CIRCLE with
RADIUS r following a fractal curve. Then, providing
the LIMIT exists,

DM �lim
r00

lnF(r)

�ln r
�2

(Schroeder 1991). It is conjectured that for all strictly
self-similar fractals, the Minkowski-Bouligand di-
mension is equal to the HAUSDORFF DIMENSION D ;
otherwise DM > D:/

See also HAUSDORFF DIMENSION, MINKOWSKI COVER,
MINKOWSKI SAUSAGE
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Minkowski Convex Body Theorem
A bounded plane convex region symmetric about a
LATTICE POINT and with AREA > 4 must contain at
least three LATTICE POINTS in the interior. In n -D, the
theorem can be generalized to a region with AREA

/�2n ; which must contain at least three LATTICE

POINTS. The theorem can be derived from BLICH-

FELDT’S THEOREM.

See also BLICHFELDT’S THEOREM
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Minkowski Cover

The covering of a PLANE CURVE with disks of radius e
whose centers lie on the curve.

See also MINKOWSKI-BOULIGAND DIMENSION, MIN-

KOWSKI SAUSAGE

Minkowski Geometry
MINKOWSKI SPACE

Minkowski-Hlawka Theorem
There exist lattices in n -D having HYPERSPHERE

PACKING densities satisfying

h ]
z(n)

2n�1 
;

where z(n) is the RIEMANN ZETA FUNCTION. However,
the proof of this theorem is nonconstructive and it is
still not known how to actually construct packings
that are this dense.

See also HERMITE CONSTANTS, HYPERSPHERE PACK-

ING
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Minkowski Integral Inequality
If p �1, then

g
b

a

f (x) �g(x)j jp dx

" #1 =p

5 g
b

a

f (x)j jp dx

" #1=p

� g
b

a

g(x)j jp dx

" #1=p

:

See also MINKOWSKI SUM INEQUALITY
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Minkowski Measure
The Minkowski measure of a bounded, CLOSED SET is
the same as its LEBESGUE MEASURE.
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Minkowski Metric
In CARTESIAN COORDINATES,

ds2�dx2�dy2�dz2 (1)

dr2��c2 dt2�dx2�dy2�dz2; (2)

and

gab�hab�

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775: (3)

In SPHERICAL COORDINATES,

ds2�dr2�r2 du�r2 sin2 u df2 (4)

dr2��c2 dt2�dr2�r2 du�r2 sin2 u df2; (5)

and



g �

�1 0 0  0
0 1 0  0
0 0 r2 0
0 0 0 r2 sin2 u

2
664

3
775: (6)

See also LORENTZ TRANSFORMATION, MINKOWSKI

SPACE

Minkowski Sausage

A FRACTAL curve created from the base curve and
motif illustrated above (Lauwerier 1991, p. 37). The
number of segments after the nth iteration is

Nn �8n ; (1)

and

en �
1

4

 !n

; (2)

so the CAPACITY DIMENSION is

D �� lim
n0


ln Nn

ln en

�� lim
n0


ln 8n

ln 4n 
�

ln 8

ln 4 
�

3 ln 2

2 ln 2
�

3

2 
: (3)

The term Minkowski sausage is also used to refer to
the MINKOWSKI COVER of a curve.

See also MINKOWSKI-BOULIGAND DIMENSION, MIN-

KOWSKI COVER
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Minkowski’s Inequalities
If p �1, then Minkowski’s integral inequality states
that

g
b

a

f (x)�g(x)j jp dx

" #1=p

5 g
b

a

f (x)j jp dx

" #1=p

� g
b

a

g(x)j jp dx

" #1=p

:

Similarly, if p �1 and ak; bk > 0; then Minkowski’s
sum inequality states that

Xn

k�1

ak�bkð Þp

" #1=p

5
Xn

k�1

ap
k

 !1=p

�
Xn

k�1

bp
k

 !1=p

:

Equality holds IFF the sequences a1; a2; ... and b1; b2;
... are proportional.
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Minkowski Space
A 4-D space with the MINKOWSKI METRIC. Alterna-
tively, it can be considered to have a EUCLIDEAN

METRIC, but with its VECTORS defined by

x0

x1

x2

x3

2
664

3
775�

ict
x
y
z

2
664

3
775; (1)

where c is the speed of light and I is the IMAGINARY

NUMBER
ffiffiffiffiffiffi
�1

p
: Minkowski space unifies Euclidean 3-

space plus time (the "fourth dimension") in Einstein’s
theory of special relativity.

The METRIC of Minkowski space is DIAGONAL with

gaa�
1

gaa

; (2)

so

hbd�hbd: (3)

Let L be the TENSOR for a LORENTZ TRANSFORMATION.
Then

hbdLg
d�Lbg (4)

hagL
bg�Lb

a (5)



L 
b
a � hag L

bg � h ag h 
bd Lg 

d : (6)

The NECESSARY and SUFFICIENT conditions for a
metric gmn to be equivalent to the Minkowski metric
hab are that the RIEMANN TENSOR vanishes every-
where (/Rl

mnk �0) and that at some point g mn has three
POSITIVE and one NEGATIVE EIGENVALUES.

See also LORENTZ TRANSFORMATION, MINKOWSKI

METRIC, TWISTOR, TWISTOR SPACE
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Minkowski’s Question Mark Function

The function y �?(x) defined by Minkowski for the
purpose of mapping the rational numbers in the OPEN

INTERVAL (0; 1) into the QUADRATIC IRRATIONAL NUM-

BERS of (0; 1) in a continuous, order-preserving
manner. ?(x) takes a number having BINARY expan-
sion x �0:a1a2a3 . . .2 to the number

?(x) �
X

k

(�1)k �1

2(a1 �...�ak)�1 
: (1)

The function satisfies the following properties (Salem
1943).

1. ?(x) is strictly increasing.
2. If x is rational, then ?(x) is of the form k=2s ; with
k and s integers.
3. If x is a QUADRATIC IRRATIONAL NUMBER, then
the continued fraction is periodic, and hence ?(x) is
rational.
4. The function is purely singular (Denjoy 1938).

/?(x) can also be constructed as

?
p � p?

q � q?

 !
�

?(p=q) � ?(p ?=q?)

2
; (2)

where p=q and p?=q? are two consecutive irreducible
fractions from the FAREY SEQUENCE. At the nth stage
of this definition, ?(x) is defined for 2n �1 values of x ,
and the ordinates corresponding to these values are
x �k=2n for k �0, 1, ..., 2n (Salem 1943).

The function satisfies the identity

?
1

kn

 !
�

1

2kn�1
: (3)

A few special values include

?(0)�0

? 1
3

	 

�1

4

? 1
2

	 

�1

2

?(f�1)�2
3

? 2
3

	 

�3

4

? 1
2

ffiffiffi
2

p	 

�4

5

? 1
2

ffiffiffi
3

p	 

�84

85

?(1)�1;

where f is the GOLDEN RATIO.

See also DEVIL’S STAIRCASE, FAREY SEQUENCE
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Minkowski Sum
The sum of sets A and B in a VECTOR SPACE, equal to
fa�b : a �A; b �Bg:/
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Minkowski Sum Inequality
If p �1 and ak ; bk > 0 ; then

Xn

k �1

ak �bkð Þp

" #1 =p

5
Xn

k�1

ap
k

 !1 =p

�
Xn

k �1

bp
k

 !1 =p

:

Equality holds IFF the sequences a1 ; a2 ; ... and b1 ; b2 ;
... are proportional.

See also MINKOWSKI INTEGRAL INEQUALITY
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Minor
The reduced DETERMINANT of a DETERMINANT EXPAN-

SION, denoted Mij ; which is formed by omitting the ith
row and jth column. The minor can be computed in
Mathematica using

Minor[m_List,{i_Integer,j_Integer}] : �
Drop[Transpose[Drop[Transpose[m],{j}]],{i}]

Minors[m ] gives the minors of a matrix m , while
Minors[m , k ] gives the kth minors of m .

See also COFACTOR, DETERMINANT, DETERMINANT

EXPANSION BY MINORS
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Minor Axis
SEMIMINOR AXIS

Minor Graph
A "minor" is a sort of SUBGRAPH and is what
Kuratowski means when he says "contain." It is
roughly a small graph which can be mapped into
the big one without merging VERTICES.

Minuend
A quantity from which another (the SUBTRAHEND) is
subtracted.

See also MINUS, SUBTRACTION, SUBTRAHEND

Minus
The operation of SUBTRACTION, i.e., a minus b . The
operation is denoted a �b : The MINUS SIGN "/�/" is also
used to denote a NEGATIVE number, i.e., �x:/

See also MINUS SIGN, NEGATIVE, PLUS, PLUS OR

MINUS, TIMES

Minus or Plus
PLUS OR MINUS

Minus Sign
The symbol "/�/" which is used to denote a NEGATIVE

number or SUBTRACTION.

See also MINUS, PLUS SIGN, SIGN, SUBTRACTION

Minute
ARC MINUTE

Miquel Circles

For a TRIANGLE DABC and three points F rð Þ; B ?; and
C ?; one on each of its sides, the three Miquel circles
are the circles passing through each VERTEX and its
neighboring side points (i.e., AC ?B?; BA ?C?; and
CB?A?) : According to MIQUEL’S THEOREM, the Miquel
circles are CONCURRENT in a point M known as the
MIQUEL POINT. Similarly, there are n Miquel circles
for n lines taken (n �1) at a time.

See also CLIFFORD’S CIRCLE THEOREM, MIQUEL

POINT, MIQUEL’S THEOREM, MIQUEL TRIANGLE
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Miquel Equation

�A2MA3 ��A2A1A3 ��P2P1P3 ;

where � is a DIRECTED ANGLE.

See also DIRECTED ANGLE, MIQUEL’S THEOREM, PIVOT

THEOREM
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Miquel Five Circles Theorem

Let five circles with CONCYCLIC centers be drawn such
that each intersects its neighbors in two points, with
one of these intersections lying itself on the circle of
centers. By joining adjacent pairs of the intersection
points which do not lie on the circle of center, an
(irregular) PENTAGRAM is obtained whose five vertices
lie on the circle of centers.
Let the circle of centers have radius r and let the five
circles be centered and angular positions ui along this
circle. The radii ri of the circles and their angular
positions fi along the circle of centers can then be
determined by solving the ten simultaneous equa-
tions

cos fi �cos uið Þ2� sin fi �sin uið Þ2�
r2

i

r2

cos fi �1 �cos uið Þ2� sin fi�1 �sin uið Þ2�
r2

i

r2

for i � 1, ..., 5, where f0 � f5 and r0 �r5 :/

See also FIVE DISKS PROBLEM, PENTAGRAM
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Miquel Point
The point of CONCURRENCE of the MIQUEL CIRCLES.

See also MIQUEL CIRCLES, MIQUEL’S THEOREM,
MIQUEL TRIANGLE
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Miquel’s Theorem

If points A?; B?; and C? are marked on each side of a
TRIANGLE DABC; one on each side (or on a side’s
extension), then the three MIQUEL CIRCLES (each
through a VERTEX and the two marked points on the
adjacent sides) are CONCURRENT at a point M called
the MIQUEL POINT. This result is a slight general-
ization of the so-called PIVOT THEOREM.

If M lies in the interior of the triangle, then it
satisfies

�P2MP3�180��a1

�P3MP1�180��a2

�P1MP2�180��a3:

The lines from the MIQUEL POINT to the marked
points make equal angles with the respective sides.
(This is a by-product of the MIQUEL EQUATION.)



A generalized version of Miquel’s theorem states that
given four lines L1 ; ..., L4 each intersecting the other
three, the four MIQUEL CIRCLES passing through each
subset of three intersection points of the lines meet in
a point known as the 4-Miquel point M . Furthermore,
the centers of these four MIQUEL CIRCLES lie on a
CIRCLE C4 (Johnson 1929, p. 139). The lines from M to
given points on the sides make equal ANGLES with
respect to the sides.

Moreover, given n lines taken by (n �1)/s yield n
MIQUEL CIRCLES like C4 passing through a point Pn ;
and their centers lie on a CIRCLE Cn�1 :/

See also CLIFFORD’S CIRCLE THEOREM, MIQUEL

CIRCLES, MIQUEL FIVE CIRCLES THEOREM, MIQUEL

EQUATION, MIQUEL TRIANGLE, NINE-POINT CIRCLE,
PEDAL CIRCLE, PIVOT THEOREM
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Miquel Triangle

Given a point P and a triangle DABC; the Miquel
triangle is the triangle DPAPBPC connecting the side

points PA ; PB ; and PC of DABC with respect to which
M is the MIQUEL POINT. All Miquel triangles of a
given point M are directly similar, and M is the
SIMILITUDE CENTER in every case.

See also MIQUEL CIRCLES, MIQUEL POINT, MIQUEL’S

THEOREM
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Mira Fractal
A FRACTAL based on the map

F(x) �ax �
2(1 � a)x2

1 � x2
:
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Mirimanoff’s Congruence
If the first case of FERMAT’S LAST THEOREM is false for
the PRIME exponent p , then 3p�1 �1 mod p2ð Þ:/

See also FERMAT’S LAST THEOREM

Mirror Image
An image of an object obtained by reflecting it in a
mirror so that the signs of one of its coordinates are
reversed.

AMPHICHIRAL, CHIRAL, ENANTIOMER, HANDEDNESS,
REFLECTION, SYMMETRY
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Mirror Plane
The SYMMETRY OPERATION (x; y; z) 0 (x; y; �z); etc.,
which is equivalent to 2̄; where the bar denotes an
IMPROPER ROTATION.

See also MIRROR IMAGE

Misère Form
A version of NIM-like GAMES in which the player
taking the last piece is the loser. For most IMPARTIAL

GAMES, this form is much harder to analyze, but it
requires only a trivial modification for the game of
NIM.



Mitchell Index
The statistical INDEX

PM �

P
pnqaP
p0qa

;

where pn is the price per unit in period n and qn is the
quantity produced in period n .

See also INDEX
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Miter Surface

A QUARTIC SURFACE named after its resemblance to
the liturgical headdress worn by bishops and given by
the equation

4x2 x2 �y2 �z2
� �

�y2 1 �y2 �z2
� �

�0 :

See also QUARTIC SURFACE
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Mittag-Leffler Function

En(x) �
X

k �0

xk

G(nk � 1) 
: (1)

It is related to the GENERALIZED HYPERBOLIC FUNC-

TIONS F an; r(x) by

F1
n; 0(x) �En xnð Þ: (2)

Special values for integer n are

E0(x) �
1

1 � x 
(3)

E1(x) �ex (4)

E2(x) �cosh
ffiffiffi
x

p� �
(5)

E3(x) �1
3 ex1=3 

�2e �x1=3 =2cos 1
2

ffiffiffi
3

p
x1=3

	 
h i
(6)

E4(x) �1
2 cos x1 =4

� �
�cosh x1 =4

� �� �
; (7)

and special values of half-integer n are

E1 =2(x) �ex2 

(1 �erf x) (8)

E3=2(x) �1
3

�
ex2=3 

�2e �x2=3 =2cos 1
2

ffiffiffi
3

p
x2 =3

	 


�
4x1F3 1; 5

6 ;
7
6;

3
2;

1
27 x

2
	 


ffiffiffi
p

p
�

(9)

E5 =2(x) � 0 F4 ; 1
5 ;

2
5 ;

3
5;

4
5;

1
3125 x

2
	 


�
8x1F5 1; 7

10;
9
10;

11
10;

13
10;

3
2;

1
3125 x

2
	 


15
ffiffiffi
p

p ; (10)

where pFq are generalized hypergeometric functions,
and 0Fq is a generalized confluent hypergeometric
function. As can be seen, E1 =2(x) is closely related to
DAWSON’S INTEGRAL D�(x) :/
The more general Mittag-Leffler function

Em;n �
X

k�0

xk

G(mk � n) 
(11)

can also be defined (Wiman 1905, Agarwal 1953,
Gorenflo 1987, Miller 1993, Mainardi and Gorenflo
1995, Gorenflo 1998, Sixdeniers et al. ).

See also DAWSON’S INTEGRAL, GENERALIZED HYPER-

BOLIC FUNCTIONS
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Mittag-Leffler Polynomial
Polynomials Mk(x) which form the associated SHEF-

FER SEQUENCE for

f (t) �
et � 1

et � 1 
(1)

and have the GENERATING FUNCTION

X

k �0

Mk(x)

k!
tk �

1 � t

1 � t

 !x

: (2)

An explicit formula is given by

Mn(x) �
Xn

k �0

n
k

� �
(n �1)n �k2k(x)k ; (3)

where (x)n is a FALLING FACTORIAL, which can be
summed in closed form in terms of the HYPERGEO-

METRIC FUNCTION, GAMMA FUNCTION, and POLY-

GAMMA FUNCTION. The binomial identity associated
with the SHEFFER SEQUENCE is

Mn(x �y) �
Xn

k �0

n
k

� �
Mk(x)Mn�k(y): (4)

The Mittag-Leffler polynomials satisfy the recurrence
formula

Mn�1(x) �1
2 x Mn(x �1) �2Mn(x) �Mn(x �1)½ 
: (5)

The first few Mittag-Leffler polynomials are

M0(x)�1
M1(x)�2x
M2(x)�4x2

M3(x)�8x3�4x
M4(x)�16x4�32x2:

The Mittag-Leffler polynomials Mn(x) are related to
the PIDDUCK POLYNOMIALS by

Pn(x)�1
2(e

t�1)Mn(x) (6)

(Roman 1984, p. 127).

See also PIDDUCK POLYNOMIAL
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Mittag-Leffler’s Partial Fractions Theorem
Let any finite or infinite set of points having no finite
LIMIT POINT be prescribed and associate with each of
its points a principal part, i.e., a RATIONAL FUNCTION

of the special form

hn(z)�
a(n)
�1

z � zn
�

a(n)
�2

(z � zn)
2�. . .�

a(n)
�anu

(z � zn)
an

for n�1; 2, ..., k . Then there exists a MEROMORPHIC

FUNCTION which has poles with the prescribed prin-
cipal parts at precisely the prescribed points, and is
otherwise regular. It can be represented in the form
of a partial fraction decomposition from which one
can read off again the poles, along with their
principal parts. Further, if M0(z) is one such function,
then

M(z)�M0(z)�G(z)

is the most general function satisfying the conditions
of the problem, where G(z) denotes an arbitrary
ENTIRE FUNCTION.
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Mittag-Leffler’s Theorem
If a function analytic at the origin has no SINGULA-

RITIES other than POLES for finite x , and if we can
choose a sequence of contours Cm about z�0 tending
to infinity such that ½f (z)½ never exceeds a given
quantity M on any of these contours and f½dz=z½ is
uniformly bounded on them, then

f (z)�f (0)�lim Pm(z)�Pm(0)½ 
;

where Pm(z) is the sum of the principal parts of f (z) at
all POLES a within Cm: If there is a POLE at z�0, then
we can replace f (0) by the negative powers and the
constant term in the LAURENT SERIES of f (z) about
z�0.
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Mittenpunkt

The SYMMEDIAN POINT of the EXCENTRAL TRIANGLE,
i.e., the point of concurrence M of the lines from the
EXCENTERS Ji through the corresponding TRIANGLE

side MIDPOINT Mi : It is also called the MIDDLESPOINT

and has TRIANGLE CENTER FUNCTION

a �b �c �a �1
2 cot A:

See also EXCENTER, EXCENTRAL TRIANGLE, NAGEL

POINT
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Mixed Fraction
An IMPROPER FRACTION p =q > 1 written in the form
n �r =s : In common usage such as cooking recipes, n �
r =s is often written as n r

s
(e.g., 1 1

2); much to the
chagrin of mathematicians, to whom n r

s
means nr =s;

not n �r =s : (The author of this work discovered this
fact early in his mathematical career after having
points marked off a CALCULUS exam for using the
recipe-like notation. Future mathematicians are
therefore encouraged to avoid mixed fractions, except
perhaps in the kitchen.)

See also FRACTION, IMPROPER FRACTION, PROPER

FRACTION

Mixed Indices
MIXED TENSOR

Mixed Partial Derivative
A PARTIAL DERIVATIVE of second or greater order with
respect to two or more different variables, for example

fxy �
@2f

@x @y 
:

If the mixed partial derivatives exist and are contin-
uous at a point x0 ; then they are equal at x0

regardless of the order in which they are taken.

See also PARTIAL DERIVATIVE

Mixed Strategy
A collection of moves together with a corresponding
set of weights which are followed probabilistically in
the playing of a GAME. The MINIMAX THEOREM of
GAME THEORY states that every finite, zero-sum, two-
person game has optimal mixed strategies.

See also GAME THEORY, MINIMAX THEOREM, STRAT-

EGY

Mixed Tensor
A TENSOR having CONTRAVARIANT and COVARIANT

indices.

See also CONTRAVARIANT TENSOR, COVARIANT TEN-

SOR, TENSOR

Mnemonic
A mental device used to aid memorization. Common
mnemonics for mathematical constants such as E and
PI consist of sentences in which the number of letters
in each word give successive digits.

See also E , JOSEPHUS PROBLEM, PI
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Moat-Crossing Problem

There are two versions of the moat-crossing problem,
one geometric and one algebraic. The geometric moat
problems asks for the widest moat Rapunzel can cross



to escape if she has only two unit-length boards (and
no means to nail or otherwise attach them together)?
More generally, what is the widest moat which can be
crossed using n boards? Matthew Cook has conjec-
tured that the asymptotic solution to this problem is
O n1=3
� �

(Finch).

The algebraic moat-crossing problem asks if it is
possible to walk to infinity on the REAL LINE using
only steps of bounded lengths and steps on the prime
numbers. The answer is negative (Gethner et al.
1998). However, the Gaussian moat problem that
asks whether it is possible to walk to infinity in the
GAUSSIAN INTEGERS using the GAUSSIAN PRIMES as
stepping stones and taking steps of bounded length is
unresolved. Gethner et al. (1998) show that a moat of
width

ffiffiffiffiffiffi
26

p
exists.
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Moat Problem
MOAT-CROSSING PROBLEM

Möbius Band
MÖBIUS STRIP

Möbius Function

A number theoretic function defined by

m(n)�

0 if n has one or repeated prime factors
1 if n�1
(�1)k if n is a product of k distinct primes;

8<
:

(1)

so m(n)"0 indicates that n is SQUAREFREE. The first
few values are 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, ...
(Sloane’s A008683). The SUMMATORY FUNCTION of the
Möbius function is called MERTENS FUNCTION.
The Möbius function has GENERATING FUNCTIONS

X

n�1

m(n)

ns
�

1

z(s)
(2)

for R[s] > 1 (Nagell 1951, p. 130), and

X

n�1

m(n)xn

1 � xn
�x (3)

for ½x½B1: It also obeys the infinite sums

X

n�1

m(n)

n
�0 (4)

X

n�1

m(n) ln n

n
��1 (5)

and the INFINITE PRODUCT

Y

n�1

(1�xn)m(n)=n�e�x (6)

for ½x½B1 (Bellman 1943; Buck 1944;, Pólya and Szego
1976, p. 126; Robbins 1999). (2) is as "deep" as the
PRIME NUMBER THEOREM (Landau 1909, pp. 567�/74;
Landau 1911; Hardy 1999, p. 24), and behaves
asymptotically asX

n5x

m(n)�O(xe�c
ffiffiffiffiffiffi
ln x

p
) (7)

The Möbius function is MULTIPLICATIVE,



m(mn) �
m(m) m(n) if (m; n) �1
0 if (m; n) > 1;

 
(8)

and satisfies

X
d½n

m(d) � dn1 ; (9)

where dij is the KRONECKER DELTA, as well as

X
d

m(d)s0

n

d

 !
�1; (10)

where s0(n) is the number of divisors (i.e., DIVISOR

FUNCTION of order zero; Nagell 1951, p. 281).

See also BRAUN’S CONJECTURE, MERTENS FUNCTION,
MÖ BIUS INVERSION FORMULA, MÖ BIUS PERIODIC

FUNCTION, PRIME ZETA FUNCTION, RIEMANN FUNC-

TION, SQUAREFREE

References
Abramowitz, M. and Stegun, C. A. (Eds.). "The Möbius
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Möbius Group
The equation

x2
1 �x2

2 �. . .�x2
n �2x0x
�0

represents an n -D HYPERSPHERE Sn as a quadratic
hypersurface in an (n �1)/-D real projective space
Pn�1 ; where xa are homogeneous coordinates in Pn�1 :
Then the GROUP M(n) of projective transformations
which leave Sn invariant is called the Möbius group.

See also MODULAR GROUP GAMMA
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Möbius Inversion Formula
The transform inverting the sequence

g(n) �
X
djn

f (d) (1)

into

f (n) �
X
djn

m(d)g
n

d

 !
; (2)

where the sums are over all possible INTEGERS d that
DIVIDE n and m(d) is the MÖ BIUS FUNCTION.

The LOGARITHM of the CYCLOTOMIC POLYNOMIAL

Fn(x) �
Y
djn

(1 �xn=d) m(d) (3)

is closely related to the Möbius inversion formula.

See also CYCLOTOMIC POLYNOMIAL, MÖ BIUS FUNC-

TION, MÖ BIUS TRANSFORM
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Möbius Periodic Function
A function periodic with period 2p such that

p(u�p)��p(u)

for all u is said to be Möbius periodic.



See also PERIODIC FUNCTION

Möbius Problem
Let A �fa1 ; a2 ; . . .g be a free Abelian SEMIGROUP,
where a1 is the IDENTITY ELEMENT, and let m(n) be the
MÖ BIUS FUNCTION. Define m(an) on the elements of
the semigroup analogously to the definition of m(n) (as
(�1)r if n is the product of r distinct primes) by
regarding generators of the semigroup as primes.
Then the Möbius problem asks if the properties

1. a Bb IMPLIES ac Bbc for a ; b ; c � A; where A
has the linear order a1 Ba2 B. . . ;/
2. m(an) � m(n) for all n ,

imply that

am;n �aman

for all m; n ]1: Informally, the problem asks "Is the
multiplication law on the positive integers uniquely
determined by the values of the Möbius function and
the property that multiplication respects order?

The problem is known to be true for all mn 574 if
m(an) � m(n) for all n 5240 (Flath and Zulauf 1995).

See also BRAUN’S CONJECTURE, MÖ BIUS FUNCTION
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Möbius Shorts

A one-sided surface reminiscent of the MÖ BIUS STRIP,
attributed to Gourmalin (Bouvier and George 1979,
p. 477; Boas 1995). This surface is topologically
equivalent to a KLEIN BOTTLE with a hole in it, and
is topologically distinct from the MÖ BIUS STRIP

(Gramain 1984, Stewart 2000b).

See also KLEIN BOTTLE, MÖ BIUS STRIP
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Möbius Strip

n �N

A one-sided NONORIENTABLE SURFACE obtained by
cutting a closed band into a single strip, giving one of
the two ends thus produced a half twist, and then re-
attaching the two ends. According to Madachy (1979),
the B. F. Goodrich Company patented a conveyor belt
in the form of a Möbius strip which lasts twice as long
as conventional belts.

A Möbius strip of half-width w with midcircle of
radius R and at height z�0 can be represented
parametrically by

x� R�s cos 1
2 t
	 
h i

cos t (1)

y� R�s cos 1
2 t
	 
h i

sin t (2)

z�s sin 1
2 t
	 


; (3)

for s � [�w; w] and t � [0; 2p]:/

The coefficients of the FIRST FUNDAMENTAL FORM for
this surface are

E�1 (4)

F�0 (5)

G�R2�2Rs cos 1
2 t
	 


�1
2 s2(3�2 cos t); (6)

the SECOND FUNDAMENTAL FORM coefficients are

e�0 (7)

f �
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4R2 � 3s2 � 2s 4 R cos 1
2 t
	 


� s cos t
h ir (8)

g�
2 R2 � s2ð Þ� 4 Rs cos 1

2 t
	 


� s2 cos t
h i

sin 1
2 t
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 � 3s2 � 2s 4 R cos 1

2 t
	 


� s cos t
h ir ;

(9)



the AREA ELEMENT is

dS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �2 Rs cos 1

2 t
	 


�s2 3
4 �

1
2 cos t

	 
r
ds ffl dt;

(10)

and the GAUSSIAN and MEAN CURVATURES are

K ��
4R2

4R2 � 3s2 � 2s 4 R cos 1
2 t
	 


� s cos t
h in o2

(11)

H �
2 2 R2 � s2ð Þ� 4 Rs cos 1

2 t
	 


� s2 cos t
h i

sin 1
2 t
	 


4R2 � 3s2 � 2s 4 R cos 1
2 t
	 


� s cost
h in o2 :

(12)

The perimeter of the Möbius strip is given by
integrating the complicated function

ds �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2 �y ?2

q
�
�

1
16 w

4 cos4 1
2 t
	 


� R �w cos(1
2 t)

h i
cos t �1

2 w sin 1
2 t
	 


sin t
n o4

� R sin t �1
4 w sin 1

2 t
	 


�3 sin 3
2 t
	 
h in o4

�1 =2

(13)

from 0 to 4 p; which can unfortunately not be done in
closed form. Note that although the surface closes at
t �2p; this corresponds to the bottom edge connecting
with the top edge, as illustrated above, so an addi-
tional 2p must be traversed to comprise the entire arc
length of the bounding edge.

Cutting a Möbius strip, giving it extra twists, and
reconnecting the ends produces unexpected figures
called PARADROMIC RINGS (Listing and Tait 1847, Ball
and Coxeter 1987) which are summarized in the table
below.

half-twists cuts divs. result

1 1 2 1 band, length 2

1 1 3 1 band, length 2

1 Möbius strip, length 1

1 2 4 2 bands, length 2

1 2 5 2 bands, length 2

1 Möbius strip, length 1

1 3 6 3 bands, length 2

1 3 7 3 bands, length 2

1 Möbius strip, length 1

2 1 2 2 bands, length 1

2 2 3 3 bands, length 1

2 3 4 4 bands, length 1

A TORUS can be cut into a Möbius strip with an EVEN

number of half-twists, and a KLEIN BOTTLE can be cut
in half along its length to make two Möbius strips. In
addition, two strips on top of each other, each with a
half-twist, give a single strip with four twists when
disentangled.

There are three possible SURFACES which can be
obtained by sewing a Möbius strip to the edge of a
DISK: the BOY SURFACE, CROSS-CAP, and ROMAN SUR-

FACE.

The Möbius strip has EULER CHARACTERISTIC x�1
(or genus g�1=2); so the HEAWOOD CONJECTURE

shows that any set of regions on it can be colored
using only six colors, as illustrated above.

See also BOY SURFACE, CROSS-CAP, MAP COLORING,
MÖ BIUS STRIP DISSECTION, NONORIENTABLE SUR-

FACE, PARADROMIC RINGS, PRISMATIC RING, ROMAN

SURFACE, TIETZE GRAPH

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, pp. 127�/28,
1987.

Bondy, J. A. and Murty, U. S. R. Graph Theory with
Applications. New York: North Holland, p. 243, 1976.

Bogomolny, A. "Möbius Strip." http://www.cut-the-knot.com/
do_you_know/moebius.html.
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Möbius Strip Dissection

Tiling of a Möbius strip can be performed immedi-
ately by carrying over a tiling of a rectangle with the
same two-sided SURFACE AREA. However, additional
tilings are possible by cutting tiles across glued edges.
An example of such a tiling is the strip constructed
from a 5 �1 RECTANGLE consisting of two halves of a
width 2 square (which are rejoined when edges are
connected) separated by a 1 �1 square (Stewart
1997). Unfortunately, since the long top and bottom
edges must be glued together, this example is not
constructible out of paper. It also suffers from having
the unit square share a boundary with itself. In 1993,
S. J. Chapman found a tiling free of the latter defect
(although still suffering from the former) which can
be constructed using five squares. No similar tiling is
possible using fewer tiles (Stewart 1997).

See also CYLINDER DISSECTION, MÖ BIUS STRIP, PER-

FECT SQUARE DISSECTION, TORUS DISSECTION
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Möbius Transform
The transformation of a sequence a1 ; a2 ; ... with

an �
X
d ½n

bd (1)

into the sequence b1 ; b2 ; ... via the MÖ BIUS INVERSION

FORMULA,

bn �
X
d ½n

m
n

d

 !
ad : (2)

The transformation of bn to an is sometimes called the
sum-of-divisors transform. Two other equivalent for-
mulations are given by

X

n�1

anxn �
X

n�1

bn

xn

1 � xn 
; (3)

the right side of which is called a LAMBERT SERIES,
and

X

n�1

an

ns 
� z(s)

X

n�1

bn

n2 
; (4)

where z(s) is the RIEMANN ZETA FUNCTION (Sloane
and Plouffe 1995, p. 21).

Example Möbius transformations (Sloane and Plouffe
1995, p. 22) include bn �1 for all n , giving the inverse
transform as an �1 ; 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, ...
(Sloane’s A000005), the DIVISOR FUNCTION s0(n) of n .
The Möbius transform of an �n gives bn �1; 1, 2, 2, 4,
2, 6, 4, 6, 4, 10, 4, 12, ... (Sloane’s A000010), the
TOTIENT FUNCTION of n . The inverse Möbius trans-
form of the sequence b2n �0 and b2n�1 �4(�1)n gives
an �4 ; 4, 0, 4, 8, 0, 0, 4, 4, ... (Sloane’s A004018), the
number of ways r(n) of writing n as a sum of two
squares. The inverse Möbius transform of bn �1 for n
prime and bn �0 for n composite gives the sequence
an�0; 1, 1, 1, 1, 2, 1, 1, 1, ... (Sloane’s A001221), the
number of DISTINCT PRIME FACTORS of n .

See also BINOMIAL TRANSFORM, DIVISOR FUNCTION,
EULER TRANSFORM, LAMBERT SERIES, MÖ BIUS INVER-

SION FORMULA, MÖ BIUS TRANSFORMATION, STIRLING

TRANSFORM
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Möbius Transformation
Let a �C and aj jB 1; then

8 a(z) �
z � a

1 � āz

is a Möbius transformation, where ā is the COMPLEX

CONJUGATE of a . 8 a is a CONFORMAL TRANSFORMA-

TION SELF-MAP of the UNIT DISK D for each a , and
specifically of the boundary of the unit disk to itself.
The same holds for (8 a) �1 �8�a :/

Any conformal self-map of the UNIT DISK to itself is a
composition of a Möbius transformation with a ROTA-

TION, and any conformal self-map f of the unit disk
can be written in the form

f (z) �8 b(wz)

for some Möbius transformation 8 b and some complex
number w with wj j�1 (Krantz 1999, p. 81).

See also LINEAR FRACTIONAL TRANSFORMATION
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Möbius Triangles
SPHERICAL TRIANGLES into which a SPHERE is divided
by the planes of symmetry of a UNIFORM POLYHE-

DRON.

See also SPHERICAL TRIANGLE, UNIFORM POLYHE-

DRON

Mock Theta Function
In his last letter to Hardy, Ramanujan defined 17
JACOBI THETA FUNCTION-like functions F(q) with
qj jB 1 which he called "mock theta functions" (Wat-
son 1936, Ramanujan 1988, pp. 127�/31; Ramanujan
2000, pp. 354�/55). These functions are Q -SERIES with
exponential singularities such that the arguments
terminate for some power tN : In particular, if f (q) is
not a JACOBI THETA FUNCTION, then it is a mock theta
function if, for each ROOT OF UNITY r; there is an
approximation OF THE FORM

f (q)�
XM
m�1

tkm exp
XN

n��1

cmnt
n

 !
�O(1) (1)

as t 0 0� with q�re�t (Gordon and McIntosh
2000b).

If, in addition, for every ROOT OF UNITY r there are
modular forms h(r)

j (q) and real numbers aj and 15
j5J(r) such that

f (q)�
XJ(r)

j�1

qaj h(r)
j (q) (2)

is bounded as q radially approaches r; then f (q) is
said to be a strong mock theta function (Gordon and
McIntosh 2000b).

Ramanujan found an additional three mock theta
functions in his "lost notebook" which were subse-
quently rediscovered by Watson (1936). The first
formula on page 15 of Ramanujan’s lost notebook
relates the functions which Watson calls r(�q) and
v(�q) (equivalent to the third equation on page 63 of
Watson’s 1936 paper), and the last formula on page
31 of the lost notebook relates what Watson calls
n(�q) and v q2ð Þ (equivalent to the fourth equation on
page 63 of Watson’s paper). The orders of these and
Ramanujan’s original 17 functions were all 3, 5, or 7.

Ramanujan’s "lost notebook" also contained several
mock theta functions of orders 6 and 10, which,
however, were not explicitly identified as mock theta
functions by Ramanujan. Their properties have now
been investigated in detail (Andrews and Hickerson
1991, Choi 1999).

Examples of the mock theta functions found by
Ramanujan include

F0(q)�
X

n�0

q2n2

q; q2ð Þn

(3)

F1(q)�
X

n�1

q2n(n�1)

q; q2ð Þn

: (4)

(Gordon and McIntosh 2000b).

Gordon and McIntosh (2000b) found eight mock theta
functions of order 8,

S0(q)�
X

n�0

qn2

(�q; q2)n

(�q2; q2)n

(5)

S1(q)�
X

n�0

qn(n�2)(�q; q2)n

(�q2; q2)n

(6)

T0(q)�
X

n�0

q(n�1)(n�2) �q2; q2ð Þn

�q; q2ð Þn�1

(7)

T1(q)�
X

n�0

qn(n�1) �q2; q2ð Þn

�q; q2ð Þn�1

(8)



U0(q) �
X

n�0

qn2

�q; q2ð Þn

�q4; q4ð Þn

(9)

U1(q) �
X

n �0

q(n�1)2

�q; q2ð Þn

�q2; q4ð Þn�1

(10)

V0(q) ��1 �2
X

n�0

qn2

�q; q2ð Þn

q; q2ð Þn

(11)

��1 �2
X

n�0

q2n2

�q2; q4ð Þn

q; q2ð Þ2n�1

(12)

V1(q) �
X

n�0

q(n �1)2

�q; q2ð Þn

q; q4ð Þn�1

(13)

�
X

n�0

q2n2 �2n�1 �q4; q4ð Þn

q; q2ð Þ2n�2

: (14)

See also JACOBI THETA FUNCTIONS, MORDELL INTE-

GRAL, Q -SERIES
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Mod
CONGRUENCE

Mode
The most common value obtained in a set of observa-
tions. An interesting empirical relationship between
the mean, median, and mode which appears to hold
for unimodal curves of moderate asymmetry is given
by

mean �mode :3(mean �median)

(Kenney and Keeping 1962, p. 53), which is the basis
for the definition of the PEARSON MODE SKEWNESS.

See also MEAN, MEDIAN (STATISTICS), ORDER STATIS-

TIC, PEARSON MODE SKEWNESS
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Model
A well-formed formula B is said to be true for the
interpretation M (written ffiM B) IFF every sequence in
a (the set of all denumerable sequences of elements of
the domain of D ), satisfies B . B is said to be false for
M IFF no sequence in a satisfies B .

Then an interpretation M is said to be a model for a
set G of well-formed formulas IFF every well-formed
formula in G is true for M (Mendelson 1997, pp. 59�/

0).

See also GENERALIZED COMPLETENESS THEOREM

References
Mendelson, E. Introduction to Mathematical Logic, 4th ed.

London: Chapman & Hall, pp. 59�/0, 1997.

Model Completion
Model completion is a term employed when EXISTEN-

TIAL CLOSURE is successful. The formation of the
COMPLEX NUMBERS, and the move from affine to
projective geometry, are successes of this kind. The
theory of existential closure gives a theoretical basis
of Hilbert’s "method of ideal elements."
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Mode Locking
A phenomenon in which a system being forced at an
IRRATIONAL period undergoes rational, periodic mo-
tion which persists for a finite range of forcing values.
It may occur for strong couplings between natural
and forcing oscillation frequencies.

The phenomenon can be exemplified in the CIRCLE

MAP when, after q iterations of the map, the new
angle differs from the initial value by a RATIONAL

NUMBER



un�q � un �
p

q 
:

This is the form of the unperturbed CIRCLE MAP with
the WINDING NUMBER

V�
p

q 
:

For V not a RATIONAL NUMBER, the trajectory is
QUASIPERIODIC.

See also CHAOS, QUASIPERIODIC FUNCTION

Model Theory
Model theory is a general theory of interpretations of
AXIOMATIC SET THEORY. It is the branch of LOGIC

studying mathematical structures by considering
first-order sentences which are true of those struc-
tures and the sets which are definable in those
structures by first-order FORMULAS (Marker 1996).

Mathematical structures obeying axioms in a system
are called "models" of the system. The usual axioms of
ANALYSIS are second order and are known to have the
REAL NUMBERS as their unique model. Weakening the
axioms to include only the first-order ones leads to a
new type of model in what is called NONSTANDARD

ANALYSIS.

See also KHOVANSKI’S THEOREM, NONSTANDARD ANA-

LYSIS, WILKIE’S THEOREM
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Modified Bernoulli Number
The numbers /b2n/ having GENERATING FUNCTION

X

n�0

b2nx2n �1
2 ln

ex =2 � e �x=2

1
2 x

 !

�1
2 ln 2 � 1

48 x
2 � 1

5760 x
4 � 1

362880 x
6 �. . . :

For n�1, 2, ..., the denominators are 48, 5760,
362880, 19353600, ... (Sloane’s A057868).

See also BERNOULLI NUMBER, KONTSEVICH INTEGRAL
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Modified Bessel Differential Equation
The second-order ordinary differential equation

x2 d2y

dx2
�x

dy

dx
�(x2�n2)y�0: (1)

The solutions are the MODIFIED BESSEL FUNCTIONS OF

THE FIRST and SECOND KINDS, and can be written

y�a1Jn(�ix)�a2Yn(�ix) (2)

�c1In(x)�c2Kn(x); (3)

where Jn(x) is a BESSEL FUNCTION OF THE FIRST KIND,
Yn(x) is a BESSEL FUNCTION OF THE SECOND KIND,
In(x) is a MODIFIED BESSEL FUNCTION OF THE FIRST

KIND, and Kn(x) is MODIFIED BESSEL FUNCTION OF THE

SECOND KIND.

If n�0, the modified Bessel differential equation
becomes

x2 d2y

dx2
�x

dy

dx
�x2y�0; (4)

which can also be written

d

dx
x

dy

dx

 !
�xy: (5)

References
Abramowitz, M. and Stegun, C. A. (Eds.). §9.6.1 in Hand-

book of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, 9th printing. New York: Dover,
1972.

Zwillinger, D. Handbook of Differential Equations, 3rd ed.
Boston, MA: Academic Press, p. 121, 1997.

Modified Bessel Function of the First Kind

A function In(x) which is one of the solutions to the
MODIFIED BESSEL DIFFERENTIAL EQUATION and is
closely related to the BESSEL FUNCTION OF THE FIRST

KIND Jn(x): The above plot shows In(x) for n�1, 2, ...,
5. In terms of Jn(x);

In(x)�i�nJn(ix)�e�npi=2Jn xeip=2
� �

: (1)

For a REAL NUMBER n; the function can be computed



using

In(z) �(1
2 z) n

X

k �0

1
4 z

2
	 
k

k!G( n � k � 1) 
; (2)

where G(z) is the GAMMA FUNCTION. An integral
formula is

In(z) �
1

p g  
p

0

ez cos u cos(nu) d u

�
sin(np)

p g



0

e �z cosh t� nt dt ; (3)

which simplifies for n an INTEGER n to

In(z) �
1

p g  
p

0

ez cos u cos(n u) du (4)

(Abramowitz and Stegun 1972, p. 376).
A derivative identity for expressing higher order
modified Bessel functions in terms of I0(x) is

In(x) �Tn

d

dx

 !
I0(x) ; (5)

where Tn(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND.

The special case of n�0 gives I0(z) as the series

J0(z)�
X

k�0

1
4 z2
	 
k

(k!)2 : (6)

See also BESSEL FUNCTION OF THE FIRST KIND,
MODIFIED BESSEL FUNCTION OF THE FIRST KIND,
WEBER’S FORMULA
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Modified Bessel Function of the Second
Kind

The function Kn(x) which is one of the solutions to the
MODIFIED BESSEL DIFFERENTIAL EQUATION. The mod-
ified Bessel functions of the second kind are some-
times called the Basset functions (Spanier and
Oldham 1987, p. 499) or Macdonald functions (Spa-
nier and Oldham 1987, p. 499; Samko et al. 1993,
p. 20). Kn(x) is closely related to the MODIFIED BESSEL

FUNCTION OF THE FIRST KIND In(x) and HANKEL

FUNCTION Hn(x);

Kn(x)�1
2 pin�1H(1)

n (ix) (1)

�1
2 pin�1[Jn(ix)�iNn(ix)] (2)

�
p

2

I�n(x) � In(x)

sin(np)
(3)

(Watson 1966, p. 185). A sum formula for Kn(x) is

Kn(z)�1
2(

1
2 z)�n

Xn�1

k�0

(n � k � 1)!

k!
(�1

4 z2)k

�(�1)n�1ln(1
2 z)In(z)�(�1)n1

2(
1
2 z)n

�
X

k�0

[c(k�1)�c(n�k�1)]
(1
4 z2)k

k!(n � k)!
; (4)

where c is the DIGAMMA FUNCTION (Abramowitz and
Stegun 1972). An integral formula is

Kn(z)�
G(n� 1

2)(2z)nffiffiffi
p

p g



0

cos t dt

(t2 � z2)n�1=2 (5)

which, for n�0; simplifies to



K0(x) �g



0

cos(x sinh t) dt �g



0

cos(xt) dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p : (6)

Other identities are

Kn(z) �
ffiffiffi
p

p

(n � 1
2)!

(1
2 z)ng




1

e �zx(x2 �1)n�1=2 dx (7)

for n >�1=2 and

Kn(z) �

ffiffiffiffiffi
p

2z

s
e �z

(n � 1
2)! 
g




0

e �ttn�1 =2 1 �
t

2z

 !n�1 =2

dt (8)

�

ffiffiffiffiffiffiffi
p

2z

s
e �z

n � 1
2

	 

!

X

r�0

n � 1
2

	 

!

r! n � r � 1
2

	 

!
(2z)�r

�g



0

e �ttn�r�1 =2 dt: (9)

The special case of n �0 gives K0(z) as the integrals

K0(z) �g



0

cos(x sinh t) dt (10)

�g



0

cos(xt)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p dt (11)

(Abramowitz and Stegun 1972, p. 376).
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Modified Emden Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ� a(x)y?�x2yn �0:

See also EMDEN DIFFERENTIAL EQUATION
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Modified Spherical Bessel Differential
Equation
The modified spherical Bessel differential equation is
given by the SPHERICAL BESSEL DIFFERENTIAL EQUA-

TION with a NEGATIVE separation constant,

r2 d2R

dr2 
�2r

dR

dr
�r r2�n(n�1)
� �

R�0:

The solutions are called MODIFIED SPHERICAL BESSEL

FUNCTIONS.

See also MODIFIED SPHERICAL BESSEL FUNCTION,
SPHERICAL BESSEL DIFFERENTIAL EQUATION
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Modified Spherical Bessel Function
Solutions to the MODIFIED SPHERICAL BESSEL DIFFER-

ENTIAL EQUATION, given by

in(x)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2x
In�1=2(x)

s
(1)

i0(x)�
sinh x

x
(2)

kn(x)�

ffiffiffiffiffiffi
2p

x

s
Kn�1=2(x) (3)

k0(x)�
e�x

x
; (4)

where In(x) is a MODIFIED BESSEL FUNCTION OF THE



FIRST KIND and Kn(x) is a MODIFIED BESSEL FUNCTION

OF THE SECOND KIND.

See also MODIFIED BESSEL FUNCTION OF THE FIRST

KIND, MODIFIED BESSEL FUNCTION OF THE SECOND

KIND
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Modified Struve Function

Ln(z) � 1
2 z
	 
n�1 X


k�0

1
2 z
	 
2k

G k � 3
2

	 

G k � n � 3

2

	 


�
2 1

2 z
	 
n

ffiffiffi
p

p
G n � 1

2

	 
 g  p =2

0

sinh(z cos u) sin2n u du;

where G(z) is the GAMMA FUNCTION. For integer n , the
function is related to the ordinary STRUVE FUNCTION

Hn(z) by

Ln(iz) ��ie �npi =2Hn(z) :

The Struve function Ln(z) is built into Mathematica
4.0 as StruveL[n , z ].

See also ANGER FUNCTION, STRUVE FUNCTION, WE-

BER FUNCTIONS
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Modul
MODULE

Modular Angle
Given a MODULUS k in an ELLIPTIC INTEGRAL, the
modular angle is defined by k �sin a: An ELLIPTIC

INTEGRAL is written I( f½m) when the PARAMETER is
used, I( f; k) when the MODULUS is used, and I(f_a)
when the modular angle is used.

See also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), ELLIPTIC INTEGRAL, HALF-PERIOD RATIO,
MODULUS (ELLIPTIC INTEGRAL), NOME, PARAMETER
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Modular Discriminant
Define q �e2pit (cf. the usual NOME), where t is in the
UPPER HALF-PLANE. Then the modular discriminant is
defined by

D( t) �q
Y

r�1

1 �qrð Þ24

(Rankin 1977, p. 196; Berndt 1988, p. 326; Milne
2000).

If g2( v1 ; v2) and g3( v1 ; v2) are the INVARIANTS of a
WEIERSTRASS ELLIPTIC FUNCTION / �(z j v1 ; v2)/

/��(z; g2 ; g3)/ with periods v1 and v2 ; then the
discriminant is defined by

D( v1 ; v2) �g3
2 �27g2

3 : (1)

Letting t � v2 =v1 ; then

D( t) �D(1; t)

� v12
1 D( v1 ; v2) (2)

�g3
2(t) �27g2

3(t) : (3)

The FOURIER SERIES of D(t) for t � H ; where H is the
UPPER HALF-PLANE, is

D(t) �(2p)12 
X

n �1

t(n)e2 pint ; (4)

where t(n) is the TAU FUNCTION, and t(n) are integers
(Apostol 1997, p. 20). The discriminant can also be
expressed in terms of the DEDEKIND ETA FUNCTION

h(t) by

D( t) �(2p)12[h( t)]24 (5)

(Apostol 1997, p. 51).

See also DEDEKIND ETA FUNCTION, INVARIANT (EL-

LIPTIC FUNCTION), KLEIN’S ABSOLUTE INVARIANT,
NOME, TAU FUNCTION, WEIERSTRASS ELLIPTIC FUNC-

TION
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Modular Equation
The modular equation of degree n gives an algebraic
connection OF THE FORM

K ?(l)

K(l)
�n

K ?(k)

K(k)
(1)

between the TRANSCENDENTAL COMPLETE ELLIPTIC

INTEGRALS OF THE FIRST KIND with moduli k and l .
When k and l satisfy a modular equation, a relation-
ship OF THE FORM

M(l; k) dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2ð Þ 1 � l2y2ð Þ

p �
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2ð Þ 1 � k2x2ð Þ
p (2)

exists, and M is called the multiplier. In general, if p
is an ODD PRIME, then the modular equation is given
by

Vp(u; v)� v�u0ð Þ v�u1ð Þ � � � v�up

� �
; (3)

where

up�(�1)(p2�1)=8
l(qp)½ 
1=8

�(�1)(p2�1)=8u(qp); (4)

/l is a ELLIPTIC LAMBDA FUNCTION, and

q�eipt (5)

(Borwein and Borwein 1987, p. 126). An ELLIPTIC

INTEGRAL identity gives

K ?(k)

K(k)
�2

K ?
2
ffiffiffi
k

p

1 � k

 !

K
2
ffiffiffi
k

p

1 � k

 ! ; (6)

so the modular equation of degree 2 is

l�
2
ffiffiffi
k

p

1 � k
(7)

which can be written as

l2 1�k2
� �

�4k: (8)

A few low order modular equations written in terms
of k and l are

V2�l2(1�k)2�4k�0 (9)

V7�(kl)1=4�(k?l?)1=4�1�0 (10)

V23�(kl)1=4�(k?l?)1=4�22=3(klk?l?)1=12�1�0:

(11)

In terms of u and v ,

V3(u; v)�u4�v4�2uv 1�u2v2
� �

�0 (12)

V5(u; v)�v6�u6�5u2v2 v2�u2
� �

�4uv u4v4�1
� �

�
u

v

 !3

�
v

u

 !3

�2 u2v2�
1

u2v2

 !
�0 (13)

V7(u; v)� 1�u8
� �

1�v8
� �

�(1�uv)8�0; (14)

where

u2�
ffiffiffi
k

p
�

q 2(q)

q 3(q)
(15)

and

v2�
ffiffi
l

p
�

q 2 qpð Þ
q 3 qpð Þ

: (16)

Here, q i are JACOBI THETA FUNCTIONS.

A modular equation of degree 2r for r]2 can be
obtained by iterating the equation for 2r�1: Modular
equations for PRIME p from 3 to 23 are given in
Borwein and Borwein (1987).

Quadratic modular identities include

q 3(q)

q 3 q4ð Þ
�1�

q 2
3 q2ð Þ

q 2
3 q4ð Þ

�1

" #1=2

: (17)

Cubic identities include

3
q 2 q9ð Þ
q 2(q)

�1

" #3

�9
q 4

2 q3ð Þ
q 4

2(q)
�1 (18)

3
q 3 q9ð Þ
q 3(q)

�1

" #3

�9
q 4

3 q3ð Þ
q 4

3(q)
�1 (19)

3
q 4 q9ð Þ
q 4(q)

�1

" #3

�9
q 4

4 q3ð Þ
q 4

4(q)
�1: (20)

A seventh-order identity isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 3(q)q 3 q7ð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 4(q)q 4 q7ð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 2(q)q 2 q7ð Þ

p
: (21)

From Ramanujan (1913�/914),

(1�q) 1�q3
� �

1�q5
� �

� � ��21=6q1=24(kk?)�1=12 (22)

(1�q) 1�q3
� �

1�q5
� �

� � ��21=6q1=24k�1=12k?1=6: (23)

When k and l satisfy a MODULAR EQUATION, a
relationship OF THE FORM

M(l; k) dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2ð Þ 1 � l2y2ð Þ

p �
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2ð Þ 1 � k2x2ð Þ
p (24)

exists, and M is called the multiplier. The multiplier
of degree n can be given by

Mn(l; k)�
q 2

3(q)

q 2
3(q1=p)

�
K(k)

K(l)
; (25)



where q i is a JACOBI THETA FUNCTION and K(k) is a
complete ELLIPTIC INTEGRAL OF THE FIRST KIND.

The first few multipliers in terms of l and k are

M2(l ; k) �
1

1 � k 
�

1 � l ?

2 
(26)

M3(l ; k) �

1 �

ffiffiffiffi
l3

k

s

1 �

ffiffiffiffiffi
k3

l

s : (27)

In terms of the u and v defined for MODULAR

EQUATIONS,

M3 �
v

v � 2u3 
�

2v3 � u

3u 
(28)

M5 �
v(1 � uv3)

v � u5
�

u � v5

5u(1 � u3v) 
(29)

M7�
v(1 � uv)(1 � uv � (uv)2)]

v � u2

�
v7 � u

7u(1 � uv)(1 � uv � (uv)2)]
: (30)

See also MODULAR FORM, MODULAR FUNCTION,
SCHLÄ FLI’S MODULAR FORM
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Modular Form
A function f is said to be an entire modular form of
weight k if it satisfies

1. f is analytic in the UPPER HALF-PLANE H ,
2. f at�b

ct�d

	 

�(ct�d)kf (t) whenever a b

c d

� �
is a mem-

ber of the MODULAR GROUP GAMMA,
3. The FOURIER SERIES of f has the form

f (t)�
X

n�0

c(n)e2pint (1)

Care must be taken when consulting the literature
because some authors use the term "dimension�k/" or
"degree�k/" instead of "weight k ," and others write k
instead of k (Apostol 1997, pp. 114�/15). More general
types of modular forms (which are not "entire"rpar;

can also be defined which allow poles in H or at i
:
Since KLEIN’S ABSOLUTE INVARIANT J , which is a
MODULAR FUNCTION, has a pole at i
; it is a nonentire
modular form of weight 0.

The set of all entire forms of weight k is denoted Mk;
which is a linear space over the complex field. The
dimension of Mk is 1 for k�4, 6, 8, 10, and 14 (Apostol
1997, p. 119).

/c(0) is the value of f at i
; and if c(0)�0; the function
is called a CUSP FORM. The smallest r such that c(r)"
0 is called the order of the zero of f at i
: An estimate
for c(n) states that

c(n)�O(n2k�1) (2)

if f �M2k and is not a CUSP FORM (Apostol 1997,
p. 135).

If f "0 is an entire modular form of weight k , let f
have N zeros in the closure of the FUNDAMENTAL

REGION RG (omitting the vertices). Then

k�12N�6N(i)�4N(r)�12N(i
); (3)

where N(p) is the order of the zero at a point p
(Apostol 1997, p. 115). In addition,

1. The only entire modular forms of weight k�0
are the constant functions.
2. If k is ODD, k B0, or k�2, then the only entire
modular form of weight k is the zero function.
3. Every nonconstant entire modular form for
weight k]4; where k is EVEN.
4. The only entire CUSP FORM of weight k B12 is
the zero function.

(Apostol 1997, p. 116).

For f an entire modular form of EVEN weight k]0;
define E0(t)�1 for all t: Then f can be expressed in
exactly one way as a sum

f �
Xk=12b c

r�0

k�12r"2

arEk�12rD
r; (4)

where ar are complex numbers, En is an EISENSTEIN

SERIES, and D is the MODULAR DISCRIMINANT of the
WEIERSTRASS ELLIPTIC FUNCTION. CUSP FORMS of
EVEN weight k are then those sums for which a0�0
(Apostol 1997, pp. 117�/18). Even more amazingly,
every entire modular form f of weight k is a POLY-

NOMIAL in E4 and E6 given by

f �
X
a; b

ca; bEa
4Ea

6; (5)

where the ca; b are complex numbers and the sum is
extended over all integers a; b]0 such that 4a�
6b�k (Apostol 1998, p. 118).



Modular forms satisfy rather spectacular and special
properties resulting from their surprising array of
internal symmetries. Hecke discovered an amazing
connection between each modular form and a corre-
sponding DIRICHLET L -SERIES. A remarkable connec-
tion between rational ELLIPTIC CURVES and modular
forms is given by the TANIYAMA-SHIMURA CONJEC-

TURE, which states that any rational ELLIPTIC CURVE

is a modular form in disguise. This result was the one
proved by Andrew Wiles in his celebrated proof of
FERMAT’S LAST THEOREM.

See also CUSP FORM, DIRICHLET SERIES, ELLIPTIC

CURVE, ELLIPTIC FUNCTION, FERMAT’S LAST THEO-

REM, HECKE ALGEBRA, HECKE OPERATOR, MODULAR

FUNCTION, SCHLÄ FLI’S MODULAR FORM, TANIYAMA-

SHIMURA CONJECTURE
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Modular Function
A function is said to be modular (or "elliptic modular")
if it satisfies:

1. f is MEROMORPHIC in the UPPER HALF-PLANE H ,
2. f (A t) �f( t) for every MATRIX A in the MODULAR

GROUP GAMMA,
3. The LAURENT SERIES of f has the form

f ( t) �
Xm

n��m

a(n)e2pin t

(Apostol 1997, p. 34). Every RATIONAL FUNCTION of
KLEIN’S ABSOLUTE INVARIANT J is a modular function,
and every modular function can be expressed as a
RATIONAL FUNCTION of J (Apostol 1997, p. 40).

An important property of modular functions is that if
f is modular and not identically 0, then the number of
zeros of f is equal to the number of poles of f in the
closure of the FUNDAMENTAL REGION RG (Apostol
1997, p. 34).

See also DIRICHLET SERIES, ELLIPTIC FUNCTION,
ELLIPTIC LAMBDA FUNCTION, ELLIPTIC MODULAR

FUNCTION, KLEIN’S ABSOLUTE INVARIANT, MODULAR

EQUATION, MODULAR FORM, MODULAR GROUP GAM-

MA, MODULAR GROUP GAMMA0, MODULAR GROUP

LAMBDA
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Modular Group
MODULAR GROUP GAMMA, MODULAR GROUP GAMMA0,
MODULAR GROUP LAMBDA

Modular Group Gamma
The GROUP G of all MÖ BIUS TRANSFORMATIONS OF THE

FORM

t ?�
at � b

c t � d 
; (1)

where a , b , c , and d are integers with ab �bc �1:
The group can be represented by the 2 �2 matrix

A �
a b
c d

� �
; (2)

where det(A) �1: Every A �G can be expressed in the
form

A �Tn1 ST n2 S � � �ST nk ; (3)

where

S �
0 �1
1 0

� �
(4)

T �
1 1
0 1

� �
; (5)

although the representation is not unique (Apostol
1997, pp. 28�/9).

See also KLEIN’S ABSOLUTE INVARIANT, MÖ BIUS

TRANSFORMATION, MODULAR GROUP GAMMA0, MOD-

ULAR GROUP LAMBDA, THETA FUNCTIONS, UNIMODU-

LAR TRANSFORMATION
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Modular Group Gamma0
Let q be a POSITIVE INTEGER, then G0(q) is defined as
the set of all matrices a b

c d

� �
in the MODULAR GROUP

GAMMA G with c �0 (mod q): G0(q) is a SUBGROUP of
G: For any PRIME p , the set

RG@ @
p �1

k �0
STk(RG)

is a FUNDAMENTAL REGION of the subgroup G0(q);
where S t ��1 =t and T t � t �1 (Apostol 1997).

See also MODULAR GROUP GAMMA0, MODULAR GROUP

LAMBDA
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Modular Group Lambda

The set l of linear MÖ BIUS TRANSFORMATIONS w
which satisfy

w(t) �
at � b

ct � d 
;

where a and d are ODD and b and c are EVEN. l is a
SUBGROUP of the MODULAR GROUP GAMMA, and is also
called the THETA SUBGROUP. The FUNDAMENTAL RE-

GION of the modular lambda group is illustrated
above.

See also MODULAR GROUP GAMMA
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ModularLambda
ELLIPTIC LAMBDA FUNCTION

Modular Lattice
A LATTICE which satisfies the identity

(x ffly) �(x fflz) �x ffl(y �(x fflz))

is said to be modular.

See also DISTRIBUTIVE LATTICE
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Modular System
A set M of all POLYNOMIALS in s variables, x1 ; ..., xs

such that if P , P1 ; and P2 are members, then so are
P1 �P2 and QP , where Q is any POLYNOMIAL in x1 ; ...,
xs :/

See also HILBERT’S THEOREM, MODULE, MODULAR

SYSTEM BASIS

Modular System Basis
A basis of a MODULAR SYSTEM M is any set of
POLYNOMIALS B1 ; B2 ; ...of M such that every POLY-

NOMIAL of M is expressible in the form

R1B1 �R2B2 �. . . ;

where R1 ; R2 ; ...are POLYNOMIALS.

Modular Transformation
MODULAR EQUATION

Modulation Theorem
The important property of FOURIER TRANSFORMS that
F[cos(2pk0x)f (x)] can be expressed in terms of
F[f (x)] �F(k) as follows,

F[cos(2pk0x)f (x)] �1
2[F(k �k0) �F(k �k0)]:

See also FOURIER TRANSFORM
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Module
A mathematical object in which things can be added
together COMMUTATIVELY by multiplying COEFFI-

CIENTS and in which most of the rules of manipulat-
ing VECTORS hold. A module is abstractly very similar
to a VECTOR SPACE, although in modules, COEFFI-

CIENTS are taken in RINGS which are much more



general algebraic objects than the FIELDS used in
VECTOR SPACES. A module taking its coefficients in a
RING R is called a module over R , or a R -MODULE.

Modules are the basic tool of HOMOLOGICAL ALGEBRA.
Examples of modules include the set of INTEGERS Z;
the cubic lattice in d dimensions Zd ; and the GROUP

RING of a GROUP.

/Z is a module over itself. It is CLOSED under ADDITION

and SUBTRACTION (although it is SUFFICIENT to
require closure under SUBTRACTION). Numbers OF

THE FORM for n �Z and a a fixed integer form a
submodule since, for all (n; m) �Z;

na 9ma �(n 9m) a

and (n 9m) is still in Z:/

Given two INTEGERS a and b , the smallest module
containing a and b is the module for their GREATEST

COMMON DIVISOR, a �GCD(a ; b) :/

See also DIFFERENT, DIRECT SUM, DISCRIMINANT

(MODULE), FIELD, GRADED MODULE, GROUP RING,
HOMOLOGICAL ALGEBRA, MODULAR SYSTEM, R -MOD-

ULE, RING, SUBMODULE, VERMA MODULE, VECTOR

SPACE
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pp. 239 �/40, 1994.

Module Direct Sum
The direct sum of modules A and B is the module

A �B �fa �b ½ a � A; b � B g; (1)

where all algebraic operations are defined compo-
nentwise. In particular, suppose that A and B are left
R -modules, then

a1 �b1 �a2 �b2 �(a1 �a2) �(b1 �b2) (2)

and

r(a �b) �(ra �rb) ; (3)

where r is an element of the RING R . The direct sum
of an arbitrary family of MODULES over the same RING

is also defined. If J is the indexing set for the family
of MODULES, then the direct sum is represented by the
collection of functions with finite support from J to

the union of all these MODULES such that the function
sends j � J to an element in the MODULE indexed by j .

The dimension of a direct sum is the sum of the
dimensions of the quantities summed. The significant
property of the direct sum is that it is the COPRODUCT

in the CATEGORY of MODULES. This general definition
gives as a consequence the definition of the direct
sum A �B of ABELIAN GROUPS A and B (since they
are Z/-modules, i.e., MODULES over the INTEGERS) and
the direct sum of VECTOR SPACES (since they are
MODULES over a FIELD). Note that the direct sum of
Abelian groups is the same as the GROUP DIRECT

PRODUCT, but that the term direct sum is not used for
groups which are NON-ABELIAN.

Whenever C is a MODULE, with module homomorph-
isms fA : A 0 C and fB : B 0 C ; then there is a module
homomorphism fA : A �B 0 C; given by f (a �b) �
fA(a) �fB(b) : Note that this map is well-defined
because addition in modules is commutative. Some-
times direct sum is preferred over direct product
when the coproduct property is emphasized.

See also COPRODUCT, DIRECT SUM, GROUP DIRECT

PRODUCT, MODULE
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Moduli Space
This entry contributed by EDGAR VAN TUYLL

In ALGEBRAIC GEOMETRY classification problems, an
ALGEBRAIC VARIETY (or other appropriate space in
other parts of geometry) whose points correspond to
the equivalence classes of the objects to be classified
in some natural way. Moduli space can be thought of
as the space of EQUIVALENCE CLASSES of COMPLEX

STRUCTURES on a fixed surface of GENUS g , where two
COMPLEX STRUCTURES are deemed "the same" if they
are equivalent by CONFORMAL MAPPING.

See also ALGEBRAIC VARIETY, COMPLEX STRUCTURE
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Modulo
CONGRUENCE



Modulo Multiplication Group
A FINITE GROUP Mm of RESIDUE CLASSES prime to m
under multiplication mod m . Mm is ABELIAN of ORDER

f(m); where f(m) is the TOTIENT FUNCTION. The
following table gives the modulo multiplication
groups of small orders, where Zn denotes the CYCLIC

GROUP of order n .

/Mm/ Group /f(m)/ Elements

/M2/ /�e�/ 1 1

/M3/ /Z2/ 2 1, 2

/M4/ /Z2/ 2 1, 3

/M5/ /Z4/ 4 1, 2, 3, 4

/M6/ /Z2/ 2 1, 5

/M7/ /Z6/ 6 1, 2, 3, 4, 5, 6

/M8/ /Z2�Z2/ 4 1, 3, 5, 7

/M9/ /Z6/ 6 1, 2, 4, 5, 7, 8

/M10/ /Z4/ 4 1, 3, 7, 9

/M11/ /Z10/ 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

/M12/ /Z2�Z2/ 4 1, 5, 7, 11

/M13/ /Z12/ 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12

/M14/ /Z6/ 6 1, 3, 5, 9, 11, 13

/M15/ /Z2�Z4/ 8 1, 2, 4, 7, 8, 11, 13, 14

/M16/ /Z2�Z4/ 8 1, 3, 5, 7, 9, 11, 13, 15

/M17/ /Z16/ 16 1, 2, 3, ..., 16

/M18/ /Z6/ 6 1, 5, 7, 11, 13, 17

/M19/ /Z18/ 18 1, 2, 3, ..., 18

/M20/ /Z2�Z4/ 8 1, 3, 7, 9, 11, 13, 17, 19

/M21/ /Z2�Z6/ 12 1, 2, 4, 5, 7, 8, 10, 11, 13,
16, 17, 19

/M22/ /Z10/ 10 1, 3, 5, 7, 9, 13, 15, 17,
19, 21

/M23/ /Z22/ 22 1, 2, 3, ..., 22

/M24/ /Z2�Z2�Z2/ 8 1, 5, 7, 11, 13, 17, 19, 23

/Mm is a CYCLIC GROUP (which occurs exactly when m
has a PRIMITIVE ROOT) IFF m is of one of the forms
m�2, 4, pn; or 2pn; where p is an ODD PRIME and
n]1 (Shanks 1993, p. 92).

ISOMORPHIC modulo multiplication groups can be
determined using a particular type of factorization
of f(m) as described by Shanks (1993, pp. 92�/3). To
perform this factorization (denoted fm); factor m in
the standard form

m�pa1

1 pa2

2 � � � pan
n : (1)

Now write the factorization of the TOTIENT FUNCTION

involving each power of an ODD PRIME

f pai

i

� �
�(pi�1)pai�1

i (2)

as

f pai

i

� �
� qb1

1

D E
qb2

2

D E
� � � qbs

s

% ;
pai�1

i

D E
; (3)

where

pi�1�qb1

1 qb2

2 � � � qbs
s ; (4)

/ qb
% ;

denotes the explicit expansion of qb (i.e., 52�25);
and the last term is omitted if ai�1: If p1�2; write

f(2a1 )�
2 for a1�2
2 2a1�2h i for a1 > 2:

 
(5)

Now combine terms from the odd and even primes.
For example, consider m�104�23 � 13: The only odd
prime factor is 13, so factoring gives 13�1�12�
22h i 3h i�3 � 4: The rule for the powers of 2 gives 23�

2 23�2h i�2 2h i�2 � 2: Combining these two gives
f104�2 � 2 � 3 � 4: Other explicit values of fm are
given below.

f3�2

f4�2

f5�4

f6�2



f15�2 � 4

f16�2 � 4

f17�16

f104�2 � 2 � 3 � 4

f105�2 � 2 � 3 � 4:

/Mm and Mn are isomorphic IFF fm and fn are
identical. More specifically, the abstract GROUP cor-
responding to a given Mm can be determined expli-
citly in terms of a GROUP DIRECT PRODUCT of CYCLIC

GROUPS of the so-called CHARACTERISTIC FACTORS,
whose product is denoted Fn: This representation is
obtained from fm as the set of products of largest
powers of each factor of fm: For example, for f104; the
largest power of 2 is 4�22 and the largest power of 3
is 3�31; so the first characteristic factor is 4�3�12;
leaving 2 � 2 (i.e., only powers of two). The largest
power remaining is 2�21; so the second CHARACTER-

ISTIC FACTOR is 2, leaving 2, which is the third and
last CHARACTERISTIC FACTOR. Therefore, F104�2 � 2 �
4; and the group Mm is isomorphic to Z2�Z2�Z4:/

The following table summarizes the isomorphic mod-
ulo multiplication groups Mn for the first few n and
identifies the corresponding abstract GROUP. No Mm

is ISOMORPHIC to Z8; Q8; or D4: However, every finite
ABELIAN GROUP is isomorphic to a SUBGROUP of Mm

for infinitely many different values of m (Shanks
1993, p. 96). CYCLE GRAPHS corresponding to Mn for
small n are illustrated above, and more complicated
CYCLE GRAPHS are illustrated by Shanks (1993,
pp. 87�/2).

Group Isomorphic Mm/

/�e�/ /M2/

/Z2/ /M3; M4; M6/

/Z4/ /M5; M10/

/Z2�Z2/ /M8; M12/

/Z6/ /M7; M9; M14; M18/

/Z2�Z4/ /M15; M16; M20; M30/

/Z2�Z2�Z2/ /M24/

/Z10/ /M11; M22/

/Z12/ /M13; M26/

/Z2�Z6/ /M21; M28; M36; M42/

/Z16/ /M17; M34/

/Z2�Z8/ /M32/

/Z2�Z2�Z4/ /M40; M48; M60/

/Z18/ /M19; M27; M38; M54/

/Z20/ /M25; M50/

/Z2�Z10/ /M33; M44; M66/

/Z22/ /M23; M46/

/Z2�Z12/ /M35; M39; M45; M52; M70; M78; M90/

/Z28/ /M29; M58/

/Z30/ /M31; M62/

/Z36/ /M37; M74/

The number of CHARACTERISTIC FACTORS r of Mm for
m�1, 2, ... are 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, ...
(Sloane’s A046072). The number of QUADRATIC RESI-

DUES in Mm for m �2 are given by f(m)=2r (Shanks
1993, p. 95). The first few for m�1, 2, ... are 0, 1, 1, 1,
2, 1, 3, 1, 3, 2, 5, 1, 6, ... (Sloane’s A046073).

In the table below, f(n) is the TOTIENT FUNCTION

(Sloane’s A000010) factored into CHARACTERISTIC

FACTORS, l(n) is the CARMICHAEL FUNCTION (Sloane’s
A011773), and gi are the smallest generators of the
group Mn (of which there is a number equal to the
number of CHARACTERISTIC FACTORS).

n /f(n)/ /l(n)/ /gi/ n /f(n)/ /l(n)/ /gi/

3 2 2 2 27 18 18 2

4 2 2 3 28 /2 � 6/ 6 13, 3

5 4 2 2 29 28 28 2

6 2 2 5 30 /2 � 4/ 4 11, 7

7 6 6 3 31 30 30 3

8 /2 � 2/ 2 7, 3 32 /2 � 8/ 8 31, 3

9 6 6 2 33 /2 � 10/ 10 10, 2

10 4 4 3 34 16 16 3

11 10 10 2 35 /2 � 12/ 12 6, 2

12 /2 � 2/ 2 5, 7 36 /2 � 6/ 6 19,5

13 12 12 2 37 36 36 2

14 6 6 3 38 18 18 3

15 /2 � 4/ 4 14, 2 39 /2 � 12/ 12 38, 2

16 /2 � 4/ 4 15, 3 40 /2 � 2 � 4/ 4 39, 11, 3

17 16 16 3 41 40 40 6

18 6 6 5 42 /2 � 6/ 6 13, 5

19 18 18 2 43 42 42 3

20 /2 � 4/ 4 19, 3 44 /2 � 10/ 10 43, 3

21 /2 � 6/ 6 20, 2 45 /2 � 12/ 12 44, 2

22 10 10 7 46 22 22 5



23 22 22 5 47 46 46 5

24 /2 � 2 � 2/ 2 5, 7, 13 48 /2 � 2 � 4/ 4 47, 7, 5

25 20 20 2 49 42 42 3

26 12 12 7 50 20 20 3

See also CHARACTERISTIC FACTOR, CYCLE GRAPH,
FINITE GROUP, RESIDUE CLASS
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Modulus
The word modulus has several different meanings in
mathematics with respect to complex numbers, con-
gruences, elliptic integrals, quadratic invariants,
sets, etc.

See also MODULUS (COMPLEX NUMBER), MODULUS

(CONGRUENCE), MODULUS (ELLIPTIC INTEGRAL), MOD-

ULUS (QUADRATIC INVARIANTS), MODULUS (SET)

Modulus (Complex Number)
The modulus of a COMPLEX NUMBER z is denoted ½z ½:

jx �iy j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
(1)

rei f
�� ��� ½r½: (2)

Let c1 �Aeif1 and c2 �Beif2 be two COMPLEX NUM-

BERS. Then

c1

c2

�����
������Aeif1

Beif2

�����
������A

B
ei( f1�f2)
�� ���A

B 
(3)

½c1 ½

½c2 ½
�

Aeif1j j
Beif2j j

�
A

B

ei f1j j
ei f2j j

�
A

B 
; (4)

so

c1

c2

�����
������½c1 ½

½c2 ½
: (5)

Also,

½c1c2 ½� ½(Aei f1 )(Beif2 ) ½�AB ½ei( f1�f2) ½�AB (6)

½c1 ½½c2 ½� ½Aeif1 ½½Beif2 ½�AB ½ei f1 ½½eif2 ½�AB ; (7)

so

½c1c2 ½� ½c1 ½½c2 ½ (8)

and, by extension,

½zn ½� ½z ½n : (9)

The only functions satisfying identities OF THE FORM

½f (x �iy) ½� ½f (x) �f (iy) ½ (10)

are f (z) �Az; f (z) �A sin(bz); and f (z) �A sinh(bz)
(Robinson 1957).

See also ABSOLUTE SQUARE, ARGUMENT (COMPLEX

NUMBER), COMPLEX NUMBER, IMAGINARY PART, MAX-

IMUM MODULUS PRINCIPLE, MINIMUM MODULUS

PRINCIPLE, REAL PART
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Modulus (Congruence)
The modulus of a CONGRUENCE a �b (mod m) is the
number m . It is the "base" with respect to which a
CONGRUENCE is computed (i.e., m gives the number of
multiples of a that are "thrown out"). For example,
when computing the time of day using a 12-hour clock
obtained by adding four hours to 9:00, the answer,
1:00, is obtained by taking 9 �4 �1 (mod 12) (i.e.,
adding the hours with modulus 12).

In many computer languages (such as FORTRAN or
Mathematica ), the COMMON RESIDUE of b (mod m ) is
written mod(b ,m ) (FORTRAN) or Mod[b ,m ] (Mathe-
matica ).

See also CONGRUENCE

Modulus (Elliptic Integral)
A parameter k used in ELLIPTIC INTEGRALS and
ELLIPTIC FUNCTIONS defined to be k�

ffiffiffiffiffi
m

p
; where m

is the PARAMETER. An ELLIPTIC INTEGRAL is written
I(f; k) when the modulus is used. It can be computed
explicitly in terms of JACOBI THETA FUNCTIONS of zero
argument:

k�
q2

2(0; q)

q2
3(0; q)

: (1)

The REAL period K(k) and IMAGINARY period K ?(k)�
K(k?)�K(

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p
) are given by

4K(k)�2pq 2
3(0½t) (2)



2iK ?(k) � pt q 2
3(0½ t); (3)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND and the complementary modulus is de-
fined by

k ?2 �1 �k2 ; (4)

with k the modulus.

See also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), COMPLEMENTARY MODULUS, ELLIPTIC FUNC-

TION, ELLIPTIC INTEGRAL, ELLIPTIC INTEGRAL

SINGULAR VALUE, HALF-PERIOD RATIO, JACOBI THETA

FUNCTIONS, MODULAR ANGLE, NOME, PARAMETER
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Modulus (Quadratic Invariants)
The quantity ps �rq obtained by letting

x �pX �qY (1)

y �rX �sY (2)

in

ax2 �2bxy �cy2 (3)

so that

A �ap2 �2bpr �cr2 (4)

B �apq �b(ps �qr) �crs (5)

C �aq2 �2bqs �cs2 (6)

and

B2 �AC �(ps �rq)2(b2 �ac) ; (7)

is called the modulus.

Modulus (Set)
The name for the SET of INTEGERS modulo m , denoted
Z_mZ : If m is a PRIME p , then the modulus is a FINITE

FIELD Fp �Z_pZ :/

Moebius
MÖ BIUS FUNCTION, MÖ BIUS GROUP, MÖ BIUS INVER-

SION FORMULA, MÖ BIUS PERIODIC FUNCTION, MÖ BIUS

PROBLEM, MÖ BIUS SHORTS, MÖ BIUS STRIP, MÖ BIUS

STRIP DISSECTION, MÖ BIUS TRANSFORMATION, MÖ -

BIUS TRIANGLES

MoebiusMu
MÖ BIUS FUNCTION

Moessner’s Theorem
Write down the POSITIVE INTEGERS in row one, cross
out every k1th number, and write the partial sums of
the remaining numbers in the row below. Now cross
off every k2th number and write the partial sums of
the remaining numbers in the row below. Continue.
For every POSITIVE INTEGER k �1, if every kth
number is ignored in row 1, every (k �1)/th number
in row 2, and every (k �1 �i)/th number in row i , then
the kth row of partial sums will be the kth POWERS 1k ;
2k ; 3k ; ....
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Mohammed Sign

A curve consisting of two mirror-reversed intersect-
ing crescents. This curve can be traced UNICURSALLY.

See also UNICURSAL CIRCUIT

Moiré Pattern
An interference pattern produced by overlaying
similar but slightly offset templates. Møiré patterns
can also be created by plotting series of curves on a
computer screen. Here, the interference is provided
by the discretization of the finite-sized pixels.

See also CIRCLES-AND-SQUARES FRACTAL

References
Amidror, I. The Theory of the Møiré Phenomenon. Dor-
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Molenbroek’s Equation
The PARTIAL DIFFERENTIAL EQUATION

92 f �M2



 
f2

x fxx �2fx fy fxy � f2
y fyy

�1
2(g �1)( f2

x � f2
y �1) fxx � fyy � e

fy

y

 !<

(Cole and Cook 1986, p. 34; Zwillinger 1997, p. 134).
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Mollweide Projection

A MAP PROJECTION also called the ELLIPTICAL PROJEC-

TION or HOMOLOGRAPHIC EQUAL-AREA PROJECTION.
The forward transformation is

x �
2

ffiffiffi
2

p
( l � l0) cos u

p 
(1)

y �21 =2 sin u; (2)

where u is given by

2u �sin(2u) � p sin f : (3)

NEWTON’S METHOD can then be used to compute u?
iteratively from

Du?��
u ? � sin u ? � p sin f

1 � cos u ?
; (4)

where

u?�1
2u ? (5)

or, better yet,

u?�2 sin �1 2f

p

 !
(6)

can be used as a first guess.
The inverse FORMULAS are

f �sin�1 2u � sin(2u)

p

" #
(7)

l � l0 �
px

2
ffiffiffi
2

p
cos u 

(8)

where

u �sin�1 yffiffiffi
2

p
 !

: (9)
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Mollweide’s Formulas

b � c

a
�

sin[1
2(B � C)]

cos(1
2 A)

c � a

b
�

sin[1
2(C � A)]

cos(1
2B)

a � b

c
�

sin[1
2(A � B)]

cos(1
2C)

:

See also NEWTON’S FORMULAS, TRIANGLE, TRIGONO-

METRY
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Moment
The nth RAW MOMENT m?n (i.e., moment about zero) of
a distribution P(x) is defined by

m?n� xnh i; (1)

where

f (x)h i�

P
f (x)P(x) discrete distribution

g f (x)P(x) dx continuous distribution

8<
: (2)

/m?1; the MEAN, is usually simply denoted m�m1: If the
moment is instead taken about a point a ,



mn(a) � (x �a)nh i�
X

(x �a)nP(x) : (3)

A STATISTICAL DISTRIBUTION is not uniquely specified
by its moments, although it is by its CHARACTERISTIC

FUNCTION.

The moments are most commonly taken about the
MEAN. These so-called CENTRAL MOMENTS are denoted
mn and are defined by

mn � (x � m)nh i; (4)

�g (x � m)nP(x) dx; (5)

with m1 �0: The second moment about the MEAN is
equal to the VARIANCE

m2 � s2 ; (6)

where s �
ffiffiffiffiffi
m2

p
is called the STANDARD DEVIATION.

The related CHARACTERISTIC FUNCTION is defined by

f(n)(0) �
dn f

dtn

" #
t �0

�in m(0): (7)

The moments may be simply computed using the
MOMENT-GENERATING FUNCTION,

m?n �M(n)(0) : (8)

See also ABSOLUTE MOMENT, CHARACTERISTIC FUNC-

TION, CHARLIER’S CHECK, CUMULANT-GENERATING

FUNCTION, FACTORIAL MOMENT, KURTOSIS, MEAN,
MOMENT-GENERATING FUNCTION, MOMENT PROBLEM,
MOMENT SEQUENCE, SKEWNESS, STANDARD DEVIA-

TION, STANDARDIZED MOMENT, VARIANCE
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Momental Skewness

a(m)�1
2 g1�

m3

2s3
;

where g1 is the FISHER SKEWNESS.

See also FISHER SKEWNESS, SKEWNESS

Moment-Generating Function
Given a RANDOM VARIABLE x �R; if there exists an
h �0 such thatfor ½t½Bh; then

M(t)� etxh i

�

P
R etxP(x) for a discrete distribution

g



�


etxP(x) dx for a continuous distribution

8<
:

(1)

is the moment-generating function.

M(t)� g



�


1�tx�
1

2!
t2x2�. . .

 !
P(x) dx

��tm1�
1
2! t2m2�� � � ; (3)

where mr is the rth MOMENT about zero. The moment-
generating function satisfies

Mx�y(t)� et(x�y)
% ;

� etxetyh i� etxh i etyh i�Mx(t)My(t): (4)

If M(t) is differentiable at zero, then the nth MO-

MENTS about the ORIGIN are given by M(n)(0)

M(t)� etxh i M(0)�1 (5)

M?(t)� xetxh i M?(0)� xh i (6)

M??(t)� x2etx
% ;

M??(0)� x2
% ;

(7)

M(n)(t)� xnetxh i M(n)(0)� xnh i: (8)

The MEAN and VARIANCE are therefore

m� xh i�M?(0) (9)

s2� x2
% ;

� xh i2�M??(0)� M?(0)½ 
2: (10)

It is also true that

mn�
Xn

j�0

n
j

� �
(�1)n�j

m?j(m?1)n�j; (11)

where m?0�1 and m?j is the jth moment about the
origin.

It is sometimes simpler to work with the LOGARITHM

of the moment-generating function, which is also
called the CUMULANT-GENERATING FUNCTION, and is
defined by

R(t)�ln[M(t)] (12)

R?(t)�
M?(t)

M(t)
(13)

R??(t)�
M(t)M??(t) � M?(t)½ 
2

M(t)½ 
2
(14)

But M(0)� 1h i�1; so

m�M?(0)�R?(0) (15)

s2�M??(0)� M?(0)½ 
2�R??(0) (16)



See also CHARACTERISTIC FUNCTION (PROBABILITY),
CUMULANT, CUMULANT-GENERATING FUNCTION, MO-

MENT
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Moment Problem
The moment problem, also called "Hausdorff’s mo-
ment problem "or the "little moment problem," may
be stated as follows. Given a sequence of numbers
mnf g
n �0 ; under what conditions is it possible to

determine a function a(t) of bounded variation in
the interval (0; 1) such that

mn �g
1

0

tn d a(t)

for n �0, 1, .... Such a sequence is called a MOMENT

SEQUENCE, and Hausdorff (1921) was the first to
obtain necessary and sufficient conditions for a
sequence to be a MOMENT SEQUENCE.

See also MOMENT, MOMENT SEQUENCE
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Moment Sequence
A moment sequence is a sequence mnf g
n�0 defined for
n �0, 1, ... by

mn �g
1

0

tn da(t) ;

where a(t) is a function of bounded variation in the
interval (0; 1):/

See also MOMENT, MOMENT PROBLEM

Monad
A mathematical object which consists of a set of a
single element. The YIN-YANG is also known as the
monad.

See also HEXAD, QUARTET, QUINTET, TETRAD, TRIAD,
YIN-YANG

Money-Changing Problem
COIN PROBLEM

Monge-Ampère Differential Equation
A second-order PARTIAL DIFFERENTIAL EQUATION OF

THE FORM

Hr�2Ks�Lt�M�N(rt�s2)�0; (1)

where H , K , L , M , and N are functions of x , y , z , p ,
and q , and r , s , t , p , and q are defined by

r�
@2z

@x2
(2)

s�
@2z

@x @y
(3)

t�
@2z

@y2
(4)

p�
@z

@x
(5)

q�
@z

@y
: (6)

The solutions are given by a system of differential
equations given by Iyanaga and Kawada (1980).

Other equations called the Monge-Ampère equation
are

u2
xy�uxuy�f (x; y; u; ux; uy) (7)

(Moon and Spencer 1969, p. 171; Zwillinger 1997,
p. 134) and

ux1x1
ux1x2

� � � ux1xn

ux2x1
ux2x2

� � � ux2xn

� � � � � � ::: � � �
uxnx1

uxnx2
� � � uxnxn

��������

���������f (u; x; 9u) (8)

(Gilberg and Trudinger 1983, p. 441; Zwillinger 1997,
p. 134).
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Monge Patch
A Monge patch is a PATCH x : U 0 R3 

OF THE FORM

x(u; v) �(u; v; h(u; v)); (1)

where U is an OPEN SET in R2 and h : U 0 R is a
differentiable function. The coefficients of the first
FUNDAMENTAL FORM are given by

E �1 �h2
u (2)

F �huhv (3)

G �1 �h2
v (4)

and the second FUNDAMENTAL FORM by

e �
huuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � h2
u � h2

v

p (5)

f �
huvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � h2
u � h2

v

p (6)

g �
gvvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � h2
u � h2

v

p : (7)

For a Monge patch, the GAUSSIAN CURVATURE and
MEAN CURVATURE are

K �
huuhvv � h2

uv

1 � h2
u � h2

vð Þ2 (8)

H �
(1 � h2

v)huu � 2huhvhuv � (1 � h2
u)hvv

2 1 � h2
u � h2

vð Þ3 =2 : (9)

See also MONGE’S FORM, PATCH
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Monge Point
The point of concurrence of the six PLANES in
MONGE’S TETRAHEDRON THEOREM.

See also MANNHEIM’S THEOREM, MONGE’S TETRAHE-

DRON THEOREM, PLANE, TETRAHEDRON
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Monge’s Chordal Theorem
RADICAL CENTER

Monge’s Circle Theorem

Draw three nonintersecting CIRCLES in the plane, and
the common tangent line for each pair of two. The
points of intersection of the three pairs of tangent
lines lie on a straight line.
Monge’s theorem has a 3-D analog which states that
the apexes of the CONES defined by four SPHERES,
taken two at a time, lie in a PLANE (when the CONES

are drawn with the SPHERES on the same side of the
apex; Wells 1991).

See also CIRCLE TANGENTS
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Monge’s Form
A SURFACE given by the form z�F(x; y):/

See also MONGE PATCH



Monge’s Problem

Draw a CIRCLE that cuts three given CIRCLES PER-

PENDICULARLY. The solution is obtained by drawing
the RADICAL CENTER R of the given three CIRCLES. If it
lies outside the three CIRCLES, then the CIRCLE with
center R and RADIUS formed by the tangent from R to
one of the given CIRCLES intersects the given CIRCLES

perpendicularly. Otherwise, if R lies inside one of the
circles, the problem is unsolvable.

See also CIRCLE TANGENTS, RADICAL CENTER
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Monge’s Shuffle
A SHUFFLE in which CARDS from the top of the deck in
the left hand are alternatively moved to the bottom
and top of the deck in the right hand. If the deck is
shuffled m times, the final position xm and initial
position x0 of a card are related by

2m�1xm �(4p �1) 2m�1 �(�1)m�1 2m�2 �� � ��2 �1
� �h i

�(�1)m�12x0 �2m �(�1)m�1

for a deck of 2p cards (Kraitchik 1942).

See also CARDS, SHUFFLE
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Monge’s Tetrahedron Theorem
The six PLANES through the midpoints of the edges of
a TETRAHEDRON and perpendicular to the opposite
edges CONCUR in a point known as the MONGE POINT.

See also MONGE POINT, PLANE, TETRAHEDRON

References
Altshiller-Court, N. "The Monge Theorem." §228 in Modern

Pure Solid Geometry. New York: Chelsea, p. 69, 1979.
Forder, H. G. Math. Gaz. 15, p. 470, 1930 �/931.
Lez, H. and Dugrais, M. "Solution des questions proposées

dans les Nouvelles Annales: Question 906." Nouvelles ann.
de math. 8, 173, 1869.
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Monge’s Theorem
MONGE’S CIRCLE THEOREM, MONGE’S TETRAHEDRON

THEOREM

Monica Set
The nth Monica set Mn is defined as the set of
COMPOSITE NUMBERS x for which n½S(x) �Sp(x); where

x �a0 �a1(101) �� � ��ad(10d) �p1p2 � � �pn ; (1)

and

S(x) �
Xd

j�0

aj (2)

Sp(x) �
Xm

i�1

S(pi) (3)

Every Monica set has an infinite number of elements.
The Monica set Mn is a subset of the SUZANNE SET Sn :
If x is a SMITH NUMBER, then it is a member of the
Monica set Mn for all /n �N/. For any INTEGER k �1, if
x is a k -SMITH NUMBER, then x � Mk�1 :/

See also SUZANNE SET
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Monic Polynomial
A POLYNOMIAL xn �an �1xn�1 �� � ��a1x �a0 in which
the COEFFICIENT of the highest ORDER term is 1.

See also MONOMIAL

Monkey and Coconut Problem
A DIOPHANTINE problem (i.e., one whose solution
must be given in terms of INTEGERS) which seeks a
solution to the following problem. Given n men and a
pile of coconuts, each man in sequence takes (1=n)/th
of the coconuts left after the previous man removed
his (i.e., a1 for the first man, a2; for the second, ..., an

for the last) and gives m coconuts (specified in the
problem to be the same number for each man) which
do not divide equally to a monkey. When all n men
have so divided, they divide the remaining coconuts n
ways (i.e., taking an additional a coconuts each), and
give the m coconuts which are left over to the



monkey. If m is the same at each division, then how
many coconuts N were there originally? The solution
is equivalent to solving the n �1 DIOPHANTINE

EQUATIONS

N �na1 �m

N �a1 �m �na2 �m

N �a1 �a2 �2m �na3 �m (1)

n

N �a1 �a2 �a3 �� � ��an �nm �na �m;

which can be rewritten as

N �na1 �m

(n �1)a1 �na2 �m

(n �1)a1 �na3 �m (2)

n

(n �1)an �1 �nan �m

(n �1)aa �na �m:

Since there are n �1 equations in the n �2 unknowns
a1 ; a2 ; ..., an ; a , and N , the solutions span a 1-
dimensional space (i.e., there is an infinite family of
solution parameterized by a single value). The solu-
tion to these equations can be given by

N �knn�1 �m(n �1); (3)

where k is an arbitrary INTEGER (Gardner 1961).

For the particular case of n �5 men and m �1 left
over coconuts, the 6 equations can be combined into
the single DIOPHANTINE EQUATION

1; 024N �15 ; 625a �11; 529; (4)

where a is the number given to each man in the last
division. The smallest POSITIVE solution in this case is
N �15 ; 621 coconuts, corresponding to k �1 and a �
1; 023; Gardner 1961). The following table shows how
this rather large number of coconuts is divided under
the scheme described above.

Removed Given to Monkey Left

15,621

3,124 1 12,496

2,499 1 9,996

1,999 1 7,996

1,599 1 6,396

1,279 1 5,116

5 �1,023 1 0

If no coconuts are left for the monkey after the final
n -way division (Williams 1926), then the original
number of coconuts is

(1 �nk)nn �(n �1) n odd
(n �1 �nk)nn �(n �1) n even :

 
(5)

The smallest POSITIVE solution for case n �5 and
m �1 is N �3 ; 121 coconuts, corresponding to k �1
and 1,020 coconuts in the final division (Gardner
1961). The following table shows how these coconuts
are divided.

Removed Given to Monkey Left

3,121

624 1 2,496

499 1 1,996

399 1 1,596

319 1 1,276

255 1 1,020

/5�204/ 0 0

A different version of the problem having a solution of
79 coconuts is considered by Pappas (1989).

See also DIOPHANTINE EQUATION, PELL EQUATION
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Monkey Saddle

A SURFACE which a monkey can straddle with both
his two legs and his tail. A simple Cartesian equation
for such a surface is

z �x(x2 �3y2) ; (1)

which can also be given by the PARAMETRIC EQUA-

TIONS

x(u; v) �u (2)

y(u; v) �v (3)

z(u; v) �u3 �3uv2 : (4)

The coefficients of the coefficients of the FIRST

FUNDAMENTAL FORM of the monkey saddle are

E �1 �9(u2 �v2)2 (5)

F ��18uv(u2 �v2) (6)

G �1 �36u2v2 (7)

and the SECOND FUNDAMENTAL FORM coefficients are

e �
6uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 9(u2 � v2)2
p (8)

f ��
6vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 9(u2 � v2)2
p (9)

g ��
6uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 9(u2 � v2)2
p ; (10)

giving RIEMANNIAN METRIC

ds2 �[1 �(3u2 �3v2)2] du2 �2[18uv(u2 �v2)] du dv

�(1 �36u2v2) dv2 ; (11)

AREA ELEMENT

dA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �9(u2 �v2)2

q
du ffl dv ; (12)

and GAUSSIAN and MEAN CURVATURES

K ��
36(u2 � v2)

[1 � 9(u2 � v2)2]2 (13)

H �
27u( �u4 � 2u2v2 � 3v4)

[1 � 9(u2 � v2)2]3=2 (14)

(Gray 1997). Every point of the monkey saddle except
the origin has NEGATIVE GAUSSIAN CURVATURE.

See also CROSSED TROUGH, PARTIAL DERIVATIVE
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Monochromatic Forced Triangle
Given a COMPLETE GRAPH Kn which is two-colored, the
number of forced monochromatic TRIANGLES is at
least

1
3u(u �1)(u �2) for n �2u
2
3(u �1)(4u �1) for n �4u �1
2
3u(u �1)(4u �1) for n �4u �3:

8><
>:

The first few numbers of monochromatic forced
triangles are 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, ...
(Sloane’s A014557).

See also COMPLETE GRAPH, EXTREMAL GRAPH

References
Goodman, A. W. "On Sets of Acquaintances and Strangers at

Any Party." Amer. Math. Monthly 66, 778 �/83, 1959.
Sloane, N. J. A. Sequences A014557 in "An On-Line Version

of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Monodromy
A general concept in CATEGORY THEORY involving the
globalization of local MORPHISMS.

See also CATEGORY THEORY, HOLONOMY, MORPHISM

Monodromy Group
A technically defined GROUP characterizing a system
of linear differential equations

y?j �
Xn

k �1

ajk(x)yk

for j �1, ..., n , where ajk are COMPLEX ANALYTIC

FUNCTIONS of x in a given COMPLEX DOMAIN.

See also HILBERT’S 21ST PROBLEM, RIEMANN P -SERIES
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Monodromy Theorem
If a COMPLEX FUNCTION f is ANALYTIC in a DISK

contained in a simply connected DOMAIN D and f
can be ANALYTICALLY CONTINUED along every poly-
gonal arc in D , then f can be ANALYTICALLY CON-

TINUED to a single-valued ANALYTIC FUNCTION on all
of D !

See also ANALYTIC CONTINUATION
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Monogenic Function
If

lim
z0z0

f (z) � f (z0)

z � z0

is the same for all paths in the COMPLEX PLANE, then
f (z) is said to be monogenic at z0 : Monogenic therefore
essentially means having a single DERIVATIVE at a
point. Functions are either monogenic or have infi-
nitely many DERIVATIVES (in which case they are
called POLYGENIC); intermediate cases are not possi-
ble.

See also POLYGENIC FUNCTION

References
Newman, J. R. The World of Mathematics, Vol. 3. New

York: Simon & Schuster, p. 2003, 1956.

Monohedral Tiling
A TILING in which all tiles are congruent.

See also ANISOHEDRAL TILING, ISOHEDRAL TILING,
TILING
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Monoid
A GROUP-like object which fails to be a GROUP because
elements need not have an inverse within the object.
A monoid S must also be ASSOCIATIVE and have an
IDENTITY ELEMENT I � S such that for all a � S; 1a �
a1 �a: A monoid is therefore a SEMIGROUP with an
IDENTITY ELEMENT. A monoid must contain at least
one element.

The numbers of free idempotent monoids on n letters
are 1, 2, 7, 160, 332381, ... (Sloane’s A005345).

See also BINARY OPERATOR, GROUP, SEMIGROUP
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Monomial
A POLYNOMIAL consisting of a product of powers of
variables, e.g., x , xy2 ; x2y3z ; etc. Constant coefficients
are sometimes also allowed in front of a monomial.

One monomial is said to divide another if the powers
of its variables are no greater than the corresponding
powers in the second monomial. For example, x2y
divides x3y but does not divide xy3 : A monomial m is
said to reduce with respect to a polynomial if the
leading monomial of that polynomial divides m . For
example, x2y reduces with respect to 2xy �x �3
because xy divides x2y; and te result of this reduction
is x2y �x(2xy �x �3)=2; or �x2 =2 �3x=2 : A polyno-
mial can therefore be reduced by reducing its mono-
mials beginning with the greatest and proceeding
downward. Similarly, a polynomial can be reduced
with respect to a set of polynomials by reducing in
turn with respect to each element in that set. A
polynomial is fully reduced if none of its monomials
can be reduced (Lichtblau 1996).

See also BINOMIAL, GRÖ BNER BASIS, MONIC POLY-

NOMIAL, POLYNOMIAL, TRINOMIAL
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Monomial Order
"u Bv implies uw Bvw" for all monomials u , v , and
w . Examples of monomial orders are the LEXICO-

GRAPHIC ORDER and the total degree order.

See also WELL ORDERED SET

Monomino
The unique 1-POLYOMINO, consisting of a single
SQUARE.

See also DOMINO, TRIOMINO
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Monomorph
An INTEGER which is expressible in only one way in
the form x2 �Dy2 or x2 �Dy2 where x2 is RELATIVELY

PRIME to Dy2 : If the INTEGER is expressible in more
than one way, it is called a POLYMORPH.

See also ANTIMORPH, IDONEAL NUMBER, PELL EQUA-

TION, POLYMORPH

Monomorphism
A MORPHISM f : Y 0 X in a CATEGORY is a mono-
morphism if, for any two MORPHISMS u; v : Z 0 Y ;
fu � fv implies that u �v .

See also CATEGORY, MORPHISM

Monotone
Another word for monotonic.

See also MONOTONIC FUNCTION, MONOTONIC SE-

QUENCE, MONOTONIC VOTING

Monotone Convergence Theorem
If ffn g is a sequence of MEASURABLE FUNCTIONS, with
0 5fn 5fn�1 for every n , then

g lim
n0


fn dm � lim
n0
 g fn dm

Monotone Decreasing
Always decreasing; never remaining constant or
increasing. Also called strictly decreasing.

Monotone Increasing
Always increasing; never remaining constant or
decreasing. Also called strictly increasing.

Monotone Triangle
A monotone triangle (also called a strict Gelfand
pattern or a gog triangle) of order n is a NUMBER

TRIANGLE with n numbers along each side and the
base containing entries between 1 and n such that
there is strict increase across rows and weak increase
diagonally up or down to the right. There is a
bijection between monotone triangles of order n and
ALTERNATING SIGN MATRICES of order n obtained by
letting the kth row of the triangle equal the positions
of 1s in the sum of the first k rows of an ALTERNATING

SIGN MATRIX, as illustrated below.

0 0 0 1 0
0 1 0 �1 1
1 �1 0  1 0
0 0 1 0 0
0 1 0 0 0

2
66664

3
77775l

4
2 5

1 4 5
1 3 4 5

1 2 3 4 5

(0; 0; 0; 1; 0) 0 4

(0; 0; 0; 1 ; 0) �(0; 1 ; 0; �1; 1)

�(0; 1 ; 0 ; 0 ; 1) 0 2 5

(0; 1; 0; 0 ; 1) �(1; �1; 0; 1; 0; )

�(1; 0; 0; 1; 1) 0 1 4 5

(1; 0; 0; 1 ; 1) �(0; 0 ; 1; 0; 0)

�(1; 0; 1; 1; 1) 0 1 3 4 5

(1; 0; 1; 1 ; 1) �(0; 1 ; 0; 0; 0)

�(1; 1 ; 1 ; 1; 1) 0 1 2 3 4 5
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Monotonic Function
A function which is either entirely NONINCREASING or
NONDECREASING. A function is monotonic if its first
DERIVATIVE (which need not be continuous) does not
change sign.

See also COMPLETELY MONOTONIC FUNCTION, MONO-

TONE, MONOTONE DECREASING, MONOTONE INCREAS-

ING, NONDECREASING FUNCTION, NONINCREASING

FUNCTION

Monotonic Sequence
A SEQUENCE fan g such that either (1) ai �1 ]ai for
every i ]1 ; or (2) ai�1 5ai for every i ]1:/

Monotonic Voting
A term in SOCIAL CHOICE THEORY meaning a change
favorable for X does not hurt X .

See also ANONYMOUS, DUAL VOTING, VOTING

Monster Group
The highest order SPORADIC GROUP M . It has ORDER

246 � 320 � 59 � 76 � 112 � 133 � 17 � 19 � 23 � 29 � 31

� 41 � 47 � 59 � 71;

and is also called the FRIENDLY GIANT GROUP. It was
constructed in 1982 by Robert Griess as a GROUP of
ROTATIONS in 196,883-D space.

See also BABY MONSTER GROUP, BIMONSTER, LEECH

LATTICE
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Monte Carlo Integration
In order to integrate a function over a complicated
DOMAIN D , Monte Carlo integration picks random
points over some simple DOMAIN D? which is a super-
set of D , checks whether each point is within D , and
estimates the AREA of D (VOLUME, n -D CONTENT, etc.)
as the AREA of D ? multiplied by the fraction of points
falling within D ?: Monte Carlo integration is imple-
mented in Mathematica as NIntegrate[f , ...,
Method- �MonteCarlo].

An estimate of the uncertainty produced by this
technique is given by

g f dV:V �f �9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2h i� �f �2

N

s
:

See also MONTE CARLO METHOD, NUMERICAL INTE-

GRATION, QUASI-MONTE CARLO INTEGRATION
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Monte Carlo Method
Any method which solves a problem by generating
suitable random numbers and observing that fraction
of the numbers obeying some property or properties.
The method is useful for obtaining numerical solu-
tions to problems which are too complicated to solve
analytically. It is named by S. Ulam, who in 1946
became the first mathematician to dignify this ap-
proach with a name, in honor of a relative having a
propensity to gamble (Hoffman 1998, p. 239).

The most common application of the Monte Carlo
method is MONTE CARLO INTEGRATION.

See also MARKOV CHAIN, MONTE CARLO INTEGRA-

TION, STOCHASTIC GEOMETRY
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Montel’s Theorem
Let f (z) be an ANALYTIC FUNCTION of z , regular in the
half-strip S defined by a Bx Bb and y �0. If f (z) is
bounded in S and tends to a limit l as y 0 
 for a
certain fixed value j of x between a and b , then f (z)
tends to this limit l on every line x �x0 in S , and
f (z) 0 l uniformly for a�d5x05b�d:/

See also VITALI’S CONVERGENCE THEOREM
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Monty Hall Dilemma
MONTY HALL PROBLEM

Monty Hall Problem
The Monty Hall problem is named for its similarity to
the Let’s Make a Deal television game show hosted by
Monty Hall. The problem is stated as follows. Assume
that a room is equipped with three doors. Behind two
are goats, and behind the third is a shiny new car.
You are asked to pick a door, and will win whatever is
behind it. Let’s say you pick door 1. Before the door is
opened, however, someone who knows what’s behind
the doors (Monty Hall) opens one of the other two
doors, revealing a goat, and asks you if you wish to
change your selection to the third door (i.e., the door
which neither you picked nor he opened). The Monty
Hall problem is deciding whether you do.

The correct answer is that you do want to switch. If
you do not switch, you have the expected 1/3 chance of
winning the car, since no matter whether you initially
picked the correct door, Monty will show you a door
with a goat. But after Monty has eliminated one of
the doors for you, you obviously do not improve your
chances of winning to better than 1/3 by sticking with



your original choice. If you now switch doors, how-
ever, there is a 2/3 chance you will win the car
(counterintuitive though it seems).

/d1/ /d2/ Winning Probability

pick stick 1/3

pick switch 2/3

The problem can be generalized to four doors as
follows. Let one door conceal the car, with goats
behind the other three. Pick a door d1 : Then the host
will open one of the nonwinners and give you the
option of switching. Call your new choice (which could
be the same as d1 if you don’t switch) d2 : The host will
then open a second nonwinner, and you must decide
for choice d3 if you want to stick to d2 or switch to the
remaining door. The probabilities of winning are
shown below for the four possible strategies.

/d1/ /d2/ /d3/ Winning Probability

pick stick stick 2/8

pick switch stick 3/8

pick stick switch 6/8

pick switch switch 5/8

The above results are characteristic of the best
strategy for the n -stage Monty Hall problem: stick
until the last choice, then switch.

See also ALLAIS PARADOX
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Moore Graph

A GRAPH of type (d, k ) is a REGULAR GRAPH of vertex
degree d �2 and GRAPH DIAMETER k which contains
the maximum possible number of nodes,

n(d; k) �1 �d
Xk

r�1

(d �1)r�1 �
d(d � 1)k � 2

d � 2

(Bannai and Ito 1973). Equivalently, it is a (d, g )-
CAGE GRAPH, where d is the vertex degree and g is the
GIRTH, with an EXCESS of zero (Wong 1982). Moore
graphs are also called minimal (v, g )-graphs (Wong
1982), and are DISTANCE-REGULAR.
Hoffman and Singleton (1960) first used the term
"Moore graph," and showed that there is a unique
Moore graph for types (3; 2) and (7; 2); but no other
(d; 2) Moore graphs with the possible exception of
(57; 2) (Bannai and Ito 1973). Bannai and Ito (1973)
subsequently showed that there exist no Moore
graphs of type (d, k ) with GRAPH DIAMETER k ]4
and valence d �2. Equivalently, a (v, g )-Moore graph
exists only if (1) g �5 and v �3, 7, or (possibly) 57, or
(2) g �6, 8, or 12 (Wong 1982). This settled the
existence and uniqueness problem from finite Moore
graphs with the exception of the case (57; 2); which is
still open. A proof of this theorem, sometimes called
the HOFFMAN-SINGLETON THEOREM, is difficult (Hoff-
man and Singleton 1960, Feit and Higman 1964,
Damerell 1973, Bannai and Ito 1973), but can be
found in Biggs (1993).

The (3; 5)/-Moore graph is the PETERSEN GRAPH, and
the (7; 5)/-Moore graph is the HOFFMAN-SINGLETON

GRAPH. The existence of a (57; 5)/-graph remains an
open question.

See also CAGE GRAPH, DISTANCE-REGULAR GRAPH,
GENERALIZED POLYGON, GIRTH, GRAPH DIAMETER,
HOFFMAN-SINGLETON GRAPH, HOFFMAN-SINGLETON

THEOREM, PETERSEN GRAPH, REGULAR GRAPH
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Moore-Penrose Generalized Matrix
Inverse
Given an m �n MATRIX B ; the Moore-Penrose gen-
eralized MATRIX INVERSE (sometimes called the pseu-
doinverse) is a unique n �m MATRIX B � which
satisfies

BB �B �B (1)

B �BB ��B � (2)

(BB �)T �BB � (3)

(B�B)T �B�B: (4)

It is also true that

z �B�c (5)

is the shortest length LEAST SQUARES solution to the
problem

B �c: (6)

If the inverse of (BTB) exists, then

B��(BTB)�1
BT ; (7)

where BT is the matrix TRANSPOSE, as can be seen by
premultiplying both sides of (7) by BT to create a
SQUARE MATRIX which can then be inverted,

BTBz �BTc ; (8)

giving

z �(BTB) �1
BTc �B�c: (9)

See also LEAST SQUARES FITTING, MATRIX INVERSE
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Mordell Conjecture
DIOPHANTINE EQUATIONS that give rise to surfaces
with two or more holes have only finite many
solutions in GAUSSIAN INTEGERS with no common
factors. Fermat’s equation has (n �1)(n �2)=2 HOLES,
so the Mordell conjecture implies that for each
INTEGER n ]3 ; the FERMAT EQUATION has at most a
finite number of solutions. This conjecture was
proved by Faltings (1984).

See also ABC CONJECTURE, FERMAT EQUATION, FER-

MAT’S LAST THEOREM, SAFAREVICH CONJECTURE,
SHIMURA-TANIYAMA CONJECTURE
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Mordell Integral
The integral

f(t; u) �g
e pitx2 �2 piux

e2 pix � 1
dx

which is related to the JACOBI THETA FUNCTIONS,
MOCK THETA FUNCTIONS, RIEMANN ZETA FUNCTION,
and SIEGEL THETA FUNCTION.

See also JACOBI THETA FUNCTIONS, MOCK THETA

FUNCTION, RIEMANN ZETA FUNCTION, SIEGEL THETA

FUNCTION

Mordell-Weil Theorem
For ELLIPTIC CURVES over the RATIONALS Q; the
GROUP of RATIONAL POINTS is always FINITELY GEN-

ERATED (i.e., there always exists a finite set of
generators for the GROUP). This theorem was proved
by Mordell in 1921 and extended by Weil in 1928 to
ABELIAN VARIETIES over NUMBER FIELDS.

See also ELLIPTIC CURVE
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Morera’s Theorem
If f (z) is continuous in a region D and satisfies

G
g

f dz�0

for all closed CONTOURS g in D , then f (z) is ANALYTIC

in D .

See also CAUCHY INTEGRAL THEOREM, CONTOUR

INTEGRATION
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Morgado Identity
There are several results known as the Morgado
identity. The first is

FnFn �1Fn�2Fn�4Fn�5Fn�6 �L2
n�3

�[Fn�3(2Fn�2Fn�4 �F2
n�3)]2 ; (1)

where Fn is a FIBONACCI NUMBER and Ln is a LUCAS

NUMBER (Morgado 1987, Dujella 1995).

An second Morgado identity is satisfied by GENERAL-

IZED FIBONACCI NUMBERS wn ;/

4wnwn�1wn�2wn�4wn�5wn�6

�e2q2n(wnU4U5 �wn�1U2U6 �wnU1U8)2

�(wn �1wn �2wn �6 �wnwn�4wn�5)2 ; (2)

where

e�pab�qa2�b2 (3)

Un�wn(0; 1; p; q) (4)

(Morgado 1987, Dujella 1996).

See also FIBONACCI NUMBER, GENERALIZED FIBONAC-

CI NUMBER
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Morgan-Voyce Polynomial
Polynomials related to the BRAHMAGUPTA POLYNO-

MIALS. They are defined by the RECURRENCE RELA-

TIONS

bn(x)�xBn�1(x)�bn�1(x) (1)

Bn(x)�(x�1)Bn�1(x)�bn�1(x) (2)

for n]1; with

b0(x)�B0(x)�1: (3)

Alternative recurrences are

bn(x)�(x�2)bn�1(x)�bn�2(x) (4)

Bn(x)�(x�2)Bn�1(x)�Bn�2(x) (5)

with b1(x)�1�x and B1(x)�2�x; and

bn�1bn�1�b2
n�x: (6)

Bn�1Bn�1�B2
n��1 (7)

The polynomials can be given explicitly by the sums

Bn(x)�
Xn

k�0

n�k�1
n�k

� �
xk (8)

bn(x)�
Xn

k�0

n�k
n�k

� �
xk: (9)

Defining the MATRIX

Q�
x�2 �1

1 0

� �
(10)

gives the identities

Qn�
Bn �Bn�1

Bn�1 �Bn�2

� �
(11)

Qn�Qn�1�
bn �bn�1

bn�1 �bn�2

� �
: (12)

Defining

cos u�1
2(x�2) (13)

cosh f�1
2(x�2) (14)

gives

Bn(x)�
sin[(n � 1)u]

sin u
(15)

Bn(x)�
sinh[(n � 1)f]

sinh f
(16)

and

bn(x)�
cos 1

2(2n � 1)u
h i
cos 1

2 u
	 
 (17)



bn(x) �
cosh 1

2(2n � 1)f
h i

cosh 1
2 u
	 
 : (18)

The Morgan-Voyce polynomials are related to the
FIBONACCI POLYNOMIALS Fn(x) by

bn(x2) �F2n�1(x) (19)

Bn(x2) �
1

x
F2n�2(x) (20)

(Swamy 1968).

/Bn(x) satisfies the ORDINARY DIFFERENTIAL EQUATION

x(x �4)yƒ�3(x �2)y?�n(n �2)y �0; (21)

and bn(x) the equation

x(x �4)yƒ�2(x �1)y?�n(n �1)y �0 : (22)

These and several other identities involving deriva-
tives and integrals of the polynomials are given by
Swamy (1968).

See also BRAHMAGUPTA POLYNOMIAL, FIBONACCI

POLYNOMIAL
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Morley Centers
The CENTROID of MORLEY’S TRIANGLE is called Mor-
ley’s first center. It has TRIANGLE CENTER FUNCTION

a �cos 1
3 A
	 


�2 cos 1
3 B
	 


cos 1
3 C
	 


:

The PERSPECTIVE CENTER of MORLEY’S TRIANGLE with
reference TRIANGLE ABC is called Morley’s second
center. The TRIANGLE CENTER FUNCTION is

a �sec 1
3 A
	 


:

See also CENTROID (GEOMETRIC), MORLEY’S THEO-

REM, PERSPECTIVE CENTER
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Morley’s Formula

X

k �0

(m)k

k!

" #3

�1 �
m

1

 !3

�
m(m � 1)

1 � 2

" #3

�. . .

�
G 1 � 3

2 m
	 


G 1 � 1
2 m

	 
h i3 cos 1
2 mp
	 


;

where (m)k is a POCHHAMMER SYMBOL and G(z) is the
GAMMA FUNCTION. This is a special case of the identity

X

k �0

(m)k

k!

" #n

� n Fn�1(m; . . . ; m|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n

; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�1

; 1):

See also GAMMA FUNCTION
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Morley’s Theorem

The points of intersection of the adjacent TRISECTORS

of the ANGLES of any TRIANGLE DABC are the
VERTICES of an EQUILATERAL TRIANGLE DDEF known
as MORLEY’S TRIANGLE. Taylor and Marr (1914) give



two geometric proofs and one trigonometric proof.

An even more beautiful result is obtained by taking
the intersections of the exterior, as well as interior,
angle trisectors, as shown above. In addition to the
interior EQUILATERAL TRIANGLE formed by the inter-
ior trisectors, four additional equilateral triangles are
obtained, three of which have sides which are exten-
sions of a central triangle (Wells 1991).

A generalization of MORLEY’S THEOREM was discov-
ered by Morley in 1900 but first published by Taylor
and Marr (1914). Each ANGLE of a TRIANGLE DABC
has six trisectors, since each interior angle trisector
has two associated lines making angles of 1208 with
it. The generalization of Morley’s theorem states that
these trisectors intersect in 27 points (denoted Dij ; Eij ;

Fij ; for i ; j �0; 1, 2) which lie six by six on nine lines.
Furthermore, these lines are in three triples of
PARALLEL lines, (/D22E22 ; E12D21 ; F10F01) ; (/D22F22 ;

F21D12 ; E01E10) ; and (/E22F22 ; F12E21 ; D10D01) ; making
ANGLES of 60 8 with one another (Taylor and Marr
1914, Johnson 1929, p. 254).

Let L , M , and N be the other trisector-trisector
intersections, and let the 27 points Lij ; Mij ; Nij for
i ; j �0 ; 1, 2 be the ISOGONAL CONJUGATES of D , E ,
and F . Then these points lie 6 by 6 on 9 CONICS

through DABC: In addition, these CONICS meet 3 by 3
on the CIRCUMCIRCLE, and the three meeting points
form an EQUILATERAL TRIANGLE whose sides are
PARALLEL to those of DDEF:/

See also CONIC SECTION, MORLEY CENTERS, TRISEC-

TION
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Morley’s Triangle
An EQUILATERAL TRIANGLE considered by MORLEY’S

THEOREM with side lengths

8R sin 1
3 A
	 


sin 1
3 B
	 


sin 1
3 C
	 


;

where R is the CIRCUMRADIUS of the original TRIAN-

GLE.

See also MORLEY’S THEOREM

Morphism
A morphism is a map between two objects in an
abstract CATEGORY.

1. A general morphism is called a HOMOMORPHISM,
2. A morphism f : Y 0 X in a CATEGORY is a
MONOMORPHISM if, for any two morphisms u; v :
Z 0 Y ; fu � fv implies that u �v ,
3. A morphism f : Y 0 X in a CATEGORY is an
EPIMORPHISM if, for any two morphisms u; v : X 0
Z; uf �vf implies u �v ,
4. A bijective morphism is called an ISOMORPHISM

(if there is an isomorphism between two objects,
then we say they are isomorphic),
5. A surjective morphism from an object to itself is
called an ENDOMORPHISM, and
6. An ISOMORPHISM between an object and itself is
called an AUTOMORPHISM.

See also AUTOMORPHISM, CATEGORY, CATEGORY THE-

ORY, EPIMORPHISM, HOMEOMORPHISM, HOMOMORPH-

ISM, ISOMORPHISM, MONOMORPHISM, OBJECT

Morrie’s Law

cos(20�) cos(40�) cos(80�) �1
8:

An identity communicated to Feynman as a child by a
boy named Morrie Jacobs (Gleick 1992, p. 47). Feyn-
man remembered this fact all his life and referred to
it in a letter to Jacobs in 1987 (Gleick 1992, p. 450). It
is a special case of the general identity

2k
Yk�1

j�0

cos(2ja) �
sin(2ka)

sin a
;

with k �3 and a �20� (Beyer et al. 1996).

See also TRIGONOMETRY VALUES PI/9
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Morse Function
This entry contributed by SERGEI DUZHIN AND

S. CHMUTOV

A function for which all CRITICAL POINTS are non-
degenerate and all CRITICAL LEVELS are different.

See also KONTSEVICH INTEGRAL, MORSE KNOT

Morse Inequalities
Topological lower bounds in terms of BETTI NUMBERS

for the number of critical points form a smooth
function on a smooth MANIFOLD.

Morse Knot
This entry contributed by SERGEI DUZHIN AND

S. CHMUTOV

A KNOT K embedded in R3 �Cz �Rt ; where the three-
dimensional space R3 is represented as a direct
product of a complex line C with coordinate z and a
real line R with coordinate t , in such a way that the
coordinate t is a MORSE FUNCTION on K .

See also KNOT, KONTSEVICH INTEGRAL, MORSE FUNC-

TION

Morse-Rosen Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
a

cosh2(ax)
�b tanh(ax)�g

" #
y�0:
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Morse Theory
A generalization of CALCULUS OF VARIATIONS which
draws the relationship between the stationary points
of a smooth real-valued function on a MANIFOLD and
the global topology of the MANIFOLD. For example, if a
COMPACT MANIFOLD admits a function whose only
stationary points are a maximum and a minimum,
then the manifold is a SPHERE. Technically speaking,
Morse theory applied to a FUNCTION g on a MANIFOLD

W with g(M)�0 and g(M?)�1 shows that every
COBORDISM can be realized as a finite sequence of
SURGERIES. Conversely, a sequence of SURGERIES

gives a COBORDISM.

There are a number of classical applications of Morse
theory, including counting geodesics on a RIEMANN

SURFACE and determination of the topology of a LIE

GROUP (Bott 1960, Milnor 1963). Morse theory has
received much attention in the last two decades as a



result of the paper by Witten (1982) which relates
Morse theory to quantum field theory and also
directly connects the stationary points of a smooth
function to differential forms on the manifold.

See also CALCULUS OF VARIATIONS, COBORDISM,
MAZUR’S THEOREM, SURGERY
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Morse-Thue Sequence
THUE-MORSE SEQUENCE

Mortal
A nonempty finite set of n �n INTEGER MATRICES for
which there exists some product of the MATRICES in
the set which is equal to the zero MATRIX.

See also INTEGER MATRIX, MORTALITY PROBLEM

Mortality Problem
For a given n , is the problem of determining if a set is
MORTAL solvable? n �1 is solvable, n �2 is unknown,
and n ]3 is unsolvable.

See also MORTAL

Morton-Franks-Williams Inequality
Let E be the largest and e the smallest POWER of l in
the HOMFLY POLYNOMIAL of an oriented LINK, and i
be the BRAID INDEX. Then the MORTON-FRANKS-

WILLIAMS INEQUALITY holds,

i ]1
2(E �e) �1

(Franks and Williams 1985, Morton 1985). The
inequality is sharp for all PRIME KNOTS up to 10
crossings with the exceptions of 09 �/42, 09 �/49, 10 �/32, 10 �/

50, and 10 �/56.

See also BRAID INDEX
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Mosaic
TESSELLATION

Moser
The very LARGE NUMBER consisting of the number 2
inside a MEGA-gon.

See also MEGA, MEGISTRON

Moser-de Bruijn Sequence
The sequence of numbers which are sums of distinct
powers of 4. The first few are 0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, ... (Sloane’s A000695). These
numbers also satisfy the interesting properties that
the sum of their BINARY digits equals the sum of their
QUATERNARY digits, and that they have identical
representations in BINARY and NEGABINARY.

See also BINARY, NEGABINARY, QUATERNARY
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Moser’s Circle Problem
CIRCLE DIVISION BY CHORDS

Moss’s Egg

An OVAL whose construction is illustrated in the
above diagram.

See also EGG, OVAL
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Mott Polynomial
Polynomials sk(x) which form the SHEFFER SEQUENCE

for

f (t)��
2t

1 � t2

and have GENERATING FUNCTION



X

k�0

sk(x)

k!
tk �exp

x 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2

p� �
t

" #
:

The first few are

s0(x) �1

s1(x) ��1
2 x

s2(x) �1
4 x

2

s3(x) �1
8(�x3 �6x)

s4(x) � 1
16(x

4 �24x2)

s5(x) � 1
32(�x5 �60x3 �240x):
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Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi,

F. G. Higher Transcendental Functions, Vol. 3. New York:
Krieger, p. 251, 1981.

Roman, S. The Umbral Calculus. New York: Academic
Press, 1984.

Motzkin Number

The Motzkin numbers enumerate various combina-
torial objects. Donaghey and Shapiro (1977) give 14
different manifestations of these numbers. In parti-
cular, they give the number of paths from (0, 0) to (n ,
0) which never dip below y �0 and are made up only

of the steps (1, 0), (1, 1), and (1, -1), i.e., 0;P; and o:
The first are 1, 2, 4, 9, 21, 51, ... (Sloane’s A001006).
The Motzkin number GENERATING FUNCTION M(z)
satisfies

M �1 �xM �x2M2 (1)

and is given by

M(x) �
1 � x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2x � 3x2

p

2x2

�1 �x �2x2 �4x3 �9x4 �21x5 �. . . ; (2)

or by the RECURRENCE RELATION

Mn �Mn�1 �
Xn�2

k �0

MkMn�2�k (3)

with M0 �1 : The Motzkin number Mn is also given by

Mn��
1

2

X
a�b�n�2

a]0; b]0

(�3)a
1
2

a

� �
1
2

b

� �
(4)

�
(�1)n�1

22n�5

X
a�b�n�2

a]0; b]0

(�3)a

(2a � 1)(2b � 1)

2a
a

� �
2b
b

� �
; (5)

where n
k

� �
is a BINOMIAL COEFFICIENT.

See also CATALAN NUMBER, KING WALK, SCHRÖ DER

NUMBER
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Moufang Identities
For all x , y , a in an ALTERNATIVE ALGEBRA A;

(xax)y�x[a(xy)] (1)

y(xax)�[(yx)a]x (2)



(xy)(ax) �x(ya)x (3)

(Schafer 1996, p. 28).
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Moufang Plane
A PROJECTIVE PLANE in which every line is a transla-
tion line is called a Moufang plane.
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Mousetrap
A PERMUTATION problem invented by Cayley. Let the
numbers 1, 2, ..., n be written on a set of cards, and
shuffle this deck of cards. Now, start counting using
the top card. If the card chosen does not equal the
count, move it to the bottom of the deck and continue
counting forward. If the card chosen does equal the
count, discard the chosen card and begin counting
again at 1. The game is won if all cards are discarded,
and lost if the count reaches n �1:/

The number of ways the cards can be arranged such
that at least one card is in the proper place for n �1,
2, ... are 1, 1, 4, 15, 76, 455, ... (Sloane’s A002467).
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Mouth
A PRINCIPAL VERTEX xi of a SIMPLE POLYGON P is
called a mouth if the diagonal [xi�1 ; xi �1] is an
extremal diagonal (i.e., the interior of [xi�1 ; xi�1]
lies in the exterior of P ).

See also ANTHROPOMORPHIC POLYGON, EAR, ONE-

MOUTH THEOREM

References
Toussaint, G. "Anthropomorphic Polygons." Amer. Math.

Monthly 122, 31�/5, 1991.

Moving Average
Given a SEQUENCE fai g

N
i�1 an n -moving average is a

new sequence fsi g
N �n �1
i�1 defined from the ai by taking

the AVERAGE of subsequences of n terms,

si �
1

n

Xi�n�1

j�1

aj :

See also MEAN, SPENCER’S 15-POINT MOVING AVER-

AGE, SPENCER’S FORMULA
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Moving Ladder Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

What is the longest ladder which can be moved
around a right-angled hallway of unit width? For a
straight, rigid ladder, the answer is 2

ffiffiffi
2

p
: For a

smoothly-shaped ladder, the largest diameter is
/]1(1�

ffiffiffi
2

p
) (Finch).

See also MOVING SOFA CONSTANT, PIANO MOVER’S

PROBLEM

References
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Moving Sofa Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

What is the sofa of greatest AREA S which can be
moved around a right-angled hallway of unit width?
Hammersley (Croft et al. 1994) showed that

S]
p

2
�

2

p
�2:2074 . . . : (1)



Gerver (1992) found a sofa with larger AREA and
provided arguments indicating that it is either
optimal or close to it. The boundary of Gerver’s sofa
is a complicated shape composed of 18 ARCS. Its AREA

can be given by defining the constants A , B , f ; and u
by solving

A(cos u �cos f) �2B sin f �(u � f �1) cos u

�sin u �cos f �sin f �0 (2)

A(3 sin u �sin f) �2B cos f �3(u � f �1) sin u

�3 cos u �sin f �cos f �0 (3)

A cos f �(sin f �1
2 �

1
2 cos f �B sin f) �0 (4)

(A �1
2 p � f � u) �[B �1

2( u � f)(1 �A) �1
4( u � f)2] �0 :

(5)

This gives

A �0:094426560843653 . . . (6)

B �1:399203727333547 . . . (7)

f �0 :039177364790084 ::: (8)

u �0:681301509382725 . . . : (9)

Now define

r(a) �

1
2

for 0 5 a B f
1
2(1 �A � a � f)

for f 5 a B u

A � a � f

for u 5 a B1
2 p � u

B �1
2

1
2 p � a � f
	 


(1 �A) �1
4

1
2 p � a � f
	 
2

for 1
2 p � u 5 a B1

2 p � f;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(10)

where

s( a) �1 �r(a) (11)

u( a) �

B �1
2(a � f)(1 �A) for f 5 a B u

�1
4( a � f)2

A �1
2 p � f � a for u 5 a B1

4 p

8><
>: (12)

Du( a) �
du

da

�
�1

2(1 �A) �1
2(a � f) for f 5 a B u

�1 if u 5 a B1
4 p:

(
(13)

Finally, define the functions

y1(a) �1 �g  
a

0

r(t) sin t dt  (14)

y2(a) �1 �g 
a

0

s(t) sin t dt  (15)

y3( a) �1 �g 
a

0

s(t) sin t dt�u( a) sin a: (16)

The AREA of the optimal sofa is given by

A �2 g 
p =2� f

0

y1(a)r( a) cos a da

�2 g 
u

0

y2( a)s( a) cos a da

�2 g 
p =4

f

y3( a)[u(a) sin a �Du(a) cos a �s( a) cos a] da

�2:21953166887197 . . . (17)

(Finch).

See also PIANO MOVER’S PROBLEM
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Mrs. Perkins’ Quilt
The DISSECTION of a SQUARE of side n into a number
Sn of smaller squares. Unlike a PERFECT SQUARE

DISSECTION, however, the smaller SQUARES need not
be all different sizes. In addition, only prime dissec-
tions are considered so that patterns which can be
dissected on lower order SQUARES are not permitted.
The smallest numbers of RELATIVELY PRIME dissec-
tions of an n�n quilt for n�1, 2, ..., are 1, 4, 6, 7, 8,
9, 9, 10, 10, 11, 11, 11, 11, 12, ... (Sloane’s A005670).

See also PERFECT SQUARE DISSECTION
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M-Tree
A TREE not having the COMPLETE BIPARTITE GRAPH

K1 ; 2 with base at the vertex of degree two as a limb
(Lu et al. 1993, Lu 1996).

See also TREE
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Much Greater
A strong INEQUALITY in which a is not only GREATER

than b , but much greater (by some convention), is
denoted a �b: For an astronomer, "much" may mean
by a factor of 100 (or even 10), while for a mathema-
tician, it might mean by a factor of 104 (or even much
more).

See also GREATER, MUCH LESS

Much Less
A strong INEQUALITY in which a is not only LESS than
b , but much less (by some convention) is denoted
a �b :/

See also LESS, MUCH GREATER

Mud Cracks
RIGHT ANGLE

Mu Function
The 2-argument m/-function is defined by

m(x; b) �g



0

xttb dt

G( b � 1)G(t � 1) 
;

where G(z) is the GAMMA FUNCTION (Erdélyi et al.
1981, p. 388; Prudnikov et al. 1990, p. 798; Gradsh-
teyn and Ryzhik 2000, p. 1109), while the 3-argument
function is defined by

m(x; b; a) �g



0

xa �ttb dt

G( b � 1)G( a � t � 1)

(Prudnikov et al. 1990, p. 798; Gradshteyn and
Ryzhik 2000, p. 1109).

See also LAMBDA FUNCTION, NU FUNCTION
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m Molecule
MANDELBROT SET

Muirhead’s Theorem
A NECESSARY and SUFFICIENT condition that [a?]
should be comparable with [a] for all POSITIVE values
of the a is that one of /( a?) and (/ a) should be majorized
by the other. If ( a?) )( a) ; then

[ a?] 5[ a];

with equality only when (/( a?)) and (/ a) are identical or
when all the a are equal. See Hardy et al. (1988) for a
definition of notation.
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Theorem" and "Proof of Muirhead’s Theorem." §2.18 and
2.19 in Inequalities, 2nd ed. Cambridge, England: Cam-
bridge University Press, pp. 44 �/8, 1988.

Muirhead, R. F. "Some Methods Applicable to Identities and
Inequalities of Symmetric Algebraic Functions of n Let-
ters." Proc. Edinburgh Math. Soc. 21, 144 �/57, 1903.

Müller-Lyer Illusion

An optical ILLUSION in which the orientation of
arrowheads makes one LINE SEGMENT look longer
than another. In the above figure, the LINE SEGMENTS

on the left and right are of equal length in both cases.

See also ILLUSION, POGGENDORFF ILLUSION, PONZO’S

ILLUSION, VERTICAL-HORIZONTAL ILLUSION
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Muller’s Method
Generalizes the SECANT METHOD of root finding by
using quadratic 3-point interpolation

q�
xn � xn�1

xn�1 � xn�2

: (1)

Then define



A �qP(xn) �q(1 �q)P(xn�1) �q2P(xn�2) (2)

B �(2q �1)P(xn) �(1 �q)2P(xn�1) �q2P(xn�2) (3)

C �(1 �q)P(xn) ; (4)

and the next iteration is

xn�1 �xn �(xn �xn�1)
2C

max B 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p	 
 : (5)

This method can also be used to find COMPLEX zeros of
ANALYTIC FUNCTIONS.
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Mulliken Symbols
Symbols used to identify irreducible representations
of GROUPS:

/A � singly degenerate state which is symmetric
with respect to ROTATION about the principal Cn

axis,
/B � singly DEGENERATE state which is antisym-
metric with respect to ROTATION about the princi-
pal Cn axis,

/E �doubly DEGENERATE,
/T � triply DEGENERATE,
/Xg �(gerade, symmetric) the sign of the wavefunc-
tion does not change on INVERSION through the
center of the atom,

/Xu � (ungerade, antisymmetric) the sign of the
wavefunction changes on INVERSION through the
center of the atom,

/X1 � (on a or b ) the sign of the wavefunction does
not change upon ROTATION about the center of the
atom,

/X2 � (on a or b ) the sign of the wavefunction
changes upon ROTATION about the center of the
atom,
?�  symmetric with respect to a horizontal sym-
metry plane sh ;/
ƒ� antisymmetric with respect to a horizontal
symmetry plane sh :/

See also CHARACTER TABLE, GROUP THEORY, IRREDU-

CIBLE REPRESENTATION
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Multiamicable Numbers
Two integers n and m Bn are (a; b)/-multiamicable if

s(m) �m � an

and

s(n) �n � bm;

where s(n) is the DIVISOR FUNCTION and a; b are
POSITIVE INTEGERS. If  a � b �1 ; (m, n ) is an AMICABLE

PAIR.

m cannot have just one distinct prime factor, and if it
has precisely two prime factors, then a �1 and m is
EVEN. Small multiamicable numbers for small a; b
are given by Cohen et al. (1995). Several of these
numbers are reproduced in the table below.

/a/ /b/ m n

1 6 76455288 183102192

1 7 52920 152280

1 7 16225560 40580280

1 7 90863136 227249568

1 7 16225560 40580280

1 7 70821324288 177124806144

1 7 199615613902848 499240550375424

See also AMICABLE PAIR, DIVISOR FUNCTION
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Multichoose
The number of MULTISETS of length k on n symbols is
sometimes termed "n multichoose k ," denoted n

k

� �� �
by analogy with the BINOMIAL COEFFICIENT. n multi-
choose k is given by the simple formula

n
k

� �� �
�nk ;

giving the following array of numbers.

/k_n/ 1 2 3 4

1 1 1 1 1

2 2 4 8 16

3 3 9 27 81

4 4 16 64 256

See also BINOMIAL COEFFICIENT, CHOOSE, MULTI-

NOMIAL COEFFICIENT, MULTISET
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Multidigital Number
HARSHAD NUMBER

Multidimensional Continued Fraction
Algorithm
INTEGER RELATION

Multifactorial
A generalization of the FACTORIAL and DOUBLE

FACTORIAL,

n! �n(n �1)(n �2) � � � 2 � 1 (1)

n!! �n(n �2)(n �4) � � �  (2)

n!!! �n(n �3)(n �6) � � � ; (3)

etc., where the products run through positive inte-
gers.

The FACTORIALS n! for n �1, 2, ..., are 1, 2, 6, 24, 120,
720, ... (Sloane’s A000142); the DOUBLE FACTORIALS

n!! are 1, 2, 3, 8, 15, 48, 105, ... (Sloane’s A006882); the
triple factorials n!!! are 1, 2, 3, 4, 10, 18, 28, 80, 162,
280, ... (Sloane’s A007661); and the quadruple factor-
ials n!!!! are 1, 2, 3, 4, 5, 12, 21, 32, 45, 120, ...
(Sloane’s A007662).

Letting fack(n) denote the k -multifactorial of n ,

fack(n) �
Qn =k

i �1 ik for (k; n) "1Q n =kb c
i �0 n �ik for (k; n) �1;

(
(4)

Define r�n=k then gives

fack(n)�
krr! for (k; n)"1
(�k)1� rb c(�r)1�r for (k; n)�1;

 
(5)

where (x)n is the POCHHAMMER SYMBOL.

See also DOUBLE FACTORIAL, FACTORIAL, GAMMA

FUNCTION, POCHHAMMER SYMBOL
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Multifractal
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Multifractal Measure
A MEASURE for which the Q -DIMENSION Dq varies with
q .
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Multigrade Equation
A (k, l )-multigrade equation is a DIOPHANTINE EQUA-

TION OF THE FORM

Xl

i�1

nj
i�
Xl

i�1

mj
i

for j�1, ..., k , where m and n are l -VECTORS.
Multigrade identities remain valid if a constant is
added to each element of m and n (Madachy 1979), so
multigrades can always be put in a form where the
minimum component of one of the vectors is 1.

Moessner and Gloden (1944) give a bevy of multi-
grade equations. Small-order examples are the (2, 3)-
multigrade with m�f1; 6; 8g and n�f2; 4; 9g :

X3

i�1

m1
i �

X3

i�1

n1
i �15

X3

i�1

m2
i �

X3

i�1

n2
i �101;

the (3, 4)-multigrade with m�f1; 5; 8; 12g and n�
f2; 3; 10; 11g :

X4

i�1

m1
i �

X4

i�1

n1
i �26

X4

i�1

m2
i �

X4

i�1

n2
i �234

X4

i�1

m3
i �

X4

i�1

n3
i �2366;

and the (4, 6)-multigrade with m�
f1; 5; 8; 12; 18; 19g and n�f2; 3; 9; 13; 16; 20g :

X6

i�1

m1
i �

X6

i�1

n1
i �63

X6

i�1

m2
i �

X6

i�1

n2
i �919

X6

i�1

m3
i �

X6

i�1

n3
i �15057



X6

i�1

m3
i �

X6

i�1

n4
i �260755

(Madachy 1979).

A spectacular example with k �9 and l �10 is given
by n �f912 ; 911881; 920231; 920885; 923738g
and m �f9436; 911857; 920499; 920667; 923750g
(Guy 1994), which has sums

X9

i �1

m1
i �

X9

i �1

n1
i �0

X9

i�1

m2
i �

X9

i�1

n2
i �3100255070

X9

i �1

m3
i �

X9

i �1

n3
i �0

X9

i�1

m4
i �

X9

i�1

n4
i �1390452894778220678

X9

i �1

m5
i �

X9

i �1

n5
i �0

X9

i �1

m6
i �

X9

i�1

n6
i �666573454337853049941719510

X9

i �1

m7
i �

X9

i �1

n7
i �0

X9

i�1

m8
i �

X9

i�1

n8
i

�330958142560259813821203262692838598

X9

i�1

m9
i �

X9

i�1

n9
i �0:

Rivera considers multigrade equations involving
primes, consecutive primes, etc.

See also DIOPHANTINE EQUATION, PROUHET-TARRY-

ESCOTT PROBLEM
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Multigraph

A non-SIMPLE GRAPH in which no LOOPS are per-
mitted, but multiple edges between any two nodes
are.

See also HYPERGRAPH, PSEUDOGRAPH, SIMPLE GRAPH
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Multilinear
A basis, form, function, etc., in two or more variables
is said to be multilinear if it is linear in each variable
separately.

See also BILINEAR FUNCTION, LINEAR OPERATOR,
MULTILINEAR BASIS, MULTILINEAR FORM

Multilinear Basis

See also BILINEAR BASIS

Multimagic Series
A set n distinct numbers taken from the interval
1; n2½ 
 form a MAGIC SERIES if their sum is the nth

MAGIC CONSTANT

Mn�
1
2 n n2�1
� �

(Kraitchik 1942, p. 143). If the sum of the kth powers
of these numbers is the MAGIC CONSTANT of degree k
for all k � [1; p]; then they are said to form a pth order
MULTIMAGIC SERIES. Here, the magic constant M(j)

n of
degree k is defined as 1=n times the sum of the first
n2 kth powers,

M(k)
n �

1

n

Xn2

i�1

ik�
H(�p)

n2

n
;

where H(k)
n is a HARMONIC NUMBER of order k .



For example f2; 8; 9; 15 g is bimagic since 2 �8 �9 �
15 �34 and 22 �82 �92 �152 �374:/

The numbers of magic series of various lengths n are
gives in the following table for small orders k
(Kraitchik 1942, p. 76).

n k�1 k �2 k �3 k �4

Sloane A052456 A052457 A052458

1 1 1 1 1

2 2 0 0 0

3 8 0 0 0

4 86  2  2 0

5 1,394 8 2 0

6 32,134 98 0 0

7 957,332 1,844 0 0

8 38,039 115

9 41

10

11 961

See also MAGIC SERIES
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Multimagic Square
A MAGIC SQUARE is p -multimagic if the square formed
by replacing each element by its kth power for k �1,
2, ..., p is also magic. A 2-multimagic square is called
a BIMAGIC SQUARE, and a 3-multimagic square is
called a TRIMAGIC SQUARE.

See also BIMAGIC SQUARE, MAGIC SQUARE, TRIMAGIC

SQUARE
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Multinomial
An algebraic expression containing more than one
term (cf., BINOMIAL). The term is also used to refer to
a POLYNOMIAL.

See also BINOMIAL, MULTINOMIAL COEFFICIENT,
MULTINOMIAL SERIES, POLYNOMIAL

Multinomial Coefficient
The multinomial coefficients

n1 ; n2 ; . . .  ; nkð Þ! �(n1 � n2 � � � �� nk)!

n1!n2! � � �n3!

are the terms in the MULTINOMIAL SERIES expansion.
The multinomial coefficient is returned by the Math-
ematica function Multinomial[n1 , n2 , ...]. The
number of distinct permutations in a MULTISET of k
distinct elements of multiplicity ni (1 5i 5k) is
n1 ; . . . ; nkð Þ (Skiena 1990, p. 12). The multinomial

coefficients satisfy

n1 ; n2 ; n3 ; . . .ð Þ� n1 �n2 ; n3 ; . . .ð Þ n1 ; n2ð Þ

� n1 �n2 �n3 ; . . .ð Þ n1 ; n2 ; n3ð Þ�. . .

(Gosper 1972).

The CONTENT V of the d -dimensional region
ad

k �1 xkj jpkB1 is given by

V �2d
Xd

k �1

p �1
k ; p �1

1 ; p �1
2 ; . . . ; p�1

d

 !
:

See also BINOMIAL COEFFICIENT, CHOOSE, DYSON’S

CONJECTURE, MULTICHOOSE, MULTINOMIAL SERIES,
Q -MULTINOMIAL COEFFICIENT, ZEILBERGER-BRES-

SOUD THEOREM
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Multinomial Distribution
Let a set of random variates X1; X2; ..., Xn have a
probability function

P X1�x1; . . . ; Xn�xnð Þ� N!Qn
i�1 xi!

Yn

i�1

u
xi

i (1)

where xi are POSITIVE INTEGERS such that

Xn

i�1

xi�N; (2)

and ui are constants with ui > 0 and



Xn

i �1

ui �1: (3)

Then the joint distribution of X1 ; ..., Xn is a multi-
nomial distribution and P X1 �x1 ; . . . ; Xn �xnð Þ is
given by the corresponding coefficient of the MULTI-

NOMIAL SERIES

u1 � u2 �. . .� unð ÞN : (4)

In the words, if X1 ; X2 ; ..., Xn are mutually indepen-
dent events with P X1ð Þ� u1 ; ..., P xnð Þ� un : Then the
probability that X1 occurs x1 times, ..., Xn occurs xn

times is given by

PN x1 ; x2 ; . . .  ; xnð Þ� N!

x1! � � � xn!
u

x1

1 � � � uxn
n : (5)

(Papoulis 1984, p. 75).

The MEAN and VARIANCE of Xi are

mi �N ui (6)

s2
i �N ui(1 � ui) : (7)

The COVARIANCE of Xi and Xj is

s2
ij ��N ui uj : (8)

See also BINOMIAL DISTRIBUTION, MULTINOMIAL

COEFFICIENT
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Multinomial Series
A generalization of the BINOMIAL SERIES discovered
by Johann Bernoulli and Leibniz.

a1 �a2 �. . .�akð Þn

�
X

n1 ; n2 ; ...; nk

n!

n1!n2! . . . nk!
an1

1 an2

2 . . . ank

k ;

where n �n1 �n2 �. . .�nk : The multinomial series
arises in a generalization of the BINOMIAL DISTRIBU-

TION called the MULTINOMIAL DISTRIBUTION.

See also BINOMIAL SERIES, MULTINOMIAL DISTRIBU-

TION

Multinomial Theorem
MULTINOMIAL SERIES

Multinormal Distribution
GAUSSIAN MULTIVARIATE DISTRIBUTION

Multiperfect Number
A number n is k -multiperfect (also called a k -MULTI-

PLY PERFECT NUMBER or k -PLUPERFECT NUMBER) if

s(n)�kn

for some INTEGER k �2, where s(n) is the DIVISOR

FUNCTION. The value of k is called the CLASS. The
special case k�2 corresponds to PERFECT NUMBERS

P2; which are intimately connected with MERSENNE

PRIMES (Sloane’s A000396). The number 120 was long
known to be 3-multiply perfect (/P3) since

s(120)�3 � 120:

The following table gives the first few Pn for n�2, 3,
..., 6.

2 A000396 6, 28, 496, 8128, ...,

3 A005820 120, 672, 523776, 459818240,
1476304896, 51001180160

4 A027687 30240, 32760, 2178540, 23569920,
...

5 A046060 14182439040, 31998395520,
518666803200, ...

6 A046061 154345556085770649600,
9186050031556349952000, ...

In 1900�/901, Lehmer proved that P3 has at least
three distinct PRIME FACTORS, P4 has at least four, P5

at least six, P6 at least nine, and P7 at least 14.

As of 1911, 251 pluperfect numbers were known
(Carmichael and Mason 1911). As of 1929, 334
pluperfect numbers were known, many of them found
by Poulet. Franqui and Garcı́a (1953) found 63
additional ones (five P5/s, 29 P6/s, and 29 P7/s), several
of which were known to Poulet but had not been
published, bringing the total to 397. Brown (1954)
discovered 110 pluperfects, including 31 discovered
but not published by Poulet and 25 previously
published by Franqui and Garcı́a (1953), for a total
of 482. Franqui and Garcı́a (1954) subsequently
discovered 57 additional pluperfects (3 P6/s, 52 P7/s,
and 2 P8/s), increasing the total known to 539.

An outdated database is maintained by R. Schroep-
pel, who lists 2,094 multiperfects, and up-to-date lists
by J. L. Moxham (2000b) and A. Flammenkamp. It is
believed that all multiperfect numbers of index 3, 4, 5,
6, and 7 are known. The number of known n -multi-
perfect numbers are 1, 37, 6, 36, 65, 245, 516, 1134,
1982, 183, 0, 0, ... (Moxham 2000b, Flammenkamp,
Woltman 2000). Moxham (2000a) found the largest
known multiperfect number, approximately equal to
7:3�101345; on Feb. 13, 2000.



If n is a P5 number such that 3¶n; then 3n is a P4

number. If 3n is a P4k number such that 3¶n ; then n
is a P3k number. If n is a P3 number such that 3 (but
not 5 and 9) DIVIDES n , then 45n is a P4 number.

See also E -MULTIPERFECT NUMBER, FRIENDLY PAIR,
HYPERPERFECT NUMBER, INFINARY MULTIPERFECT

NUMBER, MERSENNE PRIME, PERFECT NUMBER, UNI-

TARY MULTIPERFECT NUMBER
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Multiple
A multiple of a number x is any quantity y�nx with
n an integer. If x and y are integers, then x is called a
FACTOR y .

Multiple Analysis of Variance
MANOVA

Multiple-Angle Formulas
Expressions OF THE FORM sin(nx); cos(nx); and tan(nx)
can be expressed in terms of sin x and cos x only using
the EULER FORMULA and BINOMIAL THEOREM. For

sin(nx);

sin(nx)�
einx � e�inx

2i
�

(eix)n � (e�ix)n

2i

�
(cos x � i sin x)n � (cos x � i sin x)n

2i

�
Xn

k�0

n
k

� �
cosk x(i sin x)n�k � cosk x(�i sin x)n�k

2i

�
Xn

k�0

n
k

� �
cosk x sinn�k x

in�k � (�i)n�k

2i

�
Xn

k�0

n
k

� �
cosk x sinn�k x sin[1

2(n�k)p]: (1)

Particular cases for multiple angle formulas for sin x
are given by

sin(2x)�2 sin x cos x (2)

sin(3x)�3 sin x�4 sin3 x (3)

sin(4x)�4 sin x cos x�8 sin3 x cos x (4)

sin(5x)�5 cos4 sin x�10 cos2 x sin3 x�sin5 x: (5)

The function sin(nx) can also be expressed as a
polynomial in sin x (for n odd) or cos x times a
polynomial in sin x as

sin(nx)� (�1)(n�1)=2Tn(sin x) for n odd

(�1)n=2�1cos xUn(sin x) for n even;

 
(6)

where Tn is a CHEBYSHEV POLYNOMIAL OF THE FIRST

KIND and Un is a CHEBYSHEV POLYNOMIAL OF THE

SECOND KIND. The first few cases are

sin(2x)�2 cos x sin x (7)

sin(3x)�3 sin x�4 sin3 x (8)

sin(4x)�cos x(4 sin x�8 sin3 x) (9)

sin(5x)�5 sin x�20 sin3 x�16 sin5 x: (10)

Similarly, sin(nx) can be expressed as sin x times a
polynomial in cos x as

sin(nx)�sin xUn�1(cos x): (11)

The first few cases are

sin(2x)�2 cos x sin x (12)

sin(3x)�sin x(�1�4 cos2 x) (13)

sin(4x)�sin x(�4 cos x�8 cos3 x) (14)

sin(5x)�sin x(1�12 cos2 x�16 cos4 x): (15)

Bromwich (1991) gave the formula

sin(na)�



nx �
n(n2 � 12)x3

3!
�

n(n2 � 12)(n2 � 32)x5

5!
�. . .

for n odd

n cos a x�
(n2 � 22)x3

3!
�

(n2 � 22)(n2 � 42)x5

5!
�. . .

" #
for n even ;

8>>>>>>><
>>>>>>>:

(16)

where x �sin a:/

For cos(nx); the multiple-angle formula can be de-
rived as

cos(nx) �
einx � e�inx

2i
�

(eix)n � (e �ix)n

2

�
(cos x � i sin x)n � (cos x � i sin x)n

2

�
Xn

k �0

n
k

� �
cosk x(i sin x)n�k � cosk x( �i sin x)n�k

2

�
Xn

k �0

n
k

� �
cosk x sinn�k x

in�k � ( �i)n �k

2

�
Xn

k �0

n
k

� �
cosk x sinn�k x cos 1

2(n �k) p
h i

: (17)

The first few values are

cos(2x) �cos2 x �sin2 x (18)

cos(3x) �4 cos3 x �3 cos x sin x (19)

cos(4x) �cos4 x �6 cos2 x sin2 x �sin4 x (20)

cos(5x) �cos5 x �10 cos3 x sin2 x �5 cos x sin4 x: (21)

The function cos(nx) can also be expressed as a
polynomial in sin x (for n even) or cos x times a
polynomial in sin x as

cos(nx) � (�1)n�1 =2 cos x Un�1(sin x) for n odd

(�1)n=2Tn(sin x) for n even :

 
(22)

The first few cases are

cos(2x) �1 �2 sin2 x (23)

cos(3x) �cos x(1 �4 sin2 x) (24)

cos(4x) �cos x(1 �12 sin2 x �16 sin4 x) (25)

cos(5x) �1 �8 sin2 x �8 sin4 x: (26)

Similarly, cos(nx) can be expressed as a polynomial in
cos x as

cos(nx) �Tn(cos x) (27)

The first few cases are

cos(2x) ��1 �2 cos2 x (28)

cos(3x) ��3 cos x �4 cos3 x (29)

cos(4x) �1 �8 cos2 x �8 cos4 x (30)

cos(5x) �5 cos x �20 cos3 x �16 cos5 x : (31)

Bromwich (1991) gave the formula

cos(na) �

cos a 1 �
(n2 � 12)x2

2!
�

(n2 � 12)(n2 � 32)x4

4!
�� � �

" #
n odd

1 �
n2x2

2!
�

n2(n2 � 22)x4

4!
�� � �  n even ;

8>>>>><
>>>>>:

(32)

where x �sin a:/

The first few multiple-angle formulas for tan(nx) are

tan(2x) �
2 tan x

1 � tan2 x 
(33)

tan(3x) �
3 tan x � tan3 x

1 � 3 tan2 x 
(34)

tan(4x)�
4 tan x � 4 tan3 x

1 � 6 tan2 x � tan4 x
(35)

are given by Beyer (1987, p. 139) for up to n�6.

Multiple angle formulas can also be written using the
RECURRENCE RELATIONS

sin(nx)�2 sin[(n�1)x] cos x�sin[(n�2)x] (36)

cos(nx)�2 cos[(n�1)x] cos x�cos[(n�2)x] (37)

tan(nx)�
tan[(n � 1)x] � tan x

1 � tan[(n � 1)x] tan x
: (38)

See also DOUBLE-ANGLE FORMULAS, HALF-ANGLE

FORMULAS, HYPERBOLIC FUNCTIONS, PROSTHAPHAER-

ESIS FORMULAS, TRIGONOMETRIC ADDITION FORMU-

LAS, TRIGONOMETRIC FUNCTIONS, TRIGONOMETRY
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Multiple-Free Set
DOUBLE-FREE SET, SUM-FREE SET, TRIPLE-FREE SET



Multiple Integral
A set of integrals taken over n �1 variables

g . . .g|fflfflfflffl{zfflfflfflffl}
n

f (x1 ; . . . ; xn) dx1 . . . dxn (1)

is called a multiple integral. An nth order integral
corresponds, in general, to an n -D VOLUME (CON-

TENT), with n �2 corresponding to an AREA. In an
indefinite multiple integral, the order in which the
integrals are carried out can be varied at will; for
definite multiple integrals, care must be taken to
correctly transform the limits if the order is changed.

See also FUBINI THEOREM, INTEGRAL, MONTE CARLO

INTEGRATION, REPEATED INTEGRAL
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Multiple Point
MULTIPLE ROOT

Multiple Regression
A REGRESSION giving conditional expectation values
of a given variable in terms of two or more other
variables.

See also LEAST SQUARES FITTING, MULTIVARIATE

ANALYSIS, NONLINEAR LEAST SQUARES FITTING
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Multiple Root
A ROOT with MULTIPLICITY n ]2 ; also called a multi-
ple point.

See also MULTIPLICITY, ROOT, SIMPLE ROOT
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Multiple-Valued Function
A function for which several distinct functional
values correspond (as a result of different continua-
tions) to one and the same point (Knopp 1996, p. 94).

See also BRANCH CUT, RIEMANN SURFACE, SINGLE-

VALUED FUNCTION
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Multiplicand
A quantity that is multiplied by another (the MULTI-

PLIER). For example, in the expression a �b ; b is the
multiplicand.

See also MULTIPLICATION, MULTIPLIER

Multiplication
In simple algebra, multiplication is the process of
calculating the result when a number a is taken b
times. The result of a multiplication is called the
PRODUCT of a and b , and each of the numbers a and b
is called a FACTOR of the PRODUCT ab . Multiplication
is denoted a �b; a � b; (a)(b); or simply ab . The
symbol � is known as the MULTIPLICATION SIGN.
Normal multiplication is ASSOCIATIVE, COMMUTATIVE,
and DISTRIBUTIVE.

More generally, multiplication can also be defined for
other mathematical objects such as GROUPS, MA-

TRICES, SETS, and TENSORS.

Karatsuba and Ofman (1962) discovered that multi-
plication of two n digit numbers can be done with a
BIT COMPLEXITY of less than n2 using an algorithm
now known as KARATSUBA MULTIPLICATION.

Multiplication of numbers x and y carried out in base
b can be implemented in Mathematica as

Multiply[{x_,y_},b_]: �FromDigits[

ListConvolve[IntegerDigits[x, b],

IntegerDigits[y, b],

{1, -1}, 0], b]

See also ADDITION, BIT COMPLEXITY, COMPLEX MUL-

TIPLICATION, DIVISION, FACTOR, KARATSUBA MULTI-

PLICATION, MATRIX MULTIPLICATION, MULTIPLICAND,
MULTIPLIER, PRODUCT, RUSSIAN MULTIPLICATION,
SCALAR MULTIPLICATION, SUBTRACTION, TIMES
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Multiplication Magic Square

A square which is magic under multiplication instead
of addition (the operation used to define a conven-
tional MAGIC SQUARE) is called a multiplication magic
square. Unlike (normal) MAGIC SQUARES, the n2

entries for an nth order multiplicative magic square
are not required to be consecutive. The above multi-
plication magic square has a multiplicative magic
constant of 4,096.

See also ADDITION-MULTIPLICATION MAGIC SQUARE,
MAGIC SQUARE
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Multiplication Principle
If one event can occur in m ways and a second can
occur independently of the first in n ways, then the
two events can occur in mn ways.

Multiplication Sign
The symbol � used to denote MULTIPLICATION, i.e.,
a �b denotes a times b .

The symbol � is also used to denote a GROUP DIRECT

PRODUCT, a CARTESIAN PRODUCT, or a direct product
in the appropriate category (such as a Cartesian
product of manifolds when it is implied that the
smooth structure is the natural product structure.)
The similar symbol �is reserved for a tensor product,
which may rear its head in several guises, represen-
tations, bundles, modules.

Multiplication Table
A multiplication table is an array showing the result
of applying a BINARY OPERATOR to elements of a given
set S .

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

See also BINARY OPERATOR, TRUTH TABLE

Multiplicative Character
A continuous HOMEOMORPHISM of a GROUP into the
NONZERO COMPLEX NUMBERS. A multiplicative char-
acter v gives a REPRESENTATION on the 1-D SPACE C

of COMPLEX NUMBERS, where the REPRESENTATION

action by g � G is multiplication by v(g): A multi-
plicative character is UNITARY if it has ABSOLUTE

VALUE 1 everywhere.

See also GRÖ SSENCHARAKTER, UNITARY MULTIPLICA-

TIVE CHARACTER
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Multiplicative Digital Root
Consider the process of taking a number, multiplying
its DIGITS, then multiplying the DIGITS of numbers
derived from it, etc., until the remaining number has
only one DIGIT. The number of multiplications re-
quired to obtain a single DIGIT from a number n is
called the MULTIPLICATIVE PERSISTENCE of n , and the
DIGIT obtained is called the multiplicative digital root
of n .

For example, the sequence obtained from the starting
number 9876 is (9876, 3024, 0), so 9876 has a
MULTIPLICATIVE PERSISTENCE of two and a multi-
plicative digital root of 0. The multiplicative digital
roots of the first few positive integers are 1, 2, 3, 4, 5,
6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6,
8, 0, 3, 6, 9, 2, 5, 8, 2, ... (Sloane’s A031347).

n Sloane numbers having multiplicative
digital root n

0 A034048 0, 10, 20, 25, 30, 40, 45, 50, 52, 54,
55, 56, 58, ...

1 A002275 1, 11, 111, 1111, 11111, 111111,
1111111, 11111111, ...

2 A034049 2, 12, 21, 26, 34, 37, 43, 62, 73, 112,
121, 126, ...

3 A034050 3, 13, 31, 113, 131, 311, 1113, 1131,
1311, 3111, ...

4 A034051 4, 14, 22, 27, 39, 41, 72, 89, 93, 98,
114, 122, ...



5 A034052 5, 15, 35, 51, 53, 57, 75, 115, 135,
151, 153, 157, ...

6 A034053 6, 16, 23, 28, 32, 44, 47, 48, 61, 68,
74, 82, 84, ...

7 A034054 7, 17, 71, 117, 171, 711, 1117, 1171,
1711, 7111, ...

8 A034055 8, 18, 24, 29, 36, 38, 42, 46, 49, 63,
64, 66, 67, ...

9 A034056 9, 19, 33, 91, 119, 133, 191, 313,
331, 911, 1119, ...

See also ADDITIVE PERSISTENCE, DIGITADDITION,
DIGITAL ROOT, MULTIPLICATIVE PERSISTENCE
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Multiplicative Function
A function f (m) is called multiplicative if (m; m?) �1
(i.e., the statement that m and m? are RELATIVELY

PRIME) implies

f (mm?) �f (m)f (m?) :

Examples of multiplicative functions are the MÖ BIUS

FUNCTION and TOTIENT FUNCTION.

See also COMPLETELY MULTIPLICATIVE FUNCTION,
MÖ BIUS FUNCTION, QUADRATIC RESIDUE, TOTIENT

FUNCTION

Multiplicative Inverse
The multiplicative inverse of a REAL or COMPLEX

NUMBER z is its RECIPROCAL 1=z: For complex z �
x �iy ;

1

z 
�

1

x � iy 
�

x

x2 � y2 
�i

y

x2 � y2 
:

Multiplicative Number Theory

See also ADDITIVE NUMBER THEORY, NUMBER THEORY
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Multiplicative Order
Let n be a positive number having PRIMITIVE ROOTS.
If g is a PRIMITIVE ROOT of n , then the numbers 1, g ,
g2 ; ..., gf(n) �1 form a REDUCED RESIDUE SYSTEM

modulo n , where f(n) is the TOTIENT FUNCTION. In
this set, there are f( f(n)) PRIMITIVE ROOTS, and these
are the numbers gc ; where c is RELATIVELY PRIME to
f(n) : If a is an arbitrary integer RELATIVELY PRIME to
n , then there exists among the numbers 0, 1, 2, ...,
f(n �1) exactly one number m such that

a �g m (mod n) : (1)

The number m is then called the generalized multi-
plicative order of a with respect to the base g modulo
n . Note that Nagell (1951, p. 112) instead uses the
term "index" and writes

m �indg a (mod n) : (2)

For example, the number 7 in the least positive
PRIMITIVE ROOT of n �41, and since 15 �
73 (mod 41); the number 15 has multiplicative order
3 with respect to base 7 (modulo 41) (Nagell 1951,
p. 112). The generalized multiplicative order is im-
plemented in Mathematica as MultiplicativeOr-
der[a , n , {g1 }], or more generally as
MultiplicativeOrder[a , n , {g1 , g2 , ...}].

If the PRIMITIVE ROOTS g1 ��1 and g2 �1 are chosen,
the resulting function is called the SUBORDER FUNC-

TION and is denoted sordn(a): If the single PRIMITIVE

ROOT g1 �1 is chosen, then the function reduces to
"the" (i.e., ungeneralized) multiplicative order, de-
noted ordn(a) ; implemented in Mathematica as Mul-
tiplicativeOrder[a , n ]. This function is
sometimes also known as the discrete logarithm (or,
more confusingly, as the "index," a term which Nagell
applied to the case of general g ).

See also CONGRUENCE, HAUPT-EXPONENT, ORDER

(MODULO), PRIMITIVE ROOT, SUBORDER FUNCTION
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Multiplicative Perfect Number
A number n for which the PRODUCT of DIVISORS is
equal to n2 : The first few are 1, 6, 8, 10, 14, 15, 21, 22,
... (Sloane’s A007422).

See also PERFECT NUMBER
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Multiplicative Persistence
Multiply all the digits of a number n by each other,
repeating with the product until a single DIGIT is
obtained. The number of steps required is known as
the multiplicative persistence, and the final DIGIT

obtained is called the MULTIPLICATIVE DIGITAL ROOT

of n .

For example, the sequence obtained from the starting
number 9876 is (9876, 3024, 0), so 9876 has an
multiplicative persistence of two and a MULTIPLICA-

TIVE DIGITAL ROOT of 0. The multiplicative persis-
tences of the first few positive integers are 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, ... (Sloane’s A031346).
The smallest numbers having multiplicative persis-
tences of 1, 2, ... are 10, 25, 39, 77, 679, 6788, 68889,
2677889, 26888999, 3778888999, 277777788888899,
... (Sloane’s A003001; Wells 1986, p. 78). There is no
number B1050 with multiplicative persistence > 11
(Wells 1986, p. 78). It is conjectured that the max-
imum number lacking the DIGIT 1 with persistence 11
is

77777733332222222222222222222

There is a stronger conjecture that there is a max-
imum number lacking the DIGIT 1 for each persistence
]2:/

The maximum multiplicative persistence in base 2 is
1. It is conjectured that all powers of 2 > 215 contain a
0 in base 3, which would imply that the maximum
persistence in base 3 is 3 (Guy 1994).

The multiplicative persistence of an n -DIGIT number
is also called its LENGTH. The maximum lengths for
n �1-, 2-, 3-, ..., digit numbers are 0, 4, 5, 6, 7, 7, 8, 9,
9, 10, 10, 10, ... (Sloane’s A014553; Beeler 1972,
Gottlieb 1969 �/970). The numbers of n -digit numbers
having maximal multiplicative persistence for n �1,
2, ..., are 10 (which includes the number 0), 1, 9, 12,
20, 2430, ... (Sloane’s A046148). The smallest n -digit
numbers with maximal multiplicative persistence are
0, 77, 679, 6788, 68889, 168889, ... (Sloane’s
A046149). The largest n -digit numbers with maximal
multiplicative persistence are 9, 77, 976, 8876, 98886,
997762, ... (Sloane’s A046150). The number of distinct
n -digit numbers (except for 0s) are given by 10�n�1

n

� �
�

1 which, for n �1, 2, 3, ..., gives 54, 219, 714, 2001,
5004, 11439, ... (Sloane’s A035927).

The concept of multiplicative persistence can be
generalized to multiplying the kth powers of the
digits of a number and iterating until the result
remains constant. All numbers other than REPUNITS,
which converge to 1, converge to 0. The number of
iterations required for the kth powers of a number’s
digits to converge to 0 is called its k -multiplicative
persistence. The following table gives the n -multi-
plicative persistences for the first few positive inte-
gers.

n Sloane n -Persistences

2 Sloane’s
A031348

0, 7, 6, 6, 3, 5, 5, 4, 5, 1, ...

3 Sloane’s
A031349

0, 4, 5, 4, 3, 4, 4, 3, 3, 1, ...

4 Sloane’s
A031350

0, 4, 3, 3, 3, 3, 2, 2, 3, 1, ...

5 Sloane’s
A031351

0, 4, 4, 2, 3, 3, 2, 3, 2, 1, ...

6 Sloane’s
A031352

0, 3, 3, 2, 3, 3, 3, 3, 3, 1, ...

7 Sloane’s
A031353

0, 4, 3, 3, 3, 3, 3, 2, 3, 1, ...

8 Sloane’s
A031354

0, 3, 3, 3, 2, 4, 2, 3, 2, 1, ...

9 Sloane’s
A031355

0, 3, 3, 3, 3, 2, 2, 3, 2, 1, ...

10 Sloane’s
A031356

0, 2, 2, 2, 3, 2, 3, 2, 2, 1, ...

Erdos suggested ignoring all zeros and showed that at
most c ln ln n steps are needed to reduce n to a single
digit, where c depends on the base.

The smallest primes with multiplicative persistences
n�1, 2, 3, ... are 2, 29, 47, 277, 769, 8867, 186889,
2678789, 26899889, 3778888999, 277777788888989,
... (Sloane’s A046500).

See also 196-ALGORITHM, ADDITIVE PERSISTENCE,
DIGITADDITION, DIGITAL ROOT, KAPREKAR NUMBER,
LENGTH (NUMBER), MULTIPLICATIVE DIGITAL ROOT,
NARCISSISTIC NUMBER, RECURRING DIGITAL INVAR-

IANT

References
Beeler, M. Item 56 in Beeler, M.; Gosper, R. W.; and

Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial
Intelligence Laboratory, Memo AIM-239, p. 22, Feb. 1972.

Gottlieb, A. J. Problems 28�/9 in "Bridge, Group Theory, and
a Jigsaw Puzzle." Techn. Rev. 72, unpaginated, Dec. 1969.

Gottlieb, A. J. Problem 29 in "Integral Solutions, Ladders,
and Pentagons." Techn. Rev. 72, unpaginated, Apr. 1970.

Guy, R. K. "The Persistence of a Number." §F25 in Unsolved
Problems in Number Theory, 2nd ed. New York: Springer-
Verlag, pp. 262�/63, 1994.

Rivera, C. "Problems & Puzzles: Puzzle Primes & Persis-
tence.-022." http://www.primepuzzles.net/puzzles/
puzz_022.htm.

Sloane, N. J. A. "The Persistence of a Number." J. Recr.
Math. 6, 97�/8, 1973.

Sloane, N. J. A. Sequences A003001/M4687, A014553,
A031346, and A046500 in "An On-Line Version of the
Encyclopedia of Integer Sequences." http://www.research.-
att.com/~njas/sequences/eisonline.html.

Wells, D. The Penguin Dictionary of Curious and Interesting
Numbers. Middlesex, England: Penguin Books, p. 78,
1986.



Multiplicative Primitive Residue Class
Group
MODULO MULTIPLICATION GROUP

Multiplicity
The word multiplicity is a general term meaning "the
number of values for which a given condition holds."
For example, the term is used to refer to the value of
the TOTIENT VALENCE FUNCTION or the number of
times a given polynomial equation has a ROOT at a
given point.

Let z0 be a ROOT of a function f , and let n be the least
positive integer n such that f (n)(z0) "0: Then the
POWER SERIES of f about z0 begins with the nth term,

f (z) �
X

j�n

1

j!

@jf

@zj j
z�z0

(z �z0)j ;

and f is said to have a ROOT of multiplicity (or "order")
n . If n �1, the ROOT is called a SIMPLE ROOT (Krantz
1999, p. 70).

See also DEGENERATE, MULTIPLE ROOT, NOETHER’S

FUNDAMENTAL THEOREM, ROOT, SIMPLE ROOT, TOTI-

ENT VALENCE FUNCTION
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Multiplier
A quantity by which another (the MULTIPLICAND) is
multiplied. For example, in the expression a �b; a is
the multiplier.

The term "multiplier" also has a special meaning in
the theory of MODULAR FUNCTION.

See also MODULAR FUNCTION, MULTIPLICAND, MULTI-

PLICATION

Multiply Connected

A set which is CONNECTED but not SIMPLY CONNECTED

is called multiply connected. A SPACE is n -MULTIPLY

CONNECTED if it is (n �1)/-connected and if every MAP

from the n -SPHERE into it extends continuously over
the (n �1)/-DISK

A theorem of Whitehead says that a SPACE is
infinitely connected IFF it is contractible.

See also CONNECTIVITY, LOCALLY PATHWISE-CON-

NECTED, SIMPLY CONNECTED

Multiply Perfect Number
MULTIPERFECT NUMBER

Multipolynomial Quadratic Sieve
QUADRATIC SIEVE

Multisection
SERIES MULTISECTION

Multiset
A SET-like object in which order is ignored, but
multiplicity is explicitly significant. Therefore, multi-
sets f1 ; 2 ; 3 g and f2; 1; 3g are equivalent, but
f1; 1; 2; 3g and f1; 2; 3g differ.

See also LIST, MULTICHOOSE, MULTINOMIAL COEFFI-

CIENT, SET
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Multistable
A structure such as a polyhedron which can change
form from one stable configuration to another with
only a slight transient nondestructive elastic stretch
(Goldberg 1978). The simplest example of a polyhe-
dron having multistable forms is Wunderlich’s bis-
table JUMPING OCTAHEDRON (Cromwell 1991,
pp. 222�/23).

Goldberg (1978) give two tristable polyhedra: one
having 12 faces and one having 20. Goldberg’s
bistable icosahedron, illustrated above, consists of
two adjoined PENTAGONAL DIPYRAMIDS, each with two
adjacent triangles (one on top and one on bottom)
omitted (Goldberg 1978; Wells 1991; Cromwell 1997,
pp. 222 and 224). The variables in the schematic



above are connected by the equations

sin u �
1

2r

x2 �1 �r2

y �r sin(5u) �r(5 sin u �20 sin3 u �15 sin5 u)

�r sin u(5 �20 sin2 u �16 sin4 u)

�
1

2
5 �

5

r2 
�

1

r4

 !
:

Plugging in r2 �1 �x2 and setting y �x gives the
QUINTIC EQUATION

2x5 �4x2 �4x3 �5x2 �2x �1 �0;

which has smallest positive solution x :0 :327267 :
Goldberg gives (x; y) �(0:071; 0:49) and
(0:49; 0:071) as other solutions, although it’s not clear
where these come from.

See also JUMPING OCTAHEDRON
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Multivalued Function
A FUNCTION which assumes two or more distinct
values at one or more points in its DOMAIN.

See also BRANCH CUT, BRANCH POINT
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Multivariate Analysis
The study of random distributions involving more
than one variable.

See also GAUSSIAN JOINT VARIABLE THEOREM, MULTI-

PLE REGRESSION, MULTIVARIATE FUNCTION
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Multivariate Distribution

GAUSSIAN MULTIVARIATE DISTRIBUTION

Multivariate Function
A FUNCTION of more than one variable.

See also MULTIVARIATE ANALYSIS, UNIVARIATE FUNC-

TION

Multivariate Polynomial
A POLYNOMIAL in more than one variable, e.g.,

P(x; y) �a22x2y2 �a21x2y �a12xy2 �a11xy �a10x �a01y

�a00 :

See also POLYNOMIAL, UNIVARIATE POLYNOMIAL

Multivariate Theorem
GAUSSIAN JOINT VARIABLE THEOREM

Mu Molecule
MANDELBROT SET

Müntz Space
A Müntz space is a technically defined SPACE

M( L) �spanfx l0 ; x l1 ; . . .g

which arises in the study of function approximations.

Müntz’s Theorem
Müntz’s theorem is a generalization of the WEIER-

STRASS APPROXIMATION THEOREM, which states that
any continuous function on a closed and bounded
interval can be uniformly approximated by POLYNO-

MIALS involving constants and any INFINITE SE-

QUENCE of POWERS whose RECIPROCALS diverge.

In technical language, Müntz’s theorem states that
the MÜNTZ SPACE M(L) is dense in C[0; 1] IFF

X

i�1

1

li

�
:

See also WEIERSTRASS APPROXIMATION THEOREM
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Mutant Knot
Given an original KNOT K , the knots produced by
MUTATIONS together with K itself are called mutant
knots. Mutant knots are often difficult to distinguish.
For instance, mutants have the same HOMFLY
POLYNOMIALS and HYPERBOLIC KNOT volume. Many
but not all mutants also have the same GENUS (KNOT).

See also KNOT, MUTATION

Mutation
Consider a KNOT as being formed from two TANGLES.
The following three operations are called mutations.

1. Cut the knot open along four points on each of
the four strings coming out of T2 ; flipping T2 over,
and gluing the strings back together.
2. Cut the knot open along four points on each of
the four strings coming out of T2 ; flipping T2 to the
right, and gluing the strings back together.
3. Cut the knot, rotate it by 180 8, and reglue. This
is equivalent to performing (1), then (2).

Mutations applied to an alternating KNOT projection
always yield an ALTERNATING KNOT. The mutation of
a KNOT is always another KNOT (a opposed to a LINK).

See also KNOT, MUTANT KNOT, TANGLE
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Mutual Energy
Let V be a SPACE with MEASURE m ]0; and let F(P; Q)
be a real function on the PRODUCT SPACE V�V: When

( m; n) �gg F(P; Q) d m(Q) dn(P)

�g F(P ; m) dn(P)

exists for measures m; n ]0 ; ( m; n) is called the
mutual energy. ( m; m) is then called the ENERGY.

See also ENERGY
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Mutual Information
This entry contributed by ERIK G. MILLER

The mutual information between two discrete RAN-

DOM VARIABLES X and Y is defined to be

I(X; Y) �
X
x � x

X
y �Y

p(x; y) ln
p(x; y)

p(x)p(y)

 !
: (1)

bits. Additional properties are

I(X; Y) �I(Y ; X); (2)

I(X; Y) ]0; (3)

and

I(X; Y) �H(X) �H(Y) �H(X ; Y); (4)

where H(X) is the ENTROPY of the RANDOM VARIABLE

X and H(X ; Y) is the joint entropy of these variables.

See also ENTROPY
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Mutually Exclusive Events
n events are said to be mutually exclusive if the
occurrence of any one of them precludes any of the
others. Therefore, for events X1 ; ..., Xn ; the CONDI-

TIONAL PROBABILITY is P(Xi ½Xj) �0 for all j "i :/

Mutually Exclusive Sets
DISJOINT SETS

Mutually Singular
Let M be a SIGMA ALGEBRA M , and let l1 and l2 be
MEASURES on M . If there EXISTS a pair of disjoint SETS

A and B such that l1 is CONCENTRATED on A and l2 is
CONCENTRATED on B , then l1 and l2 are said to be
mutually singular, written l1�l2:/

See also ABSOLUTELY CONTINUOUS, CONCENTRATED,
SIGMA ALGEBRA
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Myriad
The Greek word for 10,000.

Myriagon
A 10,000-sided POLYGON.

Mystic Pentagram
PENTAGRAM



N

N
The SET of NATURAL NUMBERS (the POSITIVE INTEGERS

Z� 1, 2, 3, ...; Sloane’s A000027), denoted N; also
called the WHOLE NUMBERS. Like whole numbers,
there is no general agreement on whether 0 should be
included in the list of natural numbers.

Due to lack of standard terminology, the following
terms are recommended in preference to "COUNTING

NUMBER," "natural number," and "WHOLE NUMBER."

set name symbol

..., �2, �1, 0, 1,
2, ...

INTEGERS Z

1, 2, 3, 4, ... POSITIVE INTEGERS Z�

0, 1, 2, 3, 4, ... NONNEGATIVE INTE-

GERS

Z*

0, �1, �2, �3,
�4, ...

NONPOSITIVE INTE-

GERS

�1, �2, �3, �4,
...

NEGATIVE INTEGERS Z�

See also C, CARDINAL NUMBER, COUNTING NUMBER, I,
INTEGER, Q, R, WHOLE NUMBER, Z, Z�
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Nabla
DEL, LAPLACIAN

Nagel Line

The Nagel line is the term proposed for the first time
in this work for the line on which the INCENTER I ,
CENTROID G , SPIEKER CENTER Sp , and NAGEL POINT

Na lie. The points satisfy

ISp �SpNa

IG �1
2GNa:

See also CENTROID (TRIANGLE), INCENTER, NAGEL

POINT, SPIEKER CENTER
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Nagel Point

Let T1 be the point at which the J1/-EXCIRCLE meets
the side A2A3 of a TRIANGLE DA1A2A3; and define T2

and T3 similarly. Then the lines T1; T2; and T3

CONCUR in the NAGEL POINT Na (sometimes denoted
M )
The points T1; T2; and T3 can also be constructed as
the points which bisect the PERIMETER of DA1A2A3

starting at A1; A2; and A3: Then the lines A1T1; A2T2;
and A3T3 (sometimes called SPLITTERS) concur in the
Nagel point Na . For this reason, the Nagel point is
sometimes known as the BISECTED PERIMETER POINT

(Bennett et al. 1988, Chen et al. 1992, Kimberling
1994), although the CLEAVANCE CENTER is also a
bisected perimeter point.

The Nagel point has TRIANGLE CENTER FUNCTION

a�
b � c � a

a
:

The Nagel point lies on the NAGEL LINE. The
ORTHOCENTER and Nagel point form a DIAMETER of
the FUHRMANN CIRCLE.



The Nagel point Na is also the ISOTOMIC CONJUGATE

POINT of the GERGONNE POINT Ge .

See also CLEAVANCE CENTER, EXCENTER, EXCENTRAL

TRIANGLE, EXCIRCLE, FUHRMANN CIRCLE, GERGONNE

POINT, MITTENPUNKT, NAGEL LINE, SPLITTER, TRI-

SECTED PERIMETER POINT
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Nahm’s Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

Ut �[V ;W] (1)

Vt �[W ;U] (2)

Wt �[U ;V]; (3)

where [A, B ] denotes the COMMUTATOR.
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Naive Set Theory
A branch of mathematics which attempts to formalize
the nature of the SET using a minimal collection of
independent axioms. Unfortunately, as discovered by
its earliest proponents, naive set theory quickly runs
into a number of PARADOXES (such as RUSSELL’S

PARADOX), so a less sweeping and more formal theory
known as AXIOMATIC SET THEORY must be used.

See also AXIOMATIC SET THEORY, RUSSELL’S PARA-

DOX, SET THEORY

NAND

A CONNECTIVE in LOGIC equivalent to the composition
NOT AND that yields TRUE if any condition is TRUE,
and FALSE if all conditions are TRUE. A NAND B is
equivalent to ! AfflBð Þ; where !A denotes NOT andffl

denotes AND. In PROPOSITIONAL CALCULUS, the term
ALTERNATIVE DENIAL is used to refer to the NAND
connective. Notations for NAND include AfflB and AjB
(Mendelson 1997, p. 26). The NAND operation is
implemented in Mathematica 4.1 as Nand[A , B , ...].
The circuit diagram symbol for an NAND gate is
illustrated above.
The BINARY NAND operator has the following TRUTH

TABLE (Mendelson 1997, p. 27).

A B /AfflB/

T T F

T F T

F T T

F F T

The NAND operation is the basic logical operation
performed by the solid-state transistors ("NAND
gates") that underlie virtually all integrated circuits
and modern computers. The first axiom system based
on NAND was given by Henry Sheffer in 1913. In
their landmark tome, Whitehead and Russell (1927)
promoted NAND as the appropriate foundation for
axiomatic logic.



The AND function A fflB can be written in terms of
NANDs as

A fflB � AfflBð Þffl AfflBð Þ:

See also AND, BINARY OPERATOR, CONNECTIVE,
INTERSECTION, NOR, NOT, OR, TRUTH TABLE,
XNOR, XOR
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Napierian Logarithm

Write a number N as

N �107 1 �10�7
� �L

;

then L is the Napierian logarithm of N . This was the
original definition of a LOGARITHM, and can be given
in terms of the modern LOGARITHM as

L Nð Þ��
log n

107

� �
log 107

107 �1

� � :
The Napierian logarithm decreases with increasing
numbers and does not satisfy many of the funda-
mental properties of the modern LOGARITHM, e.g.,

N log(xy) "N logx �N logy:

Napier’s Analogies
Let a SPHERICAL TRIANGLE have sides a , b , and c with
A , B , and C the corresponding opposite angles. Then

sin 1
2 A � Bð Þ
h i

sin 1
2 A � Bð Þ
h i�tan 1

2 a � bð Þ
h i
tan 1

2c
� � (1)

cos 1
2 A � Bð Þ
h i

cos 1
2 A � Bð Þ
h i�tan 1

2 a � bð Þ
h i
tan 1

2c
� � (2)

sin 1
2 a � bð Þ
h i

sin 1
2 a � bð Þ
h i�tan 1

2 A � Bð Þ
h i
cot 1

2C
� � (3)

cos 1
2 a � bð Þ
h i

cos 1
2 a � bð Þ
h i�tan 1

2 A � Bð Þ
h i
cot 1

2C
� � (4)

(Smart 1960, p. 23).

See also SPHERICAL TRIANGLE, SPHERICAL TRIGONO-

METRY
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Napier’s Bones
Numbered rods which can be used to perform MULTI-

PLICATION. This process is also called RABDOLOGY.

See also GENAILLE RODS
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Napier’s Constant
E

Napier’s Inequality
For b > a > 0;

1

b
B

ln b � ln a

b � a
B

1

a
:
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Napier’s Rules
NAPIER’S ANALOGIES



Napkin Ring
SPHERICAL RING

Napoleon Points

The inner Napoleon point N is the CONCURRENCE of
lines drawn between VERTICES of a given TRIANGLE

DABC and the opposite VERTICES of the corresponding
inner NAPOLEON TRIANGLE DNABNACNBC : The TRIAN-

GLE CENTER FUNCTION of the inner Napoleon point is

a�csc A �1
6 p

� �
:

The outer Napoleon point N ? is the CONCURRENCE of
lines drawn between VERTICES of a given TRIANGLE

DABC and the opposite VERTICES of the corresponding
outer NAPOLEON TRIANGLE DN ?ABN ?ACN ?BC : The TRIAN-

GLE CENTER FUNCTION of the point is

a�csc A �1
6 p

� �
:

See also FERMAT POINTS, NAPOLEON’S THEOREM,
NAPOLEON TRIANGLES
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Napoleon Triangles

The inner Napoleon triangle is the TRIANGLE

DNABNACNBC formed by the centers of internally
erected EQUILATERAL TRIANGLES DABEAB ; DACEAC ;
and DBCEBC on the sides of a given TRIANGLE DABC:
It is an EQUILATERAL TRIANGLE.

The outer Napoleon triangle is the TRIANGLE

DN ?ABN ?ACN ?BC formed by the centers of externally
erected EQUILATERAL TRIANGLES DABE ?AB ; DACE?AC ;
and DBCE ?BC on the sides of a given TRIANGLE DABC:
It is also an EQUILATERAL TRIANGLE.

See also EQUILATERAL TRIANGLE, NAPOLEON POINTS,
NAPOLEON’S THEOREM
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Napoleon’s Problem
Given the center of a CIRCLE, divide the CIRCLE into
four equal arcs using a COMPASS alone (a MASCHER-

ONI CONSTRUCTION).

See also CIRCLE, COMPASS, MASCHERONI CONSTRUC-

TION
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Quemper de Lanascol, A. Géométrie du compas. Blanchard,

pp. 74 �/77, 1925.
Schwerin. Mascheronische Konstruktionen. 1898.

Napoleon’s Theorem

If EQUILATERAL TRIANGLES are erected externally on
the sides of any TRIANGLE, then the centers form an
EQUILATERAL TRIANGLE (the outer NAPOLEON TRIAN-

GLE). Furthermore, the inner NAPOLEON TRIANGLE is
also EQUILATERAL, and the difference between the
areas of the outer and inner Napoleon triangles
equals the AREA of the original TRIANGLE (Wells
1991, p. 156).
Drawing the centers of one EQUILATERAL TRIANGLE

inwards and two outwards gives a 308-30 8-1208
TRIANGLE (Wells 1991, p. 156).

Napoleon’s theorem has a very beautiful general-
ization in the case of externally constructed triangles:
If SIMILAR triangles of any shape are constructed
externally on a triangle such that each is rotated
relative to its neighbors and any three corresponding
points of these triangles are connected, the result is a
triangle which is SIMILAR to the external triangles
(Wells 1991, pp. 156 �/157).

See also EQUILATERAL TRIANGLE, FERMAT POINTS,
NAPOLEON POINTS, NAPOLEON TRIANGLES, SIMILAR
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Nappe

One of the two pieces of a DOUBLE CONE (i.e., two
CONES placed apex to apex).

See also BICONE, CONE, DOUBLE CONE

Narain G-Transform
The INTEGRAL TRANSFORM defined by

(Kf)(x)�g
�

��

Gmn
pq xtj ap

� �
bq

� � !
f tð Þdt;

where Gmn
pq is MEIJER’S G -FUNCTION.
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Narayana Polynomial
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Narcissistic Number
An n -DIGIT number which is the SUM of the nth
POWERS of its DIGITS is called an n -narcissistic
number, or sometimes an ARMSTRONG NUMBER or
PERFECT DIGITAL INVARIANT (Madachy 1979). The
smallest example other than the trivial 1-DIGIT

numbers is

153�13�53�33: (1)

The series of smallest narcissistic numbers of n digits
are 0, (none), 153, 1634, 54748, 548834, ... (Sloane’s



A014576). Hardy (1993) wrote, "There are just four
numbers, after unity, which are the sums of the cubes
of their digits: 153 �13 �53 �33 ; 370 �33 �73 �03 ;
371 �33 �73 �13 ; and 407 �43 �03 �73 : These are
odd facts, very suitable for puzzle columns and likely
to amuse amateurs, but there is nothing in them
which appeals to the mathematician." The following
table gives the generalization of these "unappealing"
numbers to other POWERS (Madachy 1979, p. 164).

n n -narcissistic numbers

1  0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2 none

3 153, 370, 371, 407

4 1634, 8208, 9474

5 54748, 92727, 93084

6 548834

7 1741725, 4210818, 9800817, 9926315

8 24678050, 24678051, 88593477

9 146511208, 472335975, 534494836,
912985153

10 4679307774

A total of 88 NARCISSISTIC NUMBERS exist in base 10,
as proved by D. Winter in 1985 and verified by
D. Hoey. These numbers exist for only 1, 3, 4, 5, 6,
7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29,
31, 32, 33, 34, 35, 37, 38, and 39 digits. It can easily be
shown that base-10 n -narcissistic numbers can exist
only for n 560 ; since

n �9n B10n�1 (2)

for n �60. The largest base-10 narcissistic number is
the 39-narcissistic

115132219018763992565095597973971522401 : (3)

A table of the largest known narcissistic numbers in
various BASES is given by Pickover (1995). A tabula-
tion of narcissistic numbers in various bases is given
by (Corning).

A closely related set of numbers generalize the
narcissistic number to n -DIGIT numbers which are
the sums of any single POWER of their DIGITS. For
example, 4150 is a 4-DIGIT number which is the sum
of fifth POWERS of its DIGITS. Since the number of
digits is not equal to the power to which they are
taken for such numbers, they are not narcissistic
numbers. The smallest numbers which are sums of
any single positive power of their digits are 1, 2, 3, 4,
5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151,

8208, 9474, ... (Sloane’s A023052), with powers 1, 1, 1,
1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 4, 4, ... (Sloane’s
A046074).

The smallest numbers which are equal to the nth
powers of their digits for n �3, 4, ..., are 153, 1634,
4150, 548834, 1741725, ... (Sloane’s A003321). The n -
digit numbers equal to the sum of nth powers of their
digits (a finite sequence) are called ARMSTRONG

NUMBERS or plus perfect number and are given by
1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208,
9474, 54748, ... (Sloane’s A005188).

If the sum-of-kth-powers-of-digits operation applied
iteratively to a number n eventually returns to n , the
smallest number in the sequence is called a k -
RECURRING DIGITAL INVARIANT.

The numbers that are equal to the sum of consecutive
powers of their digits are given by 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798
(Sloane’s A032799), e.g.,

2646798�21�62�43�64�75�96�87: (4)

See also ADDITIVE PERSISTENCE, DIGITAL ROOT,
DIGITADDITION, HARSHAD NUMBER, KAPREKAR NUM-

BER, MULTIPLICATIVE DIGITAL ROOT, MULTIPLICATIVE

PERSISTENCE, POWERFUL NUMBER, RECURRING DIGI-

TAL INVARIANT, VAMPIRE NUMBER
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Narumi Polynomial
Polynomials sk x; að Þ which form the SHEFFER SE-

QUENCE for

g tð Þ� et � 1

t

 !�a

(1)



f tð Þ�et �1 (2)

which have GENERATING FUNCTION

X�
k �0

sk xð Þ
k!

tk �
t

ln 1 � tð Þ

" #a

1 �tð Þx: (3)

The first few are

s0 x; að Þ�1
s1 x; að Þ�1

2 2x �að Þ
s2 x; að Þ� 1

12 12x2 �12 a �1ð Þx �a 3a �5ð Þ½ �:
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Nash Equilibrium
A set of MIXED STRATEGIES for finite, noncooperative
GAMES of two or more players in which no player can
improve his payoff by unilaterally changing strategy.

See also FIXED POINT, GAME, MIXED STRATEGY,
NASH’S THEOREM

Nash’s Embedding Theorem
Two real algebraic manifolds are equivalent IFF they
are analytically homeomorphic (Nash 1952).

See also EMBEDDING
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Nash’s Theorem
A theorem in GAME THEORY which guarantees the
existence of a NASH EQUILIBRIUM for MIXED STRATE-

GIES in finite, noncooperative GAMES of two or more
players.

See also MIXED STRATEGY, NASH EQUILIBRIUM

Nasik Square
PANMAGIC SQUARE

Nasty Knot
An UNKNOT which can only be unknotted by first
increasing the number of crossings.

Natural Boundary
This entry contributed by JONATHAN DEANE

Consider a POWER SERIES in a complex variable z

g zð Þ�
X�
n�0

anzn (1)

that is convergent within the OPEN DISK C : zj jBR:
Convergence is limited to within C by the presence of
at least one SINGULARITY on the BOUNDARY @C of C: If
the singularities on C are so densely packed that
ANALYTIC CONTINUATION cannot be carried out on a
path that crosses C ; then C is said to form a natural
boundary for the function g(z) :/

As an example, consider the function

f zð Þ�
X�
n�0

z2n 

�z �z2 �z4 �. . .  (2)

Then f zð Þ formally satisfies the FUNCTIONAL EQUA-

TION

f zð Þ�z �f z2
� �

: (3)

The series (2) clearly converges within C1 : zj jB1: Now
consider z �1. Equation (3) tells us that f (1) �1 �
f (1) which can only be satisfied if f (1) ��: Consider-
ing now z ��1, equation (3) becomes f (�1) ��1 ��

and hence f (�1) ��: Substituting z2 for z in equation
(3) then gives

f z2
� �

�z2 �f z4
� �

�f (z) �z : (4)

from which it follows that

f zð Þ�z �z2 �f z4
� �

: (5)

Now consider z equal to any of the fourth roots of
unity, 9 1, 9i; for example z ��i : Then f (�i) ��i �
1 �f (1) ��: Applying this procedure recursively
shows that f zð Þ is infinite for any z such that z2n 

�1
with n �0, 1, 2, .... In any arc of the circle @C1 of finite
length there will therefore be an infinite number of
points for which f zð Þ is infinite and so C1 constitutes a
natural boundary for f zð Þ:/
A function that has a natural boundary is said to be a
LACUNARY FUNCTION.

See also BOUNDARY, LACUNARY FUNCTION
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Natural Density
NATURAL INVARIANT

Natural Equation
A natural equation is an equation which specifies a
curve independent of any choice of coordinates or



parameterization. The study of natural equations
began with the following problem: given two func-
tions of one parameter, find the SPACE CURVE for
which the functions are the CURVATURE and TORSION.

Euler gave an integral solution for plane curves
(which always have TORSION t �0): Call the ANGLE

between the TANGENT line to the curve and the X -AXIS

f the TANGENTIAL ANGLE, then

f �g  k sð Þds ; (1)

where k is the CURVATURE. Then the equations

k � k(s) (2)

t �0 ; (3)

where t is the TORSION, are solved by the curve with
PARAMETRIC EQUATIONS

x �g cosf ds (4)

y �g sinf ds : (5)

The equations k � k(s) and t � t(s) are called the
natural (or INTRINSIC) equations of the space curve.
An equation expressing a plane curve in terms of s
and RADIUS OF CURVATURE R (or k) is called a CESÀ RO

EQUATION, and an equation expressing a plane curve
in terms of s and f is called a WHEWELL EQUATION.

Among the special planar cases which can be solved
in terms of elementary functions are the CIRCLE,
LOGARITHMIC SPIRAL, CIRCLE INVOLUTE, and EPICY-

CLOID. Enneper showed that each of these is the
projection of a HELIX on a CONIC surface of revolution
along the axis of symmetry. The above cases corre-
spond to the CYLINDER, CONE, PARABOLOID, and
SPHERE.

See also CESÀ RO EQUATION, INTRINSIC EQUATION,
WHEWELL EQUATION
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Natural Independence Phenomenon
A type of mathematical result which is considered by
most logicians as more natural than the METAMATHE-

MATICAL incompleteness results first discovered by
Gödel. Finite combinatorial examples include GOOD-

STEIN’S THEOREM, a finite form of RAMSEY’S THEOREM,
and a finite form of KRUSKAL’S TREE THEOREM (Kirby
and Paris 1982; Smorynski 1980, 1982, 1983; Gallier
1991).

See also GÖ DEL’S INCOMPLETENESS THEOREM, GOOD-

STEIN’S THEOREM, KRUSKAL’S TREE THEOREM, RAM-

SEY’S THEOREM
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Natural Invariant
Let r(x)dx be the fraction of time a typical dynamical
ORBIT spends in the interval x; x�dx½ �; and let r(x) be
normalized such that

g
�

0

r xð Þdx�1

over the entire interval of the map. Then the fraction
the time an ORBIT spends in a finite interval [a, b ], is
given by

g
b

a

r xð Þdx:

The natural invariant is also called the INVARIANT

DENSITY or NATURAL DENSITY.

Natural Logarithm



The LOGARITHM having base E , where

e �2:718281828 . . . ; (1)

which can be defined

ln x �g
x

1

dt

t 
(2)

for x �0. The natural logarithm can also be defined
by

ln x � lim
x 0�

x1 =n �1
� �n

: (3)

The symbol ln x is used in physics and engineering to
denote the natural logarithm, while mathematicians
commonly use the notation log x: In this work, ln x �
loge x denotes a natural logarithm, whereas log x �
log10 x denotes the COMMON LOGARITHM. Common
and natural logarithms can be expressed in terms of
each other as

ln x �
log10 x

log10 e 
(4)

log10 x �
ln x

ln 10 
: (5)

The natural logarithm is especially useful in CALCU-

LUS because its DERIVATIVE is given by the simple
equation

d

dx 
ln x �

1

x 
; (6)

whereas logarithms in other bases have the more
complicated DERIVATIVE

d

dx
logb x �

1

x ln b 
: (7)

The natural logarithm can be analytically continued
to COMPLEX NUMBERS as

ln z �ln zj j�i arg(z) ; (8)

where zj j is the MODULUS and arg(z) is the ARGUMENT

The MERCATOR SERIES

ln 1 �xð Þ�x �1
2x

2 �1
3x

3 �. . .  (9)

gives a TAYLOR SERIES for the natural logarithm.

CONTINUED FRACTION representations of logarithmic
functions include

ln 1 �xð Þ� x

1 �
12x

2 �
12x

3 �
22x

4 �
22x

5 �
32x

6 �
32x

7 � . . .

(10)

ln
1 � x

1 � x

 !
�

2x

1 �
x2

3 �
4x2

5 �
9x2

7 �
16x2

9 � . . .

(11)

For a COMPLEX NUMBER z , the natural logarithm
satisfies

ln z �ln rei u�2npð Þ� 
�ln r �i u �2npð Þ (12)

PV ln zð Þ�ln r �iu ; (13)

where PV is the PRINCIPAL VALUE.

Some special values of the natural logarithm are

ln 1 �0 (14)

ln 0 ��� (15)

ln �1ð Þ�pi (16)

ln 9ið Þ�91
2 pi : (17)

An identity for the natural logarithm of 2 discovered
using the PSLQ ALGORITHM is

ln 2ð Þ2¼ 2
X�
i�1

pi

2ii2
pif g� 2;�10;�7;�10; 2;�1

� �
; (18)

where pif g is given by the periodic sequence obtained
by appending copies of 2;�10;�7;�10; 2;�1f g (in
other words, pi�p i�1ð Þ mod 6ð Þ½ ��1 for i �6) (Bailey et
al. 1995, Bailey and Plouffe).

See also COMMON LOGARITHM, E , LG, LOGARITHM
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Natural Measure
/mi eð Þ; sometimes denoted Pi eð Þ; is the probability that
element i is populated, normalized such that

XN

i �1

mi eð Þ�1 :

See also INFORMATION DIMENSION, Q -DIMENSION

Natural Norm
Let zk k be a VECTOR NORM of a VECTOR z such that

Aj jj j�max
zj jj j�1

Azj jj j:

Then Ak k is a MATRIX NORM which is said to be the
natural norm INDUCED (or SUBORDINATE) to the
VECTOR NORM zk k: For any natural norm,

Ik k�1 ;

where I is the IDENTITY MATRIX. The natural matrix
norms induced by the L1-NORM, L2-NORM, and L -

INFINITY-NORM are called the MAXIMUM ABSOLUTE

COLUMN SUM NORM, SPECTRAL NORM, and MAXIMUM

ABSOLUTE ROW SUM NORM, respectively.

See also L1-NORM, L2-NORM, MATRIX NORM, MAX-

IMUM ABSOLUTE COLUMN SUM NORM, SPECTRAL

NORM, VECTOR NORM

References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,

Series, and Products, 6th ed. San Diego, CA: Academic
Press, p. 1115, 2000.

Natural Number
A POSITIVE INTEGER 1, 2, 3, ... (Sloane’s A000027). The
set of natural numbers is denoted N or Z�. Unfortu-
nately, 0 is sometimes also included in the list of
"natural" numbers (Bourbaki 1968, Halmos 1974),
and there seems to be no general agreement about
whether to include it. In fact, Ribenboim (1996) states
"Let P be a set of natural numbers; whenever
convenient, it may be assumed that 0 	 P:/"

Due to lack of standard terminology, the following
terms are recommended in preference to "COUNTING

NUMBER," "natural number," and "WHOLE NUMBER."

set name symbol

..., -2, -1, 0, 1, 2,

...
INTEGERS Z

1, 2, 3, 4, ... POSITIVE INTEGERS Z�

0, 1, 2, 3, 4, ... NONNEGATIVE INTE-

GERS

Z*

0, -1, -2, -3, -4, ... NONPOSITIVE INTE-

GERS

-1, -2, -3, -4, ... NEGATIVE INTEGERS Z-

See also COUNTING NUMBER, INTEGER, N, POSITIVE,
Z, Z-, Z�, Z*
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Natural Perspective
PERSPECTIVE

Naught
The British word for "ZERO." It is often used to
indicate 0 subscripts, so a0 would be spoken as "a
naught."

See also ZERO

Navier’s Equation

The general equation of fluid flow

l �2mð Þ9 9�uð Þ� m9� 9�uð Þ� r
@2u

@t2 
;

where m and l are coefficients of viscosity, u is the
velocity of the fluid parcel, and r is the fluid density.

See also NAVIER-STOKES EQUATION
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Navier-Stokes Equation

The equation of incompressible fluid flow,

@u

@t
�u �9u �

9P

r
� n 92u ;

where n is the kinematic viscosity, u is the velocity of
the fluid parcel, P is the pressure, and r is the fluid
density.

See also NAVIER’S EQUATION
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Navigation Problem
A problem in the CALCULUS OF VARIATIONS. Let a
vessel traveling at constant speed c navigate on a
body of water having surface velocity

u ¼ uðx; yÞ

v �v(x; y) :

The navigation problem asks for the course which
travels between two points in minimal time.
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nc
JACOBI ELLIPTIC FUNCTIONS

N-Cluster
A LATTICE POINT configuration with no three points
COLLINEAR and no four CONCYCLIC. An example is the
6-cluster (0, 0), (132, �720), (546, �272), (960,
�720), (1155, 540), (546, 1120). Call the RADIUS of
the smallest CIRCLE centered at one of the points of an
N-cluster which contains all the points in the N-
cluster the EXTENT. Noll and Bell (1989) found 91
nonequivalent prime 6-clusters of EXTENT less than
20937 ; but found no 7-clusters.
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n-Cube
HYPERCUBE, POLYCUBE

nd
JACOBI ELLIPTIC FUNCTIONS

Near Noble Number
A REAL NUMBER 0 B n B1 whose CONTINUED FRAC-

TION is periodic, and the periodic sequence of terms is
composed of a string of 1s followed by an INTEGER

n �1,

n �[1 ; 1; . . . ; 1;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
p

n]: (1)

This can be written in the form

n�[1; 1; . . . ; 1;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
p

n; n�1]; (2)

which can be solved to give

n�
1

2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4

nFp�1 � Fp�2

n2Fp

s
�1

 !
; (3)

where Fn is a FIBONACCI NUMBER. The special case
n�2 gives

n�

ffiffiffiffiffiffiffiffiffiffiffi
Fp�2

Fp

s
�1: (4)

See also NOBLE NUMBER
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Nearest Integer Function

The nearest integer function nint(x) of x , illu-



strated above and also called nint or the round
function, is defined such that [x] is the INTEGER

closest to x . Since this definition is ambiguous for
half-integers, the additional rule that half-integers
are always rounded to even numbers is usually added
in order to avoid statistical biasing. For example,
[1:5] �2; [2:5] �2; [3:5] �4; [4:4] �4; etc. This con-
vention is followed in the C math.h library function
rint, as well as in Mathematica , where the nearest
integer function is implemented as Round[x ].
Although the notation �x � is sometimes used to
denote the nearest integer function (Hastad et al.
1989), this notation is rather cumbersome and is not
recommended. Also note that while [x] is used to
denote the nearest integer function in this work, [x] is
also commonly used to denote the FLOOR FUNCTION

xb c:/

The plots above illustrate x1 =n �[x1 =n] for small n .

See also CEILING FUNCTION, FLOOR FUNCTION, NINT

ZETA FUNCTION, STAIRCASE FUNCTION
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Nearest Neighbor Problem
The problem in COMPUTATIONAL GEOMETRY of identi-
fying the point from a set of points which is nearest to
a given point according to some measure of distance.
The nearest neighborhood problem involves identify-
ing the locus of points lying nearer to the query point
than to any other point in the set.

See also COMPUTATIONAL GEOMETRY
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Near-Integer
ALMOST INTEGER

Nearly-Poised
Let GENERALIZED HYPERGEOMETRIC FUNCTION

pFq

a1 ; a2 ; . . . ; ap

b1 ; b2 ; . . . ; bq
; z

� �
(1)

have p �q �1: Then the generalized hypergeometric
function is said to be nearly-poised of the first kind if

b1 � a2 �. . .� bq � aq �1 : (2)

(omitting the initial equality in the definition for
WELL-POISED), and nearly-poised of the second kind if

1 � a1 � b1 � a2 �. . .� bq �1 � aq : (3)

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
K -BALANCED, NEARLY-POISED, SAALSCHÜ TZIAN
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Near-Pencil
An arrangement of n ]3 points such that n �1 of
them are COLLINEAR.

See also GENERAL POSITION, ORDINARY LINE, PENCIL
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Necessary
A CONDITION which must hold for a result to be true,
but which does not guarantee it to be true. If a
CONDITION is both NECESSARY and SUFFICIENT, then
the result is said to be true IFF the CONDITION holds.

See also SUFFICIENT
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Necker Cube

An ILLUSION in which a 2-D drawing of an array of
CUBES appears to simultaneously protrude from and
intrude into the page.
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Necklace

In the technical COMBINATORIAL sense, an a -ary
necklace of length n is a string of n characters, each
of a possible types. Rotation is ignored, in the sense
that b1b2 . . . bn is equivalent to bkbk�1 . . . bnb1b2 . . . bk-1

for any k .
In FIXED necklaces, reversal of strings is respected, so
they represent circular collections of beads in which
the necklace may not be picked up out of the PLANE

(i.e., opposite orientations are not considered equiva-
lent). The number of fixed necklaces of length n
composed of a types of beads N(n;a) is given by

N(n;a)�
1

n

Xn(n)

i�1

f(di)a
n=di ; (1)

where di are the DIVISORS of n with d1�1; d2; ...,
dn(n)�n; n(n) is the number of DIVISORS of n , and f(x)
is the TOTIENT FUNCTION.

For FREE necklaces, opposite orientations (MIRROR

IMAGES) are regarded as equivalent, so the necklace
can be picked up out of the PLANE and flipped over.
The number N?(n;a) of such necklaces composed of n
beads, each of a possible colors, is given by

N?(n;a)�
1

2n

�
Pn(n)

i�1 f(di)a
n=di �na(n�1)=2 for n oddPn(n)

i�1 f(di)an=di �1
2n(1�a)an=2 for n even:

(

For a�2 and n�p an ODD PRIME, this simplifies to

N?(p; 2)�
2p�1 � 1

p
�2(p�1)=2�1:

A table of the first few numbers of necklaces for a�2
and a�3 follows. Note that N(n; 2) is larger than
N?(n; 2) for n]6: For n�6, the necklace 110100 is
inequivalent to its MIRROR IMAGE 0110100, account-
ing for the difference of 1 between N(6; 2) and N?(6; 2):
Similarly, the two necklaces 0010110 and 0101110
are inequivalent to their reversals, accounting for the
difference of 2 between N(7; 2) and N?(7; 2):/

n /N(n; 2)/ /N?(n; 2)/ /N?(n; 3)/

Sloane Sloane’s
A000031

Sloane’s
A000029

Sloane’s
A027671

1 2 2 3

2 3 3 6

3 4 4 10

4 6 6 21

5 8 8 39

6 14 13 92

7 20 18 198

8 36 30 498



9 60 46 1219

10 108 78 3210

11 188 126 8418

12 352 224 22913

13 632 380 62415

14 1182 687 173088

15 2192 1224 481598

Ball and Coxeter (1987) consider the problem of
finding the number of distinct arrangements of n
people in a ring such that no person has the same two
neighbors two or more times. For 8 people, there are
21 such arrangements.

See also ANTOINE’S NECKLACE, DE BRUIJN SEQUENCE,
FIXED, FREE, IRREDUCIBLE POLYNOMIAL, JOSEPHUS

PROBLEM, LYNDON WORD
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Needle
BUFFON-LAPLACE NEEDLE PROBLEM, BUFFON’S NEE-

DLE PROBLEM, KAKEYA NEEDLE PROBLEM

Negabinary
The negabinary representation of a number n is
given by the coefficients anan�1 . . . a1a0 in

n �
X
i�0

ai(�2)i �. . .�a2(�2)2 �a1(�2)1 �a0(�2)0 ;

where ai �0; 1 : Conversion of n to negabinary can be
done using the Mathematica code

Negabinary[n_Integer] : � Module[{t � (2/

3)(4^Floor[Log[4, Abs[n] � 1] � 2] - 1)},

IntegerDigits[BitXor[n � t, t], 2]]

The following table gives the negabinary representa-
tions for the first few integers (A039724).

n negabinary n negabinary

1 1 11 11111

2 110 12 11100

3 111 13 11101

4 100 14 10010

5 101 15 10011

6 11010 16 10000

7 11011 17 10001

8 11000 18 10110

9 11001 19 10111

10 11110 20 10100

If these numbers are interpreted as binary numbers
and converted to decimal, their values are 1, 6, 7, 4, 5,
26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, ... (Sloane’s
A005351). The numbers having the same representa-
tion in BINARY and negabinary are members of the
MOSER-DE BRUIJN SEQUENCE, 0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, ... (Sloane’s A000695).

See also BINARY, MOSER-DE BRUIJN SEQUENCE,
NEGADECIMAL
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Negadecimal
The negadecimal representation of a number n is
given by the coefficients anan�1 . . . a1a0 in

n�
X
i�0

ai(�10)i�. . . a2(�10)2�a1(�10)1�a0(�10)0;

where ai�0; 1, ..., 9. The following table gives the
negabinary representations for the first few integers
(A039723).



n negadecimal n negadecimal n negadecimal

1 1 11 191 21 181

2 2 12 192 22 182

3 3 13 193 23 183

4 4 14 194 24 184

5 5 15 195 25 185

6 6 16 196 26 186

7 7 17 197 27 187

8 8 18 198 28 188

9 9 19 199 29 189

10 190 20 180 30 170

The numbers having the same DECIMAL and negade-
cimal representations are those which are sums of
distinct powers of 100: 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 200, ...
(Sloane’s A051022).

See also DECIMAL, NEGABINARY
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Negation
The operation of interchanging true and false in a
logical statement. The negation of A is often called
"NOT-A ," and can be denoted !A; or with the NEGA-

TION SIGN �; so not-A is written � A:/

Note that in computer languages such as C, perl,
and Mathematica , not-A is denoted !A: In FORTRAN,
not-A is written .not.A, where A is a variable of
logical type.

See also NEGATION SIGN, NOT

Negation Sign
The symbol �used to denote the NEGATION operation
("NOT") in symbolic logic, also called "logical not."

See also NOT
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Negative
A quantity less than ZERO (/B0); denoted with a MINUS

SIGN, i.e.,�x:/

See also NONNEGATIVE, NONPOSITIVE, NONZERO,
POSITIVE, ZERO
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Negative Binomial Distribution
Also known as the PASCAL DISTRIBUTION and PÓLYA

DISTRIBUTION. The probability of r�1 successes and x
failures in x�r�1 trials, and success on the (x�r)/th
trial is

p
x�r�1

r�1

� �
pr�1(1�p)[(x�r�1)�(r�1)]

� �

�
x�r�1

r�1

� �
pr�1(1�p)x

� �
p

�
x�r�1

r�1

� �
pr(1�p)x; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT. Let

P�
1 � p

p
(2)

Q�
1

p
: (3)

The CHARACTERISTIC FUNCTION is given by

f(t)� Q�Peit
� ��r

; (4)

and the MOMENT-GENERATING FUNCTION by

M(t)� etzh i�
X�
x�0

et x x�r�1
r�1

� �
pr(1�p)x; (5)

but, since N
n

� �
� N

N�m

� �
;

M(t)�pr
X�
x�0

x�r�1
x

� �
1�pð Þet½ �x

�pr 1� 1�pð Þet½ ��r
(6)

M?(t)�pr(�r) 1� 1�pð Þet½ ��r�1
p�1ð Þet

�pr(1�p)r 1� 1�pð Þet½ ��r�1
et (7)

Mƒ(t)�(1�p)rpr(1�et�pet)�r�2

� (�1�etr�etpr)et (8)

M§(t)�(1�p)rpr(1�et�etp)�r�3

� [1�et(1�p�3r�3pr)�r2e2t(1�p)2]et: (9)

The MOMENTS about zero K(u) are therefore

m?1�m�
r(1 � p)

p
�

rq

p
(10)



m ?2 �
r(1 � p)[1 � r(p � 1)]

p2 
�

rq(1 � rq)

p2 
(11)

m?3 �
(1 � p)r(2 � p � 3r � 3pr � r2 � 2pr2 � p2r2)

p3

(12)

m?4 �
( �1 � p)r( �6 � 6p � p2 � 11r � 15pr � 4p2r � 6r2

p4

�
12pr2 � 6p2r2 � r3 � 3pr3 � 3p2r3 � p3r3)

p4 
: (13)

(Beyer 1987, p. 487, apparently gives the MEAN

incorrectly.) The MOMENTS about the mean are

m2 � s2 �
r(1 � p)

p2 
(14)

m3 �
r 2 � 3p � p2ð Þ

p3 
�

r p � 1ð Þ p � 2ð Þ
p3 

(15)

m4 �
r(1 � p)(6 � 6p � p2 � 3r � 3pr)

p4 
: (16)

The MEAN, VARIANCE, SKEWNESS and KURTOSIS are
then

m �
r(1 � p)

p 
(17)

g1 �
m3

s3 
�

r(p � 1)(p � 2)

p3

p2

r(1 � p)

" #3 =2

�
r(2 � p)(1 � p)

p3

p3

r(1 � p)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p

p

�
2 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(1 � p)

p (18)

g2 �
m4

s4 
�3

�
�6 � 6p � p2 � 3r � 3pr

(p � 1)r
; (19)

which can also be written

m �nP (20)

m2 �nPQ (21)

g1 �
Q � Pffiffiffiffiffiffiffiffiffiffi

rPQ
p (22)

g2 �
1 � 6PQ

rPQ
�3: (23)

The first CUMULANT is

k1 �nP ; (24)

and subsequent CUMULANTS are given by the RECUR-

RENCE RELATION

kr�1 �PQ
dkr

dQ
: (25)
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Negative Binomial Series
The SERIES which arises in the BINOMIAL THEOREM for
NEGATIVE integer n ,

(x �a) �n �
X�
k�0

�n
k

� �
xka�n�k

�
X�
k �0

(�1)k n �k �1
k

� �
xka �n�k :

For a �1, the negative binomial series simplifies to

(x �1)�n �1 �nx �1
2n(n �1)x2 �1

6n(n �1)(n �2)

�. . . :

See also BINOMIAL SERIES, BINOMIAL THEOREM

Negative Definite Matrix
A negative definite matrix is a HERMITIAN MATRIX all
of whose EIGENVALUES are negative.

See also NEGATIVE SEMIDEFINITE MATRIX, POSITIVE

DEFINITE MATRIX, POSITIVE SEMIDEFINITE MATRIX

References
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Negative Integer
Z�

Negative Likelihood Ratio
The term negative likelihood ratio is also used
(especially in medicine) to test nonnested comple-
mentary hypotheses as follows,

NLR �
[true negative rate]

[false negative rate] 
�

[specificity]

1 � [sensitivity]
:

See also LIKELIHOOD RATIO, SENSITIVITY, SPECIFICITY



Negative Pedal Curve
Given a curve C and O a fixed point called the PEDAL

POINT, then for a point P on C , draw a LINE

PERPENDICULAR to OP . The ENVELOPE of these LINES

as P describes the curve C is the negative pedal of C .

See also PEDAL CURVE
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Press, pp. 156 �/159, 1967.

Negative Semidefinite Matrix
A negative semidefinite matrix is a HERMITIAN

MATRIX all of whose EIGENVALUES are nonpositive.

See also NEGATIVE DEFINITE MATRIX, POSITIVE

DEFINITE MATRIX, POSITIVE SEMIDEFINITE MATRIX

References
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Neighborhood
The word neighborhood is a word with many different
levels of meaning in mathematics. One of the most
general concepts of a neighborhood of a point x 	Rn

(also called an epsilon-neighborhood or infinitesimal
OPEN SET) is the set of points inside an n -BALL with
center x and RADIUS e > 0:/

See also BALL, OPEN SET

Neile’s Parabola

The solid curve in the above figure which is the
EVOLUTE of the PARABOLA (dashed curve). In CARTE-

SIAN COORDINATES,

y �3
4(2x)2 =3 �1

2�

Neile’s parabola is also called the SEMICUBICAL PARA-

BOLA, and was discovered by William Neile in 1657. It
was the first nontrivial ALGEBRAIC CURVE to have its
ARC LENGTH computed. Wallis published the method
in 1659, giving Neile the credit (MacTutor Archive).

See also PARABOLA EVOLUTE
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Nelder-Mead Method

A direct search method of optimization that works
moderately well for stochastic problems. It is based on
evaluating a function at the vertices of a SIMPLEX,
then iteratively shrinking the simplex as better
points are found until some desired bound is obtained
(Nelder and Mead 1965).

See also STOCHASTIC OPTIMIZATION
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Nephroid

The 2-CUSPED EPICYCLOID is called a nephroid. Since
n�2, a�b=2; and the equation for r2 in terms of the
parameter f is given by EPICYCLOID equation



r2 �
a2

n2
n2 �2n �2
� �

�2 n �1ð Þ cos(nf)
� 

(1)

with n �2,

r2 �
a2

22
22 �2 � 2 �2
� �

�2 2�1ð Þ cos(2f)
� 

�1
4a

2 10 �6 cos(2f)½ ��1
2a

2 5 �3 cos(2 f)½ �; (2)

where

tanu �
3 sinf � sin(3f)

3 cos f � cos(3 f) 
� (3)

This can be written

r

2a

 !2 =3

� sin 1
2 u
� �h i2 =3

� cos 1
2 u
� �h i2 =3

� (4)

The PARAMETRIC EQUATIONS are

x �a 3 cos t �cos(3t)½ � (5)

y �a 3 sin t �sin(3t)½ �� (6)

The Cartesian equation is

x2 �y2 �4a2
� �3

�108a4y2 � (7)

The name nephroid means "kidney shaped" and was
first used for the two-cusped EPICYCLOID by Proctor in
1878 (MacTutor Archive). The nephroid has ARC

LENGTH 24a and AREA 12p2a2 : The CATACAUSTIC for
rays originating at the CUSP of a CARDIOID and
reflected by it is a nephroid. Huygens showed in
1678 that the nephroid is the CATACAUSTIC of a
CIRCLE when the light source is at infinity. He
published this fact in Traité de la luminère in 1690
(MacTutor Archive).

The nephroid can be generated as the ENVELOPE of
circles centered on a given circle and tangent to one of
the circle’s diameters (Wells 1991).

See also ASTROID, DELTOID, FREETH’S NEPHROID
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Nephroid Evolute

The EVOLUTE of the NEPHROID given by

x�1
2 3 cos t�cos(3t)½ �

y�1
2 3 sin t�sin(3t)½ �

is given by

x�cos3 t

y�1
4 3 sin t�sin(3t)½ �;

which is another NEPHROID.

Nephroid Involute

The INVOLUTE of the NEPHROID given by

x�1
2 3 cos t�cos(3t)½ �

y�1
2 3 sin t�sin(3t)½ �

beginning at the point where the nephroid cuts the Y -



AXIS is given by

x �4 cos3 t

y �3 sin t �sin(3t) ;

another NEPHROID. If the INVOLUTE is begun instead
at the CUSP, the result is CAYLEY’S SEXTIC.

Néron-Severi Group
Let V be a complete normal VARIETY, and write G Vð Þ
for the group of divisors, Gn Vð Þ for the group of
divisors numerically equal to 0, and Ga Vð Þ the group
of divisors algebraically equal to 0. Then the finitely
generated QUOTIENT GROUP NS Vð Þ�G Vð Þ=Ga Vð Þ is
called the Néron-Severi group.
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Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary
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Nerve
The SIMPLICIAL COMPLEX formed from a family of
objects by taking sets that have nonempty intersec-
tions.

See also DELAUNAY TRIANGULATION, SIMPLICIAL

COMPLEX

Nested Hypothesis
Let S be the set of all possibilities that satisfy
HYPOTHESIS H , and let S ? be the set of all possibilities
that satisfy HYPOTHESIS H ?: Then H ? is a nested
hypothesis within H IFF S?ƒS; where ƒdenotes the
PROPER SUBSET.

See also LOG LIKELIHOOD PROCEDURE

Nested Radical
Expressions OF THE FORM

lim
k0�

x0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
. . .�xk

pqr
�

Herschfeld (1935) proved that a nested radical of
REAL NONNEGATIVE terms converges IFF /ðxnÞ

2�n

/ is
bounded. He also extended this result to arbitrary
POWERS (which include continued square roots and
CONTINUED FRACTIONS as well), a result is known as
HERSCHFELD’S CONVERGENCE THEOREM.

Nested radicals appear in the computation of PI,

2

p
�

ffiffi
1
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffi
1
2

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffi
1
2

qrs
. . . (1)

in TRIGONOMETRICAL values of COSINE and SINE for
arguments OF THE FORM p=2n; e.g.,

sin
p
8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pq
(2)

cos
p
8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pq
(3)

sin
p
16

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pqr
(4)

cos
p
16

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2

pqr
; (5)

and in the computation of the GOLDEN RATIO,

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�. . .

pqrs
: (6)

There are a number of general formula for nested
radicals (Wong and McGuffin). For example,

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�qð Þxn�qxn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�qð Þxn�qxn�1 ffiffiffiffiffiffi

. . .
pqr

(7)

which gives as special cases

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4a

p
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�b

ffiffiffiffiffiffi
. . .

pqrs
(8)

(n�2, q�1�a=x2; x�b=q);

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn�1 ffiffiffiffiffiffi

. . .
pqrs

(9)

(q�1), and

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
ffiffiffiffiffiffiffiffiffiffiffiffi
x
ffiffiffiffiffiffi
. . .

pqrsvuut
(10)

(/q�1;n�2): Equation (7) gives rise to

q(nk�1= n�1ð Þxnj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(nk�1�n)=(n�1) 1�qð Þxnj�1 �. . .

q

. . .�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(nk�2�n)=(n�1) 1�qð Þxnj�2 � ffiffiffiffiffiffiffiffi. . . ;pq

ð11Þ

which gives the special case for q�1=2; n�2, x�1,
and k��1,

ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

220
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

221
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

222
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

223
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

224
�. . . :

svuut
vuuut

vuuuut
vuuuuut (12)

Ramanujan discovered

x�n�a

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax� n�að Þ2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(x�n)� n�að Þ2�. . .

qr



. . .� x �nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(x �2n) � n �að Þ2�(x �2n)

ffiffiffiffiffiffi
. . .

pq
;

which gives the special cases

x �1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �(x �1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �(x �2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �. . .

pqrs
; (13)

for a �0, n �1, and

3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �5

ffiffiffiffiffiffi
. . .

pqrsvuut
(14)

for a �0, n �1, and x �2.

For a nested radical OF THE FORM

x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �. . .

pqr
(15)

to be equal a given REAL NUMBER x , it must be true
that

x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n �. . .

pqr
�

ffiffiffiffiffiffiffiffiffiffiffi
n�x

p
; (16)

so

x2�n�x (17)

and

x�1
2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n�1

p� �
� (18)

See also CONTINUED FRACTION, GOLDEN RATIO,
HERSCHFELD’S CONVERGENCE THEOREM, PI, SQUARE

ROOT
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Nested Square

The black region in the nested square illustrated
above, where the outer boundary is a unit square, has
AREA 2.
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Net

The word net has several meanings in mathematics.
It refers to a plane diagram in which the EDGES of a
POLYHEDRON are shown. All convex POLYHEDRA have
nets, but not all concave polyhedra do (the constitu-
ent POLYGONS can overlap one another when a
concave POLYHEDRON is flattened out). The GREAT

DODECAHEDRON and STELLA OCTANGULA are examples
of a concave polyhedron which have nonself-inter-
secting nets.
A corrected and concatenated version of the Bell
Laboratories netlib polyhedron database has been
prepared by Weisstein, together with Mathematica
code to access analytic vertex coordinates and plot
nets for all Platonic and Archimedean solids and their
duals, as well as the Johnson solids. K. Fukuda has
written routines which can unfold convex polyhedra
into a planar net.

The term net also has a technical meaning as a
generalization of a SEQUENCE, in which context it is
also known as a Moore-Smith sequence. In this



context, nets is used in general topology and ANALYSIS

to imbue non-metrizable topological spaces with
convergence properties. This artifice is needed only
in spaces which are not FIRST-COUNTABLE, since
sequences alone provide an adequate way of dealing
with CONTINUITY for FIRST-COUNTABLE SPACES. Nets
are used in the study of the RIEMANN INTEGRAL.
Formally, a net of a set S is a mapping from a
DIRECTED SET D into S .

See also DIRECTED SET, FIBER BUNDLE, FIBER SPACE,
FIBRATION, UNFOLDING
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Netto’s Conjecture
The probability that two elements /P1/ and /P2/ of a
SYMMETRIC GROUP generate the entire GROUP tends to
3u4 as /n 0 �/ (Netto 1964, p. 90). The conjecture was
proven by Dixon (1969).

See also PERMUTATION GROUP, SYMMETRIC GROUP
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Network
A GRAPH or DIRECTED GRAPH together with a function
which assigns a positive real number to each edge
(Harary 1994, p. 52).

See also GRAPH, NETWORK FLOW, SINK (DIRECTED

GRAPH), SMITH’S NETWORK THEOREM, SOURCE
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Network Flow
The network flow problem considers a graph G with a
set of sources S and sinks T and for which each edge
has an assigned capacity (weight), and then asks to
find the maximum flow that can be routed from S to
T while respecting the given edge capacities. The
network flow problem can be solved in time /O ðn3 Þ/
(Edmonds and Karp 1972; Skiena 1990, p. 237). It
has been implemented as NetworkFlow[g , source ,
sink ] in the Mathematica add-on package Discre-
teMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘) and Net-

workFlowEdges[g , source , sink ] in the Mathematica
add-on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

See also AUGMENTING PATH, MAXIMUM FLOW, MINI-

MUM CUT THEOREM, NETWORK
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Neuberg Center
The center of a NEUBERG CIRCLE.

See also NEUBERG CIRCLE

Neuberg Circle

The LOCUS of the VERTEX A1 of a TRIANGLE on a given
base A2A3 and with a given BROCARD ANGLE v is a
CIRCLE (actually two circles, one on either side of
A2A3) known as the Neuberg circle. From the center
N1; the base A2A3 subtends the ANGLE 2v: The
equation of the circle can be found by taking the
base as (0, 0), (0, a1) and solving

x2�y2�a2
3 (1)

(x�a1)2�y2�a2
2 (2)

while eliminating a2 and a3 using

cos v�
a2

1 � a2
2 � a3

3

4D
; (3)



where D is the area of the triangle DA1A2A3 : Solving
for x gives

x �
1

2
a1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
94a1y cot v �4y2 �3a2

1

q� �
; (4)

and squaring and completing the square results in

x �
1

2 
a1

 !2

� y 9
1

2
a1 cot v

 !2

�
1

4 
a1 cot2 v �3
� �

(5)

Therefore, the Neuberg circle N1 on this edge has
center

N1 �
1

2
a1 ;9

1

2 
a1 cot v

 !
(6)

(sometimes called the NEUBERG CENTER), and RADIUS

r �
1

2 
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2 v �3

p
:

The same procedure can be repeated for the other two
sides of a TRIANGLE resulting in three Neuberg circles
(with another corresponding three on opposite sides
of the edges). The TRIANGLE connecting the three
NEUBERG CENTERS is called the NEUBERG TRIANGLE.

On one side of a given line taken as a base, it is
possible to construct six triangles directly or inversely
similar to a given SCALENE TRIANGLE, and the vertices
of these triangles lie on their common Neuberg circles
(Johnson 1929, p. 289).

See also BROCARD ANGLE, MCCAY CIRCLE, NEUBERG

TRIANGLE

References
Coolidge, J. L. A Treatise on the Geometry of the Circle and

Sphere. New York: Chelsea, pp. 79 �/80, 1971.
Emmerich, A. Die Brocardschen Gebilde und ihre Beziehun-

gen zu den verwandten merkwürdigen Punkten und
Kreisen des Dreiecks. Berlin: Georg Reimer, 1891.

Johnson, R. A. Modern Geometry: An Elementary Treatise on
the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, pp. 287 �/290, 1929.

Neuberg Triangle

The TRIANGLE / DN1N2N3/ formed by joining a set of
three NEUBERG CENTERS (i.e., centers of the NEUBERG

CIRCLES) obtained from the edges of a given triangle
DA1A2A3 (left figure). The CENTROID GN of / DN1N2N3/

is coincident with the CENTROID GA of DA1A2A3

(Johnson 1929, p. 288; right figure).

The lines A1N1 ; A2N2 ; and A3N3 are concurrent at a
point T which Johnson (1929, p. 288) claims (appar-
ently incorrectly) is the TARRY POINT.

See also NEUBERG CIRCLE, TARRY POINT
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Neumann Algebra
VON NEUMANN ALGEBRA

Neumann Boundary Conditions
PARTIAL DIFFERENTIAL EQUATION BOUNDARY CONDI-

TIONS which give the normal derivative on a surface.

See also BOUNDARY CONDITIONS, CAUCHY BOUNDARY

CONDITIONS
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Neumann Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

x2yƒ�3xy?� x2 �1 �n2
� �

y

�x cos2 1
2np
� �

�n sin2 1
2np
� �

satisfied by the NEUMANN POLYNOMIALS /On ðxÞ/.

See also NEUMANN POLYNOMIAL
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Neumann Function
BESSEL FUNCTION OF THE SECOND KIND

Neumann Polynomial
Polynomials /On ðxÞ/ that can be defined by the sum

On(x) �
1

4

Xn=2b c

k �0

n(n � k � 1)!

k!
1
2x
� �2k �n �1

(1)

for n ]1; where xb c is the FLOOR FUNCTION. They obey
the RECURRENCE RELATION

On(x) ��
n

n � 2 
On�2(x) �

2n

x
On�1(x)

�
2(n � 1)

(n � 2)x
sin2 1

2(n �1)p
h i

(2)

for n ]3 : They have the integral representation

On(x) �g
�

0

� u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � x2

p� �n
� u �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � x2

p� �n

2xn�1 
e�udu ;

(3)

and the generating function

1

x � j 
�J0( j)x�1 �2

X�
n�1

Jn( j)On(x) (4)

(Gradshteyn and Ryzhik 2000, p. 990), and obey the
NEUMANN DIFFERENTIAL EQUATION.

The first few Neumann polynomials are given by

O0(x) �
1

x

O1(x) �
1

x2

O2(x) �
x2 � 4

x3

O3(x) �
3x2 � 24

x4

O4(x) �
x4 � 16x2 � 192

x5

(A057869).

See also NEUMANN DIFFERENTIAL EQUATION, SCHLÄ -

FLI POLYNOMIAL
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Neumann Series (Bessel Function)
A series OF THE FORM

X�
n �0

anJn�n(z) ; (1)

where n is a REAL and Jn�n(z) is a BESSEL FUNCTION

OF THE FIRST KIND. Special cases are

z n �2n G 1
2v �1
� �X�

n�0

1
2z
� �n=2 �n

n!
Jn=2�n(z) ; (2)

where G(z) is the GAMMA FUNCTION, and

X�
n�0

bnzn�n�
X�
n�0

an
1
2z
� �(n�n)=2

J(n�n)=2(z); (3)

where

an�
Xn=2b c

m�0

2n�n�2mG 1
2n�

1
2n � m � 1

� �
m!

bn�2m; (4)

and xb c is the FLOOR FUNCTION.

See also KAPTEYN SERIES
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Neumann Series (Integral Equation)
A FREDHOLM INTEGRAL EQUATION OF THE SECOND

KIND

f(x) �f (x) �g
b

a

K(x; t) f(t)dt (1)

may be solved as follows. Take

f0(x) �f (x) (2)

f1(x) �f (x) � lg
b

a

K(x; t)f (t)dt (3)

f2(x) �f (x) � lg
b

a

K x; t1ð Þf t1ð Þdt1

� l2g
b

a g
b

a

K x; t1ð ÞK t1 ; t2ð Þf t2ð Þdt2dt1 (4)

fn(x) �
Xn

i�0

liui(x) ; (5)

where

u0(x) �f (x) (6)

u1(x) �g
b

a

K(x; t)f t1ð Þdt1 (7)

u2(x) �g
b

a g
b

a

K x; t1ð ÞK t1 ; t2ð Þf ðt2 Þdt2dt1 : (8)

un(x) �g
b

a g
b

a g
b

a

K x; t1ð ÞK t1 ; t2ð Þ � � �

�K tn�1 ; tnð Þf tnð Þdtn � � �dt1 : (9)

The Neumann series solution is then

f(x) � lim
n0�

fn(x) � lim
n0�

Xn

i�0

liui(x): (10)
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Neusis Construction
A geometric construction, also called a VERGING

CONSTRUCTION, which allows the classical GEOMETRIC

CONSTRUCTION rules to be bent in order to permit
sliding of a marked RULER. Using a Neusis construc-
tion, CUBE DUPLICATION, angle TRISECTION, and con-
struction of the regular HEPTAGON are soluble. The
CONCHOID OF NICOMEDES can also be used to perform
many Neusis constructions (Johnson 1975). Conway
and Guy (1996) give Neusis constructions for the 7-,
9-, and 13-gons which are based on angle TRISECTION.

See also CONCHOID OF NICOMEDES, CUBE DUPLICA-

TION, GEOMETRIC CONSTRUCTION, HEPTAGON,
MASCHERONI CONSTRUCTION, MATCHSTICK CON-

STRUCTION, RULER, STEINER CONSTRUCTION, TRISEC-

TION
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Nevanlinna Theory

An analytic refinement of results from COMPLEX

analysis such as those codified by PICARD’S LITTLE

THEOREM, PICARD’S GREAT THEOREM, and the WEIER-

STRASS-CASORATI THEOREM.

See also PICARD’S GREAT THEOREM, PICARD’S LITTLE

THEOREM, WEIERSTRASS-CASORATI THEOREM
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Neville Theta Function
The functions

O2(x) �
x2 � 4

x3 
(1)

O3(x) �
3x2 � 24

x4 
(2)

O4(x) �
x4 � 16x2 � 192

x5 
(3)

X�
n�0

anJn�n(z)1 ¼ Jnþn ðz Þ (4)

where zn �2n G(1
2 n �1)a

�

n�0

1
2z

� �n =2�n

n! Jn=2 �n(z) and G(z)
are the JACOBI THETA FUNCTIONS and a

�

n�0bnz n�n �
a

�

n �0an(1
2z)(n�n) =2J(n�n)=2(z) is the complete ELLIPTIC

INTEGRAL OF THE FIRST KIND.

See also JACOBI THETA FUNCTION, THETA FUNCTIONS
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Neville Theta Functions
The functions

q s(u) �
H(u)

H ?(0) 
(1)

qd(u) �
U(u � K)

U(k) 
(2)

q s(u) �
H(u)

H(K) 
(3)

qn(u) �
U(u)

U(0)
; (4)

where H(u) and U(u) are the JACOBI THETA FUNC-

TIONS and K(u) is the complete ELLIPTIC INTEGRAL OF

THE FIRST KIND.

See also JACOBI THETA FUNCTIONS, THETA FUNC-

TIONS
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Neville’s Algorithm
An interpolation ALGORITHM which proceeds by first
fitting a POLYNOMIAL Pk of degree 0 through the
points (xk ; yk) for k �0 ..., n , i.e., Pk �yk : A second
iteration is then performed in which P12 is fit through
pairs of points, yielding P12 ; P23 ; .... The procedure is
repeated, generating a "pyramid" of approximations
until the final result is reached

P1

P2

P3

P4

P12

P23

P34

P123

P234
P1234:

The final result is

Pi(i�1)���(i �m) �
x � xi�m

� �
Pi(i�1)���(i �m�1)

xi � xi �m

�
xi � xð ÞP(i �1)(i�2)���(i �m)

xi � xi �m

:

See also BULIRSCH-STOER ALGORITHM

NevilleThetaC
NEVILLE THETA FUNCTIONS

NevilleThetaD
NEVILLE THETA FUNCTIONS

NevilleThetaN
NEVILLE THETA FUNCTIONS

NevilleThetaS
NEVILLE THETA FUNCTIONS

Newcomb’s Paradox
A paradox in DECISION THEORY. Given two boxes, B1
which contains $1000 and B2 which contains either
nothing or a million dollars, you may pick either B2 or
both. However, at some time before the choice is
made, an omniscient Being has predicted what your
decision will be and filled B2 with a million dollars if
he expects you to take it, or with nothing if he expects
you to take both.

See also ALLAIS PARADOX
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Newman-Conway Sequence
The sequence 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, ... (Sloane’s
A004001) defined by P(1)�P(2)�1 and the RECUR-

RENCE RELATION

P(n)�P(P(n�1))�P(n�P(n�1))� (1)

It satisfies

P 2k
� �

�2k�1 (2)

and

P(2n)52P(n): (3)
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Newman’s Conjecture
If m is an integer, then for every residue class r (mod
m ), there are infinitely many nonnegative integers n
for which P(n)�r (mod m); where P(n) is the PARTI-

TION FUNCTION P .



See also ERDOS-IVIC CONJECTURE, PARTITION FUNC-

TION P
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Newton Number
KISSING NUMBER

Newton-Bessel Formula
BESSEL’S FINITE DIFFERENCE FORMULA

Newton-Cotes Formulas
The Newton-Cotes formulas are an extremely useful
and straightforward family of NUMERICAL INTEGRA-

TION techniques.

To integrate a function f (x) over some interval [a, b ],
divide it into n equal parts such that fn�f xnð Þ and /

h�ðb�aÞun/. Then find POLYNOMIALS which approx-
imate the tabulated function, and integrate them to
approximate the AREA under the curve. To find the
fitting POLYNOMIALS, use LAGRANGE INTERPOLATING

POLYNOMIALS. The resulting formulas are called
Newton-Cotes formulas, or QUADRATURE FORMULAS.

Newton-Cotes formulas may be "closed" if the interval
x1;xn

� 
is included in the fit, "open" if the points

x2; xn�1½ � are used, or a variation of these two. If the
formula uses n points (closed or open), the COEFFI-

CIENTS of terms sum to n�1:/

If the function f (x) is given explicitly instead of simply
being tabulated at the values xi; the best numerical
method of integration is called GAUSSIAN QUADRA-

TURE. By picking the intervals at which to sample the
function, this procedure produces more accurate
approximations (but is significantly more complicated
to implement).

The 2-point closed Newton-Cotes formula is called the
TRAPEZOIDAL RULE because it approximates the area
under a curve by a TRAPEZOID with horizontal base
and sloped top (connecting the endpoints x1 and x2): If
the first point is x1; then the other endpoint will be
located at

x2�x1�h; (1)

and the LAGRANGE INTERPOLATING POLYNOMIAL

through the points x1; f1ð Þ and x2; f2ð Þ is

P2ðxÞ�
x � x2

x1 � x2

f1�
x � x1

x2 � x1

f2

�
x � x1 � h

�h
f1�

x � x1

h
f2

x

h
f2�f1ð Þ� f1�

x1

h
f1�

x1

h
f2

 !
� (2)

Integrating over the interval (i.e., finding the area of
the trapezoid) then gives

g
x2

x1

f (x)dx�g
x1�h

x1

P2(x)dx

�
1

2h
f2�f1ð Þ x2

� x2

x1
� f1�

x1

h
f1�

x1

h
f2

 !
x½ �x2

x1

�
1

2h
f2�f1ð Þ x2�x1ð Þ x2�x1ð Þ� x2�x1ð Þ

� f1�
x1

h
f1�

x1

h
f2

 !

�1
2 f2�f1ð Þ 2x1�hð Þ�f1h�x1 f1�f2ð Þ

�x1 f2�f1ð Þ�1
2h f2�f1ð Þ�hf1�x1 f2�f1ð Þ

�1
2h f1�f2ð Þ� 1

12h
3f ƒ(j): (3)

This is the trapezoidal rule (Ueberhuber 1997,
p. 100), with the final term giving the amount of
error (which, since x15j5x2; is no worse than the
maximum value of f ƒ(j) in this range).

The 3-point rule is known as SIMPSON’S RULE. The
ABSCISSAS are

x2�x1�h (4)

x3�x1�2h (5)

and the LAGRANGE INTERPOLATING POLYNOMIAL is

P3(x)�
x � x2ð Þ x � x3ð Þ

x1 � x2ð Þ x1 � x3ð Þ
f1�

x � x1ð Þ x � x3ð Þ
x2 � x1ð Þ x2 � x3ð Þ

f2

�
x � x1ð Þ x � x2ð Þ

x3 � x1ð Þ x3 � x2ð Þ
f3

�
x2 � x x2 � x3ð Þ� x2x3

h(2h)
f1

�
x2 � x x1 � x3ð Þ� x1x3

h(�h)
f2



�
x2 � x x1 � x2ð Þ� x1x2

2h(h)
f3

�
1

h2
fx2 1

2 f1�f2�
1
2 f3

� �
�x �1

2 2x1�3hð Þf1

h

� 2x1�2hð Þf2�
1
2 2x1�hð Þ�� 1

2 x1�hð Þ x1�2hð Þf1

h
�x1 x1�2hð Þf2�

1
2x1 x1�hð Þf3]g: (6)

Integrating and simplifying gives

g
x2

x1

f (x)dx�g
x1�2h

x1

P3(x)dx

�1
3h f1�4f2�f3ð Þ� 1

90h
5f 4ð Þ jð Þ (7)

(Ueberhuber 1997, p. 100).

The 4-point closed rule is SIMPSON’S 3/8 RULE,

g
x4

x1

f (x)dx�3
8h f1�3f2�3f3�f4ð Þ� 3

80h
5f 4ð Þ(j) (8)

(Ueberhuber 1997, p. 100). The 5-point closed rule is
BODE’S RULE,

g
x5

x1

f (x)dx� 2
45h 7f1�32f2�12f3�32f4�7f5ð Þ

� 8
945h

7f 6ð Þ(j) (9)

(Abramowitz and Stegun 1972, p. 886). Higher order
rules include the 6-point

g
x6

x1

f (x)dx� 5
288h 19f1�75f2�50f3�50f4�75f5ð

�19f6Þ� 275
12096h

7f 6ð Þ(j); (10)

7-point

g
x7

x1

f (x)dx� 1
140h 41f1�216f2�27f3�272f4ð

�27f5�216f6�41f7Þ� 9
1400h

9f 8ð Þ(j); (11)

8-point

g
x8

x1

f (x)dx� 7
17280h 751f1�3577f2�1323f2�2989f3ð

�2989f5�1323f6�3577f7�751f8Þ
� 8183

518400h
9f 8ð Þ(j); ð12Þ

9-point

g
x9

x1

f (x)dx� 4
14175h 989f1�5888f2�928f3ð

�10496f4�4540f5�10496f6�928f7�5888f8�989f9Þ

� 2368
467775h

11f 10ð Þ(j) (13)

(Ueberhuber 1997, p. 100), 10-point

g
x10

x1

f (x)dx� 9
89600h 2857 f1�f10ð Þ½

�15741 f2�f9ð Þ�1080 f3�f8Þ�19344 f4�f7ð Þð

�5788 f5�f6ð Þ�� 173
14620h

11f 10ð Þ(j); (14)

and 11-point

g
x11

x1

f (x)dx� 5
299376h 16067 f1�f11ð Þ½

�106300 f2�f10ð Þ��48525 f3�f9ð Þ�272400 f4�f8ð Þ

�260550 f5�f7ð Þ�427368f6�� 1346350
326918592h

13f 12ð Þ(j) ð15Þ

rules.

In general, the n -point rule is given by the analytic
expression

g
xn

x1

f (x)dx�h
Xn

i�1

Hn; ifi; (16)

where

Hn;r�1�
�1ð Þn�r

r! n � rð Þ!g
n

0

t(t�1) � � � (t�r�1)

� (t�r�1) � � � (t�n)dt (17)

(Whittaker and Robinson 1967, p. 154).

Closed "extended" rules use multiple copies of lower
order closed rules to build up higher order rules. By
appropriately tailoring this process, rules with parti-
cularly nice properties can be constructed. For n
tabulated points, using the TRAPEZOIDAL RULE (n�1)
times and adding the results gives

g
xn

x1

f (x)dx� g
x2

x1

�g
x3

x2

�� � �g
xn

xn�1

 !
f (x) dx

�1
2h f1�f2ð Þ� f2�f3ð Þ�� � �� fn�2�fn�1ð Þ½

� fn�1�fnð Þ�

�h 1
2 f1�f2�f3�� � ��fn�2�fn�1�

1
2 fn

� �
�1

12nh3f ƒ(j) (18)

(Ueberhuber 1997, p. 107). Using a series of refine-
ments on the extended TRAPEZOIDAL RULE gives the
method known as ROMBERG INTEGRATION. A 3-point
extended rule for ODD n is



g
xn

x1

f (x) dx�h 1
3 f1�

4
3 f2�

1
3 f3

� �
� 1

3 f3�
4
3 f4�

1
3 f5

� �h

�� � �� 1
3 fn�4�

4
3 fn�3�

1
3 fn�2

� �
� 1

3 fn�2�
4
3 fn�1�

1
3 fn

� �
�

�1
3h f1�4f2�2f3�4f4�2f5�. . .�4fn�1�fnð Þ

�n�1
2

1
90h

5f 4ð Þ(j): (19)

Applying SIMPSON’S 3/8 RULE, then SIMPSON’S RULE (3-
point) twice, and adding gives

g
x4

x1

�g
x6

x4

�g
x4

x1

" #
f (x) dx

�h 3
8 f1�

9
8 f2�

9
8 f3�

3
8 f4

� �
� 1

3 f4�
4
3 f5�

1
3 f6

� �h
� 1

3 f6�
4
3 f7�

1
3 f8

� �
�

�h 3
8 f1�

9
8 f2�

9
8 f3�

3
8�

1
3

� �
f4�

4
3 f5

h
� 1

3�
1
3

� �
f6�

4
3 f7�

1
3 f8�

�h 3
8 f1�

9
8 f2�

9
8 f3�

17
24 f4�

4
3 f5�

2
3 f6�

4
3 f7�

1
3 f8

� �
: (20)

Taking the next Simpson’s 3/8 step then gives

g
x11

x8

f (x) dx�h 3
8 f8�

9
8 f9�

9
8 f10�

3
8 f11

� �
: (21)

Combining with the previous result gives

g
x11

x1

f (x) dx�h 3
8 f1�

9
8 f2�

9
8 f3�

17
24 f4�

4
3 f5

h

�2
3 f6�

4
3 f7�

1
3�

3
8

� �
f8�

9
8 f9�

9
8 f10�

3
8 f11�

�h 3
8 f1�

9
8 f2�

9
8 f3�

17
24 f4�

4
3 f5�

2
3 f6�

4
3 f7

�
�17

24 f8�
9
8 f9�

9
8 f10�

3
8 f11Þ; (22)

where terms up to /f10/ have now been completely
determined. Continuing gives

h 3
8 f1�

9
8 f2�

9
8 f3�

17
24 f4�

4
3 f5�

2
3 f6�. . .

�
�2

3 fn�5�
4
3 fn�4�

17
24 fn�3�

9
8 fn�2�

9
8 fn�1�

3
8 fnÞ: (23)

Now average with the 3-point result

h 1
3 f1�

4
3 f2�

2
3 f3�

4
3 f4�

2
3 f5�

4
3 fn�1�

1
3 fn

� �
(24)

to obtain

h 17
48 f1�

59
48 f2�

43
48 f4�

49
48 f4� f5�f6�. . .�fn�5�fn�4ð Þ

h
�49

48 fn�3�
43
38 fn�2�

59
48 fn�1�

17
48 fn��O n�4

� �
: (25)

Note that all the middle terms now have unity

COEFFICIENTS. Similarly, combining a 4-point with
the (2�4)-point rule gives

h 5
12 f1�

13
12 f2�f3�f4�. . .�fn�3�fn�2�

13
12 fn�1�

5
12

� �
�O n�3

� �
: (26)

Other Newton-Cotes rules occasionally encountered
include DURAND’S RULE

g
xn

x1

f (x) dx�h 2
5 f1�

11
10 f2�f3�. . .�fn�2�

11
10 fn�1�

2
5 fn

� �
(27)

(Beyer 1987), HARDY’S RULE

g
x0�3h

x0�3h

f (x) dx

� 1
100h 28f�3�162f�2�22f0�162f2�28f3ð Þ

� 9
1400h

7 2f (4) j2ð Þ�h2f (8) j1ð Þ
� 

; (28)

and WEDDLE’S RULE

g
x6n

x1

f (x) dx� 3
10h f1�5f2�f3�6f4�5f5�f6ð

�. . .�5f6n�1�f6nÞ (29)

(Beyer 1987).

The open Newton-Cotes rules use points outside the
integration interval, yielding the 1-point

g
x2

x0

f (x) dx�2hf1; (30)

2-point

g
x3

x0

f (x) dx�g
x1�2h

x1�h

P2(x) dx

� 1
2h

f2�f1ð Þ x2
� x1�2h

x1�h
� f1�

x1

h
f1�

x1

h
f2

 !
x½ �x1�2h

x1�h

�3
2h f1�f2ð Þ�1

4h
3f ƒ(j); (31)

3-point

g
x4

x0

f (x) dx�4
3h 2f1�f2�2f3ð Þ�28

90h
5f 4ð Þ(j); (32)

4-point

g
x5

x0

f (x) dx� 5
24h 11f1�f2�f3�11f4ð Þ

� 95
144h

5f 4ð Þ(j); (33)

5-point



g
x6

x0

f (x) dx � 6
20h 11f1 �14f2 �26f3 �14f4 �11f5ð Þ

� 41
140h

7f 6ð Þ( j) ; (34)

6-point

g
x7

x0

f (x)dx � 7
1440h 611f1 �453f2 �562f3 �562f4ð

�453f5 �611f6 Þ�5257
8640h

7f 6ð Þ(j) ; (35)

and 7-point

g
x8

x0

f (x)dx � 8
945h 460f1 �954f2 �2196f3 �2459f4ð

�2196f5 �954f6 �460f7 Þ� 3956
14175h

9f (8)(j) (36)

rules.

A 2-point open extended formula is

g
xn

x1

f (x)dx �h 1
2 f1 �f2 �. . .�fn �1 �

1
2 fn

� �h

�1
24 �f0 �f2 �fn�1 �fn�1

� �
��11(n�1)

720 h5f (4)(j) : ð37Þ

Single interval extrapolative rules estimate the in-
tegral in an interval based on the points around it. An
example of such a rule is

hf1 �O h2f ?
� �

(38)
1
2h 3f1 �f2ð Þ�O h3f ƒ

� �
(39)

1
12h 23f1 �16f2 �5f3ð Þ�O h4f (3)

� �
(40)

1
24h 55f1 �59f2 �37f3 �9f4ð Þ�O h5f (4)

� �
: (41)

See also BODE’S RULE, DIFFERENCE EQUATION, DUR-

AND’S RULE, FINITE DIFFERENCE, GAUSSIAN QUAD-

RATURE, HARDY’S RULE, LAGRANGE INTERPOLATING

POLYNOMIAL, NUMERICAL INTEGRATION, SHOVELTON’S

RULE, SIMPSON’S RULE, SIMPSON’S 3/8 RULE, TRAPE-

ZOIDAL RULE, WEDDLE’S RULE, WOOLHOUSE’S FOR-

MULAS
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Newton-Gauss Backward Formula
GAUSS’S BACKWARD FORMULA

Newton-Gauss Forward Formula
GAUSS’S FORWARD FORMULA

Newton-Girard Formulas
The identities between the elementary symmetric
functions

Q
k x1 ; . . .  ; xnð Þ and the sums of nth powers

of their variables Sk �an
k�1xk : For 1 5k 5n ; the

identity is

�1ð Þnn
Y

n

x1 ; . . . ; xkð Þ

�
Xn�1

k �0

�1ð ÞkSk x1 ; . . . ; xkð Þ
Y

k

x1 ; . . . ; xkð Þ�0; (1)

the first few of which are

S1 �
Y

n

�0 (2)

S2 �S1

Y
1

�2
Y

2

�0 (3)

S3�S2

Y
1

�S1

Y
2

�3
Y

3

�0: (4)

See also SYMMETRIC POLYNOMIAL
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Newtonian Form
NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FOR-

MULA

Newton-Raphson Fractal
NEWTON’S METHOD

Newton-Raphson Method
NEWTON’S METHOD



Newton’s Backward Difference Formula

fp �f0 �p 90 �
1
2!p(p �1) 92

0 �
1
3!p(p �1)(p �2) 93

0

�. . . ;

for p 	 [0; 1]; where 9 is the BACKWARD DIFFERENCE.

See also NEWTON’S FORWARD DIFFERENCE FORMULA
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Newton’s Diverging Parabolas
Curves with CARTESIAN equation

ay2 �x x2 �2bx �c
� �

with a �0. The above equation represents the third
class of Newton’s classification of CUBIC CURVES,
which Newton divided into five species depending
on the ROOTS of the cubic in x on the right-hand side
of the equation. Newton described these cases as
having the following characteristics:

1. "All the ROOTS are REAL and unequal. Then the
Figure is a diverging Parabola OF THE FORM of a
Bell, with an Oval at its Vertex.
2. Two of the ROOTS are equal. A PARABOLA will be
formed, either Nodated by touching an Oval, or
Punctate, by having the Oval infinitely small.
3. The three ROOTS are equal. This is the NEILIAN

PARABOLA, commonly called SEMI-CUBICAL.
4. Only one REAL ROOT. If two of the ROOTS are
impossible, there will be a Pure PARABOLA of a
Bell-like Form"

(MacTutor Archive).
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Newton’s Divided Difference Interpolation
Formula
Let

pn(x) �
Yn

i�1

x �xnð Þ; (1)

then

f (x) �f0 �
Xn

k �1

xk �1(x) x0 ; x1 . . . ; xk½ ��Rn ; (2)

where x1 ; . . .½ � is a DIVIDED DIFFERENCE, and the
remainder is

Rn(x) �pn(x) x0 ; . . . ; xn ; x½ ��pn(x)
f n�1ð Þ( j)

n � 1ð Þ
(3)

for x0 B j Bxn :/

See also DIVIDED DIFFERENCE, FINITE DIFFERENCE
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Newton’s Formulas
Let a TRIANGLE have side lengths a , b , and c with
opposite angles A , B , and C . Then

b � c

a
�

cos 1
2(B � C)
h i
sin 1

2A
� �

c � a

b
�

cos 1
2(C � A)
h i
sin 1

2B
� �

a � b

c
�

cos 1
2(A � B)
h i
sin 1

2C
� � :

See also MOLLWEIDE’S FORMULAS, TRIANGLE
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Newton’s Forward Difference Formula
A FINITE DIFFERENCE identity giving an interpolated
value between tabulated points /ffpg/ in terms of the
first value /f0/ and the POWERS of the FORWARD

DIFFERENCE D: For /a 	 ½0; 1�/, the formula states

fa�f0�aD� 1
2!a(a�1)D2� 1

3!a(a�1)(a�2)D3�. . .

When written in the form

f x�að Þ�
X�
n�0

að ÞnD
nf xð Þ

n!

with að Þn the POCHHAMMER SYMBOL, the formula
looks suspiciously like a finite analog of a TAYLOR

SERIES expansion. This correspondence was one of the
motivating forces for the development of UMBRAL

CALCULUS.



The DERIVATIVE of Newton’s forward difference for-
mula gives MARKOFF’S FORMULAS.

See also FINITE DIFFERENCE, MARKOFF’S FORMULAS,
NEWTON’S BACKWARD DIFFERENCE FORMULA, NEW-

TON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA
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Newton’s Identities
NEWTON’S RELATIONS

Newton’s Iteration
An algorithm for computing the SQUARE ROOT of a
number n quadratically as limk 0�xk ;

xk �1 �
1

2
xk �

n

xk

 !
;

where x0 �1: The first few approximants to
ffiffiffi
n

p
are

given by

1; 1
2(1 �n);

1 � 6n � n2

4(n � 1)
;

1 � 28n � 70n2 � 28n3 � n4

8(1 � n) 1 � 6n � n2ð Þ
; . . .

For
ffiffiffi
2

p
; this gives the convergents as 1, 3/2, 17/12,

577/408, 665857/470832, ... (Sloane’s A051008 and
A051009).

See also SQUARE ROOT
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Newton’s Method
A ROOT-finding ALGORITHM which uses the first few
terms of the TAYLOR SERIES of a function f (x) in the
vicinity of a suspected ROOT to zero in on the root. It is
also called the Newton-Raphson method. For f (x) a
POLYNOMIAL, Newton’s method is essentially the
same as HORNER’S METHOD. The TAYLOR SERIES of
f (x) about the point x�o is given by

f (x�o)�f (x)�f ?(x)o�1
2 f ƒ(x)o2�. . . : (1)

Keeping terms only to first order,

f (x�o):f (x)�f ?(x)o: (2)

This expression can be used to estimate the amount of
offset o needed to land closer to the root starting from
an initial guess x0: Setting f x0�oð Þ�0 and solving (2)
for o gives

o0��
f x0ð Þ
f ? x0ð Þ

; (3)

which is the first-order adjustment to the ROOT’s
position. By letting x1�x0�o0; calculating a new o1;
and so on, the process can be repeated until it
converges to a root.

Unfortunately, this procedure can be unstable near a
horizontal ASYMPTOTE or a LOCAL MINIMUM. However,
with a good initial choice of the ROOT’s position, the
algorithm can by applied iteratively to obtain

xn�1�xn�
f xnð Þ
f ? xnð Þ

(4)

for n�1, 2, 3, .... An initial point x0 that provides safe
convergence of Newton’s method is called an APPROX-

IMATE ZERO.

The error on�1 after the (n�1)/st iteration is given by

on�1�on� xn�1�xn

� �
�on�

f xnð Þ
f ? xnð Þ

: (5)

But

f xnð Þ�f (x)�f ?(x)on�
1
2 f ƒ(x)o2

n�. . .

�f ?(x)on�
1
2 f ƒ(x)o2

n�. . . (6)

f ? xnð Þ�f ?(x)�f ƒ(x)on�. . . ; (7)

so

f xnð Þ
f ? xxð Þ

�
f ?(x)on � 1

2 f ƒ(x)o2
n � . . .

f ?(x)f ƒ(x)on � . . .

:
f ?(x)o � 1

2 f ƒ(x)o2
n

f ?(x) � f ƒ(x)on

�on þ f ƒ(x)

2f ?(x)
o2

n; (8)

and (5) becomes

on�1�on� on�
f ƒ(x)

2f ?(x)
o2

n

" #
��

f ƒ(x)

2f ?(x)
o2

n: (9)

Therefore, when the method converges, it does so
quadratically.

A FRACTAL is obtained by applying Newton’s method
to finding a ROOT of zn�1�0 (Mandelbrot 1983,
Gleick 1988, Peitgen and Saupe 1988, Press et al.
1992, Dickau 1997). Iterating for a starting point z0



gives

zi�1 �zi �
zn

i � 1

nzn�1
i

: (10)

Since this is an nth order POLYNOMIAL, there are n
ROOTS to which the algorithm can converge.

Coloring the BASIN OF ATTRACTION (the set of initial
points z0 which converge to the same ROOT) for each
ROOT a different color then gives the above plots,
corresponding to n �2, 3, 4, and 5.

See also ALPHA-TEST, APPROXIMATE ZERO, HALLEY’S

IRRATIONAL FORMULA, HALLEY’S METHOD, HORNER’S

METHOD, HOUSEHOLDER’S METHOD, LAGUERRE’S

METHOD
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Newton’s Parallelogram
Approximates the possible values of y in terms of x if

Xn

i;j�0

aijx
iyj �0:

Newton’s Relations
Let si be the sum of the products of distinct ROOTS rj of
the POLYNOMIAL equation of degree n

anxn�an�1xn�1�. . .�a1x�a0�0; (1)

where the roots are taken i at a time (i.e., si is defined
as the SYMMETRIC POLYNOMIAL

Q
i r1; . . . ; rnð Þ) si is

defined for i�1, ..., n . For example, the first few
values of si are

s1�r1�r2�r3�r4�. . . (2)

s2�r1r2�r1r3�r1r4�r2r3�. . . (3)

s3�r1r2r3�r1r2r4�r2r3r4�. . . ; (4)

and so on. Then

si� �1ð Þi an�i

an

: (5)

This can be seen for a second DEGREE POLYNOMIAL by
multiplying out,

a2x2�a1x�a0�a2 x�r1ð Þ x�r2ð Þ
�a2 x2� r1�r2ð Þx�r1r2

� 
; (6)

so



s1 �
X2

i�1

ri �r1 �r2 ��
a1

a2

(7)

s2 �
X2

i;j�1

i "j

rirj �r1r2 �
a0

a2

; (8)

and for a third DEGREE POLYNOMIAL,

a3x3 �a2x2 �a1x �a0 �a3 x �r1ð Þ x �r2ð Þ x �r3ð Þ

�a3 x3 � r1 �r2 �r3ð Þx2 � r1r2 �r1r3 �r2r3ð Þx �r1r2r3

� 
;

(9)

so

s1 �
X3

i �1

ri ��
a2

a3

(10)

s2 �
X3

i;j

i "j

rirj �r1r2 �r1r3 �r2r3 �
a1

a3

(11)

s3 �
X3

i;j;k

i"j"k

rirjrk �r1r2r3 ��
a0

a3

: (12)

See also DISCRIMINANT (POLYNOMIAL), SYMMETRIC

POLYNOMIAL
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Newton’s Theorem
If each of two nonparallel transversals with nonmi-
nimal directions meets a given curve in finite points
only, then the ratio of products of the distances from
the two sets of intersections to the intersection of the
lines is independent of the position of the latter point.
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York: Dover, p. 189, 1959.

Newton-Stirling Formula
STIRLING’S FINITE DIFFERENCE FORMULA

Next Prime
The next prime function NP(n) gives the smallest
PRIME larger than n . The function can be given
explicitly as

NP(n) �p1�p(n) ;

where pi is the ith PRIME and p(n) is the PRIME

COUNTING FUNCTION. For n �1, 2, ... the values are 2,
3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, ...
(Sloane’s A007918).

See also FORTUNATE PRIME, PRIME COUNTING FUNC-

TION, PRIME NUMBER
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Nexus Number
A FIGURATE NUMBER built up of the nexus of cells less
than n steps away from a given cell. In k -D, the
(n �1)/th nexus number is given by

Nn �1(k) �
Xk

i�0

k
i

� �
ni ;

where n
n

� �
is a BINOMIAL COEFFICIENT. The first few k -

dimensional nexus numbers are given in the table
below.

k /Nn�1/ name

0 1 unit

1 /1 �2n/ ODD NUMBER

2 /1 �3n �3n2
/ HEX NUMBER

3 /1 �4n �6n2 �4n3
/ RHOMBIC DODECAHEDRAL

NUMBER

See also BINOMIAL SUMS, HEX NUMBER, ODD NUM-

BER, RHOMBIC DODECAHEDRAL NUMBER
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Neyman-Pearson Lemma
If there exists a critical region C of size a and a
NONNEGATIVE constant k such thatQn

i�1 f xið ju1ÞQn
i�1 f xið ju0Þ

]k

for points in C and



Qn
i�1 f xið j u1 ÞQn
i�1 f xið ju0 Þ

5k

for points not in C , then C is a best critical region of
size a:/
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Nialpdrome
A nialpdrome is a number whose HEXADECIMAL digits
are in nonincreasing order. The first few are 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 32, 33, 34, 48,
49, 50, ... (Sloane’s A023771), corresponding to 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 20, 21, 22, 30,
31, 32, ....

See also DIGIT, HEXADECIMAL, KATADROME, META-

DROME, PLAINDROME
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Nicholson’s Formula
Let Jn(z) be a BESSEL FUNCTION OF THE FIRST KIND,
Yn(z) a BESSEL FUNCTION OF THE SECOND KIND, and
Kn(z) a MODIFIED BESSEL FUNCTION OF THE FIRST

KIND. Also let R[z] > 0: Then

J2
n (z) �Y2

n (z) �
8

p2 g
�

0

K0(2z sinh t) cos(2nt)dt:

See also DIXON-FERRAR FORMULA, WATSON’S FORMU-

LA
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Nicomachus’s Theorem
The nth CUBIC NUMBER n3 is a sum of n consecutive
ODD NUMBERS, for example

13 �1
23 �3 �5

33 �7 �9 �11
43 �13 �15 �17 �19 ;

etc. This identity follows from

Xn

i�1

n(n �1) �1 �2i½ ��n3 :

It also follows from this fact that

Xn

k �1

k3 �
Xn

k �1

k

 !2

:

See also CUBIC NUMBER, ODD NUMBER, ODD NUMBER

THEOREM

Nicomedes’ Conchoid
CONCHOID OF NICOMEDES

Nielsen Generalized Polylogarithm
A generalization of the POLYLOGARITHM function
defined by

Sn;p(z) �
�1ð Þn�p �1

(n � 1)!p! g
1

0

ln tð Þn�1 ln 1 � ztð Þ½ �p

t 
dt :

The function reduces to the usual POLYLOGARITHM for
the case

Sn�1 ;1(z) �Lin(z) :

The function is implemented in Mathematica 4.0 as
PolyLog[n , p , z ].

See also POLYLOGARITHM

Nielsen-Ramanujan Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

N. Nielsen (1909) and Ramanujan (Berndt 1985)
considered the integrals

ak�g
2

1

ln xð Þk

x � 1
dx: (1)

They found the values for k�1 and 2. The general
constants for k �3 were found by Levin (1950) and,
much later, independently by V. Adamchik (Finch),

ap�p!z(p�1)�
p ln 2ð Þp�1

p � 1
�p!

Xp�1

k�0

�
Lip�1�k

1
2

� �
ln 2ð Þk

k!
; (2)

where z(z) is the RIEMANN ZETA FUNCTION and Lin(x)
is the POLYLOGARITHM. The first few values are

a1�
1
2z(2)� 1

12p
2 (3)

a2�
1
4z(3) (4)



a3 �
1
15p

4

�1
4 p

2 ln 2ð Þ2�1
4 ln 2ð Þ4�6Li4

1
2

� �
�21

4 (ln 2)z(3) (5)

a4 �
2
3 p

2 ln 2ð Þ3�4
5 ln 2ð Þ5�24(ln 2)Li4

1
2

� �
�24Li5

1
2

� �

�21
2 ðln 2Þ2 

zð3Þ þ 24 zð5Þ: ð6Þ

See also POLYLOGARITHM, RIEMANN ZETA FUNCTION
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Nielsen’s Spiral

The SPIRAL with PARAMETRIC EQUATIONS

x(t) �a ci(t) (1)

y(t) �a si(t); (2)

where ci (t) is the COSINE INTEGRAL and si (t) is the
SINE INTEGRAL. The CESÀ RO EQUATION is

k �
es=a

a
: (3)

See also CORNU SPIRAL, COSINE INTEGRAL, SINE

INTEGRAL
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Nil Geometry
The GEOMETRY of the LIE GROUP consisting of REAL

MATRICES OF THE FORM

1 x y
0 1 z
0 0 1

2
4

3
5;

i.e., the HEISENBERG GROUP.

See also HEISENBERG GROUP, LIE GROUP, THURSTON’S

GEOMETRIZATION CONJECTURE

Nilalgebra
NILPOTENT ALGEBRA

Nilmanifold
Let N be a NILPOTENT, connected, SIMPLY CONNECTED

LIE GROUP, and let D be a discrete SUBGROUP of N
with compact right QUOTIENT SPACE. Then N =D is
called a nilmanifold.

Nilpotent Algebra
An algebra, also called a nilalgebra, consisting only of
NILPOTENT ELEMENTS.

See also NILPOTENT ELEMENT
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Nilpotent Element
An element B of a RING is nilpotent if there exists a
POSITIVE INTEGER k for which Bk �0 :/

See also ENGEL’S THEOREM

Nilpotent Group
A GROUP G for which the chain of groups

I �Z0 ⁄Z1 ⁄. . .⁄Zn

with Zk �1 =Zk (equal to the CENTER of G =Zk) termi-
nates finitely with 0 is called a nilpotent group. Here,
Zn denotes a CYCLIC GROUP of order n .

See also CENTER (GROUP), NILPOTENT LIE GROUP

Nilpotent Lie Algebra
A LIE ALGEBRA is nilpotent when its LOWER CENTRAL

SERIES gk vanishes for some k . Any nilpotent Lie
algebra is also SOLVABLE. The basic example of a
nilpotent Lie algebra is the VECTOR SPACE of strictly



UPPER TRIANGULAR MATRICES, such as the Lie algebra
of the HEISENBERG GROUP.

The following Mathematica function tests whether a
Lie algebra g is nilpotent, given a list of matrices
which is a basis for g:/

MatrixBasis[a_-

List]: �Partition[#1,Length[a[[1]]]]&/@

LatticeReduce[Flatten/@a]

LieCommutator[a_,b_]: �a.b-b.a

NextLCS[gold_List, {}] �{};

NextLCS[gold_List, g_List]: �
MatrixBasis[Flatten[Outer[LieCommutator,gold,-

g,1],1]] NilpotentLieQ[g_List]: �
FixedPoint[NextLCS[g,#1]&,g] ��{}

For example,

borel5 �Flatten[Table[ReplacePart[

Ta-

ble[0,{i,5},{j,5}],1,{k,l}],{k,5},{l,k,5}],1];

NilpotentLieQ[borel5]

yields False, while

uni5 �Flatten[Table[ReplacePart[

Ta-

ble[0,{i,5},{j,5}],1,{k,l}],{k,5},{l,k-

�1,5}],1];

NilpotentLieQ[uni5]

yields True.

See also COMMUTATOR SERIES (LIE ALGEBRA), LIE

ALGEBRA, LIE GROUP, LOWER CENTRAL SERIES (LIE

ALGEBRA), NILPOTENT LIE GROUP, REPRESENTATION

(LIE ALGEBRA), REPRESENTATION (NILPOTENT LIE

GROUP), SOLVABLE LIE GROUP, UNIPOTENT

Nilpotent Lie Group
A nilpotent Lie group is a LIE GROUP G which is
CONNECTED and whose LIE ALGEBRA is a NILPOTENT

LIE ALGEBRA g: That is, its LOWER CENTRAL SERIES

g1[ g; g] ; g2 � g; g1½ �; . . .  (1)

eventually vanishes, gk �0 for some k . So a nilpotent
Lie group is a special case of a SOLVABLE LIE GROUP.

The basic example is the GROUP of UPPER TRIANGULAR

MATRICES with 1s on their diagonals, e.g.,

1 a12 a13

0 1 a23

0 0  1

2
4

3
5; (2)

which is called the HEISENBERG GROUP. Its LOWER

CENTRAL SERIES is given by

g0 �
0 b12 b13

0 0 b23

0 0  0

2
4

3
5 (3)

g1 �
0 0 c13

0 0  0
0 0  0

2
4

3
5 (4)

g2 �
0 0 0
0 0 0
0 0 0

2
4

3
5: (5)

Any real nilpotent Lie group is DIFFEOMORPHIC to
EUCLIDEAN SPACE. For instance, the group of ma-
trices in the example above is diffeomorphic to R3 ; via
the EXPONENTIAL MAPExponential Map (Lie Group).
In general, the exponential map of a NILPOTENT LIE

ALGEBRA is SURJECTIVE, in contrast to the more
general SOLVABLE LIE GROUP.

See also BOREL GROUP, COMMUTATOR SERIES (LIE

ALGEBRA), FLAG (VECTOR SPACE), LIE ALGEBRA, LIE

GROUP, LOWER CENTRAL SERIES (LIE ALGEBRA),
MATRIX, REPRESENTATION, NILPO-

TENT LIE GROUP, SOLVABLE LIE ALGEBRA, SOLVABLE

LIE GROUP, SPLIT SOLVABLE LIE ALGEBRA, UNIPO-

TENT
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Nilpotent Matrix
There are two common definitions for a nilpotent
matrix.

1. A SQUARE MATRIX whose EIGENVALUES are all 0.
2. A SQUARE MATRIX A such that An is the ZERO

MATRIX 0 for some positive integer MATRIX POWER

n , known as the index (Ayres 1962, p. 11).

See also EIGENVALUE, IDEMPOTENT MATRIX, MATRIX

POLYNOMIAL, SQUARE MATRIX
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Nilradical
The set of NILPOTENT ELEMENTS in a COMMUTATIVE

RING is an ideal, and it is called the nilradical.
Another equivalent description is that it is the
intersection of the prime ideals. It could be the zero
ideal, as in the case of the integers.

See also ALGEBRAIC GEOMETRY, ALGEBRAIC NUMBER

THEORY, IDEAL, JACOBSON RADICAL, RADICAL (IDEAL)

Nim
A game, also called TACTIX, which is played by the
following rules. Given one or more piles (NIM-HEAPS),
players alternate by taking all or some of the counters
in a single heap. The player taking the last counter or
stack of counters is the winner. Nim-like games are



also called TAKE-AWAY GAMES and DISJUNCTIVE

GAMES. If optimal strategies are used, the winner
can be determined from any intermediate position by
its associated NIM-VALUE.

See also MISÈ RE FORM, NIM-VALUE, WYTHOFF’S GAME
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Nim-Heap
A pile of counters in a game of NIM.

Nim-Sum
NIM-VALUE

Nim-Value
Every position of every IMPARTIAL GAME has a nim-
value, making it equivalent to a NIM-HEAP. To find the
nim-value (also called the SPRAGUE-GRUNDY NUM-

BER), take the MEX of the nim-values of the possible
moves. The nim-value can also be found by writing
the number of counters in each heap in binary,
adding without carrying, and replacing the digits
with their values mod 2. If the nim-value is 0, the
position is SAFE; otherwise, it is UNSAFE. With two
heaps, safe positions are (x, x ) where x 	 [1; 7]: With
three heaps, (1, 2, 3), (1, 4, 5), (1, 6, 7), (2, 4, 6), (2, 5,
7), and (3, 4, 7).

See also GRUNDY’S GAME, IMPARTIAL GAME, MEX,
NIM, SAFE, UNSAFE
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n-in-a-Row
TIC-TAC-TOE

Nine Associated Points Theorem
Any CUBIC CURVE that passes through eight of the
nine intersections of two given cubic curves automa-
tically passes through the ninth.
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Nine Circles Theorem

Let A , B , and C be three circles in the plane, and let
X be any circle touching B and C . Then build up a
chain of circles such that Y : CAX ; Z : ABY ; X ? : BCZ;
Y ? : CAX ?; Z? : ABY ?; X ƒ : ABZ?; where C : C1C2C3

denotes a circle C tangent to circles C1 ; C2 ; and C3 :
Although there are a number of choices for each
successive tangent circle in the chain, if the choice at
each stage is made appropriately, then the ninth and
final circle X ƒ coincides with the first circle X (Evelyn
et al. 1971, p. 58).

See also CIRCLE, SIX CIRCLES THEOREM, SEVEN

CIRCLES THEOREM
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Nine-j Symbol
WIGNER 9J -SYMBOL

Nine-Point Center
The center F (or N ) of the NINE-POINT CIRCLE. It has
TRIANGLE CENTER FUNCTION

a�cos(B �C) � cos A �2 cos B cos C

�bc a2b2 �a2c2 � b2 �c2
� �2

h i
;

and is the MIDPOINT of the line between the CIRCUM-

CENTER C and ORTHOCENTER H . It lies on the EULER

LINE.

See also EULER LINE, LESTER CIRCLE, NINE-POINT

CIRCLE, NINE-POINT CONIC
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Nine-Point Circle

The CIRCLE, also called EULER’S CIRCLE and the
FEUERBACH CIRCLE, which passes through the feet
of the PERPENDICULAR FA; FB; and FC dropped from
the VERTICES of any TRIANGLE DABC on the sides
opposite them. Euler showed in 1765 that it also
passes through the MIDPOINTS MA; MB; MC of the
sides of DABC:/

By FEUERBACH’S THEOREM, the nine-point circle also
passes through the MIDPOINTS MH A; MH B; MH C (now
called the EULER POINTS) of the segments which join
the VERTICES and the ORTHOCENTER H . These three
triples of points make nine in all, giving the circle its
name. The center F of the nine-point circle is called
the NINE-POINT CENTER.

The RADIUS of the nine-point circle is R=2; where R is
the CIRCUMRADIUS. The center of KIEPERT’S HYPER-

BOLA lies on the nine-point circle. The nine-point
circle bisects any line from the ORTHOCENTER to a
point on the CIRCUMCIRCLE. The nine-point circle of
the INCENTER and EXCENTERS of a TRIANGLE is the
CIRCUMCIRCLE.

There are four CIRCLES that are tangent all three
sides (or their extensions) of a given TRIANGLE: the
INCIRCLE I and three EXCIRCLES J1; J2; and J3: These
four circles are, in turn, all touched by the nine-point
circle N .

Given four arbitrary points, the four nine-points
circles of the triangles formed by taking three points
at a times are CONCURRENT (Lemoine 1904; Wells
1991, p. 209; Schröder 1999). Moreover, if four points
do not form an ORTHOCENTRIC SYSTEM, then there is a
unique RECTANGULAR HYPERBOLA passing through
them, and its center is given by the intersection of
the nine-point circles of the points taken three at a
time (Wells 1991, p. 209). Finally, the point of con-
currence of the four nine-points circles is also the
point of concurrence of the four circles determined by
the feet of the perpendiculars (Schröder 1999).

The sum of the powers of the VERTICES with regard to
the nine-point circle is

1
4 a2

1�a2
2�a2

3

� �
:

Also,

FA1

2
�FA2

2
�FA3

2
�FH

2
�3R2;

where F is the NINE-POINT CENTER, Ai are the
VERTICES, H is the ORTHOCENTER, and R is the
CIRCUMRADIUS. All triangles inscribed in a given



CIRCLE and having the same ORTHOCENTER have the
same nine-point circle.

See also COMPLETE QUADRILATERAL, EIGHT-POINT

CIRCLE THEOREM, EULER POINT, FEUERBACH’S THEO-

REM, FONTENÉ THEOREMS, GRIFFITHS’ THEOREM,
HART CIRCLE, NINE-POINT CENTER, NINE-POINT

CONIC, ORTHOCENTRIC SYSTEM, RECTANGULAR HY-

PERBOLA
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Nine-Point Conic
A CONIC SECTION on which the MIDPOINTS of the sides
of any COMPLETE QUADRANGLE lie. The three diagonal
points also lie on this conic.

See also COMPLETE QUADRANGLE, CONIC SECTION,
NINE-POINT CIRCLE

Nint
NEAREST INTEGER FUNCTION

Nint Zeta Function
Let

SN(s)�
X�
n�1

n1=N
� �� �s

; (1)

where [x] denotes NEAREST INTEGER FUNCTION, i.e,
the INTEGER closest to x . For s �3,

S2(s)�2z(s�1) (2)

S3(s)�3z(s�2)�4�sz(s) (3)

S4(s)�4z(s�3)�z(s�1): (4)

/SN(n) is a POLYNOMIAL in p whose COEFFICIENTS are
ALGEBRAIC NUMBERS whenever n�N is ODD. The first
few values are given explicitly by

S3(4)�
p2

2
�

p4

23046
(5)

S5(6)�
5p2

6
�

p4

36
�

p6

412

� 1

945
�

170912 � 49928
ffiffiffi
2

p

25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
1

2

svuut0
@

1
A (6)

S6(7)�p2�
p4

18
�

p6

2520
�

246013 � 353664
ffiffiffi
2

p

45

p7

227
: (7)
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Nirenberg’s Conjecture
If the GAUSS MAP of a COMPLETE MINIMAL SURFACE

omits a NEIGHBORHOOD of the SPHERE, then the
surface is a PLANE. This was proven by Osserman
(1959). Xavier (1981) subsequently generalized the
result as follows. If the GAUSS MAP of a complete
MINIMAL SURFACE omits]7 points, then the surface is
a PLANE.



See also COMPLETE MINIMAL SURFACE, GAUSS MAP,
MINIMAL SURFACE, NEIGHBORHOOD
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Niven Number
HARSHAD NUMBER

Niven’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given a POSITIVE INTEGER m �1, let its PRIME

FACTORIZATION be written

m �pa1

1 p
a2

2 p
a3

3 � � �pak

k : (1)

Define the functions h(n) and H(n) by h(1) �1; H(1) �
1; and

h(m) �min a1 ;a2 . . . ;akð Þ  (2)

H(m) �max a1 ;a2 . . . ;akð Þ  (3)

Then

lim
n0�

1

n

Xn

m�1

h(m) �1 (4)

lim
n0�

Pn
m�1 h(m) � nffiffiffi

n
p �

z 3
2

� �
z(3)

; (5)

where z(z) is the RIEMANN ZETA FUNCTION (Niven
1969). Niven (1969) also proved that

lim
n0�

1

n

Xn

m�1

H(m) �C; (6)

where

C �1 �
X�
j�2

1 �
1

z(j)

" #( )
�1:705221 . . . (7)

(Sloane’s A033150).

The CONTINUED FRACTION of Niven’s constant is 1, 1,
2, 2, 1, 1, 4, 1, 1, 3, 4, 4, 8, 4, 1, ... (Sloane’s A033151).
The positions at which the digits 1, 2, ... first occur in
the CONTINUED FRACTION are 1, 3, 10, 7, 47, 41, 34, 13,
140, 252, 20, ... (Sloane’s A033152). The sequence of
largest terms in the CONTINUED FRACTION is 1, 2, 4, 8,
11, 14, 29, 372, 559, ... (Sloane’s A033153), which
occur at positions 1, 3, 7, 13, 20, 35, 51, 68, 96, ...
(Sloane’s A033154).
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n-Minex
n -minex is defined as 10�n :/

See also N -PLEX
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Nobbs Points

Given a TRIANGLE DABC ; construct the CONTACT

TRIANGLE DDEF : Then the Nobbs points are the three
points D?; E ?; and F ? from which DABC and DDEF are
PERSPECTIVE, as illustrated above. The Nobbs points
are COLLINEAR and fall along the GERGONNE LINE.

See also COLLINEAR, CONTACT TRIANGLE, EVANS

POINT, FLETCHER POINT, GERGONNE LINE, PERSPEC-

TIVE TRIANGLES
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Noble Number
A noble number is defined as an IRRATIONAL NUMBER

which has a CONTINUED FRACTION which becomes an
infinite sequence of 1s at some point,

n� a1; a2; . . . ; an; 1̄
� 

:

The prototype is the GOLDEN RATIO f whose CONTIN-

UED FRACTION is composed entirely of 1s, 1
� 

: Any
noble number can be written as



n �
An � fAn �1

Bn � fBn�1

;

where Ak and Bk are the NUMERATOR and DENOMI-

NATOR of the kth CONVERGENT of a1 ;a2 ; . . . ;an½ �: The
noble numbers are a SUBFIELD of Q

ffiffiffi
5

p� �
:/

See also NEAR NOBLE NUMBER
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Node (Algebraic Curve)
ORDINARY DOUBLE POINT

Node (Fixed Point)
A FIXED POINT for which the STABILITY MATRIX has
both EIGENVALUES of the same sign (i.e., both are
POSITIVE or both are NEGATIVE). If l1 B l2 B0 ; then
the node is called STABLE; if  l1 B l2 B0 ; then the node
is called an UNSTABLE NODE.

See also STABLE NODE, UNSTABLE NODE

Node (Graph)

A synonym for a VERTEX of a GRAPH, i.e., one of the
points on which the graph may is defined and which
may be connected by EDGES. The terms "point,"
"junction," and 0-simplex are also used (Harary
1994; Skiena 1990, p. 80).
The following tables gives the total numbers of nodes
for various classes of graphs on n �1, 2, ... nodes.

graph type Sloane total node count for
n �1, 2, ...nodes

GRAPH A055543 1, 4, 12, 44, 170, 936, ...

TREE A055544 1, 2, 3, 8, 15, 36, 77, 184
...

LABELED

TREE

A000169 1, 2, 9, 64, 625, ...

ROOTED

TREE

A055545 1, 2, 6, 16, 45, 120, ...

See also EDGE (GRAPH), GRAPH
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Noetherian Module
A MODULE M is Noetherian if every submodule is
finitely generated.

See also NOETHERIAN RING

Noetherian Ring
An abstract commutative RING satisfying the abstract
chain condition.

See also LOCAL RING, NOETHER-LASKER THEOREM

Noether-Lasker Theorem
Let M be a finitely generated MODULE over a
commutative NOETHERIAN RING R . Then there exists
a finite set Nij15i5lf g of submodules of M such that

1.Sl
i�1 Ni�0 andSi"i0

Ni is not contained in Ni0
for

all 15i05l:/
2. Each quotient M=Ni is primary for some prime
Pi:/
3. The Pi are all distinct for 15i5l:/
4. Uniqueness of the primary component Ni is
equivalent to the statement that Pi does not
contain Pj for any j"i:/

Noether’s Fundamental Theorem
If two curves f and c of MULTIPLICITIES ri"0 and
si"0 have only ordinary points or ordinary singular
points and CUSPS in common, then every curve which
has at least MULTIPLICITY

ri�si�1

at every point (distinct or infinitely near) can be
written

f �fc?�cf?�0;

where the curves f? and c? have MULTIPLICITIES at
least ri�1 and si�1:/
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Noether’s Symmetry Theorem
An extremely powerful theorem in physics which
states that each SYMMETRY of a system leads to a
physically conserved quantity. SYMMETRY under
TRANSLATION corresponds to momentum conserva-
tion, SYMMETRY under ROTATION to angular momen-
tum conservation, SYMMETRY in time to energy
conservation, etc.

See also SYMMETRY

Noether’s Transformation Theorem
Any irreducible curve may be carried by a factorable
CREMONA TRANSFORMATION into one with none but
ordinary singular points.
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Noise
An error which is superimposed on top of a true
signal. Noise may be random or systematic. Noise can
be greatly reduced by transmitting signals digitally
instead of in analog form because each piece of
information is allowed only discrete values which
are spaced farther apart than the contribution due to
noise.

CODING THEORY studies how to encode information
efficiently, and ERROR-CORRECTING CODES devise
methods for transmitting and reconstructing infor-
mation in the presence of noise.

See also ERROR, STOCHASTIC FUNCTION

References
Abbott, D. and Kiss, L. B. (Eds.). Proc. 2nd Internat. Conf.

Unsolved Problems of Noise and Fluctuations, 11 �/15
July, Adelaide Melville, NY: Amer. Inst. Physics
Press,2000.

Davenport, W. B. and Root, W. L. An Introduction to the
Theory of Random Signals and Noise. New York: IEEE
Press, 1987.

McDonough, R. N. and Whalen, A. D. Detection of Signals in
Noise, 2nd ed. Orlando, FL: Academic Press, 1995.

Pierce, J. R. Symbols, Signals and Noise: The Nature and
Process of Communication. New York: Harper & Row,
1961.

Vainshtein, L. A. and Zubakov, V. D. Extraction of Signals
from Noise. New York: Dover, 1970.

van der Ziel, A. Noise: Sources, Characterization, Measure-
ment. New York: Prentice-Hall, 1954.

van der Ziel, A. Noise in Measurement. New York: Wiley,
1976.

Wax, N. Selected Papers on Noise and Stochastic Processes.
New York: Dover, 1954.

Weisstein, E. W. "Books about Noise." http://www.treasure-
troves.com/books/Noise.html.

Noise Sphere
A mapping of RANDOM NUMBER TRIPLES to points in
SPHERICAL COORDINATES according to

u ¼ 2pXn

f ¼ pXnþ1

r ¼
ffiffiffiffiffiffiffiffiffiffi
Xnþ2

q
in order to detect unexpected structure indicating
correlations between triples. When such structure is
present (note that this does not include the expected
bunching of points along the z -axis according to the
factor sin f in the spherical volume element), num-
bers may not be truly RANDOM.

See also BALL POINT PICKING, RANDOM NUMBER,
SPHERE POINT PICKING
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Nolid
An assemblage of faces forming a POLYHEDRON of zero
VOLUME (Holden 1991, p. 124).

See also ACOPTIC POLYHEDRON
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Nome

Given a JACOBI THETA FUNCTION, the nome is defined



as

q kð Þ�e pit �e � pK ? kð Þ=K kð Þ�e �pK
ffiffiffiffiffiffiffiffiffi
1 �k2

pð Þ=K kð Þ (1)

(Borwein and Borwein 1987, pp. 41, 109 and 114),
where t is the HALF-PERIOD RATIO, K kð Þ  is the
complete ELLIPTIC INTEGRAL OF THE FIRST KIND, m �
k2 is the PARAMETER, and k is the MODULUS. The
nome is implemented in Mathematica as Elliptic-
NomeQ[m ].
Various notations for JACOBI THETA FUNCTIONS invol-
ving the nome include

q i z; qð Þ�q z tj Þ;ð (2)

where t is the HALF-PERIOD RATIO (Whittaker and
Watson 1972, p. 464) and

q i �q 0; qð Þ: (3)

See also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), ELLIPTIC INTEGRAL, HALF-PERIOD RATIO,
INVERSE NOME, JACOBI THETA FUNCTIONS, MODULAR

ANGLE, MODULAR DISCRIMINANT, MODULUS (ELLIPTIC

INTEGRAL), PARAMETER
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n-Omino
POLYOMINO

Nomogram
A graphical plot which can be used for solving certain
types of equations. According to Steinhaus (1983,
p. 301), the Nomogram was invented by the French
mathematicians Massau and M. P. Ocagne in 1889.
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Nomograph
NOMOGRAM

Non-Abelian
A GROUP or other algebraic object is called non-
Abelian is the law of commutativity does not always
hold, i.e., if the object is not ABELIAN. For example,
the group of INVERTIBLE MATRICES is non-Abelian, as
can be seen by comparing

1 0
0 �1

� �
0 1
�1 0

� �
�

0 1
1 0

� �
(1)

and

0 1
�1 0

� �
1 0
0 �1

� �
�

0 �1
�1 0

� �
: (2)

See also ABELIAN, ABELIANIZATION, GROUP, RING

Nonadjacent Vertex Pairs
The following table gives the number of nonadjacent
vertex pairs k on graphs of n �1, 2, ... vertices.

k counts

1  0, 1, 1, 1, 1, 1, 1, ...

2  0, 0, 1, 2, 2, 2, 2, ...

3  0, 0, 1, 3, 4, 5, 5, ...

4  0, 0, 0, 2, 6, 9, 10, ...

5 0, 0, 0, 1, 6, 15, 21, ...

See also ORE GRAPH

Nonagon

A 9-sided polygon, also known as an enneagon.
Although the term "enneagon" is perhaps preferable
(since it uses the Greek prefix and suffix instead of
the mixed Roman/Greek nonagon), the term "nona-
gon," which is simpler to spell and pronounce, is used
in this work. The REGULAR POLYGON with nine sides
and SCHLÄFLI SYMBOL 9f g:/
The nonagon cannot be constructed using the classi-
cal Greek rules of GEOMETRIC CONSTRUCTION, but



Conway and Guy (1996) give a NEUSIS CONSTRUCTION

based on TRISECTION. Madachy (1979) illustrates how
to construct a nonagon by folding and knotting a strip
of paper. Although the regular nonagon is not a
CONSTRUCTIBLE POLYGON, Dixon (1991) gives con-
structions for several angles which are close approx-
imations to the nonagonal angle 360�=9 �2 p=9;
including angles of tan�1 5=6ð Þ:39 :805571 � and
2 tan�1

ffiffiffi
3

p
�1

� �
=2

� �
:40:207819 �:/

Given a regular nonagon, let MAB be the MIDPOINT of
one side, XBC be the MID-ARC POINT of the arc
connecting an adjacent side, and MOX the MIDPOINT

of OXBC : Then, amazingly, �OMABMOX �30� (Karst,
quoted in Bankoff and Garfunkel 1973).

See also NONAGRAM, TRIGONOMETRY VALUES PI/9
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Nonagonal Heptagonal Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and HEPTAGONAL NUMBER Hepn and
therefore satisfies the DIOPHANTINE EQUATION

1
2m(7m �5) �1

2n(5n �4): (1)

COMPLETING THE SQUARE and rearranging gives

(14n �5)2 �7(10m �3)2 �62 : (2)

Defining x �14n �5 and y �10m �3 gives the Pell-
like equation

x2 �7y2 �62 : (3)

The first integral solutions in m and n are (m;n) �
(1; 1); (88, 104), (12445, 14725), (1767052, 2090804), ...
(Sloane’s A048919 and A048920), giving the nonago-
nal heptagonal numbers 1, 26884, 542041975,
10928650279834, ... (Sloane’s A048921).

See also HEPTAGONAL NUMBER, NONAGONAL NUMBER
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Nonagonal Hexagonal Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and HEXAGONAL NUMBER Hexn and
therefore satisfies the DIOPHANTINE EQUATION

1
2m(7m �5) �n(2n �1): (1)

COMPLETING THE SQUARE and rearranging gives

(14n �5)2 �7(4m �1)2 �18: (2)

Defining x �14n �5 and y �4m �1 gives the Pell-
like equation

x2 �7y2 �18 : (3)

This has fundamental solutions (x; y) �(5; 1); (9, 3),
and (19, 17), giving the family of solutions (5, 1), (9,
3), (19, 17), (61, 23), (135, 51), (509, 193), .... These
give solutions which are integers in m and n of
(m;n) �(1; 1); (10, 13), (39025, 51625), ... (Sloane’s
A048916 and A048917), giving the nonagonal hex-
agonal numbers 1, 325, 5330229625,1353857339341,
22184715227362706161, ... (Sloane’s A048918).

See also HEXAGONAL NUMBER, NONAGONAL NUMBER
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See also NONAGONAL NUMBER

Nonagonal Number

A FIGURATE NUMBER OF THE FORM n(7n�5) =2; also
called an ENNEAGONAL NUMBER. The first few are 1, 9,
24, 46, 75, 111, 154, 204, ... (Sloane’s A001106).
The first few odd nonagonal numbers are 1, 9, 75, 11,
261, 325, ... (Sloane’s A028991), and the first few even
nonagonal numbers are 24, 46, 154, 204, 396, ...
(Sloane’s A028992).

See also FIGURATE NUMBER, NONAGONAL HEPTAGO-

NAL NUMBER, NONAGONAL HEXAGONAL NUMBER,
NONAGONAL OCTAGONAL NUMBER, NONAGONAL PEN-

TAGONAL NUMBER, NONAGONAL SQUARE NUMBER,
NONAGONAL TRIANGULAR NUMBER, POLYGONAL NUM-

BER
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Nonagonal Octagonal Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and OCTAGONAL NUMBER On and there-
fore satisfies the DIOPHANTINE EQUATION

1
2m(7m �5) �n(3n �2): (1)

COMPLETING THE SQUARE and rearranging gives

(14n �5)2 �56(3m �1)2 �19 : (2)

Defining x �14n �5 and y �3m �1 gives the Pell-
like equation

3x2 �56y2 �19: (3)

The first integral solutions in m and n are (m;n) �
(1; 1); (425, 459), (286209, 309141), (192904201,
208360351), ... (Sloane’s A048922 and A048923),
giving the nonagonal octagonal numbers 1, 631125,
286703855361, 130242107189808901, ... (Sloane’s
A048924).

See also NONAGONAL NUMBER, OCTAGONAL NUMBER
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Nonagonal Pentagonal Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and PENTAGONAL NUMBER Pn and there-
fore satisfies the DIOPHANTINE EQUATION

1
2m(7m �5) �1

2n(3n �1): (1)

COMPLETING THE SQUARE and rearranging gives

3(14n �5)2 �7(6m �1)2 �68 : (2)

Defining x �14n �5 and y �6m �1 gives the Pell-
like equation

3x2 �7y2 �68: (3)

This has solutions in (x, y ) corresponding to solutions
which are integral in m and n of (m;n) �(1; 1); (14,
21), (7189, 10981), (165026, 252081), (86968201,
132846121), ... (Sloane’s A048913 and A048914),
giving the nonagonal pentagonal numbers 1, 651,
180868051, 95317119801, 26472137730696901, ...
(Sloane’s A048915).

See also NONAGONAL NUMBER, PENTAGONAL NUMBER
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Nonagonal Square Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and a SQUARE NUMBER Sn and therefore
satisfies the DIOPHANTINE EQUATION

1
2m(7m �5) �n2 : (1)

COMPLETING THE SQUARE and rearranging gives

(14n �5)2 �56m2 �25: (2)

Defining x �14n �5 and y �2m2 gives the Pell-like
equation

x2 �14y2 �25: (3)

This has unit solutions (x; y) �(9; 2); (23, 6), and (75,
20), which lead to the family of solutions (9, 2), (23, 6),
(75, 20), (247, 66), (681, 182), (2245, 600), .... The
corresponding integer solutions in n and m are
(n;m) �(1; 1); (2, 3), (18, 33), (49, 91), (529, 989), ...
(Sloane’s A048910 and A048911), giving the nonago-
nal square numbers 1, 9, 1089, 8281, 978121,
7436529, ... (Sloane’s A048912).

See also NONAGONAL NUMBER, SQUARE NUMBER

References
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Nonagonal Triangular Number
A number which is simultaneously a NONAGONAL

NUMBER Nm and a TRIANGULAR NUMBER Tn and
therefore satisfies the DIOPHANTINE EQUATION.

1
2m(7m �5) �1

2n(1 �n) : (1)

COMPLETING THE SQUARE and rearranging gives

(14n �5)2 �7(2m �1)2 �18: (2)

Defining x �14n �5 and y �2m �1 gives the Pell-
like equation

x2 �7y2 �18 : (3)

This has unit solutions (x; y) �(5; 1); (9, 3), and (19, 7),
which lead to the family of solutions (5, 1), (9, 3), (19,
7), (61, 23), (135, 51), (299, 113), (971, 367), .... The
corresponding integer solutions in n and m are
(n;m) �(1; 1); (10, 25), (154, 406), (2449, 6478), ...
(Sloane’s A048907 and A048908), giving the nonago-
nal triangular numbers 1, 325, 82621, 20985481,
5330229625, 1353857339341, ... (Sloane’s A048909).

See also NONAGONAL NUMBER, TRIANGULAR NUMBER
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Nonagram

The STAR FIGURE 9=3f g composed of three EQUILAT-

ERAL TRIANGLES rotated at angles 08, 408, and 80 8. It
has been called the STAR OF GOLIATH by analogy with
the STAR OF DAVID (HEXAGRAM).

See also HEXAGRAM, NONAGON, STAR FIGURE, TRIGO-

NOMETRY VALUES PI/9

Nonahedral Graph
A POLYHEDRAL GRAPH having nine vertices. There are
2606 nonisomorphic nonahedral graphs, as first en-
umerated by Federico (1969; Duijvestijn and Federico
1981).

See also NONAHEDRON, POLYHEDRAL GRAPH
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Nonahedron
A nine-faced POLYHEDRON. There are 2606 topologi-
cally distinct convex nonahedra, corresponding to the
2606 nonisomorphic NONAHEDRAL GRAPHS.

See also NONAHEDRAL GRAPH

Nonalternating Knot
A KNOT which is not ALTERNATING. Unlike alternating
knots, FLYPE moves are not sufficient to pass between
all minimal diagrams of a given nonalternating knot
(Hoste et al. 1998). In fact, Thistlethwaite used 13
different moves in generating a list of 16-crossing
alternating knots (Hoste et al. 1998), and still had
9,868 duplicates out of a list of 1,018,774 knots (Hoste
et al. 1998).

See also ALTERNATING KNOT, KNOT
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Non-Archimedean Field

See also HENSEL’S LEMMA, NON-ARCHIMEDEAN GEO-

METRY, NON-ARCHIMEDEAN VALUATION, VALUATION

Non-Archimedean Geometry
A geometry in which ARCHIMEDES’ AXIOM does not
hold.

See also ARCHIMEDES’ AXIOM, HORN ANGLE, NON-

ARCHIMEDEAN FIELD, NON-ARCHIMEDEAN VALUATION
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Non-Archimedean Valuation

See also NON-ARCHIMEDEAN FIELD, NON-ARCHIME-

DEAN GEOMETRY

Nonarithmetic Progression Sequence
Given two starting numbers a1; a2ð Þ; the following
table gives the unique sequences aif g that contain no
three-term arithmetic progressions.

Sloane sequence

A003278 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32,
...

A033156 1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33,
...

A033157 1, 4, 5, 8, 10, 13, 14, 17, 28, 31, 32, 35,
...

A033158 1, 5, 6, 8, 12, 13, 17, 24, 27, 32, 34, 38,
...

A033159 2, 3, 5, 6, 11, 12, 14, 15, 29, 30, 32, 33,
...

A033160 2, 4, 5, 7, 11, 13, 14, 16, 29, 31, 32, 34,
...

A033161 2, 5, 6, 9, 11, 14, 15, 18, 29, 32, 33, 36,
...

A033162 3, 4, 6, 7, 12, 13, 15, 16, 30, 31, 33, 34,
...

A033163 3, 5, 6, 8, 12, 14, 15, 17, 30, 32, 33, 35,
...



A033164 4, 5, 7, 8, 13, 14, 16, 17, 31, 32, 34, 35,
...

See also ARITHMETIC SEQUENCE
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Nonassociative Algebra
An ALGEBRA which does not satisfy

a(bc) �(ab)c

is called a nonassociative algebra.

See also ALGEBRA, CAYLEY NUMBER, COMPLEX NUM-

BER, DIVISION ALGEBRA, QUATERNION, REAL NUMBER
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Nonassociative Product
The number of nonassociative n -products with k
elements preceding the rightmost left parameter is

F ðn; kÞ ¼ F ðn �1; kÞ þ F ðn �1 ; k �1 Þ

¼ n þ k �2
k

� �
�

n þ k �1
k �1

� �
where n

k

� �
is a BINOMIAL COEFFICIENT. The number of

n -products in a nonassociative algebra is

F nð Þ�Cn �
Xn�2

j�0

F n; jð Þ� 2n � 2ð Þ!
n! n � 1ð Þ! 

;

where Cn is a CATALAN NUMBER, 1, 1, 2, 5, 14, 42, 132,
... (Sloane’s A000108).
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Nonaveraging Sequence
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A sequence of POSITIVE INTEGERS

1 5a1 Ba2 Ba3 . . .

is a nonaveraging sequence if it contains no three
terms which are in an ARITHMETIC PROGRESSION, i.e.,
terms such that

1
2 ai �aj

� �
�ak

for distinct ai ; aj ; ak : The EMPTY SET and sets of length
one are therefore trivially nonaveraging.

Consider all possible subsets on the integers Sn �
1; 2; . . . ; nf g: There is one nonaveraging sequence on

S0 (/¥); two on S1 (/¥ and 1f g) ; four on S2 ; and so on.
For example, 13 of the 16 subjects of S4 are nonaver-
aging, with 1; 2; 3f g; 2 ; 3;f g; and 1 ; 2; 3 ; 4f g excluded.
The numbers of nonaveraging subsets on S0 ; S1 ; ...
are 1, 2, 4, 7, 13, 23, 40, ... (Sloane’s A051013).

Wróblewski (1984) showed that for infinite nonaver-
aging sequences,

S Að Þ� sup
all nonaveraging sequences

X�
k�1

1

ak
> 3:00849:

See also NONDIVIDING SET
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Noncentral Distribution
CHI-SQUARED DISTRIBUTION, F -DISTRIBUTION, STU-

DENT’S T -DISTRIBUTION

Noncommutative Group
A group whose elements do not commute. The
simplest noncommutative GROUP is the DIHEDRAL

GROUP D3 of ORDER six.

See also COMMUTATIVE, FINITE GROUP D3, GROUP

Noncommutative Ring
This entry contributed by VIKTOR BENGTSSON

A noncommutative ring R is a RING in which the law
of multiplicative commutativity is not satisfied, i.e.,

a � b "b � a

for any two elements a; b 	 R: In such a case, the
elements a and b of the ring R are said not to
commute. An important example of a noncommuta-
tive ring is the ring Mn Kð Þ consisting of all n �n
matrices whose elements are members of the FIELD K .

See also RING

Nonconformal Map
Let g be a path in C ; w �f zð Þ; and u and f be the
tangents to the curves g and f gð Þ at z0 and w0 : If there
is an N such that

f ðN Þðz0 Þ"0 ð1Þ

f ðN Þðz0 Þ ¼ 0 ð2Þ

for all n BN (or, equivalently, if f ? zð Þ has a zero of
order N �1); then

f zð Þ�f z0ð Þ�f Nð Þ z0ð Þ
N!

� z �z0ð ÞN�
f N �1ð Þ z0ð Þ

N � 1ð Þ!
z �z0ð ÞN �1�� � �  (3)

f zð Þ�f z0ð Þ

� z �z0ð ÞN f Nð Þ z0ð Þ
N!

�
f N �1ð Þ z0ð Þ

N � 1ð Þ!
z �z0ð Þ�� � �

" #
; (4)

so the ARGUMENT is

arg f zð Þ�f z0ð Þ½ ��N arg z �z0ð Þ�arg
f Nð Þ z0ð Þ

N!

"

�
f N �1ð Þ z0ð Þ

N � 1ð Þ!
z �z0ð Þ�. . .

�
: (5)

As z 0 z0 ; arg z �z0ð Þ 0 u and

arg f zð Þ�f z0ð Þ½ �j j 0 f ;

f �N u �arg
f Nð Þ z0ð Þ

N!

" #
�N u �arg f Nð Þ z0ð Þ½ �: (6)

See also CONFORMAL MAPPING

Nonconstructive Proof
A PROOF which indirectly shows a mathematical
object exists without providing a specific example or
algorithm for producing an example. Nonconstructive
proofs are also called existence proofs.

See also EXISTENCE PROBLEM, PROOF
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Noncototient
A POSITIVE value of n for which x � f xð Þ�n has no
solution, where f(x) is the TOTIENT FUNCTION. The
first few are 10, 26, 34, 50, 52, ... (Sloane’s A005278).

See also NONTOTIENT, TOTIENT FUNCTION
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Noncylindrical Ruled Surface
A RULED SURFACE parameterization x u; vð Þ�b uð Þ�
vg uð Þ is called noncylindrical if g �g? is nowhere 0: A
noncylindrical ruled surface always has a parameter-
ization OF THE FORM

x u ; vð Þ� s uð Þ�v d uð Þ;

where dj j�1 and s? � d ?�0 ; where s is called the
STRICTION CURVE of x and d the DIRECTOR CURVE.

See also DISTRIBUTION PARAMETER, RULED SURFACE,
STRICTION CURVE
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Nondecreasing Function
A function f (x) is said to be nondecreasing on an
INTERVAL I if f bð Þ]f að Þ for all b �a , where a ; b 	 I :
Conversely, a function f (x) is said to be nonincreasing
on an INTERVAL I if f bð Þ5f að Þ for all b �a with
a ; b 	 I :/

See also DECREASING FUNCTION, MONOTONE DE-

CREASING, MONOTONE INCREASING, NONINCREASING

FUNCTION
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Nondividing Set
A SET in which no element divides the SUM of any
nonempty subset of the other elements. The EMPTY

SET and sets of length one are therefore trivially
nondividing. Also, any set other than 1f g which
contains 1 is dividing. For example, 2 ; 3; 5f g is
dividing, since 2 3 �5ð Þj (and 5 2 �3ð Þ) ;j but 4; 6 ; 7f g
is nondividing since 4 divides none of 6; 7; (6 þ 7)f g;
and similarly for 6 and 7.

Consider all possible subsets on the integers Sn �
1; 2; . . . ;nf g: Then the numbers of nondividing sub-

sets on S0 ; S1 ; ... are 1, 2, 3, 5, 7, 12, 16, 28, 38, 60, ...
(Sloane’s A051014). For example, the 12 nondividing
sets in S6 are ¥; 1f g; 2f g; 3f g; 4f g; 5f g; 6f g; 2; 3f g;
2; 5f g; 3; 4f g; 3 ; 5f g; 4; 5f g; f4; 6 g; 5 ; 6f g; 3; 4; 5f g; and
4; 5; 6f g:/

See also NONAVERAGING SEQUENCE, PRIMITIVE SE-

QUENCE
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Nonequivalent
If A [!B and B [!A (i.e., A [!Bð Þffl B [!Að Þ; where !A
denotes NOT, [ denotes IMPLIES, and ffl denotes
AND), then A and B are said to be inequivalent, a

relationship which is written symbolically as A fB;
AbB; A uXB Nonequivalence is implemented in
Mathematica as Unequal[A , B , ...]. Binary none-
quivalence has the same TRUTH TABLE as XOR (i.e.,
EXCLUSIVE DISJUNCTION), reproduced below.

A B /A fB/

T T F

T F T

F T T

F F F

See also CONNECTIVE, EQUIVALENT, EXCLUSIVE DIS-

JUNCTION, XOR

Nonessential Singularity
REGULAR SINGULAR POINT

Non-Euclidean Geometry
In three dimensions, there are three classes of
constant curvature GEOMETRIES. All are based on
the first four of EUCLID’S POSTULATES, but each uses
its own version of the PARALLEL POSTULATE. The "flat"
geometry of everyday intuition is called EUCLIDEAN

GEOMETRY (or PARABOLIC GEOMETRY), and the non-
Euclidean geometries are called HYPERBOLIC GEOME-

TRY (or LOBACHEVSKY-BOLYAI-GAUSS GEOMETRY) and
ELLIPTIC GEOMETRY (or RIEMANNIAN GEOMETRY).
SPHERICAL GEOMETRY is a non-Euclidean 2-D geome-
try. It was not until 1868 that Beltrami proved that
non-Euclidean geometries were as logically consistent
as EUCLIDEAN GEOMETRY.

See also ABSOLUTE GEOMETRY, ELLIPTIC GEOMETRY,
EUCLID’S POSTULATES, EUCLIDEAN GEOMETRY, HY-

PERBOLIC GEOMETRY, PARALLEL POSTULATE, SPHERI-

CAL GEOMETRY
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Nonhyperbolic Knot
HYPERBOLIC KNOT, SATELLITE KNOT, TORUS KNOT

Nonic Surface
An ALGEBRAIC SURFACE of degree 9.

See also ALGEBRAIC SURFACE

Nonillion
In the American system, 1030.

See also LARGE NUMBER

Nonincreasing Function
A function f (x) is said to be nonincreasing on an
INTERVAL I if f bð Þ5f að Þ for all b �a , where a ; b 	 I :
Conversely, a function f (x) is said to be nondecreasing
on an INTERVAL I if f bð Þ]f að Þ for all b �a with
a ; b 	 I :/

See also INCREASING FUNCTION, MONOTONE DECREAS-

ING, MONOTONE INCREASING, NONDECREASING FUNC-

TION
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Noninvertible Knot
INVERTIBLE KNOT

Nonlinear Least Squares Fitting
Given a function f (x) of a variable x tabulated at m
values y1�f x1ð Þ; ..., ym�f xmð Þ; assume the function
is of known analytic form depending on n parameters
f x; l1; . . . ; lnð Þ; and consider the overdetermined set of
m equations

y1�f x1;l1; l2; . . . ; lnð Þ (1)

ym�f xm; l1; l2; . . . ; lnð Þ: (2)

We desire to solve these equations to obtain the
values l1; ..., ln which best satisfy this system of
equations. Pick an initial guess for the li and then
define

dbi�yi�f xi; l1; . . . ; lnð Þ� (3)

Now obtain a linearized estimate for the changes dli

needed to reduce dbi to 0,

dbi�
Xn

j�1

@f

@lj

dljj
xj;l

(4)

for i�1, ..., n . This can be written in component form
as

dbi�Aijdli; (5)

where A is the m�n MATRIX

Aij�

@f

dl1
j
x1 ;l

@f

dl1
j
x1 ;l

� � �

@f

dl2
j
x2 ;l

@f

dl2
j
x2 ;l

� � �

n n :::
@f

dl1
j
xm ;l

@f

dln
j
xm;l

� � �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
� (6)

In more concise MATRIX form,

db�Adl; (7)

where db and dl are m -VECTORS. Applying the
MATRIX TRANSPOSE of A to both sides gives

ATdb� ATA
� �

dl: (8)

Defining

a�ATA ð9Þ



b �ATdb (10)

in terms of the known quantities A and db then gives
the MATRIX EQUATION

adl �b; (11)

which can be solved for dl using standard matrix
techniques such as GAUSSIAN ELIMINATION. This off-
set is then applied to l and a new d b is calculated. By
iteratively applying this procedure until the elements
of dl become smaller than some prescribed limit, a
solution is obtained. Note that the procedure may not
converge very well for some functions and also that
convergence is often greatly improved by picking
initial values close to the best-fit value. The sum of
square residuals is given by R2 �db � db after the
final iteration.

An example of a nonlinear least squares fit to a noisy
GAUSSIAN FUNCTION

f x; A; x0 ; sð Þ�Ae � x�x0ð Þ2= 2 s2ð Þ (12)

is shown above, where the thin solid curve is the
initial guess, the dotted curves are intermediate
iterations, and the heavy solid curve is the fit to
which the solution converges. The actual parameters
are A; x0 ; sð Þ� 1; 20 ; 5ð Þ; the initial guess was (0.8, 15,
4), and the converged values are (1.03105, 20.1369,
4.86022), with R2 �0:148461: The PARTIAL DERIVA-

TIVES used to construct the matrix A are

@f

@A 
�e � x �x0ð Þ2= 2 s2ð Þ (13)

@f

@x0

�
A x � x0ð Þ

s2
e� x�x0ð Þ2= 2s2ð Þ (14)

@f

@ s0

�
A x � x0ð Þ

s3
e � x �x0ð Þ2= 2 s2ð Þ � (15)

The technique could obviously be generalized to
multiple Gaussians, to include slopes, etc., although
the convergence properties generally worsen as the
number of free parameters is increased.

An analogous technique can be used to solve an
overdetermined set of equations. This problem might,
for example, arise when solving for the best-fit EULER

ANGLES corresponding to a noisy ROTATION MATRIX, in
which case there are three unknown angles, but nine
correlated matrix elements. In such a case, write the
n different functions as fi l1 ; . . . ; lnð Þ for i �1, ..., n ,
call their actual values yi ; and define

A �

@f1

@ l1
j
li

@f1

@ l2
j
li

� � � @f1

@ ln
j
li

n n ::: n
@fm

@ l1
j
li

@fm

@ l2
j
li

� � � @fm

@ ln
j
li

0
BBBBB@

1
CCCCCA; (16)

and

d b �y �fi l1 ; . . .  ; lnð Þ; (17)

where li are the numerical values obtained after the
ith iteration. Again, set up the equations as

Adl �db; (18)

and proceed exactly as before.

See also LEAST SQUARES FITTING, LINEAR REGRES-

SION, MOORE-PENROSE GENERALIZED MATRIX IN-

VERSE

Nonlinear Stability

See also LINEAR STABILITY, LYAPUNOV FUNCTION

Nonnegative
A quantity which is either 0 (ZERO) or POSITIVE, i.e.,
]0:/

See also NEGATIVE, NONNEGATIVE INTEGER, NONPO-

SITIVE, NONZERO, POSITIVE, ZERO

Nonnegative Integer
An INTEGER that is either 0 or positive, i.e., a member
of the set Z+� 0f g@Z�; where Z� denotes the
POSITIVE INTEGERS.

See also NEGATIVE INTEGER, NONPOSITIVE INTEGER,
POSITIVE INTEGER, Z*

Nonnegative Partial Sum
The number of sequences with NONNEGATIVE partial
sums which can be formed from n 1s and n -1s (Bailey
1996, Brualdi 1992) is given by the CATALAN NUM-

BERS. Bailey (1996) gives the number of NONNEGATIVE

partial sums of n 1s and k �1s a1; a2; ..., an�k; so that

a1�a2�. . .�ai]0 (1)

for all 15i5n�k: The closed form expression is



n
0

0 1
�1 (2)

for n ]0 ;

n
1

0 1
�n (3)

for n ]1 ; and

n
k

0 1
�

(n � 1 � k)(n � 2)(n � 3) � � � (n � k)

k! 
; (4)

for n ]k ]2: Setting k �n then recovers the CATA-

LAN NUMBERS

Cn �
n
n

0 1
�

1

n � 1

2n
n

� �
: (5)

See also CATALAN NUMBER
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Nonorientable Surface

A surface such as the MÖ BIUS STRIP or KLEIN BOTTLE

(Gray 1997, pp. 322 �/323) on which there exists a
closed path such that the directrix is reversed when
moved around this path. The REAL PROJECTIVE PLANE

is also a nonorientable surface, as are the BOY

SURFACE, CROSS-CAP, and ROMAN SURFACE, all of
which are homeomorphic to the REAL PROJECTIVE

PLANE (Pinkall 1986).
There is a general method for constructing nonorien-
table surfaces which proceeds as follows (Banchoff
1984, Pinkall 1986). Choose three HOMOGENEOUS

POLYNOMIALS of POSITIVE EVEN degree and consider
the MAP

f � f1(x; y; z); f2(x; y; z) ; f3(x; y; z)ð Þ : R3 0 R3 � (1)

Then restricting x , y , and z to the surface of a sphere
by writing

x �cos u sin f (2)

y �sin u sin f (3)

z �cos f (4)

and restricting u to 0; 2p½ Þ and f to 0; p=2½ � defines a
map of the REAL PROJECTIVE PLANE to R3 :/

In 3-D, there is no unbounded nonorientable surface
which does not intersect itself (Kuiper 1961, Pinkall
1986).

See also BOY SURFACE, CROSS-CAP, KLEIN BOTTLE,
MÖ BIUS STRIP, ORIENTABLE SURFACE, REAL PROJEC-

TIVE PLANE, ROMAN SURFACE
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Nonparametric Estimation
This entry contributed by EDGAR VAN TUYLL

Nonparametric estimation is a statistical method that
allows the functional form of a fit to data to be
obtained in the absence of any guidance or con-
straints from theory. As a result, the procedures of
nonparametric estimation have no meaningful asso-
ciated parameters. Two types of nonparametric tech-
niques are artificial neural networks and kernel
estimation.

Artificial neural networks model an unknown func-
tion by expressing it as a weighted sum of several
sigmoids, usually chosen to be logit curves, each of
which is a function of all the relevant explanatory
variables. This amounts to an extremely flexible
functional form for which estimation requires a non-
linear least-squares iterative search algorithm based
on gradients.

Kernel estimation specifies y �m(x) �e ; where m(x) is
the conditional expectation of y with no parametric
form whatsoever, and the density of the error e is
completely unspecified. The N observations yi and xi

are used to estimate a joint density function for y and
x . The density at a point y0 ; x0ð Þ is estimated by seeing
what proportion of the N observations are "close to"
y0 ; x0ð Þ: This procedure involves the use of a function

called a kernel to assign weights to nearby observa-
tions.

See also NONPARAMETRIC STATISTICS
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Nonparametric Statistics

See also NONPARAMETRIC ESTIMATION, PARAMETRIC
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Nonpositive
A quantity which is either 0 (ZERO) or NEGATIVE, i.e.,
5 0 :/

See also NEGATIVE, NONNEGATIVE, NONZERO, POSI-

TIVE, ZERO

Nonpositive Integer
An INTEGER that is either 0 or negative, i.e., a
member of the set 0f g@Z�; where Z� denotes the
NEGATIVE INTEGERS.

See also NEGATIVE INTEGER, NONNEGATIVE INTEGER,
POSITIVE INTEGER, Z�

Nonseparable Graph
BICONNECTED GRAPH

Nonsingular Matrix
A SQUARE MATRIX that is not SINGULAR, i.e., one that
has a MATRIX INVERSE. Nonsingular matrices are
sometimes also called regular matrices. A SQUARE

MATRIX is nonsingular IFF its DETERMINANT is non-
zero (Lipschutz 1991, p. 45). For example, there are 6
nonsingular 2 �2 (0,1)-MATRICES:

0 1
1 0

� �
;

0 1
1 1

� �
;

1 0
0 1

� �
;

1 0
1 1

� �
;

1 1
0 1

� �
;

1 1
1 0

� �
:

The following table gives the numbers of nonsingular
n �n matrices for certain matrix classes.

matrix type Sloane counts for n �1, 2,
...

/(�1; 0; 1)/-ma-
trices

A056989 2, 48, 11808, ...

/(�1; 1)/-matrices A056990 2, 8, 192, 22272, ...

/(0 ; 1)/-matrices A055165 1, 6, 174, 22560, ...

See also DETERMINANT, DIAGONALIZABLE MATRIX,
MATRIX INVERSE, SINGULAR MATRIX
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Nonsquarefree
SQUAREFUL

Nonstandard Analysis
Nonstandard analysis is a branch of mathematical
LOGIC which weakens the axioms of usual ANALYSIS to
include only the first-order ones. It also introduces
HYPERREAL NUMBERS to allow for the existence of
"genuine INFINITESIMALS," numbers which are less
than 1u2, 1u3, 1u4, 1u5, ..., but greater than 0. Abraham
Robinson developed nonstandard analysis in the
1960s. The theory has since been investigated for its
own sake and has been applied in areas such as
BANACH SPACES, differential equations, probability
theory, microeconomic theory, and mathematical
physics.

See also AX-KOCHEN ISOMORPHISM THEOREM, HYPER-

FINITE SET, LOGIC, LOS’ THEOREM, MODEL THEORY,
SUPERSTRUCTURE, TRANSFER PRINCIPLE, ULTRA-

POWER, ULTRAPRODUCT
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Nontotient
A POSITIVE EVEN value of n for which f(x) �n; where
f(x) is the TOTIENT FUNCTION, has no solution. The
first few are 14, 26, 34, 38, 50, ... (Sloane’s A005277).

See also NONCOTOTIENT, TOTIENT FUNCTION

References
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed.

New York: Springer-Verlag, p. 91, 1994.
Sloane, N. J. A. Sequences A005277/M4927 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Nonwandering
A point x in a MANIFOLD M is said to be nonwander-
ing if, for every open NEIGHBORHOOD U of x , it is true
that f�nU @ U "¥ for a MAP f for some n �0. In
other words, every point close to x has some iterate
under f which is also close to x . The set of all
nonwandering points is denoted V(f); which is known
as the nonwandering set of f:/

See also ANOSOV DIFFEOMORPHISM, AXIOM A DIFFEO-

MORPHISM, SMALE HORSESHOE MAP

Nonzero
A quantity which does not equal ZERO is said to be
nonzero. A REAL nonzero number must be either
POSITIVE or NEGATIVE, and a COMPLEX nonzero num-
ber can have either REAL or IMAGINARY PART nonzero.

See also NEGATIVE, NONNEGATIVE, NONPOSITIVE,
POSITIVE, ZERO

NOR

A PREDICATE in LOGIC equivalent to the composition
NOT OR that yields FALSE if any condition is TRUE,
and TRUE if all conditions are FALSE. A NOR B is
equivalent to !(A �B); where !A denotes NOT and �
denotes OR. In PROPOSITIONAL CALCULUS, the term
JOINT DENIAL is used to refer to the NOR connective.
Notations for NOR include A�B and A ¡B (Mendelson
1997, p. 26). The NOR operation is implemented in

Mathematica 4.1 as Nor[A , B , ...]. The circuit
diagram symbol for a NOR gate is illustrated above.
The BINARY NOR operator has the following TRUTH

TABLE (Simpson 1987, p. 547; Mendelson 1997, p. 26).

A B /A�B/

T T F

T F F

F T F

F F T

See also AND, BINARY OPERATOR, CONNECTIVE,
INTERSECTION, NAND, NOT, OR, TRUTH TABLE,
XNOR, XOR
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Nordstrand’s Weird Surface

An attractive CUBIC SURFACE defined by Nordstrand.
It is given by the implicit equation

25 x3(y �z) �y3(x �z) �z3(x �y)
� 
�50 x2y2 �x2z2 �y2z2

� �
�125 x2yz �y2xz �z2xy

� �
�60xyz �4 xy �xz �yzð Þ�0:

See also CUBIC SURFACE
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Norm
Given a n -D VECTOR

x �

x1

x2

n
xn

2
664

3
775;

a VECTOR NORM xk k is a NONNEGATIVE number
satisfying

1. xk k > 0 when x "0 and xk k�0 IFF x �0;/
2. kxk k�kj j xk k for any SCALAR k ,
3. x �yk k5 xk k� yk k/

The most common norm is the vector L2-NORM,
defined by

xk k2� xj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 �x2
2 �� � ��x2

n

q
:

Given a SQUARE MATRIX A; a MATRIX NORM Ak k is a
NONNEGATIVE number associated with A having the
properties

1. Ak k > 0 when A "0 and Ak k�0 IFF A �0;/
2. kAk k�kj j Ak k for any SCALAR k ,
3. A �Bk k5 Ak k� Bk k;/
4. ABk k5 Ak k Bk k/

See also BOMBIERI NORM, COMPATIBLE, EUCLIDEAN

NORM, HILBERT-SCHMIDT NORM, INDUCED NORM, L1-

NORM, L2-NORM, L -INFINITY-NORM, MATRIX NORM,
MAXIMUM ABSOLUTE COLUMN SUM NORM, MAXIMUM

ABSOLUTE ROW SUM NORM, NATURAL NORM, NOR-

MALIZED VECTOR, NORMED SPACE, PARALLELOGRAM

LAW, POLYNOMIAL NORM, SPECTRAL NORM, SUBORDI-

NATE NORM, VECTOR NORM
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Norm (Operator)
The operator norm of a LINEAR OPERATOR T : V 0 W
is the largest value by which T stretches an element
of V ,

Tk k� sup
vj jj j�1

T(v)k k: (1)

It is necessary for V and W to be normed vector
spaces. The operator norm of a composition is con-
trolled by the norms of the operators,

TSk k5 Tk k Sk k (2)

When T is given by a matrix, say /TðvÞ ¼ Av/, then / Tkk /

is the SQUARE ROOT of the largest EIGENVALUE of the
SYMMETRIC MATRIX /ATA/, all of whose eigenvalues are
nonnegative. For instance, if

A�
2 0 0
3 0 2

� �
(3)

then

ATA�
13 0 6
0 0 0
6 0 4

2
4

3
5; (4)

which has eigenvalues 0; 1; 16f g; so Ak k�4:/

The following Mathematica function will determine
the operator norm of a matrix.

OperatorNorm[a_List?MatrixQ] :�
Sqrt[Max[Eigenvalues[Transpose[a].a]]]

Norm Theorem

If a PRIME NUMBER divides a norm but not the bases of
the norm, it is itself a norm.

Normal
NORMAL CURVE, NORMAL DISTRIBUTION, NORMAL

DISTRIBUTION FUNCTION, NORMAL EQUATION, NOR-

MAL FORM, NORMAL GROUP, NORMAL MAGIC SQUARE,
NORMAL MATRIX, NORMAL NUMBER, NORMAL PLANE,
NORMAL SUBGROUP, NORMAL VECTOR

Normal (Algebraically)
GALOISIAN

Normal Bundle
This entry contributed by RYAN BUDNEY

The normal bundle of a submanifold N 	M is the
VECTOR BUNDLE over N that consists of all pairs (x, v ),
where x is in N and v is a vector in the VECTOR

QUOTIENT SPACE T x M=T x N: Provided M has a
Riemann metric, T x M=T x N can be thought of as
the orthogonal complement to T x 	T x M:/

Normal Curvature
Let up be a unit TANGENT VECTOR of a REGULAR

SURFACE MƒR3: Then the normal curvature of M in
the direction up is

k up

� �
�S up

� �
�up; (1)

where S is the SHAPE OPERATOR. Let MƒR3 be a
REGULAR SURFACE, p 	M; x be an injective REGULAR

PATCH of M with p�x u0; v0ð Þ; and

vp�axu u0; v0ð Þ�bxv u0; v0ð Þ; (2)

where vp 	Mp: Then the normal curvature in the
direction vp is

k(vp)�
ea2 � 2fab � gb2

Ea2 � 2Fab � Gb2
; (3)



where E , F , and G are the coefficients of the first
FUNDAMENTAL FORM and e , f , and g are the coeffi-
cients of the second FUNDAMENTAL FORM.

The MAXIMUM and MINIMUM values of the normal
curvature at a point on a REGULAR SURFACE are called
the PRINCIPAL CURVATURES k1 and k2 :/

See also CURVATURE, FUNDAMENTAL FORMS, GAUS-

SIAN CURVATURE, MEAN CURVATURE, PRINCIPAL CUR-

VATURES, SHAPE OPERATOR, TANGENT VECTOR
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Normal Curve
GAUSSIAN DISTRIBUTION

Normal Developable
A RULED SURFACE M is a normal developable of a
curve y if M can be parameterized by x (u; v) �y(u) �
v ̂N(u) ; where N is the NORMAL VECTOR.

See also BINORMAL DEVELOPABLE, BOX-MULLER

TRANSFORMATION, TANGENT DEVELOPABLE
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Normal Deviates

See also BOX-MULLER TRANSFORMATION, GAUSSIAN

DISTRIBUTION, NORMAL DISTRIBUTION
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Normal Distribution

Another name for a GAUSSIAN DISTRIBUTION. Given a
normal distribution in a VARIATE x with MEAN m and
VARIANCE s2 ;

P(x)dx �
1

s
ffiffiffiffiffiffi
2p

p e �(x � m)2 =2 s2 

dx;

the so-called "STANDARD NORMAL DISTRIBUTION" is
given by taking m �0 and s2 �1: An arbitrary normal
distribution can be converted to a STANDARD NORMAL

DISTRIBUTION by changing variables to z �(x � m) =s;
so dz �dx=s; yielding

P(x)dx �
1ffiffiffiffiffiffi
2p

p e �z2 =2dz�

Feller (1968) uses the symbol 8 (x) for P(x) in the
above equation, but then switches to n(x) in Feller
(1971). The FISHER-BEHRENS PROBLEM is the deter-
mination of a test for the equality of MEANS for two
normal distributions with different VARIANCES.

See also FISHER-BEHRENS PROBLEM, GAUSSIAN DIS-

TRIBUTION, HALF-NORMAL DISTRIBUTION, KOLMOGOR-

OV-SMIRNOV TEST, NORMAL DISTRIBUTION FUNCTION,
STANDARD NORMAL DISTRIBUTION, TETRACHORIC

FUNCTION
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Normal Distribution Function

A normalized form of the cumulative GAUSSIAN

DISTRIBUTION function giving the probability that a



variate assumes a value in the range [0; x] ;

F(x) �Q(x) �
1ffiffiffiffiffiffi
2p

p g
x

0

e �t2 =2dt: (1)

It is related to the PROBABILITY INTEGRAL

a(x) �
1ffiffiffiffiffiffi
2p

p g
x

�x

e �t2 =2dt: (2)

by

F(x) �1
2a(x) (3)

Let u �t=
ffiffiffi
2

p
so du �dt=

ffiffiffi
2

p
: Then

F(x) �
1ffiffiffi
p

p g
x=
ffiffi
2

p

0

e �u2 

du �
1

2
erf

xffiffiffi
2

p
 !

� (4)

Here, ERF is a function sometimes called the error
function. The probability that a normal variate
assumes a value in the range x1 ; x2½ � is therefore
given by

F x1 ; x2ð Þ�1

2
erf

x2ffiffiffi
2

p
 !

�erf
x1ffiffiffi

2
p
 !" #

� (5)

Neither F(z) nor ERF can be expressed in terms of
finite additions, subtractions, multiplications, and
ROOT EXTRACTIONS, and so must be either computed
numerically or otherwise approximated.
Note that a function different from F(x) is sometimes
defined as "the" normal distribution function

N(x) �
1ffiffiffiffiffiffi
2 p

p g
x

��

e �t2 =2dt (6)

�F(��; x) (7)

�
1

2 
�F(x) (8)

�
1

2
1 �erf

xffiffiffi
2

p
 !" #

(9)

(Feller 1968; Beyer 1987, p. 551), although this
function is less widely encountered than the usual
F(x) : The notation N(x) is due to Feller (1971).

The value of a for which P(x) falls within the interval
[�a;a] with a given probability P is a related quantity
called the CONFIDENCE INTERVAL.

For small values x �1; a good approximation to F(x) is
obtained from the MACLAURIN SERIES for ERF,

F(x) �
1ffiffiffiffiffiffi
2 p

p x �1
6x

3 � 1
40x

5 � 1
336x

7 � 1
3456x

9 �. . .
� �

(10)

(Sloane’s A014481). For large values x �1 ; a good
approximation is obtained from the asymptotic series
for ERF,

F(x) �
1

2 
�

e �x2 =2

2
ffiffiffi
p

p

� x�1 �x�3 �3x�5 �15x�7 �105x�9 �. . .
� �

(11)

(Sloane’s A001147).

The value of F(x) for intermediate x can be computed
using the CONTINUED FRACTION identity

g
x

0

e �u2 

du �
ffiffiffi
p

p

2
�

1
2e

�x2

x �
1

2x �
2

x �
3

2x �
4

x � . . .

(12)

A simple approximation of F(x) which is good to two
decimal places is given by

F1(x) :
0:1x(4:4 �x) for 0 5x 52 :2
0:49 for 2 :2 Bx B2 :6
0:50 for x ]2 :6�

8<
: 

(13)

Abramowitz and Stegun (1972) and Johnson and Kotz
(1970) give other functional approximations. An
approximation due to Bagby (1995) is

F2(x) �1
2f1 � 1

30[7e �x2 =2 �16e �x2(2�
ffiffi
2

p
)

�(7 �1
4px2 Þe �x2 �g1 =2 (14)

The plots below show the differences between F and
the two approximations.

The first QUARTILE of a standard NORMAL DISTRIBU-

TION occurs when

g
t

0

F(z)dz �1
4 � (15)

The solution is t �0:6745 . . . : The value of t giving 1
4 is

known as the PROBABLE ERROR of a normally dis-
tributed variate.

See also BERRY-ESSÉ EN THEOREM, CONFIDENCE IN-

TERVAL, ERF, ERFC, FISHER-BEHRENS PROBLEM,
GAUSSIAN DISTRIBUTION, GAUSSIAN INTEGRAL, HH

FUNCTION, NORMAL DISTRIBUTION, PROBABILITY IN-

TEGRAL, TETRACHORIC FUNCTION
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Normal Equation
Given an overdetermined MATRIX EQUATION

Ax �b;

the normal equation is that which minimizes the sum
of the square differences between left and right sides

ATAx �ATb:

See also LEAST SQUARES FITTING, MOORE-PENROSE

GENERALIZED MATRIX INVERSE, NONLINEAR LEAST

SQUARES FITTING

Normal Form
A way of representing objects so that, although each
may have many different names, every possible name
corresponds to exactly one object (Petkovsek et al.
1996, p. 7). Koepf (1998, p. 2) defines normal form to
mean the uniquely determined holonomic equation of
lowest order up to multiplication by polynomials.

See also CANONICAL FORM
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Normal Function
A SQUARE INTEGRABLE function f(t) is said to be
normal if

g  f(t)½ �2dt �1

However, the NORMAL DISTRIBUTION FUNCTION is also
sometimes called "the normal function."

See also NORMAL DISTRIBUTION FUNCTION, SQUARE

INTEGRABLE
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Normal Group
NORMAL SUBGROUP

Normal Line
A LINE along a NORMAL VECTOR (i.e., perpendicular to
some TANGENT LINE).

If /K ƒRd
/ is a CENTROSYMMETRIC SET which has a

twice differentiable boundary, then there are /2d þ 2/

normals through the center (Croft et al. 1991, p. 15).

See also DOUBLE NORMAL, NORMAL VECTOR, TAN-

GENT LINE
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Normal Magic Square
MAGIC SQUARE

Normal Matrix
A SQUARE MATRIX A is a normal matrix if

A; A+½ ��0;

where [a, b ] is the COMMUTATOR and A + denotes the
ADJOINT MATRIX. For example, the matrix

i 0
0 3�5i

� �
is a normal matrix, but is not a HERMITIAN MATRIX. A
matrix m can be tested to see if it is normal using the
Mathematica function

NormalQ[a_List?MatrixQ] :� Module[

{b � Conjugate@Transpose@a},

a. b ��� b. a

]

The normal matrices are the matrices which are
unitarily DIAGONALIZABLE. That is, A is a normal
matrix iff there exists a UNITARY MATRIX U such that /

U AU�1
/ is a DIAGONAL MATRIX. All HERMITIAN MA-

TRICES are normal, but they are restricted to real
eigenvalues. A normal matrix has no restriction on its
eigenvalues.

The following table gives the number of normal
square matrices of given types for orders n�1, 2, ....

type Sloane counts

/(0; 1)/ A055547 2, 8, 68, 1124, ...

/(�1; 1)/ A055548 2, 12, 80, 2096, ...



/(�1; 0 ; 1)/ A055549 3, 33, 939, ...

See also ADJOINT MATRIX, DIAGONAL MATRIX, HER-

MITIAN MATRIX, UNITARY MATRIX
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Normal Number
An IRRATIONAL NUMBER for which any FINITE pattern
of numbers occurs with the expected limiting fre-
quency in the expansion in a given base (or all bases).
For example, for a normal decimal number, each digit
0 �/9 would be expected to occur 1/10 of the time, each
pair of digits 00 �/99 would be expected to occur 1/100
of the time, etc.

Determining if numbers are normal is an unresolved
problem. It is not even known if PI or E are normal.
While tests of

ffiffiffi
n

p
for n �2, 3, 5, 6, 7, 8, 10, 11, 12, 13,

14, 15 indicate that these SQUARE ROOTS may be
normal (Beyer et al. 1970ab), normality of these
numbers has also not been proven. Strangely enough,
the only numbers known to be normal (in certain
bases) are artificially constructed ones such as the
CHAMPERNOWNE CONSTANT and the COPELAND-ERDOS

CONSTANT.

See also CHAMPERNOWNE CONSTANT, COPELAND-ER-

DOS CONSTANT, E , PI
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Normal Order
A function f (n) has the normal order F(n) if f (n) is
approximately F(n) for ALMOST ALL values of n . More

precisely, if

(1 � o)F(n) Bf (n) B(1 � o)F(n)

for every positive o and ALMOST ALL values of n , then
the normal order of f (n) is F(n) :/

See also ALMOST ALL
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Normal Plane
The PLANE spanned by the NORMAL VECTOR N and the
BINORMAL VECTOR B.

See also BINORMAL VECTOR, NORMAL VECTOR, PLANE

Normal Polynomial
In every RESIDUE CLASS modulo p , there is exactly one
INTEGER POLYNOMIAL with COEFFICIENTS ]0 and 5
p �1: This polynomial is called the normal polyno-
mial modulo p in the class (Nagell 1951, p. 94).

See also COEFFICIENT
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Normal Section
Let M ƒR3 be a REGULAR SURFACE and up a unit
TANGENT VECTOR to M , and let

Q
up ;N(p)
� �

be the
PLANE determined by up and the normal to the
surface N(p) : Then the normal section of M is defined
as the intersection of

Q
up ;N(p)
� �

and M .

References
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Normal Series
A normal series of a GROUP G is a finite sequence
(A0 ; . . . ;Ar) of SUBGROUPS such that

I �A01A11 . . . 1Ar �G�

See also COMPOSITION SERIES, INVARIANT SERIES,
NORMAL SUBGROUP

References
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Normal Subgroup
Let H be a SUBGROUP of a GROUP G . Then H is a
normal subgroup of G , written H1G; if



xHx�1 �H

for every element x in G (Scott 1987, p. 25). Normal
subgroups are also known as invariant subgroups.

See also GROUP, NORMAL SERIES, QUOTIENT GROUP,
SUBGROUP
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Normal to a Plane
NORMAL VECTOR

Normal Vector
The normal to a PLANE specified by

f (x; y; z) �ax �by �cz �d �0 (1)

is given by

N �9f �
a
b
c

2
4
3
5: (2)

The normal vector at a point x0 ; y0ð Þ on a surface z �
f (x; y) is

N �
fx x0 ; y0ð Þ
fy x0 ; y0ð Þ

�1

2
4

3
5: (3)

In the PLANE, the unit normal vector is defined by

N̂ �
d ̂T

d f 
; (4)

where T̂ is the unit TANGENT VECTOR and f is the
polar angle. Given a unit TANGENT VECTOR

T̂ �u1 ̂x �u2 ̂y (5)

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 �u2

2

p
�1 ; the normal is

N̂ �u2 ̂x �u1 ̂y: (6)

For a function given parametrically by (f (t) ; g(t)) ; the
normal vector relative to the point (f (t) ; g(t)) is there-
fore given by

x(t) ��
g?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g ?2
p (7)

y(t) �
f ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g ?2
p (8)

To actually place the vector normal to the curve, it
must be displaced by (f (t) ; g(t)) :/

In 3-D SPACE, the unit normal is

N̂ �

d ̂T

ds

d ̂T

ds

77777
77777
�

d ̂T

dt

d ̂T

dt

77777
77777
�

1

k

d ̂T

ds
; (9)

where k is the CURVATURE. Given a 3-D surface
F(x; y; z) �0;

n̂ �
Fx � Fy � Fzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x � F2
y � F2

z

p : (10)

If the surface is defined parametrically in the form

x �x( f ; c) (11)

y �y( f ; c) (12)

z �z( f; c) (13)

define the VECTORS

a �
xf

yf

zf

2
4

3
5 (14)

b �
xf

yf

zf

2
4

3
5: (15)

Then the unit normal vector is

N̂ �
a � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aj j2 bj j2� a � bj j2
q (16)

Let g be the discriminant of the METRIC TENSOR. Then

N �
r1 � r2ffiffiffi

g
p �oijr

j: (17)

See also BINORMAL VECTOR, CURVATURE, FRENET

FORMULAS, TANGENT VECTOR
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Normalized Laplacian Matrix
LAPLACIAN MATRIX

Normalized Vector
The normalized vector of X is a VECTOR in the same
direction but with NORM (length) 1. It is denoted /X̂/

and given by

X̂�
X

Xj j
;



where /j ̂Xj/ is the NORM of X. It is also called a UNIT

VECTOR.

See also UNIT VECTOR

Normalizer
The set of elements g of a GROUP such that

g �1Hg �H ;

is said to be the normalizer /NG ðH Þ/ with respect to a
subset of group elements H . If H is a SUBGROUP of G ,
/NG ðH Þ/ is also a SUBGROUP containing H .

See also CENTRALIZER, TIGHTLY EMBEDDED

Normed Space
A VECTOR SPACE possessing a NORM.

Nosarzewska’s Inequality
Given a convex PLANE region with AREA A and
PERIMETER p ,

A �1
2p BN 5A �1

2p �1;

where N is the number of enclosed LATTICE POINTS

(Nosarzewska 1948). This improves on JARNICK’S

INEQUALITY

N �Aj j Bp :

See also JARNICK’S INEQUALITY, LATTICE POINT
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NOT

An CONNECTIVE in LOGIC which converts TRUE to
FALSE and FALSE to TRUE. NOT A is denoted !A;� A;
Ā (Simpson 1987, p. 537) or �A (Carnap 1958, p. 7;
Mendelson 1997, p. 12). The NOT operation is im-
plemented in Mathematica as Not[A ], or !A . The
circuit diagram symbol for a NOT gate is illustrated
above.
The NOT operation has the following TRUTH TABLE

(Carnap 1958, p. 10; Simpson 1987, p. 546; Mendel-
son 1997, p. 12).

A /!A/

T F

F T

See also AND, CONNECTIVE, NAND, NOR, OR, TRUTH

TABLE, XNOR, XOR
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Not
An operation in LOGIC which converts TRUE to FALSE

and FALSE to TRUE. NOT [W ;U] is denoted di or
N(n;a) �1

n
a  

n(n)
i �1 f dið Þan =di :/

/[W ; U]/ /N(n;a) �1
n
a  

n(n)
i�1 f dið Þan =di

/

F T

T F

See also AND, OR, TRUTH TABLE, XOR

Notation
A NOTATION is a set of WELL DEFINED rules for
representing quantities and operations with symbols.

See also ARROW NOTATION, CHAINED ARROW NOTA-

TION, CIRCLE NOTATION, CLEBSCH-ARONHOLD NOTA-

TION, CONWAY’S KNOT NOTATION, DOWKER NOTATION,
DOWN ARROW NOTATION, PETROV NOTATION, SCIEN-

TIFIC NOTATION, STEINHAUS-MOSER NOTATION
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Nöther
NOETHER’S FUNDAMENTAL THEOREM, NOETHER-LAS-

KER THEOREM, NOETHER’S TRANSFORMATION THEO-

REM, NOETHERIAN MODULE, NOETHERIAN RING

Novemdecillion
In the American system, 1060.

See also LARGE NUMBER



Nowhere Dense
A SET X is said to be nowhere dense if the interior of
the CLOSURE of X is the EMPTY SET.

See also BAIRE CATEGORY THEOREM, DENSE
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NP-Complete Problem
A problem which is both NP (solvable in nondetermi-
nistic POLYNOMIAL-TIME) and NP-HARD (any other NP-

PROBLEM can be translated into this problem). Ex-
amples of NP-hard problems include the HAMILTO-

NIAN CYCLE and TRAVELING SALESMAN PROBLEMS.

In a landmark paper, Karp (1972) showed that 21
intractable combinatorial computational problems
are all NP-complete.

See also HAMILTONIAN CYCLE, NP-HARD PROBLEM,
NP-PROBLEM, P-PROBLEM, TRAVELING SALESMAN

PROBLEM
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NP-Hard Problem
A problem is NP-hard if an ALGORITHM for solving it
can be translated into one for solving any other NP-

PROBLEM (nondeterministic POLYNOMIAL time) pro-
blem. NP-hard therefore means "at least as hard as
any NP-PROBLEM," although it might, in fact, be
harder.

See also COMPLEXITY THEORY, HITTING SET, NP-

COMPLETE PROBLEM, NP-PROBLEM, P-PROBLEM, SA-

TISFIABILITY PROBLEM

n-Plex
n -plex is defined as 10n :/

See also GOOGOLPLEX, N -MINEX
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NP-Problem
A problem is assigned to the NP (nondeterministic
POLYNOMIAL time) class if it is solvable in polynomial
time by a nondeterministic TURING MACHINE. (A
nondeterministic TURING MACHINE is a "parallel"
TURING MACHINE which can take many computational
paths simultaneously, with the restriction that the
parallel Turing machines cannot communicate.) A P-

PROBLEM (whose solution time is bounded by a
polynomial) is always also NP. If a problem is known
to be NP, and a solution to the problem is somehow
known, then demonstrating the correctness of the
solution can always be reduced to a single P (POLY-

NOMIAL time) verification.

LINEAR PROGRAMMING, long known to be NP and
thought not to be P, was shown to be P by L. Kha-
chian in 1979. It is an important UNSOLVED PROBLEM

to determine if all apparently NP problems are
actually P.

A problem is said to be NP-HARD if an ALGORITHM for
solving it can be translated into one for solving any
other NP-problem. It is much easier to show that a
problem is NP than to show that it is NP-HARD. A
problem which is both NP and NP-HARD is called an
NP-COMPLETE PROBLEM.

See also COMPLEXITY THEORY, NP-COMPLETE PRO-

BLEM, NP-HARD PROBLEM, P-PROBLEM, TURING MA-

CHINE
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ns
JACOBI ELLIPTIC FUNCTIONS

n-Sphere
HYPERSPHERE

NSW Number
An NSW number is a side length of a SQUARE the
square of whose diagonal is one more than a SQUARE

NUMBER. Such numbers were called "rational diag-



onals" by the Greeks (Wells 1986, p. 70). A formula
for NSW numbers is given by

S(m) �
1 �

ffiffiffi
2

p� �m
� 1 �

ffiffiffi
2

p� �m

2

for positive integers m . A RECURRENCE RELATION for /

SðmÞ/ is given by

S(n) �6S(n �1) �S(n �2) (1)

with S(1) �1 and S(2) �7 : The first few terms are 1,
7, 41, 239, 1393, ... (Sloane’s A002315). The lengths
that are one more than the corresponding diagonals
are 2, 50, 1682, 57122, ....

The indices giving PRIME NSW numbers are 3, 5, 7,
19, 29, 47, 59, 163, 257, 421, 937, 947, 1493, 1901, ...
(Sloane’s A005850).
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n! Theorem
For any PARTITION m of n , define a polynomial in 2n
variables x1 ; x2 ; ... and y1 ; y2 ; ... as

Dm �det x
pj

i y
qj

i

77 77; (1)

where pj ; qj

� �
are the coordinates of the cells of the

partition when it is placed in the coordinate plane
with base cell at (0; 0) and such that all other
coordinates are nonnegative in x and y . Denote the
linear span of all derivatives of this polynomial with
respect to the variables by L @x @y Dm

� 
; where @

represents a PARTIAL DERIVATIVE. This VECTOR SPACE

is CLOSED under permutations acting on xi and yi

simultaneously. Then the n! theorem states that

dim L @x @y Dm

� 
�n! (2)

(Zabrocki). The theorem was proven by M. Haiman in
Dec. 1999.

For example, consider the PARTITION m �(2; 1): Then

D(2;1) �det
1 1 1
x1 x2 x3

y1 y2 y3

777777
777777 (3)

�x2y3 �x3y2 �x1y3 �y1x3 �x1y2 �x2y1 (4)

Then the five derivatives

@x1
D(2;1) �y2 �y3 (5)

@x2
D(2;1) �y3 �y1 (6)

@y1
D(2;1) �x3 �x2 (7)

@y2
D(2;1) �x1 �x3 (8)

@x2
@y2

D(2;1) �1 ; (9)

together with D(2;1) ; 3! �6 elements in all, form a basis
for L @x @y D(2;1)

� 
(Zabrocki).

See also MACDONALD POLYNOMIAL
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Nu Function

n(x) �g
�

0

xtdt

G(t � 1)

n(x; a) �g
�

0

xa �tdt

G( a � t � 1) 
;

where G(z) is the GAMMA FUNCTION (Erdélyi et al.
1981, p. 388; Prudnikov et al. 1990, p. 799; Gradsh-
teyn and Ryzhik 2000, p. 1109).

See also LAMBDA FUNCTION, MU FUNCTION
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Nucleus
KERNEL (INTEGRAL)

Nugatory Crossing
REDUCIBLE CROSSING

Null Function
A null function d0 xð Þ satisfies

g
b

a

d0(x)dx�0 (1)

for all a, b , so

g
�

��

d0(x)
77 77dx�0: (2)



Like a DELTA FUNCTION, they satisfy

d0(x) �
0 x "0
1 x �0:

0
(3)

See also DELTA FUNCTION, LERCH’S THEOREM
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Null Graph
The EMPTY GRAPH containing no VERTICES or EDGES.

See also EMPTY GRAPH
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Null Hypothesis
A hypothesis which is tested for possible rejection
under the assumption that it is true (usually that
observations are the result of chance). The concept
was introduced by R. A. Fisher.

Null Space
NULLSPACE

Null Tetrad

gij �

0 1  0  0
1 0  0  0
0 0  0  �1
0 0 �1 0

2
664

3
775:

It can be expressed as

gab �lanb �lbna �ma m̄b �mb m̄a :

See also TETRAD
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Null Vector
The n -D null vector 0 is the n -D VECTOR of length 0.
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Nullspace
Also called the kernel. If T is a LINEAR TRANSFORMA-

TION of Rn ; then Null(T ) is the set of all VECTORS X
such that T(X) �0; i.e.,

Null(T) � X : T(X) �0f g:

A list of vectors forming a BASIS for the nullspace of a
set of vectors m is returned by the Mathematica
command NullSpace[m ].

See also BASIS (VECTOR SPACE), FREDHOLM’S THEO-

REM, LINEAR TRANSFORMATION, SPAN (VECTOR

SPACE)

Nullstellensatz
HILBERT’S NULLSTELLENSATZ

Number
The word "number" is a general term which refers to
a member of a given (possibly ordered) SET. The
meaning of "number" is often clear from context (i.e.,
does it refer to a COMPLEX NUMBER, INTEGER, REAL

NUMBER, etc.?). Wherever possible in this work, the
word "number" is used to refer to quantities which are
INTEGERS, and "CONSTANT" is reserved for nonintegral
numbers which have a fixed value. Because terms
such as REAL NUMBER, BERNOULLI NUMBER, and
IRRATIONAL NUMBER are commonly used to refer to
nonintegral quantities, however, it is not possible to
be entirely consistent in nomenclature.

To indicate a particular numerical label, the abbre-
viation "no." is sometimes used (deriving from "nu-
mero," the ablative case of the Latin "numerus"), as is
the less common "nr."
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Number Axis
REAL LINE

Number Field
If r is an ALGEBRAIC NUMBER of degree n , then the
totality of all expressions that can be constructed
from r by repeated additions, subtractions, multi-
plications, and divisions is called a number field (or
an ALGEBRAIC NUMBER FIELD) generated by r , and is
denoted F[r] : Formally, a number field is a finite
extension Q( a) of the FIELD Q of RATIONAL NUMBERS.

The elements of a number field which are ROOTS of a
POLYNOMIAL

zn �an�1zn�1 �� � ��a0 �0

with integer coefficients and leading coefficient 1 are
called the ALGEBRAIC INTEGERS of that field.

See also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER,
FIELD, FINITE FIELD, FUNCTION FIELD, LOCAL FIELD,
NUMBER FIELD SIEVE, Q, QUADRATIC FIELD, SIGNA-

TURE (NUMBER FIELD)
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Number Field Sieve
An extremely fast factorization method developed by
Pollard which was used to factor the RSA-130 NUM-

BER. This method is the most powerful known for
factoring general numbers, and has complexity

O exp c log nð Þ1 =3 log log nð Þ2 =3
h in o

; (1)

reducing the exponent over the CONTINUED FRACTION

FACTORIZATION ALGORITHM and QUADRATIC SIEVE.
There are three values of c relevant to different
flavors of the method (Pomerance 1996). For the
"special" case of the algorithm applied to numbers

near a large POWER,

c � 32
9

� �1 =3

�1 :526285 . . . ; (2)

for the "general" case applicable to any ODD POSITIVE

number which is not a POWER,

c � 64
9

� �1 =3

�1 :922999 . . . ; (3)

and for a version using many POLYNOMIALS (Copper-
smith 1993),

c�1
3 92�26

ffiffiffiffiffiffi
13

p� �1=3

�1:901883 . . . (4)

See also QUADRATIC SIEVE, RSA NUMBER
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Number Field Sieve Factorization Method
An extremely fast factorization method developed by
Pollard which was used to factor the RSA-130 NUM-

BER. This method is the most powerful known for
factoring general numbers, and has complexity

reducing the exponent over the CONTINUED FRACTION

FACTORIZATION ALGORITHM and QUADRATIC SIEVE

FACTORIZATION METHOD. There are three values of c



relevant to different flavors of the method (Pomer-
ance 1996). For the "special" case of the algorithm
applied to numbers near a large POWER,

Ã

for the "general" case applicable to any ODD POSITIVE

number which is not a POWER,

�A

and for a version using many POLYNOMIALS (Copper-
smith 1993),

1060

See also RSA NUMBER
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Number Group
FIELD

Number Guessing
By asking a small number of innocent-sounding
questions about an unknown number, it is possible
to reconstruct the number with absolute certainty
(assuming that the questions are answered correctly).
Ball and Coxeter (1987) give a number of sets of
questions which can be used.

One of the simplest algorithms uses only three
queries that can be used to determine an unknown
number n from an audience member.

1. Ask the person to compute n?�3n (i.e., three
times the secret number n ) and announce if the
result is EVEN or ODD.
2. If you were told that n? is EVEN, ask the person
to reveal the number nƒ which is half of n?: If you
were told that n? is ODD, ask the person to reveal
the number nƒ which is half of n?�1 :/
3. Ask the person to reveal the number of times k
which 9 divides evenly into n§�3nƒ:/

The original number n is then given by 2k if n? was
EVEN, or /2k þ 1/ if n? was ODD. For n �2m even, n?�
6m; nƒ�3m; n§�9m; k �m , so 2k �2m �n: For n �
2m �1 odd, n?�6m �3; n ƒ�3m �2; n §�9m �6;
k �m , so 2k �1 �2m �1 �n:/

Another method asks:

1. Multiply the number n by 5.
2. Add 6 to the product.
3. Multiply the sum by 4.
4. Add 9 to the product.
5. Multiply the sum by 5 and reveal the result n?:/

The original number is then given by n �
n?�165ð Þ=100; since the above steps give

n?�5(4(5n �6) �9) �100n �165:/

See also NUMBER PICKING
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Number Pattern
It is possible to construct simple functions which
produce growing patterns. For example, the BAXTER-

HICKERSON FUNCTION

f (n) �1
3 2 � 105n �104n �2 � 103n �102n �10n �1
� �

produces the sequence 64037, 6634003367,
666334000333667, ....

See also BAXTER-HICKERSON FUNCTION, NUMBER

PYRAMID

Number Picking
Place 2n balls in a bag and number them 1 to 2n; then
pick half of them at random. The number of different
possible sums for n �1, 2, 3, ... are then 2, 5, 10, 17,
26, ... (Sloane’s A002522), or n2 �1/

See also NUMBER GUESSING
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Number Pyramid
A set of numbers obeying a pattern like the following,

91 � 37 �3367
9901 � 3367 �33336667

999001 � 333667 �333333666667
99990001 � 33336667 �3333333366666667

42 �16
342 �1156

3342 �111556

72 �49
672 �4489

6672 �444889 :

See also AUTOMORPHIC NUMBER, NUMBER PATTERN
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Number Shape
FIGURATE NUMBER

Number Sign
OCTOTHORPE

Number System
BASE (NUMBER)

Number Theoretic Transform
Simplemindedly, a number theoretic transform is a
generalization of a FAST FOURIER TRANSFORM ob-
tained by replacing e �2 pik=N with an nth PRIMITIVE

ROOT OF UNITY. This effectively means doing a trans-
form over the QUOTIENT RING Z=pZ instead of the
COMPLEX NUMBERS C: The theory is rather elegant
and uses the language of FINITE FIELDS and NUMBER

THEORY.

See also FAST FOURIER TRANSFORM, FINITE FIELD

References
Arndt, J. "Numbertheoretic Transforms (NTTs)." Ch. 4 in

"Remarks on FFT Algorithms." http://www.jjj.de/fxt/.
Cohen, H. A Course in Computational Algebraic Number

Theory. New York: Springer-Verlag, 1993.

Number Theory
A vast and fascinating field of mathematics, some-
times called "higher arithmetic," consisting of the
study of the properties of whole numbers. PRIMES and

PRIME FACTORIZATION are especially important in
number theory, as are a number of functions such
as the DIVISOR FUNCTION, RIEMANN ZETA FUNCTION,
and TOTIENT FUNCTION. Excellent introductions to
number theory may be found in Ore (1988) and Beiler
(1966). The classic history on the subject (now slightly
dated) is that of Dickson (1952).

The great difficulty required to prove relatively
simple results in number theory prompted no less
an authority than Gauss to remark that "it is just this
which gives the higher arithmetic that magical charm
which has made it the favorite science of the greatest
mathematicians, not to mention its inexhaustible
wealth, wherein it so greatly surpasses other parts
of mathematics." Gauss, often known as the "prince of
mathematics," called mathematics the "queen of the
sciences,"’ and considered number theory the "queen
of mathematics" (Beiler 1966, Goldman 1997).

See also ADDITIVE NUMBER THEORY, ARITHMETIC,
CONGRUENCE, DIOPHANTINE EQUATION, DIVISOR

FUNCTION, GÖ DEL’S INCOMPLETENESS THEOREM,
MULTIPLICATIVE NUMBER THEORY, PEANO’S AXIOMS,
PRIME COUNTING FUNCTION, PRIME FACTORIZATION,
PRIME NUMBER, QUADRATIC RECIPROCITY THEOREM,
RIEMANN ZETA FUNCTION, TOTIENT FUNCTION
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Number Triangle
BELL TRIANGLE, CLARK’S TRIANGLE, EULER’S TRIAN-

GLE, LEIBNIZ HARMONIC TRIANGLE, LOSSNITSCH’S

TRIANGLE, MAGOG TRIANGLE, MONOTONE TRIANGLE,
PASCAL’S TRIANGLE, SEIDEL-ENTRINGER-ARNOLD TRI-

ANGLE, TRINOMIAL TRIANGLE

Number Wall
QUOTIENT-DIFFERENCE TABLE

Numerator
The number p in a FRACTION p=q:/

See also DENOMINATOR, FRACTION, RATIONAL NUM-

BER

Numeric Function
A FUNCTION /f : A 0 B/ such that B is a SET of
numbers.

Numerical Derivative
While it is usually much easier to compute a DERIVA-

TIVE instead of an INTEGRAL (which is a little strange,
considering that "more" functions have integrals than
derivatives), there are still many applications where
derivatives need to be computed numerically. The
simplest approach simply uses the definition of the
DERIVATIVE

f ? xð Þ�lim
h00

f (x � h) � f (x)

h

for some small numerical value of h�1:/



See also NUMERICAL INTEGRATION
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Numerical Integration
The approximate computation of an INTEGRAL using
numerical techniques. The numerical computation of
an INTEGRAL is sometimes called QUADRATURE. Ue-
berhuber (1997, p. 71) uses the word "QUADRATURE"
to mean numerical computation of a univariate
INTEGRAL, and "CUBATURE" to mean numerical com-
putation of a MULTIPLE INTEGRAL.

There are a wide range of methods available for
numerical integration. A good source for such tech-
niques is Press et al. (1992).

The most straightforward numerical integration tech-
nique uses the NEWTON-COTES FORMULAS (also called
QUADRATURE FORMULAS), which approximate a func-
tion tabulated at a sequence of regularly spaced
INTERVALS by various degree POLYNOMIALS. If the
endpoints are tabulated, then the 2- and 3-point
formulas are called the TRAPEZOIDAL RULE and
SIMPSON’S RULE, respectively. The 5-point formula is
called BODE’S RULE. A generalization of the TRAPE-

ZOIDAL RULE is ROMBERG INTEGRATION, which can
yield accurate results for many fewer function eva-
luations.

If the functions are known analytically instead of
being tabulated at equally spaced intervals, the best
numerical method of integration is called GAUSSIAN

QUADRATURE. By picking the abscissas at which to
evaluate the function, Gaussianquadrature produces
the most accurate approximations possible. However,
given the speed of modern computers, the additional
complication of the GAUSSIAN QUADRATURE formalism
often makes it less desirable than simply brute-force
calculating twice as many points on a regular grid
(which also permits the already computed values of
the function to be re-used). An excellent reference for
GAUSSIAN QUADRATURE is Hildebrand (1956).

See also CUBATURE, DOUBLE EXPONENTIAL INTEGRA-

TION, FILON’S INTEGRATION FORMULA, GAUSS-KRON-

ROD QUADRATURE, GREGORY’S FORMULA, INTEGRAL,
INTEGRATION, MONTE CARLO INTEGRATION, NUMER-

ICAL DERIVATIVE, QUADRATURE, QUASI-MONTE CARLO

INTEGRATION, T-INTEGRATION
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Numerology
The study of numbers for the supposed purpose of
predicting future events or seeking connections with
the occult.

See also BEAST NUMBER, NUMBER THEORY
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NURBS Curve
A nonuniform rational B-SPLINE curve defined by

C(t) �
Pn

i �0 Ni;p tð ÞwiPiPn
i�0 Ni ;p tð Þwi

;

where p is the order, Ni;p are the B-SPLINE basis
functions, Pi are control points, and the weight wi of
Pi is the last ordinate of the homogeneous point Pw

i :
These curves are CLOSED under perspective transfor-
mations and can represent CONIC SECTIONS exactly.

See also B-SPLINE, BÉ ZIER CURVE, NURBS SURFACE
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NURBS Surface
A nonuniform rational B-SPLINE surface of degree (p,
q ) is defined by

S u;vð Þ�
Pm

i�0

Pn
j�0 Ni ;p uð ÞNj;q vð Þwi;jPi;jPm

i �0

Pn
j�0 Ni;p uð ÞNj;q vð Þwi;j

;

where Ni ;p and Nj;q are the B-SPLINE basis functions,
Pi;j are control points, and the weight wi;j of Pi;j is the
last ordinate of the homogeneous point Pw

i;j :/

See also B-SPLINE, BÉ ZIER CURVE, NURBS CURVE



Nyquist Frequency
In order to recover all FOURIER components of a
periodic waveform, it is necessary to sample more
than twice as fast as the highest waveform frequency
n ; i.e.,

fNyquist �2 n:

This cutoff frequency /fNyquist/ above which a signal
must be sampled in order to be able to fully recon-
struct it is called the Nyquist frequency.

See also FOURIER SERIES, FOURIER TRANSFORM,
NYQUIST SAMPLING, OVERSAMPLING, SAMPLING THE-

OREM

Nyquist Sampling
Sampling at the NYQUIST FREQUENCY.

See also SAMPLING THEOREM



O

O
The symbol O is sometimes used to represent CAYLEY

NUMBERS (also commonly known as octonions).

See also CAYLEY NUMBER

Obelisk

A polyhedron formed by two parallel rectangles, not
congruent to each other, whose side faces are trape-
zoids. The VOLUME is given by

V �1
6 h[(2a �a ?)b �(2a?�a)b?]

�1
6 h[(ab �(a �a?)(b �b?) �a ?b ?]:

The distance from the bottom base to the CENTROID is

z̄ �
h(ab � ab ? � a ?b � 3a ?b?)

2(ab � ab ? � a ?b � 2a ?b?)
:

The term obelisk is sometimes also used to refer to
the DAGGER symbol (Bringhurst 1997, p. 275).

See also DAGGER
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Obelus
The symbol } used to indicate DIVISION. In typogra-
phy, an obelus has a more general definition as any
symbol, such as the DAGGER (/$) ; used to indicate a
footnote (Bringhurst 1997, p. 225).

See also DIVISION, SOLIDUS
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Object
A mathematical structure (e.g., a GROUP, VECTOR

SPACE, or DIFFERENTIABLE MANIFOLD) in a CATEGORY.

See also MORPHISM

Oblate Ellipsoid
OBLATE SPHEROID

Oblate Spheroid

A "squashed" SPHEROID for which the equatorial
radius a is greater than the polar radius c , so a�c
(called an oblate ellipsoid by Tietze 1965, p. 27). An
oblate spheroid is a SURFACE OF REVOLUTION obtained
by rotating an ELLIPSE about its minor axis (Hilbert
and Cohn-Vossen 1999, p. 10). To first approxima-
tion, the shape assumed by a rotating fluid (including
the Earth, which is "fluid" over astronomical time
scales) is an oblate spheroid. The oblate spheroid can
be specified parametrically by the usual SPHEROID

equations (for a SPHEROID with Z -AXIS as the symme-
try axis),

x�a sin v cos u (1)

y�a sin v sin u (2)

z�c cos v; (3)

with a � c , u � 0; 2p½ Þ; and v � [0; p]: Its Cartesian
equation is

x2 � y2

a2
�

z2

c2
�1: (4)

The ELLIPTICITY of an oblate spheroid is defined by

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2

a2

s
; (5)

so that

1�e2�
c2

a2
: (6)

The radial distance from center of the spheroid as a
function of latitude d is given by

r(d)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2 � (a � c)(a � c) cos(2d)

2

s
(7)



�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2 sin2 d

p
: (8)

The SURFACE AREA of an oblate spheroid can be
computed as a SURFACE OF REVOLUTION about the Z -

AXIS,

S�2p g r(z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�[r?(z)]2

q
dz (9)

with radius as a function of z given by

r(z)�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z

c

 !2
vuut : (10)

Therefore

S�2pa g
c

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

z2

c2

 !
1�

a2z2

c2(c2 � z2)

" #vuut dz

�
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2
p

� 2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�c2

p
�c2a ln

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

p

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

p
 !" #

: (11)

Using the identity ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�c2

p
�ae (12)

gives

S�2pa2�p
c2

e
ln

1 � e

1 � e

 !
(13)

(Beyer 1987, p. 131). Note that this is the conven-
tional form in which the surface area of an oblate
spheroid is written, although it is formally equivalent
to the conventional form for the PROLATE SPHEROID

via the identity

c2p

e(a; c)
ln

1 � e(a; c)

1 � e(a; c)

" #
�

2pac

e(c; a)
sin�1[e(c; a)]; (14)

where e(x; y) is defined by

e(x; y)�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2

y2

s
: (15)

The VOLUME of an oblate spheroid can be computed
from the formula for a general ELLIPSOID with b�a ,

V�4
3 pa2c (16)

(Beyer 1987, p. 131).

An oblate spheroid with its origin at a FOCUS has
equation

r�
a(1 � e2)

1 � e cos f
: (17)

Define k and expand up to POWERS of e6;

k�e2(1�e2)�1�e2(1�e2�2e4�6e6�. . .)

�e2�e4�2e6�. . . (18)

k2�e4�e6�. . . (19)

k3�e6�. . . (20)

Expanding r in POWERS of ELLIPTICITY to e6 therefore
yields

r

a
�1�1

2(e
2�e4�2e4�6e6)sin2 d�3

4(e
4�e6)sin4 d

�15
8 e6 sin6 d�. . . : (21)

In terms of LEGENDRE POLYNOMIALS,

r

a
� 1�1

6 e2�11
20 e4� 103

1680 e6
� 

� �1
3 e2� 5

42 e4� 3
56 e6

� 
P2

� 3
35 e4� 57

770 e6
� 

P4�
5

231 e6P6�. . . : (22)

The ELLIPTICITY may also be expressed in terms of the
OBLATENESS (also called FLATTENING), denoted e or f .

e�
a � c

a
(23)

c�a(1�e) (24)

c2�a2(1�e)2 (25)

(1�e)2�1�e2; (26)

so

e�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
(27)

and

e2�1�(1�e)2�1�(1�2e�e2)�2e�e2 (28)

r�a 1�
2e� e2

(1 � e)2 sin2 d

" #�1=2

: (29)

Define k and expand up to POWERS of e6

k�(2e�e)(1�e)�2�(2e�e2)(1�2e�6e2�. . .)

�2e�4e4�12e3�e2�2e3�. . .

�2e�3e2�14e3�. . . (30)

k2�4e2�6e3�. . . (31)

k3�8e3�. . . (32)

Expanding r in POWERS of the OBLATENESS to e3 yields



r

a
�1�1

2(2e�3e2�14e3)sin2d�3
4(4e

2�6e3)sin4 d

�8e3sin6d�. . . : (33)

In terms of LEGENDRE POLYNOMIALS,

r

a
� 1�1

3 e�
2
5 e

2� 13
105 e

3
� 

� �2
3 e�

1
7 e

2� 1
21 e

3
� 

P2

� 12
35 e

2� 96
385 e

3
� 

P4�
40

231 e
3P6�. . . : (34)

To find the projection of an oblate spheroid onto a
PLANE, set up a coordinate system such that the Z -

AXIS is towards the observer, and the X -AXIS is in the
PLANE of the page. The equation for an oblate
spheroid is

r(u)�a 1�
2e� e2

(1 � e)2 cos2 u

" #�1=2

: (35)

Define

k�
2e� e2

(1 � e)2 ; (36)

and x�sin u: Then

r(u)�a[1�k(1�x2)]�1=2�a(1�k�kx2)�1=2: (37)

Now rotate that spheroid about the X -AXIS by an
ANGLE B so that the new symmetry axes for the
spheroid are x?�x; y?; and z?: The projected height of a
point in the x�0 PLANE on the Y -AXIS is

y�r(u) cos(u�B)�r(u)(cos u cos B�sin u sin B)

�r(u)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
cos B�x sin B

� 
: (38)

To find the highest projected point,

dy

du
�

a sin(B � u)

(1 � k cos2 u)1=2�ak
cos(B � u)cos u sin u

(1 � k cos2 u)3=2

�0: (39)

Simplifying,

tan(B�u)(1�k cos2 u)�k cos u sin u�0: (40)

But

tan(B�u)

�
tan B � tan u

1 � tan B tan u
�

tan B �
sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2u
p

1 � tan B
sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2u
p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2u

p
tan B � sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2u
p

� tan B sin u
(41)

Plugging (41) into (40),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
tan B � xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p

� x tan B
[1�k(1�x2)]�kx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

�0 (42)

and performing a number of algebraic simplifications

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
tan B�x

� 
(1�k�kx2)�kx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�x tan B

� 
�0 (43)

(1�k)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
tan B�kx2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
tan B�x�kx�kx3

h i
� kx(1�x2)�kx2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
tan B

h i
(44)

(1�k) tan B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�kx(1�x2)�x�kx(1�x2)�0 (45)

(1�k) tan B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�x (46)

(1�k)2 tan2 B(1�x2)�x2 (47)

x2 1�(1�k)2 tan2 B
h i

�(1�k)2 tan2 B (48)

finally gives the expression for x in terms of B and k ,

x2�
tan2 B(1 � k)2

1 � (1 � k)2 tan2 B
: (49)

Combine (37) and (38) and plug in for x ,

y�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
cos B � x sin Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � k � kx2
p

�a

cos B � (1 � k)
sin2 B

cos Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � k)[1 � (1 � k) tan2 B]

p
�a

cos2 B � (1 � k) sin2 B

cos B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � k)[1 � (1 � k) tan2 B]

p : (50)

Now re-express k in terms of a and c , using e�
1�c=a;

k�
(2 � e)e
(1 � e)2�

1 �
c

a

 !
1 �

c

a

 !

c

a

 !2 �

1 �
c

a

 !2

c

a

 !2

�
a

c

 !2

�1; (51)

so

1�k�
a

c

 !2

(52)

Plug (51) and (52) into (50) to obtain the SEMIMINOR

AXIS of the projected oblate spheroid,



c?�a

cos2 B �
a

c

 !2

sin2 B

cos B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c

 !2

1 �
a

c

 !2

tan2 B

2
4

3
5

vuuut

�a

cos2 B �
a

c

 !2

sin2 B

a

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 B �

a

c

 !2

sin2 B

vuut

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 B�

a

c

 !2

sin2 B

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 cos2 B�a2 sin2 B

p

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�e)2 cos2 B�sin2 B

q
: (53)

We wish to find the equation for a spheroid which has
been rotated about the x�x?/-axis by ANGLE B , then
the Z -AXIS by ANGLE P

x?
y?
z?

2
4
3
5� 1 0 0

0 cos B sin B
0 �sin B cos B

2
4

3
5 cos P 0 sin P

0 1 0
�sin P 0 cos P

2
4

3
5 x

y
z

2
4
3
5

�
cos P 0 sin P

�sin B sin P cos B sin B cos P
�cos B sin P �sin B cos B cos P

2
4

3
5 x

y
z

2
4
3
5: (54)

Now, in the original coordinates (x?; y?; z?); the spher-
oid is given by the equation

x?

a2

2

�
y?

c2

2

�
z?2

a2
�1; (55)

which becomes in the new coordinates,

(x cos P � y sin P)2

a2

�
(�x sin B sin P � z cos B � y sin B cos P)2

a2

�
(�x cos B sin P � z sin B � y cos B cos P)2

c2
�1:

(56)

Collecting COEFFICIENTS,

Ax2�By2�Cz2�Dxy�Exz�Fyz�1; (57)

where

A�
cos2 P � sin2 B sin2 P

a2
�

cos2 B sin2 P

c2
(58)

B�
sin2 P � sin2 B cos2 P

a2
�

cos2 B cos2 P

c2
(59)

C�
cos2 B

a2
�

sin2 B

c2
(60)

D�2 cos P sin P
1 � sin2 B

a2
�

cos2 B

c2

 !

�2 cos P sin P cos2 B
1

a2
�

1

c2

 !
(61)

E�2 sin B cos B sin P
1

b2
�

1

a2

 !
(62)

F�2 sin B cos B cos P
1

a2
�

1

b2

 !
: (63)

If we are interested in computing z , the radial
distance from the symmetry axis of the spheroid (y )
corresponding to a point

Cz2�(Ex�Fy)z�(Ax2�By2�Dxy�1)

�Cz2�G(x; y)z�H(x; y)�0; (64)

where

G(x; y)�Ex�Fy (65)

H(x; y)�Ax2�By2�Dxy�1: (66)

z can now be computed using the quadratic equation
when (x, y ) is given,

z�
�G(x; y) 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2(x; y) � 4CG(x; y)

p
2C

: (67)

If P�0, then we have sin P�0 and cos P�1; so (58)
to (63) and (65) to (66) become

A�
1

a2
(68)

B�
sin2 B

a2
�

cos2 B

b2
(69)

C�
cos2 B

a2
�

sin2 B

b2
(70)

D�0 (71)

E�0 (72)

F�2 sin B cos B
1

a2
�

1

b2

 !
(73)

G(x; y)�Fy�2y sin B cos B
1

a2
�

1

b2

 !
(74)



H(x; y) �Ax2 �By2 �1

�
x2

a2 
�y2 sin2 B

a2
�

cos2 B

b2

 !
�1: (75)

See also APPLE, DARWIN-DE SITTER SPHEROID, ELLIP-

SOID, OBLATE SPHEROIDAL COORDINATES, PROLATE

SPHEROID, SPHERE, SPHEROID
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Oblate Spheroid Geodesic
The GEODESIC on an OBLATE SPHEROID can be com-
puted analytically, although the resulting expression
is much more unwieldy than for a simple SPHERE. A
spheroid with equatorial radius a and polar radius c
can be specified parametrically by

x�a sin v cos u (1)

y�a sin v sin u (2)

z�c cos v; (3)

where a�c . Using the first PARTIAL DERIVATIVES

@x

@u
��a sin v sin u

@x

@v
�a cos v cos u (4)

@y

@u
�a sin v cos u

@y

@v
�a cos v sin u (5)

@z

@u
�0

@z

@v
��c sin v; (6)

and second PARTIAL DERIVATIVES

@2x

@u2
��a sin v cos u

@2x

@v2
��a sin v cos u (7)

@2y

@u2
��a sin v sin u

@2y

@v2
��a sin v sin u (8)

@2z

@u2
�0

@2z

@v2
��z cos v; (9)

gives the GEODESICS functions as

P�
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2

�a2(sin2 v cos2 u�sin2 v sin2 u)

�a2 sin2 v (10)

Q�
@x

@u

@x

@v
�

@y

@u

@y

@v
�

@z

@u

@z

@v
�0 (11)

R�
@x

@v

 !2

�
@y

@v

 !2

�
@z

@v

 !2

�a2�(c2�a2)sin2 v�a2(1�e2 sin2 v); (12)

where

e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

a2

s
(13)

is the ELLIPTICITY.

Since Q�0 and P and R are explicit functions of v
only, we can use the special form of the GEODESIC

equation

u�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

P2 � c2
1P

s
dv�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2(1 � e2 sin2 v)

a4 sin4 v � c2
1a2 sin2 v

s
dv

�
1

c1
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 sin2 v

a
c1

� 2

sin2 v � 1

vuuut dv

sin v
: (14)

Integrating gives

u�

�

e2F f½
(d2 � 1)e2

d2 � e2

 !
� d2P d2 � 1; f½

(d2 � 1)e2

d2 � e2

 !
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � e2

p ;

(15)

where

d�
a

c1

(16)

cos f�
d cos vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 1

p ; (17)

/F(f½m) is an ELLIPTIC INTEGRAL OF THE FIRST KIND

with PARAMETER m , and P(f½m; k) is an ELLIPTIC

INTEGRAL OF THE THIRD KIND.

GEODESICS other than MERIDIANS of an OBLATE

SPHEROID undulate between two parallels with lati-
tudes equidistant from the equator. Using the WEIER-

STRASS SIGMA FUNCTION and WEIERSTRASS ZETA

FUNCTION, the GEODESIC on the OBLATE SPHEROID

can be written as

x�iy�k
s(a � u)

s(u)s(a)
eu[h�z(v�a)] (18)

x�iy�k
s(a � u)

s(u)s(a)
e�u[h�z(v�a)] (19)



z2 � l2 s( vƒ� u)(vƒ� u)

s2(u) s2(a) 
(20)

(Forsyth 1960, pp. 108 �/109; Halphen 1886 �/1891).

The equation of the GEODESIC can be put in the form

df �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 sin2 v

p
sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 v � sin2 a
p

sin v
dv; (21)

where a is the smallest value of v on the curve.
Furthermore, the difference in longitude between
points of highest and next lowest latitude on the
curve is

p �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 sin2 a

p
sin a g  

k

0

dn u � dn2 u

1 � cot2 a sn2 u
du; (22)

where the MODULUS of the ELLIPTIC FUNCTION is

k �
e cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � e2 sin2 a
p (23)

(Forsyth 1960, p. 446).

See also ELLIPSOID GEODESIC, OBLATE SPHEROID,
SPHERE GEODESIC
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Oblate Spheroidal Coordinates

A system of CURVILINEAR COORDINATES in which two
sets of coordinate surfaces are obtained by revolving
the curves of the ELLIPTIC CYLINDRICAL COORDINATES

about the Y -AXIS which is relabeled the Z -AXIS. The
third set of coordinates consists of planes passing
through this axis.

x�a cosh j cos h cos f (1)

y�a cosh j cos h sin f (2)

z�a sinh j sin h; (3)

where j � 0; �½ Þ; h � [�p=2; p=2]; and f � 0; 2p½ Þ: Arf-
ken (1970) uses (u; v; 8 ) instead of (j; h; f): The
SCALE FACTORS are

hj�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

j�sin2 h

q
(4)

hh�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

j�sin2 h

q
(5)

hf�a cosh j cos h: (6)

The LAPLACIAN is

92f �
1

a3(sinh2
j� sinh2

h)cosh j cos h

� @f

@j
a cosh j cos h

@f

@h

 !
�

@f

@h
a cosh j cos h

@f

@h

 !"

�
a2(sinh2

j� sinh2
h)

a cosh j cos h

@2f

@f2

�

�
1

a3(sinh2
j� sinh2

h)cosh j cos h

� a sinh j cos h
@f

@j
�a cosh j cos h

@2f

@j2

"

�a sinh j cos h
@f

@h
�a cosh j cos h

@2f

@h2

�

�
1

a2(sinh2
j� sinh2

h)

@2f

@f2
�

1

a2(sinh2
j� sinh2

h)

� 1

cosh j

@

@j
cosh j

@f

@j

 !
�

1

cosh h

@

@h
cosh h

@f

@h

 !" #

�
1

a2(cosh2
j� cos2 h)

@2f

@f2 (7)

�
1

sinh2
h� sinh2

j

� (sech2
j tan2 h�sec2 tanh2

j)
@2

@f2
�tanh j

@

@j

"

�
@2

@j2�tan h
@

h
�

@2

h2

�
: (8)

An alternate form useful for "two-center" problems is
defined by

j1�sinh j (9)

j?1�cosh j (10)

j2�cos h (11)

j3�f; (12)

where j1 � [1; �]; j2 � [�1; 1]; and j3 � [0; 2p): In



these coordinates,

y �a j?1 j2 sin j3 (13)

z �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(j?12 �1)(1 � j2

2)
q

(14)

x �a j?1 j2 cos j3 (15)

(Abramowitz and Stegun 1972). The SCALE FACTORS

are

hj1
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 � j2
2

j2
1 � 1

s
(16)

hj2
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 � j2
2

1 � j2
2

s
(17)

hj3
�a jh; (18)

and the LAPLACIAN is

92f �
1

a2

1

j2
1 � j2

2

@

@ j1

(j2
1 �1)

@f

@ j1

" #(

�
1

j2
1 � j2

2

@

@ j2

(1 � j2
2)

@f

@ j2

" #

�
1

( j2
1 � 1)(1 � j2

2)

@2f

@ j2
3

�
: (19)

The HELMHOLTZ DIFFERENTIAL EQUATION is separ-
able.

See also HELMHOLTZ DIFFERENTIAL EQUATION–OB-

LATE SPHEROIDAL COORDINATES, LATITUDE, LONG-

ITUDE, PROLATE SPHEROIDAL COORDINATES,
SPHERICAL COORDINATES
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Oblate Spheroidal Wave Function
The wave equation in OBLATE SPHEROIDAL COORDI-

NATES is

92 F�k2 F�
@

@ j1

( j2
1 �1)

@F
@ j1

" #

�
@

@ j2

(1 � j2
2)

@F
@ j2

" #
�

j2
1 � j2

2

(j2
1 � 1)(1 � x2

2)

@2 F
@ f2

�c( j2
1 � j2

2) F�0 ; (1)

where

c �1
2 ak : (2)

Substitute in a trial solution

F�Rmn(c ; j1)Smn(c ; j2)cos
sin(mf): (3)

The radial differential equation is

d

dj2

(1 � j2
2)

d

d j2

Smn(c ; j2)

" #

� lmn �c2 j2
2 �

m2

1 � j2
2

 !
Rmn(c; j2) �0; (4)

and the angular differential equation is

d

dj2

(1 � j2
2)

d

d j2

Smn(c ; j2)

" #

� lmn �c2 j2
2 �

m2

1 � j2
2

 !
Rmn(c ; j2) �0 (5)

(Abramowitz and Stegun 1972, pp. 753 �/755; Zwillin-
ger 1997, p. 127).

See also PROLATE SPHEROIDAL WAVE FUNCTION,
SPHEROIDAL WAVE FUNCTION
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Oblateness
FLATTENING

Oblique Angle
An ANGLE which is not a RIGHT ANGLE.

Oblique Cylinder
CYLINDER

Oblique Prism
PRISM

Oblique Triangle
A TRIANGLE that is not a RIGHT TRIANGLE.



See also RIGHT TRIANGLE, TRIANGLE
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Oblong Number
PRONIC NUMBER

Obstruction
Obstruction theory studies the extensibility of MAPS

using algebraic GADGETS. While the terminology
rapidly becomes technical and convoluted (as Iyanaga
and Kawada note, "It is extremely difficult to discuss
higher obstructions in general since they involve
many complexities"), the ideas associated with ob-
structions are very important in modern ALGEBRAIC

TOPOLOGY.

See also ALGEBRAIC TOPOLOGY, CHERN CLASS, EILEN-

BERG-MAC LANE SPACE, STIEFEL-WHITNEY CLASS
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Obtuse Angle

An ANGLE greater than p=2 RADIANS (908) and less
than p RADIANS (180 8).

See also ACUTE ANGLE, FULL ANGLE, OBTUSE TRIAN-

GLE, REFLEX ANGLE, RIGHT ANGLE, STRAIGHT ANGLE

Obtuse Triangle

An obtuse triangle is a TRIANGLE in which one of the
ANGLES is an OBTUSE ANGLE. (Obviously, only a single
ANGLE in a TRIANGLE can be OBTUSE or it wouldn’t be
a TRIANGLE.) A triangle must be either obtuse, ACUTE,
or RIGHT.
From the LAW OF COSINES, for a triangle with side
lengths a , b , and c ,

cos C�
a2 � b2 � c2

2ab
;

with C the angle opposite side C . For an angle to be

obtuse, cos CB0: Therefore, an obtuse triangle satis-
fies one of a2�b2Bc2; b2�c2Ba2; or c2�a2Bb2:/

An obtuse triangle can be dissected into no fewer than
seven ACUTE TRIANGLES (Wells 1986, p. 71).

A famous problem is to find the chance that three
points picked randomly in a PLANE are the VERTICES

of an obtuse triangle (Eisenberg and Sullivan 1996).
Unfortunately, the solution of the problem depends
on the procedure used to pick the "random" points
(Portnoy 1994). In fact, it is impossible to pick random
variables which are uniformly distributed in the
plane (Eisenberg and Sullivan 1996). Guy (1993)
gives a variety of solutions to the problem. Woolhouse
(1886) solved the problem by picking uniformly
distributed points in the unit DISK, and obtained

P2�1�
4

p2
�

1

8

 !
�

9

8
�

4

p2
�0:719715 . . . : (1)

The problem was generalized by Hall (1982) to n -D
BALL TRIANGLE PICKING, and Buchta (1986) gave
closed form evaluations for Hall’s integrals.

Lewis Carroll (1893) posed and gave another solution
to the problem as follows. Call the longest side of a
TRIANGLE AB , and call the DIAMETER 2r: Draw arcs
from A and B of RADIUS 2r: Because the longest side
of the TRIANGLE is defined to be AB , the third VERTEX

of the TRIANGLE must lie within the region ABCA . If
the third VERTEX lies within the SEMICIRCLE, the
TRIANGLE is an obtuse triangle. If the VERTEX lies on
the SEMICIRCLE (which will happen with probability
0), the TRIANGLE is a RIGHT TRIANGLE. Otherwise, it is
an ACUTE TRIANGLE. The chance of obtaining an
obtuse triangle is then the ratio of the AREA of the
SEMICIRCLE to that of ABCA . The AREA of ABCA is
then twice the AREA of a SECTOR minus the AREA of
the TRIANGLE.

Awhole f igure�2
4pr2

6

 !
�

ffiffiffi
3

p
r2�r2 4

3 p�
ffiffiffi
3

p� 
: (2)

Therefore,

P�
1
2 pr2

r2 4
3 p�

ffiffiffi
3

p� � 3p

8p� 6
ffiffiffi
3

p �0:63938 . . . : (3)



See also ACUTE ANGLE, ACUTE TRIANGLE, BALL

TRIANGLE PICKING, OBTUSE ANGLE, RIGHT TRIANGLE,
TRIANGLE
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Ochoa Curve
The ELLIPTIC CURVE

3Y2 �2X3 �386X2 �256X �58195;

given in WEIERSTRASS FORM as

y2 �x3 �440067x �106074110 :

The complete set of solutions to this equation consists
of (x; y)/ � (�761, 504), ( �745, 4520), ( �557, 13356),
( �446, 14616), (�17, 10656), (91, 8172), (227, 4228),
(247, 3528), (271, 2592), (455, 200), (499, 3276), (523,
4356), (530, 4660), (599, 7576), (751, 14112), (1003,
25956), (1862, 75778), (3511, 204552), (5287, 381528),
(23527, 3607272), (64507, 16382772), (100102,
31670478), and (1657891, 2134685628) (Stroeker
and de Weger 1994).
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Octacontagon

An 80-sided POLYGON.

Octadecagon

An 18-sided POLYGON, sometimes also called an
OCTAKAIDECAGON.

See also POLYGON, REGULAR POLYGON, TRIGONOME-

TRY VALUES PI/18

Octagon

An octagon is an eight-sided POLYGON. The INRADIUS

r , CIRCUMRADIUS R , and AREA A of the regular
octagon can be computed directly from the formulas
for a general REGULAR POLYGON with side length s
and n�8 sides as

r�1
2 s cot

p

8

 !
�1

2 1�
ffiffiffi
2

p� 
s (1)

R�1
2s csc

p

8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

ffiffiffi
2

pq
s (2)

A�1
4ns2 cot

p

8

 !
�2 1�

ffiffiffi
2

p� 
s2: (3)



See also OCTAHEDRON, POLYGON, REGULAR POLYGON,
TRIGONOMETRY VALUES PI/8

Octagonal Heptagonal Number
A number which is simultaneously OCTAGONAL and
HEPTAGONAL. Let Om denote the mth OCTAGONAL

NUMBER and Hn the nth HEPTAGONAL NUMBER, then a
number which is both octagonal and hexagonal
satisfies the equation Hn �Om ; or

1
2 n(5n �3) �m(3m �2): (1)

COMPLETING THE SQUARE and rearranging gives

3(10n �3)2 �40(3m �1)2 ��13 : (2)

Therefore, defining

x �(10n �3) (3)

y �2(3m �1) (4)

gives the second-order Diophantine equation

3x2 �10y2 ��13 (5)

The first few solutions are (x; y)/ � (3, 2), (7, 4), (73,
40), (157, 86), .... These give the integer solutions (1,
1), (345, 315), (166145, 151669), ... (Sloane’s A048904
and A048905), corresponding to the octagonal hepta-
gonal numbers 1, 297045, 69010153345, ... (Sloane’s
A048906).

See also HEPTAGONAL NUMBER, OCTAGONAL NUMBER

References
Sloane, N. J. A. Sequences A048904, A048905, and A048906

in "An On-Line Version of the Encyclopedia of Integer
Sequences." http://www.research.att.com/~njas/se-
quences/eisonline.html.

Octagonal Hexagonal Number
A number which is simultaneously OCTAGONAL and
HEXAGONAL. Let On denote the nth OCTAGONAL

NUMBER and Hm the mth HEXAGONAL NUMBER, then
a number which is both octagonal and hexagonal
satisfies the equation On �Hm ; or

n(3n �2) �m(2m �1): (1)

COMPLETING THE SQUARE and rearranging gives

8(3n �1)2 �3(4m �1)2 �5 : (2)

Therefore, defining

x �2(3n �1) (3)

y �4m �1 (4)

gives the second-order Diophantine equation

2x2 �3y2 �5 (5)

The first few solutions are (x; y)/ � (2, 1), (4, 3), (16,

13), (38, 31), (158, 129), (376, 307), .... These give the
solutions (n;m) �(2=3; 1=2)/, (1, 1), (3, /7=2/), (/20 =3/, 8),
(/80=3/, /65 =2/), (63, 77), ..., of which the integer solutions
are (1, 1), (63, 77), (6141, 7521), (601723, 736957), ...
(Sloane’s A046190 and A046191), corresponding to
the octagonal hexagonal numbers 1, 11781,
113123361, 1086210502741, ... (Sloane’s A046192).

See also HEXAGONAL NUMBER, OCTAGONAL NUMBER,
OCTAGONAL PENTAGONAL NUMBER, OCTAGONAL

SQUARE NUMBER, OCTAGONAL TRIANGULAR NUMBER

References
Sloane, N. J. A. Sequences A046190, A046191, and A046192

in "An On-Line Version of the Encyclopedia of Integer
Sequences." http://www.research.att.com/~njas/se-
quences/eisonline.html.

Octagonal Number

A POLYGONAL NUMBER OF THE FORM n(3n �2): The
first few are 1, 8, 21, 40, 65, 96, 133, 176, ... (Sloane’s
A000567). The GENERATING FUNCTION for the octago-
nal numbers is

x(5x � 1)

(1 � x)3 �x �8x2 �21x3 �40x4 �. . .  :

See also OCTAGONAL HEPTAGONAL NUMBER, OCTAGO-

NAL HEXAGONAL NUMBER, OCTAGONAL PENTAGONAL

NUMBER, OCTAGONAL SQUARE NUMBER, OCTAGONAL

TRIANGULAR NUMBER

References
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Octagonal Pentagonal Number
A number which is simultaneously OCTAGONAL and
PENTAGONAL. Let On denote the nth OCTAGONAL

NUMBER and Pm the mth PENTAGONAL NUMBER,
then a number which is both octagonal and pentago-
nal satisfies the equation On�Pm; or

n(3n�2)�1
2 m(3m�1): (1)

COMPLETING THE SQUARE and rearranging gives

(6m�1)2�8(3n�1)2��7: (2)



Therefore, defining

x �(6m �1) (3)

y �2(3n �1) (4)

gives the PELL EQUATION

x2 �2y2 ��7 : (5)

The first few solutions are (x; y)/ � (1, 2), (5, 4), (11, 8),
(31, 22), (65, 46), .... These give the solutions
(n;m) �(1=3; 2=3)/, (1, 1), (2, /5=3/), (/16=3/, 4), (11, 8),
..., of which the integer solutions are (1, 1), (11, 8),
(1025, 725), (12507, 8844), ... (Sloane’s A046187 and
A046188), corresponding to the octagonal pentagonal
numbers 1, 176, 1575425, 234631320,
2098015778145, ... (Sloane’s A046189).

See also OCTAGONAL NUMBER, PENTAGONAL NUMBER

References
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Sequences." http://www.research.att.com/~njas/se-
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Octagonal Prism

A PRISM composed of octagonal faces. The regular
right octagonal prism of unit edge length has SUR-

FACE AREA and VOLUME

S �4 3�
ffiffiffi
2

p� 
V �2 1�

ffiffiffi
2

p� 
:

See also PRISM

Octagonal Square Number
A number which is simultaneously OCTAGONAL and
SQUARE. Let On denote the nth OCTAGONAL NUMBER

and Tm the mth SQUARE NUMBER, then a number
which is both octagonal and square satisfies the
equation On �Sm ; or

n(3n �2) �m2 : (1)

COMPLETING THE SQUARE and rearranging gives

(3n �1)2 �3m2 �1: (2)

Therefore, defining

x �(3n �1) (3)

y �m (4)

gives the PELL EQUATION

x2 �3y2 �1 (5)

The first few solutions are (x; y)/ � (2, 1), (7, 4), (26,
15), (97, 56), (362, 209), (1351, 780), .... These give the
solutions (n;m)/ � (1, 1), (/8=3/, 4), (9, 15), (/98 =3/, 56),
(121, 209), ..., of which the integer solutions are (1, 1),
(9, 15), (121, 209), (1681, 2911), ... (Sloane’s A046184
and A028230), corresponding to the octagonal square
numbers 1, 225, 43681, 8473921, 1643897025, ...
(Sloane’s A036428).

See also OCTAGONAL NUMBER, SQUARE NUMBER
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Octagonal Triangular Number
A number which is simultaneously OCTAGONAL and
TRIANGULAR. Let On denote the nth OCTAGONAL

NUMBER and Tm the mth TRIANGULAR NUMBER, then
a number which is both octagonal and triangular
satisfies the equation On�Tm; or

n(3n�2)�1
2 m(m�1): (1)

COMPLETING THE SQUARE and rearranging gives

8(3n�1)2�3(2m�1)2�5: (2)

Therefore, defining

x�2(2n�1) (3)

y�2m�1 (4)

gives the second-order Diophantine equation

2x2�3y2�5 (5)

The first few solutions are (x; y)/� (2, 1), (4, 3), (16,
13), (38, 31), (158, 129), (376, 307), .... These give the
solutions (n;m)�(2=3; 0)/, (1, 1), (3, 6), (/20=3/, 15),
(/80=3/, 64), (63, 153), ..., of which the integer solutions
are (1, 1), (3, 6), (63, 153), (261, 638), (6141, 15041),
(25543, 62566), (601723, 1473913), ... (Sloane’s



A046181 and A046182), corresponding to the penta-
gonal hexagonal numbers 1, 21, 11781, 203841,
113123361, ... (Sloane’s A046183).

See also HEXAGONAL NUMBER, OCTAGONAL HEXAGO-

NAL NUMBER, PENTAGONAL NUMBER
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Octagram

The STAR POLYGON f8 =3g:/

Octahedral Graph
A PLATONIC GRAPH on eight nodes. There are 257
topologically distinct octahedral graphs, as first en-
umerated by Kirkman (1862) and Hermes (1899ab,
1900, 1901; Federico 1969; Duijvestijn and Federico
1981).

Confusingly, the term "octahedral graph" is also used
to refer to the 6-vertex POLYHEDRAL GRAPH having the
connectivity of the OCTAHEDRON. It is isomorphic to
the CIRCULANT GRAPH Ci1;2(6): Several circular em-
beddings of this graph are illustrated above. The
octahedral graph has 6 nodes, 12 edges, VERTEX

CONNECTIVITY 4, EDGE CONNECTIVITY 4, GRAPH DIA-

METER 2, GRAPH RADIUS 2, and GIRTH 3. It has
CHROMATIC POLYNOMIAL

pG(z) �z6 �12z5 �58z4 �137z3 �154z2 �64z ;

and CHROMATIC NUMBER 3.

See also CIRCULANT GRAPH, CUBICAL GRAPH, DODE-

CAHEDRAL GRAPH, ICOSAHEDRAL GRAPH, OCTAHE-

DRON, PLATONIC GRAPH, POLYHEDRAL GRAPH,
TETRAHEDRAL GRAPH
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Octahedral Group
The POINT GROUP of symmetries of the OCTAHEDRON

having order 24 and denoted Oh : It is also the
symmetry group of the CUBE, CUBOCTAHEDRON, and
TRUNCATED OCTAHEDRON. It has symmetry opera-
tions E , 8C3 ; 6C4 ; 6C2 ; 3C2 �C2

4 ; i , 6S4 ; 8S6 ; 3sh ;
and 6s4 (Cotton 1990).

See also CUBE, CUBOCTAHEDRON, ICOSAHEDRAL

GROUP, OCTAHEDRON, POINT GROUPS, POLYHEDRAL

GROUP, TETRAHEDRAL GROUP, TRUNCATED OCTAHE-

DRON
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Octahedral Number
A FIGURATE NUMBER which is the sum of two
consecutive PYRAMIDAL NUMBERS,

On�Pn�1�Pn�
1
3 n(2n2�1): (1)

The first few are 1, 6, 19, 44, 85, 146, 231, 344, 489,
670, 891, 1156, ... (Sloane’s A005900). The GENERAT-

ING FUNCTION for the octahedral numbers is

x(x � 1)2

(x � 1)4 �x�6x2�19x3�44x4�. . . : (2)



A related set of numbers is the number of cubes in the
HAUY CONSTRUCTION of the OCTAHEDRON. Each CROSS

SECTION has area

Sn�n�2
X

i�1;3;...;n�2

i�1
2(n

2�1); (3)

where n is an ODD NUMBER, and adding all CROSS

SECTIONS gives

HOk�Sk�2
X

i�1;3;...;k�2

Si�
1
6 k�(k2�5); (4)

for k an ODD NUMBER. Re-indexing so that k�2n�1
gives

HOn�
1
3(2n�1)(2n2�2n�3); (5)

the first few values of which are 1, 7, 25, 63, 129, ...
(Sloane’s A001845). These numbers have the GENER-

ATING FUNCTION

f (x)�
(1 � x)3

(1 � x)4

�1�7x�25x2�63x3�129x4�. . . : (6)

See also HAUY CONSTRUCTION, OCTAHEDRON, TRUN-

CATED OCTAHEDRAL NUMBER
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Octahedron

The PLATONIC SOLID P3 with six VERTICES, 12 EDGES,
and eight equivalent EQUILATERAL TRIANGULAR faces,
8f3g: It is also UNIFORM POLYHEDRON U5 and Wen-

ninger model W2: It is given by the SCHLÄFLI SYMBOL

f3; 4g and WYTHOFF SYMBOL 4½23:/

The octahedron of unit side length is the ANTIPRISM of
n�3 sides with height h�

ffiffiffi
6

p
=3: The DUAL POLYHE-

DRON of the octahedron is the CUBE. Like the CUBE, it
has the Oh OCTAHEDRAL GROUP of symmetries. The
connectivity of the vertices is given by the OCTAHE-

DRAL GRAPH.

The octahedron has a single STELLATION: the STELLA

OCTANGULA. The solid bounded by the two TETRAHE-

DRA of the STELLA OCTANGULA (left figure) is an
octahedron (right figure; Ball and Coxeter 1987).

The following table gives polyhedra which can be
constructed by CUMULATION of an octahedron by
pyramids of given heights h .

h /(r�h)=h/ Result

/

ffiffiffi
3

p
�2

3

ffiffiffi
6

p
/ /5�3

ffiffiffi
2

p
/ SMALL TRIAKIS

OCTAHEDRON

/
1
3

ffiffiffi
6

p
/ 3 STELLA

OCTANGULA



In one orientation (left figure), the VERTICES are given
by (91; 0; 0); (0;91; 0); (0; 0;91): In another orienta-
tion (right figure), the vertices are (91;91; 0) and
0; 0;9

ffiffiffi
2

p� �
:/

The face planes are 9x9y9z�1; so a solid octahe-
dron is given by the equation

½x½�½y½� ½z½51: (1)

If the edges of an octahedron are divided in the
GOLDEN RATIO such that the points of division for any
face form an EQUILATERAL TRIANGLE, then the twelve
points of division form an ICOSAHEDRON (Wells 1991).
In fact, there are two ways in which the edges can be
internally divided in the GOLDEN RATIO and two ways
in which they can be externally divided, resulting in
four possible icosahedra. Keeping the same connec-
tivity, but reversing the long and short ends of the
division gives JESSEN’S ORTHOGONAL ICOSAHEDRON.

A plane PERPENDICULAR to a C3 axis of an octahedron
cuts the solid in a regular HEXAGONAL CROSS SECTION

(Holden 1991, pp. 22�/23). Since there are four such
axes, there are four possible HEXAGONAL CROSS

SECTIONS.

The centers of the faces of an octahedron form a CUBE,
and the centers of the faces of a CUBE form an
octahedron (Steinhaus 1983, pp. 194�/195). Faceted
forms of the octahedron include the CUBOCTATRUN-

CATED CUBOCTAHEDRON and TETRAHEMIHEXAHEDRON.

Let an octahedron be length a on a side. The height of
the top VERTEX from the square plane is also the
CIRCUMRADIUS

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�d2

p
; (2)

where

d�1
2

ffiffiffi
2

p
a (3)

is the diagonal length, so



R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �1

2 a
2

q
�1

2

ffiffiffi
2

p
a :0 :70710a: (4)

Now compute the INRADIUS.

l �1
2

ffiffiffi
3

p
a (5)

b �1
2 a (6)

s �1
2 a tan 30 ��

a

2
ffiffiffi
3

p ; (7)

so

s

l 
�

1

2
ffiffiffi
3

p 2ffiffiffi
3

p �1
3 : (8)

Use similar TRIANGLES to obtain

b ?�
s

l
b �1

6 a (9)

z?�
s

l
z �

a

3
ffiffiffi
2

p (10)

x �b �b?�1
2 a �1

6 a �1
3 a; (11)

so the INRADIUS is

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �z ?2

p
�a

ffiffiffiffiffiffiffiffiffiffiffi
1
9 �

1
18

q
�1

6

ffiffiffi
6

p
a :0:40824a; (12)

and twice the INRADIUS gives the height of the
octahedron viewed as a 3-sided ANTIPRISM. The
MIDRADIUS of the octahedron is

r �1
2 a �0:5a : (13)

The AREA of one face is the AREA of an EQUILATERAL

TRIANGLE

A �1
4

ffiffiffi
3

p
a2 : (14)

The volume is two times the volume of a square-base
pyramid,

V �2 1
3 a

2R
� 

�2 1
3

� 
a2
� �

1
2

ffiffiffi
2

p
a

� 
�1

3

ffiffiffi
2

p
a3 : (15)

The DIHEDRAL ANGLE is

a �cos�1 �1
3

� 
:109:47�: (16)

The octahedron can be built using a HAUY CONSTRUC-

TION. The Hauy octahedral numbers

HOn �
1
3(2n �1)(2n2 �2n �3) (17)

give another method for calculating the VOLUME of
the octahedron,

V � lim
n0�

HOn

a

n
ffiffiffi
2

p
 !3

�1
3

ffiffiffi
2

p
a3 ; (18)

in agreement with the result derived above.

See also ANTIPRISM, DÜ RER’S SOLID, HAUY CONSTRUC-

TION, ICOSAHEDRON, JUMPING OCTAHEDRON, OCTAHE-

DRAL GRAPH, OCTAHEDRAL GROUP, OCTAHEDRON 3-

COMPOUND, OCTAHEDRON 5-COMPOUND, PLATONIC

SOLID, STELLA OCTANGULA, TRUNCATED OCTAHE-

DRON
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Octahedron 3-Compound

A POLYHEDRON COMPOUND consisting of three octahe-
dra.

See also OCTAHEDRON, OCTAHEDRON 5-COMPOUND



Octahedron 5-Compound

A POLYHEDRON COMPOUND composed of five OCTAHE-

DRA occupying the VERTICES of an ICOSAHEDRON. The
30 VERTICES of the compound form an ICOSIDODECA-

HEDRON (Ball and Coxeter 1987), and the solid is one
of the ICOSAHEDRON STELLATIONS (Wenninger 1983).
The octahedron 5-compound is the dual of the CUBE 5-

COMPOUND.

Constructing the octahedra as the duals of the CUBE 5-

COMPOUND where the cubes have unit edge lengths
give a solid with edge lengths

s1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 3 �

ffiffiffi
5

p� r
(1)

s2 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 7 �3

ffiffiffi
5

p� r
(2)

s3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �3

ffiffiffi
5

pq
(3)

s4 �3 �
ffiffiffi
5

p
: (4)

The CIRCUMRADIUS is

R �1 ; (5)

and the SURFACE AREA and VOLUME are

S �20
ffiffiffi
3

p
(6)

V �20
3 : (7)

The CONVEX HULL of the octahedron 5-compound is
the ICOSIDODECAHEDRON.

See also CUBE 5-COMPOUND, CUBE 5-COMPOUND–

OCTAHEDRON 5-COMPOUND, ICOSAHEDRON STELLA-

TIONS, ICOSIDODECAHEDRON, OCTAHEDRON, OCTAHE-

DRON 3-COMPOUND, OCTAHEDRON 6-COMPOUND,
POLYHEDRON COMPOUND, STELLA OCTANGULA
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Octahedron 6-Compound

See also OCTAHEDRON, OCTAHEDRON 3-COMPOUND,
OCTAHEDRON 5-COMPOUND

Octahedron Stellation
STELLA OCTANGULA

Octahemioctacron

The DUAL POLYHEDRON of the OCTAHEMIOCTAHEDRON

U3 and Wenninger dual W68 : When rendered, the
octahemioctacron and HEXAHEMIOCTACRON appear
the same.

See also DUAL POLYHEDRON, HEXAHEMIOCTACRON,
OCTAHEMIOCTAHEDRON, UNIFORM POLYHEDRON
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Octahemioctahedron

The UNIFORM POLYHEDRON U3 ; also called the OCTA-

TETRAHEDRON, whose DUAL POLYHEDRON is the OCTA-

HEMIOCTACRON. It has WYTHOFF SYMBOL 3
23½3: Its

faces are 8 f3g�4 f6g: It is a FACETED CUBOCTAHE-

DRON. For unit edge length, its CIRCUMRADIUS is

R �1 :

The CONVEX HULL of the octahemioctahedron is the
CUBOCTAHEDRON.
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Octakaidecagon
OCTADECAGON

Octal
The base 8 notational system for representing REAL

NUMBERS. The digits used are 0, 1, 2, 3, 4, 5, 6, and 7,
so that 810 (8 in base 10) is REPRESENTED AS 108 (10 �
1 � 81 �0 � 80) in base 8. The following table gives the
octal equivalents of the first few decimal numbers.

1 1 11 13 21 25

2 2 12 14 22 26

3 3 13 15 23 27

4 4 14 16 24 30

5 5 15 17 25 31

6 6 16 20 26 32

7 7 17 21 27 33

8 10 18 22 28 34

9 11 19 23 29 35

10 12 20 24 30 36

See also BASE (NUMBER), BINARY, DECIMAL, HEXADE-

CIMAL, QUATERNARY, TERNARY
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Octant

One of the eight regions of SPACE defined by the eight
possible combinations of SIGNS (9;9;9) for x , y , and z .

See also QUADRANT



Octatetracontagon

A 48-faced POLYGON.

See also DISDYAKIS DODECAHEDRON, GREAT RHOMBI-

CUBOCTAHEDRON (ARCHIMEDEAN)

Octatetrahedron
OCTAHEMIOCTAHEDRON

Octave
A multiple of 2. The word should really be something
like "bicade" (by analogy with DECADE) but the "oct"
embedded in the stem of the word derives historically
to the fact that eight notes correspond to a factor of
two in frequency.

See also DECADE

Octiamond

An 8-POLYIAMOND.

See also OCTIAMOND TILING, POLYIAMOND

Octiamond Tiling

See also HEPTIAMOND TILING, HEXIAMOND TILING,
OCTIAMOND, PENTIAMOND TILING

References
Vichera, M. "Polyiamonds." http://alpha.ujep.cz/~vicher/puz-

zle/polyform/iamond/iamonds.htm.

Octic Reciprocity Theorem
The RECIPROCITY THEOREM for

x8 �q (mod p) :

See also RECIPROCITY THEOREM
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Octic Surface
An ALGEBRAIC SURFACE of degree eight. The max-
imum number of ORDINARY DOUBLE POINTS known to
exist on an octic surface is 168 (the ENDRAß OCTICS),
although the rigorous upper bound is 174.

See also ALGEBRAIC SURFACE, ENDRAß OCTIC, ORDIN-

ARY DOUBLE POINT

Octillion
In the American system, 1027.

See also LARGE NUMBER

Octodecillion
In the American system, 1057.

See also LARGE NUMBER

Octomino

An 8-POLYOMINO. There are 369 FREE, 2725 FIXED,
and 704 one-sided octominoes.

See also POLYOMINO

Octonion
CAYLEY NUMBER

Octothorpe
The number sign # sometimes used in mathematics to
indicate the number of a quantity satisfying some
condition, e.g., #fn : n > 1): The symbol is also used to
denote a PRIMORIAL.
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Odd Divisor Function
The sum of powers of ODD DIVISORS of a number. It is
the analog of the DIVISOR FUNCTION for odd divisors
only and is written s

oð Þ
k (n): For the case k�1,

s
oð Þ

1 (n)�s1(n)�2s1(n=2);

where sk(n=2) is defined to be 0 if n is ODD. The
following table gives the first few s

oð Þ
k (n):/

k Sloane /s
oð Þ

k (n)/

0 A001227 1, 1, 2, 1, 2, 2, 2, 1, 3, 2, ...

1 A000593 1, 1, 4, 1, 6, 4, 8, 1, 13, 6, ...



2 A050999 1, 1, 10, 1, 26, 10, 50, 1, 91, 26, ...

3 A051000 1, 1, 28, 1, 126, 28, 344, 1, 757, 126,
...

4 A051001 1, 1, 82, 1, 626, 82, 2402, 1, 6643,
626, ...

5 A051002 1, 1, 244, 1, 3126, 244, 16808, 1,
59293, 3126, ...

This function arises in Ramanujan’s EISENSTEIN

SERIES L(q) and in a RECURRENCE RELATION for the
PARTITION FUNCTION P .

See also DIVISOR FUNCTION, EVEN DIVISOR FUNCTION
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Odd Function
An odd function is a function for which f (x) ��f (�x):
An EVEN FUNCTION times an odd function is odd.

Odd Graph
An odd graph On is a graph having vertices given by
the n �1/-subsets of f1; . . . ; 2n �1g such that two
vertices are connected by an edge IFF the associated
subsets are disjoint (Biggs 1974). The number of
nodes in On is therefore 2n�1

n�1

� �
; where n

k

� �
is a BINOMIAL

COEFFICIENT. For n �1, 2, ..., the first few values are
1, 3, 10, 35, 126, ... (Sloane’s A001700).

/O2 is isomorphic to the COMPLETE GRAPH K3 ; and O3 is
the PETERSEN GRAPH (Skiena 1990, p. 162).

See also COMPLETE GRAPH, ODD NODE, PETERSEN

GRAPH
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Odd Node

A NODE in a GRAPH is said to be an odd node if its
VERTEX DEGREE is ODD.

See also EVEN NODE, GRAPH, NODE (GRAPH), ODD

GRAPH, VERTEX DEGREE

Odd Number
An INTEGER OF THE FORM N �2n �1; where n is an
INTEGER. The odd numbers are therefore ..., �3, �1,
1, 3, 5, 7, ... (Sloane’s A005408), which are also the
GNOMONIC NUMBERS. The GENERATING FUNCTION for
the odd numbers is

x(1 � x)

(x � 1)2 �x �3x2 �5x3 �7x4 �. . . :

Since the odd numbers leave a remainder of 1 when
divided by two, N �1 (mod 2) for odd N . Integers
which are not odd are called EVEN.

See also EVEN NUMBER, GNOMONIC NUMBER, NICO-

MACHUS’S THEOREM, ODD NUMBER THEOREM, ODD

PRIME
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Odd Number Theorem
The sum of the first n ODD NUMBERS is a SQUARE

NUMBER:

Xn

k �1

(2k �1) �2
Xn

k�1

k�
Xn

k�1

1�2
n(n � 1)

2

" #
�n

�n(n�1)�n�n2:

See also NICOMACHUS’S THEOREM, ODD NUMBER



Odd Order Theorem
FEIT-THOMPSON THEOREM

Odd Part

The odd part Od(n) of a positive integer n is defined
by

Od(n) �
n

2b(n) 
;

where b(n) is the exponent of the exact power of 2
dividing n . Od(n) is therefore the product of odd
factors of n . The values for n �1, 2, ..., are 1, 1, 3, 1, 5,
3, 7, 1, 9, 5, 11, ... (Sloane’s A000265). The odd part
function can be implemented in Mathematica as

OddPart[n_Integer] : � n/

2^IntegerExponent[n,2]

See also EVEN PART, GREATEST DIVIDING EXPONENT
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Odd Perfect Number
In Book IX of The Elements, Euclid gave a method for
constructing PERFECT NUMBERS (Dickson 1957, p. 3),
although this method applies only to even perfect
numbers. In a 1638 letter to Mersenne, Descartes
proposed that every even perfect number is of Euclid’s
form, and stated that he saw no reason why an odd
perfect number could not exist (Dickson 1957, p. 12).
Descartes was therefore among the first to consider
the existence off odd perfect numbers; prior to
Descartes, many authors had implicitly assumed
(without proof) that the perfect numbers generated
by Euclid’s construction comprised all possible perfect
numbers (Dickson 1957, pp. 6 �/12). In 1657, Frenicle
repeated Descartes’ belief that every even perfect
number is of Euclid’s form and that there was no

reason odd perfect could not exist. Like Frenicle,
Euler also considered odd perfect numbers.

To this day, it is not known if any odd perfect
numbers exist, although numbers up to 10300 have
been checked without success, making the existence
of odd perfect numbers appear unlikely (Brent et al.
1991; Guy 1994, p. 44). The following table sum-
marizes the development of ever-higher bounds for
the smallest possible odd perfect number.

author bound

Kanold (1957) 1020

Tuckerman (1973) 1036

Hagis (1973) 1050

Brent and Cohen (1989) 10160

Brent et al. (1991) 10300

Euler showed that an odd perfect number, if it exists,
must be OF THE FORM

m �p4 l �1Q2 ; (1)

where p is a prime of the form 4n �1; a result similar
to that derived by Frenicle in 1657 (Dickson 1957,
pp. 14 and 19). In 1887, Sylvester conjectured and in
1925, Gradshtein proved that any odd perfect number
must have at least six different prime aliquot factors
(Ball and Coxeter 1987). If it is not divisible by 3, an
odd perfect number must then have at least 11
different prime factors (Hagis 1983). Catalan (1888)
proved that if an ODD perfect number is not divisible
by 3, 5, or 7, it has at least 26 distinct prime aliquot
factors. Stuyvaert (1896) proved that an odd perfect
number must be a sum of squares.

See also ODD NUMBER, PERFECT NUMBER
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Odd Prime
Any PRIME NUMBER other than 2 (which is the unique
EVEN PRIME).

See also EVEN PRIME, PRIME NUMBER
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Odd Sequence
A SEQUENCE of n 0s and 1s is called an odd sequence
if each of the n SUMS an�k

i�1 aiai�k for k �0, 1, ..., n �1
is odd.
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Odd Triple
TWO-GRAPH

Odds
Betting odds are written in the form r : s ( and
correspond to the probability of winning P �s =(r �
s) : Therefore, given a probability P , the odds of
winning are (1=P) �1 : 1:/

See also FRACTION, RATIO, RATIONAL NUMBER
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ODE
ORDINARY DIFFERENTIAL EQUATION

Oesterlé-Masser Conjecture
ABC CONJECTURE

Of Order
ASYMPTOTIC NOTATION

Of Shape
OF THE FORM

Of the Form
An expression that is of a given type. For example, all
primes p �3 are "of the form" 6n 91 : The term "of
shape" is sometimes also used.

See also REPRESENTED AS
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Offset Curves
PARALLEL CURVES

Offset Rings
SURFACE OF REVOLUTION

Ogive

Any continuous cumulative frequency curve, such as
the one illustrated above in the right figure.

See also FREQUENCY POLYGON, HISTOGRAM
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Oldknow Points
The PERSPECTIVE CENTERS of a triangle and the
TANGENTIAL TRIANGLES of its inner and outer SODDY

CIRCLES, given by

Ol �I �2Ge

Ol ?�I �2Ge;

where I is the INCENTER and Ge is the GERGONNE

POINT.

See also GERGONNE POINT, INCENTER, PERSPECTIVE

CENTER, SODDY CIRCLES, TANGENTIAL TRIANGLE
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Oliveira’s Minimal Surface

See also MINIMAL SURFACE

Oloid
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Omega Constant

W(1) �0:5671432904 . . . ; (1)

where W(x) is LAMBERT’S W -FUNCTION. It is available
in Mathematica using the function ProductLog[1 ].
W(1) can be considered a sort of "GOLDEN RATIO" for
exponentials since

exp[�W(1)] �W(1) ; (2)

giving

ln
1

W(1)

" #
�W(1) : (3)

See also GOLDEN RATIO, LAMBERT’S W -FUNCTION
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Omega Function
LAMBERT’S W -FUNCTION

Omino
POLYOMINO

Omnific Integer
The appropriate notion of INTEGER for SURREAL

NUMBERS.

See also SURREAL NUMBER

O’Nan Group
The SPORADIC GROUP O’N.
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Onduloid
UNDULOID

One
1

One-Form
A linear real-valued FUNCTION v1 of VECTORS v such
that v1(v) �R : VECTORS (i.e., CONTRAVARIANT VEC-

TORS or "KETS" cj i) and one-forms (i.e., COVARIANT

VECTORS or "BRAS" fh j) are DUAL to each other.
Therefore

v1(v) �v v1
� �

� v1 ; v
� �

� f cj i:h

The operation of applying the one-form to a VECTOR

v1(v) is called CONTRACTION.

See also ANGLE BRACKET, BRA, CONTRAVARIANT

VECTOR, COVARIANT VECTOR, DIFFERENTIAL K -FORM,
KET, MEROMORPHIC ONE-FORM, TWO-FORM, VECTOR,
ZERO-FORM

One-Mouth Theorem
Except for convex polygons, every SIMPLE POLYGON

has at least one MOUTH.

See also MOUTH, PRINCIPAL VERTEX, TWO-EARS

THEOREM
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One-Ninth Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let lm; n be CHEBYSHEV CONSTANTS. Schönhage
(1973) proved that

lim
n0�

l0; n

� �1=n
�1

3: (1)

It was conjectured that

L� lim
n0�

ln; n

� �1=n
�1

9: (2)

Carpenter et al. (1984) obtained

L�0:1076539192 . . . (3)

numerically. Gonchar and Rakhmanov (1980) showed
that the limit exists and disproved the/1=9/ conjecture,
showing that L is given by

L�exp �
pK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

p� 
K(c)

2
4

3
5; (4)

where K is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, and c�0:9089085575485414 . . . is the
PARAMETER which solves



K(k) �2E(k) ; (5)

and E is the complete ELLIPTIC INTEGRAL OF THE

SECOND KIND. This gives the value for L computed by
Carpenter et al. (1984) L is also given by the unique
POSITIVE ROOT of

f (z) �1
8 ; (6)

where

f (z) �
X�
j�1

ajz
j (7)

and

aj �
X
d j j

(�1)dd

�����
����� (8)

(Gonchar and Rakhmanov 1980). aj may also be
computed by writing j as

j �2mpm1

1 pm2

2 � � �pmk

k ; (9)

where m ]0 and mi ]1; then

aj � 2m�1 �3
�� ��
� pm1 �1

1 � 1

p1 � 1

pm2 �1
2 � 1

p2 � 1
� � � pmk �1

k � 1

pk � 1
(10)

(Gonchar 1990). Yet another equation for L is due to
Magnus (1986). L is the unique solution with x � (0; 1)
of

X�
k�0

(2k �1)2(�x)k(k �1)=2 �0 ; (11)

an equation which had been studied and whose root
had been computed by Halphen (1886). It has there-
fore been suggested (Varga 1990) that the constant be
called the HALPHEN CONSTANT. 1=L is sometimes
called VARGA’S CONSTANT.

See also CHEBYSHEV CONSTANTS, HALPHEN CON-

STANT, VARGA’S CONSTANT
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One-Sheeted Hyperboloid
A HYPERBOLOID consisting of a single sheet.

See also HYPERBOLOID

One-to-One

Let f be a FUNCTION defined on a SET A and taking
values in a set B . Then f is said to be one-to-one
(a.k.a. an injection or embedding) if, whenever f (x) �
f (y) ; it must be the case that x �y . In other words, f is
one-to-one if it MAPS distinct objects to distinct
objects.
If the function is a linear OPERATOR which assigns a
unique MAP to each value in a VECTOR SPACE, it is
called one-to-one. Specifically, given a VECTOR SPACE

V with X ; Y �V; then a TRANSFORMATION T defined
on V is one-to-one if T(X) "T(Y) for all X "Y :/

A function which is both one-to-one and ONTO is said
to be a BIJECTION.

See also BIJECTION, DOMAIN, MANY-TO-ONE, ONTO,



RANGE (IMAGE)

One-Way Function
Informally, a function f is a one-way function if

1. The description of f is publicly known and does
not require any secret information for its opera-
tion.
2. Given x , it is easy to compute f (x) :/
3. Given y , in the range of f , it is hard to find an x
such that f (x) �y: More precisely, any efficient
algorithm (solving a P-PROBLEM succeeds in in-
verting f with negligible probability.

The existence of one-way functions is not proven. If
true, it would imply P "NP : Therefore, it would
answer the COMPLEXITY THEORY NP-PROBLEM ques-
tion of whether all apparently NP-problems are
actually P-problems. Yet a number of conjectured
one-way functions are routinely used in commerce
and industry. For example, it is conjectured, but not
proved, that the following are one-way functions:

1. Factoring problem: f (p ; q) �pq ; for randomly
chosen primes p, q .
2. Discrete logarithm problem: f (p ; g; x) �
p ; g; gx (mod p)h i; for g a generator of Zp �; for

some prime p .
3. Discrete root extraction problem: f (p ; q; e; y) �
pq ; e ; ye (mod pq)h i; for y in Zpq �; e in Zpq and

relatively prime to (p �1)(q �1); and p, q primes.
This is the function commonly known as RSA
ENCRYPTION.
4. SUBSET SUM PROBLEM: f (a; b) � an

i �1 aibi ; b
� �

;
for ai � f0; 1g; and n -bit integers bi :/
5. QUADRATIC RESIDUE problem.

See also NP-PROBLEM, ONE-WAY HASH FUNCTION, P-

PROBLEM, QUADRATIC RESIDUE, RSA ENCRYPTION,
SUBSET SUM PROBLEM
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One-Way Hash Function
A function H that maps an arbitrary length message
M to a fixed length message digest MD is a one-way
hash function if

1. It is a ONE-WAY FUNCTION.
2. Given M and H(M) ; it is hard to find a message
M ?"M such that H(M ?) "H(M) :/

See also HASH FUNCTION, ONE-WAY FUNCTION, TRAP-

DOOR ONE-WAY FUNCTION
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Only Critical Point in Town Test

If a univariate REAL FUNCTION f (x) has a single
CRITICAL POINT and that point is a LOCAL MAXIMUM,
then f (x) has its GLOBAL MAXIMUM there (Wagon
1991, p. 87). The test breaks downs for bivariate
functions, but does hold for bivariate polynomials of
degree 54: Such exceptions include

z �3xey �x3 �e3y (1)

z �x2(1 �y)3 �y2 (2)

z �
xy x2 � y2ð Þ

x2 � y2
for (x ; y) "(0; 0)

0 for (x ; y) �(0; 0)

8<
: 

(3)

(Rosenholtz and Smylie 1985, Wagon 1991). Note that
equation (3) has discontinuous PARTIAL DERIVATIVES

zxy and zyx ; and zyx(0; 0) �1 and zxy(0; 0) �1 :/

See also CRITICAL POINT, GLOBAL MAXIMUM, LOCAL

MAXIMUM, PARTIAL DERIVATIVE
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Ono Inequality

Ono (1914) conjectured that the inequality

27 b2 �c2 �a2
� �2

a2 �c2 �b2
� �2

a2 �b2 �c2
� �2

5(4K)6

holds true for all TRIANGLES, where a , b , and c are the
lengths of the sides and K is the AREA of the
TRIANGLE. This conjecture was shown to be false by
Quijano (1915), although it was subsequently proved
to be true for ACUTE TRIANGLES by Balitrand (1916). A
simple counterexample is provided by the triangle
with a �3=4 ; b �1 =2; and c �1.

See also ACUTE TRIANGLE
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Onsager Differential Equation
The ordinary Onsager equation is the sixth-order
ORDINARY DIFFERENTIAL EQUATION

d3

dx3
ex d2

dx2
ex dy

dx

 !" #
�f (x)

(Vicelli 1983; Zwillinger 1997, p. 128), while the
partial Onsager equation is given by the PARTIAL

DIFFERENTIAL EQUATION

ex exuxxð Þxx

� �
xx
�B2uyy �F(x; y)

(Wood and Martin 1980; Zwillinger 1997, p. 129).
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Onto

Let f be a FUNCTION defined on a SET A and taking
values in a set B . Then f is said to be onto (a.k.a. a
surjection) if, for any b � B ; there exists an a � A for
which b �f (a) :/
Let the function be an OPERATOR which MAPS points
in the DOMAIN to every point in the RANGE and let V
be a VECTOR SPACE with X ; Y �V: Then a TRANSFOR-

MATION T defined on V is onto if there is an X �V

such that T(X) �Y for all Y.

See also BIJECTION, DOMAIN, MANY-TO-ONE, ONE-TO-

ONE, RANGE (IMAGE)

Open Ball
An n -D open ball of RADIUS r is the collection of points
of distance less than r from a fixed point in EUCLI-

DEAN n -space. Explicitly, the closed ball with center x
and radius r is defined by

Br(x) �fy : ½y �x½Br g:

The open ball for n �1 is called an OPEN INTERVAL,
and the term OPEN DISK is sometimes used for n�2
and sometimes as a synonym for open ball.

See also BALL, CLOSED DISK, OPEN DISK, OPEN

INTERVAL, OPEN SET

References
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved

Problems in Geometry. New York: Springer-Verlag, p. 1,
1991.

Open Disk

An n -D open disk of RADIUS r is the collection of



points of distance less than r from a fixed point in
EUCLIDEAN n -space. Krantz (1999, p. 3) uses the
symbol D(x; r) to denote the open disk, and D �
D(0; 1) to denote the unit open disk centered at the
origin.
The open disk for n �1 is called an OPEN INTERVAL,
and the term OPEN BALL is often used for n ]3:/

See also CLOSED DISK, DISK, OPEN BALL, OPEN

INTERVAL, OPEN SET, PERFORATION

References
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Open Interval

An INTERVAL which does not include its LIMIT POINTS,
denoted (a, b ). The non-standard notation ]a ; b[ is
sometimes also used.

See also CLOSED INTERVAL, HALF-CLOSED INTERVAL,
INTERVAL, OPEN DISK, OPEN SET
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Open Manifold
A noncompact manifold without boundary.

See also CLOSED MANIFOLD

Open Map
A MAP which sends OPEN SETS to OPEN SETS.

See also OPEN MAPPING THEOREM, OPEN SET

Open Mapping Theorem
The two flavors of the open mapping theorem state:

1. A continuous surjective linear mapping between
BANACH SPACES is an OPEN MAP.
2. A nonconstant ANALYTIC FUNCTION on a DOMAIN

D is an OPEN MAP.

See also ANALYTIC FUNCTION, BANACH SPACE, OPEN

MAP
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Open Problems
UNSOLVED PROBLEMS

Open Set

A SET is open if every point in the set has a
NEIGHBORHOOD lying in the set. An open set of RADIUS

r and center x0 is the set of all points x such that
x �x0j jBr ; and is denoted Dr x0ð Þ: In 1-space, the
open set is an OPEN INTERVAL. In 2-space, the open set
is a DISK. In 3-space, the open set is a BALL.
More generally, given a TOPOLOGY (consisting of a SET

X and a collection of SUBSETS T ), a SET is said to be
open if it is in T . Therefore, while it is not possible for
a set to be both finite and open in the TOPOLOGY of the
REAL LINE (a single point is a CLOSED SET), it is
possible for a more general topological SET to be both
finite and open.

The complement of an open set is a CLOSED SET. It is
possible for a set to be neither open nor CLOSED, e.g.,
the HALF-CLOSED INTERVAL 0; 1ð :/

See also BALL, BOREL SET, CLOSED SET, EMPTY SET,
OPEN BALL, OPEN DISK, OPEN INTERVAL
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Operad
A system of parameter chain complexes used for
MULTIPLICATION on differential GRADED ALGEBRAS

up to HOMOTOPY.

Operand
A mathematical object upon which an OPERATOR acts.
For example, in the expression 1 �2; the MULTIPLICA-

TION OPERATOR acts upon the operands 1 and 2.

See also OPERAD, OPERATOR

Operational Mathematics
The theory and applications of LAPLACE TRANSFORMS

and other INTEGRAL TRANSFORMS.
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Operations Research
A branch of mathematics which encompasses many
diverse areas of minimization and optimization.
Bronson (1982) describes operations research as
being "concerned with the efficient allocation of
scarce resources." The more modern term for opera-
tions research is OPTIMIZATION THEORY.

See also OPTIMIZATION, OPTIMIZATION THEORY
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Operator
An operator A : f (n)(I) �f (I) assigns to every function
f � f (n)(I) a function A(f ) � f (I): It is therefore a map-
ping between two FUNCTION SPACES. If the range is on
the REAL LINE or in the COMPLEX PLANE, the mapping
is usually called a FUNCTIONAL instead.

See also ABSTRACTION OPERATOR, BIHARMONIC OP-

ERATOR, BINARY OPERATOR, CASIMIR OPERATOR,
CONVECTIVE OPERATOR, D’ALEMBERTIAN, DELTA OP-

ERATOR, DIFFERENCE OPERATOR, FUNCTIONAL ANA-

LYSIS, HECKE OPERATOR, HERMITIAN OPERATOR,
IDENTITY OPERATOR, LAPLACIAN, LAPLACE-BELTRAMI

OPERATOR, LINEAR OPERATOR, OPERAND, OPERATOR

THEORY, PERRON-FROBENIUS OPERATOR, PROJECTION

OPERATOR, ROTATION OPERATOR, SCATTERING OPERA-

TOR, SHIFT-INVARIANT OPERATOR, SHIFT OPERATOR,
SPECTRUM (OPERATOR), THETA OPERATOR, UMBRAL

OPERATOR, VECTOR LAPLACIAN, WAVE OPERATOR,
WEIERSTRASS OPERATOR

Operator Theory

A broad area of mathematics connected with FUNC-

TIONAL ANALYSIS, DIFFERENTIAL EQUATIONS, index
theory, representation theory, and mathematical
physics.

See also C*-ALGEBRA, OPERATOR
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Hutson, V. and Pym, J. S. Applications of Functional
Analysis and Operator Theory. New York: Academic
Press, 1980.

Optimal Golomb Ruler
GOLOMB RULER

Optimization

See also OPTIMIZATION THEORY, STOCHASTIC OPTIMI-

ZATION

Optimization Theory
A branch of mathematics which encompasses many
diverse areas of minimization and optimization.
Optimization theory is the more modern term for
OPERATIONS RESEARCH. Optimization theory includes
the CALCULUS OF VARIATIONS, CONTROL THEORY,
CONVEX OPTIMIZATION THEORY, DECISION THEORY,
GAME THEORY, LINEAR PROGRAMMING, MARKOV

CHAINS, network analysis, OPTIMIZATION THEORY,
queuing systems, etc.

See also CALCULUS OF VARIATIONS, CONTROL THEORY,
CONVEX OPTIMIZATION THEORY, DECISION THEORY,
DIFFERENTIAL EVOLUTION, EVOLUTION STRATEGIES,
GAME THEORY, GENETIC ALGORITHM, LINEAR PRO-

GRAMMING, MARKOV CHAIN, NELDER-MEAD METHOD,
OPERATIONS RESEARCH, OPTIMIZATION, QUEUE, STO-

CHASTIC OPTIMIZATION

References
Bhati, M. A. Practical Optimization Methods with Mathe-

matica Applications. New York: Springer-Verlag, 2000.
Bronson, R. Schaum’s Outline of Theory and Problems of

Operations Research. New York: McGraw-Hill, 1982.
Hiller, F. S. and Lieberman, G. J. Introduction to Opera-

tions Research, 5th ed. New York: McGraw-Hill, 1990.
Marlow, W. H. Mathematics for Operations Research. New

York: Dover, 1993.
Papadimitriou, C. H. and Steiglitz, K. Combinatorial Opti-

mization: Algorithms and Complexity. New York: Dover,
1998.

Polak, E. Computational Methods in Optimization. New
York: Academic Press, 1971.

Singh, J. Great Ideas of Operations Research. New York:
Dover, 1972.

Trick, M. "Michael Trick’s Operations Research Page."
http://mat.gsia.cmu.edu

Optimum
EXTREMUM

Or
A term in LOGIC which yields TRUE if any one of a
sequence conditions is TRUE, and FALSE if all condi-
tions are FALSE. b OR
� 12

35 e
2� 96

385 e
3

� 
P4�

40
231 e

3P6�. . . :/ is denoted/

27(b2�c2�a2)2(a2�c2�b2)2(a2�b2�c2)2
5(4K)6;//



a �3 =4; or b �1=2: The symbol � derives from the
first letter of the Latin word "vel" meaning "or." The
BINARY OR operator has the following TRUTH TABLE.

/b/ /� 12
35 e

2 � 96
385 e

3
� 

P4 �
40
231 e

3P6 �. . . :/ /b �1=2/

F F  F

F T  T

T F  T

T T  T

A product of ORs is called a DISJUNCTION and is
denoted

d3

dx3
ex d2

dx2
ex dy

dx

 !" #
�f (x)

Two BINARY numbers can have the operation OR
performed bitwise. This operation is sometimes de-
noted /27(b2 �c2 �a2)2(a2 �c2 �b2)2(a2 �b2 �c2)2

/

/5(4K)6 :/

See also AND, BINARY OPERATOR, LOGIC, NOT, PRE-

DICATE, TRUTH TABLE, UNION, XOR

OR

A CONNECTIVE in LOGIC which yields TRUE if any one
of a sequence conditions is TRUE, and FALSE if all
conditions are FALSE. In formal logic, the term
DISJUNCTION (or, more specifically, inclusive disjunc-
tion) is commonly used to describe the OR operator. A
OR B is denoted A�B (Mendelson 1997, p. 13), A B;j
A �B (Simpson 1987, p. 539), or A @ B (Simpson
1987, p. 539). The circuit diagram symbol for an OR
gate is illustrated above.
The symbol �derives from the first letter of the Latin
word "vel," meaning "or," and the expression A�B is
voiced either "A or B" or "A vel B ." The way to
distinguish the similar symbols ffl(AND) and �(OR) is
to note that the symbol for AND is oriented in the
same direction as the capital letter ‘A." The OR
operation is implemented in Mathematica as Or[A ,
B , ...].

The OR operation can be written in terms of NOT and
AND as

A�B �!(!Affl!B)

(Mendelson 1997, p. 26).

The BINARY OR operator has the following TRUTH

TABLE (Carnap 1958, p. 10; Simpson 1987, p. 542;
Mendelson 1997, p. 13).

A B /A�B/

T T T

T F T

F T T

F F F

A product of ORs is called a DISJUNCTION and is
denoted

�
n

k �1
Ak :

For example, the TRUTH TABLE for the ternary OR
operator is shown below (Simpson 1987, p. 543).

A B C /A�B�C/

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F F

Two BINARY numbers can have the operation OR
performed bitwise. This operation is sometimes de-
noted A B:j /

See also AND, BINARY OPERATOR, CONNECTIVE,
DISJUNCTION, EXCLUSIVE DISJUNCTION, INCLUSIVE

DISJUNCTION, LOGIC, NAND, NOR, NOT, TRUTH

TABLE, UNION, VEE, XNOR, XOR

References
Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, pp. 7 and 10, 1958.
Mendelson, E. Introduction to Mathematical Logic, 4th ed.

London: Chapman & Hall, p. 13, 1997.
Simpson, R. E. "The OR Gate." §12.5.1 in Introductory

Electronics for Scientists and Engineers, 2nd ed. Boston,
MA: Allyn and Bacon, pp. 542�/544, 1987.



Orbifold
The object obtained by identifying any two points of a
MAP which are equivalent under some symmetry of
the MAP’S GROUP.

Orbison’s Illusion

The illusion illustrated above in which the bounding
RECTANGLE and inner SQUARE both appear distorted.

See also ILLUSION, MÜ LLER-LYER ILLUSION, PONZO’S

ILLUSION, VERTICAL-HORIZONTAL ILLUSION
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Orbit (Group)
In celestial mechanics, the fixed path a planet traces
as it moves around the sun is called an orbit. When a
GROUP G acts on a set X (this process is called a
GROUP ACTION), it permutes the elements of X . Any
particular element X moves around in a fixed path,
which is called its orbit. In the notation of set theory,
a group orbit can be defined as

G(x) �fgx � X : g � G g:

Note that if y � G(x) then x � G(y) ; because y � gx IFF

x �g�1y: Consequently, the orbits PARTITION X and,
given a PERMUTATION GROUP G on a set S , the orbit of
an element s � S is the subset of S consisting of
elements to which some element G can send s . Note
that a FIXED POINT is an orbit consisting of a single
element.

For example, consider the action by the circle group
S1 on the SPHERE S2 by rotations along its axis. Then
the north pole is an orbit, as is the south pole. The
equator is a one-dimensional orbit, as is a general
orbit, corresponding to a line of latitude.

Orbits of a LIE GROUP action may look different from
each other. For example, O(1; 1); the ORTHOGONAL

GROUP of SIGNATURE (1; 1); acts on the plane. It has

three different kinds of orbits: the origin (a FIXED

POINT, the four rays f(9t; 9t); t > 0g; and the hyper-
bolas such as y2 �x2 �1 : In general, an orbit may be
of any dimension, up to the dimension of the LIE

GROUP. If the LIE GROUP G is COMPACT, then its orbits
are SUBMANIFOLDS.

The group’s action on the orbit through x is TRANSI-

TIVE, and so is related to its ISOTROPY GROUP. In
particular, the cosets of the isotropy subgroup corre-
spond to the elements in the orbit,

G(x) �G =Gx :

See also EFFECTIVE ACTION, FREE ACTION, GROUP,
ISOTROPY GROUP, MATRIX GROUP, QUOTIENT SPACE

(LIE GROUP), REPRESENTATION, TOPOLOGICAL GROUP,
TRANSITIVE

References
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Orbit (Map)
The SEQUENCE generated by repeated application of a
MAP. The MAP is said to have a closed orbit if it has a
finite number of elements.

See also DYNAMICAL SYSTEM, SINK (MAP)

Orbit (Permutation)
CYCLE (PERMUTATION)

Orchard Visibility Problem
A tree is planted at each LATTICE POINT in a circular
orchard which has CENTER at the ORIGIN and RADIUS

r . If the radius of trees exceeds 1 =r units, one is
unable to see out of the orchard in any direction.
However, if the RADII of the trees are B1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�1

p
; one

can see out at certain ANGLES.

See also LATTICE POINT, ORCHARD-PLANTING PRO-

BLEM, VISIBILITY
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Orchard-Planting Problem

Also known as the TREE-PLANTING PROBLEM. Plant n
trees so that there will be r straight rows with k trees
in each row. The following table gives max(r ) for
various k . k �3 is Sloane’s A003035 and k �4 is
Sloane’s A006065.

n k � 3 k � 4 k � 5

3 1  –  –

4 1  1  –

5 2  1  1

6 4  1  1

7 6  2  1

8 7  2  1

9 10  3  2

10 12 5 2

11 16 6 2

12 19 7 3

13 /[22; 24]/ /]9/ 3

14 /[26; 27]/ /]10/ 4

15 /[31; 32]/ /]12/ /]6/

16 37 /]15/ /]6/

17 /[40; 42]/ /]15/ /]7/

18 /[46; 48]/ /]18/ /]9/

19 /[52; 54]/ /]19/ /]10/

20 /[57; 60]/ /]21/ /]11/

21 /[64; 67]/

22 /[70; 73]/

23 /[77; 81]/

24 /[85; 88]/

25 /[92; 96]/

Sylvester showed that

r(k �3) ] 1
6 (n �1)(n �2)
j k

;

where xb c is the FLOOR FUNCTION (Ball and Coxeter
1987). Burr, Grünbaum and Sloane (1974) have
shown using cubic curves that

r(k �3) 51 � 1
6 n(n �3)
j k

;

except for n �7, 11, 16, and 19, and conjecture that
the inequality is an equality with the exception of the
preceding cases. For n]4;

r(k�3)] 1
3

1
2 n(n�1)� 3

7 n
l mh ij k

;

where xd e is the CEILING FUNCTION.

See also CONFIGURATION, EUCLID’S ORCHARD, ORCH-

ARD VISIBILITY PROBLEM
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Order (Algebraic Curve)
The order of the POLYNOMIAL defining an ALGEBRAIC

CURVE.

Order (Algebraic Surface)
The order n of an ALGEBRAIC SURFACE is the order of
the POLYNOMIAL defining a surface, which can be
geometrically interpreted as the maximum number of
points in which a line meets the surface.

Order Surface

3 CUBIC SURFACE

4 QUARTIC SURFACE

5 QUINTIC SURFACE

6 SEXTIC SURFACE

7 Heptic Surface

8 OCTIC SURFACE

9 Nonic Surface

10 DECIC SURFACE

See also ALGEBRAIC SURFACE
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Order (Conjugacy Class)
The number of elements of a GROUP in a given
CONJUGACY CLASS.

Order (Difference Set)
Let G be GROUP of ORDER h and D be a set of k
elements of G . If the set of differences di �dj contains
every NONZERO element of G exactly l times, then D
is a (h ; k; l)/-difference set in G of order n �k � l:/

Order (Field)
The number of elements in a FINITE FIELD.

Order (Function)
The INFIMUM of all number a for which

½f (z)½5exp ½z ½að Þ

holds for all ½z ½ > r and f an ENTIRE FUNCTION, is
called the ORDER of f , denoted l � l(f ) (Krantz 1999,
p. 121).

See also ENTIRE FUNCTION, FINITE ORDER
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Order (Graph)
The number of nodes in a graph is called its order.

See also GRAPH
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Order (Group)
The number of elements in a GROUP G , denoted ½G½: If
the order of a GROUP is a finite number, the group is
said to be a FINITE GROUP.

The order of an element g of a FINITE GROUP G is the
smallest POWER of n such that gn �I ; where I is the
IDENTITY ELEMENT. In general, finding the order of
the element of a group is at least as hard as factoring
(Meijer 1996). However, the problem becomes signifi-
cantly easier if ½G½ and the factorization of ½G½ are
known. Under these circumstances, efficient ALGO-

RITHMS are known (Cohen 1993).

See also ABELIAN GROUP, FINITE GROUP
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Order (Modulo)
For an INTEGER n that is RELATIVELY PRIME to a
number a , there exists a smallest exponent k ]1 such
that ak �1 (mod n); and k is called the order (or
HAUPT-EXPONENT) of a modulo n . For example, the
order of 2 modulo 7 is 3, since 21�2; 22�4; and 23�
8�1 (mod 7).

See also CARMICHAEL FUNCTION, COMPLETE RESIDUE

SYSTEM, HAUPT-EXPONENT, MULTIPLICATIVE ORDER,
ORDER (POLYNOMIAL), PRIMITIVE ROOT
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Order (Ordering)
A method for choosing the order in which elements
are placed (i.e., a sorting function).



See also LEXICOGRAPHIC ORDER, MONOMIAL ORDER,
PARTIAL ORDER, TOTAL ORDER, TRANSPOSITION OR-

DER, WELL ORDER

Order (Ordinary Differential Equation)
An ORDINARY DIFFERENTIAL EQUATION of order n is an
equation OF THE FORM

F x; y; y?; . . . ; y(n)
� �

�0 :

Order (Permutation)
PERMUTATION

Order (Polynomial)
The highest order POWER in a UNIVARIATE POLYNO-

MIAL is known as its order (or, more properly, its
DEGREE). For example, the POLYNOMIAL

P(x) �anxn �. . .�a2x2 �a1x �a0

is of order n , denoted deg P(x) �n : The order of a
polynomial is implemented in Mathematica as Ex-
ponent[poly , x ].

It is preferable to use the word "degree" for the
highest exponent in a polynomial, since a completely
different meaning is given to the word "order" in
polynomials taken modulo some integer (where this
meaning is the one used in the ORDER of a modulus).
In particular, the order of a polynomial P(x) with
P(0) "0 is the smallest integer e for which P(x)
divides xe �1 : For example, in the FINITE FIELD

GF(2), the order of x5 �x2 �1 is 31, since

x31 � 1

x5 � x2 � 1 
�1 �x2 �x4 �x5 �x6 �x8 �x9

�x13 �x14 �x15 �x16 �x17 �x20 �x21 �x23

�x26 (mod 2) :

This concept is closely related to that of the HAUPT-

EXPONENT.

See also DEGREE (POLYNOMIAL), HAUPT-EXPONENT,
IRREDUCIBLE POLYNOMIAL, ORDER (MODULO), PRIMI-

TIVE POLYNOMIAL

Order (Root)
MULTIPLICITY

Order (Tensor)
RANK (TENSOR)

Order (Vertex)
The number of EDGES meeting at a given node in a
GRAPH is called the order of that VERTEX.

Order (Zero)
MULTIPLICITY

Order Isomorphic
Two TOTALLY ORDERED SETS (A; 5) and (B ; 5) are
order isomorphic IFF there is a BIJECTION f from A to
B such that for all a1 ; a2 � A;

a1 5a2 iff f a1ð Þ5f a2ð Þ

(Ciesielski 1997, p. 38). In other words, A and B are
EQUIPOLLENT ("the same size") and there is an order
preserving mapping between the two.

Dauben (1979) and Suppes (1972) call this property
"similar." The definition works equally well on PAR-

TIALLY ORDERED SETS.

See also AVOIDED PATTERN, CONTAINED PATTERN,
PARTIALLY ORDERED SET, PERMUTATION PATTERN,
TOTALLY ORDERED SET
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Order of Magnitude
Physicists and engineers use the phrase "order of
magnitude" to refer to the smallest power of ten
needed to represent a quantity. Two quantities which
are within about a factor of 10 of each other are then
said to be "of the same order of magnitude." Hardy
and Wright (1979, p. 7) use the term to mean
ASYMPTOTIC to.

See also ASYMPTOTIC, ASYMPTOTIC NOTATION
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Order Statistic
Given a sample of n variates X1; ..., Xn; reorder them
so that X?1BX?2B. . .BX?n: Then the ith order statistic
X�i� is defined as X?i; with the special cases

mn�X�1��min
j

Xj

� �
Mn�X�n��max

j
Xj

� �
:

A ROBUST ESTIMATION technique based on LINEAR



COMBINATIONS of order statistics is called an L -

ESTIMATE.

See also EXTREME VALUE DISTRIBUTION, HINGE,
MAXIMUM, MEDIAN (STATISTICS), MINIMUM
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Order Type
Every TOTALLY ORDERED SET (A; 5) is associated with
a so-called order type. Two sets A and B are said to
have the same order type IFF they are ORDER

ISOMORPHIC (Ciesielski 1997, p. 38; Dauben 1990,
pp. 184 and 199; Moore 1982, p. 52; Suppes 1972,
pp. 127 �/129). Thus, an order type categorizes TO-

TALLY ORDERED SETS in the same way that a CARDI-

NAL NUMBER categorizes sets. The term is due to
Georg Cantor, and the definition works equally well
on PARTIALLY ORDERED SETS.

The order type of the negative integers is called �v
(Moore 1982, p. 62), although Suppes (1972, p. 128)
calls it v�: The order type of the rationals is called h
(Dauben 1990, p. 152; Moore 1982, p. 115; Suppes
1972, p. 128). Some sources call the order type of the
reals u (Dauben 1990, p. 152), while others call it l
(Suppes 1972, p. 128).

In general, if a is any order type, then �a is the same
type ordered backwards (Dauben 1990, p. 153).

See also CARDINAL NUMBER, ORDER ISOMORPHIC,
ORDINAL NUMBER, TOTALLY ORDERED SET
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Ordered Factorization
An ordered factorization is a factorization (not neces-
sarily into prime factors) in which a �b is considered
distinct from b �a : The number of ordered factoriza-
tions of n is equal to the number of PERFECT

PARTITIONS of n �1 (Goulden and Jackson 1983,
p. 94).

See also PERFECT PARTITION
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Ordered Geometry
A GEOMETRY constructed without reference to mea-
surement. The only primitive concepts are those of
points and intermediacy. There are 10 AXIOMS under-
lying ordered GEOMETRY.

See also ABSOLUTE GEOMETRY, AFFINE GEOMETRY,
GEOMETRY

Ordered List
The number of nondecreasing lists a1 ; a2 ; . . . ; anf g
consisting of n elements 1 5ai 5k is given by the
binomial coefficient

N(n; k) �
n �k �1

n �1

% &
:

For example, there are six nondecreasing lists of
length 2 for elements chosen from 1 to 3: (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3), and (3,3).

Ordered Pair
A PAIR of quantities (a , b ) where ordering is sig-
nificant, so (a , b ) is considered distinct from (b , a ) for
a"b:/

See also LIST, MULTISET, ORDERED PAIRS REPRESEN-

TATION, PAIR, SET, VECTOR

Ordered Pairs Representation
A representation of a GRAPH in which edges are
specified as ordered pairs (for a DIRECTED GRAPH),
or unordered pairs (for an UNDIRECTED GRAPH). The
ordered pairs representation of a graph g may be
computed using ToOrderedPairs[g ] in the Mathe-
matica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘) or ToUnorderedPairs[g ]. A
graph may be constructed from ordered pairs using
FromOrderedPairs[l ], or from unordered pairs
using FromUnorderedPairs[l ].
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Ordered Set
An ambiguous term which is sometimes used to mean
a PARTIALLY ORDERED SET and sometimes to mean a
TOTALLY ORDERED SET.



Ordered Tree
A ROOTED TREE in which the order of the subtrees is
significant. There is a ONE-TO-ONE correspondence
between ordered FORESTS with n nodes and BINARY

TREES with n nodes.

See also BINARY TREE, FOREST, ROOTED TREE

Ordering
The number of "ARRANGEMENTS" in an ordering of n
items is given by either a COMBINATION (order is
ignored) or a PERMUTATION (order is significant).

See also ARRANGEMENT, COMBINATION, CUTTING,
DERANGEMENT, PARTIAL ORDER, PERMUTATION, SORT-

ING, TOTAL ORDER

Ordering Axioms
The four of HILBERT’S AXIOMS which concern the
arrangement of points.

See also CONGRUENCE AXIOMS, CONTINUITY AXIOMS,
HILBERT’S AXIOMS, INCIDENCE AXIOMS, PARALLEL

POSTULATE
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Ordinal
ORDINAL NUMBER

Ordinal Addition
Let (A; 5) and (B ; 5) be disjoint TOTALLY ORDERED

SETS with ORDER TYPES a and b: Then the ordinal sum
is defined at set (C �A @ B; 5) where, if c1 and c2 are
both from the same SUBSET, the order is the same as
in the subset, but if c1 is from A and c2 is from B , then
c1 Bc2 has ORDER TYPE a � b (Ciesielski 1997, p. 48;
Dauben 1990, p. 104; Moore 1982, p. 40).

One should note that in the infinite case, ORDER TYPE

addition is not commutative, although it is associa-
tive. For example,

1 � v � v " v �1:

In addition, fa g@ f0 ; 1 ; 2 ; 3 ; . . .g; with a the least
element, is ORDER ISOMORPHIC to f0 ; 1 ; 2 ; 3 ; . . .g;
but not to f0; 1; 2; 3; . . .g@ fag; with a the greatest
element, since it has a greatest element and the other
does not.

An inductive definition for ordinal addition states
that for any ORDINAL NUMBER a;

a �0 � a; (1)

and

a �(successor to b) �the successor to ( a � b) : (2)

If b is a LIMIT ORDINAL, then a � b is the least ordinal
greater than any ordinal in the set fa � g : g B bg
(Rubin 1967, p. 188; Suppes 1972, p. 205).

See also ORDINAL EXPONENTIATION, ORDINAL MULTI-

PLICATION, ORDINAL NUMBER
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Ordinal Comparison
Let (A; 5) and (B ; 5) be WELL ORDERED SETS with
ORDINAL NUMBERS a and b: Then a B b IFF A is ORDER

ISOMORPHIC to an INITIAL SEGMENT of B (Dauben
1990, p. 199). From this, it can easily be shown that
the ORDINAL NUMBERS are TOTALLY ORDERED by the
relation. In fact, they are WELL ORDERED by the
relation.

See also WELL ORDERED SET
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Ordinal Exponentiation
Let a and b be any ORDINAL NUMBERS, then ordinal
exponentiation is defined so that if b�0 then ab�1:
If b is not a LIMIT ORDINAL, then choose g such that
g�1�b;

alpha(successor of b) ab
� �

+ a:

If b is a LIMIT ORDINAL, then if a�0; ab�0: If a"0
then, ab is the least ordinal greater than any ordinal
in the set ag : gBbf g (Rubin 1967, p. 204; Suppes
1972, p. 215).

Note that this definition is not analogous to the
definition for cardinals, since ½a½½b½ may not equal
abj j; even though ½a½� ½b½� ½a�b½ and ½a½ + ½b½�
½a + b½: Note also that 2v�v:/

A familiar example of ordinal exponentiation is the
definition of Cantor’s first epsilon number. e0 is the
least ordinal such that ve0 �e0: It can be shown that it
is the least ordinal greater than any ordinal in
v; vv; vvv

; . . .f g:/

References
Rubin, J. E. Set Theory for the Mathematician. New York:

Holden-Day, 1967.



Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.

Ordinal Multiplication
Let (A; 5) and (B ; 5) be TOTALLY ORDERED SETS. Let
C �A �B be the CARTESIAN PRODUCT and define
order as follows. For any a1 ; a2 � A and b1 ; b2 � B;

1. If a1 Ba2 ; then a1 ; b1ð ÞB a2 ; b2ð Þ;/
2. If a1 �a2 ; then a1 ; b1ð Þ and a2 ; b2ð Þ compare the
same way as b1 ; b2 (i.e., lexicographical order)

(Ciesielski 1997, p. 48; Rubin 1967; Suppes 1972).
However, Dauben (1990, p. 104) and Moore (1982,
p. 40) define multiplication in the reverse order.

Like addition, multiplication is not commutative, but
it is associative,

2 + v � v " v + 2 : (1)

An inductive definition for ordinal multiplication
states that for any ORDINAL NUMBER a;

a + 0 �0 (2)

a + (successor to beta) � a + b � a: (3)

If b is a LIMIT ORDINAL, then a�b is the least ordinal
greater than any ordinal in the set fa + g : gBbg
(Suppes 1972, p. 212).

See also ORDINAL ADDITION, ORDINAL EXPONENTIA-

TION, ORDINAL NUMBER, SUCCESSOR
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Ordinal Number
In common usage, an ordinal number is an adjective
which describes the numerical position of an object,
e.g., first, second, third, etc.

In formal SET THEORY, an ordinal number (sometimes
simply called an "ordinal" for short) is one of the
numbers in Georg Cantor’s extension of the WHOLE

NUMBERS. An ordinal number is defined as the ORDER

TYPE of a WELL ORDERED SET (Dauben 1990, p. 199;
Moore 1982, p. 52; Suppes 1972, p. 129). Finite
ordinal numbers are commonly denoted using arabic
numerals, while transfinite ordinals as denoted using
lower case Greek letters.

It is easy to see that every finite TOTALLY ORDERED

SET is WELL ORDERED. Any two TOTALLY ORDERED

SETS with k elements (for k a nonnegative integer)
are ORDER ISOMORPHIC, and therefore have the same

ORDER TYPE (which is also an ordinal number). The
ordinals for finite sets are denoted 0, 1, 2, 3, ..., i.e.,
the integers one less than the corresponding non-
negative integers.

The first transfinite ordinal, denoted v; is the ORDER

TYPE of the set of nonnegative integers (Dauben 1979,
p 152; Moore 1982, p. viii; Rubin 1967, pp. 86 and
177; Suppes 1972, p. 128). This is the "smallest" of
Cantor’s TRANSFINITE NUMBERS, defined to be the
smallest ordinal number greater than the ordinal
number of the WHOLE NUMBERS. Conway and Guy
(1996) denote it with the notation v�f0; 1; . . . ½g:/
From the definition of ORDINAL COMPARISON, is
follows that the ordinal numbers are a WELL ORDERED

SET. In order of increasing size, the ordinal numbers
are 0, 1, 2, ..., v; v�1; v�2; ..., v�v; v�v�1; ....
The notation of ordinal numbers can be a bit counter-
intuitive, e.g., even though 1�v�v; v�1 > v: The
CARDINALITY of the set of countable ordinal numbers
is denoted ALEPH-1.

If (A; 5) is a WELL ORDERED SET with ordinal number
a; then the set of all ordinalsBa is ORDER ISOMORPHIC

to A . This provides the motivation to define an
ordinal as the set of all ordinals less that itself.
John von Neumann defined a set a to be an ordinal
number IFF

1. If b is a member of a; then b is a PROPER SUBSET

of a/

2. If b and g are members of a then one of the
following is true: b�g; b is a member of g; or g is a
member of b:/
3. If B is a nonempty PROPER SUBSET of a; then
there exists a g member of B such that the
intersection gSB is empty.

(Rubin 1967, p. 176; Ciesielski 1997, p. 44). This is
the standard representation of ordinals. In this
representation,

symbol elements description

0 /fg/ empty set

1 /f0g/ set of one element

2 /f0; 1g/ set of two elements

3 /f0; 1; 2g/ set of three elements

/n/

/v/ /f0; 1; 2; . . .g/ set of all finite ordi-
nals

/v�1/ /f0; 1; 2; . . . ; vg/

/n/



/ v1/ set of all countable
ordinals

/n/

/ v2/ set of all countable
and �1 ordinals

/n/

/ vv/ set all finite ordinals
and �k ordinals for all
nonnegative integers
k

/n/

Rubin (1967, p. 272) provides a nice definition of the
va ordinals.

Since for any ordinal a; the union a @ a is a bigger
ordinal a �1; there is no largest ordinal, and the class
of all ordinals is therefore a PROPER CLASS (as shown
by the BURALI-FORTI PARADOX).

Ordinal numbers have some other rather peculiar
properties. The sum of two ordinal numbers can take
on two different values, the sum of three can take on
five values. The first few terms of this sequence are 2,
5, 13, 33, 81, 193, 449, 332, 33  � 81; 812, 81  � 193; 1922,
... (Conway and Guy 1996, Sloane’s A005348). The
sum of n ordinals has either 193a81b or 33 � 81a

possible answers for n ]15 (Conway and Guy 1996).

/r � v is the same as v; but v �r is equal to
v �. . .� v|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} : v2 is larger than any number OF THE

FORM v �r ; v3 is larger than v2 ; and so on.

There exist ordinal numbers which cannot be con-
structed from smaller ones by finite additions, multi-
plications, and exponentiations. These ordinals obey
CANTOR’S EQUATION. The first such ordinal is

e0 � vvUv|ffl{zffl}
v

�1 � v � vv � vvv 

�. . . :

The next is

e1 �(1 �e0) � ve0�1 � vve0�1 �. . . ;

then follow e2 ; e3 ; ..., ev ; ev�1 ; ..., ev�2 ; ..., ev2 ; evv ; ...,
ee0

; ee0�1 ; ..., ee0�v ; ..., ee0�v ; ..., ee0�2 ; ..., ee1
; ..., ee2

; ..., eev ;
..., eee0 ; ..., eee1 ; ..., eeev ; ..., eeee0

; ... (Conway and Guy
1996).

ORDINAL ADDITION, ORDINAL MULTIPLICATION, and
ORDINAL EXPONENTIATION can all be defined.
Although these definitions also work perfectly well
for ORDER TYPES, this does not seem to be commonly
done. There are two methods common used to define
operations on the ordinals: one is using sets, and the
other is inductively.

See also ALEPH-1, AXIOM OF CHOICE, BURALI-FORTI

PARADOX, CANTOR’S EQUATION, CARDINALITY, CARDI-

NAL NUMBER, INITIAL ORDINAL, ORDER STATISTIC,
ORDER TYPE, POWER SET, SURREAL NUMBER, WELL

ORDERED SET
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Ordinary Differential Equation
An ordinary differential equation (frequently abbre-
viated ODE) is an equality involving a function and
its DERIVATIVES. An ODE of order n is an equation OF

THE FORM

F(x; y; y?; � � � ; y(n))�0; (1)

where y?�dy=dx is a first DERIVATIVE with respect to
x and y(n)�dny=dxn is an nth DERIVATIVE with
respect to x . An ODE of order n is said to be linear
if it is OF THE FORM

an(x)y(n)�an�1(x)y(n�1)�� � ��a1(x)y?�a0(x)y

�Q(x): (2)

A linear ODE where Q(x)�0 is said to be homo-
geneous. Confusingly, an ODE OF THE FORM

dy

dx
�f

y

x

 !
(3)

is also sometimes called "homogeneous."

In general, an nth-order ODE has n linearly inde-
pendent solutions. Furthermore, any LINEAR COMBI-

NATION of LINEARLY INDEPENDENT FUNCTIONS

solutions is also a solution.

Simple theories exist for first-order (INTEGRATING

FACTOR) and second-order (STURM-LIOUVILLE THE-

ORY) ordinary differential equations, and arbitrary
ODEs with linear constant COEFFICIENTS can be
solved when they are of certain factorable forms.
Integral transforms such as the LAPLACE TRANSFORM

can also be used to solve classes of linear ODEs.
Morse and Feshbach (1953, pp. 667�/674) give cano-
nical forms and solutions for second-order ODEs.

While there are many general techniques for analy-
tically solving classes of ODEs, the only practical
solution technique for complicated equations is to use
numerical methods (Milne 1970, Jeffreys and Jeffreys
1988). The most popular of these is the RUNGE-KUTTA



METHOD, but many others have been developed,
including the COLLOCATION METHOD and GALERKIN

METHOD. A vast amount of research and huge
numbers of publications have been devoted to the
numerical solution of differential equations, both
ordinary and PARTIAL (PDEs) as a result of their
importance in fields as diverse as physics, engineer-
ing, economics, and electronics.

The solutions to an ODE satisfy EXISTENCE and
UNIQUENESS properties. These can be formally estab-
lished by PICARD’S EXISTENCE THEOREM for certain
classes of ODEs. Let a system of first-order ODE be
given by

dxi

dt
�fi(x1; . . . ; xn; t); (4)

for i�1, ..., n and let the functions fi(x1; . . . ; xn; t);
where i�1, ..., n , all be defined in a DOMAIN D of the
(n�1)/-D space of the variables x1; ..., xn; t . Let these
functions be continuous in D and have continuous
first PARTIAL DERIVATIVES @fi=@xj for i�1, ..., n and
j�1, ..., n in D . Let (x0

1; . . . ; x0
n) be in D . Then there

exists a solution of (4) given by

x1�x1(t); . . . ; xn�xn(t) (5)

for t0�dBtBt0�d (where d > 0) satisfying the
initial conditions

x1(t0)�x0
1; . . . ; xn(t0)�x0

n: (6)

Furthermore, the solution is unique, so that if

x1�x1�(t); . . . ; xn�xn�(t) (7)

is a second solution of (4) for t0�dBtBt0�d satisfy-
ing (6), then xi(t)�xi�(t) for t0�dBtBt0�d: Because
every nth-order ODE can be expressed as a system of
n first-order differential equations, this theorem also
applies to the single nth-order ODE.

An exact FIRST-ORDER ODES is one OF THE FORM

p(x; y) dx�q(x; y) dy�0; (8)

where

@p

@y
�

@q

@x
: (9)

An equation OF THE FORM (8) with

@p

@y
"

@q

@x
(10)

is said to be nonexact. If

@p

@y
�

@q

@x

q
�f (x) (11)

in (8), it has an x -dependent integrating factor. If

@q

@x
�

@p

@y

xp � yq
�f (xy) (12)

in (8), it has an xy -dependent integrating factor. If

@q

@x
�

@p

@y

p
�f (y) (13)

in (8), it has a y -dependent integrating factor.

Other special first-order types include cross multiple
equations

yf (xy) dx�xg(xy) dy�0; (14)

homogeneous equations

dy

dx
�f

y

x

 !
; (15)

linear equations

dy

dx
�p(x)y�q(x); (16)

and separable equations

dy

dx
�X(x)Y(y): (17)

Special classes of SECOND-ORDER ODES include

d2y

dx2
�f (y; y?) (18)

(x missing) and

d2y

dx2
�f (x; y?) (19)

(y missing). A second-order linear homogeneous ODE

d2y

dx2
�P(x)

dy

dx
�Q(x)y�0 (20)

for which

Q?(x) � 2P(x)Q(x)

2[Q(x)]3=2 �[constant] (21)

can be transformed to one with constant coefficients.

The undamped equation of SIMPLE HARMONIC MOTION

is

d2y

dx2
�v2

0y�0; (22)

which becomes

d2y

dx2
�b

dy

dx
�v2

0y�0 (23)



when damped, and

d2y

dx2
�b

dy

dx
�v2

0y�A cos(vt) (24)

when both forced and damped.

SYSTEMS WITH CONSTANT COEFFICIENTS are of the
form

dx

dt
�Ax(t)�p(t): (25)

The following are examples of important ordinary
differential equations which commonly arise in pro-
blems of mathematical physics.

ABEL’S DIFFERENTIAL EQUATION

y?�f0(x)�f1(x)y�f2(x)y2�f3(x)y3�. . . (26)

g0(x)�g1(x)y½ y?�f0(x)�f1(x)y�f2(x)y2�f3(x)y3: (27)

AIRY DIFFERENTIAL EQUATION

d2y

dx2
�xy�0: (28)

ANGER DIFFERENTIAL EQUATION

yƒ�
y?

x
� 1�

n2

x2

 !
y�

x � n

px2
sin(nx): (29)

BAER DIFFERENTIAL EQUATIONS

x�a1ð Þ x�a2ð Þyƒ�1
2 2x� a1�a2ð Þ½ y?� p2x�q2

� �
y

�0; (30)

x�a1ð Þ x�a2ð Þyƒ�1
2 2x� a1�a2ð Þ½ y?

� k2x2�p2x�q2
� �

y�0: (31)

BERNOULLI DIFFERENTIAL EQUATION

dy

dx
�p(x)y�q(x)yn: (32)

BESSEL DIFFERENTIAL EQUATION

x2 d2y

dx2
�x

dy

dx
� l2x2�n2
� �

y�0: (33)

BINOMIAL DIFFERENTIAL EQUATION

(y?)m�f (x; y): (34)

BÔCHER EQUATION

yƒ�1
2

m1

x � a1

�. . .�
mn�1

x � an�1

" #
y?

�1
4

A0 � A1x � . . . � Alx
l

x � a1ð Þm1 x � a2ð Þm2 � � � x � an�1ð Þmn�1

" #
y�0: (35)

BRIOT-BOUQUET EQUATION

xm dy

dx
�f (x; y): (36)

CHEBYSHEV DIFFERENTIAL EQUATION

1�x2
� �d2y

dx2
�x

dy

dx
�a2y�0: (37)

CLAIRAUT’S DIFFERENTIAL EQUATION

y�x
dy

dx
�f

dy

dx

 !
: (38)

CONFLUENT HYPERGEOMETRIC DIFFERENTIAL EQUA-

TION

x
d2y

dx2
� c�xð Þdy

dx
�ay�0: (39)

D’ALEMBERT’S EQUATION.

y�xf (y?)�g(y?): (40)

DUFFING DIFFERENTIAL EQUATION

ẍ�v2
0x�bx3�0: (41)

ECKART DIFFERENTIAL EQUATION

yƒ�
ah

1 � h
�

bh

(1 � n)2�g

" #
y�0; (42)

where h�edx:/

EMDEN-FOWLER DIFFERENTIAL EQUATION

xpy?ð Þ?9xsyn�0: (43)

EULER DIFFERENTIAL EQUATION

x2 d2y

dx2
�ax

dy

dx
�by�S(x): (44)

HALM’S DIFFERENTIAL EQUATION

1�x2
� �2

�yƒ�ly�0: (45)

HERMITE DIFFERENTIAL EQUATION

d2y

dx2
�2x

dy

dx
�ly�0: (46)

HEUN’S DIFFERENTIAL EQUATION

d2w

dx2
�

g

x
�

d

x � 1
�

o
x � a

 !
dw

dx
�

abx � q

x(x � 1)(x � a)
w

�0: (47)

HILL’S DIFFERENTIAL EQUATION

d2y

dx2
u0�2

X�
n�1

un cos(2nz)

" #
�0: (48)



HYPERGEOMETRIC DIFFERENTIAL EQUATION

x(x�1)
d2y

dx2
�[(1�a�b)x�g]

dy

dx
�aby�0: (49)

JACOBI DIFFERENTIAL EQUATION

1�x2
� �

yƒ�[b�a�(a�b�2)x]y?�n(n�a�b�1)y

�0: (50)

LAGUERRE DIFFERENTIAL EQUATION

x
d2y

dx2
�(1�x)

dy

dx
�ly�0: (51)

LAMÉ’S DIFFERENTIAL EQUATION

x2�b2
� �

x2�c2
� � d2z

dx2
�x(x2�b2�x2�c2)

dz

dx

� m(m�1)x2� b2�c2
� �

p
, -

z�0: (52)

LANE-EMDEN DIFFERENTIAL EQUATION

1

j2

d

dj
j2 du

dj

 !
�un�0: (53)

LEGENDRE DIFFERENTIAL EQUATION

(1�x2)
d2y

dx2
�2x

dy

dx
�a(a�1)y�0: (54)

LINEAR CONSTANT COEFFICIENTS

a0

dny

dxn
�. . .�an�1

dy

dx
�any�p(x): (55)

LOMMEL DIFFERENTIAL EQUATION

z2 d2y

dz2
�z

dy

dz
�(z2�n2)y�kzm�1: (56)

LÖWNER’S DIFFERENTIAL EQUATION

y?��y
1 � k(x)y

1 � k(x)y
:

MALMSTÉN’S DIFFERENTIAL EQUATION

d2y

dx2
�

r

z

dy

dx
� Azm�

s

z2

 !
y: (57)

MATHIEU DIFFERENTIAL EQUATION

d2V

dv2
�[a�2q cos(2v)]V�0: (58)

MODIFIED BESSEL DIFFERENTIAL EQUATION

x2 d2y

dx2
�x

dy

dx
�(x2�n2)y�0: (59)

MODIFIED SPHERICAL BESSEL DIFFERENTIAL EQUA-

TION

r2 d2R

dr2
�2r

dR

dr
� k2r2�n(n�1)
, -

R�0: (60)

RAYLEIGH DIFFERENTIAL EQUATION

yƒ�m 1�1
3 y?2

� 
y?�y�0: (61)

RICCATI DIFFERENTIAL EQUATION

dw

dx
�q0(x)�q1(x)w�q2(x)w2: (62)

RIEMANN P -DIFFERENTIAL EQUATION

d2u

dz2
�

1 � a� a?

z � a
�1�b�b?

z�b
�

1 � g� g?

z � c

" #
du

dz

�
aa?(a � b)(a � c)

z � a
�

bb?(b � c)(b � a)

z � b
�

gg?(c � a)(c � b)

z � c

" #

�
u

(z � a)(z � b)(z � c)
�0: (63)

SHARPE’S DIFFERENTIAL EQUATION

zyƒ�y?�(z�A)y�0: (64)

SPHERICAL BESSEL DIFFERENTIAL EQUATION

r2 d2R

dr2
�2r

dR

dr
� k2r2�n(n�1)
, -

R�0: (65)

STRUVE DIFFERENTIAL EQUATION

z2yƒ�zy?� z2�n2
� �

y�
4 1

2 z
� n�1

ffiffiffi
p

p
G n� 1

2

�  : (66)

STURM-LIOUVILLE EQUATION

d

dx
p(x)

dy

dx

" #
�[lw(x)�q(x)]y�0: (67)

ULTRASPHERICAL DIFFERENTIAL EQUATION

1�x2
� �

yƒ�(2a�1)xy?�n(n�2a)y�0: (68)

VAN DER POL EQUATION

yƒ�m 1�y2
� �

y?�y�0: (69)

WEBER DIFFERENTIAL EQUATION

d2y

dz2
� n�1

2�
1
4 z2

� 
y�0: (70)

WHITTAKER DIFFERENTIAL EQUATION



d2u

dz2 
�

du

dz 
�

k

z 
�

1
4 � m2

z2

 !
u �0 : (71)

See also ADAMS’ METHOD, GREEN’S FUNCTION, ISO-

CLINE, LAPLACE TRANSFORM, LEADING ORDER ANALY-

SIS, MAJORANT, ORDINARY DIFFERENTIAL EQUATION–

FIRST-ORDER, ORDINARY DIFFERENTIAL EQUATION–

SECOND-ORDER, PARTIAL DIFFERENTIAL EQUATION,
RELAXATION METHODS, RUNGE-KUTTA METHOD, SIM-

PLE HARMONIC MOTION
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Ordinary Differential Equation*/First-
Order
Given a first-order ORDINARY DIFFERENTIAL EQUATION

dy

dx
�F(x; y); (1)

if F(x; y) can be expressed using SEPARATION OF

VARIABLES as

F(x; y)�X(x)Y(y); (2)

then the equation can be expressed as

dy

Y(y)
�X(x) dx (3)

and the equation can be solved by integrating both
sides to obtain

g
dy

Y(y)
�g X(x) dx: (4)

Any first-order ODE OF THE FORM

dy

dx
�p(x)y�q(x) (5)

can be solved by finding an INTEGRATING FACTOR m�
m(x) such that

d

dx
(my)�m

dy

dx
�y

dm

dx
�mq(x): (6)

Dividing through by my yields

1

y

dy

dx
�

1

m

dm

dx
�

q(x)

y
: (7)

However, this condition enables us to explicitly
determine the appropriate m for arbitrary p and q .
To accomplish this, take

p(x)�
1

m

dm

dx
(8)

in the above equation, from which we recover the
original equation (5), as required, in the form

1

y

dy

dx
�p(x)�

q(x)

y
: (9)

But we can integrate both sides of (8) to obtain



g p(x) dx �g
dm

m
�ln m �c (10)

m �e g p(x) dx : (11)

Now integrating both sides of (6) gives

my �g  mq(x) dx �c (12)

(with m now a known function), which can be solved
for y to obtain

y �
g mq(x) dx � c

m
�
g e g

x 

p(x ?) dx ?q(x) d(x) � c

e g
x 

p(x?) dx?
; (13)

where c is an arbitrary constant of integration.

Given an nth-order linear ODE with constant COEF-

FICIENTS

dny

dxn 
�an�1

dn�1y

dxn�1 
�. . . a1

dy

dx 
�a0y �Q(x) ; (14)

first solve the characteristic equation obtained by
writing

y �erx (15)

and setting Q(x) �0 to obtain the n COMPLEX ROOTS.

rnerx �an�1rn�1erx �. . .�a1rerx �a0erx �0 (16)

rn �an�1rn�1 �. . .�a1r �a0 �0: (17)

Factoring gives the ROOTS ri ;

(r �r1)(r �r2) � � � (r �rn) �0 : (18)

For a nonrepeated REAL ROOT r , the corresponding
solution is

y �erx : (19)

If a REAL ROOT r is repeated k times, the solutions are
degenerate and the linearly independent solutions
are

y �erx ; y �xerx ; � � � ; y �xk �1erx : (20)

Complex ROOTS always come in COMPLEX CONJUGATE

pairs, r9�a 9ib: For nonrepeated COMPLEX ROOTS,
the solutions are

y �eax cos(bx) ; y �eax sin(bx) : (21)

If the COMPLEX ROOTS are repeated k times, the
linearly independent solutions are

y �eax cos(bx) ; y �eax sin(bx) ; � � � ;

y �xk �1eax cos(bx) ; y �xk�1eax sin(bx) : (22)

Linearly combining solutions of the appropriate types
with arbitrary multiplicative constants then gives the
complete solution. If initial conditions are specified,

the constants can be explicitly determined. For
example, consider the sixth-order linear ODE

( D̃ �1)( D̃ �2)3( D̃2 � D̃ �1)y �0; (23)

which has the characteristic equation

(r �1)(r �2)3(r2 �r �1) �0: (24)

The roots are 1, 2 (three times), and (�1 9
ffiffiffi
3

p
i) =2; so

the solution is

y �Aex �Be2x �Cxe2x �Dx2e3x �Ee �x =2 cos 1
2

ffiffiffi
3

p
x

� 
�Fe�x sin 1

2

ffiffiffi
3

p
x

� 
: (25)

If the original equation is nonhomogeneous/(Q(x)"0);
now find the particular solution y� by the method of
VARIATION OF PARAMETERS. The general solution is
then

y(x)�
Xn

i�1

ciyi(x)�y�(x); (26)

where the solutions to the linear equations are y1(x);
y2(x); ..., yn(x); and y�(x) is the particular solution.

See also INTEGRATING FACTOR, ORDINARY DIFFEREN-

TIAL EQUATION–FIRST-ORDER EXACT, SEPARATION OF

VARIABLES, VARIATION OF PARAMETERS
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Ordinary Differential Equation*/First-
Order Exact
Consider a first-order ODE in the slightly different
form

p(x; y) dx�q(x; y) dy�0: (1)

Such an equation is said to be exact if

@p

@y
�

@q

@x
: (2)

This statement is equivalent to the requirement that
a CONSERVATIVE FIELD exists, so that a scalar poten-
tial can be defined. For an exact equation, the
solution is

g
(x; y)

(x0 ; y0)

p(x; y) dx�q(x; y) dy�c; (3)

where c is a constant.

A first-order ODE (1) is said to be inexact if

@p

@y
"

@q

@x
: (4)

For a nonexact equation, the solution may be ob-



tained by defining an INTEGRATING FACTOR m of (6) so
that the new equation

mp(x; y) dx�mq(x; y) dy�0 (5)

satisfies

@

@y
(mp)�

@

@x
(mq); (6)

or, written out explicitly,

p
@m

@y
�m

@p

@y
�q

@m

@x
�m

@p

@x
: (7)

This transforms the nonexact equation into an exact
one. Solving (7) for m gives

m�
q

@m

@x
� p

@m

@y
@p

@y
�

@q

@x

: (8)

Therefore, if a function m satisfying (8) can be found,
then writing

P(x; y)�mp (9)

Q(x; y)�mq (10)

in equation (5) then gives

P(x; y) dx�Q(x; y) dy�0; (11)

which is then an exact ODE. Special cases in which m

can be found include x -dependent, xy -dependent, and
y -dependent integrating factors.

Given an inexact first-order ODE, we can also look for
an INTEGRATING FACTOR m(x) so that

@m

@y
�0: (12)

For the equation to be exact in mp and mq; the
equation for a first-order nonexact ODE

p
@m

@y
�m

@p

@y
�q

@m

@x
�m

@p

@x
(13)

becomes

m
@p

@y
�q

@m

@x
�m

@p

@x
: (14)

Solving for @m=@x gives

@m

@x
�m(x)

@p

@y
�

@q

@x

q
�f (x; y)m(x); (15)

which will be integrable if

f (x; y)�

@p

@y
�

@q

@x

q
�f (x); (16)

in which case

dm

m
�f (x) dx; (17)

so that the equation is integrable

m(x)�eg f (x) dx; (18)

and the equation

[mp(x; y)] dx�[mq(x; y)] dy�0 (19)

with known m(x) is now exact and can be solved as an
exact ODE.

Given in an exact first-order ODE, look for an
INTEGRATING FACTOR m(x; y)�g(xy): Then

@m

@x
�

@g

@x
y: (20)

@m

@y
�

@g

@y
x: (21)

Combining these two,

@m

@x
�

y

x

@m

@y
: (22)

For the equation to be exact in mp and mq; the
equation for a first-order nonexact ODE

p
@m

@y
�m

@p

@y
�q

@m

@x
�m

@p

@x
(23)

becomes

@m

@y
p�

y

x
q

 !
�

@p

@x
�

@p

@y

 !
m: (24)

Therefore,

1

x

@m

@y
�

@q

@x
�

@p

@y

xp � yq
m: (25)

Define a new variable

t(x; y)�xy; (26)

then @t=@y�x; so

@m

@t
�

@m

@y

@y

@t
�

@q

@x
�

@p

@y

xp � yq
m(t)�f (x; y)m(t): (27)

Now, if



f (x; y)�

@q

@x
�

@p

@y

xp � yq
�f (xy)�f (t); (28)

then

@m

@t
�f (t)m(t); (29)

so that

m�eg f (t) dt (30)

and the equation

[mp(x; y)] dx�[mq(x; y)] dy�0 (31)

is now exact and can be solved as an exact ODE.

Given an inexact first-order ODE, assume there
exists an integrating factor

m�f (y); (32)

so @m=@x�0: For the equation to be exact in mp and
mq; equation (7) becomes

@m

@y
�

@q

@x
�

@p

@y

p
m�f (x; y)m(y): (33)

Now, if

f (x; y)�

@q

@x
�

@p

@y

p
�f (y); (34)

then

dm

m
�f (y) dy; (35)

so that

m(y)�eg f (y) dy; (36)

and the equation

mp(x; y) dx�mq(x; y) dy�0 (37)

is now exact and can be solved as an exact ODE.

Given a first-order ODE OF THE FORM

yf (xy) dx�xg(xy) dy�0; (38)

define

v�xy: (39)

Then the solution is

ln x�g
g(v) dv

c[g(v) � f (v)]
�c for g(v)"f (v)

xy�c for g(v)�f (v):

8<
: (40)

If

dy

dx
�F(x; y)�G(v); (41)

where

v�
y

x
; (42)

then letting

y�xv (43)

gives

dy

dx
�x dv=dx�v (44)

x
dv

dx
�v�G(v): (45)

This can be integrated by quadratures, so

ln x�g
dv

f (v) � v
�c for f (v)"v (46)

y�cx for f (v)�v: (47)
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Ordinary Differential Equation*/Second-
Order
An ODE

yƒ�P(x)y?�Q(x)y�0 (1)

has singularities for finite x�x0 under the following
conditions: (a) If either P(x) or Q(x) diverges as x 0
x0; but x�x0ð ÞP(x) and x�x0ð Þ2Q(x) remain finite as
x 0 x0; then x0 is called a regular or nonessential
singular point. (b) If P(x) diverges faster than
x�x0ð Þ�1 so that x�x0ð ÞP(x) 0 � as x 0 x0; or Q(x)

diverges faster than x�x0ð Þ�2 so that x�x0ð Þ2Q(x) 0
� as x 0 x0; then x0 is called an irregular or essential
singularity.

Singularities of equation (1) at infinity are investi-
gated by making the substitution x�z�1; so dx�
�z�2dz; giving

dy

dx
��z2 dy

dz
(2)

d2y

dx2
��z2 d

dz
�z2 dy

dz

 !
��z2 �2z

dy

dz
�z2 d2y

dz2

 !

�2z3 dy

dz
�z4 d2y

dz2
: (3)



Then (1) becomes

z4 d2y

dz2
� 2z3�z2P(z)
, -dy

dz
�Q(z)y�0: (4)

Case (a): If

a(z)�
2z � P(z)

z2
(5)

b(z)�
Q(z)

z4
(6)

remain finite at x�9� (y�0), then the point is
ordinary. Case (b): If either a(z) diverges no more
rapidly than 1=z or b(z) diverges no more rapidly than
1=z2; then the point is a regular singular point. Case
(c): Otherwise, the point is an irregular singular
point.

Morse and Feshbach (1953, pp. 667�/674) give the
canonical forms and solutions for second-order ODEs
classified by types of singular points.

For special classes of second-order linear ordinary
differential equations, variable COEFFICIENTS can be
transformed into constant COEFFICIENTS. Given a
second-order linear ODE with variable COEFFICIENTS

d2y

dx2
�p(x)

dy

dx
�q(x)y�0: (7)

Define a function z�y(x);

dy

dx
�

dz

dx

dy

dz
(8)

d2y

dx2
�

dz

dx

 !2
d2y

dz2
�

d2z

dx2

dy

dz
(9)

dz

dx

 !2
d2y

dz2
�

d2z

dx2
�p(x)

dz

dx

" #
dy

dz
�q(x)y�0 (10)

d2y

dz2
�

d2z

dx2
� P(x)

dz

dx

dz

dx

 !2

2
666664

3
777775

dy

dz
�

q(x)

dz

dx

 !2

2
66664

3
77775y

�
d2y

dz2
�A

dy

dz
�By�0: (11)

This will have constant COEFFICIENTS if A and B are
not functions of x . But we are free to set B to an
arbitrary POSITIVE constant for q(x)]0 by defining z
as

z�B�1=2 g [q(x)]1=2 dx: (12)

Then

dz

dx
�B�1=2[q(x)]1=2 (13)

d2z

dx2
�1

2B
�1=2[q(x)]�1=2q?(x); (14)

and

A�
1
2 B�1=2[q(x)]�1=2q?(x) � B�1=2p(x)[q(x)]1=2

B�1q(x)

�
q?(x) � 2p(x)q(x)

2[q(x)]3=2 B1=2: (15)

Equation (11) therefore becomes

d2y

dz2
�

q?(x) � 2p(x)q(x)

2[q(x)]3=2 B1=2 dy

dz
�By�0; (16)

which has constant COEFFICIENTS provided that

A�
q?(x) � 2p(x)q(x)

2[q(x)]3=2 B1=2�[constant]: (17)

Eliminating constants, this gives

A?�
q?(x) � 2p(x)q(x)

2[q(x)]3=2 �[constant]: (18)

So for an ordinary differential equation in which A? is
a constant, the solution is given by solving the
second-order linear ODE with constant COEFFICIENTS

d2y

dz2
�A

dy

dz
�By�0 (19)

for z , where z is defined as above.

A linear second-order homogeneous differential equa-
tion of the general form

yƒ�P(x)y?�Q(x)y�0 (20)

can be transformed into standard form

zƒ�q(x)z�0 (21)

with the first-order term eliminated using the sub-
stitution

ln y�ln z�1
2 g P(x)dx: (22)

Then

y?

y
�

z?

z
�1

2 P(x) (23)

yyƒ� y?2

y2
�

zzƒ� z?2

z2
�1

2 P?(x) (24)

yƒ

y
�

y?

y

 !2

�
zƒ

z
�

z?2

z
�

z?2

z2
�1

2 P?(x) (25)



yƒ

y
�

z?

z
�1

2 P(x)

" #2

�
zƒ

z
�

z?2

z
�1

2 P?(x)

�
z?2

z2
�

z?

z
P(x)�1

4 P2(x)�
zƒ

z
�

z?2

z2
�1

2 P?(x); (26)

so

yƒ

y
�P(x)

y?

y
�Q(x)

��
z?

z
P(x)�1

4 P2(x)�
zƒ

z
�1

2 P?(x)�P(x)
z?

z
�1

2 P(x)

" #

�Q(x): (27)

Therefore,

zƒ� Q(x)�1
2 P?(x)�1

4 P2(x)
h i

z�zƒ(x)�q(x)z�0; (28)

where

q(x)�Q(x)�1
2 P?(x)�1

4 P2(x): (29)

If Q(x)�0; then the differential equation becomes

yƒ�P(x)y?�0; (30)

which can be solved by multiplying by

exp g
x

P(x?) dx?
0 �

(31)

to obtain

0�
d

dx
exp g

x

P(x?) dx?
0 �

dy

dx

( )
(32)

c1�exp g
x

P(x?) dx?
0 �

dy

dx
(33)

y�c1g
x

dx

exp g
x

P(x?) dx?
0 ��c2: (34)

If one solution / y1ð Þ to a second-order ODE is known,
the other / y2ð Þ may be found using the REDUCTION OF

ORDER method. From ABEL’S DIFFERENTIAL EQUATION

IDENTITY

dW

W
��P(x) dx; (35)

where

W�y1y?2�y?1y2 (36)

g
x

a

dW

W
�g

x

a

P?(x?) dx? (37)

ln
W(x)

W(a)

" #
�g

x

a

P(x?) dx? (38)

W(x)�W(a)exp �g
x

a

P(x?) dx?
0 �

: (39)

But

W�y1y?2�y?1y2�y2
1

d

dx

y2

y1

 !
: (40)

Combining (39) and (40) yields

d

dx

y2

y1

 !
�W(a)

exp �g
x

a

P(x?) dx?
0 �

y2
1

(41)

y2(x)�y1(x)W(a) g
x

b

exp �g
x?

a

P(xƒ)dxƒ

" #
y1(x?)½ 2

dx?: (42)

Disregarding W(a); since it is simply a multiplicative
constant, and the constants a and b , which will
contribute a solution which is not linearly indepen-
dent of y1ð Þ;

y2(x)�y1(x)g
x exp �g

x?

P(xƒ) dxƒ

" #
y1(x?)½ 2

dx?: (43)

If P(x)�0; this simplifies to

y2(x)�y1(x)g
x

dx?

y1(x?)½ 2
: (44)

For a nonhomogeneous second-order ODE in which
the x term does not appear in the function f (x; y; y?);

d2y

dx2
�f (y; y?) (45)

let v�y?; then

dv

dx
�f (v; y)�

dv

dy

dy

dx
�v

dv

dy
: (46)

So the first-order ODE

v
dv

dy
�f (y; v); (47)

if linear, can be solved for v as a linear first-order
ODE. Once the solution is known,

dy

dx
�v(y) (48)

g
dy

v(y)
�g dx: (49)

On the other hand, if y is missing from f (x; y; y?);

d2y

dx2
�f (x; y?); (50)



let v �y?; then v?�yƒ; and the equation reduces to

v?�f (x; v) ; (51)

which, if linear, can be solved for v as a linear first-
order ODE. Once the solution is known,

y�g v(x) dx: (52)

See also ABEL’S DIFFERENTIAL EQUATION IDENTITY,
ADJOINT
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Ordinary Differential Equation*/System
with Constant Coefficients
To solve the system of differential equations

dx

dt
�Ax(t)�p(t); (1)

where A is a MATRIX and x and p are VECTORS, first
consider the homogeneous case with p�0: Then the
solutions to

dx

dt
�ax(t) (2)

are given by

x(t)�eatx(t): (3)

But, by the MATRIX DECOMPOSITION THEOREM, the
MATRIX EXPONENTIAL can be written as

eAt�uDu�1; (4)

where the EIGENVECTOR MATRIX is

u�[u1 � � �un] (5)

and the EIGENVALUE MATRIX is

D�

el1t 0 � � � 0
0 el2t � � � 0
n n ::: 0
0 0 � � � elnt

2
664

3
775: (6)

Now consider

eAtu�uDu�1u�uD

�

u11 u21 � � � un1

u12 u22 � � � un2

n n ::: n
u1n u2n � � � unn

2
664

3
775

el1t 0 � � � 0
0 el2t � � � 0
n n ::: 0
0 0 � � � elnt

2
664

3
775

�

u11el1t � � � un1elnt

u11el1t � � � un2elnt

n ::: n
un1el1t � � � un2elnt

2
664

3
775: (7)

The individual solutions are then

xi� eAtu
� �

� êi�uie
li t; (8)

so the homogeneous solution is

x�
Xn

i�1

ciuie
li t; (9)

where the ci/s are arbitrary constants.

The general procedure is therefore

1. Find the EIGENVALUES of the MATRIX A (/l1; ..., ln)
by solving the CHARACTERISTIC EQUATION.
2. Determine the corresponding EIGENVECTORS u1;
..., un:/
3. Compute

xi�elitui (10)

for i�1, ..., n . Then the VECTORS xi which are
REAL are solutions to the homogeneous equation. If
A is a 2�2 matrix, the COMPLEX vectors xj

correspond to REAL solutions to the homogeneous
equation given by R xj

� �
and I xj

� �
:/

4. If the equation is nonhomogeneous, find the
particular solution given by

x�(t)�X(t)g X�1(t)p(t) dt; (11)

where the MATRIX X is defined by

X(t)� x1 � � � xn½ : (12)

If the equation is homogeneous so that p(t)�0;
then look for a solution OF THE FORM

x�jelt: (13)

This leads to an equation



(A � lI)j �0 ; (14)

so j is an EIGENVECTOR and l an EIGENVALUE.
5. The general solution is

x(t) �x�(t) �
Xn

i�1

cixi : (15)

Ordinary Double Point
Portions of this entry contributed by SERGEI DUZHIN

Let f : R 0 R3 (or f : S1 0 R3) be a SPACE CURVE.
Then a point p � im(f ) ƒR3 (where im(f ) denotes the
IMMERSION of f ) is an ordinary double point if its
PREIMAGE under f consists of two values t1 and t2 ; and
the two TANGENT VECTORS f ?(t1) and f ?(t2) are noncol-
linear. Geometrically, this means that, in a NEIGH-

BORHOOD of p , the curve consists of two transverse
branches. Ordinary double points are ISOLATED SIN-

GULARITIES having COXETER-DYNKIN DIAGRAM of type
A1 ; and also called "nodes" or "simple double points."

The above plot shows the curve x3 �x2 �y2 �0; which
has an ordinary double point at the ORIGIN.

A surface in complex 3-space admits at most finitely
many ordinary double points. The maximum possible
number of ordinary double points m(d) for a surface of
degree d �1, 2, ..., are 0, 1, 4, 16, 31, 65, 93 5 m(7) 5
104; 168 5 m(8) 5174; 216 5 m(8) 5246; 345 5 m(10) 5
360; 425 5 m(11) 5480; 576 5 m(12) 5645 ... (Sloane’s
A046001; Chmutov 1992, Endraß 1995).

/m(4) �16 was known to Kummer in 1864 (Chmutov
1992), the fact that m(5) �31 was proved by Beauville
(1980), and m(6) �65 was proved by Jaffe and Ruber-
man (1994). For d ]3; the following inequality holds:

m(d) 51
2[d(d �1) �3]

(Endraß 1995). Examples of ALGEBRAIC SURFACES

having the maximum (known) number of ordinary
double points are given in the following table.

d /m(d)/ Surface

3 4 CAYLEY CUBIC

4 16 KUMMER SURFACE

5 31 DERVISH

6 65 BARTH SEXTIC

7 93 CHMUTOV SURFACE

8 168 ENDRAß OCTIC

9 216 CHMUTOV SURFACE

10 345 BARTH DECIC

11 425 CHMUTOV SURFACE

12 600 SARTI DODECIC

See also ALGEBRAIC SURFACE, BARTH DECIC, BARTH

SEXTIC, CAYLEY CUBIC, CHMUTOV SURFACE, CUSP,
DERVISH, DOUBLE POINT, ENDRAß OCTIC, ISOLATED

SINGULARITY, KUMMER SURFACE, RATIONAL DOUBLE

POINT, SARTI DODECIC
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Ordinary Generating Function
GENERATING FUNCTION

Ordinary Line
Given an arrangement of n ]3 points, a LINE contain-
ing just two of them is called an ordinary line. Kelly
and Moser (1958) proved that at least 3n =7 lines must
be ordinary (Guy 1989, p. 903).

See also COLINEAR, GENERAL POSITION, INCIDENT,
NEAR-PENCIL, ORDINARY POINT, SPECIAL POINT, SYL-

VESTER GRAPH
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Ordinary Point
A POINT which lies on at least one ORDINARY LINE is
called an ordinary point, or sometimes a REGULAR

POINT.

See also ORDINARY LINE, REGULAR POINT, SPECIAL

POINT, SYLVESTER GRAPH
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Ordinary Surface
A surface which is homeomorphic to a finite collection
of spheres, each with a finite number of HANDLES,
cross-handles, CROSS-CAPS, and PERFORATIONS. A
preliminary version of the CLASSIFICATION THEOREM

OF SURFACES states that every surface is ordinary.
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Ordinate
The y - (vertical) coordinate of a point in a two
dimensional coordinate system. Physicists and as-
tronomers sometimes use the term to refer to the axis
itself instead of the distance along it.

See also ABSCISSA, X -AXIS, Y -AXIS, Z -AXIS

Ore Graph

A GRAPH G in which the sums of the degrees of
nonadjacent vertices is greater than the number of
nodes n for all subsets of nonadjacent vertices (Ore
1960; Skiena 1990, p. 197). Ore graphs are always
HAMILTONIAN, and a HAMILTONIAN CIRCUIT in such a
graph can be constructed in polynomial time (Bondy
and Chvátal 1976; Skiena 1990, p. 197). The numbers
of Ore graphs on n �5, 6, ... nodes are 2, 6, 32, ..., the
first few of which are illustrated above.

See also HAMILTONIAN CIRCUIT, HAMILTONIAN GRAPH
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Ore Number
HARMONIC DIVISOR NUMBER

Ore’s Conjecture
Define the HARMONIC MEAN of the DIVISORS of n

H(n) �
t(n)P
djn

1

d

;

where t(n) is the TAU FUNCTION (the number of
DIVISORS of n ). If n is a PERFECT NUMBER, H(n) is
an INTEGER. Ore conjectured that if n is ODD, then
H(n) is not an INTEGER. This implies that no ODD

PERFECT NUMBERS exist.

See also HARMONIC DIVISOR NUMBER, HARMONIC

MEAN, PERFECT NUMBER, TAU FUNCTION



Ore’s Theorem
If a GRAPH G has n ]3 VERTICES such that every pair
of the n VERTICES which are not joined by an EDGE

has a sum of VALENCES which is ]n ; then G is
HAMILTONIAN.

See also HAMILTONIAN GRAPH

Orientable Surface
A REGULAR SURFACE M ƒRn is called orientable if
each TANGENT SPACE Mp has a COMPLEX STRUCTURE

Jp : Mp 0 Mp such that p 0 Jp is a continuous func-
tion.

See also NONORIENTABLE SURFACE, REGULAR SUR-

FACE
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Orientation (Bundle)
A real VECTOR BUNDLE p : E 0 M has an orientation
if there exists a covering by TRIVIALIZATIONS Ui �Rk

such that the TRANSITION FUNCTIONS are ORIENTA-

TION preserving. Alternatively, there exists a section
of the PROJECTIVIZATION of the top exterior power of
the bundle, PR(fflkE) : A bundle is called orientable if
there exists an orientation. Hence a bundle E of RANK

k is orientable iff fflkE is a TRIVIAL LINE BUNDLE.

An orientation of the TANGENT BUNDLE is equivalent
to an orientation on the BASE MANIFOLD. Not all
bundles are orientable, as can be seen by the
TANGENT BUNDLE of the MÖ BIUS STRIP. The nontrivial
LINE BUNDLE on the circle is also not orientable.

See also BUNDLE, ORIENTATION (MANIFOLD), ORIEN-

TATION (VECTOR SPACE), VECTOR BUNDLE
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Orientation (Graph)
An orientation of an UNDIRECTED GRAPH G is an
assignment of exactly one direction to each of the
edges of G . Only connected, bridgeless graphs can
have a strong orientation (Robbins 1939; Skiena
1990, p. 174). An oriented COMPLETE GRAPH is called
a TOURNAMENT.

See also DIRECTED GRAPH, TOURNAMENT
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Orientation (Manifold)
An orientation on an n -dimensional MANIFOLD is
given by a nowhere vanishing DIFFERENTIAL N -

FORM. Alternatively, it is an ORIENTATION for the
TANGENT BUNDLE. If an orientation exists on M , then
M is called orientable.

Not all MANIFOLDS are orientable, as exemplified by
the MÖ BIUS STRIP and the KLEIN BOTTLE, illustrated
above.

However, an (n �1)/-dimensional SUBMANIFOLD of Rn

is orientable IFF it has a unit normal vector field. The
choice of unit determines the orientation of the
submanifold. For example, the SPHERE S2 is orienta-
ble.

Some types of manifolds are always orientable. For
instance, COMPLEX MANIFOLDS, including VARIETIES,
and also SYMPLECTIC MANIFOLDS are orientable. Also,
any unoriented manifold has a double COVER which is
oriented.

A map f : M 0 N between oriented manifolds of the
same dimension is called orientation preserving if the
volume form on N pulls back to a positive volume
form on M . Equivalently, the differential df maps an
ORIENTED BASIS in TM to an ORIENTED BASIS in TN .

See also DIFFERENTIAL FORM, ORIENTATION (BUN-

DLE), ORIENTATION (VECTOR SPACE), VOLUME FORM
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Orientation (Plane Curve)
A curve has positive orientation if a region R is on the
left when traveling around the outside of R , or on the
right when traveling around the inside of R .

Orientation (Vector Space)
An ordered BASIS v1 ; . . . ; vn for a finite-dimensional
VECTOR SPACE V defines an orientation. Another basis
wi �Avi gives the same orientation if the matrix A
has a positive determinant, in which case the basis wi

is called oriented.

Any VECTOR SPACE has two possible orientations since
the DETERMINANT of an INVERTIBLE MATRIX is either
positive or negative. For example, in R2 ; fe1 ; e2 g is
one orientation and fe2 ; e1 g�fe1 ; �e2 g is the other
orientation. In three dimensions, the CROSS PRODUCT

uses the RIGHT-HAND RULE by convention, reflecting
the use of the canonical orientation fe1 ; e2 ; e3 g as
e1 �e2 �e3 :/

An orientation can be given by a nonzero element in
the top exterior power of V , i.e. fflnV : For example,
e1ffle2ffle3 gives the canonical orientation on R3 and
�e1ffle2ffle3 gives the other orientation.

Some special vector space structures imply an orien-
tation. For example, if v is a SYMPLECTIC FORM on V ,
of dimension 2n; then vn gives an orientation. Also, if
V is a COMPLEX VECTOR SPACE, then as a real vector
space of dimension 2n; the COMPLEX STRUCTURE gives
an orientation.

See also ORIENTATION (MANIFOLD), ORIENTATION

(VECTOR BUNDLE)

Orientation (Vectors)
Let u be the ANGLE between two VECTORS. If 0B u B p;
the VECTORS are positively oriented. If p B u B2 p; the
vectors are negatively oriented.

Two vectors in the plane

x1

x2

0 �
and

y1

y2

0 �
are positively oriented IFF the DETERMINANT

D � 
x1 y1

x2 y2

����
���� > 0 ;

and are negatively oriented IFF the DETERMINANT

D B0.

Orientation-Preserving
A nonsingular linear MAP A : Rn 0 Rn is orientation-
preserving if (A) > 0 :/

See also ORIENTATION-REVERSING, ROTATION

Orientation-Reversing
A nonsingular linear MAP A : Rn 0 Rn is orientation-
reversing if det(A) B0 :/

See also ORIENTATION-PRESERVING

Oriented Graph

A DIRECTED GRAPH having no symmetric pair of
directed edges.

See also DIRECTED GRAPH
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Oriented Knot

See also KNOT, ORIENTED LINK
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Oriented Link

See also LINK, ORIENTED KNOT
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Oriented Matroid

The oriented matroid of a finite CONFIGURATION of
points extracts relative position and orientation
information from the CONFIGURATION. An oriented
matroid can be described roughly as a MATROID in
which every basis is equipped with an orientation
(Richter-Gebert and Ziegler 1997, p. 112).

See also CONFIGURATION, MATROID
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Origami
The Japanese art of paper folding.

CUBE DUPLICATION and TRISECTION of an ANGLE can
be solved using origami, although they cannot be
solved using the traditional rules for GEOMETRIC

CONSTRUCTIONS.

There are a number of recent very powerful results in
origami mathematics. A very general result states
that any planar straight-line drawing may be cut out
of one sheet of paper by a single straight cut, after
appropriate folding (Demaine, Demaine, and Lubiw,
1998, 1999, O’Rourke 1999). Another result is that
any polyhedron may be wrapped with a sufficiently
large square sheet of paper. This implies that any
connected, planar, polygonal region may be covered
by a flat origami folded from a single square of paper.
Moreover, and 2-coloring of the faces may be realized
with paper whose two sides are those colors (De-
maine, Demaine, and Mitchell 1999, O’Rourke 1999).

See also FOLDING, GEOMETRIC CONSTRUCTION, MAP

FOLDING, STAMP FOLDING, STOMACHION, TANGRAM
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Origin
The central point (r �0) in POLAR COORDINATES, or
the point with all zero coordinates (0, ..., 0) in
CARTESIAN COORDINATES. In 3-D, the X -AXIS, Y -AXIS,
and Z -AXIS meet at the origin.

See also OCTANT, QUADRANT, X -AXIS, Y -AXIS, Z -AXIS

Ornstein’s Theorem
An important result in ERGODIC THEORY. It states
that any two "Bernoulli schemes" with the same
MEASURE-THEORETIC ENTROPY are MEASURE-THEORE-

TICALLY ISOMORPHIC.

See also ERGODIC THEORY, ISOMORPHISM, MEASURE

THEORY

Orr’s Theorem
If

(1�z)a�b�g�1=2
2F1(2a; 2b; 2g; z)�

X
anzn; (1)

where 2F1(a; b; c; z) is a HYPERGEOMETRIC FUNC-

TION, then

2F1(a; b; g; z)2F1 g�a�1
2; g�b�1

2; g�1; z
� 

�
X

(g�1=2)n=(g�1)n

anzn: (2)

Furthermore, if

(1�z)a�b�g�1=2
2F1(2a�1; 2b; 2g�1; z)

�
X

anzn; (3)

then



2F1( a; b; g; z) G g � a �1
2 ; g � b �1

2; g; z
� 

�
X

(g�1 =2)n =( g)n

anzn ; (4)

where G(z) is the GAMMA FUNCTION (Bailey 1935,
p. 84).
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Orr-Sommerfeld Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

1

i aR

d2

dx2 
� a2

 !2

y

� [f (x) �c]
d2

dx2 
� a2

 !
�f ??(x)

( )
y �0:
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Orthic Axis

The DHAHBHC be the ORTHIC TRIANGLE of a TRIANGLE

DABC: Then each side of each triangle meets the three
sides of the other triangle, and the points of intersec-
tion lie on a line O1O2O3 called the orthic axis.

See also ORTHIC TRIANGLE
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Orthic Triangle

Given a TRIANGLE DA1A2A3; the TRIANGLE DH1H2H3

with VERTICES at the feet of the ALTITUDES (perpen-
diculars from a point to the sides) is called the orthic
triangle. The three lines AiHi are CONCURRENT at the
ORTHOCENTER H of DA1A2A3: The orthic triangle is



therefore the PEDAL TRIANGLE with respect to H .

Given a triangle DA1A2A3 ; construct the orthic trian-
gle DH1H2H3 and determine the SYMMEDIAN POINTS

K1 ; K2 ; and K3 of DA1H2H3 ; DH1A2H3 ; and DH1H2A3 ;
respectively. Then the SYMMEDIANS K1 ; K2 ; and K3 of
each corner triangle pass through the MIDPOINTS M1 ;
M2 ; and M3 of the corresponding sides of the original
triangle DA1A2A3 (Honsberger 1995, p. 75). Moreover,
the lines K1M1 ; K2M2 ; and K3M3 CONCUR in the
CENTROID of DA1A2A3 :/
The sides of the orthic triangle are parallel to the
tangents to the CIRCUMCIRCLE at the vertices (John-
son 1929, p. 172).

The centroid of the orthic triangle has TRIANGLE

CENTER FUNCTION

a �a2 cos(B �C)

(Casey 1893, Kimberling 1994). The ORTHOCENTER of
the orthic triangle has TRIANGLE CENTER FUNCTION

a �cos(2A)cos(B �C)

(Casey 1893, Kimberling 1994). The SYMMEDIAN

POINT of the orthic triangle has TRIANGLE CENTER

FUNCTION

a �tan A cos(B �C)

(Casey 1893, Kimberling 1994).

See also ALTITUDE, FAGNANO’S PROBLEM, ORTHOCEN-

TER, PEDAL TRIANGLE, SCHWARZ’S TRIANGLE PRO-

BLEM, SYMMEDIAN POINT
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Orthobicupola

A BICUPOLA in which the bases are in the same
orientation.

See also PENTAGONAL ORTHOBICUPOLA, SQUARE

ORTHOBICUPOLA, TRIANGULAR ORTHOBICUPOLA

Orthobirotunda
A BIROTUNDA in which the bases are in the same
orientation.

Orthocenter

The intersection H of the three ALTITUDES of a
TRIANGLE is called the orthocenter. The name was
invented by Besant and Ferrers in 1865 while walk-
ing on a road leading out of Cambridge, England in
the direction of London (Satterly 1962). The TRI-

LINEAR COORDINATES of the orthocenter are

cos B cos C : cos C cos A : cos A cos B: (1)

If the TRIANGLE is not a RIGHT TRIANGLE, then (1) can
be divided through by cos A cos B cos C to give

sec A : sec B : sec C: (2)

If the triangle is ACUTE, the orthocenter is in the
interior of the triangle. In a RIGHT TRIANGLE, the
orthocenter is the VERTEX of the RIGHT ANGLE.
When the vertices of a triangle are combined with its
orthocenter, any one of the points is the orthocenter
of the other three, as first noted by Carnot (Wells



1991). These four points therefore form an ORTHO-

CENTRIC SYSTEM.

The CIRCUMCENTER O and orthocenter H are ISO-

GONAL CONJUGATES. The orthocenter lies on the
EULER LINE. The orthocenter and NAGEL POINT form
a DIAMETER of the FUHRMANN CIRCLE.

Relationships involving the orthocenter include the
following:

a2
1 �a2

2 �a2
3 �A1H

2 
�A2H

2 
�A3H

2 
�12R2 (3)

A1H �A2H �A3H �2(r �R) ; (4)

A1H
2 
�A2H

2 
�A3H

2 
�4R2 �4Rr ; (5)

where r is the INRADIUS and R is the CIRCUMRADIUS

(Johnson 1929, p. 191).

Any HYPERBOLA circumscribed on a TRIANGLE and
passing through the orthocenter is RECTANGULAR,
and has its center on the NINE-POINT CIRCLE (Falisse
1920, Vandeghen 1965).

See also CENTROID (TRIANGLE), CIRCUMCENTER,
DROZ-FARNY CIRCLES, EULER LINE, FUHRMANN CIR-

CLE, INCENTER, ORTHIC TRIANGLE, ORTHOCENTRIC

COORDINATES, ORTHOCENTRIC QUADRILATERAL,
ORTHOCENTRIC SYSTEM, POLAR CIRCLE
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Orthocentric Coordinates
Coordinates defined by an ORTHOCENTRIC SYSTEM.

See also TRILINEAR COORDINATES

Orthocentric Line
The common axis of the three altitude planes of a
TRIHEDRON.

See also TRIHEDRON
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Orthocentric Quadrangle
Given four points, A , B , C , and H , let H be the
ORTHOCENTER of DABC : Then A is the ORTHOCENTER

DHBC; B is the ORTHOCENTER of DHAC ; and C is the
ORTHOCENTER of DHAB: The configuration ABCH is
called an orthocentric quadrangle.

See also ORTHOCENTER, ORTHOCENTRIC QUADRILAT-

ERAL, ORTHOCENTRIC SYSTEM
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Orthocentric Quadrilateral
If two pairs of opposite sides of a COMPLETE QUAD-

RILATERAL are pairs of PERPENDICULAR lines, the
QUADRILATERAL is said to be orthocentric. In such a
case, the remaining sides are also PERPENDICULAR.

See also ORTHOCENTRIC QUADRANGLE, ORTHO-

CENTRIC SYSTEM



Orthocentric System

A set of four points, one of which is the ORTHOCENTER

of the other three. In an orthocentric system, each
point is the ORTHOCENTER of the TRIANGLE of the
other three, as illustrated above (Coxeter and Greit-
zer 1967, p. 39). The INCENTER and EXCENTERS of a
TRIANGLE are an orthocentric system.

The centers of the CIRCUMCIRCLES of the points in an
orthocentric system form another orthocentric system
congruent to the first, and are the reflection of the
original points in their common NINE-POINT CENTER

(Wells 1991).

The centroids of the points in an orthocentric system
form another orthocentric system similar to the first,
but one third the size (Wells 1991).

The sum of the squares of any nonadjacent pair of
connectors of an orthocentric system equals the
square of the DIAMETER of the CIRCUMCIRCLE. Ortho-
centric systems are used to define ORTHOCENTRIC

COORDINATES.

The four CIRCUMCIRCLES of points in an orthocentric
system taken three at a time (illustrated above) have
equal RADIUS (Wells 1991).

The four triangles of an orthocentric system have a
common NINE-POINT CIRCLE, illustrated above.
Furthermore, this circle is tangent to the 16 incircles
and excircles of the four triangles (Wells 1991).

See also ANGLE BISECTOR, CIRCUMCIRCLE, CYCLIC

QUADRANGLE, NINE-POINT CIRCLE, ORTHIC TRIANGLE,
ORTHOCENTER, ORTHOCENTRIC QUADRANGLE ORTHO-



CENTRIC QUADRILATERAL, POLAR CIRCLE, RIGHT HY-

PERBOLA
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Orthocupolarotunda
A CUPOLAROTUNDA in which the bases are in the same
orientation.

See also GYROCUPOLAROTUNDA, PENTAGONAL ORTHO-

CUPOLARONTUNDA

Orthodrome
GREAT CIRCLE

Orthogonal Array
An orthogonal array OA(k, s ) is a k �s2 ARRAY with
entries taken from an s -set S having the property
that in any two rows, each ordered pair of symbols
from S occurs exactly once.
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Orthogonal Basis
A BASIS of vectors x which satisfy

xjxk �Cjk djk

xmxn �C mn d
m
n ;

where Cjk ; C
m
n are constants (not necessarily equal to

1) and djk is the KRONECKER DELTA.

See also BASIS, ORTHONORMAL BASIS, SPECTRUM

(OPERATOR)

Orthogonal Circles

Orthogonal circles are ORTHOGONAL CURVES, i.e., they

cut one another at RIGHT ANGLES. Two CIRCLES with
equations

x2 �y2 �2gx �2fy �c �0 (1)

x2 �y2 �2g ?x �2f ?y �c ?�0 (2)

are orthogonal if

2gg?�2ff ?�c �c ?: (3)

The RADICAL LINES of three given circles concur in the
RADICAL CENTER R . If a circle with center R cuts any
one of the three circles orthogonally, it cuts all three
orthogonally. This circle is called the orthogonal circle
(or RADICAL CIRCLE) of the system. The orthogonal
circle is the LOCUS of a point whose POLARS with
respect to the three given circles are concurrent
(Lachlan 1893, p. 237).

A theorem of Euclid states that, for the orthogonal
circles in the above diagram,

OP �OQ �OT2 (4)

(Dixon 1991, p. 65).
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Orthogonal Complement

The orthogonal complement of a SUBSPACE W of Rn is
denoted W�:/

See also FREDHOLM’S THEOREM, ORTHOGONAL DE-

COMPOSITION



Orthogonal Coordinate System
A system of CURVILINEAR COORDINATES in which each
family of surfaces intersects the others at right
angles.

Orthogonal CURVILINEAR COORDINATES satisfy the
additional constraint that

ûi � ûj � dij : (1)

Therefore, the LINE ELEMENT becomes

ds2 �dr � dr �h2
1 du2

1 �h2
2 du2

2 �h2
3 du2

3 (2)

and the VOLUME ELEMENT is

dV � (h1 ̂u1 du1) � (h2 ̂u2 du2) �(h3 ̂u3 du3)j j

�h1h2h3 du1 du2 du3

�
@r

@u1

�
@r

@u2

�
@r

@u3

�����
����� du1 du2 du3

�

@x

@u1

@x

@u2

@x

@u3

@y

@u1

@y

@u2

@y

@u3

@z

@u1

@z

@u2

@z

@u3

��������������

��������������
du1 du2 du3

�
@(x; y; z)

@(u1 ; u2 ; u3)

�����
����� du1 du2 du3 ; (3)

where the latter is the JACOBIAN.

For surfaces of first degree, the only 3-D coordinate
system of surfaces having orthogonal intersections is
CARTESIAN COORDINATES (Moon and Spencer 1988,
p. 1). Including degenerate cases, there are 11 sets of
quadratic surfaces having orthogonal coordinates.
Furthermore, LAPLACE’S EQUATION and the HELM-

HOLTZ DIFFERENTIAL EQUATION are separable in all of
these coordinate systems (Moon and Spencer 1988,
p. 1).

Planar orthogonal curvilinear coordinate systems of
degree two or less include 2-D CARTESIAN COORDI-

NATES and POLAR COORDINATES.

3-D orthogonal curvilinear coordinate systems of
degree two or less include BIPOLAR CYLINDRICAL

COORDINATES, BISPHERICAL COORDINATES, 3-D CARTE-

SIAN COORDINATES, CONFOCAL ELLIPSOIDAL COORDI-

NATES, CONFOCAL PARABOLOIDAL COORDINATES,
CONICAL COORDINATES, CYCLIDIC COORDINATES, CY-

LINDRICAL COORDINATES, ELLIPSOIDAL COORDINATES,
ELLIPTIC CYLINDRICAL COORDINATES, OBLATE SPHER-

OIDAL COORDINATES, PARABOLIC COORDINATES, PARA-

BOLIC CYLINDRICAL COORDINATES, PARABOLOIDAL

COORDINATES, PROLATE SPHEROIDAL COORDINATES,
SPHERICAL COORDINATES, and TOROIDAL COORDI-

NATES. These are degenerate cases of the CONFOCAL

ELLIPSOIDAL COORDINATES.

Orthogonal coordinate systems can also be built from
fourth-order (in particular, CYCLIDIC COORDINATES)
and higher surfaces (Bôcher 1894), but are generally
less important in solving physical problems than are
quadratic surfaces (Moon and Spencer 1988, p. 1).

See also CHANGE OF VARIABLES THEOREM, CURL,
CURVILINEAR COORDINATES, CYCLIDIC COORDINATES,
DIVERGENCE, GRADIENT, JACOBIAN, LAPLACIAN, SKEW

COORDINATE SYSTEM
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Orthogonal Curves
Two intersecting curves which are PERPENDICULAR at
their INTERSECTION are said to be orthogonal.

Orthogonal Decomposition
This entry contributed by VIKTOR BENGTSSON

The orthogonal decomposition of a VECTOR y in Rn is
the sum of a vector in a SUBSPACE W of Rn and a
vector in the ORTHOGONAL COMPLEMENT W� to W .

The orthogonal decomposition theorem states that if
W is a SUBSPACE of Rn; then each vector y in Rn can be
written uniquely in the form

y�ŷ�x;

where ŷ is in W and z is in W�: In fact, if
fu1; u2; . . . ; upg is any ORTHOGONAL BASIS of W ,
then



ŷ �
y � u1

u1 � u1

u1 �
y � u2

u2 � u2

u2 �. . .�
y � up

up � up

up ;

and z �y �ŷ:/

Geometrically, ŷ is the ORTHOGONAL PROJECTION of y
onto the SUBSPACE W and z is a vector orthogonal to ŷ/

See also FREDHOLM’S THEOREM, LU DECOMPOSITION,
QR DECOMPOSITION
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Orthogonal Functions
Two functions f (x) and g(x) are orthogonal on the
interval a 5x 5b if

�f (x) ½g(x)��g
b

a

f (x)g(x) dx�0:

See also ORTHOGONAL POLYNOMIALS, ORTHONORMAL

FUNCTIONS

Orthogonal Group
For every DIMENSION n �0, the orthogonal group
O(n) is the GROUP of n�n ORTHOGONAL MATRICES.
These matrices form a GROUP because they are
CLOSED under multiplication and taking inverses.

Thinking of a matrix as given by n2 coordinate
functions, the set of matrices is identified with Rn2

:
The orthogonal matrices are the solutions to the n2

equations

AAT�I; (1)

where I is the IDENTITY MATRIX, which are redundant.
Only n(n�1)=2 of these are independent, leaving
n(n�1)=2 "free variables." In fact, the orthogonal
group is a smooth n(n�1)=2 dimensional SUBMANI-

FOLD.

Because the orthogonal group is a group and a
manifold, it is a LIE GROUP. O(n) has a TANGENT

SPACE at the identity that is the LIE ALGEBRA of SKEW

SYMMETRIC MATRICES o(n): In fact, the orthogonal
group is a COMPACT LIE GROUP.

The DETERMINANT of an ORTHOGONAL MATRIX is
either 1 or �1, and so the orthogonal group has two
COMPONENTS. The component containing the identity
is a the SPECIAL ORTHOGONAL GROUP SO(n): For
example, The GROUP O(2) has GROUP ACTION on the
plane that is a rotation:

O(2)�
cos u �sin u

sin u cos u

0 �3 �
@

�cos u sin u

sin u cos u

0 �3 �
; (2)

where u is any real number in 0; 2p½ Þ: These matrices
preserve the QUADRATIC FORM x2�y2; and so they

also preserve CIRCLES x2�y2�r2; which are the
ORBITS.

As a manifold, O(2) is a one dimensional, two disjoint
copies of the CIRCLE. The SUBGROUP SO(2) is not a
NORMAL SUBGROUP, so O(2) is the SEMIDIRECT PRO-

DUCT of the circle SO(2) and Z2:/

There are several generalizations of the orthogonal
group. First, it is possible to define the orthogonal
group for any SYMMETRIC QUADRATIC FORM Q with
SIGNATURE (p, q ). The group of matrices A which
preserve Q , that is,

Q(v; w)�Q(Av; Aw); (3)

is denoted O(p; q): The LORENTZ GROUP is O(3; 1):
For example, the matrices

A�
cosh t sinh t
sinh t cosh t

0 �
(4)

are elements of O(1; 1): They preserve the QUADRATIC

FORM x2�y2 so they preserve the HYPERBOLAS

x2�y2�c:/

Instead of using real numbers for the coefficients, it is
possible to use coefficients from any FIELD F; in which
case it is denoted O(n; F): The orthogonal matrices
still satisfy AAt�I: For example, O(2; F23) contains

11 15
15 12

0 �
; (5)

and has 48 elements in total.

Of course, O(p; q; F) denotes the group of matrices
which preserve the SYMMETRIC QUADRATIC FORM of
SIGNATURE (p, q ), with coefficients in the field F:
When F is not R or C; these are called LIE-TYPE

GROUPS.

When the coefficients are COMPLEX NUMBERS, it is
called the complex orthogonal group, which is much



different from the UNITARY GROUP. For example,
matrices OF THE FORM

A �
cos z �sin z
sin z cos z

0 �
(6)

are in O(2; C) : In particular, O(n; C) is not COMPACT.
The equations defining O(n) in AFFINE SPACE are
polynomials of degree two. Consequently, O(n) is a
LINEAR ALGEBRAIC GROUP.

The numbers of subgroups s(n) of orders n � 1, 2, 3,
... in the orthogonal group O(3) are 1, 3, 1, 5, 1, 5, 1, 7,
1, 5, 1, 8, ... (Sloane’s A001051), i.e., a repeating
sequence of copies of f1; 5; 1; 7g with the exceptions
s(2) �3 ; s(4) �5 ; s(12) �8; s(24) �10 ; and
s(48) �s(60) �s(120) �8:/

See also DETERMINANT, GENERAL ORTHOGONAL

GROUP, GROUP, FIELD, LAPLACIAN, LIE ALGEBRA,
LIE GROUP, LIE-TYPE GROUP, LINEAR ALGEBRAIC

GROUP, ORTHOGONAL GROUP REPRESENTATIONS,
ORTHOGONAL MATRIX, ORTHOGONAL TRANSFORMA-

TION, ORTHONORMAL BASIS, PROJECTIVE GENERAL

ORTHOGONAL GROUP, PROJECTIVE SPECIAL ORTHOGO-

NAL GROUP, RIEMANNIAN METRIC, SPECIAL ORTHO-

GONAL GROUP, SUBMANIFOLD, SYMMETRIC QUADRATIC

FORM, UNITARY GROUP, VECTOR SPACE
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Orthogonal Group Representations
Two representations of a GROUP xi and xj are said to
be orthogonal if X

R

xi(R) xj(R) �0

for i "j; where the sum is over all elements R of the
representation.

See also GROUP

Orthogonal Lines
Two or more LINES or LINE SEGMENTS which are
PERPENDICULAR are said to be orthogonal.

See also ORTHOGONAL CURVES, PERPENDICULAR,
RIGHT ANGLE

Orthogonal Matrix
A n �n matrix A is an orthogonal matrix if

AAT �I ; (1)

where AT is the TRANSPOSE of A and I is the IDENTITY

MATRIX. In particular, an orthogonal matrix is always
invertible, and

A �1 �AT (2)

(Note that transpose is a much simpler computation
than inverse.) For example,

A �
1ffiffiffi
2

p 1 1
1 �1

0 �
(3)

A �
1

3

2 �2 1
1 2  2
2 1 �2

2
4

3
5 (4)

are orthogonal matrices. A matrix m can be tested to
see if it is orthogonal using the Mathematica function

OrthogonalQ[m_List?MatrixQ] : �
(Transpose[m].m ��  IdentityMatrix@Length@m)

The rows of an orthogonal matrix are an ORTHONOR-

MAL BASIS. That is, each row has length one, and are
mutually perpendicular. Similarly, the columns are
also an orthonormal basis. In fact, given any ortho-
normal basis, the matrix whose rows are that basis is
an orthogonal matrix. It is automatically the case
that the columns are another orthonormal basis.

The orthogonal matrices are precisely those matrices
which preserve the INNER PRODUCT

�v; w ���Av; Aw�: (5)

Also, the determinant of A is either 1 or �1. As a
subset of Rn2 

; the orthogonal matrices are not CON-

NECTED since the determinant is a CONTINUOUS

FUNCTION. Instead, there are two COMPONENTS corre-
sponding to whether the determinant is 1 or �1. The
orthogonal matrices with A �1 are rotations, and
such a matrix is called a SPECIAL ORTHOGONAL

MATRIX.

The product of two orthogonal matrices is another
orthogonal matrix. In addition, the inverse of an
orthogonal matrix is an orthogonal matrix, as is the
IDENTITY MATRIX. Hence the set of orthogonal ma-
trices form a GROUP, called the ORTHOGONAL GROUP

O(n):/

See also EULER’S ROTATION THEOREM, INNER PRO-

DUCT, ORTHOGONAL GROUP, ORTHOGONAL TRANSFOR-

MATION, ORTHOGONALITY CONDITION, ORTHONORMAL

BASIS, ROTATION, ROTATION MATRIX, ROTOINVER-

SION, SKEW SYMMETRIC MATRIX, SPECIAL ORTHOGO-

NAL MATRIX, SPIN GROUP, UNITARY MATRIX
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Orthogonal Polynomials
Orthogonal polynomials are classes of POLYNOMIALS

fpn(x)g over a range [a, b ] which obey an ORTHOGON-

ALITY relation

g
b

a

w(x)pm(x)pn(x) dx�dmncn; (1)

where w(x) is a WEIGHTING FUNCTION and d is the
KRONECKER DELTA. If cn�1; then the POLYNOMIALS

are not only orthogonal, but orthonormal.

Orthogonal polynomials have very useful properties
in the solution of mathematical and physical pro-
blems. Just as FOURIER SERIES provide a convenient
method of expanding a periodic function in a series of
linearly independent terms, orthogonal polynomials
provide a natural way to solve, expand, and interpret
solutions to many types of important DIFFERENTIAL

EQUATIONS. Orthogonal polynomials are especially
easy to generate using GRAM-SCHMIDT ORTHONORMA-

LIZATION. Abramowitz and Stegun (1972, pp. 774�/

775) give a table of common orthogonal polynomials.

Type Interval /w(x)/ /cn/

CHEBYSHEV

POLYNOMIAL OF

THE FIRST KIND

/[�1; 1]/ /(1�x2)�1=2
/ /

1
2p for n�0

p otherwise

3

CHEBYSHEV

POLYNOMIAL OF

THE SECOND

KIND

/[�1; 1]/ /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
/ /

1
2 p/

HERMITE POLY-

NOMIAL

/(��; �)/ /e�x2

/ /
ffiffiffiffiffi
p

p
2n n!/

JACOBI POLYNO-

MIAL

/(�1; 1)/ /(1�x)a (1�x)b/ /hn/

LAGUERRE POLY-

NOMIAL

/ 0; �½ Þ/ /e�x
/ 1

LAGUERRE POLY-

NOMIAL (Asso-

ciated)

/ 0; �½ Þ/ /xk e�x
/ /

(n�k)!
n! /

LEGENDRE POLY-

NOMIAL

/[�1; 1]/ 1 /
2

2n�1/

ULTRASPHERICAL

POLYNOMIAL

/[�1; 1]/ /(1�x2)a�1=2
/ /

21�2a pG(n�2a)
n!(n�a) [G(a)]2 for a"0

2p
n2 for a"0:

(
/

In the above table, the normalization constant is the
value of

cn�g w(x)[pn(x)]2 dx (2)

and

hn�
2a�b�1

2n � a� b� 1

G(n � a� 1)G(n � b� 1)

n!G(n � a� b� 1)
; (3)

where G(z) is a GAMMA FUNCTION.

The ROOTS of orthogonal polynomials possess many
rather surprising and useful properties. For instance,
let x1 Bx2 B ::: Bxn be the ROOTS of the pn(x) with
x0�a and xn�1�b: Then each interval [xn; xn�1] for
n�0; 1, ..., n contains exactly one ROOT of pn�1(x):
Between two ROOTS of pn(x) there is at least one ROOT

of pm(x) for m � n .

Let c be an arbitrary REAL constant, then the
POLYNOMIAL

pn�1(x)�cpn(x) (4)

has n�1 distinct REAL ROOTS. If c � 0 (c B 0), these
ROOTS lie in the interior of [a, b ], with the exception of
the greatest (least) ROOT which lies in [a, b ] only for

c 5
pn�1(b)

pn(b)
c ]

pn�1(a)

pn(a)

 !
: (5)

The following decomposition into partial fractions
holds

pn(x)

pn�1(x)
�
Xn

n�0

ln
x � j

; (6)

where fjng are the ROOTS of pn�1(x) and

ln�
pn(jn)

p?n�1(jn)

�
p?n�1(jn)pn(jn) � p?n(jn)

0pn�1(jn)

[p?n�1(jn)]
2 > 0: (7)

Another interesting property is obtained by letting
fpn(x)g be the orthonormal set of POLYNOMIALS

associated with the distribution da(x) on [a, b ].
Then the CONVERGENTS Rn=Sn of the CONTINUED

FRACTION

1

A1x � B1

�
C2

A2x � B2

�
C3

A3x � B3

�. . .�
Cn

Anx � Bn

�. . . (8)

are given by

Rn�Rn(x)

�c�3=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0c2�c2

1

q
g

b

a

pn(x) � pn(t)

x � t
da(t) (9)

Sn�Sn(x)�
ffiffiffiffiffi
c0

p
pn(x); (10)

where n�0, 1, ...and

cn�g
b

a

xn da(x): (11)

Furthermore, the ROOTS of the orthogonal polyno-



mials pn(x) associated with the distribution da(x) on
the interval [a, b ] are REAL and distinct and are
located in the interior of the interval [a, b ].

See also CHEBYSHEV POLYNOMIAL OF THE FIRST KIND,
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND,
GRAM-SCHMIDT ORTHONORMALIZATION, HERMITE

POLYNOMIAL, JACOBI POLYNOMIAL, KRAWTCHOUK

POLYNOMIAL, LAGUERRE POLYNOMIAL, LEGENDRE

POLYNOMIAL, ORTHOGONAL FUNCTIONS, SPHERICAL

HARMONIC, ULTRASPHERICAL POLYNOMIAL, ZERNIKE

POLYNOMIAL
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Orthogonal Projection
A PROJECTION of a figure by parallel rays. In such a
projection, tangencies are preserved. Parallel lines
project to parallel lines. The ratio of lengths of
parallel segments is preserved, as is the ratio of
areas.

Any TRIANGLE can be positioned such that its shadow
under an orthogonal projection is EQUILATERAL. Also,
the MEDIANS of a TRIANGLE project to the MEDIANS of
the image TRIANGLE. ELLIPSES project to ELLIPSES,
and any ELLIPSE can be projected to form a CIRCLE.
The center of an ELLIPSE projects to the center of the
image ELLIPSE. The CENTROID of a TRIANGLE projects
to the CENTROID of its image. Under an ORTHOGONAL

TRANSFORMATION, the MIDPOINT ELLIPSE can be
transformed into a CIRCLE INSCRIBED in an EQUILAT-

ERAL TRIANGLE.

SPHEROIDS project to ELLIPSES (or CIRCLE in the
DEGENERATE case).

In an orthogonal projection, any vector v can be
written v �vW �vW � ; so

v; Pwh i� vW ; Pwh i� Pv; wh i;

and the PROJECTION MATRIX is a SYMMETRIC MATRIX

IFF the PROJECTION is orthogonal. The following
Mathematica function will test whether a PROJEC-

TION MATRIX is an orthogonal projection.

OrthogProjectionMatrixQ[a_List?MatrixQ] : �
(a.a ��  a && Transpose[a] ��  a)

The following Mathematica function gives the
PROJECTION MATRIX for orthogonal projection onto a
subspace spanned by a given basis.

BBLinearAlgebra‘Orthogonalization‘;

OrthogProjectMatrixOntoBasis[a_List?MatrixQ]

: �
Module[{a1 � GramSchmidt[a]},

Transpose[a1].a1]

]

For instance, OrthogProjectMatrixOntoBa-
sis[{{1, 2, 3}}] yields
ff1=14 ; 1=7; 3=14 g; f1=7; 2=7 ; 3 =7g; f3=14 ; 3 =7; /

/9=14 gg::/

See also PROJECTION, PROJECTION MATRIX

Orthogonal Rotation Group
ORTHOGONAL GROUP

Orthogonal Set
A subset fv1 ; . . . ; vk g of a VECTOR SPACE V , with the
INNER PRODUCT ;h i; is called orthogonal if vi ; vj

� �
�0

when i "j: That is, the vectors are mutually PERPEN-

DICULAR.

Note that there is no restriction on the lengths of the
vectors. If the vectors in an orthogonal set all have
length one, then they are ORTHONORMAL.

The notion of orthogonal makes sense for an abstract
VECTOR SPACE over any field as long as there is a
SYMMETRIC QUADRATIC FORM. The usual orthogonal
sets and groups in EUCLIDEAN SPACE can be general-
ized, with applications to special relativity, DIFFER-

ENTIAL GEOMETRY, and ABSTRACT ALGEBRA.

See also CLIFFORD ALGEBRA, HOMOGENEOUS SPACE,
HYPERBOLIC SPACE, LIE GROUP, LORENTZIAN INNER

PRODUCT, ORTHOGONAL GROUP, ORTHOGONAL TRANS-

FORMATION, ORTHONORMAL BASIS, SYMMETRIC QUAD-

RATIC FORM

Orthogonal Subspaces
Two SUBSPACES S1 and S2 of Rn are said to be
orthogonal if v1 � v2�0 for all v1 �S1 and all v2 �S2:/



Orthogonal Surfaces
Families of surfaces which are mutually orthogonal.
Up to three families of surfaces may be orthogonal in
3-D. The simplest example of three orthogonal sur-
faces in 3-D are orthogonal planes, but three confocal
conic surfaces are also mutually orthogonal.
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Orthogonal Tensors
Orthogonal CONTRAVARIANT and COVARIANT satisfy

gikgij � d
j
k ;

where dk
j is the KRONECKER DELTA.

See also CONTRAVARIANT TENSOR, COVARIANT TEN-

SOR

Orthogonal Transformation
An orthogonal transformation is a LINEAR TRANSFOR-

MATION T : V 0 V which preserves a SYMMETRIC

INNER PRODUCT. In particular, an orthogonal trans-
formation (technically, an orthonormal transforma-
tion ) preserves lengths of vectors and angles between
vectors,

�v ; w ���Tv; Tw�: (1)

In addition, an orthogonal transformation is either a
rigid ROTATION or a ROTOINVERSION (a rotation
followed by a flip). (Flipping and then rotating can
be realized by first rotating in the reverse direction
and then flipping). Orthogonal transformations cor-
respond to and may be represented using ORTHOGO-

NAL MATRICES.

The set of orthonormal transformations forms the
ORTHOGONAL GROUP, and an orthonormal transfor-
mation can be realized by an ORTHOGONAL MATRIX.

Any linear transformation in 3-D

x?1 �a11x1 �a12x2 �x13x3 (2)

x?2 �a21x1 �a22x2 �a23x3 (3)

x?3 �a31x1 �a32x2 �a33x3 (4)

satisfying the ORTHOGONALITY CONDITION

aijaik � djk ; (5)

where EINSTEIN SUMMATION has been used and dij is
the KRONECKER DELTA, is an orthogonal transforma-
tion. If A : Rn 0 Rn is an orthogonal transformation,
then det(A) �91:/

See also INNER PRODUCT, LIE GROUP, LINEAR TRANS-

FORMATION, LORENTZ TRANSFORMATION, MATRIX,
ORTHOGONAL MATRIX, ORTHOGONAL GROUP, ORTHO-

GONALITY CONDITION, SPIN GROUP, ROTATION, RO-

TOINVERSION, SYMMETRIC QUADRATIC FORM
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Orthogonal Vectors
Two vectors u and v whose DOT PRODUCT is u � v �0
(i.e., the vectors are PERPENDICULAR) are said to be
orthogonal. In 3-space, three vectors can be mutually
perpendicular.

See also DOT PRODUCT, ORTHONORMAL VECTORS,
PERPENDICULAR

Orthogonality Condition
A linear transformation

x?1 �a11x1 �a12x2 �x13x3

x?2 �a21x1 �a22x2 �a23x3

x?3 �a31x1 �a32x2 �a33x3 ;

is said to be an ORTHOGONAL TRANSFORMATION if it
satisfies the orthogonality condition

aijaik � djk ;

where EINSTEIN SUMMATION has been used and dij is
the KRONECKER DELTA.

See also ORTHOGONAL TRANSFORMATION
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Orthogonality Theorem
GROUP ORTHOGONALITY THEOREM



Orthographic Projection

A projection from infinity which preserves neither
AREA nor angle.

x �cos f sin( l � l0) (1)

y �cos f1 sin f �sin f1 cos f cos(l � l0) : (2)

The inverse FORMULAS are

f �sin�1 cos c sin f1 �
y sin c cos f1 �

r

 !
(3)

l � l0 �tan�1 x sin c

r cos f1 cos c � y sin f1 sin c

 !
; (4)

where

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
(5)

c �sin�1 r: (6)
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Orthologic Triangles
Two TRIANGLES A1B1C1 and A2B2C2 are orthologic if
the perpendiculars from the VERTICES A1 ; B1 ; C1 on
the sides B2C2 ; A2C2 ; and A2B2 pass through one
point. This point is known as the orthology center of
TRIANGLE 1 with respect to TRIANGLE 2.

Orthomorphic Projection
CONFORMAL PROJECTION

Orthonormal Basis
A subset fv1 ; . . . ; vk g of a VECTOR SPACE V , with the
INNER PRODUCT ;h i; is called orthonormal if vi ; vj

� �
�

0 when i "j: That is, the vectors are mutually
PERPENDICULAR. Moreover, they are all required to
have length one: �vi ; vi ��1 :/

An orthonormal set must be linearly independent,
and so it is a BASIS for the space it SPANS. Such a basis
is called an orthonormal basis.

The simplest example of an orthonormal basis is the
standard basis ei for EUCLIDEAN SPACE Rn : The vector
ei is the vector with all 0s except for a 1 in the ith
coordinate. For example, e1 �(1; 0 ; . . . ; 0): A rotation
(or flip) through the origin will send an orthonormal
set to another orthonormal set. In fact, given any
orthonormal basis, there is a rotation, or rotation
combined with a flip, which will send the orthonormal
basis to the standard basis. These are precisely the
transformations which preserve the inner product,
and are called ORTHOGONAL TRANSFORMATIONS.

Usually when one needs a basis to do calculations, it
is convenient to use an orthonormal basis. For
example, the formula for a PROJECTION is much
simpler with an orthonormal basis. The savings in
effort make it worthwhile to find an orthonormal
basis before doing such a calculation. GRAM-SCHMIDT

ORTHONORMALIZATION is a popular way to find an
orthonormal basis.

Another instance when orthonormal bases arise is as
a set of EIGENVECTORS for a SYMMETRIC MATRIX. For a
general matrix, the set of eigenvectors may not be
orthonormal, or even be a basis.

See also BASIS (VECTOR SPACE), DOT PRODUCT, INNER

PRODUCT, KRONECKER DELTA, LIE GROUP, LORENT-

ZIAN INNER PRODUCT, MATRIX, ORTHOGONAL BASIS

ORTHOGONAL MATRIX, ORTHOGONAL GROUP, ORTHO-

GONAL TRANSFORMATION, PROJECTION (VECTOR

SPACE), SYMMETRIC QUADRATIC FORM

Orthonormal Functions
A pair of functions fi(x) and fj(x) are orthonormal if
they are ORTHOGONAL and each normalized. These
two conditions can be succinctly written as

g
b

a

fi(x) fj(x)w(x) dx � dij ;

where w(x) is a WEIGHTING FUNCTION and dij is the
KRONECKER DELTA.

See also ORTHOGONAL POLYNOMIALS

Orthonormal Transformation
ORTHOGONAL TRANSFORMATION

Orthonormal Vectors
UNIT VECTORS which are ORTHOGONAL are said to be
orthonormal.

See also ORTHOGONAL VECTORS

Orthoplex
CROSS POLYTOPE



Orthopole

If perpendiculars A?; B ?; and C? are dropped on any
line L from the vertices of a TRIANGLE DABC; then the
perpendiculars to the opposite sides from their FEET

Aƒ; B ƒ; and C ƒ are CONCURRENT at a point P called the
orthopole. The orthopole of a line lies on the SIMSON

LINE which is PERPENDICULAR to it (Honsberger 1995,
p. 130). If a line crosses the CIRCUMCIRCLE of a
triangle, the SIMSON LINES of the points of intersec-
tion meet at the orthopole of the line. Also, the
orthopole of a line through the CIRCUMCENTER O of
a triangle DABC lies on that triangle’s NINE-POINT

CIRCLE (Honsberger 1995, p. 127).

If the line L is displaced PARALLEL to itself, the
orthopole moves along a line PERPENDICULAR to L a
distance equal to the displacement. If L is the SIMSON

LINE of a point P , then P is called the POLE of L
(Honsberger 1995, p. 128).

See also NINE-POINT CIRCLE, POLE (SIMSON LINE),
RIGBY POINTS, SIMSON LINE
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Orthoptic Curve
An ISOPTIC CURVE formed from the locus of TANGENTS

meeting at RIGHT ANGLES. The orthoptic of a PARA-

BOLA is its DIRECTRIX. The orthoptic of a central CONIC

was investigated by Monge and is a CIRCLE concentric
with the CONIC SECTION. The orthoptic of an ASTROID

is a CIRCLE.

Curve Orthoptic

ASTROID QUADRIFOLIUM

CARDIOID CIRCLE or LIMAÇ ON

DELTOID CIRCLE

LOGARITHMIC SPIRAL equal LOGARITHMIC SPIRAL

PARABOLA DIRECTRIX

References
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Orthosymmetric Matrix
PERSYMMETRIC MATRIX

Orthotomic
Given a source S and a curve g ; pick a point on g and
find its tangent T . Then the LOCUS of reflections of S
about tangents T is the orthotomic curve (also known
as the secondary CAUSTIC). The INVOLUTE of the
orthotomic is the CAUSTIC. For a parametric curve
(f (t) ; g(t)) with respect to the point (x0 ; y0) ; the
orthotomic is

x �x0 �
2g?[f ?(g � y0) � g?(f � x0)]

f ?2 � g ?2

y �y0 �
2f ?[f ?(g � y0) � g?(f � x0)]

f ?2 � g ?2

See also CAUSTIC, INVOLUTE
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Orthotope
A PARALLELOTOPE whose edges are all mutually
PERPENDICULAR. The orthotope is a generalization of
the RECTANGLE and RECTANGULAR PARALLELEPIPED.

See also RECTANGLE, RECTANGULAR PARALLELEPIPED
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Osborne’s Rule
The prescription that a TRIGONOMETRY identity can
be converted to an analogous identity for HYPERBOLIC

FUNCTIONS by expanding, exchanging trigonometric
functions with their hyperbolic counterparts, and
then flipping the sign of each term involving the
product of two HYPERBOLIC SINES. For example, given
the identity

cos(x�y)�cos x cos y�sin x sin y;

Osborne’s rule gives the corresponding identity



cosh(x �y) �cosh x cosh y �sinh x sinh y:

See also HYPERBOLIC FUNCTIONS, TRIGONOMETRIC

FUNCTIONS

Oscillation

The variation of a FUNCTION which exhibits SLOPE

changes, also called the SALTUS of a function. A series
may also oscillate, causing it not to converge.

References
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Oscillation Land
CAROTID-KUNDALINI FUNCTION

Osculating Circle

The CIRCLE which shares the same TANGENT as a
curve at a given point. Given a plane curve with
PARAMETRIC EQUATIONS (f (t) ; g(t)) and parameterized
by a variable t , the RADIUS OF CURVATURE of the
osculating circle is

r(t) �
1

k(t)j j
; (1)

where k(t) is the CURVATURE, and the center is

x �f �
(f ?2 � g ?2)g?

f ?g ƒ� f ƒg? 
(2)

y �g �
(f ?2 � g ?2)f ?

f ?gƒ� f ƒg ?
: (3)

Here, derivatives are taken with respect to the
parameter t . Note that the centers of the osculating

circles to a curve form the EVOLUTE to that curve.

In addition, let C(t1 ; t2 ; t3) denote the CIRCLE passing
through three points on a curve (f (t) ; g(t)) with t1 B

t2 Bt3 : Then the osculating circle C is given by

C � lim
t1 ; t2 ; t3 0t

C(t1 ; t2 ; t3) (4)

(Gray 1997).

See also CURVATURE, EVOLUTE, OSCULATING CURVES,
RADIUS OF CURVATURE, TANGENT
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Osculating Curves
An curve y(x) is osculating to f (x) at x0 if it is TANGENT

at x0 and has the same CURVATURE there. Osculating
curves therefore satisfy

y(k)(x0) �f (k)(x0)

for k �0, 1, 2. The point of tangency is called a
TACNODE.

One of simplest examples of a pairs of osculating
curves is x2 and x2�x4; which osculate at the point
x0�0 since for k�0, 1, 2, y(k)(0)�f (k)(0) is equal to 0,
0, and 2.

See also OSCULATING CIRCLE, TACNODE, TANGENT

CURVES

Osculating Interpolation
HERMITE’S INTERPOLATING POLYNOMIAL

Osculating Plane
The PLANE spanned by the three points x(t); x(t�h1);
and x(t�h2) on a curve as h1; h2 0 0: Let z be a point



on the osculating plane, then

[(z �x); x?; x ƒ] �0;

where [A ; B; C] denotes the SCALAR TRIPLE PRODUCT.
The osculating plane passes through the tangent. The
intersection of the osculating plane with the NORMAL

PLANE is known as the PRINCIPAL NORMAL VECTOR.
The VECTORS T and N (TANGENT VECTOR and NORMAL

VECTOR) span the osculating plane.

See also NORMAL VECTOR, OSCULATING SPHERE,
SCALAR TRIPLE PRODUCT, TANGENT VECTOR

Osculating Sphere
The center of any SPHERE which has a contact of (at
least) first-order with a curve C at a point P lies in
the normal plane to C at P . The center of any SPHERE

which has a contact of (at least) second-order with C
at point P , where the CURVATURE k > 0 ; lies on the
polar axis of C corresponding to P . All these SPHERES

intersect the OSCULATING PLANE of C at P along a
circle of curvature at P . The osculating sphere has
center

a �x � r N̂ �
ṙ

t
B̂

where N̂ is the unit NORMAL VECTOR, B̂ is the unit
BINORMAL VECTOR, r is the RADIUS OF CURVATURE,
and t is the TORSION, and RADIUS

R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

ṙ

t

 !2
vuut ;

and has contact of (at least) third order with C .

See also CURVATURE, OSCULATING PLANE, RADIUS OF

CURVATURE, SPHERE, TORSION (DIFFERENTIAL GEO-

METRY)
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Osedelec Theorem
For an n -D MAP, the LYAPUNOV CHARACTERISTIC

EXPONENTS are given by

si � lim
N 0�

ln li(N)j j

for i �1, ..., n , where li is the LYAPUNOV CHARACTER-

ISTIC NUMBER.

See also LYAPUNOV CHARACTERISTIC EXPONENT,
LYAPUNOV CHARACTERISTIC NUMBER

Ostrowski-Hadamard Gap Theorem
Let 0 Bp1 Bp2 B. . . be integers and suppose that
there exists a l > 1 such that pj�1 =pj > l for j �1, 2,
.... Suppose that for some sequence of complex

numbers faj g the POWER SERIES

f (z) �
X�
j�1

ajz
pj

has radius of convergence 1, then no point of @D is a
REGULAR POINT for f (Krantz 1999, p. 120).

See also REGULAR POINT
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Ostrowski’s Inequality
If f (x) is a monotonically increasing integrable func-
tion on [a, b ] with f (b) 50; then if g is a REAL function
integrable on [a, b ],

g
b

a

f (x)g(x) dx

�����
�����5 f (a)j j max

a 5 j 5b g 
j

a

g(x) dx

�����
�����:
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Ostrowski’s Theorem
Let A �aij be a MATRIX with POSITIVE COEFFICIENTS

and l0 be the POSITIVE EIGENVALUE in the FROBENIUS

THEOREM, then the n �1 EIGENVALUES lj " l0 satisfy
the INEQUALITY

lj

�� ��5 l0

M2 � m2

M2 � m2 
;

where

M �max
i; j

aij

m �min
i; j

aij

and i; j �1 ; 2, ..., n .

See also FROBENIUS THEOREM
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Otter’s Theorem
In any TREE, the number of dissimilar points minus
the number of dissimilar lines plus the number of
symmetry lines equals 1.

See also TREE
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Oudor
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Oui-Ja Board Curve
COCHLEOID

Outcome
An outcome is a subset of a PROBABILITY SPACE.
Experimental outcomes are not uniquely determined
from the description of an experiment, and must be
agreed upon to avoid ambiguity (Papoulis 1984,
pp. 24 �/25).

See also EVENT, EXPERIMENT, TRIAL
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Outdegree
The number of outward directed EDGES from a given
VERTEX in a DIRECTED GRAPH.

See also DIRECTED GRAPH, INDEGREE, LOCAL DEGREE

Outer Automorphism Group
A particular type of AUTOMORPHISM GROUP which
exists only for GROUPS. For a GROUP G , the outer
automorphism group is the QUOTIENT GROUP

Aut(G) =Inn(G); which is the AUTOMORPHISM GROUP

of G modulo its INNER AUTOMORPHISM GROUP.

See also AUTOMORPHISM GROUP, INNER AUTOMORPH-

ISM GROUP, QUOTIENT GROUP

Outer Product
TENSOR DIRECT PRODUCT, TENSOR PRODUCT (VECTOR

SPACE)

Outer Quermass
BRIGHTNESS

Outplanar Graph
A graph that can be embedded in the plane such that
all vertices lie on the outer face (Skiena 1990, p. 251).

See also PLANAR GRAPH
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Oval

An oval is a curve resembling a squashed CIRCLE but,
unlike the ELLIPSE, without a precise mathematical
definition. The word oval derived from the Latin word
"ovus" for egg. Unlike ellipses, ovals sometimes have
only a single axis of reflection symmetry (instead of
two).
Ovals can be constructed with a COMPASS by joining
together arcs of different radii such that the centers
of the arcs lie on a line passing through the join point
(Dixon 1991). Albrecht Dürer used this method to
design a Roman letter font.

See also CARTESIAN OVALS, CASSINI OVALS, EGG,
ELLIPSE, LEMON, OVOID, SUPERELLIPSE
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Oval of Descartes
CARTESIAN OVALS

Ovals of Cassini
CASSINI OVALS

Overbar
MACRON

Overdamping
DAMPED SIMPLE HARMONIC MOTION–OVERDAMPING

Overdot
An "overdot" is a raised DOT appearing above a
symbol most commonly used in mathematics to
indicate a DERIVATIVE taken with respect to time
(e.g., ẋ�dx=dt): The expression ȧ is voiced "a dot,"



and was Newton’s notation for derivatives (which he
called "FLUXIONS").

See also DERIVATIVE, DOT, DOUBLE DOT
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Overlapfree Word
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A word is said to be overlapfree if it has no subwords
OF THE FORM xyxyx . A SQUAREFREE WORD is overlap-
free, and an overlapfree word is CUBEFREE. The
number t(n) of binary overlapfree words of length n
� 1, 2, ... are 2, 4, 6, 10, 14, 20, ... (Sloane’s A007777).
t(n) satisfies

p � n1:155 5t(n) 5q � n1 :587 (1)

for some constants p and q (Restivo and Selemi 1985,
Kobayashi 1988). In addition, while

lim
n0�

ln t(n)

ln n 
(2)

does not exist,

1:155 BTL B1:276 B1:332 BTU B1:587; (3)

where

TL �lim inf
n0�

ln t(n)

ln n 
(4)

TU �lim sup
n0�

ln t(n)

ln n 
(5)

(Cassaigne 1993).

See also CUBEFREE WORD, SQUAREFREE WORD, WORD
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Overlapping Rectangles

See also RECTANGLE

References
Croft, H. T.; Falconer, K. J.; and Guy, R. K. "Overlapping

Convex Bodies." §A12 in Unsolved Problems in Geometry.
New York: Springer-Verlag, p. 25, 1991.

Overlapping Resonance Method
RESONANCE OVERLAP METHOD

Overline
MACRON, VINCULUM

Oversampling
A signal sampled at a frequency higher than the
NYQUIST FREQUENCY is said to be oversampled b
times, where the oversampling ratio is defined as

b �
nsampling

nNyquist

:

See also NYQUIST FREQUENCY, NYQUIST SAMPLING

Ovoid
An egg-shaped curve. Lockwood (1967) calls the
NEGATIVE PEDAL CURVE of an ELLIPSE with ECCEN-

TRICITY e 51=2 an ovoid.

See also OVAL
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P

p (Prime) Group
X is a /p?/-group if p does not divide the ORDER of X .

Paasche’s Index
The statistical INDEX

PP �

P
pnqnP
p0qn

;

where pn is the price per unit in period n and qn is the
quantity produced in period n .

See also INDEX
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Packing
The placement of objects so that they touch in some
specified manner, often inside a container with
specified properties. For example, one could consider
a SPHERE PACKING, ELLIPSOID PACKING, POLYHEDRON

PACKING, etc.

See also BARLOW PACKING, BOX-PACKING THEOREM,
CIRCLE PACKING, COVERING, ELLIPSOID PACKING,
GROEMER PACKING, HYPERSPHERE PACKING, KEPLER

PROBLEM, KISSING NUMBER PACKING DENSITY, POLY-

HEDRON PACKING, SPACE-FILLING POLYHEDRON,
SPHERE PACKING, SPHERICAL COVERING, SPHERICAL

DESIGN, TRIANGLE PACKING
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Packing Density
The fraction of a volume filled by a given collection of
solids.

See also HYPERSPHERE PACKING, PACKING, SPHERE

PACKING

Padé Approximant
Approximants derived by expanding a function as a
ratio of two POWER SERIES and determining both the
NUMERATOR and DENOMINATOR COEFFICIENTS. Padé
approximations are usually superior to TAYLOR EX-

PANSIONS when functions contain POLES, because the
use of RATIONAL FUNCTIONS allows them to be well-
represented.

The Padé approximant RL=0 corresponds to the
MACLAURIN SERIES. When it exists, the RL=M�

[L=M] Padé approximant to any POWER SERIES

A(x)�
X�
j�0

ajx
j (1)

is unique. If A(x) is a TRANSCENDENTAL FUNCTION,
then the terms are given by the TAYLOR SERIES about
x0

an�
1

n!
A(n)(x0): (2)

The COEFFICIENTS are found by setting

A(x)�
PL(x)

QM(x)
�0 (3)

and equating COEFFICIENTS. QM(x) can be multiplied
by an arbitrary constant which will rescale the other
COEFFICIENTS, so an addition constraint can be
applied. The conventional normalization is

QM(0)�1: (4)

Expanding (3) gives

PL(x)�p0�p1x�. . .�pLxL (5)

QM(x)�1�q1x�. . .�pMxM: (6)

These give the set of equations

a0�p0 (7)

a1�a0q1�p1 (8)

a2�a1q1�a0q2�p2 (9)

n

aL�aL�1q1�. . .�a0qL�pL (10)

aL�1�aLq1�. . .�aL�M�1qM�0 (11)

n

qL�M�aL�M�1q1�. . .�aLqM�0; (12)

where an�0 for n B0 and qj�0 for j�M . Solving
these directly gives

[L=M]�

aL�m�1 aL�m�2 . . . aL�1

n n ::: n
aL aL�1 � � � aL�MXL

j�M

aj � Mxj
XL

j�M�1

aj�M�1xj � � �
XL

j�0

ajx
j

�����������

�����������
aL�m�1 aL�m�2 � � � aL�1

n n ::: n
aL aL�1 . . . aL�M

xM xM�1 � � � 1

��������

��������
;

(13)

where sums are replaced by a zero if the lower index
exceeds the upper. Alternate forms are



[L=M]�
XL�M

j�0

ajx
j�xL�M�1wT

L=MW�1
L=MwL=M

�
XL�n

j�0

ajx
j�xL�n�1wT

(L�M)=MW�1
L=Mw(L�n)=M

for

WL=M�
aL�M�1�xaL�M�2 � � � aL�xaL�1

n ::: n
aL�xaL�1 � � � aL�M�1�xaL�M

2
4

3
5
(14)

wL=M�

aL�M�1

aL�M�2

n
aL

2
664

3
775; (15)

and 05n5M:/

For example, the first few Padé approximants for
are

exp0=0(x)�1

exp0=1(x)�
1

1 � x

exp0=2(x)�
2

2 � 2x � x2

exp0=3(x)�
6

6 � 6x � 3x2 � x3

exp1=0(x)�1�x

exp1=1(x)�
2 � x

2 � x

exp1=2(x)�
6 � 2x

6 � 4x � x2

exp1=3(x)�
24 � 6x

24 � 18x � 6x2 � x3

exp2=0(x)�
2 � 2x � x2

2

exp2=1(x)�
6 � 4x � x2

6 � 2x

exp2=2(x)�
12 � 6x � x2

12 � 6x � x2

exp2=3(x)�
60 � 24x � 3x2

60 � 36x � 9x2 � x3

exp3=0(x)�
6 � 6x � 3x2 � x3

6

exp3=1(x)�
24 � 18x � 16x2 � x3

24 � 6x

exp3=2(x)�
60 � 36x � 9x2 � x3

60 � 24x � 3x2

exp3=3(x)�
120 � 60x � 12x2 � x3

120 � 60x � 12x2 � x3
:

Two-term identities include

PL�1(x)

QM�1(x)
�

P?L(x)

Q?M(x)
�

C2
(L�1)=(M�1)x

L�M�1

QM�1(x)Q?M(x)
(16)

PL�1(x)

QM(x)
�

P?L(x)

Q?M(x)
�

C(L�1)=MC(L�1)=(M�1)x
L�M�1

QM(x)Q?M(x)
(17)

PL(x)

QM�1(x)
�

P?L(x)

Q?M(x)
�

CL=(M�1)C(L�1)=(M�1)x
L�M�1

QM(x)Q?M(x)
(18)

PL(x)

QM�1(x)
�

P?L�1(x)

Q?M
�

C2
(L�1)=(M�1)x

L�M�2

QM�1Q?M
(19)

PL�1

QM(x)
�

P?L�1(x)

Q?M(x)
�

CL=(M�1)C(L�1)=MxL�M � CL=MC(L�1)=(M�1)x
L�M�1

QM(x)Q?M(x)
ð20Þ

PL(x)

QM�1(x)
�

P?L(x)

Q?M�1(x)
�

CL=(M�1)C(L�1)=MxL�M � CL=MC(L�1)=(M�1)x
L�M�1

QM�1(x)Q?M�1(x)
; ð21Þ

where C is the C -DETERMINANT. Three-term identi-
ties can be derived using the FROBENIUS TRIANGLE

IDENTITIES (Baker 1975, p. 32).

A five-term identity is

S(L�1)=MS(L�1)=M�SL=(M�1)SL=(M�1)�S2
L=M: (22)

Cross ratio identities include

RL=M � RL=(M�1)


 �
R(L�1)=M � R(L�1)=(M�1)


 �
RL=M � R(L�1)=M


 �
RL=(M�1) � R(L�1)=(M�1)


 �

�
CL=(M�1)C(L�2)=(M�1)

C(L�1)=MC(L�1)=(M�2)

(23)

RL=M � R(L�1)=(M�1)


 �
R(L�1)=M � RL=(M�1)


 �
RL=M � RL=(M�1)


 �
R(L�1)=M � R(L�1)=(M�1)


 �

�
C2

(L�1)=(M�1)x

CL=(M�1)C(L�2)=(M�1)

(24)

RL=M � R(L�1)=(M�1)


 �
R(L�1)=M � RL=(M�1)


 �
RL=M � R(L�1)=M


 �
RL=(M�1) � R(L�1)=(M�1)


 �

�
C2

(L�1)=(M�1)x

C(L�1)=MC(L�1)=(M�2)

(25)

RL=M � R(L�1)=(M�1)


 �
RL=(M�1) � R(L�1)=M


 �
RL=M ��RL=(M�1)


 �
R(L�1)=(M�1) � R(L�1)=M


 �



�
C(L�1)=MC(L�1)=(M �1)x

CL =(M �1)C(L �2)=M

(26)

RL=M � R(L�1)=(M �1)


 �
R(L�1)=M � RL =(M �1)


 �
RL=M � R(L�1)=M


 �
R(L�1)=(M �1) � RL =(M �1)


 �

�
CL =(M �1)C(L �1)=(M �1)x

C(L�1)=MCL=(M �2)

: (27)

See also C -DETERMINANT, ECONOMIZED RATIONAL

APPROXIMATION, FROBENIUS TRIANGLE IDENTITIES
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Padé Conjecture
If P(z) is a POWER SERIES which is regular for ½z ½51
except for m POLES within this CIRCLE and except for
z ��1; at which points the function is assumed
continuous when only points ½z½51 are considered,
then at least a subsequence of the [N, N ] PADÉ

APPROXIMANTS are uniformly bounded in the domain
formed by removing the interiors of small circles with
centers at these POLES and uniformly continuous at
z ��1 for ½z ½51:/

See also PADÉ APPROXIMANT
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p-adic Absolute Value
P -ADIC NORM

p-adic Norm
Any NONZERO RATIONAL NUMBER x can be represented
by

x �
par

s
; (1)

where p is a PRIME NUMBER, r and s are INTEGERS not
DIVISIBLE by p , and a is a unique INTEGER. The p -adic
norm of x is then defined by

½x½p �p �a : (2)

Also define the p -adic value

½0½p �0: (3)

As an example, consider the FRACTION

140
297 �22 �3�3 �5 �7 �11 �1 : (4)

It has p -adic absolute values given by

140
297

��� ���
2
�1

4 (5)

140
297

��� ���
3
�27 (6)

140
297

��� ���
5
�1

5 (7)

140
297

��� ���
7
�1

7 (8)

140
297

��� ���
11
�11: (9)

The p -adic norm of a nonzero RATIONAL NUMBER x
can be implemented in Mathematica as follows.

PadicNorm[x_Integer, p_Integer?PrimeQ] : �
p^(-IntegerExponent[x, p])

PadicNorm[x_Rational, p_Integer?PrimeQ] : �
PadicNorm[Numerator[x], p]/

PadicNorm[Denominator[x], p]

The p -adic norm satisfies the relations

1. ½x½p ]0 for all x ,
2. ½x½p �0 IFF x �0,
3. ½xy½p � ½x½p ½y½p for all x and y ,
4. ½x �y½p 5 ½x½p � ½y½p for all x and y (the TRIANGLE

INEQUALITY), and
5. ½x �y½p 5max( ½x½p ; ½y½p) for all x and y (the
STRONG TRIANGLE INEQUALITY).

In the above, relation 4 follows trivially from relation
5, but relations 4 and 5 are relevant in the more
general VALUATION THEORY.

The p -adic norm is the basis for the algebra of P -ADIC

NUMBERS.

See also P -ADIC NUMBER

p-adic Number
A p -adic number is an extension of the FIELD of
RATIONAL NUMBERS such that CONGRUENCES MODULO

POWERS of a fixed PRIME p are related to proximity in
the so called "p -adic metric."



Any NONZERO RATIONAL NUMBER x can be represented
by

x �
par

s
; (1)

where p is a PRIME NUMBER, r and s are INTEGERS not
DIVISIBLE by p , and a is a unique INTEGER. Then
define the P -ADIC NORM of x by

½x½p �p �a : (2)

Also define the p -adic norm

½0½p �0: (3)

The p -adics were probably first introduced by Hensel
(1897) in a paper which was concerned with the
development of algebraic numbers in POWER SERIES.
p -adic numbers were then generalized to VALUATIONS

by Kürschák (1913). Hasse (1923) subsequently for-
mulated the LOCAL-GLOBAL PRINCIPLE (now usually
called the HASSE PRINCIPLE), which is one of the chief
applications of LOCAL FIELD theory. Skolem’s p -adic
method, which is used in attacking certain DIOPHAN-

TINE EQUATIONS, is another powerful application of p -
adic numbers. Another application is the theorem
that the HARMONIC NUMBERS Hn are never INTEGERS

(except for H1) : A similar application is the proof of
the VON STAUDT-CLAUSEN THEOREM using the p -adic
valuation, although the technical details are some-
what difficult. Yet another application is provided by
the MAHLER-LECH THEOREM.

Every RATIONAL x has an "essentially" unique p -adic
expansion ("essentially" since zero terms can always
be added at the beginning)

x �
X�
j�m

ajp
j ; (4)

with m an INTEGER, aj the INTEGERS between 0 and
p �1 inclusive, and where the sum is convergent with
respect to p -adic valuation. If x "0 and am "0; then
the expansion is unique. Burger and Struppeck
(1996) show that for p a PRIME and n a POSITIVE

INTEGER,

½n!½p �p�(n�Ap(n)) =(p�1) ; (5)

where the p -adic expansion of n is

n �a0 �a1p �a2p2 �. . .�aLpL ; (6)

and

Ap(n) �a0 �a1 �a2 �. . .�aL : (7)

For sufficiently large n ,

½n! ½p 5p�n=(2p �2) : (8)

The p -adic valuation on Q gives rise to the p -adic
metric

d(x; y) � ½x �y½p ; (9)

which in turn gives rise to the p -adic topology. It can
be shown that the rationals, together with the p -adic
metric, do not form a COMPLETE METRIC SPACE. The
completion of this space can therefore be constructed,
and the set of p -adic numbers Qp is defined to be this
completed space.

Just as the REAL NUMBERS are the completion of the
RATIONALS Q with respect to the usual absolute
valuation ½x �y½; the p -adic numbers are the comple-
tion of Q with respect to the p -adic valuation ½x �y½p :
The p -adic numbers are useful in solving DIOPHAN-

TINE EQUATIONS. For example, the equation X2 �2
can easily be shown to have no solutions in the field of
2-adic numbers (we simply take the valuation of both
sides). Because the 2-adic numbers contain the
rationals as a subset, we can immediately see that
the equation has no solutions in the RATIONALS. So we
have an immediate proof of the irrationality of

ffiffiffi
2

p
:/

This is a common argument that is used in solving
these types of equations: in order to show that an
equation has no solutions in Q ; we show that it has no
solutions in an EXTENSION FIELD. For another exam-
ple, consider X2�1�0: This equation has no solu-
tions in Q because it has no solutions in the reals R;
and Q is a subset of R:/

Now consider the converse. Suppose we have an
equation that does have solutions in R and in all
the Qp for every PRIME p . Can we conclude that the
equation has a solution in Q/? Unfortunately, in
general, the answer is no, but there are classes of
equations for which the answer is yes. Such equations
are said to satisfy the HASSE PRINCIPLE.

See also AX-KOCHEN ISOMORPHISM THEOREM, DIO-

PHANTINE EQUATION, HARMONIC NUMBER, HASSE

PRINCIPLE, LOCAL FIELD, LOCAL-GLOBAL PRINCIPLE,
MAHLER-LECH THEOREM, P -ADIC NORM, PRODUCT

FORMULA, VALUATION, VALUATION THEORY, VON

STAUDT-CLAUSEN THEOREM
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Padovan Sequence
The INTEGER SEQUENCE defined by the RECURRENCE

RELATION

P(n) �P(n �2) �P(n �3)

with the initial conditions P(0) �P(1) �P(2) �1: The
RECURRENCE RELATION can be solved explicitly, giving

P(n) �
1 � r1

rn �2
1 (2 � 3r1) 

�
1 � r2

rn�2
2 (2 � 3r2) 

�
1 � r3

rn�2
3 (2 � 3r3) 

;

where rn is the nth root of

x3 �x2 �1 �0 :

The first few terms are 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, ...
(Sloane’s A000931).

The ratio limn0� P(n) =P(n �1) is called the PLASTIC

CONSTANT.

See also PERRIN SEQUENCE, PLASTIC CONSTANT
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Painlevé Property
Following the work of Fuchs in classifying first-order
ORDINARY DIFFERENTIAL EQUATIONS, Painlevé studied
second-order ODEs OF THE FORM

d2y

dx2 
�F(y0; y; x) ;

where F is ANALYTIC in x and rational in y and y0:
Painlevé found 50 types whose only movable SINGU-

LARITIES are ordinary POLES. This characteristic is
known as the Painlevé property. Six of the transcen-
dents define new transcendents known as PAINLEVÉ

TRANSCENDENTS, and the remaining 44 can be inte-
grated in terms of classical transcendents, quadra-
tures, or the PAINLEVÉ TRANSCENDENTS.

See also PAINLEVÉ TRANSCENDENTS

Painlevé Transcendents
There are six Painlevé transcendents, corresponding
to second-order ordinary differential equations whose
only movable singularities are ordinary poles and
which cannot be integrated in terms of other known
functions or transcendents.

y 00�6y2 �x (1)

y �2y3 �xy � a (2)

yƒ�
y02

y
�

y0

x 
�

ay2 � b

x
� gy3 �

d

y 
(3)

yƒ�
y02

2y 
�

3

2
y3 �4xy2 �2(x2 � a)y �

b

y
(4)

y �
1

2y 
�

1

y � 1

 !
y02 �

y0

x 
�

(y � 1)2

x2
ay �

b

y

 !

�
gy

x
�

dy(y � 1)

y � 1 
(5)

y �
1

2

1

y 
�

1

y � 1 
�

1

y � x

 !
y02 �

1

x 
�

1

x � 1 
�

1

y � x

 !
y0

�
y(y � 1)(y � x)

x2(x � 1)2 a �
bx

y2 
�

g(x � 1)

(y � 1)2 �
dx(x � 1)

(y � x)2

" #
(6)

(Painlevé 1906; Ince 1956, p. 345; Zwillinger 1997,
pp. 125 �/126). All Painlevé transcendents have first
integrals for special values of their parameters except
(2). Five of the transcendents were found by Painlevé
and his students; the sixth transcendent was found
by Gambier and contains the other five as limiting
cases (Garnier 1916ab; Ince 1956, p. 345).

See also PAINLEVÉ PROPERTY, TRANSCENDENTAL

FUNCTION
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Pair
A SET of two numbers or objects linked in some way is
said to be a pair. The pair a and b is usually denoted
(a , b ), and is generally considered to be ordered. In
certain circumstances, pairs are also called BROTHERS

or TWINS.

See also AMICABLE PAIR, AUGMENTED AMICABLE PAIR,
BROWN NUMBERS, FRIENDLY PAIR, HEXAD, HOMOGE-

NEOUS NUMBERS, IMPULSE PAIR, IRREGULAR PAIR,
LAX PAIR, LONG EXACT SEQUENCE OF A PAIR AXIOM,
MONAD, ORDERED PAIR, PERKO PAIR, QUADRUPLET,
QUASIAMICABLE PAIR, QUINTUPLET, REDUCED AMIC-

ABLE PAIR, SMITH BROTHERS, TRIAD, TRIPLET, TWIN

PEAKS, TWIN PRIMES, TWINS, UNITARY AMICABLE

PAIR, WILF-ZEILBERGER PAIR, ZIP-PAIR

Pair Sum
Given an AMICABLE PAIR (m, n ), the quantity

s(m) � s(n) �s(m) �s(n) �m �n

is called the pair sum, where s(n) is the DIVISOR

FUNCTION and s(n) is the RESTRICTED DIVISOR FUNC-

TION.

See also AMICABLE PAIR

Paired t-Test
Given two paired sets Xi and Yi of n measured values,
the paired t -test determines if they differ from each
other in a significant way. Let

X̂i �(Xi � X̄i)

Ŷ i �(Yi � Ȳ i) ;

then define t by

t �( X̄ � Ȳ)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n � 1)Pn

i�1( X̂i � Ŷ i)
2

s
:

This statistic has n �1 DEGREES OF FREEDOM.

A table of STUDENT’S T -DISTRIBUTION confidence
intervals can be used to determine the significance
level at which two distributions differ.

See also FISHER SIGN TEST, HYPOTHESIS TESTING,
STUDENT’S T -DISTRIBUTION, WILCOXON SIGNED RANK

TEST
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Paley Class
The Paley class of a POSITIVE INTEGER m �0 (mod 4)
is defined as the set of all possible QUADRUPLES

(k; e ; q; n) where

m �2e(qn �1);

q is an ODD PRIME, and

k �

0 if q �0
1 if qn �3 �0 (mod 4)
2 if qn �1 �0 (mod 4)
undefined otherwise :

8>><
>>:

See also HADAMARD MATRIX, PALEY CONSTRUCTION

Paley Construction
HADAMARD MATRICES Hn can be constructed using
FINITE FIELD GF/(pm) when p�4l�1 and m is ODD.
Pick a representation r RELATIVELY PRIME to p . Then
by coloring white (p�1)=2b c (where xb c is the FLOOR

FUNCTION) distinct equally spaced RESIDUES mod p
(/r0; r , r2; ...; r0; r2; r4; ...; etc.) in addition to 0, a
HADAMARD MATRIX is obtained if the POWERS of r
(mod p ) run throughB (p�1)=2b c: For example,

n�12�111�1�2(5�1)�22(2�1)

is of this form with p�11�4�3�1 and m�1. Since
m�1, we are dealing with GF(11), so pick p�2 and
compute its RESIDUES (mod 11), which are

p0�1

p1�2

p2�4

p3�8

p4�16�5

p5�10

p6�20�9

p7�18�7

p8�14�3

p9�6

p10�12�1:

Picking the first 11=2b c�5 RESIDUES and adding 0
gives: 0, 1, 2, 4, 5, 8, which should then be colored in
the MATRIX obtained by writing out the RESIDUES

increasing to the left and up along the border (0



through p �1; followed by �); then adding horizontal
and vertical coordinates to get the residue to place in
each square.

� � � � � � � � � � � �

10 0 1 2 3 4 5 6 7 8 9 �

9 10 0 1 2 3 4 5 6 7 8 �

8 9 10 0 1 2 3 4 5 6 7 �

7 8 9 10 0 1 2 3 4 5 6 �

6 7 8 9 10 0 1 2 3 4 5 �

5 6 7 8 9 10 0 1 2 3 4 �

4 5 6 7 8 9 10 0 1 2 3 �

3 4 5 6 7 8 9 10 0 1 2 �

2 3 4 5 6 7 8 9 10 0 1 �

1 2 3 4 5 6 7 8 9 10 0 �

0 1 2 3 4 5 6 7 8 9 10 �

2
6666666666666666664

3
7777777777777777775

/H16 can be trivially constructed from H4 �H4 : H20

cannot be built up from smaller MATRICES, so use n �
20 �19 �1 �2(32 �1) �22(22 �1) : Only the first form
can be used, with p �19 �4 �5 �1 and m �1. We
therefore use GF(19), and color 9 RESIDUES plus 0
white. H24 can be constructed from H2 �H12 :/

Now consider a more complicated case. For n �28 �
33 �1 �2(13 �1); the only form having p �4l �1 is
the first, so use the GF(33) field. Take as the modulus
the IRREDUCIBLE POLYNOMIAL x3 �2x �1; written
1021. A four-digit number can always be written
using only three digits, since 1000 �1021 �0012 and
2000 �2012 �0021 : Now look at the moduli starting
with 10, where each digit is considered separately.
Then

x0 �1 x1 �10 x2 �100
x3 �1000 �12 x4 �120 x5 �1200 �212
x6 �2120 �111 x7 �1100 �122 x8 �1220 �202
x9 �2020 �11 x10 �110 x11 �1100 �112

x12 �1120 �102 x13 �1020 �2 x14 �20
x15 �200 x16 �2000 �21 x17 �210
x18 �2100 �121 x19 �1210 �222 x20 �2220 �211
x21 �2110 �101 x22 �101 �22 x23 �220
x24 �2200 �221 x25 �2210 �201 x26 �2010 �1

Taking the alternate terms gives white squares as
000, 001, 020, 021, 022, 100, 102, 110, 111, 120, 121,
202, 211, and 221.
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Paley’s Theorem
Proved in 1933. If q is an ODD PRIME or q �0 and n is
any POSITIVE INTEGER, then there is a HADAMARD

MATRIX of order

m �2e(qn �1);

where e is any POSITIVE INTEGER such that m �
0 (mod 4): If m is of this form, the matrix can be
constructed with a PALEY CONSTRUCTION. If m is
divisible by 4 but not OF THE FORM (1), the PALEY

CLASS is undefined. However, HADAMARD MATRICES

have been shown to exist for all m �0 (mod 4) for
m B428.

See also HADAMARD MATRIX, PALEY CLASS, PALEY

CONSTRUCTION

Palindrome Number
PALINDROMIC NUMBER

Palindromic Number

A symmetrical number which is written in some base
b as a1a2 � � � a2a1 : The first few are 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, ...
(Sloane’s A002113). The number of palindromic num-
bers less than a given number are illustrated in the
plot above. The number of palindromic numbers less
than 10; 102, 103, ... are 9, 18, 108, 198, 1098, 1998,
10998, ... (Sloane’s A050250).
The sum of the reciprocals of the palindromic num-
bers converges to a constant :3:36977 (Rivera),
where this value has been computed using all
palindromic numbers 5107 :/

The first few n for which the PRONIC NUMBER Pn is
palindromic are 1, 2, 16, 77, 538, 1621, ... (Sloane’s
A028336), and the first few palindromic numbers
which are PRONIC are 2, 6, 272, 6006, 289982, ...
(Sloane’s A028337). The first few numbers whose
squares are palindromic are 1, 2, 3, 11, 22, 26, ...
(Sloane’s A002778), and the first few palindromic
squares are 1, 4, 9, 121, 484, 676, ... (Sloane’s
A002779).

There are no palindromic square n -digit numbers for
n�2, 4,8, 10, 14, 18, 20, 24, 30, ... (Sloane’s A034822).

See also DEMLO NUMBER, PALINDROMIC NUMBER

CONJECTURE, PALINDROMIC PRIME, REVERSAL
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1989.

Rivera, C. "Problems & Puzzles: Puzzle The Honaker’s
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Sloane, N. J. A. Sequences A002113/M0484, A002385/
M0670, A002778/M0907, A002779/M3371, A028336,
A028337, A034822, and A050250 in "An On-Line Version
of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Palindromic Number Conjecture
Apply the 196-ALGORITHM, which consists of taking
any POSITIVE INTEGER of two digits or more, reversing
the digits, and adding to the original number. Now
sum the two and repeat the procedure with the sum.
Of the first 10,000 numbers, only 251 do not produce
a PALINDROMIC NUMBER in 523 steps (Gardner 1979).

It was therefore conjectured that all numbers will
eventually yield a PALINDROMIC NUMBER. However,
the conjecture has been proven false for bases which
are a POWER of 2, and seems to be false for base 10 as
well. Among the first 100,000 numbers, 5,996 num-
bers apparently never generate a PALINDROMIC NUM-

BER (Gruenberger 1984). The first few are 196, 887,
1675, 7436, 13783, 52514, 94039, 187088, 1067869,
10755470, ... (Sloane’s A006960).

It is conjectured, but not proven, that there are an
infinite number of palindromic PRIMES. With the
exception of 11, palindromic PRIMES must have an
ODD number of digits.

See also 196-ALGORITHM, DEMLO NUMBER
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Palindromic Prime

The first few palindromic PRIMES are 2, 3, 5, 7, 11,
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757,
787, ... (Sloane’s A002385; Beiler 1964, p. 228). The
number of palindromic primes less than a given
number are illustrated in the plot above. The number
of palindromic numbers having n �1, 2, 3, ... digits
are 4, 1, 15, 0, 93, 0, 668, 0, 5172, ... (Sloane’s
A016115; De Geest) and the total number of palin-
dromic primes less than 10, 102, 103, ... are 4, 5, 20,
20, 113, 113, 781, ... (Sloane’s A050251).
The sum of the reciprocals of the palindromic primes
converges to :1:32398 ; where this value has been
computed using all palindromic primes 51011

(M. Keith).

Palindromic primes formed from the reflected deci-
mal expansion of PI include 3, 313,

31415926535897932384626433833462648323979853562951413;

... (Sloane’s A039954).

The first few n such that both n and pn are
palindromic (where pn is the nth prime) are given
by 1, 2, 3, 4, 5, 8114118, ... (Sloane’s A046942;
Rivera), corresponding to pn of 2, 3, 5, 7, 11,
143787341 (Sloane’s A046941; Rivera).

Palindromic primes OF THE FORM

ppn(x) �xn �(x �1)n

for n �2 include 5, 181, 313, 3187813, ... (Sloane’s
A050239; De Geest, Rivera), which occur for x�1, 9,
12, 1262, ... (Sloane’s A050236; De Geest, Rivera),
with no others for nB1020 and xB2�1010 (De
Geest). Dubner (1999) found

P�1035352�2049402 + 1017673�1;

which, at 35,353 digits is believed to be the largest
known prime that is not OF THE FORM, abn91:/

See also PALINDROMIC NUMBER
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Palprime
PALINDROMIC PRIME

Pancake Cutting
CIRCLE DIVISION BY LINES

Pancake Sorting Problem
Assume that n numbered pancakes are stacked, and
that a spatula can be used to reverse the order of the
top k pancakes for 2 5k 5n: Then the pancake
sorting problem asks how many such "prefix rever-
sals" are sufficient to sort an arbitrary stack (Skiena
1990, p. 48).

See also PANCAKE THEOREM
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Pancake Theorem
The 2-D version of the HAM SANDWICH THEOREM.

See also HAM SANDWICH THEOREM, PANCAKE SORT-

ING PROBLEM

Pancyclic Graph
A simple unlabeled GRAPH on n vertices is called
pancyclic if it contains cycles of all lengths, 3, 4, ..., n .

Pandiagonal Square
PANMAGIC SQUARE

Pandigital Fraction
A FRACTION containing the digits 1 through 9 is called
a pandigital fraction. The following table gives the
number of pandigital fractions which represent sim-
ple unit fractions. The numbers of pandigital frac-
tions for 1/1, 1/2, 1/3, ... are 0, 12, 2, 4, 12, 3, 7, 46, 3, ...
(Sloane’s A054383).

f # fractions

/
1
2/ 12 /

6729
13458;

6792
13584 ;

6927
13854 ;

7269
14538 ;

7293
14586 ;

7329
14658 ;/

/
7692
15384;

7923
15846 ;

7932
15864 ;

9267
18534 ;

9273
18546 ;

9327
18654/

/
1
3/ 2 /

5823
17469;

5832
17496/

/
1
4/ 4 /

3942
15768;

4392
17568 ;

5796
23184 ;

7956
31824/

/
1
5/ 12 /

2697
13485;

2769
13845 ;

2937
14685 ;

2967
14835 ;

2973
14865 ;

3297
16485 ;/

/
3729
18645;

6297
31485 ;

7629
38145 ;

9237
46185 ;

9627
48135 ;

9723
48615/

/
1
6/ 3 /

2943
17658;

4653
27918 ;

5697
34182/

/
1
7/ 7 /

2394
16758;

2637
18459 ;

4527
31689 ;

5274
36918 ;

5418
37926 ;

5976
41832 ;/

/
7614
53298/

/
1
8/ 46 /

3187
25496;

4589
36712 ;

4591
36728 ;

4689
37512 ;

4691
37528 ;

4769
38152 ;/

/
5237
41896;

5371
42968 ;

5789
46312 ;

5791
46328 ;

5839
46712 ;

5892
47136 ;/

/
5916
47328;

5921
47368 ;

6479
51832 ;

6741
53928 ;

6789
54312 ;

6791
54328 ;/

/
6839
54712;

7123
56984 ;

7312
58496 ;

7364
58912 ;

7416
59328 ;

7421
59368 ;/

/
7894
63152;

7941
63528 ;

8174
65392 ;

8179
65432 ;

8394
67152 ;

8419
67352 ;/

/
8439
67512;

8932
71456 ;

8942
71536 ;

8953
71624 ;

8954
71632 ;

9156
73248 ;/

/
9158
73264;

9182
73456 ;

9316
74528 ;

9321
74568 ;

9352
74816 ;

9416
75328 ;/

/
9421
75368;

9523
76184 ;

9531
76248 ;

9541
76328/

/
1
9/ 3 /

6381
57429;

6471
58239 ;

8361
75249/

/
1
10/ 0

/
1
11/ 0

/
1
12/ 4 /

3816
45792;

6129
73548 ;

7461
89532 ;

7632
91584/

See also PANDIGITAL NUMBER
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Pandigital Number
A decimal INTEGER which contains each of the digits
from 0 to 9 (and whose leading digit must be nonzero).



The first few pandigital numbers are 1023456789,
1023456798, 1023456879, 1023456897, 1023456978,
... (Sloane’s A050278). A 10-digit pandigital number is
always divisible by 9 since

X9

i �0

i �45 :

This passes the DIVISIBILITY TEST for 9 since 4 �
5 �9. The smallest pandigital primes must therefore
have 11 digits (no two of which can be 0). The first few
pandigital primes are therefore 10123457689,
10123465789, 10123465897, 10123485679, ... (Sloa-
ne’s A050288).

If zeros are excluded, the first few "zeroless" pandi-
gital numbers are 123456789, 123456798, 123456879,
123456897, 123456978, 123456987, ... (Sloane’s
A050289), and the first few zeroless pandigital primes
are 1123465789, 1123465879, 1123468597,
1123469587, 1123478659, ... (Sloane’s A050290).

The sum of the first 32423 (a PALINDROMIC NUMBER)
consecutive PRIMES is 5897230146, which is pandigi-
tal (Honaker). No other PALINDROMIC NUMBER shares
this property.

Numbers n that give zeroless pandigital numbers
when the Fibonacci recurrence

a(n) �a(n �1) �a(n �2)

with a(1) �1 and a(2) �n is applied are 718, 1790,
1993, 2061, 2259, 3888, 3960, 4004, 4396, 5093, 5832,
7031, 7310, 7712, 8039, 8955, 9236, ....

See also PANDIGITAL FRACTION, PERSISTENT NUMBER
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Panmagic Square

If all the DIAGONALS–including those obtained by
"wrapping around" the edges–of a MAGIC SQUARE sum
to the same MAGIC CONSTANT, the square is said to be
a panmagic square (Kraitchik 1942, pp. 143 and 189 �/

191). (Only the rows, columns, and main diagonals
must sum to the same constant for the usual type of
magic square.) The terms DIABOLIC SQUARE (Hunter
and Madachy 1975, p. 24; Madachy 1979, p. 87),

PANDIAGONAL SQUARE (Hunter and Madachy 1975,
p. 24), and NASIK SQUARE (Madachy 1979, p. 87) are
sometimes also used.
No panmagic squares exist of order 3 or any order
4k �2 for k an INTEGER. The Siamese method for
generating MAGIC SQUARES produces panmagic
squares for orders 6k 91 with ordinary vector (2, 1)
and break vector (1, �1).

The LO SHU is not panmagic, but it is an ASSOCIATIVE

MAGIC SQUARE. Order four squares can be panmagic
or ASSOCIATIVE, but not both. Order five squares are
the smallest which can be both ASSOCIATIVE and
panmagic, and 16 distinct ASSOCIATIVE panmagic
squares exist, one of which is illustrated above
(Gardner 1988).

The number of distinct panmagic squares of order 1,
2, ... are 1, 0, 0, 384, 3600, 0, ... (Sloane’s A027567,
Hunter and Madachy 1975). Panmagic squares are
related to HYPERCUBES.

See also ASSOCIATIVE MAGIC SQUARE, HYPERCUBE,
FRANKLIN MAGIC SQUARE, LO SHU, MAGIC SQUARE
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Pantograph

A LINKAGE invented in 1630 by Christoph Scheiner
for making a scaled copy of a given figure. The
linkage is pivoted at O ; hinges are denoted �: By
placing a PENCIL at P (or P?) ; a DILATED image is
obtained at P? (or P ).

See also HOMOTHETIC, LINKAGE
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Papal Cross

See also CROSS

Paper Folding
FOLDING, ORIGAMI

Pappus Chain

In the ARBELOS, construct a chain of TANGENT CIRCLES

starting with the CIRCLE TANGENT to the two small
interior semicircles and the large exterior one. This is
called a Pappus chain (left figure).
In a Pappus chain, the distance from the center of the
first INSCRIBED CIRCLE P1 to the bottom line is twice
the CIRCLE’S RADIUS, from the second CIRCLE P2 is four
times the RADIUS, and for the nth CIRCLE Pn is 2n

times the RADIUS. Furthermore, the centers of the
circles Pi lie on an ELLIPSE (right figure).

If r�AB=AC; then the center and radius of the nth
circle Pn in the Pappus chain are

xn�
r(1 � r)

2[n2(1 � r)2 � r]
(1)

yn�
nr(1 � r)

n2(1 � r)2 � r
(2)

rn�
(1 � r)r

2 n2(1 � r)2 � r
h i : (3)

This general result simplifies to rn�1=(6�n2) for r�
2=3 (Gardner 1979). Further special cases when AC�
1�AB are considered by Gaba (1940).

The positions of the points of tangency for the first
circle are

xA�
r

(1 � r)2 (4)

yA�
r(1 � r)

(1 � r)2 (5)

xB�
r(1 � r)

1 � r2
(6)

yB�
r(1 � r)

1 � r2
(7)

xC�
r2

1 � 2r � 2r2
(8)

yC�
r(1 � r)

1 � 2r � 2r2
: (9)

The centers of the CIRCLES lie on an ELLIPSE, and the
DIAMETER of the nth CIRCLE Pn is (/1=n)/th PERPENDI-

CULAR distance to the base of the SEMICIRCLE. This
result was known to Pappus, who referred to it as an
ancient theorem (Hood 1961, Cadwell 1966, Gardner
1979, Bankoff 1981). The simplest proof is via
INVERSIVE GEOMETRY. Eliminating n from the equa-
tions for xn and yn gives



4rx2 �2r(1 �r)x �(1 �r)2y2 �0 (10)

4r x�1
4(1 �r)

h i2

� 1 �r2
� �

y2 �1
4 r(1 �r)2 (11)

x � 1
4(1 � r)

1
4(1 � r)

" #2

�
y

1
2

ffiffiffi
r

p
 !2

�1; (12)

which is the equation of an ellipse with center ((1 �
r) =4; 0) and semimajor and semiminor axes (1 �r) =4
and

ffiffiffi
r

p
=2 respectively.

The circles Tn tangent to the first arbelos semicircle
and adjacent Pappus circles Pn�1 and Pn have posi-
tions and sizes

x?n �
r(7 � r)

2[4 � 4n(n � 1)(1 � r)2 � r(r � 1)]
(13)

y?n �
2(2n � 1)r(1 � r)

4 � 4n(n � 1)(1 � r)2 � r(r � 1)
(14)

r ?n �
r(1 � r)

2[4 � 4n(n � 1)(1 � r)2 � r(r � 1)] 
: (15)

A special case of this problem with r �1=2 (giving
equal circles forming the arbelos) was considered in a
Japanese temple tablet (Sangaku) problem from 1788
in the Tokyo prefecture (Rothman 1998). In this case,
the solution simplifies to

x ?n �
15

2 15 � 4n � 4n2ð Þ
(16)

y?n �
2(2n � 1)

15 � 4n � 4n2 
(17)

r ?n �
1

2 15 � rn � 4n2ð Þ
: (18)

Furthermore, the positions and radii of the three
tangent circles surrounding this circle can also be
found analytically, and are given by

x(1)
n �

r(17 � r)

2 12 � 3n(3n � 4)(1 � r)2 � r(4r � 7)
h i (19)

y(1)
n �

3(3n � 2)(1 � r)r

12 � 3n(3n � 4)(1 � r)2 � r(4r � 7)
(20)

r(1)
n �

r(1 � r)

2 12 � 3n(3n � 4)(1 � r)2 � r(4r � 7)
h i (21)

x(2)
n �

r(17 � r)

2 9 � 3n(3n � 2)(1 � r)2 � r(1 � r)
h i (22)

y(2)
n �

3(3n � 1)(1 � r)r

9 � 3n(3n � 2)(1 � r)2 � r(1 � r)
(23)

r(2)
n �

r(1 � r)

2 9 � 3n(3n � 2)(1 � r)2 � r(1 � r)
h i (24)

x(3)
n �

r(17 � 7r)

2 9 � 12n(n � 1)(1 � r)2 � r(4r � 1)
h i (25)

y(3)
n �

6(2n � 1)(1 � r)r

9 � 12n(n � 1)(1 � r)2 � r(4r � 1)
(26)

rð3Þn ¼ rð1 � rÞ
2½9 þ 12nðn � 1Þð1 � rÞ2 þ rð4r � 1Þ�

: ð27Þ

If B divides AC in the GOLDEN RATIO f; then the
circles in the chain satisfy a number of other special
properties (Bankoff 1955).

See also ARBELOS, COXETER’S LOXODROMIC SEQUENCE

OF TANGENT CIRCLES, SIX CIRCLES THEOREM, SODDY

CIRCLES, STEINER CHAIN
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Pappus-Guldinus Theorem
PAPPUS’S CENTROID THEOREM

Pappus’s Centroid Theorem
The SURFACE AREA S of a SURFACE OF REVOLUTION

generated by the revolution of a curve about an
external axis is equal to the product of the arc length
s of the generating curve and the distance d1 traveled
by the curve’s centroid x̄1 ;

S �sd1 �2psx̄1 :

Similarly, the VOLUME V of a SOLID OF REVOLUTION

generated by the revolution of a lamina about an
external axis is equal to the product of the area A of
the lamina and the distance d2 traveled by the
lamina’s centroid x̄2 ;

V �Ad2 �2pAx̄2 :

The following table summarizes the surface areas and
volumes calculated using Pappus’s centroid theorem
for various solids and surfaces of revolution.

SOLID SECTION s / ̄x1/ S A / ̄x2/ V

CONE RIGHT

TRIANGLE

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �h2

p
/ /

1
2 r/ /pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �h2

p
/ /

1
2 hr/ /

1
3 hr/ /

1
3 pr2

/

CYLINDER CIRCLE h /
1
2 r/ /2prh/ hr /

1
2 r/ /pr2h/

SPHERE SEMI-

CIRCLE

/ pr/ /
2r

p
/ /4pr2

/ /
1
2 pr2

/ /
4r

3p
/ /

4
3 pr3

/

See also CENTROID (GEOMETRIC), CROSS SECTION,
PERIMETER, SOLID OF REVOLUTION, SURFACE AREA,
SURFACE OF REVOLUTION, TOROID, TORUS
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Pappus’s Harmonic Theorem

AW , AB , and AY in the above figure are in a
HARMONIC RANGE.

See also CEVA’S THEOREM, HARMONIC RANGE, MENE-

LAUS’ THEOREM
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Pappus’s Hexagon Theorem

If A , B , and C are three points on one LINE, D , E , and
F are three points on another LINE, and AE meets BD
at X , AF meets CD at Y , and BF meets CE at Z , then
the three points X , Y , and Z are COLLINEAR. Pappus’s
hexagon theorem is dual to DESARGUES’ THEOREM

according to the DUALITY PRINCIPLE of PROJECTIVE

GEOMETRY.

See also BRIANCHON’S THEOREM, CAYLEY-BACHARACH

THEOREM, DESARGUES’ THEOREM, DUALITY PRINCI-

PLE, PASCAL’S THEOREM, PROJECTIVE GEOMETRY
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Pappus’s Theorem
There are several THEOREMS that generally are
known by the generic name "Pappus’s Theorem."
They include PAPPUS’S CENTROID THEOREM, the PAP-

PUS CHAIN, PAPPUS’S HARMONIC THEOREM, and PAP-

PUS’S HEXAGON THEOREM.

Parabiaugmented Dodecahedron

JOHNSON SOLID J59:/
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Parabiaugmented Hexagonal Prism

JOHNSON SOLID J55:/
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Parabiaugmented Truncated
Dodecahedron

JOHNSON SOLID J69:/
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Parabidiminished
Rhombicosidodecahedron
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Parabigyrate Rhombicosidodecahedron

JOHNSON SOLID J73:/
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Parabola

The set of all points in the PLANE equidistant from a
given LINE L (the DIRECTRIX) and a given point F not
on the line (the FOCUS). The FOCAL PARAMETER (i.e.,
the distance between the directrix and focus) is
therefore given by p�2a; where a is the distance
from the vertex to the directrix or focus.

The parabola was studied by Menaechmus in an
attempt to achieve CUBE DUPLICATION. Menaechmus
solved the problem by finding the intersection of the
two parabolas x2�y and y2�2x: Euclid wrote about
the parabola, and it was given its present name by
Apollonius. Pascal considered the parabola as a
projection of a CIRCLE, and Galileo showed that
projectiles falling under uniform gravity follow para-
bolic paths. Gregory and Newton considered the
CATACAUSTIC properties of a parabola which bring
parallel rays of light to a focus (MacTutor Archive), as
illustrated above.
For a parabola opening to the right with vertex at (0,
0), the equation in CARTESIAN COORDINATES isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x�a)2�y2

q
�x�a (1)

(x�a)2�y2�(x�a)2 (2)

x2�2ax�a2�y2�x2�2ax�a2 (3)

y2�4ax: (4)

The quantity 4a is known as the LATUS RECTUM. If the
vertex is at (x0; y0) instead of (0, 0), the equation of

the parabola is

(y�y0)2�4a(x�x0): (5)

If the parabola instead opens upwards, its equation is

x2�4ay: (6)

In POLAR COORDINATES, the equation of a parabola
with parameter a and center (0, 0) is given by

r��
2a

1 � cos u
(7)

(left figure). The equivalence with the Cartesian form
can be seen by setting up a coordinate system
(x?; y?)�(x�a; y) and plugging in r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?2�y?2

p
and

u�tan�1(y?=x?) to obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�a)2�y2

q
��

2a

1 �
x � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x � a)2 � y2

q : (8)

Expanding and collecting terms,

a�x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�x)2�y2

q
�0; (9)

so solving for y2 gives (4). A set of confocal parabolas
is shown in the figure on the right.

In PEDAL COORDINATES with the PEDAL POINT at the
FOCUS, the equation is

p2�ar: (10)

The parametric equations for the parabola are

x�at2 (11)

y�2at (12)

or

x�
t2

4a
(13)

y�t: (14)



A parabola may be generated as the envelope of two
concurrent line segments by connecting opposite
points on the two lines (Wells 1991).

In the above figure, the lines SPA , SQB , and POQ
are tangent to the parabola at points A , B , and O ,
respectively. Then SP =PA �QO=OP �BQ=QS (Wells
1991). Moreover, the CIRCUMCIRCLE of DPQS passes
through the FOCUS F (Honsberger 1995, p. 47). In
addition, the foot of the perpendicular to a tangent to
a parabola from the FOCUS always lies on the tangent
at the vertex (Honsberger 1995, p. 48).

Given an arbitrary point P located "outside" a para-
bola, the tangent or tangents to the parabola through
P can be constructed by drawing the CIRCLE having
PF as a DIAMETER, where F is the FOCUS. Then locate
the points A and B at which the circle cuts the
VERTICAL TANGENT through V . The points TA and TB

(which can collapse to a single point in the degenerate

case) are then the points of tangency of the lines PA
and PB and the parabola (Wells 1991).

The CURVATURE, ARC LENGTH, and TANGENTIAL ANGLE

are

k(t) �
1

2 1 � t2ð Þ3 =2 (15)

s(t) �t
ffiffiffiffiffiffiffiffiffiffiffiffi
1 �t2

p
�sinh�1 t (16)

f(t)�tan�1 t: (17)

The TANGENT VECTOR of the parabola is

xT(t)�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p (18)

yT(t)�
tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � t2
p : (19)

The plots below show the normal and tangent vectors
to a parabola.

See also CONIC SECTION, ELLIPSE, HYPERBOLA,
QUADRATIC CURVE, REFLECTION PROPERTY, TSCHIRN-

HAUSEN CUBIC PEDAL CURVE
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Parabola Caustic
The CAUSTIC of a PARABOLA with rays PERPENDICULAR

to the axis of the PARABOLA is TSCHIRNHAUSEN CUBIC.

Parabola Evolute

Given a PARABOLA

y �x2 ; (1)

the parametric equations of the parabola are

x �t (2)

y �t2 ; (3)

and the derivatives are

x?�1 (4)

xƒ�0 (5)

y?�2t (6)

yƒ�2: (7)

The RADIUS OF CURVATURE is therefore given by

R ¼ ðx?2 þ y ?2 Þ3 =2

x?yƒ� x ƒy ?
¼ 1

2 ð1 þ 4t2 Þ3 =2 
: ð8Þ

The TANGENT VECTOR is

T̂ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4t2
p 

1
2t

� �
; (9)

so the parametric equations of the evolute are

j ��4t3 (10)

h �1
2 �3t2 ; (11)

and

�1
4 j �t3 (12)

1
3 h �1

2


 �
�t2 (13)

1
3 h �1

2


 �
� �1

4 j

 �2=3

(14)

1
3 h �1

2


 �
� �

2 j

8

 !2 =3

�1
4(2j)2 =3 : (15)

The EVOLUTE is therefore

h �3
4(2j)2 =3 �1

2 : (16)

This is known as NEILE’S PARABOLA and is a SEMI-

CUBICAL PARABOLA. From a point above the evolute
three normals can be drawn to the PARABOLA, while
only one normal can be drawn to the PARABOLA from a
point below the EVOLUTE.

See also NEILE’S PARABOLA, PARABOLA, SEMICUBICAL

PARABOLA

Parabola Inverse Curve
The INVERSE CURVE for a PARABOLA given by

x�at2 (1)

y�2at (2)

with INVERSION CENTER (x0; y0) and INVERSION RA-

DIUS k is

x�x0�
k at2 � x0ð Þ

at2 � x0ð Þ2�(2at � y0)2 (3)

y�y0�
k(2at � y0)

at2 � x0ð Þ2�(2at � y0)2 : (4)

For (x0; y0)�(a; 0) at the FOCUS, the INVERSE CURVE

is the CARDIOID

x�a�
k t2 � 1ð Þ
a 1 � t2ð Þ2 (5)



y�
2kt

a 1 � t2ð Þ2 : (6)

For (x0; y0)�(0; 0) at the VERTEX, the INVERSE CURVE

is the CISSOID OF DIOCLES

x�
k

a 4 � t2ð Þ
(7)

y�
2k

at 4 � t2ð Þ
: (8)

Parabola Involute

dr

dt
�

1
2t

� �
(1)

T̂�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4t2
p 1

2t

� �
(2)

ds2 ¼ jdrj2 ¼ ð1 þ 4t2Þ dt2 ð3Þ

ds�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4t2

p
dt (4)

s�g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4t2

p
dt�1

2 t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4t2

p
�1

4 sinh�1(2t); (5)

so the equation of the INVOLUTE is

ri�r�sT̂�
t
t2

� �
�

1
2 t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4t2

p
� 1

4 sinh�1(2t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4t2

p 1
2t

� �

�
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4t2

p t�1
2 sinh�1(2t)

�sinh�1(2t)

" #
: (6)

Parabola Pedal Curve

On the DIRECTRIX, the PEDAL CURVE of a PARABOLA is
a STROPHOID (top left). On the foot of the DIRECTRIX, it
is a RIGHT STROPHOID (top middle). On reflection of
the FOCUS in the DIRECTRIX, it is a MACLAURIN

TRISECTRIX (top right). On the VERTEX, it is a CISSOID

OF DIOCLES (bottom left). On the FOCUS, it is a
straight line (bottom right; Hilbert and Cohn-Vossen
1999, pp. 26�/27).

References
Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagina-

tion. New York: Chelsea, 1999.
Lawrence, J. D. A Catalog of Special Plane Curves. New

York: Dover, pp. 94�/97, 1972.

Parabolic Coordinates

A system of CURVILINEAR COORDINATES in which two
sets of coordinate surfaces are obtained by revolving



the parabolas of PARABOLIC CYLINDRICAL COORDI-

NATES about the X -AXIS, which is then relabeled the
Z -AXIS. There are several notational conventions.
Whereas (u; v ; u) is used in this work, Arfken
(1970) uses ( j; h; 8 ) :/
The equations for the parabolic coordinates are

x �uv cos u (1)

y �uv sin u (2)

z �1
2 u2 �v2
� �

; (3)

where u 
 [0; �) ; v 
 [0; �); and u 
 [0; 2 p): To solve
for u , v , and u; examine

x2 �y2 �z2 �u2v2 �1
4 u4 �2u2v2 �v4
� �

�1
4 u4 �2u2v2 �v4
� �

�1
4 u2 �v2
� �2

; (4)

so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2 �z2

p
�1

2 u2 �v2
� �

(5)

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2 �z2

p
�z �u2 (6)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �y2 �z2
p

�z �v2 : (7)

We therefore have

u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �y2 �z2
p

�z

q
(8)

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �y2 �z2
p

�z

q
(9)

u �tan�1 y

x

 !
: (10)

The SCALE FACTORS are

hu �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �v2

p
(11)

hv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �v2

p
(12)

hu �uv: (13)

The LINE ELEMENT is

ds2 ¼ ðu2 þ v2 Þðdu2 þ dv2 Þ þ u2v2 du2 ; (14)

and the VOLUME ELEMENT is

dV �uv u2 �v2
� �

du dv du: (15)

The LAPLACIAN is

92f �
1

uv u2 � v2ð Þ
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@u
uv

@f

@u

 !
�
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@v
uv

@f

@v

 !" #
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@2f
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1
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1
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@2f
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1

u2 � v2

1

u

@f

@u 
�

@2f

@u2 
�

1

v

@f

@v 
�

@2f

@v2

 !

�
1

u2v2

@2f

@ u2 : (16)

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPAR-

ABLE in parabolic coordinates.

See also CONFOCAL PARABOLOIDAL COORDINATES,
HELMHOLTZ DIFFERENTIAL EQUATION–PARABOLIC CO-

ORDINATES, PARABOLIC CYLINDRICAL COORDINATES
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Parabolic Cyclide
A CYCLIDE formed by INVERSION of a STANDARD TORUS

when INVERSION SPHERE is tangent to the TORUS.

See also CYCLIDE, INVERSION, INVERSION SPHERE,
PARABOLIC HORN CYCLIDE, PARABOLIC RING CYCLIDE,
PARABOLIC SPINDLE CYCLIDE

Parabolic Cylinder

A QUADRATIC SURFACE given by the equation



x2 �2rz �0:
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Parabolic Cylinder Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ� ax2 �bx �c
� �

�0

(Abramowitz and Stegun 1972, p. 686; Zwillinger
1995, p. 414; Zwillinger 1997, p. 126) whose solutions
are called PARABOLIC CYLINDER FUNCTIONS.

See also PARABOLIC CYLINDER FUNCTION
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Parabolic Cylinder Function
These functions are sometimes called WEBER FUNC-

TIONS. Whittaker and Watson (1990, p. 347) define
the parabolic cylinder functions as solutions to the
WEBER DIFFERENTIAL EQUATION

yƒ(z)� n�1
2�

1
4 z2


 �
y(z)�0: (1)

The two independent solutions are given by y�Dn(z)
and D�n�1 zeip=2

� �
; where

Dn(z)�2n=2�1=4z�1=2Wn=2�1=4;�1=4
1
2 z2

 �

(2)

�
G 1

2


 �
2n=2�1=4z�1=2

G 1
2 �

1
2 n


 �
1 F1

1
2 n�1

4; �1
4;

1
2 z2


 �

�
G �1

2


 �
2n=2�1=4z�1=2

G �1
2 n


 �
1 F1

1
2 n�1

4;
1
4;

1
2 z2


 �
: (3)

Here, Wa; b(z) is a WHITTAKER FUNCTION and

1F1(a; b; z) is a CONFLUENT HYPERGEOMETRIC FUNC-

TIONS. The solutions can also be written as

y�e�z2=4 C1Hn

zffiffiffi
2

p
 !

�C2 1F1 �1
2 n; 1

2;
1
2 z2


 �
;

"
(4)

where Hn(x) is a HERMITE POLYNOMIAL.

Abramowitz and Stegun (1972, p. 686) define the
parabolic cylinder functions as solutions to

yƒ� ax2�bx�c
� �

�0; (5)

sometimes called the PARABOLIC CYLINDER DIFFEREN-

TIAL EQUATION (Zwillinger 1995, p. 414; Zwillinger
1997, p. 126). This can be rewritten by COMPLETING

THE SQUARE,

yƒ� a x�
b

2a

 !2

�
b2

4a
�c

2
4

3
5y�0: (6)

Now letting

u�x�
b

2a
(7)

du�dx (8)

gives

d2y

du2
� au2�d
� �

y�0 (9)

where

d�
b2

4a
�c: (10)

Equation (5) has the two standard forms

yƒ� 1
4 x2�a

 �

y�0 (11)

yƒ� 1
4x

2�a

 �

y�0: (12)

For a general a , the EVEN and ODD solutions to (11)
are

y1(x)�e�x2=4
1f1

1
2 a�1

4;
1
2;

1
2 x2


 �
(13)

y2(x)�xe�x2=4
1f1

1
2 a�3

4;
3
2;

1
2 x2


 �
; (14)

where 1F1(a; b; z) is a CONFLUENT HYPERGEOMETRIC

FUNCTION. If y(a; x) is a solution to (11), then (12) has
solutions

y 9ia; xe�ip=4
� �

; y 9ia; �xe�ip=4
� �

: (15)

Abramowitz and Stegun (1972, p. 687) define stan-
dard solutions to (11) as

U(a; x)�cos p 1
4�

1
2 a


 �h i
Y1�sin p 1

4�
1
2 a


 �h i
Y2 (16)

V(a; x)�
sin p 1

4 �
1
2 a


 �h i
Y1 � cos p 1

4 �
1
2 a


 �h i
Y2

G 1
2 � a

 � ;

(17)

where

Y1�
1ffiffiffi
p

p
G 1

4 �
1
2 a


 �
2a=2�1=4

y1



�
1ffiffiffi
p

p
G 1

4 �
1
2 a


 �
2a =2 �1=4

e �x2 =4
1F1

1
2 a �1

4;
1
2;

1
2 x

2

 �

(18)

Y2 �
1ffiffiffi
p

p
G 3

4 �
1
2 a


 �
2a =2�1 =4

y2

�
1ffiffiffi
p

p
G 3

4 �
1
2 a


 �
2a =2 �1 =4

xe �x2 =4
1F1

1
2 a �3

4;
3
2;

1
2 x

2

 �

ð19Þ

In terms of Whittaker and Watson’s functions,

U(a; x) �D�a �1 =2(x) (20)

V(a ; x) �
G 1

2 � a

 �

sin( pa)D�a �1 =2(x) � D �a �1 =2( �x)
h i

p 
:

(21)

For NONNEGATIVE INTEGER n , the solution Dn reduces
to

Dn(x) �2�n=2e �x2 =4Hn

xffiffiffi
2

p
 !

�e �x2 =4Hen(x) ; (22)

where Hn(x) is a HERMITE POLYNOMIAL and /Hen is a
modified HERMITE POLYNOMIAL.

The parabolic cylinder functions Dn satisfy the RE-

CURRENCE RELATIONS

Dn�1(z) �zDn(z) � nD n�1(z) �0 (23)

D?n(z) �1
2 zDn(z) � nD n�1(z) �0 : (24)

The parabolic cylinder function for integral n can be
defined in terms of an integral by

Dn(z) �
1

p g  
p

0

sin(nu �z sin u) d u (25)

(Watson 1966, p. 308), which is similar to the ANGER

FUNCTION. The result

g
�

��

Dm(x)Dn(x) dx � dmnn!
ffiffiffiffiffiffi
2p

p
; (26)

where dij is the KRONECKER DELTA, can also be used
to determine the COEFFICIENTS in the expansion

f (z) �
X�
n�0

anDn (27)

as

an �
1

n!
ffiffiffiffiffiffi
2 p

p g
�

��

Dn(t)f (t) dt : (28)

For n real,

g
�

0

Dn(t)½ �2 dt

�p1=22�3=2
f0

1
2 �

1
2 n


 �
� f0 �1

2 n

 �

G(�n)
(29)

(Gradshteyn and Ryzhik 2000, p. 885, 7.711.3), where
G(z) is the GAMMA FUNCTION and f0(z) is the POLY-

GAMMA FUNCTION of order 0.

See also ANGER FUNCTION, BESSEL FUNCTION, DAR-

WIN’S EXPANSIONS, HH FUNCTION, STRUVE FUNCTION
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Parabolic Cylindrical Coordinates

A system of CURVILINEAR COORDINATES. There are
several different conventions for the orientation and
designation of these coordinates. Arfken (1970) de-



fines coordinates ( j; h ; z) such that

x � jh (1)

y �1
2 h2 � j2
� �

(2)

z �z: (3)

In this work, following Morse and Feshbach (1953),
the coordinates (u; v; z) are used instead. In this
convention, the traces of the coordinate surfaces of
the xy -PLANE are confocal PARABOLAS with a common
axis. The u curves open into the NEGATIVE X -AXIS; the
v curves open into the POSITIVE X -AXIS. The u and v
curves intersect along the Y -AXIS.

x �1
2 u2 �v2
� �

(4)

y �uv (5)

z �z ; (6)

where u 
 [0; �) ; v 
 [0; �) ; and z 
 (��; �): The
SCALE FACTORS are

h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �v2

p
(7)

h2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 �v2

p
(8)

h3 �1 : (9)

LAPLACE’S EQUATION is

92f �
1

u2 � v2

@2f

@u2 
�

@2f

@v2

 !
�

@2f

@z2 
: (10)

The HELMHOLTZ DIFFERENTIAL EQUATION is SEPAR-

ABLE in parabolic cylindrical coordinates.

See also CONFOCAL PARABOLOIDAL COORDINATES,
HELMHOLTZ DIFFERENTIAL EQUATION–PARABOLIC CY-

LINDRICAL COORDINATES, PARABOLIC COORDINATES
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Parabolic Fixed Point
A FIXED POINT of a LINEAR TRANSFORMATION for which
the rescaled variables satisfy

( d � a)2 �4bg �0:

See also ELLIPTIC FIXED POINT (MAP), HYPERBOLIC

FIXED POINT (MAP), LINEAR TRANSFORMATION

Parabolic Geometry
EUCLIDEAN GEOMETRY

Parabolic Horn Cyclide

A PARABOLIC CYCLIDE formed by INVERSION of a HORN

TORUS when the INVERSION SPHERE is tangent to the
TORUS.

See also CYCLIDE, INVERSION, INVERSION SPHERE,
PARABOLIC RING CYCLIDE, PARABOLIC SPINDLE CY-

CLIDE

Parabolic Partial Differential Equation
A PARTIAL DIFFERENTIAL EQUATION of second-order,
i.e., one OF THE FORM

Auxx �2Buxy �Cuyy �Dux �Euy �F �0; (1)

is called parabolic if the MATRIX

Z �
A B
B C

� �
(2)

satisfies det(Z) �0 : The HEAT CONDUCTION EQUATION

and other diffusion equations are examples. Initial-
boundary conditions are used to give

u(x; t) �g(x; t) for x 
 @V; t > 0 (3)

u(x ; 0) �v(x) for x 
V; (4)

where

uxx �f (ux ; uy ; u; x; y) (5)

holds in V:/

See also BOUNDARY CONDITIONS, BOUNDARY VALUE

PROBLEM, ELLIPTIC PARTIAL DIFFERENTIAL EQUA-

TION, HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION,
INITIAL VALUE PROBLEM, PARTIAL DIFFERENTIAL

EQUATION

Parabolic Point
A point p on a REGULAR SURFACE M 
R3 is said to be
parabolic if the GAUSSIAN CURVATURE K(p)�0 but
S(p)"0 (where S is the SHAPE OPERATOR), or equiva-



lently, exactly one of the PRINCIPAL CURVATURES k1

and k2 is 0.

See also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN

CURVATURE, HYPERBOLIC POINT, PLANAR POINT,
SYNCLASTIC
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Parabolic Ring Cyclide

A PARABOLIC CYCLIDE formed by INVERSION of a RING

TORUS when the INVERSION SPHERE is tangent to the
TORUS.

See also CYCLIDE, INVERSION, INVERSION SPHERE,
PARABOLIC HORN CYCLIDE, PARABOLIC SPINDLE CY-

CLIDE

Parabolic Rotation
The MAP

x?�x �1 (1)

y?�2x �y �1; (2)

which leaves the PARABOLA

x?2 �y?�(x �1)2 �(2x �y �1) �x2 �y (3)

invariant.

See also PARABOLA, ROTATION

Parabolic Rule
SIMPSON’S RULE

Parabolic Segment

The ARC LENGTH of the parabolic segment

y�h 1�
x2

a2

 !
(1)

illustrated above is given by

s�g
a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx�2 g

a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx (2)

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�4h2

p
�

a2

4h
ln

2h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4h2

p

a

 !
; (3)

and the AREA is given by

A�g
a

�a

�h 1�
x2

a2

 !
dx�4

3 ah (4)

(Kern and Bland 1948, p. 4). The weighted mean of y
is

�y��inta
�ag

h 1�x2=a2ð Þ

0

y dx dy� 8
15 ah2; (5)

so the CENTROID is then given by

ȳ�
�y�

A
�2

5 h: (6)

The AREA of the cut-off parabolic segment contained
between the curves

y�x2 (7)

y�ax�b (8)

can be found by eliminating y ,

x2�ax�b�0; (9)



so the points of intersection are

x9�1
2 a 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �4b

p
 �
; (10)

with corresponding y -coordinates y9�x2
9: The AREA

is therefore given by

A �g
a �
ffiffiffiffiffiffiffiffiffiffi
a2 �4b

p

a �
ffiffiffiffiffiffiffiffiffiffi
a2 �4b

p (ax �b) �x2
� �

dx (11)

�1
6 a2 �4b
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 �4b
p

�1
6 a2 �4b
� �3 =2

: (12)

The maximum AREA of a TRIANGLE inscribed in this
segment will have two of its VERTICES at the inter-
sections x�; y�ð Þ and x�; y�

� �
; and the third at a

point x�; y�ð Þ to be determined. From the general
equation for a triangle, the AREA of the inscribed
triangle is given by the DETERMINANT equation

AD�
x� y� 1
x� y� 1
x � y� 1

������
������: (13)

Plugging in and using y
�
�x

�
2 gives

AD�
1
2[b �(a �x�)x�]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �4b

p
: (14)

To find the maximum AREA, differentiable with
respect to x� and set to 0 to obtain

@AD

@x
�
�1

2(a �2x�)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �4b

p
�0; (15)

so

x
�
�1

2 a: (16)

Plugging (16) into (14) then gives

A �1
8 a2 �4b
� �3 =2

: (17)

This leads to the result known to Archimedes in the
third century BC , namely

A

AD
�

1
6

1
8

�
4

3 
: (18)

See also CENTROID (GEOMETRIC), PARABOLA, SEG-

MENT
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Parabolic Spindle Cyclide

A PARABOLIC CYCLIDE formed by INVERSION of a
SPINDLE TORUS when the INVERSION SPHERE is tan-
gent to the TORUS.

See also CYCLIDE, INVERSION, INVERSION SPHERE,
PARABOLIC HORN CYCLIDE, PARABOLIC RING CYCLIDE

Parabolic Spiral
FERMAT’S SPIRAL

Parabolic Umbilic Catastrophe

A CATASTROPHE which can occur for four control
factors and two behavior axes. The parabolic umbilic
catastrophe is given by the unfolding
F(x; y; w; t; u; v) �y4 �x2y �ux2 �vy2 �wx �ty of
f (x; y)�y4�x2y:/

See also CATASTROPHE THEORY
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Parabolic-Cylinder Coordinates
PARABOLIC CYLINDRICAL COORDINATES



Paraboloid

The SURFACE OF REVOLUTION of the PARABOLA which
is the shape used in the reflectors of automobile
headlights (Steinhaus 1983, p. 242; Hilbert and
Cohn-Vossen 1999). It is a QUADRATIC SURFACE which
can be specified by the Cartesian equation

z �b x2 �y2
� �

: (1)

The paraboloid which has radius a at height h is then
given parametrically by

x(u; v) �a
ffiffiffiffiffiffiffiffiffi
u=h

p
cos v (2)

y(u; v) �a
ffiffiffiffiffiffiffiffiffi
u=h

p
sin v (3)

z(u ; v) �u; (4)

where u ]0 ; v 
 [0; 2 p):/

The coefficients of the FIRST FUNDAMENTAL FORM are
given by

E �1 �
a2

4hu 
(5)

F �0 (6)

G �
a2u

h 
(7)

and the SECOND FUNDAMENTAL FORM coefficients are

e �
a2

2u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 4a2hu

p (8)

f �0 (9)

g �
2a2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 � 4a2hu
p (10)

The AREA ELEMENT is then

dS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 4a2hu

p

2h
du ffldv ; (11)

giving SURFACE AREA

S �g
2 p

0 g
h

0

dS �
pa

6h2
a2 �4h2
� �3 =2

�a3
h i

: (12)

The GAUSSIAN CURVATURE is given by

K �
4h2

a2 � 4huð Þ2 ; (13)

and the MEAN CURVATURE

H �
2h a2 � 2huð Þ

a2 � 4huð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � 4a2hu

p : (14)

The VOLUME of the paraboloid of height h is then

V�p g
h

0

a2z

h
dz�1

2 pa2h: (15)

The weighted mean of z over the paraboloid is

�z��p g
h

0

a2z

h
z dz�1

3 pa2h2: (16)

The CENTROID is then given by

z̄�
�z�

V
�2

3 h (17)

(Beyer 1987).

See also ELLIPTIC PARABOLOID, HYPERBOLIC PARA-

BOLOID, PARABOLA
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Paraboloid Geodesic
A GEODESIC on a PARABOLOID has differential para-
meters defined by

P�
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2

�1�
cos2 v

4u
�

sin2 v

4u
�1�

1

4u
(1)

Q�
@2x

@u @v
�

@2y

@u @v
�

@2z

@u @v

�0�u cos2 v�u sin2 v�u (2)

R�0�
sin v

2
ffiffiffi
u

p �
cos v

2
ffiffiffi
u

p �
1

2
ffiffiffi
u

p cos v�sin vð Þ: (3)

The GEODESIC is then given by solving the EULER-

LAGRANGE DIFFERENTIAL EQUATION



@P

@v
� 2v?

@Q

@v
� v?2

@R

@v

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 2Qv ? � Rv?2

p �
d

du

Q � Rv ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 2Qv ? � Rv?2

p !
�0:

(4)

As given by Weinstock (1974), the solution simplifies
to

u �c2 �u(1 �4c2)

sin2 v �2c ln k 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u �c2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u �1

p
 �h in o
:

(5)

See also GEODESIC
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Paraboloidal Coordinates
CONFOCAL PARABOLOIDAL COORDINATES

Paracompact Space
A paracompact space is a HAUSDORFF SPACE such that
every open COVER has a LOCALLY FINITE open REFINE-

MENT. Paracompactness is a very common property
that TOPOLOGICAL SPACES satisfy. Paracompactness is
similar to the compactness property, but generalized
for slightly "bigger" SPACES. All MANIFOLDS (e.g,
second countable and Hausdorff) are paracompact.

See also HAUSDORFF SPACE, LOCALLY FINITE SPACE,
MANIFOLD, TOPOLOGICAL SPACE

Paracycle
ASTROID

Paradox
A statement which appears self-contradictory or
contrary to expectations, also known as an ANTINOMY.
Curry (1977, p. 5) uses the term PSEUDOPARADOX to
describe an apparent paradox for which, however,
there is no underlying actual contradiction. Bertrand
Russell classified known logical paradoxes into seven
categories.

Ball and Coxeter (1987) give several examples of
geometrical paradoxes.

See also ALLAIS PARADOX, ARISTOTLE’S WHEEL PARA-

DOX, ARROW’S PARADOX, BANACH-TARSKI PARADOX,
BARBER PARADOX, BERNOULLI’S PARADOX, BERRY

PARADOX, BERTRAND’S PARADOX, BUCHOWSKI PARA-

DOX, BURALI-FORTI PARADOX, CANTOR’S PARADOX,
CATALOGUE PARADOX, COASTLINE PARADOX, COIN

PARADOX, ELEVATOR PARADOX, EPIMENIDES PARA-

DOX, EUBULIDES PARADOX, GRELLING’S PARADOX,
HAUSDORFF PARADOX, HEMPEL’S PARADOX, HETERO-

LOGICAL PARADOX, HYPERGAME, LEONARDO’S PARA-

DOX, LIAR’S PARADOX, LOGICAL PARADOX, POTATO

PARADOX, PSEUDOPARADOX, RICHARD’S PARADOX,
RUSSELL’S PARADOX, SAINT PETERSBURG PARADOX,
SIEGEL’S PARADOX, SIMPSON’S PARADOX, SKOLEM

PARADOX, SMARANDACHE PARADOX, SOCRATES’ PARA-

DOX, SORITES PARADOX, THOMPSON LAMP PARADOX,
UNEXPECTED HANGING PARADOX, ZEEMAN’S PARADOX,
ZENO’S PARADOXES
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Paradromic Rings
Rings produced by cutting a strip that has been given
m half twists and been re-attached into n equal strips
(Ball and Coxeter 1987, pp. 127 �/128).

See also MÖ BIUS STRIP
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Paragyrate Diminished
Rhombicosidodecahedron
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Parallel

Two lines in 2-dimensional EUCLIDEAN SPACE are said
to be parallel if they do not intersect. In 3-dimen-
sional EUCLIDEAN SPACE, parallel lines not only fail to
intersect, but also maintain a constant separation
between points closest to each other on the two lines.
(Lines in 3-space which are not parallel but do not
intersect are called SKEW LINES.)
In a NON-EUCLIDEAN GEOMETRY, the concept of
parallelism must be modified from its intuitive mean-
ing. This is accomplished by changing the so-called
PARALLEL POSTULATE. While this has counterintuitive
results, the geometries so defined are still completely
self-consistent.

In a TRIANGLE DABC; a MEDIAN BMB bisects all
segments parallel to a given side AC (Honsberger
1995, p. 87).

See also ABSOLUTE GEOMETRY, ANTIPARALLEL, HY-

PERPARALLEL, LINE, NON-EUCLIDEAN GEOMETRY,
PARALLEL CURVES, PARALLEL LINE AND PLANE,
PARALLEL LINES, PARALLEL PLANES, PARALLEL POS-

TULATE, PERPENDICULAR, SKEW LINES
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Parallel (Surface of Revolution)
A parallel of a SURFACE OF REVOLUTION is the
intersection of the surface with a PLANE orthogonal
to the axis of revolution.

See also MERIDIAN, SURFACE OF REVOLUTION
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Parallel Axiom
PARALLEL POSTULATE

Parallel Class
A set of blocks, also called a RESOLUTION CLASS, that
partition the set V , where (V, B ) is a balanced
incomplete BLOCK DESIGN.

See also BLOCK DESIGN, RESOLVABLE
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Parallel Curves

Parallel curves, frequently called "offset curves" in
computer graphics applications, are curves which are
displaced from a base curve by a constant offset,
either positive or negative, in the direction of the
curve’s normal. The two branches of the parallel
curve a distance k away from a parametrically
represented base curve (f (t); g(t)) are

x�f 9
kg?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g?2
p

y�g�
kf ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g?2
p ;

where f ?�df=dt and g?�dg=dt: The above figure
shows curves parallel to a CIRCLE, ELLIPSE, and 3-



petalled ROSE, where the base curves are indicated in
red.

See also PARALLEL, PARALLEL LINES

References
Gray, A. "Parallel Curves." §5.7 in Modern Differential

Geometry of Curves and Surfaces with Mathematica, 2nd
ed. Boca Raton, FL: CRC Press, pp. 115 �/117, 1997.

Lawrence, J. D. A Catalog of Special Plane Curves. New
York: Dover, pp. 42 �/43, 1972.

Yates, R. C. "Parallel Curves." A Handbook on Curves and
Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 155 �/

159, 1952.

Parallel Line and Plane

A line and a plane are parallel if they do not intersect.

See also PARALLEL, PARALLEL LINES, PARALLEL

PLANES
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Parallel Lines

Two lines in 2-dimensional EUCLIDEAN SPACE are said
to be parallel if they do not intersect.

In 3-dimensional EUCLIDEAN SPACE, parallel lines not
only fail to intersect, but also maintain a constant
separation between points closest to each other on the
two lines. Therefore, parallel lines in 3-space lie in a
single PLANE (Kern and Blank 1948, p. 9). Lines in 3-
space which are not parallel but do not intersect are
called SKEW LINES.

See also PARALLEL, PARALLEL CURVES, PARALLEL

LINE AND PLANE, PARALLEL PLANES, PARALLEL

POSTULATE, SKEW LINES
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Parallel Planes

Two planes that do not intersect are said to be
parallel.

See also PARALLEL, PARALLEL LINES, PARALLEL

PLANES, PLANE
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Parallel Postulate
Portions of this entry contributed by MATTHEW SZUD-

ZIK

Given any straight line and a point not on it, there
"exists one and only one straight line which passes"
through that point and never intersects the first line,
no matter how far they are extended. This statement
is equivalent to the fifth of EUCLID’S POSTULATES,
which Euclid himself avoided using until proposition
29 in the ELEMENTS . For centuries, many mathema-
ticians believed that this statement was not a true
postulate, but rather a theorem which could be
derived from the first four of EUCLID’S POSTULATES.
(That part of geometry which could be derived using
only postulates 1 �/4 came to be known as ABSOLUTE

GEOMETRY.)

Over the years, many purported proofs of the parallel
postulate were published. However, none were cor-
rect, including the 28 "proofs" G. S. Klügel analyzed
in his dissertation of 1763 (Hofstadter 1989). The
main motivation for all of this effort was that Euclid’s
parallel postulate did not seem as "intuitive" as the
other axioms, but it was needed to prove important
results. John Wallis proposed a new axiom that
implied the parallel postulate and was also intuitively
appealing. His "axiom" states that any triangle can be
made bigger or smaller without distorting its propor-
tions or angles (Greenberg 1994, pp. 152�/153). How-
ever, Wallis’s axiom never caught on.

In 1823, Janos Bolyai and Lobachevsky indepen-
dently realized that entirely self-consistent "NON-

EUCLIDEAN GEOMETRIES" could be created in which
the parallel postulate did not hold. (Gauss had also
discovered but suppressed the existence of non-
Euclidean geometries.)



As stated above, the parallel postulate describes the
type of geometry now known as PARABOLIC GEOME-

TRY. If, however, the phrase "exists one and only one
straight line which passes" is replaced by "exist no
line which passes," or "exist at least two lines which
pass," the postulate describes equally valid (though
less intuitive) types of geometries known as ELLIPTIC

and HYPERBOLIC GEOMETRIES, respectively.

The parallel postulate is equivalent to the EQUI-

DISTANCE POSTULATE, PLAYFAIR’S AXIOM, PROCLUS’

AXIOM, the TRIANGLE POSTULATE, and the PYTHAGOR-

EAN THEOREM. There is also a single parallel axiom in
HILBERT’S AXIOMS which is equivalent to Euclid’s
parallel postulate.

S. Brodie has shown that the parallel postulate is
equivalent to the PYTHAGOREAN THEOREM.

See also ABSOLUTE GEOMETRY, EUCLID’S AXIOMS,
EUCLIDEAN GEOMETRY, HILBERT’S AXIOMS, NON-EU-

CLIDEAN GEOMETRY, PLAYFAIR’S AXIOM, PYTHAGOR-

EAN THEOREM, TRIANGLE POSTULATE
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Parallelepiped
In 3-D, a parallelepiped is a PRISM whose faces are all
PARALLELOGRAMS. The volume of a 3-D parallelepiped
is given by the SCALAR TRIPLE PRODUCT

Vparallelepiped � ½A � (B �C)½

� ½C � (A �B) ½� ½B � (C �A) ½:

In n -D, a parallelepiped is the POLYTOPE spanned by
n VECTORS v1 ; ..., vn in a VECTOR SPACE over the reals,

span v1 ; . . . ; vnð Þ�t1v1 �. . .�tnvn ;

where ti 
 [0; 1] for i �1, ..., n . In the usual inter-
pretation, the VECTOR SPACE is taken as EUCLIDEAN

SPACE, and the CONTENT of this parallelepiped is
given by

abs det v1 ; . . .  ; vnð Þð Þ;

where the sign of the determinant is taken to be the
"orientation" of the "oriented volume" of the paralle-
lepiped.

Given k vectors v1 ; ..., vk in n -dimensional space,
their CONVEX HULL (along with the ZERO VECTOR)

"X
tivij0 5ti 51

#
(1)

is called a parallelepiped, generalizing the notion of a
parallelogram, or rather its interior, in the plane. If
the number of vectors is equal to the dimension, then

A � v1 . . . vkð Þ  (2)

is a SQUARE MATRIX, and the volume of the paralle-
lepiped is given by ½det A½; where the columns of A are
given by the vectors v . More generally, a parallele-
piped has k dimensional volume given by
det ATA
�� ��1 =2

:/

When the vectors are TANGENT VECTORS, then the
parallelepiped represents an infinitesimal k -dimen-
sional VOLUME ELEMENT. Integrating this volume can
give formulas for the volumes of k -dimensional
objects in n -dimensional space. More intrinsically,
the parallelepiped corresponds to a DECOMPOSABLE

element of the EXTERIOR ALGEBRA LkRn :/

See also DETERMINANT, DIFFERENTIAL K -FORM, EX-

TERIOR ALGEBRA, PARALLELOGRAM, PRISMATOID, REC-

TANGULAR PARALLELEPIPED, VOLUME ELEMENT,
VOLUME INTEGRAL, ZONOHEDRON
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Parallelism
ANGLE OF PARALLELISM

Parallelizable
A HYPERSPHERE Sn is parallelizable if there exist n
cuts containing linearly independent tangent vectors.
There exist only three parallelizable spheres: S1 ; S2 ;
and S7 (Adams 1962, Le Lionnais 1983).

See also SPHERE
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Parallelogram

A QUADRILATERAL with opposite sides parallel (and
therefore opposite angles equal). A quadrilateral with
equal sides is called a RHOMBUS, and a parallelogram
whose ANGLES are all RIGHT ANGLES is called a
RECTANGLE. The DIAGONALS of a parallelogram bisect
each other (Casey 1888, p. 2).
A parallelogram of base b and height h has AREA

A �bh �ab sin A �ab sin B: (1)

The height of a parallelogram is

h �a sin A �a sin B ; (2)

and the DIAGONALS p and q are

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 �2ab cos A

p
(3)

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 �2ab cos B

p
(4)

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 �2ab cos A

p
(5)

(Beyer 1987).

The sides a , b , c , d and diagonals p , q of a
parallelogram satisfy

p2 �q2 �a2 �b2 �c2 �d2 (6)

(Casey 1888, p. 22).

The AREA of the parallelogram with sides formed by
the VECTORS (a, c ) and (b, d ) is

A �det
a b
c d

� �$ %
� ½ad �bc½: (7)

Given a parallelogram P with area A(P) and linear
transformation T , the AREA of T(P) is

A(T(P)) � 
a b
c d

����
����A(P) : (8)

As shown by Euclid, if lines parallel to the sides are
drawn through any point on a diagonal of a parallelo-
gram, then the parallelograms not containing seg-
ments of that diagonal are equal in AREA (and

conversely), so in the above figure, A1�A2 (Johnson
1929).

The centers of four SQUARES erected either internally
or externally on the sides of a parallelograms are the
vertices of a SQUARE (Yaglom 1962, pp. 96�/97; Cox-
eter and Greitzer 1967, p. 84).

See also DIAMOND, LOZENGE, PARALLELOGRAM ILLU-

SION, PARALLELOGRAM LAW, QUADRILATERAL, REC-

T A N G L E , R H O M B U S , S Q U A R E , V A R I G N O N

PARALLELOGRAM, WITTENBAUER’S PARALLELOGRAM
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Parallelogram Illusion

In the above figure, the sides a and b have the same
length, appearances to the contrary.

In the related illusion illustrated above, the interior



lines appear to be of different lengths, despite the fact
that they are the same (Wells 1991).
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Parallelogram Law

The parallelogram law gives the rule for VECTOR

ADDITION of vectors A and B. The sum A �B of the
vectors is obtained by placing them head to tail and
drawing the vector from the free tail to the free head.
Let �j j denote the NORM of a quantity. Then the
quantities x and y are said to satisfy the parallelo-
gram law if

x �yk k2� x �yk k2�2 xk k2�2 yk k2:

If the NORM is defined as fj j�
ffiffiffiffiffiffiffiffiffiffi
f ½fh i

p
(the so-called L2-

NORM), then the law will always hold.

See also L2-NORM, NORM, VECTOR, VECTOR ADDITION

References
Arfken, G. Mathematical Methods for Physicists, 3rd ed.

Orlando, FL: Academic Press, pp. 1 �/2, 1985.
Jeffreys, H. and Jeffreys, B. S. Methods of Mathematical

Physics, 3rd ed. Cambridge, England: Cambridge Uni-
versity Press, p. 58, 1988.

Parallelohedron
A special class of ZONOHEDRON. There are five
parallelohedra with an infinity of equal and similarly
situated replicas which are SPACE-FILLING POLYHE-

DRA: the CUBE, ELONGATED DODECAHEDRON, hexago-
nal PRISM, RHOMBIC DODECAHEDRON, and TRUNCATED

OCTAHEDRON.

See also PARALLELOTOPE, SPACE-FILLING POLYHE-

DRON
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Parallelotope
Move a point P0 along a LINE from an initial point to a
final point. It traces out a LINE SEGMENT P1 : When P1

is translated from an initial position to a final
position, it traces out a PARALLELOGRAM P2 : When
P2 is translated, it traces out a PARALLELEPIPED P3 :
The generalization of Pn to n -D is then called a
parallelotope. Pn has 2n vertices and

Nk �2n�k n
k

$ %
/Pk/s, where n

k

� �
is a BINOMIAL COEFFICIENT and k �0,

1, ..., n (Coxeter 1973). These are also the coefficients
of (x �2)n :/

See also HONEYCOMB, HYPERCUBE, ORTHOTOPE, PAR-

ALLELOHEDRON
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Paralogic Triangles
At the points where a line cuts the sides of a TRIANGLE

DA1A2A3 ; perpendiculars to the sides are drawn,
forming a TRIANGLE DB1B2B3 similar to the given
TRIANGLE. The two triangles are also in perspective.
One point of intersection of their CIRCUMCIRCLES is
the SIMILITUDE CENTER, and the other is the PERSPEC-

TIVE CENTER. The CIRCUMCIRCLES meet ORTHOGON-

ALLY.

See also CIRCUMCIRCLE, ORTHOGONAL CIRCLES, PER-

SPECTIVE CENTER, SIMILITUDE CENTER
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Parameter
A parameter m used in ELLIPTIC INTEGRALS defined to
be m�k2; where k is the MODULUS. An ELLIPTIC

INTEGRAL is written I(f½m) when the parameter is
used. The complementary parameter is defined by

m?�1�m; (1)

where m is the parameter. Let q be the NOME, k the
MODULUS, and m�k2 the PARAMETER. Then

q(m)�e�pK ?(m)=K(m) (2)

where K(m) is the complete ELLIPTIC INTEGRAL OF

THE FIRST KIND. Then the inverse of q(m) is given by

m(q)�
q 4

2(q)

q 4
3(q)

; (3)

where q i is a JACOBI THETA FUNCTION.



See also AMPLITUDE, CHARACTERISTIC (ELLIPTIC IN-

TEGRAL), ELLIPTIC INTEGRAL, ELLIPTIC INTEGRAL OF

THE FIRST KIND, HALF-PERIOD RATIO, JACOBI THETA

FUNCTIONS, MODULAR ANGLE, MODULUS (ELLIPTIC

INTEGRAL), NOME, PARAMETER
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Parameter (Quadric)
The number u in the QUADRIC

x2

a2 � u 
�

y2

b2 � u 
�

z2

c2 � u 
�1

is called the parameter.

See also QUADRIC

Parameterization
The specification of a curve, surface, etc., by means of
one or more variables which are allowed to take on
values in a given specified range.

See also ISOTHERMAL PARAMETERIZATION, PARA-

METRIC EQUATIONS, REGULAR PARAMETERIZATION,
REPARAMETERIZATION, SURFACE PARAMETERIZATION

Parametric Equations

Parametric equations are a set of equations that
express a set of quantities as explicit functions of a
number of independent variables, known as "para-
meters." For example, while the equation of a CIRCLE

in CARTESIAN COORDINATES can be given by r2 �x2 �
y2 ; one set of parametric equations for the circle are
given by

x �r cos t

y �r sin t;

illustrated above. Note that parametric representa-
tions are generally nonunique, so the same quantities
may be expressed by a number of different parame-
terizations. A single parameter is usually represented
with the parameter t , while the symbols u and v are
commonly used for parametric equations in two
parameters.

Parametric equations provide a convenient way to
represent curves and surfaces, as implemented, for
example, in the Mathematica commands Parame-

tricPlot[{x , y }, {t , t1 , t2 }] and Parametric-
Plot3D[{x , y , z }, {u , u1 , u2 }, {v , v1 , v2 }].

Parametric Latitude
An AUXILIARY LATITUDE also called the REDUCED

LATITUDE and denoted h or u: It gives the LATITUDE

on a SPHERE of RADIUS a for which the parallel has the
same radius as the parallel of geodetic latitude f and
the ELLIPSOID through a given point. It is given by

h �tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e2

p
tan f


 �
:

In series form,

h � f �e1 sin(2f) �1
2 e

2
1 sin(4f) �1

3 e
3
1 sin(6 f) �. . . ;

where

e1 �
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p :

See also AUXILIARY LATITUDE, ELLIPSOID, LATITUDE,
SPHERE
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Parametric Statistics

See also NONPARAMETRIC STATISTICS
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Parametric Test
A STATISTICAL TEST in which assumptions are made
about the underlying distribution of observed data.

Parametrization
PARAMETERIZATION

Parenthesis
One of the symbols ( or ) used to denote grouping.
Parentheses have a great many specialized meanings
in mathematics. A few of these are described below.

1. Parentheses are used in mathematical expres-
sions to denote modifications to normal order of



operations (precedence rules). In an expression
like (3 �5) �7; the part of the expression within
the parentheses, (3 �5) �8; is evaluated first, and
then this result is used in the rest of the expres-
sion. Nested parentheses work similarly, since
parts of expressions within parentheses are also
considered expressions. Parentheses are also used
in this manner to clarify order of operations in
confusing or abnormally large expressions.
2. A parenthesis can be used to denote an open end
of an INTERVAL. For example, [0; 5) denotes the
HALF-OPEN INTERVAL which includes all real num-
bers from 0 to 5 except 5 itself.
3. Parentheses are used to enclose the variables of
a FUNCTION in the form f (x) ; which means that
values of the function f are dependent upon the
values of x .
4. Large parentheses around two numbers, one
above the other, denotes a BINOMIAL COEFFICIENT

n
k

� �
:/

5. Parentheses around a set of two or more
numbers, as in (a ; b; c) ; denote an n -tuple of
numbers that are linked in some special way.
6. Large parentheses around an array of numbers,
e.g., a

c
b
d

� �
indicate a MATRIX. (However, in this

work, the symbol a
c

b
d

� �
is used instead.)

7. Parentheses may also be used to denote the
GREATEST COMMON DIVISOR, e.g., (54; 21)�/

/GCD(54; 21)�3:/
8. Parenthesis are used to denote a CONGRUENCE,
as in a�d (mod m):/

See also ANGLE BRACKET, BRACE, SQUARE BRACKET
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Pareto Distribution

The distribution with probability density function
and distribution function

P(x)�
aba

xa�1
(1)

D(x)�1�
b

x

 !a

(2)

defined over the interval x]b: The RAW MOMENTS are

m?1�
ab

a � 1
(3)

m?2�
ab2

a � 2
(4)

m?3�
ab3

a � 3
(5)

m?4�
ab4

a � 4
(6)

and the CENTRAL MOMENTS are

m2�
ab2

(a � 1)2(a � 2)
(7)

m3�
2a(a � 1)b3

(a � 1)3(a � 2)(a � 3)
(8)

m4�
3a(3a3 � a � 2)b4

(a � 1)4(a � 2)(a � 3)(a � 4)
(9)

Giving MEAN, VARIANCE, SKEWNESS, and KURTOSIS

m�
ab

a � 1
(10)

s2�
ab2

(a � 1)2(a � 2)
(11)

g1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a � 2

a

s
2(a � 1)

a � 3
(12)

g2�
6(a3 � a2 � 6a � 2)

a(a � 3)(a � 4)
: (13)
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Parity
The parity of an integer is its attribute of being EVEN

or ODD. Thus, it can be said that 6 and 14 have the
same parity (since both are EVEN), whereas 7 and 12
have opposite parity (since 7 is ODD and 12 is EVEN).

More specifically, the parity of an integer n can be
defined as the sum of the bits in BINARY representa-
tion, computed modulo 2. The parities of the first few
integers (starting with 0) are therefore 0, 1, 1, 0, 1, 0,
0, 1, 1, 0, 0, ... (Sloane’s A010060), summarized in the
following table.



N Binary Parity N Binary Parity

1 1 1 11 1011 1

2 10 1 12 1100 0

3 11 0 13 1101 1

4 100 1 14 1110 1

5 101 0 15 1111 0

6 110 0 16 10000 1

7 111 1 17 10001 0

8 1000 1 18 10010 0

9 1001 0 19 10011 1

10 1010 0 20 10100 0

The parity function obeys the sum identity

X2n �1 �1

k �0

(�1)P(k)(k �r)n �0

for any n . For example, for n �2 and r �0,

1 �4 �9 �16 �25 �36 �49 �64 �0:

The constant generated by the sequence of parity
digits 0:011010011 . . .2 is called the THUE-MORSE

CONSTANT.

See also BINARY, EVEN NUMBER, ODD NUMBER, THUE-

MORSE CONSTANT
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Parity Constant
THUE-MORSE CONSTANT

Parking Constant
RÉ NYI’S PARKING CONSTANTS

Parodi’s Theorem
The EIGENVALUES l satisfying P(l) �0; where P( l) is
the CHARACTERISTIC POLYNOMIAL, lie in the unions of
the DISKS

zj j51

z �b1j j5
Xn

j�1

bj

�� ��:
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Parrondo’s Paradox
Two losing gambling games can be set up so that
when they are played one after the other, they
become winning. There are many ways to construct
such scenarios, the simplest of which uses three
biased coins (Harmer and Abbott 1999).
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Parry Circle
The CIRCLE passing through the ISODYNAMIC POINTS

and the CENTROID of a TRIANGLE (Kimberling 1998,
pp. 227�/228).

See also CENTROID (TRIANGLE), ISODYNAMIC POINTS,
PARRY POINT
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Parry Point
The intersection of the PARRY CIRCLE and the CIR-

CUMCIRCLE of a TRIANGLE. The TRILINEAR COORDI-

NATES of the Parry point are



a

2a2 � b2 � c2 
:

b

2b2 � c2 � a2 
:

c

2c2 � a2 � b2

(Kimberling 1998, pp. 227 �/228).

See also PARRY CIRCLE

References
Kimberling, C. "Parry Point." http://cedar.evansville.edu/

~ck6/tcenters/recent/parry.html.
Kimberling, C. "Triangle Centers and Central Triangles."

Congr. Numer. 129, 1�/295, 1998.

Parseval’s Integral
The POISSON INTEGRAL with n �0,

J0(z) �
1

G n � 1
2


 �h i2 g  
p

0

cos(z cos u) du;

where J0(z) is a BESSEL FUNCTION OF THE FIRST KIND

and G(x) is a GAMMA FUNCTION.

Parseval’s Relation
Let F( n) and G( n) be the FOURIER TRANSFORMS of f (t)
and g(t) ; respectively. Then

g
�

��

f (t)ḡ(t) dt

�g
�

��
g

�

��

F(n)e �2 pint dn

� �
g

�

��

Ḡ(n ?)e2pin?t dn ?
� �

dt

�g
�

��

F(n)g
�

��

Ḡ( n?) g
�

��

e2pit(n?� n) dt

� �
dn ? d n

�g
�

��

F( n) g
�

��

Ḡ(n ?) d( n ?�  n) dn ?
� �

dn

�g
�

��

F(n)Ḡ(n) dn;

where z̄ denotes the COMPLEX CONJUGATE.

See also FOURIER TRANSFORM, PARSEVAL’S THEOREM
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Parseval’s Theorem
Let E(t) be a continuous function and E(t) and En be
FOURIER TRANSFORM pairs so that

E(t)�g
�

��

Ene
�2pint dn (1)

Ē(t)�g
�

��

Ēn?e
2pin?t dn?; (2)

where z̄ denotes the COMPLEX CONJUGATE. Then

g
�

��

E(t)j j2 dt�g
�

��

E(t)Ē(t) dt

�g
�

��
g

�

��

Ene
�2pint dn g

�

��

Ēn?e
2pin?t dn?

� �
dt

�g
�

��
g

�

��
g

�

��

EnĒn?e
2pit(n?�n) dn dn? dt

�g
�

��
g

�

��
g

�

��

EnĒn?e
2pit(n?�n) dt dn dn?

�g
�

��
g

�

��

d(n?�n) EnĒn? dn dn?

�g
�

��

EnĒn? dn�g
�

��

Enj j2 dn: (3)

where d(x�x0) is the DELTA FUNCTION.

For finite FOURIER TRANSFORM pairs hk and Hn;

XN�1

k�0

hkj j2� 1

N

XN�1

n�0

Hnj j2: (4)

If a function has a FOURIER SERIES given by

f (x)�1
2 a0�

X�
n�1

an cos(nx)�
X�
n�1

bn sin(nx); (5)

then BESSEL’S INEQUALITY becomes an equality
known as Parseval’s theorem. From (5),

[f (x)]2�1
4 a2

0�a0

X�
n�1

[an cos(nx)�bn sin(nx)]

�
X�
n�1

X�
m�1

[anam cos(nx) cos(mx)

�anbm cos(nx) sin(mx)

�ambn sin(nx) cos(mx)

�bnbm sin(nx) sin(mx)]: (6)

Integrating

g
p

�p

[f (x)]2 dx

�1
4 a2

0 g
p

�p

dx

�a0 g
p

�p

X�
n�1

[an cos(nx)�bn sin(nx)] dx

�g
p

�p

X�
n�1

X�
m�1

[anam cos(nx) cos(mx)

�anbm cos(nx) sin(mx)�ambn sin(nx) cos(mx)

�bnbm sin(nx) sin(mx)] dx�1
4 a2

0(2p)�0



�
X�
n�1

X�
m�1

[anam pdnm �0 �0 �bnbm pdnm] ; (7)

so

1

p g  
p

�p

[f (x)]2 dx �1
2 a

2
0 �
X�
n�1

(a2
n þ b2

n): (8)

For a generalized FOURIER SERIES with a COMPLETE

BASIS ffi g
�

i�1 ; an analogous relationship holds. For a
COMPLEX FOURIER SERIES,

1

2p g 
p

� p

f (x)j j2 dx �
X�

n ���

anj j2: (9)
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Part Metric
A METRIC defined by

d(z; w) �sup ln
u(z)

u(w)

" #�����
����� : u 
 H �

( )
;

where H � denotes the POSITIVE HARMONIC FUNCTIONS

on a DOMAIN. The part metric is invariant under
CONFORMAL MAPS for any DOMAIN.
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Partial Derivative
Partial derivatives are defined as derivatives of a
function of multiple variables when all but the
variable of interest are held fixed during the differ-
entiation.

@f

@xm

�

lim
h00

f (x1 ; . . . ; xm � h; . . . ; xn) � f (x1 ; . . . ; xm ; . . . ; xn)

h 
:

(1)

The above partial derivative is sometimes denoted fxm

for brevity. For a "nice" 2-D function f (x; y) (i.e., one
for which f , fx ; fy ; fxy ; fyx exist and are continuous in a
NEIGHBORHOOD (a, b )), then fxy(a; b) �fyx(a; b) : Par-
tial derivatives involving more than one variable are
called MIXED PARTIAL DERIVATIVES.

For nice functions, mixed partial derivatives must be
equal regardless of the order in which the differentia-
tion is performed so, for example,

fxy �fyx (2)

fxxy �fxyx �fyxx : (3)

For an EXACT DIFFERENTIAL,

df �
@f

@x

 !
y

dx �
@f

@y

 !
x

dy; (4)

so

@y

@x

 !
f

��

@f

@x

 !
y

@f

@y

 !
x

: (5)

A differential equation expressing one or more quan-
tities in terms of partial derivatives is called a
PARTIAL DIFFERENTIAL EQUATION. Partial differential
equations are extremely important in physics and
engineering, and are in general difficult to solve.

If the continuity requirement for MIXED PARTIALS is
dropped, it is possible to construct functions for which
MIXED PARTIALS are not equal. An example is the
function

f (x; y)�
xy(x2 � y2)

x2 � y2
for(x; y)"(0; 0)

0 for(x; y)�(0; 0);

8<
: (6)

which has fxy(0; 0)��1 and fyx(0; 0)�1 (Wagon
1991). This function is depicted above and by Fischer
(1986).

Abramowitz and Stegun (1972) give FINITE DIFFER-

ENCE versions for partial derivatives.

See also ABLOWITZ-RAMANI-SEGUR CONJECTURE, DE-

RIVATIVE, MIXED PARTIAL DERIVATIVE, MONKEY SAD-

DLE, PARTIAL DIFFERENTIAL EQUATION
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Partial Differential Equation
A partial differential equation (PDE) is an equation
involving functions and their PARTIAL DERIVATIVES;
for example, the WAVE EQUATION

@2 c

@x2 
�

@2 c

@y2 
�

@2 c

@z2 
�

1

v2

@2 c

@t2 
: (1)

in general, partial differential equations are much
more difficult to solve analytically than are ORDINARY

DIFFERENTIAL EQUATIONS. They may sometimes be
solved using a BÄ CKLUND TRANSFORMATION, CHARAC-

TERISTIC, GREEN’S FUNCTION, INTEGRAL TRANSFORM,
LAX PAIR, SEPARATION OF VARIABLES, or–when all else
fails (which it frequently does)–numerical methods.

Fortunately, partial differential equations of second-
order are often amenable to analytical solution. Such
PDEs are of the form

Auxx �2Buxy �Cuyy �Dux �Euy �F �0 : (2)

Second-order PDEs are then classified according to
the properties of the MATRIX

Z �
A B
B C

� �
(3)

as ELLIPTIC, HYPERBOLIC, or PARABOLIC.

If Z is a POSITIVE DEFINITE MATRIX, i.e., det(Z) > 0 ; the
PDE is said to be ELLIPTIC. LAPLACE’S EQUATION and
POISSON’S EQUATION are examples. Boundary condi-
tions are used to give the constraint u(x; y) �g(x; y)
on @V; where

uxx �uyy �f (ux ; uy ; u; x; y) (4)

holds in V:/
If det/(Z) B0; the PDE is said to be HYPERBOLIC. The
WAVE EQUATION is an example of a hyperbolic partial
differential equation. Initial-boundary conditions are
used to give

u(x; y; t) �g(x; y; t) for x 
 @V; t > 0 (5)

u(x; y; 0) �v0(x; y) in V (6)

ut(x; y; 0) �v1(x; y) in V; (7)

where

uxy �f (ux ; ut ; x; y) (8)

holds in V:/
If det/(Z) �0; the PDE is said to be parabolic. The
HEAT CONDUCTION EQUATION equation and other
diffusion equations are examples. Initial-boundary
conditions are used to give

u(x; t)�g(x; t) for x 
 @V; t > 0 (9)

u(x; 0)�v(x) for x 
V; (10)

where

uxx�f (ux; uy; u; x; y) (11)

holds in V:/

See also BÄ CKLUND TRANSFORMATION, BOUNDARY

CONDITIONS, CHARACTERISTIC (PARTIAL DIFFEREN-

TIAL EQUATION), ELLIPTIC PARTIAL DIFFERENTIAL

EQUATION, GREEN’S FUNCTION, HYPERBOLIC PARTIAL

DIFFERENTIAL EQUATION, INTEGRAL TRANSFORM,
JOHNSON’S EQUATION, LAX PAIR, MONGE-AMPÈ RE

DIFFERENTIAL EQUATION, PARABOLIC PARTIAL DIF-

FERENTIAL EQUATION, SEPARATION OF VARIABLES
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Partial Fraction Decomposition
A RATIONAL FUNCTION P(x)=Q(x) can be rewritten
using what is known as partial fraction decomposi-
tion. This procedure often allows integration to be
performed on each term separately by inspection. For
each factor of Q(x) the form (ax�b)m; introduce terms



A1

ax � b 
�

A2

(ax � b)2 �. . .�
Am

(ax � b)m : (1)

For each factor OF THE FORM (ax2 �bx �c)m ; intro-
duce terms

A1x � B1

ax2 � bx � c 
�

A2x � B2

(ax2 � bx � c)2 �. . .

�
Amx � Bm

(ax2 � bx � c)m : (2)

Then write

P(x)

Q(x) 
�

A1

ax � b 
�. . .�

A2x � B2

ax2 � bx � c 
�. . .  (3)

and solve for the Ai/s and Bi/s.

Partial fraction decomposition is implemented in
Mathematica 4.0 as Apart.
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Partial Integration
INTEGRATION BY PARTS

Partial Latin Square
In a normal n �n LATIN SQUARE, the entries in each
row and column are chosen from a "global" set of n
objects. Like a Latin square, a partial Latin square
has no two rows or columns which contain the same
two symbols. However, in a partial Latin square, each
cell is assigned one of its own set of n possible "local"
(and distinct) symbols, chosen from an overall set of
more than three distinct symbols, and these symbols
may vary from location to location. For example,
given the possible symbols f1; 2; . . . ; 6g which must
be arranged as

f1; 2; 3g
f2; 3; 5g
f4; 3; 6g

f1; 3; 4 g
f1; 2; 3 g
f3; 5; 6 g

f2 ; 5 ; 6 g
f4 ; 5 ; 6 g
f2; 3; 5g;

the 3 �3 partial Latin square

1 3 2
2 4 5
6 5 3

can be constructed.

See also DINITZ PROBLEM, LATIN SQUARE
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Partial Order
A RELATION "/5/" is a partial order on a SET S if it has:

1. Reflexivity: a 5a for all a 
 S:/
2. Antisymmetry: a 5b and b 5a implies a �b .
3. Transitivity: a 5b and b 5c implies a 5c :/

For a partial order, the size of the longest CHAIN

(ANTICHAIN) is called the LENGTH (WIDTH). A partially
ordered set is also called a poset.

A largest set of unrelated vertices in a PARTIAL ORDER

can be found using MaximumAntichain[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the
command BBDiscreteMath‘). MinimumChain-
Partition[g ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘)
partitions a partial order into a minimum number
of CHAINS.

See also ANTICHAIN, CHAIN, FENCE POSET, IDEAL

(PARTIAL ORDER), LENGTH (PARTIAL ORDER), LINEAR

EXTENSION, PARTIALLY ORDERED SET, TOTAL ORDER,
WIDTH (PARTIAL ORDER)
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Partial Quotient
If the SIMPLE CONTINUED FRACTION of a REAL NUMBER

x is given by

x �a0 �
1

a1 �
1

a2 �
1

a3 � . . .

;

then the quantities ai are called partial quotients.

See also CONTINUED FRACTION, CONVERGENT, SIMPLE

CONTINUED FRACTION

Partially Ordered Set
A partially ordered set (or poset) is a SET taken
together with a PARTIAL ORDER on it. Formally, a
partially ordered set is defined as an ordered pair P �
(X ; 5); where X is called the GROUND SET of P and 5is
the PARTIAL ORDER of P .

See also CIRCLE ORDER, COVER RELATION, DOMI-

NANCE, GROUND SET, HASSE DIAGRAM, INTERVAL

ORDER, ISOMORPHIC POSETS, ORDER ISOMORPHIC,
PARTIAL ORDER, POSET DIMENSION, REALIZER, RELA-

TION
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Particularly Well-Behaved Functions
Functions which have DERIVATIVES of all orders at all
points and which, together with their DERIVATIVES,
fall off at least as rapidly as xj j�n as xj j 0 �; no
matter how large n is.

See also REGULAR SEQUENCE

Partisan Game
A GAME for which each player has a different set of
moves in any position. Every position in an IMPARTIAL

GAME has a NIM-VALUE.

Partition
A partition is a way of writing an INTEGER n as a sum
of POSITIVE INTEGERS where the order of the sum-
mands is not significant, possibly subject to one or
more additional constraints. By convention, parti-
tions are normally written from largest to smallest
summands (Skiena 1990, p. 51), e.g., 10 �3 �2 �2 �
2 �1: PartitionsQ[p ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘) tests a list to determine that
it consists of positive integers and therefore is a valid
partition. Andrews (1998, p. 1) used the notation l �n
to indicate "a sequence l is a partition of n ," and the
notation a1 2a2 � � �) to abbreviate the partition
f1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a1

; 2; . . . ; 2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a2

; . . .g:/

Particular types of partition functions include the
PARTITION FUNCTION P , giving the number of parti-
tions of a number as a sum of smaller integers
without regard to order, and PARTITION FUNCTION

Q , giving the number of ways of writing the INTEGER

n as a sum of POSITIVE INTEGERS without regard to
order and with the constraint that all INTEGERS in
each sum are distinct. The PARTITION FUNCTION B ,
which gives the number of partitions of n in which no
parts are multiples of k is sometimes also used
(Gordon and Ono 1997).

The EULER TRANSFORM bn gives the number of
partitions of n into integer parts of which there are
a1 different types of parts of size 1, a2 of size 2, etc.
For example, if an �1 for all n , then bn is the number
of partitions of n into integer parts. Similarly, if an �

1 for n prime and an �0 for n composite, then bn is
the number of partitions of n into prime parts (Sloane
and Plouffe 1995, p. 21).

A partition of a number n into a sum of elements of a
list L can be determined using a GREEDY ALGORITHM.
The following table gives the number of partitions of
n into a sum of positive powers p for multiples of n .

n p�1 p�2 p�3 p�4

Sloane’s

A000041

Sloane’s

A001156

Sloane’s

A003108

Sloane’s

A046042

10 42 4 2 1

50 204226 104 10 4

100 190569292 1116 39 9

150 40853235313 6521 97 15

200 3972999029388 27482 208 24

250 /2:307�1014
/ 388 34

300 /9:253�1015
/ 683 49

See also AMENABLE NUMBER, CONJUGATE PARTITION,
DURFEE SQUARE, ELDER’S THEOREM, FERRERS DIA-

GRAM, GÖ LLNITZ’S THEOREM, GRAPHICAL PARTITION,
GREEDY ALGORITHM, PARTITION FUNCTION B , PARTI-

TION FUNCTION P , PARTITION FUNCTION Q , PERFECT

PARTITION, PLANE PARTITION, PRIME PARTITION,
SELF-CONJUGATE PARTITION, SET PARTITION, SOLID

PARTITION, STANLEY’S THEOREM
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Partition Function b
The number of partitions of n in which no parts are
multiples of k is sometimes denoted bk(n) (Gordon
and Ono 1997). bk(n) is also the number of partitions
of n into at most k�1 copies of each part.

/b2(n)�Q(n); where Q(n) is the PARTITION FUNCTION

Q , and bp(n) is the number of irreducible p -modular
representations of the SYMMETRIC GROUP Sn: The
generating function for bk(n) is given by

X�
n�0

bk(n)xn�
Y�
n�1

1 � xkn

1 � xn
: (1)

The following table gives the first few values of bk(n)
for small k .

k Sloane /bk(n)/

2 A000009 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18,
22, ...

3 A000726 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36,
44, 57, ...

4 A001935 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50,
64, 82, ...

5 A035959 1, 2, 3, 5, 6, 10, 13, 19, 25, 34, 44, 60,
76, 100, ...

Gordon and Ono (1997) show that

b5(5n�4)�0 (mod 5) (2)

b7(7n�5)�0 (mod 7) (3)

b11(11n�6)�0 (mod 11): (4)

Defining Sk(N; M) as the number of positive integers
n5N for which bk(n)�0 (mod M); Gordon and Ono
(1997) proved that if pai

i ]
ffiffiffi
k

p
; then

lim
N0�

Sk(N; pj
i)

N
�1 (5)

for all j , where k�pa1

1 pa2

2 � � �pam
m :/
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Partition Function P
/P(n); denotes also denoted p(n); gives the number of
ways of writing the INTEGER n as a sum of POSITIVE

INTEGERS, where the order of summands is not
considered significant. By convention, partitions are
usually ordered from largest to smallest (Skiena
1990, p. 51). For example, since 4 can be written

4�4

�3�1

�2�2

�2�1�1

�1�1�1�1 (1)

it follows that P(4)�5: The function P(n) is imple-
mented in Mathematica as PartitionsP[n ]. The
values of P(n) for n�1, 2, ..., are 1, 2, 3, 5, 7, 11, 15,
22, 30, 42, ... (Sloane’s A000041). The following table
gives the value of P(n) for selected small n .

n /P(n)/

50 204226

100 190569292

200 3972999029388

300 9253082936723602

400 6727090051741041926

500 2300165032574323995027

600 458004788008144308553622

700 60378285202834474611028659

800 5733052172321422504456911979

900 415873681190459054784114365430

1000 24061467864032622473692149727991

6 + + + + + +

�3 + + +

�3 + + +

�2 + +

�1 +

�15

When explicitly listing the partitions of a number n ,
the simplest form is the so-called natural representa-
tion which simply gives the sequence of numbers in
the representation (e.g., (2, 1, 1) for the number 4�
2�1�1): The multiplicity representation instead
gives the number of times each number occurs
together with that number (e.g., (2, 1), (1, 2) for 4�
2 � 1�1 � 2): The FERRERS DIAGRAM is a pictorial
representation of a partition. For example, the dia-



gram above illustrates the FERRERS DIAGRAM of the
partition 6�3�3�2�1�15:/

Euler gave a GENERATING FUNCTION for P(n) using
the Q -SERIES

(q)��
Y�
m�1

(1�qm)�
X�

n���

(�1)nq(3n�1)=2 (2)

�1�q�q2�q5�q7�q12�q15�q22�q26�. . . : (3)

Here, the exponents are generalized PENTAGONAL

NUMBERS 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, ... (Sloane’s
A001318) and the sign of the kth term (counting 0 as
the 0th term) is (�1) (k�1)=2b c (with xb c the FLOOR

FUNCTION). Then the partition numbers P(n) are
given by the GENERATING FUNCTION

1

(q)�
�
X�
n�0

P(n)qn�1�q�2q2�3q3�5q4�. . . (4)

(Hirschhorn 1999). Hirschhorn (1999) gives the addi-
tional beautiful identity

1

(q)�
�

(q)9
�

(q)10
�

�
((q)3

�)3

((q)5
�)2 : (5)

Another GENERATING FUNCTION is given by

X�
n�0

P(n)tn�
2t1=8

q ?1(0;
ffiffi
t

p
)

 !1=3

; (6)

where q ?1(0; x) is the derivative of the JACOBI THETA

FUNCTION of the first kind.

The number of partitions of a number n into m parts
is equal to the number of partitions into parts of
which the largest is m , and the number of partitions
into at most m parts is equal to the number of
partitions into parts which do not exceed m . Both
these results follow immediately from noting that a
FERRERS DIAGRAM can be read either row-wise or
column-wise (although the default order is row-wise;
Hardy 1999, p. 83).

For example, if an�1 for all n , then the EULER

TRANSFORM bn is the number of partitions of n into
integer parts.

Euler invented a GENERATING FUNCTION which gives
rise to a POWER SERIES in P(n);

P(n)�
Xn

k�1

(�1)k�1

 P n�1
2 k(3k�1)


 �
�P n�1

2 k(3k�1)

 �h i

(7)

(Skiena 1990, p. 57). Other recurrence formulas
include

P(2n�1)�P(n)�
X�
k�1

P n�4k2�3k
� �

�P n�4k2�3k
� �� �

�
X�
k�1

(�1)k P 2n�1�3k2�k
� ��

�P 2n�1�3k2�k
� �

� (8)

and

P(n)�
1

n

Xn�1

k�0

s(n�k)P(k); (9)

where s(n) is the DIVISOR FUNCTION (Skiena 1990,
p. 77; Berndt 1994, p. 108), as well as the identity

X(
ffiffiffiffiffiffiffiffiffiffiffi
24n�1

p
�1)=6b c

k� �(
ffiffiffiffiffiffiffiffiffiffiffi
24n�1

p
�1)=6d e

(�1)kP n�1
2 k(3k�1)


 �
�0; (10)

where xb c is the FLOOR FUNCTION and xd e is the
CEILING FUNCTION.

A RECURRENCE RELATION involving the PARTITION

FUNCTION Q is given by

P(n)�
Xn=2b c

k�0

Q(n�2k)P(k): (11)

Atkin and Swinnerton-Dyer (1954) obtained the
unexpected identities

X�
n�0

P(5n)qn

�
Y�
n�1

(1 � q5n�3)(1 � q5n�2)(1 � q5n)

(1 � q5n�4)2(1 � q5n�1)2 (mod 5)

(12)

X�
n�0

P(5n�1)qn

�
Y�
n�1

(1 � q5n)

(1 � q5n�4)(1 � q5n�1)
(mod 5) (13)

X�
n�0

P(5n�2)qn

�2
Y�
n�1

(1 � q5n)

(1 � q5n�3)(1 � q5n�2)
(mod 5) (14)

X�
n�0

P(5n�3)qn

�3
Y�
n�1

(1 � q5n�4)(1 � q5n�1)(1 � q5n)

(1 � q5n�3)2(1 � q5n�2)2 (mod 5)

(15)

(Hirschhorn 1999).

MacMahon obtained the beautiful RECURRENCE RELA-

TION



P(n)�P(n�1)�P(n�2)�P(n�5)�P(n�7)

�P(n�12)�P(n�15)�. . .�0; (16)

where the sum is over generalized PENTAGONAL

NUMBERS 5n and the sign of the kth term is
(�1) (k�1)=2b c; as above. Ramanujan stated without
proof the remarkable identities

P(4)�P(9)x�P(14)x2�. . .

�5
[(1 � x5)(1 � x10)(1 � x15) � � �]5

[(1 � x)(1 � x2)(1 � x3) � � �]6 (17)

(Darling 1921; Mordell 1922; Hardy 1999, pp. 89�/90),
and

P(5)�P(12)x�P(17)x2�. . .

�7
1 � x7ð Þ 1 � x14ð Þ 1 � x21ð Þ � � �½ �3

1 � xð Þ 1 � x2ð Þ 1 � x3ð Þ � � �½ �4

�49x
1 � x7ð Þ 1 � x14ð Þ 1 � x21ð Þ � � �½ �7

1 � xð Þ 1 � x2ð Þ 1 � x3ð Þ � � �½ �8
(18)

(Mordell 1922; Hardy 1999, pp. 89�/90).

Hardy and Ramanujan (1918) used the CIRCLE

METHOD and MODULAR FUNCTIONS to obtain the
asymptotic solution

P(n)
1

4n
ffiffiffi
3

p ep
ffiffiffiffiffiffiffi
2n=3

p
(19)

(Hardy 1999, p. 116), which was also independently
discovered by Uspensky (1920). Rademacher (1937)
subsequently obtained an exact convergent series
solution which yields the Hardy-Ramanujan formula
(19) as the first term:

P(n)�
1

p
ffiffiffi
2

p
X�
k�1

Ak(n)
ffiffiffi
k

p

 d

dn?

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 n? � 1

24


 �r$ %
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n? � 1
24

q

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

n?�n

; (20)

where

Ak(n)�
Xk

h�1

dGCD(h; k); 1

exp pi
Xk�1

j�1

i

k

hj

k
�

hj

k

$ %
�

1

2

 !
�

2pihn

k

" #
; (21)

/dmn is the KRONECKER DELTA, and xb c is the FLOOR

FUNCTION (Hardy 1999, pp. 120�/121). The remainder
after N terms is

R(N)BCN�1=2�D

ffiffiffiffiffi
N

n

s
sinh

K
ffiffiffi
n

p

N

 !
; (22)

where C and D are fixed constants (Apostol 1997,
pp. 104�/110; Hardy 1999, pp. 121 and 128). Rather
amazingly, the CONTOUR used by Rademacher in-
volves FAREY SEQUENCES and FORD CIRCLES (Apostol
1997, pp. 102�/104; Hardy 1999, pp. 121�/122). In
1942, Erdos showed that the formula of Hardy and
Ramanujan could be derived by elementary means
(Hoffman 1998, p. 91).

With f (x) as defined above, Ramanujan also showed
that

5
(q5)5

�(x5)

(q)6
�

�
X�
m�0

P(5m�4)xm: (23)

Ramanujan also found numerous PARTITION FUNC-

TION P CONGRUENCES.

Let fO(x) be the GENERATING FUNCTION for the
number of partitions PO(n) of n containing ODD

numbers only and fD(x) be the GENERATING FUNCTION

for the number of partitions PD(n) of n without
duplication, then

fO(x)�fD(x)�
Y�

k�1; 3; ...

X�
i�0

xik

�
1Q�

k�1; 3; ... 1 � xk

�
Y�
k�1

(1�xk)�1�x�x2

�2x3�2x4�3x5�. . . ; (24)

as discovered by Euler (Honsberger 1985; Andrews
1998, p. 5; Hardy 1999, p. 86), giving the first few
values of PO(n)�PD(n) for n�0, 1, ... as 1, 1, 1, 2, 2, 3,
4, 5, 6, 8, 10, ... (Sloane’s A000009). The identity

Y�
k�1

(1�zk)�
Y�
k�1

(1�z2k�1)�1; (25)

�1�x�x2�x5�x7�x12�x15�. . . (26)

�1�
X�
k�1

ck; (27)

where

ck�
(�1)n for k of the form 1

2 n(3n91)

0 otherwise;

"
(28)

which is the GENERATING FUNCTION for the difference
between the number of partitions into an even
number of unequal parts and the number of parti-
tions in an odd number of unequal parts, is known as
the EULER IDENTITY (Hardy 1999, p. 84).



Let PE(n) be the number of partitions of EVEN

numbers only, and let PEO(n) (/PDO(n)) be the number
of partitions in which the parts are all EVEN (ODD) and
all different. Then the GENERATING FUNCTION of
PDO(n) is given by

fDO(n)�
Y�

k�1; 3; ...

1�xk (29)

(Hardy 1999, p. 86), and the first few values of are 1,
1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, ... (Sloane’s
A000700). Some additional GENERATING FUNCTIONS

are given by Honsberger (1985, pp. 241�/242)

X�
n�1

Pno even part repeated(n)xn

�
Y
k�1

(1�x2k�1)�1(1�x2k) (30)

X�
n�1

Pno part occurs more than 3 times(n)xn

�
Y
k�1

(1�xk�x2k�x3k) (31)

X�
n�1

Pno part divisible by 4(n)xn�
Y
k�1

1 � x4k

1 � xk
(32)

X�
n�1

Pno part occurs more than d times(n)xn

�
Y
k�1

Xd

i�0

xik�
Y
k�1

1 � x(d�1)k

1 � xk
(33)

X�
n�1

Pevery part occurs 2; 3; or 5 times(n)xn

�
Y
k�1

(1�x2k�x3k�x5k)

�
Y
k�1

(1�x2k)(1�x3k)�
Y
k�1

1 � x4k

1 � x2k

1 � x6k

1 � x3k
(34)

X�
n�1

Pno part occurs exactly once(n)xn

�(1�x2k�x3k�. . .)�
Y

k

1 � x6k

(1 � x2k)(1 � x3k)
: (35)

Some additional interesting theorems following from
these (Honsberger 1985, pp. 64�/68 and 143�/146) are:

1. The number of partitions of n in which no EVEN

part is repeated is the same as the number of
partitions of n in which no part occurs more than
three times and also the same as the number of
partitions in which no part is divisible by four.
2. The number of partitions of n in which no part
occurs more often than d times is the same as the

number of partitions in which no term is a multi-
ple of d�1:/
3. The number of partitions of n in which each part
appears either 2, 3, or 5 times is the same as the
number of partitions in which each part is CON-

GRUENT mod 12 to either 2, 3, 6, 9, or 10.
4. The number of partitions of n in which no part
appears exactly once is the same as the number of
partitions of n in which no part is CONGRUENT to 1
or 5 mod 6.
5. The number of partitions in which the parts are
all EVEN and different is equal to the absolute
difference of the number of partitions with ODD

and EVEN parts.

/P(n) satisfies the inequality

P(n)51
2 (n�1)�P(n�1)½ � (36)

(Honsberger 1991).

/P(n; k); also written Pk(n); is the number of ways of
writing n as a sum of k terms or, equivalently, the
number of partitions into parts of which the largest is
k . The latter can be enumerated by Partitions[n ,
k ] in the Mathematica add-on package Discrete-
Math‘Combinatorica‘ (which can be loaded with
the command BBDiscreteMath‘). For example,
the P(5; 3)�5 partitions of 5 of which the largest
member is 53 are f3; 2g; f3; 1; 1g; f2; 2; 1g;
f2; 1; 1; 1g; and f1; 1; 1; 1; 1g: Similarly, the five
partitions of 5 into three or fewer parts are f5g;
f4; 1g; f3; 2g; f3; 1; 1g; and f2; 2; 1g:/

/P(n; k) is implemented as ConstrainedInteger-
PartitionsP[n , k ] in the Mathematica add-on
package DiscreteMath‘IntegerPartitions‘
(which can be loaded with the command
BBDiscreteMath‘), and can be computed from
the RECURRENCE RELATION

P(n; k)�P(n�1; k�1)�P(n�k; k) (37)

(Skiena 1990, p. 58; Ruskey) with P(n; k)�0 for
k�n , P(n; n)�1; and P(n; 0)�0: The triangle of
P(k; n) is given by

1

1 1

1 1 1

1 2 1 1

1 2 2 1 1

1 3 3 2 1 1

(Sloane’s A008284). The number of partitions of n
with largest part k is the same as P(n; k):/

The RECURRENCE RELATION can be solved exactly to
give



P(n; 1) �1 (38)

P(n; 2) �1
4 2n �1 �(�1)n½ � (39)

P(n; 3) � 1
72 6n2 �7 �9(�1)n �16 cos 2

3 np

 �h i

(40)

P(n; 4) � 1
864 f3(n �1) 2n(n �2) �13 �9(�1)n½ �

�96 cos 2
3 np

 �

�108(�1)n=2 mod(n �1; 2)

�32
ffiffiffi
3

p
sin(2

3 np) g; (41)

where P(n; k) �0 for n Bk . The functions P(n; k) can
also be given explicitly for the first few values of k in
the simple forms

P(n; 2) � 1
2 n
j k

(42)

P(n ; 3) � 1
12 n

2
h i

; (43)

where xb c is the FLOOR FUNCTION and [x] is the NINT

function (Honsberger 1985, pp. 40 �/45). A similar
treatment by B. Schwennicke defines

tk(n) �n �1
4 k(k �3) (44)

and then yields

P(n; 2) � 1
2 t2(n)
h i

(45)

P(n; 3) � 1
12 t

3
2(n)

h i
(46)

P(n; 4) �
1

144 t
3
4(n) � 1

48 t4(n)
h i

for n even

1
144 t

3
4(n) � 1

12 t4(n)
h i

for n odd:

8<
: 

(47)

Hardy and Ramanujan (1918) obtained the exact
asymptotic formula

P(n) �
X

kBa
ffiffi
n

p
Pk(n)�O(n�1=4); (48)

where a is a constant. However, the sum

X�
k�1

Pk(n) (49)

diverges, as first shown by Lehmer (1937).

See also ALCUIN’S SEQUENCE, CONJUGATE PARTITION,
ELDER’S THEOREM, EULER IDENTITY, FERRERS DIA-

GRAM, GÖ LLNITZ’S THEOREM, PARTITION FUNCTION P
CONGRUENCES, PARTITION FUNCTION Q , PENTAGONAL

NUMBER, PENTAGONAL NUMBER THEOREM, PLANE

PARTITION, RANDOM PARTITION, ROGERS-RAMANUJAN

IDENTITIES, SELF-CONJUGATE PARTITION, STANLEY’S

THEOREM, SUM OF SQUARES FUNCTION, TAU FUNC-

TION
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Partition Function P Congruences

The fraction of odd values of the PARTITION FUNCTION

P is roughly 50%, independent of n , whereas odd
values of Q(n) occur with ever decreasing frequency
as n becomes large. Kolberg (1959) proved that there
are infinitely many even and odd values of P(n):/
Leibniz noted that P(n) is prime for n�2, 3, 4, 5, 6,
but not 7. In fact, values of n for which P(n) is PRIME

are 2, 3, 4, 5, 6, 13, 36, 77, 132, 157, 168, 186, ...
(Sloane’s A046063), corresponding to 2, 3, 5, 7, 11,
101, 17977, 10619863, ... (Sloane’s A049575). Num-
bers which cannot be written as a PRODUCT of P(n) are
13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 39, ... (Sloane’s
A046064), corresponding to numbers of noniso-
morphic ABELIAN GROUPS which are not possible for
any group order.

Ramanujan conjectured a number of amazing and
unexpected CONGRUENCES involving P(n): In particu-
lar, he proved

P(5m�4)�0 (mod 5) (1)

using RAMANUJAN’S IDENTITY (Darling 1919; Hardy
and Wright 1979; Drost 1997; Hardy 1999, pp. 87�/88;
Hirschhorn 1999). Ramanujan (1919) also showed
that

P(25m�24)�0 (mod 52); (2)

and Krecmar (1933) proved that

P(125m�99)�0 (mod 53): (3)

Watson (1938) then proved the general congruence

P(n)�0 (mod 5a) if 24n�1 (mod 5a) (4)

(Gordon and Hughes 1981; Hardy 1999, p. 89). For
a�1, 2, ..., the corresponding minimal values of n are
4, 24, 99, 599, 2474, 14974, 61849, ... (Sloane’s
A052463). However, the even more general con-
gruences

P(125m�74; 99; 124)�0 (mod 53) (5)

P(3125m�1849; 2474; 3099)�0 (mod 55) (6)

seem also to hold.

Ramanujan showed that

P(7m�5)�0 (mod 7) (7)

(Darling 1919), which can be derived using the EULER

IDENTITY and JACOBI TRIPLE PRODUCT (Hardy 1999,
pp. 87�/88), and also that

P(49m�47)�0 (mod 72) (8)

(Hardy 1999, p. 90). He conjectured that in general

P(n)�0 (mod 7b) if 24n�1 (mod 7b)

[incorrect]
(9)

(Gordon and Hughes 1981, Hardy 1999), although
Gupta (1936) showed that this is false when b�3.
Watson (1938) subsequently formulated and proved
the modified relation

P(n)�0 (mod 7b) if 24n�1 (mod 72b�2) (10)

for b]2: For b�1, 2, ..., the corresponding minimal
values of n are 0, 47, 2301, 112747, ... (Sloane’s
A052464). However, the even more general con-
gruences

P(49m�19; 33; 40; 47)�0 (mod 72) (11)

appear to hold.

Ramanujan showed that

P(11m�6)�0 (mod 11) (12)

holds (Gordon and Hughes 1981; Hardy 1999, pp. 87�/

88), and conjectured the general relation

P(n)�0 (mod 11c) if 24n�1 (mod 11c): (13)

This was finally proved by Atkin (1967). For c�1, 2,
..., the corresponding minimal values of n are 6, 116,
721, 14031, ... (Sloane’s A052465).



Atkin and O’Brien (1967) proved

P(169n �7) � kdP(n) (mod 13d)

if 24n �1 (mod 13d) ;
(14)

where kd is an integer depending only on d (Gordon
and Hughes 1981). For d �1, 2, ..., the corresponding
minimal values of n are 6, 162, 1007, 27371, ...
(Sloane’s A052466).

Subbarao (1966) conjectured that in every ARITH-

METIC PROGRESSION r (mod t ), there are infinitely
many integers N �r (mod t) for which P(N) is EVEN,
and infinitely many integer M �r (mod t) for which
P(M) is ODD.

See also CONGRUENCE, ERDOS-IVIC CONJECTURE,
NEWMAN’S CONJECTURE, PARTITION FUNCTION P ,
PARTITION FUNCTION Q , PARTITION FUNCTION Q ,
PARTITION FUNCTION Q CONGRUENCES
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Partition Function q
The number of PARTITIONS of n with5k summands is
denoted q(n; k) or qk(n): For example, q(10; 2)�6;
since there are six partitions of 10 into two or fewer
parts: f10g; f9; 1g; f8; 2g; f7; 3g; f6; 4g; and f5; 5g:
The q(n; k) satisfy the RECURRENCE RELATION

q(n; k)�q(n; k�1)�q(n�k; k); (1)

with q(n; 0)�0; q(1; k)�1; and q(n; k)�P(n) for k]
n: The triangle of q(n; k) is given by

1

1 2

1 2 3

1 3 4 5

1 3 5 6 7

1 4 7 9 10 11

(Sloane’s A026820).

See also PARTITION FUNCTION P , PARTITION FUNC-

TION Q
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Partition Function Q
/Q(n) gives the number of ways of writing the INTEGER

n as a sum of POSITIVE INTEGERS without regard to
order with the constraint that all INTEGERS in a given
partition are distinct . For example, Q(10)�10; since
the partitions of 10 into distinct parts are
f1; 2; 3; 4g; f2; 3; 5g; f1; 4; 5g; f1; 3; 6g; f4; 6g;
f1; 2; 7g; f3; 7g; f2; 8g; f1; 9g; f10g: The Q(n) func-
tion is implemented in Mathematica as Parti-
tionsQ[n ]. Q(0) is generally defined to be 1. The
values for n�1, 2, ... are 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ...
(Sloane’s A000009).



The GENERATING FUNCTION for Q(n) is

G(x) �
Y�
n�1

(1 �xn) (1)

�
1Q�

n�0(1 � x2n�1) 
(2)

�
Y�
n �1

1 � x2n

1 � xn 
(3)

�1 �x �x2 �2x3 �2x4 �3x5 �. . . : (4)

This can also be interpreted as another form of the
JACOBI TRIPLE PRODUCT, written in terms of the Q -

FUNCTIONS as

Q1Q2Q3 �1 (5)

(Borwein and Borwein 1987, p. 64).

A RECURRENCE RELATION is given by Q(0) �Q(1) �1
and

Q(n) �
1

n

Xn

k �1

[s(k) �2s(k=2)]Q(n �k) ; (6)

where

s(n) �
s1(n) for n an integer
0 otherwise;

"
(7)

and

s1(n) �s(n) �2s(n=2) (8)

is the ODD DIVISOR FUNCTION giving the sum of odd
divisors of n : 1, 1, 4, 1, 6, 4, 8, ... (Sloane’s A000593;
Abramowitz and Stegun 1972, p. 826).

/Q(n) satisfies the inequality

Q(n) 51
2[Q(n �1) �Q(n �1)] (9)

for n ]4 : Q(n) has the ASYMPTOTIC SERIES

Q(n) 
e p

ffiffiffiffiffiffi
n=3

p

4 � 31=4n3=4 
(10)

(Abramowitz and Stegun 1972, p. 826).

A Rademacher-like convergent series for Q(n) is given
by

Q(n) �1
2

ffiffiffi
2

p X�
k�1

A2k �1(n)

 d

dn ?
J0

pi

2k � 1 
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 n?� 1

24


 �r !" #( )
n?�n

; (11)

where

Ak(n) �
Xk

h�1

dGCD(h; k); 1

exp pi
Xk �1

j�1

i

k

hj

k
�

hj

k

$ %
�

1

2

 !
�

2pihn

k

" #
; (12)

where dmn is the KRONECKER DELTA, xb c is the FLOOR

FUNCTION, and J0(x) is the zeroth order BESSEL

FUNCTION OF THE FIRST KIND (Abramowitz and Ste-
gun 1972, p. 825). (11) can also be written explicitly
as

Q(n) �
p2

ffiffiffi
2

p

24

X�
k �1

A2k�1(n)

(1 � 2k)2 0 F1 ; 2;
(1 � 24n) p2

288(1 � 2k)2

 !
;

(13)

where 0F1(; a; b; z) is a GENERALIZED HYPERGEO-

METRIC FUNCTION.

Let Q(n; k) denote the number of ways of partitioning
n into exactly k distinct parts. For example,
Q(10; 3) �4 since there are four partitions of 10
into three distinct parts: f1; 2 ; 7 g; f1; 3; 6g;
f1; 4; 5g; and f2; 3; 5g: Q(n; k) is given by

Q(n; k) �P n�
k
2

$ %
; k

$ %
; (14)

where P(n) is the PARTITION FUNCTION P and n
k

� �
is a

BINOMIAL COEFFICIENT (Comtet 1974, p. 116). The
following table gives the first few values of Q(n; k)
(Sloane’s A008289; Comtet 1974, pp. 115�/116).

/n_k/ 1 2 3 4

1 1

2 1

3 1 1

4 1 1

5 1 2

6 1 2 1

7 1 3 1

8 1 3 2

9 1 4 3

10 1 4 4 1

See also ODD DIVISOR FUNCTION, PARTITION FUNC-

TION P , PARTITION FUNCTION Q , PARTITION FUNCTION

Q CONGRUENCES
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Partition Function Q Congruences

Odd values of Q(n) are 1, 1, 3, 5, 27, 89, 165, 585, ...
(Sloane’s A051044), and occur with ever decreasing
frequency as n becomes large (unlike P(n) ; for which
the fraction of odd values remains roughly 50%). This
follows from the PENTAGONAL NUMBER THEOREM

which gives

G(x) �
Y�
n �1

(1 �xn) �
Y�
n�1

(1 �xn)

�
X�

n���

x(3n2�n)=2 (mod 2) (1)

(Gordon and Ono 1997), so Q(n) is ODD IFF n is OF THE

FORM k(3k 91)=2 ; i.e., 1, 5, 12, 22, 35, ... or 2, 7, 15, 26,
40, ....
The values of n for which Q(n) is PRIME are 3, 4, 5, 7,
22, 70, 100, 495, 1247, 2072, 320397, ... (Sloane’s
A035359), with no others for n 53; 015; 000 (Weis-
stein, May 6, 2000). These values correspond to 2, 2,
3, 5, 89, 29927, 444793, 602644050950309, ... (Sloa-
ne’s A051005). It is not known if Q(n) is infinitely
often prime, but Gordon and Ono (1997) proved that
it is "almost always" divisible by any given power of 2
(1997).

Gordon and Hughes (1981) showed that

Q(n) �0 (mod 5a) if 24n ��1 (mod 52a �1) (2)

and

Q(n) �49n �2 (mod lbQ(n))7b

if 24n ��1 (mod 7b) ;
(3)

where lb is an integer depending only on b .

See also PARTITION FUNCTION P , PARTITION FUNC-

TION P CONGRUENCES, PARTITION FUNCTION Q
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Partition of Unity
Given a SMOOTH MANIFOLD M with an OPEN COVER

Ui ; a partition of unity is a collection of smooth,
nonnegative functions ci ; such that the support of ci

is contained in Ui and ai ci �1 everywhere. Often one
requires that the Ui have COMPACT CLOSURE, which
can be interpreted as finite, or bounded, open sets. In
the case that the Ui is a LOCALLY finite cover, any
point x 
 M has only finitely many i with ci(x) "0:/

A partition of unity can be used to patch together
objects defined locally. For instance, there always
exist smooth GLOBAL VECTOR FIELDS, possibly vanish-
ing somewhere, but not identically zero. Cover M
with coordinate charts Ui such that only finitely
many overlap at any point. On each coordinate chart
Ui ; there are the local vector fields @=@xj : Label these
vi ; j and, for each chart, pick the vector field vi; 1 �
@=@x1 : Then ai civi; 1 is a global vector field. The sum
converges because at any x , only finitely many
ci(x) "0 :/

Other applications require the objects to be inter-
preted as functions, or a generalization of functions
called SECTIONS, such as a RIEMANNIAN METRIC. By
viewing such a metric as a section of a bundle, it is
easy to show the existence of a smooth metric on any
smooth manifold. The proof uses a partition of unity
and is similar to the one used above.

Strictly speaking, the sum ai ci doesn’t have to be
identically UNITY for the arguments to work. It goes
with the name, because at every point the functions
partition the value 1. Also, it is convenient when
considered from the point of view of CONVEXITY.

See also CONVEX SET, OPEN COVER RIEMANNIAN

METRIC, SECTION, SMOOTH MANIFOLD, VECTOR FIELD

PartitionsP
PARTITION FUNCTION P

PartitionsQ
PARTITION FUNCTION Q



Party Problem
Also known as the MAXIMUM CLIQUE PROBLEM. Find
the minimum number of guests that must be invited
so that at least m will know each other or at least n
will not know each other. The solutions are known as
RAMSEY NUMBERS.

See also CLIQUE, RAMSEY NUMBER
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Parzen Apodization Function
An APODIZATION FUNCTION similar to the BARTLETT

FUNCTION.

See also APODIZATION FUNCTION, BARTLETT FUNC-

TION
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Pascal Distribution
NEGATIVE BINOMIAL DISTRIBUTION

Pascal Lines

The lines containing the three points of the intersec-
tion of the three pairs of opposite sides of a (not
necessarily regular) HEXAGON.

There are 6! (i.e., 6 FACTORIAL) possible ways of
taking all VERTICES in any order, but among these
are six equivalent CYCLIC PERMUTATIONS and two
possible orderings, so the total number of different

hexagons (not all simple) is

6!

2 � 6
�

720

12
�60:

There are therefore a total of 60 Pascal lines created
by connecting VERTICES in any order.

The 60 Pascal lines form a very complicated pattern
which can be visualized most easily in the degenerate
case of a regular hexagon inscribed in a circle, as
illustrated above for magnifications ranging over five
powers of 2. Only 45 lines are visible in this figure
since each of the three thick lines (located at 608
angles to each other) represents a degenerate group
of four Pascal lines, and six of the Pascal lines are
LINES AT INFINITY (Wells 1991).

The pattern for a general ellipse and hexagon (illu-
strated above) is much more complicated, and is
difficult to distinguish from a clutter of lines.
The 60 Pascal lines intersect three at a time through
20 STEINER POINTS (some of which are shown as the
filled circles in the above figures). In the symmetrical
case of the regular hexagon inscribed in a CIRCLE, the
20 Steiner points degenerate into seven distinct
points arranged at the vertices and center of a regular



hexagon centered at the origin of the circle. The 60
Pascal line also intersect three at a time in 60
KIRKMAN POINTS. Each Steiner point lines together
with three Kirkman points on a total of 20 CAYLEY

LINES. There is a dual relationship between the 60
Pascal lines and the 60 KIRKMAN POINTS.

See also CAYLEY LINES, HEPTAGON THEOREM, HEXA-

GON, KIRKMAN POINTS, PASCAL’S THEOREM, PLÜ CKER

LINES, SALMON POINTS, STEINER POINTS
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Pascal’s Formula
Each subsequent row of PASCAL’S TRIANGLE is ob-
tained by adding the two entries diagonally above.
This follows immediately from the BINOMIAL COEFFI-

CIENT identity

n
r

$ %
�

n!

(n � r)!r! 
�

(n � 1)!n

(n � r)!r!

�
(n � 1)!(n � r)

(n � r)!r!
�

(n � 1)!r

(n � r)!r!

�
(n � 1)!

(n � r � 1)!r! 
�

(n � 1)!

(n � r)!(r � 1)!

�
n �1

r

$ %
�

n �1
r �1

$ %
:

See also BINOMIAL COEFFICIENT, PASCAL’S TRIANGLE

Pascal’s Hexagrammum Mysticum
PASCAL’S THEOREM

Pascal’s Limaçon
LIMAÇ ON

Pascal’s Rule
PASCAL’S FORMULA

Pascal’s Theorem

The dual of BRIANCHON’S THEOREM (Casey 1888,
p. 146), discovered by B. Pascal in 1640 when he
was just 16 years old (Leibniz 1640; Wells 1986,
p. 69). It states that, given a (not necessarily REG-

ULAR, or even CONVEX) HEXAGON inscribed in a CONIC

SECTION, the three pairs of the continuations of
opposite sides meet on a straight LINE, called the
PASCAL LINE.

See also BRAIKENRIDGE-MACLAURIN CONSTRUCTION,
BRIANCHON’S THEOREM, CAYLEY-BACHARACH THEO-

REM, CONIC SECTION, DUALITY PRINCIPLE, HEXAGON,
PAPPUS’S HEXAGON THEOREM, PASCAL LINES, STEI-

NER POINTS, STEINER’S THEOREM
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Pascal’s Triangle
A TRIANGLE of numbers arranged in staggered rows
such that

anr�
n!

r!(n � r)!
�

n
r

$ %
; (1)

where n
rð Þ is a BINOMIAL COEFFICIENT. The triangle

was studied by B. Pascal, although it had been
described centuries earlier by Chinese mathemati-
cian Yanghui (about 500 years earlier, in fact) and the
Persian astronomer-poet Omar Khayyám. It is there-
fore known as the Yanghui triangle in China. Start-
ing with n�0, the TRIANGLE is

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

(Sloane’s A007318). PASCAL’S FORMULA shows that
each subsequent row is obtained by adding the two
entries diagonally above,

n
r

$ %
�

n!

(n � r)!r!
�

n�1
r

$ %
�

n�1
r�1

$ %
: (2)

In addition, the "SHALLOW DIAGONALS" of Pascal’s
triangle sum to FIBONACCI NUMBERS,

Xn

k�1

k
n�k

$ %

�
(�1)n

3F2 1; 2; 1 � n; 1
2(3 � n); 2 � 1

2 n; �4

 �

p 2 � 3n � n2ð Þ
�Fn�1; (3)

where/3F2ða; b; c; d; e; zÞ/ is a GENERALIZED HYPERGEO-

METRIC FUNCTION.

Pascal’s triangle contains the FIGURATE NUMBERS

along its diagonals. It can be shown that

Xn

i�1

aij�
n � 1

j � 1
anj�a(n�1);(j�1) (4)

and

m�1
1

$ %X
km�

m�1
2

$ %X
km�1

�. . .�
m�1

m

$ %X
k�(n�1) (n�1)m�1½ �: (5)

The "shallow diagonals" sum to the FIBONACCI SE-

QUENCE, i.e.,

1�1

1�1

2�1�1

3�2�1

5�1�3�1

8�3�4�1: (6)

In addition,

Xi

j�1

aij�2i�1: (7)

It is also true that the first number after the 1 in each
row divides all other numbers in that row IFF it is a
PRIME. If Pn is the number of ODD terms in the first n
rows of the Pascal triangle, then



0:812 . . . BPnn �ln 2 =ln 3 B1 (8)

(Harborth 1976, Le Lionnais 1983).

The BINOMIAL COEFFICIENT
m
n

� �
mod 2 can be com-

puted using the XOR operation n XOR m , making
Pascal’s triangle mod 2 very easy to construct.
Pascal’s triangle is unexpectedly connected with the
construction of regular POLYGONS and with the
SIERPINSKI SIEVE (Guy 1990).

Starting at row 210, the numbers

120 �
10
3

$ %
�

10
7

$ %
�

16
2

$ %
�

16
14

$ %
�

120
1

$ %

�
120
119

$ %
(9)

210 �
10
4

$ %
�

10
6

$ %
�

21
2

$ %
�

21
19

$ %
�

210
1

$ %

�
210
209

$ %
(10)

3003 �
14
6

$ %
�

14
8

$ %
�

15
5

$ %
�

15
10

$ %
�

78
2

$ %

�
78
76

$ %
(11)

have appeared six times, more than any other
number (excluding 1), and remain the most common
numbers in the triangle up to at least row 1436.

Guy (1990) gives another several unexpected proper-
ties of Pascal’s triangle.

See also BELL TRIANGLE, BINOMIAL COEFFICIENT,
BINOMIAL THEOREM, BRIANCHON’S THEOREM, CATA-

LAN’S TRIANGLE, CLARK’S TRIANGLE, EULER’S TRIAN-

GLE, FIBONACCI NUMBER, FIGURATE NUMBER

TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, LOSS-

NITSCH’S TRIANGLE, NUMBER TRIANGLE, PASCAL’S

FORMULA, POLYGON, SEIDEL-ENTRINGER-ARNOLD TRI-

ANGLE, SIERPINSKI SIEVE, TRINOMIAL TRIANGLE
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Pascal’s Wager
"God is or He is not...Let us weigh the gain and the
loss in choosing...‘God is.’ If you gain, you gain all, if
you lose, you lose nothing. Wager, then, unhesitat-
ingly, that He is."
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Pasch’s Axiom
In the plane, if a line intersects one side of a TRIANGLE

and misses the three VERTICES, then it must intersect
one of the other two sides. This is a special case of the
generalized MENELAUS’ THEOREM with n �3.

See also HELLY’S THEOREM, MENELAUS’ THEOREM,
PASCH’S THEOREM

Pasch’s Theorem
A theorem stated in 1882 which cannot be derived
from EUCLID’S POSTULATES. Given points a , b , c , and
d on a LINE, if it is known that the points are ordered
as (a ; b; c) and (b; c ; d) ; then it is also true that
(a; b; d) :/

See also EUCLID’S POSTULATES, LINE, PASCH’S AXIOM

Pass Equivalent
Two KNOTS are pass equivalent if there exists a
sequence of pass moves taking one to the other.
Every KNOT is either pass equivalent to the UNKNOT

or TREFOIL KNOT. These two knots are not pass
equivalent to each other, but the ENANTIOMERS of
the TREFOIL KNOT are pass equivalent. A KNOT has
ARF INVARIANT 0 if the KNOT is pass equivalent to the
UNKNOT and 1 if it is pass equivalent to the TREFOIL

KNOT.

See also ARF INVARIANT, KNOT, KNOT MOVE, PASS

MOVE, TREFOIL KNOT, UNKNOT
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Pass Move

A change in a knot projection such that a pair of
oppositely oriented strands are passed through an-
other pair of oppositely oriented strands.

See also KNOT MOVE, PASS EQUIVALENT
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Patch
A patch (also called a LOCAL SURFACE) is a differenti-
able mapping x : U 0 Rn ; where U is an open subset
of R2 : More generally, if A is any SUBSET of R2 ; then a
map x : A 0 Rn is a patch provided that x can be
extended to a differentiable map from U into Rn ;

where U is an open set containing A . Here, x(U) (or
more generally, x(A)) is called the TRACE of x.

See also GAUSS MAP, INJECTIVE PATCH, MONGE

PATCH, REGULAR PATCH, TRACE (MAP)
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Path
A path g is a continuous mapping g : [a; b] 	C; where
g(a) is the initial point and g(b) is the final point. It is
often written parametrically as s(t) :/

See also CHAIN (GRAPH), CONTOUR, CURVE, EULERIAN

CIRCUIT, GRAPH CYCLE, HAMILTONIAN CIRCUIT, UNI-

CURSAL CIRCUIT

Path Graph

The path Pn is a TREE with two nodes of VERTEX

DEGREE 1, and the other n �2 nodes of VERTEX

DEGREE 2. Path graphs Pn are always GRACEFUL for
n �4.

See also CHAIN (GRAPH), GRACEFUL GRAPH, HAMIL-

TONIAN PATH, TREE

Path Integral
Let g be a PATH given parametrically by s(t) : Let s
denote ARC LENGTH from the initial point. Then

g
g

f (s) ds �g
g

f ( s(t)) s?(t)j j dt

�g
g

f (x(t) ; y(t) ; z(t)) s?(t)j j dt:

See also LINE INTEGRAL
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Path Length
EXTERNAL PATH LENGTH, INTERNAL PATH LENGTH

Path-Connected

See also ARCWISE-CONNECTED, CONNECTED SET,
LOCALLY PATHWISE-CONNECTED, PATHWISE-CON-

NECTED

Path-Connected Set

See also ARCWISE-CONNECTED SET, CONNECTED SET

Pathwise-Connected
A TOPOLOGICAL SPACE X is pathwise-connected IFF for
every two points x; y 
X; there is a CONTINUOUS

FUNCTION f from [0,1] to X such that f (0)�x and
f (1)�y: Roughly speaking, a SPACE X is pathwise-
connected if, for every two points in X , there is a path



connecting them. For LOCALLY PATHWISE-CONNECTED

SPACES (which include most "interesting spaces" such
as MANIFOLDS and CW-COMPLEXES), being CON-

NECTED and being pathwise-connected are equiva-
lent, although there are connected spaces which are
not pathwise connected. Pathwise-connected spaces
are also called 0-connected.

See also CONNECTED SPACE, CW-COMPLEX, LOCALLY

PATHWISE-CONNECTED, PATH-CONNECTED, TOPOLOGI-

CAL SPACE

Patriarchal Cross
GAULLIST CROSS

Patterson Quadrature
GAUSS-KRONROD QUADRATURE

Pauli Matrices
Matrices which arise in Pauli’s treatment of spin in
quantum mechanics. They are defined by

s1 � sx �P1 � 
0 1
1 0

� �
(1)

s2 � sy �P2 �
0 i
�i 0

� �
(2)

s3 � sz �P3 � 
1 0
0 �1

� �
: (3)

The Pauli matrices plus the 2 �2 IDENTITY MATRIX I
form a complete set, so any 2 �2 matrix A can be
expressed as

A �c0I �c1 s1 �c2 s2 �c3 s3 : (4)

The associated matrices

s��2 
0 1
0 0

� �
(5)

s��2 
0 0
1 0

� �
(6)

s2 �3
1 0
0 1

� �
(7)

can also be defined. The Pauli spin matrices satisfy
the identities

si sj �Idij � eijki sk (8)

si sj � sj si �2sij (9)

sxpx � sypy � szpz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

x �p2
y �p2

z

q
: (10)

See also DIRAC MATRICES, QUATERNION
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Pauli Spin Matrices
PAULI MATRICES

Payoff Matrix
An m �n MATRIX which gives the possible outcome of
a two-person ZERO-SUM GAME when player A has m
possible moves and player B n moves. The analysis of
the MATRIX in order to determine optimal strategies is
the aim of GAME THEORY. The so-called "augmented"
payoff matrix is defined as follows:

G �

P0 P1 P2 . . .  Pn Pn�1 Pn �2 . . .  Pn �m

0 1 1 . . . 0  0  0 . . . 0
�1 a11 a12 . . .  a1n 1 0 . . . 0
�1 a21 a22 . . .  a2n 0 1 . . . 0
n n n ::: n n n ::: n

�1 am1 am2 . . .  amn 0 0 . . . 1

2
6666664

3
7777775:

See also GAME THEORY, ZERO-SUM GAME

P-Circle
SPIEKER CIRCLE

PC-Point
PEDAL-CEVIAN POINT

Peacock’s Tail
One name for the figure used by Euclid to prove the
PYTHAGOREAN THEOREM.

See also BRIDE’S CHAIR, WINDMILL

Peano Arithmetic
The theory of NATURAL NUMBERS defined by the five
PEANO’S AXIOMS. Paris and Harrington (1977) gave
the first "natural" example of a statement which is
true for the integers but unprovable in Peano arith-
metic (Spencer 1983).

See also KREISEL CONJECTURE, NATURAL INDEPEN-

DENCE PHENOMENON, NUMBER THEORY, PEANO’S

AXIOMS

References
Kirby, L. and Paris, J. "Accessible Independence Results for

Peano Arithmetic." Bull. London Math. Soc. 14, 285�/293,
1982.

Paris, J. and Harrington, L. "A Mathematical Incomplete-
ness in Peano Arithmetic." In Handbook of Mathematical
Logic (Ed. J. Barwise). Amsterdam, Netherlands: North-
Holland, pp. 1133�/1142, 1977.



Spencer, J. "Large Numbers and Unprovable Theorems."
Amer. Math. Monthly 90, 669 �/675, 1983.

Peano Curve

A FRACTAL curve which can be written as a LINDEN-

MAYER SYSTEM.

See also DRAGON CURVE, HILBERT CURVE, LINDEN-

MAYER SYSTEM, SIERPINSKI CURVE
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Peano Surface

The function

f (x; y) � 2x2 �y
� �

y �x2
� �

which does not have a LOCAL MAXIMUM at (0, 0),
despite criteria commonly touted in the second half of
the 1800s which indicated the contrary.

See also LOCAL MAXIMUM
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Peano-Gosper Curve

A PLANE-FILLING CURVE originally called a FLOWS-

NAKE by R. W. Gosper and M. Gardner. Mandelbrot
(1977) subsequently coined the name Peano-Gosper
curve. The GOSPER ISLAND bounds the space that the
Peano-Gosper curve fills.

See also DRAGON CURVE, EXTERIOR SNOWFLAKE,
GOSPER ISLAND, HILBERT CURVE, KOCH SNOWFLAKE,
PEANO CURVE, SIERPINSKI ARROWHEAD CURVE, SIER-

PINSKI CURVE
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Peano’s Axioms

1. Zero is a number.
2. If a is a number, the successor of a is a number.
3. ZERO is not the successor of a number.
4. Two numbers of which the successors are equal
are themselves equal.
5. (INDUCTION AXIOM.) If a set S of numbers
contains ZERO and also the successor of every
number in S , then every number is in S .

Peano’s axioms are the basis for the version of
NUMBER THEORY known as PEANO ARITHMETIC.

See also INDUCTION AXIOM, PEANO ARITHMETIC

Pear Curve

The LEMNISCATE L3 in the iteration towards the
MANDELBROT SET. In CARTESIAN COORDINATES with
a constant r , the equation is given by

r2� x2�y2
� �

(1�2x�5x2�6x3�6x4�4x5�x6

�3y2�2xy2�8x2y2�8x3y2�3x4y2�2y4

�4xy4�3x2y4�y6):



See also PEAR-SHAPED CURVE

Pearls of Sluze

ym �kxn(a �x)b :

The curves with integer n , b , and m were studied by
de Sluze between 1657 and 1698. The name "Pearls of
Sluze" was given to these curves by Blaise Pascal
(MacTutor Archive).
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Pear-Shaped Curve

A curve given by the Cartesian equation

b2y2 �x3(a �x) :

See also PEAR CURVE, TEARDROP CURVE
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Pearson Kurtosis
Let m4 be the fourth CENTRAL MOMENT of random
variable and m2 its second CENTRAL MOMENT (i.e., the
VARIANCE). Then the Pearson kurtosis is defined by

b2 �
m4

m2
2

:

See also CENTRAL MOMENT, FISHER KURTOSIS, KUR-

TOSIS

Pearson Mode Skewness
Given a STATISTICAL DISTRIBUTION with measured
MEAN, MODE, and STANDARD DEVIATION s , the Pearson
mode skewness is

mean � mode

s
:

See also MEAN, MODE, PEARSON SKEWNESS, PEAR-

SON’S SKEWNESS COEFFICIENTS, SKEWNESS

Pearson Skewness
Let a STATISTICAL DISTRIBUTION have third MOMENT

m3 and STANDARD DEVIATION s; then the Pearson
skewness is defined by

b1 �
m3

s3

 !2

:

See also FISHER SKEWNESS, PEARSON’S SKEWNESS

COEFFICIENTS, SKEWNESS

Pearson System
A system of equation types obtained by generalizing
the differential equation for the GAUSSIAN DISTRIBU-

TION

dy

dx
�

y(m � x)

a
; (1)

which has solution

y�Ce(2m�x)x=(2a); (2)

to

dy

dx
�

y(m � x)

a � bx � cx2
; (3)

which has solution

y�C a�bx�cx2
� ��1=(2c)

exp

(b � 2cm) tan�1 b � 2cxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
 !

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p

2
66664

3
77775: (4)

Let c1; c2 be the roots of a�bx�cx2: Then the possible
types of curves are



0. b�c�0; a �0. E.g., NORMAL DISTRIBUTION.
I. b2=4acB0; c15x5c2: E.g., BETA DISTRIBUTION.
II. b2=4ac�0; c B0, �c15x5c1 where
c1�

ffiffiffiffiffiffiffiffiffiffiffi
�c=a

p
:/

III. b2=4ac��; c�0, c15xB� where c1��a=b:
E.g., GAMMA DISTRIBUTION. This case is intermedi-
ate to cases I and VI.
IV. 0Bb2=4acB1;��BxB�:/
V. b2=4ac�1; c15xB� where c1��b=2a: Inter-
mediate to cases IV and VI.
VI. b2=4ac > 1; c15xB� where c1 is the larger
root. E.g., BETA PRIME DISTRIBUTION.
VII. b2=4ac�0; c �0,��BxB�: E.g., STUDENT’S

T -DISTRIBUTION.

Classes IX-XII are discussed in Pearson (1916). See
also Craig (in Kenney and Keeping 1951).

If a Pearson curve possesses a MODE, it will be at
x�m . Let y(x)�0 at c1 and c2; where these may be
�� or �: If yxr�2 also vanishes at c1; c2; then the rth
MOMENT and (r�1)/th MOMENTS exist.

g
c2

c1

dy

dx
axr�bxr�1�cxr�2
� �

dx

�g
c2

c1

y mxr�xr�1
� �

dx; (5)

giving

y axr�bxr�1�cxr�2
� �� �c2

c1
�g

c2

c1

y arxr�1�b(r�1)xr
�

�c(r�2)xr�1� dx

¼ g
c2

c1

y(mxr�xr�1) dx (6)

0�g
c2

c1

y arxr�1�b(r�1)xr�c(r�2)xr�1
� �

dx

�g
c2

c1

y mxr�xr�1
� �

dx: (7)

Now define the raw rth moment by

nr�g
c2

c1

yxr dx; (8)

so combining (7) with (8) gives

arnr�1�b(r�1)nr�c(r�2)nr�1��mnr�nr�1: (9)

For r�0,

b�2cn1��m�n1; (10)

so

n1�
m � b

1 � 2c
; (11)

and for r�1,

a�2bn1�3cn2��mn1�n2; (12)

so

n2�
a � (m � 2b)n1

1 � 3c
: (13)

Combining (11), (13), and the definitions

n1�0 (14)

n2�m2�1 (15)

obtained by letting t� x�n1ð Þ=s and solving simulta-
neously gives b��m and a�1�3c: Writing

ar�mr�nr (16)

then allows the general recurrence to be written

(1�3c)rar�1�mrar�[c(r�2)�1]ar�1�0: (17)

For the special cases r�2 and r�3, this gives

2m�(1�4c)a3�0: (18)

3(1�3c)�3ma3�(1�5c)a4�0; (19)

so the SKEWNESS and KURTOSIS are

g1�a3�
2m

4c � 1
(20)

g2�a4�3�
6 m2 � 4c2 � cð Þ
(4c � 1)(5c � 1)

: (21)

The parameters a , b , and c can therefore be written

a�1�3c (22)

b��m�
g1

2(1 � 2d)
(23)

c�
d

2(1 � 2d)
; (24)

where

d�
2g2 � 3g2

1

g2 � 6
: (25)
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Pearson Type III Distribution
A skewed distribution which is similar to the BINO-

MIAL DISTRIBUTION when p"q (Abramowitz and Ste-
gun 1972, p. 930).



y �k(t �A)A2�1e �At ; (1)

for t 
 0 ; �½ Þ where

A �2 =g (2)

K �
AA2 

e �A2

G A2ð Þ
; (3)

/G(z) is the GAMMA FUNCTION, and t is a standardized
variate. Another form is

P(x) �
1

bG(p)

x � a

b

 !p �1

exp �
x � a

b

 !
: (4)

For this distribution, the CHARACTERISTIC FUNCTION

is

f(t) �eiat(1 �i bt)�p ; (5)

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS

are

m � a �p b (6)

s2 �p b2 (7)

g1 �
2ffiffiffi
p

p (8)

g2 �
6

p 
: (9)

See also PEARSON TYPE IV DISTRIBUTION
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Pearson Type IV Distribution

See also PEARSON TYPE III DISTRIBUTION
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Pearson-Cunningham Function
CUNNINGHAM FUNCTION

Pearson’s Correlation
CORRELATION COEFFICIENT

Pearson’s Function

I
X2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(k � 1)

p ;
k � 3

2

 !
�

G 1
2 x

2
s ;

k � 1

2

 !

G
k � 1

2

 ! ;

where G(x) is the GAMMA FUNCTION.

See also CHI-SQUARED TEST, GAMMA FUNCTION

Pearson’s Skewness Coefficients
Given a STATISTICAL DISTRIBUTION with measured
MEAN, MEDIAN, MODE, and STANDARD DEVIATION s ,
Pearson’s first skewness coefficient is

3[mean] � [mode]

s
;

and the second coefficient is

3[mean] � [median]

s 
:

See also FISHER SKEWNESS, PEARSON SKEWNESS,
SKEWNESS
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Peaucellier Cell
PEAUCELLIER INVERSOR

Peaucellier Inversor

A LINKAGE with six rods which draws the inverse of a
given curve. When a pencil is placed at P , the inverse
is drawn at P? (or vice versa). If a seventh rod
(dashed) is added (with an additional pivot), P is
kept on a circle and the locus traced out by P? is a
straight line. It therefore converts circular motion to
linear motion without sliding, and was discovered in
1864. Another LINKAGE which performs this feat
using hinged squares had been published by Sarrus



in 1853 but ignored. Coxeter (1969, p. 428) shows that

OP �OP?�OA2 �PA2 :

See also HART’S INVERSOR, KEMPE LINKAGE, LINKAGE

References
Bogomolny, A. "Peaucellier Linkage." http://www.cut-the-

knot.com/pythagoras/invert.html.
Courant, R. and Robbins, H. What is Mathematics?: An

Elementary Approach to Ideas and Methods. Oxford,
England: Oxford University Press, p. 156, 1978.

Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New
York: Wiley, pp. 82 �/83, 1969.

Durell, C. V. Modern Geometry: The Straight Line and
Circle. London: Macmillan, p. 117, 1928.

Ogilvy, C. S. Excursions in Geometry. New York: Dover,
pp. 46 �/48, 1990.

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathe-
matics: Selections from Mathematics for the Amateur.
Princeton, NJ: Princeton University Press, pp. 121 �/126,
1957.

Sarrus. Comptes Rendus de l’Académie de Paris 36, 1036,
1853.

Smith, D. E. A Source Book in Mathematics. New York:
Dover, p. 324, 1994.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York:
Dover, p. 139, 1999.

Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, pp. 120 and 181 �/182, 1991.

Peaucellier’s Linkage
PEAUCELLIER INVERSOR

Pedal
PEDAL CURVE

Pedal-Cevian Point
If the PEDAL TRIANGLE of a point P in a TRIANGLE

DABC is a CEVIAN TRIANGLE, then the point P is
called the pedal-cevian point of DABC with respect to
the PEDAL TRIANGLE.

The CIRCUMCENTER O , ORTHOCENTER H , and INCEN-

TER I of a triangle DA1A2A3 are always pedal-Cevian
points, with corresponding pedal triangles given by
the MEDIAL TRIANGLE DM1M2M3 ; ORTHIC TRIANGLE

DH1H2H3 ; and CONTACT TRIANGLE DT1T2T3 ; respec-
tively, and PEDAL POINTS the CENTROID G , ORTHO-

CENTER H , and GERGONNE POINT Ge; respectively
(Honsberger 1995, p. 142). If P is a pedal-Cevian
point of a triangle, then so is its ISOTOMIC CONJUGATE

POINT Q , as is its reflection P? in the CIRCUMCENTER

(Honsberger 1995, p. 143).

See also CEVIAN, CEVIAN TRIANGLE, PEDAL POINT,
PEDAL TRIANGLE
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Pedal Circle

The pedal circle with respect to a PEDAL POINT P of a
TRIANGLE DA1A2A3 is the CIRCUMCIRCLE of the PEDAL

TRIANGLE DP1P2P3 with respect to P . Amazingly, the
vertices of the PEDAL TRIANGLE DQ1Q2Q3 of the
ISOGONAL CONJUGATE point Q of P also lie on the
same circle (Honsberger 1995). If the PEDAL POINT is
taken as the INCENTER, the pedal circle is given by the
INCIRCLE.
The radius of the pedal circle of a point P is

r �
A1P � A2P � A3P

2 R2 � OP
2


 �
(Johnson 1929, p. 141).

When P is on a side of the TRIANGLE, the line between
the two perpendiculars is called the PEDAL LINE.
Given four points, no three of which are COLLINEAR,
then the four PEDAL CIRCLES of each point for the
TRIANGLE formed by the other three have a common
point through which the NINE-POINT CIRCLES of the
four TRIANGLES pass.

See also FONTENÉ THEOREMS, GRIFFITHS’ THEOREM,
MIQUEL POINT, NINE-POINT CIRCLE, PEDAL LINE,
PEDAL TRIANGLE
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Pedal Coordinates
The pedal coordinates of a point P with respect to the
curve C and the PEDAL POINT O are the radial



distance r from O to P and the PERPENDICULAR

distance p from O to the line L tangent to C at P .

See also PEDAL CURVE, PEDAL POINT
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Pedal Curve

The pedal of a curve C with respect to a point O is the
LOCUS of the foot of the PERPENDICULAR from P to the
TANGENT to the curve. More precisely, given a curve
C , the pedal curve P of C with respect to a fixed point
O (called the PEDAL POINT) is the locus of the point P
of intersection of the PERPENDICULAR from O to a
TANGENT to C . The parametric equations for a curve
(f (t) ; g(t)) relative to the PEDAL POINT (x0 ; y0) are
given by

x �
x0f ?2 � fg ?2 � y0 � gð Þf ?g?

f ?2 þ g ?2

y �
gf ?2 � y0g ?2 � x0 � fð Þf ?g ?

f ?2 � g ?22 
:

When a CLOSED CURVE rolls on a straight line, the
AREA between the line and ROULETTE after a complete
revolution by any point on the curve is twice the AREA

of the pedal curve (taken with respect to the generat-
ing point) of the rolling curve.
The following table gives the pedal curves for a
number of common special curves.

Curve PEDAL POINT Pedal Curve

ASTROID center QUADRIFOLIUM

CARDIOID cusp CAYLEY’S

SEXTIC

CIRCLE any point LIMAÇ ON

CIRCLE on CIRCUMFER-

ENCE

CARDIOID

CIRCLE

INVOLUTE

center of CIRCLE ARCHIMEDEAN

SPIRAL

CISSOID OF

DIOCLES

FOCUS CARDIOID

DELTOID center TRIFOLIUM

DELTOID cusp simple FOLIUM

DELTOID on curve unsymmetric
double folium

DELTOID vertex double folium

ELLIPSE FOCUS CIRCLE

EPICYCLOID center ROSE

HYPERBOLA center LEMNISCATE

HYPERBOLA FOCUS CIRCLE

HYPOCYCLOID center ROSE

LINE any point point

LOGARITHMIC

SPIRAL

pole LOGARITHMIC

SPIRAL

PARABOLA FOCUS LINE

PARABOLA foot of
DIRECTRIX

RIGHT

STROPHOID

PARABOLA on DIRECTRIX STROPHOID

PARABOLA reflection of
FOCUS by
DIRECTRIX

MACLAURIN

TRISECTRIX

PARABOLA vertex CISSOID OF

DIOCLES

SINUSOIDAL

SPIRAL

pole SINUSOIDAL

SPIRAL

TSCHIRNHAUSEN

CUBIC

center PARABOLA

See also NEGATIVE PEDAL CURVE
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Pedal Line
Mark a point P on a side of a TRIANGLE and draw the
perpendiculars from the point to the two other sides.



The line between the feet of these two perpendiculars
is called the pedal line.

See also PEDAL TRIANGLE, SIMSON LINE

Pedal Point

The fixed point with respect to which a PEDAL CURVE

or PEDAL TRIANGLE is drawn.

See also PEDAL-CEVIAN POINT, PEDAL CURVE, PEDAL

TRIANGLE

References
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

New York: Random House, p. 22, 1967.

Pedal Triangle

Given a point P , the pedal triangle of P is the
TRIANGLE whose VERTICES are the feet of the perpen-
diculars from P to the side lines. The pedal triangle of
a TRIANGLE with TRILINEAR COORDINATES a : b : g and
angles A , B , and C has VERTICES with TRILINEAR

COORDINATES

0 : b � a cos C : g � a cos B (1)

a � b cos C : 0 : g � b cos A (2)

a � g cos B : b � g cos A : 0: (3)

The SYMMEDIAN POINT of a triangle is the CENTROID of
its pedal triangle (Honsberger 1995, pp. 72 �/74).
The third pedal triangle is similar to the original one.
This theorem can be generalized to: the nth pedal n -
gon of any n -gon is similar to the original one. It is
also true that

P2P3 �A1P sin a1 (4)

(Johnson 1929, pp. 135 �/136; Stewart 1940; Coxeter
and Greitzer 1967, p. 25). The AREA A of the pedal
triangle of a point P is proportional to the POWER of P
with respect to the CIRCUMCIRCLE,

A �1
2 R2 �OP

2

 �

sin a1 sin a2 sin a3

�
R2 � OP

2

4R2
D (5)

(Johnson 1929, pp. 139 �/141).

The only closed BILLIARDS path of a single circuit in
an ACUTE TRIANGLE is the pedal triangle. There are
an infinite number of multiple-circuit paths, but all
segments are parallel to the sides of the pedal
triangle (Wells 1991).

See also ANTIPEDAL TRIANGLE, FAGNANO’S PROBLEM,
ORTHIC TRIANGLE, PEDAL CIRCLE, PEDAL LINE
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Peg

The answer to the question "which fits better, a round
peg in a square hole, or a square peg in a round hole?"
can be interpreted as asking which is larger, the ratio
of the AREA of a CIRCLE to its circumscribed SQUARE,
or the AREA of the SQUARE to its circumscribed
CIRCLE? In 2-D, the ratios are p=4 and 2=p; respec-
tively. Therefore, a round peg fits better into a square
hole than a square peg fits into a round hole (Wells



1986, p. 74).

However, this result is true only in dimensions n B9,
and for n ]9; the unit n -hypersphere fits more closely
into the 9-hypercube than vice versa (Singmaster;
Wells 1986, p. 74). This can be demonstrated by
noting that the formulas for the content V(n) of the
unit n -ball, the content Vc(n) of its circumscribed
HYPERCUBE, and the content Vi(n) of its inscribed
HYPERCUBE are given by

V(n) �
pn=2

G 1
2 n � 1

 � (1)

Vc(n) �2n (2)

Vi(n) �
2n

nn=2 
: (3)

The ratios in question are then

Rround peg �
V(n)

Vc(n) 
�

pn=2

2n G 1
2 n � 1

 � (4)

Rsquare peg �
Vi(n)

Vc(n) 
�

2 G 1
2 n � 1

 �
nn=2nn=2 

(5)

(Singmaster 1964). As illustrated above, Rround B

Rsquare only for n B9, with equality at n :8 :13785 :/

See also HOLE, HYPERSPHERE PACKING, PEG SOLI-

TAIRE
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Peg Knot
CLOVE HITCH

Peg Solitaire

A game played on a cross-shaped board with 33 holes.
All holes but the middle one are initially filled with
pegs. The goal is to remove all pegs but one by
jumping pegs from one side of an occupied peg hole to
an empty space, removing the peg which was jumped
over. Strategies and symmetries are discussed by
Gosper et al. (1972). Berlekamp et al. (1982) give a
complete solution of the puzzle.
A triangular version called HI-Q also exists (Beeler et
al. 1972, Item 76). Kraitchik (1942) considers a board
with one additional hole placed at the vertices of the
central right angles.

See also HI-Q
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Peg Top
PIRIFORM

Peirce Decomposition
Let A be a finite-dimensional power-associative alge-
bra, then A is the vector space DIRECT SUM

A�A11�A10�A01�A00;

where Aij; with i; j�0; 1 is the subspace of A defined
by

Aij�fxij : exij�ixij; xije�jxijg

for i; j�0; 1; where e is an idempotent.
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Peirce’s Theorem
The only linear associative algebra in which the
coordinates are REAL NUMBERS and products vanish
only if one factor is zero are the FIELD of REAL

NUMBERS, the FIELD of COMPLEX NUMBERS, and the
algebra of QUATERNIONS with REAL COEFFICIENTS.

See also COMPLEX NUMBER, QUATERNION, REAL

NUMBER, WEIERSTRASS’S THEOREM
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p-Element
SEMISIMPLE ELEMENT

p-Elementary Subgroup
A p -elementary subgroup of a FINITE GROUP G is a
SUBGROUP H which is the GROUP DIRECT PRODUCT

H �Cn �P ;

where P is a P -GROUP, Cn is a cyclic group, and p does
not divide n .

See also GROUP, GROUP DIRECT PRODUCT, INDUCED

REPRESENTATION, P -GROUP

Pell Equation
A special case of the quadratic DIOPHANTINE EQUA-

TION having the form

x2�Dy2�1; (1)

where D �0 is a nonsquare NATURAL NUMBER (Dick-
son 1952). The equation

x2�Dy2�94 (2)

arising in the computation of FUNDAMENTAL UNITS is
sometimes also called the Pell equation (Dörrie 1965,
Itô 1987), and Dörrie calls the positive form of (2) the
FERMAT DIFFERENCE EQUATION. While Fermat de-
serves credit for being the first to extensively study
the equation, the erroneous attribution to Pell was
perpetrated by none other than Euler himself (Nagell
1951, p. 197; Dickson 1957, p. 341; Burton 1989). The
Pell equation was also solved by the Indian mathe-
matician Bhaskara. Pell equations are extremely
important in NUMBER THEORY, and arise in the
investigation of numbers which are FIGURATE in
more than one way, for example, simultaneously
square and triangular.

The equation has an obvious generalization to the
Pell-like equation

ax29by2�c; (3)

as well as the general second-order bivariate Dio-
phantine equation

ax2�bxy�cy2�dx�ey�f �0: (4)

However, several different technique are required to
solve this equation for arbitrary values of a , b , and c .
In a future release of Mathematica , the command
Reduce will find solutions to the general equation (4),
when they exist.

Pell equations OF THE FORM (1), as well as certain
cases of the analogous equation with a minus sign on
the right,

x2�Dy2��1; (5)

can be solved by finding the CONTINUED FRACTION

a0; a1; . . .½ � of
ffiffiffiffi
D

p
: Note that although the equation

(5) is solvable for only certain values of D , the
continued fraction technique provides solutions
when they exist, and always in the case of (1), for
which a solution always exists. A necessary condition
that (5) be solvable is that all odd prime factors of D
be OF THE FORM 4n�1; and that D cannot be DOUBLY

EVEN (i.e., divisible by 4). However, these conditions
are not SUFFICIENT for a solution to exist, as demon-
strated by the equation x2�34y2��1; which has no
solutions in integers (Nagell 1951, pp. 201 and 204).

In all subsequent discussion, ignore the trivial solu-
tion x�1, y�0. Let pn=qn denote the nth CONVER-

GENT a0; a1; . . . ; an½ �; then we will have solved (1) or
(5) if we can find a CONVERGENT which obeys the
identity

p2
n�Dq2

n�(�1)n�1: (6)

Amazingly, this turns out to always be possible as a
result of the fact that the CONTINUED FRACTION of a
QUADRATIC SURD always becomes periodic at some
term ar�1; where ar�1�2a0; i.e.,ffiffiffiffi

D
p

� a0; a1; . . . ; ar; 2a0

� �
: (7)

To compute the CONTINUED FRACTION convergents toffiffiffiffi
D

p
; use the usual RECURRENCE RELATIONS

a0�
ffiffiffiffi
D

pj k
p0�a0 (8)

p1�a0a1�1 (9)

pn�anpn�1�pn�2 (10)

q0�1 (11)

q1�a1 (12)



qn�anqn�1�qn�2; (13)

where xb c is the FLOOR FUNCTION. For reasons to be
explained shortly, also compute the two additional
quantities Pn and Qn defined by

P0�0 (14)

P1�a0 (15)

Pn�an�1Qn�1�Pn�1 (16)

Q0�1 (17)

Q1�D�a2
0 (18)

Qn�
D � P2

n

Qn�1

(19)

an�
a0 � Pn

Qn

$ %
: (20)

Now, two important identities satisfied by CONTINUED

FRACTION convergents are

pnqn�1�pn�1qn�(�1)n�1 (21)

p2
n�Dq2

n�(�1)n�1Qn�1 (22)

(Beiler 1966, p. 262), so both linear

ax�by�91 (23)

and quadratic

x2�Dy2�9c (24)

equations are solved simply by finding an appropriate
continued fraction.

Let ar�1�2a0 be the term at which the continued
fraction becomes periodic (which will always happen
for a quadratic surd). For the Pell equation

x2�Dy2�1 (25)

with r ODD, (�1)r�1 is POSITIVE and the solution in
terms of smallest INTEGERS is x�pr and y�qr; where
pr=qr is the r th CONVERGENT. If r is EVEN, then
(�1)r�1 is NEGATIVE, but

p2
2r�1�Dq2

2r�1�1; (26)

so the solution in smallest INTEGERS is x�p2r�1; y�
q2r�1: Summarizing,

(x; y)�
pr; qrð Þ for r odd
p2r�1; p2r�1

� �
for r even:

"
(27)

The equation

x2�Dy2��1 (28)

can be solved analogously to the equation with�1 on
the right side IFF r is EVEN, but has no solution if r is
odd,

(x; y)�
pr; qrð Þ for r even

no solution for r odd:

"
(29)

Given one solution (x; y)�(p; q) (which can be found
as above), a whole family of solutions can be found by
taking each side to the nth POWER,

x2�Dy2� p2�Dq2
� �n

�1: (30)

Factoring gives

x�
ffiffiffiffi
D

p
y


 �
x�

ffiffiffiffi
D

p
y


 �
� p�

ffiffiffiffi
D

p
q


 �n

p�
ffiffiffiffi
D

p
q


 �n

(31)

and

x�
ffiffiffiffi
D

p
y� p�

ffiffiffiffi
D

p
q


 �n

(32)

x�
ffiffiffiffi
D

p
y� p�

ffiffiffiffi
D

p
q


 �n

; (33)

which gives the family of solutions

x�
p � q

ffiffiffiffi
D

p
 �n

� p � q
ffiffiffiffi
D

p
 �n

2
(34)

y�
p � q

ffiffiffiffi
D

p
 �n

� p � q
ffiffiffiffi
D

p
 �n

2
ffiffiffiffi
D

p : (35)

These solutions also hold for

x2�Dy2��1; (36)

except that n can take on only ODD values.

The following table gives the smallest integer solu-
tions (x, y ) to the Pell equation with constant D5102
(Beiler 1966, p. 254). SQUARE D�d2 are not included,
since they would result in an equation OF THE FORM

x2�d2y2�x2�(dy)2�x2�y?2�1; (37)

which has no solutions (since the difference of two
SQUARES cannot be 1).

D x y D x y

2 3 2 54 485 66

3 2 1 55 89 12

5 9 4 56 15 2

6 5 2 57 151 20

7 8 3 58 19603 2574

8 3 1 59 530 69

10 19 6 60 31 4

11 10 3 61 1766319049 226153980



12 7 2 62 63 8

13 649 180 63 8 1

14 15 4 65 129 16

15 4 1 66 65 8

17 33 8 67 48842 5967

18 17 4 68 33 4

19 170 39 69 7775 936

20 9 2 70 251 30

21 55 12 71 3480 413

22 197 42 72 17 2

23 24 5 73 2281249 267000

24 5 1 74 3699 430

26 51 10 75 26 3

27 26 5 76 57799 6630

28 127 24 77 351 40

29 9801 1820 78 53 6

30 11 2 79 80 9

31 1520 273 80 9 1

32 17 3 82 163 18

33 23 4 83 82 9

34 35 6 84 55 6

35 6 1 85 285769 30996

37 73 12 86 10405 1122

38 37 6 87 28 3

39 25 4 88 197 21

40 19 3 89 500001 53000

41 2049 320 90 19 2

42 13 2 91 1574 165

43 3482 531 92 1151 120

44 199 30 93 12151 1260

45 161 24 94 2143295 221064

46 24335 3588 95 39 4

47 48 7 96 49 5

48 7 1 97 62809633 6377352

50 99 14 98 99 10

51 50 7 99 10 1

52 649 90 101 201 20

53 66249 9100 102 101 10

The first few minimal values of x and y for nonsquare
D are 3, 2, 9, 5, 8, 3, 19, 10, 7, 649, ... (Sloane’s
A033313) and 2, 1, 4, 2, 3, 1, 6, 3, 2, 180, ... (Sloane’s
A033317), respectively. The values of D having x�2,
3, ... are 3, 2, 15, 6, 35, 12, 7, 5, 11, 30, ... (Sloane’s
A033314) and the values of D having y�1, 2, ... are 3,
2, 7, 5, 23, 10, 47, 17, 79, 26, ... (Sloane’s A033318).
Values of the incrementally largest minimal x are 3,
9, 19, 649, 9801, 24335, 66249, ... (Sloane’s A033315)
which occur at D�2, 5, 10, 13, 29, 46, 53, 61, 109,
181, ... (Sloane’s A033316). Values of the incremen-
tally largest minimal y are 2, 4, 6, 180, 1820, 3588,
9100, 226153980, ... (Sloane’s A033319), which occur
at D�2, 5, 10, 13, 29, 46, 53, 61, ... (Sloane’s
A033320).

The more complicated Pell-like equation

x2�Dy2�c (38)

with cj jB
ffiffiffiffi
D

p
has solution IFF c is one of the values

(�1)kQk for k�1, 2, ..., r computed in the process of
finding the convergents to

ffiffiffiffi
D

p
(where, as above,

ar�1�2a0 is the term at which the continued fraction
becomes periodic). If cj j >

ffiffiffiffi
D

p
; the procedure is sig-

nificantly more complicated (Beiler 1966, p. 265;
Dickson 1992, pp. 387�/388) and is discussed by
Gérardin (1910) and Chrystal (1961).

Regardless of how it is found, if a single solution
x�p , y�q to (38) is known, other solutions can be
found. Let p and q be solutions to (38), and r and s
solutions to the "unit" form

x2�Dy2�1: (39)

Then the identity

p2�Dq2
� �

r2�Ds2
� �

�(pr9Dqs)2�D(ps9qr)2

�c (40)

allows larger solutions (x; y)�(pr9Dqs; ps9qr) to
the c equation to be found by using incrementally
larger values of the (r, s ), which can be easily
computed using the standard technique for the Pell
equation. Such a family of solutions does not neces-
sarily generate all solutions, however. For example,
the equation

x2�10y2�9 (41)

has three distinct sets of fundamental solutions,
(x; y)�(7; 2); (13, 4), and (57, 18). Using (40), these
generate the solutions shown in the following table,
from which the set of all solutions (7, 2), (13, 4), (57,
18), (253, 80), (487, 154), (2163, 684), (9607, 3038), ...
can be generated.



fundamental generated solutions

(7, 2) (253, 80), (9607, 3038), (364813,
115364), (13853287, 4380794), ...

(13, 4) (487, 154), (18493, 5848), (702247,
222070), (26666893, 8432812), ...

(57, 18) (2163, 684), (82137, 25974),
(3119043, 986328), (118441497,
37454490), ...

The case

ax2 �by2 �c (42)

can be reduced to the one above by multiplying
through by a ,

(ax)2 �(ab)y2 �ac; (43)

finding solutions in (x ?�ax ; y) ; and then selecting
those for which x?=a is an integer.

According to Dickson (1992, pp. 408 and 411), the
equation

ax2 �by2 �c (44)

with a ; b; c > 0; which has either no solutions or a
finite number of solutions, was solved by Gauss
(1863) using the METHOD OF EXCLUSIONS and con-
sidered by Euler (1773) and Nasimoff (1885),
although Euler’s methods were incomplete (Dickson
1992, p. 378; Smith 1965). According to Itô (1987),
this equation can be solved completely using solutions
to Pell’s equation. Nasimoff (1885) applied Jacobi
elliptic functions to express the number of solutions of
this equation for a, c ODD (Dickson 1992, p. 411).
Additional discussion including the connection with
elliptic functions is given in Dickson (1992, pp. 387 �/

391).

The special case of a �1 and c prime was solved by
Cornacchia (Cornacchia 1908, Cox 1989, Wagon
1990). Solution for a �1, b ]1; and odd c is imple-
mented in Mathematica as QuadraticRepresen-
tation[b , c ] in the Mathematica add-on pack-
age NumberTheory‘NumberTheoryFunctions‘
(which can be loaded with the command
BBNumberTheory‘). A deterministic algorithm
for finding all primitive solutions to (44) for a ; b; c >
0 fixed relatively prime integers, c ]a �b �1 ; and
(c ; ab) �1 was given by Hardy et al. (1990). This
algorithm generalizes those of Hermite (1848), Ser-
ret (1848), Brillhart (1972), Cornacchia (1908),
and Wilker (1980). It requires factorization of c ,
and has worst case running time of
O c1=4(ln c)3(ln ln c))(ln ln ln c

 �

; independent of a
and b .

See also BINARY QUADRATIC FORM, DIOPHANTINE

EQUATION, DIOPHANTINE EQUATION–2ND POWERS,
FUNDAMENTAL UNIT, HILBERT SYMBOL, LAGRANGE

NUMBER (DIOPHANTINE EQUATION), MONOMORPH,
POLYMORPH
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Pell-Lucas Number
PELL NUMBER

Pell-Lucas Polynomial
PELL POLYNOMIAL

Pell Number
The numbers obtained by the Un/s in the LUCAS

SEQUENCE with P �2 and Q ��1. They and the
Pell-Lucas numbers (the Vn/s in the LUCAS SEQUENCE)
satisfy the RECURRENCE RELATION

Pn �2Pn�1 �Pn�2 : (1)

Using Pi to denote a Pell number and Qi to denote a
Pell-Lucas number,

Pm�n �PmPn�1 �Pm�1Pn (2)

Pm�n �2PmQn �(�1)nPm�n ; (3)

P2tm �Pm(2Qm)(2Q2m)(2Q4m) � � �  2Q2t�1mð Þ (4)

Q2
m �2P2

m �(�1)m (5)

Q2m �2Q2
m �(�1)m : (6)

The Pell numbers have P0 �0 and P1 �1 and are 0, 1,
2, 5, 12, 29, 70, 169, 408, 985, 2378, ... (Sloane’s
A000129). The Pell-Lucas numbers have Q0 �2 and
Q1 �2 and are 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786,
6726, ... (Sloane’s A002203).

The only TRIANGULAR Pell number is 1 (McDaniel
1996).

See also BRAHMAGUPTA POLYNOMIAL, PELL POLYNO-

MIAL
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Pell Polynomial
The Pell polynomials P(x) and Lucas-Pell polynomials
Q(x) are generated by a LUCAS POLYNOMIAL SE-

QUENCE using generator (2x; 1): This gives recursive
equations for P(x) from P0(x) �P1(x) �1 and

Pn�2(x) �2xPn�1(x) �Pn(x) : (1)

The first few are

P1 �1

P2 �2x

P3 �4x2 �1

P4 �8x3 �4x

P5 �16x4 �12x2 �1 :

The Pell-Lucas numbers are defined recursively by
q0(x) �1; q1(x) �x and

qn�2(x) �2xqn �1(x) �qn(x); (2)

together with

Qn(x) �2qn(x) : (3)

The first few are

Q1 �2x

Q2 �4x2 �2

Q3 �8x3 �6x

Q4�16x4�16x2�2

Q5�32x5�40x3�10x:

See also LUCAS POLYNOMIAL SEQUENCE
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Pell Sequence
PELL NUMBER



Pencil

The set of all LINES through a point. The term was
first used by Desargues (Cremona 1960, p. x). The six
angles of any pencils of four rays OfABCD g are
connected by the relation

sin BOC sin AOD �sin COA sin BOD

�sin AOB sin COD �0

and the lengths satisfy

BC � AD �CA � BD �AB � CD �0

(Lachlan 1893).
Woods (1961) uses the term pencil as a synonym for
RANGE, and Altshiller-Court (1979, p. 12) uses the
term to mean SHEAF OF PLANES.

See also NEAR-PENCIL, PERSPECTIVITY, RANGE (LINE

SEGMENT), SECTION (PENCIL), SHEAF OF PLANES
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Pencil of Coaxal Circles
COAXAL CIRCLES

Pencil of Planes
SHEAF OF PLANES

Peninsula Surface

A QUINTIC SURFACE given by the equation

x2 �y3 �z5 �1:

See also QUINTIC SURFACE

Penrose Stairway

An IMPOSSIBLE FIGURE (also called the SCHROEDER

STAIRS) in which a stairway in the shape of a square
appears to circulate indefinitely while still possessing
normal steps. The Dutch artist M. C. Escher included
Penrose stairways in many of his mind-bending
illustrations.

See also IMPOSSIBLE FIGURE
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Penrose Tiles

A pair of shapes which tile the plane only aperiodi-
cally (when the markings are constrained to match at
borders). The two tiles, illustrated above, are called
the "KITE" and "DART."

To see how the plane may be tiled aperiodically using
the kite and dart, divide the kite into acute and
obtuse tiles, shown above. Now define "deflation" and
"inflation" operations. The deflation operator takes an
acute TRIANGLE to the union of two ACUTE TRIANGLES

and one OBTUSE, and the OBTUSE TRIANGLE goes to an
ACUTE and an OBTUSE TRIANGLE. These operations are
illustrated below.

When applied to a collection of tiles, the deflation
operator leads to a more refined collection. The
operators do not respect tile boundaries, but do
respect the half tiles defined above. There are two
ways to obtain aperiodic TILINGS with 5-fold symme-
try about a single point. they are known an the "star"
and "sun" configurations, and are show below.

Higher order versions can then be obtained by
deflation. For example, the following are third-order
deflations:
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Penrose Triangle
TRIBAR

Penrose Tribar
TRIBAR

Pentabolo
A 5-POLYABOLO.

Pentacle
PENTAGRAM

Pentacontagon
A 50-sided POLYGON.

Pentacube
This entry contributed by RONALD M. AARTS

A POLYCUBE composed of 5 cubes. There are 29
distinct three-dimensional pentacubes (Bouwkamp
1981). Of these, the 12 planar pentacubes (corre-
sponding to solid pentominoes), are well known.
Among the nonplanar pentacubes, there are five
that have at least one plane of symmetry; each of
them is its own mirror image. The remaining 12
pentacubes come in mirror image pairs.

See also POLYCUBE
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Pentad
A group of five elements.

See also MONAD, PAIR, QUADRUPLET, QUINTUPLET,
TETRAD, TRIAD, TRIPLET, TWINS

Pentadecagon

A 15-sided POLYGON, sometimes also called the
PENTAKAIDECAGON. For a regular pentadecagon with
side length 1, the INRADIUS r , CIRCUMRADIUS R , and
AREA A are

r �
1

2

ffiffiffiffiffiffi
3�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq$ %

R �
1

4

ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
�

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pq$ %

A �
15

8

ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p
�

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�

ffiffiffi
5

pq$ %
:

See also POLYGON, REGULAR POLYGON, TRIGONOME-

TRY VALUES PI/15

Pentaflake

A FRACTAL with 5-fold symmetry. As illustrated
above, five PENTAGONS can be arranged around an
identical PENTAGON to form the first iteration of the
pentaflake. This cluster of six pentagons has the
shape of a pentagon with five triangular wedges
removed. This construction was first noticed by
Albrecht Dürer (Dixon 1991).
For a pentagon of side length 1, the first ring of
pentagons has centers at RADIUS

d1�2r�1
2 1�

ffiffiffi
5

p
 �
R�fR; (1)

where f is the GOLDEN RATIO. The INRADIUS r and
CIRCUMRADIUS R are related by

r�R cos 1
5 p

 �

�1
4

ffiffiffi
5

p
�1


 �
R; (2)

and these are related to the side length s by

s�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
�1

2 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pq
: (3)

The height h is

h�s sin 2
5 p

 �

�1
4 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pq
�1

2

ffiffiffi
5

p
R; (4)

giving a RADIUS of the second ring as

d2�2 R�hð Þ� 2�
ffiffiffi
5

p
 �
R�f3R: (5)

Continuing, the nth pentagon ring is located at

dn�f2n�1: (6)

Now, the length of the side of the first pentagon
compound is given by

s2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2r�R)2�(h�R)2

q
�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
5

pq
; (7)



so the ratio of side lengths of the original pentagon to
that of the compound is

s2

s
�

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 2

ffiffiffi
5

pp
1
2 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � 2

ffiffiffi
5

pp �1 � f: (8)

We can now calculate the dimension of the pentaflake
fractal. Let Nn be the number of black pentagons and
Ln the length of side of a pentagon after the n
iteration,

Nn �6n (9)

Ln � 1 � fð Þ�n
: (10)

The CAPACITY DIMENSION is therefore

dcap�� lim
n0�

ln Nn

ln Ln

�
ln 6

ln(1 � f)
�

ln 2 � ln 3

ln(1 � f)
(11)

See also PENTAGON
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Pentagon

The regular convex 5-gon is called the pentagon. By
SIMILAR TRIANGLES in the figure on the left,

d

1
�

1

1

f

�f; (1)

where d is the diagonal distance. But the dashed
vertical line connecting two nonadjacent VERTICES is
the same length as the diagonal one, so

f�1�
1

f
(2)

f2�f�1: (3)

Solving the QUADRATIC EQUATION gives

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4

p

2
; (4)

and taking the plus sign gives the GOLDEN RATIO

f�1
2 1�

ffiffiffi
5

p
 �
: (5)

(Taking the minus sign instead gives 1=f:/)

The coordinates of the VERTICES relative to the center
of the pentagon with unit sides are given as shown in
the above figure, with

c1�cos
2p
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 !
�1

4

ffiffiffi
5

p
�1
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(6)

c2�cos
4p
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 !
�1

4

ffiffiffi
5

p
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 �
(7)

s1�sin
2p
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 !
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pq
(8)

s2�sin
4p

5

 !
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pq
: (9)

For a REGULAR POLYGON, the CIRCUMRADIUS, INRA-

DIUS, SAGITTA, and AREA are given by

Rn�
1
2 a csc

p

n

 !
(10)

rn�
1
2 a cot

p

n

 !
(11)

xn�Rn�rn�
1
2 a tan

p

2n

 !
(12)

An�
1
4 na2 cot

p

n

 !
: (13)

Plugging in n�5 gives

R�1
2 a cse 1

5 p

 �

� 1
10 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pq
(14)
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2 a cot 1

5 p

 �

� 1
10 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(15)

x�1
2 a 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(16)

A�1
4 a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffiffi
5:

pq
(17)

Five pentagons can be arranged around an identical
pentagon to form the first iteration of the "PENTA-



FLAKE," which itself has the shape of a pentagon with
five triangular wedges removed. For a pentagon of
side length 1, the first ring of pentagons has centers
at radius f; the second ring at f3 ; and the nth at
f2n�1 :/

In proposition IV.11, Euclid showed how to inscribe a
regular pentagon in a CIRCLE. Ptolemy also gave a
RULER and COMPASS construction for the pentagon in
his epoch-making work The Almagest. While Ptole-
my’s construction has a SIMPLICITY of 16, a GEO-

METRIC CONSTRUCTION using CARLYLE CIRCLES can be
made with GEOMETROGRAPHY symbol 2S1 �S2 �
8C1 �0C2 �4C3 ; which has SIMPLICITY 15 (De Temple
1991).

The following elegant construction for the pentagon is
due to Richmond (1893). Given a point, a CIRCLE may
be constructed of any desired RADIUS, and a DIAMETER

drawn through the center. Call the center O , and the
right end of the DIAMETER P1 : The DIAMETER PERPEN-

DICULAR to the original DIAMETER may be constructed
by finding the PERPENDICULAR BISECTOR. Call the
upper endpoint of this PERPENDICULAR DIAMETER B .
For the pentagon, find the MIDPOINT of OB and call it
D . Draw DP1 ; and BISECT 
ODP1 ; calling the inter-
section point with OP1 N2 : Draw N2P2 PARALLEL to
OB , and the first two points of the pentagon are P1

and P2 ; and copying the angle 
P1OP2 then gives the
remaining points P3 ; P4 ; and P5 (Coxeter 1969, Wells
1991).

Madachy (1979) illustrates how to construct a penta-
gon by folding and knotting a strip of paper.

See also CYCLIC PENTAGON, DECAGON, DISSECTION,
FIVE DISKS PROBLEM, HOME PLATE, PENTAFLAKE,
PENTAGRAM, POLYGON, TRIGONOMETRY VALUES PI/5
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Pentagon Tiling

There are at least 14 classes of convex PENTAGONAL

tilings (Steinhaus 1983, p. 75; Wells 1991, pp. 177�/

179; Pegg), as illustrated above. It has not been
proven whether these 14 cases exhaust all possible
tilings, but no others are known.

See also TILING
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Pentagonal Antiprism

An ANTIPRISM and UNIFORM POLYHEDRON U77 whose
DUAL POLYHEDRON is the PENTAGONAL DELTAHEDRON.

Pentagonal Cupola

JOHNSON SOLID J5 : The bottom 10 VERTICES are

9
1 �

ffiffiffi
5

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pp
4
ffiffiffi
2

p ; 91
2 ; 0

 !
;

9
1 �

ffiffiffi
5

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pp
4
ffiffiffi
2

p ; 9
3 �

ffiffiffi
5

p

2
; 0

 !
;

0; 91
2 1 �

ffiffiffi
5

p
 �
; 0


 �
and the top five vertices are
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Pentagonal Deltahedron

A TRAPEZOHEDRON which is the DUAL POLYHEDRON of
the PENTAGONAL ANTIPRISM U77:/

See also DUAL POLYHEDRON, PENTAGONAL ANTI-

PRISM, TRAPEZOHEDRON

Pentagonal Dipyramid

The pentagonal dipyramid is one of the convex
DELTAHEDRA, and JOHNSON SOLID J13: It is also the
DUAL POLYHEDRON of the PENTAGONAL PRISM U76: The



distance between two adjacent VERTICES on the base
of the PENTAGON is

d2
12 � 1 �cos 2

5 p

 �h i2

�sin2 2
5p

 �

� 1 �1
4

ffiffiffi
5

p
�1


 �h i2

�
1 �

ffiffiffi
5

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

pp
4
ffiffiffi
2

p
" #2

�1
2 5 �

ffiffiffi
5

p
 �
; (1)

and the distance between the apex and one of the base
points is

d2
1h � 0 �1ð Þ2� 0 �0ð Þ2� h �0ð Þ2�1 �h2 : (2)

But

d2
12 �d2

12 (3)

1
2 5 �

ffiffiffi
5

p
 �
�1 �h2 (4)

h2 �1
2 3 �

ffiffiffi
5

p
 �
; (5)

and

h �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
5

p

2

s
: (6)

This root is OF THE FORM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a �b �c

p
; so applying

SQUARE ROOT simplification gives

h �1
2

ffiffiffi
5

p
�1


 �
� f �1; (7)

where f is the GOLDEN MEAN.

See also DELTAHEDRON, DIPYRAMID, GOLDEN MEAN,
ICOSAHEDRON, JOHNSON SOLID, RIGIDITY THEOREM,
TRIANGULAR DIPYRAMID

Pentagonal Gyrobicupola

JOHNSON SOLID J31 :/
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Pentagonal Gyrocupolarotunda

JOHNSON SOLID J33 :/
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Pentagonal Hexecontahedron

The 60-faced DUAL POLYHEDRON of the SNUB DODECA-

HEDRON A8 and Wenninger dual W18:/

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
HEXECONTAHEDRON, SNUB DODECAHEDRON
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Pentagonal Icositetrahedron

The 24-faced DUAL POLYHEDRON of the SNUB CUBE A7

and Wenninger dual W17 : The mineral cuprite
/ Cu2Oð Þ forms in pentagonal icositetrahedral crystals
(Steinhaus 1983, pp. 207 and 209). The dual formed
from a SNUB CUBE with unit edge length has side
lengths given by the unique positive real roots of

2s6
1 �4s4

1 �4s2
1 �1 �0 (1)

32s6
1 �32s4

1 �8s2
1 �1 �0 : (2)

The CIRCUMRADIUS R is given by the unique positive
real root of

128r6 �224r4 �24r2 �1 �0 : (3)

The SURFACE AREA S given by the positive real root of

S6 �684S4 �142560S2 �9879408 �0 ; (4)

and VOLUME V given by the positive real root of

8V6 �452V4 �462V2 �121 �0: (5)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
ICOSITETRAHEDRON, SNUB CUBE, SNUB CUBE-PENTA-

GONAL ICOSITETRAHEDRON COMPOUND

References
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York:

Dover, 1999.
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 28, 1983.

Pentagonal Number

A POLYGONAL NUMBER OF THE FORM n 3n �1ð Þ=2 : The
first few are 1, 5, 12, 22, 35, 51, 70, ... (Sloane’s

A000326). The GENERATING FUNCTION for the penta-
gonal numbers is

x 2x � 1ð Þ
1 � xð Þ3 �x �5x2 �12x3 �22x4 �. . . :

Every pentagonal number is 1/3 of a TRIANGULAR

NUMBER.
The so-called generalized pentagonal numbers are
given by n 3n �1ð Þ=2 with n �0, 9 1, 9 2, ..., the first
few of which are 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, ...
(Sloane’s A001318).

See also HEPTAGONAL PENTAGONAL NUMBER, HEXA-

GONAL PENTAGONAL NUMBER, OCTAGONAL PENTAGO-

NAL NUMBER, PARTITION FUNCTION P , PENTAGONAL

NUMBER THEOREM, PENTAGONAL SQUARE NUMBER,
PENTAGONAL TRIANGULAR NUMBER, POLYGONAL

NUMBER, TRIANGULAR NUMBER
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Pentagonal Number Theorem

Y�
k �1

1 �xk
� �

�
X�

k ���

�1ð Þkxk 3k�1ð Þ=2 (1)

�1 �
X�

k��1

�1ð Þk xk 3k�1ð Þ=2�xk 3k�1ð Þ=2
� �

; (2)

where n 3n �1ð Þ=2 are generalized PENTAGONAL NUM-

BERS. Related equalities are

Y�
k�1

1�xkt
� �

�
X�
n�0

�1ð Þnxn n�1ð Þ=2tnQn
k�1 1 � xkð Þ

(3)

Y�
k�1

1�xkt
� ��1

�
X�
n�0

tnQn
k�1 1 � xkð Þ

: (4)

See also PARTITION FUNCTION P , PARTITION FUNC-

TION Q , PENTAGONAL NUMBER, RAMANUJAN THETA

FUNCTIONS
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Pentagonal Orthobicupola

JOHNSON SOLID J30 :/
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Pentagonal Orthobirotunda

JOHNSON SOLID J34 :/
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Pentagonal Orthocupolarontunda

JOHNSON SOLID J32 :/
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Pentagonal Prism

A PRISM, HEPTAHEDRON, and UNIFORM POLYHEDRON

U76 whose DUAL POLYHEDRON is the PENTAGONAL

DIPYRAMID. The SURFACE AREA and VOLUME for the
pentagonal prism of unit edge length are

S�1
2 10�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 5�2

ffiffiffi
5

p
 �r$ %

V�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 5�2

ffiffiffi
5

p
 �r
:

See also HEPTAHEDRON, PENTAGRAMMIC PRISM

Pentagonal Pyramid

JOHNSON SOLID J2:/
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A PYRAMID with a PENTAGONAL base. The pentagonal
pyramid having equilateral triangles as faces is JOHNSON

SOLID J2: The SLANT HEIGHT of a regular pentagonal
pyramid is a special case of the formula for a regular n -
gonal PYRAMID with n�5, given by

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2� 1

10 5�
ffiffiffi
5

p
 �
a2;

r
(1)



where h is the height and a is the length of a side of
the base.

See also PENTAGON, PYRAMID

Pentagonal Pyramidal Number
A FIGURATE NUMBER corresponding to a PENTAGONAL

PYRAMID. The first few are 1, 6, 18, 40, 75, ... (Sloane’s
A002411). The GENERATING FUNCTION for the penta-
gonal pyramidal numbers is

x 2x � 1ð Þ
x � 1ð Þ4 �x �6x2 �18x3 �40x4 �. . . :

The odd pentagonal pyramidal numbers are given by
1, 75, 405, 1183, 2601, ... (Sloane’s A015223), having
squares 1, 5625, 164025, ... (Sloane’s A014799), while
the even pentagonal pyramidal numbers are given by
6, 18, 40, 126, 196, 288, ... (Sloane’s A015224), having
squares 36, 324, 1600, 15876, ... (Sloane’s A014800).

See also PENTAGONAL NUMBER, PYRAMIDAL NUMBER
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Pentagonal Rotunda

Half of an ICOSIDODECAHEDRON, denoted R5 : It has 10
triangular and five pentagonal faces separating a
PENTAGONAL ceiling and a DODECAHEDRAL floor. It is
JOHNSON SOLID J6 ; and the only true ROTUNDA.

See also ICOSIDODECAHEDRON, JOHNSON SOLID, RO-

TUNDA

Pentagonal Square Number
A number which is simultaneously a PENTAGONAL

NUMBER Pn and a SQUARE NUMBER Sm : Such numbers
exist when

1
2 n 3n �1ð Þ�m2 : (1)

COMPLETING THE SQUARE gives

1
2 n 3n �1ð Þ�3

2 n2 �1
3 n


 �
�3

2 n �1
6


 �2

�3
72 �m2 (2)

3
6 6n �1ð Þ2�3

2 �36m2 (3)

6n �1ð Þ2�24m2 �1: (4)

Substituting x �6n �1 and y �2m gives the PELL

EQUATION

x2 �6y2 �1; (5)

which has solutions x; yð Þ� 5; 2ð Þ; (49, 20), (495, 198),
.... In terms of (n, m ), these give (1,1), (25/3, 10), (81,
99), (2401/3, 980), (7921, 9701), ..., of which the whole
number solutions are n ; mð Þ� 1; 1ð Þ; (81, 99), (7921,
9701), (776161, 950599), ... (Sloane’s A046172 and
A046173), corresponding to the pentagonal square
numbers 1, 9801, 94109401, 903638458801,
8676736387298001, ... (Sloane’s A036353).

Rathbun has searched for pentagonal square trian-
gular numbers up to index 2000, but found none other
than the trivial number 1.

See also PENTAGONAL NUMBER, SQUARE NUMBER
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Pentagonal Triangular Number
A number which is simultaneously a PENTAGONAL

NUMBER Pn and TRIANGULAR NUMBER Tm : Such
numbers exist when

1
2 n 3n �1ð Þ�1

2 m m�1ð Þ: (1)

COMPLETING THE SQUARE gives

6n �1ð Þ2�3 2m�ð Þ2��2: (2)

Substituting x �6n �1 and y �2m �1 gives the Pell-
like quadratic Diophantine equation

x2 �3y2 ��2; (3)

which has solutions x; yð Þ� 5; 3ð Þ; (19, 11), (71, 41),
(265, 153), .... In terms of (n, m ), these give (1, 1), (10/
3,5), (12, 20), (133/3, 76), (165, 285), ..., of which the
whole number solutions are n; mð Þ� 1 ; 1ð Þ; (12, 20),
(165, 285), (2296, 3976), ... (Sloane’s A046174 and
A046175), corresponding to the pentagonal triangular
numbers 1, 210, 40755, 7906276, 1533776805, ...
(Sloane’s A014979).

Rathbun has searched for pentagonal square trian-
gular numbers up to index 2000, but found none other
than the trivial number 1.

See also PENTAGONAL NUMBER, TRIANGULAR NUMBER
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Pentagram

The STAR POLYGON 5=2f g; also called the PENTACLE,
PENTALPHA, or PENTANGLE. In the above figure, the
pentagram has side length 1, and the indicated
lengths are given by
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2 3 �
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p

5

 !
�1

2

ffiffiffi
5

p
�1


 �
(6)

r ?�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h �rð Þ2� 1

2 x

 �2

r
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
10 5 �

ffiffiffi
5

p
 �r
(7)

y �r ?�R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 25 �11

ffiffiffi
5

p
 �r
(8)

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �1

4 x
2

q
�1

2
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1
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5

p
 �
:
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This gives the ratio

b

a 
� f; (10)

where f is the GOLDEN RATIO (Wells 1986, p. 36).

A series of embedded pentagrams can be constructed
to form a larger pentagram, as illustrated above
(Williams 1979, p. 53). If the central pentagram has
center (0, 0) and CIRCUMRADIUS 1, then the subse-
quent pentagrams have radii

rn�f�n

and centers

xn��1
4(1�f�n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�22

ffiffiffi
5

pp
yn�

1
2 f(1�f�n)

modulo rotation by 2pk=5; where f is the GOLDEN

RATIO.

See also DISSECTION, FIVE CIRCLES THEOREM, GREAT

DODECAHEDRON, GREAT ICOSAHEDRON, GREAT STEL-

LATED DODECAHEDRON, HEXAGRAM, HOEHN’S THEO-

REM, KEPLER-POINSOT SOLID, PENTAGON, SMALL

STELLATED DODECAHEDRON, STAR FIGURE, STAR OF

LAKSHMI
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Pentagrammic Antiprism

An ANTIPRISM and UNIFORM POLYHEDRON U79 whose
DUAL POLYHEDRON is the PENTAGRAMMIC DELTAHE-

DRON.

Pentagrammic Concave Deltahedron

The DUAL POLYHEDRON of the PENTAGRAMMIC

CROSSED ANTIPRISM U80 :/

See also DUAL POLYHEDRON, PENTAGRAMMIC

CROSSED ANTIPRISM

Pentagrammic Crossed Antiprism

An ANTIPRISM and UNIFORM POLYHEDRON U80 whose

DUAL POLYHEDRON is the PENTAGRAMMIC CONCAVE

DELTAHEDRON.

Pentagrammic Deltahedron

The DUAL POLYHEDRON of the PENTAGRAMMIC ANTI-

PRISM U79 :/

See also DUAL POLYHEDRON, PENTAGRAMMIC ANTI-

PRISM

Pentagrammic Dipyramid

The DUAL POLYHEDRON of the PENTAGRAMMIC PRISM

U78 :/

See also DUAL POLYHEDRON, PENTAGRAMMIC PRISM

Pentagrammic Prism

A PRISM, self-intersecting HEPTAHEDRON, and UNI-

FORM POLYHEDRON U78 whose DUAL POLYHEDRON is
the PENTAGRAMMIC DIPYRAMID.

See also HEPTAHEDRON, PENTAGONAL PRISM



Pentagrammic Pyramid

See also PYRAMID

Pentahedral Graph

A POLYHEDRAL GRAPH on five nodes. There are two
topologically distinct pentahedral graphs, corre-
sponding to the skeletons of the SQUARE PYRAMID

(left figure) and TRIANGULAR DIPYRAMID (right figure).
The pentahedral graphs were first enumerated by
Steiner (1828; Duijvestijn and Federico 1981).

See also POLYHEDRAL GRAPH, SQUARE PYRAMID,
TRIANGULAR DIPYRAMID.
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Pentahedron

A POLYHEDRON having five faces. Common pentahe-
dra include the SQUARE PYRAMID and the TRIANGULAR

PRISM. Steiner (1828) was the first to enumerate the
pentahedra (Duijvestijn and Federico 1981).

See also PENTAHEDRAL GRAPH, POLYHEDRON, SQUARE

PYRAMID, TRIANGULAR PRISM
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Pentakaidecagon
PENTADECAGON

Pentakis Dodecahedron

The 60-faced DUAL POLYHEDRON of the TRUNCATED

ICOSAHEDRON A11 and Wenninger dual W9 : It can be
constructed by CUMULATION of a unit edge-length
DODECAHEDRON by a pyramid with height
1
19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 65 �22

ffiffiffi
5

p� �q
: Taking the dual of a TRUNCATED

ICOSAHEDRON with unit edge lengths gives a pentakis
dodecahedron with edge lengths

s1 �
1

19 18
ffiffiffi
5

p
�9


 �
(1)

s2 �
3
2

ffiffiffi
5

p
�1


 �
: (2)

Normalizing so that s1 �1; the SURFACE AREA and
VOLUME are

S �5
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 421 �63

ffiffiffi
5

p
 �r
(3)

V � 5
36 41 �25

ffiffiffi
5

p
 �
: (4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
DUAL POLYHEDRON, HEXECONTAHEDRON, TRUNCATED

ICOSAHEDRON
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Pentalpha
PENTAGRAM

Pentangle
PENTAGRAM

Pentaspherical Space
The set of all points x that can be put into one-to-one
correspondence with sets of essentially distinct values



of five homogeneous coordinates x0 : x1 : x2 : x3 : x4 ;
not all simultaneously zero, which are connected by
the relation

x � x �x2
0 �x2

1 �x2
2 �x2

3 �x2
4 �0 : (1)

See also TETRACYCLIC PLANE
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Pentatope

The simplest regular figure in 4-D, representing the
4-D analog of the solid TETRAHEDRON. It is also called
the 5-cell, since it consists of five vertices. The
pentatope is the 4-D SIMPLEX, and can be viewed as
a regular TETRAHEDRON ABCD in which a point E
along the fourth dimension through the center of
ABCD is chosen so that EA �EB �EC �ED �AB:
The pentatope has SCHLÄ FLI SYMBOL f3; 3; 3g: The
pentatope is self-dual, has 5 3-D facets (each the
shape of a TETRAHEDRON), 10 ridges (faces), 10 edges,
and 5 vertices. In the above figure, the pentatope is
shown projected onto one of the four mutually
perpendicular 3-spaces within the 4-space obtained
by dropping one of the four vertex components
(R. Towle).

See also 16-CELL, 24-CELL, 120-CELL, 600-CELL, HYPER-

CUBE, POLYTOPE, SIMPLEX, TETRAHEDRON
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Pentatope Number
A FIGURATE NUMBER which is given by

Ptopn �
1
4 Ten(n �3) � 1

24 n(n �1)(n �2)(n �3);

where Ten is the nth TETRAHEDRAL NUMBER. The first

few pentatope numbers are 1, 5, 15, 35, 70, 126, ...
(Sloane’s A000332). The GENERATING FUNCTION for
the pentatope numbers is

x

(1 � x)5 �x �5x2 �15x3 �35x4 �. . . :

See also FIGURATE NUMBER, TETRAHEDRAL NUMBER
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Pentiamond

One of the four 5-polyiamonds are called pentia-
monds.

See also PENTIAMOND TILING, POLYIAMOND

Pentiamond Tiling

See also HEPTIAMOND TILING, HEXIAMOND TILING,
OCTIAMOND TILING, PENTIAMOND
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Pentomino

The twelve 5-POLYOMINOES illustrated above and
known by the letters of the alphabet they most closely
resemble: f , I , L , N , P , T , U , V , W , X , y , Z (Gardner
1960, Golomb 1995). Another common naming con-
vention replaces f , I , L , and N with R , O , Q , and S so
that all letters from O to Z are used (Berlekamp et al.
1982). In particular, in the LIFE CELLULAR AUTOMA-

TON, the f -pentomino is always known as the r -
pentomino. The I , L , and T pentominoes can also
be called the 5-STRAIGHT POLYOMINO, L -POLYOMINO,
and T -POLYOMINO, respectively.

See also DOMINO, HEXOMINO, HEPTOMINO, OCTOMI-

NO, POLYOMINO, TETROMINO, TRIOMINO
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Pépin’s Test
A test for the PRIMALITY of FERMAT NUMBERS Fn �
22n 

�1; with n ]2 and k ]2: Then the two following
conditions are equivalent:

1. Fn is PRIME and (k=Fn) ��1; where (n=k) is the
JACOBI SYMBOL,
2. k(Fn�1)=2 ��1 (mod Fn)::/

k is usually taken as 3 as a first test.

See also FERMAT NUMBER, PÉ PIN’S THEOREM
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Pépin’s Theorem
The FERMAT NUMBER Fn is PRIME IFF

322n �1 

��1 (mod Fn):

See also FERMAT NUMBER, PÉ PIN’S TEST, SELFRIDGE-

HURWITZ RESIDUE

Per Cent
PERCENT

Per Mil
PERMIL

Per Mille
PERMIL

Percent
The use of percentages is a way of expressing RATIOS

in terms of whole numbers. Given a RATIO or FRAC-

TION, it is converted to a percentage by multiplying by
100 and appending a "percentage sign" %. For
example, if an investment grows from a number P �
13 :00 to a number A �22 :50; then A is 22:50 =13:00 �
1:7308 times as much as P , or 173.08%, and the
investment has grown by 73.08%. A change of a
certain percent n is sometimes said to be a change of
PERCENTAGE POINTS.

See also PERCENTAGE ERROR, PERCENTAGE POINT,
PERMIL
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Percent Sign
The symbol % used to indicate PERCENT.

References
Bringhurst, R. The Elements of Typographic Style, 2nd ed.
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Percentage
PERCENT, PERCENTAGE ERROR, PERCENTAGE POINT

Percentage Error
The percentage error is 100% times the RELATIVE

ERROR.

See also ABSOLUTE ERROR, ERROR PROPAGATION,
PERCENT, RELATIVE ERROR
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Percentage Point
1%.

See also BASIS POINT, PERCENT

Percentile
The kth percentile Pk is that value of x , say xk ; which
corresponds to a CUMULATIVE FREQUENCY of Nk =100:/

See also QUANTILE, QUARTILE



References
Kenney, J. F. and Keeping, E. S. "Percentile Ranks." §3.6 in

Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ:
Van Nostrand, pp. 38 �/39, 1962.

Percolation Theory

Percolation theory deals with fluid flow (or any other
similar process) in random media. If the medium is a
set of regular LATTICE POINTS, then there are two
types of percolation. A SITE PERCOLATION considers
the lattice vertices as the relevant entities; a BOND

PERCOLATION considers the lattice edges as the
relevant entities.

See also BOND PERCOLATION, CAYLEY TREE, CLUSTER,
CLUSTER PERIMETER, LATTICE ANIMAL, PERCOLATION

THRESHOLD, POLYOMINO, RANDOM WALK, S -CLUSTER,
S -RUN, SITE PERCOLATION

References
Deutscher, G.; Zallen, R.; and Adler, J. (Eds.). Percolation

Structures and Processes. Bristol: Adam Hilger, 1983.
Finch, S. "Favorite Mathematical Constants." http://

www.mathsoft.com/asolve/constant/rndprc/rndprc.html.
Grimmett, G. Percolation. New York: Springer-Verlag, 1989.
Grimmett, G. Percolation and Disordered Systems. Berlin:

Springer-Verlag, 1997.
Kesten, H. Percolation Theory for Mathematicians. Boston,
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Percolation Threshold
The critical fraction of lattice points which must be
filled to create a continuous path of nearest neighbors
from one side to another. The following table is from
Stauffer and Aharony (1992, p. 17).

Lattice Site Bond

Cubic (Body-Centered) 0.246 0.1803

Cubic (Face-Centered) 0.198 0.119

Cubic (Simple) 0.3116 0.2488

Diamond 0.43 0.388

Honeycomb 0.6962 0.65271

4-Hypercubic 0.197 0.1601

5-Hypercubic 0.141 0.1182

6-Hypercubic 0.107 0.0942

7-Hypercubic 0.089 0.0787

Square 0.592746 0.50000

Triangular 0.50000 0.34729

The square bond value is 1=2 exactly, as is the
triangular site. pc �2 sin( p=18) for the triangular
bond and pc �1 �2 sin( p=18) for the honeycomb bond.
An exact answer for the square site percolation
threshold is not known.

See also PERCOLATION THEORY
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Perfect Box
EULER BRICK

Perfect Code

See also ERROR-CORRECTING CODE, HAMMING CODE
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Perfect Cubic Polynomial
A perfect cubic POLYNOMIAL can be factored into a
linear and a quadratic term,

x3 �y3 �(x �y) (x2 �xy �y2)

x3�y3�(x�y)(x2�xy�y2):

See also CUBIC EQUATION, PERFECT SQUARE, POLY-

NOMIAL

Perfect Cuboid
EULER BRICK

Perfect Difference Set
A SET of RESIDUES fa1; a2; . . . ; ak�1g (mod n ) such
that every NONZERO RESIDUE can be uniquely ex-
pressed in the form ai�aj: Examples include
f1; 2; 4g (mod 7) and f1; 2; 5; 7g (mod 13). A



NECESSARY condition for a difference set to exist is
that n be OF THE FORM k2 �k �1: A SUFFICIENT

condition is that k be a PRIME POWER. Perfect sets
can be used in the construction of PERFECT RULERS.

See also PERFECT RULER
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Perfect Digital Invariant
NARCISSISTIC NUMBER

Perfect Graph
A GRAPH G such that for every INDUCED SUBGRAPH of
G , the size of the largest CLIQUE equals the CHRO-

MATIC NUMBER. A graph can be tested to see if it is
perfect using PerfectQ[g ] in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘). Determining if a graph is
perfect requires solving two NP-COMPLETE PROBLEMS

(Skiena 1990, p. 219).

The numbers of perfect graphs on n �1, 2, ... nodes
are 1, 2, 4, 11, 33, 148, 906, ... (Sloane’s A052431).

The numbers of perfect CONNECTED GRAPHS on n �1,
2, ... nodes are 1, 1, 2, 6, 20, 105, 724, ... (Sloane’s
A052433).

See also CHROMATIC NUMBER, CLIQUE, INDUCED

SUBGRAPH, PERFECT GRAPH THEOREM, STRONG PER-

FECT GRAPH CONJECTURE
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Perfect Graph Theorem
The GRAPH COMPLEMENT of a PERFECT GRAPH is itself
perfect (Fulkerson 1971; Lovász 1972; Skiena 1990,
p. 219).

See also PERFECT GRAPH, STRONG PERFECT GRAPH

CONJECTURE
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Perfect Group
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Perfect Information
A class of GAME in which players move alternately
and each player is completely informed of previous
moves. FINITE, ZERO-SUM, two-player GAMES with
perfect information (including checkers and chess)
have a SADDLE POINT, and therefore one or more
optimal strategies. However, the optimal strategy
may be so difficult to compute as to be effectively
impossible to determine (as in the game of CHESS).

See also FINITE GAME, GAME, ZERO-SUM GAME



Perfect Magic Cube

A perfect magic cube is a MAGIC CUBE for which the
CROSS SECTION diagonals, as well as the space
diagonals, sum to the MAGIC CONSTANT. Perfect magic
cubes are impossible for orders 3 and 4 (Schroeppel
1972, Gardner 1988), but it is not known if such cubes
can exist for order 5 or 6 (Wells 1986, p. 72). Although
no perfect magic cubes of order five are known, any
such cube must have a central value of 63 (Schroeppel
1972; Gardner 1988).
Langman (1962) constructed a perfect magic cube of
order seven, and others were found by R. Schroeppel
and Ernst Straus (Wells 1986, p. 72). An order-eight
perfect magic cube was published anonymously in
1875 (Barnard 1888, Gardner 1976, Benson and
Jacoby 1981, Gardner 1988). The construction of
such a cube is discussed in Ball and Coxeter (1987).
Rosser and Walker rediscovered the order-eight cube
in the late 1930s (but did not publish it), and Myers
independently discovered the cube illustrated above
in 1970 (Wells 1986, p. 72; Gardner 1988). Order 9
and 11 magic cubes have also been discovered, but
none of order 10 (Gardner 1988).

See also MAGIC CUBE, SEMIPERFECT MAGIC CUBE
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Perfect Matching
A MATCHING of a GRAPH containing n=2 edges, the
largest possible. Not all graphs have a perfect
matching, although all graphs do have a maximal
matching (Skiena 1990, p. 240). Every CUBIC GRAPH

without BRIDGES has a perfect matching (Skiena
1990, p. 244).

See also K -FACTOR, MATCHING
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Perfect Number
Perfect numbers are INTEGERS n such that

n�s(n); (1)

where s(n) is the RESTRICTED DIVISOR FUNCTION (i.e.,
the SUM of PROPER DIVISORS of n ), or equivalently

s(n)�2n; (2)

where s(n) is the DIVISOR FUNCTION (i.e., the SUM of
DIVISORS of n including n itself). The first few perfect
numbers are 6, 28, 496, 8128, ... (Sloane’s A000396).
This follows from the fact that

6�1�2�3

28�1�2�4�7�14

496�1�2�4�8�16�31�62�124�248;

etc. Perfect numbers were deemed to have important
numerological properties by the ancients, and were
extensively studied by the Greeks, including Euclid.

Perfect numbers are intimately connected with a
class of numbers known as MERSENNE PRIMES. This
can be demonstrated by considering a perfect number
P OF THE FORM P�q2p�1 where q is PRIME. Then

s(P)�2P; (3)

and using

s(q)�q�1 (4)

for q prime, and

s(2a)�2a�1�1 (5)

gives



s(q2p�1) � s(q) s(2p �1) �(q �1)(2p �1)

�2q2p �1 �q2p (6)

q(2p �1) �2p �1 �q2p (7)

q �2p �1: (8)

Therefore, if Mp �q �2p �1 is PRIME, then

P �1
2(Mp �1)Mp �2p �1(2p �1) (9)

is a perfect number, as was stated in Proposition
IX.36 of Euclid’s ELEMENTS (Dickson 1957, p. 3;
Dunham 1990). The first few perfect numbers are
summarized in the following table.

# p P

1 2  6

2 3  28

3 5 496

4 7 8128

5 13 33550336

6 17 8589869056

7 19 137438691328

8 31 2305843008139952128

While many of Euclid’s successors implicitly assumed
that all perfect numbers were of the form (9) (Dickson
1952, pp. 3 �/33), the precise statement that all even
perfect numbers are of this form. This was considered
in a 1638 letter from Descartes to Mersenne (Dickson
1957, p. 12), and proving or disproving that Euclid’s
construction gives all possible even perfect numbers
was prosed to Fermat in a 1658 letter from Frans van
Schooten (Dickson 1957, p. 14). In a posthumous
paper, Euler (Euler 1849) provided the first proof
that Euclid’s construction gives all possible even
perfect numbers (Dickson 1957, p. 19).

It is known that all EVEN perfect numbers (except 6)
end in 16, 28, 36, 56, 76, or 96 (Lucas 1891) and have
DIGITAL ROOT 1. Every perfect number OF THE FORM

2p(2p �1 �1) can be written

2p(2p �1 �1) �
Xp =2

k�1

(2k �1)3 : (10)

All EVEN perfect numbers P �6 are OF THE FORM

P �1 �9Tn ; (11)

where Tn is a TRIANGULAR NUMBER

Tn �
1
2 n(n �1) (12)

such that n �8j �2 (Eaton 1995, 1996). In addition,
all even perfect numbers are HEXAGONAL NUMBERS, so
it follows that perfect numbers are always the sum of
consecutive POSITIVE INTEGERS starting at 1, for
example,

6 �
X3

n�1

n (13)

28 �
X7

n�1

n (14)

496 �
X31

n �1

n (15)

(Singh 1997).

It is not known if any ODD PERFECT NUMBERS exist,
although numbers up to 10300 have been checked
(Brent et al. 1991; Guy 1994, p. 44) without success.

The sum of reciprocals of all the divisors of a perfect
number is 2, since

n�. . .�c�b�a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

�2n (16)

n

a
�

n

b
�. . .�2n (17)

1

a
�

1

b
�. . .�2: (18)

If s(n) > n; n is said to be an ABUNDANT NUMBER. If
s(n)Bn; n is said to be a DEFICIENT NUMBER. And if
s(n)�kn for a POSITIVE INTEGER k �1, n is said to be
a MULTIPERFECT NUMBER of order k .

The only even perfect number OF THE FORM x3�1 is
28 (Makowski 1962).

See also ABUNDANT NUMBER, ALIQUOT SEQUENCE,
AMICABLE NUMBERS, DEFICIENT NUMBER, DIVISOR

FUNCTION, E -PERFECT NUMBER, HARMONIC NUMBER,
HYPERPERFECT NUMBER, INFINARY PERFECT NUM-

BER, MERSENNE NUMBER, MERSENNE PRIME, MULTI-

PERFECT NUMBER, MULTIPLICATIVE PERFECT

NUMBER, ODD PERFECT NUMBER, PLUPERFECT NUM-

BER, PSEUDOPERFECT NUMBER, QUASIPERFECT NUM-

BER, SEMIPERFECT NUMBER, SMITH NUMBER,
SOCIABLE NUMBERS, SUBLIME NUMBER, SUPER UNI-

TARY PERFECT NUMBER, SUPERPERFECT NUMBER,
UNITARY PERFECT NUMBER, WEIRD NUMBER
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Perfect Partition
A PARTITION of n whose elements uniquely generate
any number 1, 2, ..., n . The following table gives the
first several perfect partitions for small n .

n perfect partitions

1 /f1 g/

2 /f1 ; 1 g/

3 /f2 ; 1 g; f1 ; 1 ; 1g/

4 /f1 ; 1 ; 1; 1g/

5 /f3 ; 1 ; 1g; f2; 2; 1g; f1; 1; 1; 1; 1g/

6 /f1 ; 1 ; 1; 1; 1; 1g/

The numbers of perfect partitions of n for n �1, 2, ...
are given by 1, 1, 2, 1, 3, 1, 4, 2, 3, ... (Sloane’s
A002033). For pk a PRIME POWER, the number of
perfect partitions a(pk) is given by

a(pk) �2k�1 :

Let b(n) �a(n �1) ; then b(n) is given by the RECUR-

RENCE RELATION

b(n) �
X
d j n
d"n

b(d):

The number of perfect partitions of n is equal to the
number of ordered factorizations of n �1 (Goulden
and Jackson 1983, p. 94).

See also PARTITION

References
Cohen, D. I. A. Basic Techniques of Combinatorial Theory.

New York: Wiley and Sons, p. 97, 1978.
Goulden, I. P. and Jackson, D. M. Problem 2.5.12 in Combi-

natorial Enumeration. New York: Wiley, 1983.
Honsberger, R. Mathematical Gems III. Washington, DC:

Math. Assoc. Amer., pp. 140 �/143, 1985.
Riordan, J. "An Introduction to Combinatorial Analysis." In

(Ed. ). , pp. , .
Sloane, N. J. A. Sequences A002033/M0131 and A035341 in

"An On-Line Version of the Encyclopedia of Integer
Sequences." http://www.research.att.com/~njas/se-
quences/eisonline.html.

Perfect Proportion
Since

2a

a � b 
�

2ab

(a � b)b 
; (1)

it follows that

a

a � b

2

�

2ab

a � b

b
; (2)

so

a

A
�

H

b
; (3)

where A and H are the ARITHMETIC MEAN and
HARMONIC MEAN of a and b . This relationship was
purportedly discovered by Pythagoras.

See also ARITHMETIC MEAN, HARMONIC MEAN



Perfect Rectangle

A RECTANGLE which cannot be built up of SQUARES all
of different sizes is called an imperfect rectangle. A
RECTANGLE which can be built up of SQUARES all of
different sizes is called perfect. The number of perfect
rectangles of orders 8, 9, 10, ... are 0, 2, 6, 22, 67, 213,
744, 2609, ... (Sloane’s A002839) and the correspond-
ing numbers of imperfect rectangles are 0, 1, 0, 0, 9,
34, 103, 283, ... (Sloane’s A002882).

See also PERFECT SQUARE DISSECTION, RECTANGLE

TILING
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Perfect Ruler

A type of RULER considered by Guy (1994) which has

k distinct marks spaced such that the distances
between marks can be used to measure all the
distances 1, 2, 3, 4, ... up to some maximum distance
n �k . Such a ruler can be constructed from a
PERFECT DIFFERENCE SET by subtracting one from
each element. For example, the PERFECT DIFFERENCE

SET f1; 2; 5 ; 7 g gives 0, 1, 4, 6, which can be used to
measure 1 �/0 �1, 6 �/4 �2, 4 �/1 �3, 4 �/0 �4, 6 �/1 �5,
6 �/0 �6 (so we get 6 distances with only four marks).

See also GOLOMB RULER, PERFECT DIFFERENCE SET,
RULER
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Perfect Set
A SET P is called perfect if P �P ?; where P? is the
DERIVED SET of P .

See also DERIVED SET, SET

Perfect Shuffle
Gale (1992) considered the following problem. Take
an infinite deck of cards labeled 1, 2, 3, 4, 5, 6, .... At
step n , pick up the top n cards and interlace them
with the next n cards. This is called a perfect n -
shuffle. For example, after step two, we have 3, 2, 4,
1, 5, 6, 7, .... For step there, pick up 3, 2, 4 and shuffle
them in, giving 1, 3, 5, 2, 6, 4, 7, 8, 9, .... Iterate this
process. It is conjectured that eventually every
number appears on top of the deck.

The cards on top of deck at the nth step are 1, 2, 3, 1,
6, 5, 9, 1, 4, 2, 16, 10, 12, ... (Sloane’s A035485). The
step at which card n first appears on top the deck is
given by 0, 1, 2, 8, 5, 4, 78, 37, ... (Sloane’s A035490).
The position of the first card after the nth shuffle is 1,
2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, 7, 14, 28, ... (Sloane’s
A035492). The order in which new cards appear on
top for the first time is 1, 2, 3, 6, 5, 9, 4, 16, 10, ...
(Sloane’s A035493). The order in which record new
high cards appear on top for the first time is 1, 2, 3, 6,
9, 16, ... (Sloane’s A035494).

See also KIMBERLING SHUFFLE, SHUFFLE
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Perfect Square
The term perfect square is used to refer to a SQUARE

NUMBER, a PERFECT SQUARE DISSECTION, or a factor-
able quadratic polynomial OF THE FORM

a292ab�b2�(a9b)2:/

See also PERFECT SQUARE DISSECTION, QUADRATIC

EQUATION, SQUARE NUMBER, SQUAREFREE

Perfect Square Dissection
A SQUARE which can be DISSECTED into a number of
smaller SQUARES with no two equal is called a
PERFECT SQUARE DISSECTION (or a SQUARED SQUARE).
Square dissections in which the squares need not be
different sizes are called MRS. PERKINS’ QUILTS. If no
subset of the SQUARES forms a RECTANGLE, then the
perfect square is called "simple."

Moroz (1925) constructed a 33�32 PERFECT RECTAN-

GLE composed of nine squares of different sizes
(Descartes 1971), but Lusin claimed that perfect
squares were impossible to construct. This assertion
was proved erroneous when a 55-SQUARE perfect
square was published by R. Sprague in 1939 (Wells
1991). Reichert and Toepkin (1940) proved that a
RECTANGLE cannot be dissected into fewer than nine
different SQUARES (Steinhaus 1983, p. 297).

A 24-SQUARE perfect square was subsequently found

by Willcocks (Willcocks 1948, 1951; Steinhaus 1983,
pp. 8�/9).

There is a unique simple perfect square of order 21
(the lowest possible order), discovered in 1978 by
A. J. W. Duijvestijn (Bouwkamp and Duijvestijn
1992). It is composed of 21 squares with total side
length 112, and is illustrated above. There is a simple
notation (sometimes called Bouwkamp code) used to
describe perfect squares. In this notation, brackets
are used to group adjacent squares with flush tops,
and then the groups are sequentially placed in the
highest (and leftmost) possible slots. For example, the
21-square illustrated above is denoted [50, 35, 27], [8,
19], [15, 17, 11], [6, 24], [29, 25, 9, 2], [7, 18], [16], [42],
[4, 37], [33].

A compound 26-perfect square having side length 608
was discovered in 1940 (Brooks et al. 1940; Kraitchik
1942, p. 198). Beiler (1966) illustrates a compound
28-square and a simple 38-square. Gardner (1961,
pp. 203 and 206) illustrates compound 39- and 24-
squares.

The number of simple perfect squares of order n for
n]21 are 1, 8, 12, 26, 160, 441, ... (Sloane’s A006983).
Duijvestijn’s Table I gives a list of the 441 simple
perfect squares of order 26, the smallest with side
length 212 and the largest with side length 825.
Skinner (1993) gives the smallest possible side length
(and smallest order for each) as 110 (22), 112 (21), 120
(24), 139 (22), 140 (23), ... for simple perfect squared
squares, and 175 (24), 235 (25), 288 (26), 324 (27), 325
(27), ... for compound perfect squared squares.

There are actually three simple perfect squares
having side length 110. They are [60, 50], [23, 27],
[24, 22, 14], [7, 16], [8, 6], [12, 15], [13], [2, 28], [26], [4,
21, 3], [18], [17] (order 22; discovered by
A. J. W. Duijvestijn); [60, 50], [27, 23], [24, 22, 14],



[4, 19], [8, 6], [3, 12, 16], [9], [2, 28], [26], [21], [1, 18],
[17] (order 22; discovered by T. H. Willcocks); and
[44, 29, 37], [21, 8], [13, 32], [28, 16], [15, 19], [12,4],
[3, 1], [2, 14], [5], [10, 41], [38, 7], [31] (order 23;
discovered by A. J. W. Duijvestijn).

D. Sleator has developed an efficient ALGORITHM for
finding non -simple perfect squares using what he
calls rectangle and "ell" grow sequences. This algo-
rithm finds a slew of compound perfect squares of
orders 24 �/32. Weisstein gives a partial list of known
simple and compound perfect squares (where the
number of simple perfect squares is exact for orders
less than 27) as well as Mathematica algorithms for
drawing them.

Order # Simple # Compound

21 1 0

22 8 0

23 12 0

24 26 1

25 160 1

26 441 2

27 ? 2

28 ? 4

29 ? 2

30 ? 3

31 ? 2

32 ? 2

38 1 0

39 ? 1

69 1 0

See also BLANCHE’S DISSECTION, CYLINDER DISSEC-

TION, DISSECTION, EQUILATERAL TRIANGLE PACKING,
FAULT-FREE RECTANGLE, KLEIN BOTTLE DISSECTION,
MÖ BIUS STRIP DISSECTION, MRS. PERKINS’ QUILT,
PERFECT RECTANGLE, PROJECTIVE PLANE DISSEC-

TION, TORUS DISSECTION
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Perfectly Weighted Tree
If G is a weighted tree with weights/wi�1/ assigned to
each vertex vi; then G is perfectly weighted if the
matrix

MG�

w1 0 � � � 0
0 w2 � � � 0
n :::

::: n
0 0

::: wn

2
664

3
775�adj(G);



where akj(G) is the ADJACENCY MATRIX of G (Butske
et al. 1999).

See also ADJACENCY MATRIX
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Perforation
The portion of a SURFACE left when an OPEN DISK is
removed from it.

See also OPEN DISK
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Periapsis

The smallest radial distance of an ELLIPSE as mea-
sured from a FOCUS. Taking v �0 in the equation of
an ELLIPSE

r �
a 1 � e2ð Þ

1 � e cos v

gives the periapsis distance

r��a(1 �e):

Periapsis for an orbit around the Earth is called
perigee, and periapsis for an orbit around the Sun is
called perihelion.

See also APOAPSIS, ECCENTRICITY, ELLIPSE, FOCUS

Perigon
An ANGLE of 2p radians �360� corresponding to the
CENTRAL ANGLE of an entire CIRCLE.

Perimeter
The ARC LENGTH along the boundary of a closed 2-D
region. The perimeter of a CIRCLE is called the
CIRCUMFERENCE.

See also CIRCUMFERENCE, CLUSTER PERIMETER, HON-

EYCOMB CONJECTURE, SEMIPERIMETER

Perimeter Polynomial
A sum over all CLUSTER PERIMETERS.

Period Doubling
A characteristic of some systems making a transition
to CHAOS. Doubling is followed by quadrupling, etc.
An example of a map displaying period doubling is
the LOGISTIC MAP.

See also CHAOS, LOGISTIC MAP

Period Ratio
HALF-PERIOD RATIO

Period Three Theorem
Li and Yorke (1975) proved that any 1-D system
which exhibits a regular CYCLE of period three will
also display regular CYCLES of every other length as
well as completely CHAOTIC CYCLES.

See also CHAOS, CYCLE (MAP)
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Periodic Function

A FUNCTION f (x) is said to be periodic with period p if

f (x) �f (x �np)

for n �1, 2, .... For example, the SINE function sin x;
illustrated above, is periodic with period 2p (as well
as with period �2 p; 4p; 6p; etc.).
The CONSTANT FUNCTION f (x) �0 is periodic with any
period R for all NONZERO REAL NUMBERS R , so there is
no concept analogous to the LEAST PERIOD for con-
stant functions.

See also ALMOST PERIODIC FUNCTION, DOUBLY PER-

IODIC FUNCTION, LEAST PERIOD, PERIODIC POINT,
PERIODIC SEQUENCE
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Periodic Matrix
A SQUARE MATRIX A such that the MATRIX POWER

Ak�1 �A for k a positive integer is called a periodic
matrix. If k is the least such integer, then the matrix
is said to have period k . If k �1, then A2 �A and A is
called IDEMPOTENT.

See also MATRIX POWER
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Periodic Point
A point x0 is said to be a periodic point of a FUNCTION f
of period n if f n(x0) �x0 ; where f0(x) �x and f n(x) is
defined recursively by f n(x) �f f n�1(x)ð Þ:/

See also LEAST PERIOD, PERIODIC FUNCTION, PERI-

ODIC SEQUENCE

Periodic Sequence
A SEQUENCE aif g is said to be periodic with period p
with if it satisfies ai �ai�np for n �1, 2, .... For
example,
f1; 2; 1; 2; 1; 2; 1; 2; 1; 2 ; 1 ; 2 ; 1 ; 2; . . .g is a peri-
odic sequence with LEAST PERIOD 2.

See also EVENTUALLY PERIODIC, PERIODIC FUNCTION,
PERIODIC POINT

Periodic Zeta Function

F(x; s) �
X�
m�1

e2pimx

ms

� cs e2pix
� �

;

where cs(x) is the POLYGAMMA FUNCTION.

See also POLYGAMMA FUNCTION, RIEMANN ZETA

FUNCTION, ZETA FUNCTION
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Periodogram
A graphical plot with ABSCISSA given by the number p
of consecutive numbers constituting a single period
and ORDINATE given by the correlation ratio h : The
equation of the periodogram is

h2 �

a2

2m2
sin2 mpp

T

 !
�

s2
b

m
1
2 a

2 � s2
b

;

where each of the terms of the sequence ux consists of
a simple periodic part of period T , together with a
part which does not involve this periodicity bx ; so

ux �a sin
2px

T

 !
�bx ;

/sb is the standard deviation of the bs, s is the
standard deviation of the us, and m is the number
of periods covered by the observations.

See also TIME SERIES ANALYSIS
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Perko Pair

The KNOTS 10 �/161 and 10 �/162 illustrated above. For
many years, they were listed as separate knots in
Little (1885) and all similar tables, including the
pictorial enumeration of Rolfsen (1976, Appendix C).
They were identified as identical by Perko (1974),
who found that they are related to one another by the
so-called PERKO MOVE (Perko 1974, Hoste et al. 1998).
Although these knots are equivalent, their diagrams
have different WRITHES (Hoste et al. 1998).

See also PERKO MOVE
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Permanence of Algebraic Form
All ELEMENTARY FUNCTIONS can be extended to the
COMPLEX PLANE. Such definitions agree with the real



definitions on the X -AXIS and constitute an ANALYTIC

CONTINUATION.

See also ANALYTIC CONTINUATION, ELEMENTARY

FUNCTION, PERMANENCE OF MATHEMATICAL RELA-

TIONS PRINCIPLE
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Permanence of Mathematical Relations
Principle
CONTINUITY PRINCIPLE

Permanent
An analog of a DETERMINANT where all the signs in
the expansion by MINORS are taken as POSITIVE. The
permanent of a MATRIX A is the coefficient of x1 . . . xn

in

Yn

i�1

ai1x1 �ai2x2 �. . .�ainxnð Þ

(Vardi 1991). Another equation is the RYSER FORMULA

perm aij

� �
�(�1)n

X
a ⁄f1 ; ... ; ng

(�1)½s½
Yn

i�1

X
j 
 s

aij ;

where the SUM is over all SUBSETS of f1; . . .  ; ng; and
½s½ is the number of elements in s (Vardi 1991). Muir
(1960, p. 19) uses the notation ½� ½� to denote a
permanent. The permanent can be implemented in
Mathematica as

Permanent[m_List] : � With[{v � Array[x,

Length[m]]},

Coefficient[Times @@ (m.v), Times @@ v] ]

The computation of permanents has been studied
fairly extensively in algebraic complexity theory. The
complexity of the best-known algorithms grows as the
exponent of the matrix size (Knuth 1998, p. 499),
which would appear to be very surprising, given the
permanent’s similarity to the tractable DETERMINANT.

If M is a UNITARY MATRIX, then

perm(M)j j51

(Minc 1978, p. 25; Vardi 1991). The maximum per-
manent for an n �n BINARY MATRIX is n! ; correspond-
ing to all elements 1.

See also DETERMINANT, FROBENIUS-KÖ NIG THEOREM,
IMMANANT, RYSER FORMULA, SCHUR MATRIX
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Permil
The use of permil (a.k.a. parts per thousand) is a way
of expressing RATIOS in terms of whole numbers.
Given a RATIO or FRACTION, it is converted to a
permil-age by multiplying by 1000 and appending a
"mil sign" %0. For example, if an investment grows
from a number P �13 :00 to a number A �22 :50; then
A is 22:50 =13:00 �1 :7308 times as much as P , or
1730.8%0.

See also PERCENT
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Permutation
The rearrangement of elements in an ordered list S
into a ONE-TO-ONE correspondence with S itself, also
called an "arrangement number" or "order." The
number of permutations on a set of n elements is
given by n! (n FACTORIAL; Uspensky 1937, p. 18). For
example, there are 2! �2 � 1 �2 permutations of
f1; 2g; namely f1 ; 2g and f2; 1g; and 3! �3 � 2 � 1 �
6 permutations of f1; 2; 3g; namely f1; 2; 3g;
f1; 3; 2g; f2; 1 ; 3 g; f2; 3; 1g; f3; 1; 2 g; and
f3; 2; 1g: The permutations of a list can be found in
Mathematica using the command Permuta-
tions[list ]. A list of length n can be tested to see if
it is a permutation of 1, ..., n with the command
PermutationQ[list ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

Sedgewick (1977) summarized a number of algo-
rithms for generating permutations, and identifies
the minimum change permutation algorithm of Heap
(1963) to be generally the fastest (Skiena 1990, p. 10).
Another method of enumerating permutations was
given by Johnson (1963; Séroul 2000, pp. 213�/218).

The number of ways of obtaining an ordered subset of
k elements from a set of n elements is given by



nPk �
n!

(n � k)! 
(1)

(Uspensky 1937, p. 18). For example, there are
4!=2! �12 2-subsets of f1; 2; 3; 4g; namely f1; 2g;
f1; 3g; f1 ; 4g; f2 ; 1 g; f2; 3g; f2; 4g; f3; 1g; f3; 2g;
f3; 4g; f4 ; 1 g; f4; 2g; and f4 ; 3 g: The unordered
subsets containing k elements are known as the K -

SUBSETS of a given set.

A representation of a permutation as a product of
CYCLES is unique (up to the ordering of the cycles). An
example of a cyclic decomposition is (/ f1; 3; 4g; f2 g);
corresponding to the permutations (/1 0 3; 3 0 4; 4 0
1) and (/2 0 2); which combine to give f4 ; 2; 1; 3g:
Muir (1960, p. 8) uses the notation (1237)(4568) to
denote the ordered permutation (12345678); and
(1237)(4568) to denote (12374568) :/

Any permutation is also a product of TRANSPOSITIONS.
Permutations are commonly denoted in LEXICO-

GRAPHIC or TRANSPOSITION ORDER. There is a corre-
spondence between a PERMUTATION and a pair of
YOUNG TABLEAUX known as the SCHENSTED CORRE-

SPONDENCE.

The number of wrong permutations of n objects is
[n!=e] where [x] is the NINT function. A permutation of
n ordered objects in which no object is in its natural
place is called a DERANGEMENT (or sometimes, a
COMPLETE PERMUTATION) and the number of such
permutations is given by the SUBFACTORIAL !n:/

Using

(x �y)n �
Xn

r�0

n
r

$ %
xn�ryr (2)

with x �y �1 gives

2n �
Xn

r�0

n
r

$ %
; (3)

so the number of ways of choosing 0, 1, ..., or n at a
time is 2n :/

The set of all permutations of a set of elements 1, ..., n
can be obtained using the following recursive proce-
dure

1 2
=

2 1
(4)

1 2 3
=

1 3 2
=

3 1  2
½
3 2  1

_
2 3 1

_
2 1 3

(5)

Let the set of INTEGERS 1, 2, ..., n be permuted and
the resulting sequence be divided into increasing
RUNS. As n approaches INFINITY, the average length
of the nth RUN is denoted Ln: The first few values are

L1�e�1�1:71828818 . . . (6)

L2�e2�2e�1:9524 . . . (7)

L3�e3�3e2�3
2 e�1:9957 . . . ; (8)

where E is the base of the NATURAL LOGARITHM

(Knuth 1973, Le Lionnais 1983).

See also ALTERNATING PERMUTATION, BINOMIAL

COEFFICIENT, CIRCULAR PERMUTATION, COMBINA-

TION, COMPLETE PERMUTATION, CYCLE (PERMUTA-

TION), DERANGEMENT, DISCORDANT PERMUTATION,
EULERIAN NUMBER, K -SUBSET, LINEAR EXTENSION,
PERMUTATION INVERSION, PERMUTATION MATRIX,
PERMUTATION PATTERN, PERMUTATION SYMBOL, RAN-

DOM PERMUTATION, SUBFACTORIAL, TRANSPOSITION
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Permutation Ascent
An ascent is a pair of adjacent positions in a
PERMUTATION which are out of order. k ascents imply
k �1 PERMUTATION RUNS (Skiena 1990, p. 31).

See also PERMUTATION, PERMUTATION RUN
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Permutation Graph

For a PERMUTATION a in the SYMMETRIC GROUP Sp ; the
a/-permutation graph of a LABELED GRAPH G is the
GRAPH UNION of two disjoint copies of G (say, G1 and
G2) ; together with the lines joining point vi of Gi with
va(i) of G2 (Harary 1994, p. 175). Skiena (1990, p. 28)
defined a permutation graph Gp as a GRAPH whose
edges vi ; vj

7 8
correspond exactly to (i, j ) being a

PERMUTATION INVERSION is some PERMUTATION p , i.e.,
i B j but j occurs before i in p .
The above graph corresponds to the permutation
f2; 1; 5; 6; 7; 10; 9; 4; 8; 3g; which has PERMUTA-

TION INVERSION f2; 1; 10; 8; 3; 4; 5; 9; 7; 6g:/

See also PERMUTATION, PERMUTATION INVERSION
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Permutation Group
A FINITE GROUP of order n! consisting of substitutions
of n elements for each other. For instance, the 24
PERMUTATIONS on four elements form a permutation
group, and one the operations in this group is the
permutation f4; 2; 1; 3g; which rearranges the ele-
ments fA; B ; C ; D g in the order fD ; B; A; C g: A
permutation group of two elements is called a
TRANSPOSITION.

Every SUBSTITUTION GROUP with > 2 elements can be
written as a product of transpositions. For example,

(abc) �(ab)(ac)

(abcde) �(ab)(ac)(ad)(ae) :

CONJUGACY CLASSES of elements which are inter-
changed are called CYCLES (in the above example, the
CYCLES are ff1; 3; 4g; f2gg) :/

Two PERMUTATIONS form a group only if one is the
identity element and the other is an INVOLUTION, i.e.,
a PERMUTATION which is its own inverse (Skiena
1990, p. 20).

See also CAYLEY’S GROUP THEOREM, CYCLE (PERMU-

TATION), GROUP, INVOLUTION (PERMUTATION), NET-

TO’S CONJECTURE, PERMUTATION, SUBSTITUTION

GROUP, TRANSPOSITION

References
Cameron, P. Permutation Groups. New York: Cambridge

University Press, 1999.
Furst, M.; Hopcroft, J.; and Luks, E. "Polynomial Time

Algorithms for Permutation Groups." In Proc. Symp.
Foundations Computer Sci. IEEE, pp. 36�/41, 1980.

Roberts, F. S. Applied Combinatorics. Englewood Cliffs, NJ:
Prentice-Hall, 1984.

Skiena, S. "Permutation Groups." §1.2 in Implementing
Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley,
pp. 17�/26, 1990.

Wielandt, H. Finite Permutation Groups. New York: Aca-
demic Press, 1964.

Permutation Index
The index of a PERMUTATION p is defined as the sum
of all subscripts j such that pj > pj�1; for 15j5n:
MacMahon (1960) proved that the number of permu-
tations of size n having index k is the same as the
number having exactly k inversions (Skiena 1990,



p. 29). The permutation index can be computed as
Index[p ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

See also PERMUTATION
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Permutation Inversion
A pair of elements (pi ; pj) is called an inversion in a
permutation p if i � j and pi Bpj : For example, in the
permutation a6a5a7a3a8 contains the four inversions
a7a3 ; a5a3 ; a6a3 ; and a6a5 : Inversions are pairs which
are out of order, and are important in sorting
algorithms (Skiena 1990, p. 27).

The total number of inversions can be obtained by
summing the elements of the INVERSION VECTOR, and
is implemented as Inversions[p ] in the Mathema-
tica add-on package DiscreteMath‘Combinator-
ica‘ (which can be loaded with the command
BBDiscreteMath‘). The number of inversions in
any PERMUTATION is the same as the number of
interchanges of consecutive elements necessary to
arrange them in their natural order (Muir 1960, p. 1).
The value (�1)i(p) can be found in Mathematica using
Signature[p ].

The number of inversions in a PERMUTATION is equal
to that of its inverse permutation (Skiena 1990, p. 29;
Knuth 1998). If, from any permutation, another is
formed by interchanging two elements, then the
difference between the number of inversions in the
two is always an ODD NUMBER.

See also INVERSE PERMUTATION, INVERSION VECTOR,
PERMUTATION, PERMUTATION SYMBOL
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Permutation Matrix
A MATRIX pij obtained by permuting the ith and jth
rows of the IDENTITY MATRIX with i B j . Every row and
column therefore contain precisely a single 1, and
every permutation corresponds to a unique permuta-
tion matrix. A permutation matrix is nonsingular, so
the DETERMINANT is always NONZERO.

In addition, a permutation matrix satisfies

p2
ij �I ;

where I is the IDENTITY MATRIX. Applying to another
MATRIX, pijA gives A with the ith and jth rows
interchanged, and Apij gives A with the ith and jth
columns interchanged.

Interpreting the 1s in an n �n permutation matrix as
ROOKS gives an allowable configuration of nonattack-
ing ROOKS on an n�n CHESSBOARD.

See also ALTERNATING SIGN MATRIX, ELEMENTARY

MATRIX, IDENTITY, PERMUTATION, ROOK NUMBER

Permutation Pattern
Let F(n; s) denote the number of permutations on the
SYMMETRIC GROUP Sn which avoid s 
Sn as a sub-
pattern, where "/t contains s as a subpattern" is
interpreted to mean that there exist 15x15x25

. . .5xk5n such that for 15i; j5k;

t xið ÞBt xj

� �
(1)

IFF s(i)Bs(j):/

For example, a permutation contains the pattern
(123) IFF it has an ascending subsequence of length
three. Here, note that members need not actually be
consecutive, merely ascending (Wilf 1997). Therefore,
of the 3!�6 partitions of f1; 2; 3g; all but f3; 2; 1g
(i.e., f1; 2; 3g; f1; 3; 2g; f2; 1; 3g; f2; 3; 1g; and
f3; 1; 2g) contain the pattern (12) (i.e., an increasing
subsequence of length two).

The following table gives the numbers of pattern-
matching permutations of k , k�1; ..., n numbers for
various patterns a1 . . . akð Þ of length k .

pattern Sloane number of pattern-matching
permutations

1 A000142 1, 2, 6, 24, 120, 720, 5040, ...

12 A033312 1, 5, 23, 119, 719, 5039,
40319, ...

/a3/ A056986 1, 10, 78, 588, 4611, 38890, ...

1234 A000000 1, 17, 207, ...

1342 A000000 1, 17, 208, ...



The following table gives the numbers of pattern-
avoiding permutations of f1 ; . . . ; n g for various sets
of patterns.

Wilf class Sloane number of pattern-avoiding
permutations

/ a3/ A000108 1, 2, 5, 14, 42, 132, ...

123, 132,
213

A000027 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

132, 231,
321

A000027 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

123, 132,
3214

A000073 1, 2, 4, 7, 13, 24, 44, 81, 149,
...

123, 132,
3241

A000071 1, 2, 7, 12, 20, 33, 54, 88,
143, ...

123, 132,
3412

A000124 1, 2, 4, 7, 11, 16, 22, 29, 37,
46, ...

123, 231,
a(1)

4 /

A004275 1, 2, 4, 6, 8, 10, 12, 14, 16,
18, ...

123, 231,
a(2)

4 /

A000124 1, 2, 4, 7, 11, 16, 22, 29, 37,
46, ...

123, 231,
4321

1, 2, 4, 6, 3, 1, 0, ...

132, 213,
1234

A000073 1, 2, 4, 7, 13, 24, 44, 81, 149,
...

213, 231,
a(3)

4 /

A000124 1, 2, 4, 7, 11, 16, 22, 29, 37,
46, ...

Abbreviations used in the above table are summar-
ized below.

abbreviation patterns in class

/ a3/ 123, 132, 213, 232, 312, 321

/ a(1)
4 / 1432, 2143, 3214, 4132, 4213, 4312

/ a(2)
4 / 1234, 1243, 1324, 1342, 1423, 2134,

2314, 2341, 2413, 2431, 3124,

3142, 3241, 3412, 3421, 4123, 4231

/ a(3)
4 / 1234, 1243, 1423, 1432

See also CONTAINED PATTERN, ORDER ISOMORPHIC,
PERMUTATION, PERMUTATION PATTERN, STANLEY-

WILF CONJECTURE, WILF CLASS, WILF EQUIVALENT
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Permutation Pseudotensor
PERMUTATION TENSOR

Permutation Run
A set of ascending sequences in a PERMUTATION is
called a run. A sorted permutation consists of a single
run, whereas a reverse permutation consists of n
runs, each of length 1. Runs are closely related to
PERMUTATION ASCENTS, with n runs implying n �1
ascents (Skiena 1990, p. 31). The number of runs in a
permutation can be computed using Runs[p ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘). The number of
permutations of length n with exactly k runs is given
by the EULERIAN NUMBER

n
k

9 :
:/

Surprisingly, the expected length of the first run is
shorter than the expected length of the second run
(Gassner 1967; Skiena 1990, p. 30; Knuth 1998).

See also EULERIAN NUMBER, PERMUTATION, PERMU-

TATION ASCENT, RUN
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Permutation Symbol
A three-index object sometimes called the Levi-Civita
symbol or signature, and defined by

eijk �

0 for i �j; j �k; or k �i
�1 for (i ; j; k) 
 f(1; 2; 3); (2; 3; 1); (3; 1; 2)g
�1 for (i ; j; k) 
 f(1; 3; 2); (3; 2; 1); (2; 1; 3)g:

8<
:

(1)

The permutation symbol is implemented in Mathe-
matica as Signature[list ]. The permutation symbol
satisfies

dij eijk �0 (2)

eipq ejpq �2dij (3)

eijk eijk �6 (4)

eijk epqk � dip djq � diq djp ; (5)

where dij is the KRONECKER DELTA. The symbol can be
defined as the SCALAR TRIPLE PRODUCT of unit vectors
in a right-handed coordinate system,

eijk �x̂i � (x̂j �x̂k) : (6)

The symbol can also be interpreted as a TENSOR, in
which case it is called the PERMUTATION TENSOR.

The symbol can be generalized to an arbitrary
number of elements, in which case the permutation
symbol is (�1)i(p) ; where i(p) is the number of
transpositions of pairs of elements (i.e., PERMUTATION

INVERSIONS) that must be composed to build up the
permutation p (Skiena 1990). This type of symbol
arises in computation of determinants of n �n ma-
trices. The number of permutations on n symbols
having signature �1 is n!=2; which is also the
number of permutations having signature �1 :/

See also CYCLE (PERMUTATION), PERMUTATION, PER-

MUTATION INVERSION, PERMUTATION TENSOR, TRANS-

POSITION
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Permutation Tensor
A PSEUDOTENSOR which is ANTISYMMETRIC under the
interchange of any two slots. Recalling the definition
of the PERMUTATION SYMBOL in terms of a SCALAR

TRIPLE PRODUCT of the Cartesian unit vectors,

eijk �x̂i � (x̂j �x̂k) �[x̂i ; x̂j ; x̂k]; (1)

the pseudotensor is a generalization to an arbitrary
BASIS defined by

eab ���m �
ffiffiffiffiffiffi
gj j

p
[ a; b; . . . ; m] (2)

eab��� m �
[ a; b; . . . ; m]ffiffiffiffiffiffi

gj j
p ; (3)

where

[ a; b; . . . ; m]

�
1 the arguments are an even permutation

�1 the arguments are an odd permutation
0 two or more arguments are equal ;

8<
:

(4)

and g �det(gab) ; where g ab is the METRIC TENSOR.
e(x1 ; . . . ; xn) is NONZERO IFF the VECTORS are LINE-

ARLY INDEPENDENT.

See also KRONECKER DELTA, PERMUTATION SYMBOL,
SCALAR TRIPLE PRODUCT

Permutation Tests

See also BOOTSTRAP METHODS, JACKKNIFE, HYPOTH-

ESIS TESTING, RESAMPLING STATISTICS
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Perpendicular

Two lines, vectors, planes, etc., are said to be
perpendicular if they meet at a RIGHT ANGLE. In Rn;
two VECTORS A and B are PERPENDICULAR if their DOT



PRODUCT

A � B �0:

In R2 ; a LINE with SLOPE m2 ��1=m1 is PERPENDICU-

LAR to a LINE with SLOPE m1 : Perpendicular objects
are sometimes said to be "orthogonal."
In the above figure, the LINE SEGMENT AB is perpen-
dicular to the LINE SEGMENT CD . This relationship is
commonly denoted with a small SQUARE at the vertex
where perpendicular objects meet, as shown above,
and is denoted AB �CD:/

See also ORTHOGONAL LINES, ORTHOGONAL VECTORS,
PARALLEL, PERPENDICULAR BISECTOR, PERPENDICU-

LAR FOOT, RIGHT ANGLE
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Perpendicular Bisector

The perpendicular bisectors of a TRIANGLE DA1A2A3

are lines passing through the MIDPOINT Mi of each
side which are PERPENDICULAR to the given side. A
TRIANGLE’S three perpendicular bisectors meet (Casey
1888, p. 9) at a point C known as the CIRCUMCENTER

(Durell 1928), which is also the center of the TRIAN-

GLE’S CIRCUMCIRCLE.

See also CIRCUMCENTER, MIDPOINT, PERPENDICULAR,
PERPENDICULAR FOOT
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Perpendicular Foot

The FOOT of the PERPENDICULAR is the point on the
leg opposite a given vertex of a TRIANGLE at which the
PERPENDICULAR passing through that vertex inter-
sects the side. The length of the LINE SEGMENT from
the vertex to the perpendicular foot is called the
ALTITUDE of the TRIANGLE.
When a line is drawn from a POINT to a PLANE, its
intersection with the PLANE is known as the foot.

See also ALTITUDE, FOOT, PERPENDICULAR, PERPEN-

DICULAR BISECTOR, TAYLOR CIRCLE
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Perrin Pseudoprime
If p is PRIME, then p jP(p); where P(p) is a member of
the PERRIN SEQUENCE 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, ...
(Sloane’s A001608). A Perrin pseudoprime is a COM-

POSITE NUMBER n such that njP(n): Several "unrest-
ricted" Perrin pseudoprimes are known, the smallest
of which are 271441, 904631, 16532714, 24658561, ...
(Sloane’s A013998).

Adams and Shanks (1982) discovered the smallest
unrestricted Perrin pseudoprime after unsuccessful
searches by Perrin (1899), Malo (1900), Escot (1901),
and Jarden (1966). (A 1996 article by Stewart’s
stating that no Perrin pseudoprimes were then
known was incorrect.)

Grantham (1996) generalized the definition of Perrin
pseudoprime with parameters (r, s ) to be an ODD

COMPOSITE NUMBER n for which either

1. ( D=n) �1 and n has an S-SIGNATURE, or
2. ( D=n) ��1 and n has a Q-SIGNATURE,

where (a=b) is the JACOBI SYMBOL. All the 55 Perrin
pseudoprimes less than 50 �109 have been computed
by Kurtz et al. (1986). All have S-SIGNATURE, and
form the sequence Sloane calls "restricted" Perrin
pseudoprimes: 27664033, 46672291, 102690901, ...
(Sloane’s A018187).

See also PERRIN SEQUENCE, PSEUDOPRIME
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Perrin Sequence
The INTEGER SEQUENCE defined by the recurrence

P(n) �P(n �2) �P(n �3) (1)

with the initial conditions P(0) �3; P(1) �0 ; P(2) �2:
This RECURRENCE RELATION is the same as that for
the PADOVAN SEQUENCE but with different initial
conditions. The first few terms for n �0, 1, ..., are 3,
0, 2, 3, 2, 5, 5, 7, 10, 12, 17, ... (Sloane’s A001608). P(n)
is the solution of a third-order linear homogeneous
DIFFERENCE EQUATION having characteristic equation

x3 �x �1 �0; (2)

discriminant -23, and ROOTS

a :1:324717957 (3)

b :�0:6623589786 �0:5622795121i (4)

g :�0 :6623589786 �0:5622795121i : (5)

The solution is then

P(n) � an � bn � gn ; (6)

where

P(n)  an : (7)

Perrin (1899) investigated the sequence and noticed
that if n is PRIME, then njP(n): The first statement of
this fact is attributed to É . Lucas in 1876 by Stewart
(1996). Perrin also searched for but did not find any
COMPOSITE NUMBER n in the sequence such that
njP(n) : Such numbers are now known as PERRIN

PSEUDOPRIMES. Malo (1900), Escot (1901), and Jarden
(1966) subsequently investigated the series and also
found no PERRIN PSEUDOPRIMES. Adams and Shanks
(1982) subsequently found that 271,441 is such a
number.

See also PADOVAN SEQUENCE, PERRIN PSEUDOPRIME,
SIGNATURE (RECURRENCE RELATION)
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Perron Integral
An integral which is equivalent to the DENJOY

INTEGRAL "in the restricted sense."

See also DENJOY INTEGRAL

Perron Tree
A convex figure constructed by iteratively halving the
base of an EQUILATERAL TRIANGLE and then sliding
adjacent triangles so that they slightly overlap.
Combining several Perron trees gives a region in
which the needle in the KAKEYA NEEDLE PROBLEM can
rotate, and can have arbitrarily small area.

See also KAKEYA NEEDLE PROBLEM

References
Falconer, K. J. The Geometry of Fractal Sets, 1st pbk. ed.,

with corrections. Cambridge, England: Cambridge Uni-
versity Press, 1990.

Wells, D. The Penguin Dictionary of Curious and Interesting
Geometry. London: Penguin, pp. 128 �/129, 1991.

Perron-Frobenius Operator
An OPERATOR which describes the time evolution of
densities in PHASE SPACE. The OPERATOR can be
defined by

rn �1 � L̃rn ;

where rn are the NATURAL DENSITIES after the nth
iteration of a map f . This can be explicitly written as

L̃r(y)�
X

x 
 f�1(y)

r(x)

f ?(x)j j
:

See also FROBENIUS-PERRON EQUATION
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Perron-Frobenius Theorem
If all elements aij of an IRREDUCIBLE MATRIX A are
NONNEGATIVE, then R �min Ml is an EIGENVALUE of
A and all the EIGENVALUES of A lie on the DISK

zj j5R;

where, if l �( l1 ; . . . ; l2 ; . . .  ; ln) is a set of NONNE-

GATIVE numbers (which are not all zero),

Ml �inf m : mli >
Xn

j�1

aij

�� ��lj ; 1 5i 5n

( )

and R �min Ml : Furthermore, if A has exactly p
EIGENVALUES (p 5n) on the CIRCLE zj j �R; then the
set of all its EIGENVALUES is invariant under rotations
by 2p=p about the ORIGIN.

See also WIELANDT’S THEOREM
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Perron’s Formula

A �(x) �
X?

ln 5x

an �
1

2pi g
c�i �

c �i�

f (s)
esx

s
ds ;

where

f (s) �
X

ane � lns :
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Perron’s Theorem
If m �( m1 ; m2 ; . . . ; mn) is an arbitrary set of POSITIVE

numbers, then all EIGENVALUES l of the n �n MATRIX

a �aij lie on the DISK zj j5mm ; where

mm � max
1 5i 5n

Xn

j�1

mj

mi

aij

�� ��:
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Persistence
ADDITIVE PERSISTENCE, MULTIPLICATIVE PERSIS-

TENCE, PERSISTENT NUMBER, PERSISTENT PROCESS

Persistent Number
An n -persistent number is a POSITIVE INTEGER k
which contains the digits 0, 1, ..., 9 (i.e., is a
PANDIGITAL NUMBER), and for which 2k; ..., nk also
share this property. No �/-persistent numbers exist.
However, the number k �1234567890 is 2-persistent,
since 2k �2469135780 but 3k �3703703670; and the
number k �526315789473684210 is 18-persistent.
There exists at least one k -persistent number for
each POSITIVE INTEGER k .

n Sloane n -persistent

1 A051264 1023456798, 1023456897,
1023456978, 1023456987, ...

2 A051018 1023456789, 1023456879,
1023457689, 1023457869, ...

3 A051019 1052674893, 1052687493,
1052746893, 1052748693, ...

4 A051020 1053274689, 1089467253,
1253094867, 1267085493, ...

See also ADDITIVE PERSISTENCE, MULTIPLICATIVE

PERSISTENCE, PANDIGITAL NUMBER
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Persistent Process
A FRACTAL PROCESS for which H > 1=2; so r �0.

See also ANTIPERSISTENT PROCESS, FRACTAL PROCESS

Perspective

Perspective is the art and mathematics of realistically
depicting 3-D objects in a 2-D plane, sometimes called
CENTRIC or NATURAL PERSPECTIVE to distinguish it
from BICENTRIC PERSPECTIVE. The study of the projec-
tion of objects in a plane is called PROJECTIVE

GEOMETRY. The principles of perspective drawing
were elucidated by the Florentine architect F. Bru-
nelleschi (1377 �/1446). These rules are summarized
by Dixon (1991):

1. The horizon appears as a line.
2. Straight lines in space appear as straight lines
in the image.
3. Sets of PARALLEL lines meet at a VANISHING

POINT.
4. Lines PARALLEL to the picture plane appear
PARALLEL and therefore have no VANISHING POINT.

There is a graphical method for selecting vanishing
points so that a CUBE or box appears to have the
correct dimensions (Dixon 1991).

See also BICENTRIC PERSPECTIVE, LEONARDO’S PARA-

DOX, PERSPECTIVE AXIS, PERSPECTIVE CENTER, PER-

SPECTIVE COLLINEATION, PERSPECTIVE TRIANGLES,
PERSPECTIVITY, PROJECTION, PROJECTIVE GEOMETRY,
VANISHING POINT, ZEEMAN’S PARADOX
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Perspective Axis

The line joining the three collinear points of inter-
section of the extensions of corresponding sides in
PERSPECTIVE TRIANGLES, sometimes also called the
homology axis.

See also PERSPECTIVE CENTER, PERSPECTIVE TRIAN-

GLES, SONDAT’S THEOREM

Perspective Center

The point at which the three LINES connecting the
VERTICES of PERSPECTIVE TRIANGLES (from a point)
CONCUR, sometimes also called the homology center
or pole.

See also PERSPECTIVE AXIS, PERSPECTIVE TRIANGLES

Perspective Collineation
A perspective collineation with center O and axis o is
a COLLINEATION which leaves all lines through O and
points of o invariant. Every perspective collineation is
a PROJECTIVE COLLINEATION.

See also COLLINEATION, ELATION, HOMOLOGY (GEO-

METRY), PROJECTIVE COLLINEATION
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Perspective Triangles

Two TRIANGLES DABC and DA?B ?C? are perspective
from a line if the extensions of their three pairs of
corresponding sides meet in COLLINEAR points X , Y ,
and Z . The line joining these points is called the
PERSPECTIVE AXIS.
Two TRIANGLES are perspective from a point if their
three pairs of corresponding VERTICES are joined by
lines which meet in a point of CONCURRENCE O . This
point is called the PERSPECTIVE CENTER, or sometimes
the homology center or pole.

DESARGUES’ THEOREM guarantees that if two TRIAN-

GLES are perspective from a point, they are perspec-
tive from a line (called the PERSPECTIVE AXIS).
Triangles in perspective are sometimes said to be
homologous or copolar.

See also DESARGUES’ THEOREM, DILATION, HOMO-

THETIC TRIANGLES, PARALOGIC TRIANGLES, PERSPEC-

TIVE AXIS, PERSPECTIVE CENTER
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Perspectivity
A correspondence between two RANGES that are
sections of one PENCIL by two distinct lines.

See also PENCIL, PROJECTIVITY, RANGE (LINE SEG-

MENT)

Persymmetric Matrix
A SQUARE MATRIX with constant SKEW DIAGONALS.
Such matrices are sometimes known as orthosym-
metric in older literature.

See also DIAGONAL MATRIX, SKEW DIAGONAL, SKEW

SYMMETRIC MATRIX, SYMMETRIC MATRIX
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Pesin Theory
The theory of non-uniformly hyperbolic DIFFEO-

MORPHISMS.

See also DIFFEOMORPHISM
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Peters Polynomial
Polynomials sk(x; l; m) which are a generalization of
the BOOLE POLYNOMIALS, form the SHEFFER SE-

QUENCE for

g(t)�(1�elt)m (1)

f (t)�et�1 (2)

and have GENERATING FUNCTION

X�
k�0

sk(x; l; m)

k!
tk�[1�(1�t)l]�m(1�t)x: (3)

The first few are

s0(x; l; m)�2�m

s1(x; l; m)�2�(m�1)(2x�lm)

s2(x; l; m)�2�(m�2)[4x(x�1)�(2�4x)lm

�m(m�1)l2]:
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Peters Projection

A CYLINDRICAL EQUAL-AREA PROJECTION that de-
emphasizes the exaggeration of areas at high lati-
tudes by shifting the standard LATITUDE to fs �
44 :138� (or sometimes 458 or 478; Dana).

See also BALTHASART PROJECTION, BEHRMANN CY-

LINDRICAL EQUAL-AREA PROJECTION, CYLINDRICAL

EQUAL-AREA PROJECTION, CYLINDRICAL PROJECTION,
EQUAL-AREA PROJECTION, GALL ORTHOGRAPHIC PRO-

JECTION, LAMBERT AZIMUTHAL EQUAL-AREA PROJEC-

TION, PETERS PROJECTION
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Petersen Graph

"The" Petersen graph is the GRAPH illustrated above
possessing ten nodes, all of whose nodes have DEGREE

3 (Saaty and Kainen 1986, Harary 1994, p. 89). The
Petersen graph is the only smallest-GIRTH graph
which has no Tait coloring, and is the unique 5-CAGE

GRAPH (Harary 1994, p. 175). It is the complement of
the LINE GRAPH of the COMPLETE GRAPH K5 (Skiena
1990, p. 139), and the ODD GRAPH O3 (Skiena 1990,
p. 162). It is depicted on the cover of the journal
Discrete Mathematics . The Petersen graph is the

smallest HYPOHAMILTONIAN GRAPH

The Petersen graph provides a 6-color coloring of the
PROJECTIVE PLANE.

The seven graphs obtainable from the COMPLETE

GRAPH K6 by repeated triangle-Y exchanges are also
called Petersen graphs, where the three EDGES form-
ing the TRIANGLE are replaced by three EDGES and a
new VERTEX that form a Y, and the reverse operation
is also permitted. A GRAPH is intrinsically linked IFF it
contains one of the seven Petersen graphs (Robertson
et al. 1993).

See also CAGE GRAPH, GIRTH, HOFFMAN-SINGLETON

GRAPH, HYPOHAMILTONIAN GRAPH, ODD GRAPH
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Petersen-Shoute Theorem
A beautiful general theory of which the following two
statements are special cases.

1. If DABC and DA?B?C ? are two DIRECTLY SIMILAR

triangles, while DAA?Aƒ; DBB ?Bƒ; and DCC?Cƒ are
three DIRECTLY SIMILAR triangles, then DAƒBƒC ƒ is
directly similar to DABC:/
2. When all the points P on AB are related by a
SIMILARITY TRANSFORMATION to all the points P? on
A?B?; the points dividing the segment PP? in a
given ratio are distant and collinear, or else they
coincide.

See also DIRECTLY SIMILAR, SIMILARITY TRANSFORMA-

TION
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Peterson-Mainardi-Codazzi Equations

@e

@v 
�

@f

@u 
�e G1

12 �f ( G2
12 �G1

11) �g G2
11 (1)

@f

@v 
�

@g

@u 
�e G1

22 �f ( G2
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12) �gG2
12 ; (2)

where e , f , and g are coefficients of the second
FUNDAMENTAL FORM and Gk

ij are CHRISTOFFEL SYM-

BOLS OF THE SECOND KIND. Therefore,
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where E , F , and G are coefficients of the first
FUNDAMENTAL FORM.

References
Gray, A. "The Peterson-Mainardi-Codazzi Equations." §28.3

in Modern Differential Geometry of Curves and Surfaces
with Mathematica, 2nd ed. Boca Raton, FL: CRC Press,
pp. 649 �/652, 1997.

Green, A. E. and Zerna, W. Theoretical Elasticity, 2nd ed.
New York: Dover, p. 37, 1992.

Petersson Conjecture
Petersson considered the absolutely converging DI-

RICHLET L -SERIES

f(s) �
Y

p

1

1 � c(p)p �s � p2k �1p �2s 
:

Writing the DENOMINATOR as

1 �c(p)x �p2k �1x2 �(1 �r1x)(1 �r2x) ;

where

r1 �r2 �c(p)

and

r1r2 �p2k �1 ;

Petersson conjectured that r1 and r2 are always
COMPLEX CONJUGATE, which implies

r1j j � r2j j �pk�1=2

and

c(p)j j52pk�1=2:

This conjecture was proven by Deligne (1974), which
also proved the TAU CONJECTURE as a special case.
Deligne was awarded the FIELDS MEDAL for his proof.

See also DIRICHLET L -SERIES, TAU CONJECTURE
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Peter-Weyl Theorem
Establishes completeness for a group REPRESENTA-

TION.
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Petrie Polygon

A SKEW POLYGON such that every two consecutive
sides (but no three) belong to a face of a regular
POLYHEDRON. Every REGULAR POLYHEDRON can be
orthogonally projected onto a plane in such a way
that one Petrie polygon becomes a REGULAR POLYGON

with the remainder of the projection interior to it. The
Petrie polygon of the POLYHEDRON fp ; q g has h sides,
where

cos2 p

h

 !
�cos2 p

p

 !
�cos2 p

q

 !
:

The Petrie polygons shown above correspond to the
PLATONIC SOLIDS.

See also PLATONIC SOLID, REGULAR POLYGON, REG-

ULAR POLYHEDRON, SKEW POLYGON
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Petrov Notation
A TENSOR notation which considers the RIEMANN

TENSOR Rlmnk as a matrix R(lm)(nk) with indices lm and
nk :/
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Petty Projection Inequality
An affine isoperimetric inequality.
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Pfaff Transformation
When xj j B1 =2;

(1 �x) �a
2F1(a; b; c; �x=(1 �x)) � 2F1(a; c �b; c; x) :
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Pfaffian
An analog of the determinant for NUMBER TRIANGLES

defined as a signed sum indexed by set partitions of
f1; . . . ; ng into pairs of elements. The Pfaffian is the
square root of the determinant of the corresponding
skew symmetric matrix.
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Pfaffian Form
A 1-FORM

v �
Xn

i�1

ai(x) dxi

such that

v �0 :
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p-Form
DIFFERENTIAL K -FORM

p-Good Path
A LATTICE PATH from one point to another is p -good if
it lies completely below the line

y�(p�1)x:

Hilton and Pederson (1991) show that the number of
p -good paths from (1, q�1) to (k , n�k) under the
condition 25k5n�p�15p(k�1) is

n�q
k�1

$ %
�
Xl

j�1
p dqj

n�pj
k�j

$ %
;

where a
b

� �
is a BINOMIAL COEFFICIENT, and

l�
n � k

p � 1

$ %
;

where xb c is the FLOOR FUNCTION.

See also CATALAN NUMBER, LATTICE PATH, SCHRÖ DER

NUMBER
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p-Group
When p is a PRIME NUMBER, then a p -group is a
GROUP, all of whose elements have order some power
of p . For a FINITE GROUP, the equivalent definition is
that the number of elements in G is a power of p . In
fact, every FINITE GROUP has subgroups which are p -
groups by the SYLOW THEOREMS, in which case they
are called SYLOW P -SUBGROUPS.

Sylow proved that every GROUP of this form has a
power-commutator representation on n generators
defined by

ap
i �

Yn

k �i�1

ab(i; k)
k (1)

for 0 5 b(i ; k) Bp ; 1 5i 5n and

[aj ; ai] �
Yn

k �j�1

a b(i ; j; k)
k (2)

for 0 5 b(i ; j; k) Bp; 1 5i Bj 5n: If (pm) is a PRIME

POWER and f (pm) is the number of GROUPS of order
(pm) ; then

f (pm) �pAm3 

; (3)

where

lim
m0�

A � 2
27 (4)

(Higman 1960ab).

See also GROUP, GROUP DIRECT PRODUCT, ORDER

(GROUP), SYLOW P -SUBGROUP, SYLOW THEOREMS
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Phase
The angular position of a quantity. For example, the
phase of a function cos( vt � f0) as a function of time
is

f(t) � vt � f0 :

The ARGUMENT of a COMPLEX NUMBER is sometimes
also called the phase.

See also ARGUMENT (COMPLEX NUMBER), COMPLEX

NUMBER, PHASOR, RETARDANCE

Phase Space
For a function or object with n DEGREES OF FREEDOM,
the n -D SPACE which is accessible to the function or
object is called its phase space.

See also WORLD LINE

Phase Transition
Erdos and Rényi (1960) showed that for many mono-
tone-increasing properties of RANDOM GRAPHS, graphs
of a size slightly less than a certain threshold are very
unlikely to have the property, whereas graphs with a
few more EDGES are almost certain to have it. This is
known as a PHASE TRANSITION (Janson et al. 2000,
p. 103).

See also RANDOM GRAPH
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Phasor
The representation, beloved of engineers and physi-
cists, of a COMPLEX NUMBER in terms of a COMPLEX

exponential

x�iy� zj jeif; (1)

where I (called J by engineers) is the IMAGINARY

NUMBER and the MODULUS and ARGUMENT (also called
PHASE) are

zj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
(2)

f�tan�1 y

x

 !
: (3)

Here, f (sometimes also denoted u) is called the
ARGUMENT or the PHASE. It corresponds to the
counterclockwise ANGLE from the POSITIVE REAL

AXIS, i.e., the value of f such that x�cos f and y�
sin f: The special kind of INVERSE TANGENT used here
takes into account the quadrant in which z lies and is
returned by the FORTRAN command ATAN2(X,Y) and
the Mathematica command ArcTan[x , y ], and is
often restricted to the range �pBu5p: In the
degenerate case when x�0,

f�
�1

2 p if yB0

undefined if y�0
1
2 p if y > 0

8><
>: (4)

It is trivially true that



X
i

R[ci] �R
X

i

ci

" #
: (5)

Now consider a SCALAR FUNCTION c � c0eif : Then

I �[ R( c)]2 � 1
2( c � c̄)
h i2

�1
4( c � c̄)2

�1
4(c

2 �2c c̄ � c̄2) ; (6)

where c̄ is the COMPLEX CONJUGATE. Look at the time
averages of each term,

c2
9 :

� c2
0e2if

9 :
� c2

0 e2if
9 :

�0 (7)

� c c̄�� c2
0ei f c0e �i f

9 :
� c2

0 � ½ c½2 (8)

c̄2
9 :

� c2
0e �2if

9 :
� c2

0 e �2i f
9 :

�0: (9)

Therefore,

�I ��1
2½ c½

2 : (10)

Consider now two scalar functions

c1 � c1 ; 0ei(kr1�f1) (11)

c2 � c2 ; 0ei(kr2�f2) : (12)

Then

I �[ R( c1) �R( c2)]2 �1
4[(c1 � c̄1) �(c2 � c̄2)]2

�1
4[(c1 � c̄1)2 �( c2 � c̄2)2

�2(c1 c2 � c1c̄2 � c̄1 c2 � c̄1c̄2)] (13)

�I ��1
4[2c1 c̄1 �2c2 c̄2 �2 c1 c̄2 �2 ̄c1 c2]

�1
2[ c1( ̄c1 � c̄2) � c2( ̄c1 � c̄2)]

�1
2( c1 � c2)( ̄c1 � c̄2) �1

2 ½c1 � c2 ½
2 : (14)

In general,

�I ��
1

2

Xn

i�1

ci

�����
�����
2

: (15)

See also AFFIX, ARGUMENT (COMPLEX NUMBER), CIS,
COMPLEX MULTIPLICATION, COMPLEX NUMBER, EX-

PONENTIAL FUNCTION, INVERSE TANGENT, MODULUS

(COMPLEX NUMBER), PHASE
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Phi Curve
An ADJOINT CURVE which bears a special relation to
the base curve.
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Phi Number System
For every POSITIVE INTEGER n , there is a correspond-
ing finite sequence of distinct INTEGERS k1 ; ..., km such
that

n � fk1 �. . .� fkm ;

where f is the GOLDEN RATIO.

See also GOLDEN RATIO
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Phi-Four Equation
The PARTIAL DIFFERENTIAL EQUATION

uH�uxx�u�u3�0:
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Philo Line

Given two intersecting lines OA and AB forming an
angle with vertex at O and a point X inside the angle

AOB; the Philo line (or Philon line) is the shortest
LINE SEGMENT AB touching both lines and passing
through X . The line is named for Philo of Byzantium
who considered the line while attempting to duplicate
the cube. The line can be constructed by finding OY�



AB such that AX �BY (Wells 1991).

The distances along the angle edges x and h and the
lengths along the Philo line l and dl can be computed
by solving the simultaneous equations

r2 sin2 f �x2 �l2

h2 �l2 �(r cos f �x)2 �(l �dl)2

(2l �dl)2 �h2 sin2 u �(r cos u �x �h cos u)2

(h2 �l2) �dl2 �r2 ;

where u is the VERTEX ANGLE and the point X has
POLAR COORDINATES (r ; f) :/
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Philon Line
PHILO LINE

Phragmén-Lindêlöf Theorem
Let f (z) be an ANALYTIC FUNCTION in an angular
domain W : ½arg z½B ap=2: Suppose there is a constant
M such that for each e > 0; each finite boundary point
has a NEIGHBORHOOD such that ½f (z) ½BM � e on the
intersection of D with this NEIGHBORHOOD, and that
for some POSITIVE number b > a for sufficiently large
½z½; the INEQUALITY ½f (z)½Bexp ½z½1 =b

� �
holds. Then

½f (z) ½5M in D .
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Phyllotaxis
The beautiful arrangement of leaves in some plants,
called phyllotaxis, obeys a number of subtle mathe-
matical relationships. For instance, the florets in the
head of a sunflower form two oppositely directed
spirals: 55 of them clockwise and 34 counterclock-
wise. Surprisingly, these numbers are consecutive
FIBONACCI NUMBERS. The ratios of alternate FIBO-

NACCI NUMBERS are given by the convergents to f�2 ;
where f is the GOLDEN RATIO, and are said to
measure the fraction of a turn between successive
leaves on the stalk of a plant: 1/2 for elm and linden,
1/3 for beech and hazel, 2/5 for oak and apple, 3/8 for
poplar and rose, 5/13 for willow and almond, etc.
(Coxeter 1969, Ball and Coxeter 1987). A similar
phenomenon occurs for DAISIES, pineapples, pine-
cones, cauliflowers, and so on.

Lilies, irises, and the trillium have three petals;
columbines, buttercups, larkspur, and wild rose
have five petals; delphiniums, bloodroot, and cosmos
have eight petals; corn marigolds have 13 petals;
asters have 21 petals; and daisies have 34, 55, or 89
petals–all FIBONACCI NUMBERS.

See also DAISY, FIBONACCI NUMBER, SPIRAL
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Pi

A REAL NUMBER denoted p which is defined as the
ratio of a CIRCLE’s CIRCUMFERENCE C to its DIAMETER

p�2r;

p�
C

d
�

C

2r
(1)

It is equal to

p�

3:141592653589793238462643383279502884197 . . .
(2)

(Sloane’s A000796). PI’S DIGITS have many interesting
properties, although not very much is known about
their analytic properties. PI’S CONTINUED FRACTION is
given by [3, 7, 15, 1, 292, 1, 1, 1, ...] (Sloane’s
A001203).

/p is known to be IRRATIONAL (Lambert 1761, Legendre
1794, Hermite 1873, Nagell 1951, Niven 1956, Struik
1969, Königsberger 1990, Schröder 1993, Stevens
1999). In 1794, Legendre also proved that p2 is
IRRATIONAL (Wells 1986, p. 76). p is also TRANSCEN-

DENTAL (Lindemann 1882). An immediate conse-
quence of Lindemann’s proof of the transcendence of
p also proved that the GEOMETRIC PROBLEM OF

ANTIQUITY known as CIRCLE SQUARING is impossible.
A simplified, but still difficult, version of Lindemann’s
proof is given by Klein (1955).

It is also known that p is not a LIOUVILLE NUMBER

(Mahler 1953). The following table summarizes pro-
gress in computing upper bounds on the IRRATION-

ALITY MEASURE for p: It is likely that the exponent can
be reduced to 2�e; where e is an infinitesimally small
number (Borwein et al. 1989).

upper
bound

reference

20 Mahler (1953), Le Lionnais (1983,
p. 50)

14.65 Chudnovsky and Chudnovsky
(1984)

8.0161 Hata (1992)

It is not known if p�e; p=e; or ln p are IRRATIONAL.
However, it is known that they cannot satisfy any
POLYNOMIAL equation of degree 58 with INTEGER

COEFFICIENTS of average size 109 (Bailey 1988,
Borwein et al. 1989).

J. H. Conway has shown that there is a sequence of
fewer than 40 FRACTIONS F1; F2; ... with the property
that if you start with 2n and repeatedly multiply by
the first of the Fi that gives an integer result until a
POWER of 2 (say, 2k) occurs, then k is the nth decimal
digit of p:/

/p crops up in all sorts of unexpected places in
mathematics besides CIRCLES and SPHERES. For ex-
ample, it occurs in the normalization of the GAUSSIAN

DISTRIBUTION, in the distribution of PRIMES, in the
construction of numbers which are very close to
INTEGERS (the RAMANUJAN CONSTANT), and in the
probability that a pin dropped on a set of PARALLEL

lines intersects a line (BUFFON’S NEEDLE PROBLEM). Pi
also appears as the average ratio of the actual length
and the direct distance between source and mouth in
a meandering river (Støllum 1996, Singh 1997).

A brief history of NOTATION for pi is given by
Castellanos (1988). p is sometimes known as LUDOL-

PH’S CONSTANT after Ludolph van Ceulen (1539�/

1610), a Dutch p calculator. The symbol p was first
used by English mathematician William Jones in
1706, and subsequently adopted by Euler. In Mea-
surement of a Circle, Archimedes (ca. 225 BC )
obtained the first rigorous approximation by INSCRIB-

ING and CIRCUMSCRIBING 6 � 2n
/-gons on a CIRCLE

using the ARCHIMEDES ALGORITHM. Using n�4 (a
96-gon), Archimedes obtained

3�10
71BpB3�1

7 (3)

(Wells 1986, p. 49; Shanks 1993, p. 140).

The Bible contains two references (I Kings 7:23 and
Chronicles 4:2) which give a value of 3 for p (Wells
1986, p. 48). It should be mentioned, however, that
both instances refer to a value obtained from physical
measurements and, as such, are probably well within
the bounds of experimental uncertainty. I Kings 7:23
states, "Also he made a molten sea of ten cubits from
brim to brim, round in compass, and five cubits in
height thereof; and a line thirty cubits did compass it
round about." This implies p�C=d�30=10�3: The
Babylonians gave an estimate of p as 3�1=8�3:125:
The Egyptians did better still, obtaining 28=34�
3:1605 . . . in the Rhind papyrus, and 22/7 elsewhere.
The Chinese geometers, however, did best of all,
rigorously deriving p to 6 decimal places.



There are many, many FORMULAS FOR PI, from the
simple to the very complicated.

Ramanujan (1913 �/14) and Olds (1963) give geometric
constructions for 355/113. Gardner (1966, pp. 92 �/93)
gives a geometric construction for 3 �16 =113 �
3:1415929 . . . : Dixon (1991) gives constructions for

6=5(1 � f) �3:141640 . . . and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 3 �tan(30 �)½ �2

q
�

3:141533 . . . : Constructions for approximations of p
are approximations to CIRCLE SQUARING (which is
itself impossible).

See also ALMOST INTEGER, ARCHIMEDES ALGORITHM,
BRENT-SALAMIN FORMULA, BUFFON-LAPLACE NEEDLE

PROBLEM, BUFFON’S NEEDLE PROBLEM, CIRCLE, CIR-

CUMFERENCE, DIAMETER, DIRICHLET BETA FUNCTION,
DIRICHLET ETA FUNCTION, DIRICHLET LAMBDA FUNC-

TION, E , EULER-MASCHERONI CONSTANT, GAUSSIAN

DISTRIBUTION, MACLAURIN SERIES, MACHIN’S FORMU-

LA, MACHIN-LIKE FORMULAS, PI APPROXIMATIONS, PI

CONTINUED FRACTION, PI DIGITS, PI FORMULAS, PI

WORDPLAY, RADIUS, RELATIVELY PRIME, RIEMANN

ZETA FUNCTION, SPHERE, TRIGONOMETRY
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Oeuvres complètes, Tome III. Paris: Hermann, pp. 146�/

149, 1912.
Hobsen, E. W. Squaring the Circle. New York: Chelsea,

1988.
Kanada, Y. "New World Record of Pi: 51.5 Billion Decimal

Digits." http://www.cecm.sfu.ca/personal/jborwein/Kana-
da_50b.html.

Klein, F. Famous Problems. New York: Chelsea, 1955.
Knopp, K. §32, 136, and 138 in Theory and Application of

Infinite Series. New York: Dover, p. 238, 1990.
Königsberger, K. Analysis 1. Berlin: Springer-Verlag, 1990.
Laczkovich, M. "On Lambert’s Proof of the Irrationality of p:/"

Amer. Math. Monthly 104, 439�/443, 1997.
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Viète, F. Uriorum de rebus mathematicis responsorum, liber
VIII, 1593.

Wagon, S. "Is p Normal?" Math. Intel. 7, 65�/67, 1985.
Wells, D. The Penguin Dictionary of Curious and Interesting

Numbers. Middlesex, England: Penguin Books, pp. 48�/55
and 76, 1986.

Whitcomb, C. "Notes on Pi (/p):/" http://witcombe.sbc.edu/
earthmysteries/EMPi.html.

Woon, S. C. "Problem 1441." Math. Mag. 68, 72�/73, 1995.

Pi Approximations
KOCHANSKY’S APPROXIMATION is the ROOT of

9x4�240x2�1492: (1)

given by

p:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40
3 �

ffiffiffiffiffiffi
12

pq
:3:141533: (2)

An approximation involving the GOLDEN MEAN is

p:6
5 f

2�
6

5

ffiffiffi
5

p
� 1

2

 !2

�3
5 3�

ffiffiffi
5

p
 �
�3:14164 . . . : (3)



Some approximations due to Ramanujan include

p:
19

ffiffiffi
7

p

16
ð4Þ

:7
3 1�1

5

ffiffiffi
3

p
 �
(5)

:9
5�

ffiffi
9
5

q
(6)

: 2143
22


 �1=4

� 92�
192

22

 !1=4

(7)

¼ 102�
2222

2222

 !1=4

(8)

� 97�1
2�

1
11


 �1=4

(9)

� 97� 9
22


 �1=4

(10)

:
63

25

17 � 15
ffiffiffi
5

p

7 � 15
ffiffiffi
5

p
 !

(11)

:
355

113
1�

0:003

3533

 !
(12)

:
12ffiffiffiffiffiffiffiffi
130

p ln
3 �

ffiffiffiffiffiffi
13

p� � ffiffiffi
8

p
�

ffiffiffiffiffiffi
10

p� �
2

" #
(13)

:
24ffiffiffiffiffiffiffiffi
142

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � 11

ffiffiffi
2

pp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 � 7

ffiffiffi
2

pp
2

" #
(14)

:
12ffiffiffiffiffiffiffiffi
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p ln 3�
ffiffiffiffiffiffi
10

p
 � ffiffiffi
8

p
�

ffiffiffiffiffiffi
10

p
 �h i
(15)

:
12ffiffiffiffiffiffiffiffi
310

p ln 1
4 3�

ffiffiffi
5

p
 �
2�

ffiffiffi
2

p
 �h

 5�2
ffiffiffiffiffiffi
10

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
61�20

ffiffiffiffiffiffi
10

pq$ %
� (16)

:
4ffiffiffiffiffiffiffiffi
522

p ln
5 �

ffiffiffiffiffiffi
29

pffiffiffi
2

p
 !3

5
ffiffiffiffiffiffi
29

p
�11

ffiffiffi
6

p
 �2
4


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � 3

ffiffiffi
6

p

4

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 3

ffiffiffi
6

p

4

s !6�
; (17)

which are accurate to 3, 4, 4, 8, 8, 9, 14, 15, 15, 18, 23,
31 digits, respectively (Ramanujan 1913�/1914;
Hardy 1952, p. 70; Wells 1986, p. 54; Berndt 1994,
pp. 48�/49 and 88�/89).

S. Irvine noted that (0), giving an approximation to p

good to 8 digits, can be written in a form using all
digits 0�/9,

p:
2143

22

 !1=4

�0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33�

192

78 � 56

svuut (18)

(S. Plouffe). E. Pegg notes that

0�3�
1 � (9 � 8�5) � 6

7 � 2�4

�
233546921420255777694970883318153571

74340293968115785654927455866388593
(19)

approximates p to 9 digits.

Castellanos (1988) gives a slew of curious formulas:

p:(2e3�e8)1=7 (20)

:
553

311 � 1

 !2

(21)

: 3
14


 �4
193
5


 �2

(22)

: 296
167


 �2

(23)

:
663 � 862

553

 !2

(24)

:1:09999901 � 1:19999911 � 1:39999931

� 1:69999961 ð25Þ

:
473 � 203

303
�1 (26)

:2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 413

750


 �2
r

(27)

: 77729
254


 �1=5

(28)

: 31�
622 � 14

284

 !1=3

(29)

:
17003 � 823 � 103 � 93 � 63 � 33

695
(30)

: 95�
934 � 344 � 174 � 88

754

 !1=4

(31)

: 100�
21253 � 2143 � 303 � 372

825

 !1=4

; (32)

which are accurate to 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12,
and 13 digits, respectively. An extremely accurate



approximation due to Shanks (1982) is

p :
6ffiffiffiffiffiffiffiffiffiffiffi

3502
p ln(2u) �7:37 �10�82 ; (33)

where u is the product of four simple quartic units. A
sequence of approximations due to Plouffe includes

p :437 =23 (34)

:
ln 2198ffiffiffi

6
p (35)

: 13
4


 �1181=1216

(36)

:
689

396 ln 689
396


 � (37)

: 2143
22


 �1 =4

(38)

:

ffiffiffiffiffiffi
9

67

s
ln 5280 (39)

: 63023
30510


 �1=3

�1
4 �

1
2

ffiffiffi
5

p
�1


 �
(40)

:48
23 ln

60318

13387

 !
(41)

: 228 � 16
1329


 �1 =41

�2 (42)

:125
123 ln

28102

1277

 !
(43)

:276694819753963
226588

1 =158�2 (44)

:
ln 262537412640768744ffiffiffiffiffiffiffiffi

163
p ; (45)

which are accurate to 4, 5, 7, 7, 8, 9, 10, 11, 11, 11, 23,
and 30 digits, respectively.

An approximation due to Stoschek using powers of
two and the special number 163 (the largest HEEGNER

NUMBER) is given by

p :
29

163 
�

512

163 
:3 :1411043 ; (46)

which is good to 3 digits. A fraction with small
numerator and denominator which gives is close
approximation to p is

311

99
�3 :14141414 . . . : (47)

Some approximations involving the ninth roots of
rational numbers include

p :
4297607660

144171

 !1 =9

(48)

p :
4297607660

144171

 !1 =9

; (49)

which are good to 12 and 15 digits, respectively
(P. Galliani).

J. Iuliano found

p:
19

60
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 123449

p
 !�1

; (50)

which is good to 11 digits. Rivera gives other
approximation formulas.

See also PI
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Pi Continued Fraction
The SIMPLE CONTINUED FRACTION for PI, which gives
the "best" approximation of a given order, is [3, 7, 15,
1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]
(Sloane’s A001203; Havermann). The very large term
292 means that the CONVERGENT

[3; 7; 15; 1]�[3; 7; 16]�355
113�3:1415929 . . . (1)

is an extremely good approximation. The first few
CONVERGENTS are 22/7, 333/106, 355/113, 103993/
33102, 104348/33215, ... (Sloane’s A002485 and
A002486). A nice expression for the third convergent
of p is given by

p:2[1; 1; 1; 3; 32]�355
113:3:14159292 . . . (2)

(Stoschek).

Gosper has computed 17,001,303 terms of p/’s CON-

TINUED FRACTION (Gosper 1977, Ball and Coxeter
1987), a record which was recently upped to
20,000,000 by H. Havermann in June 1999 (Plouffe).
The first occurrences of n in the CONTINUED FRACTION

are 4, 9, 1, 30, 40, 32, 2, 44, 130, 100, ... (Sloane’s
A032523). The smallest integer which does not occur
in the first 20,000,000 terms is 2297. The sequence of



increasing terms in the CONTINUED FRACTION is 3, 7,
15, 292, 436, 20776, 78629, 179136, 528210,
12996958, 878783625, ... (Sloane’s A033089), occur-
ring at positions 1, 2, 3, 5, 308, 432, 28422, 156382,
267314, 453294, 11504931 ... (Sloane’s A033090).

The following table gives the first few occurrences of
d -digit terms in the CONTINUED FRACTION of p;
counting 3 as the 0th (e.g., Choong et al. 1971, Beeler
et al. 1972).

d Sloane Terms/Positions

1 Sloane’s
A048292

3, 7, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1,
2, ...

Sloane’s
A048293

0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 13,
14, ...

2 Sloane’s
A048294

15, 14, 84, 15, 13, 99, 12, 16,
45, 22, ...

Sloane’s
A048955

2, 12, 21, 25, 27, 33, 54, 77, 80,
82, ...

3 Sloane’s
A048956

292, 161, 120, 127, 436, 106,
141, ...

Sloane’s
A048957

4, 79, 196, 222, 307, 601, 669,
725, ...

4 Sloane’s
A048958

1722, 2159, 8277, 1431, 1282,
2050, ...

Sloane’s
A048959

3273, 3777, 3811, 4019, 4700,
6209, ...

5 Sloane’s
A048960

20776, 19055, 19308, 78629,
17538, ...

Sloane’s
A048961

431, 15543, 23398, 28421,
51839, ...

6 Sloane’s
A048962

179136, 528210, 104293,
196030, ...

Sloane’s
A048963

156381, 267313, 294467,
513205, ...

7 Sloane’s
A048964

8093211, 1811791, 3578547,
...

Sloane’s
A048965

1118727, 2782369, 2899883,
...

8 Sloane’s
A048966

12996958, ...

Sloane’s
A048967

453293, ...

9 Sloane’s
A048968

878783625, ...

Sloane’s
A048969

11504930, ...

The SIMPLE CONTINUED FRACTION for p does not show
any obvious patterns, but clear patterns do emerge in
the beautiful non-simple CONTINUED FRACTIONS

4

p 
�1 �

12

2 �
32

2 �
52

2 �
72

2 � . . .

(3)

(Brouckner), giving convergents 1, 3/2, 15/13, 105/76,
315/263, ... (Sloane’s A025547 and A007509) and

p

2
�1�

1

3 �
2 � 3

1 �
1 � 2

3 �
4 � 5

1 �
3 � 4

3 �
6 � 7

1 �
5 � 6

3 � . . .

(4)

(Stern 1833), giving convergents 1, 2/3, 4/3, 16/15, 64/
45, 128/105, ... (Sloane’s A001901 and A046126).

See also PI
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Pi Digits
The calculation of the p/’s digits has occupied mathe-
maticians since the day of the Rhind papyrus (1500
BC). Ludolph van Ceulen spent much of his life
calculating p to 35 places. Although he did not live
to publish his result, it was inscribed on his grave-
stone. Wells (1986, p. 48) discusses a number of other
calculations. The calculation of p also figures in the
Star Trek episode "Wolf in the Fold," in which
Captain Kirk and Mr. Spock force an evil entity
(composed of pure energy and which feeds on fear)
out of the starship Enterprise ’s computer by com-
manding the computer to "compute to the last digit



the value of pi," thus sending the computer into an
infinite loop.

/p has recently (Sep. 20, 1999) been computed to a
world record 206; 158; 430; 208:3 � 236 DECIMAL

DIGITS by Y. Kanada (Kanada, Plouffe). This calcula-
tion was done using Borwein’s fourth-order conver-
gent algorithm and required 46 hours on a massively
parallel 1024-processor Hitachi SR8000 supercompu-
ter. The largest number of digits of p computing using
a PC is 6; 442; 450; 944:3 � 2131 DECIMAL DIGITS by
S. Kondo on Jan. 13, 2000 (Gourdon). One billion
digits of p are accessible from Plouffe’s web site.

Between April 19, 1998, and Feb. 9, 1999, 126
computers from eighteen different countries set a
new record for calculating specific bits of p using a
program written by C. Percival. The calculation took
a total of about 84,500 CPU hours and was done using
idle CPU cycles under Windows 95 and Windows NT.
The answer, starting at the 39,999,999,999,997th bit
of p is

1010000011111001111111110011011100011101

0001011101011001001111100000; (1)

so the 40 trillionth bit of p is 0 (Plouffe).

In the following, the word "digit" refers to decimal
digit after the decimal point. The following table gives
the starting positions for strings of n copies of the
digit d .

d n Sloane Positions

0 1 Sloane’s
A050200

32, 50, 54, 65, 71, 77, 85,
97, ...

0 2 Sloane’s
A050201

307, 360, 601, 602, 855,
856, 973, ...

0 3 Sloane’s
A050202

601, 855, 1598, 4255, 4793,
7832, ...

0 4 Sloane’s
A050203

13390, 17534, 17535,
37322, ...

0 5 17534, 211058, 215287,
652115, ...

0 6 1699927, 2328783,
2609392, ...

0 7 3794572, 13310436,
28970114, ...

1 1 Sloane’s
A050207

1, 3, 37, 40, 49, 68, 94, 95,
...

1 2 Sloane’s
A050208

94, 153, 154, 174, 362, 395,
427, ...

1 3 Sloane’s
A050209

153, 983, 3503, 3992, 4508,
6116, ...

1 4 12700, 16732, 32788,
32789, ...

1 5 32788, 120459, 141899,
255945, ...

1 6 255945, 2645268, 3218870,
...

1 7 4657555, 42408103,
70787432, ...

2 1 Sloane’s
A050214

6, 16, 21, 28, 33, 53, 63, 73,
76, ...

2 2 Sloane’s
A050215

135, 185, 484, 535, 661,
687, 824, ...

2 3 1735, 1889, 2278, 2376,
3434, ...

2 4 4902, 7964, 12486, 43405,
50271, ...

2 5 65260, 327074, 580735,
619398, ...

2 6 963024, 1637080, 1795773,
...

2 7 82599811, 88301507, ...

3 1 Sloane’s
A050221

9, 15, 17, 24, 25, 27, 43, 46,
64, ...

3 2 Sloane’s
A050222

24, 215, 230, 282, 364, 401,
503, ...

3 3 1698, 4928, 6917, 7651,
8413, ...

3 4 28467, 28468, 66846,
79979, ...

3 5 28467, 89085, 146043,
335792, ...

3 6 710100, 710101, 1129019,
...

3 7 710100, 3204765,
12469058, ...

3 8 36488176, ...

4 1 Sloane’s
A050229

2, 19, 23, 36, 57, 59, 60, 70,
87, ...

4 2 Sloane’s
A050230

59, 125, 182, 201, 217, 453,
511, ...

4 3 2707, 2928, 3476, 3809,
3866, ...

4 4 54525, 57609, 74544,
75558, ...



4 5 808650, 828499, 828500, ...

4 6 828499, 1264270, 1691163,
...

4 7 17893953, 22931745,
22931746, ...

4 8 22931745, 65122865, ...

5 1 Sloane’s
A050237

4, 8, 10, 31, 48, 51, 61, 90,
...

5 2 Sloane’s
A050238

130, 177, 178, 315, 809,
914, ...

5 3 177, 1232, 1450, 2359,
2674, 7245, ...

5 4 24466, 24467, 33172,
39861, ...

5 5 24466, 39861, 205034,
205193, ...

5 6 244453, 253209, 419997,
3517236, ...

5 7 3517236, 9325203,
10519242, ...

6 1 Sloane’s
A050244

7, 20, 22, 41, 69, 72, 75, 82,
...

6 2 Sloane’s
A050245

117, 211, 257, 276, 309,
377, 516, ...

6 3 2440, 3151, 4000, 4435,
5403, 6840, ...

6 4 21880, 29868, 32427,
43523, 48439, ...

6 5 48439, 102387, 140744,
250129, ...

6 6 252499, 3813777, 4213896,
...

6 7 8209165, 18696860,
19715001, ...

6 8 45681781, 45681782,
55616210, ...

6 9 45681781, ...

7 1 Sloane’s
A050253

13, 29, 39, 47, 56, 66, 96,
99, 120, ...

7 2 Sloane’s
A050254

559, 621, 625, 633, 739,
742, 890, ...

7 3 1589, 1590, 4575, 5241,
5242, 5322, ...

7 4 1589, 5241, 5322, 5863,
29504, ...

7 5 162248, 283693, 322347,
399579, ...

7 6 399579, 452071, 1006927,
2309218, ...

7 7 3346228, 3775287,
14233532, ...

7 8 24658601, 24658602,
82144203, ...

7 9 24658601, ...

8 1 Sloane’s
A050262

11, 18, 26, 34, 35, 52, 67,
74, 78, ...

8 2 Sloane’s
A050263

34, 204, 317, 322, 372, 472,
848, ...

8 3 4751, 4752, 4985, 5871,
6070, 6850, ...

8 4 4751, 30796, 59550, 60822,
62383, ...

8 5 213245, 222299, 222300,
493647, ...

8 6 222299, 2418533, 3019042,
...

8 7 4722613, 7820866,
19921876, ...

8 8 46663520, 46663521, ...

8 9 46663520, ...

9 1 Sloane’s
A050271

5, 12, 14, 30, 38, 42, 44, 45,
55, ...

9 2 Sloane’s
A050272

44, 79, 459, 705, 747, 762,
763, ...

9 3 762, 763, 764, 765, 2949,
7759, ...

9 4 762, 763, 764, 17988,
19437, 19446, ...

9 5 762, 763, 19446, 56988,
161862, ...

9 6 762, 193034, 1722776,
1722777, ...

9 7 1722776, 3389380,
4313727, ...

9 8 36356642, 66780105, ...

The following table gives the first few positions at
which a digit d occurs n times. Note that the
sequence 9999998 occurs at decimal 762 (which is
sometimes called the FEYNMAN POINT; Wells 1986,



p. 51). This is the largest value of any seven digits in
the first million decimals.

d Sloane strings of 1, 2, ... ds first
occur at

0 Sloane’s
A050279

32, 307, 601, 13390, 17534,
1699927, ...

1 Sloane’s
A050280

1, 94, 153, 12700, 32788,
255945, ...

2 Sloane’s
A050281

6, 135, 1735, 4902, 65260,
963024, ...

3 Sloane’s
A050282

9, 24, 1698, 28467, 28467,
710100, ...

4 Sloane’s
A050283

2, 59, 2707, 54525, 808650,
828499, ...

5 Sloane’s
A050284

4, 130, 177, 24466, 24466,
244453, ...

6 Sloane’s
A050285

7, 117, 2440, 21880, 48439,
252499, ...

7 Sloane’s
A050286

13, 559, 1589, 1589, 162248,
399579, ...

8 Sloane’s
A050287

11, 34, 4751, 4751, 213245,
222299, ...

9 Sloane’s
A050288

5, 44, 762, 762, 762, 762,
1722776, ...

The first time the BEAST NUMBER 666 appears is
decimal 2440. The digits 314159 appear at least six
times in the first 10 million decimal places of p
(Pickover 1995). The sequence 0123456789 occurs
beginning at digits 17,387,594,880, 26,852,899,245,
30,243,957,439, 34,549,153,953, 41,952,536,161, and
43,289,964,000 (cf. Wells 1986, p. 51). The sequence
9876543210 occurs beginning at digits
21,981,157,633, 29,832,636,867, 39,232,573,648,
42,140,457,481, and 43,065,796,214. The sequence
27182818284 (the first few digits of E ) occur begin-
ning at digit 45,111,908,393. There are also interest-
ing patterns for 1 =p: 0123456789 occurs at
6,214,876,462, 9876543210 occurs at 15,603,388,145
and 51,507,034,812, and 999999999999 occurs at
12,479,021,132 of 1=p:/

Scanning the decimal expansion of p until all n -digit
numbers have occurred, the last 1-, 2-, ... digit
numbers appearing are 0, 68, 483, 6716, 33394,
569540, ... (Sloane’s A032510). These end at digits
32, 606, 8555, 99849, 1369564, 14118312, ... (Sloane’s
A036903).

The last n -digit number seen in the decimal expan-
sion of p for n �1, 2, ... are 0, 68, 483, 6716, 33394,

569540, 1075656, ... (Sloane’s A032150). The last
digits of these numbers occur at positions 32, 606,
8555, 99849, ... (Sloane’s A036903).

It is not known if p is NORMAL (Wagon 1985, Bailey
and Crandall 2000), although the first 30 million
DIGITS are very UNIFORMLY DISTRIBUTED (Bailey
1988). The following distribution is found for the first
n DIGITS of p �3: It shows no statistically SIGNIFICANT

departure from a UNIFORM DISTRIBUTION (technically,
in the CHI-SQUARED TEST, it has a value of x2

s �5 :60
for the first 5 �1010 terms).

digit /1 �105
/ /1 �106

/ /6 �109
/ /5 �1010

/

0 9,999 99,959 599,963,005 5,000,012,647

1 10,137 99,758 600,033,260 4,999,986,263

2 9,908 100,026 599,999,169 5,000,020,237

3 10,025 100,229 600,000,243 4,999,914,405

4 9,971 100,230 599,957,439 5,000,023,598

5 10,026 100,359 600,017,176 4,999,991,499

6 10,029 99,548 600,016,588 4,999,928,368

7 10,025 99,800 600,009,044 5,000,014,860

8 9,978 99,985 599,987,038 5,000,117,637

9 9,902 100,106 600,017,038 4,999,990,486

The digits of 1=p are also very uniformly distributed
(x2

s �7:04); as shown in the following table.

digit /5�1010
/

0 4,999,969,955

1 5,000,113,699

2 4,999,987,893

3 5,000,040,906

4 4,999,985,863

5 4,999,977,583

6 4,999,990,916

7 4,999,985,552

8 4,999,881,183

9 5,000,066,450

See also PI, PI FORMULAS
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Pi Formulas
A method similar to Archimedes’ can be used to
estimate p by starting with an n -gon and then
relating the AREA of subsequent 2n/-gons. Let b be
the ANGLE from the center of one of the POLYGON’s
segments,

b�1
4(n�3)p; (1)

then

p�
2 sin(2b)

(n � 3)
Q�

k�0 cos 2�kbð Þ
(2)

(Beckmann 1989, pp. 92�/94). Viète (1593) was the
first to give an exact expression for p by taking n�4
in the above expression, giving

cos b�sin b�
1ffiffiffi
2

p �1
2

ffiffiffi
2

p
; (3)

which leads to an INFINITE PRODUCT of NESTED

RADICALS,

2

p
�

ffiffi
1
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffi
1
2

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2�

1
2

ffiffi
1
2

qrs
� � � (4)

(Wells 1986, p. 50; Beckmann 1989, p. 95). However,
this expression was not rigorously proved to converge
until Rudio (1892). A related formula is given by

p� lim
n0�

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�. . .�

ffiffiffi
2

pqrs
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n

vuuuut ; (5)

where the square root term can be written using the
iteration

pn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 pn�1


 �2

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2 pn�1


 �2
r" #2

vuut ; (6)

where p0�
ffiffiffi
2

p
(J. Munkhammer). The formula

p�2 lim
m0�


Xm

n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n � 1

m

 !2
vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

n

m

 !2
vuut

2
64

3
75

2

�
1

m2

vuuuut
(7)

is also closely related.

Another exact FORMULA is MACHIN’S FORMULA, which
is

p

4
�4 tan�1 1

5


 �
�tan�1 1

239


 �
: (8)

There are three other MACHIN-LIKE FORMULAS, as
well as other FORMULAS with more terms. An inter-
esting INFINITE PRODUCT formula due to Euler which
relates p and the nth PRIME pn is

p�
2

Q�

i�n 1 �
sin 1

2 ppn


 �
pn

2
4

3
5 (9)

�
2Q�

i�n 1 �
(�1)(pn�1)=2

pn

" # (10)

(Blatner 1997, p. 119), plotted below as a function of
the number of terms in the product.



The AREA and CIRCUMFERENCE of the UNIT CIRCLE are
given by

A�p�4 g
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
dx (11)

� lim
n0�

4

n2

Xn

k�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�k2

p
(12)

and

C�2p�4 g
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p (13)

�4 g
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d

x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !2

vuut dx: (14)

The SURFACE AREA and VOLUME of the unit SPHERE

are

S�4p (15)

V�4
3 p: (16)

Beginning with any POSITIVE INTEGER n , round up to
the nearest multiple of n�1; then up to the nearest
multiple of n�2; and so on, up to the nearest multiple
of 1. Let f (n) denote the result. Then the ratio

lim
n0�

n2

f (n)
�p (17)

(Brown). David (1957) credits this result to Jabotinski
and Erdos and gives the more precise asymptotic
result

f (n)�
n2

p
�O n4=3

� �
: (18)

The first few numbers in the sequence ff (n)g are 1, 2,
4, 6, 10, 12, 18, 22, 30, 34, ... (Sloane’s A002491).

A particular case of the WALLIS FORMULA gives

p

2
�
Y�
n�1

(2n)2

(2n � 1)(2n � 1)

" #

�
2 � 2

1 � 3

4 � 4

3 � 5

6 � 6

5 � 7
� � � (19)

(Wells 1986, p. 50). This formula can also be written

lim
n0�

24n

n
2n
n

$ %2�p lim
n0�

n[G(n)]2

G 1
2 � n

 �h i2�p; (20)

where n
k

� �
denotes a BINOMIAL COEFFICIENT and G(x) is

the GAMMA FUNCTION (Knopp 1990). Euler obtained

p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1�

1

22
�

1

32
�

1

42
�� � �

 !vuut ; (21)

which follows from the special value of the RIEMANN

ZETA FUNCTION z(2)�p2=6: Similar FORMULAS follow
from z(2n) for all POSITIVE INTEGERS n . Gregory and
Leibniz found

p

4
�1�

1

3
�

1

5
�� � � (22)

(Wells 1986, p. 50), which is sometimes known as
GREGORY’S FORMULA or the LEIBNIZ SERIES. The error
after the nth term of this series in GREGORY’S

FORMULA is larger than (2n)�1 so this sum converges
so slowly that 300 terms are not sufficient to calculate
p correctly to two decimal places! However, it can be
transformed to

p�
X�
k�1

3k � 1

4k
z(k�1); (23)

where z(z) is the RIEMANN ZETA FUNCTION (Vardi
1991, pp. 157�/158; Flajolet and Vardi 1996), so that
the error after k terms is:(3=4)k:/

In 1666, Newton used

p�3
4

ffiffiffi
3

p
�24 g

1=4

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x2

p
dx (24)

�
3
ffiffiffi
3

p

4
�24

1

12
�

1

5 � 25
�

1

28 � 27
�

1

72 � 29
�� � �

 !

ð25Þ

(Wells 1986, p. 50; Borwein et al. 1989). The coeffi-
cients can be found from the integral

I(x)�g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x2

p
dx

�1
4(2x�1)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x2

p
�1

8 sin�1(1�2x) (26)

by taking the series expansion of I(x)�I(0) about 0,
obtaining

I(x)�2
3 x3=2�1

5 x5=2� 1
28 x7=2� 1

72 x9=2� 5
704 x11=2�� � �

(27)

(Sloane’s A054387 and A054388). Using Euler’s CON-

VERGENCE IMPROVEMENT transformation gives



p

2
�

1

2

X�
n�0

(n!)22n�1

(2n � 1)!
�
X�
n�0

n!

(2n � 1)!!

�1�
1

3
�

1 � 2

3 � 5
�

1 � 2 � 3

3 � 5 � 7
�� � � (28)

�1�
1

3
1�

2

5
1�

3

7
1�

4

9
(1�. . .)

 ! ! !
ð29Þ

(Beeler et al. 1972, Item 120). This corresponds to
plugging x�1=

ffiffiffi
2

p
into the POWER SERIES for the

HYPERGEOMETRIC FUNCTION 2F1(a; b; c; x);

sin�1 xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p �
X�
i�0

(2x)2i�1(i!)2

2(2i � 1)!
� 2F1 1; 1; 3

2; x2

 �

x: (30)

Despite the convergence improvement, series (29)
converges at only one bit/term. At the cost of a
SQUARE ROOT, Gosper has noted that x�1=2 gives 2
bits/term,

1
9

ffiffiffi
3

p
p�

1

2

X�
i�0

(i!)2

(2i � 1)!
; (31)

and x�sin(p=10) gives almost 3.39 bits/term,

p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f� 2

p �
1

2

X�
i�0

(i!)2

f2i�1(2i � 1)!
; (32)

where f is the GOLDEN RATIO. Gosper also obtained

p�3�
1

60

$
8�

2 � 3

7 � 8 � 3

$
13�

3 � 5

10 � 11 � 3


$

18�
4 � 7

13 � 14 � 3
(23�. . .)

%%%
: (33)

An infinite sum due to Ramanujan is

1

p
�
X�
n�0

2n
n

$ %3 42n � 5

212n�4
(34)

(Borwein et al. 1989). Further sums are given in
Ramanujan (1913�/14),

4

p
�
X�
n�0

(�1)n(1123 � 21460n)(2n � 1)!!(4n � 1)!!

8822n�132n(n!)3

ð35Þ

and

1

p
�

ffiffiffi
8

p X�
n�0

(1103 � 26390n)(2n � 1)!!(4n � 1)!!

994n�232n(n!)3

�

ffiffiffi
8

p

9801

X�
n�0

(4n)!(1103 � 26390n)

(n!)43964n
(36)

(Beeler et al. 1972, Item 139; Borwein et al. 1989).
Equation (36) is derived from a modular identity of
order 58, although a first derivation was not pre-

sented prior to Borwein and Borwein (1987). The
above series both give

p:
9801

2206
ffiffiffi
2

p �3:14159273001 . . . (37)

(Wells 1986, p. 54) as the first approximation and
provide, respectively, about 6 and 8 decimal places
per term. Such series exist because of the rationality
of various modular invariants. The general form of
the series is

X�
n�0

[a(t)�nb(t)]
(6n)!

(3n)!(n!)3

1

[j(t)]n�

ffiffiffiffiffiffiffiffiffiffiffiffi
�j(t)

p
p

; (38)

where t is a QUADRATIC FORM DISCRIMINANT, j(t) is the
J -FUNCTION,

b(t)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t[1728�j(t)]

p
(39)

a(t)�
b(t)

6
1�

E4(t)

E6(t)
E2(t)�

6

p
ffiffi
t

p
" #( )

; (40)

and the Ei are RAMANUJAN-EISENSTEIN SERIES. A
CLASS NUMBER p field involves pth degree ALGEBRAIC

INTEGERS of the constants A�a(t); B�b(t); and C�
c(t): The fastest converging series that uses only
INTEGER terms corresponds to the largest CLASS

NUMBER 1 discriminant of d��163 and was formu-
lated by the Chudnovsky brothers (1987). The 163
appearing here is the same one appearing in the fact
that ep

ffiffiffiffiffiffi
163

p
(the RAMANUJAN CONSTANT) is very nearly

an INTEGER. The series is given by

1

p
�12

X�
n�0

(�1)n(6n)!(13591409 � 545140134n)

(n!)3(3n)!(6403203)n�1=2

�
163 � 8 � 27 � 7 � 11 � 19 � 127

6403203=2

�
X�
n�0

13591409

163 � 2 � 9 � 7 � 11 � 19 � 127
�n

 !

�
(6n)!

(3n)!(n!)3

(�1)n

6403203n
(41)

(Borwein and Borwein 1993). This series gives 14
digits accurately per term. The same equation in
another form was given by the Chudnovsky brothers
(1987) and is used by Mathematica to calculate p

(Vardi 1991),

p�

426880
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10005

p

A 3F2
1
6;

1
2;

5
6; 1; 1; B


 �
� C 3F2

7
6;

3
2;

11
6 ; 2; 2; B


 �h i ;
(42)

where



A�13591409 (43)

B��
1

151931373056000
(44)

C�
30285563

1651969144908540723200
: (45)

The best formula for CLASS NUMBER 2 (largest
discriminant �427) is

1

p
�12

X�
n�0

(�1)n(6n)!(A � Bn)

(n!)3(3n)!Cn�1=2
; (46)

where

A�212175710912
ffiffiffiffiffiffi
61

p
�1657145277365 (47)

B�13773980892672
ffiffiffiffiffiffi
61

p
�107578229802750 (48)

C� 5280 236674�30303
ffiffiffiffiffiffi
61

p
 �h i3

(49)

(Borwein and Borwein 1993). This series adds about
25 digits for each additional term. The fastest
converging series for CLASS NUMBER 3 corresponds
to d��907 and gives 37�/38 digits per term. The
fastest converging CLASS NUMBER 4 series corre-
sponds to d��1555 and is

ffiffiffiffiffiffiffiffiffiffiffi
�C3

p

p
�
X�
n�0

(6n)!

(3n)!(n!)3

A � nB

C3n
; (50)

where

A�63365028312971999585426220

�28337702140800842046825600
ffiffiffi
5

p

�384
ffiffiffi
5

p
108917285511711782004674 . . .ð

. . . 36212395209160385656017

�487902908657881022 . . .

. . . 5077338534541688721351255040
ffiffiffi
4

p
Þ1=2

(51)

B�7849910453496627210289749000

�3510586678260932028965606400
ffiffiffi
5

p

�2515968
ffiffiffiffiffiffiffiffiffiffiffi
3110

p
62602083237890016 . . .ð

. . . 36993322654444020882161

�2799650273060444296 . . .

. . . 577206890718825190235
ffiffiffi
5

p
Þ1=2 (52)

C��214772995063512240

�96049403338648032
ffiffiffi
5

p

�1296
ffiffiffi
5

p
10985234579463550323713318473ð

�4912746253692362754607395912
ffiffiffi
5

p
Þ1=2; (53)

This gives 50 digits per term. Borwein and Borwein
(1993) have developed a general ALGORITHM for
generating such series for arbitrary CLASS NUMBER.
Bellard gives the exotic formula

p�
1

740025

X�
n�1

3P(n)

7n
2n

$ %
2n�1

�20379280

2
664

3
775; (54)

where

P(n)��885673181n5�3125347237n4

�2942969225n3�1031962795n2

�196882274n�10996648: (55)

A complete listing of Ramanujan’s series for 1=p
found in his second and third notebooks is given by
Berndt (1994, pp. 352�/354),

4

p
�
X�
n�0

(6n � 1) 1
2


 �3

n

4n(n!)3 (56)

16

p
�
X�
n�0

(42n � 5) 1
2


 �3

n

(64)n(n!)3 (57)

32

p
�
X�
n�0

42
ffiffiffi
5

p
n � 5

ffiffiffi
5

p
� 30n � 1

� �
1
2


 �3

n

(64)n(n!)3


ffiffiffi
5

p
� 1

2

 !8n

(58)

27

4p
�
X�
n�0

(15n � 2) 1
2


 �
n

1
3


 �
n

2
3


 �
n

(n!)3
2
27


 �n

(59)

15
ffiffiffi
3

p

2p
�
X�
n�0

(33n � 4) 1
2


 �
n

1
3


 �
n

2
3


 �
n

(n!)3
4

125


 �n

(60)

5
ffiffiffi
5

p

2p
ffiffiffi
3

p �
X�
n�0

(11n � 1) 1
2


 �
n

1
6


 �
n

5
6


 �
n

(n!)3
4

125


 �n

(61)

85
ffiffiffiffiffiffi
85

p

18p
ffiffiffi
3

p �
X�
n�0

(133n � 8) 1
2


 �
n

1
6


 �
n

5
6


 �
n

(n!)3
4
85


 �n

(62)

4

p
�
X�
n�0

(�1)n(20n � 3) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)322n�1
(63)

4

p
ffiffiffi
3

p �
X�
n�0

(�1)n(28n � 3) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)33n4n�1
(64)



4

p
�
X�
n�0

(�1)n(260n � 23) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)3(18)2n�1 (65)

4

p
ffiffiffi
5

p �
X�
n�0

(�1)n(644n � 41) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)35n(72)2n�1 (66)

4

p
�
X�
n�0

(�1)n(21460n � 1123) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)3(882)2n�1 (67)

2
ffiffiffi
3

p

p
�
X�
n�0

(8n � 1)n 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)39n
(68)

1

2p
ffiffiffi
2

p �
X�
n�0

(10n � 1)n 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)392n�1
(69)

1

3p
ffiffiffi
3

p �
X�
n�0

(40n � 3) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)3(49)2n�1 (70)

2

p
ffiffiffiffiffiffi
11

p �
X�
n�0

(280n � 19) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)3(99)2n�1 (71)

1

2p
ffiffiffi
2

p �
X�
n�0

(26390n � 1103) 1
2


 �
n

1
4


 �
n

3
4


 �
n

(n!)3(99)4n�2 : (72)

These equations were first proved by Borwein and
Borwein (1987, pp. 177�/187). Borwein and Borwein
(1987b, 1988, 1993) proved other equations of this
type, and Chudnovsky and Chudnovsky (1987) found
similar equations for other transcendental constants.

Another identity is

p2�36 Li2
1
2


 �
�36 Li2

1
4


 �
�12 Li2

1
8


 �
�6 Li2

1
64


 �
; (73)

where Ln is the POLYLOGARITHM. (73) is equivalent to

p2

36
�
X�
i�1

ai

2ii2
faig�[1; �3; �2; �3; 1; 0] (74)

and

p2�12L2
1
2


 �
�6(ln 2)2 (75)

(Bailey et al. 1995).

A SPIGOT ALGORITHM for p is given by Rabinowitz and
Wagon (1995). More amazingly still, a closed form
expression giving a DIGIT-EXTRACTION ALGORITHM

which produces digits of p (or p2) in base-16 was
recently discovered by Bailey et al. (Bailey et al.
1995, Adamchik and Wagon 1997),

p�
X�
n�0

4

8n � 1
�

2

8n � 4
�

1

8n � 5
�

1

8n � 6

 !
1

16

 !n

:

(76)

This formula, sometimes called the BAILEY-BORWEIN-

PLOUFFE ALGORITHM can also be written using the
shorthand notation

p�
X�
i�1

pi

16 i=8b ci

fpig�f4; 0; 0; �2; �1; �1; 0; 0g;

(77)

where fpig is given by the periodic sequence obtained
by appending copies of f4; 0; 0; �2; �1; �1; 0; 0g (in
other words, pi�p[(i�1) (mod 8)]�1 for i �8) and xb c is
the FLOOR FUNCTION. This expression was discovered
using the PSLQ ALGORITHM (Ferguson et al. 1999)
and is equivalent to

p�g
1

0

16y � 16

y4 � 2y3 � 4y � 4
dy: (78)

A similar formula was subsequently discovered by
Ferguson, leading to a 2-D lattice of such formulas
which can be generated by these two formulas. A
related integral is

p�22
7 �g

1

0

x4(1 � x)4

1 � x2
dx (79)

(Le Lionnais 1983, p. 22). F. Bellard found the more
rapidly converging DIGIT-EXTRACTION ALGORITHM (in
HEXADECIMAL)

p�
1

26

X�
n�0

(�1)n

210n

$
�

25

4n � 1
�

1

4n � 3
�

28

10n � 1

�
26

10n � 3
�

2

10n � 5
�

22

10n � 7
�

1

10n � 9

%
: (80)

This formula can be generalized to

p�
X�
k�0

$
4 � 8r

8k � 1
�

8r

8k � 2
�

4r

8k � 3
�

2 � 8r

8k � 4

�
1 � 2r

8k � 5
�

1 � 2r

8k � 6
�

r

8k � 7

%$
1

16

%k

(81)

for any complex value of r (Adamchik and Wagon),
giving the Bailey-Borwein-Plouffe algorithm as the
special case r�0.

Related formulas are

p2�1
8

X�
k�0

1

64k

�
144

(6k � 1)2�
216

(6k � 2)2�
72

(6k � 3)2

�
54

(6k � 4)2�
9

(6k � 5)2

�
(82)



and

p2�
X�
k�0

1

16k

�
16

(8k � 1)2�
16

(8k � 2)2�
8

(8k � 3)2

�
16

(8k � 4)2�
4

(8k � 5)2�
4

(8k � 6)2�
2

(8k � 7)2

�

(83)

(Bailey et al. 1995, Bailey and Plouffe). More amaz-
ingly still, S. Plouffe has devised an algorithm to
compute the nth DIGIT of p in any base in O(n3(log n)3)
steps.

A slew of additional identities due to Ramanujan ,
Catalan, and Newton are given by Castellanos (1988,
pp. 86�/88), including several involving sums of FIBO-

NACCI NUMBERS. Ramanujan found

X�
k�0

(�1)k(4k � 1)[(2k � 1)!!]3

[(2k)!!]3

�
X�
k�0

(�1)k(4k � 1) G k � 1
2


 �h i3

p3=2[G(k � 1)]3 �
2

p
(84)

(Hardy 1923; Hardy 1924; Hardy 1999, p. 7).

Gasper quotes the result

p�
16

3
lim
x0�

x 1F2
1
2; 2; 3; �x2

 �h i�1

; (85)

where 1F2 is a GENERALIZED HYPERGEOMETRIC FUNC-

TION, and transforms it to

p� lim
x0�

4x 1F2
1
2;

3
2;

3
2; �x2


 �
; (86)

Fascinating results due to Gosper include

lim
n0�

Y2n

i�n

p

2 tan�1 i
�41=p�1:554682275 . . . (87)

and

X�
n�1

1

n2
cos

9

np�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2 � 9

p
 !

��
p2

12e3

��0:040948222 . . . (88)

Gosper also gives the curious identity

1

e

Y�
n�1

1

3n
�1

 !3n�1=2

�
3 � 31=24

ffiffiffiffiffiffiffiffiffi
1
3


 �
!

r

25=6 exp
g

3
�

p
ffiffiffi
3

p

18
�

ffiffiffi
3

p
1

1
3


 �
12p

�
2z?(2)

p2

2
4

3
5p5=6

�1:01237855722912 . . . (89)

Another curious fact is the ALMOST INTEGER

ep�p�19:999099979 . . . ; (90)

which can also be written as

(p�20)i��0:9999999992�0:0000388927i:�1 (91)

cos(ln(p�20)):�0:9999999992: (92)

Applying COSINE a few more times gives

cos(p cos(p cos(ln(p�20))))

:�1�3:9321609261�10�35: (93)

/p may also be computed using iterative ALGORITHMS.
A quadratically converging ALGORITHM due to Bor-
wein is

x0�
ffiffiffi
2

p
(94)

p0�2�
ffiffiffi
2

p
(95)

y1�21=4 (96)

and

xn�1�
1

2

ffiffiffiffiffi
xn

p
�

1ffiffiffiffiffi
xn

p

 !
(97)

yn�1�
yn

ffiffiffiffiffi
xn

p
�

1ffiffiffiffiffi
xn

p

yn � 1
(98)

pn�pn�1

xn � 1

yn � 1
: (99)

/pn decreases monotonically to p with

pn�pB10�2�1 (100)

for n]2: The BRENT-SALAMIN FORMULA is another
quadratically converging algorithm which can be
used to calculate p: A quadratically convergent algo-
rithm for p=ln 2 based on an observation by Salamin
is given by defining

f (k)�k2�k=4
X�
n�1

2�k n
2ð Þ

" #2

; (101)

then writing

g0�
f (n)

f (2n)
: (102)

Now iterate

gk�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
gk�1�

1

gk�1

 !vuut (103)

to obtain



p�2(ln 2)f (n)
Y�
k�1

gk: (104)

A cubically converging ALGORITHM which converges
to the nearest multiple of p to f0 is the simple iteration

fn�fn�1�sin(fn�1) (105)

(Beeler et al. 1972). For example, applying to 23 gives
the sequence

f23; 22:1537796; 21:99186453; 21:99114858; . . .g;
(106)

which converges to 7p:21:99114858:/

A quartically converging ALGORITHM is obtained by
letting

y0�
ffiffiffi
2

p
�1 (107)

a�6�4
ffiffiffiffi
2;

p
(108)

then defining

yn�1�
1 � (1 � y4

n)1=4

1 � (1 � y4
n)1=4 (109)

an�1�(1�yn�1)4
an�22n�3yn�1 1�yn�1�y2

n�1

� �
:

(110)

Then

p� lim
n0�

1

an

(111)

and an converges to 1=p quartically with

an�
1

p
B16 � 4ne�2p � 4n

(112)

(Borwein and Borwein 1987, Bailey 1988, Borwein et
al. 1989). This ALGORITHM rests on a MODULAR

EQUATION identity of order 4.

A quintically converging ALGORITHM is obtained by
letting

s0�5
ffiffiffi
5

p
�2


 �
(113)

a0�
1
2: (114)

Then let

sn�1�
25

z �
x

z
� 1

 !2

sn

; (115)

where

x�
5

sn

�1 (116)

y�(x�1)2�7 (117)

z� 1
2 x y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2�4x3

p
 �h i1=5

: (118)

Finally, let

an�1�s2
nan�5n 1

2 s2
n�5

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sn s2

n�2sn�5ð Þ
q� �

; (119)

then

0Ban�
1

p
B16 � 5ne�p5n

(120)

(Borwein et al. 1989). This ALGORITHM rests on a
MODULAR EQUATION identity of order 5.

Another ALGORITHM is due to Woon (1995). Define
a(0)�1 and

a(n)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xn�1

k�0

a(k)

" #2

:

vuut (121)

It can be proved by induction that

a(n)�csc
p

2n�1

 !
: (122)

For n�0, the identity holds. If it holds for n5t; then

a(t�1)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Xt

k�0

csc
p

2k�1

 !" #2
vuut

; (123)

but

csc
p

2k�1

 !
�cot

p

2k�2

 !
�cot

p

2k�1

 !
; (124)

so

Xt

k�0

csc
p

2k�1

 !
�cot

p

2t�2

 !
: (125)

Therefore,

a(t�1)�csc
p

2t�2

 !
; (126)

so the identity holds for n�t�1 and, by induction,
for all NONNEGATIVE n , and

lim
n0�

2n�1

a(n)
� lim

n0�
2n�1 sin

p

2n�1

 !

� lim
n0�

2n�1 p

2n�1

sin
p

2n�1

 !
p

2n�1



� p lim
u 00

sin u

u
� p: (127)

Additional series in which p appears are

1
4 p

ffiffiffi
2

p
�1 �1

3 �
1
5 �

1
7 �

1
9 �

1
11 �. . . (128)

1
4(p �3) �

1

2 � 3 � 4 
�

1

4 � 5 � 6 
�

1

6 � 7 � 8 
�. . . (129)

p2

8
�1 �

1

32 
�

1

52 
�

1

72 
�. . . (130)

(Wells 1986, p. 53).

Other iterative ALGORITHMS are the ARCHIMEDES

ALGORITHM, which was derived by Pfaff in 1800, and
the BRENT-SALAMIN FORMULA. Borwein et al. (1989)
discuss pth order iterative algorithms.

/p satisfies the INEQUALITY

1�
1

p

 !p�1

:3:14097Bp: (131)

See also PI
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Pi Heptomino

A HEPTOMINO in the shape of the Greek character PI.

Pi Wordplay
A short mnemonic for remembering the first eight
DECIMAL DIGITS of p is "May I have a large container
of coffee?" giving 3.1415926 (Gardner 1959; Gardner
1966, p. 92; Eves 1990, p. 122, Davis 1993, p. 9). "But



I must a while endeavour to reckon right" gives nine
correct digits (3.1.4159265). A more substantial mne-
monic giving 15 digits (3.14159265358979) is "How I
want a drink, alcoholic of course, after the heavy
lectures involving quantum mechanics," originally
due to Sir James Jeans (Gardner 1966, p. 92; Cas-
tellanos 1988, p. 152; Eves 1990, p. 122; Davis 1993,
p. 9; Blatner 1997, p. 112). A slight extension of this
adds the phrase "All of thy geometry, Herr Planck, is
fairly hard," giving 24 digits in all
(3.14159265358979323846264).

An even more extensive rhyming mnemonic giving 31
digits is "Now I will a rhyme construct, By chosen
words the young instruct. Cunningly devised endea-
vour, Con it and remember ever. Widths in circle here
you see, Sketched out in strange obscurity." (Note
that the British spelling of "endeavour" is required
here.)

The following stanzas are the first part of a poem
written by M. Keith based on Edgar Allen Poe’s "The
Raven." The entire poem gives 740 digits; the frag-
ment below gives only the first 80 (Blatner 1997,
p. 113). Words with ten letters represent the digit 0,
and those with 11 or more digits are taken to
represent two digits.

Poe, E.: Near a Raven.

Midnights so dreary, tired and weary.

Silently pondering volumes extolling all by-now ob-
solete lore.

During my rather long nap-the weirdest tap!

An ominous vibrating sound disturbing my chamber’s
antedoor.

‘This,’ I whispered quietly, ‘I ignore.’ Perfectly, the
intellect remembers: the ghostly fires, a glittering
ember.

Inflamed by lightning’s outbursts, windows cast
penumbras upon this floor. Sorrowful, as one mis-
treated, unhappy thoughts I heeded:

That inimitable lesson in elegance–Lenore–

Is delighting, exciting... nevermore.

An extensive collection of p mnemonics in many
languages is maintained by A. P. Hatzipolakis. Other
mnemonics in various languages are given by Cas-
tellanos (1988) and Blatner (1997, pp. 112 �/118).

Keith (1999) considered the set of letters obtained by
writing p to base 26 with digits 0 �A; 1 �B; ..., 25 �
Z; so that

p �D :DRSQLOLYRTRODNLHNQTG . . . :

Then the sequence of the first Webster-sanctioned n -
letter words in this expression is given by o, lo, rod,
trod, steel, oxygen, subplot, .... Additional 6-letter
words are: prinky, Libyan, and thingy. The positions
of the starting letter of the first n -letter words are 6,
5, 11, 10, 6570, 11582, 115042, ....

See also PI
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Piano Mover’s Problem
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given an open subset U in n -D space and two
compact subsets C0 and C1 of U , where C1 is derived
from C0 by a continuous motion, is it possible to move
C0 to C1 while remaining entirely inside U?

See also MOVING LADDER CONSTANT, MOVING SOFA

CONSTANT
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Picard Variety
Let V be a VARIETY, and write G(V) for the set of
divisors, Gl(V) for the set of divisors linearly equiva-
lent to 0, and Ga(V) for the group of divisors
algebraically equal to 0. Then Ga(V)=Gl(V) is called
the Picard variety. The ALBANESE VARIETY is dual to
the Picard variety.

See also ALBANESE VARIETY
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Picard’s Existence Theorem
If f is a continuous function that satisfies the
LIPSCHITZ CONDITION

½f (x; t) �f (y; t) ½5L½x �y½

in a surrounding of (x0 ; t0) 
VƒR �Rn �f(x; t) : ½x �
x0 ½Bb; ½t �t0 ½Ba g; then the differential equation

df

dx 
�f (x; t)

x(t0) �x0

has a unique solution x(t) in the interval ½t �t0 ½Bd;
where d �min(a; b=B) ; min denotes the MINIMUM,
B �sup ½f (t; x) ½; and sup denotes the SUPREMUM.

See also LIPSCHITZ CONDITION, ORDINARY DIFFEREN-

TIAL EQUATION

Picard’s Great Theorem
Every nonconstant ENTIRE FUNCTION attains every
complex value with at most one exception (Apostol
1997). Furthermore, every ANALYTIC FUNCTION as-
sumes every complex value, with possibly one excep-
tion, infinitely often in any NEIGHBORHOOD of an
ESSENTIAL SINGULARITY.

See also ANALYTIC FUNCTION, ESSENTIAL SINGULAR-

ITY, NEIGHBORHOOD, PICARD’S LITTLE THEOREM
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Picard’s Little Theorem
Any ENTIRE ANALYTIC FUNCTION whose RANGE omits
two points must be a CONSTANT FUNCTION.

Of course, an ENTIRE FUNCTION that omits a single
point from its range need not be a constant, as
illustrated by the function ez ; which is entire but
omits the point z �0 from its range.

See also ENTIRE FUNCTION, PICARD’S GREAT THEOREM
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Picard’s Theorem
PICARD’S GREAT THEOREM

Pick’s Formula
PICK’S THEOREM

Pick’s Theorem
Let A be the AREA of a simply closed LATTICE

POLYGON. Let B denote the number of LATTICE POINTS

on the EDGES and I the number of points in the
interior of the POLYGON. Then

A �I �1
2 B �1:

The FORMULA has been generalized to 3-D and higher
dimensions using EHRHART POLYNOMIALS.

See also BLICHFELDT’S THEOREM, EHRHART POLYNO-

MIAL, LATTICE POINT, MINKOWSKI CONVEX BODY

THEOREM
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Picone’s Theorem
Let f (x) be integrable in [�1; 1]; let (1�x2)f (x) be of
bounded variation in [�1; 1]; let M? denote the least
upper bound of ½f (x)(1�x2)½ in [�1; 1]; and let V?
denote the total variation of f (x)(1�x2) in [�1; 1]:
Given the function

F(x)�F(�1)�g
x

1

f (x) dx;

then the terms of its LEGENDRE SERIES

F(x)
X�
n�0

anPn(x)



an �
1
2(2n �1) g

1

�1

F(x)Pn(x) dx;

where Pn(x) is a LEGENDRE POLYNOMIAL, satisfy the
inequalities

½anPn(x) ½B
8

ffiffiffi
2

p

s
M ? � V ?

(1 � d2)1 =4 n�3 =2 for ½x½5 d B1

2(M ?�V ?)n �1 for ½x½51

8><
>:

for n ]1 (Sansone 1991).

See also JACKSON’S THEOREM, LEGENDRE SERIES
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PID
A popular acronym for "PRINCIPAL IDEAL DOMAIN." In
engineering circles, the acronym PID refers to the
"PROPORTIONAL-INTEGRAL-DERIVATIVE METHOD" algo-
rithm for controlling systems.

See also PRINCIPAL IDEAL DOMAIN, PRINCIPAL IDEAL

RING, PROPORTIONAL-INTEGRAL-DERIVATIVE METHOD

Pidduck Polynomial
Polynomials/Pk ðx Þ/ which form the SHEFFER SEQUENCE

for

g(t) �
2t

et � 1 
(1)

f ðtÞ ¼ et � 1

et þ 1 
ð2Þ

and have GENERATING FUNCTION

X�
k �0

Pk(x)

k!
tk �

t

1 � t

1 � t

1 � t

 !x

: (3)

The first few are

P0(x) �1
P1(x) �2x �1
P2(x) �4x24x �2
P3(x) �8x3 �12x2 �16x �6:

The Pidduck polynomials are related to the MITTAG-

LEFFLER POLYNOMIALS Mn(x) by

Pn(x) �1
2(e

t �1)Mn(x) (4)

(Roman 1984, p. 127).

See also MITTAG-LEFFLER POLYNOMIAL, SHEFFER

SEQUENCE
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Pie Chart

A chart made by plotting the numeric values of a set
of quantities as a set of adjacent circular wedges with
arc lengths proportional to the total amount. All
wedges taken together comprise an entire disk. One
or more segments are slightly separated from the disk
center for emphasis in a so-called "exploded" pie
chart.

See also BAR CHART, HISTOGRAM
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Pie Cutting
CIRCLE DIVISION BY LINES, CYLINDER CUTTING, PAN-

CAKE THEOREM, PIZZA THEOREM

Piecewise Circular Curve
A curve composed exclusively of circular ARCS.

See also ARC, FLOWER OF LIFE, LENS, REULEAUX

POLYGON, REULEAUX TRIANGLE, SALINON, SEED OF

LIFE, TRIANGLE ARCS, YIN-YANG

References
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1994.

Piecewise Continuous
A function or curve is piecewise continuous if it is
CONTINUOUS on all but a finite number of points at
which certain matching conditions are sometimes
required.

See also CONTINUOUS, CONTINUOUS FUNCTION



Pigeonhole Principle
DIRICHLET’S BOX PRINCIPLE

Pillai’s Conjecture
For every k �1, there exist only finite many pairs of
POWERS (p ; p ?) with p and p ? NATURAL NUMBERS and
k �p ?�p:/

References
Ribenboim, P. "Catalan’s Conjecture." Amer. Math. Monthly

103, 529 �/538, 1996.

Pillai’s Theorem
Write the exact powers of 2 and 3 in sorted order as 1,
2, 3, 4, 8, 9, 16, 27, 32, ... (Sloane’s A006899), and let
un be the nth term in the sequence. Then un �1 �un

tends to infinity nearly as rapidly as un :/

References
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Suggested by His Life and Work, 3rd ed. New York:
Chelsea, 1999.

Pillai. J. Indian Math. Soc. 19, 1�/11, 1931.
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Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Pilot Vector
VECTOR SPHERICAL HARMONIC

Pinch Point
A singular point such that every NEIGHBORHOOD of
the point intersects itself. Pinch points are also called
Whitney singularities or branch points.

Pincherle Derivative
Let x : p(x) 0 xp(x) ; then for any operator T ,

T ?�Tx �xT

is called the Pincherle derivative of T . If T is a SHIFT-

INVARIANT OPERATOR, then its Pincherle derivative is
also a SHIFT-INVARIANT OPERATOR.
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Pinching Theorem
Let g(x) 5f (x) 5h(x) for all x in some OPEN INTERVAL

containing a . If

lim
x 0a

g(x) �lim
x0a

h(x) �L;

then limx0a f (x) �L :/

See also LIMIT, SQUEEZING THEOREM

Pine Cone Number
FIBONACCI NUMBER

Piriform

A plane curve also called the PEG TOP and given by
the CARTESIAN equation

a4y2 �b2x3(2a �x) (1)

and the parametric curves

x �a(1 �sin t) (2)

y �b cos t(1 �sin t) (3)

for t 
 [�p=2; p=2]: It was studied by G. de Long-
champs in 1886. The generalization to a QUARTIC 3-
D surface

x4 �x3
� �

�y2 �z2 �0 ; (4)

is shown below (Nordstrand).

See also BUTTERFLY CURVE, DUMBBELL CURVE, EIGHT

CURVE, HEART SURFACE, PEAR CURVE
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Pisot Constant
PISOT-VIJAYARAGHAVAN CONSTANT

Pisot-Vijayaraghavan Constant
Let u be a number greater than 1, l a POSITIVE

number, and

frac(x)�x� xb c (1)

denote the FRACTIONAL PART of x , where xb c is the



FLOOR FUNCTION. Then for a given l ; the sequence of
numbers frac lunð Þ for n �1, 2, ... is an EQUIDISTRIB-

UTED SEQUENCE in the interval (0, 1) when u does not
belong to a l/-dependent exceptional set S of MEASURE

ZERO (Koksma 1935). Pisot (1938) and Vijayaragha-
van (1941) independently studied the exceptional
values of u; and Salem (1943) proposed calling such
values Pisot-Vijayaraghavan numbers.

Pisot (1938) proved that if u is chosen such that there
exists a l "0 for which the series

X�
n�0

sin2( plu)n (2)

converges, then u is an ALGEBRAIC INTEGER whose
conjugates all (except for itself) have modulus B1;
and l is an ALGEBRAIC INTEGER of the FIELD K(u):
Vijayaraghavan (1940) proved that the set of Pisot-
Vijayaraghavan numbers has infinitely many LIMIT

POINTS.

Salem (1944) proved that the set of Pisot-Vijayara-
ghavan constants is closed. The proof of this theorem
is based on the LEMMA that for a Pisot-Vijayaragha-
van constant u; there always exists a number l such
that 1 5 l B u and the following inequality is satisfied,

X�
n�0

sin2 plunð Þ5p2(2u � 1)2

(u � 1)2 : (3)

The smallest Pisot-Vijayaraghavan constant is given
by the POSITIVE ROOT u0 :1 :32372 of

x3 �x �1 �0: (4)

This number was identified as the smallest known by
Salem (1944), and proved to be the smallest possible
by Siegel (1944). Siegel also identified the next
smallest Pisot-Vijayaraghavan constant u1 as the
root of

x4 �x3 �1 �0 : (5)

showed that u1 and u2 are isolated in S , and showed
that the roots of each POLYNOMIAL

xn x2 �x �1
� �

�x2 �1 n �1; 2; 3; . . .  (6)

xn �
xn �1 � 1

x2 � 1
n �3; 5; 7; . . . (7)

xn �
xn �1 � 1

x � 1
n �3; 5; 7; . . . (8)

belong to S , where u0 � f (the GOLDEN MEAN) is the
accumulation point of the set (in fact, the smallest; Le
Lionnais 1983, p. 40).

Some small Pisot-Vijayaraghavan constants and their
POLYNOMIALS are given in the following table. The
latter two entries are from Boyd (1977).

k number order POLYNOMIAL

0 1.3247179572 3 1 0 -1 -1

1 1.3802775691 4 1 -1 0 0 -1

1.6216584885 16 1 -2 2 -3 2 -2 1 0 0 1 -1 2 -
2 2 -2 1 -1

1.8374664495 20 1 -2 0 1 -1 0 1 -1 0 1 0 -1
0 1 -1 0 1 -1 0 1 -1

All the points in S less than f are known (Dufresnoy
and Pisot 1955). Each point of S is a limit point from
both sides of the set T of SALEM CONSTANTS (Salem
1945).

Pisot-Vijayaraghavan constants give rise to ALMOST

INTEGERS. For example, the larger the power to which
u0 is taken, the closer un

0� un
0

> ?
; where xb c is the

FLOOR FUNCTION, is to either 0 or 1 (Trott 2000). The
powers of u0 for which this quantity is closer to 0 are
1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 17, ... (Sloane’s A051016),
and those for which it is closer to 1 are 2, 9, 10, 13, 15,
16, 18, 20, 21, 23, ... (Sloane’s A051017).

See also ALMOST INTEGER, EQUIDISTRIBUTED SE-

QUENCE, SALEM CONSTANTS, WEYL’S CRITERION
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Pistol

A 4-POLYHEX.
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Pitchfork Bifurcation
Let f : R �R 0 R be a one-parameter family of C3

maps satisfying

f (�x; m) ��f (x; m) (1)

@f

@x

" #
m�0; x�0

�0 (2)

@2f

@x @ m

" #
0 ; 0

> 0 (3)

@3f

@ m3

" #
m�0 ; x�0

B0: (4)

(Actually, condition (1) can be relaxed slightly.) Then
there are intervals having a single stable fixed point
and three fixed points (two of which are stable and
one of which is unstable). This BIFURCATION is called
a pitchfork bifurcation. An example of an equation
displaying a pitchfork bifurcation is

ẋ � mx �x3 (5)

(Guckenheimer and Holmes 1997, p. 145).

See also BIFURCATION, TRANSCRITICAL BIFURCATION
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Pivot Theorem

If the VERTICES A , B , and C of TRIANGLE DABC lie on
sides QR , RP , and PQ of the TRIANGLE DPQR ; then
the three CIRCUMCIRCLES CBP , ACQ , and BAR have
a common point X . In extended form, this theorem
becomes MIQUEL’S THEOREM.

See also CIRCUMCIRCLE, CLIFFORD’S CIRCLE THEO-

REM, MIQUEL’S THEOREM

References
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited.

New York: Random House, pp. 61�/62, 1967.
Forder, H. G. Geometry. London: Hutchinson, p. 17, 1960.
Wells, D. The Penguin Dictionary of Curious and Interesting

Geometry. London: Penguin, p. 184, 1991.

Pivoting
The element in the diagonal of a matrix by which
other elements are divided in an algorithm such as
GAUSS-JORDAN ELIMINATION is called the pivot ele-
ment. Partial pivoting is the interchanging of rows
and full pivoting is the interchanging of both rows
and columns in order to place a particularly "good"



element in the diagonal position prior to a particular
operation.

See also GAUSS-JORDAN ELIMINATION
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Pizza Theorem
If a circular pizza is divided into 8, 12, 16, ...slices by
making cuts at equal angles from an arbitrary point,
then the sums of the areas of alternate slices are
equal.

There is also a second pizza theorem. This one gives
the VOLUME of a pizza of thickness a and RADIUS z ,

pizza :

Place (Digit)
DIGIT

Place (Field)
A place n of a NUMBER FIELD k is an ISOMORPHISM

class of field maps k onto a dense subfield of a
nondiscrete locally compact FIELD kn :/

In the function field case, let F be a function field of
algebraic functions of one variable over a FIELD K .
Then by a place in F , we mean a subset p of F which
is the IDEAL of nonunits of some VALUATION RING O
over K .
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Place (Game)
For n players, n �1 games are needed to fairly
determine first place, and n �1 �1g(n �1) are
needed to fairly determine first and second place.

Place (Riemann Sphere)

The word "place" has a special meaning in complex
variables, where it roughly corresponds to a point in
the COMPLEX PLANE (except that it reflects the
Riemann sheet structure imposed by whatever func-
tion is under discussion). For example, if the function
in question is ln z; then 1 and e2 pi are different places.

Plaindrome
A plaindrome is a number whose HEXADECIMAL digits
are in nondecreasing order. The first few are 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22,
23, 24, ... (Sloane’s A023757). The first few which are
not plaindromes are 16, 32, 33, 48, 49, 50, 64, ...,
corresponding to 1016; 2016; 2116; 3016; 3116; 3216; 6416;
....

See also DIGIT, HEXADECIMAL, KATADROME, META-

DROME, NIALPDROME
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Plaited Polyhedron

There exist POLYHEDRA which can be plaited
(braided). Examples include a plaited CUBE and
plaited ICOSAHEDRON illustrated above (Pargetter
1959, Wells 1991). In the above figures, heavy lines
indicate cuts, thin lines indicate folds, and polygons
labeled "O" are placed over polygons labeled "U ."
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Planar Bubble Problem
BUBBLE

Planar Connected Graph

A planar connected graph is a GRAPH which is both
planar and connected. The numbers of planar con-



nected graphs with n �1, 2, ... nodes are 1, 1, 1, 2, 6,
20, 99, ... (Sloane’s A003094; Steinbach 1990, p. 131).
A subset of planar 3-connected graphs are called
POLYHEDRAL GRAPHS.
The following table gives the numbers of planar
connected graphs having minimal degrees of at least
k .

k Sloane n �1, 2, 3, ...

2 A054381 0, 0, 1, 3, 10, 49, 332, ...

The numbers of planar connected graphs with n �1,
2, ... edges are 1, 1, 3, 5, 12, 30, 79, 227, 709, 2318, ...
(Sloane’s A046091).

See also CONNECTED GRAPH, PLANAR GRAPH, POLY-

HEDRAL GRAPH, POLYNEMA
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Planar Distance
For n points in the PLANE, there are at least

N1 �
ffiffiffiffiffiffiffiffiffiffiffi
n �3

4

q
�1

2

different DISTANCES. The minimum DISTANCE can
occur only 53n �6 times, and the MAXIMUM DISTANCE

can occur 5n times. Furthermore, no DISTANCE can
occur as often as

N2 �
1
4 n 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n �7

p
 �
B

n3 =2ffiffiffi
2

p �
n

4

times.

Finally, no set of n �6 points in the PLANE can
determine only ISOSCELES TRIANGLES.

See also DISTANCE
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Planar Graph

A GRAPH is planar if it can be drawn in a PLANE

without EDGES crossing (i.e., it has CROSSING NUMBER

0). The number of planar graphs with n�1, 2, ...
nodes are 1, 2, 4, 11, 33, 142, ... (Sloane’s A005470;
Wilson 1975, p. 162).
There are a number of efficient algorithms for
planarity testing, which are unfortunately all difficult
to implement. Most are based on the o n3ð Þ algorithm
of Auslander and Parter (1961; Skiena 1990, p. 247).
One implementation is given by PlanarQ[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘), which however should
be trusted for only versions 4.1 and higher.

Only planar graphs have DUALS and if G is planar,
then G has VERTEX DEGREE55: A graph is planar IFF

it has a COMBINATORIAL DUAL GRAPH (Harary 1994,
p. 115). Any planar graph has a GRAPH EMBEDDING as
a PLANAR STRAIGHT LINE GRAPH where edges do not
intersect (Fáry 1948; Bryant 1989; Skiena 1990,
pp. 100 and 251; Scheinerman and Wilf 1994).

COMPLETE GRAPHS are planar only for n54: The
complete BIPARTITE GRAPH K(3; 3) is nonplanar. More
generally, Kuratowski proved in 1930 that a graph is
planar IFF it does not contain within it any graph
which can be CONTRACTED to the pentagonal graph
K(5) or the hexagonal graph K(3; 3): K5 can be
decomposed into a union of two planar graphs, giving
it a "DEPTH" of E(K5)�2: Simple CRITERIA for deter-
mining the depth of graphs are not known. Beineke
and Harary (1964, 1965) have shown that if nf4
(mod 6), then

E(Kn)� 1
6(n�7)
j k

:

The DEPTHS of the graphs Kn for n�4, 10, 22, 28, 34,
and 40 are 1, 3, 4, 5, 6, and 7 (Meyer 1970).

All TREES are planar, as is a CYCLE GRAPH, GRID

GRAPH, or WHEEL GRAPH. Every planar graph on nine
vertices has a nonplanar complement (Battle et al.
1962; Skiena 1990, p. 250).

The following table gives the numbers of planar
graphs having minimal degrees of at least k .



k Sloane n �1, 2, 3, ...

2 A049370 0, 0, 1, 3, 10, 50, 335, ...

3 A049371 0, 0, 0, 1, 2, 9, 46, 386, ...

4 A049372 0, 0, 0, 0, 0, 1, 1, 4, 14, 69, ...

5 A049373 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,
5, ...

See also BARNETTE’S CONJECTURE, COMPLETE GRAPH,
DUAL GRAPH, FABRY IMBEDDING, INTEGRAL DRAWING,
KURATOWSKI REDUCTION THEOREM, OUTPLANAR

GRAPH, PLANAR CONNECTED GRAPH, PLANAR

STRAIGHT LINE GRAPH, POLYHEDRAL GRAPH, STEI-

NITZ’S THEOREM, UTILITY GRAPH
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Planar Point
A point p on a REGULAR SURFACE M 
R3 is said to be
planar if the GAUSSIAN CURVATURE K(p)�0 and
S(p)�0 (where S is the SHAPE OPERATOR), or equiva-
lently, both of the PRINCIPAL CURVATURES k1 and k2

are 0.

See also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN

CURVATURE, HYPERBOLIC POINT, PARABOLIC POINT,
SYNCLASTIC
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Planar Polygon
Flat polygons embedded in 3-D space can be trans-
formed into a congruent planar polygon as follows.
First, translate the starting vertex to (0, 0, 0) by
subtracting it from each vertex of the polygon. Then
find the normal n to the polygon by taking the CROSS

PRODUCT of the first and last vertices. Now, let A be
the rotation matrix for EULER ANGLES c; u; and f; and
solve

A

nx

nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�n2

x�n2
y

q
2
64

3
75� 0

0
1

2
4
3
5 (1)

for cos c and cos u (after first expressing sines in
terms of cosines using cos x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sin2 x

p
: The result

is

f ¼9
nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
x þ n2

y

q ð2Þ



u �9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �n2

x �n2
y

q
: (3)

The signs are chosen as follows:

c �cos�1 �sgn(nx)
nyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
x � n2

y

q
2
4

3
5 (4)

u �cos�1 �sgn nxnzð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �n2

x �n2
y

qh i
: (5)

Plugging these back in and applying to the original
polygon then gives a polygon whose vertices all have
one component zero. This component can then be
dropped. The only special cases which need to be
taken into account are nzj j �1 ; in which case the
polygon is parallel to the xy -plane and the third
components can be immediately dropped. The second
occurs when nx �0; in which case there is no
component of the normal vector along the X -AXIS, so
the Euler rotation will not work. However, simply
picking a different starting vertex from which to
calculate the normal resolves this degenerate case.

See also POLYGON

Planar Space
Let j1 ; j2ð Þ be a locally EUCLIDEAN coordinate sys-
tem. Then

ds2 �dj2
1 �dj2

2 : (1)

Now plug in

d j1 �
@ j1

@x1

dx1 �
@ j1

@x2

dx2 (2)

d j2 �
@ j2

@x1

dx1 �
@ j2

@x2

dx2 (3)

to obtain

ds2 �
@ j1

@x1

 !2

�
@ j2

@x1

 !2
2
4

3
5 dx2

1

�2
@ j1

@x1

@ j1

@x2

�
@ j2

@x1

@ j2

@x2

" #
dx1 dx2

�
@ j1

@x2

 !2

�
@ j2

@x2

 !2
2
4

3
5 dx2

2 : (4)

Reading off the COEFFICIENTS from

ds2 �g11 dx2
1 �2g12 dx1 dx2 �g22(dx2)2 (5)

gives

g11 �
@ j1

@x1

 !2

�
@ j2

@x1

 !2

(6)

g12 �
@ j1

@x1

@ j1

@x2

�
@ j2

@x1

@ j2

@x2

(7)

g22 �
@ j1

@x2

 !2

�
@ j2

@x2

 !2

: (8)

Making a change of coordinates x1 ; x2ð Þ 0 x?1 ; x?2ð Þ
gives

g?11 �
@ j1

@x?1

 !2

�
@ j2

@x?1

 !2

�
@ j1

@x1

@x1

@x ?1
�

@ j1

@x2

@x2

@x ?1

 !2

�
@ j2

@x1

@x1

@x?1
�

@ j2

@x2

@x2

@x?1

 !2

�g11

@x1

@x?1

 !2

�2g12

@x1

@x?1

@x2

@x?1
�g22

@x2

@x ?1

 !2

(9)

g ?12 �
@ j1

@x1

@x1

@x?1

@ j1

@x2

@x2

@x?2
�

@ j2

@x1

@x1

@x?1

@ j2

@x2

@x2

@x?2

�g12

@x1

@x?1

@x2

@x?2
(10)

g ?22 �g11

@x1

@x?1

 !2

�2g12

@x1

@x?2

@x2

@x?2
�g22

@x2

@x?2

 !2

: (11)

Planar Straight Line Graph
A GRAPH EMBEDDING of a PLANAR GRAPH in which only
straight line segments are used to connect the
VERTICES. Fáry (1948) showed that every PLANAR

GRAPH has an EMBEDDING which is a planar straight
line graph with noncrossing edges (Bryant 1989;
Skiena 1990, pp. 100 and 251; Schneinerman and
Wilf 1994). de Fraysseix et al. (1988) give an
algorithm for constructing a planar straight line for
a graph of order n by placing the vertices on a (2n�
4)�(n�2) grid (Skiena 1990, p. 251).

See also PLANAR GRAPH, RECTILINEAR CROSSING

NUMBER
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Plancherel’s Theorem

g
�

��

f (x)ḡ(x) dx �g
�

��

F(s) Ḡ(s) ds ;

where F(s) �F[f (x)] and F denotes a FOURIER

TRANSFORM and z̄ is the COMPLEX CONJUGATE. If f
and g are real

g
�

��

f (x)g(�x) dx �g
�

��

F(s)G(s) ds:

See also FOURIER TRANSFORM, PARSEVAL’S THEOREM

Planck’s Radiation Function

The function

f (x)�
15

p4

1

x5(e1=x � 1)
; (1)

which is normalized so that

g
�

0

f (x) dx�1: (2)

The first and second RAW MOMENTS are

m?1�
30z(3)

p4
(3)

m?2�
5

2p2
; (4)

but higher order raw moments do not exist since the
corresponding integrals do not converge.
It has a MAXIMUM at x:0:201405; where

f ?(x)�
5x � e1=x(5x � 1)

x7(e1=x � 1)2 �0; (5)

and inflection points at x:0:11842 and x:0:283757;
where

f ƒ(x)�
e1=x 1 � e1=x
� �

� 6x e1=x � 1
� �

e1=x(5x � 2) � 5x
� �

e1=x � 1ð Þ3
x9

�0: (6)
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Plane
A plane is a 2-D DOUBLY RULED SURFACE spanned by
two linearly independent vectors. The generalization
of the plane to higher DIMENSIONS is called a HYPER-

PLANE. The angle between two intersecting planes is
known as the DIHEDRAL ANGLE.

In intercept form, a plane passing through the points
(a; 0; 0); (0; b; 0) and (0; 0; c) is given by

x

a
�

y

b
�

z

c
�1: (1)

The equation of a plane PERPENDICULAR to the
NONZERO VECTOR n̂�(a; b; c) through the point
(x0; y0; z0) is

a
b
c

2
4
3
5 �

x�x0

y�y0

z�z0

2
4

3
5�a(x�x0)�b(y�y0)�c(z�z0)�0;

(2)

so

ax�by�cz�d�0: (3)

where

d��ax0�by0�cz0: (4)

A plane specified in this form therefore has x -, y -, and
z -intercepts at

x��
d

a
(5)



y ��
d

b 
(6)

z ��
d

c
; (7)

and lies at a DISTANCE

h �
dj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p (8)

from the ORIGIN.

The plane through P1 and parallel to (a1 ; b1 ; c1) and
(a2 ; b2 ; c2) is

x �x1 y �y1 z �z1

a1 b1 c1

a2 b2 c2

������
�������0: (9)

The plane through points P1 and P2 parallel to
direction (a; b; c) is

x �x1 y �y1 z �z1

x2 �x1 y2 �y1 z2 �z1

a b c

������
�������0: (10)

The three-point form is

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

��������

���������
x �x1 y �y1 z �z1

x2 �x1 y2 �y1 z2 �z1

x3 �x1 y3 �y1 z3 �z1

������
�������0 : (11)

The POINT-PLANE DISTANCE from a point (x0 ; y0 ; z0) to
a plane

ax �by �cz �d �0 (12)

is

D �
ax0 � by0 � cz0 � d

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 � c2

p : (13)

The DIHEDRAL ANGLE between the planes

A1x �B1y �C1z �D1 �0 (14)

A2x �B2y �C2z �D2 �0 (15)

which have normal vectors N1 �(A1 ; B1 ; C1) and
N2 �(A2 ; B2 ; C2) is simply given via the DOT PRO-

DUCT of the normals,

cos u �N1 � N2

�
A1A2 � B1B2 � C1C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 � B2

1 � C2
1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 � B2
2 � C2

2

p : (16)

In order to specify the relative distances of n �1
points in the plane, /1 þ 2ðn �2Þ ¼ 2n �3/ coordinates
are needed, since the first can always be placed at (0,
0) and the second at (x; 0); where it defines the X -

AXIS. The remaining n �2 points need two coordi-
nates each. However, the total number of distances is

nC2 �
n
2

$ %
�

n!

2!(n � 2)! 
�1

2 n(n �1); (17)

where n
k

� �
is a BINOMIAL COEFFICIENT, so the distances

between points are subject to m relationships, where

m �1
2 n(n �1) �(2n �3) �1

2(n �2)(n �3): (18)

For n �2 and n �3, there are no relationships.
However, for a QUADRILATERAL (with n �4), there is
one (Weinberg 1972).

It is impossible to pick random variables which are
uniformly distributed in the plane (Eisenberg and
Sullivan 1996). In 4-D, it is possible for four planes to
intersect in exactly one point. For every set of n
points in the plane, there exists a point O in the plane
having the property such that every straight line
through O has at least 1/3 of the points on each side of
it (Honsberger 1985).

Every RIGID MOTION of the plane is one of the
following types (Singer 1995):

1. ROTATION about a fixed point P .
2. TRANSLATION in the direction of a line l .
3. REFLECTION across a line l .
4. Glide-reflections along a line l .

Every RIGID MOTION of the hyperbolic plane is one of
the previous types or a

5. Horocycle rotation.

See also ARGAND PLANE, COMPLEX PLANE, COX’S

THEOREM, DIHEDRAL ANGLE, DIRECTOR, DOUBLY

RULED SURFACE, ELLIPTIC PLANE, FANO PLANE,
HYPERPLANE, ISOCLINAL PLANE, LINE-PLANE INTER-

SECTION, MEDIATOR, MOUFANG PLANE, NIRENBERG’S

CONJECTURE, NORMAL SECTION, POINT-PLANE DIS-

TANCE, PROJECTIVE PLANE
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Plane Chart
EQUIRECTANGULAR PROJECTION

Plane Curve
A CURVE which lies in a single PLANE. A plane curve
may be closed or open. Curves which are interesting



for some reason and whose properties have therefore
been investigates are called "special" curves (Lawr-
ence 1972). Some of the most common open curves are
the LINE, PARABOLA, and HYPERBOLA, and some of the
most common closed curves are the CIRCLE and
ELLIPSE.

See also ALGEBRAIC CURVE, CURVE, SPACE CURVE,
SPHERICAL CURVE
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Plane Cutting
PLANE DIVISION BY CIRCLES, PLANE DIVISION BY

ELLIPSES, PLANE DIVISION BY LINES

Plane Division by Circles

Consider n intersecting CIRCLES. The maximal num-
ber of regions into which these divide the PLANE are

N(n) �n2 �n �2 ;

giving values for n �1, 2, ... of 2, 4, 8, 14, 22, 32, 44,
58, ... (Sloane’s A014206).

See also ARRANGEMENT, CIRCLE, CIRCLE DIVISION BY

LINES, PLANE DIVISION BY ELLIPSES, PLANE DIVISION

BY LINES, SPACE DIVISION BY SPHERES
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Plane Division by Ellipses

Consider n intersecting ELLIPSES. The maximal num-
ber of regions into which these divide the PLANE are

N(n) �2n2 �2n �2 �2(n2 �n �1);

giving values for n �1, 2, ... of 2, 6, 14, 26, 42, 62, 86,
114, ....

See also ARRANGEMENT, CIRCLE DIVISION BY LINES,
ELLIPSE, PLANE DIVISION BY CIRCLES, PLANE DIVI-

SION BY LINES

References
Problem Q607. Parabola 20, 27, 1984.

Plane Division by Lines

The maximal number of regions into which n lines
divide a PLANE are

N(n) �1
2 n2 �n �2
� �

which, for n �1, 2, ...gives 2, 4, 7, 11, 16, 22, ...
(Sloane’s A000124), the same maximal number of
regions into which a circle can be divided by n lines.

See also ARRANGEMENT, CIRCLE DIVISION BY LINES,
LINE, PLANE DIVISION BY CIRCLES, PLANE DIVISION

BY ELLIPSES
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Plane Geometry
That portion of GEOMETRY dealing with figures in a
PLANE, as opposed to SOLID GEOMETRY. Plane geome-
try deals with the CIRCLE, LINE, POLYGON, etc.

See also CONSTRUCTIBLE POLYGON, GEOMETRIC CON-

STRUCTION, GEOMETRY, SOLID GEOMETRY, SPHERICAL

GEOMETRY
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Plane Graph
PLANAR GRAPH

Plane Partition

5 4 2 1 1
3 2
2 2

A two-dimensional array of INTEGERS nonincreasing
both left to right and top to bottom which add up to a
given number, i.e., nij]ni(j�1) and nij]n(i�1)j: For
example, a planar partition of 22 is illustrated above.
The GENERATING FUNCTION for the number PL(n) of
planar partitions of n is

X�
n�0

PL(n)xn�
1Q�

k�1(1 � xk)k

�1�x�3x2�6x3�13x4�24x5�. . . (1)

(Sloane’s A000219, MacMahon 1912b, Speciner 1972,
Bender and Knuth 1972, Bressoud and Propp 1999).
MacMahon (1960) also showed that the number of
plane partitions PL(a; b; c) whose YOUNG DIAGRAMS

fit inside an a�b�c box is given by

PL(a; b; c)�
Ya

i�1

Yb

j�1

Yc

k�1

i � j � k � 1

i � j � k � 2
(2)

(Bressoud and Propp 1999, Fulmek and Krattentha-
ler 2000). Expanding out the products gives

PL(a; b; c)�
Ya

i�1

G(i)G(b � c � i)

G(b � i)G(c � i)
(3)

�
G(a � 1)G(b � 1)G(c � 1)G(a � b � c � 1)

G(a � b � 1)G(a � c � 1)G(b � c � 1)
; (4)

where G(n) is BARNES’ G -FUNCTION. Taking n�a�
b�c gives

PL(n; n; n)�
Yn

i�1

G(i)G(i � 2n)

[G(i � n)]2 (5)

�
[G(n � 1)]3G(3n � 1)

[G(2n � 1)]3 ; (6)

the first few terms of which are 2, 20, 980, 232848,
267227532, 1478619421136, ... (Sloane’s A008793).



Amazingly, PL(a ; b; c) also gives the number of
HEXAGON TILINGS by RHOMBI for a hexagon of side
lengths a , b , c , a , b , c (David and Tomei 1989,
Fulmek and Krattenthaler 2000).

The concept of planar partitions can also be general-
ized to cubic partitions.

See also CYCLICALLY SYMMETRIC PLANE PARTITION,
DESCENDING PLANE PARTITION, HEXAGON TILING,
PARTITION, MACDONALD’S PLANE PARTITION CONJEC-

TURE, SOLID PARTITION, TOTALLY SYMMETRIC SELF-

COMPLEMENTARY PLANE PARTITION, YOUNG DIAGRAM
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Plane Symmetry Groups
WALLPAPER GROUPS

Plane-Filling Curve
PLANE-FILLING FUNCTION

Plane-Filling Function

A SPACE-FILLING FUNCTION which maps a 1-D INTER-

VAL into a 2-D area. Plane-filling functions were
thought to be impossible until Hilbert discovered
the HILBERT CURVE in 1891.
Plane-filling functions are often (imprecisely) defined
to be the "limit" of an infinite sequence of specified
curves which "fill" the PLANE without "HOLES," hence
the more popular term PLANE-FILLING CURVE. The
term "plane-filling function" is preferable to "PLANE-

FILLING CURVE" because "curve" informally connotes
"GRAPH" (i.e., range) of some continuous function, but
the GRAPH of a plane-filling function is a solid patch of
2-space with no evidence of the order in which it was
traced (and, for a dense set, retraced). Actually, all
that is needed to rigorously define a plane-filling
function is an arbitrarily refinable correspondence
between contiguous subintervals of the domain and
contiguous subareas of the range.

True plane-filling functions are not ONE-TO-ONE. In
fact, because they map closed intervals onto closed
areas, they cannot help but overfill, revisiting at least
twice a dense subset of the filled area. Thus, every
point in the filled area has at least one inverse image.

See also HILBERT CURVE, PEANO CURVE, PEANO-

GOSPER CURVE, SCHOENBERG CURVE, SIERPINSKI

CURVE, SPACE-FILLING FUNCTION, SPACE-FILLING

POLYHEDRON
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Plane-Line Intersection
LINE-PLANE INTERSECTION

Planted Planar Tree
A planted plane tree (V; E; v; a) is defined as a
vertex set V , edges set E , ROOT v , and order relation a

on V which satisfies



1. For x; y 
 V if r(x) B r(y); then x a y; where r(x)
is the length of the path from v to x ,
2. If fr ; sg; fx; yg 
 E ; r(r) � r(x) � r(s) �1 � r(y) �
1 and r a x; then s a y/

(Klarner 1969, Chorneyko and Mohanty 1975). The
CATALAN NUMBERS give the number of planar triva-
lent planted trees.

See also CATALAN NUMBER, PLANTED TREE, TREE
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Planted Tree
A planted tree is a ROOTED TREE whose ROOT NODE

has VERTEX DEGREE 1. The number of planted trees of
n nodes is Tn�1 ; where Tn �1 is the number of ROOTED

TREES of n �1 vertices (Harary 1994, pp. 188 �/190), so
there are 1, 1, 1, 2, 4, 9, 20, ... (Sloane’s A000081)
planted trees of n �1, 2, 3, ... vertices.

See also ROOTED TREE, TREE
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Plastic Constant
The limiting ratio of the successive terms of the
PADOVAN SEQUENCE, P �1 :32471795 . . . : It is given
exactly by the unique real root of x3 �x �1 �0:/

See also PADOVAN SEQUENCE
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Plat
A BRAID in which strands are intertwined in the
center and are free in "handles" on either side of the
diagram.

Plate Carre
EQUIRECTANGULAR PROJECTION

Plateau Curves

A curve studied by the Belgian physicist and math-
ematician Joseph Plateau. It has Cartesian equation

x �
a sin[(m � n)t]

sin[(m � n)t]

y �
2a sin(mt) sin(nt)

sin[(m � n)t]
:

If m �2n; the Plateau curve degenerates to a CIRCLE

with center (1; 0) and radius 2.
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Plateau’s Equation
The PARTIAL DIFFERENTIAL EQUATION

(1 �u2
x)uxx �2uxuyuxy �(1 �u2

y)uyy �0:
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Plateau’s Laws
BUBBLES can meet only at ANGLES of 1208 (for two
BUBBLES) and 109�28 ?16ƒ (for three BUBBLES), where
the exact value of 109.5 8 is the TETRAHEDRAL DIHE-

DRAL ANGLE. This was proved by Jean Taylor using
MEASURE THEORY to study AREA minimization. The
DOUBLE BUBBLE is AREA minimizing, but it is not
known if the triple BUBBLE is also AREA minimizing. It
is also unknown if empty chambers trapped inside
can minimize AREA for n]3 BUBBLES.

See also BUBBLE, CALCULUS OF VARIATIONS, DOUBLE

BUBBLE, MINIMAL SURFACE, PLATEAU’S PROBLEM
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Taylor, J. E. "The Structure of Singularities in Soap-Bubble-
Like and Soap-Film-Like Minimal Surfaces." Ann. Math.
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Plateau’s Problem
The problem in CALCULUS OF VARIATIONS to find the
MINIMAL SURFACE of a boundary with specified con-
straints (usually having no singularities on the sur-
face). In general, there may be one, multiple, or no
MINIMAL SURFACES spanning a given closed curve in
space. The EXISTENCE of a solution to the general case
was independently proven by Douglas (1931) and
Radó (1933), although their analysis could not ex-
clude the possibility of singularities. Osserman (1970)
and Gulliver (1973) showed that a minimizing solu-
tion cannot have singularities.

The problem is named for the Belgian physicist who
solved some special cases experimentally using soap
films and wire frames (Isenberg 1992, Wells 1991).
The illustration above shows the 13-polygon surface
obtained for a cubical wire frame.

See also BUBBLE, CALCULUS OF VARIATIONS, DOUBLE

BUBBLE, MINIMAL SURFACE, PLATEAU’S LAWS, STEI-

NER TREE, TRAVELING SALESMAN PROBLEM
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Platonic Graph

A POLYHEDRAL GRAPH corresponding to the SKELETON

of a PLATONIC SOLID. The five platonic graphs, the
TETRAHEDRAL GRAPH, CUBICAL GRAPH, OCTAHEDRAL

GRAPH, DODECAHEDRAL GRAPH, and ICOSAHEDRAL

GRAPH, are illustrated above. They are special cases
of SCHLEGEL GRAPHS.

See also PLATONIC SOLID, POLYHEDRAL GRAPH,
SCHLEGEL GRAPH
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Platonic Solid

The Platonic solids, also called the regular solids or
regular polyhedra, are CONVEX POLYHEDRA with
equivalent faces composed of congruent CONVEX

REGULAR POLYGONS. There are exactly five such solids
(Steinhaus 1983, pp. 252�/256): the CUBE, DODECAHE-

DRON, ICOSAHEDRON, OCTAHEDRON, and TETRAHE-

DRON, as was proved by Euclid in the last
proposition of the ELEMENTS . The Platonic solids
are sometimes also called "cosmic figures" (Cromwell
1997), although this term is sometimes used to refer
collectively to both the Platonic solids and KEPLER-

POINSOT SOLIDS (Coxeter 1973).

The Platonic solids were known to the ancient
Greeks, and were described by Plato in his Timaeus
ca. 350 BC. In this work, Plato equated the TETRA-

HEDRON with the "element" fire, the CUBE with earth,



the ICOSAHEDRON with water, the OCTAHEDRON with
air, and the DODECAHEDRON with the stuff of which
the constellations and heavens were made (Cromwell
1997).

If P is a POLYHEDRON with congruent (convex)
regular polygonal faces, then Cromwell (1997,
pp. 77�/78) shows that the following statements are
equivalent.

1. The vertices of P all lie on a SPHERE.
2. All the DIHEDRAL ANGLES are equal.
3. All the VERTEX FIGURES are REGULAR POLYGONS.
4. All the SOLID ANGLES are equivalent.
5. All the vertices are surrounded by the same
number of FACES.

Let v (sometimes denoted N0) be the number of
VERTICES, e (or N1) the number of EDGES, and f (or
N2) the number of FACES. The following table gives
the SCHLÄFLI SYMBOL, WYTHOFF SYMBOL, and C&R
symbol, the number of vertices v , edges e , and faces f ,
and the POINT GROUPS for the Platonic solids (Wen-
ninger 1989).

Solid SCHLÄFLI

SYMBOL

WYTHOFF

SYMBOL

C&R
Symbol

v e f Group

CUBE /f4; 3g/ 3 ½ 2 2 4 43 8 12 6 /Oh/

DODECA-

HEDRON

/f5; 3g/ 3 ½ 2 2 5 53 20 30 12 /Ih/

ICOSA-

HEDRON

/f3; 5g/ 5 ½ 2 2 3 35 12 30 20 /Ih/

OCTA-

HEDRON

/f3; 4g/ 4 ½ 2 2 3 34 6 12 8 /Oh/

TETRA-

HEDRON

/f3; 3g/ 3 ½ 2 2 3 33 4 6 4 /Td/

The duals of Platonic solids are other Platonic solids
and, in fact, the dual of the TETRAHEDRON is another
TETRAHEDRON. Let r be the INRADIUS, r the MIDRA-

DIUS, and R the CIRCUMRADIUS of a given Platonic
solid. Then

rR�r2:

The following two tables give the analytic and
numerical values of these distances for Platonic solids
with unit side length.

Solid r /r/ R

CUBE /
1
2/ /

1
2

ffiffiffi
2

p
/ /

1
2

ffiffiffi
3

p
/

DODECAHEDRON /
1
20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250�110

ffiffiffi
5

pp
/ /

1
4 3�

ffiffiffi
5

p� �
/ /

1
4

ffiffiffiffiffiffi
15

p
�

ffiffiffi
3

p� �
/

ICOSAHEDRON /
1
12 3

ffiffiffi
3

p
�

ffiffiffiffiffiffi
15

p� �
/ /

1
4 1�

ffiffiffi
5

p� �
/ /

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�2

ffiffiffi
5

pp
/

OCTAHEDRON /
1
6

ffiffiffi
6

p
/ /

1
2/ /

1
2

ffiffiffi
2

p
/

TETRAHEDRON /
1
12

ffiffiffi
6

p
/ /

1
4

ffiffiffi
2

p
/ /

1
4

ffiffiffi
6

p
/

Solid r /r/ R

CUBE 0.5 0.70711 0.86603

DODECAHEDRON 1.11352 1.30902 1.40126

ICOSAHEDRON 0.75576 0.80902 0.95106

OCTAHEDRON 0.40825 0.5 0.70711

TETRAHEDRON 0.20412 0.35355 0.61237

Finally, let A be the AREA of a single FACE, V be the
VOLUME of the solid, the EDGES be of unit length on a
side, and a be the DIHEDRAL ANGLE. The following
table summarizes these quantities for the Platonic
solids.

Solid A V /a/

Cube 1 1 /
1
2 p/

Dodecahedron /
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pp
/ /

1
4 15�7

ffiffiffi
5

p� �
/ /cos�1 �1

5

ffiffiffi
5

p
 �
/

Icosahedron /
1
4

ffiffiffi
3

p
/ /

5
12 3�

ffiffiffi
5

p� �
/ /cos�1 �1

3

ffiffiffi
5

p
 �
/

Octahedron /
1
4

ffiffiffi
3

p
/ /

1
3

ffiffiffi
2

p
/ /cos�1 �1

3


 �
/

Tetrahedron /
1
4

ffiffiffi
3

p
/ /

1
12

ffiffiffi
2

p
/ /cos�1 1

3


 �
/

The number of EDGES meeting at a VERTEX is 2e=v:
The SCHLÄFLI SYMBOL can be used to specify a
Platonic solid. For the solid whose faces are p -gons
(denoted fpg); with q touching at each VERTEX, the
symbol is fp; qg: Given p and q , the number of
VERTICES, EDGES, and faces are given by

N0�
4p

4 � (p � 2)(q � 2)

N1�
2pq

4 � (p � 2)(q � 2)

N2�
4q

4 � (p � 2)(q � 2)
:

The plots above show scaled duals of the Platonic
solid embedded in a CUMULATED form of the original
solid, where the scaling is chosen so that the dual



edges lie at the incenters of the original faces
(Wenninger 1983, pp. 8 �/9).

Since the Platonic solids are convex, the CONVEX HULL

of each Platonic solid is the solid itself. MINIMAL

SURFACES for Platonic solid frames are illustrated in
Isenberg (1992, pp. 82 �/83).

See also ARCHIMEDEAN SOLID, CATALAN SOLID,
JOHNSON SOLID, KEPLER-POINSOT SOLID, QUASIREGU-

LAR POLYHEDRON, UNIFORM POLYHEDRON
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Platonic Solid Stellations
The only STELLATIONS of PLATONIC SOLIDS which are
UNIFORM POLYHEDRA are the three DODECAHEDRON

STELLATIONS and the GREAT ICOSAHEDRON.

See also DODECAHEDRON STELLATIONS, ICOSAHEDRON

STELLATIONS, STELLA OCTANGULA

Plato’s Number
A vaguely specified number appearing in The Repub-
lic which involves 216 and 12,960,000.
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Platykurtic
A distribution with FISHER KURTOSIS g2 B0 (and
therefore having a flattened shape).

See also FISHER KURTOSIS

p-Layer
The p -layer of H , Lp ?(H) is the unique minimal
NORMAL SUBGROUP of H which maps onto
E(H=Op?(H)):/

See also BP -THEOREM, LP ’-BALANCE THEOREM, SIG-

NALIZER FUNCTOR THEOREM



Playfair’s Axiom
Through any point in space, there is exactly one
straight line PARALLEL to a given straight line. This
AXIOM is equivalent to the PARALLEL POSTULATE.

See also PARALLEL POSTULATE
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Plethysm
A group theoretic operation which is useful in the
study of complex atomic spectra. A plethysm takes a
set of functions of a given symmetry type fmg and
forms from them symmetrized products of a given
degree r and other symmetry type fng: A plethysm

fmg�fng�
X

flg

satisfies the rules

A�(BC)�(A�B)(A�C)�A�BA�C;

A�(B9C)�A�B9A�C

(A�B)�C�A�(B�C)

(A�B)�flg�
X

Gmnl(A�fmg)(B�fng);

where Gmnl is the coefficient of flg in fmgfng;

(A�B)�flg�
X

(�1) rGmnl(A�fmg)(B�fñg);

where fñg is the partition of r conjugate to fng; and

(AB)�flg�
X

gmnl(A�fmg)(B�fng);

where gmnl is the coefficient of flg in the inner product
fmg � (ng (Wybourne 1970).
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GRAPH (FUNCTION)

Plot3D
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Plouffe’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Define the function

r(x)�
1 for xB0
0 for x]0:

"
(1)

Let

an�sin(2n)�
sin 1 for n�0
2a0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2

0

p
for n�1

2an�1(1�2a2
n�2) for n]2;

8<
: (2)

then

X�
n�0

r(an)

2n�1
�

1

2p
: (3)

For

bn�cos(2n)�
cos 1 for n�0
2b2

n�1�1 for n]1;

"
(4)

and

X�
n�0

r(bn)

2n�1
�0:4756260767 . . . : (5)

Letting

cn�tan(2n)�
tan 1 for n�0

2cn�1

1 � c2
n�1

for n]1;

8<
: (6)

then

X�
n�0

r(cn)

2n�1
�

1

p
: (7)

Plouffe asked if the above processes could be "in-
verted." He considered

an�sin 2n sin�1 1
2


 �

�

1
2 for n�0
1
2

ffiffiffi
3

p
for n�1

2an�1 1�2a2
n�2ð Þ for n]2;

8><
>: (8)

giving

X�
n�0

r(an)

2n�1
� 1

12; (9)

and

bn�cos 2n cos�1 1
2


 �
�

1
2 for n�0

2b2
n�1�1 for n]1;

(
(10)

giving



X�
n�0

r( bn)

2n�1 
�1

2; (11)

and

gn �tan 2n tan�1 1
2


 �
�

1
2 for n �0

2 gn �1

1 � g2
n�1

for n ]1;

8><
>: (12)

giving

X�
n�0

r( an)

2n�1 
�

1

p
tan �1 1

2


 �
: (13)

The latter is known as Plouffe’s constant (Plouffe
1997). The positions of the 1s in the BINARY expansion
of this constant are 3, 6, 8, 9, 10, 13, 21, 23, ...
(Sloane’s A004715).

Borwein and Girgensohn (1995) extended Plouffe’s gn

to arbitrary REAL x , showing that if

jn �tan(2n tan �1 x)

�

x for n �0
2jn�1

1 � j2
n�1

for n ]1 and jn�1j j"1

�� for n ]1 and jn�1j j�1;

8>><
>>: (14)

then

X�
n�0

r( jn)

2n�1 
�

tan�1 x

p
for x ]0

1 �
tan�1 x

p
for x B0:

8>>><
>>>: (15)

Borwein and Girgensohn (1995) also give much more
general recurrences and formulas.
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Plücker Characteristics
The CLASS m , ORDER n , number of NODES d ; number
of CUSPS k ; number of STATIONARY TANGENTS (INFLEC-

TION POINTS) i; number of BITANGENTS t ; and GENUS

p .

See also ALGEBRAIC CURVE, BITANGENT, CUSP, GENUS

(SURFACE), INFLECTION POINT, NODE (ALGEBRAIC

CURVE), STATIONARY TANGENT

Plücker Coordinates
GRASSMANN COORDINATES

Plücker Lines
The 60 PASCAL LINES of a HEXAGON inscribed in a
CONIC SECTION intersect three at a time through 20
STEINER POINTS. There is a dual relationship between
the 15 Plücker lines and the 15 SALMON POINTS.

See also KIRKMAN POINTS, PASCAL LINES, PASCAL’S

THEOREM, SALMON POINTS, STEINER POINTS
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Plücker Relations
PLÜCKER’S EQUATIONS

Plücker’s Conoid

A RULED SURFACE sometimes also called the CYLIN-

DROID. von Seggern (1993) gives the general func-
tional form as

ax2�by2�zx2�zy2�0; (1)

whereas Fischer (1986) and Gray (1997) give

z�
2xy

(x2 � y2
: (2)

A polar parameterization therefore gives

x(r; u)�r cos u (3)

y(r; u)�r sin u (4)

z(r; u)�2 cos u sin u: (5)



A generalization of Plücker’s conoid to n folds is given
by

x(r ; u) �r cos u (6)

y(r ; u) �r sin u (7)

z(r ; u) �sin(nu) (8)

(Gray 1997). The cylindroid is the inversion of the
CROSS-CAP (Pinkall 1986).

See also CROSS-CAP, RIGHT CONOID, RULED SURFACE
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Plücker’s Equations
Relationships between the number of SINGULARITIES

of plane algebraic curves. Given a PLANE CURVE,

m �n(n �1) �2 d �3k (1)

n �m(m �1) �2t �3 i (2)

i �3n(n �2) �6d �8k (3)

k �3m(m �2) �6 t �8i; (4)

where m is the CLASS, n the ORDER, d the number of
NODES, k the number of CUSPS, i the number of
STATIONARY TANGENTS (INFLECTION POINTS), and t
the number of BITANGENTS. Only three of these
equations are LINEARLY INDEPENDENT.

See also ALGEBRAIC CURVE, BIOCHE’S THEOREM,
BITANGENT, CUSP, GENUS (SURFACE), INFLECTION

POINT, KLEIN’S EQUATION, NODE (ALGEBRAIC CURVE),
STATIONARY TANGENT
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Plumbing
The plumbing of a p -sphere and a q -sphere is defined
as the disjoint union of Sp �Sq and Dp �Sq with their
common Dp �Dq ; identified via the identity home-
omorphism.

See also HYPERSPHERE
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Pluperfect Number
MULTIPLY PERFECT NUMBER

Plurisubharmonic Function
An upper semicontinuous function whose restrictions
to all complex lines are subharmonic (where defined).
These functions were introduced by P. Lelong and
Oka in the early 1940s. Examples of such a function
are the logarithms of moduli of holomorphic func-
tions.
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Plus
The ADDITION of two quantities, i.e., a plus b . The
operation is denoted a �b; and the symbol � is called
the PLUS SIGN. Floating point ADDITION is sometimes
denoted :/

See also ADDITION, MINUS, PLUS OR MINUS, TIMES

Plus or Minus
The symbol 9 is used to denote a quantity which
should be both added and subtracted, as in a 9b: The
symbol can be used to denote a range of uncertainty,
or to denote a pair of quantities, such as the roots
given by the QUADRATIC FORMULA

x9�
�b 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
:

When order is relevant, the symbol a �b is also used,
so an expression OF THE FORM x 9y �z is interpreted
as x �y �z or x �y �z : In contrast, the expression x 9
y9z is interpreted to mean the set of four quantities
x�y�z; x�y�z; x�y�z; and x�y�z:/

See also MINUS, MINUS SIGN, PLUS, PLUS SIGN, SIGN

Plus Perfect Number
ARMSTRONG NUMBER



Plus Sign
The symbol "/�/" which is used to denote a POSITIVE

number or to indicate ADDITION.

See also ADDITION, MINUS SIGN, SIGN

Plutarch Numbers
In Moralia, the Greek biographer and philosopher
Plutarch states "Chrysippus says that the number of
compound propositions that can be made from only
ten simple propositions exceeds a million. (Hip-
parchus, to be sure, refuted this by showing that on
the affirmative side there are 103,049 compound
statements, and on the negative side 310,952.)" These
numbers are known as the Plutarch numbers.

103,049 can be interpreted as the number s10 of
BRACKETINGS on ten letters (Stanley 1997, Habsieger
et al. 1998). Similarly, Plutarch’s second number is
given by s10 �s11ð Þ=2 �310; 954 (Habsieger et al.
1998).
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Pochhammer Symbol
The Pochhammer symbol

(x)n �
G(x � n)

G(x)
�x(x �1) � � � (x �n �1) �

G(x � n)

G(x)
(1)

(Abramowitz and Stegun 1972, p. 256; Spanier 1987;
Koepf 1998, p. 5) for n ]0 is an unfortunate notation
used in the theory of special functions for the RISING

FACTORIAL, which is denoted x(n) (Roman 1984, p. 5)
or �x�n (Comtet 1974, p. 6) in combinatorics. In
combinatorial usage, (x)n denotes the FALLING FAC-

TORIAL. Extreme caution is therefore needed in
interpreting the notations (x)n and x(n):/

The Pochhammer symbol (x)n obeys the transforma-
tion due to Euler

X�
n�0

(a)n

n!
anzn�(1�z)�a

X�
n�0

(a)n

n!
Dna0

z

1 � z

 !n

; (2)

where D is the FORWARD DIFFERENCE and

Dka0�
Xk

m�0

(�1)m k
m

$ %
ak�m (3)

(Nørlund 1955).

The sum of 1=(k)p can be done in closed form as

Xn

k�1

1

(k)p

�
1

(p � 1)G(p)
�

nG(n)

(p � 1)G(n � p)
(4)

for p �1.

See also FACTORIAL, FALLING FACTORIAL, GENERAL-

IZED HYPERGEOMETRIC FUNCTION, HANKEL’S SYMBOL,
HARMONIC LOGARITHM, HYPERGEOMETRIC FUNCTION,
KRAMP’S SYMBOL
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Pocklington-Lehmer Test
POCKLINGTON’S THEOREM

Pocklington’s Criterion
Let p be an ODD PRIME, k be an INTEGER such that
p¶k and 15k52(p�1); and

N�2kp�1:

Then the following are equivalent

1. N is PRIME.
2. GCD ak�1; N

� �
�1;/

where GCD is the GREATEST COMMON DENOMINATOR.
This is a modified version of the original theorem due
to Lehmer.
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Pocklington’s Theorem
Let n �1 �FR where F is the factored part of a
number

F �pa1

1 � � �par
r ; (1)

where (R; F) �1; and R B
ffiffiffi
n

p
: If there exists a bi for

i �1, ..., r such that

bn�1
i �1 (mod n) (2)

GCD b(n�1)=pi

i �1; n

 �

�1 ; (3)

then n is a PRIME.

Poggendorff Illusion

The illusion that the two ends of a straight LINE

SEGMENT passing behind an obscuring RECTANGLE

are offset when, in fact, they are aligned. The
Poggendorff illusion was discovered in 1860 by
physicist and scholar J. C. Poggendorff, editor of
Annalen der Physik und Chemie , after receiving a
letter from astronomer F. Zöllner. In his letter,
Zöllner described an illusion he noticed on a fabric
design in which parallel lines intersected by a pattern
of short diagonal lines appear to diverge (ZÖ LLNER’S

ILLUSION). Pondering this illusion, Poggendorff no-
ticed and described another illusion resulting from
the apparent misalignment of a diagonal line; an
illusion which today bears his name (IllusionWorks).

See also ILLUSION, MÜ LLER-LYER ILLUSION, PONZO’S

ILLUSION, VERTICAL-HORIZONTAL ILLUSION, ZÖ LL-

NER’S ILLUSION
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Pohlke’s Theorem
The principal theorem of AXONOMETRY, first pub-
lished without proof by Pohlke in 1860. It states
that three segments of arbitrary length a ?x?; a?y?; and
a ?z ? which are drawn in a PLANE from a point a? under
arbitrary ANGLES form a parallel projection of three
equal segments ax , ay , and az from the ORIGIN of
three PERPENDICULAR coordinate axes. However, only
one of the segments or one of the ANGLES may vanish.

See also AXONOMETRY
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Pohlmeyer-Lund-Regge Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

uxx�uyy9sin u cos u�
cos u

sin3 u
(v2

x�v2
y)�0 (1)

(vx cot2 u)x�(vy cot2 u)y: (2)
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Poincaré Conjecture
The conjecture that every SIMPLY CONNECTED 3-
MANIFOLD is HOMEOMORPHIC to the 3-SPHERE. This
conjecture was first proposed in 1904 by H. Poincaré
(Poincaré 1953, pp. 486 and 498), and subsequently
generalized to the conjecture that every COMPACT n -
MANIFOLD is HOMOTOPY-equivalent to the n -sphere
IFF it is HOMEOMORPHIC to the n -SPHERE. The
generalized statement reduces to the original con-
jecture for n�3.

The n�1 case of the generalized conjecture is trivial,
the n�2 case is classical, n�3 remains open, n�4



was proved by Freedman (1982) (for which he was
awarded the 1986 FIELDS MEDAL), n �5 by Zeeman
(1961), n �6 by Stallings (1962), and n ]7 by Smale
in 1961. Smale subsequently extended his proof to
include n ]5 :/

See also COMPACT MANIFOLD, HOMEOMORPHIC,
HOMOTOPY, MANIFOLD, PROPERTY P , SIMPLY CON-

NECTED, SPHERE, THURSTON’S GEOMETRIZATION CON-

JECTURE
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ture." Turkish J. Math. 21, 99�/110, 1997.

Stallings, J. "The Piecewise-Linear Structure of Euclidean
Space." Proc. Cambridge Philos. Soc. 58, 481 �/488, 1962.

Smale, S. "Generalized Poincaré’s Conjecture in Dimensions
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Poincaré Disk
POINCARÉ HYPERBOLIC DISK

Poincaré Duality
The BETTI NUMBERS of a compact orientable n -
MANIFOLD satisfy the relation

bi �bn�i :

See also BETTI NUMBER, INTERSECTION (HOMOLOGY)

Poincaré Formula
The POLYHEDRAL FORMULA generalized to a surface of
GENUS g ,

V �E �F � x(g)

where V is the number of VERTICES, E is the number
of EDGES, F is the number of faces, and

x(g)�2�2g

is called the EULER CHARACTERISTIC.

See also EULER CHARACTERISTIC, GENUS (SURFACE),
POLYHEDRAL FORMULA
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Poincaré Group
LORENTZ GROUP

Poincaré Hyperbolic Disk

A 2-D space having HYPERBOLIC GEOMETRY defined as
the DISK x 
R2 : ½x½B1

7 8
; with HYPERBOLIC METRIC

ds2�
dx2 � dy2

(1 � r2)2 : (1)

The Poincaré disk is a model for HYPERBOLIC GEOME-

TRY in which a line is REPRESENTED AS an ARC of a
CIRCLE whose ends are PERPENDICULAR to the DISK’s



boundary (and DIAMETERS are also permitted). Two
arcs which do not meet correspond to parallel rays,
arcs which meet orthogonally correspond to PERPEN-

DICULAR lines, and arcs which meet on the boundary
are a pair of limits rays.

The endpoints of any arc can be specified by two
angles around the disk u1 and u2 : Define

u �1
2 u1 � u2ð Þ  (2)

d u �1
2 u1 � u2j j  (3)

Then trigonometry shows that in the above diagram,

r �tan(du) (4)

y �sin(du) tan(du) ; (5)

so the radius of the circle forming the arc is

R �cos(du) �y �sec(du) (6)

and its center is located at R(cos u; sin u): The half-
angle subtended by the arc is then

sin f �
sin(du)

tan(du) 
�cos(du) ; (7)

so

f �sin�1[cos(d u)]: (8)

The Poincaré hyperbolic disk represents a CONFOR-

MAL MAP, so angles between rays can be measured
directly. There is an ISOMORPHISM between the
Poincaré disk model and the KLEIN-BELTRAMI MODEL.

See also ELLIPTIC PLANE, HYPERBOLIC GEOMETRY,
HYPERBOLIC METRIC, KLEIN-BELTRAMI MODEL, POIN-

CARÉ METRIC
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Poincaré Manifold
A nonsimply connected 3-manifold also called a
DODECAHEDRAL SPACE.
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Poincaré Metric
The METRIC

ds2 �
dx2 � dy2

1 � zj j2

 �2

of the POINCARÉ HYPERBOLIC DISK.

See also POINCARÉ HYPERBOLIC DISK

Poincaré Separation Theorem
Let yk

7 8
be a set of orthonormal vectors with k�1, 2,

..., K , such that the INNER PRODUCT yk; yk
� �

�1: Then
set

x�
XK

k�1

ukyk (1)

so that for any SQUARE MATRIX A for which the
product Ax is defined, the corresponding QUADRATIC

FORM is

(x; Ax)�
XK

k;l�1

ukul yk; Ayl

 �

(2)

Then if

Bk� yk; Ayl

 �

(3)

for k; l�1; 2, ..., K , it follows that

li BKð Þ5l1(A) (4)

lK�j(BK )]lN�j(A) (5)

for i�1, 2, ..., K and j�0, 1, ..., K�1:/
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Poincaré-Bertrand Theorem
For s1; s2�91;

lim
e100

e200

1

x1 � is1e1

1

x2 � is2e2

� PV
1

x1

 !
�ips1d(x1)

" #
PV

1

x2

 !
�ips2d(x2)

" #



�p2 d x1ð Þd x2ð Þ; (1)

where d(x) is the DELTA FUNCTION and PV denotes the
CAUCHY PRINCIPAL VALUE.

See also DELTA FUNCTION

Poincaré-Birkhoff Fixed Point Theorem
For the rational curve of an unperturbed system with
ROTATION NUMBER r =s under a map T (for which
every point is a FIXED POINT of Ts) ; only an even
number of FIXED POINTS 2ks (k �1, 2, ...) will remain
under perturbation. These FIXED POINTS are alter-
nately stable (ELLIPTIC) and unstable (HYPERBOLIC).
Around each elliptic fixed point there is a simulta-
neous application of the Poincaré-Birkhoff fixed point
theorem and the KAM THEOREM, which leads to a
self-similar structure on all scales.

The original formulation was: Given a CONFORMAL

ONE-TO-ONE transformation from an ANNULUS to itself
that advances points on the outer edge positively and
on the inner edge negatively, then there are at least
two fixed points.

It was conjectured by Poincaré from a consideration
of the three-body problem in celestial mechanics and
proved by Birkhoff.

Poincaré-Birkhoff-Witt Theorem
Every LIE ALGEBRA L is isomorphic to a SUBALGEBRA

of some LIE ALGEBRA A�; where the ASSOCIATIVE

ALGEBRA A may be taken to be the linear operators
over a VECTOR SPACE V .

See also ASSOCIATIVE, LIE ALGEBRA, VECTOR SPACE
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Poincaré-Fuchs-Klein Automorphic
Function

f (z) �
k

(cz � d)r f
az � b

cz � d

 !

where I[z] > 0 :/

See also AUTOMORPHIC FUNCTION

Poincaré-Hopf Index Theorem
The index of a VECTOR FIELD with finitely many zeros
on a compact, oriented MANIFOLD is the same as the
EULER CHARACTERISTIC of the MANIFOLD.

See also GAUSS-BONNET FORMULA

Poincaré’s Holomorphic Lemma
Solutions to HOLOMORPHIC differential equations are
themselves HOLOMORPHIC FUNCTIONS of time, initial
conditions, and parameters.

See also POINCARÉ ’S LEMMA

Poincaré’s Lemma
Poincaré’s lemma says that on a CONTRACTIBLE

MANIFOLD, all CLOSED FORMS are EXACT. While d2 �
0 implies that all exact forms are closed, it is not
always true that all closed forms are exact. The
Poincaré lemma is used to show that closed forms
represent COHOMOLOGY CLASSES.

See also COHOMOLOGY, COHOMOLOGY CLASS, CLOSED

FORM, DE RHAM COHOMOLOGY, DIFFERENTIAL FORM,
EXACT FORM, EXTERIOR DERIVATIVE, MANIFOLD,
POINCARÉ ’S HOLOMORPHIC LEMMA, STOKES’ THEO-

REM, WEDGE PRODUCT

Poincaré’s Theorem
If 9�F �0 (i.e., F(x) is an IRROTATIONAL FIELD) in a
simply connected neighborhood U(x) of a point x,
then in this neighborhood, F is the GRADIENT of a
SCALAR FIELD f(x) ;

F(x) ��9 f(x) (1)

for x 
 U(x) ; where 9 is the gradient operator. Conse-
quently, the GRADIENT THEOREM gives

g
s

F � ds � f x1ð Þ� f x2ð Þ  (2)

for any path s located completely within U(x) ;
starting at x1 and ending at x2 :/

This means that if 9�F �0; the LINE INTEGRAL of F
is path-independent.

See also CONSERVATIVE FIELD, GRADIENT THEOREM,
IRROTATIONAL FIELD, LINE INTEGRAL

Poinsot Solid
KEPLER-POINSOT SOLID



Poinsot’s Spirals

References
Lawrence, J. D. A Catalog of Special Plane Curves. New

York: Dover, pp. 192 and 194, 1972.

Point

A 0-DIMENSIONAL mathematical object which can be
specified in n -D space using n coordinates. Although
the notion of a point is intuitively rather clear, the
mathematical machinery used to deal with points and
point-like objects can be surprisingly slippery. This
difficulty was encountered by none other than Euclid
himself who, in his ELEMENTS , gave the vague
definition of a point as "that which has no part."
The basic geometric structures of higher DIMEN-

SIONAL geometry–the LINE, PLANE, SPACE, and HYPER-

SPACE–are all built up of infinite numbers of points
arranged in particular ways.

The DECIMAL POINT in a DECIMAL EXPANSION is voiced
as "point" in the United States, e.g., 3.1415 is voiced
"three point one four one five," whereas a COMMA is
used for this purpose in continental Europe.

See also ACCUMULATION POINT, BOUNDARY POINT,
BRANCH POINT, COMMA, CONCUR, CONCURRENT,
CRITICAL POINT, DOUBLE POINT, ENDPOINT, FIXED

POINT, ISOLATED POINT, LIMIT POINT, MIDPOINT,
ORDINARY POINT, SINGULAR POINT (ALGEBRAIC

CURVE), SINGULAR POINT (FUNCTION)
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Point at Infinity
P is the point on the line AB such that PA=PB �1 : It
can also be thought of as the point of intersection of
two PARALLEL lines. In 1639, Desargues (1864)
became the first to consider the point at infinity
(Cremona 1960, p. ix), although Poncelet was the first
to systematically employ the point at infinity (Graus-
tein 1930).

The term point at infinity is also used for COMPLEX

INFINITY (Krantz 1999, p. 82).

See also COMPLEX INFINITY, LINE AT INFINITY
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Point Circle
Members of a COAXAL SYSTEM satisfy

x2 �y2 �2 lx �c � x � lð Þ2�y2 �c � l2 �0

for values of l: Picking l2 �c then gives the two
circles

x9
ffiffiffi
c

p� �2
�y2�0

of zero RADIUS, known as point circles. The two point
circles 9

ffiffiffi
c

p
; 0ð Þ; real or imaginary, are called the

LIMITING POINTS of the COAXAL SYSTEM.

See also COAXAL SYSTEM, LIMITING POINT
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Point Connectivity
VERTEX CONNECTIVITY

Point Distances
The maximum distance between n points in 3-D can
occur no more than 2n �2 times. Also, there exists a
fixed number c such that no distance determined by a
set of n points in 3-D space occurs more than cn5=3

times. The maximum distance can occur no more
than 1

4 n
2

j k
times in 4-D, where xb c is the FLOOR

FUNCTION.

See also POINT-LINE DISTANCE–2-D, POINT-LINE DIS-

TANCE–3-D, POINT-POINT DISTANCE–2-D, POINT-POINT

DISTANCE–3-D, SPAN (GEOMETRY)
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Point Estimation Theory
A theory of constructing initial conditions that pro-
vides safe convergence of a numerical root-finding
algorithm for an equation f (z) �0 : Point estimation
theory treats convergence conditions and the domain
of convergence using only information about f at the
initial point z0 (Petkovic et al. 1997, p. 1). An initial
point that provides safe convergence of NEWTON’S

METHOD is called an APPROXIMATE ZERO.

Point estimation theory should not be confusion with
POINT ESTIMATORS of probability theory.

See also ALPHA-TEST, APPROXIMATE ZERO, NEWTON’S

METHOD, POINT ESTIMATOR
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Point Estimator
An ESTIMATOR of the actual values of population.

See also POINT ESTIMATION THEORY

Point Groups
A point group is a group of symmetry operations
which all leave at least one point unmoved. Although
an isolated object may have an arbitrary SCHÖ NFLIES

SYMBOL, the requirement that symmetry be present
in a lattice requires that only 1, 2, 3, and 6-fold
symmetry axes are possible (the CRYSTALLOGRAPHY

RESTRICTION), which restricts the number of possible
so-called CRYSTALLOGRAPHIC POINT GROUPS to 32.

See also CRYSTALLOGRAPHIC POINT GROUPS, CRYSTAL-

LOGRAPHY RESTRICTION, SCHÖ NFLIES SYMBOL, SPACE

GROUPS
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Point Lattice

A regularly spaced array of points falling along
regularly spaced line. The grid lines can be oriented
to form unit cells in the shape of a square, rectangle,
hexagon, etc. However, unless otherwise specified,
point lattices are generally taken to refer to points in
a square array, i.e., points with coordinates
(m; n; � � �); where m , n , ... are INTEGERS. Such an
array is often called a GRID or a MESH. Point lattices
are frequently simply called "lattices," which unfor-
tunately conflicts with the same term applied to
ordered sets treated in LATTICE THEORY.

Formally, a lattice is a DISCRETE SUBGROUP of
EUCLIDEAN SPACE, assuming it contains the origin.
That is, a lattice is closed under addition and
inverses, and every point has a neighborhood in
which it is the only lattice point. The common
examples are ZƒR and Z2ƒR2: Usually, a lattice is
defined to have full rank, i.e., a lattice in Rn is the
SUBGROUP

a1v1�� � �anvnf g; (1)

where the ai are integers and vi are LINEARLY

INDEPENDENT vectors. Note that a lattice needs at
most n elements to generate it. For example, the
subgroup a1�a2

ffiffiffi
2

p7 8
ƒR requires two generators

but is not DISCRETE, and is not a lattice. The above
illustration shows that the subgroup generated by 1
and 1=

ffiffiffi
2

p
is not a lattice by showing a�b=

ffiffiffi
2

p
for

successive b 
 [0; 1]:/

The FRACTION of lattice points VISIBLE from the
ORIGIN, as derived in Castellanos (1988, pp. 155�/

156), is



N ?(r)

N(r)
�

24

p2 
r2 � O(r ln r)

4r2 � O(r)

�

6

p2 
� O

ln r

r

 !

1 � O
1

r

 !

�
6

p2 
: (2)

Therefore, this is also the probability that two
randomly picked integers will be RELATIVELY PRIME

to one another.

For 2 5n 532 ; it is possible to select 2n lattice points
with x; y 
 [1; n] such that no three are in a straight
LINE. The number of distinct solutions (not counting
reflections and rotations) for n �1, 2, ..., are 1, 1, 4, 5,
11, 22, 57, 51, 156 ... (Sloane’s A000769). For large n ,
it is conjectured that it is only possible to select at
most (c � e)n lattice points with no three COLLINEAR,
where

c � 2p2 =3
� �1 =3

:1 :87 (3)

(Guy and Kelly 1968; Guy 1994, p. 242). The number
of the n2 lattice points x; y 
 [1; n] which can be
picked with no four CONCYCLIC is O(n2 =3 � e) (Guy
1994, p. 241).

Any PARALLELOGRAM on the lattice in which two
opposite sides each have length 1 has unit area
(Hilbert and Cohn-Vossen 1999, pp. 33 �/34).

A special set of POLYGONS defined on the regular
lattice are the GOLYGONS. A NECESSARY and SUFFI-

CIENT condition that a linear transformation trans-
forms a lattice to itself is that it be UNIMODULAR.
M. Ajtai has shown that there is no efficient ALGO-

RITHM for finding any fraction of a set of spanning
vectors in a lattice having the shortest lengths unless
there is an efficient algorithm for all of them (of which
none is known). This result has potential applications
to cryptography and authentication (Cipra 1996).

See also BARNES-WALL LATTICE, BLICHFELDT’S THEO-

REM, BROWKIN’S THEOREM, CIRCLE LATTICE POINTS,
COXETER-TODD LATTICE, EHRHART POLYNOMIAL, EL-

LIPTIC CURVE, GAUSS’S CIRCLE PROBLEM, GOLYGON,
INTEGRATION LATTICE, JARNICK’S INEQUALITY, LAT-

TICE PATH, LATTICE SUM, LEECH LATTICE, MINKOWS-

KI CONVEX BODY THEOREM, MODULAR LATTICE, N-

CLUSTER, NOSARZEWSKA’S INEQUALITY, PICK’S THEO-

REM, RANDOM WALK, SCHINZEL’S THEOREM, SCHRÖ -

DER NUMBER, TORUS, UNIT LATTICE, VISIBLE POINT,
VORONOI POLYGON
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Point Picking
In finding the average area ĀR of a triangle chosen
from a closed, bounded, convex region R of the plane,
then ĀT(R)�ĀR; for T any nonsingular affine trans-
formation of the plane.

See also 18-POINT PROBLEM, BALL LINE PICKING, BALL

TRIANGLE PICKING, CUBE LINE PICKING, CUBE POINT

PICKING, CUBE TETRAHEDRON PICKING, CUBE TRIAN-

GLE PICKING, DISCREPANCY THEOREM, DISK LINE

PICKING, DISK POINT PICKING, DISK TRIANGLE PICK-

ING, HAPPY END PROBLEM, PLANAR DISTANCE, POINT-

POINT DISTANCE–1-D, POINT-POINT DISTANCE–2-D,
POINT-POINT DISTANCE–3-D, SIMPLEX POINT PICKING,
SPHERE LINE PICKING, SPHERE POINT PICKING,
SPHERE TETRAHEDRON PICKING, SYLVESTER’S FOUR-

POINT PROBLEM, TRIANGLE POINT PICKING
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Point Probability
The portion of the probability distribution which has
a P -VALUE equal to the observed P -VALUE.

See also TAIL PROBABILITY

Point-Line Distance*/2-D

Given a line ax�by�c�0 and a point x0; y0ð Þ; in
slope-intercept form, the equation of the line is

y��
a

b
x�

c

b
; (1)

so the line has SLOPE �a=b: Points on the line have
the vector coordinates

x

�
a

b
x�

c

d

2
4

3
5� 0

�
c

d

2
4

3
5�1

b

�b
a

� �
x: (2)

Therefore, the VECTOR

�b
a

� �
(3)

is PARALLEL to the line, and the VECTOR

v�
a
b

� �
(4)

is PERPENDICULAR to it. Now, a VECTOR from the point
to the line is given by

r�
x�x0

y�y0

� �
(5)

Projecting r onto v,

d� projvrj j� v � rj j
v

� v̂ � rj j� a(x � x0) � b(y � y0)j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

�
ax � by � ax0 � by0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

�
ax0 � by0 � cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p : (6)

If the line is represented by the endpoints of a VECTOR

x1; y1ð Þ and x2; y2ð Þ; then the PERPENDICULAR VECTOR

is

v�
y2�y1

�(x2�x1)

� �
(7)

v̂�
1

s

y2�y1

�(x2�x1)

� �
; (8)

where

s� vj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2� y2�y1ð Þ2

q
; (9)

so the distance is

d� v̂ � rj j� y2 � y1ð Þ x0 � x1ð Þ� x2 � x1ð Þ y0 � y1ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2� y2 � y1ð Þ2

q :

(10)

The distance from a point x0; y0ð Þ to the line y�
a�bx can also be computed using simple VECTOR

algebra. Let L be a VECTOR in the same direction as
the line

L�
x

a�bx

� �
�

0
a

� �
�

x
bx

� �
(11)

L̂�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1
p 1

b

� �
: (12)

A given point on the line is

x�
x0

y0

� �
�

0
�a

� �
�

x0

y0�a

� �
; (13)



so the point-line distance is

r � x � L̂
� �

L̂ �x

�
1

1 � b2

x0

y0 �a

� �
� 1

v

� �$ %
1
b

� �
�

x0

y0 �a

� �

�
y0 � a � bx0ð Þ

1 � b2

b
�1

� �
: (14)

Therefore,

d � rj j� y0 � a � bx0ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p : (15)

This result can also be obtained much more simply by
noting that the PERPENDICULAR distance is just cos u
times the vertical distance y0 � a �bx1ð Þj j: But the
SLOPE b is just tan u; so

sin2 u �cos2 u �1 [tan2 u �1 �
1

cos2 u 
; (16)

and

cos u �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � tan2 u
p �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � b2

p : (17)

The PERPENDICULAR distance is then

d �
y0 � a � bx1ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
p ; (18)

the same result as before.

See also LINE, POINT, POINT-LINE DISTANCE–3-D

Point-Line Distance */3-D

Let a line in 3-D be specified by two points x1 and x2

lying on it, so a vector along the line is given by

v �
x1 �(x2 �x1)t
y1 �(y2 �y1)t
z1 �(z2 �z1)t

2
4

3
5: (1)

The distance between a point on the line with

parameter t and a point (x0 ; y0 ; z0) is therefore

r2 � x1 �x0 �(x2 �x1)t½ �2�y1 �y0½

�(y2 �y1)t�2 � z1 �z0 �(z2 �z1)t½ �2: (2)

To minimize the distance, set d r2ð Þ=dt �0 and solve
for t to obtain t �f =g; where

f � x1 �x0ð Þ x2 �x1ð Þ� y1 �y0ð Þ y2 �y1ð Þ

� z1 �z0ð Þ z2 �z1ð Þ  (3)

g � x2 �x1ð Þ2� y2 �y1ð Þ2� z2 �z1ð Þ2
; (4)

and the minimum distance can then be found by
plugging t into (2) and taking the SQUARE ROOT. This
can be implemented in Mathematica as

PointLineDistance[{x1_,x2_},x0_]: �Module[

{t �-(x1-x0).#/#.#&[x2-x1]},

Sqrt[#.#&[x1-x0�t(x2-x1)]]

]

See also LINE, POINT, POINT-LINE DISTANCE–2-D

Point-Plane Distance

Given a PLANE

ax�by�cz�d�0 (1)

and a point (x0; y0; z0); the NORMAL to the PLANE is
given by

v�
a
b
c

2
4
3
5; (2)

and a VECTOR from the plane to the point is given by

w��
x�x0

y�y0

z�z0

2
4

3
5: (3)



Projecting w onto v,

D � projv wj j�½v � w½

½v½

�
a(x � x0) � b(y � y0) � c(z � z0)j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p

�
ax � by � cz � ax0 � by0 � cz0j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p

�
ax0 � by0 � cz0 � dj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p : (4)

Given three points xi for i �1, 2, 3, compute the unit
normal

n̂ �
(x2 � x1) � (x3 � x1)

(x2 � x1) � (x3 � x1)j j
: (5)

Then the distance from a point x0 to the plane
containing the three points is given by

Di �n̂ �(xi �x0) ; (6)

where xi is any of the three points. Expanding out the
coordinates shows that

D �D1 �D2 �D3 ; (7)

as it must since all points are in the same plane,
although this is far from obvious based on the above
vector equation.

See also PROJECTION THEOREM

Point-Point Distance*/1-D
Given a unit LINE SEGMENT [0; 1]; pick two points at
random on it. Call the first point x1 and the second
point x2: Find the distribution of distances d between
points. The probability of the points being a (POSI-

TIVE) distance d apart (i.e., without regard to order-
ing) is given by

P(d)�
g

1

0 g
1

0

d d � x2 � x1j jð Þ dx1 dx2

g
1

0 g
1

0

dx1 dx2

�(1�d)[H(1�d)�H(d�1)�H(d)�H(�d)]

�
2(1�d) for 05d51
0 otherwise;

"
(1)

where d is the DIRAC DELTA FUNCTION and H is the
HEAVISIDE STEP FUNCTION. The MOMENTS are then

m?m�g
1

0

dmp(d) dd�2 g
1

0

dm(1�d) dd

�2
dm�1

m � 1
�

dm�2

m � 2

" #1

0

�2
1

m � 1
�

1

m � 2

 !
�2

(m � 2) � (m � 1)

(m � 1)(m � 2)

" #

�
2

(m � 1)(m � 2)

�

1

(n � 1)(2n � 1)
for m�2n

1

(n � 1)(2n � 3)
for m�2n�1

8>>><
>>>: (2)

(Uspensky 1934, p. 257), giving RAW MOMENTS

m?1�
1
3 (3)

m?2�
1
6 (4)

m?3�
1

10 (5)

m?4�
1
15: (6)

The MOMENTS can also be computed directly without
explicit knowledge of the distribution

m?1�
g

1

0 g
1

0

x2 � x1j j dx1 dx2

g
1

0 g
1

0

dx1 dx2

�g
1

0 g
1

0

x2�x1j j dx1 dx2

�g
1

0 g
1

0
x2�x1>0

x2�x1ð Þ dx1 dx2�g
1

0 g
1

0
x2�x1B0

x1�x2ð Þ dx1 dx2

�g
1

0 g
1

x1

x2�x1ð Þ dx1 dx2�g
1

0 g
x1

01

x2�x1ð Þ dx1 dx2

�g
1

0

1
2 x2

2�x1x2

h i1

x1

dx1�g
1

0

x1x2�
1
2 x2

2

h ix1

0
dx1

�g
1

0

1
2�x1


 �
� 1

2 x2
1�x2

1


 �h i
dx1

�g
1

0

x2
1�

1
2 x2

1


 �
�(0�0)

h i
dx1

�g
1

0

1
2�x1�x2

1


 �
dx1�

1
2 x1�

1
2 x2

1�
1
3 x3

1

h i1

0

� 1
2�

1
2�

1
3


 �
�(0�0�0)�1

3 (7)

m?2�g
1

0 g
1

0

x2�x1j jð Þ2 dx2 dx1



�g
1

0 g
1

0

x2 �x1ð Þ2 dx1 dx2

�g
1

0 g
1

0

x2
2 �2x1x2 �x2

1

� �
dx1 dx2

�g
1

0

1
3 x

3
2 �x1x2

2 �x2
1x2

h i1

0
dx1

�g
1

0

1
3 �x1 �x2

1


 �
dx1 �

1
3 x

3
1 �

1
2 x

2
1 �

1
3 x1

h i1

0

�1
3 �

1
2 �

1
3 �

1
6 : (8)

The CENTRAL MOMENTS are therefore

m2 � m ?2 � m ?1
2�1

6 �
1
3


 �2

� 1
18 (9)

m3 � m?3 �3m ?2 m?1 �2 m ?1ð Þ3� 1
135 (10)

m4 � m?4 �4m?3 m?1 �6m?2 m?1ð Þ2�3 m ?1ð Þ4� 1
135 ; (11)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m � m?1 �
1
3 (12)

s2 � m2 �
1
18 (13)

g1 �
m3

s3 
�2

5

ffiffiffi
2

p
(14)

g2 �
m4

s4 
�3 ��3

5 : (15)

The probability distribution of the distance between
two points randomly picked on a LINE SEGMENT is
germane to the problem of determining the access
time of computer hard drives. In fact, the average
access time for a hard drive is precisely the time
required to seek across 1/3 of the tracks (Benedict
1995).

See also POINT-POINT DISTANCE–2-D, POINT-POINT

DISTANCE–3-D, POINT-QUADRATIC DISTANCE, SPHERE

POINT PICKING
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Point-Point Distance*/2-D
Given two points in the PLANE, find the curve which
minimizes the distance between them. The LINE

ELEMENT is given by

ds�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2�dy2

p
; (1)

so the ARC LENGTH between the points x1 and x2 is

L�g ds�g
x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx; (2)

where y?�dy=dx and the quantity we are minimizing
is

f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
: (3)

Finding the derivatives gives

@f

@y
�0 (4)

d

dx

@f

@y?
�

d

dx
1�y?2
� ��1=2

y?
h i

; (5)

so the EULER-LAGRANGE DIFFERENTIAL EQUATION

becomes

@f

@y
�

d

dx

@f

@y?
�

d

dx

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p !
�0: (6)

Integrating and rearranging,

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p �c (7)

y?2�c2 1�y?2
� �

(8)

y?2 1�c2
� �

�c2 (9)

y?�
cffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � c2
p �a: (10)

The solution is therefore

y�ax�b; (11)

which is a straight LINE. Now verify that the ARC

LENGTH is indeed the straight-line distance between
the points. a and b are determined from

y1�ax1�b: (12)

y2�ax2�b: (13)

Writing (12) and (13) as a MATRIX EQUATION gives

y1

y2

� �
�

x1 1
x2 1

� �
a
b

� �
(14)

a
b

� �
�

x1 1
x2 1

� ��1
y1

y2

� �

�
1

x1 � x2

1 �1
�x2 x1

� ��1
y1

y2

� �
; (15)

so

a�
y1 � y2

x1 � x2

�
y2 � y1

x2 � x1

(16)



b �
x1y2 � x2y1

x1 � x2

(17)

L �g
x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2

q
dy � x2 �x1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �a2

p

� x2 �x1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

y2 � y1

x2 � x1

 !2
vuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �x1ð Þ2� y2 �y1ð Þ2

q
; (18)

as expected.

The shortest distance between two points on a
SPHERE is the so-called GREAT CIRCLE distance.

See also CALCULUS OF VARIATIONS, CIRCLE TRIANGLE

PICKING, GREAT CIRCLE, POINT-POINT DISTANCE–1-D,
POINT-POINT DISTANCE–3-D, POINT-QUADRATIC DIS-

TANCE, SPHERE POINT PICKING
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Point-Point Distance */3-D
The LINE ELEMENT is

ds �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 �dy2 �dz2

p
; (1)

so the ARC LENGTH between the points x1 and x2 is

L �g ds �g
x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y ?2 �z ?2

q
dx (2)

and the quantity we are minimizing is

f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2 �z?2

q
: (3)

Finding the derivatives gives

@f

@y 
�0 (4)

@f

@z 
�0 (5)

and

@f

@y?
�

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z?2

p (6)

@f

@z?
�

z?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z?2

p ; (7)

so the EULER-LAGRANGE DIFFERENTIAL EQUATIONS

become

d

dx

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z ?2

p !
�0 (8)

d

dx

z?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z?2

p !
�0: (9)

These give

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z?2

p �c1 (10)

z ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 � z?2

p �c2 : (11)

Taking the ratio,

z?�
c2

c1

y? (12)

y?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2 �

c2

c1

 !2

y?2

vuut �c1 (13)

y?2 �c2
1 1 �y?2 �

c2

c1

 !2

y?2

2
4

3
5�c2

1 �y?2 c2
1 �c2

2

� �
; (14)

which gives

y?2 �
c2

1

1 � c2
1 � c2

2

�a2
1 (15)

z ?2 �
c2

c1

 !2

y?2 �
c2

2

1 � c2
1 � c2

2

�b2
1 : (16)

Therefore, /y? ¼ a1/ and /z? ¼ b1/, so the solution is

x
y
z

2
4
3
5� x

a1x �a0

b1x �b0

2
4

3
5; (17)

which is the parametric representation of a straight
line with parameter x 
 x1; x2½ �: Verifying the ARC

LENGTH gives

L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2

1�b2
1

q
x2�x1ð Þ (18)

where

y1

y2

� �
�

x1 1
x2 1

� �
a1

a0

� �
(19)

z1

z2

� �
�

x1 1
x2 1

� �
b1

b0

� �
: (20)

See also POINT-POINT DISTANCE–1-D, POINT-POINT

DISTANCE–2-D, POINT-QUADRATIC DISTANCE



Point-Quadratic Distance

To find the minimum distance between a point in the
plane x0 ; y0ð Þ and a quadratic PLANE CURVE

y �a0 �a1x �a2x2 ; (1)

note that the square of the distance is

r2 � x �x0ð Þ2� y �y0ð Þ2

� x �x0ð Þ2� a0 �a1x �a2x2 �y0

� �2
: (2)

Minimizing the distance squared is equivalent to
minimizing the distance (since r2 and ½r ½ have minima
at the same point), so take

@ðr2 Þ
@x

¼ 2ðx �x0 Þ þ 2ða0 þ a1x þ a2x2 �y0 Þða1 þ 2a2xÞ

¼ 0 ð3Þ

x �x0 �a0a1 �a2
1 �a1a2x2 �a1y0 �2a0a2x

�2a1a2x2 �2a2
2x3 �2a2y0x �0 (4)

2a2
2x3 �3a1a2x2 � a2

1 �2a0a2 �2a2y0 �1
� �

x

� a0a1 �a1y0 �x0ð Þ�0 : (5)

Minimizing the distance to find the closest point
(x�; y �) therefore requires solution of a CUBIC EQUA-

TION.

See also POINT-POINT DISTANCE–1-D, POINT-POINT

DISTANCE–2-D, POINT-POINT DISTANCE–3-D

Points Problem
SHARING PROBLEM

Point-Set Topology
The low-level language of TOPOLOGY, which is not
really considered a separate "branch" of TOPOLOGY.
Point-set topology, also called set-theoretic topology
or general topology, is the study of the general
abstract nature of continuity or "closeness" on
SPACES. Basic point-set topological notions are ones
like CONTINUITY, DIMENSION, COMPACTNESS, and CON-

NECTEDNESS. The INTERMEDIATE VALUE THEOREM

(which states that if a path in the real line connects
two numbers, then it passes over every point between
the two) is a basic topological result. Others are that
EUCLIDEAN n -space is HOMEOMORPHIC to EUCLIDEAN

m -space IFF m �n , and that REAL valued functions
achieve maxima and minima on COMPACT SETS.

Foundational point-set topological questions are ones
like "when can a topology on a space be derived from a
metric?" Point-set topology deals with differing no-
tions of continuity and compares them, as well as
dealing with their properties. Point-set topology is
also the ground-level of inquiry into the geometrical
properties of spaces and continuous functions be-
tween them, and in that sense, it is the foundation
on which the remainder of topology (ALGEBRAIC,
DIFFERENTIAL, and LOW-DIMENSIONAL) stands.

See also ALGEBRAIC TOPOLOGY, DIFFERENTIAL TOPOL-

OGY, LOW-DIMENSIONAL TOPOLOGY, TOPOLOGY
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Pointwise Convergence
The hypothesis is that, for X is a MEASURE SPACE,
fn(x) 0 f (x) for each x 
 X ; as n 0 �: The hypothesis
may be weakened to ALMOST EVERYWHERE CONVER-

GENCE.

See also ALMOST EVERYWHERE CONVERGENCE
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Pointwise Dimension

Dp(x)� lim
e00

ln m Be(x)ð Þ
ln e

;



where Be(x) is an n -D BALL of RADIUS e centered at x
and m is the PROBABILITY MEASURE.

See also BALL, PROBABILITY MEASURE
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Poised
NEARLY-POISED, WELL-POISED

Poisson Bracket
Let F and G be infinitely differentiable functions of x
and p . Then the Poisson bracket is defined by

(F ; G) �
Xn

n�1

@F

@pn

@G

@xn

�
@G

@pn

@F

@xn

 !
:

If F and G are functions of x and p only, then the
LAGRANGE BRACKET [F, G ] collapses the Poisson
bracket (F, G ).

See also LAGRANGE BRACKET, LIE BRACKET
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Poisson Distribution

Given a POISSON PROCESS, the probability of k
changes occurring in a given interval is given by the
limit of the BINOMIAL DISTRIBUTION

PB(k)�
n!

k!(n � k)!

n

n

 !k

1�
n

n

 !n�k

: (1)

As the number of trials becomes very large, (1)

approaches the distribution

P(k)� lim
n0�

PB(k)

� lim
n0�

n(n � 1) � � � (n � k � 1)

nk

nk

k!

 1�
n

n

 !n

1�
n

n

 !�k

�1 �
nk

k!
� e�n � 1�

nke�n

k!
; (2)

which is called the Poisson distribution (Papoulis
1984, pp. 101 and 554; Pfeiffer and Schum 1973,
p. 200).
The Poisson distribution is normalized so that the
sum of probabilities equals 1, since

X�
k�0

P(k)�e�n
X�
k�0

nk

k!
�e�nen�1: (3)

The ratio of probabilities is given by

P(k � i � 1)

P(k � i)
�

ni�1e�n

(i � 1)!
i!

e�nni

�
n

i � 1
: (4)

The MOMENT-GENERATING FUNCTION of the Poisson
distribution is given by

M(t)�
X�
k�0

etk nke�n

k!
�e�n

X�
k�0

netð Þk

k!

�e�nene
t

�en et�1ð Þ (5)

M?(t)�neten et�1ð Þ (6)

Mƒ(t)� netð Þ2
en et�1ð Þ�neten et�1ð Þ (7)

R(t)�ln M(t)�n et�1ð Þ (8)

R?(t)�net (9)

Rƒ(t)�net; (10)

so

m�R?(0)�n (11)

s2�Rƒ(0)�n (12)

(Papoulis 1984, p. 554).

The RAW MOMENTS can also be computed directly by
summation, which yields an unexpected connection
with STIRLING NUMBERS OF THE SECOND KIND,

X�
k�0

e�xxk

k!
kn�

Xn

k�1

xkS(n; k); (13)

so



m?2 � n(1 � n) (14)

m ?3 � n 1 �3n � n2
� �

(15)

m?4 � n 1 �7 n �6n2 � n3
� �

: (16)

The CENTRAL MOMENTS can then be computed as

m2 � n (17)

m3 � n (18)

m4 � n(1 �3 n) ; (19)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m � n (20)

s2 � n (21)

g1 �
m3

s3 
�

n

n3 =2 
� n �1 =2 (22)

g2 �
m4

s4 
�3 �

n(1 � 3n)

n
�3

�
n � 3n2 � 3n2

n2
� n �1 : (23)

The CHARACTERISTIC FUNCTION for the Poisson dis-
tribution is

f(t) �en eit�1ð Þ (24)

(Papoulis 1984, pp. 154 and 554), and the CUMULANT-

GENERATING FUNCTION is

K(h) � n eh �1
� �

� n h �
1

2!
h2 �

1

3!
h3 �. . .

 !
; (25)

so

kr � n : (26)

The Poisson distribution can also be expressed in
terms of

l �
n

x 
; (27)

the rate of changes, so that

P(k) �
( lx)ke � lx

k!
: (28)

The MOMENT-GENERATING FUNCTION of a Poisson
distribution in two variables is given by

M(t) �e n1�n2ð Þ et�1ð Þ: (29)

If the independent variables x1 ; x2 ; ..., xN have Poisson
distributions with parameters m1 ; m2 ; ..., mN ; then

X �
XN

j�1

xj (30)

has a Poisson distribution with parameter

m �
XN

j�1

mj : (31)

This can be seen since the CUMULANT-GENERATING

FUNCTION is

Kj(h) � mj eh �1
� �

; (32)

K �
X

j

Kj(h) � eh �1
� �X

j

mj � m eh �1
� �

: (33)

A generalization of the Poisson distribution has been
used by Saslaw (1989) to model the observed cluster-
ing of galaxies in the universe. The form of this
distribution is given by

fb(N) �
N̄(1 � b)

N!
N̄(1 �b) �Nb
� �N �1

e N̄(1�b)�Nb ; (34)

where N is the number of galaxies in a volume V ,
N̄ � ̄nV ; n̄ is the average density of galaxies, and b �
�W=(2K):0:7090:05; with 05bB1 is the ratio of
gravitational energy to the kinetic energy of peculiar
motions, Letting b�0 gives

f0(N)�
e�N̄N̄N

N!
; (35)

which is indeed a Poisson distribution with n�N̄:
Similarly, letting b�1 gives f1(N)�0:/

See also BINOMIAL DISTRIBUTION, POISSON PROCESS,
POISSON THEOREM
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Poisson Integral
There are at least two integrals called the Poisson
integral. The first is also known as BESSEL’S SECOND

INTEGRAL,

Jn(z) �
1
2


 �n

G n � 1
2


 �
G 1

2


 � g  
p

0

cos(z cos u) sin2n u du ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND

and G(x) is a GAMMA FUNCTION. It can be derived from
SONINE’S INTEGRAL. With n �0, the integral becomes
PARSEVAL’S INTEGRAL.

In complex analysis, let u : U 0 R be a HARMONIC

FUNCTION on a NEIGHBORHOOD of the CLOSED DISK

D̄(0; 1); then for any point z0 in the OPEN DISK

D(0; 1);

u z0ð Þ� 1

2 p g
2 p

0

u eic
� � 1 � z0j j2

z0 � eicj j2
dc:

In polar coordinates on D̄(0; R);

u z0ð Þ� 1

2p g
2 p

0

K(r ; u) f z0 �reiu
� �

du; (1)

where R � z0j j and K(r ; u) is the POISSON KERNEL. For
a CIRCLE,

u(x; y) �
1

2p g
2 p

0

u(a cos f ; a sin f)

 a2 � R2

a2 � R2 � 2ar cos(u� f)
df: (2)

For a SPHERE,

u(x; y; z)�
1

4pa g gS

u
a2 � R2

a2 � R2 � 2aR cos uð Þ3=2 dS;

(3)

where

cos u�x � j: (4)

See also BESSEL FUNCTION OF THE FIRST KIND,
CIRCLE, HARMONIC FUNCTION, PARSEVAL’S INTEGRAL,
POISSON KERNEL, SONINE’S INTEGRAL, SPHERE
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Poisson Integral Representation

jn(z)�
zn

2n�1n! g
p

0

cos(z cos u) sin2n�1 u du;

where jn(z) is a SPHERICAL BESSEL FUNCTION OF THE

FIRST KIND.

Poisson Kernel
The KERNEL in the POISSON INTEGRAL, given by

K(c)�
1

2p

1 � z0j j2

z0 � eicj j2
(1)

for the open UNIT DISK D(0; 1): Writing z0�reiu and
taking D(0; R) gives

K(r; u)�
1

2p
R

R � reiu

R � reiu

" #

�
1

2p
R

R � reiuð Þ R � re�iuð Þ
R � reiuð Þ R � re�iuð Þ

" #

�
1

2p
R

R2 � rR eiu � e�iuð Þ� r2

R2 � rR eiu � e�iuð Þ� r2

" #

¼ 1

2p
R

R2 � 2ir R sin u� r2

R2 � 2Rr cos u� r2

" #

�
1

2p

R2 � r2

R2 � 2Rr cos u� r2
(2)

(Krantz 1999, p. 93).

In 3-D,

u(y)�
R R2 � a2ð Þ

4p g
2p

0 g
p

0

f (u; f) sin u du df

R2 � a2 � 2aR cos gð Þ3=2 ;

(3)

where a� ½y½ and

cos g�y �
R cos u sin f

R sin u sin f

R cos f

2
4

3
5: (4)

The Poisson kernel for the n -BALL is

P(x; z)�
1

2 � n
Dnvð Þ(z); (5)

where Dn is the outward normal derivative at point z
on a unit n -sphere and

v(z)� ½z�x½2�n� ½x½2�n x

½x½2

�����
�����
2�n

: (6)

Let u be harmonic on a neighborhood of the closed
UNIT DISK D̄(0; 1); then the reproducing property of
the Poisson kernal states that for z 
D(0; 1);



u(z) �
1

2 p g
2 p

0

u eic
� � 1 � ½z½2

z � eicj j2
dc (7)

(Krantz 1999, p. 94).

See also DIRICHLET PROBLEM, HARMONIC FUNCTION,
MEAN-VALUE PROPERTY, POISSON INTEGRAL, POISSON

KERNEL
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Poisson Manifold
A smooth MANIFOLD with a POISSON BRACKET defined
on its FUNCTION SPACE.

Poisson Process
A Poisson is a process satisfying the following proper-
ties.

1. The numbers of changes in nonoverlapping
intervals are independent for all intervals.
2. The probability of exactly one change in a
sufficiently small interval h �1=n is P � nh � n =n;
where n is the probability of one change and n is
the number of TRIALS.
3. The probability of two or more changes in a
sufficiently small interval h is essentially 0.

In the limit of the number of trials becoming large,
the resulting distribution is called a POISSON DIS-

TRIBUTION.

See also POISSON DISTRIBUTION
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Poisson Sum Formula
A special case of the general result

X�
n���

f (x �n) �
X�

k ���

e2 pikx g
�

��

f x?ð Þe �2 pikx? dx ? (1)

with x �0, yielding

X�
n���

f (n) �
X�

k ���
g

�

��

f x?ð Þe �2 pikx ? dx?: (2)

Given f a nonnegative, continuous, decreasing, and
Riemann integrable function of [0 ; �) ; define

c(x) �

ffiffiffi
2

p

s
g

�

0

f(t) cos(xt) dt: (3)

Then

ffiffiffi
a

p
1
2 f (0) �

X�
n�1

f (na)

" #
�

ffiffiffi
b

p
1
2 g(0) �

X�
n�1

g(nb)

" #
(4)

whenever ab �2p; from which it follows that

ffiffiffi
a

p
1
2 �
X�
n �1

e � a2n2 =2

" #
�

ffiffiffi
b

p
1
2 �
X�
n �1

e � b2n2 =2

" #
(5)

(Apostol 1974, Borwein 1987).
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Poisson Theorem
Poisson’s theorem give the estimate

n!

k!(n � k)!
pkqn�ke�np (np)k

k!

for the probability of an event occurring k times in n
trials with n�1; p�1; and np:npq�1:/

See also POISSON DISTRIBUTION
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Poisson Trials
A number s of TRIALS in which the probability of
success pi varies from trial to trial. Let x be the
number of successes, then

var(x)�spq�ss2
p; (1)

where s2
p is the VARIANCE of pi and q�(1�p):

Uspensky has shown that

P(s; x)�b
mxe�m

x!
; (2)

where

b�[1�ug(x)]eh(x) (3)



g(x) �
(s � x)m3

3(s � m)3 �
x3

2s(s � x) 
(4)

h(x) �
mx

s
�

m2

2s2 
(s �x) �

x(x � 1)

2s

�p
x

2
1 �

1

m

 !
�

(x � m)2

2m

" #
(5)

and u 
 (0; 1) : The probability that the number of
successes is at least x is given by

Qm(x) �
X�
r�x

mre�m

r!
: (6)

Uspensky gives the true probability that there are at
least x successes in s trials as

Pms(x) �Qm(x) �D; (7)

where

Dj j B
ex �1ð ÞQm(x �1) for Qm(x �1) ]1

2

ex �1ð Þ 1 �Qm(x �1)½ � for Qm(x �1) 51
2

(
ð8Þ

x �
m � 1

4 �
m3

s

2(s � m)
: (9)

See also TRIAL

Poisson-Boltzmann Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

yƒ�
k

x
y?�  dey �0:
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Poisson-Charlier Function

rn( n ; x) �
(1 � n � n)ffiffiffiffiffiffiffiffiffi

n!xn
p 1 F1(�n; 1� n �n; x) ;

where (a)n is a POCHHAMMER SYMBOL and 1F1(a; b; z)
is a CONFLUENT HYPERGEOMETRIC FUNCTION.

See also POISSON-CHARLIER POLYNOMIAL

Poisson-Charlier Polynomial
The Poisson-Charlier polynomials ck(x; a) form a
SHEFFER SEQUENCE with

g(t)�ea et�1ð Þ (1)

f (t)�a et�1ð Þ; (2)

giving the GENERATING FUNCTION

X�
k�0

ck(x; a)

k!
tk�e�t a � t

a

 !x

: (3)

The Sheffer identity is

cn(x�y; a)�
Xn

k�0

n
k

$ %
ak�nck(y; a)(x)n�k; (4)

where (x)n is a FALLING FACTORIAL (Roman 1984,
p. 121). The polynomials satisfy the RECURRENCE

RELATION

cn�1(x; a)�a�1xcn(x�1; a)�cn(x; a): (5)

These polynomials belong to the distribution da(x)
where a(x) is a STEP FUNCTION with JUMP

j(x)�e�aax(x!)�1 (6)

at x�0, 1, ...for a �0. They are given by the formulas

cn(x; a)�
Xn

n�0

(�1)n�n n
n

$ %
n!a�n x

n

$ %
(7)

�
Xn

k�0

n
k

$ %
(�1)n�ka�k(x)k (8)

�an(�1)n[j(x)]�1Dnj(x�n) (9)

�a�nn!Lx�n
n (a) (10)

�
Xn

j�0

xj
Xn

k�0

n
k

$ %
(�1)n�ka�ks(k; j) (11)

where n
k

� �
is a BINOMIAL COEFFICIENT, (x)n is a FALL-

ING FACTORIAL, Lk
n(x) is an associated LAGUERRE

POLYNOMIAL, s(n; m) is a STIRLING NUMBER OF THE

FIRST KIND, and

Df (x)�f (x�1)�f (x) (12)

Dnf (x)�D Dn�1f (x)
� �

�f (x�n)�
n
1

$ %
f (x�n�1)�. . .�(�1)nf (x):

(13)

They are normalized so that

X�
k�0

j(k)cn(k; a)cm(k; a)�a�nn!dnm; (14)

where dmn is the DELTA FUNCTION.



The first few polynomials are

c0(x; a) �1

c1(x; a) ��
a � x

a

c2(x; a) �
a2 � x � 2ax � x2

a2

c3(x; a) ��
a3 � 2x � 3ax � 3a2x � 3x2 � 3ax2 � x3

a3 
:

See also LAGUERRE POLYNOMIAL, POISSON-CHARLIER

FUNCTION, SHEFFER SEQUENCE
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Poisson’s Bessel Function Formula
For R[ n] >�1=2 ;

Jn(z) �
z

2

 !n

2ffiffiffi
p

p
G n � 1

2


 � g 
p =2

0

cos(z cos t) sin2n t dt;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND,
and G(z) is the GAMMA FUNCTION.
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Poisson’s Equation
A second-order PARTIAL DIFFERENTIAL EQUATION aris-
ing in physics,

92 c ��4pr :

If r �0; it reduces LAPLACE’S EQUATION. It is also
related to the HELMHOLTZ DIFFERENTIAL EQUATION

92 c �k2 c �0 :

See also HELMHOLTZ DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION, VECTOR POISSON EQUATION
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Poke Move

The REIDEMEISTER MOVE of type II.

See also KNOT MOVE, REIDEMEISTER MOVES

Poker
Poker is a CARD game played with a normal deck of 52
CARDS. Sometimes, additional cards called "jokers"
are also used. In straight or draw poker, each player
is normally dealt a hand of five cards. Depending on
the variant, players then discard and redraw CARDS,
trying to improve their hands. Bets are placed at each
discard step. The number of possible distinct five-card
hands is

N�
52
5

$ %
�2; 598; 960;

where n
k

� �
is a BINOMIAL COEFFICIENT.

There are special names for specific types of hands. A
royal flush is an ace, king, queen, jack, and 10, all of
one suit. A straight flush is five consecutive cards all
of the same suit (but not a royal flush), where an ace
may count as either high or low. A full house is three-
of-a-kind and a pair. A flush is five cards of the same
suit (but not a royal flush or straight flush). A
straight is five consecutive cards (but not a royal
flush or straight flush), where an ace may again count
as either high or low.

The probabilities of being dealt five-card poker hands
of a given type (before discarding and with no jokers)
on the initial deal are given below (Packel 1981). As
usual, for a hand with probability P , the ODDS against
being dealt it are 1=rð Þ�1 : 1:/

Hand Exact Probability Probability ODDS

royal flush /
4

N
� 1

649;740/ /1:54�10�6
/ 649,739.0:1

straight

flush

/
4(10) � 4

N
� 3

216;580/ /1:39�10�5
/ 72,192.3:1

four of a

kind

/
13(48)

N
� 1

4;165/ /2:40�10�4
/ 4,164.0:1

full house /
13 4

3

� �
12 4

2

� �
N

� 6
4;165/ /1:44�10�3

/ 693.2:1

flush /
4 13

5

� �
� 36 � 4

N
� 1;277

649;740/ /1:97�10�3
/ 507.8:1



straight /
10 45ð Þ� 36 � 4

N
� 5

1 ;274/ /3:92 �10 �3
/ 253.8:1

three of a

kind

/

13 4
3

� � (48)(44)

2!

N
� 88

4;165/ 0.0211 46.3:1

two pair /

13 4
2

� �
12 4

2

� �
2!

44

N
� 198

4;165/ 0.0475 20.0:1

one pair /

13 4
2

� � (48)(44)(40)

3!

N
�352

833/ 0.423 1.366:1

Gadbois (1996) gives probabilities for hands if two
jokers are included, and points out that it is impos-
sible to rank hands in any single way which is
consistent with the relative frequency of the hands.

See also BRIDGE CARD GAME, CARDS
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Polar

If two points A and A? are INVERSE (sometimes called
conjugate) with respect to a CIRCLE (the INVERSION

CIRCLE), then the straight LINE through A? which is
PERPENDICULAR to the line of the points AA? is called
the polar of A with respect to the CIRCLE, and A is
called the POLE of the polar.
An incidence-preserving transformation in which
points and lines are transformed into their POLES

and polars is called RECIPROCATION (a.k.a. construct-
ing the dual).

The concept of poles and polars can also be general-
ized to arbitrary CONIC SECTIONS. If two tangents to a
CONIC SECTION at points A and B meet at P , then P is
called the POLE of the line AB with respect to the
conic and AB is said to be the polar of the point P
with respect to the conic (Wells 1991).

In the above figure, let a line through the polar P
meet a conic section at point X and Y , and let the line
XY intersect the polar line AB and Q . Then fXPYQ g
form a HARMONIC RANGE (Wells 1991).

In the above figure, let two lines through the polar P
meet a conic at points P and Q and S and T . Then
QT and RS are concurrent on the polar (Wells 1991).

The concept can be generalized even further to an
arbitrary ALGEBRAIC CURVE so that every point has a
polar with respect to the curve and every line has a
pole (Wells 1991).

See also APOLLONIUS’ PROBLEM, DUAL POLYHEDRON,
INVERSE POINTS, INVERSION CIRCLE, POLARITY, POLE

(INVERSION), RECIPROCAL, RECIPROCATION, SALMON’S

THEOREM, TRILINEAR POLAR
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Polar Angle
The counterclockwise ANGLE from the X -AXIS at which
a point lies.

See also POLAR COORDINATES

Polar Circle
Given a TRIANGLE, the polar circle has center at the
ORTHOCENTER H . Call Hi the FEET of the ALTITUDE.
Then the RADIUS is

r2 �HA1 � HH1 �HA2 � HH2 �HA2 � HH2 (1)

��4R2 cos a1 cos a2 cos a3 (2)

�1
2 a2

1 �a2
2 �a2

3

� �
�4R2 ; (3)

where R is the CIRCUMRADIUS, ai the VERTEX angles,
and ai the corresponding side lengths.

A TRIANGLE is self-conjugate with respect to its polar
circle. Also, the RADICAL AXIS of any two polar circles
is the ALTITUDE from the third VERTEX. Any two polar
circles of an ORTHOCENTRIC SYSTEM are orthogonal.
The polar circles of the triangles of a COMPLETE

QUADRILATERAL constitute a COAXAL SYSTEM conju-
gate to that of the circles on the diagonals.

See also COAXAL SYSTEM, ORTHOCENTRIC SYSTEM,
POLAR, POLE (INVERSION), RADICAL AXIS
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Polar Coordinates

The polar coordinates r (the radial coordinate) and u

(the angular coordinate) are defined in terms of
CARTESIAN COORDINATES by

x�r cos u (1)

y�r sin u; (2)

where r is the radial distance from the ORIGIN, and u

is the counterclockwise angle from the X -AXIS. In
terms of x and y ,

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
(3)

u�tan�1 y

x

 !
: (4)

The ARC LENGTH of a polar curve given by r�r(u) is

s�g
u2

u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�

dr

du

 !2
vuut du: (5)

The LINE ELEMENT is given by

ds2�r2 du2; (6)

and the AREA element by

dA�r dr du: (7)

The AREA enclosed by a polar curve r�r(u) is

A�1
2 g

u2

u1

r2 du: (8)

The SLOPE of a polar function r�r(u) at the point
(r; u) is given by

m�
r � tan u

dr

du

�r tan u�
dr

du

: (9)

The ANGLE between the tangent and radial line at the
point (r; u) is

c�tan�1

$
r

dr

du

%
: (10)



A polar curve is symmetric about the X -AXIS if
replacing u by �u in its equation produces an
equivalent equation, symmetric about the Y -AXIS if
replacing u by p � u in its equation produces an
equivalent equation, and symmetric about the origin
if replacing r by �r in its equation produces an
equivalent equation.
In Cartesian coordinates, the POSITION VECTOR and
its derivatives are

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
r̂ (11)

ṙ � ˙̂r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�r̂(x2 �y2) �1=2(xẋ �yẏ) (12)

r̂ �
xx̂ � yŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p (13)

˙̂r �
ẋx̂ � ẏŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p �1

2(x
2 �y2) �3=2(2)(xẋ �yẏ)(xx̂ �yŷ)

�
(xẏ � yẋ)(xŷ � yx̂)

(x2 � y2)3 =2 : (14)

In polar coordinates, the UNIT VECTORS and their
derivatives are

r �
r cos u
r sin u

� �
(15)

r̂ �

dr

dr

dr

dr

�����
�����
�

cos u
sin u

� �
(16)

û �

du

du

du

du

�����
�����
�

�sin u
cos u

� �
(17)

˙̂r � �sin u u̇
cos u u̇

� �
� u̇ û (18)

˙̂u � �cos u u̇
sin u u̇

� �
��u̇r̂ (19)

ṙ � �r sin u u̇ �cos uṙ
r cos u u̇ �sin uṙ

� �
�r ̇u û � ̇rr̂ (20)

r̈ � ̇r ̇u û �r ̈u û �r ̇u ˙̂u � ̈rr̂ � ̇r ˙̂r

� ̇r ̇u û �r ̈u û �r ̇u(�u̇r̂) � ̈rr̂ � ̇r ̇u û

�(r̈ �r ̇u2)r̂ �(2ṙ ̇u �r ̈u) ̂u

� r̈ �r ̇u2
� �

r̂ �
1

r

d

dt
r2

˙
u̇

$ %
û : (21)

See also CARDIOID, CIRCLE, CISSOID, CONCHOID,

CURVILINEAR COORDINATES, CYLINDRICAL COORDI-

NATES, EQUIANGULAR SPIRAL, LEMNISCATE, LIMAÇ ON,
ROSE

Polar Line
POLAR

Polar Reciprocals
INVERSE POINTS

Polar Reciprocation
INVERSE POINTS, RECIPROCATION

Polar Representation (Complex Number)
PHASOR

Polar Representation (Measure)
A polar representation of a COMPLEX MEASURE m is
analogous to the polar representation of a COMPLEX

NUMBER as z �reiu ; where r � ½z½;

dm �eiud ½m½: (1)

The analog of absolute value is the TOTAL VARIATION

MEASURE ½ m½; and u is replaced by a MEASURABLE real-
valued function u: Or sometimes one writes h with
½h½�1 instead of eiu :/

More precisely, for any measurable set E ,

m(E) �gE

eiu d½ m½; (2)

where the integral is the LEBESGUE INTEGRAL. It is
natural to extend the definition of the Lebesgue
integral to complex measures using the polar repre-
sentation

g f dm �g eiuf d½ m½: (3)

See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, FUNDAMENTAL THEOREMS OF CALCULUS, LE-

BESGUE MEASURE, POLAR REPRESENTATION

(MEASURE), RADON-NIKODYM THEOREM
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Polarity
A PROJECTIVE CORRELATION of period two. In a
polarity, a is called the POLAR of A , and A the POLE a .

See also CHASLES’S THEOREM, CORRELATION (GEO-

METRIC), POLAR, POLE (INVERSION), PROJECTIVE COR-

RELATION



References
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New

York: Wiley, p. 248, 1969.

Polarized Telephone
GOSSIPING

Pole
A HOLOMORPHIC FUNCTION f has a pole of order m at a
point z �z0 if, in the LAURENT SERIES, an �0 for n B
�m and am "0 : Equivalently, f has a pole of order n
at z0 if n is the smallest POSITIVE INTEGER for which
(z �z0)nf (z) is holomorphic at z0 : A holomorphic
function f has a pole at infinity if

lim
z0�

f (z) ��:

A nonconstant polynomial P(z) has a pole at infinity of
order deg P; i.e., the DEGREE of P .

The basic example of a pole is f �1=zn ; which has a
single pole of order n at z �0. A simple Mathematica
function which finds the poles of a RATIONAL FUNC-

TION is given by

Poles[f_, z_] : � Union[z /.

{ToRules[Roots[Denominator[Together[D[f, z]]]

��  0, z]]}]

A HOLOMORPHIC FUNCTION whose only singularities
are poles is called a MEROMORPHIC FUNCTION.

See also ARGUMENT PRINCIPLE, ESSENTIAL SINGULAR-

ITY, HOLOMORPHIC FUNCTION, LAURENT SERIES,
MEROMORPHIC FUNCTION, POLE (INVERSION), REMO-

VABLE SINGULARITY, RESIDUE (COMPLEX ANALYSIS),
SIMPLE POLE, SINGULAR POINT (FUNCTION)
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Pole (Inversion)

If two points A and A? are INVERSE with respect to a

CIRCLE (the INVERSION CIRCLE), then the straight line
through A? which is PERPENDICULAR to the line of the
points AA? is called the POLAR of the POINT A with
respect to the CIRCLE, and A is called the pole of the
POLAR.
An incidence-preserving transformation in which
points and lines are transformed into their poles
and POLARS is called a RECIPROCATION.

The concept of poles and polars can also be general-
ized to arbitrary CONIC SECTIONS. If two tangents to a
CONIC SECTION at points A and B meet at P , then P is
called the pole of the line AB with respect to the conic
and AB is said to be the POLAR of the point P with
respect to the conic (Wells 1991). Let a line through P
meet a conic at points X and Y and its polar AB and
Q . Then X , Y , P , and Q are a HARMONIC RANGE

(Wells 1991). Furthermore, if two lines through a pole
P meet a conic at points Q and R and points S and T ,
then the lines QT and SR meet on the polar, as do the
lines QS and RT .

The concept can be generalized even further to an
arbitrary ALGEBRAIC CURVE so that every point has a
polar with respect to the curve and every line has a
pole (Wells 1991).

See also DIAGONAL TRIANGLE, INVERSE POINTS,
INVERSION CIRCLE, POLAR, POLARITY, RECIPROCAL,
RECIPROCATION, TRILINEAR POLAR
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Pole (Origin)
ORIGIN

Pole (Perspective)
PERSPECTIVE CENTER

Pole (Simson Line)
If a line L is the SIMSON LINE of a point P on the
CIRCUMCIRCLE of a TRIANGLE, then P is called the pole
of L (Honsberger 1995, p. 128).

See also SIMSON LINE

References
Honsberger, R. Episodes in Nineteenth and Twentieth

Century Euclidean Geometry. Washington, DC: Math.
Assoc. Amer., p. 128, 1995.

Policeman on Point Duty Curve
CRUCIFORM

Polignac’s Conjecture
DE POLIGNAC’S CONJECTURE

Polish Notation
REVERSE POLISH NOTATION

Polish Space
The HOMEOMORPHIC image of a so-called "complete
separable" METRIC SPACE. The continuous image of a
Polish space is called a SOUSLIN SET.

See also DESCRIPTIVE SET THEORY, STANDARD SPACE

Pollaczek Polynomial
Let a > ½b½; and write

h(u) �
a cos u � b

2 sin u
: (1)

Then define Pn(x; a; b) by the GENERATING FUNCTION

f (x; w) �f (cos u;w) �
X�
n�0

Pn(x; a ; b)wn

�(1 �wei u) �1=2 �ih(u)(1 �wei u) �1=2 �ih(u) : (2)

The GENERATING FUNCTION may also be written

f (x; w) � 1 �2xw �w2
� ��1 =2

exp (ax �b)
X�
m�1

wm

m
Um�1(x)

" #
; (3)

where Um(x) is a CHEBYSHEV POLYNOMIAL OF THE

SECOND KIND.

Pollaczek polynomials satisfy the RECURRENCE RELA-

TION

nPn(x; a ; b) �[(2n �1 �2a)x �2b]Pn �1(x; a; b)

�(n �1)Pn�2(x; a ; b) (4)

for n �2, 3, ...with

P0 �1 (5)

P1 �(2a �1)x �2b: (6)

In terms of the HYPERGEOMETRIC FUNCTION

2F1(a ; b; c; x) ;

Pn(cos u; a; b)

�ein u
2F1 �n; 1

2 �ih( u); 1; 1 �e �2iu

 �

: (7)

They obey the orthogonality relation

g
1

�1

Pn(x; a ; b)Pm(x; a ; b)w(x; a ; b) dx

� n �1
2(a �1)

h i�1

dnm ; (8)

where dmn is the KRONECKER DELTA, for n; m �0; 1,
..., with the WEIGHT FUNCTION

w(cos u; a ; b) �e(2u � p)h(u) fcosh[ph(u)]g�1 
: (9)
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Pollard Monte Carlo Factorization Method
POLLARD RHO FACTORIZATION METHOD

Pollard p-1 Factorization Method
A PRIME FACTORIZATION ALGORITHM which can be
implemented in a single-step or double-step form. In
the single-step version, PRIMES p are found if p �1 is
a product of small PRIMES by finding an m such that

m �cq (mod n) ;

where p �1½q; with q a large number and (c ; n) �1:
Then since p �1½q; m �1 (mod p); so p ½m �1 : There is
therefore a good chance that n¶m�1; in which case
GCD(m�1; n) (where GCD is the GREATEST COMMON

DIVISOR) will be a nontrivial divisor of n .

In the double-step version, a PRIMES p can be factored
if p�1 is a product of small PRIMES and a single
larger PRIME.

See also PRIME FACTORIZATION ALGORITHMS, WIL-

LIAMS P�1 FACTORIZATION METHOD
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Pollard Rho Factorization Method
A PRIME FACTORIZATION ALGORITHM also known as
POLLARD MONTE CARLO FACTORIZATION METHOD. Let
x0 �2 ; then compute

xi �1 �x2
i �xi �1 (mod n) :

If GCD(x2i �xi ; n) > 1; then n is COMPOSITE and its
factors are found. In modified form, it becomes
BRENT’S FACTORIZATION METHOD. In practice, almost
any unfactorable POLYNOMIAL can be used for the
iteration (/x2 �2; however, cannot). Under worst con-
ditions, the ALGORITHM can be very slow.

See also BRENT’S FACTORIZATION METHOD, PRIME

FACTORIZATION ALGORITHMS
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Poloidal Field
A VECTOR FIELD resembling a magnetic multipole
which has a component along the Z -AXIS of a SPHERE

and continues along lines of LONGITUDE.

See also DIVERGENCELESS FIELD, TOROIDAL FIELD
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Pólya Conjecture
Let n be a POSITIVE INTEGER and r(n) the number of
(not necessarily distinct) PRIME FACTORS of n (with
r(1) �0): Let O(m) be the number of POSITIVE INTE-

GERS 5m with an ODD number of PRIME FACTORS, and
E(m) the number of POSITIVE INTEGERS 5m with an
EVEN number of PRIME FACTORS. Pólya conjectured
that

L(m) �E(m) �O(m) �
Xm

n �1

l(n)

is 50 ; where l(n) is the LIOUVILLE FUNCTION.

The conjecture was made in 1919, and disproven by
Haselgrove (1958) using a method due to Ingham
(1942). Lehman (1960) found the first explicit coun-
terexample, L(906; 180; 359) �1; and the smallest

counterexample m �/906,150,257 was found by Ta-
naka (1980). The first n for which L(n) �0 are n �2,
4, 6, 10, 16, 26, 40, 96, 586, 906150256, ... (Tanaka
1980, Sloane’s A028488). It is unknown if L(x)
changes sign infinitely often (Tanaka 1980).

See also ANDRICA’S CONJECTURE, LIOUVILLE FUNC-

TION, PRIME FACTORS
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Pólya Distribution
NEGATIVE BINOMIAL DISTRIBUTION

Pólya Enumeration Theorem
A very general theorem which allows the number of
discrete combinatorial objects of a given type to be
enumerated (counted) as a function of their "order."
The most common application is in the counting of the
number of GRAPHS of n nodes, TREES and ROOTED

TREES with n branches, GROUPS of order n , etc. The
theorem is an extension of the CAUCHY-FROBENIUS

LEMMA, which is sometimes also called BURNSIDE’S

LEMMA, the PÓ LYA-BURNSIDE LEMMA, the CAUCHY-

FROBENIUS LEMMA, or even "the LEMMA THAT IS NOT

BURNSIDE’S!"

Pólya enumeration is implemented as [g , m ], in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘) which returns the
polynomial giving the number of colorings with M
colors of a structure defined by a PERMUTATION GROUP

g .

See also CAUCHY-FROBENIUS LEMMA, GRAPH, GROUP,
ROOTED TREE, TREE
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Harary, F. "Pólya’s Enumeration Theorem." Graph Theory.
Reading, MA: Addison-Wesley, pp. 180�/84, 1994.
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Pólya Polynomial
The POLYNOMIAL giving the number of colorings with
m colors of a structure defined by a PERMUTATION

GROUP.

See also PERMUTATION GROUP, PÓ LYA ENUMERATION

THEOREM

Polyabolo

An analog of the POLYOMINO composed of n ISOSCELES

RIGHT TRIANGLES joined along edges of the same
length. Polyaboloes are sometimes also called poly-
tans. The number of fixed polyaboloes composed of n
triangles are 1, 3, 4, 14, 30, 107, 318, 1106, 3671, ...
(Sloane’s A006074).

See also DIABOLO, HEXABOLO, PENTABOLO, POLYABO-

LO TILING, POLYIAMOND, TETRABOLO, TRIABOLO
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Polyabolo Tiling

See also POLYABOLO
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Pólya-Burnside Lemma
CAUCHY-FROBENIUS LEMMA, PÓLYA ENUMERATION

THEOREM

Pólya’s Random Walk Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let p(d) be the probability that a RANDOM WALK on a
d -D lattice returns to the origin. Pólya (1921) proved
that

p(1)�p(2)�1; (1)

but

p(d)B1 (2)

for d �2. Watson (1939), McCrea and Whipple
(1940), Domb (1954), and Glasser and Zucker (1977)
showed that

p(3)�1�
1

u(3)
�0:3405373296 . . . ; (3)

where

u(3)�
3

(2p)3 g
p

�p
g

p

�p
g

p

�p

dx dy dz

3 � cos x � cos y � cos z

(4)

�
12

p2
18�12

ffiffiffi
2
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ffiffiffi
3
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ffiffiffi
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 �
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ffiffiffi
3

p
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ffiffiffi
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(6)
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ffiffiffi
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p

32p3
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 �
G 5

24
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G 7

24


 �
G 11

24


 �
(7)

�1:5163860592 . . . : (8)

Here, K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND and G(z) is the GAMMA FUNCTION. Closed
forms for d �3 are not known, but Montroll (1956)
showed that

p(d)�1�[u(d)]�1; (9)

where

u(d)�
d

(2p)d g
p

�p
g

p

�p

� � � g
p

�p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d

 d�
Xd

k�1

cos xk

 !�1

dx1 dx2 � � � dxd

�g
�

0

I0

t

d

 !" #d

e�t dt; (10)

and I0(z) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND. Numerical values of p(d) from Montroll
(1956) and Flajolet (Finch) are given in the following
table.



d /p(d)/

3 0.3405086322

4 0.1932016706

5 0.1351786098

6 0.1047154956

7 0.0858449341

8 0.0729126492

See also RANDOM WALK
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Pólya-Vinogradov Inequality
Let x be a nonprincipal character (mod q ). Then

XM �N

n�M �1

x(n) �
ffiffiffi
q

p
ln q ;

where � indicates MUCH LESS than.
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Davenport, H. "The Pólya-Vinogradov Inequality." Ch. 23 in

Multiplicative Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 135 �/38, 1980.
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Polychoron
A POLYTOPE in 4-D. Polychora are bounded by poly-
hedra.

The NECESSARY condition for the polychoron with
SCHLÄ FLI SYMBOL fp ; q; rg to be a finite polytope is

cos
p

q

 !
Bsin

p

p

 !
sin

p

r

 !
:

SUFFICIENCY can be established by consideration of

the six figures satisfying this condition.

Nine of the ten star polychora can be obtained by
faceting f3; 3; 5g; in other words, they have the same
vertices as f3; 3; 5g: The tenth, f5 =2; 3; 3g; can be
obtained by faceting f5; 3 ; 3 g: In addition, of the ten
regular star polychora, several share the same edges:
f3; 3; 5g; f3 ; 5 ; 5 =2g; f5; 5=2 ; 5 g; and f5; 3; 5=2 g;
f3; 3; 5=2g; f3; 5=2; 5g; f5=2; 5; 5=2g; and
f5=2; 3; 5g; and f5=2; 5; 3g and f5; 5=2; 3g:
f5=2; 3; 3g does not share edges with any other
regular polychora. There are therefore only four
different projections (into any given plane or 3-space)
of the ten regular star polychora, illustrated above.

See also POLYTOPE, REGULAR POLYCHORON, UNIFORM

POLYCHORON
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Polyconic Projection

A class of map projections in which the parallels are
represented by a system of non-concentric circular
arcs with centers lying on the straight line represent-
ing the central meridian (Lee 1944). The term was
first applied by Hunt, and later extended by Tissot
(1881).

x�cot f sin E (1)

y�(f�f0)�cot f(1�cos E); (2)

where

E�(l�l0) sin f: (3)

The inverse FORMULAS are

l�
sin�1(x tan f)

sin f
�l0; (4)



and f is determined from

Df ��
A(f tan f � 1) � f � 1

2( f
2 � B) tan f

f � A

tan f
� 1

; (5)

where f0 �A and

A � f0 �y (6)

B �x2 �A2 : (7)
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Polycube

3-D generalization of the POLYOMINOES to n -D. The
number of polycubes N(n) composed of n CUBES are 1,
1, 2, 8, 29, 166, 1023, ... (Sloane’s A000162, Ball and
Coxeter 1987).

There are 1390 distinct ways to pack the eight
polycubes of order n �4 into a 2 �4 �4 box (Beeler
1972).

See also CONWAY PUZZLE, CUBE DISSECTION, DIABO-

LICAL CUBE, PENTACUBE, SLOTHOUBER-GRAATSMA

PUZZLE, SOMA CUBE
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Polycyclic Group

See also SOLVABLE GROUP
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Polydisk
Let c �(c1 ; . . . ; cn) be a point in Cn ; then the open
polydisk is defined by

S�fz : ½zj�cj½B ½z0
j �cj½g

for j�1, ..., n .

See also DISK, OPEN DISK
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Polyfrob
POLYHEX



Polygamma Function

A SPECIAL FUNCTION which is given by the (n�1)/st
DERIVATIVE of the LOGARITHM of the GAMMA FUNCTION

G(z) (or, depending on the definition, of the FACTORIAL

z!): This is equivalent to the nth normal derivative of
the LOGARITHMIC DERIVATIVE of G(z) (or z!) and, in the
former case, to the nth normal derivative of the
DIGAMMA FUNCTION c0(z): Because of this ambiguity
in definition, two different notations are sometimes
(but not always) used, namely

cn(z)�
dn�1

dzn�1
ln[G(z)]

�
dn

dzn

G?(z)

G(z)
�

dn

dzn
c0(z) (1)

�(�1)n�1n!
X�
k�0

1

(z � k)n�1 (2)

�(�1)n�1n!z(n�1; z); (3)

where z(a; z) is the HURWITZ ZETA FUNCTION, and

Fn(z)�
dn�1

dzn�1
ln z!: (4)

The two notations are connected by

cn(z)�Fn(z�1): (5)

Unfortunately, Morse and Feshbach (1953) adopt a
notation no longer in standard use in which Morse
and Feshbach’s "/cn(z)/" is equal to cn�1(z) in the usual
notation. Also note that the function c0(z) is equiva-
lent to the DIGAMMA FUNCTION C(z): cn(z) is imple-
mented in Mathematica as PolyGamma[n , z ].
The polygamma function obeys the RECURRENCE

RELATION

cn(z�1)�cn(z)�(�1)nn!z�n�1; (6)

the reflection FORMULA

cn(1�z)�(�1)n�1
cn(z)�(�1)n

p
dn

dzn
cot(pz); (7)

and the multiplication FORMULA,

cn(mz)�dn0 ln m�
1

mn�1

Xm�1

k�1

cn z�
k

m

 !
; (8)

where dmn is the KRONECKER DELTA.

In general, special values for integral indices are
given by

cn(1)�(�1)n�1n!z(n�1) (9)

cn
1
2


 �
�(�1)n�1n! 2n�1�1

� �
z(n�1); (10)

giving

c1
1
2


 �
�1

2 p
2 (11)

c1(1)�z(2)�1
6 p

2 (12)

c2(1)��2z(3); (13)

c3
1
2


 �
�p4 (14)

and so on.

The polygamma function can be expressed in terms of
CLAUSEN FUNCTIONS for RATIONAL arguments and
integer indices. Special cases are given by

c1
1
3


 �
�2

3 p
2�3

ffiffiffi
3

p
Cl2

2
3 p

 �

(15)

c1
2
3


 �
�2

3 p
2�3

ffiffiffi
3

p
Cl2

2
3 p

 �

(16)

c1
1
4


 �
�p2�8 Cl2

1
2 p

 �

(17)

�p2�8K (18)

c1
3
4


 �
�p2�8 Cl2

1
2 p

 �

(19)

�p2�8K (20)

c2
1
2


 �
��8 Cl3(0)�Cl3(p)½ � (21)

�14z(3) (22)

c2
1
3


 �
��

4p3

3
ffiffiffi
3

p �18 Cl3(0)�18 Cl3
2
3 p

 �

(23)

c2
2
3


 �
�

4p3

3
ffiffiffi
3

p �18 Cl3(0)�18 Cl3
2
3 p

 �

(24)

c2
1
4


 �
��2p3�32 Cl3(0)�Cl3(p)½ � (25)

��2p3�56z(3) (26)

c2
3
4


 �
�2p3�32 Cl3(0)�Cl3(p)½ � (27)

�2p3�56z(3) (28)

c2
1
6


 �
��182z(3)�4

ffiffiffi
3

p
p3 (29)



c2
5
6


 �
��182z(3) �4

ffiffiffi
3

p
p3 (30)

c3
1
3


 �
�8

3 p
4 �162

ffiffiffi
3

p
Cl4

2
3 p

 �

(31)

c3
2
3


 �
�8

3 p
4 �162

ffiffiffi
3

p
Cl4

2
3 p

 �

(32)

c3
1
4


 �
�8 p4 �768 Cl4

1
2 p

 �

(33)

�8 p4 �768b(4) (34)

c3
3
4


 �
�8 p4 �768 Cl4

1
2 p

 �

(35)

�8p4 �768b(4) ; (36)

where K is CATALAN’S CONSTANT, z(z) is the RIEMANN

ZETA FUNCTION, and b(z) is the DIRICHLET BETA

FUNCTION.

See also CATALAN’S CONSTANT, CLAUSEN FUNCTION,
DIGAMMA FUNCTION, DIRICHLET BETA FUNCTION,
GAMMA FUNCTION, PERIODIC ZETA FUNCTION, RIE-

MANN ZETA FUNCTION, STIRLING’S SERIES
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Polygenic Function
A function which has infinitely many DERIVATIVES at
a point. If a function is not polygenic, it is MONO-

GENIC.

See also MONOGENIC FUNCTION
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Polygon
A closed plane figure with n sides. If all sides and
angles are equivalent, the polygon is called REGULAR.
Polygons can be CONVEX, concave, or STAR. The word
"polygon" derives from the Greek poly (poly ) meaning
"many" and gvnia (gonia ) meaning "angle."

The AREA of a planar CONVEX POLYGON with VERTICES

x1; y1ð Þ; ..., xn; ynð Þ is

A�
1

2

x1 x2

y1 y2

����
����� x2 x3

y2 y3

����
�����. . .�

xn x1

yn y1

����
����

$ %
; (1)

which can be written

A�1
2 x1y2�x2y1�x2y3�x3y2�. . .�xn�1ynð

�xnyn�1�xny1�x1ynÞ; (2)

where the signs can be found from the following
diagram.

The AREA of a polygon is defined to be POSITIVE if the
points are arranged in a counterclockwise order, and
NEGATIVE if they are in clockwise order (Beyer 1987).

The sum I of interior angles in the top left diagram of
a dissected polygon is

I�
Xn

i�1

ai�bið Þ�
Xn

i�1

ai�bi�gið Þ�
Xn

i�1

gi: (3)

But

Xn

i�1

gi�360� (4)

and the sum of ANGLES of the n TRIANGLES is

Xn

i�1

ai�bi�gið Þ�
Xn

i�1

180�ð Þ�n 180�ð Þ: (5)

Therefore,

I�n 180�ð Þ�360��(n�2)180�: (6)

The same equation can be derived using EXTERIOR

ANGLES (top right figure) or a triangulation from a
single vertex (bottom figure).

The following table gives the names for polygons with
n sides. The words for polygons with n]5 sides (e.g.,
PENTAGON, HEXAGON, HEPTAGON, etc.) can refer to



either REGULAR or non-regular polygons, depending
on context. It is therefore always best to specify
"regular n -gon" explicitly. For some polygons, several
different terms are used interchangeably, e.g., nona-
gon and enneagon both refer to the polygon with n �9
sides.

n polygon

2 DIGON

3 TRIANGLE (trigon)

4 QUADRILATERAL (tetragon)

5 PENTAGON

6 HEXAGON

7 HEPTAGON

8 OCTAGON

9 NONAGON (enneagon)

10 DECAGON

11 UNDECAGON (hendecagon)

12 DODECAGON

13 TRIDECAGON (triskaidecagon)

14 TETRADECAGON (tetrakaidecagon)

15 PENTADECAGON (pentakaidecagon)

16 HEXADECAGON (hexakaidecagon)

17 HEPTADECAGON (heptakaidecagon)

18 OCTADECAGON (octakaidecagon)

19 ENNEADECAGON (enneakaidecagon)

20 ICOSAGON

30 TRIACONTAGON

40 TETRACONTAGON

50 PENTACONTAGON

60 HEXACONTAGON

70 HEPTACONTAGON

80 OCTACONTAGON

90 ENNEACONTAGON

100 HECTOGON

10000 MYRIAGON

See also 257-GON, 65537-GON, ANTHROPOMORPHIC POLY-

GON, BICENTRIC POLYGON, CARNOT’S POLYGON THEO-

REM, CHAOS GAME, CONVEX POLYGON, CYCLIC

POLYGON, DE MOIVRE NUMBER, DERIVED POLYGON,

DIAGONAL (POLYGON), EQUIANGULAR POLYGON, EQUI-

LATERAL POLYGON, EQUILATERAL TRIANGLE, EULER’S

POLYGON DIVISION PROBLEM, HEPTADECAGON, HEXA-

GON, HEXAGRAM, ILLUMINATION PROBLEM, JORDAN

POLYGON, LOZENGE, OCTAGON, PARALLELOGRAM, PAS-

CAL’S THEOREM, PENTAGON, PENTAGRAM, PETRIE

POLYGON, PLANAR POLYGON, POLYGON CIRCUMSCRIB-

ING CONSTANT, POLYGON INSCRIBING CONSTANT,
POLYGONAL KNOT, POLYGONAL NUMBER, POLYGONAL

SPIRAL, POLYGON TRIANGULATION, POLYGRAM, POLY-

HEDRAL FORMULA, POLYHEDRON, POLYTOPE, QUAD-

RANGLE, QUADRILATERAL, REGULAR POLYGON,
REULEAUX POLYGON, RHOMBUS, ROTOR, ROULETTE,
SIMPLE POLYGON, SIMPLICITY, SQUARE, STAR POLY-

GON, TRAPEZIUM, TRAPEZOID, TRIANGLE, VISIBILITY,
VORONOI POLYGON, WALLACE-BOLYAI-GERWEIN

THEOREM
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Polygon Circumscribing Constant

If a TRIANGLE is CIRCUMSCRIBED about a CIRCLE,
another CIRCLE around the TRIANGLE, a SQUARE out-
side the CIRCLE, another CIRCLE outside the SQUARE,
and so on. From POLYGONS, the CIRCUMRADIUS and
INRADIUS for an n -gon are

R�1
2 s csc

p

n

 !
(1)

r�1
2 s cot

p

n

 !
; (2)

where s is the side length. Therefore,

R

r
�

1

cos
p

n

 !�sec
p

n

 !
; (3)

and an infinitely nested set of circumscribed polygons



and circles has

K�
rfinal circle

rinitial circle

�sec
p

3

 !
sec

p

4

 !
sec

p

5

 !
. . . : (4)

Kasner and Newman (1989) and Haber (1964) state
that K�12, but this is incorrect. Write

K�
Y�
n�3

1

cos
p

n

 ! (5)

ln K��
X�
n�3

ln(cos x): (6)

Define

y0(x)��ln(cos x)�1
2 x2� 1

12 x4� 1
45 x6� 17

2520 x8�. . . (7)

Now define

y1(x)�1
2 ax2; (8)

with

y1

p

3

 !
�y0

p

3

 !
(9)

1
2 a

p

3

 !2

�ln 2; (10)

so

a�2
3

p

 !2

ln 2; (11)

and

y2(x)�
9 ln 2

p2
x2: (12)

But y2(x) > y1(x) for x 
 (0; p=3); so

X�
n�3

y2

p

n

 !
>�

X�
n�3

ln cos
p

n

 !" #
(13)

ln KB
X�
n�3

y2

p

n

 !
9 ln 2

p2

X�
n�3

p

n

 !2

�9 ln 2
X�
n�3

1

n2

�9 ln 2
X�
n�1

1

n2
�
X2

n�1

1

n2

 !
�9 ln 2 z(2)�5

4

h i

�9 ln 2
p2

6
�

5

4

 !
�2:4637 (14)

KBe2:4637�11:75: (15)

If the next term is included,

y2(x)�a 1
2 x2� 1

12 x4

 �

: (16)

As before,

y2

p

3

 !
�y0

p

3

 !
(17)

a�
972 ln 2

p2 54 � p2ð Þ
; (18)

so

y2(x)�
972 ln 2

p2 54 � p2ð Þ
1
2 x2� 1

12 x4

 �

(19)

ln KB
972 ln 2

p2 54 � p2ð Þ
X�
n�3

1

2

p

n

 !2

�
1

12

p

n

 !4
2
4

3
5

�
972 ln 2

p2 54 � p2ð Þ
1

2
z(2)�

5

4

" #
�

p2

12
z(4)�1�

1

24

" #( )

�
972 ln 2

p2 54 � p2ð Þ
1

2

p2

6
�

5

4

 !
�

p2

12

p2

90
�1�

1

24

 !" #

�
9 8p6 � 45p2 � 5400ð Þ ln 2

80 p2 � 54ð Þ
�2:255; (20)

and

KBe2:255�9:535: (21)

The process can be automated using computer alge-
bra, and the first few bounds are 11.7485, 9.53528,
8.98034, 8.8016, 8.73832, 8.71483, 8.70585, 8.70235,
8.70097, and 8.70042. In order to obtain this accuracy
by direct multiplication of the terms, more than
10,000 terms are needed. The limit is

K�8:700036625 . . . : (22)

Bouwkamp (1965) produced the following INFINITE

PRODUCT formulas

K�
2

p

Y�
m�1

Y�
n�1

1�
1

m2 n � 1
2


 �2

2
64

3
75 (23)

�6 exp
X�
k�1

l(2k) � 1½ �22k z(2k) � 1 � 2�2k
� �

k

( )
; ð24Þ

where z(x) is the RIEMANN ZETA FUNCTION and l(x) is
the DIRICHLET LAMBDA FUNCTION. Bouwkamp (1965)
also produced the formula with accelerated conver-



gence

K � 1
12

ffiffiffi
6

p
p4 1 �1

2 p
2 � 1

24 p
4


 �
1 �1

8 p
2 � 1

384 p
4


 �

�csc
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 � 2
ffiffiffi
3

pp !
csc

p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 � 2

ffiffiffi
3

pp !
B ; (25)

where

B �
Y�
n�3

1 �
p2

2n2 
�

p4

24n4

 !
sec

p

n

 !
(26)

(cited in Pickover 1995).

See also POLYGON INSCRIBING CONSTANT
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Polygon Construction
GEOMETRIC CONSTRUCTION, GEOMETROGRAPHY,
POLYGON, SIMPLICITY

Polygon Division Problem
EULER’S POLYGON DIVISION PROBLEM

Polygon Fractal
CHAOS GAME

Polygon Inscribing Constant
If a TRIANGLE is inscribed in a CIRCLE, another CIRCLE

inside the TRIANGLE, a SQUARE inside the CIRCLE,
another CIRCLE inside the SQUARE, and so on,

K ?�
rfinal circle

rinitial circle

�cos
p

3

 !
cos

p

4

 !
cos

p

5

 !
. . . :

Numerically,

K ?�
1

K 
�

1

8:7000366252 . . . 
�0 :1149420448 . . . ;

where K is the POLYGON CIRCUMSCRIBING CONSTANT.
Kasner and Newman’s (1989) assertion that K �1 =12
is incorrect.

Let a convex POLYGON be inscribed in a CIRCLE and
divided into TRIANGLES from diagonals from one
VERTEX. The sum of the RADII of the CIRCLES inscribed
in these TRIANGLES is the same independent of the
VERTEX chosen (Johnson 1929, p. 193).

See also POLYGON CIRCUMSCRIBING CONSTANT
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Polygon Tiling

See also HEXAGON TILING, PENTAGON TILING, QUAD-

RILATERAL TILING, SQUARE TILING, TILING, TRIANGLE

TILING
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Polygon Triangle Picking
The mean area of a TRIANGLE picked inside a regular
n -gon of unit area is

Ā�
9 cos2 v� 52 cos v� 44

36n2 sin2 v
; (1)

where v�2p=n (Alikoski 1939; Solomon 1978; Croft
et al. 1991, p. 54). Prior to Alikoski’s work, only the
special cases n�3, 4, 6, 8, and � had been deter-
mined. The first few cases are summarized in the
following table, where Ā7 is the largest root of

784147392x3�84015792x2�2125620x�15289�0;

(2)

and Ā9 is the largest root of

24794911296x3�2525407632x2�55366092x

�312427�0: (3)

n /Ān/ problem

3 /
1
12/ TRIANGLE TRIANGLE

PICKING

4 /
11
144/ SQUARE TRIANGLE

PICKING

5 /
1

180 9�2
ffiffiffi
5

p� �
/



6 /
289
3888/ HEXAGON TRIANGLE

PICKING

7 /Ā7/

8 /
1

2304 97 �52
ffiffiffi
2

p� �
/

9 /Ā9/

10 /
1

18000 745 �262
ffiffiffi
5

p� �
/

See also HEXAGON TRIANGLE PICKING, SQUARE TRI-

ANGLE PICKING, SYLVESTER’S FOUR-POINT PROBLEM,
TRIANGLE TRIANGLE PICKING
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Polygon Triangulation
EULER’S POLYGON DIVISION PROBLEM, TESSELLATION,
TRIANGULATION

Polygonal Knot
A KNOT equivalent to a POLYGON in R3 ; also called a
TAME KNOT. For a polygonal knot K , there exists a
PLANE such that the orthogonal projection p on it
satisfies the following conditions:

1. The image p(K) has no multiple points other
than a FINITE number of double points.
2. The projections of the vertices of K are not
double points of p(K):/

Such a projection p(K) is called a regular knot
projection.
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Polygonal Number

A type of FIGURATE NUMBER which is a generalization
of TRIANGULAR, SQUARE, etc., numbers to an arbitrary

n -gonal number. The above diagrams graphically
illustrate the process by which the polygonal num-
bers are built up. Starting with the nth TRIANGULAR

NUMBER Tn ; then

n �Tn �1 �Tn : (1)

Now note that

n �2Tn �1 �n2 �Sn (2)

gives the nth SQUARE NUMBER,

n �3Tn�1 �
1
2 n(3n �1) �Pn ; (3)

gives the nth PENTAGONAL NUMBER, and so on. The
general polygonal number can be written in the form

pn
r �

1
2 r[(r �1)n �2(r �2)] �1

2 r[(n �2)r �(n �4)]; (4)

where pn
r is the rth n -gonal number (Savin 2000). For

example, taking n �3 in (4) gives a TRIANGULAR

NUMBER, n �4 gives a SQUARE NUMBER, etc.
Fermat proposed that every number is expressible as
at most k k -gonal numbers (FERMAT’S POLYGONAL

NUMBER THEOREM). Fermat claimed to have a proof of
this result, although this proof has never been found.
Jacobi, Lagrange (1772), and Euler all proved the
square case, and Gauss proved the triangular case in
1796. In 1813, Cauchy proved the proposition in its
entirety.

An arbitrary number N can be checked to see if it is a
n -gonal number as follows. Note the identity

8(n�2)pr
n�(n�4)2�(2rn�4r�n�4)2; (5)

so 8(n�2)N�(n�4)2�S2 must be a PERFECT

SQUARE. Therefore, if it is not, the number cannot
be n -gonal. If it is a PERFECT SQUARE, then solving

S�2rn�4r�n�4 (6)

for the rank r gives

r�
S � n � 4

2(n � 2)
: (7)

An n -gonal number is equal to the sum of the (n�1)/-
gonal number of the same RANK and the TRIANGULAR

NUMBER of the previous RANK.

See also CENTERED POLYGONAL NUMBER, DECAGONAL

NUMBER, FERMAT’S POLYGONAL NUMBER THEOREM,
FIGURATE NUMBER, HEPTAGONAL NUMBER, HEXAGO-

NAL NUMBER, NONAGONAL NUMBER, OCTAGONAL

NUMBER, PENTAGONAL NUMBER, PYRAMIDAL NUM-

BER, SQUARE NUMBER, TRIANGULAR NUMBER
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Polygonal Spiral

The length of the polygonal spiral is found by noting
that the ratio of INRADIUS to CIRCUMRADIUS of a
REGULAR POLYGON of n sides is

r

R 
�

cot
p

n

 !

csc
p

n

 !�cos
p

n

 !
: (1)

The total length of the spiral for an n -gon with side

length s is therefore

L �1
2 s
X�
k �0

cosk p

n

 !
�

s

2 1 � cos
p

n

 !" # : (2)

Consider the solid region obtained by filling in
subsequent triangles which the spiral encloses. The
AREA of this region, illustrated above for n -gons of
side length s , is

A�1
4 s2 cot

p

n

 !
: (3)

The shaded triangular polygonal spiral is a REP-4-

TILE.

See also REP-TILE
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Polygram
A self-intersecting STAR POLYGON such as the PENTA-

GRAM or HEXAGRAM.

n symbol polygram

5 /f5=2g/ PENTAGRAM

6 /f6=2g/ HEXAGRAM

7 /f7=2g/ Heptagram

8 /f8=3g/ OCTAGRAM

/f8=2g/ STAR OF LAKSHMI

9 /f9=3g/ NONAGRAM

10 /f10=3g/ DECAGRAM



Lachlan (1893) defines polygram to be a figure
consisting of n straight lines.

See also DECAGRAM, HEXAGRAM, OCTAGRAM, PENTA-

GRAM, STAR FIGURE, STAR OF LAKSHMI, STAR POLY-

GON
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Polyhedral Formula
A formula relating the number of VERTICES V , FACES

F , and EDGES E of a simply connected (i.e., GENUS 0)
POLYHEDRON (or POLYGON). It was discovered inde-
pendently by Euler (1752) and Descartes, so it is also
known as the Descartes-Euler polyhedral formula.
Although the formula holds for some non-CONVEX

POLYHEDRA, it does not hold for STELLATED POLYHE-

DRA.

The polyhedral formula states

V �F �E �2 ; (1)

where V �N0 is the number of VERTICES, E �N1 is
the number of EDGES, and F �N2 is the number of
FACES. For a proof, see Courant and Robbins (1978,
pp. 239 �/40).

The FORMULA was generalized to n -D POLYTOPES by
Schläfli (Coxeter 1968, p. 233),

P1 : N0 �2 (2)

P2 : N0 �N1 �0 (3)

P3 : N0 �N1 �N2 �2 (4)

P4 : N0 �N1 �N2 �N3 �0 (5)

Pn : N0 �N1 �N2 �. . .�(�1)n�1Nn�1 �1 �(�1)n : (6)

and proved by Poincaré (Poincaré 1893; Coxeter 1973,
pp. 166 �/71; Williams 1979, pp. 24 �/5).

For GENUS g surfaces, the formula can be generalized
to the POINCARÉ FORMULA

x �V �E �F � x(g); (7)

where

x(g) �2 �2g; (8)

is the EULER CHARACTERISTIC, sometimes also known
as the EULER-POINCARÉ CHARACTERISTIC. The poly-
hedral formula corresponds to the special case g �0.

There exist polytopes which do not satisfy the poly-
hedral formula, the most prominent of which are the
GREAT DODECAHEDRON f5; 5

2g and SMALL STELLATED

DODECAHEDRON f5
2; 5g; which no less than Schläfli

himself refused to recognize (Schläfli 1901, p. 134)
since for these solids,

N0�N1�N2�12�30�12��6 (9)

(Coxeter 1973, p. 172).

See also DEHN INVARIANT, EULER CHARACTERISTIC,
DESCARTES TOTAL ANGULAR DEFECT, GENUS (SUR-

FACE), POINCARÉ FORMULA, POLYHEDRAL GRAPH,
POLYTOPE
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Polyhedral Graph
An n -polyhedral graph (sometimes called a c -net) is a
3-CONNECTED SIMPLE PLANAR GRAPH on n nodes.
Every CONVEX POLYHEDRON can be represented in
the plane or on the surface of a sphere by a 3-
connected PLANAR GRAPH. Conversely, by a theorem of
Steinitz as restated by Grünbaum (1967, p. 235),
every 3-connected planar graph can be realized as a
CONVEX POLYHEDRON (Duijvestijn and Federico 1981).
Polyhedral graphs are sometimes simply known as
"polyhedra" (which is rather confusing since the term
"polyhedron" more commonly refers to a solid with n
faces , not n vertices).

The number of distinct polyhedral graphs having
V�1, 2, ... vertices (or equivalently F�1, 2, ... faces)
are 0, 0, 0, 1, 2, 7, 34, 257, 2606, ... (Sloane’s A000944;
Grünbaum 1967, p. 424; Duijvestijn and Federico
1981; Dillencourt 1992; Croft et al. 1994). There is
therefore a single TETRAHEDRAL GRAPH, two PENTA-

HEDRAL GRAPHS, etc. There is no known formula for
enumerating the number of nonisomorphic polyhe-
dral graphs by numbers of edges E , vertices V , or
faces F (Harary and Palmer 1973, p. 224; Duijvestijn
and Federico 1981).



V # graph name

4 1 TETRAHEDRAL GRAPH

5 2 PENTAHEDRAL GRAPH

6 7 HEXAHEDRAL GRAPH

7 34 HEPTAHEDRAL GRAPH

8 257 OCTAHEDRAL GRAPH

9 2606 NONAHEDRAL GRAPH

10 32300 DECAHEDRAL GRAPH

Duijvestijn and Federico (1981) enumerated the
polyhedral graphs on E edges, obtaining 1, 0, 1, 2,
2, 4, 12, 22, 58, 158, 448, ... (Sloane’s A002840) for
E �6, 7, 8, ....

See also CUBICAL GRAPH, DODECAHEDRAL GRAPH,
ICOSAHEDRAL GRAPH, K -CONNECTED GRAPH, OCTAHE-

DRAL GRAPH, PLANAR CONNECTED GRAPH, PLANAR

GRAPH, PLATONIC GRAPH, POLYHEDRAL FORMULA,
POLYHEDRAL GROUP, POLYTOPAL GRAPH, SCHLEGEL

GRAPH, SIMPLE GRAPH, SKELETON, TETRAHEDRAL

GRAPH
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Polyhedral Group
One of the symmetry groups of the PLATONIC SOLIDS.
There are three polyhedral groups: the TETRAHEDRAL

GROUP of order 12, the OCTAHEDRAL GROUP of order
24, and the ICOSAHEDRAL GROUP of order 60.

See also ICOSAHEDRAL GROUP, OCTAHEDRAL GROUP,
PLATONIC SOLID, POLYHEDRAL GRAPH, TETRAHEDRAL

GROUP
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Polyhedron
The word polyhedron has slightly different meanings
in geometry and ALGEBRAIC GEOMETRY. In geometry,
a polyhedron is simply a 3-D solid which consists of a
collection of POLYGONS, usually joined at their EDGES.
The word derives from the Greek poly (many) plus
the Indo-European hedron (seat). A polyhedron is the
3-D version of the more general POLYTOPE (in the
geometric sense), which can be defined in arbitrary
dimension. The plural of polyhedron is "polyhedra"
(or sometimes "polyhedrons").

The term "polyhedron" is used somewhat differently
in ALGEBRAIC TOPOLOGY, where it is defined as a
space that can be built from such "building blocks" as
line segments, triangles, tetrahedra, and their higher
dimensional analogs by "gluing them together" along
their faces (Munkres 1993, p. 2). More specifically, it
can be defined as the UNDERLYING SPACE of a
SIMPLICIAL COMPLEX (with the additional constraint
sometimes imposed that the complex be finite;
Munkres 1993, p. 9). In the usual definition, a
polyhedron can be viewed as an intersection of half-
spaces, while a POLYTOPE is a bounded polyhedron.

A CONVEX POLYHEDRON can be formally defined as the
set of solutions to a system of linear inequalities

mx5b;

where m is a real s�3 MATRIX and b is a real s -
VECTOR. Although usage varies, most authors addi-
tional require that a solution be bounded for it to
define a CONVEX POLYHEDRON. An example of a
convex polyhedron is illustrated above.



A polyhedron is said to be regular if its FACES and
VERTEX FIGURES are REGULAR (not necessarily CON-

VEX) polygons (Coxeter 1973, p. 16). Using this
definition, there are a total of nine REGULAR POLY-

HEDRA, five being the CONVEX PLATONIC SOLIDS and
four being the CONCAVE (stellated) KEPLER-POINSOT

SOLIDS. However, the term "regular polyhedra" is
sometimes used to refer exclusively to the PLATONIC

SOLIDS (Cromwell 1997, p. 53). The DUAL POLYHEDRA

of the PLATONIC SOLIDS are not new polyhedra, but
are themselves PLATONIC SOLIDS.

A CONVEX polyhedron is called SEMIREGULAR if its
FACES have a similar arrangement of nonintersecting
regular plane CONVEX polygons of two or more
different types about each VERTEX (Holden 1991,
p. 41). These solids are more commonly called the
ARCHIMEDEAN SOLIDS, and there are 13 of them. The
DUAL POLYHEDRA of the ARCHIMEDEAN SOLIDS are 13
new (and beautiful) solids, sometimes called the
CATALAN SOLIDS.

A QUASIREGULAR POLYHEDRON is the solid region
interior to two DUAL REGULAR POLYHEDRA (Coxeter
1973, pp. 17 �/0). There are only two CONVEX QUASIRE-

GULAR POLYHEDRA: the CUBOCTAHEDRON and ICOSI-

DODECAHEDRON. There are also infinite families of
PRISMS and ANTIPRISMS.

There exist exactly 92 CONVEX POLYHEDRA with
REGULAR POLYGONAL faces (and not necessarily
equivalent vertices). They are known as the JOHNSON

SOLIDS. Polyhedra with identical VERTICES related by
a symmetry operation are known as UNIFORM POLY-

HEDRA. There are 75 such polyhedra in which only
two faces may meet at an EDGE, and 76 in which any
EVEN number of faces may meet. Of these, 37 were
discovered by Badoureau in 1881 and 12 by Coxeter
and Miller ca. 1930.

Polyhedra can be superposed on each other (with the
sides allowed to pass through each other) to yield
additional POLYHEDRON COMPOUNDS. Those made
from REGULAR POLYHEDRA have symmetries which
are especially aesthetically pleasing. The graphs
corresponding to polyhedra skeletons are called
SCHLEGEL GRAPHS.

Behnke et al. (1974) have determined the symmetry
groups of all polyhedra symmetric with respect to
their VERTICES.

See also ACOPTIC POLYHEDRON, APEIROGON, ARCHI-

MEDEAN SOLID, CANONICAL POLYHEDRON, CATALAN

SOLID, CONVEX POLYHEDRON, CUBE, CUMULATION,
DICE, DIGON, DODECAHEDRON, DUAL POLYHEDRON,
ECHIDNAHEDRON, FLEXIBLE POLYHEDRON, HAUY

CONSTRUCTION, HEXAHEDRON, HOLYHEDRON, HYPER-

BOLIC POLYHEDRON, ICOSAHEDRON, ISOHEDRON, JES-

SEN’S ORTHOGONAL ICOSAHEDRON JOHNSON SOLID,
KEPLER-POINSOT SOLID, NOLID, OCTAHEDRON, PETRIE

POLYGON, PLAITED POLYHEDRON, PLATONIC SOLID,
POLYCHORON, POLYHEDRON COLORING, POLYHEDRON

COMPOUND, POLYTOPE, PRISMATOID, QUADRICORN,
QUASIREGULAR POLYHEDRON, RIGID POLYHEDRON,
RIGIDITY THEOREM, SCHWARZ’S POLYHEDRON, SHAKY

POLYHEDRON, SEMIREGULAR POLYHEDRON, SKELE-

TON, STELLATION, TETRAHEDRON, TRUNCATION, UNI-

FORM POLYHEDRON, ZONOHEDRON
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Polyhedron Coloring
Define a valid "coloring" to occur when no two faces
with a common EDGE share the same color. Given two
colors, there is a single way to color an OCTAHEDRON

(Ball and Coxeter 1987, pp. 238 �/39). Given three
colors, there is one way to color a CUBE (Ball and
Coxeter 1987, pp. 238 �/39) and 144 ways to color an
ICOSAHEDRON (Ball and Coxeter 1987, pp. 239 �/42).
Given four colors, there are two distinct ways to color
a TETRAHEDRON (Ball and Coxeter 1987, p. 238) and
four ways to color a DODECAHEDRON, consisting of two
enantiomorphous ways (Steinhaus 1983, pp. 196 �/98;
Ball and Coxeter 1987, p. 238). Given five colors,
there are four ways to color an ICOSAHEDRON. Given
six colors, there are 30 ways to color a CUBE

(Steinhaus 1983, p. 167).

See also COLORING, CUBE, DODECAHEDRON, ICOSAHE-

DRON, OCTAHEDRON, PLATONIC SOLID, POLYHEDRON,
TETRAHEDRON
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Polyhedron Compound
A polyhedron compound is an arrangement of a
number of interpenetrating polyhedra, either all the
same or of several distinct types, usually having
visually attractive symmetric properties. The follow-
ing table gives some common polyhedron compounds.

solid vertices

CUBE 2-COMPOUND

CUBE 3-COMPOUND

CUBE 4-COMPOUND

CUBE 5-COMPOUND DODECAHEDRON

CUBE-OCTAHEDRON

COMPOUND

both

DODECAHEDRON 2-

COMPOUND

DODECAHEDRON 3-

COMPOUND

DODECAHEDRON 5-

COMPOUND

DODECAHEDRON-ICOSA-

HEDRON COMPOUND

both

DODECAHEDRON-SMALL

TRIAMBIC ICOSAHEDRON

COMPOUND

both

GREAT DODECAHEDRON-

SMALL STELLATED DO-

DECAHEDRON COMPOUND

both

GREAT ICOSAHEDRON-

GREAT STELLATED DO-

DECAHEDRON COMPOUND

both

OCTAHEDRON 3-COMPOUND

OCTAHEDRON 5-COMPOUND ICOSIDODECAHEDRON

STELLA OCTANGULA CUBE

TETRAHEDRON 4-

COMPOUND

TETRAHEDRON 5-

COMPOUND

DODECAHEDRON

TETRAHEDRON 10-

COMPOUND

DODECAHEDRON

In Coxeter’s NOTATION, d distinct VERTICES of fm; ng
taken c times are denoted

cfm; ng[dfp; qg]; (1)

or faces of fs; tg e times

[dfp; qg]efs; tg; (2)

or both

cfm; ng[dfp; qg]efs; tg: (3)

See also CUBE 2-COMPOUND, CUBE 3-COMPOUND,
CUBE 4-COMPOUND, CUBE 5-COMPOUND, CUBE 20-

COMPOUND, CUBE-OCTAHEDRON COMPOUND, DODE-

CAHEDRON 2-COMPOUND, DODECAHEDRON 3-COM-

P O U N D , D O D E C A H E D R O N  5 - C O M P O U N D ,
DODECAHEDRON-ICOSAHEDRON COMPOUND, DODECA-

HEDRON-SMALL TRIAMBIC ICOSAHEDRON COMPOUND,
OCTAHEDRON 3-COMPOUND, OCTAHEDRON 5-COM-

POUND, STELLA OCTANGULA, TETRAHEDRON 4-COM-

POUND, TETRAHEDRON 5-COMPOUND, TETRAHEDRON

10-COMPOUND
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Polyhedron Dissection
A DISSECTION of one or more polyhedra into other
shapes.

See also CUBE DISSECTION, DIABOLICAL CUBE, POLY-

CUBE, SOMA CUBE, WALLACE-BOLYAI-GERWEIN THEO-

REM
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Polyhedron Dual
DUAL POLYHEDRON

Polyhedron Hinging
RIGIDITY THEOREM

Polyhedron Packing
A packing of polyhedron in 3-D space. A polyhedron
which can pack with no holes or gaps is said to be a
SPACE-FILLING POLYHEDRON. Betke and Henk (1999)
present an efficient algorithm for computing the
density of a densest lattice packing of an arbitrary
polyhedron, and explicitly calculate the densities for
the PLATONIC and ARCHIMEDEAN SOLIDS.

See also KELVIN’S CONJECTURE, PACKING, SPACE-

FILLING POLYHEDRON
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Polyhex

An analog of the POLYOMINOES and POLYIAMONDS in
which collections of regular hexagons are arranged
with adjacent sides. They are also called HEXES,
HEXAS, or POLYFROBS (Beeler 1972). For the 4-hexes
(tetrahexes), the possible arrangements are known as
the BEE, BAR, PISTOL, PROPELLER, WORM, ARCH, and
WAVE.

A simple connected polyhex is called a fusene. Let the
number of internal vertices of a polyhex be denoted
ni: Then catafusenes (or catacondensed fusenes) have
ni�0 (and are therefore also called "tree-like"), and
perifusenes (or pericondensed fusenes) have ni�1:
The numbers of catafusenes composed of n polyhexes
are sometimes called Harary-Read numbers, and
have the impressive GENERATING FUNCTION

H(x)� 1
24 x�2f12�24x�48x2�24x3

�[(1�x)(1�5x)]3=2�3(5x�3)


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�x2)(1�5x2)

p
�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�x3)(1�5x3)

p
g

�x�x2�2x3�5x4�12x5�37x6�. . .

(Harary and Read 1970, Cyvin et al. 1993). Polyhexes
may also be classified on the basis of being geome-
trically planar (called nonhelicenic) or geometrically
nonplanar (called helicenic). Fusenes include the
helicenes.



"One-sided" polyhexes are considered to be FIXED in
the plane, and so mirror images are counted sepa-
rately.

The following table gives the numbers of n -polyhexes
that are geometrically planar (Klarner 1967, Balaban
and Harary 1968, Harary and Read 1970, Lunnon
1972, Gardner 1978, Knop et al. 1984, Gardner 1988),
catafusenes (Harary and Read 1970, Beinecke and
Pippert 1974, Knop et al. 1984, Cyvin et al. 1993),
cata- and planar, cata- and simply connected, and
one-sided.

n planar cata- cata- planar cata- simpl. one-sided

Sloane A000228 A002216 A038142 A018190 A006535

1 1  1  1  1  1

2 1  1  1  1  1

3 3  2  2  3  3

4 7  5  5  7 10

5 22  12  12  22  33

6 82 37 36 81 147

7 333 123 118 331 620

8 1448 446 411 1435 2821

9 6572 1689 1489 6505 12942

10 30490 6693 5572 30086 60639

11 143552 27034 141229 286190

12 683101 111630 669584 1364621

13 3274826 467262 3198256 6545430

14 1981353 15367577

15 8487400 74207910

16 36695369 359863778

17 159918120 1751594643

18 701957539

19 3101072051

20 13779935438

21 61557789660

22 276327463180

23 1245935891922

24 5640868033058

See also POLYHEX TILING, POLYIAMOND, POLYKING,
POLYOMINO
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Polyhex Tiling

There are no tilings of the EQUILATERAL TRIANGLE of
side length 7 by all the polyhexes of order n �4.
There are nine distinct solutions of all the polyhexes
of order n �4 which tile a PARALLELOGRAM of base
length 7 and side length 4, one of which is illustrated
above (Beeler 1972).

See also POLYHEX, POLYIAMOND TILING, POLYOMINO

TILING
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Polyiamond

A generalization of the POLYOMINOES using a collec-
tion of equal-sized EQUILATERAL TRIANGLES (instead
of SQUARES) arranged with coincident sides. Polyia-
monds are sometimes simply known as IAMONDS.
The number of two-sided (i.e., can be picked up and
flipped, so MIRROR IMAGE pieces are considered

identical) polyiamonds made up of n triangles are 1,
1, 1, 3, 4, 12, 24, 66, 160, 448, ... (Sloane’s A000577).
The number of one-sided polyiamonds composed of n
triangles are 1, 1, 1, 4, 6, 19, 43, 121, ... (Sloane’s
A006534). One of the 160 9-polyiamonds has a hole
(Gardner 1984, p. 174).

The top row of HEXIAMONDS in the above figure are
known as the BAR, CROOK, CROWN, SPHINX, SNAKE,
and YACHT. The bottom row of 6-polyiamonds are
known as the CHEVRON, SIGNPOST, LOBSTER, HOOK,
HEXAGON, and BUTTERFLY.

See also POLYABOLO, POLYHEX, POLYIAMOND TILING,
POLYOMINO
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Polyiamond Tiling
HEPTIAMOND TILING, HEXIAMOND TILING, OCTIA-

MOND TILING, PENTIAMOND TILING

Polyking
POLYPLET

PolyLog
POLYLOGARITHM



Polylogarithm

The function

Lin(z) �
X�
k �1

zk

kn 
; (1)

Also known as Jonquière’s function. (Note that the
similar NOTATION Li(z) is used for the LOGARITHMIC

INTEGRAL.) The polylogarithm is also denoted F(z ; n)
and equal to

Lin(z) �zF(z; n; 1); (2)

where F(z ; n; a) is the LERCH TRANSCENDENT (Erdé-
lyi et al. 1981, p. 30). The polylogarithm arises in
Feynman diagram integrals (and, in particular, in the
computation of quantum electrodynamics corrections
to the electrons gyromagnetic ratio ), and the special
cases n �2 and n �3 are called the DILOGARITHM and
TRILOGARITHM, respectively.
The polylogarithm of NEGATIVE INTEGER order arises
in sums OF THE FORM

X�
k �1

knrk �Li�n(r) �
r

(1 � r)n�1

Xn

i�1

n
i

@ A
rn�i ; (3)

where n
i

9 :
is an EULERIAN NUMBER.

Special forms of low-order polylogarithms include

Li�2(x) �
x(x � 1)

(1 � x)3 (4)

Li�1(x) �
x

(1 � x)2 (5)

Li0(x) �
x

1 � x 
(6)

Li xð Þ��ln(1 �x) : (7)

At arguments �1 and 1, the general polylogarithms
become

Lin(�1) ��h(n) (8)

Lin(1) � z(n) ; (9)

where h(x) is the DIRICHLET ETA FUNCTION and z(x) is

the RIEMANN ZETA FUNCTION. The polylogarithm for
argument 1=2 can also be evaluated analytically for
small n ,

Li1
1
2


 �
�ln 2 (10)

Li2
1
2


 �
� 1

12[ p
2 �6(ln 2)2] (11)

Li3
1
2


 �
� 1

24[4(ln 2)3 �2p2 ln 2 �21z(3)] : (12)

No similar formulas of this type are known for higher
orders (Lewin 1991, p. 2). Li4(1=2) appears in the
third-order correction term in the gyromagnetic ratio
of the electron.

The derivative of a polylogarithm is itself a polyloga-
rithm,

d

dx
Lin(x) �

1

x
Lin�1(x) : (13)

Bailey et al. showed that

Lim
1

64


 �
6m�1

�
Lim

1
8


 �
3m�1

�
2 Lim

1
4


 �
2m�1

�
4 Lim

1
2


 �
9

�
5(�ln 2)m

9m!

�
p2(�ln 2)m�2

54(m � 2)!
�

p4(�ln 2)m�4

486(m � 4)!
�

403z(5)(�ln 2)m�5

1296(m � 5)!

�0: (14)

No general ALGORITHM is know for the integration of
polylogarithms of functions.

See also DILOGARITHM, EULERIAN NUMBER, LEGEN-

DRE’S CHI-FUNCTION, LOGARITHMIC INTEGRAL, NIEL-

SEN GENERALIZED POLYLOGARITHM, NIELSEN-

RAMANUJAN CONSTANTS, TRILOGARITHM
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Polymorph
An INTEGER which is expressible in more than one
way in the form x2 �Dy2 or x2 �Dy2 where x2 is
RELATIVELY PRIME to Dy2 : If the INTEGER is expres-
sible in only one way, it is called a MONOMORPH.

See also ANTIMORPH, IDONEAL NUMBER, MONO-

MORPH, PELL EQUATION

Polymorph Tessellation
TESSELLATION

Polynema

A polynema of order n is Kyrmse’s term for a
CONNECTED GRAPH having n edges. An n -polynema
must therefore have either n or n �1 nodes. The
numbers of n -polynemas for n �1, 2 ... are 1, 1, 3, 5,
12, 30, 79, 227, ... (Sloane’s A002905). Polynemas are
related to a graphical construction problem called the
MATCH PROBLEM (Gardner 1991).

See also CONNECTED GRAPH, MATCH PROBLEM,
PLANAR CONNECTED GRAPH, TREE
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Polynomial
A POLYNOMIAL is a mathematical expression invol-
ving a series of POWERS in one or more variables
multiplied by COEFFICIENTS. A POLYNOMIAL in one
variable (i.e., a univariate polynomial) with constant
COEFFICIENTS is given by

anxn�. . .�a2x2�a1x�a0: (1)

The highest POWER in a univariate polynomial is
called its ORDER. A POLYNOMIAL in two variables (i.e.,
a bivariate polynomial) with constant COEFFICIENTS

is given by

anmxnym�. . .�a22x2y2�a21x2y�a12xy2�a11xy�a10x

�a01y�a00 (2)

Exchanging the COEFFICIENTS of a univariate poly-
nomial end-to-end produces a polynomial

a0xn�a1xn�1�. . .�an�1x�an�0 (3)

whose ROOTS are RECIPROCALS 1=xi of the original
ROOTS xi:/

HORNER’S RULE provides a computationally efficient
method of forming a polynomial from a list of its
coefficients, and can be implemented in Mathematica
as follows.

PolynomialFromCoefs[l_List, x_] :� Fold[x#1 �
#2 &, 0, l]

The following table gives special names given to
polynomials of low orders.

ORDER Polynomial Type

1 LINEAR EQUATION

2 QUADRATIC EQUATION

3 CUBIC EQUATION

4 QUARTIC EQUATION

5 QUINTIC EQUATION

6 SEXTIC EQUATION

Polynomials of fourth degree may be computed using
three multiplications and five additions if a few
quantities are calculated first (Press et al. 1989):

a0�a1x�a2x2�a3x3�a4x4

�[(Ax�B)2�Ax�C][(Ax�B)2�D]�E; (4)

where

A�(a4)1=4 (5)



B �
a3 � A3

4A3 
(6)

D �3B2 �8B3 �
a1A � 2a2B

A2 
(7)

C �
a2

A2 
�2B �6B2 �D (8)

E �a0 �B4 �B2 C �Dð Þ�CD: (9)

Similarly, a POLYNOMIAL of fifth degree may be
computed with four multiplications and five addi-
tions, and a POLYNOMIAL of sixth degree may be
computed with four multiplications and seven addi-
tions.

Polynomials of orders one to four are solvable using
only rational operations and finite ROOT EXTRAC-

TIONS. A first-order equation is trivially solvable. A
second-order equation is soluble using the QUADRATIC

EQUATION. A third-order equation is solvable using
the CUBIC EQUATION. A fourth-order equation is
solvable using the QUARTIC EQUATION. It was proved
by Abel and Galois using GROUP THEORY that general
equations of fifth and higher order cannot be solved
rationally with finite ROOT EXTRACTIONS (ABEL’S

IMPOSSIBILITY THEOREM).

However, the general QUINTIC EQUATION may be
given in terms of the JACOBI THETA FUNCTIONS, or
HYPERGEOMETRIC FUNCTIONS in one variable. Her-
mite and Kronecker proved that higher order POLY-

NOMIALS are not soluble in the same manner. Klein
showed that the work of Hermite was implicit in the
GROUP properties of the ICOSAHEDRON. Klein’s
method of solving the quintic in terms of HYPERGEO-

METRIC FUNCTIONS in one variable can be extended to
the sextic, but for higher order POLYNOMIALS, either
HYPERGEOMETRIC FUNCTIONS in several variables or
"Siegel functions" must be used (Belardinelli 1960,
King 1996, Chow 1999). In the 1880s, Poincaré
created functions which give the solution to the nth
order POLYNOMIAL equation in finite form. These
functions turned out to be "natural" generalizations
of the ELLIPTIC FUNCTIONS.

Given an nth degree polynomial, the ROOTS can be
found by finding the EIGENVALUES of the MATRIX

�a0 =an �a1 =an �a2 =an . . .  �1
1  0  0  . . .  0
0  1  0  . . .  0
n n 1

::: 0
0  0  0  . . .  0

2
66664

3
77775: (10)

This method can be computationally expensive, but is
fairly robust at finding close and multiple roots.

Polynomial identities involving sums and differences
of like POWERS include

x2 �y2 �(x �y)(x �y) (11)

x3 �y3 �(x �y)(x2 �xy �y2) (12)

x3 �y3 �(x �y)(x2 �xy �y2) (13)

x4 �y4 �(x �y)(x �y)(x2 �y2) (14)

x5 �y5 �(x �y)(x4 �x3y �x2y2 �xy3 �y4) (15)

x5 �y5 �(x �y)(x4 �x3y �x2y2 �xy3 �y4) (16)

x6 �y6 �(x �y)(x �y)(x2 �xy �y2)(x2 �xy �y2) (17)

x6�y6�(x2�y2)(x4�x2y2�y4): (18)

Further identities include

x2
1�Dy2

1

� �
x2

2�Dy2
2

� �
�(x1x2�Dy1y2)2�D(x1y2�x2y1)2 (19)

x2
1�Dy2

1

� �
x2

2�Dy2
2

� �
�(x1x29Dy1y2)2�D(x1y2�x2y1)2: (20)

The identity

(X�Y�Z)7�(X7�Y7�Z7)�7(X�Y)(X�Z)(Y�Z)

�[(X2�Y2�Z2�XY�XZ�YZ)2�XYZ(X�Y�Z)]

ð21Þ

was used by Lamé in his proof that FERMAT’S LAST

THEOREM was true for n�7.

See also POLYNOMIAL EQUATION, POLYNOMIAL FAC-

TORIZATION
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Polynomial Bar Norm
POLYNOMIAL NORM

Polynomial Bracket Norm
BOMBIERI NORM

Polynomial Curve

A curve obtained by fitting POLYNOMIALS to each
ordinate of an ordered sequence of points. The above
plots show POLYNOMIAL curves where the order of the
fitting POLYNOMIAL varies from p �3 to p �1; where p
is the number of points.
Polynomial curves have several undesirable features,
including a nonintuitive variation of fitting curve
with varying COEFFICIENTS, and numerical instability
for high orders. SPLINES such as the BÉ ZIER CURVE

are therefore used more commonly.

See also BÉ ZIER CURVE, POLYNOMIAL, SPLINE

Polynomial Equation
An EQUATION of the form

P(x) �0;

where P(x) is a POLYNOMIAL.

See also POLYNOMIAL

Polynomial Factorization
A FACTOR of a POLYNOMIAL P(x) of degree n is a
POLYNOMIAL Q(x) of degree less than n which can be
multiplied by another POLYNOMIAL R(x) of degree less
than n to yield P(x); i.e., a POLYNOMIAL Q(x) such that

P(x) �Q(x)R(x):

For example, since

x2 �1 �(x �1)(x �1);

both x �1 and x �1 are FACTORS of x2 �1: Polynomial
factorization can be performed in Mathematica using
Factor[poly ].

The COEFFICIENTS of factor POLYNOMIALS are often
required to be REAL NUMBERS or INTEGERS but could,
in general, be COMPLEX NUMBERS. The FUNDAMENTAL

THEOREM OF ALGEBRA states that a POLYNOMIAL P(z)
of degree n has n values zi (some of which are
possibly degenerate) for which P(zi) �0 : Such values
are called POLYNOMIAL ROOTS.

See also FACTOR, FACTORIZATION, FUNDAMENTAL

THEOREM OF ALGEBRA, KRONECKER’S ALGORITHM,
POLYNOMIAL ROOTS, PRIME FACTORIZATION
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Polynomial Height
The l�/-POLYNOMIAL NORM defined for a polynomial
P �akxk �. . .�a1x �a0 by

½½P½½��max
k

½ak ½:

Note that some authors (especially in the area of
Diophantine analysis) use ½P ½ as a shorthand for ½½P ½½�;
while others (especially in the area of computational
complexity) used ½P½ to denote the l2/-norm ½½P ½½2 (Zippel
1993, p. 174).

See also POLYNOMIAL NORM
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Polynomial Map
A map OF THE FORM

ff : K
n 0 Kn

ff : (a1 ; . . . ; an) 	(f1(a); . . . ; f1(a)) ;

where f �(f1 ; . . . ; fn) 
 (K[X1 ; . . . ; Xn])m in a FIELD K ,
and a �(a1 ; . . . ; an):/

See also INVERTIBLE POLYNOMIAL MAP, JACOBIAN

CONJECTURE
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Polynomial Matrix
A MATRIX whose entries are POLYNOMIALS.

See also MATRIX POLYNOMIAL
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Polynomial Norm
For a POLYNOMIAL

P �
Xn

k �0

akzk ; (1)

several classes of norms are commonly defined. The
lp/-norm is defined as

½½P ½½p �
Xn

k �0

½ak ½
p

 !
(2)

for p ]1; giving the special cases

½½P½½1 �
X

j

½ak ½ (3)

½½P½½2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

½ak ½
2

r
(4)

½½P ½½��max
k

½ak ½: (5)

Here, ½½P½½� is called the POLYNOMIAL HEIGHT. Note
that some authors (especially in the area of Diophan-
tine analysis) use ½P½ as a shorthand for ½½P ½½� and ½P ½
as a shorthand for ½½P2 ½½; while others (especially in the
area of computational complexity) used ½P ½ to denote
the l2/-norm ½½P½½2 and (Zippel 1993, p. 174).

Another class of norms is the Lp/-norms, defined by

½½P½½Lp
� g

2 p

0

½P(eiu) ½
du

2p

 !1 =p

(6)

for p ]1; giving the special cases

½½P½½L1
�g

2 p

0

½P(eiu) ½
du

2p

½½P½½L2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2p

0

½P(eiu) ½2
du

2p

vuut
½½P½½L�

�sup
½z½�1

½P(z) ½

(Borwein and Erdélyi 1995, p. 6).

See also BOMBIERI NORM, MATRIX NORM, NORM, UNIT

CIRCLE, VECTOR NORM
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Polynomial Remainder Theorem
If the COEFFICIENTS of the POLYNOMIAL

dnxn �dn �1xn�1 �. . .�d0 �0 (1)

are specified to be INTEGERS, then integral ROOTS

must have a NUMERATOR which is a factor of d0 and a
DENOMINATOR which is a factor of dn (with either sign
possible). This follows since a POLYNOMIAL of ORDER n
with k integral ROOTS can be expressed as

(a1x �b1)(a2x �b2) � � � (akx �bk)(cn�kxn�k �. . .�c0)

�0 ; (2)

where the ROOTS are x1 ��b1 =a1 ; x2 ��b2 =a2 ; . . . ;
and xk ��bk =ak : Factoring out the ai/s,

a1a2 . . . ak x �
b1

a1

 !
x �

b2

a2

 !
. . .  x �

bk

ak

 !

(cn�kxn�k �. . .�c0) �0 : (3)

Now, multiplying through,

a1a2 . . . akcn�kxn �. . .�b1b2 . . . bkc0 �0; (4)

where we have not bothered with the other terms.
Since the first and last COEFFICIENTS are dn and d0 ;
all the integral roots of (1) are OF THE FORM [factors of
d0]//[factors of dn] :/
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Polynomial Ring
The RING R[x] of POLYNOMIALS in a variable x .

See also MODULE, POLYNOMIAL, RING

Polynomial Roots
A root of a polynomial P(z) is a number zi such that
P(zi)�0: The FUNDAMENTAL THEOREM OF ALGEBRA

states that a POLYNOMIAL P(z) of degree n has n roots,
some of which may be degenerate. For example, the
roots of the polynomial

x3�2x2�x�2�(x�2)(x�1)(x�1) (1)

are �1, 1, and 2. Finding roots of a polynomial is
therefore equivalent to POLYNOMIAL FACTORIZATION

into factors of degree 1. The roots of a polynomial
equation may be found in Mathematica using
Roots[lhs��rhs , var ].

Let the ROOTS of the polynomial

P(x)�anxn�an�1xn�1�. . . a1x�a0 (2)

be denoted r1; r2; ..., rn: Then NEWTON’S RELATIONS

are

X
ri��

an�1

an

(3)



X
rirj �

an�2

an

(4)

X
r1r2 � � � rk �(�1)k an �k

an

: (5)

These can be derived by writing

P(x) �an(x �r1)(x �r2) � � � (x �rn) ; (6)

expanding, and then comparing the coefficients with
(2).

Any POLYNOMIAL can be numerically factored,
although different ALGORITHMS have different
strengths and weaknesses.

If the COEFFICIENTS of the POLYNOMIAL

dnxn �dn �1xn�1 �. . .�d0 �0 (7)

are specified to be INTEGERS, then integral roots must
have a NUMERATOR which is a factor of d0 and a
DENOMINATOR which is a factor of dn (with either sign
possible). This is known as the POLYNOMIAL REMAIN-

DER THEOREM.

If there are no NEGATIVE ROOTS of a POLYNOMIAL (as
can be determined by DESCARTES’ SIGN RULE), then
the GREATEST LOWER BOUND is 0. Otherwise, write
out the COEFFICIENTS, let n ��1, and compute the
next line. Now, if any COEFFICIENTS are 0, set them to
minus the sign of the next higher COEFFICIENT,
starting with the second highest order COEFFICIENT.
If all the signs alternate, n is the greatest lower
bound. If not, then subtract 1 from n , and compute
another line. For example, consider the POLYNOMIAL

y �2x4 �2x3 �7x2 �x �7 : (8)

Performing the above ALGORITHM then gives

0 2  2  �7 1 �7

�1 2  0  �7 8 �15

– 2 �1 �7 8 �15

�2 2  �2 �3 7 �21

�3 2  �4 5 �14 35

so the greatest lower bound is �3.

If there are no POSITIVE ROOTS of a POLYNOMIAL (as
can be determined by DESCARTES’ SIGN RULE), the
LEAST UPPER BOUND is 0. Otherwise, write out the
COEFFICIENTS of the POLYNOMIALS, including zeros as
necessary. Let n �1. On the line below, write the
highest order COEFFICIENT. Starting with the second-
highest COEFFICIENT, add n times the number just
written to the original second COEFFICIENT, and write
it below the second COEFFICIENT. Continue through

order zero. If all the COEFFICIENTS are NONNEGATIVE,
the least upper bound is n . If not, add one to x and
repeat the process again. For example, take the
POLYNOMIAL

y �2x4 �x3 �7x2 �x �7: (9)

Performing the above ALGORITHM gives

0 2 �1 �7 1 �7

1 2  1 �6 �5 �12

2 2  3 �1 �1 �9

3 2 5 8 25 68

so the LEAST UPPER BOUND is 3.

Plotting the roots in the complex plane of all poly-
nomials up to some degree with integer coefficients
less than some cutoff integer in absolute value shows
the beautiful structure illustrated above (Trott 2000).

See also BAIRSTOW’S METHOD, DESCARTES’ SIGN

RULE, GRAEFFE’S METHOD, JENKINS-TRAUB METHOD,
LAGUERRE’S METHOD, LEHMER-SCHUR METHOD,
MAEHLY’S PROCEDURE, MULLER’S METHOD, POLYNO-

MIAL FACTORIZATION, ROOT, ZASSENHAUS-BERLEKAMP

ALGORITHM
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Polynomial Sequence
A SEQUENCE of POLYNOMIALS pi(x); for i�0, 1, 2, ...,
where pi(x) is exactly of degree i for all i .

See also BASIC POLYNOMIAL SEQUENCE, POLYNOMIAL

Polynomial Series
MULTINOMIAL SERIES



Polynomial-Time

See also NP-PROBLEM, P-PROBLEM

Polyomino
A generalization of the DOMINO, originally called
"super-dominoes" by Gardner (1957). An n -polyomino
(or "n -omino"rpar; is defined as a collection of n
squares of equal size arranged with coincident sides.
FREE polyominoes can be picked up and flipped, so
mirror image pieces are considered identical, whereas
FIXED polyominoes are distinct if they have different
chirality or orientation. FIXED polyominoes are also
called LATTICE ANIMALS.

Redelmeier (1981) computed the number of FREE and
FIXED polyominoes for n 524; and Mertens (1990)
gives a simple computer program. The following table
gives the number of FREE (Lunnon 1971, 1972; Read
1978; Redelmeier 1981; Ball and Coxeter 1987; Con-
way and Guttmann 1995; Goodman and O’Rourke
1997, p. 229), FIXED (Redelmeier 1981), one-sided
(i.e., chiral) polyominoes (Redelmeier 1981; Golomb
1994; Goodman and O’Rourke 1997, p. 229), as well
as the number of possible holes (Parkin et al. 1967,
Madachy 1969, Golomb 1994) for the first few n

n FREE FIXED one-sided poss. holes

Sloane A000105 A014559 A000988 A001419

1 1 1  1 0

2 1 2  1 0

3 2 6  2 0

4 5 19  7 0

5 12 53  18 0

6 35 216 60 0

7 108 760 196 1

8 369 2725 704 6

9 1285 9910 2500 37

10 4655 39446 9189 195

11 17073 125268 33896 979

12 63600 505861 126759 4663

13 238591 1903890 476270 21474

14 901971 7204874 1802312 96496

15 3426576 27394666 6849777 425365

16 13079255 104592937 26152418

17 50107909 400795844 100203194

18 192622052 1540820542 385221143

19 742624232 5940738676 1485200848

20 2870671950 22964779660 5741256764

21 11123060678 88983512783 22245940545

22 43191857688 345532572678 86383382827

23 168047007728 1344372335524 336093325058

24 654999700403 5239988770268 1309998125640

The best currently known bounds on the number of n -
polyominoes are

3:72n BP(n) B4 :65n

(Eden 1961, Klarner 1967, Klarner and Rivest 1973,
Ball and Coxeter 1987).

There is a single unique 2-omino (the DOMINO), and
two distinct 3-ominoes (the straight- and L -TRIOMI-

NOES). The 4-ominoes (TETROMINOES) are known as
the STRAIGHT, L , T , SQUARE, and SKEW TETROMINOES.
The 5-ominoes (PENTOMINOES) are called f , I , L , N , P ,
T , U , V , W , X , y , and Z (Golomb 1995). Another
common naming scheme replaces f , I , L , and N with
R , O , Q , and S so that all letters from O to Z are used
(Berlekamp et al. 1982).

See also COLUMN-CONVEX POLYOMINO, CONVEX POLY-

OMINO, DOMINO, HEXOMINO, LATTICE POLYGON,
MONOMINO, PENTOMINO, POLYABOLO, POLYCUBE,
POLYHEX, POLYIAMOND, POLYKING, POLYPLET, ROW-

CONVEX POLYOMINO, SELF-AVOIDING POLYGON, TE-

TROMINO, TRIOMINO
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Polyomino Tiling

A TILING of the PLANE by specified types of POLY-

OMINOES. Interestingly, the FIBONACCI NUMBER Fn�1

gives the number of ways for 2 �1 DOMINOES to cover
a 2�n checkerboard. Each MONOMINO, DOMINO,
TRIOMINO, TETROMINO, PENTOMINO, and HEXOMINO

tiles the plane, with requiring flipping. In addition,
each heptomino, with the exception of the four
illustrated above, can tile the plane, also without
flipping (Schroeppel 1972).
Consider now those collections of all n -ominoes
which form a RECTANGLE. The polynomials of orders
n�1 and n�2 form only a SQUARE and RECTANGLE,
respectively. The two polyominoes of order n�3
cannot form a rectangle, nor can the five polyominoes
of order n�4 or the 35 polyominoes of order n�6
(Beeler 1972). There are several rectangles formed by
the 12 polyominoes of order n�5, as summarized in
the following table (Beeler 1972).

Size Solutions

/3�20/ 2

/4�15/ 368

/5�12/ 1010

/6�10/ 2339

2 5�6/ 2

/8�8 with 2�2 hole 65

See also DOMINO, FIBONACCI NUMBER, POLYHEX

TILING, POLYIAMOND TILING, POLYOMINO
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Polyplet

A POLYOMINO-like object made by attaching squares
joined either at sides or corners. Because neighboring
squares can be in relation to one another as KINGS

may move on a CHESSBOARD, polyplets are sometimes
also called POLYKINGS. The number of n -polyplets
(with holes allowed) are 1, 2, 5, 22, 94, 524, 3031, ...
(Sloane’s A030222). The number of n -polyplets hav-
ing bilateral symmetry are 1, 2, 4, 10, 22, 57, 131, ...
(Sloane’s A030234). The number of n -polyplets not
having bilateral symmetry are 0, 0, 1, 12, 72, 467,
2900, ... (Sloane’s A030235). The number of fixed n -
polyplets are 1, 4, 20, 110, 638, 3832, ... (Sloane’s
A030232). The number of one-sided n -polyplets are 1,
2, 6, 34, 166, 991, ... (Sloane’s A030233).

See also POLYIAMOND, POLYOMINO
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Polystigm
Lachlan’s terms for a collection of n points.

See also POLYGRAM, TETRASTIGM
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Polytan
POLYABOLO

Polytopal Graph
A GRAPH G is called d -polytopal if there exists a d -
dimensional CONVEX POLYTOPE P such that the
vertices and edges of G are in a one-to-one inci-

dence-preserving correspondence with those of P . In
other words G is d -polytopal IFF it is isomorphic to
the 1-SKELETON of some convex d -polytopes P . If
d �3, the graph is called a POLYHEDRAL GRAPH.

See also POLYHEDRAL GRAPH
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Polytope
The word polytope is used to mean a number of
related, but slightly different mathematica objects. A
convex polytope may be defined as the CONVEX HULL

of a finite set of points (which are always bounded), or
as a bounded intersection of a finite set of half-spaces.
Coxeter (1973, p. 118) defines polytope as the general
term of the sequence "POINT, LINE SEGMENT, POLY-

GON, POLYHEDRON, ...," or more specifically as a finite
region of n -dimensional space enclosed by a finite
number of hyperplanes. The special name POLY-

CHORON is sometimes given to a 4-D polytope. How-
ever, in ALGEBRAIC TOPOLOGY, the UNDERLYING SPACE

of a SIMPLICIAL COMPLEX is sometimes called a
polytope (Munkres 1993, p. 8). The word "polytope"
was introduced by Alicia Boole, the somewhat colorful
daughter of logician George Boole (MacHale 1985).

The part of the polytope that lies in one of the
bounding hyperplanes is called a cell. A 4-D polytope
is sometimes called a POLYCHORON. Explicitly, a d -
dimensional polytope may be specified as the set of
solutions to a system of linear inequalities

mx 5b;

where m is a real s �d MATRIX and b is a real s -
VECTOR. The positions of the vertices given by the
above equations may be found using a process called
VERTEX ENUMERATION.

A regular polytope is a generalization of the PLATONIC

SOLIDS to an arbitrary DIMENSION. The regular poly-
topes were discovered before 1852 by the Swiss
mathematician Ludwig Schläfli. For n -D with n]5;
there are only three regular convex polytopes: the
HYPERCUBE, CROSS POLYTOPE, and regular SIMPLEX,
which are analogs of the CUBE, OCTAHEDRON, and
TETRAHEDRON (Coxeter 1969; Wells 1991, p. 210).

See also 16-CELL, 24-CELL, 120-CELL, 600-CELL, CROSS

POLYTOPE, EDGE (POLYTOPE), FACE, FACET, HYPER-

CUBE, INCIDENCE MATRIX, LINE SEGMENT, PENTA-

TOPE, POINT, POLYCHORON, POLYGON, POLYHEDRON,
POLYTOPE STELLATIONS, PRIMITIVE POLYTOPE, RIDGE,
SIMPLEX, TESSERACT, UNIFORM POLYCHORON, VER-

TEX (POLYHEDRON)
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Polytope Stellations
There are 10 stellated regular 4-polytopes (Wells
1991, p. 209).

See also POLYTOPE, STELLATION
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Polytropic Differential Equation
LANE-EMDEN DIFFERENTIAL EQUATION

Poncelet Transform
PONCELET TRANSVERSE

Poncelet Transverse

Let a CIRCLE C1 lie inside another CIRCLE C2 : From
any point on C2 ; draw a tangent to C1 and extend it to
C2 : From the point, draw another tangent, etc. For n
tangents, the result is called an n -sided Poncelet
transverse.
If, on the circle of circumscription there is one point of
origin for which a four-sided Poncelet transverse is
closed, then the four-sided transverse will also close
for any other point of origin on the circle (Dörrie
1965).

See also BICENTRIC POLYGON, BICENTRIC QUADRILAT-

ERAL, PONCELET’S PORISM
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Poncelet’s Closure Theorem
PONCELET’S PORISM

Poncelet’s Coaxal Theorem

If a CYCLIC QUADRILATERAL ABCD is inscribed in a
circle c1 of a COAXAL SYSTEM such that one pair AC of
connectors touches another circle c2 of the system at
P , then each pair of opposite connectors will touch a
circle of the system (BD at P ? on c2 ; AB at Q on c3 ; CD
at Q ? on c3 ; DA at R on c4 ; and CB at R? on c4) ; and the
six points of contact P , P ?; Q , Q ?; R , and R? will be
COLLINEAR.
The general theorem states that if A1 ; A2 ; ..., An are
any number of points taken in order on a CIRCLE of a
give COAXAL SYSTEM so that A1A2 ; A2A3 ; ..., An�1An

touch respectively n �1 fixed circles X1 ; X2 ; ..., Xn�1 of
the system, then AnA1 must touch a fixed circle Xn of
the system. Further, if A1A2 ; A2A3 ; ..., An�1An touch
respectively any n �1 of the circles X1 ; X2 ; ..., Xn ; then
AnA1 must touch the remaining CIRCLE.

See also COAXAL SYSTEM
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Poncelet’s Continuity Principle
PERMANENCE OF MATHEMATICAL RELATIONS PRINCI-

PLE

Poncelet’s Porism

If an n -sided PONCELET TRANSVERSE constructed for
two given CONIC SECTIONS is closed for one point of



origin, it is closed for any position of the point of
origin. Specifically, given one ELLIPSE inside another,
if there exists one CIRCUMINSCRIBED (simultaneously
inscribed in the outer and circumscribed on the inner)
n -gon, then any point on the boundary of the outer
ELLIPSE is the vertex of some CIRCUMINSCRIBED n -
gon. If the conic is taken as a circle (Casey 1888,
pp. 124�/26) , then a polygon which has both an
incenter and a circumcenter (and for which the
transveRsals would therefore close) is called a BI-

CENTRIC POLYGON.

For an even-sided polygon, the diagonals are con-
current at the LIMITING POINT of the two circles,
whereas for an odd-sided polygon, the lines connect-
ing the vertices to the opposite points of tangency are
concurrent at the LIMITING POINT.

Inverting about either of the two LIMIT POINTS gives
two concentric circles. However, the n -gonal sides
become arcs of circles in the process, so this sort of
simple INVERSION does not provide an automatic proof
of the theorem (as happens in STEINER’S PORISM, for
example).

Fuss (1792) derived formulas not only for the BI-

CENTRIC QUADRILATERAL, but also the bicentric PEN-

TAGON, HEXAGON, HEPTAGON, and OCTAGON, as did
Steiner (Fuss 1792; Steiner 1827; Jacobi 1881; Dörrie
1965, p. 192). Chaundy (1923) exhibited porisms for
n�3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, as well as
erroneous expressions for several other values (Ker-
awala 1947). Richelot derived the expression for
n�11. In fact, there is a general analytic expression
relating the CIRCUMRADIUS R , INRADIUS r , and offset
between the CIRCUMCENTER and INCENTER d for a
bicentric polygon. Given R , r , and d , define

a�
1

R � d
(1)

b�
1

R � d
(2)

c�
1

r
: (3)

Now let

l�1�
2c2(a2 � b2)

a2(b2 � c2)
(4)

v�cosh�1
l; (5)

and define the MODULUS as

k2�1�e�2v: (6)

Then the condition for an n -gon to be bicentric is

sc
K(k)

n
; k

 !
�

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p

a(b � c)
; (7)

where sc(x; k) is a JACOBI ELLIPTIC FUNCTION and
K(k) is a complete ELLIPTIC INTEGRAL OF THE FIRST

KIND (Richelot 1830, Kerawala 1947). Kerawala
(1947) was able to establish many porisms in simple
explicit form without resorting to the use of elliptic
functions.

For the two circles illustrated above, the tangent on
the inner circle can be determined by solving

(x2�x1)�(x2�x0)�0; (8)

where

x0�
d
0

� �
(9)

x1�
cos u

sin u

� �
(10)

x2�
d�r cos f

r sin f

� �
; (11)

r is the radius of the inner circle, x is the offset of the
inner circle, u is the given position on the outer circle,
and f is the angle around the inner circle at which
the tangent occurs. Taking the DOT PRODUCT and
simplifying gives

r�d cos f�cos(f�u)�0: (12)

When this is solved for f; the point at which the
extension of this line intersects the outer circle again



can be found using the standard equation of a CIRCLE-

LINE INTERSECTION.

The degrees dn of the algebraic equations relating a ,
b , and c for n�3, 4, ..., are 1, 2, 3, 4, 6, 8, 9, 12, 15, 16,
21, 24, 24, 32, 36, ... (Sloane’s A002348; Kerawala
1947). Let the PRIME FACTORIZATION of n be written
as

n�2a0

Y
i

pai

i ; (13)

then dn in general is given by

dn�
4a0

8

Y
i

p2(ai�1)
i p2

i �1
� �

: (14)

In the following expressions, write

e0�a�b�c (15)

e1��a�b�c (16)

e2�a�b�c (17)

e3�a�b�c (18)

E1��a2�b2�c2 (19)

E2�a2�b2�c2 (20)

E3�a2�b2�c2 (21)

F1��E2E3�E3E1�E1E2 (22)

F2�E2E3�E3E1�E1E2 (23)

F3�E2E3 þ E3E1�E1E2 (24)

F0�E2E3�E3E1�E1E2�e0e1e2e3 (25)

g0�E1E2E3�2abE1E2�2bcE2E3�2caE3E1 (26)

g1�E1E2E3�2abE1E2�2bcE1E2�2caE3E1 (27)

g2�E1E2E3�2abE1E2�2bcE2E3�2caE3E1 (28)

g3�E1E2E3�2abE1E2�2bcE2E3�2caE3E1 (29)

following Kerawala (1947), and

p ¼ R þ d

r
ð30Þ

q�
R � d

r
(31)

following Richelot (1830).

The equation for a bicentric triangle (n�3), i.e., any
triangle, may be variously written as

a�b�c (32)

(R�d)�1�(R�d)�1�r�1 (33)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�d�r

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�d�r

p
�

ffiffiffiffiffiffiffi
2R

p
(34)

(p�1)(q�1)�1 (35)

(Richelot 1830),

R2�2Rr�d2�0 (36)

(Steiner 1827; F. Gabriel-Marie 1912, pp. 497�/01;
Kerawala 1947; Altshiller-Court 1957, pp. 85�/7;
Wells 1991). The latter is sometimes known as the
EULER TRIANGLE FORMULA.

For a BICENTRIC QUADRILATERAL (n�4), the radii and
offset are connected by the equation

a2�b2�c2; (37)

(Kerawala 1947), which expands to

1

(R � d)2�
1

(R � d)2�
1

r2
(38)

( Davis; Durége; Casey 1888, pp. 109�/10; F. Gabriel-
Marie 1912, pp. 321 and 814�/16; Johnson 1929; Dörie
1965). This can also be written

(R2�d2)2�2r2(R2�d2); (39)

(R�r�d)(R�r�d)(R�r�d)(R�r�d)�r4 (40)

(Steiner 1827), or

(p2�1)(q2�1)�1 (41)

(Richelot 1830).

The relationship for a bicentric PENTAGON (n�5) is

rðR�dÞ ¼ ðR þ dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR�r þ dÞðR�r�dÞ

p
�(R�d)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R(R�r�d)

p
(42)

(Steiner 1827) or

4p2q2(p�1)(q�1)�(p2�q2�p2q2)2 (43)

(Richelot 1830). A number of alternative forms are
given by

ða þ bÞðb þ cÞðc þ aÞ ¼ a3 þ b3 þ c3 ð44Þ

(a�b�c)3�4(a3�b3�c3) (45)

(�a�b�c)(a�b�c)(a�b�c)�4abc�0 (46)

e0 e3 e2

e3 e0 e1

e2 e1 e0

������
�������0 (47)

a(�a2�b2�c2)�b(a2�b2�c2)�c(a2�b2�c2)

�2abc�0; (48)

and



e �1
0 �e �1

1 �e�1
2 �e �1

3 �0 (49)

(Kerawala 1947).

For n �6,

3(R2 �d2)4 �4r2(R2 �d2)(R2 �d2) �16r4d2R2 (50)

(Steiner 1827),

4p2q2(p2 �1)(q2 �1) �(p2 �q2 �p2q2)2 (51)

(Richelot 1830),

F3 �0; (52)

or

E �1
1 �E �1

2 �E �1
3 (53)

(Kerawala 1947).

For n �7,

g3 �0 (54)

(Jacobi 1881, Kerawala 1947)

For n �8,

E �2
1 �E �2

2 �E �2
3 (55)

(Kerawala 1947), which can also be written in the
form

16p4q4(p2 �1)(q2 �1) �(p2 �q2 �p2q2)4 ; (56)

(Richelot 1830, Jacobi 1881). The equation given by
Steiner (1827) contains (at least one) typographical
error.

For n �9,

aF2F3 �bF3F1 �cF1F2 �0: (57)

for n �10,

16p2q2(p2 �1)(q2 �1)[p4q4 �(p2 �q2)2]2

�f[p4 �(p2q2 �q2)2] �[q4 �(p2q2 �p2)2]2

�[p4q4 �(p2 �q2)2] g2 (58)

(Richelot 1989).

For n �12,

64p4q4(p2 �1)(q2 �1)[p4q4 �(p2 �q2)2]2

�f[p4 �(p2q2 �q2)2] �[q4 �(p2q2 �p2)2]2

�[p4q4 �(p2 �q2)2] g2 (59)

(Richelot 1989).

For n �14,

g1 �0: (60)

For n �16,

E�2
2 �E�2

3 �E �2
1 ; (61)

(Kerawala 1947) or

64p4q4(p2 �1)(q2 �1)fp4q4 �(p2 �q2)2]

�(p2 �q2 �p2q2) g4

�f[p4 �(p2q2 �q2)2] �[q4 �(p2q2 �p2)2]2

�[p4q4 �(p2 �q2)2]2 g4 (62)

(Richelot 1830).

Weill (1878) gives an algorithm for finding approx-
imate solutions (d; r ; R) for porisms with even n . The
following table gives the approximate relations for
fixed R�1:/

n /d=R/ /r=R/ error

6 /
1
2/ /

3
4/ /

243

128
R8

/

8 /
1
4/ /

15
4 r/ /

2955538440751415296

6568408355712890625
R16

/

10 /
1

10

ffiffiffiffiffiffi
10

p
/ /

9
40

ffiffiffiffiffiffi
10

p
/

See also BICENTRIC POLYGON, BICENTRIC QUADRILAT-

ERAL, BILLIARDS, CIRCLE-LINE INTERSECTION, COLLI-

NEAR, CYCLIC QUADRILATERAL, EULER TRIANGLE

FORMULA, PONCELET TRANSVERSE, TRIQUETRA,
WEILL’S THEOREM
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ouvrage utile à qui s’occupent des applications de la
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Poncelet-Steiner Theorem
All Euclidean GEOMETRIC CONSTRUCTIONS can be
carried out with a STRAIGHTEDGE alone if, in addition,
one is given the RADIUS of a single CIRCLE and its
center. The theorem was suggested by Poncelet in
1822 and proved by Steiner in 1833. A construction
using STRAIGHTEDGE alone is called a STEINER CON-

STRUCTION.

See also GEOMETRIC CONSTRUCTION, STEINER CON-

STRUCTION
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Pong Hau K’i
A Chinese TIC-TAC-TOE-like game.

See also TIC-TAC-TOE
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Pons Asinorum
An elementary theorem in geometry whose name
means "asses’ bridge," perhaps in reference to the fact
that fools would be unable to pass this point in their
geometric studies. The theorem states that the
ANGLES at the base of an ISOSCELES TRIANGLE

(defined as a TRIANGLE with two legs of equal length)
are equal and appears as the fifth proposition in Book
I of Euclid’s ELEMENTS .

See also ISOSCELES TRIANGLE, PYTHAGOREAN THEO-

REM
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Pontryagin Class
The ith Pontryagin class of a VECTOR BUNDLE is (�1)i

times the i th CHERN CLASS of the complexification of
the VECTOR BUNDLE. It is also in the 4i/th cohomology
group of the base SPACE involved.



See also CHERN CLASS, STIEFEL-WHITNEY CLASS

Pontryagin Duality
Let G be a locally compact ABELIAN GROUP. Let G � be
the group of all homeomorphisms G 0 R=Z ; in the
compact open topology. Then G � is also a locally
compact ABELIAN GROUP, where the asterisk defines a
contravariant equivalence of the category of locally
compact Abelian groups with itself. The natural
mapping G 0 (G�) �; sending g to G , where G(f ) �
f (g) ; is an isomorphism and a HOMEOMORPHISM.
Under this equivalence, compact groups are sent to
discrete groups and vice versa.

See also ABELIAN GROUP, HOMEOMORPHISM

Pontryagin Maximum Principle
A result in CONTROL THEORY. Define

H( c; x; u) �( c; f (x; u)) �
Xn

a �0

caf a(x; u) :

Then in order for a control u(t) and a trajectory x(t) to
be optimal, it is NECESSARY that there exist NONZERO

absolutely continuous vector function c(t) �
( c0(t) ; c1(t); . . . ; cn(t)) corresponding to the func-
tions u(t) and x(t) such that

1. The function H(c(t) ; x(t) ; u) attains its max-
imum at the point u �u(t) almost everywhere in
the interval t0 5t 5t1 ;

H( c(t) ; x(t) ; u(t)) �max
u 
U

H( c(t); x(t) ; u) :

2. At the terminal time t1 ; the relations c0(t1) 50
and H( c(t1) ; x(t1); u(t1)) �0 are satisfied.

See also CONTROL THEORY
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Pontryagin Number
The Pontryagin number is defined in terms of the
PONTRYAGIN CLASS of a MANIFOLD as follows. For any
collection of PONTRYAGIN CLASSES such that their cup
product has the same DIMENSION as the MANIFOLD,
this cup product can be evaluated on the MANIFOLD’s
FUNDAMENTAL CLASS. The resulting number is called
the Pontryagin number for that combination of
Pontryagin classes. The most important aspect of
Pontryagin numbers is that they are COBORDISM

invariant. Together, Pontryagin and STIEFEL-WHIT-

NEY NUMBERS determine an oriented manifold’s or-
iented COBORDISM class.

See also CHERN NUMBER, STIEFEL-WHITNEY NUMBER

Ponzo’s Illusion

The upper HORIZONTAL line segment in the above
figure appears to be longer than the lower line
segment despite the fact that both are the same
length.

See also ILLUSION, MÜ LLER-LYER ILLUSION, POGGEN-

DORFF ILLUSION, VERTICAL-HORIZONTAL ILLUSION
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Pop
An action which removes a single element from the
top of a QUEUE or STACK, turning the LIST (/a1 ; a2 ; ...,
an) into (/a2 ; ..., an) and yielding the element a1 :/

See also PUSH, STACK

Population
The word population has a number of distinct but
closely related meanings in statistics.

1. A finite and actually existing group of objects
which, although possibly large, can be enumerated
in theory (e.g., people living in the United States).
2. A generalization from experience which is
indefinitely large (e.g., the total number of throws
that might conceivably by made in unlimited time
with a particular pair of dice). Any actual set of
throws can then be regarded as a SAMPLE drawn
from this practically infinite population.
3. A purely hypothetically population which can be
completely described mathematically.

See also SAMPLE

References
Kenney, J. F. and Keeping, E. S. "Populations and Sam-

ples." §7.1 in Mathematics of Statistics, Pt. 1, 3rd ed.
Princeton, NJ: Van Nostrand, pp. 90�/1, 1962.

Population Comparison
Let x1 and x2 be the number of successes in variates
taken from two populations. Define

p̂1�
x1

n1

(1)



p̂2 �
x2

n2

(2)

The ESTIMATOR of the difference is then p̂1 � ̂p2 : Doing
a Z -TRANSFORM,

z �
p̂1 � p̂2ð Þ� p1 � p2ð Þ

sp̂1 �p̂2

; (3)

where

sp̂1�p̂2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

p̂1
� s2

p̂2

q
: (4)

The STANDARD ERROR is

SEp̂1�p̂2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1 � p̂1ð Þ

n1

�
p̂2 1 � p̂2ð Þ

n2

s
(5)

SEx̄1�x̄2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1

n1

�
s2

2

n2

s
(6)

s2
pool �

n1 � 1ð Þs2
1 � n2 � 1ð Þs2

2

n1 � n2 � 2
: (7)

See also Z -TRANSFORM (POPULATION)
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Population Growth
The differential equation describing exponential
growth is

dN

dt
�

N

t
: (1)

This can be integrated directly

g
N

N0

dN

N
�g

t

0

dt

t 
(2)

ln
N

N0

 !
�

t

t 
: (3)

Exponentiating,

N(t) �N0et=t : (4)

Defining N(t �1) �N0e a gives t �1=a in (4), so

N(t) �N0e at : (5)

This equation is called the LAW OF GROWTH, and the
quantity a in this equation is sometimes known as the
MALTHUSIAN PARAMETER.

Consider a more complicated growth law

dN

dt
�

at � 1

t

 !
N ; (6)

where a > 1 is a constant. This can also be integrated
directly

dN

N
� a �

1

t

 !
dt (7)

ln N � at �ln t �C (8)

N(t) �
Ce at

t
: (9)

Note that this expression blows up at t �0. We are
given the INITIAL CONDITION that N(t �1) �N0e a ; so
C �N0 :

N(t) �N0

e at

t
: (10)

The t in the DENOMINATOR of (10) greatly suppresses
the growth in the long run compared to the simple
growth law.

The LOGISTIC GROWTH CURVE, defined by

dN

dt
�

r(K � N)

N 
(11)

is another growth law which frequently arises in
biology. It has a rather complicated solution for N(t):/

See also GOMPERTZ CURVE, GROWTH, LAW OF

GROWTH, LIFE EXPECTANCY, LOGISTIC GROWTH

CURVE, LOTKA-VOLTERRA EQUATIONS, MAKEHAM

CURVE, MALTHUSIAN PARAMETER, SURVIVORSHIP

CURVE
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Porism
An archaic type of mathematical proposition whose
historical purpose is not entirely known. In modern
usage, the term "porism" is used instead of "theorem"
for a small number of results for historical reasons.

See also AXIOM, LEMMA, POSTULATE, PONCELET’S

PORISM, PRINCIPLE, STEINER’S PORISM, THEOREM

Porous Medium Equation
The PARTIAL DIFFERENTIAL EQUATION

ut�9 � um9uð Þ:
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Porter’s Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry. The constant appearing
in FORMULAS for the efficiency of the EUCLIDEAN

ALGORITHM,

C �
6 ln 2

p2
3 ln 2�4g �

24

p2
z ?(2) �2

" #
�

1

2

�1:4670780794 . . . ;

where g is the EULER-MASCHERONI CONSTANT and z(z)
is the RIEMANN ZETA FUNCTION.

See also EUCLIDEAN ALGORITHM
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Pósa’s Conjecture
Dirac (1952) proved that if the minimum VERTEX

DEGREE d(G) ]n=2 for a graph G on n ]3 nodes, then
G contains a HAMILTONIAN CIRCUIT (Bollobás 1978,
Komlós et al. 1998).

In 1962, Pósa conjectured that G(V ; E) contains a
square of a HAMILTONIAN CIRCUIT if d(G) ]2n=3
(Erdos 1964, p. 159; Komlós et al. 1998), where a
graph G(V ; E) contains the SQUARE of a HAMILTO-

NIAN CIRCUIT if there is a HAMILTONIAN CIRCUIT H �
x1 ; x2 ; . . . ; xn ; xn�1 �x1

� �
such that xi ; xi�2

� �

 E(G);

for i �1, 2, ..., n .

Komlós et al. (1996) proved that there exists a
natural number n0 such that if a graph G has order
n ]n0 and minimum degree at least 2n =3; then G
contains the square of a Hamiltonian circuit. This
proved Pósa’s conjecture (Erdos 1964) for sufficiently
large n . Kierstead and Quintana (1998) proved Pósa’s
conjecture for graphs G containing a 4-clique K4:/

The conjecture was generalized by Seymour (1974) to
state that if d(G)]kn=(k�1); then G contains the
kth power of a HAMILTONIAN CIRCUIT (Komlós et al.
1998).

See also HAMILTONIAN CIRCUIT, PÓ SA’S CONJECTURE,
SEYMOUR CONJECTURE
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Pósa’s Theorem
There are several related theorems involving HAMIL-

TONIAN CIRCUITS of graphs that are associated with
Pósa.

Let G be a SIMPLE GRAPH with n VERTICES.

1. If, for every k in 15kB(n�1)=2; the number of
VERTICES of VERTEX DEGREE not exceeding k is less
than k , and
2. If, for n ODD, the number of VERTICES with
VERTEX DEGREE not exceeding (n�1)=2 is less than
or equal to (n�1)=2;/

then G contains a HAMILTONIAN CIRCUIT.

Kronk (1969) generalized this result as follows. Let G
be a SIMPLE GRAPH with n VERTICES, and let 05k5
n�2: Then the following conditions are SUFFICIENT

for G to be k -line Hamiltonian:

1. For all integers j with k�15jB(n�k�1)=2;
the number of VERTICES of VERTEX DEGREE not
exceeding j is less than j�k;/
2. The number of points of degree not exceeding
(n�k�1)=2 does not exceed (n�k�1)=2:/

Pósa (1963) generalized a result of Dirac by proving
that every FINITE SIMPLE GRAPH G with a sufficiently
large valencies of all (or, in some cases, of ALMOST

ALL) vertices and with a sufficiently large number of
vertices satisfies one of the following conditions.

1. G has a Hamiltonian line containing all edges of
given disjoint paths (Theorem 1),
2. G has a circuit with a "large" number of vertices
(Theorems 2 and 3), or
3. G has a "small" number of disjoint circuits
containing all vertices of the graph (Theorems 4
and 5).
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Pöschl-Teller Differential Equations
The first and second Pöschl-Teller differential equa-
tions are given by

yƒ� a2 k( k � 1)

sin2(ax)
�

l( l � 1)

cos2(ax)

" #
�b2

( )
y �0

and

yƒ� a2 k( k � 1)

sinh2(ax) 
�

l( l � 1)

cosh2(ax)

" #
�b2

( )
y �0

respectively.
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Poset
PARTIALLY ORDERED SET

Poset Dimension
The DIMENSION of a POSET P �(X ;5) is the size of the
smallest REALIZER of P . Equivalently, it is the
smallest INTEGER d such that P is ISOMORPHIC to a
DOMINANCE order in Rd :/

See also DIMENSION, DOMINANCE, ISOMORPHIC PO-

SETS, REALIZER
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Position Four-Vector
The CONTRAVARIANT FOUR-VECTOR arising in special
and general relativity,

xm �

x0

x1

x2

x3

2
664

3
775�

ct
x
y
z

2
664
3
775;

where c is the speed of light and t is time. Multi-
plication of two four-vectors gives the spacetime
interval

I �gmnx
mxv �(x0)2 �(x1)2 �(x2)2 �(x3)2

�(ct)2 �(x1)2 �(x2)2 �(x3)2

See also FOUR-VECTOR, LORENTZ TRANSFORMATION,
QUATERNION

Position Vector
RADIUS VECTOR

Positive
A quantity x �0, which may be written with an
explicit PLUS SIGN for emphasis, �x:/

See also NEGATIVE, NONNEGATIVE, PLUS SIGN, ZERO

Positive Definite Function
A positive definite FUNCTION f on a GROUP G is a
FUNCTION for which the MATRIX ff (xix

�1
j )g is always

POSITIVE SEMIDEFINITE HERMITIAN.
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Positive Definite Matrix
A HERMITIAN MATRIX A is called positive definite if

(Av)� v > 0 (1)

for all VECTORS v"0: This is equivalent to the
requirement that all EIGENVALUES be POSITIVE, and
to the requirement that the DETERMINANTS associated
with all upper-left SUBMATRICES are POSITIVE.

The DETERMINANT of a positive definite matrix is
POSITIVE, but the converse is not necessarily true (i.e.,
a matrix with a POSITIVE DETERMINANT is not neces-
sarily positive definite).

The numbers of positive definite n�n matrices of
given types are summarized in the following table.
For example, the three positive definite 2�2 (0,1)-



MATRICES are

1 0
0 1

� �
;

1 0
1 1

� �
;

1 1
0 1

� �
; (2)

all of which have eigenvalue 1 with degeneracy of
two.

/(0; 1)/-matrix A000000 0, 3, 25, 543, ...

/(�1 ; 0; 1)/-matrix A000000 0, 5, 133, ...

A REAL SYMMETRIC MATRIX A is positive definite IFF

there exists a REAL nonsingular MATRIX M such that

A �MMT (3)

where MT is the TRANSPOSE. A 2�2 SYMMETRIC

MATRIX

a b
b c

� �
(4)

is positive definite if

av2
1 �2bv1v2 �cv2

2 > 0 (5)

for all v �(v1 ; v2) "0:/

A HERMITIAN MATRIX A is positive definite if

1. aii > 0 for all i ,
2. aiiaij > aij

�� ��2 for i "j;/
3. The element of largest modulus lies on the
leading diagonal,
4. det(A) > 0:/

See also DETERMINANT, EIGENVALUE, HERMITIAN

MATRIX, MATRIX, NEGATIVE DEFINITE MATRIX, NEGA-

TIVE SEMIDEFINITE MATRIX, POSITIVE SEMIDEFINITE

MATRIX
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Positive Definite Quadratic Form
A QUADRATIC FORM Q(x) is said to be positive definite
if Q(x) > 0 for x "0: A REAL QUADRATIC FORM in n
variables is positive definite IFF its canonical form is

Q(z) �z2
1 �z2

2 �. . .�z2
n : (1)

A BINARY QUADRATIC FORM

F(x; y) �a11x2 �2a12xy �a22y2 (2)

of two REAL variables is positive definite if it is > 0 for
any (x; y) "(0; 0); therefore if a11 > 0 and the DIS-

CRIMINANT a �a11a22 �a2
12 > 0: A BINARY QUADRATIC

FORM is positive definite if there exist NONZERO x and
y such that

ax2 �2bxy �cy2
� �2

54
3 ac �b2
�� �� (3)

(Le Lionnais 1983).

A QUADRATIC FORM (x ; Ax) is positive definite IFF

every EIGENVALUE of A is POSITIVE. A QUADRATIC

FORM Q �(x ;Ax) with A a HERMITIAN MATRIX is
positive definite if all the principal minors in the
top-left corner of A are POSITIVE, in other words

a11 > 0 (4)

a11 a12

a21 a22

����
���� > 0 (5)

a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������ > 0 (6)

See also INDEFINITE QUADRATIC FORM, LYAPUNOV’S

FIRST THEOREM, POSITIVE SEMIDEFINITE QUADRATIC

FORM, QUADRATIC FORM
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Positive Definite Sequence
This entry contributed by RONALD M. AARTS

A sequence mnf g�n�0 is positive definite if the moment
of every nonnegative polynomial which is not identi-
cally zero is greater than zero (Widder 1941, p. 132).
Here, the moment of a polynomial

Pn(x)�
Xn

m�0

amxm

with respect to the sequence mnf g�n�0 is defined as

M Pn(x)ð Þ�
Xn

m�0

ammm

(Widder 1941, p. 102).
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Positive Definite Tensor
A TENSOR g whose discriminant satisfies

g �g11g22 �g2
12 > 0:

Positive Integer
The positive integers are the numbers 1, 2, 3, ...,
sometimes called the counting numbers or natural
numbers.

See also Z�

Positive Measure
A positive measure is a MEASURE which is a function
from the measurable sets of a MEASURE SPACE to the
nonnegative real numbers. Sometimes, this is what is
meant by MEASURE, while "positive" is used to
distinguish it from an arbitrary COMPLEX MEASURE.

See also COMPLEX MEASURE, JORDAN MEASURE

DECOMPOSITION, LEBESGUE INTEGRAL, MEASURE,
MEASURE SPACE, POLAR REPRESENTATION (MEASURE)

Positive Semidefinite Matrix
A positive semidefinite matrix is a HERMITIAN MATRIX

all of whose EIGENVALUES are nonnegative.

See also NEGATIVE DEFINITE MATRIX, NEGATIVE

SEMIDEFINITE MATRIX, POSITIVE DEFINITE MATRIX
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Positive Semidefinite Quadratic Form
A QUADRATIC FORM Q(x) is positive semidefinite if it is
never B0 ; but is 0 for some x "0 : The QUADRATIC

FORM, written in the form (x; Ax) ; is positive semi-
definite IFF every EIGENVALUE of A is NONNEGATIVE.

See also INDEFINITE QUADRATIC FORM, POSITIVE

DEFINITE QUADRATIC FORM
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Postage Stamp Problem
Consider a SET Ak � a1 ; a2 ; . . . akf g of INTEGER de-
nomination postage stamps with 1 �a1 Ba2 . . .Bak :
Suppose they are to be used on an envelope with room
for no more than h stamps. The postage stamp
problem then consists of determining the smallest
INTEGER N(h ;Ak) which cannot be represented by a
LINEAR COMBINATION ak

i �1 xiai with xi ]0 and

ak
i �1xi Bh: Exact solutions exist for arbitrary Ak for

k �2 and 3. The k �2 solution is

n h;A2ð Þ� h �3 �a2ð Þa2 �2

for h ]a2 �2 : The general problem consists of finding

n(h; k) �max
Ak

n h;Akð Þ:

It is known that

n(h; 2) � 1
4 h2 �6h �1
� �j k

;

(Stöhr 1955, Guy 1994), where xb c is the FLOOR

FUNCTION, the first few values of which are 2, 4, 7,
10, 14, 18, 23, 28, 34, 40, ... (Sloane’s A014616).

See also HARMONIOUS GRAPH, INTEGER RELATION,
STAMP FOLDING, STÖ HR SEQUENCE, SUBSET SUM

PROBLEM
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Posterior Distribution
BAYESIAN ANALYSIS

Postnikov System
An iterated FIBRATION of EILENBERG-MAC LANE

SPACES. Every TOPOLOGICAL SPACE has this HOMO-

TOPY type.

See also EILENBERG-MAC LANE SPACE, FIBRATION,
HOMOTOPY

Postulate
A statement, also known as an AXIOM, which is taken
to be true without PROOF. Postulates are the basic
structure from which LEMMAS and THEOREMS are
derived. The whole of EUCLIDEAN GEOMETRY, for
example, is based on five postulates known as
EUCLID’S POSTULATES.

See also ARCHIMEDES’ POSTULATE, AXIOM, BER-

TRAND’S POSTULATE, CONJECTURE, EQUIDISTANCE

POSTULATE, EUCLID’S FIFTH POSTULATE, EUCLID’S

POSTULATES, LEMMA, PARALLEL POSTULATE, PORISM,
PROOF, THEOREM, TRIANGLE POSTULATE



Potato Paradox
You buy 100 pounds of potatoes and are told that they
are 99% water. After leaving them outside, you
discover that they are now 98% water. The weight
of the dehydrated potatoes is then a surprising 50
pounds!
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Potential Function
The term used in physics and engineering for a
HARMONIC FUNCTION. Potential functions are extre-
mely useful, for example, in electromagnetism, where
they reduce the study of a 3-component VECTOR FIELD

to a 1-component SCALAR FUNCTION.

See also HARMONIC FUNCTION, LAPLACE’S EQUATION,
SCALAR POTENTIAL, VECTOR POTENTIAL

Potential Theory
The study of HARMONIC FUNCTIONS (also called
POTENTIAL FUNCTIONS).

See also HARMONIC FUNCTION, SCALAR POTENTIAL,
VECTOR POTENTIAL
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Pothenot Problem
SNELLIUS-POTHENOT PROBLEM

Poulet Number
A FERMAT PSEUDOPRIME to base 2, denoted psp(2),
i.e., a COMPOSITE ODD INTEGER n such that

2n�1 �1 (mod n) :

The first few Poulet numbers are 341, 561, 645, 1105,
1387, ... (Sloane’s A001567). Pomerance et al. (1980)
computed all 21,853 Poulet numbers less than 25 �
109 : The numbers less than 102, 103, ..., are 0, 3, 22,
78, 245, ... (Sloane’s A055550).

Pomerance has shown that the number of Poulet
numbers less than x for sufficiently large x satisfy

exp (ln x)5 =14
h i

BP2(x) Bx exp �
ln x ln ln ln x

2 ln ln x

 !

(Guy 1994).

A Poulet number all of whose DIVISORS d satisfy
d 2d �2
�� is called a SUPER-POULET NUMBER. There are

an infinite number of Poulet numbers which are not

SUPER-POULET NUMBERS. Shanks (1993) calls any
integer satisfying 2n�1 �1 (mod n) (i.e., not limited
to ODD composite numbers) a FERMATIAN.

See also FERMAT PSEUDOPRIME, PSEUDOPRIME, ROT-

KIEWICZ THEOREM, SUPER-POULET NUMBER
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Power

The exponent to which a given quantity is raised is
known as its POWER. The expression xa is therefore
known as "x to the a th POWER." The power may be an
integer, REAL NUMBER, or COMPLEX NUMBER. How-
ever, the power of a real number to a non-integer
power is not necessarily itself a real number. For
example, x1=2 is real only for x]0: The rules for
combining quantities containing powers are called
the EXPONENT LAWS.

While the simple equation

ax�x

cannot be solved for x using traditional elementary
functions, the solution can be given in terms of
LAMBERT’S W -FUNCTION as

x��
W(�ln a)

ln a
;

where ln a is the NATURAL LOGARITHM of a .

Special names given to various powers are listed in
the following table.



Power Name

/1=2/ SQUARE ROOT

/1=3/ CUBE ROOT

2 SQUARED

3 CUBED

The largest powers p which numbers n �1, 2, 3, ...
can be represented in the form n �ap are 1, 1, 1, 2, 1,
1, 1, 3, 2, 1, ... (Sloane’s A052409), with corresponding
values of a given by 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, ...
(Sloane’s A052410).

The POWER SUM of the first n POSITIVE INTEGERS is
given by FAULHABER’S FORMULA,

Xn

k �1

kp �
1

p � 1

Xp �1

k �1

(�1)dkp
p �1

k

$ %
Bp �1�knk ;

where dkp is the KRONECKER DELTA, n
k

� �
is a BINOMIAL

COEFFICIENT, and Bk is a BERNOULLI NUMBER.

Let sn be the largest INTEGER that is not the SUM of
distinct nth powers of POSITIVE INTEGERS (Guy 1994).
The first few values for n �2, 3, ... are 128, 12758,
5134240, 67898771, ... (Sloane’s A001661).

CATALAN’S CONJECTURE states that 8 and 9 (23 and 32)
are the only consecutive POWERS (excluding 0 and 1),
i.e., the only solution to CATALAN’S DIOPHANTINE

PROBLEM. This CONJECTURE has not yet been proved
or refuted, although R. Tijdeman has proved that
there can be only a finite number of exceptions should
the CONJECTURE not hold. It is also known that 8 and
9 are the only consecutive CUBIC and SQUARE NUM-

BERS (in either order). Hyyro and Makowski proved
that there do not exist three consecutive POWERS

(Ribenboim 1996).

Very few numbers OF THE FORM np 91 are PRIME

(where composite powers p �kb need not be consid-
ered, since n(kb) 91 � nk

� �b
91): The only PRIME NUM-

BERS OF THE FORM np �1 for n 5100 and PRIME

2 5p 510 correspond to n �2, i.e., 22 �1 �3; 23 �1 �
7; 25�1�31; .... The only PRIME NUMBERS of the form
np�1 for n5100 and PRIME 25p510 correspond to
p�2 with n�1, 2, 4, 6, 10, 14, 16, 20, 24, 26, ...
(Sloane’s A005574).

There are no nontrivial solutions to the equation

1n�2n�. . .�mn� m�1ð Þn

for m5102;000;000 (Guy 1994, p. 153).

See also APOCALYPTIC NUMBER, BIQUADRATIC NUM-

BER, CATALAN’S CONJECTURE, CATALAN’S DIOPHAN-

TINE PROBLEM, CUBE ROOT, CUBED, CUBIC NUMBER,
DIGIT-SHIFTING CONSTANTS, EXPONENT, EXPONENT

LAWS, FAULHABER’S FORMULA, FIGURATE NUMBER,

MOESSNER’S THEOREM, NARCISSISTIC NUMBER,
POWER (CIRCLE), POWER RULE, SQUARE NUMBER,
SQUARE ROOT, SQUARED, SUM, TRUNCATED POWER

FUNCTION, WARING’S PROBLEM
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Power (Circle)

The POWER of a fixed point A with respect to a CIRCLE

of RADIUS r and center O is defined by the product

p�AP�AQ; (1)

where P and Q are the intersections of a line through
A with the circle. The term "power" was first used in
this way by Jacob Steiner (Steiner 1826; Coxeter and
Greitzer 1967, p. 30). Amazingly, p (sometimes writ-
ten k2) is independent of the choice of the line APQ
(Coxeter 1969, p. 81).

Now consider a point P not necessarily on the
circumference of the circle. If d�OP is the distance
between P and the circle’s center O , then the power of



the point P relative to the circle is

p �d2 �r2 : (2)

If P is outside the CIRCLE, its power is POSITIVE and
equal to the square of the length of the segment PQ
from P to the tangent Q to the CIRCLE through P ,

p �PQ2 �d2 �r2 : (3)

If OP lies along the X -AXIS, then the angle u around
the circle at which Q lies is given by solving

(d �cos u)2 �sin2 u
h i

�1 �d2 (4)

for u ; giving

u �9sec�1 d (5)

for coordinates

(x; y) �r 9
1

d 
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 1

d2

s !
: (6)

The points P and P ? are INVERSE POINTS, also called
polar reciprocals, with respect to the INVERSION

CIRCLE if

OP � OP?�OQ2 �r2 (7)

(Wenninger 1983, p. 2).
If P is inside the CIRCLE, then the power is NEGATIVE

and equal to the product of the DIAMETERS through P .

The LOCUS of points having POWER k with regard to a
fixed CIRCLE of RADIUS r is a CONCENTRIC CIRCLE of
RADIUS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �k

p
: The CHORDAL THEOREM states that

the LOCUS of points having equal POWER with respect
to two given nonconcentric CIRCLES is a line called the
RADICAL LINE (or CHORDAL; Dörrie 1965).

See also CHORDAL THEOREM, COAXAL CIRCLES, IN-

VERSE POINTS, INVERSION CIRCLE, INVERSION RADIUS,
INVERSIVE DISTANCE, RADICAL LINE
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Power (Statistics)
The probability of getting a positive result for a given
test which should produce a positive result.

See also PREDICTIVE VALUE, SENSITIVITY, SPECIFI-

CITY, STATISTICAL TEST

Power (Triangle)
The total power of a TRIANGLE is defined by

P �1
2 a2

1 �a2
2 �a2

3

� �
; (1)

where ai are the side lengths, and the "partial power"
is defined by

p1 �
1
2 a2

2 �a2
3 �a2

1

� �
: (2)

Then

p1 �a2a3 cos a1 (3)

P �p1 �p2 �p3 (4)

P2 �p2
1 �p2

2 �p2
3 �a4

1 �a4
2 �a4

3 (5)

D�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2p3 �p3p1 �p1p2

p
(6)

p1 �A1H2 � A1A3 (7)

a1p1

cos a1

�a1a2a3 �4 DR (8)

p1 tan a1 �p2 tan a2 �p3 tan a3 ; (9)

where D is the AREA of the TRIANGLE and Hi are the
FEET of the ALTITUDES. finally, if a side of the
TRIANGLE and the value of any partial power are
given, then the LOCUS of the third VERTEX is a CIRCLE

or straight line.

See also ALTITUDE, FOOT, TRIANGLE
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Power Associative Algebra
An ALGEBRA in which the ASSOCIATOR (x; x; x) �0:
The SUBALGEBRA generated by one element is asso-
ciative.

See also ASSOCIATOR
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Power Center
RADICAL CENTER

Power Curve
The curve with TRILINEAR COORDINATES at : bt : ct for
a given POWER t .

See also POWER POINT
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Power Line
RADICAL AXIS

Power Point
Triangle centers with TRIANGLE CENTER FUNCTIONS

OF THE FORM a �an are called nth power points. The
0th power point is the INCENTER, with TRIANGLE

CENTER FUNCTION a �1:/

See also INCENTER, TRIANGLE CENTER FUNCTION
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Power Polynomial
The power polynomials xn are an associated SHEFFER

SEQUENCE with

f (t) �t; (1)

giving GENERATING FUNCTION

X�
k �0

xk

k!
tk �ext (2)

and BINOMIAL IDENTITY

(x �y)n �
Xn

k �0

n
k

$ %
xkyn�k : (3)

See also SHEFFER SEQUENCE
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Power Rule
The DERIVATIVE of the POWER xn is given by

d

dx
xnð Þ�nxn�1:

See also CHAIN RULE, DERIVATIVE, EXPONENT LAWS,
PRODUCT RULE
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Power Series
A power series in a variable z is an infinite SUM OF

THE FORM

X�
n

aiz
i; (1)

where n]0 and ai are INTEGERS, REAL NUMBERS,
COMPLEX NUMBERS, or any other quantities of a given
type.

A CONJECTURE of Pólya is that if a FUNCTION has a
power series with INTEGER COEFFICIENTS and RADIUS

OF CONVERGENCE 1, then either the FUNCTION is
RATIONAL or the UNIT CIRCLE is a natural boundary.

A generalized POWER sum a(h) for h�0, 1, ... is given
by

a(h)�
Xm

i�1

Ai(h)ah
i ; (2)

with distinct NONZERO ROOTS ai; COEFFICIENTS Ai(h)
which are POLYNOMIALS of degree ni�1 for POSITIVE

INTEGERS ni; and i 
 [1; m]: The generalized POWER

sum has order

n�
Xm

i�m

ni: (3)

For any power series, one of the following is true:

1. The series converges only for x�0.
2. The series converges absolutely for all x .
3. The series converges absolutely for all x in some
finite open interval (�R; R) and diverges if xB�R
or x�R . At the points x�R and x��R; the series
may converge absolutely, converge conditionally,
or diverge.

To determine the interval of convergence, apply the
RATIO TEST for ABSOLUTE CONVERGENCE and solve for
x . A power series may be differentiated or integrated
within the interval of convergence. Convergent power
series may be multiplied and divided (if there is no
division by zero).



X�
k �1

k �p (4)

CONVERGES if p �1 and DIVERGES if 0 Bp 51:/

See also BINOMIAL SERIES, CONVERGENCE TESTS,
FORMAL POWER SERIES, LAURENT SERIES, MACLAUR-

IN SERIES, MULTINOMIAL SERIES, P -SERIES, POLYNO-

M I A L , PO W E R  SE T , QU O T I E N T -DI F F E R E N C E

ALGORITHM, RADIUS OF CONVERGENCE, RECURRENCE

SEQUENCE, SERIES, SERIES REVERSION, TAYLOR SER-

IES
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Pólya, G. Mathematics and Plausible Reasoning, Vol. 2:
Patterns of Plausible Inference. Princeton, NJ: Princeton
University Press, p. 46, 1990.

Power Set
Given a SET S , the power set of S is the SET of all
SUBSETS of S . The order of a POWER set of a SET of
order n is 2n : Power sets are larger than the SETS

associated with them. The power set of S is variously
denoted 2S or P(S) :/

The power set of a given set s can be found using
Subsets[s ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘). A
concise implementation in Mathematica is given by

PowerSet[s_List] :� Distribute[Thread[{{},

List /@ s}, List, {2, 2}],

List, List, List, Join]

See also SET, SUBSET

Power Spectrum
For a given signal, the power spectrum gives a plot of
the portion of a signal’s power (energy per unit time)
falling within given frequency bins. The most com-
mon way of generating a power spectrum is by using
a FOURIER TRANSFORM, but other techniques such as
the MAXIMUM ENTROPY METHOD can also be used.
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Power Sum
An analytic solution for a SUM of POWERS of integers is

Sp(n)�
Xn

k�1

kp�z(�p)�z(�p; 1�n)�H(�p)
n ; (1)

where z(z) is the RIEMANN ZETA FUNCTION, z(z; a) is
the HURWITZ ZETA FUNCTION, and H(k)

n is a general-
ized HARMONIC NUMBER. For the special case of p a
POSITIVE INTEGER, FAULHABER’S FORMULA gives the
SUM explicitly as

Sp(n)�
1

p � 1

Xp�1

k�1

(�1)dkp
p�1

k

$ %
Bp�1�knk; (2)

where dkp is the KRONECKER DELTA, n
k

� �
is a BINOMIAL

COEFFICIENT, and Bk is a BERNOULLI NUMBER. Writ-
ten explicitly in terms of a sum of POWERS,

Sp(n)�
Bkp!

k!(p � k � 1)!
np�k�1: (3)

It is also true that the COEFFICIENTS of the terms in
such an expansion sum to 1, as stated by Bernoulli
without proof (Boyer 1943).

Computing the sums for p�1, ..., 10 gives

Xn

k�1

k�1
2 n2�n
� �

(4)

Xn

k�1

k2�1
6 2n3�3n3�n
� �

(5)

Xn

k�1

k3�1
4 n4�2n3�n2
� �

(6)

Xn

k�1

k4� 1
30 6n5�15n4�10n3�n
� �

(7)

Xn

k�1

k5� 1
12 2n6�6n5�5n4�n2
� �

(8)

Xn

k�1

k6� 1
42 6n7�21n6�21n5�7n3�n
� �

(9)

Xn

k�1

k7� 1
24 3n8�12n7�14n6�7n4�2n2
� �

(10)

Xn

k�1

k8� 1
90 10n9�45n8�60n7�42n5�20n3�3n
� �

(11)



Xn

k �1

k9 � 1
20 2n10 �10n9 �15n8 �14n6 �10n4 �3n2
� �

(12)

Xn

k �1

k10 � 1
66 6n11 �33n10 �55n9 �66n7
�

�66n5 �33n3 �5nÞ: (13)

Xn

k �1

k �1
2 n(n �1) (14)

Xn

k �1

k2 �1
6 n(n �1)(2n �1) (15)

Xn

k �1

k3 �1
4 n

2(n �1)2 (16)

Xn

k�1

k4 � 1
30 n(n �1)(2n �1) 3n2 �3n �1

� �
(17)

Xn

k �1

k5 � 1
12 n

2(n �1)2(2n2 �2n �1) (18)

Xn

k �1

k6 � 1
42 n(n �1)(2n �1) 3n4 �6n3 �3n �1

� �
(19)

Xn

k�1

k7 � 1
24 n

2(n �1)2 3n4 �6n3 �n2 �4n �2
� �

(20)

Xn

k �1

k8 � 1
90 n(n �1)(2n �1)

 5n6 �15n5 �5n4 �15n3 �n2 �9n �3
� �

(21)

Xn

k �1

k9 � 1
20 n

2(n �1)2 n2 �n �1
� �

 2n4 �4n3 �n2 �3n �3
� �

(22)

Xn

k �1

k10 � 1
60 n(n �1)(2n �1) n2 �n �1

� �
� 3n6 �9n5 �2n4 �11n3 �10n �5
� �

: (23)

A simple graphical proof of the special case of S1(n) �
n(n �1)=2 can also be given by constructing a se-
quence of stacks of boxes, each 1 unit across and k
units high, where k �1, 2, ..., n . Now add a rotated
copy on top, as in the above figure. Note that the

resulting figure has WIDTH n and HEIGHT n �1; and
so has AREA n(n �1): The desired sum is half this, so
the AREA of the boxes in the sum is n(n �1)=2: Since
the boxes are of unit width, this is also the value of
the sum.

The sum S1(n) �n(n �1)=2 can also be computed
using the first EULER-MACLAURIN INTEGRATION FOR-

MULA

Xn

k �1

f (k) �g
n

1

f (x) dx �1
2 f (1) �1

2 f (n)

� 1
2! B2[f ?(n) �f ?(1)] �. . . (24)

with f (k) �k: Then

Xn

k �1

k �g
n

1

x dx�1
2 � 1 �1

2 � n �1
6(1 �1) �. . .

�1
2 n2 �1
� �

�1
2 �h �1

2 n �1
2 n(n �1): (25)

The surprising identity

S3(n) �
Xn

k �1

k3 �
Xn

k �1

k

 !2

; (26)

known as NICOMACHUS’S THEOREM, can also be illu-
strated graphically (Wells 1991, pp. 198 �/99).

Schultz (1980) showed that the sum Sk(n) can be
found by writing

Sk(n)�Ak�1nk�1�. . .�A1n (27)

and solving the system of k�1 equations

Xk�1

i�j�1

(�1)i�j�1 i
j

$ %
Ai�0 (28)

for 05j5k (Guo and Qi 1999).

/Si(n) is related to the BINOMIAL THEOREM by

(1�n)k�1�1�
Xk

i�0

k�1
i

$ %
Si(n) (29)

(Guo and Qi 1999).

See also DIOPHANTINE EQUATION, FAULHABER’S FOR-

MULA, MULTIGRADE EQUATION, NICOMACHUS’S THEO-

REM, SUM
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Power Tower
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

The power tower of order k is defined as

a��k�aa U a|fflffl{zfflffl}
k

; (1)

where� is Knuth’s (1976) ARROW NOTATION, which in
turn is defined by

a�k n�a�k�1 a�k (n�1)
� �

: (2)

Rucker (1995, p. 74) uses the notation

ka�aa U a|fflffl{zfflffl}
n

; (3)

and refers to this operation as "tetration." A power
tower can be implemented in Mathematica as

PowerTower[a_, k_] :� Fold[Power[a, #] &, 1,

Table[a, {k}]]

The following table gives values of aa U a|fflffl{zfflffl}
n

for a�1, 2,
... for small n .

n /aa U a|fflffl{zfflffl}
n

/

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

2 1, 4, 27, 256, 3125, 46656, ...

3 1, 16, 7:63�1012; 1:34�10154; ...

4 1, 65536, ...

The following table gives aa U a|fflffl{zfflffl}
n

for n�1, 2, ... for
small a .

a /aa U a|fflffl{zfflffl}
n

/

1 1, 1, 1, 1, 1, 1, ...

2 2, 4, 16, 65536, 2:00�1019728; ...

3 3, 27, 7:63�1012; ...

4 4, 256, 1:34�10154; ...

The value of the infinite power tower h(x)�x����
xx U

; where xxx

is an abbreviation for x xxð Þ; can be
computed analytically by writing

xx U

�h(x) (4)

taking the logarithm of both sides and plugging back
in to obtain

xx U

ln x�h(x) ln x�ln[h(x)]: (5)

Solving for h(x) gives

h(x)��
W(�ln x)

ln x
; (6)

where W(x) is LAMBERT’S W -FUNCTION (Corless et al. ).
h(x) converges IFF e�e5x5e1=e (0:06595x51:4446);
as shown by Euler (1783) and Eisenstein (1844) (Le
Lionnais 1983, Wells 1986, p. 35).

Knoebel (1981) gave the following series for h(z)

h(z)�1�ln x�
32(ln z)2

3!
�

43(ln z)3

4!
�. . . (7)

(Vardi 1991), and a CONTINUED FRACTION due to
Khovanskii (1963) is



x1=x �1

�
2(x � 1)

x2 � 1 �
x2 � 1ð Þ(x � 1)2

3x(x � 1)
4x2 � 1ð Þ(x � 1)2

5x(x � 1) �
9x2 � 1ð Þ(x � 1)2

7x(x � 1) � . . .

:

(8)

The related function

g(x) �x(1=x)(1=x) U 

(9)

converges only for x ]e �1=e ; that is, x ]0:692: The
value it converges to is the inverse of xx which, for
x Bee (i.e., x B15 :154); is given by

g(x) �
ln x

W(ln x) 
(10)

for e �1 =e 5x 5ee :/

The function xx is plotted above along the real line
and in the complex plane. It has a minimum where

d

dx
xx �xx(1 �ln x) �0 ; (11)

which has solution x �1=e: At this point, the function
takes on the value e�1 =e :/

Some interesting related integrals are

g
1

0

xx dx �
X�
n�1

(�1)n�1

nn
�0:7834305107 . . . (12)

g
1

0

x�x dx�
X�
n�1

1

nn
�1:2912859971 . . . (13)

(Spiegel 1968, Abramowitz and Stegun 1972).

See also ACKERMANN FUNCTION, ARROW NOTATION,
FERMAT NUMBER, LAMBERT’S W -FUNCTION, MILLS’

CONSTANT, STEINER’S PROBLEM
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Powerfree
A POSITIVE INTEGER n is kth powerfree if there is no
number d such that dk nj (/dk divides n ), i.e., there are
no kth powers or higher in the PRIME FACTORIZATION

of n . A number which is free of all powers is therefore
SQUAREFREE.

See also BIQUADRATEFREE, CUBEFREE, PRIME NUM-

BER, SQUAREFREE
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Powerful Number
An INTEGER m such that if p m;j then p2 m;j is called a
powerful number. The first few are 1, 4, 8, 9, 16, 25,
27, 32, 36, 49, ... (Sloane’s A001694). Powerful
numbers are always OF THE FORM a2b3 for a; b ]1:/

Not every NATURAL NUMBER is the sum of two
powerful numbers, but Heath-Brown (1988) has
shown that every sufficiently large NATURAL NUMBER

is the sum of at most three powerful numbers. There
are infinitely many pairs of consecutive powerful
numbers, but Erdos has conjectured that there do
not exist three consecutive powerful numbers. The
CONJECTURE that there are no powerful number
triples implies that there are infinitely many Wiefer-
ich primes (Granville 1986, Vardi 1991).

A separate usage of the term powerful number is for
numbers which are the sums of any positive powers of
their digits (not necessarily the same for each digit).

The first few are 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 43, 63, 89,
... (Sloane’s A007532). These are also called hand-
some numbers by Rivera, and are a special case of the
NARCISSISTIC NUMBERS. Powerful numbers represen-
table in two distinct ways (not counting different
powers of duplicated digits as distinct) are 264, 373,
375, 2132, 2223, 2241, 2243, 2245, 2263, (Sloane’s
A050240). Powerful numbers representable in two
distinct ways (counting different powers of duplicated
digits as distinct) are 224, 226, 264, 332, 334, 375,
377, 445, (Sloane’s A050241).

See also NARCISSISTIC NUMBER
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P-Polynomial
HOMFLY POLYNOMIAL

P-Problem
A problem is assigned to the P (POLYNOMIAL time)
class if the number of steps is bounded by a POLY-

NOMIAL.

See also COMPLEXITY THEORY, NP-COMPLETE PRO-

BLEM, NP-HARD PROBLEM, NP-PROBLEM
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Practical Number
A number n is practical if for all k 5n; k is the sum of
distinct proper divisors of n . Defined in 1948 by
A. K. Srinivasen. All even PERFECT NUMBERS are
practical. The number

m �2n�1 2n�1
� �

is practical for all n �2, 3, .... The first few practical
numbers are 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32,
36, 40, 42, 48, 54, 56, ... (Sloane’s A005153). G. Melfi
has computed twins, triplets, and 5-tuples of practical
numbers. The first few 5-tuples are 12, 18, 30, 198,
306, 462, 1482, 2550, 4422, ....

References
Melfi, G. "On Two Conjectures About Practical Numbers." J.

Number Th. 56, 205 �/10, 1996.
Sloane, N. J. A. Sequences A005153/M0991 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Prandtl’s Boundary Layer Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

ut �uux �vuy �Ut �UUx �
m

r
uyy

ux �vy �0 :
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Pratt Certificate
A primality certificate based on FERMAT’S LITTLE

THEOREM CONVERSE. Although the general idea had
been well-established for some time, Pratt became the
first to prove that the certificate tree was of poly-
nomial size and could also be verified in polynomial
time. He was also the first to observe that the tree
implies that PRIMES are in the complexity class NP.

To generate a Pratt certificate, assume that n is a
POSITIVE INTEGER and pif g is the set of PRIME

FACTORS of n �1: Suppose there exists an INTEGER x
(called a "WITNESS") such that xn�1 �1 (mod n) but
xe f1 (mod n ) whenever e is one of (n �1)=pi : Then
FERMAT’S LITTLE THEOREM CONVERSE states that n is
PRIME (Wagon 1991, pp. 278 �/79).

By applying FERMAT’S LITTLE THEOREM CONVERSE to
n and recursively to each purported factor of n �1; a
certificate for a given PRIME NUMBER can be gener-
ated. Stated another way, the Pratt certificate gives a
proof that a number a is a PRIMITIVE ROOT of the
multiplicative GROUP (mod p ) which, along with the
fact that a has order p �1; proves that p is a PRIME.

The figure above gives a certificate for the primality
of n �7919. The numbers to the right of the dashes
are WITNESSES to the numbers to left. The set pif g for
n �1 �7918 is given by f2; 37; 107g: Since 77918 �

1 (mod 7919) but 77918=2 ; 77918=37 ; 77918=107 f1 (mod
7919), 7 is a WITNESS for 7919. The PRIME divisors of
7918 �7919 �/ are 2, 37, and 107. 2 is a so-called "self-
WITNESS" (i.e., it is recognized as a PRIME without
further ado), and the remainder of the witnesses are
shown as a nested tree. Together, they certify that
7919 is indeed PRIME. Because it requires the FACTOR-

IZATION of n �1; the METHOD of Pratt certificates is
best applied to small numbers (or those numbers n
known to have easily factorable n �1):/

A Pratt certificate is quicker to generate for small
numbers than are other types of primality certifi-
cates. The Mathematica task ProvablePrimeQ[n ] in
the Mathematica add-on package NumberTheory‘-
PrimeQ‘ (which can be loaded with the command
BBNumberTheory‘)therefore generates an ATKIN-

GOLDWASSER-KILIAN-MORAIN CERTIFICATE only for
numbers above a certain limit (1010 by default), and
a Pratt certificate for smaller numbers.

See also ATKIN-GOLDWASSER-KILIAN-MORAIN CERTI-

FICATE, FERMAT’S LITTLE THEOREM CONVERSE, PRIM-

ALITY CERTIFICATE, WITNESS
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Pratt-Kasapi Theorem
HOEHN’S THEOREM

Precedes
The relationship x precedes y is written x)y: The
relation x precedes or is equal to y is written x�y:/

See also SUCCEEDS



Precession
CURVE OF CONSTANT PRECESSION

Precisely Unless
If A is true precisely unless B , then B implies not-A
and not-B implies A . J. H. Conway has suggested the
term "UNLESSS" for this state of affairs, by analogy
with IFF.

See also IFF, UNLESS

Predecessor
/a is called a predecessor if there is no ORDINAL

NUMBER b such that b �1 � a:/

See also ORDINAL NUMBER, SUCCESSOR

Predicate
An operator in LOGIC which returns either TRUE or
FALSE.

See also AND, FALSE, NAND, NOR, NOT, OR,
PREDICATE CALCULUS, TRUE, XNOR, XOR

Predicate Calculus
The branch of formal LOGIC, also called functional
calculus, that deals with representing the logical
connections between statements as well as the state-
ments themselves.

See also GÖ DEL’S INCOMPLETENESS THEOREM, LOGIC,
PREDICATE, PROPOSITIONAL CALCULUS

Predictability
Predictability at a time t in the future is defined by

R(x(t) ; x(t � t))

H(x(t))
;

and linear predictability by

L(x(t) ; x(t � t))

H(x(t))
;

where R and L are the REDUNDANCY and LINEAR

REDUNDANCY, and H is the ENTROPY.

Prediction Paradox
UNEXPECTED HANGING PARADOX

Prediction Theory
The problem of forecasting future values Xt �t (/ t > 0)
of a weakly stationary process Xtf g from the known
values Xs (/s 5t):/

See also TIME SERIES ANALYSIS
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Predictive Value
The positive predictive value is the probability that a
test gives a true result for a true statistic. The
negative predictive value is the probability that a
test gives a false result for a false statistic.

See also POWER (STATISTICS), SENSITIVITY, SPECIFI-

CITY, STATISTICAL TEST

Predictor-Corrector Methods
A general set of methods for integrating ORDINARY

DIFFERENTIAL EQUATIONS. Predictor-corrector meth-
ods proceed by extrapolating a polynomial fit to the
derivative from the previous points to the new point
(the predictor step), then using this to interpolate the
derivative (the corrector step). Press et al. (1992)
opine that predictor-corrector methods have been
largely supplanted by the BULIRSCH-STOER and
RUNGE-KUTTA METHODS, but predictor-corrector
schemes are still in common use.

See also ADAMS’ METHOD, GILL’S METHOD, MILNE’S

METHOD, RUNGE-KUTTA METHOD
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Preimage
Given f : X 0 Y ; the image of x is f (x): The preimage
of y is then f�1(y)�fx½f (x)�yg; or all x whose image
is y . Images are in the range, while preimages are in
the domain (or they are empty).

Present Value
The present value vn of a single payment made at n
periods in the future is

vn�
p

(1 � r)n ; (1)

where n is the number of periods until payment, p is
the payment amount, and r is the periodic discount
rate. The present value v� of equal payments made
each successive period in perpetuity (a.k.a. the pre-
sent value of a perpetuity) is given by



v��
X�
n�1

p

(1 � r)n �
p

r
: (2)

The present value v? of equal payments made each
successive period for n periods (a.k.a. the present
value of an annuity) is given by

v?�v��vn �
p

r
1 �

1

(1 � r)n

" #
; (3)

where p is the periodic payment amount.

See also INTEREST

Pretzel Curve
KNOT CURVE

Pretzel Knot

A KNOT obtained from a TANGLE which can be
represented by a FINITE sequence of INTEGERS.

See also TANGLE
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Pretzel Transformation

A topological transformation in which a surface is
made out of an infinitely elastic material which,
however, may not be torn or cut. Using this simple
prescription gives the amazing two conversions illu-
strated above, the first of which untangles two
interlocked rings connected by a band, and the second
of which unloops one of two rings connected by a band
and threaded by a band (Wells 1991).

See also TOPOLOGY
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Price’s Theorem
Consider a GAUSSIAN BIVARIATE DISTRIBUTION in
variables x and y with COVARIANCE

r � r11 � xyh i� xh i yh i

and an arbitrary function g(x; y): Then the expected
value of the random variable g(x; y)

g(x; y)h i�g
�

��
g

�

��

g(x; y)f (x; y) dx dy

satisfies

@n g(x ; y)h i
@ rn

�
@2ng(x; y)

@xn @yn

* +
:

See also COVARIANCE, GAUSSIAN BIVARIATE DISTRIBU-

TION
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Primality Certificate
A short set of data that proves the primality of a
number. A certificate can, in general, be checked
much more quickly than the time required to gen-
erate the certificate. Varieties of primality certificates
include the PRATT CERTIFICATE and ATKIN-GOLDWAS-

SER-KILIAN-MORAIN CERTIFICATE.

See also ATKIN-GOLDWASSER-KILIAN-MORAIN CERTI-

FICATE, COMPOSITENESS CERTIFICATE, PRATT CERTI-

FICATE
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Primality Test
A test to determine whether or not a given number is
PRIME. The RABIN-MILLER STRONG PSEUDOPRIME TEST

is a particularly efficient ALGORITHM used by Math-
ematica version 2.2. Like many such algorithms, it is
a probabilistic test using PSEUDOPRIMES, and can
potentially (although with very small probability)
falsely identify a COMPOSITE NUMBER as PRIME

(although not vice versa). Unlike PRIME FACTORIZA-

TION, primality testing is believed to be a P-PROBLEM

(Wagon 1991). In order to guarantee primality, an
almost certainly slower algorithm capable of generat-
ing a PRIMALITY CERTIFICATE must be used.

See also ADLEMAN-POMERANCE-RUMELY PRIMALITY



TEST, FERMAT’S LITTLE THEOREM CONVERSE, FER-

MAT’S PRIMALITY TEST, FERMAT’S THEOREM, LUCAS-

LEHMER TEST, MILLER’S PRIMALITY TEST, PÉ PIN’S

TEST, POCKLINGTON’S THEOREM, PROTH’S THEOREM,
PSEUDOPRIME, RABIN-MILLER STRONG PSEUDOPRIME

TEST, WARD’S PRIMALITY TEST, WILSON’S THEOREM
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Primary
Each factor p ai

i in an INTEGER’s PRIME FACTORIZATION

is called a primary.

Primary Pseudoperfect Number
An integer N which is a product of distinct primes
and which satisfies

1

N 
�
X
p½N

1

p 
�1

(Butske et al. 1999). The first few are 2, 6, 42, 1806,
47058, ... (Sloane’s A054377).

The similar equation

�
1

N 
�
X
p ½N

1

p 
�1

arises in the definition of GIUGA NUMBERS.

See also GIUGA NUMBER, SEMIPERFECT NUMBER
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Primary Representation
Let p be a UNITARY REPRESENTATION of a GROUP G on
a separable HILBERT SPACE, and let R( p) be the
smallest weakly closed algebra of bounded linear
operators containing all p(g) for g 
 G : Then p is
primary if the center of R(p) consists of only scalar
operations.

See also REPRESENTATION
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Prime
A symbol used to distinguish one quantity x? ("/x?/")
from another related x . Primes are most commonly
used to denote

1. Transformed coordinates,
2. Conjugate points,
3. DERIVATIVES,
4. The COMPLEMENT F ? of a set F ,
5. As an alternate notation for TRANSPOSE.

See also DOUBLE PRIME, PRIME ALGEBRAIC NUMBER,
PRIME NUMBER
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Point Roberts, WA: Hartley and Marks, p. 283, 1997.

Prime Algebraic Number
An irreducible ALGEBRAIC INTEGER which has the
property that, if it divides the product of two algebraic
INTEGERS, then it DIVIDES at least one of the factors. 1
and -1 are the only INTEGERS which DIVIDE every
INTEGER. They are therefore called the PRIME UNITS.

See also ALGEBRAIC INTEGER, PRIME UNIT

Prime Arithmetic Progression
An arithmetic progression of primes is a set of primes
OF THE FORM mk�n for fixed m and n and con-
secutive k , i.e., fn; m�n; 2m�n; . . .g: For example,
199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089
is a 10-term arithmetic progression of primes with
difference 210. Let P be an increasing arithmetic
progression of n PRIMES with minimal difference
d �0. If a PRIME p5n does not divide d , then the
elements of P must assume all residues modulo p ,
specifically, some element of P must be divisible by p .
Since P contains only primes, this element must be
equal to p .



Let the number of PRIMES OF THE FORM mk �n less
than x be denoted pm; n(x) : Then

lim
x0�

pa ; b(x)

Li(x)
�

1

f(a) 
;

where Li(x) is the LOGARITHMIC INTEGRAL and f(x) is
the TOTIENT FUNCTION.

If d Bn# (where n# is the PRIMORIAL of n ), then some
prime p 5n does not divide d , and that prime p is in
P . Thus, in order to determine if P has d Bn# ; we
need only check a finite number of possible P (those
with d Bn# and containing prime p 5n) to see if they
contain only primes. If not, then d ]n#: If d �n#;
then the elements of P cannot be made to cover all
residues of any prime p . The PRIME PATTERNS CON-

JECTURE then asserts that there are infinitely many
arithmetic progressions of primes with difference d .

A computation shows that the smallest possible
common difference for a set of n or more PRIMES in
arithmetic progression for n �1, 2, 3, ... is 0, 1, 2, 6, 6,
30, 150, 210, 210, 210, 2310, 2310, 30030, 30030,
30030, 510510, ... (Sloane’s A033188, Ribenboim
1989, Dubner and Nelson 1997, Wilson). The values
up to n �13 are rigorous, while the remainder are
lower bounds which assume the validity of the PRIME

PATTERNS CONJECTURE and are simply given by
pn�7#; where pi is the ith PRIME. The smallest first
terms of arithmetic progressions of n primes with
minimal differences are 2, 2, 3, 5, 5, 7, 7, 199, 199,
199, 60858179, 147692845283, 14933623,
856378247603, ... (Sloane’s A033189; Wilson).

Smaller first terms are possible for nonminimal n -
term progressions. Examples include the 8-term
progression 11 �1210230k for k �0, 1, ..., 7, the 12-
term progression 23143 �30030k for k �0, 1, ..., 11
(Golubev 1969, Guy 1994), and the 13-term arith-
metic progression 766439 �510510k for k �0, 1, ...,
12 (Guy 1994).

The largest known set of primes in ARITHMETIC

SEQUENCE is 22,

11 ; 410; 337; 580; 553 �4 ; 609; 098; 694; 200k

for k �0, 1, ..., 21 (Pritchard et al. 1995, UTS School
of Mathematical Sciences).

The largest known sequence of consecutive PRIMES in
ARITHMETIC PROGRESSION (i.e., all the numbers be-
tween the first and last term in the progression,
except for the members themselves, are composite) is
ten, given by

100; 996 ; 972; 469 ; 714; 247; 637 ; 786; 655 ; 587 ; 969;

840 ; 329 509 ; 324; 689 ; 190; 041; 803 ; 603; 417 ; 758;

904 ; 341; 703 ; 348; 882; 159 ; 067; 229 ; 719 �210k

for k �0, 1, ..., 9 (Sloane’s A033290), discovered by
Harvey Dubner, Tony Forbes, Manfred Toplic, et al.

on March 2, 1998. This beats the record of nine
consecutive primes set on January 15, 1998 by the
same investigators,

99; 679; 432; 066 ; 701; 086 ; 484; 490; 653 ; 695; 853 ;

561; 638 ; 982; 364 ; 080; 991; 618 ; 395; 774 ; 048 ; 585;

529 ; 071; 475 ; 461; 114; 799 ; 677; 694 ; 651 �210k

for k �0, 1, ..., 8 (two sequences of nine are now
known), the progression of eight consecutive primes
given by

43; 804; 034; 644 ; 029; 893 ; 325; 717; 710 ; 709; 965 ;

599; 930 ; 101; 479 ; 007; 432; 825 ; 862; 862 ; 446 ; 333;

961 ; 919; 524 ; 977; 985; 103 ; 251; 510 ; 661 �210k

for k �0, 1, ..., 7, discovered by Harvey Dubner, Tony
Forbes, et al. on November 7, 1997 (several are now
known), and the progression of seven given by

1 ; 089; 533; 431 ; 247 ; 059; 310; 875 ; 780 ; 378; 922; 957 ; 732;

908; 036; 492; 993; 138; 195; 385; 213; 105; 561; 742 ; 150;

447; 308; 967; 213; 141; 717; 486 ; 151 �210k;

for k �0, 1, ..., 6, discovered by H. Dubner and
H. K. Nelson on Aug. 29, 1995 (Peterson 1995, Dub-
ner and Nelson 1997). The smallest sequence of six
consecutive PRIMES in arithmetic progression is

121; 174; 811�30k

for k�0, 1, ..., 5 (Lander and Parkin 1967, Dubner
and Nelson 1997). According to Dubner et al., a
trillion-fold increase in computer speed is needed
before the search for a sequence of 11 consecutive
primes is practical, so they expect the ten-primes
record to stand for a long time to come.

It is conjectured that there are arbitrarily long
sequences of PRIMES in ARITHMETIC PROGRESSION

(Guy 1994). W. Roonguthai found the largest known
arithmetic progression of three primes, (3, 1593 �
227757�1; 1593 � 227758�1); with common difference
1593 � 227757�2 (Roonguthai 1999).

See also ARITHMETIC PROGRESSION, CUNNINGHAM

CHAIN, DIRICHLET’S THEOREM, LINNIK’S THEOREM,
PRIME CONSTELLATION, PRIME-GENERATING POLYNO-

MIAL, PRIME NUMBER THEOREM, PRIME PATTERNS

CONJECTURE, PRIME QUADRUPLET
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Prime Array
Find the m�n ARRAY of single digits which contains
the maximum possible number of PRIMES, where
allowable PRIMES may lie along any horizontal,
vertical, or diagonal line. For m�n�2; 11 PRIMES

are maximal and are contained in the two distinct
arrays

A(2; 2)�
1 3
4 7

� �
;

1 3
7 9

� �
;

giving the PRIMES (3, 7, 13, 17, 31, 37, 41, 43, 47, 71,
73) and (3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97),

respectively. For the 3�2 array, 18 PRIMES are
maximal and are contained in the arrays

A(3; 2)�
1 1 3
9 7 4

� �
;

1 7 2
3 5 9

� �
;

1 7 2
4 3 9

� �
;

1 7 5
4 3 9

� �
;

1 7 9
3 2 5

� �
;

1 7 9
4 3 2

� �
;

1 7 9
4 3 4

� �
;

3 1 6
4 7 9

� �
;

3 7 6
4 1 9

� �
:

The best 3�3 array is

A(3; 3)�
1 1 3
7 5 4
9 3 7

2
4

3
5;

which contains 30 primes: 3, 5, 7, 11, 13, 17, 31, 37,
41, 43, 47, 53, 59, 71, 73, 79, 97, 113, 157, 179, ...
(Sloane’s A032529). This array was found by Rivera
and Ayala and shown by Weisstein in May 1999 to be
maximal and unique (modulo reflection and rotation).

The best 4�4 arrays known are

1 1 3 9
6 4 5 1
7 3 9 7
3 9 2 9

2
664

3
775;

1 1 3 9
7 6 9 2
5 4 7 9
1 7 3 3

2
664

3
775;

1 7 3 3
9 4 2 1
6 5 9 1
7 7 3 9

2
664

3
775;

3 1 6 7
7 5 1 4
9 2 9 3
3 3 7 3

2
664

3
775;

all of which contain 63 PRIMES. The first was found by
C. Rivera and J. Ayala in 1998, and the other three
by James Bonfield on April 13, 1999.

The best 5�5 prime arrays known are

1 1 9 3 3
9 9 5 6 3
8 9 4 1 7
3 3 7 3 1
3 2 9 3 9

2
66664

3
77775;

3 3 1 9 9
8 3 9 1 1
2 7 4 5 7
1 9 6 7 3
9 7 9 1 9

2
66664

3
77775

each of which contains 116 PRIMES. The first was
found by C. Rivera and J. Ayala in 1998, and the
second by Wilfred Whiteside on April 17, 1999.

The best 6�6 prime arrays known are

1 3 9 1 9 9
3 1 7 2 3 4
9 9 4 7 9 3
9 1 5 7 1 3
9 8 3 6 1 7
9 1 7 3 3 3

2
6666664

3
7777775;

1 3 9 1 9 9
9 1 7 2 3 4
6 9 4 7 9 3
7 1 5 7 1 3
9 8 3 6 1 7
9 1 7 3 3 3

2
6666664

3
7777775;



3 1 7 3 3 3
9 9 5 6 3 9
1 1 8 1 4 2
1 3 6 3 7 3
3 4 9 1 9 9
3 7 9 3 7 9

2
6666664

3
7777775;

3 1 7 3 3 3
9 9 5 6 3 9
1 1 8 1 4 2
1 3 6 3 7 3
3 4 9 1 9 9
3 7 9 3 7 9

2
6666664

3
7777775;

3 1 7 3 3 3
9 9 5 6 3 9
1 1 8 1 4 2
1 3 6 3 7 3
3 4 9 1 9 9
9 7 9 3 7 9

2
6666664

3
7777775;

3 1 7 3 3 3
9 9 5 6 3 9
1 1 8 1 4 5
1 3 6 3 7 3
3 4 9 1 9 9
9 9 9 2 3 3

2
6666664

3
7777775;

each of which contain 187 primes. One was found by
S. C. Root, and the others by M. Oswald in 1998.

The best 7 �7 prime array known is

3 1 3 7 3 3 9
9 9 2 3 3 3 3
6 9 7 7 8 9 4
7 6 1 5 9 1 9
7 7 3 4 2 1 1
9 9 4 7 9 3 9
3 3 7 1 9 9 9

2
666666664

3
777777775
;

which contains 281 primes and was found by Wilfred
Whiteside on April 29, 1999.

The best 8 �8 prime array known is

3 3 1 3 9 1 3 3
6 9 3 3 7 3 9 7
7 9 9 6 8 5 7 1
9 7 9 9 1 2 4 9
1 3 2 1 1 3 9 9
6 3 9 1 9 4 6 3
6 3 8 5 3 7 9 3
9 1 3 1 3 9 3 3

2
66666666664

3
77777777775

which contains 382 primes and was found by Wilfred
Whiteside On Oct. 31, 1999.

Heuristic arguments by Rivera and Ayala suggest
that the maximum possible number of primes in 4 �
4; 5 �5 ; and 6 �6 arrays are 58 �/3, 112 �/21, and 205 �/

18, respectively.

See also ARRAY, PRIME ARITHMETIC PROGRESSION,
PRIME CONSTELLATION, PRIME STRING
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Prime Circle

A prime circle of order 2n is a free CIRCULAR

PERMUTATION of the numbers from 1 to 2n with
adjacent PAIRS summing to a PRIME. The number of
prime circles for n �1, 2, ..., are 1, 1, 1, 2, 48, 512, ...
(Sloane’s A051252). The prime circles for the first few
even orders are given in the table below.

/2n/ prime circles

2 /f1; 2g/

4 /f1; 2; 3; 4g/

6 /f1; 4; 3; 2; 5; 6g/

8 /f1; 2; 3; 8; 5; 6; 7 ; 4 g;
f1; 2; 5; 8; 3; 4; 7; 6g/

See also CIRCULAR PERMUTATION
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Prime Cluster
PRIME CONSTELLATION

Prime Constant
The characteristic function

f (n)�
1 n is prime
0 n otherwise

"
(1)



therefore has first few values 0, 1, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 1, 0, 0, 0, 1, 0, 1, ... (Sloane’s A010051). The
constant obtained by concatenating these digits in
binary is therefore

P �0:011010100 . . .2
�0:4146825098511116602481 . . . (2)

(Sloane’s A051006), which has CONTINUED FRACTION

[0, 2, 2, 2, 3, 12, 131, 1, ...] (Sloane’s A051007).

See also PRIME NUMBER
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Prime Constellation
A prime constellation, also called a prime k -tuple,-
prime k -tuplet, or prime cluster, is a sequence of k
consecutive numbers such that the difference be-
tween the first and last is, in some sense, the least
possible. More precisely, a prime k -tuplet is a
sequence of consecutive PRIMES (/p1; p2; ..., pk) with
pk�p1�s(k); where s(k) is the smallest number s for
which there exist k integers b1Bb2B. . .Bbk; bk�
b1�s and, for every PRIME q , not all the residues
modulo q are represented by b1; b2; ..., bk (Forbes).
For each k , this definition excludes a finite number of
clusters at the beginning of the prime number
sequence. For example, (97, 101, 103, 107, 109)
satisfies the conditions of the definition of a prime
5-tuplet, but (3, 5, 7, 11, 13) does not because all three
residues modulo 3 are represented (Forbes).

A prime double with s(2)�2 is OF THE FORM (p , p�2)
and is called a pair of TWIN PRIMES. Prime doubles OF

THE FORM (p , p�4) are called COUSIN PRIMES, and
prime doubles OF THE FORM (p , p�6) are called SEXY

PRIMES.

A prime triplet has s(3)�6: The constellation (p , p�
2; p�4) cannot exist, except for p�3, since one of p ,
p�2; and p�4 must be divisible by three. However,
there are several types of prime triplets which can
exist: (p , p�2; p�6); (p , p�4; p�6); (p , p�6;
p�12):/

A PRIME QUADRUPLET is a constellation of four
successive PRIMES with minimal distance s(4)�8;
and is of the form (p , p�2; p�6; p�8): The sequence
s(n) therefore begins 2, 6, 8, and continues 12, 16, 20,
26, 30, ... (Sloane’s A008407). Another quadruplet
constellation is (p , p�6; p�12; p�18):/

Hardy and Wright (1979, p. 5) conjecture, and it
seems almost certain to be true, that there are
infinitely many TWIN PRIMES (p , p�2) and PRIME

TRIPLETS OF THE FORM (p , p�2; p�6) and (p , p�4;
p�6):/

The first FIRST HARDY-LITTLEWOOD CONJECTURE

states that the numbers of constellations 5x are
asymptotically given by

Px(p; p�2)2
Y
p]3

p(p � 2)

(p � 1)2 g
x

2

dx?

(ln x?)2

�1:320323632 g
x

2

dx?

(ln x?)2 (1)

Px(p; p�4)2
Y
p]3

p(p � 2)

(p � 1)2 g
x

2

dx?

(ln x?)2

�1:320323632 g
x

2

dx?

(ln x?)2 (2)

Px(p; p�6)4
Y
p]3

p(p � 2)

(p � 1)2 g
x

2

dx?

(ln x?)2

�2:640647264 g
x

2

dx?

(ln x?)2 (3)

Px(p; p�2; p�6)9
2

Y
p]5

p2(p � 3)

(p � 1)3 g
x

2

dx?

(ln x?)3

�2:858248596 g
x

2

dx?

(ln x?)3 (4)

Px(p; p�4; p�6)9
2

Y
p]5

p2(p � 3)

(p � 1)3 g
x

2

dx?

(ln x?)3

�2:858248596 g
x

2

dx?

(ln x?)3 (5)

Px(p; p�2; p�6; p�8)27
2

Y
p]5

p3(p � 4)

(p � 1)4 g
x

2

dx?

(ln x?)4

�4:151180864 g
x

2

dx?

(ln x?)4 (6)

Px(p; p�4; p�6; p�10)

27
Y
p]5

p3(p � 4)

(p � 1)4 g
x

2

dx?

(ln x?)4

�8:302361728 g
x

2

dx?

(ln x?)4 (7)

These numbers are sometimes called the HARDY-

LITTLEWOOD CONSTANTS. (1) is sometimes called the
extended TWIN PRIME CONJECTURE, and

Cp; p�2�2P2; (8)

where P2 is the TWIN PRIMES CONSTANT. Riesel (1994)
remarks that the HARDY-LITTLEWOOD CONSTANTS can
be computed to arbitrary accuracy without needing
the infinite sequence of primes.



The integrals above have the analytic forms

g
x

2

dx?

(ln x?)2�Li(x)�
2

ln 2
�

n

ln n
(9)

g
x

2

dx?

(ln x?)4�
1
2Li(x)�

x(1 � ln x)

(ln x)2 �
1

ln 2
�

1

(ln n)2 (10)

g
x

2

dx?

(ln x?)3�
1

6
Li(x)�

2 2 � ln 2 � (ln 2)2
h i

(ln 2)3

8<
:

�
n½2 � ln n � (ln n)2�

(ln n)3

#
; (11)

where Li(x) is the LOGARITHMIC INTEGRAL.

The following table gives the number of prime
constellations 5108; and the second table gives the
values predicted by the Hardy-Littlewood formulas.

Count 105 106 107 108

/(p; p�2)/ 1224 8169 58980 440312

/(p; p�4)/ 1216 8144 58622 440258

/(p; p�6)/ 2447 16386 117207 879908

/(p; p�2; p�6)/ 259 1393 8543 55600

/(p; p�4; p�6)/ 248 1444 8677 55556

/(p; p�2; p�6; p�8)/ 38 166 899 4768

/(p; p�6; p�12; p�18)/ 75 325 1695 9330

Hardy-Littlewood 105 106 107 108

/(p; p�2)/ 1249 8248 58754 440368

/(p; p�4)/ 1249 8248 58754 440368

/(p; p�6)/ 2497 16496 117508 880736

/(p; p�2; p�6)/ 279 1446 8591 55491

/(p; p�4; p�6)/ 279 1446 8591 55491

/(p; p�2; p�6; p�8)/ 53 184 863 4735

/(p; p�6; p�12; p�18)/

Consider prime constellations in which each term is
OF THE FORM n2�1: Hardy and Littlewood showed
that the number of prime constellations of this form
Bx is given by

P(x)C
ffiffiffi
x

p
(ln x)�1; (12)

where

C�
Y
p>2

p prime

1�
(�1)(p�1)=2

p � 1

" #
�1:3727 . . . (13)

(Le Lionnais 1983).

Forbes gives a list of the "top ten" prime k -tuples for
25k517: The largest known 14-constellations are
(11319107721272355839�0, 2, 8, 14, 18, 20, 24, 30,
32, 38, 42, 44, 48, 50), ( 10756418345074847279�0, 2,
8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50),
(6808488664768715759�0, 2, 8, 14, 18, 20, 24, 30,
32, 38, 42, 44, 48, 50), ( 6120794469172998449�0, 2,
8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50),
(5009128141636113611�0, 2, 6, 8, 12, 18, 20, 26,
30, 32, 36, 42, 48, 50).

The largest known prime 15-constellations are
(84244343639633356306067�0, 2, 6, 12, 14, 20, 24,
26, 30, 36, 42, 44, 50, 54, 56),
(8985208997951457604337�0, 2, 6, 12, 14, 20, 26,
30, 32, 36, 42, 44, 50, 54, 56),
(3594585413466972694697�0, 2, 6, 12, 14, 20, 26,
30, 32, 36, 42, 44, 50, 54, 56),
(3514383375461541232577�0, 2, 6, 12, 14, 20, 26,
30, 32, 36, 42, 44, 50, 54, 56),
(3493864509985912609487�0, 2, 6, 12, 14, 20, 24,
26, 30, 36, 42, 44, 50, 54, 56).

The largest known prime 16-constellations are
(3259125690557440336637�0, 2, 6, 12, 14, 20, 26,
30, 32, 36, 42, 44, 50, 54, 56, 60),
(1522014304823128379267�0, 2, 6, 12, 14, 20, 26,
30, 32, 36, 42, 44, 50, 54, 56, 60),
(47710850533373130107�0, 2, 6, 12, 14, 20, 26, 30,
32, 36, 42, 44, 50, 54, 56, 60), (13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73).

The largest known prime 17-constellations are
(3259125690557440336631�0, 6, 8, 12, 18, 20, 26,
32, 36, 38, 42, 48, 50, 56, 60, 62, 66), (17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83) (13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79).

Smith (1957) found 8 consecutive primes spaced like
the cluster pnf g12

n�5 (Gardner 1980). K. Conrow
and J. J. Devore have found 15 consecutive
primes spaced like the cluster pnf g19

n�5 given by
1632373745527558118190�pnf g19

n�5; the first mem-
ber of which is 1632373745527558118201.

Rivera tabulates the smallest examples of k consecu-
tive primes ending in a given digit d�1, 3, 7, or 9 for
k�5 to 11. For example, 216401, 216421, 216431,
216451, 216481 is the smallest set of five consecutive
primes ending in the digit 1.



See also CLUSTER PRIME, COMPOSITE RUNS, COUSIN

PRIMES, PRIME ARITHMETIC PROGRESSION, K -TUPLE

CONJECTURE, PRIME K -TUPLES CONJECTURE, PRIME

QUADRUPLET, PRIME TRIPLET, SEXY PRIMES, TWIN

PRIMES
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Prime Counting Function

The function p(n) giving the number of PRIMES 5n
(Shanks 1993, p. 15). For example, there are no
primes 51; so p(1)�0; there is a single prime (2)
52; so p(2)�1; there are two primes (2 and 3)53; so
p(3)�2; and so on. The first few values for n�1, 2, ...
are 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, ... (Sloane’s
A000720).

The following table gives the values of p(n) for powers
of 10 (Sloane’s A006880; Hardy and Wright 1979,
p. 4; Shanks 1993, pp. 242�/43; Ribenboim 1996,
p. 237). The value for p 1020ð Þ comes from Deleglise
and Rivat (1996). Note that p 109ð Þ is incorrectly given
as 50,847,478 in Hardy and Wright (1979) and Hardy
(1999).

n /p 10nð Þ/

3 168

4 1,229

5 9,592

6 78,498

7 664,579

8 5,761,455

9 50,847,534

10 455,052,511

11 4,118,054,813

12 37,607,912,018

13 346,065,536,839

14 3,204,941,750,802

15 29,844,570,422,669

16 279,238,341,033,925

17 2,623,557,157,654,233

18 24,739,954,287,740,860

19 234,057,667,276,344,607

20 2,220,819,602,560,918,840

One of the most fundamental and important results
in NUMBER THEORY is the asymptotic value of p(n) as
n becomes large. The correct formula is

p(n)li(n); (1)

where li(x) is the LOGARITHMIC INTEGRAL, which is
known as the PRIME NUMBER THEOREM.

The following table compares the prime counting
function p(x); LOGARITHMIC INTEGRAL li x; and RIE-

MANN PRIME NUMBER FORMULA R(x) for small x . Note
that the values given by Hardy (1999, p. 26) for x�
109 are incorrect.

x /p(x)/ /li x�p(x)/ /R(x)�p(x)/

100000 9592 38 /�5/

1000000 78498 130 29



2000000 148933 122 /�9/

3000000 216816 155 0

4000000 283146 206 33

5000000 348513 125 �64

6000000 412849 228 24

7000000 476648 179 �38

8000000 539777 223 /�6/

9000000 602489 187 �53

10000000 664579 339 88

100000000 5761455 754 97

1000000000 50847534 1701 �79

The prime counting function can be expressed by
LEGENDRE’S FORMULA, LEHMER’S FORMULA, MAPES’

METHOD, or MEISSEL’S FORMULA. A brief history of
attempts to calculate p(n) is given by Berndt (1994).
The following table is taken from Riesel (1994), where
O(x) is ASYMPTOTIC NOTATION.

Method Time Storage

Legendre /O(x)/ /O x1=2
� �

/

Meissel /O x=(ln x)3

 �

/ /O x1=2=ln x
� �

/

Lehmer /O x=(ln x)4

 �

/ /O x1=3=ln x
� �

/

Mapes’ /O x0:7ð Þ/ /O x0:7ð Þ/

Lagarias-Miller-
Odlyzko

/O x2=3�e
� �

/ /O x1=3�e
� �

/

Lagarias-Odlyzko 1 /O x3=5�e
� �

/ /O xeð Þ/

Lagarias-Odlyzko 2 /O x1=2�e
� �

/ /O x1=4�e
� �

/

An approximate formula due to Locker-Ernst
(Locker-Ernst 1959, Panaitopol 1999), illustrated
above, is given by

p(n):
n

hn

; (2)

where hn is related to the HARMONIC NUMBER Hn by
hn�Hn�3=2: This formula is within:2 of the actual
value for 505n51000: The values for which p�
n=hn > 0 are 1, 109, 113, 114, 199, 200, 201, ...

(Sloane’s A051046). Panaitopol (1999) shows that
this quantity is positive for all n]1429:/

An upper limit for p(n) is given by

p(n)B
2n � 6

ln n
(3)

(Rosser and Schoenfeld 1962). Hardy and Wright
(1979, p. 414) give the formula

p(n)��1�
Xn

j�3

(j�2)!�j
(j � 2)!

j

$ %" #
; (4)

where xb c is the FLOOR FUNCTION.

A modified version of the prime counting function is
given by

p0(p)�
p(p) for p composite
p(p)�1

2 for p prime

"

p0(p)�
X�
n�1

m xð Þf x1=n
� �
n

;

where m(n) is the MÖBIUS FUNCTION and f (x) is the
RIEMANN FUNCTION.

The notation pa; b is also used to denote the number of
PRIMES OF THE FORM ak�b (Shanks 1993, pp. 21�/2).
Groups of EQUINUMEROUS values of pa; b include (/p3; 1;
p3; 2); (/p4; 1; p4; 3); (/p5; 1; p5; 2; p5; 3; p5; 4); (/p6; 1; p6; 5);/
(/p7; 1; p7; 2; p7; 3; p7; 4; p7; 5; p7; 6); (/p8; 1; p8; 3; p8; 5;
p8; 7); (/p9; 1; p9; 2; p9; 4; p9; 5; p9; 7; p9; 8); and so on.
The values of /pn;k/ for small n are given in the
following table for the first few powers of ten (Shanks
1993).

n /p3; 1(n)/ /p3; 2(n)/ /p4; 1(n)/ /p4; 3(n)/

101 1 2 1 2

102 11 13 11 13

103 80 87 80 87

104 611 617 609 619

105 4784 4807 4783 4808

106 39231 39266 39175 39322

107 332194 332384 332180 332398

n /p5; 1(n)/ /p5; 2(n)/ /p5; 3(n)/ /p5; 4(n)/

101 0 2 1 0

102 5 7 7 5

103 40 47 42 38

104 306 309 310 303



105 2387 2412 2402 2390

106 19617 19622 19665 19593

107 166104 166212 166230 166032

n / p6; 1(n)/ /p6 ; 5(n)/

101 1 1

102 11 12

103 80 86

104 611 616

105 4784 4806

106 39231 39265

n /p7 ; 1/ /p7 ; 2/ /p7 ; 3/ /p7 ; 4/ /p7 ; 5/ /p7 ; 6/

101 0 1 1 0 1 0

102 3 4 5 3 5 4

103 28 27 30 26 29 27

104 203 203 209 202 211 200

105 1593 1584 1613 1601 1604 1596

106 13063 13065 13105 13069 13105 13090

n /p8 ; 1(n)/ /p8; 3(n)/ /p8 ; 5(n)/ /p8 ; 7(n)/

101 0 1 1 1

102 5 7 6 6

103 37 44 43 43

104 295 311 314 308

105 2384 2409 2399 2399

106 19552 19653 19623 19669

107 165976 166161 166204 166237

Note that since p8 ; 1(n) ; p8 ; 3(n) ; p8 ; 5(n) ; and p8 ; 7(n)
are EQUINUMEROUS,

p4; 1(n) � p8; 1(n) � p8 ; 5

p4; 3(n) � p8; 3(n) � p8 ; 7

are also equinumerous.

Erdos proved that there exist at least one PRIME OF

THE FORM 4k �1 and at least one PRIME of the form
4k �3 between n and 2n for all n �6.

The smallest x such that x ]np(x) for n �2, 3, ... are
2, 27, 96, 330, 1008, ... (Sloane’s A038625), and the
corresponding p(x) are 1, 9, 24, 66, 168, 437, ...
(Sloane’s A038626). The number of solutions of x]
np(x) for n�2, 3, ... are 4, 3, 3, 6, 7, 6, ... (Sloane’s
A038627).

See also BERTELSEN’S NUMBER, CHEBYSHEV’S THEO-

REM, EQUINUMEROUS, LEGENDRE’S CONSTANT, LE-

GENDRE’S FORMULA, LEHMER-SCHUR METHOD,
LOGARITHMIC INTEGRAL, MAPES’ METHOD, PRIME

ARITHMETIC PROGRESSION, PRIME NUMBER, PRIME

NUMBER THEOREM, RIEMANN PRIME NUMBER FOR-

MULA
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Prime Cut
Find two numbers such that x2 �y2 (mod n) : If you
know the GREATEST COMMON DIVISOR of n and x �y;
there exists a high probability of determining a PRIME

factor. Taking small numbers x which additionally
give small PRIMES x2 �p (mod n) further increases
the chances of finding a PRIME FACTOR.

See also GREATEST COMMON DIVISOR

Prime Decomposition
PRIME FACTORIZATION

Prime Difference Function

dn �pn�1 �pn :

The first few values are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2,
4, 6, 6, ... (Sloane’s A001223). Rankin has shown that

dn >
c ln n ln ln n ln ln ln ln n

(ln ln ln n)2

for infinitely many n and for some constant c (Guy
1994).
An integer n is called a JUMPING CHAMPION if n is the
most frequently occurring difference between conse-
cutive primes n 5N for some N (Odlyzko et al. ).

See also ANDRICA’S CONJECTURE, GILBREATH’S CON-

JECTURE, GOOD PRIME, JUMPING CHAMPION, PÓ LYA

CONJECTURE, PRIME GAPS, SHANKS’ CONJECTURE,
TWIN PEAKS
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Prime Diophantine Equations
/k �2 is PRIME IFF the 14 DIOPHANTINE EQUATIONS in
26 variables

wz �h �j �q �0 (1)

(gk �2g �k �1)(h �j) �h �z �0 (2)

16(k �1)3(k �2)(n �1)2 �1 �f 2 �0 (3)

2n �p �q �z �e �0 (4)

e3(e �2)(a �1)2 �1 �o2 �0 (5)

a2 �1
� �

y2 �1 �x2 �0 (6)

16r2y4 a2 �1
� �

�1 �u2 �0 (7)

n �l �v �y �0 (8)

a2 �1
� �

l2 �1 �m2 �0 (9)

ai �k �1 �l �i �0 (10)

a �u2 u2 �a
� �� �2

�1
n o

(n �4 dy)2 �1 �(x �cu)2 �0

(11)

p �l(a �n �1) �b(2an �2a �n2 �2n �2) �m �0

(12)

q �y(a �p �1) �s 2ap �2a �p2 �2p �2
� �

�x �0

(13)

z �pl(a �p) �t(2ap �p2 �1) �pm �0 (14)

have a solution in POSITIVE INTEGERS (Riesel 1994,
p. 40).

See also PRIME-GENERATING POLYNOMIAL
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Prime Divisor
If f (x) is a nonconstant INTEGER POLYNOMIAL and c is
an integer such that f (c) is divisible by the prime p ,
that p is called a prime divisor of the polynomial f (x)



(Nagell 1951, p. 81). Every INTEGER POLYNOMIAL f (x)
which is not a constant has an infinite number of
prime divisors (Nagell 1951, p. 82).

See also BAUER’S THEOREM, INTEGER POLYNOMIAL
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Prime Factorization
The FACTORIZATION of a numbers into its constituent
PRIMES, also called prime decomposition. Given a
POSITIVE INTEGER n ]2; the prime factorization is
written

n �p a1

1 p a2

2 � � �p ak

k ;

where the pi/s are the k PRIME FACTORS, each of order
ai : Each factor p ai

i is called a PRIMARY. The first few
prime factorizations (the number 1, by definition, has
a prime factorization of "1") are given in the following
table.

1 1 11 11

2 2  12 /22 � 3/

3 3 13 13

4 22 14 /2 � 7/

5 5  15 /3 � 5/

6 /2 � 3/ 16 24

7 7 17 17

8 23 18 /2 � 9/

9 32 19 19

10 /2 � 5/ 20 /22 � 5/

The number of digits in the prime factorization of
n �1, 2, ..., are 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, (Sloane’s
A050252).

In general, prime factorization is a difficult problem,
and many sophisticated PRIME FACTORIZATION ALGO-

RITHMS have been devised for special types of num-
bers.

See also DISTINCT PRIME FACTORS, ECONOMICAL

NUMBER, EQUIDIGITAL NUMBER, FACTORIZATION, PRI-

MARY, PRIME FACTORIZATION, PRIME FACTORIZATION

ALGORITHMS, PRIME FACTORS, PRIME NUMBER,
ROUND NUMBER, ROUNDNESS, WASTEFUL NUMBER

Prime Factorization Algorithms
Many ALGORITHMS have been devised for determining
the PRIME FACTORS of a given number (a process
called PRIME FACTORIZATION). They vary quite a bit in
sophistication and complexity. It is very difficult to
build a general-purpose algorithm for this computa-
tionally "hard" problem, so any additional informa-
tion which is known about the number in question or
its factors can often be used to save a large amount of
time.

The simplest method of finding factors is so-called
"DIRECT SEARCH FACTORIZATION" (a.k.a. TRIAL DIVI-

SION). In this method, all possible factors are system-
atically tested using trial division to see if they
actually DIVIDE the given number. It is practical
only for very small numbers.

The fastest-known fully proven deterministic algo-
rithm is the Pollard-Strassen method (Pomerance
1987; Hardy et al. 1990).

See also BRENT’S FACTORIZATION METHOD, CLASS

GROUP FACTORIZATION METHOD, CONTINUED FRAC-

TION FACTORIZATION ALGORITHM, DIRECT SEARCH

FACTORIZATION, DIXON’S FACTORIZATION METHOD,
ELLIPTIC CURVE FACTORIZATION METHOD, EULER’S

FACTORIZATION METHOD, EXCLUDENT FACTORIZATION

METHOD, FERMAT’S FACTORIZATION METHOD, LEGEN-

DRE’S FACTORIZATION METHOD, LENSTRA ELLIPTIC

CURVE METHOD, NUMBER FIELD SIEVE, POLLARD P-1

FACTORIZATION METHOD, POLLARD RHO FACTORIZA-

TION METHOD, PRIME FACTORIZATION, PRIME NUM-

BER, QUADRATIC SIEVE, QUITEPRIME, TRIAL DIVISION,
VERYPRIME, WILLIAMS P�1 FACTORIZATION METHOD
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Prime Factors

The number of DISTINCT PRIME FACTORS of a number
n is denoted v(n): v(n) therefore corresponds to a
prime factorization OF THE FORM

n�pa1

1 pa2

2 � � �pav(n)

v(n): (1)

The first few values for n�1, 2, ... are 0, 1, 1, 1, 1, 2,
1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, ... (Sloane’s
A001221).
The first few numbers un which are products of an
odd number of distinct prime factors (Hardy 1999,
p. 64; Ramanujan 2000, pp. xxiv and 21) are 2, 3, 5, 7,
11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42 43, 47, ...
(Sloane’s A030059). un satisfies

X�
n�1

1

us
n

�
1

2

z(s)

z(2s)
�z(s)

" #
(2)

(Hardy 1999, pp. 64�/5). In addition, if U(n) is the
number of uk with k5n; then

U(x)
3x

p2
(3)

(Hardy 1999, pp. 64�/5).

The number of not necessarily distinct prime factors
of a number n is denoted r(n): The first few values for

n�1, 2, ... are 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1,
3, 1, 3, ... (Sloane’s A001222). If n is chosen at random
between 1 and x , then the probability that r(n)5
ln n ln n�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln x

p
approaches

1ffiffiffiffiffiffi
2p

p g
c

��

e�u2=2 du (4)

(Knuth 1998, p. 384). In addition, the average value t̄
of r(n)�ln ln x for 15n5x approaches

t̄�g�
X

p prime

ln 1�
1

p

 !
�

1

p � 1

" #
(5)

�g�
X�
n�2

f(n) ln[z(n)]

n
(6)

:1:0345638819; (7)

where g is the EULER-MASCHERONI CONSTANT, f(n) is
the TOTIENT FUNCTION, and z(n) is the RIEMANN ZETA

FUNCTION.

The average orders of both v(n) and r(n) are

v(n)ln ln n (8)

(Hardy 1999, p. 51). More precisely,

X
n5x

v(n)�x ln ln x�Ax�O
x

ln x

 !
(9)

X
n5x

r(n)�x ln ln x�Bx�O
x

ln x

 !
(10)

for appropriate constants A and B (Hardy and
Ramanujan 1917; Hardy and Wright 1979, p. 355;
Hardy 1999, p. 57), where O(x) is ASYMPTOTIC NOTA-

TION.

The following table gives the prime factors for the
positive integers550:/

1 1 11 11 21 /3 � 7/ 31 31 41 41

2 2 12 /22 � 3/ 22 /2 � 11/ 32 25 42 2 � 3 � 7

3 3 13 13 23 23 33 /3 � 11/ 43 43

4 22 14 /2 � 7/ 24 /23 � 3/ 34 /2 � 17/ 44 22 � 11



5 5  15 /3 � 5/ 25 52 35 /5 � 7/ 45 33 � 5

6 /2 � 3/ 16 24 26 /2 � 13/ 36 /22 � 32
/ 46 2 � 23

7 7 17 17 27 33 37 37 47 47

8 23 18 /2 � 32
/ 28 /22 � 7/ 38 /2 � 19/ 48 24 � 3

9 32 19 19 29 29 39 /3 � 13/ 49 72

10 /2 � 5/ 20 /22 � 5/ 30 /2 � 3 � 5/ 40 /23 � 5/ 50 2 � 52

See also DICKMAN FUNCTION, DISTINCT PRIME FAC-

TORS, DIVISOR FUNCTION, GREATEST PRIME FACTOR,
LEAST PRIME FACTOR, LIOUVILLE FUNCTION, MER-

TENS CONSTANT, PÓ LYA CONJECTURE, PRIME FACTOR-

IZATION ALGORITHMS, PRIMITIVE PRIME FACTOR,
ROUND NUMBER
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Prime Field
A FINITE FIELD GF(p) where p is PRIME.

Prime Formulas
There exist a variety of formulas for producing either
the nth prime as a function of n , or else taking on
only prime values. However, all such formula require
either extremely accurate knowledge of some un-
known constant, or else effectively require knowledge
of the primes ahead of time in order to use the
formula (Dudley 1969, Ribenboim 1996, p. 186).

For example, there exists a CONSTANT /u ¼ 1:3063 . . ./
(Sloane’s A051021) known as MILLS’ CONSTANT such
that

f (n)� u3n> ?
; (1)

where xb c is the FLOOR FUNCTION, is prime for all n]
1 (Ribenboim 1996, p. 186). The first few values of
f (n) are 2, 11, 1361, 2521008887, ... (Sloane’s
A051254). It is not known if u is IRRATIONAL. There
also exists a CONSTANT v:1:9287800 such that

g(n)� 22 U 2v|fflfflffl{zfflfflffl}
n

$ %
(2)

(Wright 1951; Ribenboim 1996, p. 186) is prime for
every n]1: The first few values of g(n) are 3, 13,
16381, .... In the case of both f (n) and g(n); the
numbers at n�4 grow so rapidly that an extremely
precise value of u or v is needed in order to obtain the
correct value. Values for n]5 are hopeless.

Explicit FORMULAS exist for the nth prime both as a
function of n and in terms of the primes 2, ..., pn�1

(Hardy and Wright 1979, pp. 5�/, 344�/45, and 414;
Guy 1994, pp. 36�/1). Let

F(j)� cos2 p
(j � 1)! � 1

j

" #$ %
(3)

for integral j �1, where xb c is again the FLOOR

FUNCTION. Then

pn�1�
X2n

m�1

nPm
j�1 F(j)

$ %1=n
6664

7775 (4)

�1�
X2n

m�1

n

1 � p(m)

$ %1=n
6664

7775; (5)

where p(m) is the PRIME COUNTING FUNCTION. This
formula conceals the prime numbers j as those for
which F(j)�1; i.e., the values of F(j) are 1, 1, 1, 0, 1, 0,
1, 0, 0, 0, 1, ....

Gandhi gave the formula in which pn�1 is the unique
integer such that

1B2pn�1

X
d j pn#

m(d)

2d � 1
�

1

2

 !
B2; (6)

where pn# is the PRIMORIAL function (Gandhi 1971,
Eynden 1972, Golomb 1974) and m(n) is the MÖBIUS

FUNCTION. It is also true that

pn�1�1�pn�F pn�1ð Þ�F pn�1ð Þ�F pn�2ð Þ

�
Yp

j�1

F pn�jð Þ (7)

(Ribenboim 1996, pp. 180�/82). Note that the number
of terms in the summation to obtain the nth prime is
2n; so these formulas turn out not to be practical in
the study of primes. An interesting INFINITE PRODUCT

formula due to Euler which relates p and the nth
PRIME pn is



p �
2

Q�

i�n 1 �
sin 1

2 ppn


 �
pn

2
4

3
5 (8)

�
2Q�

i�n 1 �
( �1) pn �1ð Þ=2

pn

" # (9)

(Blatner 1997). Hardy and Wright (1979, p. 414) give
the formula

pn �1 �
X2n

j�1

f (n; p(j)); (10)

for n �3, where

f (x; y) �

0 for x �y

1
2 1 �

x � y

x � yj j

" #
for x "y

8><
>: (11)

and

p(n) ��1 �
Xn

j �3

(j �2)! �j
(j � 2)!

j

$ %" #
(12)

(correcting a sign error), where xb c is the FLOOR

FUNCTION.

A double sum for the nth prime pn is

pn �1 �
X2 n ln nb c�1ð Þ

k �1

1 �
Pk

j�2 1 � s(j)b c
n

$ %" #
; (13)

where

s(j) ��

Pj
s�1

j

s

$ %
�

j � 1

s

$ % !
� 2

j 
(14)

(Ruiz 2000).

B. M. Bredihin proved that

f (x; y) �x2 �y2 �1 (15)

takes prime values for infinitely many integral pairs
(x, y ) (Honsberger 1976, p. 30). In addition, the
function

f (x; y) �1
2(y �1) B2(x; y) �1

�� ��� B2(x; y) �1
� �> ?

�2;

(16)

where

B(x; y) �x(y �1) �(y! �1); (17)

/y! is the FACTORIAL, and xb c is the FLOOR FUNCTION,
generates only prime numbers for POSITIVE INTEGER

arguments. It not only generates every prime num-
ber, but generates ODD PRIMES exactly once each,
with all other values being 2 (Honsberger 1976,

p. 33). For example,

f (1; 2) �3 (18)

f (5; 4) �5 (19)

f (103; 6) �7; (20)

with no new primes generated for x; y 51000 :/

Conway (Guy 1983, Conway and Guy 1996, p. 147)
gives an algorithm for generating primes based on 14
fractions, but it is actually just a concealed version of
a SIEVE.

See also MILLS’ CONSTANT, PRIME NUMBER, SIEVE
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Prime Gaps
Letting

dn�pn�1�pn (1)

be the PRIME DIFFERENCE FUNCTION, Rankin has
showed that



dn >
c ln n ln ln n ln ln ln ln n

(ln ln ln n)2 (2)

for infinitely many n and for some constant c (Guy
1994).

Let p(d) be the smallest PRIME following d or more
consecutive COMPOSITE NUMBERS. The largest known
is

p(804) �90 ; 874; 329; 412; 297: (3)

The largest known prime gap is of length 4247,
occurring following 10314 �1929 (Baugh and O’Hara
1992), although this gap is almost certainly not
maximal (i.e., there probably exists a smaller number
having a gap of the same length following it). Cramér
(1937) and Shanks (1964) conjectured that a maximal
gap p(n) of length n first appears at approximately

p(n) exp
ffiffiffi
n

p� �
: (4)

Wolf conjectures a slightly different form

p(n) 
ffiffiffi
n

p
exp

ffiffiffi
n

p� �
; (5)

which agrees better with numerical evidence.

Wolf conjectures that the maximal gap G(n) between
two consecutive primes less than n appears approxi-
mately at

G(n) 
n

p(n)
2 ln  p(n) �ln n �ln 2C2ð Þ½ ��g(n); (6)

where p(n) is the PRIME COUNTING FUNCTION and C2 is
the TWIN PRIMES CONSTANT. Setting p(n) n=ln n
reduces to Cramer’s conjecture for large n ,

G(n) (ln n)2 : (7)

Let c(n) be the smallest starting INTEGER c(n) for a
run of n consecutive COMPOSITE NUMBERS, also called
a COMPOSITE RUN. No general method other than
exhaustive searching is known for determining the
first occurrence for a maximal gap, although arbitra-
rily large gaps exist (Nicely 1998). The first few c(n)
for n �1, 2, ... are 4, 8, 8, 24, 24, 90, 90, 114, ...
(Sloane’s A030296).

The following table gives the sequence of maximal
prime gaps, omitting degenerate runs which are part
of a run with greater n . It is a complete list of
smallest maximal runs up to 1016 (Nicely, pers.
comm., May 30, 2000). c(n) in this table is given by
Sloane’s A008950, and n by Sloane’s A008996. The
ending integers for the run corresponding to c(n) are
given by Sloane’s A008995. Young and Potler (1989)
determined the first occurrences of prime gaps up to
72,635,119,999,997, with all first occurrences found
between 1 and 673. Nicely (1998) extended the list of
maximal prime gaps to a length of 915, denoting gap
lengths by the difference of bounding PRIMES, c(n) �1:/

n /c(n)/ n /c(n)/

1 4 319 2,300,942,550

3 8 335 3,842,610,774

5 24 353 4,302,407,360

7 90 381 10,726,904,660

13 114 383 20,678,048,298

17 524 393 22,367,084,960

19 888 455 25,056,082,088

21 1,130 463 42,652,618,344

33 1,328 467 127,976,334,672

35 9,552 473 182,226,896,240

43 15,684 485 241,160,024,144

51 19,610 489 297,501,075,800

71 31,398 499 303,371,455,242

85 155,922 513 304,599,508,538

95 360,654 515 416,608,695,822

111 370,262 531 461,690,510,012

113 492,114 533 614,487,453,424

117 1,349,534 539 738,832,927,928

131 1,357,202 581 1,346,294,310,750

147 2,010,734 587 1,408,695,493,610

153 4,652,354 601 1,968,188,556,461

179 17,051,708 651 2,614,941,710,599

209 20,831,324 673 7,177,162,611,713

219 47,326,694 715 13,828,048,559,701

221 122,164,748 765 19,581,334,192,423

233 189,695,660 777 42,842,283,925,352

247 191,912,784 803 90,874,329,411,493

249 387,096,134 805 171,231,342,420,521

281 436,273,010 905 218,209,405,436,543

287 1,294,268,492 915 1,189,459,969,825,483

291 1,453,168,142 923 1,686,994,940,955,803

1131 1,693,182,318,746,371

See also JUMPING CHAMPION, PRIME CONSTELLATION,
PRIME DIFFERENCE FUNCTION, SHANKS’ CONJECTURE
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Prime Group
When the ORDER h of a finite GROUP is a PRIME

NUMBER, there is only one possible GROUP of ORDER h .
Furthermore, the GROUP is CYCLIC.

See also P -GROUP

Prime Ideal
An IDEAL I such that if ab 
 I ; then either a 
 I or b 
 I :
For example, in the integers, the IDEAL a� ph i (i.e.,
the multiples of p ) is prime whenever p is a PRIME

NUMBER.

Prime ideals are useful when the ring in question is
not necessarily a PRINCIPAL IDEAL DOMAIN, e.g., a�
2;

ffiffiffi
6

p9 :
in Z

ffiffiffi
6

p� �
: The general element of a can be

written as 2a �b
ffiffiffi
6

p
where a and b can be any

integers. Suppose that

x1 �x2

ffiffiffi
6

p
 �
y1 �y2

ffiffiffi
6

p
 �
�2a �b

ffiffiffi
6

p
;

then x1y1 �6x2y2 �2a : So either x1 or y1 has to be
even. The corresponding factor x1 �x2

ffiffiffi
6

p� �
or

y1 �y2

ffiffiffi
6

p� �
has to be in a� 2 ;

ffiffiffi
6

p9 :
: Hence, the ideal

a is prime. Note that this ring does not have UNIQUE

FACTORIZATION since 2 � 3 �6 �
ffiffiffi
6

p
�
ffiffiffi
6

p
:/

One consequence of the definition is that the set of
elements not in a prime ideal, R �p; is CLOSED under
multiplication. This allows one to LOCALIZE at p by
considering the RING OF FRACTIONS. This ring is
analogous to the construction of the rationals as
fractions of integers, except that the denominator
must be in R �p: The only MAXIMAL IDEAL in this ring
is the EXTENSION of p:/

From the perspective of ALGEBRAIC GEOMETRY, ideals
correspond to VARIETIES. Because multiplication cor-
responds to union (such as xy �0 implies x �0 or
y �0), a prime ideal corresponds to an IRREDUCIBLE

VARIETY.

See also DEDEKIND RING, IDEAL, IRREDUCIBLE VARI-

ETY, KRULL DIMENSION, MAXIMAL IDEAL, STICKEL-

BERGER RELATION, STONE SPACE

Prime Knot
A KNOT other than the UNKNOT which cannot be
expressed as a sum of two other KNOTS, neither of
which is unknotted. A KNOT which is not prime is
called a COMPOSITE KNOT. It is often possible to
combine two prime knots to create two different
COMPOSITE KNOTS, depending on the orientation of
the two. Schubert (1949) showed that every knot can
be uniquely decomposed (up to the order in which the
decomposition is performed) as a KNOT SUM of prime
knots.

There is no known FORMULA for giving the number of
distinct prime knots as a function of the number of
crossings. The numbers of distinct prime knots hav-
ing n �1, 2, ... crossings are 0, 0, 1, 2, 3, 7, 21, 49, 165,
552, 2176, 9988, ... (Sloane’s A002863). Hoste et al.
(1998) computed the number of distinct prime knots
of n crossing up to n �16. Let N(n) be the number of
distinct PRIME KNOTS of n crossings, counting CHIRAL

versions of the same knot separately. Then

1
3 2n�2 �1
� �

5N(n) +en

(Ernst and Summers 1987). Welsh has shown that
the number of knots is bounded by an exponential in
n , and it is also known that

lim sup[N(n)]1 =n 
B13:5

(Welsh 1991, Hoste et al. 1998, Thistlethwaite 1998).

Menasco (1984) showed that a reduced alternating
diagram represents a prime knot IFF the diagram is
itself prime ("an alternating knot is prime IFF it looks
prime"; Hoste et al. 1998).

See also COMPOSITE KNOT, KNOT
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Prime k-Tuple
PRIME CONSTELLATION

Prime k-Tuples Conjecture
K -TUPLE CONJECTURE

Prime k-Tuplet
PRIME CONSTELLATION

Prime Manifold
An n -MANIFOLD which cannot be "nontrivially" de-
composed into other n -MANIFOLDS.

See also MANIFOLD

Prime Number
A prime number (or prime integer, often simply called
a "prime" for short) is a POSITIVE INTEGER p �1 that
has no positive integer DIVISORS other than 1 and p
itself. (More concisely, a prime number p is a
POSITIVE INTEGER having exactly one positive divisor
other than 1.) For example, the only divisors of 13 are
1 and 13, making 13 a prime number, while the
number 24 has divisors 1, 2, 3, 4, 6, 8, 12, and 24
(corresponding to the factorization 24�23 � 3); mak-
ing 24 not a prime number. POSITIVE INTEGERS other
than 1 which are not prime are called COMPOSITE

NUMBERS. The number 1 is a special case which is
considered neither prime nor composite (Wells 1986,
p. 31).

Although the number 1 used to be considered a prime
(Lehmer 1909; Lehmer 1914; Hardy and Wright 1979,
p. 11; Sloane and Plouffe 1995, p. 33; Hardy 1999,
p. 46), it requires special treatment in so many
definitions and applications involving primes greater
than or equal to 2 that it is usually placed into a class
of its own. As noted by Tietze (1965, p. 2), "Why is the
number 1 made an exception? This is a problem that
schoolboys often argue about, but since it is a
question of definition, it is not arguable." The smal-
lest prime is therefore 2. However, since 2 is the only
EVEN PRIME, it is also somewhat special, the set of all

primes excluding 2 is called the "ODD PRIMES." Note
also that while 2 is considered a prime today, at one
time it was not (Tietze 1965, p. 18; Tropfke 1921,
p. 96). Excluding 1 and including 2, the first few
primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
(Sloane’s A000040; Hardy and Wright 1979, p. 3), and
the SET of primes is sometimes denoted P:/

While the term "prime number" commonly refers to
prime positive integers, other types of primes are also
defined, such as the GAUSSIAN PRIMES.

The function which gives the number of primes less
than a number n is denoted p(n) and is called the
PRIME COUNTING FUNCTION. The theorem giving an
asymptotic form for p(n) is called the PRIME NUMBER

THEOREM. Prime numbers can be generated by siev-
ing processes (such as the ERATOSTHENES SIEVE), and
LUCKY NUMBERS, which are also generated by sieving,
appear to share some interesting asymptotic proper-
ties with the primes. Prime numbers satisfy many
strange and wonderful properties. Although there
exist explicit PRIME FORMULAS (i.e., formulas which
either generate primes for all values or else the nth
prime as a function of n ), they are contrived to such
an extent that they are of little practical value.

Many PRIME FACTORIZATION ALGORITHMS have been
devised for determining the prime factors of a given
INTEGER, a process known as factorization or prime
factorization. They vary quite a bit in sophistication
and complexity. It is very difficult to build a general-
purpose algorithm for this computationally "hard"
problem, so any additional information which is
known about the number in question or its factors
can often be used to save a large amount of time. It
should be emphasized that although no efficient
algorithms are known for factoring arbitrary primes,
it has not been proved that no such algorithm exists.
It is therefore conceivable that a suitably clever
person could devise a general method of factoring
which would render the vast majority of encryption
schemes in current widespread use, including those
used by banks and governments, easily breakable.

Because of their importance in encryption algorithms
such as RSA ENCRYPTION, prime numbers can be
important commercial commodities. In fact, Roger
Schlafly has obtained U.S. Patent 5,373,560 (12/13/
94) on the following two primes (expressed in hex-
adecimal notation):

98A3DF52AEAE9799325CB258D767EBD1F4630E9B

9E21732A4AFB1624BA6DF911466AD8DA960586F4

A0D5E3C36AF099660BDDC1577E54A9F402334433

ACB14BCB

and

93E8965DAFD9DFECFD00B466B68F90EA68AF5DC9



FED915278D1B3A137471E65596C37FED0C7829FF

8F8331F81A2700438ECDCC09447DC397C685F397

294F722BCC484AEDF28BED25AAAB35D35A65DB1F

D62C9D7BA55844FEB1F9401E671340933EE43C54

E4DC459400D7AD61248B83A2624835B31FFF2D95

95A5B90B276E44F9 :

The FUNDAMENTAL THEOREM OF ARITHMETIC states
that any POSITIVE INTEGER can be represented in
exactly one way as a PRODUCT of primes. EUCLID’S

SECOND THEOREM demonstrated that there are an
infinite number of primes. However, it is not known if
there are an infinite number of primes OF THE FORM

n2 �1 (Hardy and Wright 1979, p. 19; Ribenboim
1996, pp. 206 �/08), whether there are an INFINITE

number of TWIN PRIMES (the TWIN PRIME CONJEC-

TURE), or if a prime can always be found between n2

and (n �1)2 (Hardy and Wright 1979, p. 415; Riben-
boim 1996, pp. 397 �/98). The latter two of these are
two of LANDAU’S PROBLEMS.

The simplest method of finding factors is so-called
"DIRECT SEARCH FACTORIZATION" (a.k.a. TRIAL DIVI-

SION). In this method, all possible factors are system-
atically tested using trial division to see if they
actually DIVIDE the given number. It is practical
only for very small numbers. More general (and
complicated) methods include the ELLIPTIC CURVE

FACTORIZATION METHOD and NUMBER FIELD SIEVE

factorization method.

It has been proven that the set of prime numbers is a
DIOPHANTINE SET (Ribenboim 1991, pp. 106 �/07).
Ramanujan also showed that

d p(x)

dx


1

x ln x

X�
n �1

m(n)

n
x1=n ; (1)

where p(x) is the PRIME COUNTING FUNCTION and m(n)
is the MÖ BIUS FUNCTION (Berndt 1994, p. 117).

With the exception of 2 and 3, all primes are of the
form p �6n 91; i.e., p �6 (mod 1; 5): For n an
INTEGER ]2; n is prime IFF

n �1
k

$ %
�(�1)k (mod n) (2)

for k �0, 1, ..., n �1 (Deutsch 1996), where n
k

� �
is a

BINOMIAL COEFFICIENT. In addition, an integer n is
prime IFF

f(n) � s(n) �2n: (3)

The first few composite n for which n [f(n) � s(n)]j are
n �312, 560, 588, 1400, 23760, ... (Sloane’s A011774;
Guy 1997), with a total of 18 such numbers less than
2 �107 :/

Cheng (1979) showed that for x sufficiently large,
there always exist at least two prime factors between

x �xað Þ and x for a ]0 :477 . . . (Le Lionnais 1983,
p. 26). Let f (n) be the number of decompositions of n
into two or more consecutive primes. Then

lim
x 0�

1

x

Xx

n�1

f (n) �ln 2 (4)

(Moser 1963, Le Lionnais 1983, p. 30).

The probability that the GREATEST PRIME FACTOR of a
RANDOM integer n is greater than

ffiffiffi
n

p
is ln 2

(Schroeppel 1972). The probability that two INTEGERS

picked at random are RELATIVELY PRIME is [ z(2)]�1 �
6=p2 ; where z(x) is the RIEMANN ZETA FUNCTION

(Cesaro and Sylvester 1883). Given three INTEGERS

chosen at random, the probability that no common
factor will divide them all is

[z(3) �1] :1:20206 �1 :0:831907 ; (5)

where z(3) is APÉ RY’S CONSTANT. In general, the
probability that n random numbers lack a p th POWER

common divisor is [z(np)]�1 (Beeler et al. 1972, Item
53).

Large primes include the large MERSENNE PRIMES,
FERRIER’S PRIME, and 391581 � 2216193�1 (Cipra
1989). The largest known prime as of 1999 is the
MERSENNE PRIME 26972593�1:/

Primes consisting of consecutive DIGITS (counting 0 as
coming after 9) include 2, 3, 5, 7, 23, 67, 89, 4567,
78901, ... (Sloane’s A006510).

See also ADLEMAN-POMERANCE-RUMELY PRIMALITY

TEST, ALMOST PRIME, ANDRICA’S CONJECTURE, BER-

TRAND’S POSTULATE, BROCARD’S CONJECTURE, BRUN’S

CONSTANT, CARMICHAEL’S CONJECTURE, CARMICHAEL

FUNCTION, CARMICHAEL NUMBER, CHEBYSHEV FUNC-

TIONS, CHEBYSHEV-SYLVESTER CONSTANT, CHEN’S

THEOREM, CHINESE HYPOTHESIS, COMPOSITE NUM-

BER, COMPOSITE RUNS, COPELAND-ERDOS CONSTANT,
CRAMER CONJECTURE, CUNNINGHAM CHAIN, CYCLO-

TOMIC POLYNOMIAL, DE POLIGNAC’S CONJECTURE,
DIRICHLET’S THEOREM, DIVISOR, ERDOS-KAC THEO-

REM, EUCLID’S THEOREMS, FEIT-THOMPSON CONJEC-

TURE, FERMAT NUMBER, FERMAT QUOTIENT,
FERRIER’S PRIME, FORTUNATE PRIME, FUNDAMENTAL

THEOREM OF ARITHMETIC, GIGANTIC PRIME, GIUGA’S

CONJECTURE, GOLDBACH CONJECTURE, GOOD PRIME,
GRIMM’S CONJECTURE, HARDY-RAMANUJAN THEOREM,
HOME PRIME, IRREGULAR PRIME, KUMMER’S CONJEC-

TURE, LANDAU’S PROBLEMS, LEHMER’S PROBLEM,
LINNIK’S THEOREM, LONG PRIME, MERSENNE NUM-

BER, MERTENS FUNCTION, MILLER’S PRIMALITY TEST,
MIRIMANOFF’S CONGRUENCE, MÖ BIUS FUNCTION, PA-

LINDROMIC NUMBER, PÉ PIN’S TEST, PILLAI’S CONJEC-

TURE, POULET NUMBER, PRIMARY, PRIME ARRAY,
PRIME CIRCLE, PRIME CONSTANT, PRIME FACTORIZA-

TION ALGORITHMS, PRIME FORMULAS, PRIME NUMBER

OF MEASUREMENT, PRIME NUMBER THEOREM, PRIME

POWER SYMBOL, PRIME PRODUCTS, PRIME STRING,



PRIME SUMS, PRIME TRIANGLE, PRIME ZETA FUNC-

TION, PRIMITIVE PRIME FACTOR, PRIMORIAL, PROB-

ABLE PRIME, PSEUDOPRIME, REGULAR PRIME,
RIEMANN FUNCTION, ROTKIEWICZ THEOREM, SCHNIR-

ELMANN’S THEOREM, SELFRIDGE’S CONJECTURE, SEMI-

PRIME, SHAH-WILSON CONSTANT, SIERPINSKI’S

COMPOSITE NUMBER THEOREM, SIERPINSKI’S PRIME

SEQUENCE THEOREM, SMOOTH NUMBER, SOLDNER’S

CONSTANT, SOPHIE GERMAIN PRIME, TITANIC PRIME,
TOTIENT FUNCTION, TOTIENT VALENCE FUNCTION,
TWIN PRIMES, TWIN PRIMES CONSTANT, VINOGRA-

DOV’S THEOREM, VON MANGOLDT FUNCTION, WAR-

ING’S CONJECTURE, WEAKLY PRIME, WIEFERICH

PRIME, WILSON PRIME, WILSON QUOTIENT, WILSON’S

THEOREM, WITNESS, WOLSTENHOLME’S THEOREM,
ZSIGMONDY THEOREM
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Prime Number of Measurement
The set of numbers generated by excluding the SUMS

of two or more consecutive earlier members is called



the prime numbers of measurement, or sometimes
the SEGMENTED NUMBERS. The first few terms are 1,
2, 4, 5, 8, 10, 14, 15, 16, 21, ... (Sloane’s A002048).
Excluding two and three terms gives the sequence 1,
2, 4, 5, 8, 10, 12, 14, 15, 16, 19, 20, 21, ... (Sloane’s
A005242).

See also SUM-FREE SET
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Prime Number Theorem

The theorem giving an asymptotic form for the PRIME

COUNTING FUNCTION p(n); which counts the number of
PRIMES less than some INTEGER n . Legendre (1808)
suggested that, for large n ,

p(n)
n

A ln n � B
; (1)

with A�1 and B��1:08366 (where B is sometimes
called LEGENDRE’S CONSTANT), a formula which is
correct in the leading term only (Nagell 1951, p. 54;
Wagon 1991, pp. 28�/9). In 1791, Gauss became the
first to suggest instead

p(n)
n

ln n
: (2)

Gauss later refined his estimate to

p(n)li(n); (3)

where li(n) is the LOGARITHMIC INTEGRAL. This func-
tion has n=ln n as the leading term and has been
shown to be a better estimate than n=ln n alone. The
statement (3) is often known as "the" prime number
theorem and was proved independently by Hadamard
(1896) and de la Vallée Poussin (1896). A plot of p(n)
(lower curve) and li(n) is shown above for n51000:/
For small n , it has been checked and always found
that p(n)Bli(n): However, Skewes proved that the

first crossing of p(n)Bli(n)�0 occurs before 10101034

(the SKEWES NUMBER). The upper bound for the
crossing has subsequently been reduced to 10371.
Littlewood (1914) proved that the INEQUALITY re-
verses infinitely often for sufficiently large n (Ball
and Coxeter 1987). Lehman (1966) proved that at
least 10500 reversals occur for numbers with 1166 or
1167 DECIMAL DIGITS.

Chebyshev put limits on the RATIO

7

8
B

p(n)

n

ln n

B
9

8
(4)

(Landau 1927; Nagell 1951, p. 55; Landau 1974;
Hardy and Wright 1979, Ch. 22; Ingham 1990;
Rubinstein and Sarnak 1994; Hardy 1999, p. 27),
and showed that if the LIMIT

lim
n0�

p(n)

n

ln n

(5)

existed, then it would be 1.

Hadamard and Vallée Poussin proved the prime
number theorem by showing that the RIEMANN ZETA

FUNCTION z(z) has no zeros OF THE FORM 1�it; in the
sense that no deeper properties of z(s) are required for
the proof (Smith 1994, p. 128; Hardy 1999, pp. 58�/0).
Wiener (1951) allowed this somewhat vague state-
ment to be interpreted literally (Hardy 1999, pp. 34
and 46), and this proof was simplified by Landau
(1932) and Bochner (1933).

Hadamard’s proof depends on the simple trigono-
metric inequality

3�4 cos u�cos(2u)�2(1�cos u)2
]0 (6)

(Hardy 1999, p. 58). Vallée Poussin (1899) showed
that

p(x)�li(x)�O
x

ln x
e�a

ffiffiffiffiffiffi
ln x

p
 !

(7)

for some constant a (Knuth 1997, p. 381), where O(x)
is ASYMPTOTIC NOTATION. A simplified proof was
found by Erdos (1949) and Selberg (1950) (Ball and
Coxeter 1987, p. 63), although an unfortunate prior-
ity dispute over the joint work marred the otherwise
beautiful proof (Hoffman 1998, pp. 39�/1). An elemen-
tary proof of the prime number theorem, following
Selberg, is the final section in Nagell’s 1951 textbook.

The error term in (7) has subsequently improved to

p(x)�li(x)�O x exp �
A ln xð Þ3=5

ln ln xð Þ1=5

 ! !
(8)

(Walfisz 1963; Riesel 1994, p. 56; Knuth 1997,
p. 382). Ingham (1930) proved the prime number



theorem using the identity of Ramanujan

X�
n�1

sa(n)sb(n)

ns
�

z(s) z(s � a) zðs � bÞz(s � a � b)

z(2s � a � b)
; (9)

where sa(n) is the DIVISOR FUNCTION (Hardy 1999,
pp. 59 �/0).

Riemann estimated the PRIME COUNTING FUNCTION

with

p(n) ln(n) �1
2 li n1 =2
� �

; (10)

which is a better approximation than li(n) for n B107 :
Riemann (1859) also suggested the RIEMANN FUNC-

TION

R(x) �
X�
n�1

m(n)

n
li x1 =n
� �

; (11)

where m is the MÖ BIUS FUNCTION (Wagon 1991, p. 29).
An even better approximation for small n (by a factor
of 10 for n B109) is the GRAM SERIES.

The prime number theorem is equivalent to either

lim
x0�

u(x)

x
�1 (12)

or

lim
x 0�

c(x)

x
�1 ; (13)

where u and c(x) are the CHEBYSHEV FUNCTIONS.
Chebyshev showed that the only possible limit of
these expressions was 1, but was not able to prove
existence of the limit (Hardy 1999, p. 28).

The RIEMANN HYPOTHESIS is equivalent to the asser-
tion that

Li(x) � p(x)j j5c
ffiffiffi
x

p
ln x (14)

for some value of c (Ingham 1990, p. 83; Landau
1974, pp. 378 �/88; Ball and Coxeter 1987; Hardy
1999, p. 26). Some limits obtained without assuming
the RIEMANN HYPOTHESIS are

pðxÞ ¼ Li ðxÞ þ O ½xe �ln x1 =2 =15 � ð15Þ

p(x) �Li(x) �O xe �0 :009 ln xð Þ3 =5= ln ln xð Þ1=5
h i

: (16)

Ramanujan showed that for sufficiently large x ,

p2(x)B
ex

ln x
p

x

e

 !
: (17)

The largest known PRIME for which the inequality
fails is 38,358,837,677 (Berndt 1994, pp. 112�/13).
The related inequality

Li2(x)B
ex

ln x
Li

x

e

 !
(18)

is true for x]2418 (Berndt 1994, p. 114).

See also BERTRAND’S POSTULATE, CHEBYSHEV FUNC-

TIONS, CHEBYSHEV’S THEOREM, DIRICHLET’S THEO-

REM, GRAM SERIES, PRIME COUNTING FUNCTION,
RIEMANN FUNCTION, SELBERG’S FORMULA, SKEWES

NUMBER
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Prime Pairs
TWIN PRIMES

Prime Partition
A prime partition of a POSITIVE INTEGER n ]2 is a set
of PRIMES pi which sum to n . For example, there are
three prime partitions of 7 since

7 �7 �2 �5 �2 �2 �3 :

The number of prime partitions of n �2, 3, ... are 1, 1,
1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, ...
(Sloane’s A000607). If an �1 for n prime and an �0
for n composite, then the EULER TRANSFORM bn gives
the number of partitions of n into prime parts (Sloane
and Plouffe 1995, p. 21).

The minimum number of primes needed to sum to
n �2, 3, ... are 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2,
... (Sloane’s A051034). The maximum number of
primes needed to sum to n is just n=2b c; 0, 0, 1, 1,
2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... (Sloane’s A004526),
corresponding to a representation in terms of all 2s
for an even number or one 3 and the rest 2s for an odd
number.

The numbers which can be represented by a single
prime are obviously the primes themselves. Compo-
site numbers which can be REPRESENTED AS the sum
of two primes are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20,
21, 22, ... (Sloane’s A051035), and composite numbers
which are not the sum of fewer than three primes are
27, 35, 51, 57, 65, 77, 87, 93, 95, 117, 119, ..., (Sloane’s
A025583). The conjecture that no numbers require

four or more primes is called the GOLDBACH CON-

JECTURE.

See also GOLDBACH CONJECTURE, PARTITION, PARTI-

TION FUNCTION P , SCHNIRELMANN’S THEOREM
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Prime Patterns Conjecture
K -TUPLE CONJECTURE

Prime Pi
PRIME COUNTING FUNCTION

Prime Polynomial
PRIME-GENERATING POLYNOMIAL

Prime Power
A PRIME or integer power of a PRIME. The first few are
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, ... (Sloane’s
A000961). The first few prime powers with power ]2
are given by 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, ...
(Sloane’s A025475). The number of prime powers (/]2)
up to x does not exceed

x1 =2 �x1 =3 �x1=4 �. . .�O x1 =2 ln x
� �

(Hardy 1999, p. 27).

The following table gives prime kth powers.

k Sloane prime kth powers

1 A000040 2, 3, 5, 7, 11, 13, 17, 19, 23, ...

2 A001248 4, 9, 25, 49, 121, 169, 289, 361, ...

3 A030078 8, 27, 125, 343, 1331, 2197, 4913, ...

4 A030514 16, 81, 625, 2401, 14641, 28561,
83521, ...

5 A050997 32, 243, 3125, 16807, 161051,
371293, ...

See also PRIME NUMBER, SOLITARY NUMBER
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Prime Power Conjecture
An Abelian planar DIFFERENCE SET of order n exists
only for n a PRIME POWER. Gordon (1994) has verified
it to be true for n B2; 000; 000:/

See also DIFFERENCE SET
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Prime Power Symbol
The symbol pe kn means, for p a PRIME, that pe kn; but
pe�1

¶n :/

Prime Products
The product of primes

pn# �
Yn

k �1

pk ; (1)

with pn the nth prime, is called the PRIMORIAL

function, by analogy with the FACTORIAL function.

The EULER PRODUCT gives

e g � lim
n 0�

1

ln n

Yn

k �1

1

1 �
1

pk

; (2)

where g is the EULER-MASCHERONI CONSTANT. There
is also an amazing infinite product formula for primes
given by

Y�
k�1

p2
k � 1

p2
k � 1

�
5

2
: (3)

(Ramanujan; Le Lionnais 1983, p. 46).

See also EULER PRODUCT, PRIME NUMBER, PRIME

SUMS, PRIMORIAL
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Prime Quadratic Effect

Let pm; n(x) denote the number of PRIMES 5x which
are congruent to n modulo m . Then one might expect
that

D(x)�p4; 3(x)�p4; 1(x)1
2 p x1=2
� �

> 0

(Berndt 1994). Although this is true for small num-
bers, Hardy and Littlewood showed that D(x) changes
sign infinitely often. The effect was first noted by
Chebyshev in 1853, and is sometimes called the
CHEBYSHEV PHENOMENON. It was subsequently stu-
died by Shanks (1959), Hudson (1980), and Bays and
Hudson (1977, 1978, 1979). The effect was also noted
by Ramanujan, who incorrectly claimed that
lim x0�D(x)�� (Berndt 1994).
The values at which D(x)�0 are x�2946, 50378,
50380, 50382, 50392, 50414, ... (Sloane’s A051024),
corresponding to p(x)�26861; 616841, 616849,
616877, 617011, ... (Sloane’s A051025).
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Prime Quadruplet
A PRIME CONSTELLATION of four successive PRIMES

with minimal distance (p; p�2; p�6; p�8): The
term was coined by Paul Stäckel (1892�/919; Tietze
1965, p. 19). The quadruplet (2, 3, 5, 7) has smaller



minimal distance, but it is an exceptional special
case. With the exception of (5, 7, 11, 13), a prime
quadruple must be OF THE FORM (/30n �11 ; 30n �13;
30n �17 ; 30n �19) : The first few values of n which
give prime quadruples are n �0, 3, 6, 27, 49, 62, 69,
108, 115, ... (Sloane’s A014561), and the first few
values of p are 5 (the exceptional case), 11, 101, 191,
821, 1481, 1871, 2081, 3251, 3461, ... (Sloane’s
A007530). The number of prime quadruplets with
largest member less than 101, 102, ..., are 1, 2, 5, 12,
38, 166, 899, 4768, ... (Sloane’s A050258; Nicely 1999).

The asymptotic FORMULA for the frequency of prime
quadruples is analogous to that for other PRIME

CONSTELLATIONS,

Px ðp ;p þ 2;p þ 6; p þ 8 Þ27

2

Y
p]5

p3 ðp � 4Þ
ðp � 1Þ4 g

x

2

dx

ðln xÞ4

�4:151180864 g
x

2

dx

ln xð Þ4 ;

where c �4:15118 . . . is the Hardy-Littlewood con-
stant for prime quadruplets.

Roonguthai found the large prime quadruplets with

p �1099 �349781731

p �10199 �21156403891

p �10299 �140159459341

p �10399 �34993836001

p�10499�883750143961

p�10599�1394283756151

p�10699�547634621251

(Roonguthai). Forbes found the large quadruplet with

p�76912895956636885 23279�21093
� �

�6 � 21093�7:

See also PRIME ARITHMETIC PROGRESSION, PRIME

CONSTELLATION, PRIME K -TUPLES CONJECTURE,
PRIME TRIPLET, SEXY PRIMES, TWIN PRIMES
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Prime Representation
Let a"b; A , and B denote POSITIVE INTEGERS

satisfying

(a; b)�1 (A; B)�1

(i.e., both pairs are RELATIVELY PRIME), and suppose
every PRIME p�B (mod A) with (p; 2ab)�1 is ex-
pressible if the form ax2�by2 for some INTEGERS x
and y . Then every PRIME q such that q��B (mod A)
and (q; 2ab)�1 is expressible in the form bX2�aY2

for some INTEGERS X and Y (Halter-Koch 1993,
Williams 1991).

Prime Form Representation

/4n�1/ /x2�y2
/

/8n�1; 8n�3/ /x2�2y2
/

/8n91/ /x2�2y2
/

/6n�1/ /x2�3y2
/

/12n�1/ /x2�3y2
/

/20n�1; 20n�9/ /x2�5y2
/

/10n�1; 10n�9/ /x2�5y2
/

/14n�1; 14n�9; 14n�25/ /x2�7y2
/

/28n�1; 28n�9; 28n�25/ /x2�7y2
/

/30n�1; 30n�49/ /x2�15y2
/

/60n�1; 60n�49/ /x2�15y2
/

/30n�7; 30n�17/ /5x2�3y2
/

/60n�7; 60n�17/ /5x2�3y2
/

/24n�1; 24n�7/ /x2�6y2
/

/24n�1; 24n�19/ /x2�6y2
/

/24n�5; 24n�11/ /2x2�3y2
/

/24n�5; 24n�1/ /2x2�3y2
/
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Prime Ring
A RING for which the product of any pair of IDEALS is
zero only if one of the two IDEALS is zero. All SIMPLE

RINGS are prime.

See also IDEAL, RING, SEMIPRIME RING, SIMPLE RING

Prime Sequence
PRIME ARITHMETIC PROGRESSION, PRIME ARRAY,
PRIME-GENERATING POLYNOMIAL, SIERPINSKI’S PRIME

SEQUENCE THEOREM

Prime Signature
The prime signature of a positive integer n is a sorted
list of exponents ai in the PRIME FACTORIZATION

n �pa1

1 p
a2

2 � � � :

The prime signature of n can therefore be computed
in Mathematica as

PrimeSignature[1] : � {1}

PrimeSignature[n_Integer?Positive] : �
Sort[Transpose[FactorInteger[n]][[2]]]

See also PRIME FACTORIZATION

Prime Spiral

The numbers arranged in a SPIRAL

5 4 3
6 1 2
7 8 9

with PRIMES indicated in black, as first drawn by

S. Ulam. Unexpected patterns of diagonal lines are
apparent in such a plot, as illustrated in the above
199 �199 grid. M. Charpentier has written a Post-
Script file which can be downloaded to a printer and
draws a prime spiral.

See also PRIME-GENERATING POLYNOMIAL
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Prime String
TRUNCATABLE PRIME

Prime Subfield
The prime subfield of a FIELD F is the SUBFIELD of F
generated by the multiplicative identity 1F of F . It is
isomorphic to either Q (if the CHARACTERISTIC is 0), or
the FINITE FIELD FP�Z=pZ (if the CHARACTERISTIC is
p ).

See also SUBFIELD
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Prime Sum

60n�7; 60n�17

Let

5x2�3y2

be the sum of the first n PRIMES. The first few terms
are 2, 5, 10, 17, 28, 41, 58, 77, ... (Sloane’s A007504).
Bach and Shallit (1996) show that

24n�1; 24n�7



and provide a general technique for estimating such
sums.

The first few values of n such that x2 �6y2 are 1, 23,
53, 853, 11869, 117267, 339615, 3600489, 96643287,
... (Sloane’s A045345). The corresponding values of
24n �1; 24n �19 are 2, 874, 5830, 2615298,
712377380, 86810649294, 794712005370,
105784534314378, 92542301212047102, ... (Sloane’s
A050247; Rivera), and the values of x2 �6y2 are 2, 38,
110, 3066, 60020, 740282, 2340038, 29380602,
957565746, ... (Sloane’s A050248; Rivera).

See also PRIMORIAL

References
Bach, E. and Shallit, J. §2.7 in Algorithmic Number Theory,

Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press,
1996.

Rivera, C. "Problems & Puzzles: Puzzle The Average Prime
number, 24n�5; 24n�11:/-031." http://www.primepuz-
zles.net/puzzles/puzz_031.htm.

Sloane, N. J. A. Sequences A007504/M1370, A045345,
A050247, and A050248 in "An On-Line Version of the
Encyclopedia of Integer Sequences." http://www.research.-
att.com/~njas/sequences/eisonline.html.

Prime Sums

Let

X
nð Þ�

Xn

i�1

pi (1)

be the sum of the first n PRIMES (i.e., the sum analog
of the PRIMORIAL function). The first few terms are 2,
5, 10, 17, 28, 41, 58, 77, ... (Sloane’s A007504). Bach
and Shallit (1996) show that

X
nð Þ n2

2log n
; (2)

and provide a general technique for estimating such
sums.
The first few values of n such that n a(n)j are 1, 23,
53, 853, 11869, 117267, 339615, 3600489, 96643287,
... (Sloane’s A045345). The corresponding values of
a(n) are 2, 874, 5830, 2615298, 712377380,
86810649294, 794712005370, 105784534314378,
92542301212047102, ... (Sloane’s A050247; Rivera),
and the values of n=a(n) are 2, 38, 110, 3066, 60020,
740282, 2340038, 29380602, 957565746, ... (Sloane’s
A050248; Rivera).

In 1737, Euler showed that the sum of the reciprocals
of the primes diverges

X�
k�1

1

pk

�� (3)

(Nagell 1951, p. 59; Hardy and Wright 1979, pp. 17
and 22), although it does so very slowly. The sum
exceeds 1, 2, 3, ... after 3, 59, 361139, ... (Sloane’s
A046024) primes, and its asymptotic equation is

Xx

p�2

p prime

1

p
�ln ln x�B1�o(1); (4)

where B1 is MERTENS CONSTANT (Hardy and Wright
1979, p. 351). Dirichlet showed the even stronger
result that

X
prime p�b mod að Þ

a; bð Þ�1

1

p
�� (5)

(Davenport 1980, p. 34). Despite the divergence of the
sum of reciprocal primes, the ALTERNATING SERIES

X�
k�1

(�1)k

pk

:�0:2696065 (6)

converges (Robinson and Potter 1971, Finch), but it is
not known if the sum

X�
k�1

(�1)k k

pk

(7)

does (Guy 1994, p. 203; Erdos 1998; Finch).

There are also classes of sums of reciprocal primes
with sign determined by congruences on k , for
example

X�
k¼2

ck

pk

:0:3349813253 ð8Þ

where

ck�
�1 for pk�1 mod 4ð Þ

1 for pk�3 mod 4ð Þ

"
(9)

(Glaisher 1891b, Finch) which, is not known to
converge, while

X�
k¼2

ck

p2
k

:0:094619828 ð10Þ

does converge (Glaisher 1893, Finch). It is not known
if



X�
k �1

dk

pk

:0:6419448385 (11)

converges, where

dk �
�1 for pk �1 mod 3ð Þ

1 for pk �2 mod 3ð Þ
0 for pk �0 mod 3ð Þ

8<
: 

(12)

(Glaisher 1891c, Finch).

Although a 1=p diverges, Brun (1919) showed that

X
p

p �2 prime

1

p 
�B B�; (13)

where B is BRUN’S CONSTANT. The function defined by

P(n) �
X�
p �1

1

pn
k

(14)

taken over the primes converges for n �1 and is a
generalization of the RIEMANN ZETA FUNCTION known
as the PRIME ZETA FUNCTION.

A rapidly converging series for the MERTENS CON-

STANT

B1 � g �
X�
k �1

ln 1 �p �1
k

� �
�

1

pk

" #
:0 :2614972128 (15)

is given by

B1 � g �
X�
m�2

m(m)

m
ln z(m)½ �; (16)

where g is the EULER-MASCHERONI CONSTANT, z(n) is
the RIEMANN ZETA FUNCTION, and m(n) is the MÖ BIUS

FUNCTION (Flajolet and Vardi 1996, Schroeder 1997,
Knuth 1998). A similar formula gives the sum

X�
k �1

1

p2
k

X�
k �1

m(k)

k
ln z(2k)ð Þ:0:45224742 (17)

The sum

X�
k �1

1

pk � 1ð Þ2 :1:3750649947 (18)

is also finite (Glaisher 1891a; Cohen; Finch).

Some curious sums satisfied by primes p include

Xp �1

k �1

k3

p

$ %
�

(p � 2)(p � 1)(p � 1)

4 
(19)

Xp �1ð Þ p �2ð Þ

k �1

kp

� �1=3
j k

�1
4(3p �5)(p �2)(p �1) (20)

(Doster 1993),

X�
k�1

xk ln k�
X

p prime

X�
k�1

xpk

1 � xpk
; (21)

and

X�
k�1

(�1)k�1e�kx ln k��ln 2
X�
k�1

1

e2kx � 1

�
X
p an

odd prime

ln p
X�
k�1

1

epkx � 1
(22)

(Berndt 1994, p. 114).

See also MERTENS CONSTANT, PRIME NUMBER, PRIME

PRODUCTS, PRIME ZETA FUNCTION, PRIMORIAL
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Prime Theta Function
CHEBYSHEV FUNCTIONS

Prime Triangle
A triangle with rows containing the numbers
1; 2; . . . ; nf g that begins with 1, ends with n , and

such that the SUM of each two consecutive entries
being a PRIME. Rows 2 to 6 are unique,

+

1 2

1 2 3

1 2 3 4

1 4 3 2 5

1 4 3 2 5 6

(Sloane’s A051237) but there are multiple possibili-
ties starting with row 7. For example, the two
possibilities for row 7 are 1 ; 4 ; 3 ; 2 ; 5; 6; 7;f g and
1; 6; 5; 2; 3; 4; 7f g: The number of possible rows

ending with n �1, 2, ..., are 0, 1, 1, 1, 1, 1, 2, 4, 7, 24,
80, ... (Sloane’s A036440).

See also PASCAL’S TRIANGLE
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Prime Triplet
A prime triplet is a PRIME CONSTELLATION OF THE

FORM (p , p �2; p �6); (p , p �4; p �6); etc. Hardy and
Wright (1979, p. 5) conjecture, and it seems almost
certain to be true, that there are infinitely many

prime triplets OF THE FORM (p , p �2 ; p �6) and (p ,
p �4; p �6):/

Triplet Sloane First Member

(p , p �2 ;
p �6)/

Sloane’s
A022004

5, 11, 17, 41, 101,
107, ...

(p , p �2 ;
p �8)/

Sloane’s
A046134

3, 5, 11, 29, 59, 71,
101, ...

(p , p �2 ;
p �12)/

Sloane’s
A046135

5, 11, 17, 29, 41, 59,
71, ...

(p , p �4 ;
p �6)/

Sloane’s
A022005

7, 13, 37, 67, 97,
103, ...

(p , p �4 ;
p �10)/

Sloane’s
A046136

3, 7, 13, 19, 37, 43,
79, ...

(p , p �4 ;
p �12)/

Sloane’s
A046317

7, 19, 67, 97, 127,
229, ...

(p , p �6 ;
p �8)/

Sloane’s
A046138

5, 11, 23, 53, 101,
131, ...

(p , p �6 ;
p �10)/

Sloane’s
A046139

7, 13, 31, 37, 61, 73,
97, ...

(p , p �6 ;
p �12)/

Sloane’s
A046140

5, 7, 11, 17, 31, 41,
47, ...

(p , p �8 ;
p �12)/

Sloane’s
A046141

5, 11, 29, 59, 71, 89,
101, ...

See also PRIME CONSTELLATION, PRIME QUADRUPLET,
TWIN PRIMES
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Prime Unit
1 and �1 are the only INTEGERS which divide every
INTEGER. They are therefore called the prime units.

See also INTEGER, PRIME NUMBER, UNIT

Prime Zeta Function
The prime zeta function

P(n)�
X

p

1

pn
; (1)

where the sum is taken over PRIMES is a general-
ization of the RIEMANN ZETA FUNCTION



z nð Þ�
X
k �1

1

kn 
; (2)

where the sum is over all integers. The prime zeta
function can be expressed in terms of the RIEMANN

ZETA FUNCTION by

ln z(n) ��
X
p ]2

ln 1 �p �nð Þ�
X
p ]2

X�
k�1

p �kn

k

�
X�
k �1

1

k

X
p ]2

p�kn �
X�
k�1

P(kn)

k
: (3)

Inverting then gives

P(n) �
X�
k �1

m(k)

k
ln z(kn); (4)

where m(k) is the MÖ BIUS FUNCTION (Cohen 2000).
P(1) ; The analog of the HARMONIC SERIES, diverges,
but convergence of the series for n �1 is quadratic.

ARTIN’S CONSTANT CArtin is connected with P(n) by

ln CArtin ��
X�
n �2

mn � 1ð ÞP(n)

n
; (5)

where

un �un�1 �un �2 (6)

with u1 �1 ; u2 �3 (Ribenboim 1998, Gourdon and
Sebah).

The values of P(n) for the first few integers n starting
with two are

P(2) :0:452247 (7)

P(3) :0:174763 (8)

P(4) :0:0769931 (9)

P(5) :0 :035755 : (10)

Merrifield (1881) computed P(n) for n up to 35 to 15
digits, and Liénard (1948) computed P(n) up to
n �167 to 50 digits (Ribenboim 1996). Gourdon gives
values to 60 digits for 2 ]n 58 :/

See also ARTIN’S CONSTANT, HARMONIC SERIES,
MÖ BIUS FUNCTION, PRIME SUMS, RIEMANN ZETA

FUNCTION, ZETA FUNCTION
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Prime-Distance Graph
A DISTANCE GRAPH with distance set given by the set
of prime numbers.

See also DISTANCE GRAPH
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Primefree Sequence
A sequence whose terms are never prime. Graham
proved that there exist primefree sequences gener-
ated by Fibonacci-like recurrences OF THE FORM

an�an�1�an�2

for a1; a2ð Þ�1; i.e., RELATIVELY PRIME. However, the
purported example given by Hoffman (1998, p. 159)
in fact contains prime terms for n�138, 163, 190,
523, ....
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Prime-Generating Polynomial
Legendre showed that there is no RATIONAL algebraic
function which always gives PRIMES. In 1752, Gold-
bach showed that no POLYNOMIAL with INTEGER

COEFFICIENTS can give a PRIME for all integer values
(Nagell 1951, p. 65; Hardy and Wright 1979, pp. 18
and 22). However, there exists a POLYNOMIAL in 10
variables with INTEGER COEFFICIENTS such that the
set of PRIMES equals the set of POSITIVE values of this
POLYNOMIAL obtained as the variables run through all
NONNEGATIVE INTEGERS, although it is really a set of
DIOPHANTINE EQUATIONS in disguise (Ribenboim
1991).

Polynomial Range Sloane Reference

/36n2�810n�2753/ [0, 44] A050268 Fung and
Ruby

/47n2�1701n�10181/ [0, 42] A050267 Fung and
Ruby



/n2 �n �41/ [0, 39] A005846 Euler

/2n2 �29/ [0, 28] A033542 Legendre

/n2 �n �17/ [0, 15] A033541 Legendre

/4n2 �4n �59/ [0, 13] A048988

/2n2 �11/ [0, 10] A050265

/n3 �n2 �17/ [0, 10] A050266

The above table gives some low-order polynomials
which generate only PRIMES for the first few NON-

NEGATIVE values (Mollin and Williams 1990). The
best-known of these formulas is that due to Euler
(Euler 1772; Nagell 1951, p. 65; Gardner 1984, p. 83;
Ball and Coxeter 1987),

n2 �n �41 : (1)

which gives distinct primes for the 40 consecutive
integers n �0 to 39. (/n2 �n �41 gives the same 40
primes for n �1 to 40.) By transforming the formula
to

n2 �79n �1601 �(n �40)2 �(n �40) �41; (2)

primes are obtained for 80 consecutive integers,
corresponding to the 40 primes given by the above
formula taken twice each (Hardy and Wright 1979,
p. 18).

Le Lionnais (1983) has christened numbers p such
that the Euler-like polynomial

n2 �n �p (3)

is PRIME for n �0, 1, ..., p �2 as LUCKY NUMBERS OF

EULER (where the case p �41 corresponds to Euler’s
formula). Rabinowitz (1913) showed that for a PRIME

p �0, Euler’s polynomial represents a PRIME for n 

[0; p �2] (excluding the trivial case p �3) IFF the
FIELD Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �4p

p� �
has CLASS NUMBER h �1 (Rabino-

witz 1913, Le Lionnais 1983, Conway and Guy 1996).
As established by Stark (1967), there are only nine
numbers �d such that h(�d) �1 (the HEEGNER

NUMBERS -2, -3, -7, -11, -19, -43, -67, and -163), and
of these, only 7, 11, 19, 43, 67, and 163 are of the
required form. Therefore, the only LUCKY NUMBERS

OF EULER are 2, 3, 5, 11, 17, and 41 (le Lionnais 1983,
Sloane’s A014556), and there does not exist a better
prime-generating polynomial of Euler’s form. The
connection between the numbers 163 and 43 and
some of the prime-rich polynomials listed above can
be seen explicitly by writing

x2 �x �41 � x �1
2


 �2

�163
4 (4)

x2 �x �11 � x �1
2


 �2

�43
4 ; (5)

etc.

Euler also considered quadratics OF THE FORM

2x2�p (6)

and showed this gives PRIMES for x 
 [0; p�1] for
PRIME p �0 IFF Q

ffiffiffiffiffiffiffiffiffi
�2p

p� �
has CLASS NUMBER 2, which

permits only p�3, 5, 11, and 29. Baker (1971) and
Stark (1971) showed that there are no such FIELDS for
p �29. Similar results have been found for POLYNO-

MIALS OF THE FORM

px2�px�n (7)

(Hendy 1974).

See also CLASS NUMBER, HEEGNER NUMBER, LUCKY

NUMBER OF EULER, PRIME ARITHMETIC PROGRESSION,
PRIME DIOPHANTINE EQUATIONS, SCHINZEL’S HY-

POTHESIS
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Primequad
PRIME QUADRUPLET

Primes
The set of PRIME NUMBERS, sometimes denoted P ; and
implemented in Mathematica as Primes. In Mathe-
matica , a quantity can be tested to determine if it is
in the domain of prime numbers using Element[n ,
Primes], which is equivalent to PrimeQ[n ].

See also PRIME NUMBER

Primitive Abundant Number
An ABUNDANT NUMBER for which all PROPER DIVISORS

are DEFICIENT is called a primitive abundant number
(Guy 1994, p. 46). The first few ODD primitive
abundant numbers are 945, 1575, 2205, 3465, ...
(Sloane’s A006038).

See also ABUNDANT NUMBER, DEFICIENT NUMBER,
HIGHLY ABUNDANT NUMBER, SUPERABUNDANT NUM-

BER, WEIRD NUMBER
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Primitive Character

See also CHARACTER (NUMBER THEORY)

Primitive Element
Given algebraic numbers a1 ; ..., an it is always
possible to find a single ALGEBRAIC NUMBER b such
that each of a1 ; ..., an can be expressed as a
polynomial in b with rational coefficients. The num-
ber b is then called a primitive element of the
EXTENSION FIELD Qða1 ; . . . ; an Þ=Q: Stated differ-
ently, an ALGEBRAIC NUMBER b is a primitive element
of Qða1 ; . . . ; an Þ=Q IFF Q a1 ; . . . ; anð Þ�Q(b) : Primi-
tive elements are implemented in Mathematica as

PrimitiveElement[z , {a1 , ..., an }] in the Mathema-
tica add-on package NumberTheory‘PrimitiveE-
lement‘ (which can be loaded with the command
BBNumberTheory‘).

For example, a primitive element of Q
ffiffiffi
2

p
;
ffiffiffi
3

p� �
=Q is

given by b �
ffiffiffi
2

p
�

ffiffiffi
3

p
; withffiffiffi

2
p

�1
2b b2 �9ð Þffiffiffi

3
p

�1
2b 11 �b2ð Þ:

See also EXTENSION FIELD, PRIMITIVE POLYNOMIAL,
PRIMITIVE ROOT
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Primitive Function
INTEGRAL

Primitive Group
A GROUP that has a PRIMITIVE GROUP ACTION.

See also PRIMITIVE GROUP ACTION

Primitive Group Action
A primitive group action is TRANSITIVE and it has no
nontrivial BLOCKS. A TRANSITIVE GROUP ACTION that
is not primitive is called imprimitive. A group that
has a primitive group action is called a PRIMITIVE

GROUP.

See also BLOCK (GROUP ACTION), GROUP, PRIMITIVE

GROUP, SOCLE, TRANSITIVE GROUP, TRANSITIVE

GROUP ACTION
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Primitive Polynomial
A polynomial which generates all elements of an
EXTENSION FIELD from a base field is called a
primitive polynomial. Primitive polynomials are also
IRREDUCIBLE POLYNOMIALS. For any PRIME or PRIME

POWER q and any POSITIVE INTEGER n , there exists a
primitive polynomial of order n over GF(q ). There are
f qn�1ð Þ=n primitive polynomials over GF(q ), where
f(n) is the TOTIENT FUNCTION.

Polynomials over the FINITE FIELD GF(2) (i.e., with
coefficients either 0 or 1) are primitive if they have
ORDER 2n�1; where "order" is used in the specific
sense of a HAUPT-EXPONENT or ORDER of a modulo. For
example, x2�x�1� x2�x�1ð Þ(x�1)�x3�1 has
order 3, and is therefore primitive (Ruskey). Amaz-
ingly, primitive polynomials over GF(2) define a
RECURRENCE RELATION which can be used to obtain



a new RANDOM bit from the n preceding ones. The
numbers of primitive polynomials over GF(2) for
n �1, 2, ... are 1, 1, 2, 2, 6, 6, 18, 16, 48, ... (Sloane’s
A011260). The following table lists the primitive
polynomials (mod 2) of orders 1 through 5.

n primitive polynomials

1 x

2 /1 �x �x2
/

3 /1 �x �x3 ; 1 �x2 �x3
/

4 /1 �x �x4 ; 1 �x3 �x4
/

5 /1 �x2 �x5 ; 1 �x �x2 �x3 �x5 ; 1 �x3 �x5 ;
/1 �x �x3 �x4 �x5 ; 1 �x2 �x3 �x4 �x5 ;
1 �x �x2 �x4 �x5

/

See also FINITE FIELD, IRREDUCIBLE POLYNOMIAL,
ORDER (POLYNOMIAL), POLYNOMIAL, PRIMITIVE ELE-

MENT, PRIMITIVE ROOT
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Primitive Polytope
A POLYTOPE in n -D Euclidean space Rn whose
vertices are integer lattice points but which does not
contain any other lattice points in its interior or on its
boundary (Khan 1999).

See also HOWE’S THEOREM, POLYTOPE
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Primitive Prime Factor
If n ]1 is the smallest INTEGER such that P an �bnj (or
an �bn) ; then p is a primitive prime factor.

See also PRIME FACTORS, PRIMITIVE ROOT

Primitive Pseudoperfect Number
PRIMITIVE SEMIPERFECT NUMBER

Primitive Recursive Function
For-loops (which have a fixed iteration limit) are a
special case of while-loops. A function which can be

implemented using only for-loops is called primitive
recursive. (In contrast, a COMPUTABLE FUNCTION can
be coded using a combination of for- and while-loops,
or while-loops only.)

The ACKERMANN FUNCTION is the simplest example of
a WELL DEFINED TOTAL FUNCTION which is COMPUTA-

BLE but not primitive recursive, providing a counter-
example to the belief in the early 1900s that every
COMPUTABLE FUNCTION was also primitive recursive
(Dötzel 1991).

See also ACKERMANN FUNCTION, COMPUTABLE FUNC-

TION, TOTAL FUNCTION
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Dötzel, G. "A Function to End All Functions." Algorithm:

Recreational Programming 2, 16�/7, 1991.

Primitive Root
A primitive root of a PRIME p is an INTEGER g
satisfying 15g5p�1 such that the residue classes
of g , g2; g3; ..., gp�1�1 are all distinct, i.e., g (mod p )
has ORDER p�1 (Ribenboim 1996, p. 22). If p is a
PRIME NUMBER, then there are exactly f(p�1) incon-
gruent primitive roots of p (Burton 1989, p. 194).

More generally, if (g; n)�1 (g and n are RELATIVELY

PRIME) and g is of ORDER f(n) modulo n , where f(n) is
the TOTIENT FUNCTION, then g is a primitive root of n
(Burton 1989, p. 187). In other words, n has g as a
primitive root if gf(n)�1 (mod n); but gkf1 (mod n )
for all positive integers kBf(n): A primitive root of a
number n (but not necessarily the smallest primitive
root for composite n ) can be computed using the
Mathematica routine PrimitiveRoot[n ] in the
Mathematica add-on package NumberTheory‘Num-
berTheoryFunctions‘ (which can be loaded with
the command BBNumberTheory‘).

If n has a primitive root, then it has exactly f(f(n)) of
them (Burton 1989, p. 188). For n�1, 2, ..., the first
few values of f(f(n)) are 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2,
4, 2, 4, 4, 8, ... (Sloane’s A010554). n has a primitive
root if it is OF THE FORM 2, 4, a power pa; or twice a
power 2pa; where p is an ODD PRIME and a]1
(Burton 1989, p. 204). The first few n for which
primitive roots exist are 2, 3, 4, 5, 6, 7, 9, 10, 11, 13,
14, 17, 18, 19, 22, ... (Sloane’s A033948), so the
number of primitive root of order n for n�1, 2, ...
are 0, 1, 1, 1, 2, 1, 2, 0, 2, 2, 4, 0, 4, ... (Sloane’s
A046144).

The smallest primitive roots for the first few primes p
are 1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, ...
(Sloane’s A001918). Here is table of the primitive
roots for the first few n for which a primitive root
exists (Sloane’s A046147).



n /g(n)/

2 1

3 2

4 3

5 2, 3

6 5

7 3, 5

9 2, 5

10 3, 7

11 2, 6, 7, 8

13 2, 6, 7, 11

The largest primitive roots for n �1, 2, ..., are 0, 1, 2,
3, 3, 5, 5, 0, 5, 7, 8, 0, 11, ... (Sloane’s A046146). The
smallest primitive roots for the first few INTEGERS n
are given in the following table (Sloane’s A046145),
which omits n when g(n) does not exist.

2 1 38 3 94 5 158 3

3 2 41 6 97 5 162 5

4 3 43 3 98 3 163 2

5 2 46 5 101 2 166 5

6 5 47 5 103 5 167 5

7 3 49 3 106 3 169 2

9 2 50 3 107 2 173 2

10 3 53 2 109 6 178 3

11 2 54 5 113 3 179 2

13 2 58 3 118 11 181 2

14 3 59 2 121 2 191 19

17 3 61 2 122 7 193 5

18 5 62 3 125 2 194 5

19 2 67 2 127 3 197 2

22 7 71 7 131 2 199 3

23 5 73 5 134 7 202 3

25 2 74 5 137 3 206 5

26 7 79 3 139 2 211 2

27 2 81 2 142 7 214 5

29 2 82 7 146 5 218 11

31 3 83 2 149 2 223 3

34 3 86 3 151 6 226 3

37 2 89 3 157 5 227 2

Let p be any ODD PRIME k ]1; and let

s �
Xp �1

j�1

jk : (1)

Then

s �
�1 (mod p) for p �1 ½k

0 (mod p) for p �1¶k

"
(2)

(Ribenboim 1996, pp. 22 �/3). For numbers m with
primitive roots, all y satisfying (p ; y) �1 are repre-
sentable as

y �gt (mod m); (3)

where t �0, 1, ..., f(m) �1; t is known as the index,
and y is an INTEGER. Kearnes (1984) showed that for
any POSITIVE INTEGER m , there exist infinitely many
PRIMES p such that

mBgpBp�m: (4)

Call the least primitive root gp: Burgess (1962) proved
that

gp5Cp1=4�e (5)

for C and e POSITIVE constants and p sufficiently
large (Ribenboim 1996, p. 24).

Matthews (1976) obtained a formula for the "two-
dimensional" Artin’s constants for the set of primes
for which m and n are both primitive roots.

See also ARTIN’S CONJECTURE, ARTIN’S CONSTANT,
FULL REPTEND PRIME, MULTIPLICATIVE ORDER, OR-

DER (MODULO), PRIMITIVE ELEMENT, PRIMITIVE ROOT

OF UNITY
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Primitive Root of Unity
A number r is an nth ROOT OF UNITY if rn �1 and a
primitive nth root of unity if, in addition, n is the
smallest INTEGER of k �1, ..., n for which rk �1:/

See also PRINCIPAL ROOT OF UNITY, ROOT OF UNITY
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Primitive Semiperfect Number
A SEMIPERFECT NUMBER for which none of its PROPER

DIVISORS are pseudoperfect (Guy 1994, p. 46). The
first few are 6, 20, 28, 88, 104, 272, ... (Sloane’s
A006036). Primitive semiperfect numbers are also
called primitive pseudoperfect numbers (Guy 1994,
p. 46) or irreducible semiperfect numbers. There are
infinitely many primitive pseudoperfect numbers
which are not HARMONIC DIVISOR NUMBERS, and
infinitely many ODD primitive semiperfect numbers.

See also HARMONIC DIVISOR NUMBER, PRIMARY

PSEUDOPERFECT NUMBER, SEMIPERFECT NUMBER
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Primitive Sequence
A SEQUENCE in which no term DIVIDES any other. Let
Sn be the set f1 ; . . . ; n g; then the number of
primitive subsets of Sn are 2, 3, 5, 7, 13, 17, 33, 45,
73, 103, 205, 253, ... (Sloane’s A051026). For example,
the five primitive sequences in S4 are ¥; f1g; f2g;
f2; 3g; f3g; f3; 4g; and f4g:/

See also NONDIVIDING SET
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Primorial
For the nth PRIME pn ;

primorial pnð Þ�pn# �
Yn

j�1

pj :

The values of pn# for n �1, 2, ..., are 2, 6, 30, 210,
2310, 30030, 510510, ... (Sloane’s A002110).

The primorial satisfies the unexpected limit

lim
n 0�

pn#ð Þ1 =pn�e

(Ruiz 1997), where E is the usual base of the NATURAL

LOGARITHM.

/p# �1 is PRIME for PRIMES p �3, 5, 11, 41, 89, 317,
337, 991, 1873, 2053, 2377, 4093, 4297, ... (Sloane’s
A006794; Guy 1994), or pn for n �2, 3, 5, 13, 24, 66,
68, 167, 287, 310, 352, 564, 590, ..., up to a search
limit of p �25000 (Caldwell 1995).

/p# �1 is known to be PRIME for the PRIMES p �2, 3, 5,
7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787,
11549, ... (Sloane’s A005234; Guy 1994, Mudge 1997),
or pn for n �1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457,
616, 643, 1391, ... (Sloane’s A014545), up to a search
limit of p �25000 (Caldwell 1995). The numbers En �
pn# �1 for pn the nth prime are known as EUCLID

NUMBERS. It is not known if there are an infinite
number of PRIMES for which p# �1 is PRIME or
COMPOSITE (Ribenboim 1989, Guy 1994).

See also EUCLID NUMBER, FACTORIAL, FACTORIAL

PRIME, FORTUNATE PRIME, PRIME SUMS, SMARAN-

DACHE NEAR-TO-PRIMORIAL FUNCTION, TWIN PEAKS
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Prince Rupert’s Cube

The largest CUBE which can be made to pass through
a given CUBE. (In other words, the CUBE having a side
length equal to the side length of the largest HOLE of a
SQUARE CROSS SECTION which can be cut through a
unit CUBE without splitting it into two pieces.) Prince
Rupert’s cube cuts a HOLE of the shape indicated in
the above illustration (Wells 1991).
The Prince Rupert’s cube has side length 3

ffiffiffi
2

p
=4 :

1:0606601 . . . ; and any CUBE this size or smaller can
be made to pass through the original CUBE.

See also CUBE, HOLE, SQUARE
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Prince Rupert’s Problem
PRINCE RUPERT’S CUBE

Principal
The original amount borrowed or lent on which
INTEREST is then paid or given.

See also INTEREST

Principal Bundle
A principal bundle is a special case of a FIBER BUNDLE

where the FIBER is a GROUP G . More specifically, G is
usually a LIE GROUP. A principal bundle is a TOTAL

SPACE E along with a SURJECTIVE map p : E 0 B to a
BASE MANIFOLD B . Any FIBER p�1(b) is a space
ISOMORPHIC to G . More specifically, G acts FREELY

without FIXED POINT on the fibers, and this makes a
fiber into a HOMOGENEOUS SPACE. For example, in the
case of a CIRCLE BUNDLE (i.e., when G�S1� eitf g);
the fibers are circles, which can be rotated, although
no point in particular corresponds to the identity.
Near every point, the fibers can be given the GROUP

structure of G in the fibers over a NEIGHBORHOOD b 


B by choosing an element in each fiber to be the
IDENTITY ELEMENT. However, the fibers cannot be
given a group structure globally, except in the case of
a TRIVIAL BUNDLE.

An important principal bundle is the FRAME BUNDLE

on a RIEMANNIAN MANIFOLD. This bundle reflects the
different ways to give an ORTHONORMAL BASIS for
TANGENT VECTORS.

Consider all of the unit tangent vectors on the sphere.
This is a principal bundle E on the SPHERE with FIBER

the circle S1: Every TANGENT VECTOR projects to its
base point in S2; giving the map p : E 0 S2: Over
every point in S2; there is a circle of unit tangent
vectors. No particular vector is singled out as the
identity, but the group S1 of rotations acts freely
without fixed point on the fibers.



In a similar way, any fiber bundle corresponds to a
principal bundle where the group (of the principal
bundle) is the group of isomorphisms of the fiber (of
the fiber bundle). Given a principal bundle p : E 0 B
and an action of G on a space F , which could be a
REPRESENTATION, this can be reversed to give an
ASSOCIATED FIBER BUNDLE.

A TRIVIALIZATION of a principal bundle, an open set U
in B such that the bundle over U , p�1(U) ; is
expressed as U �G ; has the property that the group
G acts on the left. That is, g acts on (b, h ) by (b, gh ).
Tracing through these definitions, it is not hard to see
that the TRANSITION FUNCTIONS take values in G ,
acting on the fibers by right multiplication. This way
the action of G on a fiber is independent of coordinate
chart.

See also ASSOCIATED FIBER BUNDLE, ASSOCIATED

VECTOR BUNDLE, CECH COHOMOLOGY, CIRCLE BUN-

DLE, FIBER BUNDLE, GROUP, HOMOGENEOUS SPACE,
LIE GROUP, TRANSITION FUNCTION, VECTOR BUNDLE

Principal Curvatures
The MAXIMUM and MINIMUM of the NORMAL CURVA-

TURE k1 and k2 at a given point on a surface are called
the principal curvatures. The principal curvatures
measure the MAXIMUM and MINIMUM bending of a
REGULAR SURFACE at each point. The GAUSSIAN

CURVATURE K and MEAN CURVATURE H are related
to k1 and k2 by

K � k1 k2 (1)

H �1
2 k1 � k2ð Þ: (2)

This can be written as a QUADRATIC EQUATION

k2 �2H k �K �0 ; (3)

which has solutions

k1 �H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 �K

p
(4)

k2 �H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 �K

p
: (5)

See also GAUSSIAN CURVATURE, MEAN CURVATURE,
NORMAL CURVATURE, NORMAL SECTION, PRINCIPAL

DIRECTION, PRINCIPAL RADIUS OF CURVATURE, RO-

DRIGUES’ CURVATURE FORMULA
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Principal Curve
A curve on a REGULAR SURFACE M is a principal
curve IFF the velocity always points in a PRINCIPAL

DIRECTION, i.e.,

S(a?) � ki a?;

where S is the SHAPE OPERATOR and ki is a PRINCIPAL

CURVATURE. If a SURFACE OF REVOLUTION generated
by a plane curve is a REGULAR SURFACE, then the
MERIDIANS and PARALLELS are principal curves.
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Principal Diagonal
DIAGONAL

Principal Direction
The directions in which the PRINCIPAL CURVATURES

occur.

See also PRINCIPAL DIRECTION
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Principal Ideal
An IDEAL I of a RING R is called principal if there is
an element a of R such that

I�aR �far : r 
 Rg:

In other words, the IDEAL is generated by the element
a . For example, the IDEALS nZ of the RING of
INTEGERS Z are all principal, and in fact all IDEALS

of Z are principal.

See also IDEAL, PRINCIPAL RING, RING

Principal Ideal Domain
A more common way to describe a PRINCIPAL IDEAL

RING.

See also ALGEBRAIC NUMBER THEORY, PRINCIPAL

IDEAL RING

Principal Ideal Ring

See also PRINCIPAL RING

Principal Normal Vector
NORMAL VECTOR

Principal Part
If a function f has a POLE at z0; then the negative
power part



X�1

j��k

aj z �z0ð Þj (1)

of the LAURENT SERIES of f about z0

X�
j��k

aj z �z0ð Þj (2)

is called the principal part of f at z0 : For example, the
principal part of

z2 � 1

sin z3ð Þ
�z�3 �z�2 �1

6 z
3 �1

6 z
4 �. . . (3)

is z�3 �z�2 (Krantz 1999, pp. 46 �/7).

See also LAURENT POLYNOMIAL, LAURENT SERIES

References
Krantz, S. G. "Principal Part of a Function." §4.3.1 in

Handbook of Complex Analysis. Boston, MA: Birkhäuser,
pp. 46 �/8, 1999.

Principal Quintic Form
A general QUINTIC EQUATION

a5x5 �a4x4 �a3x3 �a2x2 �a1x �a0 �0 (1)

can be reduced to one OF THE FORM

y5 �b2y2 �b1y �b0 �0; (2)

called the principal quintic form.

NEWTON’S RELATIONS for the ROOTS yj in terms of the
bj/s is a linear system in the bj ; and solving for the bj/s
expresses them in terms of the POWER sums sn yj

� �
:

These POWER sums can be expressed in terms of the
ajs/, so the bj/s can be expressed in terms of the aj/s. For
a quintic to have no quartic or cubic term, the sums of
the ROOTS and the sums of the SQUARES of the ROOTS

vanish, so

s1 yj

� �
�0 (3)

s2 yj

� �
�0: (4)

Assume that the ROOTS yj of the new quintic are
related to the ROOTS xj of the original quintic by

yj �x2
j � axj � b: (5)

Substituting this into (1) then yields two equations
for a and b which can be multiplied out, simplified by
using NEWTON’S RELATIONS for the POWER sums in the
xj ; and finally solved. Therefore, a and b can be
expressed using RADICALS in terms of the COEFFI-

CIENTS aj : Again by substitution into (4), we can
calculate s3 yj

� �
; s4 yj

� �
and s5 yj

� �
in terms of a and b

and the xj : By the previous solution for a and b and
again by using NEWTON’S RELATIONS for the POWER

sums in the xj ; we can ultimately express these
POWER sums in terms of the aj :/

See also BRING QUINTIC FORM, NEWTON’S RELATIONS,
QUINTIC EQUATION

Principal Radius of Curvature
At each point on a given a 2-D SURFACE, there are two
"principal" RADII OF CURVATURE. The larger is de-
noted R1 ; and the smaller R2 : The "principal direc-
tions" corresponding to the principal radii of
curvature are PERPENDICULAR to one another. In
other words, the surface normal planes at the point
and in the principal directions are PERPENDICULAR to
one another, and both are PERPENDICULAR to the
surface tangent plane at the point.

See also GAUSSIAN CURVATURE, MEAN CURVATURE,
RADIUS OF CURVATURE

Principal Ring
A principal ring (sometimes called a principal ideal
ring) is a RING in which every IDEAL is PRINCIPAL, i.e.
can be generated by a single element. Examples
include the ring of integers Z; any FIELD, and any
polynomial ring in one variable over a FIELD.

Principal rings are very useful because in a principal
ring, any two nonzero elements have a WELL DEFINED

GREATEST COMMON DIVISOR. Furthermore each non-
zero, nonunit element in a principal ring has a unique
factorization into prime elements (up to unit ele-
ments).

While all EUCLIDEAN RINGS are principal rings, the
converse is not true.

See also EUCLIDEAN RING, PRINCIPAL IDEAL

References
Wilson, J. C. "A Principal Ring that is Not a Euclidean
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Principal Root of Unity
A principal nth root v of unity is a root satisfying the
equations vn �1 and

Xn�1

i�0

vij �0

for j �1, 2, ..., n . Therefore, every PRIMITIVE ROOT OF

UNITY of fixed degree n over a field is a principal root
of unity, although this is not in general true over
rings (Bini and Pan 1994, p. 11).

Informally, the term "principal root" is often used to
refer to the ROOT OF UNITY having smallest positive
ARGUMENT.

See also PRIMITIVE ROOT OF UNITY, PRINCIPAL

SQUARE ROOT, ROOT OF UNITY
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Principal Square Root
The unique nonnegative SQUARE ROOT of a nonnega-
tive REAL NUMBER. For example, the principal square
root of 9 is 3, although both -3 and 3 are square roots
of 9.

The concept of principal square root cannot be
extended to real negative numbers since the two
square roots of a negative number cannot be distin-
guished until one of the two is defined as the
imaginary unit, at which point �i and �i can then
be distinguished. Since either choice is possible, there
is no ambiguity in defining i as "the" square root of -1.

See also I , PRINCIPAL ROOT OF UNITY, SQUARE ROOT

Principal Value
CAUCHY PRINCIPAL VALUE

Principal Vector
A tangent vector vp �v1xu �v2xv is a principal vector
IFF

det
v2

2 �v1v2 v2
1

E F G
e f g

2
4

3
5�0 ;

where e , f , and g are coefficients of the first FUNDA-

MENTAL FORM and E , F , G of the second FUNDAMEN-

TAL FORM.

See also FUNDAMENTAL FORMS, PRINCIPAL CURVE

References
Gray, A. Modern Differential Geometry of Curves and

Surfaces with Mathematica, 2nd ed. Boca Raton, FL:
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Principal Vertex
A VERTEX xi of a SIMPLE POLYGON P is a principal
VERTEX if the diagonal xi�1 ; xi�1

� �
intersects the

boundary of P only at xi�1 and xi�1 :/

See also EAR, MOUTH
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Principle
A loose term for a true statement which may be a
POSTULATE, THEOREM, etc.

See also AREA PRINCIPLE, ARGUMENT PRINCIPLE,
AXIOM, CAVALIERI’S PRINCIPLE, CONJECTURE, CONTI-

NUITY PRINCIPLE, COUNTING GENERALIZED PRINCI-

PLE, DIRICHLET’S BOX PRINCIPLE, DUALITY PRINCIPLE,
DUHAMEL’S CONVOLUTION PRINCIPLE, EUCLID’S PRIN-

CIPLE, FUBINI PRINCIPLE, HASSE PRINCIPLE, INCLU-

S I O N -EX C LU S IO N  PRIN CI PLE, IND I F F E R E NC E

PRINCIPLE, INDUCTION PRINCIPLE, INSUFFICIENT REA-

SON PRINCIPLE, LEMMA, LOCAL-GLOBAL PRINCIPLE,
MULTIPLICATION PRINCIPLE, PERMANENCE OF MATH-

EMATICAL RELATIONS PRINCIPLE, PONCELET’S CONTI-

NUITY PRINCIPLE, PONTRYAGIN MAXIMUM PRINCIPLE,
PORISM, POSTULATE, SCHWARZ REFLECTION PRINCI-

PLE, SUPERPOSITION PRINCIPLE, SYMMETRY PRINCI-

PLE, THEOREM, THOMSON’S PRINCIPLE, TRIANGLE

TRANSFORMATION PRINCIPLE, WELL ORDERING PRIN-

CIPLE

Principle of Inclusion �/Exclusion
If A1 ; ..., M(Pn(x)) �a

n
m�0 am mm are finite sets, then

k! �1

where 2 � 3 � 5 � p �1 is the sum of the CARDINALITIES

of the INTERSECTIONS of the sets taken i at a time.

The principle of inclusion-exclusion was used by
Nicholas Bernoulli to solve the recontres problem of
finding the number of DERANGEMENTS (Bhatnagar
1995, p. 8).
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Principle of Strong Induction
Let D be a subset of the nonnegative integers Z � with
the properties that (1) the integer 0 is in D and (2)
any time that n is in D , one can show that n �1 is
also in D . Under these conditions, D �Z �:/

See also INDUCTION, PRINCIPLE OF TRANSFINITE

INDUCTION, PRINCIPLE OF WEAK INDUCTION, Z*

References
Séroul, R. "Reasoning by Induction." §2.14 in Programming

for Mathematicians. Berlin: Springer-Verlag, pp. 22 �/5,
2000.

Principle of Transfinite Induction
Let E be a WELL ORDERED SET and D be a subset of
the nonnegative integers Z� with the properties that
(1) the set D contains the least element 0 of E and (2)
any time that [0 ; x) ƒD; one can show that x belongs
to D . Under these conditions, D�E .

See also INDUCTION, PRINCIPLE OF STRONG INDUC-

TION, PRINCIPLE OF WEAK INDUCTION, Z*
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Principle of Weak Induction
Let D be a subset of the nonnegative integers Z � with
the properties that (1) the integer 0 is in D and (2)
any time that the interval [0; n] is contained in D ,
one can show that n �1 is also in D . Under these
conditions, D �Z�:/

See also INDUCTION, PRINCIPLE OF STRONG INDUC-

TION, PRINCIPLE OF WEAK INDUCTION, Z*
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Pringle
STEINMETZ SOLID

Pringsheim’s Theorem
Let Cv(I) be the set of real ANALYTIC FUNCTIONS on I .
Then Cv(I) is a SUBALGEBRA of C �(I) : A NECESSARY

and SUFFICIENT condition for a function f 
 C �(I) to
belong to C v(I) is that

f (n)(x)
�� ��5knn!

for n �0, 1, ... for a suitable constant k .

See also ANALYTIC FUNCTION, SUBALGEBRA
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Printer’s Errors
Typesetting "errors" in which exponents or multi-
plication signs are omitted but the resulting expres-
sion is equivalent to the original one. Examples
include

2592 �2592 (1)

34425 �34425 (2)

312325 �312325 (3)

and

25 � 25
31 �2525

31; (4)

where a whole number followed by a fraction is
interpreted as a MIXED FRACTION (e.g., 11

2 �1 �1
2 �

3
2):

D. Wilson computed all possible errors obtained by
dropping exponents in a product for bases 2 to 15 and
numbers 5264 :

24 �246 (5)

33 �338 (6)

51232874 �512328749 : (7)

Wilson also gave 11292450A0A812 and
372B9A83000000000012 ; where the two digit base-b
satisfies

pq �pb �q (8)

and for which there exist an infinite number of
examples.

See also ANOMALOUS CANCELLATION, PROOFREADING

MISTAKES
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Prior Distribution
BAYESIAN ANALYSIS

Priority Queue
A data structure designed to allow repeated extrac-
tion of the smallest remaining key (Skiena 1990,
p. 38).

See also HEAP, QUEUE
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Prism

An oblique prism is a POLYHEDRON with two con-
gruent POLYGONAL faces and all remaining faces
PARALLELOGRAMS (left figure). A right prism is a
prism in which the top and bottom polygons lie on
top of each other so that the vertical polygons
connecting their sides are not only PARALLELOGRAMS,
but RECTANGLES (right figure).



The prisms have particularly simple nets, given by
two oppositely-oriented n -gonal bases connected by a
ribbon of n squares.

The VOLUME of a prism of height h and base area A is
simply

V �Ah:

The above figure shows the first few regular right
prisms, whose faces are regular n -gons. The 4-prism
is simply the CUBE. The simple prisms and antiprisms
include the decagonal antiprism, decagonal prism,
hexagonal antiprism, hexagonal prism, octagonal
antiprism, octagonal prism, pentagonal antiprism,
pentagonal prism, square antiprism, and triangular
prism. The DUAL POLYHEDRON of a simple (Archime-
dean) prism is a DIPYRAMID. The unit regular right
prism has volume given by

Vn �1 � An �
1
4 n cot

p

n

 !
;

where An is the AREA of the corresponding REGULAR

POLYGON, and SURFACE AREA

Sn �2An �n � 12 �n 1 �1
2 cot

p

n

 !" #
:

The triangular prism, square prism (cube), and
hexagonal prism are all SPACE-FILLING POLYHEDRA.

See also ANTIPRISM, AUGMENTED HEXAGONAL PRISM,
AUGMENTED PENTAGONAL PRISM, AUGMENTED TRIAN-

GULAR PRISM, BIAUGMENTED PENTAGONAL PRISM,
BIAUGMENTED TRIANGULAR PRISM, CUBE, DIPYRAMID,
HEXAGONAL PRISM, METABIAUGMENTED HEXAGONAL

PRISM, OCTAGONAL PRISM, PARABIAUGMENTED HEX-

AGONAL PRISM, PENTAGONAL PRISM, PRISMATOID,

PRISMOID, TRAPEZOHEDRON, TRIANGULAR PRISM,
TRIAUGMENTED HEXAGONAL PRISM, TRIAUGMENTED

TRIANGULAR PRISM
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Prismatic Ring
A MÖ BIUS STRIP with finite thickness.

See also MÖ BIUS STRIP
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Prismatoid

A POLYHEDRON having two POLYGONS in PARALLEL

planes as bases and TRIANGULAR or TRAPEZOIDAL

lateral faces with one side lying in one base and the
opposite VERTEX or side lying in the other base.
Examples include the CUBE, PYRAMIDAL FRUSTUM,
RECTANGULAR PARALLELEPIPED, PRISM, and PYRAMID.

Let A1 be the AREA of the lower base, A2 the AREA of
the upper base, M the AREA of the midsection, and h
the ALTITUDE. Then

V�1
6 h A1�4M�A2ð Þ:

See also GENERAL PRISMATOID, PARALLELEPIPED,
PRISMATOID THEOREM, PRISMOID, PYRAMIDAL FRUS-

TUM, RECTANGULAR PARALLELEPIPED
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Prismatoid Theorem
The VOLUME of a PRISMATOID is equal to the sum of
the volumes of a PYRAMID, a WEDGE, and a PARALLE-

LEPIPED.

See also GENERAL PRISMATOID, PRISMOID
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Prismoid
A PRISMATOID having planar sides and the same
number of vertices in both of its parallel planes. The
faces of a prismoid are therefore either TRAPEZOIDS or
PARALLELOGRAMS.

Ball and Coxeter (1987) use the term to describe an
ANTIPRISM.

See also ANTIPRISM, PRISM, PRISMATOID
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Prisoner’s Dilemma
A problem in GAME THEORY first discussed by
A. Tucker. Suppose each of two prisoners A and B ,
who are not allowed to communicate with each other,
is offered to be set free if he implicates the other. If
neither implicates the other, both will receive the
usual sentence. However, if the prisoners implicate
each other, then both are presumed guilty and
granted harsh sentences.

A DILEMMA arises in deciding the best course of action
in the absence of knowledge of the other prisoner’s
decision. Each prisoner’s best strategy would appear
to be to turn the other in (since if A makes the worst-
case assumption that B will turn him in, then B will
walk free and A will be stuck in jail if he remains
silent). However, if the prisoners turn each other in,
they obtain the worst possible outcome for both.

See also DILEMMA, TIT-FOR-TAT
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Prizes
MATHEMATICS PRIZES

Probability
Probability is the branch of mathematics which
studies the possible outcomes of given events together
with their relative likelihoods and distributions. In
common usage, the word "probability" is used to mean
the chance that a particular event (or set of events)
will occur expressed on a linear scale from 0 (impos-
sibility) to 1 (certainty), also expressed as a PERCEN-

TAGE between 0 and 100%. The analysis of events
governed by probability is called STATISTICS.

There are several competing interpretations of the
actual "meaning" of probabilities. Frequentists view
probability simply as a measure of the frequency of
outcomes (the more conventional interpretation),
while BAYESIANS treat probability more subjectively
as a statistical procedure which endeavors to esti-
mate parameters of an underlying distribution based
on the observed distribution.

A properly normalized function which assigns a
probability "density" to each possible outcome within
some interval is called a PROBABILITY FUNCTION, and
its cumulative value (integral for a continuous dis-
tribution or sum for a discrete distribution) is called a
DISTRIBUTION FUNCTION.

Probabilities are defined to obey certain assumptions,
called the PROBABILITY AXIOMS. Let a SAMPLE SPACE

contain the UNION (/@) of all possible events Ei; so

S� �
N

i�1

Ei

$ %
; (1)

and let E and F denote subsets of S . Further, let F?�
not-F be the complement of F , so that

F@F?�S: (2)

Then the set E can be written as

E�ESS�ES (F@F?)�(ESF)@ (ESF?); (3)

whereS denotes the intersection. Then

P(E)�P(ESF)�P(ESF?)�P[(ESF)S (ESF?)]

�P(ESF)�P(ESF?)�P[(FSF?)S (ESE)]

�P(ESF)�P(ESF?)�P(¥SE)

�P(ESF)�P(ESF?)�P(¥)



�P(E S F) �P(E S F ?) ; (4)

where ¥ is the EMPTY SET.

Let P(E ½F) denote the CONDITIONAL PROBABILITY of E
given that F has already occurred, then

P(E) �P(E ½F)P(F) �P(E ½F ?)P(F ?) (5)

�P(E½F)P(F) �P(E ½F ?)[1 �P(F)] (6)

P(A S B) �P(A)P(B½A) (7)

�P(B)P(A½B) (8)

P(A?S B) �P(A?)P(B ½A?) (9)

P(E½F) �
P(E S F)

P(F)
: (10)

The relationship

P(A S B) �P(A)P(B) (11)

holds if A and B are independent events. A very
important result states that

P(E @ F) �P(E) �P(F) �P(E S F) ; (12)

which can be generalized to

P �
n

i�1

Ai

$ %
�
X

i

P Aið Þ�
X

ij

? P Ai @ Aj

� �
�
X
i; j; k

ƒ P Ai S Aj S Ak

� �
�. . .

��1ð Þn�1P þ
n

i�1
Ai

 !
: ð13Þ

See also BAYES’ FORMULA, CONDITIONAL PROBABIL-

ITY, COUNTABLE ADDITIVITY PROBABILITY AXIOM,
DISTRIBUTION FUNCTION, EQUALLY LIKELY OUT-

COMES DISTRIBUTION, INDEPENDENT STATISTICS,
LIKELIHOOD, PROBABILITY AXIOMS, PROBABILITY

FUNCTION, PROBABILITY INEQUALITY, STATISTICAL

DISTRIBUTION, STATISTICS

Probability Axioms
Given an event E in a SAMPLE SPACE S which is either
finite with N elements or countably infinite with N �
� elements, then we can write

S � �
N

i�1

Ei

$ %
;

and a quantity P(Ei) ; called the PROBABILITY of event
Ei ; is defined such that

1. 0 5P Eið ÞB1:/
2. P(S) �1 :/
3. Additivity: P E1 @ E2ð Þ�P E1ð Þ�P E2ð Þ; where E1

and E2 are mutually exclusive.
4. Countable additivity: P @ 

n
i �1 Eið Þ�an

i�1 P Eið Þ
for n �1, 2, ..., N where E1 ; E2 ; ...are mutually
exclusive (i.e., E1SE2�¥):/

See also EXPERIMENT, OUTCOME, PROBABILITY, SAM-

PLE SPACE, TRIAL, UNION
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Probability Density Function
PROBABILITY FUNCTION

Probability Distribution Function
PROBABILITY FUNCTION

Probability Function
The probability function P(x) (also called the prob-
ability density or density function) of a continuous
distribution is defined as the derivative of the
(cumulative) DISTRIBUTION FUNCTION D(x);

D?(x)�[P(x)]x
���P(x)�P(��)�P(x); (1)

so

D(x)�P(X5x)�g
x

��

P(y) dy: (2)

A probability function satisfies

P(x 
B)�gB

P(x) dx (3)

and is constrained by the normalization condition,

P(��BxB�)�g
�

��

P(x) dx�1: (4)

Special cases are

P(a5x5b)�g
b

a

P(x) dx (5)

P(a5x5a�da)�g
a�da

a

P(x) dx:P(a) da (6)

P(x�a)�g
a

a

P(x) dx�0: (7)

To find the probability function in a set of trans-
formed variables, find the JACOBIAN. For example, If
u�u(x); then



Pu du �Px dx ; (8)

so

Pu �Px

@x

@u

�����
�����: (9)

Similarly, if u �u(x; y) and v �v(x; y) ; then

Pu ; v �Px ; y

@(x; y)

@(u ; v)

�����
�����: (10)

Given the MOMENTS of a distribution (/m; s; and the
GAMMA STATISTICS gr); the asymptotic probability
function is given by

P(x) �Z(x)

� 1
6 g1Z(3)(x)
h i

� 1
24 g2Z(4)(x) � 1

72 g
2
1Z(6)(x)

h i
� 1

120 g3Z(5)(x) � 1
144 g1 g2Z(7)(x) � 1

1296 g
3
1Z(9)(x)

h i
� 1

720 g4Z(6)(x) � 1
1152 g

2
2 �

1
720 g1 g3


 �
Z(8)(x)

h
� 1

1728 g
2
1 g2Z(10)(x) � 1

31104 g
4
1Z(12) ðxÞ��. . .  ; (11)

where

Z(x) �
1

s
ffiffiffiffiffiffi
2p

p e �(x� m)2 =2s2 

(12)

is the NORMAL DISTRIBUTION, and

gr �
kr

sr�2 
(13)

for r ]1 (with kr CUMULANTS and s the STANDARD

DEVIATION; Abramowitz and Stegun 1972, p. 935).

See also CONTINUOUS DISTRIBUTION, CORNISH-FISHER

ASYMPTOTIC EXPANSION, DISCRETE DISTRIBUTION,
DISTRIBUTION FUNCTION, JOINT DISTRIBUTION FUNC-

TION
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Probability Inequality
If B ‡A (B is a SUPERSET of A ), then P(A) 5P(B) :/

Probability Integral

a(x) �
1ffiffiffiffiffiffi
2p

p g
x

�x

e �t2 =2 dt (1)

�

ffiffiffi
2

p

s
g

x

0

e �t2 =2 dt (2)

�2 F(x) (3)

�erf
xffiffiffi
2

p
 !

; (4)

where F(x) is the NORMAL DISTRIBUTION FUNCTION

and ERF is the error function.

See also ERF, NORMAL DISTRIBUTION FUNCTION

Probability Measure
Consider a PROBABILITY SPACE specified by the triple
(S; S; P) ; where (S; S) is a MEASURABLE SPACE, with
S the domain and S is its measurable subsets, and P
is a MEASURE on S with P(S) �1: Then the MEASURE P
is said to be a probability measure. Equivalently, P is
said to be normalized.

See also MEASURABLE SPACE, MEASURE, PROBABIL-

ITY, PROBABILITY SPACE, RADON MEASURE, STATE

SPACE

Probability Space
A triple (S; S; P) on the domain S , where (S; S) is a
MEASURABLE SPACE, S are the measurable subsets of
S , and P is a MEASURE on S with P(S)�1:/



See also MEASURABLE SPACE, MEASURE, PROBABIL-

ITY, PROBABILITY MEASURE, RANDOM VARIABLE,
STATE SPACE
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Probable Error
The first QUARTILE of a standard NORMAL DISTRIBU-

TION occurs when

g
t

0

F(z) dz �1
4 :

The solution is t �0:6745 . . . : The value of t giving
1=4 is known as the probable error of a NORMALLY

DISTRIBUTED variate. However, the number d corre-
sponding to the 50% CONFIDENCE INTERVAL,

P( d) �1 �2 g
½d ½

0

f(t) dt �1
2 ;

is sometimes also called the probable error.

See also SIGNIFICANCE

Probable Prime
A number satisfying FERMAT’S LITTLE THEOREM (or
some other primality test) for some nontrivial base. A
probable prime which is shown to be COMPOSITE is
called a PSEUDOPRIME (otherwise, of course, it is a
PRIME).

See also PRIME NUMBER, PSEUDOPRIME

Problem
A problem is an exercise whose solution is desired.
Mathematical "problems" may therefore range from
simple puzzles to examination and contest problems
to propositions whose proofs require insightful ana-
lysis.

There are many UNSOLVED PROBLEMS in mathe-
matics. Two famous problems which have recently
been solved include FERMAT’S LAST THEOREM (by
Andrew Wiles) and the KEPLER CONJECTURE (by
T. C.Hales). Among the most prominent of remaining
unsolved problems are the GOLDBACH CONJECTURE,
RIEMANN HYPOTHESIS, POINCARÉ CONJECTURE, the
conjecture that there are an infinite number of TWIN

PRIMES, as well as many more. K.S. Brown, D. Epp-
stein, S. Finch, and C. Kimberling maintain exten-
sive pages of unsolved problems in mathematics.

See also UNSOLVED PROBLEMS
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Procedure
A specific prescription for carrying out a task or
solving a problem. Also called an ALGORITHM,
METHOD, or TECHNIQUE

See also BISECTION PROCEDURE, MAEHLY’S PROCE-

DURE

Proclus’ Axiom
If a LINE intersects one of two parallel lines, it must
intersect the other also. This AXIOM is equivalent to
the PARALLEL AXIOM.
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Procrustian Stretch
HYPERBOLIC ROTATION

Product
The term "product" refers to the result of one or more
MULTIPLICATIONS. For example, the mathematical
statement a�b�c would be read "a TIMES b EQUALS

c ," where c is the product.

The product symbol is defined by

Yn

i�1

fi�f1 � f2 � � � fn:

Useful product identities include

ln
Y�
i�1

fi

 !
�
X�
i�1

ln fi

Y�
i�1

fi�exp
X�
i�1

ln fi

 !
:



For 0 5ai B1; then the products
Q�

i �1 1 �aið Þ andQ�

i �1 1 �aið Þ converge and diverge as
Q�

i�1 ai :/

See also CAUCHY PRODUCT, CROSS PRODUCT, DOT

PRODUCT, INNER PRODUCT, JORDAN PRODUCT, MA-

TRIX PRODUCT, MULTIPLICATION, NONASSOCIATIVE

PRODUCT, OUTER PRODUCT, SUM, TENSOR PRODUCT,
TIMES, VECTOR TRIPLE PRODUCT
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Product Formula
Let a be a NONZERO RATIONAL NUMBER a �
9pa1

1 p
a2

2 � � � paL

L ; where p1 ; ..., pL are distinct PRIMES,
al 
Z and al "0: Then

½a ½
Y

p prime

½ a½p �p a1

1 p a2

2 � � �p aL

L p � a1

1 p �a2

2 � � �p� aL

L �1 :
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Product Log Function
LAMBERT’S W -FUNCTION

Product Neighborhood
TUBULAR NEIGHBORHOOD

Product Rule
The DERIVATIVE identity

d

dx 
[f (x)g(x)] �lim

h00

f (x � h)g(x � h) � f (x)g(x)

h

�lim
h00

f (x � h)g(x � h) � f (x � h)g(x)

h

"

�
f (x � h)g(x) � f (x)g(x)

h

�

�lim
h00

f (x �h)
g(x � h) � g(x)

h

"

�g(x)
f (x � h) � f (x)

h
��f (x)g?(x) �g(x)f ?(x) :

See also CHAIN RULE, EXPONENT LAWS, QUOTIENT

RULE
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Product Set
CARTESIAN PRODUCT

Product Space
A CARTESIAN PRODUCT equipped with a "product
topology" is called a product space (or product
topological space, or direct product).

See also CARTESIAN PRODUCT
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ProductLog
LAMBERT’S W -FUNCTION

Product-Moment Coefficient of
Correlation
CORRELATION COEFFICIENT

Program
A precise sequence of instructions designed to accom-
plish a given task. The implementation of an ALGO-

RITHM on a computer using a programming language
is an example of a program.

See also ALGORITHM

Projection

A projection is the transformation of POINTS and
LINES in one PLANE onto another PLANE by connecting



corresponding points on the two planes with PARAL-

LEL lines. This can be visualized as shining a (point)
light source (located at infinity) through a translu-
cent sheet of paper and making an image of whatever
is drawn on it on a second sheet of paper. The branch
of geometry dealing with the properties and invar-
iants of geometric figures under projection is called
PROJECTIVE GEOMETRY.

The projection of a VECTOR a onto a VECTOR u is given
by

projua �
a � u

½u ½2
u ;

where a � u is the DOT PRODUCT, and the length of
this projection is

½projua½�
½a � u ½

½u ½
:

General projections are considered by Foley and
VanDam (1983).
The average projected area over all orientations of
any ELLIPSOID is 1/4 the total SURFACE AREA. This
theorem also holds for any convex solid.

See also BICENTRIC PERSPECTIVE, DOT PRODUCT, MAP

PROJECTION, POINT-PLANE DISTANCE, PROJECTION

MATRIX, PROJECTION OPERATOR, PROJECTION THEO-

REM, PROJECTION (VECTOR SPACE), PROJECTIVE COL-

LINEATION, PROJECTIVE GEOMETRY, REFLECTION,
SHADOW, STEREOLOGY, TRIP-LET
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Projection (Vector Space)

If W is a k -dimensional subspace of a vector space V
with inner product ;h i; then it is possible to project
vectors from V to W . The most familiar projection is
when W is the X -AXIS in the plane. In this case,
P(x; y) �(x; 0) is the projection. This projection is an
orthogonal projection.
If the SUBSPACE W has an ORTHONORMAL BASIS

fw1 ; . . . ; wk g then

projW(v) �
Xk

i�1

v; wih iwi

is the orthogonal projection onto W . Any vector v 
 V
can be written uniquely as v �vW �vW � ; where vW 


W and vW � is in the ORTHOGONAL SUBSPACE W �:/

A projection is always a LINEAR TRANSFORMATION and
can be represented by a PROJECTION MATRIX. In
addition, for any projection, there is an inner product
for which it is an orthogonal projection.

See also IDEMPOTENT, INNER PRODUCT, PROJECTION

MATRIX, ORTHOGONAL SET, PROJECTION, SYMMETRIC

MATRIX, VECTOR SPACE

Projection Matrix
A projection matrix P is an n�n SQUARE MATRIX that
gives a PROJECTION from Rn to a subspace W . The
columns of P are the projections of the standard basis
vectors, and W is the image of P: A SQUARE MATRIX P
is a projection matrix iff P2�P:/

The following Mathematica function will test if a
matrix is a projection matrix.

ProjectionMatrixQ[a_List?MatrixQ] :� (a.a

�� a)

A projection matrix is a SYMMETRIC MATRIX iff the
PROJECTION is orthogonal. In an orthogonal projec-
tion, any vector v can be written v�vW�vW� ; so

v; Pwh i� vW ; Pwh i� Pv; wh i: (1)

An example of a nonsymmetric projection matrix is



P �
0 1
0 1

� �
; (2)

which projects onto the line y �x .

The case of a COMPLEX VECTOR SPACE is analogous. A
projection matrix is a HERMITIAN MATRIX iff the
PROJECTION satisfies

v ; Pwh i� vW ; Pwh i� Pv ; wh i; (3)

where the INNER PRODUCT is the HERMITIAN INNER

PRODUCT. Projection operators play a role in quantum
mechanics and quantum computing. The following
Mathematica function gives the Hermitian projection
matrix onto a complex subspace, given a basis.

BBLinearAlgebra‘Orthogonalization‘;

HermProjectMatrixOntoBasis[a_List?MatrixQ]

: �
Module[{a1 � GramSchmidt[a, InnerProduct -

� (#1.Conjugate[#2] &) ]},

Transpose[a1].a1]

]

Any vector in W is fixed by the projection matrix
Pw �w for any w in W . Consequently, a projection
matrix P has norm equal to one, unless P �0;

½½P½½�sup
½x ½�1

½Px½51: (4)

See also IDEMPOTENT, INNER PRODUCT, PROJECTION

(VECTOR SPACE), ORTHOGONAL SET, SYMMETRIC MA-

TRIX

Projection Operator

p̃ � fi(x)j i fi(t)h j

p̃
X

j

cj fj(t)
�� :

�ci fi(x)j i

X
i

fi(x)j i fi(x)h j�1:

See also BRA, KET

Projection Theorem
Let H be a HILBERT SPACE and M a closed subspace of
H . Corresponding to any vector x 
 H ; there is a
unique vector m0 
 M such that

½½x �m0 ½½5 ½½x �m½½

for all m 
 M : Furthermore, a necessary and sufficient
condition that m0 
 M be the unique minimizing
vector is that x �m0 be orthogonal to M (Luenberger
1997, p. 51).

This theorem can be viewed as a formalization of the
result that the closest POINT on a PLANE to a point not

on the PLANE can be found by dropping a perpendi-
cular.

See also POINT-PLANE DISTANCE
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Projective Algebraic Variety

See also ALGEBRAIC VARIETY, HODGE CONJECTURE

Projective Collineation
A COLLINEATION which transforms every 1-D form
projectively. Any COLLINEATION which transforms
one range into a projectively related range is a
projective collineation. Every PERSPECTIVE COLLINEA-

TION is a projective collineation.

See also COLLINEATION, ELATION, HOMOLOGY (GEO-

METRY), PERSPECTIVE COLLINEATION
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Projective Correlation
Any CORRELATION which transforms one range into a
projectively related PENCIL (or vice versa).

See also CORRELATION (GEOMETRIC), PENCIL
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Projective General Linear Group
The projective general linear group PGLn(q) is the
GROUP obtained from the GENERAL LINEAR GROUP

GLn(q) on factoring the scalar MATRICES contained in
that group.

See also GENERAL LINEAR GROUP, PROJECTIVE GEN-

ERAL ORTHOGONAL GROUP, PROJECTIVE GENERAL

UNITARY GROUP
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Projective General Orthogonal Group
The projective general orthogonal group PGOn(q) is
the GROUP obtained from the GENERAL ORTHOGONAL

GROUP GOn(q) on factoring the scalar MATRICES

contained in that group.

See also GENERAL ORTHOGONAL GROUP, PROJECTIVE



GENERAL LINEAR GROUP, PROJECTIVE GENERAL UNI-

TARY GROUP
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Projective General Unitary Group
The projective general unitary group PGUn(q) is the
GROUP obtained from the GENERAL UNITARY GROUP

GUn(q) on factoring the scalar MATRICES contained in
that group.

See also GENERAL UNITARY GROUP, PROJECTIVE

GENERAL LINEAR GROUP, PROJECTIVE GENERAL

ORTHOGONAL GROUP, PROJECTIVE GENERAL UNITARY

GROUP
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Projective Geometry
The branch of GEOMETRY dealing with the properties
and invariants of geometric figures under PROJEC-

TION. In older literature, projective geometry is some-
times called "higher geometry," "geometry of
position," or "descriptive geometry" (Cremona 1960,
pp. v-vi).

The most amazing result arising in projective geo-
metry is the DUALITY PRINCIPLE, which states that a
duality exists between theorems such as PASCAL’S

THEOREM and BRIANCHON’S THEOREM which allows
one to be instantly transformed into the other. More
generally, all the propositions in projective geometry
occur in dual pairs, which have the property that,
starting from either proposition of a pair, the other
can be immediately inferred by interchanging the
parts played by the words "POINT" and "LINE."

The AXIOMS of projective geometry are:

1. If A and B are distinct points on a PLANE, there
is at least one LINE containing both A and B .
2. If A and B are distinct points on a PLANE, there
is not more than one LINE containing both A and
B .
3. Any two LINES in a PLANE have at least one point
of the PLANE (which may be the POINT AT INFINITY

in common.
4. There is at least one LINE on a PLANE.
5. Every LINE contains at least three points of the
PLANE.
6. All the points of the PLANE do not belong to the
same LINE

(Veblen and Young 1910�/8, Kasner and Newman
1989).

See also COLLINEATION, DESARGUES’ THEOREM, FUN-

DAMENTAL THEOREM OF PROJECTIVE GEOMETRY,
INVOLUTION (LINE), PENCIL, PERSPECTIVITY, PROJEC-

TION, PROJECTIVITY, RANGE (LINE SEGMENT), SEC-

TION (PENCIL)
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Projective Plane
A projective plane is derived from a usual PLANE by
addition of a LINE AT INFINITY. Just as a straight line
in projective geometry contains of single POINT AT

INFINITY at which the endpoints meet, a plane in
projective geometry contains a single LINE AT INFI-

NITY at which the edges of the PLANE meet. A
projective plane can be constructed by gluing both
pairs of opposite edges of a RECTANGLE together
giving both pairs a half-twist. It is a one-sided
surface, but cannot be realized in 3-D space without
crossing itself.

A finite projective plane of order n is formally defined
as a set of n2 �n �1 POINTS with the properties that:

1. Any two POINTS determine a LINE,
2. Any two LINES determine a POINT,
3. Every POINT has n �1 LINES on it, and
4. Every LINE contains n �1 POINTS.

(Note that some of these properties are redundant.) A
projective plane is therefore a SYMMETRIC (/n2 �n �1;
n �1 ; 1) BLOCK DESIGN. An AFFINE PLANE of order n
exists IFF a projective plane of order n exists.

A finite projective plane exists when the order n is a
POWER of a PRIME, i.e., n �pa for a ]1: It is con-
jectured that these are the only possible projective
planes, but proving this remains one of the most
important unsolved problems in COMBINATORICS. The
first few orders which are powers of primes are 2, 3, 4,
5, 7, 8, 9, 11, 13, 16, ... (Sloane’s A000961). The first
few orders which are not of this form are 6, 10, 12, 14,
15, ... (Sloane’s A024619).

The smallest finite projective plane is of order n �2,
and consists of the 73 CONFIGURATION known as the
FANO PLANE. The remarkable BRUCK-RYSER-CHOWLA

THEOREM says that if a projective plane of order n
exists, and n �1 or 2 (mod 4), then n is the sum of two
SQUARES. This rules out n �6. By answering LAM’S

PROBLEM in the negative using massive computer
calculations on top of some mathematics, it has been
proved that there are no finite projective planes of
order 10 (Lam 1991). The status of the order 12
projective plane remains open.

The projective plane of order 2, also known as the
FANO PLANE, is denoted PG(2, 2). It has INCIDENCE

MATRIX

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

2
666666664

3
777777775
:

Every row and column contains 3 1s, and any pair of
rows/columns has a single 1 in common.

The projective plane has EULER CHARACTERISTIC 1,
and the HEAWOOD CONJECTURE therefore shows that
any set of regions on it can be colored using six colors
only (Saaty 1986). The Petersen graph provides a 6-
color coloring of the PROJECTIVE PLANE.

See also AFFINE PLANE, BLOCK DESIGN, BRUCK-

RYSER-CHOWLA THEOREM, CONFIGURATION, FANO

PLANE, LAM’S PROBLEM, MAP COLORING, MOUFANG

PLANE, PROJECTIVE PLANE PK2, PROJECTIVE SPACE,
REAL PROJECTIVE PLANE, SYMMETRIC BLOCK DESIGN
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Projective Plane Dissection
Virtually nothing is known about dissection of a
PROJECTIVE PLANE using unequal squares.

See also CYLINDER DISSECTION, KLEIN BOTTLE DIS-

SECTION, MÖ BIUS STRIP DISSECTION, PERFECT

SQUARE DISSECTION, TORUS DISSECTION
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Projective Plane PK2

The 2-D SPACE consisting of the set of TRIPLES

f(a ; b ; c) : a ; b ; c 
 K ; not all zero g;

where triples which are SCALAR multiples of each
other are identified.

See also PROJECTIVE PLANE

Projective Space
A SPACE which is invariant under the GROUP G of all
general LINEAR homogeneous transformation in the
SPACE concerned, but not under all the transforma-
tions of any GROUP containing G as a SUBGROUP.

A projective space is the space of 1-D VECTOR

SUBSPACES of a given VECTOR SPACE. For REAL VECTOR

SPACES, the NOTATION RPn or Pn denotes the REAL

projective space of dimension n (i.e., the SPACE of 1-D
VECTOR SUBSPACES of Rn�1) and CPn denotes the
COMPLEX projective space of COMPLEX dimension n
(i.e., the space of 1-D COMPLEX VECTOR SUBSPACES of
Cn�1) : Pn can also be viewed as the set consisting of
Rn together with its POINTS AT INFINITY.

See also PROJECTIVE SPACE

Projective Special Linear Group
The projective special linear group PSLn(q) is the
GROUP obtained from the SPECIAL LINEAR GROUP

SLn(q) on factoring by the SCALAR MATRICES con-
tained in that GROUP. It is SIMPLE for n ]2 except for

PSL2(2) �S3 ;

PSL3(3) �A4 ;

and is therefore also denoted Ln(Q):/

See also PROJECTIVE SPECIAL ORTHOGONAL GROUP,
PROJECTIVE SPECIAL UNITARY GROUP, SPECIAL LINE-

AR GROUP
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Projective Special Orthogonal Group
The projective special orthogonal group PSOn(q) is
the GROUP obtained from the SPECIAL ORTHOGONAL

GROUP SOn(q) on factoring by the SCALAR MATRICES

contained in that GROUP. In general, this GROUP is not
SIMPLE.

See also PROJECTIVE SPECIAL LINEAR GROUP, PRO-

JECTIVE SPECIAL UNITARY GROUP, SPECIAL ORTHO-

GONAL GROUP
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Projective Special Unitary Group
The projective special unitary group PSUn(q) is the
GROUP obtained from the SPECIAL UNITARY GROUP

SUn(q) on factoring by the SCALAR MATRICES con-
tained in that GROUP. PSUn(q) is SIMPLE except for

PSU2(2) �S3

PSU2(3) �A4

PSU3(2) �32 : Q8 ;

so it is given the simpler name Un(q) ; with
U2(q) �L2(q) :/

See also PROJECTIVE SPECIAL LINEAR GROUP, PRO-

JECTIVE SPECIAL ORTHOGONAL GROUP, SPECIAL UNI-

TARY GROUP
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Projective Symplectic Group
The projective symplectic group PSpn(q) is the GROUP

obtained from the SYMPLECTIC GROUP Spn(q) on
factoring by the SCALAR MATRICES contained in that
GROUP. PSp2m(q) is SIMPLE except for

psp2(2)�s3

psp2(3)�a4

psp4(2)�s6;

so it is given the simpler name s2m(q); with /

s2ðqÞ ¼ l2ðqÞ/.
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Projective Variety
PROJECTIVE ALGEBRAIC VARIETY



Projectivity
The product of any number of PERSPECTIVITIES.

See also INVOLUTION (TRANSFORMATION), PERSPEC-

TIVITY

Projectivization
Given a VECTOR SPACE V , its projectivization P(V);
sometimes written P(V �0); is the set of EQUIVA-

LENCE CLASSES x  lx for any l "0 in V �0: For
example, COMPLEX PROJECTIVE SPACE has HOMOGE-

NEOUS COORDINATES [x0 ; . . .  ; xn]; with not all xi �0 :/

The projectivization is a MANIFOLD with one less
dimension than V . In fact, it is covered by the n �1
affine COORDINATE CHARTS,

U0 �f[1; x1 ; . . . ; xn]g; . . . ; Un �f[x0 ; . . . ; xn �1 ; 1]g:

See also COMPLEX PROJECTIVE SPACE, MANIFOLD,
VECTOR SPACE

Prolate Cycloid

The path traced out by a fixed point at a RADIUS b �a ,
where a is the RADIUS of a rolling CIRCLE, also
sometimes called an EXTENDED CYCLOID. The prolate
cycloid contains loops, and has PARAMETRIC EQUA-

TIONS

x �af �b sin f (1)

y �a �b cos f : (2)

The ARC LENGTH from f �0 is

s�2(a�b)E(u); (3)

where

sin 1
2 f

 �

�sn u (4)

k2�
4ab

(a � c)2 : (5)

See also CURTATE CYCLOID, CYCLOID, TROCHOID
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Prolate Cycloid Evolute

The EVOLUTE of the PROLATE CYCLOID is given by

x ¼ a½�2bfþ 2af cos f� 2a sin f� b sinð2fÞ�
2ða cos f� bÞ

y�
a(a � b cos f)2

b(a cos f� b)
:

Prolate Spheroid

A SPHEROID which is "pointy" instead of "squashed,"
i.e., one for which the polar radius c is greater than
the equatorial radius a , so c�a (called "spindle-
shaped ellipsoid" by Tietze 1965, p. 27). A symme-
trical egg (i.e., with the same shape at both ends)
would approximate a prolate spheroid. A prolate
spheroid is a SURFACE OF REVOLUTION obtained by
rotating an ELLIPSE about its major axis (Hilbert and
Cohn-Vossen 1999, p. 10), and has Cartesian equa-
tions

x2 � y2

a2
�

z2

c2
�1: (1)



The ELLIPTICITY of the prolate spheroid is defined by

e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

c2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

a2

c2

s
; (2)

so that

1 �e2 �
a2

c2 
: (3)

Then

r �a 1 �
e2

1 � e2
sin2 d

 !�1 =2

: (4)

The SURFACE AREA of a prolate spheroid can be
computed as a SURFACE OF REVOLUTION about the Z -

AXIS,

S �2 p g r(z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �[r ?(z)]2

q
dz (5)

with radius as a function of z given by

r(z) �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

z

c

 !2
vuut : (6)

The INTEGRAND is then

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �r ?2

p
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

(a � c)(a � c)z2

c4

s
; (7)

and the integral is given by

S ¼ 2pag
c

�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ða � c Þða þ c Þz2

c4

s
dz

¼ 2 pa2 þ 2pac2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2

p

c

 !
: ð8Þ

Using the identity ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �a2

p
�ce (9)

gives

S �2pa2 �2 p
ac

e
sin�1 e (10)

(Beyer 1987, p. 131). Note that this is the conven-
tional form in which the surface area of an prolate
spheroid is written, although it is formally equivalent
to the conventional form for the OBLATE SPHEROID via
the identity

c2 p

e(a ; c)
ln

1 � e(a ; c)

1 � e(a ; c)

" #
�

2 pac

e(c ; a)
sin�1[e(c ; a)]; (11)

where e(x; y) is defined by

e(x; y)�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2

y2

s
: (12)

The VOLUME of an prolate spheroid can be computed
from the formula for a general ELLIPSOID with b�a ,

V�4
3 pa2c (13)

(Beyer 1987, p. 131).

See also DARWIN-DE SITTER SPHEROID, ELLIPSOID,
LEMON, OBLATE SPHEROID, PROLATE SPHEROIDAL

COORDINATES, SPHERE, SPHEROID
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Prolate Spheroidal Coordinates

A system of CURVILINEAR COORDINATES in which two
sets of coordinate surfaces are obtained by revolving
the curves of the ELLIPTIC CYLINDRICAL COORDINATES

about the X -AXIS, which is relabeled the Z -AXIS. The
third set of coordinates consists of planes passing
through this axis.

x�a sinh j sin h cos f (1)

y�a sinh j sin h sin f (2)

z�a cosh j cos h; (3)

where j 
 [0; �); h 
 [0; p]; and f 
 [0; 2p): Note that
several conventions are in common use; Arfken (1970)
uses (u; v; 8 ) instead of (j; h; f); and Moon and
Spencer (1988, p. 28) use (h; u; c):/
In this coordinate system, the SCALE FACTORS are

hj�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

j�sin2 h

q
(4)

hh�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2

j�sin2 h

q
(5)



hf �a sinh j sin h : (6)

The LAPLACIAN is

92f �
1

sin h sinh j(sin2 h � sinh2 
j)

�
@

@ j
sin h sinh j

@f

@ j

 !
�

@

@ h
sin h sinh j

@f

@ h

 !(

�
@

@ f

�
(csch j sin h �csc h sinh j)

@f

@ f

�#
: (7)

¼ 1

sin2 h � sinh2 
j

(csc2 h �csch2 
j)

@2f

@ j2 
�cot h

@f

@ h

"

�
@2f

@ h2 
�coth j

@f

@ j 
�

@2f

@ j2

�
(8)

An alternate form useful for "two-center" problems is
defined by

j1 �cosh j (9)

j2 �cos h (10)

j3 � f; (11)

where j1 
 [1; �] ; j2 
 [�1 ; 1]; and j3 
 [0; 2p) (Abra-
mowitz and Stegun 1972). In these coordinates,

z �aj1 j2 (12)

x �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 �1
� �

1 � j2
2

� �q
cos j3 (13)

y �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 �1
� �

1 � j2
2

� �q
sin j3 : (14)

In terms of the distances from the two FOCI,

j1 �
r1 � r2

2a 
(15)

j2 �
r1 � r2

2a 
(16)

2a �r12 : (17)

The SCALE FACTORS are

hj1
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 � j2
2

j2
1 � 1

s
(18)

hj2
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 � j2
2

1 � j2
2

s
(19)

hj3
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

1 �1
� �

1 � j2
2

� �q
; (20)

and the LAPLACIAN is

92f �
1

a2

1

j2
1 � j2

2

@

@ j1

j2
1�1

� � @f

@j1

" #(

�
1

j2
1 � j2

2

@

@j2

1�j2
2

� � @f

@

" #

�
1

j2
1 � 1

� �
1 � j2

2

� � @2f

dj2
2

#
: (21)

The HELMHOLTZ DIFFERENTIAL EQUATION is separable
in prolate spheroidal coordinates.

See also HELMHOLTZ DIFFERENTIAL EQUATION–PRO-

LATE SPHEROIDAL COORDINATES, LATITUDE, LONG-

ITUDE, OBLATE SPHEROIDAL COORDINATES,
SPHERICAL COORDINATES
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Prolate Spheroidal Wave Function
The WAVE EQUATION in PROLATE SPHEROIDAL COORDI-

NATES is

92F�k2F�
@

@j1

j2
1�1

� � @F
@j1

" #
�

@

@j2

1�j2
2

� � @F
@j2

" #

�
j2

1 � j2
2

j2
1 � 1

� �
1 � x2

2ð Þ
@2F
@f2�c2 j2

1�j2
2

� �
F�0; (1)

where

c�1
2 ak: (2)

Substitute in a trial solution

F�Rmn(c; j1)Smn(c; j2)
cos
sin

(mf) (3)

d

dj1

j2
1�1

� � d

dj1

Rmn(c; j1)

" #



� lmn �c2 j2
1 �

m2

j2
1 � 1

 !
Rmn(c ; j1) �0 : (4)

The radial differential equation is

d

dj2

j2
2 �1

� � d

dj2

Smn(c; j2)

" #

� lmn �c2 j2
2 �

m2

j2
2 � 1

 !
Rmn(c ; j2) �0: (5)

and the angular differential equation is

d

dj2

1 � j2
2

� � d

dj2

Smn(c ; j2)

" #

� lmn �c2 j2
2 �

m2

1 � j2
2

 !
Rmn(c ; j2) �0: (6)

Note that these are identical (except for a sign
change). The prolate angular function of the first
kind is given by

S(1)
mn �

P�

r�1 ; 3 ; ... dr(c)Pm
m�r(h) for n �m oddP�

r�0 ; 2 ; ... dr(c)Pm
m�r( h) for n �m even ;

"
(7)

where Pk
k( h) is an associated LEGENDRE POLYNOMIAL.

The prolate angular function of the second kind is
given by

S(2)
mn �

P�

r�...; �1 ; 1 ; 3 ; ... dr(c)Qm
m�r( h) for n �m oddP�

r�...; �2 ; 0 ; 2 ; ... dr(c)Qm
m�r(h) for n �m even ;

"
(8)

where Qm
k ( h) is an associated LEGENDRE FUNCTION OF

THE SECOND KIND and the COEFFICIENTS dr satisfy the
RECURRENCE RELATION

akdk �2 �( bk � lmn)dk � gkdk �2 �0; (9)

with

ak �
(2m � k � 2)(2m � k � 1)c2

(2m � 2k � 3)(2m � 2k � 3)
(10)

bk �(m �k)(m �k �1)

�
2(m � k)(m � k � 1) � 2m2 � 1

(2m � 2k � 1)(2m � 2k � 3)
c2 (11)

gk �
k(k � 1)c2

(2m � 2k � 3)(2m � 2k � 1) 
: (12)

Various normalization schemes are used for the ds
(Abramowitz and Stegun 1972, p. 758). Meixner and
Schäfke (1954) use

g
1

�1

[Smn(c; h)]2 dh�
2

2n � 1

(n � m)!

(n � m)!
: (13)

Stratton et al. (1956) use

(n � m)!

(n � m)!
�

P�

r�1; 3; ���
(r � 2m)!

r!
dr for n�m odd

P�

r�0; 2; ...

(r � 2m)!

r!
dr for n�m even:

8>>><
>>>:

(14)

Flammer (1957) uses

Smn(c; 0)� Pm�1
n (0) for n�m odd

Pm
n (0) for n�m even:

"
(15)

See also OBLATE SPHEROIDAL WAVE FUNCTION,
SPHEROIDAL WAVE FUNCTION
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Pronic Number
A FIGURATE NUMBER OF THE FORM Pn�2Tn�n(n�
1); where Tn is the nth TRIANGULAR NUMBER. The first
few are 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, ... (Sloane’s
A002378). The GENERATING FUNCTION of the pronic
numbers is

2x

(1 � x)3�2x�6x2�12x3�20x4�. . .

Kausler (1805) was one of the first to tabulate pronic
numbers, creating a list up to n�1000 (Dickson
1952, Vol. 1, p. 357; Vol. 2, p. 233). Pronic numbers
are also known as oblong or heteromecic numbers.

McDaniel (1998ab) proved that the only pronic
Fibonacci numbers are F0�0 and F3�2; and the
only pronic Lucas number is L0�2; rediscovering a
result first published by Ming (1995).

The first few n for which Pn are PALINDROMIC are 1, 2,
16, 77, 538, 1621, ... (Sloane’s A028336), and the first
few PALINDROMIC NUMBERS which are pronic are 2, 6,
272, 6006, 289982, ... (Sloane’s A028337).
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Proof
A rigorous mathematical argument which unequivo-
cally demonstrates the truth of a given PROPOSITION.
A mathematical statement which has been proven is
called a THEOREM.

According to Hardy (1999, pp. 15 �/6), "all physicists,
and a good many quite respectable mathematicians,
are contemptuous about proof. I have heard Professor
Eddington, for example, maintain that proof, as pure
mathematicians understand it, is really quite unin-
teresting and unimportant, and that no one who is
really certain that he has found something good
should waste his time looking for proof.... [This
opinion], with which I am sure that almost all
physicists agree at the bottom of their hearts, is one
to which a mathematician ought to have some reply."

There is some debate among mathematicians as to
just what constitutes a proof. The FOUR-COLOR THEO-

REM is an example of this debate, since its "proof"
relies on an exhaustive computer testing of many
individual cases which cannot be verified "by hand."
While many mathematicians regard computer-as-
sisted proofs as valid, some purists do not. There
are several computer systems currently under devel-
opment for automated theorem proving, among them,
TH/�/OREM/�:/

See also DEEP THEOREM, PARADOX, PROPOSITION,
Q.E.D, REDUCTIO AD ABSURDUM THEOREM, TRIVIAL
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Proofreading Mistakes
If proofreader A finds a mistakes and proofreader B
finds b mistakes, c of which were also found by A ,
how many mistakes were missed by both A and B?
Assume there are a total of m mistakes, so proof-
reader A finds a FRACTION a=m of all mistakes, and
also a FRACTION c =b of the mistakes found by B .
Assuming these fractions are the same, then solving
for m gives

m �
ab

c
:

The number of mistakes missed by both is therefore
approximately

N�m�a�b�c�
(a � c)(b � c)

c
:

See also PRINTER’S ERRORS
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Propeller

A 4-POLYHEX.
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Proper Class
A CLASS which is not a SET.

See also CLASS (SET), ORDINAL NUMBER, SET

Proper Cover
Proper covers are defined as COVERS of a set X which
do not contain the entire set X itself as a subset
(Macula 1994). Of the five covers of f1; 2 g; namely
ff1g; f2 gg; ff1; 2gg; ff1 g; f1 ; 2 gg; ff2g; f1; 2gg;
and ff1 g; f2g; f1; 2gg; only ff1g; f2gg does not
contain the subset f1; 2g and so is the unique proper
cover of two elements. In general, the number of
proper covers for a set of N elements is

½C?(N) ½� ½C(N) ½�1
4 2

2N

�
1

2

XN

k�0

(�1)k N
k

$ %
22N �k

" #
�

22N

4
;

the first few of which are 0, 1, 45, 15913, 1073579193,
... (Sloane’s A007537).

See also COVER, MINIMAL COVER
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Proper Divisor
A positive proper divisor is a positive DIVISOR of a
number n , excluding n itself. For example, 1, 2, and 3
are positive proper divisors of 6, but 6 itself is not.
The number of proper divisors of n is therefore given
by

s0(n) � s0(n) �1;

where sk(n) is the DIVISOR FUNCTION. For n �1, 2, ...,
s0(n) is therefore given by 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, ...
(Sloane’s A032741). The largest proper divisors of
n �2, 3, ... are 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, ... (Sloane’s
A032742).

The term "proper divisor" is sometimes includes
negative integer divisors of a number n excluding
�n: Using this definition, -3, -2, -1, 1, 2, and 3 are the
proper divisors of 6, while �6 and 6 are the IMPROPER

DIVISORS.

To make matters even more confusing, the proper
divisor is often defined so that -1 and 1 are also
excluded. Using this alternative definition, the proper
divisors of 6 would then be -3, -2, 2, and 3, and the
IMPROPER DIVISORS would be �6; -1, 1, and 6.

See also ALIQUANT DIVISOR, ALIQUOT DIVISOR, DIVI-

SOR, IMPROPER DIVISOR
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Proper Fraction
A FRACTION p=q B1 : A fraction p=q �1 is called an
IMPROPER FRACTION.

See also FRACTION, MIXED FRACTION, IMPROPER

FRACTION, REDUCED FRACTION

Proper Integral
An INTEGRAL which has neither limit INFINITE and
from which the INTEGRAND does not approach INFI-

NITY at any point in the range of integration.

See also IMPROPER INTEGRAL, INTEGRAL

Proper k-Coloring
K -COLORING

Proper Subfield

See also FIELD, SUBFIELD

Proper Subset
A SUBSET which is not the entire SET. For example,
consider a SET f1; 2; 3; 4; 5g: Then f1; 2; 4g and f1g
are proper subsets, while f1; 2; 6g and
f1; 2; 3; 4; 5g are not.

See also SET, SUBSET

Proper Superset
A SUPERSET which is not the entire SET.

See also SET, SUPERSET

Proper Value
EIGENVALUE

Proper Vector
EIGENVECTOR

Property P
A KNOT having the property that no surgery could
possibly yield a counterexample to the POINCARÉ

CONJECTURE is said to satisfy Property P (Adams
1994, p. 262).

See also POINCARÉ CONJECTURE



References
Adams, C. C. The Knot Book: An Elementary Introduction to

the Mathematical Theory of Knots. New York: W. H.
Freeman, 1994.

Proportional
If a is (directly) proportional to b , then a =b is a
constant. The relationship is written a 8b ; which
implies

a �cb;

for some constant c .

See also DIRECTLY PROPORTIONAL, INVERSELY PRO-

PORTIONAL

Proportional-Integral-Derivative Method
A very useful active feedback method for controlling
things like temperature control systems, servo mo-
tors, and flow control valves.

Proposition
A statement which is to be proved.

Propositional Calculus
The formal basis of LOGIC dealing with the notion and
usage of words such as "NOT," "OR," "AND," and
"IMPLIES." Many systems of propositional calculus
have been devised which attempt to achieve consis-
tency, completeness, and independence of AXIOMS.
The term "sentential calculus" is sometimes used as a
synonym for propositional calculus.

See also CONNECTIVE, LOGIC, P -SYMBOL, PREDICATE

CALCULUS
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Propositional Connective
CONNECTIVE

Prosthaphaeresis Formulas
TRIGONOMETRY formulas which convert a product of
functions into a sum or difference. The Prosthaphaer-
esis formulas are

sin a �sin b �2 sin 1
2(a � b)
h i

cos 1
2(a � b)
h i

(1)

sin a �sin b �2 cos 1
2( a � b)
h i

sin 1
2(a � b)
h i

(2)

cos a �cos b �2 cos 1
2(a � b)
h i

cos 1
2(a � b)
h i

(3)

cos a �cos b ��2 sin 1
2(a � b)
h i

sin 1
2( a � b)
h i

: (4)

Related formulas are

sin a sin b �1
2 sin( a � b) �sin(a � b)½ � (5)

cos a cos b �1
2 cos(a � b) �cos(a � b)½ � (6)

cos a sin b �1
2[sin(a � b) �sin( a � b)] (7)

sin a sin b �1
2[cos( a � b) �cos(a � b)]: (8)

Multiplying both sides by 2 gives the equations
sometimes known as the WERNER FORMULAS.

See also TRIGONOMETRIC ADDITION FORMULAS, TRI-

GONOMETRIC PRODUCT FORMULAS

Proth’s Theorem
For N�h � 2n�1 with ODD h and /2n�h/, if there
exists an INTEGER a such that

a(N�1)=2��1 (mod N);

then N is PRIME.

Protractor
A ruled SEMICIRCLE used for measuring and drawing
ANGLES.

Prouhet’s Problem
PROUHET-TARRY-ESCOTT PROBLEM

Prouhet-Tarry-Escott Problem
Find two distinct sets of integers fa1; . . . ; ang and
fb1; . . . ; bng; such that for k�1, ..., m ,

Xn

i�1

ak

i
�
Xn

i�1

bk
i :

The Prouhet-Tarry-Escott problem is therefore a
special case of a MULTIGRADE EQUATION. A solution
with n�m�1 is said to be "ideal," and are of interest
because they are minimal solutions of the problem
(Borwein and Ingalls 1994).

The smallest symmetric ideal solutions for m�9 was
found by Borwein et al. (Lisonek 2000),

(�313)k�(�301)k�(�188)k�(�100)k�(�99)k

�99k�100k�188k�301k�313k

�(�308)k�(�307)k�(�180)k�(�131)k�(�71)k

�71k�131k�180k�307k�308k; (1)

as well as the second solution

(�515)k�(�452)k�(�366)k�(�189)k�(�103)k

�103k�189k�366k�452k�515k



�(�508)k �(�417)k �(�331)k �(�245)k �(�18)k

�18k �245k �331k �471k �508k : (2)

The previous smallest known symmetric ideal solu-
tion, found by Letac in the 1940s, is

(�23750)k �(�20667)k �(�20499)k �(�11857)k

�(�436)k �436k �11857k �20449k �20667k �23750k

�(�23738)k �(�20855)k �(�20231)k �(�11881)k

�(�12)k �12k �11881k �20231k �20885k �23738k :

(3)

In 1999, S. Chen found the first ideal solution with
m ]10;

0k �11k �24k �65k �90k �129k �173k �212k

�237k �278k �291k �302k

�3k �5k �30k �57k �104k �116k �186k

�198k �245k �272k �297k �299k ; (4)

which is true for k �1, 2, ..., 11.

See also MULTIGRADE EQUATION
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Prü fer Code

An encoding which provides a bijection between the
nn�2 LABELED TREES on n nodes and strings of /n �2/

integers chosen from an alphabet of the numbers 1 to
n . A LABELED TREE can be converted to a Prüfer code
using LabeledTreeToCode[g ] in the Mathematica
add-on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘), and a code can be converted
to a LABELED TREE using CodeToLabeledTree[g ].

Prüfer’s bijection is based on the fact that every tree
has at least two nodes of degree 1 (i.e., LEAVES).
Therefore, the node v which is incident to the lowest
labeled leaf is uniquely determined, and v is then
taken as the first symbol in the code. This node is
then deleted and the procedure is repeated until a
single edge is left, giving a total of /n�2/ integers
between 1 and n (Skiena 1990). This is demonstrated
in the LABELED TREE shown above.

See also LABELED TREE
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Prü fer Ring
A metric space Ẑ in which the closure of a congruence
class B(j ; m) is the corresponding congruence class
fx 
 Ẑ ½x �j (mod m)g:/
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p-Series
A shorthand name for a POWER SERIES with a
NEGATIVE exponent, a�

k�1 k
�p ; where p �0.

See also POWER SERIES, RIEMANN ZETA FUNCTION

Pseudoanalytic Function
A pseudoanalytic function is a function defined using
generalized CAUCHY-RIEMANN EQUATIONS. Pseudoa-
nalytic functions come as close as possible to having
COMPLEX DERIVATIVES and are nonsingular "quasire-
gular" functions.

See also ANALYTIC FUNCTION, SEMIANALYTIC, SUB-

ANALYTIC

Pseudocircle
A simple closed curve on a SPHERE that is not
necessarily a GREAT CIRCLE but merely intersects as
a GREAT CIRCLE would (Billera et al. 1999).

See also GREAT CIRCLE
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Pseudoconic Projection
A MAP PROJECTION in which the parallels are repre-
sented by concentric circular arcs and the meridians
by concurrent curves.
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Pseudocrosscap

A surface constructed by placing a family of figure-
eight curves into R3 such that the first and last curves
reduce to points. The surface has PARAMETRIC EQUA-

TIONS

x(u; v) �(1 �u2) sin v

y(u; v) �(1 �u2) sin(2v)

z(u; v) �u :

References
Gray, A. Modern Differential Geometry of Curves and

Surfaces with Mathematica, 2nd ed. Boca Raton, FL:
CRC Press, p. 337, 1997.

Pseudocylindrical Projection
A projection in which latitude lines are parallel but
meridians are curves.

See also CYLINDRICAL PROJECTION, ECKERT IV PRO-

JECTION, ECKERT VI PROJECTION, MOLLWEIDE PRO-

JECTION, ROBINSON PROJECTION, SINUSOIDAL

PROJECTION
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Pseudodifferential Operators. Boca Raton, FL: CRC Press,
1991.

Taylor, M. E. Partial Differential Equations, Vol. 1: Basic
Theory. New York: Springer-Verlag, 1996.

Taylor, M. E. Partial Differential Equations, Vol. 2: Quali-
tative Studies of Linear Equations. New York: Springer-
Verlag, 1996.

Taylor, M. E. Partial Differential Equations, Vol. 3: Non-
linear Equations. New York: Springer-Verlag, 1996.

Wloka, J. T.; Rowley, B.; and Lawruk, B. Boundary Value
Problems for Elliptic Systems. Cambridge, England: Cam-
bridge University Press, 1995.

Pseudo-Euclidean Space
A Euclidean-like space having LINE ELEMENT

ds2 �(dz1)2 �. . .�(dzp)2 �(dzp �1)2 �. . .�(dzp�q)2 ;

having dimension m �p �q (Rosen 1965). In con-
trast, the signs would be all be positive for a
EUCLIDEAN SPACE.

See also CAMPBELL’S THEOREM, EUCLIDEAN SPACE
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Pseudograph

A non-SIMPLE GRAPH in which both LOOPS and multi-
ple edges are permitted.

See also HYPERGRAPH, LOOP (GRAPH), MULTIGRAPH,
SIMPLE GRAPH
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rics and Graph Theory with Mathematica. Reading, MA:
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Pseudogroup
An algebraic structure whose elements consist of
selected HOMEOMORPHISMS between open subsets of
a SPACE, with the composition of two transformations
defined on the largest possible domain. The "germs"
of the elements of a pseudogroup form a GROUPOID

(Weinstein 1996).

See also GROUP, GROUPOID, INVERSE SEMIGROUP
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Pseudoinverse
MOORE-PENROSE GENERALIZED MATRIX INVERSE

Pseudolemniscate Case
The case of the WEIERSTRASS ELLIPTIC FUNCTION with
invariants g2 ��1 and g3 �0:/

See also EQUIANHARMONIC CASE, LEMNISCATE CASE,
WEIERSTRASS ELLIPTIC FUNCTION
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Mathematical Tables, 9th printing. New York: Dover,
pp. 662 �/63, 1972.

Pseudoparadox
Curry (1977, p. 5) uses the term pseudoparadox to
describe an apparent PARADOX, such as the CATALO-

GUE PARADOX, for which there is no underlying actual
contradiction.

See also HYPERGAME, PARADOX
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Pseudoperfect Number
SEMIPERFECT NUMBER

Pseudoprime
A pseudoprime is a COMPOSITE NUMBER which passes
a test or sequence of tests which fail for most
COMPOSITE NUMBERS. Unfortunately, some authors
drop the "COMPOSITE" requirement, calling any num-
ber which passes the specified tests a pseudoprime
even if it is PRIME. Pomerance, Selfridge, and Wag-
staff (1980) restrict their use of "pseudoprime" to ODD

COMPOSITE NUMBERS. "Pseudoprime" used without
qualification means FERMAT PSEUDOPRIME.

CARMICHAEL NUMBERS are ODD COMPOSITE numbers
which are pseudoprimes to every base; they are
sometimes called ABSOLUTE PSEUDOPRIMES. The fol-
lowing table gives the number of FERMAT PSEUDO-

PRIMES psp(2), EULER-JACOBI PSEUDOPRIMES ejpsp(2),
and STRONG PSEUDOPRIMES spsp(2) to the base 2, as
well as CARMICHAEL NUMBERS CN which are less the
first few powers of 10 (Guy 1994).



/10n
/ psp(2) ejpsp(2) spsp(2) CN

Sloane A055550 A055551 A055552 A055553

Sloane
Counts

A001567 A047713 A001262 A002997

101 0 0 0 0

102 0 0 0 0

103 3 1 0 1

104 22 12 5 7

105 78 36 16 16

106 245 114 46 43

107 750 375 162 105

108 2057 1071 488 255

109 5597 2939 1282 646

1010 14884 7706 3291 1547

1011 38975 20417 8607 3605

1012 101629 53332 22407 8241

1013 264239 124882 58897 19279

See also CARMICHAEL NUMBER, ELLIPTIC PSEUDO-

PRIME, EULER PSEUDOPRIME, EULER-JACOBI PSEUDO-

PRIME, EXTRA STRONG LUCAS PSEUDOPRIME, FERMAT

PSEUDOPRIME, FIBONACCI PSEUDOPRIME, FROBENIUS

PSEUDOPRIME, LUCAS PSEUDOPRIME, PERRIN PSEU-

DOPRIME, PROBABLE PRIME, SOMER-LUCAS PSEUDO-

PRIME, STRONG ELLIPTIC PSEUDOPRIME, STRONG

FROBENIUS PSEUDOPRIME, STRONG LUCAS PSEUDO-

PRIME, STRONG PSEUDOPRIME
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Sloane, N. J. A. Sequences A001262, A001567/M5441,
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and A055553 in "An On-Line Version of the Encyclopedia

of Integer Sequences." http://www.research.att.com/~njas/
sequences/eisonline.html.

Pseudorandom Number
A slightly archaic term for a computer-generated
RANDOM NUMBER. The prefix pseudo- is used to
distinguish this type of number from a "truly" RAN-

DOM NUMBER generated by a random physical process
such as radioactive decay.

See also RANDOM NUMBER
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Pseudorhombicuboctahedron
ELONGATED SQUARE GYROBICUPOLA

Pseudo-Riemannian Manifold
A pseudo-Riemannian manifold is a manifold which
has a metric that is of the signature
diag(�; �; . . . ; �); as compared to a RIEMANNIAN

MANIFOLD, which has a signature of all positive signs.

See also CAMPBELL’S THEOREM, RIEMANNIAN MANI-

FOLD

Pseudoscalar
A SCALAR which reverses sign under inversion is
called a pseudoscalar. The SCALAR TRIPLE PRODUCT

A � (B �C)

is a pseudoscalar. Given a transformation MATRIX A;

S?�det Aj jS;

where det is the DETERMINANT.

See also PSEUDOTENSOR, PSEUDOVECTOR, SCALAR
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Pseudosmarandache Function
The pseudosmarandache function Z(n) is the smallest
integer such that

XZ(n)

k�1

k�1
2 Z(n)[Z(n)�1]

is divisible by n . The values for n�1, 2, ... are 1, 3, 2,
7, 4, 3, 6, 15, 8, 4, ... (Sloane’s A011772; Kashihara
1996; Russo 2000, p. 4).



See also SMARANDACHE FUNCTION
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Pseudosphere

Half the SURFACE OF REVOLUTION generated by a
TRACTRIX about its ASYMPTOTE to form a TRACTROID.
The surfaces is sometimes also called the ANTISPHERE

or TRACTRISOID (Steinhaus 1983, pp. 251). The Carte-
sian PARAMETRIC EQUATIONS are

x �sech u cos v (1)

y �sech u sin v (2)

z �u �tanh u (3)

for u ]0 and v 
 [0; 2 p):/

The coefficients of the FIRST FUNDAMENTAL FORM are

E �tanh2 u (4)

F �0 (5)

G �sech2 u; (6)

the SECOND FUNDAMENTAL FORM coefficients are

e ��sech u tanh u (7)

f �0 (8)

g �sech u tanh u; (9)

and the surface area element is

dS �sech u tanh u: (10)

The SURFACE AREA is

S �g
2p

0 g
�

0

sech u tanh u du dv�2p: (11)

The GAUSSIAN and MEAN CURVATURES are

K ��1 (12)

H �1
2(sinh u �csch u) : (13)

The pseudosphere therefore has constant NEGATIVE

GAUSSIAN CURVATURE, justifying the name "pseudo-
sphere" (i.e., an analog of the SPHERE, which has
constant POSITIVE curvature). Its constant NEGATIVE

CURVATURE also makes it a model of HYPERBOLIC

GEOMETRY. An equation for the GEODESICS on a
pseudosphere is given by

cosh2 u �(v �c)2 �k2 : (14)

See also FUNNEL, GABRIEL’S HORN, HYPERBOLIC

GEOMETRY, TRACTRIX
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Pseudosquare
Given an ODD PRIME p , a SQUARE NUMBER n satisfies
(n=p) �0 or 1 for all p Bn , where (n=p) is the
LEGENDRE SYMBOL. A number n �2 which satisfies
this relationship but is not a SQUARE NUMBER is called
a pseudosquare. The only pseudosquares less than
109 are 3 and 6.

See also LEGENDRE SYMBOL, SQUARE NUMBER

Pseudotensor
A TENSOR-like object which reverses sign under
inversion. Given a transformation MATRIX A ;

A0
ij �det Aj jaikajlAkl ;

where det is the DETERMINANT. A pseudotensor is
sometimes also called a TENSOR DENSITY.

See also PSEUDOSCALAR, PSEUDOVECTOR, SCALAR,
TENSOR DENSITY
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Pseudovector
A typical VECTOR is transformed to its NEGATIVE

under inversion. A VECTOR which is invariant under
inversion is called a pseudovector, also called an
AXIAL VECTOR in older literature (Morse and Fes-
hbach 1953). The CROSS PRODUCT

A �B (1)

is a pseudovector, whereas the VECTOR TRIPLE PRO-

DUCT

A �(B �C) (2)

is a VECTOR.

[pseudovector] �[pseudovector] �[pseudovector] (3)

[vector] �[pseudovector] �[vector]: (4)

Given a transformation MATRIX A;

C?i �det Aj jaijCj : (5)

See also PSEUDOSCALAR, TENSOR, VECTOR
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Psi Function

C(z ; s ; v) �
X�
n�0

zn

(v � n)s

for zj j B1 and v "0; �1; ... (Gradshteyn and Ryzhik
2000, pp. 1075 �/076).

See also HURWITZ ZETA FUNCTION, JACOBI THETA

FUNCTIONS, RAMANUJAN PSI SUM
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p-Signature
Diagonalize a form over the rationals to

diag[pa � A; pb � B ; . . .];

where all the entries are INTEGERS and A , B , ...are
RELATIVELY PRIME to p . Then the p -signature OF THE

FORM (for p "�1 ; 2) is

pa �pb �. . .�4k (mod 8);

where k is the number of ANTISQUARES. For p ��1,
the p -signature is SYLVESTER’S SIGNATURE.

See also SIGNATURE (QUADRATIC FORM)

PSLQ Algorithm
An algorithm which can be used to find INTEGER

RELATIONS between real numbers x1 ; ..., xn such that

a1x1 �a2x2 �. . .�anxn �0 ;

with not all ai �0: Although the algorithm operates
by manipulating a lattice, it does not reduce it to a
short vector basis, and is therefore not a LATTICE

REDUCTION algorithm. PSLQ is based on a partial
sum of squares scheme (like the PSOS ALGORITHM)
implemented using QR DECOMPOSITION. It was devel-
oped by Ferguson and Bailey (1992). A much simpli-
fied version of the algorithm was subsequently
developed by Ferguson et al. (1999), which also
extends the algorithm to complex numbers and
quaternions. Ferguson et al. (1999) also demon-
strated that PSLQ is distinct from the HJLS ALGO-

RITHM.

The PSLQ algorithm terminates after a number of
iterations bounded by a polynomial in n and uses a
numerically stable matrix reduction procedure (Fer-
guson and Bailey 1992). PSLQ tends to be faster than
the FERGUSON-FORCADE ALGORITHM and LLL ALGO-

RITHM because of clever techniques that allow ma-
chine arithmetic to be used at many intermediate
steps. The LLL ALGORITHM, by comparison, must use
moderate precision, although generally not as much
as the HJLS ALGORITHM.

While the LLL ALGORITHM is a more general LATTICE

REDUCTION algorithm than PSLQ, using LLL to
obtain integer relations is in some sense a "trick,"
whereas with PSLQ one gets either a relation or
lower bounds on degrees of polynomials and sizes of
coefficients for which such a relation must satisfy.

See also FERGUSON-FORCADE ALGORITHM, INTEGER

RELATION, LLL ALGORITHM, PSOS ALGORITHM
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PSOS Algorithm
An INTEGER-RELATION algorithm which is based on a
partial sum of squares approach, from which the
algorithm takes its name.

See also FERGUSON-FORCADE ALGORITHM, HJLS
ALGORITHM, INTEGER RELATION, LLL ALGORITHM,
PSLQ ALGORITHM

References
Bailey, D. H. and Ferguson, H. R. P. "Numerical Results on

Relations Between Numerical Constants Using a New
Algorithm." Math. Comput. 53, 649 �/56, 1989.

Ferguson, H. "PSOS: A New Integral Relation Finding
Algorithm Involving Partial Sums of Squares and No
Square Roots." Abs. Papers Presented to Amer. Math. Soc.
9, No. 56 88T-11 �/5, 214, Mar. 1988.

P-Symbol
A symbol employed in a formal PROPOSITIONAL

CALCULUS.

References
Nidditch, P. H. Propositional Calculus. New York: Free

Press of Glencoe, p. 1, 1962.

p-System
A p -system of a SET S is a sequence of SUBSETS A1 ; A2 ;
..., Ap of S , among which some may be empty or
coinciding with each other.

See also INCLUSION-EXCLUSION PRINCIPLE, K -SUBSET,
SUBSET
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Ptolemy Inequality
For a QUADRILATERAL which is not CYCLIC, PTOLEMY’S

THEOREM becomes an INEQUALITY:

AB �CD �BC �DA > AC �BD:

See also PTOLEMY’S THEOREM, QUADRILATERAL

Ptolemy’s Theorem

For a CYCLIC QUADRILATERAL, the sum of the products

of the two pairs of opposite sides equals the product of
the diagonals

AB �CD �BC �DA �AC �BD:

This fact can be used to derive the TRIGONOMETRY

addition formulas.

See also CYCLIC QUADRILATERAL, FUHRMANN’S THEO-

REM, PTOLEMY INEQUALITY
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Public-Key Cryptography
A type of CRYPTOGRAPHY in which the encoding key is
revealed without compromising the encoded message.
The two best-known methods are the KNAPSACK

PROBLEM and RSA ENCRYPTION.

See also KNAPSACK PROBLEM, RSA ENCRYPTION
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Puiseux Diagram
A diagram used in the solution of ordinary differen-
tial equations OF THE FORM

dw

dz
�

g(z; w)

h(z; q)

which vanish when z�0, where

g(0; 0)�h(0; 0)�0

(Ince 1956, pp. 298 and 427). The diagram is named
in order of French mathematician Vicrot Puiseux.
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Puiseux Series
A power series containing fractional exponents (Da-
venport et al. 1993, p. 91).

See also POWER SERIES
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Puiseux’s Theorem
The whole neighborhood of any point yi of an
ALGEBRAIC CURVE may be uniformly represented by
a certain finite number of convergent developments
in POWER SERIES,

xi � rnyi �a ni1tn �ani2t2
n �. . . :
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Pullback Map
A pullback is a general CATEGORICAL operation
appearing in a number of mathematical contexts,
sometimes going under a different name. If T : V 0
W is a linear transformation between VECTOR SPACES,
then T � : W � 0 V � (usually called TRANSPOSE MAP or
DUAL MAP because its associated matrix is the MATRIX

TRANSPOSE of T ) is an example of a pullback map.

In the case of a DIFFEOMORPHISM and DIFFERENTI-

ABLE MANIFOLD, a very explicit definition can be
formulated. Given an r -form a on a MANIFOLD M2 ;
define the r -form T �(a) on M1 by its action on an r -
tuple of tangent vectors (X1 ; . . . ; Xr) as the number
T �( a)(X1 ; . . .  ; Xr) � a(TX1 ; . . . ; TXr) : This defines a
map on r -forms and is the pullback map.

See also CATEGORY, PUSHFORWARD MAP

Pulse Function
RECTANGLE FUNCTION

Punctured Set

A SET S with a single point P removed is called a
punctured set, written S_fPg:/
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Purser’s Theorem

Let t , u , and v be the lengths of the tangents to a
CIRCLE C from the vertices of a TRIANGLE with sides of
lengths a , b , and c . Then the condition that C is
tangent to the CIRCUMCIRCLE of the TRIANGLE is that

9at 9bu 9cv �0:

The theorem was discovered by Casey prior to
Purser’s independent discovery.

See also CASEY’S THEOREM, CIRCUMCIRCLE

Pursuit Curve

If A moves along a known curve, then P describes a
pursuit curve if P is always directed toward A and A
and P move with uniform velocities. Pursuit curves
were considered in general by the French scientist
Pierre Bouguer in 1732, and subsequently by the
English mathematician Boole. The case restricting A
to a straight line was studied by Arthur Bernhart



(MacTutor Archive). It has CARTESIAN COORDINATES

equation

y �cx �ln x:

The problem of n mice (or dogs) starting at the
corners of a regular polygon and running towards
each other is called the MICE PROBLEM.

See also APOLLONIUS PURSUIT PROBLEM, MICE PRO-

BLEM, WHIRL
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Push
An action which adds a single element to the top of a
STACK, turning the STACK (/a1 ; a2 ; ..., an) into (/a0 ; a1 ;
a2 ; ..., an) :/

See also POKE MOVE, POP, STACK

Pushforward Map

See also PULLBACK MAP

Puzzle
A mathematical PROBLEM, usually not requiring
advanced mathematics, to which a solution is desired.
Puzzles frequently require the rearrangement of
existing pieces (e.g., 15 PUZZLE) or the filling in of
blanks (e.g., crossword puzzle).

See also 15 PUZZLE, BAGUENAUDIER, CALIBAN PUZZLE,
CONWAY PUZZLE, CRYPTARITHMETIC, DISSECTION PUZ-

ZLES, ICOSIAN GAME, PYTHAGOREAN SQUARE PUZZLE,
RUBIK’S CUBE, SLOTHOUBER-GRAATSMA PUZZLE, T-

PUZZLE
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P-Value
The PROBABILITY that a variate would assume a value
greater than or equal to the observed value strictly by
chance: /Pðz]zobservedÞ/.

See also ALPHA VALUE, SIGNIFICANCE

Pyramid

A POLYHEDRON with one face (known as the "base") a
POLYGON and all the other faces TRIANGLES meeting
at a common VERTEX (known as the "apex"). A right
pyramid is a pyramid for which the line joining the
centroid of the base and the apex is perpendicular to
the base. A regular pyramid is a pyramid whose bases
is a REGULAR POLYGON. An n -gonal regular pyramid
(denoted Yn) having EQUILATERAL TRIANGLES as sides
is possible only for n�3, 4, 5. These correspond to the
TETRAHEDRON, SQUARE PYRAMID, and PENTAGONAL

PYRAMID, respectively.

An arbitrary pyramid has a single cross-sectional
shape whose lengths scale linearly with height.
Therefore, the AREA of a CROSS SECTION scales
quadratically with height, decreasing from Ab at the
base (z�0) to 0 at the apex (assumed to lie at a height
z�h ). The AREA at a height z above the base is
therefore given by

A(z)�Ab

(h � z)2

h2
: (1)

As a result, the VOLUME of a pyramid, regardless of
base shape or position of the apex relative to the base,
is given by

V�g
h

0

A(z) dz�Ab g
h

0

(z � h)2

h2
dz�1

3 Abh: (2)



These results also hold for the CONE, ELLIPTIC CONE,
TRIANGULAR PYRAMID, SQUARE PYRAMID, etc.

The CENTROID is the same as for the CONE, given by

z̄ �1
4 h : (3)

The SURFACE AREA of a pyramid is

S �1
2 ps; (4)

where s is the SLANT HEIGHT and p is the base
PERIMETER. For a right pyramid with a regular n -
gonal base of side length a ,

sn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �R2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �1

4 a
2 csc2

p

n

 !vuut : (5)

This gives the special cases

s3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �1

3 a
2

q
(6)

s4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �1

2 a
2

q
(7)

s5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 1

10 5 �
ffiffiffi
5

p
 �
a2

r
(8)

s6 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �a2

p
: (9)

Joining two PYRAMIDS together at their bases gives a
BIPYRAMID, also called a DIPYRAMID.

See also BIPYRAMID, CUMULATION, ELEVATUM, ELON-

GATED PYRAMID, GYROELONGATED PYRAMID, HEXA-

GONAL PYRAMID, INVAGINATUM, PENTAGONAL

PYRAMID, PYRAMID, PYRAMIDAL FRUSTUM, SQUARE

PYRAMID, TETRAHEDRON, TRIANGULAR PYRAMID,
TRUNCATED SQUARE PYRAMID
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Pyramidal Frustum

A pyramidal frustum is a FRUSTUM made by chopping
the top off a PYRAMID. It is a special case of a
PRISMATOID. Let s be the SLANT HEIGHT, p1 the bottom
base PERIMETER, p2 the top base PERIMETER, A1 the
bottom AREA, and A2 the top AREA. Then the SURFACE

AREA (of the sides) and VOLUME of a pyramidal
frustum are given by

S �1
2(p1 �p2)s (1)

V �1
3 h A1 �A2 �

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p
 �
: (2)

The CENTROID of a right pyramidal frustum occurs at
a height

z̄ �
h A1 � 2

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p
� 3A2

� �
4 A1 �

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p
� A2

� � (3)

above the bottom base (Harris and Stocker 1998).

The bases of a right n -gonal frustum are regular
polygons of side lengths a and b with circumradii

Rn �
1
2 c csc

p

n

 !
; (4)

where c is the side length, so the diagonal connecting
corresponding vertices on top and bottom has length

xn �
1
2(a �b) csc

p

n

 !
; (5)

and the SLANT HEIGHT is

sn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �h2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 csc

p

n

 !
(a �b)2 �h2

vuut : (6)

The triangular (n �3) and square (n �4) right pyr-
amidal frustums therefore have side surface areas

S3 �
3
2(a �b)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3(a�b)2�h2

q
(7)

S4�2(a�b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2(a�b)2�h2

q
: (8)

The area of a regular n -gon is

An�
1
4 nc2 cot

p

n

 !
; (9)

so the volumes of these frustums are

V3�
1
12

ffiffiffi
3

p
(a2�ab�b2)h (10)

V4�
1
3(a

2�ab�b2)h: (11)

See also CONICAL FRUSTUM, FRUSTUM, HERONIAN

MEAN, PYRAMID, SPHERICAL SEGMENT, TRUNCATED

SQUARE PYRAMID
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Pyramidal Number

A FIGURATE NUMBER corresponding to a configuration
of points which form a pyramid with r -sided REGULAR

POLYGON bases can be thought of as a generalized
pyramidal number, and has the form

Pr
n �

1
6(n �1) 2pr

n �nð Þ

�1
6 n(n �1)[(r �2)n �(5 �r)]: (1)

The first few cases are therefore

P3
n �

1
6 n(n �1)(n �2) (2)

P4
n �

1
6 n(n �1)(2n �1) (3)

P5
n �

1
2 n

2(n �1); (4)

so r �3 corresponds to a TETRAHEDRAL NUMBER Ten ;
and r �4 to a SQUARE PYRAMIDAL NUMBER Pn :/

The pyramidal numbers can also be generalized to 4-
D and higher dimensions (Sloane and Plouffe 1995).

See also HEPTAGONAL PYRAMIDAL NUMBER, HEXAGO-

NAL PYRAMIDAL NUMBER, PENTAGONAL PYRAMIDAL

NUMBER, SQUARE PYRAMIDAL NUMBER, TETRAHE-

DRAL NUMBER
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Pyritohedron

An irregular DODECAHEDRON composed of identical
irregular PENTAGONS.

See also DODECAHEDRON, RHOMBIC DODECAHEDRON,
TRIGONAL DODECAHEDRON
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Pythagoras Tree
A FRACTAL with symmetric

and asymmetric

forms.
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Pythagoras’s Constant

The number ffiffiffi
2

p
�1 :4142135623 . . . ;

which the Pythagoreans proved to be IRRATIONAL.
This number is the length of the HYPOTENUSE of an
ISOSCELES TRIANGLE with legs of length one, and the
statement that it is IRRATIONAL means that it cannot
be expressed as a ratio p =q of integers p and q .
Legend has it that the Pythagorean philosopher
Hippasus used geometric methods to demonstrate
the irrationality of

ffiffiffi
2

p
while at sea and, upon

notifying his comrades of his great discovery, was
immediately thrown overboard by the fanatic Pytha-
goreans .

Theodorus subsequently proved that the square roots
of the numbers from 3 to 17 (excluding 4, 9, and 16)
are also irrational (Wells 1986, p. 34).

The Babylonians gave the impressive approximation

ffiffiffi
2

p
:1 �

24

60 
�

51

602 
�

10

603 
�1:41421296296296 . . .

(Wells 1986, p. 35; Guy 1990; Conway and Guy 1996,
pp. 181 �/82).

See also IRRATIONAL NUMBER, OCTAGON, PYTHAGOR-

AS’S THEOREM, SQUARE
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Pythagoras’s Theorem
Proves that the DIAGONAL d of a SQUARE with sides of
integral length s cannot be RATIONAL. Assume d=s is
rational and equal to p =q where p and q are INTEGERS

with no common factors. Then

d2 �s2 �s2 �2s2 ;

so

d

s

 !2

�
p

q

 !2

�2;

and p2 �2q2 ; so p2 is even. But if p2 is EVEN, then p is
EVEN. Since p=q is defined to be expressed in lowest
terms, q must be ODD; otherwise p and q would have
the common factor 2. Since p is EVEN, we can let p �
2r ; then 4r2 �2q2 : Therefore, q2 �2r2 ; and q2 ; so q
must be EVEN. But q cannot be both EVEN and ODD, so
there are no d and s such that d =s is RATIONAL, and
d=s must be IRRATIONAL.

In particular, PYTHAGORAS’S CONSTANT
ffiffiffi
2

p
is IRRA-

TIONAL. Conway and Guy (1996) give a proof of this
fact using paper folding, as well as similar proofs for
f (the GOLDEN RATIO) and

ffiffiffi
3

p
using a PENTAGON and

HEXAGON.

See also IRRATIONAL NUMBER, PYTHAGORAS’S CON-

STANT, PYTHAGOREAN THEOREM
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Pythagorean Extension
An EXTENSION of an arbitrary FIELD F of the form
F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � l2

p
 �
; where l 
 F :/

See also EXTENSION FIELD, PYTHAGOREAN FIELD
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Pythagorean Field
A FIELD F in which any PYTHAGOREAN EXTENSION of
F coincides with F .

See also PYTHAGOREAN EXTENSION
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Pythagorean Fraction
Given a PYTHAGOREAN TRIPLE (a; b; c); the fractions
a=b and b=a are called Pythagorean fractions. Dio-



phantus showed that the Pythagorean fractions con-
sist precisely of fractions OF THE FORM p2 �q2ð Þ=(2pq):/
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Pythagorean Quadruple
POSITIVE INTEGERS a , b , c , and d which satisfy

a2 �b2 �c2 �d2 : (1)

For POSITIVE EVEN a and b , there exist such INTEGERS

c and d ; for POSITIVE ODD a and b , no such INTEGERS

exist (Oliverio 1996). Oliverio (1996) gives the follow-
ing generalization of this result. Let S �
a1 ; . . . ; an �2ð Þ; where ai are INTEGERS, and let T be

the number of ODD INTEGERS in S . Then IFF T f2
(mod 4), there exist INTEGERS an�1 and an such that

a2
1 �a2

2 �. . .�a2
n�1 �a2

n : (2)

A set of Pythagorean quadruples is given by

a �2mp (3)

b �2np (4)

c �p2 � m2 �n2
� �

(5)

d �p2 � m2 �n2
� �

; (6)

where m , n , and p are INTEGERS,

m �n �p �1 (mod 2); (7)

and

(m; n; p) �1 (8)

(Mordell 1969). This does not, however, generate all
solutions. For instance, it excludes (36, 8, 3, 37).
Another set of solutions can be obtained from

a�2mp�2nq (9)

b�2np�2mq (10)

c�p2�q2� m2�n2
� �

(11)

d�p2�q2� m2�n2
� �

(12)

(Carmichael 1915).

See also EULER BRICK, PYTHAGOREAN TRIPLE
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Q

q-Abel’s Theorem

Xm

y �0

�1ð Þm�yq
m�y

2ð Þ m
y

� �
q

1 � wqm

q � wqy

� 1 �wqyð Þm �
1 � z

1 � wqy 
; q

 !
y

� 1 �zð Þmq
m
2ð Þ;

where n
y

h i
q

is a Q -BINOMIAL COEFFICIENT.

See also ABEL’S BINOMIAL THEOREM
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q-Analog
A q -analog, also called a Q -EXTENSION or Q -GENERAL-

IZATION, is a mathematical expression parameterized
by a quantity q which generalizes a known expres-
sion and reduces to the known expression in the limit
q 0 1 �: There are q -analogs of the FACTORIAL,
BINOMIAL COEFFICIENT, DERIVATIVE, INTEGRAL, FIBO-

NACCI NUMBERS, and so on. Koornwinder, Suslov, and
Bustoz, have even managed some kind of q -Fourier
analysis.

q -analogs are based on the observation that

lim
q01 �

1 � qa

1 � q
�a;

so that the quantity 1 �qað Þ= 1 �qð Þ is sometimes
written a½ � (Koekoek and Swarttouw 1998, p. 7).

q -analogs also have a combinatorial interpretation
based on the fact that one can count the elements of
some set S to get the number #S : A so-called
"statistic" f : S 0 Z can then be defined which is an
integer-valued function on S and separates the
elements of S into classes based on what value f
takes on the elements. This relationship can be
summarized by writing a polynomial in a new vari-
able, usually taken as q , where the coefficient of qn is
# s � S : f (s) �nf g: Evaluating the polynomial at q �1
then adds the coefficients together, returning the
original S:/

The q -analog of a mathematical object is generally
called the "q -object", hence Q -BINOMIAL COEFFICIENT,
Q -FACTORIAL, etc. There are generally several q -
analogs if there is one, and there is sometimes even
a multibasic analog with independent q1 ; q2 ; ....

See also D -ANALOG, Q -BETA FUNCTION, Q -BINOMIAL

COEFFICIENT, Q -BINOMIAL THEOREM, Q -COSINE, Q -

DERIVATIVE, Q -FACTORIAL, Q -GAMMA FUNCTION, Q -

POCHHAMMER SYMBOL, Q -SERIES, Q -SINE, Q -VANDER-

MONDE SUM
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Q-Bar
The algebraic closure of the RATIONAL NUMBERS Q;
denoted Q: This is equivalent to the set of ALGEBRAIC

NUMBERS, sometimes denoted A :/

See also ALGEBRAIC NUMBER, ALGEBRAICS, Q
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q-Beta Function
A Q -ANALOG of the BETA FUNCTION

B(a; b) �g
1

0

ta �1 1 �tð Þq �1dt �
G(a) G(b)

G(a � b) 
;

where G(z) is a GAMMA FUNCTION, is given by

Bq(a; b) �g
1

0

tb �1 qt; qð Þa �1d(a ; t) �
Gq(b) Gq(a)

Gq(a � b) 
;

where Gq(a) is a Q -GAMMA FUNCTION and (a; q)n is a Q -

SERIES coefficient (Andrews 1986, pp. 11�/12).

See also Q -FACTORIAL, Q -GAMMA FUNCTION
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q-Binomial Coefficient
A Q -ANALOG for the BINOMIAL COEFFICIENT, also
called a GAUSSIAN COEFFICIENT or a Gaussian poly-
nomial. a q -binomial coefficient is given by

n
m

� �
q

�
qð Þn

qð Þm qð Þn�m

�
Ym�1

i�0

1 � qn�i

1 � qi�1
; (1)

where



qð Þk�
Y�
m�1

1 � qm

1 � qk �m 
(2)

is a Q -SERIES (Koepf 1998, p. 26). For k;n �N;

n
k

� �
q

�
[n]q!

[k]q![n � k]q! 
; (3)

where [n]q! is a Q -FACTORIAL (Koepf 1998, p. 30). The
q -binomial coefficient can also be defined in terms of
the Q -BRACKETS by

n
k

� �
q

�

Yk

i�1

[n � i � 1]q

[i]q

for 0 5k 5n

0 otherwise:

8><
>: (4)

For q 0 1�; the q -binomial coefficients turn into the
usual BINOMIAL COEFFICIENT. The first few q -bino-
mial coefficients are

2
1

� �
q

�
1 � q2

1 � q
�1 �q (5)

3
1

� �
q

�
3
2

� �
q

�
1 � q3

1 � q
�1 �q �q2 (6)

4
1

� �
q

�
4
3

� �
q

�
1 � q4

1 � q
�1 �q �q2 �q3 (7)

4
2

� �
q

�
1 � q3ð Þ 1 � q4ð Þ
1 � qð Þ 1 � q2ð Þ

�1 �q �2q2 �q3 �q4 : (8)

From the definition, it follows that

n
1

� �
q

�
n

n �1

� �
q

�
Xn �1

i�0

qi (9)

Additional identities include

n � 1
k � 1

� �
q

n
k � 1

� �
q

�
1 � qn�1

1 � qn�k 
(10)

n � 1
k � 1

� �
q

n � 1
k

� �
q

�
1 � qn �k �1

1 � qk �1
: (11)

The q -binomial coefficient m�n
m

 �
q

can be interpreted as
a polynomial in q whose coefficient qk counts the
number of distinct partitions of k elements which fit
inside an m �n rectangle. For example, the partitions
of 1, 2, 3, and 4 are given in the following table.

n partitions

0 { }

1 {{1}}

2 {{2}, {1, 1}}

3 {{3}, {2, 1}, {1, 1, 1}}

4 {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1},}

Of these, { }, f1g; f2g; f1; 1g; f2; 1g; and f2; 2g fit
inside a 2�2 box. The counts of these having 0, 1, 2,
3, and 4 elements are 1, 1, 2, 1, and 1, so the (4, 2)-
binomial coefficient is given by

4
2

� �
q

�1�q�2q2�q3�q4; (12)

as above.

See also BINOMIAL COEFFICIENT, CAUCHY BINOMIAL

THEOREM, Q -SERIES
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q-Binomial Theorem
The Q -ANALOG of the BINOMIAL THEOREM

1�zð Þn

�1�nz�
n n � 1ð Þ

1 � 2
z2�

n n � 1ð Þ n � 2ð Þ
1 � 2 � 3

z3�. . .

is given by

1�
z

qn

 !
1�

z

qn�1

 !
� � � 1�

z

q

 !

�1�
1 � qn

1 � q

z

qn
�

1 � qn

1 � q

1 � qn�1

1 � q2

z2

qn� n�1ð Þ

�. . .9
zn

qn n�1ð Þ=2
:

Written as a Q -SERIES, the identity becomes



X�
n�0

a; qð Þn

q; qð Þn

zn �
az; qð Þ�
z; qð Þ�

;

where

a; qð Þn�
Y�
m�0

1 � aqmð Þ
1 � aqm�nð Þ

(Heine 1847, p. 303; Andrews 1986). The CAUCHY

BINOMIAL THEOREM is a special case of this general
theorem.

See also BINOMIAL SERIES, BINOMIAL THEOREM,
CAUCHY BINOMIAL THEOREM, RAMANUJAN PSI SUM
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q-Bracket
The function defined by

k½ �q�
1 � qk

1 � q 
(1)

for integral k . The q -bracket satisfies

lim
q 01 �

k½ �q�k : (2)

See also Q -BINOMIAL COEFFICIENT, Q -FACTORIAL
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q-Chu-Vandermonde Identity
A Q -ANALOG of the CHU-VANDERMONDE IDENTITY

given by

2 f1 q �n ; b; c; q ; cqn =bð Þ� cqn; qð Þ� c =b; qð Þ�
c; qð Þ� cqn =b; qð Þ�

�
c =b; qð Þn

c; qð Þn

;

where 2 f1 a; b; c; q ; zð Þ is the Q -HYPERGEOMETRIC

FUNCTION. The identity can also be written as

2 f1 q�n ; b; c; q; qð Þ� c=b; qð Þn

c; qð Þn

bn

See also CHU-VANDERMONDE IDENTITY, Q -HYPERGEO-

METRIC FUNCTION
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q-Cosine
A Q -ANALOG of the COSINE function, as advocated by
R. W. Gosper, is defined by

cosq z; qð Þ�q 2 z ;pð Þ
q 2 0;pð Þ

; (1)

where q 2(z ;p) is a JACOBI THETA FUNCTION and p is
defined via

(ln p)(ln q) �p2 : (2)

This is a period 2p; EVEN FUNCTION of unit amplitude
with double and triple angle formulas and addition
formulas which are analogous to ordinary SINE and
COSINE. For example,

cosq 2z ; qð Þ�cos2
q z ; q2
� �

�sin2
q z; q2
� �

; (3)

where sinq z; að Þ is the Q -SINE, and pq is Q -PI. The q -
cosine also satisfies

cosq(pa)�
P�

n���(�1)nq n�að Þ2P�

n���(�1)nqn2
: (4)

See also Q -FACTORIAL, Q -SINE
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q-Derivative
The Q -ANALOG of the DERIVATIVE, defined by

d

dx

 !
q

f (x)�
f (x) � f (qx)

x � qx
:



For example,

d

dx

 !
q

sin x �
sin x � sin(qx)

x � qx

d

dx

 !
q

ln x �
ln x � ln(qx)

x � qx
�

ln 1
q

� �
(1 � q)x

d

dx

 !
q

x2 �
x2 � q2x2

x � qx
�(1 �q)x

d

dx

 !
q

x3 �
x3 � q3x3

x � qx
� 1 �q �q2
� �

x2 :

In the LIMIT q 0 1; the q -derivative reduces to the
usual DERIVATIVE.

See also DERIVATIVE

q-Dimension

Dq �
1

1 � q
lim
o 00

ln I(q; o)

ln 1
o

� � (1)

where

I q; oð Þ�
XN

i�1

m
q
i ; (2)

/o is the box size, and mi is the NATURAL MEASURE.
The CAPACITY DIMENSION (a.k.a. box-counting dimen-
sion) is given by q �0,

D0 �
1

1 � 0
lim
o 00

ln
PN oð Þ

i�1 1
� �
�ln o

��lim
o 00

ln N oð Þ½ �
ln o

(3)

If all mi/s are equal, then the CAPACITY DIMENSION is
obtained for any q .

The INFORMATION DIMENSION corresponds to q �1
and is given by

D1 �lim
q01

Dq �lim
q 01

limo 00

ln
PN oð Þ

i�1 m
q
i

h i
�ln o

1 � q

�lim
o 00

lim
q 01

ln
PN oð Þ

i�1 m
q
i

h i
q � 1ð Þ ln o

: (4)

But for the numerator,

lim
q01

ln
XN oð Þ

i�1

mq
i

 !
�ln

XN oð Þ

i�1

mi

 !
�ln1 �0; (5)

and for the denominator, limq 01 q �1ð Þ�0; so use
L’HOSPITAL’S RULE to obtain

D1 �lim
o 00

1

ln o
lim
q 01

P
m

q
i ln mi

1

 !
: (6)

Therefore,

D1 �lim
o 00

PN oð Þ
i�1 mi ln mi

ln o

 !
(7)

(Ott 1993, p. 79).

/D2 is called the CORRELATION DIMENSION.

If q1 > q2 ; then

Dq1
5Dq2

(8)

(Ott 1993, p. 79).

See also CAPACITY DIMENSION, CORRELATION DIMEN-

SION, FRACTAL DIMENSION, INFORMATION DIMENSION
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q-Dougall Sum

8 f7

a; qa1 =2 ;�qa1 =2 ; b; c ;d; e; q�N

a1 =2 ;�a1=2 ;
aq

b
;
aq

c
;
aq

d
;
aq

e
;aqN �1; q; q

2
4

3
5

�

aq

bd
; q

 !
N

aq

ed
; q

 !
N

aq; qð ÞN

aq

be
; q

 !
N

aq

bd
; q

 !
N

aq

bed 
; q

 !
N

aq

b
; q

 !
N

aq

e
; q

 !
N

;

where 8 f7 is a Q -HYPERGEOMETRIC SERIES.
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Q.E.D.
An abbreviation for the Latin phrase "quod erat
demonstrandum" ("that which was to be demon-
strated"), a NOTATION which is often placed at the
end of a mathematical PROOF to indicate its comple-
tion.

See also PROOF



q-Extension
Q -ANALOG

q-Factorial
The Q -ANALOG of the FACTORIAL (by analogy with the
Q -GAMMA FUNCTION). For a an integer, the q -factorial
is defined by

[k]q! �faq(k; q)

�1(1 �q) 1�q �q2
� �

� � �  1 �q �. . .�qk�1
� �

(1)

�
(q; q)k

(1 � q)k (2)

(Koepf 1998, p. 26). For k �N;

[k]q! �Gq(k �1); (3)

where Gq(k �1) is the Q -GAMMA FUNCTION. The first
few values are

[1]q! �1

[2]q! �1 �q

[3]q! �(1 �q) 1�q �q2
� �

�1 �2q �2q2 �q3

[4]q! �(1 �q) 1�q �q2
� �

1 �q �q2 �q3
� �

�1 �3q �5q2 �6q3 �5q4 �3q5 �q6 :

A reflection formula analogous to the GAMMA FUNC-

TION reflection formula is given by

cosq( pa) �sinq p 1
2 �a
� �h i

�
pqq a �1 =2ð Þ a �1 =2ð Þ

faq a � 1
2 ; q

2
� �

faq � a � 1
2

� �
; q2

� � ; (4)

where cosq(z) is the Q -COSINE, sinq(z) is the Q -SINE,
and pq is Q -PI.

See also Q -BETA FUNCTION, Q -BINOMIAL COEFFI-

CIENT, Q -BRACKET, Q -COSINE, Q -GAMMA FUNCTION,
Q -PI, Q -SINE
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Q-Function
Let

q �e �pK ?=K �e �ip t ; (1)

then

Q0 �
Y�
n�1

1 �q2n
� �

(2)

Q1 �
Y�
n�1

1 �q2n
� �

(3)

Q2 �
Y�
n �1

1 �q2n �1
� �

(4)

Q3 �
Y�
n�1

1 �q2n�1
� �

: (5)

The Q -functions are sometimes written using a
lower-case q instead of a capital Q . The Q -functions
also satisfy the identities

Q0Q1 �Q0 q2
� �

(6)

Q0Q3 �Q0 q1 =2
� �

(7)

Q2Q3 �Q3 q2
� �

(8)

Q1Q2 �Q1 q1 =2
� �

: (9)

The NORMAL DISTRIBUTION FUNCTION F(x) is some-
times also denoted Q(x) :/

See also HOFSTADTER’S Q -SEQUENCE, JACOBI IDENTI-

TIES, NORMAL DISTRIBUTION FUNCTION, PARTITION

FUNCTION Q , Q -SERIES
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Fonctions Elliptiques, 4 vols. Paris: Gauthier-Villars et
fils, 1893�/1902.

Whittaker, E. T. and Watson, G. N. A Course in Modern
Analysis, 4th ed. Cambridge, England: Cambridge Uni-
versity Press, pp. 469�/473 and 488�/489, 1990.

q-Gamma Function
A Q -ANALOG of the GAMMA FUNCTION defined by

Gq(x)�
(q; q)�
qx; qð Þ�

1�qð Þ1�x
; (1)

where x; qð Þ� is a Q -SERIES (Koepf 1998, p. 26;
Koekoek and Swarttouw 1998). The q -gamma func-
tion satisfies

lim
q01�

Gq(x)�G(x) (2)

where G(z) is the GAMMA FUNCTION, (Andrews 1986).

The q -gamma function satisfies the functional equa-
tion

Gq(z�1)�
1 � qz

1 � q
Gq(z) (3)

with Gq(1) (Koekoek and Swarttouw 1998), which



simplifies to

G(z �1) �z G(z) (4)

as q 0 1�: A curious identity for the functional
equation

f (a �b)f (a �c)f (a �d)f (a �e) �f (b)f (c)f (d)f (e)

�qbf (a)f (a �b �c)f (a �b �d)f (a �b �e); (5)

where

b �c �d �e �2a (6)

is given by

f ( a) �
sin(ka) for q �1

1

Gq( a) Gq(1 � a)
for 0 Bq B1;

8<
: 

(7)

for any k .

See also GAMMA FUNCTION, Q -BETA FUNCTION, Q -

FACTORIAL
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q-Gauss Identity
A Q -ANALOG of Gauss’s theorem due to Jacobi and
Heine,

2 f1 a ; b; c; q; c =(ab)ð Þ� c =a; qð Þ� c =b; qð Þ�
c; qð Þ� c = abð Þ; qð Þ�

(1)

for c=(ab)j jB1 (Gordon and McIntosh 1997; Koepf
1998, p. 40), where 2 f1 a ; b; c; q; zð Þ is a Q -HYPERGEO-

METRIC SERIES. A special case for /a�q�n
/ is given by

Xn

k�0

qk2 n
k

� �2

q

�
ffiffiffi
q

p
; q

� �
n
�

ffiffiffi
q

p
; q

� �
n
�q; qð Þn

q; qð Þn

;

where n
k

 �
q

is a Q -BRACKET (Koepf 1998, p. 43).

See also Q -CHU-VANDERMONDECIDENTITY, Q -HYPER-

GEOMETRIC SERIES
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q-Generalization
Q -ANALOG

q-Harmonic Series
The series

hq �rð Þ�
X�
n�1

1

qn � r
(1)

for q an INTEGER other than 0 and 91 which is the Q -

ANALOG of

Hn�
X�
n�1

1

n
: (2)

/hq and the related series

Lnq(�r�1)�
X�
n�1

(�1)n

qn � r
; (3)

which is a q -extension of the NATURAL LOGARITHM

ln 2; are irrational for r a RATIONAL NUMBER other
than 0 or �qn (Guy 1994). In fact, Amdeberhan and
Zeilberger (1998) showed that the IRRATIONALITY

MEASURES of both hq(1) and Lnq(2) are 4.80, improv-
ing the value of 54.0 implied by Borwein (1991, 1992).

Amdeberhan and Zeilberger (1998) also show that the
q -harmonic series and q -extension of ln 2 can be
written in the more quickly converging forms

hq 1ð Þ�
X�
n�1

qn

1 � qnð Þ(q)n

(4)

�
X�
n�1

1 � qn � q2n

qn � 1ð Þ 2n
n

� �
q

(q)n

(5)

Lnq(2)�
X�
n�1

qn(q)n

1 � qnð Þ q2ð Þn

(6)

�
X�
n�1

(�1)n�1 qð Þn 1 � q3nð Þ

1 � qnð Þ2 2n
n

� �
q

q2ð Þn

; (7)

where n
k

� �
q

is a Q -BINOMIAL COEFFICIENT and



(q)n �(1 �q) 1�q2
� �

� � �  1 �qnð Þ  (8)

for n ]1 :/

See also HARMONIC SERIES, IRRATIONALITY MEASURE
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q-Hypergeometric Function
The modern definition of the q -hypergeometric func-
tion is

r fs

a1 ; a2 ; . . . ; ar

b1 ; . . .bs

; q ; z

� �

�
X�
n�0

a1; qð Þn a2; qð Þn. . .  ar; qð Þn

b1; qð Þn. . .  bs; qð Þn

zn

(q; q)n

� (�1)nq

n
2

� �2
64

3
75

1 �s�r

; (1)

where n
2

� �
�1

2n n�1ð Þ is a BINOMIAL COEFFICIENT and
(a; q)n is a Q -POCHHAMMER SYMBOL

(a; q)n �(1 �a)(1 �aq) 1�aq2
� �

� � �  1 �aqn �1
� �

(2)

(a; q)0 �1 (3)

(Gasper and Rahman 1990; Bhatnagar 1995, p. 21;
Koepf 1998, p. 25).

An old-fashioned definition omits the factor
[(�1)kq

n
2ð Þ]1 �s�r ;

r f?s
a1 ; a2 ; . . . ; ar

b1 ; . . . ; bs

; q; z

� �

�
X�
n �0

a1; qð Þn a2; qð Þn. . .  ar; qð Þn

b1; qð Þn. . .  bs; qð Þn

zn

q; qð Þn

; (4)

This is the q -hypergeometric function as defined by
Bailey (1935), Slater (1966), Andrews (1986), and
Hardy (1999).

A particular case of r f ?s is given by

2 c?1(a ; b; c; q; z) �
X�
n�0

(a; q)n(b; q)nzn

(q; q)n(c; q)n

(5)

(Andrews 1986, p. 10). A q -analog of Gauss’s theorem
(the Q -GAUSS IDENTITY) due to Jacobi and Heine is
given by

2 f?1 a ; b; c; q; c =(ab)ð Þ� c=a; qð Þ� c =b; qð Þ�
c; qð Þ� c= abð Þ; qð Þ�

(6)

for c =(ab)j jB1 (Koepf 1998, p. 40). Heine proved the
transformation formula

2 f ?1(a ; b; c; q; z)

�
(b; q)�(az; q)�
(c; q)�(z; q) �

2 f1 c=b2a; az; q; bð Þ; (7)

(Andrews 1986, pp. 10 �/11). Rogers (1893) obtained
the formulas

2 f ?1(a ; b; c; q; z)

�
c =b; qð Þ�(bz; q) �
(z; q)�(c; q) �

2 f1 b;abz =c; bz; q; c =bð Þ (8)

2 f?1(a ; b; c; q ; z)

� abz=c; qð Þ�(z; q) � 2 f1 c =a ; c =b; c; q ;abz=cð Þ (9)

(Andrews 1986, pp. 10 �/11).

The function rfs has the simple confluent identity

lim
ar0�

r fs

a1; a2; . . . ; ar

b1; . . . ;bs

; q;
z

ar

" #

�
a1; a2; . . . ; ar�1

b1; . . . ;bs

; q; z

� �
: (10)

In the limit q 0 1�;

lim
q01� r fs

qa1 qa2 ; . . . ; qar

qb1 ; . . . ; qbs
; q; (q�1)1�s�rz

� �

�r Fs

a1; a2; . . . ; ar

b2; . . . ;bs

; z

� �
; (11)

where rFs is a GENERALIZED HYPERGEOMETRIC FUNC-

TION (Koepf 1998, p. 25).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
Q -POCHHAMMER SYMBOL, Q -SAALSCHUETZ SUM, Q -

SERIES
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q-Hypergeometric Series
Q -HYPERGEOMETRIC FUNCTION

q-Integral
A q -analog of integration

gq

F(x)d(qx)

which reduces to

gF xð Þdx

in the case q �1. A specific case gives

g
�

0q

xa �1

1 � x
d(qx) �

Gq
1
2

� �h i
sq(a)

2

;

where Gq is the q -Gamma function and sq is a doubly
periodic sigma function. If q �1, the integral reduces
to

g
�

0

xa�1

1 � x
dx �

p
sin( pa) 

:
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Q-Matrix
FIBONACCI Q -MATRIX

q-Multinomial Coefficient
A Q -ANALOG of the MULTINOMIAL COEFFICIENT, de-
fined as

a1 � . . . � an½ �!
a1½ �! . . . an½ �!

;

where

n½ �!�(1)(1�q) � � � 1�q�. . .�qn�1
� �

:

See also MULTINOMIAL COEFFICIENT, ZEILBERGER-

BRESSOUD THEOREM

Q-Number
HOFSTADTER’S Q -SEQUENCE

q-Pfaff-Saalschuetz Sum
Q -SAALSCHUETZ SUM

q-Pi
The Q -ANALOG of PI pq can be defined by taking a�0
in the Q -FACTORIAL

faq(a; q)�1(1�q) 1�q�q2
� �

� � � 1�q�. . .�qa�1
� �

;

giving

1�sinq
1
2p
� �

�
pq

faq2 �1
2; q

2
� �

q1=4
;

where sinq(z) is the Q -SINE. Gosper has developed an
iterative algorithm for computing pq based on the
algebraic RECURRENCE RELATION

4pq4

q4�1

q2 � 1ð Þ2p2
q

pq2

�
q4 � 1ð Þp2

q2

pq4

q-Pochhammer Symbol
The Q -ANALOG of the POCHHAMMER SYMBOL defined
by

(a; q)k�

Qk�1
j�0 1�aqjð Þ if k > 0

1 if k�0Qk
j�0 1�aq�jð Þ�1

if kB0Q�

j�0 1�aqjð Þ if k��

8>><
>>: (1)

(Koepf 1998, p. 25). q -Pochhammer symbols are
frequently called Q -SERIES and, for brevity, a; qð Þk is
often simply written að Þk:/



For q 0 1 �;

lim
q 01 �

q a; qð Þk

(1 � q)k �( a)k (2)

gives the normal POCHHAMMER SYMBOL ( a)n (Koekoek
and Swarttouw 1998, p. 7). The q -Pochhammer sym-
bols are also called q -shifted factorials (Koekoek and
Swarttouw 1998, pp. 8 �/9).

The q -Pochhammer symbol satisfies

(a; q)n �
(a; q)�
aqn; qð Þ�

(3)

1 � aq2n

1 � a
�

q
ffiffiffiffiffi
a;

p
q

� �
n
�q

ffiffiffiffiffi
a;

p
q

� �
nffiffiffiffiffi

a;
p

q
� �

n
�

ffiffiffiffiffi
a;

p
q

� �
n

(4)

(a; q)n(�a; q)n � a2; q2
� �

n

(a; q)n � q1 �n =a; q
� �

n
(�a)nq 

n
2ð Þ  (5)

a; q �1
� �

n
� a �1; q
� �

n
(�a)nq� 

n
2ð Þ  (6)

(a; q)�n �
1

aq �n; qð Þn

�
�q=að Þn

q=a; qð Þn

q
n
2ð Þ; (7)

where n
2

� �
is a BINOMIAL COEFFICIENT and

n
2

� �
�1

2n(n �1); (8)

as well as many other identities, some of which are
given by Koekoek and Swarttouw (1998, p. 9).

A generalized q -Pochhammer symbol can be defined
using the concise notation

a1 ;a2 ; . . . ;ar; qð Þ�� a1; qð Þ� a2; qð Þ�. . .  ar; qð Þ� (9)

(Gordon and McIntosh 2000).

See also POCHHAMMER SYMBOL, Q -SERIES
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Q-Polynomial
BLM/HO POLYNOMIAL

q-Product
Q -FUNCTION

QR Decomposition
Given a MATRIX A ; its QR -decomposition is OF THE

FORM

A �QR;

where R is an upper TRIANGULAR MATRIX and Q is an

ORTHOGONAL MATRIX, i.e., one satisfying

QTQ �I

where I is the IDENTITY MATRIX. This matrix decom-
position can be used to solve linear systems of
equations. QR decomposition is implemented in
Mathematica as QRDecomposition[m ].

See also CHOLESKY DECOMPOSITION, LU DECOMPOSI-

TION, MATRIX DECOMPOSITION, PSLQ ALGORITHM,
SINGULAR VALUE DECOMPOSITION
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q-Saalschuetz Sum
A q -analog of the Saalschütz theorem due to Jackson
is given by

3 f2 q �n ; a; b; c; ab = cqn�1
� �

; q; q
� �

�
c=a; qð Þn c=b; qð Þn

c; qð Þn c= abð Þ; qð Þn

(1)

where 3f2 is the Q -HYPERGEOMETRIC FUNCTION

(Koepf 1998, p. 40; Schilling and Warnaar 1999).

See also Q -HYPERGEOMETRIC FUNCTION
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q-Series
A SERIES involving coefficients OF THE FORM

(a; q)n�(a)n�
Yn�1

k�0

1�aqk
� �

(1)

�
Y�
k�0

1 � aqk
� �
1 � aqk�nð Þ

(2)

�
(a; q)�
aqn; qð Þ�

(3)

for n]1; also called a Q -POCHHAMMER SYMBOL

(Andrews 1986, p. 10). The notation

(q)n�(q; q)n�
Yn�1

k�1

1�qk
� �

(4)

is also used (Hirschhorn 1999). The symbol for n 0 �

is defined as

(a)��(a; q)��
Y�
k�0

1�aqk
� �

; (5)

giving the special case

h(t)�(q; q)��q1=24
Y�
k�0

1�q � qk
� �

�q1=24
Y�
k�1

1�qk
� �

; (6)

where q�e2pir and h(t) is called the DEDEKIND ETA

FUNCTION.

Identities involving (q)� include

(q)3
��

X�
n�0

(�1)n(2n�1)qn n�1ð Þ=2 (7)

�X�2qY (8)

(Hardy and Wright 1979, Hirschhorn 1999), where

X�
Y�
n�1

1�q25n�15
� �

1�q25n�10
� �

1�q25n
� �

�
X�
��

(�1)nq 25n2�5nð Þ=2 (9)

Y�
Y�
n�1

1�q25n�30
� �

1�q25n�5
� �

1�q25n
� �

�
X�
��

(�1)nq 25n2�15nð Þ=2 (10)

(Hirschhorn 1999)

The symbols

[n]�1�q�q2�. . .�qn�1 (11)

[n]!�[n][n�1] � � � [1] (12)

are sometimes also used when discussing q -series.

There are a great many other beautiful identities
involving q -series, some of which follow directly by
taking the Q -ANALOG of standard combinatorial iden-
tities, e.g., the Q -BINOMIAL THEOREM

X�
n�0

(a; q)nzn

(q; q)n

�
(az; q)�
(z; q)�

(13)

(/jzjB1; jqjB1; Andrews 1986, p. 10), a special case of
an identity due to Euler

(aq; q)��
X�
k�0

(�1)kqk k�1ð Þ=2ak

(c; q)k

(14)

(Gasper and Rahman 1990, p. 9; Leininger and Milne
1997), and Q -VANDERMONDE SUM

2f1 a; q�n; c; q; qð Þ�an c=a; qð Þn

(c; q)n

; (15)

where 2f1 a; b; c; q; zð Þ is a Q -HYPERGEOMETRIC SERIES.
Other q -series identities, e.g., the JACOBI IDENTITIES,
ROGERS-RAMANUJAN IDENTITIES, and Q -HYPERGEO-

METRIC identity

2f1(a; b; c; q; z)

�
(b; q)�(az; q)�
(c; q)�(z; q)�

2 f1 c=b;a; az; q; bð Þ; (16)

seem to arise out of the blue. Another such example is

X�
n�0

�q; q2ð Þnqn n�1ð Þzn

z; q2ð Þn

�
X�
n�0

�zq; q4ð Þnqn 2n�1ð Þzn

z; q2ð Þ2n�1

(17)

(Gordon and McIntosh 2000).

Asymptotic results for q -series include

(q)��

ffiffiffiffiffiffi
2p
t

s
exp �

p2

6t
�

t

24

 !
�X 1ð Þ (18)

q2; q2
� �

�
�

ffiffiffi
p
t

s
exp �

p2

12t
�

t

12

 !
�X 1ð Þ (19)



q; q2
� �

�
�

(q)�
q2; q2ð Þ�

�
ffiffiffi
2

p
exp �

p2

12t 
�

t

24

 !
�X 1ð Þ (20)

(Watson 1936, Gordon and McIntosh 2000).

See also BORWEIN CONJECTURES, DEDEKIND ETA

FUNCTION, FINE’S EQUATION, GAUSSIAN COEFFICIENT,
JACKSON’S IDENTITY, JACOBI IDENTITIES, MOCK THE-

TA FUNCTION, Q -ANALOG, Q -BINOMIAL THEOREM, Q -

COSINE, Q -FACTORIAL, Q -FUNCTION, Q -GAMMA FUNC-

TION, Q -HYPERGEOMETRIC FUNCTION, Q -MULTINO-

MIAL COEFFICIENT, Q -POCHHAMMER SYMBOL, Q -SINE,
RAMANUJAN PSI SUM, RAMANUJAN THETA FUNCTIONS,
ROGERS-RAMANUJAN IDENTITIES
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q-Shifted Factorial
Q -POCHHAMMER SYMBOL

Q-Signature
SIGNATURE (RECURRENCE RELATION)

q-Sine
The Q -ANALOG of the SINE function, as advocated by
R. W. Gosper, is defined by

sinq(z ; q) �
q 1(z; p)

q 1
1
2 p;p
� � ;

where q 1(z ;p) is a JACOBI THETA FUNCTION and p is
defined via

(ln p)(ln q) �p2 :

This is a period 2p; ODD FUNCTION of unit amplitude
with double and triple angle formulas and addition
formulas which are analogous to ordinary SINE and
COSINE. For example,

sinq(2z ; q) �(q �1)
pq

Pq2

cosq z ; q2
� �

sinq z ; q2
� �

;

where cosq(z; a) is the Q -COSINE, and pq is Q -PI.

See also Q -COSINE, Q -FACTORIAL
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Quadrable
A plane figure for which QUADRATURE is possible is
said to be quadrable.

Quadrangle

A plane figure consisting of four points, each of which
is joined to two other points by a LINE SEGMENT

(where the line segments may intersect). A quadran-
gle may therefore be CONCAVE or CONVEX; if it is
CONVEX, it is called a QUADRILATERAL.

See also COMPLETE QUADRANGLE, CYCLIC QUADRAN-

GLE, QUADRILATERAL, TETRASTIGM

References
Coxeter, H. S. M. and Greitzer, S. L. "Collinearity and

Concurrence." Ch. 3 in Geometry Revisited. Washington,
DC: Math. Assoc. Amer., pp. 51�/79, 1967.



Durell, C. V. "The Quadrilateral and Quadrangle." Ch. 7 in
Modern Geometry: The Straight Line and Circle. London:
Macmillan, pp. 77 �/87, 1928.

Quadrant

One of the four regions of the PLANE defined by the
four possible combinations of SIGNS (�;�) ; (�;�);
(�;�); and (�;�) for (x, y ).

See also OCTANT, X -AXIS, Y -AXIS
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Quadratfrei
SQUAREFREE

Quadratic Congruence Equation
A CONGRUENCE OF THE FORM

ax2 �bx �c �0 (mod m);

where a , b , and c are INTEGERS. A general quadratic
congruence can be reduced to the congruence

x2 �q (mod p)

and can be solved using EXCLUDENTS, although
solution of the general polynomial congruence

amxm �. . .�a2x2 �a1x �a0 �0 (mod n)

is intractable.

See also CONGRUENCE, CONGRUENCE EQUATION, EX-

CLUDENT, LINEAR CONGRUENCE EQUATION

Quadratic Curve
The general bivariate quadratic curve can be written

ax2 �2bxy �cy2 �2dx �2fy �g �0: (1)

Define the following quantities:

D�
a b d
b c f
d f  g

!!!!!!
!!!!!! (2)

J �
a b
b c

!!!!
!!!! (3)

I �a �c (4)

K �
a d
d g

!!!!
!!!!� 

c f
f g

!!!!
!!!!: (5)

Then the quadratics are classified into the types
summarized in the following table (Beyer 1987). The
real (nondegenerate) quadratics (the ELLIPSE, HYPER-

BOLA, and PARABOLA) correspond to the curves which
can be created by the intersection of a PLANE with a
(two-NAPPES) CONE, and are therefore known as
CONIC SECTIONS.

Curve / D/ J / D=I/ K

Coincident Lines 0 0 0

Ellipse (Imaginary) /"0/ /> 0/ /> 0/

ELLIPSE (Real) /"0/ /> 0/ /B0/

HYPERBOLA /"0/ /B0/

Intersecting Lines
(Imaginary)

0 /> 0/

Intersecting Lines (Real) 0 /B0/

PARABOLA /"0/ 0

Parallel Lines (Imaginary) 0 0 /> 0/

Parallel Lines (Real) 0 0 /B0/

It is always possible to eliminate the xy cross term by
a suitable ROTATION of the axes. To see this, consider
rotation by an arbitrary angle u: The ROTATION

MATRIX is

x
y

� �
�

cos u sin u

�sin u cos u

� �
x?
y?

� �
�

x? cos u�y? sin u

�x? sin u�y? cos u

� �
; (6)

so

x�x? cos u�y? sin u (7)

y��x? sin u�y? cos u (8)

xy��x?2 cos u sin u�x?y? cos2 u�sin2 u
� �

�y?2cos u sin u (9)

x2�x?2 cos2 u�2x?y? cos u sin u�y?2 sin2 u (10)

y2��x?2 sin2 u�2x?y? sin u cos u�y?2 cos2 u: (11)

Plugging these into (1) gives

a x?2 cos2 u�2x?y? cos u�y?2 sin2 u
� �

�2b(x? cos u�y? sin u)�(�x? sin u�y? cos u)



�c x?2 sin2 u�2x?y? cos u sin u�y?2 cos2 u
� �

�2d(x? cos u�y? sin u)

�2f (�x? sin u�y? cos u)�g�0: (12)

a x?2 cos2 u�2x?y? cos u�y?2 sin2 u
� �

�2b �x2 cos2 u sin u�xy sin2 u�xy cos2 u�y2 cos u sin u
� �
�c x?2 sin2 u�2x?y? cos u sin u�y?2 cos2 u
� �

�2d(x? cos u�y? sin u)

�2f (�x? sin u�y? cos u)�g�0: (13)

Grouping terms,

x?2 a cos2 u�c sin2 u�2b cos u sin u
� �

�x?y? 2a cos u sin u�2c sin u cos u�2b cos2 u�sin2
u

� � �
�y?2 a sin2 u�c cos2 u�2b cos u sin u

� �
�x?(2d cos u�2f sin u)�y?(�2d sin u�2f cos u)

�g�0: (14)

Comparing the COEFFICIENTS with (1) gives an equa-
tion OF THE FORM

a?x?2�2b?x?y?�c?y?2�2d?x?�2f ?y?�g?�0; (15)

where the new COEFFICIENTS are

a?�a cos2 u�2b cos u sin u�c sin2 u (16)

b?�b cos2 u�sin2 u
� �

� a�cð Þ sin u cos u (17)

c?�a sin2 u�2b sin u cos u�c cos2 u (18)

d?�d cos u�f sin u (19)

f ?��d sin u�f cos u (20)

g?�g: (21)

The cross term 2b?x?y? can therefore be made to
vanish by setting

b?�b(cos2 u�sin2 u)�(c�a) sin u cos u

�b cos(2u)�1
2(c�a) sin(2u)�0: (22)

For b? to be zero, it must be true that

cos(2u)�
c � a

2b
�K: (23)

The other components are then given with the aid of
the identity

cos cot�1(x)
 �

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p (24)

by defining

L�
Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � K2
p ; (25)

so

sin u�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � L

2

s
(26)

cos u�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � L

2

s
: (27)

Rotating by an angle

u�1
2 cot�1 c � a

2b

 !
(28)

therefore transforms (1) into

a?x?2�c?y?2�2d?x?�2f ?y?�g?�0: (29)

COMPLETING THE SQUARE,

a? x?2�
2d?

a?
x

 !
�c? y?2�

2f ?

c?
y?

 !
�g?�0 (30)

a? x?
d?

a?

 !2

�c? y?�
f ?

c?

 !2

��g?�
d?2

a?
�

f ?2

c?
: (31)

Defining xƒ�x?�d?=a?; yƒ�y?�f ?=c?; and gƒ��g?�
d?2=a?�f ?2=c? gives

a?x?2�c?yƒ2�gƒ: (32)

If gƒ"0; then divide both sides by gƒ: Defining aƒ�
a?=gƒ and cƒ�c?=gƒ then gives

aƒxƒ2�cƒyƒ2�1: (33)

Therefore, in an appropriate coordinate system, the
general CONIC SECTION can be written (dropping the
primes) as

ax2�cy2�1 a; c; g"0
ax2�cy2�0 a; c"0; g�0:

"
(34)

Consider an equation OF THE FORM ax2�2bxy�cy2�
1 where b"0: Re-express this using t1 and t2 in the
form

ax2�2bxy�cy2�t1x?2�t2y?2: (35)

Therefore, rotate the COORDINATE SYSTEM

x?
y?

� �
�

cos u sin u

�sin u cos u

� �
x
y

� �
; (36)

so

ax2�2bxy�cy2�t1x?2�t2y?2

�t1 x2 cos2 u�2xy cos u sin u�y2 sin2 u
� �

�t2 x2 sin2 u�2xy sin u cos u�y2 cos2 u
� �



�x2 t1 cos2 u�t2 sin2 u
� �

�2xy cos u sin u t1�t2ð Þ

�y2 t1 sin2 u�t2 cos2 u
� �

(37)

and

a�t1 cos2 u�t2 sin2 u (38)

b� t1�t2ð Þ cos u sin u�1
2 t1�t2ð Þ sin 2uð Þ (39)

c�t1 sin2 u�t2 cos2 u: (40)

Therefore,

a�c� t1 cos2 u�t2 sin2 u
� �

� t1 sin2 u�t2 cos2 u
� �

�t1�t2 (41)

a�c�t1 cos2 u�t2 sin2 u�t1 sin2 u�t2 cos2 u

� t1�t2ð Þ cos2 u�sin2 u
� �

� t1�t2ð Þ cos 2uð Þ: (42)

From (41) and (42),

a � c

b
�

t1 � t2ð Þ cos(2u)
1
2 t1 � t2ð Þ sin(2u)

�2 cot(2u); (43)

the same angle as before. But

cos(2u)�cos cot�1 a � c

2b

 !" #

�cos tan�1 2b

a � c

 !" #

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
2b

a � c

 !2
vuut

; (44)

so

a�c�
t1 � t2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
2b

a � c

 !2
vuut

: (45)

Rewriting and copying (41),

t1�t2�(a�c)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

2b

a � c

 !2
vuut

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�c)2�4b2

q
(46)

t1�t2�a�c: (47)

Adding (46) and (47) gives

t1�
1
2 a�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�c)2�4b2

q� �
(48)

t2�a�c�t1�
1
2 a�c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�c)2�4b2

q� �
: (49)

Note that these ROOTS can also be found from

t�t1ð Þ t�t2ð Þ�t2�t t1�t2ð Þ�t1t2�0 (50)

t2�t(a�c)�1
4 (a�c)2� (a�c)2�4b2

h in o

�t2�t(a�c)�1
4 a2�2ac�c2�a2�2ac�c2�4b2
 �

�t2�t(a�c)� ac�b2
� �

�(a�t)(c�t)�b2

�
a�t b

b c�t

!!!!
!!!!�(a�t)(c�t)�b2�0: (51)

The original problem is therefore equivalent to look-
ing for a solution to

a b
b c

� �
x
y

� �
�t

x
y

� �
(52)

ax bx
by cy

� �
x
y

� �
�t

x2

y2

� �
; (53)

which gives the simultaneous equations

ax2�bxy�tx2

bxy�cy2�ty2:

"
(54)

Let X be any point (x, y ) with old coordinates and
(x?; y?) be its new coordinates. Then

ax2�2bxy�cy2�t�x?2�t�y?2�1 (55)

and

x?�X̂� � x
y

� �
(56)

y?�X̂� � x
y

� �
: (57)

If t� and t� are both > 0; the curve is an ELLIPSE. If
t� and t� are bothB0; the curve is empty. If t� and
t� have opposite SIGNS, the curve is a HYPERBOLA. If
either is 0, the curve is a PARABOLA. To find the
general form of a quadratic curve in POLAR COORDI-

NATES (as given, for example, in Moulton 1970), plug
x�r cos u and y�r sin u into (1) to obtain

ar2 cos2 u�2br2 cos u sin u�cr2 sin2 u�2dr cos u

�2fr sin u�g�0 (58)

a cos2 u�2b cos u sin u�c sin2 u
� �

�
2

r

�(d cos u�f sin u)�
g

r2
�0: (59)

Define u�1=r: For g"0;/we can divide through by 2g;



1

2
u2 �

1

g 
(d cos u �f sin u)u �

1

2g

� a cos2 u �2b cos u sin u �c sin2 u
� �

�0: (60)

Applying the QUADRATIC FORMULA gives

u ��
d

g
cos u �

f

g
sin u 9

ffiffiffiffi
R

p
; (61)

where

R �
d cos u � f sin uð Þ2

g2

�4
1

2

 !
1

2g

 !
a cos2 u �2b cos u sin u �c sin2 u
� �

�
d2

g2
cos2 u �

2df

g2
cos u sin u �

f 2

g2
sin2 u

�
1

g
a cos2 u �2b cos u sin u �c sin2 u
� �

: (62)

Using the trigonometric identities

sin2 u �1 �cos2 u (63)

sin(2u) �2 sin u cos u; (64)

it follows that

R �
d2

g2 
�

a

g 
�

f 2

g2 
�

c

g

 !
cos2 u �

df

g2 
�

b

g

 !
sin 2uð Þ

�
f 2

g2 
�

c

g

 !

�1
2 1 �cos 2uð Þ½ �d

2 � ag � f 2 � cg

g2 
�sin(2u)

� df � bg

g2

 !
�

f 2 � cg

g2

d2 � ag � f 2 � cg

2g2 
cos(2 u)

�
df � db

g2
sin(2u)

�
d2 � ag � f 2 � cg � 2f 2 � 2cg

2g2 
: (65)

Defining

A ��
f

g 
(66)

B ��
d

g 
(67)

C �
df � bg

g2 
(68)

D �
d2 � f 2 � cg � ag

2g2 
(69)

E �
d2 � f 2 � ag � cg

2g2 
(70)

then gives the equation

u �
1

r

�A sin u �B cos u 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C sin(2u) �D cos(2u) �E

p
(71)

(Moulton 1970). If g �0, then (0) becomes instead

u �
1

r 
��

a cos2 u � 2b cos u sin u � c sin2 u

2(d cos u � f sin u)
� (72)

Therefore, the general form of a quadratic curve in
polar coordinates is given by

u�

A sin u�B cos u

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C sin(2u)�D cos(2u)�E

p
for g"0

�
a cos2 u� 2b cos u sin u� c sin2 u

2(d cos u� f sin u
for g�0:

8>><
>>:

(73)

See also CONIC SECTION, DISCRIMINANT (QUADRATIC

CURVE), ELLIPTIC CURVE
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Quadratic Effect
PRIME QUADRATIC EFFECT

Quadratic Equation
A quadratic equation is a second-order POLYNOMIAL

ax2�bx�c�0; (1)

with a"0: The roots x can be found by COMPLETING

THE SQUARE:

x2�
b

a
x��

c

a
(2)

x�
b

2a

 !2

��
c

a
�

b2

4a2
�

b2 � 4ac

4a2
(3)



x �
b

2a 
�

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: (4)

Solving for x then gives

x �
�b 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: (5)

This is the QUADRATIC FORMULA.

An alternate form is given by dividing (1) through by
x2 :

a �
b

x 
�

c

x2 
�0 (6)

c
1

x2 
�

b

cx

 !
�a �0 (7)

c
1

x 
�

b

2c

 !2

�c
b

2c

 !2

�a �
b2

4c 
�

4ac

4c
�

b2 � 4ac

4c
: (8)

Therefore,

1

x 
�

b

2c 
�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2c 
(9)

1

x 
�

�b 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2c 
(10)

x �
2c

�b 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p : (11)

This form is helpful if b2 	4ac ; in which case the
usual form of the QUADRATIC FORMULA can give
inaccurate numerical results for one of the ROOTS.
This can be avoided by defining

q ��1
2 b �sgn(b)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4ac

pj k
(12)

so that b and the term under the SQUARE ROOT sign
always have the same sign. Now, if b 
0, then

q ��1
2 b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4ac

p� �
(13)

1

q 
�

�2

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

�
�2 b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p� �
b2 � b2 � 4acð Þ

�
�2 b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p� �
4ac

�
�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2ac
; (14)

so

x1 �
q

a 
�

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a 
(15)

x2 �
c

q 
�

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a 
(16)

Similarly, if b B0, then

q ��1
2 b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4ac

p� �
�1

2 �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �4ac

p� �
(17)

1

q 
�

�2

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

�
2 b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p� �
�b2 � b2 � 4acð Þ

�
b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

�2ac
�

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2ac
; (18)

so

x1 �
q

a 
�

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a 
(19)

x2 �
c

q 
�

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a 
(20)

Therefore, the ROOTS are always given by x1 �q=a
and x2 �c =q:/

Now consider the equation expressed in the form

a2x2 �a1x �a0 �0 ; (21)

with solutions z1 and z2 : These solutions satisfy
NEWTON’S RELATIONS

z1�z2��
a1

a2

(22)

z1z2�
a0

a2

: (23)

The properties of the SYMMETRIC POLYNOMIALS ap-
pearing in NEWTON’S RELATIONS then give

z2
1�z2

2�
a2

1 � 2a0a2

a2
2

(24)

z3
1�z3

2��
a3

1 � 3a0a1a2

a3
2

(25)

z4
1�z4

2�
a4

1 � 4a0a2
1a2 � 2a2

0a2
2

a4
2

� (26)

See also CARLYLE CIRCLE, CONIC SECTION, CUBIC

EQUATION, DISCRIMINANT (POLYNOMIAL), QUARTIC

EQUATION, QUINTIC EQUATION, SEXTIC EQUATION
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Borwein, P. and Erdélyi, T. "Quadratic Equations." §1.1.E.1a
in Polynomials and Polynomial Inequalities. New York:
Springer-Verlag, p. 4, 1995.

Courant, R. and Robbins, H. What is Mathematics?: An
Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 91 �/92,
1996.

King, R. B. Beyond the Quartic Equation. Boston, MA:
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Quadratic Field
An ALGEBRAIC INTEGER OF THE FORM a �b

ffiffiffiffi
D

p
where

D is SQUAREFREE forms a quadratic field and is
denoted Q(

ffiffiffiffi
D

p
) : If D 
0, the field is called a REAL

QUADRATIC FIELD, and if D B0, it is called an
IMAGINARY QUADRATIC FIELD. The integers in Q

ffiffiffi
1

p� �
are simply called "the" INTEGERS. The integers in
Q

ffiffiffiffiffiffi
�1

p� �
are called GAUSSIAN INTEGERS, and the

integers in Q
ffiffiffiffiffiffi
�3

p� �
are called EISENSTEIN INTEGERS.

The ALGEBRAIC INTEGERS in an arbitrary quadratic
field do not necessarily have unique factorizations.
For example, the fields Q

ffiffiffiffiffiffi
�5

p� �
and Q

ffiffiffiffiffiffi
�6

p� �
are not

uniquely factorable, since

21 �3 � 7 � 1 �2
ffiffiffiffiffiffi
�5

p� �
1 �2

ffiffiffiffiffiffi
�5

p� �
(1)

6 ��
ffiffiffi
6

p ffiffiffiffiffiffi
�6

p� �
�2 � 3 ; (2)

although the above factors are all primes within these
fields. All other quadratic fields Q

ffiffiffiffi
D

p� �
with Dj j57

are uniquely factorable.

Quadratic fields obey the identities

a �b
ffiffiffiffi
D

p� �
9 c �d

ffiffiffiffi
D

p� �
� a 9cð Þ� b 9dð Þ

ffiffiffiffi
D

p
; (3)

a �b
ffiffiffiffi
D

p� �
c �d

ffiffiffiffi
D

p� �
� ac �bdDð Þ� ad �bcð Þ

ffiffiffiffi
D

p
; (4)

and

a � b
ffiffiffiffi
D

p

c � d
ffiffiffiffi
D

p �
ac � bdD

c2 � d2D
�

bc � adð Þ
c2 � d2D

ffiffiffiffi
D

p
(5)

The INTEGERS in the real field Q
ffiffiffiffi
D

p� �
are of the form

r �sp; where

r �

ffiffiffiffi
D

p
for D �2 or D �3 (mod 4)

1

2
�1 �

ffiffiffiffi
D

p� �
for D �1 (mod 4):

8<
: 

(6)

There are exactly 21 quadratic fields in which there is
a EUCLIDEAN ALGORITHM, corresponding to /Q(m)/ for
SQUAREFREE integers �11, �7, �3, �2, �1, 2, 3, 5,
6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, and 73
(Sloane, N. J. A. Sequences048981). This list was
published by Inkeri (1947), but erroneously included
the spurious additional term 97 (Barnes and Swin-
nerton-Dyer 1952; Hardy and Wright 1979, p. 217).

See also ALGEBRAIC INTEGER, EISENSTEIN INTEGER,
GAUSSIAN INTEGER, IMAGINARY QUADRATIC FIELD,
INTEGER, NUMBER FIELD, REAL QUADRATIC FIELD
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Quadratic Form
A quadratic form involving n REAL variables x1; x2; ...,
xn associated with the n�n MATRIX A�aij is given by

Q x1; x2; . . . xnð Þ�aijxixj; (1)

where EINSTEIN SUMMATION has been used. Letting x
be a VECTOR made up of x1; ..., xn and xT the
TRANSPOSE, then

Q(x)�xTAx; (2)

equivalent to

Q(x)�(x;Ax) (3)

in INNER PRODUCT notation. A BINARY QUADRATIC



FORM is a quadratic form in two variables and has the
form

Q(x; y) �a11x2 �2a12xy �a22y2 : (4)

It is always possible to express an arbitrary quadratic
form

Q(x) �aijxixj ; (5)

in the form

Q(x) �(x;Ax) ; (6)

where A �aii is a SYMMETRIC MATRIX given by

aij �
aii i �j
1

2
aij �aji

� �
i "j:

8<
: 

(7)

Any REAL quadratic form in n variables may be
reduced to the diagonal form

Q(x) �l1x2
1 �l2x2

2 �. . .�lnx2
n (8)

with /l1 ] l2 ]� � �] ln/ by a suitable orthogonal point-
transformation. Also, two real quadratic forms are
equivalent under the group of linear transformations
IFF they have the same RANK and SIGNATURE.

See also DISCONNECTED FORM, INDEFINITE QUADRA-

TIC FORM, INNER PRODUCT, INTEGER-MATRIX FORM,
POSITIVE DEFINITE QUADRATIC FORM, POSITIVE SEMI-

DEFINITE QUADRATIC FORM, RANK (QUADRATIC

FORM), SIGNATURE (QUADRATIC FORM), SYLVESTER’S

INERTIA LAW, SYMMETRIC QUADRATIC FORM
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Quadratic Formula
The formula giving the ROOTS of a QUADRATIC

EQUATION

ax2 �bx �c �0 (1)

as

x �
�b 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
: (2)

An alternate form is given by

x �
2c

�b 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p : (3)

See also QUADRATIC EQUATION

Quadratic Integral
To compute an integral OF THE FORM

g
dx

a � bx � cx2
; (1)

COMPLETE THE SQUARE in the DENOMINATOR to obtain

g
dx

a � bx � cx2
�

1

c g
dx

x �
b

2c

 !2

�
a

c
�

b2

4c2

 !� (2)

Let u�x�b=2c: Then define

�A2�
a

c
�

b2

4c2
�

1

4c2
4ac�b2
� �

�
1

4c2
q; (3)

where

q�4ac�b2 (4)

is the NEGATIVE of the DISCRIMINANT. If q B0, then

A�
1

2c

ffiffiffiffiffiffi
�q

p
� (5)

Now use PARTIAL FRACTION DECOMPOSITION,

1

c g
du

(u � A)(u � A)
�

1

c g
A1

u � A
�

A2

u � A

 !
du (6)

A1

u � A
�

A2

u � A

 !
�

A1 u � Að Þ� A2(u � A)

u2 � A2

�
A1 � A2ð Þu � A A2 � A1ð Þ

u2 � A2
; (7)

so A2�A1�0[A2��A1 and A A2�A1ð Þ��2AA1�
1[A1��1=(2A): Plugging these in,

1

c g �
1

2A

1

u � A
�

1

2A

1

u � A

 !
du

�
1

2Ac
�In(u�A)�In(u�A)½ �

�
1

2Ac
In

u � A

u � A

 !



�
1

2
1

2c

 ! ffiffiffiffiffiffiffiffi
�q

p
c

In

x �
b

2c
�

1

2c

ffiffiffiffiffiffiffiffi
�q

p

x �
b

2c
�

1

2c

ffiffiffiffiffiffiffiffi
�q

p

0
BBB@

1
CCCA

�
1ffiffiffiffiffiffiffiffi
�q

p In
2cx � b �

ffiffiffiffiffiffiffiffi
�q

p

2cx � b �
ffiffiffiffiffiffiffiffi
�q

p

 !
(8)

for q B0. Note that this integral is also tabulated in
Gradshteyn and Ryzhik (2000, equation 2.172), where
it is given with a sign flipped.
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Quadratic Invariant
Given the BINARY QUADRATIC FORM

ax2 �2bxy �cy2 (1)

with DISCRIMINANT b2 �ac; let

x �pX �qY (2)

y �rX �sY � (3)

Then

a pX�qYð Þ2�2b(pX �qY)(rX �sY) �c(rX �sY)2

�AX2 �2BXY �CY2 ; (4)

where

A �ap2 �2bpr �cr2 (5)

B �apq �b(ps �qr) �crs (6)

C �aq2 �2bqs �cs2 ; (7)

so

B2 �AC � a2p2q2 �b2(ps �qr)2 �c2r2s2
h

�2abpq(ps �qr) �2acpqrs �2bcrs(ps �qr)�

� ap2 �2bpr �cr2
� �

aq2 �2bqs �cs2
� �

�a2p2q2 �b2p2s2 �2b2pqrs �b2q2r2 �c2r2s2

�2abp2qs �2abpq2r �2acpqrs �2bcprs2 �2bcqr2s

�a2p2q2 �2abp2qs �acp2s2 �2abpq2r �4b2pqrs

�2bcprs2 �acq2r2 �2bcqr2s �c2r2s2

�b2p2s2 �2b2pqrs �b2q2r2 �2acprs �acp2s2

�acp2r2

�p2s2 b2 �ac
� �

�q2r2 b2 �ac
� �

�2pqrs b2 �ac
� �

� b2 �ac
� �

p2s2 �2pqrs �q2r2
� �

�(ps �rq)2 b2 �ac
� �

� (8)

Surprisingly, this is the same discriminant as before,
but multiplied by the factor (ps �rq)2 : The quantity
ps �rq is called the MODULUS.

See also ALGEBRAIC INVARIANT

Quadratic Irrational Number
An IRRATIONAL NUMBER OF THE FORM

P 9
ffiffiffiffi
D

p

Q
;

where P and Q are INTEGERS and D is a SQUAREFREE

INTEGER. Quadratic irrational numbers are some-
times also called quadratic surds. In 1770, Lagrange
proved that any quadratic irrational has a CONTIN-

UED FRACTION which is periodic after some point.

See also CONTINUED FRACTION, MINKOWSKI’S QUES-

TION MARK FUNCTION

Quadratic Map
A 1-D MAP often called "the" quadratic map is defined
by

xn�1�x2
n�c� (1)

This is the real version of the complex map defining
the MANDELBROT SET. The quadratic map is called
attracting if the JACOBIAN J B1, and repelling if
J 
1. FIXED POINTS occur when

x(1)�[x(1)]2�c (2)

x(1)
� �2

�x(1)�c�0 (3)

x(1)
9 �1

2 19
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4c

p� �
: (4)

Period two FIXED POINTS occur when

xn�2�x2
n�1�c� x2

n�c
� �2

�c

�x4
n�2cx2

n�(c2�c)�xn (5)

x4�2x2�x� cx2�c
� �

� x2�x�c
� �

x2�x�1�c
� �

�0 (6)

x(2)
9 �1

2 19
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4(1�c)

ph i
�1

2 19
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3�4c

p� �
: (7)

Period three FIXED POINTS occur when

x6�x5�(3c�1)x4�(2c�1)x3�(c2�3c�1)x2

� c�1ð Þ2x� c3�2c2�c�1
� �

�0� (8)

The most general second-order 2-D MAP with an
elliptic fixed point at the origin has the form



x?�x cos a �y sin a �a20x2 �a11xy �a02y2 (9)

y?�x sin a �y cos a �b20x2 �b11xy �b02y2 : (10)

The map must have a DETERMINANT of 1 in order to be
AREA-preserving, reducing the number of indepen-
dent parameters from seven to three. The map can
then be put in a standard form by scaling and
rotating to obtain

x?�x cos a �y sin a �x2 sin a (11)

y?�x sin a �y cos a �x2 cos a: (12)

The inverse map is

x �x? cos a �y? sin a (13)

y ��x? sin a �y ? cos a � x? cos a �y? sin að Þ2� (14)

The FIXED POINTS are given by

x2
i sin a �2xi cos a �xi�1 �xi�1 �0 (15)

for i �0, ..., n �1:/

See also BOGDANOV MAP, HÉ NON MAP, LOGISTIC MAP,
LOZI MAP, MANDELBROT SET

Quadratic Mean
ROOT-MEAN-SQUARE

Quadratic Nonresidue
QUADRATIC RESIDUE

Quadratic Phase Array
A method to obtain a signal Cl(z) with a flat spectrum
c( u; z) (such as a pulse), but having a smaller
amplitude than the pulse.

c( u; z) �eiz f( u) �
X�

l���

eiluCl(z); (1)

whence

Cl(z) �1 =(2p)g
p

- p
ei zf( u) �l uð Þdu; (2)

where

f( u) � 1 � uj j=pð Þu=p; (3)

with / j uj5 p/.

Thus c( u; z) and Cl(z) are a Fourier pair, and since /

jc(u ; z)j�1/, it is guaranteed that the sequence /Cl/ has
a flat spectrum. The sequence /Cl/ is called the
"quadratic phase array."
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Quadratic Reciprocity Law
QUADRATIC RECIPROCITY THEOREM

Quadratic Reciprocity Theorem
Also called the AUREUM THEOREMA (GOLDEN THEO-

REM) by Gauss. If p and q are distinct ODD PRIMES,
then the CONGRUENCES

x2 �q (mod p)

x2 �p (mod q)

are both solvable or both unsolvable unless both p
and q leave the remainder 3 when divided by 4 (in
which case one of the CONGRUENCES is solvable and
the other is not). Written symbolically,

p

q

 !
q

p

 !
� �1ð Þ(p �1)(q �1)=4

;

where

p

q

 !
�

1 for x2 �p (mod q) solvable for x
�1 for x2 �p (mod q) not solvable for x

"

is known as a LEGENDRE SYMBOL.

Euler stated the theorem in 1783 without proof.
Legendre was the first to publish a proof, but it was
fallacious. In 1796, Gauss became the first to publish
a correct proof (Nagell 1951, p. 144). The quadratic
reciprocity theorem was Gauss’s favorite theorem
from NUMBER THEORY, and he devised no fewer than
eight different proofs of it over his lifetime.

The GENUS THEOREM states that the DIOPHANTINE

EQUATION

x2�y2�p

can be solved for p a PRIME IFF p�1 (mod 4) or p�2.

See also GENUS THEOREM, JACOBI SYMBOL, KRONECK-

ER SYMBOL, LEGENDRE SYMBOL, QUADRATIC RESIDUE,
RECIPROCITY THEOREM
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Quadratic Recurrence
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A quadratic recurrence is a RECURRENCE RELATION on
a SEQUENCE of numbers xnf g expressing xn as a
second degree polynomial in xk with k Bn . For
example,

xn �xn�1xn�2 (1)

is a quadratic recurrence. Another simple example is

xn � xn�1ð Þ2 (2)

with x0 �2 ; which has solution xn �22n 

: Another
example is the number of "strongly" binary trees of
height 5n; given by

yn � yn�1ð Þ2�1 (3)

with y0 �1: This has solution

yn � c2n2 3
; (4)

where

c �exp
X�
j�0

2�j�1ln 1 �y�2
j

� �" #
�1:502836801 . . . (5)

and xb c is the FLOOR FUNCTION (Aho and Sloane
1973). A third example is the closest strict under-
approximation of the number 1,

sn �
Xn

i�1

1

zi

; (6)

where 1 Bz1 B. . .Bzn are integers. The solution is
given by the recurrence

zn � zn�1ð Þ2�zn�1 �1; (7)

with z1 �2: This has a closed solution as

zn � d2n 

�1
2

j k
(8)

where

d �1
2

ffiffiffi
6

p
exp

X�
j�1

2 �j �1ln 1 � 2zj �1
� ��2

h i( )

�1:2640847353 . . . (9)

(Aho and Sloane 1973). A final example is the well-
known recurrence

cn� cn�1ð Þ2�m (10)

with c0�0 used to generate the MANDELBROT SET.

See also MANDELBROT SET, RECURRENCE RELATION
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Quadratic Representation
SUM OF SQUARES FUNCTION

Quadratic Residue
If there is an INTEGER x such that

x2�q (mod p); (1)

then q is said to be a quadratic residue (mod p ). If
not, q is said to be a quadratic nonresidue (mod p ).
Hardy and Wright (1979, pp. 67�/68) use the short-
hand notations q R p and q N p; to indicated that q is
a quadratic residue or nonresidue, respectively.

For example, 42�6; so 6 is a quadratic residue (mod
10). The entire set of quadratic residues (mod 10) are
given by 1, 4, 5, 6, and 9, since

12�1 (mod 10) 22�4 (mod 10) 32�9 (mod 10)

42�6 (mod 10) 52�5 (mod 10) 62�6 (mod 10)

72�9 (mod 10) 82�4 (mod 10) 92�1 (mod 10)

making the numbers 2, 3, 7, and 8 the quadratic
nonresidues (mod 10).

A list of quadratic residues for p529 is given below
(Sloane’s A046071), with those numbersBp not in the
list being quadratic nonresidues of p .

p Quadratic Residues

1 (none)

2 1

3 1

4 1

5 1, 4

6 1, 3, 4

7 1, 2, 4

8 1, 4

9 1, 4, 7

10 1, 4, 5, 6, 9

11 1, 3, 4, 5, 9

12 1, 4, 9

13 1, 3, 4, 9, 10, 12

14 1, 2, 4, 7, 8, 9, 11

15 1, 4, 6, 9, 10

16 1, 4, 9



17 1, 2, 4, 8, 9, 13, 15, 16

18 1, 4, 7, 9, 10, 13, 16

19 1, 4, 5, 6, 7, 9, 11, 16, 17

20 1, 4, 5, 9, 16

Given an ODD PRIME p and an INTEGER a , then the
LEGENDRE SYMBOL is given by

a

p

 !
�

1 if a is a quadratic residue mod p
�1 otherwise:

"
(2)

If

r p �1ð Þ=2�91 (mod p) ; (3)

then r is a quadratic residue ( �) or nonresidue /(�):
This can be seen since if r is a quadratic residue of p ,
then there exists a square x2 such that r �x2 (mod p);
so

r p�1ð Þ=2� x2
� � p �1ð Þ=2

�xp �1 (mod p) ; (4)

and xp �1 is congruent to 1 (mod p ) by FERMAT’S

LITTLE THEOREM.

Given p and q in the congruence

x2 �q (mod p) ; (5)

x can be explicitly computed for p and q of certain
special forms:

x �

qk �1 (mod p)
for p �4k �3

qk �1 (mod p)
for p �8k �5 and q2k �1 �1 (mod p)

1
2 4qð Þk �1(p �1) (mod p)

for p �8k �5 and q2k �1 ��1 (mod p) :

8>>>>>><
>>>>>>:

(6)

For example, the first form can be used to find x given
the quadratic residues q �1, 3, 4, 5, and 9 (mod
p �11, having k �2), whereas the second and third
forms determine x given the quadratic residues q �1,
3, 4, 9, 10, and 12 (mod p �13, having k �1), and
q �1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33,
34, 36 (mod p �37, having k �4).

More generally, let q be a quadratic residue modulo
an ODD PRIME p . Choose h such that the LEGENDRE

SYMBOL h2 �4q=pð Þ��1 : Then defining

V1 �h (7)

V2 �h2 �2q (8)

Vi �hVi �1 �qVi �2 for i ]3; (9)

gives

V2i �V2
i �2qi (10)

V2i�1 �ViVi �1 �hni ; (11)

and a solution to the quadratic CONGRUENCE is

x �1
2(p �1)V p �1ð Þ=2 (mod p): (12)

Schoof (1985) gives an algorithm for finding x with
running time O ln nð Þ10 (Hardy et al. 1990). The
congruence is solved by the Mathematica command
SqrtMod[q , p ] in the Mathematica add-on package
NumberTheory‘NumberTheoryFunctions‘ (which
can be loaded with the command
BBNumberTheory‘).

The following table gives the PRIMES which have a
given number d as a quadratic residue.

d Primes

�6 24k�1,5,7,11

�5 20k�1,3,7,9

�3 6k�1

�2 8k�1,3

�1 4k�1

2 8k91

3 12k91

5 10k91

6 24k91,5

Finding the CONTINUED FRACTION of a SQUARE ROOTffiffiffiffi
D

p
and using the relationship

Qn �
D � P2

n

Qn�1

(13)

for the nth CONVERGENT Pn =Qn gives

P2
n ��QnQn�1 (mod D) : (14)

Therefore, �QnQn�1 is a quadratic residue of D . But
since Q1 �1;�Q2 is a quadratic residue, as must be
�Q2Q3: But since�Q2 is a quadratic residue, so is Q3;
and we see that �1ð Þn�1Qn are all quadratic residues
of D . This method is not guaranteed to produce all
quadratic residues, but can often produce several
small ones in the case of large D , enabling D to be
factored.

The number of SQUARES s(n) in Zn is related to the
number q(n) of quadratic residues in Zn by

q pnð Þ�s pnð Þ�s pn�2
� �

(15)

for n]3 (Stangl 1996). Both q and s are MULTI-

PLICATIVE FUNCTIONS.

See also ASSOCIATE, EULER’S CRITERION, JACOBI



SYMBOL, KRONECKER SYMBOL, LEGENDRE SYMBOL,
MULTIPLICATIVE FUNCTION, QUADRATIC RECIPROCITY

THEOREM, RIEMANN HYPOTHESIS
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Quadratic Sieve
A procedure used in conjunction with DIXON’S FAC-

TORIZATION METHOD to factor large numbers n . Pick
values of r given by ffiffiffi

n
p2 3

�k; (1)

where k �1, 2, ... and xb c is the FLOOR FUNCTION. We
are then looking for factors p such that

n �r2 (mod p) ; (2)

which means that only numbers with LEGENDRE

SYMBOL n=pð Þ�1 (less than N �p(d) for TRIAL DIVI-

SOR d , where p(d) is the PRIME COUNTING FUNCTION)
need be considered. The set of PRIMES for which this is
true is known as the FACTOR BASE. Next, the CON-

GRUENCES

x2 �n (mod p) (3)

must be solved for each p in the FACTOR BASE. Finally,
a sieve is applied to find values of f (r) �r2 �n which
can be factored completely using only the FACTOR

BASE. GAUSSIAN ELIMINATION is then used as in
DIXON’S FACTORIZATION METHOD in order to find a
product of the f (r)/s, yielding a PERFECT SQUARE.

The method requires about exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln n ln ln n

p� �
steps, improving on the CONTINUED FRACTION FAC-

TORIZATION ALGORITHM by removing the 2 under the
SQUARE ROOT (Pomerance 1996). The use of multiple
POLYNOMIALS gives a better chance of factorization,
requires a shorter sieve interval, and is well suited to
parallel processing.

See also NUMBER FIELD SIEVE, PRIME FACTORIZATION

ALGORITHMS, SMOOTH NUMBER

References
Alford, W. R. and Pomerance, C. "Implementing the Self

Initializing Quadratic Sieve on a Distributed Network." In
Number Theoretic and Algebraic Methods in Computer
Science, Proc. Internat. Moscow Conf., June-July 1993
(Ed. A. J. van der Poorten, I. Shparlinksi, and H. G. Zi-
mer). Singapore: World Scientific, pp. 163�/174, 1995.

Boender, H. and te Riele, H. J. J. "Factoring Integers with
Large Prime Variations of the Quadratic Sieve." Preprint.
Centrum voor Wiskunde en Informatica, No. NM-R9513,
1995.

Brent, R. P. "Parallel Algorithms for Integer Factorisation."
In Number Theory and Cryptography (Ed. J. H. Loxton).
New York: Cambridge University Press, 26�/37, 1990.

Bressoud, D. M. Ch. 8 in Factorization and Prime Testing.
New York: Springer-Verlag, 1989.

Gerver, J. "Factoring Large Numbers with a Quadratic
Sieve." Math. Comput. 41, 287�/294, 1983.

Lenstra, A. K. and Manasse, M. S. "Factoring by Electronic
Mail." In Advances in Cryptology--Eurocrypt ’89 (Ed. J.-
J. Quisquarter and J. Vandewalle). Berlin: Springer-Ver-
lag, pp. 355�/371, 1990.

Pomerance, C. "The Quadratic Sieve Factoring Algorithm."
In Advances in Cryptology: Proceedings of EUROCRYPT
84 (Ed. T. Beth, N. Cot, and I. Ingemarsson). New York:
Springer-Verlag, pp. 169�/182, 1985.

Pomerance, C. "A Tale of Two Sieves." Not. Amer. Math. Soc.
43, 1473�/1485, 1996.

Pomerance, C.; Smith, J. W.; and Tuler, R. "A Pipeline
Architecture for Factoring Large Integers with the Quad-
ratic Sieve Method." SIAM J. Comput. 17, 387�/403, 1988.

Silverman, R. D. "The Multiple Polynomial Quadratic
Sieve." Math. Comput. 48, 329�/339, 1987.

Quadratic Surd
QUADRATIC IRRATIONAL NUMBER

Quadratic Surface
A second-order ALGEBRAIC SURFACE given by the
general equation

ax2�by2�cz2�2fyz�2gzx�2hxy�2px�2py�2rz

�d�0: (1)

Quadratic surfaces are also called quadrics, and there



are 17 standard-form types. A quadratic surface
intersects every plane in a (proper or degenerate)
CONIC SECTION. In addition, the CONE consisting of all
tangents from a fixed point to a quadratic surface cuts
every plane in a CONIC SECTION, and the points of
contact of this CONE with the surface form a CONIC

SECTION (Hilbert and Cohn-Vossen 1999, p. 12).

Define

e �
a h g
h b f
g f c

2
4

3
5 (2)

E �

a h g p
h b f  q
g f c r
p q r d

2
664

3
775 (3)

r3 �rank e (4)

r4 �rank E (5)

D�det E ; (6)

and k1 ; k2 ; as k3 are the roots of

a �x h  g
h b�x f
g f c�x

!!!!!!
!!!!!!�0: (7)

Also define

k �
1 if the signs of nonzero ks are the same
0 otherwise :

"
(8)

Then the following table enumerates the 17 quadrics
and their properties (Beyer 1987).

Surface Equation / r3/ /r4/ /sgn( D)/ k

Coincident
PLANES

/x2 �0/ 1 1

Ellipsoid (Ima-
ginary)

/
x2

a2 �y2

b2 �z2

c2 ��1/ 3 4 /�/ 1

ELLIPSOID

(Real)
/
x2

a2 �y2

b2 �z2

c2 �1/ 3 4 /(�)/ 1

Elliptic Cone
(Imaginary)

/
x2

a2 �y2

b2 �z2

c2 �0/ 3 3  1

ELLIPTIC CONE

(Real)
/z2 � x2

a2 �y2

b2/ 3 3  0

Elliptic Cylin-
der (Imagin-
ary)

/
x2

a2 �y2

b2 ��1/ 2 3  1

ELLIPTIC CYLIN-

DER (Real)
/
x2

a2 �y2

b2 �1/ 2 3  1

ELLIPTIC PARA-

BOLOID

/z � x2

a2 �y2

b2/ 2 4 /(�)/ 1

HYPERBOLIC

CYLINDER

/
x2

a2 �y2

b2 ��1/ 2 3  0

HYPERBOLIC

PARABOLOID

/z � y2

a2 �x2

b2/ 2 4 /�/ 0

HYPERBOLOID

of one Sheet
/
x2

a2 �y2

b2 �z2

c2 �1/ 3 4 /�/ 0

HYPERBOLOID

of two Sheets
/
x2

a2 �y2

b2 �z2

c2 ��1/ 3 4 /(�)/ 0

Intersecting
Planes (Ima-
ginary)

/
x2

a2 �y2

b2 �0/ 2 2  1

Intersecting
PLANES (Real)

/
x2

a2 �y2

b2 �0/ 2 2  0

PARABOLIC CY-

LINDER

/x2 �2rz �0/ 1 3

Parallel Planes
(Imaginary)

/x2 ��a2
/ 1 2

Parallel
PLANES (Real)

/x2 �a2
/ 1 2

Of the non-degenerate quadratic surfaces, the ELLIP-

TIC (and usual) CYLINDER, HYPERBOLIC CYLINDER,
ELLIPTIC (and usual) CONE are RULED SURFACES,
while the one-sheeted HYPERBOLOID and HYPERBOLIC

PARABOLOID are DOUBLY RULED SURFACES.

A curve in which two arbitrary quadratic surfaces in
arbitrary positions intersect cannot meet any plane in
more than four points (Hilbert and Cohn-Vossen
1999, p. 24).

See also CONE, CONFOCAL QUADRICS, CUBIC SURFACE,
CYLINDER, DOUBLY RULED SURFACE, ELLIPSOID,
ELLIPTIC CONE, ELLIPTIC CYLINDER, ELLIPTIC PARA-

BOLOID, HYPERBOLIC CYLINDER, HYPERBOLIC PARA-

BOLOID, HYPERBOLOID, PLANE, QUARTIC SURFACE,
RULED SURFACE, SURFACE
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Quadratrix of Hippias

The quadratrix was discovered by Hippias of Elias in
430 BC, and later studied by Dinostratus in 350 BC
(MacTutor Archive). It can be used for ANGLE TRISEC-

TION or, more generally, division of an ANGLE into any
integral number of equal parts, and CIRCLE SQUAR-

ING. In POLAR COORDINATES,

pr �2r u csc u;

so

r �
rp sin u

u
;

which is proportional to the COCHLEOID.
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Quadrature
The word quadrature has (at least) three incompa-
tible meanings. Integration by quadrature either
means solving an INTEGRAL analytically (i.e., symbo-
lically in terms of known functions), or solving of an
integral numerically (e.g., GAUSSIAN QUADRATURE,
QUADRATURE FORMULAS). Ueberhuber (1997, p. 71)
uses the word "quadrature" to mean numerical
computation of a univariate INTEGRAL, and "CUBA-

TURE" to mean numerical computation of a MULTIPLE

INTEGRAL.

The word quadrature is also used to mean SQUARING:
the construction of a square using only COMPASS and
STRAIGHTEDGE which has the same AREA as a given
geometric figure. If quadrature is possible for a PLANE

figure, it is said to be QUADRABLE.

For a function tabulated at given values xi (so the
ABSCISSAS cannot be chosen at will), write the func-
tion f as a sum of ORTHONORMAL FUNCTIONS pj

satisfying

g
b

a

pi(x)pj(x)W(x)dx � dij (1)

as

f(x) �
X�
j�0

ajpj(x); (2)

and plug into

g
b

a

f(x)W(x) dx �g
b

a

Xm

j�1

p(x)W(x)

x � xjð Þp? xj

� �dx f xj

� �

�
Xm

j�1

wjf xj

� �
; (3)

giving

g
b

a

X�
j�0

ajpj(x)W(x)dx �
Xn

i�1

wi

X�
j�0

ajpj xj

� �" #
: (4)

But we wish this to hold for all degrees of approxima-
tion, so

ajg
b

a

pj(x)W(x)dx �aj

Xn

i�1

wipj xið Þ  (5)

g
b

a

pj(x)W(x)dx �
Xn

i �1

wipj xið Þ: (6)

Setting i �0 in (1) gives

g
b

a

p0(x)pj(x)W(x)dx � d0j : (7)

The zeroth order orthonormal function can always be
taken as p0(x) �1; so (7) becomes

g
b

a

pj(x)W(x)dx�d0j (8)

�
Xn

i�1

wipj xið Þ; (9)

where (6) has been used in the last step. We therefore
have the MATRIX equation

p0 x1ð Þ � � � p0 xnð Þ
p0 x1ð Þ � � � p1 xnð Þ

n ::: n
pn�1 x1ð Þ � � � pn�1 xnð Þ

2
664

3
775

w1

w2

n
wn

2
664

3
775�

1
0
n
0

2
664
3
775 (10)

which can be inverted to solve for the wi/s (Press et al.
1992).

See also CALCULUS, CHEBYSHEV-GAUSS QUADRATURE,
CHEBYSHEV QUADRATURE, CUBATURE, DERIVATIVE,
DOUBLE EXPONENTIAL INTEGRATION, FUNDAMENTAL

THEOREM OF GAUSSIAN QUADRATURE, GAUSS-JACOBI

MECHANICAL QUADRATURE, GAUSS-KRONROD QUAD-



RATURE, GAUSSIAN QUADRATURE, HERMITE-GAUSS

QUADRATURE, HERMITE QUADRATURE, JACOBI-GAUSS

QUADRATURE, JACOBI QUADRATURE, LAGUERRE-

GAUSS QUADRATURE, LAGUERRE QUADRATURE, LE-

GENDRE-GAUSS QUADRATURE, LEGENDRE QUADRA-

TURE, LOBATTO QUADRATURE, MECHANICAL

QUADRATURE, MEHLER QUADRATURE, NEWTON-COTES

FORMULAS, NUMERICAL INTEGRATION, RADAU QUAD-

RATURE, RECURSIVE MONOTONE STABLE QUADRATURE
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Quadrature Formulas
NEWTON-COTES FORMULAS

Quadri-Amicable Number
AMICABLE QUADRUPLE

Quadric
A quadric is a QUADRATIC SURFACE. A surface OF THE

FORM

x2

a2 � u 
�

y2

b2 � u 
�

z2

c2 � u 
�1

is also called a quadric, and u is said to be the
parameter of the quadric.

See also QUADRATIC SURFACE
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Quadricorn
A FLEXIBLE POLYHEDRON due to C. Schwabe (with the
appearance of having four horns) which flexes from
one totally flat configuration to another, passing
through intermediate configurations of positive VO-

LUME.

See also FLEXIBLE POLYHEDRON

Quadrifolium

The ROSE with n �2. It has polar equation

r �a sin 2uð Þ;

and Cartesian form

x2 �y2
� �3

�4a2x2y2:

See also BIFOLIUM, FOLIUM, ROSE, TRIFOLIUM

Quadrilateral

A four-sided POLYGON sometimes (but not very often)
also known as a tetragon. If not explicitly stated, all
four VERTICES are generally taken to lie in a PLANE. If
the points do not lie in a PLANE, the quadrilateral is
called a SKEW QUADRILATERAL. There are three
topological types of quadrilaterals (Wenninger 1983,
p. 50): convex quadrilaterals (left figure), concave
quadrilaterals (middle figure), and crossed quadrilat-
erals (or butterflies, or bow-ties; right figure).

For a planar convex quadrilateral (left figure above),
let the lengths of the sides be a , b , c , and d , the
SEMIPERIMETER s , and the DIAGONALS p and q . The
DIAGONALS are PERPENDICULAR IFF a2�c2�b2�d2::
Given any five points in the plane, four will always
form a convex quadrilateral. This result is a special
case of the so-called HAPPY END PROBLEM (Hoffman
1998, pp. 74�/78).



The centroid of the vertices of a quadrilateral occurs
at the point of intersection of the BIMEDIANS (i.e., the
lines MABMCD and MADMBC joining pairs of opposite
MIDPOINTS) (Honsberger 1995, pp. 36 �/37). In addi-
tion, it is the MIDPOINT of the line MACMBD connecting
the midpoints of the diagonals AC and BD (Honsber-
ger 1995, pp. 39 �/40).

An equation for the sum of the squares of side lengths
is

a2 �b2 �c2 �d2 �p2 �q2 �4x2 ; (1)

where x is the length of the line joining the MIDPOINTS

of the DIAGONALS (Casey 1888, p. 22). The AREA of a
quadrilateral is given by

K �1
2pq sin u (2)

�1
4 b2 �d2 �a2 �c2
� �

tan u (3)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2q2 � b2 �d2 �a2 �c2ð Þ2

q
(4)

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s �a)(s �b)(s �c)(s �d) �abcd cos2 1

2 A �Bð Þ
h ir

;

(5)

where (4) is known as BRETSCHNEIDER’S FORMULA

(Beyer 1987).

The four ANGLE BISECTORS of a quadrilateral intersect
adjacent bisectors in four CONCYCLIC points (Hon-
sberger 1995, p. 35).

Any non-self-intersecting quadrilateral tiles the
plane.

There is a relationship between the six distances d12 ;
d13 ; d14 ; d23 ; d24 ; and d34 between the four points of a
quadrilateral (Weinberg 1972):

0 �d4
12d2

34 �d4
13d2

24 �d4
14d2

23 �d4
23d2

14 �d4
24d2

13 �d4
34d2

12

�d2
12d2

23d2
31 �d2

12d2
24d2

41 �d2
13d2

34d2
41

�d2
23d2

34d2
42 �d2

12d2
23d2

34 �d2
13d2

32d2
24

�d2
12d2

24d2
43 �d2

14d2
42d2

23 �d2
13d2

34d2
42

�d2
14d2

43d2
32 �d2

23d2
31d2

14 �d2
21d2

13d2
34

�d2
24d2

41d2
13 �d2

21d2
14d2

43 �d2
31d2

12d2
24

�d2
32d2

21d2
14 : (6)

This can be most simply derived by setting the left
side of the CAYLEY-MENGER DETERMINANT

288V2 �

0 1  1  1  1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

!!!!!!!!!!

!!!!!!!!!!
(7)

equal to 0 (corresponding to a TETRAHEDRON of
volume 0), thus giving a relationship between the
DISTANCES between vertices of a planar quadrilateral
(Uspensky 1948, p. 256).

A special type of quadrilateral is the CYCLIC QUAD-

RILATERAL, for which a CIRCLE can be circumscribed
so that it touches each VERTEX. For BICENTRIC QUAD-

RILATERALS, the CIRCUMCIRCLE and INCIRCLE satisfy

2r2 R2�s2
� �

� R2�s2
� �

�4r2s2; (8)

where R is the CIRCUMRADIUS, r in the INRADIUS, and
s is the separation of centers. A quadrilateral with
two sides PARALLEL is called a TRAPEZOID.

See also ANTICENTER, BICENTRIC QUADRILATERAL,
BIMEDIAN, BRAHMAGUPTA’S FORMULA, BRETSCHNEI-

DER’S FORMULA, BUTTERFLY THEOREM, CAYLEY-MEN-

GER DETERMINANT, COMPLETE QUADRILATERAL,
CYCLIC QUADRILATERAL, DIAMOND, EIGHT-POINT CIR-

CLE THEOREM, EQUILIC QUADRILATERAL, FANO’S

AXIOM, LÉ ON ANNE’S THEOREM, LOZENGE, MALTI-

TUDE, ORTHOCENTRIC QUADRILATERAL, PARALLELO-

G R A M , P T O L E M Y ’ S  T H E O R E M , R A T I O N A L

QUADRILATERAL, RECTANGLE, RHOMBUS, SKEW QUAD-

RILATERAL, SQUARE, TANGENTIAL QUADRILATERAL,
TRAPEZOID, VARIGNON’S THEOREM, VON AUBEL’S THE-

OREM, WITTENBAUER’S PARALLELOGRAM
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Quadrilateral of Chords
CYCLIC QUADRILATERAL

Quadrilateral Tiling

Any nonself-intersecting QUADRILATERAL (Wells 1991,
p. 208) tiles the plane, as illustrated above.

References
Wells, D. The Penguin Dictionary of Curious and Interesting

Geometry. London: Penguin, pp. 177 �/179, 208, and 211,
1991.

Quadrillion
In the American system, 1015.

See also LARGE NUMBER

Quadriplanar Coordinates
The analog of TRILINEAR COORDINATES for TETRAHE-

DRA.

See also TETRAHEDRON, TRILINEAR COORDINATES
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Quadrivium
A word derived from the Latin roots quad- (four) and
via (ways, roads), therefore a crossing of four roads.
In medieval universities, the quadrivium consisted of
the four subjects in the upper division of the seven
liberal arts: ARITHMETIC, astronomy, GEOMETRY, and
music.

See also TRIVIUM

Quadruple
A group of four elements, also called a QUADRUPLET or
TETRAD.

See also AMICABLE QUADRUPLE, DIOPHANTINE QUAD-

RUPLE, MONAD, PAIR, PRIME QUADRUPLET, PYTHA-

GOREAN QUADRUPLE, QUADRUPLET, QUINTUPLET,
TETRAD, TRIAD, TRIPLE, TWINS, VECTOR QUADRUPLE

PRODUCT

Quadruple Point

A point where a curve intersects itself along four arcs.
The above plot shows the quadruple point at the
ORIGIN of the QUADRIFOLIUM /(x2 �y2)3 �4x2y2 �0/.

See also DOUBLE POINT, TRIPLE POINT
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Quadruplet
QUADRUPLE

Quadtree
A TREE having four branches at each node. Quadtrees
are used in the construction of some multidimen-
sional databases (e.g., cartography, computer gra-
phics, and image processing). For a d -D tree, the
expected number of comparisons over all pairs of
integers for successful and unsuccessful searches are
given analytically for d�2 and numerically for /d]3/

by Finch.
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Quantic
An m -ary n -ic polynomial (i.e., a HOMOGENEOUS

POLYNOMIAL with constant COEFFICIENTS of degree
n in m independent variables).

See also ALGEBRAIC INVARIANT, FUNDAMENTAL SYS-

TEM, P -ADIC NUMBER, SYZYGIES PROBLEM

Quantified System
A quantified system of real algebraic equations and
inequalities in variables / fx1 ; . . . ; xn g/ is an expression

QS �Q1(y1) Q2ð Þ y2ð Þ � � �Qm ymð ÞS x1 ; . . . ; xn; y1 ; . . . ; ymð Þ;

where Q is a QUANTIFIER ( � or � ) and S is a system of
real algebraic equations and inequalities in
x1 . . . ; xn; y1 ; . . . ymf g: By TARSKI’S THEOREM, the solu-

tion set of a quantified system of real algebraic
equations and inequalities is a SEMIALGEBRAIC SET.

See also QUANTIFIER, SEMIALGEBRAIC SET, TARSKI’S

THEOREM

References
Strzebonski, A. "Solving Algebraic Inequalities." Mathema-

tica J. 7, 525 �/541, 2000.

Quantifier
One of the operations EXISTS �or FOR ALL � . However,
there also exist more exotic branches of logic which
use quantifiers other than these two.

See also BOUND VARIABLE, EXISTS, FOR ALL, FREE,
QUANTIFIED SYSTEM, QUANTIFIER ELIMINATION, UNI-

VERSAL QUANTIFIER
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Quantifier Elimination
Quantifier elimination is the removal of all QUANTI-

FIERS ( � and � ) from a quantified system. A first-
order theory allows quantifier elimination if, for each
quantified formula, there exists an equivalent quan-
tifier-free formula. Examples of such theories include
the real numbers with �; �;�; and >; and the theory
of complex numbers with �; �; and �: Quantifier
elimination is implemented in Mathematica as Re-
solve[expr ].

Unfortunately, it has been proven that the worst-case
time complexity for real quantifier elimination is
doubly exponential in the number of QUANTIFIER

blocks (Weispfenning 1985, Davenport and Heintz
1988, Heintz et al. 1989, Caviness and Johnson 1998).

See also CYLINDRICAL ALGEBRAIC DECOMPOSITION,
TARSKI’S THEOREM
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Quantile
The kth n -tile Pk is that value of x , say xk; which
corresponds to a CUMULATIVE FREQUENCY of Nk=n: If



n �4, the quantity is called a QUARTILE, and if
n �100, it is called a PERCENTILE.

See also PERCENTILE, QUARTILE
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Quantity

See also EXPRESSION

Quantization Efficiency
Quantization is a nonlinear process which generates
additional frequency components (Thompson et al.
1986). This means that the signal is no longer band-
limited, so the SAMPLING THEOREM no longer holds. If
a signal is sampled at the NYQUIST FREQUENCY,
information will be lost. Therefore, sampling faster
than the NYQUIST FREQUENCY results in detection of
more of the signal and a lower signal-to-noise ratio
[SNR]. Let b be the OVERSAMPLING ratio and define

hQ �
SNRquant

SNRunquant

:

Then the following table gives values of / hQ/ for a
number of parameters.

Quantization Levels /hQ( b �1)/ /hQ( b �2)/

2 0.64 0.74

3 0.81 0.89

4 0.88 0.94

The Very Large Array of 27 radio telescopes in
Socorro, New Mexico uses three-level quantization
at b �1; so hQ �0:81 :/

See also OVERSAMPLING
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Quantum Chaos
The study of the implications of CHAOS for a system in
the semiclassical (i.e., between classical and quantum
mechanical) regime.
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Quarter
The UNIT FRACTION 1/4, also called one-fourth.

See also HALF, KÖ BE’S ONE-FOURTH THEOREM, QUAR-

TILE

Quarter Squares Rule

a � b

2

 !2

�
a � b

2

 !2

�ab :

Quartet
A SET of four, also called a TETRAD.

See also HEXAD, MONAD, QUINTET, TETRAD, TRIAD

Quartic Curve
A general plane quartic curve is a curve OF THE FORM

Ax4�By4�Cx3y�Dx2y2�Exy3�Fx3�Gy3

�Hx2y�Ixy2�Jx2�Ky2�Lxy�Mx�Ny�O�0:

(1)

The incidence relations of the 28 bitangents of the
general quartic curve can be put into a ONE-TO-ONE

correspondence with the vertices of a particular
POLYTOPE in 7-D space (Coxeter 1928, Du Val 1931).
This fact is essentially similar to the discovery by
Schoutte (1910) that the 27 SOLOMON’S SEAL LINES on
a CUBIC SURFACE can be connected with a POLYTOPE

in 6-D space (Du Val 1931). A similar but less
complete relation exists between the tritangent
planes of the canonical curve of genus 4 and an 8-D
POLYTOPE (Du Val 1931).

The maximum number of DOUBLE POINTS for a
nondegenerate quartic curve is three.

A quartic curve OF THE FORM

y2�(x�a)(x�j)(x�g)(x�d) (2)

can be written

y

x � a

 !2

� 1�
b� a

x � a

 !
1�

g� a

x � a

 !
1�

d� a

x � a

 !
; (3)

and so is CUBIC in the coordinates

X�
1

x � a
(4)

Y�
y

x � a2
: (5)

This transformation is a BIRATIONAL TRANSFORMA-



TION.

Let P and Q be the INFLECTION POINTS and R and S
the intersections of the line PQ with the curve in
Figure (a) above. Then

A �C (6)

B �2A: (7)

In Figure (b), let UV be the double tangent, and T the
point on the curve whose x coordinate is the average
of the x coordinates of U and V . Then UV PQk kRS
and

D �F (8)

E �
ffiffiffi
2

p
D : (9)

In Figure (c), the tangent at P intersects the curve at
W . Then

G �8B: (10)

Finally, in Figure (d), the intersections of the tan-
gents at P and Q are W and X . Then

H�27B (11)

(Honsberger 1991).

See also CUBIC SURFACE, PEAR-SHAPED CURVE,
SOLOMON’S SEAL LINES
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Quartic Equation
A general quartic equation (also called a BIQUADRATIC

EQUATION) is a fourth-order POLYNOMIAL OF THE

FORM

z4�a3z3�a2z2�a1z�a0�0: (1)

The ROOTS of this equation satisfy NEWTON’S RELA-

TIONS:

x1�x2�x3�x4��a3 (2)

x1x2�x1x3�x1x4�x2x3�x2x4�x3x4�a2 (3)

x1x2x3�x2x3x4�x1x2x4�x1x3x4��a1 (4)

x1x2x3x4�a0; (5)

where the denominators on the right side are all a4�

1: Writing the quartic in the standard form

x4�px2�qx�r�0; (6)

the properties of the SYMMETRIC POLYNOMIALS ap-
pearing in NEWTON’S RELATIONS then give

z2
1�z2

2�z2
3�z2

4��2p (7)

z3
1�z3

2�z3
3�z3

4��3p (8)

z4
1�z4

2�z4
3�z4

4�2p2�4r (9)

z5
1�z5

2�z5
3�z5

4�5pq: (10)

Eliminating p , q , and r , respectively, gives the
relations

z1z2 p�z2
1�z1z2�z2

2

� �
�r�0 (11)

z2
1z2 z1�z2ð Þ�qz1�r�0 (12)

q�pz2�z3
2�0; (13)

as well as their cyclic permutations.

Ferrari was the first to develop an algebraic techni-
que for solving the general quartic. He applied his
technique (which was stolen and published by Car-
dano) to the equation

x4�6x2�60x�36�0 (14)

(Smith 1994, p. 207).

The x3 term can be eliminated from the general
quartic (1) by making a substitution OF THE FORM

z�x�l; (15)

so

x4� a3�4lð Þx3� a2�3a3l�6l2
� �

x2



� a1 �2a2 l �3a3 l
2 �4l3

� �
x

� a0 �a1 l �a2 l
2 �a3 l

3 � l4
� �

: (16)

Letting l �a3 =4 so

z �x �1
4a3 (17)

then gives the standard form

x4 �px2 �qx �r �0 ; (18)

where

p �a2 �
3
8a

2
3 (19)

q �a1 �
1
2a2a3 �

1
8a

3
3 (20)

r �a0 �
1
4a1a3 �

1
16a2a2

3 �
3

256a
4
3 : (21)

Adding and subtracting x2u �u2 =4 to (6) gives

x4 �x2u �1
4u

2
� �

�x2u �1
4u

2 �px2 �qx �r �0; (22)

which can be rewritten

x2 �1
2u

� �2

� (u �p)x2 �qx � 1
4u

2 �r
� �h i

�0 (23)

(Birkhoff and Mac Lane 1965). The first term is a
perfect square P2 ; and the second term is a perfect
square Q2 for those u such that

q2 �4(u �p) 1
4u

2 �r
� �

: (24)

This is the resolvent CUBIC, and plugging a solution
u1 back in gives

P2 �Q2 �(P �Q)(P �Q) ; (25)

so (23) becomes

x2 �1
2u1 �Q

� �
x2 �1

2u1 �Q
� �

; (26)

where

Q �Ax �B (27)

A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 �p

p
(28)

B ��
q

2A 
: (29)

Let y1 be a REAL ROOT of the resolvent CUBIC

EQUATION

y3 �a2y2 � a1a3 �4a0ð Þy � 4a2a0 �a2
1 �a2

3a0

� �
�0: (30)

The four ROOTS are then given by the ROOTS of the
equation

x2 �1
2 a3 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

3 �4a2

q
�4y1

� �
�1

2 y1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 �4a0

q� �
�0; (31)

which are

z1 ��1
4a3 �

1
2R �1

2D (32)

z2 ��1
4a3 �

1
2R �1

2D (33)

z3 ��1
4a3 �

1
2R �1

2E (34)

z4 ��1
4a3 �

1
2R �1

2E ; (35)

where

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4a

2
3 �a2 �y1

q
(36)

D �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4a

2
3 �R2 �2a2 �

1
4 4a3a2 �8a1 �a3

3ð ÞR�1
q

R "0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4a

2
3 �2a2 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 �4a0

pq
R �0

8<
:

(37)

E � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4a

2
3 �R2 �2a2 �

1
4 4a3a2 �8a1 �a3

3ð ÞR�1
q

R "0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4a

2
3 �2a2 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

1 �4a0

pq
R �0

8<
:

(38)

Another approach to solving the quartic (6) defines

a � x1 �x2ð Þ x3 �x4ð Þ�� x1 �x2ð Þ2 (39)

b � x1 �x3ð Þ x2 �x4ð Þ�� x1 �x3ð Þ2 (40)

g � x1 �x4ð Þ x2 �x3ð Þ�� x2 �x3ð Þ2
; (41)

where the second forms follow from

x1 �x2 �x3 �x4 ��a3 �0; (42)

and defining

h(x) �(x � a)(x � b)(x � g) (43)

�x3 � a � b � gð Þx2� ab�ag�bgð Þx�abg: (44)

This equation can be written in terms of the original
coefficients p , q , and r as

h(x)�x3�2px2�(p2�4r)x�q2: (45)

The roots of this CUBIC EQUATION then give a; b; and
g; and the equations (39) to (41) can be solved for the
four roots xi of the original quartic (Faucette 1996).

See also CUBIC EQUATION, DISCRIMINANT (POLYNO-

MIAL), QUINTIC EQUATION
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Borwein, P. and Erdélyi, T. "Quartic Equations." §1.1.E.1e in
Polynomials and Polynomial Inequalities. New York:
Springer-Verlag, p. 4, 1995.

Brown, K. S. "Reducing Quartics to Cubics." http://www.sea-
net.com/~ksbrown/kmath296.htm.

Ehrlich, G. §4.16 in Fundamental Concepts of Abstract
Algebra. Boston, MA: PWS-Kent, 1991.

Faucette, W. M. "A Geometric Interpretation of the Solution
of the General Quartic Polynomial." Amer. Math. Monthly
103, 51�/57, 1996.

Smith, D. E. A Source Book in Mathematics. New York:
Dover, 1994.

van der Waerden, B. L. §64 in Algebra, Vol. 1. New York:
Springer-Verlag, 1993.

Quartic Graph

A quartic graph is a GRAPH which is 4-REGULAR. The
unique quartic graph on five nodes is the COMPLETE

GRAPH K5 ; and the unique quartic graph on six nodes
is the CIRCULANT GRAPH Ci1;2(6): There are two
quartic graphs on seven nodes, one of which is the
CIRCULANT GRAPH Ci1 ;3(7) : The numbers of connected
quartic graphs on n �1, 2, ... nodes are 0, 0, 0, 0, 1, 1,
2, 6, 16, 59, ... (Sloane’s A006820), the numbers of not
necessarily connected quartic graphs are 0, 0, 0, 0, 1,
1, 2, 6, 16, 60, ... (Sloane’s A033301), and the numbers
of disconnected quartic graphs for n �10, 11, ... are 1,
1, 3, 8, 25, 88, ... (Sloane’s A033483; Read and Wilson
1998).
The following tables gives polyhedra whose SKELE-

TONS are quartic.

POLYHEDRON nodes

OCTAHEDRON 6

CUBOCTAHEDRON 12

SMALL RHOMBICUBOCTAHEDRON 24

ICOSIDODECAHEDRON 30

SMALL RHOMBICOSIDODECAHEDRON 60

See also CUBIC GRAPH, QUINTIC GRAPH, REGULAR

GRAPH
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Quartic Reciprocity Theorem
BIQUADRATIC RECIPROCITY THEOREM

Quartic Residue
QUARTIC RECIPROCITY THEOREM

Quartic Surface
An ALGEBRAIC SURFACE of ORDER 4. Unlike CUBIC

SURFACES, quartic surfaces have not been fully
classified.

See also BOHEMIAN DOME, BURKHARDT QUARTIC,
CASSINI SURFACE, CUSHION, CYCLIDE, DESMIC SUR-

FACE, FRESNEL’S ELASTICITY SURFACE, GOURSAT’S

SURFACE, KUMMER SURFACE, MITER SURFACE, PIRI-

FORM, ROMAN SURFACE, SYMMETROID, TETRAHE-

DROID, TOOTH SURFACE
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Quartile
One of the four divisions of observations which have
been grouped into four equal-sized sets based on their
RANK. The quartile including the top RANKED mem-
bers is called the first quartile and denoted Q1 : The
other quartiles are similarly denoted Q2 ; Q3 ; and Q4 :
For N data points with N OF THE FORM 4n �5 (for
n �0, 1, ...), the HINGES are identical to the first and
third quartiles.

See also HINGE, INTERQUARTILE RANGE, PERCENTILE,
QUANTILE, QUARTILE DEVIATION, QUARTILE VARIA-

TION COEFFICIENT
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Quartile Deviation

QD �1
2 Q3 �Q1ð Þ;

where Q1 and Q3 are the first and third QUARTILES

and Q3 �Q1 is the INTERQUARTILE RANGE.

See also INTERQUARTILE RANGE, QUARTILE, QUARTILE

VARIATION COEFFICIENT
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Quartile Range
INTERQUARTILE RANGE

Quartile Skewness Coefficient
BOWLEY SKEWNESS

Quartile Variation Coefficient

V �100
Q3 � Q1

Q3 � Q1

;

where Q1 and Q3 are the first and third QUARTILES

and Q3 �Q1 is the INTERQUARTILE RANGE.

See also INTERQUARTILE RANGE, QUARTILE, QUARTILE

DEVIATION

Quasiamicable Pair
Let s(m) be the DIVISOR FUNCTION of m . Then two
numbers m and n are a quasiamicable pair if

s(m) � s(n) �m �n �1 :

The first few are (48, 75), (140, 195), (1050, 1575),
(1648, 1925), ... (Sloane’s A005276). Quasiamicable
numbers are sometimes called BETROTHED NUMBERS

or REDUCED AMICABLE PAIRS.

See also AMICABLE PAIR
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Quasiconformal Map
A generalized CONFORMAL MAP.

See also BELTRAMI DIFFERENTIAL EQUATION
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Quasigroup
A GROUPOID S such that for all a ; b � S; there exist
unique x; y � S such that

ax �b

ya �b:

No other restrictions are applied; thus a quasigroup
need not have an IDENTITY ELEMENT, not be associa-
tive, etc. Quasigroups are precisely GROUPOIDS whose
multiplication tables are LATIN SQUARES. A qua-
sigroup can be empty.

See also BINARY OPERATOR, GROUPOID, LATIN

SQUARE, LOOP (ALGEBRA), MONOID, SEMIGROUP
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Quasi-Monte Carlo Integration
A method of NUMERICAL INTEGRATION based on
equidistributed sequences (Ueberhuber 1997,
p. 125). A quasi-Monte Carlo method known as the
Halton-Hammersley-Wozniakowski algorithm is im-
plemented in Mathematica as NIntegrate[f , ...,
Method- 
QuasiMonteCarlo].

See also CUBATURE, NUMERICAL INTEGRATION,
MONTE CARLO INTEGRATION
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Quasiperfect Number
A least ABUNDANT NUMBER, i.e., one such that

s(n)�2n�1:



Quasiperfect numbers are therefore the sum of their
nontrivial DIVISORS. No quasiperfect numbers are
known, although if any exist, they must be greater
than 1035 and have seven or more DIVISORS. Singh
(1997) called quasiperfect numbers SLIGHTLY EXCES-

SIVE NUMBERS.

See also ABUNDANT NUMBER, ALMOST PERFECT

NUMBER, PERFECT NUMBER
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Quasiperiodic Function
WEIERSTRASS SIGMA FUNCTION, WEIERSTRASS ZETA

FUNCTION

Quasiperiodic Motion
The type of motion executed by a DYNAMICAL SYSTEM

containing two incommensurate frequencies.

Quasirandom Sequence
A sequence of n -tuples that fills n -space more
uniformly than uncorrelated random points. Such a
sequence is extremely useful in computational pro-
blems where numbers are computed on a grid, but it
is not known in advance how fine the grid must be to
obtain accurate results. Using a quasirandom se-
quence allows stopping at any point where conver-
gence is observed, whereas the usual approach of
halving the interval between subsequent computa-
tions requires a huge number of computations be-
tween stopping points.

See also PSEUDORANDOM NUMBER, RANDOM NUMBER
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Quasiregular Polyhedron
A quasiregular polyhedron is the solid region interior
to two DUAL REGULAR POLYHEDRA with SCHLÄ FLI

SYMBOLS p ; qf g: and q;pf g: Quasiregular polyhedra
are denoted using a SCHLÄ FLI SYMBOL OF THE FORM

p
q

n o
; with

p
q

" 7
�

q
p

" 7
: (1)

Quasiregular polyhedra have two kinds of regular
faces with each entirely surrounded by faces of the

other kind, equal sides, and equal dihedral angles.
They must satisfy the Diophantine inequality

1

p 
�

1

q 
�

1

r
> 1 : (2)

But p ; q ]3 ; so r must be 2. This means that the
possible quasiregular polyhedra have symbols 3

3

8 9
;

3
4

8 9
; and 3

5

8 9
: Now

3
3

" 7
� 3 ; 4f g  (3)

is the OCTAHEDRON, which is a regular PLATONIC

SOLID and not considered quasiregular. This leaves
only two convex quasiregular polyhedra: the CUBOC-

TAHEDRON
3
4

8 9
and the ICOSIDODECAHEDRON

3
5

8 9
:/

If nonconvex polyhedra are allowed, then additional
quasiregular polyhedra the DODECADODECAHEDRON

f5; 5
2g GREAT ICOSIDODECAHEDRON f3; 5

2 g; as well as 12
others (Hart).

For faces to be equatorial hf g;

h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N1 �1

p
�1: (4)

The EDGES of quasiregular polyhedra form a system
of GREAT CIRCLES: the OCTAHEDRON forms three
SQUARES, the CUBOCTAHEDRON four HEXAGONS, and
the ICOSIDODECAHEDRON six DECAGONS. The VERTEX

FIGURES of quasiregular polyhedra are RECTANGLES

(Hart). The EDGES are also all equivalent, a property
shared only with the completely regular PLATONIC

SOLIDS.

See also CUBOCTAHEDRON, DODECADODECAHEDRON,
GREAT ICOSIDODECAHEDRON, ICOSIDODECAHEDRON,
PLATONIC SOLID
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Quasirhombicosidodecahedron
GREAT RHOMBICOSIDODECAHEDRON (UNIFORM)

Quasirhombicuboctahedron
GREAT RHOMBICUBOCTAHEDRON (UNIFORM)

Quasisimple Group
A FINITE GROUP L is quasisimple if L � L ;L½ � and
L=Z(L) is a SIMPLE GROUP.

See also COMPONENT, FINITE GROUP, SIMPLE GROUP



Quasithin Theorem
In the classical quasithin case of the QUASI-UNIPO-

TENT PROBLEM, if a group G does not have a "strongly
embedded" SUBGROUP, then G is a GROUP of LIE-TYPE

in characteristic 2 of Lie RANK 2 generated by a pair of
parabolic SUBGROUPS P1 and P2 ; or G is one of a short
list of exceptions.

See also LIE-TYPE GROUP, QUASI-UNIPOTENT PRO-

BLEM

Quasitruncated Cuboctahedron
GREAT TRUNCATED CUBOCTAHEDRON

Quasitruncated Dodecadocahedron
TRUNCATED DODECADODECAHEDRON

Quasitruncated Dodecahedron
TRUNCATED DODECAHEDRON

Quasitruncated Great Stellated
Dodecahedron
GREAT STELLATED TRUNCATED DODECAHEDRON

Quasitruncated Hexahedron
STELLATED TRUNCATED HEXAHEDRON

Quasitruncated Small Stellated
Dodecahedron
SMALL STELLATED TRUNCATED DODECAHEDRON

Quasi-Unipotent Group
A GROUP G is quasi-unipotent if every element of G of
order p is UNIPOTENT for all PRIMES p such that G has
p -RANK ]3:/

Quasi-Unipotent Problem
QUASITHIN THEOREM

Quaternary
The BASE 4 method of counting in which only the
DIGITS 0, 1, 2, and 3 are used. The following table
gives the quaternary equivalents of the first few
decimal numbers.

1 1 11 23 21 111

2 2 12 30 22 112

3 3 13 31 23 113

4 10 14  32 24 120

5 11 15  33 25 121

6 12 16 100 26 122

7 13 17 101 27 123

8 20 18 102 28 130

9 21 19 103 29 131

10 22 20 110 30 132

These DIGITS have the following MULTIPLICATION

TABLE.

/�/ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 10 12

3 0 3 12 21

See also BASE (NUMBER), BINARY, DECIMAL, HEXADE-

CIMAL, MOSER-DE BRUIJN SEQUENCE, OCTAL, TERN-

ARY
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Quaternary Tree
QUADTREE

Quaternion
A member of a noncommutative DIVISION ALGEBRA

first invented by William Rowan Hamilton. The idea
for quaternions occurred to him while be was walking
along the Royal Canal on his way to a meeting of the
Irish Academy, and Hamilton was so pleased with his
discovery that he scratched the fundamental formula
of quaternion algebra,

i2�j2�k2�ijk��1; (1)

into the stone of the Brougham bridge (Mishchenko
and Solovyov 2000). The set of quaternions is denoted
H; and the quaternions are a single example of a more
general class of HYPERCOMPLEX NUMBERS discovered
by Hamilton. While the quaternions are not commu-
tative, they are associative, and they form a GROUP

known as the QUATERNION GROUP.

The quaternions can be represented using complex
2�2 MATRICES



H�
z w

�w̄ z̄

� �
�

a�ib c�id
�c�id a�ib

� �
; (2)

where z and w are COMPLEX NUMBERS, a , b , c , and d
are REAL, and z̄ is the COMPLEX CONJUGATE of z . A
quaternion can be represented using Quaternion[a ,
b , c , d ] in the Mathematica add-on package Algeb-
ra‘Quaternions‘ (which can be loaded with the
command BBAlgebra‘), where a , b , c , and d are
explicit real numbers.

By analogy with the COMPLEX NUMBERS being repre-
sentable as a sum of REAL and IMAGINARY PARTS, a�
1�bi; a quaternion can also be written as a linear
combination

H�aU�bI�cJ�dK (3)

of the four matrices

U�
1 0
0 1

� �
(4)

I�
i 0
0 �i

� �
(5)

J�
0 1
�1 0

� �
(6)

K�
0 i
i 0

� �
: (7)

(Note that here, U is used to denote the IDENTITY

MATRIX, not I:/) The matrices are closely related to the
PAULI SPIN MATRICES sx; sy; sz; combined with the
IDENTITY MATRIX. From the above definitions, it
follows that

I2��U (8)

J2��U (9)

K2��U (10)

Therefore I; J; and K are three essentially different
solutions of the matrix equation

X2��U; (11)

which could be considered the square roots of the
negative identity matrix. A LINEAR COMBINATION of
basis quaternions with integer coefficients is some-
times called a HAMILTONIAN INTEGER.

In R4; the basis of the quaternions can be given by

i�

0 1 0 0
�1 0 0 0
0 0 0 1
0 0 �1 0

2
664

3
775 (12)

j�

0 0 0 �1
0 0 �1 0
0 1 0 0
1 0 0 0

2
664

3
775 (13)

k�

0 0 �1 0
0 0 0 1
1 0 0 0
0 �1 0 0

2
664

3
775 (14)

1�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775: (15)

The quaternions satisfy the following identities,
sometimes known as HAMILTON’S RULES,

i2�j2�k2��1 (16)

ij��ji�k (17)

jk��kj�i (18)

ki��ik�j: (19)

They have the following multiplication table.

1 i j k

1 1 i j k

i i �1 k /�j/

j j /�k/ �1 i

k k j /�i/ �1

The quaternions 9 1, 9i; 9j; and 9k form a NON-

ABELIAN GROUP of order eight (with multiplication as
the group operation) known as Q8 of H:/

The quaternions can be written in the form

a�a1�a2i�a3j�a4k: (20)

The conjugate quaternion is given by

ā�a1�a2i�a3j�a4k: (21)

The sum of two quaternions is then

a�b� a1�b1ð Þ� a2�b2ð Þi� a3�b3ð Þj
� a4�b4ð Þk; (22)

and the product of two quaternions is

ab� a1b1�a2b2�a3b3�a4b4ð Þ

� a1b2�a2b1�a3b4�a4b3ð Þi

� a1b3�a2b4�a3b1�a4b2ð Þj

� a1b4�a2b3�a3b2�a4b1ð Þk; (23)

so the norm is

n(a)�
ffiffiffiffiffiffi
aā

p
�

ffiffiffiffiffiffi
āa

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2�a2

3�a2
4

q
: (24)



In this notation, the quaternions are closely related to
FOUR-VECTORS.

Quaternions can be interpreted as a SCALAR plus a
VECTOR by writing

a �a1 �a2i �a3j �a4k � a1 ;að Þ; (25)

where a � a2a3a4½ �:: In this notation, quaternion
multiplication has the particularly simple form

q1q2 � s1 ;v1ð Þ � s2 ;v2ð Þ
� s1s2 �v1 � v2 ; s1v2 �s2v1 �v1 �v2ð Þ: (26)

Division is uniquely defined (except by zero), so
quaternions form a DIVISION ALGEBRA. The inverse
of a quaternion is given by

a�1 �
ā

aā 
; (27)

and the norm is multiplicative

n(ab) �n(a)n(b) : (28)

In fact, the product of two quaternion norms imme-
diately gives the EULER FOUR-SQUARE IDENTITY.

A rotation about the UNIT VECTOR n̂ by an angle u can
be computed using the quaternion

q �(s ;v) � cos 1
2 u
� �

; n̂ sin 1
2u
� �� �

(29)

(Arvo 1994, Hearn and Baker 1996). The components
of this quaternion are called EULER PARAMETERS.
After rotation, a point p �(0;p) is then given by

p?�qpq�1 �qpq̄; (30)

since n(q) �1: A concatenation of two rotations, first
q1 and then q2 ; can be computed using the identity

q2 q1pq̄1ð Þq̄2 � q2q1ð Þp q̄1 q̄2ð Þ� q2q1ð Þpq2q1 (31)

(Goldstein 1980).

See also BIQUATERNION, CAYLEY-KLEIN PARAMETERS,
COMPLEX NUMBER, DIVISION ALGEBRA, EULER PARA-

METERS, FOUR-VECTOR, HAMILTONIAN INTEGER, HY-

PERCOMPLEX NUMBER, OCTONION, QUATERNION

GROUP
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Quaternion Group
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Quattuordecillion
In the American system, 1045.
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Queens Problem

What is the maximum number of queens which can
be placed on an n�n CHESSBOARD such that no two
attack one another? The answer is n queens, which
gives eight queens for the usual 8�8 board (Madachy
1979; Steinhaus 1983, p. 29). The number of different
ways the n queens can be placed on an n�n chess-
board so that no two queens may attack each other for
the first few n are 1, 0, 0, 2, 10, 4, 40, 92, ... (Sloane’s
A000170; Madachy 1979; Steinhaus 1983, p. 29). The
number of rotationally and reflectively distinct solu-
tions are 1, 0, 0, 1, 2, 1, 6, 12, 46, 92, ... (Sloane’s
A002562; Dudeney 1970; p. 96). The 12 distinct
solutions for n�8 are illustrated above, and the
remaining 80 are generated by ROTATION and REFLEC-

TION (Madachy 1979, Steinhaus 1983).

The minimum number of queens needed to occupy or
attack all squares of an 8�8 board is 5 (Steinhaus
1983, p. 29). Dudeney (1970, pp. 95�/96) gave the
following results for the number of distinct arrange-
ments Np(k;n) of k queens attacking or occupying
every square of an n�n board for which every queen
is attacked ("protected") by at least one other, with
the n�8 value given by Steinhaus (1983, p. 29). The
4860 solutions in the n�5 case may be obtained from
638 fundamental arrangements by ROTATION and
REFLECTION.

k Queens /n�n/ /Np(k;n)/

2 4 3

3 5 37

3 6 1

4 7 5

5 8 4860

Dudeney (1970, pp. 95�/96) also gave the following
results for the number of distinct arrangements
Nu(k;n) of k queens attacking or occupying every
square of an n�n board for which no two queens
attack one another (they are "not protected").

k Queens /n�n/ /Nu(k;n)/

1 2 1

1 3 1

3 4 2

3 5 2

4 6 17

4 7 1

5 8 91

Vardi (1991) generalizes the problem from a square
chessboard to one with the topology of the TORUS. The
number of solutions for n queens with n ODD are 1, 0,
10, 28, 0, 88, ... (Sloane’s A007705). Vardi (1991) also
considers the toroidal "semiqueens" problem, in
which a semiqueen can move like a rook or bishop,
but only on POSITIVE broken diagonals. The number of
solutions to this problem for n queens with n ODD are
1, 3, 15, 133, 2025, 37851, ... (Sloane’s A006717), and
0 for EVEN n .

Velucchi gives the solution to the question, "How
many different arrangements of k queens are possible
on an order n chessboard?" as /1=8/th of the COEFFI-

CIENT of akbn2�k in the POLYNOMIAL

p(a; b;n)�

a�bð Þn2�2 a�bð Þn a2�b2ð Þ n2�nð Þ=2

�3 a2�b2ð Þn2=2�2 a4�b4ð Þn2=4

n even

a�bð Þn2�2 a�bð Þ a4�b4ð Þ n2�1ð Þ=4

� a�bð Þ a2�b2ð Þ n2�1ð Þ=2

�4 a�bð Þn a2�b2ð Þ n2�nð Þ=2

n odd:

8>>>>>>>>>><
>>>>>>>>>>:



Velucchi also considers the nondominating queens
problem, which consists of placing n queens on an
order n chessboard to leave a maximum number U(n)
of unattacked vacant cells. The first few values are 0,
0, 0, 1, 3, 5, 7, 11, 18, 22, 30, 36, 47, 56, 72, 82, ...
(Sloane’s A001366). The results can be generalized to
k queens on an n �n board.

See also BISHOPS PROBLEM, CHESS, KINGS PROBLEM,
KNIGHTS PROBLEM, KNIGHT’S TOUR, ROOKS PROBLEM
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Queens Tour
A TOUR of a queen on a CHESSBOARD satisfying certain
properties.
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Quermass
BRIGHTNESS, OUTER QUERMASS

Question Mark Function
MINKOWSKI’S QUESTION MARK FUNCTION

Queue
A queue is a special kind of LIST in which elements
may only be removed from the bottom by a POP action
or added to the top using a PUSH action. Examples of
queues include people waiting in line, and submitted
jobs waiting to be printed on a printer. The study of
queues is called QUEUING THEORY.

See also LIST, PRIORITY QUEUE, QUEUING THEORY,
STACK

Queuing Theory
The study of the waiting times, lengths, and other
properties of QUEUES.
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Quicksort
The fastest known SORTING ALGORITHM (on average,
and for a large number of elements), requiring
O(n lg n) steps. Quicksort is a recursive algorithm
which first partitions an array aif gn

i�1 according to
several rules (Sedgewick 1978):



1. Some key n is in its final position in the array
(i.e., if it is the jth smallest, it is in position aj) :/
2. All the elements to the left of aj are less than or
equal to aj : The elements a1 ; a2 ; ..., aj�1 are called
the "left subfile."
3. All the elements to the right of aj are greater
than or equal to aj : The elements aj �1 ; ..., an are
called the "right subfile."

Quicksort was invented by Hoare (1961, 1962), has
undergone extensive analysis and scrutiny (Sedge-
wick 1975, 1977, 1978), and is known to be about
twice as fast as the next fastest SORTING algorithm. In
the worst case, however, quicksort is a slow n2

algorithm (and for quicksort, "worst case" corre-
sponds to already sorted).

See also HEAPSORT, SORTING
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Quillen-Lichtenbaum Conjecture
A technical CONJECTURE which connects algebraic K -

THEORY to É tale cohomology. The conjecture was
made more precise by Dwyer and Friedlander
(1982). Thomason (1985) established the first half of
this conjecture, but the entire conjecture has not yet
been established.
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Quincunx
The pattern of dots on the "5" side of a 6-sided
DIE. The word derives from the Latin words for both
one and five.

See also DICE
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Quindecillion
In the American system, 1048.

See also LARGE NUMBER

Quintet
A SET of five.

See also HEXAD, MONAD, QUARTET, TETRAD, TRIAD

Quintic Equation
Unlike quadratic, cubic, and quartic polynomials, the
general quintic cannot be solved algebraically in
terms of a finite number of ADDITIONS, SUBTRACTIONS,
MULTIPLICATIONS, DIVISIONS, and ROOT EXTRACTIONS,
as rigorously demonstrated by Abel (ABEL’S IMPOSSI-

BILITY THEOREM) and Galois. However, certain
classes of quintic equations can be solved in this
manner.

Irreducible quintic equations can be associated with a
GALOIS GROUP, which may be a SYMMETRIC GROUP Sn;
METACYCLIC GROUP Mn; DIHEDRAL GROUP Dn; ALTER-

NATING GROUP An; or CYCLIC GROUP Cn; as illustrated
above.

Euler reduced the general quintic to

x5�10qx2�p�0: (1)

A quintic also can be algebraically reduced to PRINCI-

PAL QUINTIC FORM

x5�a2x2�a1x�a0�0: (2)

By solving a quartic, a quintic can be algebraically
reduced to the BRING QUINTIC FORM

x5�x�a�0; (3)



as was first done by Jerrard. Runge (1885) and
Cadenhad and Young found a parameterization of
solvable quintics in the form

x5�ax�b�0; (4)

by showing that all irreducible solvable quintics with
COEFFICIENTS of x4; x3; and x2 missing have the
following form

x5�
5m4 4n� 3ð Þ

n2 � 1
x�

5m5 2n� 1ð Þ 4n� 3ð Þ
n2 � 1

�0; (5)

where m and n are RATIONAL. Spearman and Williams
(1994) showed that an irreducible quintic OF THE

FORM (4) having RATIONAL COEFFICIENTS is solvable
by radicals IFF there exist rational numbers o�91;
c]0; and e"0 such that

a�
5e4(3 � 4oc)

c2 � 1
(6)

b�
�4e5(11o � 2c)

c2 � 1
(7)

The ROOTS are then

xj�e vju1�v2ju2�v3ju3�v4ju4

� �
; (8)

where

u1�
v2

1v3

D2

 !1=5

(9)

u2�
v2

3v4

D2

 !1=5

(10)

u3�
v2

2v1

D2

 !1=5

(11)

u4�
v2

4v2

D2

 !1=5

(12)

v1�
ffiffiffiffi
D

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�o

ffiffiffiffi
D

pq
(13)

v2��
ffiffiffiffi
D

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�o

ffiffiffiffi
D

pq
(14)

v3��
ffiffiffiffi
D

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�o

ffiffiffiffi
D

pq
(15)

v4�
ffiffiffiffi
D

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�o

ffiffiffiffi
D

pq
(16)

D�c2�1: (17)

In the case of a solvable quintic, the roots can be
found using the formulas of Malfatti (1771), who was
the first to "solve" the quintic using a resolvent of
sixth degree (Pierpont 1895).

The general quintic can be solved in terms of JACOBI

THETA FUNCTIONS, as was first done by Hermite in
1858. Kronecker subsequently obtained the same
solution more simply, and Brioshi also derived the
equation. To do so, reduce the general quintic

a5x5�a4x4�a3x3�a2x2�a1x�a0�0 (18)

into BRING QUINTIC FORM

x5�x�r�0: (19)

Then define

k�tan 1
4sin�1 16

25
ffiffiffi
5

p
r2

 !" #
(20)

s�
�sgn(I[r]) for R[r]�0
sgn(R[r]) for R[r]"0

"
(21)

b�
s k2ð Þ1=8

2 � 53=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 1 � k2ð Þ

p (22)

q�q k2
� �

�eipK ? k2ð Þ=K k2ð Þ; (23)

where k is the MODULUS, m�k2 is the PARAMETER,
and q is the NOME. Solving

q mð Þ�eipK?(m)=K(m) (24)

for m gives the INVERSE NOME m(q); and the roots of
the original quintic are then given by

x1� �1ð Þ3=4b m e�2pi=5q1=5
� � �1=8

�i m e2pi=5q1=5
� � �1=8

n o

� m e�4pi=5q1=5
� � �1=8

� m e4pi=5q1=5
� � �1=8

n o

� m q1=5
� � �1=8

�q5=8 q5
� ��1=8

m q5
� � �1=8

n o
(25)

x2�b � m q1=5
� � �1=8

�e3pi=4 m e2pi=5q1=5
� � �1=8

n o

� e�3pi=4 m e�2pi=5q1=5
� � �1=8

�i m e4pi=5q1=5
� � �1=8

n o

� i m e�4pi=5q1=5
� � �1=8

�q5=8 q5
� ��1=8

m q5
� � �1=8

n o
(26)

x3�b e�3pi=4 m e�2pi=5q1=5
� � �1=8

�i m e�4pi=5q1=5
� � �1=8

n o

� � m q1=5
� � �1=8

�i m e4pi=5q1=5
� � �1=8

n o

� e�3pi=4 m e2pi=5q1=5
� � �1=8

�q5=8 q5
� ��1=8

m q1=5
� � �1=8

n o
(27)

x4�b m q1=5
� � �1=8

�i m e�4pi=5q1=5
� � �1=8

n o

� �e�3pi=4 m e2pi=5q1=5
� � �1=8

�i m e4pi=5q1=5
� � �1=8

n o



� e �3 pi=4 m e�2pi=5q1=5
� � �1 =8

�q5 =8 q5
� ��1 =8

m q5
� � �1 =8

n o
(28)

x5 �b m q1 =5
� � �1=8

�e �3pi=4 m e�2 pi=5q1 =5
� � �1 =8

n o

� �e3 pi=4 m e2pi=5q1=5
� � �1 =8

�i m e�4 pi=5q1 =5
� � �1 =8

n o

� �i m e4 pi =5q1 =5
� � �1=8

�q5 =8 q5
� ��1 =8

m q5
� � �1 =8

� o
:

n
(29)

Felix Klein used a TSCHIRNHAUSEN TRANSFORMATION

to reduce the general quintic to the form

z5 �5az2 �5bz �c �0: (30)

He then solved the related ICOSAHEDRAL EQUATION

I(z; 1 ;Z) �z5 �1 �11z5 �z10
� �5

� 1 �z30 �10005 z10 �z20
� �

�522 �z5 �z25
� � �2

Z

�0; (31)

where Z is a function of radicals of a , b , and c . The
solution of this equation can be given in terms of
HYPERGEOMETRIC FUNCTIONS as

Z �1 =60
2F1 � 1

60 ;
29
60;

4
5 ; 1728Z

� �
Z11=60

2F1
11
60;

41
60;

6
5 ; 1728Z

� � : (32)

Another possible approach uses a series expansion,
which gives one root (the first one in the list below) of
the BRING QUINTIC FORM

t5 �t � r: (33)

All five roots can be derived using differential
equations (Cockle 1860, Harley 1862). Let

F1 rð Þ�F2 rð Þ  (34)

F2 rð Þ�4 F3
1
5 ;

2
5 ;

3
5 ;

4
5;

1
2;

3
4;

5
4;

3125
256 r

4
� �

(35)

F3 rð Þ�4 F3
9
20;

13
20;

17
20 ;

21
20;

3
4 ;

5
4 ;

3
2;

3125
256 r

4
� �

(36)

F4 rð Þ�4 F3
7

10 ;
9
10;

11
10;

13
10;

5
4;

3
2;

7
4;

3125
256 r

4
� �

; (37)

then the ROOTS are

t1 ��r4F3
1
5 ;

2
5 ;

3
5 ;

4
5;

1
2;

3
4;

5
4;

3125
256 r

4
� �

(38)

t2 ��F1( r) �1
4 rF2(r) � 5

32r
2F3( r) � 5

32r
3F4( r) (39)

t3 ��F1( r) �1
4 rF2(r) � 5

32r
2F3( r) � 5

32r
3F4( r) (40)

t4 ��iF1( r) �1
4 rF2(r) � 5

32i r
2F3( r) � 5

32 r
3F4(r) (41)

t5 ��iF1( r) �1
4 rF2(r) � 5

32i r
2F3( r) � 5

32 r
3F4(r) (42)

This technique gives closed form solutions in terms of

HYPERGEOMETRIC FUNCTIONS in one variable for any
POLYNOMIAL equation which can be written in the
form

xp �bxq �c : (43)

Consider the quintic

Y4

j�0

x � vju1 � v4ju2

� � �
�0; (44)

where v �e2 pi=5 and u1 and u2 are COMPLEX NUMBERS.
This is called DE MOIVRE’S QUINTIC. Generalize it to

Y4

j�0

x � vju1 � v2ju2 � v3ju3 � v4ju4

� � �
�0 (45)

Expanding,

vju1 � v2ju2 � v3ju3 � v4ju4

� �5

�5U vju1 � v2ju2 � v3ju3 � v4ju4

� �4

�5V vju1 � v2ju2 � v3ju3 � v4ju4

� �2

�5W vju1 � v2ju2 � v3ju3 � v4ju4

� �
�5 X �Yð Þ�Z½ ��0; (46)

where

U �u1u4 �u2u3 (47)

V �u1u2
2 �u2u2

4 �u3u2
1 �u4u2

3 (48)

W �u2
1u2

4 �u2
2u2

3 �u3
1u2 �u3

2u4 �u3
3u1 �u3

4u3

�u1u2u3u4 (49)

X �u3
1u3u4 �u3

2u1u3 �u3
3u2u4 �u3

4u1u2 (50)

Y�u1u2
3u2

4�u2u2
1u2

3�u3u2
2u2

4�u4u2
1u2

2 (51)

Z�u5
1�u5

2�u5
3�u5

4 (52)

The ui/s satisfy

u1u4�u2u3�0 (53)

u1u2
2�u2u2

4�u3u2
1�u4u2

3�0 (54)

u2
1u2

4�u2
2u2

3�u3
1u2�u3

2u4�u3
3u1�u3

4u3�u1u2u3u4

�1
5a (55)

5 u3
1u3u4�u3

2u1u3�u3
3u3u4�u3

4u1u2

� �
� u1u2

3u2
4�u2u2

1u2
3�u3u2

2u2
4�u4u2

1u2
2

� �
�

� u5
1�u5

2�u5
3�u5

4

� �
�b: (56)

See also BRING QUINTIC FORM, BRING-JERRARD



QUINTIC FORM, CUBIC EQUATION, DE MOIVRE’S QUIN-

TIC, PRINCIPAL QUINTIC FORM, QUADRATIC EQUATION,
QUARTIC EQUATION, SEXTIC EQUATION
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Quintic Graph

A quintic graph is a GRAPH which is 5-REGULAR. The
only quintic graph on n 57 nodes is the COMPLETE

GRAPH K6 : The following tables gives polyhedra whose
SKELETONS are quartic.

POLYHEDRON nodes

ICOSAHEDRON 12

SNUB CUBE 24

SNUB DODECAHEDRON 60

TRUNCATED DODECAHEDRON 60

See also CUBIC GRAPH, QUARTIC GRAPH, REGULAR

GRAPH

Quintic Surface
A quintic surface is an ALGEBRAIC SURFACE of degree
5. Togliatti (1940, 1949) showed that quintic surfaces
having 31 ORDINARY DOUBLE POINTS exist, although
he did not explicitly derive equations for such
surfaces. Beauville (1978) subsequently proved that
31 double points was the maximum possible, and
quintic surfaces having 31 ORDINARY DOUBLE POINTS

are therefore sometimes called TOGLIATTI SURFACES.
van Straten (1993) subsequently constructed a 3-D
family of solutions and in 1994, Barth derived the
example known as the DERVISH.

See also ALGEBRAIC SURFACE, DERVISH, KISS SUR-

FACE, ORDINARY DOUBLE POINT, PENINSULA SURFACE
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Quintillion
In the American system, 1018.

See also LARGE NUMBER

Quintuple
A group of five elements, also called a QUINTUPLET or
PENTAD.

See also MONAD, PAIR, PENTAD, QUADRUPLE, QUAD-

RUPLET, QUINTUPLET, TETRAD, TRIAD, TRIPLET,
TWINS

Quintuple Product Identity
A.k.a. the WATSON QUINTUPLE PRODUCT IDENTITY,

Y�
n�1

1 �qnð Þ 1 �zqnð Þ 1 �z �1qn�1
� �

1 �z2q2n�1
� �

� 1 �z�2q2n�1
� �

�
X�

m���

z3m �z�3m�1
� �

qm(2m�1)=2 : (1)

It can also be written

Y�
n�1

1 �q2n
� �

1 �q2n�1z
� �

1 �q2n �1z�1
� �

1 �q4n�3z2
� �

� 1 �q4n�4z �2
� �

�
X�

n���

q3n2�2n z3n �z�3n
� �

� z3n�2 �z �(3n�2)
� � �

(2)

or

X�
k ���

�1ð Þkq 3k2�kð Þ=2x3k 1 �zqk
� �

�
Y�
j�1

1 �qj
� �

1 �z �1qj
� �

1 �zqj�1
� �

1 �z�2q2j�1
� �

� 1 �z2q2j�1
� �

: (3)

The quintuple product identity can be written in Q -

SERIES notation as

X�
k ���

�1ð Þkqk 3k �1ð Þ=2z3k 1 �zqk
� �

� 1 ;�z;�q =z; qð Þ� qz2 ; q=z2; q2
� �

�
; (4)

where 0 Bjq jB1 and z "0 (Gasper and Rahman
1990, p. 134; Leininger and Milne 1997). Using the
NOTATION of the RAMANUJAN THETA FUNCTION

(Berndt, p. 83),

f B3 =q ; q5 =B3
� �

�B2f q=B3 ;B3q5
� �

�f �q2
� � f �B2 ;�q2 =B2ð Þ

f Bq; q =Bð Þ
(5)

See also JACOBI TRIPLE PRODUCT, RAMANUJAN THETA

FUNCTIONS
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Quintuplet
A group of five elements, also called a QUINTUPLE or
PENTAD.

See also MONAD, PAIR, PENTAD, QUADRUPLE, QUAD-

RUPLET, QUINTUPLET, TETRAD, TRIAD, TRIPLET,
TWINS

Quiteprime
A POSITIVE INTEGER n 
1 is quiteprime IFF all PRIMES

p 5
ffiffiffi
n

p
satisfy

2 n (mod p½ ��pj j5p �1 �
ffiffiffi
p

p
:

Also define 2 and 3 to be quiteprimes. Then the first
few quiteprimes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 137, ... (Sloane’s
A050260), and the first few primes which are not
quiteprimes are 131, 181, 197, 199, 233, 241, 263, 307,
311, 313, 331, 337, 353, 373, 379, ... (Sloane’s
A050261).

See also VERYPRIME
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Quota Rule
A RECURRENCE RELATION between the function Q
arising in QUOTA SYSTEMS,



Q n; rð Þ�Q n�1; r �1ð Þ�Q n�1; rð Þ:
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Quota System
A generalization of simple majority voting in which a
list of quotas q0 ; . . . ; qnf g specifies, according to the
number of votes, how many votes an alternative
needs to win (Taylor 1995). The quota system
declares a tie unless for some k , there are exactly k
tie votes in the profile and one of the alternatives has
at least qk votes, in which case the alternative is the
choice.

Let Q(n) be the number of quota systems for n voters
and Q(n; r) the number of quota systems for which
q0 �r �1; so

Q(n) �
Xn

r� n=2b c
Q(n; r) �

n �1
n
2

j k
�1

 !
;

where xb c is the FLOOR FUNCTION. This produces the
sequence of CENTRAL BINOMIAL COEFFICIENTS 1, 2, 3,
6, 10, 20, 35, 70, 126, ... (Sloane’s A001405). It may be
defined recursively by Q 0ð Þ�1 and

Q(n �1) �
2Q(n) for n even

2Q(n) �C n�1ð Þ=2 for n odd;

"

where Ck is a CATALAN NUMBER (Young et al. 1995).
The function Q(n; r) satisfies

Q(n; r) �
n �1
r �1

� �
�

n �1
r �2

� �

for r > n=2 �1 (Young et al. 1995). Q(n; r) satisfies
the QUOTA RULE.

See also BINOMIAL COEFFICIENT, CENTRAL BINOMIAL

COEFFICIENT
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Quotient
The ratio q �r =s of two quantities r and s , where s "
0: Less commonly, the term quotient is also used to
mean the INTEGER PART of such a ratio. In Mathema-
tica , the command Quotient[r , s ] is defined in this
latter sense, returning r =s½ �; where xb c is the FLOOR

FUNCTION.

See also DIVISION, FRACTION, INTEGER PART, QUOTI-

ENT GROUP, QUOTIENT RING, QUOTIENT SPACE, RA-

TIONAL NUMBER, REMAINDER

Quotient Group
For a GROUP G and a NORMAL SUBGROUP N of G , the
quotient group of N in G , written G=N and read "G
modulo N", is the set of COSETS of N in G . Quotient
groups are also called factor groups. The elements of
G =N are written Na and form a GROUP under the
normal operation on the group N on the coefficient a .
Thus,

Nað Þ Nbð Þ�Nab:

Since all elements of G will appear in exactly one
COSET of the NORMAL SUBGROUP N , it follows that

G=Nj j�Gj j= Nj j

where Gj j denotes the order of a group.

The slash NOTATION conflicts with that for an EXTEN-

SION FIELD, but the meaning can be determined based
on context.

See also ABHYANKAR’S CONJECTURE, COSET, EXTEN-

SION FIELD, OUTER AUTOMORPHISM GROUP, NORMAL

SUBGROUP, SUBGROUP
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Quotient Ring
A quotient ring (also called a residue-class ring) is a
RING which is the quotient of a RING A and one of its
IDEALS a; denoted A=a: For example, when the RING A
is Z (the integers) and the IDEAL is 6Z (multiples of 6),
the quotient ring is Z6 �Z=6Z :/

In general, a quotient ring is a set of EQUIVALENCE

CLASSES where x½ �� y½ � IFF x �y � a :/

The quotient ring is an INTEGRAL DOMAIN iff the IDEAL

a is PRIME. A stronger condition occurs when the
quotient ring is a FIELD, which corresponds to when
the ideal a is MAXIMAL.

The IDEALS in a quotient ring A=a are in a ONE-TO-ONE

correspondence with ideals in A which contain the
ideal a: In particular, the zero ideal in A=a corre-
sponds to a in A . In the example above from the
integers, the ideal of even integers contains the ideal
of the multiples of 6. In the quotient ring, the evens
correspond to the ideal 0; 2; 4f g in Z6�Z=6Z:/

See also FIELD, IDEAL, INTEGER, INTEGRAL DOMAIN,
MAXIMAL IDEAL, MODULE, PRIME IDEAL, RESIDUE

FIELD, RING



Quotient Rule
The DERIVATIVE rule

d

dx

f (x)

g(x)

" #
�

g(x)f ?(x) � f (x)g ?(x)

g(x)½ �2

See also CHAIN RULE, DERIVATIVE, POWER RULE,
PRODUCT RULE
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Quotient Space
The quotient space X =� of a TOPOLOGICAL SPACE X
and an EQUIVALENCE RELATION � on X is the set of
EQUIVALENCE CLASSES of points in X (under the
EQUIVALENCE RELATION �) together with the following
topology given to subsets of X =�: a subset U of X =�
is called open IFF @a½ � �U a is open in X . Quotient
spaces are also called factor spaces.

This can be stated in terms of MAPS as follows: if q :
X 0 X =�denotes the MAP that sends each point to its
EQUIVALENCE CLASS in X =�; the topology on X =�can
be specified by prescribing that a subset of X =� is
open IFF q�1 [the set] is open.

In general, quotient spaces are not well behaved, and
little is known about them. However, it is known that
any compact metrizable space is a quotient of the
CANTOR SET, any compact connected n -dimensional
MANIFOLD for n 
 0 is a quotient of any other, and a
function out of a quotient space f : X =�0 Y is
continuous IFF the function f (q : X 0 Y is continu-
ous.

Let Dn be the closed n -D DISK and Sn�1 its boundary,
the (n �1)/-D sphere. Then Dn =Sn�1 (which is home-
omorphic to Sn); provides an example of a quotient
space. Here, Dn =Sn�1 is interpreted as the space
obtained when the boundary of the n -DISK is col-
lapsed to a point, and is formally the "quotient space
by the equivalence relation generated by the relations
that all points in Sn�1 are equivalent."

See also EQUIVALENCE RELATION, QUOTIENT SPACE

(LIE GROUP), TOPOLOGICAL SPACE
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Quotient Space (Lie Group)
The set of LEFT COSETS of a SUBGROUP H of a
TOPOLOGICAL GROUP G forms a topological space. Its
topology is defined by the quotient topology from p :
G 0 G=H : Namely, the open sets in G =H are the

images of the open sets in G . Moreover, if H is
CLOSED, then G=H is HAUSDORFF.

See also EFFECTIVE ACTION, FREE ACTION, GEO-

METRIC INVARIANT THEORY, GROUP, ISOTROPY GROUP,
MATRIX GROUP, ORBIT (GROUP), QUOTIENT SPACE,
REPRESENTATION, TOPOLOGICAL GROUP, TRANSITIVE
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Quotient Vector Space
Suppose that V � x1 ; x2 ; x3ð Þf g and W � x1 ; 0; 0ð Þf g:
Then the quotient space V =W (read as "V mod W")
is isomorphic to x2 ; x3ð Þf g�R2 :/

In general, when W is a SUBSPACE of a VECTOR SPACE

V , the quotient space V =W is the set of EQUIVALENCE

CLASSES v½ � where v1 �v2 if v1 �v2 � W : By "/v1 is
equivalent to v2 modulo W ," it is meant that v1 �
v2 �w for some w in W , and is another way to say
v1 �v2 : In particular, the elements of W represent 0½ �:
Sometimes the equivalence classes v½ � are written as
COSETS v �W :/

The quotient space is an ABSTRACT VECTOR SPACE, not
necessarily isomorphic to a subspace of V . However, if
V has an INNER PRODUCT, then V =W is isomorphic to

W �� v : v; wh i�0 for all w � Wf g:

In the example above, W �� 0; x2x3ð Þf g: Here is a
Mathematica function which finds a basis to W �

when given a basis for W .

PerpVectorBasis[a_List?MatrixQ] : �
NullSpace[a]

For example, PerpVectorBasis[{{1, 2, 0, 0, 3}, {4, 0,
5, 0, 6}}] yields {{-6, -3, 0, 0, 4}, {0, 0, 0, 1, 0}, {-10, 5, 8,
0, 0}}.

Unfortunately, a different choice of inner product can
change W �: Also, in the infinite-dimensional case, it
is necessary for W to be a CLOSED SUBSPACE to realize
the isomorphism between V =W and W �; as well as to
ensure the quotient space is HAUSDORFF.

See also COSET, ORTHOGONAL SET, QUOTIENT SPACE,
VECTOR SPACE

Quotient-Difference Algorithm
The ALGORITHM of constructing and interpreting a
QUOTIENT-DIFFERENCE TABLE which allows intercon-
version of CONTINUED FRACTIONS, POWER SERIES, and
RATIONAL FUNCTIONS approximations.

See also QUOTIENT-DIFFERENCE TABLE
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Quotient-Difference Table

A quotient-difference table is a triangular ARRAY of
numbers constructed by drawing a sequence of n
numbers in a horizontal row and placing a 1 above
each. An additional "1" is then placed at the begin-
ning and end of the row of 1s, and the value of rows
underneath the original row is then determined by
looking at groups of adjacent numbers

N
W X E

S

and computing

S �
X2 � EW

N

for the elements falling within a triangle formed by
the diagonals extended from the first and last "1," as
illustrated above.
0s in quotient-difference tables form square "win-
dows" which are bordered by GEOMETRIC SEQUENCES.
Quotient-difference tables eventually yield a row of 0s
IFF the starting sequence is defined by a linear
RECURRENCE RELATION. For example, continuing the
above example generated by the FIBONACCI NUMBERS

1 1 1 1 1 1 1
1 1 2 3 5

�1 1 �1
0

1 1 1 1 1 1 1 1
1 1 2 3 5 8

�1 1 �1 1
0 0

1 1 1 1 1 1 1  1 1
1 1 2 3 5 8 13

�1 1 �1 1 �1
0 0 0

0

1 1 1 1 1 1 1  1  1 1
1 1 2 3 5 8 13 21

�1 1 �1 1 �1 1
0 0 0 0

0 0

and it can be seen that a row of 0s emerges (and
furthermore that an attempt to extend the table will
result in division by zero). This verifies that the
FIBONACCI NUMBERS satisfy a linear recurrence,
which is in fact given by the well-known formula

Fn �Fn�1 �Fn�2 :

However, construction of a quotient-difference table
for the CATALAN NUMBERS, MOTZKIN NUMBERS, etc.,
does not lead to a row of zeros, suggesting that these
numbers cannot be generated using a linear recur-
rence.

See also DIFFERENCE TABLE, FINITE DIFFERENCE
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q-Vandermonde Sum

2f1 a; q�n; c; q; qð Þ�an c=a; qð Þn

a; qð Þn

;

where 2f1 a; b; c; q; zð Þ is a Q -HYPERGEOMETRIC SERIES.

See also CHU-VANDERMONDE IDENTITY
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q-Whipple Transformation

8 f7

a; qa1 =2 ;�qa1 =2 ; b; c ;d ; e ; q�N

a1=2 ;�a1 =2 ;
aq

b
;
aq

c
;
aq

d
;
aq

e
;aqN �1; q ;

aqN �2

bcde

2
4

3
5

�

aq

de 
; q

 !
N

aq

d
; q

 !
N

aq

e
; q

 !
N

4 f3

d; e ;
aq

bc
; q �N

aq

b
;
aq

c
;deq �n =a

; q; q

2
6664

3
7775;

where s fg is a Q -HYPERGEOMETRIC SERIES.
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q-Zeilberger Algorithm
A Q -ANALOG of ZEILBERGER’S ALGORITHM.

See also ZEILBERGER’S ALGORITHM
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Q �
The POSITIVE RATIONAL NUMBERS, denoted Q�:/

See also Q, Q-BAR, RATIONAL NUMBER
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R

R
The DOUBLESTRUCK letter R denotes the FIELD of REAL

NUMBERS.

See also C, I, N, Q, R-, R�, REAL NUMBER, Z
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R �

/R � denotes the REAL NEGATIVE numbers.

See also R, R�, REAL NUMBER

R �
/R � denotes the REAL POSITIVE numbers.

See also R, R-, REAL NUMBER
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Raabe’s Test
Given a SERIES of POSITIVE terms ui and a SEQUENCE

of POSITIVE constants aif g; use KUMMER’S TEST

r ?� lim
n0�

an

un

un�1

�an�1

 !

with an �n; giving

r?� lim
n0�

n
un

un�1

�(n �1)

" #

� lim
n0�

n
un

un�1

�1

 !
�1

" #
:

Defining

r � r?�1 � lim
n 0�

n
un

un�1

�1

 !" #
;

then gives Raabe’s test:

1. If r > 1 ; the SERIES CONVERGES.
2. If r B1 ; the SERIES DIVERGES.
3. If r �1 ; the SERIES may CONVERGE or DIVERGE.

See also CONVERGENT SERIES, CONVERGENCE TESTS,
DIVERGENT SERIES, KUMMER’S TEST
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Rabbit Constant
The limiting RABBIT SEQUENCE written as a BINARY

FRACTION 0:1011010110110 . . .2 (Sloane’s A005614),
where b2 denotes a BINARY number (a number in
base-2). The DECIMAL value is

R �0:7098034428612913146 . . .

(Sloane’s A014565).

Amazingly, the rabbit constant is also given by the
CONTINUED FRACTION [0, 2F0 ; 2F1 ; 2F2 ; 2F3 ; ...], where
Fn are FIBONACCI NUMBERS with F0 taken as 0
(Gardner 1989, Schroeder 1991). Another amazing
connection was discovered by S. Plouffe. Define the
BEATTY SEQUENCE aif g by

ai � i fb c

where xb c is the FLOOR FUNCTION and f is the GOLDEN

RATIO. The first few terms are 1, 3, 4, 6, 8, 9, 11, ...
(Sloane’s A000201). Then

R�
X�
i�1

2�ai

See also RABBIT SEQUENCE, THUE CONSTANT, THUE-

MORSE CONSTANT
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Rabbit Sequence
A SEQUENCE which arises in the hypothetical repro-
duction of a population of rabbits. Let the SUBSTITU-

TION MAP 0 0 1 correspond to young rabbits growing
old, and 1 0 10 correspond to old rabbits producing
young rabbits. Starting with 0 and iterating using
STRING REWRITING gives the terms 1, 10, 101, 10110,
10110101, 1011010110110, .... Converted to binary,
this sequence gives 1, 2, 5, 22, 181, ... (Sloane’s
A005203), with the nth term given by the RECUR-



RENCE RELATION

a(n) �a(n �1)2Fn�1 �a(n �2);

with a(0) �0; a(1) �1 ; and Fn the nth FIBONACCI

NUMBER.

The limiting sequence written as a BINARY FRACTION

0:1011010110110 . . .2 (Sloane’s A005614), where
an . . . a1a0ð Þ2 denotes a BINARY NUMBER (i.e., a number

written in base 2, so ai �0 or 1), is called the RABBIT

CONSTANT.

See also FIBONACCI NUMBER, RABBIT CONSTANT,
THUE-MORSE SEQUENCE
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Rabbit-Duck Illusion

A perception ILLUSION in which the brain switches
between seeing a rabbit and a duck.

See also YOUNG GIRL-OLD WOMAN ILLUSION

Rabdology
NAPIER’S BONES

Rabin-Miller Strong Pseudoprime Test
A PRIMALITY TEST which provides an efficient prob-
abilistic ALGORITHM for determining if a given num-
ber is PRIME. It is based on the properties of STRONG

PSEUDOPRIMES. Given an ODD INTEGER n , let n �
2rs �1 with s ODD. Then choose a random integer a
with 1 5a 5n �1: If as �1 (mod n) or a2js �

�1 (mod n) for some 0 5j 5r �1 ; then n passes the
test. A PRIME will pass the test for all a .

The test is very fast and requires no more than (1 �
o(1)) lg n multiplications (mod n ), where LG is the
LOGARITHM base 2. Unfortunately, a number which

passes the test is not necessarily PRIME. Monier
(1980) and Rabin (1980) have shown that a COMPO-

SITE NUMBER passes the test for at most 1/4 of the
possible bases a .

The Rabin-Miller test (combined with a LUCAS PSEU-

DOPRIME test) is the PRIMALITY TEST used by Mathe-
matica versions 2.2 and later. As of 1991, the
combined test had been proven correct for all n B
2:5 �1010 ; but not beyond. The test potentially could
therefore incorrectly identify a large COMPOSITE

NUMBER as PRIME (but not vice versa). STRONG

PSEUDOPRIME tests have been subsequently proved
valid for every number up to 3:4 �1014 :/

See also LUCAS-LEHMER TEST, MILLER’S PRIMALITY

TEST, PSEUDOPRIME, STRONG PSEUDOPRIME
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Rabinovich-Fabrikant Equation
The 3-D MAP

ẋ�y z�1�x2
� �

�gx

ẏ�x 3z�1�x2
� �

�gy

ż��2z(a�xy)

(Rabinovich and Fabrikant 1979). The parameters
are most commonly taken as g�0:87 and a�1:1: It
has a CORRELATION EXPONENT of 2.1990.01.
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Racah 6j-Symbol
WIGNER 6J -SYMBOL

Racah Polynomial
A hypergeometric class of orthogonal polynomials
defined by

Rn(l(x); a; b; g; d)



�4F3
�n; n �a�b�1; �x; x �g�d�1

a�1; b�d�1 ; g�1
; 1

� 	
for n �0, 1, ..., N , where 4F3(a ; b; c ; d; e ; f ; g; x) is
a GENERALIZED HYPERGEOMETRIC FUNCTION,

l(x) �x(x � g � d �1);

and one of the following holds

a �1 ��N
b � d �1 ��N
g �1 ��N ;

8<
:

with N a NONNEGATIVE INTEGER.
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Racah V-Coefficient
The Racah V -COEFFICIENTS are written

V j1 j2 ; m1m2mð Þ  (1)

and are sometimes expressed using the related
CLEBSCH-GORDAN COEFFICIENTS

Cj
m1m2

� j1 j2m1m2 j1 j2 jmj Þ;ð (2)

or WIGNER 3J -SYMBOLS. Connections among the three
are

ðj1 j2m1m2 j1 j2mj Þ�(�1)�j1�j2�m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j �1

p j1 j2 j
m1 m2 �m

� 	
(3)

(j1 j2m1m2 j1 j2 jmj Þ�(�1)j�m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j �1

p
V j1 j2 j; m1m2 �mð Þ

(4)

V j1 j2 j; m1m2mð Þ�(�1)�j1�j2�j j1 j2 j1

m2 m1 m2

� 	
: (5)

See also CLEBSCH-GORDAN COEFFICIENT, RACAH W -

COEFFICIENT, WIGNER 3J -SYMBOL, WIGNER 6J -SYM-

BOL, WIGNER 9J -SYMBOL
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Racah W-Coefficient
Related to the CLEBSCH-GORDAN COEFFICIENTS by

(J1J2[J ?]J3 J1 ; J2J3[J ƒ]j Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2J ?�1)(2J ƒ�1)

p
W(J1J2JJ3; J ?J ƒ)

and

(J1J2[J ?]J3 J1 ; J3[J ƒ]J2j Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2J ?�1)(2J ƒ�1)

p
W(J ?1J3J2J ƒ; JJ1):

See also CLEBSCH-GORDAN COEFFICIENT, RACAH V -

COEFFICIENT, WIGNER 3J -SYMBOL, WIGNER 6J -SYM-

BOL, WIGNER 9J -SYMBOL
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Radau Quadrature
A GAUSSIAN QUADRATURE-like formula for numerical
estimation of integrals. It requires m�1 points and
fits all POLYNOMIALS to degree 2m; so it effectively fits
exactly all POLYNOMIALS of degree 2m�1: It uses a
WEIGHTING FUNCTION W(x)�1 in which the endpoint
�1 in the interval [�1; 1] is included in a total of n
ABSCISSAS, giving r�n�1 free abscissas. The general
formula is

g
1

�1

f (x) dx�w1f (�1)�
Xn

i�2

wif (xi): (1)

The free abscissas xi for i�2, ..., n are the roots of the
POLYNOMIAL

Pn�1(x) � Pn(x)

1 � x
; (2)

where P(x) is a LEGENDRE POLYNOMIAL. The weights
of the free abscissas are

wi�
1 � xi

n2 Pn�1(xi)½ 
2
�

1

1 � xið Þ P?n�1 xið Þ½ 
2
; (3)

and of the endpoint

w1�
2

n2
: (4)

The error term is given by

E�
22n�1n (n � 1)!½ 
4

[(2n � 1)!]3 f (2n�1)(j); (5)

for j � (�1; 1):/



n /xi/ /wi/

2 �1 0.5

0.333333 1.5

3 �1 0.222222

/�0:289898/ 1.02497

0.689898 0.752806

4 �1 0.125

/�0:575319/ 0.657689

0.181066 0.776387

0.822824 0.440924

5 �1 0.08

/�0:72148/ 0.446208

/�0:167181/ 0.623653

0.446314 0.562712

0.885792 0.287427

The ABSCISSAS and weights can be computed analy-
tically for small n .

n /xi/ /wi/

2 -1  /
1
2/

/
1
3/ /

3
2/

3 -1  /
2
9/

/
1
5 1 �

ffiffiffi
6

p� �
/ /

1
18 16 �

ffiffiffi
6

p� �
/

/
1
5 1 �

ffiffiffi
6

p� �
/ /

1
18 16 �

ffiffiffi
6

p� �
/

See also CHEBYSHEV QUADRATURE, LOBATTO QUAD-

RATURE
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Rademacher Function
SQUARE WAVE

Radial Curve
Let C be a curve and let O be a fixed point. Let P be
on C and let Q be the CURVATURE CENTER at P . Let P1

be the point with P1O a line segment PARALLEL and of
equal length to PQ . Then the curve traced by P1 is the
radial curve of C . It was studied by Robert Tucker in
1864. The PARAMETRIC EQUATIONS of a curve
(f (t) ; g(t)) with RADIAL POINT x0 ; y0ð Þ and parameter-
ized by a variable t are given by

x �x0 �
g? f ?2 � g ?2
� �

f ?gƒ� f ƒg ?

y �y0 �
f ? f ?2 � g ?2
� �

f ?g ƒ� f ƒg ?
:

Here, derivatives are taken with respect to the
parameter t .

Curve Radial Curve

ASTROID QUADRIFOLIUM

CATENARY KAMPYLE OF EUDOXUS

CYCLOID CIRCLE

DELTOID TRIFOLIUM

LOGARITHMIC SPIRAL LOGARITHMIC SPIRAL

TRACTRIX KAPPA CURVE

References
Lawrence, J. D. A Catalog of Special Plane Curves. New

York: Dover, pp. 40 and 202, 1972.
Yates, R. C. "Radial Curves." A Handbook on Curves and

Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 172 �/
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Radial Point
The point with respect to which a RADIAL CURVE is
computed.

See also RADIANT POINT

Radian
A unit of angular measure in which the ANGLE of an
entire CIRCLE is 2p radians. There are therefore 3608
per 2p radians, equal to 180�=p or 57. 29577951 8/
radian. A RIGHT ANGLE is p=2 radians.

See also ANGLE, ARC MINUTE, ARC SECOND, DEGREE,
GRADIAN, STERADIAN

Radiant Point
The point of illumination for a CAUSTIC.



See also CAUSTIC, RADIAL POINT

Radical
The symbol

ffiffiffi
x

p
used to indicate a root is called a

radical. The expression
ffiffiffi
x

p
is therefore read "x radical

n ," or "the nth ROOT of x ." In the radical symbol, the
horizonal line is called the VINCULUM, the quantity
under the VINCULUM is called the RADICAND, and the
quantity n written to the left is called the INDEX.

The special case
ffiffiffi
x

p
is written

ffiffiffi
x

p
and is called the

SQUARE ROOT of x .
ffiffiffi
x3

p
is called the CUBE ROOT.

Some interesting radical identities are due to Rama-
nujan, and include the equivalent forms

21 =3 �1
� �

21 =3 �1
� �1 =3

�31 =3

and

21 =3 �1
� �1 =3

� 1
9

� �1 =3

� 2
9

� �1 =3

� 4
9

� �1=3

:

Another such identity is

51=3 �41=3
� �1 =2

�1
3 21=3 �201 =3 �251 =3
� �

:

See also CUBE ROOT, INDEX, NESTED RADICAL,
POWER, RADICAL INTEGER, RADICAND, ROOT (RADI-

CAL), SQUARE ROOT, SURD, VINCULUM

Radical (Ideal)
The radical of an IDEAL r( a) in a RING R is the ideal
which is the intersection of all PRIME IDEALS contain-
ing r(a) : Note that any ideal is contained in a MAXIMAL

IDEAL, which is always prime. So the radical of an
ideal is always at least as big as the original ideal.
Naturally, if the ideal r(a) is prime then
r( a) � x : xn � a for some integer n > 0f g:/
Another description of the radical C[x] is

a� x2
� �

This explains the connection with the RADICAL sym-
bol. For example, in r( a) � xh i; consider the ideal C of

all polynomials with degree at least 2. Then
ffiffiffi
73

p
�ffiffiffiffiffiffi

�2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffi
2

p
4
pq

is like a square root of r( a):

Notice that the zero set (VARIETY) of r( a) and C[x] is
the same (in r( a) � xh i because

is ALGEBRAICALLY CLOSED). Radicals are an important
part of the statement of the NULLSTELLENSATZ.

See also ALGEBRAIC GEOMETRY, IDEAL, JACOBSON

RADICAL, NILRADICAL, NULLSTELLENSATZ, PRIME

IDEAL, VARIETY

Radical Axis
RADICAL LINE

Radical Center

The RADICAL LINES of three CIRCLES are CONCURRENT

in a point known as the radical center (also called the
power center). This theorem was originally demon-
strated by Monge (Dörrie 1965, p. 153). It is a special
case of the THREE CONICS THEOREM (Evelyn et al.
1974, pp. 13 and 15).

See also APOLLONIUS’ PROBLEM, CONCURRENT, MON-

GE’S PROBLEM, RADICAL LINE, THREE CONICS THEO-

REM
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Radical Circle
ORTHOGONAL CIRCLES

Radical Denesting
NESTED RADICAL

Radical Integer
A radical integer is a number obtained by closing the
INTEGERS under ADDITION, MULTIPLICATION, SUBTRAC-

TION, and ROOT EXTRACTION. An example of such a

number is
ffiffiffi
73

p
�

ffiffiffiffiffiffi
�2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

ffiffiffi
2

p
4
pq

: The radical

integers are a SUBRING of the ALGEBRAIC INTEGERS.

There exist cubic ALGEBRAIC INTEGERS which are not
radical integers, namely those which can’t be ex-
pressed in terms of radicals. R. Schroeppel proved
that these are the only ones; i.e., if an ALGEBRAIC

INTEGER can be expressed in terms of radicals, then it
can be done so without using division.

See also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER,
EUCLIDEAN NUMBER
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Radical Line

The LOCUS of points of equal POWER with respect to
two nonconcentric CIRCLES which is PERPENDICULAR

to the line of centers (the CHORDAL THEOREM; Dörrie
1965). Let the circles have RADII r1 and r2 and their
centers be separated by a distance d . If the CIRCLES

intersect in two points, then the radical line is the line
passing through the points of intersection. If not, then
draw any two CIRCLES which cut each original CIRCLE

twice. Draw lines through each pair of points of

intersection of each CIRCLE. The line connecting their
two points of intersection is then the radical line.
The radical line is located at distances

d1 �
d2 � r2

1 � r2
2

2d 
(1)

d2 ��
d2 � r2

2 � r2
1

2d 
(2)

along the line of centers from C1 and C2 ; respectively,
where

d �d1 �d2 : (3)

The radical line of any two POLAR CIRCLES is the
ALTITUDE from the third vertex.

See also CHORDAL THEOREM, COAXAL CIRCLES, IN-

VERSE POINTS, INVERSION, POWER (CIRCLE), RADICAL

CENTER
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Radicand
The quantity under a RADICAL sign.

See also CUBE ROOT, RADICAL, ROOT, SQUARE ROOT,
VINCULUM

Radius

The distance from the center of a CIRCLE to its



PERIMETER, or from the center of a SPHERE to its
surface. The radius is equal to half the DIAMETER.

See also BERTRAND’S PROBLEM, CIRCLE, CIRCUMFER-

ENCE, DIAMETER, EXTENT, GRAPH RADIUS, INVERSION

RADIUS, KINNEY’S SET, PI, RADIUS OF CONVERGENCE,
RADIUS OF CURVATURE, RADIUS OF GYRATION, RADIUS

OF TORSION, RADIUS VECTOR, SPHERE

Radius of Convergence
A POWER SERIES S�ckxk will converge only for certain
values of x . For instance, S�

k¼0xk converges for �1 B
x B1: In general, there is always an interval ð�R; RÞ
in which a POWER SERIES converges, and the number
R is called the radius of convergence. The quantity R
is called the radius of convergence because, in the
case of a power series with complex coefficients, the
values of x with jxjBR form an OPEN DISK with radius
R .

A POWER SERIES always CONVERGES ABSOLUTELY

within its radius of convergence. This can be seen
by fixing r ¼ jxj and supposing that there exists a
SUBSEQUENCE cni

such that jcni
jrni is UNBOUNDED.

Then the POWER SERIES Scnxn does not CONVERGE (in
fact, the terms are unbounded) because it fails the
LIMIT TEST. Therefore, for x with r �jxj�R; the power
series does not converge, where

c ¼ lim sup cn (1)

R ¼ 1

c
; ð2Þ

and lim sup denotes the SUPREMUM LIMIT.

Conversely, suppose that r BR . Then for any radius s
with r Bs BR; the terms cnxn satisfy

jcnxn jB s

R

 !n

(3)

for n large enough (depending on s ). It is sufficient to
fix a value for s in between r and R . Because s=R B1;
the power series is dominated by a convergent
GEOMETRIC SERIES. Hence, the POWER SERIES con-
verges absolutely by the LIMIT COMPARISON TEST.

See also CONVERGENT SERIES, POWER SERIES, ROOT

TEST
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Radius of Curvature
The radius of curvature is given by

R �
1

k 
; (1)

where k is the CURVATURE. At a given point on a
curve, R is the radius of the OSCULATING CIRCLE. The
symbol r is sometimes used instead of R to denote the
radius of curvature.

Let x and y be given parametrically by

x �x(t) (2)

y �y(t); (3)

then

R �
x?2 � y?2
� �3=2

x?yƒ� y?xƒ
; (4)

where x?�dx =dt and y ?�dy=dt : Similarly, if the
curve is written in the form y �f (x) ; then the radius
of curvature is given by

R �

1 �
dy

dx

 !2
2
4

3
53 =2

d2y

dx2

: (5)

In POLAR COORDINATES r �r( u) ; the radius of curva-
ture is given by

R �
(r2 � r2

u)
3 =2

r2 � 2r2
u � rruu

; (6)

where ru�dr=du (Gray 1997, p. 89).

See also BEND (CURVATURE), CURVATURE, OSCULAT-

ING CIRCLE, RADIUS OF GYRATION, RADIUS OF TOR-

SION, TORSION (DIFFERENTIAL GEOMETRY)
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Radius of Gyration
A positive number k such that a lamina or solid body
with moment of inertia about an axis I and mass m is
given by

I�mk2:

Pickover (1995) defines a generalization of k as a
function Rg quantifying the spatial extent of the
structure of a curve and given by



Rg �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�

0

r2p(r) dr

s

2g
�

0

p(r) dr

;

where p(r) is the LENGTH DISTRIBUTION FUNCTION.
Small compact patterns have small Rg :/

See also RADIUS OF CURVATURE, RADIUS OF TORSION
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Radius of Torsion

s �
1

t
;

where t is the TORSION. The symbol f is also some-
times used instead of s:/

See also RADIUS OF CURVATURE, TORSION (DIFFER-

ENTIAL GEOMETRY)
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Radius Vector
The VECTOR r from the ORIGIN to the current position.
It is also called the position vector. The derivative of r
satisfies

r �
dr

dt 
�

1

2

d

dt
(r � r) �

1

2

d

dt
r2
� �

�r
dr

dt 
�rv;

where v is the magnitude of the VELOCITY (i.e., the
SPEED).

See also RADIUS, SPEED, VELOCITY

Radix
The BASE of a number system, i.e., 2 for BINARY, 8 for
OCTAL, 10 for DECIMAL, and 16 for HEXADECIMAL. The
radix is sometimes called the BASE or SCALE.

See also BASE (NUMBER)

Radon Measure

See also PROBABILITY MEASURE

Radon Transform
An INTEGRAL TRANSFORM whose inverse is used to
reconstruct images from medical CT scans. A techni-
que for using Radon transforms to reconstruct a map
of a planet’s polar regions using a spacecraft in a
polar orbit has also been devised (Roulston and
Muhleman 1997).

The Radon transform can be defined by

R(p; t)[f (x; y)]�g
�

��

f (x; t�px) dx

�g
�

��
g

�

��

f (x; y)d[y�(t�px)] dy dx�U(p; t); (1)

where p is the SLOPE of a line and t is its intercept.
The inverse Radon transform is

f (x; y)�
1

2p g
�

��

d

dy
H[U(p; y�px)] dp; (2)

where H is a HILBERT TRANSFORM. The transform can
also be defined by

R?(r; a)[f (x; y)]

�g
�

��
g

�

��

f (x; y)d(r�x cos a�y sin a) dx dy; (3)

where r is the PERPENDICULAR distance from a line to
the origin and a is the ANGLE formed by the distance
VECTOR.

Using the identity

F[R[f (v; a)]]�F2[f (u; v)]; (4)

where F is the FOURIER TRANSFORM, gives the
inversion formula

f (x; y)�cg
p

0 g
�

��

F[R[f (v; a)]]

� vj jeiv(x cos a�y sin a) dv da: (5)

The FOURIER TRANSFORM can be eliminated by writ-
ing

f (x; y)�g
p

0 g
�

��

R[f (r; a)]W(r; a; x; y) dr da; (6)

where W is a WEIGHTING FUNCTION such as

W(r; a; x; y)�h(x cos a�y sin a�r)�F�1 vj j½ 
: (7)

Nievergelt (1986) uses the inverse formula

f (x; y)�
1

p
lim
c00 g

p

0 g
�

��

R[f (r�x cos a

�y sin a; a)]Gc(r) dr da; (8)

where

Gc(r)�

1

pc2
for rj j5c

1

pc2
1�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2=r2

p
 !

for rj j > c:

8>>>><
>>>>:

(9)

LUDWIG’S INVERSION FORMULA expresses a function in
terms of its Radon transform. R?(r; a) and R(p; t) are
related by



p �cot a t�r csc a (10)

r �
t

1 � p2
a �cot �1 p : (11)

The Radon transform satisfies superposition

R(p ; t) f1(x ; y) �f2(x; y)½ 
�U1(p; t) �U2(p ; t); (12)

linearity

R(p; t)[af (x; y)] �aU(p ; t) ; (13)

scaling

R(p; t) f
x

a 
;

y

b

 !" #
� aj jU p

a

b 
;
t

b

 !
; (14)

ROTATION, with Rf ROTATION by ANGLE f

R(p; t) Rff (x; y)
� �

�
1

cos f � p sin fj j
U

� p � tan f

1 � p tan f 
;

t

cos f � p sin f

 !
;

(15)

and skewing

R(p ; t)[f (ax �by; cx �dy)]

�
1

a � bpj j
U

c � dp

a � bp 
; t

d � b(c � bd)

a � bp

" #
(16)

(Durrani and Bisset 1984).

The line integral along p ; t is

I �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �p2

p
U(p ; t) : (17)

The analog of the 1-D CONVOLUTION THEOREM is

R(p ; t)[f (x; y) + g(y)] �U(p; t) + g( t); (18)

the analog of PLANCHEREL’S THEOREM is

g
�

��

U(p; t) dt �g
�

��
g

�

��

f (x; y) dx dy ; (19)

and the analog of PARSEVAL’S THEOREM is

g
�

��

R(p ; t)[f (x; y)]2 dt �g
�

��
g

�

��

f 2(x; y) dx dy :

(20)

If f is a continuous function on C ; integrable with
respect to a plane LEBESGUE MEASURE, and

gl

f ds�0 (21)

for every (doubly) infinite line l where s is the length
measure, then f must be identically zero. However, if
the global integrability condition is removed, this
result fails (Zalcman 1982, Goldstein 1993).

See also HAMMER’S X-RAY PROBLEMS, TOMOGRAPHY
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Radon Transform*/Cylinder

Let the 2-D cylinder function be defined by

f (x; y)�
1 for rBR
0 for r > R:

�
(1)



Then the Radon transform is given by

R(p; t)�g
�

��
g

�

��

f (x; y)d[y�(t�px)] dy dx; (2)

where

d(x)�
1

2p g
�

��

e�ikx (3)

is the DELTA FUNCTION.

R(p; t)�
1

2p g
2p

0 g
R

0 g
�

��

e�ik(r sin u�pr cos u)r dr du dk

�
1

2p g
�

��

eikr g
2p

0 g
R

0

e�ikr(sin u�p cos u)r dr du dk:

(4)

Now write

sin u�p cos u�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
cos(u�f)�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
cos u?;

(5)

with f a phase shift. Then

R(p; t)�
1

2p g
�

��

eikt

�g
R

0 g
2p

0

e�ik
ffiffiffiffiffiffiffiffiffi
1�p2

p
r cos u? du?

 !
r dr dk

�
1

2p g
�

��

eikt g
R

0

2pJ0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
r

� �
r dr dk

�g
�

��

eikt g
R

0

J0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
r

� �
r dr dk: (6)

Then use

g
z

0

tn�1Jn(t) dt�zn�1Jn�1(z); (7)

which, with n�0, becomes

g
z

0

tJ0(t) dt�zJ1(z): (8)

Define

t�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
r (9)

dt�k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
dr (10)

r dr�
t dt

k2 1 � p2ð Þ
; (11)

so the inner integral is

g
R
ffiffiffiffiffiffiffiffiffi
1�p2

p

0

J0(t)
t dt

k2(1 � p2)

�
1

k2(1 � p2)
kR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
J1 kR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p� �
(12)

�
J1 kR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

p� �
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

p R; (13)

and the Radon transform becomes

R(p; t)�
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � p2
p g

�

��

eiktJ1 kR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

p� �
k

dk

�
2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � p2
p g

�

0

cos(kr)J1 kR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � p2

p� �
k

dk

�

2

1 � p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 1�p2ð Þ�t2

p
for t2BR2 1�p2ð Þ

0
for t2]R2(1�p2):

8>>>><
>>>>:

(14)

Converting to R? using p�cot a;

R?(r; a)�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � cot2 a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�cot2 a
� �

R2�r2 csc2 a

q

�
2

csc a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csc2 aR2�r2 csc2 a

p

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�r2

p
; (15)

which could have been derived more simply by

R?(r; a)�g
ffiffiffiffiffiffiffiffiffiffi
R2�r2

p

�
ffiffiffiffiffiffiffiffiffiffi
R2�r2

p dy: (16)

Radon Transform*/Delta Function
For a DELTA FUNCTION at x0; y0ð Þ;

R(p; t)�g
�

��
g

�

��

d x�x0ð Þd y�y0ð Þ

�d[y�(t�px)] dy dx

�
1

2p g
�

��
g

�

��
g

�

��

e�ik[y�(t�px)]d(x�x0)

�d(y�y0) dk dy dx

�
1

2p g
�

��

eikt g
�

��

e�ikyd y�y0ð Þ dy

�

�g
�

��

eikpxd x�x0ð Þ dx
 dk



�
1

2p g
�

��

eikte�iky0 eikpx0 dk:

�
1

2p g
�

��

eik t�px0�y0ð Þ dk�d t�px0�y0ð Þ:

Radon Transform*/Gaussian

R(p; t)�g
�

��
g

�

��

1

s
ffiffiffiffiffiffi
2p

p e� x2�y2ð Þ=2s2

" #

�d[y�(t�px)] dy dx

�
1

s
ffiffiffiffiffiffi
2p

p g
�

��

e� x2�(t�px)2½ 
=2s2 ½ dx

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � p2
p e�t2= 2 1�p2ð Þs2½ 
:

Radon Transform*/Square

R(p; t)�g
�

��
g

�

��

f (x; y)d[y�(t�px)] dy dx; (1)

where

f (x; y)�
1 for x; y � [�a; a]
0 otherwise

�
(2)

and

d(x)�
1

2p g
�

��

e�ikx (3)

is the DELTA FUNCTION.

R(p; r)�
1

2p g
a

�a g
a

�a g
�

��

e�ik[y�(r�px)] dk dy dx

�
1

2p g
�

��

eikr g
a

�a

e�ky dyg
a

�a

eikpx dx

� �
dk

�
1

2p
eikr 1

�ik
e�iky
� �a

�a

1

ikp
e�ikpx
� �a

�a
dk

�
1

2p g
�

��

eikr 1

k2p
[�2i sin (ka)][2i sin(kpa)] dk

�
2

pp g
�

��

sin(ka) sin(kpa)eikr

k2
dk

�
4

pp g
�

��

sin(ka) sin(kpa) cos(kt)

k2
dk

�
2

pp g
�

��

sin[k(t� a)] � sin[k(t� a)]

k2
sin(kpa) dk

�
2

pp

�
g

�

0

sin[k(t� a)] sin(kpa)

k2
dk

�g
�

0

sin[k(t� a)] sin(kpa)

k2
dk

�
: (4)

From Gradshteyn and Ryzhik (2000, equation
3.741.3),

g
�

0

sin(ax) sin(bx)

x2
dx�1

2 p sgn(ab) min aj j; bj jð Þ; (5)

so

R(p; t)�
1

p
sgn[(t�a)pa] min t�aj j; paj jð Þf

�sgn[(t�a)pa] min t�aj j; paj jð Þg: (6)
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Radon-Nikodym Derivative
When a MEASURE l is ABSOLUTELY CONTINUOUS with
respect to a positive measure m; then it can be written
as

l(E)�gE

f dm:

By analogy with the first FUNDAMENTAL THEOREM OF

CALCULUS, the function f is called the Radon-Niko-
dym derivative of l with respect to m: Sometimes it is
denoted dl=dm or Dl=Dm:/



See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, FUNDAMENTAL THEOREMS OF CALCULUS, LE-

BESGUE MEASURE, POLAR REPRESENTATION

(MEASURE), RADON-NIKODYM THEOREM
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Radon-Nikodym Theorem
The Radon-Nikodym theorem asserts that any ABSO-

LUTELY CONTINUOUS measure l with respect to some
positive measure m (which could be LEBESGUE MEA-

SURE or HAAR MEASURE) is given by the integral of
some L1

/-function f ,

l(E) �gE

f dm: (1)

The function f is like a density function for the
measure.

A closely related theorem says that any COMPLEX

MEASURE l decomposes into an ABSOLUTELY CONTIN-

UOUS measure la and a singular measure lc : This is
the LEBESGUE DECOMPOSITION

l � la � lc : (2)

One consequence of the Radon-Nikodym theorem is
that any complex measure has a POLAR REPRESENTA-

TION,

dm �hd mj j; (3)

with hj j �1:/

See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, HAAR MEASURE, LEBESGUE DECOMPOSITION

(MEASURE), LEBESGUE MEASURE, POLAR REPRESEN-

TATION (MEASURE), SINGULAR MEASURE
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Radon’s Theorem
Any set of n�2 points in Rn can always be partitioned
in two subsets V1 and V2 such that the CONVEX HULLS

of V1 and V2 intersect.

See also CONVEX HULL
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Rado’s Sigma Function
BUSY BEAVER

Railroad Track Problem

Given a straight segment of track of length l , add a
small segment Dl so that the track bows into a
circular ARC. Find the maximum displacement d of
the bowed track. The PYTHAGOREAN THEOREM gives

R2�x2�(1
2 l)2: (1)

But R is simply x�d; so

R2�(x�d)2�x2�x2�2xd�d2: (2)

Solving (1) and (2) for x gives

x�
1
4 l2 � d2

2d
: (3)

Expressing the length of the ARC in terms of the
central angle,

1
2(l�Dl)�u(d�x)�u d�

1
4 l2 � d2

2d

 !

�u
2d2 � 1

4 l2 � d2

2d

 !

�u
d2 � 1

4 l2

2d

 !
: (4)

But u is given by

tan u�
1
2 l

x
�

1
2 l(2d)

1
4 l2 � d2

�
dl

1
4 l2 � d2

; (5)



so plugging u in gives

1
2(l�Dl)�

d2 � 1
4 l2

2d

 !
tan�1 dl

1
4 l2 � d2

 !
(6)

d(l�Dl)� d2�1
4 l2

� �
tan�1 dl

1
4 l2 � d2

 !
: (7)

For l	d;

dl

1
4 l2 1 �

d2

4l2

 !�
4d

l
1�

4d2

l2

 !�1

:
4d

l
1�

4d

l2

 !
: (8)

Therefore,

d(l�Dl):(d2�1
4 l2)

� 4d

l
1�

4d2

l2

 !
�

1

3

4d

l
1�

4d2

l2

 !" #3
8<
:

9=
;

: d2�1
4 l2

� ��4d

l
�

16d3

l3
�

1

3

4d

l

 !3

�
�

1�3
4d2

l2

	�
: (9)

Keeping only terms to order (d=l)3;

dl�Dl:
4d3

l
�dl�

4d3

l
�

16

3

d3

l
(10)

Dl: 8�16
3

� �d3

l
�

24 � 16

3

d3

l
�

8

3

d3

l
; (11)

so

d2�3
8 lDl (12)

and

d:1
2

ffiffiffiffiffiffiffiffiffiffi
3
2 lDl

q
�1

4

ffiffiffiffiffiffiffiffiffiffi
6lDl

p
: (13)

If we take l�1 mile�5280 feet and Dl�1 foot, then
d:44:50 feet.
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Ramanujan 6�/10�/8 Identity
Let ad�bc , then

64[(a�b�c)6�(b�c�d)6�(c�d�a)6

�(d�a�b)6�(a�b)6�(b�c)6]

�[(a�b�c)10�(b�c�d)10�(c�d�a)10

�(d�a�b)10�(a�d)10�(b�c)10]

�45[(a�b�c)8�(b�c�d)8�(c�d�a)8

�(d�a�b)8�(a�d)8�(b�c)8]2: (1)

This can also be expressed by defining

F2m(a; b; c; d)�(a�b�c)2m�(b�c�d)2m

�(c�d�a)2m�(d�a�b)2m�(a�d)2m�(b�c)2m

(2)

f2m(x; y)�(1�x�y)2m�(x�y�xy)2m�(y�xy�1)2m

�(xy�1�x)2m�(1�xy)2m�(x�y)2m: (3)

Then

F2m(a; b; c; d)�a2mf2m(x; y); (4)

and identity (1) can then be written

64f6(x; y)f10(x; y)�45f 2
8 (x; y): (5)

Incidentally,

f2(x; y)�0 (6)

f4(x; y)�0: (7)
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Ramanujan Constant
The IRRATIONAL constant

R�ep
ffiffiffiffiffiffi
163

p

�262537412640768743:999999999999925 . . .

which is very close to an INTEGER. Numbers such as
the Ramanujan constant can be found using the
theory of MODULAR FUNCTIONS. In fact, the nine
HEEGNER NUMBERS (which include 163) share a
deep number theoretic property related to some
amazing properties of the J -FUNCTION that leads to
this sort of near-identity.

Although Ramanujan (1913�/14) gave few rather
spectacular examples of almost integers (such ep

ffiffiffiffi
58

p
);

he did not actually mention particular near-identity



give above. In fact, the first to observe this property of
163 was Hermite (1859). The name "Ramanujan’s
constant" seems to derive from an April Fool’s joke
played by Martin Gardner (Apr. 1975) on the readers
of Scientific American . In his column, Gardner
claimed that e p

ffiffiffiffiffiffi
163

p
was exactly an INTEGER, and

that Ramanujan had conjectured this in his 1914
paper. Gardner admitted his hoax a few months later
(Gardner, July 1975).

See also ALMOST INTEGER, CLASS NUMBER, HEEGNER

NUMBER, J -FUNCTION
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Oeuvres complètes, Tome II. Paris: Hermann, p. 61, 1912.

Plouffe, S. " e p
ffiffiffiffiffiffi
163

p
; the Ramanujan Number." http://www.la-

cim.uqam.ca/piDATA/ramanujan.txt.
Ramanujan, S. "Modular Equations and Approximations to
p:/" Quart. J. Pure Appl. Math. 45, 350 �/372, 1913 �/1914.

Wolfram, S. The Mathematica Book, 3rd ed. New York:
Cambridge University Press, p. 52, 1996.

Ramanujan Continued Fraction
ROGERS-RAMANUJAN CONTINUED FRACTION

Ramanujan Cos/Cosh Identity
The amazing identity

1 �2
X�
n�1

cos(n u)

cosh(np)

" #�2

� 1 �2
X�
n�1

cosh(nu)

cosh(np)

" #�2

�
2G4 3

4

� �
p

for all u ; where G(z) is the GAMMA FUNCTION. Equat-
ing coefficients of u0 ; u4 ; and u8 gives some amazing
identities for the HYPERBOLIC SECANT.

See also HYPERBOLIC SECANT

Ramanujan Function
The two-argument Ramanujan function is defined by

f(a ; n) �1 �2
Xn

k �1

1

(ak)3 � ak 
(1)

�1 �
1

a
H�1=a �H1 =a �2Hn �Hn�1 =a �Hn�1 =a

� �
: (2)

The one-argument function f(a) is then defined as
the limiting sum of f(a ; n) as n 0 �;

f(a) � lim
n0�

f(a ; n) �1 �2
X�
k �1

1

(ak)3 � ak
(3)

��
1

a
c0

1

a

 !
� c0 1 �

1

a

 !
�2 g

" #
; (4)

�1 �
1

a
H�1 =a �H1 =a

� �
(5)

where c0(x) is the DIGAMMA FUNCTION, g is the EULER-

MASCHERONI CONSTANT, and Hn is a HARMONIC

NUMBER. The values of f(n) for n �2, 3, ... are

f(2) �2 ln 2

f(3) �ln 3

f(4) �3
2 ln 2

f(5) �1
5

ffiffiffi
5

p
ln f �1

2 ln 5

f(6) �1
2 ln 3�2

3 ln 2;

where f is the GOLDEN RATIO.

See also HARMONIC NUMBER, RAMANUJAN G - AND G -

FUNCTIONS, TAU FUNCTION

Ramanujan g- and G-Functions
Following Ramanujan (1913�/14), write

Y�
k�1; 3; 5; ...

1�e�kp
ffiffi
n

p� �
�21=4e�p

ffiffi
n

p
=24Gn (1)

Y�
k�1; 3; 5; ...

1�e�kp
ffiffi
n

p� �
�21=4e�p

ffiffi
n

p
=24gn: (2)

These satisfy the equalities

g4n�21=4gnGn (3)

Gn�G1=n (4)

g�1
n �g4=n (5)

1
4� gnGnð Þ8 G8

n�g8
n

� �
: (6)

/Gn and gn can be derived using the theory of MODULAR

FUNCTIONS and can always be expressed as roots of
algebraic equations when n is RATIONAL. For simpli-
city, Ramanujan tabulated gn for n EVEN and Gn for n
ODD. However, (6) allows Gn and gn to be solved for in
terms of gn and Gn; giving



gn �
1
2 G8

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G16

n �G �8
n

q� �1 =8

(7)

Gn �
1
2 g8

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g16

n �Gg�8
n

q� �1=8

: (8)

Using (3) and the above two equations allows g4n to be
computed in terms of gn or Gn

g4n �
21=8gn g8

n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g16

n �g �8
n

p� �1=8
for n even

21=8Gn G8
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G16

n �G�8
n

p� �1 =8
for n odd:

(
(9)

In terms of the PARAMETER k and complementary
PARAMETER k ?;

Gn � 2knk ?nð Þ�1 =12 (10)

gn �
k ?n

2

2k

 !1=12

: (11)

Here,

kn � l �(n) (12)

is the ELLIPTIC LAMBDA FUNCTION, which gives the
value of k for which

K ?(k)

K(k)
�

ffiffiffi
n

p
: (13)

Solving for l �(n) gives

l �(n) �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �G�12

n

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �G �12

n

qh i
(14)

l �(n) �g6
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g12

n �g �12
n

q
�g6

n

h i
: (15)

Analytic values for small values of n can be found in
Ramanujan (1913 �/1914) and Borwein and Borwein
(1987), and have been compiled by Weisstein. Rama-
nujan (1913 �/1914) contains a typographical error
labeling G465 as G265 :/

See also BARNES’ G -FUNCTION
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Ramanujan Psi Sum
A sum which includes both the JACOBI TRIPLE

PRODUCT and the Q -BINOMIAL THEOREM as special
cases. Ramanujan’s sum is

X�
n ���

(a)n

(b)n

xn �
(ax)�(q=ax) �(q) �(b =a) �
(x)�(b=ax) �(b) �(q=a) �

;

where the NOTATION (q)k denotes Q -SERIES. For b �q ,
this becomes the Q -BINOMIAL THEOREM.

See also JACOBI TRIPLE PRODUCT, Q -BINOMIAL THE-

OREM, Q -SERIES

Ramanujan Theta Functions
Ramanujan’s one-variable theta function is defined
by

8 (q)�
X�

m���

qm2

; (1)

�q3(0; q) (2)

where q 3(0; q) is a JACOBI THETA FUNCTION, and is
equal to the JACOBI TRIPLE PRODUCT with z�1.
Special values include

8 e�p
ffiffi
2

p� �
�

G 9
8

� �
G 5

4

� �
ffiffiffiffiffiffiffiffiffiffiffi
G 1

4

� �
21=4p

vuut
(3)

8 (e�p)�
p1=4

G 3
4

� � ; (4)

where G(x) is a GAMMA FUNCTION.

Another function sometimes given the same symbol is

8 (q)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q 2(0; q)

q 3(0; q)

s
; (5)

where q i(0; q) is again a JACOBI THETA FUNCTION,
which has special value

8 �e�p
ffiffi
3

p� �
� 4

ffiffiffi
3

p
�7

� �1=8

: (6)

Ramanujan’s two-variable theta function is defined
by

f (a; b)�
X�

n���

an(n�1)=2bn(n�1)=2 (7)

for abj j B1 (Berndt et al. ). It is a generalization of
the function 8 (x)

f (x; x)�8 (x) (8)

and satisfies

f (�1; a)�0 (9)

f (a; b)�f (b; a)�(�a; ab)�(�b; ab)�(ab; ab)� (10)

f (�q)�f (�q; �q2) (11)

�
X�
k�0

(�1)kqk(2k�1)=2
X�
k�1

(�1)kqk(2k�1)=2 (12)

�(q; q)� (13)

(Berndt et al. ), where (a; q)� is a Q -POCHHAMMER



SYMBOL. (13) is equivalent to EULER’S PENTAGONAL

NUMBER THEOREM.

See also EULER’S PENTAGONAL NUMBER THEOREM,
JACOBI TRIPLE PRODUCT, Q -SERIES, ROGERS-RAMANU-

JAN CONTINUED FRACTION, SCHRÖ TER’S FORMULA
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Ramanujan-Eisenstein Series
EISENSTEIN SERIES

Ramanujan-Petersson Conjecture

A CONJECTURE for the EIGENVALUES of MODULAR

FORMS under HECKE OPERATORS.

Ramanujan’s Formula

g
�

0

cos(2zt) sech(pt) dt �1
2 sech z

for Tzj j B p=2: A related integral is

g
�

0

cosh(2zt) sech( pt) dt �1
2 sech z

for Rzj j B p=2 :/
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Ramanujan’s Hypergeometric Identity

1 �
1

2

 !3

�
1 � 3

2 � 4

 !3

�. . .�3F2

1
2 ;

1
2 ;

1
2

1; 1
; �1

� 	

� 2F1

1
4 ;

1
4

1
; �1

� 	� �2

�
G2 9

8

� �
G2 5

4

� �
G2 7

8

� � ;
where 2F1(a; b; c; x) is a HYPERGEOMETRIC FUNC-

TION, 3F2(a; b; c; d; e; x) is a GENERALIZED HYPER-

GEOMETRIC FUNCTION, and G(z) is a GAMMA FUNCTION.
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Ramanujan’s Hypothesis
TAU CONJECTURE

Ramanujan’s Identity

5
f5(x5)

f6(x)
�
X�
m�0

P(5m�4)xm;

where

f(x)�
Y�
m�1

(1�xm)

and P(n) is the PARTITION FUNCTION P .

See also PARTITION FUNCTION P , RAMANUJAN’S SUM

IDENTITY

Ramanujan’s Integral

g
�

��

Jm�j(x)

xm�j

Jn�j(y)

yn�j
eitj dj

�
2 cos 1

2t
� �

x2e�it=2 � y2eit=2

2
4

3
5(m�n)=2

�Jm�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos 1

2 t
� �

x2e�it=2�y2eit=2ð Þ
r� �

e�it(n�m)=2;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
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Ramanujan’s Interpolation Formula

g
�

0

xs�1
X�
k�0

(�1)kxkf(k) dx�
pf(�s)

sin(sp)
(1)

g
�

0

xs�1
X�
k�0

(�1) k
xk

k!
l(k) dx�G(s)l(�s); (2)

where l(z) is the DIRICHLET LAMBDA FUNCTION and
G(z) is the GAMMA FUNCTION. Equation (2) is obtained
from (1) by defining

f(u)�
l(u)

G(1 � u)
: (3)

These formulas give valid results only for certain
classes of functions, and are connected with Mellin
transforms (Hardy 1999, p. 15).
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Ramanujan’s Master Theorem
Suppose that in some NEIGHBORHOOD of x �0,

F(x) �
X�
k �0

f(k)(�x)k

k!
:

Then

g
�

0

xn�1F(x) dx �G(n) f(�n) :
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Ramanujan’s Square Equation
The DIOPHANTINE EQUATION

2n �7 �x2 :

It has been proved that the only solutions to this
equation are n �3, 4, 5, 7, and 15 (Beeler et al. 1972,
Item 31).
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Ramanujan’s Sum
The sum

cq(m) �
X
h�(q)

e2pihm =q ; (1)

where h runs through the residues RELATIVELY PRIME

to q , which is important in the representation of
numbers by the sums of squares. If (q; q?) �1 (i.e., q
and q ? are RELATIVELY PRIME), then

cqq?(m) �cq(m)cq?(m) : (2)

For argument 1,

cb(1)�m(b); (3)

where m is the MÖBIUS FUNCTION, and for general m ,

cb(m)�m
b

(b; m)

 !
f(b)

f
b

(b; m)

 ! : (4)

See also MÖ BIUS FUNCTION, WEYL’S CRITERION
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Ramanujan’s Sum Identity
If

1 � 53x � 9x2

1 � 82x � 82x2 � x3
�
X�
n�1

anxn (1)

2 � 26x � 12x2

1 � 82x � 82x2 � x3
�
X�
n�0

bnxn (2)

2 � 8x � 10x2

1 � 82x � 82x2 � x3
�
X�
n�0

cnxn (3)

(Sloane’s A051028, A051029, and A051030), then

a3
n�b3

n�c3
n�(�1)n: (4)

Hirschhorn (1995) showed that

an�
1

85 64�8
ffiffiffiffiffiffi
85

p� �
an� 64�8

ffiffiffiffiffiffi
85

p� �
bn�43(�1)n

h i
(5)

bn�
1
85 77�7

ffiffiffiffiffiffi
85

p� �
an� 77�7

ffiffiffiffiffiffi
85

p� �
bn�16(�1)n

h i
(6)

cn�
1

85 93�9
ffiffiffiffiffiffi
85

p� �
an� 93�9

ffiffiffiffiffiffi
85

p� �
bn�16(�1)n

h i
;

(7)

where

a�1
2 83�9

ffiffiffiffiffiffi
85

p� �
(8)

b�1
2 83�9

ffiffiffiffiffiffi
85

p� �
: (9)

Hirschhorn (1996) showed that checking the first
seven cases n�0 to 6 is sufficient to prove the result.
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Ramanujan’s Tau Function
TAU FUNCTION

Ramanujan’s Tau-Dirichlet Series
TAU-DIRICHLET SERIES



Ramification Group
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Ramp Function

R(x) �xH(x) (1)

�g
x

��

H(x?) dx ? (2)

�g
x

��

H(x?)H(x �x?) dx? (3)

�H(x) + H(x) ; (4)

where H(x) is the HEAVISIDE STEP FUNCTION and + is
the CONVOLUTION. The DERIVATIVE is

R?(x) ��H(x) : (5)

The FOURIER TRANSFORM of the ramp function is
given by

F[R(x)] �g
�

��

e �2 pikxR(x) dx � pi d?(2pk) �
1

4 p2k2 
; (6)

where d(x) is the DELTA FUNCTION and d?(x) its
DERIVATIVE.

See also FOURIER TRANSFORM–RAMP FUNCTION, HEA-

VISIDE STEP FUNCTION, RECTANGLE FUNCTION, SGN,
SQUARE WAVE

Ramphoid Cusp

A type of CUSP as illustrated above for the curve
x4 �x2y2 �2x2y �xy2 �y2 �0::/

See also CUSP
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Ramsey Number
The Ramsey number R(m; n) gives the solution to the
PARTY PROBLEM, which asks the minimum number of
guests R(m; n) that must be invited so that at least m
will know each other or at least n will not know each
other. In the language of GRAPH THEORY, the Ramsey
number is the minimum number of vertices/

v ¼ Rðm; nÞ/ such that all undirected simple graphs
of order v contain a CLIQUE of order m or an
INDEPENDENT SET of order n . RAMSEY’S THEOREM

states that such a number exists for all m and n .

By symmetry, it is true that

R(m; n)�R(n; m): (1)

It also must be true that

R(m; 2)�m: (2)

A generalized Ramsey number is written

R(m1; . . . ; mk; n) (3)

and is the smallest INTEGER r such that, no matter
how each n -element SUBSET of an r -element SET is
colored with k colors, there exists an i such that there
is a SUBSET of size mi; all of whose n -element SUBSETS

are color i . The usual Ramsey numbers are then
equivalent to R(m; n)�R(m; n; 2):/

Bounds are given by

R(k; l)5

R(k�1; l)�R(k; l�1)�1
for R(k�1; 1) and R(k; l�1) even

R(k�1; l)�R(k; l�1)
otherwise

8>><
>>: (4)

and

R(k; k)54R(k�2; k)�2 (5)

(Chung and Grinstead 1983). Erdos proved that for
diagonal Ramsey numbers R(k; k);

k2k=2

e
ffiffiffi
2

p BR(k; k): (6)

This result was subsequently improved by a factor of
2 by Spencer (1975). R(3; k) was known since 1980 to
be bounded from above by c2k2=ln k; and Griggs
(1983) showed that c2�5=12 was an acceptable limit.
J.-H. Kim (Cipra 1995) subsequently bounded R(3; k)
by a similar expression from below, so



c1

k2

ln k
5R(3; k)5c2

k2

ln k
: (7)

Burr (1983) gives Ramsey numbers for all 113 graphs
with no more than 6 EDGES and no isolated points.

A summary of known results up to 1983 for R(m; n) is
given in Chung and Grinstead (1983). Radziszowski
(1999) maintains an up-to-date list of the best current
bounds, reproduced in part in the following table for
R(m; n; 2):/

m n /R(m; n)/ Reference

3 3 6 Greenwood and Gleason 1955

3 4 9 Greenwood and Gleason 1955

3 5 14 Greenwood and Gleason 1955

3 6 18 Graver and Yackel 1968

3 7 23 Kalbfleisch 1966

3 8 28 McKay and Min 1992

3 9 36 Grinstead and Roberts 1982

3 10 [40, 43] Exoo 1989, Radziszowski and
Kreher 1988

3 11 [46, 51] Radziszowski and Kreher
1988

3 12 [52, 60] Exoo 1993, Radziszowski and
Kreher 1988, Exoo 1998

3 13 [59, 69] Piwakowski 1996,
Radziszowski and Kreher
1988

3 14 [66, 78] Exoo (unpub.), Radziszowski
and Kreher 1988

3 15 [73, 89] Wang and Wang 1989,
Radziszowski (unpub.)

3 16 /]79/ Wang and Wang 1989

3 17 /]92/ WWY

3 18 /]98/ WWY

3 19 /]106/ WWY

3 20 /]109/ WWY

3 21 /]122/ WWY

3 22 /]125/ WWY

3 23 /]136/ WWY

3 26 /]150/

4 4 18 Greenwood and Gleason 1955

4 5 25 Mckay and Radziszowski
1995

4 6 [35, 41] Ex8, MR4

4 7 [49, 61]

4 8 [55, 84] Exoo 1998

4 9 [69, 115]

4 10 [80, 149]

4 11 [96, 191]

4 12 [128, 238]

4 13 [131, 291]

4 14 [136, 349]

4 15 [145, 417]

4 17 /]164/

4 18 /]182/

4 19 /]194/

4 20 /]230/

4 21 /]242/

4 22 /]282/

5 5 [43, 49] Ex4, MR4

5 6 [58, 87] Exoo 1993, Walker 1971

5 7 [80, 143]

5 8 [95, 216]

5 9 [116, 316] Exoo 1998

5 10 [141, 442]

5 11 /]153/

5 12 /]181/

5 13 /]193/

5 14 /]221/

5 15 /]237/

5 17 /]282/

5 19 /]338/

5 21 /]374/

5 22 /]410/

5 23 /]432/

5 26 /]464/

6 6 [102, 165] Kalbfleisch 1965, Mac

6 7 [109, 298] Exoo 1998

6 8 [122, 495] Exoo 1998

6 9 [153, 780]

6 10 [167, 1171]

6 11 /]203/

6 12 /]224/

6 13 /]242/

6 14 /]258/

6 15 /]338/

6 17 /]500/

7 7 [205, 540] Hill and Irving 1982, Giraud
1973

7 8 [1, 1031]

7 9 [1, 1713]

7 10 [1, 2826]

7 17 /]548/

7 19 /]618/

7 20 /]648/

7 21 /]674/

8 8 [282, 1870]



8 9 [1, 3583]

8 10 [1, 6090]

8 16 /]602/

8 17 /]674/

8 20 /]752/

8 21 /]770/

9 9 [565, 6588]

9 10 [1, 12677]

10 10 [798, 23581] Guldan and Tomasta ?

11 11 [522, [522, �]] Guldan and Tomasta ?

Known bounds for generalized Ramsey numbers
(multicolor graph numbers) are given in the following
table.

/R(. . . ; 2)/ Bounds Reference

/R(3 ; 3; 3; 2)/ 17 Greenwood and
Gleason 1955

/R(3 ; 3; 3; 3; 2)/ [51, 64] Chung 1973, Sanchez-
Flores 1995

/R(3 ; 3; 3; 3; 3; 2)/ [162, 317]

/R(3 ; 3; 3; 3; 3; 3; 2)/ [500, 1898] Exoo 1994

/R(3 ; 3; 3; 4; 2)/ [91, 155] Robertson 1999,
Exoo 1998

/R(3 ; 3; 3; 5; 2)/ /]137/ Robertson 1999

/R(3 ; 3; 3; 6; 2)/ /]165/ Robertson 1999

/R(3 ; 3; 3; 7; 2)/ /]220/ Robertson 1999

/R(3 ; 3; 3; 9; 2)/ /]336/ Robertson 1999

/R(3 ; 3; 3; 11; 2)/ /]422/ Robertson 1999

/R(3 ; 3; 4; 2)/ [30, 31]

/R(3 ; 3; 4; 4; 2)/ /]144/

/R(3 ; 3; 5; 2)/ [45, 57]

/R(3 ; 3; 6; 2)/ /]60/

/R(3 ; 3; 7; 2)/ /]72/

/R(3 ; 3; 9; 2)/ /]110/

/R(3 ; 3; 11; 2)/ /]141/

/R(3 ; 4; 5; 2)/ [80, 161] Exoo 1998

/R(3 ; 4; 4; 2)/ [55, 79]

/R(4 ; 4; 4; 2)/ [128, 236] Hill and Irving 1982,
Giraud 1973

/R(4 ; 4; 4; 4; 2)/ /]458/

/R(4 ; 4; 4; 4; 4; 2)/ /]942/

/R(5 ; 5; 5; 2)/ /]242/ Robertson 1999

/R(6; 6; 6; 2)/ /]692/ Robertson 1999

Known bounds for hypergraph Ramsey numbers are
given in the following table.

/R(. . . ; 3)/ Bounds

/R(4; 4; 3)/ 13

/R(4; 4; 4; 3)/ /]56/

/R(4; 5; 3)/ /]33/

/R(5; 5; 3)/ /]63/

See also CLIQUE, CLIQUE NUMBER, COMPLETE GRAPH,
EXTREMAL GRAPH, INDEPENDENCE NUMBER, INDE-

PENDENT SET, IRREDUNDANT RAMSEY NUMBER, RAM-

SEY’S THEOREM, RAMSEY THEORY, SCHUR NUMBER
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Ramsey Theory
The mathematical study of combinatorial objects in
which a certain degree of order must occur as the
scale of the object becomes large. Ramsey theory is
named after Frank Plumpton Ramsey, who did
seminal work in this area before his untimely death
at age 26 in 1930. The theory was subsequently
developed extensively by Erdos.

The classical problem in Ramsey theory is the PARTY

PROBLEM, which asks the minimum number of guests
R(m; n) that must be invited so that at least m will
know each other (i.e., there exists a CLIQUE of order
m ) or at least n will not know each other (i.e., there
exists an INDEPENDENT SET of order n . Here, R(m; n)
is called a RAMSEY NUMBER.

A typical result in Ramsey theory states that if some
mathematical object is partitioned into finitely many
parts, then one of the parts must contain a subobject

of an interesting kind. For example, it is known that
if n is large enough and V is an n -dimensional
VECTOR SPACE over the FIELD of integers (mod p ),
then however V is partitioned into r pieces, one of the
pieces contains an affine subspace of dimension d .

See also EXTREMAL GRAPH THEORY, GRAHAM’S NUM-

BER, HAPPY END PROBLEM, PARTY PROBLEM, RAMSEY

NUMBER, STRUCTURAL RAMSEY THEORY
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Ramsey’s Theorem
A generalization of DILWORTH’S LEMMA. For each
m; n �N with m; n ]2; there exists a least INTEGER

R(m; n) (the RAMSEY NUMBER) such that no matter
how the COMPLETE GRAPH KR(m; n) is two-colored, it
will contain a green SUBGRAPH Km or a red SUBGRAPH

Kn : Furthermore,

Rðm;nÞ5Rðm �1;nÞ þ Rðm;n �1Þ

if m; n ]3 :/

The theorem can be equivalently stated that, for all
m �N; there exists an n �N such that any COMPLETE

DIGRAPH on n VERTICES contains a COMPLETE TRAN-

SITIVE SUBGRAPH of m VERTICES.

Ramsey’s theorem is a generalization of the PIGEON-

HOLE PRINCIPLE since

R(2; 2; . . . ; 2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t

)�t�1:

See also DILWORTH’S LEMMA, EXTREMAL GRAPH

THEORY, GRAPH COLORING, NATURAL INDEPENDENCE

PHENOMENON, PARTY PROBLEM, PIGEONHOLE PRINCI-

PLE, RAMSEY NUMBER, RAMSEY THEORY
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Ramus Tree

A type of BINARY TREE.

See also BINARY TREE

Randelbrot Set

The FRACTAL-like figure obtained by performing the
same iteration as for the MANDELBROT SET, but
adding a random component R ,

zn�1 �z2
n �c �R:

In the above plot, R �Rx �iRy ; where
Rx ; Ry � [�0:05 ; 0:05] :/

See also MANDELBROT SET
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Random Close Packing
Random close packing of spheres in three dimensions
gives a PACKING DENSITY of only h :0 :64 (Jaeger and
Nagel 1992), significantly smaller than the optimal
PACKING DENSITY for cubic or hexagonal close packing
of 0.74048.

See also SPHERE PACKING
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Random Composition
A random composition of a number n in k parts is one
of the n�k�1

n

� �
possible COMPOSITIONS of n , where n

k

� �
is

a BINOMIAL COEFFICIENT. A random composition can
be given by RandomComposition[n , k ] in the Math-
ematica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘).

See also COMPOSITION
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Random Distribution
A STATISTICAL DISTRIBUTION in which the variates
occur with PROBABILITIES asymptotically matching
their "true" underlying STATISTICAL DISTRIBUTION is
said to be random.

See also RANDOM NUMBER, STATISTICAL DISTRIBU-

TION

Random Dot Stereogram
STEREOGRAM

Random Fibonacci Sequence
Consider the Fibonacci-like recurrence

an �9an�1 9an �2 ;

where a0 �0; a1 �1; and each sign is chosen inde-
pendently and at random with probability 1/2. Sur-
prisingly, Viswanath (2000) showed that

lim
n0�

½an ½
1 =n �1:13198824 . . .

with probability one. This constant can be numeri-
cally computed by computing the product of a certain
set of RANDOM MATRICES, and taking the SPECTRAL

NORM of the result (Viswanath 2000).

See also FIBONACCI NUMBER, RANDOM MATRIX
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Random Graph

A random graph is a GRAPH in which properties such
as the number of NODES, EDGES, and connections



between them are determined in some random way.
The graphs illustrated above are random graphs on
10 edges with edge probabilities distributed uni-
formly in [0; 1]:/
Erdos and Rényi (1960) showed that for many mono-
tone-increasing properties of random graphs, graphs
of a size slightly less than a certain threshold are very
unlikely to have the property, whereas graphs with a
few more EDGES are almost certain to have it. This is
known as a PHASE TRANSITION (Janson et al. 2000,
p. 103). Almost all graphs are connected and non-
planar (Skiena 1990, p. 156).

See also GRAPH, GRAPH THEORY, PHASE TRANSITION
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Random Matrix
A random matrix is a MATRIX of given type and size
whose entries consist of random numbers from some
specified distribution.

If n matrices Mi are chosen with probability 1/2 from
one of

M�� 
0 1
1 1

� �
(1)

M�� 
0 1
1 �1

� �
; (2)

then

lim
n0�

ln M1 � � �Mnk k
n

�c ; (3)

where ec �1:13198824 . . . and Mk k denotes the ma-
trix SPECTRAL NORM (Bougerol and Lacroix 1985,
pp. 11 and 157; Viswanath 2000). This is the same
constant appearing in the RANDOM FIBONACCI SE-

QUENCE. The following Mathematica code can be used
to estimate this constant.

n � 100000;

m � Fold[Dot, IdentityMatrix[2],

{{0, 1}, {1, #}} & /@ ((-

1)^Table[Random[Integer], {n}])

]//N;

Log[Sqrt[Max[Eigenvalues[Transpose[m].m]]]]/

n

See also COMPLEX MATRIX, MATRIX, RANDOM FIBO-

NACCI SEQUENCE, REAL MATRIX
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Random Normal Deviates
NORMAL DEVIATES

Random Number
Computer-generated random numbers are sometimes
called PSEUDORANDOM NUMBERS, while the term
"random" is reserved for the output of unpredictable
physical processes. When used without qualification,
the word "random" usually means "random with a
UNIFORM DISTRIBUTION." Other distributions are, of
course possible. For example, the BOX-MULLER

TRANSFORMATION allows random numbers with a 2-
D uniform distribution to be transformed to corre-
sponding random numbers with a 2-D Gaussian
distribution. Similarly, in order to generate a
power-law distribution P(x) from a uniform distribu-
tion P(y); write P(x)�Cxn for x � [x0; x1]: Then nor-
malization gives

g
x1

x0

P(x) dx�c
[xn�1]x1

x0

n � 1
�1; (1)

so

C�
n � 1

xn�1
1 � xn�1

0

: (2)

Let y be a uniformly distributed variate on [0; 1]:
Then



D(x) �g
x

x0

P(x?) dx?�C g
x

x0

x?n dx ?

�
C

n � 1
xn �1 �xn�1

0

� �
�y; (3)

and the variate given by

x �
n � 1

C
y �xn�1

0

 !1 =(n�1)

� xn�1
1 �xn�1

0

� �
y �xn�1

0

� �1 =(n �1)
(4)

is distributed as P(x):/

It is impossible to produce an arbitrarily long string of
random digits and prove it is random. Strangely, it is
very difficult for humans to produce a string of
random digits, and computer programs can be written
which, on average, actually predict some of the digits
humans will write down based on previous ones.

The LINEAR CONGRUENCE METHOD is one algorithm
for generating PSEUDORANDOM NUMBERS. The initial
number used as the starting point in a random
number generating algorithm is known as the SEED.
The goodness of random numbers generated by a
given ALGORITHM can be analyzed by examining its
NOISE SPHERE.

When generating random numbers over some speci-
fied boundary, it is often necessary to normalize the
distributions so that each differential area can is
equally populated. For example, picking u and f from
uniform distributions does not give a uniform dis-
tribution for SPHERE POINT PICKING.

See also BAYS’ SHUFFLE, BOX-MULLER TRANSFORMA-

TION, CLIFF RANDOM NUMBER GENERATOR, QUASIR-

ANDOM SEQUENCE, RANDOM VARIABLE, SCHRAGE’S

ALGORITHM, STOCHASTIC, UNIFORM DISTRIBUTION
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Random Partition
A random partition of a number n is one of the P(n)
possible PARTITIONS of n , where P(n) is the PARTITION

FUNCTION P . A random partition can be given by
RandomPartition[n ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also PARTITION
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Random Percolation
PERCOLATION THEORY

Random Permutation
A PERMUTATION containing a fixed number n of a
random selection from a given set of elements. There
are two main algorithms for constructing random
permutations. The first constructs a vector of random
real numbers and uses them as keys to records
containing the integers 1 to n . The second starts
with an arbitrary permutation and then exchanges
the i th element with a randomly selected one from
the first i elements for i �1, ..., n (Skiena 1990).

There are an average of n(n �1) =4 PERMUTATION

INVERSIONS in a PERMUTATION on n elements (Skiena
1990, p. 29).

See also PERMUTATION, PERMUTATION INVERSION
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Random Polygon
A random polygon is a POLYGON generated in some
random way. Kendall conjectured that the shape of a
random polygon is close to a DISK as the area of the
polygon becomes large (Stoyan et al. 1987, Kovalenko
1999)

See also CROFTON CELL
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Random Polynomial
A POLYNOMIAL having random COEFFICIENTS.

See also KAC FORMULA
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Random Tableau

A YOUNG TABLEAU chosen at random from those
having a given shape. A random tableau can be
generated by RandomTableau[shape ] in the Mathe-
matica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘). The figure above shows four
random tableaux of the 21 distinct ones of shape
f3; 2; 2g:/
See also YOUNG TABLEAU
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Random Variable
A random variable is a measurable function from a
PROBABILITY SPACE (S; S; P) into a MEASURABLE

SPACE (S?; S?) known as the STATE SPACE (Doob
1996). Papoulis (1984, p. 88) gives the slightly differ-
ent definition of a random variable X as a REAL

FUNCTION whose domain is the PROBABILITY SPACE S
and such that:



1. The set fX 5xg is an EVENT for any real number
x .
2. The probability of the events fX ���g and
fX ���g equals zero.

The abbreviation "r.v." is sometimes used to denote a
random variable.

See also PROBABILITY SPACE, RANDOM DISTRIBUTION,
RANDOM NUMBER, STATE SPACE, VARIATE
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Random Walk
A random process consisting of a sequence of discrete
steps of fixed length. The random thermal perturba-
tions in a liquid are responsible for a random walk
phenomenon known as Brownian motion, and the
collisions of molecules in a gas are a random walk
responsible for diffusion. Random walks have inter-
esting mathematical properties that vary greatly
depending on the dimension in which the walk occurs
and whether it is confined to a lattice.

See also MARKOV CHAIN, MARTINGALE, PERCOLATION

THEORY, RANDOM WALK–1-D, RANDOM WALK–2-D,
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Random Walk*/1-D
Let N steps of equal length be taken along a LINE. Let
p be the probability of taking a step to the right, q the
probability of taking a step to the left, n1 the number
of steps taken to the right, and n2 the number of steps
taken to the left. The quantities p , q , n1; n2; and N
are related by

p�q�1 (1)

and

n1�n2�N: (2)

Now examine the probability of taking exactly n1

steps out of N to the right. There are ðN
n1
Þ�ðn1�n2

n1
Þ ways

of taking n1 steps to the right and n2 to the left, where
n
m

� �
is a BINOMIAL COEFFICIENT. The probability of

taking a particular ordered sequence of n1 and n2

steps is pn1 qn2 : Therefore,

P(n1)�
(n1 � n2)!

n1!n2!
pn1 qn2 �

N!

n1!(N � n1)!
pn1 qN�n1 ; (3)

where n! is a FACTORIAL. This is a BINOMIAL DIS-

TRIBUTION and satisfies

XN

n1�0

P(n1)�(p�q)N �1N �1: (4)

The MEAN number of steps n1 to the right is then

n1h i�
XN

n1�0

n1P(n1)

�
XN

n1�0

N!

n1!(N � n1)!
pn1 qN�n1 n1; (5)

but

n1pn1 �p
@

@p
pn1 ; (6)

so

n1h i�
XN

n1�0

N!

n1!(N � n1)!
p

@

@p
pn1

 !
qN�n1

�p
@

@p

XN

n1�0

N!

n1!(N � n1)!
pn1 qN�n1



�p
@

@p
(p�q)N �pN(p�q)N�1�pN: (7)

From the BINOMIAL THEOREM,

n2h i�N� n1h i�N(1�p)�qN: (8)

The VARIANCE is given by

s2
n1
� n2

1

� �
� n1h i2: (9)

But

n2
1

� �
�
XN

n1�0

N!

n1!(N � n1)!
pn1 qN�n1 n2

1; (10)

so

n2
1pn1 �n1 p

@

@p

 !
pn1 � p

@

@p

 !2

pn1 ; (11)

and

n2
1

� �
�
XN

n1�0

N!

n1!(N � n1)!
p

@

@p

 !2

pn1 qN�n1

� p
@

@p

 !2 XN

n1�0

N!

n1!(N � n1)!
pn1 qN�n1

� p
@

@p

 !2

(p�q)N

�p
@

@p
[pN(p�q)N�1]

�p[N(p�q)N�1�pN(N�1)(p�q)N�2]

�p[N�pN(N�1)]

�pN[1�pN�p)]�(Np)2�Npq

� n1h i2�Npq: (12)

Therefore,

s2
n1
� n2

1

� �
� n1h i2�Npq; (13)

and the ROOT-MEAN-SQUARE deviation is

sn1
�

ffiffiffiffiffiffiffiffiffiffi
Npq

p
: (14)

For a large number of total steps N , the BINOMIAL

DISTRIBUTION characterizing the distribution ap-
proaches a GAUSSIAN DISTRIBUTION.

Consider now the distribution of the distances dN

traveled after a given number of steps,

dN �n1�n2�2n1�N; (15)

as opposed to the number of steps in a given direction.
The above plots show dN(p) for N�200 and three
values p�0:1; p�0:5; and p�0:9; respectively.
Clearly, weighting the steps toward one direction or
the other influences the overall trend, but there is
still a great deal of random scatter, as emphasized by
the plot below, which shows three random walks all
with p�0:5:/

Surprisingly, the most probable number of sign
changes in a walk is 0, followed by 1, then 2, etc.

For a random walk with p�1=2; the probability PN(d)
of traveling a given distance d after N steps is given
in the following table.

steps �5 �4 �3 �2 �1 0 1 2 3 4 5

0 1

1 /
1
2/ 0 /

1
2/

2 /
1
4/ 0 /

2
4/ 0 /

1
4/

3 /
1
8/ 0 /

3
8/ 0 /

3
8/ 0 /

1
8/

4 /
1
16/ 0 /

4
16/ 0 /

6
16/ 0 /

4
16/ 0 /

1
16/

5 /
1
32/ 0 /

5
32/ 0 /

10
32/ 0 /

10
32/ 0 /

5
32/ 0 /

1
32/

In this table, subsequent rows are found by adding
HALF of each cell in a given row to each of the two cells
diagonally below it. In fact, it is simply PASCAL’S

TRIANGLE padded with intervening zeros and with
each row multiplied by an additional factor of 1/2. The
COEFFICIENTS in this triangle are given by

PN(d)�
1

2N

N
d � N

2

0
@

1
A (16)

(Papoulis 1984, p. 291). The moments

mp�
X

d��N; �(N�2); ...; N

dpPN(d) (17)

of this distribution of signed distances are then given
by

m�0 (18)



m2�N (19)

m3�0 (20)

m4�N(3N�2); (21)

so the MEAN is m�0; the SKEWNESS is g1�0; and the
KURTOSIS is

g2�
m4

m2
2

�3��
2

N
: (22)

The expectation value of the absolute distance after
N steps is therefore given by

dNh i�
XN

d��N;�(N�2); ...

½d½PN(d)

�
1

2N

XN

d��N;�(N�2); ...

½d½N!

N � d

2

 !
!

N � d

2

 !
!

: (23)

This sum can be done symbolically by separately
considering the cases N EVEN and N ODD. First,
consider EVEN N so that N�2J: Then

d2; J

� �
�

N!

2N

� X�2

d��2J;

�2(J�1); ...

½d½

2J � d

2

 !
!

2J � d

2

 !
!

�
X
d�0

½d½

2J � d

2

 !
!

2J � d

2

 !
!

�
X2J

d�2; 4; ...

½d½

2J � d

2

 !
!

2J � d

2

 !
!

�
�

N!

2N

� X�1

d��J; �(J�1); ...

½2d½

2J � 2d

2

 !
!

2J � 2d

2

 !
!

�
XJ

d�1; 2 ...

½2d½

2J � 2d

2

 !
!

2J � 2d

2

 !
!

�
�

N!

2N
2
XJ

d�1

2d

(J � d)!(J � d)!

" #

�
N!

2N�2

XJ

d�1

d

(J � d)!(J � d)!
: (24)

But this sum can be evaluated analytically as

XJ

d�1

d

(J � d)!(J � d)!
�

1

2G(J)G(1 � J)
: (25)

Writing J�N=2; plugging back in, and simplifying
gives

dN evenh i� 2ffiffiffi
p

p
G 1

2 �
1
2 N

� �
G 1

2 N
� � �

(N � 1)!!

(N � 2)!!
; (26)

where N!! is the DOUBLE FACTORIAL.

Now consider N ODD, so N�2J�1: Then

dN oddh i� d2J�1h i

�
N!

2N

� X�1

d��(2J�1);

�(2J�1); ...

½d½

2J � 1 � d

2

 !
!

2J � 1 � d

2

 !
!

�
X2J�1

d�1; 3; ...

½d½

2J � 1 � d

2

 !
!

2J � 1 � d

2

 !
!




�
N!

2N�1

X2J�1

d�1; 3; ...

d

2J � 1 � d

2

 !
!

2J � 1 � d

2

 !
!

2
66664

3
77775

�
N!

2N�1

X2J

d�2; 4; ...

d � 1

2J � 2 � d

2

 !
!

2J � d

2

 !
!

2
66664

3
77775

�
N!

2N�1

XJ

d�1

2d � 1

(J � d � 1)!(J � d)!

" #
: (27)

But this sum can be evaluated analytically as

XJ

d�1

2d � 1

(J � d � 1)!(J � d)!
�

1

[G(J)]2 : (28)

Writing J�(N�1)=2; plugging back in, and simpli-
fying gives

dN oddh i� N!

2N�1 G 1
2 �

1
2 N

� �h i2

�
2ffiffiffi
p

p
G 1

2 N � 1
� �

G 1
2 N � 1

2

� �� N!!

(N � 1)!
: (29)

Both the EVEN and ODD solutions can be written in
terms of J as

dJh i� 2ffiffiffi
p

p
G J � 1

2

� �
G(J)

�
(2J � 1)!!

(2J � 2)!!
; (30)

or explicitly in terms of N as



dNh i�

(N � 1)!!

(N � 2)!!
for N even

N!!

(N � 1)!!
for N odd:

8>>><
>>>: (31)

The first few values of dNh i are therefore

d0h i�0

d1h i� d2h i�1

d3h i� d4h i�3
2

d5h i� d6h i�15
8

d7h i� d8h i�35
16

d9h i� d10h i�315
128

d11h i� d12h i�693
256

d13h i� d14h i�3003
1024

(Sloane’s A001803 and A046161; Abramowitz and
Stegun 1972, Prévost 1933, Hughes 1995), which
are also given by the GENERATING FUNCTION

(1 �x)�3 =2 �1 �3
2 x �15

8 x2 �35
16 x

3 �315
128 x

4 �. . . : (32)

These numbers also arise in the HEADS-MINUS-TAILS

DISTRIBUTION.

Now, examine the asymptotic behavior of dNh i: The
asymptotic expansion of the GAMMA FUNCTION ratio is

G J � 1
2

� �
G(J)

�
ffiffiffiffi
J

p
1 �

1

8J 
�

1

128J2 
�. . .

 !
(33)

(Graham et al. 1994), so plugging in the expression
for dNh i gives the asymptotic series

dNh i�
ffiffiffiffiffiffiffi
2N

p

s

� 1 �
1

4N 
�

1

32N2 
9

5

128N3 
�

21

2048N4 
�. . .

 !
;

(34)

where the top signs are taken for N EVEN and the
bottom signs for N ODD. Therefore, for large N ,

dNh i�
ffiffiffiffiffiffiffi
2N

p

s
; (35)

which is also shown in Mosteller et al. (1961, p. 14).

Tóth (2000) has proven that there are no more than
three most-visited sites in a simple symmetric ran-
dom walk in 1-D with unit steps.

See also BINOMIAL DISTRIBUTION, CATALAN NUMBER,
HEADS-MINUS-TAILS DISTRIBUTION, P -GOOD PATH,

PÓ LYA’S RANDOM WALK CONSTANTS, RANDOM WALK–

2-D, RANDOM WALK–3-D, SELF-AVOIDING WALK, WI-

ENER PROCESS
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Random Walk */2-D

In a PLANE, consider a sum of N 2-D VECTORS with
random orientations. Use PHASOR notation, and let
the phase of each VECTOR be RANDOM. Assume N unit
steps are taken in an arbitrary direction (i.e., with the
angle u uniformly distributed in [0; 2 p) and not on a
LATTICE), as illustrated above. The position z in the
COMPLEX PLANE after N steps is then given by

z �
XN

j�1

eiuj ; (1)

which has ABSOLUTE SQUARE

½z½2 �
XN

j�1

eiuj

XN

k �1

e �iuk �
XN

j�1

XN

k �1

ei( uj�uk)

�N �
XN

j; k �1

k "j

ei(uj�uk) : (2)

Therefore,

zj j2
D E

�N �
XN

j; k �1

k"j

ei(uj�uk)

* +
: (3)

Each step is equally likely to be in any direction, so
both uj and uk are RANDOM VARIABLES with identical
MEANS of zero, and their difference is also a random
variable. Averaging over this distribution, which has
equally likely POSITIVE and NEGATIVE values yields an
expectation value of 0, so

zj j2
D E

�N : (4)

The root-mean-square distance after N unit steps is
therefore

zj jrms�
ffiffiffiffiffi
N

p
; (5)

so with a step size of l , this becomes

drms �l
ffiffiffiffiffi
N

p
: (6)

In order to travel a distance d

N :
d

l

 !2

(7)

steps are therefore required.

Amazingly, it has been proven that on a 2-D LATTICE,
a random walk has unity probability of reaching any
point (including the starting point) as the number of
steps approaches INFINITY.

See also PÓ LYA’S RANDOM WALK CONSTANTS, RANDOM

WALK–1-D, RANDOM WALK–3-D
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Random Walk*/3-D

On a 3-D LATTICE, a random walk has less than unity
probability of reaching any point (including the
starting point) as the number of steps approaches
infinity. The probability of reaching the starting point



again is 0.3405373296.... This is one of PÓ LYA’S

RANDOM WALK CONSTANTS.

See also PÓ LYA’S RANDOM WALK CONSTANTS, RANDOM

WALK–1-D, RANDOM WALK–2-D
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Random Young Tableau
RANDOM TABLEAU

Range (Image)
If T is a MAP (a.k.a., FUNCTION, TRANSFORMATION)
over a DOMAIN D , then the range of T is defined as

Range(T) �T(D) �fT(X) : X � Dg:

The range T(D) is also called the IMAGE of D under T .

See also DOMAIN, MAP, TRANSFORMATION

Range (Line Segment)

A number of points on a LINE SEGMENT. The term was
first used by Desargues (Cremona 1960, p. x). If the
points A , B , C , ... lie on a LINE SEGMENT with the
coordinates of the points such that A BB BC ; they
are said to form a range, denoted fABC . . .g: Let AB
denote the signed distance B �A: Then the range
fABCg satisfies the relation

AB �BC �CA �0 :

The range fABCD g satisfies

BC � AD �CA � BD �AB � CD �0

and

BC � AD2 �CA � BD2 �AB � CD2 �BC � CA � AB �0 ;

the latter of which holds even when D is not on the
line ABC (Lachlan 1893).
Graustein (1930) and Woods (1961) use the term
"range" to refer to the totality of points on a straight
LINE, making it the dual of a PENCIL.

See also AXIS, HOMOGRAPHIC, LINE, LINE SEGMENT,
PENCIL, PERSPECTIVITY, SECTION (PENCIL)
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Range (Statistics)

R�max(xi)�min(xi): (1)

For small samples, the range is a good estimator of
the population STANDARD DEVIATION (Kenney and
Keeping 1962, pp. 213�/214). For a continuous UNI-

FORM DISTRIBUTION

P(x)�
1

C
for 0BxBC

0 for xj j BC;

8<
: (2)

the distribution of the range is given by

D(R)�N
R

C

 !N�1

�(N�1)
R

C

 !N

: (3)

Given two samples with sizes m and n and ranges R1

and R2; let u�R1=R2: Then

D(u)�

m(m � 1)n(n � 1)

(m � n)(m � n � 1)(m � n � 2)
� (m�n)um�2�(m�n�2)um�1½ 


for 05u51
m(m � 1)n(n � 1)

(m � n)(m � n � 1)(m � n � 2)
� (m�n)u�n�(m�n�2)u�n�1½ 


for 15u5�:

8>>>>>>>>>>><
>>>>>>>>>>>:

(4)

The MEAN is

mu�
(m � 1)n

(m � 1)(n � 2)
; (5)

and the MODE is

û�

(m � 2)(m � n)

(m � 1)(m � n � 2)
for m�n52

(n � 1)(m � n � 2)

n(m � n)
for m�n]2:

8>>><
>>>: (6)
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Rank
The word "rank" refers to several unrelated concepts
in mathematics involving groups, matrices, quadratic
forms, sequences, set theory, statistics, and tensors.

In SET THEORY, rank is a (class) function from SETS to
ORDINAL NUMBERS. The rank of a SET is the least
ORDINAL NUMBER greater than the rank of any
member of the set (Mirimanoff 1917; Moore 1982,
pp. 261 �/262; Rubin 1967, p. 214). The proof that
rank is WELL DEFINED uses the AXIOM OF FOUNDA-

TION.

For example, the EMPTY SET fg has rank 0 (since it
has no members and 0 is the least ORDINAL NUMBER),
fgf g has rank 1 (since fg; its only member, has rank

0), fgf gf g has rank 2, and ffg; fgf g; fgf gf g; . . .g has
rank v: Every ORDINAL NUMBER has itself as its rank.

Mirimanoff (1917) showed that, assuming the class of
URELEMENTS is a set, for any ORDINAL NUMBER a; the
class of all sets having rank a is a SET, i.e., not a
PROPER CLASS (Rubin 1967, p. 216) The number of
sets having rank k for k �0, 1, ... are 1, 1, 2, 12,
65520, ... (Sloane’s A038081), and the number of sets

having rank at most k is 22 U 2|fflffl{zfflffl}
k

; 1, 2, 4, 16, 65536, ...

(Sloane’s A014221).

The rank of a mathematical object is defined when-
ever that object is FREE. In general, the rank of a FREE

object is the CARDINALITY of the FREE generating
SUBSET G .

See also ORDINAL NUMBER, RANK (BUNDLE), RANK

(GROUP), RANK (LIE ALGEBRA), RANK (MATRIX), RANK

(QUADRATIC FORM), RANK (SEQUENCE), RANK (STA-

TISTICS), RANK (TENSOR)
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Rank (Bundle)
The rank of a VECTOR BUNDLE is the DIMENSION of its
FIBER. Equivalently, it is the maximum number of
linearly independent LOCAL SECTIONS in a TRIVIALIZA-

TION. Naturally, the dimension here is measured in
the appropriate CATEGORY. For instance, a real line
bundle has fibers isomorphic with R; and a complex
line bundle has fibers isomorphic to C ; but in both
cases their rank is 1:/

The rank of the TANGENT BUNDLE of a real MANIFOLD

M is equal to the dimension of M . The rank of a

trivial bundle M �Rk is equal to k . There is no upper
bound to the rank of a vector bundle over a fixed
manifold M .

See also DIMENSION, FIBER, MANIFOLD, SECTION

(BUNDLE), TANGENT BUNDLE, VECTOR BUNDLE

Rank (Group)
For an arbitrary finitely generated ABELIAN GROUP

G , the rank of G is defined to be the rank of the FREE

generating SUBSET G modulo its TORSION SUBGROUP.
For a finitely generated GROUP, the rank is defined to
be the rank of its "Abelianization."

See also ABELIAN GROUP, BETTI NUMBER, BURNSIDE

PROBLEM, QUASITHIN THEOREM, QUASI-UNIPOTENT

GROUP, TORSION (GROUP)

Rank (Matrix)
The rank of a MATRIX or a linear map is the
DIMENSION of the range of the matrix or the linear
map, corresponding to the number of LINEARLY

INDEPENDENT rows or columns of the matrix, or to
the number of nonzero singular values of the map.

Rank (Quadratic Form)
For a QUADRATIC FORM Q in the canonical form

Q �y2
1 �y2

2 �. . .�y2
p �y2

p �1 �y2
p �2 �. . .�y2

r ;

the rank is the total number r of square terms (both
POSITIVE and NEGATIVE).

See also SIGNATURE (QUADRATIC FORM)

References
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Rank (Sequence)
The position of a RATIONAL NUMBER in the SEQUENCE
1
1 ;

1
2;

2
1 ;

1
3 ;

3
1;

1
4 ;

2
3 ;

3
2;

4
1 ;

1
5 ; ..., ordered in terms of increasing

NUMERATOR �DENOMINATOR.

See also ENCODING, FAREY SERIES

Rank (Statistics)
The ORDINAL NUMBER of a value in a list arranged in a
specified order (usually decreasing).

See also RANK TEST, SPEARMAN RANK CORRELATION

COEFFICIENT, WILCOXON RANK SUM TEST, WILCOXON

SIGNED RANK TEST, ZIPF’S LAW

Rank (Tensor)
The total number of CONTRAVARIANT and COVARIANT

indices of a TENSOR. The rank of a TENSOR is
independent of the number of DIMENSIONS of the
SPACE.



Rank Object

0 SCALAR

1 VECTOR

/]2/ TENSOR

See also CONTRAVARIANT TENSOR, COVARIANT TEN-

SOR, SCALAR, TENSOR, VECTOR

Rank Test
A STATISTICAL TEST making use of the RANKS of data
points. Examples include the KOLMOGOROV-SMIRNOV

TEST and WILCOXON SIGNED RANK TEST.

See also KOLMOGOROV-SMIRNOV TEST, R -ESTIMATE,
RANK (STATISTICS), SPEARMAN RANK CORRELATION

COEFFICIENT, STATISTICAL TEST, WILCOXON SIGNED

RANK TEST

Ranunculoid

An EPICYCLOID with n �5 cusps, named after the
buttercup genus Ranunculus (Madachy 1979).

See also CARDIOID, EPICYCLOID, NEPHROID
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Rapid Rumor Ramification
GOSSIPING

RAT-Free Set
A RAT-free ("right angle triangle-free") set is a set of
points, no three of which determine a RIGHT TRIAN-

GLE. Let f (n) be the largest integer such that a RAT-
free subset of size f (n) is guaranteed to be contained
in any set of n coplanar points. Then the function f (n)
is bounded by

ffiffiffi
n

p
5f (n) 52

ffiffiffiffiffi
n:

p

See also RIGHT TRIANGLE
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Ratio
The ratio of two numbers r and s is written r=s ;
where r is the NUMERATOR and s is the DENOMINATOR.
The ratio of r to s is equivalent to the QUOTIENT r=s:
Betting ODDS written as r : s correspond to s =(r �s): A
number which can be expressed as a ratio of INTEGERS

is called a RATIONAL NUMBER.

See also DENOMINATOR, DIVISION, FRACTION, NU-

MERATOR, ODDS, QUOTIENT, RATIONAL NUMBER

Ratio Distribution
Given two distributions Y and X with joint prob-
ability density function f (x; y); let U�Y=X be the
ratio distribution. Then the distribution function of u
is

D(u)�P(U5u)

�P(Y5uX X > 0)�P(Y]uX XB0)jj

�g
�

0 g
ux

0

f (x; y) dy dx�g
0

��
g

0

ux

f (x; y) dy dx:

ð1Þ

The probability function is then

P(u)�D?(u)�g
�

0

xf (x; ux) dx�g
0

��

xf (x; ux) dx

�g
�

��

xj jf (x; ux) dx: (2)

For variates with a standard NORMAL DISTRIBUTION,
the ratio distribution is a CAUCHY DISTRIBUTION. For
a UNIFORM DISTRIBUTION

f (x; y)�
1 for x; y � 0; 1½ 

0 otherwise;

�
(3)



P(u) �

0 u B0

g
1

0

x dx� 1
2 x

2
h i

�1
2 for 0 5u 51

g
1 =u

0

x dx� 1
2 x

2
h i1 =u

0
�

1

2u2
for u > 1 :

8>>>>><
>>>>>:

(4)

See also CAUCHY DISTRIBUTION

Ratio Test
Let uk be a SERIES with POSITIVE terms and suppose

r � lim
k 0�

uk �1

uk

:

Then

1. If r B1 ; the SERIES CONVERGES.
2. If r > 1 or  r ��; the SERIES DIVERGES.
3. If r �1 ; the SERIES may CONVERGE or DIVERGE.

The test is also called the CAUCHY RATIO TEST or
D’ALEMBERT RATIO TEST.

See also CONVERGENCE TESTS

References
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Rational Approximation
If a is any number and m and n are INTEGERS, then
there is a RATIONAL NUMBER m=n for which

a�
m

n

:::::
:::::51

n 
: (1)

If a is IRRATIONAL and k is any WHOLE NUMBER, there
is a FRACTION m=n with n 5k and for which

a�
m

n

:::::
:::::5 1

nk 
: (2)

Furthermore, there are an infinite number of FRAC-

TIONS m=n for which

a�
m

n

:::::
:::::5 1

n2 
(3)

(Hilbert and Cohn-Vossen 1999, pp. 40 �/44).

Hurwitz has shown that for an IRRATIONAL NUMBER z

z�
h

k

:::::
:::::B 1

ck2 
; (4)

there are infinitely RATIONAL NUMBERS h =k if 0 Bc 5

ffiffiffi
5

p
; but if c >

ffiffiffi
5

p
; there are some z for which this

approximation holds for only finitely many h=k :/

See also DIRICHLET’S APPROXIMATION THEOREM,
HURWITZ’S IRRATIONAL NUMBER THEOREM, IRRATION-

ALITY MEASURE, KRONECKER’S APPROXIMATION THE-

O R E M , L A G R A N G E  N U M B E R  ( R A T I O N A L

APPROXIMATION), LIOUVILLE’S APPROXIMATION THEO-

REM, MARKOV NUMBER, ROTH’S THEOREM, SEGRE’S

THEOREM, THUE-SIEGEL-ROTH THEOREM
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Rational Canonical Form
Any SQUARE MATRIX T has a canonical form without
any need to EXTEND the FIELD of its coefficients. For
instance, if the entries of T are RATIONAL NUMBERS,
then so are the entries of its rational canonical form.
(The JORDAN CANONICAL FORM may require complex
numbers.) There exists an INVERTIBLE MATRIX Q such
that

Q�1TQ�diag[L(c1); L(c2); . . . ;L(cs)]; (1)

called the rational canonical form, where L(f ) is the
COMPANION MATRIX for the MONIC POLYNOMIAL

f (l)�f0�f1l�. . .�fn�1l
n�1�ln: (2)

The POLYNOMIALS ci are called the "invariant factors"
of T; and satisfy ci ci�1

:: for i�1, ..., s�1 (Hartwig
1996). The polynomial cs is the MINIMAL POLYNOMIAL

and the product
Q

ci is the CHARACTERISTIC POLY-

NOMIAL of T:/

The rational canonical form is unique, and shows the
extent to which the minimal polynomial characterizes
a matrix. For example, there is only one 6�6 matrix
whose MINIMAL POLYNOMIAL is (x2�1)2; which is

0 �1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 �1
0 0 1 0 0 0
0 0 0 1 0 �2
0 0 0 0 1 0

2
6666664

3
7777775 (3)

in rational canonical form.

Given a LINEAR TRANSFORMATION T : V 0 V; the
VECTOR SPACE V becomes a F[x]/-MODULE, that is a
MODULE over the RING of polynomials with coeffi-
cients in the FIELD F . The VECTOR SPACE determines
the field F , which can be taken to be the maximal
field containing the entries of a matrix for T . The
polynomial x acts on a vector v by x(v)�T(v): The
rational canonical form corresponds to writing V as

F[x]=(a1)� . . .� F[x]=(as); (4)

where (ai) is the IDEAL generated by the INVARIANT



FACTOR ai in F[x] ; the canonical form for any finitely
generated module over a PRINCIPAL IDEAL RING such
as F[x] :/

More constructively, given a basis ei for V , there is a
MODULE HOMOMORPHISM

t : F[x]n 0 V (5)

which is ONTO, given by

t
X

pi(x)ei

� �
�
X

pi(T)ei : (6)

Letting K be the KERNEL,

V $F[x]n =K : (7)

To construct a basis for the rational canonical form, it
is necessary to write K as

K $
Mn�s

i�1

F[x] � F[x] =(a1) �. . .� F[x](as); (8)

and that is done by finding an appropriate basis for
F[x]n and for K . Such a basis is found by determining
matrices P and Q that are invertible n �n matrices
having entries in F[x] (and whose inverses are also in
F[x]) such that

P xI �Tð ÞQ �diag(1 ; . . . ; 1 ; a1 ; . . . ; as); (9)

where l is the IDENTITY MATRIX and (a1 ; . . . ; an)
denotes a DIAGONAL MATRIX. They can be found by
using ELEMENTARY MATRIX OPERATIONS.

The above matrix sends a basis for K , written as an
n -tuple, to an n -tuple using a new basis fi for F[x]n ;
and P gives the linear transformation from the
original basis to the one with the fi : In particular,

K �

b1f1 �. . .bn�sfn�s � bn�s�1a1fn�s�1 �. . .� bnasfn

= >
;

(10)

where bi is an arbitrary polynomial in F[x] : Setting
zi �P �1(T)en �s�i ;

V �F[x]z1 �. . .� F[x]zs : (11)

In particular, F[x]zi is the SUBSPACE of V which is
generated by zi ; xzi ; . . .  ; xn�1zi ; where n is the
degree of ai : Therefore, a basis that puts T into
rational canonical form is given by

fz1 ;Tz1 ; . . . ;Tn1 z1 ; z2 ; . . . ; Tn2 x2 ; . . .  ;Tns zs g: ð12Þ

See also BLOCK DIAGONAL MATRIX, CHARACTERISTIC

POLYNOMIAL, COMPANION MATRIX, FIELD, INVARIANT

FACTOR, JORDAN CANONICAL FORM, MATRIX, MINIMAL

POLYNOMIAL (MATRIX), PRINCIPAL IDEAL RING (PID),
REDUCTION ALGORITHM, SIMILAR MATRICES,
SMITH NORMAL FORM
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Rational Cuboid
EULER BRICK

Rational Diagonal
NSW NUMBER

Rational Distances
It is possible to find six points in the PLANE, no three
on a LINE and no four on a CIRCLE (i.e., none of which
are COLLINEAR or CONCYCLIC), such that all the
mutual distances are RATIONAL. An example is illu-
strated by Guy (1994, p. 185).

It is not known if a TRIANGLE with INTEGER sides,
MEDIANS, and AREA exists (although there are incor-
rect PROOFS of the impossibility in the literature).
However, R. L. Rathbun, A. Kemnitz, and R. H.
Buchholz have showed that there are infinitely
many triangles with RATIONAL sides (HERONIAN

TRIANGLES) with two RATIONAL MEDIANS (Guy 1994,
p. 188).

See also COLLINEAR, CONCYCLIC, CYCLIC QUADRILAT-

ERAL, EQUILATERAL TRIANGLE, EULER BRICK, HERO-

NIAN TRIANGLE, RATIONAL QUADRILATERAL,
RATIONAL TRIANGLE, SQUARE, TRIANGLE
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Rational Domain
FIELD

Rational Double Point
There are nine possible types of ISOLATED SINGULA-

RITIES on a CUBIC SURFACE, eight of them rational
double points. Each type of ISOLATED SINGULARITY



has an associated normal form and COXETER-DYNKIN

DIAGRAM (/A1 ; A2 ; A3 ; A4 ; A5 ; D4 ; D5 ; E6 and Ĕ6) :/

The eight types of rational double points (the Ĕ6 type
being the one excluded) can occur in only 20 combina-
tions on a CUBIC SURFACE (of which Fischer 1986
gives 19): A1 ; 2A1 ; 3A1 ; 4A1 ; A2 ; A2 ; A1ð Þ; 2A2 ;
2A2 ; A1ð Þ; 3A2 ; A3 ; A3 ; A1ð Þ; A3 ; 2A1ð Þ; A4 ; A4 ; A1ð Þ;

A5 ; A5 ; A1ð Þ; D4 ; D5 ; and E6 (Looijenga 1978, Bruce
and Wall 1979, Fischer 1986).

In particular, on a CUBIC SURFACE, precisely those
configurations of rational double points occur for
which the disjoint union of the COXETER-DYNKIN

DIAGRAM is a SUBGRAPH of the COXETER-DYNKIN

DIAGRAM Ĕ6 : Also, a surface specializes to a more
complicated one precisely when its graph is contained
in the graph of the other one (Fischer 1986).

See also COXETER-DYNKIN DIAGRAM, CUBIC SURFACE,
DOUBLE POINT, ISOLATED SINGULARITY, ORDINARY

DOUBLE POINT
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Rational Function
A QUOTIENT of two polynomials P(z) and Q(z) ;

R(z) �
P(z)

Q(z) 
;

is called a rational function. More generally, if P and
Q are POLYNOMIALS in multiple variables, their
quotient is called a (multivariate) rational function.

A rational function has no singularities other than
poles in the EXTENDED COMPLEX PLANE. Conversely, if
a single-values function has no singularities other
than poles in the EXTENDED COMPLEX PLANE, than it
is a rational function (Knopp 1996, p. 137). In addi-
tion, a rational function can be decomposed into
partial fractions (Knopp 1996, p. 139).

See also ABEL’S CURVE THEOREM, CLOSED FORM,
FUNDAMENTAL THEOREM OF SYMMETRIC FUNCTIONS,
INSIDE-OUTSIDE THEOREM, QUOTIENT-DIFFERENCE

ALGORITHM, RATIONAL INTEGER, RATIONAL NUMBER,
RIEMANN CURVE THEOREM
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Rational Integer
A synonym for INTEGER. The word "rational" is
sometimes used for emphasis to distinguish it from
other types of "integers" such as CYCLOTOMIC INTE-

GERS, EISENSTEIN INTEGERS, GAUSSIAN INTEGERS, and
HAMILTONIAN INTEGERS.

See also CYCLOTOMIC INTEGER, EISENSTEIN INTEGER,
GAUSSIAN INTEGER, HAMILTONIAN INTEGER, INTEGER,
RATIONAL NUMBER
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Rational Number
A number that can be expressed as a FRACTION p =q
where p and q are INTEGERS and q "0; is called a
rational number with NUMERATOR p and DENOMINA-

TOR q . Numbers which are not rational are called
IRRATIONAL NUMBERS. The FIELD of rational numbers
is denoted Q. Any rational number is trivially also an
ALGEBRAIC NUMBER. The set of rational numbers is
denoted Rationals in Mathematica , and a number x
can be tested to see if it is rational using the command
Element[x , Rationals].

Between any two members of the set of rationals, it is
always possible to find another rational number.
Therefore, rather counterintuitively, the rational
numbers are a continuous set, but at the same time
countable.

For a , b , and c any different rational numbers, then

1

(a � b)2 �
1

(b � c)2 �
1

(c � a)2

is the SQUARE of a rational number (Honsberger
1991).

The probability that a random rational number has
an EVEN DENOMINATOR is 1/3 (Salamin and Gosper
1972).

It is conjectured that if there exists a REAL NUMBER x
for which both 2x and 3x are integers, then x is
rational. This result would follow from the FOUR

EXPONENTIALS CONJECTURE (Finch).

See also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER,
ANOMALOUS CANCELLATION, DENOMINATOR, DIRICH-

LET FUNCTION, FAREY SEQUENCE, FOUR EXPONEN-

TIALS CONJECTURE, FRACTION, INTEGER, IRRATIONAL

NUMBER, NUMERATOR, Q, QUOTIENT, TRANSCENDEN-

TAL NUMBER
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Rational Point
A K -rational point is a point (X, Y ) on an ALGEBRAIC

CURVE f (X ; Y) �0; where X and Y are in a FIELD K .
For example, rational point in the FIELD Q of ordinary
rational numbers is a point (X, Y ) satisfying the given
equation such that both X and Y are rational
numbers.

The rational point may also be a POINT AT INFINITY.
For example, take the ELLIPTIC CURVE

Y2 �X3 �X �42

and homogenize it by introducing a third variable Z
so that each term has degree 3 as follows:

ZY2 �X3 �XZ2 �42Z3 :

Now, find the points at infinity by setting Z �0,
obtaining

0 �X3 :

Solving gives X �0, Y equal to any value, and (by
definition) Z �0. Despite freedom in the choice of Y ,
there is only a single POINT AT INFINITY because the
two triples (/X1 ; Y1 ; Z1) ; (/X2 ; Y2 ; Z2) are considered to
be equivalent (or identified) only if one is a scalar
multiple of the other. Here, (0, 0, 0) is not considered
to be a valid point. The triples (a , b , 1) correspond to
the ordinary points (a , b ), and the triples (a , b , 0)
correspond to the POINTS AT INFINITY, usually called
the LINE AT INFINITY.

The rational points on ELLIPTIC CURVES over the
FINITE FIELD GF(q ) are 5, 7, 9, 10, 13, 14, 16, ...
(Sloane’s A005523).

See also ELLIPTIC CURVE, LINE AT INFINITY, POINT AT

INFINITY
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Rational Quadrilateral

A rational quadrilateral is a QUADRILATERAL for
which the sides, DIAGONALS, and AREA are RATIONAL.
The simplest case has sides a �52, b �25, c �39, and
d �60, DIAGONALS of length p �63 and q �56, and
AREA 1764.

See also AREA, DIAGONAL (POLYGON), RATIONAL

TRIANGLE

Rational Triangle
A rational triangle is a TRIANGLE all of whose sides
are RATIONAL NUMBERS and all of whose ANGLES are
RATIONAL numbers of DEGREES. The only such trian-
gle is the EQUILATERAL TRIANGLE (Conway and Guy
1996).

See also EQUILATERAL TRIANGLE, FERMAT’S RIGHT

TRIANGLE THEOREM, RATIONAL QUADRILATERAL,
RIGHT TRIANGLE
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Rationals
RATIONAL NUMBER

RATS Sequence
A sequence produced by the instructions "reverse,
add, then sort the digits," where zeros are suppressed.
For example, after 668 we get

668 �866 �1534 ;

so the next term is 1345. Applied to 1, the sequence
gives 1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444,
55778, ... (Sloane’s A004000)

See also 196-ALGORITHM, KAPREKAR ROUTINE, REVER-

SAL, SORT-THEN-ADD SEQUENCE
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Raw Moment
A MOMENT mn of a probability function P(x) taken
about 0,

m ?n �g xnP(x) dx: (1)

The raw moments m?n can be expressed as terms of the
CENTRAL MOMENTS mn (i.e., those taken about the
MEAN m) using the inverse BINOMIAL TRANSFORM

m?n �
Xn

k �0

n
k

� 	
mk m?1

n�k; (2)

with m0 �1 and m1 �0 (Papoulis 1984, p. 146). The
first few values are therefore

m ?2 � m2 � m?1
2 (3)

m?3 � m3 �3m2 m?1
2� m?1

4 (4)

m?4 � m4 �4m3 m?1 �6m2 m?1
2� m?1

4 (5)

m?5 � m5 �5 m4 m?1 �10m3 m?1
2�10 m2 m?1

3� m ?1
5: (6)

See also ABSOLUTE MOMENT, CENTRAL MOMENT,
MEAN, MOMENT
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Ray

A VECTOR AB
?!

from a point A to a point B . In
GEOMETRY, a ray is usually taken as a half-infinite
LINE with one of the two points A and B taken to be at
INFINITY.

See also LINE, VECTOR

Rayleigh Differential Equation

y ƒ� m 1 �1
3 y ?2

� �
y?�y �0;

where m > 0 : Differentiating and setting y �y? gives
the VAN DER POL EQUATION. The equation

yƒ� m 1 �y?2
� �

y?�y �0

with the 1=3 replaced by 1 is sometimes also called

the Rayleigh differential equation (Birkhoff and Rota
1978, p. 134; Zwillinger 1997, p. 126).

See also RAYLEIGH WAVE EQUATION, VAN DER POL

EQUATION
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Rayleigh Distribution

The distribution with PROBABILITY FUNCTION

P(r)�
re�r2=2s2

s2
(1)

for /r � ½0;�Þ/. The MOMENTS about 0 are given by

m?m�g
�

0

rmP(r) dr�s�2g
�

0

rm�1e�r2=2s2

dr

�s�2Im�1

1

2s2

 !
; (2)

where I(x) is a GAUSSIAN INTEGRAL (Papoulis 1984,
p. 148). The first few of these are

I1 a�1
� �

�1
2 a (3)

I2 a�1
� �

�1
4 a

ffiffiffiffiffiffi
ap

p
(4)

I3 a�1
� �

�1
2 a2 (5)

I4 a�1
� �

�3
8 a2

ffiffiffiffiffiffi
ap

p
(6)

I5 a�1
� �

�a3; (7)

so the RAW MOMENTS are

m?0�s�21
2 2s2
� �

�1 (8)

m?1�s�2 1
4 2s2
� � ffiffiffiffiffiffiffiffiffiffi

2s2p
p

�1
2 s

ffiffiffiffiffiffi
2p

p
�s

ffiffiffi
p

2

s
(9)

m?2�s�2 1
2 2s2
� �2

�2s2 (10)

m?3�s�2 3
8 2s2
� �2 ffiffiffiffiffiffiffiffiffiffi

2s2p
p

�3
2 s3

ffiffiffiffiffiffi
2p

p
�3s3

ffiffiffi
p

2

s
(11)

m?4�s�2 2s2
� �

�8s4: (12)



The CENTRAL MOMENTS are therefore

m2 � m ?2 � m ?1ð Þ2�
4 � p

2
s2 (13)

m3 � m?3 �3m ?2 m?1 �2 m ?1ð Þ3�

ffiffiffi
p

2

s
p �3ð Þs3 (14)

m4 � m?4 �4m ?3 m?1 �6m ?2 m?1ð Þ2�3 m �1?ð Þ4

�
32 � 3p2

4
s4 ; (15)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m � m?1 �s

ffiffiffi
p

2

s
(16)

s2 � m2 �
4 � p

2
s2 (17)

g1 �
m3

s3

�
2(p � 3)

ffiffiffi
p

p

(4 � p)3 =2 (18)

g2 �
m4

s4 
�3 ��

6p2 � 24 p � 16

( p � 4)2 : (19)

The CHARACTERISTIC FUNCTION is

f(t) �1 �

ffiffiffi
p

2

s
ste�s2t2 =2 erfi

stffiffiffi
2

p
 !

�i

" #
: (20)

See also MAXWELL DISTRIBUTION
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Rayleigh Function
The Rayleigh functions sn(n) for n �1, 2, ..., are
defined as

sn( n) �
X�
k �1

j�2n
nk ;

where 9jnk are the zeros of the BESSEL FUNCTION OF

THE FIRST KIND Jn(z) (Watson 1966, p. 502; Gupta and
Muldoon 1999). They were used by Euler, Rayleigh,
and others to evaluate zeros of Bessel functions.

There is a convolution formula connecting Rayleigh
functions of different orders,

sn(n) �
1

n � n

Xn�1

k �1

sk( n) sn�k( n)

(Kishore 1963, Gupta and Muldoon 1999).

See also BESSEL FUNCTION OF THE FIRST KIND
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Rayleigh Wave Equation
The PARTIAL DIFFERENTIAL EQUATION

utt �uxx �e ut �u3
t

� �
:

See also RAYLEIGH DIFFERENTIAL EQUATION
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Rayleigh-Ritz Variational Technique
A technique for computing EIGENFUNCTIONS and
EIGENVALUES. It proceeds by requiring

J�g
b

a

p(x)y2
x�q(x)y2

� �
dx (1)

to have a STATIONARY VALUE subject to the normal-
ization condition

g
b

a

y2w(x) dx�1 (2)

and the boundary conditions

pyxyj
b
a ¼ 0: ð3Þ

This leads to the STURM-LIOUVILLE EQUATION

d

dx
p

dy

dx

 !
�qy�lwy�0; (4)

which gives the stationary values of

F y(x)½ 
�g
b

a

py2
x � qy2ð Þ dx

g
b

a

y2w dx

(5)

as

F yn(x)½ 
�ln; (6)



where ln are the EIGENVALUES corresponding to the
EIGENFUNCTION yn :/
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Rayleigh’s Formulas
The formulas

jn(z) � �
1

z

d

dz

 !n
sin z

z

yn(z) ��zn �
1

z

d

dz

 !n
cos z

z

for n �0, 1, 2, ..., where jn(z) is a SPHERICAL BESSEL

FUNCTION OF THE FIRST KIND and yn(z) is a SPHERICAL

BESSEL FUNCTION OF THE SECOND KIND.
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Rayleigh’s Theorem
PARSEVAL’S THEOREM

R-Bar
The set of affine EXTENDED REAL NUMBERS.

See also EXTENDED REAL NUMBER (AFFINE)

Re
REAL PART

Real Analysis
That portion of mathematics dealing with functions of
real variables. While this includes some portions of
TOPOLOGY, it is most commonly used to distinguish
that portion of CALCULUS dealing with real as opposed
to COMPLEX NUMBERS.

Real Analytic Function
A REAL FUNCTION is said to be analytic if it possesses
derivatives of all orders and agrees with its TAYLOR

SERIES in the neighborhood of every point.

See also ANALYTIC FUNCTION

Real Axis

The axis in the COMPLEX PLANE corresponding to zero
IMAGINARY PART, I[z] �0:/

See also COMPLEX PLANE, IMAGINARY AXIS, REAL

LINE

Real Function
A FUNCTION whose RANGE is in the REAL NUMBERS is
said to be a real function, also called a real-valued
function.

See also COMPLEX FUNCTION, SCALAR FUNCTION,
VECTOR FUNCTION

Real Line

A LINE with a fixed scale so that every REAL NUMBER

corresponds to a unique POINT on the LINE. The
generalization of the real line to 2-D is called the
COMPLEX PLANE.
The term "real line" is also used to distinguish an
ordinary LINE from a so-called IMAGINARY LINE which
can arise in algebraic geometry.

See also ABSCISSA, COMPLEX PLANE, IMAGINARY AXIS,
IMAGINARY LINE, LINE, MOAT-CROSSING PROBLEM,
REAL AXIS, REAL SPACE
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Real Manifold

See also COMPLEX MANIFOLD, MANIFOLD

Real Matrix
A real matrix is a MATRIX whose elements consist
entirely of REAL NUMBERS. The set of m�n real



matrices is sometimes denoted Rm�n (Zwillinger 1995,
p. 116).

For a real n �n matrix, the expected number of real
EIGENVALUES is given by

En �

ffiffiffi
2

p Pn=2 �1
k �0

(4k � 1)!!

(4k)!!
for n even

1 �
ffiffiffi
2

p P(n�1)=2
k �1

(4k � 3)!!

(4k � 2)!!
for n odd

8>>><
>>>: (1)

(Edelman et al. 1994, Edelman and Kostlan 1994),
which has asymptotic behavior

En �

ffiffiffiffiffiffi
2n

p

s
: (2)

GIRKO’S CIRCULAR LAW considers EIGENVALUES l

(possibly complex) of a set of random n �n REAL

MATRICES with entries independent and taken from a
standard normal distribution. Then as n 0 �; l =

ffiffiffi
n

p

is uniformly distributed on the UNIT DISK in the
COMPLEX PLANE.

Edelman (1997) proved that the density of a random
complex pair of eigenvalues x 9iy of a real n �n
matrix whose elements are taken from a standard
normal distribution is

rn(x; y) �

ffiffiffi
2

p

s
yey2�x2 

erfc
ffiffiffi
2

p
y

� �
en�2(x2 �y2)

¼
ffiffiffi
2

p

s
e2y2 

y erfc ð
ffiffiffi
2

p
yÞGðn � 1 ; x2 þ y2 Þ

Gðn � 1Þ
ð3Þ

for y ]0; where erfc(z) is the ERFC (complementary
error) function, en(z) is the EXPONENTIAL SUM FUNC-

TION, and G(a ; x) is the upper INCOMPLETE GAMMA

FUNCTION. Integrating over the UPPER HALF-PLANE

gives half the expected number of complex eigenva-
lues

g
�

��
g

�

0

rn(x; y) dy dx �1 �2n(1�n)=4 : (4)

See also COMPLEX MATRIX, GIRKO’S CIRCULAR LAW,
INTEGER MATRIX, MATRIX
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Real Measure
A MEASURE that takes on real values.

See also MEASURE

Real Normed Algebra
A finite dimensional ALGEBRA A containing a copy of
the reals is a real algebra. Note that this implies that
A must be a real VECTOR SPACE. A real normed
algebra is a real algebra A with a norm that is
preserved by multiplication, i.e., ½a + b½� ½a½½b½:/

For example, the REAL NUMBERS, the COMPLEX NUM-

BERS, the QUATERNIONS, and the OCTONIONS are real
normed algebras. Multiplication need not be commu-
tative in a real normed algebra (e.g., QUATERNIONS

and OCTONIONS are noncommutative), nor does it
even need to be associative (e.g., the OCTONIONS).

A real normed algebra A satisfies a number of
algebraic restrictions. For example, if the dimension
of A is greater than 1, it must contain a copy of the
complex numbers. Similarly, if the dimension is
greater than 2, it must contain a copy of the
QUATERNIONS. And if it is greater than 4, it must
contain the OCTONIONS. In fact, these are the only
examples, as the OCTONIONS cannot be "doubled" to
make a normed algebra.

See also ALGEBRA, COMPLEX NUMBER, OCTONION,
QUATERNION, REAL NUMBER, VECTOR SPACE

Real Number
The FIELD of all RATIONAL and IRRATIONAL numbers is
called the real numbers, or simply the "reals," and
denoted R: The set of real numbers is also called the
CONTINUUM, denoted C . The set of reals is called
Reals in Mathematica , and a number x can be tested
to see if it is a member of the reals using the
command Element[x , Reals].

The real numbers can be extended with the addition
of the IMAGINARY NUMBER I , equal to

ffiffiffiffiffiffi
�1

p
: Numbers

OF THE FORM x�iy; where x and y are both real, are
called COMPLEX NUMBERS, which also form a FIELD.
Another extension which includes both the real



numbers and the infinite ORDINAL NUMBERS of Georg
Cantor is the SURREAL NUMBERS.

Plouffe’s "Inverse Symbolic Calculator" includes a
huge database of 54 million real numbers which are
algebraically related to fundamental mathematical
constants and functions.

See also COMPLEX NUMBER, CONTINUUM, EXTENDED

REAL NUMBER (AFFINE), EXTENDED REAL NUMBER

(PROJECTIVE), I , IMAGINARY NUMBER, INTEGER RELA-

TION, RATIONAL NUMBER, REAL NUMBER PICKING,
REAL PART, SURREAL NUMBER
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Real Number Picking
Pick two real numbers x and y at random in (0; 1)
with a UNIFORM DISTRIBUTION. What is the PROB-

ABILITY Peven that [x=y] ; where [r] denotes NEAREST

INTEGER FUNCTION, is EVEN? The answer may be
found as follows.

P aB
x

y 
Bb

 !
�

P(ay Bx Bby) for 0 5a Bb B1

P
x

b 
By B

x

a

 !
for 1 Ba Bb

8><
>:

�
g

1

0 g
by

ay

dx dy �1
2(b �a) for 0 5a Bb B1

g
1

0 g
x =a

x=b

dy dx �
1

2a 
�

1

2b
for 1 Ba Bb

8>>>><
>>>>:

(1)

so

Peven �P 0 B
x

y 
B1

2

 !
�
X�
n�1

P 2n �1
2 B

x

y 
B2n �1

2

 !

�1
2

1
2 �0
� �

�
X�
n�1

1

2 2n � 1
2

� �� 1

2 2n � 1
2

� �
2
4

3
5

�1
4 �
X�
n�1

1

4n � 1 
�

1

4n � 1

 !

�1
4 �

1
3 �

1
5 �

1
7 �

1
9 �. . .

� �
�1

4 �(1 �tan �11)

�
5

4 
�

p

4 
�1

4(5 � p) :46 :460% (2)

(Putnam Exam).

References
Putnam Exam. Problem B-3 in the 54th Putnam Exam.

Real Part

The real part R[z] of a COMPLEX NUMBER z �x �iy is
the REAL NUMBER not multiplying I , so R[x �iy] �x:
In terms of z itself,

R[z] �1
2(z � ̄z) ;

where z̄ is the COMPLEX CONJUGATE of z . The real part
is implemented in Mathematica as Re[z ].

See also ABSOLUTE SQUARE, ARGUMENT (COMPLEX

NUMBER), COMPLEX CONJUGATE, COMPLEX PLANE,
IMAGINARY PART, MODULUS (COMPLEX NUMBER)
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Real Polynomial
A POLYNOMIAL having only REAL NUMBERS as COEFFI-

CIENTS. A polynomial with real coefficients is a
product of IRREDUCIBLE POLYNOMIALS of first and
second degrees.

See also POLYNOMIAL

Real Projective Plane

The closed topological MANIFOLD, denoted RP2; which
is obtained by projecting the points of a plane E from
a fixed point P (not on the plane), with the addition of



the LINE AT INFINITY, is called the real projective
plane. There is then a one-to-one correspondence
between points in E and lines through P . Since each
line through P intersects the sphere S2 centered at P
and tangent to E in two ANTIPODAL POINTS, RP2 can
be described as a QUOTIENT SPACE of S2 by identifying
any two such points. The real projective plane is a
NONORIENTABLE SURFACE.
The BOY SURFACE, CROSS-CAP, and ROMAN SURFACE

are all homeomorphic to the real projective plane and,
because RP2 is nonorientable, these surfaces contain
self-intersections (Kuiper 1961, Pinkall 1986).

See also BOY SURFACE, CROSS-CAP, CROSS SURFACE,
HENNEBERG’S MINIMAL SURFACE, NONORIENTABLE

SURFACE, PROJECTIVE PLANE, REAL PROJECTIVE

SPACE, ROMAN SURFACE
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Real Projective Space

See also COMPLEX PROJECTIVE SPACE, REAL PROJEC-

TIVE PLANE, REAL SPACE

Real Quadratic Field
A QUADRATIC FIELD Qð

ffiffiffiffi
D

p
Þ with D �0.

See also IMAGINARY QUADRATIC FIELD, QUADRATIC

FIELD

Real Space

See also COMPLEX SPACE, REAL LINE

Real Vector
A VECTOR whose elements are REAL NUMBERS.

See also COMPLEX VECTOR, REAL NUMBER, VECTOR

Real Vector Bundle

See also VECTOR BUNDLE

Real Vector Space

See also COMPLEX VECTOR SPACE, VECTOR SPACE

Realizer
A SET R of LINEAR EXTENSIONS of a POSET P �(X ; 5) is
a realizer of P (and is said to realize P ) provided that
for all x; y � X ; x 5y IFF x is below y in every member
of R .

See also DOMINANCE, LINEAR EXTENSION, PARTIALLY

ORDERED SET, POSET DIMENSION

Reals
REAL NUMBER

Real-Valued Function
REAL FUNCTION

Rearrangement Theorem
Each row and each column in the GROUP multi-
plication table lists each of the GROUP elements once
and only once. From this, it follows that no two
elements may be in the identical location in two rows
or two columns. Thus, each row and each column is a
rearranged list of the GROUP elements. Stated other-
wise, given a GROUP of n distinct elements
(I ; a ; b; c; . . . ; n) ; the set of products
(aI ; a2 ; ab ; ac ; . . . ; an) reproduces the n original
distinct elements in a new order.

See also GROUP

Reciprocal
The reciprocal of a REAL or COMPLEX NUMBER z "0 is
its MULTIPLICATIVE INVERSE 1 =z: The reciprocal of a
COMPLEX NUMBER z �x �iy is given by

1

x � iy 
�

x � iy

x2 � y2 
�

x

x2 � y2 
�

y

x2 � y2 
i :

Given a geometric figure consisting of an assemblage
of points, the POLARS with respect to an INVERSION

CIRCLE constitute another figure. These figures are
said to be reciprocal with respect to each other. Then
there exists a DUALITY PRINCIPLE which states that
theorems for the original figure can be immediately
applied to the reciprocal figure after suitable mod-
ification (Lachlan 1893).

See also INVERSION, POLAR, POLE (INVERSION), RE-

CIPROCAL CURVE, RECIPROCATION

Reciprocal Curve
The reciprocal curve of a given circle is the LOCUS of a
point which moves so that its distance from the center
of reciprocation varies as its distance from the line
which is the reciprocal of the center of the given



circle. The reciprocal of a circle is therefore a CONIC

SECTION whose FOCUS is the center of reciprocation
and whose directrix is the line which corresponds to
the center of reciprocation. The conic will be an
ELLIPSE, HYPERBOLA, or PARABOLA if the center of
reciprocation lies inside, outside, or on the given
circle, respectively (Lachlan 1893, p. 181).

See also DUALITY PRINCIPLE, POLAR, POLE (INVER-

SION), RECIPROCATION
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Reciprocal Difference
The reciprocal differences are closely related to the
DIVIDED DIFFERENCE. The first few are explicitly
given by

r(x0 ; x1) �
x0 � x1

f0 � f1

(1)

r2(x0 ; x1 ; x2) �
x0 � x2

r(x0 ; x1) � r(x1 ; x2) 
�f1 (2)

r3(x0 ; x1 ; x2 ; x3)

�
x0 � x3

r2(x0 ; x1 ; x2) � r2(x1 ; x2 ; x3) 
� r(x1 ; x2) (3)

rn(x0 ; x1 ; . . .  ; xn)

�
x0 � xn

rn�1(x0 ; . . . ; xn�1) � rn �1(x1 ; . . .  xn)

�rn�x(x1 ; . . .  ; xn�1) : (4)

See also BACKWARD DIFFERENCE, CENTRAL DIFFER-

ENCE, DIVIDED DIFFERENCE, FINITE DIFFERENCE,
FORWARD DIFFERENCE
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Reciprocal Matrix
MATRIX INVERSE

Reciprocal Permutation
INVERSE PERMUTATION

Reciprocal Polyhedron
DUAL POLYHEDRON

Reciprocal Polynomial
Given a polynomial in a single complex variable with
complex coefficients

p(z) �anzn �an�1zn�1 �. . .�a0 ;

the reciprocal polynomial is defined by

p�(z) � ̄a0zn � ̄a1zn�1 �. . .� ̄an ;

where ā denotes the COMPLEX CONJUGATE.

See also SCHUR TRANSFORM
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Reciprocating Sphere
MIDSPHERE

Reciprocation
An incidence-preserving transformation in which
points are transformed into their POLARS. A PROJEC-

TIVE GEOMETRY-like DUALITY PRINCIPLE holds for
reciprocation which states that theorems for the
original figure can be immediately applied to the
RECIPROCAL figure after suitable modification (La-
chlan 1893, pp. 174 �/182). Reciprocation (or "polar
reciprocation") is the strictly proper term for duality.
Brückner (1900) gave one the first exact definitions of
polar reciprocation for constructing DUAL POLYHEDRA,
although the plane geometric version (POLE, POLAR,
and POWER of a circle) was considered by none less
than Euclid (Wenninger 1983, pp. 1 �/2).

Lachlan 1893 (pp. 257 �/265) discusses another type of
reciprocation he terms "circular reciprocation." How-
ever, the circular reciprocal figure is, in general, more
complicated than the original, so the method is not as
powerful as the usual polar reciprocation.

See also DUALITY PRINCIPLE, POLAR, POLE (INVER-

SION), RECIPROCAL
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Reciprocity Law
RECIPROCITY THEOREM

Reciprocity Theorem
If there exists a RATIONAL INTEGER x such that, when
n , p , and q are POSITIVE INTEGERS,

xn �q (mod p) ;

then q is the n -adic residue of p , i.e., q is an n -adic
residue of p IFF xn �q (mod p) is solvable for x .
Reciprocity theorems relate statements OF THE

FORM "p is an n -adic residue of q" with reciprocal
statements of the form "q is an n -adic residue of p ."

The first case to be considered was n �2 (the
QUADRATIC RECIPROCITY THEOREM), of which Gauss
gave the first correct proof. Gauss also solved the case
n �3 (CUBIC RECIPROCITY THEOREM) using INTEGERS

OF THE FORM a �br ; where r is a root of x2 �x �1 �0
and a , b are rational INTEGERS. Gauss stated the case
n �4 (BIQUADRATIC RECIPROCITY THEOREM) using the
GAUSSIAN INTEGERS.

Proof of n -adic reciprocity for PRIME n was given by
Eisenstein in 1844 �/50 and by Kummer in 1850 �/61.
In the 1920s, Artin formulated ARTIN’S RECIPROCITY

THEOREM, a general reciprocity law for all orders.

See also ARTIN RECIPROCITY, CLASS FIELD THEORY,
CLASS NUMBER, CUBIC RECIPROCITY THEOREM, LANG-

LANDS PROGRAM, LANGLANDS RECIPROCITY, OCTIC

RECIPROCITY THEOREM, QUADRATIC RECIPROCITY

THEOREM, QUARTIC RECIPROCITY THEOREM, ROOK

RECIPROCITY THEOREM
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Recognize
LATTICE REDUCTION

Recontres Problem
DERANGEMENT

Rectangle

A closed planar QUADRILATERAL with opposite sides of

equal lengths a and b , and with four RIGHT ANGLES.
The AREA of the rectangle is

A �ab;

and its DIAGONALS p and q are of length

p �q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
:

A SQUARE is a degenerate rectangle with a �b .
A number of important topological surfaces can be
constructed from the rectangle. Gluing both pairs of
opposite edges together with no twists gives a TORUS,
gluing two opposite edges together after giving a half-
twist gives a MÖ BIUS STRIP, gluing both pairs of
opposite edges together giving one pair a half-twist
gives a KLEIN BOTTLE, and giving both pairs a half-
twist gives a PROJECTIVE PLANE (Stewart 1997).

See also BLANCHE’S DISSECTION, FAULT-FREE REC-

TANGLE, GOLDEN RECTANGLE, INCOMPARABLE REC-

T A N G L E S , K L E I N  B O T T L E , M Ö B I U S  S T R I P ,
OVERLAPPING RECTANGLES, PERFECT RECTANGLE,
PROJECTIVE PLANE, RECTANGLE TILING, SQUARE,
TORUS
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Rectangle Function

The rectangle function P(x) is a function which is 0
outside the interval [�1=2; 1=2] and unity inside it. It
is also called the GATE FUNCTION, PULSE FUNCTION, or



WINDOW FUNCTION, and is defined by

P(x) �

0 for ½x½ > 1
2

1
2 for ½x½�1

2

1 for ½x½B1
2:

8><
>: (1)

The function f (x) �h P((x �c) =b) has height h , center
c , and full-width b . Identities satisfied by the rec-
tangle function include

P(x) �H x�1
2

� �
�H x�1

2

� �
(2)

�H 1
2 �x
� �

�H 1
2 �x
� �

�1 (3)

�H 1
4 �x2
� �

(4)

�1
2 sgn x �1

2

� �
�sgn x �1

2

� �h i
; (5)

where H(x) is the HEAVISIDE STEP FUNCTION. The
FOURIER TRANSFORM of the rectangle function is
given by

F[P(x)] �g
�

��

e �2 pikx P(x) dx �sinc( pk) ; (6)

where sinc(x) is the SINC FUNCTION.

See also ABSOLUTE VALUE, BOXCAR FUNCTION, FOUR-

IER TRANSFORM–RECTANGLE FUNCTION, HEAVISIDE

STEP FUNCTION, RAMP FUNCTION, SGN, TRIANGLE

FUNCTION, UNIFORM DISTRIBUTION
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Rectangle Squaring

Given a RECTANGLE �BCDE; draw EF �DE on an
extension of BE . Bisect BF and call the MIDPOINT G .
Now draw a SEMICIRCLE centered at G , and construct
the extension of ED which passes through the
SEMICIRCLE at H . Then �EKLH has the same AREA

as �BCDE : This can be shown as follows:

A(�BCDE) �BE � ED �BE � EF

(a �b)(a �b) �a2 �b2 �c2 :
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Rectangle Tiling

The number of ways N(m; n) in which an m �n
RECTANGLE can be tiled into subrectangles can be
computed by counting the number of ways in which
the upper right-hand corner can be selected for a
given lower left-hand corner. For a lower left-hand
corner with coordinates (i, j ), there are (m �i)(n �j)
possible upper right-hand corners, so

N(m; n) �
Xm�1

i�0

Xn�1

j�0

(m �i)(n �j) �1
4m(m �1)n(n �1):

Equivalently, N(m; n) is the number of ways of
picking two lines out of sets of m�1 and n�1 lines,
giving

N(m; n)�
m�1

2

� 	
n�1

2

� 	
�1

4m(m�1)n(n�1);

as before. Particular tilings are shown above for 2�2
and 2�3 rectangles.

See also PERFECT RECTANGLE, RECTANGLE, TRIANGLE

TILING
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Rectangular Coordinates
CARTESIAN COORDINATES

Rectangular Distribution
UNIFORM DISTRIBUTION



Rectangular Hyperbola

A HYPERBOLA for which the ASYMPTOTES are PERPEN-

DICULAR, also called an EQUILATERAL HYPERBOLA or
RIGHT HYPERBOLA. This occurs when the SEMIMAJOR

and SEMIMINOR AXES are equal. This corresponds to
taking a �b , giving eccentricity e �

ffiffiffi
2

p
: Plugging

a �b into the general equation of a HYPERBOLA with
SEMIMAJOR AXIS parallel to the X -AXIS and SEMIMINOR

AXIS parallel to the Y -AXIS (i.e., vertical DIRECTRIX),

(x � x0)2

a2
�

(y � y0)2

b2
�1 (1)

therefore gives

(x �x0)2 �(y �y0)2 �a2 : (2)

The rectangular hyperbola opening to the left and
right has polar equation

r2 �a2 sec(2 u) ; (3)

and the rectangular hyperbola opening in the first
and third quadrants has the Cartesian equation

xy �a2 : (4)

The INVERSE CURVE of a rectangular hyperbola with
INVERSION CENTER at the center of the hyperbola is a
LEMNISCATE (Wells 1991).

If the three vertices of a TRIANGLE DABC lie on a

rectangular hyperbola, then so does the ORTHOCEN-

TER H (Wells 1991). Equivalently, if four points form
an ORTHOCENTRIC SYSTEM, then there is a family of
rectangular hyperbolas through the points. Moreover,
the LOCUS of centers O of these hyperbolas is the
NINE-POINT CIRCLE of the triangle (Wells 1991).
If four points do not form an ORTHOCENTRIC SYSTEM,
then there is a unique rectangular hyperbola passing
through them, and its center is given by the inter-
section of the NINE-POINT CIRCLES of the points taken
three at a time (Wells 1991).

See also HYPERBOLA, LEMNISCATE, NINE-POINT CIR-

CLE, ORTHOCENTRIC SYSTEM
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Rectangular Matrix
A MATRIX for which horizontal and vertical dimen-
sions are not the same (i.e., an m �n MATRIX with
m "n) :/

See also MATRIX, SQUARE MATRIX

Rectangular Parallelepiped

A closed box composed of 3 pairs of rectangular faces
placed opposite each other and joined at RIGHT

ANGLES to each other. This PARALLELEPIPED therefore
corresponds to a rectangular "box." If the lengths of
the sides are denoted a , b , and c , then the VOLUME is

V �abc; (1)

the total SURFACE AREA is

S �2(ab �bc �ca) (2)

and the length of the "space" DIAGONAL is

dabc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2�c2

p
: (3)

If a�b�c; then the rectangular parallelepiped is a
CUBE.

See also CUBE, EULER BRICK, PARALLELEPIPED

References
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables,

28th ed. Boca Raton, FL: CRC Press, p. 127, 1987.



Kern, W. F. and Bland, J. R. "Rectangular Parallelepiped."
§10 in Solid Mensuration with Proofs, 2nd ed. New York:
Wiley, pp. 21 �/25, 1948.

Rectangular Projection
EQUIRECTANGULAR PROJECTION

Rectifiable Current
The space of currents arising from rectifiable sets by
integrating a differential form is called the space of 2-
D rectifiable currents. For C a closed bounded
rectifiable curve of a number of components in R3 ;
C bounds a rectifiable current of least AREA. The
theory of rectifiable currents generalizes to m -D
surfaces in Rn :/

See also INTEGRAL CURRENT, REGULARITY THEOREM
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Rectifiable Set
The rectifiable sets include the image of any
LIPSCHITZ FUNCTION f from planar domains into R3 :
The full set is obtained by allowing arbitrary measur-
able subsets of countable unions of such images of
Lipschitz functions as long as the total AREA remains
finite. Rectifiable sets have an "approximate" tangent
plane at almost every point.
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Rectification
The term rectification is sometimes used to refer to
the determination of the length of a curve.

Rectification also refers to the operation which con-
verts the midpoints of the edges of a regular poly-
hedron to the vertices of the related "rectified"
polyhedron. Rectified forms are bounded by a combi-
nation of rectified cells and VERTEX FIGURES. There-

fore, a rectified polychoron rfp ; q; rg is bounded by
r fp; qgs/ and fq; rgs/. For example, r f3; 3; 5g is
bounded by 600 truncated tetrahedra (truncated
cells) and 120 icosahedra (vertex figures). A rectified
polyhedron is indicated by perpending an "r" to the
Schläfli symbol.

POLYHEDRON SCHLÄ FLI

SYMBOL

rectified polygon SCHLÄ FLI

SYMBOL

TETRAHEDRON /f3; 3g/ OCTAHEDRON /rf3; 3g/
/�f3; 4g/

OCTAHEDRON /f3; 4g/ CUBOCTAHEDRON /rf3; 4g� 3
4

= >
/

CUBE /f4; 3g/ CUBOCTAHEDRON /rf4; 3g� 3
4

= >
/

ICOSAHEDRON /f3; 5g/ ICOSIDODECAHEDRON /rf3; 5g� 3
5

= >
/

DODECAHEDRON /f5; 3g/ ICOSIDODECAHEDRON /rf5; 3g� 3
5

= >
/

16-CELL /f3; 3; 4g/ 24-CELL /rf3; 3; 4g/
/�f3; 4; 3g/

Rectification of the six regular POLYCHORA gives five
(not six) new POLYCHORA since the rectified 16-CELL

rf3; 3; 4g is the 24-CELL f3; 4; 3g:/

See also QUADRABLE, SQUARING, STELLATION, TRUN-

CATION, VERTEX FIGURE

Rectifying Latitude
An AUXILIARY LATITUDE which gives a sphere having
correct distances along the meridians. It is denoted m

(or v) and is given by

m�
pM

2Mp

: (1)

/Mp is evaluated for M at the north pole (/f�90�); and
M is given by

M�a 1�e2
� �

g
f

0

df

1 � e2 sin2 f
� �3=2

�a g
f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2 sin2 f

q
df�

e2 sin f cos fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2 sin2 f

q
2
4

3
5:

ð2Þ

A series for M is

M ¼ a½ð1�1
4e

2� 3
64e

4� 5
256e

6�. . .Þf

� 3
8 e2� 3

32 e4� 45
1024 e6�. . .

� �
sin(2f)

� 15
256 e4� 45

1024 e6�. . .
� �

sin(4f)



� 35
3072 e

6 �. . .
� �

sin(6f) �. . .
; (3)

and a series for m is

m � f � 3
2 e1 �

9
16 e

3
1 �. . .

� �
sin(2f)

� 15
16 e

2
1 �

15
32 e

4
1 �. . .

� �
sin(4f)

� 35
48 e

3
1 �. . .

� �
sin(6f) � 315

512 e
4
1 �. . .

� �
sin(8f) �. . .  ;

ð4Þ

where

e1 �
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e2

p : (5)

The inverse formula is

f � m � 3
2 e1 �

27
32 e

3
1 �. . .

� �
sin(2m)

� 21
16 e

2
1 �

55
32 e

4
1 �. . .

� �
sin(4m)

� 151
96 e3

1 �. . .
� �

sin(6m)

� 1097
512 e4 �. . .
� �

sin(8m) �. . . (6)

See also LATITUDE
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Rectifying Plane
The PLANE spanned by the TANGENT VECTOR T and
BINORMAL VECTOR B.

See also BINORMAL VECTOR, TANGENT VECTOR

Rectilinear Crossing Number
The minimum number n̄(G) of crossings in a straight
line drawing of a graph G in a plane. For a COMPLETE

GRAPH of order n ]10; the rectilinear crossing num-
ber is always larger than the general graph crossing
number. For the COMPLETE GRAPH Kn with n �1, 2,
..., n̄(G) is 0, 0, 0, 0, 1, 3, 9, 19, 36, 62, ... (Sloane’s
A014540; White and Beineke 1978, Schneinerman
and Wilf 1994). Although it had long been known that
n̄ K10ð Þ was either 61 or 62 (Singer 1971, Gardner
1986), it was finally proven to be 62 by Brodsky et al.
(2000).

Upper limits have been provided by Singer (1971),
who showed that

n̄ Knð Þ5 1
312 5n4 �39n3 �91n2 �57n
� �

; (1)

and Jensen (1971), who showed that

n̄ Knð Þ5 7
432 n

4 �O n3
� �

: (2)

Bounds for n̄ Knð Þ are given by

0:290 B
61

210 
5 r � lim

n0�

n̄ Knð Þ
n
4

� 	5
5

13 
B0:385; (3)

where n
k

� �
is a BINOMIAL COEFFICIENT and the exact

value of r is not known (Finch).

The rectilinear crossing number has an unexpected
connection with SYLVESTER’S FOUR-POINT PROBLEM

(Finch).

See also CROSSING NUMBER (GRAPH), PLANAR

STRAIGHT LINE GRAPH, SYLVESTER’S FOUR-POINT

PROBLEM, TOROIDAL CROSSING NUMBER
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A Tribute to Paul Erdos. Papers from the Conference in
Honor of Erdos’ 80th Birthday Held at Trinity College,
Cambridge, March 1993 (Ed. B. Bollobás and A. Thoma-
son). Cambridge, England: Cambridge University Press,
pp. 557 �/562, 1997.

Recurrence Relation
A mathematical relationship expressing fn as some
combination of fi with i Bn . The solutions to a linear
recurrence can be computed straightforwardly, but
QUADRATIC RECURRENCES are not so well understood.
The sequence generated by a recurrence relation is
called a RECURRENCE SEQUENCE. Perhaps the most
famous example of a recurrence relation is the one
defining the FIBONACCI NUMBERS,

Fn�Fn�2�Fn�1

for n]3 and with F1�F2�1:/

See also ARGUMENT ADDITION RELATION, ARGUMENT

MULTIPLICATION RELATION, CLENSHAW RECURRENCE

FORMULA, QUADRATIC RECURRENCE, RECURRENCE

SEQUENCE, REFLECTION RELATION, TRANSLATION RE-

LATION
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Recurrence Sequence
A sequence of numbers generated by a RECURRENCE

RELATION is called a recurrence sequence. Perhaps
the most famous recurrence sequence is the FIBO-

NACCI NUMBERS.

For a finite linear recurrence sequence of functions

si(x)�Ai(x)si�1(x)�Bi(x)

where i�1, ..., r�1; and sr(x)�h(x); then

s1(x)�

B1(x) �A1(x) 0
::: 0

B2(x) 1 �A2(x)
::: 0

B3(x) 0 1
::: n

n n :::
::: 0

Br�1(x) 0 0
::: �Ar�1(x)

h(x) 0 0
::: 1

::::::::::::

::::::::::::
(1)

(Mansour 2000).

If a sequence xnf g with x1�x2�1 is described by a
two-term linear RECURRENCE RELATION OF THE FORM

xn�Axn�1�Bxn�2 (2)

for n]3 and A and B constants, then the closed form
for xn is given by

xn�
an � bn

a� b
(3)

where a and b are the ROOTS of the QUADRATIC

EQUATION

x2�Ax�B�0; (4)

a�1
2 A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �
(5)

b�1
2 A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2�4B

p� �
(6)

For example, the FIBONACCI NUMBERS Fn which are
equal to 1, 1, 2, 3, 5, 8, ... for n�1, 2, ..., have A�
B�1; so a� 1�

ffiffiffi
5

p� �
=2 and b� 1�

ffiffiffi
5

p� �
=2; giving

Fn�
1
2 1 �

ffiffiffi
5

p� �h in

� 1
2 1 �

ffiffiffi
5

p� �h in

ffiffiffi
5

p

�
1 �

ffiffiffi
5

p� �n
� 1 �

ffiffiffi
5

p� �n

2n
ffiffiffi
5

p : (7)

Grosjean (1993) discusses how to rewrite such "dif-
ference of powers of roots" solutions in explicit integer
form.

The general second-order linear recurrence

xn�Axn�1�Bxn�2 (8)

for constants A and B with arbitrary x1 and x2 has
terms

x1�x1

x2�x2

x3�Bx1�Ax2

x4�Bx2�ABx1�A2x2

x5�B2x1�2ABx2�A2Bx1�A3x2

x6�B2x2�2AB2x1�3A2Bx2�A3Bx1�A4x2

x7�B3x1�4A3Bx2�3A2B2x1�3AB2x2�A4Bx1�A5x2;

so an arbitrary term can be written as

xn�
Xn�2

k�0

1
2(n�k�2)
j k

k

 !
Ak B (n�k�1)=2b c

�x[n�k (mod 2)]
1 x[n�k�1 (mod 2)]

2 : (9)

��(Ax1�x2)
Xn�2

k�0

A2k�n�2B�k�n�2 k
n�k�2

� 	

�x1

Xn�1

k�0

A2k�n�1B�k�n�1 k
n�k�1

� 	
: (10)

The general linear third-order recurrence

xn�Axn�1�Bxn�2�Cxn�3 (11)

has solution



xn �x1

�
a�n

A � 2 aB � 3a2C 
�

b�n

A � 2bB � 3b2C

�
g �n

A � 2gB � 3g2C

	
� Ax1 �x2ð Þ

�
�

a1 �n

A � 2aB � 3 a2C 
�

b1�n

A � 2 bB � 3b2B

�
g1 �n

A � 2gC � 3g2C

	
� Bx1 �Ax2 �x3ð Þ

�
�

a2 �n

A � 2aB � 3 a2C 
�

b2�n

A � 2 bB � 3b2C

�
g2 �n

A � 2gB � 3g2C

	
; (12)

where a; b; and g are the roots of the polynomial

Cx3 �Bx2 �Ax �1 : (13)

A QUOTIENT-DIFFERENCE TABLE eventually yields a
line of 0s IFF the starting sequence is defined by a
linear RECURRENCE RELATION.

A linear second-order recurrence

fn�1 �xfn �yfn�1 (14)

can be solved rapidly using a "rate doubling,"

fn�2 � x2 �2y
� �

fn �y2fn�2 ; (15)

"rate tripling"

fn�3 � x3 �3xy
� �

fn �y3fn�3 ; (16)

or in general, "rate k -tupling" formula

fn�k �pkfn �qkfn�k ; (17)

where

p0 �2 (18)

p1 �x (19)

pk �2(�y)k =2Tk x = 2i
ffiffiffi
y

pð Þð Þ  (20)

pk �1 �xpk �ypk�1 (21)

(here, Tk(x) is a CHEBYSHEV POLYNOMIAL OF THE

FIRST KIND) and

q0 ��1 (22)

q1 �y (23)

qk ��(�y)k (24)

qk �1 ��yqk (25)

(Gosper and Salamin 1972).

Let

s(X) �
Ym
i�1

(1 � aiX)ni �1 �s1X �. . .�snXn ; (26)

where the generalized POWER sum a(h) for h �0, 1, ...
is given by

a(h) �
Xm

i�1

Ai(h) ah
i ; (27)

with distinct NONZERO roots ai ; COEFFICIENTS Ai(h)
which are POLYNOMIALS of degree ni �1 for POSITIVE

INTEGERS ni ; and i � [1; m]: Then the sequence ahf g
with ah �a(h) satisfies the RECURRENCE RELATION

ah�n �siah�n�1 �. . .�snah (28)

(Meyerson and van der Poorten 1995).

The terms in a general recurrence sequence belong to
a finitely generated RING over the INTEGERS, so it is
impossible for every RATIONAL NUMBER to occur in
any finitely generated recurrence sequence. If a
recurrence sequence vanishes infinitely often, then
it vanishes on an arithmetic progression with a
common difference 1 that depends only on the roots.
The number of values that a recurrence sequence can
take on infinitely often is bounded by some INTEGER l
that depends only on the roots. There is no recurrence
sequence in which each INTEGER occurs infinitely
often, or in which every GAUSSIAN INTEGER occurs
(Myerson and van der Poorten 1995).

Let m(n) be a bound so that a nondegenerate INTEGER

recurrence sequence of order n takes the value zero at
least m(n) times. Then m(2)�1; m(3)�6; and m(4)]9
(Myerson and van der Poorten 1995). The maximal
case for m(3) is

an�3�2an�2�4an�1�4an (29)

with

a0�a1�0 (30)

a2�1: (31)

The zeros are

a0�a1�a4�a6�a13�a52�0 (32)

(Beukers 1991).

See also BINET FORMS, BINET’S FIBONACCI NUMBER

FORMULA, FAST FIBONACCI TRANSFORM, FIBONACCI

NUMBER, LUCAS SEQUENCE, QUOTIENT-DIFFERENCE

TABLE, SKOLEM-MAHLER-LERCH THEOREM
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1990.

Grosjean, C. C. In Topics in Polynomials of One and Several
Variables and Their Applications: Volume Dedicated to
the Memory of P.L. Chebyshev (1821 �/1894) (Ed.
T. M. Rassias, H. M. Srivastava, and A. Yanushauskas).
Singapore: World Scientific, 1993.

Levy, H. and Lessman, F. Finite Difference Equations. New
York: Dover, 1992.

Mansour, T. Permutations Avoiding a Pattern from and
at Least Two Patterns from S3 : 31 Jul 2000. http://
xxx.lanl.gov/abs/math.CO/0007194/.

Myerson, G. and van der Poorten, A. J. "Some Problems
Concerning Recurrence Sequences." Amer. Math. Monthly
102, 698 �/705, 1995.

Riordan, J. An Introduction to Combinatorial Analysis. New
York: Wiley, 1980.

Wimp, J. Computations with Recurrence Relations. Boston,
MA: Pitman, 1984.

Recurring Decimal
REPEATING DECIMAL

Recurring Digital Invariant
To define a recurring digital invariant of order k ,
compute the sum of the kth powers of the digits of a
number n . If this number n ? is equal to the original
number n , then n �n ? is called a k -NARCISSISTIC

NUMBER. If not, compute the sums of the kth powers
of the digits of n?; and so on. If this process eventually
leads back to the original number n , the smallest
number in the sequence fn; n?; nƒ; . . .g is said to be a
k -recurring digital invariant. For example,

55 : 53 �53 �250

250 : 23 �53 �03 �133

133 : 13 �33 �33 �55 ;

so 55 is an order 3 recurring digital invariant. The
following table gives recurring digital invariants of
orders 2 to 10 (Madachy 1979).

Order RDI Cycle Lengths

2 4  8

3 55, 136, 160, 919 3, 2, 3, 2

4 1138, 2178 7, 2

5 244, 8294, 8299, 9044,
9045, 10933,

28, 10, 6, 10, 22,
4, 12, 2, 2

24584, 58618, 89883

6 17148, 63804, 93531,
239459, 282595

30, 2, 4, 10, 3

7 80441, 86874, 253074,
376762,

92, 56, 27, 30,
14, 21

922428, 982108, five
more

8 6822, 7973187,
8616804

9 322219, 2274831,
20700388, eleven more

10 20818070, five more

See also 196-ALGORITHM, ADDITIVE PERSISTENCE,
DIGITADDITION, DIGITAL ROOT, HAPPY NUMBER, KA-

PREKAR NUMBER, NARCISSISTIC NUMBER, VAMPIRE

NUMBER
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Recursion
A recursive process is one in which objects are defined
in terms of other objects of the same type. Using some
sort of RECURRENCE RELATION, the entire class of
objects can then be built up from a few initial values
and a small number of rules. The FIBONACCI NUM-

BERS are most commonly defined recursively. Care,
however, must be taken to avoid SELF-RECURSION, in
which an object is defined in terms of itself, leading to
an infinite nesting.

See also ACKERMANN FUNCTION, PRIMITIVE RECUR-

SIVE FUNCTION, RECURRENCE RELATION, RECUR-

R E N C E  S E Q U E N C E , R E C U R S I V E  F U N C T I O N ,
REGRESSION, RICHARDSON’S THEOREM, SELF-RECUR-

SION, SELF-SIMILARITY, TAK FUNCTION
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Recursive Function
A recursive function is a function generated by (1)
ADDITION, (2) MULTIPLICATION, (3) selection of an
element from a list, and (4) determination of the
truth or falsity of the INEQUALITY aBb according to
the technical rules:



1. If F and the sequence of functions G1 ; ..., Gn are
recursive, then so is F(G1 ; . . .  ; Gn) :/
2. If F is a recursive function such that there is an
x for each a with H(a; x) �0; then the smallest x
can be obtained recursively.

A TURING MACHINE is capable of computing recursive
functions.

See also TURING MACHINE
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Recursive Monotone Stable Quadrature
A QUADRATURE (NUMERICAL INTEGRATION) algorithm
which has a number of desirable properties.
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Red Net
The coloring red of two COMPLETE SUBGRAPHS of n=2
points (for EVEN n ) in order to generate a BLUE-EMPTY

GRAPH.

See also BLUE-EMPTY GRAPH, COMPLETE GRAPH

Red-Black Tree

An extended BINARY TREE satisfying the following
conditions:

1. Every node has two CHILDREN, each colored
either red or black.
2. Every LEAF node is colored black.
3. Every red node has both of its CHILDREN colored
black.
4. Every path from the ROOT to a LEAF contains the
same number (the "black-height") of black nodes.

Let n be the number of internal nodes of a red-black
tree. Then the number of red-black trees for n �1, 2,

... is 2, 2, 3, 8, 14, 20, 35, 64, 122, ... (Sloane’s
A001131). The number of trees with black roots and
red roots are given by Sloane’s A001137 and Sloane’s
A001138, respectively.

Let /Th/ be the GENERATING FUNCTION for the number
of red-black trees of black-height h indexed by the
number of LEAVES. Then

Th �1(x) � Th(x)½ 
2�Th(x)½ 
4; (1rpar (1)

where T1(x) �x �x2 : If T(x) is the GENERATING FUNC-

TION for the number of red-black trees, then

T(x) �x �x2 �T x2(1 �x)2
� �

(2)

(Ruskey). Let rb(n) be the number of red-black trees
with n LEAVES, r(n) the number of red-rooted trees,
and b(n) the number of black-rooted trees. All three of
the quantities satisfy the RECURRENCE RELATION

R(n) �
X

n=4 5n5n=2

2m
n �2m

� 	
R(m) ; (3)

where n
k

� �
is a BINOMIAL COEFFICIENT, rb(1) �1;

rb(2) �2 for R(n) �rb(n) ; r(1) �r(3) �0; r(2) �1 for
R(n) �r(n) ; and b(1) �1 for R(n) �b(n) (Ruskey).

See also B -TREE
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Reduced Amicable Pair
QUASIAMICABLE PAIR

Reduced Fraction
A FRACTION a=b written in lowest terms, i.e., by
dividing NUMERATOR and DENOMINATOR through by
their GREATEST COMMON DIVISOR (a, b ). For example,
2/3 is the reduced fraction of 8/12.

See also FRACTION, IMPROPER FRACTION, MIXED



FRACTION, PROPER FRACTION

Reduced Knot Diagram
A KNOT DIAGRAM in which none of the crossings are
REDUCIBLE.

See also KNOT DIAGRAM, REDUCIBLE CROSSING
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Reduced Latitude
PARAMETRIC LATITUDE

Reduced Maxwell-Bloch Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

Et �v �0 (1)

rx � vv �0 (2)

qx �Ev �0 (3)

vx � vr �Eq �0: (4)
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Reduced Residue System
Any system of f(n) integers, where f(n) is the
TOTIENT FUNCTION, representing all the RESIDUE

CLASSES RELATIVELY PRIME to n is called a reduced
residue system (Nagell 1951, p. 71).

See also COMPLETE RESIDUE SYSTEM, RESIDUE CLASS
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Reduced Root System
A ROOT SYSTEM R satisfying the additional property
that, if a � R; then the only multiples of a in R are 9a:/

See also ROOT SYSTEM
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Reducible Crossing

A crossing in a KNOT DIAGRAM for which there exists a
circle in the projection plane meeting the diagram
transversely at that crossing, but not meeting the
diagram at any other point. Removable crossings can
be removed by twisting, and so cannot occur in a
KNOT DIAGRAM of minimal CROSSING NUMBER. Redu-
cible crossings are also called nugatory crossings
(Tait 1898, Hoste et al. 1998) or removable crossings.

See also ALTERNATING KNOT, KNOT DIAGRAM, RE-

DUCED KNOT DIAGRAM
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Reducible Matrix
A SQUARE n �n matrix A �aij is called reducible if the
indices 1, 2, ..., n can be divided into two disjoint
nonempty sets i1 ; i2 ; ..., i m and j1 ; j2 ; ..., jn (with m � n �
n) such that

aia
jb �0

for a �1; 2, ..., m and b �1 ; 2, ..., n : A SQUARE MATRIX

which is not reducible is said to be IRREDUCIBLE.

See also SQUARE MATRIX
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Reducible Representation
IRREDUCIBLE REPRESENTATION

Reductio ad Absurdum
A method of PROOF which proceeds by stating a
proposition and then showing that it results in a
contradiction, thus demonstrating the proposition to



be false. In the words of G. H. Hardy , "Reductio ad
absurdum , which Euclid loved so much, is one of a
mathematician’s finest weapons. It is a far finer
gambit than any CHESS gambit: a CHESS player may
offer the sacrifice of a pawn or even a piece, but a
mathematician offers the game" (Coxeter and Greit-
zer 1967, p. 16; Hardy 1993, p. 34).

See also PROOF
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Reduction of Order
ORDINARY DIFFERENTIAL EQUATION–SECOND-ORDER

Reduction Theorem
If a fixed point is added to each group of a special
complete series, then the resulting series is complete.
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Redundancy

R(X1 ; . . . Xn) �
Xn

i�1

H Xið Þ�H X1 ; . . . ; Xnð Þ;

where H(xi) is the ENTROPY and H X1 ; . . . ; Xnð Þ is the
joint ENTROPY. Linear redundancy is defined as

L X1 ; . . . ; Xnð Þ��1
2

Xn

i�1

ln si ;

where si are EIGENVALUES of the correlation matrix.

See also PREDICTABILITY
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Ree Group

The Ree group R(q) is the AUTOMORPHISM GROUP of a
S 2 ; q �1; q3 �1ð Þ STEINER SYSTEM.

See also STEINER SYSTEM
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Reeb Foliation
The Reeb foliation of the HYPERSPHERE S3 is a
FOLIATION constructed as the UNION of two solid
TORI with common boundary.

See also FOLIATION
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Reed-Sloane Algorithm
An extension to the BERLEKAMP-MASSEY ALGORITHM

which applies when the terms of the sequences are
integers modulo some given modulus m .

See also BERLEKAMP-MASSEY ALGORITHM
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Reef Knot
SQUARE KNOT

Re-Entrant Circuit
A GRAPH CYCLE which terminates at the starting
point.

See also EULERIAN CIRCUIT, GRAPH CYCLE, HAMILTO-

NIAN CYCLE

Refined Alternating Sign Matrix
Conjecture
The fact that the numerators and denominators
obtained by taking the ratios of adjacent terms in
the triangular array of the number of �1 "bordered"
ALTERNATING SIGN MATRICES An with a 1 at the top of
column k are respectively the numbers in the (2, 1)-
and (1, 2)-Pascal triangles which are different from 1.
This conjecture was proven by Zeilberger (1996).

See also ALTERNATING SIGN MATRIX, ALTERNATING

SIGN MATRIX CONJECTURE
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Refinement
A refinement X of a COVER Y is a COVER such that
every element x �X is a SUBSET of an element y �Y :/



See also COVER

Reflection
The operation of exchanging all points of a mathe-
matical object with their MIRROR IMAGES (i.e., reflec-
tions in a mirror). Objects which do not change
HANDEDNESS under reflection are said to be AMPHI-

CHIRAL; those that do are said to be CHIRAL.

If the PLANE of reflection is taken as the yz -PLANE, the
reflection in 2- or 3-D SPACE consists of making the
transformation x 0�x for each point. Consider an
arbitrary point x0 and a PLANE specified by the
equation

ax �by �cz �d �0: (1)

This PLANE has NORMAL VECTOR

n �
a
b
c

2
4
3
5; (2)

and the POINT-PLANE DISTANCE is

D �
ax0 � by0 � cz0 � dj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2 � c2
p : (3)

The position of the point reflected in the given plane
is therefore given by

x?0�x0�2Dn̂

�
x0

y0

z0

2
4

3
5�2jax0 þ by0 þ cz0 þ dj

a2 þ b2 þ c2

a
b
c

2
4
3
5: ð4Þ

See also AMPHICHIRAL, CHIRAL, DILATION, ENANTIO-

MER, EXPANSION, GLIDE, HANDEDNESS, IMPROPER

ROTATION, INVERSION OPERATION, MIRROR IMAGE,
PROJECTION, REFLECTION PROPERTY, REFLECTION

RELATION, REFLEXIBLE, ROTATION, ROTOINVERSION,
TRANSLATION
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Reflection Formula
REFLECTION RELATION

Reflection Property
In the plane, the reflection property can be stated as
three theorems (Ogilvy 1990, pp. 73�/77):

1. The LOCUS of the center of a variable CIRCLE,
tangent to a fixed CIRCLE and passing through a
fixed point inside that CIRCLE, is an ELLIPSE.
2. If a variable CIRCLE is tangent to a fixed CIRCLE

and also passes through a fixed point outside the
CIRCLE, then the LOCUS of its moving center is a
HYPERBOLA.
3. If a variable CIRCLE is tangent to a fixed straight
line and also passes through a fixed point not on
the line, then the LOCUS of its moving center is a
PARABOLA.

Let a : I 0 R2 be a smooth regular parameterized
curve in R2 defined on an OPEN INTERVAL I , and let F1

and F2 be points in P2_a(I); where Pn is an n -D
PROJECTIVE SPACE. Then a has a reflection property
with FOCI F1 and F2 if, for each point P � a(I);

1. Any vector normal to the curve a at P lies in the
SPAN of the vectors F1P

??!
and F2P

??!
.

2. The line normal to a at P bisects one of the pairs
of opposite ANGLES formed by the intersection of
the lines joining F1 and F2 to P .

A smooth connected plane curve has a reflection
property IFF it is part of an ELLIPSE, HYPERBOLA,
PARABOLA, CIRCLE, or straight LINE.

Foci Sign Both foci finite One focus
finite

Both foci
infinite

distinct POSITIVE confocal ellipses confocal
parabolas

parallel
lines

distinct NEGATIVE confocal hyper-
bola and
perpendicular

confocal
parabolas

parallel
lines

bisector of inter-
foci line segment

equal concentric circles parallel
lines

Let S �R3 be a smooth CONNECTED SURFACE, and let
F1 and F2 be points in P3_S; where Pn is an n -D
PROJECTIVE SPACE. Then S has a reflection property
with FOCI F1 and F2 if, for each point P �S;

1. Any vector normal to S at P lies in the SPAN of
the vectors F1P

??!
and F2P

??!
.

2. The line normal to S at P bisects one of the pairs
of opposite angles formed by the intersection of the
lines joining F1 and F2 to P .

A smooth CONNECTED SURFACE has a reflection
property IFF it is part of an ELLIPSOID of revolution,



a HYPERBOLOID of revolution, a PARABOLOID of revolu-
tion, a SPHERE, or a PLANE.

Foci Sign Both foci finite One focus

finite

Both

foci

infinite

distinct POSITIVE confocal

ellipsoids

confocal

paraboloids

parallel

planes

distinct NEGATIVE confocal hyper-

boloids and plane

perpendicular

confocal

paraboloids

parallel

planes

bisector of inter-

foci line segment

equal concentric

spheres

parallel

planes

See also BILLIARDS

References
Drucker, D. "Euclidean Hypersurfaces with Reflective Prop-

erties." Geometrica Dedicata 33, 325 �/329, 1990.
Drucker, D. "Reflective Euclidean Hypersurfaces." Geome-

trica Dedicata 39, 361 �/362, 1991.
Drucker, D. "Reflection Properties of Curves and Surfaces."

Math. Mag. 65, 147 �/157, 1992.
Drucker, D. and Locke, P. "A Natural Classification of

Curves and Surfaces with Reflection Properties." Math.
Mag. 69, 249 �/256, 1996.

Ogilvy, C. S. Excursions in Geometry. New York: Dover,
pp. 73 �/77, 1990.

Wegner, B. "Comment on ‘Euclidean Hypersurfaces with
Reflective Properties’." Geometrica Dedicata 39, 357 �/359,
1991.

Reflection Relation
A mathematical relationship relating f (�x) to f (x) ; or
more generally, f (a �x) to f (x) as in the case of the
GAMMA FUNCTION identity

G(z)G(1 �z) �
p

sin( pz) 
:

See also ARGUMENT ADDITION RELATION, ARGUMENT

MULTIPLICATION RELATION, RECURRENCE RELATION,
TRANSLATION RELATION

Reflex Angle

An ANGLE more than 1808.

See also ACUTE ANGLE, ANGLE, FULL ANGLE, OBTUSE

ANGLE, RIGHT ANGLE, STRAIGHT ANGLE

Reflexible
An object is reflexible if it is superposable with its
image in a plane mirror. Also called AMPHICHIRAL.

See also AMPHICHIRAL, CHIRAL, ENANTIOMER, HAND-

EDNESS, MIRROR IMAGE, REFLECTION
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Reflexible Map
An AUTOMORPHISM which interchanges the two ver-
tices of a regular map at each edge without inter-
changing the vertices.

See also EDMONDS’ MAP

Reflexive Closure
The reflexive closure of a BINARY RELATION R on a SET

X is the minimal REFLEXIVE RELATION R? on X that
contains R . Thus aR ?a for every element a of X and
aR ?b for distinct elements a and b , provided that aRb:/

See also REFLEXIVE REDUCTION, REFLEXIVE RELA-

TION, RELATION, TRANSITIVE CLOSURE

Reflexive Graph
DIRECTED GRAPH

Reflexive Polyhedron
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Reflexive Reduction
The reflexive reduction of a BINARY RELATION R on a
SET X is the minimum relation R? on X with the same
REFLEXIVE CLOSURE as R . Thus aR?b for any elements
a and b of X , provided that a and b are distinct and
aRb :/

See also REFLEXIVE CLOSURE, RELATION, TRANSITIVE

REDUCTION

Reflexive Relation
A RELATION R on a SET S is reflexive provided that
xRx for every x in S .

See also RELATION

Reflexivity
A REFLEXIVE RELATION.



Region
An OPEN CONNECTED SET is called a region (some-
times also called a DOMAIN).

Regression
A method for fitting a curve (not necessarily a
straight line) through a set of points using some
goodness-of-fit criterion. The most common type of
regression is LINEAR REGRESSION.

The term regression is sometimes also used to refer to
RECURSION.

See also FRACTAL, LEAST SQUARES FITTING, LINEAR

REGRESSION, MULTIPLE REGRESSION, NONLINEAR

LEAST SQUARES FITTING, RECURSION, REGRESSION

COEFFICIENT, SELF-RECURSION
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Regression Coefficient
The slope b of a line obtained using linear LEAST

SQUARES FITTING is called the regression coefficient.

See also CORRELATION COEFFICIENT, LEAST SQUARES

FITTING
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Regula Falsi
FALSE POSITION METHOD

Regular Function
ANALYTIC FUNCTION, HOLOMORPHIC FUNCTION, REG-

ULAR RATIONAL FUNCTION

Regular Graph
A GRAPH is said to be regular of degree r if all LOCAL

DEGREES are the same number r . A 0-regular graph is
an EMPTY GRAPH, a 1-regular graph consists of
disconnected edges, and a 2-regular graph consists
of disconnected cycles. The first interesting case is
therefore 3-regular graphs, which are called CUBIC

GRAPHS (Harary 1994, pp. 14�/15). Similarly, 4- and 5-
regular graphs are called QUARTIC and QUINTIC

GRAPHS, respectively.

For an r -regular graph on n nodes.

E�1
2 nr;

where E is the number of EDGES. n -UNITRANSITIVE

GRAPHS are sometimes called n -regular (Harary 1994,
p. 174).

Let N(n; r) be the number of r -regular graphs with n
points. Then 05r5n�1; N(n; r)�N(n; n�1; �r);
and N(n; r)�0 when both n and r are ODD. Zhang
and Yang give N(p; r) for p512: The numbers of
nonisomorphic regular graphs with n nodes are 1, 2,
2, 4, 3, 8, 6, 22, 26, 176, ... (Sloane’s A005176;
Steinbach 1990). The numbers of nonisomorphic
CONNECTED regular graphs of order n�1, 2, ... are
1, 1, 1, 2, 2, 5, 4, 17, 22, 167, ... (Sloane’s A005177;
Steinbach 1990)

The following table gives the numbers N(n; r) of r -
regular graphs for small numbers of nodes n (Sloane’s
A051031).

n /N(n; 0)/ /N(n; 1)/ /N(n; 2)/ /N(n; 3)/ /N(n; 4)/ /N(n; 5)/ /N(n; 6)/

1 1

2 1 1

3 1 0 1

4 1 1 1 1

5 1 0 1 0 1

6 1 1 2 2 1 1

7 1 0 2 0 2 0 1

The following table gives the number of connected
regular graphs of degree r on n�r�1; r�2; ... nodes



for n even, and n �r �1 ; r �3; r �5 ; ... nodes for n
odd.

r Sloane Numbers

4 A006820 1, 1, 2, 6, 16, 59, 265, 1544, ...

5 A006821 1, 3, 60, 7848, 3459383, ...

6 A006822 1, 1, 4, 21, 266, 7849, 367860, ...

7 A014377 1, 5, 1547, ...

8 A014378 1, 1, 6, 94, 10786, 3459386, ...

9 A014381 1, 9, 88193, ...

10 A014382 1, 1, 10, 540, 805579, ...

11 A014384 1, 13, 8037796, ...

See also CAGE GRAPH, COMPLETE GRAPH, COMPLE-

TELY REGULAR GRAPH, CONFIGURATION, CUBIC

GRAPH, DISTANCE-REGULAR GRAPH, LOCAL DEGREE,
MOORE GRAPH, QUARTIC GRAPH, QUINTIC GRAPH,
SUPERREGULAR GRAPH
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Regular Isotopy
The equivalence of MANIFOLDS under continuous
deformation within the embedding space. KNOTS of
opposite CHIRALITY have AMBIENT ISOTOPY, but not
regular isotopy.

See also AMBIENT ISOTOPY

Regular Isotopy Invariant
BRACKET POLYNOMIAL

Regular Local Ring
A regular local ring is a LOCAL RING R with MAXIMAL

IDEAL m so that m can be generated with exactly d
elements where d is the KRULL DIMENSION of the
RING R . Equivalently, R is regular if the VECTOR

SPACE m=m2 has dimension d .

See also KRULL DIMENSION, LOCAL RING, REGULAR

RING, RING
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Regular Matrix
NONSINGULAR MATRIX

Regular Number
A number which has a finite DECIMAL expansion. A
number such as 1=3 �0:33333 . . . which is not regular
is said to be nonregular.

See also DECIMAL EXPANSION, REPEATING DECIMAL

Regular Parameterization
A parameterization of a SURFACE x(u; v) in u and v is
regular if the TANGENT VECTORS

@x

@u
and

@x

@v

are always LINEARLY INDEPENDENT.

Regular Patch
A regular patch is a PATCH x : U 0 Rn for which the
JACOBIAN J(x)(u; v) has rank 2 for all (u; v) �U: A
PATCH is said to be regular at a point (u0; v0) �U
provided that its JACOBIAN has rank 2 at (u0; v0): For
example, the points at f�9p=2 in the standard
parameterization of the SPHERE

(cos u sin f; sin u sin f; cos f) are not regular.



An example of a PATCH which is regular but not
INJECTIVE is the CYLINDER defined parametrically by
(cos u; sin u; v) with u � (��; �) and v � (�2 ; 2):
However, if x : U 0 Rn is an injective regular patch,
then x maps U diffeomorphically onto x(U) :/

See also INJECTIVE PATCH, PATCH, REGULAR SURFACE
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Regular Point
If f is ANALYTIC on a DOMAIN U , then a point z0 on the
boundary @U is called regular if f extends to be a
ANALYTIC FUNCTION on an OPEN SET containing U and
also the point z0 (Krantz 1999, p. 119).

See also ORDINARY POINT
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Regular Polychoron
There are sixteen regular polychora, six of which are
convex (Wells 1986, p. 68) and ten of which are
stellated (Wells 1991, p. 209). The regular convex
polychora have four principal types of symmetry axes,
and the projections into 3-spaces orthogonal to these
may be called the "canonical" projections (R. Towle).

Of the six regular convex polychora, five are typically
regarded as being analogous to the Platonic solids:
the 4-simplex (a hyper-tetrahedron), the 4-cross
polytope (a hyper-octahedron), the 4-cube (a hyper-
cube), the 600-cell (a hyper-icosahedron), and the
120-cell (a hyper-dodecahedron). The 24-cell, how-
ever, has no perfect analogy in higher or lower spaces
(R. Towle). The PENTATOPE and 24-CELL are self-dual,
the 16-CELL is the dual of the TESSERACT, and the 600-

and 120-CELLS are dual to each other.

The convex regular polychora are listed in the
following table (Coxeter 1969, p. 414; Wells 1991,
p. 210).

Name Schläfli
Symbol

Class /N0/ /N1/ /N2/ /N3/

PENTATOPE / f3; 3; 3g/ SIMPLEX 5 10 10 5

16-CELL / f3; 3; 4g/ CROSS POLY-

TOPE

8 24 32 16

TESSERACT / f4; 3; 3g/ HYPERCUBE 16 32 24 8

24-CELL / f3; 4; 3g/ 24 96 96 24

120-CELL /(5 ; 3; 3g/ 600 1200 720 120

600-CELL / f3; 3; 5g/ 120 720 1200 600

Here, N0 is the number of VERTICES, N1 the number of
EDGES, N2 the number of FACES, and N3 the number of
cells. These quantities satisfy the identity

N0 �N1 �N2 �N3 �0;

which is a version of the POLYHEDRAL FORMULA.

See also POLYCHORON, REGULAR POLYGON, REGULAR

POLYHEDRON
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Regular Polygon

An n -sided POLYGON in which the sides are all the
same length and are symmetrically placed about a
common center (i.e., the polygon is both EQUIANGULAR

and EQUILATERAL). The sum of PERPENDICULARS from
any point to the sides of a regular polygon of n sides is
n times the APOTHEM. Only certain regular polygons
are "CONSTRUCTIBLE" with RULER and STRAIGHTEDGE.
The terms EQUILATERAL TRIANGLE and SQUARE refer
to the regular 3- and 4-polygons, respectively. The
words for POLYGONS with n]5 sides (e.g., PENTAGON,
HEXAGON, HEPTAGON, etc.) can refer to either regular
or non-regular POLYGONS, although the terms gen-
erally refer to regular polygons in the absence of
specific wording.

Let s be the side length, r be the INRADIUS, and R the
CIRCUMRADIUS of a regular polygon. Then

s�2r tan
p

n

 !
(1)

�2R sin
p

n

 !
(2)



r�1
2 s cot

p

n

 !
(3)

�R cos
p

n

 !
(4)

R�1
2 s csc

p

n

 !
(5)

�r sec
p

n

 !
(6)

A�1
4 ns2 cot

p

n

 !
(7)

�nr2 tan
p

n

 !
(8)

�1
2 nR2 sin

2p

n

 !
: (9)

If the number of sides is doubled, then

s2n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R2�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2�s2

n

qr
(10)

A2n�
4rAn

2r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 � s2

n

p : (11)

Furthermore, if pk and Pk are the PERIMETERS of the
regular polygons inscribed in and circumscribed
around a given CIRCLE and ak and Ak their areas, then

P2n�
2pnPn

pn � Pn

(12)

p2n�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pnP2n

p
; (13)

and

a2n�
ffiffiffiffiffiffiffiffiffiffiffi
anAn

p
(14)

A2n�
2a2nAn

a2n � An

(15)

(Beyer 1987, p. 125).

The following table gives parameters for the first few
regular polygons, where a is the vertex angle, b is the
central angle, r is the INRADIUS, R is the CIRCUMRA-

DIUS, and A is the area (Williams 1979, p. 33).

/fng/ /a/ /b/ r R A

/f3g/ /
1
3p�60(

/ /
2
3p�120(

/ /
1
6

ffiffiffi
3

p
/ /

1
3

ffiffiffi
3

p
/ /

1
4

ffiffiffi
3

p
/

/f4g/ /
1
2p�90(

/ /
1
2p�90(

/ /
1
2/ /

1
2
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p
/ 1

/f5g/ /
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9
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5
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�
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/ /3ð2 þ

ffiffiffi
3

p
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COMPASS and STRAIGHTEDGE constructions dating
back to Euclid were capable of inscribing regular
polygons of 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48,
64, ..., sides. However, this listing is not a complete
enumeration of "constructible" polygons. In fact, a
regular n -gon is constructible only if f(n) is a POWER

of 2, where f is the TOTIENT FUNCTION (this is a
NECESSARY but not SUFFICIENT condition). More
specifically, a regular n -gon (/n]3) can be con-
structed by STRAIGHTEDGE and COMPASS (i.e., can
have trigonometric functions of its ANGLES expressed
in terms of finite SQUARE ROOT extractions) IFF

n�2kp1p2 � � �ps; (16)

where k is in INTEGER ]0 and the pi are distinct
FERMAT PRIMES. FERMAT NUMBERS are OF THE FORM

Fm�22m

�1; (17)

where m is an INTEGER]0: The only known PRIMES of
this form are 3, 5, 17, 257, and 65537.

The fact that this condition was SUFFICIENT was first
proved by Gauss in 1796 when he was 19 years old,
and it relies on the property of IRREDUCIBLE POLY-

NOMIALS that ROOTS composed of a finite number of
SQUARE ROOT extractions exist only if the order of the
equation is OF THE FORM 2h: That this condition was
also NECESSARY was not explicitly proven by Gauss,
and the first proof of this fact is credited to Wantzel
(1836).

Constructible values of n for n B300 were given by
Gauss (Smith 1994), and the first few are 2, 3, 4, 5, 6,
8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60,
64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, ...
(Sloane’s A003401). Gardner (1977) and indepen-
dently Watkins (Conway and Guy 1996) noticed
that the number of sides for constructible polygons
with an ODD number of sides are given by the first 32
rows of PASCAL’S TRIANGLE (mod 2) interpreted as
BINARY numbers, giving 1, 3, 5, 15, 17, 51, 85, 255, ...
(Sloane’s A004729, Conway and Guy 1996, p. 140).



Although constructions for the regular TRIANGLE,
SQUARE, PENTAGON, and their derivatives had been
given by Euclid, constructions based on the FERMAT

PRIMES ]17 were unknown to the ancients. The first
explicit construction of a HEPTADECAGON (17-gon) was
given by Erchinger in about 1800. Richelot and
Schwendenwein found constructions for the 257-GON

in 1832, and Hermes spent 10 years on the construc-
tion of the 65537-GON at Göttingen around 1900
(Coxeter 1969). Constructions for the EQUILATERAL

TRIANGLE and SQUARE are trivial (top figures below).
Elegant constructions for the PENTAGON and HEPTA-

DECAGON are due to Richmond (1893) (bottom figures
below).

Given a point, a CIRCLE may be constructed of any
desired RADIUS, and a DIAMETER drawn through the
center. Call the center O , and the right end of the
DIAMETER P0 : The DIAMETER PERPENDICULAR to the
original DIAMETER may be constructed by finding the
PERPENDICULAR BISECTOR. Call the upper endpoint of
this PERPENDICULAR DIAMETER B . For the PENTAGON,
find the MIDPOINT of OB and call it D . Draw DP0 ; and
BISECT �ODP0 ; calling the intersection point with
OP0 N1 : Draw N1P1 PARALLEL to OB , and the first two
points of the PENTAGON are P0 and P1: The construc-
tion for the HEPTADECAGON is more complicated, but
can be accomplished in 17 relatively simple steps. The
construction problem has now been automated
(Bishop 1978).

See also 257-GON, 65537-GON, CHAOS GAME, CONSTRUC-

TIBLE POLYGON, DE MOIVRE NUMBER, EQUILATERAL

TRIANGLE, HEPTADECAGON, HEXAGON, HEXAGRAM,
OCTAGON, PENTAGON, PENTAGRAM, POLYGON, POLY-

GON CIRCUMSCRIBING CONSTANT, POLYGON INSCRIB-

ING CONSTANT, SQUARE, STAR POLYGON
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Regular Polyhedron
A polyhedron is said to be regular if its FACES and
VERTEX FIGURES are REGULAR (not necessarily CON-

VEX) polygons (Coxeter 1973, p. 16). Using this
definition, there are a total of nine regular polyhedra,
five being the CONVEX PLATONIC SOLIDS and four
being the CONCAVE (stellated) KEPLER-POINSOT SO-

LIDS. However, the term "regular polyhedra" is some-
times used to refer exclusively to the CONVEX

PLATONIC SOLIDS.

It can be proven that only nine regular solids (in the
Coxeter sense) exist by noting that a possible regular
polyhedron must satisfy



cos2 p

p

 !
�cos2 p

q

 !
�cos2 p

r

 !
�1:

Gordon showed that the only solutions to

1 �cos f1 �cos f2 �cos f3 �0

OF THE FORM fi � pmi =ni are the permutations of
(2
3 p;

2
3 p;

1
3 p) and (2

3 p;
2
5 p;

4
5 p) : This gives three per-

mutations of (3, 3, 4) and six of (3, 5, 5
3) as possible

solutions to the first equation. Plugging back in gives
the SCHLÄ FLI SYMBOLS of possible regular polyhedra
as f3; 3g; f3; 4g; f4 ; 3 g; f3; 5 g; f5; 3g; f3; 5

2 g; f5
2; 3g;

f5; 5
2 g; and f5

2 ; 5 g (Coxeter 1973, pp. 107 �/109). The
first five of these are the PLATONIC SOLIDS and the
remaining four the KEPLER-POINSOT SOLIDS.

Every regular polyhedron has e �1 axes of symmetry,
where e is the number of EDGES, and 3h=2 PLANES of
symmetry, where h is the number of sides of the
corresponding PETRIE POLYGON.

See also CONVEX POLYHEDRON, KEPLER-POINSOT

SOLID, PETRIE POLYGON, PLATONIC SOLID, POLYHE-

DRON, POLYHEDRON COMPOUND, SPONGE, VERTEX

FIGURE
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Regular Polytope
REGULAR POLYCHORON

Regular Prime
A PRIME which does not DIVIDE the CLASS NUMBER

h(p) of the CYCLOTOMIC FIELD obtained by adjoining a
PRIMITIVE PTH ROOT OF UNITY to the FIELD of
rationals. A PRIME p is regular IFF p does not divide
the NUMERATORS of the BERNOULLI NUMBERS B0 ; B2 ;
..., Bp �3 : A PRIME which is not regular is said to be an
IRREGULAR PRIME.

In 1915, Jensen proved that there are infinitely many
IRREGULAR PRIMES. It has not yet been proven that
there are an INFINITE number of regular primes (Guy
1994, p. 145). Of the 283,145 PRIMES B4 �106 ;
171,548 (or 60.59%) are regular (the conjectured
FRACTION is e�1 =2 :60:65%): The first few are 3, 5,
7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, ... (Sloane’s
A007703).

See also BERNOULLI NUMBER, FERMAT’S THEOREM,
IRREGULAR PRIME
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Regular Pyramid
PYRAMID

Regular Ring
In the sense of von Neumann, a regular ring is a RING

R such that for all a � R; there exists a b � R satisfying
a �aba .

See also REGULAR LOCAL RING, RING
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Regular Sequence

Let there be two PARTICULARLY WELL-BEHAVED FUNC-

TIONS F(x) and pt(x) : If the limit

lim
t00 g

�

��

pt(x)F(x) dx

exists, then pt(x) is a regular sequence of PARTICU-

LARLY WELL-BEHAVED FUNCTIONS.
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Regular Singular Point
Consider a second-order ORDINARY DIFFERENTIAL

EQUATION

yƒP(x)y?�Q(x)y �0:

If P(x) and Q(x) remain FINITE at x �x0 ; then x0 is
called an ORDINARY POINT. If either P(x) or Q(x)
diverges as x 0 x0 ; then x0 is called a singular point.
If either P(x) or Q(x) diverges as x 0 x0 but
x �x0ð ÞP(x) and x �x0ð Þ2Q(x) remain FINITE as x 0

x0; then x�x0 is called a regular singular point (or
NONESSENTIAL SINGULARITY).

See also IRREGULAR SINGULARITY, SINGULAR POINT

(DIFFERENTIAL EQUATION)
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Regular Singularity
REGULAR SINGULAR POINT

Regular Skew Polyhedron
A regular skew polyhedron is a polyhedron whose
faces and VERTEX FIGURES are regular SKEW POLY-

GONS. There are only three regular skew polyhedra in
Euclidean 3-space (Coxeter 1937, Garner 1967), the
simplest of which is f4; 6½4g:/
Garner (1967) considered regular skew polyhedra in
hyperbolic space H3 ; and shows that there are exactly
32 which are derived from honeycombs whose cells
and vertex figures are derived from honeycombs
whose cells and vertex figures are not inscribed in
equidistant surfaces.

See also REGULAR POLYHEDRON
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Regular Surface
A SUBSET M ƒRn is called a regular surface if for each
point p � M ; there exists a NEIGHBORHOOD V of p in Rn

and a MAP x : U 0 Rn of an OPEN SET U ƒR2 onto V S
M such that

1. x is differentiable,
2. x : U 0 V S M is a HOMEOMORPHISM, and
3. Each map x : U 0 M is a REGULAR PATCH.

Any open subset of a regular surface is also a regular
surface.

See also REGULAR PATCH
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Regular Triangle Center
A TRIANGLE CENTER is regular IFF there is a TRIANGLE

CENTER FUNCTION which is a POLYNOMIAL in D; a , b ,
and c (where D is the AREA of the TRIANGLE) such that
the TRILINEAR COORDINATES of the center are

f (a; b; c) : f (b; c ; a) : f (c ; a; b) :

The ISOGONAL CONJUGATE of a regular center is a
regular center. Furthermore, given two regular cen-

ters, any two of their HARMONIC CONJUGATE POINTS

are also regular centers.

See also ISOGONAL CONJUGATE, TRIANGLE CENTER,
TRIANGLE CENTER FUNCTION

Regular Variation
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Regularity Axiom
AXIOM OF FOUNDATION

Regularity Lemma
SZEMERÉ DI’S REGULARITY LEMMA

Regularity Theorem
An AREA-minimizing surface (RECTIFIABLE CURRENT)
bounded by a smooth curve in R3 is a smooth
submanifold with boundary.

See also MINIMAL SURFACE, RECTIFIABLE CURRENT
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Regularized Beta Function
The regularized beta function is defined by

I(z; a ; b) �
B(z; a ; b)

B(a; b)
;

where B(z; a; b) is the incomplete BETA FUNCTION

and B(a; b) is the complete BETA FUNCTION. The
regularized beta function is sometimes also denoted
Iz(a; b) and is implemented in Mathematica as
BetaRegularized[z , a , b ]. The four-argument ver-
sion BetaRegularized[z1 , z2 , a , b ] is equivalent to
I z2; a; bð Þ�I z1; a; bð Þ:/

See also BETA FUNCTION, REGULARIZED GAMMA

FUNCTION

Regularized Gamma Function
The regularized gamma functions are defined by

P(a; z)�1�Q(a; z)�
g(a; z)

G(a)
(1)

and

Q(a; z)�1�P(a; z)�
G(a; z)

G(a)
;

where g(a; z) and G(a; z) are INCOMPLETE GAMMA



FUNCTIONS and G(a) is a complete GAMMA FUNCTION.
The function Q(a ; z) is implemented in Mathematica
as GammaRegularized[a , z ].

The derivatives of P(a ; z) and Q(a ; z) are

d

dz
P(a ; z) �

e �zza �1

G(a) 
(2)

d

dz
Q(a; z) �

e �zza �1

G(a)
; (3)

and the second derivatives are

d2

dz2
P(a; z) �

e �z(a � z � 1)za �2

G(a) 
(4)

d2

dz2
Q(a; z) �

e �z(1 � z � a)za �2

G(a) 
(5)

The integrals are

g P(a; z) dz �
zG(a) � z G(a; z) � G(a � 1; z)

G(a) 
(6)

g Q(a ; z) dz �
z G(a; z) � G(a � 1; z)

G(a) 
(7)

See also GAMMA FUNCTION, INCOMPLETE GAMMA

FUNCTION, REGULARIZED BETA FUNCTION
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Regularized Long-Wave Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �ux �6uux �utxx �0:

See also KORTEWEG-DE VRIES EQUATION
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Regulus
The locus of lines meeting three given SKEW LINES.
("Regulus" is also the name of the brightest star in the
constellation Leo.)

Reidemeister Moves

In the 1930s, Reidemeister first rigorously proved
that KNOTS exist which are distinct from the UNKNOT.
He did this by showing that all KNOT deformations
can be reduced to a sequence of three types of
"moves," called the (I) TWIST MOVE, (II) POKE MOVE,
and (III) SLIDE MOVE. These moves are most com-
monly called Reidemeister moves, although the term
"equivalence moves" is sometimes also used (Aneziris
1999, p. 29).
REIDEMEISTER’S THEOREM guarantees that moves I,
II, and III correspond to AMBIENT ISOTOPY (moves II
and III alone correspond to REGULAR ISOTOPY). He
then defined the concept of COLORABILITY, which is
invariant under Reidemeister moves.

See also AMBIENT ISOTOPY, COLORABLE, KNOT MOVE,
MARKOV MOVES, REGULAR ISOTOPY, UNKNOT
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Reidemeister’s Theorem
Two LINKS can be continuously deformed into each
other IFF any diagram of one can be transformed into
a diagram of the other by a sequence of REIDEMEISTER

MOVES.

See also REIDEMEISTER MOVES

Reinhardt Domain
A Reinhardt domain with center c is a DOMAIN D in
Cn such that whenever D contains z0; the DOMAIN D
also contains the closed POLYDISK.
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Relation
A relation is any SUBSET of a CARTESIAN PRODUCT.
For instance, a SUBSET of A �B ; called a "BINARY

RELATION from A to B ," is a collection of ORDERED

PAIRS (a, b ) with first components from A and second
components from B , and, in particular, a SUBSET of
A �A is called a "relation on A ." For a BINARY

RELATION R , one often writes aRb to mean that (a,
b ) is in R .

See also ADJACENCY RELATION, ANTISYMMETRIC RE-

LATION, ARGUMENT ADDITION RELATION, ARGUMENT

MULTIPLICATION RELATION, BINARY RELATION, CLO-

SURE RELATION, COVER RELATION, EQUIVALENCE

RELATION, IRREFLEXIVE, PARTIAL ORDER, RECUR-

RENCE RELATION, REFLECTION RELATION, REFLEXIVE

RELATION, SYMMETRIC RELATION, TRANSITIVE,
TRANSLATION RELATION

Relational System
This entry contributed by VIKTOR BENGTSSON

A relational system is a structure R �
S; Pi : i � If g; fj : j � J

= >� �
consisting of a set S , a

collection of relations Pi(i � I) on S , and a collection
of functions fj(j � J) on S .

Relative Cumulative Frequency
The CUMULATIVE FREQUENCY in a FREQUENCY DIS-

TRIBUTION divided by the total number of data points.

See also ABSOLUTE FREQUENCY, CUMULATIVE FRE-

QUENCY, FREQUENCY DISTRIBUTION, RELATIVE FRE-

QUENCY
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Relative Degree
DEGREE (EXTENSION FIELD

Relative Entropy
Let a DISCRETE DISTRIBUTION have probability func-
tion pk ; and let a second DISCRETE DISTRIBUTION have
probability function qk : Then the relative entropy of p
with respect to q , also called the Kullback-Leibler
distance, is defined by

d �
X

k

pk ln
pk

qk

 !
:

Although relative entropy does not satisfy the trian-
gle inequality and is therefore not a true metric, it
satisfies many important mathematical properties.
For example, it is a convex function of pk ; is always
nonnegative, and equals zero only if pk �qk :/

Relative entropy is a very important concept in
quantum information theory, as well as statistical
mechanics (Qian 2000).

See also ENTROPY

References
Cover, T. M. and Thomas, J. A. Elements of Information

Theory. New York: Wiley, 1991.
Qian, H. Relative Entropy: Free Energy Associated with

Equilibrium Fluctuations and Nonequilibrium Deviations.
8 Jul 2000. http://xxx.lanl.gov/abs/math-ph/0007010/.

Relative Error
Let the true value of a quantity be x and the
measured or inferred value x0 : Then the relative
error is defined by

dx �
Dx

x
�

x0 � x

x
�

x0

x
�1;

where Dx is the ABSOLUTE ERROR. The relative error of
the QUOTIENT or PRODUCT of a number of quantities is
less than or equal to the SUM of their relative errors.
The PERCENTAGE ERROR is 100% times the relative
error.

See also ABSOLUTE ERROR, ERROR PROPAGATION,
PERCENTAGE ERROR
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Relative Extremum
A RELATIVE MAXIMUM or RELATIVE MINIMUM, also
called a LOCAL EXTREMUM.

See also EXTREMUM, GLOBAL EXTREMUM, RELATIVE

MAXIMUM, RELATIVE MINIMUM

Relative Frequency
The ratio of the ABSOLUTE FREQUENCY to the total
number of data points in a FREQUENCY DISTRIBUTION.

See also ABSOLUTE FREQUENCY, CUMULATIVE FRE-

QUENCY, FREQUENCY DISTRIBUTION, RELATIVE CUMU-

LATIVE FREQUENCY

References
Kenney, J. F. and Keeping, E. S. "Frequency Distributions."
§1.8 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton,
NJ: Van Nostrand, pp. 12 �/19, 1962.

Relative Maximum
A MAXIMUM within some NEIGHBORHOOD which need
not be a GLOBAL MAXIMUM.

See also GLOBAL MAXIMUM, MAXIMUM, RELATIVE

MINIMUM



Relative Minimum
A MINIMUM within some NEIGHBORHOOD which need
not be a GLOBAL MINIMUM.

See also GLOBAL MINIMUM, MINIMUM, RELATIVE

MAXIMUM

Relative Topology

If A ƒB and B has a topology of open sets Ua then the
relative topology on A is given by the collection of
open sets Ua S A:/

Relatively Prime
Two integers are relatively prime if they share no
common positive factors (divisors) except 1. Using the
notation (m, n ) to denote the GREATEST COMMON

DIVISOR, two integers m and n are relatively prime
if (m; n) �1 : Relatively prime integers are sometimes
also called STRANGERS or COPRIME and are denoted
m �n:/

The probability that two INTEGERS picked at random
are relatively prime is [ z(2)] �1 �6=p2 ; where z(z) is
the RIEMANN ZETA FUNCTION (Wells 1986, p. 28). This
result is related to the fact that the GREATEST

COMMON DIVISOR of m and n , (m; n) �k; can be
interpreted as the number of LATTICE POINTS in the
PLANE which lie on the straight LINE connecting the
VECTORS (0; 0) and (m, n ) (excluding (m, n ) itself). In
fact, 6=p2 is the fractional number of LATTICE POINTS

VISIBLE from the ORIGIN (Castellanos 1988, pp. 155 �/

156).

Given three INTEGERS chosen at random, the prob-
ability that no common factor will divide them all is

[z(3)]�1 
:1:20206 �1 :0:831907 ; (1)

where z(3) is APÉ RY’S CONSTANT (Wells 1986, p. 29).
This generalizes to k random integers (Schoenfeld
1976).

See also DIVISOR, GREATEST COMMON DIVISOR,
HAFNER-SARNAK-MCCURLEY CONSTANT, VISIBILITY
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Relaxation Methods
Methods of solving an ORDINARY DIFFERENTIAL EQUA-

TION by replacing it with a FINITE DIFFERENCE

equation on a regular grid spanning the domain of
interest. The finite difference equations are then
solved using an n -D NEWTON’S METHOD or other
similar algorithm.
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Remainder
In general, a remainder is a quantity "left over" after
performing a particular algorithm. The term is most
commonly used to refer to the number left over when
two integers are divided by each other in INTEGER

DIVISION. For example, 55_7 �7; with a remainder of
6. Of course in real division, there is no such thing as
a remainder since, for example, 55=7 �7 �6=7 :/

The term remainder is also sometimes applied to the
RESIDUE of a CONGRUENCE.

See also DIVISION, INTEGER DIVISION, QUOTIENT,
RESIDUE (CONGRUENCE)
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Remainder Theorem
POLYNOMIAL REMAINDER THEOREM

Rembs’ Surface

A surface of constant GAUSSIAN CURVATURE that can
be given parametrically by

x�a(U cos u�U? sin u) (1)

y��a(U sin u�U? cos u) (2)

z�v�aV?; (3)



where

U �
cosh u

ffiffiffiffi
C

p� �
ffiffiffiffi
C

p (4)

V �
cos v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p (5)

a �
2V

(C � 1) U2 � V2ð Þ
; (6)

and U ?�dU =du; and V ?�dV =dv : The value of v is
restricted to

½v ½5v0 �
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p (7)

(Reckziegel 1986), and the values v �9v0 correspond
to the ends of the cleft in the surface. The surface
illustrated above corresponds to C �1.

Rembs’ surface has FIRST FUNDAMENTAL FORM coeffi-
cients

E �
16C(1 � C) cos2 v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p� �
cosh2 u

ffiffiffiffi
C

p� �
1 � C cos 2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p� �
� (C � 1) cosh 2u

ffiffiffiffi
C

p� �h i2

(8)

F �0 (9)

G �

1 � 2C � C cos 2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p� �
� (C � 1) cosh 2u

ffiffiffiffi
C

p� �h i2

1 � C cos 2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C � 1

p� �
� (C � 1) cosh 2u

ffiffiffiffi
C

p� �h i2 ;

(10)

SECOND FUNDAMENTAL FORM coefficients by similar,
rather complicated expressions. The GAUSSIAN CUR-

VATURE is

K �1; (11)

with the MEAN CURVATURE given by a rather compli-
cated expression.

See also KUEN SURFACE, SIEVERT’S SURFACE
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Remes Algorithm
REMEZ ALGORITHM

Remez Algorithm
Portions of this entry contributed by CHARLES BOND

Portions of this entry contributed by RONALD M.

AARTS

An algorithm for determining optimal coefficients for
digital FILTERS. The Remez algorithm in effect goes a
step beyond the MINIMAX APPROXIMATION algorithm
to give a slightly finer solution to an approximation
problem.

The Remez exchange algorithm (Remez 1957) was
first studied by Parks and McClellan (1972). The
algorithm is an iterative procedure consisting of two
steps. One step is the determination of candidate
FILTER coefficients h(n) from candidate "alternation
frequencies," which involves solving a set of linear
equations. The other step is the determination of
candidate alternation frequencies from the candidate
FILTER coefficients (Lim and Oppenheim 1988). Ex-
perience has shown that the algorithm converges
very fast, and is widely used in practice to design
optimal FILTERS.

A FORTRAN implementation is given by Rabiner
(1975). A description emphasizing the mathematical
foundations rather than digital signal processing
applications is given by Cheney (1999), who also
spells Remez as Remes (Cheney 1966, p. 96).

See also FILTER, MINIMAX APPROXIMATION
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Removable Crossing
REDUCIBLE CROSSING

Removable Singularity
A SINGULAR POINT z0 of a FUNCTION f (z) for which it is
possible to assign a COMPLEX NUMBER in such a way
that f (z) becomes ANALYTIC. A more precise way of
defining a removable singularity is as a singularity z0

of a function f (z) about which the function f (z) is
bounded. For example, the point x0�0 is a removable
singularity in the SINC FUNCTION sinc x�sin x=x;
since this function satisfies sinc 0�1:/

See also ESSENTIAL SINGULARITY, POLE, RIEMANN

REMOVABLE SINGULARITY THEOREM, SINGULAR POINT



(FUNCTION)
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Rencontres Number
DERANGEMENT, SUBFACTORIAL

Rendezvous Values
MAGIC GEOMETRIC CONSTANTS

Rényi’s Parking Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Given the CLOSED INTERVAL [0; x] with x �1, let 1-D
"cars" of unit length be parked randomly on the
interval. The MEAN number M(x) of cars which can
fit (without overlapping!) satisfies

M(x)�
0 for 05xB1

1�
2

x � 1 g
x�1

0

M(y) dy for x]1:

8<
: (1)

The mean density of the cars for large x is

m� lim
x0�

MðxÞ
x

¼ g
�

0

exp

�
�2g

x

0

1 � e�v

y

	
dx

�0:7475979202 . . . (2)

(Sloane’s A050996). While the inner integral can be
done analytically,

f (x)�g�G(0; x)�ln x; (3)

where g is the EULER-MASCHERONI CONSTANT and
G(0; x) is the incomplete GAMMA FUNCTION, it is not
known how to do the outer one

m�g
�

0

exp[�2 f (x)] dx (4)

�e�2g g
�

0

e�2G(0; x)

x2
(5)

�2�2g g
�

0

e�2ei(�x)

x2
; (6)

where ei(x) is the EXPONENTIAL INTEGRAL. The slowly
converging series expansion for the integrand is given
by

e�2ei(�x)

x2
�1�2x�5

2x
2�22

9 x3�293
144x

4�2711
1800x

5�. . . (7)

(Sloane’s A050994 and A050995).

In addition,

M(x)�mx�m�1�O(x�n) (8)

for all n (Rényi 1958), which was strengthened by
Dvoretzky and Robbins (1964) to

M(x)�mx�m�1�O
2e

x

 !x�3=2
2
4

3
5 (9)

Dvoretzky and Robbins (1964) also proved that

inf
x5t5x�1

M(t) � 1

t � 1
5m5 sup

x5t5x�1

M(t) � 1

t � 1
: (10)

Let V(x) be the variance of the number of cars, then
Dvoretzky and Robbins (1964) and Mannion (1964)
showed that

v� lim
z0�

V(x)

x

�2 g
�

0

x g
1

0

e�xyR2(y) dy�x2 g
�

0

e�xyR1(y) dy

� �2
( )

�exp �2 g
x

0

1 � e�y

y
dy

 !
dx�0:038156 . . . ; (11)

where

R1(x)�M(x)�mx�m�1 (12)

R2(x)�

(1�m�mx)2

for 05x51
4(1�m)2

for x�1
2

x � 1 g
x�1

0

R2(y) dy�g
x�1

0

R1(y)R1(x�y�1) dy

" #
for x > 1

8>>>>>>>>><
>>>>>>>>>:

(13)

and the numerical value is due to Blaisdell and
Solomon (1970). Dvoretzky and Robbins (1964) also
proved that

inf
x5t5x�1

V(t)

t � 1
5v5 sup

x5t5x�1

V(t)

t � 1
; (14)

and that

V(x)�vx�v�O
4e

x

 !x�4
2
4

3
5: (15)

Palasti (1960) conjectured that in 2-D,

lim
x; y0�

M(x; y)

xy
�m2; (16)

but this has not yet been proven or disproven (Finch).



References
Blaisdell, B. E. and Solomon, H. "On Random Sequential

Packing in the Plane and a Conjecture of Palasti." J. Appl.
Prob. 7, 667 �/698, 1970.

Dvoretzky, A. and Robbins, H. "On the Parking Problem."
Publ. Math. Inst. Hung. Acad. Sci. 9, 209 �/224, 1964.

Finch, S. "Favorite Mathematical Constants." http://
www.mathsoft.com/asolve/constant/renyi/renyi.html.

Mannion, D. "Random Space-Filling in One Dimension."
Publ. Math. Inst. Hung. Acad. Sci. 9, 143 �/154, 1964.

Palasti, I. "On Some Random Space Filling Problems." Publ.
Math. Inst. Hung. Acad. Sci. 5, 353 �/359, 1960.
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Repartition
ADÉ LE

Repdigit
A number composed of a single digit is called a
repdigit. If the digits are all 1s, the repdigit is called
a REPUNIT. The BEAST NUMBER 666 is a repdigit.

See also KEITH NUMBER, REPUNIT

Repeated Integral
A repeated integral is an integral taken multiple
times over a single variable (as distinguished from a
MULTIPLE INTEGRAL, which consists of a number of
integrals taken with respect to different variables).
The first FUNDAMENTAL THEOREM OF CALCULUS states
that if F(x) �D �1 f (x) is the INTEGRAL of f (x) ; then

g
x

0

f (t) dt �F(x) �F(0) : (1)

Now, if F(0) �0 ; then

F(x) �g f (x) dx �g
x

0

f (t) dt:

It follows by induction that if F(0) �F(F(0)) �. . .�0;
then the n -fold integral of f (x) is given by

D�n f (x) �g � � �g
x

0|fflfflfflfflffl{zfflfflfflfflffl}
n

f (x) dx �g
x

0

f (t)(x � t)n�1

(n � 1)!
dt: (2)

Similarly, if F x0ð Þ�F F x0ð Þð Þ�. . .�0; then

g � � �g
x

x0|fflfflfflfflffl{zfflfflfflfflffl}
n

f (x) dx �g
x

x0

f (t)(x � t)n�1

(n � 1)!
dt: (3)

See also FRACTIONAL INTEGRAL, FUBINI THEOREM,

INTEGRAL, MULTIPLE INTEGRAL

Repeating Decimal
A number whose decimal representation eventually
becomes periodic (i.e., the same sequence of digits
repeats indefinitely) is called a repeating decimal.
Numbers such as 0.5 can be regarded as repeating
decimals since 0 :5 �0:5000 . . . �0:4999 . . . : All RA-

TIONAL NUMBERS have repeating decimals, e.g.,
1=11 �0:09: However, TRANSCENDENTAL NUMBERS,
such as p �3 :141592 . . . do not.

If 1=m is a repeating decimal and 1=n is a terminating
decimal, them 1=(mn) has a nonperiodic part whose
length is that of 1 =n and a repeating part whose
length is that of 1=m (Wells 1986, p. 60).

See also CYCLIC NUMBER, DECIMAL EXPANSION,
EULER’S TOTIENT RULE, FULL REPTEND PRIME, IRRA-

TIONAL NUMBER, MIDY’S THEOREM, RATIONAL NUM-

BER, REGULAR NUMBER
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Repfigit Number
KEITH NUMBER

Replicate
One out of a set of identical observations in a given
experiment under identical conditions.

Replicating Symbol
SHAH FUNCTION

Representation
A representation of a GROUP G is a GROUP ACTION of
G on a VECTOR SPACE V by INVERTIBLE LINEAR MAPS.
For example, the group of two elements Z2�f0; 1g
has a representation f by f(0)v�v and f(1)v��v: A
representation is a GROUP HOMOMORPHISM

f : G 0 GL(V):/

Most groups have many different representations,
possibly on different vector spaces. For example, the
SYMMETRIC GROUP S3�fe; (12); (13); (23); (123); (132)g
has a representation on R by

f1(s)v�sgn(s)v; (1)



where sgn( s) is the SIGNATURE of the PERMUTATION s:
It also has a representation on R3 by

f2(s)(x1 ; x2 ; x3) � x s(1) ; xs(2) ; xs(3)

� �
: (2)

A representation gives a matrix for each element, and
so another representation of S3 is given by the
matrices

1 0
0 1

� �
;

0 1
1 0

� �
;
�1 0
�1 1

� �
;

1 �1
0 �1

� �
;
�1 1
�1 0

� �
;

0 �1
1 �1

� �
: (3)

Two representations are considered equivalent if they
are conjugates. For example, CONJUGATING the above
matrices by

1 19
0 1

� �
gives the following equivalent representation of S3 ;

1 0
0 1

� �
;
�19 �360

1 19

� �
;

18 323
�1 �18

� �

1 37
0 �1

� �
;

18 343
�1 �19

� �
;

�19 �343
1 18

� �
(4)

Any representation V of G can be RESTRICTED to a
representation of any subgroup H , in which case, it is
denoted ResG

H : More surprisingly, any representation
W on H can be extended to a representation of G , on a
larger VECTOR SPACE V , called the INDUCED REPRE-

SENTATION.

Representations have applications to many branches
of mathematics, aside from applications to physics
and chemistry. The name of the theory depends on
the GROUP G and on the VECTOR SPACE V . Different
approaches are required depending on whether G is a
FINITE GROUP, an infinite DISCRETE GROUP, or a LIE

GROUP. Another important ingredient is the field of
scalars for V . The vector space V can be infinite
dimensional such as a HILBERT SPACE. Also, special
kinds of representations may require that a vector
space structure is preserved. For instance, a UNITARY

REPRESENTATION is a GROUP HOMOMORPHISM f : G 0
U(V) into the group of UNITARY TRANSFORMATIONS

which preserve a HERMITIAN INNER PRODUCT on V .

In favorable situations, such as a finite group, an
arbitrary representation will break up into IRREDUCI-

BLE REPRESENTATIONS, i.e., V ��Vi where the Vi are
irreducible. For many groups, the irreducible repre-
sentations have been classified.

See also GROUP, IRREDUCIBLE REPRESENTATION,
MULTIPLICATIVE CHARACTER, ORTHOGONAL GROUP

REPRESENTATIONS, PETER-WEYL THEOREM, PRIMARY

REPRESENTATION, REPRESENTATION (LIE ALGEBRA),
REPRESENTATION RING, REPRESENTATION THEORY,
SCHUR’S LEMMA, SEMISIMPLE LIE GROUP, TENSOR

PRODUCT (REPRESENTATION), UNITARY REPRESENTA-

TION, VECTOR SPACE
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Representation (Lie Algebra)
A representation of a LIE ALGEBRA g is a LINEAR MAP

c : g 0 M(V) ;

where M(V) is the set of all linear transformations of
a VECTOR SPACE V . In particular, if V �Rn ; then M(V)
is the set of n �n square matrices. The map c is
required to be a map of LIE ALGEBRAS so that

c([A; B]) � c(A)c(B) � c(B) c(A)

for all A; B � g: Note that the expression AB only
makes sense as a MATRIX PRODUCT in a representa-
tion. For example, if A and B are SKEW SYMMETRIC

MATRICES, then AB �BA is skew-symmetric, but AB
may not be skew symmetric.

The possible IRREDUCIBLE REPRESENTATIONS of com-
plex Lie algebras are determined by the classification
of the SEMISIMPLE LIE ALGEBRAS. Any IRREDUCIBLE

REPRESENTATION V of a complex LIE ALGEBRA g is the
TENSOR PRODUCT V �V0 �L ; where V0 is an IRREDU-

CIBLE REPRESENTATION of the quotient gss =Rad(g) of
the algebra g and its RADICAL, and L is a one-
dimensional representation.

A LIE ALGEBRA may be associated with a LIE GROUP,
in which case it reflects the local structure of the LIE

GROUP. Whenever a LIE GROUP G has a REPRESENTA-

TION on V , its TANGENT SPACE at the identity, which is
a LIE ALGEBRA, has a LIE ALGEBRA representation on
V given by the differential at the identity. Conver-
sely, if a CONNECTED LIE GROUP G corresponds to the
Lie algebra g; and g has a LIE ALGEBRA representation
on V , then G has a REPRESENTATION on V given by
the MATRIX EXPONENTIAL.

See also IRREDUCIBLE REPRESENTATION, LIE ALGE-

BRA, LIE GROUP, MATRIX EXPONENTIAL, REPRESENTA-

TION, SIMPLE LIE ALGEBRA, VECTOR SPACE
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Representation Theory

See also REPRESENTATION
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Represented As
An expression describing a form in which a quantity
can be written. For example, all primes p �3 can be
"represented as" 6n 91 :/

See also OF THE FORM
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Reptend Prime
FULL REPTEND PRIME

Reptile
REP-TILE

Rep-Tile

A POLYGON which can be DISSECTED into n smaller
copies of itself is called a rep-n -tile. The triangular
POLYGONAL SPIRAL is a rep-4-tile.

See also DISSECTION, POLYGONAL SPIRAL
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Repunit
A (generalized) repunit to the base b is a number OF

THE FORM

Mb
n�

bn � 1

b � 1
:

The term "repunit" was coined by Beiler (1966), who
also gave the first tabulation of known factors.
Repunits Mn�M2

n�2n�1 with b�2 are called
MERSENNE NUMBERS. If b�10, the number is called
a repunit (since the digits are all 1s). A number OF

THE FORM

Rn�
10n � 1

10 � 1
�Rn�

10n � 1

9

is therefore a (decimal) repunit of order n .

b Sloane b -Repunits

2 Sloane’s
A000225

1, 3, 7, 15, 31, 63, 127, ...

3 Sloane’s
A003462

1, 4, 13, 40, 121, 364, ...

4 Sloane’s
A002450

1, 5, 21, 85, 341, 1365, ...

5 Sloane’s
A003463

1, 6, 31, 156, 781, 3906, ...

6 Sloane’s
A003464

1, 7, 43, 259, 1555, 9331, ...

7 Sloane’s
A023000

1, 8, 57, 400, 2801, 19608, ...

8 Sloane’s
A023001

1, 9, 73, 585, 4681, 37449, ...

9 Sloane’s
A002452

1, 10, 91, 820, 7381, 66430,
...

10 Sloane’s
A002275

1, 11, 111, 1111, 11111, ...

11 Sloane’s
A016123

1, 12, 133, 1464, 16105,
177156, ...

12 Sloane’s
A016125

1, 13, 157, 1885, 22621,
271453, ...

Williams and Seah (1979) factored generalized repu-
nits for 35b512 and 25n51000: A (base-10)
repunit can be PRIME only if n is PRIME, since
otherwise 10ab�1 is a BINOMIAL NUMBER which can
be factored algebraically. In fact, if n�2a is EVEN,
then 102a�1�(10a�1)(10a�1):/



The number of factors for the base-10 repunits for
n �1, 2, ... are 1, 1, 2, 2, 2, 5, 2, 4, 4, 4, 2, 7, 3, ...
(Sloane’s A046053). The only known base-10 repunit
primes Rn are for n �2, 19, 23, 317, 1031, 49081,
(Sloane’s A004023; Madachy 1979, Williams and
Dubner 1986, Ball and Coxeter 1987, Granlund,
Dubner 1999). Williams and Dubner (1986) proved
R1031 to be prime. T. Granlund completed a search up
to 45,000 in 1998 using two months of CPU time on a
parallel computer. The search was extended by
H. Dubner in 1999, culminating in the discovery of
the probable prime R49 ;081 :/

b Sloane n of Prime b -Repunits

2 Sloane’s

A000043

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,

521, 607, ...

3 Sloane’s

A028491

3, 7, 13, 71, 103, 541, 1091, 1367, 1627,

4177, 9011, 9551, ...

5 Sloane’s

A004061

3, 7, 11, 13, 47, 127, 149, 181, 619, 929,

3407, 10949, ...

6 Sloane’s

A004062

2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389,

6883, 10613, ...

7 Sloane’s

A004063

5, 13, 131, 149, 1699, ...

10 Sloane’s

A004023

2, 19, 23, 317, 1031, ...

11 Sloane’s

A005808

17, 19, 73, 139, 907, 1907, 2029, 4801,

5153, 10867, ...

12 Sloane’s

A004064

2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, ...

Yates (1982) published all the repunit factors for n 5
1000; a portion of which are reproduced in the
Mathematica notebook by Weisstein. Brillhart et al.
(1988) gave a table of repunit factors which cannot be
obtained algebraically, and a continuously updated
version of this table is now maintained on-line. These
tables include factors for 10n �1 (with n 5209 odd)
and 10n �1 (for n 5210 EVEN and ODD) in the files
ftp://sable.ox.ac.uk/pub/math/cunningham/10- and
ftp://sable.ox.ac.uk/pub/math/cunningham/10 �.
After algebraically factoring Rn ; these types of factors
are sufficient for complete factorizations.

A SMITH NUMBER can be constructed from every
factored repunit.

See also CUNNINGHAM NUMBER, FERMAT NUMBER,
MERSENNE NUMBER, REPDIGIT, SMITH NUMBER
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Resampling Statistics

A set of methods that are generally superior to
ANOVA for small data sets or where sample distribu-
tions are non-normal.

See also BAGGING, BOOSTING, BOOTSTRAP METHODS,
HYPOTHESIS TESTING, JACKKNIFE, PERMUTATION

TESTS
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Residual
The residual is the sum of deviations from a best-fit
curve of arbitrary form.

R �
X

yi �f xi ; a1 ; . . . ; anð Þ½ 
2:

The residual should not be confused with the CORRE-

LATION COEFFICIENT.

Residual vs. Predictor Plot
A plot of yi versus the ESTIMATOR ei � ̂yi �yi : Random
scatter indicates the model is probably good. A
pattern indicates a problem with the model. If the
spread in ei increases as yi increases, the errors are
called HETEROSCEDASTIC.

See also ESTIMATOR

Residue
BIQUADRATIC RESIDUE, COMMON RESIDUE, COMPLETE

RESIDUE SYSTEM, CUBIC RESIDUE, MINIMAL RESIDUE,
QUADRATIC RESIDUE, RESIDUE CLASS, RESIDUE (COM-

PLEX ANALYSIS), RESIDUE (CONGRUENCE), RESIDUE

INDEX, RESIDUE THEOREM

Residue (Complex Analysis)
The constant a�1 in the LAURENT SERIES

f (z)�
X�

n���

an(z�z0)n (1)

of f (z) about a point z0 is called the residue of f (z):
Unless z0 is a POLE of f , its residue is zero. The
residue of a function f at a point z0 may be denoted
Resz�z(f (z)): Two basic examples of residues are given
by Resz�0 1=z�1 and Resz�0 1=zn�0 for n �1. The
residue is implemented in Mathematica as Resi-
due[f , {z , z0 }].

The residue is also defined by

g
g

f dz; (2)

where g is clockwise simple closed CONTOUR, small

enough to avoid any other poles of f . In fact, any
clockwise path with WINDING NUMBER 1 which does
not contain any other poles gives the same result by
the CAUCHY INTEGRAL FORMULA. The above diagram
shows a suitable CONTOUR for which to define the
residue of function, where the poles are indicated as
black dots.

It is more natural to consider the residue of a
MEROMORPHIC ONE-FORM because it is independent
of the choice of coordinate. On a RIEMANN SURFACE,
the residue is defined for a MEROMORPHIC ONE-FORM a

at a point p by writing a�f dz in a coordinate z
around p . Then

Res
p

a�Res
z�p

f : (3)

The sum of the residues of f f dz is zero on the
RIEMANN SPHERE. More generally, the sum of the
residues of a MEROMORPHIC ONE-FORM on a compact
RIEMANN SURFACE must be zero.

The residues of a function f (z) may be found without
explicitly expanding into a LAURENT SERIES as fol-
lows. If f (z) has a POLE of order m at z0; then an�0 for
nB�m and a�m"0: Therefore,

f (z)�
X�

n��m

an(z�z0)n�
X�
n�0

a�m�n(z�z0)�m�n (4)

(z�z0)m f (z)�
X�
n�0

a�m�n(z�z0)n (5)

d

dz
z�z0ð Þmf (z)½ 
�

X�
n�0

na�m�n(z�z0)n�1

�
X�
n�1

na�m�n(z�z0)n�1

�
X�
n�0

(n�1)a�m�n�1(z�z0)n (6)

d2

dz2
z�z0ð Þm f (z)½ 
�

X�
n�0

n(n�1)a�m�n�1 z�z0ð Þn�1

�
X�
n�1

n(n�1)a�m�n�1 z�z0ð Þn�1

�
X�
n�0

(n�1)(n�2)a�m�n�2 z�z0ð Þn
:

(7)

Iterating,



dm�1

dzm�1
z �z0ð Þm f (z)½ 


�
X�
n�0

(n �1)(n �2)(n �m �1)an�1(z �z0)n

�(m �1)!a�1 �
X�
n�1

(n �1)(n �2)

�(n �m �1)an�1(z �z0)n�1 : (8)

So

lim
x0z0

dm�1

dzm�1
z �z0ð Þm f (z)½ 
� lim

z0z0

(m �1)!a�1 �0

�(m �1)!a�1 ; (9)

and the residue is

a�1 �
1

(m � 1)!

dm�1

dzm�1
z �z0ð Þm f (z)½ 
z�z0

: (10)

The residues of a HOLOMORPHIC FUNCTION at its
POLES characterize a great deal of the structure of a
function, appearing for example in the amazing
RESIDUE THEOREM of CONTOUR INTEGRATION.

See also CONTOUR INTEGRATION, LAURENT SERIES,
MEROMORPHIC ONE-FORM, POLE, RESIDUE THEOREM,
WINDING NUMBER (CONTOUR)
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Residue (Congruence)
The number b in the CONGRUENCE a �b (mod m) is
called the residue of a (mod m ). The residue of large
numbers can be computed quickly using CON-

GRUENCES. For example, to find 3713 (mod 17), note
that

37 �3

372 �32 �9 ��8

374 �81 ��4

378 �16 ��1 ;

so

3713 �371�4 �8 �3(�4)(�1) �12 (mod 17):

See also COMMON RESIDUE, CONGRUENCE, MINIMAL

RESIDUE
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Residue Class
The residue classes of a function f (x) mod n are all
possible values of the RESIDUE f (x) ðmod nÞ: For
example, the residue classes of x2 (mod 6) are
f0; 1; 3; 4g; since

02 �0 (mod 6)

12 �1 (mod 6)

22 �4 (mod 6)

32 �3 (mod 6)

42 �4 (mod 6)

52 �1 (mod 6)

are all the possible residues. A COMPLETE RESIDUE

SYSTEM is a set of integers containing one element
from each class, so f0 ; 1 ; 9; 16 g would be a COM-

PLETE RESIDUE SYSTEM for x2 (mod 6), as would
f0; 5; 3; 4g; etc.

The f(m) residue classes prime to m form a GROUP

under the binary multiplication operation (mod m ),
where f(m) is the TOTIENT FUNCTION (Shanks 1993)
and the GROUP is classed a MODULO MULTIPLICATION

GROUP.

See also COMPLETE RESIDUE SYSTEM, CONGRUENCE,
CUBIC NUMBER, QUADRATIC RECIPROCITY THEOREM,
QUADRATIC RESIDUE, REDUCED RESIDUE SYSTEM,
RESIDUE (CONGRUENCE), SQUARE NUMBER
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Residue Field
In a LOCAL RING R , there is only one MAXIMAL IDEAL

m: Hence, R has only one QUOTIENT RING R=m which
is a FIELD. This field is called the residue field.

See also ALGEBRAIC GEOMETRY, ALGEBRAIC NUMBER

THEORY, LOCAL RING

Residue Index
MULTIPLICATIVE ORDER

Residue System
COMPLETE RESIDUE SYSTEM



Residue Theorem
Given an ANALYTIC FUNCTION f (z) whose LAURENT

SERIES is given by

f (z) �
X�

n���

an z �z0ð Þn
; (1)

and integrate term by term using a closed CONTOUR g

encircling z0 ;

g
g

f (z) dz �
X�

n���

ang
g

z �z0ð Þn dz

�
X�2

n���

an g
g

z �z0ð Þn dz �a�1 g
g

dz

z � z0

�
X�
n�0

an g
g

z �z0ð Þn dz : (2)

The CAUCHY INTEGRAL THEOREM requires that the
first and last terms vanish, so we have

g
g

f (x) dz �a�1 g
g

dz

z � z0

; (3)

where a�1 is the RESIDUE. Using the CONTOUR z �
g(t) �eit �z0 gives

g
g

dz

z � z0

�g
2 p

0

ieit dt

eit
�2 pi; (4)

so we have

g
g

f (z) dz �2pia�1 : (5)

If the contour g encloses multiple poles, then the
theorem gives the general result

g
g

f (z) dz �2 pi
X
a �A

Res
z�ai

f (z); (6)

where A is the set of poles contained inside the
contour. This amazing theorem therefore says that
the value of a CONTOUR INTEGRAL for any contour in
the COMPLEX PLANE depends only on the properties of
a few very special points inside the contour.

The diagram above shows an example of the residue

theorem applied to the illustrated CONTOUR g and the
function

g(z) �
3

z � 1ð Þ2 �
2

z � i 
�

2

z � i 
�

i

z � 3 � 2i

�
5

z � 1 � 2i 
: (7)

Only the poles at 1 and i are contained in the contour,
which have residues of 0 and 2, respectively. The
values of the CONTOUR INTEGRAL is therefore given by

g
g

g(z) dz�2pi(0�2)�4pi:

See also CAUCHY INTEGRAL FORMULA, CAUCHY INTE-

GRAL THEOREM, CONTOUR, CONTOUR INTEGRAL, CON-

TOUR INTEGRATION, GROUP RESIDUE THEOREM,
LAURENT SERIES, POLE, RESIDUE (COMPLEX ANALY-

SIS)
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Resistor Network
Consider a network of n resistors Ri so that R2 may
be connected in series or parallel with R1; R3 may be
connected in series or parallel with the network
consisting of R1 and R2; and so on. The resistance of
two resistors in series is given by

Rnet; series�R1�R2;

and of two resistors in parallel by

Rnet; parallel�
1

1

R1

�
1

R2

:

The possible values for two resistors with resistances
a and b are therefore

a�b;
1

1

a
�

1

b

;

for three resistances a , b , and c are

a�b�c; a�
1

1

b
�

1

c

; b�
1

1

a
�

1

c

; c�
1

1

a
�

1

b



1

1

a
�

1

b � c

;
1

1

b
�

1

a � c

;
1

1

c
�

1

a � b

;
1

1

a
�

1

b
�

1

c

;

and so on. These are obviously all rational numbers,
and the numbers of distinct arrangements for n �1,
2, ..., are 1, 2, 8, 46, 332, 2874, ... (Sloane’s A005840),
which also arises in a completely different context
(Stanley 1991).

If the values are restricted to a �b �. . .�1; then
there are 2n�1 possible resistances for n 1-/V resistors,
ranging from a minimum of 1=n to a maximum of n .
Amazingly, the largest denominators for n �1, 2, ...
are 1, 2, 3, 5, 8, 13, 21, ..., which are immediately
recognizable as the FIBONACCI NUMBERS (Sloane’s
A000045). The following table gives the values possi-
ble for small n .

n Possible resistances

1 1

2 /
1
2 ; 2/

3 /
1
3 ;

2
3 ;

3
2 ; 3/

4 /
1
4 ;

2
5;

3
5 ;

3
4 ;

4
3 ;

5
3 ;

5
2; 4/

If the n resistors are given the values 1, 2, ..., n , then
the numbers of possible net resistances for 1, 2, ...
resistors are 1, 2, 8, 44, 298, 2350, ... (Sloane’s
A051045). The following table gives the values possi-
ble for small n .

n Possible resistances

1 1

2 /
2
3 ; 3/

3 /
6

11 ;
3
2 ;

11
3 ; 6/

4 /
12
25 ;

12
11 ;

44
23 ;

12
5 ;

50
11 ;

11
2 ;

23
3 ; 10/

See also FIBONACCI NUMBER

References
Amengual, A. "The Intriguing Properties of the Equivalent

Resistances of n Equal Resistors Combined in Series and
in Parallel." Amer. J. Phys. 68, 175 �/179, 2000.

Sloane, N. J. A. Sequences A000045/M0692, A005840/
M1872, and A051045 in "An On-Line Version of the
Encyclopedia of Integer Sequences." http://www.research.-
att.com/~njas/sequences/eisonline.html.

Stanley, R. P. "A Zonotope Associated with Graphical
Degree Sequences." In Applied Geometry and Discrete
Mathematics: The Victor Klee Festschrift (Ed. P. Gritz-
mann and B. Sturmfels). Providence, RI: Amer. Math.
Soc., pp. 555 �/570, 1991.

Resolution
Resolution is a widely used word with many different
meanings. It can refer to resolution of equations,
resolution of singularities (in ALGEBRAIC GEOMETRY),
resolution of modules or more sophisticated struc-
tures, etc. In a BLOCK DESIGN, a PARTITION R of a
BIBD’s set of blocks B into PARALLEL CLASSES, each of
which in turn partitions the set V , is called a
resolution (Abel and Furino 1996).

A resolution of the MODULE M over the RING R is a
complex of R -modules Ci and morphisms di and a
MORPHISM e such that

� � � 0 Ci 0
di Ci�1 0 � � � 0 C0 0

e M 0 0

satisfying the following conditions:

1. The composition of any two consecutive morph-
isms is the zero map,
2. For all i , ker dið Þ= im di�1

� �
�0;/

3. C0 =(ker e) #M ;/

where ker is the kernel and im is the image. Here, the
quotient

ker dið Þ
im di �1

� �
is the i th HOMOLOGY GROUP.

If all modules Ci are projective (free), then the
resolution is called projective (free). There is a similar
concept for resolutions "to the right" of M , which are
called injective resolutions.

See also HOMOLOGY GROUP, MODULE, MORPHISM,
RING
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Resolution Class
PARALLEL CLASS

Resolution Modulus
The least POSITIVE INTEGER m� with the property that
x(y) �1 whenever y �1 ðmod m�Þ and (y; m) �1:/

Resolvable
A balanced incomplete BLOCK DESIGN (B, V ) is called
resolvable if there exists a PARTITION R of its set of
blocks B into PARALLEL CLASSES, each of which in
turn partitions the set V . The partition R is called a
RESOLUTION.

See also BLOCK DESIGN, PARALLEL CLASS
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Resolve
QUANTIFIER ELIMINATION

Resolving Tree
A tree of LINKS obtained by repeatedly choosing a
crossing, applying the SKEIN RELATIONSHIP to obtain
two simpler LINKS, and repeating the process. The
DEPTH of a resolving tree is the number of levels of
links, not including the top. The DEPTH of the LINK is
the minimal depth for any resolving tree of that LINK.

Resonance Overlap
Isolated resonances in a DYNAMICAL SYSTEM can
cause considerable distortion of preserved TORI in
their NEIGHBORHOOD, but they do not introduce any
CHAOS into a system. However, when two or more
resonances are simultaneously present, they will
render a system nonintegrable. Furthermore, if they
are sufficiently "close" to each other, they will result
in the appearance of widespread (large-scale) CHAOS.

To investigate this problem, Walker and Ford (1969)
took the integrable Hamiltonian

H0 I1 ; I2ð Þ�I1 �I2 �I2
1 �3I1I2 �I2

2

and investigated the effect of adding a 2:2 resonance
and a 3:2 resonance

H(I; u) �H0(I) � aI1I2 cos 2u1 �2u2ð Þ

� bI3 =2
1 I2 cos 2 u1 �3u2ð Þ:

At low energies, the resonant zones are well-sepa-
rated. As the energy increases, the zones overlap and
a "macroscopic zone of instability" appears. When the
overlap starts, many higher-order resonances are also
involved so fairly large areas of PHASE SPACE have
their TORI destroyed and the ensuing CHAOS is "wide-
spread" since trajectories are now free to wander
between regions that previously were separated by
nonresonant TORI.

Walker and Ford (1969) were able to numerically
predict the energy at which the overlap of the
resonances first occurred. They plotted the u2/-axis
intercepts of the inner 2:2 and the outer 2:3 separa-
trices as a function of total energy. The energy at
which they crossed was found to be identical to that at
which 2:2 and 2:3 resonance zones began to overlap.

See also CHAOS, RESONANCE OVERLAP METHOD
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Resonance Overlap Method
A method for predicting the onset of widespread
CHAOS.

See also GREENE’S METHOD
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R-Estimate
A ROBUST ESTIMATION based on a RANK TEST.

See also L -ESTIMATE, M -ESTIMATE, RANK TEST,
ROBUST ESTIMATION
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Restricted Divisor Function

The sum of the ALIQUOT DIVISORS of n , given by

s(n) � s(n) �n;

where s(n) is the DIVISOR FUNCTION. The first few
values are 0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, ... (Sloane’s
A001065).

See also DIVISOR FUNCTION
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Restricted Growth Function
RESTRICTED GROWTH STRING



Restricted Growth String
For a SET PARTITION of n elements, the n -character
string a1a2 . . . an in which each character gives the
BLOCK (B0 ; B1 ; ...) in which the corresponding
element belongs is called the restricted growth string
(or sometimes the RESTRICTED GROWTH FUNCTION).
For example, for the SET PARTITION

ff1g; f2 g; f3 ; 4gg; the restricted growth string would
be 0122. If the BLOCKS are "sorted" so that a1 �0; then
the restricted growth string satisfies the INEQUALITY

ai �1 51 �max fa1 ; a2 ; . . .  ; ai g

for i �1, 2, ..., n �1 :/
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Restriction (Representation)

A REPRESENTATION of a GROUP G on a VECTOR SPACE

V can be restricted to a SUBGROUP H . For example,
the SYMMETRIC GROUP on three letters has a repre-
sentation f on R2 by

f(e) �
1 0
0 1

� �
(1)

f(12) �
0 1
1 0

� �
(2)

f(13) �
�1 0
�1 1

� �
(3)

f(23) �
1 �1
0 �1

� �
(4)

f(123) �
�1 1
�1 0

� �
(5)

f(132) �
0 �1
1 �1

� �
(6)

that can be restricted to the subgroup of ORDER 3,

f(e) �
1 0
0 1

� �
(7)

f(123) �
�1 1
�1 0

� �
(8)

fð132Þ ¼ 0 �1
1 �1

� �
(9)

See also FROBENIUS RECIPROCITY, REPRESENTATION,
VECTOR SPACE

Resultant
Given a POLYNOMIAL p(x) of degree n with roots ai ;
i �1, ..., n and a POLYNOMIAL q(x) of degree m with
roots bj ; j �1, ..., m , the resultant is defined by

r(p ; q) �
Yn

i �1

Ym
j�1

( bj � ai) :

The notation R(p; q) is also used.

There exists an ALGORITHM similar to the EUCLIDEAN

ALGORITHM for computing resultants (Pohst and
Zassenhaus 1989). The resultant of two polynomials
can be computed using the Mathematica command
Resultant[poly1 , poly2 , var ].

Resultants for a few simple pairs of polynomials
include

r(x �a; x �b) �a �b

r((x �a)(x �b) ; x �c) �(a �c)(b �c)

r((x �a)(x �b) ; (x �c)(x �d))

�(a �c)(b �c)(a �d)(b �d) :

The resultant is the DETERMINANT of the correspond-
ing SYLVESTER MATRIX. Given p and q , then

h(x) � r(q(t); p(x �t))

is a POLYNOMIAL of degree mn , having as its roots all
sums OF THE FORM /ai þ bj/.

See also DISCRIMINANT (POLYNOMIAL), SUBRESUL-

TANT, SYLVESTER MATRIX
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Retardance
A shift in PHASE.

See also PHASE

Reuleaux Polygon

A curvilinear polygon built up of circular ARCS. The
Reuleaux polygon is a generalization of the REU-



LEAUX TRIANGLE and, for an ODD NUMBER of sides, is a
CURVE OF CONSTANT WIDTH (Gray 1997).

See also CURVE OF CONSTANT WIDTH, DELTA CURVE,
REULEAUX TRIANGLE
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Reuleaux Tetrahedron

The Reuleaux tetrahedron is the 3-dimensional solid
common to four SPHERES of equal radius placed so
that the center of each sphere lies on the surface of
the other three. The centers of the spheres are
therefore located at the vertices of a regular TETRA-

HEDRON, and the solid consists of an "inflated"
tetrahedron with four curved edges.

To analyze the Reuleaux tetrahedron, fix a TETRA-

HEDRON of unit edge length with its vertices at
0; 0; �

ffiffiffi
6

p
=4

� �
;

ffiffiffi
3

p
=3; 0;

ffiffiffi
6

p
=12

� �
; �

ffiffiffi
3

p
=6; 1=2;

�
/

/

ffiffiffi
6

p
=12Þ; and �

ffiffiffi
3

p
=6; �1=2;

ffiffiffi
6

p
=12

� �
: Simultaneously

solving the equations of three of four spheres for x
and y as a function of z then gives

x�1
2

ffiffiffi
2

p
z�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15
2 �6z(

ffiffiffi
6

p
�6z)

q
(1)

y�
4
ffiffiffi
3

p
z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � 4z(

ffiffiffi
6

p
� 6z)

p
4
ffiffiffi
2

p : (2)

Half an arc is traced out as z passes from
ffiffiffi
6

p
=12 to

6�
ffiffiffi
6

p� �
=12; and

ds�
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2

5 � 4z
ffiffiffi
6

p
� 6z

� �
s

dz; (3)

so the ARC LENGTH of the curves connecting the
vertices is given by

s�g ds

�6
ffiffiffi
2

p
g

6�
ffiffi
6

pð Þ=12ffiffi
6

p
=12

5�4z
ffiffiffi
6

p
�6z

� �h i�1=2

dz: (4)

Making a change of coordinates,

s�
ffiffiffi
3

p
g
ffiffi
6

p

2

(6�u2)�1=2 du�
ffiffiffi
3

p
cot�1

ffiffiffi
2

p� �
(5)

:1:06604:

The VOLUME is significantly trickier to calculate
analytically. Set up SPHERICAL COORDINATES from
the centroid of the TETRAHEDRON, so that the distance
from the bottom vertex to the radius vector is 1, i.e.,

r2 cos2 sin2 f�r2 sin2 u sin2 f� r�1
4

ffiffiffi
6

p� �2

�1; (6)

giving

r(u; f)�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos(2f)�13

p
�

ffiffiffi
6

p
cos f

h i
: (7)

By symmetry, the volume of the Reuleaux tetrahe-
dron is given by

V�24g
p=3

0 g
fðuÞ

0 g
rðu;fÞ

0

r2 sin f dr df du: (8)

The integral over r can be done immediately,

V�

1
8 g

p=3

0 g
f(u)

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 cos(2f)�13

p
�

ffiffiffi
6

p
cos f

h i3

sin f df du:

(9)

Now parameterize the top right edge as a function of
the azimuthal coordinate u as

x�
cos uffiffiffi

3
p

cos u� 3 sin u
(10)

y�
sin uffiffiffi

3
p

cos u� 3 sin u
(11)

z� 1
12

ffiffiffi
6

p
: (12)

The polar angle f can then be solved for as a function
of u as

f(u)�cos�1 zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p !

�tan�1 2
ffiffiffi
6

pffiffiffi
3

p
cos u� 3 sin u

 !
: (13)

The integral over f can be done by making the



change of coordinates

u �
2
ffiffiffi
6

pffiffiffi
3

p
cos u � 3 sin u 

; (14)

giving
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1
32
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256 �45

ffiffiffi
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�42

ffiffiffi
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cos(2 tan �1 u)
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58

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 � 3 cos(2 tan�1 u)
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1 � u2
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�6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 �3 cos(2 tan �1 u)

p
cos(3 tan�1 u)

�3
ffiffiffi
6

p
cos(4 tan �1 u)

�
du : (15)

Making the change of variables

u �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6(1 � 3t2)

pffiffiffi
3

p
� 3

ffiffiffi
3

p
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(16)

then gives the volume as

V �g
1

0

8
ffiffiffi
3

p

1 � 3t2 
�

16
ffiffiffi
2

p
(3t � 1)(4t2 � t � 1)3 =2

(3t2 � 1)(11t2 � 2t � 3)2

 !

�

ffiffiffi
2

p
(249t2 � 54t � 65)

(11t2 � 2t � 3)2 Þ dt : (17)

This integral can be done analytically, but the
analytic form returned by symbolic algebra programs
is an extremely complicated expression involving
logarithms and inverse tangent functions. After
arduous simplification of the expression by hand,
the final solution

V � 1
24 6

ffiffiffi
2

p
�16p �57 cos �1 17

81

� �
�132 tan�1

ffiffiffi
2

p� �h i
(18)

:0:422157733 (19)

is obtained. This solution appears not to have been
published previously.

See also HYPERBOLIC TETRAHEDRON, REULEAUX TRI-

ANGLE, SPHERE, SPHERE-SPHERE INTERSECTION,
SPHERICAL TRIANGLE, STEINMETZ SOLID, TETRAHE-

DRON

Reuleaux Triangle

A CURVE OF CONSTANT WIDTH constructed by drawing
arcs from each VERTEX of an EQUILATERAL TRIANGLE

between the other two VERTICES. The Reuleaux
triangle has the smallest AREA for a given width of
any CURVE OF CONSTANT WIDTH. Let the arc radius be
r . Since the AREA of each meniscus-shaped portion of
the Reuleaux triangle is a circular SEGMENT with
opening angle u�p=3;

As�
1
2 r2(u�sin u)�

p

6
�

ffiffiffi
3

p

4

 !
r2: (1)

But the AREA of the central EQUILATERAL TRIANGLE

with a�1=
ffiffiffi
3

p
is

At�
1
4

ffiffiffi
3

p
r2; (2)

so the total AREA is then

A�3As�At�
1
2 p�

ffiffiffi
3

p� �
r2: (3)

Because it can be rotated inside a SQUARE, as
illustrated above, it is the basis for the Harry Watt



square drill bit.

When rotated inside a square of side length 2 having
corners at (91; 91); the envelope of the Reuleaux
triangle is a region of the square with rounded
corners. At the corner (�1; �1); the envelope of the
boundary is given by the segment of the ellipse with
PARAMETRIC EQUATIONS

x �1 �cos b �
ffiffiffi
3

p
sin b (4)

y �1 �sin b �
ffiffiffi
3

p
cos b (5)

for b � [p=6 ; p=3]; extending a distance 2 �
ffiffiffi
3

p
from

the corner (Gleißner and Zeitler 2000). The ellipse
has center (1; 1); semimajor axis a �1 �

ffiffiffi
3

p
; semimi-

nor axis b �1 �
ffiffiffi
3

p
; and is rotated by 45 8, which has

Cartesian equation

x2 �y2 �
ffiffiffi
3

p
xy � 2 �

ffiffiffi
3

p� �
x � 2 �

ffiffiffi
3

p� �
y �1 �

ffiffiffi
3

p
�0:

(6)

The fractional AREA covered as the Reuleaux triangle
rotates is

Acovered �2
ffiffiffi
3

p
�1

6 p �3 �0:9877003907 . . . : (7)

Note that Gleißner and Zeitler (2000) fail to simplify
their equivalent equation, and then proceed to assert
that (7) is erroneous.

The CENTROID does not stay fixed as the TRIANGLE is
rotated, nor does it move along a CIRCLE. In fact, the
path consists of a curve composed of four arcs of an
ELLIPSE (Wagon 1991). For a bounding square of side
length 2, the ellipse in the lower-left quadrant has

PARAMETRIC EQUATIONS

x �1 �cos b �1
3

ffiffiffi
3

p
sin b (8)

y �1 �sin b �1
3

ffiffiffi
3

p
cos b (9)

for b � [ p=6; p=3]: The ellipse has center (1; 1); semi-
major axis a �1 �1=

ffiffiffi
3

p
; semiminor axis b �

1 �1 =
ffiffiffi
3

p
; and is rotated by 458, which has Cartesian

equation

3x2 �3y2 �3
ffiffiffi
3

p
xy �3x 2 �

ffiffiffi
3

p� �
�3y 2 �

ffiffiffi
3

p� �
�5 �3

ffiffiffi
3

p
�0 : (10)

The area enclosed by the locus of the centroid is given
by

Acentroid�4�8
3

ffiffiffi
3

p
�2

9 p (11)

(Gleißner and Zeitler 2000; who again fail to simplify
their expression). Note that the CENTROID’s path can
be closely approximated by a SUPERELLIPSE

x

a

:::::
:::::
r

�
y

a

:::::
:::::
r

�1 (12)

with a�2
ffiffiffi
3

p
=3�1 and r:2:36185:/

See also CURVE OF CONSTANT WIDTH, DELTA CURVE,
EQUILATERAL TRIANGLE, FLOWER OF LIFE, PIECEWISE

CIRCULAR CURVE, REULEAUX POLYGON, REULEAUX

TETRAHEDRON, ROTOR, ROULETTE
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Reversal
The reversal of a decimal number abc � � �  is � � � cba:
Ball and Coxeter (1987) consider numbers whose
reversals are integral multiples of themselves. PALIN-

DROMIC NUMBERS and numbers ending with a ZERO

are trivial examples.

The first few nontrivial examples are 8712, 9801,
87912, 98901, 879912, 989901, 8799912, 9899901,
87128712, 87999912, 98019801, 98999901, ... (Sloa-
ne’s A031877). The pattern continues for large num-
bers, with numbers OF THE FORM 87 9 � � � 9|fflffl{zfflffl} 12 equal to
4 times their reversals and numbers OF THE FORM

98 9 � � � 9|fflffl{zfflffl} 01 equal to 9 times their reversals. In
addition, runs of numbers of either of these forms
can be concatenated to yield numbers OF THE FORM

87 9 � � � 9|fflffl{zfflffl} 12 � � � 87 9 � � � 9|fflffl{zfflffl} 12; equal to 4 times their
reversals, and 98 9 � � � 9|fflffl{zfflffl} 01 � � � 98 9 � � � 9|fflffl{zfflffl} 01 ; equal to 9
times their reversals.

The product of a 2-digit number and its reversal is
never a SQUARE NUMBER except when the digits are
the same (Ogilvy 1988). Numbers whose product is
the reversal of the products of their reversals include
(221, 312) and (122, 213), since

312 �221 �68952

213 �122 �25986

(Ball and Coxeter 1987, p. 14).

See also EMIRP, RATS SEQUENCE
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Reverse Greedy Algorithm
An algorithm for computing a UNIT FRACTION.

See also GREEDY ALGORITHM, UNIT FRACTION
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Reverse-Then-Add Sequence
An integer sequence produced by the 196-ALGORITHM.

See also 196-ALGORITHM, SORT-THEN-ADD SEQUENCE

Reversible Knot
INVERTIBLE KNOT

Reversible Prime
EMIRP

Reversion of Series
SERIES REVERSION

Reversion to the Mean
This entry contributed by ANTON E. WEISSTEIN

Reversion to the mean is the statistical phenomenon
that a random variate which deviates strongly from
the mean in a particular direction is likely to be
succeeded by an event (independent of the first) that
deviates less far in this direction. In other words, an
extreme event is likely to be followed by a less
extreme event.

Although this phenomenon appears to violate the
definition of INDEPENDENT EVENTS, it simply reflects
the fact that there are more values from which to
choose on the side of the probability distribution
closer to the mean than there are on the side
corresponding to even more extreme values.

See also MEAN

Reye’s Configuration
A configuration of 12 planes and 12 points such that
six points lie in every plane and six planes pass
through every point. Alternatively, the configuration
consists of 16 lines and the same 12 points such that
four lines pass through every point and three points
lie on every line.

The points consist of the eight vertices of a CUBE

together with its center and the three POINTS AT

INFINITY where parallel edges of the CUBE meet. The
12 planes are the six faces of the cube and the six
planes passing through diagonally opposite edges.
The 16 lines consist of the 12 edges and four space
diagonals of the cube.



Reye’s configuration can be realized without any
points at infinity by squashing the cube and bringing
the points at infinity to finite positions, as illustrated
above.

See also CONFIGURATION
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Reznik’s Identity
For P and Q POLYNOMIALS in n variables,

½P � Q½22 �
X

i1 ; ... ; in ]0

� ½P(i1 ; ... ; in)(D1 ; . . . ; Dn)Q(x1 ; . . . ; xn) ½22
i1! � � � in! 

;

where Di �@=@xi ; ½X ½2 is the BOMBIERI NORM, and

P(i1 ; ... ; in) �Di1

1 � � �Din
n P :

BOMBIERI’S INEQUALITY follows from this identity.

See also BEAUZAMY AND DÉ GOT’S IDENTITY

Rhodonea
ROSE

Rhomb
RHOMBUS

Rhombic Dodecahedral Number
A FIGURATE NUMBER which is constructed as a
centered CUBE with a SQUARE PYRAMID appended to
each face,

RhoDodn �CCubn �6Pn�1

�(2n �1)(2n2 �2n �1); (1)

where CCubn is a CENTERED CUBE NUMBER and Pn is a
PYRAMIDAL NUMBER. The first few are 1, 15, 65, 175,
369, 671, ... (Sloane’s A005917). The GENERATING

FUNCTION of the rhombic dodecahedral numbers is

x(1 � 11x � 11x2 � x3)

(x � 1)4

�x �15x2 �65x3 �175x4 �. . . : (2)

A related set of numbers is the number of cubes in the
HAUY CONSTRUCTION of the RHOMBIC DODECAHEDRON,
given by

HauyRhoDodk �k3 �6
X

i�1 ; 3 ; ... ; k �2

i2 ; (3)

for k an ODD NUMBER. Re-indexing with k �2n �1
then gives

HauyRhoDodn �(2n �1)(8n2 �14n �7); (4)

giving the first few values 1, 33, 185, 553, 1233, ...
(Sloane’s A046142).

See also ESCHER’S SOLID, HAUY CONSTRUCTION,
OCTAHEDRAL NUMBER, RHOMBIC DODECAHEDRON
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Rhombic Dodecahedron

The DUAL POLYHEDRON of the CUBOCTAHEDRON A1

and Wenninger dual W11: Its sometimes also called
the RHOMBOIDAL DODECAHEDRON (Cotton 1990). Its
14 vertices are joined by 12 RHOMBUSES of the
dimensions shown in the figure below, where

a�2 cot�1
ffiffiffi
2

p
�cos�1 1

3

� �
:70:53� (1)

b�2 tan�1
ffiffiffi
2

p
:109:47�: (2)



The rhombic dodecahedron can be built up by a
placing six cubes on the faces of a seventh, in the
configuration of a metal "jack." Joining the centers of
the outer cubes with the vertices of the central cube
then gives the rhombic dodecahedron. Affixing a
SQUARE PYRAMID of height 1/2 on each face of a CUBE

having unit edge length results in a rhombic dodeca-
hedron (Brückner 1900, p. 130; Steinhaus 1983,
p. 185).

If the rhombic dodecahedron is hinged into six square
pyramids along three consecutive face diagonals, the
resulting model can be folded into a cube (Wells
1991). One possible construction for the rhombic
dodecahedron is known as the BAUSPIEL. It can also
be constructed by CUMULATION of a unit edge-length
CUBE by a pyramid with height 1/2.

The rhombic dodecahedron is a ZONOHEDRON and a
SPACE-FILLING POLYHEDRON (Steinhaus 1983, p. 185).
The vertices are given by (91, 91, 91), ( 92, 0, 0), (0,
92, 0), (0, 0, 92).

The edges of the CUBE-OCTAHEDRON COMPOUND inter-
secting in the points plotted above are the diagonals
of RHOMBUSES, and the 12 RHOMBUSES form a rhombic
dodecahedron (Ball and Coxeter 1987). There are
three stellations of the rhombic dodecahedron.

The rhombic dodecahedron can be built using a HAUY

CONSTRUCTION. The Hauy RHOMBIC DODECAHEDRAL

NUMBERS

HRhoDodn �(2n �1)(8n2 �14n �7) (3)

give a method for calculating the VOLUME of the
rhombic dodecahedron,

V� lim
n0�

HRhoDodn

a

n
ffiffiffi
3

p
 !3

�16
9

ffiffiffi
3

p
a3 (4)

(Steinhaus 1983). The SURFACE AREA of a rhombic
dodecahedron with unit edge length is

S�8
ffiffiffi
2

p
: (5)

See also BAUSPIEL, CUBE-OCTAHEDRON COMPOUND,
DODECAHEDRON, HAUY CONSTRUCTION, PYRITOHE-

DRON, RHOMBIC DODECAHEDRON STELLATIONS,
RHOMBIC TRIACONTAHEDRON, RHOMBUS, SPHERE

PACKING, STEINMETZ SOLID, TRIGONAL DODECAHE-

DRON, ZONOHEDRON
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Rhombic Dodecahedron Stellations



There are three STELLATIONS of the RHOMBIC DODE-

CAHEDRON (Wells 1991), two of which are illustrated
above. The first stellation can be constructed by
drawing diagonals across the square faces of a
CUBOCTAHEDRON and connecting centers of these
diagonals with the vertices of neighboring squares.
The outer edges of the second stellation correspond
with those of the TRUNCATED OCTAHEDRON.

See also CUBOCTAHEDRON, RHOMBIC DODECAHEDRON,
STELLATION, TRUNCATED OCTAHEDRON
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Rhombic Icosahedron

A ZONOHEDRON which can be derived from the
RHOMBIC TRIACONTAHEDRON by removing any one of
the zones and bringing together the two pieces into
which the remainder of the surface is thereby divided.

See also RHOMBIC TRIACONTAHEDRON, ZONOHEDRON
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Rhombic Polyhedron
A POLYHEDRON with extra square faces, given by the
SCHLÄFLI SYMBOL rfp

q
g:/

See also RHOMBIC DODECAHEDRON, RHOMBIC ICOSA-

HEDRON, RHOMBIC TRIACONTAHEDRON, SNUB POLY-

HEDRON, TRUNCATED POLYHEDRON

Rhombic Spirallohedron

A beautiful class of polyhedra composed of rhombic
faces discovered accidentally by R. Towle while at-
tempting to develop a function to create a rhombic
hexahedron from a triple of vectors.
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Rhombic Triacontahedron

A ZONOHEDRON which is the DUAL POLYHEDRON of the
ICOSIDODECAHEDRON A4 and Wenninger dual W12: It
is composed of 30 RHOMBI joined at 32 vertices. The
intersecting edges of the DODECAHEDRON-ICOSAHE-

DRON COMPOUND form the diagonals of 30 RHOMBI

which comprise the TRIACONTAHEDRON. The CUBE 5-

COMPOUND has the 30 facial planes of the rhombic
triacontahedron (Wenninger 1983, p. 36; Ball and
Coxeter 1987).

The short diagonals of the faces of the rhombic
triacontahedron give the edges of a DODECAHEDRON,
while the long diagonals give the edges of the
ICOSAHEDRON (Steinhaus 1983, pp. 209�/210). Taken



together, the DODECAHEDRON and ICOSAHEDRON give
a DODECAHEDRON-ICOSAHEDRON COMPOUND.

The rhombic triacontahedron generated from an
ICOSIDODECAHEDRON of unit edge lengths has edge
lengths

s �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
2 5 �

ffiffiffi
5

p� �r
: (1)

and INRADIUS

r �1
8 5 �3

ffiffiffi
5

p� �
: (2)

Normalizing so that s �1, the solid has SURFACE AREA

and VOLUME given by

S �12
ffiffiffi
5

p
(3)

V �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
: (4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
CUBE 5-COMPOUND, DODECAHEDRON, DODECAHE-

DRON-ICOSAHEDRON COMPOUND, ICOSAHEDRON, ICO-

SIDODECAHEDRON, RHOMBIC DODECAHEDRON,
RHOMBIC TRIACONTAHEDRON STELLATIONS, RHOM-

BUS, TRIACONTAHEDRON, ZONOHEDRON
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Rhombic Triacontahedron Stellations

Ede (1958) enumerates 13 basic series of stellations of
the rhombic triacontahedron, the total number of
which is extremely large. Pawsey (1973) gave a set of
restrictions upon which a complete enumeration of
stellations can be achieved (Wenninger 1983, p. 36).
Messer (1995) describes 226 stellations, some of
which are illustrated above.
The CONVEX HULL of the DODECADODECAHEDRON is an
ICOSIDODECAHEDRON and the dual of the ICOSIDODE-

CAHEDRON is the RHOMBIC TRIACONTAHEDRON, so the
dual of the DODECADODECAHEDRON (the MEDIAL

RHOMBIC TRIACONTAHEDRON) is one of the rhombic
triacontahedron stellations (Wenninger 1983, p. 41).
Another is the GREAT RHOMBIC TRIACONTAHEDRON.

See also GREAT RHOMBIC TRIACONTAHEDRON, MEDIAL

RHOMBIC TRIACONTAHEDRON, RHOMBIC TRIACONTA-

HEDRON, STELLATION
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Rhombicosacron

The DUAL POLYHEDRON of the RHOMBICOSAHEDRON

U56 and Wenninger dual W96 :/

See also DUAL POLYHEDRON, RHOMBICOSAHEDRON
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Rhombicosahedron

The UNIFORM POLYHEDRON U56 and Wenninger model
W96 whose DUAL POLYHEDRON is the RHOMBICOSA-

CRON. It has WYTHOFF SYMBOL 2 5
2 3½: Its faces are

10 f6g�15 f4g�15 f4
3 g�10 f6

5 g: The CIRCUMRADIUS for
unit edge length is

R �1
2

ffiffiffi
7

p
:
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Rhombicosidodecahedron
BIGYRATE DIMINISHED RHOMBICOSIDODECAHEDRON,
DIMINISHED RHOMBICOSIDODECAHEDRON, GREAT

RHOMBICOSIDODECAHEDRON (ARCHIMEDEAN), GREAT

RHOMBICOSIDODECAHEDRON (UNIFORM), GYRATE BI-

DIMINISHED RHOMBICOSIDODECAHEDRON, GYRATE

RHOMBICOSIDODECAHEDRON, METABIDIMINISHED

RHOMBICOSIDODECAHEDRON, METABIGYRATE RHOM-

BICOSIDODECAHEDRON, METAGYRATE DIMINISHED

RHOMBICOSIDODECAHEDRON, PARABIDIMINISHED

RHOMBICOSIDODECAHEDRON, PARABIGYRATE RHOMBI-

COSIDODECAHEDRON, PARAGYRATE DIMINISHED

RHOMBICOSIDODECAHEDRON, SMALL RHOMBICOSIDO-

DECAHEDRON, TRIDIMINISHED RHOMBICOSIDODECAHE-

DRON, TRIGYRATE RHOMBICOSIDODECAHEDRON

Rhombicuboctahedron
GREAT RHOMBICUBOCTAHEDRON (ARCHIMEDEAN),
GREAT RHOMBICUBOCTAHEDRON (UNIFORM), SMALL

RHOMBICUBOCTAHEDRON

Rhombidodecadodecahedron

The UNIFORM POLYHEDRON U38 whose DUAL POLYHE-

DRON is the MEDIAL DELTOIDAL HEXECONTAHEDRON. It
has SCHLÄ FLI SYMBOL r f5

2 g and WYTHOFF SYMBOL
5
25 2:j Its faces are 12 f5

2 g�3f4 g�12 f5g: The CIRCUM-

RADIUS for unit edge length is

R �1
2

ffiffiffi
7

p
:
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Rhombihexacron
GREAT RHOMBIHEXACRON, SMALL RHOMBIHEXACRON

Rhombihexahedron
GREAT RHOMBIHEXAHEDRON, SMALL RHOMBIHEXAHE-

DRON

Rhombitruncated Cuboctahedron
GREAT RHOMBICUBOCTAHEDRON (ARCHIMEDEAN)

Rhombitruncated Icosidodecahedron
GREAT RHOMBICOSIDODECAHEDRON (ARCHIMEDEAN)

Rhombohedron
A PARALLELEPIPED bounded by six congruent
RHOMBS.

See also PARALLELEPIPED, RHOMB
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Rhomboid
A PARALLELOGRAM in which angles are oblique and
adjacent sides are of unequal length.

See also BAR (POLYIAMOND), DIAMOND, KITE, LO-

ZENGE, PARALLELOGRAM, QUADRILATERAL, RHOMBUS,
SKEW QUADRILATERAL, TRAPEZIUM, TRAPEZOID
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Rhomboidal Dodecahedron
RHOMBIC DODECAHEDRON

Rhombus

A QUADRILATERAL with both pairs of opposite sides
PARALLEL and all sides the same length, i.e., an
equilateral PARALLELOGRAM. The word RHOMB is
sometimes used instead of rhombus, and a rhombus
is sometimes also called a diamond. A rhombus with
2u �45 � is sometimes called a LOZENGE.
The DIAGONALS p and q of a rhombus are PERPENDI-

CULAR and satisfy

p2 �q2 �4a2 :

The AREA of a rhombus is given by

A �1
2 pq :

See also DIAMOND, HARBORTH’S TILING, KITE, LO-

ZENGE, PARALLELOGRAM, QUADRILATERAL, RHOMBIC

DODECAHEDRON, RHOMBIC ICOSAHEDRON, RHOMBIC

TRIACONTAHEDRON, RHOMBOID, SKEW QUADRILAT-

ERAL, TRAPEZIUM, TRAPEZOID
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Rhumb Line
LOXODROME

Ribbon Knot
If the KNOT K is the boundary K �f S1

� �
of a singular

disk f : D 0 S3 which has the property that each self-
intersecting component is an arc A ƒf D2

� �
for which

f �1(A) consists of two arcs in D2 ; one of which is

interior, then K is said to be a ribbon knot. Every
ribbon knot is a SLICE KNOT, and it is conjectured that
every SLICE KNOT is a ribbon knot.

See also SLICE KNOT
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Ribet’s Theorem
If the TANIYAMA-SHIMURA CONJECTURE holds for all
semistable ELLIPTIC CURVES, then FERMAT’S LAST

THEOREM is true. Before its proof by Ribet in 1986,
the theorem had been called the EPSILON CONJEC-

TURE. It had its roots in a surprising result of G. Frey.

See also ELLIPTIC CURVE, EPSILON CONJECTURE,
FERMAT’S LAST THEOREM, MODULAR FORM, MODULAR

FUNCTION, TANIYAMA-SHIMURA CONJECTURE

Riccati Differential Equation

y?�P(z)�Q(z)y�R(z)y2; (1)

where y?�dy=dz: The transformation

w��
y?

yR(z)
(2)

leads to the second-order linear homogeneous equa-
tion

R(z)yƒ�[R?(z)�Q(z)R(z)]y?�[R(z)]2P(z)y�0: (3)

Another equation sometimes called the Riccati differ-
ential equation is

z2wƒ� z2�n(n�1)
� �

w�0 (4)

(Zwillinger 1997, p. 126), which has solutions

w�Azjn(z)�Bzyn(z); (5)

where jn(z) and yn(z) are SPHERICAL BESSEL FUNC-

TIONS OF THE FIRST and SECOND KINDS.

Yet another form of "the" Riccati differential equation
is

dy

dz
�azn�by2; (6)

which is solvable by algebraic, exponential, and
logarithmic functions only when n��4m=(2m91);
for m�0, 1, 2, ....
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Riccati-Bessel Functions

Sn(z) �zjn(z) �

ffiffiffiffiffi
pz

2

s
Jn�1=2(z)

Cn(z) ��znn(z) ��

ffiffiffiffiffi
pz

2

s
Nn�1=2(z) ;

where jn(z) and nn(z) are SPHERICAL BESSEL FUNC-

TIONS OF THE FIRST and SECOND KIND.
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Ricci Curvature
RICCI CURVATURE TENSOR

Ricci Curvature Tensor

Rmk �R l ml k ;

where Rl
mlk is the RIEMANN TENSOR.

Topologically, the Ricci curvature is the mathemati-
cal object which controls the growth rate of the
volume of metric balls in a MANIFOLD.

See also BISHOP’S INEQUALITY, CAMPBELL’S THEOREM,
CURVATURE SCALAR, EINSTEIN TENSOR, MILNOR’S

THEOREM, RIEMANN TENSOR
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Ricci Tensor
RICCI CURVATURE TENSOR

Rice Distribution

P(Z) �
Z

s2
exp �

Z2 � Vj j2

2 s2

 !
I0

Z Vj j
s2

 !
;

where I0(z) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND and Z �0. For a derivation, see Papoulis
(1962). For Vj j �0 �0; this reduces to the RAYLEIGH

DISTRIBUTION.

See also RAYLEIGH DISTRIBUTION
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Richard’s Paradox
It is possible to describe a set of POSITIVE INTEGERS

that cannot be listed in a book containing a set of
counting numbers on each consecutively numbered
page. Another form of the paradox states that the set
of all numerical functions is nondenumerable (Curry
1977).
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Richardson Extrapolation
The consideration of the result of a numerical
calculation as a function of an adjustable parameter
(usually the step size). The function can then be fitted
and evaluated at h �0 to yield very accurate results.
Press et al. (1992) describe this process as turning
lead into gold. Richardson extrapolation is one of the
key ideas used in the popular and robust BULIRSCH-

STOER ALGORITHM of solving ORDINARY DIFFERENTIAL

EQUATIONS.

See also BULIRSCH-STOER ALGORITHM
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Richardson’s Theorem
Let R be the class of expressions generated by

1. The RATIONAL NUMBERS and the two REAL

NUMBERS p and ln 2;/
2. The variable x ,
3. The operations of ADDITION, MULTIPLICATION,
and composition, and
4. The SINE, EXPONENTIAL, and ABSOLUTE VALUE

functions.

Then if E � R; the predicate "E �0" is recursively
UNDECIDABLE.

See also INTEGER RELATION, RECURSION, UNDECID-

ABLE
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Riddell’s Formula
Riddell’s formula for unlabeled graphs is the EULER

TRANSFORM relating the number of unlabeled CON-

NECTED GRAPHS on n nodes satisfying some property
with the corresponding total number (not necessarily
connected) of GRAPHS on n nodes.

Riddell’s formula for labeled graphs is the EXPONEN-

TIAL TRANSFORM relating the number of labeled
CONNECTED GRAPHS on n nodes satisfying some
property with the corresponding total number (not
necessarily connected) of labeled GRAPHS on n nodes.

See also CONNECTED GRAPH, EULER TRANSFORM,
EXPONENTIAL TRANSFORM, GRAPH, LABELED GRAPH,
UNLABELED GRAPH
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Ridders’ Method

A variation of the FALSE POSITION METHOD for finding
ROOTS which fits the function in question with an
exponential.

See also FALSE POSITION METHOD, ROOT
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Ridge
An (n �2)/-D FACE of an n -D POLYTOPE.

See also POLYTOPE

Riemann Curve Theorem
If two algebraic plane curves with only ordinary
singular points and CUSPS are related such that the
coordinates of a point on either are RATIONAL FUNC-

TIONS of a corresponding point on the other, then the
curves have the same GENUS (CURVE). This can be
stated equivalently as the GENUS of a curve is
unaltered by a BIRATIONAL TRANSFORMATION.
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Riemann Differential Equation
RIEMANN P -DIFFERENTIAL EQUATION

Riemann Formula
The solution

u(x; y) �g
x

0

dj g
y

1

R( j; h; x; y)f ( j; h) dh ; (1)

where R(x; y; j; h) is the RIEMANN FUNCTION of the
linear GOURSAT PROBLEM with characteristics f �
c �0 according to the RIEMANN METHOD.

See also GOURSAT PROBLEM, RIEMANN FUNCTION,
RIEMANN METHOD
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Riemann Function
There are a number of functions in various branches
of mathematics known as Riemann functions. Exam-
ples include the RIEMANN P -SERIES, RIEMANN-SIEGEL

FUNCTIONS, RIEMANN THETA FUNCTION, RIEMANN



ZETA FUNCTION, XI FUNCTION, the function F(x)
obtained by Riemann in studying FOURIER SERIES,
the function R(x; y; j; h) appearing in the applica-
tion of the RIEMANN METHOD for solving the GOURSAT

PROBLEM, the function R(n) in the RIEMANN PRIME

NUMBER FORMULA, and the function f (x) related to the
PRIME COUNTING FUNCTION defined below.

The Riemann function F(x) for a FOURIER SERIES

1
2 a0 �

X�
n�1

an cos(nx) �bn sin(nx)½ 
 (1)

is obtained by integrating twice term by term to
obtain

F(x) �1
4 a0x2 �

X�
n �1

1

n2
ancos(nx) �bn sin(nx)½ 


�Cx �D; (2)

where C and D are constants (Riemann 1957;
Hazewinkel 1988, vol. 8, p. 118).

The Riemann function R(x; y; j; h) arises in the
solution of the linear case of the GOURSAT PROBLEM

of solving the HYPERBOLIC PARTIAL DIFFERENTIAL

EQUATION

L̃u �uxy �aux �buy �cu �f (3)

with BOUNDARY CONDITIONS

u(0; t) � f(t) (4)

u(t; 1) � c(t) (5)

f(1) � f(0) : (6)

Here, R(x; y; j; h) is defined as the solution of the
equation

Rxy �(aR)x �(bR)y �cR �0 (7)

which satisfies the conditions

R( j; y; j; n) �exp g
y

h

a( j; t) dt

" #
(8)

R(x ; h; j; h) �exp g
x

j

b(t; h) dt

� �
(9)

on the characteristics x � j and y � h; where (j; h) is a
point on the domain V on which (8) is defined
(Hazewinkel 1988). The solution is then given by
the RIEMANN FORMULA

u(x; y) �g
x

0

d j g
y

1

R(j; h; x ; y)f (j; h) dh : (10)

This method of solution is called the RIEMANN

METHOD.

Riemann defined the function f (x) by

f (x) �
X�
n�1

p x1 =n
� �

n

� p(x) �1
2 p x

1 =2
� �

�1
3 p x

1=3
� �

�. . . (11)

(Hardy 1999, p. 30), then the PRIME COUNTING FUNC-

TION p(x) is related to f (x) by

p(x) �
X�
n�1

m(n)

n
f x1=n
� �

; (12)

where m(n) is the MÖ BIUS FUNCTION (Riesel 1994,
p. 49). Riemann (1859) proposed that

f (x) �li(x) �
X
r

li(xr) �ln 2 �g
�

x

dt

t ln t t2 � 1ð Þ
; (13)

where li(x) is the LOGARITHMIC INTEGRAL and the sum
is over all nontrivial zeros r of the RIEMANN ZETA

FUNCTION z(z) (Mathews 1892, Ch. 10; Landau 1974,
Ch. 19; Ingham 1990, Ch. 4; Hardy 1999, p. 40). This
formula was subsequently proved by Mangoldt in
1895 (Riesel 1994, p. 47).

A function related to f (x) is given by

J(x)�

p(x)�1
2 p x1=2
� �

�1
3 p x1=3
� �

�. . .� 1
2m

for pm with p prime
p(x)�1

2 p x1=2
� �

�1
3 p x1=3
� �

�. . .

otherwise

8>><
>>: (14)

�lim
t0�

1

2pi g
2�iT

2�iT

xs

s
ln z(s) ds; (15)

where z(z) is the RIEMANN ZETA FUNCTION. This
function satisfies

ln z(s)

s
�g

�

1

J(x)x�s�1 dx (16)

(Riesel 1994, p. 47).

See also CRITICAL STRIP, GOURSAT PROBLEM, LOGA-

RITHMIC INTEGRAL, MANGOLDT FUNCTION, RIEMANN

METHOD, PRIME NUMBER THEOREM, RIEMANN PRIME

NUMBER FORMULA, RIEMANN ZETA FUNCTION
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Riemann Hypothesis
First published in Riemann (1859), the Riemann
hypothesis states that the nontrivial ROOTS of the
RIEMANN ZETA FUNCTION

z(s) �
X�
n�1

1

ns 
; (1)

where x �C (the COMPLEX NUMBERS), all lie on the
"CRITICAL LINE" R[s] �1=2; where R[z] denotes the
REAL PART of z . The Riemann hypothesis is also
known as ARTIN’S CONJECTURE. Wiener showed that
the PRIME NUMBER THEOREM is literally equivalent to
the assertion that z(s) has no zeros on s �1 (Hardy
1999, pp. 34 and 58 �/60).

In 1914, Hardy proved that an INFINITE number of
values for s can be found for which z(s) �0 and R[s] �
1=2 : However, it is not known if all nontrivial roots s
satisfy R[s] �1=2; so the conjecture remains open.
André Weil proved the Riemann hypothesis to be true
for field functions (Weil 1948, Eichler 1966, Ball and
Coxeter 1987). In 1974, Levinson (1974ab) showed
that at least 1/3 of the ROOTS must lie on the CRITICAL

LINE (Le Lionnais 1983), a result which has since
been sharpened to 40% (Vardi 1991, p. 142). It is
known that the zeros are symmetrical placed about
the line I[s] �0:/

The Riemann hypothesis is equivalent to L50; where
L is the DE BRUIJN-NEWMAN CONSTANT (Csordas et al.
1994). It is also equivalent to the assertion that for
some constant c ,

Li(x) � p(x)j j5c
ffiffiffi
x

p
ln x; (2)

where Li(x) is the LOGARITHMIC INTEGRAL and p is the
PRIME COUNTING FUNCTION (Wagon 1991). Another
equivalent form states that

spanL2(0; 1) ra ; 0 B a B1f g�L2(0; 1); (3)

where

ra(t) �frac
a

t

 !
� a frac

1

t

 !
; (4)

where frac(x) is the FRACTIONAL PART (Balazard and
Saias 2000).

By modifying a criterion of Robin (1984), Lagarias
(2000) showed that the Riemann hypothesis is
equivalent to the statement that

s(n) 5Hn �exp Hnð Þ ln Hn ; (5)

for all n ]1; with equality only for n �1, where Hn is
a HARMONIC NUMBER and s(n) is the DIVISOR FUNC-

TION.

There is also a finite analog of the Riemann hypoth-
esis concerning the location of zeros for function fields
defined by equations such as

ayl �bzm �c �0: (6)

This hypothesis, developed by Weil, is analogous to
the usual Riemann hypothesis. The number of solu-
tions for the particular cases l; mð Þ�(2; 2); (3, 3),
(4, 4), and (2, 4) were known to Gauss.

The hypothesis has thus far resisted all attempts to
prove it, although it has been computationally tested
and found to be true for the first 200; 000; 001 zeros by
Brent et al. (1982). Brent’s calculation covered zeros
s�it in the region 0BtB81; 702; 130:19: In 2000,
Clay Mathematics Institute offered a $1 million prize
for proof of the Riemann hypothesis.

See also BERRY CONJECTURE, CRITICAL LINE, CRITI-

CAL STRIP, EXTENDED RIEMANN HYPOTHESIS, GRON-

WALL’S THEOREM, MERTENS CONJECTURE, MILLS’

CONSTANT, PRIME NUMBER THEOREM, RIEMANN

ZETA FUNCTION
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Riemann Integral
The Riemann integral is the INTEGRAL normally
encountered in CALCULUS texts and used by physicists
and engineers. Other types of integrals exist (e.g., the
LEBESGUE INTEGRAL), but are unlikely to be encoun-
tered outside the confines of advanced mathematics

texts. In fact, according to Jeffreys and Jeffreys (1988,
p. 29), "it appears that cases where these methods
[i.e., generalizations of the Riemann integral] are
applicable and Riemann’s [definition of the integral]
is not are too rare in physics to repay the extra
difficulty."

The Riemann integral is based on the JORDAN

MEASURE, and defined by taking a limit of a RIEMANN

SUM,

g
a

b

f (x) dx� lim
max Dxk00

Xn

k�1

f x�kð ÞDxk (1)

gg f (x; y) dA� lim
max DAk00

Xn

k�1

f x�k; y�kð ÞDAk (2)

ggg f (x; y z) dV� lim
max DVk00

Xn

k�1

f x�k; y�k; z�kð ÞDVk; (3)

where a5x5b and x�k; y�k; and z�k are arbitrary points
in the intervals Dxk; Dyk; and Dzk; respectively. The
value maxDxk is called the MESH SIZE of a partition of
the interval [a, b ] into subintervals Dxk:/

As an example of the application of the Riemann
integral definition, find the AREA under the curve y�
xr from 0 to a . Divide (a, b ) into n segments, so Dxk�
b�a

n
�h; then

f (x1)�f (0)�0 (4)

f (x2)�f (Dxk)�hr (5)

f (x3)�f 2Dxkð Þ�(2h)r: (6)

By induction

f xkð Þ�f [k�1]Dxkð Þ�[(k�1)h]r�hr(k�1)r; (7)

so

f (xk)Dxk�hr�1(k�1)r (8)

Xn

k�1

f (xk)Dxk�hr�1
Xn

k�1

(k�1)r: (9)

For example, take r�2.

Xn

k�1

f (xk)Dxk�h3
Xn

k�1

(k�1)2

�h3
Xn

k�1

k2�2
Xn

k�1

k�
Xn

k�1

1

 !

�h3 n(n � 1)(2n � 1)

6
�2

n(n � 1)

2
�n

" #
; (10)

so



I � lim
n0�

Xn

k �1

f x�kð ÞDxk � lim
n0�

Xn

k�1

f xkð ÞDxk

� lim
n0�

h3 n(n � 1)(2n � 1)

6
�2

n(n � 1)

2
�n

" #

�a3 lim
n0�

n(n � 1)(2n � 1)

6n3 
�

n(n � 1)

n3
�

n

n3

" #

�1
3 a

3 : (11)

See also INTEGRAL, RIEMANN SUM
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Riemann Mapping Theorem
Let z0 be a point in a simply connected region R "C:
Then there is a unique ANALYTIC FUNCTION w �f (z)
mapping R one-to-one onto the DISK wj j B1 such that
f z0ð Þ�0 and f ? z0ð Þ�0: The COROLLARY guarantees
that any two simply connected regions except R2 can
be mapped CONFORMALLY onto each other.
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Riemann Method
The method for solving the GOURSAT PROBLEM and
CAUCHY PROBLEM for linear HYPERBOLIC PARTIAL

DIFFERENTIAL EQUATIONS using a RIEMANN FUNC-

TION.

See also GREEN’S FUNCTION, RIEMANN FUNCTION
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Riemann P-Differential Equation
The differential equation

d2u

dz2 
�

1 � a � a?

z � a
�

1 � b � b?

z � b
�

1 � g � g 0

z � c

" #
du

dz

�
�
aa?(a � b)(a � c)

z � a
�

bb?(b � c)(b � a)

z � b

�
gg?(c � a)(c � b)

z � c

�
u

(z � a)(z � b)(z � c) 
�0;

where

a � a?�b � b?�g � g ?�1;

first obtained in the form by Papperitz (1885; Bares
1908). Solutions are RIEMANN P -SERIES (Abramowitz
and Stegun 1972, pp. 564 �/565). Zwillinger (1995,
p. 414) confusingly calls this equation the "hypergeo-
metric equation."

See also HEUN’S DIFFERENTIAL EQUATION
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Riemann Prime Number Formula

Riemann considered

R(x)�
X�
n�1

m(n)

n
li x1=n
� �

; (1)

obtained by replacing f x1=n
� �

in the RIEMANN FUNC-

TION with the LOGARITHMIC INTEGRAL li x1=n
� �

:; where
z(z) is the RIEMANN ZETA FUNCTION and m(n) is the
MÖBIUS FUNCTION (Hardy 1999, pp. 16 and 23). This



series is identical to the GRAM SERIES (Hardy 1999,
pp. 24 �/25). The quantity R(x) � p(x) is plotted above.
In addition,

p(x) �R(x) �
X
r

R(xr) ; (2)

where p(x) is the PRIME COUNTING FUNCTION and the
SUM is over all complex (nontrivial) zeros r of z(s); i.e.,
those in the CRITICAL STRIP so 0 BR[r] B1 ; inter-
preted to meanX

r

R xrð Þ�lim
t 0�

X
I( r)j jBt

R xrð Þ: (3)

Riemann conjectured that R(n) � p(n) (Knuth 1998,
p. 382), but this was disproved by Littlewood in 1914
(Hardy and Littlewood 1918).

Ramanujan independently derived the formula for
R(n) ; but nonrigorously (Berndt 1994, p. 123; Hardy
1999, p. 23). The following table compares p(x) ; li x;
and R(x) for small x . Note that the values given by
Hardy (1999, p. 26) for x �109 are incorrect.

x /p(x)/ /li(x) � p(x)/ /R(x) � p(x)/

100000 9592 38 �5

1000000 78498 130 29

2000000 148933 122 /�9/

3000000 216816 155 0

4000000 283146 206 33

5000000 348513 125 �64

6000000 412849 228 24

7000000 476648 179 �38

8000000 539777 223 /�6/

9000000 602489 187 �53

10000000 664579 339 88

100000000 5761455 754 97

1000000000 50847534 1701 �79

See also GRAM SERIES, PRIME COUNTING FUNCTION,
PRIME NUMBER THEOREM, RIEMANN FUNCTION, SOLD-

NER’S CONSTANT

References
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York:

Springer-Verlag, 1994.
Hardy, G. H. and Littlewood, J. E. Acta Math. 41, 119�/196,

1918.
Hardy, G. H. "The Series R(x):/" §2.3 in Ramanujan: Twelve

Lectures on Subjects Suggested by His Life and Work, 3rd
ed. New York: Chelsea, 1999.

Knuth, D. E. The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms, 3rd ed. Reading, MA: Addi-
son-Wesley, 1998.

Riesel, H. "The Riemann Prime Number Formula." Prime
Numbers and Computer Methods for Factorization, 2nd
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Riemann P-Series
The solutions to the RIEMANN P -DIFFERENTIAL EQUA-

TION

z�P
a b c
a b g

a? b? g?
; z

8<
:

9=
;:

Solutions are given in terms of the HYPERGEOMETRIC

FUNCTION by

u1�
z � a

z � b

 !a

z � c

z � b

 !g

2F1(a�b�g; a�b?�g;

1�a�a?; l)

u2�
z � a

z � b

 !a?
z � c

z � b

 !g

2F1(a?�b�g; a?�b?�g;

1�a?�a; l)

u3�
z � a

z � b

 !a

z � c

z � b

 !g?

2F1(a�b�g?; a�b?�g?;

1�a�a?; l)

u4�
z � a

z � b

 !a?
z � c

z � b

 !g?

2F1(a?�b�g?; a?�b?�g?;

1�a?�a; l)

where

l�
(z � a)(c � b)

(z � b)(c � a)
:
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Riemann Removable Singularity Theorem
Let f : D z0 ; rð Þ_ z0f g 0 C be ANALYTIC and bounded
on a PUNCTURED OPEN DISK D z0 ; rð Þ; then limz0z0

f (z)
exists, and the function defined by f̃ : D(z0 ; r) 0 C

f̃ (z) �
f (z) for z "z0

limz?0z0
f (z?) for z �z0

�
is ANALYTIC.

See also REMOVABLE SINGULARITY
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Riemann Series Theorem
By a suitable rearrangement of terms, a CONDITION-

ALLY CONVERGENT SERIES may be made to converge to
any desired value, or to DIVERGE.

See also CONDITIONAL CONVERGENCE, DIVERGENT

SERIES
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Riemann Space
METRIC SPACE

Riemann Sphere
A 1-D COMPLEX MANIFOLD C*, which is the one-point
COMPACTIFICATION of the COMPLEX NUMBERS C��C @

f�g; together with two charts. (Here [522; �] de-
noted COMPLEX INFINITY). For all points in the
COMPLEX PLANE, the chart is the IDENTITY MAP from
the SPHERE (with infinity removed) to the COMPLEX

PLANE. For the POINT AT INFINITY, the chart neighbor-
hood is the sphere (with the ORIGIN removed), and the
chart is given by sending infinity to 0 and all other
points z to 1=z :/

See also C*, COMPLEX INFINITY, COMPLEX PLANE,
EXTENDED COMPLEX PLANE
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Riemann Sum

Let a CLOSED INTERVAL [a, b ] be partitioned by points
a Bx1 Bx2 B. . .Bxn�1 Bb; where the lengths of the
resulting intervals between the points are denoted
Dx1 ; Dx2 ; ..., Dxn : Let x�k be an arbitrary point in the
kth subinterval. Then the quantity

Xn

k�1

f (x�k) Dxk

is called a Riemann sum for a given function f (x) and
partition, and the value max Dxk is called the MESH

SIZE of the partition.
If the LIMIT max Dxk 0 0 exists, this limit is known as
the Riemann integral of f (x) over the interval [a, b ].
The shaded areas in the above plots show the LOWER

and UPPER SUMS for a constant MESH SIZE.

See also INTEGRAL, LOWER SUM, MESH SIZE, RIEMANN

INTEGRAL, UPPER SUM
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Riemann Surface

A surface-like configuration which covers the COM-

PLEX PLANE with several, and in general infinitely
many, "sheets." These sheets can have very compli-
cated structures and interconnections (Knopp 1996,
pp. 98�/99). Riemann surfaces are one way of repre-
senting MULTIPLE-VALUED FUNCTIONS; another is
BRANCH CUTS. The above plot shows Riemann sur-
faces for solutions of the equation

w(z)½ 
d�w(z)�zd�1�0

with d�2, 3, 4, and 5, where w(z) is LAMBERT’S W -

FUNCTION (M. Trott).
The Riemann surface S of the FUNCTION FIELD K is
the set of nontrivial discrete valuations on K. Here,
the set S corresponds to the IDEALS of the RING A of
INTEGERS of K over C(z): (A consists of the elements of



K that are ROOTS of MONIC POLYNOMIALS over C[z] :/)
Riemann surfaces provide a geometric visualization
of FUNCTIONS ELEMENTS and their ANALYTIC CONTI-

NUATIONS.

See also BRANCH CUT, FUNCTION FIELD, IDEAL, RING
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Riemann Tensor
A TENSOR sometimes known as the RIEMANN-CHRIS-

TOFFEL TENSOR. Let

D̃s �
@

@xs 
�
X

l

s u
l

� �
; (1)

where the quantity inside the
s u

l

= >
is a CHRISTOFFEL

SYMBOL OF THE SECOND KIND. Then

Rpqrs � D̃q

p r
s

� �
� D̃r

r q
s

� �
: (2)

Broken down into its simplest decomposition in N -D,

Rlmnk �
1

N � 2
glnRmk �g lkRmn �g mnRlk �g mkRln

� �

�
R

(N � 1)(N � 2)
glngmk �g lkg mn
� �

�Clmnk : (3)

Here, Rmn is the RICCI TENSOR, R is the CURVATURE

SCALAR, and Clmnk is the WEYL TENSOR.

In terms of the JACOBI TENSOR J m nab ;

Rm
anb �

2
3 J m nabJ m ban
� �

: (4)

The Riemann tensor is the only tensor that can be
constructed from the METRIC TENSOR and its first and
second derivatives,

Ra
bgd �Ga

bd; g �Ga
bg; d �G 

m
bd G

a
mg �Gm

bg G
a
md ; (5)

where Gg
ab are CONNECTION COEFFICIENTS and A;k is a

COMMA DERIVATIVE (Schmutzer 1968, p. 108). In 1-D,
R1111 �0 :/

The number of independent coordinates in n -D is
given by

Cn �
1
12n

2 n2 �1
� �

; (6)

the "4-D pyramidal numbers," the first few values of
which are 0, 1, 6, 20, 50, 105, 196, 336, 540, 825, ...
(Sloane’s A002415). The number of SCALARS which
can be constructed from Rlmnk and gmn is

Sn �
1 for n �2
1

12 n(n �1)(n �2)(n �3) for n �1; n > 2

�
(7)

(Weinberg 1972). The first few values are then 0, 1, 3,
14, 40, 90, 175, 308, 504, 780, ... (Sloane’s A050297).

See also BIANCHI IDENTITIES, CHRISTOFFEL SYMBOL

OF THE SECOND KIND, COMMUTATION COEFFICIENT,
CONNECTION COEFFICIENT, CURVATURE SCALAR,
GAUSSIAN CURVATURE, JACOBI TENSOR, PETROV NO-

TATION, RICCI TENSOR, WEYL TENSOR
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Riemann Theta Function
Let the IMAGINARY PART of a g �g MATRIX F be
POSITIVE DEFINITE, and m � m1; . . . ; mg

� �
be a row

VECTOR with coefficients in Z: Then the Riemann
theta function is defined by

q (u)�
X

m

exp 2pi mTu�1
2 mFTm

� �h i
:

See also JACOBI THETA FUNCTIONS, RAMANUJAN

THETA FUNCTIONS, SIEGEL THETA FUNCTION, THETA

FUNCTIONS
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Riemann Xi Function
XI FUNCTION

Riemann Zeta Function

The Riemann zeta function is an extremely important
SPECIAL FUNCTION of mathematics and physics which
arises in definite integration and is intimately related
with very deep results surrounding the PRIME NUM-

BER THEOREM. While many of the properties of this
function have been investigated, there remain im-
portant fundamental conjectures (most notably the
RIEMANN HYPOTHESIS) which remain unproved to this
day.
On the REAL LINE with x �1, the Riemann zeta
function can be defined by the integral

z(x)�
1

G(x) g
�

0

ux�1

eu � 1
du; (1)

where G(n) is the GAMMA FUNCTION. If x is an INTEGER

n , then we have the identity

un�1

eu � 1
�

e�uun�1

1 � e�u
�e�uun�1

X�
k�0

e�ku

�
X�
k�1

e�kuun�1; (2)

so

g
�

0

un�1

eu � 1
du�

X�
k�1
g

�

0

e�kuun�1 du: (3)

To evaluate z(n); let y�ku so that dy�k du and plug
in the above identity to obtain

z(n)�
1

G(n)

X�
k�1
g

�

0

e�kuun�1 du

�
1

G(n)

X�
k�1
g

�

0

e�y y

k

 !n�1
dy

k

�
1

G(n)

X�
k�1

1

kn g
�

0

e�yyn�1 dy: (4)

Integrating the final expression in (4) gives G(n);
which cancels the factor 1=G(n) and gives the most
common form of the Riemann zeta function,

z(n)�
X�
k�1

1

kn
: (5)

The Riemann zeta function can also be defined in
terms of MULTIPLE INTEGRALS by

z(n)�g
1

0

� � �g
1

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Qn
i�1 dxi

1 �
Qn

i�1 xi

; (6)

and as a MELLIN TRANSFORM by

g
�

0

frac
1

t

 !
tn�1 dt��

z(s)

s
(7)

for 0BR[s]B1; where frac(x) is the FRACTIONAL PART

(Balazard and Saias 2000).

Note that the zeta function has a singularity at n�1,
where it reduces to the divergent HARMONIC SERIES.

The Riemann zeta function satisfies the functional
equation

z(1�s)�2(2p)�s cos 1
2 sp
� �

G(s)z(s) (8)

(Hardy 1999, p. 14; Krantz 1999, p. 160).

As defined above, the zeta function z(s) with s�s�it
a COMPLEX NUMBER is defined for R[s] > 1: However,
z(s) has a unique ANALYTIC CONTINUATION to the
entire COMPLEX PLANE, excluding the point s�1,
which corresponds to a SIMPLE POLE with RESIDUE 1
(Krantz 1999, p. 160). In particular, as s 0 1; z(s)
obeys

lim
s01

z(s)�
1

s � 1
�g; (9)

where g is the EULER-MASCHERONI CONSTANT (Whit-
taker and Watson 1990, p. 271).

To perform the ANALYTIC CONTINUATION for R[s] > 0;
write

X�
n�1

(�1)nn�s�
X�
n�1

n�s�2
X�

n�2; 4; ...

n�s



�2
X�
k�1

(2k)�s�21�s
X�
n�1

k�s (10)

X�
n�1

(�1)nn�s�z(s)�21�sz(s): (11)

Therefore,

z(s)�
1

1 � 21�s

X�
n�1

(�1)n�1n�s: (12)

While this form defines z(s) for only the UPPER HALF-

PLANE R[s] > 0; equation (8) can be used to analyti-
cally continue it to the rest of the COMPLEX PLANE.
Analytic continuation can also be performed using
HANKEL FUNCTIONS. A globally convergent series for
the Riemann zeta function is given by

z(z)�
1

1 � 21�z

X�
n�0

1

2n�1

Xn

k�0

(�1)k n
k

� 	
(k�1)�z; (13)

where n
k

� �
is a BINOMIAL COEFFICIENT.

A generalized Riemann zeta function z(s; a) known as
the HURWITZ ZETA FUNCTION can also be defined such
that

z(s)�z(s; 0): (14)

In the COMPLEX PLANE, trivial zeros of z(s) occur at
s��2, �4,�6; ..., and nontrivial zeros at

s�s�it (15)

for 05s51: The figures below show the structure of
the complex z(z) by plotting z(z)j j and 1= z(z)j j:/

The RIEMANN HYPOTHESIS asserts that the nontrivial
ROOTS of z(s) all have REAL PART s�R[s]�1=2; a line
called the "CRITICAL LINE." This is known to be true
for the first 200; 000; 001 roots (Brent et al. 1982). The
above plot shows z(1=2�it)j j for t between 0 and 60.
As can be seen, the first few nontrivial zeros occur at
t�14:134725; 21.022040, 25.010858, 30.424876,
32.935062, 37.586178, ... (Wagon 1991, pp. 361�/362
and 367�/368; Odlyzko). Wiener showed that the
PRIME NUMBER THEOREM is literally equivalent to
the assertion that z(s) has no zeros on s�1 (Hardy
1999, p. 34).

The Riemann zeta function can be factored over its
nontrivial zeros r as

z(s)�
eln(2p)�1�g=2)s

2(s � 1)G 1 � 1
2 s

� � Y
r

1�
s

r

 !
es=r (16)

(Voros 1987).

The Riemann zeta function can be split up into

z 1
2�it
� �

�z(t)e�iq (t); (17)

where z(t) and q (t) are the RIEMANN-SIEGEL FUNC-

TIONS. The Riemann zeta function is related to the
DIRICHLET LAMBDA FUNCTION l(n) and DIRICHLET ETA

FUNCTION h(n) by

z(n)

2n
�

l(n)

2n � 1
�

h(n)

2n � 2
(18)

and

z(n)�h(n)�2l(n) (19)

(Spanier and Oldham 1987). It is related to the
LIOUVILLE FUNCTION l(v) by

z(2s)

z(s)
�
X�
n�1

l(n)

ns
(20)

(Lehman 1960, Hardy and Wright 1979). Further-
more,

z2(s)

z(2s)
�
X�
n�1

2v(n)

ns
; (21)



where v(n) is the number of DISTINCT PRIME FACTORS

of n (Hardy and Wright 1979, p. 254).

Two sum identities involving z(n) are

X�
n�2

[z(n)�1]�1 (22)

X�
n�2

(�1)n[z(n)�1]�1
2: (23)

The Riemann zeta function is related to the GAMMA

FUNCTION G(z) by

G
s

2

 !
p�s=2z(s)�G

1 � s

2

 !
p�(1�s)=2z(1�s): (24)

The DERIVATIVE of the Riemann zeta function is
defined by

z?(s)��s
X�
k�1

k�s ln k��
X�
k�2

ln k

ks
: (25)

As s 0 0;

z?(0)��1
2 ln(2p): (26)

/z(n) is known to be transcendental for all EVEN n , but
the study of the function at ODD n is significantly
more difficult. Apéry (1979) finally proved that z(3) to
be IRRATIONAL, but no similar results are known for
other ODD n . However, Rivoal (2000) recently proved
that there are infinitely many integers n such that
z(2n�1) is irrational. As a result of Apéry’s impor-
tant discovery, z(3) is sometimes called APÉRY’S

CONSTANT. A number of interesting sums for z(n);
with n a POSITIVE INTEGER, can be written in terms of
binomial coefficients as the BINOMIAL SUMS

z(2)�3
X�
k�1

1

k2 2k
k

� 	 (27)

z(3)�
5

2

X�
k�1

(�1)k�1

k3 2k
k

� 	 (28)

z(4)�
36

17

X�
k�1

1

k4 2k
k

� 	 (29)

(Guy 1994, p. 257). Apéry arrived at his result with
the aid of the k�3 sum formula above. A relation OF

THE FORM

z(5)�Z5

X�
k�1

(�1)k�1

k5 2k
k

� 	 (30)

has been searched for with Z5 a RATIONAL or ALGE-

BRAIC NUMBER, but if Z5 is a ROOT of a POLYNOMIAL of
degree 25 or less, then the Euclidean norm of the
coefficients must be larger than 2�1037 (Bailey and
Plouffe). Therefore, no such sums for z(n) are known
for n]5:/

The Riemann zeta function may be computed analy-
tically for EVEN n using either CONTOUR INTEGRATION

or PARSEVAL’S THEOREM with the appropriate FOUR-

IER SERIES. An unexpected and important formula
involving the product of PRIMES was first discovered
by Euler in 1737,

z(x)(1�2�x)� 1�
1

2x
�

1

3x
�. . .

 !
1�

1

2x

 !

� 1�
1

2x
�

1

3x
�. . .

 !
�

1

2x
�

1

4x
�

1

6x
�. . .

 !

(31)

z(x) 1�2�xð Þ 1�3�xð Þ

� 1�
1

3x
�

1

5x
�

1

7x
�. . .

 !
�

1

3x
�

1

9x
�

1

15x
�. . .

 !

(32)

z(x) 1�2�xð Þ 1�3�xð Þ � � � 1�p�zð Þ � � �

�z(x)
Y�
n�2

(1�p�x)�1: (33)

Here, each subsequent multiplication by the next
PRIME p leaves only terms which are POWERS of /p�x

/.
Therefore,

z(x)�
Y�
p�2

(1�p�x)

" #�1

; (34)

where p runs over all PRIMES (Hardy 1999, p. 18;
Krantz 1999, p. 159). Euler’s product formula can
also be written

z(s)� 1�2�sð Þ�1
Y
q�1

(mod 4)

1�q�sð Þ�1
Y
r�3

(mod 4)

1�r�sð Þ�1
:

(35)

For EVEN n�2k;

z(n)�
2n�1 Bnj jpn

n!
; (36)

where Bn is a BERNOULLI NUMBER. Another intimate
connection with the BERNOULLI NUMBERS is provided
by

Bn�(�1)n�1nz(1�n) (37)

for n]1; which can be written



Bn��nz(1�n) (38)

for n]2: Although no analytic form for z(n) is known
for ODD n ,

z(3)�
1

2

X�
k�1

1

k2
1�

1

2
�. . .�

1

k

 !
�

1

2

X�
k�1

hk

k2
; (39)

where hk is a HARMONIC NUMBER (Stark 1974). In
addition, z(n) can be expressed as the sum limit

z(n)� lim
x0�

1

(2x � 1)n

Xx

k�1

cot
k

2x � 1

 !" #n

(40)

for n�3, 5, ... (Apostol 1973, given incorrectly in
Stark 1974).

For m(n) the MÖBIUS FUNCTION,

1

z(s)
�
X�
n�1

m(n)

ns
: (41)

The values for small integral arguments are

z(1)��

z(2)�
p2

6

z(3)�1:2020569032 . . .

z(4)�
p4

90

z(5)�1:0369277551 . . .

z(6)�
p6

945

z(7)�1:0083492774 . . .

z(8)�
p8

9450

z(9)�1:0020083928 . . .

z(10)�
p10

93; 555
:

Euler gave z(2) to z(26) for EVEN n (Wells 1986, p. 54),
and Stieltjes (1993) determined the values of z(2); ...,
z(70) to 30 digits of accuracy in 1887. The denomi-
nators of z(2n) for n�1, 2, ... are 6, 90, 945, 9450,
93555, 638512875, ... (Sloane’s A002432).

The value at n�0 is given by

z(0)��1
2 (42)

The value z(�1)��1=12 is a deep result of renorma-
lization theory (Elizalde et al. 1994, Elizalde 1995). In
general,

z(�n)��
Bn�1

n � 1
(43)

for n�1, 3, ... where Bn is a BERNOULLI NUMBER, the
first few values of which are �1=12; 1/120, �1=252;/
1/240, ... (Sloane’s A001067 and A006953).

Rapidly converging series for z(n) for n odd were first
discovered by Ramanujan (Zucker 1979, Zucker 1984,
Berndt 1988, Bailey et al. 1997, Cohen 2000). For
n �1 and n�3 (mod 4);

z(n)�
2n�1pn

(n � 1)!

X(n�1)=2

k�0

(�1)k�1 n�1
2k

� 	
Bn�1�2kB2k

�2
X�
k�1

1

kn(e2pk � 1)
; (44)

where Bk is again a BERNOULLI NUMBER and n
k

� �
is a

BINOMIAL COEFFICIENT. The first few for n�3, 7, 11,
... are 7/180, 19/56700, 1453/425675250, 13687/
390769879500, 7708537/21438612514068750, ...
(Sloane’s A057866 and A057867). For n]5 and n�
1 (mod 4); the corresponding formula is slightly mes-
sier,

z(n)�
(2p)n

(n � 1)!(n � 1)

�
X(n�1)=4

k�0

(�1)k(n�1�4k)
n�1

2k

� 	
Bn�1�2kB2k

�2
X�
k�1

e2pk 1 �
4pk

k � 1

 !
� 1

kn(e2pk � 1)2 : (45)

Defining

S9(n)�
X�
k�1

1

kn e2pk 9 1ð Þ
; (46)

the first few values can then be written

z(3)� 7
180p

3�2S�(3) (47)

z(5)� 1
294p

5�72
35S�(5)� 2

35S�(5) (48)

z(7)� 19
56700p

7�2S�(7) (49)

z(9)� 125
3704778p

9�992
495S�(9)� 2

495S�(9) (50)

z(11)� 1453
425675250p

11�2S�(11) (51)

z(13)� 89
257432175p

13�16512
8255 S�(13)� 2

8255S�(13) (52)

z(15)� 13687
390769879500p

15�2S�(15) (53)

z(17)� 397549
112024529867250p

17�261632
130815S�(17)

� 2
130815S�(17) (54)



zð19Þ ¼ 7708537
21438612514068750 p

19 �2S �ð19 Þ ð55Þ

z(21) � 68529640373
1881063815762259253125p

21 �4196352
2098175 S�(21)

� 2
2098175 S �(21) (56)

(Plouffe).

The inverse of the RIEMANN ZETA FUNCTION 1=z(p);
plotted above, is the asymptotic density of p th-power-
free numbers (i.e., SQUAREFREE numbers, CUBEFREE

numbers, etc.). The following table gives the number
Qp(n) of p th-powerfree numbers 5n for several
values of n .

p /1= z(p)/ /Qp(10)/ /Qp(100)/ /Qp(103)/ /Qp(104)/ /Qp(105)/ /Qp(106)/

2 0.607927 7 61 608 6083 60794 607926

3 0.831907 9 85 833 8319 83190 831910

4 0.923938 10 93 925 9240 92395 923939

5 0.964387 10 97 965 9645 96440 964388

6 0.982953 10 99 984 9831 98297 982954

See also ABEL’S FUNCTIONAL EQUATION, BERRY CON-

JECTURE, CRITICAL LINE, CRITICAL STRIP, DEBYE

FUNCTIONS, DIRICHLET BETA FUNCTION, DIRICHLET

ETA FUNCTION, DIRICHLET LAMBDA FUNCTION, EULER

PRODUCT, HARMONIC SERIES, HURWITZ ZETA FUNC-

TION, KHINTCHINE’S CONSTANT, LEHMER’S PHENOM-

ENON, PERIODIC ZETA FUNCTION, PRIME NUMBER

THEOREM, PSI FUNCTION, RIEMANN HYPOTHESIS,
RIEMANN P -SERIES, RIEMANN-SIEGEL FUNCTIONS,
RIEMANN ZETA FUNCTION ZETA(2), STIELTJES CON-

STANTS, XI FUNCTION
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Riemann Zeta Function Zeta(2)
The value for z(2) can be found using a number of
different techniques (Apostol 1983, Choe 1987, Giesy
1972, Holme 1970, Kimble 1987, Knopp and Schur
1918, Kortram 1996, Matsuoka 1961, Papadimitriou
1973, Simmons 1992, Stark 1969, Stark 1970, Yaglom
and Yaglom 1987). The problem of finding this value
analytically is sometimes known as the BASLER

PROBLEM (Castellanos 1988). Yaglom and Yaglom
(1987), Holme (1970), and Papadimitriou (1973) all
derive the result, p2=6 from DE MOIVRE’S IDENTITY or
related identities.

One derivation for z(2) considers the FOURIER SERIES

of f (x)�x2n
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where the latter is true since the integrand is ODD.
Therefore, the FOURIER SERIES is given explicitly by
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But cos(mp)�(�1)m; and sin(mp)�sin 0�0; so
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Higher values of n can be obtained by finding am and
proceeding as above.

The value z(2) can also be found simply using the
ROOT LINEAR COEFFICIENT THEOREM. Consider the
equation sin z�0 and expand sin in a MACLAURIN

SERIES

sin z�z�
z3

3!
�

z5

5!
�. . .�0 (12)

0�1�
z2

3!
�

z4

5!
�. . .�1�

w

3!
�

w2

5!
�. . . ; (13)

where w�z2: But the zeros of sin(z) occur at p; 2p; 3p;
..., so the zeros of sin w�sin

ffiffiffi
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which can be rearranged to yield
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Yet another derivation (Simmons 1992) evaluates the
integral using the integral
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To evaluate the integral, rotate the coordinate system
by p=4 so
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Now compute the integrals I1 and I2:
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Combining I1 and I2 gives
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See also RIEMANN ZETA FUNCTION
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RIEMANN TENSOR

Riemann-Finsler Geometry
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Riemannian Geometry
The study of MANIFOLDS having a complete RIEMAN-

NIAN METRIC. Riemannian geometry is a general
space based on the LINE ELEMENT

ds�F x1; . . . ; xn; dx1; . . . ; dxn
� �

;

with F(x; y) > 0 for y"0 a function on the TANGENT

BUNDLE TM . In addition, F is homogeneous of degree
1 in y and OF THE FORM

F2�gij(x) dxi dxj

(Chern 1996). If this restriction is dropped, the
resulting geometry is called FINSLER GEOMETRY.

See also NON-EUCLIDEAN GEOMETRY
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Riemannian Geometry (Non-Euclidean)
ELLIPTIC GEOMETRY

Riemannian Manifold
A MANIFOLD possessing a METRIC TENSOR. For a
complete Riemannian manifold, the METRIC d(x; y)
is defined as the length of the shortest curve (GEO-

DESIC) between x and y .

See also BISHOP’S INEQUALITY, CAMPBELL’S THEOREM,
CHEEGER’S FINITENESS THEOREM, PSEUDO-RIEMAN-

NIAN MANIFOLD

Riemannian Metric
Suppose for every point x in a COMPACT MANIFOLD M ,
an INNER PRODUCT � ; �h ix is defined on a TANGENT

SPACE TxM of M at x . Then the collection of all these
INNER PRODUCTS is called the Riemannian metric. In
1870, Christoffel and Lipschitz showed how to decide
when two Riemannian metrics differ by only a
coordinate transformation.

See also COMPACT MANIFOLD, LINE ELEMENT, METRIC

TENSOR

Riemannian Submersion

See also SUBMERSION

Riemann-Lebesgue Lemma
Sometimes also called MERCER’S THEOREM.

lim
n0� g

b
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for arbitrarily large C and "nice" K(l ; z) : Gradshteyn
and Ryzhik (2000) state the lemma as follows. If f (x)
is integrable on [�p; p]; then
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Riemann-Roch Theorem
The dimension of a complete series is equal to the
sum of the order and index of specialization of any
group, less the GENUS of the base curve

r �N �i �p :
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Riemann’s Integral Theorem
Associated with an irreducible curve of GENUS

(CURVE) p , there are p LINEARLY INDEPENDENT

integrals of the first sort. The ROOTS of the integrands
are groups of the canonical series, and every such
group will give rise to exactly one integral of the first
sort.
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Riemann’s Moduli Problem
Find an ANALYTIC parameterization of the compact
RIEMANN SURFACES in a fixed HOMOMORPHISM class.
The AHLFORS-BERS THEOREM proved that RIEMANN’S

MODULI SPACE gives the solution.

See also AHLFORS-BERS THEOREM, RIEMANN’S MOD-

ULI SPACE

Riemann’s Moduli Space
Riemann’s moduli space Rp is the space of ANALYTIC

EQUIVALENCE CLASSES of RIEMANN SURFACES of fixed
GENUS p .

See also AHLFORS-BERS THEOREM, RIEMANN’S MOD-

ULI PROBLEM, RIEMANN SURFACE



Riemann-Siegel Functions

For a REAL POSITIVE t , the Riemann-Siegel Z function
is defined by

Z(t)�eiu(t)z(1
2�it):

This function is sometimes also called the Hardy
function or Hardy Z -function (Karatsuba and Vor-
onin 1992, Borwein et al. 1999). The top plot super-
poses Z(t) (thick line) on z 1

2�it
� �::: :::; where z(z) is the

RIEMANN ZETA FUNCTION. It has an ASYMPTOTIC

SERIES given "approximately" by
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	�X�
j�0
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j!
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	��
ð4Þ

A0(y)�e2piy2

(5)

Aj(y)��1
2 yAj�1(y)�

1

32p2

@2

@y2

Aj�1(y)

y
(6)

cðpÞ ¼
cos½2pðp2 � p � 1

16Þ

cosð2ppÞ

ð7Þ

/ xb c is the FLOOR FUNCTION (Edwards 1974), and yk
� �

is COEFFICIENT NOTATION. The first few terms ck(p)
are given by

c0(p)�c(p) (8)

c1(p)��
c(3)(p)

96p2
(9)

c2(p)�
cƒ(p)

64p2
�

c(6)(p)

18432p4
(10)

c3(p)�
c?(p)

64p2
�

c(5)(p)

3840p4
�

c(9)(p)

5308416p6
(11)

c4(p)�
c(p)

128p2
�

19c(4)(p)

24576p4
�

11c(8)(p)

5898240p6

�
c(12)(p)

2038431744p8
(12)

c5(p)��
5c(3)(p)

3072p4
�

901c(7)(p)

82575360p6

�
7c(11)(p)

849346560p8
�

c(15)(p)

978447237120p10
: (13)

The numerators and denominators are 1, �1, 1, 1,
�1, �1, �1, 1, 19, 11, 1, �5, �901, ... (Sloane’s
A050276) and 1, 96, 64, 18432, 64, 3840, 5308416,
128, ... (Sloane’s A050277), respectively.



The Riemann-Siegel theta function appearing above
is defined by

q (t) �I ln G 1
4 �

1
2 it

� �
�1

2 t ln p
h i

�arg G 1
4 �

1
2 it

� �h i
�1

2 t ln p:

These functions are implemented in Mathematica as
RiemannSiegelZ[z ] and RiemannSiegelTheta[z ],
illustrated above.

See also RIEMANN ZETA FUNCTION, XI FUNCTION
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RiemannSiegelTheta
RIEMANN-SIEGEL FUNCTIONS

RiemannSiegelZ
RIEMANN-SIEGEL FUNCTIONS

Riemann-Stieltjes Integral
STIELTJES INTEGRAL

Riemann-Volterra Method
RIEMANN METHOD

Riesel Number
There exist infinitely many ODD INTEGERS k such that
k � 2n �1 is COMPOSITE for every n ]1: Numbers k
with this property are called RIESEL NUMBERS, and
analogous numbers with the minus sign replaced by a
plus are called SIERPINSKI NUMBERS OF THE SECOND

KIND. The smallest known Riesel number is k �
509; 203; but there remain 963 smaller candidates
(the smallest of which is 659) which generate only

composite numbers for all n which have been checked
(Ribenboim 1996, p. 358).

Let a(k) be smallest n for which (2k �1) � 2n �1 is
PRIME, then the first few values are 2, 0, 2, 1, 1, 2, 3, 1,
2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, ... (Sloane’s
A046069), and second smallest n are 3, 1, 4, 5, 3, 26,
7, 2, 4, 3, 2, 6, 9, 2, 16, 5, 3, 6, 2553, ... (Sloane’s
A046070).

See also CUNNINGHAM NUMBER, MERSENNE NUMBER,
SIERPINSKI’S COMPOSITE NUMBER THEOREM, SIER-

PINSKI NUMBER OF THE SECOND KIND, THÂ BIT IBN

KURRAH RULE
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Riesz Representation Theorem
There are a couple of versions of this theorem.
Basically, it says that any bounded linear FUNC-

TIONAL T on the space of compactly supported
continuous functions on X is the same as integration
against a measure m;

Tf �g f dm:

Here, the integral is the LEBESGUE INTEGRAL.

Because linear functionals form a VECTOR SPACE, and
are not "positive," the measure m may not be a
POSITIVE MEASURE. But if the functional T is positive,
in the sense that f ]0 implies that Tf ]0; then the
measure m is also positive. In the generality of
complex linear functionals, the measure m is a
COMPLEX MEASURE. The measure m is uniquely de-
termined by T and has the properties of a regular
BOREL MEASURE. It must be a finite measure, which
corresponds to the boundedness condition on the
functional. In fact, the NORM of T , Tk k; is the TOTAL

VARIATION MEASURE of X , mj j(X):/

Naturally, there are some hypotheses necessary for
this to make sense. The space X has to be LOCALLY

COMPACT and HAUSDORFF, which is not a strong
restriction. In fact, for unbounded spaces X , the
theorem also applies to functionals on continuous
functions which vanish at infinity, in the sense that
for any e > 0; there is a compact set K such that for
any x not in K , f (x)j j Be (which is the notion from
calculus of limx0� f (x)�0):/



The Riesz representation theorem is useful in de-
scribing the DUAL SPACE to any space which contains
the compactly supported continuous functions as a
DENSE subspace. Roughly speaking, a linear func-
tional is modified, usually by convolving with a bump
function, to a bounded linear functional on the
compactly supported continuous functions. Then it
can be realized as integration against a measure.
Often the measure must be ABSOLUTELY CONTINUOUS,
and so the dual is integration against a function.

See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, DUAL SPACE, FUNCTIONAL, HILBERT SPACE,
LEBESGUE MEASURE, MEASURE SPACE, POLAR REPRE-

SENTATION (MEASURE), RADON-NIKODYM THEOREM,
SINGULAR MEASURE
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Riesz-Fischer Theorem
A function is L2/- (square-) integrable IFF its FOURIER

SERIES is L2/-convergent. The application of this
theorem requires use of the LEBESGUE INTEGRAL.

See also LEBESGUE INTEGRAL

Riesz’s Theorem
Every continuous linear functional U[f ] for f � C[a ; b]
can be expressed as a STIELTJES INTEGRAL

U[f ] �g
b

a

f (x) dw(x) ;

where w(x) is determined by U and is of bounded
variation on [a, b ].

See also STIELTJES INTEGRAL
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Riffle Shuffle
A SHUFFLE, also called a FARO SHUFFLE, in which a
deck of 2n cards is divided into two HALVES which are
then alternatively interleaved from the left and right
hands (an "in-shuffle") or from the right and left
hands (an "out-shuffle"). Using an "in-shuffle," a deck
originally arranged as 1 2 3 4 5 6 7 8 would become 5 1
6 2 7 3 8 4. Using an "out-shuffle," the deck order
would become 1 5 2 6 3 7 4 8. Riffle shuffles are used
in card tricks (Marlo 1958ab, Adler 1973), and also in
the theory of parallel processing (Stone 1971, Chen et
al. 1981).

In general, card k moves to the position originally
occupied by the 2k/th card (mod 2n �1): Therefore, in-
shuffling 2n cards 2n times (where 2n �1 is PRIME)
results in the original card order. Similarly, out-
shuffling 2n cards 2n �2 times (where 2n �1 is
PRIME) results in the original order (Diaconis et al.
1983, Conway and Guy 1996). Amazingly, this means
that an ordinary deck of 52 cards is returned to its
original order after 8 out-shuffles.

Morris (1994) further discusses aspects of the perfect
riffle shuffle (in which the deck is cut exactly in half
and cards are perfectly interlaced). Ramnath and
Scully (1996) give an algorithm for the shortest
sequence of in- and out-shuffles to move a card from
arbitrary position i to position j . This algorithm
works for any deck with an EVEN number of cards
and is O(log n):/

See also CARDS, SHUFFLE
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Rigby Points
The PERSPECTIVE CENTERS of the TANGENTIAL and
CONTACT TRIANGLES of the inner and outer SODDY

POINTS. The inner Ri and outer Ri? Rigby points are
given by

Ri�I�4
3 Ge



Ri ?�I �4
3 Ge;

where I is the INCENTER and Ge is the GERGONNE

POINT.

Honsberger (1995) defines a different point which he
calls the "Rigby point" X . Let QR be an arbitrary
CHORD of the CIRCUMCIRCLE of a given TRIANGLE

DABC ; and let P be the POLE of the SIMSON LINE SP

with respect to DABC which is PERPENDICULAR to QR .
Then it also turns out that SQ �PR and SR �PQ: In
addition, SA �BC; SB �AC ; and SC �AB with respect
to DPQR :/

As a result of these remarkable facts, it can be shown
that the SIMSON LINES SP ; SQ ; and SR with respect to
DABC meet in the Rigby point X . Moreover, the
SIMSON LINES SA ; SB ; and SC with respect to DPQR
also meet in X , and X is the ORTHOPOLE of AB , BC ,
and AC with respect to DPQR ; and of PQ , QR , and
PR with respect to DABC: Finally, X is the MIDPOINT

of the ORTHOCENTERS of DABC and DPQR (Honsber-
ger 1996, p. 136).

See also CONTACT TRIANGLE, GERGONNE POINT,
GRIFFITHS POINTS, INCENTER, OLDKNOW POINTS,
ORTHOPOLE, SIMSON LINE, SODDY POINTS, TANGEN-

TIAL TRIANGLE
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Right Angle

An ANGLE equal to half the ANGLE from one end of a
line segment to the other. A right angle is p=2 radians
or 90 8. A TRIANGLE containing a right angle is called a
RIGHT TRIANGLE. However, a TRIANGLE cannot con-
tain more than one right angle, since the sum of the
two right angles plus the third angle would exceed
the 1808 total possessed by a TRIANGLE.

The patterns of cracks observed in mud which has
been dried by the sun form curves which intersect in
right angles (Williams 1979, p. 45; Steinhaus 1983,
p. 88; Pearce 1990, p. 12).

See also ACUTE ANGLE, FULL ANGLE, OBLIQUE

ANGLE, OBTUSE ANGLE, ORTHOGONAL LINES, PER-

PENDICULAR, RIGHT TRIANGLE, SEMICIRCLE,
STRAIGHT ANGLE, THALES’ THEOREM
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Right Circular Cone
A circular cone the centers of whose sections form a
line perpendicular to the bases. When used without
qualification, the term "cone" often refers to a right
circular cone.

See also CONE
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Right Circular Cylinder
A circular cylinder the centers of whose sections form
a line perpendicular to the bases. When used without
qualification, the term "cylinder" often refers to a
right circular cylinder.

See also CYLINDER
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Right Cone
CONE

Right Conoid
A RULED SURFACE is called a right conoid if it can be
generated by moving a straight LINE intersecting a
fixed straight LINE such that the LINES are always
PERPENDICULAR (Kreyszig 1991, p. 87). Taking the
PERPENDICULAR plane as the xy -plane and the line to
be the X -AXIS gives the PARAMETRIC EQUATIONS

x(u; v) �v cos q (u)

y(u; v) �v sin q (u)

z(u ; v) �h(u)

(Gray 1997). Taking h(u) �2u and q (u) �u gives the
HELICOID.

See also HELICOID, PLÜ CKER’S CONOID, WALLIS’S

CONICAL EDGE
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Right Coset
Consider a countable SUBGROUP H with ELEMENTS hi

and an element x not in H , then hix for i �1, 2, ... are
the right cosets of the SUBGROUP H with respect to x .

See also COSET, LEFT COSET

Right Cylinder
CYLINDER

Right Half-Plane

The portion of the COMPLEX PLANE z �x �iy with
REAL PART R[z] > 0:/

See also COMPLEX PLANE, LEFT HALF-PLANE, LOWER

HALF-PLANE, UPPER HALF-PLANE

Right Hyperbola
RECTANGULAR HYPERBOLA

Right Line
LINE

Right Prism
PRISM

Right Strophoid

The STROPHOID of a line L with pole O not on L and
fixed point O? being the point where the PERPENDI-

CULAR from O to L cuts L is called a right strophoid.
It is therefore a general STROPHOID with a�p=2:/
The right strophoid is given by the Cartesian equa-
tion

y2�
c � x

c � x
x2; (1)

or the polar equation

r�c cos(2u) sec u: (2)

The parametric form of the strophoid is

x(t)�
1 � t2

t2 � 1
(3)



y(t) �
t(t2 � 1)

t2 � 1
: (4)

The right strophoid has CURVATURE

k(t) ��
4(1 � 3t2)

(1 � 6t2 � t4)3 =2 (5)

and TANGENTIAL ANGLE

f(t) ��2 tan �1 t �tan�1 2t

1 � t2

 !
: (6)

The right strophoid first appears in work by Isaac
Barrow in 1670, although Torricelli describes the
curve in his letters around 1645 and Roberval found it
as the LOCUS of the focus of the conic obtained when
the plane cutting the CONE rotates about the tangent
at its vertex (MacTutor Archive). The AREA of the loop
is

Aloop �
1
2 c

2(4 � p) (7)

(MacTutor Archive).

Let C be the CIRCLE with center at the point where
the right strophoid crosses the X -AXIS and radius the
distance of that point from the origin. Then the right
strophoid is invariant under inversion in the CIRCLE

C and is therefore an ANALLAGMATIC CURVE.

See also STROPHOID, TRISECTRIX
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Right Strophoid Inverse Curve

The INVERSE CURVE of a right strophoid is the same
strophoid.

Right Triangle

A TRIANGLE with an ANGLE of 908 (/p=2 radians). The
sides a , b , and c of such a TRIANGLE satisfy the
PYTHAGOREAN THEOREM. The largest side is conven-
tionally denoted c and is called the HYPOTENUSE. A
TRIANGLE that is not a right triangle is sometimes
called an OBLIQUE TRIANGLE.
For any three similar shapes on the sides of a right
triangle,

A1�A2�A3; (1)

which is equivalent to the PYTHAGOREAN THEOREM.

For a right triangle with sides a , b , and HYPOTENUSE

c , let r be the INRADIUS. Then

1
2 ab�1

2 ra�1
2 rb�1

2 rc�1
2 r(a�b�c): (2)

Solving for r gives

r�
ab

a � b � c
: (3)

This can also be written in the equivalent forms

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðc�aÞðc�bÞ

q
ð4Þ

�1
2(a�b�c): (5)

Now, since any PYTHAGOREAN TRIPLE can be written

a�m2�n2 (6)

b�2mn (7)

c�m2�n2; (8)

(3) becomes

r�
(m2 � n2)2mn

m2 � n2 � 2mn � m2 � n2
�n(m�n); (9)

which is an INTEGER when m and n are integers
(Ogilvy and Anderson 1988, p. 68).

The HYPOTENUSE of a right triangle is a DIAMETER of
the triangle’s CIRCUMCIRCLE, so the CIRCUMRADIUS is
given by

R�1
2 c; (10)

where c is the HYPOTENUSE.



Given a right triangle DABC; draw the ALTITUDE AH
from the RIGHT ANGLE A . Then the triangles DAHC
and DBHA are similar.

In a right triangle, the MIDPOINT of the HYPOTENUSE

is equidistant from the three VERTICES (Dunham
1990). This can be proved as follows. Given DABC;
let M be the MIDPOINT of AB (so that AM�BM ).
Draw DM½½CA; then since DBDM is similar to DBCA;
it follows that BD�DC . Since both DBDM and
DCDM are right triangles and the corresponding
legs are equal, the HYPOTENUSES are also equal, so
we have AM�BM�CM and the theorem is proved.

Fermat showed how to construct an arbitrary number
of equiareal nonprimitive right triangles. An analysis
of PYTHAGOREAN TRIPLES demonstrates that the right
triangle generated by a triple (m2

i �n2
i ; 2mini; m2

i �
n2

i ) has common AREA

A�rs(2r�s)(r�2s)(r�s)(r�s)(r2�rs�s2)

(Beiler 1966, pp. 126�/127). The only EXTREMUM of
this function occurs at (r; s)�(0; 0): Since A(r; s)�0
for r�s , the smallest AREA shared by three nonpri-
mitive right triangles is given by (r; s)�(1; 2); which
results in an area of 840 and corresponds to the
triplets (24, 70, 74), (40, 42, 58), and (15, 112, 113)
(Beiler 1966, p. 126). One can also find quartets of
right triangles with the same AREA. The QUARTET

having smallest known area is (111, 6160, 6161),
(231, 2960, 2969), (518, 1320, 1418), (280, 2442, 2458),
with AREA 341,880 (Beiler 1966, p. 127). Guy (1994)
gives additional information.

The smallest known AREA shared by three primitive
right triangles is 13123110, corresponding to the
triples (4485, 5852, 7373), (1380, 19019, 19069), and
(3059, 8580, 9109) (Beiler 1966, p. 127; Gardner 1984,
p. 160).

It is also possible to find sets of three and four
Pythagorean triplets having the same PERIMETER

(Beiler 1966, pp. 131�/132). Lehmer (1900) showed
that the number of primitive triples N(p) with
PERIMETER less than p is

lim
p0�

N(p)�
p ln 2

p2
�0:070230 . . . : (11)

In a given right triangle, an infinite sequence of
squares can be nested which alternately lie on the
HYPOTENUSE and longest leg. These create a sequence
of increasingly smaller similar right triangles. Let the
original triangle have legs of lengths a and b and
HYPOTENUSE of length c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
: Also define

x�
ac

ab � c2
(12)

y�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2[c2�(a�b)c�ab]

p
: (13)

Then the sides of the n square are of length

sn�bxn: (14)

Number the upper left triangle as 1, and then the
remainder by following the "strip" of triangles at
adjoining vertices. Then the side lengths of these
triangles are

an�

s(n�1)=2 for n odd

ab

c
xn=2 for n even

8><
>: (15)

bn�

b2

a
x(n�1)=2 for n odd

b2

c
xn=2 for n even

8>>><
>>>: (16)

cn�
bc

a
x(n�1)=2 for n odd

sn=2 for n even:

8><
>: (17)

The INRADII of the corresponding circles can be found
from



rn �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bn � cn � an)(cn � an � bn)(an � bn � cn)

an � bn � cn

s
;

(18)

giving

rn �

b

a
yx(n �1)=2 for n odd

b

c
yxn=2 for n even :

8>>><
>>>: (19)

A SANGAKU PROBLEM from 1913 in the Miyagi Pre-
fecture asks for the relationships between the first,
third, and fifth inradii (Rothman 1998). This can be
solved using elementary TRIGONOMETRY as well as
the explicit equations given above, and has solution

r3 �
ffiffiffiffiffiffiffiffiffi
r1r5

p
: (20)

See also ACUTE TRIANGLE, ARCHIMEDES’ MIDPOINT

THEOREM, BROCARD MIDPOINT, CIRCLE-POINT MID-

POINT THEOREM, FERMAT’S RIGHT TRIANGLE THEO-

REM, ISOSCELES TRIANGLE, MALFATTI’S RIGHT

TRIANGLE PROBLEM, OBLIQUE TRIANGLE, OBTUSE

TRIANGLE, PYTHAGOREAN TRIPLE, QUADRILATERAL,
RAT-FREE SET, TRIANGLE, TRIGONOMETRY
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Right-Hand Rule

The rule which determines the orientation of the
CROSS PRODUCT u �v: The right-hand rule states that
the orientation of the vectors’ cross product is
determined by placing u and v tail-to-tail, flattening
the right hand, extending it in the direction of u, and
then curling the fingers in the direction that the
angle v makes with u. The thumb then points in the
direction of u �v :/
A three-dimensional COORDINATE SYSTEM in which
the axes satisfy the right-hand rule is called a RIGHT-

HANDED COORDINATE SYSTEM, while one that does not
is called a LEFT-HANDED COORDINATE SYSTEM.

See also CROSS PRODUCT, LEFT-HANDED COORDINATE

SYSTEM, RIGHT-HANDED COORDINATE SYSTEM

Right-Handed Coordinate System

A three-dimensional COORDINATE SYSTEM in which
the axes satisfy the RIGHT-HAND RULE.

See also CROSS PRODUCT, LEFT-HANDED COORDINATE

SYSTEM, RIGHT-HAND RULE

Rigid Framework
FRAMEWORK, RIGID GRAPH

Rigid Graph
A FRAMEWORK (or GRAPH) is rigid IFF continuous
motion of the points of the configuration maintaining
the bar constraints comes from a family of motions of
all EUCLIDEAN SPACE which are distance-preserving.
A GRAPH that is not rigid is said to be FLEXIBLE

(Maehara 1992).

For example, the CYCLE GRAPH C3 is rigid, while C4 is
flexible. An embedding of the BIPARTITE GRAPH K3; 3

in the plane is rigid unless its six vertices lie on a
CONIC (Bolker and Roth 1980, Maehara 1992).

A GRAPH G is (generically) d -rigid if, for almost all
(i.e., an open dense set of) CONFIGURATIONS of p , the
FRAMEWORK G(p) is rigid in Rd:/



Cauchy (1813) proved the RIGIDITY THEOREM, one of
the first results in rigidity theory. Although rigidity
problems were of immense interest to engineers,
intensive mathematical study of these types of pro-
blems has occurred only relatively recently (Connelly
1993, Graver et al. 1993).

See also BAR (EDGE), BRACED SQUARE, FLEXIBLE

GRAPH, FLEXIBLE POLYHEDRON, FRAMEWORK, JUST

RIGID, LAMAN’S THEOREM, LIEBMANN’S THEOREM,
RIGID POLYHEDRON, RIGIDITY THEOREM, TENSEGRITY
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Rigid Motion
A transformation consisting of ROTATIONS and TRANS-

LATIONS which leaves a given arrangement un-
changed.

See also EUCLIDEAN MOTION, PLANE, ROTATION
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Rigid Polyhedron
A POLYHEDRON is rigid if it cannot be continuously
deformed into another configuration. A rigid polyhe-
dron may have two or more stable forms which cannot
be continuously deformed into each other without
bending or tearing (Wells 1991).

A structure such as a polyhedron which can change
form from one stable configuration to another with
only a slight transient nondestructive elastic stretch
is called MULTISTABLE (Goldberg 1978).

A non-rigid polyhedron may be "SHAKY" (infinitesi-
mally movable) or FLEXIBLE. An example of a concave
FLEXIBLE POLYHEDRON with 18 triangular faces was
given by Connelly (1978), and a FLEXIBLE POLYHE-

DRON with only 14 triangular faces was subsequently
found by Steffen (Mackenzie 1998).

JESSEN’S ORTHOGONAL ICOSAHEDRON is an example of
a SHAKY POLYHEDRON.

See also FLEXIBLE POLYHEDRON, JESSEN’S ORTHOGO-

NAL ICOSAHEDRON, JUMPING OCTAHEDRON, MULTI-

STABLE, PENTAGONAL DIPYRAMID, RIGID GRAPH,
SHAKY POLYHEDRON
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Rigidity Theorem
If the faces of a convex POLYHEDRON were made of
metal plates and the EDGES were replaced by hinges,
the POLYHEDRON would be RIGID. The theorem was
stated by Cauchy (1813), although a mistake in this
paper went unnoticed for more than 50 years.

See also FLEXIBLE POLYHEDRON, RIGID POLYHEDRON,
SHAKY POLYHEDRON
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Rigorous
A proof or demonstration is said to be rigorous if the
validity of each step and the connections between the
steps is explicitly made clear is such a way that the
result follows with certainty. "Rigorous" proofs often
rely on the postulates and results of formal systems
that are themselves considered rigorous under stated
conditions.

Ring
A ring (in the mathematical sense) is a SET S together
with two BINARY OPERATORS � and + (commonly
interpreted as addition and multiplication, respec-
tively) satisfying the following conditions:

1. Additive associativity: For all a; b; c � S;
(a �b) �c �a �(b �c) ;/
2. Additive commutativity: For all a ; b � S;
a �b �b �a ;/
3. Additive identity: There exists an element 0 � S
such that for all a � S ; 0 �a �a �0 �a ;/
4. Additive inverse: For every a � S there exists
�a � S such that a �(�a) �(�a) �a �0;/
5. Multiplicative associativity: For all a; b; c � S;
a + (b + c) �a + (b + c) ;/
6. Left and right distributivity: For all a; b; c � S;
a + (b �c) �(a + b) �(a + c) and (b �c) + a �/

/(b + a) �(c + a) :/

A ring is therefore an ABELIAN GROUP under addition
and a SEMIGROUP under multiplication.

The French word for a ring is anneau , and the
German word is Ring , both meaning (not so surpris-
ingly) "ring."

A ring must contain at least one element, but need
not contain a multiplicative identity or be commu-
tative. The number of finite rings of n elements for
n �1, 2, ..., are 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4,
4, ... (Sloane’s A027623 and A037234; Fletcher 1980).
In general, the number of rings of order p3 for p an
ODD PRIME is 3p �50 and 52 for p �2 (Ballieu 1947,
Gilmer and Mott 1973).

A ring with a multiplicative identity is sometimes
called a UNIT RING. Fraenkel (1914) gave the first
abstract definition of the ring, although this work did
not have much impact.

A ring that is COMMUTATIVE under multiplication, has
a unit element, and has no divisors of zero is called an
INTEGRAL DOMAIN. A ring which is also a COMMU-

TATIVE multiplication group is called a FIELD. The
simplest rings are the INTEGERS Z; POLYNOMIALS R[x]
and R[x; y] in one and two variables, and SQUARE n�
n REAL MATRICES.

Rings which have been investigated and found to be
of interest are usually named after one or more of
their investigators. This practice unfortunately leads
to names which give very little insight into the
relevant properties of the associated rings.

See also ABELIAN GROUP, ARTINIAN RING, CHOW

RING, DEDEKIND RING, DIVISION ALGEBRA, FIELD,
GORENSTEIN RING, GROUP, GROUP RING, IDEAL,
INTEGRAL DOMAIN, MODULE, NILPOTENT ELEMENT,
NOETHERIAN RING, NONCOMMUTATIVE RING, NUMBER

FIELD, PRIME RING, PRÜ FER RING, QUOTIENT RING,
REGULAR RING, RINGOID, SEMIPRIME RING, SEMIRING,
SEMISIMPLE RING, SIMPLE RING, UNIT RING, ZERO

DIVISOR
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Ring Cyclide

The INVERSION of a RING TORUS. If the INVERSION

CENTER lies on the torus, then the ring cyclide
degenerates to a PARABOLIC RING CYCLIDE.



See also CYCLIDE, INVERSION, PARABOLIC CYCLIDE,
RING CYCLIDE, RING TORUS, SPINDLE CYCLIDE, TORUS

Ring Direct Product
The direct product of the RINGS Rg ; for g some INDEX

SET I , is the set

Y
g � I

Rg �
�

f : I 0 �
g � I

Rg f (g) � Rg all g � I

�
:

::::
The ring direct product is confusingly also called the
complete direct sum (Herstein 1968).

X 0 G
¡
H

[
X 0 G �H 0 G

¡
H

the universal property of a direct product; X factors through G �H :

The ring direct product, like the GROUP DIRECT

PRODUCT, has the UNIVERSAL PROPERTY that if any
ring X has a HOMOMORPHISM to G and a homomorph-
ism to H , then these homomorphisms factor through
G �H in a unique way.
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Ring Function
TOROIDAL FUNCTION

Ring Homomorphism
A ring homomorphism is a map f : R 0 S between
two RINGS such that

1. Addition is preserved: f (r1 �r2) �f (r1) �f (r2) ;/
2. The zero element is mapped to zero: f (0R) �0S ;
and
3. Multiplication is preserved: f (r1r2) �f (r1)f (r2);/

where the operations on the left-hand side is in R and
on the right-hand side in S . Note that a homomorph-
ism must preserve the additive inverse map because
f (g) �f (�g) �f (g ��g) �f (0R) �0S so �f (g) �f (�g) :/

See also GROUP HOMOMORPHISM, HOMOMORPHISM,
ISOMORPHISM, RING

Ring of Polynomial
POLYNOMIAL RING

Ring Torus

One of the three STANDARD TORI given by the PARA-

METRIC EQUATIONS

x �(c �a cos v) cos u

y �(c �a cos v) sin u

z �a sin v

with c �a . This is the TORUS which is generally
meant when the term "torus" is used without quali-
fication. The inversion of a ring torus is a RING

CYCLIDE if the INVERSION CENTER does not lie on the
torus and a PARABOLIC RING CYCLIDE if it does. The
above left figure shows a ring torus, the middle a
cutaway, and the right figure shows a CROSS SECTION

of the ring torus through the xz -plane.

See also CYCLIDE, HORN TORUS, PARABOLIC RING

CYCLIDE, RING CYCLIDE, SPINDLE TORUS, STANDARD

TORI, TORUS

References
Gray, A. "Tori." §13.4 in Modern Differential Geometry of

Curves and Surfaces with Mathematica, 2nd ed. Boca
Raton, FL: CRC Press, pp. 304 �/306, 1997.

Pinkall, U. "Cyclides of Dupin." §3.3 in Mathematical Models
from the Collections of Universities and Museums (Ed.
G. Fischer). Braunschweig, Germany: Vieweg, pp. 28 �/30,
1986.

Ringoid
A ringoid is a set R with two binary operators,
conventionally denoted addition (/�) and multiplica-
tion (/�) ; where � distributes over � left and right:

a(b �c) �ab �ac

and

(b �c)a �ba �ca:

A ringoid can be empty.

See also BINARY OPERATOR, RING, SEMIRING
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Risch Algorithm

An ALGORITHM for indefinite integration.

See also ELEMENTARY FUNCTION, INDEFINITE INTE-

GRAL
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Rising Factorial
There are two notations used for the falling and rising
factorials, (x)n and x(n) ; which are unfortunately polar
opposites of one another. The rising factorial x(n)

(sometimes also denoted �x�n; Comtet 1974, p. 6),
frequently called the POCHHAMMER SYMBOL in the
theory of special functions, is defined by

x(n) �x(x �1) � � � (x �n �1): (1)

It is related to the GAMMA FUNCTION G(z) by

x(n) �
G(x � n)

G(x)
; (2)

where

x(0) �1 ; (3)

and is related to the FALLING FACTORIAL (x)n by

x(n) �(�x)n(�1)n : (4)

The rising factorial is implemented in Mathematica
as Pochhammer[x , n ].

Note that in combinatorial usage, the FALLING FAC-

TORIAL is denoted (x)n and the rising factorial is
denoted (x)(n) (Comtet 1974, p. 6; Roman 1984, p. 5;
Hardy 1999, p. 101), whereas in the calculus of FINITE

DIFFERENCES and the theory of special functions, the
FALLING FACTORIAL is denoted x(n) and the rising
factorial is denoted (x)n (Roman 1984, p. 5; Abramo-
witz and Stegun 1972, p. 256; Spanier 1987). Extreme
caution is therefore needed in interpreting the mean-
ings of the notations (x)n and x(n) : In this work, the
notation x(n) is used for the rising factorial , despite
the fact that POCHHAMMER SYMBOL, which is another
name for the rising factorial, is universally denoted
(x)n :/

The rising factorial arises in series expansions of
HYPERGEOMETRIC FUNCTIONS and GENERALIZED HY-

PERGEOMETRIC FUNCTIONS. The first few rising fac-
torials are

x(0) �1
x(1) �x
x(2) �x(x �1) �x2 �x
x(3) �x(x �1)(x �2) �x3 �3x2 �2x
x(4) �x(x �1)(x �2)(x �3) �x4 �6x3 �11x2 �6x:

Additional identities are

d

dx
x(n) �x(n)[F(x �n �1) �F(x �1)] (5)

x(n�k) �(x �n)kx(n) ; (6)

where F(z) is the DIGAMMA FUNCTION.

See also CENTRAL FACTORIAL, FACTORIAL, FALLING

FACTORIAL, GENERALIZED HYPERGEOMETRIC FUNC-

TION, HARMONIC LOGARITHM, HYPERGEOMETRIC

FUNCTION, POCHHAMMER SYMBOL
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Rivest-Shamir-Adleman Number
RSA NUMBER

R-Module
A MODULE taking its coefficients in a RING R is called
a module over R or R -module.

See also MODULE

RMS
ROOT-MEAN-SQUARE

Robbin Constant

R � 4
105 �

17
105

ffiffiffi
2

p
� 2

35

ffiffiffi
3

p
�1

5 ln 1 �
ffiffiffi
2

p� �
�2

3 ln 2 �
ffiffiffi
3

p� �
� 1

15 p�0:661707182 . . . :

See also TRANSFINITE DIAMETER
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Robbins Algebra
Building on work of Huntington (1933), Robbins
conjectured that the equations for a Robbins algebra,
commutativity, associativity, and the ROBBINS AXIOM



!(!(x �y) �!(x �!y)) �x;

where !x denotes NOT and x �y denotes OR, imply
those for a BOOLEAN ALGEBRA. The conjecture was
finally proven using a computer (McCune 1997).

See also BOOLEAN ALGEBRA, HUNTINGTON AXIOM,
ROBBINS CONJECTURE, ROBBINS AXIOM, WINKLER

CONDITIONS
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Robbins Axiom
The logical axiom

R(x ; y) �!(!(x �y) �!(x �!y)) �x;

where !x denotes NOT and x �y denotes OR, that,
when taken together with associativity and commu-
tativity, is equivalent to the axioms of BOOLEAN

ALGEBRA.

The Robbins operator can be defined in Mathematica
by

Robbins : � Function[{x, y}, ! (! (! y \[Or] x)

\[Or] ! (x \[Or] y))]

That the Robbins axiom is a true statement in
BOOLEAN ALGEBRA can be verified by examining its
TRUTH TABLE.

x y /R(x; y)/

T T T

T F T

F T F

F F F

See also ROBBINS ALGEBRA, ROBBINS CONJECTURE,
WOLFRAM AXIOM

Robbins Conjecture
The conjecture that the equations for a Robbins
algebra, commutativity, associativity, and the ROB-

BINS AXIOM

!(!(x �y) �!(x �!y)) �x;

where !x denotes NOT and x �y denotes OR, imply
those for a BOOLEAN ALGEBRA. The conjecture was
finally proven using a computer (McCune 1997).

See also BOOLEAN ALGEBRA, ROBBINS ALGEBRA,
ROBBINS AXIOM
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Robbins Equation

h(u) �2u

See also ROBBINS ALGEBRA

Robbin’s Inequality
If the fourth MOMENT m4 "0 ; then

P( ½x̄ � m4 ½] l) 5
m4 � 3(N � 1)s4

N3 l4 ;

where s2 is the VARIANCE.

Robbins Number
ALTERNATING SIGN MATRIX

Robbins-Monro Stochastic Approximation
A STOCHASTIC APPROXIMATION method that functions
by placing conditions on iterative step sizes and
whose convergence is guaranteed under mild condi-
tions. However, the method requires knowledge of the
analytical gradient of the function under considera-
tion.

Kiefer and Wolfowitz (1952) developed a finite differ-
ence version of the Robbins-Monro method which
maintains the nice convergence properties, while
obviating the need for knowledge of the analytic
form of the gradient.

See also STOCHASTIC APPROXIMATION, STOCHASTIC

OPTIMIZATION
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Robbins, H. and Munro, S. "A Stochastic Approximation
Method." Ann. Math. Stat. 22, 400 �/407, 1951.

Robertson Condition
For the HELMHOLTZ DIFFERENTIAL EQUATION to be
SEPARABLE in a coordinate system, the SCALE FACTORS

hi in the LAPLACIAN

92 �
X3

i �1

1

h1h2h3

@

@ui

h1h2h3

h2
i

@

@ui

 !
(1)

and the functions fi(ui) and Fij defined by

1

fn

@

@un

fn

@Xn

@un

 !
� k2

1 Fn1 �k2
2 Fn2 �k2

3 Fn3

� �
Xn �0 (2)

must be OF THE FORM of a STÄ CKEL DETERMINANT

S � ½Fmn ½�
F11 F12 F13

F21 F22 F23

F31 F32 F33

::::::
::::::� h1h2h3

f1(u1)f2(u2)f3(u3) 
: (3)

See also HELMHOLTZ DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION, SEPARATION OF VARIABLES,
STÄ CKEL DETERMINANT
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Robertson Conjecture
A conjecture due to M. S. Robertson (1936) which
treats a UNIVALENT POWER SERIES containing only
ODD powers within the UNIT DISK. This conjecture
IMPLIES the BIEBERBACH CONJECTURE and follows in
turn from the MILIN CONJECTURE. de Branges’ proof
of the BIEBERBACH CONJECTURE proceeded by proving
the MILIN CONJECTURE, thus establishing the Robert-
son conjecture and hence implying the truth of the
BIEBERBACH CONJECTURE.

See also BIEBERBACH CONJECTURE, MILIN CONJEC-

TURE
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Robertson Graph

The unique (4; 5)/-CAGE GRAPH, which has 19 vertices.

See also CAGE GRAPH
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Robertson-Seymour Theorem
A generalization of the KURATOWSKI REDUCTION

THEOREM by Robertson and Seymour, which states
that the collection of finite GRAPHS is well-quasi-
ordered by minor embeddability, from which it
follows that Kuratowski’s "forbidden minor" embed-
ding obstruction generalizes to higher genus surfaces.

Formally, for a fixed INTEGER g ]0 ; there is a finite
list of graphs L(g) with the property that a GRAPH C
embeds on a surface of genus g IFF it does not contain,
as a minor, any of the GRAPHS on the list L .

References
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Robertson-Wegner Graph

The unique (5; 5)/-CAGE GRAPH, which has 30 vertices.

See also CAGE GRAPH
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Robin Boundary Conditions
PARTIAL DIFFERENTIAL EQUATION BOUNDARY CONDI-

TIONS which, for an elliptic partial differential equa-
tion in a region V; specify that the sum of au and the
normal derivative of u � f at all points of the
boundary of V; a and f being prescribed.

Robin’s Constant
TRANSFINITE DIAMETER

Robinson Projection
A PSEUDOCYLINDRICAL MAP PROJECTION which dis-
torts shape, AREA, scale, and distance to create
attractive average projection properties.

See also MAP PROJECTION, PSEUDOCYLINDRICAL PRO-

JECTION

References
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Robust Estimation
An estimation technique which is insensitive to small
departures from the idealized assumptions which
have been used to optimize the algorithm. Classes of
such techniques include M -ESTIMATES (which follow
from maximum likelihood considerations), L -ESTI-

MATES (which are LINEAR COMBINATIONS of ORDER

STATISTICS), and R -ESTIMATES (based on RANK tests).

See also L -ESTIMATE, M -ESTIMATE, R -ESTIMATE

References
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Press, pp. 694 �/700, 1992.

Rodrigues’ Curvature Formula

d N̂ � ki dr �0 ;

where N̂ is the unit NORMAL VECTOR and ki is one of
the two PRINCIPAL CURVATURES.

See also NORMAL VECTOR, PRINCIPAL CURVATURES

Rodrigues Formula
An operator definition of a function. A Rodrigues
formula may be converted into a SCHLÄ FLI INTEGRAL.

See also RODRIGUES’ CURVATURE FORMULA, RODRI-

GUES’ ROTATION FORMULA, SCHLÄ FLI INTEGRAL

Rodrigues’ Rotation Formula
This entry contributed by SERGE BELONGIE

Rodrigues’ rotation formula gives an efficient method
for computing the ROTATION MATRIX R � SO(3) corre-
sponding to a rotation by an angle u �R about a fixed
axis specified by the unit vector v �(v1 ; v2 ; v3) �R3 :
R is given by

ev̂u �1 � v̂ sin u � v̂2(1 �cos u);

where v̂ denotes the SKEW SYMMETRIC MATRIX with
entries

v̂�
0 �v3 v2

v3 0 �v1

�v2 v1 0

2
4

3
5:

See also ROTATION FORMULA, ROTATION MATRIX
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Rogers L-Function

If Li2(x) denotes the usual DILOGARITHM, then there
are two variants that are normalized slightly differ-
ently, both called the Rogers L -function (Rogers
1907). Bytsko (1999) defines

L(x)�
6

p2
Li2(x)�1

2 ln x ln(1�x)
h i

(1)

�
6

p2

X�
n�1

xn

n2
�1

2 ln x ln(1�x)

" #
; (2)

(which he calls "the" dilogarithm), while Gordon and
McIntosh (1997) and Loxton (1991, p. 287) define the



Rogers L -function as

LR(x)�Li2(x)�1
2 ln x ln(1�x) (3)

�
p2

6
L(x) (4)

�
X�
n�1

xn

n2
�1

2 ln x ln(1�x)

" #
: (5)

The function L(x) satisfies the concise identity

L(x)�L(1�x)�1 (6)

(Euler 1768), as well as ABEL’S FUNCTIONAL EQUATION

L(x)�L(y)�L(xy)�L
x(1 � y)

1 � xy

 !
�L

y(1 � x)

1 � xy

 !
(7)

(Abel 1988, Bytsko 1999). The duplication formula for
L(x) follows from ABEL’S FUNCTIONAL EQUATION and is
given by

1
2 L(x2)�L(x)�L

x

1 � x

 !
: (8)

The function has the nice INFINITE SERIES

X�
k�2

L
1

k2

 !
�1

6 p
2 (9)

(Lewin 1982; Loxton 1991, p. 298).
In terms of L(x); the well-known dilogarithm identi-
ties become

L(0)�0 (10)

L(1�r)�2
5 (11)

L 1
2

� �
�1

2 (12)

L(r)�3
5 (13)

Lð1Þ ¼ 1 ð14Þ

(Loxton 1991, pp. 287 and 289; Bytsko 1999), where
r�

ffiffiffi
5

p
�1

� �
=2:/

Numbers u � (0; 1) which satisfy

Xn

k�0

ckL(uk)�0 (15)

for some value of n are called L -ALGEBRAIC NUMBERS.
Loxton (1991, p. 289) gives a slew of identities having
rational coefficients

Xn

k�0

ek

k
L(uk)�c (16)

instead of integers, where c is a RATIONAL NUMBER, a
corrected and expanded version of which is summar-

ized in the following table. In this table, polynomials
P(x) denote the real root of x . Many more similar
identities can be found using INTEGER RELATION

algorithms.

/u/ /ek/ c

1 1 1

/
1
2/ 1 /

1
2/

/
1
2/ /�1; 6; 3; 0; 0; �3/ /

1
2/

/
1
3/ 3, �1 1

/
1
2

ffiffiffi
5

p
�1

� �
/ 1 /

3
5/

/
1
2

ffiffiffi
5

p
�1

� �
/ /1; �1; �12; 0; 0; 6/ /�3

5/

/

ffiffiffi
5

p
�2

� �1=3
/ 2, �1 1

/

ffiffiffi
2

p
�1/ 2, �1 /

3
4/

/

ffiffiffi
2

p
�1/ /1; 2; 0; �1/ /

5
8/

/3�2
ffiffiffi
2

p
/ 5, �2 1

/
1
2

ffiffiffi
3

p
�1

� �
/ /2; 1; �1/ /

5
6/

/

ffiffiffi
3

p
�1/ /2; �3; �1; 0; 0; 1/ /

1
2/

/2�
ffiffiffi
3

p
/ /4; 1; 0; �1/ /

5
4/

/2�
ffiffiffi
3

p
/ /5; �3; �1; 0; 0; 1/ /

4
3/

/5�2
ffiffiffi
6

p
/ /23; �15; �3; 0; 0; 3/ 3

/
1
2

ffiffiffiffiffiffi
13

p
�3

� �
/ /4; �2; �2; 0; 0; 1/ /

7
6/

/
1
6

ffiffiffiffiffiffi
13

p
�1

� �
/ /3; 1; �3; 0; 0; 1/ /

4
3/

/
1
6

ffiffiffiffiffiffi
13

p
�1

� �
/ /3; �4; �3; 0; 0; 2/ /

2
3/

/4�
ffiffiffiffiffiffi
15

p
/ /15; 2; �3; �2/ /

5
2/

/
1
2 5�

ffiffiffiffiffiffi
21

p� �
/ /7; �1; �3; 0; 0; 1/ /

5
3/

/
1
2 sec 2

7 p
� �

;/ 1, �2 /
1
7/

/
1
2 sec 1

7 p
� �

/ 1, 1 /
5
7/

/2 cos 3
7 p
� �

/ 1, 1 /
4
7/

/
1
2 sec 1

9 p
� �

/ /1; 2; �1/ /
7
9/

/
1
2 sec 2

9 p
� �

/ /1; �3; �1; 0; 0; 1/ /�1
9/

/2 cos 4
9 p
� �

/ /1; �3; �1; 0; 0; 1/ /
1
9/

/x3�2x�1/ /1; 5; 0; �4/ 1

/x3�2x�1/ /3; 1; 12; 0; 0; �6/ 2

/2x3�x�1/ /2; 1; 3; �2/ /
3
2/

/x3�x�1/ /2; 6; 3; 0; 0; �3/ 3

/x3�3x2�4x�1/ /5; �9; �6; 0; 0; 6/ 1

/x3�x2�1/ /1; 6; 6; 0; 0;�6/ 2

/x3�x2�x�1/ /1; 1;�3/ /
1
2/

/x3�x2�x�1/ /2; 3; 0;�2/ /
3
2/



Bytsko (1999) gives the additional identities

L l �2
� �

�L l2 �1
� ��2
� �

�4
7 (17)

L l�2
� �

�L 1 � lð Þ�1
� �

�5
7 (18)

L 1 �
1ffiffiffi
2

p
 !

�L
ffiffiffi
2

p
�1

� �
�3

4 (19)

L
ffiffiffi
r

p� �
�L

1

1 �
ffiffiffi
r

p

 !
�13

11 (20)

L 1
2 �

1
2 r

� �
�L 2r �1ð Þ�1

2 (21)

L 1 �1
2 r �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 r �3

p� �
�L 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28r �45

p
�2r �2

5

� �
�2

5

(22)

L 1 � d2
� �

�L (1 � d)�2
� �

�2
5 (23)

L 3
2 �

1
2

ffiffiffi
2

p
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2

p
�1

q� 	

�L 3
2 �

ffiffiffi
2

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
2 �1

pq
�3

2 �
3
2

ffiffiffi
2

p� 	
�1

2 (24)

L(n) �L m�1
� �

�1
7 (25)

where

l �2 cos(p=7)

r �
ffiffiffi
5

p
�1

� �
=2

d �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �2

ffiffiffi
5

pq
�1

� 	
;

with d the positive root of

d4 � d3 � d �1 �0 (26)

and 0 B n B1 and m > 1 the real roots of

t6 �7t5 �19t4 �28t3 �20t2 �7t �1 �0: (27)

Here, (17) and (18) are special cases of the WATSON

IDENTITIES and (19) is a special case of ABEL’S

DUPLICATION FORMULA with x �1 =
ffiffiffi
2

p
(Gordon and

McIntosh 1997, Bytsko 1999).

Rogers (1907) obtained a dilogarithm identity in m
variables with m2 �1 terms which simplifies to
Euler’s identity for m �1 and ABEL’S FUNCTIONAL

EQUATION for m �2 (Gordon and McIntosh 1997). For
m �3, it is equivalent to

L(a) �L(b) �L(c) �L(u) �L(v)

�L(abc)�L(ac=u)�L(bc=v)�L(av=u)�L(bu=v);

(28)

with

av(1�bc)�bu(1�ac)�uv(1�ab) (29)

v(1�a)�u(1�b)�1�abc (30)

(Gordon and McIntosh 1997).

See also ABEL’S DUPLICATION FORMULA, ABEL’S

FUNCTIONAL EQUATION, DILOGARITHM, L -ALGEBRAIC

NUMBER, LANDEN’S IDENTITY
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Rogers-Ramanujan Continued Fraction

The Rogers-Ramanujan continued fraction is defined
by

R(q)�
q1=5

1 �
q

1 �
q2

1 �
q3

1 � � � �

(1)

(Rogers 1894, Ramanujan 1957, Berndt et al. ). The
coefficients of qn in the MACLAURIN SERIES of
R(q)=q1=5 for n�0, 1, 2, ... are 1, -1, 1, 0, -1, 1, -1, 1,



0, -1, 2, -3, ... (Sloane’s A007325). The fraction can be
given explicitly as

R(q)�q1=5 q; q5ð Þ� q4; q5ð Þ�
q2; q5ð Þ� q3; q5ð Þ�

(2)

�q1=5
Y�
k�1

1 � x5k�1
� �

1 � x5k�4
� �

1 � x5k�2ð Þ 1 � x5k�3ð Þ
(3)

�q1=5 f �q; �q4ð Þ
f �q2; �q3ð Þ

; (4)

where /ða; qÞn/ is a Q -SERIES and f (a; b) is a RAMANU-

JAN THETA FUNCTION.
/R(q) satisfies the amazing equalities

1

R(q)
�1�R(q)�

f �q1=5
� �

q1=5f �q5ð Þ
(5)

1

R(q)½ 
5
�11�[R(q)]5�

f �qð Þ½ 
6

q f �q5ð Þ½ 
6
(6)

as well as

X�
n���

(�1)n(10n�3)q(5n�3)n=2

�
3

[R(q)]2�[R(q)]3

" #
q2=5 f �q5

� �� �3
(7)

X�
n���

(�1)n(10n�1)q(5n�1)n=2

�
1

[R(q)]3�3[R(q)]2

" #
q3=5 f �q5

� �� �3
(8)

(Watson 1929ab; Berndt 1991, pp. 265�/267; Berndt et
al. , Son).

Defining

u�R(q) (9)

u?��R(�q) (10)

v�R q2
� �

(11)

w�R q4
� �

; (12)

these quantities satisfy the modular equations

uv2�
v � u2

v � u2
(13)

uw�
w2 � u2v

w � u2
(14)

vw2�
w � v2

w � v2
(15)

uu?v2�
uu? � v

u? � u
(16)

u?w�
u?2 � w

v2 � w
(17)

�vw�
u?(v2 � w)

u?2v � w
(18)

uu?v�
u? � u

v � uu?
(19)

vw�
u v2 � wð Þ
u2v � w

(20)

(Berndt et al. ).

As discussed by Hardy (1962, pp. xxvii and xxviii),
Berndt and Rankin (1995), and Berndt et al. , Rama-
nujan also defined the generalized continued fraction

R(a; q)�
1

1 �
aq

1 �
aq2

1 �
aq3

1 � � � �

(21)

Ramanujan also considered

F(a; q)�1�
aq

1 �
aq2

1 �
aq3

1 � � � �

; (22)

�

P�

k�0

(�a)kqk2

(q)kP�

k�0

(�a)kqk(k�1)

(q)k

: (23)

(Berndt 1991, p. 30; Berndt et al. ), of which the
special case F(q)�F(1; q) is plotted above. Terminat-
ing the terms in the continued fraction at a term aqn

gives



P (n�1)=2b c
k�0

( �a)kqk2 

(q)n�k�1

(q)kP n =2b c
k �0

( �a)kq(k �1)(q)n �k

(q)k(q)n�2k

�1 �
aq

1 �
aq2

1 �
aq3

1 � � � �� aqn

1

; (24)

(Berndt et al. ). The real roots of F(q) are 0.576149,
0.815600, 0.882493, 0.913806, 0.931949, 0.943785,
0.952125, ..., the smallest of which was found by
Ramanujan (Berndt et al. ). F(q) and its smallest
positive root are related to the enumeration of coins
in a FOUNTAIN (Berndt 1991, Berndt et al. ) and the
study of birth and death processes (Berndt et al. ,
Parthasarathy et al. 1998). In general, the least
positive root q0(a) of F(a; q) is given as a 0 � by

q0(a) �
1

a 
�

1

a2 
�

2

a3 
�

6

a4 
�

21

a5 
�

79

a6 
�

311

a7
�

1266

a8

�
5289

a9
�

22553

a10
�

97753

a11
�. . . (25)

(Berndt et al. ). Ramanujan gave the amazing approx-
imations

q0(a) �
2

a � 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a � 1)(a � 5)

p �O a�8
� �

(26)

�
1

a � 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a � 1)(a � 5)

p

2
�

a � 3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a � 1)(a � 5)

p

a � 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a � 1)(a � 5)

p
" #3

�O a�11
� �

: (27)

See also FOUNTAIN, Q -SERIES, RAMANUJAN THETA

FUNCTIONS, ROGERS-RAMANUJAN IDENTITIES
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Rogers-Ramanujan Identities
For/jqjB1/ and using the NOTATION of the RAMANUJAN

THETA FUNCTION, the Rogers-Ramanujan identities
are

f ð�q5Þ
f ð�q2;�q4Þ

¼
X�
k¼0

qk2

ðqÞk

ð1Þ

f ð�q5Þ
f ð�q2;�q3Þ

¼
X�
k¼0

qkðkþ1Þ

ðqÞk

; ð2Þ

where/ðqÞk/ are Q -SERIES. Written out explicitly (Hardy
1999, pp. 13 and 90),

1 þ q

1 � q
þ q4

ð1 � qÞð1 � q2Þ
þ q9

ð1 � qÞð1 � q2Þð1 � q3Þ
þ . . .

¼ 1

ð1 � qÞð1 � q6Þ . . . ð1 � q4Þð1 � q9Þ . . .

¼ 1 þ x þ x2 þ x3 þ 2x4 þ 2x5 þ 3x6 þ . . . ð3Þ



(Sloane’s A003114), and

1 þ q2

1 � q
þ q6

ð1 � q Þð1 � q2 Þ
þ q12

ð1 � qÞð1 � q2 Þð1 � q3 Þ
þ . . .

¼ 1

ð1 � q2 Þð1 � q7 Þ . . . ð1 � q3 Þð1 � q8 Þ . . .

¼ 1 þ x2 þ x3 þ x4 þ x5 þ 2x6 þ . . .  ð4Þ

(Sloane’s A003106). These identities can also be
written succinctly as

1 þ
X�
k ¼1

qk2 þak

ð1 � qÞð1 � q2 Þ . . . ð1 � qk Þ

¼
Y�
j ¼0

1

ð1 � q5jþa þ1 Þð1 � q5j�a þ4 Þ
ð5Þ

where a � 0, 1.

Other forms of the Rogers-Ramanujan identities
include

X
k

qk2

ðq; qÞk ðq; qÞn�k

¼
X

k

ð�1Þkqð5k2 �k Þ=2

ðq; qÞn�k ðq; qÞnþk

ð6Þ

and

X
k

2qk2

ðq; q Þk ðq; qÞn�k

¼
X

k

ð�1Þk ð1 þ qk Þqð5k2 �k Þ=2

ðq; qÞn�k ðq; qÞnþk

ð7Þ

(Petkovsek et al. 1996).

The formulas have a curious history, having been
proved by Rogers (1894) in a paper that was com-
pletely ignored, then rediscovered (without proof) by
Ramanujan sometime before 1913. The formulas were
communicated to MacMahon, who published them in
his famous text, still without proof. Then, in 1917,
Ramanujan accidentally found Roger’s 1894 paper
while leafing through a journal. In the meantime,
Schur (1917) independently rediscovered and pub-
lished proofs for the identities (Hardy 1999, p. 91).
Garsia and Milne (1981ab) gave the first proof of the
Rogers-Ramanujan identities to construct a BIJEC-

TION between the relevant classes of partitions
(Andrews 1986, p. 59).

Schur showed that (3) has the combinatorial inter-
pretation that the number of partitions of n with
minimal difference /E2/ is equal to the number of
partitions into parts OF THE FORMS /5m þ 1/ or /5m þ 4/

(Hardy 1999, p. 92). The following table gives the first
few values.

n /an/ min. diff. /�1; 4/ (mod 5)

1 1  1  1

2 1  2  1�1

3 1  3  /1 þ 1 þ 1/

4 2 4, 3 �1 4, /1 þ 1 þ 1 þ 1/

5 2 5, 4 �1 4�1, /1 þ 1 þ 1 þ 1 þ 1/

6 3 6, 5 �1, 4 �2 5, /4 þ 1 þ 1/, /1 þ 1 þ 1 þ 1 þ 1 þ 1/

There is a similar combinatorial interpretation for (4).

A generalization of the Rogers-Ramanujan identities
is given by

X
n1 ;...;nk�1E0

xN2
1þ���þN2

k¼1
þNiþ���þNk�1

ðxÞn1
� � � ðxÞnk¼1

¼
Y

r ¼ 1
ru;9i ðmod 2kþ1Þ

1

1 � xn
ð8Þ

where /10i0k/, /kE2/, x complex with /jxjB1/, and /

Nj ¼ nj þ � � �nk�1/ (Andrews 1984, p. 111; Fulman
1999). These identities have a number of important
applications in mathematical physics (Fulman 1999).

See also ANDREWS-SCHUR IDENTITY, DOUGALL-RAMA-

NUJAN IDENTITY, SLATER’S IDENTITY
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Roller
CURVE OF CONSTANT WIDTH

Rolle’s Theorem
Let f be differentiable on (a, b ) and continuous on [a,
b ]. If f (a) �f (b) �0; then there is at least one point
c � (a; b) where f ?(c) �0:/

See also FIXED POINT THEOREM, MEAN-VALUE THEO-

REM

Rolling Polygon
ROULETTE

Roman Coefficient
A generalization of the BINOMIAL COEFFICIENT whose
NOTATION was suggested by Knuth,

n
k

F G
�

 n � !

 k � !  n � k � ! 
: (1)

The above expression is read "Roman n choose k ."
Whenever the BINOMIAL COEFFICIENT is defined (i.e.,
n ]k ]0 or k ]0 > n) ; the Roman coefficient agrees
with it. However, the Roman coefficients are defined
for values for which the BINOMIAL COEFFICIENTS are
not, e.g.,

n
�1

F G
�

1

 n � 1 � 
(2)

0
k

F G
�

( �1)k �(k >0)

 k �
; (3)

where

n B0 �
1 for n B0
0 for n ]0 :

�
(4)

The Roman coefficients also satisfy properties like
those of the BINOMIAL COEFFICIENT,

n
k

F G
�

n
n �k

F G
(5)

n
k

F G
k
r

F G
¼ n

r

F G
n �r
k �r

F G
ð6Þ

an analog of PASCAL’S FORMULA

n
k

F G
�

n �1
k

F G
�

n �1
k �1

F G
; (7)

and a curious rotation/reflection law due to Knuth

(�1)k �(k >0) �n
k�1

F G
�(�1)n�(n>0) �k

n�1

F G
(8)

(Roman 1992).

See also BINOMIAL COEFFICIENT, ROMAN FACTORIAL
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Roman Factorial

n�!�

n! for n]0
(�1)�n�1

(�n � 1)!
for nB0:

8<
: (1)

The Roman factorial arises in the definition of the
HARMONIC LOGARITHM and ROMAN COEFFICIENT. It
obeys the identities

n�!�n� n�1�! (2)

 n � !

 n � k � !
�n�n�1�� � �n�k�1� (3)

n�!�n�1�!�(�1)n�(nB0); (4)

where

n��
n for n"0
1 for n�0

�
(5)

and



n B0 �
1 for n B0
0 for n ]0 :

�
(6)

See also HARMONIC LOGARITHM, HARMONIC NUMBER,
ROMAN COEFFICIENT
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Roman Numeral
A system of numerical notations used by the Romans.
It is an additive (and subtractive) system in which
letters are used to denote certain "base" numbers, and
arbitrary numbers are then denoted using combina-
tions of symbols. Unfortunately, little is known about
the origin of the Roman numeral system (Cajori 1993,
p. 30).

Character Numerical Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1000

For example, the number 1732 would be denoted
MDCCXXXII. One additional rule states that, instead
of using four symbols to represent a 4, 40, 9, 90, etc.,
such numbers are instead denoted by preceding the
symbol for 5, 50, 10, 100, etc., with a symbol
indicating subtraction. For example, 4 is denoted
IV, 9 as IX, 40 as XL, etc. However, this rule is
generally not followed on the faces of clocks, where
IIII is usually encountered instead of IV. Further-
more, the practice of placing smaller digits before
large ones to indicate subtraction of value was hardly
ever used by Romans and came into popularity in
Europe after the invention of the printing press
(Wells 1986, p. 60; Cajori 1993, p. 31).

For large numbers, the Romans placed a partial
frame around numbers (open at the bottom), which
indicated that the framed number was to be multi-

plied by 100,000, as illustrated above (Menninger
1992, p. 44; Cajori 1993, p. 32). In more recent
practice, the strokes were sometimes written only
on the sides, e.g., ½X½ (Cajori 19993, p. 32). It should
also be noted that the Romans themselves never
wrote M for 1000, but instead wrote (I) for 1,000,
(I)(I) for 2,000, etc., and also occasionally wrote IM,
IIM, etc. (Menninger 1992, p. 281; Cajori 1993, p. 32).
However, in the Middle Ages, the use of M became
quite common. The Romans sometimes used multiple
parentheses to denote nested multiplications by 10, so
(I) for 1,000, ((I)) for 10,000, (((I))) for 100,000, etc.
(Cajori 1993, p. 33).

The Romans also occasionally used a VINCULUM

(called a titulus in the Middle Ages) over a Roman
numeral to indicate multiplication by 1000, so Ī�
1000; II�2000; etc. (Menninger 1992, p. 281; Cajori
1993, p. 32).

Roman numerals are encountered in the release year
for movies and occasionally on the numerals on the
faces of watches and clocks, but in few other modern
instances. They do have the advantage that ADDITION

can be done "symbolically" (and without worrying
about the "place" of a given DIGIT) by simply combin-
ing all the symbols together, grouping, writing groups
of five Is as V, groups of two Vs as X, etc.

The number of characters in the Roman numerals for
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... (i.e, I, II, III, IV, V, VI, VII,
VIII, IX, X, ...) are 1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2, 3, 4, ...
(Sloane’s A006968). This leads to a scale-invariant
FRACTAL-like stairstep pattern which rises in steps
then falls abruptly.
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Roman Surface

A QUARTIC NONORIENTABLE SURFACE, also known as
the STEINER SURFACE. The Roman surface is one of
the three possible surfaces obtained by sewing a
MÖ BIUS STRIP to the edge of a DISK. The other two
are the BOY SURFACE and CROSS-CAP, all of which are
homeomorphic to the REAL PROJECTIVE PLANE (Pin-
kall 1986).

The center point of the Roman surface is an ordinary
TRIPLE POINT with (91; 0; 0) �(0; 91 ; 0) �(0; 0; 91);
and the six endpoints of the three lines of self-
intersection are singular PINCH POINTS, also known
as WHITNEY SINGULARITIES. The Roman surface is
essentially six CROSS-CAPS stuck together and con-
tains a double INFINITY of CONICS.

The Roman surface can given by the equation

x2 �y2 �z2 �k2
� �2

� (z �k)2 �2x2
h i

(z �k)2 �2y2
h i

:

(1)

Solving for z gives the pair of equations

z �
k y2 � x2ð Þ9 x2 � y2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2 � y2

p
2(x2 � y2) 

: (2)

If the surface is rotated by 458 about the Z -AXIS via
the ROTATION MATRIX

Rz(45�) �
1ffiffiffi
2

p
1 1 0

�1 1 0
0 0 1

2
4

3
5 (3)

to give

x?
y?
z ?

2
4
3
5�Rz(45 �)

x
y
z

2
4
3
5; (4)

then the simple equation

x2y2 �x2z2 �y2z2 �2kxyz �0 (5)

results. The Roman surface can also be generated
using the general method for NONORIENTABLE SUR-

FACES using the polynomial function

f(x ; y; z) �(xy ; yz ; zx) (6)

(Pinkall 1986). Setting

x �cos u sin v (7)

y �sin u sin v (8)

z �cos v (9)

in the former gives

x(u; v) �1
2 sin(2u) sin2 v (10)

y(u; v) �1
2 sin u cos(2v) (11)

z(u ; v) �1
2 cos u sin(2v) (12)

for u � [0; 2p) and v � [�p=2; p=2]: Flipping sin v and
cos v and multiplying by 2 gives the form shown by
Wang.

A HOMOTOPY (smooth deformation) between the Ro-
man surface and BOY SURFACE is given by the
equations

x(u; v) �

ffiffiffi
2

p
cos(2u) cos2 v � cos u sin(2v)

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(13)

y(u; v)�

ffiffiffi
2

p
sin(2u) cos2 v � sin u sin(2v)

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(14)

z(u; v)�
3 cos2 v

2 � a
ffiffiffi
2

p
sin(3u) sin(2v)

(15)

for u � [�p=2; p=2] and v � [0; p] as a varies from 0 to
1. a�0 corresponds to the Roman surface and a�1 to
the BOY SURFACE (Wang).

See also BOY SURFACE, CROSS-CAP, HEPTAHEDRON,
MÖ BIUS STRIP, NONORIENTABLE SURFACE, QUARTIC

SURFACE, STEINER SURFACE
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Roman Symbol

n ��
n for n "0
1 for n �0:

�

See also ROMAN FACTORIAL, HARMONIC LOGARITHM
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Romberg Integration
A powerful NUMERICAL INTEGRATION technique which
uses k refinements of the extended TRAPEZOIDAL

RULE to remove error terms less than order
O N �2k
� �

: The routine advocated by Press et al.
(1992) makes use of NEVILLE’S ALGORITHM.
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Rook Number
The rook numbers rB

n of an n �n BOARD B are the
number of subsets of size n such that no two elements
have the same first or second coordinate. In other
word, it is the number of ways of placing n rooks on B
such that none attack each other. The rook numbers
of a board determine the rook numbers of the
complementary board B̄ ; defined to be d �d_B: This
is known as the ROOK RECIPROCITY THEOREM. The
first few rook numbers are 1, 2, 7, 23, 115, 694, 5282,
46066, ... (Sloane’s A000903). For an n�n board, each
n�n PERMUTATION MATRIX corresponds to an allowed
configuration of rooks.

See also ROOK RECIPROCITY THEOREM
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Rook Reciprocity Theorem

Xd

k�0

rB
k (d�k)!xk�

Xd

k�0

(�1)krB
k (d�k)!xk(x�1)d�k:
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Rooks Problem

The rook is a CHESS piece which may move any
number of spaces either horizontally or vertically per
move. The maximum number of nonattacking rooks
which may be placed on an n�n CHESSBOARD is n .
This arrangement is achieved by placing the rooks
along the diagonal (Madachy 1979). The total number
of ways of placing n nonattacking rooks on an n�n
board is n! (Madachy 1979, p. 47). The number of
rotationally and reflectively inequivalent ways of
placing n nonattacking rooks on an n�n board are
1, 2, 7, 23, 115, 694, ... (Sloane’s A000903; Dudeney
1970, p. 96; Madachy 1979, pp. 46�/54).
The minimum number of rooks needed to occupy or
attack all spaces on an 8�8 CHESSBOARD is 8
(Madachy 1979), arranged in the same orientation
as above.

Consider an n�n chessboard with the restriction
that, for every subset of f1; . . . ; ng; a rook may not be
put in column s�j (mod n ) when on row j , where the
rows are numbered 0, 1, ..., n�1: Vardi (1991)
denotes the number of rook solutions so restricted
as rook(s; n): rook(f1g; n) is simply the number of
DERANGEMENTS on n symbols, known as a SUBFAC-

TORIAL. The first few values are 1, 2, 9, 44, 265, 1854,
... (Sloane’s A000166). rook(f1; 2g; n) is a solution to
the MARRIED COUPLES PROBLEM, sometimes known as
MÉNAGE NUMBERS. The first few MÉNAGE NUMBERS

are -1, 1, 0, 2, 13, 80, 579, ... (Sloane’s A000179).



Although simple formulas are not known for general
f1; . . . ; p g; RECURRENCE RELATIONS can be used to
compute rook( f1; . . . ; p g; n) in polynomial time for
p �3, ..., 6 (Metropolis et al. 1969, Minc 1978, Vardi
1991).

See also CHESS, MÉ NAGE NUMBER, ROOK NUMBER,
ROOK RECIPROCITY THEOREM
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Room Square
A Room square (named after T. G. Room) of order n
(for n EVEN) is an arrangement in an (n �1) �(n �1)
SQUARE MATRIX of n objects such that each cell is
either empty or holds exactly two different objects.
Furthermore, each object appears once in each row
and column and each unordered pair occupies exactly
one cell. The Room square of order 2 is shown below.

1,2

The Room square of order 8 is

1,8 5,7 3,4 2,6

3,7 2,8 6,1 4,5

5,6 4,1 3,8 7,2

6,7 5,2 4,8 1,3

2,4 7,1 6,3 5,8

3,5 1,2 7,4 6,8

4,6 2,3 1,5 7,8
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Root
The roots (sometimes also called "zeros") of an
equation

f (x) �0 (1)

are the values of x for which the equation is satisfied.

The FUNDAMENTAL THEOREM OF ALGEBRA states that
every POLYNOMIAL equation of degree n has exactly n
roots, where some roots may have a multiplicity
greater than 1 (in which case they are said to be
degenerate). In Mathematica , the expression Root[f ,
k ] represents the kth root of the POLYNOMIAL f (x) �0:/

To find the nth roots of a COMPLEX NUMBER, solve the
equation zn�w: Then

zn� ½z½n[cos(nu)�i sin(nu)]� ½w½(cos f�i sin f); (2)

so

½z½� ½w½1=n (3)

and

arg(z)�
f

n
: (4)

Rolle proved that any number has n nth roots (Boyer
1968, p. 476). Householder (1970) gives an algorithm
for constructing root-finding algorithms with an
arbitrary order of convergence. Special root-finding
techniques can often be applied when the function in
question is a POLYNOMIAL.

See also BAILEY’S METHOD, BERNOULLI’S METHOD,
BISECTION PROCEDURE, BRENT’S METHOD, CROUT’S

METHOD, DESCARTES’ SIGN RULE, FALSE POSITION

METHOD, FUNDAMENTAL THEOREM OF SYMMETRIC

FUNCTIONS, GRAEFFE’S METHOD, HALLEY’S IRRA-

TIONAL FORMULA, HALLEY’S METHOD, HALLEY’S RA-

T I O N A L  F O R M U L A , H O R N E R ’ S  M E T H O D ,



HOUSEHOLDER’S METHOD, HUTTON’S METHOD, IN-

SIDE-OUTSIDE THEOREM, ISOGRAPH, JENKINS-TRAUB

METHOD, LAGUERRE’S METHOD, LAMBERT’S METHOD,
LEHMER-SCHUR METHOD, LIN’S METHOD, MAEHLY’S

PROCEDURE, MULLER’S METHOD, MULTIPLICITY, NEW-

TON’S METHOD, POLYNOMIAL, POLYNOMIAL ROOTS,
RIDDERS’ METHOD, ROOT DRAGGING THEOREM, ROOT

EXTRACTION, ROUCHÉ ’S THEOREM, SCHRÖ DER’S METH-

OD, SECANT METHOD, SIMPLE ROOT, STURM FUNC-

TION, STURM THEOREM, TANGENT HYPERBOLAS

METHOD, VANISH, WEIERSTRASS APPROXIMATION THE-

OREM, ZERO SET
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Root (Lie Algebra)

The roots of a SEMISIMPLE LIE ALGEBRA g are the
WEIGHTS occurring in its ADJOINT REPRESENTATION.
The set of roots form the ROOT SYSTEM, and are
completely determined by g: It is possible to choose a
set of POSITIVE ROOTS, every root a is either positive or
�a is positive. The SIMPLE ROOTS are the positive
roots which cannot be written as a sum of positive
roots.

The simple roots can be considered as a LINEARLY

INDEPENDENT finite subset of EUCLIDEAN SPACE, and
they generate the ROOT LATTICE. For example, in the
SPECIAL LIE ALGEBRA sl2C of two by two matrices with
zero TRACE, has a basis given by the matrices

H �
1 0
0 �1

� �
; X �

0 1
0 0

� �
; Y �

0 0
1 0

� �
:

The ADJOINT REPRESENTATION is given by the BRACK-

ETS

ad(H(X)) �[H ; X] �2X

ad(H(Y)) �[H ; Y] ��2Y ;

so there are two roots of sl2 given by a(H) �2 and
�a(H) ��2: The RANK of sl2C is one, and it has one
positive root.

See also CARTAN MATRIX, LIE ALGEBRA, SEMISIMPLE

LIE ALGEBRA, WEIGHT (LIE ALGEBRA), WEYL GROUP
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Root (Radical)
The nth root (or "nth RADICAL") of a quantity z is a
value r such that z �rn ; and therefore is the INVERSE

FUNCTION to the taking of a POWER. The nth root is
denoted r �

ffiffiffi
z

p
or, using POWER notation, r �z1 =n : The

special case of the SQUARE ROOT is denoted
ffiffiffi
z

p
:/

The quantities for which a general FUNCTION equals 0
are also called ROOTS, or sometimes ZEROS.

See also CUBE ROOT, RADICAL, ROOT, SQUARE ROOT,
VINCULUM

Root (Tree)
ROOT NODE

Root Dragging Theorem
If any of the ROOTS of a POLYNOMIAL are increased,
then all of the critical points increase.
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Root Extraction
The operation of taking an nth ROOT of a number.

See also ADDITION, DIVISION, MULTIPLICATION, ROOT

(RADICAL), SUBTRACTION

Root Lattice
The root lattice of a SEMISIMPLE LIE ALGEBRA is the
DISCRETE LATTICE generated by the ROOTS in h�; the
DUAL SPACE to the CARTAN SUBALGEBRA.

See also CARTAN MATRIX, LIE ALGEBRA, ROOT (LIE

ALGEBRA), ROOT SYSTEM, SEMISIMPLE LIE ALGEBRA,
WEIGHT (LIE ALGEBRA), WEIGHT LATTICE, WEYL

CHAMBER, WEYL GROUP
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Root Linear Coefficient Theorem
The sum of the reciprocals of ROOTS of an equation
equals the NEGATIVE COEFFICIENT of the linear term
in the MACLAURIN SERIES.

See also NEWTON’S RELATIONS

Root Node
A special node which is designated to turn a TREE into
a ROOTED TREE. The root is sometimes also called
"EVE" or an "ENDPOINT" (Saaty and Kainen 1986,
p. 30) and each of the nodes which is one EDGE

further away from a given EDGE is called a CHILD.
Nodes connected to the same node are then called
SIBLINGS.

See also CHILD, ROOTED TREE, SIBLING, TREE
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Root of Unity
The nth ROOTS of UNITY are ROOTS e2 pik=n of the
CYCLOTOMIC EQUATION

xn �1 ;

which are known as the DE MOIVRE NUMBERS. The
notations zk ; ek ; and ek are variously used to denote
the kth nth root of unity.

/�1 is always an nth root of unity, but �1 is such a
root only if n is even.

See also CYCLOTOMIC EQUATION, CYCLOTOMIC POLY-

NOMIAL, DE MOIVRE’S IDENTITY, DE MOIVRE NUMBER,
PRIMITIVE ROOT OF UNITY, PRINCIPAL ROOT OF

UNITY, UNITY

References
Courant, R. and Robbins, H. "De Moivre’s Formula and the

Roots of Unity." §5.3 in What is Mathematics?: An
Elementary Approach to Ideas and Methods, 2nd ed.
Oxford, England: Oxford University Press, pp. 98 �/100,
1996.

Lam, T. Y. and Leung, K. H. "On Vanishing Sums of Roots of
Unity." J. Algebra 224, 91�/109, 2000.

Nagell, T. "Arithmetical Properties of the Roots of Unity."
Ch. 5 in Introduction to Number Theory. New York:
Wiley, pp. 156 �/187, 1951.

Root System
Let E be a Euclidean space, (b; a) be the dot product,
and denote the reflection in the hyperplane Pa �fb �
E ½( b; a) �0g by

sa( b) � b �2 b; að Þ=( a; a) a � b ��b; a�a;

where

b; ah i�2(b; a)

( a; a)
:

Then a subset R of the Euclidean space E is called a
root system in E if:

1. R is finite, SPANS E , and does not contain 0,
2. If a � R; the reflection sa leaves R invariant, and
3. If a; b � R; then � b; a� �Z:/

The ROOTS of a SEMISIMPLE LIE ALGEBRA are a root
system, in a real subspace of the DUAL SPACE to the
CARTAN SUBALGEBRA. In this case, the reflections Wa

generate the WEYL GROUP, which is the symmetry
group of the root system.

See also CARTAN MATRIX, LIE ALGEBRA, MACDO-

NALD’S CONSTANT-TERM CONJECTURE, REDUCED

ROOT SYSTEM, ROOT (LIE ALGEBRA), SEMISIMPLE LIE

ALGEBRA, WEIGHT (LIE ALGEBRA), WEYL CHAMBER,
WEYL’S DENOMINATOR FORMULA, WEYL GROUP
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Root Test
Let uk be a SERIES with POSITIVE terms, and let

r � lim
k 0�

u1 =k
k :

1. If r B1 ; the SERIES CONVERGES.
2. If r > 1 or  r ��; the SERIES DIVERGES.
3. If r�1; the SERIES may CONVERGE or DIVERGE.

This test is also called the Cauchy root test.

See also CONVERGENCE TESTS
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Rooted Tree

A TREE with a single special ("labeled"rpar; node
called the "ROOT" or "eve." A tree which is not rooted
is sometimes called a FREE TREE. Denote the number
of rooted trees with n nodes by Tn ; then the
GENERATING FUNCTION is

T(x) �
X�
n�0

Tnxn �x �x2 �2x3 �4x4 �9x5 �20x6

�48x7 �115x8 �286x9 �719x10 �. . .  (1)

(Sloane’s A000081). This POWER SERIES satisfies

T(x) �x exp
X�
r�1

1

r
T xrð Þ

" #
(2)

t(x) �T(x) �1
2 T2(x) �T x2

� �� �
; (3)

where t(x) is the GENERATING FUNCTION for unrooted
TREES. A GENERATING FUNCTION for Tn can be written
using a product involving the sequence itself as

x
Y�
n�1

1

1 � xnð ÞTn
�
X�
n�1

Tnxn : (4)

The number of rooted trees can also be calculated
from the RECURRENCE RELATION

Ti�1 �
1

i

Xi

j�1

X
d ½j

dTd

 !
Ti�j�1 ; (5)

with T0 �0 and T1 �1; where the second sum is over
all d which DIVIDE j (Finch).

See also ORDERED TREE, PLANTED TREE, RED-BLACK

TREE, WEAKLY BINARY TREE
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Root-Mean-Square
The root-mean-square (RMS) of a variate x , some-
times called the QUADRATIC MEAN, is the SQUARE ROOT

of the mean squared value of x :

R(x) �
ffiffiffiffiffiffiffiffiffi
x2h i

p
(1)

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1 x

2
i

n

s
for a discrete distributionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g P(x)x2 dx

g P(x) dx

vuuuuut 
for a continuous distribution :

8>>>>>>>><
>>>>>>>>:

(2)

Hoehn and Niven (1985) show that

R a1 �c ; a2 �c ; . . . ; an �cð ÞBc �R a1 ; a2 ; . . . ; anð Þ
(3)

for any POSITIVE constant c .

Physical scientists often use the term root-mean-
square as a synonym for STANDARD DEVIATION when
they refer to the SQUARE ROOT of the mean squared
deviation of a signal from a given baseline or fit.

See also ARITHMETIC-GEOMETRIC MEAN, ARITHMETIC-

HARMONIC MEAN, GENERALIZED MEAN, GEOMETRIC

MEAN, HARMONIC MEAN, HARMONIC-GEOMETRIC

MEAN, MEAN, MEDIAN (STATISTICS), STANDARD DE-

VIATION, VARIANCE
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RootSum
POLYNOMIAL ROOTS

Rosatti’s Theorem
There is a one-to-one correspondence between the
sets of equivalent correspondences (not of value 0) on
an irreducible curve of GENUS (CURVE) p , and the
rational COLLINEATIONS of a projective space of 2p�1
dimensions which leave invariant a space of p�1
dimensions. The number of linearly independent
correspondences will be that of linearly independent
COLLINEATIONS.
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Rose

A curve which has the shape of a petalled flower. This
curve was named RHODONEA by the Italian mathe-
matician Guido Grandi between 1723 and 1728
because it resembles a rose (MacTutor Archive). The
polar equation of the rose is

r �a sin(nu);

or

r �a cos(nu) :

If n is ODD, the rose is n -petalled. If n is EVEN, the
rose is 2n/-petalled. If n is IRRATIONAL, then there are
an infinite number of petals.
The QUADRIFOLIUM is the rose with n �2. The rose is
the RADIAL CURVE of the EPICYCLOID.

See also DAISY, MAURER ROSE, STARR ROSE
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Rosenbrock Function

The function

f (x; y) �(1 �x)2 �105 y �x2
� �2

that is often used as a test problem for optimization
algorithms. It has a global minimum of 0 at the point
(1, 1).
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Rosenbrock Methods
A generalization of the RUNGE-KUTTA METHOD for
solution of ORDINARY DIFFERENTIAL EQUATIONS, also
called KAPS-RENTROP METHODS.

See also RUNGE-KUTTA METHOD
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Rössler Model

The nonlinear 3-D MAP

Ẋ�(�Y�Z)
Ẏ�X�aY
Ż�b�XZ�cZ:

See also LORENZ SYSTEM
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RotateLeft
CYCLIC PERMUTATION

RotateRight
CYCLIC PERMUTATION

Rotation

The turning of an object or coordinate system by an
ANGLE about a fixed point. A rotation is an ORIENTA-

TION-PRESERVING ORTHOGONAL TRANSFORMATION. EU-

LER’S ROTATION THEOREM states that an arbitrary
rotation can be parameterized using three para-
meters. These parameters are commonly taken as
the EULER ANGLES. Rotations can be implemented
using ROTATION MATRICES.

The rotation SYMMETRY OPERATION for rotation by
360�=n is denoted "n ." For periodic arrangements of
points (, the CRYSTALLOGRAPHY RESTRICTION gives the
only allowable rotations as 1, 2, 3, 4, and 6.

See also DILATION, EUCLIDEAN GROUP, EULER AN-

GLES, EULER PARAMETERS, EULER’S ROTATION THEO-

REM, EXPANSION, HALF-TURN, IMPROPER ROTATION,
INFINITESIMAL ROTATION, INVERSION OPERATION,
MIRROR PLANE, ORIENTATION-PRESERVING, ORTHO-

GONAL TRANSFORMATION, REFLECTION, ROTATION

FORMULA, ROTATION GROUP, ROTATION MATRIX,
ROTATION OPERATOR, ROTOINVERSION, SHIFT, SPIRAL

SIMILARITY, TRANSLATION
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Rotation Formula

A formula which transforms a given coordinate
system by rotating it through a counterclockwise
angle F about an axis n̂ : This formula is used
implicitly to transform objects in VRML (virtual
reality markup language) using the command Rota-
tion {angle nx ny nz Phi }. Referring to the above
figure (Goldstein 1980), the equation for the "fixed"
vector in the transformed coordinate system (i.e., the
above figure corresponds to an ALIAS TRANSFORMA-

TION), is

r?�
!
ON �

!
NV �

!
VQ (1)

¼ n̂(n̂ � r) �[r �n̂(n̂ � r)] cos F�(r �n̂) sin F (2)

�r cos F�n̂(n̂ � r)(1 �cos F) �(r �n̂) sin F (3)

(Goldstein 1980; Varshalovich et al. 1988, p. 24). The
ANGLE F and unit normal n̂ may also be expressed as
EULER ANGLES. In terms of the EULER PARAMETERS,

r?�r e2
0�e2

1�e2
2�e2

3

� �
�2e(e � r)�2(r�e)e0: (4)

See also ALIAS TRANSFORMATION, ALIBI TRANSFORMA-

TION, EULER ANGLES, EULER PARAMETERS, RODRI-

GUES’ ROTATION FORMULA
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Rotation Group

There are three REPRESENTATIONS of the rotation
groups, corresponding to EXPANSION/CONTRACTION,
ROTATION, and SHEAR.

See also ROTATION MATRIX, SPECIAL ORTHOGONAL

GROUP

Rotation Matrix
When discussing a ROTATION, there are two possible
conventions: rotation of the axes and rotation of the
object relative to fixed axes.

In R2; let a curve be rotated by a clockwise ANGLE u; so
that the original axes of the curve are x̂ and ŷ; and
the new axes of the curve are x̂? and ŷ?: The MATRIX

transforming the original curve to the rotated curve,
referred to the original x̂ and ŷ axes, is

Ru�
cos u sin u

�sin u cos u

� �
; (1)

i.e.,

x�Rux?: (2)

On the other hand, let the axes with respect to which
a curve is measured be rotated by a clockwise ANGLE

u; so that the original axes are x̂0 and ŷ0; and the new
axes are x̂ and ŷ: Then the MATRIX transforming the
coordinates of the curve with respect to x̂ and ŷ is
given by the MATRIX TRANSPOSE of the above matrix:

R?u�
cos u �sin u

sin u cos u

� �
; (3)

i.e.,

x�R?ux0: (4)

In R3; rotations of the x -, y -, and Z -AXES give the
matrices

Rx(a)�
1 0 0
0 cos a sin a

0 �sin a cos a

2
4

3
5 (5)

Ry(b)�
cos b 0 �sin b

0 1 0
sin b 0 cos b

2
4

3
5 (6)

Rz(g)�
cos g sin g 0
�sin g cos g 0

0 0 1

2
4

3
5: (7)

Any ROTATION can be given as a composition of
rotations about three axes (EULER’S ROTATION THEO-

REM), and thus can be represented by a 3�3 MATRIX

operating on a VECTOR,

x?1
x?2
x?3

2
4

3
5� a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 x1

x2

x3

2
4

3
5: (8)

We wish to place conditions on this matrix so that it is
consistent with an ORTHOGONAL TRANSFORMATION

(basically, a ROTATION or ROTOINVERSION).

In a ROTATION, a VECTOR must keep its original
length, so it must be true that

x?ix?i�xixi (9)

for i�1, 2, 3, where EINSTEIN SUMMATION is being
used. Therefore, from the transformation equation,

(aijxj)(aikxk)�xixi: (10)

This can be rearranged to

aij(xjaik)xk�aij(aikxj)xk

�aijaikxjxk�xixi: (11)

In order for this to hold, it must be true that

aijaik�djk (12)

for j; k�1; 2, 3, where dij is the KRONECKER DELTA.
This is known as the ORTHOGONALITY CONDITION, and
it guarantees that

A�1�AT; (13)

and

ATA�I; (14)

where AT is the MATRIX TRANSPOSE and l is the
IDENTITY MATRIX. Equation (14) is the identity which
gives the orthogonal matrix its name. Orthogonal
matrices have special properties which allow them to
be manipulated and identified with particular ease.

Let A and B be two orthogonal matrices. By the
ORTHOGONALITY CONDITION, they satisfy

aijaik�djk; (15)

and

bijbik�djk; (16)

where dij is the KRONECKER DELTA. Now



cijcik �(ab)ij(ab)jk �aisbsjaitbtk �aisaitbsjbtk

¼ dstbsjbtk �btjbtk � djk ; (17)

so the product C �AB of two orthogonal matrices is
also orthogonal.

The EIGENVALUES of an orthogonal matrix must
satisfy one of the following:

1. All EIGENVALUES are 1.
2. One EIGENVALUE is 1 and the other two are �1.
3. One EIGENVALUE is 1 and the other two are
COMPLEX CONJUGATES OF THE FORM eiu and e �iu :/

An orthogonal MATRIX A is classified as proper
(corresponding to pure ROTATION) if

det(A) �1; (18)

where det(A) is the DETERMINANT of A ; or improper
(corresponding to inversion with possible rotation;
ROTOINVERSION) if

det(A) ��1: (19)

See also EULER ANGLES, EULER PARAMETERS, EU-

LER’S ROTATION THEOREM, ROTATION, ROTATION

FORMULA

Rotation Number
The period for a QUASIPERIODIC trajectory to pass
through the same point in a SURFACE OF SECTION. If
the rotation number is IRRATIONAL, the trajectory will
densely fill out a curve in the SURFACE OF SECTION. If
the rotation number is RATIONAL, it is called the
WINDING NUMBER, and only a finite number of points
in the SURFACE OF SECTION will be visited by the
trajectory.

See also QUASIPERIODIC FUNCTION, SURFACE OF

SECTION, WINDING NUMBER (MAP)

Rotation Operator
The rotation operator can be derived from examining
an INFINITESIMAL ROTATION

d

dt

 !
space

�
d

dt

 !
body

�v�;

where d=dt is the time derivative, v is the ANGULAR

VELOCITY, and � is the CROSS PRODUCT operator.

See also ACCELERATION, ANGULAR ACCELERATION,
INFINITESIMAL ROTATION

Roth’s Removal Rule
If the matrices A ; X ; B; and C satisfy

AX �XB �C;

then

I X
0 I

� �
A C
0 B

� �
I �X
0 I

� �
�

A 0
0 B

� �
;

where I is the IDENTITY MATRIX.
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Roth’s Theorem
For ALGEBRAIC a

a�
p

q

:::::
:::::B 1

q2 � e 
;

with e > 0; has finitely many solutions. Klaus Roth
received a FIELDS MEDAL for this result.

See also HURWITZ EQUATION, HURWITZ’S IRRATIONAL

NUMBER THEOREM, IRRATIONALITY MEASURE, LA-

GRANGE NUMBER (RATIONAL APPROXIMATION), LIOU-

VILLE’S APPROXIMATION THEOREM, MARKOV NUMBER,
SEGRE’S THEOREM, SIEGEL’S THEOREM, THUE-SIEGEL-

ROTH THEOREM
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Rotkiewicz Theorem
If n �19, there exists a POULET NUMBER between n
and n2 : The theorem was proved in 1965.

See also POULET NUMBER
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Rotoinversion
IMPROPER ROTATION



Rotor

A convex figure that can be rotated inside a POLYGON

(or POLYHEDRON) while always touching every side (or
face). The least AREA rotor in a SQUARE is the
REULEAUX TRIANGLE. The least AREA rotor in an
EQUILATERAL TRIANGLE is a LENS with two 608 ARCS

of CIRCLES and RADIUS equal to the TRIANGLE ALTI-

TUDE.

There exist nonspherical rotors for the TETRAHEDRON,
OCTAHEDRON, and CUBE, but not for the DODECAHE-

DRON and ICOSAHEDRON.

See also DELTA CURVE, LENS, REULEAUX POLYGON,
REULEAUX TRIANGLE, ROULETTE, TRIP-LET
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Rotunda

A POLYHEDRON consisting of a n -gon, a parallel 2n/-
gon rotated a half-edge turn, and a band of paired
triangles separated by pentagons. The only true
member giving a polyhedron consisting of all regular
polygons with unit edge lengths is the PENTAGONAL

ROTUNDA. It corresponds to half of an ICOSIDODECA-

HEDRON.

See also ELONGATED ROTUNDA, GYROELONGATED

ROTUNDA, ICOSIDODECAHEDRON, PENTAGONAL RO-

TUNDA, TRIANGULAR HEBESPHENOROTUNDA
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Rouché’s Theorem
Given two functions f and g ANALYTIC in A with g a
simple loop HOMOTOPIC to a point in A , if ½g(z) ½B ½f (z) ½
for all z on g ; then f and f �g have the same number
of ROOTS inside g :/

A stronger version has been proved by Estermann
(1962). The strong version also has a converse, as
shown by Challener and Rubel (1982).

See also ARGUMENT PRINCIPLE
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Roulette
The curve traced by a fixed point on a closed convex
curve as that curve rolls without slipping along a
second curve. The roulettes described by the FOCI of
CONICS when rolled upon a line are sections of
MINIMAL SURFACES (i.e., they yield MINIMAL SURFACES

when revolved about the line) known as UNDULOIDS.

R�

R�

A particularly interesting case of a roulette is a
regular n -gon rolling on a "road" composed of a
sequence of truncated catenaries, as illustrated
above. This motion is smooth in the sense that the
CENTROID follows a straight line, although in the case
of the rolling EQUILATERAL TRIANGLE, a physical
model would be impossible to construct (Wagon
1991). For the rolling SQUARE, the shape of the road



is the CATENARY y ��cosh x truncated at x �
9sinh�1 1 (Wagon 1991). For a regular n -gon, the
Cartesian equation of the corresponding CATENARY is

y ��A cosh
x

A

 !
; (1)

where

A �R cos
p

n

 !
: (2)

Curve 1 Curve 2 Pole Roulette

CIRCLE exterior

CIRCLE

on CIR-

CUM-

FERENCE

EPICYCLOID

CIRCLE interior

CIRCLE

on CIR-

CUM-

FERENCE

HYPOCYCLOID

CIRCLE LINE on CIR-

CUM-

FERENCE

CYCLOID

CIRCLE same

CIRCLE

any

point

ROSE

CIRCLE

INVOLUTE

LINE CENTER PARABOLA

CYCLOID LINE center ELLIPSE

ELLIPSE LINE FOCUS elliptic

catenary

HYPERBOLA LINE FOCUS hyperbolic ca-

tenary

HYPERBOLIC

SPIRAL

LINE ORIGIN TRACTRIX

LINE any curve on LINE INVOLUTE of

the curve

LOGARITHMIC

SPIRAL

LINE any

point

LINE

PARABOLA equal

PARABOLA

VERTEX CISSOID OF

DIOCLES

PARABOLA LINE FOCUS CATENARY

See also CATENARY, DELTA CURVE, GLISSETTE, RE-

ULEAUX POLYGON, REULEAUX TRIANGLE, ROTOR,
UNDULOID

References
Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. ed.

Cambridge, England: Deighton, Bell & Co., 1890.

Cundy, H. and Rollett, A. "Roulettes and Involutes." §2.6 in
Mathematical Models, 3rd ed. Stradbroke, England:
Tarquin Pub., pp. 46 �/55, 1989.

Gardner, M. The Sixth Book of Mathematical Games from
Scientific American. Chicago, IL: University of Chicago
Press, p. 128, 1984.

Hall, L. and Wagon, S. "Mathematical Roads and Wheels."
Math. Mag. To appear.

Lawrence, J. D. A Catalog of Special Plane Curves. New
York: Dover, pp. 56 �/58 and 206, 1972.

Lockwood, E. H. "Roulettes." Ch. 17 in A Book of Curves.
Cambridge, England: Cambridge University Press,
pp. 138 �/151, 1967.

Wagon, S. Mathematica in Action. New York: W. H. Free-
man, p. 52, 1991.

Yates, R. C. "Roulettes." A Handbook on Curves and Their
Properties. Ann Arbor, MI: J. W. Edwards, pp. 175 �/185,
1952.

Zwillinger, D. (Ed.). "Roulettes (Spirograph Curves)." §8.2 in
CRC Standard Mathematical Tables and Formulae, 3rd
ed. Boca Raton, FL: CRC Press, 1996.

Round
NEAREST INTEGER FUNCTION, ROUND NUMBER,
ROUNDNESS

Round Number
A number which is the product of a considerable
number of comparatively small factors (Hardy 1999,
p. 48). Round numbers are very rare. As Hardy (1999,
p. 48) notes, "Half the numbers are divisible by 2,
one-third by 3, one-sixth by both 2 and 3, and so on.
Surely, then we may expect most numbers to have a
large number of factors. But the facts seem to show
the opposite."

See also HIGHLY COMPOSITE NUMBER, PRIME FAC-

TORS, ROUNDNESS, SMOOTH NUMBER
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Rounding
The process of approximating a quantity, be it for
convenience or, as in the case of numerical computa-
tions, of necessity. If rounding is performed on each of
a series of numbers in a long computation, ROUNDING

ERROR can become important, especially if division by
a small number ever occurs.

See also NEAREST INTEGER FUNCTION, ROUNDING

ERROR, SHADOWING THEOREM
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Rounding Error
The error produced in a computation by rounding
results at one or more intermediate steps, resulting in
a result different from that which would be obtained
using exact numbers. The most common problems
resulting from rounding error occur either when
many steps are involved with rounding occurring at
each step, when two quantities very close to each
other are subtracted, or when a number is divided by
a number which is close to zero.

An egregious example of rounding error is provided
by a short-lived index devised at the Vancouver stock
exchange. At its inception in 1982, the index was
given a value of 1000.000. After 22 months of
recomputing the index and truncating to three
decimal places at each change in market value, the
index stood at 524.881, despite the fact that its "true"
value should have been 1009.811.

Other sorts of rounding error can also occur. A
notorious example is the fate of the Ariane rocket
launched on June 4, 1996. In the 37th second of flight,
the inertial reference system attempted to convert a
64-bit floating point number to a 16-bit number, but
instead triggered an overflow error which was inter-
preted by the guidance system as flight data, causing
the rocket to veer off course and be destroyed. The
Patriot missile defense system used during the Gulf
War was also rendered ineffective due to roundoff
error. The system used an integer timing register
which was incremented at intervals of 0.1 s. However,
the integers were converted to decimal numbers by
multiplying by the BINARY approximation of 0.1,

0 :000110011001100110011002 �
209715

2097152 
:

As a result, after 100 hours (3:6 �106 ticks), an error
of

1
10 �

209715
2097152

� �
(3600 �100 �10) �

5625

16384 
:0:3433 second

had accumulated. This discrepancy caused the Pa-
triot system to continuously recycle itself instead of
targeting properly. As a result, an Iraqi Scud missile
could not be targeted and was allowed to detonate on
a barracks, killing 28 people.

See also ROUNDING

Roundness
Hoffman (1998, p. 90) calls the sum of the exponents
in the PRIME FACTORIZATION of a number its round-
ness. The first few values for n �1, 2, ... are 0, 1, 1, 2,
1, 2, 1, 3, 2, 2, ... (Sloane’s A001222).

See also HIGHLY COMPOSITE NUMBER, PRIME FACTOR-

IZATION, ROUND NUMBER

References
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
p. 844, 1972.

Hoffman, P. The Man Who Loved Only Numbers: The Story
of Paul Erdos and the Search for Mathematical Truth.
New York: Hyperion, p. 90, 1998.

Kac, M. Statistical Independence in Probability, Analysis,
and Number Theory. Buffalo, NY: Math. Assoc. Amer.,
p. 64, 1959.

Sloane, N. J. A. Sequences A001222/M0094 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Route
An n -route is defined as a WALK of length n with
specified initial point in which no line succeeds itself.

See also TRANSITIVE GRAPH
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Routh-Hurwitz Theorem
Consider the CHARACTERISTIC EQUATION

½ lI �A ½� ln �b1 l
n�1 �. . .�bn�1 l �bn �0

determining the n EIGENVALUES l of a REAL n �n
MATRIX A ; where l is the IDENTITY MATRIX. Then the
EIGENVALUES l all have NEGATIVE REAL PARTS if

D1 > 0;D2 > 0; . . . ;Dn > 0;

where

Dk �

b1 1 0 0 0 0 � � �  0
b3 b2 b1 1 0 0 � � �  0
b5 b4 b3 b2 b1 0 � � �  0
n n n n n n ::: n

b2k�1 b2k�2 b2k�3 b2k �4 b2k�5 bk�6 � � �  bk

::::::::::

::::::::::
:

See also STABLE POLYNOMIAL
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Routh’s Theorem
If the sides of a TRIANGLE are divided in the ratios
l : 1; m : 1; and n : 1; the CEVIANS form a central
TRIANGLE whose AREA is

a�
(lmn� 1)2

(lm� l� 1)(mn� m� 1)(nl� n� 1)
d; (1)

where d is the AREA of the original TRIANGLE. for l�



m � n �n;

a �
(n � 1)2

n2 � n � 1 
d : (2)

for n �1, 2, 3, ..., the areas are 0, 1/7 (Steinhaus 1983,
pp. 8 �/9), 4/13, 3/7, 16/31, 25/43, ... (Sloane’s A046162
and A046163). The AREA of the TRIANGLE formed by
connecting the division points on each side is

A?�
lmn � 1

(l � 1)( m � 1)( n � 1) 
D: (3)

Routh’s theorem gives CEVA’S THEOREM and MENE-

LAUS’ THEOREM ( lmn ��1) as special cases.

See also CEVA’S THEOREM, CEVIAN, MENELAUS’ THE-

OREM
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Row Space

See also COLUMN SPACE

Row Vector
A 1�n MATRIX

a11 a12 � � �  a1n½ 
:

See also COLUMN VECTOR, MATRIX, VECTOR

Row-Convex Polyomino

A row-convex polyomino is a self-avoiding CONVEX

POLYOMINO such that the intersection of any horizon-
tal line with the polyomino has at most two connected
components. A row-convex polyomino is also called a

horizontally convex polyomino. A COLUMN-CONVEX

POLYOMINO is similarly defined.

See also COLUMN-CONVEX POLYOMINO, CONVEX POLY-

OMINO, POLYOMINO

RPN
REVERSE POLISH NOTATION

RSA Encryption
A PUBLIC-KEY CRYPTOGRAPHY ALGORITHM which uses
PRIME FACTORIZATION as the TRAPDOOR ONE-WAY

FUNCTION. Define

n�pq (1)

for p and q PRIMES. Also define a private key d and a
public key e such that

de�1 (mod f(n)) (2)

(e;f(n))�1; (3)

where f(n) is the TOTIENT FUNCTION, (a, b ) denotes
the GREATEST COMMON DIVISOR (so (a; b)�1 means
that a and b are RELATIVELY PRIME), and a�
b (mod m) is a CONGRUENCE.

Let the message be converted to a number M . The
sender then makes n and e public and sends

E�Me (mod n): (4)

To decode, the receiver (who knows d ) computes

Ed�(Me)d
�Med�MNf(n)�1�M (mod n); (5)

since N is an INTEGER. In order to crack the code, d
must be found. But this requires factorization of n
since

f(n)�(p�1)(q�1): (6)

Both p and q should be picked so that p91 and q91
are divisible by large PRIMES, since otherwise the
POLLARD P -1 FACTORIZATION METHOD or WILLIAMS

P�1 FACTORIZATION METHOD potentially factor n
easily. It is also desirable to have f(f(pq)) large and
divisible by large PRIMES.

It is possible to break the cryptosystem by repeated
encryption if a unit of Z=f(n)Z has small ORDER

(Simmons and Norris 1977, Meijer 1996), where Z=sZ
is the RING of INTEGERS between 0 and s�1 under
addition and multiplication (mod s ). Meijer (1996)
shows that "almost" every encryption exponent e is
safe from breaking using repeated encryption for
factors OF THE FORM

p�2p1�1 (7)

q�2q1�1; (8)

where

p1�2p2�1 (9)



q1 �2q2 �1 ; (10)

and p , p1 ; p2 ; q , q1 ; and q2 are all PRIMES. In this case,

f(n) �4p1q1 (11)

f( f(n)) �8p2q2 : (12)

Meijer (1996) also suggests that p2 and q2 should be of
order 1075.

Using the RSA system, the identity of the sender can
be identified as genuine without revealing his private
code.

See also CONGRUENCE, PUBLIC-KEY CRYPTOGRAPHY
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RSA Number
Numbers contained in the "factoring challenge" of
RSA Data Security, Inc. An additional number which
is not part of the actual challenge is the RSA-129
number. The RSA numbers which have been factored
are RSA-100 (Apr. 1991), RSA-110 (Apr. 1992), RSA-
120 (Jun. 1993), RSA-129 (Apr. 1994), RSA-130 (Apr.
1996), RSA-140 (Feb. 1999), and RSA-155 (Aug. 1999;
Peterson 1999). RSA-150 has not yet been factored.

RSA-129 is a 129-digit number used to encrypt one of
the first public-key messages. This message was
published by R. Rivest, A. Shamir, and L. Adleman
(Gardner 1977), along with the number and a $100
reward for its decryption. Despite belief that the
message encoded by RSA-129 "would take millions
of years to break," RSA-129 was factored in 1994
using a distributed computation which harnessed
networked computers spread around the globe per-
forming a multiple polynomial QUADRATIC SIEVE

factorization method. The effort was coordinated by
P. Leylad, D. Atkins, and M. Graff. They received
112,011 full factorizations, 1,431,337 single partial
factorizations, and 8,881,138 double partial factoriza-

tions out of a factor base of 524,339 PRIMES. The final
MATRIX obtained was 188,346�188,346 square.

The text of the message was "The magic words are
squeamish ossifrage" (an ossifrage is a rare, preda-
tory vulture found in the mountains of Europe), and
the FACTORIZATION (into a 64-DIGIT number and a 65-
DIGIT number) is

114381625757888867669235779976146612010218296 � � �

� � � 7212423625625618429357069352457338978305971 � � �

� � � 23563958705058989075147599290026879543541

�3490529510847650949147849619903898133417764 � � �

� � � 638493387843990820577�3276913299326 � � �

� � � 6709549961988190834461413177642967992 � � �

� � � 942539798288533

(Leutwyler 1994, Cipra 1995).

On Feb. 2, 1999, a group led by H. te Riele completed
factorization of RSA-140 into two 70-digits primes.
Primality of the factors was proved using two differ-
ent methods. The factorization was found using the
NUMBER FIELD SIEVE factorization method, and beat
the 130-digit record (for RSA-130) set on April 10,
1996. The amount of computer time spent on this
factorization is estimated to be equivalent to 2000
MIPS years. (For the old 130-digit NFS-record, this
effort is estimated to be 1000 MIPS years; te Riele
1999.) Sieving was done on about 125 SGI and Sun
workstations running at 175 MHz on average, and on
about 60 PCs running at 300 MHz on average. The
total amount of CPU-time spent on sieving was 8.9
CPU years (te Riele 1999). Sieving started the day
before Christmas 1998 and was completed one month
later. The relations were collected and required 3.7
GB of memory (te Riele 1999) The filtering of the data
and the building of the matrix took one calendar
week. The resulting matrix had 4,671,181 rows and
4,704,451 columns, and weight 151,141,999 (32.36
nonzero entries per row). It took almost 100 CPU
hours and 810 MB of central memory to find 64
dependencies among the rows of this matrix (te Riele
1999a).

On Aug. 22, 1999, a group led by H. te Riele
completed factorization of RSA-155 into two 78-digit
primes (te Riele 1999b, Peterson 1999). Primality of
the factors was proved with the help of two different
primality proving codes. This factorization was found
using the NUMBER FIELD SIEVE factoring algorithm.
The amount of computer time spent on this new
factoring world record is estimated to be equivalent to
8000 MIPS years. Sieving was done on about 160
175�/400 MHz SGI and Sun workstations, on 8 300
MHz SGI Origin 2000 processors, on about 120 300�/

450 MHz Pentium II PCs, and on 4 500 MHz Digital/
Compaq boxes. The total amount of CPU-time spent



on sieving was 35.7 CPU years estimated to be
equivalent to approximately 8000 MIPS years. Ca-
lendar time for sieving was 3 1/2 months. The
filtering of the data and the building of the matrix
were carried out at CWI and took one month. The
resulting matrix had 6,699,191 rows, 6,711,336 col-
umns, and weight 417,132,631 (62.27 nonzeros per
row). It took 224 CPU hours and 2 GB of central
memory on the Cray C916 at the SARA Amsterdam
Academic Computer Center to find 64 dependencies
among the rows of this matrix (te Riele 1999b).

See also NUMBER FIELD SIEVE
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Rubber-Sheet Geometry
ALGEBRAIC TOPOLOGY

Rubik’s Clock
A puzzle consisting of 18 small clocks. There are 1218

possible configurations, although not all are realiz-
able.

See also RUBIK’S CUBE
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Rubik’s Cube

A 3�3 �3 CUBE in which the 26 subcubes on the
outside are internally hinged in such a way that
rotation (by a quarter turn in either direction or a half
turn) is possible in any plane of cubes. Each of the six
sides is painted a distinct color, and the goal of the
puzzle is to return the cube to a state in which each
side has a single color after it has been randomized by
repeated rotations. The PUZZLE was invented in the
1970s by the Hungarian Erno Rubik and sold millions
of copies worldwide over the next decade.

The number of possible positions of Rubik’s cube is

8!12!38212

2 � 3 � 2
�43;252;003;274;489;856;000

(Turner and Gold 1985, Schönert). Hoey showed
using the PÓ LYA-BURNSIDE LEMMA that there are
901,083,404,981,813,616 positions up to conjugacy
by whole-cube symmetries.

Algorithms exist for solving a cube from an arbitrary
initial position, but they are not necessarily optimal
(i.e., requiring a minimum number of turns). The
minimum number of turns required for an arbitrary
starting position is still not known, although it is
bounded from above. Michael Reid (1995) produced
the best proven bound of 29 turns (or 42 "quarter-
turns"). The proof involves large tables of "subrou-
tines" generated by computer.

However, Dik Winter has produced a program based
on work by Kociemba which has solved each of
millions of cubes in at most 21 turns. Recently,
Richard Korf (1997) has produced a different algo-
rithm which is practical for cubes up to 18 moves
away from solved. Out of 10 randomly generated
cubes, one was solved in 16 moves, three required 17
moves, and six required 18 moves.

See also RUBIK’S CLOCK
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Rudin-Shapiro Sequence
Let a number n be written in BINARY as

n �( ek  ek�1 . . . e1 e0)2 ; (1)

and define

bn �
Xk�1

i�0

ei ei �1 (2)

as the number of DIGITS BLOCKS of 11s in the BINARY

expansion of n . For n �0, 1, ..., bn is given by 0, 0, 1,
0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, ... (Sloane’s A014081).

Now define

an �(�1)bn (3)

as the parity of the number of pairs of consecutive 1s
in the BINARY expansion of n . For n �0, 1, ..., the first
few values are 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, ...
(Sloane’s A020985).

The SUMMATORY sequence of an is the defined by

sn �
Xn

i �0

ai ; (4)

giving the first few terms 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5,
4, ... (Sloane’s A020986). For the special case n �2k �1 ;
sn can be computed using the formula

sn �
2k =2 �1 if k is even
2(k�1)=2 �1 if k is odd

�
(5)

(Blecksmith and Laud 1995), giving 2, 3, 3, 5, 5, 9, 9,
17, 17, 33, 33, 65, ... (Sloane’s A051032).

See also BINARY, DIGIT BLOCK, FOLDING, STOLARSKY-

HARBORTH CONSTANT
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Rudvalis Group
The SPORADIC GROUP Ru.

See also SPORADIC GROUP
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Ruffini-Horner Method
HORNER’S METHOD

Rule
A usually simple ALGORITHM or IDENTITY. The term is
frequently applied to specific orders of NEWTON-

COTES FORMULAS.

See also ALGORITHM, BAC-CAB RULE, BODE’S RULE,
CHAIN RULE, CRAMER’S RULE, DESCARTES’ SIGN RULE,
DURAND’S RULE, ESTIMATOR, EULER’S RULE, EULER’S

TOTIENT RULE, GOLDEN RULE, HARDY’S RULE, HOR-

NER’S RULE, IDENTITY, L’HOSPITAL’S RULE, LEIBNIZ

INTEGRAL RULE, METHOD, OSBORNE’S RULE, PASCAL’S

RULE, POWER RULE, PRODUCT RULE, QUARTER

SQUARES RULE, QUOTA RULE, QUOTIENT RULE,
ROTH’S REMOVAL RULE, RULE OF 72, SIMPSON’S

RULE, SLIDE RULE, SUM RULE, TRAPEZOIDAL RULE,
WEDDLE’S RULE, ZEUTHEN’S RULE

Rule of 72

The time required for a given PRINCIPAL to double
(assuming n�1 CONVERSION PERIOD) for COMPOUND



INTEREST is given by solving

2P �P(1 �r)t ; (1)

or

t �
ln 2

ln(n � r) 
; (2)

where LN is the NATURAL LOGARITHM. This function
can be approximated by the so-called "rule of 72":

t :
0:72

r
: (3)

The above plots show the actual doubling time t (left
plot) and the difference between the actual doubling
time and the doubling time calculated using the rule
of 72 (right plot) as a function of the interest rate r .

See also COMPOUND INTEREST, INTEREST
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Ruled Surface
A SURFACE which can be swept out by a moving a LINE

in space and therefore has a parameterization OF THE

FORM

x(v; v) �b(u) �v d(u) ; (1)

where b is called the DIRECTRIX (also called the BASE

CURVE) and d is the DIRECTOR CURVE. The straight
lines themselves are called RULINGS. The rulings of a
ruled surface are ASYMPTOTIC CURVES. Furthermore,
the GAUSSIAN CURVATURE on a ruled REGULAR SUR-

FACE is everywhere NONPOSITIVE.

Examples of ruled surfaces include the elliptic HY-

PERBOLOID of one sheet (a DOUBLY RULED SURFACE)

a(cos u �v sin u)
b(sin u 9v cos u)

9cv

2
4

3
5� a cos u

b sin u
0

2
4

3
59v

�a sin u
b cos u

c

2
4

3
5; (2)

the HYPERBOLIC PARABOLOID (a DOUBLY RULED SUR-

FACE)

a(u �v)
9bv

u2 �2uv

2
4

3
5� au

0
u2

2
4

3
5�v

a
9b
2u

2
4

3
5; (3)

PLÜ CKER’S CONOID

r cos u
r sin u

2 cos u sin u

2
4

3
5� 0

0
2 cos u sin u

2
4

3
5�r

cos u
sin u

0

2
4

3
5; (4)

and the MÖ BIUS STRIP

a

cos u �v cos 1
2 u
� �

cos u

sin u �v cos 1
2 u
� �

sin u

v sin 1
2 u
� �

2
6664

3
7775

�a
cos u
sin u

0

2
4

3
5�au

cos u 1
2u
� �

cos u

cos 1
2u
� �

sin u

sin 1
2u
� �

2
6664

3
7775 (5)

(Gray 1997).

The only ruled MINIMAL SURFACES are the PLANE and
HELICOID (Catalan 1842, do Carmo 1986).

See also ASYMPTOTIC CURVE, CAYLEY’S RULED SUR-

FACE, DEVELOPABLE SURFACE, DIRECTOR CURVE,
DIRECTRIX (RULED SURFACE), DOUBLY RULED SUR-

FACE, GENERALIZED CONE, GENERALIZED CYLINDER,
HELICOID, NONCYLINDRICAL RULED SURFACE, PLANE,
RIGHT CONOID, RULING
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Ruler
A STRAIGHTEDGE with markings to indicate distances.
Although GEOMETRIC CONSTRUCTIONS are sometimes
said to be performed with a ruler and COMPASS, the
term STRAIGHTEDGE is preferable to ruler since
markings are not allowed by the classical Greek
rules.

See also COASTLINE PARADOX, COMPASS, GEOMETRIC

CONSTRUCTION, GEOMETROGRAPHY, GOLOMB RULER,
PERFECT RULER, SIMPLICITY, SLIDE RULE, STRAIGHT-

EDGE
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Ruler Function
The exponent of the largest POWER of 2 which DIVIDES

a given number 2n: The values of the ruler function
for n�1, 2, ..., are 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, ... (Sloane’s
A001511).



See also 2
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Ruling
One of the straight lines sweeping out a RULED

SURFACE. The rulings on a ruled surface are ASYMP-

TOTIC CURVES.

See also ASYMPTOTIC CURVE, DIRECTOR CURVE,
DIRECTRIX (RULED SURFACE), RULED SURFACE

Rumors
GOSSIPING

Rumor Spreading
GOSSIPING

Run
A run is a sequence of more than one consecutive
identical outcomes, also known as a CLUMP. Given n
BERNOULLI TRIALS (say, in the form of COIN TOS-

SINGS), the probability Pt(n) of a run of t consecutive
heads or tails is given by the RECURRENCE RELATION

Pt(n)�Pt(n�1)�2�t[1�Pt(n�t)]; (1)

where Pt(n)�0 for nB t and Pt(t)�21�t (Bloom
1996).

Let R(r; n) be the probability that a run of r
consecutive heads appears in n independent tosses
of a COIN. There is a beautiful formula for R(r; n)
given in terms of the coefficients of the GENERATING

FUNCTION

Fp(r; s)�
prsr(1 � ps)

1 � s � (1 � p)prsr�1
�
X�
i�r

cp
i si (2)

(Feller 1968, 2nd ed. p. 300), where 0 B p B 1 is the
probability of obtaining a head in a single toss. Then

Rp(r; n)�
Xn

i�r

cp
i (3)

The following table gives the triangle of numbers
2nR1=2(r; n) for r�1, 2, ... and n�r , r�1; . . . ; ...
(Sloane’s A050227).

/r_n/ 1 2 3 4 5 6 7 8

1 1 3 7 15 31 63 127 255

2 0 1 3 8 19 43 94 201

3 0 0 1 3 8 20 47 107

4 0 0 0 1 3 8 20 48

5 0 0 0 0 1 3 8 20

6 0 0 0 0 0 1 3 8

7 0 0 0 0 0 0 1 3

8 0 0 0 0 0 0 0 1

The special case r�2 gives the sequence

R2(n)�2n�1�Fn�3; (4)

where Fn is a FIBONACCI NUMBER, the first few terms
of which for n�1, 2, ... are 0, 1, 3, 8, 19, 43, 94, 201, ...
(Sloane’s A008466). The first few R3(n) are given by 0,
0, 1, 3, 8, 20, 47, 107, 238, ... Sloane’s A050231; the
first few R4(n) are 0, 0, 0, 1, 3, 8, 20, 48, 111, 251, 558,
... (Sloane’s A050232); and the first few R5(n) 0, 0, 0,
0, 1, 3, 8, 20, 48, 112, 255, 571, 1262, ... (Sloane’s
A050233).

Given n BERNOULLI TRIALS with a probability of
success (heads) p , the expected number of tails is
n(1�p); so the expected number of tail runs ]1 is
:n(1�p)p: Continuing,

NR�n(1�p)pR (5)

is the expected number of runs ]R: The longest
expected run is therefore given by

R�log1=p[n(1�p)] (6)

(Gordon et al. 1986, Schilling 1990). Given m 0s and
n 1s, the number of possible arrangements with u
runs is

fu�
2

m�1
k�1

� 	
n�1
k�1

� 	
u�2k

m�1
k�1

� 	
n�1
k�2

� 	
�

m�1
k�2

� 	
n�1
k�1

� 	
u�2k�1

8>><
>>:

(7)

for k an INTEGER, where n
k

� �
is a BINOMIAL COEFFI-

CIENT. Then

P(u5u?)�
Xu?

u�2

fu

m � n
m

� 	 : (8)

Feller (1968, pp. 278�/279) proved that for w(n)�
1�R1=2(3; n);

lim
n0�

w(n)an�1�b; (9)

where



a �1
3 136 �24

ffiffiffiffiffiffi
33

p� �1=3

�8 136 �24
ffiffiffiffiffiffi
33

p� ��1 =3

�2

� �

¼ 1 :087378025 . . . ð10Þ

and

b �
2 � a

4 � 3a 
�1:236839845 . . . : (11)

The corresponding constants for a RUN of k �1 heads
are ak ; the smallest POSITIVE ROOT of

1 �x � 1
2 x
� �k �1

�0; (12)

and

bk �
2 � a

k � 1 � k ak

: (13)

These are modified for unfair coins with P(H) �p and
P(T) �q �1 �p to a?k ; the smallest POSITIVE ROOT of

1 �x �qpkxk�1 �0 ; (14)

and

b?k �
1 � p a?k

(k � 1 � k a?k)p 
(15)

(Feller 1968, pp. 322 �/325).

Let Ct(m; k) denote the number of sequences of m
indistinguishable objects of type A and k indistin-
guishable objects of type B in which no t -run occurs.
The probability that a t -run does occur is then given
by

Pt(m; k) �1 �
Ct(m; k)

m � k
k

� 	 ; (16)

where a
b

� �
is a BINOMIAL COEFFICIENT. Bloom (1996)

gives the following recurrence sequence for Ct(m; k) ;

Ct(m; k) �
Xt�1

i�0

Ct(m �1; k �i) �
Xt �1

i�1

Ct(m �t; k �i)

�et(m; k) ; (17)

where

et(m; k) �
1

�1
0

if m �0 and 0 5k Bt
if m �t and 0 5k Bt
otherwise:

8<
: 

(18)

Another recurrence which has only a fixed number of
terms is given by

Ct(m; k) �Ct(m �1; k) �Ct(m; k �1)

�Ct(m �t; k �1)

�Ct(m �1; k �t) �Ct(m �t; k �t) �e �t (m; k) ; (19)

where

e �t (m; k) �
1

�1
0

if (m; k) �(0; 0) or (t; t)
if (m; k) �(0; t) or (t; 0)
otherwise

8<
: 

(20)

(Goulden and Jackson 1983, Bloom 1996). These
formulas disprove the assertion of Gardner (1982)
that "there will almost always be a clump of six or
seven CARDS of the same color" in a normal deck of
cards by giving /P6 ð26; 26Þ ¼ 0:46424/.

Bloom (1996) gives the expected number of noncon-
tiguous t -runs in a sequence of m 0s and n 1s as

E(n; m; t)�
(m � 1)(n)t � (n � 1)(m)t

(m � n)t

; (21)

where (a)n is the POCHHAMMER SYMBOL. For m �10,
u has an approximately NORMAL DISTRIBUTION with
MEAN and VARIANCE

mu�1�
2mn

m � n
(22)

s2
u�

2mn(2mn � m � n)

(m � n)2(m � n � 1)
: (23)

See also COIN TOSSING, EULERIAN NUMBER, PERMU-

TATION, PERMUTATION RUN, S -RUN
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Runge-Kutta Method
A method of numerically integrating ORDINARY DIF-

FERENTIAL EQUATIONS by using a trial step at the
midpoint of an interval to cancel out lower-order error
terms. The second-order formula is

k1 �hf (sn ; yn)

k2 �hf xn �
1
2 h; yn �

1
2 k1

� �
yn�1 �yn �k2 �O(h3) ;

and the fourth-order formula is

k1 �hf (sn ; yn)

k2 �hf xn �
1
2 h; yn �

1
2 k1

� �
k3 �hf xn �

1
2 h; yn �

1
2 k2

� �
k4 �hf (xn �h; yn �k3)

yn�1 �yn �
1
6 k1 �

1
3 k2 �

1
3 k3 �

1
6 k4 �O(h5) :

(Press et al. 1992). This method is reasonably simple
and robust and is a good general candidate for
numerical solution of differential equations when
combined with an intelligent adaptive step-size rou-
tine.

See also ADAMS’ METHOD, GILL’S METHOD, MILNE’S

METHOD, ORDINARY DIFFERENTIAL EQUATION, RO-

SENBROCK METHODS
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Runge’s Theorem
Let K ⁄ C be compact, let f be analytic on a
neighborhood of K , and let P ⁄C�_K contain at least
one point from each connected component of C �_K :
Then for any e > 0; there is a RATIONAL FUNCTION /r ðzÞ/
with poles in P such that

max
z �K

½f (z) �r(z)½B e

(Krantz 1999, p. 143).

A polynomial version can be obtained by taking P �
f�g: Let f (x) be an ANALYTIC FUNCTION which is
REGULAR in the interior of a JORDAN CURVE C and
continuous in the closed DOMAIN bounded by C . Then
f (x) can be approximated with arbitrary accuracy by
POLYNOMIALS (Szego o 1975, p. 5; Krantz 1999,
p. 144).

See also ANALYTIC FUNCTION, JORDAN CURVE, MER-

GELYAN’S THEOREM
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Runge-Walsh Theorem
RUNGE’S THEOREM

Run-Length Encoding
A specification of elements in a list as a list of pairs
giving the element and number of times it occurs in a
run. For example, given the list f1 ; 1; 1; 3;/

/3; 6; 6; 6; 2; 2; 2; 2 ; 3 ; 3 ; 1 ; 4; 4g; the run-length
encoding is ff1; 3g; f3; 2g; f6; 3g; f2; 4g; f3; 2; g;/

/f1; 1g; f4; 2gg: Run-length encoding can be imple-
mented in Mathematica as

RunLengthEncode[x_List] :� (Through[{First,

Length}[#1]] &) /@ Split[x]

See also LOOK AND SAY SEQUENCE, RUN

Running Average
MOVING AVERAGE

Running Knot
A KNOT which tightens around an object when
strained but slackens when the strain is removed.
Running knots are sometimes also known as slip
knots or nooses.
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Russell’s Antinomy
Let R be the set of all sets which are not members of
themselves. Then R is neither a member of itself nor
not a member of itself. Symbolically, let R�fx : xQxg:
Then R �R IFF RQR:/

Bertrand Russell discovered this PARADOX and sent it
in a letter to G. Frege just as Frege was completing
Grundlagen der Arithmetik. This invalidated much of



the rigor of the work, and Frege was forced to add a
note at the end stating, "A scientist can hardly meet
with anything more undesirable than to have the
foundation give way just as the work is finished. I was
put in this position by a letter from Mr. Bertrand
Russell when the work was nearly through the press."

See also BARBER PARADOX, CATALOGUE PARADOX,
GRELLING’S PARADOX
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Russell’s Paradox
RUSSELL’S ANTINOMY

Russian Doll Prime
PRIME STRING

Russian Multiplication
Also called "Ethiopian multiplication." To multiply
two numbers a and b , write a0 �a and b0 �b in two
columns. Under a0 ; write a0 =2b c; where xb c is the
FLOOR FUNCTION, and under b0 ; write 2b0 : Continue
until ai�1: Then cross out any entries in the b
column which are opposite an EVEN NUMBER in the a
column and add the b column. The result is the
desired product. For example, for a�27; b�35

27 35
13 70
6 140�
3 280

1
560

945

See also MULTIPLICATION
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Russian Roulette
Russian roulette is a GAME of chance in which one or
more of the six chambers of a gun are filled with
bullets, the magazine is rotated at random, and the
gun is fired. The shooter bets on whether the chamber
which rotates into place will be loaded. If it is, he loses
not only his bet but his life.

A modified version is considered by Blom et al. (1996)
and Blom (1989). In this variant, the revolver is
loaded with a single bullet, and two duelists alter-
nately spin the chamber and fire at themselves until
one is killed. The probability that the first duelist is
killed is then 6/11.
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Ruth-Aaron Pair
A pair of consecutive numbers (n; n�1) such that the
sums of the prime factors of n and n�1 are equal.
They are so named because they were inspired by the
pair (714, 715) corresponding to Hank Aaron’s record-
breaking 715th home run in 1974, breaking Babe
Ruth’s earlier record of 714 (Hoffman 1998, pp. 179�/

181). The first few ns giving Ruth-Aaron pairs are 5,
8, 15, 77, 125, 714, 948, ... (Sloane’s A039752),
corresponding to the sums 5, 6, 8, 18, 15, 29, 86, ...
(Sloane’s A054378).

Pomerance suspected there were an infinite number
of such pairs, and this was almost immediately
proved true by P. Erdos (Hoffman 1998, pp. 180�/

181).
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Rutishauser’s Rule

Let m and m�h be two consecutive CRITICAL INDICES

of f and let F be (m�h)/-normal. If the polynomials
p̃(n)

k are defined by



p̃(n)
0 (u) �1 (1)

p̃(n)
k �1(u) �up̃(n�1)

k (u) �q(n)
m�k �1 p̃

(n)
k (u) (2)

for n �0, 1, ... and k �0, ..., h �1; then, under the
hypothesis below, there exists an infinite set N of
positive integers such that

lim
n 0�

n �N

p̃(n)
h (u) � ̃ph(u) ; (3)

where

p̃h(u) �(u �um�1)(u �um�2) � � � (u �um�h) : (4)

By hypothesis, if m �0, the polynomials p̃(n)
k are

identical to the Hadamard polynomials p(n)
L ; and if

m �0, the algorithm for constructing the p̃(n)
k is

applied to the qd scheme suitably bounded by
columns e(n)

m and e(n)
m�h (Henrici 1988, pp. 642 �/643).

See also CRITICAL INDEX
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Ryser Formula
A formula for the PERMANENT of a MATRIX

perm(aij) �(�1)n
X

s⁄f1 ; ... ; n g
(�1) sj j

Yn

i�1

X
j � s

aij ;

where the SUM is over all SUBSETS of f1; . . . ; ng; and
sj j is the number of elements in s . The formula can be
optimized by picking the SUBSETS so that only a single
element is changed at a time (which is precisely a
GRAY CODE), reducing the number of additions from
n2 to n .

It turns out that the number of disks moved after the
kth step in the TOWERS OF HANOI is the same as the
element which needs to be added or deleted in the kth
ADDEND of the Ryser formula (Gardner 1988, Vardi
1991, p. 111).

See also DETERMINANT, GRAY CODE, PERMANENT,
TOWERS OF HANOI
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S

Saalschü tzian
A GENERALIZED HYPERGEOMETRIC FUNCTION

pFq

a1 ; a2 ; . . . ; ap

b1 ; b2 ; . . . ; bq
; z

� �
;

is said to be Saalschützian if it is K -BALANCED with
k �1,

Xq

i�1

bi �1 �
Xp

i�1

ai :

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
K -BALANCED, NEARLY-POISED, WELL-POISED
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Saalschü tz’s Theorem
Mathematics:Calculus and Analysis:Special Func-
tions:Hypergeometric Functions:Generalized Hyper-
geometric Functions

3F2
�x; �y; �z

n �1 ; �x �y �z

� �
�

G(n � 1)G(x � y � n � 1)

G(x � n � 1)G(y � n � 1)

�
G(y � z � n � 1)G(z � x � n � 1)

G(z � n � 1)(x � y � z � n � 1)
; (1)

where 3F2(a; b; c; d; e; z) is a GENERALIZED HYPER-

GEOMETRIC FUNCTION and G(z) is the GAMMA FUNC-

TION. It can be derived from the DOUGALL-

RAMANUJAN IDENTITY and written in the symmetric
form

3F2(a ; b; c; d; e; 1)�
(d � a)½c½(d � b) ½c½
d½c½(d � a � b)½c½

(2)

for

d �e �a �b �c �1 (3)

with c a NONPOSITIVE INTEGER and (a)n the POCH-

HAMMER SYMBOL (Bailey 1935, p. 9; Petkovsek et al.
1996; Koepf 1998, p. 32). If one of a , b , and c is
nonpositive but it is not known which, an alternative
formulation due to W. Gosper gives the form

3F2(a; b; c; d; e; 1)

�
G(d)

G(d � a) G(d � b) G(d � c)

G(e)

G(e � a)(e � b)(e � c)

�
p2

cos(pd) cos(pe) � cos( pa) cos( pb) cos( pc) 
: (4)

which is symmetric in (a ; b; c) and (d, e ).

If instead

a �b �c �2 �d �e ; (5)

then

3F2(a ; b; c; d; e; 2)

p2 de � (a � 1)(b � 1)(c � 1) � abc

cos(dp) cos(ep) � cos(ap) cos(b p) cos(c p)

�
G(d)

G(d � a) G(d � b) G(d � c)

G(e)

G(e � a)G(e � b) G(e � c)

(6)

(W. Gosper).

See also DOUGALL-RAMANUJAN IDENTITY, GENERAL-

IZED HYPERGEOMETRIC FUNCTION, KUMMER’S THEO-

REM
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s-Additive Sequence
A generalization of an ULAM SEQUENCE in which each
term is the SUM of two earlier terms in exactly s ways.
(s, t )-additive sequences are a further generalization
in which each term has exactly s representations as
the SUM of t distinct earlier numbers. It is conjectured
that 0-additive sequences ultimately have periodic
differences of consecutive terms (Guy 1994, p. 233).

See also GREEDY ALGORITHM, STÖ HR SEQUENCE, SUM-

FREE SET, ULAM SEQUENCE
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Saddle
A SURFACE possessing a SADDLE POINT.

See also HYPERBOLIC PARABOLOID, MONKEY SADDLE,
SADDLE POINT (FUNCTION)

Saddle Point (Fixed Point)
HYPERBOLIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), HYPERBOLIC FIXED POINT (MAP)

Saddle Point (Function)
A POINT of a FUNCTION or SURFACE which is a
STATIONARY POINT but not an EXTREMUM. An example
of a 1-D FUNCTION with a saddle point is f (x) �x3 ;
which has

f ?(x) �3x2

f ƒ(x) �6x

f §(x) �6:

This function has a saddle point at x0 �0 by the
EXTREMUM TEST since f ƒ(x0) �0 and f §(x0) �6 "0: An
example of a SURFACE with a saddle point is the
MONKEY SADDLE.

Saddle Point (Game)
For a general two-player ZERO-SUM GAME,

max
i5m

min
j5n

aij 5min
j5n

max
i5m

aij :

If the two are equal, then write

max
i5m

min
j 5n

aij 5min
j5n

max
i5m

aij �v ;

where v is called the VALUE of the GAME. In this case,
there exist optimal strategies for the first and second
players.

A NECESSARY and SUFFICIENT condition for a saddle
point to exist is the presence of a PAYOFF MATRIX

element which is both a minimum of its row and a
maximum of its column. A GAME may have more than
one saddle point, but all must have the same VALUE.

See also GAME, PAYOFF MATRIX, VALUE

References
Dresher, M. "Saddle Points." §1.5 in The Mathematics of

Games of Strategy: Theory and Applications. New York:
Dover, pp. 12 �/14, 1981.

Llewellyn, D. C.; Tovey, C.; and Trick, M. "Finding Sad-
dlepoints of Two-Person, Zero Sum Games." Amer. Math.
Monthly 95, 912 �/918, 1988.

Saddle Polygon
SKEW POLYGON

Saddle-Node Bifurcation
FOLD BIFURCATION

Safarevich Conjecture
SHAFAREVICH CONJECTURE

Safe
A position in a GAME is safe for a player A if the
person who plays next (player B ) will lose.

See also GAME, UNSAFE

Sagitta

The PERPENDICULAR distance s from an ARC’s MID-

POINT to the CHORD across it, equal to the RADIUS r
minus the APOTHEM a ,

s �r �a: (1)

For a REGULAR POLYGON of side length a ,

s �R �r �1
2 a csc

p

n

 !
�cot

p

n

 !" #

�1
2 a tan

p

2n

 !
(2)

�r tan
p

n

 !
tan

p

2n

 !
(3)

�2R sin2 p

2n

 !
: (4)

where R is the CIRCUMRADIUS, r the INRADIUS, a is
the side length, and n is the number of sides.

See also APOTHEM, CHORD, SECTOR, SEGMENT



Saint Andrew’s Cross

A GREEK CROSS rotated by 45 8, also called the crux
decussata. The MULTIPLICATION SIGN � is based on
Saint Andrew’s cross (Bergamini 1969).

See also CROSS, GREEK CROSS, MULTIPLICATION SIGN
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Saint Anthony’s Cross

A CROSS also called the tau cross or crux commissa.

See also CROSS

Saint Petersburg Paradox
Consider a game, first proposed by Daniel Bernoulli,
in which a player bets on how many TOSSES of a COIN

will be needed before it first turns up heads. The
player pays a fixed amount initially, and then
receives 2n dollars if the coin comes up heads on the
nth toss. The expectation value of the gain is then

1
2(2) �1

4(4) �1
8(8) �. . .�1 �1 �1 �. . .��

dollars, so any finite amount of money can be wagered
and the player will still come out ahead on average.

Feller (1968) discusses a modified version of the game
in which the player receives nothing if a trial takes
more than a fixed number N of tosses. The classical
theory of this modified game concluded that � is a
fair entrance fee, but Feller notes that "the modern
student will hardly understand the mysterious dis-
cussions of this ‘paradox’."

In another modified version of the game, the player
bets $2 that heads will turn up on the first throw, $4
that heads will turn up on the second throw (if it did
not turn up on the first), $8 that heads will turn up on
the third throw, etc. Then the expected payoff is

1
2(2) �1

4(4) �1
8(8) �. . .�1 �1 �1 �. . .��;

so the player can apparently be in the hole by any
amount of money and still come out ahead in the end.
This paradox can clearly be resolved by making the
distinction between the amount of the final payoff

and the net amount won in the game. It is misleading
to consider the payoff without taking into account the
amount lost on previous bets, as can be shown as
follows. At the time the player first wins (say, on the
nth toss), he will have lost

Xn�1

k �1

2k �2n �2

dollars. In this toss, however, he wins 2n dollars. This
means that the net gain for the player is a whopping
$2, no matter how many tosses it takes to finally win.
As expected, the large payoff after a long run of tails
is exactly balanced by the large amount that the
player has to invest. In fact, by noting that the
probability of winning on the nth toss is 1=2n ; it can
be seen that the probability distribution for the
number of tosses needed to win is simply a GEO-

METRIC DISTRIBUTION with p�1=2:/

See also COIN TOSSING, GAMBLER’S RUIN, GEOMETRIC

DISTRIBUTION, MARTINGALE
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Sal
WALSH FUNCTION

Salamin Formula
BRENT-SALAMIN FORMULA

Salem Constants
Each point of a PISOT-VIJAYARAGHAVAN CONSTANT S
is a LIMIT POINT from both sides of a set T known as
the Salem constants (Salem 1945). The Salem con-
stants are ALGEBRAIC INTEGERS > 1 in which one or
more of the conjugates is on the UNIT CIRCLE with the
others inside (Le Lionnais 1983, p. 150). The smallest
known Salem number was found by Lehmer (1933) as
the largest REAL ROOT of



x10 �x9 �x7 �x6 �x5 �x4 �x3 �x �1 �0 ;

which is

s1 �1:176280818 . . .

(Le Lionnais 1983, p. 35). Boyd (1977) found the
following table of small Salem numbers, and sug-
gested that s1 ; s2 ; s3 ; and s4 are the smallest Salem
numbers. The NOTATION 1 1 0 �1 �1 �1 is short for
1 1 0 �1 �1 �1 �1 �1 0 1 1, the coefficients of the
above polynomial.

k / sk/ /(/ POLYNOMIAL

1 1.1762808183 10 1 1 0 �1 �1 �1

2 1.1883681475 18 1 �1 1 �1 0 0 �1 1 �1 1

3 1.2000265240 14 1 0 0 �1 �1 0 0 1

4 1.2026167437 14 1 0 �1 0 0 0 0 �1

5 1.2163916611 10 1 0 0 0 �1 �1

6 1.2197208590 18 1 �1 0 0 0 0 0 0 �1 1

7 1.2303914344 10 1 0 0 �1 0 �1

8 1.2326135486 20 1 �1 0 0 0 �1 1 0 0  �1 1

9 1.2356645804 22 1 0 �1 �1 0 0 0 1 1 0 �1
�1

10 1.2363179318 16 1 �1 0 0 0 0 0 0 �1

11 1.2375048212 26 1 0 �1 0 0 �1 0 0 �1 0 1
0 0 1

12 1.2407264237 12 1 �1 1 �1 0 0 �1

13 1.2527759374 18 1 0 0 0 0 0 �1 �1 �1 �1

14 1.2533306502 20 1 0 �1 0 0 �1 0 0 0 0 0

15 1.2550935168 14 1 0 �1 �1 0 1 0 �1

16 1.2562211544 18 1 �1 0 0 �1 1 0 0 0 �1

17 1.2601035404 24 1 �1 0 0 �1 1 0 �1 1  �1
0 1 �1

18 1.2602842369 22 1 �1 0 �1 1 0 0 0 �1 1
�1 1

19 1.2612309611 10 1 0 �1 0 0 �1

20 1.2630381399 26 1 �1 0 0 0 0 �1 0 0 0 0 0 0
1

21 1.2672964425 14 1 �1 0 0 0 0 �1 1

22 1.2806381563 8 1 0 0 �1 �1

23 1.2816913715 26 1 0 0 0 0 0 �1 �1 �1 �1
�1 �1 �1 �1

24 1.2824955606 20 1 �2 2 �2 2 �2 1 0 �1 1
�1

25 1.2846165509 18 1 0 0 0 �1 0 �1 �1 0  �1

26 1.2847468215 26 1 �2 1 1 �2 1 0 0 �1 1 0
�1 1 �1

27 1.2850993637 30 1 0 0 0 0 �1 �1 �1 �1
�1 �1 0 0 0 0 1

28 1.2851215202 30 1 �2 2 �2 1 0 �1 2 �2 1
0 �1 1 �1 1 �1

29 1.2851856708 30 1 �1 0 0 0 0 0 0  �1 0 0 0
�1 0 0 �1

30 1.2851967268 26 1 0 �1 �1 0 0 0 1 0 �1
�1 0 1 1

31 1.2851991792 44 1 �1 0 0 0 0 0 �1 0 0 0
�1 0 0 0 0 0 0 0 1 0 0 1

32 1.2852354362 30 1 0 �1 0 0 �1 �1 0 0 0 1
0 0 1 0 �1

33 1.2854090648 34 1 �1 0 0 �1 1 �1 0 1 �1
1 0 �1 1 �1 0 1 �1

34 1.2863959668 18 1 �2 2 �2 2 �2 2 �3 3
�3

35 1.2867301820 26 1 �1 0 0 �1 1 �1 0 1 �1
1 0 �1 1

36 1.2917414257 24 1 �1 0 0 0 0 �1 0 0 0 0 0 0

37 1.2920391602 20 1 0 �1 0 0 �1 0 0 �1 0 1

38 1.2934859531 10 1 0 �1 �1 0 1

39 1.2956753719 18 1 �1 0 0 �1 1 �1 0 1 �1

See also PISOT-VIJAYARAGHAVAN CONSTANT
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Salesman Problem
TRAVELING SALESMAN PROBLEM

Salient Point
A point at which two noncrossing branches of a curve
meet with different tangents.

See also CUSP



Salinon

The above figure formed from four connected SEMI-

CIRCLES. The word salinon is Greek for "salt cellar,"
which the figure resembles. In his Book of Lemmas ,
Archimedes proved that the salinon has an area equal
to the CIRCLE having the line segment joining the top
and bottom points as its DIAMETER (Wells 1991).

See also ARBELOS, LUNE, PIECEWISE CIRCULAR

CURVE, SEMICIRCLE
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Sally Sequence
The Sally sequence gives the sequence of lengths of
the repetitions which are avoided in the LINUS

SEQUENCE. The first few terms are 0, 1, 1, 2, 1, 3, 1,
1, 3, 2, 1, 6, 3, 2, ... (Sloane’s A006346).

See also LINUS SEQUENCE

References
Sloane, N. J. A. Sequences A006346/M0126 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Sloane, N. J. A. and Plouffe, S. Figure M0126 in The
Encyclopedia of Integer Sequences. San Diego: Academic
Press, 1995.

Salmon Points
The 20 CAYLEY LINES generated by a HEXAGON

inscribed in a CONIC SECTION pass four at a time
though 15 points known as Salmon points (Wells
1991). There is a dual relationship between the 15
Salmon points and the 15 PLÜ CKER LINES.

See also CAYLEY LINES, KIRKMAN POINTS, PASCAL

LINES, PASCAL’S THEOREM, PLÜ CKER LINES, STEINER

POINTS
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Salmon’s Theorem
There are at least two theorems known as Salmon’s
theorem. This first states that if P and S are two
points, PX and SY are the perpendiculars from P and
S to the POLARS of S and P , respectively, with respect
to a CIRCLE with center O , then OP=OS �PX =SY
(Durell 1928).

The second Salmon’s theorem states that, given a
track bounded by two confocal ELLIPSES, if a ball is
rolled so that its trajectory is tangent to the inner
ELLIPSE, the ball’s trajectory will be tangent to the
inner ELLIPSE following all subsequent caroms as
well.

See also BILLIARDS, POLAR
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Saltus
The word saltus has two different meanings: either a
jump or an oscillation of a function.

Sample

See also POPULATION, SAMPLE PROPORTION, SAMPLE

SIZE, SAMPLE SPACE, SAMPLE VARIANCE, SAMPLING
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Sample Proportion
Let there be x successes out of n BERNOULLI TRIALS.
The sample proportion is the fraction of samples
which were successes, so

p̂�
x

n
: (1)

For large n , p̂ has an approximately NORMAL DIS-

TRIBUTION. Let RE be the RELATIVE ERROR and SE the
STANDARD ERROR, then

�p��p (2)

SE p̂ð Þ�s p̂ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1 � p)

n

s
(3)

RE p̂ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂ 1 � p̂ð Þ

n

s
erf�1(CI); (4)

where CI is the CONFIDENCE INTERVAL and erf x is the
ERF function. The number of tries needed to deter-
mine p with RELATIVE ERROR RE and CONFIDENCE



INTERVAL CI is

n �
2 erf �1(CI)

 �2

p̂ 1 � p̂ð Þ
(RE)2 : (5)

Sample Size

See also SAMPLE, SAMPLE VARIANCE

Sample Space
Informally, the sample space for a given set of events
is the set of all possible values the events may
assume. Formally, the set of possible events for a
given variate forms a SIGMA ALGEBRA, and sample
space is defined as the largest set in the SIGMA

ALGEBRA.

See also PROBABILITY SPACE, RANDOM VARIABLE,
SAMPLE, SIGMA ALGEBRA, STATE SPACE

Sample Variance
To estimate the population VARIANCE s2 from a
sample of N elements with a priori unknown MEAN

(i.e., the MEAN is estimated from the sample itself), we
need an unbiased ESTIMATOR for s2 : This ESTIMATOR

is given by K -STATISTIC k2 ; where

k2 �
N

N � 1
m2 (1)

and m2 �s2 is the sample variance

s2 �
1

N

XN

i�1

xi � ̄xð Þ2
: (2)

Note that some authors prefer the definition

s ?2 �
1

N � 1

XN

i�1

xi � ̄xð Þ2
; (3)

since this makes the sample variance an UNBIASED

ESTIMATOR for the population variance.

Also note that, in general,
ffiffiffiffiffi
ŝ2

p
in not an UNBIASED

ESTIMATOR of s even if ŝ2 is an UNBIASED ESTIMATOR

for s2
/).

See also K -STATISTIC, SAMPLE, UNBIASED ESTIMATOR,
VARIANCE

Sampling

The selection and implementation of statistical ob-
servations in order to estimate properties of an
underlying population. Sampling is a vital part of
modern polling, market research, and manufactur-

ing, and its proper use is vital in the functioning of
modern economies.

For infinite precision sampling of a band-limited
signal at the NYQUIST FREQUENCY, the SIGNAL-TO-

NOISE RATIO after Nq samples is

SNR �
�r��

s�

�
rs2

s2N �1 =2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p �
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p ffiffiffiffiffiffi

Nq

q
; (1)

where r is the normalized CROSS-CORRELATION COEF-

FICIENT

r �
�x(t) ��y(t) �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2(t)h i y2(t)h i
p : (2)

For r �1 ;

SNR : r
ffiffiffiffiffiffi
Nq

q
: (3)

The identical result is obtained for oversampling. For
undersampling, the SIGNAL-TO-NOISE RATIO decreases
(Thompson et al. 1986).

See also NYQUIST SAMPLING, OVERSAMPLING, QUAN-

TIZATION EFFICIENCY, SAMPLE, SAMPLING FUNCTION,
SHANNON SAMPLING THEOREM, SINC FUNCTION
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Sampling Function
SHAH FUNCTION

Sampling Theorem
In order for a band-limited (i.e., one with a zero
POWER SPECTRUM for frequencies n > B) baseband
(/ n > 0) signal to be reconstructed fully, it must be
sampled at a rate n ]2B: A signal sampled at n �2B is
said to be NYQUIST SAMPLED, and n �2B is called the
NYQUIST FREQUENCY. No information is lost if a
signal is sampled at the NYQUIST FREQUENCY, and
no additional information is gained by sampling
faster than this rate.

See also ALIASING, NYQUIST FREQUENCY, NYQUIST

SAMPLING, OVERSAMPLING

Sampling Theory
The study of SAMPLING



San Marco Fractal

The FRACTAL J(�3 =4; 0); where J is the JULIA SET. It
slightly resembles the MANDELBROT SET.

See also DENDRITE FRACTAL, DOUADY’S RABBIT

FRACTAL, JULIA SET, MANDELBROT SET, SIEGEL

DISK FRACTAL
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Sandwich Theorem

The LOVÁ SZ NUMBER q (G) of a GRAPH G satisfies

v(G) 5q Ḡ
� �

5 x(G) :

where v(G) is the CLIQUE NUMBER and x is the
minimum number of colors needed to color the
VERTICES of G . q (G) can be computed efficiently
despite the fact that the computation of the two
numbers it lies between is an NP-HARD PROBLEM.

The SQUEEZING THEOREM is also sometimes known as
the sandwich theorem.

See also HAM SANDWICH THEOREM, SQUEEZING

THEOREM
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Sangaku Problem
A geometric problem found on a mathematical woo-
den tablet ( in Japan. Such problems typically involve
mutually TANGENT CIRCLES or TANGENT SPHERES.

See also CASEY’S THEOREM, CIRCLE INSCRIBING,
CYLINDER-SPHERE INTERSECTION, DESCARTES CIRCLE

THEOREM, ELLIPSE TANGENT, HEXLET, JAPANESE

THEOREM, RIGHT TRIANGLE, TANGENT CIRCLES, TAN-

GENT SPHERES

References
Fukagawa, H. and Sokolowsky, D. Traditional Japanese

Mathematics Problems from the 18th and 19th Centuries.
Singapore: Science Culture Technology Press, in prepara-
tion.

Fukagawa, H. and Pedoe, D. Japanese Temple Geometry
Problems. Winnipeg, Manitoba, Canada: Charles Babbage
Research Foundation, 1989.

Mikami, Y. The Development of Mathematics in China and
Japan, 2nd ed. New York: Chelsea, 1974.

Rothman, T. "Japanese Temple Geometry." Sci. Amer. 278,
85 �/91, May 1998.

Smith, D. E. and Mikami, Y. A History of Japanese Mathe-
matics. Chicago: Open Court, 1914.

Sard’s Theorem
The set of "critical values" of a MAP u : Rn 0 Rn of
CLASS C1 has LEBESGUE MEASURE 0 in Rn :/

See also CLASS (MAP), LEBESGUE MEASURE, TRANS-

VERSAL INTERSECTION
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Sarkovskii’s Theorem
Order the NATURAL NUMBERS as follows:

3 )5 )7 )9 )11 )13 )15 ). . .)2 � 3 )2 � 5 )2 � 7

)2 � 9 ). . .)2 � 2 � 3 )2 � 2 � 5 )2 � 2 � 7

)2 � 2 � 9 ). . .)2 � 2 � 2 � 3 ). . .)25 )24 )23 )22

)2 )1:

Now let F be a CONTINUOUS FUNCTION from the REALS

to the REALS and suppose p )q in the above ordering.
Then if F has a point of LEAST PERIOD p , then F also
has a point of LEAST PERIOD q .

A special case of this general result, also known as
Sarkovskii’s theorem, states that if a CONTINUOUS

REAL function has a PERIODIC POINT with period 3,
then there is a PERIODIC POINT of period n for every
INTEGER n .

A converse to Sarkovskii’s theorem says that if p )q
in the above ordering, then we can find a CONTINUOUS

FUNCTION which has a point of LEAST PERIOD q , but
does not have any points of LEAST PERIOD p (Elaydi
1996). For example, there is a CONTINUOUS FUNCTION

with no points of LEAST PERIOD 3 but having points of
all other LEAST PERIODS.

See also LEAST PERIOD
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Sárközy’s Theorem
A partial solution to the ERDOS SQUAREFREE CON-

JECTURE which states that the BINOMIAL COEFFICIENT
2n
n

� �
is never SQUAREFREE for all sufficiently large n ]

n0 : Sárkozy (1985) showed that if s(n) is the square
part of the BINOMIAL COEFFICIENT

2n
n

� �
; then

ln s(n) 	
ffiffiffi
2

p
�2

� �
z 1

2

� � ffiffiffi
n

p
:

where z(z) is the RIEMANN ZETA FUNCTION. An upper
bound on n0 of 28,000 has been obtained.

See also BINOMIAL COEFFICIENT, ERDOS SQUAREFREE

CONJECTURE
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Sarrus Linkage
A LINKAGE which converts circular to linear motion
using a hinged square.

See also HART’S INVERSOR, LINKAGE, PEAUCELLIER

INVERSOR

Sarrus Number
POULET NUMBER

Sarti Dodecic

The DODECIC SURFACE defined by

X12�243S12�22Q12�0; (1)

where

Q12� x2�y2�z2�w2
� �6

(2)

S12�33
ffiffiffi
5

p
s�2; 3�s�3; 4�s�4; 2

� �
�19 s�2; 3�s�3; 4�s�4; 2

� �
�10s2; 3; 4�14s1; 0�2s1; 1�6s1; 2

�352s5; 1�336l2
5l1�48l2l3l4 (3)

l1�x4�y4�z4�w4 (4)

l2�x2y2�z2w2 (5)

l3�x2z2�y2w2 (6)

l4�x2w2�y2z2 (7)

l5�xyzw (8)

s1; 0�l1 l2l3�l2l4�l3l4ð Þ (9)

s1; 1�l2
1 l2�l3�l4ð Þ (10)

s1; 2�l1 l2
2�l2

3�l2
4

� �
(11)

s5; 1�l2
5 l2�l3�l4ð Þ (12)

s2; 3; 4�l3
2�l3

3�l3
4 (13)

s92; 3�l2
2l39l2l2

3 (14)

s93; 4�l2
3l49l3l2

4 (15)

s94; 2�l2
4l29l4l2

2: (16)



/Q12 and S12 are both invariants of order 12. The Sarti
surface is invariant under the BIPOLYHEDRAL GROUP

and has exactly 600 ORDINARY POINTS (Endraß). It
was discovered by A. Sarti in 1999.

See also ALGEBRAIC SURFACE, BIPOLYHEDRAL GROUP,
DODECIC SURFACE
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SAS Theorem

Specifying two sides and the ANGLE between them
uniquely determines a TRIANGLE. Let c be the base
length and h be the height. Then the AREA is

K �1
2 ch �1

2 ac sin B : (1)

The length of the third side is given by the LAW OF

COSINES,

b2 �a2 �c2 �2ac cos B:

so

b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2 �2ac cos B

p
: (2)

Using the LAW OF SINES

a

sin A 
�

b

sin B 
�

c

sin C 
(3)

then gives the two other ANGLES as

A �sin�1 a sin Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2 � 2ac cos B

p
 !

(4)

C �sin�1 c sin Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2 � 2ac cos B

p
 !

(5)

See also AAA THEOREM, AAS THEOREM, ASA THEO-

REM, ASS THEOREM, SSS THEOREM, TRIANGLE

Satellite Knot

Let K1 be a knot inside a TORUS, and knot the TORUS

in the shape of a second knot (called the COMPANION

KNOT) K2 ; with certain additional mild restrictions to
avoid trivial cases. Then the new knot resulting from
K1 is called the satellite knot K3 : All satellite knots
are PRIME (Hoste et al. 1998). The illustration above
illustrates a satellite knot of the TREFOIL KNOT, which
is the form all satellite knots of 16 or fewer crossings
take (Hoste et al. 1998). Satellites of the trefoil share
the trefoil’s chirality, and all have wrapping number
2.
Any satellite knot having wrapping number > 2 must
have at least 27 crossings, and any satellite of the
FIGURE EIGHT KNOT must have at least 17 crossings
(Hoste et al. 1998). The numbers of satellite knots
with n crossings are 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,
6, 10, ... (Sloane’s A051765), so the satellite knot of
minimal crossing number occurs for 13 crossings.

The only KNOTS which are not HYPERBOLIC KNOTS are
TORUS KNOTS and satellite knots (including COMPO-

SITE KNOTS). No satellite knot is an ALMOST ALTER-

NATING KNOT. If a COMPANION KNOT has crossing
number k and the satellite ravels m times long-
itudinally around the solid torus, then it is conjec-
tured that the satellite cannot be projected with fewer
than km2 crossings (Hoste et al. 1998).

See also ALMOST ALTERNATING KNOT, CABLE KNOT,
COMPANION KNOT, COMPOSITE KNOT, HYPERBOLIC

KNOT, TORUS KNOT
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Satisfaction
Let A be a RELATIONAL SYSTEM, and let L be a
language which is appropriate for A: Let f be a
well-formed formula of L , and let s be a valuation in



A: Then A ffis f is written provided that one of the
following holds:

1. f is of the form x �y , for some variables x and y
of L , and s maps x and y to the same element of
the structure A:/
2. f is of the form Rx1 � � � xn ; for some n -ary
predicate symbol R of the language L , and some
variables x1 � � � xn of L , and s x1ð Þ; . . . ; s xnð Þf g is a
member of RA :/
3. f is of the form ( c ffl g) ; for some formulas c and
g of L such that A ffis c and A ffis g :/
4. f is of the form (( �x) c); and there is an element
a of A such that A ffis(x½a) c :/

In this case, A is said to satisfy f with the valuation
s .

See also LOS’ THEOREM
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Satisfiability Problem
Deciding whether a given Boolean formula in con-
junctive normal form has an assignment that makes
the formula "true." In 1971, Cook showed that the
problem is NP-COMPLETE.

See also BOOLEAN ALGEBRA
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Sausage Conjecture
In n -D for n ]5 the arrangement of HYPERSPHERES

whose CONVEX HULL has minimal CONTENT is always
a "sausage" (a set of HYPERSPHERES arranged with
centers along a line), independent of the number of n -
spheres. The CONJECTURE was proposed by Fejes
Tóth, and solved for dimensions ]42 by Betke et al.
(1994) and Betke and Henk (1998).

See also CONTENT, CONVEX HULL, HYPERSPHERE,
HYPERSPHERE PACKING, SPHERE PACKING
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Savitzky-Golay Filter
A low-pass filter which is useful for SMOOTHING data.

See also FILTER
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Savoy Knot
FIGURE-OF-EIGHT KNOT

Sawada-Kotera Equation
The PARTIAL DIFFERENTIAL EQUATION

ut �45u2ux �15uxuxx �15uuxxx �uxxxxx �0:

See also CAUDREY-DODD-GIBBON-SAWADA-KOTERA

EQUATION
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Sawtooth Wave

The periodic function given by

S(x) �A frac(x=T � f): (1)

where frac(x) is the FRACTIONAL PART frac x �x � xb c;
A is the amplitude, T is the period of the wave, and f
is its phase. If f �0; A �1, and T �2L ; then the
FOURIER SERIES is given by

f (x)�1
2�

1

p

X�
n�1

1

n
sin

npx

L

 !
:

See also FOURIER SERIES–SAWTOOTH WAVE, FRAC-

TIONAL PART, STAIRCASE FUNCTION
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sc
JACOBI ELLIPTIC FUNCTIONS

Scalar
A one-component quantity which is invariant under
ROTATIONS of the coordinate system.

See also PSEUDOSCALAR, SCALAR FIELD, SCALAR

FUNCTION, SCALAR MULTIPLICATION, SCALAR POTEN-

TIAL, SCALAR TRIPLE PRODUCT, TENSOR, VECTOR
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Jeffreys, H. and Jeffreys, B. S. "Scalars and Vectors." Ch. 2
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England: Cambridge University Press, pp. 56 �/85, 1988.

Scalar Curvature
The scalar curvature (called the "curvature scalar" by
Weinberg 1972, p. 135) is given by

R �g mkRmk :

where g mk is the METRIC TENSOR and Rmk is the RICCI

TENSOR.

See also CURVATURE, EINSTEIN TENSOR, GAUSSIAN

CURVATURE, MEAN CURVATURE, METRIC TENSOR,
RADIUS OF CURVATURE, RICCI TENSOR, RIEMANN-

CHRISTOFFEL TENSOR
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Scalar Field
A MAP f : Rn 	R which assigns each x a SCALAR

FUNCTION f (x) :/

See also VECTOR FIELD

References
Morse, P. M. and Feshbach, H. "Scalar Fields." §1.1 in

Methods of Theoretical Physics, Part I. New York:
McGraw-Hill, pp. 4 �/8, 1953.

Scalar Function
A function f (x1 ; . . . ; xn) of one or more variables
whose RANGE is one-dimensional, as compared to a
VECTOR FUNCTION, whose RANGE is three-dimensional
(or, in general, n -dimensional).

See also COMPLEX FUNCTION, REAL FUNCTION, VEC-

TOR FUNCTION

Scalar Multiplication

Scalar multiplication refers to the multiplication of a
VECTOR by a constant s , producing a vector in the
same (for s � 0) or opposite (for s B 0) direction but
of different length. Scalar multiplication is indicated
in Mathematica by placing a scalar next to a vector
(with or without an optional asterisk), s {a1 , a2 , ...,
an }.

See also MULTIPLICATION, VECTOR, VECTOR ADDI-

TION, VECTOR MULTIPLICATION

Scalar Potential
A conservative VECTOR FIELD (for which the CURL 9�
F �0) may be assigned a scalar potential

f(x; y; z) � f(0; 0 ; 0) ��gC

F � ds

��g
(x; 0 ; 0)

(0; 0 ; 0)

F1(t; 0 ; 0) dt �g
(x ; y; 0)

(x; 0; 0)

F2(x; t; 0) dt

�g
x ; y ; z

(x ; y; 0)

F3(x; y; t) dt:

where f
C

F � ds is a LINE INTEGRAL.

See also LINE INTEGRAL, POTENTIAL FUNCTION,
VECTOR POTENTIAL

Scalar Product
DOT PRODUCT

Scalar Triple Product
The scalar triple product of three VECTORS A, B, and
C is denoted [A; B; C] and defined by

[A; B; C]�A � (B�C) (1)

�B �(C�A) (2)

�C �(A�B) (3)

�det(A(BC)) (4)

�
A1 A2 A3

A2 C2 B3

A3 C2 C3

������
������ (5)

where A � B denotes a DOT PRODUCT, A�B denotes a
CROSS PRODUCT, det(A)� ½A½ denotes a DETERMINANT,



and Ai ; Bi ; and Ci are components of the vectors A, B,
and C, respectively. The scalar triple product is a
PSEUDOSCALAR (i.e., it reverses sign under inversion).
The scalar triple product can also be written in terms
of the PERMUTATION SYMBOL eijk as

A � (B �C) �eijkAiBjCk : (6)

where EINSTEIN SUMMATION has been used to sum
over repeated indices.

Additional identities involving the scalar triple pro-
duct are

A �(B �C) �B �(C �A) �C �(A �B) (7)

[A ; B; C]D

�[D ; B; C]A �[A ; D ; C]B �[A ; B ; D]C (8)

[q; q?; qƒ][r; r?; rƒ] �
q � r q � r? q � r ƒ
q ? � r q? � r? q ? � rƒ
q ƒ � r qƒ � r? q ƒ � rƒ

������
������: (9)

The VOLUME of a PARALLELEPIPED whose sides are
given by the vectors A, B, and C is given by the
ABSOLUTE VALUE of the scalar triple product

Vparallelepiped � :½A �(B �C)½: (10)

See also CROSS PRODUCT, DOT PRODUCT, PARALLELE-

PIPED, VECTOR MULTIPLICATION, VECTOR TRIPLE

PRODUCT
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Scale
BASE (NUMBER)

Scale Factor
For a diagonal METRIC TENSOR gij �gii dij ; where dij is
the KRONECKER DELTA, the scale factor is defined by

hi �
ffiffiffiffiffi
gii

p
: (1)

The LINE ELEMENT (first FUNDAMENTAL FORM) is then
given by

ds2 �g11 dx2
11 �g22 dx2

22 �g33 dx2
33 (2)

�h2
1 dx2

11 �h2
2 dx2

22 �h2
3 dx2

33 : (3)

The scale factor appears in vector derivatives of
coordinates in CURVILINEAR COORDINATES.

See also CURVILINEAR COORDINATES, FUNDAMENTAL

FORMS, LINE ELEMENT

Scale Invariance
SELF-SIMILARITY

Scalene Triangle
A TRIANGLE with three unequal sides.

See also ACUTE TRIANGLE, EQUILATERAL TRIANGLE,
ISOSCELES TRIANGLE, OBTUSE TRIANGLE, TRIANGLE

Scaling
Increasing a plane figure’s linear dimensions by a
scale factor s increases the PERIMETER p ? 0 sp and
the AREA A? 0 s2A:/

See also CONTRACTION (GEOMETRY), EXPANSION,
FRACTAL, HOMOTHETIC, SELF-SIMILARITY

Scattering Operator
An OPERATOR relating the past asymptotic state of a
DYNAMICAL SYSTEM governed by the Schrödinger
equation

i
d

dt
c(t) �H c(t)

to its future asymptotic state.

See also WAVE OPERATOR

Scattering Theory
The mathematical study of the SCATTERING OPERATOR

and Schrödinger equation.

See also SCATTERING OPERATOR
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Schaar’s Identity
A generalization of the GAUSSIAN SUM. For p and q of
opposite PARITY (i.e., one is EVEN and the other is
ODD), Schaar’s identity states

1ffiffiffi
q

p
Xq �1

r �0

e� pir2p =q �
e� pi=4ffiffiffi

p
p

Xp �1

r�0

epjr2q =p :

Schaar’s identity can also be written so as to be valid
for p , q with pq EVEN.

See also GAUSSIAN SUM
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Schanuel’s Conjecture
Let l1 ; ..., ln �C be linearly independent over the
RATIONALS Q; then

Q l1 ; . . . ; ln ; e l1 ; . . . ; e ln
� �

has TRANSCENDENCE degree at least n over Q:
Schanuel’s conjecture implies the LINDEMANN-WEIER-

STRASS THEOREM and GELFOND’S THEOREM. If the
conjecture is true, then it follows that e and p are
ALGEBRAICALLY INDEPENDENT. Mcintyre (1991)
proved that the truth of Schanuel’s conjecture also
guarantees that there are no unexpected exponential-
algebraic relations on the INTEGERS Z (Marker 1996).

At present, a proof of Schanuel’s conjecture seems out
of reach (Chow 1999).

See also ALGEBRAICALLY INDEPENDENT, CONSTANT

PROBLEM, GELFOND’S THEOREM, LINDEMANN-WEIER-

STRASS THEOREM
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Schauder Fixed Point Theorem
Let A be a closed convex subset of a BANACH SPACE

and assume there exists a continuous MAP T sending
A to a countably compact subset T(A) of A . Then T
has fixed points.
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Scheme
A local-ringed SPACE which is locally isomorphic to an
AFFINE SCHEME.

See also AFFINE SCHEME
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Schensted Correspondence
A correspondence between a PERMUTATION and a pair
of YOUNG TABLEAUX.

See also PERMUTATION, YOUNG TABLEAU
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Scherk’s Minimal Surfaces
Scherk’s two MINIMAL SURFACES were discovered by
Scherk in 1834. They were the first new surfaces
discovered since Meusnier in 1776. Beautiful images
of wood sculptures of Scherk surfaces are illustrated
by Séquin.

Scherk’s first surface is doubly periodic and is defined
by the implicit equation

ez cos y�cos x; (1)

(Osserman 1986, Wells 1991, von Seggern 1993). It
has been observed to form in layers of block copoly-
mers (Peterson 1988).



Scherk’s second surface can be written parametrically
as

x �2R ln 1 �reiu
� �

�ln 1 �reiu
� �
 �

(2)

y �R 4i tan�1 reiu
� �
 �

(3)

z �R 2i �ln 1 �r2e2iu

 �

�ln 1 �r2e2iu

 �� �� �

(4)

for u � [0; 2p) ; and r � (0; 1):/
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Schiffler Point

The CONCURRENCE S of the EULER LINES En of the
TRIANGLES DXBC; DXCA ; DXAB ; and DABC where X
is the INCENTER. The TRIANGLE CENTER FUNCTION is

a �
1

cos B � cos C 
�

b � c � a

b � c
:
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Schinzel Circle
A CIRCLE having a given number of LATTICE POINTS on
its CIRCUMFERENCE. The Schinzel circle having n
lattice points is given by the equation

x �1
2

� �2

�y2 �1
4 5

k �1 for n�2k even

x�1
3

� �2

�y2�1
9 52k for n�2k�1 odd:

8><
>:

Note that these solutions do not necessarily have the
smallest possible RADIUS. For example, while the
Schinzel circle centered at (/1=3/, 0) and with radius
625/3 has nine lattice points on its circumference, so
does the circle centered at (/1=3/, 0) with radius /65=3/.

See also CIRCLE, CIRCLE LATTICE POINTS, KULIKOWS-

KI’S THEOREM, LATTICE POINT, SCHINZEL’S THEOREM,
SPHERE

References
Honsberger, R. "Circles, Squares, and Lattice Points."

Ch. 11 in Mathematical Gems I. Washington, DC: Math.
Assoc. Amer., pp. 117�/127, 1973.

Kulikowski, T. "Sur l’existence d’une sphère passant par un
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Sierpinski, W. "Sur quelques problèmes concernant les
points aux coordonnées entières." L’Enseignement Math.
Ser. 2 4, 25�/31, 1958.

Sierpinski, W. "Sur un problème de H. Steinhaus concernant
les ensembles de points sur le plan." Fund. Math. 46,
191 �/194, 1959.

Sierpinski, W. A Selection of Problems in the Theory of
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Schinzel’s Hypothesis
If f1(x); ..., fs(x) are IRREDUCIBLE POLYNOMIALS with
INTEGER COEFFICIENTS such that no INTEGER n �1
divides f1(x) ; ..., fs(x) for all INTEGERS x , then there
should exist infinitely many x such that f1(x) ; ..., fs(x)
are simultaneously PRIME.
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Schinzel’s Theorem
For every POSITIVE INTEGER n , there exists a CIRCLE

in the plane having exactly n LATTICE POINTS on its
CIRCUMFERENCE. The theorem is based on the num-
ber r(n) of integral solutions (x, y ) to the equation

x2 �y2 �n; (1)

given by

r(n) �4 d1 �d3ð Þ; (2)

where d1 is the number of divisors of n OF THE FORM

4k �1 and d3 is the number of divisors OF THE FORM

4k �3: It explicitly identifies such circles (the SCHIN-

ZEL CIRCLES) as

x �1
2

� �2

�y2 �1
4 5

k�1 for n �2k

x �1
3

� �2

�y2 �1
9 5

2k for n �2k �1 :

8><
>: (3)

Note, however, that these solutions do not necessarily
have the smallest possible radius.

See also BROWKIN’S THEOREM, KULIKOWSKI’S THEO-

REM, SCHINZEL CIRCLE
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Schisma
The musical interval by which eight fifths and a
major third exceed five octaves,

R[z] > 0

See also COMMA OF DIDYMUS, COMMA OF PYTHA-

GORAS, DIESIS

Schläfli Double Sixes
DOUBLE SIXES

Schläfli Function
The function giving the VOLUME of the spherical
quadrectangular TETRAHEDRON:

V �
p2

8
f

p

p 
;
p

q 
;
p

r

 !
;

where

1
2 p

2f p
2 �x; y ; p

2 �z
� �

�
X�
m�1

D � sin x sin z

D � sin x sin z

 !m

� cos(2mx) � cos(2my) � cos(2mz) � 1

m2 
�x2 �y2 �z2 ;

and

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 x cos2 z �cos2 y

p
:

See also TETRAHEDRON

Schläfli Integral
A definition of a function using a CONTOUR INTEGRAL.
Schläfli integrals may be converted into RODRIGUES

FORMULAS.

See also RODRIGUES FORMULA

Schläfli Polynomial
A polynomial given in terms of the NEUMANN POLY-

NOMIALS On(x) by

Sn(x) �
2xOn(x) � 2 cos2 1

2 np
� �

n
:

See also NEUMANN POLYNOMIAL
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Schläfli Symbol
A symbol of the form fp ; q; r ; . . .g used to describe
regular polygons, polyhedra, and their higher-dimen-
sional counterparts.

The symbol fp g denotes a REGULAR POLYGON. The
symbol fp ; q g denotes a TESSELLATION of regular p -
gons, with q of them surrounding each VERTEX. The
Schläfli symbol can also be used to describe PLATONIC

SOLIDS and KEPLER-POINSOT SOLIDS, and a general-
ized version describes QUASIREGULAR POLYHEDRA and
ARCHIMEDEAN SOLIDS. Higher dimensional symbols
can be used to describe the REGULAR POLYCHORA and
POLYTOPES.

The symbol has the particularly nice property that its
reversal gives the symbol of the DUAL POLYHEDRON.
The following tables gives Schläfli symbols for several
polytopes.

POLYHEDRON Symbol

GREAT STELLATED DODECAHEDRON /
5
2; 3
n o

/

SMALL STELLATED DODECAHEDRON /
5
2; 5
n o

/

GREAT ICOSAHEDRON / 3; 5
2

n o
/

TETRAHEDRON /f3 ; 3 g/

PENTATOPE /f3 ; 3 ; 3 g/

n -simplex f3 ; . . . ; 3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�1

g

16-CELL /f3 ; 3 ; 4 g/

n -cross polytope f3 ; . . . ; 3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�2

; 4 g

600-CELL /f3 ; 3 ; 5 g/

OCTAHEDRON /f3 ; 4 g/

24-CELL /f3 ; 4 ; 3 g/

ICOSAHEDRON /f3 ; 5 g/

CUBE /f4 ; 3 g/

TESSERACT /f4 ; 3 ; 3 g/

n -hypercube f4 ; 3 ; . . . ; 3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�2

g

GREAT DODECAHEDRON / 5; 5
2

n o
/

DODECAHEDRON /f5 ; 3 g/

120-CELL /f5 ; 3 ; 3 g/

See also ARCHIMEDEAN SOLID, PLATONIC SOLID,
QUASIREGULAR POLYHEDRON, REGULAR POLYCHOR-

ON, REGULAR POLYGON, TESSELLATION

Schläfli’s Formula
For /R½z�0/,

Jn(z) �
1

p g 
p =2

0

cos(z sin t � nt) dt

�
sin(np)

p g
�

0

e �z sinh te � nt dt ;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.

References
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1980.

Schläfli’s Modular Form
The MODULAR EQUATION of degree five can be written

u

v

 !3

�
v

u

 !3

�2 u2v2 �
1

u2v2

 !
:

See also MODULAR EQUATION

Schlegel Graph
A GRAPH corresponding to POLYHEDRA skeletons. The
POLYHEDRAL GRAPHS are special cases.

See also POLYHEDRAL GRAPH, SKELETON
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Schlicht Function
An ANALYTIC FUNCTION f on the UNIT DISK is called
schlicht if



1. f is ONE-TO-ONE,
2. f (0) �0 ; and
3. f ?(0) �1 ;/

in which case it is written f � S: Schlicht functions
have power series of the form

f (z) �Z �
X�
j�2

ajz
j :

See also AREA PRINCIPLE, BIEBERBACH CONJECTURE,
KÖ BE FUNCTION, KÖ BE’S ONE-FOURTH THEOREM
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Schlömilch Remainder
A TAYLOR SERIES remainder formula that gives after
n terms of the series

Rn �
f (n�1)(x�)

n!p
(x �x�)n�1 �p x �x0ð Þn�1

for x� � x0 ; xð Þ and any p �0 (Blumenthal 1926,
Beesack 1966), which Blumenthal (1926) ascribes to
Roche (1858). The choices p �n �1 and p �1 give the
LAGRANGE and CAUCHY REMAINDERS, respectively
(Beesack 1966).

See also CAUCHY REMAINDER, LAGRANGE REMAINDER
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Schlömilch’s Function
Mathematics:Calculus and Analysis:Special Func-
tions:Hypergeometric Functions:Confluent Hyper-
geometric Functions

S( n; z) �g
�

0

(1 �t)� ne �zt dt �z n�1ez g
�

z

u� ne �u du

�zn=2 �1ez=2W� n=2;(1� n)=2(z) ;

where Wk ; m(z) is the WHITTAKER FUNCTION.

Schlömilch’s Series
A FOURIER SERIES-like expansion of a twice continu-
ously differentiable function

f (x) �1
2 a0 �

X�
n�1

anJ0(nx)

for 0 Bx B p; where J0(x) is a zeroth order BESSEL

FUNCTION OF THE FIRST KIND and

a0 �2f (0) �
2

p g 
p

0

du g 
p =2

0

f ?(u sin f) df

an �
2

p g 
p

0

du g 
p =2

0

uf ?(u sin f)cos(np) df:

A special case gives the amazing identity

1 �J0(z) �2
X�
n�1

J2n(z) � J0(z)½ 2�2
X�
n�1

Jn(z)½ 2:

See also BESSEL FUNCTION OF THE FIRST KIND,
BESSEL FUNCTION FOURIER EXPANSION, FOURIER

SERIES
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Schmitt-Conway Biprism
A CONVEX POLYHEDRON which is SPACE-FILLING, but
only aperiodically, was found by Conway in 1993.

See also CONVEX POLYHEDRON, SPACE-FILLING POLY-

HEDRON

Schnirelmann Constant
The constant s0 in SCHNIRELMANN’S THEOREM such
that every INTEGER > 1 is a sum of at most s0 PRIMES.
Of course, by VINOGRADOV’S THEOREM, it is known
that 4 primes suffice for all sufficiently large num-
bers, but this constant gives a sufficient number for
all numbers. The best current estimate is s0�7
(Ramaré 1995), and a summary of progress on upper
bounds for s0 is summarized in the following table.

/s0/ author

7 Ramaré (1995)

19 Riesel and Vaughan (1983)

26 Deshouillers (1977)

27 Vaughan (1977)

55 Klimov (1975)

115 Klimov et al. (1972)

159 Deshouillers (1973)



See also SCHNIRELMANN’S THEOREM, WARING’S PRO-

BLEM
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Schnirelmann Density
The Schnirelmann density of a sequence of natural
numbers is the GREATEST LOWER BOUND of the
FRACTIONS A(n) =n where A(n) is the number of terms
in the sequence 5n:/

See also MANN’S THEOREM, SCHNIRELMANN’S THEO-

REM
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Schnirelmann’s Theorem
This entry contributed by KEVIN O’BRYANT

There exists a POSITIVE INTEGER s such that every
SUFFICIENTLY LARGE INTEGER is the sum of at most s
PRIMES. It follows that there exists a POSITIVE

INTEGER s0 ]s such that every INTEGER > 1 is a
sum of at most s0 PRIMES. The smallest proven value
of s0 is known as the SCHNIRELMANN CONSTANT.

Schnirelmann’s theorem can be proved using MANN’S

THEOREM, although Schnirelmann used the weaker
inequality

s(A 
B) ] s(A) � s(B) � s(A)s(B) ;

where 0 � A S B; A 
B �fa �b : a � A; b � B g; and s is
the SCHNIRELMANN DENSITY. Let P �
f0; 1; 2; 3; 5; . . .g be the set of primes, together
with 0 and 1, and let Q �P 
P: Using a sophisticated
version of the INCLUSION-EXCLUSION PRINCIPLE,
Schnirelmann showed that although s(P) �0; s(Q) >
0: By repeated applications of MANN’S THEOREM, the

sum of k copies of Q satisfies s(Q �Q �. . .�Q) ]
min f1; ks(Q) g: Thus, if k > 1=s(Q) ; the sum of k
copies of Q has SCHNIRELMANN DENSITY 1, and so
contains all positive integers.

See also CHEN’S THEOREM, GOLDBACH CONJECTURE,
MANN’S THEOREM, PRIME NUMBER, PRIME PARTITION,
SCHNIRELMANN CONSTANT, SCHNIRELMANN DENSITY,
WARING’S PRIME NUMBER CONJECTURE, WARING’S

PROBLEM

References
Khinchin, A. Y. "The Landau-Schnirelmann Hypothesis and
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Schoenberg Curve

A SPACE-FILLING CURVE.

Scholz Conjecture
Let the minimal length of an ADDITION CHAIN for a
number n be denoted l(n): Then the Scholz conjecture
states that

l(2n �1) 5n �1 �l(n) :

The conjecture has been proven for a variety of
special cases but not in general.

See also ADDITION CHAIN
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Schönemann’s Theorem
If the integral COEFFICIENTS C0 ; C1 ; ..., CN �1 of the
POLYNOMIAL

f (x) �C0 �C1x �C2x2 �. . .�CN �1xN �1 �xN

are divisible by a PRIME NUMBER p , while the free
term C0 is not divisible by p2 ; then f (x) is irreducible
in the natural rationality domain.

See also ABEL’S IRREDUCIBILITY THEOREM, ABEL’S

LEMMA, GAUSS’S POLYNOMIAL THEOREM, KRONECK-

ER’S POLYNOMIAL THEOREM
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Schönflies Symbol
One of the set of symbols Ci; Cs; C1; C2; C3; C4; C5; C6;
C7; C8; C2h; C3h; C4h; C5h; C6h; C2v; C3v; C4v; C5v; C6v;



C�v ; D1 ; D2 ; D3 ; D4 ; D5 ; D6 ; D2h ; D4h ; D5h ; D6h ; D8h ;
D�h ; D2d ; D3d ; D4d ; D5d ; D6d ; I , Ih ; O , Oh ; S4 ; S6 ; S8 ; T ,
Td ; and Th used to identify POINT GROUPS.

Cotton (1990), gives a table showing the translations
between Schönflies symbols and HERMANN-MAUGUIN

SYMBOLS. Some of the Schönflies symbols denote
different sets of symmetry operations but correspond
to the same abstract GROUP and so have the same
CHARACTER TABLE.

See also CHARACTER TABLE, HERMANN-MAUGUIN

SYMBOL, POINT GROUPS, SPACE GROUPS, SYMMETRY

OPERATION
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Schönflies Theorem
If J is a simple closed curve in R2 ; the closure of one of
the components of R2 �J is HOMEOMORPHIC with the
unit 2-BALL. This theorem may be proved using the
RIEMANN MAPPING THEOREM, but the easiest proof is
via MORSE THEORY.

The generalization to n -D is called MAZUR’S THEO-

REM. It follows from the Schönflies theorem that any
two KNOTS of S1 in S2 or R2 are equivalent.

See also JORDAN CURVE THEOREM, MAZUR’S THEO-

REM, RIEMANN MAPPING THEOREM

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, p. 9, 1976.
Thomassen, C. "The Jordan-Schönflies Theorem and the

Classification of Surfaces." Amer. Math. Monthly 99, 116 �/

130, 1992.

Schoof-Elkies-Atkin Algorithm
An algorithm for determining the order of an ELLIPTIC

CURVE E=Fp over the FINITE FIELD Fp :/

See also ELLIPTIC CURVE
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Schoolgirl Problem
KIRKMAN’S SCHOOLGIRL PROBLEM

Schoute Coaxal System
The CIRCUMCIRCLE, BROCARD CIRCLE, LEMOINE LINE,
and ISODYNAMIC POINTS belong to a COAXAL SYSTEM

orthogonal to the APOLLONIUS CIRCLES, called the
Schoute coaxal system. In general, there are 12 points
whose PEDAL TRIANGLES with regard to a given
TRIANGLE have a given form. They lie six by six on
two CIRCLES of the Schoute coaxal system.

See also APOLLONIUS CIRCLES, BROCARD CIRCLE,
CIRCUMCIRCLE, COAXAL SYSTEM, ISODYNAMIC POINTS,
LEMOINE LINE, SCHOUTE’S THEOREM
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Schoute’s Theorem
In any TRIANGLE, the LOCUS of a point whose PEDAL

TRIANGLE has a constant BROCARD ANGLE and is
described in a given direction is a CIRCLE of the
SCHOUTE COAXAL SYSTEM.
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Schrage’s Algorithm
An algorithm for multiplying two 32-bit integers
modulo a 32-bit constant without using any inter-
mediates larger than 32 bits. It is also useful in
certain types of RANDOM NUMBER generators.
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Schröder Number

The Schröder number Sn is the number of LATTICE

PATHS in the Cartesian plane that start at (0, 0), end
at (n, n ), contain no points above the line y �x , and
are composed only of steps (0, 1), (1, 0), and (1, 1), i.e.,
0; �; and P: The diagrams illustrating the paths
generating S1 ; S2 ; and S3 are illustrated above. The
numbers Sn are given by the RECURRENCE RELATION

Sn �Sn�1 �
Xn �1

k�0

SkSn �1 �k ;

where S0 �1; and the first few are 2, 6, 22, 90, ...
(Sloane’s A006318). The Schröder Numbers bear the
same relation to the DELANNOY NUMBERS as the
CATALAN NUMBERS do to the BINOMIAL COEFFICIENTS.

See also BINOMIAL COEFFICIENT, CATALAN NUMBER,
DELANNOY NUMBER, LATTICE PATH, MOTZKIN NUM-

BER, P -GOOD PATH
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Schröder-Bernstein Theorem
The Schröder-Bernstein theorem for numbers states
that if

n 5m 5n:

then m �n For SETS, the theorem states that if there
are INJECTIONS of the SET A into the SET B and of B
into A , then there is a BIJECTIVE correspondence
between A and B (i.e., they are EQUIPOLLENT).

See also BIJECTION, CARDINAL COMPARISON, EQUI-

POLLENT, INJECTION, TRICHOTOMY LAW

Schröder’s Equation
The functional equation

f(f (x)) �sf(x):

with s "0 ; 1 :/
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Schröder’s Method
Two families of equations used to find roots of non-
linear functions of a single variable. The "B" family is
more robust and can be used in the neighborhood of
degenerate multiple roots while still providing a
guaranteed convergence rate. Almost all other root-
finding methods can be considered as special cases of
Schröder’s method. Householder humorously claimed
that papers on root-finding could be evaluated quickly
by looking for a citation of Schröder’s paper; if the
reference were missing, the paper probably consisted
of a rediscovery of a result due to Schröder (Stewart
1993).

One version of the "A" method is obtained by applying
NEWTON’S METHOD to f=f ?;

xn�1�xn�
f xnð Þf ? xnð Þ

f ?(xn)½ 2�f xnð Þf ƒ xnð Þ

(Scavo and Thoo 1995).

See also NEWTON’S METHOD
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Schröder, E. "Über unendlich viele Algorithmen zur Au-

flösung der Gleichungen." Math. Ann. 2, 317�/365, 1870.



Stewart, G. W. "On Infinitely Many Algorithms for Solving
Equations." English translation of Schröder’s original
paper. College Park, MD: University of Maryland, Insti-
tute for Advanced Computer Studies, Department of
Computer Science, 1993. ftp://thales.cs.umd.edu/pub/re-
ports/imase.ps.

Schrödinger Equation
The Schrödinger equation describes the motion of
particles in nonrelativistic quantum mechanics, and
was first written down by Erwin Schrödinger. The
time-dependent Schrödinger equation is given by

ih
@ c(x; y; z ; t)

@t

�
h2

2m
92 �V(x)

" #
C(x; y; z; t) � H̄ C(x; y; z; t); (1)

where h is h -bar , C is the time-dependent wavefunc-
tion, m is the mass of a particle, 92 is the LAPLACIAN,
V is the potential, and H̄ is the Hamiltonian operator.
The time-independent Schrödinger equation is

�
h2

2m
92 �V(x)

" #
c(x; y; z ; t) �Ec(x; y; z ; t): (2)

The one-dimensional versions of these equations are
then

ih
@C(x; t)

@t
� �

h2

2m

@2

@x2 
�V(x)

" #
C(x; t)

� H̄ C(x; t); (3)

and

�
h2

2m

d2

dx2 
�V(x)

" #
c(x) �E c(x): (4)

The logarithmic Schrödinger equation is given by

iut �92u �u ln½u½2 �0 (5)

(Cazenave 1983; Zwillinger 1997, p. 134), the non-
linear Schrödinger equation by

iut �uxx 92½u½2u �0 (6)

(Calogero and Degasperis 1982, p. 56; Tabor 1989,
p. 309; Zwillinger 1997, p. 134) or

iut �uxx �au �b½u½2u �0 (7)

(Infeld and Rowlands 2000, p. 126), and the deriva-
tive nonlinear Schrödinger equation by

iut �uxx 9i( ½u½2u)x �0 (8)

(Calogero and Degasperis 1982, p. 56; Zwillinger
1997, p. 134).

See also DIRAC EQUATION
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ability in Nonlinear Dynamics: An Introduction. New
York: Wiley, p. 309, 1989.

Zwillinger, D. Handbook of Differential Equations, 3rd ed.
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Schroeder Stairs
PENROSE STAIRWAY

Schröter’s Formula
Let a general THETA FUNCTION be defined as

T(x; q) �
X�

n ���

xnqn2 

:

then

T(x; qa)T(y; qb)

�
Xa �b �1

k�0

ykqbk2 

T(xyq2bk ; qa �b)T(yax�bq2abk ; qab(a �b)) :

See also BLECKSMITH-BRILLHART-GERST THEOREM,
JACOBI TRIPLE PRODUCT, RAMANUJAN THETA FUNC-

TIONS, THETA FUNCTIONS
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Schur Algebra
An Auslander algebra which connects the representa-
tion theories of the symmetric group of PERMUTA-

TIONS and the GENERAL LINEAR GROUP GL(n; C):
Schur algebras are "quasihereditary."
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Schur Decomposition
The Schur decomposition of a numerical matrix M is a
pair of matrices Q and T such that

M�QTQ�;

where Q is an ORTHOGONAL MATRIX, T is a BLOCK

UPPER TRIANGULAR MATRIX, and Q� is the ADJOINT



MATRIX. Schur decomposition is implemented in
Mathematica as SchurDecomposition[m ].

See also MATRIX DECOMPOSITION
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Schur Functor
A FUNCTOR which defines an equivalence of module
CATEGORIES.
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Schur Matrix
The p �p SQUARE MATRIX formed by setting sij � jij ;
where j is a pth ROOT OF UNITY. The Schur matrix
has a particularly simple DETERMINANT given by

det S �epp
p=2;

where p is an ODD PRIME and

ep �
1 if p �1 (mod 4)
i if p �3 (mod 4)

:

 
This determinant has been used to prove the QUAD-

RATIC RECIPROCITY LAW (Landau 1958, Vardi 1991).
The ABSOLUTE VALUES of the PERMANENTS of the
Schur matrix of order 2p �1 are given by 1, 3, 5,
105, 81, 6765, ... (Sloane’s A003112, Vardi 1991).

Denote the Schur matrix Sp with the first row and
first column omitted by S?p: Then

perm Sp�p perm S?p;

where perm denoted the PERMANENT (Vardi 1991).
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Schur Multiplier
A property of FINITE SIMPLE GROUPS which is known
for all such GROUPS.

See also FINITE GROUP, SIMPLE GROUP

Schur Number
The Schur number S(k) is the largest integer n for
which the interval [1; n] can be partitioned into k
SUM-FREE SETS (Fredricksen and Sweet 2000). S(k) is
guaranteed to exist for each k by SCHUR’S PROBLEM.
Note the definition of the Schur number as the
smallest number S?(k) �S(k) �1 for which such a
partition does not exist is also prevalent in the
literature (Sloane’s A030126; Fredricksen and Sweet
2000).

Schur (1916) gave the lower bound

S(k) ]1
2(3

n �1) (1)

which is sharp for n �1, 2, and 3 (Guy 1994). The
Schur numbers also satisfy the inequality

S(k) ]c(321)k =5 > c(1:17176)k (2)

for k �5 and some constant c (Abbott and Moser
1966, Abbott and Hanson 1972, Exoo 1994). SCHUR’S

THEOREM also shows that

S(n) 5R(n) �2 : (3)

where R(n) is a RAMSEY NUMBER. The first few Schur
numbers are 1, 4, 13, 44, 160 5S(5) 5315; S(6) ]536;
S(7) ]1680; ... (Sloane’s A045652; Fredricksen and
Sweet 2000). S(4) is due to Baumert (Baumert 1965,
Abbott and Hanson 1972), the lower bound on S(5) is
due to Exoo (1994), and the lower limits on S(6) and
S(7) are due to Fredricksen and Sweet (2000).

See also RAMSEY NUMBER, RAMSEY’S THEOREM,
SCHUR’S PROBLEM, SCHUR’S THEOREM
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Schur Transform
For

p(z) �anzn �an�1zn�1 �. . .�a0 ; (1)

polynomial of degree n ]1; the Schur transform is
defined by the (n �1)/-degree polynomial

Tp(z) � ̄a0p(z) �anp �(z) (2)

�
Xn�1

k �0

(ā0ak �an ān�k)zk (3)

where p � is the RECIPROCAL POLYNOMIAL.

See also RECIPROCAL POLYNOMIAL
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Schur-Cohn Algorithm

An algorithm that can always be used to decide
whether a given polynomial is fere of zeros in the
closed unit disk (or, using an entire linear transfor-
mation, to any other disk in the complex plane).
Under certain conditions, the algorithm can also be
used to determine the exact number of zeros in a disk
(Henrici 1988, p. 494). The method is also useful to
control engineers, since it can be used to determine
whether a dynamic control system is stable.
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Schur-Jabotinsky Theorem
Let P �a1x �a1x2 �. . . be an ALMOST UNIT in the
INTEGRAL DOMAIN of FORMAL POWER SERIES (with a1 "

0) and define

Pk �
X�
n �k

a(k)
n xn (1)

for k �91; 9 2, .... If Q �P�1 ; then for all positive
integers m ,

Qm �
X�
n �m

b(m)
n xn ; (2)

where

b(m)
n �

m

n
a( �n)
�m (3)

for n ]m:/

See also LAGRANGE INVERSION THEOREM
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Schur’s Hermitian Matrix Theorem
HORN’S THEOREM

Schur’s Inequalities
Let A �aij be an n �n MATRIX with COMPLEX (or REAL)
entries and EIGENVALUES l1 ; l2 ; ..., ln ; then

Xn

i�1

½li ½
2 5

Xn

i; j �1

½aij ½
2

Xn

i�1

½R[ li]½
2 5

Xn

i ; j�1

aij � āji

2

�����
�����
2

Xn

i�1

½I[ li] ½
2 5

Xn

i ; j�1

aij � āji

2

�����
�����
2

;

where z̄ is the COMPLEX CONJUGATE.

References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,

Series, and Products, 6th ed. San Diego, CA: Academic
Press, p. 1120, 2000.

Schur’s Lemma
The endomorphism ring of an irreducible module is a
DIVISION ALGEBRA.

Hsiang (2000, p. 3) calls the following result the
Schur lemma. Let V , W be irreducible (linear) G -
spaces and A : V 0 W a G -linear map. Then A is
either invertible or A�0.

See also DIVISION ALGEBRA, SCHUR’S REPRESENTA-

TION LEMMA
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Schur’s Partition Theorem
Schur’s partition theorem lets A(n) denote the num-
ber of partitions of n into parts congruent to 91 (mod
6), B(n) denote the number of partitions of n into
distinct parts congruent to 91 (mod 3), and C(n) the
number of partitions of n into parts that differ by at
least 3, with the added constraint that the difference
between multiples of three is at least 6. Then A(n) �
B(n) �C(n) (Schur 1926; Bressoud 1980; Andrews
1986, p. 53).

The values of A(n) �B(n) �C(n) for n �1, 2, ... are 1,
1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, ...
(Sloane’s A003105). For example, for n �15, there are
nine partitions satisfying these conditions, as sum-
marized in the following table (Andrews 1986, p. 54).

/A(15) �9/ /B(15) �9/ /C(15) �9/

/13 �1 �1/ 14�1 15

/11 �1 �1 �1 �1/ 13�2 14�1

/7 �7 �1/ 11�4 13�2

/7 �5 �1 �1 �1/ 10�5 12�3

/7 �1 �1 �1 �. . .�1/ /10 �4 �1/ 11 �4

/5 �5 �5/ 8�7 10�5

/5 �5 �1 �1 �. . .�1/ /8 �5 �2/ /10 �4 �1/

/5 �1 �1 �. . .�1/ /8 �4 �2 �1/ /9 �5 �1/

/1 �1 �. . .�1/ /7 �5 �2 �1/ /8 �5 �2/

The identity A(n) �B(n) can be established using the
identity

X�
n�0

B(n)qn �(�q; q3)�(�q2; q3) � (1)

�
(q2; q6)�(q4; q6)�
(q; q3)�(q2; q3) �

(2)

�
(q2; q6)�(q4; q6)�

(q; q6)�(q4; q6) �(q2; q6) �(q5; q6)�
(3)

�
1

(q; q6)�(q5; q6) �
(4)

�
X�
n�0

A(n)qn (5)

(Andrews 1986, p. 54). The identity B(n) �C(n) is
significantly trickier.

See also GÖ LLNITZ’S THEOREM, RAMSEY NUMBER,
SCHUR’S LEMMA, SCHUR NUMBER
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Schur’s Problem
Schur (1916) proved that no matter how the set of
POSITIVE INTEGERS less than or equal to n!eb c (where
xb c is the FLOOR FUNCTION) is partitioned into n

classes, one class must contain INTEGERS x , y , z such
that x �y �z; where x and y are not necessarily
distinct. The least INTEGER S(n) with this property is
known as the SCHUR NUMBER. The upper bound has
since been slightly improved to n!(e�1=24)b c:/

See also COMBINATORICS, RAMSEY NUMBER, SCHUR

NUMBER, SCHUR’S THEOREM, SUM-FREE SET
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Schur’s Ramsey Theorem
As shown by Schur (1916), the SCHUR NUMBER S(n)
satisfies

S(n) 5R(n) �2 (1)

for n �1, 2, ..., where R(n) is a RAMSEY NUMBER.
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Schur’s Representation Lemma
If p on V and p? on V ? are irreducible representations
and E : V 	V ? is a linear map such that p?(g)E �
E p(g) for all g � and GROUP G , then E �0 or E is
invertible. Furthermore, if V �V ?; then E is a
SCALAR.

See also SCHUR’S LEMMA
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Schur’s Theorem
SCHUR’S PARTITION THEOREM, SCHUR’S RAMSEY THE-

OREM

Schwarz Reflection Principle
Suppose that f is a ANALYTIC FUNCTION which is
defined in the UPPER HALF-DISK f½z½2 B1; I[z] > 0g:
Assume that f extends to a continuous function on the
REAL AXIS, and takes on real values on the REAL AXIS.
Then f can be extended to an ANALYTIC FUNCTION on
the whole disk by the formula

f (z̄) �f (z) ;

and the values for z reflected across the REAL AXIS are
the reflections of f (z) across the REAL AXIS. It is easy
to check that the above function is COMPLEX DIFFER-

ENTIABLE in the interior of the LOWER HALF-DISK.
What is remarkable is that the resulting function
must be analytic along the REAL AXIS as well, despite
no assumptions of differentiability.

This is called the Schwarz reflection principle, and is

sometimes also known as the Schwarz’s symmetric
principle (Needham 2000, p. 257). The diagram above
shows the reflection principle applied to a function f
defined for UPPER HALF-DISK (left figure; red) and its
image (right figure; red). The function is real on the
real axis, so it is possible to extend the function to the
reflected domain (left and right figures; pink).

For the reflected function to be continuous, it is
necessary for the values at the boundary to be
continuous and to fall on the line being reflected.
The reflection principle also applies in the generality
of reflecting along any line, not just the REAL AXIS, in
which case the function f has to take values along a
line in the range. In fact, any arc which has a
neighborhood biholomorphic to a straight line can
be reflected across. The basic example is the bound-
ary of the UNIT CIRCLE which is mapped to the REAL

AXIS by z 0 (iz �1)=(z �i) :/

The reflection principle can also be used to reflect a
HARMONIC FUNCTION which extends continuously to
the zero function on its boundary. In this case, for
negative y , defining

v(x; y)��v(x; �y)

extends v to a harmonic function on the reflected
domain. Again note that it is necessary for v(x; 0)�0:
This result provides a way of extending a HARMONIC

FUNCTION from a given OPEN SET to a larger OPEN SET

(Krantz 1999, p. 95).

See also ANALYTIC CONTINUATION, HARMONIC FUNC-

TION
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Schwarz Triangle
The Schwarz triangles are SPHERICAL TRIANGLES

which, by repeated reflection in their indices, lead
to a set of congruent SPHERICAL TRIANGLES covering
the SPHERE a finite number of times.

Schwarz triangles are specified by triples of numbers
(p; q; r): There are four "families" of Schwarz trian-
gles, and the largest triangles from each of these
families are
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The others can be derived from

(p q r) �(p x r1) �(x q r2);

where
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See also COLUNAR TRIANGLE, SPHERICAL TRIANGLE,
WYTHOFF SYMBOL
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Schwarz-Christoffel Mapping
A CONFORMAL MAPPING from the UPPER HALF-PLANE

to a POLYGON.

See also CONFORMAL MAPPING, SCHWARZ-CHRISTOF-

FEL PARAMETER PROBLEM
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Schwarz-Christoffel Parameter Problem
The problem of determining the vertices of a
SCHWARZ-CHRISTOFFEL MAPPING (Krantz 1999,
p. 176).

See also CONFORMAL MAPPING, SCHWARZ-CHRISTOF-

FEL MAPPING
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MA: Birkhäuser, p. 176, 1999.

Schwarzian Derivative
The Schwarzian derivative is defined by

DSchwarzian �
f §(x)

f ?(x)
�

3

2

f (x)

f ?(x)

" #2

:

The FEIGENBAUM CONSTANT is universal for 1-D MAPS

if its Schwarzian derivative is NEGATIVE in the
bounded interval (Tabor 1989, p. 220).

See also FEIGENBAUM CONSTANT
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Schwarz-Pick Lemma
Let f be analytic on the UNIT DISK, and assume that

1. ½f (z)½51 for all z , and
2. f (a)�b for some a; b �D(0; 1); the UNIT DISK.

Then

½f ?(a)½5
1 � ½b½2

1 � ½a½2
: (1)

Furthermore, if f (a1)�b1 and f (a2)�b2; then

b2 � b1

1 � b1�b2

�����
�����5 a2 � a1

1 � ā1a2

�����
�����; (2)

where z̄ is the COMPLEX CONJUGATE (Krantz 1999,
p. 78). As a consequence, if either

½f ?(a)½5
1 � ½b½2

1 � ½a½2
(3)

or

b2 � b1

1 � b̄1b2

�����
������ a2 � a1

1 � ā1a2

�����
����� (4)

for a1 a2; then f is a conformal SELF-MAP of D(0; 1) to
itself.

Stated succinctly, the Schwarz-Pick lemma guaran-
tees that if f is an analytic map of the DISK D into D

and f preserves the hyperbolic distance between any
two points, then f is a disk map and preserves all
distances.
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Schwarz’s Inequality
Let c1(x) and c2(x) by any two REAL integrable
functions in [a, b ], then Schwarz’s inequality, also
called the Cauchy-Schwarz inequality (Gradshteyn
and Ryzhik 2000, p. 1099) or Buniakowsky inequality
(Hardy et al. 1952, p. 16), is given by

c1 ½ c2h ij j25 c1 ½ c1h i c2 ½c2h i: (1)

Written out explicitly

g
b

a

c1(x) c2(x) dx

" #2

5g
b

a

c1(x)½ 2 dx g
b

a

c2(x)½ 2 dx; (2)

with equality IFF g(x) � af (x) with a a constant.

To derive the inequality, let c(x) be a COMPLEX

FUNCTION and l a COMPLEX constant such that c(x) �
f (x) � lg(x) for some f and g . Since f c̄c dx ]0; where
z̄ is the COMPLEX CONJUGATE,

g c̄c dx �g f̄ f  dx� l g f̄ g dx� l̄ g ḡf dx

�l l̄ g ḡg dx ]0 ; (3)

with equality when c(x) �0: Writing this in compact
notation,

f̄ ; f
! "

� l f̄ ; g
! "

� l̄ ḡ ; fh i� l l̄ ḡ; gh i]0 : (4)

Now define

l ��
ḡ ; fh i
ḡ ; gh i  

(5)

l̄ ��
g ; f̄
! "

ḡ ; gh i
dx: (6)

Multiply (4) by ḡ ; gh i and then plus in (5) and (6) to
obtain

f̄ ; f
! "

ḡ ; gh i� f̄ ; g
! "

ḡ ; fh i

� ḡ; f̄
! "

g ; f̄
! "

� ḡ ; fh i g ; f̄
! "

; (7)

which simplifies to

ḡ ; fh i f̄ ; g
! "

5 f̄ ; f
! "

ḡ ; gh i  (8)

so

f ; gh ij j25 f ; fh i g ; gh i: (9)

BESSEL’S INEQUALITY follows from SCHWARZ’S IN-

EQUALITY.

See also BESSEL’S INEQUALITY, HÖ LDER’S INEQUAL-

ITIES
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Schwarz’s Lemma
Let f be analytic on the UNIT DISK, and assume that

1. ½f (z)½51 for all z and
2. f (0) �0 :/

Then ½f (z) ½5 ½z½ and ½f ?(0) ½51 :/

If either ½f (z) ½� ½z ½ for some z "0 or if ½f ?(0) ½�1 ; then f
is a ROTATION, i.e., f (z) �az for some complex con-
stant a with ½a½�1:/

See also MÖ BIUS TRANSFORMATION, SCHWARZ-PICK

LEMMA
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Schwarz’s Minimal Surface
A periodic MINIMAL SURFACE constructed by Schwarz
using the following two principles:

1. If part of the boundary of a MINIMAL SURFACE is
a straight line, then the reflection across the line,
when added to the original surface, makes another
MINIMAL SURFACE.
2. If a MINIMAL SURFACE meets a PLANE at RIGHT

ANGLES, then the mirror image of the PLANE, when
added to the original surface, also makes a MINI-

MAL SURFACE.

See also MINIMAL SURFACE
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Schwarz’s Polyhedron

A polyhedron constructed by ruling 2n equally spaced
vertical lines along the surface of a CYLINDER together
with 2n3 circles around the cylinder at equally spaced
heights. Amazingly, joining neighboring points in
triangles and letting n 0 � gives a surface whose
total SURFACE AREA approaches, not that of the
cylinder, but infinity.

See also CYLINDER
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Schwarz’s Symmetry Principle
SCHWARZ REFLECTION PRINCIPLE

Schwarz’s Triangle Problem
FAGNANO’S PROBLEM

Schweins’s Theorem
If we expand the determinant of a matrix A using
DETERMINANT EXPANSION BY MINORS, first in terms of
the MINORS of order r formed from any r rows, with
their complementaries, and second in terms of the
MINORS of order m formed from any m columns
(r Bm ), with their complementaries; then the sum
of the (n �r)m�r terms of the second expansion which
have in common the elements in the intersection of
the selected r rows and m columns is equal to the
sum of the mr terms of the first expansion which have
for one factor the minors of the rth order formed from
the elements in the intersection of the selected r rows
and m columns.

See also DETERMINANT, DETERMINANT EXPANSION BY

MINORS, MINOR
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Schwenk’s Formula
Let R �B be the number of MONOCHROMATIC FORCED

TRIANGLES (where R and B are the number of red and
blue TRIANGLES) in an EXTREMAL GRAPH. Then

R �B �
n
3

# $
� 1

2 n
1
4(n �1)2

j kj k
;

where n
k

� �
is a BINOMIAL COEFFICIENT and xb c is the

FLOOR FUNCTION (Schwenk 1972).

See also EXTREMAL GRAPH, MONOCHROMATIC FORCED

TRIANGLE
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Scientific Notation
Scientific notation is the expression of a number n in
the form a �10p ; where

p � log10 ½n½b c

is the FLOOR of the base-10 LOGARITHM of n (the
"order of magnitude"), and

a �
n

10p

is a REAL NUMBER satisfying 1 5 ½a ½B10 : For example,
in scientific notation, the number n �101; 325 has
order of magnitude

p � log10101; 325b c� 5:00572b c�5 ;

so n would be written 1:01325 �105 : The special case
of 0 does not have a unique representation in
scientific notation, i.e., 0 �0 �100 �0 �101 �. . .  :/

See also CHARACTERISTIC (REAL NUMBER), FIGURES,
MANTISSA, SIGNIFICANT DIGITS

s-Cluster
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let an /n�n/ BINARY MATRIX have entries which are 1
(with probability p ) or 0 (with probability /q�1�p/).
An s -cluster is an isolated group of s adjacent (i.e.,
horizontally or vertically connected) 1s. Let /Cn/ be the
total number of these "SITE" clusters. Then the value

KS(p)�lim
n0�

�Cn�

n2
; (1)

called the MEAN CLUSTER COUNT PER SITE or MEAN

CLUSTER DENSITY, exists. Numerically, it is found that
/KS(1=2):0:065770 . . ./ (Ziff et al. 1997).

Considering instead "BOND" clusters (where numbers
are assigned to the edges of a grid) and letting /Cn/ be
the total number of bond clusters, then

KB(p)� lim
n0�

�Cn�

n2
; (2)

exists. The analytic value is known for /p�1=2/,



KB(1
2) �

3
2

ffiffiffi
3

p
�41

16 (3)

(Ziff et al. 1997).

See also BOND PERCOLATION, PERCOLATION THEORY,
S -RUN, SITE PERCOLATION
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Score Sequence
The score sequence of a TOURNAMENT is a monotonic
nondecreasing sequence of the OUTDEGREES of the
VERTICES. The score sequences for n �1, 2, ... are 1, 1,
2, 4, 9, 22, 59, 167, ... (Sloane’s A000571).

See also DIRECTED GRAPH, TOURNAMENT
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Scrawny Cantor Set
A Cantor set C in R3 is said to be scrawny if for each
neighborhood U of an arbitrary point p in C , there is
a neighborhood V of p such that every map f : S1 0
V ƒC extends to a map F : B2 0 U such that F �1(C)
is finite. Babich (1992) presents examples of wild
Cantor sets of this type and provides a proof that such
objects cannot be defined by solid tori.

See also CANTOR SET
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Screw
A TRANSLATION along a straight line L and a ROTA-

TION about L such that the angle of ROTATION is
proportional to the TRANSLATION at each instant. Also
known as a TWIST.

See also DINI’S SURFACE, HELICOID, ROTATION, SCREW

THEOREM, SEASHELL, TRANSLATION

Screw Theorem
Any motion of a rigid body in space at every instant is
a SCREW motion. This theorem was proved by Mozzi
and Cauchy.

See also SCREW

Scruple
An archaic UNIT FRACTION variously defined as /1=200/

(of an hour), /1 =10/ or /1=12/ (of an inch), /1 =12/ (of a
celestial body’s angular diameter), or /1=60/ (of an hour
or DEGREE).

See also CALCUS, UNCIA

Sea Horse Valley

A portion of the MANDELBROT SET centered around
�1:25 �0:047i with width approximately
0:009 �0 :005i :/

See also MANDELBROT SET

Search Tree
TREE SEARCHING

Searching
Searching refers to locating a given element or an
element satisfying certain conditions from some
(usually ordered or partially ordered) table, list,
TREE, etc.

See also BINARY SEARCH, SORTING, TABU SEARCH,
TREE SEARCHING
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Seashell

A conical surface modeled after the shape of a
seashell. One parameterization (left figure) is given
by

x �2[1 �eu=(6p)]cos u cos2 1
2v
� �

(1)

y �2[�1 �eu=(6p)]cos2 1
2 v
� �

sin u (2)

z �1 �eu=(3p) �sin v �eu=(6p) sin v; (3)

where v � 0; 2p½ Þ; and u � 0 ; 6 p½ Þ (Wolfram). Nord-
strand gives the parameterization

x � 1 �
v

2p

 !
(1 �cos u) �c

" #
cos(nv) (4)

x � 1 �
v

2 p

 !
(1 �cos u) �c

" #
sin(nv) (5)

z �
bv

2p 
�a sin u 1 �

v

2p

 !
(6)

for u; v � [0; 2p] (right figure with a �0:2; b �1, c �
0:1; and n �2).

See also CONICAL SPIRAL
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Sec
SECANT

Secant

The function defined by sec x �1=cos x; where cos x is
the COSINE. The MACLAURIN SERIES of the secant is

sec x �
( �1)nE2n

(2n)!
x2n

�1 �1
2 x

2 � 5
24 x

4 � 61
720 x

6 � 277
8064 x

8 �. . . :

where E2n is an EULER NUMBER.

See also ALTERNATING PERMUTATION, COSECANT,
COSINE, EULER NUMBER, EXSECANT, INVERSE SECANT
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Secant Line

A line joining two points of a curve. As the two points
are brought together (or, more precisely, as one is
brought towards the other), the secant line tends to a
TANGENT LINE. In abstract mathematics, the points



which a secant line connects can be either REAL or
COMPLEX CONJUGATE IMAGINARY.

See also BITANGENT, TANGENT LINE, TRANSVERSAL

LINE

Secant Method

A ROOT-finding algorithm which assumes a function
to be approximately linear in the region of interest.
Each improvement is taken as the point where the
approximating line crosses the axis. The secant
method retains only the most recent estimate, so
the root does not necessarily remain bracketed. When
the ALGORITHM does converge, its order of conver-
gence is

lim
k0�

½ ek �1 ½:C ½ e½f : (1)

where C is a constant and f is the GOLDEN MEAN.

f ? xn�1ð Þ:f xn�1ð Þ� f xn�2ð Þ
xn�1 � xn�2

(2)

f xnð Þ:f xn �1ð Þ�f ? xnð Þ xn �xn�1ð Þ�0 (3)

f xn�1ð Þ�f xn�1ð Þ� f xn �2ð Þ
xn�1 � xn�2

xn �xn �1ð Þ�0 : (4)

so

xn �xn �1 �
f xn�1ð Þ xn�1 � xn�2ð Þ

f xn�1ð Þ� f xn�2ð Þ
: (5)

See also FALSE POSITION METHOD
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Secant Number
A number, more commonly called an EULER NUMBER,
giving the number of EVEN ALTERNATING PERMUTA-

TIONS. The term ZIG NUMBER is sometimes also used.
The first few are 1, 5, 61, 1385, ... (Sloane’s A000364).

See also ALTERNATING PERMUTATION, EULER NUM-

BER, EULER ZIGZAG NUMBER, TANGENT NUMBER
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Sech
HYPERBOLIC SECANT

Second
ARC SECOND

Second Countable Topology
A TOPOLOGICAL SPACE is second countable if it has a
countable TOPOLOGICAL BASIS.

See also TOPOLOGICAL BASIS, TOPOLOGICAL SPACE

Second Curvature
TORSION (DIFFERENTIAL GEOMETRY)

Second Derivative Test
Suppose f (x) is a FUNCTION of x which is twice
DIFFERENTIABLE at a STATIONARY POINT x0 :

1. If f ƒ x0ð Þ > 0; then f has a RELATIVE MINIMUM at
x0 :/
2. If f ƒ(x0) B0 ; then f has a RELATIVE MAXIMUM at
x0 :/

The EXTREMUM TEST gives slightly more general
conditions under which a function with f ƒ(x0) �0 is
a maximum or minimum.

If f (x; y) is a 2-D FUNCTION which has a RELATIVE

EXTREMUM at a point (x0 ; y0) and has CONTINUOUS

PARTIAL DERIVATIVES at this point, then fx(x0 ; y0) �0
and fy(x0 ; y0) �0: The second PARTIAL DERIVATIVES

test classifies the point as a MAXIMUM or MINIMUM.
Define the DISCRIMINANT as

D �fxxfyy �fxyfyx �fxxfyy �f 2
xy :

1. If D �0, fxx(x0 ; y0) > 0 and fxx(x0 ; y0) �
fyy(x0 ; y0) > 0; the point is a RELATIVE MINIMUM.
2. If D �0, fxx(x0; y0)B0; and fxx(x0; y0)�
fyy(x0; y0)B0; the point is a RELATIVE MAXIMUM.
3. If D B0, the point is a SADDLE POINT.
4. If D�0, higher order tests must be used.

See also DISCRIMINANT (SECOND DERIVATIVE TEST),
EXTREMUM, EXTREMUM TEST, FIRST DERIVATIVE

TEST, GLOBAL MAXIMUM, GLOBAL MINIMUM, HESSIAN

DETERMINANT, MAXIMUM, MINIMUM, RELATIVE MAX-



IMUM, RELATIVE MINIMUM, SADDLE POINT (FUNC-

TION)
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Second Fundamental Form
Let M be a REGULAR SURFACE with vp ; wp points in
the TANGENT SPACE Mp of M . For M �R3 ; the second
fundamental form is the symmetric bilinear form on
the TANGENT SPACE Mp ;

II vp ; wp

� �
�S vp

� �
� wp : (1)

where S is the SHAPE OPERATOR. The second funda-
mental form satisfies

II axu �bxv ; axu �bxvð Þ�ea2 �2fab �gb2 (2)

for any nonzero TANGENT VECTOR.

The second fundamental form is given explicitly by

e du2 �2f du dv�g dv2 (3)

where

e �
X

i

Xi

@2xi

@u2 
(4)

f �
X

i

Xi

@2xi

@u @v 
(5)

g �
X

i

Xi

@2xi

@v2 
(6)

and Xi are the DIRECTION COSINES of the surface
normal. The second fundamental form can also be
written

e ��Nu � xv �N � xuv (7)

f ��Nv � xu �N � xuv �Nvu � xvu

��Nu � xv (8)

g ��Nv � xv �N � xvv ; (9)

where N is the NORMAL VECTOR, x : U 0 R3 is a
REGULAR PATCH, and xu and xv are the partial
derivatives of x with respect to parameters u and v ,
respectively, or

e �
det xuvxuxvð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG � F2
p (10)

f �
det(xuvxuxv)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG � F2
p (11)

g �
det xuvxuxvð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FG � F2
p : (12)

See also FIRST FUNDAMENTAL FORM, FUNDAMENTAL

FORMS, SHAPE OPERATOR, THIRD FUNDAMENTAL

FORM
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Second Fundamental Tensor
WEINGARTEN MAP

Second Kind
Special functions which arise as solutions to second
order ordinary differential equations are commonly
said to be "of the first kind" if they are nonsingular at
the origin, while the linearly independent solutions
which are singular are said to be "of the second kind."
Common examples of functions of the second kind
defined in this way include the BESSEL FUNCTION OF

THE SECOND KIND, CHEBYSHEV POLYNOMIAL OF THE

SECOND KIND, CONFLUENT HYPERGEOMETRIC FUNC-

TION OF THE SECOND KIND, HANKEL FUNCTION OF

THE SECOND KIND, and so on.

The term "second kind" is also used in a more general
context to distinguish between two or more types of
mathematical objects which, however, all satisfy
some common overall property. Examples of objects
of this kind include the CHRISTOFFEL SYMBOL OF THE

SECOND KIND, ELLIPTIC INTEGRAL OF THE SECOND

KIND, FREDHOLM INTEGRAL EQUATION OF THE SECOND

KIND, STIRLING NUMBER OF THE SECOND KIND, VOL-

TERRA INTEGRAL EQUATION OF THE SECOND KIND, and
so on.

See also BESSEL FUNCTION OF THE SECOND KIND,
CHEBYSHEV POLYNOMIAL OF THE SECOND KIND,
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

SECOND KIND, ELLIPTIC INTEGRAL OF THE SECOND

KIND, FIRST KIND, FREDHOLM INTEGRAL EQUATION

OF THE SECOND KIND, HANKEL FUNCTION OF THE

SECOND KIND, SPECIAL FUNCTION, STIRLING NUMBER

OF THE SECOND KIND, THIRD KIND, VOLTERRA

INTEGRAL EQUATION OF THE SECOND KIND

Section
A section of a solid is the plane figure cut from the
solid by passing a plane through it (Kern and Bland
1948, p. 18).

See also CONIC SECTION, CROSS SECTION, CUBICAL

CONIC SECTION, CYLINDRICAL SECTION, DEDEKIND

SECTION, GRAPH SECTION, MULTISECTION, NORMAL

SECTION, SECTION (BUNDLE), SECTION (PENCIL), SEC-



TION (TANGENT BUNDLE), SPIRIC SECTION, SURFACE

OF SECTION, TORIC SECTION
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Section (Bundle)
A section of a FIBER BUNDLE gives an element of the
fiber over every point in B . Usually it is described as a
map s : B 0 E such that p(s is the identity on B . A
real-valued function on a manifold M is a section of
the trivial LINE BUNDLE M �R : Another common
example is a VECTOR FIELD, which is a section of the
TANGENT BUNDLE.

See also FIBER BUNDLE, TANGENT BUNDLE, VECTOR

BUNDLE, ZERO SECTION

Section (Pencil)
The lines of a PENCIL joining the points of a RANGE to
another POINT.

See also PENCIL, RANGE (LINE SEGMENT)

Section (Tangent Bundle)
A VECTOR FIELD is a section of its TANGENT BUNDLE,
meaning that to every point x in a MANIFOLD M , a
VECTOR X(x) � TxM is associated, where Tx is the
TANGENT SPACE.

See also TANGENT BUNDLE, TANGENT SPACE

Sectional Curvature
The mathematical object k which controls the rate of
geodesic deviation.

See also BISHOP’S INEQUALITY, CHEEGER’S FINITENESS

THEOREM, GEODESIC

Sector

A WEDGE obtained by taking a portion of a DISK with
CENTRAL ANGLE u B p radians (1808), illustrated above
as the shaded region. A sector of p radians would be a
SEMICIRCLE. Let R be the radius of the CIRCLE, c the
CHORD length, s the ARC LENGTH, h the height of the
arced portion, and d the height of the triangular

portion. Then

R �h �d (1)

s �Ru (2)

d �R cos 1
2 u
� �

(3)

�1
2 c cot 1

2 u
� �

(4)

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 �c2

p
(5)

c �2R sin 1
2 u
� �

(6)

�2d tan 1
2 u
� �

(7)

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �d2

p
(8)

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(2R �h)

p
: (9)

The ANGLE u obeys the relationships

u �
s

R 
�2 cos�1 d

R

 !
�2 tan�1 c

2d

 !

�2 sin�1 c

2R

 !
: (10)

The AREA of the sector is

A �1
2 Rs �1

2 R
2 u (11)

(Beyer 1987).

See also CIRCLE-CIRCLE INTERSECTION, LENS, OBTUSE

TRIANGLE, SEGMENT
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Sectorial Harmonic
A SPHERICAL HARMONIC OF THE FORM

sin(mu)Pm
m(cos f):

or

cos(mu)Pm
m(cos f):

See also SPHERICAL HARMONIC, TESSERAL HARMONIC,
ZONAL HARMONIC

Secular Equation
CHARACTERISTIC EQUATION



Seed
The initial number used as the starting point in a
RANDOM NUMBER generating ALGORITHM.

Seed of Life

One of the beautiful arrangements of CIRCLES found
at the Temple of Osiris at Abydos, Egypt (Rawles
1997). The CIRCLES are placed with 6-fold symmetry,
forming a mesmerizing pattern of CIRCLES and
LENSES.

See also CIRCLE, CIRCLE COVERING, FIVE DISKS

PROBLEM, FLOWER OF LIFE, VENN DIAGRAM
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Seek Time
POINT-POINT DISTANCE–1-D

Segment

A portion of a DISK whose upper boundary is a
circular ARC and whose lower boundary is a CHORD

making a CENTRAL ANGLE u B p radians (180 8), illu-
strated above as the shaded region. Let R be the
radius of the CIRCLE, c the CHORD length, s the ARC

LENGTH, h the height of the arced portion, and d the

height of the triangular portion. Then

R �h �d (1)

s �Ru (2)

d �R cos 1
2 u
� �

(3)

�1
2 c cot 1

2 u
� �

(4)

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 �c2

p
(5)

c �2R sin 1
2 u
� �

(6)

�2d tan 1
2 u
� �

(7)

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �d2

p
(8)

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(2R �h)

p
: (9)

The ANGLE u obeys the relationships

u �
s

R 
�2 cos�1 d

R

 !
�2 tan�1 c

2d

 !

�2 sin�1 c

2R

 !
: (10)

The AREA of the segment is then

A �Asector �Aisosocles triangle (11)

�1
2 R

2( u �sin u) (12)

�1
2(Rs �cd) (13)

�R2 cos�1 d

R

 !
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �d2

p
(14)

�R2 cos�1 R � h

R

 !
�(R �h)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh �h2

p
: (15)

where the formula for the ISOSCELES TRIANGLE in
terms of the VERTEX angle has been used (Beyer
1987). Approximate formulas for the ARC LENGTH and
AREA are

s :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�16

3 h2
q

(16)

accurate to within 0.3% for 0�5u590�; and

A:2
3 ch�

h3

2c
: (17)

accurate to within 0.1% for 0�5u5150� and 0.8% for
150�5u5180� (Harris and Stocker 1998).

See also CHORD, CIRCLE-CIRCLE INTERSECTION, CY-

LINDRICAL SEGMENT, LENS, PARABOLIC SEGMENT,



REULEAUX TRIANGLE, SAGITTA, SECTOR, SPHERICAL

SEGMENT
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Segmented Number
PRIME NUMBER OF MEASUREMENT

Segner’s Recurrence Formula
The RECURRENCE RELATION

En �E2En�1 �E3En�2 �. . .�En �1E2

which gives the solution to EULER’S POLYGON DIVI-

SION PROBLEM.

See also CATALAN NUMBER, EULER’S POLYGON DIVI-

SION PROBLEM

Segre Characteristic
A set of integers that give the orders of the blocks in a
JORDAN CANONICAL FORM, with those integers corre-
sponding to submatrices containing the same latent
root bracketed together. For example, the Segre
characteristic of

a 1
a

a

b 1
b 1

b

g

d 1
d

d

2
666666666666664

3
777777777777775

is [(21)31(21)] (Frazer et al. 1955, p. 94).
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Segre’s Theorem
For any REAL NUMBER r ]0 ; an IRRATIONAL number a
can be approximated by infinitely many RATIONAL

fractions p =q in such a way that

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4r
p

q2 
B

p

q 
� a B

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4r

p
q2 

:

If r �1, this becomes HURWITZ’S IRRATIONAL NUMBER

THEOREM.

See also HURWITZ’S IRRATIONAL NUMBER THEOREM

Seiberg-Witten Equations

DA c �0

F �A ��t( c; c);

where /t/ is the sesquilinear map /t : W ��W �/

/0 A�C :/

See also WITTEN’S EQUATIONS
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Seiberg-Witten Invariants
WITTEN’S EQUATIONS

Seidel-Entringer-Arnold Triangle
The NUMBER TRIANGLE consisting of the ENTRINGER

NUMBERS En; k arranged in "ox-plowing" order,

E00

E10 0 E11

E22 1 E21 1 E20

E30 0 E30 0 E32 0 E33

E44 1 E43 1 E42 1 E41 1 E40

giving

1

0 0 1

1 1 1 1 0

0 0 1 0 2 0 2

5 1 5 1 4 1 2 1 0

See also BELL NUMBER, BOUSTROPHEDON TRANS-

FORM, CLARK’S TRIANGLE, ENTRINGER NUMBER, EU-

LER’S TRIANGLE, LEIBNIZ HARMONIC TRIANGLE,
LOSSNITSCH’S TRIANGLE, NUMBER TRIANGLE, PAS-

CAL’S TRIANGLE
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Seifert Circle
Eliminate each KNOT crossing by connecting each of
the strands coming into the crossing to the adjacent
strand leaving the crossing. The resulting strands no
longer cross but form instead a set of nonintersecting
CIRCLES called Seifert circles.
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Seifert Conjecture
Every smooth NONZERO VECTOR FIELD on the 3-
SPHERE has at least one closed orbit. The conjecture
was proposed in 1950, proved true for Hopf fibrations,
but proved false in general by Kuperberg (1994).
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Seifert Form
For K a given KNOT in S3 ; choose a SEIFERT SURFACE

M2 in S3 for K and a bicollar M̂ �[�1; 1] in S3 �K : If
x � H1(M) is represented by a 1-cycle in M̂ ; let x�

denote the homology cycle carried by x �1 in the
bicollar. Similarly, let x� denote x ��1: The function
f : H1( M̂) �H1( M̂) 0 Z defined by

f (x; y) �lk(x; y�) :

where lk denotes the LINKING NUMBER, is called a
Seifert form for K .

See also SEIFERT MATRIX
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Seifert Matrix
Given a SEIFERT FORM f (x; y) ; choose a basis e1 ; ..., e2g

for H1( M̂) as a Z/-module so every element is uniquely
expressible as

n1e1 �. . .�n2ge2g (1)

with ni integer. Then define the Seifert matrix V as
the 2g �2g INTEGER MATRIX with entries

vij �lk ei ; e �j

� �
: (2)

For example, the right-hand TREFOIL KNOT has
Seifert matrix

V �
�1 1
0 �1

� �
: (3)

A Seifert matrix is not a KNOT INVARIANT, but it can
be used to distinguish between different SEIFERT

SURFACES for a given knot.

See also ALEXANDER MATRIX

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, pp. 200 �/203, 1976.

Seifert Surface
An orientable surface with one boundary component
such that the boundary component of the surface is a
given KNOT K . In 1934, Seifert proved that such a
surface can be constructed for any KNOT. The process
of generating this surface is known as Seifert’s
algorithm. Applying Seifert’s algorithm to an alter-
nating projection of an alternating knot yields a
Seifert surface of minimal GENUS.

There are KNOTS for which the minimal genus Seifert
surface cannot be obtained by applying Seifert’s
algorithm to any projection of that KNOT, as proved
by Morton in 1986 (Adams 1994, p. 105).

See also GENUS (KNOT), SEIFERT MATRIX

References
Adams, C. C. The Knot Book: An Elementary Introduction to

the Mathematical Theory of Knots. New York: W. H.
Freeman, pp. 95�/106, 1994.
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Seiffert’s Spherical Spiral

The SPHERICAL CURVE obtained when moving along
the surface of a sphere with constant speed, while
maintaining a constant angular velocity with respect
to a fixed diameter (Erdos 2000). This curve is given
in CYLINDRICAL COORDINATES by the parametric
equations

r �sn(s ; k)

u �ks

z �cn(s ; k) ;

where k is a POSITIVE constant and sn(s) and cn(s) are
JACOBI ELLIPTIC FUNCTIONS (Whittaker and Watson
1990, pp. 527 �/528).

Erdos (2000) provides a derivation of the equations of
this curve, as well as an analysis of its properties,
including conditions for obtaining periodic orbits.

See also SPHERICAL CURVE, SPHERICAL SPIRAL
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Selberg Trace Formula
Let p run over all distinct primitive ordered periodic
geodesics, and let t(p) denote the positive length of p ,
then every EVEN FUNCTION h( r) analytic in ½I[ r] ½5
e�1 =2 and such that ½h(r) ½5O ½ r½�2� d

� �
for r 09�

satisfies the summation formula

X�
k �0

h(rk) �(g �1)g
�

��

�
d ̂h

d t

 !
dt

sinh 1
2 t
� �

�
X
fp g

X�
n�1

t(p)

2 sinh 1
2 nt(p)
h i ĥ(nt(p)) :

where g is the genus of the surface whose area is
4p(g �1) by the GAUSS-BONNET THEOREM.

See also SELBERG ZETA FUNCTION
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Selberg Zeta Function
Let p run over all distinct primitive ordered periodic
geodesics, and let t(p) denote the positive length of p ,
then the Selberg zeta function is defined as

Z(s) �
Y
fp g

Y�
k �0

1 �e �z(p)(s�k)

 �

:

for s �1.

See also SELBERG TRACE FORMULA

References
d’Hoker, E. and Phong, D. H. "Multiloop Amplitudes for the

Bosonic Polyakov String." Nucl. Phys. B 269, 205�/234,
1986.

d’Hoker, E. and Phong, D. H. "On Determinants of Lapla-
cians on Riemann Surfaces." Commun. Math. Phys. 104,
537�/545, 1986.

Fried, D. Invent. Math. 84, 523�/540, 1986.
Selberg, A. "Harmonic Analysis and Discontinuous Groups

in Weakly Symmetric Riemannian Spaces with Applica-
tions to Dirichlet Series." J. Indian Math. Soc. 20, 47�/87,
1956.

Voros, A. "Spectral Functions, Special Functions and the
Selberg Zeta Function." Commun. Math. Phys. 110, 439�/

465, 1987.

Selberg’s Formula
Let x be a positive number, and define

l(d)�m(d) ln
x

d

 !" #2

(1)

f (n)�
X

d

l(d): (2)

where the sum extends over the divisors d of n , and
m(n) is the MÖBIUS FUNCTION. Then



S �
X
n5x

f (n) �2x ln x �o(x ln x) (3)

(Nagell 1951, p. 286).

See also PRIME NUMBER THEOREM
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Selection Sort
A SORTING algorithm which makes n passes over a set
of n elements, in each pass selecting the smallest
element and deleting it from the set. This algorithm
has running time O(n2) ; compared to O(n ln n) for the
best algorithms (Skiena 1990, p. 14).

See also SORTING
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Self Number
A number (usually base 10 unless specified other-
wise) which has no GENERATOR. Such numbers were
originally called COLUMBIAN NUMBERS (S. 1974).
There are infinitely many such numbers, since an
infinite sequence of self numbers can be generated
from the RECURRENCE RELATION

Ck �8 � 10k �1 �Ck �1 �8 ; (1)

for k �2, 3, ..., where C1 �9 : The first few self
numbers are 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86,
97, ... (Sloane’s A003052).

An infinite number of 2-self numbers (i.e., base-2 self
numbers) can be generated by the sequence

Ck �2j �Ck �1 �1 (2)

for k �1, 2, ..., where C1 �1 and j is the number of
digits in Ck �1 : An infinite number of n -self numbers
can be generated from the sequence

Ck �(n �2)nk �1 �Ck �1 �(n �2) (3)

for k �2, 3, ..., and

C1 �
n �1 for n even
n �2 for n odd :

 
(4)

Joshi (1973) proved that if k is ODD, then m is a k -self
number IFF m is ODD. Patel (1991) proved that 2k;

4k �2; and k2 �2k �1 are k -self numbers in every
EVEN base k > 4:/

See also DIGITADDITION
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Self-Adjoint
Consider a second-order differential operator

L̃u(x)�p0

d2u

dx2
�p1

du

dx
�p2u; (1)

where u�u(x) and pi�pi(x) are REAL FUNCTIONS of x
on the region of interest [a, b ] with 2�i continuous
derivatives and with p0(x)"0 on [a, b ]. This means
that there are no singular points in [a, b ]. Then the
ADJOINT operator L̃� is defined by

L̃�u�
d2

dx2
p0uð Þ� d

dx
p1uð Þ�p2u (2)

�p0

d2u

dx2
� 2p?0�p1ð Þdu

dx
� pƒ0�p?1�p2ð Þu: (3)

In order for the operator to be self-adjoint, i.e.,

L̃�L̃�: (4)

the second terms in (1) and (3) must be equal, so

p?0(x)�p1(x): (5)

This also guarantees that the third terms are equal,
since

p?0(x)�p1(x)[pƒ0(x)�p?1(x): (6)

so (3) becomes

L̃u�L̃�u�p0

d2u

dx2
�p?0

du

dx
�p2u (7)

�
d

dx
p0

du

dx

 !
�p2u�0: (8)

The differential operators corresponding to the LE-



GENDRE DIFFERENTIAL EQUATION and the equation of
SIMPLE HARMONIC MOTION are self-adjoint, while
those corresponding to the LAGUERRE DIFFERENTIAL

EQUATION and HERMITE DIFFERENTIAL EQUATION are
not.

A nonself-adjoint second-order linear differential
operator can always be transformed into a self-adjoint
one using STURM-LIOUVILLE THEORY. In the special
case p2(x) �0; (8) gives

d

dx
p0(x)

du

dx

" #
�0 (9)

p0(x)
du

dx 
�C (10)

du �C
dx

p0(x) 
(11)

u �C g
dx

p0(x) 
; (12)

where C is a constant of integration.

A self-adjoint operator which satisfies the BOUNDARY

CONDITIONS

v̄pU ?½x�a � ̄vpU ?½x�b (13)

is automatically a HERMITIAN OPERATOR.

See also ADJOINT, HERMITIAN OPERATOR, STURM-

LIOUVILLE THEORY
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Self-Adjoint Matrix
A MATRIX A for which

A ��AT �A:

where the ADJOINT MATRIX is denoted A�; AT is the
MATRIX TRANSPOSE, and z̄ is the COMPLEX CONJUGATE.
If a MATRIX is self-adjoint, it is said to be HERMITIAN.

See also ADJOINT, HERMITIAN MATRIX, MATRIX

TRANSPOSE

Self-Avoiding Polygon

A LATTICE POLYGON consisting of a closed SELF-

AVOIDING WALK on a square lattice. The perimeter,
horizontal perimeter, vertical perimeter, and AREA

are all WELL DEFINED for self-avoiding polygons.
Special classes of self-avoiding polygons include the
BAR GRAPH POLYGON, CONVEX POLYGON, FERRERS

GRAPH POLYGON, STACK POLYGON, and STAIRCASE

POLYGON. Self-avoiding polygon are used in physics
to model crystal growth and polymers (Bousquet-
Mélou 1992).

Enumerating self-avoiding polygons according to
perimeter or area is an unsolved problem (Bous-
quet-Mélou et al. 1999).

See also POLYOMINO, SELF-AVOIDING WALK, STAIR-

CASE POLYGON
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Self-Avoiding Walk
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A self-avoiding walk is a path from one point to
another which never intersects itself. Such paths are
usually considered to occur on lattices, so that steps
are only allowed in a discrete number of directions
and of certain lengths.



Consider a self-avoiding walk on a 2-D n�n square
grid (i.e., a lattice path which never visits the same
lattice point twice) which starts at the origin, takes
first step in the positive horizontal direction, and is
restricted to nonnegative grid points only. The num-
ber of such paths of n�1, 2, ... steps are 1, 2, 5, 12, 30,
73, 183, 456, 1151, ... (Sloane’s A046170).

Similarly, consider a self-avoiding walk which starts
at the origin, takes first step in the positive horizontal
direction, is not restricted to nonnegative grid points
only, but which is restricted to take an up step before
taking the first down step. The number of such paths
of n�1, 2, ... steps are 1, 2, 5, 13, 36, 98, 272, 740,
2034, ... (Sloane’s A046171).

Self-avoiding rook walks are walks on an m�n grid
which start from (0; 0); end at (m, n ), and are

composed of only horizontal and vertical steps. The
following table gives the first few numbers R(m; n) of
such walks for small m and n . The values for m�
n�1; 2, ... are 2, 12, 184, 8512, 1262816, ... (Sloane’s
A007764).

/m/ 2 3 4 5 6

2 2

3 4 12

4 8 38 184

5 16 125 976 8512

6 32 414 5382 79384 1262816

There are a number of known formulas for computing
R(m; n) for small m, n . For example,

R(m; 2)�2m�1:

There is a RECURRENCE RELATION for R(m; 3); given
by R(1; 3)�1; R(2; 3)�4; R(3; 3)�12; R(4; 3)�38;
and

R(m; 3)�4R(m�1; 3)�3R(m�2; 3)�2R(m�3; 3)

�R(m�3; 4)

for m]5; as well as the GENERATING FUNCTION

R(m; 3)

�
1

(m � 1)!

dm�1

dxm�1

(x � 1)(x � 1)

x2 � 3x � 1ð Þ x2 � x � 1ð Þ j
x�0

(Abbott and Hanson 1978, Finch).

A related sequence is the number of shapes which can
be formed by bending a piece of wire of length n in the
plane, where bends are of 0 or990� and the wire may
cross itself at right angles but not pass over itself. The
number of shapes for wires of length 1, 2, ... are 1, 2,
4, 10, 24, 66, 176, 493, ... (Sloane’s A001997).

Consider a self-avoiding walk on a 2-D n�n square
grid from one corner to another such that no two
consecutive steps are in the same direction. The
number of such paths for n�1, 2, ... are 1, 2, 2, 4,



10, 36, 188, ... (Sloane’s A034165; counting the
number of paths on the 1 �1 point "lattice" as 1),
and the maximum lengths of these paths are 0, 2, 4,
10, 12, 26, 36, ... (Sloane’s A034166).

See also LATTICE PATH, RANDOM WALK, SELF-AVOID-

ING POLYGON, SELF-AVOIDING WALK CONNECTIVE

CONSTANT, STAIRCASE POLYGON, THREE-CHOICE

WALK
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Self-Avoiding Walk Connective Constant
Let the number of RANDOM WALKS on a d -D hypercu-
bic lattice starting at the ORIGIN which never land on
the same lattice point twice in n steps be denoted
cd(n): The first few values are

cd(0) �1 (1)

cd(1) �2d (2)

cd(2) �2d(2d �1): (3)

In general,

dn 5cd(n) 52d(2d �1)n �1 (4)

(Pönitz and Tittman 2000), with tighter bounds given
by Madras and Slade (1993). Conway and Guttmann
(1996) have enumerated walks of up to length 51.

The so-called "connective constants" are defined by

md �lim
n0�

[cd(n)]1=n (5)

and are known to exist and be FINITE. The best ranges
for these constants are

m2 � [2:62002; 2:679192495] (6)

m3 � [4:572140 ; 4:7476] (7)

m4 � [6:742945 ; 6:8179] (8)

m5 � [8:828529 ; 8:88602] (9)

m6 � [10:874038 ; 10 :8886] (10)

(Beyer and Wells 1972, Noonan 1998, Finch). The
upper bound of m2 improves on the 2.6939 found by
Noonan 1998 and was computed by Pönitz and Titt-
man (2000).

For the triangular lattice in the plane, m B4:278 (Alm
1993), and for the hexagonal planar lattice, it is
conjectured that

m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(11)

(Madras and Slade 1993).

The following limits are also believed to exist and to
be FINITE:

limn0�

c(n)

mnn g�1 
for d "4

limn0�

c(n)

mnn g�1(ln n)1=4 for d �4:

8>>><
>>>: (12)

where the critical exponent g �1 for d �4 (Madras
and Slade 1993) and it has been conjectured that

g �

43
32 for d �2

1:162 . . . for d �3
1 for d �4:

8<
: (13)

Define the mean square displacement over all n -step
self-avoiding walks v as

s(n)� ½v(n)½2
! "

�
1

c(n)

X
v

½v(n)½2: (14)

The following limits are believed to exist and be
FINITE:

limn0�

s(n)

n2n
for d"4

limn0�

s(n)

n2n(ln n)1=4 for d�4:

8>>><
>>>: (15)

where the critical exponent n�1=2 for d �4 (Madras
and Slade 1993), and it has been conjectured that

n�

3
4 for d�2

0:59 . . . for d�3
1
2 for d�4:

8><
>: (16)

See also RANDOM WALK, SELF-AVOIDING WALK
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Self-Complementary Graph

A self-complementary graph is a GRAPH which is
isomorphic to its GRAPH COMPLEMENT. The numbers
of simple self-complementary graphs on n �1, 2, ...
nodes are 1, 0, 0, 1, 2, 0, 0, 10, ... (Sloane’s A000171).
The first few of these compose to the trivial graph on
one node, the PATH GRAPH P4 ; and the CYCLE GRAPH

C5 :/

All self-complementary graphs have GRAPH DIAMETER

2 or 3 (Sachs 1962; Skiena 1990, p. 187).

See also GRAPH COMPLEMENT, ISOMORPHIC GRAPHS
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Self-Conjugate Partition

A PARTITION whose CONJUGATE PARTITION is equiva-
lent to itself. The FERRERS DIAGRAMS corresponding
to the self-conjugate partitions for 3 5n 510 are
illustrated above. The numbers of self-conjugate
partitions of n �1, 2, ... are 1, 0, 1, 1, 1, 1, 1, 2, 2, 2,
2, 3, 3, 3, 4, 5, 5, 5, 6, 7, ... (Sloane’s A000700). The
number of self-conjugate partitions Sn of n is equal to
the number of partitions of n into distinct odd parts,
and has generating function

Y�
k �0

1 �x2k �1 �
X�
k �0

Skxk ;

and (�1)nSn has GENERATING FUNCTION

Y�
k�1

1

1 � xk
�
X�
k�0

(�1)kSkxk:

See also CONJUGATE PARTITION, FERRERS DIAGRAM,
PARTITION FUNCTION P
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Self-Conjugate Permutation
INVOLUTION (PERMUTATION)

Self-Conjugate Subgroup
INVARIANT SUBGROUP



Self-Descriptive Number
A 10-DIGIT number satisfying the following property.
Number the DIGITS 0 to 9, and let DIGIT n be the
number of ns in the number. There is exactly one
such number: 6210001000.
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Self-Dual

A geometric proposition is said to be self-dual when
application of the DUALITY PRINCIPLE of PROJECTIVE

GEOMETRY results in a proposition equivalent to the
original. DESARGUES’ THEOREM is an example of a
self-dual proposition.

See also SELF-DUAL GRAPH, SELF-DUAL POLYHEDRON

Self-Dual Graph

A GRAPH that is DUAL to itself. WHEEL GRAPHS are
self-dual, as are the examples illustrated above.
Naturally, the SKELETON of a SELF-DUAL POLYHEDRON

is a self-dual graph.

See also DUAL GRAPH
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Self-Dual Polyhedron

A POLYHEDRON that is DUAL to itself. For example, the
TETRAHEDRON is self-dual. Naturally, the SKELETON

of a self-dual polyhedron is a SELF-DUAL GRAPH.

See also DUAL POLYHEDRON, SELF-DUAL GRAPH.

Self-Homologous Point
SIMILITUDE CENTER

Self-Linking Number
CALUGAREANU THEOREM, GAUSS INTEGRAL, LINKING

NUMBER

Self-Loop
LOOP (GRAPH)

Self-Map
A mapping of a DOMAIN F : U 0 U to itself.

See also MÖ BIUS TRANSFORMATION
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Self-Reciprocating Property
Let h be the number of sides of certain SKEW

POLYGONS (Coxeter 1973, p. 15). Then

h �
2(p � q � 2)

10 � p � q
:
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Self-Recursion
SELF-RECURSION is a RECURSION which is defined in
terms of itself, resulting in an ill-defined infinite
regress.

See also RECURSION, REGRESSION, SELF-RECURSION
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Selfridge-Hurwitz Residue
Let the RESIDUE from PÉ PIN’S THEOREM be

Rn �3 Fn�1ð Þ=2 mod Fnð Þ;

where Fn is a FERMAT NUMBER. Selfridge and Hurwitz
use

Rn mod 235 �1; 236 ; 236 �1
� �

:

A nonvanishing Rn mod 236ð Þ indicates that Fn is
COMPOSITE for n �5.

See also FERMAT NUMBER, PÉ PIN’S THEOREM
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Selfridge’s Conjecture
There exist infinitely many n �0 with p2

n > pn�ipn�i

for all i Bn , where pn is the nth PRIME. Also, there
exist infinitely many n �0 such that 2pn Bpn �i �pn�i

for all i Bn .

Self-Similarity
An object is said to be self-similar if it looks "roughly"
the same on any scale. FRACTALS are a particularly
interesting class of self-similar objects. Self-similar
objects with parameters N and s are described by a
power law such as

N �sd ;

where

d �
ln N

ln s

is the "DIMENSION" of the scaling law, known as the
HAUSDORFF DIMENSION.

See also FRACTAL, HAUSDORFF DIMENSION
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Self-Transversality Theorem
Let j , r , and s be distinct INTEGERS (mod n ), and let W
be the point of intersection of the side or diagonal
V ; Vi�j of the n -gon P � V1 . . . Vn½  with the transver-
sal Vi�r Vi�s : Then a NECESSARY and SUFFICIENT

condition for

Yn

i�1

ViWi

WiVi �j

" #
�(�1)n ;

where AB ½½CD and

AB

CD

" #
;

is the ratio of the lengths [A, B ] and [C, D ] with a plus
or minus sign depending on whether these segments
have the same or opposite direction, is that

1. n �2m is EVEN with j �m (mod n) and
s �r �m (mod n) ;/
2. n is arbitrary and either s �2r and j �3r ; or
3. r �2s (mod n) and j �3s (mod n):/

References
Grünbaum, B. and Shepard, G. C. "Ceva, Menelaus, and the

Area Principle." Math. Mag. 68, 254 �/268, 1995.

Sellke’s Self-Describing Sequence
KOLAKOSKI SEQUENCE

Selmer Group

A GROUP which is related to the TANIYAMA-SHIMURA

CONJECTURE.

See also TANIYAMA-SHIMURA CONJECTURE

Semialgebraic Set
A subset of Rn which is a finite Boolean combination
of sets OF THE FORM x̄ � x1 ; . . . ; xnð Þ : f (x̄) > 0f g and
fx̄ : g(x̄) �0 g; where f ; g �R X1 ; . . . ; Xn½ :/
By TARSKI’S THEOREM, the solution set of a QUANTI-

FIED SYSTEM of real algebraic equations and inequal-
ities is a semialgebraic set (Strzebonski 2000).

See also TARSKI’S THEOREM
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Semianalytic
/X ⁄Rn is semianalytic if, for all x �Rn ; there is an
open neighborhood U of x such that X S U is a finite
Boolean combination of sets fx̄ � U : f (x̄) �0g and fx̄ �
U : g(x̄) > 0g; where f ; g : U 0 R are ANALYTIC.

See also ANALYTIC FUNCTION, PSEUDOANALYTIC

FUNCTION, SUBANALYTIC
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Semicircle

Half a CIRCLE. The AREA of a semicircle of radius r is
given by

A �g
r

0 g
ffiffiffiffiffiffiffiffiffi
r2 �x2

p

�
ffiffiffiffiffiffiffiffiffi
r2 �x2

p dx dy �2 g
r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �x2

p
dx �1

2 pr2 : (1)

The weighted mean of y is

xh i2�2 g
r

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �x2

p
dx �2

3 r
3 : (2)

The semicircle is the CROSS SECTION of a HEMISPHERE

for any PLANE through the Z -AXIS.
The perimeter of the curved boundary is given by

s �g
r

�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x?2

p
dy: (3)

With x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �y2

p
; this gives

s � pr : (4)

The PERIMETER of the semicircular lamina is then

L �2r � pr �r(2 � p) : (5)

The weighted value of x of the semicircular curve is
given by

xh i1�g
r

�r

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x?2

p
dy �g

r

�r

r dy�2r2 ; (6)

so the CENTROID is

x̄1 �
xh i1

A
�

2r

p
: (7)

The CENTROID of the semicircular lamina is given by

x̄2 �
xh i2

A
�

4r

3p 
(8)

(Kern and Bland 1948, p. 113).

See also ARBELOS, ARC, CIRCLE, DISK, HEMISPHERE,
LENS, RIGHT ANGLE, SALINON, THALES’ THEOREM,
YIN-YANG
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Semicolon

The symbol ; given special meanings in several
mathematics contexts, the most common of which is
the COVARIANT DERIVATIVE.

See also COVARIANT DERIVATIVE
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Semicolon Derivative
COVARIANT DERIVATIVE

Semiconvergent Series
ASYMPTOTIC SERIES

Semicubical Parabola

A PARABOLA-like curve with Cartesian equation

y�ax3=2; (1)

PARAMETRIC EQUATIONS

x�t2 (2)

y�at3 (3)

and POLAR COORDINATES,

r�
tan2 u sec u

a
: (4)

The semicubical parabola is the curve along which a
particle descending under gravity describes equal
vertical spacings within equal times, making it an
ISOCHRONOUS CURVE. The problem of finding the



curve having this property was posed by Leibniz in
1687 and solved by Huygens (MacTutor Archive).
The ARC LENGTH, CURVATURE, and TANGENTIAL ANGLE

are

s(t) � 1
27 4 �9t2
� �3 =2

�8
27 (5)

k(t) �
6

t 4 � 9t2ð Þ3 =2 (6)

f(t) �tan�1 3
2 t
� �

: (7)

See also NEILE’S PARABOLA, PARABOLA INVOLUTE
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Semiderivative
A FRACTIONAL DERIVATIVE of order 1u2. The semider-
ivative of tl is given by

D1 =2tl �
tl�1 =2 G( l � 1)

G l � 1
2

� � ;

so the semiderivative of the CONSTANT FUNCTION

f (t) �c is given by

D1=2c �c lim
l00

tl �1 =2 G( l � 1)

G l � 1
2

� � �
cffiffiffiffiffi
pt

p :

See also DERIVATIVE, FRACTIONAL DERIVATIVE, SEMI-

INTEGRAL
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Semidirect Product
A "split" extension G of GROUPS N and F which
contains a SUBGROUP F̄ isomorphic to F with G � F̄ N̄
and F̄ S N̄ �feg (Ito 1987, p. 710). Then the semi-
direct product of a GROUP G by a group H , denoted
H �G (or sometimes H : G) with homomorphism T is
given by

(g; h)(g?; h?) �(gg?; (h(g?T))h?);

where g; g ? � G ; h ; h? � H ; and T � Hom(F ; Aut(H))
(Suzuki 1982, p. 67; Scott 1987, p. 213). Note that the
semidirect product of two groups is not uniquely
defined.

The semidirect product of a group G by a group H can
also be defined as a group S �GH which is the
product of its subgroups G and H , where H is normal
in S and G S H �f1g: If G is also normal in S , then
the semidirect product becomes a GROUP DIRECT

PRODUCT (Shmel’kin 1988, p. 247).

See also ACTION, GROUP DIRECT PRODUCT, SUBGROUP
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Semiflow
An ACTION with G �R�:/

See also FLOW

Semigroup
A mathematical object defined for a set and a BINARY

OPERATOR in which the multiplication operation is
ASSOCIATIVE. No other restrictions are placed on a
semigroup; thus a semigroup need not have an
IDENTITY ELEMENT and its elements need not have
inverses within the semigroup. A semigroup is an
ASSOCIATIVE GROUPOID.

A semigroup can be empty. The total number of
semigroups of order n are 1, 4, 18, 126, 1160,
15973, 836021, ... (Sloane’s A001423). The number
of semigroups of order n with one IDEMPOTENT are 1,
2, 5, 19, 132, 3107, 623615, ... (Sloane’s A002786), and
with two IDEMPOTENTS are 2, 7, 37, 216, 1780, 32652,
... (Sloane’s A002787). The number a(n) of semigroups
having n IDEMPOTENTS are 1, 2, 6, 26, 135, 875, ...
(Sloane’s A002788).

See also ASSOCIATIVE, BINARY OPERATOR, FREE

SEMIGROUP, GROUPOID, INVERSE SEMIGROUP, MONO-

ID, QUASIGROUP
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Semi-Integral
A FRACTIONAL INTEGRAL of order 1u2. The semi-
integral of tl is given by

D �1 =2tl �
tl�1 =2 G( l � 1)

G l � 3
2

� � ;

so the semi-integral of the CONSTANT FUNCTION f (t) �
c is given by

D �1 =2c �c lim
l00

tl�1 =2 G( l � 1)

G l � 3
2

� � �2c

ffiffiffi
t

p

s
:

See also FRACTIONAL INTEGRAL, INTEGRAL
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Semilatus Rectum
In general, the CHORD through a FOCUS parallel to the
DIRECTRIX of a CONIC SECTION is called the LATUS

RECTUM. Half this length is called the semilatus
rectum (Coxeter 1969).

Given an ELLIPSE, the semilatus rectum is the
distance L measured from a FOCUS such that

1

L 
�

1

2

1

r�
�

1

r�

 !
; (1)

where r��a(1 �e) and r ��a(1 �e) are the APOAPSIS

and PERIAPSIS, and e is the ELLIPSE’s ECCENTRICITY.
Plugging in for r� and r � then gives

1

L 
�

1

2a

1

1 � e 
�

1

1 � e

 !
�

1

2a

(1 � e) � (1 � e)

1 � e2

�
1

a

1

1 � e2 
; (2)

so

L �a 1 �e2
� �

: (3)

See also CONIC SECTION, DIRECTRIX (CONIC SECTION),
ECCENTRICITY, ELLIPSE, FOCUS, LATUS RECTUM,
SEMIMAJOR AXIS, SEMIMINOR AXIS
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Semimagic Square
A square that fails to be a MAGIC SQUARE only because
one or both of the main diagonal sums do not equal
the MAGIC CONSTANT (Kraitchik 1942, p. 143).

See also MAGIC SQUARE

References
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Semimajor Axis
HALF the distance across an ELLIPSE along the longest
of its three principal axes.

See also ELLIPSE, SEMIMINOR AXIS

Semiminor Axis
Half the distance across an ELLIPSE along its short
principal axis.

See also ELLIPSE, SEMIMAJOR AXIS

Seminorm
A seminorm is a function on a VECTOR SPACE V ,
denoted ½½v ½½; such that the following conditions hold
for all v and w in V , and any scalar c .

1. ½½v½½]0:;/
2. ½½cv½½� ½c ½ ½½v ½½; and
3. ½½v �w ½½5 ½½v½½�½½w½½:/

Note that it is possible for ½½v½½�0 for nonzero v . For
example, the FUNCTIONAL ½½f ½½� ½f (0) ½ for continuous
functions is a seminorm which is not a norm. A
seminorm is a norm if ½½v½½�0 is equivalent to v �0.

See also FRÉ CHET SPACE, NORM, TOPOLOGICAL VEC-

TOR SPACE

Semiperfect Magic Cube
A semiperfect magic cube, also called an "Andrews
cube," is a MAGIC CUBE for which the CROSS SECTION

diagonals do not sum to the MAGIC CONSTANT.

See also MAGIC CUBE, PERFECT MAGIC CUBE
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Semiperfect Number
A number such as 20�1�4�5�10 which is the
SUM of some (or all) of its PROPER DIVISORS is called a
semiperfect number, or sometimes a pseudoperfect



number (Butske et al. 1999). A semiperfect number
which is the SUM of all its PROPER DIVISORS is called a
PERFECT NUMBER. The first few semiperfect numbers
are 6, 12, 18, 20, 24, 28, 30, 36, 40, ... (Sloane’s
A005835). Every multiple of a semiperfect number is
semiperfect, as are all numbers 2mp for m > 1 and p a
PRIME between 2m and 2m�1 (Guy 1994, p. 47).

A semiperfect number cannot be DEFICIENT. Rare
ABUNDANT NUMBERS which are not semiperfect are
called WEIRD NUMBERS. Semiperfect numbers are
sometimes also called pseudoperfect numbers.

See also ABUNDANT NUMBER, DEFICIENT NUMBER,
PERFECT NUMBER, PRIMARY PSEUDOPERFECT NUM-

BER, PRIMITIVE SEMIPERFECT NUMBER, WEIRD NUM-

BER
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Semiperimeter
The semiperimeter on a figure is defined as

s �1
2 p; (1)

where p is the PERIMETER. The semiperimeter of
POLYGONS appears in unexpected ways in the compu-
tation of their AREAS. The most notable cases are in
the ALTITUDE, EXRADIUS, and INRADIUS of a TRIANGLE,
the SODDY CIRCLES, HERON’S FORMULA for the AREA of
a TRIANGLE in terms of the legs a , b , and c

AD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s �a)(s �b)(s �c)

p
; (2)

and BRAHMAGUPTA’S FORMULA for the AREA of a
QUADRILATERAL

Aquadrilateral

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s �a)(s �b)(s �c)(s �d) �abcd cos2

A � B

2

 !vuut :

(3)

The semiperimeter also appears in the beautiful
L’HUILIER’S THEOREM about SPHERICAL TRIANGLES.

For a TRIANGLE, the following identities hold,

s �a �1
2(�a �b �c) (4)

s �b �1
2(�a �b �c) (5)

s �c �1
2(�a �b �c) : (6)

Now consider the above figure. Let I be the INCENTER

of the TRIANGLE DABC ; with D , E , and F the tangent
points of the INCIRCLE. Extend the line BA with
GA �CE . Note that the pairs of triangles (ADI, AFI ),
(BDI, BEI ), (CFI, CEI ) are congruent. Then

BG �BD �AD �AG �BD �AD �CE

�1
2(2BD �2AD �2CE)

�1
2[(BD �BE) �(AD �AF) �(CE �CF)]

�1
2[(BD �AD) �(BE �CE) �(AF �CF)]

�1
2(AB�BC�AC)�1

2(a�b�c)�s: (7)

Furthermore,

s�a�BG�BC

�(BD�AD�AG)�(BE�CE)

�(BD�AD�CE)�(BD�CE)�AD (8)

s�b�BG�AC

�(BD�AD�AG)�(AF�CF)

�(BD�AD�CE)�(AD�CE)�BD (9)

s�c�BG�AB�AG (10)

(Dunham 1990). These equations are some of the
building blocks of Heron’s derivation of HERON’S

FORMULA.

See also PERIMETER
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Semiprime
A COMPOSITE number which is the PRODUCT of two
PRIMES (possibly equal). They correspond to the 2-
ALMOST PRIMES. The first few are 4, 6, 9, 10, 14, 15,
21, 22, ... (Sloane’s A001358).

See also ALMOST PRIME, CHEN’S THEOREM, COMPO-

SITE NUMBER, LANDAU’S PROBLEMS, PRIME NUMBER

References
Sloane, N. J. A. Sequences A001358/M3274 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Semiprime Ring
Given an IDEAL A , a semiprime ring is one for which
An �0 IMPLIES A �0 for any POSITIVE n . Every PRIME

RING is semiprime.

See also PRIME RING

Semiregular Polyhedron
A POLYHEDRON or plane TESSELLATION is called
semiregular if its faces are all REGULAR POLYGONS

and its corners are alike (Walsh 1972; Coxeter 1973,
pp. 4 and 58; Holden 1991, p. 41). The usual name for
a semiregular polyhedron is an ARCHIMEDEAN SOLID,
of which there are exactly 13.

See also ARCHIMEDEAN SOLID, POLYHEDRON, TESSEL-

LATION
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Semiregular Tessellation
TESSELLATION

Semiring
A semiring is a set together with two BINARY

OPERATORS S(�; +) satisfying the following condi-
tions:

1. Additive associativity: For all a; b; c � S;
(a �b) �c �a �(b �c) ;/
2. Additive commutativity: For all a ; b � S;
a �b �b �a ;/
3. Multiplicative associativity: For all a; b; c � S;
(a+b)+c �a+(b+c) ;/
4. Left and right distributivity: For all a; b; c � S;
a+(b �c) �(a+b) �(a +c)/ and /(b �c)+a �(b+a)/

/�(c +a) :/

A semiring is therefore a commutative SEMIGROUP

under addition and a SEMIGROUP under multiplica-
tion. A semiring can be empty.

See also BINARY OPERATOR, RING, RINGOID, SEMI-

GROUP
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Semisecant
TRANSVERSAL LINE

Semisimple Algebra
An ALGEBRA with no nontrivial nilpotent IDEALS. In
the 1890s, Cartan, Frobenius, and Molien indepen-
dently proved that any finite-dimensional semisimple
algebra over the REAL or COMPLEX numbers is a finite
and unique DIRECT SUM of SIMPLE ALGEBRAS. This
result was then extended to algebras over arbitrary
fields by Wedderburn in 1907 (Kleiner 1996).

See also IDEAL, NILPOTENT ELEMENT, SIMPLE ALGE-

BRA

References
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Semisimple Element
A P -ELEMENT x of a GROUP G is semisimple if
E(CG(x)) "1; where E(H) is the commuting product
of all components of H and CG(x) is the CENTRALIZER

of G .

See also CENTRALIZER, P -ELEMENT

Semisimple Lie Group
A LIE GROUP which has a simply connected covering
group HOMEOMORPHIC to Rn : The prototype is any
connected closed subgroup of upper TRIANGULAR

COMPLEX MATRICES. The HEISENBERG GROUP is such
a group.

See also HEISENBERG GROUP, LIE GROUP
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Semisimple Ring
A SEMIPRIME RING which is also an ARTINIAN RING.

See also ARTINIAN RING
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Semistable
When a PRIME l divides the DISCRIMINANT of a
ELLIPTIC CURVE E , two or all three roots of E become
congruent (mod l ). An ELLIPTIC CURVE is semistable
if, for all such PRIMES l , only two roots become
CONGRUENT mod l (with more complicated definitions
for p �2 or 3).

See also DISCRIMINANT (ELLIPTIC CURVE), ELLIPTIC

CURVE

Sensitivity
The probability that a STATISTICAL TEST will be
positive for a true statistic.

See also SPECIFICITY, STATISTICAL TEST, TYPE I
ERROR, TYPE II ERROR

Sentence
This entry contributed by MATTHEW SZUDZIK

A sentence is a logic formula in which every variable
is QUANTIFIED. The concept of a sentence is important
because formulas with variables that are not quanti-
fied are ambiguous.

The concept of the sentence can be illustrated as
follows (Enderton 1977). The formula /�(x; �(y; y � x));
in which each variable is quantified, can be trans-
lated into English as the complete sentence "There
exists a set which has every set as an element."
However, the formula �(y; (y � x)); in which x is not
quantified, can only be translated as the sentence
fragment "Every set is an element of ___," where
"___" is unspecified because x is not quantified.

Because a "quantified variable" is just a more de-
scriptive name for a BOUND VARIABLE, a sentence can
also be defined as a logic formula with no FREE

VARIABLES.

See also BOUND VARIABLE, FREE VARIABLE, QUANTI-

FIER, THEORY
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Sentential Calculus
PROPOSITIONAL CALCULUS

Separating Edge
An EDGE of a GRAPH is separating if a path from a
point A to a point B must pass over it. Separating
EDGES can therefore be viewed as either bridges or
dead ends.

See also EDGE (GRAPH)

Separating Family
A SEPARATING FAMILY is a SET of SUBSETS in which
each pair of adjacent elements are found separated,
each in one of two disjoint subsets. The 26 letters of
the alphabet can be separated by a family of 9,

(abcdefghi) (jklmnopqr) (stuvwxyz)
(abcjklstu) (defmnovwx) (ghipqryz)

(adgjmpsvy) (behknqtwz) (cfilorux)
:

The minimal size of the separating family for an n -set
is 0, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, ... (Sloane’s A007600).

See also KATONA’S PROBLEM
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Separation
Two distinct point pairs AC and BD separate each
other if A , B , C , and D lie on a CIRCLE (or line) in
such order that either of the arcs (or the line segment
AC ) contains one but not both of B and D . In
addition, the point pairs separate each other if every
CIRCLE through A and C intersects (or coincides with)
every CIRCLE through B and D . If the point pairs
separate each other, then the symbol AC==BD is used.

Separation of Variables
A method of solving partial differential equations in a
function /F(x; y; . . .)/ and variables x , y , ... by making
a substitution OF THE FORM

F(x; y; . . .)�X(x)Y(y) � � � ;

breaking the resulting equation into a set of indepen-
dent ordinary differential equations, solving these for
X(x); Y(y); ..., and then plugging them back into the
original equation.

This technique works because if the product of
functions of independent variables is a constant,
each function must separately be a constant. Success
requires choice of an appropriate coordinate system
and may not be attainable at all depending on the
equation. Separation of variables was first used by
L’Hospital in 1750. It is especially useful in solving
equations arising in mathematical physics, such as



LAPLACE’S EQUATION, the HELMHOLTZ DIFFERENTIAL

EQUATION, and the Schrödinger equation.

See also HELMHOLTZ DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION, PARTIAL DIFFERENTIAL EQUATION,
STÄ CKEL DETERMINANT
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Separation Theorem
There exist numbers y1 By2 B. . .Bxn �1 ; a Byn�1 ;
yn�1 Bb ; such that

ln � a ynð Þ� a yn�1ð Þ:

where n �1; 2, ..., n , y0 �a and yn �b : Furthermore,
the zeros x1 ; ..., xn ; arranged in increasing order,
alternate with the numbers y1 ; .../yn�1 ; so

xn By n Bxn�1 :

More precisely,

a xn �eð Þ� a(a) B a ynð Þ� a(a) � l1 �. . .� l n

B a xn�1 �e
� �

� a(a)

for n �1; ..., n �1:/

See also POINCARÉ SEPARATION THEOREM, STURMIAN

SEPARATION THEOREM
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Separatrix
A phase curve (i.e., an invariant MANIFOLD) which
meets a HYPERBOLIC FIXED POINT (i.e., an intersection
of a stable and an unstable invariant MANIFOLD) or
connects the unstable and stable manifolds of a pair
of hyperbolic or parabolic fixed points. A separatrix
marks a boundary between phase curves with differ-
ent properties.

For example, the separatrix in the equation of motion
for the pendulum occurs at the angular momentum
where oscillation gives way to rotation. There are also
many systems that have pairs of connected fixed
points, e.g., the flow in an open cavity, which has a
separatrix that connects two parabolic points.

Septendecillion
In the American system, 1054.

See also LARGE NUMBER

Septillion
In the American system, 1024.

See also LARGE NUMBER



Sequence
A sequence is an ordered set of mathematical objects
which is denoted using braces. For example, the
symbol f2ng�n�1 denotes the infinite sequence of
EVEN NUMBERS f2; 4; . . . ; 2n ; . . .g:/

See also 196-ALGORITHM, A -SEQUENCE, ALCUIN’S SE-

QUENCE, APPELL CROSS SEQUENCE, APPELL SE-

QUENCE, B2 -SEQUENCE, BASIC POLYNOMIAL

SEQUENCE, BEATTY SEQUENCE, BINOMIAL-TYPE SE-

QUENCE, CARMICHAEL SEQUENCE, CAUCHY SE-

QUENCE, CONVERGENT SEQUENCE, CROSS SEQUENCE,
DECREASING SEQUENCE, DEGREE SEQUENCE, DENSITY

(SEQUENCE), FRACTAL SEQUENCE, GIUGA SEQUENCE,
INCREASING SEQUENCE, INFINITIVE SEQUENCE, INTE-

GER SEQUENCE, ITERATION SEQUENCE, LIST, NON-

AVERAGING SEQUENCE, POLYNOMIAL SEQUENCE,
PRIMITIVE SEQUENCE, REVERSE-THEN-ADD SE-

QUENCE, SCORE SEQUENCE, SERIES, SHEFFER SE-

QUENCE, SIGNATURE SEQUENCE, SORT-THEN-ADD

SEQUENCE, STEFFENSEN SEQUENCE, ULAM SEQUENCE
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SequenceLimit
WYNN’S EPSILON METHOD

Sequency
The sequency k of a WALSH FUNCTION is defined as
half the number of zero crossings in the time base.

See also WALSH FUNCTION

Sequency Function
WALSH FUNCTION

Sequential Graph
A CONNECTED GRAPH having e EDGES is said to be
sequential if it is possible to label the nodes i with
distinct INTEGERS fi in f0; 1 ; 2 ; . . . ; e �1 g such that
when EDGE ij is labeled fi �fj ; the set of EDGE labels is
a block of e consecutive integers (Grace 1983, Gallian
1990). No HARMONIOUS GRAPH is known which cannot
also be labeled sequentially.

See also CONNECTED GRAPH, HARMONIOUS GRAPH
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Series
A series is an (often infinite) sum of terms specified by
some rule. If the difference between successive terms
is a constant, then the series is said to be an
ARITHMETIC SERIES. If each term equals the previous
multiplied by a constant, it is said to be a GEOMETRIC

SERIES. A series usually has an INFINITE number of
terms, but the phrase INFINITE SERIES is sometimes
used for emphasis or clarity.

Let the terms in a series be denoted /ai/, let the kth
partial sum be given by

Sk�
Xk

i�1

ai (1)

and let the sequence of partial sums be given by
S1�a1; S2�a1�a2; S3�a1�a2�a3; . . .f g: If the se-

quence of partial sums does not converge to a LIMIT

(e.g., it oscillates or approaches9�); the series is said
to diverge. An example of a convergent series is the
GEOMETRIC SERIES

X�
n�0

1
2

� �n

�2: (2)

and an example of a divergent series is the HARMONIC

SERIES

X�
n�1

1

n
��: (3)

A number of methods known as CONVERGENCE TESTS

can be used to determine whether a given series
converges. Although terms of a series can have either
sign, convergence properties can often be computed in
the "worst case" of all terms being POSITIVE, and then
applied to the particular series at hand. A series of
terms an is said to be ABSOLUTELY CONVERGENT if the
series formed by taking the absolute values of the an;X

n

anj j; (4)

converges.

An especially strong type of convergence is called
UNIFORM CONVERGENCE, and series which are uni-
formly convergent have particularly "nice" properties.
For example, the sum of a UNIFORMLY CONVERGENT

series of continuous functions is continuous. A CON-

VERGENT SERIES can be DIFFERENTIATED term by
term, provided that the functions of the series have
continuous derivatives and that the series of DERIVA-

TIVES is UNIFORMLY CONVERGENT. Finally, a UNI-

FORMLY CONVERGENT series of continuous functions
can be INTEGRATED term by term.

For a table listing the COEFFICIENTS for various series
operations, see Abramowitz and Stegun (1972, p. 15).

While it can be difficult to calculate analytical
expressions for arbitrary convergent infinite series,



many algorithms can handle a variety of common
series types. The program Mathematica implements
many of these algorithms. General techniques also
exist for computing the numerical values of any but
the most pathological series (Braden 1992).

Ramanujan found the interesting series identity

1 �
3!

(1!2!)3 x2 �
6!

(2!4!)3 x4 �� � �

� 1 �
x

(1!)3 �
x2

(2!)3 �. . .

" #
1 �

x

(1!)3 �
x2

(2!)3 �. . .

" #
(5)

(Preece 1928; Hardy 1999, p. 7).

See also ALTERNATING SERIES, ARITHMETIC SERIES,
ASYMPTOTIC SERIES, BIAS (SERIES), CONVERGENCE

IMPROVEMENT, CONVERGENCE TESTS, EULER-MA-

CLAURIN INTEGRATION FORMULAS, GEOMETRIC SER-

IES, HARMONIC SERIES, HYPERASYMPTOTIC SERIES,
INFINITE SERIES, Q -SERIES, RIEMANN SERIES THEO-

REM, SEQUENCE, SERIES EXPANSION, SERIES REVER-

SION, SUPERASYMPTOTIC SERIES
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Series Expansion
This entry contributed by DANIEL SCOTT UZNANSKI

A series expansion is a representation of a particular
function as a sum of powers in one of its variables, or
by a sum of powers of another (usually elementary)
function f (x):/

See also LAURENT SERIES, MACLAURIN SERIES, POWER

SERIES, SERIES, SERIES REVERSION, TAYLOR SERIES

Series Inversion
SERIES REVERSION

Series Multisection
If

f (x) �f0 �f1x �f2x2 �. . .�fnxn �. . .

then

S(n ; j) �fjx
j �fj�nxj �n �fj�2nxj�2n �. . .

is given by

S(n; j) �
1

n

Xn�1

t �0

w�jtf wtxð Þ;

where w�e2pi=n:/

See also SERIES REVERSION
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Series Reversion
Series reversion is the computation of the COEFFI-

CIENTS of the inverse function given those of the
forward function. For a function expressed in a series
as

y�a1x�a2x2�a3x3�. . . ; (1)

the series expansion of the inverse series is given by

x�A1y�A2y2�A3y3�. . . (2)

By plugging (2) into (1), the following equation is
obtained

y�a1A1y� a2A2
1�a1A2

� �
y2

� a3A3
1�2a2A1A2�a1A3

� �
y3

� 3a3A2
1A2�a2A2

2�a2A1A3

� �
�. . . (3)



Equating COEFFICIENTS then gives

A1 �a �1
1 (4)

A2 ��
a2

a1

A2
1 ��a�3

1 a2 (5)

A3 �a �5
1 2a2

2 �a1a3

� �
(6)

A4 �a�7
1 5a1a2a3 �a2

1a4 �5a3
2

� �
(7)

A5 �a �9
1 6a2

1a2a4 �3a2
1a2a3 �14a4

2 �a3
1a5 �21a1a2

2a3

� �
(8)

A6 �a�11
1 7a3

1a2a5 �7a3
1a3a4 �84a1a3

2a3

�
�a4

1a6 �28a2
1a2a2

3 �42a5
2 �28a2

1a2
2a4 Þ (9)

A7 �a �13
1 8a4

1a2a6 �8a4
1a3a4 �4a4

1a2
4

� �
�120a2

1a3
244 �180a2

1a2
2a2

3 �132a6
2

�a5
1a7 �36a3

1a2
2a5 �72a3

1a2a3a4 �12a3
1a3

3

�330a1a4
2a3 Þ (10)

(Dwight 1961, Abramowitz and Stegun 1972, p. 16). A
derivation of the explicit formula for the nth term is
given by Morse and Feshbach (1953),

An �
1

nan
1

X
s; t; u...

(�1)s�t �u�...

�n(n � 1) � � � (n � 1 � s � t � u . . .)

s!t!u! � � �
a2

a1

 !s
a3

a1

 !t

� � � ;

(11)

where

s �2t �3u �. . .�n �1: (12)
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Series-Reduced Tree
A TREE in which all nodes have degree other than 2
(in other words, no node merely allows a single edge
to "pass through"). Series-reduced trees are also

called homeomorphically irreducible or topological
trees (Bergeron et al. 1998). The numbers of series-
reduced trees with 1, 2, ... nodes are 1, 1, 0, 1, 1, 2, 2,
4, 5, 10, 14, ... (Sloane’s A000014).

The numbers of series-reduced PLANTED TREES are 0,
1, 0, 1, 1, 2, 3, 6, 10, 19, 35, ... (Sloane’s A001678). The
numbers of series-reduced ROOTED TREES are 1, 1, 0,
2, 2, 4, 6, 12, 20, 39, 71, ... (Sloane’s A001679).

See also PLANTED TREE, ROOTED TREE, TREE
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Serpentine Curve

A curve named and studied by Newton in 1701 and
contained in his classification of CUBIC CURVES. It had
been studied earlier by L’Hospital and Huygens in
1692 (MacTutor Archive).
The curve is given by the CARTESIAN equation

y(x)�
abx

x2 � a2
(1)

and PARAMETRIC EQUATIONS

x(t)�a cot t (2)

y(t)�b sin t cos t: (3)

The curve has a MAXIMUM at x�a and a MINIMUM at
x��a; where

y?(x)�
ab(a � x)(a � x)

a2 � x2ð Þ2 �0; (4)

and inflection points at x�9
ffiffiffi
3

p
a; where



yƒ(x)�
2abx x2 � 3a2ð Þ

x2 � a2ð Þ3 �0: (5)

The CURVATURE is given by

k(x)�
2abx x2 � 3a2ð Þ

x2 � a2ð Þ3 1 �
a3b � abx2ð Þ2

x2 � a2ð Þ4

" #3=2 (6)

k(t)�
4
ffiffiffi
2

p
ab[2 cos(2t) � 1]cot t csc2 t

b2[1 � cos(4t)] � 2a2 csc 4tf g3=2 : (7)
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Serret-Frenet Formulas
FRENET FORMULAS

Set
A set is a FINITE or INFINITE collection of objects in
which order has no significance, and multiplicity is
generally also ignored (unlike a LIST or MULTISET).
Older words for set include AGGREGATE and CLASS.
Russell also uses the unfortunate term MANIFOLD to
refer to a set. The study of sets and their properties is
the object of SET THEORY.

Historically, a single horizontal overbar was used to
denote a set stripped of any structure besides order,
and hence to represent the order type of the set. A
double overbar indicated stripping the order from the
set and hence represented the cardinal number of the
set. This practice was begun by SET THEORY founder
Georg Cantor.

Symbols used to operate on sets include S (which
means "and" or INTERSECTION), and @ (which means
"or" or UNION). The symbol ¥ is used to denote the set
containing no elements, called the EMPTY SET.

The NOTATION AB; where A and B are arbitrary sets,
is used to denote the set of MAPS from B to A . For
example, an element of XN would be a MAP from the
NATURAL NUMBERS N to the set X . Call such a
function f , then f (1); f (2); etc., are elements of X , so
call them x1; x2; etc. This now looks like a SEQUENCE

of elements of X , so sequences are really just func-
tions from N to X . This NOTATION is standard in
mathematics and is frequently used in symbolic
dynamics to denote sequence spaces.

Let E , F , and G be sets. Then operation on these sets
using theS and@ operators is COMMUTATIVE

ESF�FSE (1)

E@F�F@E: (2)

ASSOCIATIVE

(ESF)SG�ES (FSG) (3)

(E@F)@G�E@ (F@G): (4)

and DISTRIBUTIVE

(ESF)@G�(E@G)S (F@G) (5)

(E@F)SG�(ESG)@ (FSG): (6)

More generally, we have the infinite distributive laws

AS @
l �L

Bl

# $
� @

l �L
ASBlð Þ (7)

A@ S
l �L

Bl

# $
� S

l �L
A@Blð Þ (8)

where l runs through any INDEX SET L: The proofs
follow trivially from the definitions of union and
intersection.

Many classes of sets are denoted using DOUBLE-

STRUCK characters. The table below gives symbols
for some common sets in mathematics.

symbol set

/A/ ALGEBRAIC NUMBERS

/B/ BOOLEANS

/Bn
/ n -BALL

/C/ COMPLEX NUMBERS

/Cn; C(n)
/ n -differentiable functions

/Dn
/ n -DISK

/H/ QUATERNIONS

/I/ INTEGERS

/N/ NATURAL NUMBERS

/O/ CAYLEY NUMBERS

/P/ PRIME NUMBERS

/Q/ RATIONAL NUMBERS

/Rn
/ real n -tuples

/Rm�n
/ real m�n matrices



/Sn
/ n -SPHERE

/Tn
/ n -torus

/Z/ INTEGERS

/Zn/ integers (mod n )

/Z �/ NEGATIVE INTEGERS

/Z �/ POSITIVE INTEGERS

/Z �/ NONNEGATIVE INTEGERS

See also AGGREGATE, ANALYTIC SET, BOREL SET, C,
CAYLEY NUMBER, CLASS (SET), COANALYTIC SET,
DEFINABLE SET, DERIVED SET, DOUBLE-FREE SET,
EXTENSION (SET), GROUND SET, I, INCLUSION-EXCLU-

SION PRINCIPLE, INTENSION, INTERSECTION, KINNEY’S

SET, LIST, MANIFOLD, MULTISET, N, PERFECT SET,
POSET, PROPER CLASS, Q, R, REAL MATRIX, SET

DIFFERENCE, SET THEORY, TRIPLE-FREE SET, UNION,
VENN DIAGRAM, WELL ORDERED SET, Z, Z�, Z�
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Set Difference
The set difference /A_B/ is defined by

A_B �fx : x � A and x QBg:

The set difference is therefore equivalent to the
COMPLEMENT SET, and is implemented in Mathema-
tica as Complement[A , B ].

Note that the symbol \ is also used to denote
QUOTIENT GROUPS. The symbol A �B is sometimes
also used to denote a set difference (Smith et al. 1997,
p. 68).

See also COMPLEMENT SET, SYMMETRIC DIFFERENCE
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Set Direct Product
CARTESIAN PRODUCT

Set Partition
A set partition of a SET S is a collection of disjoint
SUBSETS of S whose UNION is S . The number of
partitions of the SET fkgn

k �1 is called a BELL NUMBER.

See also BELL NUMBER, BLOCK, PARTITION, RE-

STRICTED GROWTH STRING, STIRLING NUMBER OF

THE SECOND KIND
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Set Theory

The mathematical theory of SETS. Set theory is closely
associated with the branch of mathematics known as
LOGIC.

There are a number of different versions of set theory,
each with its own rules and AXIOMS. In order of
increasing CONSISTENCY STRENGTH, several versions
of set theory include PEANO ARITHMETIC (ordinary
ALGEBRA), second-order arithmetic (ANALYSIS), ZER-

MELO-FRAENKEL SET THEORY, Mahlo, weakly com-
pact, hyper-Mahlo, ineffable, measurable, Ramsey,
supercompact, huge, and n -huge set theory.

See also ANALYSIS (LOGIC), AXIOMATIC SET THEORY,
CONSISTENCY STRENGTH, CONTINUUM HYPOTHESIS,
DESCRIPTIVE SET THEORY, IMPREDICATIVE, KURA-

TOWSKI’S CLOSURE-COMPONENT PROBLEM, NAIVE

SET THEORY, PEANO ARITHMETIC, SENTENCE, SET,
THEORY, ZERMELO-FRAENKEL AXIOMS, ZERMELO-

FRAENKEL SET THEORY, ZERMELO SET THEORY
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Seven Circles Theorem

Draw an initial CIRCLE, and arrange six circles
tangent to it such that they touch both the original
circle and their two neighbors. Then the three lines
joining opposite points of tangency are concurrent in
a point. The figures above show several possible
configurations (Evelyn et al. 1974, pp. 31 �/37).

Letting the RADII of three of the circles approach
infinity turns three of the CIRCLES into the straight
sides of a triangle and the central circle into the
triangle’s INCIRCLE. As illustrated above, the three
lines connecting opposite points of tangency (with
those along the triangle edges corresponding to the
vertices of the CONTACT TRIANGLE) concur (Evelyn et
al. 1974, pp. 39 and 42).

See also CIRCLE, CONTACT TRIANGLE, HEXLET, IN-

CIRCLE, SIX CIRCLES THEOREM
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Sexagesimal
The base-60 notational system for representing REAL

NUMBERS. A base-60 number system was used by the
Babylonians and is preserved in the modern mea-

surement of time (hours, minutes, and seconds) and
ANGLES (DEGREES, ARC MINUTES, and ARC SECONDS).

See also BASE (NUMBER), BINARY, DECIMAL, HEXADE-

CIMAL, OCTAL, QUATERNARY, SCRUPLE, TERNARY,
VIGESIMAL
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Sexdecillion
In the American system, 1051.

See also LARGE NUMBER

Sextic Equation
The general sextic polynomial equation

x6 �a5x5 �a4x4 �a3x3 �a2x2 �a1x �a0 �0

can be solved in terms of HYPERGEOMETRIC FUNC-

TIONS in one variable using Klein’s approach to
solving the QUINTIC EQUATION.

See also CUBIC EQUATION, QUADRATIC EQUATION,
QUARTIC EQUATION, QUINTIC EQUATION
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Sextic Surface
An ALGEBRAIC SURFACE which can be represented
implicitly by a polynomial of degree six in x , y , and z .
Examples are the BARTH SEXTIC and BOY SURFACE.

See also ALGEBRAIC SURFACE, BARTH SEXTIC, BOY

SURFACE, CUBIC SURFACE, DECIC SURFACE, HUNT’S

SURFACE, QUADRATIC SURFACE, QUARTIC SURFACE
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Sextillion
In the American system, 1021.

See also LARGE NUMBER



Sexy Primes
Since a PRIME NUMBER cannot be divisible by 2 or 3, it
must be true that, for a PRIME p , p �1; 5 (mod 6):
This motivates the definition of sexy primes as a pair
of primes (p, q ) such that p �q �6 ("sexy" since "sex"
is the Latin word for "six."). The first few sexy prime
pairs are (5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23,
29), (31, 37), (37, 43), (41, 47), (47, 53), ... (Sloane’s
A023201 and A046117).

Sexy constellations also exist. The first few sexy
triplets (i.e., numbers such that each of (p ; p �6; p �
12) is PRIME but p �18 is not PRIME) are (7, 13, 19),
(17, 23, 29), (31, 37, 43), (47, 53, 59), ... (Sloane’s
A046118, A046119, and A046120). The first few sexy
quadruplets are (11, 17, 23, 29), (41, 47, 53, 59), (61,
67, 73, 79), (251, 257, 263, 269), ... (Sloane’s A046121,
A046122, A046123, and A046124). Sexy quadruplets
can only begin with a PRIME ending in a "1." There is
only a single sexy quintuplet, (5, 11, 17, 23, 29), since
every fifth number of the form 6n 91 is divisible by 5,
and therefore cannot be PRIME.

See also PRIME CONSTELLATION, PRIME QUADRUPLET,
TWIN PRIMES
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Seydewitz’s Theorem
If a TRIANGLE is inscribed in a CONIC SECTION, any
line conjugate to one side meets the other two sides in
conjugate points.

See also CONIC SECTION, TRIANGLE

Seymour Conjecture
Seymour conjectured that a graph G of order n with
minimum VERTEX DEGREE d(G) ]kn =(k �1) contains
the kth GRAPH POWER of a HAMILTONIAN CIRCUIT,
generalizing PÓ SA’S CONJECTURE. Komlós et al.
(1998) proved the conjecture for sufficiently large n
using SZEMERÉ DI’S REGULARITY LEMMA and a techni-
que called the BLOW-UP LEMMA.

See also HAJNAL-SZEMERÉ DI THEOREM, HAMILTONIAN

CIRCUIT, PÓ SA’S CONJECTURE, PÓ SA’S THEOREM, SZE-

MERÉ DI’S REGULARITY LEMMA
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Sgn

Also called SIGNUM. It can be defined as

sgn �
�1 x B0
0 x �0
1 x > 0

8<
: 

(1)

or

sgn(x) �2H(x) �1 : (2)

where H(x) is the HEAVISIDE STEP FUNCTION. For x "
0; this can be written

sgn(x) �
x

½x½
: (3)

See also ABSOLUTE VALUE, HEAVISIDE STEP FUNC-

TION, RAMP FUNCTION
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Sh
HYPERBOLIC SINE

Shadow
The SURFACE corresponding to the region of obscura-
tion when a solid is illuminated from a point light
source (located at the RADIANT POINT). A DISK is the
SHADOW of a SPHERE on a PLANE perpendicular to the
SPHERE-RADIANT POINT line. If the PLANE is tilted, the
shadow can be the interior of an ELLIPSE or a
PARABOLA.

See also CORK PLUG, PROJECTION, STEREOLOGY, TRIP-

LET
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Shadowing Theorem
Although a numerically computed CHAOTIC trajectory
diverges exponentially from the true trajectory with
the same initial coordinates, there exists an errorless
trajectory with a slightly different initial condition
that stays near ("shadows") the numerically com-
puted one. Therefore, the FRACTAL structure of
chaotic trajectories seen in computer maps is real.
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University Press, pp. 18 �/19, 1993.

Shafarevich Conjecture
A conjecture which implies the MORDELL CONJEC-

TURE, as proved in 1968 by A. N. Parshin.

See also MORDELL CONJECTURE
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Shah Function

III(x) �
X�

n���

d(x �n) (1)

where d(x) is the DELTA FUNCTION, so III(x) �0 for x Q
Z (i.e., x not an INTEGER). The shah function is also
called the sampling symbol or replicating symbol
(Bracewell 1999, p. 77) and obeys the identities

III(ax) �
1

½a ½

X�
n���

d x �
n

a

 !
(2)

III(�x) �III(x) (3)

III(x �n) �III(x) (4)

III x �1
2

� �
�III x �1

2

� �
: (5)

The shah function is normalized so that

g
n�1 =2

n �1 =2

III(x) dx �1: (6)

The "sampling property" is

III(x)f (x) �
X�

n���

f (n)d(x �n) (7)

and the "replicating property" is

III(x) +f (x) �
X�

n���

f (x �n) : (8)

where + denotes CONVOLUTION.
The 2-D sampling function, sometimes called the bed-
of-nails function, is given by

2III(x; y) �
X�

m���

X�
n���

d(x �m; y �n); (9)

which can be adjusted using a series of weighted as

v(x; y) �
X

RmnTmnDmn d x �mn ; y �nð Þ; (10)

where Rmn is a reliability weight, Dmn is a density
weight (WEIGHTING FUNCTION), and Tmn is a taper.
The 2-D shah function satisfies

2III(x; y) �III(x)III(y) (11)

(Bracewell 1999, p. 85).

See also CONVOLUTION, DELTA FUNCTION, IMPULSE

PAIR, SINC FUNCTION
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Shah-Wilson Constant
TWIN PRIMES CONSTANT

Shaky Polyhedron
A shaky polyhedron is a non-rigid concave polyhedron
which is only infinitesimally movable. JESSEN’S

ORTHOGONAL ICOSAHEDRON is a shaky polyhedron
(Wells 1991).

See also FLEXIBLE POLYHEDRON, JESSEN’S ORTHOGO-

NAL ICOSAHEDRON, MULTISTABLE, RIGID POLYHE-

DRON, RIGIDITY THEOREM
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Shallit Constant
Define f x1 ; x2 ; . . . ; xnð Þ with xi POSITIVE as

f x1 ; x2 ; . . . ; xnð Þ�
Xn

i �1

xi �
X

1 5i 5k 5n

Yk

j�1

1

xj

:

Then

min f �3n �C �o(1)

as n increases, where the Shallit constant is

C �1:369451403937 . . .

(Shallit 1995). In their solution, Grosjean and De
Meyer (quoted in Shallit 1995) reduced the complex-
ity of the problem.
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Shallow Diagonal

See also DIAGONAL, PASCAL’S TRIANGLE

Shanks’ Algorithm
An ALGORITHM which finds the least NONNEGATIVE

value of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(mod p)

p
for given a and PRIME p .

Shanks’ Conjecture
Let p(n) be the first PRIME which follows a PRIME GAP

of n between consecutive PRIMES. Shanks’ conjecture
holds that

p(n) 	exp
ffiffiffi
n

p� �
:

Wolf conjectures a slightly different form

p(n) 	
ffiffiffi
n

p
exp

ffiffiffi
n

p� �
;

which agrees better with numerical evidence.

See also PRIME DIFFERENCE FUNCTION, PRIME GAPS
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Shannon Entropy
ENTROPY

Shannon Sampling Theorem
SAMPLING THEOREM

Shannon’s Noiseless Coding Theorem
Let S be an information source with entropy H(S):
Then

H(S) 5m(S);

where m(S) is the minimum average code-word
length among all uniquely decipherable coding
schemes for S
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Shape Number
FIGURATE NUMBER

Shape Operator
The negative derivative

S(v) ��DvN (1)

of the unit normal N vector field of a SURFACE is called
the shape operator (or WEINGARTEN MAP or SECOND

FUNDAMENTAL TENSOR). The shape operator S is an
EXTRINSIC CURVATURE, and the GAUSSIAN CURVATURE

is given by the DETERMINANT of S . If x : U 0 R3 is a
REGULAR PATCH, then

S xuð Þ��Nu (2)

S xvð Þ��Nv : (3)

At each point p on a REGULAR SURFACE M ƒR3 ; the
shape operator is a linear map

S : Mp 0 Mp : (4)

The shape operator for a surface is given by the
WEINGARTEN EQUATIONS.

See also CURVATURE, FUNDAMENTAL FORMS, WEIN-

GARTEN EQUATIONS
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Shapiro’s Cyclic Sum Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.



Consider the sum

fn(x1 ; x2 ; . . .  ; xn)

�
x1

x2 � x3

�
x2

x3 � x4

�. . .�
xn�1

xn � x1

�
xn

x1 � x2

; (1)

where the xj/s are NONNEGATIVE and the DENOMINA-

TORS are POSITIVE. Shapiro (1954) asked if

fn(x1 ; x2 ; . . . ; xn) ]1
2 n (2)

for all n . It turns out (Mitrinovic et al. 1993) that this
INEQUALITY is true for all EVEN n 512 and ODD n 523:
Ranikin (1958) proved that for

f (n) �inf
x]0

fn(x1 ; x2 ; . . . ; xn) ; (3)

l � lim
n0�

f (n)

n
� inf

n ]1

f (n)

n
B1

2 �7 �10 �8 : (4)

/l can be computed by letting f(x) be the CONVEX HULL

of the functions

y1 �e �x (5)

y2 �
2

ex � ex=2 
: (6)

Then

l �1
2 f(0) �0 :4945668 . . . (7)

(Drinfeljd 1971).

A modified sum was considered by Elbert (1973):

gn(x1 ; x1 ; . . .  ; xn)

�
x1 � x3

x1 � x2

�
x2 � x4

x2 � x3

�. . .�
xx �1 � x1

xn �1 � xn

�
xn � x2

xn � x1

: (8)

Consider

m � lim
n0�

g(n)

n
; (9)

where

g(n)�inf
x]0

gn(x1; x2; . . . ; xn); (10)

and let c(x) be the CONVEX HULL of

y1�
1
2(1�ex) (11)

y2�
1 � ex

1 � ex=2
: (12)

Then

m�c(0)�0:978012 . . . : (13)

See also CONVEX HULL
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Sharing Problem
A problem also known as the POINTS PROBLEM or
UNFINISHED GAME. Consider a tournament involving
k players playing the same game repetitively. Each
game has a single winner, and denote the number of
games won by player i at some juncture wi: The
games are independent, and the probability of the ith
player winning a game is pi: The tournament is
specified to continue until one player has won n
games. If the tournament is discontinued before any
player has won n games so that wiBn for i�1, ..., k ,
how should the prize money be shared in order to
distribute it proportionally to the players’ chances of
winning?

For player i , call the number of games left to win ri�

n�wi > 0 the "quota." For two players, let p�p1 and
q�p2�1�p be the probabilities of winning a single
game, and a�r1�n�w1 and b�r2�n�w2 be the
number of games needed for each player to win the
tournament. Then the stakes should be divided in the
ratio m : n; where

m�pa 1�
a

1
q�

a(a � 1)

2!
q2�. . .

"

�
a(a � 1) � � � (a � b � 2)

(b � 1)!
qb�1

�
(1)

n�qb 1�
b

1
p�

b(b � 1)

2!
p2�. . .

"

�
b(b � 1) � � � (b � a � 2)

(a � 1)!
pa�1

�
(2)

(Kraitchik 1942).

If i players have equal probability of winning ("cell
probability"), then the chance of player i winning for
quotas r1; ..., rk is

Wi�Dk�1
1 (r1; . . . ; ri�1; ri�1; . . . ; rk; ri): (3)

where D is the DIRICHLET INTEGRAL of type 2D.
Similarly, the chance of player i losing is

Li�Ck�1
1 (r1; . . . ; ri�1; ri�1; . . . ; rk; ri); (4)

where C is the DIRICHLET INTEGRAL of type 2C. If the
cell quotas are not equal, the general Dirichlet
integral Dn must be used, where



ai �
pi

1 �
Pk �1

i�1 pi

: (5)

If ri �r and ai �1; then Wi and Li reduce to 1=k as
they must. Let P(r1 ; . . . ; rk) be the joint probability
that the players would be RANKED in the order of the
ri/s in the argument list if the contest were completed.
For k �3,

P(r1 ; r2 ; r3) �CD(1; 1)
1 (r1 ; r2 ; r3) : (6)

For k �4 with quota vector r �(r1 ; r2 ; r3 ; r4) and D�
p2 �p3 �p4 ;

P(r) �
Xr3 �1

i�0

Xr4 �1

j�0

r2 �1 �i �j
r2 �1 ; i ; j

# $
p2

D

 !r2

p3

D

 !i
p4

D

 !j

�C(1)
p1 =D(r1 ; r2 �i �j)D(1)

p4 =p3(r4 �j; r3 �i) : (7)

An expression for k �5 is given by Sobel and
Frankowski (1994, p. 838).

See also DIRICHLET INTEGRALS
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Sharkovsky’s Theorem
SARKOVSKII’S THEOREM

Sharpe Ratio
A risk-adjusted financial measure developed by Nobel
Laureate William Sharpe. It uses a fund’s standard
deviation and excess return to determine the reward
per unit of risk. The higher a fund’s Sharpe ratio, the
better the fund’s "risk-adjusted" performance.

See also ALPHA, BETA

Sharpe’s Differential Equation
A generalization of the BESSEL DIFFERENTIAL EQUA-

TION for functions of order 0, given by

zyƒ�y?�(z �A)y �0 :

Solutions are

y �e 9iz
1F1

1
2 �

1
2 iA; 1; �2iz

� �
:

where 1F1(a; b; x) is a CONFLUENT HYPERGEOMETRIC

FUNCTION.

See also BESSEL DIFFERENTIAL EQUATION, CONFLU-

ENT HYPERGEOMETRIC FUNCTION

Sheaf
SHEAF OF PLANES, SHEAF (TOPOLOGY)

Sheaf (Topology)

A topological GADGET related to families of ABELIAN

GROUPS and MAPS.
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Sheaf of Planes

The set of all PLANES through a LINE. The line is
sometimes called the AXIS of the sheaf, and the sheaf
itself is sometimes called a pencil (Altshiller-Court
1979, p. 12).

See also LINE, PENCIL, PLANE
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Shear

A transformation in which all points along a given
LINE L remain fixed while other points are shifted
parallel to L by a distance proportional to their
PERPENDICULAR distance from L . Shearing a plane
figure does not change its AREA. The shear can also be
generalized to 3-D, in which PLANES are translated
instead of lines.

See also SHEAR FACTOR, SHEAR MATRIX



Shear Factor
The distance a point moves due to SHEAR divided by
the perpendicular distance of a point from the
invariant line.

See also SHEAR, SHEAR MATRIX
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Shear Matrix
The shear matrix e sij is obtained from the IDENTITY

MATRIX by inserting s at (i, j ), e.g.,

e s12 �
1 s 0
0 1 0
0 0 1

2
4

3
5: (1)

Bolt and Hobbs (1998) define a shear matrix as a
matrix

a b
c d

� �
(2)

such that

a�b�2 (3)

ad�bc�1: (4)

See also ELEMENTARY MATRIX, SHEAR, SHEAR FACTOR
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Sheffer Sequence
A sequence sn(x) is called a Sheffer sequence IFF its
GENERATING FUNCTION has the form

X�
k�0

sk(x)

k!
tk�A(t)exB(t); (1)

where

A(t)�A0�A1t�A2t2�. . . (2)

B(t)�B1t�B2t2�. . . : (3)

with A0; B1"0:/

If f (t) is a delta series and g(t) is an invertible series,
then there exists a unique sequence sn(x) of Sheffer
polynomials sn(x) satisfying the orthogonality condi-
tion

g(t)[f (t)]kjsn(x)
D E

�n!dnk; (4)

where dnk is the KRONECKER DELTA (Roman 1984,
p. 17). Examples of general Sheffer sequences include

the ACTUARIAL POLYNOMIALS, BERNOULLI POLYNO-

MIALS OF THE SECOND KIND, BOOLE POLYNOMIALS,
LAGUERRE POLYNOMIALS, MEIXNER POLYNOMIALS OF

THE FIRST and SECOND KINDS, POISSON-CHARLIER

POLYNOMIALS, and STIRLING POLYNOMIALS.

The Sheffer sequence for (1; f (t)) is called the asso-
ciated sequence for f (t); and Roman (1984, pp. 53�/86)
summarizes properties of the associated Sheffer
sequences and gives a number of specific examples
(ABEL POLYNOMIAL, BELL POLYNOMIAL, CENTRAL FAC-

TORIAL, EXPONENTIAL POLYNOMIAL, FALLING FACTOR-

IAL, GOULD POLYNOMIAL, MAHLER POLYNOMIAL,
MITTAG-LEFFLER POLYNOMIAL, MOTT POLYNOMIAL,
POWER POLYNOMIAL). The Sheffer sequence for
(g(t); t) is called the APPELL SEQUENCE of g(t); and
Roman (1984, pp. 86�/106) summarizes properties of
Appell sequences and gives a number of specific
examples.

If sn(x) is a Sheffer sequence for (g(t); f (t)); then for
any polynomial p(x);

p(x)�
X�
k�0

g(t)[f (t)]kj p(x)
D E

k!
sk(x): (5)

The sequence sn(x) is Sheffer for (g(t); f (t)) IFF

1

g(f̄ (t))
eyf̄ (t)�

X�
k�0

sk(y)

k!
tk (6)

for all y in the field C of characteristic 0, where f̄ (t) is
the compositional INVERSE FUNCTION of f (t) (Roman
1984, p. 18). This formula immediately gives the
GENERATING FUNCTION associated with a given Shef-
fer sequence.

A sequence is Sheffer for (g(t); f (t)) for some inver-
tible g(t) IFF

f (t)sn(x)�nsn�1(x) (7)

for all n]0 (Roman 1984, p. 20). The Sheffer identity
states that a sequence sn(x) is Sheffer for (g(t); f (t))
for some invertible f (t) IFF it satisfies some BINOMIAL-

TYPE SEQUENCE

sn(x�y)�
Xn

k�0

n
k

# $
pk(y)sn�k(x) (8)

for all y in C , where pn(x) is associated to f (t) (Roman
1984, p. 21). The RECURRENCE RELATION for Sheffer
sequences is given by

sn�1(x)� x�
g?(t)

g(t)

" #
1

f ?(t)
sn(x) (9)

(Roman 1984, p. 50). A nontrivial RECURRENCE RELA-

TION is given by

sn�1(x)�(x�bn)sn(x)�dnsn�1(x) (10)

for s�1(x)�0; s0(x)�1; and n]0 (Meixner 1934;



Sheffer 1939; Chihara 1978; Roman 1984, pp. 156 �/

160).

The connection coefficients cnk in the expression

sn(x) �
Xn

k �0

cnkrk(n) (11)

are given by

cnk �
1

k!

h(f �1(t))

g(f �1(t))
[l(f �1(t))]kj xn

* +
; (12)

where sn(x) is Sheffer for (g(t) ; f (t)) and rn(x) is
Sheffer for (h(t); l(t)) : This can also be written in
terms of the polynomial of coefficients

tn(x) �
Xn

k �0

cnkxk : (13)

which is Sheffer for

g(l �1(t))

h(l �1(t)) 
; f (l�1(t))

 !
(14)

(Roman 1984, pp. 132 �/138).

A duplication formula OF THE FORM

rn(ax) �
Xn

k �0

cnkrk(x) (15)

is given by

cnk �
1

k!

h(al�1(t))

h(l �1(t))
[l(al �1(t))kj xn

* +
; (16)

where rn(x) is Sheffer for (h(t) ; l(t)) (Roman 1984,
pp. 132 �/138).

See also APPELL CROSS SEQUENCE, APPELL SE-

QUENCE, BINOMIAL-TYPE SEQUENCE, CROSS SE-

QUENCE, STEFFENSEN SEQUENCE, UMBRAL CALCULUS

References
Chihara, T. S. An Introduction to Orthogonal Polynomials.

New York: Gordon and Breach, 1978.
Meixner, J. "Orthogonale Polynomsystem mit linern beson-

deren Gestalt der eryengenden Funktion." J. London
Math. Soc. 9, 6�/13, 1934.

Roman, S. "Sheffer Sequences." Ch. 2 and §4.3 in The
Umbral Calculus. New York: Academic Press, pp. 2, 6 �/

31, and 107 �/130, 1984.
Rota, G.-C.; Kahaner, D.; Odlyzko, A. "On the Foundations

of Combinatorial Theory. VIII: Finite Operator Calculus."
J. Math. Anal. Appl. 42, 684 �/760, 1973.

Sheffer, I. M. "Some Properties of Polynomial Sets of Type
Zero." Duke Math. J. 5, 590 �/622, 1939.

Sheffer Stroke
NAND

Shephard’s Problem
Measurements of a centered convex body in Eucli-
dean n -space (for n ]3) show that its brightness
function (the volume of each projection) is smaller
than that of another such body. Is it true that its
VOLUME is also smaller? C. M. Petty and R. Schnei-
der showed in 1967 that the answer is yes if the body
with the larger brightness function is a projection
body, but no in general for every n .
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Sheppard’s Correction
A correction which must be applied to the measured
MOMENTS mk obtained from NORMALLY DISTRIBUTED

data which have been BINNED in order to obtain
correct estimators m̂i for the population moments mi :
The corrected versions of the second, third, and
fourth moments are then

m̂2 �m2 �
1
12 c

2 (1)

m̂3 �m3 (2)

m̂4 �m4 �
1
2 m2 �

7
240 c

2 ; (3)

where c is the CLASS INTERVAL.

If k ?r is the r th CUMULANT of an ungrouped distribu-
tion and kr the r th CUMULANT of the grouped
distribution with CLASS INTERVAL c , the corrected
cumulants (under rather restrictive conditions) are

k?r�
kr for r odd

kr�
Br

r
cr for r even;

8<
: (4)

where Br is the rth BERNOULLI NUMBER, giving

k?1�k1 (5)

k?2�k2�
1

12 c2 (6)

k?3�k3 (7)

k?4�k4�
1

120 c4 (8)

k?5�k5 (9)

k?6�k6�
1

252 c6: (10)

For a proof, see Kendall et al. (1987).

See also BIN, CLASS INTERVAL, HISTOGRAM
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Sherman-Morrison Formula
A formula which allows a perturbed MATRIX to be
computed for a small change to a given MATRIX A: If
the change can be written in the form

u v

for two vectors u and v, then the Sherman-Morrison
formula is

(A �u v) �1 �A�1 �
(A�1u)  (v � A �1)

1� l
;

where

l �v � A�1u:

See also WOODBURY FORMULA
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Shi

Shi(z) �g
z

0

sinh t

t
dt:

The function is given by the Mathematica command
SinhIntegral[z ].

See also CHI, COSINE INTEGRAL, SINE INTEGRAL
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Shidlovskii Theorem
Let f1(z) ; ..., fm(z) for m ]1 be a set of E-FUNCTIONS

that (1) form a solution of the system of differential
equations

y?k �qk0 �
Xm

j �1

qkjyj

for qkj �C(z) and k �1, ..., m and (2) are ALGEBRAI-

CALLY INDEPENDENT over C(z) : Then for all a �A;
where A denotes the set of ALGEBRAIC NUMBERS with
a "0 and distinct from singularities of the differential
equations, the numbers f1( a) ; ..., fm( a) are ALGEBRAI-

CALLY INDEPENDENT (Nesterenko 1999).

See also ALGEBRAICALLY INDEPENDENT, E-FUNCTION
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Shift
A TRANSLATION without ROTATION or distortion.

See also DILATION, EXPANSION, ROTATION, TRANSLA-

TION, TWIRL



Shift Operator
An operator E such that

Eap(x) �p(x �a) :

See also SHIFT-INVARIANT OPERATOR
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Shift Property
DELTA FUNCTION

Shift Transformation
The transformation

T(x) �frac
1

x

 !
�

1

x 
�

1

x

$ %
;

where frac(x) is the FRACTIONAL PART of x and xb c is
the FLOOR FUNCTION, that takes a CONTINUED FRAC-

TION [a1 ; a2 ; . . .] to [a2 ; a3 ; . . .]:/

See also GAUSS-KUZMIN-WIRSING CONSTANT
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Shifted Factorial
POCHHAMMER SYMBOL, RISING FACTORIAL

Shift-Invariant Operator
An operator T which commutes with all SHIFT

OPERATORS Ea ; so

TEa �EaT

for all real a in a FIELD. Any two shift-invariant
operators commute.

See also DELTA OPERATOR, HEAVISIDE CALCULUS,
SHIFT OPERATOR
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Shimura-Taniyama Conjecture
TANIYAMA-SHIMURA CONJECTURE

Shimura-Taniyama-Weil Conjecture
TANIYAMA-SHIMURA CONJECTURE

Shoe
HOOK, SHOE SURFACE

Shoe Surface

A surface given by the PARAMETRIC EQUATIONS

x(u; v)�u (1)

y(u; v)�v (2)

z(u; v)�1
3 u3�1

2 v2: (3)

The coefficients of the coefficients of the FIRST

FUNDAMENTAL FORM are

E�1�u4 (4)

F��u2v (5)

G�1�v2; (6)

and the SECOND FUNDAMENTAL FORM coefficients are

e�
2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u4 � v2
p (7)

f �0 (8)

g��
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u4 � v2
p ; (9)

giving AREA ELEMENT

dA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u4 � v2

p
s

duffldv; (10)

and GAUSSIAN and MEAN CURVATURES

K��
2u

(1 � u4 � v2)2 (11)

H�
2u(1 � v2) � u4 � 1

2(1 � u4 � v2)3=2 : (12)
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Shoemaker’s Knife
ARBELOS

Short Exact Sequence
A short exact sequence of groups A , B , and C is given
by two maps a : A 0 B and b : B 0 C and is written

0 0 A 0 B 0 C 0 0:

Because it is an EXACT SEQUENCE, a is INJECTIVE, and
b is SURJECTIVE. Moreover, the KERNEL of b is the
image of a: Hence, the group A can be considered as a
(normal) subgroup of B , and C is isomorphic to B =A:/

A short exact sequence is said to split if there is a map
g : C 0 B such that b(g is the identity on C . This only
happens when B is the DIRECT PRODUCT of A and C .

The notion of a short exact sequence also makes sense
for MODULES and SHEAVES.

See also EXACT SEQUENCE, GROUP EXTENSION, LONG

EXACT SEQUENCE, MODULE, PRINCIPAL BUNDLE
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Shortening
A KNOT used to shorten a long rope.

See also BEND (KNOT)

References
Owen, P. Knots. Philadelphia, PA: Courage, p. 65, 1993.

Shortest Path
DIJKSTRA’S ALGORITHM, GRAPH GEODESIC

Shortness Exponent
Let v(G) be the number of vertices in a GRAPH G and
h(G) the length of the maximum cycle in G . Then the
shortness exponent of a class of graphs G is defined by

s(G) �lim inf
G �G

ln h(G)

ln v(G)
:
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Shovelton’s Rule
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi�1 �xi ; so f1 �f (x1) ; f2 �
f (x2) ; ..., f11 �f (x11): Then Shovelton’s rule approxi-
mating the integral of f (x) is given by the NEWTON-

COTES-like formula

g
x11

x1

f (x) dx � 5
126 h[8(f1 �f11) �35(f2 �f4 �f8 �f10)

�15(f3�f5�f7�f9)�36f6]:

See also BODE’S RULE, HARDY’S RULE, NEWTON-COTES

FORMULAS, SIMPSON’S 3/8 RULE, SIMPSON’S RULE,
TRAPEZOIDAL RULE, WEDDLE’S RULE

References
King, A. E. "Approximate Integration. Note on Quadrature

Formulae: Their Construction and Application to Actuar-
ial Functions." Trans. Faculty of Actuaries 9, 218�/231,
1923.

Sheppard, W. F. "Some Quadrature-Formulæ." Proc. Lon-
don Math. Soc. 32, 258�/277, 1900.

Whittaker, E. T. and Robinson, G. The Calculus of Observa-
tions: A Treatise on Numerical Mathematics, 4th ed. New
York: Dover, p. 151, 1967.

Shuffle
The randomization of a deck of CARDS by repeated
interleaving. More generally, a shuffle is a rearrange-
ment of the elements in an ordered list. Shuffling by
exactly interleaving two halves of a deck is called a
RIFFLE SHUFFLE. Normal shuffling leaves gaps of
different lengths between the two layers of cards
and so randomizes the order of the cards.

A deck of 52 CARDS must be shuffled seven times for it
to be randomized (Aldous and Diaconis 1986, Bayer
and Diaconis 1992). This is intermediate between too
few shuffles and the decreasing effectiveness of many
shuffles. One of Bayer and Diaconis’s randomness
CRITERIA, however, gives 3 lg k=2 shuffles for a k -card
deck, yielding 11�/12 shuffles for 52 CARDS. Amaz-
ingly, if a deck of n cards is shuffled by successively
exchanging the cards in position 1, 2, ..., n with cards
in randomly chosen positions (a so-called EXCHANGE

SHUFFLE), then for n]18; the identity permutation
(i.e., the original state before the cards were shuffled)
is the most likely (Goldstine and Moews 2000).

Keller (1995) shows that roughly ln k shuffles are
needed just to randomize the bottom card.



See also BAYS’ SHUFFLE, CARDS, EXCHANGE SHUFFLE,
FARO SHUFFLE, MONGE’S SHUFFLE, PERFECT SHUF-

FLE, RIFFLE SHUFFLE
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Siamese Dodecahedron
SNUB DISPHENOID

Siamese Method
A method for constructing MAGIC SQUARES of ODD

order, also called DE LA LOUBERE’S METHOD.

See also MAGIC SQUARE

Sibling
Two nodes connected to the same node which are
same distance from the ROOT NODE in a ROOTED TREE

are called siblings.

See also CHILD, ROOT NODE, ROOTED TREE, TREE

Sicherman Dice

A pair of DICE which have the same ODDS for throwing
every number as a normal pair of 6-sided DICE. They
are the only such alternate arrangement if face
values are required to be positive. However, if faces
are permitted to have zero value (i.e., to be blank),
then two additional possible equal-odds pairs of dice
are obtained by subtracting one from each face on
either of the two dice and adding one to each face the
other. If negative values are permitted, there are an
infinite number of equal-odds dice.

See also DICE, EFRON’S DICE

Sici Spiral

The spiral

x �c ci(t)

y �c si(t) �1
2 p) :

h
where ci(t) and si(t) are the COSINE INTEGRAL and
SINE INTEGRAL, respectively, and c is a constant.

See also COSINE INTEGRAL, SINE INTEGRAL, SPIRAL
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Side
The edge of a POLYGON or face of a POLYHEDRON are
sometimes called sides.

Sidon Sequence
B2-SEQUENCE

Siegel Disk Fractal

A JULIA SET with c ��0 :390541 �0 :586788i : The
FRACTAL somewhat resembles the better known MAN-

DELBROT SET.

See also DENDRITE FRACTAL, DOUADY’S RABBIT

FRACTAL, JULIA SET, MANDELBROT SET, SAN MARCO

FRACTAL
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Siegel Modular Function
SIEGEL THETA FUNCTION

Siegel Theta Function
A Gn/-invariant meromorphic function on the space of
all p �p symmetric COMPLEX MATRICES Z �X �iY
with positive definite IMAGINARY PART. It is defined by

U(Z; s) �
X

t

e  pit
TZt�2 p itTs ;

where s is a complex p -vector, t is an integer p -vector
that ranges over the entire p -D lattice of integers,
and AT denotes a matrix (or vector) transpose.

This function was investigated by many of the
luminaries of nineteenth century mathematics, Rie-
mann , Weierstrass , Frobenius , Poincaré. Umemura
has expressed the ROOTS of an arbitrary POLYNOMIAL

in terms of Siegel theta functions (Mumford 1984).
The Siegel theta functions is implemented in Math-
ematica as SiegelTheta in the Mathematica add-on
package NumberTheory‘SiegelTheta‘ (which can
be loaded with the command BBNumberTheory‘).

See also RIEMANN THETA FUNCTION
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Birkhäuser, 1984.

Siegel, C. L. Topics in Complex Function Theory, Vol. 2:
Automorphic Functions and Abelian Integrals. New York:
Wiley, p. 163, 1988.

Siegel’s Paradox
If a fixed FRACTION x of a given amount of money P is
lost, and then the same FRACTION x of the remaining
amount is gained, the result is less than the original
and equal to the final amount if a FRACTION x is first
gained, then lost. This can easily be seen from the fact
that

[P(1 �x)](1 �x) �P(1 �x2) BP

[P(1 �x)](1 �x) �P(1 �x2) BP:

Siegel’s Theorem
There are at least two Siegel’s theorems. The first
states that an ELLIPTIC CURVE can have only a finite
number of points with INTEGER coordinates.

The second states that if j is an ALGEBRAIC NUMBER of
degree r , then there is an A( j) depending only on j
such that

j�
p

q

�����
������A(j)

q2r1=2

for all integer p and q (Landau 1970, pp. 37 �/56;
Hardy 1999, p. 79).

See also ELLIPTIC CURVE, ROTH’S THEOREM, THUE-

SIEGEL-ROTH THEOREM
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Siegel’s Upper Half-Space

See also HALF-SPACE

Sierpinski Arrowhead Curve

A FRACTAL which can be written as a LINDENMAYER

SYSTEM with initial string "YF", STRING REWRITING

rules "X" - � "YF�XF�Y", "Y" - � "XF-YF-X",
and angle 608.

See also DRAGON CURVE, HILBERT CURVE, KOCH

SNOWFLAKE, LINDENMAYER SYSTEM, PEANO CURVE,
PEANO-GOSPER CURVE, SIERPINSKI CURVE, SIERPINS-

KI SIEVE
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Sierpinski Carpet

A FRACTAL which is constructed analogously to the
SIERPINSKI SIEVE, but using squares instead of trian-
gles. Let Nn be the number of black boxes, Ln the
length of a side of a white box, and An the fractional



AREA of black boxes after the nth iteration. Then

Nn �8n (1)

Ln �(1
3)

n �3�n (2)

An �L2
nNn �(8

9)
n : (3)

The CAPACITY DIMENSION is therefore

dcap �� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln(8n)

ln(3�n) 
�

ln 8

ln 3 
�

3 ln 2

ln 3

�1:892789260 . . . : (4)

See also MENGER SPONGE, SIERPINSKI SIEVE
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Sierpiński Constant

Let the SUM OF SQUARES FUNCTION /rk(n)/ denote the
number of representations of n by k squares, then the
SUMMATORY FUNCTION of /r2(k)=k/ has the ASYMPTOTIC

expansion

Xn

k �1

r2(k)

k
�K � p ln n �O(n �1 =2) ;

where /K �2:5849817596/ is the Sierpinski constant.
The above plot shows

Xn

k�1

r2 ðkÞ
k

" #
� p ln n;

with the value of K indicated as the solid horizontal
line.

See also SUM OF SQUARES FUNCTION
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Sierpinski Curve

There are several FRACTAL curves associated with
Sierpinski. The above curve is one example, and the
SIERPINSKI ARROWHEAD CURVE is another. The limit
of the curve illustrated above has AREA

A � 5
12:

The AREA for a related curve due to Sierpinski (1912)
illustrated above is

A �1
3(7 �4

ffiffiffi
2

p
):

(Steinhaus 1983, pp. 102 �/103; Cundy and Rollett
1989; Wells 1991, p. 229).

See also EXTERIOR SNOWFLAKE, GOSPER ISLAND,
HILBERT CURVE, KOCH ANTISNOWFLAKE, KOCH SNOW-

FLAKE, PEANO CURVE, PEANO-GOSPER CURVE, SIER-

PINSKI ARROWHEAD CURVE
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Sierpinski Gasket
SIERPINSKI SIEVE

Sierpinski Number of the First Kind
Numbers OF THE FORM Sn�nn�1: The first few are
2, 5, 28, 257, 3126, 46657, 823544, 16777217, ...
(Sloane’s A014566). Sierpinski proved that if Sn is



PRIME with n ]2; then Sn �Fm�2m ; where Fm is a
FERMAT NUMBER with m ]0: The first few such
numbers are F1 �5 ; F3 �257; F6 ; F11 ; F20 ; and F37 :
Of these, 5 and 257 are PRIME, and the first unknown
case is F37 > 103 �1010 

:/

See also CULLEN NUMBER, CUNNINGHAM NUMBER,
FERMAT NUMBER, WOODALL NUMBER
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Sierpiński Number of the Second Kind
A number k satisfying SIERPINSKI’S COMPOSITE NUM-

BER THEOREM, i.e., such that k � 2n �1 is COMPOSITE

for every n ]1 : The smallest known is k �78 ; 557; but
there remain 35 smaller candidates (the smallest of
which is 4847) which are known to generate only
composite numbers for n 518 ; 000 or more (Riben-
boim 1996, p. 358).

Let a(k) be smallest n for which (2k �1) � 2n �1 is
PRIME, then the first few values are 0, 1, 1, 2, 1, 1, 2, 1,
3, 6, 1, 1, 2, 2, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, ... (Sloane’s
A046067). The second smallest n are given by 1, 2, 3,
4, 2, 3, 8, 2, 15, 10, 4, 9, 4, 4, 3, 60, 6, 3, 4, 2, 11, 6, 9,
1483, ... (Sloane’s A046068). Quite large n can be
required to obtain the first prime even for small k .
For example, the smallest prime OF THE FORM 383 �
2n �1 is 383 � 26393 �1: There are an infinite number
of Sierpinski numbers which are PRIME.

The smallest odd k such that k �2n is COMPOSITE for
all n Bk are 773, 2131, 2491, 4471, 5101, ....

See also MERSENNE NUMBER, RIESEL NUMBER, SIER-

PINSKI’S COMPOSITE NUMBER THEOREM
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Sierpinski Sieve

A FRACTAL described by Sierpinski in 1915. It is also
called the SIERPINSKI GASKET or SIERPINSKI TRIAN-

GLE. The curve can be written as a LINDENMAYER

SYSTEM with initial string "FXF-FF-FF", STRING

REWRITING rules "F" - � "FF", "X" - � "-
FXF ��FXF��FXF-", and angle 608.
Let Nn be the number of black triangles after
iteration n , Ln the length of a side of a triangle, and
An the fractional AREA which is black after the nth
iteration. Then

Nn�3n (1)

Ln�
1
2

� �n

�2�n (2)

An�L2
nNn�

3
4

� �n

: (3)

The CAPACITY DIMENSION is therefore

dcap�� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln 3nð Þ
ln 2�nð Þ

�
ln 3

ln 2

�1:584962500 . . . : (4)

In PASCAL’S TRIANGLE, coloring all ODD numbers
black and EVEN numbers white produces a Sierpinski
sieve (Guy 1990).

See also LINDENMAYER SYSTEM, SIERPINSKI ARROW-

HEAD CURVE, SIERPINSKI CARPET, TETRIX
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Sierpinski Sponge
TETRIX

Sierpinski Square Snowflake
SIERPINSKI CURVE

Sierpinski Tetrahedron
TETRIX

Sierpinski Triangle
SIERPINSKI SIEVE

Sierpinski-Menger Sponge
MENGER SPONGE

Sierpinski’s Composite Number Theorem
There exist infinitely many ODD INTEGERS k such that
k � 2n �1 is COMPOSITE for every n ]1: Numbers k
with this property are called SIERPINSKI NUMBERS OF

THE SECOND KIND, and analogous numbers with the
plus sign replaced by a minus are called RIESEL

NUMBERS. it is conjectured that the smallest SIER-

PINSKI NUMBER OF THE SECOND KIND is k �78; 557
and the smallest RIESEL NUMBER is k �509; 203:/

See also CUNNINGHAM NUMBER, SIERPINSKI NUMBER

OF THE SECOND KIND
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OF THE SECOND KIND, SIERPINSKI’S PRIME SEQUENCE

THEOREM

Sierpinski’s Conjecture
The conjecture that all integers > 1 occur as a value
of the TOTIENT VALENCE FUNCTION (i.e., all integers
> 1 occur as multiplicities). The conjecture was
proved by Ford (1998ab).

See also CARMICHAEL’S TOTIENT FUNCTION CONJEC-

TURE
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Sierpinski’s Prime Sequence Theorem
For any M , there exists a /t?/ such that the sequence

n2 �t?;

where n �1, 2, ...contains at least M PRIMES.

See also DIRICHLET’S THEOREM, FERMAT 4N �1 THEO-

REM, SIERPINSKI’S COMPOSITE NUMBER THEOREM
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Sieve
A process of successively crossing out members of a
list according to a set of rules such that only some
remain. The best known sieve is the ERATOSTHENES

SIEVE for generating PRIME NUMBERS. In fact, num-
bers generated by sieves seem to share a surprisingly
large number of properties with the PRIME NUMBERS.

See also BRUN’S SIEVE, HAPPY NUMBER, NUMBER

FIELD SIEVE, PRIME NUMBER, QUADRATIC SIEVE,
SIERPINSKI SIEVE, SIEVE OF ERATOSTHENES, WALLIS

SIEVE
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Sieve Formula
INCLUSION-EXCLUSION PRINCIPLE

Sieve of Eratosthenes

An ALGORITHM for making tables of PRIMES. Sequen-
tially write down the INTEGERS from 2 to the highest
number n you wish to include in the table. Cross out
all numbers > 2 which are divisible by 2 (every
second number). Find the smallest remaining number
> 2: It is 3. So cross out all numbers > 3 which are
divisible by 3 (every third number). Find the smallest
remaining number > 3: It is 5. So cross out all
numbers > 5 which are divisible by 5 (every fifth
number).
Continue until you have crossed out all numbers
divisible by

ffiffiffi
n

p
b c; where xb c is the FLOOR FUNCTION.

The numbers remaining are PRIME. This procedure is
illustrated in the above diagram which sieves up to
50, and therefore crosses out PRIMES up to

ffiffiffiffiffiffi
50

p: ;
�7:

If the procedure is then continued up to n , then the
number of cross-outs gives the number of distinct
PRIME FACTORS of each number.

See also PRIME NUMBER, SIEVE
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Sievert Integral
The integral

g
u

0

e�x sec f df:
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Sievert’s Surface

A constant-curvature surface which can be given
parametrically by

x�r cos f (1)

y�r sin f (2)

z�
ln tan 1

2 v
� �h i

� a(C � 1)cos vffiffiffiffi
C

p ; (3)

where



f ��
uffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C � 1
p �tan�1 tan u

ffiffiffiffiffiffiffiffiffiffiffiffi
C �1

p� �
(4)

a �
2

C � 1 � C sin2 v cos2 u 
(5)

r �
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(C � 1) 1 � C sin2 u

� �q
sin vffiffiffiffi

C
p ; (6)

with ½u ½B p=2 and 0 Bv B p (Reckziegel 1986).

The coefficients of the FIRST FUNDAMENTAL FORM are

E �
64a cos2 u cos2 v

4 � 3a � a cos(2u) � 2a cos2 u cos2(2v)½ 2
(7)

F �0 (8)

G �
64 (1 � a) csc v � a cos2 u sin v½ 2

4a 4 � 3a � a cos(2u) � 2a cos2 u cos2(2v)½ 2 ; (9)

and the coefficients of the SECOND FUNDAMENTAL

FORM are

e �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a � 1

s

� 8a cos3 u sin(3v) � 4 cos u[8 � 11a � 3a cos(2u)]

4 � 3a � a cos(2u) � 2a cos2 u cos2(2v)½ 2

(10)

f �0 (11)

g �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a � 1

a

s

�
4 � 5a � a cos(2u) � 2a cos2 u cos(2v)½ csc 1

2 v
� �

sec 1
2 v
� �

4 � 3a � a cos(2u) � 2a cos2 u cos2(2v)½ 2 :

(12)

The Sievert surface has GAUSSIAN and MEAN CURVA-

TURES given by

K �1 (13)

H �
1

1 � (a � 1)tan2 u 
: (14)
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Sifting Property
The property

g f (y) d(x �y)dy �f (x)

obeyed by the DELTA FUNCTION d(x) :/

See also DELTA FUNCTION
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Sigma Algebra
Let X be a SET. Then a s/-algebra F is a nonempty
collection of SUBSETS of X such that the following
hold:

1. The EMPTY SET is in F .
2. If A is in F , then so is the complement of A .
3. If An is a SEQUENCE of elements of F , then the
UNION of the An/s is in F .

If S is any collection of subsets of X , then we can
always find a s/-algebra containing S , namely the
POWER SET of X . By taking the INTERSECTION of all s/-
algebras containing S , we obtain the smallest such s/-
algebra. We call the smallest s/-algebra containing S
the s/-algebra generated by S .

See also BOREL SIGMA ALGEBRA, BOREL SPACE,
MEASURABLE SET, MEASURABLE SPACE, MEASURE

ALGEBRA, STANDARD SPACE

Sigma Function
DIVISOR FUNCTION

Sigmoid Curve
SIGMOID FUNCTION



Sigmoid Function

The function

y �
1

1 � e �x

which is the solution to the ORDINARY DIFFERENTIAL

EQUATION

dy

dx 
�y(1 �y) :

It has an inflection point at x �0, where

y??(x) ��
ex(ex � 1)

(ex � 1)3 �0:

See also EXPONENTIAL FUNCTION, EXPONENTIAL

RAMP
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Sign

The sign of a number, also called SGN, is �1 for a
NEGATIVE number (i.e., one with a MINUS SIGN "/�/"), 0
for the number ZERO, or �1 for a POSITIVE number
(i.e., one with a PLUS SIGN "/�/").

See also ABSOLUTE VALUE, MINUS SIGN, NEGATIVE,
PLUS SIGN, POSITIVE, SGN, ZERO

Signalizer Functor Theorem

U(G; A)� u(a) : a �A�1h i

is an A -invariant solvable p?/-subgroup of G .

Signature
PERMUTATION SYMBOL, SIGNATURE (KNOT), SIGNA-

TURE (MATRIX), SIGNATURE (NUMBER FIELD), SIGNA-

TURE (QUADRATIC FORM), SIGNATURE (RECURRENCE

RELATION), SIGNATURE SEQUENCE

Signature (Knot)
The signature s(K) of a KNOT K can be defined using
the SKEIN RELATIONSHIP

s(unknot)�0

s(K�)�s(K�) � f0; 2g;

and

4½s(K) l 9(K)(2i) > 0;

where 9(K) is the ALEXANDER-CONWAY POLYNOMIAL

and 9(K)(2i) is an ODD NUMBER.



Many UNKNOTTING NUMBERS can be determined
using a knot’s signature.

See also SKEIN RELATIONSHIP, UNKNOTTING NUMBER
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Signature (Matrix)
A real, nondegenerate n �n SYMMETRIC MATRIX A;
and its corresponding SYMMETRIC BILINEAR FORM

Q(v ; w) �vTAw; has signature (p, q ) if there is a
nondegenerate matrix C such that CTAC is a diagonal
matrix with p 1s and q �1s. In this case, Q(Cv; Cw) is
a DIAGONAL QUADRATIC FORM. For example,

A �

1 0 0  0
0 1 0  0
0 0 1  0
0 0 0 �1

2
664

3
775

gives a SYMMETRIC BILINEAR FORM Q called the
LORENTZIAN INNER PRODUCT, which has signature
(3; 1): The following Mathematica function returns
the signature of a SYMMETRIC MATRIX as a list of three
elements, corresponding to 1s, 0s, and �1s.

SignatureMatrix[a_List?MatrixQ] : � Module[

{

q, ctr, diag, t2, signplus, signminus,

v1 � Prepend[Table[0, {Length[a] - 1}], 1]

},

q[v_] : � v.a.v;

If[(t2 � q[v1]) ! � 0, v1 / �
Sqrt[Abs[t2]]];

ctr � {v1};

Do[

v1 � NullSpace[ctr.a][[1]];

If[(t2 � q[v1]) ! � 0, v1 / �
Sqrt[Abs[t2]]];

AppendTo[ctr, v1],

{Length[a] - 1}

];

diag � ctr.a.Transpose[ctr];

signplus � Count[diag, 1, 2];

signminus � Count[diag, -1, 2];

{signplus, Length[a] - signplus - signminus,

signminus}

]

See also DIAGONAL QUADRATIC FORM, ORTHOGONAL

GROUP, QUADRATIC FORM, SYMMETRIC BILINEAR

FORM, VECTOR SPACE

Signature (Number Field)
This entry contributed by KEVIN O’BRYANT

The ordered pair (s, t ), where s is the number of real
embeddings of the NUMBER FIELD and t is the number
of complex-conjugate pairs of embeddings. The degree
of the number field is s �2t:/

See also FUNDAMENTAL UNIT, NUMBER FIELD, UNIT
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Signature (Permutation)
PERMUTATION SYMBOL

Signature (Quadratic Form)
The signature of the QUADRATIC FORM

Q �y2
1 �y2

2 �. . .�y2
p �y2

p �1 �y2
p �2 �. . .�y2

r

is the number p of POSITIVE squared terms in the
reduced form. (The signature is sometimes defined as
2p�r:/)

See also P -SIGNATURE, RANK (QUADRATIC FORM),
SYLVESTER’S INERTIA LAW, SYLVESTER’S SIGNATURE
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Signature (Recurrence Relation)
Let a sequence be defined by

A�1�s

A0�3

A1�r

An�rAn�1�sAn�2�An�3:

Also define the associated POLYNOMIAL

f (x)�x3�rx2�sx�1;

and let D be its discriminant. The PERRIN SEQUENCE

is a special case corresponding to An(0; �1): The
signature mod m of an INTEGER n with respect to
the sequence Ak(r; s) is then defined as the 6-tuple /

(A�n�1; A�n; A�n�1; An�1; An; An�1) (mod m ).



1. An INTEGER n has an S-signature if its signature
(mod n ) is (/A�2 ; A�1 ; A0 ; A1 ; A2) :/
2. An INTEGER n has a Q-signature if its signature
(mod n ) is CONGRUENT to (/A; s ; B; B ; r ; C) where,
for some INTEGER a with f (a) �0(mod n); A �
a�2 �2a ; B ��ra2 � r2 �sð Þa ; and C �a2 �2a �1 :/
3. An INTEGER n has an I-signature if its signature
(mod n ) is CONGRUENT to ( r; s ; D?; D ; r; s) ; where
D?�D �rs �3 and D?�Dð Þ�D:/

See also PERRIN PSEUDOPRIME
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Signature Sequence
Let u be an IRRATIONAL NUMBER, define S( u) �fc �
du : c ; d �Ng; and let cn( u) �dn u(u) be the sequence
obtained by arranging the elements of S(u) in in-
creasing order. A sequence x is said to be a signature
sequence if there EXISTS a POSITIVE IRRATIONAL

NUMBER u such that x � cn uð Þf g; and x is called the
signature of u :/

The signature of an IRRATIONAL NUMBER is a FRACTAL

SEQUENCE. Also, if x is a signature sequence, then the
LOWER-TRIMMED SUBSEQUENCE is V(x) �x:/
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Signed Deviation
The signed deviation is defined by

Dui � ui � ̄uð Þ;

so the average deviation is

Du �ui �u �ui � ̄u �0:

See also ABSOLUTE DEVIATION, DEVIATION, DISPER-

SION (STATISTICS), MEAN DEVIATION, QUARTILE DE-

VIATION, STANDARD DEVIATION, VARIANCE

Significance
Let d �z 5zobserved : A value 0 5 a 51 such that P( d) 5
a is considered "significant" (i.e., is not simply due to
chance) is known as an ALPHA VALUE. The PROBABIL-

ITY that a variate would assume a value greater than
or equal to the observed value strictly by chance, P(d);
is known as a P -VALUE.

Depending on the type of data and conventional
practices of a given field of study, a variety of
different alpha values may be used. One commonly
used terminology takes P( d) ]5% as "not significant,"

1% BP( d) B5%; as "significant" (sometimes denoted
*), and P( d) B1% as "highly significant" (sometimes
denoted **). Some authors use the term "almost
significant" to refer to 5% BP(d) B10% ; although
this practice is not recommended.

See also ALPHA VALUE, COINCIDENCE, CONFIDENCE

INTERVAL, P -VALUE, PROBABLE ERROR, SIGNIFICANCE

TEST, STATISTICAL TEST

Significance Test
A test for determining the probability that a given
result could not have occurred by chance (its SIG-

NIFICANCE).

See also SIGNIFICANCE, STATISTICAL TEST
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Significant Digits
When a number is expressed in SCIENTIFIC NOTATION,
the number of significant figures is the number of
DIGITS needed to express the number to within the
uncertainty of measurement. For example, if a
quantity had been measured to be 1.234 9 0.002,
four figures would be significant. No more figures
should be given than are allowed by the uncertainty.
For example, a quantity written as 1.234 9 0.1 is
incorrect; it should really be written as 1.2 9 0.1.

The number of significant figures of a MULTIPLICA-

TION or DIVISION of two or more quantities is equal to
the smallest number of significant figures for the
quantities involved. For ADDITION or SUBTRACTION,
the number of significant figures is determined with
the smallest significant figure of all the quantities
involved. For example, the sum 10 :234 �5:2 �
100:3234 is 115.7574, but should be written 115.8
(with rounding), since the quantity 5.2 is significant
only to 9 0.1.

See also FRACTIONAL PART, INTEGER PART, NINT,
ROUND, TRUNCATE
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Significant Figures
SIGNIFICANT DIGITS



Signpost

A 6-POLYIAMOND.

References
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems,

and Packings, 2nd ed. Princeton, NJ: Princeton Univer-
sity Press, p. 92, 1994.

Signum
SGN

Silver Constant
The REAL ROOT of the equation

x3 �5x2 �6x �1 �0;

given analytically by

2 �2 cos 2
7 p
� �

;

which is 3.2469.... It is the seventh BERAHA CON-

STANT.

See also BERAHA CONSTANTS, SILVER RATIO, TRIGO-

NOMETRY VALUES PI/7

References
Le Lionnais, F. Les nombres remarquables. Paris: Hermann,

pp. 51 and 143, 1983.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem:

Assaults and Conquest. New York: Dover, p. 162, 1986.

Silver Mean
SILVER RATIO

Silver Ratio
The quantity defined by the CONTINUED FRACTION

dS �[2; 2 ; 2 ; . . . :] �2 �
1

2 �
1

2 �
1

2 � � � �

:

It follows that

dS �1ð Þ2�2 ;

so

dS �
ffiffiffi
2

p
�1 �2 :41421 . . . :

See also GOLDEN RATIO, GOLDEN RATIO CONJUGATE

Silver Root
SILVER CONSTANT

Silverman Constant

X�
n�1

1

f(n) s(n) 
�

Y
p prime

1 �
X�
k �1

1

p2k � pk �1

 !

�1 :786576459 . . . :

where f(n) is the TOTIENT FUNCTION and s(n) is the
DIVISOR FUNCTION.
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Silverman’s Sequence
Let f (1) �1 ; and let f (n) be the number of occurrences
of n in a nondecreasing sequence of INTEGERS. then
the first few values of f (n) are 1, 2, 2, 3, 3, 4, 4, 4, 5, 5,
5, ... (Sloane’s A001462). the asymptotic value of the
nth term is f2� fnf �1 ; where f is the GOLDEN RATIO.

References
Guy, R. K. "Silverman’s Sequences." §E25 in Unsolved

Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 225 �/226, 1994.

Sloane, N. J. A. Sequences A001462/M0257 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Similar

Two figures are said to be similar when all corre-
sponding ANGLES are equal. Two figures are DIRECTLY

SIMILAR when all corresponding ANGLES are equal
and described in the same rotational sense. This
relationship is written A 	B: (The symbol 	 is also
used to mean "is the same order of magnitude as" and
"is ASYMPTOTIC to.") Two figures are INVERSELY

SIMILAR when all corresponding ANGLES are equal
and described in the opposite rotational sense.

See also COINCIDENT, CONGRUENT, DIRECTLY SIMI-

LAR, HOMOTHETIC, INVERSELY SIMILAR, NAPOLEON’S

THEOREM, SIMILAR MATRICES, SIMILAR TRIANGLES,
SIMILARITY TRANSFORMATION, SPIRAL SIMILARITY

References
Durell, C. V. "Similar Figures." Ch. 1 in Modern Geometry:
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9, 1928.
Kern, W. F. and Bland, J. R. "Similar Figures." §22 in Solid
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Lachlan, R. "The Theory of Similar Figures." Ch. 9 in An
Elementary Treatise on Modern Pure Geometry. London:
Macmillian, pp. 128 �/147, 1893.

Project Mathematics . "Similarity." Videotape. http://
www.projmath.caltech.edu/similar.htm.

Similar Matrices
Two SQUARE MATRICES A and B that are related by

B �X�1AX; (1)

where X is a square NONSINGULAR MATRIX are said to
be similar. A transformation of the form X�1AX is
called a SIMILARITY TRANSFORMATION, or conjugation
by X: For example,

0 1
0 0

� �
(2)

and

0 0
1 0

� �
(3)

are similar under conjugation by

C �
0 1
1 0

� �
: (4)

Similar matrices represent the same LINEAR TRANS-

FORMATION after a change of basis (for the domain
and range simultaneously). Recall that a matrix
corresponds to a LINEAR TRANSFORMATION, and a
LINEAR TRANSFORMATION corresponds to a matrix
after choosing a basis bi ;

T
X

libi

� �
�
X

aji libj (5)

Changing the basis changes the coefficients of the
matrix,

T
X

giei

� �
�
X

a?ji giej (6)

If T(v) �Av uses the standard basis vectors, then T is
the matrix CAC�1 using the basis vectors bi �Cei :/

See also BASIS (VECTOR SPACE), DIAGONAL MATRIX,
DIAGONALIZABLE MATRIX, GROUP, JORDAN CANONI-

CAL FORM, LINEAR TRANSFORMATION, RATIONAL CA-

NONICAL FORM, SIMILARITY TRANSFORMATION,
SQUARE MATRIX, VECTOR SPACE

References
Golub, G. H. and van Loan, C. F. Matrix Computations, 3rd

ed. Baltimore, MD: Johns Hopkins University Press,
p. 311, 1996.

Similar Triangles

Two triangles are similar if their triples of vertex
angles are the same.

See also DIRECTLY SIMILAR, INVERSELY SIMILAR,
SIMILAR

Similarity Axis
D’ALEMBERT’S THEOREM

Similarity Dimension
To multiply the size of a d -D object by a factor a ,
c �ad copies are required, and the quantity

d �
ln c

ln a

is called the similarity dimension.

Similarity Point
External (or positive) and internal (or negative)
similarity points of two CIRCLES with centers C and
C ? and RADII r and r ? are the points E and I on the
lines CC ? such that

CE

C?E 
�

r

r?
;

or

CI

C ?I 
��

r

r?
:

See also D’ALEMBERT’S THEOREM

Similarity Transformation
An ANGLE-preserving transformation. A similarity
transformation has a transformation matrix A? of
the form

A?�BAB�1; (1)

where A and B are known as SIMILAR MATRICES

(Golub and van Loan 1996, p. 311).

If A is an ANTISYMMETRIC MATRIX ( aij��aji) and B is
an ORTHOGONAL MATRIX, then



bab �1
� �

ij
�bikaklb

�1
lj ��bikalkb�1

lj

��b$
kialk b $

� ��1

jl
��b�1

ki akibjl �bjlalkb�1
ki

�� bab�1
� �

ji 
: (2)

The DETERMINANT of the similarity transformation of
a MATRIX is equal to the determinant of the original
MATRIX

½BAB�1 ½� ½B½½A½½B �1 ½� ½B½½A ½
1

½B ½
� ½A½: (3)

The determinant of a similarity transformation
minus a multiple of the unit MATRIX is given by

½B�1AB �lI½� ½B �1AB �B �1 lIB ½� ½B�1(A �lI)B ½

� ½B�1 ½½A �lI ½½B½� ½A �lI ½: (4)

Similarity transformations and the concept of SELF-

SIMILARITY are important foundations of FRACTALS

and ITERATED FUNCTION SYSTEMS.

See also CONFORMAL MAPPING, DETERMINANT, DILA-

TION, ITERATED FUNCTION SYSTEM, SIMILAR MA-

TRICES
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Similitude Center
Also called a self-homologous point. If two SIMILAR

figures lie in the plane but do not have parallel sides
(they are not HOMOTHETIC), there exists a center of
similitude which occupies the same homologous posi-
tion with respect to the two figures. The LOCUS of
similitude centers of two nonconcentric circles is
another circle having the line joining the two homo-
thetic centers as its DIAMETER.

There are a number of interesting theorems regard-
ing three CIRCLES (Johnson 1929, pp. 151 �/152).

1. The external similitude centers of three circles
are COLLINEAR.
2. Any two internal similitude centers are COLLI-

NEAR with the third external one.
3. If the center of each circle is connected with the
internal similitude center of the other three [sic],
the connectors are CONCURRENT.
4. If one center is connected with the internal
similitude center of the other two, the others with

the corresponding external centers, the connectors
are CONCURRENT.

The six centers of similitude of three circles taken by
pairs are the vertices of a COMPLETE QUADRILATERAL

(Evelyn et al. 1974, pp. 21 �/22).

See also SIMILITUDE CENTER, SIMILITUDE CIRCLE
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Similitude Circle
The LOCUS of the SIMILITUDE CENTER of two circles.

See also INVARIABLE POINT, SIMILITUDE CENTER
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Similitude Ratio
Two figures are HOMOTHETIC if they are related by a
DILATION (a dilation is also known as a HOMOTHECY).
This means that the connectors of corresponding
points are CONCURRENT at a point which divides
each connector in the same ratio k , known as the
similitude ratio.

See also CONCURRENT, DILATION, HOMOTHECY,
HOMOTHETIC

Simon Newcomb’s Problem
Given a set P with ½P ½�p elements consisting of c1

numbers 1, c2 numbers 2, ..., and cn numbers n and

c1 �c2 �. . .�cn �p;

find the number of permutations with k �1 rises
(Comtet 1974, p. 246).

See also EULER NUMBER
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Simple Algebra
An ALGEBRA with no nontrivial IDEALS.

See also ALGEBRA, IDEAL, SEMISIMPLE ALGEBRA

Simple Continued Fraction
A CONTINUED FRACTION

s �a0 �
b1

a1 �
b2

a2 �
b3

a3 � . . .

(1)

in which the bi/s are all unity, leaving a continued
fraction OF THE FORM

s �a0 �
1

a1 �
1

a2 �
1

a3 � . . .

: (2)

A simple continued fraction can be written in a
compact abbreviated NOTATION as

s � a0 ; a1 ; a2 ; a3 . . .½ : (3)

Bach and Shallit (1996) show how to compute the
JACOBI SYMBOL in terms of the simple continued
fraction of a RATIONAL NUMBER a=b :/

See also CONTINUED FRACTION
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Simple Curve

A curve is simple if it does not cross itself.

See also CLOSED CURVE, JORDAN CURVE
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Simple Double Point
ORDINARY DOUBLE POINT

Simple Function
A simple function is a finite sum ai ai xAi ; where the
functions xAi are CHARACTERISTIC FUNCTIONS on a set
A . Another description of a simple function is a
function that takes on finitely many values in its
range.

The collection of simple functions is CLOSED under
addition and multiplication. In addition, it is easy to
integrate a simple function. By approximating a
given function f by simple functions, the LEBESGUE

INTEGRAL of f can be calculated.

See also CHARACTERISTIC FUNCTION (SET), LEBESGUE

INTEGRAL, SET

Simple Graph

A GRAPH for which at most one EDGE connects any two
nodes. Unless stated otherwise, the unqualified term
"graph" usually refers to a simple graph. A non-
simple graph with no loops but which can contain
more than one edge between any two points is called a
MULTIGRAPH.

See also ADJACENCY MATRIX, EDGE (GRAPH), GRAPH,
MULTIGRAPH, REGULAR GRAPH, STEINITZ’S THEOREM
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Simple Group
A simple group is a GROUP whose NORMAL SUBGROUPS

(INVARIANT SUBGROUPS) are ORDER one or the whole of
the original GROUP. Simple groups include ALTERNAT-

ING GROUPS, CYCLIC GROUPS, LIE-TYPE GROUPS (five
varieties), and SPORADIC GROUPS (26 varieties, includ-
ing the MONSTER GROUP). The CLASSIFICATION THEO-

REM of finite simple groups states that such groups
can be classified completely into the five types:

1. CYCLIC GROUPS of PRIME ORDER,
2. ALTERNATING GROUPS of degree at least five
3. LIE-TYPE CHEVALLEY GROUPS,
4. LIE-TYPE (TWISTED CHEVALLEY GROUPS or the
TITS GROUP), and
5. SPORADIC GROUPS.

BURNSIDE’S CONJECTURE states that every non-ABE-

LIAN SIMPLE GROUP has EVEN ORDER.

See also ALTERNATING GROUP, BURNSIDE’S CONJEC-

TURE, CHEVALLEY GROUPS, CLASSIFICATION THEO-

REM, CYCLIC GROUP, FEIT-THOMPSON THEOREM,
FINITE GROUP, GROUP, INVARIANT SUBGROUP, LIE-

TYPE GROUP, MONSTER GROUP, SCHUR MULTIPLIER,
SPORADIC GROUP, TITS GROUP, TWISTED CHEVALLEY

GROUPS

Simple Harmonic Motion
Simple harmonic motion refers to the periodic sinu-
soidal oscillation of an object or quantity. Simple
harmonic motion is executed by any quantity obeying
the DIFFERENTIAL EQUATION

ẍ � v2
0x �0: (1)

where ẍ denotes the second DERIVATIVE of x with
respect to t , and v0 is the angular frequency of
oscillation. This ORDINARY DIFFERENTIAL EQUATION

has an irregular SINGULARITY at �: The general
solution is

x �A sin v0tð Þ�B cos(v0t) (2)

�C cos v0t � fð Þ; (3)

where the two constants A and B (or C and f) are
determined from the initial conditions.

Many physical systems undergoing small displace-
ments, including any objects obeying Hooke’s law,
exhibit simple harmonic motion. This equation arises,
for example, in the analysis of the flow of current in
an electronic CL circuit (which contains a capacitor
and an inductor ). If a damping force such as Friction
is present, an additional term bẋ must be added to the
DIFFERENTIAL EQUATION and motion dies out over
time.

See also DAMPED SIMPLE HARMONIC MOTION, SIMPLE

HARMONIC MOTION-QUADRATIC PERTURBATION

Simple Harmonic Motion*/Quadratic
Perturbation
Given a simple harmonic oscillator with a quadratic
perturbation ex2;

ẍ�v2
0x�aex2�0: (1)

find the first-order solution using a perturbation
method. Write

x�x0�ex1�. . . : (2)

so

ẍ� ẋ0�eẋ1�. . . : (3)

Plugging (2) and (3) back into (1) gives

ẋ0�eẋ1ð Þ� v2
0x0�v2

0ex1

� �
�ae x0�2x0x1e�. . .ð Þ

�0: (4)

Keeping only terms of order e and lower and group-
ing, we obtain

ẋ�v2
0x0

� �
� ẋ1�v2

0x1�ax2
0

� �
e�0: (5)

Since this equation must hold for all POWERS of e; we
can separate it into the two differential equations

ẋ0�v2
0x0�0 (6)

ẋ1�v2
0x1�ax2

0: (7)

The solution to (6) is just

x0�A cos(v0t�f): (8)

Setting our clock so that f�0 gives

x0�A cos v0tð Þ: (9)

Plugging this into (7) then gives

ẋ1�v2
0x1�aA2 cos2 v0tð Þ (10)

The two homogeneous solutions to (10) are

x1�cos v0tð Þ (11)

x2�sin v0tð Þ: (12)

The particular solution to (10) is therefore given by

xp(t)��x1(t)g
x2(t)g(t)

W(t)
dt�x2(t)g

x1(t)g(t)

W(t)
dt: (13)

where

g(t)�aA2 cos2 v0tð Þ: (14)

and the WRONSKIAN is

W�x1ẋ2�ẋ1x2�v0: (15)

Plugging everything into (13),



xp � aA2 �cos v0tð Þg
sin v0tð Þcos2 v0tð Þ

v0

dt

"

�sin v0tð Þg
cos3 v0tð Þ

v0

dt

�

�
aA2

v0

sin v0tð Þg 1 �sin2 v0tð Þ

 �

cos v0tð Þ dt

 

�cos v0tð Þg sin v0tð Þcos2 v0tð Þ dt

<
: (16)

Now let

u �sin v0tð Þ  (17)

du � v0 cos v0tð Þ dt (18)

v �cos v0tð Þ  (19)

dv ��v0sin v0tð Þ dt : (20)

Then

xp �
aA2

v2
0

sin v0tð Þg 1 �u2
� �

du �cos v0tð Þg v2 dv

� �

�
aA2

v2
0

sin v0tð Þ 1 �1
3 u

3
� �

�cos v0tð Þ1
3 v

3
h i

�
aA2

v2
0

sin v0tð Þ 1 �1
3 sin3 v0tð Þ

h i
�1

3 cos v0tð Þcos3 v0tð Þ
n o

�
aA2

6v2
0

3 �cos 2v0tð Þ½ : (21)

Plugging x0(t) and (21) into (2), we obtain the solution

x(t) �A cos v0tð Þ�aA2

6 v2
0

e cos 2 v0tð Þ�3½ : (22)

As can be seen in the top figure above, this solution
approximates x(t) only for e�1 : As the lower figure
shows, the differences from the unperturbed oscilla-
tor grow stronger over time for even relatively small
values of e:/

Simple Harmonic Oscillator
SIMPLE HARMONIC MOTION

Simple Interest
INTEREST which is paid only on the PRINCIPAL and not
on the additional amount generated by previous
INTEREST payments. A formula for computing simple
interest is

a(t) �a(0)(1 �rt) :

where a(t) is the sum of PRINCIPAL and INTEREST at
time t for a constant interest rate r .

See also COMPOUND INTEREST, INTEREST
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Simple Lie Algebra

References
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Simple Pole
A simple pole of a ANALYTIC FUNCTION f is a POLE of
order one. That is, (z �z0)f (z) is an ANALYTIC FUNC-

TION at the pole z �z0 : Alternatively, its PRINCIPAL

PART is c =(z �z0) for some c "0: It is called simple
because a function with a pole of order n at a can be
written as the product of n functions with simple
poles at z0 :/

See also DIVISOR (CURVE), ESSENTIAL SINGULARITY,
POLE

Simple Polygon
A POLYGON P is said to be simple (or JORDAN) if the
only points of the plane belonging to two EDGES of P
are the VERTICES of P . Such a polygon has a WELL

DEFINED interior and exterior. Simple polygons are
topologically equivalent to a DISK.

See also POLYGON, REGULAR POLYGON, SIMPLE POLY-

HEDRON, TWO-EARS THEOREM

References
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Simple Polyhedron

A POLYHEDRON that is topologically equivalent to a
sphere (i.e., if it were inflated, it would produce a
sphere) and whose faces are SIMPLE POLYGONS. The
simple polyhedra on n nodes correspond to the simple
PLANAR GRAPHS with 3n �6 edges, and are also called
"simplicial polyhedra." The number of simple poly-
hedra on n �1, 2, ... nodes are 0, 0, 1, 1, 1, 2, 5, 15, 50,
233, 1249, ... (Sloane’s A000109).

See also PLANAR GRAPH, SIMPLE POLYGON

References
Bokowski, J. and Schuchert, P. "Equifacetted 3-Spheres as

Topes of Nonpolytopal Matroid Polytopes." Disc. Comput.
Geom. 13, 347 �/361, 1995.

Bowen, R. and Fisk, S. "Generation of Triangulations of the
Sphere." Math. Comput. 21, 250 �/252, 1967.

Dillencourt, M. B. "Polyhedra of Small Orders and Their
Hamiltonian Properties." Tech. Rep. 92 �/91, Info. and
Comput. Sci. Dept., Univ. Calif. Irvine, 1992.

Federico, P. J. "Enumeration of Polyhedra: The Number of
9-Hedra." J. Combin. Th. 7, 155 �/161, 1969.

Gardner, M. "Mathematical Games: On the Remarkable
Császár Polyhedron and Its Applications in Problem
Solving." Sci. Amer. 232, 102 �/107, May 1975.
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Simple Random Walk

See also RANDOM WALK

Simple Ring
A NONZERO RING S whose only (two-sided) IDEALS are
S itself and zero. Every commutative simple ring is a
FIELD. Every simple ring is a PRIME RING.

See also FIELD, IDEAL, PRIME RING, RING

Simple Root
A ROOT having MULTIPLICITY n � 1 is called a simple
root. For example, f (z) �(z �1)(z �2) has a simple
root at z0 �1; but g �(z �1)2 has a root of MULTI-

PLICITY 2 at z0 �1; which is therefore not a simple
root.

See also MULTIPLE ROOT, MULTIPLICITY, ROOT
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Simple Zero
SIMPLE ROOT

Simplex
The generalization of a tetrahedral region of space to
n -D. The boundary of a k -simplex has k�1 0-faces
(VERTICES), k(k�1)=2 1-faces (EDGES), and k�1

i�1

� �
i -

faces, where n
k

� �
is a BINOMIAL COEFFICIENT. An n -D

simplex can be denoted using the SCHLÄFLI SYMBOL

f3; . . . ; 3|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�1

g:

The simplex named because it represents the sim-
plest possible polytope in any given space.

The CONTENT (i.e., hypervolume) of a simplex can be
computed using the CAYLEY-MENGER DETERMINANT.



In 1-D, the simplex is the LINE SEGMENT [�1; 1]: In 2-
D, the simplex f3g is the CONVEX HULL of the
EQUILATERAL TRIANGLE. In 3-D, the simplex f3; 3g
is the CONVEX HULL of the TETRAHEDRON. The simplex
in 4-D (the PENTATOPE) is a regular TETRAHEDRON

ABCD in which a point E along the fourth dimension
through the center of ABCD is chosen so that EA �
EB �EC �ED �AB : The regular simplex in n -D with
n ]5 is denoted an :/

The above figures show the graphs for the n -sim-
plexes with n �2 to 7.

See also CAYLEY-MENGER DETERMINANT, COMPLEX,
CROSS POLYTOPE, EQUILATERAL TRIANGLE, LINE

SEGMENT, MEASURE POLYTOPE, NERVE, PENTATOPE,
POINT, POLYTOPE, SIMPLEX METHOD, SPHERICAL

SIMPLEX, TETRAHEDRON

References
Bourke, P. "Regular Polytopes (Platonic Solids) in 4D."

http://www.swin.edu.au/astronomy/pbourke/geometry/
platonic4d/.

Eppstein, D. "Triangles and Simplices." http://www.ics.u-
ci.edu/~eppstein/junkyard/triangulation.html.

Munkres, J. R. "Simplices." §1.1 in Elements of Algebraic
Topology. Perseus Press, pp. 2 �/7, 1993.

Simplex Method
A method for solving problems in LINEAR PROGRAM-

MING. This method, invented by G. B. Dantzig in
1947, runs along EDGES of the visualization SOLID to
find the best answer. In 1970, Klee and Minty
constructed examples in which the simplex method
required an exponential number of steps, but such
cases seem never to be encountered in practical
applications.

A much more efficient (POLYNOMIAL-time) ALGORITHM

was found in 1984 by N. Karmarkar. This method
goes through the middle of the SOLID and then
transforms and warps. It offers many advantages
over the simplex method (Nemirovsky and Yudin
1994).

See also LINEAR PROGRAMMING
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Simplex Point Picking
Given a SIMPLEX of unit CONTENT in Euclidean d -
space, pick d �1 points uniformly and independently
at random, and denote the expected CONTENT of their
CONVEX HULL by V(d; n): The special values

V(1; n) �1 �
2

n � 1 
�

n � 1

n � 1 
(1)

and

V(2; n) �1 �
2

n � 1

Xn

k �1

1

k 
�1 �

2Hn

n � 1 
; (2)

where Hn is a HARMONIC NUMBER, are known (Buchta
1984, 1986). Not much is known about V(3; n);
although

V(3; 5) �5
2 V(3; 4) (3)

(Buchta 1983, 1986) and

1�V(3; n)	
3

4

(ln n)2

n
(4)

(Buchta 1986).

See also DISK TRIANGLE PICKING

References
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Simplicial Complex

A simplicial complex is a SPACE with a TRIANGULA-

TION. Formally, a simplicial complex K in Rn is a
collection of SIMPLICES in Rn such that

1. Every face of a simplex of K is in K , and
2. The intersection of any two simplices of K is a
face of each of them

(Munkres 1993, p. 7).

Objects in the space made up of only the simplices in
the triangulation of the space are called SIMPLICIAL



SUBCOMPLEXES. When only simplicial complexes and
SIMPLICIAL SUBCOMPLEXES are considered, defining
HOMOLOGY is particularly easy (and, in fact, combi-
natorial because of its finite/counting nature). This
kind of homology is called SIMPLICIAL HOMOLOGY.

See also ABSTRACT SIMPLICIAL COMPLEX, HOMOLOGY

(TOPOLOGY), NERVE, SIMPLEX, SIMPLICIAL SUBCOM-

PLEX, SIMPLICIAL HOMOLOGY, SPACE, TRIANGULATION
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Simplicial Homology
The type of HOMOLOGY which results when the spaces
being studied are restricted to SIMPLICIAL COMPLEXES

and subcomplexes.

See also SIMPLICIAL COMPLEX

Simplicial Homomorphism
Let f : K (0) 0 L(0) be a bijective correspondence such
that the vertices v0 ; ..., vn of K span a SIMPLEX of K
IFF f (v0) ; ..., f (vn) span a SIMPLEX of L . Then the
induced SIMPLICIAL MAP g : Kj j 0 Lj j is a HOMEO-

MORPHISM, and the map g is called a simplicial
homeomorphism (Munkres 1993, p. 13).
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Simplicial Map
Let K and L be SIMPLICIAL COMPLEXES, and let f :
K (0) 0 L(0) be a map. Suppose that whenever the
vertices v0 ; ..., vn of K span a SIMPLEX of K , the points
f (v0) ; ..., f (vn) are vertices of a SIMPLEX of L . Then f
can be extended to a continuous map g : Kj j 0 Lj j
such that

x �
Xn

i �0

tivi

implies

g(x) �
Xn

i�0

tif við Þ:

The map g is then called the linear simplicial map
induced by the vertex map f (Munkres 1993, p. 12).
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Simplicial Polyhedron
SIMPLE POLYHEDRON

Simplicial Subcomplex
If L is a subcollection of a SIMPLICIAL COMPLEX K that
contains all faces of its elements, then L is another
SIMPLICIAL COMPLEX called a simplicial subcomplex.

See also SIMPLICIAL COMPLEX
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Simplicity
The number of operations needed to effect a GEO-

METRIC CONSTRUCTION as determined in GEOMETRO-

GRAPHY. If the number of operations of the five
GEOMETROGRAPHIC types are denoted m1 ; m2 ; n1 ; n2 ;
and n3 ; respectively, then the simplicity is m1 �m2 �
n1 �n2 �n3 and the symbol m1S1 �m2S2 �n1C1 �
n2C2 �n3C3 : It is apparently an unsolved problem to
determine if a given GEOMETRIC CONSTRUCTION is of
smallest possible simplicity.

See also GEOMETRIC CONSTRUCTION, GEOMETROGRA-

PHY
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Simply Connected

A CONNECTED DOMAIN is said to be simply connected
(also called 1-connected) if any simple closed curve
can be shrunk to a point continuously in the set. If the
domain is CONNECTED but not simply, it is said to be
MULTIPLY CONNECTED. In particular, a SUBSET E of R2

is said to be simply connected if both E and R2_E;
where F_E denotes a SET DIFFERENCE, are CON-

NECTED.
A SPACE S is simply connected if it is 0-connected and
if every MAP from the 1-SPHERE to S extends con-
tinuously to a MAP from the 2-DISK. In other words,
every loop in the SPACE is contractible.

See also CONNECTED SET, CONNECTED SPACE, MULTI-

PLY CONNECTED
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Simpson’s 3/8 Rule
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi�1 �xi ; so f1 �f (x1) ; f2 �
f (x2) ; ..., f4 �f (x4): Then Simpson’s 3/8 rule approx-
imating the integral of f (x) is given by the NEWTON-

COTES-like formula

g
x4

x1

f (x) dx �3
8 h f1 �3f2 �3f3 �f4ð Þ� 3

80 h
5 f (4)( j):

See also BODE’S RULE, NEWTON-COTES FORMULAS,
SIMPSON’S RULE
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Simpson’s Formulas
The TRIGONOMETRIC ADDITION FORMULAS

sin a �sin b �2 sin
a � b

2

 !
cos

a � b

2

 !
(1)

sin a �sin b �2 sin
a � b

2

 !
cos

a � b

2

 !
(2)

cos a �cos b �2 cos
a � b

2

 !
cos

a � b

2

 !
(3)

cos a �cos b ��2 sin
a � b

2

 !
sin

a � b

2

 !
: (4)

Simpson’s Paradox
It is not necessarily true that averaging the averages
of different populations gives the average of the
combined population.
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Simpson’s Rule
Let h �(b �a) =n; and assume a function f (x) is
defined at points f (a �kh) �yk for k �0, ..., n . Then

g
b

a

f (x) dx �1
3 h y0 �4y1 �2y2 �4y3 �. . .ð

�2yn �2 �4yn �1 �yn Þ�Rn :

where the remainder is

Rn �
1
90(b�a)4f (4)(x�)

for some x� � [a; b]:/

See also BODE’S RULE, NEWTON-COTES FORMULAS,
SIMPSON’S 3/8 RULE, TRAPEZOIDAL RULE
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Simson Line

The Simson line is the LINE containing the feet P1; P2;
and P3 of the perpendiculars from an arbitrary point
P on the CIRCUMCIRCLE of a TRIANGLE to the sides or
their extensions of the TRIANGLE. This line was
attributed to Simson by Poncelet , but is now
frequently known as the Wallace-Simson line since
it does not actually appear in any work of Simson
(Johnson 1929, p. 137; Coxeter and Greitzer 1967,
p. 41; de Guzmán 1999). The inverse statement to
that given above, namely that the locus of all points P
in the plane of a TRIANGLE DABC such that the feet of
perpendiculars from the three sides of the triangle is



collinear is given by the CIRCUMCIRCLE of DABC ; is
sometimes called the Wallace-Simson theorem (Guz-
mán 1999).

The Simson line bisects the line HP , where H is the
ORTHOCENTER (Honsberger 1995, p. 46). Moreover,
the MIDPOINT of HP lies on the NINE-POINT CIRCLE

(Honsberger 1995, pp. 46 �/47). The Simson lines of
two opposite point on the CIRCUMCENTER of a triangle
are PERPENDICULAR and meet on the NINE-POINT

CIRCLE.
The ANGLE between the Simson lines of two points P
and P ? is half the ANGLE of the arc PP ?: The Simson
line of any VERTEX is the ALTITUDE through that
VERTEX. The Simson line of a point opposite a VERTEX

is the corresponding side. If T1T2T3 is the Simson line
of a point T of the CIRCUMCIRCLE, then the triangles
TT1T2 and TA2A1 are directly similar.

The ENVELOPE of the Simson lines of a triangle is a
DELTOID (Butchart 1939; Wells 1991, pp. 155 and
230). The area of the deltoid is half the area of the
circumcircle (Wells 1991, p. 230), and MORLEY’S

TRIANGLE of the starting triangle has the same
orientation as the DELTOID. Each side of the triangle
is tangent to the DELTOID at a point whose distance
from the MIDPOINT of the side equals the chord of the
NINE-POINT CIRCLE cut off by that side (Wells 1991,
p. 231). If a line L is the Simson line of a point P on
the CIRCUMCIRCLE of a TRIANGLE, then P is called the
POLE of L (Honsberger 1995, p. 128).

See also CIRCUMCIRCLE, POLE (SIMSON LINE), RIGBY

POINTS
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Simson’s Formula
CASSINI’S IDENTITY

Sin
SINE

Sinc
SINC FUNCTION



Sinc Function

A function also called the "sampling function" that
arises frequently in signal processing. There are two
definitions in common use. The one adopted in this
work defines

sinc(x)�
1 for x�0
sin x

x
otherwise;

8<
: (1)

where sin x is the SINE function, while Woodward
(1953) and Bracewell (1999, p. 62) adopt the alter-
native definition

sincp(x)�
1 for x�0
sin(px)

(px)
otherwise:

8<
: (2)

The latter definition is sometimes more convenient as
a result of its simple normalization,

g
�

��

sincp(x) dx�1: (3)

Let P(x) be the RECTANGLE FUNCTION, then the
FOURIER TRANSFORM of P(x) is the sinc function

F[P(x)]�sinc(pk): (4)

The sinc function therefore frequently arises in
physical applications such as Fourier transform
spectroscopy as the so-called INSTRUMENT FUNCTION,
which gives the instrumental response to a DELTA

FUNCTION input. Removing the instrument functions
from the final spectrum requires use of some sort of
DECONVOLUTION algorithm.
The sinc function can be written as a complex
INTEGRAL by noting that, for x"0;

sinc(nx)�
sin(nx)

nx
�

1

nx

einx � e�inx

2i

�
1

2inx
eitx

 �n

�n
�

1n

2n g
n

�n

eixt dt: (5)

and that sinc(nx) and the integral both equal 1 for
x�0. The sinc function can also be written as the
INFINITE PRODUCT

sinc x�
Y�
k�1

cos
x

2k

 !
: (6)

Definite integrals involving the sinc function include

g
�

0

sinc(x) dx�1
2 p (7)

g
�

0

sinc2(x) dx�1
2 p (8)

g
�

0

sinc3(x) dx�3
8 p (9)

g
�

0

sinc4(x) dx�1
3 p (10)

g
�

0

sinc5(x) dx�115
384 p: (11)

These are all special cases of the amazing general
result

g
�

0

sina x

xb
dx�

p1�c(�1)�(a�b)=2�

2a�c(b � 1)!

�
Xa=2b c�c

k�0

(�1)k a
kð Þ(a�2k)b�1[ln(a�2k)]c: (12)

where a and b are POSITIVE INTEGERS such that a]
b > c; c�a�b (mod 2); xb c is the FLOOR FUNCTION,
and 00 is taken to be equal to 1 (Kogan). This
spectacular formula simplifies in the special case
when n is a POSITIVE EVEN integer to

g
�

0

sin2nx

x2n
dx�

p

2(2n � 1)!

2n�1
n�1

= >
: (13)

where n
k

! "
is an EULERIAN NUMBER (Kogan). The

solution of the integral can also be written in terms
of the RECURRENCE RELATION for the coefficients

c(a; b)�

p

2a�1�b

a�1
1

2
(a�1)

0
@

1
A

for b�1 or b�2
a

(b � 1)(b � 2)
[(a�1)c(a�2; b�2)

�a � c(a; b�2)]
otherwise

8>>>>>>>>>><
>>>>>>>>>>:

(14)

(Zimmerman).



The half-infinite integral of sinc(x) can be derived
using CONTOUR INTEGRATION. In the above figure,
consider the path g � g1 � g12 � g2 � g21 : Now write z �
Reiu : On an arc, dz �iReiu du and on the X -AXIS, dz �
eiu dR: Write

g
�

��

sinc x dx�I g
g

eiz

z
dx: (15)

where I denotes the IMAGINARY POINT. Now define

I �g
g

eiz

z
dz

� lim
R1 00 g

0

p

exp(iR1eiu)

R1eiu
i uR1eiu d u

� lim
R1 00

lim
R2 0� g

R2

R1

eiR

R
dR

� lim
R2 0� g  

p

0

exp(iz)

z
dx � lim

R1 00 g
R1

R2

e �iR

�R
(�dR) : (16)

where the second and fourth terms use the identities
ei0 �1 and eip ��1 : Simplifying,

I � lim
R1 00 g

0

p

exp iR1eiu
� �

iu du �g
�

0 �

eiR

R
dR

� lim
R2 0� g  

p

0

exp(iz)

z
dz �g

0 �

�

e �iR

�R
(�dR)

��g  
p

0

i u du �g
�

0 �

eiR

R
dR �0 �g

0 �

��

eiR

R
dR: (17)

where the third term vanishes by JORDAN’S LEMMA.
Performing the integration of the first term and
combining the others yield

I ��i p �g
�

��

eiz

z
dz �0: (18)

Rearranging gives

g
�

��

eiz

z
dz �i p: (19)

so

g
�

��

sin z

z
dz � p: (20)

The same result is arrived at using the method of
RESIDUES by noting

I �0 �1
2 2pi Res

z�0
f (z)

�i p(z �0)
eiz

z j
z�0

�ip eiz

 �

z�0
�i p; (21)

so

I(I) � p: (22)

Since the integrand is symmetric, we therefore have

g
�

0

sinx

x
dx �1

2 p; (23)

giving the SINE INTEGRAL evaluated at 0 as

si(0)��g
�

0

sin x

x
dx��1

2 p: (24)

An interesting property of sinc(x) is that the set of
LOCAL EXTREMA of sinc(x) corresponds to its intersec-
tions with the COSINE function cos(x); as illustrated
above.

See also FOURIER TRANSFORM, FOURIER TRANSFORM–

RECTANGLE FUNCTION, INSTRUMENT FUNCTION, JINC

FUNCTION, KILROY CURVE, SINE, SINE INTEGRAL
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Sinclair’s Soap Film Problem
Find the shape of a soap film (i.e., MINIMAL SURFACE)
which will fill two inverted conical FUNNELS facing
each other is known as Sinclair’s soap film problem
(Bliss 1925, p. 121). The soap film will assume the
shape of a CATENOID.

See also CATENOID, FUNNEL, MINIMAL SURFACE
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Sine

One of the basic TRIGONOMETRIC FUNCTIONS encoun-
tered in TRIGONOMETRY. Let u be an ANGLE measured
counterclockwise from the X -AXIS along the arc of the
UNIT CIRCLE. Then sin u is the vertical coordinate of
the arc endpoint. As a result of this definition, the
sine function is periodic with period 2p: By the
PYTHAGOREAN THEOREM, sin u also obeys the identity

sin2 u�cos2 u�1: (1)

The definition of the sine function can be extended to
complex arguments z using the definition

sin z�
eiz � e�iz

2i
; (2)

where E is the base of the NATURAL LOGARITHM and I

is the IMAGINARY NUMBER. A related function known
as the HYPERBOLIC SINE is similarly defined,

sinh z�1
2 ez�e�zð Þ; (3)

The sine function can be defined algebraically by the
infinite sum

sin x�
X�
n�1

(�1)n�1

(2n � 1)!
x2n�1 (4)

and INFINITE PRODUCT

sin x�x
Yx

n�1

1�
x2

n2p2

 !
: (5)

It is also given by the IMAGINARY PART of the complex
exponential

sin x�I eix

 �

(6)

The multiplicative inverse of the sine function is the
COSECANT, defined as

csc x�
1

sin x
: (7)

The sine function is also given by the slowly con-
vergent INFINITE SERIES

sin(z)��p
X�
k�1

m(k) ln
n

k

 !
frac

kz

2p

 !
k ln n

(8)

where m(k) is the MÖBIUS FUNCTION and frac x is the
FRACTIONAL PART (M. Trott).

Using the results from the EXPONENTIAL SUM FOR-

MULAS

XN

n�0

sin(nx)�I
XN

n�0

einx

" #

�I
sin 1

2 Nx
� �

sin 1
2 x
� � ei(N�1)x=2

2
4

3
5



�
sin 1

2 Nx
� �

sin 1
2 x
� � sin 1

2 x(N �1)
h i

: (9)

Similarly,

X�
n �0

pn sin(nx) �I
X�
n�0

pneinx

" #

�I
1 � pe�iz

1 � 2p cos x � p2

" #
�

p sin x

1 � 2p cos x � p2 
: (10)

The sum of sin2(kx) can also be done in closed form,

XN

k �0

sin2(kx) �1
4 f1 �2N �csc x sin[x(1 �2N) g: (11)

The sine function obeys the identity

sin(nu) �2 cos u sin[(n �1)u] �sin[(n �2)u] (12)

and the MULTIPLE-ANGLE FORMULA

sin(nx) �
Xn

k �0

n
k

# $
cosk x sinn�k x sin 1

2(n �k) p
h i

: (13)

where n
k

� �
is a BINOMIAL COEFFICIENT.

Cvijovic and Klinowski (1995) show that the sum

Sn( a) �
X�
k�0

sin(2k � 1)a

(2k � 1)n 
(14)

has closed form for n �2n �1;

S2n�1(a) �
( �1)

4(2n)! 
p2n�1E2n

a

p

 !
; (15)

where En(x) is an EULER POLYNOMIAL.

A CONTINUED FRACTION representation of sin x is

sin x

�
x

1 �
x2

2 � 3 � x2ð Þ 2 � 3x2

4 � 5 � x2ð Þ� 4 � 5x2

6 � 7 � x2ð Þ� . . .

(16)

The value of sin(2 p=n) is IRRATIONAL for all n except 4
and 12, for which sin( p=2) �1 and sin( p=6) �1=2:/

The FOURIER TRANSFORM of sin 2pk0xð Þ is given by

F sin 2 pk0xð Þ½ �g
�

��

e �2 pikx sin 2pk0xð Þ dx

�1
2 i d k �k0ð Þ� d k �k0ð Þ½ : (17)

Definite integrals involving sin x include

g
�

0

sin x2
� �

dx�1
4

ffiffiffiffiffiffi
2p

p
(18)

g
�

0

sin x3
� �

dx�1
6 G

1
3

� �
(19)

g
�

0

sin x4
� �

dx��cos 5
8 p
� �

G 5
4

� �
(20)

g
�

0

sin x5
� �

dx�1
4

ffiffiffi
5

p
�1

� �
G 6

5

� �
; (21)

where G(x) is the GAMMA FUNCTION.

See also ANDREW’S SINE, COSECANT, COSINE, FOURIER

TRANSFORM–SINE, HYPERBOLIC SINE, SINC FUNCTION,
SINUSOID, TANGENT, TRIGONOMETRY
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Sine Integral



There are two types of "sine integrals" commonly
defined,

Si(x) �g
z

0

sin t

t
dt (1)

and

Si(x) ��g
z

0

sin t

t
dt (2)

�
1

2i
[ei(ix) �ei(�ix)]

�
1

2i
e1(ix) �e1(�ix)½   (3)

Si(z) �1
2 p; (4)

where ei(x) is the EXPONENTIAL INTEGRAL and

e1(x) ��ei(�x) : (5)

/Si(x) is the function returned by the Mathematica
command SinIntegral[x ] and displayed above. The
half-infinite integral of the SINC FUNCTION is given by

si(0) ��g
�

0

sin x

x
dx ��1

2 p: (6)

To compute the integral of a sine function times a
power

I �g x2n sin(mx) dx ; (7)

use INTEGRATION BY PARTS. Let

u �x2n dv �sin(mx) dx (8)

du �2nx2n�1 dx v �
1

m
cos(mx); (9)

so

I ��
1

m
x2n cos(mx) �

2n

m g x2n�1 cos(mx) dx: (10)

Using INTEGRATION BY PARTS again,

u �x2n�1 dv �cos(mx) dx (11)

du �(2n �1)x2n�2 dx v
1

m
sin(mx) (12)

g x2n sin(mx) dx ��
1

m
x2n cos(mx)

�
2n

m

1

m
x2n�1 cos(mx) �

2n � 1

m g x2n�2 sin(mx) dx

" #

��
1

m
x2n sin(mx) �

2n

m2
x2n�1 sin(mx)

�
(2n)(2n � 1)

m2 g x2n�2 sin(mx) dx

��
1

m
x2n cos(mx) �

2n

m2
x2n�1 sin(mx) �. . .

�
(2n)!

m2n g x0 sin(mx) dx

��
1

m
x2n cos(mx) �

2n

m2
x2n�1 sin(mx) �. . .

�
(2n)!

m2n�1
cos(mx)

�cos(mx)
Xn

k�0

(�1)k �1 (2n)!

(2n � 2k)!m2k �1
x2n�2k

�sin(mx)
Xn

k�1

(�1)k �1 (2n)!

(2k � 2n � 1)!m2k
x2n �2k �1 (13)

Letting k ?�n �k; so

g x2n sin(mx) dx

�cos(mx)
Xn

k �1

(�1)n�k �1 (2n)!

(2k)!m2n�2k�1
x2k

�sin(mx)
Xn �1

k�0

(�1)n�k �1 (2n)!

(2k � 1)!m2n�2k
x2k �1

�(�1)n�1(2n)! cos(mx)
Xn

k �0

( �1)k

(2k)!m2n�2k �1
x2k

"

�sin(mx)
Xn

k�1

(�1)k�1

(2k � 3)!m2n�2k�2
x2k�1:

(14)

General integrals OF THE FORM

I(k; l)�g
�

0

sink x

xl
dx (15)

are related to the SINC FUNCTION and can be com-
puted analytically.

See also CHI, COSINE INTEGRAL, EXPONENTIAL INTE-

GRAL, NIELSEN’S SPIRAL, SHI, SICI SPIRAL, SINC

FUNCTION
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Sine Surface

The surface given by the PARAMETRIC EQUATIONS

x�a sin u (1)

y�a sin v (2)

z�a sin(u�v): (3)

The coefficients of the FIRST FUNDAMENTAL FORM are

E�a2 cos2 u�cos2(u�v)

 �

(4)

F�a2 cos2(u�v) (5)

G�a2 cos2 v�cos2(u�v)

 �

; (6)

the SECOND FUNDAMENTAL FORM coefficients are

e��
a cos v sin vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 u cos2 v � cos2 u � cos2vð Þcos2(u � v)
p

(7)

f ��
a cos u cos v sin(u � v)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 ucos2 v � cos2 u � cos2 vð Þcos(u � v)
p (8)

g��
a cos u sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 u cos2 v � cos2 u � cos2 vð Þcos2(u � v)
p

(9)

the AREA ELEMENT is

dS�a2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 u cos2 v� cos2 u�cos2 vð Þcos2(u�v)

p
;

(10)

the Gaussian curvature is

k�
cos u cos v sin u sin v � cos u cos v sin2(u � v)


 �
acos2 u cos2 v � a cos2 u � cos2 vð Þcos2(u � v)½ 2

;

(11)

and the MEAN CURVATURE is a complicated expres-
sion.
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Sine-Gordon Equation
A PARTIAL DIFFERENTIAL EQUATION which appears in
differential geometry and relativistic field theory. Its
name is a wordplay on its similar form to the KLEIN-

GORDON EQUATION. The sine-Gordon equation is

vtt�vxx�sin v�0: (1)

where vtt and vxx are PARTIAL DERIVATIVES. The
equation can be transformed by defining

j�1
2(x�t) (2)

h�1
2(x�t): (3)

Then, by the CHAIN RULE,

@

@x
�

@j

@x

@

@j
�

@h

@x

@

@h
(4)

�
1

2

@

@j
�

@

@h

 !
(5)

@

@t
�

@j

@t

@

@j
�

@h

@t

@

@h
(6)

�
1

2

@

@h
�

@

@j

 !
(7)

This gives

@2v

@x2
�

1

4

@

@j
�

@

@h

 !
@v

@j
�

@v

@h

 !

�
1

4

@2v

@j2�2
@2v

@j@h
�

@2v

@h2

 !
(8)



@2v

@t2
�

1

4

@

@h
�

@

@j

 !
@v

@h
�

@v

@j

 !

�
1

4

@2v

@j2�2
@2v

@j@h
�

@2v

@h2

 !
(9)

Plugging in gives

vjh�sin v: (10)

Traveling wave analysis by setting v(x; t)�g(z) yields
after one integration

z�z0�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�1

p
g

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 d � 2 sin2 1

2 f
� �h ir (11)

where d is a constant of integration (Tabor 1989,
p. 306). For the particular case d�0,

z�z0�9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

p
ln 9tan 1

4 f
� �h i

; (12)

so integrating gives

f (z)�94 tan�1[e9 z�z0ð Þ= 1�c2ð Þ1=2]: (13)

The solution with the plus sign is called the "kink
solution," while that with the minus sign is called the
"antikink solution" (Tabor 1989, pp. 306�/307).

Another solution to the sine-Gordon equation is given
by making the substitution v(j; h)�f (z); where z�
jh; giving the ORDINARY DIFFERENTIAL EQUATION

zf ƒ�f ?�sin f : (14)

However, this cannot be solved analytically, since
letting g�eif gives

gƒ�
g?2

f
�

2g? � g2 � 1

2z
�0: (15)

which is the third PAINLEVÉ TRANSCENDENT (Tabor
1989, p. 309).

Now looking for a solution OF THE FORM

v(x; t)�4 tan�1 f(x)

c(t)

" #
(16)

gives

c2

f
fxx�

f2

c
ctt

� c2�2ct�cctt

� �
� �f2�2fx�ffxx

� �
: (17)

Further differentiation gives

fxxfð Þx

ffx

��
ctt=cð Þt

cct

��4k2: (18)

where k is a separation constant. Integrating twice
then gives

fxx��k2f4�m2f2�n2 (19)

ctt�k2c4� m2�1
� �

c2�n2; (20)

which can be solved in terms of ELLIPTIC FUNCTIONS

(Infeld and Rowlands 2000, pp. 178�/179).

A single-SOLITON solution is obtained when k�n�0;
m �1:

v�4 tan�1 exp
9x � btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
q

0
@

1
A

2
4

3
5; (21)

where

b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p

m
; (22)

with the plus and minus signs corresponding to the
soliton and antisoliton solutions. A two-SOLITON

solution exists with k�0, m �1:

v�4 tan�1 b sinh(bmx)

cosh(bmt)

" #
: (23)

A two-kink solution is given by

v�4 tan�1

m sinh
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � m2
p

 !

b cosh
mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � m2
p

 !
2
66664

3
77775 (24)

(Perring and Skyrme 1962; Drazin 1988; Tabor 1989,
pp. 307�/308).

A "breather" solution occurs for k"0; n�0, m2B1 :

v��4 tan�1 mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2

p
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m2t

p� �
cosh(mx)

2
4

3
5: (25)

For a fixed x, v , this is a periodic function of t with
frequency 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

p
(Infeld and Rowlands 2000,

p. 179).

The so-called double sine-Gordon equation is given by

uxt9 sin u�h sin 1
2 u
� �h i

�0 (26)



(Calogero and Degasperis 1982, p. 135; Zwillinger
1997, p. 135).

See also KLEIN-GORDON EQUATION, SINH-GORDON

EQUATION, SOLITON
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Sines Law
LAW OF SINES

Sine-Tangent Theorem
If

sin a

sin b 
�

m

n
;

then

tan 1
2(a � b)
h i

tan 1
2(a � b)
h i�m � n

m � n 
;

Single-Valued Function
A function which has the same value at every point z0

independent of the path along which it is reached by
ANALYTIC CONTINUATION (Knopp 1996, p. 93).

See also SINGLE-VALUED FUNCTION
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Singly Even Number
An EVEN NUMBER OF THE FORM 4n �2 (i.e., an
INTEGER which is DIVISIBLE by 2 but not by 4). The
first few for n �0, 1, 2, ... are 2, 6, 10, 14, 18, ...
(Sloane’s A016825)

See also DOUBLY EVEN NUMBER, EVEN NUMBER, ODD

NUMBER
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Singular Homology
The general type of HOMOLOGY which is what math-
ematicians generally mean when they say "homol-
ogy." Singular homology is a more general version
than Poincaré’s original SIMPLICIAL HOMOLOGY.

See also HOMOLOGY (TOPOLOGY), SIMPLICIAL HOMOL-

OGY

Singular Knot
This entry contributed by SERGEI DUZHIN

A SMOOTH MAP f : S1 0 R3 whose IMAGE has singula-
rities. In particular, in the theory of Vassiliev’s knot
invariants, singular knots with a finite number of
ORDINARY DOUBLE POINTS play an important role.

See also ORDINARY DOUBLE POINT, VASSILIEV INVAR-

IANT

Singular Matrix
A SQUARE MATRIX that not have a MATRIX INVERSE. A
matrix is singular IFF its DETERMINANT is 0. For
example, there are 10 singular 2 �2 (0,1)-MATRICES:

0 0
0 0

� �
;

0 0
0 1

� �
;

0 0
1 0

� �
;

0 0
1 1

� �
;

0 1
0 0

� �

0 1
0 1

� �
;

1 0
0 0

� �
;

1 0
1 0

� �
;

1 1
0 0

� �
;

1 1
1 1

� �
:

The following table gives the numbers of singular n �
n matrices for certain matrix classes.

matrix type Sloane counts for n �1, 2,
...

/(�1; 0; 1)/-ma-
trices

A000000 1, 33, 7875, ...

/(�1; 1)/-matrices A000000 0, 8, 320, 43264, ...

/(0; 1)/-matrices A046747 1, 10, 338, 42976, ...

See also DETERMINANT, ILL-CONDITIONED MATRIX,
MATRIX INVERSE, NONSINGULAR MATRIX, SINGULAR

VALUE DECOMPOSITION
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Singular Measure
Two COMPLEX MEASURES m and n on a MEASURE SPACE

X , are mutually singular if they are supported on
different subsets. More precisely, X �A @ B where A
and B are two DISJOINT SETS such that the following
hold for any MEASURABLE SET E ,

1. The sets A S E and B S E are measurable.
2. The TOTAL VARIATION MEASURE of m is supported
on A and that of n on B , i.e.,

mk k(B S E) �0 � nk k(A S E) :

The relation of two measures being singular, written
as m � n; is plainly symmetric. Nevertheless, it is
sometimes said that "/ n is singular with respect to m:/"

A discrete singular measure (with respect to LEBES-

GUE MEASURE on the reals) is a MEASURE l supported
at 0 ; say l(E) �1 iff 0 � E : In general, a MEASURE l is
concentrated on a SUBSET A if l(E) � l(E S A): For
instance, the measure above is concentrated at 0 :/

See also ABSOLUTELY CONTINUOUS, COMPLEX MEA-

SURE, LEBESGUE DECOMPOSITION (MEASURE), LEBES-

GUE MEASURE
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Singular Point (Algebraic Curve)
A singular point of an ALGEBRAIC CURVE is a point
where the curve has "nasty" behavior such as a CUSP

or a point of self-intersection (when the underlying
field K is taken as the REALS). More formally, a point
(a, b ) on a curve f (x; y) �0 is singular if the x and y

PARTIAL DERIVATIVES of f are both zero at the point (a,
b ). (If the field K is not the REALS or COMPLEX

NUMBERS, then the PARTIAL DERIVATIVE is computed
formally using the usual rules of CALCULUS.)

Consider the following two examples. For the curve

x3 �y2 �0:

the CUSP at (0, 0) is a singular point. For the curve

x2 �y2 ��1:

/(0; i) is a nonsingular point and this curve is
nonsingular.

See also ALGEBRAIC CURVE, CUSP

Singular Point (Differential Equation)
Consider a second-order ORDINARY DIFFERENTIAL

EQUATION

yƒ�P(x)y?�Q(x)y �0:

If P(x) and Q(x) remain FINITE at x �x0 ; then x0 is
called an ORDINARY POINT. If either P(x) or Q(x)
diverges as x 0 x0 ; then x0 is called a singular point.
Singular points are further classified as follows:

1. If either P(x) or Q(x) diverges as x 0 x0 but
x �x0ð ÞP(x) and x �x0ð Þ2Q(x) remain FINITE as x 0

x0 ; then x �x0 is called a REGULAR SINGULAR POINT

(or NONESSENTIAL SINGULARITY).
2. If P(x) diverges more quickly than 1= x �x0ð Þ; so
x �x0ð ÞP(x) approaches INFINITY as x 0 x0 ; or Q(x)

diverges more quickly than 1= x �x0ð Þ2Q so that
x �x0ð Þ2Q(x) goes to INFINITY as x 0 x0 ; then x0 is

called an IRREGULAR SINGULARITY (or ESSENTIAL

SINGULARITY).

See also IRREGULAR SINGULARITY, REGULAR SINGU-

LAR POINT, SINGULARITY
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Singular Point (Function)
Singular points (also simply called "singularities") are
points z0 in the DOMAIN of a FUNCTION f where f fails
to be ANALYTIC. ISOLATED SINGULARITIES may be
classified as ESSENTIAL SINGULARITIES, POLES, or
REMOVABLE SINGULARITIES.

ESSENTIAL SINGULARITIES are POLES of INFINITE

order.

A POLE of order n is a singularity z0 of f (z) for which
the function z�z0ð Þnf (z) is nonsingular and for which
z�z0ð Þkf (z) is singular for k�0, 1, ..., n�1:/

REMOVABLE SINGULARITIES are singularities for
which it is possible to assign a COMPLEX NUMBER in
such a way that f (z) becomes ANALYTIC. For example,



the function f (z) �z2 =z has a REMOVABLE SINGULAR-

ITY at 0, since f (z) �z everywhere but 0, and f (z) can
be set equal to 0 at z �0. REMOVABLE SINGULARITIES

are not POLES.

The function f (z) �csc(1 =z) has POLES at z �1=(2pn);
and a nonisolated singularity at 0.

See also ESSENTIAL SINGULARITY, IRREGULAR SINGU-

LARITY, ORDINARY POINT, POLE, REGULAR SINGULAR

POINT, REMOVABLE SINGULARITY, SINGULAR POINT

(DIFFERENTIAL EQUATION)
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Singular Series

r2s(n) �
p8

G(s)
ns�1

X
p; q

Sp ; q

q

 !2s

e2np pi =q ;

where Sp ; q is a GAUSSIAN SUM, and /G(s)/ is the GAMMA

FUNCTION.

Singular System
A system is singular if its CONDITION NUMBER is
INFINITE and ILL-CONDITIONED if it is too large.

See also CONDITION NUMBER, ILL-CONDITIONED MA-

TRIX

Singular Value
There are two types of singular values, one in the
context of elliptic integrals, and the other in linear
algebra. For a MATRIX A ; the valuesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lj(A �A) ;
q

(1)

where lj is an EIGENVALUE and A� is the ADJOINT

MATRIX, are called singular values (Marcus and Minc
1992, p. 69). Singular values can be found using the
Mathematica command SingularValues[m ], which
returns the so-called SINGULAR VALUE DECOMPOSI-

TION as a list {u , w , v }, where u and v are matrices
and w is the list of the singular values.

If

A �UH: (2)

where U is a UNITARY MATRIX and H is a HERMITIAN

MATRIX, then the EIGENVALUES of H are the singular
values of A :/

For elliptic integrals, a MODULUS kr such that

K ?(kr)

K(kr) 
�

ffiffiffi
r

p
; (3)

where K(k) is a complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, and K ?(kr) �K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �k2

r

p� �
: The ELLIPTIC

LAMBDA FUNCTION l �(r) gives the value of kr : Abel
(quoted in Whittaker and Watson 1990, p. 525)
proved that if r is an INTEGER, or more generally
whenever

K ?(k)

K(k)
�

a � b
ffiffiffi
n

p

c � d
ffiffiffi
n

p ; (4)

where a , b , c , d , and n are INTEGERS, then the
MODULUS k is the ROOT of an algebraic equation with
INTEGER COEFFICIENTS.

See also ELLIPTIC INTEGRAL SINGULAR VALUE, ELLIP-

TIC INTEGRAL OF THE FIRST KIND, ELLIPTIC LAMBDA

FUNCTION, MODULUS (ELLIPTIC INTEGRAL), SINGULAR

VALUE DECOMPOSITION
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Singular Value Decomposition
A decomposition of a matrix A into the form

A �U �DV ;

where U is a UNITARY MATRIX, U � is its ADJOINT

MATRIX, and D is a DIAGONAL MATRIX whose elements
are the SINGULAR VALUES of the original matrix. If A
is a COMPLEX MATRIX, then there always exists such a
decomposition with positive singular values (Golub
and van Loan 1996, pp. 70 and 73).

Singular value decomposition is implemented in
Mathematica as SingularValues[m ], which re-
turns a list {u , w , v }, where u and v are matrices
and w is a list of the singular values.

See also CHOLESKY DECOMPOSITION, LU DECOMPOSI-

TION, MATRIX DECOMPOSITION, MATRIX DECOMPOSI-

TION THEOREM, QR DECOMPOSITION, SINGULAR

VALUE, UNITARY MATRIX
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Computing, 2nd ed. Cambridge, England: Cambridge
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Singularity
In general, a point at which an equation, surface, etc.,
blows up or becomes DEGENERATE. Singularities are
often also called singular points.

See also ESSENTIAL SINGULARITY, ISOLATED SINGU-

LARITY, SINGULAR POINT (ALGEBRAIC CURVE), SINGU-

LAR POINT (DIFFERENTIAL EQUATION), SINGULAR

POINT (FUNCTION), WHITNEY SINGULARITY
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Sinh
HYPERBOLIC SINE

Sinh-Gordon Equation
The PARTIAL DIFFERENTIAL EQUATION

uxt �sinh u;

which contains uxt instead of uxx �utt and sinh u
instead to sin u; as in the SINE-GORDON EQUATION

(Grauel 1985; Zwillinger 1997, p. 135).

See also SINE-GORDON EQUATION, SINH-POISSON

EQUATION
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Sinh-Poisson Equation
The PARTIAL DIFFERENTIAL EQUATION

92u � l2 sinh u �0;

where 92 is the LAPLACIAN (Ting et al. 1987; Zwillin-
ger 1997, p. 135).

See also SINH-GORDON EQUATION
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SinIntegral
SINE INTEGRAL

Sink (Directed Graph)

A local sink is a node of a DIRECTED GRAPH with no
exiting edges, also called a TERMINAL (Borowski and
Borwein 1991, p. 401; left figure). A global sink (often
simply called a sink) is a node in a DIRECTED GRAPH

which is reached by all directed edges (Harary 1994,
p. 201; right figure).

See also DIRECTED GRAPH, NETWORK, SOURCE

References
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Sink (Map)
A stable fixed point of a MAP which, in a dissipative
DYNAMICAL SYSTEM, is an ATTRACTOR.

See also ATTRACTOR, DYNAMICAL SYSTEM

Sinusoid
A curve similar to the SINE function but possibly
shifted in phase, period, amplitude, or any combina-
tion thereof. The general sinusoid of amplitude a ,
angular frequency v (and period 2p=v) ; and phase c
is given by

f (x)�a sin(vx�c):

See also SINE
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Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.
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Sinusoidal Projection

An equal AREA MAP PROJECTION.

x � l � l0ð Þcos f (1)

y � f; (2)

The inverse FORMULAS are

f �y (3)

l � l0 �
x

cos f 
; (4)
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Sinusoidal Spiral
A curve OF THE FORM

rn �an cos(nu)

with n RATIONAL, which is not a true SPIRAL.
Sinusoidal spirals were first studied by Maclaurin.
Special cases are given in the following table.

n Curve

�2 HYPERBOLA

�1 LINE

/�1
2/ PARABOLA

/�1
3/ TSCHIRNHAUSEN CUBIC

/
1
3/ CAYLEY’S SEXTIC

/
1
2/ CARDIOID

1 CIRCLE

2 LEMNISCATE
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Sinusoidal Spiral Inverse Curve
The INVERSE CURVE of a SINUSOIDAL SPIRAL

r �a(1=n)[cos(nt)]1 =n

with INVERSION CENTER at the origin and inversion
radius k is another SINUSOIDAL SPIRAL

r �ka(1=n)[cos(nt)]1 =n ;

Sinusoidal Spiral Pedal Curve

The PEDAL CURVE of a SINUSOIDAL SPIRAL

r�a(1=n)[cos(nt)]1=n

with PEDAL POINT at the center is another SINUSOIDAL

SPIRAL

x�cos1�1=n(nt) cos[(n�1)t]

y�cos1�1=n(nt) sin[(n�1)t]:

See also PEDAL CURVE, SINUSOIDAL SPIRAL

Sister Celine’s Method
A method for finding RECURRENCE RELATIONS for
hypergeometric polynomials directly from the series
expansions of the polynomials. The method is effec-
tive and easily implemented, but usually slower than
ZEILBERGER’S ALGORITHM. Given a sum f (n)�
ak F(n; k); the method operates by finding a recur-



rence of the form

XI

i�0

XJ

j�0

aij(n)F(n �j ; k �i) �0

by proceeding as follows (Petkovsek et al. 1996,
p. 59):

1. Fix trial values of I and J .
2. Assume a recurrence formula of the above form
where aij(n) are to be solved for.
3. Divide each term of the assumed recurrence by
F(n ; k) and reduce every ratio F(n �j ; k �
i)=F(n; k) by simplifying the ratios of its constitu-
ent factorials so that only RATIONAL FUNCTIONS in
n and k remain.
4. Put the resulting expression over a common
DENOMINATOR, then collect the numerator as a
POLYNOMIAL in k .
5. Solve the system of linear equations that results
after setting the coefficients of each power of k in
the NUMERATOR to 0 for the unknown coefficients
aij :/
6. If no solution results, start again with larger I
or J .

Under suitable hypotheses, a "fundamental theorem"
(Verbaten 1974, Wilf and Zeilberger 1992, Petkovsek
et al. 1996) guarantees that this algorithm always
succeeds for large enough I and J (which can be
estimated in advance). The theorem also generalizes
to multivariate sums and to q - and multi-q -sums
(Wilf and Zeilberger 1992, Petkovsek et al. 1996).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
GOSPER’S ALGORITHM, HYPERGEOMETRIC IDENTITY,
HYPERGEOMETRIC SERIES, ZEILBERGER’S ALGORITHM
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Site Percolation

A PERCOLATION which considers the lattice vertices as
the relevant entities (left figure).

See also BOND PERCOLATION, PERCOLATION THEORY

Siteswap
A siteswap is a sequence encountered in JUGGLING in
which each term is a POSITIVE integer, encoded in
BINARY. The transition rule from one term to the next
consists of changing some 0 to 1, subtracting 1, and
then dividing by 2, with the constraint that the
DIVISION by two must be exact. Therefore, if a term
is EVEN, the bit to be changed must be the units bit. In
siteswaps, the number of 1-bits is a constant.

Each transition is characterized by the bit position of
the toggled bit (denoted here by the numeral on top of
the arrow). For example,

The second term is given from the first as follows:
000111 with bit 5 flipped becomes 100111, or 39.
Subtract 1 to obtain 38 and divide by two to obtain 19,
which is 10011.

See also JUGGLING
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Six Circles Theorem

Starting with a triangle, draw a circle touching two
sides. Then draw a circle tangent to this circle and
two other sides. Continue in the same direction. Then



a chain is formed in which the sixth circle is tangent
to the first.

See also CIRCLE, CONTACT TRIANGLE, HEXLET, IN-

CIRCLE, NINE CIRCLES THEOREM, PAPPUS CHAIN,
SEVEN CIRCLES THEOREM
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Six Exponentials Theorem
Let x1 and x2 be two linearly independent complex
numbers, and let y1 ; y2 ; y3 be three linearly indepen-
dent complex numbers. Then at least one of

ex1y1 ; ex1y2 ; ex1y3 ; ex2y1 ; ex2y2 ; ex2y3

is TRANSCENDENTAL (Waldschmidt 1979, p. 3.5). This
theorem is due to Siegel, Schneider, Lang, and
Ramachandra. The corresponding statement ob-
tained by replacing y1 ; y2 ; y3 with y1 ; y2 is called
the FOUR EXPONENTIALS CONJECTURE and remains
unproven.

See also FOUR EXPONENTIALS CONJECTURE, HERMITE-

LINDEMANN THEOREM, TRANSCENDENTAL NUMBER
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Six-Color Theorem
To color any map on the SPHERE or the PLANE requires
at most six-colors. This number can easily be reduced
to five, and the FOUR-COLOR THEOREM demonstrates
that the NECESSARY number is, in fact, four.

See also FOUR-COLOR THEOREM, HEAWOOD CONJEC-

TURE, MAP COLORING

References
Franklin, P. "A Six Colour Problem." J. Math. Phys. 13,

363 �/369, 1934.
Hoffman, I. and Soifer, A. "Another Six-Coloring of the

Plane." Disc. Math. 150, 427 �/429, 1996.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem:

Assaults and Conquest. New York: Dover, 1986.

Six-j Symbol
WIGNER 6J -SYMBOL

SixJSymbol
WIGNER 6J -SYMBOL

Six-Sphere Coordinates
6-SPHERE COORDINATES

Skein Relationship

A relationship between KNOT POLYNOMIALS for links
in different orientations (denoted below as L�; L0 ;
and L�): J. H. Conway was the first to realize that
the ALEXANDER POLYNOMIAL could be defined by a
relationship of this type.

See also ALEXANDER POLYNOMIAL, HOMFLY POLY-

NOMIAL, SIGNATURE (KNOT)

Skeleton
In ALGEBRAIC TOPOLOGY, a p -skeleton is a SIMPLICIAL

SUBCOMPLEX of K which is the collection of all
SIMPLICES of K of dimension at most p , denoted K (p) :/

The GRAPH obtained by replacing the faces of a
polyhedron with its edges and vertices is therefore
the skeleton of the polyhedron. The polyhedral
graphs corresponding to the skeletons of PLATONIC

SOLIDS are illustrated above. The number of topolo-
gically distinct skeletons N(n) with n VERTICES for
n�4, 5, 6, ... are 1, 2, 7, 18, 52, ... (Sloane’s A006869).

See also POLYHEDRAL GRAPH, SCHLEGEL GRAPH
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Skeleton Division
A LONG DIVISION in which most or all of the digits are
replaced by a symbol (usually asterisks) to form a
CRYPTARITHM.

See also CRYPTARITHM

Skew Conic
Also known as a GAUCHE CONIC, SPACE CONIC,
TWISTED CONIC, or CUBICAL CONIC SECTION. A third-
order SPACE CURVE having up to three points in
common with a plane and having three points in
common with the plane at infinity. A skew cubic is
determined by six points, with no four of them
COPLANAR. A line is met by up to four tangents to a
skew cubic.

A line joining two points of a skew cubic (REAL or
conjugate imaginary) is called a SECANT of the curve,
and a line having one point in common with the curve
is called a SEMISECANT or TRANSVERSAL. Depending
on the nature of the roots, the skew conic is classified
as follows:

1. The three ROOTS are REAL and distinct (CUBICAL

HYPERBOLA).
2. One root is REAL and the other two are COMPLEX

CONJUGATES (CUBICAL ELLIPSE).
3. Two of the ROOTS coincide (CUBICAL PARABOLIC

HYPERBOLA).
4. All three ROOTS coincide (CUBICAL PARABOLA).

See also CONIC SECTION, CUBICAL ELLIPSE, CUBICAL

HYPERBOLA, CUBICAL PARABOLA, CUBICAL PARABOLIC

HYPERBOLA

Skew Coordinate System
A system of CURVILINEAR COORDINATES in which each
family of surfaces intersects the others at angles
other than right angles.

See also CURVILINEAR COORDINATES, ORTHOGONAL

COORDINATE SYSTEM
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Skew Diagonal

A diagonal of a SQUARE MATRIX which is traversed in
the "northeast" direction. "The" skew diagonal (or
"secondary diagonal") of an n �n square matrix is the
skew diagonal from an1 to a1n :/

See also DIAGONAL

Skew Field
A FIELD in which the commutativity of multiplication
is not required, more commonly called a DIVISION

ALGEBRA.

See also DIVISION ALGEBRA, FIELD

Skew Hermitian Matrix
A SQUARE MATRIX A is skew Hermitian if is satisfies

A ���A ; (1)

where A � is the ADJOINT MATRIX. For example, the
matrix

i 1 �i 2i
�1 �i 5i 3

2i �3 0

2
4

3
5 (2)

is a skew Hermitian matrix. A matrix m can be tested
to see if it is skew Hermitian using the Mathematica
function

SkewHermitianQ[m_List?MatrixQ] :� (m ��� -

Conjugate@Transpose@m)

The set of n�n skew Hermitian matrices is a VECTOR

SPACE, and the COMMUTATOR

A; B½ �AB�BA (3)

of two skew Hermitian matrices is skew Hermitian.
Hence, the skew Hermitian matrices are a LIE

ALGEBRA, which is related to the LIE GROUP of
UNITARY MATRICES. In particular, suppose A(t) is a
path of unitary matrices through A(0)�I; i.e.,

A(t)�A�(t)�I (4)

for all t , where A� is the ADJOINT MATRIX and I is the
IDENTITY MATRIX. The DERIVATIVE at t�0 of both
sides must be equal so

dA

dt j
t�0

�
dA�

dt j
t�0

�0: (5)



That is, the DERIVATIVE of A(t) at the identity must be
a skew Hermitian matrix.

The EXPONENTIAL MAP of a skew Hermitian matrix is
a UNITARY MATRIX.

See also ADJOINT MATRIX, HERMITIAN MATRIX, SKEW

SYMMETRIC MATRIX, UNITARY MATRIX
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Skew Lines
Two or more LINES which have no intersections but
are not PARALLEL, also called AGONIC LINES. Since two
LINES in the PLANE must intersect or be PARALLEL,
skew lines can exist only in three or more DIMEN-

SIONS.

Three skew lines always define a one-sheeted HYPER-

BOLOID, except in the case where they are all parallel
to a single PLANE but not to each other. In this case,
they determine a HYPERBOLIC PARABOLOID (Hilbert
and Cohn-Vossen 1999, p. 15).

See also DIRECTOR, GALLUCCI’S THEOREM, REGULUS
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Skew Polygon
A polygon whose vertices do not all lie in a PLANE.

See also REGULAR SKEW POLYHEDRON, SKEW QUAD-

RILATERAL
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Skew Polyhedron
REGULAR SKEW POLYHEDRON

Skew Polyomino

See also L-POLYOMINO, SQUARE POLYOMINO,

STRAIGHT POLYOMINO, T-POLYOMINO

Skew Quadrilateral

A four-sided QUADRILATERAL not contained in a plane.
The lines connecting the midpoints of opposite sides
of a skew quadrilateral intersect (and bisect) each
other (Steinhaus 1983).

The problem of finding the minimum bounding sur-
face of a skew quadrilateral was solved by Schwarz
(Schwarz 1890, Wells 1991) in terms of ABELIAN

INTEGRALS and has the shape of a SADDLE. It is given
by solving

1 �f 2
y

� �
fxy �2fxfyfxy � 1 �f 2

x

� �
fyy�0:

See also HYPERBOLIC PARABOLOID, QUADRILATERAL,
SKEW POLYGON
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Skew Symmetric Matrix
A SQUARE MATRIX A is skew symmetric if

AT��A; (1)

with AT denoting the matrix TRANSPOSE. For example,

A�
0 �1
1 0

� �
(2)

is a skew symmetric matrix. The set of n�n skew
symmetric matrices is denoted o(n): A matrix m can
be tested to see if it is skew symmetric using the
Mathematica function



SkewSymmetricQ[l_List?MatrixQ] : � (l ���  -

Transpose[l])

The set o(n) of n �n skew symmetric matrices is a
VECTOR SPACE, and the COMMUTATOR

A ; B½ �AB �BA (3)

of two skew symmetric matrices is skew symmetric.
Hence, the skew symmetric matrices are a LIE

ALGEBRA, which is related to the LIE GROUP of
ORTHOGONAL MATRICES. In particular, suppose A(t)
is a path of orthogonal matrices through A(0) �I ; i.e.,
A(t)At(t) �I for all t . The DERIVATIVE at t �0 of both
sides must be equal so dA=dt(0) �dAt =dt(0) �0: That
is, the DERIVATIVE of A(t) at the identity must be a
skew symmetric matrix.

The EXPONENTIAL MAP of a skew symmetric matrix is
an ORTHOGONAL MATRIX.

See also BISYMMETRIC MATRIX, DIAGONAL MATRIX,
PERSYMMETRIC MATRIX, SKEW HERMITIAN MATRIX,
SYMMETRIC MATRIX, TRANSPOSE
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Skewes Number
The Skewes number (or first Skewes number) is the
number Sk1 above which p(n BLi(n)) must fail (as-
suming that the RIEMANN HYPOTHESIS is true), where
p(n) is the PRIME COUNTING FUNCTION and Li(n) is the
LOGARITHMIC INTEGRAL. In 1912, Littlewood proved
that Sk1 exists (Hardy 1999, p. 17), and the upper
bound

Sk1 �eee79 

:10101034

was subsequently found by Skewes. The Skewes
number has since been reduced to /

ee27=4 

:8:185 �10370
/ by te Riele (1987), although Con-

way and Guy (1996) claim that the best current limit
is 101167. In 1914, Littlewood proved that the inequal-
ity must, in fact, fail infinitely often.

The second Skewes number /Sk2/ is the number above
which p(nBLi(n)) must fail (assuming that the
RIEMANN HYPOTHESIS is false). It is much larger
than the Skewes number Sk1;

Sk2�101010103

:

See also GRAHAM’S NUMBER, RIEMANN HYPOTHESIS
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Skewness
The degree of asymmetry of a distribution. If the
distribution has a longer tail less than the maximum,
the function has NEGATIVE skewness. Otherwise, it
has POSITIVE skewness. Several types of skewness are
defined. The FISHER SKEWNESS (the most common
type of skewness, usually referred to simply as "the"
skewness) is defined by

g1�
m3

m
3=2
2

�
m3

s3
; (1)

where m3 is the third CENTRAL MOMENT, and m
1=2
2 �s

is the STANDARD DEVIATION. The following table gives
the skewness for a number of common distributions.

distribution skewness

BERNOULLI DISTRIBU-

TION

/
1�2pffiffiffiffiffiffiffiffiffiffiffi
p(1�p)

p /

BETA DISTRIBUTION /
2(b�a)
(2a�b)

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a�b

ab

q
/

BINOMIAL DISTRIBU-

TION

/
1�2pffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1�p)

p /

CHI-SQUARED DISTRI-

BUTION

/2
ffiffi
2
r

q
/

EXPONENTIAL DISTRI-

BUTION

2

FISHER-TIPPETT DIS-

TRIBUTION

/
12
ffiffi
6

p
&(3)

p3 /

F -DISTRIBUTION /
2(2n�m�2)

m�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m�4)

n(m�n�2)

q
/

GAMMA DISTRIBUTION /
2ffiffi
n

p /

GEOMETRIC DISTRIBU-

TION

/
2�pffiffiffiffiffiffiffi

1�p
p /

HALF-NORMAL DISTRI-

BUTION

/

ffiffi
2

p
(4�p)

(p�2)3=2/

HYPERGEOMETRIC DIS-

TRIBUTION

/
(m�n)(m�n�2N)

m�n�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�n�1

mnN(m�n�N)

q
/



LAPLACE DISTRIBU-

TION

0

LOG NORMAL DISTRI-

BUTION

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eS2 �1

p
2 �eS2� �

/

MAXWELL DISTRIBU-

TION

/
8
3

ffiffiffiffi
2
3p

q
/

NEGATIVE BINOMIAL

DISTRIBUTION

/
2�pffiffiffiffiffiffiffiffiffiffiffi
r(1�p)

p /

NORMAL DISTRIBUTION 0

POISSON DISTRIBUTION /n �1 =2
/

RAYLEIGH DISTRIBU-

TION

/( p �3)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

2 2�1
2 p

� �3

s
/

SNEDECOR’S F -DISTRI-

BUTION

/
2(n�2m�2)

(n�6)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n�4)

m(m�n�2)

q
/

STUDENT’S T -DISTRI-

BUTION

0

UNIFORM DISTRIBU-

TION

0

The PEARSON SKEWNESS is defined by

b1 �
m3

s3

 !2

� g2
1 : (2)

The MOMENTAL SKEWNESS is defined by

a(m) �1
2 g1 : (3)

The PEARSON MODE SKEWNESS is defined by

mean½ � mode½ 
s

: (4)

PEARSON’S SKEWNESS COEFFICIENTS are defined by

3 mean½ � mode½ 
s 

(5)

and

3 mean½ � median½ 
s

: (6)

The BOWLEY SKEWNESS (also known as QUARTILE

SKEWNESS COEFFICIENT) is defined by

(Q3 � Q2) � (Q2 � Q1)

Q3 � Q1

�
Q1 � 2Q2 � Q3

Q3 � Q1

; (7)

where the Qs denote the INTERQUARTILE RANGES. The
MOMENTAL SKEWNESS is

a(m) �1
2 g �

m3

2s3 
: (8)

An ESTIMATOR for the FISHER SKEWNESS / g1/ is

g1 �
k3

k3=2
2

; (9)

where the ks are K -STATISTICS. For a normal popula-
tion with a SAMPLE SIZE of N , the VARIANCE of /g1/ is

var g1ð Þ: 6

N 
(10)

(Kendall et al. 1987).

See also BOWLEY SKEWNESS, FISHER SKEWNESS,
GAMMA STATISTIC, H -STATISTIC, KURTOSIS, MEAN,
MOMENTAL SKEWNESS, PEARSON SKEWNESS, STAN-

DARD DEVIATION
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Sklar’s Theorem
Let H be a 2-D distribution function with marginal
distribution functions F and G . Then there exists a
COPULA C such that

H(x ; y) �C(F(x); G(y)) :

Conversely, for any univariate distribution functions
F and G and any COPULA C , the function H is a two-
dimensional distribution function with marginals F
and G . Furthermore, if F and G are continuous, then
C is unique.

See also COPULA

Skolem Paradox
Even though real ARITHMETIC is uncountable, it
possesses a countable "model."

References
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Dover, pp. 6�/7, 1977.
Erickson, G. W. and Fossa, J. A. Dictionary of Paradox.

Lanham, MD: University Press of America, pp. 191�/192,
1998.



Skolem Sequence
A Skolem sequence of order n is a sequence S �
s1 ; s2 ; . . . ; s2nf g of 2n integers such that

1. For every k � f1; 2; . . .  ; ng; there exist exactly
two elements si ; sj � S such that si �sj �k; and
2. If si �sj �k with i B j , then j �i �k:/

References
Colbourn, C. J. and Dinitz, J. H. (Eds.). "Skolem Sequences."

Ch. 43 in CRC Handbook of Combinatorial Designs. Boca
Raton, FL: CRC Press, pp. 457 �/461, 1996.

Skolem-Graceful Graph

See also EDGE-GRACEFUL GRAPH, SUPER-EDGE-

GRACEFUL GRAPH

Skolem-Mahler-Lerch Theorem
If a0 ; a1 ; . . .f g is a RECURRENCE SEQUENCE, then the
set of all k such that ak �0 is the union of a finite
(possibly EMPTY) set and a finite number (possibly
zero) of full arithmetical progressions, where a full
arithmetic progression is a set OF THE FORM fr ; r �
d; r �2d; . . .g with r � 0; d½ Þ:/

References
Myerson, G. and van der Poorten, A. J. "Some Problems

Concerning Recurrence Sequences." Amer. Math. Monthly
102, 698 �/705, 1995.

SL
SPECIAL LINEAR GROUP

Slant Height
The height of an object (such as a CONE, FRUSTUM, or
PYRAMID) measured along a side from the edge of the
base to the apex. For a right PYRAMID with a regular
n -gonal base of side length a , the slant height is given
by

sn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �R2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �1

4 a
2 csc2

p

n

 !vuut
where R is the CIRCUMRADIUS of the base.

Slater’s Identity
The Q -SERIES Identity of ROGERS-RAMANUJAN-type
given by

X�
k �0

q2k2

(q; q)2k

�
q ; q7 ; q8; q8ð Þinfty q6 ; q10; q16ð Þ�

(q; q) � 
(1)

(Leininger and Milne 1997).

See also ROGERS-RAMANUJAN IDENTITIES
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Slice Knot
A KNOT K in S3 �@D4 is a slice knot if it bounds a
DISK D2 in D4 which has a TUBULAR NEIGHBORHOOD

D2 �D2 whose intersection with S3 is a TUBULAR

NEIGHBORHOOD K �D2 for K .

Every RIBBON KNOT is a slice knot, and it is con-
jectured that every slice knot is a RIBBON KNOT.

See also RIBBON KNOT, TUBULAR NEIGHBORHOOD

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, p. 218, 1976.

Slide Move

The REIDEMEISTER MOVE of type III.

See also KNOT MOVE, REIDEMEISTER MOVES

Slide Rule
A mechanical device consisting of a sliding portion
and a fixed case, each marked with logarithmic axes.
By lining up the ticks, it is possible to do MULTI-

PLICATION by taking advantage of the additive prop-
erty of LOGARITHMS. More complicated slide rules also
allow the extraction of roots and computation of
trigonometric functions.

According to Steinhaus (1983, p. 301), the principle of
the slide rule was first enumerated by E. Gunter in
1623, and in 1671, S. Partridge constructed an
instrument similar to the modern slide rule. The
slide rule was an indispensable tool for scientists and
engineers through the 1960s, but the development of
the desk calculator (and subsequently pocket calcu-
lator) rendered slide rules largely obsolete beginning
in the early 1970s.

See also ABACUS, RULER, STRAIGHTEDGE
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Slightly Defective Number
ALMOST PERFECT NUMBER

Slightly Excessive Number
QUASIPERFECT NUMBER

Slip Knot
RUNNING KNOT

Slope

A quantity which gives the inclination of a curve or
line with respect to another curve or line. For a LINE

in the xy -PLANE making an ANGLE u with the X -AXIS,
the slope m is a constant given by

m �
Dy

Dx 
�tan u; (1)

where Dx and Dy are changes in the two coordinates
over some distance.
It is meaningless to talk about the slope of a curve in
3-dimensional space unless the slope with respect to
what is specified.

J. Miller has undertaken a detailed study of the
origin of the symbol m to denote slope. The consensus
seems to be that it is not known why the letter m was
chosen. One high school algebra textbook says the
reason for m is unknown, but remarks that it is
interesting that the French word for "to climb" is
"monter." However, there is no evidence to make any
such connection and in fact, Descartes, who was
French, did not use m (Miller). Eves (1971) suggests
"it just happened."

The earliest known example of the symbol m appear-
ing in print is O’Brien (1844). Salmon (1960) subse-
quently used the symbols commonly employed today
to give the slope-intercept form of a line

y �mx �b (2)

in his famous treatise published in several editions
beginning in 1848. Todhunter (1888) also employed
the symbol m , writing the slope-intercept form

y �mx �c : (3)

However, Webster’s New International Dictionary
(1909) gives the "slope form" as

y �sx �b: (4)

(Miller).

In Swedish textbooks, the slope-intercept equation is
usually written as

y �kx �m; (5)

where k may derive from "koefficient" in the Swedish
word for slope, "riktningskoefficient." In the Nether-
lands, the equation is commonly written as one of

y �ax �b (6)

y �px �q (7)

y �mx �n: (8)

In Austria, k is used for the slope, and d for the y -
intercept (Miller).

See also LINE, X -INTERCEPT, Y -INTERCEPT
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Slothouber-Graatsma Puzzle
Assemble six 1 �2 �2 blocks and three 1 �1 �1
blocks into a 3 �3 �3 CUBE.

See also BOX-PACKING THEOREM, CONWAY PUZZLE,
CUBE DISSECTION, DE BRUIJN’S THEOREM, KLARNER’S

THEOREM, POLYCUBE

References
Honsberger, R. Mathematical Gems II. Washington, DC:

Math. Assoc. Amer., pp. 75 �/77, 1976.

Slow Variation
REGULAR VARIATION

Slutzky-Yule Effect
A MOVING AVERAGE may generate an irregular oscil-
lation even if none exists in the original data.

See also MOVING AVERAGE

Sluze Pearls
PEARLS OF SLUZE



Smale Horseshoe Map
The basic topological operations for constructing an
ATTRACTOR consist of stretching (which gives sensi-
tivity to initial conditions) and folding (which gives
the attraction). Since trajectories in PHASE SPACE

cannot cross, the repeated stretching and folding
operations result in an object of great topological
complexity.

The Smale horseshoe map consists of a sequence of
operations on the unit square. First, stretch by a
factor of 2 in the x direction, then compress by 2a in
the y direction. Then, fold the rectangle and fit it back
into the square. Repeating this generates the horse-
shoe attractor. If one looks at a CROSS SECTION of the
final structure, it is seen to correspond to a CANTOR

SET.

See also ATTRACTOR, CANTOR SET
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New York: Wiley, p. 77, 1990.
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Smale-Hirsch Theorem
The SPACE of IMMERSIONS of a MANIFOLD in another
MANIFOLD is HOMOTOPICALLY equivalent to the space
of bundle injections from the TANGENT SPACE of the
first to the TANGENT BUNDLE of the second.

See also HOMOTOPY, IMMERSION, MANIFOLD, TAN-

GENT BUNDLE, TANGENT SPACE

Small Circle

A SECTION of a SPHERE which does not contain a
DIAMETER of the SPHERE (Kern and Bland 1948, p. 87;
Tietze 1965, p. 25).

See also GREAT CIRCLE, SPHERE

References
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2nd ed. New York: Wiley, 1948.
Tietze, H. Famous Problems of Mathematics: Solved and

Unsolved Mathematics Problems from Antiquity to Mod-
ern Times. New York: Graylock Press, p. 25, 1965.

Small Cubicuboctahedron

UNIFORM POLYHEDRON U13 whose DUAL POLYHEDRON

is the SMALL HEXACRONIC ICOSITETRAHEDRON. It has
WYTHOFF SYMBOL 3

2 4j4; and is Wenninger model W69:
Its faces are 8f3g�6f4g�6f8g: The CIRCUMRADIUS

for the solid with unit edge length is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
2

pq
:

FACETED versions include the uniform GREAT RHOM-

BICUBOCTAHEDRON and SMALL RHOMBIHEXAHEDRON.

The CONVEX HULL of the small cubicuboctahedron is
the Archimedean SMALL RHOMBICUBOCTAHEDRON A6;
whose dual is the DELTOIDAL ICOSITETRAHEDRON, so
the dual of the small cubicuboctahedron (i.e., the
SMALL HEXACRONIC ICOSITETRAHEDRON) is one of the
stellations of the DELTOIDAL ICOSITETRAHEDRON

(Wenninger 1983, p. 57).

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, 1983.
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 104�/105, 1971.

Small Ditrigonal Dodecacronic
Hexecontahedron
The DUAL POLYHEDRON of the SMALL DITRIGONAL

DODECICOSIDODECAHEDRON U43 and Wenninger dual
W82:/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 74, 1983.



Small Ditrigonal Dodecicosidodecahedron

The UNIFORM POLYHEDRON U43 whose DUAL POLYHE-

DRON is the SMALL DITRIGONAL DODECACRONIC HEX-

ECONTAHEDRON. It has WYTHOFF SYMBOL 3 5
3 ½5: Its

faces are 20 f3g�12 5
2

n o
�12 f10 g: Its CIRCUMRADIUS

with a �1 is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 �6

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 126 �/127, 1971.

Small Ditrigonal Icosidodecahedron

The UNIFORM POLYHEDRON U30 whose DUAL POLYHE-

DRON is the SMALL TRIAMBIC ICOSAHEDRON. It has
WYTHOFF SYMBOL 3 j3 5

2 : Its faces are /20 f3g�12 f5
2 g/. A

FACETED version is the DITRIGONAL DODECADODECA-

HEDRON. Its CIRCUMRADIUS with a � 1 is

R �1
2

ffiffiffi
3

p
:

The CONVEX HULL of the small ditrigonal icosidode-
cahedron is a regular DODECAHEDRON, whose dual is
the ICOSAHEDRON, so the dual of the great ditrigonal
dodecicosidodecahedron (the SMALL TRIAMBIC ICOSA-

HEDRON) is one of the ICOSAHEDRON STELLATIONS

(Wenninger 1983, p. 42).

References
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bridge University Press, 1983.
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 106 �/107, 1971.

Small Dodecacronic Hexecontahedron

The DUAL POLYHEDRON of the SMALL DODECICOSIDO-

DECAHEDRON U33 and Wenninger dual W72 :/

See also DUAL POLYHEDRON, SMALL DODECICOSIDO-

DECAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 70, 1983.

Small Dodecahemicosacron

The DUAL POLYHEDRON of the SMALL DODECAHEMICO-

SAHEDRON U62 and Wenninger dual W100 : When
rendered, the small dodecahemicosacron and GREAT

DODECAHEMICOSACRON appear the same.

See also DUAL POLYHEDRON, SMALL DODECAHEMICO-

SAHEDRON, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 107, 1983.



Small Dodecahemicosahedron

The UNIFORM POLYHEDRON U62 whose DUAL POLYHE-

DRON is the SMALL DODECAHEMICOSACRON. It has
WYTHOFF SYMBOL 5

3
5
2 ½3: Its faces are 10 f6g�12 5

2

n o
:

It is a FACETED version of the ICOSIDODECAHEDRON.
Its CIRCUMRADIUS with unit edge length is

R �1 :

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 155, 1971.

Small Dodecahemidodecacron

The DUAL POLYHEDRON of the SMALL DODECAHEMIDO-

DECAHEDRON U51 and Wenninger dual W91 : When
rendered, the SMALL ICOSIHEMIDODECACRON and
small dodecahemidodecacron appear the same.

See also DUAL POLYHEDRON, SMALL DODECAHEMIDO-

DECAHEDRON, SMALL ICOSIHEMIDODECACRON, UNI-

FORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 104, 1983.

Small Dodecahemidodecahedron

The UNIFORM POLYHEDRON U51 whose DUAL POLYHE-

DRON is the SMALL DODECAHEMIDODECACRON. It has
WYTHOFF SYMBOL

2 5
3
2

5
2

:

Its faces are 30 f4g�12f10 g: Its CIRCUMRADIUS with
a �1 is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 �4

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 113 �/114, 1971.

Small Dodecicosacron

The DUAL POLYHEDRON of the SMALL DODECICOSAHE-

DRON U50 and Wenninger dual W90:/

See also DUAL POLYHEDRON, SMALL DODECICOSAHE-

DRON, UNIFORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 74, 1983.



Small Dodecicosahedron

The UNIFORM POLYHEDRON U50 whose DUAL POLYHE-

DRON is the SMALL DODECICOSACRON. It has WYTHOFF

SYMBOL

3 5
3
2

5
4
j:

Its faces are 20 f6g�12f10 g: Its CIRCUMRADIUS with
a �1 is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 �6

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 141 �/142, 1971.

Small Dodecicosidodecahedron

The UNIFORM POLYHEDRON U33 whose DUAL POLYHE-

DRON is the SMALL DODECACRONIC HEXECONTAHE-

DRON. It has WYTHOFF SYMBOL 3
2 5½5: Its faces are

20 f3g�12 f5g�12 f10 g: It is a FACETED version of the
SMALL RHOMBICOSIDODECAHEDRON. Its CIRCUMRA-

DIUS with a � 1 is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 �4

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 110 �/111, 1971.

Small Hexacronic Icositetrahedron

The DUAL POLYHEDRON of the SMALL CUBICUBOCTA-

HEDRON U13 and Wenninger dual W69:/

See also DUAL POLYHEDRON, SMALL CUBICUBOCTAHE-

DRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 57, 1983.

Small Hexagonal Hexecontahedron

The DUAL POLYHEDRON of the SMALL SNUB ICOSICOSI-

DODECAHEDRON U32 and Wenninger dual W110:/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 119, 1983.

Small Hexagrammic Hexecontahedron
The DUAL POLYHEDRON of the SMALL RETROSNUB

ICOSICOSIDODECAHEDRON and Wenninger dual W118:/

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 135, 1983.



Small Icosacronic Hexecontahedron

The DUAL POLYHEDRON of the SMALL ICOSICOSIDODE-

CAHEDRON U31 and Wenninger dual W71 :/

See also DUAL POLYHEDRON, SMALL ICOSICOSIDODE-

CAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 74, 1983.

Small Icosicosidodecahedron

The UNIFORM POLYHEDRON U31 whose DUAL POLYHE-

DRON is the SMALL ICOSACRONIC HEXECONTAHEDRON.
It has WYTHOFF SYMBOL 3 5

2 ½3 : Its faces are 20f3g�
20 f6g�12 5

2

n o
: Its CIRCUMRADIUS with a �1 is

R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17 � 3

ffiffiffi
5

p

2

s
:

References
Wenninger, M. J. "Small Icosicosidodecahedron." Solid 71 in

Polyhedron Models. Cambridge, England: Cambridge
University Press, p. 108, 1971.

Small Icosihemidodecacron

The DUAL POLYHEDRON of the SMALL ICOSIHEMIDODE-

CAHEDRON U49 and Wenninger dual W89 : When
rendered, the small icosihemidodecacron and SMALL

DODECAHEMIDODECACRON appear the same.

See also DUAL POLYHEDRON, SMALL DODECAHEMIDO-

DECACRON, SMALL ICOSIHEMIDODECAHEDRON, UNI-

FORM POLYHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 104, 1983.

Small Icosihemidodecahedron

The UNIFORM POLYHEDRON U49 whose DUAL POLYHE-

DRON is the SMALL ICOSIHEMIDODECACRON. It has
WYTHOFF SYMBOL 3

2 3½5: Its faces are 20f3g�6f10g: It
is a FACETED version of the ICOSIDODECAHEDRON. Its
CIRCUMRADIUS with a�1 is

R�f�1
2 1�

ffiffiffi
5

p� �
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 140, 1971.

Small Inverted Retrosnub
Icosicosidodecahedron
SMALL RETROSNUB ICOSICOSIDODECAHEDRON



Small Multiple Method
An algorithm for computing a UNIT FRACTION.

References
Eppstein, D. Egypt.ma Mathematica notebook. http://

www.ics.uci.edu/~eppstein/numth/egypt/egypt.ma.

Small Number
Guy’s "STRONG LAW OF SMALL NUMBERS" states that
there aren’t enough small numbers to meet the many
demands made of them. Guy (1988) also gives several
interesting and misleading facts about small num-
bers:

1. 10% of the first 100 numbers are SQUARE

NUMBERS.
2. A QUARTER of the numbers B100 are PRIMES.
3. All numbers less than 10, except for 6, are PRIME

POWERS.
4. Half the numbers less than 10 are FIBONACCI

NUMBERS.

See also LARGE NUMBER, STRONG LAW OF SMALL

NUMBERS

References
Guy, R. K. "The Strong Law of Small Numbers." Amer.

Math. Monthly 95, 697�/712, 1988.

Small Retrosnub Icosicosidodecahedron

The UNIFORM POLYHEDRON U72 also called the SMALL

INVERTED RETROSNUB ICOSICOSIDODECAHEDRON

whose DUAL POLYHEDRON is the SMALL HEXAGRAMMIC

HEXECONTAHEDRON. It has WYTHOFF SYMBOL 3
2

3
2

5
2:

���
Its faces are 100f3g�12 5

2

n o
: It has CIRCUMRADIUS

with a�1

R�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13�3

ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102�46

ffiffiffi
5

pqr

:0:580694800133921:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 194�/199, 1971.

Small Rhombicosidodecahedron

The 62-faced ARCHIMEDEAN SOLID A5 with faces
20f3g�30f4g�12f5g: It is UNIFORM POLYHEDRON

U27 and Wenninger model W14: It has SCHLÄFLI

SYMBOL r 3
5

� �
and WYTHOFF SYMBOL A9: The SMALL

DODECICOSIDODECAHEDRON and SMALL RHOMBIDODE-

CAHEDRON are FACETED versions.

Its DUAL POLYHEDRON is the DELTOIDAL HEXECONTA-

HEDRON. The INRADIUS r of the dual, MIDRADIUS r of
the solid and dual, and CIRCUMRADIUS R of the solid
for a�1 are

r� 1
41(15�2

ffiffiffi
5

p
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11�4

ffiffiffi
5

pq
�2:12099 . . .



r �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �4

ffiffiffi
5

pq
�2:17625 . . .

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 �4

ffiffiffi
5

pq
�2 :23295 . . .

See also ARCHIMEDEAN SOLID, GREAT RHOMBICOSI-

DODECAHEDRON (ARCHIMEDEAN), GREAT RHOMBICO-

SIDODECAHEDRON (UNIFORM), HEXECONTAHEDRON,
ZOME

References
Cundy, H. and Rollett, A. "lpar;Small) Rhombicosidodecahe-

dron. Sk(n) :/" §3.7.11 in Mathematical Models, 3rd ed.
Stradbroke, England: Tarquin Pub., p. 111, 1989.

Wenninger, M. J. "The Rhombicosidodecahedron." Model 14
in Polyhedron Models. Cambridge, England: Cambridge
University Press, p. 28, 1989.

Small Rhombicuboctahedron

The 26-faced ARCHIMEDEAN SOLID /A6/ consisting of
faces /8 f3g�18 f4g/. Although this solid is sometimes
also called the truncated icosidodecahedron, this
name is inappropriate since true TRUNCATION would
yield rectangular instead of square faces. It is UNI-

FORM POLYHEDRON /U10/ and Wenninger model /W13/. It
has SCHLÄ FLI SYMBOL /r f3

4 g/ and WYTHOFF SYMBOL

34|2.

Its DUAL POLYHEDRON is the DELTOIDAL ICOSITETRA-

HEDRON, also called the TRAPEZOIDAL ICOSITETRAHE-

DRON. The INRADIUS r of the dual, MIDRADIUS /r/ of the
solid and dual, and CIRCUMRADIUS R of the solid for
a �1 are

r � 1
17(6 �

ffiffiffi
2

p
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
2

pq
�1 :22026 . . .

r �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
�1:30656 . . .

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
2

pq
�1 :39896 . . .

The distances between the solid center and centroids
of the triangular and square faces are

r3 �
1
2(1 �

ffiffiffi
2

p
) (1)

r4 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3(11 �6

ffiffiffi
2

p
)

q
: (2)

The SURFACE AREA and VOLUME are

S �18 �2
ffiffiffi
3

p
(3)

V �1
3(12 �10

ffiffiffi
2

p
): (4)

The CONVEX HULL of the SMALL CUBICUBOCTAHEDRON

is the small rhombicuboctahedron, whose dual is the
DELTOIDAL ICOSITETRAHEDRON, so the dual of the
SMALL CUBICUBOCTAHEDRON (i.e., the SMALL HEXA-

CRONIC ICOSITETRAHEDRON) is one of the stellations of
the DELTOIDAL ICOSITETRAHEDRON (Wenninger 1983,
p. 57).

A version of the small rhombicuboctahedron in which
the top and bottom halves are rotated with respect to
each other is known as the ELONGATED SQUARE

GYROBICUPOLA.

See also ARCHIMEDEAN SOLID, ELONGATED SQUARE

GYROBICUPOLA, GREAT RHOMBICUBOCTAHEDRON (AR-

CHIMEDEAN), GREAT RHOMBICUBOCTAHEDRON (UNI-

FORM), ICOSITETRAHEDRON
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Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-
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1987.
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dron. 3.42." §3.7.5 in Mathematical Models, 3rd ed.
Stradbroke, England: Tarquin Pub., p. 105, 1989.

Wenninger, M. J. "The Rhombicuboctahedron." Model 13 in
Polyhedron Models. Cambridge, England: Cambridge
University Press, p. 27, 1989.

Small Rhombidodecacron
The DUAL POLYHEDRON of the SMALL RHOMBIDODECA-

HEDRON and Wenninger model W74:/



References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 70, 1983.

Small Rhombidodecahedron

The UNIFORM POLYHEDRON U39 whose DUAL POLYHE-

DRON is the SMALL RHOMBIDODECACRON. It has WYTH-

OFF SYMBOL

2 5
3
2

5
2

:

Its faces are 30f4 g�12 f10g: It is a FACETED version
of the SMALL RHOMBICOSIDODECAHEDRON. Its CIRCUM-

RADIUS with a �1 is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 �4

ffiffiffi
5

pq
:

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, pp. 113 �/114, 1971.

Small Rhombihexacron

The DUAL POLYHEDRON of the SMALL RHOMBIHEXAHE-

DRON U18 and Wenninger dual W86/

See also DUAL POLYHEDRON, SMALL RHOMBIHEXAHE-

DRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 57, 1983.

Small Rhombihexahedron

The UNIFORM POLYHEDRON U18 whose DUAL POLYHE-

DRON is the SMALL RHOMBIHEXACRON. It has WYTH-

OFF SYMBOL

2 4
3
2

4
2
j

and is Wenninger model W86: Its faces are 12f4g�
6f8g: It is a FACETED version of the SMALL RHOMBI-

CUBOCTAHEDRON. Its CIRCUMRADIUS with a�1 is

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
2

pq
:

The CONVEX HULL of the small rhombihexahedron is
the Archimedean SMALL RHOMBICUBOCTAHEDRON A6;
whose dual is the DELTOIDAL ICOSITETRAHEDRON, so
the dual of the small rhombihexahedron (i.e., the
SMALL RHOMBIHEXACRON) is one of the stellations of
the DELTOIDAL ICOSITETRAHEDRON (Wenninger 1983,
p. 57).

References
Wenninger, M. J. Polyhedron Models. Cambridge, England:

Cambridge University Press, p. 134, 1971.



Small Snub Icosicosidodecahedron

The UNIFORM POLYHEDRON U32 whose DUAL POLYHE-

DRON is the SMALL HEXAGONAL HEXECONTAHEDRON. It
has WYTHOFF SYMBOL j3 3 5

2 (Har’El 1993 gives the
symbol as j52 3 3:/) Its faces are 100f3g�12 5

2

n o
: Its

CIRCUMRADIUS for a � 1 is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 �3

ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 �46

ffiffiffi
5

pqr

�1 :4581903307387 . . .
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Cambridge University Press, pp. 172 �/173, 1971.

Small Stellapentakis Dodecahedron

The DUAL POLYHEDRON of the TRUNCATED GREAT

DODECAHEDRON U37 and Wenninger dual W75:/

See also DUAL POLYHEDRON, TRUNCATED GREAT

DODECAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 84, 1983.

Small Stellated Dodecahedron

One of the KEPLER-POINSOT SOLIDS whose DUAL

POLYHEDRON is the GREAT DODECAHEDRON. It is also
UNIFORM POLYHEDRON U34; Wenninger model W21;
and is the first STELLATION of the DODECAHEDRON

(Wenninger 1989). It was originally called the URCHIN

by Kepler. The small stellated dodecahedron has
SCHLÄFLI SYMBOL 5

2; 5
n o

and WYTHOFF SYMBOL

5½2 5
2: It is composed of 12 PENTAGRAMMIC faces. Its

faces are 12 5
2

n o
:/

The easiest way to construct a small stellated dode-
cahedron is by CUMULATION, i.e., building twelve
PENTAGONAL PYRAMIDS and attaching them to the
faces of a DODECAHEDRON. The height of the pyramids
for a small stellated dodecahedron built on a DODE-

CAHEDRON of unit edge length is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 5�2

ffiffiffi
5

p� �q
: The

CIRCUMRADIUS of the small stellated dodecahedron
with pentagrammic edge length a�1 is

R�1
2 51=4f�1=2�1

4 51=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
5

p
�1

� �r
:

Schläfli (1901, p. 134) did not recognize the small
stellated dodecahedron because it, like the GREAT

DODECAHEDRON, satisfies

N0�N1�N2�12�30�12��6; (1)

where N0 is the number of vertices, N1 the number of
edges, and N2 the number of faces (Coxeter 1973,
p. 172), thus violating the POLYHEDRAL FORMULA.



The CONVEX HULL of the small stellated dodecahedron
is a regular DODECAHEDRON and the dual of the
DODECAHEDRON is the ICOSAHEDRON, so the dual of
the small stellated dodecahedron is one of the
ICOSAHEDRON STELLATIONS (Wenninger 1983, p. 40)

See also DODECAHEDRON, GREAT DODECAHEDRON,
GREAT ICOSAHEDRON, GREAT STELLATED DODECAHE-

DRON, KEPLER-POINSOT SOLID, STELLATION
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Small Stellated Triacontahedron
MEDIAL RHOMBIC TRIACONTAHEDRON

Small Stellated Truncated Dodecahedron

The UNIFORM POLYHEDRON U58 also called the QUASI-

TRUNCATED SMALL STELLATED DODECAHEDRON whose
DUAL POLYHEDRON is the GREAT PENTAKIS DODECAHE-

DRON. It has SCHLÄ FLI SYMBOL t’ 5
2 ; 5
n o

and WYTH-

OFF SYMBOL 2 5 5
3 :
��� Its faces are 12 f5g�12 10

3

n o
: Its

CIRCUMRADIUS with a � 1 is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34 �10

ffiffiffi
5

pq
:

References
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Small Triakis Octahedron

The 24-faced DUAL POLYHEDRON of the TRUNCATED

CUBE A9 and Wenninger dual W8 : It can be con-
structed by CUMULATION of a unit edge-length OCTA-

HEDRON by a pyramid with height
ffiffiffi
3

p
�2

3

ffiffiffi
6

p
: For a

TRUNCATED CUBE of unit side length the dual has
edges of lengths

s1�2 (1)

s2�2�
ffiffiffi
2

p
: (2)

Normalizing so that s1�1; the resulting small triakis
octahedron has SURFACE AREA and VOLUME

S�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7�4

ffiffiffi
2

pq
(3)

V�1
2 3�2

ffiffiffi
2

p� �
: (4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
GREAT TRIAKIS OCTAHEDRON, ICOSITETRAHEDRON,



SMALL TRIAKIS OCTAHEDRON STELLATIONS, TRUN-

CATED CUBE

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, p. 7, 1983.

Small Triakis Octahedron Stellations

R. Whorf found that there are probably several
thousand stellations of the small triakis octahedron
(Wenninger 1983, p. 36). In particular, the CONVEX

HULLS of the GREAT CUBICUBOCTAHEDRON U14 ; the
Archimedean GREAT RHOMBICUBOCTAHEDRON A3 �
U17 ; and GREAT RHOMBIHEXAHEDRON U21 are all the
Archimedean TRUNCATED CUBE A9 ; whose dual is the
SMALL TRIAKIS OCTAHEDRON, so the duals of these
solids (i.e., the GREAT HEXACRONIC ICOSITETRAHE-

DRON, GREAT DELTOIDAL ICOSITETRAHEDRON, and
GREAT RHOMBIHEXAHEDRON) are all stellations of the
small triakis octahedron (Wenninger 1983, p. 57).

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 36, 38, and 57 �/58, 1983.

Small Triambic Icosahedron

The DUAL POLYHEDRON of the SMALL DITRIGONAL

ICOSIDODECAHEDRON U30 and Wenninger model W70 :
It can be constructed by CUMULATION of a unit edge-
length ICOSAHEDRON by a pyramid with heightffiffiffiffiffiffi

15
p

=15: Wenninger (1989, p. 49) calls this solid the
triakis octahedron (which is a term more commonly
used for the dual of one of the Archimedean solids).

The CONVEX HULL of the SMALL DITRIGONAL ICOSIDO-

DECAHEDRON is a regular DODECAHEDRON, whose
dual is the ICOSAHEDRON, so the dual of the SMALL

DITRIGONAL ICOSIDODECAHEDRON (the small triambic
icosahedron) is one of the ICOSAHEDRON STELLATIONS

(Wenninger 1983, p. 42).

See also DODECAHEDRON-SMALL TRIAMBIC ICOSAHE-

DRON COMPOUND, DUAL POLYHEDRON, SMALL DITRI-

GONAL ICOSIDODECAHEDRON, TRIAKIS ICOSAHEDRON,
TRIAKIS OCTAHEDRON

References
Wenninger, M. J. Dual Models. Cambridge, England: Cam-

bridge University Press, pp. 42 and 46 �/47 1983.
Wenninger, M. J. Polyhedron Models. New York: Cam-

bridge University Press, p. 46, 1989.

Small World Problem
The small world problem asks for the probability that
two people picked at random have at least one
acquaintance in common.

See also BIRTHDAY PROBLEM

Smarandache Ceil Function
A SMARANDACHE-like function which is defined where
Sk(n) is defined as the smallest integer for which
njSk(n)k: The Smarandache Sk(n) function can there-
fore be obtained by replacing any factors which are
kth powers in n by their k roots.

Sk(n)�
n

Mk(n)
;

where Mk(n) is the number of solutions to
xk�0 (mod n):/



The functions Sk(n) for k �2, 3, ..., 6 for values such
that Sk(n) "n are tabulated by Begay (1997). The
following tables gives Sk(n) for small k and n �1, 2,
....

k Sloane /Sk(n)/

1 A000027 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, ...

2 A019554 1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13,
14, 15, 4, 17, 6, ...

3 A019555 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13,
14, 15, 4, 17, 6, ...

4 A053166 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13,
14, 15, 2, 17, 6, ...

See also PSEUDOSMARANDACHE FUNCTION, SMARAN-

DACHE FUNCTION, SMARANDACHE-KUREPA FUNCTION,
SMARANDACHE NEAR-TO-PRIMORIAL FUNCTION, SMAR-

ANDACHE SEQUENCES, SMARANDACHE-WAGSTAFF

FUNCTION
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Encyclopedia of Integer Sequences." http://www.research.-
att.com/~njas/sequences/eisonline.html.

Smarandache, F. Collected Papers, Vol. 2. Kishinev, Mol-
dova: Kishinev University Press, 1997.

Smarandache, F. Only Problems, Not Solutions!, 4th ed.
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Smarandache Constants
"The" Smarandache constant is the smallest solution
to the generalized ANDRICA’S CONJECTURE,
x:0:567148:/

The first Smarandache constant is defined as

S1�
X�
n�2

1

[S(n)]!
> 1:093111; (1)

where S(n) is the SMARANDACHE FUNCTION. Cojocaru
and Cojocaru (1996a) prove that S1 exists and is
bounded by 0:717BS1B1:253: The lower limit given
above is obtained by taking 40,000 terms of the sum.

Cojocaru and Cojocaru (1996b) prove that the second
Smarandache constant
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n!
:1:71400629359162 (2)

is an IRRATIONAL NUMBER.

Cojocaru and Cojocaru (1996c) prove that the series
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:0:719960700043708 (3)

converges to a number 0:71BS3B1:01; and that
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converges for a fixed REAL NUMBER a]1: The values
for small a are

S4(1):1:72875760530223 (5)

S4(2):4:50251200619297 (6)

S4(3):13:0111441949445 (7)

S4(4):42:4818449849626 (8)

S4(5):158:105463729329: (9)

Sandor (1997) shows that the series
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converges to an IRRATIONAL. Burton (1995) and
Dumitrescu and Seleacu (1996) show that the series
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converges. Dumitrescu and Seleacu (1996) show that
the series
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and
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converge for r a natural number (which must be
nonzero in the latter case). Dumitrescu and Seleacu
(1996) show that
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converges. Burton (1995) and Dumitrescu and Se-
leacu (1996) show that the series
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and
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p (16)

converge for a > 1:/

See also ANDRICA’S CONJECTURE, SMARANDACHE

FUNCTION
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Smarandache Function

The smallest value S(n) for a given n for which
/njS(n)!/ (n divides S(n) FACTORIAL). For example, the
number 8 does not divide 1!; 2!; 3!; but does divide
4! �4 � 3 � 2 � 1 �8 � 3 ; so S(8) �4: For a PRIME p ,
S(p) �p ; and for an EVEN PERFECT NUMBER r , S(r) is
PRIME (Ashbacher 1997). Sloane places the restriction
S(n) > 0; while Ashbacher (1995) and Russo (2000,
p. 4) take S(n) ]0:/
The Smarandache numbers for n �1, 2, ... are 1, 2, 3,
4, 5, 3, 7, 4, 6, 5, 11, ... (Sloane’s A002034; but,

depending on the convention, S(1) may equal either 0
or 1). Letting a(n) denote the smallest value of n for
which S(n) �1 ; 2, ..., then a(n) is given by 1, 2, 3, 4, 5,
9, 7, 32, 27, 25, 11, 243, ... (Sloane’s A046021). Some
values of S(n) first occur only for very large n , for
example, S(59; 049) �24 ; S(177 ; 147) �27;
S(134 ; 217; 728) �30 ; S(43; 046; 721) �36; and
S(9; 765; 625) �45: D. Wilson points out that if we
let

I(n ; p) �
n �

P 
(n; p)

p � 1
;

be the power of the PRIME p in n!; where a (n; p) is
the sum of the base-p digits of n , then it follows that

a(n) �min pI(n�1 ; p)�1 ;

where the minimum is taken over the PRIMES p
dividing n . This minimum appears to always be
achieved when p is the GREATEST PRIME FACTOR of
n . If n �2k �1 2k �1

� �
is an even PERFECT NUMBER

(i.e., 2k�1 is prime), then S(n)�p (Ruiz 1999a). If p
is a prime number and n]2 an integer, then S ppnð Þ�
pn�1�pn�p: (Ruiz 1999b).

The incrementally largest values of S(n) are 1, 2, 3, 4,
5, 7, 11, 13, 17, 19, 23, 29, ... (Sloane’s A046022),
which occur for n � 1, 2, 3, 4, 5, 7, 11, 13, 17, 19, 23,
29, ... (Sloane’s A046023), i.e., the values where
S(n)�n:/

Tutescu (1996) conjectures that the DIOPHANTINE

EQUATION S(n)�S(n�1) has no solution.

See also FACTORIAL, GREATEST PRIME FACTOR, PSEU-

DOSMARANDACHE FUNCTION, SMARANDACHE CEIL

FUNCTION, SMARANDACHE CONSTANTS, SMARAN-

DACHE-KUREPA FUNCTION, SMARANDACHE NEAR-TO-

PRIMORIAL FUNCTION, SMARANDACHE-WAGSTAFF

FUNCTION
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Smarandache Near-to-Primorial Function
/SNTP(n) is the smallest PRIME such that p# �1 ; p#; or
p# �1 is divisible by n , where p# is the PRIMORIAL of
p . Ashbacher (1996) shows that SNTP(n) only exists

1. If there are no square or higher powers in the
factorization of n , or
2. If there exists a PRIME q Bp such that n (q# 91);j
where p is the smallest power contained in the
factorization of n .

Therefore, SNTP(n) does not exist for the SQUAREFUL

numbers n�4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ...
(Sloane’s A013929). The first few values of SNTP(n);
where defined, are 2, 2, 2, 3, 3, 3, 5, 7, ... (Sloane’s
A046026).

See also PRIMORIAL, SMARANDACHE FUNCTION
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Smarandache Paradox
Let A be some attribute (e.g., possible, present,
perfect, etc.). If all is A , then the non-A must also
be A . For example, "All is possible, the impossible
too," and "Nothing is perfect, not even the perfect."
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Smarandache Sequences
Smarandache sequences are any of a number of
simply generated INTEGER SEQUENCES resembling
those considered in published works by Smarandache
such as the CONSECUTIVE NUMBER SEQUENCES and
EUCLID NUMBERS (Iacobescu 1997). Some other
"Smarandache" sequences are given below.

1. The concatenation of n copies of the INTEGER n :
1, 22, 333, 4444, 55555, ... (Sloane’s A000461;
Marimutha 1997),
2. The concatenation of the first n FIBONACCI

NUMBERS: 1, 11, 112, 1123, 11235, ... (Sloane’s
A019523; Marimutha 1997),
3. The smallest number that is the sum of squares
of two distinct earlier terms: 1, 2, 5, 26, 29, 677, ...
(Sloane’s A008318, Bencze 1997),
4. The smallest number that is the sum of squares
of any number of distinct earlier terms: 1, 1, 2, 4, 5,
6, 16, 17, ... (Sloane’s A008319, Bencze 1997),

5. The smallest number that is not the sum of
squares of two distinct earlier terms: 1, 2, 3, 4, 6, 7,
8, 9, 11, ... (Sloane’s A008320, Bencze 1997),
6. The smallest number that is not the sum of
squares of any number of distinct earlier terms: 1,
2, 3, 6, 7, 8, 11, ... (Sloane’s A008321, Bencze 1997),
7. The smallest number that is a sum of cubes of
two distinct earlier terms: 1, 2, 9, 730, 737, ...
(Sloane’s A008322, Bencze 1997),
8. The smallest number that is a sum of cubes of
any number of distinct earlier terms: 1, 1, 2, 8, 9,
10, 512, 513, 514, ... (Sloane’s A019511, Bencze
1997),
9. The smallest number that is not a sum of cubes
of two distinct earlier terms: 1, 2, 3, 4, 5, 6, 7, 8, 10,
... (Sloane’s A031980, Bencze 1997),
10. The smallest number that is not a sum of cubes
of any number of distinct earlier terms: 1, 2, 3, 4, 5,
6, 7, 10, 11, ... (Sloane’s A031981, Bencze 1997),
11. The number of PARTITIONS of a number n � 1,
2, ... into SQUARE NUMBERS: 1, 1, 1, 1, 2, 2, 2, 2, 3, 4,
4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, ... (Sloane’s
A001156, Iacobescu 1997),
12. The number of PARTITIONS of a number n � 1,
2, ... into CUBIC NUMBERS: 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,



2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, ... (Sloane’s
A003108, Iacobescu 1997),
13. Two copies of the first n POSITIVE INTEGERS: 11,
1212, 123123, 12341234, ... (Sloane’s A019524,
Iacobescu 1997),
14. Numbers written in base of triangular num-
bers: 1, 2, 10, 11, 12, 100, 101, 102, 110, 1000,
1001, 1002, ... (Sloane’s A000462, Iacobescu 1997),
15. Numbers written in base of double factorial
numbers: 1, 10, 100, 101, 110, 200, 201, 1000,
1001, 1010, ... (Sloane’s A019513, Iacobescu 1997),
16. Sequences starting with terms a1; a2f g which
contain no three-term arithmetic progressions
starting with f1; 2g : 1, 2, 4, 5, 10, 11, 13, 14, 28,
... (Sloane’s A003278, Iacobescu 1997, Mudge 1997,
Weisstein),
17. Numbers OF THE FORM fn!g2�1 : 2, 5, 37, 577,
14401, 518401, 25401601, 1625702401,
131681894401, ... (Sloane’s A020549, Iacobescu
1997),
18. Numbers OF THE FORM fn!g3�1 : 2, 9, 217,
13825, 1728001, 373248001, 128024064001, ...
(Sloane’s A019514, Iacobescu 1997),
19. Numbers OF THE FORM 1�1!2!3! � � �n! : 2, 3, 13,
289, 34561, 24883201, 125411328001,
5056584744960001, ... (Sloane’s A019515, Iaco-
bescu 1997),
20. Sequences starting with terms a1; a2f g which
contain no three-term geometric progressions
starting with f1; 2g : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13,
14, 15, 16, ... (Sloane’s A000452, Iacobescu 1997),
21. Numbers repeating the digit 1 pn times, where
pn is the nth prime: 11, 111, 11111, 1111111, ...
(Sloane’s A031974, Iacobescu 1997). These are a
subset of the REPUNITS,
22. Integers with all 2s, 3s, 5s, and 7s (prime
digits) removed: 1, 4, 6, 8, 9, 10, 11, 1, 1, 14, 1, 16,
1, 18, 19, 0, ... (Sloane’s A019516, Iacobescu 1997),
23. Integers with all 0s, 1s, 4s, and 9s (square
digits) removed: 2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2,
22, 23, ... (Sloane’s A031976, Iacobescu 1997).
24. (Smarandache-Fibonacci triples) Integers n
such that S(n)�S(n�1)�S(n�2); where S(k) is
the SMARANDACHE FUNCTION: 3, 11, 121, 4902,
26245, ... (Sloane’s A015047; Aschbacher and
Mudge 1995; Ibstedt 1997, pp. 19�/23; Begay
1997). The largest known is 19,448,047,080,036,
25. (Smarandache-Radu triplets) Integers n such
that there are no primes between the smaller and
larger of S(n) and S(n�1) : 224, 2057, 265225, ...
(Sloane’s A015048; Radu 1994/1995, Begay 1997,
Ibstedt 1997). The largest known is
270,329,975,921,205,253,634,707,051,822,848,570-
,391,313,
26. (Smarandache crescendo sequence): Integers
obtained by concatenating strings of the first n�1
integers for n�0, 1, 2, ...: 1, 1, 2, 1, 2, 3, 1, 2, 3, 4,
... (Sloane’s A002260; Brown 1997, Brown and

Castillo 1997). The nth term is given by n�m(m�
1)=2�1; where m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n�1

p
�1

� �
=2

: ;
; with xb c

the FLOOR FUNCTION (Hamel 1997),
27. (Smarandache descrescendo sequence): Inte-
gers obtained by concatenating strings of the first
n integers for n�. . . ; 2, 1: 1, 2, 1, 3, 2, 1, 4, 3, 2, 1,
... (Sloane’s A004736; Smarandache 1997, Brown
1997),
28. (Smarandache crescendo pyramidal sequence,
a.k.a. Smarandache descrescendo symmetric se-
quence): Integers obtained by concatenating
strings of rising and falling integers: 1, 1, 2, 1, 1,
2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, ... (Sloane’s A004737;
Brown 1997, Brown and Castillo 1997, Smaran-
dache 1997),
29. (Smarandache descrescendo pyramidal se-
quence): Integers obtained by concatenating
strings of falling and rising integers: 1, 2, 1, 2, 3,
2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, ... (Sloane’s A004738;
Brown 1997),
30. (Smarandache crescendo symmetric sequence):
1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, ... (Sloane’s A004739,
Brown 1997, Smarandache 1997),
31. (Smarandache permutation sequence): Num-
bers obtained by concatenating sequences of in-
creasing length of increasing ODD NUMBERS and
decreasing EVEN NUMBERS: 1, 2, 1, 3, 4, 2, 1, 3, 5, 6,
4, 2, ... (Sloane’s A004741; Brown 1997, Brown and
Castillo 1997),
32. (Smarandache pierced chain sequence): Num-
bers OF THE FORM

c(n)�101 0101|fflffl{zfflffl} � � � 0101|fflffl{zfflffl}|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

for n�0, 1, ...: 101, 1010101, 10101010101, ...
(Sloane’s A031982; Ashbacher 1997). In addition,
c(n)=101 contains no PRIMES (Ashbacher 1997),
33. (Smarandache symmetric sequence): 1, 11, 121,
1221, 12321, 123321, ... (Sloane’s A007907; Smar-
andache 1993, Dumitrescu and Seleacu 1994,
sequence 3; Mudge 1995),
34. (Smarandache square-digital sequence):
square numbers all of whose digits are also
squares: 1, 4, 9, 49, 100, 144, ... (Sloane’s
A019544; Mudge 1997),
35. (Square-digits): numbers composed of digits
which are squares: 0, 1, 4, 9, 10, 11, 14, 19, 40, 41,
... (Sloane’s A046030),
36. (Cube-digits): numbers composed of digits
which are cubes: 1, 8, 10, 11, 18, 80, 81, 88, 100,
101, ... (Sloane’s A046031),
37. (Smarandache cube-digital sequence): cube-
digit numbers which are themselves cubes: 1, 8,



1000, 8000, 1000000, ... (Sloane’s A019545; Mudge
1997),
38. (Prime-digits): numbers composed of digits
which are primes: 2, 3, 5, 7, 22, 23, 25, 27, 32,
33, 35, ... (Sloane’s A046034),
39. (Smarandache prime-digital sequence): prime-
digit numbers which are themselves prime: 2, 3, 5,
7, 23, 37, 53, ... (Sloane’s A019546; Smith 1996,
Mudge 1997).
40. (Smarandache deconstructive sequence): inte-
gers constructed by sequentially repeating the
digits 1 �/9 in the following way: 1, 23, 456, 7891,
23456, 789123, 4567891, ... (Sloane’s A007923;
Smarandache 1993, Kashihara 1996, Ashbacher,
Atanassov 1999ab). Of these, 23, 4567891,
23456789, 1234567891, ... (Sloane’s A050234) are
prime (Kashihara 1996, Ashbacher).

See also ADDITION CHAIN, CONSECUTIVE NUMBER

SEQUENCES, CUBIC NUMBER, EUCLID NUMBER, EVEN

NUMBER, FIBONACCI NUMBER, INTEGER SEQUENCE,
ODD NUMBER, PARTITION, SMARANDACHE FUNCTION,
SQUARE NUMBER
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Smarandache-Kurepa Function
Given the sum-of-factorials function

X
(n)�

Xn

k�1

k!;

/SK(p) for p PRIME is the smallest integer n such that
pj1�a(n�1): The first few known values of SK(p)
are 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, ... for
p�2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 61, 71, 73, 89, ....
The function SK(p) doe not exists for p�3, 13, 29, 43,
47, 53, 67, 79, 83, ....

See also PSEUDOSMARANDACHE FUNCTION, SMARAN-

DACHE CEIL FUNCTION, SMARANDACHE FUNCTION,
SMARANDACHE-WAGSTAFF FUNCTION, SMARANDACHE

FUNCTION
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Smarandache-Wagstaff Function
Given the sum-of-FACTORIALS function

X
(n) �

Xn

k �1

k!;

/SW(p) is the smallest integer for p PRIME such that
a[SW(p)] is divisible by p . If p¶ a(n) for all n Bp ,
then p never divides any sum for all n . Therefore, the
values SW(p) do not exist for 2, 5, 7, 13, 19, 31, ...
(Sloane’s A056985).

The function is defined for p �3, 11, 17, 23, 29, 37, 41,
43, 53, 67, 73, 79, 97, ... (Sloane’s A056983), with
corresponding values 2, 4, 5, 12, 19, 24, 32, 19, 20, 20,
20, 7, 57, 6, ... (Sloane’s A056985).

See also FACTORIAL, SMARANDACHE FUNCTION
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Sloane, N. J. A. Sequences A056983, A056984, and A056985
in "An On-Line Version of the Encyclopedia of Integer
Sequences." http://www.research.att.com/~njas/se-
quences/eisonline.html.

Smith Brothers
Consecutive SMITH NUMBERS. The first few Smith
brothers are (728, 729), (2964, 2965), (3864, 3865),
(4959, 4960), ... (Sloane’s A050219 and A050220).

See also SMITH NUMBER
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Smith Conjecture
The set of fixed points which do not move as a KNOT is
transformed into itself is not a KNOT. The conjecture
was proved in 1978 (Morgan and Bass 1984). Accord-
ing to Morgan and Bass (1984), the Smith conjecture
stands in the first rank of mathematical problems
when measured by the amount and depth of new
mathematics required to solve it.

The generalized Smith conjecture states considers
Sn�2 to be a piecewise linear (n�2)/-dimensional
sphere in Sn; and Mn the k -fold cyclic covering of Sn

branched along Sn�2; and asks if Sn�2 is unknotted if
Mn is an Sn (Hartley 1983). This conjecture is true for

n53; and false for n]4; with counterexamples in the
latter case provided by Giffen (1966), Gordon (1974),
and Sumners (1975).
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Smith Normal Form
Let A be an n�n MATRIX over a FIELD F . Using the
three ELEMENTARY ROW AND COLUMN OPERATIONS

over elements in the field, the n�n matrix xI�A

with entries from F[x] can be put into the diagonal
form

1 0 � � � 0 0 0 0 0
0 1

::: 0 0 0 0 0
n :::

:::
:::

:::
:::

::: n
0 0 0 1 0 0 0 0
0 0 0 0 a1(x) 0 0 0
0 0 0 0 0 a2(x) 0 0
n :::

:::
:::

:::
:::

::: n
0 0 0 0 0 0 0 am(x)

2
66666666664

3
77777777775
:

called the Smith normal form, which that a1(x); a2(x);
..., am(x) are monic nonzero elements of F[x] with
degrees at least one and satisfying a1(x)�
a2(x)j j . . . am(x)j j (Dummit and Foote 1998, pp. 390�/

391 and 414). The elements ai(x) are then called the
INVARIANT FACTORS of A:/
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Smith Number
A COMPOSITE NUMBER the SUM of whose DIGITS is the
sum of the DIGITS of its PRIME FACTORS (excluding 1).
(The PRIMES are excluded since they trivially satisfy
this condition). One example of a Smith number is the
BEAST NUMBER



666 �2 � 3 � 3 � 37 ;

since

6 �6 �6 �2 �3 �3 �(3 �7) �18 :

Another Smith number is

4937775 �3 � 5 � 5 � 65837 ;

since

4 �9 �3 �7 �7 �7 �5

�3 �5 �5 �(6 �5 �8 �3 �7) �42:

The first few Smith numbers are 4, 22, 27, 58, 85, 94,
121, 166, 202, 265, 274, 319, 346, ... (Sloane’s
A006753). The corresponding digits sums are 4, 4, 9,
13, 13, 13, 4, 13, 4, 13, 13, 13, 13, ... (Sloane’s
A050218) McDaniel (1987a) showed that there are
an infinite number of Smith numbers.

A generalized k -Smith number can also be defined as
a number m satisfying Sp(m) �kS(m) ; where Sp(m) is
the sum of the digits of m ’s prime factors and S(m) is
the usual sum of m ’s digits. The following table gives
the first few k -Smith numbers for k ]2:/

k Sloane k -Smith numbers

2 A050224 88, 169, 286, 484, 598, 682, 808, 844,
897, ...

3 A050225 6969, 19998, 36399, 39693, 66099,
69663, ...

A Smith number can be constructed from every
factored REPUNIT Rn (Hoffman 1998, pp. 205 �/206).
The largest known Smith number is

9 �R1031 104594 �3 �102297 �1
� �1476

�103913210 :

See also HOAX NUMBER, MONICA SET, PERFECT

NUMBER, REPUNIT, SMITH BROTHERS, SUZANNE SET
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Smith’s Markov Process Theorem
Consider

P2 y1 ; t1 jy3 ; t3ð Þ

�g P2 y1 ; t1 y2 ; t2j ÞP3 y1 ; t1; y2 ; t2 y3 ; t3j Þ dy2 :ðð (1)

If the probability distribution is governed by a
MARKOV PROCESS, then

P3 y1 ; t1; y2 ; t2 y3 ; t3j Þ�P2 y2 ; t2 y3 ; t3j Þðð

�P2 y2 y3 ; t3 �t2j Þ:ð (2)

Assuming no time dependence, so t1 �0;

P2 y1 jy3 ; t3ð Þ�g P2 y1 y2 ; t2j ÞP2 y2 y3 ; t3 �t2j Þ dy2 :ðð (3)

See also MARKOV PROCESS

Smith’s Network Theorem
In a NETWORK with three EDGES at each VERTEX, the
number of HAMILTONIAN CIRCUITS through a specified
EDGE is 0 or EVEN.

See also EDGE (GRAPH), HAMILTONIAN CIRCUIT, NET-

WORK

Smooth Function
A smooth function is a function that has continuous
second-order derivatives over some domain. A func-
tion can therefore be said to be smooth over a
restricted interval such as (a, b ) or [a, b ].

See also CONTINUOUS FUNCTION, DERIVATIVE

Smooth Manifold
Another word for a C� (infinitely differentiable)
MANIFOLD. A smooth manifold is a TOPOLOGICAL

MANIFOLD together with its "functional structure"
(Bredon 1995) and so differs from a TOPOLOGICAL

MANIFOLD because the notion of differentiability
exists on it. Every smooth manifold is a TOPOLOGICAL

MANIFOLD, but not necessarily vice versa. (The first
nonsmooth TOPOLOGICAL MANIFOLD occurs in 4-D.) In
1959, Milnor showed that a 7-D HYPERSPHERE can be
made into a smooth manifold in 28 ways.



See also DIFFERENTIABLE MANIFOLD, HYPERSPHERE,
MANIFOLD, TOPOLOGICAL MANIFOLD
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Smooth Number
An INTEGER is k -smooth if it has no PRIME FACTORS

> k: The following table gives the first few k -smooth
numbers for small k . Berndt (1994, p. 52) called the
7-smooth numbers "highly composite numbers."

k Sloane k -smooth numbers

2 A000079 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
...

3 A003586 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, ...

5 A051037 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, ...

7 A002473 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15,
...

11 A051038 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14,
...

The probability that a random POSITIVE INTEGER 5n
is k -smooth is c(n; k) =n; where c(n; k) is the number
of k -smooth numbers 5n: This fact is important in
application of Kraitchik’s extension of FERMAT’S

FACTORIZATION METHOD because it is related to the
number of random numbers which must be examined
to find a suitable subset whose product is a square.

Since about p(k) k -smooth numbers must be found
(where p(k) is the PRIME COUNTING FUNCTION), the
number of random numbers which must be examined
is about p(k)n=c(n; k) : But because it takes about p(k)
steps to determine if a number is k -smooth using
TRIAL DIVISION, the expected number of steps needed
to find a subset of numbers whose product is a square
is 	[ p(k)]2n=c(n; k) (Pomerance 1996). Canfield et al.
(1983) showed that this function is minimized when

k 	exp 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln n ln ln n

p� �
and that the minimum value is about

exp 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln n ln ln n

p� �
:

In the CONTINUED FRACTION FACTORIZATION ALGO-

RITHM, n can be taken as 2
ffiffiffi
n

p
; but in FERMAT’S

FACTORIZATION METHOD, it is n1 =2 � e : k is an estimate
for the largest PRIME in the FACTOR BASE (Pomerance
1996).

See also HIGHLY COMPOSITE NUMBER, ROUND NUM-

BER
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Smooth Structure
A smooth structure on a TOPOLOGICAL MANIFOLD (also
called a differentiable structure) is given by a smooth
ATLAS of coordinate charts, i.e., the TRANSITION

FUNCTIONS between the coordinate charts are C �

smooth. A manifold with a smooth structure is called
a DIFFERENTIABLE MANIFOLD or a SMOOTH MANIFOLD.

A smooth structure is used to define DIFFERENTIA-

BILITY for real-valued functions on a manifold. This
extends to a notion of when a map between two
differentiable manifolds is smooth, and naturally to
the definition of a DIFFEOMORPHISM. In addition, the
smooth structure is used to define TANGENT VECTORS,
the collection of which is the TANGENT BUNDLE.

Two smooth structures are considered equivalent if
there is a HOMEOMORPHISM of the manifold which
pulls back one atlas to an atlas compatible to the
other one, i.e., a DIFFEOMORPHISM. For instance, any
two smooth structures on the circle S1 are equivalent,
as can be seen by integration.

It is surprising that some manifolds admit more than
one smooth structure. The first such example was an
EXOTIC SPHERE of S7; the 7-dimensional HYPER-

SPHERE, found by Milnor (1956) using the calculus
of OCTONIONS. In the 1980s, several mathematicians,
including Casson, Freedman, and Donaldson, showed
that 4-dimensional Euclidean space R4 has smooth
structures that are distinct from the standard struc-
ture. These are called EXOTIC R4, and some of their
techniques involve DONALDSON THEORY.

Another approach to smooth structures is through
SHEAF theory. Notice that a coordinate chart for an n -
dimensional manifold is really an ordered collection of
n continuous functions. Whenever two coordinate
charts overlap on the manifold, the functions from
one chart are infinitely differentiable with respect to
those from the other chart. The collection of compa-



tible real-valued continuous functions defines the
sheaf of smooth functions. Conversely, one can define
a smooth structure to be defined by a subsheaf of
continuous functions which satisfies the mutually
differentiable condition.

See also ATLAS, DIFFEOMORPHISM DONALDSON THEO-

RY, EXOTIC R4, EXOTIC SPHERE, MANIFOLD, OCTO-

NION, SHEAF (TOPOLOGY), SMOOTH FUNCTION,
SMOOTH SURFACE, TANGENT BUNDLE, TANGENT VEC-

TOR (MANIFOLD)
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Smooth Surface
A surface PARAMETERIZED in variables u and v is
called smooth if the TANGENT VECTORS in the u and v
directions satisfy

Tu �Tv "0 ;

where A �B is a CROSS PRODUCT.

Smoothing
The modification of a set of data to make it smooth
and nearly continuous and remove or diminish out-
lying points.

See also MOVING AVERAGE, SAVITZKY-GOLAY FILTER
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JACOBI ELLIPTIC FUNCTIONS

Snake
A simple circuit in the d -HYPERCUBE which has no
chords (i.e., for which all snake edges are edges of the
HYPERCUBE). Klee (1970) asked for the maximum
length s(d) of a d -snake. Klee (1970) gave the bounds

7

4(d � 1) 
5

s(d)

2d

1

2 
�

1 � 12=2 �d

7d(d � 1)2 � 2
(1)

for d ]6 (Danzer and Klee 1967, Douglas 1969), as
well as numerous references. Abbott and Katchalski
(1988) show

s(d) ]77 � 2d�8 ; (2)

and Snevily (1994) showed that

s(d) 52d �1 1 �
1

20d � 41

 !
(3)

for d 512 ; and conjectured

s(d) 53 � 2d�3 �2 (4)

for d 55: The first few values for s(d) for d �1, 2, ...,
are 2, 4, 6, 8, 14, 26, ... (Sloane’s A000937).

See also HYPERCUBE
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Snake Eyes

A roll of two 1s (the lowest roll possible) on a pair of
six-sided DICE. The probability of rolling snake eyes is
/1=36/, or 2.777...%.

See also BOXCARS, DICE

Snake Oil Method
The expansion of the two sides of a sum equality in
terms of POLYNOMIALS in xm and yk; followed by closed
form summation in terms of x and y . For an example
of the technique, see Bloom (1995).
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Snake Polyiamond

A 6-POLYIAMOND.

References
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems,

and Packings, 2nd ed. Princeton, NJ: Princeton Univer-
sity Press, p. 92, 1994.

Snedecor’s F-Distribution
If a random variable X has a CHI-SQUARED DISTRIBU-

TION with m degrees of freedom / x2
mð Þ and a random

variable Y has a CHI-SQUARED DISTRIBUTION with n
degrees of freedom / x2

nð Þ; and X and Y are indepen-
dent, then

F �
X =m

Y =n 
(1)

is distributed as Snedecor’s F -distribution with m
and n degrees of freedom

f (F(m; n)) �
G m�n

2

� �
m
n

� �m=2

F(m�2)=2

G m
2

� �
G n

2

� �
1 � m

n
F

� �(m�2)=2 (2)

for 0 BF B�: The RAW MOMENTS are

m?1 �
n

n � 2 
(3)

m?2 �
n2(m � 2)

m(n � 2)(n � 4) 
(4)

m?3 �
n3(m � 2)(m � 4)

m2(n � 2)(n � 4)(n � 6) 
(5)

m ?4 �
n4(m � 2)(m � 4)(m � 6)

m3(n � 2)(n � 4)(n � 6)(n � 8) 
; (6)

so the CENTRAL MOMENTS are given by

m2 �
2n2(m � n � 2)

m(n � 2)2(n � 4) 
(7)

m3 �
8n3(m � n � 2)(2m � n � 2)

m2(n � 2)3(n � 4)(n � 6) 
(8)

m4 �

12n4(m � n � 2) 4(n � 2)2 � m2(n � 10) � m(n � 2)(n � 10)
h i

m3(n � 2)4(n � 4)(n � 6)(n � 8) 
: (9)

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS

are

m � m?1 �
n

n � 2 
(10)

s2 �
2n2(m � n � 2)

m(n � 2)2(n � 4) 
(11)

g1 �
m3

s3 
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(n � 4)

m(m � n � 2)

s
2m � n � 2

n � 6
(12)

g2 �
m4

s4 
�3 �

3(n � 4) 4(n � 2)2 � m2(n � 10) � m(n � 2)(n � 10)
h i

m(m � n � 2)(n � 6)(n � 8) 
:

(13)

The CHARACTERISTIC FUNCTION can be computed, but
it is rather messy and involves the GENERALIZED

HYPERGEOMETRIC FUNCTION / 3F2(a ; b ; c; d ; e; z)/.

Letting

w �

mF

n

1 �
mF

n

(14)

gives a BETA DISTRIBUTION (Beyer 1987, p. 536).

See also BETA DISTRIBUTION, CHI-SQUARED DISTRIBU-

TION, STUDENT’S T -DISTRIBUTION

References
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed.

Boca Raton, FL: CRC Press, p. 536, 1987.

Snellius-Pothenot Problem
A SURVEYING PROBLEM which asks: Determine the
position of an unknown accessible point P by its
bearings from three inaccessible known points A , B ,
and C .

See also HANSEN’S PROBLEM
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Snowflake
EXTERIOR SNOWFLAKE, KOCH ANTISNOWFLAKE, KOCH

SNOWFLAKE, PENTAFLAKE



Snub Cube

The 38-faced ARCHIMEDEAN SOLID A7 ; also called the
SNUB CUBOCTAHEDRON, whose faces are 32 f3g�6f4g:
It has two ENANTIOMERS. It is UNIFORM POLYHEDRON

U12 and Wenninger model W17 : It has SCHLÄ FLI

SYMBOL s 3
4f g and WYTHOFF SYMBOL 234:j /

Its DUAL POLYHEDRON is the PENTAGONAL ICOSITE-

TRAHEDRON. The INRADIUS r of the dual, MIDRADIUS r

of the dual and solid, and CIRCUMRADIUS R for unit
edge length are given by the unique positive real
roots of the equations

896r6 �1248r4 �64r2 �1 �0 (1)

64 r6 �112r4 �20 r2 �1 �0 (2)

32R6 �80R4 �44R2 �7 �0 (3)

which given by

r �1:157661791 . . . (4)

r �1:247223168 . . . (5)

R �1:3437133737446 . . . (6)

The SURFACE AREA of the snub cube of side length 1 is

S �6 �8
ffiffiffi
3

p
(7)

and the VOLUME V is given by the positive real
solution to the equation

729V6 �45684V4 �19386V2 �12842 �0; (8)

which is given approximately by

V :7:88948 : (9)

The distances from the center to the centroids of the
triangular and square faces are given by the unique
positive roots to the equations

864r6
3�1296r4

3�36r2
3�1�0 (10)

32r6
4�32r4

4�12r2
4�1�0; (11)

which are given by

r3�1:213355800 . . . (12)

r4�1:142613508 . . . (13)

See also ARCHIMEDEAN SOLID, ICOSITETRAHEDRON,
PENTAGONAL ICOSITETRAHEDRON, SNUB DODECAHE-

DRON
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Snub Cube-Pentagonal Icositetrahedron
Compound

The compound of the SNUB CUBE and its dual, the
PENTAGONAL ICOSITETRAHEDRON. It can be con-
structed from the snub cube with unit edge length
by heights h3 and h4; given by the unique positive real
roots of

3456h6
3�864h4

3�216h2
3�1�0 (1)

128h6
4�96h4

4�16h2
4�1�0: (2)

The corresponding solid has edge lengths

128s6
1�64s4

1�16s2
1�1�0 (3)

s2�1=2 (4)

128s6
3�6s3

3�1�0; (5)

and

s4�
1
2

ffiffiffi
2

p
; (6)

where s1 and s3 are unique real roots of the above



polynomials. The CIRCUMRADIUS is given by the root
of

32R6 �80R4 �44R2 �7 �0; (7)

the SURFACE AREA by the root of

1028869776 �35418062592S �45028405440S2

�22712607360S3 �5396081328S4

�463818960S5 �35732664S6 �7379424S7

�23652S8 �29160S9 �576S10 �36S11 �S12 ; (8)

and VOLUME by the root of

128V6 �8864V4 �19152V2 �10609 �0 : (9)

See also COMPOUND POLYHEDRON, PENTAGONAL

ICOSITETRAHEDRON, SNUB CUBE

Snub Cuboctahedron
SNUB CUBE

Snub Disphenoid

The 12-faced convex DELTAHEDRA also known as the
SIAMESE DODECAHEDRON, which is also JOHNSON

SOLID J84 :/

The coordinates of the VERTICES of a snub disphenoid
of unit side length may be found by solving the set of
four simultaneous equations

1
2

� �2

�x2
2 �z2

1 �1

x2 �
1
2

� �2

� z3 �z1ð Þ2�1

1
2

� �2

�x2
2 � z3 �z2ð Þ2�1

x2
2 �x2

2 � z2 �z1ð Þ2�1

for the four unknowns x2 ; z1 ; z2 ; and z3 : The analytic
solution requires solving the CUBIC EQUATION, and
the solutions are given by the unique positive real
roots of

2x3
2 �3x2

2 �2x2 �2 �0 (1)

32z6
1 �64z4

1 �22z2
1 �1 �0 (2)

16z6
2 �8z4

2 �15z2
2 �8 �0 (3)

2z6
3 �z4

3 �8z2
3 �4 �0: (4)

Numerically,

x2 :0:644584

z1 :0 :578369

z2 :0 :989492

z3 :1:56786:

The SURFACE AREA of the unit snub disphenoid is

S�3
ffiffiffi
3

p
; (5)

and the VOLUME V is given by the positive real root of

5832V6�1377V4�2160V2�4�0; (6)

approximately V:0:859494:/

See also DELTAHEDRON, DISPHENOID, JOHNSON SOLID



Snub Dodecadodecahedron

The UNIFORM POLYHEDRON U40 whose DUAL POLYHE-

DRON is the MEDIAL PENTAGONAL HEXECONTAHEDRON.
It has WYTHOFF SYMBOL ½2 5

2 5: Its faces are 12 5
2

n o
�

60 f3g�12 f5g: It has CIRCUMRADIUS for a �1 of

R �1:27443994:

See also SNUB CUBE
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Snub Dodecahedron

The 92-faced ARCHIMEDEAN SOLID A8 consisting of
faces 80f3 g�12 f5g which is also called the snub
icosidodecahedron. It is UNIFORM POLYHEDRON U29

and Wenninger model W18 : It has SCHLÄ FLI SYMBOL s
3
5

� �
and WYTHOFF SYMBOL ½235:/

The DUAL POLYHEDRON of the snub dodecahedron is
the PENTAGONAL HEXECONTAHEDRON. The INRADIUS r
of the dual, MIDRADIUS r of the solid and dual, and
CIRCUMRADIUS R of the solid for a �1 are

r �2 :039873155 . . .

r �2:097053835 . . .

R �2:15583737511564 . . . :

See also ARCHIMEDEAN SOLID, HEXECONTAHEDRON,
SNUB CUBE
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Snub Icosidodecadodecahedron

The UNIFORM POLYHEDRON U46 whose DUAL POLYHE-

DRON is the MEDIAL HEXAGONAL HEXECONTAHEDRON.
It has WYTHOFF SYMBOL j3 5

3 5: Its faces are 12 4
2

n o
�

80f3g�12f5g: It has CIRCUMRADIUS for a�1 of

R�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=3 � 14x � 22=3x2

24=3 � 8x � 22=3x2

s

�1:12689791279994 . . . ;

where

x� 25�3
ffiffiffiffiffiffi
69

p� �1=3

:
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Snub Icosidodecahedron
SNUB DODECAHEDRON



Snub Polyhedron
A polyhedron with extra triangular faces, given by
the SCHLÄ FLI SYMBOL s p

q

n o
:/

See also RHOMBIC POLYHEDRON, TRUNCATED POLY-

HEDRON

Snub Square Antiprism

JOHNSON SOLID J85:/
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SO
SPECIAL ORTHOGONAL GROUP

Soap Bubble
BUBBLE

Soccer Ball
TRUNCATED ICOSAHEDRON

Sociable Numbers
Numbers which result in a periodic ALIQUOT SE-

QUENCE, where an ALIQUOT SEQUENCE is the sequence
of numbers obtained by repeatedly applying the
restricted divisor function

s(n)�s(n)�n (1)

to n . Here s(n) is the usual DIVISOR FUNCTION.

If the period is 1, the number is called a PERFECT

NUMBER. If the period is 2, the two numbers are called
an AMICABLE PAIR. In general, if the period is t]3;
the number is called sociable of order t . Only two
sociable numbers were known prior to 1970, the sets
of orders 5 and 28 discovered by Poulet (1918). In
1970, Cohen discovered nine groups of order 4.

For example, 1264460 is a sociable number of order
four since its ALIQUOT SEQUENCE is 1264460,
1547860, 1727636, 1305184, 1264460, .... The first

few sociable numbers are 12496, 14316, 1264460,
2115324, 2784580, 4938136, ... (Sloane’s A003416),
which have orders 5, 28, 4, 4, 4, 4, ... (Sloane’s
A052470). The table below summarizes the numbers
of sociable cycles known as a function of order as
given in the compilation by Moews (1995).

order known

3 0

4 53

5 1

6 2

8 2

9 1

28 1

total 60

Y. Kohmoto has considered a generalization of the
sociable numbers defined according to the generalized
ALIQUOT SEQUENCE

a(n)�
s(a(n � 1))

m
: (2)

MULTIPERFECT NUMBERS are fixed points of this
mapping, since if a(n)�a(n�1); then

ma(n)�s(a(n)); (3)

which is the definition of an m -multiperfect number.
If the sequence a(n) becomes cyclic after k � 1 terms,
it is then called an 1=m/-sociable number of order k .

If Mm and Mn are distinct MERSENNE PRIMES, then

1
2 s 2m�1Mn

� �
�1

2 2m�1ð Þ2n�2n�1Mm (4)

1
2 s(2(n�1)Mm)�2m�1Mn; (5)

so 2m�1Mn and 2n�1Mm are /1=2/-sociable numbers of
order 2.

The following table summarizes the smallest mem-
bers of the generalized 1=m/-aliquot sequences of order
k , found by Kohmoto.

m k starting numbers

3 2 14913024

4 2 2096640, 422688000

4 12 3396556800



See also ALIQUOT SEQUENCE, CATALAN’S ALIQUOT

SEQUENCE CONJECTURE, PERFECT NUMBER, UNITARY

SOCIABLE NUMBERS
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Social Choice Theory
The theory of analyzing a decision between a collec-
tion of alternatives made by a collection of n voters
with separate opinions. Any choice for the entire
group should reflect the desires of the individual
voters to the extent possible.

Fair choice procedures usually satisfy ANONYMITY

(invariance under permutation of voters), DUALITY

(each alternative receives equal weight for a single
vote), and MONOTONICITY (a change favorable for X
does not hurt X ). Simple majority vote is anonymous,
dual, and monotone. MAY’S THEOREM states a stron-
ger result.

See also ANONYMOUS, ARROW’S PARADOX, DUAL

VOTING, MAY’S THEOREM, MONOTONIC VOTING, VOT-

ING
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Socle
The socle of a group G is the SUBGROUP generated by
its minimal NORMAL SUBGROUPS. For example, the
SYMMETRIC GROUP S4 has two nontrivial normal
subgroups: A4 and N �ff1; 2; 3; 4g;/

/f2; 1; 4; 3g; f3 ; 4 ; 1 ; 2g; f4; 3; 2; 1gg: But A4 con-
tains N , so N is the only minimal subgroup, and
the socle of S4 is N .

See also BLOCK (GROUP ACTION), GROUP, NORMAL

SUBGROUP, PRIMITIVE GROUP, TRANSITIVE GROUP
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Socrates’ Paradox
Socrates is reported to have stated: "One thing I know
is that I know nothing."

See also LIAR’S PARADOX

References
Pickover, C. A. Keys to Infinity. New York: Wiley, p. 134,

1995.

Soddy Centers
SODDY POINTS

Soddy Circles

Given three distinct noncollinear points A , B , and C ,
let three CIRCLES be drawn, one centered about each
point and each one tangent to the other two. Call the



RADII ri (/r3�a?; r1�b?; r2�c?): Then the CIRCLES

satisfy

a?�b?�c (1)

a?�c?�b (2)

b?�c?�a; (3)

as shown in the diagram below.

Solving for the RADII then gives

a?�1
2(b�c�a) (4)

b?�1
2(a�c�b) (5)

c?�1
2(a�b�c): (6)

The TRIANGLE illustrated above has sides a , b , and c ,
and SEMIPERIMETER

s�1
2(a�b�c): (7)

Plugging in,

2s� a?�b?ð Þ� a?�c?ð Þ� b?�c?ð Þ�2 a?�b?�c?ð Þ; (8)

giving

a?�b?�c?�s: (9)

In addition,

a�b?�c?�a?�b?�c?�a?�s�a?: (10)

Switching a and a? to opposite sides of the equation
and noting that the above argument applies equally
well to b? and c? then gives

a?�s�a (11)

b?�s�b (12)

c?�s�c: (13)

As can be seen from the first figure, there exist
exactly two nonintersecting CIRCLES which are TAN-

GENT to all three CIRCLES. These are called the inner
and outer Soddy circles (S and S?; respectively), and
their centers are called the inner and outer SODDY

POINTS.
The inner Soddy circle is the solution to the FOUR

COINS PROBLEM and its center S , the inner Soddy

point, is the EQUAL DETOUR POINT. The center of the
outer Soddy circle, the outer Soddy point S?; is the
ISOPERIMETRIC POINT (Kimberling 1994).

Frederick Soddy (1936) gave the FORMULA for finding
the RADII of the Soddy circles (/r4) given the RADII ri

(i�1, 2, 3) of the other three. The relationship is

2 e2
1�e2

2�e2
3�e2

4

� �
� e1�e2�e3�e4ð Þ2; (14)

where ei�9ki�91=ri are the so-called BENDS, de-
fined as the signed CURVATURES of the CIRCLES. If the
contacts are all external, the signs are all taken as
POSITIVE, whereas if one circle surrounds the other
three, the sign of this circle is taken as NEGATIVE

(Coxeter 1969). Using the QUADRATIC FORMULA to
solve for e4; expressing in terms of radii instead of
curvatures, and simplifying gives

r94 �
r1r2r3

r2r3 � r1 r2 � r3ð Þ9 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2r3 r1 � r2 � r3ð Þ

p :

(15)

Here, the NEGATIVE solution corresponds to the outer
Soddy circle and the POSITIVE one to the inner Soddy
circle.

This FORMULA is called the DESCARTES CIRCLE THEO-

REM since it was known to Descartes. Soddy extended
the result to TANGENT SPHERES, and Gosper has
further extended the result to n�2 mutually tangent
n -D HYPERSPHERES.

Bellew has derived a generalization applicable to a
CIRCLE surrounded by n CIRCLES which are, in turn,
circumscribed by another CIRCLE. The relationship is

n cn�1ð Þ2�1
h iXn�1

i�1

k2
i �n 3nc2

n�2n�6
� �

c2
n cn�1ð Þ2�

f (n)

n en � 1ð Þ� 1

" #
; (16)

where kn�1 is the curvature of the central circle,

f (n)� n cn�1ð Þ2�1
h iXn�1

i�1

ki�ncn cn�1ð Þ

� nc2
n�(3�n)cn�4


 �
(17)

and

cn�csc
p

n

 !
: (18)

For n�3, this simplifies to the DESCARTES CIRCLE

THEOREM

2
X4

i�1

k2
1�

X4

i�1

ki

 !2

: (19)



See also APOLLONIAN GASKET, APOLLONIUS CIRCLES,
APOLLONIUS’ PROBLEM, ARBELOS, BEND (CURVA-

TURE), BOWL OF INTEGERS, CIRCUMCIRCLE, DES-

CARTES CIRCLE THEOREM, EXCENTRAL TRIANGLE,
FOUR COINS PROBLEM, HART’S THEOREM, MALFATTI

CIRCLES, PAPPUS CHAIN, SODDY POINTS, SPHERE

PACKING, STEINER CHAIN, TANGENT CIRCLES, TAN-

GENT SPHERES
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Soddy Line

A LINE on which the INCENTER I , GERGONNE POINT

Ge , inner and outer SODDY POINTS S and S?; GRIF-

FITHS POINTS Gr , Gr?; OLDKNOW POINTS Ol , Ol ?;
RIGBY POINTS Ri , Ri?; and FLETCHER POINT Fl lie.
The Soddy line can be given parametrically in TRI-

LINEAR COORDINATES by

I � lGe;

where l is a parameter (Oldknow 1996). The Soddy
line is also given byX

(f �e)a �0;

where cyclic permutations of the d , e , and f are taken
and the sum is over TRILINEAR COORDINATES a; b; and
g : The following table gives the values of l corre-

sponding to a number of special points on the Soddy
line.

/l/ Center

�4 Outer GRIFFITHS POINT Gr?/

�2 Outer OLDKNOW POINT Ol?/

/�4
3/ Outer RIGBY POINT Ri ?/

�1 Outer SODDY POINT S?/

0 INCENTER I

1 Inner SODDY POINT S

/
4
3/ Inner RIGBY POINT Ri

2 Inner OLDKNOW POINT Ol

4 Inner GRIFFITHS POINT Gr

/�/ GERGONNE POINT Ge

/S?; I , S , and Ge form a HARMONIC RANGE (Vandeghen
1964, Oldknow 1996). There are a total of 22
HARMONIC RANGES for sets of four points out of these
10 (Oldknow 1996). The Soddy line intersects the
EULER LINE in the DE LONGCHAMPS POINT, and the
GERGONNE LINE in the FLETCHER POINT.

See also DE LONGCHAMPS POINT, EULER LINE,
FLETCHER POINT, GERGONNE POINT, GRIFFITHS

POINTS, HARMONIC RANGE, INCENTER, OLDKNOW

POINTS, RIGBY POINTS, SODDY POINTS
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Soddy Points

Given three mutually tangent CIRCLES, there exist



exactly two nonintersecting circles which are TAN-

GENT CIRCLES to all three original CIRCLES. These are
called the inner and outer SODDY CIRCLES, and their
centers S and S ? are called the inner and outer Soddy
points, respectively.
The inner Soddy point is the EQUAL DETOUR POINT,
and the outer Soddy point S ? is the ISOPERIMETRIC

POINT (Kimberling 1994).

See also EQUAL DETOUR POINT, ISOPERIMETRIC

POINT, SODDY CIRCLES
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Soddy’s Hexlet
HEXLET

Sofa Constant
MOVING SOFA CONSTANT

Sokhotskii’s Formula

lim
e00

1

x 9 ie 
��i pd(x) �PV

1

x

 !
;

where d(x) is the DELTA FUNCTION and PV denotes the
CAUCHY PRINCIPAL VALUE.

See also DELTA FUNCTION

Sol Geometry
The GEOMETRY of the LIE GROUP R SEMIDIRECT

PRODUCT with R2 ; where R acts on R2 by/

(t; (x; y)) 0 (etx; e�ty)/.

See also THURSTON’S GEOMETRIZATION CONJECTURE

Soldner’s Constant
Consider the following formulation of the PRIME

NUMBER THEOREM,

p(x) �
X m(m)

m g
x

e

dt

ln t 
:

where m(m) is the MÖ BIUS FUNCTION and c (some-
times also denoted m) is called Soldner’s constant.
Ramanujan obtained c �1:45136380 . . . (Hardy 1999,
Le Lionnais 1983, Berndt 1994), while the correct
value is 1.4513692346..., the root of

li(x) �0

(Soldner 1812; Nielsen 1965, p. 88).

See also RIEMANN PRIME NUMBER FORMULA
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Solenoidal Field
A solenoidal VECTOR FIELD satisfies

9 � B �0 (1)

for every VECTOR B, where 9 � B is the DIVERGENCE.
If this condition is satisfied, there exists a vector A,
known as the VECTOR POTENTIAL, such that

B �9�A ; (2)

where 9�A is the CURL. This follows from the vector
identity

9 � B �9 �( 9�A) �0: (3)

If A is an IRROTATIONAL FIELD, then

A �r (4)

is solenoidal. If u and v are irrotational, then

u �v (5)

is solenoidal. The quantity

( 9u) �( 9v); (6)

where 9u is the GRADIENT, is always solenoidal. For a
function f satisfying LAPLACE’S EQUATION

92 f �0: (7)

it follows that 9f is solenoidal (and also IRROTA-

TIONAL).

See also BELTRAMI FIELD, CURL, DIVERGENCE, DIVER-

GENCELESS FIELD, GRADIENT, IRROTATIONAL FIELD,
LAPLACE’S EQUATION, VECTOR FIELD
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Solid
A closed 3-D figure (which may, according to some
terminology conventions, be self-intersecting). Kern
and Bland (1948, p. 18) define a solid as any limited
portion of space bounded by surfaces. Among the
simplest solids are the SPHERE, CUBE, CONE, CYLIN-

DER, and more generally, the POLYHEDRA.

See also APPLE, ARCHIMEDEAN SOLID, BARREL, CAT-

ALAN SOLID, CONE, CORK PLUG, CUBE, CUBOCTAHE-

DRON, CYLINDER, CYLINDRICAL HOOF, CYLINDRICAL



WEDGE, DODECAHEDRON, GEODESIC DOME, GOUR-

SAT’S SURFACE, GREAT DODECAHEDRON, GREAT ICO-

SAHEDRON, GREAT RHOMBICOSIDODECAHEDRON

(ARCHIMEDEAN), GREAT RHOMBICUBOCTAHEDRON

(ARCHIMEDEAN), GREAT STELLATED DODECAHEDRON,
ICOSAHEDRON, ICOSIDODECAHEDRON, JOHNSON SO-

LID, KEPLER-POINSOT SOLID, LEMON, MÖ BIUS STRIP,
OCTAHEDRON, PLATONIC SOLID, POLYHEDRON, PSEU-

DOSPHERE, RHOMBICOSIDODECAHEDRON, RHOMBICU-

BOCTAHEDRON, SMALL STELLATED DODECAHEDRON,
SNUB CUBE, SNUB DODECAHEDRON, SOLID OF REVO-

LUTION, SPHERE, SPHERICAL WEDGE, STEINMETZ

SOLID, STELLA OCTANGULA, SURFACE, TETRAHEDRON,
TORUS, TRUNCATED CUBE, TRUNCATED DODECAHE-

DRON, TRUNCATED ICOSAHEDRON, TRUNCATED OCTA-

HEDRON, TRUNCATED TETRAHEDRON, UNIFORM

POLYHEDRON, WULFF SHAPE
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Solid Angle
Defined as the SURFACE AREA V of a UNIT SPHERE

which is subtended by a given object S . Writing the
SPHERICAL COORDINATES as f for the COLATITUDE

(angle from the pole) and u for the LONGITUDE

(azimuth),

V�Aprojected �ggS

sin f du df:

Solid angle is measured in STERADIANS, and the solid
angle corresponding to all of space being subtended is
4p STERADIANS.

See also SPHERE, STERADIAN

Solid Geometry
That portion of GEOMETRY dealing with SOLIDS, as
opposed to PLANE GEOMETRY. Solid geometry is con-
cerned with POLYHEDRA, SPHERES, 3-D SOLIDS, lines
in 3-space, PLANES, and so on.

See also GEOMETRY, PLANE GEOMETRY, SPHERICAL

GEOMETRY
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nouv. éd., vol. 2: Géométrie dans l’espace. Paris: Gauthier-
Villars, 1922.

Salmon, G. Treatise on the Analytic Geometry of Three
Dimensions, 6th ed. London: Longmans Green, 1914.

Shute, W. G.; Shirk, W. W.; and Porter, G. F. Solid Geome-
try. New York: American Book Co., 1960.

Weisstein, E. W. "Solid Geometry." MATHEMATICA NOTE-

BOOK SOLIDGEOMETRY.M.
Weisstein, E. W. "Books about Solid Geometry." http://

www.treasure-troves.com/books/SolidGeometry.html.
Wentworth, G. A. and Smith, D. E. Solid Geometry. Boston,

MA: Ginn and Company, 1913.

Solid Harmonic
A SURFACE HARMONIC of degree l which is premulti-
plied by a factor rl : Confusingly, solid harmonics are
also known as "spherical harmonics" (Whittaker and
Watson 1990, p. 392).

See also SPHERICAL HARMONIC, SURFACE HARMONIC
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Solid of Revolution
To find the VOLUME of a solid of rotation by adding up
a sequence of thin cylindrical shells, consider a region
bounded above by y �f (x); below by y �g(x) ; on the
left by the LINE x �a , and on the right by the LINE

x �b . When the region is rotated about the Y -AXIS,
the resulting VOLUME is given by

V �2 p g
a

b

x[f (x) �g(x)] dx:

To find the volume of a solid of rotation by adding up
a sequence of thin flat disks, consider a region
bounded above by y �f (x); below by y �g(x) ; on the
left by the LINE x�a , and on the right by the LINE

x�b . When the region is rotated about the X -AXIS,
the resulting VOLUME is

V�p g
a

b

f (x)½ 2� g(x)½ 2
n o

dx:

See also SURFACE OF REVOLUTION, VOLUME
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Solid Partition
Solid partitions are generalizations of PLANE PARTI-

TIONS. MacMahon (1960) conjectured the GENERATING

FUNCTION for the number of solid partitions was

f (z) �
1

(1 � z) 1 � z2ð Þ3 1 � z3ð Þ6 1 � z4ð Þ10� � �
;

but this was subsequently shown to disagree at n �6
(Atkin et al. 1967). Knuth (1970) extended the
tabulation of values, but was unable to find a correct
generating function. The first few values are 1, 4, 10,
26, 59, 140, ... (Sloane’s A000293).

See also PARTITION FUNCTION P
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Solid Spherical Harmonic
SOLID HARMONIC

Solidus
The diagonal slash "/" used as the bar between
NUMERATOR and DENOMINATOR of an in-line FRACTION

(Bringhurst 1997, p. 284). The solidus is also called a
DIAGONAL.

See also DIVISION, FRACTION, OBELUS, VINCULUM,
VIRGULE
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Solitary Number
A number which does not have any FRIENDS. Solitary
numbers include all PRIMES, PRIME POWERS, and
numbers for which (n; s(n)) �1 ; where (a, b ) is the
GREATEST COMMON DIVISOR of a and b and s(n) is the
DIVISOR FUNCTION. The first few numbers satisfying
(n; s(n)) �1 are 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19,
21, ... (Sloane’s A014567).

However, there exist numbers such as n �18, 45, 48,
and 52 which are solitary but for which (n; s(n)) "1:
It is believed that 10, 14, 15, 20, 22, and many others

are also solitary, although a proof appears to be
extremely difficult.

See also FRIEND, FRIENDLY PAIR, PRIME POWER
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Soliton
A stable isolated (i.e., solitary) traveling wave solu-
tion to a set of equations.

See also KORTEWEG-DE VRIES EQUATION, LAX PAIR,
SINE-GORDON EQUATION
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Solomon’s Seal Knot

The (5,2) TORUS KNOT 05�/01 with BRAID WORD s5
1:/

Solomon’s Seal Lines
The 27 REAL or IMAGINARY LINES which lie on the
general CUBIC SURFACE and the 45 triple tangent



PLANES to the surface. All are related to the 28
BITANGENTS of the general QUARTIC CURVE.

Schoutte (1910) showed that the 27 lines can be put
into a ONE-TO-ONE correspondence with the vertices of
a particular POLYTOPE in 6-D space in such a manner
that all incidence relations between the lines are
mirrored in the connectivity of the POLYTOPE and
conversely (Du Val 1931). A similar correspondence
can be made between the 28 bitangents and a 7-D
POLYTOPE (Coxeter 1928) and between the tritangent
planes of the canonical curve of genus four and an 8-D
POLYTOPE (Du Val 1933).

See also BRIANCHON’S THEOREM, CUBIC SURFACE,
DOUBLE SIXES, PASCAL’S THEOREM, QUARTIC SUR-

FACE, STEINER SET
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Solomon’s Seal Polygon
HEXAGRAM

Soluble Group
SOLVABLE GROUP

Solvable Congruence
A CONGRUENCE that has a solution.

Solvable Group
A solvable group is a GROUP having a "normal series"
such that each "normal factor" is ABELIAN. The
special case of a solvable FINITE GROUP is a group
whose composition indices are all PRIME NUMBERS.
Solvable groups are sometimes called "soluble
groups," a turn of phrase that is a source of possible
amusement to chemists.

The term "solvable" derives from this type of group’s
relationship to GALOIS’S THEOREM, namely that the
SYMMETRIC GROUP Sn is unsolvable for n ]5 while it
is solvable for n �1, 2, 3, and 4. As a result, the
POLYNOMIAL equations of degree ]5 are not solvable
using finite additions, multiplications, divisions, and
ROOT EXTRACTIONS.

Every FINITE GROUP of order B60; every ABELIAN

GROUP, and every SUBGROUP of a solvable group is
solvable. Betten (1996) has computed a table of
solvable groups of order up to 242 (Besche and Eick
1999).

See also ABELIAN GROUP, COMPOSITION SERIES,
GALOIS’S THEOREM, SOLVABLE LIE GROUP, SYM-

METRIC GROUP
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Solvable Lie Algebra
A LIE ALGEBRA g is solvable when its COMMUTATOR

SERIES, or derived series, gk vanishes for some k . Any
NILPOTENT LIE ALGEBRA is solvable. The basic exam-
ple is the VECTOR SPACE of UPPER TRIANGULAR

MATRICES, because every time two such matrices
commute, their nonzero entries move further from
the diagonal.

The following Mathematica function tests whether a
Lie algebra g is solvable, when given a list of matrices
which form a basis for g:/

MatrixBasis[a_-

List]: �Partition[#1,Length[a[[1]]]]&/@

LatticeReduce[Flatten/@a]

LieCommutator[a_,b_]: �a.b-b.a

NextDerived[{}] �{};

NextDerived[g_List]: �
MatrixBasis[Flatten[Outer[LieCommutator,g,-

g,1],1]] SolvableLieQ[g_List]:�
FixedPoint[NextDerived,g]��{}

For example,

borel5�Flatten[Table[ReplacePart[

Ta-

ble[0,{i,5},{j,5}],1,{k,l}],{k,5},{l,k,5}],1];

SolvableLieQ[borel5]

yields True.

See also BOREL SUBALGEBRA, COMMUTATOR SERIES

(LIE ALGEBRA), LIE ALGEBRA, LIE GROUP, NILPOTENT



LIE GROUP, NILPOTENT LIE ALGEBRA, REPRESENTA-

TION (LIE ALGEBRA), REPRESENTATION (SOLVABLE LIE

GROUP), SOLVABLE LIE GROUP, SPLIT SOLVABLE LIE

ALGEBRA

Solvable Lie Group
A solvable Lie group is a LIE GROUP G which is
CONNECTED and whose LIE ALGEBRA g is a SOLVABLE

LIE ALGEBRA. That is, the COMMUTATOR SERIES

g1 �[ g; g]; g2 � g1 � g1

 �

; . . .  (1)

eventually vanishes, gk �0 for some k . Since NILPO-

TENT LIE ALGEBRAS are also SOLVABLE, any NILPO-

TENT LIE GROUP is a solvable Lie group.

The basic example is the GROUP of invertible UPPER

TRIANGULAR MATRICES with positive DETERMINANT,
e.g.,

a11 a12 a13

0 a22 a23

0 0 a33

2
4

3
5 (2)

such that
Q

i aii > 0: The LIE ALGEBRA g of G is its
TANGENT SPACE at the identity matrix, which is the
VECTOR SPACE of all upper triangular matrices, and it
is a SOLVABLE LIE ALGEBRA. Its COMMUTATOR SERIES

is given by

g1 �
0 b12 b13

0 0 b23

0 0  0

2
4

3
5 (3)

g2 �
0 0 c13

0 0  0
0 0  0

2
4

3
5; (4)

g3 �
0 0 0
0 0 0
0 0 0

2
4

3
5: (5)

Any real solvable Lie group is DIFFEOMORPHIC to
EUCLIDEAN SPACE. For instance, the group of ma-
trices in the example above is diffeomorphic to R6 ; via
the EXPONENTIAL MAPExponential Map (Lie Group).
However, in general, the exponential map in a
SOLVABLE LIE ALGEBRA need not be SURJECTIVE.

See also BOREL GROUP, COMMUTATOR SERIES (LIE

ALGEBRA), FLAG (VECTOR SPACE), LIE ALGEBRA, LIE

GROUP, MATRIX, NILPOTENT LIE GROUP, REPRESEN-

TATION, REPRESENTATION (SOLVABLE LIE GROUP),
SOLVABLE GROUP, SOLVABLE LIE ALGEBRA, SPLIT

SOLVABLE LIE ALGEBRA
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SOMA
Let k ]0 and n ]2 be integers. A SOMA, or more
specifically a SOMA(k, n ), is an n �n array A , whose
entries are k -subsets of a kn -set V; such that each
element of V occurs exactly once in each row and
exactly once in each column of A , and no 2-subset of V
is contained in more than one entry of A (Soicher
1999).

A SOMA(k, n ) can be constructed by superposing k
mutually orthogonal LATIN SQUARES of order n with
pairwise disjoint symbol-sets, and so a SOMA(k, n )
can be seen as a generalization of k mutually
orthogonal LATIN SQUARES of order n .

See also LATIN SQUARE
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Soma Cube

A solid DISSECTION puzzle invented by Piet Hein
during a lecture on Quantum Mechanics by Werner
Heisenberg. There are seven soma pieces composed of
all the irregular face-joined cubes (POLYCUBES) with /

54/ cubes. The object is to assemble the pieces into a
CUBE. There are 240 essentially distinct ways of doing
so (Beeler 1972, Berlekamp et al. 1982), as first
enumerated one rainy afternoon in 1961 by
J. H. Conway and Mike Guy.

A commercial version of the cube colors the pieces
black, green, orange, white, red, and blue. When the
48 symmetries of the cube, three ways of assembling
the black piece, and 25 ways of assembling the green,
orange, white, red, and blue pieces are counted, the
total number of solutions rises to 1,105,920.

See also CUBE DISSECTION, POLYCUBE
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Somer-Lucas Pseudoprime
An ODD COMPOSITE NUMBER N is called a Somer-
Lucas d -pseudoprime (with d ]1) if there EXISTS a
nondegenerate LUCAS SEQUENCE U(P; Q) with U0 �
0; U1 �1 ; D �P2 �4Q; such that (N ; D) �1 and the
rank appearance of N in the sequence U(P ; Q) is
(1=a)(N �(D =N)); where (D=N) denotes the JACOBI

SYMBOL.

See also LUCAS SEQUENCE, PSEUDOPRIME
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Sommerfeld’s Formula
There are (at least) two equations known as Som-
merfeld’s formula. The first is

Jn(z) �
1

2p g
2 p �h �i�

�h �i�

eiz cos tein(t �p =2) dt;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
The second states that under appropriate restrictions,

g
�

0

J0( tr)e �½x ½
ffiffiffiffiffiffiffiffi
t2�k2

p t dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � k2

p �
eik
ffiffiffiffiffiffiffiffiffiffi
t2 �k2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p :

See also WEYRICH’S FORMULA
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Somos Sequence
The Somos sequences are a set of related symmetrical
RECURRENCE RELATIONS which, surprisingly, always
give integers. The Somos sequence of order k is
defined by

an �
P k =2b c

j�1 an�jan�(k �j)

an�k

;

where xb c is the FLOOR FUNCTION and aj �1 for j �0,
..., k �1 : The 2- and 3-Somos sequences consist
entirely of 1s. The k -Somos sequences for k �4, 5,
6, and 7 are

an �
an �1an�3 � a2

n�2

an�4

an �
an �1an�4 � an�2an�3

an�5

an �
1

an�6

an�1an�5 �an�2an�4 �a2
n�3


 �

an �
1

an�7

an�1an�6 �an�2an�5 �an�3an�4½ :

giving 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, ... (Sloane’s
A006720), 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, ...
(Sloane’s A006721), 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421,
1103, ... (Sloane’s A006722), 1, 1, 1, 1, 1, 1, 3, 5, 9, 17,
41, 137, 769, ... (Sloane’s A006723). Gale (1991) gives
simple proofs of the integer-only property of the 4-
Somos and 5-Somos sequences. Hickerson proved 6-
Somos generates only integers using computer alge-
bra, and empirical evidence suggests 7-Somos is also
integer-only.

However, the k -Somos sequences for k ]8 do not give
integers. The values of n for which an first becomes
nonintegral for the k -Somos sequence for k �8, 9, ...
are 17, 19, 20, 22, 24, 27, 28, 30, 33, 34, 36, 39, 41, 42,
44, 46, 48, 51, 52, 55, 56, 58, 60, ... (Sloane’s A030127).

See also GÖ BEL’S SEQUENCE, HERONIAN TRIANGLE
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Sondat’s Theorem
The PERSPECTIVE AXIS bisects the line joining the two
ORTHOCENTERS.

See also ORTHOCENTER, PERSPECTIVE AXIS

References
Johnson, R. A. Modern Geometry: An Elementary Treatise on

the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, p. 259, 1929.

Sonine Polynomial
LAGUERRE POLYNOMIAL

Sonine’s Integral

Jm(x) �
2xm�n

2m�n G(m � n) g
1

0

Jn(xt)tn�1

� 1 �t2
� �m�n�1

dt;

where Jm(x) is a BESSEL FUNCTION OF THE FIRST KIND

and G(x) is the GAMMA FUNCTION.

See also HANKEL’S INTEGRAL, POISSON INTEGRAL

Sonine-Schafheitlin Formula

g
�

0

Jm(at)Jn(bt)t� l dt

�
am G[(m � n � l � 1)=2]

2 lbm� l�1 G[(� m � n � l � 1)=2]G( m � 1)

�2F1 ( m � n � l �1)=2 ; (m � n � l �1)=2; m �1; a2 =b2
� �

;

where R[ m � n � l �1] > 0; R[ l] >�1; 0 Ba Bb ; Jn(x)
is a BESSEL FUNCTION OF THE FIRST KIND, G(x) is the
GAMMA FUNCTION, and 2F1(a ; b; c; x) is a HYPERGEO-

METRIC FUNCTION.
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Sophie Germain Prime
A PRIME p is said to be a Sophie Germain prime if
both p and 2p �1 are PRIME. The first few Sophie
Germain primes are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89,
113, 131, ... (Sloane’s A005384).

Sophie Germain primes p OF THE FORM /p �k � 2n �1/

(which makes 2p �1 a PRIME) correspond to the
indices of composite MERSENNE NUMBERS /Mp/. The
largest known Sophie Germain prime is 92:305 �
216 :998 �1; found in 1998 (Hoffman 1998, p. 190). It is
not known if there are an infinite number of Sophie
German primes (Hoffman 1998, p. 190).

Around 1825, Sophie Germain proved that the first
case of FERMAT’S LAST THEOREM is true for such

primes, i.e., if p is a Sophie Germain prime, there
do not exist INTEGERS x , y , and z different from 0 and
not multiples of p such that

xp �yp �zp :

See also CUNNINGHAM CHAIN, FERMAT’S LAST THEO-

REM, MERSENNE NUMBER, TWIN PRIMES

References
Caldwell, C. K. "The Top Twenty: Sophie Germain Primes."

http://www.utm.edu/research/primes/lists/top20/Sophie-
Germain.html.

Dubner, H. "Large Sophie Germain Primes." Math. Comput.
65, 393 �/96, 1996.

Hoffman, P. The Man Who Loved Only Numbers: The Story
of Paul Erdos and the Search for Mathematical Truth.
New York: Hyperion, p. 190, 1998.
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Sorites Paradox
Sorites paradoxes are a class of paradoxical argu-
ments also known as little-by-little arguments. The
name "sorites" derives from the Greek word soros ,
meaning "pile" or "heap." Sorites paradoxes are
exemplified by the problem that a single grain of
wheat does not comprise a heap, nor do two grains of
wheat, three grains of wheat, etc. However, at some
point, the collection of grains becomes large enough to
be called a heap, but there is apparently no definite
point where this occurs.

See also UNEXPECTED HANGING PARADOX
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Sorting
Sorting is the rearrangement of numbers (or other
orderable objects) in a list into their correct lexo-
graphic order. Alphabetization is therefore a form of
sorting. Because of the extreme importance of sorting
in almost all database applications, a great deal of
effort has been expended in the creation and analysis
of efficient sorting algorithms.

The minimum number of comparisons a(n) needed for
a merge sort of n elements for n�1, 2, ... are 0, 1, 3, 5,
7, 10, 13, 16, 19, 22, 26, 30, ... (Sloane’s A001768). An
upper limit b(n) is given by the sequence



a(n) 5b(n) �1 �kn �2k

where

k � log2 nb c�1 ;

where xb c is the FLOOR FUNCTION (Steinhaus 1983,
pp. 55 �/6), or equivalently,

b(n) �
Xn

k �1

log2 kd e;

giving 0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, ... (Sloane’s
A001855).

See also HEAPSORT, ORDERING, QUICKSORT, SELEC-

TION SORT, WEIGHING

References
Knuth, D. E. The Art of Computer Programming, Vol. 3:

Sorting and Searching, 2nd ed. Reading, MA: Addison-
Wesley, 1973.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. "Sorting." Ch. 8 in Numerical Recipes in
FORTRAN: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press,
pp. 320 �/39, 1992.

Skiena, S. "Sorting and Searching." §1.1.6 in Implementing
Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Reading, MA: Addison-Wesley,
pp. 14 �/6, 1990.

Sloane, N. J. A. Sequences A001768/M2408 and A001855/
M2433 in "An On-Line Version of the Encyclopedia of
Integer Sequences." http://www.research.att.com/~njas/
sequences/eisonline.html.

Sort-Then-Add Sequence
A sequence produced by sorting the digits of a
number and adding them to the previous number.
The algorithm terminates when a sorted number is
obtained. For n �1, 2, ..., the algorithm terminates on
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18,
19, 22, 33, ... (Sloane’s A033862). The first few
numbers not known to terminate are 316, 452, 697,
1376, 2743, 5090, ... (Sloane’s A033861). The least
numbers of sort-then-add persistence n �1, 2, ..., are
1, 10, 65, 64, 175, 98, 240, 325, 302, 387, 198, 180,
550, ... (Sloane’s A033863).

See also 196-ALGORITHM, RATS SEQUENCE
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Source

A local source is a node of a DIRECTED GRAPH with no
entering edges (Borowski and Borwein 1991, p. 401;
left figure), and a global source (often simply called a
source) is a node in a DIRECTED GRAPH which reaches
all other nodes (Harary 1994, p. 201; right figure).

See also DIRECTED GRAPH, NETWORK, SINK (DIREC-

TED GRAPH)
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Sous-Double
A 3-MULTIPERFECT NUMBER P3 : Six sous-doubles are
known (120, 672, 523776, 459818240, 1476304896,
and 51001180160; Sloane’s A005820), and these are
believed to comprise all sous-doubles.

See also MULTIPERFECT NUMBER, SOUS-TRIPLE
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Souslin Set
The continuous image of a POLISH SPACE, also called
an ANALYTIC SET.

See also ANALYTIC SET, POLISH SPACE

Souslin’s Hypothesis
Every dense linear order complete set without end-
points having at most v disjoint intervals is order
isomorphic to the CONTINUUM of REAL NUMBERS,
where v is the set of NATURAL NUMBERS.
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Sous-Triple
A 4-MULTIPERFECT NUMBER P4: 36 sous-triples are
known (30240, 32760, 2178540, 23569920, ...; Sloane’s



A027687), and these are believed to comprise all sous-
triples.

See also MULTIPERFECT NUMBER, SOUS-DOUBLE
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Space
The concept of a space is an extremely general and
important mathematical construct. Members of the
space obey certain addition properties. Spaces which
have been investigated and found to be of interest are
usually named after one or more of their investiga-
tors. This practice unfortunately leads to names
which give very little insight into the relevant
properties of a given space.

The everyday type of space familiar to most people is
called EUCLIDEAN SPACE. In Einstein’s theory of
Special Relativity, Euclidean 3-space plus time (the
"fourth dimension") are unified into the so-called
MINKOWSKI SPACE. One of the most general type of
mathematical spaces is the TOPOLOGICAL SPACE.

See also AFFINE SPACE, BAIRE SPACE, BANACH SPACE,
BASE SPACE, BERGMAN SPACE, BESOV SPACE, BOREL

SPACE, CALABI-YAU SPACE, CELLULAR SPACE, CHU

SPACE, DODECAHEDRAL SPACE, DRINFELD’S SYM-

METRIC SPACE, EILENBERG-MAC LANE SPACE, EUCLI-

DEAN SPACE, FIBER SPACE, FINSLER SPACE, FIRST-

COUNTABLE SPACE, FRÉ CHET SPACE, FUNCTION

SPACE, G -SPACE, GREEN SPACE, HAUSDORFF SPACE,
HEISENBERG SPACE, HILBERT SPACE, HYPERBOLIC

SPACE, INNER PRODUCT SPACE, L2-SPACE, LENS

SPACE, LINE SPACE, LINEAR SPACE, LIOUVILLE SPACE,
LOCALLY CONVEX SPACE, LOCALLY FINITE SPACE,
LOOP SPACE, MAPPING SPACE, MEASURE SPACE,
METRIC SPACE, MINKOWSKI SPACE, MÜ NTZ SPACE,
NON-EUCLIDEAN GEOMETRY, NORMED SPACE, PARA-

COMPACT SPACE, PLANAR SPACE, POLISH SPACE,
PROBABILITY SPACE, PROJECTIVE SPACE, QUOTIENT

SPACE, RIEMANN’S MODULI SPACE, RIEMANN SPACE,
SAMPLE SPACE, STANDARD SPACE, STATE SPACE,
STONE SPACE, SYMPLECTIC SPACE, TEICHMÜ LLER

SPACE, TENSOR SPACE, TOPOLOGICAL SPACE, TOPOLO-

GICAL VECTOR SPACE, TOTAL SPACE, VECTOR SPACE

Space Conic
SKEW CONIC

Space Curve
A curve which may pass through any region of 3-D
space, as contrasted to a PLANE CURVE which must lie
in a single PLANE. Von Staudt (1847) classified space
curves geometrically by considering the curve

f : I 0 R
3 

(1)

at t0 �0 and assuming that the parametric functions
fi(t) for i �1, 2, 3 are given by POWER SERIES which
converge for small t . If the curve is contained in no
PLANE for small t , then a coordinate transformation
puts the PARAMETRIC EQUATIONS in the normal form

f1(t) �t1 �k1 �. . . (2)

f2(t) �t2 �k1�k2 �. . . (3)

f3(t) �t3 �k1�k2�k3 �. . .  (4)

for integers k1 ; k2 ; k3 ]0; called the local numerical
invariants.

See also CURVE, CYCLIDE, FUNDAMENTAL THEOREM

OF SPACE CURVES, HELIX, PLANE CURVE, SEIFFERT’S

SPHERICAL SPIRAL, SKEW CONIC, SPACE-FILLING

FUNCTION, SPHERICAL CURVE, SPHERICAL SPIRAL,
SURFACE, VIVIANI’S CURVE
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Space Diagonal
The LINE SEGMENT connecting opposite VERTICES (i.e.,
two VERTICES which do not share a common face) in a
PARALLELEPIPED or other similar solid.

See also DIAGONAL (POLYGON), DIAGONAL (POLYHE-

DRON), EULER BRICK

Space Distances
POINT DISTANCES

Space Division by Planes
The maximal number of regions into which space can
be divided by n planes is

f (n)�1
6 n3�5n�6
� �

(Yaglom and Yaglom 1987, pp. 102�/06), giving the



values 2, 4, 8, 15, 26, 42, ... (Sloane’s A000125) for
n �1, 2, ... planes. This is the same solution as for
CYLINDER CUTTING.

See also CIRCLE DIVISION BY LINES, CUBE DIVISION BY

PLANES, CYLINDER CUTTING, PLANE DIVISION BY

CIRCLES, SPACE DIVISION BY SPHERES
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Space Division by Spheres

The number of regions into which space can be
divided by n mutually intersecting SPHERES is

N �1
3 n n2 �3n �8
� �

;

giving 2, 4, 8, 16, 30, 52, 84, ... (Sloane’s A046127) for
n �1, 2, ....

See also PLANE DIVISION BY CIRCLES, SPACE DIVISION

BY PLANES, SPHERE-SPHERE INTERSECTION
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Space Groups
The space groups in 2-D are called WALLPAPER

GROUPS. In 3-D, the space groups are the symmetry
GROUPS possible in a crystal lattice with the transla-
tion symmetry element. There are 230 space groups
in R3 ; although 11 are MIRROR IMAGES of each other.
They are listed by HERMANN-MAUGUIN SYMBOL in
Cotton (1990).

See also HERMANN-MAUGUIN SYMBOL, LATTICE

GROUPS, POINT GROUPS, WALLPAPER GROUPS
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Space of Closed Paths
LOOP SPACE

Space-Filling Curve
SPACE-FILLING FUNCTION

Space-Filling Function
A "CURVE" (i.e., a continuous map of a 1-D INTERVAL)
into a 2-D area (a PLANE-FILLING FUNCTION) or a 3-D
volume.

See also HILBERT CURVE, PEANO CURVE, PEANO-

GOSPER CURVE, PLANE-FILLING CURVE, SIERPINSKI

CURVE, SPACE-FILLING POLYHEDRON
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Space-Filling Polyhedron

A space-filling polyhedron is a POLYHEDRON which
can be used to generate a TESSELLATION of space.
Although even Aristotle himself proclaimed in his
work On the Heavens that the TETRAHEDRON fills



space, it in fact does not (Hilbert and Cohn-Vossen
1999, p. 45). The CUBE is the only PLATONIC SOLID

possessing this property (Gardner 1984, pp. 183 �/84).
However, a combination of TETRAHEDRA and OCTAHE-

DRA do fill space (Steinhaus 1983, p. 210; Wells 1991,
p. 232). In addition, octahedra, truncated octahedron,
and cubes, combined in the ratio 1:1:3, can also fill
space (Wells 1991, p. 235).

Of the Archimedean solids, the RHOMBIC DODECAHE-

DRON and TRUNCATED OCTAHEDRON are space-fillers
(Steinhaus 1983, pp. 185 �/90; Wells 1991, pp. 233 �/

34). The ELONGATED DODECAHEDRON and hexagonal
PRISM are also space-fillers. These five solids are all
"primary" PARALLELOHEDRA (Coxeter 1973). In 1914,
Föppl discovered a space-filling compound of tetra-
hedra and truncated tetrahedra (Wells 1991, p. 234).

The CUBOCTAHEDRON, TRIANGULAR ORTHOBICUPOLA,
and squashed dodecahedron appearing in SPHERE

PACKING also fill space (Steinhaus 1983, pp. 203 �/

07), as does an arbitrary TRIANGULAR PRISM or any
non-self-intersecting quadrilateral PRISM.

There exists a tetrahedron with bevelled edges which
fills space (Wells 1991, p. 234). There exists one 16-
sided space-filling POLYHEDRON, but it is unknown if
it is the unique 16-sided space-filler. There exists an
18-faced space-filler, as well space-fillers of up to 38
faces, as discovered by P. Engel in 1980 (Wells 1991,
pp. 234 �/35). P. Schmitt discovered a nonconvex aper-
iodic polyhedral space-filler around 1990, and a
convex POLYHEDRON known as the SCHMITT-CONWAY

BIPRISM which fills space only aperiodically was found
by J. H. Conway in 1993 (Eppstein).

See also CUBE, CUBOCTAHEDRON, ELONGATED DODE-

CAHEDRON, KELLER’S CONJECTURE, KELVIN’S CONJEC-

TURE, OCTAHEDRON, PARALLELOHEDRON, PRISM,
RHOMBIC DODECAHEDRON, SCHMITT-CONWAY BIPR-

ISM, SPHERE PACKING, TESSELLATION, TETRAHEDRON,
TILING, TRIANGULAR ORTHOBICUPOLA, TRUNCATED

OCTAHEDRON
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Span (Geometry)

The largest possible distance between two points
drawn from a finite set of points.

See also COMPUTATIONAL GEOMETRY, CONVEX HULL,
JUNG’S THEOREM, POINT DISTANCES

Span (Link)
The span of an unoriented LINK diagram (also called
the SPREAD) is the difference between the highest and
lowest degrees of its BRACKET POLYNOMIAL. The span
is a topological invariant of a knot. If a KNOT K has a
reduced alternating projection of n crossings, then
the span of K is 4n:/

See also LINK



Span (Polynomial)
The difference between the highest and lowest de-
grees of a POLYNOMIAL.

Span (Set)
For a SET S , the span is defined by /max S �min S/,
where max is the MAXIMUM and min is the MINIMUM.
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Span (Vector Space)
The span of SUBSPACE generated by VECTORS v1 and
v2 �V is

Span v1 ; v2ð Þ� rv1 �sv2 : r; s �Rf g

A set of vectors m � v1 ; . . . ; vnf g can be tested to see
if they span n -D space using the following Mathema-
tica function.

SpanningVectorsQ[m_List?MatrixQ] : �
(NullSpace[m] ��  {})

See also BASIS (VECTOR SPACE), LINEAR COMBINA-

TION, NULLSPACE, VECTOR SPACE

Spanning Tree

A spanning tree of a GRAPH is a subset of n �1 edges
which form a TREE. The shortest-path spanning tree
is the tree have the smallest possible total distance,
where the distance used is MANHATTAN DISTANCE

(Skiena 1990, p. 227).
The number of nonidentical spanning trees of a
GRAPH G is equal to any COFACTOR of the DEGREE

MATRIX of G minus the ADJACENCY MATRIX of G
(Skiena 1990, p. 235). This result is known as the
MATRIX TREE THEOREM. A TREE contains a unique
spanning tree, a CYCLE GRAPH Cn containing n
spanning trees, and a COMPLETE GRAPH Kn contains
nn�2 spanning trees (Skiena 1990, p. 236). A count of
the spanning trees of a graph can be found using the

command NumberOfSpanningTrees[g ] in the Math-
ematica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘).

See also MATRIX TREE THEOREM, MINIMUM SPANNING

TREE, TREE
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Sparse Matrix
A MATRIX which has only a small number of NONZERO

elements.
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Spearman Rank Correlation Coefficient
A nonparametric (distribution-free) rank statistic
proposed by Spearman in 1904 as a measure of the
strength of the associations between two variables
(Lehmann and D’Abrera 1998). The Spearman rank
correlation coefficient can be used to give an R -

ESTIMATE.

The Spearman rank correlation coefficient is defined
by

r?�1�6
X d2

N N2 � 1ð Þ
; (1)

where d is the difference in RANK of corresponding
variables, and is an approximation to the exact
CORRELATION COEFFICIENT

r�

P
xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2
P

y2
p (2)

computed from the original data. Because it uses
ranks, the Spearman rank correlation coefficient is
much easier to compute.

The VARIANCE, KURTOSIS, and higher order MOMENTS

are

s2�
1

N � 1
(3)



g2 ��
114

25N 
�

6

5N2 
�. . . (4)

g3 � g5 �. . .�0: (5)

Student was the first to obtain the VARIANCE.

See also CORRELATION COEFFICIENT, LEAST SQUARES

FITTING, LINEAR REGRESSION, RANK (STATISTICS)
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Special Curve
PLANE CURVE, SPACE CURVE, SPHERICAL CURVE

Special Function
A function (usually named after an early investigator
of its properties) having a particular use in mathe-
matical physics or some other branch of mathematics.
Prominent examples include the GAMMA FUNCTION,
HYPERGEOMETRIC FUNCTION, WHITTAKER FUNCTION,
and MEIJER’S G -FUNCTION.

See also ELEMENTARY FUNCTION, FIRST KIND, FUNC-

TION, SECOND KIND, THIRD KIND
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Special Jordan Algebra
A JORDAN ALGEBRA which is isomorphic to a sub-
algebra.

See also EXCEPTIONAL JORDAN ALGEBRA, JORDAN

ALGEBRA

References
Schafer, R. D. An Introduction to Nonassociative Algebras.

New York: Dover, p. 4, 1996.

Special Lie Algebra

See also LIE ALGEBRA, SPECIAL LINEAR LIE ALGEBRA

Special Linear Group
The special linear group SLn(q) is the MATRIX GROUP

corresponding to the set of n �n COMPLEX MATRICES

having DETERMINANT �1: It is a SUBGROUP of the
GENERAL LINEAR GROUP GLn(q) and is also a LIE

GROUP.

See also GENERAL LINEAR GROUP, SPECIAL ORTHO-

GONAL GROUP, SPECIAL UNITARY GROUP

References
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Special Linear Lie Algebra

Denoted sln:/

See also LIE ALGEBRA, SPECIAL LIE ALGEBRA

Special Matrix
An INTEGER MATRIX whose entries satisfy

aij�
0 if j > i�1
�1 if j�i�1

0 or 1 if j51:

8<
:



There are 2n�1 special MINIMAL MATRICES of size
n �n :/
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Special Orthogonal Group
The special orthogonal group SOn(q) is the SUBGROUP

of the elements of GENERAL ORTHOGONAL GROUP

GOn(q) with DETERMINANT 1. SO3 (often written
SO(3) is the ROTATION GROUP for 3-dimensional space.

See also BIPOLYHEDRAL GROUP, GENERAL ORTHOGO-

NAL GROUP, ICOSAHEDRAL GROUP, ROTATION GROUP,
SPECIAL LINEAR GROUP, SPECIAL UNITARY GROUP
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Special Orthogonal Matrix
A SQUARE MATRIX A is a special orthogonal matrix if

AAT �I : (1)

where I is the IDENTITY MATRIX, and the DETERMINANT

satisfies

det A �1: (2)

The first condition means that A is an ORTHOGONAL

MATRIX, and the second restricts the determinant to
�1 (while a general ORTHOGONAL MATRIX may have
determinant �1 or�1): For example,

1ffiffiffi
2

p 1 �1
1 1

� �
(3)

is a special orthogonal matrix since

1ffiffi
2

p � 1ffiffi
2

p

1ffiffi
2

p 1ffiffi
2

p

" #
1ffiffi
2

p 1ffiffi
2

p

�1ffiffi
2

p 1ffiffi
2

p

" #
�

1 0
0 1

� �
(4)

and its DETERMINANT is 1 =2 �(�1=2) �1: A matrix m
can be tested to see if it is a special orthogonal matrix
using the Mathematica function

SpecialOrthogonalQ[m_List?MatrixQ] : �
(Transpose[m].m ��  IdentityMatrix@Length@m

&& Det[m] ��  1)

The special orthogonal matrices are CLOSED under
multiplication and the inverse operation, and there-
fore form a MATRIX GROUP called the SPECIAL ORTHO-

GONAL GROUP SO(n) :/

See also INNER PRODUCT, ORTHOGONAL GROUP,
ORTHOGONAL MATRIX, ORTHOGONAL TRANSFORMA-

TION, SKEW SYMMETRIC MATRIX, SPECIAL LINEAR

MATRIX, SPECIAL ORTHOGONAL GROUP, SPIN GROUP,
UNITARY MATRIX

Special Point
A POINT which does not lie on at least one ORDINARY

LINE.

See also ORDINARY POINT
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Special Series Theorem
If the difference between the order and the dimension
of a series is less than the GENUS (CURVE), then the
series is special.

References
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New

York: Dover, p. 253, 1959.

Special Unitary Group
The special unitary group SUn(q) is the set of n�n
UNITARY MATRICES with DETERMINANT �1 (having
n2�1 independent parameters). SU(2) is HOMEO-

MORPHIC with the ORTHOGONAL GROUP O�
3 (2): It is

also called the UNITARY UNIMODULAR GROUP and is a
LIE GROUP.

Special unitary groups can be represented by ma-
trices

U(a; b)�
a b
�b̄ ā

� �
: (1)

where āa�b̄b�1 and a, b are the CAYLEY-KLEIN

PARAMETERS. The special unitary group may also be
represented by matrices

U(j; h; z)� eij cos h eiz sin h

�e�iz sin h e�ij cos h

� �
: (2)

or the matrices

Ux
1
2 f
� �

�
cos 1

2 f
� �

i sin 1
2 f
� �

i sin 1
2 f
� �

cos 1
2 f
� �

2
4

3
5 (3)

Uy
1
2 b
� �

�
cos 1

2 b
� �

sin 1
2 b
� �

�sin 1
2 b
� �

cos 1
2 b
� �

2
4

3
5 (4)

Uz(j)� eij 0
0 e�ij

� �
(5)

The order 2j�1 representation is



U (j)
p ; q( a; b; g)

�
X

m

(�1)m�q �p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(j � p)!(j � p)!(j � q)!(j � q)!

p
(j � p � m)!(j � q � m)!(m � p � q)!m!

�eiqa cos2j�q �p�2m 1
2 b
� �

sinp �2m�q 1
2 b
� �

eipg (6)

The summation is terminated by putting 1 =(�N)! �0:
The CHARACTER is given by

X (j)( a) �
1 �2 cos a �. . .�2 cos(ja)

2 cos 1
2 a
� �

�cos 3
2 a
� �

�. . .�cos(j a)
h i(

�

sin j � 1
2

� �
a

h i
sin 1

2 a
� � for j �0 ; 1 ; 2; . . .

sin j � 1
2

� �
a

h i
sin 1

2 a
� � for j �1

2 ;
3
2; . . . :

8>>>>>><
>>>>>>:

(7)

See also ORTHOGONAL GROUP, SPECIAL LINEAR

GROUP, SPECIAL ORTHOGONAL GROUP
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Special Unitary Matrix
A SQUARE MATRIX U is a special unitary matrix if

UU��I: (1)

where I is the IDENTITY MATRIX and U � is the ADJOINT

MATRIX, and the DETERMINANT is

det U �1: (2)

The first condition means that U is a UNITARY MATRIX,
and the second condition provides a restriction
beyond a general UNITARY MATRIX, which may have
determinant eiu for u any real number. For example,

1ffiffiffi
2

p i i
i �i

� �
(3)

is a special unitary matrix. A matrix m can be tested
to see if it is a special unitary matrix using the
Mathematica function

SpecialUnitaryQ[m_List?MatrixQ] : �
(Conjugate@Transpose@m.m ��  IdentityMa-

trix@Length@m

&& Det[m] ��  1)

The special unitary matrices are CLOSED under
multiplication and the inverse operation, and there-
fore form a MATRIX GROUP called the SPECIAL UNITARY

GROUP SU(n) :/

See also HERMITIAN INNER PRODUCT, SKEW HERMI-

TIAN MATRIX, SPECIAL LINEAR MATRIX, SPECIAL

UNITARY GROUP, SPIN GROUP, UNITARY GROUP UNI-

TARY MATRIX

Species
A species of structures is a rule F which

1. Produces, for each finite set U , a finite set F[U];/
2. Produces, for each bijection s : U 0 V ; a func-
tion

F[ s] : F[U] 0 F[V] :

The functions F[ s] should further satisfy the follow-
ing functorial properties:

1. For all bijections s : U 0 V and t : V 0 W ;

F[t( s] �F[ t](F[s]:

2. For the IDENTITY MAP IdU : U 0 U ;

F [Id]
U

� Id
F[U]

:

An element s � F[U] is called an F -structure on U (or
a structure of species F on U ). The function F[ s] is
called the transport of F -structures along s:/

References
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Species and Tree-Like Structures. Cambridge, England:
Cambridge University Press, p. 5, 1998.

Specificity
The probability that a STATISTICAL TEST will be
negative for a negative statistic.

See also SENSITIVITY, STATISTICAL TEST, TYPE I
ERROR, TYPE II ERROR

Spectral Graph Partitioning
A GRAPHICAL PARTITIONING based on the eigenvalues
and eigenvectors of the LAPLACIAN MATRIX of a graph.

See also GRAPHICAL PARTITION, LAPLACIAN MATRIX

References
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Amer. Math. Soc., 1997.
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~demmel/cs267/lecture20/lecture20.html.



Spectral Norm
The NATURAL NORM induced by the L2-NORM. Let A�
be the ADJOINT of the SQUARE MATRIX A; so that
(aij) ��(āji) ; then

Ak k2�(maximum eigenvalue of A�A)1=2

� max
xk k2 "0

Axk k2

xk k2

:

This MATRIX NORM is implemented as Matrix-
Norm[m , 2] in the Mathematica add-on package
LinearAlgebra‘MatrixMultiplication‘ (which
can be loaded with the command
BBLinearAlgebra‘).

See also L2-NORM, MATRIX NORM, MAXIMUM ABSO-

LUTE COLUMN SUM NORM, MAXIMUM ABSOLUTE ROW

SUM NORM

References
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Spectral Power Density

Py( n) � lim
T 0�

2

T g
T =2

�T =2

[y(t) � ̄y]e �2 pint dt

�����
�����
2

:

so

g
�

0

Py( n) dn � lim
T 0�

1

T g
T =2

�T =2

[y(t) � ̄y]2 dt

� (y � ̄y)2
D E

� s2
y :

See also POWER SPECTRUM

Spectral Radius
Let A be an n �n MATRIX with COMPLEX or REAL

elements with EIGENVALUES l1 ; ..., ln : Then the
spectral radius r(A) of A is

r(A) �max
15i5n

½ li½:

References
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Series, and Products, 6th ed. San Diego, CA: Academic
Press, pp. 1115 �/116, 2000.

Spectral Rigidity
The mean square deviation of the best local fit
straight line to a staircase cumulative spectral
density over a normalized energy scale.

References
Ott, E. Chaos in Dynamical Systems. New York: Cambridge

University Press, p. 341, 1993.

Spectral Theorem
Let H be a HILBERT SPACE, B(H) the set of BOUNDED

linear operators from H to itself, T an OPERATOR on
H , and s(T) the SPECTRUM of T . Then if T � B(H) and
T is normal, there exists a unique resolution of the
identity E on the BOREL SUBSETS of s(T) which
satisfies

T �g
s(T)

l dE(l) :

Furthermore, every projection E( v) COMMUTES with
every S � B(H) that COMMUTES with T .

See also SPECTRUM (OPERATOR)

References
Rudin, W. Theorem 12.23 in Functional Analysis, 2nd ed.

New York: McGraw-Hill, 1991.

Spectrum

The word "spectrum" confusingly has a number of
unrelated meanings in various branches of mathe-
matics.

See also GRAPH SPECTRUM, SPECTRUM (MATRIX),
SPECTRUM (OPERATOR), SPECTRUM (RING), SPECTRUM

SEQUENCE

Spectrum (Graph)
GRAPH SPECTRUM

Spectrum (Matrix)
The EIGENVALUES of a MATRIX A are called its
spectrum, and are denoted l(A): If l(A) �
fl1 ; . . . ; ln g; then the DETERMINANT of A is given by

det(A)�l1l2 . . . ln:

See also CHARACTERISTIC POLYNOMIAL, EIGENVALUE

References
Golub, G. H. and van Loan, C. F. Matrix Computations, 3rd

ed. Baltimore, MD: Johns Hopkins University Press,
p. 310, 1996.

Spectrum (Operator)
Let T be an OPERATOR on a HILBERT SPACE. The
spectrum s(T) of T is the set of l such that (T�lI) is
not invertible on all of the HILBERT SPACE, where the
l/s are COMPLEX NUMBERS and I is the IDENTITY

OPERATOR. The definition can also be stated in terms
of the resolvent of an operator



r(T) �fl : (T � lI) is invertible g;

and then the spectrum is defined to be the comple-
ment of r(T) in the COMPLEX PLANE. It is easy to
demonstrate that r(T) is an OPEN SET, which shows
that the spectrum is closed (in fact, it is even
compact).

If V is a domain in Rd (i.e., a Lebesgue measurable
subset of Rd with finite nonzero LEBESGUE MEASURE),
the Iosevich et al. (1999) say a set LƒRd is a
spectrum of V is e2 pix lf gl �L is an ORTHOGONAL BASIS

of L2( V) :/

See also FUGLEDE’S CONJECTURE, HILBERT SPACE,
ORTHOGONAL BASIS, SPECTRAL THEOREM

References
Iosevich, A.; Katz, N. H.; and Tao, T. Convex Bodies with a

Point of Curvature Do Not Have Fourier Bases. 23 Nov
1999. http://xxx.lanl.gov/abs/math.CA/9911167/.

Rudin, W. Functional Analysis, 2nd ed. New York: McGraw-
Hill, 1991.

Spectrum (Ring)
The spectrum of a RING is the set of proper PRIME

IDEALS,

Spec(R) �fp : p is a prime ideal in R g: (1)

The classical example is the spectrum of POLYNOMIAL

RINGS. For instance,

Spec(C[x]) � x �ah i : a �Cf g@ 0h if g: (2)

and

Spec(C[x ; y]) � x �a; y �bh i; (a; b) �C2� �
@ f (x; y)h i : f is irreducablef g@ 0h if g: (3)

The points are, in classical algebraic geometry,
ALGEBRAIC VARIETIES. Note that x �a ; y �bh i are
MAXIMAL IDEALS, hence also prime.

The spectrum of a ring has a TOPOLOGY called the
ZARISKI TOPOLOGY. The closed sets are of the form

V(S) � ph i : S ƒ ph if g: (4)

For example,

Spec(Z) � ph i : p is primef g@ 0h if g: (5)

Every PRIME IDEAL is closed except for 0h i; whose
closure is V(0) �Spec(Z) :/

See also AFFINE SCHEME, CATEGORY THEORY, COM-

MUTATIVE ALGEBRA, CONIC SECTION, IDEAL, PRIME

IDEAL, PROJECTIVE VARIETY, SCHEME, VARIETY, ZAR-

ISKI TOPOLOGY

References
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Spectrum Sequence
A spectrum sequence is a SEQUENCE formed by
successive multiples of a REAL NUMBER a rounded
down to the nearest INTEGER sn � nab c: If a is
IRRATIONAL, the spectrum is called a BEATTY SE-

QUENCE.

See also BEATTY SEQUENCE, LAGRANGE SPECTRUM,
MARKOV SPECTRUM

Speed
The SCALAR ½v½�ds =dt; where s is the ARC LENGTH,
equal to the magnitude of the VELOCITY v.

See also ANGULAR VELOCITY, VELOCITY

Spencer’s 15-Point Moving Average
A MOVING AVERAGE using 15 points having weights
�3, �6, �5, 3, 21, 46, 67, 74, 67, 46, 21, 3, �5, �6,
and �3. It is sometimes used by actuaries.

See also MOVING AVERAGE, SPENCER’S FORMULA
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Spencer’s Formula
Define the notation

[n]f0 �f�(n�1)=2 �. . .�f0 �. . .�f(n �1)=2 (1)

and let d be the central difference, so

d2f0 �f1 �2f0 �f�1 : (2)

Spencer’s 21-term moving average formula is then
given by

f ?0 �
[5][5][7]

5 � 5 � 7 
(1 �4d2)f0 ;

which, written explicitly, gives

f ?0 �
1

350 60f0 �57(f �1 �f1) �47(f �2 �f2) �33(f �3 �f3)½

�18(f�4 �f4) �6(f �5 �f5) �2(f �6 �f6) �5(f�7 �f7)

�5 f�8�f8ð Þ�3 f�9�f9ð Þ� f�10�f10ð Þ (3)

See also MOVING AVERAGE, SMOOTHING
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Spencer, J. J. I. A. 38, 339, 1904.
Spencer, J. J. I. A. 41, 361, 1907.
Whittaker, E. T. and Robinson, G. "Spencer’s Formula." §144

in The Calculus of Observations: A Treatise on Numerical
Mathematics, 4th ed. New York: Dover, pp. 290�/94, 1967.



Spence’s Function

F(x) ��Li2(�x) �g
x

0

ln(1 � t)

t
dt:

where Li2(x) is the DILOGARITHM.

See also DILOGARITHM, SPENCE’S INTEGRAL

References
Berestetskii, V. B.; Lifschitz, E. M.; and Ditaevskii, L. P.

Quantum Electrodynamics, 2nd ed. Oxford, England:
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Spence’s Integral

F(x) �Li2(1 �x) �g
0

1 �x

ln(1 � t)

t
dt:

where Li2(x) is the DILOGARITHM.

See also DILOGARITHM, SPENCE’S FUNCTION

Sperner System
ANTICHAIN

Sperner’s Theorem
The MAXIMUM CARDINALITY of a collection of SUBSETS

of a t -element SET T , none of which contains another,
is the BINOMIAL COEFFICIENT

t
�t =2�

� �
; where xb c is the

FLOOR FUNCTION.

See also CARDINALITY

Sphenocorona

JOHNSON SOLID J86:/
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Sphenoid
DISPHENOID



Sphenomegacorona

JOHNSON SOLID J88:/
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Sphere

A sphere is defined as the set of all points in R3 which
are a distance r (the "RADIUS") from a given point (the
"CENTER"). Twice the RADIUS is called the DIAMETER,
and pairs of points on opposite sides of a DIAMETER

are called ANTIPODES. The term "sphere" technically
refers to the outer surface of a "BUBBLE," which is
denoted S2: However, in common usage, the word
sphere is also used to mean the UNION of a sphere and
its INTERIOR (a "solid sphere"), where the INTERIOR is
called a BALL.

The SURFACE AREA of the sphere and VOLUME of the
BALL of RADIUS R are given by

S�4pR2 (1)

V�4
3 pR3 (2)

(Beyer 1987, p. 130). In On the Sphere and Cylinder
(ca. 225 BC ), Archimedes became the first to derive
these equations (although he expressed p in terms of
the sphere’s circular CROSS SECTION). The fact that

Vsphere

Vcircumscribed cylinder � Vsphere

�2 (3)

was also known to Archimedes (Steinhaus 1983,
p. 223; Wells 1991, pp. 236�/37).

Any CROSS SECTION through a sphere is a CIRCLE (or,
in the degenerate case where the slicing PLANE is
tangent to the sphere, a point). The size of the CIRCLE

is maximized when the PLANE defining the CROSS

SECTION passes through a DIAMETER.

The equation of a sphere of RADIUS r is given in
CARTESIAN COORDINATES by

x2�y2�z2�r2: (4)

which is a special case of the ELLIPSOID

x2

a2
�

y2

b2
�

z2

c2
�1 (5)

and SPHEROID

x2 � y2

a2
�

z2

c2
�1: (6)

A sphere may also be specified in SPHERICAL COORDI-

NATES by

x�r cos u sin f (7)

y�r sin u sin f (8)

z�r cos f: (9)

where u is an azimuthal coordinate running from 0 to
2p (LONGITUDE), f is a polar coordinate running from
0 to p (COLATITUDE), and r is the RADIUS. Note that
there are several other notations sometimes used in
which the symbols for u and f are interchanged or
where r is used instead of r: If r is allowed to run
from 0 to a given RADIUS r , then a solid BALL is
obtained.

The volume of the sphere, V�4=3pR3; can be found
in Cartesian, cylindrical, and spherical coordinates,
respectively, using the integrals

V�g
R

�R g
ffiffiffiffiffiffiffiffiffiffi
R2�x2

p

�
ffiffiffiffiffiffiffiffiffiffi
R2�x2

p g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2�y2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2�y2

p dz dy dx (10)

�g
2p

0 g
R

0 g
ffiffiffiffiffiffiffiffiffiffi
R2�x2

p

�
ffiffiffiffiffiffiffiffiffiffi
R2�x2

p r dz dr du (11)

�g
2p

0 g
p

0 g
R

0

r2 sin f dr df du: (12)

Converting to "standard" parametric variables a�r;
u�u; and v�f gives the coefficients of the FIRST

FUNDAMENTAL FORM

E�a2 sin2 v (13)



F �0 (14)

G �a2 : (15)

SECOND FUNDAMENTAL FORM coefficients

e �a sin2 v (16)

f �0 (17)

g �a: (18)

AREA ELEMENT

dA �a sin v duffldv: (19)

GAUSSIAN CURVATURE

K �
1

a2 
: (20)

and MEAN CURVATURE

H �
1

a 
: (21)

A sphere may also be represented parametrically by
letting u �r cos f ; so

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �u2

p
cos u (22)

y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �u2

p
sin u (23)

z �u ; (24)

where u runs from 0 to 2p and u runs from �r to r .

Given two points on a sphere, the shortest path on the
surface of the sphere which connects them (the
SPHERE GEODESIC) is an ARC of a CIRCLE known as a
GREAT CIRCLE. The equation of the sphere with points
fx1 ; y1 ; z1 g and fx2 ; y2 ; z2 g lying on a DIAMETER is
given by

(x �x1)(x �x2) �(y �y1)(y �y2) �(z �z1)(z �z2)

�0: (25)

Four points are sufficient to uniquely define a sphere.
Given the points fxi ; yi ; zi g with i �1, 2, 3, and 4, the
sphere containing them is given by the beautiful
DETERMINANT equation

x2 �y2 �z2 x y z 1
x2

1 �y2
1 �z2

1 x1 y1 z1 1
x2

2 �y2
2 �z2

2 x2 y2 z2 1
x2

3 �y2
3 �z2

3 x3 y3 z3 1
x2

4 �y2
4 �z2

4 x4 y4 z4 1

����������

����������
�0 (26)

(Beyer 1987, p. 210).

The generalization of a sphere in n dimensions is
called a HYPERSPHERE. An n -D HYPERSPHERE can be
specified by the equation

x2
1�x2

2�. . .�x2
n�r2: (27)

The distribution of ANGLES for random rotation of a

sphere is

P(u)�
2

p
sin2 1

2 u
� �

; (28)

giving a MEAN of p=2�2=p:/

See also BALL, BING’S THEOREM, BOWL OF INTEGERS,
BUBBLE, CIRCLE, CONE-SPHERE INTERSECTION, CY-

LINDER-SPHERE INTERSECTION, DANDELIN SPHERES,
DIAMETER, ELLIPSOID, EXOTIC SPHERE, FEJES TÓ TH’S

PROBLEM, GEODESIC DOME, GLOME, HYPERSPHERE,
LIEBMANN’S THEOREM, LIOUVILLE’S SPHERE-PRESER-

VING THEOREM, MIKUSINSKI’S PROBLEM, NOISE

SPHERE, OBLATE SPHEROID, OSCULATING SPHERE,
PARALLELIZABLE, PROLATE SPHEROID, RADIUS, SPACE

DIVISION BY SPHERES, SPHERE PACKING, SPHERE-

SPHERE INTERSECTION, TANGENT SPHERES, TENNIS

BALL THEOREM
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Sphere Embedding
A 4-sphere has POSITIVE CURVATURE, with

R2�x2�y2�z2�w2 (1)

2x
dx

dw
�2y

dy

dw
�2z

dz

dw
�2w�0: (2)

Since

r�xx̂�yŷ�zẑ: (3)

dw��
x dx � y dy � z dz

w
��

r � drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p : (4)



To stay on the surface of the sphere,

ds2 �dx2 �dy2 �dz2 �dw2

�dx2 �dy2 �dz2 �
r2 dr2

R2 � r2

�dr2 �r2 d V2 �
dr2

R2

r2
� 1

�dr2 1 �
1

R2

r2 
� 1

0
BBB@

1
CCCA�r2 dV2

�dr2

R2

r2

R2

r2 
� 1

0
BBB@

1
CCCA�r2 dV2

�
dr2

1 �
r2

R2

�r2 dV2 : (5)

With the addition of the so-called expansion para-
meter, this is the Robertson-Walker line element.

Sphere Eversion
Smale (1958) proved that it is mathematically possi-
ble to turn a SPHERE inside-out without introducing a
sharp crease at any point. This means there is a
regular homotopy from the standard embedding of
the 2-SPHERE in EUCLIDEAN 3-space to the mirror-
reflection embedding such that at every stage in the
homotopy, the sphere is being IMMERSED in EUCLI-

DEAN SPACE. This result is so counterintuitive and the
proof so technical that the result remained contro-
versial for a number of years.

In 1961, Arnold Shapiro devised an explicit eversion
but did not publicize it. Phillips (1966) heard of the
result and, in trying to reproduce it, actually devised
an independent method of his own. Yet another
eversion was devised by Morin, which became the
basis for the movie by Max (1977). Morin’s eversion
also produced explicit algebraic equations describing
the process. The original method of Shapiro was
subsequently published by Francis and Morin (1979).

See also EVERSION, SPHERE
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Sphere Geodesic
GREAT CIRCLE

Sphere Inversion
INVERSION in 3 dimensions with respect to an INVER-

SION SPHERE.

See also INVERSION, INVERSION SPHERE

Sphere Line Picking
Pick two points at random on a unit sphere. The first
one can be placed at the north pole, i.e., assigned the
coordinate (0, 0, 1), without loss of generality. The
second point is then chosen at random using SPHERE

POINT PICKING, and so can be assigned coordinates

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
cos u (1)

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
sin u (2)

z�u (3)

with u � [�1; 1] and u � [0; 2p): The distance l be-
tween first and second points is then

l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2�(z�1)2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2u

p
; (4)

and solving for u gives

u�1
2 2�l2
� �

: (5)

Now the probability function Pl for distance is then
given by

Pl�Pu

@u

@l

�����
������1

2 l dl (6)

(Solomon 1978, p. 163), since Pu�1=2 and du=dl�
�l: Here, l � [0; 2]:/



Therefore, somewhat surprisingly, large distances
are the most common, contrary to most people’s
intuition. A plot of 15 random lines is shown above.
The RAW MOMENTS are

m?n � lnh i�g
2

0

lnPl dl �
2n�1

2 � n 
: (7)

giving the first few as

m?1 �
4
3 (8)

m?2 �2 (9)

m?3 �
16
5 (10)

m?4 �
16
3 : (11)

so the CENTRAL MOMENTS are

m �4
3 (12)

m2 � s2 �2
9 (13)

m3 �� 8
135 (14)

m4 �
16
135: (15)

so the VARIANCE, SKEWNESS and KURTOSIS are

s2�2
9 (16)

g1�
4
5

ffiffiffi
2

p
(17)

g2��5
3 (18)

(Solomon 1978, p. 163).

See also BALL LINE PICKING, CIRCLE LINE PICKING,
POINT-POINT DISTANCE–1-D, SPHERE POINT PICKING,
SPHERE TETRAHEDRON PICKING
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Sphere Packing

In 2-D, there are two periodic CIRCLE PACKINGS for
identical circles: square lattice and hexagonal lattice.
Fejes Tóth (1940) proved that the hexagonal lattice is
the densest of all possible plane packings (Conway
and Sloane 1993, pp. 8�/).
In 3-D, there are three periodic packings for identical
spheres: cubic lattice, face-centered cubic lattice, and
hexagonal lattice. It was hypothesized by Kepler in
1611 that close packing (cubic or hexagonal) is the
densest possible (has the greatest PACKING DENSITY h;
which is the fraction of a VOLUME filled by identical
packed SPHERES), and this assertion is known as the
KEPLER CONJECTURE. The problem of finding the
densest packing of spheres (not necessarily periodic)
is therefore known as the KEPLER PROBLEM. The
KEPLER CONJECTURE is intuitively obvious, but the
proof remained elusive until it was accomplished in a
series of papers by Hales culminating in 1998. Gauss
(1831) did prove that the face-centered cubic is the
densest lattice packing in 3-D (Conway and Sloane
1993, p. 9). This result has since been extended to
HYPERSPHERE PACKING.

The maximum number of equivalent spheres (or n -D
hyperspheres) which can touch an equivalent sphere
(hypersphere) without intersections is called the n -D
KISSING NUMBER.

In 3-D, face-centered cubic close packing and hex-
agonal close packing (which is distinct from hexago-
nal lattice packing), both give

hCCP�hHCP�
p

3
ffiffiffi
2

p :74:048% (1)

(Steinhaus 1983, p. 202; Wells 1986, p. 29; Wells
1991, p. 237). For packings in 3-D, C. A. Rogers
(1958) showed that the maximum possible PACKING

DENSITY hmax satisfies

hmaxB
ffiffiffiffiffiffi
18

p
cos�1 1

3�
1
3 p

� �
:77:96355700% (2)

(Le Lionnais 1983). This was subsequently improved
to 77.844% (Lindsey 1986), then 77.836% (Muder
1988). However, Rogers (1958) remarks that "many
mathematicians believe, and all physicists know" that
the actual answer is 74.048% (Conway and Sloane
1993, p. 3).



Hilbert and Cohn-Vossen (1999, pp. 48�/0) consider a
tetrahedral packing in which each sphere touched
four neighbors and the density is p

ffiffiffi
3

p
=16:0:3401:/

The rigid packing with lowest density known has h:

0:0555 (Gardner 1966), significantly lower than that
reported by Hilbert and Cohn-Vossen (1999, p. 51). To
be rigid, each SPHERE must touch at least four others,
and the four contact points cannot be in a single
HEMISPHERE or all on one equator.

RANDOM CLOSE PACKING of spheres in 3-D gives
packing densities in the range 0.06 to 0.65 (Jaeger
and Nagel 1992, Torquato et al. 2000). The PACKING

DENSITIES for several packing types are summarized
in the following table.

Packing /h/

(exact)
/h/ reference

loose packing – 0.0555 Gardner (1966)

tetrahedral
lattice

/
p
ffiffi
3

p

16 / 0.3401 Hilbert and
Cohn-Vossen
(1999, pp. 48�/0)

cubic lattice /
p
6/ 0.5236

hexagonal
lattice

/
p

3
ffiffi
3

p / 0.6046

random – 0.6400 Jaeger and Nagel
1992

face-centered
cubic lattice

/
p

3
ffiffi
2

p / 0.7405 Steinhaus 1983,
p. 202; Wells
1986, p. 29;
Wells 1991,
p. 237

square lattice
(2-D)

/
p
4/ 0.7854

hexagonal
lattice (2-D)

/
p

2
ffiffi
3

p / 0.9069

Arranging layers of close-packed spheres such that
the spheres of every third layer overlying one another
gives cubic close packing. To see where the name

comes from, consider packing six SPHERES together in
the shape of an EQUILATERAL TRIANGLE and place
another SPHERE on top to create a TRIANGULAR

PYRAMID. Now create another such grouping of seven
SPHERES and place the two PYRAMIDS together facing
in opposite directions. A CUBE emerges (Steinhaus
1983, pp. 203�/04). Connecting the centers of these 14
spheres gives a STELLA OCTANGULA.

Consider the CUBE defined by 14 spheres in cubic
close packing, as illustrated above. This "unit cell"
contains eight 1=8/-spheres (one at each VERTEX) and
six HEMISPHERES. The total VOLUME of SPHERES in the
unit cell is therefore

Vspheres in unit cell� 8 � 1
8�6 � 1

2

� � 4p

3
r3

�4 �
4p

3
r3�16

3 pr3: (3)

The diagonal of the face is 4r; so each side is 2
ffiffiffi
2

p
r:

The VOLUME of the unit cell is therefore

Vunit cell� 2
ffiffiffi
2

p
r

� �3

�16
ffiffiffi
2

p
r3: (4)

and the PACKING DENSITY is

hCCP�
16
3 pr2

16
ffiffiffi
2

p
r3
�

p

3
ffiffiffi
2

p (5)

(Conway and Sloane 1993, p. 2).

In cubic close packing, each sphere is surrounded by
12 other spheres. Taking a collection of 13 such
spheres gives the cluster illustrated above. Connect-
ing the centers of the external 12 spheres gives a
CUBOCTAHEDRON (Steinhaus 1983, pp. 203�/05; Wells
1991, p. 237).



In hexagonal close packing, layers of spheres are
packed so that spheres in alternating layers overlie
one another. As in cubic close packing, each sphere is
surrounded by 12 other spheres. Taking a collection
of 13 such spheres gives the cluster illustrated above.
Connecting the centers of the external 12 spheres
gives JOHNSON SOLID J27 known as the TRIANGULAR

ORTHOBICUPOLA (Steinhaus 1983, pp. 203 �/05; Wells
1991, p. 237).

Hexagonal close packing must give the same packing
density as cubic close packing, since sliding one sheet
of SPHERES cannot affect the volume they occupy. To
verify this, construct a 3-D diagram containing a
hexagonal unit cell with three layers (Steinhaus
1983, pp. 203 �/04). Both the top and the bottom
contain six 1=6/-SPHERES and one HEMISPHERE. The
total number of spheres in these two rows is therefore

2 6 � 1
6 �1 � 1

2

� �
�3: (6)

The VOLUME of SPHERES in the middle row cannot be
simply computed using geometry. However, symme-
try requires that the piece of the SPHERE which is cut
off is exactly balanced by an extra piece on the other
side. There are therefore three SPHERES in the middle
layer, for a total of six, and a total VOLUME

Vspheres in unit cell �6 �
4p

3
r3(3 �3) �8pr3 : (7)

The base of the HEXAGON is made up of 6 EQUILAT-

ERAL TRIANGLES with side lengths 2r : The unit cell
base AREA is therefore

Aunit cell �6 1
2(2r)

ffiffiffi
3

p
r

� �h i
�6

ffiffiffi
3

p
r2 : (8)

The height is the same as that of two TETRAHEDRA

length 2r on a side, so

hunit cell �2 2r

ffiffiffi
2

3

s !
: (9)

giving

hHCP �
8 pr3

6
ffiffiffi
3

p
r2

� �
4r

ffiffi
2
3

q# $� p

3
ffiffiffi
2

p (10)

(Conway and Sloane 1993, pp. 7 and 9).

If we had actually wanted to compute the VOLUME of
SPHERE inside and outside the HEXAGONAL PRISM, we
could use the SPHERICAL CAP equation to obtain

Vƒ�1
3 ph2(3r �h) �

1

3
pr3 1

3
3 �

1ffiffiffi
3

p
 !

�
1

9
pr3 3 �

ffiffiffi
3

p

3

 !
� 1

27 pr3 9 �
ffiffiffi
3

p� �
(11)

V‡� pr3 4
3 �

1
27(9 �

ffiffiffi
3

p
)

h i
� 1

27 pr3 36 �9 �
ffiffiffi
3

p� �

� 1
27 pr3 27 �

ffiffiffi
3

p� �
: (12)

If spheres packed in a cubic lattice, face-centered
cubic lattice, and hexagonal lattice are allowed to
expand uniformly until running into each other, they
form cubes, hexagonal prisms, and rhombic dodeca-
hedra, respectively. In particular, if the spheres of
cubic close packing are expanded until they fill up the
gaps, they form a solid RHOMBIC DODECAHEDRON (left
figure above), and if the spheres of hexagonal close
packing are expanded, they form a second irregular
dodecahedron consisting of six rhombi and six trape-
zoids (right figure above; Steinhaus 1983, p. 206).
The latter can be obtained from the former by slicing
in half and rotating the two halves 60 8 with respect to
each other. The lengths of the short and long edges of
the rotated dodecahedron have lengths /2=3/ and /4=3/

times the length of the rhombic faces. Both the
RHOMBIC DODECAHEDRON and squashed dodecahe-
dron are SPACE-FILLING POLYHEDRA.

Compressing a random packing gives polyhedra with
an average of 13.3 faces (Coxeter 1958, 1961).

For sphere packing inside a CUBE, see Goldberg
(1971), Schaer (1966), and Friedman.

See also CANNONBALL PROBLEM, CIRCLE PACKING,
CUBOCTAHEDRON, DODECAHEDRAL CONJECTURE, EL-

LIPSOID PACKING, HEMISPHERE, HERMITE CON-

STANTS, HYPERSPHERE, HYPERSPHERE PACKING,
KEPLER CONJECTURE, KEPLER PROBLEM, KISSING

NUMBER, LOCAL DENSITY, LOCAL DENSITY CONJEC-

TURE, RANDOM CLOSE PACKING, REULEAUX TETRAHE-

DRON, SPACE-FILLING POLYHEDRON, SPHERE,
SPHERICAL DESIGN, SPHERICON, STELLA OCTANGULA,
TANGENT SPHERES, TRIANGULAR ORTHOBICUPOLA,
UNIT CELL
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Sphere Point Picking

To pick a random point on the surface of a UNIT

SPHERE, it is incorrect to select SPHERICAL COORDI-

NATES u and f from uniform distributions u � [0; 2p)
and f � [0; p]; since the area element dV�
sin f du df is a function of f; and hence points
picked in this way will be "bunched" near the poles
(left figure above).
To obtain points such that any small area on the
sphere is expected to contain the same number of
points (right figure above), choose u and v to be
random variates on (0; 1): Then

u�2pu (1)

f�cos�1(2v�1) (2)

gives the SPHERICAL COORDINATES for a set of points
which are uniformly distributed over S2: This works
since the differential element of SOLID ANGLE is given
by

dV�sin f du df�du d(cos f): (3)

Similarly, we can pick u�cos f to be uniformly
distributed (so we have du�sin f df) and obtain
the points

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
cos u (4)

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
sin u (5)

z�u; (6)

with u � [0; 2p) and u � [�1; 1]; which are also uni-
formly distributed over S2:/

Marsaglia (1972) derived an elegant method that
consists of picking x1 and x2 from independent uni-
form distributions on (�1; 1) and rejecting points for
which x2

1�x2
2]1: From the remaining points,

x�2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

1�x2
2

q
(7)

y�2x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

1�x2
2

q
(8)



z �1 �2(x2
1 �x2

2) (9)

have a uniform distribution on the surface of a unit
sphere. This method can also be extended to HYPER-

SPHERE POINT PICKING. The plots above show the
distribution of points for 100, 1000, and 5000 initial
points (where the counts refers to the number of
points before throwing away).

Cook (1957) extended a method of von Neumann
(1951) to give a simple method of picking points
uniformly distributed on the surface of a UNIT

SPHERE. Pick four numbers x0 ; x1 ; x2 ; and x3 from a
UNIFORM DISTRIBUTION on (�1 ; 1); and reject pairs
with

x2
0 �x2

1 �x2
2 �x2

3 ]1 : (10)

From the remaining points, the rules of QUATERNION

transformation then imply that the points with
CARTESIAN COORDINATES

x �
2(x1x3 � x0x2)

x2
0 � x2

1 � x2
2 � x2

3

(11)

y �
2(x2x3 � x0x1)

x2
0 � x2

1 � x2
2 � x2

3

(12)

z �
x2

0 � x2
3 � x2

1 � x2
2

x2
0 � x2

1 � x2
2 � x2

3

(13)

have the desired distribution (Cook 1957, Marsaglia
1972). The plots above show the distribution of points
for 100, 1000, and 5000 initial points (where the
counts refers to the number of points before throwing
away).

Another easy way to pick a random point on a SPHERE

is to generate three Gaussian random variables x , y ,
and z . Then the distribution of the vectors

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p x
y
z

2
4
3
5 (14)

is uniform over the surface S2 (Muller 1959, Marsa-
glia 1972).

See also BALL TRIANGLE PICKING, CIRCLE POINT

PICKING, DISK POINT PICKING, HYPERSPHERE POINT

PICKING, NOISE SPHERE, SPHERE LINE PICKING,
SPHERE TETRAHEDRON PICKING
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Sphere Tetrahedron Picking
Pick four points on a sphere. What is the probability
that the TETRAHEDRON having these points as VER-

TICES contains the CENTER of the sphere? In the 1-D
case, the probability that a second point is on the
opposite side of /1=2/ is /1=2/. In the 2-D case, pick two
points. In order for the third to form a TRIANGLE

containing the CENTER, it must lie in the quadrant
bisected by a LINE SEGMENT passing through the
center of the CIRCLE and the bisector of the two
points. This happens for one QUADRANT, so the
probability is /1=4/. Similarly, for a sphere the prob-
ability is one OCTANT, or /1=8/.

Pick four points at random on the surface of a unit
SPHERE using

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
cos u (1)

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
sin u (2)

z�u (3)

with u � [�1; 1] and u � [0; p): Now find the distribu-
tion of possible VOLUMES of the (nonregular) TETRA-

HEDRA determined by these points. Without loss of
generality, the first point may be taken as u1�1; or
(0; 0; 1); while the second may be taken as (0; u2); orffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�u2
2

p
; 0; u2

� �
: The average VOLUME is then

V̄�
f 1
�1f 1

�1f 1
�1f 1

�1g
2x

0 g
2x

0

½V(xi)½ du2 du3 du4 du3 du4

f 1
�1f 1

�1f 1
�1f 1

�1g
2x

0 g
2x

0

du2 du3u4 du3 du4

;

(4)

where the VERTICES are located at fxi; yi; zig where
i�1, ..., 4, and the (signed) VOLUME is given by the
DETERMINANT



V �
1

3!

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

��������

��������: (5)

The analytic result is difficult to compute, but is
numerically given by V̄ :0 :120:/

See also BALL TETRAHEDRON PICKING, CUBE TETRA-

HEDRON PICKING, FEJES TÓ TH’S PROBLEM, POINT

PICKING, SPHERE LINE PICKING, TETRAHEDRON
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Sphere with Tunnel
Find the tunnel between two points A and B on a
gravitating SPHERE which gives the shortest transit
time under the force of gravity. Assume the SPHERE to
be nonrotating, of RADIUS a , and with uniform density
r: Then the standard form EULER-LAGRANGE DIFFER-

ENTIAL EQUATION in polar coordinates is

rff r3�ra2
� �

�r2
f 2a2�r2
� �

�a2r2�0: (1)

along with the boundary conditions r(f�0)�r0;
rf(f�0)�0; r f�fAð Þ�a; and r f�fBð Þ�a: Inte-
grating once gives

r2
f�

a2r2

r2
0

r2 � r2
0

a2 � r2
: (2)

But this is the equation of a HYPOCYCLOID generated
by a CIRCLE of RADIUS 1

2(a�r0) rolling inside the
CIRCLE of RADIUS a , so the tunnel is shaped like an arc
of a HYPOCYCLOID. The transit time from point A to
point B is

T�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

0

ag

s
; (3)

where

g�
GM

a2
�4

3 prGa (4)

is the surface gravity with G the universal gravita-
tional constant.

Sphere-Cone Intersection
CONE-SPHERE INTERSECTION

Sphere-Cylinder Intersection
CYLINDER-SPHERE INTERSECTION

Sphere-Sphere Intersection

Let two spheres of RADII R and r be located along the
X -AXIS centered at (0; 0; 0) and (d; 0; 0); respec-
tively. Not surprisingly, the analysis is very similar
to the case of the CIRCLE-CIRCLE INTERSECTION. The
equations of the two SPHERES are

x2�y2�z2�R2 (1)

(x�d)2�y2�z2�r2: (2)

Combining (1) and (2) gives

(x�d)2�(R2�x2)�r2: (3)

Multiplying through and rearranging give

x2�2dx�d2�x2�r2�R2: (4)

Solving for x gives

x�
d2 � r2 � R2

2d
: (5)

The intersection of the SPHERES is therefore a curve
lying in a PLANE parallel to the yz -plane at a single x -
coordinate. Plugging this back into (1) gives

y2�z2�R2�x2�R2�
d2 � r2 � R2

2d

 !2

�
4d2B2 � d2 � r2 � R2ð Þ2

4d2
: (6)

which is a CIRCLE with RADIUS

a�
1

2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2R2�(d2�r2�R2)2

q

�
1

2d
[(�d�r�R)(�d�r�R)(�d�r�R)

�(d�r�R)]1=2: (7)

The VOLUME of the 3-D LENS common to the two
spheres can be found by adding the two SPHERICAL

CAPS. The distances from the SPHERES’ centers to the
bases of the caps are

d1�x (8)



d2 �d �x; (9)

so the heights of the caps are

h1 �R �d1 �
(r � R � d)(r � R � d)

2d 
(10)

h2 �r �d2 �
(R � r � d)(R � r � d)

2d 
: (11)

The VOLUME of a SPHERICAL CAP of height h? for a
SPHERE of RADIUS R? is

V(R?; h?) �1
3 ph?2(3R?�h?) : (12)

Letting R1 �R and R2 �r and summing the two caps
gives

V �V(R1 ; h1) �V(R2 ; h2)

�
p(R � r � d)2 d2 � 2dr � 3r2 � 2dR � 6rR � 3R2ð Þ

12d 
:

(13)

This expression gives V �0 for d �r �R as it must. In
the special case r �R , the VOLUME simplifies to

V � 1
12 p(4R �d)(2R �d)2 : (14)

The SURFACE AREA of the sphere R that lies inside the
sphere r is equal to the GREAT CIRCLE of the sphere r ,
provided that r52R (Kern and Blank 1948, p. 97).

See also APPLE, CIRCLE-CIRCLE INTERSECTION, DOU-

BLE BUBBLE, LENS, SPACE DIVISION BY SPHERES,
SPHERE
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Spherical Bessel Differential Equation
Take the HELMHOLTZ DIFFERENTIAL EQUATION

92F�k2F�0 (1)

in SPHERICAL COORDINATES. This is just LAPLACE’S

EQUATION in SPHERICAL COORDINATES with an addi-
tional term,

d2R

dr2
FU�

2

r

dR

dr
FU�

1

r2 sin2 f

d2U
du2 FR

�
cos f

r2 sin f

dF
df

UR�
1

r2

d2F
df2 UR�k2RFU�0: (2)

Multiply through by r2=RFU;

r2

R

d2R

dr2
�

2r

R

dR

dr
�k2r2�

1

U sin2 f

d2U
du2 �

cos f

F sin f

dF
df

�
1

F
d2F
df2�0: (3)

This equation is separable in R . Call the separation
constant n(n�1);

r2

R

d2R

dr2
�

2r

R

dR

dr
�k2r2�n(n�1): (4)

Now multiply through by R ,

r2 d2R

dr2
�2r

dR

dr
� k2r2�n(n�1)

 �

R�0: (5)

This is the SPHERICAL BESSEL DIFFERENTIAL EQUA-

TION. It can be transformed by letting x�kr; then

r
dR(r)

dr
�kr

dR(r)

k dr
�kr

dR(r)

d(kr)
�x

dR(r)

dx
: (6)

Similarly,

r2 d2R(r)

dr2
�x2 d2R(r)

dx2
: (7)

so the equation becomes

x2 d2R

dx2
�2x

dR

dx
� x2�n(n�1)

 �

R�0: (8)

Now look for a solution OF THE FORM R(r)�Z(x)x�1=2;
denoting a derivative with respect to x by a prime,

R?�Z?x�1=2�1
2 Zx�3=2 (9)

R??�Z??x�1=2�1
2 Z?x�3=2�1

2 Z?x�3=2�1
2 �3

2

� �
Zx�5=2

�Z??x�1=2�Z?x�3=2�3
4 Zx�5=2 (10)

so

x2 Z??x�1=2�Z?x�3=2�3
4 Zx�5=2

� �
�2x Z?x�1=2�1

2 Zx�3=2
� �

� x2�n(n�1)

 �

Zx�1=2�0

(11)

x2 Z??�Z?x�1�3
4 Zx�2

� �
�2x Z?�1

2 Zx�1
� �

� x2�n(n�1)

 �

Z�0 (12)

x2Z??�(�x�2x)Z?� 3
4�1�x2�n(n�1)
h i

Z�0 (13)

x2Z??�xZ?� x2� n2�n�1
4

� �h i
Z�0 (14)

x2Z??�xZ?� x2� n�1
2

� �2
� �

Z�0: (15)

But the solutions to this equation are BESSEL FUNC-

TIONS of half integral order, so the normalized
solutions to the original equation are



R(r) �A
Jn�1 =2(kr)ffiffiffiffiffi

kr
p �B

Yn�1=2(kr)ffiffiffiffiffi
kr

p (16)

which are known as SPHERICAL BESSEL FUNCTIONS.
The two types of solutions are denoted jn(x) (SPHERI-

CAL BESSEL FUNCTION OF THE FIRST KIND) or nn(x)
(SPHERICAL BESSEL FUNCTION OF THE SECOND KIND),
and the general solution is written

R(r) �A?jn(kr) �B?nn(kr) : (17)

where

jn(z) �

ffiffiffi
p

2

s
Jn�1 =2(z)ffiffiffi

z
p (18)

nn(z) �

ffiffiffi
p

2

s
Yn �1 =2(z)ffiffiffi

z
p : (19)

See also SPHERICAL BESSEL FUNCTION, SPHERICAL

BESSEL FUNCTION OF THE FIRST KIND, SPHERICAL

BESSEL FUNCTION OF THE SECOND KIND
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Spherical Bessel Function
A solution to the SPHERICAL BESSEL DIFFERENTIAL

EQUATION. The two types of solutions are denoted
jn(x) (SPHERICAL BESSEL FUNCTION OF THE FIRST

KIND) or nn(x) (SPHERICAL BESSEL FUNCTION OF THE

SECOND KIND).

See also SPHERICAL BESSEL DIFFERENTIAL EQUATION,
SPHERICAL BESSEL FUNCTION OF THE FIRST KIND,
SPHERICAL BESSEL FUNCTION OF THE SECOND KIND
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Spherical Bessel Function of the First
Kind

jn(x) �

ffiffiffiffiffiffi
p

2x

s
Jn �1 =2(x) (1)

�2nxn
X�
s�0

( �1)s(s � n)!

s!(2s � 2n � 1)!
x2s (2)

�
xn

(2n � 1)!!

� 1 �
1
2 x

2

1!(2n � 3) 
�

1
2 x

2
� �2

2!(2n � 3)(2n � 5) 
�. . .

2
64

3
75 (3)

�(�1)nxn d

x dx

 !n
sin x

x 
(4)

where jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
The first few functions are

j0(x)�
sin x

x
(5)

j1(x)�
sin x

x2
�

cos x

x
(6)

j2(x)�
3

x3
�

1

x

 !
sin x�

3

x2
cos x: (7)

Spherical Bessel functions are not explicitly imple-
mented in Mathematica .

See also SPHERICAL BESSEL DIFFERENTIAL EQUATION,
BESSEL FUNCTION OF THE SECOND KIND, POISSON

INTEGRAL REPRESENTATION, RAYLEIGH’S FORMULAS,
SPHERICAL BESSEL FUNCTION OF THE SECOND KIND
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Spherical Bessel Function of the Second
Kind

nn(x) �

ffiffiffiffiffiffi
p

2x

s
Yn�1 =2(x) (1)

�
( �1)n�1

2nxn �1

X�
s�0

(�1)s(s � n)!

s!(2s � 2n)!
x2s (2)

�
( �1)n�1

2nxn�1

X�
s�0

( �1)s4n�s
ffiffiffi
p

p

G(s � 1)G 1
2 � n � s
� � (3)

��
(2n � 1)!!

xn�1

� 1 �
1
2 x

2

1!(1 � 2n) 
�

1
2 x

2
� �2

2!(1 � 2n)(3 � 2n) 
�. . .

2
64

3
75 (4)

�(�1)n�1

ffiffiffiffiffiffi
p

2x

s
J�n �1 =2(x) : (5)

where Yn(z) is a BESSEL FUNCTION OF THE SECOND

KIND and jn(z) is a BESSEL FUNCTION OF THE FIRST

KIND.
The first few functions are

n0(x) ��
cos x

x 
(6)

n1(x) ��
cos x

x2
�

sin x

x 
(7)

n2(x) ��
3

x3 
�

1

x

 !
cos x �

3

x2
sin x: (8)

Spherical Bessel functions are not explicitly imple-
mented in Mathematica .

See also SPHERICAL BESSEL DIFFERENTIAL EQUATION,
BESSEL FUNCTION OF THE SECOND KIND, RAYLEIGH’S

FORMULAS, SPHERICAL BESSEL FUNCTION OF THE

FIRST KIND
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Spherical Bessel Function of the Third
Kind
SPHERICAL HANKEL FUNCTION OF THE FIRST KIND,
SPHERICAL HANKEL FUNCTION OF THE SECOND KIND

Spherical Cap

A spherical cap is the region of a SPHERE which lies
above (or below) a given PLANE. If the PLANE passes
through the CENTER of the SPHERE, the cap is a called
a HEMISPHERE, and if the cap is cut by a second
PLANE, it is called a SPHERICAL SEGMENT. However,
Harris and Stocker (1998) use the term "spherical
segment" as a synonym for what is here called a
spherical cap and "zone" for SPHERICAL SEGMENT.
Let the SPHERE have RADIUS R , then the VOLUME of a
spherical cap of height h and base RADIUS a is given
by the equation of a SPHERICAL SEGMENT

Vspherical segment�
1
6 ph(3a2�3b2�h2) (1)

with b�0, giving

Vcap�
1
6 ph(3a2�h2): (2)

Using the PYTHAGOREAN THEOREM gives

(R�h)2�a2�R2; (3)

which can be solved for a2 as

a2�2Rh�h2: (4)

so the radius of the base circle is

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(2R�h)

p
: (5)

and plugging this in gives the equivalent formula

Vcap�
1
3 ph2(3R�h): (6)

In terms of the so-called CONTACT ANGLE (the angle



between the normal to the sphere at the bottom of the
cap and the base plane)

R �h �R sin a (7)

a �sin�1 R � h

R

 !
; (8)

so

Vcap �
1
3 pR3(2 �3 sin a �sin3 a) : (9)

The CENTROID occurs at a distance

z̄ �
3(2R � h)2

4(3R � h) 
(10)

above the center of the sphere (Harris and Stocker
1998, p. 107).

Consider a cylindrical box enclosing the cap so that
the top of the box is tangent to the top of the SPHERE.
Then the enclosing box has VOLUME

Vbox � pa2h � p(R cos a)[R(1 �sin a)]

� pR3(1 �sin a �sin2 a �sin3 a) ; (11)

so the hollow volume between the cap and box is
given by

Vbox �Vcap �
1
3 pR3 1 �3sin2 a �2sin3 a

� �
: (12)

If a second PLANE cuts the cap, the resulting SPHE-

RICAL FRUSTUM is called a SPHERICAL SEGMENT. The
SURFACE AREA of the spherical cap is given by the
same equation as for a general ZONE:

Scap�2pRh�p(a2�h2): (13)

See also CONTACT ANGLE, DOME, FRUSTUM, HEMI-

SPHERE, SOLID OF REVOLUTION, SPHERE, SPHERICAL

SEGMENT, SPHERICAL WEDGE, TORISPHERICAL DOME,
ZONE
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Spherical Code
How can n points be distributed on a UNIT SPHERE

such that they maximize the minimum distance
between any pair of points? This maximum distance
is called the covering radius, and the configuration is
called a spherical code (or spherical packing). In 1943,
Fejes Tóth proved that for n points, there always
exist two points whose distance d is

d5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�csc2

pn

6(n � 2)

" #vuut ;

and that the limit is exact for n�3, 4, 6, and 12. The
problem of spherical packing is therefore sometimes
known as the Fejes Tóth’s problem. The general
problem has not been solved.

For two points, the points should be at opposite ends
of a DIAMETER. For four points, they should be placed
at the VERTICES of an inscribed regular TETRAHE-

DRON. There is no unique best solution for five points
since the distance cannot be reduced below that for
six points. For six points, they should be placed at the
VERTICES of an inscribed regular OCTAHEDRON. For
seven points, the best solution is four equilateral
spherical triangles with angles of 808. For eight
points, the best dispersal is not the VERTICES of the
inscribed CUBE, but of a SQUARE ANTIPRISM with equal
EDGES. The solution for nine points is eight equilat-
eral spherical triangles with angles of cos�1 (1=4): For
12 points, the solution is an inscribed regular ICOSA-

HEDRON.

A spherical packing corresponds to the placement of
n spheres around a central unit sphere. From simple
trigonometry,

sin 1
2 u
� �

�
r

1 � r
:

so the radii of the n spheres are given by

r�
1

csc 1
2 u
� �

� 1

for a minimum separation angle of u: Hardin and
Sloane give tables of minimum separations and
sphere positions for n5130 and d�3, 4, 5.

"Almost" 13 spheres can fit around a central sphere in
the sense that there is a gap left over when 12 spheres



are in place which is nearly big enough for an
additional sphere (left figure). In fact, the radii of
the spheres can be increased to 1.10851 (assuming a
central unit sphere) before 12 spheres no longer fit
(middle figure). In order to fit 13 spheres around a
central unit sphere, their radius must be no larger
than 0.916468 (right figure). These values correspond
to Hardin and Sloane’s angles of 63.43494888 and
57.13670318, respectively.

Pack eight unit spheres whose centers are at the
vertices of a cube. Then the radius of the largest
sphere which fits in the center hole (left figure) is
given by

r1 �
1
2 d1 �2Rð Þ

with

d1 �
ffiffiffi
2

p
(2R);

giving

r1 �
ffiffiffi
2

p
�1

� �
R: (1)

Similarly, the radius of the largest sphere which can
be passed through from one side to another (right
figure) has

d2 �
ffiffiffi
3

p
(2R);

giving

r2 �
1
2 d2 �2Rð Þ�

ffiffiffi
3

p
�1

� �
R: (2)

See also KISSING NUMBER, SPHERICAL COVERING,
SPHERICAL DESIGN, THOMSON PROBLEM
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Spherical Cone

The SURFACE OF REVOLUTION obtained by cutting a
conical "wedge" with vertex at the center of a SPHERE

out of the SPHERE. A spherical cone is therefore a
degenerate case of a SPHERICAL SECTOR. The volume
of the spherical cone is

V �2
3 pR2h (1)

(Kern and Bland 1948, p. 104). The SURFACE AREA of
a closed spherical sector is

S�pR(2h�r); (2)

and the CENTROID is located at a height

z̄�3
8(2R�h) (3)

above the sphere’s center (Harris and Stocker 1998).

See also CONE, SPHERE, SPHERICAL CAP, SPHERICAL

SECTOR
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Spherical Coordinates

A system of CURVILINEAR COORDINATES which is
natural for describing positions on a SPHERE or
SPHEROID. Define u to be the azimuthal ANGLE in
the xy -PLANE from the X -AXIS with 05uB2p (denoted
l when referred to as the LONGITUDE), f to be the
POLAR ANGLE from the Z -AXIS with 05f5p (COLATI-

TUDE, equal to f�90��d where d is the LATITUDE),
and r to be distance (RADIUS) from a point to the
ORIGIN.
Unfortunately, the convention in which the symbols u

and f are reversed is frequently used, especially in
physics, leading to unnecessary confusion. The sym-
bol r is sometimes also used in place of r . Arfken
(1985) uses (r; f; u); whereas Beyer (1987) uses
(r; u; f): Be very careful when consulting the litera-
ture.

In this work, the symbols for the azimuthal, polar,
and radial coordinates are taken as u; f; and r ,
respectively. Note that this definition provides a
logical extension of the usual POLAR COORDINATES

notation, with u remaining the ANGLE in the xy -PLANE

and f becoming the ANGLE out of the PLANE.

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2�z2

p
(1)

u�tan�1 y

x

 !
(2)

f�sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
r

 !
�cos�1 z

r

 !
; (3)

where r � 0; �½ Þ; u � [0; 2p); and f � [0; p]: In terms of
CARTESIAN COORDINATES,

x�r cos u sin f (4)

y�r sin u sin f (5)

z�r cos f: (6)

The SCALE FACTORS are

hr�1 (7)

hu�r sin f (8)

hf�r; (9)

so the METRIC COEFFICIENTS are

grr�1 (10)

guu�r2 sin2 f (11)

gff�r2: (12)

The LINE ELEMENT is

ds�drr̂�r df f̂�r sin f du û; (13)

the AREA element

da�r2 sin f du df r̂; (14)

and the VOLUME ELEMENT

dV�r2 sin f du df dr: (15)

The JACOBIAN is

@(x; y; z)

@(r; u; f)

�����
������r2 sin fj j: (16)

The POSITION VECTOR is

r�
r cos u sin f

r sin u sin f

r cos f

2
4

3
5; (17)

so the UNIT VECTORS are

r̂�

dr

dr

dr

dr

�����
�����
�

cos u sin f

sin u sin f

cos f

2
4

3
5 (18)

û�

dr

du

dr

du

�����
�����
�

�sin u

cos u

0

2
4

3
5 (19)

f̂�

dr

df

dr

df

�����
�����
�

cos u cos f

sin u cos f

�sin f

2
4

3
5: (20)

Derivatives of the UNIT VECTORS are

@r̂

@r
�0 (21)

@û

@r
�0 (22)

@f̂

@r
�0 (23)



@r̂

@u
�

�sin u sin f

cos u sin f

0

2
4

3
5�sin f û (24)

@û

@u
�

�cos u

�sin u

0

2
4

3
5��cos f f̂�sin fr̂ (25)

@f̂

@u
�

�sin u cos f

cos u cos f

0

2
4

3
5�cos f û (26)

@r̂

@f
�

cos u

sin u cos f

�sin f

2
4

3
5�f̂ (27)

@û

@f
�0 (28)

@f̂

@f
�

�cos u sin f

�sin u sin f

�cos f

2
4

3
5��r̂: (29)

The GRADIENT is

9� r̂
@

@r
�

1

r
f̂

@

@f
�

1

r sin f
û

@

@u
; (30)

so

9rr̂�0 (31)

9rû�0 (32)

9rf̂�0̂ (33)

9rr̂�
sin f û

r sin f
�

1

r
û (34)

9uû��
cos ff̂ � sin fr̂

r sin f
��

cot f

r
f̂�

1

r
r̂ (35)

9uf̂�
cos ff̂

r sin f
�

1

r
cot fû: (36)

Now, since the CONNECTION COEFFICIENTS are given
by Gi

jk�x̂i � 9kx̂j

� �
;

Gu�

0
1

r
0

0 0 0

0
cot f

r
0

2
666664

3
777775 (37)

Gf�

0 0
1

r

0 �
cot f

r
0

0 0 0

2
666664

3
777775 (38)

Gr�

0 0 0

0 �
1

r
0

0 0 �
1

r

2
666664

3
777775: (39)

The DIVERGENCE is

9 � F�Ak
;k�Gk

jkAj

� Ar
;r� Gr

rrA
r�Gr

urA
u�Gr

frA
f

� ih
� Au

;u� Gu
ruA

r�Gu
uuA

u�Gu
fuA

f
� �h i

� Af
;f� Gf

rfAr�Gf
ufAu�Gf

ffAf
� �h i

�
1

gr

@Ar

@r
�

1

gu

@Au

@u
�

1

gf

@Af

@f
�(0�0�0)

�
1

r
Ar�0�

cot f

r
Af

 !
1

r
Ar�0�0

 !

�
@

@r
Ar�

2

r
Ar�

1

r sin f

@

@u
Au�

1

r

@

@f
Af

�
cot f

r
Af; (40)

or, in VECTOR notation,

9 � F�
2

r
�

@

@r

 !
Fr�

1

r

@

@f
�

cot f

r

 !
Ff

�
1

sin f

@Fu

@u

�
1

r2

@

@r
r2Fr

� �
�

1

r sin f

@

@f
sin fFf

� �
�

1

r sin f

@Fu

@u
: (41)

The COVARIANT DERIVATIVES are given by

Aj;k�
1

gkk

@Aj

@xk

�Gi
jkAi; (42)

so

Ar;r�
@Ar

@r
�Gi

rrAi�
@Ar

@r
(43)

Ar;u�
1

r sin f

@Ar

@u
�Gi

tu�
1

r sin f

@Ar

@u
�GruAu

�
1

r sin f

@Ar

@f
�

Au

r
(44)



Ar;f�
1

r

@Ar

@f
�Gi

rfAi�
1

r

@Ar

@f
�Gf

rfAf

�
1

r

@Ar

@f
�Af

 !
(45)

Au;r�
@Au

@r
�Gi

urAi�
@Au

@r
(46)

Au;u�
1

r sin f

@Au

@u
�Gi

uuAi

�
1

r sin f
@Au@u�Gf

uuAf�Gr
uuAr

�
1

r sin f

@Au

@u
�

cot f

r
Af�

Ar

r
(47)

Au;f�
1

r

@Au

@r
�Gi

frAi

@Au

@f
(48)

Af;r�
@Af

@r
�Gi

frAi�
@Af

r
(49)

Af;u�
1

r sin f

@Af

@u
�Gi

fuAi�
1

r sin f

@Af

@u
�Gu

fu

�
1

r sin f

@Af

@u
�

cot f

r
Au (50)

Af;f�
1

r

@Af

@f
�Gi

ffAi�
1

r

@Af

@f
�Gr

ffAr

�
1

r

@Af

@f
�

Ar

r
: (51)

The COMMUTATION COEFFICIENTS are given by

cmab �em� �ea; �eb

 �

�9a �eb�9b �ea (52)

r̂; r̂½ � û; û

 �

� f̂; f̂

 �

�0; (53)

so carr�cauu�caff�0; where a�r; u; f:

r̂; û

 �

�� û; r̂

 �

�9rû�9ur̂�0�
1

r
û��

1

r
û: (54)

so curu��cuur��1
r
; cr

ru�cfru�0:

r̂; f̂

 �

�� f̂; r̂

 �

�0�
1

r
f̂��

1

r
f̂; (55)

so cfrf��cffr�
1
r
:

û; f̂

 �

�� f̂; û

 �

�
1

r
cot fû�0�

1

r
cot fû: (56)

so

cuuf��cufu�
1

r
cot f: (57)

Summarizing,

cr�
0 0 0
0 0 0
0 0 0

2
4

3
5 (58)

cu�

0 �1
r

0
1
r

0 1
r

cot f

0 �1
r

cot f 0

2
64

3
75 (59)

cf�
0 0 �1

r

0 0 0
1
r

0 0

2
64

3
75: (60)

Time derivatives of the POSITION VECTOR are

ṙ�
cos u sin f ṙ�r sin u sin fu̇�r cos u cos fḟ

sin u sin f ṙ�r cos u sin fu̇�r sin u cos fḟ

cos fṙ�r sin fḟ

2
4

3
5

�
cos u sin f

sin u sin f

cos f

2
4

3
5ṙ�r sin f

�sin u

cos u

0

2
4

3
5u̇

�r
cos u cos f

sin u cos f

�sin f

2
4

3
5 ḟ

� ṙr̂�r sin fu̇û�rḟf̂: (61)

The SPEED is therefore given by

v� ṙj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2�r2 sin2 fu̇2�r2ḟ2

q
: (62)

The ACCELERATION is

ẍ�(�sin u sin fu̇ṙ�cos u cos fṙḟ�cos u sin fr̈)

�(sin u sin fṙu̇�r cos u sin fu̇2�r sin u cos fu̇ḟ)

�r sin u sin fü)�(cos u cos fṙḟ�r sin u cos u̇ḟ

�r cos u sin fḟ2�r cos u cos ff̈)

��2 sin u sin fu̇ṙ�2 cos u cos fṙḟ

�2r sin u cos fu̇ḟ

�cos u sin fr̈�r sin u sin fü�r cos u cos ff̈

�r cos u sin f u̇2�ḟ2
� �

(63)

ÿ�(sin u sin fr̈�r cos u sin fu̇�r cos f sin uḟ)

�(cos u sin fṙu̇�r sin u sin fu̇2�r cos u cos fu̇ḟ)

�r cos u sin fü)�(sin u cos fṙḟ�r cos u cos fu̇ḟ

�r sin u sin fḟ2�r sin u cos ff̈

�2 cos u sin fu̇ṙ�2 sin u cos fṙḟ�2r cos u cos fu̇ḟ



�sin u sin fr̈�r cos u sin fü�r sin u cos ff̈

�r sin u sin f u̇2�ḟ2
� �

(64)

z̈�(cos fr̈�sin fṙḟ)

�(ṙ sin fḟ�r cos fḟ2�r sin ff̈)

��r cos fḟ2�cos fr̈�2 sin fḟṙ�r sin ff̈: (65)

Plugging these in gives

r̈� r̈�rḟ2
� � cos u sin f

sin u sin f

cos f

2
4

3
5

�(2r cos fu̇ḟ�r sin fü)
�sin u

cos u

0

2
4

3
5

�(2ṙḟ�rf̈)
cos u cos f

sin u cos f

�sin f

2
4

3
5�r sin fu̇2

cos u

sin u

0

2
4

3
5: (66)

but

sin fr̂�cos ff̂�
cos u sin2 f�cos u cos2 f

sin u sin2 f�sin u cos2 f

0

2
4

3
5

�
cos u

sin u

0

2
4

3
5 (67)

so

r̈� r̈�rḟ2
� �

r̂�(2r cos fu̇ḟ�2 sin fu̇ṙ�r sin fü)û

�(2ṙḟ�rf̈)f̂�r sin fu̇2(sin fr̂�cos ff̂)

�(r̈�rḟ2�r sin2fu̇2)r̂

�(2 sin fu̇ṙ�2r cos fu̇f�r sin fü)û

�(2ṙḟ�rf̈�r sin f cos fu̇2)f̂: (68)

Time DERIVATIVES of the UNIT VECTORS are

˙̂r�
�sin u sin fu̇�cos u cos fḟ

cos u sin fu̇�sin u cos fḟ

�sin fḟ

2
4

3
5

�sin fu̇û�ḟf̂ (69)

˙̂u�
�cos uu̇

�sin uu̇

0

2
4

3
5��u̇

cos u

sin u

0

2
4

3
5

��u̇(sin fr̂�cos ff̂) (70)

˙̂f�
�sin u cosfu̇�cos u sin fḟ

cos u cosfu̇�sin u sin fḟ

�cos fḟ

2
4

3
5

��ḟr̂�cos fu̇û: (71)

The CURL is

9�F�
1

r sin f

@

@f
sin fFuð Þ�@Ff

@u

" #
r̂

�
1

r

1

sin f

@Fr

@u
�

@

@r
rFuð Þ

" #
f̂�

1

r

� @

@r
rFf

� �
�

@Fr

@f

" #
û: (72)

The LAPLACIAN is

92�
1

r2

@

@r
r2 @

@r

 !
�

1

r2 sin2

@2

@u2�
1

r2 sin

@

@f

� sin f
@

@f

 !

�
1

r2
r2 @2

@r2
�2r

@

@r

 !
�

1

r2 sin2

@2

@u2�
1

r2 sin f

� cos f
@

@f
�sin f

@2

@f2

 !

�
@2

@r2
�

2

r

@

@r
�

1

r2 sin2 f

@2

@u2
�

cos f

r2 sin f

@

@f

�
1

r2

@2

@f2 : (73)

The vector LAPLACIAN is

92v�

1
r
@2 rvrð Þ
@r2 � 1

r2
@2vr

@u2 � 1
r2 sin2u

@2vr

@f2 �cot u
r2

@vr

u
� 2

r2
@vu

@u
� 2

r2 sin u

@vf

@f
�2vr

r2 �2 cot u
r2 vu

1
r
@2 rvuð Þ
@r2 � 1

r2
@2vu

@u2 � 1
r2 sin2u

@2vu

@f2 �cot u
r2

@vu

u
� 2

r2
2 cot u
r2sin u

@vf

@f
� 2

r2
2vr

@u
� vu

r2 sin2 u

1
r

@2 rvfð Þ
@r2 � 1

r2

@2vfa

@u2 � 1
r2 sin2u

@2vf

@f2 �cot u
r2

@vf

@u
� 2

r2
@vr

@f
� 2 cot u

r2 sin u

@vu

@f
� vf

r2 sin2u

2
6664

3
7775:

(74)

To express PARTIAL DERIVATIVES with respect to
Cartesian axes in terms of PARTIAL DERIVATIVES of
the spherical coordinates,

x
y
z

2
4
3
5� r cos u sin f

r sin u sin f

r cos f

2
4

3
5 (75)

dx
dy
dz

2
4

3
5�

cos u sin f dr�r sin u sin f du�r cos u cos f df
sin u sin f dr�r sin f cos u du�r sin u cos f df

cos f dr�r sin f df

2
4

3
5

�
cos u sin f �r sin u sin f r cos u cos f

sin u sin f r sin f cos u r sin u cos f

cos f 0 �r sin f

2
4

3
5

�
dx
dy
dz

2
4

3
5: (76)



Upon inversion, the result is

dr
du
d f

2
4

3
5�

cos u sin f sin u sin f cos f

�
sin u

r sin f

cos u

r sin f
0

cos u cos f

r

sin u cos f

r
�

sin f

r

2
666664

3
777775

�
dr
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2
4

3
5: (77)

The Cartesian PARTIAL DERIVATIVES in spherical
coordinates are therefore
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@

@z 
�

@r

@z

@

@r 
�

@ u

@z

@

@ u 
�

@ f

@z

@

@ f

�cos f
@

@r 
�

sin f

r

@

@ f 
(80)

(Gasiorowicz 1974, pp. 167 �/68).

The HELMHOLTZ DIFFERENTIAL EQUATION is separable
in spherical coordinates.

See also COLATITUDE, GREAT CIRCLE, HELMHOLTZ

DIFFERENTIAL EQUATION–SPHERICAL COORDINATES,
LATITUDE, LONGITUDE, OBLATE SPHEROIDAL COORDI-

NATES, PROLATE SPHEROIDAL COORDINATES
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Spherical Covering
The placement of n points on a SPHERE so as to
minimize the maximum distance of any point on the
sphere from the closest one of the n points.

See also SPHERICAL CODE, SPHERICAL COVERING

References
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Spherical Curve
A CURVE on the surface of a SPHERE. Examples
include the BASEBALL COVER, SEIFFERT’S SPHERICAL

SPIRAL, SPHERICAL HELIX, and SPHERICAL SPIRAL.

See also BASEBALL COVER, CURVE, PLANE CURVE,
SPACE CURVE, TENNIS BALL THEOREM

Spherical Defect
Let a , b , and c be the sides of a SPHERICAL TRIANGLE,
then the spherical defect is defined as

D �2 p �(a �b �c):

See also ANGULAR DEFECT, SPHERICAL EXCESS,
SPHERICAL TRIANGLE
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Spherical Design
X is a spherical t -design in E IFF it is possible to
exactly determine the average value on E of any
POLYNOMIAL f of degree at most t by sampling f at the
points of X . In other words,

1

volume E gE

f (j) dj�
1

Xj j
X
x �X

f (x):

Spherical t -designs give the placement of n points on
a sphere for use in numerical integration with equal
weights.
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Spherical Excess
The difference between the sum of the angles A , B ,
and C of a SPHERICAL TRIANGLE and p radians (1808),

E�A�B�C�p:



The notation D is sometimes used for spherical excess
instead of E , which can cause confusion since it is also
frequently used to denote the SURFACE AREA of a
SPHERICAL TRIANGLE (Zwillinger 1995, p. 469). The
notation � is also used (Gellert et al. 1989, p. 263).

The equation for the spherical excess in terms of the
side lengths a , b , and c is known as L’HUILIER’S

THEOREM,

tan 1
4 E
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan 1

2 s
� �

tan 1
2 s �að Þ
h i

tan 1
2 s �bð Þ
h i

tan 1
2 s �cð Þ
h ir

;

where s is the SEMIPERIMETER.

See also ANGULAR DEFECT, DESCARTES TOTAL ANGU-

LAR DEFECT, GIRARD’S SPHERICAL EXCESS FORMULA,
L’HUILIER’S THEOREM, SPHERICAL TRIANGLE
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Spherical Frustum
SPHERICAL SEGMENT

Spherical Geometry
The study of figures on the surface of a SPHERE (such
as the SPHERICAL TRIANGLE and SPHERICAL POLYGON),
as opposed to the type of geometry studied in PLANE

GEOMETRY or SOLID GEOMETRY. In spherical geome-
try, straight lines are GREAT CIRCLES, so any two lines
meet in two points. There are also no parallel lines.
The angle between two lines in spherical geometry is
the angle between the planes of the corresponding
great circles, and a SPHERICAL TRIANGLE is defined by
its three angles. There is no concept of similar
triangles in spherical geometry.

See also GREAT CIRCLE, HYPERBOLIC GEOMETRY,
PLANE GEOMETRY, SOLID GEOMETRY, SPHERICAL

TRIANGLE, SPHERICAL TRIGONOMETRY, THURSTON’S

GEOMETRIZATION CONJECTURE
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Spherical Hankel Function of the First
Kind

h(1)
n (x) �

ffiffiffiffiffiffi
p

2x

s
H(1)

n�1 =2(x) �jn(x) �inn(x);

where H(1)(x) is the HANKEL FUNCTION OF THE FIRST

KIND and jn(x) and nn(x) are the SPHERICAL BESSEL

FUNCTIONS OF THE FIRST and SECOND KINDS. Expli-
citly, the first few are

h(1)
0 (x) �

1

x
(sin x �i cos x) ��

i

x
eix

h(1)
1 (x) �eix �

1

x 
�

i

x2

 !

h(1)
2 (x) �eix i

x 
�

3

x2 
�

3i

x3

 !
:
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Spherical Hankel Function of the Second
Kind

h(2)
n (x) �

ffiffiffiffiffiffi
p

2x

s
H(2)

n�1 =2(x) �jn(x) �inn(x);

where H(2)(x) is the HANKEL FUNCTION OF THE

SECOND KIND and jn(x) and nn(x) are the SPHERICAL

BESSEL FUNCTIONS OF THE FIRST and SECOND KINDS.
Explicitly, the first is

h(2)
0 (x)�

1

x
(sin x�i cos x)�

i

x
e�ix:

See also SPHERICAL BESSEL FUNCTION OF THE FIRST

KIND, SPHERICAL BESSEL FUNCTION OF THE SECOND

KIND
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Spherical Harmonic
The spherical harmonics Ym

l (u; f) are the angular
portion of the solution to LAPLACE’S EQUATION in
SPHERICAL COORDINATES where azimuthal symmetry
is not present. Some care must be taken in identifying
the notational convention being used. In this entry, u



is taken as the polar (colatitudinal) coordinate with
u � [0; p]; and f as the azimuthal (longitudinal)
coordinate with f � [0; 2p): This is the convention
normally used in physics, as described by Arfken
(1985) and Mathematica (in mathematical literature,
u usually denotes the longitudinal coordinate and f

the colatitudinal coordinate). Spherical harmonics
are implemented in Mathematica as Spherical-
HarmonicY[l , m , theta , phi ].

Spherical harmonics satisfy the SPHERICAL HARMONIC

DIFFERENTIAL EQUATION, which is given by the
angular part of LAPLACE’S EQUATION in SPHERICAL

COORDINATES. Writing F�F(f)U(u) in this equation
gives

F(f)

sin u

d

du
sin u

dU
du

 !
�

U(u)

sin2 u

d2F(f)

df2

�l(l�1)U(u)F(f)�0: (1)

Multiplying by sin2 u= UFð Þ gives

sin u

U(u)

d

du
sin u

dU
du

 !
�l(l�1) sin2 u

" #
�

1

F(f)

d2F(f)

df2

�0: (2)

Using SEPARATION OF VARIABLES by equating the f/-
dependent portion to a constant gives

1

F(f)

d2F(f)

df2
��m2; (3)

which has solutions

F(f)�Ae�imf�Beimf; (4)

Plugging in (3) into (2) gives the equation for the u/-
dependent portion, whose solution is

U(u)�Pm
l (cos u); (5)

where m��1;�(l�1); ..., 0, ..., l�1; l and Pm
l (z) is an

associated LEGENDRE POLYNOMIAL. The spherical
harmonics are then defined by combining F(f) and
U(u);

Ym
l (u; f)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l � 1

4p

(l � m)!

(l � m)!

s
Pm

l (cos u)eim f: (6)

where the normalization is chosen such that

g
2p

0 g
p

0

Ym
l (u; f)Ȳm?

l? (u; f)sin u du df

�g
2p

0 g
1

�1

Ym
l (u; f)Ȳm?

l? (u; f)d(cos u) df�dmm; dll:

(7)

(Arfken 1985, p. 681). Here, z̄ denotes the COMPLEX

CONJUGATE and dmn is the KRONECKER DELTA. Some-
times (e.g., Arfken 1985), the CONDON-SHORTLEY

PHASE (�1)m is prepended to the definition of the
spherical harmonics.

The spherical harmonics are sometimes separated
into their REAL and IMAGINARY PARTS,

Yms
l (u; f)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l � 1

4p

(l � m)!
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s
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l (cos u) sin(mf) (8)

Ymc
l (u; f)�
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2l � 1

4p

(l � m)!
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s
Pm

l (cos u) cos(mf): (9)

The spherical harmonics obey

Y�l
l (u; f)�

1

2ll!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2l � 1)!

4p

s
sinl u e�ilf (10)

Y0
l (u; f)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l � 1

4p

s
Pl(cos u) (11)

Y�m
l (u; f)�(�1)mȲm

l (u; f); (12)

where Pl(x) is a LEGENDRE POLYNOMIAL.

Integrals of the spherical harmonics are given by

g
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# $
; (13)

where l1l2l3

m1m2m3

� �
is a WIGNER 3J -SYMBOL (which is

related to the CLEBSCH-GORDAN COEFFICIENTS). Spe-
cial cases include
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L�1 u; fð Þ sin u du df

�

ffiffiffiffiffiffi
3

8p

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(L � M � 1)(L � M � 2)

(2L � 1)(2L � 3)

s
(16)



g
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0 g
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(Arfken 1985, p. 700).

The above illustrations show Ym
l (u; f)


 �2
(top),

R Ym
l (u; f)


 �2
(bottom left), and I Ym

l (u; f)

 �2

(bottom
right). The first few spherical harmonics are
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Written in terms of CARTESIAN COORDINATES,

eif�
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s !
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The ZONAL HARMONICS are defined to be those OF THE

FORM

P0
l (cos u)�Pl(cos u): (27)

The TESSERAL HARMONICS are those OF THE FORM



sin(mf)Pm
l (cos u) (28)

cos(mf)Pm
l (cos u) (29)

for l "m: The SECTORIAL HARMONICS are OF THE FORM

sin(mf)Pm
m(cos u) (30)

cos(mf)Pm
m(cos u) : (31)

The spherical harmonics form a COMPLETE ORTHO-

NORMAL BASIS, so an arbitrary REAL FUNCTION f (u ; f)
can be expanded in terms of complex spherical
harmonics by

f ( u; f) �
X�
l�0

Xl

m��l

Am
l Ym

l ( u; f) : (32)

or in terms of real spherical harmonics by

f (u ; f) �
X�
l�0

Xl

m�0

Cm
l Ymc

l ( u; f) �Sm
l Yms

l ( u; f)½ : (33)

The process of determining the coefficients Am
l in (32)

is analogous to that to determine the coefficients in a
FOURIER SERIES, i.e., multiply both sides of (32) by
Ȳm?

l? ( u; f) ; integrate, and use the orthogonality rela-
tionship (7) to obtain

g
2 p

0 g  
p

0

f ( u; f) Ȳm?
l? ( u; f) sin u du df

�
X�
l�0

Xl

m��l
g

2 p

0 g  
p

0

Am
l Ym

l Ȳm?
l? ( u ; f) sin u( u; f) du df

�
X�
l�1

Xl

m��l

Am
l dll?  dmm?�Am

l : (34)

The following sequence of plots shows successive
approximations to the function f (u; f)�3�
cos3(2u)�(sin f)=2; which is illustrated in the final
plot.

See also CONDON-SHORTLEY PHASE, CORRELATION

COEFFICIENT, SECTORIAL HARMONIC, SOLID HARMO-

NIC, SPHERICAL HARMONIC ADDITION THEOREM,
SPHERICAL HARMONIC DIFFERENTIAL EQUATION,
SPHERICAL HARMONIC CLOSURE RELATIONS, SPHERI-

CAL VECTOR HARMONIC, SURFACE HARMONIC, TESS-

ERAL HARMONIC, ZONAL HARMONIC
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Spherical Harmonic Addition Theorem
A FORMULA also known as the LEGENDRE ADDITION

THEOREM which is derived by finding GREEN’S FUNC-

TIONS for the SPHERICAL HARMONIC expansion and
equating them to the generating function for LE-

GENDRE POLYNOMIALS. When g is defined by

cos g�cos u1 cos u2�sin u1 sin u2 cos f1�f2ð Þ;

The LEGENDRE POLYNOMIAL of argument g is given by

Pl(cos g)�
4p

2l � 1

Xl

m��l

(�1)mYm
l u1; f1ð ÞY�m

l u2; f2ð Þ

�
4p

2l � 1

Xl

m��l

Ym
l u1; f1ð ÞȲm

l u2; f2ð Þ

�Pl cos u1ð ÞPl cos u2ð Þ



�2
Xl

m�1

(l � m)!

(l � m)!
Pm

l cos u1ð ÞPm
l cos u2ð Þcos m f1 � f2ð Þ½ :

See also LEGENDRE POLYNOMIAL, SPHERICAL HARMO-

NIC
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Spherical Harmonic Closure Relations
The sum of the absolute squares of the SPHERICAL

HARMONICS Ym
l ( u; f) over all values of m is

Xl

m��l

Ym
l ( u; f)

�� ��2�2l � 1

4p
:

The double sum over m and l is given by

X�
l�0

Xl

m��l

Ym
l u1 ; f1ð ÞȲm

l u2 ; f2ð Þ

�
1

sin u1

d u1 � u2ð Þd f1 � f2ð Þ

� d cos u1 �cos u2ð Þd cos f1 �cos f2ð Þ;

where d(x) is the DELTA FUNCTION.

Spherical Harmonic Differential Equation
In three dimensions, the spherical harmonic differ-
ential equation is given by

1

sin u

@

@ u
sin u

@

@ u

 !
�

1

sin2 u

@2

@ f2 
�l(l �1)

" #
u �0;

and solutions are called SPHERICAL HARMONICS (Zwil-
linger 1997, p. 130). In four dimensions, the spherical
harmonic differential equation is

uxx �2ux cot x �csc2 x uyy �uy cot y �uzz csc2 y
� �

� n2 �1
� �

u �0

(Humi 1987; Zwillinger 1997, p. 130).

See also SPHERICAL HARMONIC
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Spherical Harmonic Tensor
A tensor defined in terms of the TENSORS which
satisfy the DOUBLE CONTRACTION RELATION.

See also DOUBLE CONTRACTION RELATION, SPHERICAL

HARMONIC

Spherical Helix
The TANGENT INDICATRIX of a CURVE OF CONSTANT

PRECESSION is a spherical helix. The equation of a
spherical helix on a SPHERE with RADIUS r making an
ANGLE u with the Z -AXIS is

x( c) �1
2 r(1 �cos u)cos c

�1
2 r(1 �cos u)cos

1 � cos u

1 � cos u
c

 !
(1)

y( c) �1
2 r(1 �cos u)sin c

�1
2 r(1 �sin u)sin

1 � cos u

1 � cos u
c

 !
(2)

z(c) �r sin u cos
cos u

1 � cos u
c

 !
: (3)

The projection on the xy -plane is an EPICYCLOID with
RADII

a�r cos u (4)

b�r sin2 1
2 u
� �

: (5)

See also HELIX, LOXODROME, SPHERICAL SPIRAL
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Spherical Lune

A sliver of the surface of a SPHERE of RADIUS r cut out
by two planes through the azimuthal axis with
DIHEDRAL ANGLE u: The SURFACE AREA of the lune is

S�2r2u;

which is just the area of the SPHERE times u=(2p): The
VOLUME of the associated SPHERICAL WEDGE has



VOLUME

V �2
3 r

3 u:

See also LUNE, SPHERE, SPHERICAL WEDGE
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Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathe-
matics, 2nd ed. New York: Van Nostrand Reinhold,
p. 262, 1989.

Spherical Packing
SPHERICAL CODE

Spherical Polygon
A closed geometric figure on the surface of a SPHERE

which is formed by the ARCS of GREAT CIRCLES. The
spherical polygon is a generalization of the SPHERICAL

TRIANGLE. If  u is the sum of the RADIAN ANGLES of a
spherical polygon on a SPHERE of RADIUS R , then the
AREA is

S�[u�(n�2)p]R2:

See also GREAT CIRCLE, SPHERICAL TRIANGLE
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Spherical Ring

A SPHERE with a CYLINDRICAL HOLE cut so that the
centers of the CYLINDER and SPHERE coincide, also
called a NAPKIN RING. Let the SPHERE be of RADIUS r
and the CYLINDER of RADIUS R . The VOLUME of the
entire CYLINDER is

Vcyl�pLR2; (1)

and the VOLUME of the upper segment is

Vseg�
1
6 ph 3R2�h2

� �
; (2)

where

R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�1

4 L2
q

(3)

h�r�1
2 L; (4)

so the VOLUME removed upon drilling of a CYLINDRI-

CAL hole is

Vrem�Vcyl�2Vseg�p LR2�1
3 h 3R2�h2
� �h i

�p LR2�hR2�1
3 h3

� �

�p L r2�1
4 L2

� �
� r�1

2 L
� �

r2�1
4 L2

� �
�1

3 r�1
2 L

� �3
� �

�p

�
Lr2�1

4 L3� r3�1
2 r2L�1

4 RL2�1
8 L3

� �

�1
3 r3�3

2 r2L�3
4 rL2�1

8 L3
� ��

�p

�
4
3 r3� 1�1

2�
1
2

� �
r2L� �1

4�
1
4

� �
RL2

�L3 �1
4�

1
8�

1
24

� ��

�4
3 pr3�1

6 pL3�1
6 p 8r3�L3
� �

; (5)

so

Vleft�Vsphere�Vrem�4
3 pr3� 4

3 pr3�1
6 pL3

� �
�1

6 pL3: (6)

Spherical Sector

A spherical sector is a SOLID OF REVOLUTION enclosed
by two radii from the center of a SPHERE. The
spherical sector may either be "open" and have a
conical HOLE (left figure; Beyer 1987), or may be a
"closed" SPHERICAL CONE (right figure; Harris and
Stocker 1998). The VOLUME of a spherical sector in



either case is given by

V �2
3 pR2h ;

where h is the vertical distance between where the
upper and lower radii intersect the sphere and R is
the sphere’s radius.

See also CYLINDRICAL SEGMENT, SPHERE, SPHERICAL

CAP, SPHERICAL CONE, SPHERICAL SEGMENT, SPHE-

RICAL WEDGE, ZONE
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Spherical Segment

A spherical segment is the solid defined by cutting a
SPHERE with a pair of PARALLEL PLANES. It can be
thought of as a SPHERICAL CAP with the top truncated,
and so it corresponds to a SPHERICAL FRUSTUM. The
surface of the spherical segment (excluding the bases)
is called a ZONE. However, Harris and Stocker (1998)
use the term "spherical segment" as a synonym for
SPHERICAL CAP and "zone" for what is here called a
spherical segment.
Call the RADIUS of the SPHERE R and the height of the
segment (the distance from the plane to the top of
SPHERE) h . Let the RADII of the lower and upper bases
be denoted a and b , respectively. Call the distance
from the center to the start of the segment d , and the
height from the bottom to the top of the segment h .
Call the RADIUS parallel to the segment r , and the
height above the center y . Then r2 �R2 �y2 ;

V �g
d �h

d

pr2 dy � pg
d �h

d

R2 �y2
� �

dy

� p R2y �1
3 y

3
h id�h

d
� p R2h �1

3 (d �h)3 �d3
h in o

� p R2h �1
3 d3 �3d2h �3h2d �h3 �d3
� �h i

� ph R2�d2 �hd �1
3 h

2
� �

; (1)

Using

a2 �R2 �d2 (2)

b2 �R2 �(d �h)2 �R2 �d2 �2dh �h2 ; (3)

gives

a2 �b2 �2R2 �2d2 �2dh �h2 (4)

R2 �d2 �dh �1
2 a2 �b2 �h2
� �

; (5)

so

V � ph 1
2 a2 �b2 �h2
� �

�1
3 h

2
h i

� ph 1
2 a

2 �1
2 b

2 �1
6 h

2
� �

�1
6 ph 3a2 �3b2 �h2

� �
: (6)

The surface area of the ZONE (which excludes the top
and bottom bases) is given by

S �2pRh : (7)

See also ARCHIMEDES’ HAT-BOX THEOREM, ARCHI-

MEDES’ PROBLEM, FRUSTUM, HEMISPHERE, SPHERE,
SPHERICAL CAP, SPHERICAL SECTOR, SPHERICAL

WEDGE, SURFACE OF REVOLUTION, ZONE
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Spherical Shell
A generalization of an ANNULUS to 3-D. A spherical
shell is the intersection of two concentric BALLS of
differing RADII.

See also ANNULUS, BALL, CHORD, SPHERE, SPHERICAL

HELIX

Spherical Simplex
The only irreducible spherical simplexes generated by
reflection are An (/n]1); Bn (/n]4); Cn (/n]2); DP

2/

(/p]5); E6; E7; E8; F4; G3; and G4: The only irreducible
Euclidean simplexes generated by reflection are W2;
Pm (/m]3); Qm (/m]5); Rm (/m]3); Sm (/m]4); V3; T7;
T8; T9; and U5:/



Spherical Spiral

The SPHERICAL CURVE taken by a ship which travels
from the south pole to the north pole of a SPHERE

while keeping a fixed (but not RIGHT) angle with
respect to the meridians. The curve has an infinite
number of loops since the separation of consecutive
revolutions gets smaller and smaller near the poles. It
is given by the PARAMETRIC EQUATIONS

x �cos t cos c

y �sin t cos c

z ��sin c ;

where

c �tan�1(at)

and a is a constant, and is a special case of a
LOXODROME.

See also HELIX, LOXODROME, MERCATOR PROJECTION,
SEIFFERT’S SPHERICAL SPIRAL, SPHERICAL CURVE
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Spherical Symmetry
Let A and B be constant VECTORS. Define

Q �3(A � r̂)(B � r̂) �A � B :

Then the average of Q over a spherically symmetric
surface or volume is

Qh i� 3 cos2 u �1
! "

(A � B) �0;

since 3 cos2 u �1h i�0 over the sphere.

Spherical Tessellation
TRIANGULAR SYMMETRY GROUP

Spherical Triangle

A spherical triangle is a figure formed on the surface
of a sphere by three great circular arcs intersecting
pairwise in three vertices. The spherical triangle is
the spherical analog of the planar TRIANGLE, and is
sometimes called EULER’S TRIANGLE (Harris and
Stocker 1998). Let a spherical triangle have ANGLES

A , B , and C (measured in radians at the vertices
along the surface of the sphere) and let the sphere on
which the spherical triangle sits have RADIUS R . Then
the SURFACE AREA D of the spherical triangle is

D�R2[(A �B �C) � p] �R2E;

where E is called the SPHERICAL EXCESS, with E �0
in the degenerate case of a planar triangle.

The sum of the angles of a spherical triangle is
between p and 3p radians (1808 and 5408; Zwillinger
1995, p. 469). The amount by which it exceeds 1808 is
called the SPHERICAL EXCESS and is denoted E or D;
the latter of which can cause confusion since it also
can refer to the SURFACE AREA of a spherical triangle.
The difference between 2p radians (3608) and the sum
of the side arc lengths a , b , and c is called the
SPHERICAL DEFECT and is denoted D or d:/

The study of angles and distances of figures on a
sphere is known as SPHERICAL TRIGONOMETRY.

See also CIRCULAR TRIANGLE, COLUNAR TRIANGLE,
GEODESIC DOME, GEODESIC TRIANGLE, GIRARD’S

SPHERICAL EXCESS FORMULA, L’HUILIER’S THEOREM,
NAPIER’S ANALOGIES, SPHERICAL DEFECT, SPHERICAL

EXCESS, SPHERICAL POLYGON, SPHERICAL TRIGONO-

METRY
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Spherical Trigonometry

Let a SPHERICAL TRIANGLE be drawn on the surface of
a SPHERE of radius R , centered at a point /O�(0; 0; 0)/
, with vertices A , B , and C . The vectors from the
center of the sphere to the vertices are therefore given
by a�/ OA

H!
, b�/ OB

H!
, and c�/ OC

H!
. Now, the angular

lengths of the sides of the triangle (in radians) are
then a?��BOC; b?��COA; and c?��AOB; and the
actual arc lengths of the side are a�Ra?; b�Rb?; and
c�Rc?: Explicitly,

a � b�R2 cos c?�R2 cos
c

R

 !
(1)

a � c�R2 cos b?�R2 cos
b

R

 !
(2)

b � c�R2 cos a?�R2 cos
a

R

 !
: (3)

Now make use of A , B , and C to denote both the
vertices themselves and the angles of the spherical
triangle at these vertices, so that the DIHEDRAL ANGLE

between PLANES AOB and AOC is written A , the
DIHEDRAL ANGLE between PLANES BOC and AOB is
written B , and the DIHEDRAL ANGLE between PLANES

BOC and AOC is written C . (These angles are
sometimes instead denoted a; b; g; e.g., Gellert et al.
1989)
Consider the DIHEDRAL ANGLE A between planes
AOB and AOC , which can be calculated using the
DOT PRODUCT of the normals to the planes. The
normals are given by CROSS PRODUCTS of the vectors
to the vertices, so

â�b̂
� �

� â�ĉð Þ� ½â½½b̂½sin c
� �

½â½½ĉ½sin bð Þcos A

�sin b sin c cos A: (4)

However, using a well-known vector identity gives

â�b̂
� �

� â�ĉ
� �

�â � b̂� â�ĉð Þ

 �

�â � â b̂ � ĉ
� �

�ĉ â � b̂
� �
 �

� b̂ � ĉ
� �

� â � ĉð Þ â � b̂
� �

�cos a�cos c cos b: (5)

Since these two expressions must be equal, we obtain
the identity (and its two analogous formulas)

cos a�cos b cos c�sin b sin c cos A (6)

cos b�cos c cos a�sin c sin a cos B (7)

cos c�cos a cos b�sin a sin b cos C: (8)

known as the cosine rules for sides (Smart 1960,
pp. 7�/; Gellert et al. 1989, p. 264; Zwillinger 1995,
p. 469).

The identity

sin A�
â � b̂
� �

� â � ĉð Þ
�� ��

â � b̂
�� �� â � ĉj j

�
â b̂; â; ĉ

 �

� b̂ â; â; ĉ½ 
�� ��

sin b sin c

�
â; b̂; ĉ

 �

sin b sin c
; (9)

where /[a; b; c]/ is the SCALAR TRIPLE PRODUCT, gives

sin A

sin a
�

â; b̂; ĉ

 �

sin a sin b sin c
; (10)

so the spherical analog of the LAW OF SINES can be
written

sin A

sin a
�

sin B

sin b
�

sin C

sin c
�

6 Vol(OABC)

sin a sin b sin c
(11)

(Smart 1960, pp. 9�/0; Gellert et al. 1989, p. 265;
Zwillinger 1995, p. 469), where Vol(OABC) is the
VOLUME of the TETRAHEDRON.

The analogs of the LAW OF COSINES for the angles of a
SPHERICAL TRIANGLE are given by

cos A��cos B cos C�sin B sin C cos a (12)

cos B��cos C cos A�sin C sin A cos b (13)

cos C��cos A cos B�sin A sin B cos c (14)

(Gellert et al. 1989, p. 265; Zwillinger 1995, p. 470).

Finally, there are spherical analogs of the LAW OF

TANGENTS,

tan 1
2(B � C)
h i

tan 1
2(B � C)
h i�tan 1

2(b � c)
h i

tan 1
2(b � c)
h i (15)



tan 1
2(C � A)
h i

tan 1
2(C � A)
h i�tan 1

2(c � a)
h i

tan 1
2(c � a)
h i (16)

tan 1
2(A � B)
h i

tan 1
2(A � B)
h i�tan 1

2(a � b)
h i

tan 1
2(a � b)
h i (17)

(Beyer 1987; Gellert et al. 1989; Zwillinger 1995,
p. 470).

Additional important identities are given by

cos A�csc b csc c(cos a�cos b cos c): (18)

(Smart 1960, p. 8),

sin a cos B�cos b sin c�sin b cos c cos A (19)

(Smart 1960, p. 10), and

cos a cos C�sin a cot b�sin C cot B (20)

(Smart 1960, p. 12).

Let

s�1
2(a�b�c) (21)

be the semiperimeter, then half-angle formulas for
sines can be written as

sin 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � b)sin(s � c)

sin b sin c

s
(22)

sin 1
2 B
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � a)sin(s � c)

sin a sin c

s
(23)

sin 1
2 C
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � a)sin(s � b)

sin a sin b

s
: (24)

for cosines can be written as

cos 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin s sin(s � a)

sin b sin c

s
(25)

cos 1
2 B
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin s sin(s � b)

sin a sin c

s
(26)

cos 1
2 C
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin s sin(s � c)

sin a sin b

s
: (27)

and tangents can be written as

tan 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � b)sin(s � c)

sin s sin(s � a)

s
�

k

sin(s � a)
(28)

tan 1
2 B
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � a)sin(s � c)

sin s sin(s � b)

s
�

k

sin(s � b)
(29)

tan 1
2 C
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin(s � a)sin(s � b)

sin s sin(s � c)

s
�

k

sin(s � c)
; (30)

where

k2�
sin(s � a)sin(s � b)sin(s � c)

sin s
(31)

(Smart 1960, pp. 8�/; Gellert et al. 1989, p. 265;
Zwillinger 1995, p. 470).

Let

S�1
2(A�B�C) (32)

be the sum of half-angles, then the half-side formulas
are

tan 1
2 a
� �

�K cos(S�A) (33)

tan 1
2 b
� �

�K cos(S�B) (34)

tan 1
2 c
� �

�K cos(S�C): (35)

where

K2��
cos S

cos(S � A)cos(S � B)cos(S � C)
(36)

(Gellert et al. 1989, p. 265; Zwillinger 1995, p. 470).

The HAVERSINE formula for sides, where

hav x�1
2(1�cos x)�sin2 1

2 x
� �

; (37)

is given by

hav a�hav(b�c)�sin b sin c hav A (38)

(Smart 1960, pp. 18�/9; Zwillinger 1995, p. 471), and
the HAVERSINE formula for angles is given by

hav A�
sin(s � b)sin(s � c)

sin b sin c
(39)

�
hav a � hav(b � c)

sin b sin c
(40)

�hav[p�(B�C)]�sin B sin C hav a (41)

(Zwillinger 1995, p. 471).

GAUSS’S FORMULAS (also called Delambre’s analogies)
are

sin 1
2(a � b)
h i
sin 1

2 c
� � �

sin 1
2(A � B)
h i
cos 1

2 C
� � (42)

sin 1
2(a � b)
h i
sin 1

2 c
� � �

cos 1
2(A � B)
h i
sin 1

2 C
� � (43)

cos 1
2(a � b)
h i

cos 1
2 c
� � �

sin 1
2(A � B)
h i
cos 1

2 C
� � (44)



cos 1
2(a � b)
h i

cos 1
2 c
� � �

cos 1
2(A � B)
h i
sin 1

2 C
� � (45)

(Smart 1960, p. 22; Zwillinger 1995, p. 470).

NAPIER’S ANALOGIES are

sin 1
2(A � B)
h i

sin 1
2(A � B)
h i�tan 1

2(a � b)
h i

tan 1
2 c
� � (46)

cos 1
2(A � B)
h i

cos 1
2(A � B)
h i�tan 1

2(a � b)
h i

tan 1
2 c
� � (47)

sin 1
2(a � b)
h i

sin 1
2(a � b)
h i�tan 1

2(A � B)
h i
cot 1

2 C
� � (48)

cos 1
2(a � b)
h i

cos 1
2(a � b)
h i�tan 1

2(A � B)
h i
cot 1

2 C
� � (49)

(Beyer 1987; Gellert et al. 1989, p. 266; Zwillinger
1995, p. 471).

See also ANGULAR DEFECT, DESCARTES TOTAL ANGU-

LAR DEFECT, GAUSS’S FORMULAS, GIRARD’S SPHERICAL

EXCESS FORMULA, LAW OF COSINES, LAW OF SINES,
LAW OF TANGENTS, L’HUILIER’S THEOREM, NAPIER’S

ANALOGIES, SPHERICAL EXCESS, SPHERICAL GEOME-

TRY, SPHERICAL POLYGON, SPHERICAL TRIANGLE
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Spherical Vector Harmonic
VECTOR SPHERICAL HARMONIC

Spherical Wedge

The VOLUME of a spherical wedge is

V �2
3 r

3 u:

The surface area of the corresponding SPHERICAL

LUNE is

S�2r2u:

See also SPHERE, SPHERICAL CAP, SPHERICAL LUNE,
SPHERICAL SECTOR, SPHERICAL SEGMENT, WEDGE
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SphericalHarmonicY
SPHERICAL HARMONIC

Sphericon

The solid formed from a BICONE with opening angle of
908. Slice the solid by a plane containing the rota-
tional axes. The resulting CROSS SECTION is a SQUARE.
Now rotate the two pieces by 908 and reconnect them.

The above net shows another way the sphericon can
be constructed. In this figure u�p

ffiffiffi
2

p
=2 radians :



127:28�: This solid was discovered by C. J. Roberts,
and is not as widely known as it should be!

A sphericon has a single continuous face. A sphericon
rolls by wobbling from one face to another, resulting
in straight-line motion. In addition, one sphericon can
roll around another.

See also BICONE, CONE, CONE NET, SPHERE
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Spheroid

A spheroid is an ELLIPSOID

r2 cos2 u sin2 f

a2 
�

r2 sin2 u sin2 f

b2 
�

r2 cos2 f

c2
�1 (1)

with two SEMIMAJOR AXES equal. Orient the ELLIPSE

so that the a and b axes are equal, then

r2 cos2 u sin2 f

a2 
�

r2 sin2 u sin2 f

a2 
�

r2 cos2 f

c2
�1 (2)

r2 sin2 f

a2
�

r2 cos2 f

c2
�1 : (3)

where a is the equatorial RADIUS and c is the polar
RADIUS. The PARAMETRIC EQUATIONS therefore be-
come

x �a cos u sin f (4)

y �a sin u sin f (5)

z �c cos f (6)

for u � [0; 2p) and f � [0; p] :/

Here f is the colatitude, so take d � p=2 � f to
express in terms of latitude.

r2 cos2 d

a2
�

r2 sin2 d

c2
�1 : (7)

Rewriting cos2 d �1 �sin2 d gives

r2

a2 
�r2 sin2 d

1

c2 
�

1

a2

 !
�1 (8)

r2 1 �a2 sin2 d
a2 � c2

c2a2

 !
�r2 1 �sin2 d

a2 � c2

c2

 !

�a2 : (9)

so

r �a 1 �sin2 d
a2 � c2

c2

 !�1 =2

: (10)

If a �c , the spheroid is OBLATE. If a Bc , the spheroid
is PROLATE. If a �c , the spheroid degenerates to a
SPHERE.

See also DARWIN-DE SITTER SPHEROID, ELLIPSOID,
OBLATE SPHEROID, PROLATE SPHEROID

Spheroidal Coordinates
OBLATE SPHEROIDAL COORDINATES, PROLATE SPHER-

OIDAL COORDINATES

Spheroidal Function
OBLATE SPHEROIDAL WAVE FUNCTION, PROLATE

SPHEROIDAL WAVE FUNCTION, SPHEROIDAL WAVE

FUNCTION

Spheroidal Harmonic
A spheroidal harmonic is a special case of the
ELLIPSOIDAL HARMONIC which satisfies the differen-
tial equation

d

dx
1�x2
� � ds

dx

" #
� l�c2x2�

m2

1 � x2

 !
S�0

on the interval�15x51:/

See also ELLIPSOIDAL HARMONIC
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Spheroidal Wave Function
Whittaker and Watson (1990, p. 403) define the
internal and external spheroidal wavefunctions as

S(1)
mn�2p

(n � m)!

(n � m)!
Pm

n (ir)Pm
n (cos u)cos

sin(mf)

S(2)
mn�2p

(n � m)!

(n � m)!
Qm

n (ir)Qm
n (cos u)cos

sin(mf);

where Pm
l (x) is a LEGENDRE POLYNOMIAL and Qm

l (x) is
a LEGENDRE FUNCTION OF THE SECOND KIND.

Stratton (1935), Chu and Stratton (1941), and Rhodes
(1970) define the spheroidal functions as those solu-
tions of the differential equation



1 � h2
� �

cƒan(c ; h) �2(a �1)hc?an(c; h)

� ban �c2 h2
� �

can(c ; h) �0

which remain finite at the singular points h �91: The
condition of finiteness restricts the admissible values
of the parameter ban(c) to a discrete set of eigenvalues
indexed by n �0, 1, 2, ... (Rhodes 1970).

See also ELLIPSOIDAL HARMONIC, OBLATE SPHEROI-

DAL WAVE FUNCTION, PROLATE SPHEROIDAL WAVE

FUNCTION, SPHERICAL HARMONIC
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Sphinx

A 6-POLYIAMOND named for its resemblance to the
Great Sphinx of Egypt.
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Spider and Fly Problem

In a rectangular room (a CUBOID) with dimensions

30 ?�12?�12 ?; a spider is located in the middle of one
12 ?�12? wall one foot away from the ceiling. A fly is
in the middle of the opposite wall one foot away from
the floor. If the fly remains stationary, what is the
shortest distance the spider must crawl to capture the
fly? The answer, 40 ?; can be obtained by "flattening"
the walls as illustrated above. The puzzle was
originally posed in an English newspaper by Dudeney
in 1903 (Gardner 1958).
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Spider Lines
EPITROCHOID

Spiegeldrieck
FUHRMANN TRIANGLE

Spieker Center
The center of the SPIEKER CIRCLE. It is the CENTROID

of the PERIMETER of the original TRIANGLE. The
Spieker center is also the CLEAVANCE CENTER (Hon-
sberger 1995). The Spieker center lies on the NAGEL

LINE.

The Spieker center, third BROCARD POINT, and ISO-

TOMIC CONJUGATE POINT of the INCENTER are COLLI-

NEAR.

See also BROCARD POINTS, CENTROID (TRIANGLE),
CLEAVANCE CENTER, CLEAVER, INCENTER, ISOTOMIC

CONJUGATE POINT, NAGEL LINE, PERIMETER, SPIEKER

CIRCLE, TAYLOR CENTER
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Spieker Circle

The common INCIRCLE of the MEDIAL TRIANGLE

DMAMBMC and the congruent triangle DQ1Q2Q3

illustrated above, where Qi are the MIDPOINTS of the
line segment joining the NAGEL POINT Na with the
vertices of the original triangle DABC : The center of
the Spieker circle is called the SPIEKER CENTER Sp .

See also INCIRCLE, MEDIAL TRIANGLE, MIDPOINT,
NAGEL POINT, SPIEKER CENTER
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Spigot Algorithm
An ALGORITHM which generates digits of a quantity
one at a time without using or requiring previously
computed digits. Amazingly, spigot ALGORITHMS are
known for both PI and E .

Spijker’s Lemma
The image on the RIEMANN SPHERE of any CIRCLE

under a COMPLEX rational mapping with NUMERATOR

and DENOMINATOR having degrees no more than n
has length no longer than 2np:/

References
Edelman, A. and Kostlan, E. "How Many Zeros of a Random

Polynomial are Real?" Bull. Amer. Math. Soc. 32, 1�/7,
1995.

Wegert, E. and Trefethen, L. N. "From the Buffon Needle
Problem to the Kreiss Matrix Theorem." Amer. Math.
Monthly 101, 132 �/39, 1994.

Spindle
LEMON, SPINDLE CYCLIDE

Spindle Cyclide

The inversion of a SPINDLE TORUS. If the inversion
center lies on the torus, then the spindle cyclide
degenerates to a PARABOLIC SPINDLE CYCLIDE.

See also CYCLIDE, HORN CYCLIDE, PARABOLIC CY-

CLIDE, RING CYCLIDE, SPINDLE TORUS, TORUS

Spindle Torus

One of the three STANDARD TORI given by the PARA-

METRIC EQUATIONS

x �(c �a cos v)cos u

y �(c �a cos v)sin u

z �a sin v

with c Ba . The exterior surface is called an APPLE

and the interior surface a LEMON. The above left
figure shows a spindle torus, the middle a cutaway,
and the right figure shows a CROSS SECTION of the
spindle torus through the xz -plane.

See also APPLE, CYCLIDE, HORN TORUS, LEMON,
PARABOLIC SPINDLE CYCLIDE, RING TORUS, SPINDLE

CYCLIDE, STANDARD TORI, TORUS
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Spindle-Shaped Ellipsoid
PROLATE SPHEROID

Spinode
A function f (x) has a spinode (also called a horizontal
cusp) at a point x0 if f (x) is CONTINUOUS at x0 and

lim
x0x0

f ?(x) ��

from one side while

lim
x0x0

f ?(x) ���

from the other side, so the curve is CONTINUOUS but
the DERIVATIVE is not.

See also ACNODE, CRUNODE, CUSP, TACNODE

Spinor
A two-component COMPLEX COLUMN VECTOR. Spinors
are used in physics to represent particles with half-
integral spin (i.e., fermions ).

See also LIE DERIVATIVE (SPINOR), MINKOWSKI SPACE,
SPINOR FIELD, TWISTOR
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Spinor Field

See also SPINOR, TWISTOR

Spira Mirabilis
LOGARITHMIC SPIRAL

Spiral
In general, a spiral is a curve with t(s) =k(s) equal to a
constant for all s , where t is the TORSION and k is the
CURVATURE.

See also ARCHIMEDES’ SPIRAL, CIRCLE INVOLUTE,
CONICAL SPIRAL, CORNU SPIRAL, COTES’ SPIRAL,
DAISY, EPISPIRAL, FERMAT’S SPIRAL, HELIX, HYPER-

BOLIC SPIRAL, LOGARITHMIC SPIRAL, MICE PROBLEM,
NIELSEN’S SPIRAL, PHYLLOTAXIS, POINSOT’S SPIRALS,
POLYGONAL SPIRAL, SPHERICAL SPIRAL
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Spiral Point
A FIXED POINT for which the EIGENVALUES are COM-

PLEX CONJUGATES.

See also STABLE SPIRAL POINT, UNSTABLE SPIRAL

POINT
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Spiral Similarity

The combination of a CENTRAL DILATION and a
ROTATION about the same center. However, the
combination of a central dilation and a rotation whose
centers are distinct is also a spiral symmetry. In fact,
any two DIRECTLY SIMILAR figures are related either
by a TRANSLATION or by a spiral symmetry (Coxeter
and Greitzer 1967, p. 97).

See also CENTRAL DILATION, DILATION, ROTATION,
SIMILAR
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Spirallohedron
RHOMBIC SPIRALLOHEDRON

Spiral-Similarity Tessellation
A tessellation constructed by placing a series of
polygonal tiles of decreasing size on an equilateral
spiral. Any ordinary TESSELLATION can be converted
to such a form.

See also TESSELLATION
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Spiric Section

The equation of the curve of intersection of a TORUS

with a plane perpendicular to both the midplane of
the torus and to the plane x �0. (The general
intersection of a TORUS with a plane is called a TORIC

SECTION). Let the tube of a torus have radius a , let its
midplane lie in the z �0 plane, and let the center of
the tube lie at a distance c from the origin. Now cut
the torus with the plane y �r . The equation of the
TORUS with y �r gives the equation

c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �r2

p� �2

�z2 �a2 (1)

c2 �a2 �x2 �z2 �2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �r2

p
(2)

r2 �a2 �c2 �x2 �z2
� �2

�4c2 x2 �r2
� �

: (3)

The above plots show a series of spiric sections for the
RING TORUS, HORN TORUS, and SPINDLE TORUS, re-
spectively. When r �0, the curve consists of two
CIRCLES of RADIUS a whose centers are at (c ; 0) and
(�c; 0): If r �c �a ; the curve consists of one point (the
origin), while if r > c �a ; no point lies on the curve.

The spiric extensions are an extension of the CONIC

SECTIONS constructed by Menaechmus around 150
BC by cutting a CONE by a PLANE, and were first
considered around 50 AD by the Greek mathemati-
cian Perseus (MacTutor).

If r �a , then (3) simplifies to

x2 �z2 �c2
� �2

�4c2x2 �4c2a2 ; (4)

which is the equation of CASSINI OVALS. CASSINI

OVALS are therefore SPIRIC SECTIONS. Furthermore,
the surface having these curves as CROSS SECTIONS is
the CASSINI SURFACE illustrated above, with the
modification that the vertical component is squared
instead of to the fourth power (Gosper).

See also TORIC SECTION, TORUS
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Spirograph
A HYPOTROCHOID generated by a fixed point on a
CIRCLE rolling inside a fixed CIRCLE. It has parametric
equations,

x�(R�r) cos u�(r�r) cos
R � r

r
u

 !
(1)

y�(R�r) sin u�(r�r) sin
R � r

r
u

 !
; (2)



where R is the radius of the fixed circle, r is the
radius of the rotating circle, and r is the offset of the
edge of the rotating circle. The figure closes only if R ,
r , and r are RATIONAL. The equations can also be
written

x�x0[m cos t�a cos(nt)]�y0[m sin t�a sin(nt)] (3)

y�y0[m cos t�a cos(nt)]�x0[m sin t�a sin(nt)]: (4)

where the outer wheel has radius 1, the inner wheel a
radius p=q; the pen is placed a units from the center,
the beginning is at u radians above the X -AXIS, and

m�
q � p

q
(5)

n�
q � p

p
(6)

x0�cos u (7)

y0�sin u: (8)

The following curves are for a�i=10; with i�1, 2, ...,
10, and u�0:/

(p; q)�(1; 3)

(p; q)�(1; 4)

(p; q)�(1; 5)

(p; q)�(2; 5)

(p; q)�(2; 7)



(p; q) �(3; 7)

Additional attractive designs such as the following
can also be made by superposing individual spiro-
graphs.

See also EPITROCHOID, HARMONOGRAPH, HYPOTRO-

CHOID, MAURER ROSE, SPIROLATERAL

Spirolateral
A figure formed by taking a series of steps of length 1,
2, ..., n , with an angle u turn after each step. The
symbol for a spirolateral is a1 ; ... ; ak nu ; where the ai/s
indicate that turns are in the �u direction for these
steps.

See also MAURER ROSE, SPIROGRAPH
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Splay Tree
A self-organizing data structure which uses rotations
to move any accessed key to the root. This leaves
recently accessed nodes near the top of the tree,
making them very quickly searchable (Skiena 1997,
p. 177).

See also TREE
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Spline

A piecewise polynomial function that can have a
locally very simple form, yet at the same time be
globally flexible and smooth. Splines are very useful
for modeling arbitrary functions, and are used ex-
tensively in computer graphics.

See also B-SPLINE, BÉ ZIER SPLINE, CUBIC SPLINE,
NURBS CURVE, THIN PLATE SPLINE
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Splitter

A perimeter-bisecting line segment which originates
at a vertex of a polygon. The three splitters of a
TRIANGLE CONCUR in a point known as the NAGEL

POINT Na .

See also B -LINE, CLEAVER
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Splitting

Splitting Algorithm

A method for computing a UNIT FRACTION. This
method always terminates (Beeckmans 1993).
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Splitting Field
The EXTENSION FIELD K of a FIELD F is called a
splitting field for the polynomial f (x) � F[x] if f (x)
factors completely into linear factors in K[x] and f (x)
does not factor completely into linear factors over any
PROPER SUBFIELD of K containing F (Dummit and
Foote 1998, p. 448).

See also ALGEBRAIC CLOSURE, EXTENSION FIELD,
FIELD, GALOIS EXTENSION FIELD
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Spoke
WHEEL GRAPH

Sponge
HONEYCOMB

Sporadic Group
One of the 26 FINITE SIMPLE GROUPS. The most
complicated is the MONSTER GROUP. A summary, as
given by Conway et al. (1985), is given below.

Symbol Name Order M A

/M11/ MATHIEU /24 � 32 � 5 � 11/ 1 1

/M12/ MATHIEU /26 � 33 � 5 � 11/ 2 2

/M22/ MATHIEU /27 � 32 � 5 � 7 � 11/ 12 2

/M23/ MATHIEU /27 � 32 � 5 � 7 � 11 � 23/ 1 1

/M24/ MATHIEU /210 � 33 � 5 � 7 � 11 � 23/ 1 1

/J2�HJ/ JANKO /27 � 33 � 52 � 7/ 2 2



Suz SUZUKI /213 � 37 � 52 � 7 � 11 � 13/ 6 2

HS HIGMAN-SIMS /29 � 32 � 53 � 7 � 11/ 2 2

McL MCLAUGHLIN /27 � 36 � 53 � 7 � 11/ 3 2

/Co3/ CONWAY /210 � 37 � 53 � 7 � 11 � 23/ 1 1

/Co2/ CONWAY /218 � 36 � 53 � 7 � 11 � 23/ 1 1

/Co1/ CONWAY /221 � 39 � 54 � 72 � 11 � 13 � 23/ 2 1

He HELD /210 � 33 � 52 � 73 � 17/ 1 2

/Fi22/ FISCHER /217 � 39 � 52 � 7 � 11 � 13/ 6 2

/Fi23/ FISCHER /218 � 313 � 52 � 7 � 11 � 13 � 17 � 23/ 1 1

/Fi?24/ FISCHER /221 � 316 � 52 � 73 � 11 � 13 � 17 � 23 � 29/ 3 2

HN HARADA-NOR-

TON

/214 � 36 � 56 � 7 � 11 � 19/ 1 2

Th THOMPSON /215 � 310 � 53 � 72 � 13 � 19 � 31/ 1 1

B BABY MON-

STER

/241 � 313 � 56 � 72 � 11 � 13 � 17 � 19 � 23/

/ �31 � 47/

2 1

M MONSTER /246 � 320 � 59 � 76 � 112 � 133 � 17 � 19 � 23/

/ �29 � 31 � 41 � 47 � 59 � 71/

1 1

/J1/ JANKO /23 � 3 � 5 � 7 � 11 � 19/ 1 1

O’N O’NAN /29 � 34 � 5 � 73 � 11 � 19 � 31/ 3 2

/J3/ JANKO /27 � 35 � 5 � 17 � 19/ 3 2

Ly LYONS /28 � 37 � 56 � 7 � 11 � 31 � 37 � 67/ 1 1

Ru RUDVALIS /214 � 33 � 53 � 7 � 13 � 29/ 2 1

/J4/ JANKO /221 � 33 � 5 � 7 � 113 � 23 � 29 � 31 � 37 � 43/ 1 1

See also BABY MONSTER GROUP, CONWAY GROUPS,
FISCHER GROUPS, HARADA-NORTON GROUP, HELD

GROUP, HIGMAN-SIMS GROUP, JANKO GROUPS, LYONS

GROUP, MATHIEU GROUPS, MCLAUGHLIN GROUP,
MONSTER GROUP, O’NAN GROUP, RUDVALIS GROUP,
SUZUKI GROUP, THOMPSON GROUP
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Sports
BASEBALL, BOWLING, CHECKERS, CHESS, GO

Sprague-Grundy Function
NIM-VALUE

Sprague-Grundy Number
NIM-VALUE

Sprague-Grundy Value
NIM-VALUE

Spread (Link)
SPAN (LINK)

Spread (Tree)
A TREE having an infinite number of branches and
whose nodes are sequences generated by a set of
rules.

See also FAN

Spreading A Rumor
GOSSIPING

Springer Number
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Spun Knot
A 3-D KNOT spun about a plane in 4-D. Unlike
SUSPENDED KNOTS, spun knots are smoothly em-
bedded at the poles.

See also SUSPENDED KNOT, TWIST-SPUN KNOT

Spur
TRACE (MATRIX)

Sqrt
SQUARE ROOT

Squarable
An object which can be constructed by SQUARING is
called squarable.



Square

The term square is sometimes used to mean SQUARE

NUMBER. When used in reference to a geometric
figure, however, it means a convex QUADRILATERAL

with four equal sides at RIGHT ANGLES to each other,
illustrated above. When used as a symbol, IABCD
denotes a square with given vertices, while G1IG2 is
sometimes used to denote a GRAPH PRODUCT (Clark
and Suen 2000).

The PERIMETER of a square with side length a is

L�4a (1)

and the AREA is

A�a2: (2)

The INRADIUS r , CIRCUMRADIUS R , and AREA A can be
computed directly from the formulas for a general
REGULAR POLYGON with side length a and n�4 sides,

r�1
2 a cot

p

4

 !
�1

2 a (3)

R�1
2 a csc

p

4

 !
�1

2

ffiffiffi
2

p
a (4)

A�1
4 na2 cot

p

4

 !
�a2; (5)

The length of the DIAGONAL of the UNIT SQUARE is
ffiffiffi
2

p
;

sometimes known as PYTHAGORAS’S CONSTANT.

The AREA of a square constructed inside a UNIT

SQUARE as shown in the above diagram can be found
as follows. Label x and y as shown, then

x2�y2�r2 (6)ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
�x

� �2

�y2�1: (7)

Plugging (6) into (7) gives

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
�x

� �2

� r2�x2
� �

�1: (8)

Expanding

x2�2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
�1�r2�r2�x2�1 (9)

and solving for x gives

x�
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p : (10)

Plugging in for y yields

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

p
�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p : (11)

The area of the shaded square is then

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
�x�y

� �2

�
(1 � r)2

1 � r2
(12)

(Detemple and Harold 1996).

The STRAIGHTEDGE and COMPASS construction of the
square is simple. Draw the line P?OOP0 and construct
a circle having OP0 as a radius. Then construct the
perpendicular OB through O . Bisect P0OB and P?0OB
to locate P1 and P2; where P?0 is opposite P0: Similarly,
construct P3 and P4 on the other SEMICIRCLE. Con-
necting P1P2P3P4 then gives a square.

An infinity of points in the interior of a square are
known whose distances from three of the corners of a
square are RATIONAL NUMBERS. Calling the distances
a , b , and c where s is the side length of the square,
these solutions satisfy

s2�b2�a2
� �2

� s2�b2�c2
� �2

�(2bs)2 (13)

(Guy 1994). In this problem, one of a , b , c , and s is
DIVISIBLE by 3, one by 4, and one by 5. It is not known
if there are points having distances from all four
corners RATIONAL, but such a solution requires the
additional condition

a2�c2�b2�d2: (14)



In this problem, s is DIVISIBLE by 4 and a , b , c , and d
are ODD. If s is not DIVISIBLE by 3 (5), then two of a , b ,
c , and d are DIVISIBLE by 3 (5) (Guy 1994).

The centers of four squares erected either internally
or externally on the sides of a PARALLELOGRAMS are
the vertices of a square (Yaglom 1962, pp. 96 �/7;
Coxeter and Greitzer 1967, p. 84).

See also BROWKIN’S THEOREM, DISSECTION, DOUGLAS-

NEUMANN THEOREM, FINSLER-HADWIGER THEOREM,
LOZENGE, NESTED SQUARE, PERFECT SQUARE DISSEC-

TION, PYTHAGORAS’S CONSTANT, PYTHAGOREAN

SQUARE PUZZLE, RECTANGLE, SQUARE DIVISION BY

LINES, SQUARE INSCRIBING, SQUARE NUMBER,
SQUARE PACKING, SQUARE QUADRANTS, UNIT

SQUARE, VON AUBEL’S THEOREM
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Square Antiprism

The ANTIPRISM with square bases.

See also ANTIPRISM, SQUARE PRISM

Square Bracket
One of the symbols [ and ] used in many different
contexts in mathematics.

1. Square brackets are occasionally used in espe-
cially complex expressions in place of (or in
addition to) PARENTHESES, especially as a group
symbol outside an inner set of parentheses, e.g.,
[3 �4 �(5 �6)] =7:/
2. Large brackets around an array of numbers,
e.g., ab

cd


 �
indicate a MATRIX. (The symbol ab

cd

� �
is also

commonly used.)
3. A square bracket at one end of an INTERVAL

indicates that the INTERVAL is closed at that end,
that is, it includes the number at that end.
4. Brackets may be used to denote the LEAST

COMMON MULTIPLE, e.g.,
[10; 6] �LCM(10; 6) �30 :/
5. Some authors (although this work does not ) use
[x] to denote the FLOOR FUNCTION xb c:/

See also ANGLE BRACKET, BRACE, PARENTHESIS
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Square Bracket Polynomial
A POLYNOMIAL which is not necessarily an invariant
of a LINK. It is related to the DICHROIC POLYNOMIAL. It
is defined by the SKEIN RELATIONSHIP

BL�
�q�1=2vBL0

�BL�
; (1)

and satisfies

Bunknot�q1=2 (2)

and

BL@unknot�q1=2BL: (3)
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Square Cupola

JOHNSON SOLID J4 : The bottom eight VERTICES are

91
2 1 �

ffiffiffi
2

p� �
; 91

2 ; 0
� �

; 91
2 ; 9

1
2 1 �

ffiffiffi
2

p� �
; 0

� �
;

and the top four VERTICES are

9
1ffiffiffi
2

p ; 0;
1ffiffiffi
2

p
 !

; 0; 9
1ffiffiffi
2

p ;
1ffiffiffi
2

p
 !

:

Square Curve
SIERPINSKI CURVE

Square Division by Lines
The average number of regions N(n) into which n
lines divide a SQUARE is

N(n) � 1
16 n(n �1)p �n �1

(Santaló 1976).

See also CIRCLE DIVISION BY LINES
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Square Graph

The CYCLE GRAPH C4 :/

See also CYCLE GRAPH, TRIANGLE GRAPH
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Square Gyrobicupola

JOHNSON SOLID J29 :/
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Square Inscribing
As shown by Schnirelman (1944), a SQUARE can be
INSCRIBED in any closed convex curve, although it is
not known if this holds true for every JORDAN CURVE

(Steinhaus 1983, p. 104). However, a SQUARE can be
CIRCUMSCRIBED about any JORDAN CURVE (Steinhaus
1999, p. 104).

See also JORDAN CURVE, SQUARE
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Square Integrable
A function f (x) is said to be square integrable if

g
�

��

f (x)j j2 dx

is finite.

See also INTEGRABLE, L2-NORM, TITCHMARSH THEO-

REM

References
Sansone, G. "Square Integrable Functions." §1.1 in Ortho-

gonal Functions, rev. English ed. New York: Dover, pp.
1�/, 1991.



Square Knot

A composite KNOT of six crossings consisting of a KNOT

SUM of a TREFOIL KNOT and its MIRROR IMAGE. The
GRANNY KNOT has the same ALEXANDER POLYNOMIAL

x2 �x �1ð Þ2
as the square knot. The square knot is

also called the REEF KNOT.

See also GRANNY KNOT, MIRROR IMAGE, TREFOIL

KNOT
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Square Matrix
A MATRIX for which horizontal and vertical dimen-
sions are the same (i.e., an n �n MATRIX). A matrix
can be tested to see if it is square using SquareMa-
trixQ[m ] in the Mathematica add-on package Lin-
earAlgebra‘MatrixMultiplication‘ (which can
be loaded with the command
BBLinearAlgebra‘).

See also MATRIX, RECTANGULAR MATRIX

Square Number

A FIGURATE NUMBER OF THE FORM Sn �n2 ; where n is
an INTEGER. A square number is also called a PERFECT

SQUARE. The first few square numbers are 1, 4, 9, 16,
25, 36, 49, ... (Sloane’s A000290). The GENERATING

FUNCTION giving the square numbers is

x(x � 1)

(1 � x)3 �x �4x2 �9x3 �16x4 �. . . : (1)

The (n �1)/st square number Sn�1 is given in terms of

the nth square number Sn by

Sn�1 �Sn �2n �1: (2)

since

(n �1)2 �n2 �2n �1; (3)

which is equivalent to adding a GNOMON to the
previous square, as illustrated above.

The nth square number is equal to the sum of the
(n�1)/-st and nth TRIANGULAR NUMBERS,

Sn�
1
2(n�1)n�1

2 n(n�1)�n2: (4)

as can seen in the above diagram, in which the
(n�1)/-st triangular number is represented by the
white triangles, the nth triangular number is repre-
sented by the black triangles, and the total number of
triangles is the square number Sn�n2 (R. Sobel).
As a part of the study of WARING’S PROBLEM, it is
known that every positive integer is a sum of no more
than 4 positive squares (/g(2)�4; LAGRANGE’S FOUR-

SQUARE THEOREM), that every "sufficiently large"
integer is a sum of no more than 4 positive squares
(/G(2)�4); and that every integer is a sum of at most 3
signed squares ( eg(2)�3): Actually, the basis set for
representing positive integers with positive squares is
f1; 1; 4; 9; 16; 25; 36; 64; 81; 100; . . .g; so 49 need
never be used. Furthermore, since an infinite number
of n require four squares to represent them, the least
INTEGER G(2) such that every POSITIVE INTEGER

beyond a certain point requires G(2) squares is given
by G(2)�4:/

The number of representation of a number n by k
squares, distinguishing signs and order, is denoted
rk(n) and called the SUM OF SQUARES FUNCTION. The
minimum number of squares needed to represent the
numbers 1, 2, 3, ... are 1, 2, 3, 1, 2, 3, 4, 2, 1, 2, ...
(Sloane’s A002828), and the number of distinct ways
to represent the numbers 1, 2, 3, ... in terms of
squares are 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, ... (Sloane’s
A001156). A brute-force algorithm for enumerating
the square partitions of n is repeated application of
the GREEDY ALGORITHM. However, this approach
rapidly becomes impractical since the number of
representations grows extremely rapidly with n , as
shown in the following table.

n Square Partitions

10 4

50 104



100 1116

150 6521

200 27482

The kth nonsquare number ak is given by

an�n� 1
2�

ffiffiffi
n

pj k
; (5)

where xb c is the FLOOR FUNCTION, and the first few
are 2, 3, 5, 6, 7, 8, 10, 11, ... (Sloane’s A000037).

The only numbers which are simultaneously square
and PYRAMIDAL (the CANNONBALL PROBLEM) are P1�
1 and P24�4900; corresponding to S1�1 and S70�
4900 (Dickson 1952, p. 25; Ball and Coxeter 1987,
p. 59; Ogilvy 1988), as conjectured by Lucas (1875,
1876) and proved by Watson (1918). The CANNONBALL

PROBLEM is equivalent to solving the DIOPHANTINE

EQUATION

y2�1
6 x(x�1)(2x�1) (6)

(Guy 1994, p. 147).

The only numbers which are square and TETRAHE-

DRAL are Te1�1; Te2�4; and Te48�19600 (giving
S1�1; S2�4; and S140�19600); as proved by Meyl
(1878; cited in Dickson 1952, p. 25; Guy 1994, p. 147).
In general, proving that only certain numbers are
simultaneously figurate in two different ways is far
from elementary.

To find the possible last digits for a square number,
write n�10a�b for the number written in decimal
NOTATION as ab10 (a , b�0, 1, ..., 9). Then

n2�100a2�20ab�b2: (7)

so the last digit of n2 is the same as the last digit of b2:
The following table gives the last digit of b2 for b�0,
1, ..., 9 (where numbers with more that one digit have
only their last digit indicated, i.e., 16 becomes _6). As
can be seen, the last digit can be only 0, 1, 4, 5, 6, or 9.

0 1 2 3 4 5 6 7 8 9

0 1 4 9 _6 _5 _6 _9 _4 _1

We can similarly examine the allowable last two
digits by writing abc10 as

n�100a�10b�c; (8)

so

n2�(100a�10b�c)2

�104a2�2(1000ab�100ac�10bc)�100b2�c2

�(104a2�2000ab�100ac�100b2)�20bc�c2

�100(100a2�20ab�ac�b2)�(20bc�c2) (9)

so the last two digits must have the last two digits of
20bc�c2: Furthermore, the last two digits can be
obtained by considering only b�0, 1, 2, 3, and 4,
since

20(b�5)c�c2�100c� 20bc�c2
� �

(10)

has the same last two digits as 20bc�c2 (with the one
additional possibility that c�0 in which case the last
two digits are 00). The following table (with the
addition of 00) therefore exhausts all possible last
two digits.

c

b 1 2 3 4 5 6 7 8 9

0 01 04 09 16 25 36 49 64 81

1 _21 _44 _69 _96 _25 _56 _89 _24 _61

2 _41 _84 _29 _76 _25 _76 _29 _84 _41

3 _61 _24 _89 _56 _25 _96 _69 _44 _21

4 _81 _64 _49 _36 _25 _16 _09 _04 _01

The only 22 possibilities are therefore 00, 01, 04, 09,
16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81,
84, 89, and 96, which can be summarized succinctly
as 00, e1; e4; 25, o6; and e9; where e stands for an
EVEN NUMBER and o for an ODD NUMBER. Addition-
ally, a NECESSARY (but not SUFFICIENT) condition for a
number to be square is that its DIGITAL ROOT be 1, 4,
7, or 9. The digital roots of the first few squares are 1,
4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, ... (Sloane’s A056992),
while the list of number having digital roots 1, 4, 7, or
9 is 1, 4, 7, 9, 10, 13, 16, 18, 19, 22, 25, ... (Sloane’s
A056991).

The following table gives the possible residues mod n
for square numbers for n�1 to 20. The quantity s(n)
gives the number of distinct residues for a given n .

n /s(n)/ /x2(mod n)/

2 2 0, 1

3 2 0, 1

4 2 0, 1

5 3 0, 1, 4

6 4 0, 1, 3, 4



7 4 0, 1, 2, 4

8 3 0, 1, 4

9 4 0, 1, 4, 7

10 6 0, 1, 4, 5, 6, 9

11 6 0, 1, 3, 4, 5, 9

12 4 0, 1, 4, 9

13 7 0, 1, 3, 4, 9, 10, 12

14 8 0, 1, 2, 4, 7, 8, 9, 11

15 6 0, 1, 4, 6, 9, 10

16 4 0, 1, 4, 9

17 9 0, 1, 2, 4, 8, 9, 13, 15, 16

18 8 0, 1, 4, 7, 9, 10, 13, 16

19 10 0, 1, 4, 5, 6, 7, 9, 11, 16, 17

20 6 0, 1, 4, 5, 9, 16

In general, the ODD squares are congruent to 1 (mod
8) (Conway and Guy 1996). Stangl (1996) gives an
explicit formula by which the number of squares s(n)
in Zn (i.e., mod n ) can be calculated. Let p be an ODD

PRIME. Then s(n) is the MULTIPLICATIVE FUNCTION

given by

s(2)�2 (11)

s(p)�1
2(p�1) (p"2) (12)

s p2
� �

�1
2 p2�p�2
� �

(p"2) (13)

s 2nð Þ�
1
3 2n�1�4ð Þ for n even
1
3 2n�1�5ð Þ for n odd

(
(14)

s pnð Þ�

pn�1 � p � 2

2(p � 1)
for n]3 even

pn�1 � 2p � 1

2(p � 1)
for n]3 odd:

8>>><
>>>: (15)

/s(n) is related to the number q(n) of QUADRATIC

RESIDUES in Zn by

q pnð Þ�s pnð Þ�s pn�2
� �

(16)

for n]3 (Stangl 1996).

For a perfect square n , (n=p)�0 or 1 for all ODD

PRIMES pBn where (n=p) is the LEGENDRE SYMBOL. A
number n which is not a perfect square but which
satisfies this relationship is called a PSEUDOSQUARE.

In a Ramanujan conference talk, W. Gosper conjec-
tured that every sum of four distinct odd squares is
the sum of four distinct even squares. This conjecture
was proved by M. Hirschhorn using the identity

(4a�1)2�(4b�1)2�(4c�1)2�(4d�1)2

�4[(a�b�c�d�1)2�(a�b�c�d)2

�(a�b�c�d)2�(a�b�c�d)2]; (17)

where a , b , c , and d are positive or negative integers.
Hirschhorn also showed that every sum of four
distinct oddly even squares is the sum of four distinct
odd squares.

A PRIME NUMBER p can be written as the sum of two
squares IFF p�1 is not divisible by 4 the (FERMAT

4N�1 THEOREM). An arbitrary positive number n is
expressible as the sum of two squares IFF, given its
PRIME FACTORIZATION

n�pa1

1 pa2

2 pa3

3 � � � pak

k ; (18)

none of pai

i �1 is divisible by 4 (Conway and Guy
1996, p. 147). This is equivalent the requirement that
all the odd factors of the SQUAREFREE PART n? of n are
equal to 1 (mod 4) (Hardy and Wright 1979, Finch).
The first few numbers which can be expressed as the
sum of two squares are 1, 2, 4, 5, 8, 9, 10, 13, 16, 17,
18, 20, 25, 26, ... (Sloane’s A001481). Letting d(n) be
the fraction of numbers5n which are expressible as
the sum of two squares,

lim
n0�

d(n)�0; (19)

and

lim
n0�

d(n)
ffiffiffiffiffiffiffiffiffi
ln n

p
�K ; (20)

where K is the LANDAU-RAMANUJAN CONSTANT.

Numbers expressible as the sum of three squares are
those not OF THE FORM 4k(8l�7) for k; l]0 (Nagell
1951, p. 194; Wells 1986, pp. 48 and 56; Hardy 1999,
p. 12).

The following table gives the first few numbers which
require N�1, 2, 3, and 4 squares to represent them
as a sum (Wells 1986, p. 70).

N Sloane Numbers

1 Sloane’s
A000290

1, 4, 9, 16, 25, 36, 49, 64, 81,
...

2 Sloane’s
A000415

2, 5, 8, 10, 13, 17, 18, 20, 26,
29, ...

3 Sloane’s
A000419

3, 6, 11, 12, 14, 19, 21, 22, 24,
27, ...

4 Sloane’s
A004215

7, 15, 23, 28, 31, 39, 47, 55,
60, 63, ...

The FERMAT 4N�1 THEOREM guarantees that every
PRIME OF THE FORM 4n�1 is a sum of two SQUARE

NUMBERS in only one way.



There are only 31 numbers which cannot be ex-
pressed as the sum of distinct squares: 2, 3, 6, 7, 8,
11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44,
47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128 (Sloane’s
A001422; Guy 1994; Savin 2000). The following
numbers cannot be represented using fewer than
five distinct squares: 55, 88, 103, 132, 172, 176, 192,
240, 268, 288, 304, 368, 384, 432, 448, 496, 512, and
752, together with all numbers obtained by multi-
plying these numbers by a power of 4. This gives all
known such numbers less than 105 (Savin 2000). All
numbers > 188 can be expressed as the sum of at
most five distinct squares, and only

124�1�4�9�25�36�49 (21)

and

188�1�4�9�25�49�100 (22)

require six distinct squares (Bohman et al. 1979; Guy
1994, p. 136; Savin 2000). In fact, 188 can also be
represented using seven distinct squares:

188�1�4�9�25�36�49�64: (23)

The following table gives the numbers which can be
represented in W different ways as a sum of S
squares. For example,

50�12�72�52�52 (24)

can be represented in two ways (W�2) by two
squares (S�2).

S W Sloane Numbers

1 1 Sloane’s
A000290

1, 4, 9, 16, 25, 36, 49, 64, 81,
100, 121, ...

2 1 Sloane’s
A025284

2, 5, 8, 10, 13, 17, 18, 20, 25,
26, 29, 32, ...

2 2 Sloane’s
A025285

50, 65, 85, 125, 130, 145,
170, 185, 200, ...

3 1 Sloane’s
A025321

3, 6, 9, 11, 12, 14, 17, 18, 19,
21, 22, 24, ...

3 2 Sloane’s
A025322

27, 33, 38, 41, 51, 57, 59, 62,
69, 74, 75, ...

3 3 Sloane’s
A025323

54, 66, 81, 86, 89, 99, 101,
110, 114, 126, ...

3 4 Sloane’s
A025324

129, 134, 146, 153, 161, 171,
189, 198, ...

4 1 Sloane’s
A025357

4, 7, 10, 12, 13, 15, 16, 18,
19, 20, 21, 22, ...

4 2 Sloane’s
A025358

31, 34, 36, 37, 39, 43, 45, 47,
49, 50, 54, ...

4 3 Sloane’s
A025359

28, 42, 55, 60, 66, 67, 73, 75,
78, 85, 95, 99, ...

4 4 Sloane’s
A025360

52, 58, 63, 70, 76, 84, 87, 91,
93, 97, 98, 103, ...

The least numbers which are the sum of two squares
in exactly n different ways for n�1, 2, ... are given by
2, 50, 325, 1105, 8125, 5525, 105625, 27625, 71825,
138125, 5281250, ... (Sloane’s A016032; Beiler 1966,
pp. 140�/41; Culbertson; Hardy and Wright 1979;
Rivera).

The product of four distinct NONZERO INTEGERS in
ARITHMETIC PROGRESSION is square only for (�3, �1,
1, 3), giving (�3)(�1)(1)(3)�9 (Le Lionnais 1983,
p. 53). It is possible to have three squares in ARITH-

METIC PROGRESSION, but not four (Dickson 1952,
pp. 435�/40). If these numbers are r2; s2; and t2; there
are POSITIVE INTEGERS p and q such that

r� p2�2pq�q2
�� �� (25)

s�p2�q2 (26)

t�p2�2pq�q2; (27)

where (p; q)�1 and one of r , s , or t is EVEN (Dickson
1952, pp. 437�/38). Every three-term progression of
squares can be associated with a PYTHAGOREAN

TRIPLE (X; Y ; Z)) by

X�1
2(r�t) (28)

Y�1
2(t�r) (29)

Z�s (30)

(Robertson 1996).

CATALAN’S CONJECTURE states that 8 and 9 (23 and 32)
are the only consecutive POWERS (excluding 0 and 1),
i.e., the only solution to CATALAN’S DIOPHANTINE

PROBLEM. This CONJECTURE has not yet been proved
or refuted, although R. Tijdeman has proved that
there can be only a finite number of exceptions should
the CONJECTURE not hold. It is also known that 8 and
9 are the only consecutive CUBIC and square numbers
(in either order).

The numbers that are not the difference of two
squares are 2, 6, 10, 14, 18, ... (Wells 1986, p. 76).

A square number can be the concatenation of two
squares, as in the case 16�42 and 9�32 giving
169�132. The first few numbers which are neither
square nor the sum of a square and a PRIME are 10,
34, 58, 85, 91, 130, 214, ... (Sloane’s A020495).

It is conjectured that, other than 102n , 4�102n and
9�102n , there are only a FINITE number of squares
n2 having exactly two distinct NONZERO DIGITS (Guy
1994, p. 262). The first few such n are 4, 5, 6, 7, 8, 9,



11, 12, 15, 21, ... (Sloane’s A016070), corresponding to
n2 of 16, 25, 36, 49, 64, 81, 121, ... (Sloane’s A018884).

The following table gives the first few numbers
which, when squared, give numbers composed of
only certain digits. The values of n such that n2

contains exactly two different digits are given by 4, 5,
6, 7, 8, 9, 10, 11, 12, 15, 20, ... (Sloane’s A016069),
whose squares are 16, 25 36, 49, 64, ... (Sloane’s
A018885). The only known square number composed
only of the digits 7, 8, and 9 is 9. Based on a
discussion in rec.puzzles, Vardi (1991) considered
numbers composed only of the square digits: 1, 4, and
9. It is conjectured that there are only finitely many,
and the largest known is

6480702115891070212

�419994999149149944149149944191494441 (31)

found by G. Jacobson and D. Applegate (rec.puz-
zles FAQ).

Digits Sloane n , n2
/

1, 2, 3 Sloane’s
A030175

1, 11, 111, 36361, 363639,
...

Sloane’s
A030174

1, 121, 12321,
1322122321, ...

1, 4, 6 Sloane’s
A027677

1, 2, 4, 8, 12, 21, 38, 108,
...

Sloane’s
A027676

1, 4, 16, 64, 144, 441,
1444, ...

1, 4, 9 Sloane’s
A027675

1, 2, 3, 7, 12, 21, 38, 107,
...

Sloane’s
A006716

1, 4, 9, 49, 144, 441, 1444,
11449, ...

2, 4, 8 Sloane’s
A027679

2, 22, 168, 478, 2878,
210912978, ...

Sloane’s
A027678

4, 484, 28224, 228484,
8282884, ...

4, 5, 6 Sloane’s
A030177

2, 8, 216, 238, 258, 738,
6742, ...

Sloane’s
A030176

4, 64, 46656, 56644,
66564, ...

BROWN NUMBERS are pairs (m, n ) of INTEGERS

satisfying the condition of BROCARD’S PROBLEM, i.e.,
such that

n! �1 �m2 ; (32)

where n! is a FACTORIAL. Only three such numbers
are known: (5,4), (11,5), (71,7). Erdos conjectured that
these are the only three such pairs.

Either 5x2 �4 �y2 or 5x2 �4 �y2 has a solution in
POSITIVE INTEGERS IFF, for some n , (x; y) � Fn ; Lnð Þ;
where Fn is a FIBONACCI NUMBER and Ln is a LUCAS

NUMBER (Honsberger 1985, pp. 114 �/18).

The smallest and largest square numbers containing
the digits 1 to 9 are

11 ; 8262 �139; 854; 276; (33)

30; 3842 �923; 187; 456: (34)

The smallest and largest square numbers containing
the digits 0 to 9 are

32 ; 0432 �1; 026; 753; 849; (35)

99; 0662 �9; 814; 072; 356 (36)

(Madachy 1979, p. 159). The smallest and largest
square numbers containing the digits 1 to 9 twice
each are

335; 180; 1362 �112; 345; 723; 568; 978; 496 (37)

999; 390; 4322 �998; 781; 235; 573; 146; 624; (38)

and the smallest and largest containing 1 to 9 three
times are

10 ; 546; 200; 195; 3122

�111; 222; 338; 559; 598; 866; 946; 777; 344 (39)

31; 621; 017; 808; 1822

�999; 888; 767; 225; 363; 175; 346; 145; 124

(Madachy 1979, p. 159).

Madachy (1979, p. 165) also considers number which
are equal to the sum of the squares of their two
"halves" such as

1233�122�332 (40)

8833�882�332 (41)

10100�102�1002 (42)

5882353�5882�23532; (43)

in addition to a number of others.

See also ANTISQUARE NUMBER, BIQUADRATIC NUM-

BER, BROCARD’S PROBLEM, BROWN NUMBERS, CAN-

NONBALL PROBLEM, CATALAN’S CONJECTURE,
CENTERED SQUARE NUMBER, CLARK’S TRIANGLE,
CUBIC NUMBER, DIOPHANTINE EQUATION, FERMAT

4N �1 THEOREM, GREEDY ALGORITHM, GROSS, HEPTA-

GONAL SQUARE NUMBER, LAGRANGE’S FOUR-SQUARE

THEOREM, LANDAU-RAMANUJAN CONSTANT, OCTAGO-

NAL SQUARE NUMBER, PARTITION, PENTAGONAL

SQUARE NUMBER, PSEUDOSQUARE, PYRAMIDAL NUM-



BER, SQUAREFREE, SQUARE TRIANGULAR NUMBER,
SUM OF SQUARES FUNCTION, WARING’S PROBLEM
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Square Orthobicupola

JOHNSON SOLID J28:/
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Square Packing

Find the minimum size SQUARE capable of bounding n
equal SQUARES arranged in any configuration. The
first few cases are illustrated above (Friedman). The
only packings which have been proven optimal are 2,
3, 5, 6, 7, 8, 14, 15, 24, and 35, in addition to the
trivial cases of the SQUARE NUMBERS (Friedman).
If n�a2�a for some a , it is CONJECTURED that the
size of the minimum bounding square is a for small n .
The smallest n for which the CONJECTURE is known to
be violated is n�272 (with a�17). The size is known
to scale as kb; where



1
2 3 �

ffiffiffi
3

p� �
Bb B1

2 :

The following table gives the smallest known side
lengths for a square into which n unit squares can be
packed.

n exact approx. n exact approx.

1 1  1 14  4  4

2 2  2 15  4  4

3 2  2 16  4  4

4 2  2 17 /4 �1
2

ffiffiffi
2

p
/ 4.707...

5 /2 �1
2

ffiffiffi
2

p
/ 2.707... 18 /

1
2 7 �

ffiffiffi
7

p� �
/ 4.822...

6 3  3 19 /3 �4
3

ffiffiffi
2

p
/ 4.885...

7 3  3 20  5  5

8 3  3 21  5  5

9 3  3 22  5  5

10 /3 �1
2

ffiffiffi
2

p
/ 3.707... 23 5 5

11 /s11/ 3.877... 24 5 5

12 4 4 25 5 5

13 4 4 26 5.650...

Here, s11 is the larger of the two positive real roots of

s4 �10s3 �35s2 �46s �9:

The best known packings of squares into a circle are
illustrated above for the first few cases (Friedman).

The best known packings of squares into an equilat-

eral triangle are illustrated above for the first few
cases (Friedman).

The best packing of a SQUARE inside a PENTAGON,
illustrated above, is 1.0673....

See also CIRCLE PACKING, PACKING, TRIANGLE PACK-

ING
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Square Part
The largest square dividing a POSITIVE INTEGER n .
For n�1, 2, ..., the first few are 1, 1, 1, 4, 1, 1, 1, 4, 9,
1, 1, 4, ... (Sloane’s A008833).

See also CUBIC PART, SQUARE NUMBER, SQUAREFREE

PART
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Square Polyomino



See also L-POLYOMINO, SKEW POLYOMINO, STRAIGHT

POLYOMINO, T-POLYOMINO

Square Prism
CUBE, CUBOID

Square Pyramid

A square pyramid is a PENTAHEDRON consisting of a
PYRAMID with a SQUARE base. If the top of the
pyramid is cut off by a PLANE, a square PYRAMIDAL

FRUSTUM is obtained. If the four TRIANGLES of the
square pyramid are EQUILATERAL, the square pyra-
mid is the "regular" POLYHEDRON known as JOHNSON

SOLID J1 and, for side length a , has height

h�1
2

ffiffiffi
2

p
a: (1)

Using the equation for a general PYRAMID, the
VOLUME of the "regular" is therefore

V�1
3 hAb�

1
6

ffiffiffi
2

p
a3: (2)

The SLANT HEIGHT of a square pyramid is a special
case of the formula for a regular n -gonal PYRAMID

with n�2, given by

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�1

2 a2
q

; (3)

where h is the height and a is the length of a side of
the base.

Consider a HEMISPHERE placed on the base of a
square pyramid (having side lengths a and height
h ). Further, let the hemisphere be tangent to the four
apex edges. Then what is the volume of the HEMI-

SPHERE which is interior the pyramid (Cipra 1993)?

From Fig. (a), the CIRCUMRADIUS of the base is a=
ffiffiffi
2

p
:

Now find h in terms of r and a . Fig. (b) shows a CROSS

SECTION cut by the plane through the pyramid’s apex,
one of the base’s vertices, and the base center. This

figure gives

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 a2�r2

q
(4)

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�r2

p
; (5)

so the SLANT HEIGHT is

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�1

2 a2
q

�b�c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 a2�r2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�r2

p
: (6)

Solving for h gives

h�
raffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 2r2
p : (7)

We know, however, that the HEMISPHERE must be
tangent to the sides, so /r�a=2/, and

h�
1
2 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
2 a2

q a�
1
2 ffiffi

1
2

q a�1
2

ffiffiffi
2

p
a: (8)

Fig. (c) shows a CROSS SECTION through the center,
apex, and midpoints of opposite sides. The PYTHA-

GOREAN THEOREM once again gives

l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 a2�h2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 a2�1

2 a2
q

�1
2

ffiffiffi
3

p
a: (9)

We now need to find x and y .ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 a2�x2

q
�d�l: (10)

But we know l and h , and d is given by

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2�x2

p
: (11)

so ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 a2�x2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 a2�x2

q
�1

2

ffiffiffi
3

p
a: (12)

Solving gives

x�1
6

ffiffiffi
6

p
a; (13)

so

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�x2

p
�

ffiffiffiffiffiffiffiffiffi
1
4�

1
6

q
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 2

12

s
a�

a

2
ffiffiffi
3

p : (14)

We can now find the AREA of the SPHERICAL CAP as

Vcap�
1
6 pH 3A2�H2

� �
; (15)

where

A�y�
a

2
ffiffiffi
3

p (16)

H�r�x�1
2 a�

affiffiffi
6

p �a
1

2
�

1ffiffiffi
6

p
 !

; (17)

so



Vcap �
1
6 pa3 3

1

12

 !
�

1

2 
�

1ffiffiffi
6

p
 !2

2
4

3
5 1

2 
�

1ffiffiffi
6

p
 !

�1
6 pa3 1

4 
�

1

4 
�

1

6 
�

1ffiffiffi
6

p
 !" #

1

2 
�

1ffiffiffi
6

p
 !

�1
6 pa3 2

3 
�

1ffiffiffi
6

p
 !

1

2 
�

1ffiffiffi
6

p
 !

�1
6 pa3 1

3 
�

1

2
ffiffiffi
6

p �
2

3
ffiffiffi
6

p �
1

6

 !

�1
6 pa3 1

2 
�

7

6
ffiffiffi
6

p
 !

: (18)

Therefore, the volume within the pyramid is

Vinside �
2
3 pr3 �4Vcap �

2
3 p

1
8 a

3 �2
3 pa3 1

2 
�

7

6
ffiffiffi
6

p
 !

�2
3 pa3 1

8 
�

1

2 
�

7

6
ffiffiffi
6

p
 !

�2
3 pa3 7

6
ffiffiffi
6

p �
3

8

 !

� pa3 7

9
ffiffiffi
6

p �
1

4

 !
: (19)

This problem appeared in the Japanese scholastic
aptitude test (Cipra 1993).

See also PENTAHEDRON, PYRAMID, SQUARE PYRAMI-

DAL NUMBER
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Square Pyramidal Number

A FIGURATE NUMBER OF THE FORM

Pn �
1
6 n(n �1)(2n �1); (1)

corresponding to a configuration of points which form
a SQUARE PYRAMID, is called a square pyramidal
number (or sometimes, simply a PYRAMIDAL NUMBER).
The first few are 1, 5, 14, 30, 55, 91, 140, 204, ...

(Sloane’s A000330). They are sums of consecutive
pairs of TETRAHEDRAL NUMBERS and satisfy

Pn �
1
3(2n �1)Tn ; (2)

where Tn is the nth TRIANGULAR NUMBER.

The only numbers which are simultaneously SQUARE

Sm �m2 and square pyramidal Pn �n(n �1)(2n �
1)=6 (the CANNONBALL PROBLEM) are P1 �1 and P24 �
4900; corresponding to S1 �1 and S70 �4900 (Dickson
1952, p. 25; Ball and Coxeter 1987, p. 59; Ogilvy
1988), as conjectured by Lucas (1875, 1876) and
proved by Watson (1918). The proof is far from
elementary, and requires solving the DIOPHANTINE

EQUATION

m2 �1
6 n(n �1)(2n �1) (3)

(Guy 1994, p. 147). However, an elementary proof has
also been given by a number of authors.

Numbers which are simultaneously TRIANGULAR

Tm �m(m �1)=2 and square pyramidal Pn �
n(n �1)(2n �1)=6 satisfy the DIOPHANTINE EQUATION

1
2 m(m �1) �1

6 n(n �1)(2n �1): (4)

COMPLETING THE SQUARE gives

1
2 m �1

2

� �2

�1
8 �

1
6 2n3 �3n2 �n
� �

(5)

1
8(2m �1)2 �1

6 2n3 �3n2 �n
� �

�1
8 (6)

3(2m �1)2 �8n3 �12n2 �4n �3: (7)

The only solutions are (n; m) �(�1; 0); (0, 0), (1, 1),
(5, 10), (6, 13), and (85, 645) (Guy 1994, p. 147),
corresponding to the nontrivial triangular square
pyramidal numbers 1, 55, 91, 208335.

Numbers which are simultaneously TETRAHEDRAL

Tem �m(m �1)(m �2)=6 and square pyramidal Pn �
n(n�1)(2n�1)=6 satisfy the DIOPHANTINE EQUATION

m(m�1)(m�2)�n(n�1)(2n�1): (8)

Beukers (1988) has studied the problem of finding
solutions via integral points on an ELLIPTIC CURVE

and found that the only solution is the trivial
Te1�P1�1:/

See also PYRAMIDAL NUMBER, TETRAHEDRAL NUMBER
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Square Quadrants

The areas of the regions illustrated above can be
found from the equations

A�4B�4C�1 (1)

A�3B�2C�1
4 p: (2)

Since we want to solve for three variables, we need a
third equation. This can be taken as

A�2B�C�2E�D; (3)

where

D�1
4

ffiffiffi
3

p
(4)

D�E�1
6 p; (5)

leading to

A�2B�C�D�2E�2(D�E)�D�1
3 p�

1
4

ffiffiffi
3

p
: (6)

Combining the equations (1), (2), and (6) gives the
matrix equation

1 4 4
1 3 2
1 2 1

2
4

3
5 A

B
C

2
4
3
5� 1

1
4 p

1
3 p�

1
4

ffiffiffi
3

p

2
64

3
75; (7)

which can be inverted to yield

A�1�
ffiffiffi
3

p
�1

3 p (8)

B��1�1
2

ffiffiffi
3

p
� 1

12 p (9)

C�1�1
4

ffiffiffi
3

p
�1

6 p: (10)
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Square Root

A square root of x is a number r such that r2�x:
Square roots are also called radicals or surds. Any
positive real number has two square roots: one
positive and one negative. For example, the square
roots of 9 are �3 and �3, since f�3g2�f�3g2�9:
Any nonnegative real number x has a unique non-
negative square root r ; this is called the PRINCIPAL

SQUARE ROOT and is written r�x1=2 or r�
ffiffiffi
x

p
: For

example, the PRINCIPAL SQUARE ROOT of 9 is
ffiffiffi
9

p
��3;

while the other square root of 9 is �
ffiffiffi
9

p
��3: In

common usage, unless otherwise specified, "the"
square root is generally taken to mean the principal
square root. The function

ffiffiffi
x

p
is the INVERSE FUNCTION

of f (x)�x2; for x]0:/
Any nonzero COMPLEX NUMBER z has two square
roots. For example, using the IMAGINARY UNIT I , the
two square roots of �9 are 9

ffiffiffiffiffiffi
�9

p
�93i: The PRINCI-

PAL SQUARE ROOT of a number z is returned by the
Mathematica Sqrt[x ].

The square root of 2 is the IRRATIONAL NUMBER
ffiffiffi
2

p
�

1:41421356 (Sloane’s A002193), which has the simple
periodic CONTINUED FRACTION 1, 2, 2, 2, 2, 2, ...
(Sloane’s A040000). The square root of 3 is the



IRRATIONAL NUMBER
ffiffiffi
3

p
:1:73205081 (Sloane’s

A002194), which has the simple periodic CONTINUED

FRACTION 1, 1, 2, 1, 2, 1, 2, ... (Sloane’s A040001). In
general, the CONTINUED FRACTIONS of the square
roots of all POSITIVE INTEGERS are periodic.

The square roots of a COMPLEX NUMBER z �x �iy are
given byffiffiffiffiffiffiffiffiffiffiffiffi

x �iy
p

�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
� cos

1

2
tan�1 y

x

 !" #
�i sin

1

2
tan �1 y

x

 !" #( )
: (1)

In addition,

ffiffiffiffiffiffiffiffiffiffiffiffi
x �iy

p
�91

2

ffiffiffi
2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�x

q

�i sgn(y)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
�x

q �
: (2)

As can be seen in the above figure, the IMAGINARY

PART of the complex square root function has a
BRANCH CUT along the NEGATIVE real axis.

A NESTED RADICAL OF THE FORM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 9b

ffiffiffi
c

pp
can some-

times be simplified into a simple square root by
equating ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a 9b
ffiffiffi
c

pq
�

ffiffiffi
d

p
9

ffiffiffi
e

p
: (3)

Squaring gives

a 9b
ffiffiffi
c

p
�d �e 92

ffiffiffiffiffiffi
de

p
: (4)

so

a �d �e (5)

b2c �4de : (6)

Solving for d and e gives

d; e �
a 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2c

p

2
: (7)

For example, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
6

pq
�

ffiffiffi
2

p
�

ffiffiffi
3

p
(8)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 �2
ffiffiffi
2

pq
�

ffiffiffi
2

p
�1: (9)

The Simplify command of Mathematica does not
apply such simplifications, but FullSimplify does.
In general, radical denesting is a difficult problem
(Landau).

A sequence of approximations a =b to
ffiffiffi
n

p
can be

derived by factoring

a2 �nb2 �91 (10)

(where �1 is possible only if �1 is a QUADRATIC

RESIDUE of n ). Then

a �b
ffiffiffi
n

p� �
a �b

ffiffiffi
n

p� �
�91 (11)

a �b
ffiffiffi
n

p� �k
a �b

ffiffiffi
n

p� �k
�(91)k �91; (12)

and

1 �
ffiffiffi
n

p� �1
�1 �

ffiffiffi
n

p
(13)

1 �
ffiffiffi
n

p� �2
�(1 �n) �2

ffiffiffi
n

p
(14)

1 �
ffiffiffi
n

p� �
a �b

ffiffiffi
n

p� �
�(a �bn) �

ffiffiffi
n

p
(a �b) : (15)

Therefore, a and b are given by the RECURRENCE

RELATIONS

ai �ai�1 �bi�1n (16)

bi �ai�1 �bi�1 (17)

with a1 �b1 �1: The error obtained using this
method is

a

b 
�

ffiffiffi
n

p
�����

������ 1

b a � b
ffiffiffi
n

p
ð Þ

B
1

2b2 
: (18)

The first few approximants to
ffiffiffi
n

p
are therefore given

by

1; 1
2(1 �n) ;

1 � 3n

3 � n
;

1 � 6n � n2

4(n � 1)
;

1 � 10n � 5n2

5 � 10n � n2
; ::: (19)

This ALGORITHM is sometimes known as the BHAS-

KARA-BROUCKNER ALGORITHM. For the case n �2, this
gives the convergents to

ffiffiffi
2

p
as 1, /3=2/, /7=5/, /17=12/, /

41 =29/, /99 =70/, ... (Sloane’s A001333 and A000129;
Wells 1986, p. 34). The numerators are given by the
RECURRENCE RELATION

a(n) �2a(n �1) �a(n �2); (20)

and the denominators are the PELL NUMBERS.

Another general technique for deriving this sequence,
known as NEWTON’S ITERATION, is obtained by letting
x �

ffiffiffi
n

p
: Then x�n=x; so the SEQUENCE

xk�
1

2
xk�1�

n

xk�1

 !
(21)

converges quadratically to the root. The first few
approximants to

ffiffiffi
n

p
are therefore given by

1; 1
2(1�n);

1 � 6n � n2

4(n � 1)
;

1 � 28n � 70n2 � 28n3 � n4

8(1 � n)(1 � 6n � n2)
; ::: (22)

For
ffiffiffi
2

p
; this gives the convergents 1, 3/2, 17/12, 577/

408, 665857/470832, ... (Sloane’s A051008 and
A051009).

See also CUBE ROOT, NESTED RADICAL, NEWTON’S

ITERATION, PRINCIPAL SQUARE ROOT, QUADRATIC

SURD, ROOT OF UNITY, SQUARE NUMBER, SQUARE

TRIANGULAR NUMBER, SURD
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Square Root Inequality

2
ffiffiffiffiffiffiffiffiffiffiffiffi
n �1

p
�2

ffiffiffi
n

p
B

1ffiffiffi
n

p B2
ffiffiffi
n

p
�2

ffiffiffiffiffiffiffiffiffiffiffiffi
n �1

p
:

Square Root Method
The square root method is an algorithm which solves
the MATRIX EQUATION

Au �g (1)

for u, with /A a p �p SYMMETRIC MATRIX and g a given
VECTOR. Convert A to a TRIANGULAR MATRIX such that

TTT �A; (2)

where TT is the MATRIX TRANSPOSE. Then

TTk �g (3)

Tu �k; (4)

so

T �

s11 s12 � � � � � �
0 s22 � � � � � �
n n ::: n
0 0 � � �  spp

2
664

3
775: (5)

giving the equations

s2
11 �a11

s11s12 �a12

s2
12 �s2

22 �a22

s2
1j �s2

2j �. . .�s2
jj �ajj

s1j �s2js2k �. . .�sjjsjk �ajk : (6)

These give

s11 �
ffiffiffiffiffiffiffi
a11

p

s12 �
a12

s11

s22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 �s2

12

q
Sjj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajj �s2

ij �s2
2j �. . .�s2

j�1; j

q

sjk �
ajk � s1js1k � s2js2k � . . .  � sj�1 ; jsj�1 ; k

sjj

; (7)

giving T from A : Now solve for k in terms of the sij/ s
and g,

s11k1 �g1

s12k1 �s22k2 �g2

s1jk1 �s2jk2 �. . .�sjjkj �gj ; (8)

which gives

k1 �
g1

s11

k2 �
g2 � s12k1

s22

kj �
gj � s1jk1 � s2jk2 � . . .  � sj�1; jkj�1

sjj

: (9)

Finally, find u from the sij/ s and k,

s11u1�s12u2 . . .�s1pup�k1

s22u2�. . .�s2pup�k2

sppup�kp; (10)

giving the desired solution,

up�
kp

spp

up�1�
kp�1 � sp�1; pup

sp�1; p�1

uj�
kj � sj; j�1uj�1 � sj; j�2uj�2 � . . . � sjpup

sjj

: (11)

See also LU DECOMPOSITION
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Square Tiling
There are a number of interesting results related to
the tiling of squares. For example, M. Laczkovich has
shown that there are exactly three shapes of non-



right triangles that tile the square with similar
copies, corresponding to angles ( p=8; p=4; 5p=8);
( p=4; p=3; 5p=12); and ( p=12; p=4; 2p=3) (Stein and
Szabó 1994). In particular, given triangles of shape
1 �2 �

ffiffiffi
5

p
with no two the same size, tile the square.

The best known solution has 8 triangles (Berlekamp
1999).

See also TILING
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Square Torus

The square torus is the quotient of the plane by the
integer lattice.

Square Triangle Picking

Given three points chosen at random inside a UNIT

SQUARE, the average AREA of the TRIANGLE deter-
mined by these points is given by

Ā �

g
1

0

� � �g
1

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6

A xið Þj j dx1 � � �dx3 dy1 � � �dy3

g
1

0

� � �g
1

0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
6

dx1 � � �dx3 dy1 � � �dy3

;

where the VERTICES are located at xi ; yið Þ where i �1,
..., 3, and the (signed) AREA is given by the DETERMI-

NANT

A �
1

2!

x1 y1 1
x2 y2 1
x3 y3 1

������
������:

The integral can be evaluated analytically to yield
Ā �11=144 (Ambartzumian 1987, Pfiefer, Trott
1998), and first calculated by Woolhouse (1867).

Because attempting to do the integrals directly
quickly results in intractable integrands, the best
approach to accomplish the integration is to divide
the 6-dimensional region of integration into subre-
gions such that the sign of A does not change (Trott
1998).

The distribution function for the area of a random
triangle in a square is known exactly.

See also CUBE TETRAHEDRON PICKING, HEXAGON

TRIANGLE PICKING, POLYGON TRIANGLE PICKING,
TRIANGLE TRIANGLE PICKING, UNIT SQUARE
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Square Triangular Number
A number which is simultaneously SQUARE and
TRIANGULAR. Let Tn denote the nth TRIANGULAR

NUMBER and Sm the mth SQUARE NUMBER, then a
number which is both triangular and square satisfies
the equation Tn�Sm; or

1
2 n(n�1)�m2: (1)

COMPLETING THE SQUARE gives

1
2 n2�n
� �

�1
2 n�1

2

� �2

� 1
2

� �
1
4

� �
�m2 (2)

1
8(2n�1)2�1

8�m2 (3)

(2n�1)2�8m2�1: (4)

Therefore, defining

x�2n�1 (5)

y�2m (6)

gives the PELL EQUATION

x2�2y2�1 (7)

(Conway and Guy 1996). The first few solutions are



(x; y) �(3; 2); (17, 12), (99, 70), (577, 408), .... These
give the solutions (n; m) �(1; 1); (8, 6), (49, 35), (288,
204), ... (Sloane’s A001108 and A001109), correspond-
ing to the triangular square numbers 1, 36, 1225,
41616, 1413721, 48024900, ... (Sloane’s A001110;
Pietenpol 1962). In 1730, Euler showed that there
are an infinite number of such solutions (Dickson
1952).

The general FORMULA for a square triangular number
STn is b2c2 ; where b=c is the nth convergent to the
CONTINUED FRACTION of

ffiffiffi
2

p
(Ball and Coxeter 1987,

p. 59; Conway and Guy 1996). The first few are

1

1 
;

3

2 
;

7

5 
;

17

12 
;

41

29 
;

99

70 
;

239

169 
; � � � ; (8)

The NUMERATORS and DENOMINATORS can also be
obtained by doubling the previous FRACTION and
adding to the FRACTION before that.

A general FORMULA for square triangular numbers is

STn �
1 �

ffiffiffi
2

p� �2n
� 1 �

ffiffiffi
2

p� �2n

4
ffiffiffi
2

p
" #2

(9)

� 1
32 17 �2

ffiffiffi
2

p� �n

� 17 �2
ffiffiffi
2

p� �n

�2
h i

: (10)

The square triangular numbers also satisfy the
RECURRENCE RELATION

STn �34STn �1 �STn�2 �2 (11)

un �2 �6un�1 �un (12)

with u0 �0 ; u1 �1 ; where STn �u2
n : A curious product

formula for STn is given by

STn �22n�5
Y2n

k �1

3 �cos
kp

n

 !" #
: (13)

An amazing GENERATING FUNCTION is

f (x) �
1 � x

(1 � x) 1 � 34x � x2ð Þ

�1 �36x �1225x2 �. . . (14)

(Sloane and Plouffe 1995).

Taking the square and triangular numbers together
gives the sequence 1, 1, 3, 4, 6, 9, 10, 15, 16, 21, 25, ...
(Sloane’s A005214; Hofstadter 1996, p. 15).

See also SQUARE NUMBER, SQUARE ROOT, TRIANGU-

LAR NUMBER
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Square Wave

The square wave is a periodic waveform consisting of
instantaneous transitions between two levels which
can be denoted 91. The square wave is sometimes
also called the RADEMACHER FUNCTION. Let the
square wave have period 2L: The square wave
function is ODD, so the FOURIER SERIES has a0�an�
0 and

b0�
2

L g
L

0

sin
npx

L

 !
dx

�
4

np
sin2 1

2 np
� �

�
4

np

0 n even
1 n odd:

 

The FOURIER SERIES for the square wave is therefore

f (x)�
4

p

X�
n�1; 3; 5; ...

1

n
sin

npx

L

 !
:

See also HADAMARD MATRIX, WALSH FUNCTION
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Squared
A number to the POWER 2 is said to be squared, so that
x2 is called "x squared."

See also CUBED, SQUARE ROOT

Squared Square
PERFECT SQUARE DISSECTION

Squarefree

A number is said to be squarefree (or sometimes
QUADRATFREI; Shanks 1993) if its PRIME decomposi-
tion contains no repeated factors. All PRIMES are
therefore trivially squarefree. The squarefree num-
bers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, ... (Sloane’s
A005117). The SQUAREFUL numbers (i.e., those that
contain at least one square) are 4, 8, 9, 12, 16, 18, 20,
24, 25, ... (Sloane’s A013929).
The asymptotic number Q(n) of squarefree numbers
5n is given by

Q(n) �
6n

p2 
�O

ffiffiffi
n

p� �
(1)

(Landau 1974, pp. 604 �/09; Nagell 1951, p. 130;
Hardy and Wright 1979, pp. 269 �/70; Hardy 1999,
p. 65). Q(n) for n �10, 100, 1000, ... are 7, 61, 608,
6083, 60794, 607926, ..., while the asymptotic density
is 1=z(2) �6=p2 :0:607927 ; where z(n) is the RIE-

MANN ZETA FUNCTION.

The MÖ BIUS FUNCTION is given by

m(n) �

0 if n has one or more repeated
prime factors

1 if n �1
(�1)k if n is the product of k distinct

primes;

8>>>><
>>>>:

(2)

so m(n) "0 indicates that n is squarefree. The
asymptotic formula for Q(x) is equivalent to the

formula

Xx

n�1

½ m(n) ½�
6x

p2 
�O

ffiffiffi
x

p� �
(3)

(Hardy and Wright 1979, p. 270)

There is no known polynomial-time algorithm for
recognizing squarefree INTEGERS or for computing the
squarefree part of an INTEGER. In fact, this problem
may be no easier than the general problem of integer
factorization (obviously, if an integer n can be
factored completely, n is squarefree IFF it contains
no duplicated factors). This problem is an important
unsolved problem in NUMBER THEORY because com-
puting the RING of integers of an algebraic number
field is reducible to computing the squarefree part of
an INTEGER (Lenstra 1992, Pohst and Zassenhaus
1997). The Mathematica function SquareFreeQ[n ]
in the Mathematica add-on package NumberTheor-
y‘NumberTheoryFunctions‘ (which can be loaded
with the command BBNumberTheory‘) deter-
mines whether a number is squarefree.

No SQUAREFUL FIBONACCI NUMBERS Fp are known
with p PRIME. All numbers less than 2:5 �1015 in
SYLVESTER’S SEQUENCE are squarefree, and no
SQUAREFUL numbers in this sequence are known
(Vardi 1991). Every CARMICHAEL NUMBER is square-
free. The BINOMIAL COEFFICIENTS

2n�1
n

� �
are square-

free only for n�2, 3, 4, 6, 9, 10, 12, 36, ..., with no
others less than n � 1500. The CENTRAL BINOMIAL

COEFFICIENTS are SQUAREFREE only for n � 1, 2, 3, 4,
5, 7, 8, 11, 17, 19, 23, 71, ... (Sloane’s A046098), with
no others less than 1500.

See also BINOMIAL COEFFICIENT, BIQUADRATEFREE,
COMPOSITE NUMBER, CUBEFREE, ERDOS SQUAREFREE

CONJECTURE, FIBONACCI NUMBER, KORSELT’S CRITER-

ION, MÖ BIUS FUNCTION, PRIME NUMBER, RIEMANN

ZETA FUNCTION, SÁ RKOZY’S THEOREM, SQUARE NUM-

BER, SQUAREFREE PART, SQUAREFUL, SYLVESTER’S

SEQUENCE
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Square-Free
SQUAREFREE

Squarefree Part
That part of a POSITIVE INTEGER left after all square
factors are divided out. For example, the squarefree
part of 24 �23 � 3 is 6, since 6 � 22 �24 : For n �1, 2,
..., the first few are 1, 2, 3, 1, 5, 6, 7, 2, 1, 10, ...
(Sloane’s A007913). The squarefree part function can
be implemented in Mathematica as

SquarefreePart[n_Integer?Positive] : �
Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} &

/@ FactorInteger[n])

See also CUBEFREE PART, SQUARE PART, SQUAREFREE
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Squarefree Word
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A "square" word consists of two identical adjacent
subwords (for example, acbacb ). A squarefree word
contains no square words as subwords (for example,
abcacbabcb ). The only squarefree binary words are a ,
b , ab , ba , aba , and bab (since aa , bb , aaa , aab , abb ,
baa , bba , and bbb contain square identical adjacent
subwords a , b , a , a , b , a , b , and b , respectively).

However, there are arbitrarily long ternary square-
free words. The number s(n) of ternary squarefree
words of length n �1, 2, ... are 1, 3, 6, 12, 18, 30, 42,
60, ... (Sloane’s A006156), and s(n) is bounded by

6 � 1 :032n 5s(n) 56 � 1:379n (1)

(Brandenburg 1983). In addition,

S � lim
n0�

[s(n)]1=n �1:302 . . . (2)

(Brinkhuis 1983, Noonan and Zeilberger 1997).

The number of squarefree quaternary words of length
n �1, 2, ... are 4, 12, 36, 96, 264, 696, ... (Sloane’s
A051041).

See also ALPHABET, CUBEFREE WORD, OVERLAPFREE

WORD, WORD
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Squareful
A number is squareful, also called nonsquarefree, if it
contains at least one SQUARE in its prime factoriza-
tion. The first few are 4, 8, 9, 12, 16, 18, 20, 24, 25, ...
(Sloane’s A013929). The greatest multiple prime
factors for the squareful integers are 2, 2, 3, 2, 2, 3,
2, 2, 5, 3, 2, 2, 3, ... (Sloane’s A046028). The least
multiple prime factors for squareful integers are 2, 2,
3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, ... (Sloane’s A046027).

See also GREATEST PRIME FACTOR, LEAST PRIME



FACTOR, SMARANDACHE NEAR-TO-PRIMORIAL FUNC-

TION, SQUAREFREE
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Squaring
Squaring is the GEOMETRIC CONSTRUCTION, using
only COMPASS and STRAIGHTEDGE, of a SQUARE which
has the same area as a given geometric figure.
Squaring is also called QUADRATURE. An object which
can be constructed by squaring is called SQUARABLE.

See also CIRCLE SQUARING, COMPASS, CONSTRUCTI-

BLE NUMBER, GEOMETRIC CONSTRUCTION, RECTAN-

GLE SQUARING, STRAIGHTEDGE, TRIANGLE SQUARING

Squaring the Circle
CIRCLE SQUARING

Squeezing Theorem

Let there be two functions f�(x) and f �(x) such that
f (x) is "squeezed" between the two,

f�(x) 5f (x) 5f �(x) :

If

r �lim
x0a

f�(x) �lim
x 0a

f�(x) ;

then limx0a f (x) �r : In the above diagram the func-
tions f�(x) ��x2 and f �(x) �x2 "squeeze" x2 sin(cx) at
0, so limx0a x

2 sin(cx) �0: The squeezing theorem is
also called the sandwich theorem.

See also LIMIT, PINCHING THEOREM

s-Run
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let v be a n -VECTOR whose entries are each 1 (with
probability p ) or 0 (with probability q �1 �p) : An s -
run is an isolated group of s consecutive 1s. Ignoring

the boundaries, the total number of runs /Rn/ satisfies

Kn �
Rnh i
n

� 1 �pð Þ2
Xn

s�1

ps �p(1 �p)(1 �pn);

so

K(p) � lim
n0�

Kn �p(1 �p) ;

which is called the MEAN RUN COUNT PER SITE or
MEAN RUN DENSITY in PERCOLATION THEORY.

See also PERCOLATION THEORY, S -CLUSTER
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S-Signature
SIGNATURE (RECURRENCE RELATION)

SSS Theorem

Specifying three sides uniquely determines a TRIAN-

GLE whose AREA is given by HERON’S FORMULA,

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s�a)(s�b)(s�c)

p
; (1)

where

s�1
2(a�b�c) (2)

is the SEMIPERIMETER of the TRIANGLE. Let R be the
CIRCUMRADIUS, then

A�
abc

4R
: (3)

Using the LAW OF COSINES

a2�b2�c2�2bc cos A (4)

b2�a2�c2�2ac cos B (5)

c2�a2�b2�2ab cos C (6)



gives the three ANGLES as

A �cos �1 b2 � c2 � a2

2bc

 !
(7)

B �cos�1 a2 � c2 � b2

2ac

 !
(8)

C �cos�1 a2 � b2 � c2

2ab

 !
: (9)

See also AAA THEOREM, AAS THEOREM, ASA THEO-

REM, ASS THEOREM, HERON’S FORMULA, SAS THEO-

REM, SEMIPERIMETER, TRIANGLE

St. Ives Problem
A well-known nursery rhyme states, "As I was going
to St. Ives, I met a man with seven wives. Every wife
had seven sacks, every sack had seven cats, every cat
had seven kitts. Kitts, cats, sacks, wives, how many
were going to St. Ives?" Upon being presented with
this conundrum, most readers begin furiously adding
and multiplying numbers in order to calculate the
total quantity of objects mentioned. However, the
problem is a trick question. Since the man and his
wives, sacks, etc. were met by the narrator on the way
to St. Ives , they were in fact leaving–not going to–
St. Ives. The number going to St. Ives is therefore
"one," i.e., the narrator.

Should a diligent reader nevertheless wish to calcu-
late the sum total N of kitts, cats, sacks, and wives,
the answer is easily given by the GEOMETRIC SERIES

Xn

k �1

rk �
r 1 � rnð Þ

1 � r 
(1)

with n �4 and r �7. Therefore,

N �
X4

i�1

7i �
7 1 � 74ð Þ

7 � 1
�2800 : (2)

N �71 �72 �73 �74

�7(1 �7(1 �7(1 �7))) �7(1 �7(1 �7 � 8))

�7(1 �7 � 57) �7 � 400 �2800: (3)

A similar question was given as problem 79 of the
Rhind papyrus, dating from 1650 BC. This problem
concerns 7 houses, each with 7 cats, each with 7 mice,
each with 7 spelt, each with 7 hekat. The total
number of items is then

X5

i�1

7i �19607 (4)

(Wells 1986, p. 71). In turn, the problem of the Rhind

papyrus is repeated in Fibonacci’s Liber Abaci (1202,
1228).
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Stability
The robustness of a given outcome to small changes in
initial conditions or small random fluctuations.
CHAOS is an example of a process which is not stable.

See also STABILITY MATRIX

Stability Matrix
Given a system of two ordinary differential equations

ẋ �f (x; y) (1)

ẏ �g(x; y) ; (2)

let x0 and y0 denote FIXED POINTS with ẋ � ̇y �0 ; so

f x0 ; y0ð Þ�0 (3)

g x0 ; y0ð Þ�0: (4)

Then expand about x0 ; y0ð Þ so

dẋ �fx x0 ; y0ð Þdx �fy x0 ; y0ð Þdy �fxy x0 ; y0ð Þdxdy

�. . . : (5)

dẏ �gx x0 ; y0ð Þdx �gy x0 ; y0ð Þdy �gxy x0 ; y0ð Þdxdy

�. . . : (6)

To first-order, this gives

d

dt

dx
dy

� �
�

fx x0 ; y0ð Þ fy x0 ; y0ð Þ
gx x0 ; y0ð Þ gy x0 ; y0ð Þ

� �
dx
dy

� �
; (7)

where the 2 �2 MATRIX, or its generalization to
higher dimension, is called the stability matrix.
Analysis of the EIGENVALUES (and EIGENVECTORS) of
the stability matrix characterizes the type of FIXED

POINT.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), LINEAR STABILITY,
STABLE IMPROPER NODE, STABLE NODE, STABLE

SPIRAL POINT, STABLE STAR, UNSTABLE IMPROPER

NODE, UNSTABLE NODE, UNSTABLE SPIRAL POINT,
UNSTABLE STAR
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Stabilization

A type II MARKOV MOVE.

See also MARKOV MOVES

Stable Equivalence
Two VECTOR BUNDLES are stably equivalent IFF

ISOMORPHIC VECTOR BUNDLES are obtained upon
WHITNEY SUMMING each VECTOR BUNDLE with a
trivial VECTOR BUNDLE.

See also VECTOR BUNDLE, WHITNEY SUM

Stable Improper Node
A FIXED POINT for which the STABILITY MATRIX has
equal NEGATIVE EIGENVALUES.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE NODE, STABLE

SPIRAL POINT, UNSTABLE IMPROPER NODE, UNSTABLE

NODE, UNSTABLE SPIRAL POINT, UNSTABLE STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos

and Integrability in Nonlinear Dynamics: An Introduc-
tion. New York: Wiley, pp. 22 �/5, 1989.

Stable Marriage Problem
Given a set of n men and n women, marry them off in
pairs after each man has ranked the women in order
of preference from 1 to n , w1 ; . . . ; wnf g and each
women has done likewise, m1 ; . . . ; mnf g: If the
resulting set of marriages contains no pairs OF THE

FORM mi ; wj

� �
; mk ; wlf g such that mi prefers wl to wj

and wl prefers mi to mk ; the marriage is said to be
stable. Gale and Shapley (1962) showed that a stable
marriage exists for any choice of rankings (Skiena
1990, p. 245). In the United States, the algorithm of
Gale and Shapley (1962) is used to match hospitals to
medical interns (Skiena 1990, p. 245).

In the rankings illustrated above, the male-optimal
stable marriage is 4, 2, 6, 5, 3, 1, 7, 9, 8, and the

female-optimal stable marriage is 1, 2, 8, 9, 3, 4, 7, 6,
5. A stable marriage can be found using Stable-
Marriage[m , w ] in the Mathematica add-on package
DiscreteMath‘Combinatorica‘ (which can be
loaded with the command BBDiscreteMath‘).

See also DIVORCE DIGRAPH, MATCHING

References
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1962.
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Stable Node
A FIXED POINT for which the STABILITY MATRIX has
both EIGENVALUES NEGATIVE, so l1 B l2 B0 :/

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE SPIRAL POINT, STABLE STAR, UN-

STABLE IMPROPER NODE, UNSTABLE NODE, UNSTABLE

SPIRAL POINT, UNSTABLE STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos
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tion. New York: Wiley, pp. 22�/5, 1989.

Stable Polynomial
A REAL POLYNOMIAL P is said to be stable if all its
ROOTS lie in the LEFT HALF-PLANE. The term "stable"
is used to describe such a polynomial because, in the
theory of linear servomechanisms, a system exhibits
unforced time-dependent motion of the form est;
where s is the root of a certain REAL POLYNOMIAL

P(s)�0: A system is therefore mechanically stable IFF

P is a stable polynomial.

The polynomial x�a is stable IFF a �0, and the
IRREDUCIBLE POLYNOMIAL x2�ab�b is stable IFF

both a and b are greater than zero. The ROUTH-

HURWITZ THEOREM can be used to determine if a
polynomial is stable.

Given two real polynomials P and Q , if P and Q are
stable, then so is their product PQ , and vice versa
(Séroul 2000, p. 280). It therefore follows that the
coefficients of stable real polynomials are either all
positive or all negative (although this is not a
SUFFICIENT condition, as shown with the counter-
example x3�x2�x�1): Furthermore, the values of a
stable polynomial are never zero for x]0 and have
the same sign as the coefficients of the polynomial.



It is possible to decide if a polynomial is stable
without first knowing its roots using the following
theorem due to Strelitz (1977). Let A �xn �
an�1xn�1 �. . .�a0 be a real polynomial with roots
a1 ; ..., an ; and construct B �xm �bm�1xm�1 �. . .�b0

as the monic real polynomial of degree m �n(n �1)=2
having roots ai � aj for 1 5i 5j 5n: Then A is stable
IFF all coefficients of A and B are positive (Séroul
2000, p. 281).

For example, given the third-order polynomial A �
x3 �ax2 �bx �c ; the sum-of-roots polynomial B is
given by

B �x3 �2ax2 � a2 �b
� �

x �(ab �c) : (1)

Resolving the inequalities given by requiring that
each coefficient of A and B be greater than zero then
gives the conditions for A to be stable as a � 0, b �
0, 0 Bc Bab :/

Similarly, for the fourth-order polynomial A �x4 �
ax3 �bx2 �cx �d; the sum-of-roots-polynomial is

x6 �3ax5 � 3a2 �2b
� �

x4 � a3 �4ab
� �

x3

� 2a2b �b2 �ac �4d
� �

x2 � ab2 �a2c �4ad
� �

�x � abc �c2 �a2d
� �

; (2)

so the condition for A to be stable can be resolved to a
� 0, b � 0, 0 Bc Bab ; 0 Bd B abc �c2ð Þ=a2 :/

The fifth-order polynomial is

x10 �4ax9 � 6a2 �3b
� �

x8 � 4a3 �9ab �c
� �

x7

� a4 �9a2b �3b2 �4ac �3d
� �

x6

� 3a3b �6ab2 �5a2c �2bc �5ad �11e
� �

x5

� 3a2b2 �b3 �2a3c �6abc �c2 �2a2d �2bd �22ae
� �

x4

�(ab3 �4a2bc �b2c �4cd �16a2e �4be)x3

� 2ab2c �a2c2 �bc2 �a2bd �b2d �3acd �4d2 �4a3e
�

�9abe �7ceÞx2

� abc2 �c3 �ab2d �4ad2 �4a2be �b2e �4ace �4de
� �

x

� abcd �c2d �a2d2 �ab2e �bce �2ade �e2
� �

: (3)

The following Mathematica code computes the sum-
of-roots polynomial B and inequalities obtained from
the coefficients,

RootSumPolynomial[r_List,x_]: �Module[

{n �Length[r],i,j},

RootReduce@Collect[Expand[

Times@@((x-#)&/@Flatten[

Table[r[[i]] �r[[j]],{i,n},{j,i�1,n}]])

],x]

] RootSumPolynomial[p_?PolynomialQ,x_]: �
RootSumPolynomial[RootList[p,x],x]

RootList[p_?PolynomialQ,x_]: �

x/.{ToRules[Roots[p ��0,x,

Cubics- �False,Quartics- �False

]]}

RootSumInequalities[p_?PolynomialQ,x_]: �
And@@(# �0&/@Flatten[CoefficientList[#,x]&/@

{RootSumPolynomial[p,x],p}])

while the following reduces the inequalities to a
minimal set in the cubic case.

Resolve[Exists[x, (a | b | c | x) \[Element]

Reals,

RootSumInequalities[x^3 � a x^2 � b x � c,

x]

], {a, b, c}]

See also LEFT HALF-PLANE, ROUTH-HURWITZ THEO-

REM
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Stable Spiral Point
A FIXED POINT for which the STABILITY MATRIX has
EIGENVALUES OF THE FORM l9��a 9ib (with
a; b > 0):/

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE STAR, UNSTABLE IM-

PROPER NODE, UNSTABLE NODE, UNSTABLE SPIRAL

POINT, UNSTABLE STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos
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tion. New York: Wiley, pp. 22 �/5, 1989.

Stable Star
A FIXED POINT for which the STABILITY MATRIX has
one zero EIGENVECTOR with NEGATIVE EIGENVALUE /

lB0/.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, UN-

STABLE IMPROPER NODE, UNSTABLE NODE, UNSTABLE

SPIRAL POINT, UNSTABLE STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos

and Integrability in Nonlinear Dynamics: An Introduc-
tion. New York: Wiley, pp. 22�/25, 1989.



Stable Type
A POLYNOMIAL equation whose ROOTS all have NEGA-

TIVE REAL PARTS. For a REAL QUADRATIC EQUATION

z2 �Bz �C �0:

the stability conditions are B ; C > 0: For a REAL

CUBIC EQUATION

z3 �Az2 �Bz �C �0:

the stability conditions are A; B ; C > 0 and AB � C .

References
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra,

5th ed. New York: Macmillan, pp. 108 �/09, 1996.

Stab-Werner Projection
WERNER PROJECTION

Stack
A DATA STRUCTURE which is a special kind of LIST in
which elements may be added to or removed from the
top only. These actions are called a PUSH or a POP,
respectively. Actions may be taken by popping one or
more values, operating on them, and then pushing
the result back onto the stack.

Stacks are used as the basis for computer languages
such as FORTH, PostScript † (Adobe Systems), and
the RPN language used in Hewlett-Packard † pro-
grammable calculators.

See also LIST, POP, PUSH, QUEUE, REVERSE POLISH

NOTATION

Stack Polygon

A SELF-AVOIDING POLYGON containing two adjacent
corners of its minimal bounding rectangle. The
anisotropic area and perimeter generating function
G(x; y) and partial generating functions Hm(y) ; con-
nected by

G(x; y; q) �
X
m]1

Hm(y; q)xm :

satisfy the self-reciprocity and inversion relations

Hm(1=y; 1=q) ��y2m�3qm2�2mHm(y; q)

and

G(x; y)�y3G x=y2; 1=y
� �

�0

(Bousquet-Mélou et al. 1999).

See also LATTICE POLYGON, SELF-AVOIDING POLYGON

References
Bousquet-Mélou, M.; Guttmann, A. J.; Orrick, W. P.; and

Rechnitzer, A. Inversion Relations, Reciprocity and Poly-
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Stäckel Determinant
A DETERMINANT used to determine in which coordi-
nate systems the HELMHOLTZ DIFFERENTIAL EQUA-

TION is separable (Morse and Feshbach 1953). A
determinant

S� Fmnj j�
F11 F12 F13

F21 F22 F23

F31 F32 F33

������
������ (1)

in which Fm are functions of ui alone is called a
Stäckel determinant. A coordinate system is separ-
able if it obeys the ROBERTSON CONDITION, namely
that the SCALE FACTORS hi in the LAPLACIAN

92�
X3

i�1

1

h1h2h3

@

@ui

h1h2h3

h2
i

@

@ui

 !
(2)

can be rewritten in terms of functions fi(ui) defined by

1

h1h2h3

@

@ui

h1h2h3

h2
i

@

@ui

 !

�
g(ui�1; ui�2)

h1h2h3

@

@ui

fi(ui)
@

@ui

" #

�
1

h2
i fi

@

@ui

fi

@

@ui

 !
(3)

such that S can be written

S�
h1h2h3

f1(u1)f2(u2)f3(u3)
: (4)

When this is true, the separated equations are OF THE

FORM

1

fn

@

@un

fn

@Xn

@un

 !
� k2

1Fn1�k2
2Fn2�k2

3Fn3

� �
Xn�0 (5)

The Fij/s obey the minor equations

M1�F22F33�F23F32�
S

h2
1

(6)

M2�F13F32�F12F33�
S

h2
2

(7)

M3�F12F23�F13F22�
S

h2
3

: (8)

which are equivalent to

M1F11�M2F21�M3F31�S (9)

M1F12�M2F22�M3F32�0 (10)

M1F13�M2F23�M3F33�0 (11)



(Morse and Feshbach 1953, p. 509). This gives a total
of four equations in nine unknowns. Morse and
Feshbach (1953, pp. 655 �/66) give not only the
Stäckel determinants for common coordinate sys-
tems, but also the elements of the determinant
(although it is not clear how these are derived).

See also HELMHOLTZ DIFFERENTIAL EQUATION, LA-

PLACE’S EQUATION, POISSON’S EQUATION, ROBERTSON

CONDITION, SEPARATION OF VARIABLES
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Staircase Function

A function composed of a set of equally spaced jumps
of equal length, such as the CEILING FUNCTION f (x) �
xd e; FLOOR FUNCTION f (x) � xb c; or NEAREST INTEGER

FUNCTION f (x) � x½ :/
See also CEILING FUNCTION, FLOOR FUNCTION, NEAR-

EST INTEGER FUNCTION, SAWTOOTH WAVE
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Staircase Polygon
Define the minimal bounding rectangle as the smal-
lest rectangle containing a given lattice polygon. If
the perimeter of the lattice polygon is equal to that of
its minimal bounding rectangle, it is said to be
convex. (Note that a "convex" lattice polygon is not
necessarily convex in the usual sense of the word.) A
staircase polygon is then defined as a convex polygon
which contains two opposite corners of its bounding
rectangle (Bousquet-Mélou et al. 1999).

The area generating function Hm(y; q) that counts
polygons of width m for staircase polygons of width 4
is given by

H4(q) �

q4 1 � 2q � 4q2 � 6q3 � 7q4 � 6q5 � 4q6 � 2q7 � q8ð Þ
(1 � q)2 1 � q2ð Þ2 1 � q3ð Þ2 1 � q4ð Þ

:

(1)

which satisfies

H4(1=q) ��H4(q)

(Bousquet-Mélou 1992, Bousquet-Mélou et al. 1999).
The anisotropic area and perimeter generating func-

tion G(x; y; q) and partial generating functions
Hm(y; q) ; connected by

G(x; y; q) �
X
m]1

Hm(y; q)xm :

satisfy the self-reciprocity and inversion relations

Hm(1=y; 1=q) ��ym�1Hm(y; q)

for m ]2 and

G(x; y; q) �yG(x=y; 1=y; 1=q) ��x

(Bousquet-Mélou et al. 1999).

The anisotropic area and perimeter generating func-
tion G(x; y; q) of staircase polygon with a staircase
hole satisfies an inversion relation OF THE FORM

G(x; y; q) �y2G(x=y; 1=y ; 1=q)

(Bousquet-Mélou et al. 1999).

See also SELF-AVOIDING POLYGON, STAIRCASE WALK
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Staircase Walk

The numbers of staircase walks on an m�n grid are
given by

m�n�2
m�1

# $
�

(m � n � 2)!

(m � 1)!(n � 1)!
(1)

(Vilenkin 1971, Mohanty 1979, Narayana 1979,
Finch). The first few values for m�n�1; 2, ..., are
1, 2, 6, 20, 70, 252, ... (Sloane’s A000984), which are



the CENTRAL BINOMIAL COEFFICIENTS.

The number of staircase walks on an n �n grid which
remain below the diagonal is given by the CATALAN

NUMBER

Cn�1 �
1

n � 1

2n
n

# $
:

i.e., 1, 2, 5, 14, 42, 132, ... (Sloane’s A000108).

See also CATALAN NUMBER, CENTRAL BINOMIAL

COEFFICIENT, STAIRCASE POLYGON
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Stamp Folding
The number of ways of folding a strip of stamps has
several possible variants. Considering only positions
of the hinges for unlabeled stamps without regard to
orientation of the stamps, the number of foldings is
denoted U(n) : If the stamps are labeled and orienta-
tion is taken into account, the number of foldings is
denoted N(n) : Finally, the number of symmetric
foldings is denoted S(n) : The following table sum-
marizes these values for the first n .

n /S(n)/ /U(n)/ /N(n)/

Sloane Sloane’s
A001010

Sloane’s
A001011

Sloane’s
A000136

1 1 1 1

2 2 1 2

3 2 2 6

4 4 5 16

5 6 14 50

6 8 38 144

7 18 120 462

8 20 353 1392

9 56 1148 4536

10 48 3527 14060

See also MAP FOLDING, POSTAGE STAMP PROBLEM
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Stamp Problem
POSTAGE STAMP PROBLEM

Standard Deviation
The standard deviation stdv(x) is defined as the
SQUARE ROOT of the VARIANCE s2;

stdv(x)�s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i� xh i2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m?2�m2

p
: (1)

where m�x̄� xh i is the MEAN, m?2� x2h i is the second
RAW MOMENT, and f (x)h i denotes an EXPECTATION

VALUE. The variance s2 is therefore equal to the
second CENTRAL MOMENT (i.e., moment about the
MEAN),

s2�m2: (2)

The variate value producing a CONFIDENCE INTERVAL

CI is often denoted xCI; and

xCI�
ffiffiffi
2

p
erf�1(CI): (3)

The following table lists the CONFIDENCE INTERVALS



corresponding to the first few multiples of the
standard deviation.

range CI

/s/ 0.6826895

/2s/ 0.9544997

/3s/ 0.9973002

/4s/ 0.9999366

/5s/ 0.9999994

To find the standard deviation range corresponding to
a given CONFIDENCE INTERVAL, solve (2) for n , giving

n �
ffiffiffi
2

p
erf �1(CI): (4)

CI range

0.800 /91 :28155 s/

0.900 /91 :64485 s/

0.950 /91 :95996 s/

0.990 /92 :57583 s/

0.995 /92 :80703 s/

0.999 /93 :29053 s/

The square root of the SAMPLE VARIANCE is the
"sample" standard deviation,

sN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i�1

(xi � ̄x)2

vuut : (5)

It is a BIASED ESTIMATOR of the population standard
deviation. An unbiased ESTIMATOR is given by

sN �1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i�1

(xi � ̄x)2

vuut : (6)

Physical scientists often use the term ROOT-MEAN-

SQUARE as a synonym for standard deviation when
they refer to the SQUARE ROOT of the mean squared
deviation of a signal from a given baseline or fit.

See also CONFIDENCE INTERVAL, MEAN, MOMENT,
ROOT-MEAN-SQUARE, SAMPLE VARIANCE, STANDARD

ERROR, VARIANCE
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Standard Error
The square root of the ESTIMATED VARIANCE of a
quantity,

standard error �
ffiffiffiffiffiffiffiffiffiffiffiffi
v̂ar x

p
:

However, the standard error is sometimes also used
to mean

var(x̄) �
Xn

i�1

1

n

 !2

s2
i �

Xn

i�1

1

n

 !2

s2�
s2

n
:

See also ESTIMATOR, STANDARD DEVIATION, VARIANCE

Standard Map

A 2-D MAP also called the Taylor-Greene-Chirikov
map in some of the older literature and defined by

In�1�In�K sin un (1)

un�1�un�Inþ1�un�K sin un; (2)

where I and u are computed mod 2p and K is a
POSITIVE constant.
The standard map can be implemented in Mathema-
tica as

StandardMap[k_, its_:100, cnt_:50] :� Mod-

ule[{},

f[{t_, i_}] :� Mod[{i � t � k Sin[t], i � k

Sin[t]}, 2Pi];

Graphics[{

PointSize[.01],

Table[

Point /@ NestList[f, #, its] & [



Table[Random[Real, {0, 2Pi}], {2}]],

{cnt}]

},

AspectRatio- �Automatic] ]

An analytic estimate of the width of the CHAOTIC zone
(Chirikov 1979) finds

dI �Be �AK �1=2 

: (3)

Numerical experiments give A :5:26 and B :240:
The value of K at which global CHAOS occurs has been
bounded by various authors. GREENE’S METHOD is the
most accurate method so far devised.

Author Bound Fraction Decimal

Hermann / >/ /
1
34/ 0.029411764

Italians / >/ - 0.65

Greene /:/ - 0.971635406

MacKay and
Pearson

/B/ /
63
64/ 0.984375000

Mather /B/ /
4
3/ 1.333333333

FIXED POINTS are found by requiring that

In�1 �In (4)

un�1 � un : (5)

The first gives K sin un �0 ; so sin un �0 and

un �0; p: (6)

The second requirement gives

In �K sin un �In �0: (7)

The FIXED POINTS are therefore (I ; u) �(0; 0) and
(0; p): In order to perform a LINEAR STABILITY

analysis, take differentials of the variables

dIn�1 �dIn �K cos un dun (8)

dun�1 �dIn � 1 �K cos unð Þ dun : (9)

In MATRIX form,

dIn�1

dun�1

� �
�

1 K cos un

1 1�K cos un

� �
dIn

dun

� �
: (10)

The EIGENVALUES are found by solving the CHARAC-

TERISTIC EQUATION

1 � l K cos un

1 1�K cos un � l

� �
�0: (11)

so

l2 � l K cos un �2ð Þ�1 �0 (12)

l9�1
2 K cos un �2 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos un �2ð Þ2�4

q� �
: (13)

For the FIXED POINT (0; p) ;

l(0; p)
9 �1

2 2 �K 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �Kð Þ2�4

q� �

�1
2 2 �K 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 �4K

p� �
: (14)

The FIXED POINT will be stable if R l(0; p)
� ��� ��B2: Here,

that means

1
2 2 �Kj jB1 (15)

2 �Kj jB2 (16)

�2 B2 �K B2 (17)

�4 B�K B0 (18)

so K � 0; 4½ Þ: For the FIXED POINT (0, 0), the EIGENVA-

LUES are

l(0; 0)
9 �1

2 2 �K 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(K �2)2 �4

q� �

1
2 2 �K 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 �4K

p� �
: (19)

If the map is unstable for the larger EIGENVALUE, it is
unstable. Therefore, examine l(0; 0)

9 : We have

1

2
2�K�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�4K

p��� ���B1: (20)

so

�2B2�K�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�4K

p
B2 (21)

�4�KB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�4K

p
B�K: (22)

But K �0, so the second part of the inequality cannot
be true. Therefore, the map is unstable at the FIXED

POINT (0, 0).

See also HÉ NON-HEILES EQUATION
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Standard Normal Distribution
A NORMAL DISTRIBUTION with zero MEAN (/m�0) and
unity STANDARD DEVIATION (/s2�1); given by



P(x) dx �
1ffiffiffiffiffiffi
2p

p e �z2 =2 dz :

See also NORMAL DISTRIBUTION, TETRACHORIC FUNC-

TION

Standard Space
A SPACE which is ISOMORPHIC to a BOREL SUBSET B of
a POLISH SPACE equipped with its SIGMA ALGEBRA of
BOREL SETS.

See also BOREL SET, POLISH SPACE, SIGMA ALGEBRA

Standard Tableau
YOUNG TABLEAU

Standard Tori

One of the three classes of TORI illustrated above and
given by the PARAMETRIC EQUATIONS

x �(c �a cos v)cos u (1)

y �(c �a cos v)sin u (2)

z �a sin v: (3)

The three different classes of standard tori arise from
the three possible relative sizes of a and c . c �a
corresponds to the RING TORUS shown above, c �a
corresponds to a HORN TORUS which touches itself at
the point (0, 0, 0), and c Ba corresponds to a self-
intersecting SPINDLE TORUS (Pinkall 1986). If no
specification is made, "torus" is taken to mean RING

TORUS.
The standard tori and their inversions are CYCLIDES.

See also APPLE, CYCLIDE, HORN TORUS, LEMON, RING

TORUS, SPINDLE TORUS, TORUS
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Standard Unit

References
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Standardized Moment
Defined for samples xi ; i �1, ..., N by

ar �
1

N

XN

i�1

zr
i �

mr

sr 
: (1)

where

zi �
xi � x̄

sx

: (2)

The first few are

a1 �0 (3)

a2 �1 (4)

a3 �
m3

s3 
(5)

a4 �
m4

s4 
: (6)

See also KURTOSIS, MOMENT, SKEWNESS
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Standardized Score
Z -SCORE

Stanley’s Identity

X�
k���

a
m �k

# $
b

n�k

# $
a�b�k

k

# $

�
a�n

m

# $
b�m

n

# $
:

See also BINOMIAL SUMS
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Stanley’s Theorem
The total number of 1s that occur among all un-
ordered PARTITIONS of a POSITIVE INTEGER is equal to
the sum of the numbers of distinct members of those
PARTITIONS. For example, the partitions of 5 are f5g;
f1; 1g; f3 ; 2 g; f3; 1; 1g; f2; 2; 1g; f2 ; 1; 1; 1g;
f1; 1; 1; 1; 1g: There are a total of 0 �1 �0 �2 �1 �
3 �5 �12 1s in this list, which is equal to the sums of
the numbers of unique terms in each partition:
1 �2 �2 �2 �2 �2 �1 �12 :/

The numbers of 1s occurring in all partitions of n �1,
2, 3, ... are 1, 2, 4, 7, 12, 19, 30, 45, 67, ... (Sloane’s
A000070).

See also ELDER’S THEOREM, PARTITION
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Stanley-Wilf Conjecture
Stanley and Wilf conjectured (Bona 1997, Arratia
1999), that for every PERMUTATION PATTERN s; there
is a constant c( s) B� such that for all n ,

F(n; s) 5[c( s)]n : (1)

A related conjecture stated that for every s; the limit

lim
n0�

[F(n; s)]1 =n (2)

exists and is finite. Arratia (1999) showed that these
two conjectures are equivalent.

See also PERMUTATION PATTERN
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Star
The word "star" is used to voice an asterisk when
appearing in a mathematical expression. For exam-
ple, a� is voiced "a -star". The "star" is used to denote
the ADJOINT a �; or sometimes the COMPLEX CONJU-

GATE.

In common usage, a star is a STAR POLYGON or STAR

FIGURE (i.e., regular convex polygon or polygon
compound) such as the PENTAGRAM or HEXAGRAM

In formal geometry, a star is a set of 2n VECTORS 9a1 ;

..., 9an which form a fixed center in EUCLIDEAN 3-
SPACE.

In ALGEBRAIC TOPOLOGY, if v is a vertex of a
SIMPLICIAL COMPLEX K , then the star of v in K ,
denoted St v or St(v ;K) ; is the union of the interiors of
those SIMPLICES of K that have v as a vertex
(Munkres 1993, p. 11).

See also CLOSED STAR, CROSS, EUTACTIC STAR,
HEXAGRAM, LINK (SIMPLICIAL COMPLEX), PENTA-

GRAM, STAR FIGURE, STAR POLYGON
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Star (Fixed Point)
A FIXED POINT which has one zero EIGENVECTOR.

See also STABLE STAR, UNSTABLE STAR

Star Figure

A STAR POLYGON-like figure fp =qg for which p and q
are not RELATIVELY PRIME. Examples include the
HEXAGRAM f6=3 g; STAR OF LAKSHMI f8=2 g; and NON-

AGRAM f9=3g:/

See also HEXAGRAM, NONAGRAM, STAR OF LAKSHMI,
STAR POLYGON



Star Fractal

A FRACTAL composed of repeated copies of a PENTA-

GRAM or other polygon.

The above figure shows a generalization to different
offsets from the center.
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Star Graph

The n -star graph is a TREE on n �1 nodes with one
node having VERTEX DEGREE n and the others having

VERTEX DEGREE 1. Star graphs Sn are always GRACE-

FUL. Star graphs can be constructed using Star[n ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘).
The COMPLETE BIPARTITE GRAPH K1 ; n �1 is the STAR

GRAPH Sn (Skiena 1990, p. 146). The CHROMATIC

POLYNOMIAL of Sn is given by

psn
(z) �z(z �1)n�1 :

and the CHROMATIC NUMBER is 1 for n �1, and
x Snð Þ�2 otherwise.

See also CAYLEY TREE, TREE
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Star Number
The number of cells in a generalized Chinese checkers
board (or "centered" HEXAGRAM).

Sn �6n(n �1) �1 �Sn�1 �12(n �1): (1)

The first few are 1, 13, 37, 73, 121, ... (Sloane’s
A003154). Every star number has DIGITAL ROOT 1 or
4, and the final digits must be one of: 01, 21, 41, 61,
81, 13, 33, 53, 73, 93, or 37.

The first TRIANGULAR star numbers are 1, 253, 49141,
9533161, ... (Sloane’s A006060), and can be computed
using

TSn �
3 7 � 4

ffiffiffi
3

p� �2n �1
� 7 � 4

ffiffiffi
3

p� �2n�1
h i

� 10

32 
(2)

�194TSn�1 �60 �TSn�2 : (3)

The first few SQUARE star numbers are 1, 121, 11881,
1164241, 114083761, ... (Sloane’s A006061). SQUARE

star numbers are obtained by solving the DIOPHAN-

TINE EQUATION

2x2�1�3y2 (4)

and can be computed using

SSn�

5 � 2
ffiffiffi
6

p� �n ffiffiffi
6

p
� 2

� �
� 5 � 2

ffiffiffi
6

p� �n ffiffiffi
6

p
� 2

� �h i2

4
: (5)

See also HEX NUMBER, SQUARE NUMBER, TRIANGULAR

NUMBER
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Star of David
HEXAGRAM

Star of David Theorem

As originally stated by Gould (1972),

GCD
n�1

k

# $
;

n
k�1

# $
;

n�1
k�1

# $ <

�GCD
n�1
k�1

# $
;

n
k�1

# $
;

n�1
k

# $ <
; (1)

where GCD is the GREATEST COMMON DIVISOR and n
k

� �
is a BINOMIAL COEFFICIENT. This was subsequently
extended by D. Singmaster to

GCD
n�1

k

# $
;

n
k�1

# $
;

n�1
k�1

# $ <

�GCD
n�1
k�1

# $
;

n
k�1

# $
;

n�1
k

# $ <

�GCD
n�1
k�2

# $
;

n�1
k�1

# $
;

n�1
k

# $
;

n�1
k�1

# $ <
(2)

(Sato 1975), and generalized by Sato (1975) to

GCD

 
n

k�2

# $
;

n�1
k

# $
;

n�2
k�2

# $
;

n
k�1

# $
;

n�2
k

# $
n�1
k�1

# $<

�GCD

 
n�2

k

# $
;

n�1
k�1

# $
;

n
k�2

# $
;

n�1
k

# $
;

n�2
k�2

# $
n

k�1

# $<
(3)

An even larger generalization was obtained by Hito-
tumatu and Sato (1975), who defined

Mp�
n�p�1

k�2p�j�1

# $ ����j�1; 2; . . . ; 3p�2

<
;

(p]1) (4)

Ap�
n�p�j
k�p�1

# $ ����j�1; 2; . . . ; 3p�2

<
(p]1) (5)

Rp�
n�p�j

k�2p�j�1

# $ ����j�1; 2; . . . ; 3p�2

<
(p]1) (6)

Dp�
n�p�2t�1
k�p�t�1

# $
;

n�p�t�1
k�t

# $
;

 

n�t
k�p�2t�1

# $jt�1; 2; . . . ; p�1

<
(p]2) (7)

9p�
n�t

k�p�t�1

# $
;

n�p�2t�1
k�t

# $
;

 

n�p�t�1
k�p�2t�1

# $jt�1; 2; . . . ; p�1

<
(p]2) (8)

Up� @
p

r�1
Mr (9)

Vp� @
p

r�1
Ar (10)

Wp� @
p

r�1
Rr (11)

Dp� @
p

r�1
Dr (12)

Np� @
p

r�1
9r (13)

Bp�Mp@Ap@Rp (14)

Sp� @
p

r�1
Br (15)

with

D1�91�
n
k

# $
: (16)

and showed that each of the twelve BINOMIAL COEFFI-

CIENTS Mp; Ap; Rp; Dp; 9p; Up; Vp; Wp; 9p; Np; Bp; and
Sp has equal GREATEST COMMON DIVISOR.
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Star of Goliath
NONAGRAM

Star of Lakshmi

The STAR FIGURE f8=2g; which is used by Hindus to
symbolize Ashtalakshmi, the eight forms of wealth.
This symbol appears prominently in the Lugash
national museum portrayed in the fictional film
Return of the Pink Panther.

See also DISSECTION, HEXAGRAM, PENTAGRAM, STAR

FIGURE, STAR POLYGON
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Star Polygon

A star polygon fp=qg; with p, q POSITIVE INTEGERS, is
a figure formed by connecting with straight lines
every qth point out of p regularly spaced points lying
on a CIRCUMFERENCE. The number q is called the
DENSITY of the star polygon. Without loss of general-
ity, take qBp=2: The star polygons were first system-
atically studied by Thomas Bradwardine.
The usual definition (Coxeter 1969) requires p and q
to be RELATIVELY PRIME. However, the star polygon
can also be generalized to the STAR FIGURE (or
"improper" star polygon) when p and q share a
common divisor (Savio and Suryanaroyan 1993). For
such a figure, if all points are not connected after the
first pass, i.e., if (p; q)"1; then start with the first
unconnected point and repeat the procedure. Repeat
until all points are connected. For (p; q)"1; the
fp=qg symbol can be factored as

p

q

( )
�n

p?

q?

( )
; (1)

where

p?�
p

n
(2)

q?�
q

n
; (3)

to give n fp0=q?g figures, each rotated by 2p=p
radians, or 360�=p:/

If q�1, a REGULAR POLYGON fpg is obtained. Special
cases of fp=qg include f5=2g (the PENTAGRAM), f6=2g
(the HEXAGRAM, or STAR OF DAVID), f8=2g (the STAR

OF LAKSHMI), f8=3g (the OCTAGRAM), f10=3g (the
DECAGRAM), and f12=5g (the DODECAGRAM).



Superposing all distinct star polygons fp =qg for a
given p gives beautiful patterns such as those illu-
strated above. These figures can also be obtained by
wrapping thread around p nails spaced equally
around the circumference of a circle (Steinhaus
1983, pp. 259 �/60).

See also DECAGRAM, HEXAGRAM, NONAGRAM, OCTA-

GRAM, PENTAGRAM, REGULAR POLYGON, STAR OF

LAKSHMI, STELLATED POLYHEDRON
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Star Polyhedron
KEPLER-POINSOT SOLID

Starr Rose

See also MAURER ROSE
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State Space
The MEASURABLE SPACE (S?; S?) into which a RANDOM

VARIABLE from a PROBABILITY SPACE is a measurable
function.

See also PROBABILITY SPACE, RANDOM VARIABLE

Stationary Point

A point x0 at which the DERIVATIVE of a FUNCTION f (x)
vanishes,

f ?(x0) �0:

A stationary point may be a MINIMUM, MAXIMUM, or
INFLECTION POINT.

See also CRITICAL POINT, DERIVATIVE, EXTREMUM,
FIRST DERIVATIVE TEST, INFLECTION POINT, MAX-

IMUM, MINIMUM, SECOND DERIVATIVE TEST

Stationary Tangent
INFLECTION POINT

Stationary Value
The value at a STATIONARY POINT.

Statistic
A quantity (such as a MEDIAN, QUARTILE DEVIATION,
etc.), which is calculated from observed data.

See also ANDERSON-DARLING STATISTIC, H -STATISTIC,
K -STATISTIC, KUIPER STATISTIC, VARIATE
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Statistical Distribution
The distribution of a variable is a description of the
relative numbers of times each possible outcome will
occur in a number of trials. The function describing
the distribution is called the PROBABILITY FUNCTION,
and the function describing the cumulative probabil-
ity that a given value or any value smaller than it will
occur is called the DISTRIBUTION FUNCTION.

Formally, a distribution can be defined as a normal-
ized MEASURE, and the distribution of a RANDOM

VARIABLE x is the MEASURE Px on S? defined by setting



Px(A?) �P s � S : x(s) � A?f g;

where (S; S ; P) is a PROBABILITY SPACE, (S; S) is a
MEASURABLE SPACE, and P a MEASURE on S with
P(S) �1: If the MEASURE is a RADON MEASURE (which
is usually the case), then the statistical distribution is
a DISTRIBUTION in the sense of a generalized function.

See also CONTINUOUS DISTRIBUTION, DISCRETE DIS-

TRIBUTION, DISTRIBUTION FUNCTION, DISTRIBUTION

(GENERALIZED FUNCTION), MEASURABLE SPACE, MEA-

SURE, PROBABILITY, PROBABILITY DENSITY FUNCTION,
RANDOM VARIABLE, STATISTICS
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Statistical Index
INDEX NUMBER

Statistical Test
A test used to determine the statistical SIGNIFICANCE

of an observation. Two main types of error can occur:

1. A TYPE I ERROR occurs when a false negative
result is obtained in terms of the NULL HYPOTHESIS

by obtaining a false positive measurement.
2. A TYPE II ERROR occurs when a false positive
result is obtained in terms of the NULL HYPOTHESIS

by obtaining a false negative measurement.

The probability that a statistical test will be positive
for a true statistic is sometimes called the test’s
SENSITIVITY, and the probability that a test will be
negative for a negative statistic is sometimes called
the SPECIFICITY. The following table summarizes the
names given to the various combinations of the actual
state of affairs and observed test results.

result name

true positive result SENSITIVITY

false negative result 1-SENSITIVITY

true negative result SPECIFICITY

false positive result 1-SPECIFICITY

Multiple-comparison corrections to statistical tests
are used when several statistical tests are being
performed simultaneously. For example, let’s suppose
you were measuring leg length in eight different
lizard species and wanted to see whether the MEANS

of any pair were different. Now, there are 8!=2!6! �28

pairwise comparisons possible, so even if all of the
population means are equal, it’s quite likely that at
least one pair of sample means would differ signifi-
cantly at the 5% level. An ALPHA VALUE of 0.05 is
therefore appropriate for each individual comparison,
but not for the set of all comparisons.

In order to avoid a lot of spurious positives, the ALPHA

VALUE therefore needs to be lowered to account for the
number of comparisons being performed. This is a
correction for multiple comparisons. There are many
different ways to do this. The simplest, and the most
conservative, is the BONFERRONI CORRECTION. In
practice, more people are more willing to accept false
positives (false rejection of NULL HYPOTHESIS) than
false negatives (false acceptance of NULL HYPOTH-

ESIS), so less conservative comparisons are usually
used.

See also ANOVA, BONFERRONI CORRECTION, CHI-

SQUARED TEST, FISHER’S EXACT TEST, FISHER SIGN

TEST, KOLMOGOROV-SMIRNOV TEST, LIKELIHOOD RA-

TIO, LOG LIKELIHOOD PROCEDURE, MANOVA, NEGA-

TIVE LIKELIHOOD RATIO, PAIRED T -TEST, PARAMETRIC

TEST, PREDICTIVE VALUE, SENSITIVITY, SIGNIFICANCE

TEST, SPECIFICITY, TYPE I ERROR, TYPE II ERROR,
WILCOXON RANK SUM TEST, WILCOXON SIGNED RANK

TEST

Statistics
The mathematical study of the LIKELIHOOD and
PROBABILITY of events occurring based on known
information and inferred by taking a limited number
of samples. Statistics plays an extremely important
role in many aspects of economics and science,
allowing educated guesses to be made with a mini-
mum of expensive or difficult-to-obtain data.

See also BOX-AND-WHISKER PLOT, BUFFON-LAPLACE

NEEDLE PROBLEM, BUFFON’S NEEDLE PROBLEM,
CHERNOFF FACE, COIN FLIPPING, DE MERE’S PRO-

BLEM, DICE, GAMBLER’S RUIN, INDEX, LIKELIHOOD,
MOVING AVERAGE, P -VALUE, POPULATION COMPAR-

ISON, POWER (STATISTICS), PROBABILITY, RESIDUAL

VS. PREDICTOR PLOT, RUN, SHARING PROBLEM, STA-

TISTICAL DISTRIBUTION, STATISTICAL TEST, TAIL

PROBABILITY
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Staudt-Clausen Theorem
VON STAUDT-CLAUSEN THEOREM

Steenrod Algebra
The Steenrod algebra has to do with the COHOMOLOGY

operations in singular COHOMOLOGY with INTEGER

mod 2 COEFFICIENTS. For every n �Z and i �
f0; 1; 2; 3; . . .g there are natural transformations
of FUNCTORS

Sqi : Hn � ; Z2ð Þ 0 Hn�i � ; Z2ð Þ

satisfying:

1. Sqi�0 for i�n .
2. Sqn(x)�x % x for all x �Hn X; A; Z2ð Þ and all
pairs (X, A ).
3. Sq0�idHn � ;Z2ð Þ:/
4. The Sqi maps commute with the coboundary
maps in the long exact sequence of a pair. In other
words,

Sqi : H� � ; Z2ð Þ 0 H��i � ; Z2ð Þ



is a degree i transformation of cohomology the-
ories.
5. (CARTAN RELATION)

Sqi(x % y) �
X

j�k �i

Sqj(x) % Sqk(y):

6. (ADEM RELATIONS) For i B2j;

Sqi
(Sqj(x) �

Xib c

k �0

j �k �1
i �2k

# $
Sqi�j�k

(Sqk(x) :

7. Sqi
( a�a (Sqi where a is the cohomology

suspension isomorphism.

The existence of these cohomology operations endows
the cohomology ring with the structure of a MODULE

over the Steenrod algebra A; defined to be
T FZ2

Sqi : i � f0; 1; 2; 3; . . .gf g
� �

=R; where FZ2
�ð Þ is

the free module functor that takes any set and sends
it to the free Z2 module over that set. We think of
FZ2

Sqi : i � f0; 1; 2; . . .gf g as being a graded Z2 mod-
ule, where the i -th gradation is given by Z2 � Sqi : This
makes the tensor algebra
T FZ2

Sqi : i � f0; 1; 2; 3; . . .gf g
� �

into a GRADED AL-

GEBRA over Z2 : R is the IDEAL generated by the
elements SqiSqj �a 

ib c
k �0

j�k�1
i�2k

� �
Sqi �j�kSqk and 1 �Sq0

for 0 Bi B2j: This makes A into a graded Z2 algebra.

By the definition of the Steenrod algebra, for any
SPACE (X, A ), H � X ; A; Z2ð Þ is a MODULE over the
Steenrod algebra A; with multiplication induced by
Sqi � x �Sqi(x): With the above definitions, cohomol-
ogy with COEFFICIENTS in the RING Z2 ; H � � ; Z2ð Þ is a
FUNCTOR from the category of pairs of TOPOLOGICAL

SPACES to graded modules over A:/

See also ADEM RELATIONS, CARTAN RELATION, COHO-

MOLOGY, GRADED ALGEBRA, IDEAL, MODULE, TOPO-

LOGICAL SPACE

Steenrod-Eilenberg Axioms
EILENBERG-STEENROD AXIOMS

Steenrod’s Realization Problem
When can homology classes be realized as the image
of fundamental classes of MANIFOLDS? The answer is
known, and singular BORDISM GROUPS provide insight
into this problem.

See also BORDISM GROUP, MANIFOLD

Steepest Descent Method
An ALGORITHM for finding the nearest LOCAL MINI-

MUM of a function which presupposes that the
GRADIENT of the function can be computed. The
steepest descent method, also called the gradient
descent method, starts at a point P0 and, as many
times as needed, moves from Pi to Pi�1 by minimizing
along the line extending from Pi in the direction of
�9f Pið Þ; the local downhill GRADIENT.

This method has the severe drawback of requiring a
great many iterations for functions which have long,
narrow valley structures. In such cases, a CONJUGATE

GRADIENT METHOD is preferable.

See also CONJUGATE GRADIENT METHOD, GRADIENT,
LOCAL MINIMUM, MINIMUM
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Steffensen Sequence
A sequence

s(l)
n (x) �[h(t)] lsn(x);

where sn(x) is a SHEFFER SEQUENCE, h(t) is invertible,
and l ranges over the real numbers. If sn(x) is an
associated SHEFFER SEQUENCE, then s(l)

n is called a
CROSS SEQUENCE. If sn(x) �xn ; then

s( l)
n (x) �[h(t)]lxn

is called an APPELL CROSS SEQUENCE.

An example is the LAGUERRE POLYNOMIAL.

See also APPELL CROSS SEQUENCE, CROSS SEQUENCE,
SHEFFER SEQUENCE

References
Brown, J. W. "A Note on Generalized Appell Polynomials."

Amer. Math. Monthly 75, 1968.
Roman, S. "Cross Sequences and Steffensen Sequences." §5.3

in The Umbral Calculus. New York: Academic Press,
pp. 140�/43, 1984.

Rota, G.-C.; Kahaner, D.; and Odlyzko, A. "On the Founda-
tions of Combinatorial Theory VIII: Finite Operator
Calculus." J. Math. Anal. Appl. 42, 684�/60, 1973.

Steffensen’s Inequality
Let f (x) be a NONNEGATIVE and monotonic decreasing
function in [a, b ] and g(x) such that 05g(x)51 in [a,
b ], then

g
b

b�k

f (x) dx5g
b

a

f (x)g(x) dx5g
a�k

a

f (x) dx:

where



k �g
b

a

g(x) dx:
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Steffenson’s Formula

fp �f0 �
1
2 p(p �1)d1 =2 �

1
2(p �1)p d�1=2

� S3 �S4ð Þd3
1 =2 � S3 �S4ð Þd3

�1 =2 �. . . ; (1)

for p � �1
2 ;

1
2

h i
; where d is the CENTRAL DIFFERENCE

and

S2n�1 �
1

2

p �n
2n �1

# $
(2)

S2n�2 �
p

2n � 2

p �n
2n �1

# $
(3)

S2n�1 �S2n�2 �
p �n �1

2n �2

# $
(4)

S2n�1�S2n�2��
p�n
2n�2

# $
; (5)

where n
k

� �
is a BINOMIAL COEFFICIENT.

See also CENTRAL DIFFERENCE, STIRLING’S FINITE

DIFFERENCE FORMULA
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Steinbach Screw

A SURFACE generated by the PARAMETRIC EQUATIONS

x(u; v)�u cos v (1)

y(u; v)�u sin v (2)

z(u; v)�v cos u: (3)

The above image uses u � [�4; 4] and v � [0; 6; 25]:/

The coefficients of the FIRST FUNDAMENTAL FORM are

E�1�v2 sin2 u (4)

F��v cos u sin u (5)

G�1
2 1�2u2�cos(2u)

 �

; (6)

the coefficients of the SECOND FUNDAMENTAL FORM

are

e�

ffiffiffi
2

p
uv cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)
p (7)

f �

ffiffiffi
2

p
(cos u � u sin u)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)
p (8)

g�

ffiffiffi
2

p
u2v sin u)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)
p ; (9)

the AREA ELEMENT is

dA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)

2

s
duffldv;

(10)

and the GAUSSIAN and MEAN CURVATURES are given
by

K�
4 u u2v2 � 2ð Þcos u sin u � u2 sin2 u � cos2 u

 �

1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)½ 2

(11)

H��
v u 5 � 4u2ð Þcos u � u cos(3u)f g

2
ffiffiffi
2

p
1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)½ 3=2

�
v 2 2 � u2 2 � v2 � 2 � u2v2ð Þcos(2u)ð Þ½ sin uf g

2
ffiffiffi
2

p
1 � u2 2 � v2ð Þ� 1 � u2v2ð Þcos(2u)½ 3=2 :

(12)
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Steiner Chain

Given two nonconcentric CIRCLES with one interior to
the other, if small TANGENT CIRCLES can be inscribed
around the region between the two CIRCLES such that
the final CIRCLE is TANGENT to the first, the CIRCLES

form a Steiner chain.



The simplest way to construct a Steiner chain is to
perform an INVERSION on a symmetrical arrangement
on n circles packed between a central circle of radius
b and an outer concentric circle of radius a (Wells
1991). In this arrangement,

sin
p

n

 !
�

a � b

a � b 
; (1)

so the ratio of the radii for the small and large circles
is

b

a 
�

1 � sin p
n

� �
1 � sin p

n

� � : (2)

In addition, the radii of the circles in the ring are

c �1
2(a �b) ; (3)

and their centers are located at a distance

r �b �c �1
2(a �b) (4)

from the origin.

To transform the symmetrical arrangement into a
Steiner chain, take an INVERSION CENTER which is a
distance d from the center of the symmetrical figure.
Then the radii a? and b ? of the outer and center circles
become

a ?�
a

d2 � a2

�����
������ a

a2 � d2 
(5)

b?�
b

d2 � b2

�����
������ b

b2 � d2 
; (6)

respectively. Equivalently, a Steiner chain results
whenever the INVERSIVE DISTANCE between the two
original circles is given by

d �2 ln sec
p

n

 !
�tan

p

n

 !" #
(7)

�2 ln tan
p

4 
�

p

2n

 !" #
(8)

(Coxeter and Greitzer 1967).

The centers of the circles in a Steiner chain lie on an
ELLIPSE (Ogilvy 1990, p. 57). The lines of tangency
passing through the contact points of neighboring
circles in the chain are concurrent in a point.
Furthermore, this is the same point at which the
lines through the contact points of the inner and
outer circles also concur (Wells 1991, p. 245).

STEINER’S PORISM states that if a Steiner chain is
formed from one starting circle, then a Steiner chain
is also formed from any other starting circle. A
Steiner chain may also close after several loops
around the central circle, in which case a Steiner
chain will also be formed after the same number of
loops from any starting point.

See also ARBELOS, COXETER’S LOXODROMIC SEQUENCE

OF TANGENT CIRCLES, HEXLET, PAPPUS CHAIN, SEVEN

CIRCLES THEOREM, STEINER’S PORISM
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Steiner Construction
A construction done using only a STRAIGHTEDGE. The
PONCELET-STEINER THEOREM proves that all con-
structions possible using a COMPASS and STRAIGHT-

EDGE are possible using a STRAIGHTEDGE alone, as
long as a fixed CIRCLE and its center, two intersecting



CIRCLES without their centers, or three nonintersect-
ing CIRCLES are drawn beforehand. For example, the
centers of two intersecting circles can be found using
a STRAIGHTEDGE alone (Steinhaus 1983, p. 42).

See also GEOMETRIC CONSTRUCTION, MASCHERONI

CONSTRUCTION, MATCHSTICK CONSTRUCTION, NEUSIS

CONSTRUCTION, PONCELET-STEINER THEOREM,
STRAIGHTEDGE
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Steiner Points
There are two different types of points known as
Steiner points.

The point S of CONCURRENCE of the three lines drawn
through the VERTICES of a TRIANGLE PARALLEL to the
corresponding sides of the first BROCARD TRIANGLE is
called the Steiner point (Honsberger 1995). It lies on
the CIRCUMCIRCLE opposite the TARRY POINT T and
has TRIANGLE CENTER FUNCTION

a �bc a2 �b2
� �

a2 �c2
� �

:

The BRIANCHON POINT for KIEPERT’S PARABOLA is also
called the Steiner point. The SYMMEDIAN POINT K is
the Steiner point of the first BROCARD TRIANGLE

(Honsberger 1995, pp. 120 �/21). The SIMSON LINE of
the Steiner point is PARALLEL to the line OK , when O
is the CIRCUMCENTER and K is the SYMMEDIAN POINT

(Honsberger 1995, p. 121). The Steiner point of a
TRIANGLE is the CENTROID of the system obtained by
placing a mass equal to the magnitude of the exterior
angle at each vertex (Honsberger 1995, p. 120).

If triplets of opposites sides on a CONIC SECTION in
PASCAL’S THEOREM are extended for all permutations
of VERTICES, 60 PASCAL LINES are produced. The 20
points of their three by three intersections are called
Steiner points. STEINER’S THEOREM states that these
points are generated by the hexagons 123456,
143652, and 163254 formed by interchanging the
vertices at positions 2, 4, and 6 (where the numbers
denote the order in which the vertices of the hexagon
are taken). The configuration of PASCAL LINES for a
general hexagon inscribed in a general ellipse are
shown above, with Steiner points shown as filled
circles. A blow-up of the region in the upper left figure
is shown below, illustrating the concurrence of three
Pascal lines at each Steiner point.

Each Steiner point lies together with three KIRKMAN

POINTS on a total of 20 lines known as CAYLEY LINES.
The Steiner points also lie four at a time on 15
PLÜCKER LINES (Wells 1991). There is a dual relation-
ship between the 20 Steiner points and the 20 CAYLEY

LINES.

See also BRIANCHON POINT, BROCARD TRIANGLES,
CAYLEY LINES, CIRCUMCIRCLE, CONIC SECTION, KIE-

PERT’S PARABOLA, KIRKMAN POINTS, SYMMEDIAN



POINT, PASCAL LINES, PASCAL’S THEOREM, PLÜ CKER

LINES, SALMON POINTS, STEINER SET, STEINER’S

THEOREM, STEINER TRIPLE SYSTEM, TARRY POINT
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Steiner Quadruple System
A Steiner quadruple system is a STEINER SYSTEM

S(t �3; k �4; v) ; where S is a v -set and B is a
collection of k -sets of S such that every t -subset of
S is contained in exactly one member of B . Barrau
(1908) established the uniqueness of S(3; 4; 8);

1 2 4 8
2 3 5 8
3 4 6 8
4 5 7 8
1 5 6 8
2 6 7 8
1 3 7 8

3 5 6 7
1 4 6 7
1 2 5 7
1 2 3 6
2 3 4 7
1 3 4 5
2 4 5 6

and /S(3; 4; 10)

1 2 4 5
2 3 5 6
3 4 6 7
4 5 7 8
5 6 8 9
6 7 9 0
1 7 8 0
1 2 8 9
2 3 9 0
1 3 4 0

1 2 3 7
2 3 4 8
3 4 5 9
4 5 6 0
1 5 6 7
2 6 7 8
3 7 8 9
4 8 9 0
1 5 9 0
1 2 6 0

1 3 5 8
2 4 6 9
3 5 7 0
1 4 6 8
2 5 7 9
3 6 8 0
1 4 7 9
2 5 8 0
1 3 6 9
2 4 7 0

Fitting (1915) subsequently constructed the cyclic
systems S(3; 4 ; 26) and S(3; 4; 34); and Bays and
de Weck (1935) showed the existence of at least one
S(3; 4; 14): Hanani (1960) proved that a NECESSARY

and SUFFICIENT condition for the existence of an
S(3; 4; v) is that v �2 or 4 (mod 6).

The number of nonisomorphic steiner quadruple
systems of orders 8, 10, 14, and 16 are 1, 1, 4
(Mendelsohn and Hung 1972), and at least 31,021
(Lindner and Rosa 1976).

See also STEINER SYSTEM, STEINER TRIPLE SYSTEM
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Steiner Set
Three sets of three LINES such that each line is
incident with two from both other sets.

See also SOLOMON’S SEAL LINES, STEINER POINTS,
STEINER TRIPLE SYSTEM

Steiner Surface
A projection of the VERONESE SURFACE into 3-D
(which must contain singularities) is called a Steiner
surface. A classification of Steiner surfaces allowing
complex parameters and projective transformations
was accomplished in the 19th century. The surfaces
obtained by restricting to real parameters and trans-
formations were classified into 10 types by Coffman et
al. (1996). Examples of Steiner surfaces include the
ROMAN SURFACE (Coffman type 1) and CROSS-CAP

(type 3).

The Steiner surface of type 2 is given by the implicit
equation

x2y2�x2z2�y2z2�xyz�0:

and can be transformed into the ROMAN SURFACE or
CROSS-CAP by a complex projective change of coordi-
nates (but not by a real transformation). It has two
pinch points and three double lines and, unlike the
ROMAN SURFACE or CROSS-CAP, is not compact in any
affine neighborhood.

The Steiner surface of type 4 has the implicit
equation

y2�2xy2�xz2�x2y2�x2z2�z4�0:

and two of the three double lines of surface 2 coincide



along a line where the two noncompact "components"
are tangent.

See also CROSS-CAP, ROMAN SURFACE, VERONESE

VARIETY
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Steiner System
A Steiner system S(t; k; v) is a set X of v points, and
a collection of subsets of X of size k (called blocks),
such that any t points of X are in exactly one of the
blocks. The special case t �2 and k �3 corresponds to
a so-called STEINER TRIPLE SYSTEM. For a PROJECTIVE

PLANE, v �n2 �n �1; k �n �1; t �2, and the blocks
are simply lines.

The number r of blocks containing a point in a
S(t; k; v) Steiner system is independent of the point.
In fact,

r �

v � 1
t � 1

# $
k � 1
t � 1

# $ ;

where n
k

� �
is a BINOMIAL COEFFICIENT. The total

number of blocks b is also determined and is given by

b �
vr

k
:

These numbers also satisfy v 5b and k 5r :/

The PERMUTATIONS of the points preserving the
blocks of a Steiner system S is the AUTOMORPHISM

GROUP of S . For example, consider V the set of 9
points in the 2-dimensional VECTOR SPACE over the

FIELD over 3 elements. The blocks are the 12 lines of
the form fa �tbg�fa; a �b; a �2bg; which have
three elements each. The system is a S(2; 3; 9)
because any two points uniquely determine a line.

The AUTOMORPHISM GROUP of a Steiner system is the
AFFINE GROUP which preserves the lines. For a vector
space of dimension n over a field of q elements, this
construction gives a Steiner system S 2; q; qd

� �
:/

Several interesting groups arise as automorphism
groups of Steiner systems. For example, the MATHIEU

GROUPS are the AUTOMORPHISM GROUPS of Steiner
systems, as summarized in the following table. These
groups are unique up to ISOMORPHISM, and are not
only SPORADIC SIMPLE GROUPS, but are also highly
TRANSITIVE.

Mathieu group Steiner system

/M11/ /S(3; 4 ; 14)/

/M12/ /S(5; 6 ; 12)/

/M22/ /S(3; 6 ; 22)/

/M23/ /S(4; 7 ; 23)/

/M24/ /S(5; 8 ; 24)/

See also AUTOMORPHISM GROUP, CONFIGURATION,
MATHIEU GROUPS, SIMPLE GROUP, STEINER QUAD-

RUPLE SYSTEM, STEINER TRIPLE SYSTEM, T -DESIGN,
TRANSITIVE GROUP, WITT GEOMETRY
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Steiner Tree

The Steiner tree of some subset of the vertices of a
GRAPH G is a minimum-weight connected SUBGRAPH

of G that includes all the vertices. It is always a tree.
Steiner trees have practical applications, for example,
in the determination of the shortest total length of
wires needed to join some number of points (Hoffman
1998, pp. 164�/65).

See also PLATEAU’S PROBLEM, TREE
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Steiner Triple System
Let X be a set of v ]3 elements together with a set B
of 3-subset (triples) of X such that every 2-SUBSET of
X occurs in exactly one triple of B . Then B is called a
Steiner triple system and is a special case of a
STEINER SYSTEM with t �2 and k �3. A Steiner triple
system S(v) �S(v ; k �3 ; l �1) of order v exists IFF

v �1; 3(mod 6) (Kirkman 1847). In addition, if Stei-
ner triple systems S1 and S2 of orders v1 and v2 exist,
then so does a Steiner triple system S of order v1v2

(Ryser 1963, p. 101).

Examples of Steiner triple systems S(v) of small
orders v are

S3 �ff1 ; 2 ; 3gg

S7 �ff1; 2; 4g; f2 ; 3; 5g; f3; 4; 6g; f4; 5; 7g:

f5; 6; 1g; f6; 7 ; 2 g; f7; 1; 3gg

S9 �ff1; 2 ; 3 g; f4; 5; 6g; f7; 8 ; 9 g; f1; 4; 7g;

f2; 5 ; 8 g; f3; 6; 9g; f1 ; 5 ; 9 gf2; 6; 7g;

f3 ; 4 ; 8 g; f1; 6; 8g; f2 ; 4 ; 9g; f3; 5; 7gg:

The number of nonisomorphic Steiner triple systems
S(v) of orders v �7, 9, 13, 15, 19, ... (i.e., 6k �1:3) are
1, 1, 2, 80, > 1:1 �109 ; ... (Colbourn and Dinitz 1996,
pp. 14 �/5; Sloane’s A030129). S(7) is the same as the
finite PROJECTIVE PLANE of order 2. S(9) is a finite
AFFINE PLANE which can be constructed from the
array

a b c
d e f
g h i

:

One of the two S(13)/s is a finite HYPERBOLIC PLANE.
The 80 Steiner triple systems S(15) have been studied
by Tonchev and Weishaar (1997). There are more

than 1 :1 �109 Steiner triple systems of order 19
(Stinson and Ferch 1985; Colbourn and Dinitz 1996,
p. 15).

See also HADAMARD MATRIX, KIRKMAN TRIPLE SYS-

TEM, STEINER QUADRUPLE SYSTEM, STEINER SYSTEM
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Steinerian Curve
The LOCUS of points whose first POLARS with regard to
the curves of a linear net have a common point. It is
also the LOCUS of points of CONCURRENCE of line
POLARS of points of the JACOBIAN CURVE. It passes
through all points common to all curves of the system
and is of order /3(n �1)2

/.

See also CAYLEYIAN CURVE, JACOBIAN CURVE
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Steiner-Lehmus Theorem
Any TRIANGLE that has two equal ANGLE BISECTORS

(each measured from a VERTEX to the opposite sides)
is an ISOSCELES TRIANGLE. This theorem is also called
the "internal bisectors problem" and "Lehmus’ theo-
rem."

See also ISOSCELES TRIANGLE
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Steiner’s Ellipse
Let a? : b? : g ? be the ISOTOMIC CONJUGATE POINT of a
point with TRILINEAR COORDINATES a : b : g : The iso-
tomic conjugate of the LINE AT INFINITY having
trilinear equation

a a �bb �c g �0

is

b? g?

a
�

g ? a?

b
�

a? b?

c
�0 :

known as Steiner’s ellipse (Vandeghen 1965).

See also ISOTOMIC CONJUGATE POINT, LINE AT

INFINITY

References
Vandeghen, A. "Some Remarks on the Isogonal and Cevian

Transforms. Alignments of Remarkable Points of a Trian-
gle." Amer. Math. Monthly 72, 1091 �/094, 1965.

Steiner’s Hypocycloid
DELTOID

Steiner’s Porism

If a STEINER CHAIN is formed from one starting circle,
then a STEINER CHAIN is formed from any other
starting circle. In other words, given two noncon-
centric CIRCLES, draw CIRCLES successively touching
them and each other. If the last touches the first, this
will also happen for any position of the first CIRCLE.

See also HEXLET, SEVEN CIRCLES THEOREM, STEINER

CHAIN
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Steiner’s Problem

For what value of x is f (x) �x1 =x a MAXIMUM? The
maximum occurs at x �e , where

f ?(x) �x�2 �1 =x(1 �ln x) �0:

which is zero at x �e and gives a maximum of

e1 =e �1:444667861 . . . :

The function has an inflection point at x �
0:581933 . . . ; where

f ƒ(x)�x�4�1=x[1�3x�(ln x)(2x�2�ln x)]�0:

See also FERMAT’S PROBLEM, POWER TOWER
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Steiner’s Segment Problem
Given n points, find the line segments with the
shortest possible total length which connect the
points. The segments need not necessarily be straight
from one point to another.

For three points, if all ANGLES are less than 120 8, then
the line segments are those connecting the three
points to a central point P which makes the ANGLES

Ah iPB; Bh iPC; and Ch iPA all 1208. If one ANGLE is
greater that 1208, then P coincides with the offending
ANGLE.

For four points, P is the intersection of the two
diagonals, but the required minimum segments are
not necessarily these diagonals.

A modified version of the problem is, given two points,
to find the segments with the shortest total length
connecting the points such that each branch point
may be connected to only three segments. There is no
general solution to this version of the problem.

Steiner’s Theorem
The most common statement known as Steiner’s
theorem (Casey 1893, p. 329) states that the PASCAL

LINES of the HEXAGONS 123456, 143652, and 163254
formed by interchanging the vertices at positions 2, 4,
and 6 are concurrent (where the numbers denote the
order in which the vertices of the hexagon are taken).
The 20 points of concurrence so generated are known
as STEINER POINTS.

Another theorem due to Steiner lets LINES x and y
join a variable point on a CONIC SECTION to two fixed
points on the same CONIC SECTION. Then x and y are
PROJECTIVELY related.

A third "Steiner’s theorem" states that if two opposite
edges of a TETRAHEDRON move on two fixed SKEW

LINES in any way whatsoever but remain fixed in
length, then the volume of the TETRAHEDRON remains
constant (Altshiller-Court 1979, p. 87).

See also CONIC SECTION, PROJECTION, TETRAHEDRON
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Steinhaus Dissection
CUBE DISSECTION

Steinhaus Property
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Steinhaus-Moser Notation
A NOTATION for LARGE NUMBERS defined by Steinhaus
(1983, pp. 28 �/9). In this notation, denotes nn ;
denotes "n in n TRIANGLES," and denotes "n in n
SQUARES." A modified version due to Moser eliminates
the circle notation, continuing instead with POLYGONS

of ever increasing size, so n in a PENTAGON is n with
n SQUARES around it, etc.

See also CIRCLE NOTATION, LARGE NUMBER, MEGA,
MOSER
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Steinitz’s Lemma
If, in a plane or spherical convex polygon ABCDEFG ,
all of whose sides AB , BC , CD , ..., FG (with the
exception of AG ) have fixed lengths, one simulta-
neously increases (decreases) the angles between
these sides, then the length of the variable side
increases (decreases).
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Steinitz’s Theorem
A GRAPH G is the edge graph of a POLYHEDRON IFF G
is a SIMPLE PLANAR GRAPH which is 3-connected.

See also CONNECTED GRAPH, PLANAR GRAPH, SIMPLE

GRAPH

Steinmetz Solid
The solid common to two (or three) right circular
CYLINDERS of equal RADII intersecting at RIGHT

ANGLES is called the Steinmetz solid. Two CYLINDERS

intersecting at RIGHT ANGLES are called a bicylinder,
and three intersecting CYLINDERS a TRICYLINDER.
Half of a bicylinder is called a VAULT.



For two cylinders of radius r oriented long the z - and
x -axes gives the equations

x2�y2�r2 (1)

y2�z2�r2 (2)

which can be solved for x and y gives the PARAMETRIC

EQUATIONS of the edges of the solid,

x�9z (3)

y�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
: (4)

The SURFACE AREA can be found as f x ds; where

ds�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

dy

dz

 !2
vuut dz�

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p : (5)

Taking the range of integration as a quarter or one
face and then multiplying by 16 gives

S2�16 g
r

0

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p dz�16r2: (6)

The VOLUME common to two cylinders is was known
to Archimedes (Heath 1953, Gardner 1962) and the
Chinese mathematician Tsu Ch’ung-Chih (Kiang
1972), and does not require CALCULUS to derive.
Using calculus provides a simple derivation, however.
Noting that the solid has a square CROSS SECTION of
side-half-length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�z2

p
; the volume is given by

V2(r; r)�g
r

�r

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p� �2

dz�16
3 r3 (7)

(Moore 1974). The VOLUME can also be found using
CYLINDRICAL ALGEBRAIC DECOMPOSITION, which re-
duces the inequalities

x2�y2B1
�LBzBL
y2�z2B1
�LBxBL

8>><
>>: (8)

to

�1BxB1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
ByB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

p
BzB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

p
;

8<
: (9)

giving the integral

V2(1; 1)�g
1

�1 g
ffiffiffiffiffiffiffiffi
1�x2

p

�
ffiffiffiffiffiffiffiffi
1�x2

p g
ffiffiffiffiffiffiffiffi
1�y2

p

�
ffiffiffiffiffiffiffiffi
1�y2

p dx dy dz�16
3 : (10)

If the two right CYLINDERS are of different RADII a
and b with a�b , then the VOLUME common to them
is

V2(a; b)�8
3 a a2�b2

� �
E(k)� a2�b2

� �
K(k)


 �
; (11)

where K(k) is the complete ELLIPTIC INTEGRAL OF THE

FIRST KIND, E(k) is the complete ELLIPTIC INTEGRAL OF

THE SECOND KIND, and k�b=a is the MODULUS.

The curves of intersection of two cylinders of RADII a
and b , shown above, are given by the parametric
equations

x(t)�a cos t (12)

g(t)�a sin t (13)

z(t)�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2 sin2 t

p
(14)

(Gray 1997).

The VOLUME common to two ELLIPTIC CYLINDERS

x2

a2
�

z2

c2
�1

y2

b2
�

z2

c?2
�1 (15)

with cBc? is

V2(a; c; b; c?)

�
8ab

3c
c?2�c2
� �

E(k)� c?2�c2
� �

K(k)

 �

: (16)

where k�c=c? (Bowman 1961, p. 34).



For three CYLINDERS of RADII r intersecting at RIGHT

ANGLES, The resulting solid has 12 curved faces. If
tangent planes are drawn where the faces meet, the
result is a RHOMBIC DODECAHEDRON (Wells 1991). The
VOLUME of intersection can be computed in a number
of different ways,

V3(r ; r ; r) �g 16r3 g  
p =4

0 g
1

0

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �s2 cot2 t

p
ds dt (17)

�
ffiffiffi
2

p
r

� �3

�6 g
r

r=
ffiffi
2

p 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �z2

p� �2

dz (18)

�8 2�
ffiffiffi
2

p� �
r3 (19)

(Moore 1974).

Four cylinders can also be placed with axes along the
lines joining the vertices of a TETRAHEDRON with the
centers of the opposite sides. The resulting solid of
intersection has VOLUME

V4 �12 2
ffiffiffi
2

p
�

ffiffiffi
6

p� �
(20)

and 24 curved faces analogous to a CUBE-OCTAHEDRON

COMPOUND (Moore 1974, Wells 1991).

Six cylinders can be place with axes parallel to the
face diagonals of a CUBE. The resulting solid of
intersection has VOLUME

V4�12 3�2
ffiffiffi
3

p
�4

ffiffiffi
2

p� �
(21)

and 36 curved faces, 24 of which are kite-shaped and
12 of which are rhombic (Moore 1974).

See also BICYLINDER, CYLINDER, ELLIPTIC CYLINDER,
REULEAUX TETRAHEDRON, RHOMBIC DODECAHEDRON,
RIGHT ANGLE, VAULT
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Stella Octangula

A POLYHEDRON COMPOUND composed of a TETRAHE-

DRON and its DUAL (a second TETRAHEDRON rotated
1808 with respect to the first). The stella octangula is
also called a STELLATED TETRAHEDRON, and is the
only STELLATION of the OCTAHEDRON. The stella
octangula can be constructed using the following
NET by cutting along the solid lines, folding back
along the plain lines, and folding forward along the
dotted lines.

Another construction builds a single TETRAHEDRON,



then attaches four tetrahedral caps, one to each face.
This CUMULATION of a unit edge-length OCTAHEDRON

uses pyramids with height 1
3

ffiffiffi
6

p
.

A tetrahedron with edge length 1 produces a stella
octangula with edge lengths /1 =2/. This solid has
SURFACE AREA and VOLUME

S �3
2

ffiffiffi
3

p

V �1
8

ffiffiffi
2

p
:

The CONVEX HULL of the stella octangula is a CUBE.

The above diagrams show two projections of the stella
octangula. The edges lying on tetrahedral faces are
represented using dashed lines, while the edges of the
two large tetrahedron are showing using solid lines.

The solid common to both tetrahedra is an OCTAHE-

DRON (left figure; Ball and Coxeter 1987), which is
another way of saying that the stella octangula is a
STELLATION of the OCTAHEDRON (in fact, the only
stellation). The edges of the two tetrahedra in the
stella octangula form the 12 DIAGONALS of a CUBE

(middle figure). Finally, the stella octangula can be
constructed using eight of the 20 vertices of the
DODECAHEDRON (right figure).

See also CUBE, OCTAHEDRON, POLYHEDRON COM-

POUND, SPHERE PACKING, STELLATION, TETRAHEDRON
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Stella Octangula Number
A FIGURATE NUMBER OF THE FORM,

StOctn�On�8Tn�1�n 2n2�1
� �

:

The first few are 1, 14, 51, 124, 245, ... (Sloane’s
A007588). The GENERATING FUNCTION for the stella
octangula numbers is

x(x2 � 10x � 1)

(x � 1)4 �x�14x2�51x3�124x4�. . . :

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, p. 51, 1996.
Sloane, N. J. A. Sequences A007588/M4932 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Stellated Octahedron
STELLA OCTANGULA

Stellated Polyhedron
STELLATION

Stellated Tetrahedron
STELLA OCTANGULA



Stellated Truncated Hexahedron

The UNIFORM POLYHEDRON U19 ; also called the QUASI-

TRUNCATED HEXAHEDRON, whose DUAL POLYHEDRON

is the GREAT TRIAKIS OCTAHEDRON. It has SCHLÄ FLI

SYMBOL t?f4; 3g; WYTHOFF SYMBOL 23½43; and is Wen-
ninger model W92 : Its faces are 8f3 g�6f8

3 g: For a �1,
its CIRCUMRADIUS is

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �4

ffiffiffi
2

pq
:

The CONVEX HULL of the stellated truncated hexahe-
dron is the Archimedean SMALL RHOMBICUBOCTAHE-

DRON A6, whose dual is the DELTOIDAL

ICOSITETRAHEDRON, so the dual of the stellated
truncated hexahedron (i.e., the GREAT TRIAKIS OCTA-

HEDRON) is one of the stellations of the DELTOIDAL

ICOSITETRAHEDRON (Wenninger 1983, p. 57).
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Stellation
The process of constructing POLYHEDRA by extending
the facial PLANES past the EDGES of a given POLY-

HEDRON until they intersect (Wenninger 1989). The
set of all possible EDGES of the stellations can be
obtained by finding all intersections on the facial
planes. Since the number and variety of intersections
can become unmanageable for complicated polyhedra,
additional rules are sometimes added to constrain
allowable stellations. There exists a Mathematica
function Stellate[poly , ratio ] in the Mathematica
add-on package Graphics‘Polyhedra‘ (which can
be loaded with the command BBGraphics‘),

although it only replaces facial planes with pyramids
and does not perform true stellation.

There are no stellations of the CUBE or TETRAHEDRON

(Wenninger 1989, p. 35). The only stellated form of
the octahedron is the STELLA OCTANGULA, which is a
compound of two TETRAHEDRA (Wenninger 1989,
pp. 35 and 37). The DODECAHEDRON has three stella-
tions: the SMALL STELLATED DODECAHEDRON, GREAT

DODECAHEDRON, and GREAT STELLATED DODECAHE-

DRON (Wenninger 1989, pp. 35 and 38 �/0). Coxeter
(1982) shows that 59 ICOSAHEDRON STELLATIONS

exist, subject to certain restrictions.

The KEPLER-POINSOT SOLIDS, which consist of three
DODECAHEDRON STELLATIONS and one of the ICOSAHE-

DRON STELLATIONS. The only STELLATIONS of PLA-

TONIC SOLIDS which are UNIFORM POLYHEDRA are the
three DODECAHEDRON STELLATIONS and one of the
ICOSAHEDRON STELLATIONS.

There are three stellations of the RHOMBIC DODECA-

HEDRON (Wells 1991, pp. 216�/17).

See also ARCHIMEDEAN SOLID STELLATION, DELTOI-

DAL ICOSITETRAHEDRON STELLATIONS, DODECAHE-

DRON STELLATIONS, FACETING, ICOSAHEDRON

STELLATIONS, KEPLER-POINSOT SOLID, PLATONIC SO-

LID STELLATIONS, POLYHEDRON, POLYTOPE STELLA-

TIONS, RECTIFICATION, RHOMBIC DODECAHEDRON

STELLATIONS, RHOMBIC TRIACONTAHEDRON STELLA-

TIONS, SMALL TRIAKIS OCTAHEDRON STELLATIONS,
STELLA OCTANGULA, STELLATED POLYHEDRON, STEL-

LATED TRUNCATED HEXAHEDRON, TRIAKIS TETRAHE-

DRON STELLATIONS, TRUNCATION, UNIFORM

POLYHEDRON
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Stem-and-Leaf Diagram
The "stem" is a column of the data with the last digit
removed. The final digits of each column are placed
next to each other in a row next to the appropriate



column. Then each row is sorted in numerical order.
This diagram was invented by John Tukey.
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Step
1.5 times the H-SPREAD.

See also FENCE, H-SPREAD
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Step Function
A function on the REALS R is a step function if it can
be written as a finite linear combination of semi-open
intervals [a; b) ⁄R: Therefore, a step function f can
be written as

f (x) � a1f1(x) �� � �� anfn(x) :

where ai �R ; fi(x) �1 if x � ai ; bi½ Þ and 0 otherwise, for
i �1, ..., n .

See also HEAVISIDE STEP FUNCTION

Step Polynomial
HERMITE’S INTERPOLATING POLYNOMIAL

Stephens’ Constant
Let a and b be nonzero integers such that ambn "1
except when m �n �0; and let T(a ; b) be the set of
PRIMES p for which p ak �b

� �
for some NONNEGATIVE

INTEGER k . Then assuming the generalized RIEMANN

HYPOTHESIS, Stephens (1976) showed that the density
of T(a; b) relative to the primes is a rational multiple
of

CStephens �
Y�
j�1

1 �
pj

p3
j � 1

 !
�0:5759599688 . . . :

where pj is the jth PRIME (Finch).

See also ARTIN’S CONSTANT
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Steradian
The unit of SOLID ANGLE. The SOLID ANGLE corre-
sponding to all of space being subtended is 4p
steradians.

See also RADIAN, SOLID ANGLE

Stereogram

A plane image or pair of 2-D images which, when
appropriately viewed using both eyes, produces an
image which appears to be three-dimensional. By
taking a pair of photographs from slightly different
angles and then allowing one eye to view each image,
a stereogram is not difficult to produce.
Amazingly, it turns out that the 3-D effect can be
produced by both eyes looking at a single image by
defocusing the eyes at a certain distance. Such
stereograms are called "random-dot stereograms."

See also ANAGLYPH
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Stereographic Projection

A MAP PROJECTION obtained by projecting points p? on
the surface of sphere from the sphere’s north pole N



to point P in a plane tangent to the south pole S
(Coxeter 1969, p. 93). In such a projection, GREAT

CIRCLES are mapped to CIRCLES, and LOXODROMES

become LOGARITHMIC SPIRALS.

The transformation equations for a sphere of radius
R are given by

x �k cos f sin( l � l0) (1)

y �k cos f1 sin f �sin f1 cos f cos l � l0ð Þ½ : (2)

where l0 is the central longitude, f1 is the central
latitude, and

k �
2R

1 � sin f1sin f � cos f1 cos f cos l � l0ð Þ
: (3)

The inverse FORMULAS for latitude f and longitude l
are then given by

f �sin�1 cos c sin f1 �
y sin c cos f1

r

 !
(4)

l � l0 �tan�1 x sin c

r cos f1 cos c � y sin f1 sin c

 !
; (5)

where

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
(6)

c �2 tan�1 r

2R

 !
: (7)

For an OBLATE SPHEROID, R can be interpreted as the
"local radius," defined by

R �
Re cos f

1 � e2 sin2 f
� �

cos x 
; (8)

where Re is the equatorial radius and x is the
CONFORMAL LATITUDE.

See also GNOMONIC PROJECTION, MAP PROJECTION
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Stereology
The exploration of 3-D space from 2-D sections of
PROJECTIONS of solid bodies.

See also AXONOMETRY, BRIGHTNESS, CORK PLUG,
CROSS SECTION, INNER QUERMASS, MEAN TANGENT

DIAMETER, PROJECTION, SHADOW, TRIP-LET
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Stern-Brocot Tree

A special type of BINARY TREE obtained by starting
with the fractions 0

1 and 1
0 and iteratively inserting

(m �m?)=(n �n?) between each two adjacent fractions
m=n and m?=n ?: The result can be arranged in tree
form as illustrated above. The FAREY SEQUENCE Fn

defines a subtree of the Stern-Brocot tree obtained by
pruning off unwanted branches (Vardi 1991, Graham
et al. 1994).

See also BINARY TREE, FAREY SEQUENCE, FORD

CIRCLE
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Stevedore’s Knot

The 6-crossing KNOT 06 �/01 having CONWAY-ALEXAN-

DER POLYNOMIAL

D(t) �2t2 �5t �2:
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Stewart’s Theorem

Let a CEVIAN A1P be drawn on a TRIANGLE DA1A2A3 ;
and denote the lengths m �A2P and n �PA3 ; with
a1 �m �n: Then

ma2
2 �na2

3 �(m �n)A1P
2 
�mPA3

2
�nPA2

2
:

This theorem is sometimes also called APOLLONIUS’

THEOREM.
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Stick Number
Let the stick number s(K) of a KNOT K be the least
number of straight sticks needed to make a KNOT K .
The smallest stick number of any KNOT is s(T) �6;
where T is the TREFOIL KNOT. If J and K are KNOTS,
then

s(J �K) 5s(J) �s(K) �1:

For a nontrivial KNOT K , let c(K) be the CROSSING

NUMBER (i.e., the least number of crossings in any
projection of K ). Then

1
2 5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 �8(c(K) �2)

ph i
5s(K) 52c(K) :

The following table gives the stick number for some
common knots.

TREFOIL KNOT 6

WHITEHEAD LINK 8

See also CROSSING NUMBER (LINK), TRIANGLE COUNT-

ING
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Stickelberger Relation
Let P be a PRIME IDEAL in Dm not containing m . Then

( F(P)) �P
P

ts�1
t ;

where the sum is over all 1 5t Bm which are
RELATIVELY PRIME to m . Here Dm is the RING of
integers in Q zmð Þ; F(P) �g(P)m ; and other quantities
are defined by Ireland and Rosen (1990).

See also PRIME IDEAL
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Stiefel Manifold
The Stiefel manifold of ORTHONORMAL k -frames in Rn

is the collection of vectors (/v1 ; ..., vk) where vi is in Rn

for all i , and the k -tuple (/v1 ; ..., vk) is ORTHONORMAL.
This is a submanifold of Rnk ; having DIMENSION

nk �(k �1)k=2 :/

Sometimes the "orthonormal" condition is dropped in
favor of the mildly weaker condition that the k -tuple (/
v1 ; ..., vk) is linearly independent. Usually, this does
not affect the applications since Stiefel manifolds are
usually considered only during HOMOTOPY THEORETIC

considerations. With respect to HOMOTOPY THEORY,
the two definitions are more or less equivalent since
GRAM-SCHMIDT ORTHONORMALIZATION gives rise to a
smooth deformation retraction of the second type of
Stiefel manifold onto the first.

See also GRASSMANN MANIFOLD

Stiefel-Whitney Class
The i th Stiefel-Whitney class of a REAL VECTOR

BUNDLE (or TANGENT BUNDLE or a REAL MANIFOLD)
is in the i th cohomology group of the base SPACE

involved. It is an OBSTRUCTION to the existence of (n�
i�1) REAL linearly independent VECTOR FIELDS on



that VECTOR BUNDLE, where n is the dimension of the
FIBER. Here, OBSTRUCTION means that the i th Stiefel-
Whitney class being NONZERO implies that there do
not exist (n �i �1) everywhere linearly dependent
VECTOR FIELDS (although the Stiefel-Whitney classes
are not always the OBSTRUCTION).

In particular, the nth Stiefel-Whitney class is the
obstruction to the existence of an everywhere NON-

ZERO VECTOR FIELD, and the first Stiefel-Whitney
class of a MANIFOLD is the obstruction to orientability.

See also CHERN CLASS, OBSTRUCTION, PONTRYAGIN

CLASS, STIEFEL-WHITNEY NUMBER

Stiefel-Whitney Number
The Stiefel-Whitney number is defined in terms of the
STIEFEL-WHITNEY CLASS of a MANIFOLD as follows.
For any collection of STIEFEL-WHITNEY CLASSES such
that their cup product has the same DIMENSION as the
MANIFOLD, this cup product can be evaluated on the
MANIFOLD’s FUNDAMENTAL CLASS. The resulting num-
ber is called the PONTRYAGIN NUMBER for that
combination of Pontryagin classes.

The most important aspect of Stiefel-Whitney num-
bers is that they are COBORDISM invariant. Together,
PONTRYAGIN and Stiefel-Whitney numbers determine
an oriented MANIFOLD’s COBORDISM class.

See also CHERN NUMBER, PONTRYAGIN NUMBER,
STIEFEL-WHITNEY CLASS

Stieltjes Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry. Expanding the RIEMANN

ZETA FUNCTION about z�1 gives

z(z)�
1

z � 1
�
X�
n�0

(�1)n

n!
gn(z�1)n; (1)

where

gn� lim
m0�

Xm

k�1

(ln k)n

k
�

(ln m)n�1

n � 1

" #
: (2)

These constants are returned by the Mathematica
function StieltjesGamma[n ]. An alternative defini-
tion is given by absorbing the coefficient of gn into the
constant,

g?n�
(�1)n

n!
gn (3)

(e.g., Hardy 1912, Kluyver 1927).

The case n�0 gives the usual EULER-MASCHERONI

CONSTANT g0�g: The first few numerical values are
given in the following table.

n /gn/

0 0.5772156649

1 /�0:07281584548/

2 /�0:009690363192/

3 0.002053834420

4 0.002325370065

5 0.0007933238173

Briggs (1955�/956) proved that there infinitely many
gn of each SIGN. Berndt (1972) gave upper bounds of

½gn½B

4(n � 1)!

pn
for n even

2(n � 1)!

pn
for n odd:

8>>><
>>>: (4)

However, these bounds are extremely weak, so it is
likely that better ones can be derived.

Vacca (1910) proved that the EULER-MASCHERONI

CONSTANT may be expressed as

g�
X�
k�1

(�1)k

k
lg kb c; (5)

where xb c is the FLOOR FUNCTION and the LG function
lg x�log2 x is the LOGARITHM to base 2.

Hardy (1912) gave the FORMULA

2g1

ln 2
�
X�
k�1

(�1)k

k
2 lg k� lg(2k)b c½  lg kb c: (6)

/g1 is also given by the sum

Xx

n�1

1

n
ln

x

n

 !
�1

2(ln x)2�g ln x�g1�O x�1
� �

; (7)

where g1 was called �D and given incorrectly by
Ellision and Mendès-France (1975) and the error was
reproduced by Le Lionnais (1983, p. 47). The exact
form of (7) is given by

Xx

n�1

1

n
ln

x

n

 !
�Hx ln x�z?(1; x�1)�g1; (8)

where Hx is a HARMONIC NUMBER, Q zmð Þ is the
HURWITZ ZETA FUNCTION, and z?(1; a) denotes
lims01 dz(s; a)=dz½z�s:/

Kluyver (1927) gave similar series for gn valid for all
n �1,



gn �

n!(ln 2)n 
Xn�1

m�1

( �1)m�1

m!

X�
k �1

( �1)k

k lg kb cm B1�n�m

ln k

ln 2

 !
;

(9)

where Bn(x) is a BERNOULLI POLYNOMIAL. However,
this series converges extremely slowly, requiring
more than 104 terms to get two digits of g1 and
many more for higher order gn : gn can also be
expressed as a single sum using

gn �
(ln 2)n

n � 1

X�
k �1

( �1)k

k
Bn�1

ln k

ln 2

 !
: (10)

A set of constants related to gn is

dn � lim
m0�

Xm

k �1

(ln k)n �g
m

1

(ln x)n dx �1
2(ln m)n

" #
(11)

(Sitaramachandrarao 1986, Lehmer 1988).

See also BERNOULLI POLYNOMIAL, EULER PRODUCT,
RIEMANN ZETA FUNCTION
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Stieltjes Integral
The Stieltjes integral is a generalization of the
RIEMANN INTEGRAL. Let f (x) and a(x) be real-valued

bounded functions defined on a CLOSED INTERVAL [a,
b ]. Take a partition of the INTERVAL

a �x0 Bx1 Bx2 ; . . .Bxn�1 Bxn �b; (1)

and consider the Riemann sum

Xn�1

i�0

f jið Þ a xi�1

� �
� a xið Þ


 �
(2)

with ji � xi ; xi�1


 �
: If the sum tends to a fixed number

I as max xi �1 �xi

� �
0 0; then I is called the Stieltjes

integral, or sometimes the RIEMANN-STIELTJES INTE-

GRAL. The Stieltjes integral of f with respect to a is
denoted

g f (x) da(x) (3)

or sometimes simply

g f da: (4)

If f and a have a common point of discontinuity, then
the integral does not exist. However, if f is continuous
and a? is Riemann integrable over the specified
interval, then

g f (x) da(x) �g f (x) a?(x) dx (5)

(Kestelman 1960).

For enumeration of many properties of the Stieltjes
integral, see Dresher (1981, p. 105).

See also CONVOLUTION, RIEMANN INTEGRAL

References
Dresher, M. The Mathematics of Games of Strategy: Theory

and Applications. New York: Dover, 1981.
Hardy, G. H.; Littlewood, J. E.; and Pólya, G. Inequalities,
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Stieltjes’ Theorem
The m �1 ELLIPSOIDAL HARMONICS when k1; k2; and
k3 are given can be arranged in such a way that the
rth function has r�1 zeros between�a2 and�b2 and
the remaining m�r�1 zeros between �b2 and �c2

(Whittaker and Watson 1990).

See also ELLIPSOIDAL HARMONIC



References
Whittaker, E. T. and Watson, G. N. A Course in Modern

Analysis, 4th ed. Cambridge, England: Cambridge Uni-
versity Press, pp. 560�/62, 1990.

Stieltjes Transform
The INTEGRAL TRANSFORM

(Kf )(x)�g
�

��

G(p)(x�t)�pf (t) dt:
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StieltjesGamma
STIELTJES CONSTANTS

Stieltjes-Wigert Polynomial
Orthogonal POLYNOMIALS associated with WEIGHTING

FUNCTION

w(x)�p�1=2k exp �k2 ln2 x
� �

�p�1=2kx�k2 ln x (1)

for x � (0; �) and k �0. Using

n
n

� �
�

1 � qnð Þ 1 � qn�1ð Þ � � � 1 � qn�n�1ð Þ
(1 � q) 1 � q2ð Þ � � � 1 � qnð Þ

(2)

where 0BnBn;

n
0

� �
�

n
n

� �
�1; (3)

and

q�exp � 2k2
� ��1

h i
: (4)

Then

pn(x)�(�1)nqn=2�1=4 (1�q) 1�q2
� �

� � � 1�qnð Þ

 ��1=2

�
Xn

n�0

n
n

� �
qn2

�q1=2x
� �n

(5)

for n �0 and

p0(x)�q1=4: (6)
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Stiff Differential Equation
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Stirling Cycle Number
STIRLING NUMBER OF THE FIRST KIND

Stirling Number of the First Kind
The signed Stirling numbers of the first kind are
variously denoted s(n; m) (Riordan 1980, Roman
1984), S(m)

n (Fort 1958, Abramowitz and Stegun
1971), Sm

n (Jordan 1950). Abramowitz and Stegun
(1971, p. 822) summarize the various notational
conventions, which can be a bit confusing (especially
since an unsigned version S1(n; m)� ½s(n; m)½ is also
in common use). The signed Stirling number of the
first kind s(n; m) is are returned by StirlingS1[n ,
m ] in Mathematica .

The signed Stirling numbers of the first kind s(n; m)
are defined such that the number of PERMUTATIONS of
n elements which contain exactly m CYCLES is the
nonnegative number

½s(n; m)½�(�1)n�ms(n; m): (1)

This means that s(n; m)�0 for m � n and s(n; n)�
1: A related set of numbers is known as the associated
Stirling numbers of the first kind. Both these are the
usual Stirling numbers of the first kind are special
cases of a general function dr(n; k) which is related to
the number of cycles in a permutation.

The triangle of signed Stirling numbers of the first
kind is

1

�1 1

2 �3 1

�6 11 �6 1

24 �50 35 �10 1

(Sloane’s A008275). Special values include



s(n; 0)�dn0 (2)

s(n; 1)�(�1)n�1(n�1)! (3)

s(n; 2)�(�1)n(n�1)!Hn�1 (4)

s(n; 3)�1
2(�1)n�1(n�1)! H2

n�1�H(2)
n�1


 �
(5)

s(n; n�1)��
n
2

# $
; (6)

where dmn is the KRONECKER DELTA, Hn is a HARMO-

NIC NUMBER, H(r)
n is a HARMONIC NUMBER of order r ,

and n
k

� �
is a BINOMIAL COEFFICIENT.

The GENERATING FUNCTION for the Stirling numbers
of the first kind is

(x)n�x(x�1) � � � (x�n�1)�
Xn

m�0

s(n; m)xm; (7)

where (x)n is a FALLING FACTORIAL. Other generating
functions are

Xn

k�0

s(n; k)xk�(1�x�n)n (8)

Xn

k�0

s(n; k)xk�(�1)nn!
n�x�1

n

# $
(9)

X�
k�m

s(k; m)xk�
[ln(x � 1)]m

m!
(10)

Yn

k�1

(1�kx)�
Xn�1

k�1

(�1)n�1�ks(n�1; k)xn�1�k: (11)

The Stirling numbers of the first kind satisfies the
RECURRENCE RELATION

s(n�1; m)�s(n; m�1)�ns(n; m) (12)

for 15m5n and the sum identities

s(n; m)�
Xn

k�m

nk�ms(n�1; k�1) (13)

for m]1 and

m
r

# $
s(n; m)�

Xn�r

k�m�r

n
k

# $
s(n�k; r)(k; m�r) (14)

for 05r5m; where n
k

� �
is a BINOMIAL COEFFICIENT.

The Stirling numbers of the first kind s(n; m) are
connected with the STIRLING NUMBERS OF THE SEC-

OND KIND S(n; m) through the formulas

s(n; i)�
Xn

k�i

Xk

j�0

s(n; k)s(k; j)S(j; i) (15)

S(n; i)�
Xn

k�i

Xk

j�0

S(n; k)S(k; j)s(j; i) (16)

(Roman 1984, p. 67), as well as

S(n; m)�
Xn�m

k�0

(�1)k k�n�1
k�n�m

# $

� 2n�m
n�k�m

# $
s(k�m�n; k) (17)

s(n; m)�
Xn�m

k�0

(�1)k k�n�1
k�n�m

# $

� 2n�m
n�k�m

# $
s(k�m�n; k) (18)

Xmax (k; j)�1

l�0

s(l; j)S(k; 1)�djk (19)

Xmax (k; j)�1

l�0

s(k; l)S(l; j)�djm: (20)

The NONNEGATIVE version simply gives the number of
PERMUTATIONS of n objects having m CYCLES (with
cycles in opposite directions counted as distinct) and
is obtained by taking the ABSOLUTE VALUE of the
signed version. The nonnegative Stirling numbers of
the first kind are variously denoted

S1(n; m)�
n
m

� �
� ½s(n; m)½ (21)

(Graham et al. 1994). Diagrams illustrating
S1(5; 1)�24; S1(5; 3)�35; S1(5; 4)�10; and
S1(5; 5)�1 (Dickau) are shown below.

The nonnegative Stirling numbers of the first kind
satisfy the curious identity



X�
n�1

Xn�2

k �0

ex � x � 1ð Þk �1S1(n; n � k)

(k � 1)!

" #
e �xn

�ln(x �1) (22)

(Gosper) and satisfy

S1(n �1 ; k) �nS1(n; k) �S1(n; k �1): (23)

The Stirling numbers can be generalized to noninte-
gral arguments (a sort of "Stirling polynomial") using
the identity

G(j � h)

jh G(j)
�
X�
k �0

S1(h ; h � k)

jk

�1 �
(h � 1)h

2j
�

(h � 2)(3h � 1)(h � 1)h

24j2

�
(h � 3)(h � 2)(h � 1)2h2

48j3 
�� � �  (24)

which is a generalization of an ASYMPTOTIC SERIES for
a ratio of GAMMA FUNCTIONS G(j �1=2)=G(j) (Gosper).

The associated Stirling numbers of the first kind
d2(n ; k) �d(n; k) are defined as the number of per-
mutations of a given number n having exactly k
CYCLES, all of which are of length r �2 or greater
(Comtet 1974, p. 256; Riordan 1980, p. 75). They are
a special case of the more general numbers dr(n; k);
and have the RECURRENCE RELATION

d2(n �1; k) �n d2(n; k) �d2(n �1; k �1)½  (25)

with initial conditions d2(n; k) �0 for n 52k �1; and
d2(n ; 1) �(n �1)! (Appell 1880; Tricomi 1951; Carlitz
1958; Comtet 1974, pp. 256, 293, and 295) with . The
GENERATING FUNCTION for d2(n; k) is given by

e �tu(1 �t)�u �1 �
Xn=2

k�1

d2(n; k)

n!
tnuk

�1 �
t2

2 
�

t3

3 
�

t4

4 
�

t5

5 
�

t6

6 
�. . .

 !
u

�
t4

8 
�

t5

6 
�

13t6

72
�. . .

 !
u2 �

t6

48 
�. . .

 !
u3 �. . . (26)

(Comtet 1974, p. 256). The associated Stirling num-
bers of the first kind satisfy the sum identity

Xn

k �1

(�1)k�1d2(n; k) �n �1: (27)

For k ]2 and p a PRIME,

d(p; k) �0 (mod p(p �1)): (28)

For all integers l ,

X
m

(�1)md2(l �m; m) �(�1)l ; (29)

and similarly,

X
m

( �1)md2(l � m; m)

l � m � 1
�0 (30)

(Comtet 1974, p. 256).

Special cases of the associated Stirling numbers of the
first kind are given by

d2(n; 1) �(n �1)! (31)

d2(2k; k) �(2k �1)!! (32)

d2(2k �1; k) �
(2k � 1)ak!

3(k � 1)!2k 
(33)

d2(2k�2; k)�
(4k � 5)(2k � 2)!

18(k � 1)!2k
(34)

(Comtet 1974, p. 256), where ak is a coefficient in the
expansion of (1�3x)=(1�2x)7=2 : 1, 10, 105, 1260,
17325, ... (Sloane’s A000457), omitted in Comtet
(1974). The triangle of these numbers is given by

1

2

6; 3

24; 20

120; 130; 15

720; 924; 210

5040; 7308; 2380; 105

(Sloane’s A008306).

See also CYCLE (PERMUTATION), HARMONIC NUMBER,
PERMUTATION, STIRLING NUMBER OF THE SECOND

KIND, STIRLING POLYNOMIAL, STIRLING TRANSFORM
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Stirling Number of the Second Kind
The number of ways of partitioning a set of n
elements into m nonempty SETS (i.e., m BLOCKS),
also called a STIRLING SET NUMBER. for example, the
SET f1; 2; 3g can be partitioned into three SUBSETS in
one way: ff1g; f2g; f3gg; into two SUBSETS in three
ways: ff1; 2g; f3gg; ff1; 3g; f2gg; and ff1g; f2; 3gg;
and into one SUBSET in one way: ff1; 2; 3gg:/
The Stirling numbers of the second kind are variously
denoted S(n; m) (Riordan 1980, Roman 1984), S(m)

n

(Fort 1958, Abramowitz and Stegun 1971), Sm
n (Jor-

dan 1950), s(m)
n ; S2(n; m); or n

m

� �
(Graham et al. 1994).

Abramowitz and Stegun (1971, p. 822) summarize the
various notational conventions, which can be a bit
confusing. The Mathematica command for a Stirling
number of the second kind is StirlingS2[n , m ]. The
Stirling numbers of the second kind for three ele-
ments are

S(3; 1)�1 (1)

S(3; 2)�3 (2)

S(3; 3)�1: (3)

Since a set of n elements can only be partitioned in a

single way into 1 or n SUBSETS,

S(n; 1)�S(n; n)�1: (4)

Other special cases include

S(n; 0)�dn0 (5)

S(n; 2)�2n�1�1 (6)

S(n; n�1)�
n
2

# $
: (7)

The triangle of Stirling numbers of the second kind is

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

(Sloane’s A008277), the nth row of which corresponds
to the coefficients of the EXPONENTIAL POLYNOMIAL

fn(x):/

The Stirling numbers of the second kind can be
computed from the sum

S(n; k)�
1

k!

Xk�1

i�0

(�1)i k
i

# $
(k�i)n; (8)

with n
k

� �
a BINOMIAL COEFFICIENT, or the GENERATING

FUNCTIONS

xn�
Xn

m�0

S(n; m)(x)m

�
Xn

m�0

S(n; m)x(x�1) � � � (x�m�1); (9)

where (x)m is the FALLING FACTORIAL (Roman 1984,
pp. 60 and 101),

X
n]k

S(n; k)
xn

n!
�

1

k!
ex�1ð Þk; (10)

and

1

(1 � x)(1 � 2x) � � � (1 � kx)
�
Xk

n�1

S(n; k)xn: (11)

Other generating functions are

Xn

k�1

S(n; k)(k�1)!zk�(�1)nLi1�n(1�1=z) (12)

for n]2; where Lin(z) is the POLYLOGARITHM, and



X�
k �m

S(k; m)zk �
zmQ�

k�1(1 � kz) 
: (13)

Stirling numbers of the second kind are intimately
connected with the POISSON DISTRIBUTION through
the identity

X�
k �0

e �xxk

k!
kn �

Xn

k �1

xkS(n; k) : (14)

The above diagrams (Dickau) illustrate the definition
of the Stirling numbers of the second kind S(n; m) for
n �3 and 4. Stirling numbers of the second kind obey
the RECURRENCE RELATIONS

S(n; k) �S(n �1; k �1) �kS(n �1 ; k) (15)

S(n; k) �
Xn

m�k

kn�mS(m �1; k �1): (16)

The STIRLING NUMBERS OF THE FIRST KIND s(n ; m) are
connected with the Stirling numbers of the second
kind S(n; m) through the formulas

s(n; i) �
Xn

k �i

Xk

j�0

s(n; k)s(k ; j)S(j ; i) (17)

S(n; i) �
Xn

k �i

Xk

j�0

S(n ; k)S(k ; j)s(j; i) (18)

(Roman 1984, p. 67), as well as

S(n; m) �
Xn �m

k �0

(�1)k k �n �1
k �n �m

# $

� 2n �m
n �k �m

# $
s(k �m �n; k) (19)

s(n; m) �
Xn�m

k�0

(�1)k k �n �1
k �n �m

# $

� 2n �m
n �k �m

# $
s(k �m �n; k) (20)

Xmax (k ; j)�1

l�0

s(l; j)S(k ; 1) � djk (21)

Xmax (k ; j) �1

l�0

s(k ; l)S(l ; j) � djm : (22)

Identities involving Stirling numbers of the second
kind are given by

Xn

m�1

(�1)m(m �1)!S(n; m) �0 (23)

Xm

k �0

kn �
Xn

k �0

k!
m �1
k �1

# $
S(n; k) (24)

f (m; n) �
X�
k �1

kn m

m � 1

 !l

�(m �1)
Xm

k �1

k!S(n; k)mk : (25)

It turns out that f (1; n) can have only 0, 2, or 6 as a
last DIGIT (Riskin 1995).

The Stirling numbers of the second appear in the
operator identity

(x D̃)n �
Xn

k�0

S(n; k)xkf (k) ; (26)

where D̃ is the differential operator d=dx (Roman
1984, p. 144), giving

(xD̃)1�xD̃ (27)

(xD̃)2�xD̃�x2D̃2 (28)

(xD̃)3�xD̃�3x2D̃2�x3D̃3 (29)

(xD̃)4�xD̃�7x2D̃2�6x3D̃3�x4D̃4 (30)

and so on. Similarly,

[(x�a)D̃]n�
Xn

k�0

S(n; k)(x�a)kD̃k (31)

(Roman 1984, p. 146).

See also BELL NUMBER, COMBINATION LOCK, EXPO-

NENTIAL POLYNOMIAL, LENGYEL’S CONSTANT, MINI-

MAL COVER, POISSON DISTRIBUTION, STIRLING

NUMBER OF THE FIRST KIND, STIRLING POLYNOMIAL,
STIRLING TRANSFORM
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Stirling Polynomial
Polynomials Sk(x) which form the SHEFFER SEQUENCE

for

g(t) �e �t (1)

f �1(t) �ln
1

1 � e �t

 !
; (2)

where f �1(t) is the INVERSE FUNCTION of f (t) ; and have
GENERATING FUNCTION

X�
k �0

Sk(x)

k!
tk �

t

1 � e �t

 !x �1

: (3)

The first few polynomials are

S0(x) �1
S1(x) �1

2(x �1)

S2(x) � 1
12(3x �2)(x �1)

S3(x) �1
8 x(x �1)2 :

The Stirling polynomials are related to the STIRLING

NUMBERS OF THE FIRST KIND s(n; m) by

Sn(m) �
( �1)n

m
n

# $ s(m �1; m �n �1); (4)

where m
n

� �
is a BINOMIAL COEFFICIENT and m is an

integer with m ]n; and to STIRLING NUMBERS OF THE

SECOND KIND S(n ; m) by

Sn(m) �
(�1)nn!

(n � m � 1)!
S(n �m �1; �m �1) (5)

for m a NEGATIVE INTEGER.

See also STIRLING NUMBER OF THE FIRST KIND,
STIRLING NUMBER OF THE SECOND KIND
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Stirling Set Number
STIRLING NUMBER OF THE SECOND KIND

Stirling Transform
The transformation of a sequence a1 ; a2 ; ... into a
sequence b1 ; b2 ; ..., by the formula

bn �
Xn

k �0

S(n; k)ak ;

where S(n; k) is a STIRLING NUMBER OF THE SECOND

KIND. The inverse transform is given by

an �
Xn

k�0

s(n; k)bk ;

where s(n; k) is a STIRLING NUMBER OF THE FIRST

KIND (Sloane and Plouffe 1995, p. 23).

The Stirling transform of an �1 for all n gives the
BELL NUMBERS 1, 2, 5, 15, 52, ... (Sloane’s A000110).
The Stirling transform of an �n gives 1, 3, 10, 37, 151,
674, ... (Sloane’s A005493), which has EXPONENTIAL

GENERATING FUNCTION

g(x) �exp ex �2x �1ð Þ:

The Stirling transform of the sequence an �1 for n
prime and an �0 for n composite is 0, 1, 4, 13, 41, 136,
505, .... The Stirling transform of the sequence an �1
for n even and an �0 for n odd is 0, 1, 3, 8, 25, 97, 434,
2095, ... (Sloane’s A024430). The Stirling transform of
the sequence an�0 for n even and an�1 for n odd is
1, 1, 2, 7, 27, 106, 443, ... (Sloane’s A024429). The
inverse Stirling transform of bn�n is given by the
sequence of signed factorials 1, 1, -1, 2, -6, 24, -120, ....

See also BINOMIAL TRANSFORM, EULER TRANSFORM,
EXPONENTIAL TRANSFORM, MÖ BIUS TRANSFORM, STIR-

LING NUMBER OF THE FIRST KIND, STIRLING NUMBER

OF THE SECOND KIND
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Stirling’s Approximation
Stirling’s approximation gives an approximate value
for the FACTORIAL function n! or the GAMMA FUNCTION

G(n) for n �1: The approximation can most simply be
derived for n an INTEGER by approximating the sum
over the terms of the FACTORIAL with an INTEGRAL, so
that

ln n! �ln 1 �ln 2 �. . .�ln n �
Xn

k�1

ln k :g
n

1

ln x dx

�[x ln x �x]n
1 �n ln n �n �1 :n ln n �n : (1)

The equation can also be derived using the integral
definition of the FACTORIAL,

n! �g
�

0

e �x xn dx: (2)

Note that the derivative of the LOGARITHM of the
integrand can be written

d

dx
ln e�xxnð Þ� d

dx 
(n ln x �x) �

n

x 
�1 : (3)

The integrand is sharply peaked with the contribu-
tion important only near x �n . Therefore, let x �
n � j where j �n; and write

ln(xne�x) �n ln x �x �n ln(n � j) �(n � j): (4)

Now,

ln(n � j) �ln n 1 �
j

n

 !" #
�ln n �ln 1 �

j

n

 !

�ln n �
j

n 
�

1

2

j

n2 
�� � � ; (5)

so

ln(xne �n) �n ln(n � j) �(n � j)

�n ln n � j �
1

2

j2

n
�n � j �. . .

�n ln n �n �
j2

2n 
�. . .  (6)

Taking the EXPONENTIAL of each side then gives

xne �x :en ln ne �ne� j2 =2n �nne �ne� j2 =2n : (7)

Plugging into the integral expression for n! then gives

n! :g
�

�n

nne �ne � j2 =2n dj :nne �ng
�

��

e � j2 =2n dj: (8)

Evaluating the integral gives

n! :nne�n
ffiffiffiffiffiffiffiffiffi
2pn

p
: (9)

�
ffiffiffiffiffiffi
2 p

p
nn �1 =2e �n (10)

(Wells 1986, p. 45). Taking the LOGARITHM of both
sides then gives

ln n! :n ln n �n �1
2 ln(2 pn)

� n �1
2

� �
ln n �n �1

2 ln(2 p) : (11)

This is STIRLING’S SERIES with only the first term
retained and, for large n , it reduces to Stirling’s
approximation

ln n! :n ln n �n: (12)

Taking successive terms of /�nn =n! �/, where xb c is the
FLOOR FUNCTION, gives the sequence 1, 2, 4, 10, 26,
64, 163, 416, 1067, 2755, ... (Sloane’s A055775).

Stirling’s approximation can be extended to the
double inequalityffiffiffiffiffiffi

2 p
p

nn�1 =2e �n�1 =(12n�1) Bn!

B
ffiffiffiffiffiffi
2p

p
nn�1=2e�n�1=(12n) (13)

(Robbins 1955, Feller 1968).

Gosper has noted that a better approximation to n!
(i.e., one which approximates the terms in STIRLING’S

SERIES instead of truncating them) is given by

n!:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�1

3

� �
p

r
nne�n: (14)

This also gives a much closer approximation to the
FACTORIAL of 0, 0!�1; yielding

ffiffiffiffiffiffiffiffi
p=3

p
:1:02333 in-

stead of 0 obtained with the conventional Stirling
approximation.

See also STIRLING’S SERIES
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Stirling’s Finite Difference Formula

fp � f0 �
1
2 p d1=2 � d�1=2

� �
�1

2 p
2 d2

0

�S3 d2
1=2 � d2

�1=2

� �
�S4 d

4
0 � . . .

for p � [�1=2 ; 1 =2]; where d is the CENTRAL DIFFER-

ENCE and

S2n �1 �
1

2

p �n
2n �1

# $

S2n�2 �
p

2n � 2

p �n
2n �1

# $
:

with n
k

� �
a BINOMIAL COEFFICIENT.

See also CENTRAL DIFFERENCE, STEFFENSON’S FOR-

MULA
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Stirling’s Formula
STIRLING’S APPROXIMATION, STIRLING’S SERIES

Stirling’s Series
The ASYMPTOTIC SERIES for the GAMMA FUNCTION is
given by

G(z) 	e �zzz�1 =2
ffiffiffiffiffiffi
2p

p

� 1 �
1

12z 
�

1

288z2 
�

139

51840z3 
�

571

2488320z4 
�. . .

 !
(1)

(Sloane’s A001163 and A001164).

The coefficient an of z �n can given explicitly by

an �
X2n

k �1

(�1)k d3(2n � 2k ; k)

2n�k(n � k)!
; (2)

where d3(n; k) is the number of permutations of n
with k CYCLES all of which are ]3 (Comtet 1974,
p. 267). Another formula for the an/s is given by the
recurrence relation

bn �
1

n � 1
bn�1 �

Xn�1

k �2

kakan�1�k

 !
; (3)

with b0 �b1 �1; then

an �(2n �1)!!b2n �1 : (4)

where x!! is the DOUBLE FACTORIAL (Borwein and
Corless 1999).

The series for z! is obtained by adding an additional
factor of z ,

z! �G(z �1) �e �zzz�1=2
ffiffiffiffiffiffi
2p

p

� 1 �
1

12z 
�

1

288z2 
�

139

51840z3 
�

571

2488320z4 
�. . .

 !
: (5)

The expansion of ln G(z) is what is usually called
Stirling’s series. It is given by the simple analytic
expression

ln G(z)�
X�
n�1

B2n

2n(2n � 1)z2n�1
(6)

�1
2 ln(2p)� z�1

2

� �
ln z�z�

1

12z
�

1

360z3
�

1

1260z5

�. . . (7)

where Bn is a BERNOULLI NUMBER.

See also BERNOULLI NUMBER, CYCLE (PERMUTATION),
K -FUNCTION, STIRLING’S APPROXIMATION
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StirlingS1
STIRLING NUMBER OF THE FIRST KIND

StirlingS2
STIRLING NUMBER OF THE SECOND KIND



Stirrup Curve

A plane curve given by the equation

x2 �1
� �2

�y2(y �1)(y �2)(y �5):
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Stochastic

See also RANDOM VARIABLE, STOCHASTIC APPROXIMA-

TION, STOCHASTIC CALCULUS, STOCHASTIC GEOME-

TRY, STOCHASTIC GROUP, STOCHASTIC MATRIX,
STOCHASTIC OPTIMIZATION, STOCHASTIC PROCESS,
STOCHASTIC RESONANCE

Stochastic Approximation

A method of STOCHASTIC OPTIMIZATION including
techniques such as gradient search or ROBBINS-

MONRO STOCHASTIC APPROXIMATION.

See also ROBBINS-MONRO STOCHASTIC APPROXIMA-

TION, STOCHASTIC OPTIMIZATION

Stochastic Calculus

References
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Stochastic Calculus of Variations
MALLIAVIN CALCULUS

Stochastic Function
A function f (t) of one or more parameters containing a
noise term e(t)

f (t) �L(t) � e(t) :

where the noise is (without loss of generality)
assumed to be additive.

See also NOISE, STOCHASTIC OPTIMIZATION

Stochastic Geometry
The study of random geometric structures. Stochastic
geometry leads to modelling and analysis tools such
as MONTE CARLO METHODS.

See also GEOMETRIC PROBABILITY, INTEGRAL GEOME-

TRY, MONTE CARLO METHOD, RANDOM POLYGON
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Stochastic Group
The GROUP of all nonsingular n �n STOCHASTIC

MATRICES over a FIELD F . It is denoted S(n; F): If p
is PRIME and F is the FINITE FIELD of ORDER q �pm ;
S(n; q) is written instead of S(n; F): Particular
examples include

S(2; 2) �Z2

S(2; 3) �S3

S(2; A) �A4

S(3; 2) �S4

S(2; 5) �Z4 �u Z5

where Z2 is an ABELIAN GROUP, Sn are SYMMETRIC

GROUPS on n elements, and �u denotes the semidirect
product with u : Z4 0 Aut(Z5) (Poole 1995).

See also STOCHASTIC MATRIX
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Stochastic Matrix
A stochastic matrix is the transition matrix for a
finite MARKOV CHAIN, also called a MARKOV MATRIX.
Elements of the matrix must be REAL NUMBERS in the
CLOSED INTERVAL [0, 1].

A completely independent type of stochastic matrix is
defined as a SQUARE MATRIX with entries in a FIELD F
such that the sum of elements in each column equals
1. There are two nonsingular 2�2 STOCHASTIC

MATRICES over Z2 (i.e., the integers mod 2),

1 0
0 1

� �
and

1 0
0 1

� �
:

There are six nonsingular stochastic 2�2 MATRICES

over Z3;

0 1
1 0

� �
;

0 2
1 2

� �
;

1 0
0 1

� �
;

1 2
0 2

� �
;

2 0
2 1

� �
;

2 1
2 0

� �
;



In fact, the set S of all nonsingular stochastic n �n
matrices over a FIELD F forms a GROUP under MATRIX

MULTIPLICATION. This GROUP is called the STOCHASTIC

GROUP.

The following tables give the number of distinct
stochastic matrices (and distinct nonsingular stochas-
tic matrices) over Zm for small m .

m stochastic n �n matrices over Zm
/

2 1, 4, 64, 4096, ...

3 1, 9, 729, ...

4 1, 16, 4096, ...

m stochastic nonsingular n �n matrices over Zm
/

2 1, 2, 24, 1440, ...

3 1, 6, 450, ...

4 1, 12, 3108, ...

See also DOUBLY STOCHASTIC MATRIX, HORN’S THEO-

REM, MAJORIZATION, MARKOV CHAIN, STOCHASTIC

GROUP
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Stochastic Optimization
Stochastic optimization refers to the minimization (or
maximization) of a function in the presence of
randomness in the optimization process. The random-
ness may be present as either noise in measurements
or Monte Carlo randomness in the search procedure,
or both.

Common methods of stochastic optimization include
direct search methods (such as the NELDER-MEAD

METHOD), STOCHASTIC APPROXIMATION, stochastic pro-
gramming, and miscellaneous methods such as SIMU-

LATED ANNEALING and GENETIC ALGORITHMS.

See also GENETIC ALGORITHM, NELDER-MEAD METH-

OD, OPTIMIZATION, OPTIMIZATION THEORY, ROBBINS-

MONRO STOCHASTIC APPROXIMATION, SIMULATED AN-

NEALING, STOCHASTIC APPROXIMATION

Stochastic Process
Doob (1996) defines a stochastic process is a family of
RANDOM VARIABLES x(t; �) ; t �Jf g from some PROB-

ABILITY SPACE (S; S; P) into a STATE SPACE (S ?; S ?):
Here, J is the INDEX SET of the process.

Papoulis (1984, p. 312) describes a stochastic process
x(t) as a family of functions.

See also INDEX SET, PROBABILITY SPACE, RANDOM

VARIABLE, STATE SPACE
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Stochastic Resonance
A stochastic resonance is a phenomenon in which a
nonlinear system is subjected to a periodic modulated
signal so weak as to be normally undetectable, but it
becomes detectable due to resonance between the
weak deterministic signal and stochastic NOISE. The
earliest definition of stochastic resonance was the
maximum of the output signal strength as a function
of NOISE (Bulsara and Gammaitoni 1996).

See also KRAMERS RATE, NOISE
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Stöhr Sequence
Let a1 �1 and define an�1 to be the least INTEGER

greater than an which cannot be written as the SUM of
at most h ]2 ADDENDS among the terms a1 ; a2 ; ..., an :
This defines the h -Stöhr sequence. The first few of
these are given in the following table.

h Sloane h -Stöhr sequence

2 A033627 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, ...

3 A026474 1, 2, 4, 8, 15, 22, 29, 36, 43, 50, ...

4 A051039 1, 2, 4, 8, 16, 31, 46, 61, 76, 91, ...

5 A051040 1, 2, 4, 8, 16, 32, 63, 94, 125, 156, ...

See also GREEDY ALGORITHM, INTEGER RELATION,
POSTAGE STAMP PROBLEM, S -ADDITIVE SEQUENCE,
SUBSET SUM PROBLEM, SUM-FREE SET, ULAM SE-

QUENCE
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Extremal Basis Problem for k �4." Math. Comput. 69,
325 �/37, 2000.
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Stokes Phenomenon
The ASYMPTOTIC SERIES of the AIRY FUNCTION Ai(z)
(and other similar functions) has a different form in
different sectors of the COMPLEX PLANE.

See also AIRY FUNCTIONS
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Stokes’ Theorem
For v a DIFFERENTIAL (K -1)-FORM with compact
support on an oriented n -dimensional MANIFOLD

WITH BOUNDARY M ,

gM

dv �g
@M

v; (1)

where dv is the EXTERIOR DERIVATIVE of the differ-
ential form v: When M is a COMPACT MANIFOLD

without boundary, then the formula holds with the
right hand side zero.

Stokes’ theorem connects to the "standard" GRADIENT,
CURL, and DIVERGENCE THEOREMS by the following
relations. If f is a function on R3 ;

grad(f ) �c�1 df : (2)

where c : R3 0 R3 � (the dual space) is the duality
isomorphism between a VECTOR SPACE and its dual,
given by the Euclidean INNER PRODUCT on R3 : If f is a
VECTOR FIELD on a R3 ;

div(f ) ��d�c(f ); (3)

where � is the HODGE STAR operator. If f is a VECTOR

FIELD on R3 ;

curl(f ) �c �1 � dc(f ) : (4)

With these three identities in mind, the above Stokes’
theorem in the three instances is transformed into
the GRADIENT, CURL, and DIVERGENCE THEOREMS

respectively as follows. If f is a function on R3 and g
is a curve in R3 ; then

g0

grad(f ) � dl �g
g

df �f ( g(1)) �f ( g(0)); (5)

which is the GRADIENT THEOREM. If f : R3 0 R3 is a

VECTOR FIELD and M an embedded compact 3-mani-
fold with boundary in R3 ; then

g
@M

f � dA �g
@M

�cf �gM

d+cf �gM

div(f ) dV ; (6)

which is the DIVERGENCE THEOREM. If f is a VECTOR

FIELD and M is an oriented, embedded, compact 2-
MANIFOLD with boundary in R3 ; then

g
@M

f dl�g
@M

cf �gM

dc(f ) �gM

curl(f ) � dA; (7)

which is the CURL THEOREM.

DE RHAM COHOMOLOGY is defined using DIFFEREN-

TIAL K -FORMS. When N is a SUBMANIFOLD (without
boundary), it represents a homology class. Two closed
forms represent the same COHOMOLOGY CLASS if they
differ by an EXACT FORM, v1 � v2 �dh : Hence,

gN

v1 � v2 �gN

dh �0: (8)

Therefore, the evaluation of a COHOMOLOGY CLASS on
a HOMOLOGY CLASS is WELL DEFINED.

Physicists generally refer to the CURL THEOREM

gS

( 9�F) � da �g
@S

F � ds (9)

as Stokes’ theorem.

See also COHOMOLOGY, CURL THEOREM, DIFFEREN-

TIAL K -FORM, DIVERGENCE THEOREM,

See also EXTERIOR ALGEBRA, EXTERIOR DERIVATIVE,
GRADIENT THEOREM, HODGE STAR, INTEGRATION

(FORM), JACOBIAN, MANIFOLD, POINCARÉ ’S LEMMA,
TANGENT BUNDLE
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Stolarsky Array
An INTERSPERSION array given by

1 2 3 5  8  13 21 34  55 � � �
4 6 10 16 26 42 68 110 178 � � �
7 11 18 29 47 76 123 199 322 � � �
9 15 24 39 6 102 165 267 432 � � �
12 19 31 50 81 131 212 343 555 � � �
14 23 37 60 97 157 254 411 665 � � �
17 28 45 73 118 191 309 500 809 � � �
20 32 52 84 136 220 356 576 932 � � �
22 36 58 94 152 246 398 644 1042 � � �
n n n n n n n n n :::

the first row of which is the FIBONACCI NUMBERS.

See also INTERSPERSION, WYTHOFF ARRAY
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Stolarsky-Harborth Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let b(k) be the number of 1s in the BINARY expression
of k . Then the number of ODD BINOMIAL COEFFICIENTS

k
j

� �
where 0 5j 5k is 2b(k) (Glaisher 1899, Fine 1947).

The number of ODD elements in the first n rows of
PASCAL’S TRIANGLE is

f (n) �
Xn�1

k�0

2b(k) : (1)

This function is well approximated by nu ; where

u �
ln 3

ln 2 
�1:58496 . . . : (2)

Stolarsky and Harborth showed that

0:812556 5lim inf
n0�

f (n)

nu
B0 :812557 Blim sup

n0�

f (n)

nu

�1 : (3)

The value

SH �lim inf
n0�

f (n)

nu 
(4)

is called the Stolarsky-Harborth constant.

See also BINARY, BINOMIAL COEFFICIENT, RUDIN-

SHAPIRO SEQUENCE
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Stolarsky’s Inequality
If 0 5g(x) 51 and g is nonincreasing on the INTERVAL

[0, 1], then for all possible values of a and b ,

g
1

0

g(x1=(a �b)) dx ]g
1

0

g(x1=a) dx g
1

0

g(x1 =b) dx:

Stomachion

A DISSECTION game similar to TANGRAMS described in
fragmentary manuscripts attributed to Archimedes
and was referred to as the LOCULUS OF ARCHIMEDES

(Archimedes’ box) in Latin texts. The word Stoma-
chion has as its root the Greek word for stomach. The
game consisted of 14 flat pieces of various shapes
arranged in the shape of a square. Like TANGRAMS,
the object is to rearrange the pieces to form interest-
ing shapes.

See also DISSECTION, TANGRAM
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Stone Space
Let P(L) be the set of all PRIME IDEALS of L , and define
r(a) �fP½a QPg: Then the Stone space of L is the
TOPOLOGICAL SPACE defined on P(L) by postulating
that the sets OF THE FORM r(a) are a subbase for the
open sets.

See also PRIME IDEAL, TOPOLOGICAL SPACE
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Stone-von Neumann Theorem
A theorem which specifies the structure of the generic
unitary representation of the Weyl relations and thus
establishes the equivalence of Heisenberg’s matrix
mechanics and Schrödinger’s wave mechanics formu-
lations of quantum mechanics in Euclidean Rn space.

References
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Stone-Weierstrass Theorem
If X is any COMPACT SPACE, let A be a subalgebra of
the algebra C(X) over the reals R with binary
operations � and �: Then, if A contains the constant
functions and separates the points of X , A is dense in
(C(X) ; tn) ; where tn is a metrizable space as defined by
Cullen (1968, p. 286).
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Stopper Knot
A KNOT used to prevent the end of a string from
slipping through a hole.
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Størmer Number
A Størmer number is a POSITIVE INTEGER n for which
the largest PRIME factor p of n2 �1 is at least 2n:
Every GREGORY NUMBER /tx/ can be expressed uniquely
as a sum of tn/s where the ns are Størmer numbers.
Conway and Guy (1996) give a table of Størmer
numbers reproduced below (Sloane’s A005529). In a
paper on INVERSE TANGENT relations, Todd (1949)
gives a similar compilation.

n p n p n p n p n  p

1 2 10 101 19 181 26 677 35 613

2 5 11 61 20 401 27 73 36 1297

4 17 12 29 22 97 28 157 37 137

5 13 14 197 23 53 29 421 39 761

6 37 15 113 24 577 33 109 40 1601

9 41 16 257 25 313 34 89 42 353

See also GREGORY NUMBER, INVERSE TANGENT
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Straight Angle
An ANGLE of 180�� p RADIANS.

See also ACUTE ANGLE, ANGLE, DIGON, FULL ANGLE,
OBTUSE ANGLE, REFLEX ANGLE, RIGHT ANGLE

Straight Line
LINE

Straight Polyomino

The straight polyomino of order n is the n -POLY-

OMINO in which all squares are placed along a line.

See also L-POLYOMINO, SKEW POLYOMINO, SQUARE

POLYOMINO, T-POLYOMINO

Straightedge
An idealized mathematical object having a rigorously
straight edge which can be used to draw a LINE

SEGMENT. Although GEOMETRIC CONSTRUCTIONS are
sometimes said to be performed with a RULER and
COMPASS, the term straightedge is preferable to
RULER since markings on the straightedge (usually
assumed to be present on a RULER) are not allowed by
the classical Greek rules.

See also COMPASS, GEOMETRIC CONSTRUCTION, GEO-

METROGRAPHY, MASCHERONI CONSTANT, POLYGON,
PONCELET-STEINER THEOREM, RULER, SIMPLICITY,
STEINER CONSTRUCTION

Strange Attractor
An attracting set that has zero MEASURE in the
embedding PHASE SPACE and has FRACTAL dimension.
Trajectories within a strange attractor appear to skip
around randomly.

See also CORRELATION EXPONENT, FRACTAL
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Strange Loop
A phenomenon in which, whenever movement is
made upwards or downwards through the levels of
some hierarchical system, the system unexpectedly
arrives back where it started. Hofstadter (1987) uses
the strange loop as a paradigm in which to interpret
paradoxes in logic (such as GRELLING’S PARADOX and
RUSSELL’S PARADOX) and calls a system in which a
strange loop appears a TANGLED HIERARCHY.

See also GRELLING’S PARADOX, RUSSELL’S PARADOX,
TANGLED HIERARCHY
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Strangers
Two numbers which are RELATIVELY PRIME.

See also RELATIVELY PRIME
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Strassen Formulas
The usual number of scalar operations (i.e., the total
number of additions and multiplications) required to
perform n�n MATRIX MULTIPLICATION is

M(n)�2n3�n2 (1)

(i.e., n3 multiplications and n3�n2 additions). How-
ever, Strassen (1969) discovered how to multiply two
MATRICES in

S(n)�7 � 7lg n�6 � 4lg n (2)

scalar operations, where lg is the LOGARITHM to base
2, which is less than M(n) for n �654. For n a power
of two (/n�2k); the two parts of (2) can be written

7 � 7lg n�7 � 7lg 2k

�7 � 7k�7 � 2k lg 7

�7 2k
� �lg 7

�7nlg 7 (3)

6 � 4lg n�6 � 4lg 2k

�6 � 4k lg 2�6 � 4k

�6 2k
� �2

�6n2; (4)

so (2) becomes

S(2k)�7nlg 7�6n2: (5)

Two 2�2 matrices can therefore be multiplied

C�AB (6)

c11 c12

c21 c22

� �
�

a11 a12

a21 a22

� �
b11 b12

b21 b22

� �
(7)

with only

S(2)�7 � 2lg 7�6 � 22�49�24�25 (8)

scalar operations (as it turns out, seven of them are
multiplications and 18 are additions). Define the
seven products (involving a total of 10 additions) as

Q1� a11�a22ð Þ b11�b22ð Þ (9)

Q2� a21�a22ð Þb11 (10)

Q3�a11 b12�b22ð Þ (11)

Q4�a22 �b11�b21ð Þ (12)

Q5� a11�a12ð Þb22 (13)

Q6� �a11�a21ð Þ b11�b12ð Þ (14)

Q7� a12�a22ð Þ b21�b22ð Þ: (15)

Then the matrix product is given using the remaining
eight additions as

c11�Q1�Q4�Q5�Q7 (16)

c21�Q2�Q4 (17)

c12�Q3�Q5 (18)

c22�Q1�Q3�Q2�Q6 (19)

(Strassen 1969, Press et al. 1989).

Matrix inversion of a 2�2 matrix A to yield C�A-1

can also be done in fewer operations than expected
using the formulas

R1�a�1
11 (20)

R2�a21R1 (21)

R3�R1a12 (22)

R4�a21R3 (23)

R5�R4�a22 (24)

R6�R�1
5 (25)



c12 �R3R6 (26)

c21 �R6R2 (27)

R7 �R3c21 (28)

c11 �R1 �R7 (29)

c22 ��R6 (30)

(Strassen 1969, Press et al. 1989). The leading
exponent for Strassen’s algorithm for a POWER of 2
is lg 7 :2:808: The best leading exponent currently
known is 2.376 (Coppersmith and Winograd 1990). It
has been shown that the exponent must be at least 2.

Unfortunately, Strassen’s algorithm is not numeri-
cally well-behaved. It is only weakly stable, i.e., the
computed result C �AB satisfies the inequality

½½C �AB ½½B�nu½½A ½½ ½½B ½½�O u2
� �

; (31)

where u is the unit roundoff error, while the
corresponding strong stability inequality (obtained
by replacing matrix norms with absolute values of the
matrix elements) does not hold.

See also COMPLEX MULTIPLICATION, KARATSUBA

MULTIPLICATION
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Strassman’s Theorem
Let (K ; ½� ½) be a complete non-ARCHIMEDEAN VALU-

ATED FIELD, with VALUATION RING R , and let f (X) be a
POWER SERIES with COEFFICIENTS in R . Suppose at
least one of the COEFFICIENTS is NONZERO (so that f is
not identically zero) and the sequence of COEFFI-

CIENTS converges to 0 with respect to ½� ½: Then f (X)
has only finitely many zeros in R .

See also ARCHIMEDEAN VALUATION, MAHLER-LECH

THEOREM, VALUATION, VALUATION RING

Strassnitzky’s Formula
The MACHIN-LIKE FORMULA

1
4 p �cot �1 2 �cot �1 5 �cot �1 8:

See also MACHIN’S FORMULA, MACHIN-LIKE FORMU-

LAS

Strategy
A set of moves which a player plans to follow while
playing a GAME.

See also GAME, MIXED STRATEGY

Stratified Manifold
A set that is a smooth embedded 2-D MANIFOLD except
for a subset that consists of smooth embedded curves,
except for a set of ISOLATED POINTS.
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Strehl Identities
The sum identities

X�
j�0

n
j

# $3

�
X�
k �0

n
j

# $2
2(n �k)

n

# $

and

Xn

k�0

Xn

j�0

n
k

# $
n �k

k

# $
k
j

# $3

�
Xn

k�0

n
k

# $
n �k

k

# $2

(Strehl 1993; Strehl 1994; Koepf 1998, p. 55), where
n
k

� �
is a BINOMIAL COEFFICIENT.

See also BINOMIAL COEFFICIENT
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Stretch
A TRANSFORMATION characterized by an invariant
line and a scale factor (one-way stretch) or two
invariant lines and corresponding scale factors (two-
way stretch).

See also TRANSFORMATION

Strict Gelfand Pattern
MONOTONE TRIANGLE



Strict Inequality
An INEQUALITY is strict if replacing any "less than"
and "greater than" signs with equal signs never gives
a true expression. For example, a 5b is not strict,
whereas a Bb is.

See also EQUALITY, INEQUALITY

Striction Curve
A NONCYLINDRICAL RULED SURFACE always has a
parameterization OF THE FORM

x(u; v) � s(u) �vd(u) ; (1)

where ½ d½�1 ; s? � d?�0; and s is called the striction
curve of x. Furthermore, the striction curve does not
depend on the choice of the base curve. The striction
and DIRECTOR CURVES of the HELICOID

x(u; v) �
0
0

bu

2
4

3
5�av

cos u
sin u

0

2
4

3
5 (2)

are

s(u) �
0
0

bu

2
4

3
5 (3)

d(u) �
a cos u
a sin u

0

2
4

3
5: (4)

For the HYPERBOLIC PARABOLOID

x(u; v) �
u
0
0

2
4
3
5�v

0
1
u

2
4
3
5; (5)

the striction and DIRECTOR CURVES are

s(u) �
u
0
0

2
4
3
5 (6)

d(u) �
0
1
u

2
4
3
5: (7)

See also DIRECTOR CURVE, DISTRIBUTION PARAMETER,
NONCYLINDRICAL RULED SURFACE, RULED SURFACE
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Strictly Egyptian Number
EGYPTIAN NUMBER

String
A string of length k on an ALPHABET l of m characters
is an arrangement of k not necessarily distinct
symbols from l . There are mk such distinct strings.
For example, the strings of length k � 3 on the
alphabet f1; 2; 3g are f1; 1; 1 g; f1 ; 1 ; 2 g; f1; 2; 1g;
f1; 2; 2g; f2; 1 ; 1 g; f2; 1; 2g; f2; 2; 1 g; and
f2; 2; 2g: In Mathematica , strings of length k in
the ALPHABET consisting of the members in a list l can
be enumerated using the following function.

Strings[l_List,k_Integer?Positive] : � Modu-

le[{k},

Flatten[Outer[List, Sequence @@ Table[l,

{k}]], k-1]

]

See also ALPHABET
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tica. Reading, MA: Addison-Wesley, p. 40, 1990.

String Rewriting
A SUBSTITUTION MAP in which rules are used to
operate on a string consisting of letters of a certain
alphabet. String rewriting is a particularly useful
technique for generating successive iterations of
certain types of FRACTALS, such as the BOX FRACTAL,
CANTOR DUST, CANTOR SQUARE FRACTAL, and SIER-

PINSKI CARPET.

See also RABBIT SEQUENCE, SUBSTITUTION MAP
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Strip
CRITICAL STRIP, MÖ BIUS STRIP

Strombic Hexecontahedron
DELTOIDAL HEXECONTAHEDRON

Strombus
A term meaning "spinning top" in Greek which was
coined by J. H. Conway by e-mail in the Polyhedron
Discussion List as a term for kite-shaped quadrilat-
erals. Formally, a strombus is a QUADRILATERAL

ABCD that has AC for an axis of symmetry.

See also DIAMOND, KITE, LOZENGE, PARALLELOGRAM,
QUADRILATERAL, RHOMBOID, RHOMBUS, SKEW QUAD-

RILATERAL, STROMBUS, TRAPEZOID



Strong Convergence
Strong convergence is the type of convergence usually
associated with convergence of a SEQUENCE. More
formally, a SEQUENCE fxn g of VECTORS in a normed
space (and, in particular, in an INNER PRODUCT SPACE

E )is called convergent to a VECTOR x in E if

xn �xk k 0 0 as n 0 �:

See also CONVERGENT SEQUENCE, INNER PRODUCT

SPACE, WEAK CONVERGENCE

Strong Elliptic Pseudoprime
Let n be an ELLIPTIC PSEUDOPRIME associated with
(E, P ), and let n �1 �2sk with k ODD and s ]0 : Then
n is a strong elliptic pseudoprime when either kP �
0(mod n) or 2rkP �0 (mod n) for some r with
1 5r Bs:/

See also ELLIPTIC PSEUDOPRIME
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Strong Frobenius Pseudoprime
A PSEUDOPRIME which obeys an additional restriction
beyond that required for a FROBENIUS PSEUDOPRIME.
A number n with (n ; 2a) �1 is a strong Frobenius
pseudoprime with respect to x �a IFF n is a STRONG

PSEUDOPRIME with respect to f (x) : Every strong
Frobenius pseudoprime with respect to x �a is an
EULER PSEUDOPRIME to the base a .

Every strong Frobenius pseudoprime with respect to
f (x) �x2 �bx �c such that b2 �4cð Þ=nð Þ��1 is a
STRONG LUCAS PSEUDOPRIME with parameters (b, c ).
Every strong Frobenius pseudoprime n with respect
to x2 �bx �1 is an EXTRA STRONG LUCAS PSEUDO-

PRIME to the base b .

See also FROBENIUS PSEUDOPRIME
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Strong Goldbach Conjecture
GOLDBACH CONJECTURE

Strong Law of Large Numbers
The sequence of variates Xi with corresponding
means mi obeys the strong law of large numbers if,
to every pair e: d > 0 ; there corresponds an N such
that there is probability 1 � d or better that for every
r �0, all r �1 inequalities

Sn � mnj j
n

B e

for n �N , N �1; ..., N �r will be satisfied, where

Sn �
Xn

i�1

Xn

mn � Snh i� m1 �. . .� mn

(Feller 1968). Kolmogorov established that the con-
vergence of the sequence

X s2
k

k2 
;

sometimes called the Kolmogorov criterion, is a
sufficient condition for the strong law of large
numbers to apply to the sequence of mutually
independent random variables Xk with variances sk

(Feller 1968).

See also FRIVOLOUS THEOREM OF ARITHMETIC, LAW

OF LARGE NUMBERS, LAW OF TRULY LARGE NUMBERS,
STRONG LAW OF SMALL NUMBERS
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Strong Law of Small Numbers
The first law of strong numbers (Gardner 1980, Guy
1988ab, Guy 1990) states "There aren’t enough small
numbers to meet the many demands made of them."

The second law of strong numbers (Guy 1990) states
that "When two numbers look equal, in ain’t necessa-
rily so." Guy (1988a) gives 35 examples of this
statement, and 40 more in Guy (1990). For example,
example 35 notes that the first few values of the
interpolating polynomial n4�6n3�23n2ð /

/�18n�24Þ=24 (erroneously given with a coefficient
24 instead of 23) for n�1, 2, ... are 1, 2, 4, 8, 16, ...,
appears to give the powers of 2 (but the continues 31,
57, 99, ...). Similar, example 41 notes the curious fact
that e(n�1)=2

J K
for n�0, 1, ... gives 1, 1, 2, 5, 8, 13, 21,

34, 55, ... (the FIBONACCI NUMBERS), although it
subsequently continues 91, 149, ... (Sloane’s
A005181).
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Strong Lucas Pseudoprime
Let U(P; Q) and V(P; Q) be LUCAS SEQUENCES

generated by P and Q , and define

D �P2 �4Q :

Let n be an ODD COMPOSITE NUMBER with (n ; D) �1;
and n �(D=n) �2sd with d ODD and s ]0; where (a=b)
is the LEGENDRE SYMBOL. If

Ud �0 (mod n)

or

V2rd �0 (mod n)

for some r with 0 5r Bs ; then n is called a strong
Lucas pseudoprime with parameters (P, Q ).

A strong Lucas pseudoprime is a LUCAS PSEUDOPRIME

to the same base. Arnault (1997) showed that any
COMPOSITE NUMBER n is a strong Lucas pseudoprime
for at most /4=15/ of possible bases (unless n is the
PRODUCT of TWIN PRIMES having certain properties).

See also EXTRA STRONG LUCAS PSEUDOPRIME, LUCAS

PSEUDOPRIME
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Strong Perfect Graph Conjecture
The conjecture that a graph is PERFECT IFF neither
the graph nor its complement contains an odd cycle of
length at least five as an INDUCED SUBGRAPH (Go-
lumbic 1980; Skiena 1990, p. 221).

See also PERFECT GRAPH, PERFECT GRAPH THEOREM
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Strong Pseudoprime
A strong pseudoprime to a base a is an ODD

COMPOSITE NUMBER n with n�1�d � 2s (for d ODD)
for which either

ad�1 (mod n) (1)

or

ad � 2s

��1 (mod n) (2)

for some r�0, 1, ..., s�1 (Riesel 1994, p. 91). Note
that Guy (1994, p. 27) restricts the definition of
strong pseudoprimes to only those satisfying (1).

The definition is motivated by the fact that a FERMAT

PSEUDOPRIME n to the base b satisfies

bn�1�1�0 (mod n): (3)

But since n is ODD, it can be written n�2m�1; and

b2m�1� bm�1ð Þ bm�1ð Þ�0 (mod n): (4)

If n is PRIME, it must DIVIDE at least one of the
FACTORS, but can’t DIVIDE both because it would then
DIVIDE their difference

bm�1ð Þ� bm�1ð Þ�2: (5)

Therefore,

bm�91 (mod n): (6)

so write n�2at�1 to obtain

bn�1�1� bt�1ð Þ bt�1ð Þ b2t�1
� �

� � � b2a�1t�1
� �

: (7)

If n DIVIDES exactly one of these FACTORS but is
COMPOSITE, it is a strong pseudoprime. A COMPOSITE

number is a strong pseudoprime to at most /1=4/ of all
bases less than itself (Monier 1980, Rabin 1980). The
strong pseudoprimes provide the basis for MILLER’S

PRIMALITY TEST and RABIN-MILLER STRONG PSEUDO-

PRIME TEST.

A strong pseudoprime to the base a is also an EULER

PSEUDOPRIME to the base a (Pomerance et al. 1980).
The strong pseudoprimes include some EULER PSEU-

DOPRIMES, FERMAT PSEUDOPRIMES, and CARMICHAEL

NUMBERS.

The first few strong pseudoprimes to the base 2 are
2047, 3277, 4033, 4681, ... (Sloane’s A001262). The
number of strong pseudoprimes less than 103, 104, ...
are 0, 5, 16, 46, 162, ... (Sloane’s A055552). Note that
Guy’s (1994, p. 27) definition gives only the subset
2047, 4681, 15841, 42799, 52633, 90751, ..., giving
counts inconsistent with those in Guy’s table.

The strong k -pseudoprime test for k�2, 3, 5 correctly
identifies all PRIMES below 2:5�1010 with only 13
exceptions, and if 7 is added, then the only exception
less than 2:5�1010 is 315031751. Jaeschke (1993)
showed that there are only 101 strong pseudoprimes
for the bases 2, 3, and 5 less than 1012, nine if 7 is
added, and none if 11 is added. Also, the bases 2, 13,
23, and 1662803 have no exceptions up to 1012.

If n is COMPOSITE, then there is a base for which n is
not a strong pseudoprime. There are therefore no
"strong CARMICHAEL NUMBERS." Let ck denote the
smallest strong pseudoprime to all of the first k
PRIMES taken as bases (i.e, the smallest ODD NUMBER

for which the RABIN-MILLER STRONG PSEUDOPRIME



TEST on bases less than or equal to k fails). Jaeschke
(1993) computed ck from k �5 to 8 and gave upper
bounds for k �9 to 11.

c1 �2047

c2 �1373653

c3 �25326001

c4 �3215031751

c5 �2152302898747

c6 �3474749660383

c7 �341550071728321

c8 �341550071728321

c9 541234316135705689041

c10 51553360566073143205541002401

c11 �56897193526942024370326972321

(Sloane’s A014233). A seven-step test utilizing these
results (Riesel 1994) allows all numbers less than
3:4 �1014 to be tested.

Pomerance et al. (1980) have proposed a test based on
a combination of STRONG PSEUDOPRIMES and LUCAS

PSEUDOPRIMES. They offer a $620 reward for discov-
ery of a COMPOSITE NUMBER which passes their test
(Guy 1994, p. 28).

See also CARMICHAEL NUMBER, MILLER’S PRIMALITY

TEST, POULET NUMBER, RABIN-MILLER STRONG PSEU-

DOPRIME TEST, ROTKIEWICZ THEOREM, STRONG EL-

LIPTIC PSEUDOPRIME, STRONG LUCAS PSEUDOPRIME

References
Baillie, R. and Wagstaff, S. "Lucas Pseudoprimes." Math.

Comput. 35, 1391 �/417, 1980.
Guy, R. K. "Pseudoprimes. Euler Pseudoprimes. Strong

Pseudoprimes." §A12 in Unsolved Problems in Number
Theory, 2nd ed. New York: Springer-Verlag, pp. 27 �/0,
1994.

Jaeschke, G. "On Strong Pseudoprimes to Several Bases."
Math. Comput. 61, 915 �/26, 1993.

Monier, L. "Evaluation and Comparison of Two Efficient
Probabilistic Primality Testing Algorithms." Theor. Com-
put. Sci. 12, 97�/08, 1980.

Pinch, R. G. E. "The Pseudoprimes Up to 1013." ftp://
ftp.dpmms.cam.ac.uk/pub/PSP/.

Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The
Pseudoprimes to 25 � 109 :/" Math. Comput. 35, 1003 �/026,
1980. Available electronically from ftp://sable.ox.ac.uk/
pub/math/primes/ps2.Z.

Rabin, M. O. "Probabilistic Algorithm for Testing Primality."
J. Number Th. 12, 128 �/38, 1980.

Riesel, H. Prime Numbers and Computer Methods for
Factorization, 2nd ed. Basel: Birkhäuser, p. 92, 1994.
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Strong Pseudoprime Test
RABIN-MILLER STRONG PSEUDOPRIME TEST

Strong Subadditivity Inequality

f(A) � f(B) � f(A @ B) ] f(A S B) :
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Strong Triangle Inequality
The p -adic norm satisfies

x �yj jp5max xj jp ; xj jp
� �

for all x and y .

See also P -ADIC NUMBER, TRIANGLE INEQUALITY

Strong Twin Prime Conjecture
TWIN PRIME CONJECTURE

Strongly Connected Component
A maximal SUBGRAPH of a DIRECTED GRAPH such that
for every pair of vertices u , v in the SUBGRAPH, there
is a directed path from u to v and a directed path
from v to u . Tarjan (1972) has devised an O(n)
algorithm for determining strongly connected compo-
nents, which is implemented in Mathematica as
StronglyConnectedComponents[g ] in the Mathe-
matica add-on package DiscreteMath‘Combina-
torica‘ (which can be loaded with the command
BBDiscreteMath‘) (Skiena 1990, p. 172).

See also BI-CONNECTED COMPONENT, STRONGLY CON-

NECTED DIGRAPH
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Strongly Connected Digraph

A DIRECTED GRAPH in which it is possible to reach any
node starting from any other node by traversing



edges in the direction(s) in which they point. The
nodes in a strongly connected digraph therefore must
all have INDEGREE of at least 1. The numbers of
nonisomorphic simple strongly connected digraphs on
n �1, 2, ... nodes are 1, 1, 5, 83, 5048, 1047008, ...
(Sloane’s A035512).

See also CONNECTED DIGRAPH, WEAKLY CONNECTED

DIGRAPH
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Strongly Connected Graph
STRONGLY CONNECTED DIGRAPH

Strongly Embedded Theorem
The strongly embedded theorem identifies all SIMPLE

GROUPS with a strongly 2-embedded SUBGROUP. In
particular, it asserts that no SIMPLE GROUP has a
strongly 2-embedded 2’-local SUBGROUP.

See also SIMPLE GROUP, SUBGROUP

Strongly Independent
An infinite sequence aif g of POSITIVE INTEGERS is
called strongly independent if any relation a eiai ;
with ei �0 ; 9 1, or 9 2 and ei �0 except finitely
often, IMPLIES ei �0 for all i .

See also WEAKLY INDEPENDENT
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Strongly Triple-Free Set
TRIPLE-FREE SET

Strophoid
Let C be a curve, let O be a fixed point (the POLE), and
let O? be a second fixed point. Let P and P ? be points
on a line through O meeting C at Q such that P?Q �
QP �QO?: The LOCUS of P and P? is called the
strophoid of C with respect to the POLE O and fixed
point O ?: Let C be represented parametrically by
(f (t) ; g(t)); and let O � x0 ; y0ð Þ and O ?� x1 ; y1ð Þ: Then
the equation of the strophoid is

x �f 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � fð Þ2� y1 � gð Þ2

1 � m2

s
(1)

x �g 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � fð Þ2� y1 � gð Þ2

1 � m2

s
; (2)

where

m �
g � y0

f � x0

: (3)

The name strophoid means "belt with a twist," and
was proposed by Montucci in 1846 (MacTutor Ar-
chive). The polar form for a general strophoid is

r �
b sin(a � 2u)

sin(a � u)
: (4)

If a � p=2; the curve is a RIGHT STROPHOID. The
following table gives the strophoids of some common
curves.

Curve Pole Fixed Point Strophoid

line not on
line

on line oblique
strophoid

line not on
line

foot of PERPENDI-

CULAR origin to
line

RIGHT STRO-

PHOID

CIRCLE center on the circumfer-
ence

FREETH’S

NEPHROID

See also RIGHT STROPHOID
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Structural Ramsey Theory
A generalization of RAMSEY THEORY to mathematical
objects in which one would not normally expect
structure to be found. For example, there exists a
graph with very few triangles (more precisely, a
graph which can always be constructed so that there
is no "cycle" of triangles which are all distinct and
Ti�1 meets Ti in at least one vertex) and such that
however it is colored with r colors, one of the colors



contains a triangle. The usual proof of RAMSEY’S

THEOREM gives no insight on how to prove such a
result.

See also EXTREMAL GRAPH THEORY, RAMSEY’S THEO-

REM, RAMSEY THEORY

Structurally Stable
A MAP f : M 0 M where M is a MANIFOLD is Cr

structurally stable if any Cr perturbation is TOPOLO-

GICALLY CONJUGATE to f: Here, Cr perturbation
means a FUNCTION c such that c is close to f and
the first r derivatives of c are close to those of f:/

See also TOPOLOGICALLY CONJUGATE

Structure
LATTICE

Structure Constant
The structure constant is defined as i eijk ; where eijk is
the PERMUTATION SYMBOL. The structure constant
forms the starting point for the development of LIE

ALGEBRA.

See also LIE ALGEBRA, PERMUTATION SYMBOL

Structure Factor
The structure factor SG of a discrete set G is the
FOURIER TRANSFORM of d/-scatterers of equal
strengths on all points of G;

SG(k) �g
X
x �G

d x?�xð Þe �2 pikx? dx ?�
X
x �G

e �2pikx :
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Strut
TENSEGRITY

Struve Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

z2yƒ�zy ?� z2 � n2
� �

y �
4 1

2 z
� �n�1

ffiffiffi
p

p
G n � 1

2

� � ;
where G(z) is the GAMMA FUNCTION (Abramowitz and
Stegun 1972, p. 496; Zwillinger 1997, p. 127). The
solution is

y �aJn(z) �bYn(z) �H n(z);

where Jn(z) and Y n(z) are BESSEL FUNCTIONS OF THE

FIRST and SECOND KINDS, and Hn(z) is a STRUVE

FUNCTION (Abramowitz and Stegun 1972).

See also BESSEL FUNCTION OF THE FIRST KIND,
BESSEL FUNCTION OF THE SECOND KIND, STRUVE

FUNCTION
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Struve Function
Abramowitz and Stegun (1972, pp. 496 �/99) define
the Struve function as

Hn(z) �(1
2z) n�1 

X�
k �0

( �1)k(1
2z)2k

G(k � 3
2) G(k � n � 3

2) 
; (1)

where G(z) is the GAMMA FUNCTION. Watson (1966,
p. 338) defines the Struve function as

Hn(z) �
2 1

2 z
� �n

G n � 1
2

� �
G 1

2

� � g
1

0

1 �t2
� �n�1=2

sin(zt) dt: (2)

The series expansion is

Hn(z) �
X�
m�0

(�1)m
1
2 z
� �2m� n�1

G m � 3
2

� �
G n � m � 3

2

� � : (3)

For half integer orders,

Hn�1=2(z) �Yn�1=2(z)

�
1

p

Xn

m�0

G m � 1
2

� �
1
2 z
� ��2m�n�1 =2

G(n � 1 � m)
(4)

H�(n�1=2)(z) �(�1)nJn�1 =2(z): (5)

The Struve function and its derivatives satisfy

Hn�1(z) �H n�1(z) �2H?n(z) �
1
2 z
� �n
ffiffiffi
p

p
G n � 3

2

� � : (6)

For integer n , the Struve function gives the solution
to

z2yƒ�zy?� z2�n2
� �

y�
2

p

zn�1

(2n � 1)!!
; (7)

where n!! is the DOUBLE FACTORIAL.

The Struve function is built into Mathematica 4.0 as
StruveH[n , z ].

See also ANGER FUNCTION, BESSEL FUNCTION, MOD-

IFIED STRUVE FUNCTION, WEBER FUNCTIONS
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Struve H-Function
STRUVE FUNCTION

Struve L-Function
MODIFIED STRUVE FUNCTION

StruveH
STRUVE FUNCTION

StruveL
MODIFIED STRUVE FUNCTION

Student’s t-Distribution

A STATISTICAL DISTRIBUTION published by William
Gosset in 1908. His employer, Guinness Breweries,
required him to publish under a pseudonym, so he
chose "Student." Given n independent measurements
xi; let

t�
x̄ � m

s=
ffiffiffi
n

p : (1)

where m is the population MEAN, x̄ is the sample
MEAN, and s is the ESTIMATOR for population STAN-

DARD DEVIATION (i.e., the SAMPLE VARIANCE) defined
by

s2�
1

N � 1

Xn

i�1

xi�x̄ð Þ2
: (2)

Student’s t -distribution is defined as the distribution
of the random variable t which is (very loosely) the
"best" that we can do not knowing s: If s�s; t�z and
the distribution becomes the NORMAL DISTRIBUTION.
As N increases, Student’s t -distribution approaches
the NORMAL DISTRIBUTION.
Student’s t -distribution can be derived by transform-
ing STUDENT’S Z -DISTRIBUTION using

z�
x̄ � m

s
; (3)

and then defining

t�z
ffiffiffiffiffiffiffiffiffiffiffiffi
n�1

p
: (4)

The resulting probability and cumulative distribution
functions are

fr(t)�
G 1

2(r � 1)
h i

ffiffiffiffiffi
rp

p
G 1

2 r
� �

1 �
t2

r

 !(r�1)=2�

r

r � t2

 !(1�r)=2

ffiffiffi
r

p
B 1

2 r; 1
2

� � (5)

Fr(t)�g
t

��

G 1
2(r � 1)
h i

ffiffiffiffiffi
rp

p
G 1

2 r
� �

1 �
t?2
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 !(r�1)=2 dt?

�
1

2
�

1

2
I 1; 1

2 r; 1
2

� �
�I

r

r � t2
; 1

2 r; 1
2

 !" #

�1�
1

2
I

r

r � t2
; 1

2 r; 1
2

 !
; (6)

where

r�n�1 (7)

is the number of DEGREES OF FREEDOM, ��BtB�;
G(z) is the GAMMA FUNCTION, B(a; b) is the BETA

FUNCTION, and I(z; a; b) is the REGULARIZED BETA

FUNCTION defined by

I(z; a; b)�
B(z; a; b)

B(a; b)
: (8)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS of
Student’s t -distribution are

m�0 (9)

s2�
r

r � 2
(10)

g1�0 (11)

g2�
6

r � 4
: (12)



The CHARACTERISTIC FUNCTIONS fn(t) for the first few
values of n are

f1(t)�e� tj j (13)

f2(t)�
ffiffiffi
2

p
tj jK1

ffiffiffi
2

p
tj j

� �
(14)

f3(t)�e�
ffiffi
3

p
tj j 1�

ffiffiffi
3

p
tj j

� �
(15)

f4(t)�2t2K2 2 tj jð Þ (16)

f5(t)�1
3 e�

ffiffi
5

p
tj j 3�3

ffiffiffi
5

p
tj j�5t2

� �
; (17)

and so on, where Kn(x) is a MODIFIED BESSEL FUNC-

TION OF THE SECOND KIND.

Beyer (1987, p. 571) gives 60%, 70%, 90%, 95%,
97.5%, 99%, 99.5%, and 99.95% confidence intervals,
and Goulden (1956) gives 50%, 90%, 95%, 98%, 99%,
and 99.9% confidence intervals. A partial table is
given below for small r and several common con-
fidence intervals.

r 90% 95% 97.5% 99.5%

1 3.07766 6.31371 12.7062 63.656

2 1.88562 2.91999 4.30265 9.92482

3 1.63774 2.35336 3.18243 5.84089

4 1.53321 2.13185 2.77644 4.60393

5 1.47588 2.01505 2.57058 4.03212

10 1.37218 1.81246 2.22814 3.16922

30 1.31042 1.69726 2.04227 2.74999

100 1.29007 1.66023 1.98397 2.62589

/�/ 1.28156 1.64487 1.95999 2.57584

The so-called A(t½n) distribution is useful for testing if
two observed distributions have the same MEAN.
A(t½n) gives the probability that the difference in
two observed MEANS for a certain statistic t with n
DEGREES OF FREEDOM would be smaller than the
observed value purely by chance:

A(t½n)�
1ffiffiffi

n
p

B 1
2;

1
2 n

� � g
t

�t

1�
x2

n

 !�(1�n)=2

dx: (18)

Let X be a NORMALLY DISTRIBUTED random variable

with MEAN 0 and VARIANCE s2; let Y2=s2 have a CHI-

SQUARED DISTRIBUTION with n DEGREES OF FREEDOM,
and let X and Y be independent. Then

t�
X

ffiffiffi
n

p

Y
(19)

is distributed as Student’s t with n DEGREES OF

FREEDOM.

The noncentral Student’s t -distribution is given by

P(x)�
nn=2n!

2nel
2=2 n � x2ð Þn=2G

1

2
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 ffiffiffi
2

p
lx1F1

1
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3
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n � x2ð ÞG 1
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(n � 1)
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1F1
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 !
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p
G

1

2
n � 1

 !
<
; (20)

where G(z) is the GAMMA FUNCTION and 1F1(a; b; z)
is a CONFLUENT HYPERGEOMETRIC FUNCTION. The
MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m�L

ffiffiffi
n

2

s
G 1

2(n � 1)
� �
G 1

2 n
� � (21)

s2�
L2 � 1ð Þn
n � 2

�
L2n G 1

2(n � 1)
� �h i2

2 G 1
2 n
� �h i2 (22)

g1�
g(n)

1

g(d)
1

(23)

g2�
g(n)

2
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2

: (24)

where
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1 �2l
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g(d)
2 �(n �3)(n �4) l2(n �2) G 1

2(n �1)
� �h i2

 

�2 l2 �1
� �

G 1
2 n
� �h i2
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See also BESSEL’S STATISTICAL FORMULA, PAIRED T -

TEST, STUDENT’S Z -DISTRIBUTION
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Student’s z-Distribution

The probability density function for Student’s z -

distribution are given by

fm; n(z) �

G
n

2

 !
ffiffiffi
p

p
G

n � 1

2

 ! 1 �z2
� ��n=2

: (1)

Now define

dm; n(z)

�
zj j1 �n G 1

2 n
� �

2F1
1
2(n � 1); 1

2 n; 1
2(n � 1); �z�2

� �
2
ffiffiffi
p

p
G 1

2(n � 1)
h i ;

(2)

then the cumulative distribution functions is given by

Dm; n(z) �
dm; n(z) for z 50

1 �dm; n(z) for z ]0

 
(3)

The MEAN is 0, so the MOMENTS are

m1 �0 (4)

m2 �
1

n � 3 
(5)

m3 �0 (6)

m4 �
3

(n � 3)(n � 5) 
: (7)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m �0 (8)

s2 �
1

n � 3 
(9)

g1 �0 (10)

g2�
6

n � 5
: (11)

The CHARACTERISTIC FUNCTION is

f(t)�
2(3�n)=2 tj j(n�1)=2K(1�n)=2 tj jð Þ

G 1
2(n � 1)
h i ; (12)

where Kn(z) is a MODIFIED BESSEL FUNCTION OF THE

SECOND KIND.
Letting

z�
x̄ � m

s
; (13)

where x is the sample MEAN and m is the population
MEAN gives STUDENT’S T -DISTRIBUTION.

See also STUDENT’S T -DISTRIBUTION



Study’s Theorem
Given three curves f1 ; f2 ; f3 with the common group
of ordinary points G (which may be empty), let their
remaining groups of intersections g23 ; g31 ; and g12 also
be ordinary points. If f?1 is any other curve through
g23 ; then there exist two other curves f?2 ; f?3 such that
the three combined curves fi f ?i are of the same order
and LINEARLY DEPENDENT, each curve f ?k contains the
corresponding group gij ; and every intersection of fi

or f?i with fj or f?j lies on fk or f ?k :/

References
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Sturm Chain
The series of STURM FUNCTIONS arising in application
of the STURM THEOREM.

See also STURM FUNCTION, STURM THEOREM

Sturm Function
Given a function f (x)�f0(x); write f1�f ?(x) and define
the Sturm functions by

fn(x)�� fn�2(x)�fn�1(x)
fn�2(x)

fn�1(x)

" #( )
: (1)

where [P(x)=Q(x)] is a polynomial quotient. Then
construct the following chain of Sturm functions,

f0�q0f1�f2

f1�q1f2�f3

f2�q2f3�f4

n

fs�2�qs�2fs�1�fs;

known as a STURM CHAIN. The chain is terminated
when a constant�fs(x) is obtained.

Sturm functions provide a convenient way for finding
the number of real roots of an algebraic equation with
real coefficients over a given interval. Specifically, the
difference in the number of sign changes between the
Sturm functions evaluated at two points x�a and
x�b gives the number of real roots in the interval (a,
b ). This powerful result is known as the STURM

THEOREM. However, when the method is applied
numerically, care must be taken when computing
the polynomial quotients to avoid spurious results
due to roundoff error.

As a specific application of Sturm functions toward
finding POLYNOMIAL ROOTS, consider the function
f0(x)�x5�3x�1; plotted above, which has roots
�1:21465; �0:334734; 0:080295191:32836i; and
1.38879 (three of which are real). The DERIVATIVE is
given by f ?(x)�5x4�3; and the STURM CHAIN is then
given by

f0�x5�3x�1 (3)

f1�5x4�3 (4)

f2�
1
5(12x�5) (5)

f3�
59083
20736: (6)

The following table shows the signs of fi and the
number of sign changes D obtained for points sepa-
rated by Dx�2:/

x /f0/ /f1/ /f2/ /f3/ /D/

�2 �1 1 �1 1 3

0 �1 �1 1 1 1

2 1 1 1 1 0

This shows that 3�/�2 real roots lie in (�2; 0); and
1�/�1 real root lies in (0; 2): Reducing the spacing to
D:r�0:5 gives the following table.

x /f0/ /f1/ /f2/ /f3/ /D/

/�2:0/ �1 1 �1 1 3

/�1:5/ �1 1 �1 1 3

/�1:0/ 1 1 �1 1 2

/�0:5/ 1 �1 �1 1 2

0.0 �1 �1 1 1 1

0.5 �1 �1 1 1 1

1.0 �1 1 1 1 1



1.5 1 1 1 1 0

2.0 1 1 1 1 0

This table isolates the three real roots and shows that
they lie in the intervals (�1:5;�1 :0); (�0 :5; 0:0); and
(1:0; 1:5): If desired, the intervals in which the roots
fall could be further reduced.

The Sturm functions satisfy the following conditions:

1. Two neighboring functions do not vanish simul-
taneously at any point in the interval.
2. At a null point of a Sturm function, its two
neighboring functions are of different signs.
3. Within a sufficiently small interval surrounding
a zero point of f0(x); f1(x) is everywhere greater
than zero or everywhere smaller than zero.

See also DESCARTES’ SIGN RULE, STURM CHAIN,
STURM THEOREM
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Sturm Theorem
The number of REAL ROOTS of an algebraic equation
with REAL COEFFICIENTS whose REAL ROOTS are
simple over an interval, the endpoints of which are
not ROOTS, is equal to the difference between the
number of sign changes of the STURM CHAINS formed
for the interval ends.

See also STURM CHAIN, STURM FUNCTION
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Sturmian Separation Theorem
Let Ar�aij be a SEQUENCE of N SYMMETRIC MATRICES

of increasing order with i:j �1 ; 2, ..., r and r �1, 2, ...,
N . Let lk Arð Þ be the kth EIGENVALUE of Ar for k �1, 2,
..., r , where the ordering is given by

l1 Arð Þ] l2 Arð Þ]. . .] lr Arð Þ:

Then it follows that

lk �1 Ai�1

� �
5 lk Aið Þ5 lk Ai�1

� �
:
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Sturmian Sequence
If a SEQUENCE has the property that the BLOCK

GROWTH function B(n) �n �1 for all n , then it is
said to have minimal block growth, and the sequence
is called a Sturmian sequence. An example of this is
the sequence arising from the SUBSTITUTION MAP

0 0 01

1 0 0

yielding 0 0 01 0 010 0 01001 0 01001010 0 . . . ;
which gives us the Sturmian sequence 01001010....

STURM FUNCTIONS are sometimes also said to form a
Sturmian sequence.

See also STURM FUNCTION, STURM THEOREM

Sturm-Liouville Equation
A second-order ORDINARY DIFFERENTIAL EQUATION

d

dx
p(x)

dy

dx

" #
�[lw(x) �q(x)]y �0;

where l is a constant and w(x) is a known function
called either the density or WEIGHTING FUNCTION. The
solutions (with appropriate boundary conditions) of l
are called EIGENVALUES and the corresponding ul(x)
EIGENFUNCTIONS. The solutions of this equation
satisfy important mathematical properties under
appropriate boundary conditions (Arfken 1985).

See also ADJOINT, SELF-ADJOINT
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Sturm-Liouville Theory
STURM-LIOUVILLE EQUATION

SU
SPECIAL UNITARY GROUP

Subalgebra
An ALGEBRA S? which is part of a large ALGEBRA S and
shares its properties.



See also ALGEBRA

Subanalytic
/X ⁄Rn is subanalytic if, for all x �Rn ; there is an open
set U and a bounded SEMIANALYTIC set Y ƒRn�m such
that X S U is the projection of Y into U .

See also SEMIANALYTIC

References
Bierstone, E. and Milman, P. "Semialgebraic and Subanaly-

tic Sets." IHES Pub. Math. 67, 5�/2, 1988.
Marker, D. "Model Theory and Exponentiation." Not. Amer.

Math. Soc. 43, 753 �/59, 1996.

Subdiagonal
The subdiagonal of a SQUARE MATRIX is the set of
elements directly under the elements comprising the
DIAGONAL. For example, in the following matrix, the
diagonal elements are denoted di and the subdiago-
nals are denoted si ;

d1 a12 a13 . . .  a1n

s1 d2 a23
::: a2n

a31 s2 d3
::: a3n

n :::
:::

:::
:::

an1 an2 an3 � � �  dn

2
66664

3
77775:

See also CANONICAL BOX MATRIX, DIAGONAL, SUPER-

DIAGONAL, TRIDIAGONAL MATRIX
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Subfactorial
The number of PERMUTATIONS of n objects in which
no object appears in its natural place (i.e., the number
of so-called "DERANGEMENTS").

!n �n!
Xn

k �0

( �1)k

k! 
(1)

or

!n �
n!

e

" #
: (2)

where k! is the usual FACTORIAL and [x] is the NINT

function. The first few values are !1 �0; !2 �1; !3 �2;
!4 �9; !5 �44 ; !6 �265; !7 �1854; !8 �14833; ...
(Sloane’s A000166). For example, the only DERANGE-

MENTS of f1; 2; 3g are f2; 3; 1 g and f3 ; 1 ; 2 g; so !3 �
2: Similarly, the DERANGEMENTS of f1 ; 2 ; 3 ; 4g are
f2; 1; 4; 3g; f2 ; 3 ; 4 ; 1 g; f2; 4; 1; 3g; f3 ; 1; 4; 2g;
f3; 4; 1; 2g; f3 ; 4 ; 2 ; 1 g; f4; 1; 2; 3g; f4 ; 3; 1; 2g;
and f4; 3; 2 ; 1 g; so !4 �9: The only prime subfactor-
ial is !3 �2:/

The subfactorials are also called the RENCONTRES

NUMBERS and satisfy the RECURRENCE RELATIONS

!n �n �!(n �1) �(�1)n (3)

!(n �1) �n[!n �!(n �1)]: (4)

The subfactorial can be considered a special case of a
restricted ROOKS PROBLEM.

The only number equal to the sum of subfactorials of
its digits is

148; 349 �!1 �!4 �!8 �!3 �!4 �!9 (5)

(Madachy 1979).

See also DERANGEMENT, FACTORIAL, MARRIED COU-

PLES PROBLEM, ROOKS PROBLEM, SUPERFACTORIAL

References
Dörrie, H. §6 in 100 Great Problems of Elementary Mathe-

matics: Their History and Solutions. New York: Dover,
pp. 19 �/1, 1965.

Madachy, J. S. Madachy’s Mathematical Recreations. New
York: Dover, p. 167, 1979.

Sloane, N. J. A. Sequences A000166/M1937 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Sloane, N. J. A. and Plouffe, S. Figure M1937 in The
Encyclopedia of Integer Sequences. San Diego: Academic
Press, 1995.

Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cam-
bridge, England: Cambridge University Press, p. 67, 1997.

Wells, D. The Penguin Dictionary of Curious and Interesting
Numbers. Middlesex, England: Penguin Books, p. 27,
1986.

Subfield
If a subset S of the elements of a FIELD F satisfies the
FIELD AXIOMS with the same operations of F , then S is
called a subfield of F . In a FINITE FIELD of ORDER pn ;
with p a prime, there exists a subfield of ORDER pm for
every m DIVIDING n .

See also EXTENSION FIELD, FIELD, PRIME SUBFIELD,
SUBMANIFOLD, SUBSPACE

Subgraph
A GRAPH G ? whose VERTICES and EDGES form subsets
of the VERTICES and EDGES of a given GRAPH G . If G ? is
a subgraph of G , then G is said to be a SUPERGRAPH of
G?:/

See also GRAPH, INDUCED SUBGRAPH, SUPERGRAPH,
SUBTREE, ULAM’S CONJECTURE
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Subgroup
A subset H of GROUP elements of a group G that
satisfies the four GROUP requirements. "H is a
subgroup of G" is written HƒG: The ORDER of any



subgroup of a GROUP of ORDER h must be a DIVISOR of
h .

See also CARTAN SUBGROUP, COMPOSITION SERIES,
FITTING SUBGROUP, GROUP, NORMAL SUBGROUP

Subharmonic Function
Let U ⁄C be an OPEN SET and f a real-valued
continuous function on U . Suppose that for each
CLOSED DISK D(P; r) ⁄U and every real-valued HAR-

MONIC FUNCTION h defined on a NEIGHBORHOOD of
D(P ; r) which satisfies f 5h on @D(P ; r) ; it holds that
f 5h on the OPEN DISK D(P; r) : Then f is said to be
subharmonic on U (Krantz 1999, p. 99).

1. If f1 ; f2 are subharmonic on U , then so is f1 �f2 :/
2. If f1 is subharmonic on U and a � 0 is a
constant, than af1 is subharmonic on U .
3. If f1 ; f2 are subharmonic on U , then
max f1(z) ; f2(z)f g is also subharmonic on U .

See also BARRIER, HARMONIC FUNCTION
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Sublime Number
Let s0(n) and s1(n) denote the number and sum of the
divisors of n , respectively (i.e., the zeroth- and first-
order DIVISOR FUNCTIONS). A number n is called
sublime if s0(n) and s1(n) are both PERFECT NUMBERS.
The only two known sublime numbers are 12 and

60865556702383789896703717342431696 � � �

� � � 22657830773351885970528324860512791691264 :

It is not known if any ODD sublime number exists.

See also DIVISOR FUNCTION, PERFECT NUMBER
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Submanifold

A C � (infinitely differentiable) MANIFOLD is said to be
a submanifold of a C � MANIFOLD M ? if M is a SUBSET

of M ? and the IDENTITY MAP of M into M ? is an
EMBEDDING.

See also EMBEDDING, MANIFOLD, SUBFIELD, SUB-

SPACE

Submatrix

A p �q submatrix of an m �n MATRIX (with p 5m;
n 5q) is a p �q MATRIX formed by taking a block of
the entries of this size from the original matrix.

See also MATRIX

Submersion
A submersion is a SMOOTH MAP f : M 0 N when

dim M ]dim N ;

given that the DIFFERENTIAL, or JACOBIAN, is SURJEC-

TIVE at every x in M . The basic example of a
submersion is the canonical submersion a of Rn onto
Rk when n ]k ;

a x1 ; . . . ; xnð Þ� x1 ; . . . ; xkð Þ:

In fact, if f is a submersion, then it is possible to find
coordinates around x in M and coordinates around
f (x) in N such that f is the canonical submersion
written in these coordinates. For example, consider
the submersion of R2 �f(0; 0)g onto the circle S1 ;
given by f (x; y) �(x; y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �y2

p
:/

See also IMMERSION, RIEMANNIAN SUBMERSION

Submodule
A MODULE over a RING that is contained in and has
the same addition as another MODULE over the same
RING.

See also MODULE

Subnormal
If the LEXIS RATIO L B1, a set of trials are said to be
subnormal.

See also LEXIS RATIO, SUBNORMAL SUBGROUP, SUPER-

NORMAL

Subnormal Subgroup
L is a subnormal SUBGROUP of H if there is a "normal
series" (in the sense of Jordan-Holder) from L to H .

Suborder Function
A special case of the generalized MULTIPLICATIVE

ORDER function taken with respect to the PRIMITIVE

ROOTS �1 and 1. This function is denoted sordn(a)
and is implemented in Mathematica as Multipli-
cativeOrder[a , n , {�1, 1}].

See also MULTIPLICATIVE ORDER



Subordinate Norm
NATURAL NORM

Subresultant

Subresultants for a few simple pairs of polynomials
include

S(x �a; x �b) �fa �b; 1g

S((x �a)(x �b) ; x �c) �f(a �c)(b �c) ; 1 g

S((x �a)(x �b) ; (x �c)(x �d))

�f(a �c)(b �c)(a �d)(b �d) ; a �b �c �d; 1g:

The principal subresultants of two polynomials can be
computed using the Mathematica command Subre-
sultants[poly1 , poly2 , var ]. The first k subresul-
tants of two polynomials p1 and p2 ; both with leading
coefficient one, are zero when p1 and p2 have k
common roots.

See also DISCRIMINANT (POLYNOMIAL), RESULTANT
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Subring
A subring of a RING R is a SUBGROUP of R that is
CLOSED under multiplication.

See also RING, SUBGROUP
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Subscript
A quantity displayed below the normal line of text
(and generally in a smaller point size), as the "i" in ai ;
is called a subscript. Subscripts are commonly used to
indicate indices (/aij is the entry in the ith row and jth
column of a MATRIX A) ; partial differentiation (/yx is an
abbreviation for @y=@x) ; and a host of other operations
and notations in mathematics.

See also SUPERSCRIPT

Subselfsimilar Set
Giving a set F � f1 ; f2 ; . . . ; fnf g of contracting simili-
tudes of R ?; the closed set E is said to be subselfsimi-
lar for F if

E ƒ@
n

i�1
fi(E)

(Falconer 1995, Duvall and Keesling 1999).
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Subsequence
A subsequence of a SEQUENCE S � xif gn

i�1 is a derived
sequence yif gN

i�1� xi�j

� �
for some j ]0 and N 5n �j:

More generally, the word subsequence is sometimes
used to mean a sequence derived from a sequence S
by discarding some of its terms.

See also LOWER-TRIMMED SUBSEQUENCE, UPPER-

TRIMMED SUBSEQUENCE

Subset
A portion of a SET. B is a subset of A (written B ⁄A)
IFF every member of B is a member of A . If B is a
PROPER SUBSET of A (i.e., a subset other than the set
itself), this is written B ƒA: If B is not a subset of A ,
this is written B ¢A: (The notation B �A is generally
not used, since B ¢A automatically means that B and
A cannot be the same.)

The set of subsets of a set S is called the POWER SET of
S , and a SET of n elements has 2n subsets (including
both the set itself and the EMPTY SET). This follows
from the fact that the total number of distinct K -

SUBSET on a set of n elements is given by the
BINOMIAL SUM

Xn

k �0

n
k

# $
�2n :

For sets of n �1, 2, ... elements, the numbers of
subsets are therefore 2, 4, 8, 16, 32, 64, ... (Sloane’s
A000079). For example, the set f1g has the two
subsets ¥ and f1g: Similarly, the set f1 ; 2g has
subsets ¥ (the EMPTY SET, f1g; f2g; and f1; 2g: The
subsets (i.e., POWER SET) of a given set can be found
using Subsets[list ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also EMPTY SET, IMPLIES, K -SUBSET, P -SYSTEM,
POWER SET, PROPER SUBSET, SUPERSET, VENN DIA-

GRAM
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Subset Sum Problem
The problem of finding what subset of a list of
integers has a given sum. The subset sum is an
INTEGER RELATION problem where the relation coeffi-
cients ai are 0 or 1.

See also INTEGER RELATION, LATTICE REDUCTION,
KNAPSACK PROBLEM, POSTAGE STAMP PROBLEM,
STÖ HR SEQUENCE
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Subspace
Let V be a REAL VECTOR SPACE (e.g., the real
continuous functions C(I) on a CLOSED INTERVAL I ,
2-D EUCLIDEAN SPACE R2 ; the twice differentiable real
functions C(2)(I) on I , etc.). Then W is a real SUBSPACE

of V if W is a SUBSET of V and, for every w1 ; w1 �W

and t �R (the REALS), w1 �w2 �W and tw1 �W: Let
(H) be a homogeneous system of linear equations in
x1 ; ..., xn : Then the SUBSET S of Rn which consists of
all solutions of the system (H) is a subspace of Rn :/

More generally, let Fq be a FIELD with q �pa ; where p
is PRIME, and let Fq; n denote the n -D VECTOR SPACE

over Fq : The number of k -D linear subspaces of Fq ; n is

N Fq ; n

� �
�

n
k

# $
q

;

where this is the Q -BINOMIAL COEFFICIENT (Aigner
1979, Exton 1983). The asymptotic limit is

N Fq ; n

� �
� ceq

n2 =4[1 �o(1)] for n even
coq

n2 =4[1 �o(1)] for n odd ;

 
where

ce �
P�

k ��� q�k2Q�

j �1 1 � q �jð Þ

co �
P�

k��� q �(k�1 =2)2Q�

j�1 1 � q�jð Þ

(Finch). The case q �2 gives the Q -ANALOG of the
WALLIS FORMULA.

See also Q -BINOMIAL COEFFICIENT, SUBFIELD, SUB-

MANIFOLD
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Substitution Group
PERMUTATION GROUP

Substitution Map
A MAP which uses a set of rules to transform elements
of a sequence into a new sequence using a set of rules
which "translate" from the original sequence to its
transformation. For example, the substitution map
f1 0 0 ; 0 0 11g would take 10 to 011.

See also GOLDEN RATIO, MORSE-THUE SEQUENCE,
STRING REWRITING, THUE CONSTANT

Substitution Tensor
KRONECKER DELTA, PERMUTATION SYMBOL, PERMU-

TATION TENSOR

Subtend
Given a geometric object O in the PLANE and a point
P , let A be the ANGLE from one edge of O to the other
with VERTEX at P . Then O is said to subtend an
ANGLE A from P .

See also ANGLE, VERTEX ANGLE

Subtraction
Subtraction is the operation of taking the DIFFERENCE

x �y of two numbers x and y . Here, x is called the
MINUEND, y is called the SUBTRAHEND, and the symbol
between the x and y is called the MINUS SIGN. The
expression "/x �y/" is read "x MINUS y ." Subtraction is
the inverse of ADDITION, so x �y �y �x �y �y �x:/

The subtraction of a number from itself gives 0, while
the subtraction of a real number from a smaller real
number gives a negative real number. Subtraction of
real numbers can be naturally extended to complex
numbers.

See also ADDITION, DIVISION, MINUEND, MINUS,
MINUS SIGN, MULTIPLICATION, SUBTRAHEND



Subtrahend
A quantity which is subtracted from another (the
MINUEND).

See also MINUEND, SUBTRACTION

Subtree
A TREE G ? whose VERTICES and EDGES form subsets of
the VERTICES and EDGES of a given TREE G .

See also SUBGRAPH, TREE

Subvariety

See also ALGEBRAIC VARIETY

Succeeds
The relationship x succeeds (or FOLLOWS) y is written
x cy: The relation x succeeds or is equal to y is
written x Ty :/

See also PRECEDES

Successes
DIFFERENCE OF SUCCESSES

Successor
For any ORDINAL NUMBER a; the successor of a is a @
fag (Ciesielski 1997, p. 46). The successor of an
ordinal number a is therefore the next ordinal, a �1:/

See also LIMIT ORDINAL, ORDINAL NUMBER
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Sufficient
A CONDITION which, if true, guarantees that a result
is also true. (However, the result may also be true if
the CONDITION is not met.) If a CONDITION is both
NECESSARY and SUFFICIENT, then the result is said to
be true IFF ( the CONDITION holds.

For example, the condition that a decimal number n
end in the DIGIT 2 is a sufficient but not NECESSARY

condition that n be EVEN.

See also IFF, IMPLIES, NECESSARY, SUFFICIENTLY

LARGE
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Suitable Number
IDONEAL NUMBER

Sultan’s Dowry Problem
A sultan has granted a commoner a chance to marry
one of his n daughters. The commoner will be
presented with the daughters one at a time and,
when each daughter is presented, the commoner will
be told the daughter’s dowry (which is fixed in
advance). Upon being presented with a daughter,
the commoner must immediately decide whether to
accept or reject her (he is not allowed to return to a
previously rejected daughter). However, the sultan
will allow the marriage to take place only if the
commoner picks the daughter with the overall high-
est dowry. Then what is the commoner’s best strat-
egy, assuming he knows nothing about the
distribution of dowries (B. Elbows)?

Since the commoner knows nothing about the dis-
tribution of the dowries, the best strategy is to wait
until a certain number x of daughters have been
presented, then pick the highest dowry thereafter.
The exact number to skip is determined by the
condition that the odds that the highest dowry has
already been seen is just greater than the odds that it
remains to be seen and that if it is seen it will be
picked. This amounts to finding the smallest x such
that

x

n 
]

x

n

1

x � 1 
�. . .�

1

n � 1

 !
: (1)

Computing the sum analytically gives the solution as
the smallest x such that

Hx ]Hn �1 ; (2)

where Hn is a HARMONIC NUMBER. Solving

Hx �Hn �1 (3)

numerically and taking the CEILING FUNCTION xd e
then gives the solutions 0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5,
5, 5, ... (Sloane’s A054382) for n � 1, 2, ... daughters.

The problem is most commonly stated with n �100
daughters, which gives the result that the commoner
should wait until he has seen 37 of the daughters,
then pick the first daughter with a dowry that is
bigger than any preceding one. With this strategy, his
odds of choosing the daughter with the highest dowry
are surprisingly high: about 37% (B. Elbows; Hon-
sberger 1979, pp. 104�/10, Mosteller 1987).

See also BIRTHDAY PROBLEM

References
Elbows, B. http://xraysgi.ims.uconn.edu/rpa-output/decision/

dowry.s.
Honsberger, R. "Some Surprises in Probability." Ch. 5 in

Mathematical Plums (Ed. R. Honsberger). Washington,
DC: Math. Assoc. Amer., pp. 104�/10, 1979.

Mosteller, F. Problem 47 in Fifty Challenging Problems in
Probability with Solutions. New York: Dover, 1987.



Sloane, N. J. A. Sequences A054382 in "An On-Line Version
of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Sum
A sum is the result of an ADDITION. For example,
adding 1, 2, 3, and 4 gives the sum 10, written

1 �2 �3 �4 �10: (1)

The numbers being summed are called ADDENDS, or
sometimes SUMMANDS. The summation operation can
also be indicated using a capital sigma with upper
and lower limits written above and below, and the
index indicated below. For example, the above sum
could be written

X4

k �1

k �10 : (2)

A sum

Xn

i�1

ai (3)

in which each term ai is given by some fixed rule (i.e.,
fai g

n
i�1 is a well defined SEQUENCE) is called a SERIES,

and if the number of terms n is infinite, the sum is
called an INFINITE SERIES. A sum of the form

Xn

k�1

rk (4)

is called a GEOMETRIC SERIES.

The general finite POWER SUM

Xn

k �1

kp (5)

can be given by the expression

Xn

k �1

kp �
(B � n � 1)[p �1] � B[p �1]

p � 1 
; (6)

which is equivalent to FAULHABER’S FORMULA, where
the NOTATION B[k] means the quantity in question is
raised to the appropriate POWER k and all terms OF

THE FORM Bm are replaced with the corresponding
BERNOULLI NUMBERS Bm :/

NICOMACHUS’S THEOREM gives as curious expression
for the POWER SUM an

k �1 k
3 :/

Other analytic sums include

Xn

k �0

xk

 !p

�
1

(p � 1)!

Xnp

k�0

(n � ½n � k½� p � 1)!

(n � ½n � k½)!
xk (7)

for p �1; 2

X�
n�0

anxn

 !2

�
X�
n�0

a2
nx2n �2

X�
n�1

i �j �n

i Bj

aiajx
n ; (8)

and X
xy �x1y1 �x1y2 �. . .�x2y1 �x2y2 �. . .

� x1 �x2 �. . .ð Þy1 � x1 �x2 �. . .ð Þy2

�
X

x
� �

y1 �y2 �. . .ð Þ�
X

x
X

y; (9)

so

Xm

i�1

Xn

j�1

xixj �
Xm

i�1

xi

 ! Xn

j�1

yj

 !
: (10)

Xn

j�0

jxj �
nxn�2 � (n � 1)xn�1 � x

(x � 1)2 (11)

Xn

j�1

xr
jYn

k�1
k "j

xj � xk

� ��
0 for 0 5r Bn �1
1 for r �n �1Pn

j�1 xj for r �n

8<
: 

(12)

Xn

k �1

Yn

r �1
r "k

(x � k � r)

Yn

r �1
r"k

(k � r)

�1 (13)

(n�1)
Xn

m�1

mk�
Xn

m�1

mk�1�
Xn

p�1

Xp

m�1

mk

 !" #
: (14)

To minimize the sum of a set of squares of numbers
xif g about a given number x0

S�
X

i

xi�x0ð Þ2�
X

i

x2
i �2x0

X
xi�Nx2

0: (15)

take the DERIVATIVE.

d

dx0

S��2
X

i

xi�2Nx0�0: (16)

Solving for x0 gives

x0�x̄�
1

N

X
i

xi: (17)

so S is minimized when x0 is set to the MEAN.

See also ARITHMETIC SERIES, BERNOULLI NUMBER,
BINOMIAL SUMS, CLARK’S TRIANGLE, CONVERGENCE

IMPROVEMENT, DEDEKIND SUM, DOUBLE SUM, EULER

SUM, FACTORIAL SUMS, FAULHABER’S FORMULA, GAB-



RIEL’S STAIRCASE, GAUSSIAN SUM, GEOMETRIC SERIES,
GOSPER’S METHOD, HURWITZ ZETA FUNCTION, INFI-

NITE SERIES, INFINITE PRODUCT, KLOOSTERMAN’S

SUM, LEGENDRE SUM, LERCH TRANSCENDENT, NICO-

MACHUS’S THEOREM, ODD NUMBER THEOREM, PAS-

CAL’S TRIANGLE, POWER SUM, PRODUCT, RAMANUJAN’S

SUM, RIEMANN ZETA FUNCTION, SERIES, WHITNEY

SUM
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Sum of Squares Function
The number of representations of n by k squares,
distinguishing signs and order, is denoted rk(n): For
example, consider the number of ways of representing
5 as the sum of two squares.

5�(�2)2�(�1)2�(�2)2�12�22�(�1)2

�22�12�(�1)2�(�2)2�(�1)2�22

�12�(�2)2�12�22 (1)

so r2(5)�8: The Mathematica function SumOfSquar-
esR[k , n ] in the Mathematica add-on package Num-
berTheory‘NumberTheoryFunctions‘ (which can
be loaded with the command BBNumberTheory‘)
gives rk(n):/

The function r2(n) is often written simply as r(n); and
is intimately connected with the LEIBNIZ SERIES and
with GAUSS’S CIRCLE PROBLEM (Hilbert and Cohn-
Vossen 1999, pp. 27�/9). It is also given by the inverse
Möbius transform of the sequence b2n�0 and b2n�1�
4(�1)n (Sloane and Plouffe 1995, p. 22). The average
order of r(n) is p; but the normal order is 0 (Hardy
1999, p. 55).

Jacobi gave analytic expressions for rk(n) for the cases
k�2, 4, 6, and 8 (Hardy 1999, p. 132). The cases
k�2, 4, and 6 were found by equating COEFFICIENTS

of the JACOBI THETA FUNCTIONS q 3(x); q 2
3(x); and q4

3(x):
The solutions for k�10 and 12 were found by
Liouville and Eisenstein, and Glaisher (1907) gives
a table of rk(n) for k�2s�18: r3(n) was found as a
finite sum involving quadratic reciprocity symbols by
Dirichlet. r5(n) and r7(n) were found by Eisenstein,
Smith, and Minkowski.

A POSITIVE INTEGER can be represented as the sum of
two squares IFF each of its prime factors of the form
k�3 occurs as an even power, as first established by
Euler in 1738. In LAGRANGE’S FOUR-SQUARE THEO-

REM, Lagrange proved that every POSITIVE INTEGER

can be written as the SUM of at most four SQUARES.
where 4 may be reduced to 3 except for numbers OF

THE FORM 4n(8k�7); as proved by Legendre in 1798
(Nagell 1951, p. 194; Wells 1986, pp. 48 and 56;
Hardy 1999, p. 12; Savin 2000).

/r(n)�r2(n) is 0 whenever n has a PRIME divisor OF

THE FORM 4k�3 to an ODD POWER; it doubles upon
reaching a new PRIME OF THE FORM 4k�1: It is given
explicitly by

r2(n)�4
X

d�1; 3; ...½n

(�1)(d�1)=2 (2)

�4 d1(n)�d3(n)½  (3)

�4
X
d½n

sin 1
2 pd
� �

; (4)

where dk(n) is the number of DIVISORS of n OF THE

FORM 4m�k (Hilbert and Cohn-Vossen 1999, pp. 37�/

8; Hardy 1999, p. 12). The first few values are 4, 4, 0,
4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12,
8, 0, 0, ... (Sloane’s A004018). r(n) obeys the un-
expected identities

X�
n�0

r(n)ffiffiffiffiffiffiffiffiffiffiffiffiffi
n � a

p e�2p
ffiffiffiffiffiffiffiffiffiffiffi
(n�a)b

p
�
X�
n�0

r(n)ffiffiffiffiffiffiffiffiffiffiffiffiffi
n � b

p e�2p
ffiffiffiffiffiffiffiffiffiffiffi
(n�b)a

p
(5)

for R
ffiffiffi
a

p
½ ; R

ffiffiffi
b

ph i
> 0;

X
05n5x

r(n)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x � n

p �2p
ffiffiffi
x

p
�
X�
n�1

r(n)ffiffiffi
n

p sin 2p
ffiffiffiffiffiffi
nx

p� �
(6)

and

X
05n5x

r(n)�px�
ffiffiffi
x

p X�
n�1

r(n)ffiffiffi
n

p J1 2p
ffiffiffiffiffiffi
nx

p� �
(7)

(Hardy 1999, p. 82).

The first few values of the summatory function

R(n)�
Xn

k�1

r2(n) (8)

are 0, 4, 8, 8, 12, 20, 20, 20, 24, 28, 36, ... (Sloane’s
A014198). Shanks (1993) defines instead R?(n)�1�
R(n); with R?(0)�1: A LAMBERT SERIES for r2(n) is

X�
n�1

4(�1)n�1xn

1 � xn
�
X�
n�1

r2(n)xn (9)

(Hardy and Wright 1979). Explicit values of R?(n) for
several powers of 10 are given in the following table
(Mitchell 1966; Shanks 1993, pp. 165 and 234).

n /R?(10n)/

0 5

1 37



2 317

3 3149

4 31417

5 314197

6 3141549

8 314159053

10 31415925457

12 3141592649625

14 31415926535058

Asymptotic results include

Xn

k �1

r2(k) � pn �O
ffiffiffi
n

p� �
(10)

Xn

k �1

r2(k)

k
�K � p ln n �O n�1=2

� �
; (11)

where K is a constant known as the SIERPINSKI

CONSTANT. The left plot above shows

Xn

k �1

r2(k)

" #
� pn; (12)

with 9
ffiffiffi
n

p
illustrated by curved envelope, and the

right plot shows

Xn

k �1

r2(k)

k

" #
� p ln n; (13)

with the value of K indicated as the solid horizontal
line.

The number of solutions of

x2 �y2 �z2 �n (14)

for a given n without restriction on the signs or
relative sizes of x , y , and z is given by r3(n) : Gauss
proved that if n is SQUAREFREE and n �4, then

r3(n) �
24h(�n) for n �3 (mod 8)
12h(�4n) for n �1; 2; 5; 6 (mod 8)
0 for n �7 (mod 8)

8<
: 

(15)

(Arno 1992), where h(x) is the CLASS NUMBER of x .

Additional higher-order identities are given by

r4(n) �8
X
d½n

d �8s(n) (16)

�24
X

d�1 ; 3 ; ... ½n

d (17)

�24 s0(n) (18)

rs(n) �16
X
d ½n

(�1)n�dd3 (19)

r16(n) ��32
3 (�1)n 

s ?1(d) � s?3(d) � s?5(d)½ 

�(�1)n256
3

Xn �1

k�1

s ?1(k) s?5(n �k) � s?3(k) s?3(n �k)½  (20)

r10(n) �4
5 E ?4(n) �16E?4(n) �8x4(n)½  (21)

r24(n) � r24(24)

�128
691 (�1)n�1259t(n) �512t 1

2 n
� �h i

; (22)

where

s ?r(n) �
X
d½n

(�1)n�n=ddr (23)

E4(n) �
X

d�1 ; 3 ; ... ½n

(�1)(d�1)=2d4 (24)

E?4(n) �
X

d?�1 ; 3 ; ... ½n

(�1)(d?�1)=2d4 (25)

x4(n) �1
4

X
a2 �b2 �n

(a �bi)4 ; (26)

/d?�n=d; dk(n) is the number of divisors of n OF THE

FORM 4m �k; r24(n) is a SINGULAR SERIES, s(n) is the
DIVISOR FUNCTION, s0(n) is the DIVISOR FUNCTION of
order 0 (i.e., the number of DIVISORS), and t is the TAU

FUNCTION. r24(n) may also be written in the alternate
form

r24(n) �(�1)n16
9 17 s??3(d) �8s ??5(d) �2s??7(d)ð

�(�1)n512
9

Xn�1

k�1

s??3(k)s??7(n�k)�s??5(d)s??5(n�k)½ ; (27)

where

s??r(n)�
X
d½n

(�1)ndr: (28)

Similar expressions exist for larger EVEN k , but they
quickly become extremely complicated and can be
written simply only in terms of expansions of modular
functions.

See also CLASS NUMBER, DIOPHANTINE EQUATION–

2ND POWERS, FERMAT’S POLYGONAL NUMBER THEO-

REM, GAUSS’S CIRCLE PROBLEM, LANDAU-RAMANUJAN



CONSTANT, LEIBNIZ SERIES, PRIME FACTORS, SIER-

PINSKI CONSTANT, TAU FUNCTION
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Sum Rule

d

dx
[f (x) �g(x)] �f ?(x) �g ?(x) :

where d =dx denotes a derivative and f ?(x) and g ?(x)
are the derivatives of f (x) and g(x) ; respectively.

See also DERIVATIVE

Sum-Free Set
A set S of integers is called sum-free if x �y QS for all
x; y � S:/

See also A -SEQUENCE, CAMERON’S SUM-FREE SET

CONSTANT, DOUBLE-FREE SET, HOFSTADTER SE-

QUENCES, PRIME NUMBER OF MEASUREMENT, S -

ADDITIVE SEQUENCE, SCHUR NUMBER, SCHUR’S PRO-

BLEM, STÖ HR SEQUENCE, TRIPLE-FREE SET
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Summand
ADDEND

Summation by Parts
Summation by parts for discrete variables is the
equivalent of INTEGRATION BY PARTS for continuous
variables

D�1[v(x) D(x)] �u(x)v(x) �D�1[Eu(x) Dv(x)] ;

or X
[v(x)Du(x)] �u(x)v(x) �

X
u(x �h)Dv(x)];

where /D�1
/ is the indefinite summation operator and

the E -operator is defined by

Ey(x) �y(x �h) ;

where h is any constant.

See also INTEGRATION BY PARTS

Summatory Function
For a discrete function f (n); the summatory function
is defined by

F(n)�
Xn

k�D

f (k);

where D is the DOMAIN of the function.



See also DIVISOR FUNCTION, MANGOLDT FUNCTION,
MERTENS FUNCTION, RUDIN-SHAPIRO SEQUENCE, TAU

FUNCTION, TOTIENT FUNCTION

Sum-of-Divisors Transform
MÖ BIUS TRANSFORM

Sum-Product Number
A sum-product number is a number n such that the
sum of n ’s digits times the product of n ’s digit is n
itself, for example

135 �(1 �3 �5)(1 � 3 � 5):

Obviously, such a number must be divisible by its
digits as well as the sum of its digits. There are only
three sum-product numbers: 1, 135, 144, ... (Sloane’s
A038369). This can be demonstrated using the follow-
ing argument due to D. Wilson.

Let n be a d -digit sum-product number, and let s and
p be the sum and product of its digits. Because n is a
d -digit number, we have

10d�1 5n; s 59d; p 59d :

Now, since n is a sum-product number, we have
n �sp , giving

10d�1 5n �sp 5(9d) 9d
� �

:

The inequality 10d�1 5(9d) 9d
� �

is fulfilled only by
d 584 ; so a sum-product number has at most 84
digits.

This gives

s 59d 5756; p 5n B1085 :

Now, since p is a product of digits, p must be OF THE

FORM 2a3b5c7d : However, if 10 divides p , then it also
divides n . This means that n ends in 0 so the product
of its digit is p �0, giving n �sp �0: Hence we need
not consider p divisible by 10, and can assume p is
either OF THE FORM 2a3b7c or 3a5b7c : This reduces the
search space for sum-product numbers to a tractable
size, and allowed Wilson to verify that there are no
further sum-product numbers.

See also AMENABLE NUMBER, DIGIT, HARSHAD NUM-

BER
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Sup
SUPREMUM, SUPREMUM LIMIT

Super Catalan Number
While the CATALAN NUMBERS are the number of P -

GOOD PATHS from (n, n ) to (0,0) which do not cross the
diagonal line, the super Catalan numbers count the
number of LATTICE PATHS with diagonal steps from (n,
n ) to (0,0) which do not touch the diagonal line x �y .

the super catalan numbers are given by the RECUR-

RENCE RELATION

s(n) �
3(2n � 3)s(n � 1) � (n � 3)s(n � 2)

n

(comtet 1974), with s(1) �s(2) �1: (note that the
expression in vardi (1991, p. 198) contains two
errors.) a closed form expression in terms of LE-

GENDRE POLYNOMIALS Pn(x) is

S(n) �
3Pn�1(3) � Pn�2(3)

4n

(Vardi 1991, p. 199). The first few super Catalan
numbers are 1, 1, 3, 11, 45, 197, ... (Sloane’s
A001003).

See also CATALAN NUMBER
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Super-3 Number
An INTEGER n such that h(x) contains three consecu-
tive 3s in its DECIMAL representation. The first few
super-3 numbers are 261, 462, 471, 481, 558, 753,
1036, ... (Sloane’s A014569). A. Anderson has shown
that all numbers ending in 471, 4710, or 47100 are
super-3 (Pickover 1995).

For a digit d; super-3 numbers can be generalized to
super-/d numbers n such that r4(n) contains d d/s in its
DECIMAL representation. The following table gives the
first few super-/d numbers for small d:/

/d/ Sloane Super-/d numbers

2 Sloane’s
A032743

19, 31, 69, 81, 105, 106, 107,
119, 127, ...



3 Sloane’s
A014569

261, 462, 471, 481, 558, 753,
1036, 1046, ...

4 Sloane’s
A032744

1168, 4972, 7423, 7752, 8431,
10267, 11317, ...

5 Sloane’s
A032745

4602, 5517, 7539, 12955, 14555,
20137, 20379, ...

6 Sloane’s
A032746

27257, 272570, 302693, 323576,
364509, 502785, ...

7 Sloane’s
A032747

140997, 490996, 1184321,
1259609, 1409970, ...

8 Sloane’s
A032748

185423, 641519, 1551728,
1854230, 6415190, ...

9 Sloane’s
A032749

17546133, 32613656, 93568867,
107225764, ...
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Superabundant Number
HIGHLY COMPOSITE NUMBER

Superasymptotic Series

See also ASYMPTOTIC SERIES, HYPERASYMPTOTIC

SERIES
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Super-d Number
An INTEGER n such that 3n3 contains three consecu-
tive 3s in its DECIMAL representation is called a super-
3 number. The first few super-3 numbers are 261,
462, 471, 481, 558, 753, 1036, ... (Sloane’s A014569).
A. Anderson has shown that all numbers ending in
471, 4710, or 47100 are super-3 (Pickover 1995).

In general, a super-d number is a number n such that
dnd contains d ds in its DECIMAL representation. The
following table gives the first few super-d numbers
for small d .

d Sloane super-d numbers

2 A032743 19, 31, 69, 81, 105, 106, 107, 119, ...

3 A014569 261, 462, 471, 481, 558, 753, 1036,
...

4 A032744 1168, 4972, 7423, 7752, 8431,
10267, ...

5 A032745 4602, 5517, 7539, 12955, 14555,
20137, ...

6 A032746 27257, 272570, 302693, 323576, ...

7 A032747 140997, 490996, 1184321, 1259609,
...

8 A032748 185423, 641519, 1551728, 1854230,
...

9 A032749 17546133, 32613656, 93568867, ...

The following table gives the first few palindromic
super-d numbers for small d .

d Sloane palindromic super-d numbers

2 A032750 131, 181, 333, 454, 919, 969, 1331,
...

3 A032751 4554, 6776, 17471, 22322, 22722,
28182, 43434, ...

4 A032752 83338, 1142411, 1571751, 1587851,
2013102, ...

5 A032753 3975793, 9799979, 39199193,
41299214, 65455456, ...

6 A032754 2023202, 374929473, 458353854,
499202994, 749858947, ...
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Superdiagonal
The superdiagonal of a SQUARE MATRIX is the set of
elements directly above the elements comprising the
DIAGONAL. For example, in the following matrix, the
diagonal elements are denoted di and the super-
diagonal elements are denoted si;



d1 s1 a13 . . .  a1n

a21 d2 s2
::: a2n

a31 a32 d3
::: a3n

n :::
:::

:::
:::

an1 an2 an3 � � �  dn

2
66664

3
77775:

See also DIAGONAL, SUBDIAGONAL, TRIDIAGONAL

MATRIX

Super-Domino
POLYOMINO

Super-Edge-Graceful Graph

See also EDGE-GRACEFUL GRAPH, SKOLEM-GRACEFUL

GRAPH

Superegg
A superegg is a solid described by the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2

a2

s�����
�����
n

�
z

b

�����
�����
n

�1:

Supereggs will balance on either end for any a , b , and
n .

See also EGG, SUPERELLIPSE, SUPERELLIPSOID

References
Gardner, M. "Piet Hein’s Superellipse." Ch. 18 in Mathema-

tical Carnival: A New Round-Up of Tantalizers and
Puzzles from Scientific American. New York: Vintage,
pp. 240�/54, 1977.

Superellipse

A curve with Cartesian equation

x

a

�����
�����
n

�
y

b

�����
�����
n

�1: (1)

where n �2, first discussed in 1818 by Lamé. The
curves illustrated above correspond to a�1, b�2,
and n�2:5; 3.0, and 3.5. Superellipses with a�b are
also known as Lamé curves. The AREA of the super-

ellipse with a�b�1 is given by

A�4 g
1

0

1�xnð Þ1=n dx (2)

�
2G 1

n

� �
G 1 � 1

n

� �
G 2

n

� � : (3)

If n is a rational, then the curve is algebraic.
However, for irrational n , the curve is transcenden-
tal. For EVEN INTEGERS n , the curve becomes closer to
a rectangle as n increases. For ODD INTEGER values of
n , the curve looks like the EVEN case in the POSITIVE

quadrant but goes to infinity in both the second and
fourth quadrants (MacTutor Archive). A special case
of the superellipse is given by the ASTROID (/n�2=3);

(ax)2=3�(by)2=3� a2�b2
� �2=3

(4)

(left figure). Piet Hein called the curve with n�5=2
and a�b "the" superellipse (right figure).

The above plots show the function

½x½p�½y½q (5)



for p �1, ..., 4 and q �1, ..., 4.

A degenerate superellipse is a superellipse with r 52:
The above curves are for a �1, b �2, and r �0:5; 1.0,
1.5, and 2.0.

See also ASTROID, CHMUTOV SURFACE, ELLIPSE,
GOURSAT’S SURFACE, SUPEREGG
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Superellipsoid
A generalization of the ELLIPSOID, also called the
superquadratic ellipsoid, defined by the equation

½x½2 =e �½y½2 =e
� �e=n

�½z ½2 =n �1: (1)

where e and n are the east-west and north-south
exponents, respectively. The superellipsoid can be
rendered in POVRay † with the command

superellipsoid{ Be,n � }

The generalization

x

a

�����
�����
n

�
y

b

�����
�����
n

�
z

c

�����
�����
n

�1 (2)

of the surface considered by Gray (1997) might also be
called a superellipsoid. The VOLUME of the solid with
a �b �c �1 is

Vn �8 g
1

0 g
(1�xn)1 =n

0

1 �xn �ynð Þ1 =n dy dx (3)

�
8G 1 � 1

n

� �
G 1 � 3

n

� � : (4)

As n 0 �; the solid becomes a CUBE, so

lim
n 0�

Vn �8 (5)

as it must. This is a special case of the integral 3.2.2.2

ggg
x ]0; y ]0; z]0

x
a

� �p

�
y
b

� �q

�
z
c

� �r

51

xa�1yb�1z g�1 dx dy dz

�
a abbc g

pqr

G
a

p

 !
G

b

q

 !
G

g

r

 !

G
a

p
�

b

q
�

g

r

 ! (6)

in Prudnikov et al. (1986, p. 583).

See also ELLIPSOID, GOURSAT’S SURFACE, SUPEREL-

LIPSE
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Superfactorial
The superfactorial of n is defined by Pickover (1995)
as

n$ �n!n!U
n!|fflffl{zfflffl}

n!

:

The first two values are 1 and 4, but subsequently
grow so rapidly that 3$ already has a huge number of
digits.

Sloane and Plouffe (1995) define the superfactorial by

n$ �
Yn

i�1

i!;

which is equivalent to the integral values of the
BARNES’ G -FUNCTION. The first few values are 1, 1, 2,
12, 288, 34560, ... (Sloane’s A000178). This function
has an unexpected connection with BELL NUMBERS.

See also BARNES’ G -FUNCTION, BELL NUMBER, FAC-

TORIAL, LARGE NUMBER, SUBFACTORIAL, VANDER-

MONDE DETERMINANT
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www.research.att.com/~njas/sequences/eisonline.html.

Supergraph
If G ? is a SUBGRAPH of G , then G is said to be a
supergraph of G?:/

See also GRAPH, SUBGRAPH

Supernormal
Trials for which the LEXIS RATIO

L �
s

sB

;

satisfies L �1, where s is the VARIANCE in a set of s
LEXIS TRIALS and sB is the VARIANCE assuming
BERNOULLI TRIALS.

See also BERNOULLI TRIAL, LEXIS TRIALS, SUBNORMAL

Superperfect Number
A number n such that

s2(n) � s( s(n)) �2n :

where s(n) is the DIVISOR FUNCTION is called a
superperfect number. EVEN superperfect numbers
are just 2p �1 ; where Mp �2p �1 is a MERSENNE

PRIME. If any ODD superperfect numbers exist, they
are SQUARE NUMBERS and either n or s(n) is DIVISIBLE

by at least three distinct PRIMES.

More generally, an m -superperfect number is a
number for which sm(n) �2n; and an (m, k )-perfect
number is a number n for which sm(n) �2n: A
number n can tested to see if it is (m, k )-perfect
using the following Mathematica code.

SuperperfectQ[m_, n_, k_:2] : �
Nest[DivisorSigma[1, #] &, n, m] ��  k n

The first few (2,2)-perfect numbers are 2, 4, 16, 64,
4096, 65536, 262144, ... (Sloane’s A019279; Cohen
and te Riele 1996). For m ]3 ; there are no EVEN m -
superperfect numbers (Guy 1994, p. 65). There are no
(3; 2)/-superperfect numbers n B2 � 108 for 4 5m 55:/

See also MERSENNE NUMBER, PERFECT NUMBER
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Superposition Principle
For a linear homogeneous ORDINARY DIFFERENTIAL

EQUATION, if y1(x) and y2(x) are solutions, then so is
y1(x) �y2(x):/

Super-Poulet Number
A POULET NUMBER whose DIVISORS d all satisfy
d½2d �2: The first few are 341, 1387, 2047, 2701,
3277, 4033, 4369, 4681, 5461, 7957, 8321, ... (Sloane’s
A050218).

See also POULET NUMBER

References
Sloane, N. J. A. Sequences A050218 in "An On-Line Version

of the Encyclopedia of Integer Sequences." http://www.re-
search.att.com/~njas/sequences/eisonline.html.

Superquadratic Ellipsoid
SUPERELLIPSOID

Superregular Graph
For a VERTEX x of a GRAPH, let Gx and Dx denote the
SUBGRAPHS of G�x induced by the VERTICES adjacent
to and nonadjacent to x , respectively. The empty
graph is defined to be superregular, and G is said to
be superregular if G is a REGULAR GRAPH and both Gx

and Dx are superregular for all x .

The superregular graphs are precisely C5 ; mKn//

(m; n ]1); Gn (/n ]1); and the complements of these
graphs, where Cn is a CYCLIC GRAPH, Kn is a
COMPLETE GRAPH and mKn is m disjoint copies of
Kn ; and Gn is the Cartesian product of Kn with itself
(the graph whose VERTEX set consists of n2 VERTICES

arranged in an n �n square with two VERTICES

adjacent IFF they are in the same row or column).

See also COMPLETE GRAPH, CYCLIC GRAPH, REGULAR

GRAPH
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Superscript
A quantity displayed above the normal line of text
(and generally in a smaller point size), as the "i" in xi;
is called a superscript. Superscripts are commonly
used to indicate raising to a POWER (/x3 means x � x � x
or x CUBED), multiple differentiation (/f (3)(x) is an



abbreviation for f §(x) �d3f =dx3); and a host of other
operations and notations in mathematics.

See also SUBSCRIPT

Superset
A SET containing all elements of a smaller SET. If B is
a SUBSET of A , then A is a superset of B , written

/A –B: If A is a PROPER SUPERSET of B , this is written
A ‡B:/

See also PROPER SUBSET, PROPER SUPERSET, SUBSET

Superstructure
In NONSTANDARD ANALYSIS, the limitation to first-
order analysis can be avoided by using a construction
known as a superstructure. Superstructures are
constructed in the following manner. Let X be an
arbitrary set whose elements are not sets, and call the
elements of X "individuals." Define inductively a
sequence of sets with S0(X) �X and, for each natural
number k ,

Sk �1(X) �Sk(X) @B Sk(X)ð Þ;

and let

S(X) � @
�

k �0
Sk(X) : (1)

Then S(X) is called the superstructure over X . An
element of S(X) is an ENTITY of S(X) :/

Using the definition of ordered pair provided by
Kuratowski, namely (a; b) �ffa g; fa; bgg; it follows
that (a; b) � S2(X) for any a ; b � X : Therefore, X �X ⁄
S2(X) ; and for any function f from X into X , we have
f � S3(X) : Now assume that the set X is (in one-to-one
correspondence with) the set of real numbers R; and
then the relation R which describes continuity of a
function at a point is a member of S6(X): Careful
consideration shows that, in fact, all the objects
studied in classical analysis over R are entities of
this superstructure. Thus, first-order formulas about
S(X) are sufficient to study even what is normally
done in classical analysis using second-order reason-
ing.

To do nonstandard analysis on the superstructure
S(X); one forms an ULTRAPOWER of the relational
structure (S(X) ; �): LOS’ THEOREM yields the TRANS-

FER PRINCIPLE of nonstandard analysis.

See also LOS’ THEOREM, NONSTANDARD ANALYSIS,
ULTRAPOWER
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Supplementary Angle
Two ANGLES a and p � a which together form a
STRAIGHT ANGLE are said to be supplementary.

See also ANGLE, COMPLEMENTARY ANGLE, DIGON,
STRAIGHT ANGLE

Support
The CLOSURE of the SET of arguments of a FUNCTION f
for which f is not zero.

See also CLOSURE (SET)

Support Function
Let M be an oriented REGULAR SURFACE in R3 with
normal N. Then the support function of M is the
function h : M 0 R defined by

h(p) �p � N(p):
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Supremum
Portions of this entry contributed by JEROME R.

BREITENBACH

The supremum is the least upper bound of a set S ,
defined as a quantity M such that no member of the
SET exceeds M , but if e is any POSITIVE quantity,
however small, there is a member that exceeds M �e
(Jeffreys and Jeffreys 1988). When it exists (which is
not required by this definition, e.g., sup R does not
exist), is it denoted supS or supx �S :/

More formally, the supremum sup S for S a (none-
mpty) SUBSET of the extended reals R̄ �R @ f9�g is
the smallest value y � R̄ such that for all x � S we have
x 5y: Using this definition, sup S always exists and,
in particular, sup R ��:/

Whenever a supremum exists, its value is unique. On
the REAL LINE, the supremum of a set is the same as
the supremum of its CLOSURE.

See also INFIMUM, LIMIT, SUPREMUM LIMIT, UPPER

BOUND
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Supremum Limit
Given a sequence of real numbers an ; the supremum
limit, also called the UPPER LIMIT, but more often
simply called the supremum limit and pronounced
‘lim-soup’ and written lim sup; is the limit of

An �sup
k >n

ak

as n 0 �; where supS denotes the SUPREMUM. Note
that, by definition, An is nonincreasing and so either
has a limit or tends to ��: For example, suppose an �
(�1)n =n; then for n odd, An �1 =(n �1); and for n
even, An �1 =n: Another example is an �sin n ; in
which case An is a constant sequence An �1:/

When lim sup an �lim inf an ; the sequence converges
to the real number

lim an �lim sup an �lim inf an :

Otherwise, the sequence does not converge.

See also INFIMUM LIMIT, LIMIT, SUPREMUM, UPPER

LIMIT

Surd
An archaic term for an IRRATIONAL NUMBER.

See also IRRATIONAL NUMBER, QUADRATIC SURD

Surface
The word "surface" is an important term in mathe-
matics and is used in many ways. The most common
and straightforward use of the word is to denote a 2-D
SUBMANIFOLD of 3-D EUCLIDEAN SPACE. Surfaces can
range from the very complicated (e.g., FRACTALS such
as the MANDELBROT SET) to the very simple (such as
the PLANE). More generally, the word "surface" can be
used to denote an (n �1)/-D SUBMANIFOLD of an n -D
MANIFOLD, or in general, any CODIMENSION-1 subob-
ject in an object (like a BANACH SPACE or an infinite-
dimensional MANIFOLD).

Even simple surfaces can display surprisingly coun-
terintuitive properties. For example, the SURFACE OF

REVOLUTION of y �1=x around the X -AXIS for x ]1
(called GABRIEL’S HORN) has FINITE VOLUME but
INFINITE SURFACE AREA.

See also ALGEBRAIC SURFACE, COMPACT SURFACE,
COMPLETE SURFACE, DEVELOPABLE SURFACE, FLAT

SURFACE, HYPERSURFACE, IMMERSED MINIMAL SUR-

FACE, MANIFOLD, MINIMAL SURFACE, ORIENTABLE

SURFACE, ORTHOGONAL SURFACES, RIEMANN SUR-

FACE, SMOOTH SURFACE, SOLID
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Surface Area
Surface area is the AREA of a given surface. Roughly
speaking, it is the "amount" of a surface (i.e., it is
proportional to the amount of paint needed to cover
it), and has units of distance squared. It is commonly
denoted S for a surface in 3-D, or A for a region of the
plane (in which case it is simply called "the" AREA).

If the surface is PARAMETERIZED using u and v , then

S�gS

Tu�Tvj j du dv; (1)

where Tu and Tv are tangent vectors and a�b is the
CROSS PRODUCT. If z�f (x; y) is defined over a region
R , then

S�ggR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@z

@x

 !n

�
@z

@y

 !2

�1

vuut dA; (2)

where the integral is taken over the entire surface
(Kaplan 1992, 3rd ed. pp. 245�/48). Writing x�
x(u; v); y�y(u; v); and z�z(u; v) then gives the
symmetrical form

S�ggR?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG�F2

p
du dv: (3)

where R? is the transformation of R , and



E �
@x

@u

 !2

�
@y

@u

 !2

�
@z

@u

 !2

(4)

F �
@x

@u

@x

@v 
�

@y

@u

@y

@v 
�

@z

@u

@z

@v 
(5)

G �
@x

@v

 !2

�
@y

@v

 !2

�
@z

@v

 !2

(6)

are coefficients of the first FUNDAMENTAL FORM

(Kaplan 1992, 3rd ed. pp. 245 �/46).

The following tables gives lateral surface areas S for
some common SURFACES. Here, r denotes the RADIUS,
h the height, e the ELLIPTICITY of a SPHEROID, p the
base PERIMETER, s the SLANT HEIGHT, a the tube
radius of a torus, and c the radius from the rotation
axis of the torus to the center of the tube (Beyer
1987). Note that many of these surfaces are SURFACES

OF REVOLUTION.

SURFACE S

CONE / pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �h2

p
/

CONICAL FRUSTUM / p R1 �R2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 �R2ð Þ2�h2

q
/

CUBE /6a2
/

CYLINDER /2prh/

OBLATE SPHEROID /2pa2 �
pe2

e
ln

1 � e

1 � e

# $
/

PROLATE SPHEROID /2pa2 �
2 pae

e
sin�1 e/

PYRAMID /
1
2 ps/

PYRAMIDAL FRUSTUM /
1
2 ps/

SPHERE /4pr2
/

SPHERICAL LUNE /2r2 u/

TORUS /4p2ac/

ZONE /2prh/

Even simple surfaces can display surprisingly coun-
terintuitive properties. For instance, the surface of
revolution of y �1=x around the X -AXIS for x ]1 is
called GABRIEL’S HORN, and has FINITE VOLUME but
INFINITE surface area.

See also AREA, FUNDAMENTAL FORMS, SURFACE

INTEGRAL, SURFACE OF REVOLUTION, VOLUME
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Surface Harmonic
Any LINEAR COMBINATION of real SPHERICAL HARMO-

NICS

AlPl(cos u) �
Xl

m�1

Am
l cos(mf) �Bm

l sin(mf)½ Pm
l (cos u)

for l fixed whose sum is not premultiplied by a factor
rl (Whittaker and Watson 1990, p. 392).

See also SOLID HARMONIC, SPHERICAL HARMONIC
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Surface Integral
For a SCALAR FUNCTION f over a surface parameter-
ized by u and v , the surface integral is given by

F�gS

f da�gS

f (u; v) Tu �Tvj j du dv : (1)

where Tu and Tv are tangent vectors and a �b is the
CROSS PRODUCT.

For a VECTOR FUNCTION over a surface, the surface
integral is given by

F�gS

F � da �gS

(F � n̂) da (2)

�gS

fx dy dz �fy dz dx �fz dx dy: (3)

where a � b is a DOT PRODUCT and n̂ is a unit NORMAL

VECTOR. If z �f (x; y) ; then da is given explicitly by

da�9 �
@z

@x
x̂�

@z

@y
ŷ�ẑ

 !
dx dy: (4)

If the surface is SURFACE PARAMETERIZED using u and
v , then

F�gS

F � (Tu�Tv) du dv: (5)

See also INTEGRAL, PATH INTEGRAL, SURFACE PARA-

METERIZATION, VOLUME INTEGRAL
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Surface of Revolution
A surface of revolution is a SURFACE generated by
rotating a 2-D CURVE about an axis. The resulting
surface therefore always has azimuthal symmetry.
Examples of surfaces of revolution include the APPLE,
CONE (excluding the base), CONICAL FRUSTUM (exclud-
ing the ends), CYLINDER (excluding the ends), DAR-

WIN-DE SITTER SPHEROID, GABRIEL’S HORN,
HYPERBOLOID, LEMON, OBLATE SPHEROID, PARABO-

LOID, PROLATE SPHEROID, PSEUDOSPHERE, SPHERE,
SPHEROID, and TORUS (and its generalization, the
TOROID).

The area element of the SURFACE OF REVOLUTION

obtained by rotating the curve y�f (x) from x�a to
x�b about the X -AXIS is

dS�2py ds�2py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx: (1)

so the surface area is

S�2p g
b

a

f (x)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f ?(x)½ 2

q
dx: (2)

(Anton 1999, p. 380).

If we are interested instead in finding the area of the
SURFACE OF REVOLUTION obtained by rotating the
curve x�g(y) around the Y -AXIS from y�a to y�b
(as opposed to rotating about the X -AXIS), the area
element is given by

dS�2px ds�2px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x?2

p
dy: (3)

so the surface area is

S�2p g
b

a

g(y)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g?(y)½ 2

q
dy (4)

(Kaplan 1992, 3rd ed. p. 251; Anton 1999, p. 380).

The following table gives the lateral surface areas S
for some common surfaces of revolution where r
denotes the RADIUS (of a cone, cylinder, sphere, or
zone), R1 and R2 the inner and outer radii of a
frustum, h the height, e the ELLIPTICITY of a SPHER-

OID, and a and c the equatorial and polar radii (for a
spheroid) or the radius of a circular cross-section and
rotational radius (for a torus).

surface S

CONE /pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�h2

p
/

CONICAL FRUSTUM /p R1�R2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1�R2ð Þ2�h2

q
/

CYLINDER /2prh/

OBLATE SPHEROID /2pa2�
pe2

e
ln

1 � e

1 � e

# $
/

PROLATE SPHEROID /2pa2�
2pae

e
sin�1 e/

SPHERE /4pr2
/

TORUS /4p2ac/

ZONE /2prh/

The standard parameterization of a surface of revolu-
tion is given by

x(u; v)�f(v)cos u (5)

y(u; v)�f(v)sin u (6)

z(u; v)�c(v): (7)

For a curve so parameterized, the first FUNDAMENTAL

FORM has

E�c2 (8)

F�0 (9)

G�f?2�c?2: (10)

Wherever f and f?2�c?2 are nonzero, then the
surface is regular and the second FUNDAMENTAL FORM

has

e��
½f½c?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f?2 � c?2
p (11)

f �0 (12)

g�
sgn(f) fƒc? � f?cƒð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f?2 � c?2
p : (13)

Furthermore, the unit NORMAL VECTOR is



N̂(u; v)�
sgn(f)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f?2 � c?2

p f? cos u
c? sin u

f?

2
4

3
5: (14)

and the PRINCIPAL CURVATURES are

k1�
g

G
�

sgn(f)(fƒc? � f?cƒ)

(f?2 � c?2)3=2 (15)

k2�
e

E
��

c?

½f½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f?2 � c?2

p : (16)

The GAUSSIAN and MEAN CURVATURES are

K�
�c?2fƒ� f?c?cƒ

f f?2 � c?2
� �2 (17)

H�
f fƒc? � f?cƒð Þ� c? f?2 � c?2

� �
2½f½ f?2 � c?2

� �3=2 (18)

(Gray 1997).

PAPPUS’S CENTROID THEOREM gives the VOLUME of a
solid of rotation as the cross-sectional AREA times the
distance traveled by the centroid as it is rotated.

CALCULUS OF VARIATIONS can be used to find the
curve from a point x1; y1ð Þ to a point x2; y2ð Þ which,
when revolved around the X -AXIS, yields a surface of
smallest SURFACE AREA A (i.e., the MINIMAL SURFACE).
This is equivalent to finding the MINIMAL SURFACE

passing through two circular wire frames. The AREA

element is

dA�2py ds�2py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx: (19)

so the SURFACE AREA is

A�2p g y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx: (20)

and the quantity we are minimizing is

f �y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
: (21)

This equation has fx�0; so we can use the BELTRAMI

IDENTITY

f �yx

@f

@yx

�a (22)

to obtain

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
�y?

yy?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p �a (23)

y 1�y?2
� �

�yy?2�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
(24)

y�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
(25)

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p �a (26)

y2

a
�1�y?2 (27)

dx

dy
�

1

y?
�

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a2

p (28)

x�a g
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � a2
p �a cosh�1 y

a

 !
�b (29)

y�a cosh
x � b

a

 !
: (30)

which is called a CATENARY, and the surface gener-
ated by rotating it is called a CATENOID. The two
constants a and b are determined from the two
implicit equations

y1�a cosh
x1 � b

a

 !
(31)

y2�a cosh
x2 � b

a

 !
: (32)

which cannot be solved analytically.

The general case is somewhat more complicated than
this solution suggests. To see this, consider the
MINIMAL SURFACE between two rings of equal RADIUS

y0: Without loss of generality, take the origin at the
midpoint of the two rings. Then the two endpoints are
located at �x0; y0ð Þ and x0; y0ð Þ; and

y0�a cosh
�x0 � b

a

 !
�a cosh

x0 � b

a

 !
: (33)

But cosh(�x)�cosh(x); so

cosh
�x0 � b

a

 !
�cosh

�x0 � b

a

 !
: (34)

Inverting each side

�x0�b��x0�b: (35)

so b�0 (as it must by symmetry, since we have
chosen the origin between the two rings), and the
equation of the MINIMAL SURFACE reduces to



y�a cosh
x

a

 !
; (36)

At the endpoints

y0�a cosh
x0

a

 !
: (37)

but for certain values of x0 and y0; this equation has
no solutions. The physical interpretation of this fact is
that the surface breaks and forms circular disks in
each ring to minimize AREA. CALCULUS OF VARIATIONS

cannot be used to find such discontinuous solutions
(known in this case as GOLDSCHMIDT SOLUTIONS). The
minimal surfaces for several choices of endpoints are
shown above. The first two cases are CATENOIDS,
while the third case is a GOLDSCHMIDT SOLUTION.

To find the maximum value of x0=y0 at which
CATENARY solutions can be obtained, let p�1=a:
Then (35) gives

y0p�cosh px0ð Þ: (38)

Now, denote the maximum value of x0 as x�
0: Then it

will be true that dx0=dp�0: Take d=dp of (38),

y0�sinh px0ð Þ x0�p
dx0

dp

 !
: (39)

Now set dx0=dp�0

y0�x0 sinh px0�ð Þ: (40)

From (38),

py0��cosh px0�ð Þ: (41)

Take (41)} (40),

px0��coth px0�ð Þ: (42)

Defining u�px0�;

u�coth u: (43)

This has solution u�1:1996789403 . . . : From (40),
y0p�cosh u: Divide this by (43) to obtain y0=x0�
sinh u; so the maximum possible value of x0=y0 is

x0

y0

�csch u�0:6627434193 . . . : (44)

Therefore, only Goldschmidt ring solutions exist for
x0=y0 > 0:6627 . . . :/

The SURFACE AREA of the minimal CATENOID surface
is given by

A�2(2p)g
x0

0

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx; (45)

but since

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
a (46)

�a cosh
x

a

 !
: (47)

A�
4p

a g
x0

0

y2 dx�4pa g
x0

0

cosh2 x

a

 !
dx

�4pa g
x0

0

1
2 cosh

2x

a

 !
�1

" #
dx

�2pa g
x0

0

cosh
2x

a

 !
dx�g

x0

0

dx

" #

�2pa
a

2
sinh

2x

a

 !
�x

" #x0

0

�pa2 sinh
2x

a

 !
�

2x

a

" #x0

0

�pa2 sinh
2x0

a

 !
�

2x0

a

" #
: (48)

Some caution is needed in solving (37) for a . If we
take x0�1=2 and y0�1 then (37) becomes

1�a cosh
1

2a

 !
: (49)

which has two solutions: a1�0:2350 . . . ("deep"), and
a2�0:8483 . . ./ However, upon plugging these into
(48) with x0�1=2; we find A1�6:8456 . . . and A2�
5:9917 . . . : So A1 is not, in fact, a local minimum, and
A2 is the only true minimal solution.

The SURFACE AREA of the CATENOID solution equals
that of the GOLDSCHMIDT SOLUTION when (48) equals
the AREA of two disks,

pa2 sinh
2x0

a

 !
�

2x0

a

" #
�2py2

0 (50)

a2 2 sinh
x0

a

 !
cosh

x0

a

 !
�

2x0

a

" #
�2y2

0�0 (51)

a2 cosh
x0

a

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 x0

a

 !
�1

vuut �
x0

a

2
4

3
5�y2

0�0: (52)



Plugging in

y0

a
�cosh

x0

a

 !
: (53)

y0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0

a

 !2

�1

vuut �cosh�1 y0

a

 !
�

y0

a

 !2

�0: (54)

Defining

u�
y0

a
(55)

gives

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�1

p
�cosh�1 u�u2�0: (56)

This has a solution u�1:2113614259: The value of
x0=y0 for which

Acatenary�A2 disks (57)

is therefore

x0

y0

�

x0

a
y0

a

�

cosh�1 y0

a

 !
y0

a

�
cosh�1 u

u

�0:5276973967: (58)

For x0=y0 � f0:52770; 0:6627); the CATENARY solution
has larger AREA than the two disks, so it exists only as
a RELATIVE MINIMUM.

There also exist solutions with a disk (of radius r )
between the rings supported by two CATENOIDS of
revolution. The AREA is larger than that for a simple
CATENOID, but it is a RELATIVE MINIMUM. The equa-
tion of the POSITIVE half of this curve is

y�c1 cosh
x

c1

�c3

 !
: (59)

At (0; r);

r�c1 cosh c3ð Þ: (60)

At x0; y0ð Þ;

y0�c1 cosh
x0

c1

�c3

 !
: (61)

The AREA of the two CATENOIDS is

Acatenoids�2(2p)g
x0

0

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y?2

q
dx�

4p

c1
g

x0

0

y2 dx

�4pc1 g
x0

0

cosh2 x

c1

�c3

 !
dx: (62)

Now let u�x=c1�c3; so du�dx=c1

A�4pc2
1 g

x0=x1�c3

c3

cosh2 u du

�4pc2
1

1
2 g

x0=x1�c3

c3

[cosh(2u)�1] du

�2pc2
1

1
2 sinh(2u)�u
h ix0=x1�c3

c3

�2pc2
1

1
2 sinh 2

x0

c1

�c3

 !" #
�1

2 sinh(2c3)�
x0

c1

( )

�pc2
1 sinh 2

x0

c1

�c3

 !" #
�sinh(2c3)�

2x0

c1

( )
: (63)

The AREA of the central DISK is

Adisk�pr2�pc2
1 cosh2 c3; (64)

so the total AREA is

A�pc2
1

� sinh 2
x0

c1

�c3

 !" #
� cosh2 c3�sinh(2c3)

 �

�
2x0

c1

( )
:

(65)

By PLATEAU’S LAWS, the CATENOIDS meet at an ANGLE

of 1208, so

tan 30��
dy

dx

" #
x�0

� sinh
x

c1

�c3

 !" #
x�0

�sinh c3�
1ffiffiffi
3

p (66)

and

c3�sinh�1 1ffiffiffi
3

p
 !

: (67)

This means that

cosh2 c3�sinh(2c3)

� 1�sinh2 c3


 �
�2 sinh c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�sinh2 c3

q

� 1�1
3

� �
�2

1ffiffiffi
3

p
 ! ffiffiffiffiffiffiffiffiffiffi

1�1
3

q

�
4

3
�

2ffiffiffi
3

p 2ffiffiffi
3

p �0: (68)

so

A�pc2
1 sinh 2

x0

c1

�c3

 !" #
�

2x0

c1

( )
: (69)

Now examine x0=y0;



x0

y0

�

x0

c1

y0

c1

�

x0

c1

cosh
x0

c1

� c3

 !u sech(u �c3): (70)

where u �x0 =c1 : Finding the maximum ratio of x0 =y0

gives

d

du

x0

y0

 !
�sech(u �c3) �u tanh(u �c3) sech(u �c3)

�0 (71)

u tanh(u �c3) �1: (72)

with c3 �sinh �1 1=
ffiffiffi
3

p� �
as given above. The solution

is u �1:0799632187; so the maximum value of x0 =y0

for two CATENOIDS with a central disk is
y0 �0 :4078241702:/

If we are interested instead in finding the curve from
a point x1 ; y1ð Þ to a point x2 ; y2ð Þ which, when
revolved around the Y -AXIS (as opposed to the X -

AXIS), yields a surface of smallest SURFACE AREA A , we
proceed as above. Note that the solution is physically
equivalent to that for rotation about the X -AXIS, but
takes on a different mathematical form. The AREA

element is

dA �2px ds�2px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2

q
dx (73)

A �2p g x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2

q
dx : (74)

and the quantity we are minimizing is

f �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2

q
: (75)

Taking the derivatives gives

@f

@y 
�0 (76)

d

dx

@f

@y?
�

d

dx

xy?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p !
: (77)

so the EULER-LAGRANGE DIFFERENTIAL EQUATION

becomes

@f

@y 
�

d

dx

@f

@y?
�

d

dx

xy ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p !
�0: (78)

xy?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y?2

p �a (79)

x2y ?2 �a2 1 �y?2
� �

(80)

y?2 x2 �a2
� �

�a2 (81)

dy

dx 
�

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p (82)

y �a g
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p �b �a cosh �1 x

a

 !
�b: (83)

Solving for x then gives

x �a cosh
y � b

a

 !
: (84)

which is the equation for a CATENARY. The SURFACE

AREA of the CATENOID product by rotation is

A �2 p g x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y?2

q
dx �2p g x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

a2

x2 � a2

s
dx

�2p g
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �a2ð Þ�a2

p
dx

�2p g
x2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p

�
x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �a2

p
�

a2

2
ln x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �a2

p� �" #x2

x1

�
1

2
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2�a2

q
�x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1�a2

q
�a2 ln

x2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 � a2
p

x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � a2
p !" #

: (85)

Isenberg (1992, p. 80) discusses finding the MINIMAL

SURFACE passing through two rings with axes offset
from each other.

See also APPLE, CATENOID, CONE CONICAL FRUSTUM,
CYLINDER, DARWIN-DE SITTER SPHEROID, EIGHT SUR-

FACE, GABRIEL’S HORN, HYPERBOLOID, LEMON, MER-

IDIAN, MINIMAL SURFACE, OBLATE SPHEROID,
PAPPUS’S CENTROID THEOREM, PARABOLOID, PARAL-

LEL (SURFACE OF REVOLUTION), PENINSULA SURFACE,
PROLATE SPHEROID, PSEUDOSPHERE, SINCLAIR’S SOAP

FILM PROBLEM, SOLID OF REVOLUTION, SPHERE,
SPHEROID, TOROID, TORUS, UNDULOID
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Surface of Section
A surface (or "space"rpar; of section is a way of
presenting a trajectory in n -D PHASE SPACE in an
(n�1)/-D SPACE. By picking one phase element con-
stant and plotting the values of the other elements



each time the selected element has the desired value,
an intersection surface is obtained. If the equations of
motion can be formulated as a MAP in which an
explicit FORMULA gives the values of the other
elements at successive passages through the selected
element value, the time required to compute the
surface of section is greatly reduced.

See also HÉ NON-HEILES EQUATION, PHASE SPACE
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Surface Parameterization
A surface in 3-SPACE can be parameterized by two
variables (or coordinates) u and v such that

x �x(u; v) (1)

y �y(u; v) (2)

z �z(u; v) : (3)

If a surface is parameterized as above, then the
tangent VECTORS

Tu �
@x

@u
x̂ �

@y

@u
ŷ �

@z

@u
ẑ (4)

Tv �
@x

@v
x̂ �

@y

@v
ŷ �

@z

@v
ẑ (5)

are useful in computing the SURFACE AREA and
SURFACE INTEGRAL.

See also SMOOTH SURFACE, SURFACE AREA, SURFACE

INTEGRAL

Surface Spherical Harmonic
SURFACE HARMONIC

Surgery
In the process of attaching a k -HANDLE to a MANIFOLD

M , the BOUNDARY of M is modified by a process called
(k �1)/-surgery. Surgery consists of the removal of a
TUBULAR NEIGHBORHOOD of a (k �1)/-SPHERE S(k �1)

from the BOUNDARIES of M and the dim(M) �1
standard SPHERE, and the gluing together of these
two scarred-up objects along their common BOUND-

ARIES.

See also BOUNDARY, DEHN SURGERY, HANDLE, MANI-

FOLD, SPHERE, TUBULAR NEIGHBORHOOD
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Surjection

An ONTO (a.k.a. surjective) MAP.

See also BIJECTION, DOMAIN, ONE-TO-ONE, ONTO,
RANGE (IMAGE)

Surjective
ONTO

Surprise Examination Paradox
UNEXPECTED HANGING PARADOX

Surreal Number
The most natural collection of numbers which in-
cludes both the REAL NUMBERS and the infinite
ORDINAL NUMBERS of Georg Cantor. They were
invented by John H. Conway in 1969. Every REAL

NUMBER is surrounded by surreals, which are closer
to it than any REAL NUMBER. Knuth (1974) describes
the surreal numbers in a work of fiction.

The surreal numbers are written using the NOTATION

fa ½b g; where f½g�0; f0½g�1 is the simplest number
greater than 0, f1½g�2 is the simplest number
greater than 1, etc. Similarly, f½0g��1 is the sim-
plest number less than 1, etc. However, 2 can also be
represented by f1½3g; f3=2 ½4 g; f1½ vg; etc.

See also OMNIFIC INTEGER, ORDINAL NUMBER, REAL

NUMBER
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Surrogate
Surrogate data are artificially generated data which
mimic statistical properties of real data. Isospectral
surrogates have identical POWER SPECTRA as real data
but with randomized phases. Scrambled surrogates
have the same probability distribution as real data,
but with white noise POWER SPECTRA.

See also POWER SPECTRUM

Surveying Problems
HANSEN’S PROBLEM, SNELLIUS-POTHENOT PROBLEM

Survivorship Curve

Plotting lx from a LIFE EXPECTANCY table on a
logarithmic scale versus x gives a curve known as a
survivorship curve. There are three general classes of
survivorship curves, illustrated above.

1. Type I curves are typical of populations in which
most mortality occurs among the elderly (e.g.,
humans in developed countries).
2. Type II curves occur when mortality is not
dependent on age (e.g., many species of large birds
and fish). For an infinite type II population, e0 �
e1 �. . . ; but this cannot hold for a finite popula-
tion.
3. Type III curves occur when juvenile mortality is
extremely high (e.g., plant and animal species
producing many offspring of which few survive).
In type III populations, it is often true that ei�1 >
ei for small i . In other words, life expectancy
increases for individuals who survive their risky
juvenile period.

See also LIFE EXPECTANCY

Suslin’s Theorem
A SET in a POLISH SPACE is a BOREL SET IFF it is both
ANALYTIC and COANALYTIC. For subsets of w , a set is
d1

1 IFF it is "hyperarithmetic."

See also ANALYTIC SET, BOREL SET, COANALYTIC SET,
POLISH SPACE

Suspended Knot
An ordinary KNOT in 3-D suspended in 4-D to create a
knotted 2-sphere. Suspended knots are not smooth at
the poles.

See also SPUN KNOT, TWIST-SPUN KNOT

Suspension
The JOIN of a TOPOLOGICAL SPACE X and a pair of
points S0 ; a(X) �X + S0 :/

See also JOIN (SPACES), TOPOLOGICAL SPACE
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Suzanne Set
The nth Suzanne set Sn is defined as the set of
COMPOSITE NUMBERS x for which n ½S(x) and n½Sp(x);
where

x �a0 �a1 101
� �

�. . .�ad 10d
� �

�p1p2 � � �pn :

and

S(x) �
Xd

j�0

aj

Sp(x) �
Xm

i �1

S pið Þ:

Every Suzanne set has an infinite number of ele-
ments. The Suzanne set Sn is a superset of the
MONICA SET Mn:/

See also MONICA SET
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Suzuki Group
The SPORADIC GROUP Suz.

References
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Swallowtail Catastrophe



A CATASTROPHE which can occur for three control
factors and one behavior axis. The swallowtail cata-
strophe is the universal unfolding of singularity
f (x) �x5 with codimension 3, i.e., in three unfolding
parameters, and is of the form F(x; u; v; w) �x5 �
ux3 �vx2 �wx : The equations

x �uv2 �3v4

y ��2uv �4v3

z �u

display such a catastrophe (von Seggern 1993, Nord-
strand). The above surface uses u � [�2 ; 2] and
v � [�0 :8 ; 0 :8]:/
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Swastika

An irregular ICOSAGON, also called the gammadion or
fylfot, which symbolized good luck in ancient Arabic
and Indian cultures. In more recent times, it was
adopted as the symbol of the Nazi Party in Hitler’s
Germany and has thence come to symbolize anti-
Semitism.

See also CROSS, DISSECTION
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Swastika Curve

The plane curve with Cartesian equation

y4 �x4 �xy

and polar equation

r2 �
sin u cos u

sin4 u � cos4 u 
:
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Sweep Signal

The general function

y(a ; b; c ; d) �c sin
p

b � a
(b �a)

x

d 
�a

 !2

�a2

2
4

3
5

8<
:

9=
;:
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Swept Sine
SWEEP SIGNAL

Swinnerton-Dyer Conjecture
In the early 1960s, B. Birch and H. P. F. Swinnerton-
Dyer conjectured that if a given ELLIPTIC CURVE has
an infinite number of solutions, then the associated
L -series has value 0 at a certain fixed point. In 1976,
Coates and Wiles showed that elliptic curves with
COMPLEX multiplication having an infinite number of
solutions have L -series which are zero at the relevant
fixed point (COATES-WILES THEOREM), but they were
unable to prove the converse. V. Kolyvagin extended
this result to modular curves.

See also COATES-WILES THEOREM, ELLIPTIC CURVE
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Swinnerton-Dyer Polynomial
The minimal POLYNOMIAL Sn(x) whose ROOTS are
sums and differences of the SQUARE ROOTS of the first
n PRIMES,

Sn(x) �
Y

x 9
ffiffiffi
2

p
9

ffiffiffi
3

p
9

ffiffiffi
5

p
9. . .9

ffiffiffiffiffi
pn

p� �
:
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Swirl

A swirl is a generic word to describe a function having
arcs which double back around each other. The plots
above correspond to the function

f (r ; u) �sin(6 cos r �n u)

for n �0, 1, ..., 5.

See also DAISY, WHIRL

Switching Class
TWO-GRAPH

Swung Dash
The symbol 	 used to denote similarity, equivalence
relations, or asymptosy.
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Sylow p-Subgroup
If pk is the highest POWER of a PRIME p dividing the
ORDER of a FINITE GROUP G , then a SUBGROUP of G of
ORDER pk is called a Sylow p -subgroup of G .

See also ABHYANKAR’S CONJECTURE, SUBGROUP, SY-

LOW THEOREMS

Sylow Theorems
Let p be a PRIME NUMBER, G a FINITE GROUP, and ½G ½
the order of G .

1. If p divides ½G½; then G has a SYLOW P -

SUBGROUP.
2. In a FINITE GROUP, all the SYLOW P -SUBGROUPS

are CONJUGATE for some fixed p .
3. The number of SYLOW P -SUBGROUPS for a fixed p
is CONGRUENT to 1 (mod p ).

See also CONJUGATE SUBGROUP, SYLOW P -SUBGROUP

Sylvester Cyclotomic Number
Given a LUCAS SEQUENCE with parameters P and Q ,
discriminant D "0; and roots a and b; the Sylvester
cyclotomic numbers are

Qn �
Y

r

a � zr bð Þ:

where

z �cos
2p

n

 !
�i sin

2p

n

 !

is a PRIMITIVE ROOT OF UNITY and the product is over
all exponents r RELATIVELY PRIME to n such that
r � 1; n½ Þ:/

See also LUCAS SEQUENCE
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Sylvester Graph
The Sylvester graph of a configuration is the set of
ORDINARY POINTS and ORDINARY LINES.

See also ORDINARY LINE, ORDINARY POINT
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Sylvester Matrix
For POLYNOMIALS of degree m and n , the Sylvester
matrix is an (m �n) �(m �n) matrix whose DETERMI-

NANT is the RESULTANT of the two POLYNOMIALS.

See also DETERMINANT, RESULTANT



Sylvester’s Determinant Identity
Given a MATRIX A ; let ½A½ denote its determinant. Then

½A½½Ars; pq ½� ½Ar; p ½½As; q ½� ½Ar; q ½½As; p ½; (1)

where Au; w is the SUBMATRIX of A formed by the
intersection of the subset w of columns and u of rows.
Bareiss (1968) writes the identity as

½A½ a(k �1)
kk


 �n�k �1
�

a(k)
k �1 ; k �1 � � �  a(k)

k �1; n

n ::: n
a(k)

n; k �1 � � �  a(k)
n; n

������
������: (2)

where

a(k)
ij �

a11 a12 � � �  a1k aij

a21 a22 � � �  a2k a2j

n n ::: n n
ak1 ak2 � � � akk akj

ai1 ai2 � � � aik aij

����������

����������
(3)

for kBi; j5n:/

See also DETERMINANT
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Sylvester’s Four-Point Problem

Sylvester’s four-point problem asks for the probability
q(R) that four points chosen at random in a planar
region R have a CONVEX HULL which is a QUADRILAT-

ERAL (Sylvester 1865). Depending on the method
chosen to pick points from the infinite plane, a
number of different solutions are possible, prompting
Sylvester to conclude "This problem does not admit of
a determinate solution" (Sylvester 1865; Pfiefer
1989).
For points selected from an open, convex subset of the
PLANE having finite AREA, the probability if given by

P(R)�1�
4ĀR

A(R)
:

where ĀR is the expected area of a triangle over
region R and A(R) is the area of region R . Note that

ĀR is simply the value computed for an appropriate
region, e.g., DISK TRIANGLE PICKING, TRIANGLE TRIAN-

GLE PICKING, SQUARE TRIANGLE PICKING, etc. P(R) can
range between

2
35q(R)51�

35

12p2
(1)

( 0:666665q(R)50:70448) depending on the shape of
the region, as first proved by Blaschke (Blaschke
1923, Peyerimhoff 1997). The following table gives
the probabilities for various simple plane regions
(Kendall and Moran 1963; Pfiefer 1989; Croft et al.
1991, pp. 54�/5; Peyerimhoff 1997).

R /P(R)/ approx.

TRIANGLE /
2
3/ 0.66667

SQUARE /
25
36/ 0.69444

HEXAGON /
683
972/ 0.70267

ELLIPSE, CIRCLE /1� 35
12p2/ 0.70448

Sylvester’s problem can be generalized to ask for the
probability that the CONVEX HULL of n�2 randomly
chosen points in the UNIT BALL Bn has n�1 vertices.
The solution is given by

Pn�
(n � 2)

n � 1
1
2(n � 1)

# $n�1

2n
(n � 1)2

1
2(n � 1)2

 ! (2)

(Kingman 1969, Groemer 1973, Peyerimhoff 1997),
which is the maximum possible for any bounded
convex domain K �Rn: The first few values are

P1�1

P2�
35

12p2

P3�
9

143

P4�
676039

648000p4

P5�
20000

12964479

(Sloane’s A051050 and A051051).

Another generalization asks the probability that n
randomly chosen points in a fixed bounded convex
domain KƒR2 are the vertices of a convex n -gon. The
solution is



Pn �
2n(3n � 3)!

[(n � 1)!]3(2n)! 
(3)

for a triangular domain, which has first few values 1,
1, 1, 2/3, 11/36, 91/900, 17/675, ... (Sloane’s A004677
and A004824), and

Pn �
1

n!

2n �2
n �1

# $" #2

(4)

for a parallelogram domain, which has first few
values 1, 1, 1, /25 =36/, /49=144/, /121=3600/, ... (Sloane’s
A004936 and A005017; Valtr 1996, Peyerimhoff
1997).

Sylvester’s four-point problem has an unexpected
connection with the RECTILINEAR CROSSING NUMBER

of graphs (Finch).

See also DISK TRIANGLE PICKING, HEXAGON TRIANGLE

PICKING, RECTILINEAR CROSSING NUMBER, SQUARE

TRIANGLE PICKING, TRIANGLE TRIANGLE PICKING
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Sylvester’s Inertia Law
The numbers of EIGENVALUES that are POSITIVE,
NEGATIVE, or 0 do not change under a congruence
transformation. Gradshteyn and Ryzhik (2000) state
it as follows: when a QUADRATIC FORM Q in n
variables is reduced by a nonsingular linear trans-
formation to the form

Q �y2
1 �y2

2 �. . .�y2
p �p2

p �1 �y2
p2
�. . .�y2

r :

the number p of POSITIVE SQUARES appearing in the
reduction is an invariant of the QUADRATIC FORM Q
and does not depend on the method of reduction.

See also EIGENVALUE, QUADRATIC FORM
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Sylvester’s Line Problem
It is not possible to arrange a finite number of points
so that a LINE through every two of them passes
through a third unless they are all on a single LINE.

See also COLLINEAR, SYLVESTER’S FOUR-POINT PRO-

BLEM

Sylvester’s Sequence
The sequence defined by e0�2 and the RECURRENCE

RELATION

en�1�
Yn�1

i�0

ei�e2
n�1�en�1�1: (1)

This sequence arises in Euclid’s proof that there are
an INFINITE number of PRIMES. The proof proceeds by



constructing a sequence of PRIMES using the RECUR-

RENCE RELATION

en�1 �e0e1 � � � en �1 (2)

(Vardi 1991). Amazingly, there is a constant

E :1:264084735306 (3)

such that

en � E2n�1 �1
2

j k
(4)

(Vardi 1991, Graham et al. 1994). The first few
numbers in Sylvester’s sequence are 2, 3, 7, 43,
1807, 3263443, 10650056950807, ... (Sloane’s
A000058). The en satisfy

X�
n�0

1

en

�1: (5)

In addition, if 0 Bx B1 is an IRRATIONAL NUMBER,
then the nth term of an infinite sum of unit fractions
used to represent x as computed using the GREEDY

ALGORITHM must be smaller than 1=en :/

The n of the first few PRIME en are 0, 1, 2, 3, 5, ...,
corresponding to 2, 3, 7, 43, 3263443, ... (Sloane’s
A014546). Vardi (1991) gives a lists of factors less
than 5 �107 of en for n 5200 and shows that en is
COMPOSITE for 6 5n 517 : Furthermore, all numbers
less than 2:5 �1015 in Sylvester’s sequence are
SQUAREFREE, and no SQUAREFUL numbers in this
sequence are known (Vardi 1991).

See also EUCLID’S THEOREMS, GREEDY ALGORITHM,
SQUAREFREE, SQUAREFUL
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Sylvester’s Signature
Diagonalize a form over the RATIONALS to

diag pa � A; pb � B ; . . .

 �

:

where all the entries are INTEGERS and A , B , ...are
RELATIVELY PRIME to p . Then Sylvester’s signature is
the sum of the �1-parts of the entries.

See also P -SIGNATURE

Sylvester’s Triangle Problem
The resultant of the vectors represented by the three
RADII from the center of a TRIANGLE’S CIRCUMCIRCLE

to its VERTICES is the segment extending from the
CIRCUMCENTER to the ORTHOCENTER.

See also CIRCUMCENTER, CIRCUMCIRCLE, ORTHOCEN-

TER, TRIANGLE
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Symbolic Calculus
UMBRAL CALCULUS

Symbolic Logic
The study of the meaning and relationships of
statements used to represent precise mathematical
ideas. Symbolic logic is also called FORMAL LOGIC.

See also FORMAL LOGIC, LOGIC, METAMATHEMATICS
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Symmedian

The lines AKA ; BKB ; and CKB which are ISOGONAL to
the MEDIANS AMA ; BMB ; and CMC of a TRIANGLE are
called the triangle’s symmedian. The symmedians are
concurrent in a point K called the SYMMEDIAN POINT

which is the ISOGONAL CONJUGATE of the CENTROID G .

See also CENTROID (TRIANGLE), ISOGONAL CONJU-

GATE, SYMMEDIAN POINT, MEDIAN (TRIANGLE)
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Lachlan, R. An Elementary Treatise on Modern Pure
Geometry. London: Macmillian, pp. 62�/3, 1893.
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Symmedian Point

The point of concurrence K of the SYMMEDIANS,
sometimes also called the LEMOINE POINT (in England
and France) or the GREBE POINT (in Germany).
Equivalently, the symmedian point is the ISOGONAL

CONJUGATE of the CENTROID G . In other words, let G
be the CENTROID of a TRIANGLE DABC; AMA; BMB; and
CMC the medians of DABC; ALA; BLB; and CLC the
ANGLE BISECTORS of ANGLES A , B , C , and AKA; BKB;

and CKC the reflections of AMA; BMB; and CMC about
ALA; BLB; and CLC: Then K is the point of concur-
rence of the lines AKA; BKB; and CKC: According to
Honsberger (1995, p. 53), the symmedian point is
"one of the crown jewels of modern geometry."
The TRILINEAR COORDINATES of the symmedian point
is

a : b : c (1)

(Honsberger 1995, p. 75), or

sin A : sin B : sin C: (2)

In AREAL COORDINATES (actual TRILINEAR COORDI-

NATES), the symmedian point is the point for which
a2�b2�g2 is a minimum (Honsberger 1995, pp. 75�/

6). A center X is the CENTROID of its own PEDAL

TRIANGLE IFF it is the symmedian point. The symme-
dian point is the perspectivity center of a TRIANGLE

and its TANGENTIAL TRIANGLE.

In the above diagram with K the symmedian point,

AK

KKA

�
b2 � c2

a2
(3)

(Honsberger 1995, p. 76).

The symmedian point lies on the BROCARD AXIS, and
its distances from K to the sides of the TRIANGLE are

KKi�
1
2 ai tan v; (4)

where v is the BROCARD ANGLE.

One BROCARD LINE, MEDIAN, and SYMMEDIAN (out of
the three of each) are CONCURRENT, with AV; CK , and
BG meeting at a point, where V is the first BROCARD

POINT and G is the CENTROID. Similarly, AV?; BG , and
CK , where V? is the second BROCARD POINT, meet at a
point which is the ISOGONAL CONJUGATE of the first
(Johnson 1929, pp. 268�/69).



The line joining the MIDPOINT of any side to the
midpoint of the ALTITUDE on that side passes through
K (left figure). In particular, the symmedian point of
a RIGHT TRIANGLE is the MIDPOINT of the ALTITUDE to
the HYPOTENUSE (right figure; Honsberger 1995,
p. 59). The symmedian point K is the STEINER POINT

of the first BROCARD TRIANGLE.

Given a triangle DABC; construct the triangle
DA?B ?C? obtained as the intersection of the lines
extended from each vertex though the symmedian
point K of DABC with the CIRCUMCIRCLE of DABC:
Then the symmedian point of DA?B ?C? is again K
(Honsberger 1995, p. 77).

The tangents to the CIRCUMCIRCLE of a triangle at two
of its vertices meet on the SYMMEDIAN from the third
vertex (Honsberger 1995, pp. 60 �/1). The GERGONNE

POINT of a triangle is the symmedian point of its
CONTACT TRIANGLE (Honsberger 1995, pp. 62 �/3). The
symmedian point of a triangle is the CENTROID of its
PEDAL TRIANGLE. And finally, the lengths of the sides
of the PEDAL TRIANGLE of the symmedian point are
proportional to the lengths of the MEDIANS of the
original triangle (Honsberger 1995, p. 77)

See also ANGLE BISECTOR, BROCARD ANGLE, BROCARD

AXIS, BROCARD DIAMETER, CENTROID (TRIANGLE),
COSYMMEDIAN TRIANGLES, GREBE POINT, ISOGONAL

CONJUGATE, LEMOINE CIRCLE, LEMOINE LINE, LINE

AT INFINITY, MITTENPUNKT, PEDAL TRIANGLE, STEI-

NER POINTS, SYMMEDIAN, TANGENTIAL TRIANGLE
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Symmetric
A mathematical object is said to be symmetric if it is
invariant ("looks the same") under a symmetry
transformation.

A function, matrix, etc., is symmetric if it remains
unchanged in SIGN when indices are reversed. For
example, Aij�ai�aj is symmetric since Aij�Aji:/

See also ANTISYMMETRIC, SYMMETRIC FUNCTION,
SYMMETRY

Symmetric Bilinear Form
A symmetric bilinear form on a VECTOR SPACE V is a
BILINEAR FUNCTION

Q : V�V 0 R (1)

which satisfies Q(v; w)�Q(w; v):/

For example, if A is a n�n SYMMETRIC MATRIX, then

Q(v; w)�vTAw��v; Aw� (2)

is a symmetric bilinear form. Consider

A�
1 2
2 �3

� �
; (3)

then

Q a1; a2ð Þ; b1; b2ð Þð Þ
�a1b1�2a1b2�2a2b1�3a2b2: (4)

Here is a Mathematica function which takes a matrix
to a bilinear form.

MatrixToForm[a_List?MatrixQ][v_, w_] :� v.a.w

For example,

q � MatrixToForm[{{0, 1}, {1, -2}}];

q[{1, 0}, {1, 7}]

yields 7.

A QUADRATIC FORM may also be labeled Q , because
quadratic forms are in a one-to-one correspondence
with symmetric bilinear forms. Note that Q(a)�
Q(a; a) is a QUADRATIC FORM. If Q(a) is a quadratic
form then it defines a symmetric bilinear form by

Q(a; b)�1
2[Q(a�b)�Q(a)�Q(b)]: (5)

The kernel, or radical, of a symmetric bilinear form is
the set of vectors

ker Q�fv : Q(v; w)�0 for all w �Vg: (6)

A quadratic form is called nondegenerate if its kernel
is zero. That is, if for all v �V; there is a w �V with
Q(v; w)"0: The rank of Q is the rank of the matrix
aij

� �
�Q ei; ej

� �
:/



The form Q is diagonalized if there is a basis vi ; called
an orthogonal basis, such that bij

� �
�Q vi ; vj

� �
is a

DIAGONAL MATRIX. Alternatively, there is a matrix C
such that

Q Cv; C wð Þ� Cvð ÞT
A Cwð Þ�vT CTAC

� �
w (7)

is a DIAGONAL QUADRATIC FORM. The jth column of
the matrix C is the vector vj :/

A nondegenerate symmetric bilinear form can be
DIAGONALIZED, using GRAM-SCHMIDT ORTHONORMALI-

ZATION to find the vi ; so that the diagonal matrix
CTAC has entries either 1 or �1. If there are p 1s and
q -1s, then Q is said to have SIGNATURE (p, q ), or if the
dimension is understood then just signature p . Real
nondegenerate symmetric bilinear forms are classi-
fied by their signature, in the sense that given two
vector spaces with forms of signature (p, q ), there is
an isomorphism of the vector spaces which takes one
form to the other.

A symmetric bilinear form with Q(v ; v) > 0 ; for all
nonzero v , is called POSITIVE DEFINITE. For example,
the usual inner product is positive definite. A positive
definite form has signature (n; 0): A negative definite
form is the negative of a positive form and has
signature (0; n) : If the form is neither positive
definite nor negative definite, then there must exist
vectors w "0 such that Q(w; w) �0; called isotropic
vectors.

A general symmetric bilinear form Q can be diag-
onalized with diagonal entries 1, �1, or 0, because
the form Q is always nondegenerate on the QUOTIENT

VECTOR SPACE V =ker Q : If V is a COMPLEX VECTOR

SPACE, then a symmetric bilinear form can be diag-
onalized to have entries 1 or 0. For other FIELDS,
there are more SYMMETRIC BILINEAR FORMS than in
the real or complex case. For instance, if the FIELD

has CHARACTERISTIC 2, then it is not possible to divide
by 2 since 2 �0. Hence there is no correspondence
between quadratic forms and symmetric bilinear
forms in characteristic 2.

See also DIAGONAL QUADRATIC FORM, FIELD, INDEX

(MATRIX), INNER PRODUCT, QUADRATIC FORM, SIGNA-

TURE, SYMMETRIC BILINEAR FORM (GENERAL FIELDS),
VECTOR SPACE
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Symmetric Bilinear Form (General Fields)
The symmetric bilinear forms on a VECTOR SPACE,
whose FIELD k is not real, have been classified for
some FIELDS. There are also theorems about sym-
metric bilinear forms on free Abelian groups, for
example Zn :/

A SYMMETRIC BILINEAR FORM Q corresponds to a
matrix A by giving a basis ei and setting aij �
Q ei ; ej

� �
: Two symmetric bilinear forms are consid-

ered equivalent if a change of basis takes one to the
other. Hence, A 	CACT ; where C is any invertible
matrix. Therefore, the rank of the symmetric bilinear
form is an invariant.

Also, det A can change by (det C)2det A: The coset of
det A in k �=k�2 is a WELL DEFINED invariant of Q ,
called the discriminant. For real forms, it is either 1
or �1. For Q; the discriminant can be any RATIONAL

NUMBER a=b where a and b are SQUAREFREE. A
symmetric bilinear form on a FINITE FIELD is deter-
mined by its rank and its discriminant.

A symmetric bilinear form on the P -ADIC NUMBERS Qp

is characterized by its rank, discriminant, and an-
other invariant e(Q) : Given a basis ei ; orthogonal for
Q , define ai �Q e1 ; e2ð Þ; then

e(Q) �
Y
iBj

ai ; aj

� �
where ai ; aj

� �
is the HILBERT SYMBOL.

Two symmetric bilinear forms are equivalent on the
RATIONALS iff they are equivalent in every Qp as well
as the reals (also called Q�:/) The data in Qp can be
thought of as "local" information, which can be
patched together to yield "global" information in Q:
So rational forms have a countable number of distinct
invariants, three for every PRIME NUMBER, and two
for the reals.

See also HILBERT SYMBOL, P -ADIC NUMBER, QUAD-

RATIC FORM, SYMMETRIC BILINEAR FORM, VECTOR

SPACE
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Symmetric Block Design
A symmetric design is a BLOCK DESIGN (v , k , l ; r , b )
with the same number of blocks as points, so b �v
(or, equivalently, r �k ). An example of a symmetric
block design is a PROJECTIVE PLANE.

See also BLOCK DESIGN, PROJECTIVE PLANE
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Symmetric Design
SYMMETRIC BLOCK DESIGN



Symmetric Difference
The set of elements belonging to one but not both of
two given sets. It is therefore the UNION of the
COMPLEMENT of A with respect to B and B with
respect to A , and corresponds to the XOR operation in
Boolean logic. The symmetric difference can be
implemented in Mathematica as

SymmetricDifference[a_, b_] : �
Union[Complement[a, b], Complement[b, a]]

The symmetric difference of sets A and B is variously
written as A �B ; A9B ; or A �B : The latter two
notations are deprecated since these symbols have
common meanings in other areas of mathematics.

For example, for A �f1 ; 2; 3; 4g and B �f1; 4; 5g;
A �B �f2; 3; 5g; since 2, 3, and 5 are each in one,
but not both, sets.

See also COMPLEMENT SET, DIFFERENCE, SET DIFFER-

ENCE, UNION, XOR

Symmetric Function
A symmetric function on n variables x1 ; ..., xn is a
function that is unchanged by any PERMUTATION of its
variables. In most contexts, the term "symmetric
function" refers to a polynomial on n variables with
this feature (more properly called a "SYMMETRIC

POLYNOMIAL"). Another type of symmetric functions
is symmetric rational functions, which are the RA-

TIONAL FUNCTIONS that are unchanged by PERMUTA-

TION of variables.

The SYMMETRIC POLYNOMIALS (respectively, sym-
metric rational functions) can be expressed as poly-
nomials (respectively, rational functions) in the
SYMMETRIC POLYNOMIALS. This is called the FUNDA-

MENTAL THEOREM OF SYMMETRIC FUNCTIONS.

A function f (x) is sometimes said to be symmetric
about the Y -AXIS if f (�x) �f (x): Examples of such
functions include ½x½ (the ABSOLUTE VALUE) and x2 (the
PARABOLA).

See also FUNDAMENTAL THEOREM OF SYMMETRIC

FUNCTIONS, RATIONAL FUNCTION, SYMMETRIC POLY-

NOMIAL
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Symmetric Group
The symmetric group Sn of degree n is the GROUP of
all PERMUTATIONS on n symbols. Sn is therefore of
ORDER n! and contains as SUBGROUPS every GROUP of
ORDER n . The number of CONJUGACY CLASSES of Sn is
given by the PARTITION FUNCTION P .

For example, let fabc g denote the permutation on
three elements which takes the a th element to
position 1, the bth element to position 2, and the
cth element to position 3. Then the following table
gives the MULTIPLICATION TABLE for Sn ; containing
3! �6 elements with f123g the IDENTITY ELEMENT.
The multiplication table can be generated using the
Mathematica function

SymmetricGroup[n_Integer?Positive] : � Module[

{p � Permutations[Range[n]], i, j},

Table[p[[i]][[p[[j]]]], {i, n!}, {j, n!}]

]

/S3/ (123) (132) (213) (231) (312) (321)

(123) (123) (132) (213) (231) (312) (321)

(132) (132) (123) (312) (321) (213) (231)

(213) (213) (231) (123) (132) (321) (312)

(231) (231) (213) (321) (312) (123) (132)

(312) (312) (321) (132) (123) (231) (213)

(321) (321) (312) (231) (213) (132) (123)

NETTO’S CONJECTURE states that the probability that
two elements P1 and P2 of a symmetric group
generate the entire group tends to 3u4 as n 0 �:
This was proven by Dixon (1969). The probability that
two elements generate Sn for n � 1, 2, ... are 1, 3u4,
1u2, 3u8, 19u40, 53u120, 103u168, ... (Sloane’s A040173
and A040174). Finding a general formula for terms in
the sequence is a famous UNSOLVED PROBLEM in
GROUP THEORY.

See also ALTERNATING GROUP, CONJUGACY CLASS,
ERDOS-TURÁ N THEOREM, FINITE GROUP, JORDAN’S

SYMMETRIC GROUP THEOREM, NETTO’S CONJECTURE,
PARTITION FUNCTION P , SIMPLE GROUP
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Symmetric Matrix
A symmetric matrix is a SQUARE MATRIX which
satisfies AT �A where AT denotes the TRANSPOSE, so
aij �aji : This also implies

A �1AT �I; (1)

where I is the IDENTITY MATRIX. For example,

A �
4 1
1 �2

� �
(2)

is a symmetric matrix. HERMITIAN MATRICES are a
useful generalization of symmetric matrices for COM-

PLEX MATRICES

A matrix m can be tested to see if it is symmetric
using the Mathematica function

SymmetricQ[m_List?MatrixQ] : � (m ���
Transpose[m])

Written explicitly, the elements of a symmetric
matrix A have the form

a11 a12 � � �  a1n

a21 a22 � � �  a2n

n n ::: n
an1 an2 � � �  ann

2
664

3
775 (3)

The symmetric part of any MATRIX may be obtained
from

As �
1
2 A �AT
� �

: (4)

A MATRIX A is symmetric if it can be expressed in the
form

A �QDQT ; (5)

where Q is an ORTHOGONAL MATRIX and D is a
DIAGONAL MATRIX. This is equivalent to the MATRIX

EQUATION

AQ �QD ; (6)

which is equivalent to

AQn � lnQn (7)

for all n , where ln �Dnn : Therefore, the diagonal
elements of D are the EIGENVALUES of A ; and the
columns of Q are the corresponding EIGENVECTORS.

The numbers of symmetric matrices of order n on s
symbols are s , s3 ; s6 ; s10 ; ..., sk(k �1)=2 : Therefore, for
(0,1)-MATRICES, the numbers of distinct symmetric
matrices of orders n �1, 2, ... are 2, 8, 64, 1024, ...
(Sloane’s A006125).

See also ADJOINT MATRIX, ANTISYMMETRIC MATRIX,
BISYMMETRIC MATRIX, HERMITIAN MATRIX, PERSYM-

METRIC MATRIX, SKEW SYMMETRIC MATRIX
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Symmetric Points
Two points z and zS �C are symmetric with respect to
a CIRCLE or straight LINE L if all CIRCLES and straight
LINES passing through z and zS are orthogonal to L .
MÖ BIUS TRANSFORMATIONS preserve symmetry. Let a
straight line be given by a point z0 and a unit VECTOR

eiu; then

zS�e2iuz�z0�z0;

where z̄ is the COMPLEX CONJUGATE. Let a CIRCLE be
given by center z0 and RADIUS r , then

zS�z0�
r2

z � z0

:

See also MÖ BIUS TRANSFORMATION

Symmetric Polynomial
A symmetric polynomial on n variables x1; ..., xn is a
function that is unchanged by any PERMUTATION of its
variables. Symmetric polynomials are always HOMO-

GENEOUS POLYNOMIALS. The n elementary symmetric
functions Pn (sometimes denoted sn) on n variables
x1; . . . ; xnf g are defined by

P1�
X

15i5n

xi (1)

P2�
X

15iBj5n

xixj (2)

P3�
X

15iBjBk5n

xixjxk (3)

P4�
X

15iBjBkBl5n

xixjxkxl (4)

n

Pn�
X

15i5n

xi: (5)

The kth symmetric polynomial is defined as Symme-
tricPolynomial[{x1 , ..., xn }, k ] in the Mathematica
add-on package Algebra‘SymmetricPolyno-



mials‘ (which can be loaded with the command
BBAlgebra‘). SymmetricReduction[f , {x1 , ...,
xn }] in the Mathematica add-on package Algebra‘-
SymmetricPolynomials‘ (which can be loaded
with the command BBAlgebra‘) gives a pair of
polynomials fp; qg in x1 ; ..., xn where p is the
symmetric part and q is the remainder.

Alternatively, Pj x1 ; . . . ; xnð Þ can be defined as the
coefficient of xn �j in the GENERATING FUNCTIONY

1 5i5n

x �xið Þ: (6)

For example, on four variables x1 ; ..., x4 ; the elemen-
tary symmetric functions are

P1 �x1 �x2 �x3 �x4 (7)

P2 �x1x2 �x1x3 �x1x4 �x2x3 �x2x4 �x3x4 (8)

P3 �x1x2x3 �x1x2x4 �x1x3x4 �x2x3x4 (9)

P4 �x1x2x3x4 : (10)

Define sk h1 ; . . . ; hnð Þ as the coefficients of the GEN-

ERATING FUNCTION

ln 1 �x1t �x2t2 �x3t3 �. . .
� �

�
X�
k �1

s1

k
tk

�h1t �1
2 �h2

1 �2h2

� �
t2 �1

3 h3
1 �3h1h2 �3h3

� �
t3 �. . .

ð11Þ

so the first few values are

s1 �h1 (12)

s2 ��h2
1 �2h2 (13)

s3 �h3
1 �3h1h2 �3h3 (14)

s4 ��h4
1 �4h2

1h2 �2h2
2 �4h2h3 �4h4 : (15)

In general, sn can be computed from the DETERMI-

NANT

sn �(�1)n �1

h1 1 0 0 � � �  0
2h2 h1 1 0

::: 0
3h3 h2 h1 1

::: 0
4h4 h3 h2 h1

::: 0
n n n n ::: 1

nhn hn�1 hn �2 hn�3 � � �  h1

������������

������������
(16)

(Littlewood 1958, Cadogan 1971). Then the elemen-
tary symmetric functions satisfy the relationship

Xn

k�1

xp
k �(�1)p �1sp P1 ; . . . ; Pnð Þ: (17)

In particular,

Xn

k�1

xk �P1 (18)

Xn

k �1

x2
k �P2

1 �2P2 (19)

Xn

k �1

x3
k �P3

1 �P1 P2 �3 P3 (20)

Xn

k�1

x4
k �P4

1 �4P2
1 P2 �2P2

2 �4P1 P3 �4P4 (21)

(Schroeppel 1972), as can be verified by plugging in
and multiplying through.

See also FUNDAMENTAL THEOREM OF SYMMETRIC

FUNCTIONS, NEWTON-GIRARD FORMULAS, NEWTON’S

RELATIONS, SYMMETRIC FUNCTION
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Symmetric Quadratic Form

See also QUADRATIC FORM

Symmetric Relation
A RELATION R on a SET S is symmetric provided that
for every x and y in S we have xRy IFF yRx:/

See also RELATION

Symmetric Tensor
A second-RANK symmetric TENSOR is defined as a
TENSOR A for which

Amn�Anm: (1)

Any TENSOR can be written as a sum of symmetric
and ANTISYMMETRIC parts

Amn�1
2 Amn�Anmð Þ�1

2 Amn�Anmð Þ

�1
2 Bmn

S �Bmn
Að Þ: (2)

The symmetric part of a TENSOR is denoted using
parentheses as

T(a; b)�
1
2 Tab�Tbað Þ (3)

T a1 ; a2 ; ...; anð Þ�
1

n!

X
permutations

Ta1a2 ���an
: (4)



Symbols for the symmetric and antisymmetric parts
of tensors can be combined, for example

T ðabÞc
½de ¼ 1

4ðT
abc 

de þ Tbac 
de �Tabc 

ed �Tbac 
ed Þ: ð5Þ

(Wald 1984, p. 26).

The product of a symmetric and an ANTISYMMETRIC

TENSOR is 0. This can be seen as follows. Let a ab be
ANTISYMMETRIC, so

a11 �a22 �0 (6)

a21 ��a12 : (7)

Let bab be symmetric, so

b12 �b21 : (8)

Then

a abbab �a11b11 �a12b12 �a21b21 �a22b22

�0 �a12b12 �a12b12 �0 �0: (9)

A symmetric second-RANK TENSOR Amn has SCALAR

invariants

s1 �A11 �A22 �A22 (10)

s2 �A22A33 �A33A11 �A11A22 �A2
23 �A2

31 �A2
12 : (11)
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Symmetric Top Differential Equation

The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�
M2 � 1

4 � K2 � 2MK cos x

sin
2 

x 
� s �K2 �1

4

� �" #
y �0:
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Symmetroid
A QUARTIC SURFACE which is the locus of zeros of the
DETERMINANT of a SYMMETRIC 4 �4 matrix of linear
forms. A general symmetroid has 10 ORDINARY

DOUBLE POINTS (Jessop 1916, Hunt 1996).
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Symmetry
An intrinsic property of a mathematical object which
causes it to remain invariant under certain classes of
transformations (such as ROTATION, REFLECTION,
INVERSION, or more abstract operations). The mathe-
matical study of symmetry is systematized and
formalized in the extremely powerful and beautiful
area of mathematics called GROUP THEORY.

Symmetry can be present in the form of coefficients of
equations as well as in the physical arrangement of
objects. By classifying the symmetry of polynomial
equations using the machinery of GROUP THEORY, for
example, it is possible to prove the unsolvability of
the general QUINTIC EQUATION.

In physics, the extremely powerful NOETHER’S SYM-

METRY THEOREM states that each symmetry of a
system leads to a physically conserved quantity.
Symmetry under TRANSLATION corresponds to mo-
mentum conservation, symmetry under ROTATION to
angular momentum conservation, symmetry in time
to energy conservation, etc.

See also CRYSTALLOGRAPHY RESTRICTION, GROUP

THEORY, NOETHER’S SYMMETRY THEOREM
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Symmetry Group
GROUP

Symmetry Operation
Symmetry operations include the IMPROPER ROTA-

TION, INVERSION OPERATION, MIRROR PLANE, and



ROTATION. Together, these operations create 32 crys-
tal classes corresponding to the 32 POINT GROUPS.

The INVERSION OPERATION takes

(x; y; z) 0 (�x; �y ; �z)

and is denoted i . When used in conjunction with a
ROTATION, it becomes an IMPROPER ROTATION. An
IMPROPER ROTATION by 360�=n is denoted n̄ (or Sn):
For periodic crystals, the CRYSTALLOGRAPHY RESTRIC-

TION allows only the IMPROPER ROTATIONS 1̄; 2̄; 3̄; 4̄;
and 6̄:/

The MIRROR PLANE symmetry operation takes

(x; y; z) 0 (x; y; �z); (x; �y; z) 0 (x; �y; z);

etc., which is equivalent to 2̄: Invariance under
reflection can be denoted nsv or n sh : The ROTATION

symmetry operation for 360�=n is denoted n (or Cn):
For periodic crystals, CRYSTALLOGRAPHY RESTRICTION

allows only 1, 2, 3, 4, and 6.

Symmetry operations can be indicated with symbols
such as Cn ; Sn ; E , i , nsv ; and nsh :

1. Cn indicates ROTATION about an n -fold symme-
try axis.
2. Sn indicates IMPROPER ROTATION about an n -fold
symmetry axis.
3. E (or I ) indicates invariance under TRANSLA-

TION.
4. i indicates a center of symmetry under INVER-

SION.
5. nsv indicates invariance under n vertical RE-

FLECTIONS.
6. nsh indicates invariance under n horizontal
REFLECTIONS.

See also CRYSTALLOGRAPHY RESTRICTION, GLIDE,
IMPROPER ROTATION, INVERSION OPERATION, MIRROR

PLANE, POINT GROUPS, ROTATION, SYMMETRY
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Symmetry Principle
SYMMETRIC POINTS are preserved under a MÖ BIUS

TRANSFORMATION. The SCHWARZ REFLECTION PRINCI-

PLE is sometimes called the symmetry principle
(Needham 2000, p. 252).

See also MÖ BIUS TRANSFORMATION, SYMMETRIC

POINTS
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Symplectic Diffeomorphism
A MAP (M1 ; v1) 0 (M2 ; v2) between the SYMPLECTIC

MANIFOLDS (M1 ; v1) and (M2 ; v2) which is a DIFFEO-

MORPHISM and T �( v2) �( v1) ; where T � is the PULL-

BACK MAP induced by T (i.e., the derivative of the
DIFFEOMORPHISM T acting on tangent vectors). A
symplectic diffeomorphism is also known as a SYM-

PLECTOMORPHISM or CANONICAL TRANSFORMATION.

See also DIFFEOMORPHISM, PULLBACK MAP, SYMPLEC-

TIC MANIFOLD
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Symplectic Form
A symplectic form on a SMOOTH MANIFOLD M is a
smooth closed 2-FORM v on M which is nondegenerate
such that at every point m , the alternating bilinear
form vm on the TANGENT SPACE TmM is nondegene-
rate.

A symplectic form on a VECTOR SPACE V over Fq is a
function f (x; y) (defined for all x; y � V and taking
values in Fq) which satisfies

f ( l1x1 � l2x2 ; y) � l1f (x1 ; y) � l2f (x2 ; y) ;

f (y; x) ��f (x; y) ;

and

f (x; x) �0:

f is called non-degenerate if f (x; y) �0 for all y
implies that x �0. Symplectic forms can exist on M
(or V ) only if M (or V ) is EVEN-dimensional. An
example of a symplectic form over a vector space is
the complex HILBERT SPACE with INNER PRODUCT � � �h i
given by

f (x; y)�I x; yh i:

See also SYMPLECTIC SPACE, VECTOR SPACE

Symplectic Geometry
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Symplectic Group
For every even DIMENSION 2n; the symplectic group
Sp(2n) is the GROUP of 2n�2n MATRICES which
preserve a nondegenerate skew symmetric BILINEAR

FORM v; i.e., a SYMPLECTIC FORM.



Every symplectic form can be put into a canonical
form by finding a SYMPLECTIC BASIS. So, up to
conjugation, there is only one symplectic group, in
contrast to the ORTHOGONAL GROUP which preserves a
nondegenerate SYMMETRIC BILINEAR FORM. As with
the ORTHOGONAL GROUP, the columns of a symplectic
matrix form a SYMPLECTIC BASIS.

Since vn is a VOLUME FORM, the symplectic group
preserves volume and ORIENTATION. Hence, Sp(2n) ƒ
SL(2n) : In fact, Sp(2) is just the group of matrices
with DETERMINANT 1. The three symplectic (0,1)-
MATRICES are therefore

1 0
0 1

� �
;

1 0
1 1

� �
;

1 1
0 1

� �
: (1)

The matrices

1 0 0 s
0 1 s 0
0 0 1 0
0 0 0 1

2
664

3
775 (2)

and

cosh t sinh t 0 sinh t
sinh t cosh t sinh t 0

0 0 cosh t �sinh t
0 0 �sinh t cosh t

2
664

3
775 (3)

are in Sp(4) ; where

v �e1 ffle3 �e2 ffle4 : (4)

In fact, both of these examples are 1-parameter
subgroups.

Here is a Mathematica function that tests whether a
matrix is a symplectic matrix.

SymplecticForm[n_Integer]: �
Join[PadLeft[IdentityMatrix[n],{n,2n}],

PadRight[-IdentityMatrix[n],{n,2n}]]

SymplecticQ[a_List]: � EvenQ[Length[a]] &&

Transpose[a].SymplecticForm[Length[a]/2].a

��  SymplecticForm[Length[a]/2]

Thinking of a matrix as given by (2n)2 coordinate
functions, the set of matrices is identified with R(2n)2 

:
The symplectic matrices are the solutions to the (2n)2

equations

AT JA �J ; (5)

where J is defined by

v(x; y) � x ; Jyh i: (6)

Note that these equations are redundant, since only
2n2 �n of these are independent, leaving 2n2 �n
"free" variables. In fact, the symplectic group is a
smooth 2n2 �nð Þ/-dimensional SUBMANIFOLD of R2n :/

Because the symplectic group is a GROUP and a
MANIFOLD, it is a LIE GROUP. Its TANGENT SPACE at
the identity is the SYMPLECTIC LIE ALGEBRA sp(2n):
The symplectic group is not COMPACT.

Instead of using real numbers for the coefficients, it is
possible to use coefficients from any FIELD F: The
symplectic group Spn(q) for n EVEN is the GROUP of
elements of the GENERAL LINEAR GROUP GLn that
preserve a given nonsingular SYMPLECTIC FORM. Any
such MATRIX has DETERMINANT 1.

See also DETERMINANT, FIELD, GENERAL LINEAR

GROUP, GROUP, LIE ALGEBRA, LIE GROUP, LIE-TYPE

GROUP, LINEAR ALGEBRAIC GROUP, PROJECTIVE SYM-

PLECTIC GROUP, QUADRATIC FORM, SIEGEL’S UPPER

HALF-SPACE, SUBMANIFOLD, SYMPLECTIC BASIS, SYM-

PLECTIC FORM, UNITARY GROUP, VECTOR SPACE
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Symplectic Manifold
A pair (M ; v) ; where M is a MANIFOLD and v is a
SYMPLECTIC FORM on M . The PHASE SPACE R2n �
Rn �Rn is a symplectic manifold. Near every point on
a symplectic manifold, it is possible to find a set of
local "Darboux coordinates" in which the SYMPLECTIC

FORM has the simple form

v�
X

k

dqkffl dpk

(Sjamaar 1996), where dqkffl dpk is a WEDGE PRO-

DUCT.

See also MANIFOLD, SYMPLECTIC DIFFEOMORPHISM,
SYMPLECTIC FORM
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Symplectic Map
Informally, a symplectic map is a MAP which pre-
serves the sum of AREAS projected onto the set of
p2; q2ð Þ planes. It is the generalization of an AREA-

PRESERVING MAP.

Formally, a symplectic map is a real-linear map T
that preserves a SYMPLECTIC FORM f , i.e., for which

f (Tx; Ty)�f (x; y)

for all x , y . Every symplectic map T on a complex
HILBERT SPACE H may be written as U(cosh S�



J sinh S) ; where U is unitary, S is positive, and J is
an anti-linear involution (i.e., complex conjugation).

See also AREA-PRESERVING MAP, LIOUVILLE’S PHASE

SPACE THEOREM

Symplectic Space
A real-linear VECTOR SPACE H equipped with a
SYMPLECTIC FORM s .

Symplectomorphism
SYMPLECTIC DIFFEOMORPHISM

Synclastic
A surface on which the GAUSSIAN CURVATURE K is
everywhere POSITIVE. When K is everywhere NEGA-

TIVE, a surface is called ANTICLASTIC. A point at which
the GAUSSIAN CURVATURE is POSITIVE is called an
ELLIPTIC POINT.

See also ANTICLASTIC, ELLIPTIC POINT, GAUSSIAN

QUADRATURE, HYPERBOLIC POINT, PARABOLIC POINT,
PLANAR POINT

Synergetics
Synergetics deals with systems composed of many
subsystems which may each be of a very different
nature. In particular, synergetics treats systems in
which cooperation among subsystems creates orga-
nized structure on macroscopic scales (Haken 1993).
Examples of problems treated by synergetics include
BIFURCATIONS, phase transitions in physics, convec-
tive instabilities, coherent oscillations in lasers, non-
linear oscillations in electrical circuits, population
dynamics, etc.

See also BIFURCATION, CHAOS, DYNAMICAL SYSTEM
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Syntonic Comma
COMMA OF DIDYMUS

Syracuse Algorithm
COLLATZ PROBLEM

Syracuse Problem
COLLATZ PROBLEM

System of Differential Equations
ORDINARY DIFFERENTIAL EQUATION

System of Equations
A linear system of equations may be denoted

AX �Y (1)

where A is a MATRIX and X and Y are VECTORS. As
shown by CRAMER’S RULE, there is a unique solution if
A has a MATRIX INVERSE A �1 : In this case,

X �A �1Y (2)

If Y �0 ; then the solution is X �0 : If A has no MATRIX

INVERSE, then the solution SUBSPACE is either a LINE

or the EMPTY SET. If two equations are multiples of
each other, solutions are OF THE FORM

X �A �tB (3)

for t a REAL NUMBER.

See also CRAMER’S RULE, DETERMINANT, MATRIX

INVERSE

Syzygies Problem
The problem of finding all independent irreducible
algebraic relations among any finite set of QUANTICS.

See also QUANTIC

Syzygy
A technical mathematical object defined in terms of a
POLYNOMIAL RING of n variables over a FIELD k .
Syzygies occur in TENSORS at rank 5, 7, 8, and all
higher ranks, and play a role in restricting the
number of independent ISOTROPIC TENSORS. An ex-
ample of a rank-5 syzygy is

eijk dlm � ejkl dim � ekli djm � elij dkm �0 ;

where eijk is the PERMUTATION TENSOR and dij is the
KRONECKER DELTA.

See also FUNDAMENTAL SYSTEM, HILBERT BASIS

THEOREM, ISOTROPIC TENSOR, KRONECKER DELTA,
SYZYGIES PROBLEM, TENSOR
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Székely Identity

X�
k���

A �B �C �D �E �k
E �k

# $
A �D
k �D

# $
B �C
k �C

# $

�
A �C �D �E

A �C

# $
B �C �D �E

C �E

# $
:

See also BINOMIAL SUMS
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Szemerédi’s Regularity Lemma
A fundamental structural result in EXTREMAL GRAPH

THEORY due to Szemerédi (1978). The regularity
lemma essentially says that every graph can be
well-approximated by the union of a constant number
of random-like BIPARTITE GRAPHS, called regular
pairs.

See also BLOW-UP LEMMA, EXTREMAL GRAPH THEORY,
SEYMOUR CONJECTURE, SZEMERÉ DI’S THEOREM
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Szemerédi’s Theorem
This entry contributed by KEVIN O’BRYANT

Every sequence of integers with positive density
contains arbitrarily long ARITHMETIC SEQUENCES.

A corollary states that, for any positive integer k and
positive real number d ; there exists a threshold
number n(k ; d) such that for n ]n(k; r) every subset

of f1 ; 2 ; . . . ; ng with CARDINALITY larger than dn
contains a k -term ARITHMETIC SEQUENCE. VAN DER

WAERDEN’S THEOREM follows immediately by setting
d �n=r : The best bounds for VAN DER WAERDEN

NUMBERS are derived from bounds for n(k; r) in
Szemerédi’s Theorem.

Szemerédi’s theorem was conjectured by Erdos and
Turán (1936). Roth (1953) proved the case k �3, and
was mentioned in his FIELDS MEDAL citation. Sze-
merédi (1969) proved the case k �4, and the general
theorem in 1975 as a consequence of SZEMERÉ DI’S

REGULARITY LEMMA (Szemerédi 1975a), for which he
collected a $1000 prize from Erdos. Fürstenberg and
Katznelson (1979) proved Szemerédi’s theorem using
ERGODIC THEORY. Gowers (1998ab) subsequently gave
a new proof, with a better bound on n(k ; r) ; for the
case k � 4 (mentioned in his FIELDS MEDAL citation;
Lepowsky et al. 1999).

Erdos offered a $3,000 prize for a proof of the
proposition that "If the sum of reciprocals of a set of
integers diverges, then that set contains arbitrarily
long arithmetic progressions." This conjecture is still
open (unsolved), even for 3-term arithmetic progres-
sions. Erdos also offered $10,000 for an asymptotic
formula for r3(n); the largest possible cardinality of a
subset of f1; 2; . . . ; ng that does not contain a 3-term
arithmetic progression.

See also ARITHMETIC SEQUENCE, SZEMERÉ DI’S REG-

ULARITY LEMMA, VAN DER WAERDEN NUMBER, VAN

DER WAERDEN’S THEOREM
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In Proceedings of the International Congress of Mathema-
ticians, Vol. I (Berlin, 1998). Doc. Math. , Extra Vol. I,
617�/29, 1998a.

Gowers, W. T. "A New Proof of Szemerédi’s Theorem for
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Szilassi Polyhedron

A HEPTAHEDRON which is topologically equivalent to a
TORUS and for which every pair of faces has an EDGE

in common. The Szilassi polyhedron has 14 VERTICES,
seven faces, and 21 EDGES, and is the DUAL POLYHE-

DRON of the CSÁ SZÁ R POLYHEDRON. This polyhedron
was discovered by L. Szilassi in 1977. In the above
illustration of the net, sides indicated by letters are

connected with the corresponding side indicated by
the same letter but with a different number of primes.
Like the TETRAHEDRON, each face of the Szilassi
polyhedron touches all other faces.

The SKELETON of the Szilassi polyhedron is equiva-
lent to the HEAWOOD GRAPH, shown above.

See also CSÁ SZÁ R POLYHEDRON, HEAWOOD GRAPH,
TOROIDAL POLYHEDRON
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Szpiro’s Conjecture
A conjecture which relates the minimal DISCRIMINANT

of an ELLIPTIC CURVE to the CONDUCTOR. If true, it
would imply FERMAT’S LAST THEOREM for sufficiently
large exponents.

See also CONDUCTOR, DISCRIMINANT (ELLIPTIC

CURVE), ELLIPTIC CURVE
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T

T2-Separation Axiom
Given any two distinct points x, y , there exist
neighborhoods u and v of x and y , respectively,
with u S v �¥: It then follows that finite SUBSETS

are CLOSED.

See also CLOSURE (SET)

Tableau
YOUNG TABLEAU

Tableau Class
When a YOUNG TABLEAU is constructed using the so-
called insertion algorithm, an element starts in some
position on the first row, from which it may later
be bumped. In contrast, the elements that start
out in the ith column are said to belong to the
ith class (Skiena 1990, p. 73). Tableau classes
may be computed using TableauClasses[p ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

See also BUMPING ALGORITHM, YOUNG TABLEAU
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Tabu Search
A heuristic procedure which has proven efficient at
solving COMBINATORIAL optimization problems.
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Tacnode

A DOUBLE POINT at which two OSCULATING CURVES

are TANGENT. The above plot shows the tacnode of the

curve 2x4 �3x2y �y2 �2y3 �y4 �0: The LINKS CURVE

also has a tacnode at the origin.

See also ACNODE, CRUNODE, DOUBLE POINT, OSCU-

LATING CURVES, SPINODE
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Tacpoint
A tangent point of two similar curves.

Tactix
NIM

Tail Probability
Define T as the set of all points t with probabilities
P(x) such that a > t [P(a 5x 5a �da) BP0 or a Bt [
P(a 5x 5a �da) BP0 ; where P0 is a POINT PROBABIL-

ITY (often, the likelihood of an observed event). Then
the associated tail probability is given by f

T
P(x) dx:/

See also P -VALUE, POINT PROBABILITY

Tait Coloring
A 3-coloring of GRAPH EDGES so that no two EDGES of
the same color meet at a VERTEX (Ball and Coxeter
1987, pp. 265 �/266).

See also EDGE (GRAPH), TAIT CYCLE, VERTEX (GRAPH)
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Tait Cycle
A set of circuits going along the EDGES of a GRAPH,
each with an EVEN number of EDGES, such that just
one of the circuits passes through each VERTEX (Ball
and Coxeter 1987, pp. 265�/266).

See also EDGE (GRAPH), EULERIAN CYCLE, HAMILTO-

NIAN CYCLE, TAIT COLORING, VERTEX (GRAPH)
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Tait Flyping Conjecture
FLYPING CONJECTURE



Tait’s Hamiltonian Graph Conjecture

Every 3-connected CUBIC GRAPH has a HAMILTONIAN

CIRCUIT. Proposed by Tait in 1880 and refuted by
Tutte (1946) with the counterexample now known as
TUTTE’S GRAPH. Had the conjecture been true, it
would have implied the FOUR-COLOR THEOREM. A
simpler counterexample was later given by Kozyrev
and Grinberg.

See also CONNECTED GRAPH, CUBIC GRAPH, FOUR-

COLOR THEOREM, HAMILTONIAN CIRCUIT, HAMILTO-

NIAN GRAPH, TUTTE CONJECTURE, TUTTE’S GRAPH,
VERTEX (GRAPH)
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Tait’s Knot Conjectures
P. G. Tait undertook a study of KNOTS in response to
Kelvin’s conjecture that the atoms were composed of
knotted vortex tubes of ether (Thomson 1869). He
categorized KNOTS in terms of the number of crossings
in a plane projection. He also made some conjectures
which remained unproven until the discovery of
JONES POLYNOMIALS:

1. Reduced alternating diagrams have minimal
CROSSING NUMBER,
2. Any two reduced alternating diagrams of a given
knot have equal WRITHE,
3. The FLYPING CONJECTURE, which states that the
number of crossings is the same for any diagram of
an ALTERNATING KNOT.

Conjectures (1) and (2) were proved by Kauffman
(1987), Murasugi (1987ab), and Thistlethwaite (1987,
1988) using properties of the JONES POLYNOMIAL or

KAUFFMAN POLYNOMIAL F (Hoste et al. 1998). Con-
jecture (3) was proved true by Menasco and Thistle-
thwaite (1991, 1993) using properties of the JONES

POLYNOMIAL (Hoste et al. 1998).

See also ALTERNATING KNOT, CROSSING NUMBER

(LINK), FLYPING CONJECTURE, JONES POLYNOMIAL,
KNOT, WRITHE
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TAK Function
A RECURSIVE FUNCTION devised by I. Takeuchi. For
INTEGERS x , y , and z , and a function h , it is

TAKh(x; y; z)

The number of function calls F0(a; b) required to
compute TAK0(a; b; 0) for a > b > 0 is

F0(a; b)�4
Xb

k�0

a � b

a � b � 2k

a�b�2k
b�k

� �
�3

�1�4
Xb�1

k�0

a � b

a � b � 2k

a�b�2k
b�k

� �

(Vardi 1991).

The TAK function is also connected with the BALLOT

PROBLEM (Vardi 1991).

See also ACKERMANN FUNCTION, BALLOT PROBLEM
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Takagi Fractal Curve
BLANCMANGE FUNCTION

Take-Away Game
NIM-HEAP

Takens-Bogdanov Bifurcation
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Takeuchi Function
TAK FUNCTION

Talbot’s Curve

A curve investigated by Talbot which is the NEGATIVE

PEDAL CURVE of an ELLIPSE with respect to its center.
It has four CUSPS and two NODES, provided the
ECCENTRICITY of the ELLIPSE is greater than 1=

ffiffiffi
2

p
:

Its CARTESIAN EQUATION is

x �
a2 � f 2 sin2 t
� �

cos t

a

y �
a2 � 2f 2 � f 2 sin2 t
� �

sin t

b 
;

where f is a constant.
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Lockwood, E. H. A Book of Curves. Cambridge, England:

Cambridge University Press, p. 157, 1967.
MacTutor History of Mathematics Archive. "Talbot’s Curve."

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Tal-
bots.html.

Talisman Hexagon

An (n, k )-talisman hexagon is an arrangement of
nested hexagons containing the integers 1, 2, ..., Hn �
3n(n �1) �1; where Hn is the nth HEX NUMBER, such
that the difference between all adjacent hexagons is
at least as large as a number k . The hexagon
illustrated above is a (3, 4)-talisman hexagon.

See also HEX NUMBER, MAGIC SQUARE, TALISMAN

SQUARE

References
Madachy, J. S. Madachy’s Mathematical Recreations. New

York: Dover, pp. 111�/112, 1979.

Talisman Square

An n�n ARRAY of the integers from 1 to n2 such that
the difference between any one integer and its
neighbor (horizontally, vertically, or diagonally, with-
out wrapping around) is greater than or equal to some
value k is called a (n, k )-talisman square. The above



illustrations show (4, 2)-, (4, 3)-, (5, 4)-, and (6, 8)-
talisman squares.

See also ANTIMAGIC SQUARE, HETEROSQUARE, MAGIC

SQUARE, TALISMAN HEXAGON

References
Madachy, J. S. Madachy’s Mathematical Recreations. New

York: Dover, pp. 110�/113, 1979.
Weisstein, E. W. "Magic Squares." MATHEMATICA NOTEBOOK

MAGICSQUARES.M.

Tame Algebra
Let A denote an R/-algebra, so that A is a VECTOR

SPACE over R and

A�A 0 A

(x; y) � x � y;

where x � y is VECTOR MULTIPLICATION which is
assumed to be BILINEAR. Now define

Z�fx � a : x � y�0 for some nonzero y �Ag;

where 0 �Z: A is said to be tame if Z is a finite union
of SUBSPACES of A . A 2-D 0-ASSOCIATIVE algebra is
tame, but a 4-D 4-ASSOCIATIVE algebra and a 3-D 1-
ASSOCIATIVE algebra need not be tame. It is conjec-
tured that a 3-D 2-ASSOCIATIVE algebra is tame, and
proven that a 3-D 3-ASSOCIATIVE algebra is tame if it
possesses a multiplicative IDENTITY ELEMENT.

References
Finch, S. "Zero Structures in Real Algebras." http://

www.mathsoft.com/asolve/zerodiv/zerodiv.html.

Tame Knot
A KNOT equivalent to a POLYGONAL KNOT. Knots
which are not tame are called WILD KNOTS.

References
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or

Perish Press, p. 49, 1976.

Tan
TANGENT

Tangency Theorem
The external (internal) SIMILARITY POINT of two fixed
CIRCLES is the point at which all the CIRCLES homo-
geneously (nonhomogeneously) tangent to the fixed
CIRCLES have the same POWER and at which all the
tangency secants intersect.

References
Dörrie, H. 100 Great Problems of Elementary Mathematics:

Their History and Solutions. New York: Dover, p. 157,
1965.

Tangent

The tangent function is defined by

tan x�
sin x

cos x
; (1)

where sin x is the SINE function and cos x is the
COSINE function. The notation tg x is sometimes also
used (Gradshteyn and Ryzhik 2000, p. xxix).
The word "tangent" also has an important related
meaning as a LINE or PLANE which touches a given
curve or solid at a single point. These geometrical
objects are then called a TANGENT LINE or TANGENT

PLANE, respectively.

The definition of the tangent function can be ex-
tended to complex arguments z using the definition

tan z�
eiz � e�iz

i(eiz � e�iz)
; (2)

where E is the base of the NATURAL LOGARITHM and I

is the IMAGINARY NUMBER. A related function known
as the HYPERBOLIC TANGENT is similarly defined,

tanh z�
ez � e�z

ez � e�z
: (3)

Important tangent identities include

tan2 u�1�sec2 u (4)

tan(a�b)�
tan a� tan b

1 � tan a tan b
(5)

tan(a�b)�
tan a� tan b

1 � tan a tan b
(6)



tan(2a) �
2 tan a

1 � tan2 a 
: (7)

tan(na) �
tan[(n � 1)a] � tan a

1 � tan[(n � 1)a] tan a
(8)

tan
a

2

 !
�

sin a

1 � cos a 
(9)

�
1 � cos a

sin a 
(10)

�
1 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � tan2 a

p
tan a 

(11)

�
tan a sin a

tan a � sin a 
(12)

in addition to the beautiful identity

tan(a � b � g)

�
tan a � tan b � tan g � tan a tan b tan g

1 � tan b tan g � tan g tan a � tan a tan b 
:

(13)

There are a number of simple but interesting tangent
identities based on those given above, including

tan(A �60 �) tan(A �60�) �tan A tan(A �60�)

�tan A tan(A �60 �) ��3 (14)

(Borchardt and Perrott 1930).

The MACLAURIN SERIES valid for �p=2 Bx B p=2 for
the tangent function is

tan x �
X�
n�0

(�1)n �122n(22n � 1)B2n

(2n)! 
x2n�1 �. . .

�x �1
3 x

3 � 2
15 x

5 � 17
315 x

7 � 62
2835 x

9 �. . .  ; (15)

where Bn is a BERNOULLI NUMBER.

/tan x is IRRATIONAL for any RATIONAL x "0; which can
be proved by writing tan x as a CONTINUED FRACTION

tan x �
x

1 �
x2

3 �
x2

5 �
x2

7 � . . .

: (16)

Lambert derived another CONTINUED FRACTION ex-
pression for the tangent,

tan x �
1

1

x
�

1

3

x
�

1

5

x
�

1

7

x
� . . .

: (17)

An interesting identity involving the PRODUCT of
tangents is

Y�(n�1)=2 �

k �1

tan
kp

n

 !
�

ffiffiffi
n

p
for n odd

1 for n even ;

�
(18)

where xb c is the FLOOR FUNCTION. Another tangent
identity is

tan(n tan�1 x) �
1

i

(1 � ix)n � (1 � ix)n

(1 � ix)n � (1 � ix)m (19)

(Beeler et al. 1972).

The equation

x�tan x (20)

does not have simple closed-form solutions, but the
first few approximate numerical solutions are 0,
4.49341, 7.72525, 10.9041, 14.0662, .... The difference
between consecutive solutions gets closer and closer
to p for higher order solutions.

See also ALTERNATING PERMUTATION, COSINE, CO-

TANGENT, INVERSE TANGENT, MORRIE’S LAW, SINE,
TANGENT LINE, TANGENT PLANE
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Tangent Bifurcation
FOLD BIFURCATION

Tangent Bundle
Every smooth manifold M has a tangent bundle TM ,
which consists of the TANGENT SPACE TMp at all
points p in M . Since a tangent space TMp is the set of
all tangent vectors to M at p , the tangent bundle is
the collection of all tangent vectors, along with the



information of the point to which they are tangent.

TM �f(p ; v) : p � M ; v � TMp g

The tangent bundle is a special case of a VECTOR

BUNDLE. As a bundle it has RANK n , where n is the
dimension of M . A COORDINATE CHART on M provides
a TRIVIALIZATION for TM . In the coordinates,
x1 ; . . . ; xnð Þ; the vector fields v1 ; . . . ; vnð Þ; where vi �
@=@xi ; span the tangent vectors at every point (in the
COORDINATE CHART). The transition function from
these coordinates to another set of coordinates is
given by the JACOBIAN of the coordinate change.

For example, on the UNIT SPHERE, at the point
(1; 0; 0) there are two different coordinate charts
defined on the same HEMISPHERE, f : U1 0 S2 and c :
U2 0 S2 ;

f x1 ; x2ð Þ� cos x1 cos x2 ; sin x1 cos x2 ; sin x2ð Þ (1)

c y1 ; y2ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �y2

1 �y2
2

q
; y1 ; y1

� �
(2)

with U1 �(�p=2; p=2) �(�p=2; p=2) and U2 �
y1 ; y2ð Þ : y2

1 �y2
2 B1f g: The map between the coordi-

nate charts is a � c�1
( f:

y1 ; y2ð Þ� a x1 ; x2ð Þ� sin x1 ; cos x2 ; sin x2ð Þ (3)

The JACOBIAN of a : U1 0 U2 is given by the matrix-
valued function

cos x1 cos x2 sin x1 sin x2

0 cos x2

 �
(4)

which has DETERMINANT cos x1 cos2 x2 and so is
invertible on U1:/

The tangent vectors transform by the Jacobian. At
the point x1; x2ð Þ in U1; a tangent vector v corre-
sponds to the tangent vector Jv at a x1; x2ð Þ in U2:
These two are just different versions of the same
element of the tangent bundle.

See also CALCULUS, COORDINATE CHART, COTANGENT

BUNDLE, DIRECTIONAL DERIVATIVE, EUCLIDEAN

SPACE, JACOBIAN, MANIFOLD, TANGENT BUNDLE,
TANGENT SPACE, TANGENT VECTOR, VECTOR FIELD,
VECTOR SPACE

Tangent Circles

Two circles with centers at xi; yið Þ with radii ri for
i�1; 2 are mutually tangent if

x1�x2ð Þ2� y1�y2
� �2

� r19r2ð Þ2
:

If the center of the second circle is inside the first,
then the� and� signs both correspond to internally
tangent circles. If the center of the second circle is
outside the first, then the � sign corresponds to
externally tangent circles and the�sign to internally
tangent circles.
Finding the circles tangent to three given circles is
known as APOLLONIUS’ PROBLEM.

There are four CIRCLES that are tangent all three
sides (or their extensions) of a given TRIANGLE: the
INCIRCLE I and three EXCIRCLES J1; J2; and J3: These
four circles are, in turn, all touched by the NINE-POINT

CIRCLE N .

If two circles C1 and C2 of radii r1 and r2 are mutually



tangent to each other and a line, then their centers
are separated by a horizontal distance given by
solving

x2
2 � r1 �r2ð Þ2� r1 �r2ð Þ2 (1)

for x2 ; giving

x2 �2
ffiffiffiffiffiffiffiffiffi
r1r2

p
: (2)

The position and radius of a third circle tangent to the
first two and the line can be found by solving the
simultaneous equations

x2
3 � r1 �r3ð Þ2� r1 �r3ð Þ2 (3)

x3 �x2ð Þ2� r2 �r3ð Þ2� r2 �r3ð Þ2 (4)

for x3 and r3 ; giving

x3 �
2r1

ffiffiffiffiffi
r2

pffiffiffiffiffi
r1

p
�

ffiffiffiffiffi
r2

p (5)

r3 �
r1r2ffiffiffiffiffi

r1
p

�
ffiffiffiffiffi
r2

p� �2 : (6)

The latter equation can be written in the form

1ffiffiffiffiffi
r3

p �
1ffiffiffiffiffi
r1

p �
1ffiffiffiffiffi
r2

p : (7)

This problem was given as a Japanese temple
problem on a tablet from 1824 in the Gumma
Prefecture (Rothman 1998).

See also APOLLONIUS’ PROBLEM, CASEY’S THEOREM,
CHAIN OF CIRCLES, CIRCLE PACKING, CIRCLE TAN-

GENTS, DESCARTES CIRCLE THEOREM, EXCIRCLE,
FOUR COINS PROBLEM, INCIRCLE, MALFATTI’S TAN-

GENT TRIANGLE PROBLEM, PAPPUS CHAIN, SODDY

CIRCLES, TANGENT CURVES, TANGENT SPHERES
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Tangent Curves

See also OSCULATING CURVES, TANGENT CIRCLES,
TACNODE, TANGENT LINE

Tangent Developable
A RULED SURFACE M is a tangent developable of a
curve y if M can be parameterized by x(u; v) �y(u) �
vy ?(u) : A tangent developable is a FLAT SURFACE.

See also BINORMAL DEVELOPABLE, NORMAL DEVEL-

OPABLE
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Tangent Externally
Two curves are tangent externally at a point P if they
lie on opposite sides of their common tangent at P

See also TANGENT INTERNALLY

Tangent Figures

See also INCIDENT

Tangent Hyperbolas Method
HALLEY’S METHOD

Tangent Indicatrix
Let the SPEED s of a closed curve on the unit sphere
S2 never vanish. Then the tangent indicatrix

t �
ṡ

ṡj j

is another closed curve on S2 : It is sometimes called
the TANTRIX. If s IMMERSES in S2 ; then so will t:/

References
Solomon, B. "Tantrices of Spherical Curves." Amer. Math.

Monthly 103, 30�/39, 1996.

Tangent Internally
Two curves are tangent internally at a point P if they
lie on the same side of their common tangent at P

See also TANGENT EXTERNALLY

Tangent Line

A straight line is tangent to a given curve f (x) at a
point x0 on the curve if the line passes through the
point (x0 ; f (x0)) on the curve and has slope f ?(x0);
where f ?(x) is the DERIVATIVE of f (x) :/

See also CIRCLE TANGENTS, SECANT LINE, TANGENT,
TANGENT PLANE, TANGENT SPACE, TANGENT VECTOR
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and Their Properties. Ann Arbor, MI: J. W. Edwards,
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Tangent Map
If f : M 0 N ; then the tangent map Tf associated to f
is a VECTOR BUNDLE HOMEOMORPHISM Tf : TM 0 TN
(i.e., a MAP between the TANGENT BUNDLES of M and
N respectively). The tangent map corresponds to
DIFFERENTIATION by the formula

Tf (v) �(f (f)?(0) ; (1)

where f?(0) �v (i.e., f is a curve passing through the
base point to v in TM at time 0 with velocity v ). In
this case, if f : M 0 N and g : N 0 O ; then the CHAIN

RULE is expressed as

T(f (g) �Tf (Tg: (2)

In other words, with this way of formalizing differ-
entiation, the CHAIN RULE can be remembered by
saying that "the process of taking the tangent map of
a map is functorial." To a topologist, the form

(f (g) ?(a) �f ?(g(a))(g ?(a) ; (3)

for all a , is more intuitive than the usual form of the
CHAIN RULE.

See also DIFFEOMORPHISM
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Tangent Number
A number also called a ZAG NUMBER giving the
number of ODD ALTERNATING PERMUTATIONS. The
first few are 1, 2, 16, 272, 7936, ... (Sloane’s A000182).

See also ALTERNATING PERMUTATION, ENTRINGER

NUMBER, EULER ZIGZAG NUMBER, SECANT NUMBER
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Tangent Plane
Let (x0 ; y0) be any point of a surface function z �
f (x; y) : Then the surface has a nonvertical tangent
plane at (x0 ; y0) with equation

z �f (x0 ; y0) �fx(x0 ; y0)(x �x0) �fy(x0 ; y0)(y �y0) :

See also NORMAL VECTOR, PLANE, TANGENT, TAN-

GENT LINE, TANGENT SPACE, TANGENT VECTOR

Tangent Space
Let x be a point in an n -dimensional COMPACT

MANIFOLD M , and attach at x a copy of Rn tangential
to M . The resulting structure is called the TANGENT

SPACE of M at x and is denoted TxM : If g is a smooth
curve passing through x , then the derivative of g at x
is a VECTOR in TxM :/

See also TANGENT, TANGENT BUNDLE, TANGENT

PLANE, TANGENT SPACE (CHART), TANGENT SPACE

(SUBMANIFOLD), TANGENT VECTOR

Tangent Space (Chart)
From the point of view of COORDINATE CHARTS, the
notion of tangent space is quite simple. The tangent
space consists of all directions, or velocities, a particle
can take. In an open set U in Rn there are no
constraints, so the tangent space at a point p is
another copy of Rn : The set U could be a COORDINATE

CHART for an n -dimensional MANIFOLD.

The tangent space at p , denoted TMp ; is the set of
possible VELOCITY VECTORS of paths through p . Hence
there is a CANONICAL BASIS: if (x1 ; . . . ; xn) are the
coordinates, then v1 ; . . . ; vn are a basis for the
tangent space, where vi is the velocity vector of a
particle with unit speed moving inward along the
coordinate xi: The collection of tangent vectors, called
the TANGENT BUNDLE, is the PHASE SPACE of a single
particle moving in the manifold M .

It seems as if the tangent space at p is the same as
the tangent space at all other points in the chart U .
However, while they do share the same dimension
and are ISOMORPHIC, in a change of coordinates, they
lose their canonical isomorphism.

For example, let U�(0; 1) and V�(0; 3) be coordi-
nate charts for the unit interval I . We can change
coordinates with f : U 0 V defined by f(x)�x�2x2:
This is a change of coordinates because the derivative
does not vanish on U . But this change is not linear,
and stretches out I more near 1 than it does near 0:
The tangent vectors transform by the derivative. At
x�1=4; they are stretched by a factor of df=dx�2:
While at x�3=4; they are stretched out by a factor of
df=dx�4:/

In general, the tangent vectors transform according
to the JACOBIAN. The tangent vector v at q can also be
considered as the tangent vector Jfv at f(q) in
another coordinate chart, where f is the DIFFEO-

MORPHISM from one chart to the other. The linear
transformation determined by the JACOBIAN of f is
invertible, since f is a DIFFEOMORPHISM.

Not only does the JACOBIAN, and the CHAIN RULE,
show that the tangent space is WELL DEFINED,
independent of coordinate chart, but it also shows
that tangent vectors "push forward." That is, given



any smooth map f : X 0 Y between manifolds, it
makes sense to map the tangent vectors of X to
tangent vectors of Y . Writing f̃ as the function f
between a coordinate chart in X and one in Y , then
f
�
(v) �Jf̃ (v) maps v from TXp to TYf (p) : Another

notation for f
�

is df , the DIFFERENTIAL of f . In the
language of TENSORS, the tangent vector’s pushing
forward means that a vector field is a COVARIANT

TENSOR.

See also CALCULUS, COORDINATE CHART, DIFFEREN-

TIAL FORM, DIRECTIONAL DERIVATIVE, EUCLIDEAN

SPACE, EXTERIOR ALGEBRA, JACOBIAN, MANIFOLD,
SUBMANIFOLD, TANGENT BUNDLE, TANGENT SPACE,
VECTOR FIELD, VELOCITY VECTOR

Tangent Space (Intrinsic)
The tangent space at a point p in an ABSTRACT

MANIFOLD M can be described without the use of
embeddings or COORDINATE CHARTS. The elements of
the tangent space are called tangent vectors, and the
collection of tangent spaces forms the TANGENT

BUNDLE.

One description is to put an equivalence relation on
smooth paths through the point p . More precisely,
consider all smooth maps f : I 0 M where I �(�1 ; 1)
and f (0) �p: We say that two maps f and g are
equivalent if they agree to first order. That is, in any
coordinate chart around p , f ?(0) �g?(0) : If they are
similar in one chart then they are similar in any other
chart, by the CHAIN RULE. The notion of agreeing to
first order depends on coordinate charts, but this
cannot be completely eliminated since that is how
manifolds are defined.

Another way is to first define a VECTOR FIELD as a
DERIVATION of the ring of smooth functions f : M 0 R:
Then a tangent vector at a point p is an equivalence
class of vector fields which agree at p . That is, X 	Y
if Xf (p) �Yf (p) for every smooth function f . Of course,
the tangent space at p is the vector space of tangent
vectors at p . The only drawback to this version is that
a COORDINATE CHART is required to show that the
tangent space is an n -dimensional vector space.

See also CHAIN RULE, COORDINATE CHART, DERIVA-

TION ALGEBRA, DIFFERENTIAL FORM, DIRECTIONAL

DERIVATIVE, EXTERIOR ALGEBRA, EUCLIDEAN SPACE,
JACOBIAN, LIE GROUP, MANIFOLD, SHEAF, TANGENT

BUNDLE, TANGENT SPACE, VECTOR FIELD, VELOCITY

VECTOR

Tangent Space (Submanifold)
The TANGENT PLANE to a surface at a point p is the
tangent space at p (after translating to the origin).
The elements of the tangent space are called TANGENT

VECTORS, and they are CLOSED under addition and
scalar multiplication. In particular, the tangent space
is a VECTOR SPACE.

Any SUBMANIFOLD of EUCLIDEAN SPACE, and more
generally any SUBMANIFOLD of an ABSTRACT MANI-

FOLD, has a tangent space at each point. The collec-
tion of tangent spaces TMp to M forms the TANGENT

BUNDLE TM�@p �M p; TMp

� �
: A VECTOR FIELD as-

signs to every point p a TANGENT VECTOR in the
tangent space at p .

There are two ways of defining a submanifold, and
each way gives rise to a different way of defining the
tangent space. The first way uses a PARAMETERIZA-

TION, and the second way uses a system of equations.

Suppose that f � f1; . . . ; fnð Þ is a local PARAMETERIZA-

TION of a SUBMANIFOLD M in EUCLIDEAN SPACE Rn:
Say,

f : U 0 Rn; (1)

where U is the open UNIT BALL in Rk; and f (U)ƒM:
At the point p�f (0); the tangent space is the image of
the JACOBIAN of f , as a linear transformation from Rk

to Rn: For example, consider the UNIT SPHERE

S2� y1; y2; y3ð Þ : y2
1�y2

2�y2
3�1

� �
(2)

in R3: Then the function (with the domain U�
x1; x2ð Þ : x2

1�x2
2B1f g)

f � x1; x2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

1�x2
2

q� �
(3)

parameterizes a NEIGHBORHOOD of the north pole. Its
Jacobian at (0; 0) is given by the matrix

1 0
0 1
0 0

2
4

3
5 (4)

whose IMAGE is the tangent space at p ,

TS2
(0; 0; 1)�f(a; b; 0)g:
�� (5)

An alternative description of a SUBMANIFOLD M as
the set of solutions to a system of equations leads to
another description of tangent vectors. Consider a
SUBMANIFOLD M which is the set of solutions to the
system of equations

f1 x1; . . . ; xnð Þ�0

n (6)

fr x1; . . . ; xnð Þ�0;

where k�r�n and the JACOBIAN of f : Rn 0 Rr; with
f � f1; . . . fnð Þ; has rank r at the solutions M to f�0. A
tangent vector v at a solution p is an infinitesimal
solution to the above equations (at p ). The tangent
vector v� v1; . . . ; vnð Þ is a solution of the derivative
(linearization) of f , i.e., it is in the NULLSPACE of the
JACOBIAN.

Consider this method in the recomputation the
tangent space of the sphere at the North Pole. The
sphere is two-dimensional and is described as the



solution to single equation (3 �2 �1) x2
1 �x2

2 �x2
3 �1:

Set f1 �x2
1 �x2

2 �x2
3 �1: We want to compute the

tangent space at the solution f1(0; 0; 1) �0 (at the
north pole). The JACOBIAN at this point is the 1 �3
matrix [0; 0; 2]; and its nullspace is the tangent
space

TS2
(0; 0; 1) �f(a; b; 0)g:
�� (7)

It appears that the tangent space depends either on
the choice of parametrization, or on the choice of
system of equations. Because the Jacobian of a
composition of functions obeys the CHAIN RULE, the
tangent space is WELL DEFINED. Note that the
JACOBIAN of a DIFFEOMORPHISM is an INVERTIBLE

LINEAR MAP, and these correspond to the ways the
equations can be changed. The basic facts from
LINEAR ALGEBRA used to show that the tangent space
is WELL DEFINED are the following.

1. If A : Rk 0 Rk is invertible, then the image of
B : Rk 0 Rn is the same as the image of AB .
2. If A : Rn 0 Rn is invertible, then the nullspace of
B : Rn 0 Rr is the same as the nullspace of BA .
More precisely, Null(BA) �A�1(Null(B)) :/

These techniques work in any dimension. In addition,
they generalize to submanifolds of an ABSTRACT

MANIFOLD, because tangent vectors depend on local
properties. In particular, the tangent space can be
computed in any coordinate chart, because any
change in COORDINATE CHART corresponds to a DIF-

FEOMORPHISM in Euclidean space.

The tangent space can give some geometric insight to
higher-dimensional phenomena. For example, to
compute the tangent space to the FLAT TORUS (donut)
M in R4 ; note that it can be parametrized, by

f x1 ; x2ð Þ� sin x1 ; cos x1 ; sin x2 ; cos x2ð Þ (8)

with domain U � x1 ; x2ð Þ : x2
1 �x2

2 B1f g; near the
point p �f (0; 0) �(0; 1; 0; 1): Its JACOBIAN at p is
the matrix

1 0
0 0
0 1
0 0

2
664

3
775; (9)

whose image is the tangent space
TM p�f(a; 0; b; 0)g:

��
/

Alternatively, M is the set of solutions to equations

f1 x1; x2; x3; x4ð Þ�x2
1�x2

2�1�0 (10)

f2 x1; x2; x3; x4ð Þ�x2
3�x2

4�1�0: (11)

The Jacobian at the solution p�(0; 1; 0; 1) is the
matrix

0 2 0 0
0 0 0 2

 �
; (12)

whose NULLSPACE is the tangent space
TM p�f(a; 0; b; 0)g:

��
/

See also CALCULUS, COORDINATE CHART, DIFFEREN-

TIAL FORM, DIRECTIONAL DERIVATIVE, EUCLIDEAN

SPACE, EXTERIOR ALGEBRA, JACOBIAN, LINEAR ALGE-

BRA, MANIFOLD, NULLSPACE, TANGENT BUNDLE, TAN-

GENT PLANE, TANGENT SPACE (CHART), TANGENT

SPACE (INTRINSIC), TANGENT VECTOR, VECTOR FIELD,
VECTOR SPACE, VELOCITY VECTOR

Tangent Spheres

A special case of tangent spheres is given by Soddy’s
hexlet, which consists of a chain of six spheres
externally tangent to two mutually tangent spheres
and internally tangent to a circumsphere. The bends
of the circles in the chain obey the relationship

1

r1

�
1

r4

�
1

r2

�
1

r3

�
1

r3

�
1

r6

: (1)

A SANGAKU PROBLEM from 1798 asks to distribute 30
identical spheres of radius r such that they are
tangent to a single central sphere of radius R and
to four other small spheres. This can be accomplished
(left figure) by placing the spheres at the vertices of
an ICOSIDODECAHEDRON (right figure) of side length
a , where the radii r and R are given by

r�1
2 a (2)

R�1
2

ffiffiffi
5

p
a (3)

(Rothman 1998).

In general, the BENDS of five mutually tangent
spheres are related by



3 k2
1 � k2

2 � k2
3 � k2

4 � k2
5

� �
� k1 � k2 � k3 � k4 � k5ð Þ2

: (4)

Solving for k5 gives

k 95 �1
2 k1 � k2 � k3 � k4f

96 k1 k2 � k1 k3 � k1 k4 � k2 k3 � k2 k4 � k3 k4ð Þ½

�3 k2
1 � k2

2 � k2
3 � k2

4

� �
�1 =2 g: (5)

(Soddy 1937a). Gosset (1937) pointed out that the
expression under the square root sign is given by

6 k1 k2 � k1 k3 � k1 k4 � k2 k3 � k2 k4 � k3 k4ð Þf

�3 k2
1 � k2

2 � k2
3 � k2

4

� �
g1 =2 �3

ffiffiffi
3

p
V k1 k2 k3 k4 ; (6)

where V is the VOLUME of the TETRAHEDRON having
vertices at the centers of the corresponding four
spheres. Therefore, the equation for k5 can be written
simplify as

k5 �
1
2 s2 �

ffiffiffi
3

p
e ; (7)

where

s � k1 � k2 � k3 � k4 (8)

e �3
2 V k1 k2 k3 k4 : (9)

(Soddy 1937b).

In addition, the tetrahedra formed by joining the four
points of contact of any one sphere with the other four
(when all five are in mutual contact) have opposite
edges whose product is the constant

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � k5ð Þ k2 � k5ð Þ k3 � k5ð Þ k4 � k5ð Þ

p
(10)

and the volume of these tetrahedra is

V �
2ffiffiffi
3

p k5

k1 � k5ð Þ k2 � k5ð Þ k3 � k5ð Þ k4 � k5ð Þ
(11)

(Soddy 1937b). Gosper has further extended this
result to n �2 mutually tangent n -D HYPERSPHERES,
whose CURVATURES satisfy

Xn�1

i�0

ki

 !2

�n
Xn�1

i �0

k2
i �0: (12)

Solving for kn�1 gives

kn�1 �

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i �0 ki

� �2
�(n � 1)

Pn
i�0 k2

i �
Pn

i �0 ki

q
n � 1 

:

(13)

For (at least) n �2 and 3, the RADICAL equals

f (n)V k0 k1 � � �kn ; (14)

where V is the CONTENT of the SIMPLEX whose
vertices are the centers of the n�1 independent

HYPERSPHERES. The RADICAND can also become NEGA-

TIVE, yielding an IMAGINARY kn�1: For n�3, this
corresponds to a sphere touching three large bowling
balls and a small BB, all mutually tangent, which is
an impossibility.

See also BOWL OF INTEGERS, HEXLET, SODDY CIRCLES,
SPHERE, TANGENT CIRCLES, TETRAHEDRON
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Tangent Vector
For a curve with POSITION VECTOR r(t); the unit
tangent vector T̂(t) is defined by

T̂(t)�
r?(t)

r?(t)j j
�

dr

dt

dr

dt

�����
�����

(1)

�

dr

dt
ds

dt

(2)

�
dr

ds
; (3)

where t is a parameterization variable and s is the
ARC LENGTH. For a function given parametrically by
(f (t); g(t)); the tangent vector relative to the point
(f (t); g(t)) is therefore given by

x(t)�
f ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g?2
p (4)

y(t)�
g?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ?2 � g?2
p : (5)

To actually place the vector tangent to the curve, it
must be displaced by (f (t); g(t)): It is also true that

dT̂

ds
�kN̂ (6)

dT̂

dt
�k

ds

dt
N̂ (7)

[Ṫ; T̈; �T ]�k5 d

ds

t

k

 !
; (8)

where N is the NORMAL VECTOR, k is the CURVATURE,
and t is the TORSION.



See also CURVATURE, NORMAL VECTOR, TANGENT,
TANGENT BUNDLE, TANGENT PLANE, TANGENT SPACE,
TANGENT VECTOR (MANIFOLD), TORSION (DIFFEREN-

TIAL GEOMETRY)
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Tangent Vector (Manifold)
Roughly speaking, a tangent vector is an infinitesi-
mal displacement at a specific point on a MANIFOLD.
The set of tangent vectors at a point P forms a
VECTOR SPACE called the TANGENT SPACE at P , and the
collection of tangent spaces on a manifold forms a
VECTOR BUNDLE called the TANGENT BUNDLE.

A tangent vector at a point P on a manifold is a
tangent vector at P in a COORDINATE CHART. A change
in coordinates near P causes an INVERTIBLE LINEAR

MAP of the tangent vector’s representations in the
coordinates. This transformation is given by the
JACOBIAN, which must be nonsingular in a change
of coordinates. Hence the tangent vectors at P are
WELL DEFINED. A VECTOR FIELD is an assignment of a
tangent vector for each point. The collection of
tangent vectors forms the TANGENT BUNDLE, and a
vector field is a SECTION of this bundle.

Tangent vectors are used to do CALCULUS on MANI-

FOLDS. Since manifolds are locally Euclidean, the
usual notions of differentiation and integration make
sense in any COORDINATE CHART, and they can be
carried over to manifolds. More specifically, a tangent
vector is the manifold version of a DIRECTIONAL

DERIVATIVE (at a point). An alternative analogy with
calculus is the related notion of a VELOCITY VECTOR.

There are at least three different points of view on
tangent vectors. Each has its own pluses and
minuses. The extrinsic points of view use the vector
space structure of EUCLIDEAN SPACE. Thinking of a
manifold as a SUBMANIFOLD of Euclidean space, a
tangent vector can be thought of as an element in a
TANGENT PLANE, or (submanifold) TANGENT SPACE. In
a COORDINATE CHART, a tangent vector is a vector in a
(chart) TANGENT SPACE, which is just a copy of
EUCLIDEAN SPACE.

The problem with the extrinsic points of view is that
they depend on a choice of EMBEDDING or COORDINATE

CHART. There are a couple of ways to think about a
tangent vector intrinsically, as an element of an
abstract (intrinsic) TANGENT SPACE. These are more
satisfying from an abstract point of view, but some-
times it is necessary to do calculations in coordinate
charts.

It is important to distinguish tangent vectors at P
from tangent vectors at any other point Q , although
they may seem parallel. On a LIE GROUP, there is a
notion of parallelism, and there exist nonvanishing
vector fields. In general, this is far from being true.
On the sphere S2; for instance, any smooth vector
field must vanish somewhere.

A more intrinsic geometric definition of a tangent
vector is to take a tangent vector at P to be an
EQUIVALENCE CLASS of paths through P which agree
to first order. An extrinsic geometric definition, for a
submanifold, is to view the tangent vectors as a
subspace of the tangent vectors of the ambient space,

Algebraically, a vector field on a manifold is a
DERIVATION on the RING of smooth functions. That
is, a vector field acts on smooth functions and satisfies
the PRODUCT RULE. A vector field X acts on a function
by the DIRECTIONAL DERIVATIVE on the function,

dX(f )�X � 9f : (1)

It is more precise to say that the tangent bundle is the
SHEAF of derivations on the sheaf of smooth functions,
in which case the tangent vectors at P are in the
STALK of the sheaf at P .

In fact, in coordinates (x1; . . . ; xn); the notation for
the standard basis of tangent vectors at 0 is

@

@xi

; (2)

where the derivation @=@xi of f is the usual PARTIAL

DERIVATIVE

@f

@xi

: (3)

Letting the base point vary in the coordinate chart,



@=@xi are vector fields, but are only defined in this
COORDINATE CHART.

See also CALCULUS, COORDINATE CHART, DERIVATION

ALGEBRA, DIFFERENTIAL FORM, DIRECTIONAL DERI-

VATIVE, EUCLIDEAN SPACE, EXTERIOR ALGEBRA, LIE

GROUP MANIFOLD, SHEAF (TOPOLOGY), STALK, TAN-

GENT BUNDLE, TANGENT VECTOR, TANGENT SPACE,
TANGENT SPACE (SUBMANIFOLD), VECTOR FIELD,
VELOCITY VECTOR

Tangential Angle
For a PLANE CURVE, the tangential angle f is defined
by

r d f �ds ; (1)

where s is the ARC LENGTH and r is the RADIUS OF

CURVATURE. The tangential angle is therefore given
by

f �g
t

0

s ?(t) k(t) dt; (2)

where k(t) is the CURVATURE. For a plane curve r(t);
the tangential angle f(t) can also be defined by

r?(t)

r?(t)j j
�

cos[f(t)]
sin[f(t)]

 �
: (3)

Gray (1997) calls f the TURNING ANGLE instead of the
tangential angle.

See also ARC LENGTH, CURVATURE, PLANE CURVE,
RADIUS OF CURVATURE, TORSION (DIFFERENTIAL

GEOMETRY)
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Tangential Polygon
The polygon formed by the lines tangent to the
CIRCUMCIRCLE of a polygon. The tangential polygon
of an n -gon is itself an n -gon.

See also DUAL POLYHEDRON, TANGENTIAL QUADRI-

LATERAL, TANGENTIAL TRIANGLE

Tangential Quadrilateral

A QUADRILATERAL which has an INCIRCLE, i.e., one for
which a single circle can be constructed which is
tangent to all four sides. Opposite sides of such a
quadrilateral satisfy

s �a �c �b �d; (1)

where

s �1
2(a �b �c �d) (2)

is the SEMIPERIMETER, and the AREA is

A �rs; (3)

where r is the INRADIUS.

See also BICENTRIC QUADRILATERAL, CYCLIC QUAD-

RILATERAL, INCIRCLE, QUADRILATERAL, TANGENTIAL

TRIANGLE
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Tangential Tetrahedron
The planes passing through the vertices of a TETRA-

HEDRON ABCD and tangent to the CIRCUMSPHERE at
these points form another tetrahedron called the
tangential tetrahedron.

The four lines of intersection of the faces of a
tetrahedron with the corresponding faces of its
tangential tetrahedron form a hyperbolic group (Alt-
shiller-Court 1979, p. 102).

See also TETRAHEDRON
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Tangential Triangle

The TRIANGLE DT1T2T3 formed by the lines tangent to
the CIRCUMCIRCLE of a given TRIANGLE DA1A2A3 at its
VERTICES. It is the PEDAL TRIANGLE of DA1A2A3 with
the CIRCUMCENTER as the PEDAL POINT. The TRI-

LINEAR COORDINATES of the VERTICES of the tangen-
tial triangle are

T1 ��a : b : c

T2 �a : �b : c

T3 �a : b : �c :

The CONTACT TRIANGLE and tangential triangle are
perspective from the GERGONNE POINT.

Given a TRIANGLE DA1A2A3 and its tangential trian-
gle DT1T2T3 ; the extensions of the sides of the two
triangles intersect in three points L1 ; L2 ; and L3 ;
which are collinear (Honsberger 1995).
The CIRCUMCENTER of the tangential triangle has
TRIANGLE CENTER FUNCTION

a�a b2 cos(2B)�c2 cos(2C)�a2 cos(2; 4)
� �

and lies on the EULER LINE (Kimberling 1994)

See also CIRCUMCIRCLE, CONTACT TRIANGLE, GER-

GONNE POINT, PEDAL TRIANGLE, PERSPECTIVE, TAN-

GENTIAL QUADRILATERAL
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Tangents Law
LAW OF TANGENTS

Tangent-Sphere Coordinates

A coordinate system (m; n; c) given by the coordinate
transformation

x�
m cos c

m2 � n2
(1)

y�
m sin c

m2 � n2
(2)

z�
n

m2 � n2
(3)

and defined for m > 0; n � (��; �); and c � [0; 2p):
Surfaces of constant m are given by the TOROIDS

x2�y2�z2�
1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
; (4)

surface of constant n by the spheres tangent to the xy -
plane

x2�y2� z�
1

2n

 !2

�
1

4n2
; (5)

and surfaces of constant c by the half-planes

tan c�
y

x
: (6)



The metric coefficients are

gxx �
1

m2 � n2ð Þ2 (7)

gyy �
1

m2 � n2ð Þ2 (8)

gzz �
m2

m2 � n2ð Þ2 : (9)
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Tangle

A region in a KNOT or LINK projection plane sur-
rounded by a CIRCLE such that the KNOT or LINK

crosses the circle exactly four times. Two tangles are
equivalent if a sequence of REIDEMEISTER MOVES can
be used to transform one into the other while keeping
the four string endpoints fixed and not allowing
strings to pass outside the CIRCLE.
The simplest tangles are the �/-tangle and 0-tangle,
shown above. A tangle with n left-handed twists is
called an n -tangle, and one with n right-handed
twists is called a �n/-tangle. By placing tangles side
by side, more complicated tangles can be built up
such as ( �2, 3, 2), etc. The link created by connecting
the ends of the tangles is now described by the
sequence of tangle symbols, known as CONWAY’S

KNOT NOTATION. If tangles are multiplied by 0 and
then added, the resulting tangle symbols are sepa-
rated by commas. Additional symbols which are used
are the period, colon, and asterisk.

Amazingly enough, two tangles described in this
NOTATION are equivalent IFF the CONTINUED FRAC-

TIONS OF THE FORM

2 �
1

3 �
1

�2

are equal (Burde and Zieschang 1985)! an ALGEBRAIC

TANGLE is any tangle obtained by ADDITIONS and

MULTIPLICATIONS of rational tangles (Adams 1994).
Not all tangles are ALGEBRAIC.

See also ALGEBRAIC LINK, FLYPE, PRETZEL KNOT
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Tanglecube

A QUARTIC SURFACE given by the implicit equation

x4 �5x2 �y4 �5y2 �z4 �5z2 �11:8 �0:
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Tangled Hierarchy
A system in which a STRANGE LOOP appears.

See also STRANGE LOOP
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Tangram

A combination of the above plane polygonal pieces
such that the EDGES are coincident. There are 13
convex tangrams (where a "convex tangram" is a set
of tangram pieces arranged into a CONVEX POLYGON).

See also ORIGAMI, STOMACHION
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Tanh
HYPERBOLIC TANGENT

Taniyama Conjecture
TANIYAMA-SHIMURA CONJECTURE

Taniyama-Shimura Conjecture
A very general and important conjecture (and now
theorem) connecting TOPOLOGY and NUMBER THEORY

which arose from several problems proposed by
Taniyama in a 1955 international mathematics sym-
posium.

Let E be an ELLIPTIC CURVE whose equation has
INTEGER COEFFICIENTS, let N be the so-called CON-

DUCTOR of E and, for each n , let an be the number
appearing in the L -function of E . Then, in technical
terms, the Taniyama-Shimura conjecture states that
there exists a MODULAR FORM of weight two and level
N which is an EIGENFORM under the HECKE OPERA-

TORS and has a FOURIER SERIES a anqn:/

In effect, the conjecture says that every rational
ELLIPTIC CURVE is a MODULAR FORM in disguise. Or,
more formally, the conjecture suggests that, for every
ELLIPTIC CURVE y2�Ax3�Bx2�Cx�D over the RA-

TIONALS, there exist nonconstant MODULAR FUNC-

TIONS f (z) and g(z) of the same level N such that

[f (z)]2�A[g(z)]2�Cg(z)�D:

Equivalently, for every ELLIPTIC CURVE, there is a
MODULAR FORM with the same DIRICHLET L -SERIES.

In 1985, starting with a fictitious solution to FER-

MAT’S LAST THEOREM (the FREY CURVE), G. Frey
showed that he could create an unusual ELLIPTIC

CURVE which appeared not to be modular. If the curve
were not modular, then this would show that if
FERMAT’S LAST THEOREM were false, then the Ta-
niyama-Shimura conjecture would also be false.
Furthermore, if the Taniyama-Shimura conjecture
were true, then so would be FERMAT’S LAST THEOREM!

However, Frey did not actually prove that his curve
was not modular. The conjecture that Frey’s curve
was not modular came to be called the "EPSILON

CONJECTURE," and was quickly proved by Ribet
(RIBET’S THEOREM) in 1986, establishing a very close
link between two mathematical structures (the Ta-
niyama-Shimura conjecture and FERMAT’S LAST THE-

OREM) which appeared previously to be completely
unrelated.

As of the early 1990s, most mathematicians believed
that the Taniyama-Shimura conjecture was not ac-
cessible to proof. However, A. Wiles was not one of
these. He attempted to establish the correspondence
between the set of ELLIPTIC CURVES and the set of
modular elliptic curves by showing that the number
of each was the same. Wiles accomplished this by
"counting" Galois representations and comparing
them with the number of MODULAR FORMS. In 1993,
after a monumental seven-year effort, Wiles (almost)
proved the Taniyama-Shimura conjecture for special
classes of curves called SEMISTABLE ELLIPTIC CURVES

(which correspond to elliptic curves with SQUAREFREE

CONDUCTORS; Knapp 1999).

Wiles had tried to use horizontal Iwasawa theory to
create a so-called CLASS NUMBER FORMULA, but was
initially unsuccessful and therefore used instead an
extension of a result of Flach based on ideas from
Kolyvagin. However, there was a problem with this
extension which was discovered during review of
Wiles’ manuscript in September 1993. Former stu-
dent Richard Taylor came to Princeton in early 1994
to help Wiles patch up this error. After additional
effort, Wiles discovered the reason that the Flach/
Kolyvagin approach was failing, and also discovered
that it was precisely what had prevented Iwasawa
theory from working.

With this additional insight, Wiles was able to
successfully complete the erroneous portion of the



proof using Iwasawa theory, proving the SEMISTABLE

case of the Taniyama-Shimura conjecture (Taylor and
Wiles 1995, Wiles 1995) and, at the same time,
establishing FERMAT’S LAST THEOREM as a true
theorem.

The existence of a proof of the full Taniyama-
Shimura conjecture was announced at a conference
by Kenneth Ribet on June, 21 1999 (Knapp 1999), and
reported on National Public Radio’s Weekend Edition
on July 31, 1999. The proof was completed by
Christophe Breuil, Brian Conrad, Fred Diamond,
and Richard Taylor, building on the earlier work of
Wiles and Taylor (Mackenzie 1999, Morgan 1999).
The best previous published result held for all
CONDUCTORS except those divisible by 27 (Conrad et
al. 1999; Knapp 1999). The general Breuil et al. proof
for all elliptic curves removed this restriction, in the
process relying on Wiles’ proof for rational ELLIPTIC

CURVES.

See also CONDUCTOR, ELLIPTIC CURVE, EPSILON

CONJECTURE, FERMAT’S LAST THEOREM, LANGLANDS

PROGRAM, MODULAR FORM, MODULAR FUNCTION,
RIBET’S THEOREM
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Taniyama-Shimura Theorem
TANIYAMA-SHIMURA CONJECTURE

Tank
CYLINDRICAL SEGMENT

Tantrix
TANGENT INDICATRIX

Tapering Function
APODIZATION FUNCTION

Tarry Point

The point T at which the lines through the VERTICES

of a TRIANGLE PERPENDICULAR to the corresponding
sides of the first BROCARD TRIANGLE, are CONCUR-

RENT. The Tarry point lies on the CIRCUMCIRCLE

opposite the STEINER POINT S . It has TRIANGLE

CENTER FUNCTION

a �
bc

b4 � c4 � a2b2 � a2c2 
�sec(A � v) ;

where v is the BROCARD ANGLE. The SIMSON LINE of
the Tarry point is PERPENDICULAR to the line OK ,
when O is the CIRCUMCENTER and K is the SYMME-

DIAN POINT (Lachlan 1893; Johnson 1929; Honsberger
1995, p. 121). The Tarry point of the first BROCARD

TRIANGLE of a TRIANGLE DABC is the CIRCUMCENTER

of DABC (Honsberger 1995, pp. 120�/121).

See also BROCARD ANGLE, BROCARD TRIANGLES,
CIRCUMCIRCLE, SYMMEDIAN POINT, SIMSON LINE,
STEINER POINTS

References
Coolidge, J. L. A Treatise on the Geometry of the Circle and

Sphere. New York: Chelsea, p. 77, 1971.
Gallatly, W. The Modern Geometry of the Triangle, 2nd ed.

London: Hodgson, p. 102, 1913.
Honsberger, R. "The Steiner Point and the Tarry Point."
§10.5 in Episodes in Nineteenth and Twentieth Century
Euclidean Geometry. Washington, DC: Math. Assoc.
Amer., pp. 119�/124, 1995.

Johnson, R. A. Modern Geometry: An Elementary Treatise on
the Geometry of the Triangle and the Circle. Boston, MA:
Houghton Mifflin, pp. 281�/282, 1929.

Kimberling, C. "Central Points and Central Lines in the
Plane of a Triangle." Math. Mag. 67, 163�/187, 1994.



Lachlan, R. An Elementary Treatise on Modern Pure
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Tarry-Escott Problem
PROUHET-TARRY-ESCOTT PROBLEM

Tarski’s Recursive Definition of
Satisfaction
SATISFACTION

Tarski’s Theorem
Portions of this entry contributed by ADAM STRZE-

BONSKI

Tarski’s theorem says that the first-order theory of
reals with �; +;�; and > allows QUANTIFIER ELIMINA-

TION. This property is stronger than DECIDABILITY.
For example, the first-order theory of reals with �; +;
and � is decidable, but does not allow QUANTIFIER

ELIMINATION.

Tarski’s theorem means that a QUANTIFIED SYSTEM of
real algebraic equations and inequalities is a SEMI-

ALGEBRAIC SET (Strzebonski 2000).

Although Tarski proved that QUANTIFIER ELIMINA-

TION was possible, his method was totally impractical
(Davenport and Heintz 1988). A much more efficient
procedure for implementing QUANTIFIER ELIMINATION

is called CYLINDRICAL ALGEBRAIC DECOMPOSITION. It
was developed by Collins (1975) and is implemented
in Mathematica 4.0 as CylindricalAlgebraicDe-
composition.

See also CYLINDRICAL ALGEBRAIC DECOMPOSITION,
DECIDABLE, QUANTIFIED SYSTEM, QUANTIFIER, QUAN-

TIFIER ELIMINATION, SEMIALGEBRAIC SET
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Tate Conjecture

See also HODGE CONJECTURE
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Tau Conjecture
Also known as RAMANUJAN’S HYPOTHESIS. Ramanu-
jan proposed that

t(n) 	O n11=2� e
� �

;

where t(n) is the TAU FUNCTION. This was proven by
Deligne (1974) in the course of proving the more
general PETERSSON CONJECTURE. Deligne was
awarded the FIELDS MEDAL for his proof.

See also PETERSSON CONJECTURE, TAU FUNCTION
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Tau Function
A function t(n) related to the DIVISOR FUNCTION sk(n);
also sometimes called RAMANUJAN’S TAU FUNCTION. It
is defined via the FOURIER SERIES of the MODULAR

DISCRIMINANT D(t) for t �H; where H is the UPPER

HALF-PLANE, by

D(t)�(2p)12
X�
n�1

t(n)e2pint (1)

(Apostol 1997, p. 20). The tau function is also given by
the CAUCHY PRODUCT

t(n)�8000 s3(s3ð Þ(s3f g(n)�147 s5(s5ð Þ(n); (2)

� 65
756 s11(n)�691

756 s5(n)�691
3

Xn�1

k�1

s5(k)s5(n�k); (3)

where sk(n) is the DIVISOR FUNCTION (Apostol 1997,
pp. 24 and 140). The tau function has GENERATING

FUNCTION

X�
n�1

t(n)xn�x
Y�
n�1

1�xnð Þ24
; (4)

and the first few values are 1, �24, 252, �1472,
4830, ... (Sloane’s A000594). The tau function is given
by the Mathematica command RamanujanTau[n ] in
the Mathematica add-on package NumberTheory‘R-
amanujan‘ (which can be loaded with the command
BBNumberTheory‘).

Lehmer conjectured that t(n)"0 for all n and verified
this fact for n B214928639999 (Apostol 1997, p. 22).



/t(n) is also given by

g(�x)�
X�
n�1

(�1)n
t(n)xn (5)

g(x2)�
X�
n�1

t 1
2 n
� �

xn (6)

X�
n�1

t(n)xn�x 1�3x�5x3�7x6�. . .
� �8

: (7)

Ewell (1999) gave the beautiful formulas

t(4n�2)��3
X2n�1

k�1

23b(2k)s3(Od(2k))

�
X4n�2k�2

j�0

(�1)jr8(4n�2�2k�j)r8(j) (8)

Xn

k�1

23b(2k)s3(Od2k))

�
X2n�1�2k

j�0

(�1)jr8(2n�1�2k�j)r8(j)�0 (9)

t(4m)��211t(m)�3
X2m

k�1

23b(2k)s3(Od2k))

�
X4m�2k

j�0

(�1)jr8(4m�2k�j)r8(j) (10)

t(2n�1)�
X2n�1

k�1

23[b(2k)�1]s3(Od2k))

�
X2n�2�2k

j�0

(�1)jr8(3n�2�2k�j)r8(j); (11)

where b(n) is the exponent of the exact power of 2
dividing n , Od(n) is the ODD PART of n , sk(n) is the
DIVISOR FUNCTION of n , and rk(n) is the SUM OF

SQUARES FUNCTION.

For PRIME p ,

t pn�1
� �

�t(p)t pnð Þ�p11t pn�1
� �

(12)

for n]1; and

t panð Þ�t(p)t pa�1n
� �

�p11t pa�2n
� �

(13)

for a]2 and (n; p)�1 (Mordell 1917; Apostol 1997,
p. 92).

In ORE’S CONJECTURE, the tau function appears as the
number of DIVISORS of n . Ramanujan conjectured and
Mordell (1917) proved that if (n; n?)�1; then

t(nn?)�t(n)t(n?): (14)

More generally,

t(n)t(n?)�
X

d j (n; n?)

d11t
nn?

d2

 !
; (15)

which reduces to the first form if (n; n?)�1 (Mordell
1917; Apostol 1997, p. 93). Ramanujan conjectured
and Watson proved that t(n) is divisible by 691 for
almost all n , specifically

t(n)�s11(n) (mod 691); (16)

where sk(n) is the DIVISOR FUNCTION (Wilton 1930,
Apostol 1997, pp. 93 and 140) and 691 is the
NUMERATOR of the BERNOULLI NUMBER B12:/

Ramanujan (1920) showed that

t(2n)�0 (mod 2) (17)

t(3n)�0 (mod 3) (18)

t(5n)�0 (mod 5) (19)

(Darling 1921; Wilton 1930),

t(7n�m)�0 (mod 7) (20)

for m�0 or one the quadratic non-residues of 7, i.e.,
3, 5, 6, and

t(23n�m)�0 (mod 23) (21)

for m�0 or one the quadratic non-residues of 23, i.e.,
5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (Mordell 1922;
Wilton 1930). Ewell (1999) showed that

t(4n)�t(n) (mod 3): (22)

/t(n) is almost always divisible by 25 � 33 � 52 � 72 � 23 �
691 according to Ramanujan. In fact, Serre has shown
that t(n) is almost always divisible by any integer
(Andrews et al. 1988).

Ramanujan also studied the DIRICHLET L -SERIES

f (x)�
X�
n�1

t(n)n�s; (23)

which has properties analogous to the RIEMANN ZETA

FUNCTION. It satisfies

f (s)G(s)

(2p)s �
f (12 � s)

(2p)12�s : (24)

It also has the Euler product representation

X�
n�1

t(n)

ns
�
Y

p

1

1 � t(p)p�s � p11�2s
(25)

for s�R[s] > 7 (since t(n)�O(n6)) (Apostol 1997,
p. 137). Ramanujan’s TAU-DIRICHLET SERIES conjec-
ture alleges that all nontrivial zeros of f (s) lie on the
line R[s]�6: f can be split up into

f (6�it)�z(t)e�iu(t); (26)

where



z(t) �G(6 �it)f (6 �it)(2 p) �it


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh( pt)

pt 1 � t2ð Þ 4 � t2ð Þ 9 � t2ð Þ 16 � t2ð Þ 25 � t2ð Þ

s

(27)

u(t) ��1
2 i ln

G(6 � it)

G(6 � it)

" #
�t ln(2p) : (28)

The functions f (s) ; u(t) ; and z(t) are returned by the
Mathematica commands RamanujanTauDiri-
chletSeries[s ] in the Mathematica add-on package
NumberTheory‘Ramanujan‘ (which can be loaded
with the command BBNumberTheory‘), Ramanu-
janTauTheta[t ] in the Mathematica add-on package
NumberTheory‘Ramanujan‘ (which can be loaded
with the command BBNumberTheory‘), and Ra-
manujanTauZ[t ] in the Mathematica add-on package
NumberTheory‘Ramanujan‘ (which can be loaded
with the command BBNumberTheory‘), respec-
tively.

The SUMMATORY tau function is given by

T(n) �
X
n5x

t(n) : (29)

Here, the prime indicates that when x is an INTEGER,
the last term t(x) should be replaced by 1

2 t(x) :/

Ramanujan’s tau theta function Z(t) is a REAL func-
tion for REAL t and is analogous to the RIEMANN-

SIEGEL FUNCTION Z . The number of zeros in the
critical strip from t �0 to T is given by

N(t) �
U(T) � T ln tDS(6 � iT)½ �f g

p 
; (30)

where U is the RIEMANN THETA FUNCTION and tDS is
the TAU-DIRICHLET SERIES, defined by

tDS(s) �
X�
n�1

t(n)

ns
: (31)

Ramanujan conjectured that the nontrivial zeros of
the function are all real.

Ramanujan’s tz function is defined by

tz(t)�
G(6 � it)(2p)�it

tDS(6 � it)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh(pt)

pt
Q5

k�1 k2 � t2

s ; (32)

where tDS(z) is the TAU-DIRICHLET SERIES.

See also DEDEKIND ETA FUNCTION, J -FUNCTION,
LEECH LATTICE, ORE’S CONJECTURE, PARTITION

FUNCTION P , TAU CONJECTURE, TAU-DIRICHLET SER-

IES
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Tauberian Theorem
A Tauberian theorem is a theorem which deduces the
convergence of an INFINITE SERIES on the basis of the
properties of the function it defines and any kind of
auxiliary HYPOTHESIS which prevents the general
term of the series from converging to zero too slowly.
Hardy (1999, p. 46) states that "a ‘Tauberian’ theo-
rem may be defined as a corrected form of the false
converse of an ‘ABELIAN THEOREM’."

Wiener’s Tauberian theorem states that if f �L1(R);
then the translates of f spans a dense subspace IFF

the FOURIER TRANSFORM is nonzero everywhere. This
theorem is analogous with the theorem that if f �



L1(Z) (for a BANACH ALGEBRA with a unit), then f
spans the whole space if and only if the GELFAND

TRANSFORM is nonzero everywhere.

See also ABELIAN THEOREM, HARDY-LITTLEWOOD

TAUBERIAN THEOREM
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Tau-Dirichlet Series

tDS(s) �
X�
n�1

t(n)

ns
;

where t(n) is the TAU FUNCTION. Ramanujan conjec-
tured that all nontrivial zeros of tDS(s) lie on the line
R[s] �6:/

See also TAU FUNCTION
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Tautochrone Problem

The problem of finding the curve down which a bead
placed anywhere will fall to the bottom in the same
amount of time. The solution is a CYCLOID, a fact first
discovered and published by Huygens in Horologium
oscillatorium (1673). This property was also alluded
to in the following passage from Moby Dick : "[The try-
pot] is also a place for profound mathematical
meditation. It was in the left-hand try-pot of the
Pequod , with the soapstone diligently circling round
me, that I was first indirectly struck by the remark-
able fact, that in geometry all bodies gliding along a

cycloid, my soapstone, for example, will descend from
any point in precisely the same time" (Melville 1851).

Huygens also constructed the first pendulum clock
with a device to ensure that the pendulum was
isochronous by forcing the pendulum to swing in an
arc of a CYCLOID. This is accomplished by placing two
evolutes of inverted cycloid arcs on each side of the
pendulum’s point of suspension against which the
pendulum is constrained to move (Wells 1991, p. 47;
Gray 1997, p. 123). Unfortunately, friction along the
arcs causes a greater error than that corrected by the
cycloidal path (Gardner 1984).

The PARAMETRIC EQUATIONS of the CYCLOID are

x�a(u�sin u) (1)

y�a(1�cos u): (2)

To see that the CYCLOID satisfies the tautochrone
property, consider the derivatives

x?�a(1�cos u) (3)

y?�a sin u; (4)

and

x?2�y?2�a2 1�2 cos u�cos2 u
� �

�sin2 u
� �

�2a2(1�cos u): (5)

Now

1
2 mv2�mgy (6)

v�
ds

dt
�

ffiffiffiffiffiffiffiffi
2gy

p
(7)

dt�
dsffiffiffiffiffiffiffiffi
2gy

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 � dy2

p ffiffiffiffiffiffiffiffi
2gy

p

�
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1 � cos u)

p
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ga(1 � cos u)
p �

ffiffiffi
a

g

s
du; (8)

so the time required to travel from the top of the
CYCLOID to the bottom is

T�g
p

0

dt�

ffiffiffi
a

g

s
p: (9)

However, from an intermediate point u0;

v�
ds

dt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g y�y0ð Þ

p
; (10)

so

T�g
p

u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2(1 � cos u)

2ag cos u0 � cos uð Þ

s
du



�

ffiffiffi
a

g

s
g  

p

u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos u

cos u0 � cos u

s
du : (11)

To integrate, rearrange this equation using the HALF-

ANGLE FORMULAS

sin 1
2 x
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos x

2

s
(12)

cos 1
2 x
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos x

2

s
(13)

with the latter rewritten in the form

cos u �2 cos2 1
2 u
� �

�1 (14)

to obtain

T �

ffiffiffiffiffi
a

g

s
g  

p

u0

sin 1
2 u
� �

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 1

2 u0

� �
� cos2 1

2 u
� �r : (15)

Now transform variables to

u �
cos 1

2 u
� �

cos 1
2 u0

� � (16)

du ��
sin 1

2 u
� �

du

2 cos 1
2 u0

� � ; (17)

so

T ��2

ffiffiffi
a

g

s
g

0

1

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p �2

ffiffiffi
a

g

s
sin�1 u
� �1

0
� p

ffiffiffiffiffi
a

g 
;

s
(18)

and the amount of time is the same from any point.

See also BRACHISTOCHRONE PROBLEM, CYCLOID
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Tautology
A logical statement in which the conclusion is
equivalent to the premise. If p is a tautology, it is
written ffip: A SENTENCE whose TRUTH TABLE contains
only ‘T’ is called a tautology. The following SEN-

TENCES are examples of tautologies:

A fflB �!(!A �!B) (1)

A �B �!A [B (2)

A fflB �!(A [!B) (3)

(Mendelson 1997, p. 26), where ffl denotes AND, �
denotes "is EQUIVALENT to," ! denotes NOT, �denotes
OR, and[denotes implies.

See also CONTINGENCY, CONTRADICTION
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Taxicab Number
The nth taxicab number Ta(n) is the smallest number
representable in n ways as a sum of POSITIVE CUBES.
The numbers derive their name from the HARDY-

RAMANUJAN NUMBER

Ta(2)�1729

�13�123

�93�103; (1)

which is associated with a story told about Ramanu-
jan by G. H. Hardy (Hofstadter 1989, Kanigel 1991,
Snow 1993).

However, this property was also known as early as
1657 by F. de Bessy (Berndt and Bhargava 1993, Guy
1994). Leech (1957) found

Ta(3)�87539319

�1673�4363

�2283�4233

�2553�4143: (2)

Rosenstiel et al. (1991) recently found



Ta(4) �6963472309248

�24213 �190833

�54363 �189483

�102003 �180723

�133223 �166303 : (3)

D. Wilson found

Ta(5) �48988659276962496

�387873 �3657573

�1078393 �3627533

�2052923 �3429523

¼ 2214243 þ 3365883

�2315183 �3319543 : (4)

The first few taxicab numbers are therefore 2, 1729,
87539319, 6963472309248, ... (Sloane’s A011541).

Hardy and Wright (Theorem 412, 1979) show that the
number of such sums can be made arbitrarily large
but, updating Guy (1994) with Wilson’s result, the
least example is not known for six or more equal
sums.

Sloane defines a slightly different type of taxicab
numbers, namely numbers which are sums of two
cubes in two or more ways, the first few of which are
1729, 4104, 13832, 20683, 32832, 39312, 40033,
46683, 64232, ... (Sloane’s A001235).

See also DIOPHANTINE EQUATION–3RD POWERS,
HARDY-RAMANUJAN NUMBER
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Taylor Center
The center of the TAYLOR CIRCLE, which is the
SPIEKER CENTER of DH1H2H3; where Hi are the feet
of the ALTITUDES.

See also ALTITUDE, SPIEKER CENTER, TAYLOR CIRCLE
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Taylor Circle

From the feet HA; HB; and HC of each ALTITUDE of a
TRIANGLE, draw lines PERPENDICULAR to the adjacent
sides. Then the CIRCUMCIRCLE of the triangle formed
by the PERPENDICULAR FEET is called the Taylor
circle, and its center is called the TAYLOR CENTER.
The Taylor circle is a TUCKER CIRCLE.



There are a number of remarkable properties satis-
fied by the figure obtained in the construction of the
Taylor circle. These facts are probably well-known,
but I have not seen them explicitly described else-
where.

1. The feet of the perpendiculars from a given
altitude foot are concyclic with the opposite vertex.
2. The two feet of the perpendiculars which are
closest to a given vertex are concyclic with the feet
of the altitudes on the corresponding sides.
3. The two feet of the perpendiculars which are
closest to a give vertex are concyclic with that

vertex and with the intersection of the perpendi-
culars.
4. The three circles through the ORTHOCENTER and
the feet of the perpendiculars on a given side
intersect pairwise along the altitudes.

See also TAYLOR CENTER, TUCKER CIRCLES
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Taylor Expansion
TAYLOR SERIES

Taylor Polynomial
TAYLOR SERIES

Taylor Series
A Taylor series is a SERIES EXPANSION of a FUNCTION

about a point. A 1-D Taylor series is an expansion of a
REAL FUNCTION f (x) about a point x�x0 (sometimes
written instead x�a ). If x�0, the expansion is
known as a MACLAURIN SERIES.

To derive the Taylor series of a function f (x); note that
the integral of the (n�1)/st DERIVATIVE f (n�1) of f (x)
from the point x0 to an arbitrary point x is given by

g
x

x0

f (n�1)(x) dx� f (n)(x)
� �x

x0
�f (n)(x)�f (n) x0ð Þ; (1)

where f (n) x0ð Þ is the nth derivative of f (x) evaluated at
x0; and is therefore simply a constant. Now integrate
a second time to obtain

g
x

x0
g

x

x0

f (n�1)(x) dx

" #
dx

�g
x

x0

f (n)(x)�f (n) x0ð Þ
� �

dx

� f (n�1)(x)
� �x

x0
� x�x0ð Þf (n) x0ð Þ

�f (n�1)(x)�f (n�1) x0ð Þ� x�x0ð Þf (n) x0ð Þ; (2)

where f (k) x0ð Þ is again a constant. Integrating a third
time,



ggg
x

x0

f (n�1)(x)(dx)3�f (n�2)(x)�f (n�2)(x0)

� x�x0ð Þf (n�1) x0ð Þ� x � x0ð Þ2

2!
f (n) x0ð Þ; (3)

and continuing up to n�1 integrations then gives

g � � � g
x

x0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�1

f (n�1)(x)(dx)n�1

�f (x)�f x0ð Þ� x�x0ð Þf ? x0ð Þ� x � x0ð Þ2

2!
f ƒ x0ð Þ

�. . .�
x � x0ð Þn

n!
f (n) x0ð Þ: (4)

Rearranging then gives the one-dimensional Taylor
series

f (x)�f x0ð Þ� x�x0ð Þf ? x0ð Þ� x � x0ð Þ2

2!
f ƒ x0ð Þ�. . .

�
x � x0ð Þn

n!
f (n) x0ð Þ�Rn; (5)

�
Xn

k�0

x � x0ð Þkf (k) x0ð Þ
k!

�Rn: (6)

Here, Rn is a remainder term known as the LA-

GRANGE REMAINDER, which is given by

Rn�g � � � g
x

x0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�1

f (n�1)(x)(dx)n�1: (7)

Rewriting the MULTIPLE INTEGRAL then gives

Rn�g
x

x0

f (n�1)(t)
(x � t)n

n!
dt: (8)

Now, from the MEAN-VALUE THEOREM for a function
g(x); it must be true that

g
x

x0

g(x) dx� x�x0ð Þg x�ð Þ (9)

for some x� � x0; x½ �: Therefore, integrating n�1
times gives the result

Rn�
x � x0ð Þn�1

(n � 1)!
f (n�1) x�ð Þ; (10)

so the maximum error after n terms of the Taylor
series is the maximum value of (10) running through
all x� � x0; x½ �: Note that the Lagrange remainder Rn

is also sometimes taken to refer to the remainder
when terms up to the (n�1)/st power are taken in the

Taylor series (Whittaker and Watson 1990, pp. 95�/

96).

An alternative form of the 1-D Taylor series may be
obtained by letting

x�x0�Dx (11)

so that

x�x0�Dx: (12)

Substitute this result into (5) to give

f x0�Dxð Þ�f x0ð Þ�Dxf ?(x0)� 1
2!(Dx)2f ƒ x0ð Þ�. . . : (13)

A Taylor series of a REAL FUNCTION in two variables
f (x; y) is given by

f (x�Dx; y�Dy)�f (x; y)�[fx(x; y)Dx�fy(x; y)Dy]

�1
2![(Dx)2fxx(x; y)�2DxDyfxy(x; y)�(Dy)2fyy(x; y)]

�1
3![(Dx)3fxxx(x; y)�3(Dx)2Dyfxxy(x; y)

�3Dx(Dy)2fxyy(x; y)�(Dy)3fyyy(x; y)]�. . . : (14)

This can be further generalized for a REAL FUNCTION

in n variables,

f x1; . . . ; xnð Þ

�
X�
j�0

1

j!

Xn

k�1

x?k�akð Þ @

@x?k

" #j

f x?1; . . . ; x?nð Þ

8<
:

9=
;

x?1�a1 ; ...; x?n�an

:

ð15Þ

Rewriting,

f x1�a1; . . . ; xn�anð Þ

�
X�
j�0

1

j!

Xn

k�1

ak

@

@x?k

" #j

f x?1; . . . ; x?nð Þ

8<
:

9=
;

x?1�a1 ; ...; x?n�an

:

Taking n�2 in (15) gives

f x1; x2ð Þ�
X�
j�0

�
1

j!


x?1�a1ð Þ @

@x?1

� x?2�a2ð Þ @

@x?2

�j

f x?1; x?2ð Þ
-

x?1�x1; x?2�x2

�f a1; a2ð Þ�


x1�a1ð Þ @f

@x1

� x2�a2ð Þ @f

@x2

�

�1
2!


x1�a1ð Þ2 @

2f

@x2
1

�2 x1�a1ð Þ x2�a2ð Þ @2f

@x1@x2



� x2 �a2ð Þ2 @
2f

@x2
2

�
�. . . : (17)

Taking n �3 in (16) gives

f x1 �a1 ; x2 �x2 �a2 ; x3 �a3ð Þ

�
X�
j�0

�
1

j!

�
a1

@

@x?1
�a2

@

@x?2
�a3

@

@x?3

�j

f x?1 ; x?2 ; x?3ð Þ
-

x?1�x1 ; x?2�x2 ; x ?3�x3

; (18)

or, in VECTOR form

f (r �a) �
X�
j�0

1

j!
a � 9r?ð Þjf (r?)

" #
r?�r

(19)

The zeroth- and first-order terms are

f (r) (20)

and

a � 9r ?ð Þf r?ð Þ j r?�r ; (21)

respectively. The second-order term is

1
2 a � 9r ?ð Þ a � 9r ?ð Þf (r?) j r?�r �

1
2 a � 9r ? a � ( 9f (r?))½ �r ?�r

�1
2 a � a �9r ? 9r ?f r?ð Þð Þ½ � r?�r ;j (22)

so the first few terms of the expansion are

f (r �a) �f (r) � a � 9r ?ð Þf (r?) j r ?�r �
1
2 a

� a � 9r ? 9r ?f r?ð Þð Þ½ �jr?�r : (23)

Taylor series can also be defined for functions of a
COMPLEX variable. By the CAUCHY INTEGRAL FOR-

MULA,

f (z) �
1

2pi gC

f (z ?) dz

z? � z
�

1

2pi gC

f (z ?) dz?

z? � z0ð Þ� z � z0ð Þ

�
1

2pi gC

f (z?) dz ?

z? � z0ð Þ 1 �
z � z0

z? � z0

 ! : (24)

In the interior of C ,

z � z0j j
z ? � z0j j

B1 (25)

so, using

1

1 � t 
�
X�
n �0

tn ; (26)

it follows that

f (z) �
1

2pi gC

X�
n�0

z � z0ð Þnf (z?) dz?

z? � z0ð Þn�1

�
1

2pi

X�
n�0

z�z0ð Þn gC

f (z?) dz

z? � z0ð Þn�1 : (27)

Using the CAUCHY INTEGRAL FORMULA for deriva-
tives,

f (z)�
X�
n�0

z�z0ð Þn f (n) z0ð Þ
n!

: (28)

See also CAUCHY REMAINDER, LAGRANGE EXPANSION,
LAGRANGE REMAINDER, LAURENT SERIES, LEGENDRE

SERIES, MACLAURIN SERIES, NEWTON’S FORWARD

DIFFERENCE FORMULA, TAYLOR’S THEOREM

References
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
p. 880, 1972.

Arfken, G. "Taylor’s Expansion." §5.6 in Mathematical
Methods for Physicists, 3rd ed. Orlando, FL: Academic
Press, pp. 303�/313, 1985.

Comtet, L. "Calcul pratique des coefficients de Taylor d’une
fonction algébrique." Enseign. Math. 10, 267�/270, 1964.

Morse, P. M. and Feshbach, H. "Derivatives of Analytic
Functions, Taylor and Laurent Series." §4.3 in Methods of
Theoretical Physics, Part I. New York: McGraw-Hill,
pp. 374�/398, 1953.

Whittaker, E. T. and Watson, G. N. "Forms of the Remain-
der in Taylor’s Series." §5.41 in A Course in Modern
Analysis, 4th ed. Cambridge, England: Cambridge Uni-
versity Press, pp. 95�/96, 1990.

Taylor-Greene-Chirikov Map
STANDARD MAP

Taylor’s Condition

For a given POSITIVE INTEGER n , does there exist a
WEIGHTED TREE with n VERTICES whose paths have
weights 1, 2, ..., n

2

� �
; where n

2

� �
is a BINOMIAL



COEFFICIENT? Taylor showed that no such TREE can
exist unless it is a PERFECT SQUARE or a PERFECT

SQUARE plus 2. No such TREES are known except
n �2, 3, 4, and 6.

See also GOLOMB RULER, PERFECT DIFFERENCE SET,
TREE
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Taylor’s Theorem
The theorem that a function may be represented by a
TAYLOR SERIES,

f (x) �f (0) �xf ?(0) �
x2

2!
f ƒ(0) �. . .�

xn �1

(n � 1)!
f (n�1)(0)

�g
x

0

(x � u)n�1

(n � 1)!
f (n)(u) du :

Taylor’s theorem without the remainder was first
devised by Taylor in 1712 and published in 1915, but
it was not until almost a century later than Lagrange
and Cauchy derived approximations of the remainder
term after a finite number of terms (Moritz 1937).
These forms are now called the LAGRANGE REMAIN-

DER and CAUCHY REMAINDER.

Most modern proofs are based on Cox (1851), which is
more elementary than that of Cauchy and Lagrange
(Moritz 1923), and which Pringsheim (1900) referred
to as "leaving hardly anything to wish for in terms of
simplicity and strength" (Moritz 1923).

See also CAUCHY REMAINDER, LAGRANGE REMAINDER,
TAYLOR SERIES
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Tchebycheff
CHEBYSHEV APPROXIMATION FORMULA, CHEBYSHEV

CONSTANTS, CHEBYSHEV DEVIATION, CHEBYSHEV DIF-

FERENTIAL EQUATION, CHEBYSHEV FUNCTIONS, CHE-

BYSHEV-GAUSS QUADRATURE, CHEBYSHEV

INEQUALITY, CHEBYSHEV INEQUALITY, CHEBYSHEV

INTEGRAL, CHEBYSHEV PHENOMENON, CHEBYSHEV

POLYNOMIAL OF THE FIRST KIND, CHEBYSHEV POLY-

NOMIAL OF THE SECOND KIND, CHEBYSHEV QUADRA-

TURE, CHEBYSHEV-RADAU QUADRATURE, CHEBYSHEV-

SYLVESTER CONSTANT

t-Design

See also STEINER SYSTEM

t-Distribution
STUDENT’S T -DISTRIBUTION

Teardrop Curve
A plane curve given by the PARAMETRIC EQUATIONS

x �cos t

y �sin t sinm 1
2 t
� �

:

See also PEAR-SHAPED CURVE
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Technique
A specific method of performing an operation. The
terms ALGORITHM, METHOD, and PROCEDURE are also
used interchangeably.

See also ALGORITHM, METHOD, PROCEDURE

Teeko
A game described by Scarne which is played on a 5�
5 board by two players who alternate placing, one at a
time, their four counters each, after which the
counters are moved around (including diagonally).
Four counters in a row or square wins (Beeler et al.
1972). In general, there are sixteen forms of the
game, all of which were solved completely by Guy
Steele in 1998 with the following results: standard
teeko (44 winning configurations) is a draw, and
advanced teeko (58 winning configurations) is a
first-player win.

Here is a more complete summary of the results.

Variant Winner

standard draw

alternate draw

one-move alternate draw

two-move alternate draw

three-move alternate draw

one-move standard draw



two-move standard draw

three-move standard draw

standard, 58 positions first-player win
(13 turns)

alternate, 58 positions draw

one-move alternate,
58 positions

draw

two-move alternate,
58 positions

draw

three-move alternate,
58 positions

draw

one-move standard,
58 positions

first-player win
(25 turns)

two-move standard,
58 positions

draw

three-move standard,
58 positions

draw
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Teichmü ller Space
TEICHMÜ LLER’S THEOREM asserts the EXISTENCE and
UNIQUENESS of the extremal quasiconformal map
between two compact RIEMANN SURFACES of the
same GENUS modulo an EQUIVALENCE RELATION. The
equivalence classes form the Teichmüller space Tp of
compact RIEMANN SURFACES of GENUS p .

See also RIEMANN’S MODULI PROBLEM

Teichmü ller’s Principle

See also JENKINS’ THEOREM
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Teichmü ller’s Theorem
Asserts the EXISTENCE and UNIQUENESS of the ex-
tremal quasiconformal map between two compact
RIEMANN SURFACES of the same GENUS modulo an
EQUIVALENCE RELATION.

See also TEICHMÜ LLER SPACE

Teixeira’s Theorem
An extended form of BÜ RMANN’S THEOREM. Let f (z) be
a function of z analytic in a ring-shaped region A ,
bounded by another curve C and an inner curve c .
Let u(z) be a function analytic on and inside C having
only one zero a (which is simple) within the contour.
Further let x be a given point within A . Finally, let

u(x)j jB u(z)j j  (1)

for all points z of C , and

u(x)j j > u(z)j j  (2)

for all points z of c . Then

f (x) �
X�
n�0

An u(x)½ �n�
X�
n�1

Bn

u(x)½ �n ; (3)

where

An �
1

2pi gC

f (z) u?(z) dz

u(z)½ �n�1 (4)

Bn �
1

2pi gc

f (z) u(z)½ �n�1
u ?(z) dz (5)

(Whittaker and Watson 1990, pp. 131 �/132).

See also BÜ RMANN’S THEOREM, LAGRANGE EXPANSION
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puissance d’une fonction donnée." J. für Math. 122, 97�/

123, 1900.
Whittaker, E. T. and Watson, G. N. "Teixeira’s Extended
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Telegraph Equation
The PARTIAL DIFFERENTIAL EQUATION

uxx�autt�but�cu:
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Telephone Problem
GOSSIPING

Telescoping Sum
A sum in which subsequent terms cancel each other,
leaving only initial and final terms. For example,



S �
Xn�1

i�1

ai �ai �1

� �
� a1 �a2ð Þ� a2 �a3ð Þ�. . .� an�2 �an �1ð Þ
� an�1 �anð Þ

� a1 �anð Þ

is a telescoping sum.

See also ZEILBERGER’S ALGORITHM

Temperature
The "temperature" of a curve G is defined as

T �
1

ln
2l

2l � h

 ! ;

where l is the length of G and h is the length of the
PERIMETER of the CONVEX HULL. The temperature of a
curve is 0 only if the curve is a straight line, and
increases as the curve becomes more "wiggly."

See also CURLICUE FRACTAL
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Templar Magic Square

A MAGIC SQUARE-type arrangement of the words in
the Latin sentence "Sator Arepo tenet opera rotas"
("the farmer Arepo keeps the world rolling"). This
square has been found in excavations of ancient
Pompeii.

See also MAGIC SQUARE
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Temple Problem
SANGAKU PROBLEM

Tennis Ball Theorem
Any nontrivial, closed, simple, smooth SPHERICAL

CURVE dividing the surface of a SPHERE into two parts
of equal areas has at least four INFLECTION POINTS.

See also BALL, BASEBALL COVER, INFLECTION POINT,
SPHERICAL CURVE
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Tensegrity
An ordered finite CONFIGURATION with certain pairs
of points, called cables, which are constrained not to
get further apart and certain other pairs of points,
called struts, which are constrained not to get closer
together.

See also CONFIGURATION, FRAMEWORK
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Tensor
An nth-RANK tensor in m -space is a mathematical
object in m -dimensional space that has n indices and
mn components and obeys certain transformation
rules. Each INDEX of a tensor ranges over the number
of dimensions of SPACE. However, the dimension of
the space is largely irrelevant in most tensor equa-
tions (with the notable exception of the contracted
KRONECKER DELTA).

The notation for a tensor is similar to that of a MATRIX

(i.e., A� aij

� �
); except that a tensor ai; j; k; ... may have

an arbitrary number of INDICES. In addition, a tensor
with RANK r�s may be of mixed type (r, s ), with r so-
called "contravariant" INDICES and s "covariant"
INDICES, denoted aj1 ; ...; js

i1 ; ...; ir
: Technically, a MATRIX is a

tensor of type (1; 1) and would be written aj
i in tensor

notation.

In Mathematica , a tensor of RANK n is represented
using nested lists of depth n , and tensors can be
generated using the command Array[a , {i , j , ...}].
Similarly, the dimensions of a tensor can be found
using Dimensions[t ], and the rank can be found
using Rank[t ]. Taking for example

t�Array[a,{1,2,2,3}]

gives the rank-4 tensor of dimensions {1, 2, 2, 3},

{{{{a[1,1,1,1],a[1,1,1,2],a[1,1,1,3]},



{a[1,1,2,1],a[1,1,2,2],a[1,1,2,3]}},

{{a[1,2,1,1],a[1,2,1,2],a[1,2,1,3]},

{a[1,2,2,1], a[1,2,2,2],a[1,2,2,3]}}},

{{{a[2,1,1,1],a[2,1,1,2],a[2,1,1,3]},

{a[2,1,2,1],a[2,1,2,2],a[2,1,2,3]}},

{{a[2,2,1,1],a[2,2,1,2],a[2,2,1,3]},

{a[2,2,2,1],a[2,2,2,2],a[2,2,2,3]}}}}.

In n -dimensional space, each element aijkl would
then represent an n -vector.

A TENSOR SPACE of type (r, s ) can be described as a
TENSOR PRODUCT between r copies of VECTOR FIELDS

and s copies of the dual vector fields, i.e., ONE-FORMS.
For example,

T(3; 1) �TM 	TM 	TM 	T �M (1)

is the VECTOR BUNDLE of (3; 1)/-tensors on a MANIFOLD

M , where TM is the TANGENT BUNDLE of M and T �M
is its dual. Tensors of type (r, s ) form a VECTOR SPACE.
This description generalized to any tensor type, and
an INVERTIBLE LINEAR MAP J : V 0 W induces a map
J̃ : V 	V � 0 W 	W �; where V � is the DUAL VECTOR

SPACE and J the JACOBIAN, defined by

J̃ v1 	v�2ð Þ� Jv1 	 JT
� ��1

v�2
� �

; (2)

where JT is the PULLBACK MAP of a form is defined
using the transpose of the JACOBIAN. This definition
can be extended similarly to other TENSOR PRODUCTS

of V and V �: When there is a change of COORDINATES,
then tensors transform similarly, with J the JACO-

BIAN of the linear transformation.

Zeroth-rank tensors are called SCALARS, and first-
rank tensors are called VECTORS. In tensor notation, a
vector v would be written vi ; where i �1, ..., m .
Tensor notation can provide a very concise way of
writing vector and more general identities. For
example, in tensor notation, the DOT PRODUCT u � v
is simply written

u � v �uiv
i ; (3)

where repeated indices are summed over (EINSTEIN

SUMMATION). Similarly, the CROSS PRODUCT can be
concisely written as

u �v � eijkujvk ; (4)

where eijk is the PERMUTATION TENSOR.

CONTRAVARIANT second-rank tensors are objects
which transform as

A?ij �
@x?i
@xk

@x?j
@x ?l

Akl : (5)

COVARIANT second-rank tensors are objects which
transform as

C ?ij �
@xk

@x?i

@xl

@x?j
Ckl : (6)

MIXED second-rank tensors are objects which trans-
form as

B ?j
i�

@x?i
@xk

@xl

@x?j
Bk

l : (7)

If two tensors A and B have the same rank and the
same COVARIANT and CONTRAVARIANT indices, then
the can be added in the obvious way,

Aij �Bij �Cij (8)

Aij �Bij �Cij (9)

Ai
j �Bi

j �Ci
j : (10)

The indices of a tensor can be raised or lowered
(INDEX RAISING and INDEX LOWERING, respectively) by
multiplication by a so-called METRIC TENSOR, e.g.,

gijAj �Ai (11)

gijA
j �Ai (12)

(Arfken 1985, p. 159). The generalization of the DOT

PRODUCT applied to tensors is called CONTRACTION,
and consists of setting two unlike indices equal to
each other and then summing using the EINSTEIN

SUMMATION convention. Various types of derivatives
can be taken of tensors, the most common being the
COMMA DERIVATIVE and COVARIANT DERIVATIVE.

If the components of any tensor of any RANK vanish in
one particular coordinate system, they vanish in all
coordinate systems. A transformation of the variables
of a tensor changes the tensor into another whose
components are linear HOMOGENEOUS FUNCTIONS of
the components of the original tensor.

See also ANTISYMMETRIC TENSOR, COMMA DERIVA-

TIVE, CONTRACTION (TENSOR), CONTRAVARIANT TEN-

SOR, COVARIANT DERIVATIVE, COVARIANT TENSOR,
CURL, DIVERGENCE, GRADIENT, INDEX LOWERING,
INDEX RAISING, IRREDUCIBLE TENSOR, ISOTROPIC

TENSOR, JACOBI TENSOR, MIXED TENSOR, RICCI

TENSOR, RIEMANN TENSOR, SCALAR, SYMMETRIC

TENSOR, TENSOR SPACE, TORSION TENSOR, VECTOR,
WEYL TENSOR
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Tensor Calculus
The set of rules for manipulating and calculating with
TENSORS.

Tensor Density
A quantity which transforms like a TENSOR except for
a scalar factor of a JACOBIAN.

Tensor Direct Product
Abstractly, the tensor direct product is the same as
the TENSOR PRODUCT. However, it reflects an ap-
proach toward calculation using coordinates, and
indices in particular. The notion of tensor product is
more algebraic, intrinsic, and abstract. For instance,
up to ISOMORPHISM, the tensor product is commu-
tative because V 	W $W 	V : Note this does not
mean that the tensor product is symmetric.

For two first-RANK TENSORS (i.e., VECTORS), the tensor
direct product is defined as

a ?ib?
j �

@xk

@x ?i
ak

@x?j
@xl

bl �
@xk

@x?i

@x?j
@xl

akbl
� �

; (1)

which is a second-RANK TENSOR. The CONTRACTION of
a direct product of first-RANK TENSORS is the SCALAR

contr a?ib ?j
� �

�a ?ib?
i �akbk : (2)

For second-RANK TENSORS,

Ai
jB

kl �Cikl
j (3)

Cikl?
j �

@x?i
@xm

@xn

@x?j

@x?k
@xp

@x?l
@xq

Cmpq
n : (4)

In general, the direct product of two TENSORS is a
TENSOR of RANK equal to the sum of the two initial
RANKS. The direct product is ASSOCIATIVE, but not
COMMUTATIVE.

The tensor direct product of two tensors a and b can
be implemented in Mathematica as

TensorDirectProduct[a_List, b_List] :�
Outer[Times, a, b]

See also DIRECT PRODUCT, MATRIX DIRECT PRODUCT,
TENSOR PRODUCT (VECTOR SPACE)
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Tensor Dual
DUAL TENSOR

Tensor Product
TENSOR DIRECT PRODUCT, TENSOR PRODUCT (MOD-

ULE), TENSOR PRODUCT (VECTOR SPACE)

Tensor Product (Module)
The tensor product between MODULES A and B is a
more general notion than the TENSOR PRODUCT

BETWEEN VECTOR SPACES. In this case, we replace
"scalars" by a RING R . The familiar formulas hold, but
now a is any element of R ,

a1�a2ð Þ	b�a1	b�a2	b (1)

a	 b1�b2ð Þ�a	b1�a	b2 (2)

a(a	b)�(aa)	b�a	(ab): (3)

This generalizes the definition of a tensor product for
vector spaces since a VECTOR SPACE is a module over
the scalar field. Also, VECTOR BUNDLES can be
considered as PROJECTIVE MODULES over the ring of
functions, and REPRESENTATIONS of a group G can be
thought of as modules over CG. The generalization
covers those kinds of tensor products as well.

There are some interesting possibilities for the tensor
product of modules that don’t occur in the case of
vector spaces. It is possible for A	R B to be identi-
cally zero. For example, the tensor product of Z2 and
Z3 as modules over the integers, Z2	Z Z3; has no
nonzero elements. It is enough to see that a	b�0:
Notice that 1�3�2: Then

(1)a	b�(3�2)a	b�(�2a)	b�a	(3b)�0�0

�0; (4)



since �2a ��a �a �0 in Z2 and 3b �b �b �b �0 in
Z3 : In general, it is easier to show that elements are
zero than to show they are not zero.

Another interesting property of tensor products is
that if f : A 0 B is ONTO, then so is the induced map
g : A 	C 0 B 	C for any other module C . But if f :
A 0 B is injective, then g : A 	C 0 B 	C may not be
injective.

For example, f : Z2 0 Z4 ; with f (1) �2 is injective,
but g : Z2 	Z Z2 0 Z4 	Z Z2 ; with g(1 	1) �2 	1; is
not injective. In Z4 	Z Z2 ; we have
2 	1 �1 	2 �1 	0 �0::/

There is an algebraic description of this failure of
injectivity, called the TOR module.

Another way to think of the tensor product is in terms
of its UNIVERSAL PROPERTY: Any BILINEAR MAP from
A �B :0 C factors through the natural bilinear map
A �B 0 A 	B::/

See also MODULE, MODULE DIRECT SUM, PROJECTIVE

MODULE, REPRESENTATION, TENSOR PRODUCT (MOD-

ULE), TENSOR PRODUCT (REPRESENTATION), TENSOR

PRODUCT (VECTOR SPACE), TOR, UNIVERSAL PROP-

ERTY, VECTOR BUNDLE, VECTOR SPACE

Tensor Product (Representation)
The TENSOR PRODUCT V 	W of two REPRESENTATIONS

of a GROUP G is also a REPRESENTATION of G . An
element g of G acts on a basis element v 	w by

g(v 	w) �gv 	gw:

If G is a FINITE GROUP and V is a FAITHFUL

representation, then any representation is contained
in 	n V for some n . If V1 is a representation of G1 and
V2 is a representation of G2 ; then V1 	V2 is a
representation of G1 �G2 ; called the EXTERNAL TEN-

SOR PRODUCT. The regular tensor product is a special
case, with the diagonal embedding of G in G �G :/

See also EXTERNAL TENSOR PRODUCT, GROUP, IRRE-

DUCIBLE REPRESENTATION, REPRESENTATION, TENSOR

PRODUCT (VECTOR SPACE), VECTOR SPACE

Tensor Product (Vector Space)
The tensor product of two VECTOR SPACES V and W ,
denoted V 	W and also called the TENSOR DIRECT

PRODUCT, is a way of creating a new VECTOR SPACE

analogous to multiplication of integers. For instance,

Rn 	Rk $Rnk : (1)

In particular,

R 	Rn $Rn : (2)

Also, the tensor product obeys a distributive law with
the DIRECT SUM operation:

U 	(V 
W) $(U 	V) 
(U 	W) : (3)

The analogy with an algebra is the motivation behind
K -THEORY. The tensor product of two tensors a and b
can be implemented in Mathematica as

TensorProduct[a_List, b_List] : � Outer[List,

a, b]

Algebraically, the vector space V 	W is SPANNED by
elements OF THE FORM v 	w ; and the following rules
are satisfied, for any scalar a: The definition is the
same no matter which scalar FIELD is used.

v1 �v2ð Þ	w �v1 	w �v2 	w (4)

v 	 w1 �w2ð Þ�v 	w1 �v 	w2 (5)

a(v 	w) �(av) 	w �v 	( aw) (6)

One basic consequence of these formulas is that

0 	w �v 	0 �0 : (7)

A VECTOR BASIS vi of V and wj of W gives a basis for
V 	W ; namely vi 	wj ; for all pairs (i, j ). An arbitrary
element of V 	W can be written uniquely as
a ai ; jvi 	wj ; where ai ; j are scalars. If V is n dimen-
sional and W is k dimensional, then V 	W has
dimension nk .

Using tensor products, one can define SYMMETRIC

TENSORS, ANTISYMMETRIC TENSORS, as well as the
EXTERIOR ALGEBRA. Moreover, the tensor product is
generalized to the TENSOR PRODUCT OF VECTOR

BUNDLES. In particular, tensor products of the TAN-

GENT BUNDLE and its DUAL BUNDLE are studied in
RIEMANNIAN GEOMETRY and physics. Sections of these
bundles are often called TENSORS. In addition, it is
possible to take the TENSOR PRODUCT OF REPRESENTA-

TIONS to get another representation.

All of these versions of tensor product can be under-
stood as TENSOR PRODUCTS OF MODULES. The trick is
to find the right way to think of these spaces as
MODULES.

See also ANTISYMMETRIC TENSOR, EXTERIOR ALGE-

BRA, FIELD, K -THEORY, MODULE, SYMMETRIC TENSOR,
TENSOR, TENSOR DIRECT PRODUCT, TENSOR PRODUCT

(MODULE), TENSOR PRODUCT (REPRESENTATION),
VECTOR SPACE

Tensor Space
Let E be a linear space over a FIELD K . Then the
TENSOR PRODUCT 	k

l�1 E is called a tensor space of
degree k . More specifically, a tensor space of type (r,
s ) can be described as a TENSOR PRODUCT between r
copies of VECTOR FIELDS and s copies of the dual
vector fields, i.e., ONE-FORMS. For example,

T(3; 1)�TM	TM	TM	T�M (1)

is the VECTOR BUNDLE of (3; 1) tensors on a MANIFOLD

M . Tensors of type (r, s ) form a VECTOR SPACE.



See also TENSOR, VECTOR SPACE
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Tensor Spherical Harmonic
DOUBLE CONTRACTION RELATION

Tensor Transpose
TRANSPOSE

Tent Map
A piecewise linear, 1-D MAP on the interval [0; 1]
exhibiting CHAOTIC dynamics and given by

xn�1 � m 1 �2 xn �
1
2

��� ���� �
:

The case m �1 is equivalent to the LOGISTIC EQUATION

WITH R �4. The NATURAL INVARIANT of the tent map
is r �1:/

See also 2X MOD 1 MAP, LOGISTIC EQUATION, LOGISTIC

EQUATION: R �4

Tent Problem

Consider a horse rider who wishes to feed his horse at
a field, gather water from a river, and then return to
his tent, all in the smallest overall distance possible.
The path he should take is obtained by reflecting the
tent across the near river bank, then reflecting this
point about the field boundary, as illustrated above.

References
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York:

Dover, pp. 111 �/113, 1999.

Terminal
SINK (DIRECTED GRAPH)

Ternary
The BASE 3 method of counting in which only the
digits 0, 1, and 2 are used. Ternary numbers arise in a
number of problems in mathematics, including some
problems of WEIGHING. According to Knuth (1981),
"no substantial application of balanced ternary nota-
tion has been made" (balanced ternary uses digits
�1, 0, and 1 instead of 0, 1, and 2). The following
table gives the ternary equivalents of the first few
decimal numbers.

1 1 11 102 21 210

2 2 12 110 22 211

3 10 13 111 23 212

4 11 14 112 24 220

5 12 15 120 25 221

6 20 16 121 26 222

7 21 17 122 27 1000

8 22 18 200 28 1001

9 100 19 201 29 1002

10 101 20 202 30 1010

Ternary digits have the following MULTIPLICATION

TABLE.

/�/ 0 1  2

0 0 0  0

1 0 1  2

2 0 2 11

Every EVEN NUMBER represented in ternary has an
EVEN NUMBER (possibly 0) of 1s. This is true since a
number is congruent mod (B �1) to the sum of its
base-B digits. In the case B �3, there is only one digit
(1) which is not a multiple of B �1; so all we have to
do is "cast out twos" and count the number of 1s in the
base-3 representation.

Erdos and Graham (1980) conjectured that no POWER

of 2, 2n; is a SUM of distinct powers of 3 for n �8. This
is equivalent to the requirement that the ternary
expansion of 2n always contains a 2. This has been
verified by Vardi (1991) up to n�2 � 330: N. J. A.
Sloane has conjectured that any POWER of 2 has a 0 in
its ternary expansion (Vardi 1991, p. 28).

See also BASE (NUMBER), BINARY, DECIMAL, HEXADE-

CIMAL, OCTAL, QUATERNARY
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Ternary Goldbach Conjecture
GOLDBACH CONJECTURE

Ternary Tree

See also BINARY TREE, COMPLETE TERNARY TREE

Tessellation
A regular TILING of POLYGONS (in 2-D), POLYHEDRA (3-
D), or POLYTOPES (n -D) is called a tessellation.
Tessellations can be specified using a SCHLÄFLI

SYMBOL.

The breaking up of self-intersecting polygons into
simple polygons (illustrated above) is also called
tessellation (Woo et al. 1999).

Consider a 2-D tessellation with q regular p -gons at
each VERTEX. In the PLANE,

1�
2

p

 !
p�

2p

q
(1)

1

p
�

1

q
�

1

2
; (2)

so

(p�2q)(q�2)�4 (3)

(Ball and Coxeter 1987), and the only factorizations
are

4�4 � 1�(6�2)(3�2)[f6; 3g (4)

�2 � 2�(4�2)(4�2)[f4; 4g (5)

�1 � 4�(3�2)(6�2)[f3; 6g: (6)

Therefore, there are only three regular tessellations
(composed of the HEXAGON, SQUARE, and TRIANGLE),
illustrated as follows (Ghyka 1977, p. 76; Williams
1979, p. 36; Wells 1991, p. 213)

There do not exist any regular STAR POLYGON tessel-
lations in the PLANE. Regular tessellations of the
SPHERE by SPHERICAL TRIANGLES are called TRIANGU-

LAR SYMMETRY GROUPS.

Regular tessellations of the plane by two or more
convex regular POLYGONS such that the same POLY-

GONS in the same order surround each VERTEX are
called semiregular tessellations, or sometimes Archi-
medean tessellations. In the plane, there are eight
such tessellations, illustrated below (Ghyka 1977,
pp. 76�/78; Williams 1979, pp. 37�/41; Steinhaus
1983, pp. 78�/82; Wells 1991, pp. 226�/227). Williams
(1979, pp. 37�/41) also illustrates the DUAL TESSELLA-

TIONS of the semiregular tessellations. The DUAL

TESSELLATION of the tessellation of squares and



equilateral triangles is called the CAIRO TESSELLA-

TION (Williams 1979, p. 38; Wells 1991, p. 23).

There are 14 polymorph, or demiregular, tessellations
which are orderly compositions of the three regular
and eight semiregular tessellations (Critchlow 1970,
pp. 62 �/67; Ghyka 1977, pp. 78 �/80; Williams 1979,
p. 43; Steinhaus 1983, pp. 79 and 81 �/82).

In 3-D, a POLYHEDRON which is capable of tessellating
space is called a SPACE-FILLING POLYHEDRON. Exam-
ples include the CUBE, RHOMBIC DODECAHEDRON, and
TRUNCATED OCTAHEDRON. There is also a 16-sided
space-filler and a convex POLYHEDRON known as the
SCHMITT-CONWAY BIPRISM which fills space only
aperiodically.

A tessellation of n -D polytopes is called a HONEY-

COMB.

See also ARCHIMEDEAN SOLID, CAIRO TESSELLATION,
CELL, DUAL TESSELLATION, HINGED TESSELLATION,
HONEYCOMB, HONEYCOMB CONJECTURE, SCHLÄ FLI

SYMBOL, SEMIREGULAR POLYHEDRON, SPACE-FILLING

POLYHEDRON, SPIRAL-SIMILARITY TESSELLATION,
SYMMETRY, TILING, TRIANGULAR SYMMETRY GROUP,
TRIANGULATION
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Tesseract

The HYPERCUBE in R4; also called the 8-cell, is known
as a tesseract. It has the SCHLÄFLI SYMBOL f4; 3; 3g;
and VERTICES (91; 91; 91; 91): The above figures
show two visualizations of the tesseract. The figure
on the left is a projection of the tesseract in 3-space
(Gardner 1977), and the figure on the right is the
GRAPH of the tesseract symmetrically projected into



the PLANE (Coxeter 1973). A tesseract has 16 VER-

TICES, 32 EDGES, 24 SQUARES, and 8 CUBES.

See also CUBE, HYPERCUBE, MAGIC TESSERACT,
POLYTOPE, SIMPLEX
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Tesseral Harmonic
A SPHERICAL HARMONIC OF THE FORM

cos
sin (mf)Pm(cos u)

l :
These harmonics are so named because the curves on
which they vanish are l �m parallels of latitude and
2m meridians, which divide the surface of a sphere
into quadrangles whose angles are right angles
(Whittaker and Watson 1990, p. 392).

Resolving Pl(cos u) into factors linear in cos2 u; multi-
plied by cos u when l is ODD, then replacing cos u by
z=r allows the tesseral harmonics to be expressed as
products of factors linear in x2 ; y2 ; and z2 multiplied
by one of 1, x , y , z , yz , zx , xy , and xyz (Whittaker and
Watson 1990, p. 536).

See also SECTORIAL HARMONIC, SPHERICAL HARMO-

NIC, ZONAL HARMONIC
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Tethered Bull Problem
Let a bull be tethered to a silo whose horizontal CROSS

SECTION is a CIRCLE of RADIUS R by a leash of length
L . Then the AREA which the bull can graze if L 5Rp is

A �
pL2

2
�

L3

3R 
:
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Tetrabolo

One of the 14 4-POLYABOLOES.

See also POLYABOLO

Tetrachoric Function

The function defined by

Tn(x) �
( �1)n�1ffiffiffi

n
p Z(n�1)(x) ;

where

Z(x) �
1ffiffiffiffiffiffi
2p

p e �x2 =2

and Z(k)(x) is the kth derivative of Z(x) :/

See also NORMAL DISTRIBUTION, STANDARD NORMAL

DISTRIBUTION
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Tetracontagon
A 40-sided POLYGON.

Tetracuspid
HYPOCYCLOID–4-CUSPED

Tetracyclic Plane
The set of all points x that can be put into one-to-one
correspondence with sets of essentially distinct values
of four homogeneous coordinates /x0 : x1 : x2 : x3/, not
all simultaneously zero, which are connected by the
relation



x � x �x2
0 �x2

1 �x2
2 �x2

3 �0 : (1)

See also PENTASPHERICAL SPACE
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Tetrad
A SET of four, also called a QUARTET.

See also HEXAD, MONAD, PAIR, QUARTET, QUINTET,
TRIAD, TRIPLE, TWINS

Tetradecagon

A 14-sided POLYGON, sometimes called a TETRAKAIDE-

CAGON.

Tetradecahedron
A 14-sided POLYHEDRON, sometimes called a TETRA-

KAIDECAHEDRON.

See also CUBOCTAHEDRON, TRUNCATED OCTAHEDRON
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Tetradic
Tetradics transform DYADICS in much the same way
that DYADICS transform VECTORS. They are repre-
sented using Hebrew characters and have 81 compo-
nents (Morse and Feshbach 1953, pp. 72 �/73). The use
of tetradics is archaic, since TENSORS perform the
same function but are notationally simpler.
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Tetradyakis Hexahedron

The DUAL POLYHEDRON of the CUBITRUNCATED CU-

BOCTAHEDRON U16 and Wenninger dual W79 :/

See also DUAL POLYHEDRON, CUBITRUNCATED CUBOC-

TAHEDRON
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Tetraflexagon
A FLEXAGON made with SQUARE faces. Gardner (1961)
shows how to construct a tri-tetraflexagon,

tetra-tetraflexagon,

and hexa-tetraflexagon.



See also FLEXAGON, FLEXATUBE, HEXAFLEXAGON
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Tetragon
QUADRILATERAL

Tetragram
Lachlan’s term for a set of four lines, no three of
which are CONCURRENT.

See also TETRASTIGM
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Tetrahedral Coordinates
Coordinates useful for plotting projective 3-D curves
OF THE FORM /f ðx0 ; x1 ; x2 ; x3 Þ ¼ 0/ which are defined by

x0 �1 �z �
ffiffiffi
2

p
x

x1 �1 �z �
ffiffiffi
2

p
x

x2 �1 �z �
ffiffiffi
2

p
y

x3 �1 �z �
ffiffiffi
2

p
y

See also CAYLEY CUBIC, KUMMER SURFACE

Tetrahedral Graph

The PLATONIC GRAPH that is the unique POLYHEDRAL

GRAPH on four nodes which is also the COMPLETE

GRAPH K4 : The tetrahedral graph has 4 nodes, 6
edges, VERTEX CONNECTIVITY 4, EDGE CONNECTIVITY

3, GRAPH DIAMETER 1, GRAPH RADIUS 1, and GIRTH 3.
It has CHROMATIC POLYNOMIAL

pG(z) �z4 �6z3 �11z2 �6z

and CHROMATIC NUMBER 4.

See also CUBICAL GRAPH, DODECAHEDRAL GRAPH,
ICOSAHEDRAL GRAPH, OCTAHEDRAL GRAPH, PLATONIC

GRAPH, POLYHEDRAL GRAPH, TETRAHEDRON
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Tetrahedral Group
The POINT GROUP of symmetries of the TETRAHEDRON

having order 12 and denoted Td : The tetrahedral
group has symmetry operations E , 8C3; 3C2; 6S4; and
6sd (Cotton 1990).

See also ICOSAHEDRAL GROUP, OCTAHEDRAL GROUP,
POINT GROUPS, POLYHEDRAL GROUP, TETRAHEDRON
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Tetrahedral Number

A FIGURATE NUMBER Ten OF THE FORM

Ten �
Xn

i �1

Tn �
1
6 n(n �1)(n �2) �

n �2
3

� �
; (1)

where Tn is the nth TRIANGULAR NUMBER and n
m

� �
is a

BINOMIAL COEFFICIENT. These numbers correspond to
placing discrete points in the configuration of a
TETRAHEDRON (triangular base pyramid). Tetrahe-
dral numbers are PYRAMIDAL NUMBERS with r �3,
and are the sum of consecutive TRIANGULAR NUM-

BERS. The first few are 1, 4, 10, 20, 35, 56, 84, 120, ...
(Sloane’s A000292). The GENERATING FUNCTION of the
tetrahedral numbers is

x

(x � 1)4 �x �4x2 �10x3 �20x4 �. . . : (2)

Tetrahedral numbers are EVEN, except for every
fourth tetrahedral number, which is ODD (Conway
and Guy 1996).

The only numbers which are simultaneously SQUARE

and TETRAHEDRAL are Te1 �1; Te2 �4; and Te48 �
19600 (giving S1 �1; S2 �4 ; and S140 �19600); as
proved by Meyl (1878; cited in Dickson 1952, p. 25).

Numbers which are simultaneously TRIANGULAR and
TETRAHEDRAL satisfy the BINOMIAL COEFFICIENT

equation

Tn �
n �1

2

� �
�

m �2
3

� �
�Tem ; (3)

the only solutions of which are

Te1 �T1 �1 (4)

Te3 �T4 �10 (5)

Te8 �T15 �120 (6)

Te20 �T55 �1540 (7)

Te34 �T119 �7140 (8)

(Sloane’s A027568; Avanesov 1966/1967; Mordell
1969, p. 258; Guy 1994, p. 147).

Beukers (1988) has studied the problem of finding
numbers which are simultaneously tetrahedral and
PYRAMIDAL via INTEGER points on an ELLIPTIC CURVE,
and finds that the only solution is the trivial
Te1 �P1 �1 :/

See also PYRAMIDAL NUMBER, SQUARE PYRAMIDAL

NUMBER, TRIANGULAR NUMBER, TRUNCATED TETRA-

HEDRAL NUMBER
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Tetrahedral Surface
A SURFACE given by the PARAMETRIC EQUATIONS

x �A(u �a)m(v �a)n

y �B(u �b)m(v �b)n

z�C(u�c)m(v�c)n:
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Tetrahedroid
A special case of a quartic KUMMER SURFACE.

See also KUMMER SURFACE
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Tetrahedron

The regular tetrahedron, often simply called "the"
tetrahedron, is the PLATONIC SOLID P1 with four
VERTICES, six EDGES, and four equivalent EQUILAT-

ERAL TRIANGULAR faces, 4f3g: It is also UNIFORM

POLYHEDRON U1 and Wenninger model W1: It is
described by the SCHLÄFLI SYMBOL f3; 3g and the
WYTHOFF SYMBOL is 3 ½ 2 3:/

It is the prototype of the TETRAHEDRAL GROUP Td: The
connectivity of the vertices is given by the TETRAHE-

DRAL GRAPH, equivalent to the CIRCULANT GRAPH

Ci1; 2; 3(4) and the COMPLETE GRAPH K4:/

The tetrahedron is its own DUAL POLYHEDRON, and
therefore the centers of the faces of a tetrahedron
form another tetrahedron (Steinhaus 1983, p. 201).

The tetrahedron is the only simple POLYHEDRON with
no DIAGONALS, and it cannot be STELLATED. If a
regular tetrahedron is cut by six planes, each passing
through an edge and bisecting the opposite edge, it is
sliced into 24 pieces (Gardner 1984, pp. 190 and 192;
and Langman 1951).

Alexander Graham Bell was a proponent of use of the
tetrahedron in framework structures, including kites
(Bell 1903; Lesage 1956, Gardner 1984, pp. 184�/185).
The opposite edges of a tetrahedron are perpendicu-
lar, and so can form a universal coupling if hinged
appropriately. Eight regular tetrahedra can be placed
in a ring which rotates freely, and the number can be
reduced to six for squashed irregular tetrahedra
(Wells 1975, 1991)

Let a tetrahedron be length a on a side. The VERTICES

are located at (x , 0, 0), (/�d; 9a=2; 0), and (0, 0, h ).
From the figure,

x�

a

2

cos
p

6

 !�1
3

ffiffiffi
3

p
a: (1)

d is then

d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� 1

2 a
� �2

r
�1

6

ffiffiffi
3

p
a: (2)

This gives the AREA of the base as

A�1
2 a(R�x)�1

4

ffiffiffi
3

p
a2: (3)

The height is

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p
�1

3

ffiffiffi
6

p
a: (4)

The CIRCUMRADIUS R is found from

x2�(h�R)2�R2 (5)

x2�h2�2hR�R2�R2: (6)

Solving gives

R�
x2 � h2

2h
�1

4

ffiffiffi
6

p
a:0:61237a: (7)

The INRADIUS r is

r�h�R� 1
12

ffiffiffi
6

p
a:0:20412a; (8)

which is also



r�1
4 h�1

3 R: (9)

The ANGLE between the bottom plane and center is
then given by

f�tan�1 r

x

 !
�tan�1 1

4

ffiffiffi
2

p� �
: (10)

Given a tetrahedron of edge length a situated with
vertical apex and with the origin of coordinate system
at the CENTROID of the vertices, the four VERTICES are
located at (x; 0; �r); (�d; 9a=2; �r); (0; 0; R); with,
as shown above

x�1
3

ffiffiffi
3

p
a (11)

r� 1
12

ffiffiffi
6

p
a (12)

R�1
4

ffiffiffi
6

p
a (13)

d�1
6

ffiffiffi
3

p
a: (14)

The vertices of a tetrahedron of side length
ffiffiffi
2

p
can

also be given by a particularly simple form when the
vertices are taken as corners of a cube (Gardner 1984,
pp. 192�/194). One such tetrahedron for a cube of side
length 1 gives the tetrahedron of side length

ffiffiffi
2

p

having vertices (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), and
satisfies the inequalities

x þ y þ z52 ð15Þ

x�y�z50 (16)

�x�y�z50 (17)

�x�y�z50: (18)

The following table gives polyhedra which can be
constructed by CUMULATION of a tetrahedron by
pyramids of given heights h .

h /(r�h)=h/ Result

/
1
15

ffiffiffi
6

p
/ /

7
5/ TRIAKIS TETRAHEDRON

/
1
6

ffiffiffi
6

p
/ 2 CUBE

/
1
3

ffiffiffi
6

p
/ 3 9-faced star DELTAHEDRON

Connecting opposite pairs of edges with equally
spaced lines gives a configuration like that shown
above which divides the tetrahedron into eight
regions: four open and four closed (Steinhaus 1983,
p. 246).

The MIDRADIUS of the tetrahedron is

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�d2

p
�

ffiffi
1
8

q
a�1

4

ffiffiffi
2

p
a

:0:35355a: (19)

Plugging in for the VERTICES gives

a
ffiffiffi
3

p
; 0; 0

� �
; �1

6

ffiffiffi
3

p
a; 91

2 a; 0
� �

; and 0; 0; 1
2

ffiffiffi
6

p
a

� �
:

(20)

Since a tetrahedron is a PYRAMID with a triangular
base, V�1

3 Abh; giving

V� 1
12

ffiffiffi
2

p
a3: (21)

The DIHEDRAL ANGLE is

a�tan�1 2
ffiffiffi
2

p� �
�sin�1 1

3

ffiffiffi
3

p� �
�cos�1 1

3

� �
:70:53�: (22)



By slicing a tetrahedron as shown above, a SQUARE

can be obtained. This cut divides the tetrahedron into
two congruent solids rotated by 908. The projection of
a tetrahedron can be an EQUILATERAL TRIANGLE or a
SQUARE (Steinhaus 1983, pp. 191�/192).

Now consider a general (not necessarily regular)
tetrahedron, defined as a convex POLYHEDRON con-
sisting of four (not necessarily identical) TRIANGULAR

faces. Let the tetrahedron be specified by its VERTICES

at xi; yi; zið Þ where i�1, ..., 4. Then the VOLUME is
given by

V�
1

3!

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

��������

��������: (23)

Specifying the tetrahedron by the three EDGE vectors
a, b, and c from a given VERTEX, the VOLUME is

V�
1

3!
a � (b�c)j j: (24)

If the faces are congruent and the sides have lengths
a , b , and c , then

V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 � c2ð Þ a2 � c2 � b2ð Þ b2 � c2 � a2ð Þ

72

s
(25)

(Klee and Wagon 1991, p. 205). In general, if the edge
between vertices i and j are of length /dij/, then the
volume V is given by the CAYLEY-MENGER DETERMI-

NANT
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0 1 1 1 1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

����������

����������
: (26)

Consider an arbitrary TETRAHEDRON A1A2A3A4 with
triangles T1�DA2A3A4; T2�DA1A3A4; T3�DA1A2A4;
and T4�A1A2A3: Let the areas of these triangles be
s1; s2; s3; and s4; respectively, and denote the
DIHEDRAL ANGLE with respect to Ti and Tj for i"j�

1; 2; 3; 4 by uij: Then the four face areas are
connected by

s2
k�

X
j"k

15j54

s2
j �2

X
i; j"k

15i; j54

sisj cos uij (27)

involving the six DIHEDRAL ANGLES (Dostor 1905,
pp. 252�/293; Lee 1997). This is a generalization of
the LAW OF COSINES to the tetrahedron. Furthermore,
for any i"j�1; 2; 3; 4;

V�
2

3lij

sisj sin uij; (28)

where lij is the length of the common edge of Ti and Tj

(Lee 1997).

Let A be the set of edges of a tetrahedron and P(A) the
power set of A . Write t̄ for the complement in A of an
element t �P(A): Let F be the set of triples fx; y; zg �
P(A) such that x; y; z span a face of the tetrahedron,
and let G be the set of eS fð Þ@ e@ f

� �
�P(A); so that

e; f �F and e"f : In G , there are therefore three
elements which are the pairs of opposite edges. Now
define D , which associates to an edge x of length L
the quantity L=

ffiffiffiffiffiffi
12

p� �2
; p , which associates to an

element t �P(A) the product of D(x) for all x � t; and s ,
which associates to t the sum of D(x) for all x � t: Then
the VOLUME of a tetrahedron is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t �G

(s(t̄)�s(t))p(t)�
X
t �F

p(t)
r

(29)

(P. Kaeser).

The analog of GAUSS’S CIRCLE PROBLEM can be asked
for tetrahedra: how many LATTICE POINTS lie within a
tetrahedron centered at the ORIGIN with a given
INRADIUS (Lehmer 1940, Granville 1991, Xu and
Yau 1992, Guy 1994).

There are a number of interesting and unexpected
theorems on the properties of general (i.e., not
necessarily regular) tetrahedron (Altshiller-Court
1979). If a plane divides two opposite edges of a
tetrahedron in a given ratio, then it divides the
volume of the tetrahedron in the same ratio (Altshil-
ler-Court 1979, p. 89). It follows that any plane
passing through a BIMEDIAN of a tetrahedron bisects
the volume of the tetrahedron (Altshiller-Court 1979,
p. 90).

Let the vertices of a tetrahedron be denoted A , B , C ,
and D , and denote the side lengths BC�a , CA�b ,
AB�c , DA�a?; DB�b?; and DC�c?: Then if D
denotes the area of the triangle with sides of lengths
by aa?; bb?; and cc?; the VOLUME and CIRCUMRADIUS of
the tetrahedron are related by the beautiful formula

6RV�D (30)

(Crelle 1821, p. 117; von Staudt 1860; Rouché and



Comberousse 1922, pp. 568 �/576 and 643 �/664; Alt-
shiller-Court 1979, p. 250).

See also AUGMENTED TRUNCATED TETRAHEDRON,
BANG’S THEOREM, CUBE TETRAHEDRON PICKING,
EHRHART POLYNOMIAL, HERONIAN TETRAHEDRON,
HILBERT’S 3RD PROBLEM, ISOSCELES TETRAHEDRON,
PENTATOPE, REULEAUX TETRAHEDRON, SIERPINSKI

TETRAHEDRON, SPHERE TETRAHEDRON PICKING, STEL-

LA OCTANGULA, TANGENT SPHERES, TANGENTIAL

TETRAHEDRON, TETRAHEDRON 4-COMPOUND, TETRA-

HEDRON 5-COMPOUND, TETRAHEDRON 10-COMPOUND,
TRIRECTANGULAR TETRAHEDRON, TRUNCATED TETRA-

HEDRON
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Tetrahedron 4-Compound

See also TETRAHEDRON, TETRAHEDRON 5-COMPOUND,
TETRAHEDRON 10-COMPOUND

Tetrahedron 5-Compound

A POLYHEDRON COMPOUND composed of five TETRA-

HEDRA which is also one of the ICOSAHEDRON STELLA-

TIONS. The 5�4 vertices of the tetrahedron are then
20 vertices of the DODECAHEDRON. Two tetrahedron 5-
compounds of opposite CHIRALITY combine to make a
TETRAHEDRON 10-COMPOUND (Cundy and Rollett
1989).



The diagram above shows pieces which can be
assembled to form the tetrahedron 5-compound
(Cundy and Rollett 1989). The construction itself is
rather challenging, and involves constructing a base
tetrahedron, placing a "cap" around one of the apexes,
and affixing a triangular pyramid to the opposite face.
Twelve pyramids with complicated bases are then
constructed and attached edge-to-edge in chains of
three. The four chains of pyramids are then arranged
about the eight vertices of the original two tetrahe-
dra, with the points of coincidence of the three
pyramids in each chain attached such that they
coincide with intersections of the original two tetra-
hedra such that five pyramids touch at a single point.

The position, size, and orientation of the pyramidal
cap and pyramids are illustrated in the diagram
above, where

a �cos �1 1
8 3

ffiffiffi
2

p
�

ffiffiffiffiffiffi
10

p� �h i
:22 :2388� (1)

d �1
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 �3

ffiffiffi
5

pq
(2)

h �1
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 3�

ffiffiffi
5

p� �r
(3)

l1 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 3 �

ffiffiffi
5

p� �r
(4)

l2 �
1
2

ffiffiffi
2

p
(5)

l3 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
5

pq
(6)

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
5

pq
(7)

s1 �
1
5

ffiffiffiffiffiffi
10

p
(8)

s2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
5 7 �3

ffiffiffi
5

p� �r
: (9)

The edge lengths and angles of the cap are given by

b �cos �1 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �3

ffiffiffi
5

pq� �
:82 :2388� (10)

e1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

ffiffiffi
5

pq
(11)

e2 �
1
2 5 �

ffiffiffi
5

p� �
(12)

e3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �3

ffiffiffi
5

pq
(13)

e4 �e1 (14)

e5 �s : (15)

See also ICOSAHEDRON STELLATIONS, POLYHEDRON

COMPOUND, TETRAHEDRON, TETRAHEDRON 4-COM-

POUND, TETRAHEDRON 10-COMPOUND
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Tetrahedron 10-Compound

Two TETRAHEDRON 5-COMPOUNDS of opposite CHIRAL-

ITY combined.

See also POLYHEDRON COMPOUND, TETRAHEDRON 5-

COMPOUND
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Tetrahedron Circumscribing
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Tetrahedron Tetrahedron Picking
The expected VOLUME of a TETRAHEDRON with ver-
tices chosen at random inside another TETRAHEDRON

of unit volume appears to be numerically close to 1/
57, but the exact analytic value is not known (Croft et
al. 1991, p. 54). According to Solomon (1978, p. 124),
"Explicit values for random points in non-spherical
regions such as tetrahedrons, parallelepipeds, etc.,
have apparently not yet been successfully calculated."

See also BALL TETRAHEDRON PICKING, SPHERE TET-

RAHEDRON PICKING
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Tetrahemihexacron

The DUAL POLYHEDRON of the TETRAHEMIHEXAHE-

DRON U4 and Wenninger dual W67 :/

See also DUAL POLYHEDRON, TETRAHEMIHEXAHE-

DRON, UNIFORM POLYHEDRON
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Tetrahemihexahedron

The UNIFORM POLYHEDRON U4 whose DUAL POLYHE-

DRON is the TETRAHEMIHEXACRON. It has SCHLÄFLI

SYMBOL r? 3
3

� �
and WYTHOFF SYMBOL 3

2 3½2: Its faces
are 4f3g�3f4g: It is a faceted form of the OCTAHE-

DRON. Its CIRCUMRADIUS is

R�1
2

ffiffiffi
2

p
:

The CONVEX HULL of the tetrahemihexahedron is the
OCTAHEDRON.
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Tetrakaidecagon
TETRADECAGON

Tetrakaidecahedron
TETRADECAHEDRON



Tetrakis Hexahedron

The 24-faced DUAL POLYHEDRON of the TRUNCATED

OCTAHEDRON A12 and Wenninger dual W7 : It can be
constructed by CUMULATION of a unit edge-length
CUBE by a pyramid with height 1/6.

The edge lengths for the tetrakis hexahedron con-
structed as the dual of the TRUNCATED OCTAHEDRON

with unit edge lengths are

s1 �
9
8

ffiffiffi
2

p
(1)

s2 �
3
2

ffiffiffi
2

p
: (2)

Normalizing so that s1 �1 gives a tetrakis hexahe-
dron with SURFACE AREA and VOLUME

S �16
3

ffiffiffi
5

p
(3)

V �32
9 : (4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
ICOSITETRAHEDRON, TRUNCATED OCTAHEDRON
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Tetranacci Number
The tetranacci numbers are a generalization of the
FIBONACCI NUMBERS defined by T0 �0; T1 �1; T2 �1;
T3 �2; and the RECURRENCE RELATION

Tn �Tn�1 �Tn�2 �Tn�3 �Tn�4

for n ]4: They represent the n �4 case of the
FIBONACCI N -STEP NUMBERS. The first few terms are
1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ... (Sloane’s A000078).
The ratio of adjacent terms tends to 1.92756, which is
the REAL ROOT of x5 �2x4 �1 �0 :/

See also FIBONACCI N -STEP NUMBER, FIBONACCI

NUMBER, TRIBONACCI NUMBER
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Tetrastigm
Lachlan’s term for a set of four points, no three of
which are COLLINEAR.

See also TETRAGRAM
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Tetration
POWER TOWER

Tetriamond

The three 3-polyiamonds are called tetriamonds.

See also POLYIAMOND

Tetrix

The 3-D analog of the SIERPINSKI SIEVE illustrated
above, also called the SIERPINSKI SPONGE or SIER-

PINSKI TETRAHEDRON. Let Nn be the number of
tetrahedra, Ln the length of a side, and An the
fractional VOLUME of tetrahedra after the nth itera-
tion. Then

Nn�4n (1)

Ln�
1
2

� �n

�2�n (2)

An�L3
nNn�

1
2

� �n

: (3)

The CAPACITY DIMENSION is therefore

dcap�� lim
n0�

ln Nn

ln Ln

�� lim
n0�

ln 4nð Þ
ln 2�nð Þ



�
ln 4

ln 2 
�

2 ln 2

ln 2
�2; (4)

so the tetrix has an INTEGER CAPACITY DIMENSION

(which is one less than the DIMENSION of the 3-D
TETRAHEDRA from which it is built), despite the fact
that it is a FRACTAL.

The following illustrations demonstrate how the
dimension of the tetrix can be the same as that of
the PLANE by showing three stages of the rotation of a
tetrix, viewed along one of its edges. In the last frame,
the tetrix "looks" like the 2-D PLANE.

See also MENGER SPONGE, SIERPINSKI SIEVE
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Tetromino

The five 4-POLYOMINOES, known as STRAIGHT, L-, T-,
SQUARE, and SKEW.
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Thâbit ibn Kurrah Rule
A number OF THE FORM 3 � 2n�1 which is PRIME is
sometimes called a Thâbit ibn Kurrah number. The
indices for the first few such numbers are 1, 2, 3, 4, 6,
7, 11, 18, 34, 38, 43, 55, ... (Sloane’s A002235). Riesel
(1969) extended the search to n51000; and the
largest known today is n�26459.

The numbers arise in a beautiful result of Thâbit ibn
Kurrah dating back to the tenth century (Woepcke
1852; Escott 1946; Dickson 1952, pp. 5 and 39; Borho
1972). Take n]2 and suppose that

h ¼ 3 � 2n�1 ð1Þ

t�3 � 2n�1�1 (2)

s�9 � 22n�1�1 (3)

are all PRIME. Then 2nht; 2nsð Þ are an AMICABLE PAIR.
This form was rediscovered by Fermat (1636) and
Descartes (1638) and generalized by Euler to EULER’S

RULE (Borho 1972).

In order for such numbers to exist, there must be
prime 3 � 2n�1 for two consecutive n , leaving only
the possibilities 1, 2, 3, 4, and 6, 7. Of these, s is prime
for n�2, 4, and 7, giving the amicable pairs (220,
284), (17296, 18416), and (9363584, 9437056).

In fact, various rules can be found that are analogous
to Thâbit ibn Kurrah’s. Denote a "Thâbit rule" by
T b1; bð Þ2; p; F1; F2 for given natural numbers b1

and b2; a prime p not dividing b1; b2; and polynomials
F1(X); F2(X) �Z[X]: Then a necessary condition for
the set of AMICABLE PAIRS m1; m2ð Þ of the form mi�
pnbiqi (i�1, 2) with q1; q2 prime and n a natural
number to be infinite is that

p

p � 1
�

b1

s b1ð Þ
�

b2

s b2ð Þ
; (4)

where s(n) is the divisor function (Borho 1972). As a
result, mi�pnbiqi (i�1, 2) form an AMICABLE PAIR, if
for some n]1; both

qi ¼
pnðp � 1Þðb1 þ b2Þ

sðbiÞ
�1 (5)

for i�1, 2 are prime integers not dividing bip (Borho
1972).

The following table summarizes some of the known
Thâbit ibn Kurrah rules T(au; p; (u�1)X; (u�
1)s(u)X�1) (Borho 1972, te Riele 1974).

a u /s(u)/ p

22
/5 � 11/ 72 127

/32 � 7 � 13/ /5 � 17/ 108 193

/32 � 5 � 13/ /11 � 19/ 240 449

/32 � 72 � 13/ /5 � 41/ 252 457



/32 � 72 � 13 � 19/ /5 � 193/ 1164 2129

/34 � 5 � 11/ /29 � 89/ 2700 5281

/32 � 7 � 13 � 41 � 163/ /5 � 977/ 5868 10753

/32 � 5 � 19 � 37/ /7 � 887/ 7104 13313

/34 � 7 � 11 � 29/ /13 � 521/ 7308 14081

/32 � 72 � 13 � 19 � 29/ /41 � 173/ 7308 14401

/32 � 5 � 13 � 19/ /29 � 569/ 17100 33601

/32 � 72 � 13/ /5 � 53 � 97/ 31752 57457

/32 � 52 � 13 � 31/ /149 � 449/ 67500 134401

/33 � 53 � 13/ /149 � 449/ 67500 134401

/2 � 72 � 19 � 23/ /11 � 13523/ 162288 311041

/34 � 5 � 11 � 59/ /89 � 5309/ 477900 950401

/34 � 5 � 112 � 71/ /709 � 2129/ 1512300 3021761

/32 � 72 � 11 � 19 � 43 � 89/ /293 � 22961/ 6750828 13478401

/22 � 31/ /17 � 107 � 4339/ 8436960 16329601

28 
/257 � 33023/ 8520192 17007103

/23 � 19 � 137/ /83 � 218651/ 18366768 36514801

/27 � 263/ /4271 � 280883/ 1199936448 2399587741

See also AMICABLE PAIR, EULER’S RULE, RIESEL

NUMBER
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Thales’ Theorem

An ANGLE inscribed in a SEMICIRCLE is a RIGHT

ANGLE.

See also RIGHT ANGLE, SEMICIRCLE

Theorem
A statement which can be demonstrated to be true by
accepted mathematical operations and arguments. In
general, a theorem is an embodiment of some general
principle that makes it part of a larger theory. The
process of showing a theorem to be correct is called a
PROOF.

According to the Nobel Prize-winning physicist Ri-
chard Feynman (1985), any theorem, no matter how
difficult to prove in the first place, is viewed as
"TRIVIAL" by mathematicians once it has been proven.
Therefore, there are exactly two types of mathema-
tical objects: TRIVIAL ones, and those which have not
yet been proven.

The late mathematician P. Erdos described a math-
ematician as "a machine for turning coffee into
theorems" (Hoffman 1998, p. 7). R. Graham has
estimated that upwards of 250,000 mathematical
theorems are published each year (Hoffman 1998,
p. 204).

See also AXIOM, AXIOMATIC SYSTEM, COROLLARY,
DEEP THEOREM, PORISM, LEMMA, POSTULATE, PRIN-

CIPLE, PROOF, PROPOSITION, TRIVIAL
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TH/�/OREM/ Computer-Supported Mathematical Theorem
Proving. http://www.theorema.org/.

Theorema Egregium
GAUSS’S THEOREMA EGREGIUM

Theory
A theory is a set of SENTENCES which is CLOSED under
logical implication. That is, given any subset of
SENTENCES s1 ; s2 ; . . .f g in the theory, if SENTENCE r
is a logical consequence of s1 ; s2 ; . . .f g; then r must
also be in the theory.

See also LOGIC, SENTENCE

References
Enderton, H. B. Elements of Set Theory. New York: Aca-

demic Press, 1977.

Theta Functions

See also ABELIAN FUNCTION, JACOBI THETA FUNC-

TIONS, MOCK THETA FUNCTION, NEVILLE THETA

FUNCTIONS, RAMANUJAN THETA FUNCTIONS, RIE-

MANN THETA FUNCTION, SIEGEL THETA FUNCTION



Theta Operator
In the NOTATION of Watson (1966),

q�z
d

dz 
:
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Theta Series

See also EISENSTEIN SERIES, LEECH LATTICE

Theta Subgroup
LAMBDA GROUP

Theta-0 Graph

The GRAPH on seven nodes illustrated above.

See also 15 PUZZLE
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Thickness
GRAPH THICKNESS

Thiele’s Interpolation Formula
Let r be a RECIPROCAL DIFFERENCE. Then Thiele’s
interpolation formula is the CONTINUED FRACTION

f ðxÞ ¼ f ðx1 Þ þ
x � x1

p ðx1 ; x2 Þþ
x � x2

p2 ðx1 ; x2 ; x3 � f ðx1 Þþ

x � x3

r3 x1 ; x2 ; x3 ; x4ð Þ� r x1 ; x2ð Þ� . . .  
:
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Thiessen Polytope
VORONOI POLYGON

Thin Plate Spline
This entry contributed by SERGE BELONGIE

The thin plate spline is the two-dimensional analog of
the CUBIC SPLINE in 1-D. It is the fundamental
solution to the BIHARMONIC EQUATION, and has the
form

U(r) �r2 ln r :

Given a set of data points, a weighted combination of
thin plate splines centered about each data point
gives the interpolation function that passes through
the points exactly while minimizing the so-called
"bending energy." Bending energy is defined here as
the integral over R2 of the squares of the second
derivatives,

I f  x; yð Þ½ ��gg
R2

f 2
xx �2f 2

xy �f 2
yy dx dy:

Regularization may be used to relax the requirement
that the interpolant pass through the data points
exactly.

The name "thin plate spline" refers to a physical
analogy involving the bending of a thin sheet of
metal. In the physical setting, the deflection is in
the z direction, orthogonal to the plane. In order to
apply this idea to the problem of coordinate transfor-
mation, one interprets the lifting of the plate as a
displacement of the x or y coordinates within the
plane. Thus, in general, two thin plate splines are
needed to specify a 2-D coordinate transformation.

See also CUBIC SPLINE, SPLINE
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Third Curvature
Also known as the TOTAL CURVATURE. The linear
element of the INDICATRIX

dsP�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2

T �ds2
B

q
:

See also LANCRET EQUATION



Third Fundamental Form
Let M be a REGULAR SURFACE with vP ; wP points in
the TANGENT SPACE Mp of M . Then the third funda-
mental form is given by

III vP ; wPð Þ�S vPð Þ� S wPð Þ;

where S is the SHAPE OPERATOR.

See also FIRST FUNDAMENTAL FORM, FUNDAMENTAL

FORMS, SECOND FUNDAMENTAL FORM, SHAPE OPERA-

TOR

References
Gray, A. "The Three Fundamental Forms." §16.6 in Modern

Differential Geometry of Curves and Surfaces with Math-
ematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 380 �/

382, 1997.

Third Kind
In the theory of special functions, a class of functions
is said to be "of the third kind" if it is similar to but
distinct from previously defined functions already
defined to be of the FIRST and SECOND KINDS. The only
common functions of the third kind are the ELLIPTIC

INTEGRAL OF THE THIRD KIND II(n; f; k) and the
Bessel function of the third kind (more commonly
called the HANKEL FUNCTION).

See also ELLIPTIC INTEGRAL OF THE THIRD KIND,
FIRST KIND, HANKEL FUNCTION, SECOND KIND,
SPECIAL FUNCTION

Thirteen
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Thom Transversality Theorem

References
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Thomae’s Theorem

G(x � y � s � 1)

G(x � s � 1)G(y � s � 1) 
3 F2

�a; �b; x �y �s �1
x �s �1 ; y �s �1

; 1

� �

�
G(a � b � s � 1)

G(a � s � 1)G(b � s � 1) 
3 F2

�x;�y; a �b �s �1
a �s �1; b �s �1 

; 1

� �
;

where G(z) is the GAMMA FUNCTION and the function

3F2(a ; b ; c; d; e; z) is a GENERALIZED HYPERGEO-

METRIC FUNCTION. This theorem is equivalent to
equation (1) from Bailey (1935, p. 14) (Hardy 1999,
p. 111).

See also GAUSS’S HYPERGEOMETRIC THEOREM, GEN-

ERALIZED HYPERGEOMETRIC FUNCTION
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Thomas Equation
The PARTIAL DIFFERENTIAL EQUATION

uxy � aux � buy � guxuy �0:
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Thomas-Fermi Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ�y3 =2x�1 =2 :
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Thomassen Graph

The HYPOTRACEABLE GRAPH illustrated above.

See also HYPOTRACEABLE GRAPH, THOMSEN GRAPH
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Thompson Group
The SPORADIC GROUP Th.
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Thompson Lamp Paradox
A lamp is turned on for 1/2 minute, off for 1/4 minute,
on for 1/8 minute, etc. At the end of one minute, the
lamp switch will have been moved �0 times, where �0

is ALEPH-0. Will the lamp be on or off? This PARADOX is
actually nonsensical, since it is equivalent to asking if
the "last" INTEGER is EVEN or ODD.
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Thompson’s Functions
BEI, BER, KELVIN FUNCTIONS

Thom’s Eggs

EGG-shaped curves constructed using multiple CIR-

CLES which Thom (1967) used to model Megalithic
stone rings in Britain.

See also EGG, OVAL
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Thomsen Graph

The COMPLETE BIPARTITE GRAPH K3 ; 3 ; which is
equivalent to the UTILITY GRAPH. It has a CROSSING

NUMBER 1.

See also COMPLETE BIPARTITE GRAPH, CROSSING

NUMBER (GRAPH), THOMASSEN GRAPH, UTILITY

GRAPH
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Thomsen’s Figure

Take any TRIANGLE with VERTICES A , B , and C . Pick
a point A1 on the side opposite A , and draw a line
PARALLEL to AB . Upon reaching the side AC at B1 ;
draw the line PARALLEL to BC . Continue (left figure).
Then A3 �A1 for any TRIANGLE. If A1 is the MIDPOINT

of BC , then A2 �A1 (right figure).

See also MIDPOINT, TRIANGLE
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Thomson Problem
Determine the stable equilibrium positions of N
classical electrons constrained to move on the surface
of a SPHERE and repelling each other by an inverse
square law. Exact solutions for N�2 to 8 are known,
but N�9 and 11 are still unknown.



In reality, Earnshaw’s theorem guarantees that no
system of discrete electric charges can be held in
stable equilibrium under the influence of their elec-
trical interaction alone (Aspden 1987).

See also FEJES TÓ TH’S PROBLEM
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Thomson’s Principle
DIRICHLET’S PRINCIPLE

Thousand
/1;000 �103 : The word "thousand" appears in common
expressions in a number of languages, for example, "a
thousand pardons" in English and "tusen takk" ("a
thousand thanks") in Norwegian.

See also HUNDRED, LARGE NUMBER, MILLION

Three
3

Three Conics Theorem

If three conics pass through two given points Q and

Q ?; then the lines joining the other two intersections
of each pair of conics PijP ?ij are CONCURRENT at a point
X (Evelyn 1974, p. 15). The converse states that if two
conics E2 and E3 meet at four points Q , Q ?; P1 ; and Q1 ;
and if P2Q2 and P3Q3 are chords of E3 and E2 ;
respectively, which meet on P1Q1 ; then the six points
lie on a conic. The dual of the theorem states that if
three conics share two common tangents, then their
remaining pairs of common tangents intersect at
three collinear points.
If the points Q and Q ? are taken as the POINTS AT

INFINITY, then the theorem reduces to the theorem
that RADICAL LINES of three CIRCLES are CONCURRENT

in a point known as the RADICAL CENTER (Evelyn
1974, p. 15).

If two of the points Pij and P?ij are taken as the POINTS

AT INFINITY, then the theorem becomes that if two
circles C1 and C2 pass through two points Q and Q ? on
a conic E , then the lines determined by the pair of
intersections of each circle with the conic are parallel
(Evelyn 1974, p. 15).

See also CONIC SECTION, FOUR CONICS THEOREM,
RADICAL CENTER
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Three Curtain Problem
MONTY HALL PROBLEM

Three Dogs Problem
MICE PROBLEM

Three j-Symbol
WIGNER 3J -SYMBOL

Three Jug Problem
Given three jugs with x pints in the first, y in the
second, and z in the third, obtain a desired amount in
one of the vessels by completely filling up and/or
emptying vessels into others. This problem can be
solved with the aid of TRILINEAR COORDINATES.
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Three-Choice Polygon

A LATTICE POLYGON formed by a THREE-CHOICE WALK.
The anisotropic perimeter and area generating func-
tion

G(x; y; q) �
X

m ]1
X
n]1

X
a ]a

C(m; n; a)xmynqa ;

where C(m; n; a) is the number of polygons with 2m
horizonal bonds, 2n vertical bonds, and area a , is not
yet known in closed form, but it can be evaluated in
polynomial time (Conway et al. 1997, Bousquet-
Mélou 1999). The perimeter-generating function
G(x; x; 1) has a logarithmic singularity and so is
not algebraic, but is known to be D-finite (Conway et
al. 1997, Bousquet-Mélou 1999).
The anisotropic area and perimeter generating func-
tion G(x; y; q) satisfies an inversion relation OF THE

FORM

G(x; y; q) �y2G(x=y ; 1=y; 1 =q)

(Bousquet-Mélou et al. 1999).
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Three-Choice Walk
A SELF-AVOIDING WALK in which steps may be to the
left, right, or straight ahead after a vertical step, but
only straight ahead of to the left after a horizontal
step. A LATTICE POLYGON formed by a three-choice
walk is called a THREE-CHOICE POLYGON.
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Three-Colorable
COLORABLE

Threefoil Knot
TREFOIL KNOT

Three-In-A-Row
TIC-TAC-TOE

ThreeJ Symbol
WIGNER 3J -SYMBOL

Three-Valued Logic
A logical structure which does not assume the
EXCLUDED MIDDLE LAW. Three truth values are
possible: true, false, or undecided. There are 3072
such logics.

See also EXCLUDED MIDDLE LAW, FUZZY LOGIC, LOGIC

Thue Constant
The base-2 TRANSCENDENTAL NUMBER

0:11011011111011011111 . . .2 ;

where the nth bit is 1 if n is not divisible by 3 and is
the complement of the (n=3)/th bit if n is divisible by 3.
It is also given by the SUBSTITUTION MAP

0 0 111

1 0 110:

In decimal, the Thue constant equals 0.8590997969....

See also RABBIT CONSTANT, THUE-MORSE CONSTANT

Thue Equation
This entry contributed by KEVIN O’BRYANT

A Thue equation is a DIOPHANTINE EQUATION of the
form

Anxn�An�1xn�1y�An�2xn�2y2�. . .�A0yn�M;

with n]3; Ai �Z; M"0 �Z; and x, y unknown integer
variables.



Thue (1909) proved that such an equation has only
finitely many solutions, but it was not until much
later that Tzanakis and de Weger (1989) gave a
practical algorithm for finding bounds on xj j and yj j:
Although these bounds can be astronomically large in
some cases, they are typically small enough to allow
an exhaustive search for all solutions.

See also DIOPHANTINE EQUATION
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Thue Sequence
The SEQUENCE of BINARY DIGITS of the THUE CON-

STANT, 0:110110111110110111110110110 . . .2 (Sloa-
ne’s A014578).

See also RABBIT CONSTANT, THUE CONSTANT
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Thue-Morse Constant
The constant also called the PARITY CONSTANT and
defined by

P �1
2

X�
n�0

P(n)2�n �0:4124540336401075977 . . . (1)

(Sloane’s A014571), where P(n) is the PARITY of n .
Dekking (1977) proved that the Thue-Morse constant
is TRANSCENDENTAL, and Allouche and Shallit give a
complete proof correcting a minor error of Dekking.

The Thue-Morse constant can be written in base 2 by
stages by taking the previous iteration an ; taking the
complement an ; and appending, producing

a0 �0:02

a1 �0 :012

a2 �0:01102

a3 �0 :011010012

a4 �0 :01101001100101102 : (2)

This can be written symbolically as

an�1 �an �an � 2�2n 

(3)

with a0 �0: Here, the complement is the number an

such that an �an �0 : 11 . . . 12|fflfflfflfflffl{zfflfflfflfflffl}
2n

; which can be found

from

an �an �
X2n

k �1

1
2

� �k

�
1 � 1

2

� �2n

1 � 1
2

�1 �1 �2�2n 

: (4)

Therefore,

an �1 �2�2n 

�an ; (5)

and

an�1 �an � 1 �2�2n 

�an

� �
2�2n 

(6)

�2�2n�1

22n�1
� �

1 �22n 

an

� �
: (7)

The regular CONTINUED FRACTION for the Thue-Morse
constant is [0 2 2 2 1 4 3 5 2 1 4 2 1 5 44 1 4 1 2 4 1 1 1
5 14 1 50 15 5 1 1 1 4 2 1 4 1 43 1 4 1 2 1 3 16 1 2 1 2 1
50 1 2 424 1 2 5 2 1 1 1 5 5 2 22 5 1 1 1 1274 3 5 2 1 1 1
4 1 1 15 154 7 2 1 2 2 1 2 1 1 50 1 4 1 2 867374 1 1 1 5 5
1 1 6 1 2 7 2 1650 23 3 1 1 1 2 5 3 84 1 1 1 1284 ...]
(Sloane’s A014572), and seems to continue with
sporadic large terms in suspicious-looking patterns.
A nonregular CONTINUED FRACTION is

P �
1

3 �
1

2 �
1

4 �
3

16 �
15

256 �
255

65536 � . . .

: (8)

A related infinite product is

4P �2 �
1 � 3 � 15 � 255 � 65535 � � �
2 � 4 � 16 � 256 � 65536 � � �

: (9)

The SEQUENCE a��0110100110010110100101100 . . .
(Sloane’s A010060) is known as the THUE-MORSE

SEQUENCE.

See also RABBIT CONSTANT, THUE CONSTANT
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Thue-Morse Sequence
The INTEGER SEQUENCE (also called the MORSE-THUE

SEQUENCE)

01101001100101101001011001101001 . . . (1)

(Sloane’s A010060) which arises in the THUE-MORSE

CONSTANT. It can be generated from the SUBSTITU-

TION MAP

0 0 01 (2)

1 0 10 (3)

starting with 0 as follows:

0 0 01 0 0110 0 01101001 0 . . .  (4)

Writing the sequence as a POWER SERIES over the
FINITE FIELD GF(2),

F(x) �0 �1x �1x2 �0x3 �1x4 �. . . ; (5)

then F satisfies the quadratic equation

(1 �x)F2 �F �
x

1 � x2
(mod 2): (6)

This equation has two solutions, F and F ?; where F ? is
the complement of F , i.e.,

F �F ?�1 �x �x2 �x3 �. . .�
1

1 � x 
; (7)

which is consistent with the formula for the sum of
the roots of a quadratic. The equality (6) can be
demonstrated as follows. Let (abcdef ...) be a short-
hand for the POWER SERIES

a �bx �cx2 �dx3 �. . . ; (8)

so F(x) is (0110100110010110...). To get F2 ; simply
use the rule for squaring POWER SERIES over GF(2)

(A �B)2 �A2 �B2 (mod 2); (9)

which extends to the simple rule for squaring a
POWER SERIES

a0 �a1x �a2x2 �. . .
� �2

�a0 �a1x2 �a2x4 �. . . (mod 2); (10)

i.e., space the series out by a factor of 2, (0 1 1 0 1 0 0 1
...), and insert zeros in the ODD places to get

F2 �(0010100010000010 . . .): (11)

Then multiply by x (which just adds a zero at the
front) to get

xF2 �(00010100010000010 . . .): (12)

Adding to F2 gives

(1 �x)F2 �(0011110011000011 . . .) : (13)

This is the first term of the quadratic equation, which
is the Thue-Morse sequence with each term doubled
up. The next term is F , so we have

(1 �x)F2 �(0011110011000011 . . .) (14)

F �(0110100110010110 . . .): (15)

The sum is the above two sequences XORed together
(there are no CARRIES because we’re working over
GF(2)), giving

(1 �x)F2 �F �(0101010101010101 . . .): (16)

We therefore have

(1 �x)F2 �F �
x

1 � x2

�x �x3 �x5 �x7 �x9 �x11 �. . . (mod 2):

(17)

The Thue-Morse sequence is an example of a cube-
free sequence on two symbols (Morse and Hedlund
1944), i.e., it contains no substrings OF THE FORM

WWW , where W is any WORD. For example, it does
not contain the WORDS 000, 010101 or 010010010. In
fact, the following stronger statement is true: the
Thue-Morse sequence does not contain any sub-
strings OF THE FORM WWa , where a is the first
symbol of W . We can obtain a SQUAREFREE sequence
on three symbols by doing the following: take the
Thue-Morse sequence 0110100110010110... and look
at the sequence of WORDS of length 2 that appear: 01
11 10 01 10 00 01 11 10 .... Replace 01 by 0, 10 by 1, 00
by 2 and 11 by 2 to get the following: 021012021....
Then this SEQUENCE is SQUAREFREE (Morse and
Hedlund 1944).

The Thue-Morse sequence has important connections
with the GRAY CODE. Kindermann generates fractal
music using the SELF-SIMILARITY of the Thue-Morse
sequence.

See also GRAY CODE, PARITY CONSTANT, RABBIT

SEQUENCE, THUE SEQUENCE
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Thue’s Remainder Theorem
THUE’S THEOREM



Thue’s Theorem
If n �1, (a ; n) �1 (i.e., a and n are RELATIVELY

PRIME), and m is the least integer >
ffiffiffi
n

p
; then there

exist an x and y such that

ay �9x (mod n)

where 0 Bx Bm and 0 By Bm (Nagell 1951, pp. 122 �/

124; Shanks 1993, p. 161)
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Thue-Siegel-Roth Theorem
If a is a TRANSCENDENTAL NUMBER, it can be approxi-
mated by infinitely many RATIONAL NUMBERS m=n to
within n �r ; where r is any POSITIVE number.

See also IRRATIONALITY MEASURE, LIOUVILLE’S AP-

PROXIMATION THEOREM, ROTH’S THEOREM, SIEGEL’S

THEOREM

Thue-Siegel-Schneider-Roth Theorem
THUE-SIEGEL-ROTH THEOREM

Thurston’s Geometrization Conjecture
Thurston’s conjecture has to do with geometric
structures on 3-D MANIFOLDS. Before stating Thur-
ston’s conjecture, some background information is
useful. 3-dimensional MANIFOLDS possess what is
known as a standard 2-level DECOMPOSITION. First,
there is the CONNECTED SUM DECOMPOSITION, which
says that every COMPACT 3-MANIFOLD is the CON-

NECTED SUM of a unique collection of PRIME 3-MANI-

FOLDS.

The second DECOMPOSITION is the JACO-SHALEN-

JOHANNSON TORUS DECOMPOSITION, which states
that irreducible orientable COMPACT 3-MANIFOLDS

have a CANONICAL (up to ISOTOPY) minimal collection
of disjointly EMBEDDED incompressible TORI such that
each component of the 3-MANIFOLD removed by the
TORI is either "atoroidal" or "Seifert-fibered."

Thurston’s conjecture is that, after you split a 3-
MANIFOLD into its CONNECTED SUM and then JACO-

SHALEN-JOHANNSON TORUS DECOMPOSITION, the re-
maining components each admit exactly one of the
following geometries:

1. EUCLIDEAN GEOMETRY,
2. HYPERBOLIC GEOMETRY,
3. SPHERICAL GEOMETRY,
4. the GEOMETRY of S2 �R ;/
5. the GEOMETRY of H2 �R ;/
6. the GEOMETRY of SL2R;/
7. NIL GEOMETRY, or
8. SOL GEOMETRY.

Here, S2 is the 2-SPHERE and H2 is the HYPERBOLIC

PLANE. If Thurston’s conjecture is true, the truth of
the POINCARÉ CONJECTURE immediately follows.

See also CONNECTED SUM DECOMPOSITION, EUCLI-

DEAN GEOMETRY, HYPERBOLIC GEOMETRY, JACO-SHA-

LEN-JOHANNSON TORUS DECOMPOSITION, NIL

GEOMETRY, POINCARÉ CONJECTURE, SOL GEOMETRY,
SPHERICAL GEOMETRY

Thwaites Conjecture
COLLATZ PROBLEM

Ticktacktoe
TIC-TAC-TOE

Tic-Tac-Toe
The usual game of tic-tac-toe (also called TICKTACK-

TOE) is 3-in-a-row on a 3 �3 board. However, a
generalized N -IN-A-ROW on an u �v board can also
be considered. For n �1 and 2 the first player can
always win. If the board is at least 3 �4; the first
player can win for n �3.

However, for TIC-TAC-TOE which uses a 3 �3 board, a
draw can always be obtained. If the board is at least
4 �30 ; the first player can win for n �4. For n �5, a
draw can always be obtained on a 5 �5 board, but the
first player can win if the board is at least 15 �15:
The cases n �6 and 7 have not yet been fully
analyzed for an n �n board, although draws can
always be forced for n �8 and 9. On an ��� board,
the first player can win for n�1, 2, 3, and 4, but a tie
can always be forced for n]8: For 3�3�3 and 4�
4�4; the first player can always win (Gardner 1979).

See also BOARD, PONG HAU K’I
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Tietze Graph

The graph illustrated above that provides a 6-color
coloring of the MÖ BIUS STRIP.

See also MÖ BIUS STRIP
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Tight Closure
The application of characteristic p methods in COM-

MUTATIVE ALGEBRA, which is a synthesis of some
areas of COMMUTATIVE ALGEBRA and ALGEBRAIC GEO-

METRY.

See also ALGEBRAIC GEOMETRY, COMMUTATIVE ALGE-

BRA
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Tightly Embedded
Q is said to be tightly embedded if Q S Qgj j is ODD for
all g � G �NG(Q) ; where NG(Q) is the NORMALIZER of
Q in G .

Tilde
The mark ~ placed on top of a symbol to indicate some
special property. x̃ is voiced "x -tilde." The tilde symbol
is commonly used to denote an operator, e.g., the
DIFFERENTIAL OPERATOR D̃: In informal usage, "tilde"
is often instead voiced as "twiddle." It is also some-
times used to denote a MEDIAN (Kenney and Keeping
1962, p. 211).

See also MEDIAN (STATISTICS), DIFFERENTIAL OPERA-

TOR
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Tiling
A plane-filling arrangement of plane figures or its
generalization to higher dimensions. Formally, a
tiling is a collection of disjoint open sets, the closures
of which cover the plane. Given a single tile, the so-
called first CORONA is the set of all tiles that have a
common boundary point with the tile (including the
original tile itself).

WANG’S CONJECTURE (1961) stated that if a set of tiles
tiled the plane, then they could always be arranged to
do so periodically. A periodic tiling of the PLANE by
POLYGONS or SPACE by POLYHEDRA is called a TESSEL-

LATION. The conjecture was refuted in 1966 when
R. Berger showed that an aperiodic set of 20,426 tiles
exists. By 1971, R. Robinson had reduced the number
to six and, in 1974, R. Penrose discovered an aper-
iodic set (when color-matching rules are included) of
two tiles: the so-called PENROSE TILES. (Penrose also
sued the Kimberly Clark Corporation over their
quilted toilet paper, which allegedly resembles a
Penrose aperiodic tiling; Mirsky 1997.)

It is not known if there is a single aperiodic tile. The
number of tilings possible for convex irregular POLY-

GONS are given in the above table.

n name known tilings

3 TRIANGLE TILING all

4 QUADRILATERAL TILING all

5 PENTAGON TILING 14

6 HEXAGON TILING 3

There are no tilings for identical convex n -gons for
n ]7; although non-identical convex heptagons can
tile the plane (Steinhaus 1983, p. 77; Gardner 1984,
pp. 248�/249).

See also ANISOHEDRAL TILING, CORONA (TILING),
GOSPER ISLAND, HARBORTH’S TILING, HEESCH NUM-

BER, HEESCH’S PROBLEM, HONEYCOMB CONJECTURE,
ISOHEDRAL TILING, KOCH SNOWFLAKE, MONOHEDRAL

TILING, PENROSE TILES, POLYGON TILING, POLYOMI-

NO TILING, SPACE-FILLING POLYHEDRON, SQUARE

TILING, TESSELLATION, TILING THEOREM, TRIANGLE

TILING
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Tiling Problem
Maximize the amount of floor space which can be
covered with a fixed tile (Hoffman 1998, p. 173).

See also BIN-PACKING PROBLEM, COOKIE-CUTTER

PROBLEM
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Tiling Theorem
Due to Lebesgue and Brouwer. If an n -D figure is
covered in any way by sufficiently small subregions,
then there will exist points which belong to at least
n �1 of these subareas. Moreover, it is always
possible to find a covering by arbitrarily small regions
for which no point will belong to more than n �1
regions.

See also TESSELLATION, TILING

Time Series Analysis
Analysis of data ordered by the time the data were
collected (usually spaced at equal intervals), called a
time series. Common examples of a time series are
daily temperature measurements, monthly sales, and
yearly population figures. The goals of time series
analysis are to describe the process generating the
data, and to forecast future values.

See also ANOVA, ARITHMETIC MEAN, CORRELATION

COEFFICIENT, COVARIANCE, DIFFERENCE TABLE,
LEAST SQUARES FITTING, MAXIMUM LIKELIHOOD,
MOVING AVERAGE, PERIODOGRAM, PREDICTION THEO-

RY, RANDOM VARIABLE, RANDOM WALK, RESIDUAL,
VARIANCE
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Times
The operation of MULTIPLICATION, i.e., a times b .
Various notations are a �b; a � b; ab , and (a)(b) : The
"multiplication sign" � is based on SAINT ANDREW’S

CROSS (Bergamini 1969). Floating point MULTIPLICA-

TION is sometimes denoted 	:/

See also CROSS PRODUCT, DOT PRODUCT, MINUS,
MULTIPLICATION, PLUS, PRODUCT
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T-Integration
A fast, accurate, and numerically stable NUMERICAL

INTEGRATION formula given by

Xn�Xn�1�TG P
dX

dt

 !
n

�(1�P)
dX

dt

 !
n�1

" #
;

where X is the integral, dX=dt is the integrand, P
and G are "phase " and "gain" tuning parameters, n
refers to the number of the iteration being evaluated,
and T is the integration step size. For G�1, varying



P from 0 to 2 gives many classical first-order
integrators:

1. G �1 and P �0: Euler integrator,
2. G �1 and P �1 =2 : TRAPEZOIDAL RULE,
3. G �1 and P �1: Rectangular rule,
4. G �1 and P �3 =2 : ADAMS’ METHOD.

See also NUMERICAL INTEGRATION
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Titanic Prime
A PRIME with ]1000 DIGITS. As of 1990, there were
more than 1400 known (Ribenboim 1990). The table
below gives the number of known titanic primes as a
function of year end.

Year Titanic Primes

1992 2254

1993 9166

1994 9779

1995 12391
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Titchmarsh Theorem
If f ( v) is SQUARE INTEGRABLE over the REAL v/-axis,
then any one of the following implies the other two:

1. The FOURIER TRANSFORM F(t) �F[f ( v)] is 0 for
t B1.
2. Replacing v by z �x �iy ; the function f (z) is
analytic in the COMPLEX PLANE z for y �0 and
approaches f (x) almost everywhere as y 0 0:
Furthermore, f

�

��
f (x �iy)j j2 dx Bk for some num-

ber k and y �0 (i.e., the integral is bounded).
3. The REAL and IMAGINARY PARTS of F(z) are
HILBERT TRANSFORMS of each other

(Bracewell 1999, Problem 8, p. 273).

See also FOURIER TRANSFORM, HILBERT TRANSFORM
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Titchmarsh’s Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

yƒ� l �x2n
� �

y �0:
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Tit-for-Tat
A strategy for the iterated PRISONER’S DILEMMA in
which a prisoner cooperates on the first move, and
thereafter copies the previous move of the other
prisoner. Any better strategy has more complicated
rules.

See also PRISONER’S DILEMMA
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Tits Group
A FINITE SIMPLE GROUP which is a SUBGROUP of the
TWISTED CHEVALLEY GROUP 2F4(2):/

Toeplitz Matrix
Given 2n�1 numbers ak; where k��n�1; ..., �1, 0,
1, ..., n�1; a Toeplitz matrix is a MATRIX which has
constant values along negative-sloping diagonals, i.e.,
a matrix OF THE FORM

a0 a�1 a�2 � � � a�n�1

a1 a0 a�1
::: n

a2 a1 a0
::: a�2

n :::
:::

::: a�1

an�1 � � � a2 a1 a0

2
66664

3
77775:

MATRIX EQUATIONS OF THE FORM



Xn

j�1

ai�jxj �yi

can be solved with O n2ð Þ operations. Typical problems
modelled by Toeplitz matrices include the numerical
solution of certain differential and integral equations
(regularization of inverse problems), the computation
of SPLINES, TIME SERIES ANALYSIS, signal and image
processing, MARKOV CHAINS, and QUEUING THEORY

(Bini 1995).

See also TRIANGULAR MATRIX, VANDERMONDE MATRIX
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Togliatti Surface
Togliatti (1940, 1949) showed that QUINTIC SURFACES

having 31 ORDINARY DOUBLE POINTS exist, although
he did not explicitly derive equations for such
surfaces. Beauville (1978) subsequently proved that
31 double points are the maximum possible, and
quintic surfaces having 31 ORDINARY DOUBLE POINTS

are therefore sometimes called Togliatti surfaces. van
Straten (1993) subsequently constructed a 3-D family
of solutions and in 1994, Barth derived the example
known as the DERVISH.

See also DERVISH, ORDINARY DOUBLE POINT, QUINTIC

SURFACE
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54, 1�/172, 1978.
Endraß, S. "Togliatti Surfaces." http://enriques.mathemati-

k.uni-mainz.de/kon/docs/Etogliatti.shtml.
Hunt, B. "Algebraic Surfaces." http://www.mathematik.uni-

kl.de/~wwwagag/E/Galerie.html.
Togliatti, E. G. "Una notevole superficie de 5� ordine con soli

punti doppi isolati." Vierteljschr. Naturforsch. Ges. Zürich
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Tomography
Tomography is the study of the reconstruction of 2-
and 3-dimensional objects from 1-dimensional slices.
The RADON TRANSFORM is an important tool in
tomography.

Rather surprisingly, there exist certain sets of four
directions in Euclidean n -space such that X-rays of a

convex body in these directions distinguish it from all
other convex bodies.

See also ALEKSANDROV’S UNIQUENESS THEOREM,
BRUNN-MINKOWSKI INEQUALITY, BUSEMANN-PETTY

PROBLEM, DVORETZKY’S THEOREM, HAMMER’S X-RAY

PROBLEMS, RADON TRANSFORM, STEREOLOGY
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Tooth Surface

The QUARTIC SURFACE given by the equation

x4 �y4 �z4 � x2 �y2 �z2
� �

�0:

See also GOURSAT’S SURFACE
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Top-Dimensional Form
In an EXTERIOR ALGEBRA fflV ; a top-dimensional form
has degree n where n �dim V : Any form of higher
degree must be zero. For example, if V �R4 then

a �e1 ffle2 ffle3 ffle4

is a top-dimensional form, and any other top-dimen-
sional form is la for some l:/

See also DIFFERENTIAL K -FORM, EXTERIOR ALGEBRA,
ORIENTATION (VECTOR SPACE), VOLUME FORM

Topological Basis
A topological basis is a SUBSET B of a SET T in which
all other OPEN SETS can be written as UNIONS or finite



INTERSECTIONS of B . For the REAL NUMBERS, the SET

of all OPEN INTERVALS is a basis.

Topological Completion
The topological completion C of a FIELD F with
respect to the ABSOLUTE VALUE �j j is the smallest
FIELD containing F for which all CAUCHY SEQUENCES

or rationals converge.
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Topological Dimension
LEBESGUE COVERING DIMENSION

Topological Entropy
The topological entropy of a MAP M is defined as

hT(M) �sup
Wif g

h M; Wif gð Þ;

where Wif g is a partition of a bounded region W
containing a probability measure which is invariant
under M , and sup is the SUPREMUM.
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Topological Graph
A simple unlabeled graph whose connectivity is
considered purely on the basis of topological equiva-
lence, so that two edges v1 ; v2ð Þ and v2 ; v3ð Þ joined by
a node v2 of degree two are considered equivalent to
the single edge v1 ; v3ð Þ:/

See also MATCH PROBLEM
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Topological Group
A CONTINUOUS GROUP G which has a HAUSDORFF

TOPOLOGY is a topological group. The simplest exam-
ple is the group of real numbers under addition.

The HOMEOMORPHISM GROUP of any COMPACT HAUS-

DORFF SPACE is a topological group when given the
COMPACT-OPEN TOPOLOGY. Also, any LIE GROUP is a
topological group.

See also EFFECTIVE ACTION, FREE ACTION, GROUP,
ISOTROPY GROUP, MATRIX GROUP, ORBIT (GROUP),
QUOTIENT SPACE, REPRESENTATION, TOPOLOGICAL

GROUP, TRANSITIVE
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Topological Groupoid
A topological groupoid over B is a GROUPOID G such
that B and G are TOPOLOGICAL SPACES and a; b; and
multiplication are continuous maps. Here, a and b are
maps from G onto R2 with a : (x; g ; y) �x and
b : (x; g; y) �y :/

See also GROUPOID, TOPOLOGICAL SPACE
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Topological Manifold
A TOPOLOGICAL SPACE M satisfying some separability
(i.e., it is a HAUSDORFF SPACE) and countability (i.e., it
is a PARACOMPACT SPACE) conditions such that every
point p � M has a NEIGHBORHOOD homeomorphic to an
OPEN SET in Rn for some n ]0: Every SMOOTH

MANIFOLD is a topological manifold, but not necessa-
rily vice versa. The first nonsmooth topological
manifold occurs in 4-D.

Nonparacompact manifolds are of little use in mathe-
matics, but non-Hausdorff manifolds do occasionally
arise in research (Hawking and Ellis 1975). For
manifolds, Hausdorff and second countable are
equivalent to Hausdorff and paracompact, and both
are equivalent to the manifold being embeddable in
some large-dimensional Euclidean space.

See also HAUSDORFF SPACE, MANIFOLD, PARACOM-

PACT SPACE, SMOOTH MANIFOLD, TOPOLOGICAL SPACE
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Topological Sort
A topological sort is a PERMUTATION p of the vertices
of a GRAPH such that an edge fi; jg implies that i
appears before j in p (Skiena 1990, p. 208). Only
DIRECTED ACYCLIC GRAPHS can be topologically sorted.
The topological sort of a graph can be computed using
TopologicalSort[g ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).
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with Mathematica. Reading, MA: Addison-Wesley,
pp. 208 �/209, 1990.

Topological Space
A SET X for which a TOPOLOGY T has been specified is
called a topological space (Munkres 1975, p. 76).

In the chapter "Point Sets in General Spaces" Haus-
dorff (1914) defined his concept of a topological space
based on the four HAUSDORFF AXIOMS.

1. To each point x there corresponds at least one
neighborhood U(x) ; and U(x) contains x .
2. If U(x) and V(x) are neighborhoods of the same
point x , then there exists a neighborhood W(x) of x
such that W(x) is a subset of the union of U(x) and
V(x) :/
3. If y is a point in U(x) ; then there exists a
neighborhood U(y) of y such that U(y) is a subset of
U(x) :/
4. For distinct points x and y , there exist two
disjoint neighborhoods U(x) and U(y):/

See also HAUSDORFF AXIOMS, HAUSDORFF SPACE,
KURATOWSKI’S CLOSURE-COMPONENT PROBLEM,
MANIFOLD, OPEN SET, TOPOLOGICAL VECTOR SPACE
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Topological Tree
SERIES-REDUCED TREE

Topological Vector Space
A VECTOR SPACE with a HAUSDORFF TOPOLOGY such
that the operations of VECTOR ADDITION and SCALAR

MULTIPLICATION are CONTINUOUS. The interesting
examples are infinite-dimensional spaces, such as a
space of functions. For example, a HILBERT SPACE and
a BANACH SPACE are topological vector spaces.

The choice of topology reflects what is meant by
convergence of functions. For instance, for functions
whose integrals converge, the BANACH SPACE L1(X);
one of the LP -SPACES, is used. But if one is interested
in POINTWISE CONVERGENCE, then no norm will
suffice. Instead, for each x � X define the SEMINORM

fk kx� f (x)j j

on the vector space of functions on X . The seminorms
define a topology, the smallest one in which the
seminorms are CONTINUOUS. So lim fn �f is equiva-
lent to lim fn(x) �f (x) for all x � X ; i.e., POINTWISE

CONVERGENCE. In a similar way, it is possible to

define a topology for which CONVERGENCE means
UNIFORM CONVERGENCE on COMPACT SETS.

See also BANACH SPACE, HILBERT SPACE, SEMINORM,
TOPOLOGICAL SPACE, VECTOR SPACE
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Topologically Conjugate
Two MAPS f; c : M 0 M are said to be topologically
conjugate if there EXISTS a HOMEOMORPHISM h : M 0
M such that f(h �h( c; i.e., h maps c/-orbits onto f/-
orbits. Two maps which are topologically conjugate
cannot be distinguished topologically.

See also ANOSOV DIFFEOMORPHISM, STRUCTURALLY

STABLE

Topologically Transitive
A FUNCTION f is topologically transitive if, given any
two intervals U and V , there is some POSITIVE

INTEGER k such that f k(U) S V "¥: Vaguely, this
means that neighborhoods of points eventually get
flung out to "big" sets so that they don’t necessarily
stick together in one localized clump.

See also CHAOS

Topology
Topology is the mathematical study of properties of
objects which are preserved through deformations,
twistings, and stretchings. (Tearing, however, is not
allowed.) A CIRCLE is topologically equivalent to an
ELLIPSE (into which it can be deformed by stretching)
and a SPHERE is equivalent to an ELLIPSOID. Continu-
ing along these lines, the SPACE of all positions of the
minute hand on a clock is topologically equivalent to a
CIRCLE (where SPACE of all positions means "the
collection of all positions"). Similarly, the SPACE of
all positions of the minute and hour hands is
equivalent to a TORUS. The SPACE of all positions of
the hour, minute and second hands form a 4-D object
that cannot be visualized quite as simply as the
former objects since it cannot be placed in our 3-D
world, although it can be visualized by other means.

There is more to topology, though. Topology began
with the study of curves, surfaces, and other objects
in the plane and 3-space. One of the central ideas in
topology is that spatial objects like CIRCLES and
SPHERES can be treated as objects in their own right,
and knowledge of objects is independent of how they
are "represented" or "embedded" in space. For exam-
ple, the statement "if you remove a point from a
CIRCLE, you get a line segment" applies just as well to
the CIRCLE as to an ELLIPSE, and even to tangled or



knotted CIRCLES, since the statement involves only
topological properties.

Topology has to do with the study of spatial objects
such as curves, surfaces, the space we call our
universe, the space-time of general relativity, frac-
tals, knots, manifolds (objects with some of the same
basic spatial properties as our universe), phase spaces
that are encountered in physics (such as the space of
hand-positions of a clock), symmetry groups like the
collection of ways of rotating a top, etc.

The "objects" of topology are often formally defined as
TOPOLOGICAL SPACES. If two objects have the same
topological properties, they are said to be HOME-

OMORPHIC (although, strictly speaking, properties
that are not destroyed by stretching and distorting
an object are really properties preserved by ISOTOPY,
not HOMEOMORPHISM; ISOTOPY has to do with distort-
ing embedded objects, while HOMEOMORPHISM is
intrinsic).

Topology is divided into ALGEBRAIC TOPOLOGY (also
called COMBINATORIAL TOPOLOGY), DIFFERENTIAL TO-

POLOGY, and LOW-DIMENSIONAL TOPOLOGY.

There is also a formal definition for a topology defined
in terms of set operations. A SET X along with a
collection T of SUBSETS of it is said to be a topology if
the SUBSETS in T obey the following properties:

1. The (trivial) subsets X and the EMPTY SET ¥ are
in T .
2. Whenever sets A and B are in T , then so is
A S B :/
3. Whenever two or more sets are in T , then so is
their UNION

(Bishop and Goldberg 1980). This definition can be
used to enumerate the topologies on n symbols in
Mathematica using the following code snippet.

BBDiscreteMath‘Combinatorica‘; Topolo-

gyQ[x_List,t_List]: �Module[{},

MemberQ[t,x]&&MemberQ[t,{}]&&

And@@(MemberQ[t,#]&/@Intersection@@@KSub-

sets[t,2])&&

And@@(MemberQ[t,#]&/@Union@@@Subsets[t])

] Topologies[n_]: �Module[{r �Range[n]},

Select[Subsets[Subsets[r]],TopologyQ[r,#]&]

]

For example, the unique topology of order 1 is
f¥; f1 gg; which the four topologies of order 2 are
f¥; f1 g; f1; 2gg; f¥; f1; 2gg; f¥; f1; 2g; f2gg; and
f¥; f1 g; f2g; f1; 2gg: The numbers of topologies on
sets of cardinalities n �1, 2, ... are 1, 4, 29, 355, 6942,
... (Sloane’s A000798).

A SET X for which a topology T has been specified is
called a TOPOLOGICAL SPACE (Munkres 1975, p. 76).
For example, the SET X�f1; 2; 3; 4g together with

the SUBSETS T�f¥; f1g; f2; 3; 4g; f1; 2; 3; 4gg com-
prises a topology, and X is a TOPOLOGICAL SPACE.

Topologies can be built up from TOPOLOGICAL BASES.
For the REAL NUMBERS, the topology is the UNION of
OPEN INTERVALS.

See also ALGEBRAIC TOPOLOGY, DIFFERENTIAL TOPOL-

OGY, GENUS, KLEIN BOTTLE, KURATOWSKI REDUCTION

THEOREM, LEFSHETZ TRACE FORMULA, LOW-DIMEN-

SIONAL TOPOLOGY, MÖ BIUS STRIP, POINT-SET TOPOL-

OGY, PRETZEL TRANSFORMATION, SPHERE EVERSION,
TOPOLOGICAL SPACE, ZARISKI TOPOLOGY
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Brown, J. I. and Watson, S. "The Number of Complements of
a Topology on n Points is at Least 2n (Except for Some
Special Cases)." Discr. Math. 154, 27�/39, 1996.

Chinn, W. G. and Steenrod, N. E. First Concepts of Topol-
ogy: The Geometry of Mappings of Segments, Curves,
Circles, and Disks. Washington, DC: Math. Assoc.
Amer., 1966.

Comtet, L. Advanced Combinatorics: The Art of Finite and
Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands:
Reidel, p. 229, 1974.

Dugundji, J. Topology. Englewood Cliffs, NJ: Prentice-Hall,
1965.

Eppstein, D. "Geometric Topology." http://www.ics.uci.edu/
~eppstein/junkyard/topo.html.

Erne’, M. and Stege, K. "Counting Finite Posets and
Topologies." , , .

Evans, J. W.; Harary, F.; and Lynn, M. S. "On the Computer
Enumeration of Finite Topologies." Commun. ACM 10,
295�/297 and 313, 1967.

Francis, G. K. A Topological Picturebook. New York:
Springer-Verlag, 1987.

Gemignani, M. C. Elementary Topology. New York: Dover,
1990.

Greever, J. Theory and Examples of Point-Set Topology.
Belmont, CA: Brooks/Cole, 1967.

Heitzig, J. and Reinhold, J. "The Number of Unlabeled
Orders on Fourteen Elements." Preprint No. 299. Han-
over, Germany: Universität Hannover Institut für Math-
ematik, 1999.

Hirsch, M. W. Differential Topology. New York: Springer-
Verlag, 1988.

Hocking, J. G. and Young, G. S. Topology. New York: Dover,
1988.

Kahn, D. W. Topology: An Introduction to the Point-Set and
Algebraic Areas. New York: Dover, 1995.



Kelley, J. L. General Topology. New York: Springer-Verlag,
1975.

Kinsey, L. C. Topology of Surfaces. New York: Springer-
Verlag, 1993.

Kleitman, D. and Rothschild, B. L. "The Number of Finite
Topologies." Proc. Amer. Math. Soc. 25, 276 �/282, 1970.

Lietzmann, W. Visual Topology. London: Chatto and
Windus, 1965.

Lipschutz, S. Theory and Problems of General Topology.
New York: Schaum, 1965.

Mendelson, B. Introduction to Topology. New York: Dover,
1990.

Munkres, J. R. Elementary Differential Topology. Princeton,
NJ: Princeton University Press, 1963.

Munkres, J. R. Topology: A First Course. Englewood Cliffs,
NJ: Prentice-Hall, 1975.

Praslov, V. V. and Sossinsky, A. B. Knots, Links, Braids and
3-Manifolds: An Introduction to the New Invariants in
Low-Dimensional Topology. Providence, RI: Amer. Math.
Soc., 1996.

Rayburn, M. "On the Borel Fields of a Finite Set." Proc.
Amer. Math.. Soc. 19, 885 �/889, 1968.

Seifert, H. and Threlfall, W. A Textbook of Topology. New
York: Academic Press, 1980.

Shafaat, A. "On the Number of Topologies Definable for a
Finite Set." J. Austral. Math. Soc. 8, 194 �/198, 1968.

Shakhmatv, D. and Watson, S. "Topology Atlas." http://
www.unipissing.ca/topology/.

Sloane, N. J. A. Sequences A000798/M3631 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Steen, L. A. and Seebach, J. A. Jr. Counterexamples in
Topology. New York: Dover, 1996.

Thurston, W. P. Three-Dimensional Geometry and Topology,
Vol. 1. Princeton, NJ: Princeton University Press, 1997.

Tucker, A. W. and Bailey, H. S. Jr. "Topology." Sci. Amer.
182, 18�/24, Jan. 1950.

van Mill, J. and Reed, G. M. (Eds.). Open Problems in
Topology. New York: Elsevier, 1990.

Veblen, O. Analysis Situs, 2nd ed. New York: Amer. Math.
Soc., 1946.

Weisstein, E. W. "Books about Topology." http://www.trea-
sure-troves.com/books/Topology.html.

Topology (Digraph)

An unlabeled TRANSITIVE DIGRAPH with n nodes is
called a "topology." The numbers of distinct topologies
on n �1, 2, ... nodes are 1, 3, 9, 33, 139, 718, 4545, ...
(Sloane’s A001930). No larger values are known.

See also DIRECTED GRAPH, TRANSITIVE DIGRAPH

References
Sloane, N. J. A. Sequences A001930/M2817 in "An On-Line

Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer
Sequences. San Diego, CA: Academic Press, 1995.

Topos
A CATEGORY modeled after the properties of the
CATEGORY of sets.

See also CATEGORY, LOGOS
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Toric Section
A curve obtained by slicing a TORUS (generally a HORN

TORUS) with a plane. A SPIRIC SECTION is a special
case of a toric section in which the slicing plane is
perpendicular to both the midplane of the torus and
to the plane x�0.

For planes parallel to the xy -plane, the toric sections
are a single circle (for z�0) or two concentric circles
(for 0B zj j5a): For planes containing the Z -AXIS, the
section is two equal circles.

Toric sections at oblique angles can be more compli-
cated, passing from a crescent shape, through a U-



shape, and into two disconnected kidney-shaped
curves.

See also SPIRIC SECTION, TORUS

Toric Variety
Let m1 ; m2 ; ..., mn be distinct primitive elements of a
2-D LATTICE M such that det mi ; mi�1

� �
> 0 for i �1,

..., n �1: Each collection G� m1 ; m2 ; . . . ; mnf g then
forms a set of rays of a unique complete fan in M , and
therefore determines a 2-D toric variety XG:/

See also ALGEBRAIC VARIETY
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Torispherical Dome

A torispherical dome is the surface obtained from the
intersection of a SPHERICAL CAP with a tangent
TORUS, as illustrated above. The radius of the sphere
R is called the "crown radius," and the radius of the
torus is called the "knuckle radius." Torispherical
domes are used to construct pressure vessels.

See also DOME, SPHERICAL CAP

Torn Square Fractal
CESÀ RO FRACTAL

Toroid

A SURFACE OF REVOLUTION obtained by rotating a
closed PLANE CURVE about an axis parallel to the
plane which does not intersect the curve. The sim-
plest toroid is the TORUS. The word is also used to
refer to a TOROIDAL POLYHEDRON (Gardner 1975).

See also PAPPUS’S CENTROID THEOREM, SURFACE OF

REVOLUTION, TANGENT-SPHERE COORDINATES TOROI-

DAL POLYHEDRON, TORUS
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Toroidal Coordinates

A system of CURVILINEAR COORDINATES for which
several different notations are commonly used. In
this work (u; v; f) is used, whereas Arfken (1970)
uses (j; h; 8) and Moon and Spencer (1988) use
(h; u; c): The toroidal coordinates are defined by

x�
a sinh u cos f

cosh u � cos v
(1)

y�
a sinh u sin f

cosh u � cos v
(2)

z�
a sin v

cosh u � cos v
; (3)

where sinh z is the HYPERBOLIC SINE and cosh z is the
HYPERBOLIC COSINE. Surfaces of constant u are given
by the TOROIDS

x2�y2�z2�a2�2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p
coth u; (4)

surfaces of constant v by the spherical bowls

x2�y2�(z�a cot v)2�
a2

sin2 v
; (5)

and surfaces of constant f by

tan f�
y

x
: (6)



The SCALE FACTORS are

hu �
a

cosh u � cos v 
(7)

hv �
a

cosh u � cos v 
(8)

hf �
a sinh u

cosh u � cos v 
: (9)

The LAPLACIAN is

92f �
sinh u

(cosh u � cos v)3

@

@u

sinh u

cosh u � cos v

@f

@u

 !" #

�
@

@v

sinh u

cosh u � cos v

@f

@v

 !
�

@

@ f

 csch u

cosh u � cos v

@f

@ f

 !�
(10)

�(cos v �cosh u)



sin v

@f

@v 
�(cos v �cosh u)

 csch2 u
@2f

@ f2 �
@2f

@v2

 !�

�(cos v cosh u �1) csch u
@f

@u

�(cos v �cosh u)
@2f

@u2

�
: (11)

The HELMHOLTZ DIFFERENTIAL EQUATION is not se-
parable in toroidal coordinates, but LAPLACE’S EQUA-

TION is.

See also BISPHERICAL COORDINATES, FLAT-RING CY-

CLIDE COORDINATES, LAPLACE’S EQUATION–TOROIDAL

COORDINATES
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Toroidal Crossing Number
The first few toroidal crossing numbers for a COM-

PLETE GRAPH are 0, 0, 0, 0, 0, 0, 0, 4, 9, 23, 42, 70, 105,

154, 226, 326, ... (Sloane’s A014543). The toroidal
crossing numbers for a COMPLETE BIGRAPH are given
in the following table.

1 0 0 0 0 0  0

2  0 0 0 0  0

3  0 0 0  0

4 2

5 5 8

6 12

7

See also CROSSING NUMBER (GRAPH), RECTILINEAR

CROSSING NUMBER
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Toroidal Field
A VECTOR FIELD resembling a TORUS which is purely
circular about the Z -AXIS of a SPHERE (i.e., follows
lines of LATITUDE). A toroidal field takes the form

T�

0
1

sin u

@T

@f

�
@T

@u

2
666664

3
777775:

See also DIVERGENCELESS FIELD, POLOIDAL FIELD

References
Stacey, F. D. Physics of the Earth, 2nd ed. New York: Wiley,

p. 239, 1977.

Toroidal Function
A class of functions also called RING FUNCTIONS which
appear in systems having toroidal symmetry. Toroi-
dal functions can be expressed in terms of the
LEGENDRE FUNCTIONS and SECOND KINDS (Abramo-
witz and Stegun 1972, p. 336):



Pm

n�1 =2(cosh h) �[G(1 � m)] �122 m 1 �e �2h
� ��m

e �(n�1 =2)h

�2F1
1
2 � m; 1

2 � n � m; 1�2m; 1�e �2 h
� �

Pm
n �1 =2(cosh h) �

G n � m � 1
2

� �
(sinh h)m

G n � m � 1
2

� �
2m

ffiffiffi
p

p
G m � 1

2

� �

g  
p

0

sin2m f df

(cosh h � cos f sin h)n�m�1 =2

Q mn�1 =2(cosh h) �[ G(1 � n)]�1 ffiffiffi
p

p
eimp G 1

2 � n � m
� �

� 1 �e �2h
� �m

e �(n�1 =2)h
2F1

 1
2 � m ; 1

2 � n � m; 1� m; 1�e �2 h
� �

Qm
n�1 =2(cosh h) �

( �1)m G n � 1
2

� �
G n � m � 1

2

� �
g

�

0

cosh(mt) dt

(cosh h � cosh t sinh h)n�1 =2

for n �m . Byerly (1959) identifies

1

in=2
Pn

m(coth x) �cschn x
dnPm(coth x)

d(coth x)n

as a TOROIDAL HARMONIC.

See also CONICAL FUNCTION
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Toroidal Harmonic
TOROIDAL FUNCTION

Toroidal Polyhedron
A toroidal polyhedron is a POLYHEDRON with GENUS

g ]1 (i.e., having one or more HOLES). Examples of
toroidal polyhedra include the CSÁ SZÁ R POLYHEDRON

and SZILASSI POLYHEDRON, both of which have GENUS

1 (i.e., the TOPOLOGY of a TORUS).

The only known TOROIDAL POLYHEDRON with no
DIAGONALS is the CSÁ SZÁ R POLYHEDRON. If another
exists, it must have 12 or more VERTICES and GENUS

g ]6 (Gardner 1975). The smallest known single-hole

toroidal polyhedron made up of only EQUILATERAL

TRIANGLES is composed of 48 of them.

See also CSÁ SZÁ R POLYHEDRON, SZILASSI POLYHE-

DRON, TOROID

References
Gardner, M. "Mathematical Games: On the Remarkable

Császár Polyhedron and Its Applications in Problem
Solving." Sci. Amer. 232, 102�/107, May 1975.

Gardner, M. Time Travel and Other Mathematical Bewil-
derments. New York: W. H. Freeman, p. 141, 1988.

Hart, G. "Toroidal Polyhedra." http://www.georgehart.com/
virtual-polyhedra/toroidal.html.

Stewart, B. M. Adventures Among the Toroids, 2nd rev. ed.
Okemos, MI: B. M. Stewart, 1984.

Toronto Function
The function defined by

T(m; n; r)�r2n�m�1e�r2
G 1

2 m � 1
2

� �
n!

1F1
1
2(m�1); n�1; r2
� �

(1)

(Heatley 1943; Abramowitz and Stegun 1972, p. 509),
where 1F1(a; b; z) is a CONFLUENT HYPERGEOMETRIC

FUNCTION and G(z) is the GAMMA FUNCTION.

Heatley originally defined the function in terms of the
integral

T(m; n; p; a)�g
�

0

t�ne�p2t2

In(2at) dt; (2)

where In(x) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND, which is similar to an integral of Watson
(1966, p. 394), with Watson’s Jn(at) changed to In(2at)
and a few other minor changes of variables. In terms
of this function,

T(m; n; r)�2rn�m�1e�r2

T(m; n; 1; r) (3)

(Heatley 1943). Heatley (1943) also gives a number of
recurrences and other identities satisfied by
T(m; n; r):/
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Torsion (Differential Geometry)
The rate of change of the OSCULATING PLANE of a
SPACE CURVE. The torsion t is POSITIVE for a right-
handed curve, and NEGATIVE for a left-handed curve.
A curve with CURVATURE k "0 is planar IFF t �0:/

The torsion can be defined by

t ��N � B?;

where N is the unit NORMAL VECTOR and B is the unit
BINORMAL VECTOR. Written explicitly in terms of a
parameterized VECTOR FUNCTION x,

t �
jẋẍ �x j
ẍ � ẍ 

� r2 ẋẍ �x j;j

where abcj j denotes a SCALAR TRIPLE PRODUCT and r
is the RADIUS OF CURVATURE. The quantity 1=t is
called the RADIUS OF TORSION and is denoted s or f:/

See also CURVATURE, RADIUS OF CURVATURE, RADIUS

OF TORSION
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Torsion (Group)
If G is a GROUP, then the torsion elements Tor(G) of G
(also called the torsion of G ) are defined to be the set
of elements g in G such that gn �e for some NATURAL

NUMBER n , where e is the IDENTITY ELEMENT of the
GROUP G .

In the case that G is ABELIAN, Tor(G) is a SUBGROUP

and is called the torsion subgroup of G . If Tor(G)
consists only of the IDENTITY ELEMENT, the GROUP G
is called torsion-free.

See also ABELIAN GROUP, FREE ABELIAN GROUP,
GROUP, IDENTITY ELEMENT

Torsion Number
One of a set of numbers defined in terms of an
invariant generated by the finite cyclic covering
spaces of a KNOT complement. The torsion numbers
for KNOTS up to 9 crossings were cataloged by
Reidemeister (1948).

See also KNOT INVARIANT
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Torsion Subgroup
TORSION (GROUP)

Torsion Tensor
The TENSOR defined by

Tl
jk �� Gl 

jk �Gl 
kj

� �
;

where Gl
jk are CONNECTION COEFFICIENTS.

See also CONNECTION COEFFICIENT

Torus

A torus is a surface having GENUS 1, and therefore
possessing a single "HOLE." The usual torus in 3-D
space is shaped like a donut, but the concept of the
torus is extremely useful in higher dimensional space
as well. One of the more common uses of n -D tori is in
DYNAMICAL SYSTEMS. A fundamental result states
that the PHASE SPACE trajectories of a HAMILTONIAN

SYSTEM with n DEGREES OF FREEDOM and possessing
n INTEGRALS OF MOTION lie on an n -D MANIFOLD

which is topologically equivalent to an n -torus (Tabor
1989).

The usual 3-D "ring" torus is known in older litera-
ture as an "ANCHOR RING." It can be constructed from
a RECTANGLE by gluing both pairs of opposite edges
together with no twists.

Let the radius from the center of the hole to the
center of the torus tube be c , and the radius of the
tube be a . Then the equation in CARTESIAN COORDI-

NATES for a torus azimuthally symmetric about the Z -

AXIS is

c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�y2

p� �2

�z2�a2; (1)

and the PARAMETRIC EQUATIONS are

x ¼ ðc þ a cos vÞ cos u ð2Þ

y ¼ ðc þ a cos uÞ sin u ð3Þ

z ¼ a sin v ð4Þ

for u; v � 0; 2p½ Þ: Three types of torus, known as the
STANDARD TORI, are possible, depending on the
relative sizes of a and c . c�a corresponds to the



RING TORUS (shown above), c�a corresponds to a
HORN TORUS which is tangent to itself at the point (0,
0, 0), and cBa corresponds to a self-intersecting
SPINDLE TORUS (Pinkall 1986).

If no specification is made, "torus" is taken to mean
RING TORUS. The three STANDARD TORI are illustrated
below, where the first image shows the full torus, the
second a cut-away of the bottom half, and the third a
CROSS SECTION of a plane passing through the Z -AXIS.

The STANDARD TORI and their inversions are CY-

CLIDES. If the coefficient of sin v in the formula for z
is changed to b"a; an ELLIPTIC TORUS results.

To compute the metric properties of the ring torus,
define the inner and outer radii by

r�c�a ð5Þ

R�c þ a: ð6Þ

Solving for a and c gives

a�1
2(R�r) (7)

c�1
2(R�r): (8)

Then the SURFACE AREA of this torus is

S�(2pa)(2pc)�4p2ac (9)

�p2(R�r)(R�r); (10)

and the VOLUME can be computed from PAPPUS’S

CENTROID THEOREM

V� pa2
� �

(2pc)�2p2a2c (11)

�1
4 p

2(R�r)(R�r)2: (12)

The coefficients of the coefficients of the FIRST

FUNDAMENTAL FORM are

E�(c�a cos v)2 (13)

F ¼ 0 ð14Þ

G ¼ a2 ð15Þ

and the coefficients of the SECOND FUNDAMENTAL

FORM are

e��(c�a cos v) cos v (16)

f �0 (17)

g��a; (18)

giving RIEMANNIAN METRIC

ds2�(c�a cos v)2 du2�a2 dv2; (19)

AREA ELEMENT

dA�a(c�a cos v) duffldv (20)

(where duffldv is a WEDGE PRODUCT), and GAUSSIAN

and MEAN CURVATURES as

K�
cos v

a(c � a cos v)
(21)

H ¼�
c þ 2a cos v

2aðc þ a cos vÞ
ð22Þ

(Gray 1997, pp. 384�/386).

A torus with a HOLE in its surface can be turned
inside out to yield an identical torus. A torus can be
knotted externally or internally, but not both. These
two cases are AMBIENT ISOTOPIES, but not REGULAR

ISOTOPIES. There are therefore three possible ways of
embedding a torus with zero or one KNOT.

An arbitrary point P on a torus (not lying in the xy -
plane) can have four CIRCLES drawn through it. The
first circle is in the plane of the torus and the second
is PERPENDICULAR to it. The third and fourth CIRCLES

are called VILLARCEAU CIRCLES (Villarceau 1848,
Schmidt 1950, Coxeter 1969, Melnick 1983).

To see that two additional CIRCLES exist, consider a
coordinate system with origin at the center of torus,
with ẑ pointing up. Specify the position of P by its
ANGLE f measured around the tube of the torus.
Define f�0 for the circle of points farthest away



from the center of the torus (i.e., the points with x2 �
y2 �R2) ; and draw the X -AXIS as the intersection of a
plane through the Z -AXIS and passing through P with
the xy -plane. Rotate about the Y -AXIS by an ANGLE u;
where

u �sin�1 a

c

 !
: (23)

In terms of the old coordinates, the new coordinates
are

x �x1 cos u �z1 sin u (24)

z �x1 sin u �z1 cos u: (25)

So in x1 ; y1 ; z1ð Þ coordinates, equation (1) of the torus
becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 cos u �z1 sin uð Þ2�y2

1

q
�c

 �2

� x1 sin u �z1 cos uð Þ2�a2 : (26)

Expanding the left side gives

x1 cos u �z1 sin uð Þ2�y2
1 �c2

�2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 cos u �z1 sin uð Þ2�y2

1

q
� x1 sin u �z1 cos uð Þ2�a2 : (27)

But

x1 cos u �z1 sin uð Þ2� x1 sin u �z1 cos uð Þ2

�x2
1 �z2

1 ; (28)

so

x2
1 �y2

1 �z2
1 �c2 �2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 cos u �z1 sin uð Þ2�y2

1

q
�a2 : (29)

In the z1 �0 plane, plugging in (23) and factoring
gives

x2
1 � y1 �að Þ2�c2

h i
x2

1 � y1 �að Þ2�c2
h i

�0 : (30)

This gives the CIRCLES

x2
1 � y1 �að Þ2�c2 (31)

and

x2
1 � y1 �að Þ2�c2 (32)

in the z1 plane. Written in MATRIX form with para-
meter t � 0; 2p½ Þ; these are

C1 �
c cos t

c sin t �a
0

2
4

3
5 (33)

C2 �
c cos t

c sin t �a
0

2
4

3
5 (34)

In the original (x; y; z) coordinates,

C1 �
cos u 0 �sin u

0 1 0
�sin u 0 cos u

2
4

3
5 c cos t

c sin t �a
0

2
4

3
5

�
c cos u cos t
c sin t �a

�c sin u cos t

2
4

3
5 (35)

C2 �
cos u 0 sin u

0 1 0
�sin u 0 cos u

2
4

3
5 c cos t

c sin t �a
0

2
4

3
5

�
c cos u cos t
c sin t �a

�c sin u cos t

2
4

3
5: (36)

The point P must satisfy

z �a sin f �c sin u cos t; (37)

so

cos t �
a sin f

c sin u
: (38)

Plugging this in for x1 and y1 gives the ANGLE c by
which the CIRCLE must be rotated about the Z -AXIS in
order to make it pass through P ,

c �tan�1 y

x

 !
�

c sin t � a

c cos u cos t
�

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2

p
t � a

c cos u cos t
: (39)

The four CIRCLES passing through P are therefore

C1�
cos c sin c 0
�sin c cos c 0

0 0 1

2
4

3
5 c cos u cos t

c sin t�a
�c sin u cos t

2
4

3
5 (40)

C2�
cos c sin c 0
�sin c cos c 0

0 0 1

2
4

3
5 c cos u cos t

c sin t�a
�c sin u cos t

2
4

3
5 (41)

C3�
(c�a cos f) cos t
(c�a cos f) sin t

a sin f

2
4

3
5 (42)

C4�
c�a cos t

0
a sin t

2
4

3
5: (43)

See also APPLE, CYCLIDE, DOUBLE TORUS, ELLIPTIC

TORUS, GENUS (SURFACE), HORN TORUS, KLEIN

QUARTIC, LEMON, RING TORUS, SPINDLE TORUS,
SPIRIC SECTION, STANDARD TORI, TORIC SECTION,
TOROID, TORUS COLORING, TORUS CUTTING, TORUS

DISSECTION, TRIPLE TORUS
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Torus Coloring

The number of colors SUFFICIENT for MAP COLORING

on a surface of GENUS g is given by the HEAWOOD

CONJECTURE,

x(g) � 1
2 7 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48g �1

p� �j k
;

where xb c is the FLOOR FUNCTION. The fact that x(g)
(which is called the CHROMATIC NUMBER) is also
NECESSARY was proved by Ringel and Youngs (1968)
with two exceptions: the SPHERE (which requires the
same number of colors as the PLANE) and the KLEIN

BOTTLE. A g -holed TORUS therefore requires x(g)
colors. For g �0, 1, ..., the first few values of x(g)
are 4, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, ...
(Sloane’s A000934). A set of regions requiring the
maximum of seven regions is shown above for a
normal TORUS

The above figure shows the relationship between the
HEAWOOD GRAPH and the 7-color torus coloring.

See also CHROMATIC NUMBER, FOUR-COLOR THEO-

REM, HEAWOOD CONJECTURE, HEAWOOD GRAPH,
KLEIN BOTTLE, MAP COLORING, TORUS
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Torus Cutting
With n cuts of a TORUS of GENUS 1, the maximum
number of pieces which can be obtained is

N(n)�1
6 n3�3n3�8n
� �

:

The first few terms are 2, 6, 13, 24, 40, 62, 91, 128,
174, 230, ... (Sloane’s A003600).

See also CAKE CUTTING, CIRCLE DIVISION BY LINES,
CYLINDER CUTTING, PANCAKE CUTTING, PLANE CUT-

TING, PIE CUTTING, SQUARE DIVISION BY LINES
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Torus Dissection

A ring TORUS constructed out of a square of side
length c can be dissected into two squares of arbitrary
side lengths a and b (as long as they are consistent
with the size of the original square), as illustrated
above.

See also DISSECTION, TORUS
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Torus Knot
A (p, q )-torus KNOT is obtained by looping a string
through the HOLE of a TORUS p times with q
revolutions before joining its ends, where p and q
are RELATIVELY PRIME. A (p, q )-torus knot is equiva-
lent to a (q, p )-torus knot. All torus knots are PRIME

(Burde and Zieschang 1985, Hoste et al. 1998). Torus
knots are all chiral, invertible, and have symmetry
group D1 (Schreier 1924, Hoste et al. 1998).

The CROSSING NUMBER of a (p, q )-torus knot is

c �min fp(q �1); q(p �1)g (1)

(Williams 1988, Murasugi and Przytycki 1989, Mur-
asugi 1991, Hoste et al. 1998). The UNKNOTTING

NUMBER of a (p, q )-torus knot is

u �1
2(p �1)(q �1) (2)

(Adams 1991).

Torus knots with fewer than 11 crossings are the
TREFOIL KNOT 03 �/001 (3, 2), SOLOMON’S SEAL KNOT 05 �/

001 (5, 2), 07 �/001 (7, 2), 08 �/019 (4, 3), 09 �/001 (9, 2), and
10 �/124 (5, 3) (Adams et al. 1991). The torus knots with
16 or fewer crossings are (3; 2); (5; 2); (7; 2); (9; 2);
(11; 2); (13; 2); (15; 2); (4; 3); (5; 3); (7; 3); (8; 3); and
(5; 4) (Hoste et al. 1998). The numbers of torus knots
with n crossings are 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
2, 1, ... (Sloane’s A051764).

The only KNOTS which are not HYPERBOLIC KNOTS are
torus knots and SATELLITE KNOTS (including COMPO-

SITE KNOTS). The (q; 2); (4; 3); and (5; 4)/-torus knots
are ALMOST ALTERNATING KNOTS (Adams 1994,
p. 142).

The JONES POLYNOMIAL of an (m, n )-TORUS KNOT is

t(m�1)(n�1)=2 1 � tm�1 � tn�1 � tm�nð Þ
1 � t2 

: (3)

The BRACKET POLYNOMIAL for the torus knot Kn �
(2; n) is given by the RECURRENCE RELATION

Knh i�A Kn�1h i�(�1)n�1A�3n�2 ; (4)

where

K1h i��A3 : (5)

See also ALMOST ALTERNATING KNOT, HYPERBOLIC

KNOT, KNOT, SATELLITE KNOT, SOLOMON’S SEAL

KNOT, TREFOIL KNOT
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Total Angular Defect
DESCARTES TOTAL ANGULAR DEFECT

Total Curvature
The total curvature of a curve is the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�k2

p
; where t is the TORSION and k is the

CURVATURE. The total curvature is also called the
THIRD CURVATURE.

See also CURVATURE, TORSION (DIFFERENTIAL GEO-

METRY)



Total Differential
EXACT DIFFERENTIAL

Total Exchange
GOSSIPING

Total Function
A FUNCTION defined for all possible input values.

Total Graph
The total graph T(G) of a GRAPH G has a vertex for
each edge and vertex of G , and edge in T(G) for every
edge-edge and vertex-edge adjacency in G (Capo-
bianco and Molluzzo 1978; Skiena 1990, p. 162). Total
graphs are generalizations of LINE GRAPHS.

See also LINE GRAPH
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Total Intersection Theorem
If one part of the total intersection group of a curve of
order n with a curve of order n1 �n2 constitutes the
total intersection with a curve of order n1 ; then the
other part will constitute the total intersection with a
curve of order n2 :/

References
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New

York: Dover, p. 32, 1959.

Total Order
A RELATION on a TOTALLY ORDERED SET.

See also TOTALLY ORDERED SET

Total Probability Theorem
Given n MUTUALLY EXCLUSIVE EVENTS A1 ; ..., An

whose probabilities sum to unity, then

P(B) �P B A1j ÞP A1ð Þ�. . .�P B Anj ÞP Anð Þ;ðð

where B is an arbitrary event, and P B Aij Þð is the
CONDITIONAL PROBABILITY of B assuming Ai :/

See also BAYES’ THEOREM, CONDITIONAL PROBABIL-

ITY, MUTUALLY EXCLUSIVE EVENTS
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Total Space
The SPACE E of a FIBER BUNDLE given by the MAP f :
E 0 B; where B is the BASE SPACE of the FIBER

BUNDLE.

See also BASE SPACE, FIBER BUNDLE, SPACE

Total Variation Measure
Given a COMPLEX MEASURE m; there exists a POSITIVE

MEASURE denoted mj j which measures the total varia-
tion of m; also sometimes called simply "total varia-
tion." In particular, ½m ½(E) on a SUBSET E is the largest
sum of "variations" for any subdivision of E . Roughly
speaking, a total variation measure is an infinitesi-
mal version of the ABSOLUTE VALUE.

More precisely,

mj j(E) �sup
X

i

m Eið Þj j  (1)

where the SUPREMUM is taken over all partitions @ Ei

of E into MEASURABLE SUBSETS Ei :/

Note that m(X)j j may not be the same as mj j(X): When
m already is a POSITIVE MEASURE, then m � mj j: More
generally, if m is ABSOLUTELY CONTINUOUS, that is

m(E) �gE

f dx; (2)

then so is mj j; and the total variation measure can be
written as

mj j(E) �gE

fj j dx: (3)

The total variation measure can be used to rewrite
the original measure, in analogy to the norm of a
COMPLEX NUMBER. The measure m has a POLAR

REPRESENTATION

dm �h d mj j  (4)

with hj j �1:/

See also JORDAN MEASURE DECOMPOSITION, MEA-

SURE, POLAR REPRESENTATION (MEASURE), RIESZ

REPRESENTATION THEOREM
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Totalistic Cellular Automaton
A totalistic cellular automaton is a 1-D cellular
automata in which the rules depend only on the total
of the values of the cells in a neighborhood. These
automata were introduced by Stephen Wolfram in
1983.

See also CELLULAR AUTOMATON



Totally Ordered Set
A total order (or "totally ordered set," or "linearly
ordered set") is a SET plus a relation on the set (called
a TOTAL ORDER) that satisfies the conditions for a
PARTIAL ORDER plus an additional condition known as
the comparability condition. A RELATION 5is a partial
order on a SET S ( if the following properties hold.

1. Reflexivity: a 5a for all a � S:/
2. Weak antisymmetry: a 5b and b 5a implies
a �b .
3. Transitivity: a 5b and b 5c implies a 5c :/
4. Comparability (TRICHOTOMY LAW): For any
a; b � S; either a 5b or b 5a:/

The first three are the axioms of a PARTIAL ORDER,
while addition of the TRICHOTOMY LAW defines a total
order.

Every finite totally ordered set is WELL ORDERED. Any
two totally ordered sets with k elements (for k a
nonnegative integer) are ORDER ISOMORPHIC, and
therefore have the same ORDER TYPE (which is also
an ORDINAL NUMBER).

See also ORDER ISOMORPHIC, ORDER TYPE, PARTIAL

ORDER, RELATION, TRICHOTOMY LAW, WELL ORDERED

SET
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Totally Symmetric Self-Complementary
Plane Partition
A PLANE PARTITION which is invariant under permu-
tation of the three axes and which is equal to its
complement (i.e., the collection of cubes that are in a
given box but do not belong to the solid Young
diagram). The number of totally symmetric self-
complementary PLANE PARTITIONS is the same as
that for ALTERNATING SIGN MATRICES and DESCEND-

ING PLANE PARTITIONS.

See also ALTERNATING SIGN MATRIX, DESCENDING

PLANE PARTITION, PLANE PARTITION
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Totative
A POSITIVE INTEGER less than or equal to a number n
which is also RELATIVELY PRIME to n , where 1 is
counted as being RELATIVELY PRIME to all numbers.
The number of totatives of n is the value of the
TOTIENT FUNCTION f(n):/

See also RELATIVELY PRIME, TOTIENT FUNCTION

Totient Function

The totient function f(n); also called Euler’s totient
function, is defined as the number of POSITIVE

INTEGERS 5n which are RELATIVELY PRIME to (i.e.,
do not contain any factor in common with) n , where 1
is counted as being RELATIVELY PRIME to all numbers.
Since a number less than or equal to and RELATIVELY

PRIME to a given number is called a TOTATIVE, the
totient function f(n) can be simply defined as the
number of TOTATIVES of n . For example, there are
eight TOTATIVES of 24 (1, 5, 7, 11, 13, 17, 19, and 23),
so f(24)�8:/

/f(n) is always EVEN for n]3: By convention, f(0)�1;
although Mathematica defines EulerPhi[0] equal to
0 for consistency with its FactorInteger[0] com-
mand. The first few values of f(n) for n�1, 2, ... are
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, ... (Sloane’s A000010). The
totient function is given by the MÖBIUS TRANSFORM of
1, 2, 3, 4, ... (Sloane and Plouffe 1995, p. 22). f(n) is
plotted above for small n .

For a PRIME p ,

f(p)�p�1; (1)

since all numbers less than p are RELATIVELY PRIME

to p . If m�pa is a POWER of a PRIME, then the
numbers which have a common factor with m are the
multiples of p : p , 2p; ..., pa�1ð Þp: There are pa�1 of
these multiples, so the number of factors RELATIVELY

PRIME to pa is

f(pa)�pa�pa�1�pa�1(p�1)�pa 1�
1

p

 !
: (2)

Now take a general m divisible by p . Let fp(m) be the
number of POSITIVE INTEGERS5m not DIVISIBLE by p .
As before, p , 2p; ..., (m=p)p have common factors, so

fp(m)�m�
m

p
�m 1�

1

p

 !
: (3)

Now let q be some other PRIME dividing m . The
INTEGERS divisible by q are q , 2q; ..., (m=q)q: But
these duplicate pq , 2pq; ..., (m=pq)pq: So the number
of terms which must be subtracted from fp to obtain
fpq is

Dfp(m)�
m

q
�

m

pq
�

m

q
1�

1

p

 !
; (4)



and

fpqðmÞ�fpðmÞ�DfqðmÞ

�m 1�
1

p

 !
�

m

p
1�

1

p

 !

�m 1�
1

p

 !
1�

1

q

 !
: (5)

By induction, the general case is then

f(n)�n 1�
1

p1

 !
1�

1

p2

 !
� � � 1�

1

pr

 !
: (6)

An interesting identity relates f(n2) to f(n);

f(n2)�nf(n): (7)

Another identity relates the DIVISORS d of n to n viaX
d

f(d)�n: (8)

The DIVISOR FUNCTION satisfies the CONGRUENCE

ns(n)�2 (mod f(n))

�
ns(n)�0 (mod f(n)) if f(n)�2
ns(n)�2 (mod f(n)) otherwise

�
(9)

for all PRIMES p]5 and no COMPOSITE with the
exception of 4, 6, and 22, where s(n) is the DIVISOR

FUNCTION. This fact was proved by Subbarao (1974),
despite the implication to the contrary, "is it true for
infinitely many composite n?," stated in Guy (1994,
p. 92). No COMPOSITE solution is currently known to

n�1�0 (mod f(n)) (10)

(Honsberger 1976, p. 35).

If the GOLDBACH CONJECTURE is true, then for every
number m , there are PRIMES p and q such that

f(p)�f(q)�2m (11)

(Guy 1994, p. 105). Guy (1994, p. 99) discussed
solutions to

f(s(n))�n; (12)

where s(n) is the DIVISOR FUNCTION. F. Helenius has
found 365 such solutions, the first of which are 2, 8,
12, 128, 240, 720, 6912, 32768, 142560, 712800, ...
(Sloane’s A001229).

Curious equalities of consecutive values include

f(5186)�f(5187)�f(5188)�2534 (13)

f(25930)�f(25935)�f(25942)�2734 (14)

f(404471)�f(404473)�f(404477)�2832527 (15)

(Guy 1994, p. 91). McCranie found an arithmetic

progression of six numbers with equal totient func-
tions,

f(583200)�f(583230)�f(583260)�f(583290)

�f(583320)�f(583350)�155520; (16)

as well as other progressions of six numbers starting
at 583200, 1166400, 1749600, ... (Sloane’s A050518).

The SUMMATORY totient function, plotted above, is
defined by

F(n)�
Xn

k�1

f(k): (17)

The first values of F(n) are 1, 2, 4, 6, 10, 12, 18, 22, 28,
... (Sloane’s A002088). F(n) has the asymptotic series

F(x)	
1

2z(2)
x2�O(x ln x) (18)

	
3

p2
x2�O(x ln x); (19)

where z(z) is the RIEMANN ZETA FUNCTION (Perrot
1881; Nagell 1951, p. 131). An improved asymptotic
estimate due to Walfisz (1963) is given by

XN

n�1

f(n)�
3N2

p2
�O N(ln N)2=3(ln ln N)4=3

h i
: (20)

Landau (1900, quoted in Dickson 1952) showed that
the asymptotic series of the summatory function of /

1=fðnÞ/ is

XN

n�1

1

f(n)
�A ln N�B�O

ln N

N

 !
; (21)

where

A�
X�
k�1

m(k)½ �2

kf(k)
�

z(2)z(3)

z(6)
�

315

2p4
z(3)

�1:9435964368 . . . (22)

B�g
315

2p4
z(3)�

X�
k�1

m(k)½ �2 ln k

kf(k)

��0:0595536246 . . . ; (23)



/m(k) is the MÖ BIUS FUNCTION, z(z) is the RIEMANN

ZETA FUNCTION, and g is the EULER-MASCHERONI

CONSTANT (Dickson). A can also be written

A �
Y�
k �1

1 � p6
k

1 � p�2
k

� �
1 � p �3

k

� �
�
Y�
k �1

1 �
1

pk pk � 1ð Þ

" #
: (24)

Note that this constant is similar to ARTIN’S CON-

STANT.

See also DEDEKIND FUNCTION, EULER’S TOTIENT

RULE, FERMAT’S LITTLE THEOREM, LEHMER’S PRO-

BLEM, LEUDESDORF THEOREM, NONCOTOTIENT, NON-

TOTIENT, SILVERMAN CONSTANT, TOTATIVE, TOTIENT

VALENCE FUNCTION
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Totient Function Constants
SILVERMAN CONSTANT, TOTIENT FUNCTION

Totient Valence Function
/Nf(m) is the number of INTEGERS n for which the
TOTIENT FUNCTION f(n)�m; also called the MULTI-

PLICITY of m (Guy 1994). Erdos(1958) proved that is a
multiplicity occurs once, it occurs infinitely often. The
table below lists values for f(N)550:/

/f(N)/ multiplicity N

1 2 1, 2

2 3 3, 4, 6

4 4 5, 8, 10, 12

6 4 7, 9, 14, 18

8 5 15, 16, 20, 24, 30

10 2 11, 22

12 6 13, 21, 26, 28, 36, 42

16 6 17, 32, 34, 40, 48, 60

18 4 19, 27, 38, 54

20 5 25, 33, 44, 50, 66

22 2 23, 46

24 10 35, 39, 45, 52, 56, 70, 72, 78, 84, 90

28 2 29, 58

30 2 31, 62

32 7 51, 64, 68, 80, 96, 102, 120

36 8 37, 57, 63, 74, 76, 108, 114, 126

40 9 41, 55, 75, 82, 88, 100, 110, 132, 150

42 4 43, 49, 86, 98

44 3 69, 92, 138

46 2 47, 94

48 11 65, 104, 105, 112, 130, 140, 144,
156, 168, 180, 210

A table listing the first value of f(N) with multi-
plicities up to 100 follows (Sloane’s A007374; Sloane’s
A014573).



M /f/ M /f/ M /f/ M / f/

0 3 26 2560 51 4992 76 21840

2 1 27 384 52 17640 77 9072

3 2 28 288 53 2016 78 38640

4 4 29 1320 54 1152 79 9360

5 8 30 3696 55 6000 80 81216

6 12 31 240 56 12288 81 4032

7 32 32 768 57 4752 82 5280

8 36 33 9000 58 2688 83 4800

9 40 34 432 59 3024 84 4608

10 24 35 7128 60 13680 85 16896

11 48 36 4200 61 9984 86 3456

12 160 37 480 62 1728 87 3840

13 396 38 576 63 1920 88 10800

14 2268 39 1296 64 2400 89 9504

15 704 40 1200 65 7560 90 18000

16 312 41 15936 66 2304 91 23520

17 72 42 3312 67 22848 92 39936

18 336 43 3072 68 8400 93 5040

19 216 44 3240 69 29160 94 26208

20 936 45 864 70 5376 95 27360

21 144 46 3120 71 3360 96 6480

22 624 47 7344 72 1440 97 9216

23 1056 48 3888 73 13248 98 2880

24 1760 49 720 74 11040 99 26496

25 360 50 1680 75 27720 100 34272

It is thought that Nf(m) ]2 (i.e., the totient valence
function never takes on the value 1), but this has not
been proven. This assertion is called CARMICHAEL’S

TOTIENT FUNCTION CONJECTURE and is equivalent to
the statement that for all n , there exists m "n such
that f(n) � f(m) (Ribenboim 1996, pp. 39 �/40). Any
counterexample must have more than 10,000,000
DIGITS (Schlafly and Wagon 1994, erroneously given
as 10,000 in Conway and Guy 1996).

See also CARMICHAEL’S TOTIENT FUNCTION CONJEC-

TURE, SIERPINSKI’S CONJECTURE, TOTIENT FUNCTION
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Touchard’s Congruence

Bp �k �Bk �Bk �1 (mod p) ;

when p is PRIME and Bn is a BELL NUMBER.

See also BELL NUMBER

Tour
A sequence of moves on a chessboard by a CHESS piece
in which each square of a CHESSBOARD is visited
exactly once.

See also CHESS, HAMILTONIAN CIRCUIT, KNIGHT’S

TOUR, MAGIC TOUR, TRAVELING SALESMAN CON-

STANTS

Tournament

A COMPLETE DIRECTED GRAPH (Skiena 1990, p. 175). A
so-called SCORE SEQUENCE can be associated with
every tournament. The number of nonisomorphic
tournaments on 2, 3, 4, ... nodes are 1, 2, 4, ...,
illustrated above. The first and second 3-node tourna-
ments shown above are called a TRANSITIVE TRIPLE

and CYCLIC TRIPLE, respectively (Harary 1994,
p. 204).
Every tournament contains an odd number of HA-

MILTONIAN PATHS (Rédei 1934; Szele 1943; Skiena
1990, p. 175). However, a tournament has a directed
HAMILTONIAN CIRCUIT IFF it is STRONGLY CONNECTED

(Foulkes 1960; Harary and Moser 1966; Skiena 1990,
p. 175).



The term "tournament" also refers to an arrangement
by which teams or players play against certain other
teams or players in order to determine who is the
best. In a "cup" tournament of n �2k teams, teams
play pairwise in a sequence of 1=2k �1

/-finals, ..., 1/8-
finals, quarter-finals, semi-finals, and finals, with
winners from each round playing other winners in
the next round and losers being eliminated at each
round. The second-place prize is usually awarded to
the team which loses in the finals. However, this
practice is unfair since the second-place team has not
been required to play against the teams which were
eliminated by the first-place (and presumably best)
team, and therefore might actually be worse than one
of the teams eliminated earlier by the best team
(Steinhaus 1983).

In general, to fairly determine the best two players
from n contestants, n �1 �log2(n �1) rounds are
required (Steinhaus 1983, p. 55).

See also COMPLETE GRAPH, DIRECTED GRAPH, HAMIL-

TONIAN PATH, SCORE SEQUENCE, TOURNAMENT MA-

TRIX
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Tournament Matrix
A matrix for a round-robin TOURNAMENT involving n
players competing in n(n �1)=2 matches (no ties
allowed) having entries

aij ¼
1 if player i defeats player j

�1 if player i loses to player j
0 if i ¼ j

:

8<
:

The MATRIX satisfies

A �AT �I �J ;

where I is the IDENTITY MATRIX, J is an n �n MATRIX

of all 1s, and AT is the MATRIX TRANSPOSE of A:/

The tournament matrix for n players has zero
DETERMINANT IFF n is ODD (McCarthy and Benjamin
1996). The dimension of the NULLSPACE of an n -
player tournament matrix is

dim[nullspace] �
0 for n even
1 for n odd

�
(McCarthy 1996).
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Tournament Sequence
A tournament sequence is an increasing sequence of
positive integers (/t1; t2; ...) such that t1�1 and ti�15

2ti: Cook and Kleber (2000) show that MEEUSSEN

SEQUENCES are isomorphic to tournament sequences.

See also MEEUSSEN SEQUENCE
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Tower of Power
POWER TOWER

Towers of Hanoi

A PUZZLE invented by E. Lucas in 1883. Given a stack
of n disks arranged from largest on the bottom to
smallest on top placed on a rod, together with two
empty rods, the towers of Hanoi puzzle asks for the
minimum number of moves required to reverse the
order of the stack (where moves are allowed only if
they place smaller disks on top of larger disks). The



problem is ISOMORPHIC to finding a HAMILTONIAN

PATH on an n -HYPERCUBE (Gardner 1957, 1959).
For n disks, the number of moves hn required is given
by the RECURRENCE RELATION

hn �2hn �1 �1:

Solving gives

hn �2n �1:

The number of disks moved after the kth step is the
same as the element which needs to be added or
deleted in the kth ADDEND of the RYSER FORMULA

(Gardner 1988, Vardi 1991). The number of disk to be
moved at nth step of the optimal solution to the
problem are 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, ...
(Sloane’s A001511). Amazingly, this is exactly the
BINARY CARRY SEQUENCE plus one.

A HANOI GRAPH can be constructed whose VERTICES

correspond to legal configurations of n towers of
Hanoi, where the VERTICES are adjacent if the
corresponding configurations can be obtained by a
legal move. It can be solved using a binary GRAY

CODE.

Poole (1994) gives Mathematica routines for solving
an arbitrary disk configuration in the fewest possible
moves. The proof of minimality is achieved using the
LUCAS CORRESPONDENCE which relates PASCAL’S TRI-

ANGLE to the HANOI GRAPH. ALGORITHMS are known
for transferring disks for four pegs, but none has been
proved minimal. For additional references, see Poole
(1994).

See also BINARY CARRY SEQUENCE, GRAY CODE,
RYSER FORMULA
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T-Polyomino

The order n T-polyomino consists of a vertical line of
n �3 squares capped by a horizontal line of three
squares centered on the line.

See also L-POLYOMINO, SKEW POLYOMINO, SQUARE

POLYOMINO, STRAIGHT POLYOMINO

T-Puzzle

The DISSECTION of the four pieces shown at left into
the capital letter "T" shown at right.

See also DISSECTION
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Trace (Group)
CHARACTER (GROUP)

Trace (Map)
Let a PATCH be given by the map x : U 0 Rn ; where U
is an open subset of R2 ; or more generally by x : A 0
Rn ; where A is any SUBSET of R2 : Then x(U) (or more
generally, x(A)) is called the trace of x.

See also PATCH
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Trace (Matrix)
The trace of an n �n SQUARE MATRIX A is defined to
be

Tr(A) �
Xn

i �1

aii ; (1)

i.e., the sum of the diagonal elements. The matrix
trace is implemented in Mathematica as Tr[list ]. In
GROUP THEORY, traces are known as "CHARACTERS."

For SQUARE MATRICES A and B ; it is true that

Tr(A) �Tr(AT) (2)

Tr(A �B) �Tr(A) �Tr(B) (3)

Tr( aA) � aTr(A) (4)

(Lange 1987, p. 40), where AT denotes the TRANS-

POSE. The trace is also invariant under a SIMILARITY

TRANSFORMATION

A ?�BAB-1 (5)

(Lange 1987, p. 64). Since

(bab�1)ij �bilalkb�1
kj (6)

(where EINSTEIN SUMMATION is used here to sum over
repeated indices), it follows that

Tr(BAB�1) �bilalkb�1 
ki

�(b�1b)klalk � dklalk

�akk �Tr(A) ; (7)

where dij is the KRONECKER DELTA.

The trace of a product of two square matrices is
independent of the order of the multiplication since

Tr(AB) �(ab)ii �aijbji �bjiaij

�(ba)jj �Tr(BA) (8)

(again using EINSTEIN SUMMATION). Therefore, the
trace of the COMMUTATOR of A and B is given by

Tr([A ; B]) �Tr(AB) �Tr(BA) �0: (9)

The trace of a product of three or more square
matrices, on the other hand, is invariant only under
CYCLIC PERMUTATIONS of the order of multiplication of
the matrices, by a similar argument.

The product of a SYMMETRIC and an ANTISYMMETRIC

MATRIX has zero trace,

Tr(ASBA) �0 : (10)

The value of the trace can be found using the fact that
the matrix can always be transformed to a coordinate
system where the Z -AXIS lies along the axis of
rotation. In the new coordinate system (which is
assumed to also have been appropriately rescaled),
the MATRIX is

A ?�
cos f sin f 0
�sin f cos f 0

0 0 1

2
4

3
5; (11)

so the trace is

Tr(A ?) �Tr(A) �aii �1 �2 cos f: (12)

See also CHARACTER (GROUP), CONTRACTION (TEN-

SOR), MATRIX, SQUARE MATRIX, TRACE (TENSOR)
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Trace (Path)
The image of the path g in C under the FUNCTION f is
called the trace. This usage of the term "trace" is
unrelated to the same term applied to MATRICES or
TENSORS.

Trace (Tensor)
The trace of a second-RANK TENSOR T is a SCALAR

given by the CONTRACTED mixed TENSOR equal to Ti
i :

The trace is implemented in Mathematica as Tr[list ].

The trace satisfies

Tr M �1(x)
@

@xl
M(x)

" #
�

@

@xl
ln[det(x)];

and

d ln[det M]�ln[det(M�dM)]�ln(det M)

�ln
det(M � dM)

det M

" #

�ln[det M�1(M�dM)]

�ln[det(1�M�1dM)]

:ln[1�Tr(M�1dM)]

:Tr(M�1dM):

See also CHARACTER (GROUP), CONTRACTION (TEN-

SOR), TRACE (MATRIX)



Traceable Graph

A GRAPH G that possesses a HAMILTONIAN PATH.
HAMILTONIAN GRAPHS are therefore traceable, but the
converse is not necessarily true. The number of
traceable graphs on n �1, 2, ... are 0, 1, 2, 5, 18, 91,
734, ... (Sloane’s A057864), the first few of which are
illustrated above.

See also HAMILTON-CONNECTED GRAPH, HAMILTO-

NIAN GRAPH, HYPOTRACEABLE GRAPH
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Tractory
TRACTRIX

Tractrisoid
PSEUDOSPHERE

Tractrix

The tractrix is the CATENARY INVOLUTE described by a
point initially on the vertex (making the CATENARY

the TRACTRIX EVOLUTE). The tractrix is sometimes
called the TRACTORY or EQUITANGENTIAL CURVE. The
tractrix was first studied by Huygens in 1692, who
gave it the name "tractrix." Later, Leibniz, Johann
Bernoulli, and others studied the curve.



�a[ln(sec u?�tan u?) �sin u?] (13)

�a ln tan 1
2 u ?�

1
4 p

� �h i
�sin u?

n o
(14)

y �a cos u? (15)

(Lockwood 1967, p. 123), where gd�1 x is the inverse
GUDERMANNIAN FUNCTION.

A parameterization which traverses the tractrix with
constant speed a is given by

x(t) � ae�v=a for v � [0; �)
aev =a for v � (��; 0]

�
(16)

y(t) �

a tanh �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e�2v =a

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e �2v=a

ph i
for v � [0; �)

a �tanh �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e2v =a

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �e2v =a

ph i
for v � (��; 0]:

8>>>><
>>>>:

ð17Þ

When a tractrix is rotated around its asymptote, a
PSEUDOSPHERE results. This is a surface of constant
NEGATIVE CURVATURE. For a tractrix, the length of a
TANGENT from its point of contact to an asymptote is
constant. The AREA between the tractrix and its
asymptote is finite.

See also CURVATURE, DINI’S SURFACE, GUDERMAN-

NIAN FUNCTION, MICE PROBLEM, PSEUDOSPHERE,
PURSUIT CURVE, TRACTROID
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Tractrix Evolute

The EVOLUTE of the TRACTRIX is the CATENARY.

Tractrix Radial Curve
The RADIAL CURVE of the TRACTRIX is the KAPPA

CURVE.

Tractroid

The SURFACE OF REVOLUTION produced by revolving
the TRACTRIX

x �sech u (1)

z �u �tanh u (2)

about the Z -AXIS is a tractroid given by

x �sech u cos v (3)

y �sech u sin v (4)

z �u �tanh u : (5)

See also PSEUDOSPHERE, SURFACE OF REVOLUTION,
TRACTRIX

Trail
PATH, WALK

Transcendental Curve
A curve which intersects some straight line in an
infinity of points (but for which not every point lies on
this curve).

See also ALGEBRAIC CURVE
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Transcendental Equation
An equation or formula involving TRANSCENDENTAL

FUNCTIONS.

Transcendental Function
A function which is not an ALGEBRAIC FUNCTION. In
other words, a function which "transcends," i.e.,
cannot be expressed in terms of, algebra. Examples
of transcendental functions include the EXPONENTIAL

FUNCTION, the TRIGONOMETRIC FUNCTIONS, and the
inverses functions of both.

See also ALGEBRAIC FUNCTION, ELEMENTARY FUNC-

TION, PAINLEVÉ TRANSCENDENTS

Transcendental Number
A number which is not the ROOT of any POLYNOMIAL

equation with INTEGER COEFFICIENTS, meaning that it
is not an ALGEBRAIC NUMBER of any degree, is said to
be transcendental. This definition guarantees that
every transcendental number must also be IRRA-

TIONAL, since a RATIONAL NUMBER is, by definition,
an ALGEBRAIC NUMBER of degree one. A number x can
then be tested to see if it is transcendental using the
Mathematica command Not[Element[x , Alge-
braics]].

Transcendental numbers are important in the history
of mathematics because their investigation provided
the first proof that CIRCLE SQUARING, one of the
GEOMETRIC PROBLEMS OF ANTIQUITY which had
baffled mathematicians for more than 2000 years
was, in fact, insoluble. Specifically, in order for a
number to be produced by a GEOMETRIC CONSTRUC-

TION using the ancient Greek rules, it must be either
RATIONAL or a very special kind of ALGEBRAIC NUMBER

known as a EUCLIDEAN NUMBER. Because the number
p is transcendental, the construction cannot be done
according to the Greek rules.

Georg Cantor was the first to prove the EXISTENCE of
transcendental numbers. Liouville subsequently
showed how to construct special cases (such as
LIOUVILLE’S CONSTANT) using LIOUVILLE’S APPROXI-

MATION THEOREM. In particular, he showed that any
number which has a rapidly converging sequence of
rational approximations must be transcendental. For
many years, it was only known how to determine if
special classes of numbers were transcendental. The
determination of the status of more general numbers

was considered an important enough unsolved pro-
blem that it was one of HILBERT’S PROBLEMS.

Great progress was subsequently made by GELFOND’S

THEOREM, which gives a general rule for determining
if special cases of numbers OF THE FORM ab are
transcendental. Baker produced a further revolution
by proving the transcendence of sums of numbers OF

THE FORM a ln b for ALGEBRAIC NUMBERS a and b:/

The number E was proven to be transcendental by
Hermite in 1873, and PI (/p) by Lindemann in 1882. ep

is transcendental by GELFOND’S THEOREM since

(�1)�i�(eip)�i�ep:

The GELFOND-SCHNEIDER CONSTANT 2
ffiffi
2

p
is also trans-

cendental (Hardy and Wright 1979, p. 162). Known
transcendentals are summarized in the following
table, where sin x is the SINE function, J0(x) is a
BESSEL FUNCTION OF THE FIRST KIND, x(n)

k is the nth
zero of Jk(x); P is the THUE-MORSE CONSTANT, G(x) is
the GAMMA FUNCTION, and where z(n) is the RIEMANN

ZETA FUNCTION.

e Hermite (1873)

/p/ Lindemann (1882)

/ep/ Gelfond

/ep
ffiffi
d

p
; d �Z�/ Nesterenko (1999)

/2
ffiffi
2

p
/ Hardy and Wright (1979, p. 162)

/sin 1/ Hardy and Wright (1979, p. 162)

/J0(1)/ Hardy and Wright (1979, p. 162)

/ln 2/ Hardy and Wright (1979, p. 162)

/ln 3=ln 2/ Hardy and Wright (1979, p. 162),

/x(1)
0 �2:4048255 . . ./ Le Lionnais (1983, p. 46)

/p�ln 2�
ffiffiffi
2

p
ln 3/ Borwein et al. (1989)

/P�0:4124540336 . . ./ Dekking (1977), Allouche and

Shallit

CHAMPERNOWNE

CONSTANT

THUE CONSTANT

/G 1
3

� �
/ Le Lionnais (1983, p. 46)

/G 1
4

� �
/ Chudnovsky (1984, p. 308),

Waldschmidt, Nesterenko (1999)

/G 1
6

� �
/ Chudnovsky (1984, p. 308)

/G 1
4

� �
p�1=4

/ Davis (1959)

/z(2n); n �Z > 1/



APÉ RY’S CONSTANT z(3) has been proved to be IRRA-

TIONAL, but it is not known if it is transcendental. At
least one of pe and p �e (and probably both) are
transcendental, but transcendence has not been
proven for either number on its own. It is not known
if ee ; pp ; pe ; g (the EULER-MASCHERONI CONSTANT),
I0(2) ; or I1(2) (where In(x) is a MODIFIED BESSEL

FUNCTION OF THE FIRST KIND) are transcendental.

The "degree" of transcendence of a number can be
characterized by a so-called IRRATIONALITY MEASURE.
There are still many fundamental and outstanding
problems in transcendental number theory, including
the CONSTANT PROBLEM and SCHANUEL’S CONJEC-

TURE.

See also ALGEBRAIC NUMBER, ALGEBRAICALLY INDE-

PENDENT, ALGEBRAICS, CONSTANT PROBLEM, FOUR

EXPONENTIALS CONJECTURE, GELFOND’S THEOREM,
IRRATIONAL NUMBER, IRRATIONALITY MEASURE, LIN-

DEMANN-WEIERSTRASS THEOREM, ROTH’S THEOREM,
SCHANUEL’S CONJECTURE, SIX EXPONENTIALS THEO-

REM, THUE-SIEGEL-ROTH THEOREM
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Transcritical Bifurcation
Let f : R�R 0 R be a one-parameter family of C2

maps satisfying

f (0; m)�0 (1)

@f

@x

" #
m�0; x�0

�0 (2)

@2f

@x @m

" #
0; 0

> 0 (3)

@2f

@x2

" #
m�0; x�0

B0: (4)

(Actually, condition (1) can be relaxed slightly.) Then
there are two branches, one stable and one unstable.
This BIFURCATION is called a transcritical bifurcation.

An example of an equation displaying a transcritical
bifurcation is

ẋ�mx�x2 (5)

(Guckenheimer and Holmes 1997, p. 145).

See also BIFURCATION, PITCHFORK BIFURCATION
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Transfer Function
The engineering terminology for one use of FOURIER

TRANSFORMS. By breaking up a wave pulse into its
frequency spectrum

fn�F(n)e2pint; (1)

the entire signal can be written as a sum of contribu-



tions from each frequency,

f (t) �g
�

��

fn dn �g
�

��

F( n)e2 pint dn : (2)

If the signal is modified in some way, it will become

gn(t) � f( n)fn(t) � f(n)F( n)e2 pi nt (3)

g(t) �g
�

��

gn(t) dt �g
�

��

f(n)F( n)e2 pi nt d n; ð4Þ

where f( n) is known as the "transfer function."
FOURIER TRANSFORMING f and F ,

f(n) �g
�

��

F(t)e �2pint dt (5)

F( n) �g
�

��

f (t)e �2 pint dt : (6)

From the CONVOLUTION THEOREM,

g(t) �f (t) + F(t) �g
�

��

f (t) F(t �r) dr : (7)

See also CONVOLUTION THEOREM, FOURIER TRANS-

FORM

Transfer Principle
In NONSTANDARD ANALYSIS, the transfer principle is
the technical form of the following intuitive idea:
"Anything provable about a given SUPERSTRUCTURE V
by passing to a nonstandard enlargement +V of V is
also provable without doing so, and vice versa." It is a
result of LOS’ THEOREM and the completeness theo-
rem for first-order predicate logic

The transfer principle is stated as follows. Let V be a
superstructure, let +V be an enlargement of V , let s
be any sentence in the language for (V ; �) ; and let +s
denote the +-transform of s: Then (V ; �) ffi s if and only if

( +V ; + �) ffi+s:/

See also LOS’ THEOREM, NONSTANDARD ANALYSIS

Transfinite Diameter
Let

f(z) �cz �c0 �c1z �1 �c2z �2 �. . .

be an ANALYTIC FUNCTION, REGULAR and UNIVALENT

for zj j > 1; which maps zj j > 1 CONFORMALLY onto the
region T preserving the POINT AT INFINITY and its
direction. Then the function f(z) is uniquely deter-
mined and c is called the transfinite diameter, some-
times also known as ROBIN’S CONSTANT or the
CAPACITY of f(z):/

See also ANALYTIC FUNCTION, REGULAR FUNCTION,
UNIVALENT FUNCTION

Transfinite Number
One of Cantor’s ORDINAL NUMBERS v; v �1; v �2; ...,
v � v; v � v �1; ...which is "larger" than any WHOLE

NUMBER.

See also ALEPH-0, ALEPH-1, CARDINAL NUMBER, CON-

TINUUM, ORDINAL NUMBER, WHOLE NUMBER

References
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Switzerland: Birkhäuser, pp. 257 �/296, 1999.

Pappas, T. "Transfinite Numbers." The Joy of Mathematics.
San Carlos, CA: Wide World Publ./Tetra, pp. 156 �/158,
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Transform
A shortened term for INTEGRAL TRANSFORM.

Geometrically, if S and T are two transformations,
then the SIMILARITY TRANSFORMATION TST �1 is some-
times called the transform (Woods 1961).

See also ABEL TRANSFORM, BOUSTROPHEDON TRANS-

FORM, DISCRETE FOURIER TRANSFORM, FAST FOURIER

TRANSFORM, FOURIER TRANSFORM, FRACTIONAL

FOURIER TRANSFORM, HANKEL TRANSFORM, HARTLEY

TRANSFORM, HILBERT TRANSFORM, LAPLACE-

STIELTJES TRANSFORM, LAPLACE TRANSFORM, MELLIN

TRANSFORM, NUMBER THEORETIC TRANSFORM, PON-

CELET TRANSFORM, RADON TRANSFORM, WAVELET

TRANSFORM, Z -TRANSFORM

References
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Transform Theory
INTEGRAL TRANSFORM

Transformation
A transformation T (a.k.a., MAP, FUNCTION) over a
DOMAIN D takes the elements X �D to elements Y �

T(D); where the RANGE (a.k.a., image) of T is defined
as

Range(T)�T(D)�fT(X) : X �Dg:

Note that when transformations are specified with
respect to a coordinate system, it is important to
specify whether the rotation takes place on the
coordinate system , with space and objects embedded
in it being viewed as fixed (a so-called ALIAS TRANS-

FORMATION), or on the space itself relative to a fixed
coordinate system (a so-called ALIBI TRANSFORMA-

TION).

Examples of transformations are summarized in the
following table.



Transforma-
tion

Characterization

DILATION center of dilation, scale decrease
factor

EXPANSION center of expansion, scale in-
crease factor

REFLECTION mirror line or plane

ROTATION center of rotation, rotation angle

SHEAR invariant line and SHEAR FACTOR

STRETCH (1-
way)

invariant line and scale factor

STRETCH (2-
way)

invariant lines and scale factors

TRANSLATION displacement vector

See also AFFINE TRANSFORMATION, ALIAS TRANSFOR-

MATION, ALIBI TRANSFORMATION, DILATION, EXPAN-

SION, FUNCTION, MAP, REFLECTION, ROTATION,
SHEAR, STRETCH, TRANSFORM, TRANSLATION

References
Coxeter, H. S. M. and Greitzer, S. L. "Transformations."

Ch. 4 in Geometry Revisited. Washington, DC: Math.
Assoc. Amer., pp. 80 �/102, 1967.

Graustein, W. C. "Transformation." Ch. 7 in Introduction to
Higher Geometry. New York: Macmillan, pp. 84 �/114,
1930.

Kapur, J. N. Transformation Geometry. New Delhi, India:
Mathematical Sciences Trust Society, 1994 �/95.

Transition Function
A transition function describes the difference in the
way an object is described in two separate, over-
lapping COORDINATE CHARTS, where the description of
the same set may change in different coordinates.
This even occurs in EUCLIDEAN SPACE R3 ; where any
rotation of the usual x , y , and z axes gives another set
of coordinates.

For example, on the sphere, person A at the equator
can use the usual directions of north, south, east, and
west, but person B at the North Pole must use
something else. However, both A and B can describe
the region in between them in their coordinate charts.
A transition function would then describe how to go
from the coordinate chart for A to the coordinate
chart for B .

In the case of a MANIFOLD, a transition function is a
map from one coordinate chart to another. Therefore,
in a sense, a manifold is composed of coordinate
charts, and the glue that holds them together is the
transition functions. In the case of a BUNDLE, the
transition functions are the glue that holds together

its TRIVIALIZATIONS. Specifically, in this case the
transition function describes an invertible transfor-
mation of the FIBER.

Naturally, the type of invertible transformation
depends on the type of bundle. For instance, a VECTOR

BUNDLE, which could be the TANGENT BUNDLE, has
INVERTIBLE LINEAR transition functions. More pre-
cisely, a transition function for a vector bundle of
RANK r , on overlapping coordinate charts U1 and U2 ;
is given by a function

g12 : U1 S U2 0 GL(r) ;

where GL is the GENERAL LINEAR GROUP. The fiber at
p � U1 S U2 has two descriptions, and g12(p) is the
INVERTIBLE LINEAR MAP that takes one to the other.
The transition functions have to be consistent in the
sense that if one goes to another description of the
same set, and then back again, then nothing has
changed. A necessary and sufficient condition for
consistency is the following: Given three overlapping
charts, the product g12g23g31 has to be the constant
map to the identity in GL(r) :/

A consistent set of transition functions for a VECTOR

BUNDLE of RANK r can be interpreted as an element of
the first CECH COHOMOLOGY GROUP of a manifold with
coefficients in GL(r) :/

See also BUNDLE, CECH COHOMOLOGY, COORDINATE

CHART, MANIFOLD, TANGENT BUNDLE, TRIVIALIZA-

TION, VECTOR BUNDLE

Transitive
A RELATION R on a SET S is transitive provided that
for all x , y and z in S such that xRy and yRz ; we also
have xRz:/

See also ASSOCIATIVE, COMMUTATIVE, RELATION

Transitive Closure
The transitive closure of a BINARY RELATION R on a
SET X is the minimal TRANSITIVE relation R? on X that
contains R . Thus aR ?b for any elements a and b of X
provided that there exist c0 ; c1 ; ..., cn with c0 �a; cn �
b; and crRcr�1 for all 0 5r 5n:/

The transitive closure C(G) of a GRAPH is a graph
which contains an edge fu; vg whenever there is a
directed path from u to v (Skiena 1990, p. 203). The
transitive closure of a graph can be computed using
TransitiveClosure[g ] in the Mathematica add-on
package DiscreteMath‘Combinatorica‘ (which
can be loaded with the command
BBDiscreteMath‘).

See also REFLEXIVE CLOSURE, TRANSITIVE GRAPH,
TRANSITIVE REDUCTION
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Transitive Digraph
A GRAPH G is transitive if any three vertices /ðx; y; zÞ/
such that edges (x; y) ; (y; z) � G imply (x; y) � G: Un-
labeled transitive digraphs are called TOPOLOGIES.

See also TOPOLOGY (DIGRAPH), TRANSITIVE GRAPH,
TRANSITIVE REDUCTION

Transitive Graph
A GRAPH G is called n -transitive with n ]1 if it has
an n -ROUTE and if there is always a GRAPH AUTO-

MORPHISM of G sending each n -ROUTE onto any other
n -ROUTE (Harary 1994, p. 173). There are no n -
transitive CUBIC GRAPHS for n �5 (Harary 1994,
p. 175).

See also ROUTE, TRANSITIVE CLOSURE, TRANSITIVE

DIGRAPH, TRANSITIVE REDUCTION, UNITRANSITIVE

GRAPH
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Transitive Group
When a GROUP ACTION is implicitly understood, i.e., a
subgroup of a PERMUTATION GROUP, then the SUB-

GROUP is called transitive if its action is transitive.
For example, the ALTERNATING GROUP is transitive. A
group may also be called k -transitive if there is any
set on which the group acts FAITHFULLY and k -
transitively. Transitivity is a result of the symmetry
in the group.

For instance, the SYMMETRIC GROUP Sn is n -transitive
and the ALTERNATING GROUP An is (n �2)/-transitive.
However, multiply transitive finite groups are rare.
In fact, they have been completely determined using
the CLASSIFICATION THEOREM OF FINITE GROUPS.
Except for some SPORADIC examples, the multiply
transitive groups fall into infinite families. Certain
subgroups of the AFFINE GROUP on a finite VECTOR

SPACE, including the AFFINE GROUP itself, are 2-
transitive. Some of these are summarized below.

The multiply transitive groups fall into six infinite
families, and four classes of SPORADIC GROUPS. In the
following enumeration, q is a power of a prime
number.

1. Certain subgroups of the AFFINE GROUP on a
finite VECTOR SPACE, including the AFFINE GROUP

itself, are 2-transitive.
2. The PROJECTIVE SPECIAL LINEAR GROUPS

PSL(d; q) are 2-transitive, and PSL(2; q) is actu-
ally 3-transitive.
3. The SYMPLECTIC GROUPS defined over the FIELD

of two elements have two distinct actions which
are 2-transitive.
4. The field K of q2 elements has an INVOLUTION

s(a) �aq ; so s2 �1; which allows a HERMITIAN

FORM to be defined on a VECTOR SPACE on K . The
UNITARY GROUP on V �
3 K ; denoted U2(q); pre-
serves the ISOTROPIC VECTORS in V . The action of
the PROJECTIVE SPECIAL UNITARY GROUP PSU3(q) is
2-transitive on the ISOTROPIC VECTORS.
5. The SUZUKI GROUP Sz(q) is the AUTOMORPHISM

GROUP of a S(3; q �1; q2 �1) STEINER SYSTEM, an
INVERSIVE PLANE of order q , and its action is 2-
transitive.
6. The REE GROUP R(q) is the AUTOMORPHISM

GROUP of a S(2; q �1; q3 �1) STEINER SYSTEM, a
UNITAL of order q , and its action is 2-transitive.
7. The MATHIEU GROUPS M12 and M24 are the only
5-transitive groups besides S5 and A7 : The groups
M11 and M23 are 4-transitive, and M22 is 3-
transitive.
8. The PROJECTIVE SPECIAL LINEAR GROUP

PSL(2; 11) has another 2-transitive action related
to the WITT GEOMETRY W11 :/
9. The HIGMAN-SIMS GROUP is 2-transitive.
10. The CONWAY GROUP Co3 is 2-transitive.

See also FINITE SIMPLE GROUP, LEECH LATTICE,
MATHIEU GROUPS, STEINER SYSTEM, TRANSITIVE

GROUP ACTION
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Transitive Group Action
A GROUP ACTION G �X 0 X is transitive if it pos-
sesses only a single ORBIT, i.e., for every pair of
elements x and y , there is a group element g such
that gx �y . In this case, X is ISOMORPHIC to the left
COSETS of the isotropy group, X 	G =Gx : The space X ,
which has a transitive group action, is called a
HOMOGENEOUS SPACE when the group is a LIE GROUP.

If, for every two pairs of points x1 ; x2 and y1 ; y2 ; there
is a group element g such that gxi �yi ; then the
GROUP ACTION is called doubly transitive. Similarly, a
group action can be triply transitive and, in general, a
GROUP ACTION is k -transitive if every set x1; . . . ; ykf g
of 2k distinct elements has a group element g such
that gxi�yi:/

See also EFFECTIVE ACTION, FAITHFUL GROUP AC-

TION, FREE ACTION, GROUP, ISOTROPY GROUP, MA-



TRIX GROUP, ORBIT (GROUP), QUOTIENT SPACE (LIE

GROUP), REPRESENTATION, TOPOLOGICAL GROUP,
TRANSITIVE GROUP
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Transitive Points
Two points on a surface which are opposite to each
other but not farthest from each other (e.g., the
midpoints of opposite edges of a CUBE) are said to be
transitive points. The SPHERE has no transitive
points.
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Transitive Reduction
The transitive reduction of a BINARY RELATION R on a
SET X is the minimum relation R? on X with the same
TRANSITIVE CLOSURE as R . Thus aR?b for any ele-
ments a and b of X , provided that aRb and there
exists no element c of X such that aRc and cRb:/

The transitive reduction of a GRAPH G is the smallest
graph R(G) such that C(G) �C(R(G)) ; where C(G) is
the TRANSITIVE CLOSURE of G (Skiena 1990, p. 203).

See also REFLEXIVE REDUCTION, TRANSITIVE CLO-

SURE, TRANSITIVE GRAPH
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Transitive Triple

The 3-node TOURNAMENT (and DIRECTED GRAPH)
illustrated above (Harary 1994, p. 205).

See also CYCLIC TRIPLE, TOURNAMENT
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Transitivity Class
Let S(T) be the group of symmetries which map a
MONOHEDRAL TILING T onto itself. The TRANSITIVITY

CLASS of a given tile T is then the collection of all tiles
to which T can be mapped by one of the symmetries of
S(T) :/

See also MONOHEDRAL TILING
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Translation

A transformation consisting of a constant offset with
no ROTATION or distortion. In n -D EUCLIDEAN SPACE,
a translation may be specified simply as a VECTOR

giving the offset in each of the n coordinates.

See also AFFINE GROUP, DILATION, EUCLIDEAN

GROUP, EXPANSION, GLIDE, IMPROPER ROTATION,
INVERSION OPERATION, MIRROR IMAGE, REFLECTION,
ROTATION
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Coxeter, H. S. M. and Greitzer, S. L. "Translation." §4.1 in
Geometry Revisited. Washington, DC: Math. Assoc. Amer.,
pp. 81 �/82, 1967.

Translation Relation
A mathematical relationship transforming a function
f (x) to the form f (x �a) :/

See also ARGUMENT ADDITION RELATION, ARGUMENT

MULTIPLICATION RELATION, RECURRENCE RELATION,
REFLECTION RELATION

Transpose
The object obtained by replacing all elements aij with
aji : For a second-RANK TENSOR aij ; the tensor trans-
pose is simply aji : The matrix transpose, written AT ; is
the MATRIX obtained by exchanging A/’s rows and
columns, and satisfies the identity

(AT) �1 �(A �1)T : (1)

Several other notations are commonly used, including
Ã (Arfken 1985, p. 201; Griffiths 1987, p. 223) and A?
(Ayres 1962, p. 11; Courant and Hilbert 1989, p. 9)

The product of two transposes satisfies

(BTAT)ij �(bT)ik(aT)kj �bkiajk �ajkbki �(AB)ji

�(AB)T
ij ; (2)

where EINSTEIN SUMMATION has been used to im-
plicitly sum over repeated indices. Therefore,

(AB)T �BTAT : (3)

See also ADJOINT MATRIX, CONGRUENT MATRICES,
CONJUGATE MATRIX
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See also SKEW SYMMETRIC MATRIX, SYMMETRIC

MATRIX

Transpose Map
PULLBACK MAP

Transpose Partition
CONJUGATE PARTITION

Transposition
An exchange of two elements of an ordered list with
all others staying the same. A transposition is there-
fore a PERMUTATION of two elements. For example,
the swapping of 2 and 5 to take the list 123456 to
153426 is a transposition. The PERMUTATION SYMBOL

eijk��� is defined as (�1)n ; where n is the number of
transpositions of pairs of elements that must be
composed to build up the PERMUTATION.

See also INVERSION NUMBER, PERMUTATION, PERMU-

TATION SYMBOL, TRANSPOSITION GRAPH, TRANSPOSI-

TION ORDER
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Transposition Graph

A GRAPH in which nodes correspond to permutations
and edges are placed between permutations that
differ by exactly one transposition (Skiena 1990,
p. 9). All cycles in transposition graphs are of even
length, making them BIPARTITE. The transposition
graph of a MULTISET is always HAMILTONIAN (Chase
1973).

See also TRANSPOSITION
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Transposition Group
A PERMUTATION GROUP in which the PERMUTATIONS

are limited to TRANSPOSITIONS.

See also PERMUTATION GROUP

Transposition Order
An ordering of PERMUTATIONS in which each two
adjacent permutations differ by the TRANSPOSITION of
two elements. For the permutations of f1; 2; 3g there
are two listings which are in transposition order. One



is 123, 132, 312, 321, 231, 213, and the other is 123,
321, 312, 213, 231, 132.

See also LEXICOGRAPHIC ORDER, PERMUTATION
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Transversal Array
A set of n cells in an n �n SQUARE such that no two
come from the same row and no two come from the
same column. The number of transversals of an n �n
SQUARE is n! (n FACTORIAL).

A Latin transversal is a transversal such that no two
cells contain the same element (Snevily 1999).
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Transversal Design
A transversal design TDl(k; n) of order n , block size
k , and index l is a triple (V , G , B ) such that

1. V is a set of kn elements,
2. G is a partition of V into k classes, each of size n
(the "groups"),
3. B is a collection of k -subsets of V (the "blocks"),
and
4. Every unordered pair of elements from V is
contained in either exactly one group or in exactly
l blocks, but not both.
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Transversal Intersection

Two SUBMANIFOLDS X and Y in an ambient space M
intersect transversally if, for all p � X S Y ;

TXp �TYp � v �w : v � TXp ; w � TYp

� �
�TMp ;

where the addition is in TMp ; and TXp denotes the
TANGENT MAP of Xp : If two submanifolds do not
intersect, then they are automatically transversal.
For example, two curves in R3 are transversal only if
they do not intersect at all. When X and Y meet
transversally then X S Y is a smooth SUBMANIFOLD of
the expected dimension dim X �dim Y �dim M :/
In some sense, two submanifolds "ought" to intersect
transversally and, by SARD’S THEOREM, any intersec-
tion can be perturbed to be transversal. Intersection
in HOMOLOGY only makes sense because an intersec-
tion can be made to be transversal.

Transversality is a sufficient condition for an inter-
section to be stable after a perturbation. For example,
the lines y �x and y �0 intersect transversally, as do
the perturbed lines y �x �t; and they intersect at
only one point. However, y �x2 does not intersect
y �0 transversally. It intersects in one point, while
y �x2 �t intersects in either none or two points,
depending on whether t is positive or negative.

When dim X �dim Y �dim M ; then a transversal
intersection is an ISOLATED POINT. If the three spaces
have an ORIENTATION, then the transversal condition
means it is possible to assign a sign to the intersec-
tion. If e1 ; . . . ; ek are an oriented basis for TXp and
ek �1 ; . . . ; en are an oriented basis for TYp ; then the
intersection is �1 if e1 ; . . . ; en is oriented in M and
�1 otherwise.

More generally, two SMOOTH MAPS f : X 0 M and g :
Y 0 M are transversal if whenever p �f (x) �g(y)
then df TXxð Þ�dg TYy

� �
�TMp :/

See also HOMOLOGY, INTERSECTION (HOMOLOGY),
ORIENTATION (VECTOR SPACE), SARD’S THEOREM,
SUBMERSION

Transversal Line
A transversal line is a LINE which intersects each of a
given set of other lines. It is also called a semisecant.

See also LINE

Transversal Plane
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Transylvania Lottery
A lottery in which three numbers are picked at
random from the INTEGERS 1�/14.

See also FANO PLANE



Trapdoor Function
An easily computed function whose inverse is extre-
mely difficult to compute. An example is the multi-
plication of two large PRIMES. Finding and verifying
two large PRIMES is easy, as is their multiplication.
But factorization of the resultant product is very
difficult.

See also RSA ENCRYPTION
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Trapdoor One-Way Function
Informally, a function f : f0; 1 gl(n) �f0; 1gn 0
(0; 1gm(n) is a trapdoor one-way function if

1. It is a ONE-WAY FUNCTION, and
2. For fixed public key y � f0; 1gl(n) 

; f (x; y) is
viewed as a function fy(x) of x that maps n bits to
m(n) bits. Then there is an efficient algorithm that,
on input y; fy(x) ; z

; <
produces x? such that fy x?ð Þ�

fy(x); for some trapdoor key z � f0 ; 1 gk(n) 
:/

f is a TRAPDOOR ONE-WAY HASH FUNCTION if f is also a
ONE-WAY HASH FUNCTION, i.e., if additionally

3. Given M and f (M) ; it is hard to find a message
M ?"M such that f M?ð Þ"f (M) :/

It is not known if a trapdoor one-way function can be
constructed from any one-way function.

An example of a trapdoor one-way function is factor-
ization of a product of two large PRIMES. While
selecting and verifying two large PRIMES and multi-
plying them together is easy, factoring the resulting
product is (as far as is known) very difficult. This is
the basis for RSA ENCRYPTION, which is conjectured
to be trapdoor one-way.

See also ONE-WAY FUNCTION, RSA ENCRYPTION,
TRAPDOOR ONE-WAY HASH FUNCTION
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Trapdoor One-Way Hash Function
A function f : f0; 1gl(n) �f0; 1gn 0 (0; 1gm(n) is a
TRAPDOOR ONE-WAY HASH FUNCTION if f is a TRAPDOOR

ONE-WAY FUNCTION and is also a one-way hash
function, i.e. if, additionally given M and f (M); it is

hard to find a message M ?"M such that
f M?ð Þ�f (M) :/

See also TRAPDOOR ONE-WAY FUNCTION

Trapezium
There are two common definitions of the trapezium.
The American definition is a QUADRILATERAL with no
PARALLEL sides. The British definition for a trape-
zium is a QUADRILATERAL with two sides PARALLEL.
Such a trapezium is equivalent to a TRAPEZOID and
therefore has AREA

A �1
2(a �b)h:

See also DIAMOND, KITE, LOZENGE, PARALLELOGRAM,
QUADRILATERAL, RHOMBOID, RHOMBUS, SKEW QUAD-

RILATERAL, STROMBUS, TRAPEZOID

Trapezohedron

The trapezohedra are the DUAL POLYHEDRA of the
Archimedean ANTIPRISMS. However, the name for
these solids is not particular well chosen since their
faces are not TRAPEZOIDS. The CUBE oriented along a
space diagonal is a trapezohedron.

The trapezohedra generated by taking the duals of
the ANTIPRISMS have side length sn; half-heights (half
the peak-to-peak distance) hn; surface areas Sn; and
volumes Vn (where the latter two are normalized so
that the shortest edge has length 1) given by
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See also ANTIPRISM, CUBE, DIPYRAMID, DUAL POLY-

HEDRON, HEXAGONAL SCALENOHEDRON, PENTAGONAL

DELTAHEDRON, PRISM, TRAPEZOID
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Trapezoid

A QUADRILATERAL with two sides PARALLEL. The
trapezoid is equivalent to the British definition of
TRAPEZIUM. The trapezoid depicted has central med-
ian

m �1
2(a �b) ;

AREA

A �1
2(a �b)h �mh:

The CENTROID lies on the median m at a distance

x �
b � 2a

3(a � b)
h

from the vertical position of the lower left vertex.

See also ISOSCELES TRAPEZOID, PYRAMIDAL FRUSTUM,
STROMBUS, TRAPEZIUM
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Trapezoidal Hexecontahedron
DELTOIDAL HEXECONTAHEDRON

Trapezoidal Icositetrahedron
DELTOIDAL ICOSITETRAHEDRON

Trapezoidal Rule

The 2-point NEWTON-COTES FORMULA

g
x2

x1

f (x) dx�1
2 h f1�f2ð Þ� 1

12 h3f ƒ(j);

where fi�f xið Þ; h is the separation between the



points, and j is a point satisfying x1 5 j 5x2 : Picking
j to maximize f ƒ(j) gives an upper bound for the error
in the trapezoidal approximation to the INTEGRAL.

See also BODE’S RULE, HARDY’S RULE, NEWTON-COTES

FORMULAS, SIMPSON’S 3/8 RULE, SIMPSON’S RULE,
WEDDLE’S RULE
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Traveler’s Problem
HAMILTONIAN CIRCUIT

Traveling Salesman Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let L(n; d) be the smallest TOUR length for n points
in a d -D HYPERCUBE. Then there exists a smallest
constant a(d) such that for all optimal TOURS in the
HYPERCUBE,

lim sup
n0�

L(n; d)

n(d�1)=d
ffiffiffi
d

p 5a(d); (1)

and a constant b(d) such that for almost all optimal
tours in the HYPERCUBE,

lim
n0�

L(n; d)

n(d�1)=d
ffiffiffi
d

p �b(d): (2)

These constants satisfy the inequalities

0:44194Bg2�
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ffiffiffi
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5dB0:6508B0:75983B3�1=45a(2)

5fB0:98398 (3)

0:37313Bg35b(3)5121=66�1=2B0:61772B0:64805

B21=63�1=25a(3)50:90422 (4)

0:34207Bg45b(4)5121=86�1=2B0:55696

B0:59460B2�3=45a(4)50:8364 (5)

(Fejes Tóth 1940, Verblunsky 1951, Few 1955, Beard-
wood et al. 1959), where
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/G(z) is the GAMMA FUNCTION, d is an expression

involving STRUVE FUNCTIONS and NEUMANN FUNC-

TIONS,
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(Karloff 1989), and

c�1
2 3�2=3 4�ln 3ð Þ2=3 (8)

(Goddyn 1990). In the LIMIT d 0 �;/
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where

1
25u� lim

d0�
[u(d)]1=d

50:6602; (11)

and u(d) is the best SPHERE PACKING density in d -D
space (Goddyn 1990, Moran 1984, Kabatyanskii and
Levenshtein 1978). Steele and Snyder (1989) proved
that the limit a(d) exists.

Now consider the constant

k� lim
n0�

L(n; 2)ffiffiffi
n

p �b(2)
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p
; (12)

so
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5k5d
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p
B0:9204: (13)

The best current estimate is k:0:7124:/

A certain self-avoiding SPACE-FILLING CURVE is an
optimal TOUR through a set of n points, where n can
be arbitrarily large. It has length

l� lim
m0�

Lmffiffiffiffiffiffi
nm

p �
4 1 � 2

ffiffiffi
2

p� � ffiffiffiffiffiffi
51

p

153
�0:7147827 . . . ; (14)

where Lm is the length of the curve at the mth
iteration and nm is the point-set size (Moscato and
Norman).
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Fejes Tóth, L. "Über einen geometrischen Satz." Math. Zeit.
46, 83�/85, 1940.



Few, L. "The Shortest Path and the Shortest Road Through
n Points." Mathematika 2, 141 �/144, 1955.

Finch, S. "Favorite Mathematical Constants." http://
www.mathsoft.com/asolve/constant/sales/sales.html.

Flood, M. "The Travelling Salesman Problem." Operations
Res. 4, 61�/75, 1956.

Friedman, E. "Longest Travelling Salesman Cycles." http://
www.stetson.edu/~efriedma/tsp/.

Goddyn, L. A. "Quantizers and the Worst Case Euclidean
Traveling Salesman Problem." J. Combin. Th. Ser. B 50,
65 �/81, 1990.

Kabatyanskii, G. A. and Levenshtein, V. I. "Bounds for
Packing on a Sphere and in Space." Problems Inform.
Transm. 14, 1�/17, 1978.

Karloff, H. J. "How Long Can a Euclidean Traveling Sales-
man Tour Be?" SIAM J. Disc. Math. 2, 91�/99, 1989.

Moran, S. "On the Length of Optimal TSP Circuits in Sets of
Bounded Diameter." J. Combin. Th. Ser. B 37, 113 �/141,
1984.

Moscato, P. "Fractal Instances of the Traveling Salesman
Constant." http://www.ing.unlp.edu.ar/cetad/mos/FRAC-
TAL_TSP_home.html

Steele, J. M. and Snyder, T. L. "Worst-Case Growth Rates of
Some Classical Problems of Combinatorial Optimization."
SIAM J. Comput. 18, 278 �/287, 1989.

Verblunsky, S. "On the Shortest Path Through a Number of
Points." Proc. Amer. Math. Soc. 2, 904 �/913, 1951.

Traveling Salesman Problem

A problem in GRAPH THEORY requiring the most
efficient (i.e., least total distance) HAMILTONIAN

CIRCUIT a salesman can take through each of n cities.
No general method of solution is known, and the
problem is NP-HARD. Solution to the traveling sales-
man problem is implemented in Mathematica as
TravelingSalesman[g ] in the Mathematica add-
on package DiscreteMath‘Combinatorica‘
(which can be loaded with the command
BBDiscreteMath‘).

See also CHINESE POSTMAN PROBLEM, DENDRITE,
HAMILTONIAN CIRCUIT, PLATEAU’S PROBLEM, TRAVEL-

ING SALESMAN CONSTANTS
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Trawler Problem
A fast boat is overtaking a slower one when fog
suddenly sets in. At this point, the boat being pursued
changes course, but not speed. How should the
pursuing vessel proceed in order to be sure of
catching the other boat?

The amazing answer is that the pursuing boat should
continue to the point where the slow boat would be if
it had set its course directly for the pursuing boat
when the fog set in. If the boat is not there, it should
proceed in a SPIRAL whose origin is the point where
the slow boat was when the fog set in. The SPIRAL can
be constructed in such a way that the two boats will
intersect before a complete turn is made.
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Trebly Magic Square
TRIMAGIC SQUARE

Tredecillion
In the American system, 1042.

See also LARGE NUMBER



Tree

A tree is a mathematical structure which can be
viewed as either a GRAPH or as a DATA STRUCTURE.
The two views are equivalent, since a tree DATA

STRUCTURE contains not only a set of elements, but
also connections between elements, giving a tree
graph. Trees were first studied by Cayley (1857).
A tree graph is a set of straight line segments
connected at their ends containing no closed loops
(cycles). In other words, it is a simple, undirected,
connected, acyclic graph (or, equivalently, a con-
nected FOREST). A tree with n nodes has n �1 EDGES.
Conversely, a CONNECTED GRAPH with n nodes and
n �1 edges is a tree. All trees are BIPARTITE GRAPHS

(Skiena 1990, p. 213).

The points of connection are known as FORKS and the
segments as BRANCHES. Final segments and the nodes
at their ends are called LEAVES. A tree with two
BRANCHES at each FORK and with one or two LEAVES

at the end of each branch is called a BINARY TREE.

Trees find applications in many diverse fields, in-
cluding computer science, the enumeration of satu-
rated hydrocarbons, the study of electrical circuits,
etc. (Harary 1994, p. 4).

A tree T has either one node which is a GRAPH

CENTER, in which case it is called a CENTRAL TREE, or
two adjacent nodes which are GRAPH CENTERS , in
which case it is called a BICENTRAL TREE (Harary
1994, p. 35).

When a special node is designated to turn a tree into a
ROOTED TREE, it is called the ROOT (or sometimes
"EVE.") In such a tree, each of the nodes which is one
EDGE further away from a given node is called a
CHILD, and nodes connected to the same node which
are the same distance from the ROOT NODE are called
SIBLINGS.

Note that two BRANCHES placed end-to-end are
equivalent to a single BRANCH which means, for
example, that there is only one tree of order 3. The
number t(n) of nonisomorphic trees of order n �1, 2,
... (where trees of orders 1, 2, ..., 6 are illustrated
above), are 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, ...
(Sloane’s A000055).

Otter showed that

lim
n0�

t(n)n5=2

an
�b; (1)

(Otter 1948, Harary and Palmer 1973, Knuth 1969).
Write the GENERATING FUNCTION for ROOTED TREES as

f (z)�
X�
i�0

fiz
i; (2)

where the COEFFICIENTS are

fi�1�
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d½j

dfd

 !
fi�j�1; (3)

with f0�0 and f1�1: Then

a�2:955765 . . . (4)

is the unique POSITIVE ROOT of
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and
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" #3=2

�0:5349485 . . . (6)

See also B -TREE, BICENTRAL TREE, BINARY TREE,
CATERPILLAR GRAPH, CAYLEY TREE, CENTRAL TREE,
CHILD, DIJKSTRA TREE, EVE, FOREST, FREE TREE,
KRUSKAL’S ALGORITHM, KRUSKAL’S TREE THEOREM,
LABELED TREE, LEAF (TREE), MATRIX TREE THEOREM,
ORCHARD-PLANTING PROBLEM, ORDERED TREE, OT-

TER’S THEOREM, PATH GRAPH, PLANTED PLANAR

TREE, PÓ LYA ENUMERATION THEOREM, POLYNEMA,
QUADTREE, RAMUS TREE, RED-BLACK TREE, ROOT

NODE, ROOTED TREE, SERIES-REDUCED TREE, SIB-

LING, SPANNING TREE, STAR GRAPH, STEINER TREE,
STERN-BROCOT TREE, WEAKLY BINARY TREE,
WEIGHTED TREE
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Tree Centroid
The set of all CENTROID POINTS in a WEIGHTED TREE

(Harary 1994, p. 36).

See also CENTROID POINT, WEIGHTED TREE
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Tree Searching
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

In database structures, two quantities are generally
of interest: the average number of comparisons
required to

1. Find an existing random record, and
2. Insert a new random record into a data
structure.

Some constants which arise in the theory of digital
tree searching are

a�
X�
k�1

1

2k � 1
�1:6066951524 . . . (1)

b�
X�
k�1

1

2n � 1ð Þ2�1:1373387363 . . . (2)

Erdos (1948) proved that a is IRRATIONAL. The
expected number of comparisons for a successful
search is

E�
ln n

ln 2
�

g� 1

ln 2
�a�3

2�d(n)�O n�1=2
� �

(3)

	lg n�0:716644 . . .�d(n); (4)

and for an unsuccessful search is

E�
ln n

ln 2
�

g

ln 2
�a�1

2�d(n)�O n�1=2
� �

(5)

	lg n�0:273948 . . .�d(n); (6)

Here d(n); e(s); and r(n) are small-amplitude periodic
functions, and LG is the base 2 LOGARITHM. The
VARIANCE for searching is

V	
1

12
�

p2 � 6

6(ln 2)2�a�b�e(s)

	2:844383 . . .�e(s) (7)

and for inserting is

V	
1

12
�

p2

6(ln 2)2�a�b�e(s)

	0:763014 . . .�e(s): (8)

The expected number of pairs of twin vacancies in a
digital search tree is

Anh i� u�1�
1

Q

1

ln 2
�a2�a

 !
�r(n)

" #
n�O

ffiffiffi
n

p� �
;

(9)

where

Q�
Y�
k�1

1�
1

2k

 !
�0:2887880950 . . . (10)



�
1

3
�

1

3 � 7
�

1

3 � 5 � 15
�

1

3 � 5 � 15 � 21
�. . . (11)

�exp �
X�
n�1

1

n(2n � 1)

" #
(12)

�

ffiffiffiffiffiffiffiffiffi
2p

ln 2

s
exp

ln 2

24
�

p2

6 ln 2

 !Y�
n�1

1�exp �
4p2n

ln 2

 !" #

(13)

and

u�
X�
k�1

k2k�1

1 � 3 � 7 � 16 � � � 2k � 1ð Þ
Xk

j�1

1

2j � 1

�7:7431319855 . . . (14)

(Flajolet and Sedgewick 1986). The linear COEFFI-

CIENT of Anh i fluctuates around

c�u�1�
1

Q

1

ln 2
�a2�a

 !
�0:3720486812 . . . ; (15)

which can also be written

c�
1

ln 2

g
�

0

x

1 � x

dx

(1 � x) 1 � 1
2x

� �
1 � 1

4x
� �

1 � 1
8x

� �
� � �

:

(16)

(Flajolet and Richmond 1992).
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Tree-Planting Problem
ORCHARD-PLANTING PROBLEM

Trefoil Curve

The plane curve given by the equation

x4�x2y2�y4�x x2�y2
� �

:

Trefoil Knot

The knot 03�/001, also called the THREEFOIL KNOT,
which is the unique PRIME KNOT of three crossings. It
has BRAID WORD s3

1: The trefoil and its MIRROR IMAGE

are not equivalent, as first proved by Dehn (1914).
The trefoil has ALEXANDER POLYNOMIAL �x2�x�1
and is a (3, 2)-TORUS KNOT. The BRACKET POLYNOMIAL

can be computed as follows.

�L��A3d2�1�A2Bd1�1�A2Bd1�1�AB2d2�1

�A2Bd1�1�AB2d2�1�AB2d2�1�B3d3�1

�A3d1�3A2Bd0�3AB2d1�B3d2:

Plugging in

B�A�1

d��A2�A�2

gives

�L��A�7�A�3�A5:

The normalized one-variable KAUFFMAN POLYNOMIAL

X is then given by

XL� �A3
� ��w(L)

�L�� �A3
� ��3

A�7�A�3�A5
� �

�A�4�A�12�A�16;

where the WRITHE w(L)�3: The JONES POLYNOMIAL

is therefore

V(t)�L A�t�1=4
� �

�t�t3�t4�t 1�t2�t3
� �

:



Since V t�1ð Þ"V(t) ; we have shown that the mirror
images are not equivalent.
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Trench Diggers’ Constant
BEAM DETECTOR

Triabolo

One of the four 3-POLYABOLOES.

See also POLYABOLO

Triacontagon

A 30-sided POLYGON. The regular triacontagon with
side length 1 has INRADIUS r , CIRCUMRADIUS R , and
AREA A given by

r �
1

4

ffiffiffiffiffiffi
15

p
�3

ffiffiffi
3

p
�

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 �11

ffiffiffi
5

pq� �

R �
1

2
2 �

ffiffiffi
5

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 �6

ffiffiffi
5

pq� �

A �
15

4

ffiffiffiffiffiffi
15

p
�3

ffiffiffi
3

p
�

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 �11

ffiffiffi
5

pq� �
:

See also POLYGON, REGULAR POLYGON, TRIGONOME-

TRY VALUES PI/30

Triacontahedron
A 30-faced POLYHEDRON.

See also ICOSIDODECAHEDRON, MEDIAL DISDYAKIS

TRIACONTAHEDRON, RHOMBIC TRIACONTAHEDRON

Triad
A SET with three elements.

See also HEXAD, MONAD, QUARTET, QUINTET, TETRAD

Triakis Icosahedron

The 60-faced DUAL POLYHEDRON of the TRUNCATED

DODECAHEDRON A10 and Wenninger dual W10: Wen-
ninger (1989, p. 46) calls the SMALL TRIAMBIC ICOSA-

HEDRON the triakis octahedron. Taking the dual of a
TRUNCATED DODECAHEDRON with unit edge lengths
gives a triakis icosahedron with edge lengths

s1�
5
22 7�

ffiffiffi
5

p� �
(1)

s2�
1
2 5�5

ffiffiffi
5

p� �
: (2)

The SURFACE AREA and VOLUME are

S�75
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 313�117

ffiffiffi
5

p� �r
(3)



V �125
44 19 �9

ffiffiffi
5

p� �
: (4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
HEXECONTAHEDRON, SMALL TRIAMBIC ICOSAHEDRON
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bridge University Press, pp. 19 �/20, 1983.

Triakis Octahedron
GREAT TRIAKIS OCTAHEDRON, SMALL TRIAKIS OCTA-

HEDRON

Triakis Tetrahedron

The DUAL POLYHEDRON of the TRUNCATED TETRAHE-

DRON A13 and Wenninger dual W6 : It can be con-
structed by CUMULATION of a unit edge-length
TETRAHEDRON by a pyramid with height 1

15

ffiffiffi
6

p
:/

The triakis tetrahedron formed by taking the dual of
a truncated tetrahedron with unit edge lengths has
side lengths

s1 �
9
5 (1)

s2 �3: (2)

Normalizing so that s1 �1 gives SURFACE AREA and
VOLUME

S �5
3

ffiffiffiffiffiffi
11

p
(3)

V �25
36

ffiffiffi
2

p
(4)

See also ARCHIMEDEAN DUAL, ARCHIMEDEAN SOLID,
TRIAKIS TETRAHEDRON STELLATIONS, TRUNCATED

TETRAHEDRON
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Wenninger, M. J. Dual Models. Cambridge, England: Cam-
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Triakis Tetrahedron Stellations
B. Chilton and R. Whorf have studied stellations of
the TRIAKIS TETRAHEDRON (Wenninger 1983, p. 36).
Whorf has found 138 stellations, 44 of which are fully
symmetric and 94 of which are enantiomorphs (Wen-
ninger 1983, p. 36).

See also STELLATION, TRIAKIS TETRAHEDRON

References
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bridge University Press, pp. 36 �/37, 1983.

Trial
In statistics, a trial is a single performance of well-
defined experiment (Papoulis 1984, p. 25), such as the
flipping of a COIN, the generation of a RANDOM

NUMBER, the dropping of a ball down the apex of a
triangular lattice and having it fall into a single bin at
the bottom, etc.

See also BERNOULLI TRIAL, EVENT, EXPERIMENT,
LEXIS TRIALS, OUTCOME, POISSON TRIALS

References
Papoulis, A. "Repeated Trials." Ch. 3 in Probability, Random

Variables, and Stochastic Processes, 2nd ed. New York:
McGraw-Hill, pp. 47 �/82, 1984.

Trial Division
A brute-force method of finding a DIVISOR of an
INTEGER n by simply plugging in one or a set of
INTEGERS and seeing if they DIVIDE n . Repeated
application of trial division to obtain the complete
PRIME FACTORIZATION of a number is called DIRECT

SEARCH FACTORIZATION. An individual integer being
tested is called a TRIAL DIVISOR.

See also DIRECT SEARCH FACTORIZATION, DIVISION,
PRIME FACTORIZATION

Trial Divisor
An INTEGER n which is tested to see if it divides a
given number.

See also TRIAL DIVISION

Triamond

The unique 3-POLYIAMOND, illustrated above.

See also POLYIAMOND, TRAPEZOID



Triangle

A triangle is a 3-sided POLYGON sometimes (but not
very commonly) called the TRIGON. All triangles are
convex. An ACUTE TRIANGLE is a triangle whose three
angles are all ACUTE. A triangle with all sides equal is
called EQUILATERAL. A triangle with two sides equal
is called ISOSCELES. A triangle having an OBTUSE

ANGLE is called an OBTUSE TRIANGLE. A triangle with
a RIGHT ANGLE is called RIGHT. A triangle with all
sides a different length is called SCALENE.

In 1816, while studying the BROCARD POINTS of a
triangle, Crelle exclaimed, "It is indeed wonderful
that so simple a figure as the triangle is so inexhaus-
tible in properties. How many as yet unknown
properties of other figures may there not be?" (Wells
1991, p. 21).

The sum of ANGLES in a triangle is 180��p radians
(at least in EUCLIDEAN GEOMETRY; this statement
does not hold in NON-EUCLIDEAN GEOMETRY). This
can be established as follows. Let DAEIBC (DAE be
PARALLEL to BC ) in the above diagram, then the
angles a and b satisfy a��DAB��ABC and b�/

/�EAC��ACB; as indicated. Adding g; it follows that

a�b�g�180�; (1)

since the sum of angles for the line segment must
equal two RIGHT ANGLES. Therefore, the sum of angles
in the triangle is also 1808.

Let S stand for a triangle side and A for an angle, and
let a set of Ss and As be concatenated such that
adjacent letters correspond to adjacent sides and
angles in a triangle. Triangles are uniquely deter-
mined by specifying three sides (SSS THEOREM), two
angles and a side (AAS THEOREM), or two sides with
an adjacent angle (SAS THEOREM). In each of these
cases, the unknown three quantities (there are three
sides and three angles total) can be uniquely deter-

mined. Other combinations of sides and angles do not
uniquely determine a triangle: three angles specify a
triangle only modulo a scale size (AAA THEOREM), and
one angle and two sides not containing it may specify
one, two, or no triangles (ASS THEOREM).

Allowable side lengths a , b , and c for a triangle are
given by the set of inequalities a �0, b �0, c �0, and
a�b > c; b�c > a; a�c > b:/

The STRAIGHTEDGE and COMPASS construction of the
triangle can be accomplished as follows. In the above
figure, take OP0 as a RADIUS and draw OB�OP0:

Then bisect OB and construct P2P1IOP0: Extending
BO to locate P3 then gives the EQUILATERAL TRIANGLE

DP1P2P3: Another construction proceeds by drawing a
CIRCLE of the desired RADIUS r centered at a point O .
Choose a point B on the circle’s CIRCUMFERENCE and
draw another CIRCLE of radius r centered at B . The
two circles intersect at two points, P1 and P2; and P3

is the second point at which the line BO intersects the
first CIRCLE.

In Proposition IV.4 of the ELEMENTS , Euclid showed
how to inscribe a CIRCLE (the INCIRCLE) in a given



triangle by locating the INCENTER I as the point of
intersection of ANGLE BISECTORS. In Proposition IV.5,
he showed how to circumscribe a CIRCLE (the CIR-

CUMCIRCLE) about a given triangle by locating the
CIRCUMCENTER O as the point of intersection of the
PERPENDICULAR BISECTORS. unlike a general POLYGON

with n]4 sides, a triangle always has both a
CIRCUMCIRCLE and an INCIRCLE. such polygons are
called BICENTRIC POLYGONS.

Casey (1888, pp. 10�/11) illustrates how to inscribe a
SQUARE in an arbitrary triangle DABC: Construct the
PERPENDICULAR CD�AB and the line segment
BE�AD . Bisect�BDC; and let F be the intersection
of the bisector with BC . Then draw FK and FH
through F , perpendicular to and parallel to AB ,
respectively. Let G be the intersection of FH and
BC , and then construct FK and HJ through F and H
perpendicular to AB . Then IGHJI is an inscribed
SQUARE. Permuting the order in which the vertices
are taken gives an additional two congruent squares.
These squares, however, are not necessarily the
largest inscribed squares. CALABI’S TRIANGLE is the
only triangle (besides the EQUILATERAL TRIANGLE) for
which the largest inscribed SQUARE can be inscribed
in three different ways.

If the coordinates of the triangle VERTICES are given
by xi; yj

� �
where i�1 2, 3, then the signed AREA D is

given by the DETERMINANT

D�
1

2!

x1 y1 1
x2 y2 1
x3 y3 1

������
������; (2)

so the actual area is obtained by taking the ABSOLUTE

VALUE of (2). If the triangle is embedded in three-
dimensional space with the coordinates of the VER-

TICES given by xi; xj; zi

� �
; where i�1, 2, 3, then

D�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 z1 1
y2 z2 1
y3 z3 1

������
������
2

�
z1 x1 1
z2 x2 1
z3 x3 1

������
������
2

�
x1 y1 1
x2 y2 1
x3 y3 1

������
������
2

vuuut : (3)

In the above figure, let the CIRCUMCIRCLE passing
through a triangle’s VERTICES have RADIUS r , and
denote the CENTRAL ANGLES from the first point to the
second u1; and to the third point by u2: Then the AREA

of the triangle is given by

D�2r2 sin 1
2 u1

� �
sin 1

2 u2

� �
sin 1

2 u1�u2ð Þ
h i��� ���: (4)

If a triangle has sides a , b , c , call the angles opposite
these sides A , B , and C , respectively. Also define the
SEMIPERIMETER s as HALF the PERIMETER:

s�1
2 p�1

2(a�b�c): (5)

The AREA of a triangle is then given by HERON’S

FORMULA

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s�a)(s�b)(s�c)

p
; (6)

as well by the FORMULAS

D�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�b�c)(b�c�a)(c�a�b)(a�b�c)

p
(7)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 a2b2�a2c2�b2c2ð Þ� a4�b4�c4ð Þ

p
(8)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a�b)2�c2
h i

c2�(a�b)2
h ir

(9)

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(p�2a)(p�2b)(p�2c)

p
; (10)

�2R2 sin A sin B sin C (11)

�
abc

4R
�rs (12)

�1
2 aha (13)

�1
2 bc sin A: (14)

In the above formulas, hi is the ALTITUDE on side i , R
is the CIRCUMRADIUS, and r is the INRADIUS (Johnson
1929, p. 11). A triangle with sides a , b , and c can be
constructed by selecting vertices (0, 0), (a; 0); and (x,



y ), then solving

x2�y2�b2 (15)

(x�a)2�y2�c2 (16)

simultaneously to obtain

x�
a2 � b2 � c2

2a
(17)

y�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(�a � b � c)(a � b � c)(a � b � c)(a � b � c)

p

2a
:

(18)

Expressing the side lengths a , b , and c in terms of the
radii a?; b?; and c? of the mutually TANGENT CIRCLES

centered on the TRIANGLE vertices (which define the
SODDY CIRCLES),

a�b?�c? (19)

b�a?�c? (20)

c�a?�b?; (21)

gives the particularly pretty form

D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a?b?c?(a?�b?�c?)

p
: (22)

For additional FORMULAS, see Beyer (1987) and Baker
(1884), who gives 110 FORMULAS for the AREA of a
triangle.

The ANGLES of a triangle satisfy

cot A�
b2 � c2 � a2

4D
(23)

where D is the AREA (Johnson 1929, p. 11, with
missing squared symbol added). This gives the pretty
identity

cot A�cot B�cot C�
a2 � b2 � c2

4D
: (24)

In addition,

tan A�tan B�tan C�tan A tan B tan C (25)

(F.J. n.d., p. 206; Borchardt and Perrott 1930) and

cot B cot C�cot C cot A�cot A cot B�1 (26)

tan A cot B cot C�tan B cot C cot A

�tan C cot A cot B

�tan A�tan B�tan C

�2(cot A�cot B�cot C) (27)

(Siddons and Hughes 1929).

Let a triangle have ANGLES A , B , and C . Then

sin A sin B sin C5kABC; (28)

where

k�
3
ffiffiffi
3

p

2p

 !3

(29)

(Abi-Khuzam 1974, Le Lionnais 1983). This can be
used to prove that

8v3BABC; (30)

where v is the BROCARD ANGLE. Other inequalities
include

sin A�sin B�sin C53
2

ffiffiffi
3

p
(31)

15cos A�cos B�cos C53
2 (32)

sin 1
2 A
� �

sin 1
2 B
� �

sin 1
2 C
� �

51
8 (33)

tan 1
2 A
� �

�tan 1
2 B
� �

�tan 1
2 C
� �

]
ffiffiffi
3

p
(34)

cot A cot B cot C51
9

ffiffiffi
3

p
(35)

cot A�cot B�cot C]
ffiffiffi
3

p
(36)

sin A sin B sin C

cot A � cot B � cot C
53

8 (37)

tan 1
2 A
� �

� tan 1
2 B
� �

� tan 1
2 C
� �

tan 1
2 A
� �

tan 1
2 B
� �

tan 1
2 C
� � ]9 (38)

cos 1
2 A
� �

cos 1
2 B
� �

cos 1
2 C
� �

]sin A sin B sin C

]sin(2A) sin(2B) sin(2C) (39)

25cos2 1
2 A
� �

�cos2 1
2 B
� �

�cos2 1
2 C
� �

59
4 (40)

cot 1
2 A
� �

cot 1
2 B
� �

�cot 1
2 B
� �

cot 1
2 C
� �

�cot 1
2 C
� �

cot 1
2 A
� �

]9 (41)

(Siddons and Hughes 1929, p. 283), and

sin A � sin B � sin C

cot A � cot B � cot C
5

3

2
(42)

(Weisstein).

TRIGONOMETRIC FUNCTIONS of half angles can be
expressed in terms of the triangle sides:

cos 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(s � a)

bc

s
(43)

sin 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s � b)(s � c)

bc

s
(44)

tan 1
2 A
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s � b)(s � c)

s(s � a)

s
; (45)

where s is the SEMIPERIMETER.



The number of different triangles which have INTE-

GRAL sides and PERIMETER n is

T(n) �P3(n) �
X

1 5i5 n=2b c
P2(j)

�
n2

12

" #
�

n

4

$ %
n � 2

4

$ %

�

n2

48

" #
for n even

(n � 3)2

48

" #
for n odd;

8>>>><
>>>>:

(46)

where P2 and P3 are PARTITION FUNCTIONS P , [x] is
the NINT function, and xb c is the FLOOR FUNCTION

(Jordan et al. 1979, Andrews 1979, Honsberger 1985).
The values of T(n) for n �1, 2, ... are 0, 0, 1, 0, 1, 1, 2,
1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, ...
(Sloane’s A005044), which is also ALCUIN’S SEQUENCE

padded with two initial 0s. T(n) also satisfies

T(2n) �T(2n �3) �P3(n): (47)

It is not known if a triangle with INTEGER sides,
MEDIANS, and AREA exists (although there are incor-
rect PROOFS of the impossibility in the literature).
However, R. L. Rathbun, A. Kemnitz, and
R. H. Buchholz have shown that there are infinitely
many triangles with RATIONAL sides (HERONIAN

TRIANGLES) with two RATIONAL MEDIANS (Guy 1994).

In the following paragraph, assume the specified
sides and angles are adjacent to each other. Specify-
ing three ANGLES does not uniquely define a triangle,
but any two triangles with the same ANGLES are
similar (the AAA THEOREM). Specifying two ANGLES A
and B and a side a uniquely determines a triangle
with AREA

D�
a2 sin B sin C

2 sin A
�

a2 sin B sin(p � A � B)

2 sin A 
(48)

(the AAS THEOREM). Specifying an ANGLE A , a side c ,
and an ANGLE B uniquely specifies a triangle with
AREA

D�
c2

2(cot A � cot B) 
(49)

(the ASA THEOREM). Given a triangle with two sides,
a the smaller and c the larger, and one known ANGLE

A , ACUTE and opposite a , if sin A Ba=c ; there are two
possible triangles. If sin A �a=c ; there is one possible
triangle. If sin A > a =c ; there are no possible trian-
gles. This is the ASS THEOREM. Let a be the base
length and h be the height. Then

D�1
2 ah �1

2 ac sin B (50)

(the SAS THEOREM). Finally, if all three sides are

specified, a unique triangle is determined with AREA

given by HERON’S FORMULA or by

D�
abc

4R
; (51)

where R is the CIRCUMRADIUS. This is the SSS
THEOREM.

If squares are erected externally on the sides of a
triangle as illustrated above, then BOB �OCOA ; and

BOB �OCOA (52)

(Coxeter and Greitzer 1967, pp. 96 �/97).

Dividing the sides of a triangle in a constant ratio
r B1=2 and then drawing lines parallel to the ad-
jacent sides passing through each of these points
gives line segments which intersect each other and
one of the medians in three places. If r > 1=2 ; then
the extensions of the side parallels intersect the
extensions of the medians.

The medians bisect the area of a triangle, as do the
side parallels with ratio 1 �

ffiffiffi
2

p
: The envelope of the

lines which bisect the area a triangle forms three
hyperbolic arcs. The envelope is somewhat more
complicated, however, for lines dividing the area of
a triangle into a constant but unequal ratio (Dunn
and Petty 1972, Ball 1980, Wells 1991).

There are four CIRCLES which are tangent to the sides
of a triangle, one internal and the rest external. Their
centers are the points of intersection of the ANGLE

BISECTORS of the triangle.

Any triangle can be positioned such that its shadow
under an orthogonal projection is EQUILATERAL.

See also AAA THEOREM, AAS THEOREM, ACUTE

TRIANGLE, ALCUIN’S SEQUENCE, ALTITUDE, ANGLE

BISECTOR, ANTICEVIAN TRIANGLE, ANTICOMPLEMEN-

TARY TRIANGLE, ANTIPEDAL TRIANGLE, ASS THEO-

REM, ASSOCIATED TRIANGLES, BELL TRIANGLE,



BRIANCHON POINT, BROCARD ANGLE, BROCARD CIR-

CLE, BROCARD MIDPOINT, BROCARD POINTS, BUTTER-

FLY THEOREM, CENTROID (TRIANGLE), CEVA’S

THEOREM, CEVIAN, CEVIAN TRIANGLE, CHASLES’S

THEOREM, CIRCULAR TRIANGLE, CIRCUMCENTER, CIR-

CUMCIRCLE, CIRCUMRADIUS, COMEDIAN TRIANGLES,
CONTACT TRIANGLE, COSYMMEDIAN TRIANGLES,
CROSSED LADDERS PROBLEM, CRUCIAL POINT, D-

TRIANGLE, DE LONGCHAMPS POINT, DESARGUES’ THE-

OREM, DIAGONAL TRIANGLE, DISSECTION, ELKIES

POINT, EQUAL DETOUR POINT, EQUILATERAL TRIAN-

GLE, EULER LINE, EULER’S TRIANGLE, EULER TRIAN-

GLE FORMULA, EXCENTER, EXCENTRAL TRIANGLE,
EXCIRCLE, EXETER POINT, EXMEDIAN, EXMEDIAN

POINT, EXRADIUS, EXTERIOR ANGLE THEOREM, FAG-

NANO’S PROBLEM, FAR-OUT POINT, FERMAT POINTS,
FERMAT’S PROBLEM, FEUERBACH POINT, FEUERBACH’S

THEOREM, FUHRMANN TRIANGLE, GERGONNE POINT,
GREBE POINT, GRIFFITHS POINTS, GRIFFITHS’ THEO-

REM, HARMONIC CONJUGATE POINTS, HEILBRONN

TRIANGLE PROBLEM, HERON’S FORMULA, HERONIAN

TRIANGLE, HOFSTADTER TRIANGLE, HOMOTHETIC TRI-

ANGLES, HEPTAGONAL TRIANGLE, INCENTER, INCIR-

CLE, INRADIUS, ISODYNAMIC POINTS, ISOGONAL

CONJUGATE, ISOPERIMETRIC POINT, ISOSCELES TRIAN-

GLE, KABON TRIANGLES, KANIZSA TRIANGLE, KIE-

PERT’S HYPERBOLA, KIEPERT’S PARABOLA, LAW OF

COSINES, LAW OF SINES, LAW OF TANGENTS, LEIBNIZ

HARMONIC TRIANGLE, LEMOINE CIRCLE, LINE AT

INFINITY, LOSSNITSCH’S TRIANGLE, MALFATTI POINTS,
MEDIAL TRIANGLE, MEDIAN (TRIANGLE), MEDIAN

TRIANGLE, MENELAUS’ THEOREM, MID-ARC POINTS,
MITTENPUNKT, MOLLWEIDE’S FORMULAS, MORLEY

CENTERS, MORLEY’S THEOREM, NAGEL POINT, NAPO-

LEON’S THEOREM, NAPOLEON TRIANGLES, NEWTON’S

FORMULAS, NINE-POINT CIRCLE, NUMBER TRIANGLE,
OBTUSE TRIANGLE, ONO INEQUALITY, ORTHIC TRIAN-

GLE, ORTHOCENTER, ORTHOLOGIC TRIANGLES, PARA-

LOGIC TRIANGLES, PASCAL’S TRIANGLE, PASCH’S

AXIOM, PEDAL TRIANGLE, PERPENDICULAR BISECTOR,
PERSPECTIVE TRIANGLES, PETERSEN-SHOUTE THEO-

REM, PIVOT THEOREM, POWER POINT, POWER (TRIAN-

GLE), PRIME TRIANGLE, PURSER’S THEOREM,
QUADRILATERAL, RATIONAL TRIANGLE, ROUTH’S THE-

OREM, SAS THEOREM, SCALENE TRIANGLE, SCHIFFLER

POINT, SCHWARZ TRIANGLE, SCHWARZ’S TRIANGLE

PROBLEM, SEIDEL-ENTRINGER-ARNOLD TRIANGLE,
SEYDEWITZ’S THEOREM, SIMSON LINE, SPIEKER CEN-

TER, SSS THEOREM, STEINER-LEHMUS THEOREM,
STEINER POINTS, STEWART’S THEOREM, SYMMEDIAN

POINT, TANGENTIAL TRIANGLE, TARRY POINT, THOM-

SEN’S FIGURE, TORRICELLI POINT, TRIANGLE TILING,
TRIANGLE TRANSFORMATION PRINCIPLE, YFF CENTRAL

TRIANGLE, YFF POINTS, YFF TRIANGLES
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Triangle Arcs

In the above figure, let DABC be a RIGHT TRIANGLE,
arcs AP and AQ be segments of CIRCLES centered at
C and B respectively, and define

a �BC (1)

b �CA �CP (2)

c �BA �BQ: (3)

Then

PQ2 �2BP � QC: (4)

The figure also yields the algebraic identity

b �c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p� �2

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
�b

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
�c

� �
: (5)

See also ARC, TRIANGLE
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Triangle Center
A triangle center is a point whose TRILINEAR COORDI-

NATES are defined in terms of the side lengths and
angles of a TRIANGLE. The function giving the co-
ordinates a : b : g is called the TRIANGLE CENTER

FUNCTION. The four ancient centers are the CEN-

TROID, INCENTER, CIRCUMCENTER, and ORTHOCENTER.
For a listing of these and other triangle centers, see
Kimberling (1994).

A triangle center is said to be REGULAR IFF there is a
TRIANGLE CENTER FUNCTION which is a POLYNOMIAL

in D; a , b , and c (where D is the AREA of the TRIANGLE)
such that the TRILINEAR COORDINATES of the center
are

f (a; b; c) : f (b; c ; a) : f (c ; a; b) :

A triangle center is said to be a MAJOR TRIANGLE

CENTER if the TRIANGLE CENTER FUNCTION a is a
function of ANGLE A alone, and therefore b and g of B
and C alone, respectively.

See also MAJOR TRIANGLE CENTER, REGULAR TRIAN-

GLE CENTER, TRIANGLE, TRIANGLE CENTER FUNC-

TION, TRILINEAR COORDINATES, TRILINEAR POLAR
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Triangle Center Function
A HOMOGENEOUS FUNCTION f (a ; b ; c) ; i.e., a function
f such that

f (ta ; tb ; tc) �tnf (a; b; c) ;

which gives the TRILINEAR COORDINATES of a TRIAN-

GLE CENTER as

a : b : g �f (a ; b ; c) : f (b; c ; a) : f (c ; a ; b) :

The variables may correspond to angles (A , B , C ) or
side lengths (a , b , c ), since these can be intercon-
verted using the LAW OF COSINES.

See also MAJOR TRIANGLE CENTER, REGULAR TRIAN-

GLE CENTER, TRIANGLE CENTER, TRILINEAR COORDI-

NATES
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Triangle Coefficient
A function of three variables written D(abc)�
D(a; b; c) and defined by



D(abc) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a � b � c)!(a � b � c)!( �a � b � c)!

(a � b � c � 1)!

s
:
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Triangle Condition
The condition that j takes on the values

j �j1 �j2 ; j1 �j2 �1; . . .  ; ½j1 �j2 ½;

denoted D j1 j2 jð Þ:/
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Triangle Counting
Given rods of length 1, 2, ..., n , how many distinct
triangles T(n) can be made? Lengths for which

li �lj �lk

obviously do not give triangles, but all other combina-
tions of three rods do. The answer is

T(n) �
1
24 n(n �2)(2n �5) for n even
1
24(n �1)(n �3)(2n �1) for n odd:

(

The values for n �1, 2, ...are 0, 0, 0, 1, 3, 7, 13, 22, 34,
50, ... (Sloane’s A002623). Somewhat surprisingly,
this sequence is also given by the GENERATING

FUNCTION

f (x) �
x4

(1 � x)3(1 � x2) 
�x4 �3x5 �7x6 �13x7 �. . . :

See also TRIANGLE TILING
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Triangle Cubic Curve
A CUBIC CURVE on which 37 notable triangle centers
lie.
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Triangle Function

L(x) �
0 ½x½ > 1
1 � ½x½ ½x½B1

�
(1)

�P(x) + P(x) (2)

¼ P(x) + H x�1
2

� �
�P(x) + H x�1

2

� �
; (3)

where P is the RECTANGLE FUNCTION and H is the
HEAVISIDE STEP FUNCTION. An obvious generalization
used as an APODIZATION FUNCTION goes by the name
of the BARTLETT FUNCTION.
There is also a three-argument function known as the
triangle function:

l(x; y; z) �x2 �y2 �z2 �2xy �2xz �2yz : (4)

It follows that

l a2 ; b2 ; c2
� �
�(a �b �c)(a �b �c)(a �b �c)(a �b �c) : (5)

See also ABSOLUTE VALUE, BARTLETT FUNCTION,
HEAVISIDE STEP FUNCTION, RAMP FUNCTION, REC-

TANGLE FUNCTION, SGN, TRIANGLE COEFFICIENT
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Triangle Graph

The CYCLE GRAPH C3; which is also the COMPLETE

GRAPH K3:/

See also COMPLETE GRAPH, CYCLE GRAPH
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Triangle Inequality
Let x and y be vectors

½x½� ½y ½5 ½x �y½5 ½x½� ½y½: (1)

Equivalently, for COMPLEX NUMBERS z1 and z2 ;

z1j j� z2j j5 z1 �z2j j5 z1j j� z2j j: (2)

A generalization is

Xn

k �1

ak

�����
�����5X

n

k �1

akj j: (3)

See also ONO INEQUALITY, P -ADIC NUMBER, STRONG

TRIANGLE INEQUALITY
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Triangle Interior

To determine if a given point v lies in the interior of a
given triangle, consider an individual vertex, denoted
v0 ; and let v1 and v2 be the vectors from v0 to the
other two vertices. Expressing the vector from v0 to v
in terms of v1 and v2 then gives

v �v0 �av1 �bv2 ; (1)

where a and b are constants. Solving for a and b
gives

a �
det v v2ð Þ� det v0 v2ð Þ

det(v1 v2) 
(2)

b ��
det v v1ð Þ� det v0 v1ð Þ

det v1 v2ð Þ
; (3)

where

det(u v) �u �v �uxvy �uyvx (4)

is the DETERMINANT of the matrix formed from the
COLUMN VECTORS u and v. The point v will be "inside"
the angle formed at v0 if a; b > 0; and so will be in the
interior of the triangle if the corresponding a; b > 0
for each of the three vertices.
More generally, a point v is in the interior of a
TRIANGLE if the CONVEX HULL of the three vertices
plus the point v contains three points instead of four.
This means the point v is inside the CONVEX HULL of
the triangle, which is just the triangle itself.

See also CONVEX HULL, TRIANGLE

Triangle of Figurate Numbers
FIGURATE NUMBER TRIANGLE

Triangle Packing

The best known packings of equilateral triangles into
an equilateral triangle are illustrated above for the
first few cases (Friedman).

The best known packings of equilateral triangles into
a circle are illustrated above for the first few cases
(Friedman).



The best known packings of equilateral triangles into
a square are illustrated above for the first few cases
(Friedman).

Stewart (1998, 1999) considered the problem of
finding the largest convex area that can be nontrivi-
ally tiled with equilateral triangles whose sides are
integers for a given number of triangles and which
have no overall common divisor. There is no upper
limit if an arbitrary number of triangles are used. The
following table gives the best known packings for
small numbers of triangles.

n max.
area

reference n max.
area

reference

1 1 Stewart
1997

11 495 Stewart
1997

2 2 Stewart
1997

12 860 Stewart
1998

3 3 Stewart
1997

13 1559 Stewart
1998

4 7 Stewart
1997

14 2831 Stewart
1998

5 11 Stewart
1997

15 4782 Stewart
1999

6 20 Stewart
1997

16 8559 Stewart
1998

7 36 Stewart
1997

17 14279 Stewart
1998

8 71 Stewart
1997

9 146 Stewart
1997

10 260 Stewart
1997

See also CIRCLE PACKING, EQUILATERAL TRIANGLE,
PACKING, SQUARE PACKING
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Triangle Point Picking

Given a triangle with one vertex at the origin and the
others at positions v1 and v2; one might think that a
random point inside the triangle would be given by

x�a1v1� 1�a1ð Þa2v2;

where a1 and a2 are uniform variates in the interval
[0; 1]: However, as can be seen in the plot above, this
samples the triangle nonuniformly, concentrating



points in the v1 corner.

To pick points uniformly distributed inside the
triangle, instead pick

x �a1v1 �a2v2 ;

where a1 and a2 are uniform variates in the interval
[0; 1]; which gives points uniformly distributed in a
QUADRILATERAL (left figure). The points not in the
TRIANGLE INTERIOR can then either be discarded, or
transformed into the corresponding point inside the
triangle (right figure).

Picking n points independently and uniformly from a
triangle with unit area gives a CONVEX HULL with
expected area of

A(n) �1 �
2

n � 1

Xn

k�1

1

k 
�1 �

2Hn

n � 1 
;

where Hn is a HARMONIC NUMBER (Buchta 1984,
1986). This is a special case of SIMPLEX POINT PICKING.

See also SIMPLEX POINT PICKING, TRIANGLE TRIANGLE

PICKING
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Triangle Postulate
The sum of the ANGLES of a TRIANGLE is two RIGHT

ANGLES. This POSTULATE is equivalent to the PARAL-

LEL AXIOM.
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Triangle Squaring

Let CD be the ALTITUDE of a TRIANGLE DABC and let
E be its MIDPOINT. Then

area(DABC) �1
2 AB � CD �AB � DE ;

and �ABFG can be SQUARED by RECTANGLE SQUAR-

ING. The general POLYGON can be treated by drawing
diagonals, SQUARING the constituent TRIANGLES, and
then combining the SQUARES together using the
PYTHAGOREAN THEOREM.

See also PYTHAGOREAN THEOREM, RECTANGLE SQUAR-

ING, SQUARING
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Triangle Tiling

Any triangle tiles the plane (Wells 1991, p. 208).

The total number of triangles (including inverted
ones) in the above figures are given by

N(n) �
1
8 n(n �2)(2n �1) for n even
1
8 n(n �2)(2n �1) �1½ � for n odd:

(

The first few values are 1, 5, 13, 27, 48, 78, 118, 170,
235, 315, 411, 525, 658, 812, 988, 1188, 1413, 1665, ...
(Sloane’s A002717).

See also EQUILATERAL TRIANGLE, RECTANGLE TILING,
TRIANGLE COUNTING, TRIANGLE PACKING
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Triangle Transformation Principle
The triangle transformation principle gives rules for
transforming equations involving an INCIRCLE to
equations about EXCIRCLES.

See also EXCIRCLE, INCIRCLE
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Triangle Triangle Picking

The mean area of a triangle picked inside a triangle
with unit area is Ā �1=12 (Pfiefer 1989). This was
proposed by Watson (1865) and solved by Sylvester,
and is a special case of the general formula for
POLYGON TRIANGLE PICKING.

See also DISK TRIANGLE PICKING, HEXAGON TRIANGLE

PICKING, POLYGON TRIANGLE PICKING, SQUARE TRI-

ANGLE PICKING, SYLVESTER’S FOUR-POINT PROBLEM,
TETRAHEDRON TETRAHEDRON PICKING
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Triangular Antiprism

See also ANTIPRISM

Triangular Cupola

JOHNSON SOLID J3 : The bottom six VERTICES are

91
2

ffiffiffi
3

p
;91

2 ; 0
� �

; 0;91 ; 0ð Þ;

and the top three VERTICES are

1ffiffiffi
3

p ; 0 ;

ffiffiffi
2

3

s !
; �

1

2
ffiffiffi
3

p ;9
1

2 
;

ffiffiffi
2

3

s !
:

See also JOHNSON SOLID

Triangular Dipyramid

The triangular (or TRIGONAL) dipyramid is one of the
convex DELTAHEDRA, and JOHNSON SOLID J12 :/

See also DELTAHEDRON, DIPYRAMID, HEXAHEDRON,
JOHNSON SOLID, PENTAGONAL DIPYRAMID

Triangular Graph

The triangular graph with n nodes on a side is
denoted T(n): Tutte (1970) showed that the CHRO-

MATIC POLYNOMIALS of planar triangular graphs
possess a ROOT close to f2�2:618033 . . . ; where f is
the GOLDEN MEAN. More precisely, if n is the number
of VERTICES of G , then

PG f2
� �

5f5�n



(Le Lionnais 1983, p. 46). Every planar triangular
graph possesses a VERTEX of degree 3, 4, or 5 (Le
Lionnais 1983, pp. 49 and 53).

See also LATTICE GRAPH
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Triangular Hebesphenorotunda

JOHNSON SOLID J92 :/
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Triangular Matrix
An UPPER TRIANGULAR MATRIX U is defined by

Uij �
aij for i 5j
0 for i > j :

�
(1)

Written explicitly,

U �

a11 a12 � � �  a1n

0 a22 � � �  a2n

n n ::: n
0 0 � � �  ann

2
664

3
775: (2)

A LOWER TRIANGULAR MATRIX L is defined by

Lij �
aij for i ]j
0 for i Bj:

�
(3)

Written explicitly,

L�

a11 0 � � � 0
a21 a22 � � � 0
n n ::: 0

an1 an2 � � � ann

2
664

3
775: (4)

See also HANKEL MATRIX, HESSENBERG MATRIX,
HILBERT MATRIX, LOWER TRIANGULAR MATRIX, MA-

TRIX, UPPER TRIANGULAR MATRIX, VANDERMONDE

MATRIX
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Triangular Number

A FIGURATE NUMBER OF THE FORM

Tn�
1
2 n(n�1)�

n�1
2

� �
; (1)

where n
k

� �
is a BINOMIAL COEFFICIENT, obtained by

building up regular triangles out of dots. The first few
triangle numbers are 1, 3, 6, 10, 15, 21, ... (Sloane’s
A000217). The odd triangular numbers are given by
1, 3, 15, 21, 45, 55, ... (Sloane’s A014493), while the
even triangular numbers are 6, 10, 28, 36, 66, 78, ...
(Sloane’s A014494).

/T4�10 gives the number and arrangement of BOWL-

ING pins, while T5�15 gives the number and ar-
rangement of balls in BILLIARDS. Triangular numbers
satisfy the RECURRENCE RELATION

T2
n�1�T2

n�(n�1)3; (2)

as well as

3Tn�Tn�1�T2n (3)

3Tn�Tn�1�T2n�1 (4)

1�3�5�. . .�(2n�1)�Tn�Tn�1: (5)

In addition, the triangle numbers can be related to
the square numbers by

(2n�1)2�8T�1�Tn�1�6Tn�Tn�1 (6)

(Conway and Guy 1996), as illustrated above (Wells
1991, p. 198). They have the ordinary GENERATING

FUNCTION

f (x)�
x

(1 � x)3�x�3x2�6x3�10x4�15x5�. . . (7)



and EXPONENTIAL GENERATING FUNCTION

g(x)� 1�2x�1
2 x2

� �
ex

�1�3x�3x2�5
3 x3�5

8 x4�. . .

�1�3
x

1!
�6

x2

2!
�10

x3

3!
�15

x4

4!
�. . . (8)

(Sloane and Plouffe 1995, p. 9).

Every triangular number is also a HEXAGONAL NUM-

BER, since

1
2 r(r�1)

�

r � 1

2

 !
2

r � 1

2

 !
�1

" #
for r odd

�
r

2

 !
2 �

r

2

 !
�1

" #
for r even:

8>>>><
>>>>:

(9)

Also, every PENTAGONAL NUMBER is 1/3 of a triangular
number. The sum of consecutive triangular numbers
is a SQUARE NUMBER, since

Tr�Tr�1�
1
2 r(r�1)�1

2(r�1)r

¼ 1
2 r (r�1)�(r�1)½ ��r2: (10)

Interesting identities involving triangular numbers
and SQUARE NUMBERS are

X2n�1

k�1

(�1)k�1Tk�n2 (11)

T2
n�

Xn

k�1

k3�1
4 n2(n�1)2 (12)

X
k�1; 3; ...; q

k3�Tn (13)

for q ODD and

n�1
2(q

2�2q�1): (14)

Triangular numbers also unexpectedly appear in
integrals involving the ABSOLUTE VALUE OF THE FORM

g
1

0 g
1

0

x�yj jn dx dy�
2

(n � 1)(n � 2)
: (15)

All EVEN PERFECT NUMBERS are triangular Tp with
PRIME p . Furthermore, every EVEN PERFECT NUMBER

P �6 is OF THE FORM

P�1�9Tn�T3n�1; (16)

where Tn is a triangular number with n�8j�2
(Eaton 1995, 1996). Therefore, the nested expression

9(9 � � � (9(9(9(9Tn�1)�1)�1)�1) . . .�1)�1 (17)

generates triangular numbers for any Tn: An INTEGER

k is a triangular number IFF 8k�1 is a SQUARE

NUMBER > 1:/

The numbers 1, 36, 1225, 41616, 1413721, 48024900,
... (Sloane’s A001110) are SQUARE TRIANGULAR NUM-

BERS, i.e., numbers which are simultaneously trian-
gular and SQUARE (Pietenpol 1962). The
corresponding square roots are 1, 6, 35, 204, 1189,
6930, ... (Sloane’s A001109), and the indices of the
corresponding triangular numbers Tn are n�1, 8, 49,
288, 1681, ... (Sloane’s A001108).

Numbers which are simultaneously triangular and
TETRAHEDRAL satisfy the BINOMIAL COEFFICIENT

equation

Tn�
n�1

2

� �
�

m�2
3

� �
�Tem; (18)

the only solutions of which are

Te3�T4�10 (19)

Te8�T15�120 (20)

Te20�T55�1540 (21)

Te34�T119�7140 (22)

(Guy 1994, p. 147).

The following table gives triangular numbers Tp

having prime indices p .

/Tn with prime
indices

A034953 3, 6, 15, 28, 66, 91,
153, 190, 276, 435,
496, ...

odd Tn with
prime indices

A034954 3, 15, 91, 153, 435,
703, 861, 1431, 1891,
2701, ...

even Tn with
prime indices

A034955 6, 28, 66, 190, 276,
496, 946, 1128, 1770,
2278, ...

The smallest of two INTEGERS for which n3�13 is four
times a triangular number is 5 (Cesaro 1886; Le
Lionnais 1983, p. 56). The only FIBONACCI NUMBERS

which are triangular are 1, 3, 21, and 55 (Ming 1989),
and the only PELL NUMBER which is triangular is 1
(McDaniel 1996). The BEAST NUMBER 666 is triangu-
lar, since

T6 � 6�T36�666: (23)

In fact, it is the largest REPDIGIT triangular number
(Bellew and Weger 1975�/76).

FERMAT’S POLYGONAL NUMBER THEOREM states that
every POSITIVE INTEGER is a sum of most three
TRIANGULAR NUMBERS, four SQUARE NUMBERS, five
PENTAGONAL NUMBERS, and n n -POLYGONAL NUM-



BERS. Gauss proved the triangular case (Wells 1986,
p. 47), and noted the event in his diary on July 10,
1796, with the notation

++E YRHKA num �D�D�D: (24)

This case is equivalent to the statement that every
number OF THE FORM 8m �3 is a sum of three ODD

SQUARES (Duke 1997). Dirichlet derived the number
of ways in which an INTEGER m can be expressed as
the sum of three triangular numbers (Duke 1997).
The result is particularly simple for a PRIME OF THE

FORM 8m �3; in which case it is the number of
squares mod 8m �3 minus the number of nonsquares
mod 8m �3 in the INTERVAL 4m �1 (Deligne 1973).

The only triangular numbers which are the PRODUCT

of three consecutive INTEGERS are 6, 120, 210, 990,
185136, 258474216 (Sloane’s A001219; Guy 1994,
p. 148).

See also FIGURATE NUMBER, HEPTAGONAL TRIANGU-

LAR NUMBER, OCTAGONAL TRIANGULAR NUMBER,
PENTAGONAL TRIANGULAR NUMBER, PRONIC NUMBER,
SQUARE TRIANGULAR NUMBER
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Triangular Orthobicupola

JOHNSON SOLID J27 ; consisting of eight equilateral
triangles and six squares. If a triangular orthobicu-
pola is oriented with triangles on top and bottom, the
two halves may be rotated one sixth of a turn with
respect to each other to obtain the CUBOCTAHEDRON.

In hexagonal close packing, layers of spheres are
packed so that spheres in alternating layers overlie
one another. As in cubic close packing, each sphere is
surrounded by 12 other spheres. Taking a collection
of 13 such spheres gives the cluster illustrated above.
Connecting the centers of the external 12 spheres
gives J27 (Steinhaus 1983, pp. 203�/205), which is
therefore also a SPACE-FILLING POLYHEDRON.

See also CUBOCTAHEDRON, JOHNSON SOLID, SPACE-

FILLING POLYHEDRON, SPHERE PACKING
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Triangular Prism

A PRISM composed of triangular faces. The regular
right triangular prism of unit edge length has SUR-

FACE AREA and VOLUME

S �1
2(6 �

ffiffiffi
3

p
)

V �1
4

ffiffiffi
3

p
:

See also PRISM

Triangular Pyramid
A PYRAMID having a triangular base. The SLANT

HEIGHT of a regular triangular pyramid is a special
case of the formula for a regular n -gonal PYRAMID

with n �3, given by

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 �1

3 a
2

q
; (1)

where h is the height and a is the length of a side of
the base. The TETRAHEDRON is a special case of the
triangular pyramid.

See also PYRAMID, TETRAHEDRON

Triangular Square Number
SQUARE TRIANGULAR NUMBER

Triangular Symmetry Group

Given a TRIANGLE with angles (/p=p ; p=q ; p=r) ; the
resulting symmetry GROUP is called a (p; q; r) trian-

gle group (also known as a SPHERICAL TESSELLATION).
In 3-D, such GROUPS must satisfy

1

p 
�

1

q 
�

1

r
> 1;

and so the only solutions are (2 ; 2; n) ; (2; 3 ; 3);
(2; 3; 4); and (2; 3; 5) (Ball and Coxeter 1987). The
group (2; 3 ; 6) gives rise to the semiregular planar
TESSELLATIONS of types 1, 2, 5, and 7. The group
(2; 3; 7) gives hyperbolic tessellations.

See also GEODESIC DOME

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, pp. 155�/161,
1987.

Coxeter, H. S. M. "The Partition of a Sphere According to
the Icosahedral Group." Scripta Math 4, 156�/157, 1936.

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York:
Dover, 1973.

Kraitchik, M. "A Mosaic on the Sphere." §7.3 in Mathema-
tical Recreations. New York: W. W. Norton, pp. 208�/209,
1942.

Triangulation

Triangulation is the division of a surface or plane
polygon into a set of TRIANGLES, usually with the
restriction that each TRIANGLE side is entirely shared
by two adjacent TRIANGLES. It was proved in 1925
that every surface has a triangulation, but it might
require an infinite number of TRIANGLES and the
proof is difficult (Francis and Weeks 1999). A surface
with a finite number of triangles in its triangulation
is called COMPACT.
Wickham-Jones (1994) gives an O n3ð Þ algorithm for
triangulation ("otectomy"), and O’Rourke (1998,
p. 47) sketches a method for improving this to O n2ð Þ;
as first done by Lennes (1911). Garey et al. (1978)
gave an algorithmically straightforward O(n ln n)
method for triangulation, which was for many years
believed optimal. However, Tarjan and van Wyk
(1988) produced an O(n lg lg n) algorithm. This was
followed by an unexpected result due to Chazelle
(1991), who showed that an arbitrary SIMPLE POLY-

GON can be triangulated in O(n): However, according
to Skiena (1997), "this algorithm is quite hopeless to
implement."



See also ART GALLERY THEOREM, COMPACT SURFACE,
DELAUNAY TRIANGULATION, JAPANESE THEOREM,
SIMPLE POLYGON, TESSELLATION
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Triaugmented Dodecahedron

JOHNSON SOLID J61 :/
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Triaugmented Hexagonal Prism

JOHNSON SOLID J57 :/
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Triaugmented Triangular Prism

One of the convex DELTAHEDRA. It is composed of 14
equilateral triangles, and is JOHNSON SOLID J51 : The
VERTICES are (91 =2;91=2 ; 0); 0 ; 0;

ffiffiffi
2

p
=2

� �
;

0;91=2;�
ffiffiffi
3

p
=2

� �
; 9 1�

ffiffiffi
6

p� �
=4; 0;�

ffiffiffi
2

p
�

ffiffiffi
3

p� �
=4

� �
;

where the x and z coordinates of the last are found
by solving

x2� 1
2

� �2

� z�
ffiffiffi
3

p
=2

� �2

�12 (1)

x�1
2

� �2

� 1
2

� �2

�z2�12: (2)

For a triaugmented triangular prism with unit side
length, the SURFACE AREA and VOLUME are

S�7
2

ffiffiffi
3

p
(3)

V�1
4 2

ffiffiffi
2

p
�

ffiffiffi
3

p� �
: (4)

See also DELTAHEDRON, JOHNSON SOLID



Triaugmented Truncated Dodecahedron

JOHNSON SOLID J71 :/
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Triaxial Ellipsoid
ELLIPSOID

Tri-Axial Ellipsoid
ELLIPSOID

Tribar

An IMPOSSIBLE FIGURE published by R. Penrose
(1958). It also exists as a TRIBOX.
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Tribonacci Number
The tribonacci numbers are a generalization of the
FIBONACCI NUMBERS defined by T1 �1; T2 �1; T3 �2;
and the RECURRENCE RELATION

Tn �Tn�1 �Tn�2 �Tn �3 (1)

for n ]4: The represent the n �3 case of the FIBO-

NACCI N -STEP NUMBERS. The first few terms are 1, 1,
2, 4, 7, 13, 24, 44, 81, 149, ... (Sloane’s A000073). The

ratio of adjacent terms tends to 1.83929, which is the
REAL ROOT of x4 �2x3 �1 �0: The Tribonacci num-
bers can also be computed using the GENERATING

FUNCTION

1

1 � z � z2 � z3 
�1 �z �2z2 �4z3 �7z4

�13z5 �24z6 �44z7 �81z8 �149z9 �. . .  : (2)

An explicit FORMULA for Tn is also given by

3
1
3 19 � 3

ffiffiffiffiffiffi
33

p� �1=3
�1

3 19 � 3
ffiffiffiffiffiffi
33

p� �1=3
�1

3

n on

586 � 102
ffiffiffiffiffiffi
33

p� �1=3

586 � 102
ffiffiffiffiffiffi
33

p� �2=3
�4 � 2 586 � 102

ffiffiffiffiffiffi
33

p� �1=3

2
4

3
5;

(3)

where [x] denotes the NINT function (Plouffe). The
first part of a NUMERATOR is related to the REAL root
of x3 �x2 �x �1 ; but determination of the DENOMI-

NATOR requires an application of the LLL ALGORITHM.
The numbers increase asymptotically to

Tn 	cn ; (4)

where

c � 19
27 �

1
9

ffiffiffiffiffiffi
33

p� �1 =3

�4
9

19
27 �

1
9

ffiffiffiffiffiffi
33

p� ��1 =3

�1
3

�1 :83928675521 . . . (5)

(Plouffe).

See also FIBONACCI N -STEP NUMBER, FIBONACCI

NUMBER, TETRANACCI NUMBER
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Tribox

An IMPOSSIBLE FIGURE.

See also IMPOSSIBLE FIGURE, TRIBAR

References
Jablan, S. "Are Impossible Figures Possible?" http://mem-
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Trichotomy Law
Every REAL NUMBER is NEGATIVE, 0, or POSITIVE. The
law is sometimes states as "For arbitrary real
numbers x and y , exactly one of the relations a Bb ,
a �b , a �b holds" (Apostol 1967, p. 20).

See also SCHRÖ DER-BERNSTEIN THEOREM, TOTAL

ORDER
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Calculus, with an Introduction to Linear Algebra. Wal-
tham, MA: Blaisdell, 1967.

Tricolorable
A projection of a LINK is tricolorable if each of the
strands in the projection can be colored in one of three
different colors such that, at each crossing, all three
colors come together or only one does and at least two
different colors are used. The TREFOIL KNOT and
trivial 2-link are tricolorable, but the UNKNOT,
WHITEHEAD LINK, and FIGURE-OF-EIGHT KNOT are not.

If the projection of a knot is tricolorable, then
REIDEMEISTER MOVES on the knot preserve tricolor-
ability, so either every projection of a knot is tricolor-
able or none is.

Tricomi Equation
The PARTIAL DIFFERENTIAL EQUATION

uyy �yuxx :

References
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the Theory of Plane Transonic Flow. Marshfield, MA:
Pitman, 1979.

Zwillinger, D. (Ed.). CRC Standard Mathematical Tables
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Tricomi Function
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE

SECOND KIND, GORDON FUNCTION

Tricuspoid
DELTOID

Tricylinder
STEINMETZ SOLID

Tridecagon
A 13-sided POLYGON, sometimes also called the
TRISKAIDECAGON.

Trident

The plane curve given by the equation

xy�x3�a3:

See also TRIDENT OF DESCARTES, TRIDENT OF NEW-

TON

Trident of Descartes

The plane curve given by the equation

(a�x)(a�x)(2a�x)�x3�2ax2�a2x�2a3�axy

y�
(a � x)(a � x)(2a � x)

ax
:

The above plot has a�2.

Trident of Newton
The CUBIC CURVE defined by

ax3�bx2�cx�d�xy

with a"0: The curve cuts the axis in either one or
three points. It was the 66th curve in Newton’s
classification of CUBICS. Newton stated that the curve
has four infinite legs and that the Y -AXIS is an
ASYMPTOTE to two tending toward contrary parts.
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Tridiagonal Matrix
A MATRIX with NONZERO elements only on the
diagonal and slots horizontally or vertically adjacent
the diagonal (i.e., along the SUBDIAGONAL and SUPER-

DIAGONAL). A general 4 �4 tridiagonal MATRIX has
the form

a11 a12 0 0
a21 a22 a23 0
0 a32 a33 a34

0 0 a43 a44

2
664

3
775:

Inversion of such a matrix requires only O 7nð Þ (as
opposed to O(n3 =3)) arithmetic operations (Acton
1990, p. 332).

See also DIAGONAL MATRIX, JACOBI ALGORITHM,
SUBDIAGONAL, SUPERDIAGONAL
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Tridiminished Icosahedron

JOHNSON SOLID J63 :/

References
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MATICA NOTEBOOK JOHNSONSOLIDS.DAT.

Tridiminished Rhombicosidodecahedron

JOHNSON SOLID J83 :/

References
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Tridyakis Icosahedron

The DUAL POLYHEDRON of the ICOSITRUNCATED DODE-

CADODECAHEDRON U45 and Wenninger dual W84:/

See also DUAL POLYHEDRON, ICOSITRUNCATED DODE-

CADODECAHEDRON
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Trifolium

Lawrence (1972) defines a trifolium as a FOLIUM with
b � (0; 4a) : However, the term "the" trifolium is some-
times applied to the FOLIUM with b �a , which is then
the 3-petalled ROSE with Cartesian equation

x2 �y2
� �

y2 �x(x �a)
� �

�4axy2

and polar equation

r �a cos u 4 sin2 u �1
� �

��a cos(3 u) :

The trifolium with b �a is the RADIAL CURVE of the
DELTOID.

See also BIFOLIUM, FOLIUM, QUADRIFOLIUM
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MacTutor History of Mathematics Archive. "Trifolium."
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Trigon
TRIANGLE

Trigonal Dipyramid
TRIANGULAR DIPYRAMID

Trigonal Dodecahedron

An irregular DODECAHEDRON.

See also DODECAHEDRON, PYRITOHEDRON, RHOMBIC

DODECAHEDRON
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Trigonometric Addition Formulas
Angle addition FORMULAS express trigonometric func-
tions of sums of angles a9b in terms of functions of a
and b: The fundamental formulas of angle addition in
trigonometry are given by

sin(a�b)�sin a cos b�sin b cos a (1)

sin(a�b)�sin a cos b�sin b cos a (2)

cos(a�b)�cos a cos b�sin a sin b (3)

cos(a�b)�cos a cos b�sin a sin b (4)

tan(a�b)�
tan a� tan b

1 � tan a tan b
(5)

tan(a�b)�
tan a� tan b

1 � tan a tan b
: (6)

The sine and cosine angle addition identities can be
compactly summarized by the MATRIX EQUATION

cos a sin a

�sin a cos a

 �
cos b sin b

�sin b cos b

 �

�
cos(a�b) sin(a�b)
�sin(a�b) cos(a�b)

 �
: (7)

These formulas can be simply derived using COMPLEX

EXPONENTIALS and the EULER FORMULA as follows.

cos(a�b)�i sin(a�b)�ei(a�b)�eiaeib

�(cos a�i sin a)(cos b�i sin b)

�(cos a cos b�sin a sin b)

�i(sin a cos b�cos a sin b): ð8Þ

Equating REAL and IMAGINARY PARTS then gives (1)
and (3), and (2) and (4) follow immediately by
substituting�b for b:/

Taking the ratio of (1) and (3) gives the tangent angle
addition FORMULA

tan(a�b)�
sin(a� b)

cos(a� b)
�

sin a cos b� sin b cos a

cos a cos b� sin a sin b

�

sin a

cos a
�

sin b

cos b

1 �
sin a sin b

cos a cos ab

�
tan a� tan b

1 � tan a tan b
: (9)

The DOUBLE-ANGLE FORMULAS are

sin(2a)�2 sin a cos a (10)

cos(2a)�cos2 a�sin2 a (11)

�2 cos2 a�1 (12)

�1�2 sin2 a (13)



tan(2a)�
2 tan a

1 � tan2 a
: (14)

MULTIPLE-ANGLE FORMULAS are given by

sin(nx)�
Xn

k�0

n
k

� �
cosk x sinn�k x sin 1

2(n�k)p
h i

: (15)

cos(nx)�
Xn

k�0

n
k

� �
cosk x sinn�k x cos 1

2(n�k)p
h i

; (16)

and can also be written using the RECURRENCE

RELATIONS

sin(nx)�2 sin[(n�1)x] cos x�sin[(n�2)x] (17)

cos(nx)�2 cos[(n�1)x] cos x�cos[(n�2)x] (18)

tan(nx)�
tan[(n � 1)x] � tan x

1 � tan[(n � 1)x] tan x
: (19)

SIMPSON’S FORMULAS are given by

sin a�sin b�2 sin
a� b

2

 !
cos

a� b

2

 !
(20)

sin a�sin b�2 sin
a� b

2

 !
cos

a� b

2

 !
(21)

cos a�cos b�2 cos
a� b

2

 !
cos

a� b

2

 !
(22)

cos a�cos b��2 sin
a� b

2

 !
sin

a� b

2

 !
: (23)

The angle addition formulas can also be derived
purely algebraically without the use of COMPLEX

NUMBERS. Consider the small RIGHT TRIANGLE in the
figure above, which gives

a�
sin a

cos(a� b)
(24)

b�sin a tan(a�b): (25)

Now, the usual trigonometric definitions applied to
the large RIGHT TRIANGLE give

sin(a�b)�
sin b� a

cos a� b

�
sin b�

sin a

cos(a� b)

cos a� sin a
sin(a� b)

cos(a� b)

(26)

cos(a�b)�
cos b

cos a� b

�
cos b

cos a� sin a
sin(a� b)

cos(a� b)

: (27)

Solving these two equations simultaneously for the
variables sin(a�b) and cos(a�b) then immediately
gives

sin(a�b)�
cos a sin a� cos b sin b

cos a cos b� sin a sin b
(28)

cos(a�b)�
cos2 b� sin2 a

cos a cos b� sin a sin b
: (29)

These can be put into the familiar forms with the aid
of the trigonometric identities

(cos a cos b�sin a sin b)(cos a cos b�sin b cos a)

�cos b sin b�cos a sin a (30)

and

(cos a cos b�sin a sin b)(cos a cos b�sin a cos b)

�cos2 a cos2 b�sin2 a sin2 b (31)

�1�sin2 a sin2 b (32)

�cos2 a�sin2 b (33)

�cos2 b�sin2 a; (34)

which can be verified by direct multiplication. Plug-
ging (30) into (28) and (34) into (29) then gives

sin(a�b)�sin a cos b�sin b cos a (35)

cos(a�b)�cos a cos b�sin a sin b; (36)

as before.

A similar proof due to Smiley and Smiley uses the left
figure above to obtain



sin a �
sin( a � b)

cos b �
sin b cos a

sin a

; (37)

from which it follows that

sin( a � b) �sin a cos b �sin b cos a : (38)

Similarly, from the right figure,

sin a

cos a 
�

cos b

sin b �
cos(a � b)

sin a

; (39)

so

cos(a � b) �cos a cos b �sin a sin b: (40)

Similar diagrams can be used to prove the angle
subtraction formulas (Smiley 1999, Smiley and Smi-
ley). In the figure at left,

h �
cos a

cos b 
(41)

x �h sin( a � b)

�(sin a �h sin b) cos a; (42)

giving

sin( a � b) �sin a cos b �cos a sin b: (43)

Similarly, in the figure at right,

h �
cos a

sin b 
(44)

x �h cos(a � b)

�(sin a �h cos b) cos a; (45)

giving

cos(a � b) �cos a cos b �sin a sin b: (46)

A more complex diagram can be used to obtain a proof
from the tan(a � b) identity (Ren 1999). In the above
figure, let BF =BE �AD=DE : Then

tan(a � b) �
DE

BE 
�

AD

BF 
�

tan a � tan b

1 � tan a tan b 
: (47)

An interesting identity relating the sum and differ-
ence tangent formulas is given by

tan(a� b)

tan(a� b)
�

sin(a� b) cos(a� b)

cos(a� b) sin(a� b)

�
(sin a cos b� sin b cos a)(cos a cos b� sin a sin b)

(cos a cos b� sin a sin b)(sin a cos b� sin b cos a)

�
sin a cos a� sin b cos b

sin a cos a� sin b cos b
: (48)

See also DOUBLE-ANGLE FORMULAS, HALF-ANGLE

FORMULAS, MULTIPLE-ANGLE FORMULAS, PROSTHA-

PHAERESIS FORMULAS, SIMPSON’S FORMULAS, TRIGO-

NOMETRIC ANGLES, TRIGONOMETRIC PRODUCT

FORMULAS, TRIGONOMETRY
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Trigonometric Angles
The ANGLES np=m (with m, n integers) for which the
trigonometric function may be expressed in terms of
finite ROOT EXTRACTION of real numbers are limited to
values of m which are precisely those which produce
constructible POLYGONS. Gauss showed these to be OF

THE FORM



m �2kp1p2 � � �ps ;

where k is an INTEGER ]0 and the pi are distinct
FERMAT PRIMES. The first few values are m �1, 2, 3,
4, 5, 6, 8, 10, 12, 15, 16, 17, 20, ... (Sloane’s A003401).
Where possible, analytic expressions for trigono-
metric functions with arguments of this form can be
obtained using the Mathematica command Func-
tionExpand.

Although formulas for trigonometric functions may
be found analytically for other m as well, the
expressions involve ROOTS of COMPLEX NUMBERS

obtained by solving a CUBIC, QUARTIC, or higher order
equation. The cases m �7 and m �9 involve the
CUBIC EQUATION and QUARTIC EQUATION, respec-
tively. A partial table of the analytic values of SINE,
COSINE, and TANGENT for arguments p=m is given
below. Derivations of these formulas appear in the
following entries.

x (/�)/ x

(rad)

/sin x/ /cos x/ /tan x/

0.0 0 0 1 0

15.0 /
1
12 p/ /

1
4

ffiffiffi
6

p
�

ffiffiffi
2

p� �
/ /

1
4

ffiffiffi
6

p
�

ffiffiffi
2

p� �
/ /2 �

ffiffiffi
3

p
/

18.0 /
1
10 p/ /

1
4

ffiffiffi
5

p
�1

� �
/ /

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pp
/ /

1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 �10

ffiffiffi
5

pp
/

22.5 /
1
8p/ /

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pp
/ /

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pp
/ /

ffiffiffi
2

p
�1/

30.0 /
1
6p/ /

1
2/ /

1
2

ffiffiffi
3

p
/ /

1
3

ffiffiffi
3

p
/

36.0 /
1
5p/ /

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pp
/ /

1
4 1 �

ffiffiffi
5

p� �
/ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pp
/

45.0 /
1
4p/ /

1
2

ffiffiffi
2

p
/ /

1
2

ffiffiffi
2

p
/ 1

60.0 /
1
3p/ /

1
2

ffiffiffi
3

p
/ /

1
2/ /

ffiffiffi
3

p
/

90.0 /
1
2p/ 1 0  �

180.0 /p/ 0 �1 0

There is a nice mnemonic for remembering sines of
common angles,

sin(0�) �1
2

ffiffiffi
0

p
(1)

sin(30�) �1
2

ffiffiffi
1

p
(2)

sin(45�) �1
2

ffiffiffi
2

p
(3)

sin(60�) �1
2

ffiffiffi
3

p
(4)

sin(90�) �1
2

ffiffiffi
4

p
: (5)

See also TRIGONOMETRY VALUES 0, TRIGONOMETRY

VALUES PI, TRIGONOMETRY VALUES PI/2, TRIGONOME-

TRY VALUES PI/3, TRIGONOMETRY VALUES PI/4, TRIGO-

NOMETRY VALUES PI/5, TRIGONOMETRY VALUES PI/6,
TRIGONOMETRY VALUES PI/7, TRIGONOMETRY VALUES

PI/8, TRIGONOMETRY VALUES PI/9, TRIGONOMETRY

VALUES PI/10, TRIGONOMETRY VALUES PI/11, TRIGO-

NOMETRY VALUES PI/12, TRIGONOMETRY VALUES PI/15,
TRIGONOMETRY VALUES PI/16, TRIGONOMETRY VALUES

PI/17, TRIGONOMETRY VALUES PI/18, TRIGONOMETRY

VALUES PI/20, TRIGONOMETRY VALUES PI/24, TRIGO-

NOMETRY VALUES PI/30, TRIGONOMETRY VALUES PI/32

Trigonometric Functions
The functions (also called the CIRCULAR FUNCTIONS)
comprising TRIGONOMETRY: the COSECANT csc x; CO-

SINE cos x; COTANGENT cot x; SECANT sec x; SINE sin x;
and TANGENT tan x: The inverses of these functions
are denoted csc �1 x; cos�1 x; cot �1 x; sec�1 x; sin �1 x;
and tan�1 x: Note that the f �1 NOTATION here means
INVERSE FUNCTION, not f to the -1 POWER.

See also DOUBLE-ANGLE FORMULAS, HALF-ANGLE

FORMULAS, HYPERBOLIC FUNCTIONS, TRIGONOMETRY

Trigonometric Power Formulas
Power formulas include

sin2 x �1
2[1 �cos(2x)] (1)

sin3 x �1
4[3 sin x �sin(3x)] (2)

sin4 x �1
8[3 �4 cos(2x) �cos(4x)] (3)

and

cos2 x �1
2[1 �cos(2x)] (4)

cos3 x �1
4[3 cos x �cos(3x)] (5)

cos4 x �1
8[3 �4 cos(2x) �cos(4x)] (6)

(Beyer 1987, p. 140). Formulas of these types can also
be given analytically as

sin2n x �
1

22n

2n
n

� �
�

( �1)n

22n�1

Xn�1

k �0

(�1)k 2n
k

� �
cos[2(n �k)x]

(7)

sin2n�1 �
( �1)n

4n

Xn

k �0

(�1)k 2n �1
k

� �
sin[2n �1 �2k)x]

(8)

cos2n x �
1

22n

2n
n

� �
�

1

22n�1

Xn �1

k�0

2n
k

� �
cos[2(n �k)x] (9)

cos2n�1 x �
1

4n

Xn

k�0

2n�1
k

� �
cos[(2n�1�2k)x] (10)

(Kogan), where n
m

� �
is a BINOMIAL COEFFICIENT.

See also TRIGONOMETRY
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Trigonometric Product Formulas

Trigonometric product formulas for the sum of the
cosines and sines of two angles can be derived using
the above figure (Kung 1996). From the figure, define

u �1
2( a � b) (1)

g �1
2(a � b) : (2)

Then we have the identity

s �1
2(sin a �sin b) �cos 1

2( a � b)
h i

sin 1
2( a � b)
h i

ð3Þ

t �1
2(cos a �cos b) �cos 1

2( a � b)
h i

cos 1
2( a � b)
h i

: ð4Þ

Trigonometric product formulas for the difference of
the cosines and sines of two angles can be derived
using the similar figure illustrated above (Kung
1996). With u and g as previously defined, the above
figure gives

u �cos b �cos a �2 sin 1
2( a � b)
h i

sin 1
2( a � b)
h i

ð5Þ

v �sin a �sin b �2 sin 1
2(a � b)
h i

cos 1
2( a � b)
h i

: ð6Þ

See also DOUBLE-ANGLE FORMULAS, HALF-ANGLE

FORMULAS, PROSTHAPHAERESIS FORMULAS, TRIGONO-

METRIC ADDITION FORMULAS, TRIGONOMETRY
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Trigonometric Series
FOURIER SERIES

Trigonometric Series Formulas
Trigonometric identities which prove useful in the
construction of map projections include

A sin(2f) �B sin(4f) �C sin(6f) �D sin(8f)

�sin(2f) A?�cos(2f) B?�cos(2 f) C?�D ? cos(2 f)ð Þð Þð Þ;
(1)

where

A?�A �C (2)

B?�2B �4D (3)

C?�4C (4)

D ?�8D: (5)

A sin f �B sin(3 f) �C sin(5f) �D sin(7f)

�sin f A?�sin2 f B ?�sin2 f C ?�D? sin2 f
� �� �� �

; (6)

where

A?�A �3B �5C �7D (7)

B?��4B �20C �56D (8)

C?�16C �112D (9)

D?��64D : (10)

A �B cos(2 f) �C cos(4 f) �D cos(6f) �E cos(8f)

�A?�cos(2 f) B ?�cos(2f) C ?�cos(2f)ðð
 D?�E ? cos(2f)ð ÞÞÞ; (11)

where

A?�A �C �E (12)

B?�B �3D (13)

C ?�2C �8E (14)

D?�4D (15)

E?�8E (16)

(Snyder 1987).

See also TRIGONOMETRY
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Trigonometric Substitution
INTEGRALS OF THE FORM

g f (cos u; sin u) du (1)

can be solved by making the substitution z �eiu so
that dz �ieiu du and expressing

cos u �
eiu � e �iu

2
�

z � z �1

2 
(2)

sin u �
eiu � e �iu

2i
�

z � z�1

2i
: (3)

The integral can then be solved by CONTOUR INTE-

GRATION.

Alternatively, making the substitution t �tan(u=2)
transforms (1) into

g f
2t

1 � t2 
;

1 � t2

1 � t2

 !
2 dt

1 � t2 
: (4)

The following table gives trigonometric substitutions
which can be used to transform integrals involving
square roots.

Form Substitution

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p
/ /x�a sin u/

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�x2

p
/ /x�a tan u/

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�a2

p
/ /x�a sec u/

See also HYPERBOLIC SUBSTITUTION

Trigonometry
The study of ANGLES and of the angular relationships
of planar and 3-D figures is known as trigonometry.
The TRIGONOMETRIC FUNCTIONS (also called the CIR-

CULAR FUNCTIONS) comprising trigonometry are the
COSECANT csc x; COSINE cos x; COTANGENT cot x; SE-

CANT sec x; SINE sin x; and TANGENT tan x: The
inverses of these functions are denoted csc�1 x;
cos�1 x; cot�1 x; sec�1 x; sin�1 x; and tan�1 x: Note
that the f�1 NOTATION here means INVERSE FUNC-

TION, not f to the �1 POWER.

The trigonometric functions are most simply defined
using the UNIT CIRCLE. Let u be an ANGLE measured

counterclockwise from the X -AXIS along an ARC of the
CIRCLE. Then cos u is the horizontal coordinate of the
ARC endpoint, and sin u is the vertical component.
The RATIO sin u=cos u is defined as tan u: As a result
of this definition, the trigonometric functions are
periodic with period 2p; so

func(2pn�u)�func(u); (1)

where n is an INTEGER and func is a trigonometric
function.

A RIGHT TRIANGLE has three sides, which can be
uniquely identified as the HYPOTENUSE, adjacent to a
given angle u; or opposite u: A helpful mnemonic for
remembering the definitions of the trigonometric
functions is then given by "oh, ah, oh-ah,"

sin u�
opposite

hypotenuse
(2)

cos u�
adjacent

hypotenuse
(3)

tan u�
opposite

adjacent
: (4)

From the PYTHAGOREAN THEOREM,

sin2 u�cos2 u�1: (5)

Therefore, it is also true that

tan2 u�1�sec2 u (6)

1�cot2 u�csc2 u: (7)

The trigonometric functions can be defined algebrai-
cally in terms of COMPLEX EXPONENTIALS (i.e., using
the EULER FORMULA) as

sin z�
eiz � e�iz

2i
(8)

csc z�
1

sin z
�

2i

eiz � e�iz
(9)

cos z�
eiz � e�iz

2
(10)

sec z�
1

cos z
�

2

eiz � e�iz
(11)

tan z�
sin z

cos z
�

eiz � e�iz

i eiz � e�izð Þ
(12)



cot z �
1

tan z 
�

i eiz � e�izð Þ
eiz � e �iz

�
i 1 � e �2izð Þ
1 � e �2iz

: (13)

Hybrid trigonometric product/sum formulas are

sin( a � b) sin( a � b) �sin2 a �sin2 b

�cos2 b �cos2 a (14)

cos(a � b) cos(a � b) �cos2 a �sin2 b

�cos2 b �sin2 a: (15)

OSBORNE’S RULE gives a prescription for converting
trigonometric identities to analogous identities for
HYPERBOLIC FUNCTIONS.

For IMAGINARY arguments,

sin(iz) �i sinh z (16)

cos(iz) �cosh z: (17)

For COMPLEX arguments,

sin(x �iy) �sin x cosh y �i cos x sinh y (18)

cos(x �iy) �cos x cosh y �i sin x sinh y: (19)

For the ABSOLUTE SQUARE of COMPLEX arguments z �
x �iy ;

½sin(x �iy) ½2 �sin2 x �sinh2 y (20)

½cos(x �iy)½2 �cos2 x �sinh2 y: (21)

The MODULUS also satisfies the curious identity

½sin(x �iy)½� ½sin x �sin(iy)½: (22)

The only functions satisfying identities of this form,

½f (x�iy)½� ½f (x)�f (iy)½ (23)

are f (z)�Az; f (z)�A sin(bz); and f (z)�A sinh(bz)
(Robinson 1957).

See also COSECANT, COSINE, COTANGENT, DOUBLE-

ANGLE FORMULAS, EUCLIDEAN NUMBER, HALF-ANGLE

FORMULAS, INVERSE COSECANT, INVERSE COSINE,
INVERSE COTANGENT, INVERSE SECANT, INVERSE

SINE, INVERSE TANGENT, INVERSE TRIGONOMETRIC

FUNCTIONS, OSBORNE’S RULE, POLYGON, PROSTHA-

PHAERESIS FORMULAS, SECANT, SINE, TANGENT, TRI-

GONOMETRIC ADDITION FORMULAS, TRIGONOMETRIC

ANGLES, TRIGONOMETRIC FUNCTIONS, TRIGONO-

METRIC POWER FORMULAS, TRIGONOMETRIC SERIES

FORMULAS, WERNER FORMULAS
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Trigonometry Values Pi
By the definition of the trigonometric functions,

cos p��1 (1)

cos p�� (2)

csc p ¼ � ð3Þ

sec p��1 (4)

sin p�0 (5)

tan p�0: (6)

Trigonometry Values Pi/2
By the definition of the trigonometric functions,

cos
p

2

 !
�0 (1)

cot
p

2

 !
�0 (2)

csc
p

2

 !
�1 (3)

sec
p

2

 !
�� (4)



sin
p

2

 !
�1 (5)

tan
p

2

 !
��: (6)

See also DIGON

Trigonometry Values Pi/3

cos
p

3

 !
�1

2 (1)

cot
p

3

 !
�1

3

ffiffiffi
3

p
(2)

csc
p

3

 !
�2

3

ffiffiffi
3

p
(3)

sec
p

3

 !
�2 (4)

sin
p

3

 !
�1

2

ffiffiffi
3

p
(5)

tan
p

3

 !
�

ffiffiffi
3

p
: (6)

These formulas can be derived from knowledge of the
TRIGONOMETRY VALUES FOR PI/6

sin
p

6

 !
�1

2 (7)

cos
p

6

 !
�1

2

ffiffiffi
3

p
(8)

together with the trigonometric identity

sin(2a) �2 sin a cos a; (9)

giving

sin
p

3

 !
�2 sin

p

6

 !
cos

p

6

 !
�2 1

2

� �
1
2

ffiffiffi
3

p� �
�1

2

ffiffiffi
3

p
(10)

is obtained. Using the identity

cos(2a) �1 �2 sin2 a; (11)

then gives

cos
p

3

 !
�1 �2 sin2 p

6

 !
�1 �2 1

2

� �2

�1
2 : (12)

See also EQUILATERAL TRIANGLE

Trigonometry Values Pi/4

cos
p

4

 !
�1

2

ffiffiffi
2

p
(1)

cot
p

4

 !
�1 (2)

csc
p

4

 !
�

ffiffiffi
2

p
(3)

sec
p

4

 !
�

ffiffiffi
2

p
(4)

sin
p

4

 !
�1

2

ffiffiffi
2

p
(5)

tan
p

4

 !
�1: (6)

For a RIGHT ISOSCELES TRIANGLE, symmetry requires
that the angle at each VERTEX be given by

1
2 p �2a � p; (7)

so a � p=4: The sides are equal, so

sin2 a �cos2 a �2 sin2 a �1: (8)

Solving gives the above equations.

See also SQUARE

Trigonometry Values Pi/5

cos
p

5

 !
�1

4 1�
ffiffiffi
5

p� �
(1)

cos
2p

5

 !
�1

4 �1�
ffiffiffi
5

p� �
(2)

cot
p

5

 !
�1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(3)

cot
2p

5

 !
�1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25�10

ffiffiffi
5

pq
(4)

csc
p

5

 !
�1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pq
(5)

csc
2p

5

 !
�1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50�10

ffiffiffi
5

pq
(6)

sec
p

5

 !
�

ffiffiffi
5

p
�1 (7)



sec
2 p

5

 !
�1 �

ffiffiffi
5

p
(8)

sin
p

5

 !
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pq
(9)

sin
2p

5

 !
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pq
(10)

tan
p

5

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
(11)

tan
2 p

5

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq
: (12)

These formulas can be derived using the identity

sin(5 a) �5 sin a �20 sin3 a �16 sin5 a: (13)

Now, let a � p=5 and x �sin a: Then

sin p �0 �5x �20x3 �16x5 (14)

16x4 �20x2 �5 �0 : (15)

Solving the QUADRATIC EQUATION for x2 gives

sin2 p

5

 !
�x2 �

20 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( �20)2 � 4 � 16 � 5

p
2 � 16

�
20 9

ffiffiffiffiffiffi
80

p

32
�1

8 5 9
ffiffiffi
5

p� �
: (16)

Now, sin p=5ð Þ must be less than

sin
p

4

 !
�1

2

ffiffiffi
2

p
; (17)

so taking the MINUS SIGN and simplifying gives

sin
p

5

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �

ffiffiffi
5

p

8

s
�1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 �2

ffiffiffi
5

pq
: (18)

/cos(p=5) can be computed from

cos
p

5

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �sin2 p

5

 !vuut �1
4 1 �

ffiffiffi
5

p� �
: (19)

See also DODECAHEDRON, GOLDEN RATIO, ICOSAHE-

DRON, PENTAGON, PENTAGRAM

Trigonometry Values Pi/6

cos
p

6

 !
�1

2

ffiffiffi
3

p
(1)

cot
p

6

 !
�

ffiffiffi
3

p
(2)

csc
p

6

 !
�2 (3)

sec
p

6

 !
�2

3

ffiffiffi
3

p
(4)

sin
p

6

 !
�1

2 (5)

tan
p

6

 !
�1

3

ffiffiffi
3

p
: (6)

Given a RIGHT TRIANGLE with angles defined to be a
and 2a; it must be true that

a �2a �1
2 p � p; (7)

so a � p=6: Define the hypotenuse to have length 1
and the side opposite a to have length x , then the side
opposite 2a has length

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
: This gives sin a �x

and

sin(2a) �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
: (8)

But

sin(2a) �2 sin a cos a �2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
; (9)

so we have ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
�2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x2

p
: (10)

This gives 2x �1 ; or

sin
p

6

 !
�1

2 : (11)

/cos(p=6) is then computed from

cos
p

6

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �sin2 p

6

 !vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

2

� �2
r

�1
2

ffiffiffi
3

p
: (12)

See also HEXAGON, HEXAGRAM

Trigonometry Values Pi/7
Trigonometric functions of np=7 for n an integer
cannot be expressed in terms of sums, products, and
finite ROOT EXTRACTIONS on real rational numbers
because 7 is not a FERMAT PRIME. This also means
that the HEPTAGON is not a CONSTRUCTIBLE POLYGON.



However, exact expressions involving roots of com-
plex numbers can still be derived using the trigono-
metric identity

sin(na) �2 sin[(n �1)a] cos a �sin[(n �2)a] : (1)

The case n �7 gives

sin(7a) �2 sin(6 a) cos a �sin(5a)

�2(32 cos5 a sin a �32 cos3 a sin a

�6 cos a sin a) cos a

� 5 sin a �20 sin3 a �16 sin5 a
� �

�64 cos6 a sin a �64 cos4 a sin a �12 cos2 a sin a

�5 sin a �20 1 �cos2 a
� �

sin a

�16 1 �2 cos2 a �cos4 a
� �

sin a

�sin a 64 cos6 a �80 cos4 a þ 24 cos2 a �1
� �

: (2)

Rewrite this using the identity cos2 a �1 �sin2 a;

sin
p

7

 !
�sin a(7 �56 sin2 a �112 sin4 a �64 sin6 a)

��64 sin a sin6 a �112
64 sin4 a �56

64 sin2 a � 7
64

� �
:

(3)

Now, let a � p=7 and x �sin2 a; then

sin( p) �0 �x3 �7
4 x

2 �7
8 x � 7

64; (4)

which is a CUBIC EQUATION in x . The ROOTS are
numerically found to be x :0 :188255 ; 0 :611260 ;
0:950484 : But sin a �

ffiffiffi
x

p
; so these ROOTS correspond

to sin a :0:4338; sin(2a) :0:7817; sin(3a) :0:9749:
By NEWTON’S RELATIONY

i

ri ��a0 (5)

we have

x1x2x3 �
7
64; (6)

or

sin
p

7

 !
sin

2p

7

 !
sin

3p

7

 !
�

ffiffiffiffiffiffi
7

64

s
�1

8

ffiffiffi
7

p
: (7)

Similarly,

cos
p

7

 !
cos

2p

7

 !
cos

3p

7

 !
�

1

8 
(8)

and

cos2 p

7

 !
�cos

p

7

 !
cos

2 p

7

 !
�

1

4 
(9)

(Bankoff and Garfunkel 1973).

The constants of the CUBIC EQUATION are given by

Q �1
9 3a1 �a2

2

� �
�1

9 3 � 7
8 � �7

4

� �2
 �

�� 7
144 (10)

R � 1
54 9a2a1 �2a3

2 �27a0

� �

� 1
54 9 �7

4

� �
1
7 8
� �

�2 �7
4

� �3

�27 �7
64

� � �

��f 73456: (11)

The DISCRIMINANT is then

D �Q3 �R3 �� 343
2 ;985;984 �

49
11;943;936

�� 49
442;368 B0; (12)

so there are three distinct REAL ROOTS. Finding the
first one,

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R �

ffiffiffiffi
D

pq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R �

ffiffiffiffi
D

pq
�1

3 a2 : (13)

Writing

ffiffiffiffi
D

p
�3�3 =2 7

128 i; (14)

plugging in from above, and anticipating that the
solution we have picked corresponds to sin(3p=7);/

sin
3p

7

 !
�

ffiffiffi
x

p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7

3456 �3�3=2 7
128 i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7

3456 �3�3 =2 7
128 i �

1
3(�

7
4)

qr

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7

3456 �3�3=2 7
128 i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 7

3456�3�3=2 7
128 i

q
� 7

12

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7
3456 �1�33=2ið Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3456 1�33=2ið Þ
q

� 7
12

r

See also HEPTAGON, SILVER CONSTANT
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Trigonometry Values Pi/8

cos
p

8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(1)

cos
3 p

8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(2)

cot
p

8

 !
�1 �

ffiffiffi
2

p
(3)

cot
3p

8

 !
�

ffiffiffi
2

p
�1 (4)

csc
p

8

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
(5)

csc
3p

8

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
(6)

sec
p

8

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
(7)

sec
3p

8

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �2

ffiffiffi
2

pq
(8)

sec
p

8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(9)

sin
3p

8

 !
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(10)

tan
p

8

 !
�

ffiffiffi
2

p
�1 (11)

tan
3p

8

 !
�1 �

ffiffiffi
2

p
: (12)

sin
p

8

 !
�sin

1

2
�
p

4

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1 �cos

p

4

 !vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1 �1

2

ffiffiffi
2

p� �r
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
: (13)

Now, checking to see if the SQUARE ROOT can be
simplified gives

a2 �b2c �22 �12 � 2 �4 �2 �2; (14)

which is not a PERFECT SQUARE, so the above expres-
sion cannot be simplified. Similarly,

cos
p

8

 !
�cos

1

2

p

4

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1 �cos

p

4

 !vuut

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1 �

ffiffiffi
2

p

3

 !vuut �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

pq
(15)

tan
p

8

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ffiffiffi
2

p

2 �
ffiffiffi
2

p
s

�
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But

a2 �b2c �32 �222 �9 �8 �1 (17)

is a PERFECT SQUARE, so we can find
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Rewrite the above as
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See also OCTAGON

Trigonometry Values Pi/9
Trigonometric functions of np=9 radians for n an
integer not divisible by 3 (e.g., 408 and 808) cannot be
expressed in terms of sums, products, and finite ROOT

EXTRACTIONS on RATIONAL NUMBERS because 9 is not
a product of distinct FERMAT PRIMES. This also means
that the regular NONAGON is not a CONSTRUCTIBLE

POLYGON.

However, exact expressions involving roots of com-
plex numbers can still be derived using the trigono-
metric identity

sin(3a)�3 sin a�4 sin3 a: (1)

Let a�p=9 and x�sin a: Then the above identity
gives the CUBIC EQUATION
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This cubic is OF THE FORM

x3�px�q; (4)
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The DISCRIMINANT is then
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B0: (7)

There are therefore three REAL distinct roots, which
are approximately �0:9848; 0.3240, and 0.6428. We
want the one in the first QUADRANT, which is 0.3240.
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Because of the NEWTON’S RELATIONS, we have the
identities
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(11) is known as MORRIE’S LAW.

See also MORRIE’S LAW, NONAGON, STAR OF GOLIATH

Trigonometry Values Pi/10
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To derive these formulas, start with
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So we have
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and
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An interesting near-identity is given by
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In fact, the left-hand side is approximately equal to /
1 þ 2 :480 �10�13

/.

See also DECAGON, DECAGRAM

Trigonometry Values Pi/11
Trigonometric functions of np=11 for n an integer
cannot be expressed in terms of sums, products, and
finite ROOT EXTRACTIONS on real rational numbers
because 11 is not a FERMAT PRIME. This also means
that the UNDECAGON is not a CONSTRUCTIBLE POLY-

GON.

However, exact expressions involving roots of com-
plex numbers can still be derived using the MULTIPLE-

ANGLE FORMULA

sin(na) �(�1)(n�1)=2Tn(sin a) ; (1)

where Tn is a CHEBYSHEV POLYNOMIAL OF THE FIRST

KIND. Plugging in n �11 gives

sin(11a) �sin a 11 �220 sin2 a �1232 sin4 a
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�2816 sin6 a �2816 sin8 �1024 sin10 aÞ: (2)

Letting a � p=11 and x �sin2 a then gives

sin p �0 �11 �220x �1232x2 �2816x3

�2816x4 �1024x5 : (3)

This equation is an irreducible QUINTIC EQUATION, so
an analytic solution involving FINITE ROOT EXTRAC-

TIONS does not exist. The numerical ROOTS are x �
0:07937 ; 0.29229, 0.57115, 0.82743, 0.97974. So
sin a �0 :2817 ; sin(2a) �0:5406; sin(3a) �0:7557;
sin(4a) �0:9096; sin(5a) �0:9898: From one of NEW-

TON’S IDENTITIES,
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The trigonometric functions of p=11 also obey the
identity
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See also UNDECAGON
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Trigonometry Values Pi/12
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These can be derived using
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Trigonometry Values Pi/15
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These can be derived using the TRIGONOMETRIC

ADDITION FORMULAS
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See also PENTADECAGON

Trigonometry Values Pi/16
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These can be derived from the HALF-ANGLE FORMULAS
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See also HEXADECAGON

Trigonometry Values Pi/17
Rather surprisingly, trigonometric functions of np=17
for n an integer can be expressed in terms of sums,
products, and finite ROOT EXTRACTIONS because 17 is
a FERMAT PRIME. This makes the HEPTADECAGON a
CONSTRUCTIBLE, as first proved by Gauss. Although
Gauss did not actually explicitly provide a construc-
tion, he did derive the trigonometric formulas below
using a series of intermediate variables from which
the final expressions were then built up.
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There are some interesting analytic formulas invol-
ving the trigonometric functions of np=17: Define
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Another interesting identity is given by
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where both sides are equal to
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(Wickner 1999).



See also CONSTRUCTIBLE POLYGON, FERMAT PRIME,
HEPTADECAGON
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Trigonometry Values Pi/18
The exact values of cos(p=18) and sin p=18ð Þ can be
given by infinite NESTED RADICALS
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Trigonometry Values Pi/20
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These can be derived from the HALF-ANGLE FORMULAS
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An interesting near-identity is given by
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In fact, the left-hand side is approximately equal to /
1 þ 2 :480 �10�13

/.

Trigonometry Values Pi/24
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See also ICOSITETRAGON



Trigonometry Values Pi/30
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See also TRIACONTAGON

Trigonometry Values Pi/32
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The functions cot(np=32); csc(np=32) ; sec(np=32); and
tan(np=32) are roots of 8th degree polynomials, but
the explicit expressions in terms of radicals are rather
complicated.

See also ICOSIDODECAGON

Trigonometry Values */0
By the definition of the trigonometric functions,

cos 0 �1

cot 0 ��

csc 0 ��

sec 0 �1

sin 0 �0

tan 0 �0 :

Trigyrate Rhombicosidodecahedron

JOHNSON SOLID J75 :/
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Trihedral Angle
TRIHEDRON

Trihedron

A TRIPLE of three arbitrary vectors with common
vertex (Altshiller-Court 1979), often called a trihedral
angle since it determines three planes.
The vectors are often taken to be unit vectors, and the
term trihedron is frequently encountered in the
consideration of the unit ORTHOGONAL VECTORS given
by T, N, and B (TANGENT VECTOR, NORMAL VECTOR,
and BINORMAL VECTOR).

See also BINORMAL VECTOR, CENTROIDAL LINE,
DIHEDRAL ANGLE, ISOCLINAL LINE, ISOCLINAL PLANE,
NORMAL VECTOR, ORTHOCENTRIC LINE, TANGENT

VECTOR
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Trilinear Coordinates
Given a TRIANGLE DABC; the trilinear coordinates of
a point P with respect to DABC are an ordered TRIPLE

of numbers, each of which is PROPORTIONAL to the
directed distance from P to one of the side lines.
Trilinear coordinates are denoted a : b : g or (a; b; g)
and also are known as homogeneous coordinates or
"trilinears." Trilinear coordinates were introduced by
Plücker in 1835. Since it is only the ratio of distances
that is significant, the triplet of trilinear coordinates
obtained by multiplying a given triplet by any
nonzero constant describes the same point, so

a : b : g�ma : mb : mg: (1)

For simplicity, the three VERTICES A , B , and C of a
triangle are commonly written as 1 : 0 : 0; 0 : 1 : 0;
and 0 : 0 : 1; respectively.

Trilinear coordinates can be normalized so that they
give the actual directed distances from P to each of
the sides. To perform the normalization, let the point
P in the above diagram have trilinear coordinates a :
b : g and lie at distances a?; b?; and c? from the sides
BC , AC , and AB , respectively. Then the distances
a?�ka; b?�kb; and c?�kg can be found by writing Da

for the AREA of DBPC; and similarly for Db and Dc: We
then have

D�Da�Db�Dc�
1
2aa?�1

2bb?�1
2cc?

�1
2(aka�bkb�ckg)�1

2k(aa�bb�cg): (2)

so

k�
2D

aa� bb� cg
; (3)

where D is the AREA of DABC and a , b , and c are the
lengths of its sides (Kimberling 1998, pp. 26�/27). To
obtain trilinear coordinates giving the actual dis-
tances, take k�1, so we have the coordinates

a? : b? : c?: (4)

These normalized trilinear coordinates are known as
EXACT TRILINEAR COORDINATES.

The trilinear coordinates of the line

ux�vy�wz�0 (5)

are

u : v : w�abA : bdB : cdC; (6)

where di is the POINT-LINE DISTANCE from VERTEX i to
the LINE.

The homogeneous BARYCENTRIC COORDINATES corre-
sponding to trilinear coordinates a : b : g are
(aa; bb; cg); and the trilinear coordinates correspond-
ing to homogeneous BARYCENTRIC COORDINATES

t1; t2; t3ð Þ are t1=a : t2=b : t3=c:/

Important points a : b : g of a triangle are called
TRIANGLE CENTERS, and the vector functions describ-
ing the location of the points in terms of side length,
angles, or both, are called TRIANGLE CENTER FUNC-

TIONS f(a; b; c): Since by symmetry, triangle center
functions are of the form

f(a; b; c)�f (a; b; c) : f (b; c; a) : f (c; a; b); (7)

it is common to call the scalar function f (a; b; c) "the"
triangle center function. Note also that side lengths
and angles are interconvertible through the LAW OF

COSINES, so a triangle center function may be given in
terms of side lengths, angles, or both. Trilinear
coordinates for some common triangle centers are
summarized in the following table, where A , B , and C
are the angles at the corresponding vertices and a , b ,
and c are the opposite side lengths. Here, the normal-
izations have been chosen to give the simplest
possible form.

Point Trilinear Center Function

CENTROID M /csc A; 1=a/

CIRCUMCENTER O /cos A/

DE LONGCHAMPS

POINT

/cos A�cos B cos C/

EQUAL DETOUR

POINT

/sec 1
2 A
� �

cos 1
2 B
� �

cos 1
2 C
� �

�1/

FEUERBACH

POINT F
/1�cos(B�C)/

INCENTER I 1

ISOPERIMETRIC

POINT

/sec 1
2 A
� �

cos 1
2 B
� �

cos 1
2 C
� �

�1/

SYMMEDIAN POINT a

NINE-POINT CEN-

TER N
/cos(B�C)/

ORTHOCENTER H /cos B cos C/

vertex A /1 : 0 : 0/

vertex B /0 : 1 : 0/

vertex C /0 : 0 : 1/



To convert trilinear coordinates to a vector position
for a given triangle specified by the x - and y -
coordinates of its axes, pick two UNIT VECTORS along
the sides. For instance, pick

â �
a1

a2

 �
(8)

ĉ �
c1

c2

 �
(9)

where these are the UNIT VECTORS BC and AB .
Assume the TRIANGLE has been labeled such that A �
x1 is the lower rightmost VERTEX and C �x2 : Then
the VECTORS obtained by traveling la and lc along the
sides and then inward PERPENDICULAR to them must
meet

x1

y1

 �
�lc

c1

c2

 �
�k g

c2

�c1

 �
�

x2

y2

 �
�la

a1

a2

 �
�ka

a2

�a1

 �
:

(10)

Solving the two equations

x1 �lcc1 �k gc2 �x2 �laa1 �kaa2 (11)

y1 �lcc2 �kgc1 �y2 �laa2 �kaa1 ; (12)

gives

la �

ka a1c1 � a2c2ð Þ� gk c2
1 � c2

2ð Þ� c2 x1 � x2ð Þ� c1 y2 � y1ð Þ
a1c2 � a2c1

(13)

lc �

ka a2
1c1 � a2

2ð Þ� gk a1c1 � a2c2ð Þ� a2 x1 � x2ð Þ� a1 y2 � y1ð Þ
a1c2 � a2c1

:

(14)

But â and ĉ are UNIT VECTORS, so

la �
ka a1c1 � a2c2ð Þ� gk � c2 x1 � x2ð Þ� c1 y2 � y1ð Þ

a1c2 � a2c1

(15)

lc �
k a � gk a1c1 � a2c2ð Þ� a2 x1 � x2ð Þ� a1 y2 � y1ð Þ

a1c2 � a2c1

:

(16)

And the VECTOR coordinates of the point a : b : g are
then

x �x1 �lc

c1

c2

 �
�k g

c2

�c1

 �
: (17)

See also AREAL COORDINATES, BARYCENTRIC COORDI-

NATES, EXACT TRILINEAR COORDINATES, MAJOR TRI-

ANGLE CENTER, ORTHOCENTRIC COORDINATES, POWER

CURVE, QUADRIPLANAR COORDINATES, REGULAR TRI-

ANGLE CENTER, TRIANGLE, TRIANGLE CENTER, TRIAN-

GLE CENTER FUNCTION, TRILINEAR POLAR
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Trilinear Line
A LINE is given in TRILINEAR COORDINATES by

l a �mb �ng �0:

See also LINE, TRILINEAR COORDINATES

Trilinear Polar
Given a TRIANGLE CENTER X �l : m : n; the line

la �mb �ng �0

is called the trilinear polar of X �1 and is denoted L .

See also CHASLES’S POLARS THEOREM

Trillion
The word trillion denotes different numbers in Amer-
ican and British usage. In the American system, one
trillion equals 1012. In the British, French, and
German systems, one trillion equals 1018.

See also BILLION, LARGE NUMBER, MILLION



Trilogarithm

A special case of the POLYLOGARITHM Lin(z) for n �3.
It is denoted Li3(z) ; or sometimes L3(z) : The notation
Li3(x) for the trilogarithm is unfortunately similar to
that for the LOGARITHMIC INTEGRAL Li(x) : Functional
equations for the trilogarithm include

Li3(z) �Li3(�z) �1
4 Li3 z2

� �
(1)

Li3(�z) �Li3 �z �1
� �

��1
6(ln z)3 �1

6 p
2 ln z (2)

Li3(z) �Li3(1 �z) �Li3 1 �z �1
� �

¼ zð3 Þ þ 1
6ðln z Þ3 þ 1

6p
2 ln z �1

2 ðln zÞ2 ln ð1 �z Þ ð3Þ

Analytic values for Li3(x) include

Li3(�1) ��3
4 z(3) (4)

Li3(0) �0 (5)

Li3
1
2

� �
� 1

24 �2p2 ln 2 �4(ln 2)3 �21 z(3)
h i

(6)

Li3(1) � z(3) (7)

Li3
1
2 3 �

ffiffiffi
5

p� �� �
�4

5 z(3) �2
3(ln f)3 � 2

15 p
2 ln f (8)

where z(3) is APÉ RY’S CONSTANT and f is the GOLDEN

RATIO.
Bailey et al. showed that

35
2 z(3) � p2 ln 2

�36 Li3
1
2

� �
�18 Li3

1
4

� �
�4 Li3

1
8

� �
�Li3

1
64

� �
(9)

2(ln 2)3 �7z(3)

��24 Li3
1
2

� �
�18 Li3

1
4

� �
�4 Li3

1
8

� �
�Li3

1
64

� �
(10)

10(ln 2)3 �2p2 ln 2

��48 Li3
1
2

� �
�54 Li3

1
4

� �
�12 Li3

1
8

� �
�3Li3

1
64

� �
;

(11)

See also DILOGARITHM, POLYLOGARITHM
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Trimagic Square
If replacing each number by its square or cube in a
MAGIC SQUARE produces another MAGIC SQUARE, the
square is said to be a trimagic square. Trimagic
squares of order 32, 64, 81, and 128 are known. Tarry
gave a method for constructing a trimagic square of
order 128, Cazalas a method for trimagic squares of
orders 64 and 81, and R. V. Heath a method for
constructing an order 64 trimagic square which is
different from Cazalas’s (Kraitchik 1942).

Trimagic squares are also called TREBLY MAGIC

SQUARES, and are 3-MULTIMAGIC SQUARES.

See also BIMAGIC SQUARE, MAGIC SQUARE, MULTI-

MAGIC SQUARE
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Trimean
The trimean is defined to be

TM �1
4 ðH1 þ 2M þ H2 Þ;

where Hi are the HINGES and M is the MEDIAN. Press
et al. (1992) call this TUKEY’S TRIMEAN. It is an L -

ESTIMATE.

See also HINGE, L -ESTIMATE, MEAN, MEDIAN (STA-

TISTICS)
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Trimorphic Number
A number n such that the last digits of n3 are the
same as n . 49 is trimorphic since 493 �117649 (Wells
1986, p. 124). The first few are 1, 4, 5, 6, 9, 24, 25, 49,
51, 75, 76, 99, 125, 249, 251, 375, 376, 499, ...
(Sloane’s A033819).

See also AUTOMORPHIC NUMBER, NARCISSISTIC NUM-

BER, SUPER-D NUMBER
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Trinoid

A MINIMAL SURFACE discovered by L. P. M. Jorge and
W. Meeks III in 1983 with ENNEPER-WEIERSTRASS

PARAMETERIZATION

f �
1

z3 � 1
� �2 (1)

g � z2 (2)

(Dickson 1990). Explicitly, it is given by

x �R


reiu

3 1 � reiu � r2e2iuð Þ
�

4 ln reiu � 1ð Þ
9

�
2 ln 1 � reiu � r2e2iuð Þ

9

�
(3)

y ��1
9 T


�3reiu(1 � reiu)

r3e3iu � 1

�

4
ffiffiffi
3

p
r3e3i u � 1ð Þ tan �1 1 � 2reiuffiffiffi

3
p

 !
r3e3i u � 1

�
(4)

z �R �
2

3 
�

2

3 r3e3i u � 1ð Þ

" #
; (5)

for 0 � [0; 2p) and r � [0; 4]:/

See also ENNEPER-WEIERSTRASS PARAMETERIZATION,
MINIMAL SURFACE
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Trinomial
A POLYNOMIAL with three terms.

See also BINOMIAL, MONOMIAL, POLYNOMIAL

Trinomial Coefficient
A coefficient of the TRINOMIAL TRIANGLE. The trino-
mial coefficient n

k

� �
2
; with n]0 and �n5k5n; is

given by the coefficient of xn�k in the expansion of
1�x�x2ð Þn

: Therefore,

n
�k

� �
2

�
n
k

� �
2

:

Equivalently, the trinomial coefficients are defined by

1�x�x�1
� �n

�
Xn

j��n

n
j

� �
2

xj: (1)

The trinomial coefficients satisfy

m
j

� �
2

�
m�1
j�1

� �
2

�
m�1

j

� �
2

�
m�1
j�1

� �
2

: (2)

An alternatives definition of the trinomial coefficients
is as the coefficients in (x�y�z)n (Andrews 1990).

The (usual) trinomial coefficient is also given by the
number of permutations of n symbols, each �1, 0, or
1, which sum to k . For example, there seven permu-
tations of three symbols which sum to 0, f�1; 0; 1g;
f�1; 1; 0g; f0; �1; 1g; f0; 0; 0g; and f0; 1; �1g;
f1; �1; 0g; f1; 0; �1g/, so 3

0

� �
2
�7: Explicit formulas

for n
k

� �
2

are given by

n
k

� �
2

�
Xn

j�0

n!

j!(j � m)!(n � 2j � m)!
(3)

n
k

� �
2

�
Xn

j�0

(�1)j n
j

� �
2n�2j

n�m�j

� �
(4)

(Andrews 1990).



The following table gives the first n
k

� �
2

trinomial
coefficients for k �0, 1, ... and n �k , k �1; ....

k Sloane (n, k )-trinomial coefficients

0 Sloane’s

A002426

1, 1, 3, 7, 19, 51, 141, 393, 1107,

3139, 8953, ...

1 Sloane’s

A005717

1, 2, 6, 16, 45, 126, 357, 1016, 2907,

8350, ...

2 Sloane’s

A014531

1, 3, 10, 30, 90, 266, 784, 2304, ...

4 1, 5, 21, 77, 266, 882, 2850, 9042, ...

5 1, 6, 28, 112, 414, 1452, 4917, ...

See also BINOMIAL COEFFICIENT, CENTRAL TRINOMIAL

COEFFICIENT, TRINOMIAL TRIANGLE
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Trinomial Identity

x2 �axy �by2
� �

t2 �atu �bu2
� �

�r2 �ars �bs2 ; (1)

where

r �xt �byu (2)

s �yt �xu �ayu: (3)

Trinomial Triangle
The NUMBER TRIANGLE obtained by starting with a
row containing a single "1" and the next row contain-
ing three 1s and then letting subsequent row ele-
ments be computed by summing the elements above
to the left, directly above, and above to the right:

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

(Sloane’s A027907). The nth row can also be obtained
by expanding 1 �x �x2ð Þn

and taking coefficients:

1 �x �x2
� �0

�1

1 �x �x2
� �1

�1 �x �x2

1 �x �x2
� �2

�1 �2x �3x2 �2x3 �x4

and so on.

See also CENTRAL TRINOMIAL COEFFICIENT, PASCAL’S

TRIANGLE, TRINOMIAL COEFFICIENT
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Triomino

The two 3-POLYOMINOES are called triominoes, and
are also known as the TROMINOES. The left triomino
above is "STRAIGHT," while the right triomino is called
"right" or L-.
There is also a game called triomino consisting of 55
equilateral triangles, each containing three numbers
from 0 to 5 at each vertex. Every combination of tiles
is in the game, although those tiles with three
different values are allowed to be arranged only in
clockwise-increasing order.

See also L-POLYOMINO, POLYOMINO, STRAIGHT POLY-

OMINO
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Triple
A group of three elements, also called a TRIAD.

See also AMICABLE TRIPLE, MONAD, PAIR, PYTHAGOR-

EAN TRIPLE, QUADRUPLET, QUINTUPLET, TETRAD,
TRIAD, TWINS

Triple Jacobi Product
JACOBI TRIPLE PRODUCT

Triple Point

A point where a curve intersects itself along three
arcs. The above plot shows the triple point at the
ORIGIN of the TRIFOLIUM x2 �y2ð Þ2�3x2y �y3 �0 :/

See also DOUBLE POINT, QUADRUPLE POINT
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Triple Product
SCALAR TRIPLE PRODUCT, VECTOR TRIPLE PRODUCT

Triple Scalar Product
SCALAR TRIPLE PRODUCT

Triple Torus
A SPHERE with three HANDLES, i.e., a genus-3 TORUS.

See also DOUBLE TORUS, HANDLE, TORUS

Triple Vector Product
VECTOR TRIPLE PRODUCT

Triple Yahtzee
YAHTZEE

Triple-Free Set
A SET of POSITIVE integers is called weakly triple-free
if, for any integer x , the SET fx; 2x; 3xg¢S : It is
called strongly triple-free if x � S IMPLIES 2x QS and
3x QS (i.e., the set is both DOUBLE-FREE and triple-

free). For example, the subsets of f1; 2; 3 g which are
weakly triple-free are ¥; f1 g; f1 ; 2 g; f2 g; f2 ; 3 g; and
f3g; while f1; 2; 3g and f1; 3g are not. Of these
weakly triple-free sets, ¥; f1g; f2 g; f2; 3 g; and f3g
are also strongly triple-free.

The number of weakly triple-free subsets of /

f1; 2; . . .  ;ng/ for n �1, 2, ... are 2, 4, 6, 12, 24, 36,
72, 144, 240, 480, ... (Sloane’s A050293). The number
of strongly triple-free subsets for n �1, 2, ... are 2, 3,
5, 8, 16, 24, 48, 76, 132, ... (Sloane’s A050295).

Define

p(n) �max f½S½ : S ƒ(1; 2; . . . ; ng
is weakly triple-freeg

q(n) �max f½S½ : S ƒ(1; 2; . . .  ; ng
is strongly triple-free g;

where ½S½ denotes the CARDINAL NUMBER of (number
of members in) S . Then for n �1, 2, ..., p(n) is given
by 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10, 11, 11, ... (Sloane’s
A050294), and q(n) by 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8,
8, 9, ... (Sloane’s A050296). Asymptotic formulas are
given by

lim
n0�

p(n)

n
]

4

5

and

lim
n0�

q(n)

n
�0 :6134752692 . . .

(Finch).

See also A -SEQUENCE, DOUBLE-FREE SET, SUM-FREE

SET
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Trip-Let
A 3-dimensional solid which is shaped in such a way
that its projections along three mutually perpendicu-
lar axes are three different letters of the alphabet.
Hofstadter (1989) has constructed such a solid for the
letters G, E, and B.

See also CORK PLUG, ROTOR

References
Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden
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273, 1989.

Triplet
TRIPLE



Triplicate-Ratio Circle
LEMOINE CIRCLE

Triquetra
This entry contributed by DANA MACKENZIE

A "triquetra" is a figure consisting of three circular
arcs of equal radius, and has seen extensive use in
heraldry (i.e., coats of arms), specifically in the case of
the so-called BORROMEAN RINGS. The term "Triquetra
theorem" was coined by Mackenzie (1992) to describe
the geometric theorem that if three circles are
concurrent at a single point, then the other three
intersection points lie on a circle of the same radius as
the first three. This version was first proved in 1916.

Mackenzie (1992) generalized this theorem to the
case where the three circles do not coincide. In this
case, they form six intersection points, and if you
partition the points into any two groups of three and
look at the CIRCUMRADII of the points in those groups,
there is a nice formula relating them to the radii of
the triquetra circles. This formula has some pretty
geometric consequences (or "porisms"). Ultimately,
the triquetra theorem turns out to be closely related
to PONCELET’S PORISM.

See also BORROMEAN RINGS, CIRCLE-CIRCLE INTER-

SECTION, CIRCULAR TRIANGLE, HARUKI’S THEOREM,
PONCELET’S PORISM, REULEAUX TRIANGLE, VENN

DIAGRAM

References
Mackenzie, D. "Triquetras and Porisms." College Math. J.

pp. 118 �/131. March 1992.

Trirectangular Tetrahedron

A TETRAHEDRON having a TRIHEDRON all of the face
angles of which are right angles. The face opposite the
vertex of the right angles is called the base. If the
edge lengths bounding the trihedral angle are a , b ,
and c , then the side lengths of the base are given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 �b2
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2

p
; and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
; and so has SEMI-

PERIMETER

s �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p
:

�
(1)

The VOLUME of the trirectangular tetrahedron is

V �1
6 abc : (2)

Using HERON’S FORMULA, the SURFACE AREA is there-
fore

S �1
2 ab �ac �bc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 �a2c2 �b2c2

p� �
: (3)

Let DXYZ be the AREA of the triangle with vertices X ,
Y , and Z . The remarkable DE GUA’S THEOREM

D2
ABC �D2

OAB �D2
OAC �D2

OAC : (4)

then follows from the identity

s s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2

p� �
s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �c2

p� �
s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �c2

p� �
�1

4 a2b2 �a2c2 �b2c2
� �

; (5)

with s defined by (1).

See also DE GUA’S THEOREM, TRIHEDRON
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Trisected Perimeter Point
A triangle center which has a TRIANGLE CENTER

FUNCTION

a�bc(v�c�a)(v�a�b);

where v is the unique REAL ROOT of

2x3�3(a�b�c)x2� a2�b2�c2�8bc�8ca�8ab
� �

x

� b2c�c2a�a2b�5bc2�5ca2�5ab2�9abc
� �

�0:

References
Kimberling, C. "Central Points and Central Lines in the

Plane of a Triangle." Math. Mag. 67, 163�/187, 1994.

Trisection

Angle trisection is the division of an arbitrary ANGLE

into three equal ANGLES. It was one of the three
GEOMETRIC PROBLEMS OF ANTIQUITY for which solu-
tions using only COMPASS and STRAIGHTEDGE were
sought. The problem was algebraically proved im-
possible by Wantzel (1836).

Although trisection is not possible for a general
ANGLE using a Greek construction, there are some
specific angles, such as p=2 and p radians (908 and
1808, respectively), which can be trisected. Further-
more, some ANGLES are geometrically trisectable, but
cannot be constructed in the first place, such as 3p=7
(Honsberger 1991). In addition, trisection of an
arbitrary angle can be accomplished using a marked
RULER (a NEUSIS CONSTRUCTION) as illustrated above

(Courant and Robbins 1996).

An approximate trisection is described by Steinhaus
(Wazewski 1945, Steinhaus 1983, p. 7). Given an
angle u��AOB; draw the bisector u=2��AOC;
with OC�OA�OB�1; then divide BC such that
BD�2CD: From the SAS THEOREM DCOB; the length
s is given by the formula

b2�a2�c2�2ac cos B (1)

with s�b , a�c�1; B�u=2;

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 cos 1

2 u
� �r

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos 1

2 u
� �

2

vuut
�2 sin 1

4 u
� �

; (2)

and L is then

L�2
3 s�4

3 sin 1
4 u
� �

: (3)

The angle 8 can then be computed from the formula

8�sin�1 a sin Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2 � 2ac cos B

p
 !

(4)

to obtain

8�sin�1
sin 1

2 u
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2 cos 1

2 u
� �r

2
664

3
775

�sin�1
2 sin 1

4 u
� �

cos 1
4 u
� �

2 sin 1
4 u
� �

2
4

3
5

�sin�1 cos 1
4 u
� �h i

: (5)

/f is then given by the formula for an SAS triangle



DBOD

f �sin�1 L sin 8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � L2 � 2L cos 8

p !

�sin�1
2
3 sin 1

2 u
� �

1 � 8
9 sin2 1

4 u
� �

2
4

3
5

�sin�1
6 sin 1

2 u
� �

5 � 4 cos 1
2 u
� �

2
4

3
5: (6)

The Maclaurin series is then

f �1
3 u �

7
648 u

3 � 19
31104 u

5 �� � �:1
3 u (7)

to a very good approximation.
An ANGLE can also be divided into three (or any
WHOLE NUMBER) of equal parts using the QUADRATRIX

OF HIPPIAS or TRISECTRIX.

See also ANGLE BISECTOR, MACLAURIN TRISECTRIX,
QUADRATRIX OF HIPPIAS, TRISECTRIX
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Trisectrix
A curve which can be used to trisect an angle.
Although an arbitrary angle cannot be trisected using
only COMPASS and STRAIGHTEDGE (i.e., according to
the strict rules of Greek GEOMETRIC CONSTRUCTION),
it can be trisected using certain curves (which are
assumed to have been constructed using some other
means).

See also CATALAN’S TRISECTRIX, LIMAÇ ON, MACLAUR-

IN TRISECTRIX, TRISECTION, TSCHIRNHAUSEN CUBIC

Trisectrix of Catalan
TSCHIRNHAUSEN CUBIC

Trisectrix of Maclaurin
MACLAURIN TRISECTRIX

Triskaidecagon
TRIDECAGON

Triskaidekaphobia
The number 13 is traditionally associated with bad
luck. This superstition leads some people to fear or
avoid anything involving this number, a condition
known as triskaidekaphobia. Triskaidekaphobia
leads to interesting practices such as the numbering
of floors as 1, 2, ..., 11, 12, 14, 15, ..., omitting the
number 13, in many high-rise hotels.

See also 13, BAKER’S DOZEN

Tristan Edwards Projection

A CYLINDRICAL EQUAL-AREA PROJECTION which uses a
standard parallel of fs�37:383�:/

See also BALTHASART PROJECTION, BEHRMANN CY-

LINDRICAL EQUAL-AREA PROJECTION, CYLINDRICAL

EQUAL-AREA PROJECTION, GALL ORTHOGRAPHIC PRO-

JECTION, LAMBERT AZIMUTHAL EQUAL-AREA PROJEC-

TION, PETERS PROJECTION

Tritangent
The tritangent of a CUBIC SURFACE is a PLANE which
intersects the surface in three mutually intersecting
lines. Each intersection of two lines is then a tangent
point of the surface.



See also CUBIC SURFACE

References
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Tritangent Triangle
EXCENTRAL TRIANGLE

Trivalent Graph
CUBIC GRAPH

Trivalent Tree
BINARY TREE

Trivial
Related to or being the mathematically most simple
case. More generally, the word "trivial" is used to
describe any result which requires little or no effort to
derive or prove. The word originates from the Latin
TRIVIUM, which was the lower division of the seven
liberal arts in medieval universities (cf. QUADRIVIUM).

According to the Nobel Prize-winning physicist Ri-
chard Feynman (Feynman 1997), mathematicians
designate any THEOREM as "trivial" once a proof has
been obtained–no matter how difficult the theorem
was to prove in the first place. There are therefore
exactly two types of true mathematical propositions:
trivial ones, and those which have not yet been
proven.

The opposite of a trivial theorem is a "DEEP THEO-

REM."

See also DEEP THEOREM, DEGENERACY, FRIVOLOUS

THEOREM OF ARITHMETIC, PROOF, THEOREM, TRIVIUM

References
Feynman, R. P. and Leighton, R. "A Different Set of Tools."
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1997.

Trivial Basis

Trivial Group
The trivial group is the unique GROUP containing
exactly one element. That is, it is G �fe g; where e is
the IDENTITY ELEMENT (so that ee �e ).

See also CYCLIC GROUP, FINITE GROUP, GROUP,
IDENTITY ELEMENT

Trivialization
Over a small NEIGHBORHOOD U of a MANIFOLD, a
VECTOR BUNDLE is spanned by the local sections
defined on U . For example, in a COORDINATE CHART

U with coordinates x1 ; . . .  ; xnð Þ; every smooth VEC-

TOR FIELD can be written as a sum ai fi @=@xi where fi

are smooth functions. The n vector fields @=@xi span
the space of vector fields, considered as a MODULE

over the RING of smooth real-valued functions. On
this COORDINATE CHART U , the tangent bundle can be
written U �Rn : This is a trivialization of the tangent
bundle.

In general, a vector bundle of RANK r is spanned
LOCALLY by r independent SECTIONS. Every point has
a NEIGHBORHOOD U and r sections defined on U , such
that over every point in U the fibers are spanned by
those r sections.

Similarly, for a FIBER BUNDLE, near every point p � M ;
there is a neighborhood U such that the bundle over
U is U �F ; where F is the fiber.

A bundle is a set of trivializations that cover the base
manifold. The trivializations are put together to form
a bundle with its TRANSITION FUNCTIONS.

See also BUNDLE, FIBER BUNDLE, MANIFOLD, TRANSI-

TION FUNCTION, VECTOR BUNDLE

Trivium
A word derived from the Latin roots tri- (three) and
via (ways, roads), therefore a crossing of three roads.
In medieval universities, the trivium consisted of the
three subjects in the lower division of the seven
liberal arts: grammar, rhetoric, and logic. The word
TRIVIAL derives from the fact that the trivium
contained the least complicated studies.

See also QUADRIVIUM, TRIVIAL



Trochoid

The curve described by a point at a distance b from
the center of a rolling CIRCLE of RADIUS a .

x �a f �b sin f

y �a �b cos f:

If b Ba , the curve is a CURTATE CYCLOID. If b �a , the
curve is a CYCLOID. If b �a , the curve is a PROLATE

CYCLOID.

See also CURTATE CYCLOID, CYCLOID, EPITROCHOID,
HYPOTROCHOID, PROLATE CYCLOID
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Tromino
TRIOMINO

Trott’s Constant
The constant /x ¼ 0 :010841015122311136151129 . . ./
whose decimal digits are equal to the constant’s own
CONTINUED FRACTION [0, 1, 0, 8, 4, 1, 0, 1, 5, ...]. This
constant was discovered by M. Trott of Wolfram
Research in 1999. It appears to be unique, and all
attempts to find other such numbers have failed.

See also CONTINUED FRACTION

True
A statement which is rigorously known to be correct.
A statement which is not true is called FALSE,
although certain statements can be proved to be
rigorously UNDECIDABLE within the confines of a
given set of assumptions and definitions. Regular
two-valued LOGIC allows statements to be only true or
FALSE, but FUZZY LOGIC treats "truth" as a continuum
which can have any value between 0 and 1. The
symbol Y is sometimes used to denote "true,"

although "T" is more commonly used in TRUTH

TABLES.

See also ALETHIC, BOOLEANS, FALSE, FUZZY LOGIC,
LOGIC, TRUTH TABLE, UNDECIDABLE

Truncatable Prime
Call a number n containing no zeros right truncata-
ble if n and all numbers obtained by successively
removing the rightmost DIGIT are PRIME. There are 83
right truncatable primes in base 10. The first few are
2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239,
293, 311, 313, 317, 373, 379, 593, 599, ... (Sloane’s
A024770), the largest being 73,939,133 (Angell and
Godwin 1977). The numbers of left prime strings less
than 10, 102, 103, ... are 4, 9, 14, 16, 15, 12, 8, and 5
(Sloane’s A050986; Rivera puzzle 70).

If zeros are permitted, the sequence of right trunca-
table primes are 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67,
73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283,
307, ... (Sloane’s A033664).

Similarly, call a number n left truncatable if n and all
numbers obtained by successively removing the left-
most DIGIT are PRIME. There are 4260 right prime
strings in base 10 when the digit zero is not allowed
(otherwise, if zeros are permitted, the sequence
is infinite). The first few are 2, 3, 5, 7, 13, 17, 23,
37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, ...
(Sloane’s A024785), with the largest being
357,686,312,646,216,567,629,137 (Angell and Godwin
1977, Baillie 1995). The numbers of right prime
strings less than 10, 102, 103, ... are 4, 11, 39, 99,
192, 326, 429, ... (Sloane’s A050987; Rivera puzzle
70).

J. Shallit has shown that in base 10, there is a finite,
minimal list of primes that do not have any other
primes as substrings (where digits do not need to be
consecutive). This result is a special case of a much
more general theorem, whose proof is unfortunately
nonconstructive.

Call an n -digit prime pn (with n]2) is a restricted
left truncatable prime if

1. If the leftmost digit of pi is deleted, a prime
number pi�1 is obtained for 25i5n; and
2. No prime with n�1 digits can have its leftmost
digit removed to produce pn:/

Kahan and Weintraub (1998) dub such primes
"Henry VIII primes." Restricted left truncatable
primes pn are therefore a subset of left truncatable
primes for which there are no left truncatable primes
of length n�1 having the same n last digits as pn:
There are a total of 1440 such primes, and the first
few are 773, 3373, 3947, 4643, 5113, 6397, 6967, 7937,
... (Sloane’s A055522), the largest being
357686312646216567629137 (Kahan and Weintraub
1998).



See also PRIME ARRAY, PRIME NUMBER
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Truncate
To truncate a REAL NUMBER is to discard its non-
integer part. Truncation of a (positive) number x
therefore corresponds to taking the FLOOR FUNCTION

xb c:/

See also CEILING FUNCTION, FLOOR FUNCTION, NINT,
ROUND, TRUNCATION

Truncated Cone
CONICAL FRUSTUM

Truncated Cube

The 14-faced ARCHIMEDEAN SOLID A9 with faces
8f3 g�6f8 g: It is also UNIFORM POLYHEDRON U9 and
Wenninger model W8 : It has SCHLÄ FLI SYMBOL t{4, 3}/
�2668511278169369879040000S12 and WYTHOFF

SYMBOL 23½4:/

The DUAL POLYHEDRON of the truncated cube is the
TRIAKIS OCTAHEDRON. The INRADIUS r of the dual,
MIDRADIUS r of the solid and dual, and CIRCUMRADIUS

R of the solid for a �1 are

r � 1
17 5 �2

ffiffiffi
2

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �4

ffiffiffi
2

pq
:1:63828

r �1
2 2 �

ffiffiffi
2

p� �
:1 :70711

R �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 �4

ffiffiffi
2

pq
:1:77882:

The distances from the center of the solid to the
centroids of the triangular and octagonal faces are

r3 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 17 �12

ffiffiffi
2

p� �r
(1)

r8�
1
2 1�

ffiffiffi
2

p� �
: (2)

The SURFACE AREA and VOLUME are

S�2 6�6
ffiffiffi
2

p
�2

ffiffiffi
3

p� �
(3)

V�1
3 21�14

ffiffiffi
2

p� �
: (4)

See also ARCHIMEDEAN SOLID, ICOSITETRAHEDRON
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Truncated Cube-Small Triakis Octahedron
Compound

The POLYHEDRON COMPOUND of the TRUNCATED CUBE

and its dual, the SMALL TRIAKIS OCTAHEDRON. The
compound can be constructed from a TRUNCATED

CUBE of unit edge length by midpoint CUMULATION

with heights

h3 �
1
6

ffiffiffi
3

p
3 �2

ffiffiffi
2

p� �
(1)

h8�
1
2 1�

ffiffiffi
2

p� �
: (2)

See also CUMULATION, POLYHEDRON COMPOUND,
SMALL TRIAKIS OCTAHEDRON, TRUNCATED CUBE

Truncated Cuboctahedron
GREAT RHOMBICUBOCTAHEDRON (ARCHIMEDEAN)

Truncated Cylinder
CYLINDRICAL WEDGE

Truncated Dodecadodecahedron

The UNIFORM POLYHEDRON U59; also called the QUASI-

TRUNCATED DODECAHEDRON, whose DUAL POLYHE-

DRON is the MEDIAL DISDYAKIS TRIACONTAHEDRON. It
has SCHLÄFLI SYMBOL t’ f

5
2
5
g and WYTHOFF SYMBOL

2 5
3 ½ 5: Its faces are 12f10g�30f4g�12f10

3 g: Its CIR-

CUMRADIUS for a�1 is

R�1
2

ffiffiffiffiffiffi
11

p
:
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Truncated Dodecahedron

The 32-faced ARCHIMEDEAN SOLID A10 with faces
20f3g�12f10g: It is also UNIFORM POLYHEDRON U26

and Wenninger model W10: It has SCHLÄFLI SYMBOL

t/f5; 3g and WYTHOFF SYMBOL 2 3 ½ 5:/



The DUAL POLYHEDRON is the TRIAKIS ICOSAHEDRON.

To construct the truncated dodecahedron by TRUNCA-

TION, note that we want the INRADIUS r10 of the
truncated pentagon to correspond with that of the
original pentagon, r5 ; of unit side length s5 �1: This
means that the side lengths s10 of the decagonal faces
in the truncated dodecahedron satisfy

1
2 s5 cot

p

5

 !
�1

2 s10 cot
p

10

 !
; (1)

giving

s10 �
1
5

ffiffiffi
5

p
s5 �

1
5

ffiffiffi
5

p
: (2)

The length of the corner which is chopped off is
therefore given by

l �1
2 �

1
2 s10 �

1
10 5 �

ffiffiffi
5

p� �
: (3)

The INRADIUS r of the dual, MIDRADIUS pi of the solid
and dual, and CIRCUMRADIUS R of the solid for a �1
are

r �5
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
61 41 �18

ffiffiffi
5

p� �r
:2:88526 (4)

r �1
4 5 �3

ffiffiffi
5

p� �
:2:92705 (5)

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74 �30

ffiffiffi
5

pq
:2:96945: (6)

The distances from the center of the solid to the
centroids of the triangular and decagonal faces are
given by

r3 �
1

12

ffiffiffi
3

p
9 �5

ffiffiffi
5

p� �
(7)

r10 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 25�11

ffiffiffi
5

p� �r
: (8)

The SURFACE AREA and VOLUME are

S�5
ffiffiffi
3

p
�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�2

ffiffiffi
5

pq� �
(9)

V� 5
12 99�47

ffiffiffi
5

p� �
: (10)

See also ARCHIMEDEAN SOLID, HEXECONTAHEDRON,
TRIAKIS ICOSAHEDRON, TRUNCATED DODECAHEDRON-

TRIAKIS ICOSAHEDRON COMPOUND
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Truncated Dodecahedron-Triakis
Icosahedron Compound

The POLYHEDRON COMPOUND of the TRUNCATED DO-

DECAHEDRON and its dual, the TRIAKIS ICOSAHEDRON.
The compound can be constructed from a TRUNCATED

DODECAHEDRON of unit edge length by midpoint
CUMULATION with heights

h3�
1

372

ffiffiffi
3

p
1�5

ffiffiffi
5

p� �
(1)

h10�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 5�

ffiffiffi
5

p� �r
: (2)

The resulting solid has edge lengths

s1�
1
62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
6 397�

ffiffiffi
5

p� �r
(3)

s2�
1
2 (4)

s3�
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 5�

ffiffiffi
5

p� �r
(5)

s4�
1
4 5�

ffiffiffi
5

p� �
; (6)

CIRCUMRADIUS

R�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 37�15

ffiffiffi
5

p� �r
(7)

SURFACE AREA given by a root of a 32nd order
polynomial with large integer coefficients, and VO-

LUME



V � 5
1488 15997 �7693

ffiffiffi
5

p� �
: (8)

See also POLYHEDRON COMPOUND, TRIAKIS ICOSAHE-

DRON, TRUNCATED DODECAHEDRON

Truncated Exponential Function
EXPONENTIAL SUM FUNCTION

Truncated Great Dodecahedron

The UNIFORM POLYHEDRON U37 whose DUAL POLYHE-

DRON is the SMALL STELLAPENTAKIS DODECAHEDRON.
It has SCHLÄ FLI SYMBOL tf5 ; 5

2 g: It has WYTHOFF

SYMBOL 2 5
2 5: Its faces are 12 f5

2 g�12 f10g: Its CIR-

CUMRADIUS for a �1 is

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
34�10

ffiffiffi
5

pq
:

See also GREAT ICOSAHEDRON
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Truncated Great Icosahedron
GREAT TRUNCATED ICOSAHEDRON

Truncated Hexahedron
TRUNCATED CUBE

Truncated Icosahedron

The 32-faced ARCHIMEDEAN SOLID A11 corresponding
to the facial arrangement 20f6g�12f5g: It is the
shape used in the construction of SOCCER BALLS, and
it was also the configuration of the lenses used for
focusing the explosive shock waves of the detonators
in the Fat Man atomic bomb (Rhodes 1996, p. 195).
The truncated icosahedron has 60 vertices, and is also
the C60 structure of pure carbon known as buckyballs
(a.k.a. fullerenes ). The truncated icosahedron is
UNIFORM POLYHEDRON U25 and Wenninger model
W9: It has SCHLÄFLI SYMBOL t/f3; 5g and WYTHOFF

SYMBOL 2 5 ½ 3:/

The DUAL POLYHEDRON of the truncated icosahedron
is the PENTAKIS DODECAHEDRON. The INRADIUS r of
the dual, MIDRADIUS r of the solid and dual, and
CIRCUMRADIUS R of the solid for a�1 are



r �9
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

109 17 �6
ffiffiffi
5

p� �r
:2:37713

r �3
4 1 �

ffiffiffi
5

p� �
:2 :42705

R �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
58 �18

ffiffiffi
5

pq
:2:47802 :

The distances from the center of the solid to the
centroids of the pentagonal and hexagonal faces are
given by

r5 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10 125 �41
ffiffiffi
5

p� �r
(1)

r6 �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 7 �3

ffiffiffi
5

p� �r
: (2)

The SURFACE AREA and VOLUME are

S �3 10
ffiffiffi
3

p
�

ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 �2

ffiffiffi
5

pq� �
(3)

V �1
4 125 �43

ffiffiffi
5

p� �
: (4)

See also ARCHIMEDEAN SOLID, HEXECONTAHEDRON
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Truncated Icosahedron-Pentakis
Dodecahedron Compound

The POLYHEDRON COMPOUND of the TRUNCATED ICO-

SAHEDRON and its dual, the PENTAKIS DODECAHE-

DRON. The compound can be constructed from a
TRUNCATED ICOSAHEDRON of unit edge length by
midpoint CUMULATION with heights

h5 �
1
38

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10 305 �131
ffiffiffi
5

p� �r
(1)

h6 �
1
4

ffiffiffi
3

p ffiffiffi
5

p
�3

� �
: (2)

The resulting solid has edge lengths

s1 �
1
2 (3)

s2 �
3
76 7 �5

ffiffiffi
5

p� �
(4)

s3 �
1
4 1 �

ffiffiffi
5

p� �
(5)

s4 �
1
2

ffiffiffi
3

p
(6)

s5 �
3
4

ffiffiffi
5

p
�1

� �
; (7)

CIRCUMRADIUS

R �3
2

ffiffiffi
3

p
; (8)

SURFACE AREA S given by the fourth largest positive
root of

5141016030764996667610951639493717193603515625

�9291774385004510118161779667281494140625000S2

�63419261142631991476189330253320312540000S4

�2162618355523996143839802656250000000S6

�406990705888262016944967600000000S8

�43785979422682649316768000000S10

�2668511278169369879040000S12

�85420833678869299200S14

�1113034787454976S16 (9)

and VOLUME

V� 5
152 1477�162

ffiffiffi
5

p� �
: (10)

See also CUMULATION, POLYHEDRON COMPOUND,
PENTAKIS DODECAHEDRON, TRUNCATED ICOSAHE-

DRON

Truncated Icosidodecahedron
GREAT RHOMBICOSIDODECAHEDRON (ARCHIMEDEAN)

Truncated Octahedral Number
A FIGURATE NUMBER which is constructed as an
OCTAHEDRAL NUMBER with a SQUARE PYRAMID re-



moved from each of the six VERTICES,

TOn ¼ O3n�2 �6Pn�1 ¼ 16n3 �33n2 þ 24n �6 ;

where /On/ is an OCTAHEDRAL NUMBER and /Pn/ is a
SQUARE PYRAMIDAL NUMBER. The first few are 1, 38,
201, 586, ... (Sloane’s A005910). The GENERATING

FUNCTION for the truncated octahedral numbers is

xð6x3 þ 55x2 þ 34x þ 1

ðx � 1Þ4 ¼ x þ 38x2 þ 201x3 þ . . .

See also OCTAHEDRAL NUMBER, SQUARE PYRAMIDAL

NUMBER
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Truncated Octahedron

The 14-faced ARCHIMEDEAN SOLID A12; also known as
the MECON, with faces 8f6g�6f4g: It is also UNIFORM

POLYHEDRON U8 and Wenninger model W7: It has
SCHLÄFLI SYMBOL t/f3; 4g and WYTHOFF SYMBOL

2 4 ½ 3:/

The DUAL POLYHEDRON of the truncated octahedron is
the TETRAKIS HEXAHEDRON. The truncated octahe-
dron has the Oh OCTAHEDRAL GROUP of symmetries.
The form of the fluorite / CaF2ð Þ resembles the trun-
cated octahedron (Steinhaus 1983, pp. 207�/208).

The solid of unit edge length can be formed from an
OCTAHEDRON of edge length 3 via TRUNCATION by
removing six SQUARE PYRAMIDS, each with edge slant
height s�1, base a�1 on a side, and height h . The
height and base area of the SQUARE PYRAMID are then

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�1

4 a2 csc2
p

n

 !vuut �1
2

ffiffiffi
2

p
a (1)

Ab�a2: (2)

The SURFACE AREA of the truncated octahedron is

S�6�12
ffiffiffi
3

p
: (3)

The VOLUME of the truncated octahedron is then
given by the VOLUME of the OCTAHEDRON

Voctahedron�
1
3

ffiffiffi
2

p
s3�9

ffiffiffi
2

p
a3 (4)

minus six times the volume of the SQUARE PYRAMID,

V�Voctahedron�6 1
3 Abh
� �

� 9
ffiffiffi
2

p
�

ffiffiffi
2

p� �
a3

�8
ffiffiffi
2

p
a3: (5)

The truncated octahedron is a SPACE-FILLING POLY-

HEDRON (Steinhaus 1983, pp. 187�/190 and 207).

The INRADIUS r of the dual, MIDRADIUS r of the solid
and dual, and CIRCUMRADIUS R of the solid for a�1
are

r� 9
20

ffiffiffiffiffiffi
10

p
:1:42302 (6)

r�3
2�1:5 (7)

R�1
2

ffiffiffiffiffiffi
10

p
:1:58114: (8)

The distances from the center of the solid to the
centroids of the square and hexagonal faces are given
by

r4�
ffiffiffi
2

p
(9)

r6�
1
2

ffiffiffi
6

p
: (10)



See also ARCHIMEDEAN SOLID, ICOSITETRAHEDRON,
KELVIN’S CONJECTURE, OCTAHEDRON, RHOMBIC DO-

DECAHEDRON STELLATIONS, SQUARE PYRAMID, TRUN-

CATION
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Truncated Octahedron-Tetrakis
Hexahedron Compound

The POLYHEDRON COMPOUND of the TRUNCATED OCTA-

HEDRON and its dual, the TETRAKIS HEXAHEDRON. The
compound can be constructed from a TRUNCATED

OCTAHEDRON of unit edge length by midpoint CUMU-

LATION with heights

h4 �
1
8

ffiffiffi
2

p
(1)

h6 �
1
4

ffiffiffi
6

p
(2)

See also CUMULATION, POLYHEDRON COMPOUND,
TETRAKIS HEXAHEDRON, TRUNCATED OCTAHEDRON

Truncated Polyhedron
A polyhedron with truncated faces, given by the
SCHLÄ FLI SYMBOL t/fp

q 
g:/

See also FRUSTUM, RHOMBIC POLYHEDRON, SNUB

POLYHEDRON
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Truncated Power Function
The function defined by

ya
��

y a for y > 0
0 for y B0:

�

See also POWER
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Truncated Pyramid
PYRAMIDAL FRUSTUM

Truncated Square Pyramid

The truncated square pyramid is a special case of a
PYRAMIDAL FRUSTUM for a SQUARE PYRAMID. Let the
base and top side lengths of the truncated pyramid be
a and b , and let the height be h . Then the VOLUME of
the solid is

V �1
3 a2 �ab �b2
� �

h :

This FORMULA was known to the Egyptians ca. 1850
BC. The Egyptians cannot have proved it without
calculus, however, since Dehn showed in 1900 that no
proof of this equation exists which does not rely on
the concept of continuity (and therefore some form of
INTEGRATION).

See also FRUSTUM, PYRAMID, PYRAMIDAL FRUSTUM,
SQUARE PYRAMID

Truncated Tetrahedral Number
A FIGURATE NUMBER constructed by taking the
(3n�2)/th TETRAHEDRAL NUMBER and removing the
(n�1)/th TETRAHEDRAL NUMBER from each of the four
corners,

Ttetn�Te3n�3�4Ten�1�
1
6 n 23n2�27n�10
� �

:

The first few are 1, 16, 68, 180, 375, ... (Sloane’s
A005906). The GENERATING FUNCTION for the trun-
cated tetrahedral numbers is



x(10x2 � 12x � 1)

(x � 1)4 �x �16x2 �68x3 �180x4 �. . . :
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Truncated Tetrahedron

The ARCHIMEDEAN SOLID A13 with faces 4f3g�4f6g:
It is also UNIFORM POLYHEDRON U2 and Wenninger
model W6 : It has SCHLÄ FLI SYMBOL t/f3; 3 g and
WYTHOFF SYMBOL 2 3  ½ 3:/

The dual of the truncated tetrahedron is the TRIAKIS

TETRAHEDRON. The INRADIUS r of the dual, MIDRADIUS

r of the solid and dual, and CIRCUMRADIUS R of the
solid for a �1 are

r � 9
44

ffiffiffiffiffiffi
22

p
:0:95940

r �3
4

ffiffiffi
2

p
:1 :06066

R �1
4

ffiffiffiffiffiffi
22

p
:1:17260

The distances from the center of the solid to the
centroids of the triangular and hexagonal faces are

given by

r3 ¼ 1
12

ffiffiffi
6

p
ð1Þ

r6 �
1
4

ffiffiffi
6

p
: (2)

The SURFACE AREA and VOLUME are

S �7
ffiffiffi
3

p
(3)

V �23
12

ffiffiffi
2

p
: (4)

See also ARCHIMEDEAN SOLID, TRIAKIS TETRAHE-

DRON, TRUNCATED TETRAHEDRON-TRIAKIS TETRAHE-

DRON COMPOUND
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Truncated Tetrahedron-Triakis
Tetrahedron Compound
The compound of a TRUNCATED TETRAHEDRON and its
dual, the TRIAKIS TETRAHEDRON. The compound can
be constructed from a TRUNCATED OCTAHEDRON of
unit edge length by midpoint CUMULATION with
heights

h3�
1
30

ffiffiffi
6

p
(1)

h6�
1
2

ffiffiffi
6

p
: (2)

See also CUMULATION, POLYHEDRON COMPOUND,
TRIAKIS TETRAHEDRON, TRUNCATED TETRAHEDRON

Truncation
The removal of portions of SOLIDS falling outside a set
of symmetrically placed planes. The dual operation
consists of replacing facial polygons with pyramids,
and is sometimes known as CUMULATION.

The five PLATONIC SOLIDS belong to one of the
following three truncation series (which, in the first
two cases, carry the solid to its DUAL POLYHEDRON).



See also CUMULATION, DÜ RER’S SOLID, PYRAMID,
STELLATION, TRUNCATED CUBE, TRUNCATED DODECA-

HEDRON, TRUNCATED ICOSAHEDRON, TRUNCATED OC-

TAHEDRON, TRUNCATED TETRAHEDRON, VERTEX

FIGURE

Truth Table
A truth table is a 2-D array with n �1 columns. The
first n columns correspond to the possible values of n
inputs, and the last column to the operation being
performed. The rows list all possible combinations of
inputs together with the corresponding outputs. For
example, the following truth table shows the result of
the binary AND operator acting on two inputs A and
B , each of which may be true or false.

A B /A fflB/

F F  F

F T  F

T F  F

T T  T

The following Mathematica code can be used to
generate a truth table for n levels of operator op .

TruthTable[op_, n_] : � Module[

{

l � Flatten[Outer[List, Sequence @@

Table[{True, False}, {n}]], n - 1],

a � Array[A, n]

},

DisplayForm[

GridBox[Prepend[Append[#, op @@ #] & /@ l,

Append[a, op @@ a]], RowLines - � True,

ColumnLines - � True]

]

]

See also AND, CONNECTIVE, EQUIVALENT, IMPLIES,

KARNAUGH MAP, MULTIPLICATION TABLE, NAND,
NOR, NOT, OR, XNOR, XOR
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Tschebyshev
An alternative spelling of the name "CHEBYSHEV."

See also CHEBYSHEV

Tschebyshev System
HAAR CONDITION

Tschirnhausen Cubic Caustic
The CAUSTIC of the TSCHIRNHAUSEN CUBIC taking the
RADIANT POINT as the pole is NEILE’S PARABOLA.

Tschirnhausen Cubic

The Tschirnhausen cubic is a plane curve given by
the polar equation

r�a sec3 1
3 u
� �

(1)

or parametric equation

x�a 1�3t2
� �

(2)

y�at 3�t2
� �

(3)

or

x�3a t2�3
� �

(4)

y�at t2�3
� �

: (5)

The curve is also known as CATALAN’S TRISECTRIX and
L’HOSPITAL’S CUBIC. The name Tschirnhaus’s cubic is
given in R. C. Archibald’s 1900 paper attempting to
classify curves (MacTutor Archive). Tschirnhaus’s
cubic is the NEGATIVE PEDAL CURVE of a PARABOLA

with respect to the FOCUS.
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Tschirnhausen Cubic Pedal Curve

The PEDAL CURVE to the TSCHIRNHAUSEN CUBIC for
PEDAL POINT at the origin is the PARABOLA

x �1 �t2

y �2t:

See also PARABOLA, PEDAL CURVE, PEDAL POINT,
TSCHIRNHAUSEN CUBIC

Tschirnhausen Transformation
A transformation of a POLYNOMIAL equation f (x) �0
which is OF THE FORM y �g(x) =h(x) where g and h are
POLYNOMIALS and h(x) does not vanish at a root of
f (x) �0: The CUBIC EQUATION is a special case of such
a transformation. Tschirnhaus (1683) showed that a
POLYNOMIAL of degree n �2 can be reduced to a form
in which the xn�1 and xn�2 terms have 0 COEFFI-

CIENTS. In 1786, E. S. Bring showed that a general
QUINTIC EQUATION can be reduced to the form

x5 �px �q �0:

In 1834, G. B. Jerrard showed that a Tschirnhaus
transformation can be used to eliminate the xn�1 ;
xn�2 ; and xn�3 terms for a general POLYNOMIAL

equation of degree n �3.

See also BRING QUINTIC FORM, CUBIC EQUATION
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Tubular Neighborhood
This entry contributed by RYAN BUDNEY

A tubular neighborhood of a SUBMANIFOLD N � M is
an embedding of the NORMAL BUNDLE (/nN) of N into
M , i.e., f : nN 0 M ; where the image of the ZERO

SECTION of the NORMAL BUNDLE is equal to N � M :/

See also BALL, EMBEDDING, KNOT EXTERIOR, PRO-

DUCT NEIGHBORHOOD
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Tucker Circles

The Tucker circles are a generalization of the COSINE

CIRCLE and LEMOINE CIRCLE which can be viewed as a
family of circles obtained by parallel displacing sides
of the corresponding COSINE or LEMOINE HEXAGON.
No matter how the segments are displaced, the
TUCKER HEXAGON will close, and the 12 vertices will
be CONCYCLIC. The COSINE CIRCLE and LEMOINE

CIRCLE correspond to the special case where three
sides of the TUCKER HEXAGON concur.
Let three equal lines /P1Q1/, P2Q2 ; and P3Q3 be drawn
ANTIPARALLEL to the sides of a triangle so that two
(say P2Q2 and P3Q3) are on the same side of the third
line as A2P2Q3A3 : Then P2Q3P3Q2 is an isosceles
TRAPEZOID, i.e., P3Q2 ; P1Q3 ; and P2Q1 are parallel to
the respective sides. The MIDPOINTS C1 ; C2 ; and C3 of
the antiparallels are on the respective symmedians
and divide them proportionally. If T divides KO in
the same ratio, TC1 ; TC2 ; TC3 are parallel to the radii
OA1 ; OA2 ; and OA3 and equal. Since the antiparallels
are perpendicular to the symmedians, they form
equal chords of a circle, called a Tucker circle, which
passes through the six given points and has center T
on the line KO (Honsberger 1995, pp. 92 �/94).

If

c �
KC1

KA1

�
KC2

KA2

�
KC3

KA3

�
KT

KO 
;

then the radius of the Tucker circle is

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �(1 �c)2 tan v

q
;

where v is the BROCARD ANGLE.

The COSINE CIRCLE, LEMOINE CIRCLE, and TAYLOR

CIRCLE are Tucker circles.

See also ANTIPARALLEL, BROCARD ANGLE, COSINE

CIRCLE, COSINE HEXAGON, LEMOINE CIRCLE, LE-

MOINE HEXAGON, TAYLOR CIRCLE
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Tucker Hexagon
A closed, self-intersecting concyclic hexagon con-
structed along the sides of a triangle. A CIRCUMCIR-

CLE of any of these hexagons is called a TUCKER

CIRCLE.

See also HEXAGON, TUCKER CIRCLES
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Tukey’s Biweight

The function

c(z) � z 1 �
z2

c2

 !2

for ½z½Bc

0 for ½z½ > c

8><
>:

sometimes used in ROBUST ESTIMATION. It has a
minimum at z ��c =

ffiffiffi
3

p
and a maximum at z �c =

ffiffiffi
3

p
;

where

c?(z) �1 �
3x2

c2
�0 ;

and an inflection point at z �0, where

c??(z) ��
6z

c2 
�0:

References
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-

ling, W. T. Numerical Recipes in FORTRAN: The Art of
Scientific Computing, 2nd ed. Cambridge, England: Cam-
bridge University Press, p. 697, 1992.

Tukey’s Trimean
TRIMEAN

Tunnel Number
Let a KNOT K be n -EMBEDDABLE. Then its tunnel
number is a KNOT INVARIANT which is related to n .

See also EMBEDDABLE KNOT
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Turán Graph
The (n, k )-Turán graph is the EXTREMAL GRAPH on n
VERTICES which contains no k -CLIQUE. In other
words, the Turán graph has the maximum possible
number of EDGES of any n -vertex graph not contain-
ing a COMPLETE GRAPH Kk : TURÁ N’S THEOREM gives
the maximum number of edges t(n ; k) for the (n, k )-
Turán graph. For k �3,

t(n; 3) �1
4 n

2 ;

so the Turán graph is given by the COMPLETE

BIPARTITE GRAPHS

Kn=2; n=2 n even
K(n�1)=2;(n �1)=2 n odd:

�
Turán graphs cen be generated using Turan[n , p ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘).

See also CLIQUE, COMPLETE BIPARTITE GRAPH, EX-

TREMAL GRAPH, EXTREMAL GRAPH THEORY, TURÁ N’S

THEOREM
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Turán’s Inequalities
For a set of POSITIVE gk ; k �0, 1, 2..., Turán’s
inequalities are given by

g2
k � gk �1 gk �1 ]0

for k �1, 2, ....

See also JENSEN POLYNOMIAL
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Turán’s Theorem
Let G(V ; E) be a GRAPH with VERTICES V and EDGES

E on n VERTICES without a k -CLIQUE. Then

t(n; k) 5
(k � 2)n2

2(k � 1)
;

where t(n; k) � ½E ½ is the EDGE NUMBER. More pre-
cisely, the K -GRAPH Kn1 ; ... ; nk�1

with ½ni �nj ½51 for i "
j is the unique GRAPH without a k -CLIQUE with the
maximal number of EDGES t(n; k) :/

See also CLIQUE, ERDOS-STONE THEOREM, EXTREMAL

GRAPH THEORY, K -GRAPH, TURÁ N GRAPH
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Turbine
A VECTOR FIELD on a CIRCLE in which the directions of
the VECTORS are all at the same ANGLE to the CIRCLE.

See also CIRCLE, VECTOR FIELD

Turing Machine
A theoretical computing machine which consists of an
infinitely long magnetic tape on which instructions
can be written and erased, a finite register of
memory, and a processor capable of carrying out the
following instructions: move the tape right, move the
tape left, change the state of the register based on its
current value and a value on the tape, and write or
erase a value on the tape. The machine keeps
processing instructions until it reaches a particular
state, causing it to halt. Determining whether a
Turing machine will halt for a given input and set
of rules is called the HALTING PROBLEM.

See also AUTOMATA THEORY, AUTOMATIC SET, BUSY

BEAVER, CELLULAR AUTOMATON, CHAITIN’S OMEGA,
CHURCH-TURING THESIS, COMPUTABLE NUMBER,

DETERMINISTIC, HALTING PROBLEM, UNIVERSAL TUR-

ING MACHINE
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Turning Angle
TANGENTIAL ANGLE

Tutte Conjecture
Tutte (1971/72) conjectured that there is no non-
HAMILTONIAN 3-connected BICUBIC GRAPHS. However,
a counterexample was found by J. D. Horton in 1976
(Gropp 1990).

See also BICUBIC GRAPH, CUBIC GRAPH, HAMILTONIAN

GRAPH, TAIT’S HAMILTONIAN GRAPH CONJECTURE
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Tutte Polynomial
Let G be a GRAPH, and let ea(T) denote the cardinality
of the set of externally active edges of a spanning tree
T of G and ia(T) denote the cardinality of the set of
internally active edges of T . Then

tG(x; y)�
X
T⁄G

xia(T)yea(T):
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Tutte-Coxeter Graph
LEVI GRAPH



Tutte’s Graph

A counterexample to TAIT’S HAMILTONIAN GRAPH

CONJECTURE given by Tutte (1946). A simpler coun-
terexample was later given by Kozyrev and Grinberg.
The LEVI GRAPH is sometimes also called the Tutte
graph (Royle).

See also HAMILTONIAN CIRCUIT, LEVI GRAPH, TAIT’S

HAMILTONIAN GRAPH CONJECTURE

References
Honsberger, R. Mathematical Gems I. Washington, DC:

Math. Assoc. Amer., pp. 82 �/89, 1973.
Royle, G. "Cubic Cages." http://www.cs.uwa.edu.au/~gordon/

cages/.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem:

Assaults and Conquest. New York: Dover, p. 112, 1986.
Skiena, S. Implementing Discrete Mathematics: Combinato-

rics and Graph Theory with Mathematica. Reading, MA:
Addison-Wesley, p. 198, 1990.

Tait, P. G. "Remarks on the Colouring of Maps." Proc. Royal
Soc. Edinburgh 10, 729, 1880.

Tutte, W. T. "On Hamiltonian Circuits." J. London Math.
Soc. 21, 98�/101, 1946.

Tutte, W. T. "Non-Hamiltonian Planar Maps." In Graph
Theory and Computing (Ed. R. Read). New York: Aca-
demic Press, pp. 295 �/301, 1972.

Tutte’s Theorem
Let G be a GRAPH and S a SUBGRAPH of G . Let the
number of ODD components in G �S be denoted S ?;
and ½S½ the number of VERTICES of S . The condition /
jSj]S?/ for every SUBSET of VERTICES is NECESSARY

and SUFFICIENT for G to have a 1-FACTOR.

See also FACTOR (GRAPH)
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Twiddle
TILDE

Twig
Let a COTREE of a spanning tree T in a CONNECTED

GRAPH G be denoted /T �/. Then the edges of G which
are not in /T �/ are called its twigs (Harary 1994, p. 39).

See also COTREE
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Twin Peaks
For an INTEGER n]2; let lpf (x) denote the LEAST

PRIME FACTOR of n . A PAIR of INTEGERS (x, y ) is called
a twin peak if

1. xBy ,
2. lpf (x)�lpf (y);/
3. For all z , xBzBy IMPLIES lpf(z)Blpf (x):/

A broken-line graph of the least prime factor function
resembles a jagged terrain of mountains. In terms of
this terrain, a twin peak consists of two mountains of
equal height with no mountain of equal or greater
height between them. Denote the height of twin peak
(x, y ) by p�lpf (x)�lpf (y): By definition of the LEAST

PRIME FACTOR function, p must be PRIME.

Call the distance between two twin peaks (x, y )

s�y�x:

Then s must be an EVEN multiple of p ; that is, s�kp
where k is EVEN. A twin peak with s�kp is called a
kp -twin peak. Thus we can speak of 2p/-twin peaks,
4p/-twin peaks, etc. A kp -twin peak is fully specified
by k , p , and x , from which we can easily compute
y�x�kp:/

The set of kp -twin peaks is periodic with period q�
p#; where p# is the PRIMORIAL of p . That is, if (x, y ) is
a kp -twin peak, then so is (x�q; y�q): A funda-
mental kp -twin peak is a twin peak having x in the
fundamental period [0; q): The set of fundamental
kp -twin peaks is symmetric with respect to the
fundamental period; that is, if (x, y ) is a twin peak
on [0; q); then so is (q�y; q�x):/

The question of the EXISTENCE of twin peaks was first
raised by David Wilson in the math-fun mailing list
on Feb. 10, 1997. Wilson already had privately
showed the EXISTENCE of twin peaks of height p5
13 to be unlikely, but was unable to rule them out
altogether. Later that same day, John H. Conway,
Johan de Jong, Derek Smith, and Manjul Bhargava
collaborated to discover the first twin peak. Two
hours at the blackboard revealed that p�113 admits
the 2p/-twin peak

x�126972592296404970720882679404584182254788131

which settled the EXISTENCE question. Immediately
thereafter, Fred Helenius found the smaller 2p/-twin



peak with p �89 and

x �9503844926749390990454854843625839:

The effort now shifted to finding the least PRIME p
admitting a 2p/-twin peak. On Feb. 12, 1997, Fred
Helenius found p �71, which admits 240 fundamen-
tal 2p/-twin peaks, the least being

x �7310131732015251470110369:

Helenius’s results were confirmed by Dan Hoey, who
also computed the least 2p/-twin peak L(2p) and
number of fundamental 2p/-twin peaks N(2p) for
p �73, 79, and 83. His results are summarized in
the following table (Sloane’s A009190).

p /L(2p)/ /N(2p)/

71 7310131732015251470110369 240

73 2061519317176132799110061 40296

79 3756800873017263196139951 164440

83 6316254452384500173544921 6625240

The 2p/-twin peak of height p �73 is the smallest
known twin peak. Wilson found the smallest known
4p/-twin peak with p �1327, as well as another very
large 4p/-twin peak with p �3203. Richard Schroeppel
noted that the latter twin peak is at the high end of
its fundamental period and that its reflection within
the fundamental period [0; p#) is smaller.

Many open questions remain concerning twin peaks,
e.g.,

1. What is the smallest twin peak (smallest n )?
2. What is the least PRIME p admitting a 4p/-twin
peak?
3. Do 6p/-twin peaks exist?
4. Is there, as Conway has argued, an upper bound
on the span of twin peaks?
5. Let /p Bq Br/ be PRIME. If p and r each admit kp -
twin peaks, does q then necessarily admit a kp -
twin peak?

See also ANDRICA’S CONJECTURE, DIVISOR FUNCTION,
LEAST COMMON MULTIPLE, LEAST PRIME FACTOR
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Twin Prime Conjecture
There are two related conjectures, each called the
twin prime conjecture. The first version states that
there are an infinite number of pairs of TWIN PRIMES

(Guy 1994, p. 19). It is not known if there are an

infinite number of such PRIMES (Wells 1986, p. 41;
Shanks 1993, p. 30), but it seems almost certain to be
true (Hardy and Wright 1979, p. 5). In the words of
Shanks (1993, p. 219), "the evidence is overwhelm-
ing."

The conjecture that there are infinitely many integers
n such that n �1 is prime and n is twice a prime is
very closely related (Shanks 1993, p. 30).

A second twin prime conjecture states that adding a
correction proportional to 1 =ln p to a computation of
BRUN’S CONSTANT ending with . . . �1=p �1=(p �2)
will give an estimate with error less than
c

ffiffiffi
p

p
ln p

� ��1
: An extended form of this conjecture,

sometimes called the strong twin prime conjecture
(Shanks 1993, p. 30) states that

Px(p; p �2) 	2 P2 g
x

2

dx

(ln x)2 ;

where P2 is the TWIN PRIMES CONSTANT (Hardy and
Littlewood 1922). This conjecture is a special case of
the more general PRIME PATTERNS CONJECTURE cor-
responding to the set S�f0; 2g:/

See also BRUN’S CONSTANT, PRIME ARITHMETIC

PROGRESSION, PRIME CONSTELLATION, PRIME PAT-

TERNS CONJECTURE, TWIN PRIMES
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Twin Primes
Twin primes are pairs of PRIMES OF THE FORM (p , p�
2): The term "twin prime" was coined by Paul Stäckel
(1892�/1919; Tietze 1965, p. 19). The first few twin
primes are n91 for n�4, 6, 12, 18, 30, 42, 60, 72,
102, 108, 138, 150, 180, 192, 198, 228, 240, 270, 282,
... (Sloane’s A014574). Explicitly, these are (3, 5), (5,
7), (11, 13), (17, 19), (29, 31), (41, 43), ... (Sloane’s
A001359 and A006512).

The following table gives the first few p for the twin
primes (p , p�2); COUSIN PRIMES (p , p�4); SEXY

PRIMES (p , p�6); etc.

Triplet Sloane First Member

(p , p�2)/ Sloane’s
A001359

3, 5, 11, 17, 29, 41, 59,
71, ...



(p , p�4)/ Sloane’s
A023200

3, 7, 13, 19, 37, 43, 67,
79, ...

(p , p�6)/ Sloane’s
A023201

5, 7, 11, 13, 17, 23, 31,
37, ...

(p , p�8)/ Sloane’s
A023202

3, 5, 11, 23, 29, 53, 59,
71, ...

(p , p�10)/ Sloane’s
A023203

3, 7, 13, 19, 31, 37, 43,
61, ...

(p , p�12)/ Sloane’s
A046133

5, 7, 11, 17, 19, 29, 31,
41, ...

Let p2(n) be the number of twin primes p and p�2
such that p5n: It is not known if there are an infinite
number of such PRIMES (Wells 1986, p. 41; Shanks
1993), but it seems almost certain to be true (Hardy
and Wright 1979, p. 5). All twin primes except (3, 5)
are OF THE FORM 6n91: J. R. Chen has shown there
exists an INFINITE number of PRIMES p such that p�2
has at most two factors (Le Lionnais 1983, p. 49).
Bruns proved that there exists a computable INTEGER

x0 such that if x]x0; then

p2ðxÞB
100x

ðln xÞ2 ð1Þ

(Ribenboim 1996, p. 261). It has been shown that

p2(x)5c
Y
p>2

1�
1

(p � 1)2

" #
x

(ln x)2

 1�O
ln ln x

ln x

 !" #
; (2)

written more concisely as

p2(x)5c P2

x

(ln x)2 1�O
ln ln x

ln x

 !" #
; (3)

where P2 is known as the TWIN PRIMES CONSTANT and
c is another constant. The constant c has been
reduced to 68=9:7:5556 (Fouvry and Iwaniec
1983), 128=17:7:5294 (Fouvry 1984), 7 (Bombieri et
al. 1986), 6.9075 (Fouvry and Grupp 1986), and
6.8354 (Wu 1990). The bound on c is further reduced
to 6.8325 (Haugland 1999). This calculation involved
evaluation of 7-fold integrals and fitting of three
different parameters. Hardy and Littlewood conjec-
tured that c�2 (Ribenboim 1996, p. 262).

Wolf notes that the formula

p2(x)	P2

[p(x)]2

x
; (4)

which increases as P2x=(ln x)2 for large x , agrees with
numerical data much better than does P2x=(ln x)2;
although not as well as P2 Li2(x):/

Extending the search done by Brent in 1974 or 1975,
Wolf has searched for the analog of the SKEWES

NUMBER for twins, i.e., an x such that p2(x)�
P2 Li2(x) changes sign. Wolf checked numbers up to
242 and found more than 90,000 sign changes. From
this data, Wolf conjectured that the number of sign
changes n(n) for xBn of p2(x)�P2 Li2(x) is given by

n(n)	

ffiffiffi
n

p

ln n
: (5)

Proof of this conjecture would also imply the existence
an infinite number of twin primes.

Define

E�lim inf
n0�

pn�1 � pn

ln pn

: (6)

If there are an infinite number of twin primes, then
E�0. The best upper limit to date is E51

4�p=16�
0:44634 . . . (Huxley 1973, 1977). The best previous
values were 15/16 (Ricci), 2�

ffiffiffi
3

p� �
=8�0:46650 . . .

(Bombieri and Davenport 1966), and 2
ffiffiffi
2

p
�1

� �
=4�

0:45706 . . . (Pil’Tai 1972), as quoted in Le Lionnais
(1983, p. 26).

Some large twin primes are 10; 006; 42891;
1; 706; 595�21123591; and 571; 305�2770191: An
up-to-date table of known twin primes with 2000 or
more digits follows. An extensive list is maintained by
C. Caldwell at http://www.utm.edu/cgi-bin/caldwell/
primes.cgi/twin.

/(p; p�1)/ Digits Reference

/260;497; 545�2662591/ 2003 Atkin and

Rickert 1984

/43; 690;485; 351;513�10199591/ 2009 Dubner,

Atkin 1985

/2;846!!!!91/ 2151 Dubner 1992

/10; 757;0463�10225091/ 2259 Dubner,

Atkin 1985

/663;777�2765091/ 2309 Brown et al.

1989

/75; 188;117; 004�10229891/ 2309 Dubner 1989

/571305�2770191/ 2324 Brown et al.

1989

/1;171; 452;282�10249091/ 2500 Dubner 1991

/459 � 2852991/ 2571 Dubner 1993

/1;706; 595 � 21123591/ 3389 Noll et al. 1989

/4;655; 478;828 � 10342991/ 3439 Dubner 1993

/1;692; 923;232 � 10402091/ 4030 Dubner 1993

/6;797; 727 � 21532891/ 4622 Forbes 1995



/697;053; 813216352 91/ 4932 Indlekofer and

Ja’rai 1994

/570;918; 348 � 105120 91/ 5129 Dubner 1995

/242;206; 083 � 238880 91/ 11713 Indlekofer and

Ja’rai 1995

The last of these is the largest known twin prime pair.
In 1995, Nicely discovered a flaw in the Intel †

Pentium/
TM microprocessor by computing the recipro-

cals of 824,633,702,441 and 824,633,702,443, which
should have been accurate to 19 decimal places but
were incorrect from the tenth decimal place on (Cipra
1995, 1996; Nicely 1996).

If n ]2; the INTEGERS n and n �2 form a pair of twin
primes IFF

4 ½ðn �1Þ! þ 1 � þ n �0 ðmod nðn þ 2ÞÞ: ð7Þ

/n �pp? where (p; p?) is a pair of twin primes IFF

f(n)s(n) �(n �3)(n �1) (8)

(Ribenboim 1996, p. 259). S. M. Ruiz has found the
unexpected result that (n; n �2) are twin primes IFF

Xn

i�1

ia n � 2

i

$ %
�

n

i

$ % !

�2 �na �
Xn

i �1

ia n � 1

i

$ %
�

n � 1

i

$ % !
(9)

for a ]0; where xb c is the FLOOR FUNCTION.

The values of p2(n) were found by Brent (1976) up to
n �1011 : T. Nicely calculated them up to 1014 in his
calculation of BRUN’S CONSTANT. The following table
gives the number less than increasing powers of 10
(Sloane’s A007508; Nicely 1998, 1999). Using a dis-
tributed computation, Fry et al. obtained p2(1016) in
2000, although this value has not yet been made
public. The following table gives p(10n) for various
values of n , and extends a similar table with early
references given by Ribenboim (1996, p. 263).

n / p2(n)/

103 35

104 205

105 1224

106 8,169

107 58,980

108 440,312

109 3,424,506

1010 27,412,679

1011 224,376,048

1012 1,870,585,220

1013 15,834,664,872

1014 135,780,321,665

1015 1,177,209,242,304

It is conjectured that every even number is a sum of a
pair of twin primes except a finite number of excep-
tions whose first few terms are 2, 4, 94, 96, 98, 400,
402, 404, 514, 516, 518, ... (Sloane’s A007534; Wells
1986, p. 132).

See also BITWIN CHAIN, BRUN’S CONSTANT, COUSIN

PRIMES, DE POLIGNAC’S CONJECTURE, PRIME CONSTEL-

LATION, SEXY PRIMES, TWIN PRIME CONJECTURE,
TWIN PRIMES CONSTANT
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Twin Primes Constant
The twin primes constant P2 (sometimes also denoted
C2) is defined by

P2 �
Y
p>2

p prime

1 �
1

(p � 1)2

" #
(1)

ln 1
2 P2

� �
�
X
p ]3

p prime

ln
p(p � 2)

(p � 1)2

" #

�
X
p ]3

p prime

ln 1 �
2

p

 !
�2 ln  1�

1

p

 !" #

��
X�
j�2

2j � 2

j

X
p ]3

p prime

p �j ; (2)

where the ps in sums and products are taken over

PRIMES only. Flajolet and Vardi (1996) give series
with accelerated convergence

P2 �
Y�
n�2

z(n) 1�2 �nð Þ½ ��In (3)

�3
4

15
16

35
36

Y�
n �2

z(n) 1�2�nð Þ 1 �3�nð Þ½

 1 �5 �nð Þ 1 �7�nð Þ��In ; (4)

with

In �
1

n

X
d ½n

m(d)2n=d ; (5)

where m(x) is the MÖ BIUS FUNCTION. (4) has conver-
gence like 	(11=2)�n :/

/P2 was computed to 45 digits by Wrench (1961) and
Gourdon and Sebah list 60 digits.

P2 �0 :6601618158 . . . : (6)

Le Lionnais (1983, p. 30) calls P2 the SHAH-WILSON

CONSTANT, and 2P2 the twin prime constant (Le
Lionnais 1983, p. 37).

See also BRUN’S CONSTANT, GOLDBACH CONJECTURE,
MERTENS CONSTANT, TWIN PRIMES
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Twins
BROTHERS, PAIR

Twirl
A ROTATION combined with an EXPANSION or CON-

TRACTION.

See also SCREW, SHIFT



Twist
The twist of a ribbon measures how much it twists
around its axis and is defined as the integral of the
incremental twist around the ribbon. A formula for
the twist is given by

Tw(K) �
1

2p gK

ds omna
dxm

ds
n n

dn a

ds
; (1)

where K is parameterized by xm(s) for 0 5s 5L along
the length of the knot by parameter s , and the FRAME

Kf associated with K is

ym �xm(s) � onm(s); (2)

where o is a small parameter and nm(s) is a unit
VECTOR FIELD normal to the curve at s (Kaul 1999).

Letting Lk be the linking number of the two compo-
nents of a ribbon, Tw be the twist, and Wr be the
WRITHE, then the CALUGAREANU THEOREM states that

Lk(R) �Tw(R) �Wr(R) (3)

(Adams 1994, p. 187).

See also CALUGAREANU THEOREM, SCREW, WRITHE
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Twist Map
A class of AREA-PRESERVING MAPS OF THE FORM

ui �1 � ui �2pa rið Þ

ri �1 �ri ;

which maps CIRCLES into CIRCLES but with a twist
resulting from the a � a rið Þ term.

Twist Move

The REIDEMEISTER MOVE of type II.

See also KNOT MOVE, REIDEMEISTER MOVES

Twist Number
WRITHE

Twisted Chevalley Groups
FINITE SIMPLE GROUPS of LIE-TYPE of ORDERS 14, 52,
78, 133, and 248. They are denoted 3D4(q) ; E6(q);
E7(q) ; E8(q); F4(q) ; 2F4(2n)?; G2(q); 2G2(3n) ; 2B(2n):/

See also CHEVALLEY GROUPS, FINITE GROUP, SIMPLE

GROUP, TITS GROUP
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Twisted Conic
SKEW CONIC

Twisted Sphere
CORKSCREW SURFACE

Twistor
This entry contributed by EDGAR VAN TUYLL

A twistor in MINKOWSKI SPACE may be defined as a
pair consisting of a SPINOR FIELD and a complex
conjugate SPINOR FIELD satisfying the TWISTOR EQUA-

TION.

See also MINKOWSKI SPACE, SPINOR, SPINOR FIELD,
TWISTOR CORRESPONDENCE, TWISTOR EQUATION,
TWISTOR SPACE
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Twistor Correspondence
This entry contributed by EDGAR VAN TUYLL

Oriented spheres in complex Euclidean 3-space can
be represented as lines in complex projective 3-space
("Lie correspondence"), and the spheres may be
thought of as the t �0 representation of the light
cones of events in MINKOWSKI SPACE. In effect, the Lie
correspondence represents the points of (complexified
compactified) MINKOWSKI SPACE by lines in complex
projective 3-space, where meeting lines describe null-
separated Minkowski points. This is the twistor
correspondence.

See also MINKOWSKI SPACE, TWISTOR

References
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Twistor Space
This entry contributed by EDGAR VAN TUYLL

The collection of TWISTORS in MINKOWSKI SPACE that
forms a four-dimensional COMPLEX VECTOR SPACE.

See also COMPLEX SPACE, MINKOWSKI SPACE, TWIS-

TOR



Twist-Spun Knot
A generalization of SPUN KNOTS due to Zeeman. This
method produces 4-D KNOT types that cannot be
produced by ordinary spinning.

See also SPUN KNOT

Two
2

Two Triangle Theorem
DESARGUES’ THEOREM

Two-Colorable Graph
BIPARTITE GRAPH

Two-Ears Theorem
Except for TRIANGLES, every SIMPLE POLYGON has at
least two nonoverlapping EARS.

See also EAR, ONE-MOUTH THEOREM, PRINCIPAL

VERTEX
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Two-Form

See also DIFFERENTIAL K -FORM, ONE-FORM, ZERO-

FORM

Two-Graph
A two-graph (V ; D) is a GRAPH on nodes V with a
collection D of unordered triples of the vertices (the
so-called "odd triples") such that each 4-tuple of V
contains an even number of elements of D as subsets.

See also EULERIAN GRAPH
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Two-Point Distance
POINT-POINT DISTANCE–1-D, POINT-POINT DISTANCE–

2-D, POINT-POINT DISTANCE–3-D, SPHERE POINT PICK-

ING

Two-Scale Expansion

c � A0 � a1A1 � a2A2 �. . .ð ÞeiS = a :

Two-Sheeted Hyperboloid
A HYPERBOLOID consisting of two distinct sheets.

See also HYPERBOLOID

Tychonof Compactness Theorem
The topological product of any number of COMPACT

SPACES is COMPACT.

Type
Whitehead and Russell (1927) devised a hierarchy of
"types" in order to eliminate self-referential state-
ments from Principia Mathematica , which purported
to derive all of mathematics from logic. A set of the
lowest type contained only objects (not sets), a set of
the next higher type could contain only objects or sets
of the lower type, and so on. Unfortunately, GÖ DEL’S

INCOMPLETENESS THEOREM showed that both Princi-
pia Mathematica and all consistent formal systems
must be incomplete.

See also CLASS (SET), GÖ DEL’S INCOMPLETENESS

THEOREM
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Type I Error
An error in a STATISTICAL TEST which occurs when a
true hypothesis is rejected (a false negative in terms
of the NULL HYPOTHESIS).

See also NULL HYPOTHESIS, SENSITIVITY, SPECIFICITY,
STATISTICAL TEST, TYPE II ERROR

Type II Error
An error in a STATISTICAL TEST which occurs when a
false hypothesis is accepted (a false positive in terms
of the NULL HYPOTHESIS).

See also NULL HYPOTHESIS, SENSITIVITY, SPECIFICITY,
STATISTICAL TEST, TYPE I ERROR



U

U(n) Basic Hypergeometric Series
Multiple series generalizations of basic hypergeo-
metric series over the UNITARY GROUPS U(n�1):
The fundamental theorem of U(n) series takes c1; ...,
cn and x1; ..., xn as indeterminates and n]1: Then

c1 � � � cn; qð ÞN
(q; q)N

�
X

y1 ; y2 ; ...; yn]0
½y½�N

�
Y

15rBs5n

1 �
xr

xs

qyr�ys

1 �
xr

xs

2
6664

3
7775

�
Yn

r; s�1

xr

xs

cs; q

 !
yr

q
xr

xs

; q

 !
yr

2
666664

3
777775 qy2�2y3�...�(n�1)yn
� 

�
;

where it is assumed that none of the denominators
vanish (Bhatnagar 1995, p. 22). The series in this
theorem is called an SU(n) series (Milne 1985;
Bhatnagar 1995, p. 22).

Many other q -results, including the Q -BINOMIAL

THEOREM and Q -SAALSCHÜTZ SUM, can be generalized
to U(n�1) series.
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Ulam Map

f (x)�1�2x2

for x � [�1; 1]: Fixed points occur at x��1, 1/2, and
order 2 fixed points at x� 19

ffiffiffi
5

p� �
=4: The NATURAL

DENSITY of the map is

r(y)�
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � y2

p :
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Ulam Number
ULAM SEQUENCE

Ulam Sequence
The Ulam sequence aif g�(u; v) is defined by a1�u;
a2�v; with the general term an for n �2 given by the
least INTEGER expressible uniquely as the SUM of two
distinct earlier terms. The numbers so produced are
sometimes called U-NUMBERS or ULAM NUMBERS.

The first few numbers in the (1, 2)-Ulam sequence are
1, 2, 3, 4, 6, 8, 11, 13, 16, ... (Sloane’s A002858). Here,
the first term after the initial (1, 2) is obviously 3
since 3�1�2: The next term is 4�1�3: (We don’t
have to worry about 4�2�2 since it is a sum of a
single term instead of distinct terms.) 5 is not a
member of the sequence since it is representable in
two ways, 5�1�4�2�3; but 6�2�4 is a member.

Proceeding in the manner, we can generate Ulam
sequences for any (u, v ), examples of which are given
in the table below.



(u, v ) Sloane Sequence

(1, 2) Sloane’s
A002858

1, 2, 3, 4, 6, 8, 11, 13, 16, 18,
...

(1, 3) Sloane’s
A002859

1, 3, 4, 5, 6, 8, 10, 12, 17, 21,
...

(1, 4) Sloane’s
A003666

1, 4, 5, 6, 7, 8, 10, 16, 18, 19,
...

(1, 5) Sloane’s
A003667

1, 5, 6, 7, 8, 9, 10, 12, 20, 22,
...

(2, 3) Sloane’s
A001857

2, 3, 5, 7, 8, 9, 13, 14, 18, 19,
...

(2, 4) Sloane’s
A048951

2, 4, 6, 8, 12, 16, 22, 26, 32,
36, ...

(2, 5) Sloane’s
A007300

2, 5, 7, 9, 11, 12, 13, 15, 19,
23, ...

Schmerl and Spiegel (1994) proved that Ulam se-
quences (2; v) for ODD v ]5 have exactly two EVEN

terms. Ulam sequences with only finitely many EVEN

terms eventually must have periodic successive dif-
ferences (Finch 1991, 1992abc). Cassaigne and Finch
(1995) proved that the Ulam sequences (4; v) for 5 5
v �1 (mod 4) have exactly three EVEN terms.

The Ulam sequence can be generalized by the S -

ADDITIVE SEQUENCE.

See also GREEDY ALGORITHM, S -ADDITIVE SEQUENCE,
STÖ HR SEQUENCE
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Ulam’s Conjecture
Let graph G have p points vi and graph H have p
points ui ; where p ]3: Then if for each i , the
SUBGRAPHS Gi �G �vi and Hi �H �ui are ISO-

MORPHIC, then the graphs G and H are ISOMORPHIC.

See also ISOMORPHIC GRAPHS, SUBGRAPH

References
Harary, F. Graph Theory. Reading, MA: Addison-Wesley,

p. 12, 1994.

Ulam’s Problem
COLLATZ PROBLEM

Ulam’s Spiral
PRIME SPIRAL

Ultrafactorial
The function defined by U(n) �(n!)n! : The values for
n �0, 1, ..., are 1, 1, 4, 46656,
1333735776850284124449081472843776, ... (Sloane’s
A046882).

See also FACTORIAL
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Ultrafilter
This entry contributed by VIKTOR BENGTSSON

Let S be a nonempty set, then an ultrafilter on S is a
nonempty collection F of subsets of S having the
following properties:

1. fiQF :/
2. If A; B � F then A S B � F :/
3. If A � F and A ⁄B ⁄S then B � F :/
4. For any subset A of S , either A � F or its
complement A?�S �A � F :/

An ultrafilter F on S is said to be free if it contains
the COFINITE FILTER FS of S .

See also COFINITE FILTER, FILTER

Ultrametric
An ultrametric is a METRIC which satisfies the
following strengthened version of the TRIANGLE IN-

EQUALITY,

d(x; z)5max(d(x; y); d(y; z))



for all x; y; z: At least two of d(x; y) ; d(y; z) ; and
d(x; z) are the same.

Let X be a SET, and let XN (where N is the SET of
NATURAL NUMBERS) denote the collection of sequences
of elements of X (i.e., all the possible sequences x1 ; x2 ;
x3 ; ...). For sequences a � a1 ; a2 ; . . .ð Þ; b �
b1 ; b2 ; . . .ð Þ; let n be the number of initial places

where the sequences agree, i.e., a1 �b1 ; a2 �b2 ; ...,
an �bn ; but an�1 "bn �1 : Take n �0 if a1 "b1 : Then
defining d(a; b) �2�n gives an ultrametric.

The P -ADIC NORM metric is another example of an
ultrametric.

See also METRIC, P -ADIC NUMBER

Ultrapower

This entry contributed by MATT INSALL

A specific type of ULTRAPRODUCT that can be used to
construct nonstandard universes and obtain the
TRANSFER PRINCIPLE as a corollary of LOS’ THEOREM

for ultraproducts.

See also LOS’ THEOREM, NONSTANDARD ANALYSIS,
ULTRAPRODUCT

Ultraproduct

See also ULTRAPOWER

Ultraradical
A symbol which can be used to express solutions not
obtainable by finite ROOT EXTRACTION. The solution to
the irreducible QUINTIC EQUATION

x5 �x �a

is written .

See also RADICAL

Ultraspherical Differential Equation
GEGENBAUER DIFFERENTIAL EQUATION

Ultraspherical Function
GEGENBAUER FUNCTION

Ultraspherical Polynomial
GEGENBAUER POLYNOMIAL

Umbilic Point
A point on a surface at which the CURVATURE is the
same in any direction.

Umbral Algebra
The algebra structure of linear functionals on poly-
nomials of a single variable (Roman 1984, pp. 2 �/).

See also UMBRAL CALCULUS

References
Roman, S. "The Umbral Algebra." §2.1 in The Umbral

Calculus. New York: Academic Press, pp. 6 �/2, 1984.

Umbral Calculus
Roman (1984, p. 2) describes umbral calculus as the
study of the class of SHEFFER SEQUENCES. Umbral
calculus provides a formalism for the systematic
derivation and classification of almost all classical
combinatorial identities for polynomial sequences,
along with associated GENERATING FUNCTIONS, ex-
pansions, duplication formulas, RECURRENCE RELA-

TIONS, inversions, RODRIGUES FORMULA, etc., (e.g.,
the EULER-MACLAURIN INTEGRATION FORMULAS, Boo-
le’s summation formula, the CHU-VANDERMONDE

IDENTITY, NEWTON’S DIVIDED DIFFERENCE INTERPOLA-

TION FORMULA, GREGORY’S FORMULA, LAGRANGE IN-

VERSION).

The term "umbral calculus" was coined by Sylvester
from the word "umbra" (meaning "shadow" in Latin),
and reflects the fact that for many types of identities
involving sequences of polynomials with POWERS an ;
"shadow" identities are obtained when the polyno-
mials are changed to discrete values and the expo-
nent in an is changed to the FALLING FACTORIAL

(a)n �a(a �1) � � � (a �n �1):/

For example, NEWTON’S FORWARD DIFFERENCE FOR-

MULA written in the form

f (x �a) �
X�
n�0

(a)n D
nf (x)

n! 
(1)

with f (x �a) �fx �a looks suspiciously like a finite
analog of the TAYLOR SERIES expansion

f (x �a) �
X�
n�0

an D̃nf (x)

n!
; (2)

where D̃ is the DIFFERENTIAL OPERATOR. Similarly,
the CHU-VANDERMONDE IDENTITY

(x�a)n�
X�
k�0

n
k

� �
(a)k(x)n�k (3)

with n
k

� �
a BINOMIAL COEFFICIENT, looks suspiciously

like an analog of the BINOMIAL THEOREM

(x�a)n�
X�
k�0

n
k

� �
akxn�k (4)

(Di Bucchianico and Loeb).

See also APPELL SEQUENCE, BINOMIAL THEOREM,
CHU-VANDERMONDE IDENTITY, COMBINATORICS, FAÁ

DI BRUNO’S FORMULA, FINITE DIFFERENCE, SHEFFER

SEQUENCE
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Umbral Operator
An operator T which maps some BASIC POLYNOMIAL

SEQUENCE pn(x) into another BASIC POLYNOMIAL

SEQUENCE qn(x) :/

See also BASIC POLYNOMIAL SEQUENCE
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Rota, G.-C.; Kahaner, D.; Odlyzko, A. "On the Foundations
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J. Math. Anal. Appl. 42, 684 �/60, 1973.

Umbrella
WHITNEY UMBRELLA

Unambiguous
WELL DEFINED

Unbiased Estimator
A quantity which does not exhibit BIAS. An ESTIMATOR

û is an unbiased estimator of u if

û
� �

� u:

See also BIAS (ESTIMATOR), BIASED ESTIMATOR,
ESTIMATOR, K -STATISTIC

Unbounded

See also BOUNDED

Uncia

1 uncia � 1
12:

The word uncia was Latin for a unit equal to 1/12 of
another unit called the as. The words "inch" (1/12 of a
foot) and "ounce" (originally 1/12 of a pound and still
1/12 of a "Troy pound," now used primarily to weigh
precious metals) are derived from the word uncia.

See also CALCUS, HALF, QUARTER, SCRUPLE, UNIT

FRACTION

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, p. 4, 1996.

Uncorrelated
Variables xi and xj are said to be uncorrelated if their
COVARIANCE is zero:

cov xi ; xj

� �
�0:

INDEPENDENT STATISTICS are always uncorrelated,
but the converse is not necessarily true.

See also COVARIANCE, INDEPENDENT STATISTICS,
UNCORRELATED NUMBERS

Uncorrelated Numbers
A sequence of numbers an is said to be uncorrelated if
it satisfies

lim
n 0�

1

2n

Xn

m��n

a2
m �1

lim
n0�

1

2n

Xn

m��n

am ak �m �0

for k "0 :/

See also WIENER NUMBERS
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Uncountable Set
UNCOUNTABLY INFINITE

Uncountably Infinite
An INFINITE SET, such as the real numbers, which is
not COUNTABLY INFINITE.

See also ALEPH-0, ALEPH-1, COUNTABLE SET, COUN-

TABLY INFINITE, FINITE, INFINITE

References
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Undecagon
HENDECAGON

Undecidable
Not DECIDABLE as a result of being neither formally
provable nor unprovable.

See also GÖ DEL’S INCOMPLETENESS THEOREM, RI-

CHARDSON’S THEOREM

Undecillion
In the American system, 1036.

See also LARGE NUMBER



Undefined
An expression in mathematics which does not have
meaning and so which is not assigned an interpreta-
tion. For example, DIVISION BY ZERO is undefined in
the FIELD of REAL NUMBERS.

See also AMBIGUOUS, DIVISION BY ZERO, ILL DEFINED,
INDETERMINATE, WELL DEFINED

Underbar
UNDERSCORE

Underbrace
BRACE

Underdamping
DAMPED SIMPLE HARMONIC MOTION–UNDERDAMPING

Underdot
A dot placed under a symbol to indicate a DUMMY

VARIABLE, e.g.,
˙
c1 (Comtet 1974, p. 32). This notation,

however, is not very common.

See also DUMMY VARIABLE

References
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Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands:
Reidel, p. 32, 1974.

Underlying Space
The space ½K ½ which is the subset of Rn that is the
union of the simplices in a SIMPLICIAL COMPLEX K .
The term POLYTOPE is sometimes used as a synonym
for underlying space (Munkres 1991, p. 8).

See also POLYHEDRON, POLYTOPE

References
Munkres, J. R. Analysis on Manifolds. Reading, MA: Ad-

dison-Wesley, 1991.

Underscore
A horizontal line placed under a symbol to indicate
some special property. Underscores are sometimes
used instead of over-arrows or bold typeface to
indicate a VECTOR, for example x �

¯
x:/

References
Bringhurst, R. The Elements of Typographic Style, 2nd ed.

Point Roberts, WA: Hartley and Marks, p. 286, 1997.

Undetermined Coefficients Method
Given a nonhomogeneous ORDINARY DIFFERENTIAL

EQUATION, select a differential operator which will
annihilate the right side, and apply it to both sides.
Find the solution to the homogeneous equation, plug
it into the left side of the original equation, and solve

for constants by setting it equal to the right side. The
solution is then obtained by plugging the determined
constants into the homogeneous equation.

See also ORDINARY DIFFERENTIAL EQUATION

Undirected Graph
A GRAPH for which the relations between pairs of
vertices are symmetric, so that each edge has no
directional character (as opposed to a DIRECTED

GRAPH). Unless otherwise indicated by context, the
term "graph" can usually be taken to mean "undir-
ected graph."

See also DEGREE SEQUENCE, DIRECTED GRAPH,
GRAPH

References
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Undulating Number
A number OF THE FORM aba � � � ; abab � � � ; etc. The first
few nontrivial undulants (with the stipulation that
a"b) are 101, 121, 131, 141, 151, 161, 171, 181, 191,
202, 212, ... (Sloane’s A046075). Including the trivial
1- and 2-digit undulants and dropping the require-
ment that a"b gives Sloane’s A033619.

The first few undulating SQUARES are 121, 484, 676,
69696, ... (Sloane’s A016073), with no larger such
numbers of fewer than a million digits (Pickover
1995). Several tricks can be used to speed the search
for square undulating numbers, especially by exam-
ining the possible patterns of ending digits. For
example, the only possible sets of four trailing digits
for undulating SQUARES are 0404, 1616, 2121, 2929,
3636, 6161, 6464, 6969, 8484, and 9696.

The only undulating POWER np�aba � � � for 35p531
and up to 100 digits is 73�343 (Pickover 1995). A
large undulating prime is given by 7�
720 10049�1ð Þ=99 (Pickover 1995).

A binary undulant is a POWER of 2 whose base-10
representation contains one or both of the sequences
010 � � � and 101 � � � : The first few are 2n for n�103,
107, 138, 159, 179, 187, 192, 199, 205, ... (Sloane’s
A046076). The smallest n for which an undulating
sequence of exactly d -digit occurs for d�3, 4, ... are
n�103,138,875,949,6617,1802,14545, ... (Sloane’s
A046077). An undulating binary sequence of length
10 occurs for n�1;748;219 (Pickover 1995).
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Pickover, C. A. "The Undulation of the Monks." Ch. 20 in
Keys to Infinity. New York: W. H. Freeman, pp. 159 �/61
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Encyclopedia of Integer Sequences." http://www.research.-
att.com/~njas/sequences/eisonline.html.

Unduloid
A SURFACE OF REVOLUTION with constant NONZERO

MEAN CURVATURE also called an ONDULOID. It is a
ROULETTE obtained from the path described by the
FOCI of a CONIC SECTION when rolled on a LINE. This
curve then generates an unduloid when revolved
about the LINE. These curves are special cases of the
shapes assumed by soap film spanning the gap
between prescribed boundaries. The unduloid of a
PARABOLA gives a CATENOID.

See also CALCULUS OF VARIATIONS, CATENOID, ROUL-

ETTE, SURFACE OF REVOLUTION
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Unequal
Two quantities a and b which are not equal are said
to be unequal, and this relationship can be denoted
a "b :/

See also EQUAL, INEQUALITY
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Unexpected Hanging Paradox
A PARADOX also known as the SURPRISE EXAMINATION

PARADOX or PREDICTION PARADOX.

A prisoner is told that he will be hanged on some day
between Monday and Friday, but that he will not
know on which day the hanging will occur before it
happens. He cannot be hanged on Friday, because if
he were still alive on Thursday, he would know that
the hanging will occur on Friday, but he has been told
he will not know the day of his hanging in advance.
He cannot be hanged Thursday for the same reason,

and the same argument shows that he cannot be
hanged on any other day. Nevertheless, the execu-
tioner unexpectedly arrives on some day other than
Friday, surprising the prisoner.

This PARADOX is similar to that in Robert Louis
Stevenson’s "BOTTLE IMP PARADOX," in which you
are offered the opportunity to buy, for whatever price
you wish, a bottle containing a genie who will fulfill
your every desire. The only catch is that the bottle
must thereafter be resold for a price smaller than
what you paid for it, or you will be condemned to live
out the rest of your days in excruciating torment.
Obviously, no one would buy the bottle for 1¢ since he
would have to give the bottle away, but no one would
accept the bottle knowing he would be unable to get
rid of it. Similarly, no one would buy it for 2¢, and so
on. However, for some reasonably large amount, it
will always be possible to find a next buyer, so the
bottle will be bought (Paulos 1995).

See also BOTTLE IMP PARADOX, SORITES PARADOX
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Unfair Game
A GAME in which a certain player can always win
when he plays properly. All CATEGORICAL GAMES are
unfair (Steinhaus 1983, p. 16).

See also CATEGORICAL GAME, GAME
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Unfinished Game
SHARING PROBLEM



Unfolding

In 1987, K. Fukuda conjectured that no convex
polyhedra admit a self-overlapping unfolding The
above figure show a counterexample to conjecture 1
found by M. Namiki. A tetrahedron which is also
ununfoldable was subsequently found.

Fukuda also conjectured that every CONVEX POLYHE-

DRON can be uniquely constructed from any of its
unfolding. The counterexample shown above was
found by T. Matsui.

The question of whether every CONVEX POLYHEDRON

admits a self-unoverlapping unfolding is still un-
settled.

See also NET, POLYHEDRON
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Unhappy Number
A number which is not HAPPY is said to be unhappy.

See also HAPPY NUMBER

Unicursal Circuit
A CIRCUIT in which an entire GRAPH is traversed in
one route. An example of a curve which can be traced
unicursally is the MOHAMMED SIGN.

See also CIRCUIT, EULERIAN CIRCUIT, KÖ NIGSBERG

BRIDGE PROBLEM
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Unicyclic Graph
A CONNECTED GRAPH containing exactly one cycle
(Harary 1994, p. 41).
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Unidecagon
HENDECAGON

Uniform Apodization Function

An APODIZATION FUNCTION

f (x)�1; (1)

having INSTRUMENT FUNCTION

I(x)�g
a

�a

e�2pikx dx��
1

2pik
e�2pika�e2pikx
� �

�
sin(2pka)

pk
�2a sinc(2pka): (2)

The peak (in units of a ) is 2. The extrema are given by
letting b�2pka and solving

d

db
(b sin b)�

sin b� b cos b

b2 �0 (3)

sin b�b cos b�0 (4)

tan b�b: (5)

Solving this numerically gives b0�0; b1�4:49341;
b2�7:72525; ...for the first few solutions. The second
of these is the peak POSITIVE sidelobe, and the third is
the peak NEGATIVE sidelobe. As a fraction of the peak,
they are 0.128375 and�0:217234: The FULL WIDTH AT



HALF MAXIMUM is found by setting /I ðxÞ ¼ 1

sinc(x) �1
2 ; (6)

and solving for x1=2 ; yielding

x1 =2 �2 pk1 =2a �1:89549 : (7)

Therefore, with L �2a;

FWHM �2k1 =2 �
0 :603353

a
�

1:20671

L
: (8)

See also APODIZATION FUNCTION

Uniform Boundedness Principle
A "pointwise-bounded" family of continuous linear
OPERATORS from a BANACH SPACE to a NORMED SPACE

is "uniformly bounded." Symbolically, if sup Ti(x)k k is
FINITE for each x in the unit BALL, then sup Tik k is
FINITE. The theorem is also called the BANACH-

STEINHAUS THEOREM.
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Uniform Convergence
A SERIES a�

n�1 un(x) is uniformly convergent to S(x)
for a set E of values of x if, for each e > 0 ; an INTEGER

N can be found such that

Sn(x) �S(x)j j B e (1)

for n ]N and all x � E : To test for uniform conver-
gence, use ABEL’S UNIFORM CONVERGENCE TEST or the
WEIERSTRASS M-TEST. If individual terms un(x) of a
uniformly converging series are continuous, then

1. The series sum

f (x) �
X�
n�1

un(x) (2)

is continuous,
2. The series may be integrated term by term

g
b

a

f (x) dx�
X�
n�1
g

b

a

un(x) dx; (3)

and
3. The series may be differentiated term by term

d

dx
f (x)�

X�
n�1

d

dx
un(x): (4)

See also ABEL’S CONVERGENCE THEOREM, ABEL’S

UNIFORM CONVERGENCE TEST, WEIERSTRASS M-TEST
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Uniform Convexity
This entry contributed by RONALD M. AARTS

To each e > 0; there corresponds a d such that ½½f �
g½½Be whenever ½½f ½½� ½½g½½�1 and ½½(f �g)=2½½ > 1�d:
This is a geometric property of the UNIT SPHERE of
space: if the MIDPOINT of a LINE SEGMENT with
endpoints on the surface of the sphere approaches
the surface, then the endpoints must come closer
together (Cheney 1999).
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Uniform Distribution
A distribution which has constant probability is
called a uniform distribution, sometimes also called
a RECTANGULAR DISTRIBUTION.

The probability density function and cumulative
distribution function for a continuous uniform dis-
tribution are

P(x)�
1

b � a
for aBxBb

0 for xBa; x > b

8<
: (1)

D(x)�

0 for xBa
x � a

b � a
for a5xBb

1 for x]b:

8>><
>>: (2)

With a�0 and b�1, these can be written

P(x)�P x�1
2

� �
(3)

�1
2[sgn(x)�sgn(x�1)] (4)

�H(x)�H(x�1) (5)

D(x)�xH(x)�(x�1)H(x�1); (6)



where P(x) is the RECTANGLE FUNCTION and H(x) is
the HEAVISIDE STEP FUNCTION.

For a continuous uniform distribution, the CHARAC-

TERISTIC FUNCTION is

f(t)�
2

(b � a)t
sin 1

2(b�a)t
h i

ei(a�b)t=2; (7)

and the MOMENT-GENERATING FUNCTION is

M(t)� exth i�g
b

a

ext

b � a
dx�

ext

t(b � a)

" #b

a

; (8)

so

M(t)�
etb � eta

t(b � a)
for t"0

0 for t�0;

8<
: (9)

and

M?(t)�
1

b � a

1

t
bebt�aeat
� �

�
1

t2
ebt�eat
� �" #

�
ebt(bt � 1) � eat(at � 1)

(b � a)t2
: (10)

If a�0 and b�1, the CHARACTERISTIC FUNCTION

simplifies to

f(t)�
2 sin 1

2 t
� �

eit=2

t
�

i � i cos t � sin t

t
: (11)

The MOMENT-GENERATING FUNCTION is not differenti-
able at zero, but the MOMENTS can be calculated by
differentiating and then taking limt00: The RAW

MOMENTS are given by

m?1�
1
2(a�b) (12)

m?2�
1
3 a2�ab�b2
� �

(13)

m?3�
1
4(a�b) a2�b2

� �
(14)

m?4�
1
5 a4�a3b�a2b2�ab3�b4
� �

: (15)

The CENTRAL MOMENTS are then

m1�0 (16)

m2�
1
12(b�a)2 (17)

m3�0 (18)

m4�
1
80(b�a)4; (19)

so the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m�1
2(a�b) (20)

s2 ¼ m2 ¼ 1
12ðb�aÞ2 ð21Þ

g1�
m3

s3=2
�0 (22)

g2��6
5: (23)

The distribution for the sum of n uniform variates on
the interval [0; 1] get be found using the CHARACTER-

ISTIC FUNCTION as

Pn(x)�F�1 i � cos t � sin t

t

 !n" #
(24)

�
1

2(n � 1)!

Xn

k�0

(�1)k n
k

� �
(x�k)n�1 sgn(x�k); (25)

where the Fourier parameters are taken as (1; 1):
The first few values of Pn(x) then give

P1(x)�1
2[sgn(1�x)�sgn x] (26)

P2(x)�1
2[(�2�x) sgn(�2�x)

�2(�1�x) sgn(�1�x)�x sgn x] (27)

P3(x)�1
4[�(�3�x)2 sgn(�3�x)

�3(�2�x)2 sgn(�2�x)

�3(�1�x)2 sgn(�1�x)�x2 sgn x] (28)

P4(x)� 1
12[(�4�x)3 sgn(�4�x)

�4(�3�x)3 sgn(�3�x)

�6(�2�x)3 sgn(�2�x)

�4(�1�x)3 sgn(�1�x)�x3 sgn x]; (29)

illustrated above.

The probability distribution function and cumulative
distributions function for a discrete uniform distribu-
tion are

P(n)�
1

N
(30)

D(n)�
n

N
(31)

for n�1, ..., N . The MOMENT-GENERATING FUNCTION

is



M(t) � enth i�
XN

n�1

1

N
ent �

1

N

et � et(N �1)

1 � et

�
et 1 � eNtð Þ
N 1 � etð Þ

: (32)

The MOMENTS about 0 are

m?m �
1

N

XN

n�1

nm ; (33)

so

m ?1 �
1
2(N �1) (34)

m?2 �
1
6(N �1)(2N �1) (35)

m?3 �
1
4 N(N �1)2 (36)

m?4 �
1

30(N �1)(2N �1) 3N2 �3N �1
� �

; (37)

and the MOMENTS about the MEAN are

m2 �
1

12(N �1)(N �1) (38)

m3 �0 (39)

m4 �
1

240(N �1)(N �1) 3N2 �7
� �

: (40)

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are

m �1
2(N �1) (41)

s2 � m2 �
1
12(N �1)(N �1) (42)

g1 �
m3

s3 =2 
�0 (43)

g2 �
6 N2 � 1ð Þ

5(N � 1)(N � 1) 
: (44)

See also EQUIDISTRIBUTED SEQUENCE, RANDOM NUM-

BER, RECTANGLE FUNCTION
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Uniform Polychoron
A 4-D analog of the UNIFORM POLYHEDRA. In fact, the
UNIFORM POLYHEDRA are cells of the uniform poly-
chora. There are more than 8000 known uniform
polychora. The vertex figures of uniform polychora
are always vertex-inscriptable in hyperspheres.

See also POLYCHORON
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Uniform Polyhedron
The uniform polyhedra are POLYHEDRA with identical
VERTICES. Badoureau discovered 37 nonconvex uni-
form polyhedra in the late nineteenth century, many
previously unknown (Wenninger 1983, p. 55). Cox-
eter et al. (1954) conjectured that there are 75 such
polyhedra in which only two faces are allowed to meet
at an EDGE, and this was subsequently proven.
(However, when any EVEN number of faces may
meet, there are 76 polyhedra.) If the five pentagonal
PRISMS are included, the number rises to 80.

The VERTICES of a uniform polyhedron all lie on a
SPHERE whose center is their CENTROID. The VERTICES

joined to another VERTEX lie on a CIRCLE.

Except for a single non-Wythoffian case, uniform
polyhedra can be generated by Wythoff’s kaleido-
scopic method of construction. In this construction, an
initial vertex inside a special SPHERICAL TRIANGLE

PQR is mapped to all the other vertices by repeated
reflections across the three planar sides of this
triangle. Similarly, PQR and its kaleidoscopic images
must cover the sphere an integral number of times
which is referred to as the density d of PQR . The
density d �1 is dependent on the choice of angles
p=p; p=q; p=r at P , Q , R respectively, where p , q , r
are reduced rational numbers greater than one. Such
a spherical triangle is called a SCHWARZ TRIANGLE,
conveniently denoted (pqr): Except for the infinite
dihedral family of (p22) for p�2, 3, 4, ..., there are
only 44 kinds of Schwarz triangles (Coxeter et al.
1954, Coxeter 1973). It has been shown that the
numerators of p , q , r are limited to 2, 3, 4, 5 (4 and 5
cannot occur together) and so the nine choices for
rational numbers are: 2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, 5/4
(Messer 1999).

The names of the uniform polyhedra were first
formalized in Wenninger (1971), based on a list
prepared by N. Johnson a few years earlier, as
slightly modified by D. Luke. The names of the
uniform duals appeared in Wenninger (1983), again
based on nomenclature suggested by Johnson. John-
son also suggested a few modifications in the original
nomenclature to incorporate some additional
thoughts, as well as to undo some of Luke’s less
felicitous changes. The "List of polyhedra and dual
models" in Wenninger (1983) gives revised names for
several of the uniform polyhedra.

Source code and binary programs for generating and
viewing the uniform polyhedra are also available at
http://www.math.technion.ac.il/~rl/kaleido/. The fol-
lowing depictions of the polyhedra were produced by
R. Maeder’s UniformPolyhedra.m package for
Mathematica . In this package, uniform polyhedra



are computed to the desired numerical precision by
numerically solving the definition fundamental equa-
tion, and lengths are normalized to give a MIDRADIUS

of /r ¼ 1/. Due to a limitation in Mathematica ’s
renderer, uniform polyhedra 69, 72, 74, and 75 cannot
be displayed using this package (Maeder 1993).

The following table gives the names of the uniform
polyhedra and their duals as given in Wenninger
(1971). Coxeter et al. (1954) give many properties of
the uniform solids, and Coxeter et al. (1953), Johnson
(2000) and Messer give the quartic equation for
determining the central angle subtending half an
edge. The single non-Wythoffian case is the GREAT

DIRHOMBICOSIDODECAHEDRON U75 which has pseudo-
WYTHOFF SYMBOL ½3=2 5=3 3 5=2:/

n WYTHOFF

SYMBOL

Name DUAL POLYHEDRON

1 /3 ½ 2 3/ TETRAHEDRON TETRAHEDRON

2 /2 3 ½ 3/ TRUNCATED TETRAHEDRON TRIAKIS TETRAHEDRON

3 /3=2 3 ½ 3/ OCTAHEMIOCTAHEDRON OCTAHEMIOCTACRON

4 /3=2 3 ½ 2/ TETRAHEMIHEXAHEDRON TETRAHEMIHEXACRON

5 /4 ½ 2 3/ OCTAHEDRON CUBE

6 /3 ½ 2 4/ CUBE OCTAHEDRON

7 /2 ½ 3 4/ CUBOCTAHEDRON RHOMBIC DODECAHEDRON

8 /2 4 ½ 3/ TRUNCATED OCTAHEDRON TETRAKIS HEXAHEDRON

9 /2 3 ½ 4/ TRUNCATED CUBE TRIAKIS OCTAHEDRON

10 /3 4 ½ 2/ SMALL RHOMBICUBOCTAHEDRON DELTOIDAL ICOSITETRAHEDRON

11 /2 3 4 ½/ TRUNCATED CUBOCTAHEDRON DISDYAKIS DODECAHEDRON

12 /½ 2 3 4/ SNUB CUBE PENTAGONAL ICOSITETRAHE-

DRON

13 /3=2 4 ½ 4/ SMALL CUBICUBOCTAHEDRON SMALL HEXACRONIC ICOSI-

TETRAHEDRON

14 /3 4 ½ 4=3/ GREAT CUBICUBOCTAHEDRON GREAT HEXACRONIC ICOSI-

TETRAHEDRON

15 /4=3 4 ½ 3/ CUBOHEMIOCTAHEDRON HEXAHEMIOCTACRON

16 /4=3 3 4 ½/ CUBITRUNCATED CUBOCTAHE-

DRON

TETRADYAKIS HEXAHEDRON

17 /3=2 4 ½ 2/ GREAT RHOMBICUBOCTAHEDRON GREAT DELTOIDAL ICOSITETRA-

HEDRON

18 /3=2 2 4 ½/ SMALL RHOMBIHEXAHEDRON SMALL RHOMBIHEXACRON

19 /2 3 ½ 4=3/ STELLATED TRUNCATED HEXAHE-

DRON

GREAT TRIAKIS OCTAHEDRON

20 /4=3 2 3 ½/ GREAT TRUNCATED CUBOCTAHE-

DRON

GREAT DISDYAKIS DODECAHE-

DRON

21 /4=3 3=2 2 ½/ GREAT RHOMBIHEXAHEDRON GREAT RHOMBIHEXACRON

22 /5 ½ 2 3/ ICOSAHEDRON DODECAHEDRON

23 /3 ½ 2 5/ DODECAHEDRON ICOSAHEDRON

24 /2 ½ 3 5/ ICOSIDODECAHEDRON RHOMBIC TRIACONTAHEDRON

25 /2 5 ½ 3/ TRUNCATED ICOSAHEDRON PENTAKIS DODECAHEDRON

26 /2 3 ½ 5/ TRUNCATED DODECAHEDRON TRIAKIS ICOSAHEDRON

27 /3 5 ½ 2/ SMALL RHOMBICOSIDODECAHE-

DRON

DELTOIDAL HEXECONTAHE-

DRON

28 /2 3 5 ½/ TRUNCATED ICOSIDODECAHEDRON DISDYAKIS TRIACONTAHEDRON

29 /½ 2 3 5/ SNUB DODECAHEDRON PENTAGONAL HEXECONTAHE-

DRON

30 /3 ½ 5=2 3/ SMALL DITRIGONAL ICOSIDODECA-

HEDRON

SMALL TRIAMBIC ICOSAHEDRON

31 /5=2 3 ½ 3/ SMALL ICOSICOSIDODECAHEDRON SMALL ICOSACRONIC HEXECON-

TAHEDRON

32 /½ 5=2 3 3/ SMALL SNUB ICOSICOSIDODECA-

HEDRON

SMALL HEXAGONAL HEXECON-

TAHEDRON

33 /3=2 5 ½ 5/ SMALL DODECICOSIDODECAHE-

DRON

SMALL DODECACRONIC HEXE-

CONTAHEDRON

34 /5 ½ 2 5=2/ SMALL STELLATED DODECAHE-

DRON

GREAT DODECAHEDRON

35 /5=2 ½ 2 5/ GREAT DODECAHEDRON SMALL STELLATED DODECAHE-

DRON

36 /2 ½ 5=2 5/ DODECADODECAHEDRON MEDIAL RHOMBIC TRIACONTA-

HEDRON

37 /2 5=2 ½ 5/ TRUNCATED GREAT DODECAHE-

DRON

SMALL STELLAPENTAKIS DO-

DECAHEDRON

38 /5=2 5 ½ 2/ RHOMBIDODECADODECAHEDRON MEDIAL DELTOIDAL HEXECON-

TAHEDRON

39 /2 5=2 5 ½/ SMALL RHOMBIDODECAHEDRON SMALL RHOMBIDODECACRON

40 /½ 2 5=2 5/ SNUB DODECADODECAHEDRON MEDIAL PENTAGONAL HEXE-

CONTAHEDRON

41 /3 ½ 5=3 5/ DITRIGONAL DODECADODECAHE-

DRON

MEDIAL TRIAMBIC ICOSAHE-

DRON

42 /3 5 ½ 5=3/ GREAT DITRIGONAL DODECICOSI-

DODECAHEDRON

GREAT DITRIGONAL DODECA-

CRONIC HEXECONTAHEDRON

43 /5=3 3 ½ 5/ SMALL DITRIGONAL DODECICOSI-

DODECAHEDRON

SMALL DITRIGONAL DODECA-

CRONIC HEXECONTAHEDRON

44 /5=3 5 ½ 3/ ICOSIDODECADODECAHEDRON MEDIAL ICOSACRONIC HEXE-

CONTAHEDRON

45 /5=3 3 5 ½/ ICOSITRUNCATED DODECADODE-

CAHEDRON

TRIDYAKIS ICOSAHEDRON

46 /½ 5=3 3 5/ SNUB ICOSIDODECADODECAHE-

DRON

MEDIAL HEXAGONAL HEXECON-

TAHEDRON

47 /3=2 ½ 3 5/ GREAT DITRIGONAL ICOSIDODECA-

HEDRON

GREAT TRIAMBIC ICOSAHEDRON

48 /3=2 5 ½ 3/ GREAT ICOSICOSIDODECAHEDRON GREAT ICOSACRONIC HEXECON-

TAHEDRON

49 /3=2 3 ½ 5/ SMALL ICOSIHEMIDODECAHEDRON SMALL ICOSIHEMIDODECACRON

50 /3=2 3 5 ½/ SMALL DODECICOSAHEDRON SMALL DODECICOSACRON

51 /5=4 5 ½ 5/ SMALL DODECAHEMIDODECAHE-

DRON

SMALL DODECAHEMIDODECA-

CRON

52 /3 ½ 2 5=2/ GREAT STELLATED DODECAHE-

DRON

GREAT ICOSAHEDRON

53 /5=2 ½ 2 3/ GREAT ICOSAHEDRON GREAT STELLATED DODECAHE-

DRON

54 /2 ½ 5=2 3/ GREAT ICOSIDODECAHEDRON GREAT RHOMBIC TRIACONTAHE-

DRON

55 /2 5=2 ½ 3/ GREAT TRUNCATED ICOSAHEDRON GREAT STELLAPENTAKIS DO-

DECAHEDRON

56 /2 5=2 3 ½/ RHOMBICOSAHEDRON RHOMBICOSACRON

57 /½ 2 5=2 3/ GREAT SNUB ICOSIDODECAHE-

DRON

GREAT PENTAGONAL HEXECON-

TAHEDRON

58 /2 5 ½ 5=3/ SMALL STELLATED TRUNCATED

DODECAHEDRON

GREAT PENTAKIS DODECAHE-

DRON

59 /5=3 2 5 ½/ TRUNCATED DODECADODECAHE-

DRON

MEDIAL DISDYAKIS TRIACONTA-

HEDRON

60 /½ 5=3 2 5/ INVERTED SNUB DODECADODECA-

HEDRON

MEDIAL INVERTED PENTAGO-

NAL HEXECONTAHEDRON

61 /5=2 3 ½ 5=3/ GREAT DODECICOSIDODECAHE-

DRON

GREAT DODECACRONIC HEXE-

CONTAHEDRON

62 /5=3 5=2 ½ 3/ SMALL DODECAHEMICOSAHEDRON SMALL DODECAHEMICOSACRON

63 /5=3 5=2 3 ½/ GREAT DODECICOSAHEDRON GREAT DODECICOSACRON



64 /½ 5=3 5=2 3/ GREAT SNUB DODECICOSIDODECA-

HEDRON

GREAT HEXAGONAL HEXECON-

TAHEDRON

65 /5=4 5 ½ 3/ GREAT DODECAHEMICOSAHEDRON GREAT DODECAHEMICOSACRON

66 /2 3 ½ 5=3/ GREAT STELLATED TRUNCATED

DODECAHEDRON

GREAT TRIAKIS ICOSAHEDRON

67 /5=3 3 ½ 2/ GREAT RHOMBICOSIDODECAHE-

DRON

GREAT DELTOIDAL HEXECONTA-

HEDRON

68 /5=3 2 3 ½/ GREAT TRUNCATED ICOSIDODECA-

HEDRON

GREAT DISDYAKIS TRIACONTA-

HEDRON

69 /½ 5=3 2 3/ GREAT INVERTED SNUB ICOSIDO-

DECAHEDRON

GREAT INVERTED PENTAGONAL

HEXECONTAHEDRON

70 /5=3 5=2 ½ 5=3/ GREAT DODECAHEMIDODECAHE-

DRON

GREAT DODECAHEMIDODECA-

CRON

71 /3=2 3 ½ 5=3/ GREAT ICOSIHEMIDODECAHEDRON GREAT ICOSIHEMIDODECACRON

72 /½ 3=2 3=2 5=2/ SMALL RETROSNUB ICOSICOSIDO-

DECAHEDRON

SMALL HEXAGRAMMIC HEXE-

CONTAHEDRON

73 /3=2 5=3 2 ½/ GREAT RHOMBIDODECAHEDRON GREAT RHOMBIDODECACRON

74 / ½ 3=2 5=3 2/ GREAT RETROSNUB ICOSIDODECA-

HEDRON

GREAT PENTAGRAMMIC HEXE-

CONTAHEDRON

75 /½ 3=2 5=3 3/ 5/

2

GREAT DIRHOMBICOSIDODECAHE-

DRON

GREAT DIRHOMBICOSIDODECA-

CRON

76 /25 ½ 2/ PENTAGONAL PRISM PENTAGONAL DIPYRAMID

77 /½ 2 2 5/ PENTAGONAL ANTIPRISM PENTAGONAL DELTAHEDRON

78 /2 5=2 ½ 2/ PENTAGRAMMIC PRISM PENTAGRAMMIC DIPYRAMID

79 /½ 2 2 5=2/ PENTAGRAMMIC ANTIPRISM PENTAGRAMMIC DELTAHEDRON

80 /½ 2 2 5=3/ PENTAGRAMMIC CROSSED ANTI-

PRISM

PENTAGRAMMIC CONCAVE

DELTAHEDRON

Johnson (2000) proposed a further revision of the
"official" names of the uniform polyhedra and their
duals and, at the same time, devised a literal symbol
for each uniform polyhedron. For each uniform
polyhedron, Johnson (2000) gives its number in
Wenninger (1971), a modified SCHLÄFLI SYMBOL

(following Coxeter), a literal symbol, and its new
designated name. Not every uniform polyhedron has
a dual that is free from anomalies like coincident
vertices or faces extending to infinity. For those that
do, Johnson gives the name of the dual polyhedron. In
Johnson’s new system, the uniform polyhedra are
classified as follows:



1. Regular (regular polygonal vertex figures),
2. Quasi-regular (rectangular or ditrigonal vertex
figures),
3. Versi-regular (orthodiagonal vertex figures),
4. Truncated regular (isosceles triangular vertex
figures),
5. Quasi-quasi-regular (trapezoidal vertex figures),
6. Versi-quasi-regular (dipteroidal vertex figures),
7. Truncated quasi-regular (scalene triangular
vertex figures),
8. Snub quasi-regular (pentagonal, hexagonal, or
octagonal vertex figures),
9. Prisms (truncated hosohedra),
10. Antiprisms and crossed antiprisms (snub
dihedra)

Here is a brief description of Johnson’s symbols for
the uniform polyhedra (Johnson). The star operator +

appended to "D" or "E" replaces pentagons f5g by
pentagrams f5=2g: The bar operator ½ indicates the
removal from a related figure of a set (or sets) of faces,
leaving "holes" so that a different set of faces takes
their place. Thus, C/½/O is obtained from the cubocta-
hedron CO by replacing the eight triangles by four
hexagons. In like manner, rR’/½/CO has the twelve
squares of the rhombicuboctahedron rCO and the six
octagons of the small cubicuboctahedron R’CO but
has holes in place of their six squares and eight
triangles. The operator "r" stands for "rectified": a
polyhedron is truncated to the midpoints of the edges.
Operators "a", "b", and "c" in the SCHLÄFLI SYMBOLS

for the ditrigonary (i.e., having ditrigonal vertex
figures) polyhedra stand for "altered," "blended,"
and "converted." The operator "o" stands for "ossified"
(after S. L. van Oss). Operators "s" and "t" stand for
"simiated" (snub) and "truncated."

Primes and capital letters are used for certain
operators analogous to those just mentioned. For
instance, rXY is the "rhombi-XY," with the faces of
the quasi-regular XY supplemented by a set of square
"rhombical" faces. The isomorphic r’XY has a crossed
vertex figure. The operators "R" and "R’" denote a
supplementary set of faces of a different kind–
hexagons, octagons or octagrams, decagons or deca-
grams. Likewise, the operators "T" and "S" indicate
the presence of faces other than, or in addition to,
those produced by the simpler operators "t" and "s".
The vertex figure of s’XY, the "vertisnub XY", is a
crossed polygon, and that of s*XY, the "retrosnub
XY", has density 2 relative to its circumcenter.

Regular polyhedra: pq
/

1 /f3; 3g/ T Tetrahedron Tetrahedron

2 /f3; 4g/ O Octahedron Cube

3 /f4; 3g/ C Cube Octahedron

4 /f3; 5g/ I Icosahedron Dodecahedron

5 /f5; 3g/ D Dodecahedron Icosahedron

20 /f5=2; 5g/ D* Small stellated

dodecahedron

Great dodeca-

hedron

21 /f5; 5=2g/ E Great dodecahe-

dron

Small stellated

dodecahedron

22 /f5=2; 3g/ E* Great stellated

dodecahedron

Great icosa-

hedron

41 /f3; 5=2g/ J Great icosahe-

dron

Great stellated

dodecahedron

Quasi-regular polyhedra: (p:q)r
/

11 r/f3; 4g/ CO Cuboctahedron Rhombic dodeca-
hedron

12 r/f3; 5g/ ID Icosidodecahedron Rhombic triacon-
tahedron

73 r/f5=2; 5g/ ED* Dodecadodecahe-
dron

Middle rhombic
triacontahedron

94 r/f5=2; 3g/ JE* Great icosidodeca-
hedron

Great rhombic
triacontahedron

70 a/f5; 3g/ ID* Small ditrigonary
icosidodecahedron

Small triambic
icosahedron

80 b/f5; 5=2g/ DE* Ditrigonary dode-
cadodecahedron

Middle triambic
icosahedron

87 c/f3; 5=2g/ JE Great ditrigonary
icosidodecahedron

Great triambic
icosahedron

Versi-regular polyhedra: q:h:q:h/

67 o/f3; 3g/ T/½/T Tetrahemihexahedron no dual

78 o/f3; 4g/ C/½/O Cubohemioctahedron no dual

68 o/f4; 3g/ O/½/C Octahemioctahedron no dual

91 o/f3; 5g/ D/½/I Small dodecahemidodeca-
hedron

no dual

89 o/f5; 3g/ I/½/D Small icosahemidodeca-
hedron

no dual

102 o/f5=2; 5g/ E/½/D* Small dodecahemiicosa-
hedron

no dual

100 o/f5; 5=2g/ D*/½/E Great dodecahemiicosa-
hedron

no dual

106 o/f5=2; 3g/ J/½/E* Great icosahemidodeca-
hedron

no dual

107 o/f3; 5=2g/ E*/½/J Great dodecahemidodeca-
hedron

no dual

Truncated regular polyhedra: q:2p:2p/

6 t/f3; 3g/ tT Truncated tetra-
hedron

Triakis tetra-
hedron

7 t/f3; 4g/ tO Truncated octa-
hedron

Tetrakis hexa-
hedron



8 t/f4; 3g/ tC Truncated cube Triakis octa-
hedron

92 t’/f4; 3g/ t’C stellatruncated
cube

Great triakis
octahedron

9 t/f3; 5g/ tI Truncated icosa-
hedron

Pentakis do-
decahedron

10 t/f5; 3g/ tD Truncated do-
decahedron

Triakis icosa-
hedron

97 t’/f5=2; 5g/ t’D* Small stellatrun-
cated dodecahe-
dron

Great pentakis
dodecahedron

75 t/f5; 5=2g/ tE Great truncated
dodecahedron

Small stellapenta-
kis dodecahedron

104 t’/f5=2; 3g/ t’E* Great stellatrun-
cated dodecahe-
dron

Great triakis
icosahedron

95 t/f3; 5=2g/ tJ Great truncated
icosahedron

Great stellapenta-
kis dodecahedron

Quasi-quasi-regular polyhedra: p:2r:q:2r and
p:2s:q:2s/

13 rr/f3; 4g/ rCO Rhombicubocta-

hedron

Strombic disdodeca-

hedron

69 R’r/f3; 4g/ R’CO Small cubicubocta-

hedron

Small sagittal disdo-

decahedron

77 Rr/f3; 4g/ RCO Great cubicubocta-

hedron

Great strombic dis-

dodecahedron

85 r’r/f3; 4g/ r’CO Great rhombicub-

octahedron

Great sagittal disdo-

decahedron

14 rr/f3; 5g/ rID Rhombicosidodeca-

hedron

Strombic hexecon-

tahedron

72 R’r/f3; 5g/ R’ID Small dodekicosido-

decahedron

Small sagittal

hexecontahedron

71 ra/f5; 3g/ rID* Small icosified icosi-

dodecahedron

Small strombic

trisicosahedron

82 R’a/f5; 3g/ R’ID* Small dodekified ico-

sidodecahedron

Small sagittal trisico-

sahedron

76 rr/f5=2; 5g/ rED* Rhombidodecado-

decahedron

Middle strombic tri-

sicosahedron

83 R’r/f5=2; 5g/ R’ED* Icosified dodecado-

decahedron

Middle sagittal trisi-

cosahedron

81 Rc/f3; 5=2g/ RJE Great dodekified ico-

sidodecahedron

Great strombic trisi-

cosahedron

88 r’c/f3; 5=2g/ r’JE Great icosified icosi-

dodecahedron

Great sagittal trisico-

sahedron

99 Rr/f5=2; 3g/ RJE* Great dodekicosido-

decahedron

Great strombic hexe-

contahedron

105 r’r/f5=2; 3g/ r’JE* Great rhombicosido-

decahedron

Great sagittal hexe-

contahedron

Versi-quasi-regular polyhedra: 2r:2s:2r:2s/

86 or/f3; 4g/ rR’/½/CO Small rhombi-
cube

Small dipteral
disdodecahedron

103 Or/f3; 4g/ Rr’/½/CO Great rhombi-
cube

Great dipteral
disdodecahedron

74 or/f3; 5g/ rR’/½/ID Small rhombido-
decahedron

Small dipteral
hexecontahedron

90 oa/f5; 3g/ rR’/½/ID* Small dodekico-
sahedron

Small dipteral
trisicosahedron

96 or/f5=2; 5g/ rR’/½/ED* Rhombicosahe-
dron

Middle dipteral
trisicosahedron

101 Oc/f3; 5=2g/ Rr’/½/JE Great dodekico-
sahedron

Great dipteral
trisicosahedron

109 Or/f5=2; 3g/ Rr’/½/JE* Great rhombido-
decahedron

Great dipteral
hexecontahedron

Truncated quasi-regular polyhedra: 2p:2q:2r/

15 tr/f3; 4g/ tCO Truncated cuboc-
tahedron

Disdyakis dode-
cahedron

93 t’r/f3; 4g/ t’CO Stellatruncated
cuboctahedron

Great disdyakis
dodecahedron

79 Tr/f3; 4g/ TCO Cubitruncated
cuboctahedron

Trisdyakis octa-
hedron

16 tr/f3; 5g/ tID Truncated icosi-
dodecahedron

Disdyakis tria-
contahedron

98 t’r/f5=2; 5g/ t’ED* Stellatruncated
dodecadodecahe-
dron

Middle disdyakis
triacontahedron

84 T’r/f5=2; 5g/ T’ED* Icositruncated
dodecadodecahe-
dron

Trisdyakis icosa-
hedron

108 t’r/f5=2; 3g/ t’JE* Stellatruncated
icosidodecahe-
dron

Great disdyakis
triacontahedron

Snub quasi-regular polyhedra: p:3:q:3:3 or p:3:q:3:r:3/

17 sr/f3; 4g/ sCO Snub cuboctahedron Petaloidal disdodeca-

hedron

18 sr/f3; 5g/ sID Snub icosidodecahe-

dron

Petaloidal hexeconta-

hedron

110 sa/f5; 3g/ sID* Snub disicosidodeca-

hedron

no dual

118 s*a/f5; 3g/ s*ID* Retrosnub disicosido-

decahedron

no dual

111 sr/f5=2; 5g/ sED* Snub dodecadodeca-

hedron

Petaloidal trisicosa-

hedron

114 s’r/f5=2; 5g/ s’ED* Vertisnub dodecado-

decahedron

Vertipetaloidal trisi-

cosahedron

112 S’r/f5=2; 5g/ S’ED* Snub icosidodecado-

decahedron

Hexaloidal trisicosa-

hedron

113 sr/f5=2; 3g/ sJE* Great snub icosido-

decahedron

Great petaloidal hex-

econtahedron

116 s’r/f5=2; 3g/ s’JE* Great vertisnub ico-

sidodecahedron

Great vertipetaloidal

hexecontahedron

117 s*r/f5=2; 3g/ s*JE* Great retrosnub ico-

sidodecahedron

Great retropetaloidal

hexecontahedron



Snub quasi-regular polyhedron: (p :4:q:4)2
/

119 SSr/f5 =2; 3g/ SSJE* Great disnub
disicosidisdode-
cahedron

no dual

Prisms: p:4 :4/

/fpgxfg/ P(p) p -gonal prism,

p �3, 5, 6, ...

p -gonal bipyra-

mid

/fp =dgxfg/ P(p/d) d -fold p -gonal

prism, p=d > 2/

d -fold p -gonal

bipyramid

Antiprisms and crossed antiprisms: 3 :3 :3:p/

s/fpg/h/fg/ Q(p) p -gonal anti-

prism, p �4, 5,

6, ...

p -gonal antibi-

pyramid

s/ fp=dg/h/fg/ Q(p/d) d -fold p -gonal

antiprism,

p=d > 2/

d -fold p -gonal

antibipyramid

s’/ fp=dg/h/fg/ Q’(p/d) d -fold p -gonal

crossed anti-

prism,

2 Bp=d B3/

d -fold p -gonal

crossed antibi-

pyramid

See also ARCHIMEDEAN SOLID, AUGMENTED POLYHE-

DRON, DUAL POLYHEDRON, JOHNSON SOLID, KEPLER-

POINSOT SOLID, MÖ BIUS TRIANGLES, PLATONIC SOLID,
POLYHEDRON, SCHWARZ TRIANGLE, UNIFORM POLY-

CHORON, VERTEX FIGURE, WYTHOFF SYMBOL
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Uniform Variate
A RANDOM NUMBER which lies within a specified
range (which can, without loss of generality, be taken
as [0, 1]), with a UNIFORM DISTRIBUTION.
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Uniformization

See also UNIFORMIZATION THEOREM

Uniformization Theorem

See also UNIFORMIZATION



Uniformly Cauchy
The series a�

j�1 fj(z) is said to be uniformly Cauchy on
compact sets if, for each compact K ⁄U and each e >
0; there exists an N �0 such that for all M ]L > N ;

XM
j�L

fj(z)

!!!!!
!!!!!B e

holds (Krantz 1999, p. 104).
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Uniformly Distributed Sequence
EQUIDISTRIBUTED SEQUENCE

Unimodal Distribution
A STATISTICAL DISTRIBUTION such as the GAUSSIAN

DISTRIBUTION which has a single "peak."

See also BIMODAL DISTRIBUTION

Unimodal Sequence
A finite SEQUENCE which first increases and then
decreases. A SEQUENCE s1 ; s2 ; . . . ; snf g is unimodal if
there exists a t such that

s1 5s2 5. . .5st

and

st ]st �1 ]. . .]sn :

Unimodular Group
A GROUP whose left HAAR MEASURE equals its right
HAAR MEASURE.

See also HAAR MEASURE, MODULAR GROUP GAMMA,
MODULAR GROUP GAMMA0, MODULAR GROUP LAMBDA
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Unimodular Matrix
A MATRIX A with INTEGER elements and DETERMINANT

det(A) �91 ; also called a UNIT MATRIX.

The inverse of a unimodular matrix is another
unimodular matrix. A POSITIVE unimodular matrix
has det (A) ��1: The nth POWER of a POSITIVE

UNIMODULAR MATRIX

M �
m11 m12

m21 m22

" #
(1)

is

Mn �
m11Un�1(a) �Un�2(a) m12Un�1(a)

m21Un�1(a) m22Un�1(a) �Un �2(a)

" #
;

(2)

where

a �1
2 m11 �m22ð Þ  (3)

and the Un are CHEBYSHEV POLYNOMIALS OF THE

SECOND KIND,

Um(x) �
sin (m � 1) cos�1 x½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p : (4)

See also CHEBYSHEV POLYNOMIAL OF THE SECOND

KIND

References
Born, M. and Wolf, E. Principles of Optics: Electromagnetic

Theory of Propagation, Interference, and Diffraction of
Light, 6th ed. New York: Pergamon Press, p. 67, 1980.

Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA:
Addison-Wesley, p. 149, 1980.

Séroul, R. Programming for Mathematicians. Berlin:
Springer-Verlag, p. 162, 2000.

Unimodular Transformation
A transformation x ?�Ax is unimodular if the DETER-

MINANT of the MATRIX A satisfies

det(A) �91:

A NECESSARY and SUFFICIENT condition that a linear
transformation transform a lattice to itself is that the
transformation be unimodular.

If z is a COMPLEX NUMBER, then the transformation

z ?�
az � b

cz � d

is called a unimodular if a , b , c , and d are integers
with ad�bc�1: The set of all unimodular transfor-
mations forms a GROUP called the MODULAR GROUP.

See also MODULAR GROUP, MODULAR GROUP GAMMA

Union
The union of two sets A and B is the set obtained by
combining the members of each. This is written A@B;
and is pronounced "A union B " or "A cup B ." The
union of sets A1 through An is written@ n

i�1 Ai:/

Let A , B , C , ... be sets, and let P(S) denote the
probability of S . Then

P(A@B)�P(A)�P(B)�P(ASB): (1)

Similarly,

P(A@B@C)�P[A@ (B@C)]

�P(A)�P(B@C)�P[AS (B@C)]



�P(A) �[P(B) �P(C) �P(B S C)]

�P[(A S B) @ (A S C)]

�P(A) �P(B) �P(C) �P(B S C)

�fP(A S B) �P(A S C) �P[(A S B) S (A S C)] g

�P(A) �P(B) �P(C) �P(A S B)

�P(A S C) �P(B S C) �P(A S B S C): (2)

If A and B are DISJOINT SETS, then by definition P(A S
B) �0; so

P(A @ B) �P(A) �P(B): (3)

Continuing, for a set of n disjoint elements E1 ; E2 ; ...,
En

P �
n

i�1

Ei

� �
�
Xn

i�1

P Eið Þ; (4)

which is the COUNTABLE ADDITIVITY PROBABILITY

AXIOM. Now let

Ei �A S Bi ; (5)

then

P �
n

i�1

E S Bi

� �
�
Xn

i�1

P ES Bið Þ: (6)

See also DISJOINT UNION, INTERSECTION, OR, UNION-

CLOSED SET

Union-Closed Set
A union-closed set is a nonempty finite collection of
distinct nonempty finite sets which is CLOSED under
UNION.

See also UNION-CLOSED SETS CONJECTURE

Union-Closed Sets Conjecture
Let A � A1 ; A2 ; . . . ; Anf g be a UNION-CLOSED SET,
then the union-closed set conjecture states that an
element exists which belongs to at least n=2 of the
sets in A . Sarvate and Renaud (1989) showed that the
conjecture is true if A1j j52; where A1 is the smallest
set in A , or if n B11. They also showed that if the
conjecture fails, then A1j j B Anj j=2; where An is the
largest set of A .

The proof for the case where A has a 2-set can be
effected as follows. Write A1 �fx; y g; then partition
the sets of A into four disjoint families B0 ; Bx ; By ; and
Bxy ; according to whether their intersection with A1 is
¥; fxg; fyg; or fx; yg; respectively. It follows that
Bxy

!! !!] B0j j by taking unions with A1 ; where ½B ½ is the
CARDINALITY of B . Now compare Bxj j with By

!! !!: If
Bxj j] By

!! !!; then Bxj j� Bxyj j] B0j j� By

!! !!; so x is in at

least half the sets of A . Similarly, if Bxj j5 By

!! !!; then y
is in at least half the sets (Hoey).

Unfortunately, this method of proof does extend to
A1j j �3 ; since Sarvate and Renaud show an example
of a UNION-CLOSED SET with A1 �fx; y; zg where none
of x , y , z is in half the sets. However, in these cases,
there are other elements which do appear in half the
sets, so this is not a counterexample to the conjecture,
but only a limitation to the method of proof given
above (Hoey).

See also UNION-CLOSED SET
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Uniplanar Double Point
ISOLATED SINGULARITY

Unipotent
A P -ELEMENT x of a GROUP G is unipotent if F � CG(x)ð Þ
is a P -GROUP, where F � is the generalized FITTING

SUBGROUP.

See also FITTING SUBGROUP, P -ELEMENT, P -GROUP

Unique
The property of being the only possible solution
(perhaps modulo a constant, class of transformation,
etc.).

See also ALEKSANDROV’S UNIQUENESS THEOREM,
EXISTENCE, MAY-THOMASON UNIQUENESS THEOREM,
UNIQUE FACTORIZATION

Unique Factorization

See also FUNDAMENTAL THEOREM OF ARITHMETIC,
UNIQUE FACTORIZATION DOMAIN

Unique Factorization Domain

See also FUNDAMENTAL THEOREM OF ARITHMETIC,
UNIQUE FACTORIZATION

Unique Factorization Theorem
FUNDAMENTAL THEOREM OF ARITHMETIC

Unit
A unit is an element in a RING that has a multi-
plicative inverse. If n is an ALGEBRAIC INTEGER which
divides every ALGEBRAIC INTEGER in the FIELD, n is
called a unit in that FIELD. A given FIELD may contain



an infinity of units. The units of Zn are the elements
RELATIVELY PRIME to n . The units in Zn which are
SQUARES are called QUADRATIC RESIDUES.

See also EISENSTEIN UNIT, FUNDAMENTAL UNIT,
IMAGINARY UNIT, PRIME UNIT, QUADRATIC RESIDUE

Unit Ball
A BALL of RADIUS 1.

See also SPHERE, BALL, UNIT CUBE, UNIT SPHERE

Unit Cell
A parallelogram (parallelepiped) containing the mini-
mum repeatable elements of a circle (sphere) packing.

See also CIRCLE PACKING, PACKING DENSITY, SPHERE

PACKING
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Unit Circle

A CIRCLE of RADIUS 1, such as the one used to defined
the functions of TRIGONOMETRY.

See also CIRCLE, UNIT DISK, UNIT SQUARE
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Unit Cube
A CUBE whose edge lengths are 1. The unit cube
therefore has unit volume.

See also CUBE, UNIT SQUARE, UNIT SPHERE

Unit Disk

A DISK with RADIUS 1.

See also FIVE DISKS PROBLEM, LOWER HALF-DISK,
SEMICIRCLE, UNIT CIRCLE, UNIT SQUARE, UPPER

HALF-DISK

Unit Element
IDENTITY ELEMENT

Unit Fraction
A unit fraction is a FRACTION with NUMERATOR 1.
Examples of unit fractions include 1/2, 1/3, 1/12, and
1/123456. Unit fractions are also known as Egyptian
fractions as a result of their extensive use by ancient
Egyptians as a way of representing other fractions.
The famous Rhind papyrus, dated to around 1650 BC,
discusses unit fractions and contains a table of
representations of 2=n as a sum of distinct unit
fractions for ODD n between 5 and 101. The reason
the Egyptians chose this method for representing
fractions is not clear, although André Weil character-
ized the decision as "a wrong turn" (Hoffman 1998,
pp. 153�/54). The unique fraction that the Egyptians
did not represent using unit fractions was 2/3 (Wells
1986, p. 29).

Unit fractions are almost always required to exclude
repeated terms, since representations such as 1=5�
1=5�1=5 are trivial. Any RATIONAL NUMBER has
representations as a sum of distinct unit fractions
with arbitrarily many terms and with arbitrarily
large DENOMINATORS, although for a given fixed
number of terms, there are only finitely many.
Fibonacci proved that any fraction can be REPRE-

SENTED AS a sum of distinct unit fractions (Hoffman
1998, p. 154). An infinite chain of unit fractions can
be constructed using the identity

1

a
�

1

a � 1
�

1

a(a � 1)
: (1)

Martin (1999) showed that for every positive RA-

TIONAL NUMBER, there exist representations as unit
fractions whose largest DENOMINATOR is at most N
and whose DENOMINATORS form a positive proportion
of the integers up to N for sufficiently large N . Each
FRACTION x=y with y ODD has a unit fraction repre-
sentation in which each DENOMINATOR is ODD

(Breusch 1954; Guy 1994, p. 160). Every x=y has a
t -term representation where t�O(

ffiffiffiffiffiffiffiffiffiffiffi
log y

p
) (Vose

1985).

No algorithm is known for producing unit fraction
representations having either a minimum number of
terms or smallest possible denominator (Hoffman
1998, p. 155). However, there are a number of
ALGORITHMS (including the BINARY REMAINDER

METHOD, CONTINUED FRACTION UNIT FRACTION ALGO-

RITHM, GENERALIZED REMAINDER METHOD, GREEDY

ALGORITHM, REVERSE GREEDY ALGORITHM, SMALL

MULTIPLE METHOD, and SPLITTING ALGORITHM) for
decomposing an arbitrary FRACTION into unit frac-
tions. In 1202, Fibonacci published an algorithm for
constructing unit fraction representations, and this
algorithm was subsequently rediscovered by Sylve-
ster (Hoffman 1998, p. 154; Martin 1999).

Taking the fractions 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, ... (the
numerators of which are Sloane’s A002260, and the
denominators of which are n�1 copies of the integer



n ), the unit fraction representations using the
GREEDY ALGORITHM are

1

2 
�

1

2
1

3 
�

1

3
2

3 
�

1

2 
�

1

6
1

4 
�

1

4
2

4 
�

1

2
3

4 
�

1

2 
�

1

4
1

5 
�

1

5
2

5 
�

1

3 
�

1

15
3

5 
�

1

2 
�

1

10
4

5 
�

1

2 
�

1

4
�

1

20 
:

The number of terms in these representations are 1,
1, 2, 1, 1, 2, 1, 2, 2, 3, 1, ... (Sloane’s A050205). The
minimum denominators for each representation are
given by 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 6, 3, 2, ... (Sloane’s
A050206), and the maximum denominators are 2, 3,
6, 4, 2, 4, 5, 15, 10, 20, 6, 3, 2, ... (Sloane’s A050210).

Wilf posed as a problem that any fraction with odd
denominator can be REPRESENTED AS a sum of unit
fractions, each having an odd denominator, and
Graham proved that infinitely many fractions with
a certain range can be represented as a sum of units
fractions with square denominators (Hoffman 1998,
p. 156).

Paul Erdos and E. G. Straus have conjectured that
the DIOPHANTINE EQUATION

4

n 
�

1

a 
�

1

b
�

1

c 
(2)

always can be solved (Obláth 1950, Rosati 1954,
Bernstein 1962, Yamamoto 1965, Vaughan 1970,
Guy 1994), and Sierpinski (1956) conjectured that

5

n 
�

1

a 
�

1

b
�

1

c 
(3)

can be solved (Guy 1994).

The HARMONIC NUMBER Hn is never an INTEGER

except for H1 : This result was proved im 1915 by
Taeisinger, and the more general results that any
number of consecutive terms not necessarily starting
with 1 never sum to an integer was proved by

Kürschák in 1918 (Hoffman 1998, p. 157). In 1932,
Erdos proved that the sum of the reciprocals of any
number of equally spaced integers is never a recipro-
cal.

See also CALCUS, EGYPTIAN NUMBER, HALF, HARMO-

NIC NUMBER, QUARTER, SCRUPLE, UNCIA
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Unit Lattice
A POINT LATTICE which can be constructed from an
arbitrary PARALLELOGRAM of unit area. For any such
planar lattice, the minimum distance c between any
two points is a quantity characteristic of the lattice.
This distance satisfies

c 5

ffiffiffiffiffiffiffi
2ffiffiffi
3

p
s

(Hilbert and Cohn-Vossen 1999, p. 36). For a lattice
in 3-D,

c 521 =6

(Hilbert and Cohn-Vossen 1999, p. 45).

See also HYPERSPHERE PACKING, POINT LATTICE,
SPHERE PACKING
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Unit Matrix
An INTEGER MATRIX consisting of all 1s. The m �n
unit matrix is often denoted Jmn ; or Jn if m �n .
Square unit matrices have DETERMINANT 0.

See also IDENTITY MATRIX, UNIMODULAR MATRIX
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Unit Neighborhood Graph
A DISTANCE GRAPH with distance set 0; 1ð :/

See also DISTANCE GRAPH, UNIT-DISTANCE GRAPH
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Unit Point
The point in the PLANE with Cartesian coordinates (1,
1).
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Unit Ring
A unit ring is a set together with two BINARY

OPERATORS S(�; +) satisfying the following condi-
tions:

1. Additive associativity: For all a; b; c � S;
ða þ bÞ þ c ¼ a þ ðb þ c Þ/,
2. Additive commutativity: For all a ; b � S;
a �b �b �a ;/
3. Additive identity: There exists an element 0 � S
such that for all a � S : 0�a �a �0 �a;/
4. Additive inverse: For every a � S; there exists a
�a � S such that /a þ ð�aÞ ¼ ð�a Þ þ a ¼ 0/,
5. Multiplicative associativity: For all a; b; c � S;
ða + b Þ + c ¼ a + ðb + c Þ/,
6. Multiplicative identity: There exists an element
1 � S such that for all a � S; 1 + a �a + 1 �a ;/
7. Left and right distributivity: For all a; b; c � S;
a + ðb þ c Þ ¼ ða + bÞ þ ða + c Þ/ and / ðb þ c Þ + a ¼/

/ ðb + a Þ þ ðc + a Þ/.

Thus, a unit ring is a RING with a multiplicative
identity.

See also BINARY OPERATOR, RING
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Unit Sphere
A SPHERE of RADIUS 1.

See also SPHERE, BALL, UNIT CIRCLE



Unit Square

A SQUARE with side lengths 1. The unit square
usually means the one with coordinates (0, 0), (1, 0),
(1, 1), (0, 1) in the real plane, or 0, 1, 1 �i; and i in the
COMPLEX PLANE.

See also HEILBRONN TRIANGLE PROBLEM, UNIT

CIRCLE, UNIT CUBE, UNIT DISK

Unit Vector
A VECTOR of unit length, sometimes also called a
DIRECTION VECTOR (Jeffreys and Jeffreys 1988). The
unit vector v̂ having the same direction as a given
(nonzero) vector v is defined by

v̂ �
v

vj j
;

where vj j denotes the NORM of v, is the unit vector in
the same direction as the (finite) VECTOR v. A unit
vector in the xn direction is given by

x̂n �

@r

@xn

@r

@xn

!!!!!
!!!!!
;

where r is the RADIUS VECTOR.

See also NORM, RADIUS VECTOR, VECTOR, ZERO

VECTOR
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Unital
A BLOCK DESIGN OF THE FORM (/q3 �1 ; q �1; 1).

References
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Unitary
An OPERATOR U satisfying

U �U �1
UU ��1;

where U � is the ADJOINT.

See also ANTIUNITARY
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Unitary Aliquot Sequence
An ALIQUOT SEQUENCE computed using the analog of
the RESTRICTED DIVISOR FUNCTION s �(n) in which only
UNITARY DIVISORS are included.

See also ALIQUOT SEQUENCE, UNITARY AMICABLE

PAIR, UNITARY SOCIABLE NUMBERS
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Unitary Amicable Pair
A PAIR of numbers m and n such that

s�(m) � s �(n) �m �n;

where s�(n) is the sum of UNITARY DIVISORS. Hagis
(1971) and Garcı́a (1987) give 82 such pairs. The first
few are (114, 126), (1140, 1260), (18018, 22302),
(32130, 40446), ... (Sloane’s A002952 and A002953).
The largest known unitary amicable pair, each
member of which has 192 digits,

22 � 32 � 59 � 73 � 11 � 13 � 172 � 19 � 29 � 41 � 43 � 47

�79 � 157 � 163 � 223 � 433 � 1303 � 1399 � 2053

�2719 � 5167 � 13187 � 16787 � 52747 � 98543

�284337 � 500739672615943

�7010355416623201

�16506961423173486727453

�10109028245165675006759491729

� 53 � 9163813886186194062277465733355041
494845949854054479362983149601172267

" #
(Y. Kohmoto).

Kohmoto calls a unitary amicable pair whose mem-
bers are squareful a proper unitary amicable pair.

See also AMICABLE PAIR, SUPER UNITARY AMICABLE

PAIR, UNITARY ALIQUOT SEQUENCE, UNITARY DIVISOR
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Unitary Divisor
A DIVISOR d of n for which

GCD(d; n=d) �1; (1)

where GCD(m; n) is the GREATEST COMMON DIVISOR.
For example, the divisors of 12 are
f1; 2; 3; 4; 6; 12g; so the unitary divisors are
f1; 3; 4; 12g:/
Given the PRIME FACTORIZATION

n �
Yk

i�1

pai

i ; (2)

then

d �productpci

i (3)

is a unitary divisor of n if each ci is 0 or ai : For a
PRIME POWER py ; the unitary divisors are 1 and py

(Cohen 1990).

The numbers of unitary divisors of n �1, 2, ... are 1, 2,
2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, ... (Sloane’s
A034444). These numbers are also the numbers of
squarefree divisors of n . The number of unitary
divisors of n is also given by 2q ; where q is the
number of different primes dividing n .

The symbol s�(n) is used to denote to the UNITARY

DIVISOR FUNCTION.

See also BIUNITARY DIVISOR, DIVISOR, GREATEST

COMMON DIVISOR, K -ARY DIVISOR, SUPER UNITARY

AMICABLE PAIR, SUPER UNITARY PERFECT NUMBER,
UNITARY DIVISOR FUNCTION, UNITARY PERFECT NUM-

BER
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Unitary Divisor Function
The symbol s�(n) is used to denote to the sum-of-
UNITARY DIVISORS function. If n is SQUAREFREE, then
s(n) � s�(n): For n �1, 2, ..., the first few values of
s�(n) are given by 1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, ...
(Sloane’s A034448).

See also UNITARY DIVISOR
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Unitary Group
The unitary group Un(q) is the set of n �n UNITARY

MATRICES.

See also LIE-TYPE GROUP, UNITARY MATRIX
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Unitary Matrix
A SQUARE MATRIX U is a unitary matrix if

U��U�1 ; (1)

where U � denotes the ADJOINT MATRIX and U�1 is the
MATRIX INVERSE. For example,

A �
2�1 =2 2�1 =2 0

�2�1 =2i 2�1=2i 0
0 0 i

2
4

3
5 (2)

is a unitary matrix. A matrix m can be tested to see if
it is unitary using the Mathematica function

UnitaryQ[m_List?MatrixQ] :�
(Conjugate@Transpose@m.m ��

IdentityMatrix@Length@m)

The definition of a unitary matrix guarantees that

U�U�I; (3)

where I is the IDENTITY MATRIX. In particular, a
unitary matrix is always invertible, and U�1�U�:
Note that TRANSPOSE is a much simpler computation
than inverse. Unitary matrices leave the length of a
COMPLEX VECTOR unchanged. A SIMILARITY TRANS-

FORMATION of a HERMITIAN MATRIX with a unitary
matrix gives

uau�1
� �

�� (ua) u�1
� �� 

�� u�1
� �

�(ua)��(u�)�(a�u�)

�uau��uau�1: (4)

Unitary matrices are NORMAL MATRICES. If M is a
unitary matrix, then the PERMANENT

½perm(M)½51 (5)

(Minc 1978, p. 25, Vardi 1991).

For REAL MATRICES, unitary is the same as ORTHOGO-

NAL. In fact, there are some similarities between
ORTHOGONAL MATRICES and unitary matrices. The
rows of a unitary matrix are a UNITARY BASIS. That is,
each row has length one, and their HERMITIAN INNER

PRODUCT is zero. Similarly, the columns are also a
unitary basis. In fact, given any unitary basis, the
matrix whose rows are that basis is a unitary matrix.
It is automatically the case that the columns are
another unitary basis.

The unitary matrices are precisely those matrices
which preserve the HERMITIAN INNER PRODUCT



v; wh i� Uv ; Uwh i: (6)

Also, the norm of the determinant of U is ½det U ½�1:
Unlike the ORTHOGONAL MATRICES, the unitary ma-
trices are CONNECTED. If det U �1 then U is a
SPECIAL UNITARY MATRIX.

The product of two unitary matrices is another
unitary matrix. The inverse of a unitary matrix is
another unitary matrix, and IDENTITY MATRICES are
unitary. Hence the set of unitary matrices form a
GROUP, called the UNITARY GROUP.

See also ADJOINT MATRIX, CLIFFORD ALGEBRA, HER-

MITIAN INNER PRODUCT, HERMITIAN MATRIX, NORMAL

MATRIX, ORTHOGONAL GROUP, PERMANENT, REPRE-

SENTATION, SKEW HERMITIAN MATRIX, SPECIAL UNI-

TARY MATRIX, SPIN GROUP, SYMMETRIC MATRIX

UNITARY GROUP
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Unitary Multiperfect Number
A number n which is an INTEGER multiple k of the
SUM of its UNITARY DIVISORS s�(n) is called a unitary
k -multiperfect number. There are no ODD unitary
multiperfect numbers.
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Unitary Multiplicative Character
A MULTIPLICATIVE CHARACTER is called unitary if it
has ABSOLUTE VALUE 1 everywhere.

See also MULTIPLICATIVE CHARACTER

Unitary Operator
An OPERATOR U satisfying

l1 > l2 > 0

See also ANTIUNITARY OPERATOR
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Unitary Perfect Number
A number n which is the sum of its UNITARY DIVISORS

with the exception of n itself. There are no ODD

unitary perfect numbers, and it has been conjec-
tured that there are only a FINITE number of EVEN

ones. The first few are 6, 60, 90, 87360,
146361946186458562560000, ... (Sloane’s A002827).
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Unitary Sociable Numbers
SOCIABLE NUMBERS computed using the analog of the
RESTRICTED DIVISOR FUNCTION s �(n) in which only
UNITARY DIVISORS are included.

See also SOCIABLE NUMBERS
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Unitary Transformation
A transformation OF THE FORM

A?�UAU �;

where U � denotes the ADJOINT operator.

See also ADJOINT, TRANSFORMATION

Unitary Unimodular Group
SPECIAL UNITARY GROUP

Unit-Distance Graph
A DISTANCE GRAPH in which all edges are of length 1.

See also DISTANCE GRAPH, UNIT NEIGHBORHOOD

GRAPH
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Unitransitive Graph
A GRAPH G is n -unitransitive if it is CONNECTED,
CUBIC, n -TRANSITIVE, and if for any two n -ROUTES W1

and W2 ; there is exactly one automorphism a of G
such that aW1 �W2 :/

Because there are no n -transitive CUBIC GRAPHS for
n �5, there are also no n -unitransitive ones (Harary
1994, p. 175). However, there are n -unitransitive
graphs for n 55 which are not CAGE GRAPHS (Harary
1994, p. 175). These include the 1-univariate graph of
girth 12 on 432 nodes discovered by Frucht (1952),
the 2-unitransitive CUBICAL and DODECAHEDRAL

GRAPHS, and a set of 3-unitransitive graphs found
by Coxeter (1950), one of which is illustrated above
(Harary 1994, p. 175).

See also CAGE GRAPH, TRANSITIVE GRAPH
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UnitStep
HEAVISIDE STEP FUNCTION

Unity
The number 1. There are n nth ROOTS OF UNITY,
known as the DE MOIVRE NUMBERS.

See also 1, PRIMITIVE ROOT OF UNITY

Univalent
Capable of taking on exactly one possible value.

See also BIVALENT

Univalent Function
A function or transformation f in which f (z) does not
overlap z .

In MODULAR FUNCTION theory, a function is called
univalent on a subgroup G if it is automorphic under
G and VALENCE 1 (Apostol 1997).

See also VALENCE
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Univariate Function
A FUNCTION of a single variable (e.g., f (x); g(z); u( j);
etc.).

See also MULTIVARIATE FUNCTION, UNIVARIATE POLY-

NOMIAL

Univariate Polynomial
A POLYNOMIAL in a single variable, e.g., /PðxÞ ¼/

/a2x2 þ a1x þ a0/, as opposed to a MULTIVARIATE POLY-

NOMIAL, e.g.,

P(x; y) �a22x2y2 �a21x2y �a12xy2 �a11xy �a10x �a01y

�a00 :

In common usage, if the word "univariate" is not used
when describing a POLYNOMIALS, the POLYNOMIALS

can assumed to be univariate.

See also MULTIVARIATE POLYNOMIAL, POLYNOMIAL,
UNIVARIATE FUNCTION

Universal Algebra
A system of algebra having an empty set of relations.
A universal algebra is often simply called an "alge-
bra".

Universal Category
UNIVERSAL PREDICATE

Universal Cover
The universal cover of a CONNECTED TOPOLOGICAL

SPACE X is a SIMPLY CONNECTED space Y with a map
f : Y 0 X that is a COVER. If X is SIMPLY CONNECTED,
i.e., has a trivial FUNDAMENTAL GROUP, then it is its
own universal cover. For instance, the sphere S2 is its
own universal cover. The universal cover is always



unique, and always exists, as long as X is LOCALLY

PATHWISE-CONNECTED (a very mild assumption).

Any property of X can be lifted to its universal cover,
as long as it is defined locally. Sometimes, the
universal covers with special structures can be
classified. For example, a RIEMANNIAN METRIC on X
defines a metric on its universal cover. If the metric is
FLAT, then its universal cover is EUCLIDEAN SPACE.
Another example is the COMPLEX STRUCTURE of a
RIEMANN SURFACE X , which also lifts to its universal
cover. By the UNIFORMIZATION THEOREM, the only
possible universal covers for X are the open unit disk,
the complex plane C; or the RIEMANN SPHERE S2 :/

p : A 0 X

The above left diagram shows the universal cover of
the torus, i.e., the plane. A fundamental domain,
shaded orange, can be identified with the torus. The
REAL PROJECTIVE PLANE is the set of lines through the
origin, and its universal cover is the sphere, shown in
the right figure above. The only nontrivial DECK

TRANSFORMATION is the ANTIPODAL MAP.

The compact RIEMANN SURFACES with GENUSES g �1
are g -holed TORI, and their universal covers are the
UNIT DISK. The figure above shows a hyperbolic
regular octagon in the disk. With the colored edges
identified, it is a FUNDAMENTAL DOMAIN for the
DOUBLE TORUS. Each hole has two loops, and cutting
along each loop yields two edges per loop, or eight
edges in total. Each loop is also shown in a different
color, and arrows are drawn to provide instructions
for lining them up. The FUNDAMENTAL DOMAIN is in
gray and can be identified with the DOUBLE TORUS

illustrated below. The above animation shows some
translations of the fundamental domain by DECK

TRANSFORMATIONS, which form a FUCHSIAN GROUP.
They tile the disk by analogy with the square tiling

the plane for the SQUARE TORUS.

Although it is difficult to visualize a hyperbolic
regular octagon in the disk as a cut-up DOUBLE

TORUS, the illustration above attempts to portray
this. It is unfortunate that no hyperbolic compact
manifold with constant negative curvature, can be
embedded in R3 : As a result, this picture is not
isometric to the hyperbolic regular octagon. However,
the generators for the fundamental group are drawn
in the same colors, and are examples of so-called cuts
of a RIEMANN SURFACE.

Roughly speaking, the universal cover of a space is
obtained by the following procedure. First, the space
is cut open to make a simply connected space with
edges, which then becomes a fundamental domain, as
the DOUBLE TORUS is cut to become a hyperbolic
octagon or the SQUARE TORUS is cut open to become a
square. Then a copy of the fundamental domain is
added across an edge. The rule for adding a copy
across an edge is that every point has to look the same
as the original space, at least nearby. So the copies of
the fundamental domain line up along edges which
are identified in the original space, but more edges
may also line up. Copies of the fundamental domain
are added to the resulting space recursively, as long
as there remains any edges. The result is a cover,
with possibly infinitely many copies of a fundamental
domain, which is simply connected.

Any other COVER of X is in turn covered by the
universal cover of X , X̃: In this sense, the universal
cover is the largest possible cover. In rigorous
language, the universal cover has a UNIVERSAL

PROPERTY. If p? : X̃ 0 A is a COVERING MAP, then
there exists a covering map p(p̃ such that the
composition of p and p̃ is the projection from the
universal cover to X .

See also COVER, DECK TRANSFORMATION, FUNDAMEN-

TAL GROUP, SIMPLY CONNECTED, UNIFORMIZATION,
UNIVERSAL PROPERTY
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Universal Formula

Also called an existential formula.

References
Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, p. 34, 1958.

Universal Graph
COMPLETE GRAPH

Universal Hash Function
Let h : f0; 1gl(n) �f0 ; 1 gn 0 f0; 1gm(n) be efficiently
computable by an algorithm (solving a P-PROBLEM).
For fixed y � f0; 1gl(n) 

; view h(x; y) as a function hy(x)
of x that maps (or hashes) n bits to m(n) bits. Let
Y �R f0; 1gl(n) 

; then h is said to be a (pairwise
independent) universal hash function if, for distinct
x; x? � f0; 1gn and for all a; a ? � f0; 1gm(n) 

;

Pr
Y

hY (x) �að Þ and hY (x?) �a?ð Þ½ � 1

22m(n)
;

i.e., hY maps all distinct x; x? independently and
uniformly.

These functions are easily constructible (Wegman
and Carter 1981, Luby 1996).

See also HASH FUNCTION
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Wegman, M. N. and Carter, J. L. "New Hash Functions and
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Universal Metric Space
UNIVERSAL SPACE

Universal Predicate
If the property of being an object is expressed by a
basic predicate of the system, then such a predicate (if
it exists) is called a universal predicate, or universal
category.

References
Curry, H. B. Foundations of Mathematical Logic. New York:

Dover, p. 113, 1977.

Universal Product Code
UPC

Universal Property
A property of individuals which is shared by every
individual.

References
Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, p. 107, 1958.

Universal Quantifier
A logical operator which forms propositions using the
expression "FOR ALL x ."

See also FOR ALL

References
Carnap, R. Introduction to Symbolic Logic and Its Applica-

tions. New York: Dover, p. 34, 1958.

Universal Quantor
UNIVERSAL QUANTIFIER

Universal Sentence
A sentence dealing with individual constants in
which some constant, say a , appears one or more
times and which is true for every individual in the
domain of individuals to which a belongs.

See also EXISTENTIAL SENTENCE

References
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tions. New York: Dover, p. 34, 1958.

Universal Set
A set fixed within the framework of a theory and
consisting of all objects considered in this theory.

References
Fraenkel, A. A. and Bar-Hillel, Y. Foundations of Set

Theory. Amsterdam, Netherlands, 1958.

Universal Space
A TOPOLOGICAL SPACE that contains a homeomorphic
image of every topological space of a certain class.

A METRIC SPACE U is said to be universal for a family
of METRIC SPACES M if any space from M is isome-
trically embeddable in U . Fréchet (1910) proves that
l�; the space of all bounded sequences of real
numbers endowed with a supremum norm, is a
universal space for the family M of all separable
metric spaces. Ovchinnikov (2000) proved that there
exists a metric d �R; inducing the usual topology,
such that every finite METRIC SPACE embeds in (R; d):/

See also METRIC SPACE
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Sciences Math. 5, 1�/8, 1927.

Universal Turing Machine
A TURING MACHINE which, by appropriate program-
ming using a finite length of input tape, can act as
any TURING MACHINE whatsoever.

See also CHAITIN’S CONSTANT, HALTING PROBLEM,
TURING MACHINE

References
Penrose, R. The Emperor’s New Mind: Concerning Compu-

ters, Minds, and the Laws of Physics. Oxford: Oxford
University Press, pp. 51 �/7, 1989.

Universal Vassiliev Invariant

See also VASSILIEV INVARIANT

Universe
UNIVERSAL SET

Unknot
A closed loop which is not KNOTTED. In the 1930s, by
making use of REIDEMEISTER MOVES, Reidemeister
first proved that KNOTS exist which are distinct from
the unknot. He proved this by COLORING each part of
a knot diagram with one of three colors.

The KNOT SUM of two unknots is another unknot.

The JONES POLYNOMIAL of the unknot is defined to
give the normalization

V(t) �1 :

Haken (1961) devised an ALGORITHM to tell if a knot
projection is the unknot. The ALGORITHM is so
complicated, however, that it has never been imple-
mented. Although it is not immediately obvious, the
unknot is a PRIME KNOT.

See also COLORABLE, KNOT, KNOT THEORY, LINK,
REIDEMEISTER MOVES, UNKNOTTING NUMBER
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Dover, pp. 264 �/65, 1999.

Unknotting Number
The smallest number of times a KNOT must be passed
through itself to untie it. Lower bounds can be
computed using relatively straightforward techni-
ques, but it is in general difficult to determine exact
values. Many unknotting numbers can be determined
from a knot’s SIGNATURE. A KNOT with unknotting
number 1 is a PRIME KNOT (Scharlemann 1985). It is
not always true that the unknotting number is

achieved in a projection with the minimal number
of crossings.

The following table is from Kirby (1997, pp. 88 �/9),
with the values for 10 �/39 and 10 �/52 taken from
Kawamura. The unknotting numbers for 10 �/54 and
10 �/61 can be found using MENASCO’S THEOREM (Stoi-
menow 1998).

03 �/01 1 08 �/09 1 09 �/10 2 or 3  09 �/32 1 or 2

04 �/01 1 08 �/10 1 or 2  09 �/11 2 09 �/33 1

05 �/01 2 08 �/11 1 09 �/12 1 09 �/34 1

05 �/02 1 08 �/12 2 09 �/13 2 or 3  09 �/35 2 or 3

06 �/01 1 08 �/13 1 09 �/14 1 09 �/36 2

06 �/02 1 08 �/14 1 09 �/15 2 09 �/37 2

06 �/03 1 08 �/15 2 09 �/16 3 09 �/38 2 or 3

07 �/01 3 08 �/16 2 09 �/17 2 09 �/39 1

07 �/02 1 08 �/17 1 09 �/18 2 09 �/40 2

07 �/03 2 08 �/18 2 09 �/19 1 09 �/41 2

07 �/04 2 08 �/19 3 09 �/20 2 09 �/42 1

07 �/05 2 08 �/20 1 09 �/21 1 09 �/43 2

07 �/06 1 08 �/21 1 09 �/22 1 09 �/44 1

07 �/07 1 09 �/01 4 09 �/23 2 09 �/45 1

08 �/01 1 09 �/02 1 09 �/24 1 09 �/46 2

08 �/02 2 09 �/03 3 09 �/25 2 09 �/47 2

08 �/03 2 09 �/04 2 09 �/26 1 09 �/48 2

08 �/04 2 09 �/05 2 09 �/27 1 09 �/49 2 or 3

08 �/05 2 09 �/06 3 09 �/28 1 10 �/39 4

08 �/06 2 09 �/07 2 09 �/29 1 10 �/52 4

08 �/07 1 09 �/08 2 09 �/30 1 10 �/54 3

08 �/08 2 09 �/09 3 09 �/31 2 10 �/61 3

See also ALGEBRAIC UNKNOTTING NUMBER, BENNE-

QUIN’S CONJECTURE, MENASCO’S THEOREM, MILNOR’S

CONJECTURE, SIGNATURE (KNOT)
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Unlabeled Graph
A GRAPH in which individual nodes have no distinct
identifications except through their interconnectivity.
Graphs in which labels (which are most commonly
numbers) are assigned to nodes are called LABELED

GRAPHS. Unless indicated otherwise by context, the
unmodified term "graph" generally refers to an
unlabeled graph.

See also GRAPH, LABELED GRAPH, SIMPLE GRAPH

Unless
If A is true unless B , then not-B IMPLIES A , but B
does not necessarily imply not-A .

See also IMPLIES, PRECISELY UNLESS

Unlesss
P

P Tc 7.0 BS  LYA



lation of Yang-Mills theory, and determination of
whether NP-PROBLEMS are actually P-PROBLEMS.

In 1900, David Hilbert proposed a list of 23 out-
standing problems in mathematics (HILBERT’S PRO-

BLEMS, a number of which have now been solved, but
some of which remain open. In 1912, Landau pro-
posed four simply stated problems, now known as
LANDAU’S PROBLEMS, which continue to defy attack
even today. One hundred years after Hilbert, Smale
(2000) proposed a list of 18 outstanding problems.

K. S. Brown, D. Eppstein, S. Finch, and C. Kimber-
ling maintain webpages of unsolved problems in
mathematics. Classic texts on unsolved problems in
various areas of mathematics are Croft et al. (1991),
in GEOMETRY, and Guy (1994), in NUMBER THEORY.

See also BEAL’S CONJECTURE, FERMAT’S LAST THEO-

REM, HILBERT’S PROBLEMS, KEPLER CONJECTURE,
LANDAU’S PROBLEMS, MATHEMATICS CONTESTS,
MATHEMATICS PRIZES, POINCARÉ CONJECTURE, PRO-

BLEM, SZEMERÉ DI’S THEOREM, TWIN PRIMES
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Unstable Improper Node
A FIXED POINT for which the STABILITY MATRIX has
equal POSITIVE EIGENVALUES.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, UN-

STABLE NODE, UNSTABLE SPIRAL POINT, UNSTABLE

STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos

and Integrability in Nonlinear Dynamics: An Introduc-
tion. New York: Wiley, pp. 22 �/5, 1989.

Unstable Node
A FIXED POINT for which the STABILITY MATRIX has
both EIGENVALUES POSITIVE, so /l1 � l2 �0/.

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, STABLE

STAR, UNSTABLE IMPROPER NODE, UNSTABLE SPIRAL

POINT, UNSTABLE STAR

References
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and Integrability in Nonlinear Dynamics: An Introduc-
tion. New York: Wiley, pp. 22 �/5, 1989.

Unstable Spiral Point
A FIXED POINT for which the STABILITY MATRIX has
EIGENVALUES OF THE FORM l9� a 9i b (with
a; b > 0):/

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, STABLE

STAR, UNSTABLE IMPROPER NODE, UNSTABLE NODE,
UNSTABLE STAR

References
Tabor, M. "Classification of Fixed Points." §1.4.b in Chaos

and Integrability in Nonlinear Dynamics: An Introduc-
tion. New York: Wiley, pp. 22 �/5, 1989.

Unstable Star
A FIXED POINT for which the STABILITY MATRIX has
one zero EIGENVECTOR with POSITIVE EIGENVALUE

l > 0:/

See also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA-

TIONS), FIXED POINT, HYPERBOLIC FIXED POINT

(DIFFERENTIAL EQUATIONS), STABLE IMPROPER

NODE, STABLE NODE, STABLE SPIRAL POINT, STABLE

STAR, UNSTABLE IMPROPER NODE, UNSTABLE NODE,
UNSTABLE SPIRAL POINT
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Untouchable Number
An untouchable number is an INTEGER which is not
the sum of the PROPER DIVISORS of any other number.
The first few are 2, 5, 52, 88, 96, 120, 124, 146, ...
(Sloane’s A005114). Erdos has proven that there are
infinitely many. It is thought that 5 is the only ODD

untouchable number.
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U-Number
ULAM SEQUENCE

UPC
The universal product code (UPC) is a 12-digit
number and associated machine-readable bar code
used to identify products being purchased in grocery
stores. UPCs encode an individual product, but not its
price (this part is done by a store’s computer after
reading the product identifier). The UPC is main-
tained by the Uniform Code Council of Dayton, Ohio.
The first and last digits are separated from the others
and written in a smaller font size.

The first six digits are a manufacturer identifier, and
the next five digits identify a specific product. The
last digit is a check digit obtained from

a12 �10 �

"�
3
X11

i �1

i odd

ai �
X10

i�2

i even

ai

�
(mod 10)

#
(mod 10) ;

where (mod 10) indicates taking the REMAINDER after
dividing by 10. For example, the UPC for Tropicana
Pure Premium orange juice is

0 48500 00102 8

where the check digit is

a12 �10 �[3(0 �8 �0 �0 �1 �2)

�(4 �5 �0 �0 �0) (mod 10)] (mod 10)

�10 �[42 (mod 10)] (mod 10) �10 �2 (mod 10)

�8;

as expected.

See also CHECKSUM, CODING THEORY, ISBN

Upper Bound
A function f is said to have a upper bound C if f (x) 5C
for all x in its DOMAIN. The LEAST UPPER BOUND is
called the SUPREMUM.

See also INEQUALITY, INFIMUM, LEAST UPPER BOUND,
LOWER BOUND, SUPREMUM

Upper Half-Disk

The unit upper half-disk is the portion of the COM-

PLEX PLANE satisfying zj j51; I[z] > 0f g:/
See also DISK, LOWER HALF-DISK, REAL AXIS, SEMI-

CIRCLE, UNIT DISK, UPPER HALF-PLANE

Upper Half-Plane

The portion, often denoted H , of the COMPLEX PLANE

fx �iy : x; y � (��; �) satisfying y �I[z] > 0 i.e.,
H �fx �iy : x � (��; �g; y � (0; �) g:/
See also COMPLEX PLANE, HALF-PLANE, LEFT HALF-

PLANE, LOWER HALF-PLANE, MODULAR FUNCTION,
RIGHT HALF-PLANE, UPPER HALF-DISK
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Upper Integral

The limit of an UPPER SUM, when it exists, as the
MESH SIZE approaches 0.

See also LOWER INTEGRAL, RIEMANN INTEGRAL,
UPPER SUM

Upper Limit
Let the greatest term H of a SEQUENCE be a term
which is greater than all but a finite number of the
terms which are equal to H . Then H is called the
upper limit of the SEQUENCE.

An upper limit of a SERIES

upper lim
n0�

Sn � lim
n0�

Sn �k

is said to exist if, for every e > 0 ; Sn �kj j B e for
infinitely many values of n and if no number larger
than k has this property.

See also LIMIT, LOWER LIMIT, SUPREMUM LIMIT
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Upper Sum

For a given function f (x) over a partition of a given
interval, the upper sum is the sum of box areas
f x�

kð ÞDxk using the greatest value of the function f x�
kð Þ)

in each subinterval Dxk :/

See also LOWER SUM, RIEMANN INTEGRAL, UPPER

INTEGRAL

Upper Triangular Matrix
A TRIANGULAR MATRIX U OF THE FORM

Uij �
aij for i 5j
0 for i > j :

�

Written explicitly,

U �

a11 a12 � � �  a1n

0 a22 � � �  a2n

n n ::: n
0 0 � � �  ann

2
664

3
775:

An upper triangular matrix with elements f[i,j]
above the diagonal can be formed using Upper-
DiagonalMatrix[f , n ] in the Mathematica add-on
package LinearAlgebra‘MatrixMultiplica-
tion‘ (which can be loaded with the command
BBLinearAlgebra‘).

See also TRIANGULAR MATRIX, LOWER TRIANGULAR

MATRIX
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Upper-Trimmed Subsequence
The upper-trimmed subsequence of x � xnf g is the
sequence l(x) obtained by dropping the first occur-
rence of n for each n . If x is a FRACTAL SEQUENCE,
then l(x)�x:/

See also LOWER-TRIMMED SUBSEQUENCE

References
Kimberling, C. "Fractal Sequences and Interspersions." Ars

Combin. 45, 157�/68, 1997.



Upward Drawing
HASSE DIAGRAM

Urchin
Kepler’s original name for the SMALL STELLATED

DODECAHEDRON.

Urelement
An urelement contains no elements, belongs to some
set, and is not identical with the EMPTY SET (Moore
1982, p. 3; Rubin 1967, p. 23). "Ur" is a German prefix
which is difficult to translate literally, but has a
meaning close to "primeval." Urelements are also
called "atoms" (Rubin 1967, Moore 1982) or "indivi-
duals" (Moore 1982).

In "pure" set theory, all elements are sets and there
are no urelements. Often, the axioms of set theory are
modified to allow the presence of urelements for ease
in representing something. In fact, before Paul Cohen
developed the method of forcing, some of the inde-
pendence theorems in set theory were shown if
urelements were allowed.

See also EMPTY SET, SET THEORY
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U-Statistic
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Utility Graph

The utility problem posits three houses and three

utility companies–say, gas, electric, and water–and
asks if each utility can be connected to each house
without having any of the gas/water/electric lines/
pipes pass over any other. This is equivalent to the
equation "Can a PLANAR GRAPH be constructed from
each of three nodes (‘houses’) to each of three other
nodes (‘utilities’)?" This problem was first posed in
this form by H. E. Dudeney in 1917 (Gardner 1984,
p. 92).
The answer is that no such PLANAR GRAPH exists, and
the proof can be effected using the JORDAN CURVE

THEOREM, while a more general result encompassing
this one is the KURATOWSKI REDUCTION THEOREM.
The utility graph UG is the graph showing the
relationships described above, also known as the
THOMSEN GRAPH and, in the more formal parlance of
GRAPH THEORY, is known as the COMPLETE BIPARTITE

GRAPH K3 ; 3 :/

A simple proof of the nonplanarity of the utility graph
can be effected by nothing that the graph consists of a
GRAPH CYCLE G �A �W �B �E �C ; to which the
three edges A �E; B �G ; and C �W must be added.
Now, for each of the edges, we have choose whether to
draw the edge inside or outside the GRAPH CYCLE, and
so for two of the edges, we must make the same
choice. But two lines can’t be drawn on the same side
without crossing, hence the graph is not planar.

See also COMPLETE BIPARTITE GRAPH, KURATOWSKI

REDUCTION THEOREM, PLANAR GRAPH, THOMSEN

GRAPH
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Utility Problem
UTILITY GRAPH



V

Valence
The number of POLES of an AUTOMORPHIC FUNCTION

in the closure of its FUNDAMENTAL REGION.

See also FUNDAMENTAL REGION, UNIVALENT FUNC-

TION, VERTEX DEGREE
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Valency
VERTEX DEGREE

Valle’s Two-Thirds Factorization Method
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Valuation
A generalization of the P -ADIC NORM first proposed by
Kürschák in 1913. A valuation ½� ½ on a FIELD K is a
FUNCTION from K to the REAL NUMBERS R such that
the following properties hold for all x; y �K :

1. xj j]0;/
2. xj j�0 IFF x�0,
3. xyj j�xj j yj j;/
4. xj j51 IMPLIES 1�xj j5C for some constant C]

1 (independent of x ).

If (4) is satisfied for C�2, then ½� ½ satisfies the
TRIANGLE INEQUALITY,

4a. x�yj j5 xj j� yj j for all x; y �K :/

If (4) is satisfied for C�1 then ½� ½ satisfies the
stronger ULTRAMETRIC inequality

4b. x�yj j5max xj j; yj jð Þ:/

The simplest valuation is the ABSOLUTE VALUE for
REAL NUMBERS. A valuation satisfying (4b) is called
non-ARCHIMEDEAN VALUATION; otherwise, it is called
ARCHIMEDEAN.

If ½� ½1 is a valuation on K and l]1; then we can define
a new valuation ½� ½2 by

xj j2� xj jl1: (1)

This does indeed give a valuation, but possibly with a
different constant C in AXIOM 4. If two valuations are

related in this way, they are said to be equivalent,
and this gives an equivalence relation on the collec-
tion of all valuations on K . Any valuation is equiva-
lent to one which satisfies the triangle inequality (4a).
In view of this, we need only to study valuations
satisfying (4a), and we often view axioms (4) and (4a)
as interchangeable (although this is not strictly true).

If two valuations are equivalent, then they are both
non-ARCHIMEDEAN or both ARCHIMEDEAN. Q; R; and
C with the usual Euclidean norms are Archimedean
valuated fields. For any PRIME p , the P -ADIC NUMBERS

Qp with the p -adic valuation ½� ½p is a NON-ARCHIME-

DEAN FIELD.

If K is any FIELD, we can define the trivial valuation
on K by xj j�1 for all x"0 and 0j j�0; which is a NON-

ARCHIMEDEAN VALUATION. If K is a FINITE FIELD, then
the only possible valuation over K is the trivial one. It
can be shown that any valuation on Q is equivalent to
one of the following: the trivial valuation, Euclidean
absolute norm ½� ½; or p -adic valuation ½� ½p:/
The equivalence of any nontrivial valuation of Q to
either the usual ABSOLUTE VALUE or to a P -ADIC NORM

was proved by Ostrowski (1935). Equivalent valua-
tions give rise to the same topology. Conversely, if two
valuations have the same topology, then they are
equivalent. A stronger result is the following: Let ½� ½1;
½� ½2; ..., ½� ½k be valuations over K which are pairwise
inequivalent and let a1; a2; ..., ak be elements of K .
Then there exists an infinite sequence (/x1; x2; ...) of
elements of K such that

lim
n0� w:r:t: ½�½1

xn�a1 (2)

lim
n0� w:r:t: ½�½2

xn�a2; (3)

etc. This says that inequivalent valuations are, in
some sense, completely independent of each other.
For example, consider the rationals Q with the 3-adic
and 5-adic valuations ½� ½3 and ½� ½5; and consider the
sequence of numbers given by

xn�
43 � 5n � 92 � 3n

3n � 5n
: (4)

Then xn 0 43 as n 0 � with respect to ½� ½3; but xn 0
92 as n 0 � with respect to ½� ½5; illustrating that a
sequence of numbers can tend to two different limits
under two different valuations.

A discrete valuation is a valuation for which the
VALUATION GROUP is a discrete subset of the REAL

NUMBERS R: Equivalently, a valuation (on a FIELD K )
is discrete if there exists a REAL NUMBER o > 0 such
that

xj j � (1�o; 1�o)[½x½�1 for all x �K : (5)

The p -adic valuation on Q is discrete, but the
ordinary absolute valuation is not.



If ½� ½ is a valuation on K , then it induces a metric

d(x; y) � x �yj j  (6)

on K , which in turn induces a TOPOLOGY on K . If  ½� ½
satisfies (4b), then the metric is an ULTRAMETRIC. We
say that K ; ½� ½ð Þ is a complete valuated field if the
METRIC SPACE is complete.

See also ABSOLUTE VALUE, LOCAL FIELD, METRIC

SPACE, P -ADIC NUMBER, STRASSMAN’S THEOREM,
ULTRAMETRIC, VALUATION GROUP
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Valuation Group
Let K ; ½� ½ð Þ be a valuated FIELD. The valuation group
G is defined to be the set

G � xj j : x � K ; x "0f g;

with the group operation being multiplication. It is a
SUBGROUP of the POSITIVE REAL NUMBERS, under
multiplication.

Valuation Ring
Let K ; ½� ½ð Þ be a NON-ARCHIMEDEAN FIELD. Its valua-
tion ring R is defined to be

R � x � K : xj j51f g:

The valuation ring has maximal IDEAL

M � x � K : xj j51f g;

and the FIELD R=M is called the residue field, class
field, or field of digits. For example, if K �Qp (P -ADIC

NUMBERS), then R �Zp (p -adic integers), M �pZp (p -
adic integers congruent to 0 mod p ), and R=M/

�GF(p ), the FINITE FIELD of order p .

See also P -ADIC NUMBER

Valuation Theory
The study of VALUATIONS which simplifies class field
theory and the theory of FUNCTION FIELDS.

See also FUNCTION FIELD, VALUATION
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Value
The quantity which a FUNCTION f takes upon applica-
tion to a given quantity.

See also VALUE (GAME)

Value (Game)
The solution to a GAME in GAME THEORY. When a
SADDLE POINT is present

max
i 5m

min
j5n

aij �min
j5n

max
i5m

aij �v;

and v is the value for pure strategies.

See also ABSOLUTE VALUE, GAME THEORY, MINIMAX

THEOREM, VALUATION

Vampire Number
A number v�xy with an EVEN number n of DIGITS

formed by multiplying a pair of n=2/-DIGIT numbers
(where the DIGITS are taken from the original number
in any order) x and y together. Pairs of trailing zeros
are not allowed. If v is a vampire number, then x and
y are called its "fangs." Examples of vampire numbers
include

1260�21�60
1395�15�93
1435�35�41
1530�30�51
1827�21�87
2187�27�81
6880�80�86

(Sloane’s A014575). The 8-digit vampire numbers are
10025010, 10042510, 10052010, 10052064, 10081260,
... (Sloane’s A048938) and the 10-digit vampire
numbers are 1000174288, 1000191991, 1000198206,
1000250010, ... (Sloane’s A048939). The numbers of
2n -digit vampires are 0, 7, 148, 3228, ... (Sloane’s
A048935).

Vampire numbers having two distinct pairs of fangs
include

125460�204�615�246�510

11930170�1301�9170�1310�9107

12054060�2004�6015�2406�5010

(Sloane’s A048936).

Vampire numbers having three distinct pairs of fangs
include

13078260�1620�8073�1863�7020

�2070�6318:

(Sloane’s A048937).

General formulas can be constructed for special
classes of vampires, such as the fangs



x�25 � 10k�1

y�100 10k�1�52
� �

=25;

giving the vampire

v�xy� 10k�1�52
� �

10k�2�100 10k�1�52
� �

=25

�x� � 10k�2�t

�8 26�5 � 10k
� �

1�25 � 10k
� �

;

where x+ denotes x with the DIGITS reversed (Roushe
and Rogers).

Pickover (1995) also defines pseudovampire numbers,
in which the multiplicands have different numbers of
digits.
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van der Grinten Projection

A MAP PROJECTION given by the transformation

x�sgn l�l0ð Þ

�
p A G � P2ð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 G � P2ð Þ2� P2 � A2ð Þ G2 � P2ð Þ

q� �
P2 � A2

(1)

y�sgn fð Þp PQ � A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1ð Þ P2 � A2ð Þ� Q2

p� 	
P2 � A2

; (2)

where

A�
1

2

p

l� l0

�
l� l0

p












 (3)

G�
cos u

sin u� cos u� 1
(4)

P�G
2

sin u
�1

 !
(5)

u�sin�1 2f

p












 (6)

Q�A2�G: (7)

The inverse FORMULAS are

f�sgn yð Þp �m1cos u1�
1
3p

 �
�

c2

3c3

" #
(8)

l�
p X2 � Y2 � 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2 X2 � Y2ð Þ� X2 � Y2ð Þ2

q










2X

�l0; (9)

where

X�
x

p
(10)

Y�
y

p
(11)

c1��Yj j 1�X2�Y2
� �

(12)

c2�c1�2Y2�X2 (13)

c3��2c1�1�2Y2� X2�Y2
� �2

(14)

d�
Y2

c3

�
1

27

2c3
2

c3
3

�
9c1c2

c2
3

 !
(15)

a1�
1

c3

c1�
c2

2

3c3

 !
(16)

m1�2
ffiffiffiffiffiffiffiffiffiffi
�1

3a1

q
(17)

u1�
1
3 cos�1 3d

a1m1

 !
: (18)
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van der Pol Equation
An ORDINARY DIFFERENTIAL EQUATION which can be
derived from the RAYLEIGH DIFFERENTIAL EQUATION

by differentiating and setting y �y?: It is an equation
describing self-sustaining oscillations in which en-
ergy is fed into small oscillations and removed from
large oscillations. This equation arises in the study of
circuits containing vacuum tubes and is given by

yƒ� m 1 �y2
� �

y?�y �0:

See also RAYLEIGH DIFFERENTIAL EQUATION
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van der Waerden Number
This entry contributed by KEVIN O’BRYANT

One form of VAN DER WAERDEN’S THEOREM states that
for every POSITIVE INTEGERS k and r , there exists a
constant n(k; r) such that if n0 ]n(k ; r) and
1; 2; . . . ;n0f gƒC1 @ C2 . . .@ Cr ; the some set Ci con-

tains an ARITHMETIC SEQUENCE of length k . The least
possible value of n(k ; r) is known as a van der
Waerden number. The only nontrivial van der Waer-
den numbers that are known exactly are summarized
in the following table. As shown in the table, the first
few values of n(2; k) for k �1, 2, ... are 1, 3, 9, 35, 178,
... (Sloane’s A005346).

/r_k/ k �3 k �4 k �5

r �2 9 35 178

r �3 27

r �4 76

Shelah (1988) proved that van der Waerden’s num-
bers are PRIMITIVE RECURSIVE. It is known that

n(3; r) 5erc1 (1)

and that

n(4; r) 5eeerc2 

(2)

for some constants c1 and c2 : In 1998, T. Gowers
announced that he has proved the general result

n(n; k) 5ee 1=rð Þeek�110 

; (3)

but this work has not yet been published. Berlekamp

(1968) showed that for p a prime,

n(p �1 ; 2) > p � 2p ; (4)

and that probabilistic arguments using the LOVÁ SZ

LOCAL LEMMA show that

n(k; r) >
rk

erk

 !
1�X(1)ð Þ: (5)

See also SZEMERÉ DI’S THEOREM, VAN DER WAERDEN’S

THEOREM
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Arithmetic Progressions of Length Four." Geom. Funct.
Anal. 8, 529�/551, 1998.

Honsberger, R. More Mathematical Morsels. Washington,
DC: Math. Assoc. Amer., p. 29, 1991.

Shelah, S. "Primitive Recursive Bounds for van der Waerden
Numbers." J. Amer. Math. Soc. 1, 683�/697, 1988.

Sloane, N. J. A. Sequences A005346/M2819 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

van der Waerden’s Theorem
This entry contributed by KEVIN O’BRYANT

van der Waerden’s theorem is a theorem about the
existence of arithmetic sequences in sets. The theo-
rem can be stated in three equivalent forms.

1. For every POSITIVE INTEGERS k and r , there
exists a constant n(k; r) such that if n0]n(k; r) and
1; 2; . . . ;n0f gƒC1@C2 . . .@Cr; the some set Ci

contains an ARITHMETIC SEQUENCE of length k .
2. If a0;a1; . . .f g is an infinite sequence of integers
satisfying 0Bak�1�akBr for some r , then the
sequence contains arbitrarily long arithmetic pro-
gressions.
3. For every positive integers k and r , there is a
constant g(k; r) such that if g0]g k; rð Þ and a1; a2;
..., ag0

satisfies 0Bai�1�ai5r; then k of the
numbers a1; a2; ..., ag0

are in arithmetic progres-
sion.

The constants n(k; r) are called VAN DER WAERDEN

NUMBERS, and no FORMULA for n(k; r) is known. van
der Waerden’s Theorem is a COROLLARY of SZEMER-

ÉDI’S THEOREM.



See also ARITHMETIC SEQUENCE, BAUDET’S CONJEC-

TURE, SZEMERÉ DI’S THEOREM, VAN DER WAERDEN

NUMBER
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van Kampen’s Theorem
In the usual diagram of inclusion homeomorphisms, if
the upper two maps are injective, then so are the
other two.
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van Wijngaarden-Deker-Brent Method
BRENT’S METHOD

Vandermonde Determinant

D x1 ; . . .  ; xnð Þ�
1 x1 x2

1 � � �  xn �1
1

1 x2 x2
2 � � �  xn �1

2

n n n  ::: n
1 xn x2

n � � �  xn �1
n




















�
Y
i ;j

i
j

xi �xj

� �

(Sharpe 1987). For INTEGERS a1 ; ..., an ; D a1 ; . . .  ;anð Þ is
divisible by

Qn
i�1(i �1)! (Chapman 1996), the first few

values of which are the SUPERFACTORIALS 1, 1, 2, 12,
288, 34560, 24883200, 125411328000, ... (Sloane’s
A000178).

See also SUPERFACTORIAL, VANDERMONDE MATRIX
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Vandermonde Identity
CHU-VANDERMONDE IDENTITY

Vandermonde Matrix
A type of matrix which arises in the LEAST SQUARES

FITTING of POLYNOMIALS and the reconstruction of a
STATISTICAL DISTRIBUTION from the distribution’s
MOMENTS. The solution of an n �n Vandermonde
matrix equation requires O n2ð Þ operations. A Van-
dermonde matrix of order n is OF THE FORM

1 x1 x2
1 � � �  xn�1

1

1 x2 x2
2 � � � xn�1

2

n n n ::: n
1 xn x2

n � � � xn�1
n

2
664

3
775:

See also TOEPLITZ MATRIX, TRIDIAGONAL MATRIX,
VANDERMONDE DETERMINANT
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Vandermonde Theorem
CHU-VANDERMONDE IDENTITY

Vandermonde’s Convolution Formula
CHU-VANDERMONDE IDENTITY

Vandermonde’s Sum
CHU-VANDERMONDE IDENTITY

Vandiver’s Criteria
Let p be an IRREGULAR PRIME, and let P�rp�1 be a
PRIME with PBp2�p: Also let t be an INTEGER such
that t3f1 (mod P ). For an IRREGULAR PAIR (p; 2k);
form the product

Q2k�t�rd=2
Ym
b�1

trb�1
� �bp�1�2k

;

where



m �1
2 p1 �1ð Þ

d �
Xm

n�1

np �2k :

If Qr
2k f1 (mod P ) for all such IRREGULAR PAIRS, then

FERMAT’S LAST THEOREM holds for exponent p .

See also FERMAT’S LAST THEOREM, IRREGULAR PAIR,
IRREGULAR PRIME
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Vanish
A quantity which takes on the value zero is said to
vanish. For example, the function f (z) �z2 vanishes
at the point z �0.

See also ROOT

Vanishing Point

The point or points to which the extensions of
PARALLEL lines appear to converge in a PERSPECTIVE

drawing.

See also DESARGUES’ THEOREM, PERSPECTIVE, PRO-

JECTIVE GEOMETRY
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Varga’s Constant

V �
1

L
�9 :2890254919 . . . ;

where L is the ONE-NINTH CONSTANT.

See also ONE-NINTH CONSTANT

Variance
For N samples of a variate having a distribution with
known MEAN m; the "population variance" (usually
called "variance" for short, although the word "popu-
lation" should be added when needed to distinguish it
from the SAMPLE VARIANCE) is defined by

var(x)�
1

N

X
x�mð Þ2� x2�2mx�m2

� �
� x2
� �

� 2mxh i� m2
� �

� x2
� �

�2m xh i�m2; (1)

where

xh i� 1

N

XN

i�1

xi: (2)

But since xh i is an UNBIASED ESTIMATOR for the MEAN

m� xh i; (3)

it follows that the variance

s2�var(x)� x2
� �

�m2: (4)

The population STANDARD DEVIATION is then defined
as

s�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(x)

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i�m2

p
: (5)

A useful identity involving the variance is

var(f (x)�g(x))�var(f (x))�var(g(x)): (6)

Therefore,

var(ax�b)� (ax�b)� ax�bh i½ �2
D E

� ax�b�a xh i�bð Þ2
D E

� ax�amð Þ2
D E

� a2(x�m)2
D E

�a2 x�mð Þ2
D E

�a2var(x) (7)

var(b)�0: (8)

If the population MEAN is not known, using the
sample mean x̄ instead of the population mean m to
compute

s2�ŝ2
N �

1

N

XN

i�1

xi�x̄ð Þ2 (9)

gives a BIASED ESTIMATOR of the population variance.
In such cases, it is appropriate to use a STUDENT’S T -

DISTRIBUTION instead of a GAUSSIAN DISTRIBUTION.
However, it turns out (as discussed below) that an
UNBIASED ESTIMATOR for the population variance is
given by

s?2�ŝ?2N �
1

N � 1

XN

i�1

xi�x̄ð Þ2
: (10)

For multiple variables, the variance is given using
the definition of COVARIANCE,



var
Xn

i�1

xi

 !
�cov

Xn

i�1

xi;
Xm

j�1

xj

 !

�
Xn

i�1

Xm

j�1

cov xi; xj

� �

�
Xn

i�1

Xm

j�1
j�i

cov xi; xj

� �
�
Xn

i�1

Xm

j�1
j"i

cov xi; xj

� �

�
Xn

i�1

cov xi; xj

� �
�
Xn

i�1

Xm

j�1
j"i

cov xi; xj

� �

�
Xn

i�1

var xið Þ�2
Xn

i�1

Xm

j�i�1

cov xi; xj

� �
: (11)

A linear sum has a similar form:

var
Xn

i�1

aixi

 !
�cov

Xn

i�1

aixi;
Xm

j�1

ajxj

 !

�
Xn

i�1

Xm

j�1

aiajcov xi; xj

� �

�
Xn

i�1

a2
i var xið Þ�2

Xn

i�1

Xm

j�i�1

aiajcov xi; xj

� �
: (12)

These equations can be expressed using the COVAR-

IANCE MATRIX.

To estimate the POPULATION VARIANCE s2 from a
sample of N elements with a priori unknown MEAN

(i.e., the MEAN is estimated from the sample itself), we
need an UNBIASED ESTIMATOR for s2: This is given by
the K -STATISTIC k2; where

var s2
� �

�k2�
N

N � 1
s2 (13)

and m2�s2 is the SAMPLE VARIANCE, defined by

s2�
1

N

XN

i�1

xi�x̄ð Þ2
: (14)

The quantity Ns2=s2 has a CHI-SQUARED DISTRIBU-

TION. Note that some authors prefer the definition

s?2�
1

N � 1

XN

i�1

xi�x̄ð Þ2
; (15)

since this makes the sample variance an UNBIASED

ESTIMATOR for the population variance.

To find the variance of the SAMPLE VARIANCE s2;
remember that

var s2
� �

� s4
� �

� s2
� �2

; (16)

and

s2
� �

�
N � 1

N
m2: (17)

Now find s4h i :

s4
� �

� (s2)2
D E

� x2
� �

� xh i2
 �2
� �

�
1

N

X
x2

i �
1

N

X
xi

 !2
2
4

3
52* +

�
1

N2

X
xi

 �2
� �

�
2

N3

X
x2

i

X
xi

 �2
� �

�
1

N4

�
X

xi

 �4
� �

: (18)

Working on the first term of (18),

X
x2

i

 �2
� �

�
X

x4
i �
X

x2
i x2

j

D E

�
X

x4
i

D E
�

X
x2

i x2
j

D E
�N x4

i

� �
�N(N�1) x2

i

� �
x2

j

D E
�Nm?4�N(N�1)m?2

2: (19)

The second term of (18) is known from K -STATISTIC,

X
x2

i

X
xj

 �2
� �

�Nm?4�N(N�1)m?2
2; (20)

as is the third term,

X
xi

 �4
� �

�N
X

x4
i

D E
�3N(N�1)

X
x2

i x2
j

D E
�Nm?4�3N(N�1)m?2

2: (21)

Combining (18)-(21) gives

s4
� �

�
1

N2
Nm?4�N(N�1)m?2

2
� 	

�
2

N3

� Nm?4�N(N�1)m?2
2

� 	
�

1

N4
Nm?4�3N(N�1)m?2

2
� 	

�
1

N
�

2

N2
�

1

N3

 !
m?4

�
N � 1

N
�

2(N � 1)

N2
�

3(N � 1)

N3

" #
m?2

2

�
N2 � 2N � 1

N3

 !
m?4�

(N � 1)(N2 � 2N � 3)

N3
m?2

2



�
(N � 1)(N � 1)m?4 � (N2 � 2N � 3)m?2

2

N3
(22)

(Kenney and Keeping 1951, p. 164), so plugging in
(17) and (22) gives

var s2
� �

� s4
� �

� s2
� �2

�
(N � 1) (N � 1)m?4 � N2 � 2N � 3ð Þm?22½ �

N3

�
(N � 1)2N

N3
m?2

2

�
(N � 1) (N � 1)m?4 � (N � 3)m?2

2½ �
N3

: (23)

(Kenney and Keeping 1951, p. 164).

Student calculated the SKEWNESS and KURTOSIS of the
distribution of s2 as

g1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

N � 1

s
(24)

g2�
12

N � 1
(25)

and conjectured that the true distribution is PEARSON

TYPE III DISTRIBUTION

f s2
� �

�C s2
� � N�3ð Þ=2

e�Ns2=2s2

; (26)

where

s2�
Ns2

N � 1
(27)

C�

N

2s2

 ! N�1ð Þ=2

G
N � 1

2

 ! : (28)

This was proven by R. A. Fisher.

The distribution of s itself is given by

f (s)�2

N

2s2

 ! N�1ð Þ=2

G
N � 1

2

 ! e�ns2=2s2

sN�2 (29)

sh i�
ffiffiffiffiffi
2

N

s G
N

2

 !

G
N � 1

2

 !s�b(N)s; (30)

where

b(N)�

ffiffiffiffiffi
2

N

s G
N

2

 !

G
N � 1

2

 ! : (31)

The MOMENTS are given by

mr�
2

N

 !r=2 G
N � 1 � r

2

 !

G
N � 1

2

 ! sr; (32)

and the variance is

var(s)�n2�n2
1�

N � 1

N
s2� b(N)s½ �2

�
1

N
N�1�

2G2 N

2

 !

G2 N � 1

2

 !s2

2
66664

3
77775 (33)

An UNBIASED ESTIMATOR of s is s=b(N): Romanovsky
showed that

b(N)�1�
3

4N
�

7

32N2
�

139

51849N3
�� � � (34)

When computing numerically, the MEAN must be
computed before s2 can be determined. This requires
storing the set of sample values. It is possible to
calculate s?2 using a recursion relationship involving
only the last sample as follows. Here, use mj to denote
m calculated from the first j samples (not the jth
MOMENT)

mj�

Pj
i�1 xi

j
; (35)

and s2
j denotes the value for the sample variance s?2

calculated from the first j samples. The first few
values calculated for the MEAN are

m1�x1 (36)

m2�
1 � m1 � x2

2
(37)

m3�
2m2 � x3

3
: (38)

Therefore, for j�2, 3 it is true that

mj�
(j � 1)mj�1 � xj

j
(39)

Therefore, by induction,



mj�1 �
(j � 1) � 1½ �m j �1ð Þ�1 � xj �1

j � 1

�
jmj � xj�1

j � 1 
(40)

mj�1(j �1) �(j �1)mj � xj �1 � mj

� �
(41)

mj�1 � mj �
xj�1 � mj

j � 1
; (42)

and

s2
j �

Pj
i�1 xi � mj

� �2

j � 1 
(43)

for j ]2 ; so

jsj�12 �j

Pj�1
i�1 xi � mj�1

� �2

j
�
Xj�1

i�1

xi � mj�1

� �2

�
Xj�1

i�1

xi � mj

� �
� mi � mj�1

� �� 	2

�
Xj�1

i�1

xi � mj

� �2
�
Xj�1

i�1

mj � mj�1

� �2
�2
Xj�1

i�1

xi � mj

� �
� mj � mj�1

� �
: (44)

Working on the first term,

Xj�1

i�1

xi � mj

� �2
�
Xj

i�1

xi � mj

� �2
� xj�1 � mj

� �2

�(j �1)s2
j � xj�1 � mj

� �2
: (45)

Use (41) to write

xj�1 � mj � j �1ð Þ mj�1 � mj

� �
; (46)

so

Xj�1

i�1

xi � mj

� �2
�(j �1)s2

j �(j �1)2 
mj�1 � mj

� �2
: (47)

Now work on the second term in (44),

Xj�1

i�1

mj � mj�1

� �2
�(j �1) mj � mj�1

� �2
: (48)

Considering the third term in (44),

Xj�1

i�1

xi � mj

� �
mj � mj�1

� �
� mj � mj�1

� �Xj �1

i �1

xi � mj

� �

�(mj � mj�1)
Xj

i�1

(xi � mj) �(xj �1 � mj)

" #

� mj � mj�1

� �
xj �1 � mj �j mj �

Xj

i�1

xi

 !
: (49)

But

Xj

i�1

xi �j mj ; (50)

so

mj � mj�1

� �
xj�1 � mj

� �
� mj � mj�1

� �
(j �1) mj�1 � mj

� �
��(j �1) mj � mj �1

� �2
: (51)

Plugging (47), (48), and (51) into (44),

jsj�12 � (j �1)s2
j � j �1ð Þ2

mj�1 � mj

� �2
h i

� (j �1) mj�mj�1

� �2
h i

�2 �(j�1) mj�mj�1

� �2
h i

�(j�1)s2
j � j�1ð Þ2

mj�1�mj

� �2

�(j�1)(mj�mj�1)2

�(j�1)s2
j �(j�1) (j�1)�1½ � mj�1�mj

� �2

�(j�1)s2
j �j(j�1) mj�1�mj

� �2
; (52)

so

s2
j�1� 1�

1

j

 !
s2

j � j�1ð Þ mj�1�mj

� �2
: (53)

See also CENTRAL MOMENT, CHARLIER’S CHECK,
CORRELATION (STATISTICAL), COVARIANCE, COVAR-

IANCE MATRIX, ERROR PROPAGATION, K -STATISTIC,
MEAN, MOMENT, RAW MOMENT, SAMPLE VARIANCE,
STANDARD ERROR

References
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics,

Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.
Papoulis, A. Probability, Random Variables, and Stochastic

Processes, 2nd ed. New York: McGraw-Hill, pp. 144�/145,
1984.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-
ling, W. T. "Moments of a Distribution: Mean, Variance,
Skewness, and So Forth." §14.1 in Numerical Recipes in
FORTRAN: The Art of Scientific Computing, 2nd ed.
Cambridge, England: Cambridge University Press,
pp. 604�/609, 1992.

Roberts, M. J. and Riccardo, R. A Student’s Guide to
Analysis of Variance. London: Routledge, 1999.

Variate
A RANDOM VARIABLE in statistics.



References
Kenney, J. F. and Keeping, E. S. "Variates." §1.2 in Mathe-

matics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van
Nostrand, pp. 5 �/6, 1962.

Variation
The D/-variation is a variation in which the varied
path over which an integral is evaluated may end at
different times than the correct path, and there may
be variation in the coordinates at the endpoints.

The d/-variation is a variation in which the varied
path in configuration space terminates at the end-
points representing the system configuration at the
same time t1 and t2 as the correct path; i.e., the varied
path always returns to the same endpoints in config-
uration space, so

dqi t1ð Þ�dqi t2ð Þ�0:

See also CALCULUS OF VARIATIONS, VARIATION OF

ARGUMENT, VARIATION OF PARAMETERS

Variation Coefficient
If sx is the STANDARD DEVIATION of a set of samples xi

and x̄ its MEAN, then

V�
sx

x̄
:

Variation of Argument
Let arg f (z)½ � denote the change in argument of a
function f (z) around a CONTOUR g: Also let N denote
the number of ROOTS of f (z) in g and P denote the
number of POLES of f (z) in g: Then

arg f (z)½ �� 1

2p
N�Pð Þ: (1)

To find arg f (z)½ � in a given region R , break R into
paths and find arg f (z)½ � for each path. On a circular
ARC

z�Reiu; (2)

let f (z) be a POLYNOMIAL P(z) of degree n . Then

arg P(z)½ �� arg zn P zð Þ
zn

 !" #

� arg zn½ �� arg
P zð Þ
zn

 !" #
: (3)

Plugging in z�Reiu gives

arg P(z)½ �� arg Reiun
� 	

� arg
P Reiuð Þ
Reiun

" #
(4)

lim
R0�

P Reiuð Þ
Reiun

� constant½ �; (5)

so

P Reiuð Þ
Reiun

" #
�0; (6)

and

arg P(z)½ �� arg eiun
� 	

�n u2�u1ð Þ: (7)

For a REAL segment z�x ,

arg f (x)½ ��tan�1 0

f (x)

" #
�0: (8)

For an IMAGINARY segment z� iy ,

arg f (iy)½ �� tan�1 I P(iy)½ �
R P(iy)½ �

( )u2

u1

: (9)

Note that the ARGUMENT must change continuously,
so "jumps" occur across inverse tangent asymptotes.

Variation of Parameters
For a second-order ORDINARY DIFFERENTIAL EQUA-

TION,

yƒ�p(x)y?�q(x)y�g(x): (1)

Assume that linearly independent solutions y1(x) and
y2(x) are known and seek v1(x) and v2(x) such that

y��v1y1�v2y2 (2)

y?�� v?1y1�v?2y2ð Þ� v1y?1�v2y?2ð Þ: (3)

Now, impose the additional condition that

v?1y1�v?2y2�0 (4)

so that

y?�(x)�v1y?1�v2y?2 (5)

yƒ�(x)�v?1y?1�v?2y?2�v1yƒ1�v2y?2: (6)

Plug y�; y�?; and y�ƒ back into the original equation to
obtain

v1 yƒ1�py?1�qy1ð Þ�v2 yƒ2�py?2�qy2ð Þ�v?1y?1�v?2y?2
�g(x) (7)

v?1y?
1�v?2y?2�g(x): (8)

Therefore,

v?1y1�v?2y2�0 (9)

v?1y?1�v?2y?2�g(x): (10)

Generalizing to an nth degree ODE, let y1; ..., yn be
the solutions to the homogeneous ODE and let v?1(x);
..., v?n(x) be chosen such that



y1v ?1 �y2v?2 �. . .�ynv ?n �0
y?1v ?1 �y?2v?2 �. . .�y ?nv ?n �0
n
y(n�1)

1 v?1 �y(n�1)
2 v?2 �. . .�y(n�1)

n v ?n �g(x) :

8>><
>>: (11)

Then the particular solution is then

y+(x) �v1(x)y1(x) �. . .�vn(x)yn(x) : (12)

Variational Calculus
CALCULUS OF VARIATIONS

Variety
ALGEBRAIC VARIETY

Varignon Parallelogram

The figure formed when the MIDPOINTS of the sides of
a convex QUADRILATERAL are joined. VARIGNON’S

THEOREM demonstrated that this figure is a PARALLE-

LOGRAM. The center of the Varignon parallelogram is
the CENTROID of four point masses placed on the
VERTICES of the QUADRILATERAL.

See also BIMEDIAN, MIDPOINT, MIDPOINT POLYGON,
PARALLELOGRAM, QUADRILATERAL, VARIGNON’S THE-

OREM
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Varignon’s Theorem

The figure formed when the MIDPOINTS of the sides of

a convex QUADRILATERAL are joined in order is a
PARALLELOGRAM. Equivalently, the BIMEDIANS bisect
each other. The AREA of this VARIGNON PARALLELO-

GRAM is half that of the QUADRILATERAL. The PERI-

METER is equal to the sum of the diagonals of the
original QUADRILATERAL.

See also BIMEDIAN, MIDPOINT, MIDPOINT POLYGON,
QUADRILATERAL, VARIGNON PARALLELOGRAM
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Vassiliev Invariant
This entry contributed by SERGEI DUZHIN

Vassiliev invariants, discovered around 1989, pro-
vided a radically new way of looking at KNOTS. The
notion of finite type (a.k.a. Vassiliev) KNOT INVAR-

IANTS was independently invented by V. Vassiliev
and M. Goussarov around 1989. Vassiliev’s approach
is based on the study of discriminants in the (infinite-
dimensional) spaces of SMOOTH MAPS from one MANI-

FOLD into another. By definition, the discriminant
consists of all maps with SINGULARITIES.

For example, consider the space of all smooth maps
from the circle into 3-space M� f : S1 0 R3

, -
: If f is

an EMBEDDING (i.e., has no singular points), then it
represents a knot. The complement of the set of all
knots is the discriminant SƒM: It consists of all
smooth maps from S1 into R3 that have singularities,
either local , where f ?�0; or nonlocal , where f is not
injective. Two knots are equivalent IFF they can be
joined by a path in the space M that does not
intersect the discriminant. Therefore, knot types are
in one-to-one correspondence with the connected
components of the complement M_S; and KNOT

INVARIANTS with values in an ABELIAN GROUP G are
nothing but COHOMOLOGY CLASSES from H0 M_S;Gð Þ:
The FILTRATION of S by subspaces corresponding to
SINGULAR KNOTS with a given number of ORDINARY

DOUBLE POINTS gives rise to a SPECTRAL SEQUENCE,
which contains, in particular, the spaces of finite type
invariants.

Birman and Lin (1993) have contributed significantly
to the simplification of the Vassiliev’s original tech-
niques. In particular, they explained the relation
between JONES POLYNOMIALS and finite type invar-
iants (Peterson 1992, Birman and Lin 1993, Bar-
Natan 1995) and emphasized the role of the algebra of
CHORD DIAGRAMS. In fact, substituting the POWER

SERIES for ex as the variable in the JONES POLYNOMIAL

yields a POWER SERIES whose COEFFICIENTS are
Vassiliev invariants (Birman and Lin 1993). Kontse-
vich (1993) proved the first difficult theorem about
Vassiliev invariants with the help of the KONTSEVICH

INTEGRAL. Bar-Natan undertook a thorough study of



Vassiliev invariants; in particular, he showed the
importance of the algebra of Feynman diagrams and
diagrams with uni- and tri-valent vertices (Bar-
Natan 1995). Bar-Natan (1995) remains the most
authoritative source on the subject.

Expressed in simple terms, Vassiliev’s fundamental
idea is to study the prolongation of KNOT INVARIANTS

to SINGULAR KNOTS–immersions f : S1 0 R3 having a
finite number of ORDINARY DOUBLE POINTS. Let Xn

denote the set of EQUIVALENCE CLASSES of SINGULAR

KNOTS with n double points and no other singula-
rities. The following definition is based on a recursion
which allows to extend a KNOT INVARIANT from X0 to
X1 ; then to X2 ; etc., and thus finally to the whole of
X �@n Xn : Given a knot invariant v : X0 0 Q; its
Vassiliev prolongation v̂ : X 0 Q is defined as by the
rules

1. v̂ X �v ;j and

2. v̂(/ /) � ̂v(/ /) � ̂v(/ /) (Vassiliev’s skein relation).

The right-hand side of Vassiliev’s skein relation
refers to the two resolutions of the double point–
positive and negative. A crucial observation is that
each of them is well-defined (does not depend on the
plane projection used to express this relation). A KNOT

INVARIANT v is called a Vassiliev invariant of order
5n/ if its prolongation v̂ vanishes on all knots with
more than n double points. For example, the simplest
nontrivial Vassiliev invariant v2 has the following
explicit description. Let D be an arbitrary KNOT

DIAGRAM of the given knot K and w an arbitrary
distinguished point on D , different from all crossings.
Then

v2(K) �
X
i j i j

UOOU

oi oj ;

where the summation spreads over all pairs of cross-
ing points i, j such that (1) during one complete turn
of the diagram in the positive direction starting from
point w the points i and j are encountered in the
order i ; j ; i ; j; and (2) the four corresponding passages
through these crossing points are underpass, over-
pass, overpass, and underpass, respectively. The
numbers oi ; oj stand for the local WRITHE at points i

and j , defined according to the above illustration.

It turns out that the nth coefficient of the CONWAY

POLYNOMIAL is a Vassiliev invariant of order n and, in
particular, the second coefficient coincides with v2 :/

Vassiliev invariants are at least as strong as all
known polynomial knot invariants: ALEXANDER,
JONES, KAUFFMAN, and HOMFLY POLYNOMIALS.
This means that if two knots K1 and K2 can be
distinguished by such a polynomial, then there is a
Vassiliev invariant that takes different values for K1

and K2 :/

The set of all Q/-valued Vassiliev invariants V �@n Vn

forms a VECTOR SPACE over the rationals, with the
increasing FILTRATION Q �V0 ƒV1 ƒV2 ƒ. . . : The
ASSOCIATED GRADED SPACE �n Vn =Vn�1 has a struc-
ture of a HOPF ALGEBRA and can be interpreted as the
algebra of CHORD DIAGRAMS.

The numbers of independent Vassiliev invariants of a
given degree n (i.e., the dimension of Vn) are known
for n �0 to 12 (Kneissler 1997) and are summarized
in following table (A007473).

n 0 1 2 3 4 5 6 7 8  9 10 11 12

/dim Vn/ 1 1 2 3 6 10 19 33 60 104 184 316 548

The totality of all Vassiliev invariants is equivalent to
one UNIVERSAL VASSILIEV INVARIANT defined through
the KONTSEVICH INTEGRAL.

Two of the most important problems about Vassiliev
invariants were raised in 1990 and remain unan-
swered today.

1. Is it true that Vassiliev invariants distinguish
knots? In other words, given two nonequivalent
knots K1 and K2; is it always possible to indicate a
finite type invariant v such that v K1ð Þ"v K2ð Þ?/

2. Is it true that Vassiliev invariants can detect
knot orientation? More specifically, is there a knot
K and a finite type invariant v such that v(K)"
v(K̄); where K̄ differs from K by a change of
parameterization that reverses the orientation?

See also CHORD DIAGRAM, HABIRO MOVE, KNOT

INVARIANT, KONTSEVICH INTEGRAL, UNIVERSAL VAS-

SILIEV INVARIANT
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Vassiliev Polynomial
Vassiliev (1990) introduced a radically new way of
looking at KNOTS by considering a multidimensional
space in which each point represents a possible 3-D
knot configuration. If two KNOTS are equivalent, a
path then exists in this space from one to the other.
The paths can be associated with polynomial invar-
iants.

Birman and Lin (1993) subsequently found a way to
translate this scheme into a set of rules and list of
potential starting points, which makes analysis of
Vassiliev polynomials much simpler. Bar-Natan
(1995) and Birman and Lin (1993) proved that JONES

POLYNOMIALS and several related expressions are
directly connected (Peterson 1992). In fact, substitut-
ing the POWER SERIES for R3 as the variable in the
JONES POLYNOMIAL yields a POWER SERIES whose
COEFFICIENTS are Vassiliev polynomials (Birman
and Lin 1993). Bar-Natan (1995) also discovered a
link with Feynman diagrams (Peterson 1992).

See also HABIRO MOVE

References
Bar-Natan, D. "On the Vassiliev Knot Invariants." Topology

34, 423�/472, 1995.
Birman, J. S. "New Points of View in Knot Theory." Bull.

Amer. Math. Soc. 28, 253�/287, 1993.
Birman, J. S. and Lin, X.-S. "Knot Polynomials and Vassi-

liev’s Invariants." Invent. Math. 111, 225�/270, 1993.

Peterson, I. "Knotty Views: Tying Together Different Ways
of Looking at Knots." Sci. News 141, 186�/187, 1992.

Praslov, V. V. and Sossinsky, A. B. Knots, Links, Braids and
3-Manifolds: An Introduction to the New Invariants in
Low-Dimensional Topology. Providence, RI: Amer. Math.
Soc., 1996.

Stoimenow, A. "Degree-3 Vassiliev Invariants." http://guest-
s.mpim-bonn.mpg.de/alex/ptab/vas3.html.

Vassiliev, V. A. "Cohomology of Knot Spaces." In Theory of
Singularities and Its Applications (Ed. V. I. Arnold).
Providence, RI: Amer. Math. Soc., pp. 23�/69, 1990.

Vassiliev, V. A. Complements of Discriminants of Smooth
Maps: Topology and Applications. Providence, RI: Amer.
Math. Soc., 1992.

Vault

Let a vault consist of two equal half-CYLINDERS of
radius r which intersect at RIGHT ANGLES so that the
lines of their intersections (the "groins") terminate in
the VERTICES of a SQUARE. Two vaults placed bottom-
to-top form a STEINMETZ SOLID on two cylinders.

Solving the equations

x2�z2�r2 (1)

y2�z2�r2 (2)

simultaneously gives

x�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
(3)

y�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
: (4)

One quarter of the vault can therefore be described by
the PARAMETRIC EQUATIONS

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
(5)

y��u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
(6)

z�z: (7)

The SURFACE AREA of the vault is therefore given by

A�4g l(z)r du; (8)

where l(z) is the length of a cross section at height z
and u is the angle a point on the center of this line
makes with the origin. But z�r sin u; so

dz�r cos u du�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 u

p
du�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�z2

p
du;

and



l(z) �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �x2

p
(9)

A �4g
r

0

2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �z2

p dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p �4g
r

0

2r dz�8r2 : (10)

The VOLUME of the vault is

V �g
r

0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �z2

p �2

dz�8
3r

3: (11)

See also CYLINDER, DOME, STEINMETZ SOLID
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Vector

A vector is formally defined as an element of a VECTOR

SPACE. In the commonly encountered VECTOR SPACE

Rn (i.e., Euclidean n -space), a vector is given by n
coordinates and can be specified as A1;A2; . . . ;Anð Þ:
Vectors can be added together (VECTOR ADDITION) and
multiplied by SCALARS (SCALAR MULTIPLICATION).
VECTOR MULTIPLICATION is not uniquely defined, but
a number of different types of products, such as the
DOT PRODUCT, CROSS PRODUCT, TENSOR DIRECT PRO-

DUCT can be defined for pairs of vectors.
A vector from a point A to a point B is denoted AB

.!
;

and a vector v may be denoted �v; or more commonly,
v. The point A is often called the "tail" of the vector,
and B is called the vector’s "head." A vector with unit
length is called a UNIT VECTOR and is denoted using a
HAT, v̂: An arbitrary vector may be converted to a
UNIT VECTOR by dividing by its NORM (i.e., length),

vj j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1�v2
2�. . .�v2

n

q
; (1)

giving

v̂�
v

vj j
(2)

A ZERO VECTOR, denoted 0; is a vector of length 0, and
thus has all components equal to zero.

Since vectors remain unchanged under TRANSLATION,
it is often convenient to consider the tail A as located
at the origin when, for example, defining VECTOR

ADDITION and SCALAR MULTIPLICATION.

A vector may also be defined as a set of n numbers A0;
..., An that transform according to the rule

A?i�aijAj; (3)

where EINSTEIN SUMMATION notation has been used,

aij�
@x?i
@xj

�
@xj

@x?i
(4)

are constants (corresponding to the DIRECTION CO-

SINES), with partial derivatives taken with respect to
the original and transformed coordinate axes, and
i; j�1; ..., n (Arfken 1985, p. 10). This makes a vector
a TENSOR of RANK one. A vector with n components in
called an n -vector, and a SCALAR may therefore be
thought of as a 1-vector (or a 0-RANK TENSOR). Vectors
are invariant under TRANSLATION, and they reverse
sign upon inversion. Objects which resemble vectors
but do not reverse sign upon inversion are known as
PSEUDOVECTORS.

A vector is represented in Mathematica as a list of
numbers {a1 , a2 , ..., an }. VECTOR ADDITION is then
simply written using a plus sign, e.g., {a1 , a2 , ...,
an }�{b1 , b2 , ..., bn }, and SCALAR MULTIPLICATION is
indicated by placing a scalar next to a vector (with or
without an optional asterisk), s {a1 , a2 , ..., an }.

Let n̂ be the UNIT VECTOR defined in SPHERICAL

COORDINATES by

n̂�

cos u sin f

sin u sin f

cos f

2
4

3
5: (5)

Then the average value of the x -component of the n̂
over the surface of the UNIT SPHERE is given by

nxh i�g
2p

0 g
p

0

cos u sin fð Þ sin f df du

f 2p
0 f p0 sin f df du

�
1

4p
sin u½ �2p0 g

2p

0

sin2 f df�0: (6)

More generally,

nih i�0 (7)

for i�x , y , or z (indexed as 1, 2, 3), and

ninj

� �
�1

3dij (8)

ninjnk

� �
�0 (9)

ninknlnmh i� 1
15 dikdlm�dildkm�dimdklð Þ: (10)

Given vectors a, b, c, d, the average values of a
number of quantities over the UNIT SPHERE are given
by

a�n̂ð Þ2
D E

�1
3a

2 (11)

a�n̂ð Þ b�n̂ð Þh i�1
3a�b (12)



a �n̂ð Þn̂h i�1
3a (13)

a �n̂ð Þ2
D E

�2
3a

2 (14)

a �n̂ð Þ� b �n̂ð Þh i�2
3a �b; (15)

and

a �n̂ð Þ b �n̂ð Þ c �n̂ð Þ d �n̂ð Þh i

� 1
15 (a �d)(c �d) �(a �c)(b �d) �(a �d)(b �c)½ �

(16)

where dij is the KRONECKER DELTA, a �b is a DOT

PRODUCT, and EINSTEIN SUMMATION has been used.

A MAP f : Rn �Rn which assigns each x a VECTOR

FUNCTION f(x) is called a VECTOR FIELD.

See also COLUMN VECTOR, CONTRAVARIANT VECTOR,
COVARIANT VECTOR, FOUR-VECTOR, HELMHOLTZ’S

THEOREM, NORM, NULL VECTOR, ONE-FORM, PSEU-

DOVECTOR, ROW VECTOR, SCALAR, TENSOR, UNIT

VECTOR, VECTOR BASIS, VECTOR BUNDLE, VECTOR

FIELD, VECTOR FUNCTION, VECTOR SPACE, ZERO

VECTOR
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Vector Addition

The so-called PARALLELOGRAM LAW gives the rule for
vector addition of vectors A and B. The sum A �B of
the vectors is obtained by placing them head to tail
and drawing the vector from the free tail to the free
head.
Vector addition is indicated in Mathematica using a
plus sign, e.g., {a1 , a2 , ..., an } �{b1 , b2 , ..., bn }.

See also COMPLEX ADDITION, CROSS PRODUCT, DOT

PRODUCT, PARALLELOGRAM LAW, SCALAR MULTIPLI-

CATION, VECTOR, VECTOR MULTIPLICATION

Vector Basis
A vector basis is any SET of n LINEARLY INDEPENDENT

VECTORS capable of generating an n -dimensional
SUBSPACE of Rn : Given a HYPERPLANE defined by

x1 �x2 �x3 �x4 �x5 �0;

a basis is found by solving for x1 in terms of x2 ; x3 ; x4 ;
and x5 : Carrying out this procedure,

x1 ��x2 �x3 �x4 �x5 ;

so

x1

x2

x3

x4

x5

2
66664

3
77775�x2

�1
1
0
0
0

2
66664

3
77775�x3

�1
0
1
0
0

2
66664

3
77775�x4

�1
0
0
1
0

2
66664

3
77775�x5

�1
0
0
0
1

2
66664

3
77775;

and the above VECTOR form an (unnormalized) BASIS.
Given a MATRIX A with an orthonormal basis, the
MATRIX corresponding to a new basis, expressed in
terms of the original x̂1; . . . ; x̂n is

A?� Ax̂1 . . . Ax̂n½ �

See also BASIS, BILINEAR BASIS, MODULAR SYSTEM

BASIS, ORTHONORMAL BASIS, TOPOLOGICAL BASIS

Vector Bundle
A special class of FIBER BUNDLE in which the FIBER is
a VECTOR SPACE V . Technically, a little more is
required; namely, if f : E 0 B is a BUNDLE with FIBER

Rn; to be a vector bundle, all of the FIBERS f�1(x) for



x � B need to have a coherent VECTOR SPACE structure.
One way to say this is that the "TRIVIALIZATIONS" h :
f �1(U) 0 U �Rn ; are FIBER-for-FIBER VECTOR SPACE

ISOMORPHISMS.

A vector bundle is a TOTAL SPACE E along with a
SURJECTIVE map p : E 0 B to a base manifold B . Any
FIBER p�1(b) is a VECTOR SPACE ISOMORPHIC to V .

The simplest nontrivial vector bundle is a LINE

BUNDLE on the circle, and is analogous to the MÖ BIUS

STRIP.

One use for vector bundles is a generalization of
VECTOR FUNCTIONS. For instance, the tangent vectors
of an n -dimensional manifold are isomorphic to Rn at
a point p in a COORDINATE CHART. But the isomorph-
ism with Rn depends on the choice of COORDINATE

CHART. Nearby p , the vector fields look like functions.
To define vector fields on the whole manifold requires
the TANGENT BUNDLE, which is a special case of a
vector bundle.

A SECTION of a vector bundle E is a map s : B 0 E
whose projection, p(s is the identity map on B . For
instance, on a TRIVIAL BUNDLE E �B �V ; a section s
corresponds to a function f : B 0 V by s(b) �(b; f (b)) :/

Near every point in a vector bundle, there is a
TRIVIALIZATION. The structure of the vector bundle,
as in all BUNDLES, is that it is LOCALLY TRIVIAL. In the
case of a vector bundle, the TRANSITION FUNCTIONS

between the trivializations take values in linear
invertible transformations of the fiber.

Since the element zero in V is fixed by any linear
transformation, the zero section always exists. By
"nontrivial section," it is meant that it is not the zero
section.

There are several adjectives that can specify proper-
ties of a vector bundle. A COMPLEX VECTOR BUNDLE

has a fiber V which is a COMPLEX VECTOR SPACE. A
REAL VECTOR BUNDLE has a fiber which is a real
VECTOR SPACE, which is the default kind of vector
bundle. A LINE BUNDLE has a fiber which is one
dimensional.

A CONTINUOUS VECTOR BUNDLE is a manifold E with a
CONTINUOUS projection map p: A SMOOTH VECTOR

BUNDLE is a smooth manifold E with a smooth
projection p: Finally, a HOLOMORPHIC VECTOR BUNDLE

is a COMPLEX MANIFOLD E with a HOLOMORPHIC

projection p: In this last case, the fiber must be a
complex vector space. So there could be a smooth
complex vector bundle, but not a holomorphic real
vector bundle.

Vector bundles can have metrics on their fibers,
either RIEMANNIAN or HERMITIAN, and CONNECTIONS.

See also CONNECTION (VECTOR BUNDLE), FIBER,
FIBER BUNDLE, HERMITIAN METRIC, K -THEORY, LIE

ALGEBROID, LINEAR ALGEBRA, PRINCIPAL BUNDLE,
RANK (BUNDLE), REAL VECTOR BUNDLE, RIEMANNIAN

METRIC, STABLE EQUIVALENCE, TANGENT BUNDLE,
TANGENT MAP, TRIVIAL BUNDLE, VECTOR SPACE,
WHITNEY SUM

Vector Cross Product
CROSS PRODUCT

Vector Derivative
The basic types of derivatives operating on a VECTOR

FIELD are the CURL 9�; DIVERGENCE 9 � ; and GRADI-

ENT 9:/
Vector derivative identities involving the CURL in-
clude

9�(kA)�k9�A (1)

9�(f A)�f (9�A)�(9f )�A (2)

9�(A�B)

�(B � 9)A�(A � 9)B�A(9 � B)�B 9 � Að Þ (3)

9�
A

f

 !
�

f (9� A) � A � 9fð Þ
f 2

(4)

9�(A�B)�9�A�9�B: (5)

In CARTESIAN COORDINATES

9�x�9�y�9�z�0 (6)

9�x̂�9�ŷ�9�ẑ�0: (7)

In SPHERICAL COORDINATES,

9�r�0 (8)

9�r̂�0 (9)

9� rf (r)½ ��f (r)(9�r)� 9f (r)½ ��r

�f (r)(0)�
df

dr
r̂�r�0�0�0: (10)

Vector derivative identities involving the DIVERGENCE

include

9 � kAð Þ�k9 � A (11)



9 � (fA) �f ( 9 � A) �(9f ) � A (12)

9 � (A �B) �B � (9�A) �A � ( 9�B) (13)

9 �
A

f

 !
�

f 9 � Að Þ� 9fð Þ � A

f 2 
(14)

9 � (A �B) �9 � A �9 � B (15)

In CARTESIAN COORDINATES,

9 � x �9 � y �9 � z �1 (16)

9 � x̂ �9 � ŷ �9 � ẑ �0 : (17)

In SPHERICAL COORDINATES,

9 � r �3 (18)

9 � r̂ �
2

r 
(19)

9 � rf (r)½ �� @

@x
xf (r)½ �� @

@y
yf (r)½ �� @

@z
zf (r)½ � (20)

@

@x 
[xf (r)] �x

@f

@x 
�f �x

@f

@r

@r

@x 
�f (21)

@r

@x 
�

@

@x
x2 �y2 �z2
� �1 =2

�x x2 �y2 �z2
� ��1=2

�
x

r
(22)

@

@x
[xf (r)] �

x2

r

df

dr 
�f : (23)

By symmetry,

9 � [rf (r)] �3f (r) �
1

r
(x2 �y2 �z2)

df

dr

�3f (r) �r
df

dr 
(24)

9 � (r̂f (r)) �
3

r
(r) �

df

dr 
(25)

9 � r̂rnð Þ�3rn�1 �(n �1)rn�1 �(n �2)rn�1 : (26)

Vector derivative identities involving the GRADIENT

include

9(kf ) �k9f (27)

9(fg) �f 9g �g9f (28)

9(A � B) �A �( 9�B) �B �( 9�A) �(A � 9)B

�(B � 9)A (29)

9(A � 9f ) �A �( 9�9f ) �9f �( 9�A) �A � 9( 9f )

�9f �9A

�9f �( 9�A) �A � 9( 9f ) �9f � 9A (30)

9
f

g

 !
�

g 9f � f 9g

g2 
(31)

9(f �g) �9f �9g (32)

9(A � A) �2A �( 9�A) �2(A � 9)A (33)

(A � 9)A �9 1
2A

2
 �

�A �( 9�A) : (34)

Vector second derivative identities include

92t �9 � ( 9t) �
@2t

@x2 
�

@2t

@y2 
�

@2t

@z2 
(35)

92A �9( 9 � A) �9�( 9�A): (36)

This very important second derivative is known as
the LAPLACIAN.

9�( 9t) �0 (37)

9(9 � A) �92A �9�( 9�A) (38)

9 � (9�A) �0 (39)

9�( 9�A) �9( 9 � A) �92A

9� 92A
� �

�9� 9 9 � Að Þ½ ��9� 9� 9�Að Þ½ �

��9� 9� 9�Að Þ½ �

�� 9 9 � 9�Að Þ½ ��92 9�Að Þ
, 	

g

�92 9�Að Þ  (40)

92 9 � Að Þ�9 � 9 9 � Að Þ½ �

�9 � 92A �9� 9�Að Þ
� 	

�9 � 92A
� �

(41)

92 9� 9�Að Þ½ ��92 9 9 � Að Þ�92A
� 	

�92 9 9 � Að Þ½ ��94A (42)

9� 92 9�Að Þ
� 	

�92 9 9 � Að Þ½ ��94A (43)

94A ��92 9� 9�Að Þ½ ��92 9 9 � Að Þ½ �
�9� 92 9�Að Þ

� 	
�92 9� 9�Að Þ½ �: (44)

Identities involving combinations of vector deriva-
tives include

A� 9Að Þ�1
29 A � Að Þ� A � 9ð ÞA (45)

9� f9fð Þ�f9� 9fð Þ� 9fð Þ� 9fð Þ�0 (46)

A � 9ð Þr̂�A � r̂ A � r̂ð Þ
r

(47)

9f � A�9 � fAð Þ�f 9 � Að Þ (48)

f 9 � Að Þ�9 � fAð Þ�A9f ; (49)

where (48) and (49) follow from divergence rule (2).

See also CURL, DIVERGENCE, GRADIENT, LAPLACIAN,
VECTOR INTEGRAL, VECTOR QUADRUPLE PRODUCT,
VECTOR TRIPLE PRODUCT
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Vector Direct Product
Given VECTORS u and v, the vector direct product is

uv �u �vT

where � is the MATRIX DIRECT PRODUCT and vT is the
matrix TRANSPOSE. For 3 �3 vectors

uv �
u1vT

u1vT

u1vT

2
4

3
5� u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

2
4

3
5:

Note that if u �x̂i ; then uj � dij ; where dij is the
KRONECKER DELTA.

See also MATRIX DIRECT PRODUCT, SHERMAN-MORRI-

SON FORMULA, WOODBURY FORMULA

Vector Division
There is no unique solution A to the MATRIX equation
y �Ax unless x is PARALLEL to y, in which case A is a
SCALAR. Therefore, vector division is not defined.

See also MATRIX, SCALAR

Vector Field

A MAP f : Rn �Rn which assigns each x a VECTOR

FUNCTION f(x): In French, a vector field is called "un
champ." Several vector fields are illustrated above. A
vector field is uniquely specified by giving its DIVER-

GENCE and CURL within a region and its normal

component over the boundary, a result known as
HELMHOLTZ’S THEOREM (Arfken 1985, p. 79).
FLOWS are generated by vector fields and vice versa.
A vector field is a SECTION of its TANGENT BUNDLE.

See also FLOW, SCALAR FIELD, SEIFERT CONJECTURE,
TANGENT BUNDLE, VECTOR, WILSON PLUG
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Vector Function
A function of one or more variables whose RANGE is 3-
dimensional (or, in general, n -dimensional), as com-
pared to a SCALAR FUNCTION, whose RANGE is 1-
dimensional. Vector functions are also called vector-
valued functions.

See also COMPLEX FUNCTION, REAL FUNCTION, SCA-

LAR FUNCTION, VECTOR

Vector Harmonic
VECTOR SPHERICAL HARMONIC

Vector Helmholtz Equation
HELMHOLTZ DIFFERENTIAL EQUATION

Vector Integral
The following vector integrals are related to the CURL

THEOREM. If

F�c�P x; y; xð Þ; (1)

then

gC

ds�P�gs

da�9ð Þ�P (2)

If

F�cF; (3)

then

gC

F ds�gs

da�9F (4)

The following are related to the DIVERGENCE THEO-

REM. If

F�c�P x; y; xð Þ; (5)

then



gV

9�F dV �gs

da �F : (6)

Finally, if

F �cF ; (7)

then

gV

9F dV�gs

F da: (8)

See also CURL THEOREM, DIVERGENCE THEOREM,
GRADIENT THEOREM, GREEN’S IDENTITIES, LINE IN-

TEGRAL, SURFACE INTEGRAL, VECTOR DERIVATIVE,
VOLUME INTEGRAL

Vector Laplacian
A vector Laplacian can be defined for a VECTOR A by

92A �9 9 � Að Þ�9� 9�Að Þ  (1)

in vector notation. The notation A is sometimes also

used for a vector Laplacian (Moon and Spencer 1988,
p. 3). In tensor notation, A is written Am ; and the
identity becomes

92Am �A;l
m; l� g lkAm; l

� �
; k

�gl k;kAm; l �glkA m; lk : (2)

Similarly, a TENSOR Laplacian can be given by

92Aab �A; l
ab; l (3)

See also LAPLACIAN, VECTOR POISSON EQUATION
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Vector Multiplication
Although the multiplication of one vector by another
is not uniquely defined (cf. SCALAR MULTIPLICATION,
which is multiplication of a VECTOR by a SCALAR),
several types of useful vector products can be defined,
as summarized in the following table.

product name symbol result

DOT PRODUCT /u � v/ SCALAR

CROSS PRODUCT /u �v/ PSEUDOVECTOR

VECTOR DIRECT

PRODUCT

/uv/ TENSOR

Vector multiplication can also be defined for vectors
taken three at a time, as summarized in the following
table.

product name symbol result

VECTOR TRIPLE

PRODUCT

/u �(v �w)/ VECTOR

SCALAR TRIPLE

PRODUCT

/[u ; v; w]/ PSEUDOSCALAR

A number of VECTOR QUADRUPLE PRODUCTS can also
be defined.

See also CROSS PRODUCT, DOT PRODUCT, SCALAR

MULTIPLICATION, SCALAR TRIPLE PRODUCT, VECTOR,
VECTOR ADDITION, VECTOR DIRECT PRODUCT, VECTOR

QUADRUPLE PRODUCT, VECTOR TRIPLE PRODUCT,
VECTOR TRIPLE PRODUCT

Vector Norm
Given an n -D VECTOR

x �

x1

x2

n
xn

2
664

3
775;

a vector norm xk k (sometimes written simply xk k) is a
NONNEGATIVE number satisfying

1. xk k > 0 when x "0 and xk k�0 IFF x �0;/
2. kxk k� kj j xj jj j for any SCALAR k ,
3. x �yk k5 xk k� yk k/

The vector norm xj jp is implemented as Vector-
Norm[m , p ] in the Mathematica add-on package
LinearAlgebra‘MatrixMultiplication‘ (which
can be loaded with the command
BBLinearAlgebra‘), where 1 5p B�:/

See also COMPATIBLE, L1-NORM, L2-NORM, L -INFI-

NITY-NORM, MATRIX NORM, NATURAL NORM, NORM

References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals,

Series, and Products, 6th ed. San Diego, CA: Academic
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Vector Ordering
If the first NONZERO component of the vector differ-
ence A �B is > 0; then A cB: If the first NONZERO

component of A�B isB0; then /A)B:

See also PRECEDES, SUCCEEDS



Vector Poisson Equation
The PARTIAL DIFFERENTIAL EQUATION

AA ��9�E;

where A is the VECTOR LAPLACIAN.

See also POISSON’S EQUATION, VECTOR LAPLACIAN
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Vector Potential
A function A such that

B �9�A :

The most common use of a vector potential is the
representation of a magnetic field. If a VECTOR FIELD

has zero DIVERGENCE, it may be represented by a
vector potential.

See also DIVERGENCE, HELMHOLTZ’S THEOREM, PO-

TENTIAL FUNCTION, SOLENOIDAL FIELD, VECTOR

FIELD

Vector Product
CROSS PRODUCT, SCALAR TRIPLE PRODUCT, VECTOR

MULTIPLICATION, VECTOR DIRECT PRODUCT, VECTOR

QUADRUPLE PRODUCT, VECTOR TRIPLE PRODUCT

Vector Quadruple Product
There are a number of algebraic identities involving
sets of four VECTORS. LAGRANGE’S IDENTITY is given
by

(A �B) � (C �D)

�(A � C)(A � D) �(A � D)(B � C) : (1)

A number of other useful identities include

(A �B)2 
�(A �B) � (A �B)

�(A � A)(B � B) �(A � B)(B � A)

�A2B2 �(A � B)2 (2)

A �(B �(C �D))

�B(A � (C �D)) �(A � B)(C �D) (3)

(A �B) �(C �D) �(C �D) �(B �A) (4)

�[A ;B;D]C �[A ;B ;C]D (5)

[C ;D ;A]B �[C ;D ;B]A ; (6)

where A ;B;C½ � denotes the SCALAR TRIPLE PRODUCT.

See also LAGRANGE’S IDENTITY, SCALAR TRIPLE PRO-

DUCT, VECTOR MULTIPLICATION, VECTOR TRIPLE

PRODUCT

Vector Space
A vector space over Rn is a set of VECTORS for which
any VECTORS X ; Y, and Z � Rn and any SCALARS r ,
s �R have the following properties:

1. COMMUTATIVITY:

X �Y �Y �X :

2. ASSOCIATIVITY of VECTOR ADDITION:

(X �Y) �Z �X �(Y �Z) :

3. Additive identity: For all X,

0 �X �X �0 �X :

4. Existence of additive inverse: For any X, there
exists a �X such that

X �(�X) �0 :

5. ASSOCIATIVITY of scalar multiplication:

r(sX) �(rs)X :

6. DISTRIBUTIVITY of scalar sums:

(r �s)X �rX �sX :

7. DISTRIBUTIVITY of vector sums:

r(X �Y) �rX �rY :

8. Scalar multiplication identity:

1X �X :

Let V be a vector space of dimension n over the FIELD

of q elements (where q is necessarily a power of a
prime number). Then the number of distinct non-
singular linear operators on V is

M(n; q) � qn �q0
� �

qn �q1
� �

qn �q2
� �

� � �  qn �qn �1
� �

(1)

and the number of distinct k -dimensional subspaces
of V is

S(k; n; q) �
qn � q0ð Þ qn � q1ð Þ qn � q2ð Þ � � � qn � qk�1

� �
M(k ; q)

(2)

�
qn � 1ð Þ qn�1 � 1ð Þ qn �2 � 1ð Þ � � �  qn�k �1 � 1

� �
qk � 1ð Þ qk�1 � 1ð Þ qk�2 � 1ð Þ � � �  q � 1ð Þ

: (3)

A consequence of the AXIOM OF CHOICE is that every
vector space has a BASIS.

A MODULE is abstractly similar to a vector space, but
it uses a RING to define COEFFICIENTS instead of the
FIELD used for vector spaces. MODULES have COEFFI-

CIENTS in much more general algebraic objects.

See also BANACH SPACE, BASIS (VECTOR SPACE),
FIELD, FUNCTION SPACE, HILBERT SPACE, INNER

PRODUCT SPACE, MODULE, QUOTIENT VECTOR SPACE,



RING, SYMPLECTIC SPACE, TOPOLOGICAL VECTOR

SPACE, VECTOR
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Vector Spherical Harmonic
The SPHERICAL HARMONICS can be generalized to
vector spherical harmonics by looking for a SCALAR

FUNCTION c and a constant VECTOR c such that

M�9�(cc)�c(9�c)�(9c)�c

� 9cð Þ�c��c�9c; (1)

so

9 � M�0: (2)

Now use the vector identities

92M�92 9�Mð Þ�9� 92M
� �

�9 92cc
� �

�9� c92c
� �

(3)

k2M�k29�(cc)�9� c92c
� �

(4)

so

92M�k2M�9� c 92c�k2c
� �� 	

; (5)

and M satisfies the vector HELMHOLTZ DIFFERENTIAL

EQUATION if c satisfies the scalar HELMHOLTZ DIF-

FERENTIAL EQUATION

92c�k2c�0: (6)

Construct another vector function

N�
9� M

k
; (7)

which also satisfies the vector HELMHOLTZ DIFFER-

ENTIAL EQUATION since

92N�
1

k
92 9�Mð Þ�1

k
9� 92M

� �

�
1

k
9� �k2M

� �
��k9�M��k2N; (8)

which gives

92N�k2N�0: (9)

We have the additional identity

9�N�
1

k
9�(9�M)�

1

k
9�(9�M)

�
1

k
92M�

1

k
92M�

�92M

k
�kM: (10)

In this formalism, c is called the generating function

and c is called the PILOT VECTOR. The choice of
generating function is determined by the symmetry
of the scalar equation, i.e., it is chosen to solve the
desired scalar differential equation. If M is taken as

M� 9�(rc); (11)

where r is the radius vector, then M is a solution to
the vector wave equation in spherical coordinates. If
we want vector solutions which are tangential to the
radius vector,

M � r�r � (9c�c)�(9c)(c�r)�0; (12)

so

c�r�0 (13)

and we may take

c�r (14)

(Arfken 1985, pp. 707�/711; Bohren and Huffman
1983, p. 88).

A number of conventions are in use. Hill (1954)
defines

Vm
l ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l � 1

2l � 1

s
Ym

l r̂�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(l � 1)(2l � 1)
p @Ym

l

@u
û

�iM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l�1)(2l�1)

p
sin uYm

l f̂ (15)

Wm
l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2l � 1

s
Ym

l r̂�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l(2l � 1)
p @Ym

l

@u
û

�
iMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l(2l � 1)
p

sin u
Ym

l f̂ (16)

Xm
l ��

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l � 1)

p
sin u

Ym
l û�

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l � 1)

p @Ym
l

@u
f̂ (17)

Morse and Feshbach (1953) define vector harmonics
called B, C, and P using rather complicated expres-
sions.
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Vector Transformation Law
The set of n quantities vj are components of an n -D
VECTOR v IFF, under ROTATION,

v?i �aijvj

for i �1, 2, ..., n . The DIRECTION COSINES between x?i
and xj are

aij �
@x?i
@xj

�
@xj

@x?i
:

They satisfy the orthogonality condition

aijaik �
@xj

@x?i

@x?i
@xk

�
@xj

@xk

� djk ;

where djk is the KRONECKER DELTA.

See also TENSOR, VECTOR

Vector Triple Product
The vector triple product identity is also known as the
BAC-CAB IDENTITY, and can be written in the form

A �(B �C) �B(A � C) �C(A � B) (1)

(A �B) �C ��C �(A �B)

��A(B � C) �B(A � C) (2)

See also BAC-CAB IDENTITY, CROSS PRODUCT, DOT

PRODUCT, PERMUTATION SYMBOL, SCALAR TRIPLE

PRODUCT, VECTOR MULTIPLICATION, VECTOR QUAD-

RUPLE PRODUCT
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Vector-Valued Function
VECTOR FUNCTION

Vee
The symbol �variously means "disjunction" (i.e., OR
in LOGIC) or "join" (for a LATTICE).

See also OR, WEDGE

Velocity

v �
dr

dt
;

where r is the POSITION VECTOR and d=dt is the
derivative with respect to time. Expressed in terms of

the ARC LENGTH,

v �
ds

dt
T̂ ;

where T̂ is the unit TANGENT VECTOR, so the SPEED

(which is the magnitude of the velocity) is

v � vj j�ds

dt
� r?(t)j j:

See also ANGULAR VELOCITY, POSITION VECTOR,
SPEED

Velocity Vector
The idea of a velocity vector comes from classical
physics. By representing the position and motion of a
single particle using vectors, the equations for motion
are simpler and more intuitive. Suppose the position
of a particle at time t is given by the position vector
s(t)�(s1(t); s2(t); s3(t)): Then the velocity vector v(t) is
the derivative of the position,

v�
ds

dt
�

ds1

dt
;
ds2

dt
;
ds3

dt

 !
:

For example, suppose a particle is confined to the
plane and its position is given by s�( cos t; sin t):
Then it travels along the unit circle at constant speed.
Its velocity vector is v�(�sin t; cos t): In a diagram,
it makes sense to translate the velocity vector so it
originates at s . In particular, it is drawn as an arrow
from s to s�v:/

Another example is a particle traveling along a
HYPERBOLA specified parametrically by s(t)�



( sinh(t) ; cosh(t)): Its velocity vector is then given by
v �(cosh(t) ; sinh(t)) ; illustrated above.

Travel down the same path, but using a different
function is called a REPARAMETRIZATION, and the
CHAIN RULE describes the change in velocity. For
example, the HYPERBOLA can also be parametrized by
r(t) � t;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 �t2

p� �
: Note that r(sinh(t)) �s(t); and by

the CHAIN RULE, dr =dt(cosh t) �ds =dt:/

Note that the set of possible velocity vectors forms a
VECTOR SPACE. If r and s are two paths through the
origin, then so is r �s and the velocity vector of this
path is dr =dt �ds =dt: Similarly, if a is a scalar, then
the path as has velocity vector av: It makes sense to
distinguish the velocity vectors at different points. In
physics, the set of all velocity vectors gives all possible
combinations of position and momentum, and is
called phase space. In mathematics, the velocity
vectors form the tangent space, and the collection of
tangent spaces forms the TANGENT BUNDLE.

See also CALCULUS, COORDINATE CHART, DIREC-

TIONAL DERIVATIVE, EUCLIDEAN SPACE, JACOBIAN,
MANIFOLD, TANGENT BUNDLE, TANGENT SPACE, TAN-

GENT VECTOR, VECTOR FIELD, VECTOR SPACE

Venn Diagram

A schematic diagram used in LOGIC theory to depict
collections of sets and represent their relationships.
The Venn diagrams on two and three sets are
illustrated above. The order-two diagram (left) con-
sists of two intersecting circles, producing a total of
four regions, A , B , A S B ; and ¥ (the EMPTY SET,
represented by none of the regions occupied). Here,
A S B denotes the INTERSECTION of sets A and B .

The order-three diagram (right) consists of three
symmetrically placed mutually intersecting CIRCLES

comprising a total of eight regions. The regions
labeled A , B , and C consist of members which are

only in one set and no others, the three regions
labelled A S B ; A S C ; and B S C consist of members
which are in two sets but not the third, the region
A S B S C consists of members which are simulta-
neously in all three, and no regions occupied repre-
sents ¥:/

In general, an order-n Venn diagram is a collection of
n simple closed curves in the PLANE such that

1. The curves partition the PLANE into 2n con-
nected regions, and
2. Each SUBSET S of 1; 2; . . .  ;nf g corresponds to a
unique region formed by the intersection of the
interiors of the curves in S (Ruskey).

Since there are n
k

� �
(the BINOMIAL COEFFICIENT) ways

to pick k members from a total of n , the number of
regions in an order n Venn diagram is

N �
Xn

k�0

n
k

/ 0
�2n ;

(where the region outside the diagram is included in
the count).

The region of INTERSECTION of the three CIRCLES A S
B S C in the order three Venn diagram in the special
case of the center of each being located at the
INTERSECTION of the other two is a geometric shape
known as a REULEAUX TRIANGLE.

See also CIRCLE, FLOWER OF LIFE, HARUKI’S THEO-

REM, INTERSECTION, LENS, MAGIC CIRCLES, REU-

LEAUX TRIANGLE, SEED OF LIFE, Ogilvy, C. S.
"Solution to Problem E 1154." Amer. Math. Monthly
62, 584 �/585, 1955.
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Verging Construction
NEUSIS CONSTRUCTION

Verhulst Model
LOGISTIC MAP

Verma Module

See also MODULE
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Veronese Surface
A smooth 2-D surface given by embedding the
PROJECTIVE PLANE into projective 5-space by the
homogeneous parametric equations

v(x; y; z) � x2 ; y2 ; z2 ; xy; xz; yz
� �

:

The surface can be projected smoothly into 4-space,
but all 3-D projections have singularities (Coffman).
The projections of these surfaces in 3-D are called
STEINER SURFACES. The VOLUME of the Veronese
surface is 2p2 :/

See also STEINER SURFACE
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Veronese Variety
VERONESE SURFACE

Versed Sine
VERSINE

Versiera
WITCH OF AGNESI

Versine

vers(z) �1 �cos z ;

where cos z is the COSINE. Using a trigonometric
identity, the versine is equal to

vers(z) �2 sin2 1
2z
 �

:

See also COSINE, COVERSINE, EXSECANT, HAVERSINE
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Vertex (Graph)
A point of a GRAPH, also called a NODE.

See also EDGE (GRAPH), NULL GRAPH, TAIT COLOR-

ING, TAIT CYCLE, TAIT’S HAMILTONIAN GRAPH CON-

JECTURE, VERTEX (POLYGON)

Vertex (Parabola)
For a PARABOLA oriented vertically and opening
upwards, the vertex is the point where the curve
reaches a minimum.

Vertex (Polygon)

A point at which two EDGES of a POLYGON meet.

See also PRINCIPAL VERTEX, VERTEX (GRAPH), VERTEX

(POLYHEDRON)

Vertex (Polyhedron)

A point at which three of more EDGES of a POLYHE-

DRON meet. The concept can also be generalized to a
POLYTOPE.

See also VERTEX (GRAPH), VERTEX (POLYGON)

Vertex (Polytope)
The vertex of a POLYTOPE is a point where edges of the
POLYTOPE meet.

Vertex Angle

The point about which an ANGLE is measured is called
the angle’s vertex, and the angle associated with a
given vertex is called the vertex angle.

See also ANGLE

Vertex Coloring

A vertex coloring is an assignment of labels or colors
to each vertex of a graph such that no edge connects



two identically colored vertices. The most common
type of vertex coloring seeks to minimize the number
of colors for a given graph. BRELAZ’S HEURISTIC

ALGORITHM can be used to find a good, but not
necessarily minimal, vertex coloring of a GRAPH.
Finding a minimal coloring can be done using brute-
force search (Christofides 1971; Wilf 1984; Skiena
1990, p. 214). The minimum number of colors which
with the vertices of a graph G may be colored is called
the CHROMATIC NUMBER, denoted x(G) :/

The only one-colorable graphs are EMPTY GRAPHS, and
two-colorable graphs are exactly BIPARTITE GRAPHS.
The FOUR-COLOR THEOREM establishes that all PLA-

NAR GRAPHS are 4-colorable.

See also BRELAZ’S HEURISTIC ALGORITHM, BROOKS’

THEOREM, CHROMATIC NUMBER, CHROMATIC POLY-

NOMIAL, COLORING, EDGE CHROMATIC NUMBER,
FOUR-COLOR THEOREM, K -COLORING
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Vertex Connectivity
The minimum number of nodes k(G) whose deletion
from a GRAPH G disconnects it. Vertex connectivity is
sometimes called "point connectivity" or simply "con-
nectivity".

Let l(G) be the EDGE CONNECTIVITY of a graph G and
d(G) its minimum degree, then for any graph,

k(G) 5 l(G) 5 d(G)

(Whitney 1932, Harary 1994, p. 43).

The vertex connectivity of a graph can be determined
with the command VertexConnectivity[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).

See also DISCONNECTED GRAPH, EDGE CONNECTIVITY,
K -CONNECTED GRAPH, MENGER’S THEOREM
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Vertex Cover
Let S be a collection of subsets of a finite set X . The
smallest subset Y of X that meets every member of S
is called the vertex cover, or hitting set. However,
some authors call any such set a vertex cover, and
then refer to the minimum vertex cover (Skiena 1990,
p. 218). Finding the hitting set is an NP-COMPLETE

PROBLEM.

Vertex covers, indicated with red coloring, are shown
above for a number of graphs. In a COMPLETE K -

PARTITE GRAPH, and vertex cover contains vertices
from at least k �1 stages. The minimum vertex cover
of a GRAPH can be computed using MinimumVertex-
Cover[g ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).

See also CLIQUE, EDGE COVER, INDEPENDENT SET
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Vertex Degree

The degree of a VERTEX v of a GRAPH G is the number
of EDGES which touch v . The vertex degrees are
illustrated above for a random graph. The vertex



degree is also called the local degree or valency. The
ordered list of vertex degrees in a given graph is
called its DEGREE SEQUENCE. A list of vertex degrees
of a graph can be given by VertexDegrees[g ] in the
Mathematica add-on package DiscreteMath‘Com-
binatorica‘ (which can be loaded with the com-
mand BBDiscreteMath‘).
The minimum vertex degree in a GRAPH G is denoted
d(G); and the maximum degree is denoted D(G)
(Skiena 1990, p. 157).

The VERTEX degree of a point v in a GRAPH, denoted
r(v); satisfies

Xn

i�1

r við Þ�2E ;

where E is the total number of EDGES.

DIRECTED GRAPHS have two types of degrees, known
as the INDEGREE and the OUTDEGREE.

See also DEGREE SEQUENCE, DIRECTED GRAPH, EDGE

(GRAPH), EVEN NODE, GRAPH, INDEGREE, LOCAL

DEGREE, ODD NODE, OUTDEGREE, PLANTED TREE,
VERTEX (GRAPH)
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Vertex Enumeration
A CONVEX POLYHEDRON is defined as the set of
solutions to a system of linear inequalities

mx 5b;

where m is a REAL s �d MATRIX and b is a REAL s -
VECTOR. Given m and b, vertex enumeration is the
determination of the polyhedron’s VERTICES.

See also COMPUTATIONAL GEOMETRY, CONVEX POLY-

HEDRON, POLYHEDRON
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Vertex Figure

The vertex figure at a vertex V of a POLYGON is the
line segment joining the MIDPOINTS of the two
adjacent sides meeting at V . For a regular n -gon
with side length a , the length v of the vertex figure is

v �a cos
p

n

 !

The vertex figure at a vertex V of a POLYHEDRON is
the polygon whose sides are the vertex figures of the
faces surrounding V . The faces that join at a VERTEX

form a SOLID ANGLE whose section by the plane is the
vertex figure.

See also MIDPOINT, RECTIFICATION, TRUNCATION
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Vertex Scheme
If K is a SIMPLICIAL COMPLEX, let V be the VERTEX SET

of K . Furthermore, let K be the collection of all
subsets a0 ; . . . ; anf g of V such that the vertices a0 ;
..., an span a SIMPLEX of K . Then the collection K is
called the vertex scheme of K (Munkres 1993, p. 15).

See also GEOMETRIC REALIZATION, VERTEX SET
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Vertex Set
The vertex set of a GRAPH is simply a set of all vertices
of the graph.



The vertex set V of an ABSTRACT SIMPLICIAL COMPLEX

S is the union of one-point elements of S (Munkres
1993, p. 15).

See also DOMINATION NUMBER, EDGE SET, VERTEX

SCHEME
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Vertex-Transitive Graph
A GRAPH such that every pair of vertices is equivalent
under some element of its automorphism group.
Every nontrivial graph that is EDGE-TRANSITIVE but
not vertex-transitive contains at least 20 vertices
(Skiena 1990, p. 186). The smallest known CUBIC

GRAPH that is EDGE- but not vertex-transitive is the
GRAY GRAPH.

See also EDGE-TRANSITIVE GRAPH, FOLKMAN GRAPH,
GRAY GRAPH
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Vertical
Oriented in an up-down position.

See also HORIZONTAL

Vertical Perspective Projection

A MAP PROJECTION given by the transformation
equations

x �k? cos f sin( l � l0) (1)

y �k? cos f1 sin f �sin f1 cos f cos l � l0ð Þ½ �; (2)

where P is the distance of the point of perspective in

units of SPHERE RADII and

k?�
P � 1

P � cos c 
(3)

cos c �sin f1 sin f �cos f1 cos f cos l � l0ð Þ (4)
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Vertical Rule
BAR, MACRON

Vertical Tangent
A function f (x) has a vertical tangent line at x0 if f is
continuous at x0 and

lim
x 0x0

f ?(x) �9�

Vertical-Horizontal Illusion

The HORIZONTAL line segment in the above figure
appears to be shorter than the VERTICAL line segment,
despite the fact that it has the same length.

See also ILLUSION, MÜ LLER-LYER ILLUSION, POGGEN-

DORFF ILLUSION, PONZO’S ILLUSION
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Vertically Convex Polyomino
COLUMN-CONVEX POLYOMINO

Veryprime
A POSITIVE INTEGER n is a veryprime IFF all primes
p5

ffiffiffi
n

p
satisfy

2 n mod pð Þ½ ��pj j51 very strong
2 n mod pð Þ½ ��pj j5 ffiffiffi

p
p

strong
2 n mod pð Þ½ ��pj j5p=2 weak

8<
:

The weak veryprimes are then 2, 3, 5, 7, 11, 13, 17,
19, 23, 37, 43, 47, 53, 67, 73, 103, 107, 137, 157, 173,
227, 347, 487, 773, ... (Sloane’s A050264), the strong
veryprimes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 43, 47,
53, 67, 73, 137, 227, ..., and the very strong very-
primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 43, 47, 53,



67, 73, 137, ..., with no others in the first 100,000
primes.

See also QUITEPRIME
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Veselov-Novikov Equation
The system of PARTIAL DIFFERENTIAL EQUATIONS

@t �@3
z �@3

z̄

� �
v �@z(uv) �@z̄(vw) (1)

@z̄u �3@zv (2)

@zw �3@z̄v (3)

where z̄ is the COMPLEX CONJUGATE of z .

References
Bogdanov, L. V. "Veselov-Novikov Equation as a Natural

Two-Dimensional Generalization of the Korteweg-de Vries
Equation." Theor. Math. Phys. 70, 219 �/233, 1987.

Zwillinger, D. Handbook of Differential Equations, 3rd ed.
Boston, MA: Academic Press, p. 139, 1997.

Vesica Piscis
LENS

Vibration Problem
Solution of a system of second-order homogeneous
ordinary differential equations with constant COEFFI-

CIENTS OF THE FORM

d2x

dt2 
�bx �0;

where b is a POSITIVE DEFINITE MATRIX. To solve the
vibration problem,

1. Solve the CHARACTERISTIC EQUATION of b to get
EIGENVALUES l1 ; ..., ln : Define vi �

ffiffiffiffi
li

p
:/

2. Compute the corresponding EIGENVECTORS e1 ;
..., en :/
3. The normal modes of oscillation are given by
x1 �A1 sin v1t � a1ð Þe1 ; ..., xn �Ansin vnt � anð Þen ;
where A1 ; ..., An and a1 ; ..., an are arbitrary
constants.
4. The general solution is x �an

i �1xi :/

Vickrey Auction
An AUCTION in which the highest bidder wins but
pays only the second-highest bid. This variation over
the normal bidding procedure is supposed to encou-
rage bidders to bid the largest amount they are
willing to pay.

See also AUCTION
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Viergruppe
The mathematical group Z2 �Z2 ; also denoted D2 : Its
multiplication table is

V I /V1/ /V2/ /V3/

I I /V1/ /V2/ /V3/

/V1/ /V1/ I /V3/ /V2/

/V2/ /V2/ /V3/ I /V1/

/V3/ /V3/ /V2/ /V1/ I

See also DIHEDRAL GROUP, FINITE GROUP Z4
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Vieta’s Substitution
The substitution of

x �w �
p

3w 
(1)

into the standard form CUBIC EQUATION

x3 �px �q: (2)

The result reduces the cubic to the equation

w3 �
p3

27w3 
�q �0; (3)

which is easily turned into a QUADRATIC EQUATION in
w3 by multiplying through by w3 to obtain

w3
� �2

�q w3
� �

� 1
27p

3�0 (4)

See also CUBIC EQUATION,QUADRATIC EQUATION



Vigesimal
The base-20 notational system for representing REAL

NUMBERS. The digits used to represent numbers using
vigesimal NOTATION are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F, G, H, I, and J. A base-20 number system
was used by the Aztecs and Mayans. The Mayans
compiled extensive observations of planetary posi-
tions in base-20 notation.

See also BASE (NUMBER), BINARY, DECIMAL, HEXADE-

CIMAL, OCTAL, QUATERNARY, TERNARY
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Vigintillion
In the American system, 1063.

See also LARGE NUMBER

Villarceau Circles
Given an arbitrary point on a TORUS, four CIRCLES can
be drawn through it. The first is in the plane of the
TORUS and the second is PERPENDICULAR to it. The
third and fourth CIRCLES are called Villarceau circles.

See also TORUS
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Vinculum
A horizontal line placed above multiple quantities to
indicate that they form a unit. It is most commonly
used to denote

1. A RADICAL (/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12345

p
) ;/

2. Repeating decimals (/0 :111);/
3. The distance between two points AB;/
4. The COMPLEX CONJUGATE z1 �z2 ; or
5 NEGATION of a logical expression,
A fflB �!(A fflB) :/

See also BAR, MACRON, RADICAL, SOLIDUS
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Vinogradov’s Theorem
Every sufficiently large ODD number is a sum of three
PRIMES (Vinogradov 1937). Ramachandra and San-
karanarayanan (1997) have shown that for suffi-
ciently large n , the error term is �n= ln nð Þ4

: This
theorem is closely related to WARING’S PRIME NUMBER

CONJECTURE.

See also GOLDBACH CONJECTURE, SCHNIRELMANN’S

THEOREM, WARING’S PRIME NUMBER CONJECTURE
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Virgule
A diagonal slash resembling the SOLIDUS, but with
slightly less slant, used to denote DIVISION for in-line
equations such as a =b; 1= x �1ð Þ2; etc.

See also SOLIDUS
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Virtual Group
GROUPOID

Visibility
VISIBLE POINT

Visibility Graph
Let S be a set of simple polygonal obstacles in the
plane, then the nodes of the visibility graph of S are
just the vertices of S , and there is an edge (called a
visibility edge) between vertices v and w if these
vertices are mutually visible.
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Visible Point

Two LATTICE POINTS (x, y ) and (x ?; y?) are mutually
visible if the line segment joining them contains no
further LATTICE POINTS. This corresponds to the
requirement that (x?�x; y?�y) �1; where (m, n )
denotes the GREATEST COMMON DIVISOR. The plots
above show the first few points visible from the
ORIGIN.

If a LATTICE POINT is selected at random in 2-D, the
probability that it is visible from the origin is 6=p2 :
This is also the probability that two INTEGERS picked
at random are RELATIVELY PRIME. If a LATTICE POINT

is picked at random in n -D, the probability that it is
visible from the ORIGIN is 1=z(n) ; where z(n) is the
RIEMANN ZETA FUNCTION.

An invisible figure is a POLYGON all of whose corners
are invisible. There are invisible sets of every finite
shape. The lower left-hand corner of the invisible
squares with smallest x coordinate of AREAS 2 and 3
are (14, 20) and (104, 6200).

See also LATTICE POINT, ORCHARD VISIBILITY PRO-

BLEM, RIEMANN ZETA FUNCTION
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Visible Point Vector Identity
A set of identities involving n -D visible lattice points
was discovered by Campbell (1994). Examples includeY

(a ;b) �1
a]0;b51

1 �yazb
� ��1 =b

� 1 �zð Þ�1 = 1 �yð Þ

for yzj j; zj jB1 andY
(a ;b;c) �1

a;b]0;c 51

1 �xaybzc
� ��1 =c

� 1 �zð Þ�1= 1 �xð Þ 1 �yð Þ½ �

for xyzj j; xzj j; yzj j; zj jB1 :/
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Vitali’s Convergence Theorem
Let fn(z) be a sequence of functions, each regular in a
region D , let fn(z)j j5M for every n and z in D , and
let fn(z) tend to a limit as n 0 � at a set of points
having a LIMIT POINT inside D . Then fn(z) tends
uniformly to a limit in any region bounded by a
contour interior to D , the limit therefore being an
analytic function of z .

See also MONTEL’S THEOREM
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Viviani’s Curve

The SPACE CURVE giving the intersection of the
CYLINDER

x �að Þ2�y2 �a2 (1)

and the SPHERE

x2 �y2 �z2 �4a2 : (2)

It is given by the PARAMETRIC EQUATIONS

x �a 1 �cos tð Þ  (3)

y �a sin t (4)

z �2a sin 1
2t
 �

: (5)

The CURVATURE and TORSION are given by

k(t) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13 � 3 cos t

p

a 3 � cos tð Þ3=2 (6)

t(t) �
6 cos 1

2t
 �

a(13 � 3 cos t) 
: (7)

See also CYLINDER, CYLINDER-SPHERE INTERSECTION,
SPHERE, STEINMETZ SOLID
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Viviani’s Theorem
For a point P inside an EQUILATERAL TRIANGLE

DABC ; the sum of the perpendiculars pi from P to
the sides of the TRIANGLE is equal to the ALTITUDE h .
This result is simply proved as follows,

DABC �DPBC �DPCA �DPAB: (1)

With s the side length,

1
2sh �1

2spa �
1
2spb �

1
2spc ; (2)

so

h �pa �pb �pc : (3)

See also ALTITUDE, EQUILATERAL TRIANGLE

Vizing Conjecture
Let g(G) denote the DOMINATION NUMBER of a SIMPLE

GRAPH G . Then Vizing (1963) conjectured that

g(G) g(H) 5 g(G �H) ;

where G �H is the GRAPH PRODUCT. While the full
conjecture remains open, Clark and Suen (2000) have
proved the looser result

g(G)g(H) 52 g(G �H) :

See also DOMINATION NUMBER
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Vojta’s Conjecture
A conjecture which treats the heights of points
relative to a canonical class of a curve defined over
the INTEGERS.
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Volterra Integral Equation of the First
Kind
An INTEGRAL EQUATION OF THE FORM

f(x)�g
x

a

k(x; t)f(t)dt:

See also FREDHOLM INTEGRAL EQUATION OF THE

FIRST KIND, FREDHOLM INTEGRAL EQUATION OF THE

SECOND KIND, INTEGRAL EQUATION, VOLTERRA INTE-

GRAL EQUATION OF THE SECOND KIND
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Volterra Integral Equation of the Second
Kind
An INTEGRAL EQUATION OF THE FORM

f(x) �f (x) �g
x

a

k(x; t) f(t)dt

See also FREDHOLM INTEGRAL EQUATION OF THE

FIRST KIND, FREDHOLM INTEGRAL EQUATION OF THE

SECOND KIND, INTEGRAL EQUATION, VOLTERRA INTE-

GRAL EQUATION OF THE FIRST KIND
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Volume
The volume of a solid body is the amount of "space" it
occupies. Volume has units of LENGTH cubed (i.e., cm3 ;
m3 ; in3 ; etc.) For example, the volume of a box
(RECTANGULAR PARALLELEPIPED) of LENGTH L , WIDTH

W , and HEIGHT H is given by

V �L �W �H :

The volume can also be computed for irregularly-
shaped and curved solids such as the CYLINDER and
CUBE. The volume of a SURFACE OF REVOLUTION is
particularly simple to compute due to its symmetry.

The following table gives volumes for some common
SURFACES. Here r denotes the RADIUS, h the height,
and A the base AREA, and, in the case of the TORUS, R
the distance from the torus center to the center of the
tube (Beyer 1987).

SURFACE Volume

CONE /
1
3 pr2h/

CONICAL FRUSTUM /
1
3 ph R2

1 �R2
2 �R1R2ð Þ/

CUBE /a3
/

CYLINDER / pr2h/

ELLIPSOID /
4
3pabc/

OBLATE SPHEROID /
4
3 pa2b/

PROLATE SPHEROID /
4
3 pab2

/

PYRAMID /
1
3Ah/

PYRAMIDAL FRUSTUM /
1
3h A1 �A2 �

ffiffiffiffiffiffiffiffiffiffiffi
A1A2

p� �
/

SPHERE /
4
3 pr3

/

SPHERICAL CAP /
1
3ph2(3r �h)/

SPHERICAL SECTOR /
2
3 pr2h/

SPHERICAL SEGMENT /
1
6 ph 3a2 �3b2 �h2ð Þ/

TORUS /2 p2Rr2
/

Even simple SURFACES can display surprisingly coun-
terintuitive properties. For instance, the SURFACE OF

REVOLUTION of y�1=x around the X -AXIS for x]1 is
called GABRIEL’S HORN, and has finite volume, but
infinite SURFACE AREA.

The generalization of volume to n DIMENSIONS for n]
4 is known as CONTENT.

See also ARC LENGTH, AREA, BELLOWS CONJECTURE,
CONTENT, HEIGHT, LENGTH (SIZE), SURFACE AREA,
SURFACE OF REVOLUTION, VOLUME ELEMENT, VO-

LUME THEOREM, WIDTH (SIZE)
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Volume Element
A volume element is the differential element dV
whose VOLUME INTEGRAL over some range in a given
coordinate system gives the VOLUME of a solid,

V�gggG

dx dy dz: (1)

In Rn; the volume of the infinitesimal n -HYPERCUBE

bounded by dx1; ..., dxn has volume given by the
WEDGE PRODUCT

dV�dx1ffl:::ffldxn (2)

(Gray 1997).

The use of the antisymmetric WEDGE PRODUCT in-
stead of the symmetric product dx1:::dxn is a technical
refinement often omitted in informal usage. Dropping
the wedges, the volume element for CURVILINEAR

COORDINATES in R3 is given by

dV� h1û1 du1ð Þ� h2û2 du2ð Þ� h3û3 du3ð Þj j (3)

�h1h2h3 du1 du2 du3 (4)
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du1 du2 du3 (6)
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where the latter is the JACOBIAN and the hi are SCALE

FACTORS.

See also AREA ELEMENT, JACOBIAN, LINE ELEMENT,
RIEMANNIAN METRIC, SCALE FACTOR, SURFACE AREA,
SURFACE INTEGRAL, VOLUME INTEGRAL
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Volume Integral
A triple integral over three coordinates giving the
VOLUME within some region G ,

V �gggG

dx dy dz :

See also AREA INTEGRAL, INTEGRAL, LINE INTEGRAL,
MULTIPLE INTEGRAL, SURFACE INTEGRAL, VOLUME,
VOLUME ELEMENT

References
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Volume Theorem
If the top and bottom bases of a solid are equal in
area, lie in PARALLEL PLANES, and every SECTION of
the solid parallel to the bases is equal in area to that
of the base, then the VOLUME of the solid is the
product of base and altitude.

See also CAVALIERI’S PRINCIPLE, VOLUME
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von Aubel’s Theorem

Given an arbitrary QUADRILATERAL, place a SQUARE

outwardly on each side, and connect the centers of
opposite SQUARES. Then the two lines are of equal
length and cross at a RIGHT ANGLE.

See also QUADRILATERAL, RIGHT ANGLE, SQUARE
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von Dyck’s Theorem
Let a GROUP G have a presentation

G � x1 ; . . . ; xnð jrj x1 ; . . . ; xnð Þ; j � J Þ

so that G �F =R; where F is the FREE GROUP with
basis x1 ; . . .  ; xnf g and R is the NORMAL SUBGROUP

generated by the rj : If H is a GROUP with H �
y1 ; . . . ; ynh i and if rj y1 ; . . . ; ynð Þ�1 for all j , then there

is a surjective homomorphism G 0 H with xi �yi for
all i .

See also DYCK’S THEOREM, FREE GROUP, NORMAL

SUBGROUP

References
Rotman, J. J. An Introduction to the Theory of Groups, 4th

ed. New York: Springer-Verlag, p. 346, 1995.

von Kármán Equations
The system of PARTIAL DIFFERENTIAL EQUATIONS

94u�E v2
xy�vxxvyy

 �
94v�a�b uyyvxx�uxxvyy�2uxyvxy

� �
;

where 94 is the BIHARMONIC OPERATOR.
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von Mangoldt Function
MANGOLDT FUNCTION

von Mises Distribution

References
Evans, M.; Hastings, N.; and Peacock, B. "von Mises

Distribution." Ch. 41 in Statistical Distributions, 3rd ed.
New York: Wiley, pp. 189 �/191, 2000.

von Neumann Algebra
A GROUP "with bells and whistles." It was while
studying von Neumann algebras that Jones discov-
ered the amazing and highly unexpected connections
with KNOT THEORY which led to the formulation of the
JONES POLYNOMIAL.
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von Neumann-Bernays-Gödel Set Theory
This entry contributed by MATTHEW SZUDZIK

von Neumann-Bernays-Gödel set theory (abbreviated
"NBG") is a version of SET THEORY which was
designed to give the same results as ZERMELO-

FRAENKEL SET THEORY, but in a more logically
elegant fashion. It can be viewed as a conservative
extension of ZERMELO-FRAENKEL SET THEORY in the
sense that a statement about sets is provable in NBG
if and only if it is provable in ZERMELO-FRAENKEL SET

THEORY.

ZERMELO-FRAENKEL SET THEORY is not finitely axio-
matized. For example, the AXIOM OF REPLACEMENT is
not really a single axiom, but an infinite family of
axioms, since it is preceded by the stipulation that it
is true "for any set-theoretic formula A(u; v):/" Mon-
tague (1961) proved that ZERMELO-FRAENKEL SET

THEORY is not finitely axiomatizable, i.e., there is no
finite set of axioms which is logically equivalent to the
infinite set of ZERMELO-FRAENKEL AXIOMS. In con-
trast, von Neumann-Bernays-Gödel set theory has
only finitely many axioms, and this was the main
motivation in its construction. This was accomplished
by extending the language of ZERMELO-FRAENKEL SET

THEORY to be capable of talking about CLASSES.

See also CLASS (SET), SET THEORY, ZERMELO-FRAEN-

KEL AXIOMS, ZERMELO-FRAENKEL SET THEORY
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von Staudt Theorem
VON STAUDT-CLAUSEN THEOREM

von Staudt-Clausen Theorem

B2n �An �
X

pk
(pk �1)j2n

1

pk

;

where B2n is a BERNOULLI NUMBER, An is an INTEGER,
and the pk/s are the PRIMES satisfying pk �1j2k : For
example, for k �1, the primes included in the sum are
2 and 3, since (2 �1)j2 and (3 �1)j2: Similarly, for
k �6, the included primes are (2, 3, 5, 7, 13), since (1,
2, 3, 6, 12) divide 12 �2 �6: The first few values of An

for n �1, 2, ... are 1, 1, 1, 1, 1, 1, 2, �6, 56, �528, ...
(Sloane’s A000146).
The theorem was rediscovered by Ramanujan (Hardy
1999, p. 11) and can be proved using P -ADIC NUMBERS.

See also BERNOULLI NUMBER, P -ADIC NUMBER

References
Clausen, T. "Theorem." Astron. Nach. 17, 351 �/352, 1840.
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, p. 109, 1996.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects

Suggested by His Life and Work, 3rd ed. New York:
Chelsea, 1999.

Hardy, G. H. and Wright, E. M. "The Theorem of von
Staudt" and "Proof of von Staudt’s Theorem." §7.9 �/7.10
in An Introduction to the Theory of Numbers, 5th ed.
Oxford, England: Clarendon Press, pp. 90 �/93, 1979.

Rado, R. "A New Proof of a Theorem of V. Staudt." J. London
Math. Soc. 9, 85�/88, 1934.

Rado, R. "A Note on the Bernoullian Numbers." J. London
Math. Soc. 9, 88�/90, 1934.

Sloane, N. J. A. Sequences A000146/M1717 in "An On-Line
Version of the Encyclopedia of Integer Sequences." http://
www.research.att.com/~njas/sequences/eisonline.html.

Staudt, K. G. C. von. "Beweis eines Lehrsatzes, die Bernoul-
lischen Zahlen betreffend." J. reine angew. Math. 21,
372�/374, 1840.

Voronoi Cell
The generalization of a VORONOI POLYGON to n -D, for
n 
2.

See also DODECAHEDRAL CONJECTURE, VORONOI

POLYGON



Voronoi Diagram

The partitioning of a plane with n points into n
convex POLYGONS such that each POLYGON contains
exactly one point and every point in a given POLYGON

is closer to its central point than to any other. A
Voronoi diagram is sometimes also known as a
DIRICHLET TESSELLATION. The cells are called DIRICH-

LET REGIONS, THIESSEN POLYTOPES, or VORONOI

POLYGONS. The Mathematica command Diagram-
Plot[pts ] in the Mathematica add-on package Dis-

creteMath‘ComputationalGeometry‘ (which can
be loaded with the command BBDiscreteMath‘)
plots the Voronoi diagram of the given list of points.

The DELAUNAY TRIANGULATION and Voronoi diagram
in R2 are dual to each other.

See also ART GALLERY THEOREM, COMPUTATIONAL

GEOMETRY, DELAUNAY TRIANGULATION, MEDIAL

AXIS, TRIANGULATION, VORONOI POLYGON
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Voronoi Polygon
A POLYGON whose interior consists of all points in the
plane which are closer to a particular LATTICE POINT

than to any other. The generalization to n -D is called
a DIRICHLET REGION, THIESSEN POLYTOPE, or VOR-

ONOI CELL.
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Voting
The simple process of voting leads to surprisingly
counterintuitive paradoxes. For example, if three
people vote for three candidates, giving the rankings
A, B, C; B, C, A; and C, A, B. A majority prefers A to
B, B to C, but also C to A (Gardner 1984, p. 25)! It is
also possible to conduct a secret ballot even if the
votes are sent in to a central polling station (Lipton
and Widgerson, Honsberger 1985).

See also ARROW’S PARADOX, BALLOT PROBLEM, CAKE

CUTTING, MAY’S THEOREM, QUOTA SYSTEM, SOCIAL

CHOICE THEORY
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VR Number
A "visual representation" number which is a sum of
some simple function of its digits. For example,

1233�122�332

2661653�16532�2662

221859�223�183�593

40585�4!�0!�5!�8!�5!

148349�!1�!4�!8�!3�!4�!9

4913�(4�9�1�3)3

are all VR numbers given by Madachy (1979).
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Vulgar Fraction
COMMON FRACTION

Vulgar Series
FAREY SERIES



W

W2-Constant

W2 �1 :529954037 . . . :
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Wada Basin
A BASIN OF ATTRACTION in which every point on the
common boundary of that basin and another basin is
also a boundary of a third basin. In other words, no
matter how closely a boundary point is zoomed into,
all three basins appear in the picture.

See also BASIN OF ATTRACTION
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Wadati-Konno-Ichikawa-Shimizu
Equation
The PARTIAL DIFFERENTIAL EQUATION

iut � 1 � uj j2u
� ��1=2

u

� �
x x

�0:
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Wagstaff’s Conjecture
A modification of the EBERHART’S CONJECTURE pro-
posed by Wagstaff (1983) which proposes that if qn is
the nth prime such that Mqn

is a MERSENNE PRIME,
then

qn � 2e�g� �n
;

where g is the EULER-MASCHERONI CONSTANT.

See also EBERHART’S CONJECTURE
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Wald’s Equation
For a sequence of independent identically distributed
random variates X1 ; ..., XN and a random positive
integer N , the EXPECTATION VALUES satisfy

X1 �. . .�XNh i� X1h i Nh i:

See also EXPECTATION VALUE

Walk
A sequence of VERTICES and EDGES such that the
VERTICES and EDGES are adjacent. A walk is therefore
equivalent to a graph CYCLE, but with the VERTICES

along the walk enumerated as well as the EDGES.

See also CIRCUIT, GRAPH CYCLE, PATH, RANDOM

WALK

Wallace-Bolyai-Gerwein Theorem
Two POLYGONS are congruent by DISSECTION IFF they
have the same AREA. In particular, any POLYGON is
congruent by DISSECTION to a SQUARE of the same
AREA. Laczkovich (1988) also proved that a CIRCLE is
congruent by DISSECTION to a SQUARE (furthermore,
the DISSECTION can be accomplished using TRANSLA-

TIONS only).

See also DISSECTION
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Wallace-Simson Line
SIMSON LINE

Wallace-Simson Theorem
SIMSON LINE

Wallis Cosine Formula

g
p=2

0

cosn x dx

�

p
2

1 � 3 � 5 � � � (n � 1)

2 � 4 � 6 � � �n
for n �2; 4; . . .

2 � 4 � 6 � � � (n � 1)

1 � 3 � 5 � � �n
for n�3; 5; . . . :

8>>><
>>>:

See also WALLIS FORMULA, WALLIS SINE FORMULA



Wallis Formula
The Wallis formula follows from the INFINITE PRO-

DUCT representation of the SINE

sin x �x
Y�
n�1

1 �
x2

p2n2

 !
: (1)

Taking x �p=2 gives

1 �
p
2

Y�
n�1

1 �
1

2nð Þ2

" #
�

p
2

Y�
n�1

2nð Þ2�1

2nð Þ2

" #
; (2)

so

p
2 
�
Y�
n�1

(2n)2

(2n � 1)(2n � 1)

" #
�

2 � 2
1 � 3

4 � 4
3 � 5

6 � 6
5 � 7 

� � � : (3)

A derivation due to Y. L. Yung uses the RIEMANN

ZETA FUNCTION. Define

F(s) ��Lis(�1) �
X�
n �1

�1ð Þn

ns

� 1 �21 �s
� �

z(s) (4)

F ? sð Þ�
X�
n�1

�1ð Þnln n

ns
; (5)

so

F ?(0) �
X�
n�1

�1ð Þn ln n ��ln 1 �ln 2 �ln 3 �. . .

�ln
2 � 4 � 6 � � �
1 � 3 � 5 � � �

 !
: (6)

Taking the derivative of the zeta function expression
gives

d

ds
1 �21�s
� �

z(s) �21 �s(ln 2)z(s) � 1 �21 �s
� �

z?(s) (7)

d

ds
1 �21 �s
� �

z(s)

" #
s�0

��ln 2 � z?(0)

��ln 2 �
1

2
ln(2 p) �ln

ffiffiffiffiffiffi
2p

p

2

 !
�ln

ffiffiffi
p
2

s !
: (8)

Equating and squaring then gives the Wallis formula,
which can also be expressed

p
2 
� 4z(0)e � zt(0)
h i2

: (9)

The Q -ANALOG of the Wallis formula for q �2 is

Y�
k �1

1 �q�k
� ��1

�3:4627466194 . . . (10)

(Finch).

See also WALLIS COSINE FORMULA, WALLIS SINE

FORMULA
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Wallis Sieve
A compact set W� with AREA

m W�ð Þ�8

9

24

25

48

49
� � ��p

4

created by punching a square hole of length 1=3 in the
center of a square. In each of the eight squares
remaining, punch out another hole of length 1 =(3 �5);
and so on.

Wallis Sine Formula

g
p=2

0

sinn x dx

�

p
2

1 � 3 � 5 � � � (n � 1)

2 � 4 � 6 � � �n
for n�2; 4; . . .

2 � 4 � 6 � � � (n � 1)

1 � 3 � 5 � � �n
for n�3; 5; . . . :

8>>><
>>>:

See also WALLIS COSINE FORMULA, WALLIS FORMULA



Wallis’s Conical Edge

The RIGHT CONOID surface given by the PARAMETRIC

EQUATIONS

x u; vð Þ�v cos u

y u; vð Þ�v sin u

z u; vð Þ�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �b2 cos2 u:

p

See also RIGHT CONOID
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Wallis’s Problem
Find nontrivial solutions to s x2ð Þ� s y2ð Þ other than
(x; y) �(4; 5); where s(n) is the DIVISOR FUNCTION.
Nontrivial solutions means that solutions which are
multiples of smaller solutions are not considered. For
example, multiples m of (x; y) �(4; 5) are solutions for
m �3, 7, 9, 11, 13, 17, 19, 23, 21, ....

Nontrivial solutions to Wallis’s equation include
(x; y) �(4; 5); (326, 407), (406, 489), (627, 749), (740,
878), (880, 1451), (888, 1102), (1026, 1208), (1110,
1943), (1284, 1528, 1605), (1510, 1809), (1628, 1630,
2035), (1956, 2030, 2445), (2013, 2557), (2072, 3097),
(2508, 2996, 3135, 3745), ....

See also DIVISOR FUNCTION, FERMAT’S DIVISOR PRO-

BLEM
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Wallpaper Groups
The 17 PLANE SYMMETRY GROUPS. Their symbols are
p1, p2, pm, pg, cm, pmm, pmg, pgg, cmm, p4, p4m,
p4g, p3, p31m, p3m1, p6, and p6m. For a description

of the symmetry elements present in each space
group, see Coxeter (1969, p. 413).
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Walsh Function
Functions consisting of a number of fixed-amplitude
square pulses interposed with zeros. Following Har-
muth (1969), designate those with EVEN symmetry
Cal(k; t) and those with ODD symmetry Sal(k; t):
Define the SEQUENCY k as half the number of zero
crossings in the time base. Walsh functions with
nonidentical SEQUENCIES are ORTHOGONAL, as are the
functions Cal(k ; t) and Sal(k ; t): The product of two
Walsh functions is also a Walsh function. The Walsh
functions are then given by

Wal(k; t) �
Cal k=2; tð Þ  for k �0; 2 ; 4; . . .
Sal (k �1)=2; tð Þ for k �1; 3 ; 5; . . . :

�

The Walsh functions Cal(k, t ) for k �0, 1, ..., n=2 �1
and Sal(k ; t) for k �1, 2, ..., n=2 are given by the rows
of the HADAMARD MATRIX Hn :/

See also HADAMARD MATRIX, SEQUENCY

References
Beauchamp, K. G. Walsh Functions and Their Applications.

London: Academic Press, 1975.
Harmuth, H. F. "Applications of Walsh Functions in Com-

munications." IEEE Spectrum 6, 82�/1, 1969.
Thompson, A. R.; Moran, J. M.; and Swenson, G. W. Jr.

Interferometry and Synthesis in Radio Astronomy. New
York: Wiley, p. 204, 1986.

Tzafestas, S. G. Walsh Functions in Signal and Systems
Analysis and Design. New York: Van Nostrand Reinhold,
1985.

Walsh, J. L. "A Closed Set of Normal Orthogonal Functions."
Amer. J. Math. 45, 5�/4, 1923.

Walsh Index
The statistical INDEX

Pw �
P ffiffiffiffiffiffiffiffiffiffi

q0qn

p
pnP ffiffiffiffiffiffiffiffiffiffi

q0qn

p
p0

;

where pn is the price per unit in period n and qn is the
quantity produced in period n .

See also INDEX
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Wangerin Differential Equation
The ORDINARY DIFFERENTIAL EQUATION

y ƒ�1
2

1

x � a1

�
1

x � a2

�
1

x � a3

" #
y?

�1
4

A0 � A1x � A2x2

x � a1ð Þ x � a2ð Þ x � a3ð Þ

" #
y �0:

See also LAMÉ ’S DIFFERENTIAL EQUATION
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Wang’s Conjecture
Wang’s conjecture states that if a set of tiles can tile
the plane, then they can always be arranged to do so
periodically (Wang 1961). The CONJECTURE was
refuted when Berger (1966) showed that an aperiodic
set of tiles existed. Berger used 20,426 tiles, but the
number has subsequently been greatly reduced. In
fact, Culik (1996) has reduced the number of tiles to
13.

See also TILING
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Ward’s Primality Test
Let N be an ODD INTEGER, and assume there exists a
LUCAS SEQUENCE Unf g with associated SYLVESTER

CYCLOTOMIC NUMBERS Qnf g such that there is an n >ffiffiffiffiffi
N

p
(with n and N RELATIVELY PRIME) for which N

DIVIDES Qn : Then N is a PRIME unless it has one of the
following two forms:

1. N � n �1ð Þ2
; with n �1 PRIME and n �4, or

2. N �n2 �1; with n �1 and n �1 PRIME.

See also LUCAS SEQUENCE, SYLVESTER CYCLOTOMIC

NUMBER
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Waring Formula

An �Bn �
Xn=2½ �

j�0

(�1)j n

n � j

n �j
j

� �
ABð Þj A �Bð Þn �2j;

where xb c is the FLOOR FUNCTION and n
k

� �
is a

BINOMIAL COEFFICIENT.

See also FERMAT’S LAST THEOREM

Waring’s Conjecture
WARING’S PRIME NUMBER CONJECTURE, WARING’S

PROBLEM

Waring’s Prime Number Conjecture
Every ODD INTEGER n is a PRIME or the sum of three
PRIMES. This problem is closely related to VINOGRA-

DOV’S THEOREM.

See also GOLDBACH CONJECTURE, SCHNIRELMANN’S

THEOREM, VINOGRADOV’S THEOREM

Waring’s Problem
In his Meditationes algebraicae , Waring (1770, 1782)
proposed a generalization of LAGRANGE’S FOUR-

SQUARE THEOREM, stating that every RATIONAL IN-

TEGER is the sum of a fixed number g(n) of nth
POWERS of INTEGERS, where n is any given POSITIVE

INTEGER and g(n) depends only on n . Waring origin-
ally speculated that g(2)�4; g(3)�9; and g(4)�19:
In 1909, Hilbert proved the general conjecture using
an identity in 25-fold multiple integrals (Rademacher
and Toeplitz 1957, pp. 52�/1).

In LAGRANGE’S FOUR-SQUARE THEOREM, Lagrange
proved that g(2)�4; where 4 may be reduced to 3
except for numbers OF THE FORM 4n(8k�7) (as proved
by Legendre; Hardy 1999, p. 12). In the early twen-
tieth century, Dickson, Pillai, and Niven proved that
g(3)�9: Hilbert, Hardy, and Vinogradov proved
g(4)521; and this was subsequently reduced to
g(4)�19 by Balasubramanian et al. (1986). Liouville



proved (using LAGRANGE’S FOUR-SQUARE THEOREM

and LIOUVILLE POLYNOMIAL IDENTITY) that g(5)553;
and this was improved to 47, 45, 41, 39, 38, and
finally g(5)537 by Wieferich. See Rademacher and
Toeplitz (1957, p. 56) for a simple proof. J.-J. Chen
(1964) proved that g(5)�37:/

Dickson (1936), Pillai (1936), and Niven also conjec-
tured an explicit formula for g(s) for s �6 (Bell 1945,
pp. 318 and 602), based on the relationship

3

2

 !n

�
3

2

 !n$ %
�1�

1

2

 !n
3

2

 !n

�2

$ %( )
: (1)

If the DIOPHANTINE (i.e., n is restricted to being an
INTEGER) inequality

frac
3

2

 !n" #
51�

3

4

 !n

(2)

is true, where frac(x) is the FRACTIONAL PART of x ,
then

g(n)�2n�
3

2

 !n$ %
�2: (3)

This was given as a lower bound by Euler, and has
been verified to be correct for 65n5471;600;000
(Kubina and Wunderlich 1990, extending Stemmler
1990). Furthermore, Mahler (1957) proved that at
most a FINITE number of n exceed Euler’s lower
bound. Unfortunately, the proof is nonconstructive.

There is also a related (but more difficult) problem of
finding the least INTEGER n such that every POSITIVE

INTEGER beyond a certain point (i.e., all but a FINITE

number) is the SUM of Gn nth POWERS. From 1920�/

928, Hardy and Littlewood showed that

G(n)5(n�2)2n�1�5 (4)

and conjectured that

G kð ÞB 2k�1 for k not a power of 2
4k for k a power of 2:

�
(5)

The best currently known bound is

G kð ÞBck ln k (6)

for some constant c . Heilbronn (1936) improved
Vinogradov’s results to obtain

G nð Þ56n ln n� 4�3 ln 3�
2

n

 !" #
n�3: (7)

It has long been known that G(2)�4:/

Dickson and Landau proved that the only INTEGERS

requiring nine CUBES are 23 and 239, thus establish-
ing G(3)58: Wieferich proved that only 15 INTEGERS

require eight CUBES: 15, 22, 50, 114, 167, 175, 186,
212, 231, 238, 303, 364, 420, 428, and 454 (Sloane’s

A018889), establishing G(3)57 (Wells 1986, p. 70).
The largest number known requiring seven CUBES is
8042.

In 1933, Hardy and Littlewood showed that G(4)519;
but this was improved in 1936 to 16 or 17, and shown
to be exactly 16 by Davenport (1939b). Vaughan
(1986) greatly improved on the method of Hardy
and Littlewood, obtaining improved results for n]
5: These results were then further improved by
Brüdern (1990), who gave G(5)518; and Wooley
(1992), who gave Gn for n�6 to 20. Vaughan and
Wooley (1993) showed G(8)542:/

Let G�(n) denote the smallest number such that
almost all sufficiently large INTEGERS are the sum of
G�(n) nth POWERS. Then G�(3)�4 (Davenport
1939a), G�(4)�15 (Hardy and Littlewood 1925),
G�(8)�32 (Vaughan 1986), and G�(16)�64 (Wooley
1992). If the negatives of POWERS are permitted in
addition to the powers themselves, the largest num-
ber of nth POWERS needed to represent an arbitrary
integer are denoted eg(n) and EG(n) (Wright 1934,
Hunter 1941, Gardner 1986). In general, these values
are much harder to calculate than are g(n) and Gn:/

The following table gives g(n); Gn; G�(n); eg(n); and
EG(n) for n520: The sequence of g(n) is Sloane’s
A002804.

n /g(n)/ /Gn/ /G�(n)/ /eg(n)/ /EG(n)/

2 4 4 3 3

3 9 /57/ /54/ [4, 5]

4 19 16 /515/ [9, 10]

5 37 /518/

6 73 /527/

7 143 /536/

8 279 /542/ /532/

9 548 /555/

10 1079 /563/

11 2132 /570/

12 4223 /579/

13 8384 /587/

14 16673 /595/

15 33203 /5103/

16 66190 /5112/ /564/

17 132055 /5120/

18 263619 /n�n/

19 526502 /5138/

20 1051899 /5146/



See also EULER’S CONJECTURE, SCHNIRELMANN CON-

STANT, SCHNIRELMANN’S THEOREM, VINOGRADOV’S

THEOREM
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Waring’s Sum Conjecture
WARING’S PROBLEM

Waring’s Theorem
If each of two curves meets the LINE AT INFINITY in
distinct, nonsingular points, and if all their intersec-
tions are finite, then if to each common point there is
attached a weight equal to the number of intersec-
tions absorbed therein, the CENTER OF MASS of these
points is the center of gravity of the intersections of
the asymptotes.
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Wasteful Number
A number n is called wasteful if the number of digits
in the prime factorization of n (including powers)
uses more digits than the number of digits in n . The
first few wasteful numbers are 4, 6, 8, 9, 12, 18, 20,
22, 24 ... (Sloane’s A046760). Pinch calls these
numbers "frugal" and includes 1 as a frugal number.

See also ECONOMICAL NUMBER, EQUIDIGITAL NUMBER
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Watchman Theorem
ART GALLERY THEOREM



Watson Identities
Let a; �b; and �g �1 be the roots of the CUBIC

EQUATION

t3 �2t2 �t �1 �0 ; (1)

then the normalized DILOGARITHM L xð Þ satisfies

L( a) �L a2
� �

�1
7 (2)

L( b) �1
2L b2
� �

�5
7 (3)

L( g) �1
2L g2
� �

�4
7 :
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Watson Quintuple Product Identity
QUINTUPLE PRODUCT IDENTITY

Watson-Nicholson Formula
Let H ið Þn (x) be a HANKEL FUNCTION OF THE FIRST or
SECOND KIND, let x; n > 0; and define

w �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

n

 !2

�1

vuut :

Then

H ið Þn (x) �3�1=2w exp f(�1)i �1i[ p=6

� n(w �1
3w

3 �tan �1 w)] gH(i)
1 =3(1

3nw) �O n �1
    :
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Watson’s Formula
Let Jn(z) be a BESSEL FUNCTION OF THE FIRST KIND,
Yn(z) a BESSEL FUNCTION OF THE SECOND KIND, and
Kn(z) a MODIFIED BESSEL FUNCTION OF THE FIRST

KIND. Also let R[z] > 0 and require R[m � n] B1: Then

Jm(z)Y n(z) �Jn(z)Y m(z)

�
4 sin (m � n) p½ �

p2 g
�

0

Kn�m(2z sinh t)e
� m� nð Þt 

dt:

The fourth edition of Gradshteyn and Ryzhik (2000),
Iyanaga and Kawada (1980), and Ito (1987) erro-
neously give the exponential with a PLUS SIGN. A
related integral is given by

Jn(z)
@Yn zð Þ
@ n

�Yn(z)
@Jn(z)

@ n
��

4

pg
�

0

K0(2z sinh t)e 
�2nt 

dt

for R[z] > 0:/

See also DIXON-FERRAR FORMULA, NICHOLSON’S FOR-

MULA
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Watson’s Theorem

3F2

a ; b ; c
1
2(a �b �c) ; c; 1

� �

�
G 1

2

� �
G 1

2 � c
� �

G 1
2 1 � a � bð Þ
h i

G 1
2 �

1
2a � 1

2b � c
� �

G 1
2 1 � að Þ
h i

G 1
2 1 � bð Þ
h i

G 1
2 �

1
2a � c

� �
G 1

2 �
1
2b � c

� � ;
where 3F2(a; b; c; d; e; z) is a GENERALIZED HYPERGEO-

METRIC FUNCTION and G(z) is the GAMMA FUNCTION

(Bailey 1935, p. 16; Koepf 1998, p. 32).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
WATSON-WHIPPLE TRANSFORMATION, WHIPPLE’S

IDENTITY
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Watson-Whipple Transformation
If at least one of d , e , or f has the form q�N for some
nonnegative integer N (in which case both sums
terminate after N�1 terms), then

8f7

a; qa1=2;�qa1=2; b; c;d; e; f

a1=2;�a1=2;
aq

b
;
aq

c
;
aq

d
;
aq

e
;
aq

f

; q;
a2q2

bcdef

2
4

3
5

�

aq;
aq

de
;
aq

df
;
aq

ef

 !
�

aq

d
;
aq

c
;
aq

f
;

aq

def

 !
�

4 f3

aq

bc
;d; e; f

aq

b
;
aq

c
;
def

a

; q; q

2
6664

3
7775;

where a1;a2; . . . ;ar; qð Þ� is a generalized Q -POCHHAM-

MER SYMBOL

a1;a2; . . . ;ar; qð Þ�� a1; qð Þ� a2; qð Þ�. . . ar; qð Þ�;



and each of 8 f7 and 4 f3 is a Q -HYPERGEOMETRIC

FUNCTION.

See also Q -HYPERGEOMETRIC FUNCTION, Q -POCHHAM-

MER SYMBOL, Q -SERIES
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Watt’s Curve

A curve named after James Watt (1736 �/819), the
Scottish engineer who developed the steam engine
(MacTutor Archive). The curve is produced by a
LINKAGE of rods connecting two wheels of equal
diameter. Let the two wheels have RADIUS b and let
their centers be located a distance 2a apart. Further
suppose that a rod of length 2c is fixed at each end to
the CIRCUMFERENCE of the two wheels. Let P be the
MIDPOINT of the rod. Then Watt’s curve C is the
LOCUS of P .
The POLAR equation of Watt’s curve is

r2 �b2 � a sin u 9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 �a2 cos2 u

p� �2

:

If a �c , then C is a CIRCLE of RADIUS b with a figure
of eight inside it.

See also WATT’S PARALLELOGRAM
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Watt’s Parallelogram
A LINKAGE used in the original steam engine to turn
back-and-forth motion into approximately straight-
line motion.

See also LINKAGE, WATT’S CURVE
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Wave

A 4-POLYHEX.
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Wave Equation
The wave equation is the important PARTIAL DIFFER-

ENTIAL EQUATION

92c�
1

v2

@2c

@t2
; (1)

which can also be written

v292c�ctt; (2)

where 92 is the LAPLACIAN, or

I

2c�0; (3)

where I

2 is the D’ALEMBERTIAN.

The 1-D wave equation is

@2c

@x2
�

1

v2

@2c

@t2
: (4)

In order to specify a wave, the equation is subject to
boundary conditions

c(0; t)�0 (5)

c(L; t)�0; (6)

and initial conditions

c(x; 0)�f (x) (7)

@c

@t
(x; 0)�g(x): (8)

The wave equation can be solved using the so-called
d’Alembert’s solution, a FOURIER TRANSFORM method,
or SEPARATION OF VARIABLES.

d’Alembert devised his solution in 1746, and Euler
subsequently expanded the method in 1748. Let



j�x�at (9)

h�x�at: (10)

By the CHAIN RULE,

@2c

@x2
�

@2c

@j2 �2
@2c

@j@h
�

@2c

@h2
(11)

1

v2

@2c

@t2
�

@2c

@j2 �2
@2c

@j@h
�

@2c

@h2
: (12)

The wave equation then becomes

@2c

@j@h
�0: (13)

Any solution of this equation is OF THE FORM

c(j; h)�f (h)�g(j)�f (x�vt)�g(x�vt); (14)

where f and g are any functions. They represent two
waveforms traveling in opposite directions, f in the
NEGATIVE x direction and g in the POSITIVE x
direction.

The 1-D wave equation can also be solved by applying
a FOURIER TRANSFORM to each side,

g
�

��

@2c(x; t)

@x2
e�2pikxdx�

1

v2 g
�

��

@2c(x; t)

@t2
e�2pikxdx; (15)

which is given, with the help of the FOURIER TRANS-

FORM DERIVATIVE identity, by

2pikð Þ2C(k; t)�
1

v2

@2C(k; t)

@t2
; (16)

where

C(k; t)�F c(x; t)½ ��g
�

��

c x; tð Þe�2pikxdx: (17)

This has solution

C(k; t)�A(k)e2pikvt�B(k)e�2pikvt: (18)

Taking the inverse FOURIER TRANSFORM gives

c(x; t)�g
�

��

C(k; t)e2pikxdx

�g
�

��

A(k)e2pikvt�B(k)e�2pikvt
' (

e�2pikxdk

�g
�

��

A(k)e�2pik x�vtð Þdk�g
�

��

B(k)e�2pik x�vtð Þdk

�f1(x�vt)�f2(x�vt); (19)

where

f1(u)�F A(k)½ ��g
�

��

A(k)e�2pikudk (20)

f2(u)�F B(k)½ ��g
�

��

B(k)e�2pikudk: (21)

This solution is still subject to all other initial and
boundary conditions.

The 1-D wave equation can be solved by SEPARATION

OF VARIABLES using a trial solution

c(x; t)�X(x)T(t): (22)

This gives

T
d2X

dx2
�

1

v2
X

d2T

dt2
(23)

1

X

d2X

dx2
�

1

v2

1

T

d2T

dt2
��k2: (24)

So the solution for X is

X(x)�C cos (kx)�D sin (kx): (25)

Rewriting (24) gives

1

T

d2T

dt2
��v2k2��v2; (26)

so the solution for T is

T(t)�E cos (vt)�F sin (vt); (27)

where v�v=k: Applying the boundary conditions
c(0; t)�c(L; t)�0 to (25) gives

C�0 kL�mp; (28)

where m is an INTEGER. Plugging (25), (27) and (28)
back in for c in (23) gives, for a particular value of m ,

cm(x; t)� Em sin vmtð Þ�Fmcos vmtð Þ½ �Dm sin
mpx

L

 !

� Am cos vmtð Þ�Bm sin vmtð Þ½ � sin
mpx

L

 !
:

ð29Þ

The initial condition c(x; 0)�0 then gives Bm�0; so
(29) becomes

cm(x; t)�Am cos vmtð Þ sin
mpx

L

 !
: (30)

The general solution is a sum over all possible values
of m , so

c(x; t)�
X�
m�1

Am cos vmtð Þ sin
mpx

L

 !
: (31)

Using ORTHOGONALITY of sines again,

g
L

0

sin
lpx

L

 !
sin

mpx

L

 !
dx�1

2Ldlm; (32)



where dlm is the KRONECKER DELTA defined by

dmn�
1 m�n
0 m"n

;

�
(33)

gives

g
L

0

c(x; 0) sin
mpx

L

 !
dx

�
X�
l�1

Al sin
lpx

L

 !
sin

mpx

L

 !
dx

�
X�
l�1

Al
1
2Ldlm�1

2LAm; (34)

so we have

Am�
2

Lg
L

0

c(x; 0) sin
mpx

L

 !
dx: (35)

The computation of Am/s for specific initial distortions
is derived in the FOURIER SINE SERIES section. We
already have found that Bm�0; so the equation of
motion for the string (31), with

vm�vkm�
vmp

L
; (36)

is

c(x; t)�
X�
m�1

Am cos
vmpt

L

 !
sin

mpx

L

 !
; (37)

where the Am COEFFICIENTS are given by (35).

A damped 1-D wave

@2c

@x2
�

1

v2

@2c

@t2
�b

@c

@t
; (38)

given boundary conditions

c(0; t)�0 (39)

c(L; t)�0; (40)

initial conditions

c(x; 0)�f (x) (41)

@c

@t
(x; 0)�g(x) (42)

and the additional constraint

0BbB
2p
Lv

; (43)

can also be solved as a FOURIER SERIES.

c(x; t)�
X�
n�1

sin
npx

L

 !
e�v2bt=2 an sin mntð Þ�bn cos mntð Þ½ �;

(44)

where

mn�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2n2p2 � b2L2v4

p

2L
�

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2p2 � b2L2v2

p

2L
(45)

bn�
2

Lg
L

0

sin
npx

L

 !
f (x) dx (46)

an�
2

Lmn
g

L

0

sin
npx

L

 !
g(x)�

v2b

2
f (x)

" #
dx

( )
: ð47Þ

To find the motion of a rectangular membrane with
sides of length Lx and Ly (in the absence of gravity),
use the 2-D wave equation

@2z

@x2
�

@2z

@y2
�

1

v2

@2z

@t2
; (48)

where z(x; y; t) is the vertical displacement of a point
on the membrane at position (x, y ) and time t . Use
SEPARATION OF VARIABLES to look for solutions OF THE

FORM

z(x; y; t)�X(x)Y(y)T(t): (49)

Plugging (49) into (48) gives

YT
d2X

dx2
�XT

d2Y

dy2
�

1

v2
XY

d2T

dt2
; (50)

where the partial derivatives have now become
complete derivatives. Multiplying (50) by v2=XYT
gives

v2

X

d2X

dx2
�

v2

Y

d2Y

dy2
�

1

T

d2T

dt2
: (51)

The left and right sides must both be equal to a
constant, so we can separate the equation by writing
the right side as

1

T

d2T

dt2
��v2: (52)

This has solution

T(t)�Cv cos (vt)�Dv sin (vt): (53)

Plugging (52) back into (51),

v2

X

d2X

dx2
�

v2

Y

d2Y

dy2
��v2; (54)

which we can rewrite as

1

X

d2X

dx2
��

1

Y

d2Y

dy2
�

v2

v2
��k2

x (55)



since the left and right sides again must both be equal
to a constant. We can now separate out the
equation

1

Y

d2Y

dy2
�k2

x�
v2

v2
��k2

y ; (56)

where we have defined a new constant ky satisfying

k2
x�k2

y�
v2

v2
: (57)

Equations (55) and (56) have solutions

X(x)�E cos kxxð Þ�F sin kxxð Þ (58)

Y(y)�G cos kyy
� �

�H sin kyy
� �

: (59)

We now apply the boundary conditions to (58) and
(59). The conditions z(0; y; t)�0 and z(x; 0; t)�0 mean
that

E�0 G�0: (60)

Similarly, the conditions z Lx; y; tð Þ�0 and
z x;Ly; t
� �

�0 give sin kxLxð Þ�0 and sin kyLy

� �
�0; so

Lxkx�pp and Lyky�qp; where p and q are INTEGERS.
Solving for the allowed values of kx and ky then gives

kx�
pp
Lx

ky�
qp
Ly

: (61)

Plugging (54), (58), (59), (60), and (61) back into (24)
gives the solution for particular values of p and q ,

zpq(x; y; t)� Cv cos(vt)�Dv sin(vt)½ � Fp sin
ppx

Lx

 !" #

� Hq sin
qpy

Ly

 !" #
: (62)

Lumping the constants together by writing Apq�

CvFpHq (we can do this since v is a function of p and
q , so Cv can be written as Cpq) and Bpq�DvFpHq; we
obtain

zpq(x; y; t)� Apq cos vpqt
� �

�Bpq sin vpqt
� �' (

�sin
ppx

Lx

 !
sin

qpy

Ly

 !
: (63)

Plots of the spatial part for modes (1, 1), (1, 2), (2, 1),
and (2, 2) follow.

The general solution is a sum over all possible values
of p and q , so the final solution is

z(x; y; t)�
X�
p�1

X�
q�1

Apq cos vpqt
� �'

�Bpq sin vpqt
� �

� sin
ppx

Lx

 !
sin

qpy

Ly

 !
; (64)

where v is defined by combining (57) and (61) to yield

vpq�pv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

Lz

 !2

�
q

Ly

 !2
vuut : (65)

Given the initial conditions z(x; y; 0) and @z
@t

(x; y; 0); we
can compute the Apq/s and Bpq/s explicitly. To accom-
plish this, we make use of the orthogonality of the
SINE function in the form

I�g
L

0

sin
mpx

L

 !
sin

npx

L

 !
dx�1

2Ldmn; (66)

where dmn is the KRONECKER DELTA. This can be
demonstrated by direct INTEGRATION. Let u�px=L so
du�(p=L) dx in (66), then

I�
L

p g
p

0

sin(mu) sin(nu) du: (67)

Now use the trigonometric identity

sin a sin b�1
2 cos(a�b)�cos(a�b)½ � (68)

to write

I�
L

2pg
p

0

cos (m�n)u½ � du�g
p

0

cos (m�n)u½ � du: (69)

Note that for an INTEGER l"0; the following INTE-

GRAL vanishes

g
p

0

cos(lu) du�
1

l
sin(lu)½ �p0�

1

l
sin(lu)�sin 0½ �

�
1

l
sin(lp)�0; (70)

since sin(lp)�0 when l is an INTEGER. Therefore,
I�0 when l�m�n"0: However, I does not vanish
when l�0, since

g
p

0

cos(0�u) du�g
p

0

du�p: (71)

We therefore have that I�Ldmn=2; so we have
derived (66). Now we multiply z(x; y; 0) by two sine
terms and integrate between 0 and Lx and between 0
and Ly;

I�g
Ly

0 g
Lx

0

z(x; y; 0) sin
ppx

Lx

 !
dx

" #
sin

qpy

Ly

 !
dy: (72)

Now plug in z(x; y; t); set t�0, and prime the indices
to distinguish them from the p and q in (72),



I �
X�
q?�1 
g

Ly

0

X�
p ?�1

Ap ?q?g
Lx

0

sin
p px

Lx

 !
sin

p ?px

Lx

 !
dx

" #

�sin
qpy

Ly

 !
sin

q?py

Ly

 !
dy: (73)

Making use of (66) in (73),

I �
X�
q ?�1 
g

Ly

0

X�
p ?�1

Ap ?q ?

Lx

2
dp ;p ?

qpy

Ly

 !
sin

q?py

Ly

 !
dy; (74)

so the sums over p ? and q ? collapse to a single term

I �
Lx

2

X�
p �1

Apq ?

Ly

2
dq ;q ?

LxLy

4
Apq : (75)

Equating (74) and (75) and solving for Apq then gives

Apq �
4

LxLy
g

Ly

0 g
Lx

0

z(x; y; 0) sin
p px

Lx

 !
dx

" #
sin

qpx

Ly

 !
dy:

(76)

An analogous derivation gives the Bpq/s as

Bpq �
4

vpqLxLy
g

Ly

0 g
Lx

0

@z

@t
(x; y; 0) sin

ppx

Lx

 !
dx

" #

�sin
qpx

Ly

 !
dy : (77)

The equation of motion for a membrane shaped as a
RIGHT ISOSCELES TRIANGLE of length c on a side and
with the sides oriented along the POSITIVE x and y
axes is given by

c(x; y; t) � Cpqcos(vpqt) �Dpq sin( vpqt)
' (

� sin
ppx

c

 !
sin

qpy

c

 !
�sin

qpx

c

 !
sin

p py

c

 !" #
;

(78)

where

vpq �
pv

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 �q2

p
(79)

and p , q INTEGERS with p �q . This solution can be
obtained by subtracting two wave solutions for a
square membrane with the indices reversed. Since
points on the diagonal which are equidistant from the
center must have the same wave equation solution
(by symmetry), this procedure gives a wavefunction
which will vanish along the diagonal as long as p and
q are both EVEN or ODD. We must further restrict the
modes since those with p Bq give wavefunctions
which are just the NEGATIVE of (q, p ) and (p, p ) give
an identically zero wavefunction. The following plots
show (3, 1), (4, 2), (5, 1), and (5,3).

See also D’ALEMBERTIAN, TELEGRAPH EQUATION
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Wave Operator
An OPERATOR relating the asymptotic state of a
DYNAMICAL SYSTEM governed by the Schrödinger
equation

i
d

dt
c(t)�Hc(t)

to its original asymptotic state.

See also SCATTERING OPERATOR

Wave Surface
A SURFACE represented parametrically by ELLIPTIC

FUNCTIONS.

Wavelet
Wavelets are a class of a functions used to localize a
given function in both space and scaling. A family of
wavelets can be constructed from a function c(x);
sometimes known as a "mother wavelet," which is
confined in a finite interval. "Daughter wavelets"
ca;b(x) are then formed by translation (b ) and con-
traction (a ). Wavelets are especially useful for com-
pressing image data, since a WAVELET TRANSFORM has
properties which are in some ways superior to a
conventional FOURIER TRANSFORM.

An individual wavelet can be defined by

ca;b(x)� aj j�1=2
c

x � b

a

 !
: (1)

Then

Wc(f )(a; b)�
1ffiffiffi
a

p g
�

��

f (t)c
t � b

a

 !
dt; (2)

and CALDERÓN’S FORMULA gives



f (x) �Ccg
�

��
g

�

��

f ; ca ;b
* +

ca;b(x)a �2 da db: (3)

A common type of wavelet is defined using HAAR

FUNCTIONS.

See also FOURIER TRANSFORM, HAAR FUNCTION,
LEMARIÉ ’S WAVELET, WAVELET TRANSFORM
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Wavelet Matrix
Any discrete finite WAVELET TRANSFORM can be
REPRESENTED AS a matrix, and such a wavelet matrix
can be computed in O(n) steps, compared to O(n lg n)
for the FOURIER MATRIX, where lg x �log2 x is the
base-2 LOGARITHM. A single wavelet matrix can be
built using HAAR FUNCTIONS.

See also FOURIER MATRIX, HAAR FUNCTION, WAVE-

LET, WAVELET TRANSFORM

Wavelet Transform
A transform which localizes a function both in space
and scaling and has some desirable properties com-
pared to the FOURIER TRANSFORM. The transform is
based on a WAVELET MATRIX, which can be computed
more quickly than the analogous FOURIER MATRIX.

See also DAUBECHIES WAVELET FILTER, LEMARIE’S

WAVELET, WAVELET MATRIX
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Weak Convergence
Weak convergence is usually either denoted xn0

wx or
xn D x: A SEQUENCE xnf g of VECTORS in an INNER

PRODUCT SPACE E is called weakly convergent to a
VECTOR in E if

xn; yh i 0 x; yh i as n 0 �; for all y 
E:

Every STRONGLY CONVERGENT sequence is also
weakly convergent (but the opposite does not usually
hold). This can be seen as follows. Consider the
sequence xnf g that converges strongly to x , i.e.,
xn�xk k 0 0 as n 0 �: SCHWARZ’S INEQUALITY now

gives

xn�x; yh ij j5 xn�xk k yk k as n 0 �:

The definition of weak convergence is therefore
satisfied.



See also INNER PRODUCT SPACE, SCHWARZ’S INEQUAL-

ITY, STRONG CONVERGENCE

Weak Law of Large Numbers
A result in probability theory also known as BER-

NOULLI’S THEOREM or the weak law of large numbers
(in contrast to the STRONG LAW OF LARGE NUMBERS).
Let X1 ; ..., Xn be a sequence of independent and
identically distributed random variables, each having
a MEAN �Xi �� m and STANDARD DEVIATION s: Define a
new variable

X �
X1 � . . .  � Xn

n
: (1)

Then, as n 0 �; the sample mean xh i equals the
population MEAN m of each variable.

Xh i� X1 � . . .  � Xn

n

* +
�

1

n
X1h i�. . .� Xnh ið Þ

�
n m

n
� m: (2)

In addition,

var Xð Þ�var
X1 � . . .  � X2

n

 !

�var
X1

n

 !
�. . .�var

Xn

n

 !

�
s2

n2 
�. . .�

s2

n2 
�

s2

n
: (3)

Therefore, by the CHEBYSHEV INEQUALITY, for all e >
0;

P X� mj j] eð Þ5var Xð Þ
e2

�
s2

n e2 
: (4)

As n 0 �; it then follows that

lim
n0�

P X� mj j] eð Þ�0 : (5)

(Khintchine 1929). Stated another way, the probabil-
ity that the average X1�. . .�Xnð Þ=n�mj j Be for e an
arbitrary POSITIVE quantity approaches 1 as n 0 �

(Feller 1968, pp. 228�/29).

See also ASYMPTOTIC EQUIPARTITION PROPERTY,
CENTRAL LIMIT THEOREM, CHEBYSHEV INEQUALITY,
FRIVOLOUS THEOREM OF ARITHMETIC, LAW OF TRULY

LARGE NUMBERS, STRONG LAW OF LARGE NUMBERS
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Weakly Binary Tree
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

A ROOTED TREE for which the ROOT NODE is adjacent
to at most two VERTICES, and all nonroot VERTICES are
adjacent to at most three VERTICES. Let b(n) be the
number of weakly binary trees of order n , then b(5)�
6: Let

g(z)�
X�
i�0

giz
i; (1)

where

g0�0 (2)

g1�g2�g3�1 (3)

g2i�1�
Xi

j�1

g2i�1�jgj (4)

g2i�
1
2gi gi�1ð Þ

Xi�1

j�1

g2i�jgj: (5)

Otter (Otter 1948, Harary and Palmer 1973, Knuth
1969) showed that

lim
n0�

b(n)n3=2

jn
�h; (6)

where

j�2:48325 . . . (7)

is the unique POSITIVE ROOT of

g
1

x

 !
�1; (8)

and

h�0:7916032 . . . : (9)

/j1 is also given by

j� lim
n0�

cnð Þ2�n
; (10)

where cn is given by

c0 ¼ 2 (11)

cn� cn�1ð Þ2�2; (12)

giving



h �
1

2

ffiffiffi
j

p

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �

1

c1

�
1

c1c2

�
1

c1c2c3

�. . .

s
: (13)
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Weakly Complete Sequence
A SEQUENCE of numbers V � nnf g is said to be weakly
complete if every POSITIVE INTEGER n beyond a
certain point N is the sum of some SUBSEQUENCE of
V (Honsberger 1985). Dropping two terms from the
FIBONACCI NUMBERS produces a SEQUENCE which is
not even weakly complete. However, the SEQUENCE

F ?n �Fn �(�1)n

is weakly complete, even with any finite subsequence
deleted (Graham 1964).

See also COMPLETE SEQUENCE
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Weakly Connected Component
A weakly connected component is a maximal SUB-

GRAPH of a DIRECTED GRAPH such that for every pair
of vertices u , v in the SUBGRAPH, there is an
undirected path from u to v and a directed path
from v to u . Weakly connected components can be
found using StronglyConnectedComponents[g ] in
the Mathematica add-on package DiscreteMath‘-
Combinatorica‘ (which can be loaded with the
command BBDiscreteMath‘) (Skiena 1990,
p. 172).

See also WEAKLY CONNECTED DIGRAPH
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Addison-Wesley, 1990.

Weakly Connected Digraph

A DIRECTED GRAPH in which it is possible to reach any
node starting from any other node by traversing
edges in some direction (i.e., not necessarily in the
direction they point). The nodes in a strongly con-
nected digraph therefore must all have either OUT-

DEGREE or INDEGREE of at least 1. The numbers of
nonisomorphic simple weakly connected digraphs on
n �1, 2, ... nodes are 1, 2, 13, 199, 9364, ... (Sloane’s
A003085).

See also CONNECTED DIGRAPH, STRONGLY CON-

NECTED DIGRAPH, WEAKLY CONNECTED COMPONENT
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Weakly Differentiable

See also DIFFERENTIABLE

Weakly Independent
An infinite sequence aif g of POSITIVE INTEGERS is
called weakly independent if any relation aeiai with
ei �0 or  91 and ei �0; except finitely often, IMPLIES

ei �0 for all i .

See also STRONGLY INDEPENDENT
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Weakly Prime
A PRIME NUMBER is said to be weakly prime if
changing a single digit to every other possible digit
produces a COMPOSITE NUMBER when performed on
each digit. The first few such numbers are 294001,
505447, 584141, 604171, 971767, 1062599, ... (Sloa-
ne’s A050249).



See also COMPOSITE NUMBER, PRIME NUMBER
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Weakly Triple-Free Set
TRIPLE-FREE SET

Web Graph
A graph formed by connecting several concentric
WHEEL GRAPHS along spokes.

See also WHEEL GRAPH

Weber Differential Equations
Consider the differential equation satisfied by

w�z�1=2Wk;�1=4
1
2z

2
� �

; (1)

where W is a WHITTAKER FUNCTION, which is given by

d

z dz

d wz1=2
� �
z dz

" #
� �

1

4
�

2k

z2
�

3

4z4

 !
wz1=2�0 (2)

d2w

dz2
� 2k�1

4z
2

� �
w�0 (3)

(Moon and Spencer 1961, p. 153; Zwillinger 1997,
p. 128). This is usually rewritten

d2Dn(z)

dz2
� n�1

2�
1
4z

2
� �

Dn zð Þ�0: (4)

The solutions are PARABOLIC CYLINDER FUNCTIONS.

The equations

d2U

du2
� c�k2u2
� �

U�0 (5)

d2V

du2
� c�k2v2
� �

V�0; (6)

which arise by separating variables in LAPLACE’S

EQUATION in PARABOLIC CYLINDRICAL COORDINATES,
are also known as the Weber differential equations.
As above, the solutions are known as PARABOLIC

CYLINDER FUNCTIONS.

Zwillinger (1997, p. 127) calls

yn�
y?

x
� 1�

n2

x2

 !
y��

1

px2
x�n�(x�n) cos(np)½ � (7)

the Weber differential equation (Gradshteyn and
Ryzhik 2000, p. 989).
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Weber Functions
Although BESSEL FUNCTIONS OF THE SECOND KIND are
sometimes called Weber functions, Abramowitz and
Stegun (1972) define a separate Weber function as

En(z)�
1

pg
p

0

sin nu�z sin uð Þ du: (1)

Letting zn�e2pi=n be a ROOT OF UNITY, another set of
Weber functions is defined as

f (z)�
h 1

2 z � 1ð Þ
� �
z48h(z)

(2)

f1(z)�
h 1

2z
� �
h(z)

(3)

f2(z)�
ffiffiffi
2

p h(2z)

h(z)
(4)

g2�
f 24(z) � 16

f 8(z)
(5)

g3�
f 24(z) � 8½ � f 8

1 (z) � f 8
2 (z)½ �

f 8(z)
(6)

(Weber 1902, Atkin and Morain 1993), where h(z) is
the DEDEKIND ETA FUNCTION. The Weber functions
satisfy the identities

f (z�1)�
f1(z)

z48

(7)

f1(z�1)�
f (z)

z48

(8)

f2(z�1)�z24f2(z) (9)

f �
1

z

 !
�f (z) (10)

f1 �
1

z

 !
�f2(z) (11)



f2 �
1

z

 !
�f1(z) (12)

(Weber 1902, Atkin and Morain 1993).

See also ANGER FUNCTION, BESSEL FUNCTION OF THE

SECOND KIND, DEDEKIND ETA FUNCTION, J -FUNC-

TION, JACOBI IDENTITIES, JACOBI TRIPLE PRODUCT,
MODIFIED STRUVE FUNCTION, Q -FUNCTION, STRUVE

FUNCTION
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Weber’s Discontinuous Integrals

g
�

0

J0(ax) cos(cx) dx �
0 a Bc
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � c2
p a > c

8<
:

g
�

0

J0(ax) sin(cx) dx �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � a2
p a Bc

0 a �c ;

8<
:

where J0(z) is a zeroth order BESSEL FUNCTION OF

THE FIRST KIND.
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Weber’s Formula

1

2p2 
e � a2�b2ð Þ= 4p2ð ÞIn

ab

2p2

 !
�g

�

0

e �p2t2 

Jn(at)Jn(bt)t dt;

where R[n] >�1 ; arg pj j Bp=4; and a , b �0, Jn(z) is a
BESSEL FUNCTION OF THE FIRST KIND, and In(z) is a
MODIFIED BESSEL FUNCTION OF THE FIRST KIND.

See also BESSEL FUNCTION OF THE FIRST KIND,
MODIFIED BESSEL FUNCTION OF THE FIRST KIND

References
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary

of Mathematics. Cambridge, MA: MIT Press, p. 1476,
1980.

Weber’s Theorem
If two curves of the same GENUS (CURVE) > 1 are in
rational correspondence, then that correspondence is
BIRATIONAL.
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Weber-Sonine Formula
For R[ m �nu] > 0; arg pj j Bp=4 ; and a �0,

g
�

0

Jn(at)e �p2t2 

tm�1dt

�
a

2p

 !n G 1
2 n � mð Þ
h i

2pm G n � 1ð Þ1 F1
1
2( n � m); n �1; �

a2

2p2

 !
;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND,
G(z) is the GAMMA FUNCTION, and 1F1(a; b; z) is a
CONFLUENT HYPERGEOMETRIC FUNCTION.
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Wedderburn’s Theorem
A FINITE DIVISION RING is a FIELD.

Weddle’s Rule
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi�1 �xi ; so f1 �f (x1) ; f2 �
f (x2) ; ..., f7 �f (x7) : Then Weddle’s rule approximating
the integral of f (x) is given by the NEWTON-COTES-like
formula

g
x6n

x1

f (x) dx � 3
10h f1�5f2�f3�6f4�5f5�f6ð

�. . .�5f6n�1�f6nÞ

See also BODE’S RULE, HARDY’S RULE, NEWTON-COTES

FORMULAS, SHOVELTON’S RULE, SIMPSON’S 3/8 RULE,
SIMPSON’S RULE, TRAPEZOIDAL RULE
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Wedge
The term "wedge" has a number of meanings in
mathematics. It is sometimes used as another name
for the CARET symbol, as well as being the notation (/ffl)
for logical AND.

In SOLID GEOMETRY, a wedge is a right triangular
PRISM turned so that it rests on one of its lateral
rectangular faces (left figure). Harris and Stocker
(1998) define a more general type of wedge in which
the top edge is symmetrically shortened, causing the
end triangles to slant obliquely (right figure).

For a wedge of base lengths a and b , height h , and
top edge length c , the VOLUME of the wedge is

V �1
6h 2a �cð Þ:

In the case c �a , this simplifies to V �ha =2: The
CENTROID is located at a height

z̄�
a � cð Þh

2 2a � cð Þ

above the base, which simplifies to h3 for c�a .

See also AND, CARET, CONICAL WEDGE, CYLINDRICAL

WEDGE, PRISM, SPHERICAL WEDGE
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Wedge Product
The wedge product is the product in an EXTERIOR

ALGEBRA. If a and b are DIFFERENTIAL K -FORMS of
degrees p and q , respectively, then

afflb�(�1)pq
bffla: (1)

It is not (in general) COMMUTATIVE, but it is ASSOCIA-

TIVE,

(afflb)fflu�affl(bfflu); (2)

and BILINEAR

c1a1�c2a2ð Þfflb�c1 a1fflbð Þ�c2 a2fflbð Þ (3)

affl c1b1�c2b2ð Þ�c1 afflb1ð Þ�c2 afflb2ð Þ (4)

(Spivak 1999, p. 203), where c1 and c2 are constants.
The alternating algebra is generated by elements of
degree one, and so the wedge product can be defined
using a basis ei for V :

ei1
ffl. . .ffleip

� �
ffl ej1

ffl. . .fflejq

� �
�ei1

ffl. . .ffleip

fflej1
ffl. . .fflejq

(5)

when the indices i1; . . . ; ip;i1; . . . ; iq; are distinct, and
the product is zero otherwise.

While the formula affla�0 holds when a has degree
one, it does not hold in general. For example, consider
a�e1ffle2�e3ffle4 :

affla� e1ffle2ð Þffl e1ffle2ð Þ� e1ffle2ð Þffl e3ffle4ð Þ

� e3ffle4ð Þffl e1ffle2ð Þ� e3ffle4ð Þffl e3ffle4ð Þ

�0�e1ffle2ffle3ffle4�e3ffle4ffle1ffle2�0

�2e1ffle2ffle3ffle4 (6)

If a1; . . . ; ak have degree one, then they are linearly
independent IFF a1ffl. . .fflak"0:/

The wedge product is the "correct" type of product to
use in computing a VOLUME ELEMENT

dV�dx1ffl. . .ffldxn: (7)

The wedge product can therefore be used to calculate
DETERMINANTS and volumes of PARALLELEPIPEDS. For
example, write det A�det c1; . . . ; cnð Þ where ci are the
columns of A . Then

c1ffl. . .fflcn�det c1; . . . ; cnð Þe1ffl. . .fflen (8)

and det c1; . . . ; cnð Þj j is the volume of the PARALLELE-

PIPED spanned by c1; . . . ; cn:/

In Mathematica , a k -form can be written as an
ANTISYMMETRIC k -tensor. Using this format, the
following Mathematica function computes the wedge
product. vars.

Alt[x_List] :� Module[

{

p � TensorRank[x], perms

},

perms � Permutations[Range[p]];

Sum[Signature[perms[[i]]] Transpose[x,

perms[[i]]],{i, p!}]/p!

] Wedge1[a_List, b_List] :� Alt[Outer[Times,

a, b]]



It is also possible to use an n -nested binary tree to
represent the algebra of differential forms. Using this
format, the following Mathematica function computes
the wedge product recursively.

Wedge2[{a_?(! ListQ[#1] &), b_?(! ListQ[#1]

&)}, {c_?(! ListQ[#1] &), d_?(! ListQ[#1]

&)}] : � {a d � b c, b d} sgn2[a_?ListQ] : �
MapIndexed[(Times[#1, Power[-1, Tr[#2]]] &),

a, {TensorRank[a]}]; Wedge2[{a_List, b_List},

{c_List, d_List}] : �
{Wedge2[a, d] � Wedge2[sgn2[b], c],

Wedge2[b, d]}

See also COHOMOLOGY, CUP PRODUCT, DETERMINANT,
DIFFERENTIAL K -FORM, EXTERIOR ALGEBRA, EXTER-

IOR DERIVATIVE, EXTERIOR POWER, INNER PRODUCT,
TENSOR PRODUCT (MODULE), VECTOR SPACE, VO-

LUME, VOLUME ELEMENT
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Weibull Distribution
The Weibull distribution is given by

P(x) � ab �axa�1e � x =bð Þa (1)

D(x) �1 �e� x= bð Þa (2)

for x 
 0 ;�½ Þ; and is implemented in Mathematica as
WeibullDistribution[a , b ] in the Mathematica
add-on package Statistics‘ContinuousDistri-
butions‘ (which can be loaded with the command
BBStatistics‘). The RAW MOMENTS of the dis-
tribution are

m?1 �b G 1 � a�1
� �

(3)

m ?2 �b2 G 1 �2a�1
� �

(4)

m ?3 �b3 G 1 �3a�1
� �

(5)

m?4 �b4 G 1 �4a�1
� �

; (6)

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS of
are

m � bG 1 � a�1
� �

(7)

s2 � b2 G 1 �2a�1
� �

�G2 1 � a�1
� �' (

(8)

g1 �
2G3 1 � a�1ð Þ� 3G 1 � a�1ð ÞG 1 � 2a�1ð Þ

G 1 � 2a�1ð Þ� G2 1 � a�1ð Þ
' (3 =2

�
G 1 � 3a�1ð Þ

G 1 � 2 a�1ð Þ� G2 1 � a�1ð Þ
' (3 =2 (9)

g2 �
f (a)

G 1 � 2a�1ð Þ� G2 1 � a�1ð Þ
' (2 ; (10)

where G(z) is the GAMMA FUNCTION and

f (a) ��6G4 1 � a�1
� �

�12G4 1 � a�1
� �

G 1 �2 a�1
� �

�3 G2 1 �2a�1
� �

�4G 1 � a�1
� �

G 1 �3a�1
� �

�G 1 �4a�1
� �

: (11)

A slightly different form of the distribution is defined
by

P(x) �
a

b
xa �1e �xa = b (12)

D(x) �1 �e�x a = b (13)

(Mendenhall and Sincich 1995). This has RAW MO-

MENTS

m1 � b1 =a G 1 � a�1
� �

(14)

m2 � b2 =a G 1 �2a�1
� �

(15)

m3 � b3 =a G 1 �3a�1
� �

(16)

m4 � b4 =a G 1 �4a�1
� �

(17)

so the MEAN and VARIANCE for this form are

m�b1=aG 1�a�1
� �

(18)

s2�b2=a G 1�2a�1
� �

�G2 1�a�1
� �' (

(19)

The Weibull distribution gives the distribution of
lifetimes of objects. It was originally proposed to
quantify fatigue data, but it is also used in analysis
of systems involving a "weakest link."

See also FISHER-TIPPETT DISTRIBUTION
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Weierstrass Approximation Theorem
If f is a continuous real-valued function on [a, b ] and
if any e > 0 is given, then there exists a POLYNOMIAL

p on [a, b ] such that

f (x)�P(x)j j Be

for all x 
 a; b½ �: In words, any continuous function on a
closed and bounded interval can be uniformly ap-
proximated on that interval by POLYNOMIALS to any
degree of accuracy.



See also MÜ NTZ’S THEOREM
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Weierstrass Constant

s 1
2

� �
�1

2

Y
m;nð Þ"

0;0ð Þ

1�
1

2(m � ni)

" #
e1= 2(m�ni)½ ��1= 8(m�ni)2½ �

�
25=4

ffiffiffi
p

p
ep=8

G2 1
4

� � �0:4749493799 . . . :
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Weierstrass Elliptic Function

The Weierstrass elliptic functions (or Weierstrass �/-
functions, voiced "p -functions") are elliptic functions
which, unlike the JACOBI ELLIPTIC FUNCTIONS, have a
second-order POLE at z�0. The above plots show the
Weierstrass elliptic function �(z) and its derivative
�?(z) for invariants (defined below) of g2�0 and g3�
0: The Weierstrass elliptic function is implemented in

Mathematica as WeierstrassP[u , {g1 , g2 }].

The plots above show the derivatives of the Weier-
strass �/-function.

Weierstrass elliptic functions are denoted �(z) and
can be defined by

�(z)�
1

z2
�

X
?

�

m;n���

1

z � 2mv1 � 2nv2ð Þ2�
1

2mv1 � 2nv2ð Þ2

" #

(1)

(Whittaker and Watson 1990, p. 434). Write Vmn�

2mv1�2nv2: Then this can be written

�(z)�z�2�
X

?
m;n

z�Vmnð Þ�2�V�2
mn

h i
: (2)

An equivalent definition which converges more ra-
pidly is

�(z)�
p

2v1

 !2�
�

1

3
�
X�

n���

csc2

�
z � 2nv2

2v1

p
�

�
X

?
�

n���

csc2

�
nv2

v1

p
��

(3)

(Whittaker and Watson 1990, p. 434). �(z) is an EVEN

FUNCTION since �(�z) gives the same terms in a
different order. To specify � completely, its periods or
invariants, written � zð jv1;v2Þ and � z; g1; g2ð Þ; re-
spectively, must also be specified.

The series expansion of �(z) is given by

�(z)�z�2�
X�
k�2

ckz2k�2; (4)

where

c2�
g2

20
(5)

c3�
g3

28
(6)

and



ck�
3

2k � 1ð Þ k � 3ð Þ
Xk�2

m�2

cmck�m (7)

for k]4 (Abramowitz and Stegun 1972, p. 635). The
first few values for ck for k]4 in terms of c2 and c3 are
given by

c4�
1
3c

2
2 (8)

c5�
1
11 3c2c3ð Þ (9)

c6�
1
39 2c3

2�3c2
3

� �
(10)

c7�
2
332c2

2c3 (11)

c8�
5

7293 11c4
2�36c2c2

3

� �
(12)

c9�
29

2717 c3
2c3�11c2

3

� �
(13)

c10�
1

240669 242c5
2�1455c2

2c2
3

� �
(14)

(Abramowitz and Stegun 1972, p. 636).

The Weierstrass elliptic function describes how to get
from a TORUS giving the solutions of an ELLIPTIC

CURVE to the algebraic form of the ELLIPTIC CURVE.

The differential equation from which Weierstrass
elliptic functions arise can be found by expanding
about the origin the function f (z)��(z)�z�2:

�(z)�z�2�f (0)�f ?(0)z�
1

2!
f ƒ(0)z2�

1

3!
f§(0)z3

�
1

4
f (4)(0)z4�. . . : (15)

But f (0)�0 and the function is even, so f ?(0)�f§(0)�
0 and

f (z)��(z)�z�2�
1

2!
f ƒ(0)z2�

1

4
f (4)(0)z4�. . . : (16)

Taking the derivatives

f ?��2S? z�Vmnð Þ�3 (17)

f ƒ�6S? z�Vmnð Þ�4 (18)

f§��24S? z�Vmnð Þ�5 (19)

f (4)�120S? z�Vmnð Þ�6: (20)

So

f ƒ(0)�6S?V�4
mn (21)

f (4)(0)�120S?V�6
mn : (22)

Plugging in,

�(z)�z�2�3S?V�4
mnz2�5S?V�6

mnz4�O z6
� �

(23)

Define the INVARIANTS

g2�60S?V�4
mn (24)

g3�140S?V�6
mn ; (25)

then

�(z)�z�2� 1
20g2z2� 1

28g3z4�O z6
� �

(26)

�?(z)��2z�3� 1
10g2z�1

7g3z3�O z5
� �

: (27)

Now cube (26) and square (27)

�3(z)�z�6� 3
20g2z�2� 3

28g3�O z2
� �

(28)

�?2(z)�4z�6�2
5g2z�2�4

7g3�O z2
� �

: (29)

Taking (29) minus 4� (28) cancels out the z�6 term,
giving

�?2(z)�4�3(z)� �2
5�

3
5

� �
g2z�2� �4

7�
3
7

� �
g3�O z2

� �
��g2z�2�g3�O z2

� �
(30)

�?2(z)�4�3(z)�g2z�2�g3�O z2
� �

: (31)

But, from (16)

�(z)�z�2� 1
2! f ƒ(0)z2�1

4 f (4)(0)z4�. . . ; (32)

so /�ðzÞ ¼ z�2 þ Oðz2Þ/ and (31) can be written

�?2(z)�4�3(z)�g2�(z)�g3�O z2
� �

: (33)

But the Weierstrass elliptic function is analytic at the
origin and therefore at all points congruent to the
origin. There are no other places where a singularity
can occur, so this function is an ELLIPTIC FUNCTION

with no SINGULARITIES. By LIOUVILLE’S ELLIPTIC

FUNCTION THEOREM, it is therefore a constant. But
as z 0 0; O z2ð Þ 0 0; so

�?2(z)�4�3(z)�g2�(z)�g3 (34)

(Whittaker and Watson 1990, pp. 436�/37).

The solution to the differential equation

y?2�4y3�g2y�g3 (35)

is therefore given by y��(z�a); providing that
numbers v1 and v2 exist which satisfy the equations
defining the INVARIANTS. Writing the differential
equation in terms of its roots e1; e2; and e3;

y?2�4y3�g2y�g3�4 y�e1ð Þ y�e2ð Þ y�e3ð Þ (36)

(Rainville 1971, p. 312),

2 ln y?ð Þ�ln 4�
X3

r�1

ln y�erð Þ (37)

2yƒ

y?
�y?

X3

r�1

y�erð Þ�1 (38)



2yƒ

y?2
�
X3

r�1

y�erð Þ�1 (39)

2
y?2y§� yƒ 2y?yƒð Þ

y?4
��y?

X3

r�1

y�erð Þ�2 (40)

2y§

y?3
�

4yƒ2

y?4
��

X3

r�1

y�erð Þ�2
: (41)

Now take (41) divided by 4 plus [(41) divided by 4]
quantity squared,

y§

2y?3
�

yƒ2

y?4

 !
�

yƒ2

4y?4

 !

��
1

4

X3

r�1

y�erð Þ�2�
1

16

X3

r�1

y�erð Þ�1

" #2

(42)

3yƒ2

4y?4
�

y§

2y?3
� 3

16

X3

r�1

y�erð Þ�2�3
8y
Y3

r�1

y�erð Þ�1
: (43)

The term on the right is half the SCHWARZIAN

DERIVATIVE.

The DERIVATIVE of the Weierstrass elliptic function is
given by

�?(z)�
d

dz
�(z)��2

X
m;n

1

z � Vmnð Þ3

��2z�3�2
X

?
m;n

z�Vmnð Þ�3
: (44)

This is an ODD FUNCTION which is itself an elliptic
function with pole of order 3 at z�0. T
he INTEGRAL is given by

z�g
�

�(z)

4t3�g2t�g3

� ��1=2
dt: (45)

The second derivative satisfies

�ƒ 1
2v1

� �
�2 e1�e2ð Þ e1�e3ð Þ (46)

(Apostol 1997, p. 23).

A duplication formula is obtained as follows.

�(2z)�lim
y0z

�(y�z)

�
1

4
lim
y0z

�?(z) ��?(y)

�(z) ��(y)

" #2

��(z)�lim
y0z

�(y)

�
1

4
lim
h00

�(z) ��?(z � h)

�(z) ��(z � h)

" #2

�2�(z)

�
1

4
lim
h00

�?(z) ��?(z � h)

h

" #(

� lim
h00

h

�(z) ��(z � h)

" #
g2�2�(z)

�
1

4

�ƒ(z)

�?(z)

" #2

�2�(z) (47)

(Apostol 1997, p. 24).

A general addition theorem is obtained as follows.
Given

�?(z)�A�(z)�B (48)

�?(y)�A�(y)�B (49)

with zero y and z where zf9y mod 2v1; 2v2ð Þ; find
the third zero z: Consider �? zð Þ�A� zð Þ�B: This has
a pole of order three at z�0; but the sum of zeros
(�0) equals the sum of poles for an ELLIPTIC FUNC-

TION, so z�y�z�0 and z��z�y:

�?(�z�y)�A�(�z�y)�B (50)

��?(z�y)�A�(z�y)�B: (51)

Combining (48), (49), and (51) gives

�(z) �?(z) 1
�(y) �?(y) 1

�(z�y) ��(z�y) 1

2
4

3
5 A

�1
B

2
4

3
5� 0

0
0

2
4
3
5; (52)

so

�(z) �?(z) 1
�(y) �?(y) 1

�(z�y) ��(z�y) 1

      
      �0: (53)

Defining u�v�w�0 where /u�z/ and v�y gives the
symmetric form

�(u) �?(u) 1
�(v) �?(v) 1
�(w) �(w) 1

      
      �0 (54)

(Whittaker and Watson 1990, p. 440). To get the
expression explicitly, start again with

�?(z)�A�(z)�B�0; (55)

where z�z; y;�z�y:

�?2(z)� A�(z)�B½ �2�0: (56)

But from (34), �?2(z)�4�3(z)�g2�(z)�g3; so

4�3(z)�A2�2(z)�(2AB�g2)�(z)� B2�g3

� �
�0:

(57)

The solutions � zð Þ�z are given by

4z3�A2z2� 2AB�g2ð Þz� B2�g3

� �
�0: (58)

But the sum of roots equals the COEFFICIENT of the
squared term, so

�(z)��(y)��(z�y)�1
4A

2 (59)



�?(z)��?(y)�A �(z)��(y)½ � (60)

A�
�?(z) ��?(y)

�(z) ��(y)
(61)

�(z�y)�
1

4

�?(z) ��?(y)

�(z) ��(y)

" #2

��(z)��(y) (62)

(Whittaker and Watson 1990, p. 441).

Half-period identities include

x�� 1
2v1

� �
���hv1�v1ð Þ�e1�

e1 � e2ð Þ e1 � e3ð Þ
� �1

2v1

� �
� e1

�e1�
e1 � e2ð Þ e1 � e3ð Þ

x � e1

: (63)

Multiplying through,

x2�e1x�e1x�e2
1� e1�e2ð Þ e1�e3ð Þ (64)

x2�2e1� e2
1� e1�e2ð Þ e1�e3ð Þ

' (
�0; (65)

which gives

� 1
2v1

� �
�1

2 2e19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2

1�4 e2
1� e1�e2ð Þ e1�e3ð Þ½ �

q� /

�e19
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1�e2ð Þ e1�e3ð Þ

p
: (66)

From Whittaker and Watson (1990, p. 445),

�? 1
2v1

� �
��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1�e2ð Þ e1�e3ð Þ

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1�e2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1�e3

p� �
: (67)

The function is HOMOGENEOUS,

� lzð jlv1; lv2Þ�l�2� zð jv1;v2Þ (68)

� lz; l�4g2; l
�6g3

� �
�l�2� z; g2; g3ð Þ: (69)

To invert the function, find 2v1 and 2v2 of � zð jv1;v2Þ
when given � z; g1; g2ð Þ: Let e1; e2; and e3 be the roots
such that e1�e2ð Þ= e1�e3ð Þ is not a REAL NUMBER > 1
orB0: Determine the PARAMETER t from

e1 � e2

e1 � e3

�
q 4

4 0ð jtÞ
q 4

3 0ð jtÞ
: (70)

Now pick

A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e2

p

q 2
4 0ð jtÞ

: (71)

As long as g3
2"27g3; the periods are then

2v1�pA (72)

2v2�
pt
A

: (73)

Weierstrass elliptic functions can be expressed in

terms of JACOBI ELLIPTIC FUNCTIONS by

� u; g2; g3ð Þ�e3� e1�e3ð Þ ns2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1�e3

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � e3

e1 � e3

s !
;

(74)

where

� v1ð Þ�e1 (75)

� v2ð Þ�e2 (76)

� v3ð Þ����v1�v2ð Þ�e3; (77)

and the INVARIANTS are

g2�60
X

?
m;n

V�4
mn (78)

g3�140
X

?
m;n

V�6
mn : (79)

Here, Vmn�2mv1�2nv2:/

An addition formula for the Weierstrass elliptic
function can be derived as follows.

� z�v1ð Þ�� zð Þ�� v1ð Þ

�
1

4

�?(z) ��?(v1)

�(z) ��(v1)

" #2

�
1

4

�?2(z)

� zð Þ� e1½ �2
: (80)

Use

�?(z)�4
Y3

r�1

�(z)�er½ �; (81)

so

� z�v1ð Þ���(z)�e1�
1

4

4
Q3

r�1 �(z) � er½ �
�(z) � e1½ �2

���(z)�e1�
�(z) � e2½ � �(z) � e3½ �

�(z) � e1

: ð82Þ

Use a3
r�1er�0;

� z�v1ð Þ�e1�
�2e1 ��(z)½ � �(z) � e1½ �

�(z) � e1

�
�2(z) ��(z) e2 � e3ð Þ� e2e3

�(z) � e1

�e1�
��(z) e1 � e2 � e3ð Þ� e2e3 � 2e2

1

�(z) � e1

: (83)

But a3
r�1er�0 and

2e2
1�e2e3�e2

1�e1 e2�e3ð Þ�e2e3

� e1�e2ð Þ e1�e3ð Þ; (84)

so



� z � v1ð Þ�e1 �
e1 � e2ð Þ e1 � e3ð Þ

�(z) � e1

: (85)

The periods of the Weierstrass elliptic function are
given as follows. When g2 and g3 are REAL and g3

2 �
27g2

3 > 0; then e1 ; e2 ; and e3 are REAL and defined such
that e1 > e2 > e3 :

v1 �g
�

e1

4t3 �g2t �g3

� ��1=2
dt (86)

v3 ��ig
e2

��

g3 �g2t �4t3
� ��1=2

dt (87)

v2 ��v1 � v3 : (88)

The roots of the Weierstrass elliptic function satisfy

e1 �� v1ð Þ  (89)

e2 �� v2ð Þ  (90)

e3 �� v3ð Þ; (91)

where v3 ��v1 � v2 : The ei/s are ROOTS of 4t3 �g2t �
g3 and are unequal so that e1 "e2 "e3 :: They can be
found from the relationships

e1�e2�e3��a2�0 (92)

e2e3�e3e1�e1e2�a1��1
4 g2 (93)

e1e2e3��a0�
1
4 g3: (94)

See also ELLIPTIC CURVE, ELLIPTIC FUNCTION, EISEN-

STEIN SERIES, EQUIANHARMONIC CASE, JACOBI ELLIP-

T I C  F U N C T I O N S , L E M N I S C A T E  C A S E ,
PSEUDOLEMNISCATE CASE, WEIERSTRASS SIGMA

FUNCTION, WEIERSTRASS ZETA FUNCTION
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Weierstrass Extreme Value Theorem
EXTREME VALUE THEOREM

Weierstrass Factor Theorem
Let any finite or infinite set of points having no finite
LIMIT POINT be prescribed, and associate with each of
its points a definite positive integer as its order. Then
there exists an ENTIRE FUNCTION which has zeros to
the prescribed orders at precisely the prescribed
points, and is otherwise different from zero. More-
over, this function can be REPRESENTED AS a product
from which one can read off again the positions and
orders of the zeros. Furthermore, if G0(z) is one such
function, then

G(z)�eh(z)G0(z)

is the most general function satisfying the conditions
of the problem, where h(z) denotes an arbitrary
ENTIRE FUNCTION.
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Weierstrass Factorization Theorem
WEIERSTRASS FACTOR THEOREM

Weierstrass Form
A general form into which an ELLIPTIC CURVE over
any FIELD K can be transformed is called the
Weierstrass form, and is given by

y2�ay�x3�bx2�cxy�dx�e;

where a , b , c , d , and e are elements of K .



Weierstrass Function

A CONTINUOUS FUNCTION which is nowhere DIFFER-

ENTIABLE. It is given by

f (x) �
X�
n�1

bn cos an pxð Þ

where a is an ODD NUMBER, b 
 (0; 1); and ab > 1 �
3p=2: The above plot is for a �19 and b �1=2:/

See also BLANCMANGE FUNCTION, CONTINUOUS FUNC-

TION, DIFFERENTIABLE
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Weierstrass Intermediate Value Theorem
If a continuous function defined on an interval is
sometimes POSITIVE and sometimes NEGATIVE, it must
be 0 at some point.

Weierstrass M-Test
Let a�

k �1un(x) be a SERIES of functions all defined for a
set E of values of x . If there is a CONVERGENT series of
constants

X�
n�1

Mn ;

such that

un(x)j j5Mn

for all x 
 E; then the series exhibits ABSOLUTE

CONVERGENCE for each x 
 E as well as UNIFORM

CONVERGENCE in E .

See also ABSOLUTE CONVERGENCE, UNIFORM CON-

VERGENCE
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Weierstrass Operator
The operator ent

2=2 which satisfies

ent
2=2p(x)�

1ffiffiffiffiffiffiffiffi
2pn

p g
�

��

e�u2=(2n)p(x�u) du

for n > 0:/
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Weierstrass Point
A POLE of multiplicity less than p�1:/
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Weierstrass Product Inequality
If 05a; b; c;d51; then

(1�a)(1�b)(1�c)(1�d)�a�b�c�d]1:
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Weierstrass Sigma Function
The QUASIPERIODIC FUNCTION defined by

d

dz
ln s(z)�z(z); (1)



where z(z) is the WEIERSTRASS ZETA FUNCTION and

lim
z0�

s(z)

z
�1: (2)

Then

s(z) �z
Y

?
�

m;n���

1 �
z

Vmn

 !
exp

z

Vmn

�
z2

2V2
mn

 !" #
; (3)

where the term with m �n �0 is omitted from the
product. In addition, s(z) satisfies

s z �2v1ð Þ��e2 h1 z�v1ð Þs(z) (4)

s z �2v2ð Þ��e2 h2 z�v2ð Þs(z) (5)

and

sr(z) �
e �hrz s z � vrð Þ

s vrð Þ  
(6)

for r �1, 2, 3.

/s(z) can be expressed in terms of JACOBI THETA

FUNCTIONS using the expression

s zð j v1 ; v2 Þ�
2 v1

pq ?1
exp �

n2 q§1
6q ?1

 !
q 1 n

v2

v1

     
!
;

 
(7)

where n �pz = 2v1ð Þ; and

h1 ��
p2 q§1

12 v1 q ?1
(8)

h2 ��
p2 v2 q§1
12 v2

1 q ?1
�

pi

2v1

: (9)

There is a beautiful series expansion for s(z) ; given by
the DOUBLE SUM

s(z) �
X�

m;n�0

amn
1
2g2

� �m

2g3ð Þn z4m�6n�1

4m � 6n � 1ð Þ! 
; (10)

where a00 �1; amn �0 for either subscript negative,
and other values are gives by the RECURRENCE

RELATION

amn �3(m �1)am�1 ;n�1 �
16
3 (n �1)am�2;n�1

�1
3(2m �3n �1)(4m �6n �1)am�1 ;n (11)

(Abramowitz and Stegun 1972, pp. 635 �/36). The
following table gives the values of the amn coefficients
for small m and n .

n � 0 n � 1 n � 2 n � 3

/a0n/ 1 �3 �54 14904

/a1n/ �1 �18 4968 502200

/a2n/ �9 513 257580 162100440

/a3n/ 69 33588 20019960 �9465715080

/a4n/ 321 2808945 �376375410 �4582619446320

/a5n/ 160839 �41843142 �210469286736 �1028311276281264

See also WEIERSTRASS ELLIPTIC FUNCTION, WEIER-

STRASS ZETA FUNCTION

References
Abramowitz, M. and Stegun, C. A. (Eds.). "Weierstrass

Elliptic and Related Functions." Ch. 18 in Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing. New York: Dover,
pp. 627�/71, 1972.

Knopp, K. "Example: Weierstrass’s s/-Function." §2d in
Theory of Functions Parts I and II, Two Volumes Bound
as One, Part II. New York: Dover, pp. 27�/0, 1996.

Tölke, F. "Spezielle Weierstraßsche Sigma-Funktionen."
Ch. 9 in Praktische Funktionenlehre, dritter Band: Jaco-
bische elliptische Funktionen, Legendresche elliptische
Normalintegrale und spezielle Weierstraßsche Zeta- und
Sigma Funktionen. Berlin: Springer-Verlag, pp. 164�/80,
1967.

Whittaker, E. T. and Watson, G. N. "The Function s(z):/"
§20.42 in A Course in Modern Analysis, 4th ed. Cam-
bridge, England: Cambridge University Press, pp. 447�/

48, 450�/52, and 458�/61, 1990.

Weierstrass Zeta Function
The QUASIPERIODIC FUNCTION defined by

dz(z)

dz
���(z) (1)

with

lim
z00

z(z)�z�1
    �0: (2)

Then

z(z)�z�1��g
z

0

�(z)�z�2
' (

dz

��S?g
z

0

z�Vmnð Þ�2�V�2
mn

h i
dz (3)

z zð Þ�z�1�
X

?
�

m;n���

z�Vmnð Þ�1�V�1
mn�zV�2

mn

h i
(4)

so z(z) is an ODD FUNCTION. Integrating � z�2v1ð Þ�
�(z) gives

z z�2v1ð Þ�z zð Þ�2h1: (5)

Letting z��v1 gives z�v1ð Þ�2h1��z v1ð Þ�2h1; so /

h1 ¼ zðv1Þ/. Similarly, h2�z v2ð Þ: From Whittaker and
Watson (1990),

h1v2�h2v1�
1
2pi (6)

If x�y�z�0; then

z(x)�z(y)�z(z)½ �2�z?(x)�z?(y)�z?(z)�0 (7)

(Whittaker and Watson 1990, p. 446). Also,



2

1 �(x) �2(x)
1 �(y) �2(y)
1 �(z) �2(z)

      
      

1 �(x) �?(x)
1 �(y) �?(y)
1 �(z) �?(z)

      
      
� z(x �y �z) � z(x) � z(y) � z(z) (8)

(Whittaker and Watson 1990, p. 446).

The series expansion of z(z) is given by

z(z) �z �1 �
X�
k�2

ckz2k �1

2k � 1 
; (9)

where

c2 �
g2

20 
(10)

c3 �
g3

28 
(11)

and

ck �
3

2k � 1ð Þ k � 3ð Þ
Xk �2

m�2

cmck �m (12)

for k ]4 (Abramowitz and Stegun 1972, p. 635).

See also WEIERSTRASS ELLIPTIC FUNCTION, WEIER-

STRASS SIGMA FUNCTION
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Weierstrass-Casorati Theorem
An ANALYTIC FUNCTION approaches any given value
arbitrarily closely in any e/-NEIGHBORHOOD of an
ESSENTIAL SINGULARITY.

See also ANALYTIC FUNCTION, ESSENTIAL SINGULAR-

ITY
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Weierstrass-Erdman Corner Condition
In the CALCULUS OF VARIATIONS, the condition

fy? x; y; y? x�ð Þð Þ�fy? x; y; y? x�

� �� �
must hold at a corner (x, y ) of a minimizing arc E12 :/

WeierstrassHalfPeriods
WEIERSTRASS ELLIPTIC FUNCTION

WeierstrassInvariants
WEIERSTRASS ELLIPTIC FUNCTION

Weierstrass-Mandelbrot Function
WEIERSTRASS FUNCTION

WeierstrassP
WEIERSTRASS ELLIPTIC FUNCTION

WeierstrassPPrime
WEIERSTRASS ELLIPTIC FUNCTION

Weierstrass’s Double Series Theorem
Let all of the functions

fn(z) �
X�
k�0

a(n)
k z �z0ð Þk

with n �0, 1, 2, ..., be regular at least for z �z0j j Br;
and let

F(z) �
X�
n �0

fn(z)

¼ ½að0 Þ
0 þ a ð0 Þ

1 ðz �z0 Þ þ . . .  þ að0 Þ
k ðz �z0 Þ

k þ . . .�

� a(1)
0 �a(1)

1 z �z0ð Þ�. . .�a(1)
k z �z0ð Þk�. . .

h i
�. . .

� a(n)
0 �a(n)

1 z �z0ð Þ�. . .�a(n)
k z �z0ð Þk�. . .

h i
�. . .

be uniformly convergent for z �z0 5 r Br for every
r Br : Then the coefficients in any column form a
convergent series. Furthermore, setting

a(0)
k �a(1)

k �. . .�a(n)
k �. . .�

X�
n�0

a(n)
k �Ak

for k�0, 1, 2, ..., it then follows that

X�
k�0

Ak z�z0ð Þk

is the POWER SERIES for F(z); which converges at least
for z�z0j j Br:/

See also DOUBLE SERIES



References
Knopp, K. Theory of Functions Parts I and II, Two Volumes

Bound as One, Part I. New York: Dover, p. 83, 1996.

Weierstrass’s Gap Theorem
Given a succession of nonsingular points which are on
a nonhyperelliptic curve of GENUS p , but are not a
group of the canonical series, the number of groups of
the first k which cannot constitute the group of
simple POLES of a RATIONAL FUNCTION is p . If points
next to each other are taken, then the theorem
becomes: Given a nonsingular point of a nonhyper-
elliptic curve of GENUS p , then the orders which it
cannot possess as the single pole of a RATIONAL

FUNCTION are p in number.
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Weierstrass’s Polynomial Theorem
A function, continuous in a finite close interval, can
be approximated with a preassigned accuracy by
POLYNOMIALS. A function of a REAL variable which
is continuous and has period 2 p can be approximated
by trigonometric POLYNOMIALS.
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Weierstrass’s Theorem
There are at least two theorems known as Weier-
strass’s theorem. The first states that the only
HYPERCOMPLEX NUMBER systems with commutative
multiplication and addition are the algebra with one
unit such that e �e2 and the GAUSSIAN INTEGERS.

In harmonic analysis, let U ⁄C be any OPEN SET, and
let a1 ; a2 ; ..., be a finite or infinite sequence in U
(possibly with repetitions) that has no ACCUMULATION

POINT in U . There there exists an ANALYTIC FUNCTION

f on U whose zero set is precisely aj

1 2
(Krantz 1999,

p. 111).

See also GAUSSIAN INTEGER, HYPERCOMPLEX NUM-

BER, PEIRCE’S THEOREM
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WeierstrassSigma
WEIERSTRASS SIGMA FUNCTION

WeierstrassZeta
WEIERSTRASS ZETA FUNCTION

Weighing
n weighings are SUFFICIENT to find a bad COIN among
3n �1ð Þ=2 COINS (Steinhaus 1983, p. 61). vos Savant

(1993) gives an algorithm for finding a bad ball
among 12 balls in three weighings (which, in addi-
tion, determines if the bad ball is heavier or lighter
than the other 11), and Steinhaus (1983, pp. 58 �/1)
gives an algorithm for 13 balls.

Bachet’s weights problem asks for the minimum
number of weights (which can be placed in either
pan of a two-arm balance) required to weigh any
integral number of pounds from 1 to 40 (Steinhaus
1983, p. 52). The solution is 1, 3, 9, and 27: 1, 2 �
�1 �3; 3, 4 �1 �3; 5 ��1 �3 �9; 6 ��3 �9 ; 7 �1 �
3 �9 ; 8 ��1 �9; 9, 10 �1 �9; 11 ��1 �3 �9 ; 12 �
3 �9 ; 13 �1 �3 �9; 14 ��1 �3 �9 �27; 15 ��3 �
9�27; 16�1�3�9�27; 17��1�9�27; and so
on.

See also GOLOMB RULER, PERFECT DIFFERENCE SET,
SORTING, THREE JUG PROBLEM
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Weight
The word weight has many uses in mathematics. It
can refer to a function w(x) (also called a WEIGHTING

FUNCTION or WEIGHT FUNCTION) used to normalize
ORTHOGONAL FUNCTIONS. It can also be used to
indicate one of a set of a multiplicative constants
placed in front of terms in a MOVING AVERAGE,
NEWTON-COTES FORMULAS, edge or vertex of a GRAPH



or TREE, etc. It also refers to the power k in the
multiplicative factor c t �dð Þk defining a MODULAR

FORM.

The weight of a TREE at a point u is the maximum
number of edges in any BRANCH at u (Harary 1994,
p. 35).

See also MODULAR FORM, MOVING AVERAGE, NEW-

TON-COTES FORMULAS, WEIGHTED TREE, WEIGHTING

FUNCTION
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Weight (Lie Algebra)
Consider a collection of DIAGONAL MATRICES

H1 ; . . . ;Hk ; which SPAN a subspace h: Then the ith
EIGENVALUE, i.e., the ith entry along the diagonal, is
a LINEAR FUNCTIONAL on h; and is called a weight.

The general setting for weights occurs in a REPRE-

SENTATION of a SEMISIMPLE LIE ALGEBRA, in which
case the CARTAN SUBALGEBRA h is ABELIAN and can be
put into diagonal form. For example, consider the
standard representation of the SPECIAL LINEAR LIE

ALGEBRA sl3(C) on C3 : Then

H1 �
1 0 0
0 �1 0
0 0 0

2
4

3
5 (1)

and

H2 �
1 0 0
0 �1 0
0 0 1

2
4

3
5 (2)

span the CARTAN SUBALGEBRA h: There are three
weights,

a1 hij

� �
�h11 (3)

a2 hij

� �
�h22 (4)

and

a3 hij

� �
�h33 ; (5)

corresponding to the decomposition of

C3 � e1h i� e2h i� e3h i  (6)

into its eigenspaces. Note that a1 � a2 � a3 �0 ; be-
cause the matrices have zero TRACE. The eigenvectors
e1 ; e2 ; e3 are called WEIGHT VECTORS, and the corre-
sponding eigenspaces are called WEIGHT SPACES.

In the important special case of the ADJOINT REPRE-

SENTATION of a SEMISIMPLE LIE ALGEBRA, the weights
are called ROOTS and the WEIGHT SPACE is called the
ROOT SPACE. The roots generate a DISCRETE LATTICE,
called the ROOT LATTICE, in the DUAL SPACE h+: The
set of all possible weights forms a WEIGHT LATTICE,

which contains the ROOT LATTICE. The REPRESENTA-

TIONS of g can be classified using the WEIGHT LATTICE.

See also CARTAN MATRIX, LIE ALGEBRA, ROOT (LIE

ALGEBRA), ROOT SYSTEM, SEMISIMPLE LIE ALGEBRA,
WEIGHT (LIE ALGEBRA), WEYL CHAMBER, WEYL

GROUP
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Birkhäuser, 1996.

Weight Function
WEIGHTING FUNCTION

Weighted Graph
A TREE in which each branch is given a numerical
WEIGHT. A weighted graph is therefore a special type
of LABELED GRAPH in which the labels are numbers
(which are usually taken to be positive).

See also LABELED GRAPH, TAYLOR’S CONDITION,
WEIGHTED TREE

Weighted Inversion Statistic
A STATISTIC w on the SYMMETRIC GROUP Sn is called a
weighted inversion statistic if there exists an UPPER

TRIANGULAR MATRIX W � wij

� �
such that

w( s) �
X
i Bj

x si > sj

� �
wij ;

where x is the CHARACTERISTIC FUNCTION.

The inversion count (/wij �1 for i B j ) defined by
Cramer (1750) and the major index (/wi ;i �1 �i; wij �
0 otherwise) defined by MacMahon (1913) are both
weighted inversion statistics (Degenhardt and
Milne).

See also INVERSION STATISTIC, SYMMETRIC GROUP

References
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Weighted Tree
A TREE to whose nodes and/or edges labels (usually
number) are assigned.



The word "weight" also has a more specific meaning
when applied to trees, namely the weight of a TREE at
a point u is the maximum number of edges in any
BRANCH at u (Harary 1994, p. 35), as illustrated
above. A point having minimal weight for the tree is
called a CENTROID POINT, and the TREE CENTROID is
the set of all CENTROID POINTS.

See also CENTROID POINT, LABELED GRAPH, TAYLOR’S

CONDITION, TREE, TREE CENTROID, WEIGHTED GRAPH
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Weighting Function
A function w(x) used to normalize ORTHONORMAL

FUNCTIONS

g fn(x)½ �2w(x) dx �Nn :

See also WEIGHT

Weil-Brezin Map
ZAK TRANSFORM

Weill’s Theorem

Given the INCIRCLE and CIRCUMCIRCLE of a BICENTRIC

POLYGON of n sides, the centroid of the tangent points
on the INCIRCLE is a fixed point independent of the

particular polygon.

More generally, the LOCUS of the centroid of any
number of the n points is a CIRCLE (Casey 1888).

See also BICENTRIC POLYGON, PONCELET’S PORISM
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Weingarten Equations
The Weingarten equations express the derivatives of
the NORMAL to a surface using derivatives of the
position vector. Let x : U 0 R3 be a REGULAR PATCH,
then the SHAPE OPERATOR S of x is given in terms of
the basis xu ;xvf g by

�S xuð Þ�Nu �
fF � eG

EG � F2 
xu �

eF � fE

EG � F2 
xv (1)

�S xvð Þ�Nv �
gF � fG

EG � F2 
xu �

fF � gE

EG � F2 
xv ; (2)

where N is the NORMAL VECTOR, E , F , and G the
coefficients of the first FUNDAMENTAL FORM

ds2 �E du2 �2F du dv�G dv2 ; (3)

and e , f , and g the coefficients of the second FUNDA-

MENTAL FORM given by

e��Nu �xu�N�xu u (4)

f ��Nv �xu�N�xuv

�Nvu �xvu��Nu �xv (5)

g��Nv �xv�N�xv v (6)

See also FUNDAMENTAL FORMS, SHAPE OPERATOR
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Weingarten Map
SHAPE OPERATOR

Weird Number
A number which is ABUNDANT without being SEMI-

PERFECT. (A SEMIPERFECT NUMBER is the sum of any
set of its own DIVISORS.) The first few weird numbers
are 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, ...
(Sloane’s A006037). No ODD weird numbers are
known, but an infinite number of weird numbers
are known to exist. The SEQUENCE of weird numbers
has POSITIVE SCHNIRELMANN DENSITY.

See also ABUNDANT NUMBER, SCHNIRELMANN DEN-

SITY, SEMIPERFECT NUMBER
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Welch Apodization Function

The APODIZATION FUNCTION

A(x) �1 �
x2

a2 
:

Its FULL WIDTH AT HALF MAXIMUM is
ffiffiffi
2

p
a : Its INSTRU-

MENT FUNCTION is

I(k) �2a
ffiffiffiffiffiffi
2p

p J3=2(2pka)

2pkað Þ3 =2

�a
sin(2pka) � 2 pak cos(2 pak)

2a3k3 p3 
;

where Jn(z) is a BESSEL FUNCTION OF THE FIRST KIND.
It has a width of 1.59044, a maximum of 4

3 ; maximum
NEGATIVE sidelobe of �0:0861713 times the peak, and
maximum POSITIVE sidelobe of 0.356044 times the
peak.

See also APODIZATION FUNCTION, INSTRUMENT FUNC-

TION
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Well Defined
An expression is called "well defined" (or UNAMBIG-

UOUS) if its definition assigns it a unique interpreta-
tion or value. Otherwise, the expression is said to not
be well defined or to be AMBIGUOUS.

For example, the expression abc (the PRODUCT) is
well defined if a , b , and c are integers. Because
integers are ASSOCIATIVE, abc has the same value
whether it is interpreted to mean (ab)c or a(bc):
However, if a , b , and c are CAYLEY NUMBERS, then
the expression abc is not well defined, since CAYLEY

NUMBER are not, in general, ASSOCIATIVE, so that the
two interpretations (ab)c and a(bc) can be different.

Sometimes, ambiguities are implicitly resolved by
notational convention. For example, the conventional
interpretation of afflbfflc �abc

is a b
cð Þ; never ab

� �c
; so

that the expression afflbfflc is well defined even though
exponentiation is nonassociative.

The term "well defined" also has a technical meaning
in field of PARTIAL DIFFERENTIAL EQUATIONS. A solu-
tion to a PARTIAL DIFFERENTIAL EQUATION that is a
continuous function of its values on the boundary is
said to be well defined. Otherwise, a solution is called
ILL DEFINED.

See also AMBIGUOUS, ILL DEFINED, UNDEFINED

Well Order
WELL ORDERED SET

Well Ordered Set
A TOTALLY ORDERED SET A;5ð Þ is said to be well
ordered IFF every nonempty SUBSET of A has a least
element (Ciesielski 1997, p. 38; Moore 1982, p. 2;
Rubin 1967, p. 159; Suppes 1972, p. 75). Every finite
TOTALLY ORDERED SET is well ordered. The set of
integers Z, which has no least element, is an example
of a set that is not well ordered.

An ORDINAL NUMBER is the ORDER TYPE of a well
ordered set.

See also AXIOM OF CHOICE, HILBERT’S PROBLEMS,
INITIAL SEGMENT, MONOMIAL ORDER, ORDINAL NUM-

BER, ORDER TYPE, SUBSET, WELL ORDERING PRINCI-

PLE
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Well Ordering Principle
Every nonempty set of POSITIVE INTEGERS contains a
smallest member.

See also AXIOM OF CHOICE, WELL ORDERED SET
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Well-Poised
A GENERALIZED HYPERGEOMETRIC FUNCTION

pFq

a1 ; a2 ; . . . ; ap

b1 ; b2 ; . . . ; bq
; z

� �

is said to be well-poised if p �q �1 and

1 �a1 � b1 �a2 �. . .� bq �ap �1

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
K -BALANCED, NEARLY-POISED, SAALSCHÜ TZIAN
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Werner Formulas

2 sin a cos b �sin( a� b) �sin( a� b) (1)

2 cos a cos b �cos(a� b) �cos(a� b) (2)

2 cos a sin b �sin( a� b) �sin( a� b) (3)

2 sin a sin b �cos(a� b) �cos(a� b) (4)

See also TRIGONOMETRIC ADDITION FORMULAS

Werner Projection
A nonconformal, equal-area projection which is a
special case of the BONNE PROJECTION where one of

the poles is taken as the standard parallel. Because of
its heart shape, this projection is sometimes also
called "cordiform."

See also BONNE PROJECTION, MAP PROJECTION
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Weyl Character Formula

References
Hsiang, W. Y. "Weyl Character Formula and the Classifica-

tion of Complex Irreducible Representations." Lec. 4, §4 in
Lectures on Lie Groups. Singapore: World Scientific,
pp. 74 �/7, 2000.

Weyl Group
Let L be a finite-dimensional split SEMISIMPLE LIE

ALGEBRA over a FIELD of CHARACTERISTIC 0, H a
splitting CARTAN SUBALGEBRA, and a weight of H
in a representation of L : Then

L?�LSa �l�
2 L; að Þ
( a; a)

( a)

is also a weight. Furthermore, the reflections Sa with
a a root, generate a group of linear transformations in
H�0 called the Weyl group W of L relative to H;
where H�/ is the CONJUGATE SPACE of H and H�0 is
the Q -SPACE spanned by the roots (Jacobson 1979,
pp. 112, 117, and 119).

The Weyl group acts on the roots of a semisimple Lie
algebra, and it is a finite group. The animations above
illustrate this action for Weyl Group acting on the
roots of a homotopy from one Weyl matrix to the next
one (i.e., it slides the arrows from g to h ) in the first
two figures, while the third figure shows the Weyl
Group acting on the roots of the CARTAN MATRIX of the
infinite family of semisimple lie algebras A3 (cf.
DYNKIN DIAGRAM), which is the SPECIAL LINEAR LIE

ALGEBRA, sl4:/

See also CARTAN MATRIX, DYNKIN DIAGRAM, LIE

ALGEBRA, LIE GROUP, MACDONALD’S CONSTANT-

TERM CONJECTURE, ROOT (LIE ALGEBRA), ROOT

SYSTEM, ROOT LATTICE, SEMISIMPLE LIE ALGEBRA,



WEIGHT LATTICE, WEYL CHAMBER
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Weyl Tensor
The TENSOR /Cabcd/ defined by

Rabcd �Cabcd �
2

n � 2
ga[cRd]b �gb[cRd]a

� �

�
2

(n � 1)(n � 2)
Rga[cgd]b ; (1)

where Rabcd is the RIEMANN TENSOR, R is the SCALAR

CURVATURE, gab is the METRIC TENSOR, and T a1...an½ �
denotes the ANTISYMMETRIC TENSOR part (Wald 1984,
p. 40).

The Weyl tensor is defined so that every CONTRAC-

TION between indices gives 0. In particular,

Cl
mlk�0 (2)

(Weinberg 1972, p. 146). The number of independent
components for a Weyl tensor in N -D for N ]3 is
given by

CN �
1

12N(N �1)(N �2)(N �3) (3)

(Weinberg 1972, p. 146). For N �3, 4, ..., this gives 0,
10, 35, 84, 168, ... (Sloane’s A052472).

See also CURVATURE SCALAR, RIEMANN TENSOR
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Weyl’s Criterion
A SEQUENCE x1 ; x2 ; . . .f g is EQUIDISTRIBUTED IFF

lim
N 0�

1

N

X
nBN

e2pimxn �0

for each m �1, 2, .... A consequence of this result is
that the sequence frac(nx)f g is dense and EQUIDIS-

TRIBUTED in the interval 0 ; 1½ � for irrational x , where
n �1, 2, ... and frac(x) is the FRACTIONAL PART of x
(Finch).

See also EQUIDISTRIBUTED SEQUENCE, RAMANUJAN’S

SUM
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Weyl’s Denominator Formula

See also ROOT SYSTEM
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Weyrich’s Formula
For r and x real, with 0 5arg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �r2

p� �
Bp and 0 5

arg k Bp;

1
2ig

�

��

H(1)
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 �r2

p� �
eirxdr �

eik
ffiffiffiffiffiffiffiffiffi
r2 �x2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p ;

where H(1)
0 (x) is a HANKEL FUNCTION OF THE FIRST

KIND.

See also HANKEL FUNCTION OF THE FIRST KIND
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W-Function
LAMBERT’S W -FUNCTION



Wheat and Chessboard Problem
Let one grain of wheat be placed on the first square of
a CHESSBOARD, two on the second, four on the third,
eight on the fourth, etc. How many grains total are
placed on an 8 �8 CHESSBOARD? Since this is a
GEOMETRIC SERIES, the answer for n squares is

Xn�1

i�0

2i �2n �1;

a MERSENNE NUMBER. Plugging in n ¼ 8 �8 ¼ 84
then gives 264 �1��18446744073709551615:/

See also MERSENNE NUMBER
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Wheel
ARISTOTLE’S WHEEL PARADOX, BENHAM’S WHEEL,
WHEEL GRAPH

Wheel Graph

A GRAPH Wn of order n which contains a CYCLE of
order n �1 ; and for which every NODE in the cycle is
connected to one other NODE (which is known as the
HUB). The edges of a wheel which include the HUB are
called spokes (Skiena 1990, p. 146). The wheel Wn can
be defined as the graph K1 þ Cn�1 ; where K1 is the
(trivial) COMPLETE GRAPH on 1 node and Cn is the
CYCLE GRAPH. Wheel graphs can be constructed using
Wheel[n ] in the Mathematica add-on package Dis-
creteMath‘Combinatorica‘ (which can be loaded
with the command BBDiscreteMath‘).
In a wheel graph, the HUB has DEGREE n �1; and
other nodes have degree 3. Wheel graphs are 3-
connected. W4 �K4 ; where K4 is the COMPLETE GRAPH

of order four. The CHROMATIC NUMBER of Wn is

x Wnð Þ� 4 for n odd
3 for n even :

�

See also COMPLETE GRAPH, GEAR GRAPH, HUB, WEB

GRAPH
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Wheel Paradox
ARISTOTLE’S WHEEL PARADOX

Whewell Equation
An INTRINSIC EQUATION which expresses a curve in
terms of its ARC LENGTH s and TANGENTIAL ANGLE f:/

See also ARC LENGTH, CESÀ RO EQUATION, INTRINSIC

EQUATION, NATURAL EQUATION, TANGENTIAL ANGLE
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Whipple’s Identity
Whipple derived a great many identities for GENERAL-

IZED HYPERGEOMETRIC FUNCTIONS, many of which are
consequently known as Whipple’s identities (trans-
formations, etc.). Among Whipple’s identities include

3F2
a ; 1 �a ; c

e ; 1 �2c �e
; 1

� �
�

21�2c pG(e) G(1 � 2c � e)

G 1
2(a � e)
h i

G 1
2(a � 1 � 2c � e)
h i

�
1

G 1
2(1 � a � e)
h i

G 1
2(2 � 2c � a � e)
h i

(Bailey 1935, p. 15; Koepf 1998, p. 32), where

3F2(a ; b; c; d; e; z) is a GENERALIZED HYPERGEOMETRIC

FUNCTION and G(z) is a GAMMA FUNCTION, and

6F5

a; 1 �1
2a ; b ; c; d; e

1
2a ; 1 �a �b ; 1 �a �c; 1 �a �d; 1 �a �e

; 1

" #

�
G(1 � a � d)G(1 � a � e)

G(1 � a)G(1 � a � d � e)
3 F2

1 �a �b �c; d; e;
1�a�b; 1�a�c

� �

(Bailey 1935, p. 28).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
WATSON’S THEOREM
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Whipple’s Transformation

7F6

a; 1 �1
2a; b ; c ;d; e ;�m

1
2a ; 1 �a �b; 1 �a �c ;

1 �a �d; 1 �a �e ; 1 �a �m

2
64

3
75

�
(1 � a)m(1 � a � d � e)m

(1 � a � d)m(1 � a � e)m

�4F3
1 �a �b �c ;d; e ;�m

1 �a �b; 1 �a �c; d �e �a �m

� �
;

where 7F6 and 4F3 are GENERALIZED HYPERGEO-

METRIC FUNCTIONS and G(z) is the GAMMA FUNCTION.

Another transformation due to Whipple (1926) is
given by

4F3
a ; b;�z ;�n

u; v ;w
; 1

� �

�
G(u � z � n) G(w � z � n) G(v) G(w)

G(v � z) G(v � n) G(w � n) G(w � z)

�4F3
u �a;u �b;�z ;�n

1 �v �z �n ; 1 �w �z �n;u
; 1

� �
(1)

for one of z and n a NONNEGATIVE INTEGER (Andrews
and Burge 1993).

See also GENERALIZED HYPERGEOMETRIC FUNCTION,
WATSON-WHIPPLE TRANSFORMATION
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Whirl

Whirls are figures constructed by nesting a sequence
of polygons (each having the same number of sides),
each slightly smaller and rotated relative to the
previous one. The vertices give the path of the n
mice in the MICE PROBLEM, and form n LOGARITHMIC

SPIRALS.

See also DAISY, DERIVED POLYGON, LOGARITHMIC

SPIRAL, MICE PROBLEM, SWIRL
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Whisker Plot
BOX-AND-WHISKER PLOT

Whitehead Double
The SATELLITE KNOT of an UNKNOT twisted inside a
TORUS.

See also SATELLITE KNOT, TORUS, UNKNOT
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Whitehead Link

The LINK 05 �/2 �/1, illustrated above, with BRAID WORD

s2
1 s

2
2 s

�1
1 s�2

2 and JONES POLYNOMIAL

V(t) �t�3=2 �1 �t �2t2 �t3 �2t4 �t5
� �

The Whitehead link has LINKING NUMBER 0. It was
discovered by Whitehead in 1934 (Whitehead 1962,
pp. 21 �/0) as a counterexample to a piece of an
attempted proof of the POINCARÉ CONJECTURE (Mil-
nor).

See also POINCARÉ CONJECTURE.
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Whitehead Manifold
An open 3-MANIFOLD which is simply connected but is
topologically distinct from Euclidean 3-space.
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Whitehead’s Theorem
MAPS between CW-COMPLEXES that induce ISOMORPH-

ISMS on all HOMOTOPY GROUPS are actually HOMOTOPY

equivalences.

See also CW-COMPLEX, HOMOTOPY GROUP, ISOMORPH-

ISM

Whitney Singularity
PINCH POINT

Whitney Sum
An operation that takes two VECTOR BUNDLES over a
fixed SPACE and produces a new VECTOR BUNDLE over
the same SPACE. If E1 and E2 are VECTOR BUNDLES

over B , then the Whitney sum E1 �E2 is the VECTOR

BUNDLE over B such that each FIBER over B is
naturally the DIRECT SUM of the E1 and E2 FIBERS

over B .

The Whitney sum is therefore the FIBER for FIBER

DIRECT SUM of the two BUNDLES E1 and E2 : An easy
formal definition of the Whitney sum is that E1 �E2

is the pull-back BUNDLE of the diagonal map from B
to B�B; where the BUNDLE over B�B is E1�E2:/

See also BUNDLE, FIBER, VECTOR BUNDLE

Whitney Umbrella

A surface which can be interpreted as a self-inter-
secting RECTANGLE in 3-D. It is given by the para-
metric equations

x�uv (1)

y�u (2)

z ¼ v2 ð3Þ

for u; v 
 �1; 1½ �: The center of the "plus" shape which
is the end of the line of self-intersection is a PINCH

POINT. The coefficients of the FIRST FUNDAMENTAL

FORM are

E�1�v2 (4)

F�uv (5)

G ¼ u2 þ 4v2 (6)

and the SECOND FUNDAMENTAL FORM are

e ¼ 0 (7)

f ¼ 2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4v2 þ 4v4

p (8)

g��
2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 4v2 � 4v4
p (9)

giving AREA ELEMENT

dA�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2�4v2 1�v2ð Þ

p
(10)

and GAUSSIAN CURVATURE and MEAN CURVATURE

K��
4v2

u2 � 4v2 � 4v4ð Þ2 (11)

H��
u 1 � 3v2ð Þ

u2 � 4v2 � 4v4ð Þ3=2 (12)
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Whitney-Graustein Theorem
A 1937 theorem which classified planar regular
closed curves up to regular HOMOTOPY by their WIND-

ING NUMBERS. In his thesis, S. Smale generalized this
result to regular closed curves on an n -MANIFOLD.

Whitney-Mikhlin Extension Constants
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let Bn(r) be the n -D closed BALL of RADIUS r �1
centered at the ORIGIN. A function which is defined on
B(r) is called an extension to B(r) of a function f
defined on B(1) if

F(x)�f (x) 	x 
B(1) (1)

Given 2 BANACH SPACES of functions defined on B(1)
and B(r); find the extension operator from one to the
other of minimal norm. Mikhlin (1986) found the best
constants x such that this condition, corresponding to
the Sobolev W(1; 2) integral norm, is satisfied,



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB(1)

f (x)½ �2�
Xn

j�1

@f

@xj

 !2
2
4

3
5dx

vuuut

5x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB(r)

F(x)½ �2�
Xn

j�1

@F

@xj

 !2
2
4

3
5dx

vuuut : (2)

/x(1; r)�1: Let

n�1
2(n�2); (3)

then for n �2,

x(n; r)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

In(1)

In�1(1)

In(r)Kn�1(1) � Kn(r)In�1(1)

In(r)Kn(1) � Kn(r)In(1)

s
;

(4)

where In(z) is a MODIFIED BESSEL FUNCTION OF THE

FIRST KIND and Kn(z) is a MODIFIED BESSEL FUNCTION

OF THE SECOND KIND. For n�2,

x(2; r)�max

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

In(1)

In�1(1)

In(r)Kn�1(1) � Kn(r)In�1(1)

In(r)Kn(1) � Kn(r)In(1)

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

I1(1)

I1(1) � I2(1)

�
1�

I1(r)K0(1) � K1(r)I0(1)

I1(r)K1(1) � K1(r)I1(1)

�s /
; (5)

For r 0 �;

x(n;�)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

In(1)

In�1(1)

Kn(1)

Kn(1)

s
; (6)

which is bounded by

n�1Bx(n;�)B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n�1)2�4

q
(7)

For ODD n , the RECURRENCE RELATIONS

ak�1�ak�1�(2k�1)ak (8)

bk�1�bk�1�(2k�1)bk (9)

with

a0�e�e�1 (10)

a1�e�e�1 (11)

b0�e�1 (12)

b1�e�1 (13)

where E is the constant 2.71828..., give

x(2k�1;�)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ak

ak�1

bk�1

bk

s
: (14)

The first few are

x(3;�)�e (15)

x(5;�)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

e2 � 7

s
(16)

x(7;�)�

ffiffiffi
2

7

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

37 � 5e2

s
(17)

x(9;�)�
1ffiffiffiffiffiffi
37

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2

18e2 � 133

s
(18)

x(11;�)�
1ffiffiffiffiffiffiffiffi
133

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2

2431 � 329e2

s
(19)

x(13;�)�

ffiffiffiffiffiffiffiffiffiffiffi
2

2431

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

3655e2 � 27007

s
: (20)

Similar formulas can be given for even n in terms of
I0(1); I1(1); K0(1); K1(1):/

References
Finch, S. "Favorite Mathematical Constants." http://

www.mathsoft.com/asolve/constant/mkhln/mkhln.html.
Mikhlin, S. G. Constants in Some Inequalities of Analysis.

New York: Wiley, 1986.

Whittaker Differential Equation

d2u

dz2
�

du

dz
�

k

z
�

1
4 � m2

z2

 !
u�0 (1)

Let u�e�z=2Wk;m(z); where Wk;m(z) denotes a WHIT-

TAKER FUNCTION. Then (1) becomes

d

dz
�1

2e
�z=2W�e�z=2W?

� �
� �1

2e
�z=2W�e�z=2W?

� �

�
k

z
�

1
4 � m2

z2

 !
e�z=2W�0: (2)

Rearranging,

1
4e

�z=2W�1
2e

�z=2W?�1
2e

�z=2W?�e�z=2Wƒ
� �

p

� �1
2e

�z=2W�e�z=2W?
� �

�
k

z
�

1
4 � m2

z2

 !
e�z=2W�0 (3)

�1
4e

�z=2W�e�z=2Wƒ�
k

z
�

1
4 � m2

z2

 !
e�z=2W�0; (4)

so

Wƒ� �
1

4
�

k

z
�

1
4 � m2

z2

 !
W�0; (5)

where W?�dW=dz (Abramowitz and Stegun 1972,
p. 505; Zwillinger 1997, p. 128). The solutions are
known as WHITTAKER FUNCTIONS. Replacing W(z) by
y(x); the solutions can also be written in the form



y �e�x =2xm�1 =2[C1U(1
2 �k �m; 2m �1; xÞ

�C2L2m
�1=2�k �m(x) �; (6)

where U(a ; b; z) is a CONFLUENT HYPERGEOMETRIC

FUNCTION OF THE SECOND KIND and La
n(x) is a

generalized LAGUERRE POLYNOMIAL.

See also WHITTAKER FUNCTION
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Whittaker Function
Solutions to the WHITTAKER DIFFERENTIAL EQUATION.
The linearly independent solutions are

Mk;m(z) �z1 =2 �me �z=2 �
�
1 �

1
2 � m � k

1! 2m � 1ð Þ
z

�
1
2 � m � k
� �

3
2 � m � k
� �

2! 2m � 1ð Þ 2m � 2ð Þ
z2 �. . .

�
;

(1)

and Mk ;�m(z); where Mk;m(z) is a CONFLUENT HYPER-

GEOMETRIC FUNCTION. In terms of CONFLUENT HYPER-

GEOMETRIC FUNCTIONS, the Whittaker functions are

Mk ;m(z) �e �z=2zm�1 =2 
1F1

1
2 �m �k; 1 �2m; z
� �

(2)

Wk ;m(z) �e �z=2zm�1 =2U 1
2 �m �k; 1 �2m; z
� �

(3)

(Abramowitz and Stegun 1972, p. 505; Whittaker and
Watson 1990, pp. 339 �/51). However, the CONFLUENT

HYPERGEOMETRIC FUNCTION disappears when 2m is
an INTEGER, so Whittaker functions are often defined
instead. The Whittaker functions are related to the
PARABOLIC CYLINDER FUNCTIONS. When argzj j B3 p=2
and 2m is not an INTEGER,

Wk;m zð Þ� G �2mð Þ
G 1

2 � m � k
� �Mk ;m(z)

�
G 2mð Þ

G 1
2 � m � k
� �Mk ;�m(z): (4)

When arg(�z)j j B3p=2 and 2m is not an INTEGER,

W�k ;m �zð Þ� G �2mð Þ
G 1

2 � m � k
� �M�k ;m(�z)

�
G 2mð Þ

G 1
2 � m � k
� �M�k ;�m(�z) : (5)

Whittaker functions satisfy the RECURRENCE RELA-

TIONS

Wk ;m(z) �z1 =2Wk�1 =2 ;m�1=2(z)

� 1
2 �k �m
� �

Wk �1;m(z) (6)

Wk ;m(z) �z1 =2Wk�1 =2 ;m�1=2(z)

� 1
2 �k �m
� �

Wk �1;m(z) (7)

zW ?k ;m(z) � k �1
2z

� �
Wk ;m(z)

� m2 � k �1
2

� �2
� �

Wk �1 ;m(z) : (8)

See also CONFLUENT HYPERGEOMETRIC FUNCTION,
KUMMER’S FORMULAS, PEARSON-CUNNINGHAM FUNC-

TION, SCHLÖ MILCH’S FUNCTION, SONINE POLYNOMIAL
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Whittaker-Hill Differential Equation
The second-order ORDINARY DIFFERENTIAL EQUATION

yƒ� A�B cos(2x)�C cos(4x)½ �y�0:

See also HILL’S DIFFERENTIAL EQUATION, MATHIEU

DIFFERENTIAL EQUATION
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Whole Number
One of the numbers 1, 2, 3, ... (Sloane’s A000027), also
called the COUNTING NUMBERS or NATURAL NUMBERS.
0 is sometimes included in the list of "whole" numbers
(Bourbaki 1968, Halmos 1974), but there seems to be
no general agreement. Some authors also interpret
"whole number" to mean "a number having FRAC-



TIONAL PART of zero," making the whole numbers
equivalent to the integers.

Due to lack of standard terminology, the following
terms are recommended in preference to "COUNTING

NUMBER," "NATURAL NUMBER," and "whole number."

set name symbol

..., �2, �1, 0, 1, 2, ... INTEGERS Z

1, 2, 3, 4, ... POSITIVE INTEGERS Z�

0, 1, 2, 3, 4, ... NONNEGATIVE INTE-

GERS

Z*

0, �1, �2, �3, �4,
...

NONPOSITIVE INTEGERS

�1, �2, �3, �4, ... NEGATIVE INTEGERS Z�

See also COUNTING NUMBER, FRACTIONAL PART,
INTEGER, N, NATURAL NUMBER, Z, Z�, Z�, Z*
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Width (Partial Order)
For a PARTIAL ORDER, the size of the longest ANTIC-

HAIN is called the width.

See also ANTICHAIN, LENGTH (PARTIAL ORDER),
PARTIAL ORDER

Width (Size)
The width of a box is the horizontal distance from side
to side (usually defined to be greater than the DEPTH,
the horizontal distance from front to back).

See also DEPTH (SIZE), HEIGHT
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Wiedersehen Manifold
The only Wiedersehen manifolds are the standard
round spheres, as was established by proof of the
BLASCHKE CONJECTURE.

See also BLASCHKE CONJECTURE

Wieferich Prime
A Wieferich prime is a PRIME p which is a solution to
the CONGRUENCE equation

2p �1 �1 mod p2
� �

:

Note the similarity of this expression to the special
case of FERMAT’S LITTLE THEOREM

2p �1 �1 mod pð Þ;

which holds for all ODD PRIMES. However, the only
Wieferich primes less than 4 �1012 are p �1093 and
3511 (Lehmer 1981, Crandall 1986, Crandall et al.
1997). Interestingly, one less than these numbers
have suggestive periodic BINARY representations

1092 �100010001002

3510 �1101101101102 :

A PRIME factor p of a MERSENNE NUMBER Mq �2q �1
is a Wieferich prime IFF p2 j2q �1: Therefore, MERS-

ENNE PRIMES are not Wieferich primes.

If the first case of FERMAT’S LAST THEOREM is false for
exponent p , then p must be a Wieferich prime
(Wieferich 1909). If p j2n 91 with p and n RELATIVELY

PRIME, then p is a Wieferich prime IFF p2 also divides
2n 91 : The CONJECTURE that there are no three
POWERFUL NUMBERS implies that there are infinitely
many Wieferich primes (Granville 1986, Vardi 1991).
In addition, the ABC CONJECTURE implies that there
are at least C ln x Wieferich primes 5x for some
constant C (Silverman 1988, Vardi 1991).

See also ABC CONJECTURE, FERMAT’S LAST THEOREM,
FERMAT QUOTIENT, MERSENNE NUMBER, MIRIMA-

NOFF’S CONGRUENCE, POWERFUL NUMBER
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Wielandt’s Theorem
Let the n �n MATRIX A satisfy the conditions of the
PERRON-FROBENIUS THEOREM and the n �n MATRIX

C �cij satisfy

cij

    5aij

for i; j �1; 2, ..., n . Then any EIGENVALUE l0 of C
satisfies the inequality l0j j5R with the equality sign
holding only when there exists an n �n MATRIX D �
dij (where dij is the KRONECKER DELTA) and

C �
l0

R
DAD �1 :
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Wiener Filter
An optimal FILTER used for the removal of noise from
a signal which is corrupted by the measuring process
itself.

See also FILTER

References
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter-

ling, W. T. "Optimal (Wiener) Filtering with the FFT."
§13.3 in Numerical Recipes in FORTRAN: The Art of
Scientific Computing, 2nd ed. Cambridge, England: Cam-
bridge University Press, pp. 539 �/42, 1992.

Wiener Function
BROWN FUNCTION

Wiener Measure
The probability law on the space of continuous
functions g with g(0) �0; induced by the WIENER

PROCESS.

See also WIENER PROCESS
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Wiener Numbers
A sequence of UNCORRELATED NUMBERS an developed
by Wiener (1926 �/927). The numbers are constructed
by beginning with

f1;�1 g;

then forming the outer product with f1;�1g to obtain

f1; 1 g; f1;�1 gf g; f�1; 1 g; f�1;�1 gf gf g:

This row is repeated twice, and its outer product is
then taken to give

f1 ; 1; 1 g; f1; 1 ;�1f g; 1 ;�1; 1 g; f1;�1 ;�1f gf g;

f�1 ; 1; 1 g; f�1; 1 ;�1g; f�1 ;�1; 1g; f�1;�1;�1 gf gg:

This is then repeated four times. The procedure is
repeated, and the result repeated eight times, and so
on. The sequences from each stage are then concate-
nated to form the sequence 1, �1, 1, 1, 1, �1, �1, 1,
�1, �1, 1, 1, 1, �1, �1, 1, �1, �1, ....

See also UNCORRELATED NUMBERS
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Wiener Process
A continuous-time stochastic process W(t) for t ]0
with W(0) �0 and such that the increment W(t) �
W(s) is Gaussian with mean 0 and variance t �s for
any 0 5s Bt; and increments for nonoverlapping time
intervals are independent. Brownian motion (i.e.,
random walk with random step sizes) is the most
common example of a Wiener process.

See also ITÔ ’S LEMMA, RANDOM WALK, WIENER

PROCESS
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Wiener Space
MALLIAVIN CALCULUS, WIENER MEASURE

Wiener-Khintchine Theorem
Recall the definition of the AUTOCORRELATION func-
tion C(t) of a function E(t);

C(t)�g
�

��

Ē(t)E(t�t) dt: (1)

Also recall that the FOURIER TRANSFORM of E(t) is
defined by

E(t)�g
�

��

Ene
�2pintdn; (2)

giving a COMPLEX CONJUGATE of

Ē(t)�g
�

��

Ēne
2pintdn (3)

Plugging Ē(t) and E(t�t) into the AUTOCORRELATION

function therefore gives



C(t) �g
�

��
g

�

��

Ēne
2pintdn

� �
g

�

��

Ēn?e �2 pi n?(t� t)dn ?
� �

dt

�g
�

��
g

�

��
g

�

��

ĒnE n?e �2 pi t(n?� n)e �2 pin?t dt dn dn ?

�g
�

��
g

�

��

ĒnE n? d n?�  nð Þe �2 piv ?tdn dn ?

�g
�

�

ĒnE ne �2 pintdn

�g
�

��

Enj j2e �2 pi ntdn

�F Enj j2
h i

; (4)

so, amazingly, the AUTOCORRELATION is simply given
by the FOURIER TRANSFORM of the ABSOLUTE SQUARE

of E( n);

C(t) �F E( n)j j2
h i

: (5)

The Wiener-Khintchine theorem is a special case of
the CROSS-CORRELATION THEOREM with f �g .

See also AUTOCORRELATION, CROSS-CORRELATION

THEOREM, FOURIER TRANSFORM

Wiener-Lee Transform
The integral transform obtained by defining

v ��tan 1
2 d
� �

; (1)

and writing

H( v) �R( v) �iX( v); (2)

where R(v) and X( v) are a HILBERT TRANSFORM pair
as

H( v) � r( d) �ix(d) (3)

(Papoulis 1962, p. 201).

See also HILBERT TRANSFORM, INTEGRAL TRANSFORM
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Wiener-Lévy Process
WIENER PROCESS

Wigner 3j-Symbol
The Wigner 3j/-symbols are written

j1 j2 j3

m1 m2 m3

� �
(1)

and are sometimes expressed using the related

CLEBSCH-GORDAN COEFFICIENTS

Cj
m1m2

� j1 j2m1m2ð jj1 j2 jmÞ (2)

(Condon and Shortley 1951, pp. 74�/5; Wigner 1959,
p. 206), or RACAH V -COEFFICIENTS

V j1 j2 j; m1m2mð Þ: (3)

The allowed values of j1; j2; j3; m1; m2; and m3 are
given by the constraints placed on CLEBSCH-GORDAN

COEFFICIENTS. The Wigner 3j/-symbols are returned
by the Mathematica function ThreeJSymbol[{j1 ,
m1 }, {j2 , m2 }, {j3 , m3 }].

Connections among the Wigner 3j; Clebsch-Gordan,
and Racah V symbols are given by

j1 j2m1m2ð jj1 j2 jmÞ

�(�1)m�j1�j2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�1

p j1 j2 j
m1 m2 �m

� �
(4)

j1 j2m1m2ð jj1 j2 jmÞ

�(�1)j�m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�1

p
V j1 j2 j; m1m2�mð Þ (5)

V j1 j2 j; m1m2�mð Þ�(�1)�j1�j2�j j1 j2 j1

m2 m m2

� �
: (6)

The Wigner 3j/-symbols have the symmetries

j1 j2 j1

m1 m2 m

� �
�

j1 j j1

m2 m m1

� �

�
j j2 j2

m m1 m2

� �

�(�1)j1�j2�j j2 j1 j
m2 m1 m

� �

¼ (�1)j1�j2�j j1 j j2

m1 m m2

� �

¼ (�1)j1�j2�j j j2 j1

m m2 m1

� �

�(�1)j1�j2�j j j2 j
�m1 �m2 �m

� �
: (7)

The symbols obey the orthogonality relations

X
j;m

(2j�1)
j1 j2 j

m1 m2 m

� �
j1 j2 j

m?1 m?2 m

� �

�dm1m?1
dm2m?2

(8)

X
m1 ;m2

(2j�1)
j1 j2 j

m1 m2 m

� �
j1 j2 j?

m1 m2 m?

� �

�djj?dmm?; (9)

where dij is the KRONECKER DELTA.

General formulas are very complicated, but some
specific cases are



j1 j2 j1 �j2

m1 m2 �m1 �m2

� �
�(�1)j1�j2�m1�m2

�
�

2j1ð Þ! 2j2ð Þ!
2j1 � 2j2 � 1ð Þ j1 � m1ð Þ

� j1 � j2 � m1 � m2ð Þ! j1 � j2 � m1 � m2ð Þ!
j1 � m1ð Þ j2 � m2ð Þ j2 � m2ð Þ!

�1 =2

(10)

j1 j2 j
j1 �j1 �m

� �
�(�1)�j1�j2�m

�
�

2j1ð Þ! �j1 � j2 � jð Þ!
j1 � j2 � j � 1ð Þ! j1 � j2 � jð Þ!

�
j1 � j2 � m1 � m2ð Þ! j1 � j2 � m1 � m2ð Þ!

j1 � j2 � jð Þ! j1 � j2 � jð Þ! �j1 � j2 � mð Þ!(j � m)!

�
(11)

j1 j2 j
0 0 0

� �

�

(�1)g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g � 2j1ð Þ 2g � 2j2ð Þ! 2g � 2jð Þ!

2g � 1ð Þ!

s

�
g!

g � j1ð Þ! g � j2ð Þ! g � jð Þ!
if J �2g

0
if J �2g �1;

8>>>>>>>>>><
>>>>>>>>>>:

(12)

for J �j1 �j2 �j:/

For SPHERICAL HARMONICS Ym
l (u ; f) ;/

Ym1

l1
(u ; f)Ym2

l2
( u; f)

�
X
l ;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 � 1ð Þ 2l2 � 1ð Þ 2l � 1ð Þ

4p

s

� l1 l2 l
m1 m2 m

� �
Ȳm

l u; fð Þ l1 l2 l
0 0 0

� �
: (13)

For values of l3 obeying the TRIANGLE CONDITION

D l1l2l3ð Þ;/

gYm1

l1
( u; f)Ym2

l2
( u; f)Ym3

l3
( u; f) sinu du d f

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 � 1ð Þ 2l2 � 1ð Þ 2l3 � 1ð Þ

4p

s
l1 l2 l3

0 0 0

� �

� l1 l2 l3

m1 m2 m3

� �
(14)

and

1

2gPl1(cos u)Pl2(cos u) sin u du�
l1 l2 l3

0 0 0

� �2

: (15)

See also CLEBSCH-GORDAN COEFFICIENT, RACAH V -

COEFFICIENT, RACAH W -COEFFICIENT, WIGNER 6J -

SYMBOL, WIGNER 9J -SYMBOL
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Wigner 6j-Symbol
A generalization of CLEBSCH-GORDAN COEFFICIENTS

and WIGNER 3J -SYMBOL which arises in the coupling
of three angular momenta. The Wigner 6j/-symbols
are returned by the Mathematica function SixJSym-
bol[{j1 , j2 , j3 }, {j4 , j5 , j6 }].

Let tensor operators T(k) and U(k) act, respectively, on
subsystems 1 and 2 of a system, with subsystem 1
characterized by angular momentum j1 and subsys-
tem 2 by the angular momentum j2: Then the matrix
elements of the scalar product of these two tensor
operators in the coupled basis J�j1�j2 are given by

t?1 j?1t?2 j?2J?M? T(k) �U(k)
    t1 j1t2 j2JM

� �
�dJJ?dMM?(�1)j1�j?2�J J j?2 j?1

k j1 j2

� /

� t?1 j?1 T(k)
33 33t1 j1

� �
t?1 j?2 U(k)

33 33t2 j2

� �
; (1)

where

J j?2 j?1
k j1 j2

� /

is the Wigner 6j/-symbol and t1 and t2 represent
additional pertinent quantum numbers characteriz-
ing subsystems 1 and 2 (Gordy and Cook 1984).

Edmonds (1968) gives analytic forms of the 6j/-symbol
for simple cases, and Shore and Menzel (1968) and
Gordy and Cook (1984) give



a b c
0 c b

� /
�

( �1)sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2b � 1)(2c � 1)

p (2)

a b c
1 c b

� /

�
2(�1)s�1Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2b(2b � 1)(2b � 2)2c(2c � 1)(2c � 2)
p (3)

a b c
2 c b

� /
�

2(�1)s 3X(X � 1) � 4b(b � 1)c(c � 1)½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2b � 1)2b(2b � 1)(2b � 2)(2b � 3)(2c � 1)2c(2c � 1)(2c � 2)(2c � 3)

p ;

(4)

where

s �a �b �c (5)

X �b(b �1) �c(c �1) �a(a �1): (6)

See also CLEBSCH-GORDAN COEFFICIENT, RACAH V -

COEFFICIENT, RACAH W -COEFFICIENT, WIGNER 3J -

SYMBOL, WIGNER 9J -SYMBOL
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Wigner 9j-Symbol
A generalization of CLEBSCH-GORDAN COEFFICIENTS

and WIGNER 3J - and WIGNER 6J -SYMBOLS which
arises in the coupling of four angular momenta and
can be written in terms of the WIGNER 3J - and
WIGNER 6J -SYMBOLS. Let tensor operators T k1ð Þ and
U k2ð Þ act, respectively, on subsystems 1 and 2. Then
the reduced matrix element of the product T k1ð Þ�U k2ð Þ

of these two irreducible operators in the coupled
representation is given in terms of the reduced matrix
elements of the individual operators in the uncoupled
representation by

t? t ?j?1 t ?2 j?2J ?jj T k1ð Þ�U k2ð Þ' ((k)jj tt1 j1 t2 j2J
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2J �1)(2J ?�1)(2k �1)

p X
tƒ

j?1 j1 k1

j?2 j2 k2

J ? J k

8<
:

9=
;

� t ? t ?1 j?1 T k1ð Þ33 33t ƒt1 j1

� �
t ƒt?2 j ?2 U k2ð Þ33 33tt2 j2

� �
; (1)

where

j?1 j1 k1

j?2 j2 k2

J ? J k

8<
:

9=
;

is a Wigner 9j/-symbol (Gordy and Cook 1984).

Shore and Menzel (1968) give the explicit formulas

a b C
d e F
G H J

8<
:

9=
;�

X
x

(�1)2x(2x�1)

�
a b C
F J x

� /
d e F
b x H

� /
G H J
x a d

� /
(2)

a b J
c d J
K K 0

8<
:

9=
;�

(�1)b�c�J�Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2J � 1)(2K � 1)

p a b J
d c K

� /
(3)

S S 1
L L 2
J J 1

8<
:

9=
;�

S L J
L S 1

� /
J L S
L J 1

� /

5
2 L L
L 1 1

� /

�
(�1)S�L�J�1

15(2L � 1)

S L J
L S 1

� /
2 L L
L 1 1

� / : (4)

See also CLEBSCH-GORDAN COEFFICIENT, RACAH V -

COEFFICIENT, RACAH W -COEFFICIENT, WIGNER 3J -

SYMBOL, WIGNER 6J -SYMBOL
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Wigner-Eckart Theorem
A theorem of fundamental importance in spectro-
scopy and angular momentum theory which provides
both (1) an explicit form for the dependence of all
matrix elements of irreducible tensors on the projec-
tion quantum numbers and (2) a formal expression of
the conservation laws of angular momentum (Rose
1995).

The theorem states that the dependence of the matrix
element /ðj?m?jTLMjjmÞ/ on the projection quantum
numbers is entirely contained in the WIGNER 3J -

SYMBOL (or, equivalently, the CLEBSCH-GORDAN COEF-

FICIENT), given by

ðj?m?jTLMjjmÞ ¼ CðjLj?; mMm?Þðj?jjTLjjjÞ;



where /CðjLj ?; mMm ?Þ/ is a CLEBSCH-GORDAN COEFFI-

CIENT and /TLM/ is a set of tensor operators (Rose 1995,
p. 85).

See also CLEBSCH-GORDAN COEFFICIENT, WIGNER 3J -

SYMBOL
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Wilbraham-Gibbs Constant
N.B. A detailed online essay by S. Finch was the
starting point for this entry.

Let a piecewise smooth function f with only finitely
many discontinuities (which are all jumps) be defined
on /½�p; p�/ with FOURIER SERIES

ak �
1

pg
p

- p
f (t) cos(kt) dt (1)

bk �
1

pg
p

-p
f (t) sin(kt) dt; (2)

Sn(f ; x) �1
2a0 �

Xn

k �1

ak cos(kx) �bk sin(kx)½ �
( )

: (3)

Let a discontinuity be at x �c , with

lim
x0c�

f (x) > lim
x0c�

f (x) ; (4)

so

D � lim
x 0c �

f (x)
h i

� lim
x 0c�

f (x)

� �
> 0: (5)

Define

f(c) �1
2 lim

x0c�
f (x) � lim

x 0c�
f (x)

� �
; (6)

and let x �xn Bc be the first local minimum and x �
jn > c the first local maximum of Sn(f ; x) on either
side of xn : Then

lim
n 0�

Sn f ; xnð Þ� f(c) �
D

p
G? (7)

lim
n0�

Sn f ; jnð Þ� f(c) �
D

p
G?; (8)

where

G?�g
p

0

sinc u du �1:851937052 . . . (9)

Here, sinc x �sin x=x is the SINC FUNCTION. The
FOURIER SERIES of y �x therefore does not converge
to �p and p at the ends, but to �2G ? and 2G?: This
phenomenon was observed by Wilbraham (1848) and
Gibbs (1899). Although Wilbraham was the first to
note the phenomenon, the constant G ? is frequently
(and unfairly) credited to Gibbs and known as the
GIBBS CONSTANT. A related constant sometimes also
called the GIBBS CONSTANT is

G �
2

p
G ?�

2

pg
p

0

sinc x dx

�1:17897974447216727 . . . (10)

(Le Lionnais 1983).
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Wilcoxon Rank Sum Test
A nonparametric alternative to the two-sample t -test.

See also PAIRED T -TEST, PARAMETRIC TEST

Wilcoxon Signed Rank Test
A nonparametric alternative to the PAIRED T -TEST

which is similar to the FISHER SIGN TEST. This test
assumes that there is information in the magnitudes
of the differences between paired observations, as
well as the signs. Take the paired observations,
calculate the differences, and rank them from smal-
lest to largest by ABSOLUTE VALUE. Add all the ranks
associated with POSITIVE differences, giving the /T�/

statistic. Finally, the P -VALUE associated with this
statistic is found from an appropriate table. The
Wilcoxon test is an R -ESTIMATE.



See also FISHER SIGN TEST, HYPOTHESIS TESTING,
PAIRED T -TEST, PARAMETRIC TEST

Wild Knot
A KNOT which is not a TAME KNOT.

See also TAME KNOT
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Wild Point
For any point P on the boundary of an ordinary BALL,
find a NEIGHBORHOOD of P in which the intersection
with the BALL’s boundary cuts the NEIGHBORHOOD

into two parts, each HOMEOMORPHIC to a BALL. A wild
point is a point on the boundary that has no such
NEIGHBORHOOD.

See also BALL, HOMEOMORPHIC, NEIGHBORHOOD

Wilf Class
Two sets T1 and T2 belong to the same Wilf class if
Sn T1ð Þj j � Sn T2ð Þj j for all n , where Sn Tð Þ denotes the
set of permutations on f1 ; . . . ;n g that AVOID the
pattern T . Two sets having the same Wilf class are
said to be WILF EQUIVALENT.

See also AVOIDED PATTERN, WILF EQUIVALENT,
PERMUTATION PATTERN
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Wilf Equivalent
Two sets T1 and T2 are called Wilf equivalent if they
belong to the same WILF CLASS.

See also WILF CLASS, PERMUTATION PATTERN
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Wilf-Zeilberger Pair
A pair of CLOSED FORM functions (F, G ) is said to be a
Wilf-Zeilberger pair if

F(n�1; k)�F(n; k)�G(n; k�1)�G(n; k): (1)

The Wilf-Zeilberger formalism provides succinct
proofs of known identities and allows new identities
to be discovered whenever it succeeds in finding a
proof certificate for a known identity. However, if the
starting point is an unknown hypergeometric sum,
then the Wilf-Zeilberger method cannot discover a

closed form solution, while ZEILBERGER’S ALGORITHM

can.

Wilf-Zeilberger pairs are very useful in proving
HYPERGEOMETRIC IDENTITIES OF THE FORMX

k

t(n; k)�rhs(n) (2)

for which the SUMMAND t(n; k) vanishes for all k
outside some finite interval. Now divide by the right-
hand side to obtainX

k

F(n; k)�1; (3)

where

F(n; k)�
t(n; k)

rhs(n)
: (4)

Now use a RATIONAL FUNCTION R(n; k) provided by
ZEILBERGER’S ALGORITHM, define

G(n; k)�R(n; k)F(n; k): (5)

The identity (1) then results. Summing the relation
over all integers then telescopes the right side to 0,
giving X

k

F(n�1; k)�
X

k

F(n; k): (6)

Therefore, ak F(n; k) is independent of n , and so must
be a constant. If F is properly normalized, then it will
be true that ak F(0; k)�1:/

For example, consider the BINOMIAL COEFFICIENT

identity

Xn

k�0

n
k

� �
�2n; (7)

the function R(n; k) returned by ZEILBERGER’S ALGO-

RITHM is

R(n; k)�
k

2(k � n � 1)
: (8)

Therefore,

F(n; k)�
n
k

� �
2�n (9)

and

G(n; k)�R(n; k)F(n; k)�
k

2(k � n � 1)

n
k

� �
2�n

��
kn!2�n

2(n � 1 � k)!k!(n � k)!
��

n
k�1

� �
2�n�1:

ð10Þ

Taking



F(n �1 ; k) �F(n; k) �G(n; k �1) �G(n ; k) (11)

then gives the alleged identity

n �1
k

� �
2�n�1 �

n
k

� �
2 �n

��
n
k

� �
2�n�1 �

n
k �1

� �
2�n�1? (12)

Expanding and evaluating shows that the identity
does actually hold, and it can also be verified that

F(0; k) �
0
k

� �
�

1 for k �0
0 otherwise ;

�
(13)

so ak F(0; k) �1 (Petkovsek et al. 1996, pp. 25 �/7).

For any Wilf-Zeilberger pair (F, G ),

X�
n�0

G(n; 0) �
X�
n�1

F(n;n �1) �G(n �1 ;n �1)½ � (14)

whenever either side converges (Zeilberger 1993). In
addition,

X�
n�0

G(n; 0) �
X�
n�0

F s(n �1);nð Þ�
Xs�1

i�0

G(sn �i ;n)

" #

� lim
n0�

Xn �1

k�0

F(sn ; k); (15)

X�
k �0

F(0; k) �
X�
n�0

G(n; 0) � lim
k 0�

X�
n�0

G(n; k) ; (16)

and

X�
n�0

G(n ; 0) �
X�
n�0

�Xt �1

n�0

F(s(n �1); tn �j)

�
Xs�1

n�0

G(sn �i; tn)

�
� lim

n0�

Xn�1

k �0

Fs;t(n; k); (17)

where

Fs ;t(n; k) �
Xt�1

j�0

F(sn ; tk �j) (18)

Gs;t(n; k) �
Xs�1

i�0

G(sn �i; tk) (19)

(Amdeberhan and Zeilberger 1997). The latter iden-
tity has been used to compute APÉ RY’S CONSTANT to a
large number of decimal places (Wedeniwski).

See also APÉ RY’S CONSTANT, CONVERGENCE IMPROVE-

MENT, GOSPER’S ALGORITHM, SISTER CELINE’S METH-

OD, ZEILBERGER’S ALGORITHM
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Wilkie’s Theorem
Let f x1 ; . . . ; xmð Þ be an Lexp formula, where Lexp �

L @ exf g and L is the language of ordered rings L �
�;�; � ;B; 0; 1f g: Then there exist n ]m and f1 ; . . . ; fs 


Z x1 ; . . . xn ; e
x1 ; . . . exn½ � such that f x1 ; . . .  ; xnð Þ is equiva-

lent to


xm�1 � � �
xnf1 x1 ; . . . ; xn ; e
x1 ; . . . ; exnð Þ

�. . . :�fs x1 ; . . . ; xn ; e
x1 ; . . . ; exnð Þ�0

(Marker 1996, Wilkie 1996). In other words, every
formula is equivalent to an existential formula and
every definable set is the projection of an exponential
variety (Marker 1996).
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Williams p�1 Factorization Method
A variant of the POLLARD P -1 FACTORIZATION METHOD

which uses LUCAS SEQUENCES to achieve rapid factor-
ization if some factor p of N has a decomposition of
p�1 in small PRIME FACTORS.

See also LUCAS SEQUENCE, POLLARD P-1 FACTORIZA-

TION METHOD, PRIME FACTORIZATION ALGORITHMS
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Wilson Plug
A 3-D surface with constant VECTOR FIELD on its
boundary which traps at least one trajectory which
enters it.

See also VECTOR FIELD

Wilson Polynomial
The orthogonal polynomial defined by

pn(x; a ; b; c; d) �(a �b)n(a �c)n(a �d)n

�4F3
�n;a �b �c �d �n �1 ;a �x;a �x

a �b;a �c ;a �d 
; 1

� �
:

The first few are

p0(x; a ; b; c; d) �1

p1(x; a ; b; c ;d)

�abc �abd �acd �bcd �(a �b �c �d)x2 :

The Wilson polynomials obey the identity

pn(x; a; b ; c ;d) �pn(x; b;a ; c ;d) :

References
Koekoek, R. and Swarttouw, R. F. "Wilson." §1.1 in The

Askey-Scheme of Hypergeometric Orthogonal Polynomials
and its q -Analogue. Delft, Netherlands: Technische Uni-
versiteit Delft, Faculty of Technical Mathematics and
Informatics Report 98 �/7, pp. 24 �/6, 1998. ftp://www.twi.-
tudelft.nl/publications/tech-reports/1998/DUT-TWI-98 �/

7.ps.gz.
Koepf, W. Hypergeometric Summation: An Algorithmic

Approach to Summation and Special Function Identities.
Braunschweig, Germany: Vieweg, p. 116, 1998.

Wilson, J. A. "Some Hypergeometric Orthogonal Polyno-
mials." SIAM J. Math. Anal. 11, 690 �/01, 1980.

Wilson Prime
A PRIME satisfying

W(p) �0 (mod p) ;

where W(p) is the WILSON QUOTIENT, or equivalently,

(p �1)! ��1 (mod p2) :

5, 13, and 563 (Sloane’s A007540) are the only Wilson
primes less than 5 �108 (Crandall et al. 1997).

See also BROWN NUMBERS
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Wilson Quotient

W(p) �
(p � 1)! � 1

p
:
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Wilson’s Primality Test
WILSON’S THEOREM

Wilson’s Theorem
IFF p is a PRIME, then (p �1)! �1 is a multiple of p ,
that is

(p �1)! ��1 (mod p):

This theorem was proposed by John Wilson in 1770
(although it was previously known to Leibniz) and
proved by Lagrange in 1773. Unlike FERMAT’S LITTLE

THEOREM, Wilson’s theorem is both NECESSARY and
SUFFICIENT for primality. For a COMPOSITE NUMBER,
(n�1)!�0 (mod n) except when n�4.

See also FERMAT’S LITTLE THEOREM, WILSON’S THE-

OREM COROLLARY, WILSON’S THEOREM (GAUSS’S GEN-

ERALIZATION)

References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recrea-

tions and Essays, 13th ed. New York: Dover, p. 61, 1987.
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, pp. 142�/43 and 168�/69, 1996.
Hilton, P.; Holton, D.; and Pedersen, J. Mathematical

Reflections in a Room with Many Mirrors. New York:
Springer-Verlag, pp. 41�/2, 1997.

Nagell, T. "Wilson’s Theorem and Its Generalizations."
Introduction to Number Theory. New York: Wiley,
pp. 99�/01, 1951.

Ore, Ø. Number Theory and Its History. New York: Dover,
pp. 259�/61, 1988.

Séroul, R. "Wilson’s Theorem." §2.9 in Programming for
Mathematicians. Berlin: Springer-Verlag, pp. 16�/7, 2000.

Shanks, D. Solved and Unsolved Problems in Number
Theory, 4th ed. New York: Chelsea, pp. 37�/8, 1993.



Wilson’s Theorem (Gauss’s Generalization)
Let P(n) be the product of INTEGERS that are less than
or equal to and RELATIVELY PRIME to an integer n .
Then

P(n) �
Yn

k�2

k ½n

k �
�1 (mod n) for n �4;p a ; 2p a

1 (mod n) otherwise:

�

When m �2, this reduces to P �1 mod 2ð Þ which is
equivalent to P ��1 mod 2ð Þ:/

See also WILSON’S THEOREM, WILSON’S THEOREM

COROLLARY

Wilson’s Theorem Corollary
Iff a PRIME p is OF THE FORM 4x �1; then

2xð Þ!½ �2��1 mod pð Þ:

Wimp Transform
The INTEGRAL TRANSFORM defined by

(K f)(x)

�g
�

��

Gm;n�2
p �2 ;q

�
tj1 � n �ix ; 1 � n �ix ; ap

� �
bp

� � �
f(t) dt;

where Ga ;b
c;d is MEIJER’S G -FUNCTION.
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Winding Number (Contour)

The winding number of a CONTOUR g about a point z0 ;
denoted n g ; z0ð Þ; is defined by

n( g; a) �
1

2pi G  g
dz

z � z0

and gives the number of times g curve passes around
a point. The winding number is also called the index,
and denoted Indg z0ð Þ:/
The contour winding number was part of the inspira-
tion for the idea of the DEGREE of a MAP between two
COMPACT, oriented MANIFOLDS of the same DIMEN-

SION. In the language of the DEGREE of a MAP, if g :
0; 1½ � 0 C is a closed curve (i.e., g(0) � g(1)) ; then it can
be considered as a FUNCTION from S1 to C : In that
context, the winding number of g around a point p in
C is given by the degree of the MAP

g� p

g�pj j

from the CIRCLE to the CIRCLE.

See also RESIDUE (COMPLEX ANALYSIS)
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Winding Number (Map)
The winding number W(u) of a map f (u) with initial
value u is defined by

W(u)� lim
n0�

f n(u) � u

n
;

which represents the average increase in the angle u

per unit time (average frequency). A system with a
RATIONAL winding number W�p=q is MODE-LOCKED,
whereas a system with an IRRATIONAL winding
number is QUASIPERIODIC. Note that since the RA-

TIONALS are a set of zero MEASURE on any finite
interval, almost all winding numbers will be irra-
tional, so almost all maps will be QUASIPERIODIC.
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Windmill
One name for the figure used by Euclid to prove the
PYTHAGOREAN THEOREM.

BRIDE’S CHAIR, PEACOCK’S TAIL

Window Function
RECTANGLE FUNCTION

Winkler Conditions
Conditions arising in the study of the ROBBINS AXIOM

and its connection with BOOLEAN ALGEBRA. Winkler
studied Boolean conditions (such as idempotence or
existence of a zero) which would make a ROBBINS

ALGEBRA become a BOOLEAN ALGEBRA. Winkler
showed that each of the conditions


C; 
D;C�D�C


C; 
D; !(C�D)�!C

where A�B denotes OR and !A denotes NOT, known
as the first and second Winkler conditions, SUFFICES.



A computer proof demonstrated that every ROBBINS

ALGEBRA satisfies the second Winkler condition, from
which it follows immediately that all ROBBINS ALGE-

BRAS are BOOLEAN.

See also BOOLEAN ALGEBRA, HUNTINGTON AXIOM,
ROBBINS ALGEBRA, ROBBINS AXIOM
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Winograd Transform
A discrete FAST FOURIER TRANSFORM ALGORITHM

which can be implemented for N �2, 3, 4, 5, 7, 8,
11, 13, and 16 points.

See also FAST FOURIER TRANSFORM

Wirtinger’s Inequality
If y has period 2p; y? is L2 ; and

g
2 p

0

y dx�0; (1)

then

g
2 p

0

y2 dx Bg
2p

0

y?2 dx (2)

unless

y �A cos x �B sin x (3)

(Hardy et al. 1988).

Another inequality attributed to Wirtinger involves
the KÄ HLER FORM, which in Cn can be written

v ��1
2i
X

dzkffldz̄k : (4)

Given 2k vectors X1 ; . . .  ;X2k in R2n #Cn ; let X �
X1ffl� � �fflX2k denote the oriented k -dimensional PAR-

ALLELEPIPED and Xj j its k -dimensional volume. Then

vk(X) 5k! Xj j; (5)

with equality IFF the vectors span a k -dimensional
complex subspace of Cn ; and they are positively
oriented. Here, vk is the kth EXTERIOR POWER for 1 5
k 5n; and the orientation of a COMPLEX SUBSPACE is
determined by its COMPLEX STRUCTURE.

See also KÄ HLER FORM
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Wirtinger-Sobolev Isoperimetric
Constants
Constants g such that

gV fj jqdx

� �1 =q

5 g gV
XN

i�1

@f

@xi

     
     
p

dx

" #1 =p

;

where f is a real-valued smooth function on a region V
satisfying some BOUNDARY CONDITIONS.
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Wishart Distribution
If Xi for i �1, ..., m has a GAUSSIAN MULTIVARIATE

DISTRIBUTION with mean vector m �0 and COVAR-

IANCE MATRIX S; and X denotes the m �p matrix
composed of the row vectors Xi ; then the p �p matrix
XTX has a Wishart distribution with scale matrix S
and degrees of freedom parameter m . The Wishart
distribution is most typically used when describing
the COVARIANCE MATRIX of multinormal samples.

See also F -DISTRIBUTION, GAUSSIAN MULTIVARIATE

DISTRIBUTION, HOTELLING T -SQUARED DISTRIBUTION

Witch of Agnesi

A curve studied and named "versiera" (Italian for
"she-devil" or "witch") by Maria Agnesi in 1748 in her
book Istituzioni Analitiche (MacTutor Archive). It is
also known as cubique d’Agnesi or agnésienne. Some
suggest that Agnesi confused an old Italian word
meaning "free to move" with another meaning
"witch." The curve had been studied earlier by
Fermat and Guido Grandi in 1703.
It is the curve obtained by drawing a line from the
origin through the CIRCLE of radius a (OB ), then
picking the point with the y coordinate of the
intersection with the circle and the x coordinate of
the intersection of the extension of line OB with the
line y�2a: The curve has INFLECTION POINTS at y�
3a=2: The line y�0 is an ASYMPTOTE to the curve.

In parametric form,

x�2a cot u (1)



y �a 1 �cos(2 u)½ �; (2)

or

x �2at (3)

y �
2a

1 � t2 
: (4)

In rectangular coordinates,

y �
8a3

x2 � 4a2 
: (5)

See also LAMÉ CURVE
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Witness
A witness is a number which, as a result of its number
theoretic properties, guarantees either the composite-
ness or primality of a number n . Witnesses are most
commonly used in connection with FERMAT’S LITTLE

THEOREM CONVERSE. A PRATT CERTIFICATE uses
witnesses to prove primality, and MILLER’S PRIMALITY

TEST uses witnesses to prove compositeness.

See also ADLEMAN-POMERANCE-RUMELY PRIMALITY

TEST, FERMAT’S LITTLE THEOREM CONVERSE, MILL-

ER’S PRIMALITY TEST, PRATT CERTIFICATE, PRIMALITY

CERTIFICATE

Witt Geometry
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Wittenbauer’s Parallelogram

Divide the sides of a QUADRILATERAL into three equal
parts. The figure formed by connecting and extending

adjacent points on either side of a VERTEX is a
PARALLELOGRAM known as Wittenbauer’s parallelo-
gram.

See also QUADRILATERAL, WITTENBAUER’S THEOREM

Wittenbauer’s Theorem
The CENTROID of a QUADRILATERAL LAMINA is the
center of its WITTENBAUER’S PARALLELOGRAM.

See also CENTROID (GEOMETRIC), LAMINA, QUADRI-

LATERAL, WITTENBAUER’S PARALLELOGRAM

Witten’s Equations
Also called the SEIBERG-WITTEN INVARIANTS. For a
connection A and a POSITIVE SPINOR f 
G V�

� �
;

DA f �0

FA
��i s( f; f) :

The solutions are called monopoles and are the
minima of the functional

gX

FA
��i s( f; f)

    2�DA fj j2
� �

:

See also LICHNEROWICZ FORMULA, LICHNEROWICZ-

WEITZENBOCK FORMULA, SEIBERG-WITTEN EQUA-

TIONS
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Wolfskehl Prize
A prize of 100,000 German marks offered for the first
valid proof of FERMAT’S LAST THEOREM (Ball and
Coxeter 1987, p. 72; Barner 1997; Hoffman 1998,
pp. 193 �/94 and 199). The prize was collected by
Andrew Wiles after his successful proof of the
theorem in the years 1993 �/995.

See also FERMAT’S LAST THEOREM, MATHEMATICS

PRIZES
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Wolstenholme’s Theorem
If p is a PRIME > 3 ; then the NUMERATOR of

1 �
1

2 
�

1

3 
�. . .�

1

p � 1

is divisible by p2 and the NUMERATOR of

1 �
1

22 
�

1

32 
�. . .�

1

(p � 1)2

is divisible by p . These imply that if p ]5 is PRIME,
then

2p �1
p �1

� �
�1 (mod p3) :
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Woodall Number
Numbers OF THE FORM

Wn �2nn �1:

The first few are 1, 7, 23, 63, 159, 383, ... (Sloane’s
A003261). The only Woodall numbers Wn for n B
100; 000 which are PRIME are for n �5312, 7755,
9531, 12379, 15822, 18885, 22971, 23005, 98726, ...
(Sloane’s A014617; Ballinger).

See also CULLEN NUMBER, CUNNINGHAM NUMBER,
FERMAT NUMBER, MERSENNE NUMBER, SIERPINSKI

NUMBER OF THE FIRST KIND
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Woodbury Formula

A �UVT
� ��1

�A �1 � A�1U 1 �VTA �1U
� ��1

VTA�1
h i

:

See also SHERMAN-MORRISON FORMULA
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Woolhouse’s Formulas
Let the values of a function f (x) be tabulated at points
xi equally spaced by h �xi�1 �xi ; so f1 �f (x1) ; f2 �
f (x2) ; ..., fn �f xnð Þ: Then Woolhouse’s formulas ap-
proximating the integral of f (x) are given by the
NEWTON-COTES-like formulas

g
x11

x1

f (x) dx �5

�
223
3909 f1 �f11ð Þ� 5875

18144 f2 �f10ð Þ

�4625
10584 f4 �f8ð Þ� 41

112 f5

�

g
x29

x1

f (x) dx �14

�
7

195 f1 �f29ð Þ�16807
66690 f3 �f27ð Þ

�128
285 f8 �f22ð Þ� 71

135 f15

�
:
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Word
A finite sequence of n letters from some ALPHABET is
said to be an n -ary word.

See also CUBEFREE WORD, OVERLAPFREE WORD,
SQUAREFREE WORD

Word Sequence
An INTEGER SEQUENCE whose terms are defined in
terms of number-related words in some language. For
example, the following table gives the sequences of
numbers having digits whose English names (zero,
one, two, three, four, five, six, seven, eight, nine) are
in alphabetical order and also satisfy some other
property.



property Sloane sequence

ordered A053432 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, ...

distinct,
ordered

A053433 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 13, 16, ...

prime, ordered A053434 2, 3, 5, 7, 11, 13, 17,
41, 43, 47, 53, 59, ...

distinct,
prime, ordered

A053435 2, 3, 5, 7, 13, 17, 41,
43, 47, 53, 59, 73, ...

See also LOOK AND SAY SEQUENCE
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World Line
The path of an object through PHASE SPACE.

Worm

One of the seven 4-POLYHEXES. S. Kim has observed
that four worms solve the puzzle of finding a non-
three-COLORABLE map with only four congruent
countries (as long as no lakes are allowed).

See also COLORABLE
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Worpitzky’s Identity

xn �
Xn

k �1

n
k

7 8
x �k �1

n

� �
;

where n
k

* +
is an EULERIAN NUMBER and n

k

� �
is a

BINOMIAL COEFFICIENT (Worpitzky 1883; Comtet
1974, p. 242).

See also BINOMIAL SUMS, EULERIAN NUMBER
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Wright Function
The ENTIRE FUNCTION

f(r;b; z)�
X�
k�0

zk

k!G(rk � b)
;

where r >�1 and b 
C; named after the British
mathematician E. M. Wright.
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Writhe

Also called the TWIST NUMBER. The sum of crossings p
of a LINK L ,

w(L)�
X

p 
C(L)

e(p); (1)

where e(p) defined to be 9 1 if the overpass slants
from top left to bottom right or bottom left to top right
and C(L) is the set of crossings of an oriented LINK.
The writhe of a minimal knot diagram is not a KNOT

INVARIANT, as exemplified by the PERKO PAIR, which
have differing writhes (Hoste et al. 1998).
If a KNOT K is AMPHICHIRAL, then w(K)�0 (Thistle-
thwaite). A formula for the writhe is given by

Wr(K)�
1

4pgK

dsgK

dt em
dem

ds

dea

dt
(2)

where K is parameterized by xm(s) for 05s5L along
the length of the knot by parameter s , and the FRAME

Kf associated with K is

ym�xm(s)�enm(s); (3)

where e is a small parameter, nm(s) is a unit VECTOR

FIELD normal to the curve at s , and the vector field em

is given by



e m(s ; t) �
ym(t) � xm(s)

y(t) � x(s)j j
(4)

(Kaul 1999).

Letting Lk be the LINKING NUMBER of the two
components of a ribbon, Tw be the TWIST, and Wr be
the writhe, then the CALUGAREANU THEOREM states
that

Lk(K) �Tw(K) �Wr(K): (5)

(Adams 1994, p. 187).

See also CALUGAREANU THEOREM, SCREW, TWIST
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Wronskian

W f1 ; . . . ; fnð Þ�

f1 f2 � � �  fn

f ?1 f?2 � � �  f ?n
n n ::: n

f(n�1)
1 f(n�1)

2 � � �  f(n�1)
n

        

        
:

If the Wronskian is NONZERO in some region, the
functions fi are LINEARLY INDEPENDENT. If W �0
over some range, the functions are linearly dependent
somewhere in the range.

See also ABEL’S DIFFERENTIAL EQUATION IDENTITY,
GRAM DETERMINANT, LINEARLY DEPENDENT FUNC-

TIONS
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W-Transform
The W -transform of a function f (x) is defined by the
integral

(Wf )(x) � Wmn
pq

n ; ( a)p

bq

� �    
    f (t)

� �
(x) (1)

�
1

2pi g  sG n �ix �s ; n �ix �sð Þ

�G
bmð Þ�s ; 1 � anð Þ�s

an�1
p

� �
�s ; 1 � bm�1

q

� �
�s

" #
f �(1 �s) ds ;

(2)

where

G
bmð Þ�s ; 1 � anð Þ�s

an�1
p

� �
�s ; 1 � bm�1

q

� �
�s

" #

�G
b1 �s; . . . ; bm �s ; 1 � a1 �s ; . . . ; 1 � an �s
an�1 �s; . . . ; ap �s 1 � bm �1 �s; . . .  1� bq �s

� �
(3)

�
Qm

j�1 G bj�s

� �Qn
j�1 G 1 � aj � s

� �
Qp

j �n�1 G aj �s

� �Qq
j �m�1 G 1 � bj � s

� � ; (4)

/R[ n] > 1=2 ; n and the components of the vectors ap

� �
and bq

� �
are complex numbers satisfying the condi-

tions R ap

' (
Þ"1=2 ; 3=2; 5=2; . . .  ; 3/2, 5/2, ... and

R bq

' (
"�1=2 ;�3=2;�5=2; . . . ; �3/2, �5/2, ..., f �(s) is

the MELLIN TRANSFORM of a function f (x) and s is the
CONTOUR s � 1=2 �i �; 1 =2 �i �f g:/

See also G -TRANSFORM
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Wulff Shape
An equilibrium MINIMAL SURFACE for a crystal or drop
which has the least anisotropic surface free energy for
a given volume. It is the anisotropic analog of a
SPHERE. In the case of a sessile drop, the Wulff shapes
becomes the Winterbottom shape (Dunlop and Mag-
nen 1999, p. 31).

See also SPHERE
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S. Miracle-Solé, J. Ruis, and V. Zagrebnov). Singapore:
World Scientific, pp. 31 �/2, 1999.

Winterbottom, W. L. "Equilibrium Shape of a Small Particle
in Contact with a Foreign Substrate." Acta Metal. 15,
303 �/10, 1967.

Wulff, G. "Zur Frage der Geschwindigkeit des Wachstums
und der Auflösung der Krystallflagen." Z. Kryst. Mineral.
34, 449, 1901.

Wynn’s Epsilon Method
A method for numerical evaluation of SUMS and
PRODUCTS which samples a number of additional
terms in the series and then tries to fit them to a
POLYNOMIAL multiplied by a decaying exponential.
Wynn’s epsilon method can be applied to the terms of
a series using the Mathematica command Sequen-
ceLimit[l ].

See also EULER-MACLAURIN INTEGRATION FORMULAS



Wythoff Array
A INTERSPERSION array given by

1 2 3 5  8  13 21 34  55 � � �
4 7 11 18 29 47 76 123 199 � � �
6 10 16 26 42 68 110 178 288 � � �
9 15 24 39 63 102 165 267 432 � � �
12 20 32 52 84 136 220 356 576 � � �
14 23 37 60 97 157 254 411 665 � � �
17 28 45 73 118 191 309 500 809 � � �
19 31 50 81 131 212 343 555 898 � � �
22 36 58 94 152 246 398 644 1042 � � �
n n n n n n n n n :::

the first row of which is the FIBONACCI NUMBERS.

See also BEATTY SEQUENCE, FIBONACCI NUMBER,
INTERSPERSION, STOLARSKY ARRAY
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Wythoff Construction
A method of constructing UNIFORM POLYHEDRA.

See also UNIFORM POLYHEDRON
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Wythoff Symbol
A symbol consisting of three rational numbers that
can be used to describe UNIFORM POLYHEDRA based on
how a point C in a spherical triangle can be selected
so as to trace the vertices of regular polygonal faces.
For example, the Wythoff symbol for the TETRAHE-

DRON is 3 j23: There are four types of Wythoff symbols,
p q r;j p j q r; p q j r and p q r  j; and one exceptional

symbol, 3
2

5
3 3

5
2

    (which is used for the GREAT DIRHOM-

BICOSIDODECAHEDRON).

The meaning of the bars ½ may be summarized as
follows (Wenninger 1989, p. 10; Messer). Consider a
SPHERICAL TRIANGLE PQR whose angles are p=p; p=q;
and p=r :

1. p q r :j C is a special point within PQR that
traces snub polyhedra by even reflections .
2. p j q r (or p j r q) : C is the vertex P .
3. q r j p (or r q  j p) : C lies on the are PQ and the
bisector of the opposite angle R .
4. pqr j (or any permutation of the three letters): C
is the incenter of the triangle PQR .

Some special cases in terms of SCHLÄ FLI SYMBOLS are

p j q 2 �p j 2 q � q;pf g

2 j p q�
p
q

� /

p q j 2 �r
p
q

� /

2 qj p �t p; qf g

2 p q j t � p
q

� /

j 2 p q�s
p
q

� /

See also SCHLÄ FLI SYMBOL, SCHWARZ TRIANGLE,
UNIFORM POLYHEDRON
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Wythoff’s Game
A game played with two heaps of counters in which a
player may take any number from either heap or the
same number from both. The player taking the last
counter wins. The r th SAFE combination is (x; x �r);
where x � frb c; with f the GOLDEN RATIO and xb c the
FLOOR FUNCTION. It is also true that x �r � f2r

9 :
: The

first few SAFE combinations are (1, 2), (3, 5), (4, 7), (6,
10), ... (Sloane’s A000201 and A001950), which are
the pairs of elements from the complementary
BEATTY SEQUENCES for f and f2 (Wells 1986, p. 40).

See also BEATTY SEQUENCE, NIM, SAFE
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X

x-Axis

The horizontal axis of a 2-D plot in CARTESIAN

COORDINATES. Physicists and astronomers sometimes
call this axis the ABSCISSA, although that term is more
commonly used to refer to coordinates along the X -

AXIS.

See also ABSCISSA, ORDINATE, Y -AXIS, Z -AXIS

Xi Function

j(z) �1
2 z(z �1)

G 1
2 z

� �

pz=2
z(z)

�
(z � 1)G 1

2 z � 1
� �

z(z)
ffiffiffiffiffi
pz

p ; (1)

where z(z) is the RIEMANN ZETA FUNCTION and G(z) is
the GAMMA FUNCTION (Gradshteyn and Ryzhik 2000,
p. 1076; Hardy 1999, p. 41). The j function satisfies
the identity

j(1 �z) � j(z) : (2)

The zeros of j(z) and of its DERIVATIVES are all located
on the CRITICAL STRIP z � s �it ; where 0 B s B1:
Therefore, the nontrivial zeros of the RIEMANN ZETA

FUNCTION exactly correspond to those of j(z): The
function j(z) is related to what Gradshteyn and
Ryzhik (2000, p. 1074) call J(t) by

J(t) � j(z); (3)

where z �1
2 �it : This function can also be defined as

J(it) �1
2 t2 �1

4

� �
p�t=2 �1 =4 G 1

2 t �
1
4

� �
z t �1

2

� �
; (4)

giving

J(t) ��1
2 t2 �1

4

� �
pit =2 �1=4 G 1

4 �
1
2 it

� �
z 1

2 �it
� �

: (5)

The DE BRUIJN-NEWMAN CONSTANT is defined in
terms of the J(t) function.

See also DE BRUIJN-NEWMAN CONSTANT, RIEMANN

HYPOTHESIS, RIEMANN-SIEGEL FUNCTIONS, RIEMANN

ZETA FUNCTION
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x-Intercept

The point at which a curve or function crosses the X -

AXIS (i.e., when y�0 in 2-D).

See also LINE, Y -INTERCEPT



XNOR

The CONNECTIVE in logic corresponding to the ex-
clusive nor operation. A XNOR B is equivalent to
(A fflB) �(!A ffl!B) ; where ffl denotes AND, � denotes
OR, and !A denotes NOT. The circuit diagram symbol
for an XNOR gate is illustrated above, and the XNOR
TRUTH TABLE is given below.

A B A XNOR B

T T T

T F F

F T F

F F T

See also AND, BINARY OPERATOR, BOOLEAN ALGEBRA,
CONNECTIVE, LOGIC, NAND, NOR, NOT, OR, PAS-

CAL’S TRIANGLE, TRUTH TABLE, XOR
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XOR
Portions of this entry contributed by ROGER GER-

MUNDSSON

A CONNECTIVE in LOGIC known as the "exclusive or,"
or EXCLUSIVE DISJUNCTION. It yields true if exactly
one (but not both) of two conditions is true. The XOR
operation does not have a standard symbol, but is
sometimes denoted A

¯
�B (this work) or A�B (Simp-

son 1987, pp. 539 and 550�/54). A
¯
�B is read "A AUT

B ," where "aut" is Latin for "or, but not both." The
circuit diagram symbol for an XOR gate is illustrated
above. In SET THEORY, A

¯
�B is typically called the

SYMMETRIC DIFFERENCE. The XOR function is imple-
mented in Mathematica 4.1 as XOR.

The binary XOR operation A
¯
�B is identical to

NONEQUIVALENCE AfB: A
¯
�B can be implemented

using AND and OR gates as

A
¯
�B�(Affl!B)�(!AfflB) (1)

�(A�)ffl!(AfflB); (2)

whereffldenotes AND and�denotes OR, and can be
implemented using only NOT and NAND gates as

A
¯
�B�(Affl̄ !B)ffl̄ (!Affl̄B) (3)

(Simpson 1987), whereffl̄denotes NAND.

The BINARY XOR operator has the following TRUTH

TABLE.

A B /A
¯
�B/

T T F

T F T

F T T

F F F

The BINOMIAL COEFFICIENT
m
n

� �
mod 2 can be com-

puted using the XOR operation n XOR m , making
PASCAL’S TRIANGLE mod 2 very easy to construct.

For multiple arguments, XOR is defined to be true if
an odd number of its arguments are true, and false
otherwise. This definition is quite common in compu-
ter science, where XOR is usually thought of as
addition modulo 2. In this context, it arises in
polynomial algebra modulo 2, arithmetic circuits
with a full adder, and in parity generating or
checking. While this means that the multiargument
"XOR" can no longer be thought of as "the exclusive
OR" operation, this form is rarely used in mathema-
tical logic and so does not cause very much confusion.
The XOR operation is associative, so a

¯
� (b

¯
�c) is the

same as (a
¯
�b)

¯
�c: Computation of the multiargu-

ment XOR requires evaluation of all its arguments to
determine the truth value, and hence there is no
"lazy" special evaluation form (as there is for AND
and OR).

The ternary XOR operator therefore has the following
truth table.

A B C / A
¯
�B

¯
�C/

T T T T

T T F F

T F T F

T F F T

F T T F

F T F T

F F T T

F F F F



See also AND, AUT, BINARY OPERATOR, BOOLEAN

ALGEBRA, CONNECTIVE, LOGIC, NAND, NOR, NOT,
OR, PASCAL’S TRIANGLE, SYMMETRIC DIFFERENCE,
TRUTH TABLE, XNOR
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Y

Yacht

A 6-POLYIAMOND.
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Yahtzee

Yahtzee is a game played with five 6-sided DICE.
Players take turns rolling the dice, and trying to get
certain types of rolls, each with an assigned point
value, as summarized in the following table. Players
are allowed a total of three rolls, with any subset of
dice capable of being set aside at each roll. In addition
to runs of a single number, other rolls include 3 of a
kind (three of the same number), 4 of a kind (four of
the same number), full house (two of one number and
three of another), small straight (4 numbers in a row),
large straight (5 numbers in a row), Yahtzee (five of
the same number), and chance (any roll).

aces sum of 1s

twos sum of 2s

threes sum of 3s

fours sum of 4s

fives sum of 5s

sixes sum of 6s

3 of a kind sum of all dice

4 of a kind sum of all dice

full house 25

sm. straight 30

lg. straight 40

Yahtzee 50

chance sum of all dice

In a variant of the game known as triple Yahtzee,
players try to get each type of roll three times over the
course of the game instead of just once, with point

values for each roll being placed in a single, double, or
triple column, whose values are multiplied by the
stated weight when scores are totaled. The following
tables summarizes the probability of obtaining var-
ious rolls. In this table, lower-value rolls are excluded
from the results, so, for example, the probability of
obtaining a three of a kind excludes rolls that are
actually fours of a kind or Yahtzees. Similarly, the
three of a kind probability excludes rolls that are full
houses, and the two of a kind probability excludes
rolls that are small straights.

type 1 2 3 overall

2 of a kind /
65
108/ /

65
108/ /

65
108/ /

1180205
1259712/

3 of a kind /
25
162/

4 of a kind /
25

1296/

full house /
25
648/

sm. straight /
10
81/

lg. straight /
5

162/

Yahtzee /
1

1296/ /
83

6993/

type 1 2 3 overall

2 of a kind 60.19% 60.19% 60.19% 93.69%

3 of a kind 15.43%

4 of a kind 1.93%

full house 3.86%

sm. straight 12.35%

lg. straight 3.09%

Yahtzee 0.08% 1.19%

See also DICE

Yanghui Triangle
PASCAL’S TRIANGLE

Yang-Mills Equation

The anti-self-dual Yang-Mills equation is the system
of PARTIAL DIFFERENTIAL EQUATIONS

@

@x̄1

V�1 @V
@x1

 !
�

@

@x̄2

V�1 @V
@x2

 !
�0:
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y-Axis

The vertical axis of a 2-D plot in CARTESIAN COORDI-

NATES. Physicists and astronomers sometimes call
this axis the ORDINATE, although that term is more
commonly used to refer to coordinates along the Y -

AXIS.

See also ABSCISSA, ORDINATE, X -AXIS, Z -AXIS

Yff Center of Congruence

Let three ISOSCELIZERS be constructed on a TRIANGLE,
one for each side. Now parallel-displace these ISO-

SCELIZERS until they concur in a single point. This
point is called the Yff center of congruence and has
TRIANGLE CENTER FUNCTION

a �sec 1
2 A
� �

:

By analogy with the determination of the YFF

CENTRAL TRIANGLE, the angle a1 is related to the
isoscelizer distance l1 and the inner triangle side

lengths ti are given by

sin 1
2 a1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos a1

2

s
�

1
2 t2 � t3ð Þ

l1

and so on. Therefore, the length li and ti can be
determined by solving the six simultaneous equations

l2 �l3 �t1 �s1

l1 �l3 �t2 �s2

l1 �l2 �t3 �s3

t2 � t3

l1

 !2

�2 1�
s2

2 � s2
3 � s2

1

2s2s3

 !

t1 � t3

l2

 !2

�2 1�
s2

1 � s2
3 � s2

2

2s1s3

 !

t1 � t2

l3

 !2

�2 1�
s2

1 � s2
2 � s2

3

2s1s2

 !
:

See also CONGRUENT ISOSCELIZERS POINT, ISOSCELI-

ZER, YFF CENTRAL TRIANGLE
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Yff Central Triangle

Let three ISOSCELIZERS be constructed on a TRIANGLE,
one for each side. This makes all of the inner triangles
SIMILAR to each other. However, there is a unique set
of three isoscelizers for which the four interior
triangles are congruent. The innermost triangle is
called the Yff central triangle.

Let the side lengths be denoted si; the side lengths of
the Yff central triangle ti; and the distances of the



ISOSCELIZERS from the vertices li (for i �1, 2, 3), then
the LAW OF COSINES gives

cos a1 �
s2

2 � s2
3 � s2

1

2s2s3

and so on, and trigonometry gives

sin 1
2 a1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos a1

2

s
�

1
2 t1 � t2 � t3ð Þ

l1

and so on. Three more equations are obtained by
noting that the sums of lengths along each side must
sum to that side length. Therefore, the size of the Yff
central triangle and the positions of the ISOSCELIZERS

can be determined by solving the six simultaneous
equations

l2 �l3 �t1 �s1

l1 �l3 �t2 �s2

l1 �l2 �t3 �s3

t1 � t2 � t3

l1

 !2

�2 1�
s2

2 � s2
3 � s2

1

2s2s3

 !

t1 � t2 � t3

l2

 !2

�2 1�
s2

1 � s2
3 � s2

2

2s1s3

 !

t1 � t2 � t3

l3

 !2

�2 1�
s2

1 � s2
2 � s2

3

2s1s2

 !
:

See also ISOSCELIZER, YFF CENTER OF CONGRUENCE

Yff Points

Let points A?; B ?; and C? be marked off some fixed
distance x along each of the sides BC , CA , and AB .
Then the lines AA?; BB?; and CC? concur in a point U
known as the first Yff point if

x3 �(a �x)(b �x)(c �x) : (1)

This equation has a single real root u , which can by
obtained by solving the CUBIC EQUATION

f (x) �2x3 �px2 �qx �r �0 ; (2)

where

p �a �b �c (3)

q �ab �ac �bc (4)

r �abc: (5)

The ISOTOMIC CONJUGATE POINT U ? is called the
second Yff point. The TRIANGLE CENTER FUNCTIONS

of the first and second points are given by

a �
1

a

c � u

b � u

 !1=3

(6)

and

a?�
1

a

b � u

c � u

 !1 =3

; (7)

respectively. Analogous to the inequality v 5 p=6 for
the BROCARD ANGLE v; u 5p =6 holds for the Yff
points, with equality in the case of an EQUILATERAL

TRIANGLE. Analogous to

v B ai B p �3 v (8)

for i �1, 2, 3, the Yff points satisfy

u Bai Bp �3u : (9)

Yff (1963) gives a number of other interesting proper-
ties. The line UU? is PERPENDICULAR to the line
containing the INCENTER I and CIRCUMCENTER O ,
and its length is given by

UU?�
4uIOD

u3 � abc
; (10)

where D is the AREA of the TRIANGLE.

See also BROCARD POINTS, YFF TRIANGLES
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Yff Triangles

The TRIANGLE DA?B?C? formed by connecting the
points used to construct the YFF POINTS is called the



first Yff triangle. The AREA of the triangle is

D�
u3

2R 
;

where R is the CIRCUMRADIUS of the original TRIAN-

GLE DABC : The second Yff triangle is formed by
connecting the ISOTOMIC CONJUGATE POINTS of A?; B ?;
and C?:/

See also YFF POINTS
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y-Intercept

The point at which a curve or function crosses the Y -

AXIS (i.e., when x �0 in 2-D).

See also LINE, X -INTERCEPT

Yin-Yang

A figure used in many Asian cultures to symbolize the
unity of the two "opposite" male and female elements,
the "yin" and "yang." The solid and hollow parts
composing the symbol are similar and combine to
make a CIRCLE. Each part consists of two equal
oppositely oriented SEMICIRCLES of radius 1/2 joined
at their edges, plus a SEMICIRCLE of radius 1 joining
the other edges.

See also BASEBALL COVER, CIRCLE, PIECEWISE CIR-

CULAR CURVE, SEMICIRCLE
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Young Diagram
FERRERS DIAGRAM, YOUNG TABLEAU

Young Girl-Old Woman Illusion

A perceptual ILLUSION in which the brain switches
between seeing a young girl and an old woman.

See also RABBIT-DUCK ILLUSION
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Young Tableau

The Young tableau (plural, "tableaux") of a FERRERS

DIAGRAM is obtained by placing the numbers 1, ..., n
in the n boxes of the diagram. A "standard" Young
tableau is a Young tableau in which the numbers
form a nondecreasing sequence along each line and
along each column. For example, the standard Young
tableaux of size n�3 are given by ff1; 2; 3gg;
ff1; 3g; f2gg; ff1; 2g; f3gg; and ff1g; f2g; f3gg; illu-
strated above. The BUMPING ALGORITHM is used to
construct a standard Young tableau from a permuta-
tion of f1; . . . ; ng; and the number of standard Young
tableaux of size 1, 2, 3, ... are 1, 2, 4, 10, 26, 76, 232,
764, 2620, 9496, ... (Sloane’s A000085). These num-
bers can be generated by the RECURRENCE RELATION

a(n)�a(n�1)�(n�1)a(n�2)

with a(1)�1 and a(2)�2: This is the same as the
number of INVOLUTIONS on n elements (Skiena 1990,



p. 32).

The number of all possible standard Young tableaux
of a given shape can also be considered, and can be
calculated with the HOOK LENGTH FORMULA. For
example, the illustration above shows the 35 stan-
dard tableaux of shape f3; 2; 1; 1g:/

The partitions of integers less than or equal to mn in
which there are at most n parts and in which no part
is larger than m correspond (1) to Young tableaux
which fit inside and m �n rectangle and (2) to lattice
paths which travel from the upper right corner of the
rectangle to the lower left in /m þ n/ leftward and
downward steps. The number of Young diagrams
fitting inside an m �n rectangle is given by the
BINOMIAL COEFFICIENT

m�n
m

� �
� 

m�n
n

� �
: The above exam-

ple shows the

2 �2
2

	 

�

4
2

	 

�

4!

2!2! 
�

24

4
�6

Young 2 �2 diagrams.
There is a correspondence between a PERMUTATION

and a pair of Young tableaux, known as the
SCHENSTED CORRESPONDENCE.

See also BUMPING ALGORITHM, DURFEE SQUARE,
HOOK LENGTH FORMULA, INVOLUTION (PERMUTA-

TION), PARTITION, PARTITION FUNCTION P , RANDOM

TABLEAU SCHENSTED CORRESPONDENCE, TABLEAU

CLASS
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Young’s Inequality
Let f be a real-valued, continuous, and strictly
increasing function on [0; c] with c �0. If f (0)�0; a �

[0; c]; and b � [0; f (c)]; then

g
a

0

f (x) dx�g
b

0

f�1(x) dx]ab; (1)

where f�1 is the INVERSE FUNCTION of f . Equality
holds IFF b�f (a):/

Taking the particular function f (x)�xp�1 gives the
special case

ap

p
�

p � 1

p

 !
bp=(p�1)]ab; (2)

which is often written in the symmetric form

ap

p
�

bq

q
]ab; (3)

where a; b]0; p �1, and



1

p 
�

1

q 
�1: (4)
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W. H. Young." §8.3 in Inequalities, 2nd ed. Cambridge,
England: Cambridge University Press, pp. 198 �/200, 1988.

Mitrinovic, D. S. "Young’s Inequality." §2.7 in Analytic
Inequalities. New York: Springer-Verlag, pp. 48 �/50,
1970.

Oppenheim, A. "Note on Mr. Cooper’s Generalization of
Young’s Inequality." J. London Math. Soc. 2, 21�/23, 1927.

Riesz, F. "Su alcune disuguaglianze." Boll. Un. Mat. Ital. 7,
77 �/79, 1928.

Takahashi, T. "Remarks on Some Inequalities." Tôhoku
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Young’s Integral
Let f (x) be a REAL continuous monotonic strictly
increasing function on the interval [0 ; a] with f (0) �

0 and b 5f (a); then

ab 5g
a

0

f (x) dx �g
b

0

f �1(y) dy;

where f �1(y) is the INVERSE FUNCTION. Equality holds
IFF b �f (a) :/
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Young’s Lattice
Young’s lattice Yp is the PARTIAL ORDER of partitions
CONTAINED within a PARTITION p ordered by contain-
ment (Stanton and White 1986; Skiena 1990, p. 77).

See also CONTAINED PARTITION, PARTITION
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Z

Z
The DOUBLESTRUCK capital letter Z, Z, denotes the
RING of INTEGERS ..., �2, �1, 0, 1, 2, .... The symbol
derives from the German word Zahl , meaning "num-
ber" (Dummit and Foote 1998, p. 1). The RING of
integers is sometimes also denoted using the double-
struck capital I, I.

See also C, C*, COUNTING NUMBER, I, N, NATURAL

NUMBER, Q, R, WHOLE NUMBER, Z�, Z�

References
Dummit, D. S. and Foote, R. M. Abstract Algebra, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, p. 1, 1998.

Z�
The NEGATIVE INTEGERS ..., �3, �2, �1.

See also COUNTING NUMBER, NATURAL NUMBER,
NEGATIVE, WHOLE NUMBER, Z, Z�, Z*

Z�
The POSITIVE INTEGERS 1, 2, 3, ..., equivalent to N.

See also COUNTING NUMBER, N, NATURAL NUMBER,
POSITIVE, WHOLE NUMBER, Z, Z-, Z*
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Zag Number
An EVEN ALTERNATING PERMUTATION number, more
commonly called a TANGENT NUMBER.

See also ALTERNATING PERMUTATION, TANGENT NUM-

BER, ZIG NUMBER

Zak Transform
This entry contributed by RONALD M. AARTS

The Zak transform is a signal transform relevant to
time-continuous signals sampled at a uniform rate
and an arbitrary clock phase (Janssen 1988). The Zak
transform of a signal can be considered as a mixed
time-frequency representation of f

(Zf )T(t; n) �T1 =2
X�

k���

f (t �kT)e �2 piknT

for 0 5t 5T and 0 5 n 5T �1 : The Zak transform is
sometimes also known as the Weil-Brezin map.
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Zalcman’s Lemma
Let f be a family of MEROMORPHIC FUNCTIONS on the
UNIT DISK D which are not normal at 0. Then there
exist sequences fn in F , zn ; rn ; and a nonconstant
function f meromorphic in the plane such that

fn zn � rnzð Þ 0 f (z);

locally and uniformly (in the spherical sense) in the
COMPLEX PLANE C (Schwick 2000), where zn 0 0 and
rn 0 0 :/
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Zarankiewicz’s Conjecture
The CROSSING NUMBER for a COMPLETE BIGRAPH is

n

2

$ %
n � 1

2

$ %
m

2

$ %
m � 1

2

$ %
;

where xb c is the FLOOR FUNCTION. The original proof
by Zarankiewicz (1954) contained an error, but was
subsequently solved in some special cases by Guy
(1969). The conjecture has been shown to be true for
all m; n57; and Zarankiewicz has shown that in
general, the FORMULA provides an upper bound to the
actual number.

See also COMPLETE BIGRAPH, CROSSING NUMBER

(GRAPH)
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Zariski Topology
A TOPOLOGY of an infinite set whose OPEN SETS have
finite complements. The Zariski topology is a TOPOL-

OGY which is well-suited for the study of polynomial
equations in ALGEBRAIC GEOMETRY, since in Zariski
topology, there are many fewer OPEN SETS than in the
usual METRIC TOPOLOGY. In fact, the only CLOSED

SETS are the ALGEBRAIC SETS, which are the zeros of
polynomials.



For example, in C ; the only nontrivial closed sets are
finite collections of points. In C2 ; there are also the
zeros of polynomials such as lines ax �by and cusps
x2 �y3 :/

The Zariski topology is not HAUSDORFF. In fact, any
two open sets must intersect, and cannot be DISJOINT.
Also, the open sets are DENSE, in the Zariski topology
as well as in the usual METRIC TOPOLOGY.

Because there are fewer open sets than in the usual
topology, it is more difficult for a function to be
continuous in Zariski topology. For example, a CON-

TINUOUS FUNCTION ðCn ; Zariski) 0 (C, metric) must be
a constant function. Conversely, when the range has
the Zariski topology, it is easier for a function to be
CONTINUOUS. In particular, the polynomials are CON-

TINUOUS FUNCTIONS Cn ; Zariski) 0 (C ; Zariskið Þ:/

See also ALGEBRAIC VARIETY, CATEGORY THEORY,
COMMUTATIVE ALGEBRA, CONIC SECTION, IDEAL,
PRIME IDEAL, PROJECTIVE VARIETY, SCHEME
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Zaslavskii Map
The 2-D map

xn�1 � xn � n 1 � mynð Þ� enm cos 2pxnð Þ½ � (mod1)

yn�1 �e �G yn � e cos 2pxnð Þ½ �;

where

m �
1 � e�G

G

(Zaslavskii 1978). It has CORRELATION EXPONENT n :

1:5 (Grassberger and Procaccia 1983) and CAPACITY

DIMENSION 1.39 (Russell et al. 1980).
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Zassenhaus-Berlekamp Algorithm
A method for factoring POLYNOMIALS.

z-Axis

The axis in 3-D CARTESIAN COORDINATES which is
usually oriented vertically. CYLINDRICAL COORDI-

NATES are defined such that the z -axis is the axis
about which the azimuthal coordinate u is measured.

See also AXIS, X -AXIS, Y -AXIS

z-Distribution
FISHER’S Z -DISTRIBUTION, STUDENT’S Z -DISTRIBUTION

Zeckendorf Representation
A number written as a sum of nonconsecutive
FIBONACCI NUMBERS,

n �
XL

k �0

ekFk ;

where ek are 0 or 1 and

ek ek�1 �0 :

Every POSITIVE INTEGER can be written uniquely in
such a form.

See also ZECKENDORF’S THEOREM
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Zeckendorf’s Theorem
The SEQUENCE Fn �1f g is COMPLETE even if re-
stricted to subsequences which contain no two con-
secutive terms, where Fn is a FIBONACCI NUMBER.

See also FIBONACCI DUAL THEOREM, ZECKENDORF

REPRESENTATION
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Zeeman’s Paradox
There is only one point in front of a PERSPECTIVE

drawing where its three mutually PERPENDICULAR

VANISHING POINTS appear in mutually PERPENDICU-

LAR directions, but such a drawing nonetheless
appears realistic from a variety of distances and
angles.

See also LEONARDO’S PARADOX, PERSPECTIVE, VAN-

ISHING POINT
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Zeilberger-Bressoud Theorem
Dyson (1962abc) conjectured that the constant term
in the LAURENT SERIES

Y
1 5i"j5n

1 �
xi

xj

 !ai

(1)

is

a1 � a2 � . . .  � anð Þ!
a1!a2! . . . an!

; (2)

based on a problem in particle physics. The theorem
is called DYSON’S CONJECTURE, and was proved by
Wilson (1962) and independently by Gunson (1962). A
definitive proof was subsequently published by Good
(1970).

A q -analog of this theorem (Andrews 1975) states
that the coefficient of x0

1 x
0
2 . . . x0

n in

Y
1 5i"j5n

xi

xj

eij; q

 !
ai

(3)

where

eij �
1 for i Bj
q for i > j

�
(4)

is given by

(q; q)a1 �a2 �... �an

(q; q)a1
(q; q)a2

	 	 	 (q; q)an

: (5)

This can also be stated in the form that the constant
term ofY

1 5i Bj5n

1 �xi =xj

� 	
1 �qxi =qj

� 	
	 	 	  1 �qai�1xi =xj

� 	

� 1 �qxj =xi

� 	
1 �q2xj =xi

� 	
	 	 	  1 �qaj xj =xi

� 	
; (6)

is the Q -MULTINOMIAL COEFFICIENT

a1 � 	 	 	� an½ �!
a1½ �! 	 	 	  an½ �!

; (7)

where

n½ �! �(1)(1 �q) 	 	 	  1 �q �	 	 	�qn�1
� 	

: (8)

The amazing proof of this theorem was given by
Zeilberger and Bressoud (1985).

The full theorem reduces to Dyson’s version when
q �1. It also gives the Q -ANALOG of DIXON’S THEOREM

as

X�
k ���

(�1)kqk(3k �1)=2 b �c
c �k


 �
c �a
a �k


 �
a �b
b �k


 �

¼ (q; q)a�b�c

(q; q)a(q; q)b(q; q)c

(9)

(Andrews 1975, 1986). With q�1 and a�b�c�p; it
gives the beautiful and well-known identity

X2p

k�0

(�1)k 2p
k


 �3

�
(�1)p(3p)!

(p!)3 (10)

(Andrews 1986).

See also DIXON’S THEOREM, Q -MULTINOMIAL COEFFI-

CIENT, MACDONALD’S CONSTANT-TERM CONJECTURE,
MULTINOMIAL COEFFICIENT
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Zeilberger’s Algorithm
An ALGORITHM which finds a POLYNOMIAL recurrence
for terminating HYPERGEOMETRIC IDENTITIES OF THE

FORM

X
k

n
k


 �QA
i�1(ain � a?ik � aƒi)!QB
i�1(bin � b?ik � bƒi)!

zk

�C

QĀ
i�1(āin � ā?i)!QB̄
i�1(b̄in � b̄?i)

x̄n;

where n
k

� 	
is a BINOMIAL COEFFICIENT, ai; a?i; āi; bi; b?i;



b̄i are constant integers and a ƒi ; ā ?i ; bƒi ; b̄?i ; C , x , and z
are complex numbers (Zeilberger 1990). The method
was called CREATIVE TELESCOPING by van der Poorten
(1979), and led to the development of the amazing
machinery of WILF-ZEILBERGER PAIRS.

The also exists a q -analog of the algorithm, called the
Q -ZEILBERGER ALGORITHM.

See also BINOMIAL SERIES, BINOMIAL SUMS, GOSPER’S

ALGORITHM, HYPERGEOMETRIC IDENTITY, Q -ZEILBER-

GER ALGORITHM, SISTER CELINE’S METHOD, WILF-

ZEILBERGER PAIR
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Proof of the Irrationality of z(3):/" Math. Intel. 1, 196�/203,
1979.

Wegschaider, K. Computer Generated Proofs of Binomial
Multi-Sum Identities. Diploma Thesis, RISC. Linz, Aus-
tria: J. Kepler University, May 1997.

Zeilberger, D. "Doron Zeilberger’s Maple Packages and
Programs: EKHAD." http://www.math.temple.edu/~zeil-
berg/programs.html.

Zeilberger, D. "A Fast Algorithm for Proving Terminating
Hypergeometric Series Identities." Discrete Math. 80,
207�/211, 1990.

Zeilberger, D. "A Holonomic Systems Approach to Special
Function Identities." J. Comput. Appl. Math. 32, 321�/368,
1990.

Zeilberger, D. "The Method of Creative Telescoping." J.
Symb. Comput. 11, 195�/204, 1991.

Zeisel Number
A number N�p1 p2 	 	 	 pn where the pi/s are distinct
PRIMES and n]3 such that

pi�Api�1�B

for i�1, 2, ..., n , p0 taken as 1, and with A and B
some fixed integers. For example, 1885�1 � 5 � 13 �

29 is a Zeisel number with (A; B)�(2; 3) since

5�2 � 1�3; 13�2 � 5�3; 29�2 � 13�3;

as is 114985�1 � 5 � 13 � 29 � 61 since

5�2 � 1�3; 13�2 � 5�3; 29�2 � 13�3;

61�2 � 29�3:

The first few Zeisel numbers are 105, 1419, 1729,
1885, 4505, ... (Sloane’s A051015), which correspond
to constants (1, 2), (4, �1), (1, 6), (2, 3), (3, 2), ....
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Zenithal Projection
AZIMUTHAL PROJECTION

Zeno’s Paradoxes
A set of four PARADOXES dealing with counterintuitive
aspects of continuous space and time.

1. Dichotomy paradox: Before an object can travel
a given distance d , it must travel a distance d=2:
In order to travel d=2; it must travel d=4; etc. Since
this sequence goes on forever, it therefore appears
that the distance d cannot be traveled. The
resolution of the paradox awaited CALCULUS and
the proof that infinite GEOMETRIC SERIES such as
a�

i�1(1=2)i�1 can converge, so that the infinite
number of "half-steps" needed is balanced by the
increasingly short amount of time needed to
traverse the distances.
2. Achilles and the tortoise paradox: A fleet-of-foot
Achilles is unable to catch a plodding tortoise
which has been given a head start, since during
the time it takes Achilles to catch up to a given
position, the tortoise has moved forward some
distance. But this is obviously fallacious since
Achilles will clearly pass the tortoise! The resolu-
tion is similar to that of the dichotomy paradox.
3. Arrow paradox: An arrow in flight has an
instantaneous position at a given instant of time.
At that instant, however, it is indistinguishable



from a motionless arrow in the same position, so
how is the motion of the arrow perceived?
4. Stade paradox: A paradox arising from the
assumption that space and time can be divided
only by a definite amount.
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Zermelo Set Theory
The version of set theory obtained if Axiom 6 of
ZERMELO-FRAENKEL SET THEORY is replaced by

6’. Selection axiom (or "axiom of subsets"): for any
set-theoretic formula A(u) ; �x �y �u(u � y �/

/u � x fflA(u));/

which can be deduced from Axiom 6. However, there
seems to be some disagreement in the literature
about just which axioms of ZERMELO-FRAENKEL SET

THEORY constitute "Zermelo Set Theory." Mendelson
(1997) does not include the AXIOMS OF CHOICE,
FOUNDATION, REPLACEMENT In Zermelo set theory,
but does includes 6’. However, Enderton (1977)
includes the AXIOMS OF CHOICE and FOUNDATION,
but does not include the AXIOMS OF REPLACEMENT or
Selection.

See also SET THEORY, ZERMELO-FRAENKEL SET THE-

ORY
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Zermelo-Fraenkel Axioms
The Zermelo-Fraenkel axioms are the basis for
ZERMELO-FRAENKEL SET THEORY. In the following
(Iyanaga and Kawada 1980), � stands for EXISTS, ~

for does not exist, � for "is an element of," ¥ for the
EMPTY SET, � for FOR ALL, [ for IMPLIES, ! for NOT
(NEGATION), fflfor AND, 
for OR, �for "is EQUIVALENT

to," and S denotes the union y of all the sets that are
the elements of x .

1. AXIOM OF EXTENSIONALITY: �x(x � a �/

/x � b) [a �b:/
2. AXIOM OF THE UNORDERED PAIR: �x �y(y � x �/

/y �a 
y �b) :/
3. AXIOM OF THE SUM SET: �x �y(y � x ��z � a(y � z)) :/
4. AXIOM OF THE POWER SET: �x �yy � x �/

/�z � y(z � a)):/
5. AXIOM OF THE EMPTY SET: �x �y(!y � x) :/
6. AXIOM OF INFINITY: �x( ¥ � x 
�y � x(y? � x)):/
7. AXIOM OF SEPARATION: �x �y(y � x �y � a fflA(y)):/
8. AXIOM OF REPLACEMENT (or axiom of compre-
hension, or axiom of subsets): �x�y �/

/a(�zA(y; z)[�z � xA(y; z)):/
9. Axiom of regularity (or AXIOM OF FOUNDATION):
�xA(x)[�x(A(x)ffl�y � x(!A(y))):/
10. AXIOM OF CHOICE: �x � a�A(x; y)[/

/�y�x � aA(x; y(x)):/

The system of axioms 1�/9 is called ZERMELO-FRAEN-

KEL SET THEORY, denoted "ZF." The system of axioms
1�/9 minus the AXIOM OF REPLACEMENT (i.e., axioms
1�/7 plus 8) is called ZERMELO SET THEORY, denoted
"Z." The set of axioms 1�/9 plus the AXIOM OF CHOICE

is usually denoted "ZFC."

However, note that there seems to be some disagree-
ment in the literature about just what axioms
constitute "ZERMELO SET THEORY." Mendelson (1997)
does not include the AXIOMS OF CHOICE, FOUNDATION,
or REPLACEMENT in Zermelo set theory, but does
include the AXIOM OF REPLACEMENT. However, En-
derton (1977) includes the AXIOMS OF CHOICE and
FOUNDATION, but does not include the AXIOM OF

REPLACEMENT.

Abian (1969) proved CONSISTENCY and independence
of four of the Zermelo-Fraenkel axioms.

See also AXIOM OF CHOICE, AXIOM OF FOUNDATION,
AXIOM OF REPLACEMENT, SET THEORY, VON NEU-

MANN-BERNAYS-GÖ DEL SET THEORY, ZERMELO-

FRAENKEL SET THEORY, ZERMELO SET THEORY
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Zermelo-Fraenkel Set Theory
A version of SET THEORY which is a formal system
expressed in first-order predicate LOGIC. Zermelo-
Fraenkel set theory is based on the ZERMELO-FRAEN-

KEL AXIOMS.

ZERMELO-FRAENKEL SET THEORY is not finitely axio-
matized. For example, the AXIOM OF REPLACEMENT is
not really a single axiom, but an infinite family of
axioms, since it is preceded by the stipulation that it
is true "For any set-theoretic formula A(u; v) :/" Mon-
tague (1961) proved that ZERMELO-FRAENKEL SET

THEORY is not finitely axiomatizable, i.e., there is no
finite set of axioms which is logically equivalent to the
infinite set of ZERMELO-FRAENKEL AXIOMS. VON NEU-

MANN-BERNAYS-GÖDEL SET THEORY provides an
equivalent finitely axiomized system.

See also LOGIC, SET THEORY, VON NEUMANN-BER-

NAYS-GÖ DEL SET THEORY, ZERMELO-FRAENKEL AX-

IOMS, ZERMELO SET THEORY

References
Montague, R. "Semantic Closure and Non-Finite Axiomatiz-

ability. I." In Infinitistic Methods, Proceedings of the
Symposium on Foundations of Mathematics, (Warsaw,
2�/9 September 1959). Oxford, England: Pergamon,
pp. 45�/69, 1961.
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Zermelo’s Axiom of Choice
AXIOM OF CHOICE

Zernike Polynomial
ORTHOGONAL POLYNOMIALS which arise in the expan-
sion of a wavefront function for optical systems with
circular pupils. The ODD and EVEN Zernike polyno-
mials are given by

oUm
n (r; f)

eUm
n (r; f)

�Rm
n (r)

sin
cos

(mf) (1)

with radial function

Rm
n (r)�

X(n�m)=2

i�0

(�1)l(n � l)!

l! 1
2(n � m) � l
h i

! 1
2(n � m) � l
h i

!
rn�2l

ð2Þ

for n and m integers with n]m]0 and n�m EVEN.
Otherwise,

Rm
n (r)�0: (3)

Here, f is the azimuthal angle with 05fB2p and r

is the radial distance with 05r51 (Prata and Rusch
1989). The radial functions satisfy the orthogonality
relation

g
1

0

Rm
n (r)Rm

n?(r)r dr�
1

2(n � 1)
dnn?; (4)

where dij is the KRONECKER DELTA, and are related to
the BESSEL FUNCTION OF THE FIRST KIND by

g
1

0

Rm
n (r)Jm(vr)r dr�(�1)(n�m)=2 Jn�1(v)

v
(5)

(Born and Wolf 1989, p. 466). The radial Zernike
polynomials have the GENERATING FUNCTION

1 � z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z 1 � 2r2ð Þ� z2

p� �m
(2zr)m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z 1 � 2r2ð Þ� z2

p �
X�
s�0

zsR9m
m�2s(r);

(6)

and are normalized so that

R9m
n (1)�1 (7)

(Born and Wolf 1989, p. 465). The first few NONZERO

radial polynomials are

R0
0(r)�1

R1
1(r)�r

R0
2(r)�2r2�1

R2
2(r)�r2

R1
3(r)�3r3�2r

R3
3(r)�r3

R0
4(r)�6r4�6r2�1

R2
4(r)�4r4�3r2

R4
4(r)�r4

(Born and Wolf 1989, p. 465).

The Zernike polynomial is a special case of the JACOBI

POLYNOMIAL with

P(a; b)
n? (x)�(�1)n? Rm

n (r)

ra
(8)

and

x�1�2r2 (9)

b�0 (10)

a�m (11)

n?�1
2(n�m): (12)



The Zernike polynomials also satisfy the RECURRENCE

RELATIONS

rRm
n ( r) �

1

2(n � 1)

� (n �m �2)Rm�1
n �1 (r) �(n �m)Rm�1

n�1 ( r)
� �

(13)

Rm
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�
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n
Rm

n�2( r) (14)

Rm
n (r) �Rm�2

n ( r) �
1

n � 1

d Rm�1
n�1 ( r) � Rm�1

n �1 (r)
� �

dr 
(15)

(Prata and Rusch 1989). The coefficients Am
n and Bm

n

in the expansion of an arbitrary radial function
F( r; f) in terms of Zernike polynomials

F(r ; f) �
X�
m�0

X�
n�m

Am
n

oUm
n ( r ; f) �Bm

n
eUm

n ( r ; f)½ � (16)

are given by

Am
n

Bm
n

�
(n � 1)

e2
mn p
g

1

0 g
2 p

0

F( r ; f)
oUm

n ( r ; f)
eUm

n (r ; f) 
r df dr; (17)

where

emn �
e �

1ffiffiffi
2

p for m �0; n "0

1 otherwise

8<
: 

(18)

Let a "primary" aberration be given by

F�a ?lmnȲ2l�m
1 ( u; f) rn cosm u (19)

with 2l �m �n �4 and where Ȳ is the COMPLEX

CONJUGATE of Y , and define

A?lmn �a ?lmnȲ2l �m
1 ( u; f) ; (20)

giving

F�
1

e2
nm

AlmnRm
n ( r) cos(mu) : (21)

Then the types of primary aberrations are given in
the following table (Born and Wolf 1989, p. 470).

Aberration l m n A  /A?/

spherical

aberration

0 4  0 /A?040 r
4
/ /eA040R0

4(r)/

coma 0 3 1 /A?031r
3 cos u/ /A031R1

3(r) cos u/

astigmatism 0 2 2 /A?022r
2 cos2 u/ /A022R2

2(r) cos(2u)/

field

curvature

1 2 0 /A?120r
2
/ /eA120R0

2r/

distortion 1 1 1 /A?111r cos u/ /A111R1
1(r) cos u/

See also JACOBI POLYNOMIAL
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Zero
The INTEGER denoted 0 which, when used as a
counting number, means that no objects are present.
It is the only INTEGER (and, in fact, the only REAL

NUMBER) which is neither NEGATIVE nor POSITIVE. A
number which is not zero is said to be NONZERO. A
ROOT of a function f is also sometimes known as "a
zero of f ."

Because the number of PERMUTATIONS of 0 elements
is 1, 0! (zero FACTORIAL) is defined as 1 (Wells 1986,
p. 31). This definition is useful in expressing many
mathematical identities in simple form. A number
other than 0 taken to the POWER 0 is defined to be 1,
but 00 is undefined. Defining 00�1 allows some
formulas to be expressed simply (Knuth 1997,
p. 56), although the same could be said for the
alternate definition 00�0 (Wells 1986, p. 26). An
example of a formula which can be expressed con-
cisely by defining 00�1 is the beautiful analytical
formula for the integral of the generalized SINC

FUNCTION

g
�

0

sina x

xb
dx�

p1�c(�1) (a�b)=2b c

2a�c(b � 1)!



�
Xa =2b c�c

k �0

(�1)k a
k


 �
(a �2k)b �1 ln(a �2k)½ �c

given by Kogan, where a ]b > c ; c �a �b (mod 2);
and xb c is the FLOOR FUNCTION.

The following table gives the first few numbers n
such that the decimal expansion of kn contains no
zeros, for small k . The largest known n for which 2n

contain no zeros is 86 (Madachy 1979), with no other
n 54:6 �107 (M. Cook), improving the 3:0739 �107

limit obtained by Beeler and Gosper (1972). The
values a(n) such that the positions of the right-most
zero in 2a(n) increases are 10, 20, 30, 40, 46, 68, 93, 95,
129, 176, 229, 700, 1757, 1958, 7931, 57356, 269518,
... (Sloane’s A031140). The positions in which the
right-most zeros occur are 2, 5, 8, 11, 12, 13, 14, 23,
36, 38, 54, 57, 59, 93, 115, 119, 120, 121, 136, 138,
164, ... (Sloane’s A031141). The right-most zero of
2781 ;717 ;865 occurs at the 217th decimal place, the
farthest over for powers up to 2 :5 �109 :/

k Sloane n such that kn contains no 0s

2 Sloane’s
A007377

1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14,
15, 16, 18, 19, 24, 25, 27, 28, ...

3 Sloane’s
A030700

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12,
13, 14, 19, 23, 24, 26, 27, 28, ...

4 Sloane’s
A030701

1, 2, 3, 4, 7, 8, 9, 12, 14, 16, 17,
18, 36, 38, 43, ...

5 Sloane’s
A008839

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17,
18, 30, 33, 58, ...

6 Sloane’s
A030702

1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 24,
29, 44, ...

7 Sloane’s
A030703

1, 2, 3, 6, 7, 10, 11, 19, 35

8 Sloane’s
A030704

1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 17,
24, 27

9 Sloane’s
A030705

1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34

11 Sloane’s
A030706

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14,
15, 16, 18, 41, ...

While it has not been proven that the numbers listed
above are the only ones without zeros for a given
base, the probability that any additional ones exist is
vanishingly small. Under this assumption, the se-
quence of largest n such that kn contains no zeros for
k �2, 3, ... is then given by 86, 68, 43, 58, 44, 35, 27,
34, 0, 41, ... (Sloane’s A020665).

See also 10, APPROXIMATE ZERO, DIVISION BY ZERO,
FALLACY, NAUGHT, NEGATIVE, NONNEGATIVE, NON-

ZERO, ONE, POSITIVE, TWO, ZEROFREE
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Zero (Root)
ROOT

Zero Divisor
A NONZERO element x of a RING for which x � y �0;
where y is some other NONZERO element and the
multiplication x � y is the multiplication of the RING.
A RING with no zero divisors is known as an INTEGRAL

DOMAIN. Let A denote an R/-algebra, so that A is a
VECTOR SPACE over R and

A�A 0 A

(x; y)�x � y:

Now define

Z� x �A : x � y�0 for some nonzero y �Af g;

where 0 �Z: A is said to be m -ASSOCIATIVE if there
exists an m -dimensional SUBSPACE S of A such that
(y � x) � z�y � (x � z) for all y; z �A and x �S: A is said
to be TAME if Z is a finite union of SUBSPACES of A .
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Zero Irrelevancy Proof
CLASSIFICATION THEOREM OF SURFACES

Zero Map

See also IDENTITY MAP

Zero Matrix
A MATRIX consisting of all 0s, denoted 0: The MATRIX

EXPONENTIAL of 0 is given by the IDENTITY MATRIX I:
An m�n zero matrix can be generated using Zer-
oMatrix[m , n ] in the Mathematica add-on pack-
age LinearAlgebra‘MatrixMultiplication‘



(which can be loaded with the command
BBLinearAlgebra‘).

See also IDENTITY MATRIX

Zero Section
This entry contributed by RYAN BUDNEY

The zero section of a VECTOR BUNDLE is the SUBMANI-

FOLD of the bundle that consists of all the ZERO

VECTORS.

See also BUNDLE, MANIFOLD, SECTION (BUNDLE),
VECTOR BUNDLE, ZERO VECTOR

Zero Set
If f is a function on an OPEN SET U , then the zero set
of f is the set Z � z � U : f (z) �0f g:/
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Zero Vector

A ZERO VECTOR, denoted 0; is a VECTOR of length 0,
and thus has all components equal to zero.

See also UNIT VECTOR, ZERO VECTOR

Zero-Form

See also DIFFERENTIAL K -FORM, ONE-FORM, TWO-

FORM

Zerofree
An integer whose decimal digits contain no zeros is
said to be zerofree. Zerofree squares are easy to
generate, e.g.,

33333333333333342

�11111111111111115555555555555556: (1)

Around 1990, D. Hickerson considered the problem of
finding large zerofree cubes. After some experimenta-
tion, he found a formula that generated infinitely
many of them. In March 1998, Bill Gosper asked
about 0-free nth powers, pointing out that heuristi-
cally we should expect there to be infinitely many
zerofree squares, cubes, ..., 21st powers, but only
finitely many 22nd powers, etc. At this point, Hick-
erson couldn’t locate his formula for cubes, and so
came up with the new formula

f (n) �
2 � 105n � 104n � 17 � 103n�1 � 102n � 10n�2

3 
;

(2)

which is 0-free if n �2 ðmod 3 Þ and n ]5:/

In April 1999, Ed Pegg conjectured on sci.math that
there are only finitely many zerofree cubes, so
Hickerson posted his new counterexample, (mista-
kenly claiming that it was the one he had found 10
years ago). A few days later, Lew Baxter posted the
slightly simpler example

f (n) �1
3(2 � 105n �104n �2 � 103n �102n �10n �1); (3)

known as the BAXTER-HICKERSON FUNCTION.

There is apparently no proof that there exist infi-
nitely many zerofree 4th powers, 5th powers, ..., or
21st powers.

See also BAXTER-HICKERSON FUNCTION, ZERO

Zero-Sum Game
A GAME in which players make payments only to each
other. One player’s loss is the other player’s gain, so
the total amount of "money" available remains con-
stant.

See also FINITE GAME, GAME

References
Dresher, M. The Mathematics of Games of Strategy: Theory

and Applications. New York: Dover, p. 2, 1981.

Zeta
HURWITZ ZETA FUNCTION, RIEMANN ZETA FUNCTION

Zeta Fuchsian
The zeta Fuchsians are class of functions discovered
by Poincaré which are related to the AUTOMORPHIC

FUNCTIONS.

See also AUTOMORPHIC FUNCTION

Zeta Function
A function satisfying certain properties which is
computed as an INFINITE SUM of NEGATIVE POWERS.
The most commonly encountered zeta function is the
RIEMANN ZETA FUNCTION,

z(n)�
X�
k�1

1

kn
:

See also DEDEKIND FUNCTION, DIRICHLET BETA

FUNCTION, DIRICHLET ETA FUNCTION, DIRICHLET L -

SERIES, DIRICHLET LAMBDA FUNCTION, EPSTEIN ZETA

FUNCTION, JACOBI ZETA FUNCTION, NINT ZETA FUNC-



TION, PERIODIC ZETA FUNCTION, PRIME ZETA FUNC-

TION, RIEMANN ZETA FUNCTION, SELBERG ZETA

FUNCTION
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Zeuthen’s Rule
On an ALGEBRAIC CURVE, the sum of the number of
coincidences at a noncuspidal point C is the sum of
the orders of the infinitesimal distances from a
nearby point P to the corresponding points when
the distance PC is taken as the principal infinitesi-
mal.

References
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New

York: Dover, p. 131, 1959.

Zeuthen’s Theorem
If there is a ( n; n ?) correspondence between two curves
of GENUS p and p ? and the number of BRANCH POINTS

properly counted are b and b?; then

b �2n ?(p �1) � b?�2n(p?�1):

See also CHASLES-CAYLEY-BRILL FORMULA
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Zig Number
An ODD ALTERNATING PERMUTATION number, more
commonly called an EULER NUMBER or SECANT NUM-

BER.

See also ALTERNATING PERMUTATION, EULER NUM-

BER, ZAG NUMBER

Zigzag Permutation
ALTERNATING PERMUTATION

Zig-Zag Triangle
SEIDEL-ENTRINGER-ARNOLD TRIANGLE

Zillion
A generic word for a very LARGE NUMBER. The term
has no WELL DEFINED mathematical meaning. Con-
way and Guy (1996) define the nth zillion as 103n�3 in
the American system million �106 ;ð billion �109 ;
trillion �1012 ; . . .); and 106n in the British system

million �106 ;ð billion �1012 ; trillion �1018 ; . . .); Con-
way and Guy (1996) also define the words N -PLEX and
N -MINEX for 10n and 10�n ; respectively.

See also LARGE NUMBER

References
Conway, J. H. and Guy, R. K. The Book of Numbers. New

York: Springer-Verlag, pp. 13 �/16, 1996.

Zip
Half a ZIP-PAIR.

ZIP Proof
CLASSIFICATION THEOREM OF SURFACES

Zipf’s Law
In the English language, the probability of encounter-
ing the rth most common word is given roughly by
P(r) �0 :1 =r for r up to 1000 or so. The law breaks
down for less frequent words, since the HARMONIC

SERIES diverges. Pierce’s (1980, p. 87) statement that
a P(r) > 1 for r �8727 is incorrect. Goetz states the
law as follows: The frequency of a word is inversely
proportional to its RANK r such that

P(r):
1

r ln(1:78R)
;

where R is the number of different words.

See also HARMONIC SERIES, RANK (STATISTICS)
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Zip-Pair
A pair of zips, each ZIP being half a zipper, which can
be zippered up to close a surface along a curve. The
concept of a zip-pair can be extremely useful in
topological arguments, and zips can be used to
illustrate the construction of the CAP, CROSS-CAP,
HANDLE, and CROSS-HANDLE.

See also ZIP
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Z-Number
A Z -number is a REAL NUMBER z such that

0 5frac
3

2

 !k

j

2
4

3
5B1

2

for all k �1, 2, ..., where frac/(x) is the fractional part
of x . Mahler (1968) showed that there is at most one
Z -number in each interval [n ; n �1) for integer n ,
and therefore concluded that it is unlikely that any Z -
numbers exist. The Z -numbers arise in the analysis
of the COLLATZ PROBLEM.

See also COLLATZ PROBLEM
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Zöllner’s Illusion

In this ILLUSION, the VERTICAL lines in the above
figure are PARALLEL, but appear to be tilted at an
angle. In 1860, F. Zöllner sent his discovery in a
letter to physicist and scholar J. C. Poggendorff,
editor of Annalen der Physik und Chemie , who
subsequently discovered the related POGGENDORFF

ILLUSION.

See also ILLUSION, POGGENDORFF ILLUSION
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Zome

A kit consisting of rods and slotted balls that can be
used to construct three-dimensional configurations.
The balls into which the rods are placed resembles an
"expanded" SMALL RHOMBICOSIDODECAHEDRON, with
the squares replaced by rectangles, as illustrated
above. The rods come in four colors, and there are
three lengths for each color, as summarized in the
table below. Here, f is the GOLDEN RATIO.

color lengths n

blue /fn
/ /n�0; 1; 2/

yellow /cos 1
6 p
� �

fn
/ /n�0; 1; 2/

red /cos 1
10 p
� �

fn
/ /n�0; 1; 2/

green /cos 1
4 p
� �

fn
/ /n��1; 0; 1/
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Zonal Harmonic
A SPHERICAL HARMONIC OF THE FORM Pl(cos u); i.e.,
one which reduces to a LEGENDRE POLYNOMIAL (Whit-
taker and Watson 1990, p. 302). These harmonics are
termed "zonal" since the curves on a UNIT SPHERE

(with center at the origin) on which Pl(cos u) vanishes
are l parallels of latitude which divide the surface
into zones (Whittaker and Watson 1990, p. 392).

Resolving Pl(cos u) into factors linear in cos2 uð Þ;
multiplied by (cos u) when l is ODD, then replacing
(cos u) by z=r allows the zonal harmonic rlPl(cos u) to
be expressed as a product of factors linear in x2; y2;
and z2; with the product multiplied by z when n is
ODD (Whittaker and Watson 1990, p. 1990).

See also LEGENDRE POLYNOMIAL, SECTORIAL HARMO-

NIC, SPHERICAL HARMONIC, TESSERAL HARMONIC
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Zone

The SURFACE AREA of a SPHERICAL SEGMENT. Call the
RADIUS of the SPHERE R , the upper and lower RADII b
and a , respectively, and the height of the SPHERICAL

SEGMENT h . The zone is a SURFACE OF REVOLUTION

about the Z -AXIS, so the SURFACE AREA is given by

S �2p g x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �x?2

p
dz : (1)

In the xz -plane, the equation of the zone is simply
that of a CIRCLE,

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �z2

p
; (2)

so

x?��z R2 �z2
� 	�1 =2

(3)

x ?2 �
z2

R2 � z2 
; (4)

and

S �2p g
ffiffiffiffiffiffiffiffiffiffiffi
R2 �b2

p

ffiffiffiffiffiffiffiffiffiffiffi
R2 �a2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �z2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

z2

R2 � z2

s
dz

�2pR g
ffiffiffiffiffiffiffiffiffiffiffi
R2 �b2

p

ffiffiffiffiffiffiffiffiffiffiffi
R2 �a2

p dz �2 pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �b2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 �a2

p� �

�2 pRh: (5)

This result is somewhat surprising since it depends
only on the height of the zone, not its vertical position
with respect to the SPHERE.

See also SPHERE, SPHERICAL CAP, SPHERICAL SEG-

MENT, ZONOHEDRON
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Zonohedron
A CONVEX POLYHEDRON whose faces all possess a
central symmetry (Coxeter 1973, pp. 27 �/30). Equiva-
lently, a convex polyhedron whose faces are PARAL-

LEL-sided 2m/-gons.

There exist n(n �1) PARALLELOGRAMS in a nonsingu-
lar zonohedron, where n is the number of different
directions in which EDGES occur (Ball and Coxeter
1987, pp. 141 �/144). Zonohedra include the CUBE,
ENNEACONTAHEDRON, GREAT RHOMBIC TRIACONTAHE-

DRON, GREAT RHOMBICUBOCTAHEDRON, MEDIAL RHOM-

BIC TRIACONTAHEDRON, RHOMBIC DODECAHEDRON,
RHOMBIC ICOSAHEDRON, RHOMBIC TRIACONTAHEDRON,
and RHOMBOHEDRON, as well as the entire class of
PARALLELEPIPEDS.

Regular zonohedra have bands of PARALLELOGRAMS

which form equators and are called "ZONES." Every
convex polyhedron bounded solely by PARALLELO-

GRAMS is a zonohedron (Coxeter 1973, p. 27). Plate
II (following p. 32 of Coxeter 1973) illustrates some
equilateral zonohedra. Equilateral zonohedra can be
regarded as 3-dimensional projections of n -D HYPER-

CUBES (Ball and Coxeter 1987).

See also CUBE, ENNEACONTAHEDRON, GREAT RHOM-

BIC TRIACONTAHEDRON, GREAT RHOMBICUBOCTAHE-

DRON (ARCHIMEDEAN), HYPERCUBE, MEDIAL RHOMBIC

TRIACONTAHEDRON, RHOMBIC DODECAHEDRON,
RHOMBIC ICOSAHEDRON, RHOMBIC TRIACONTAHE-

DRON, RHOMBOHEDRON
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Zonotype
The MINKOWSKI SUM of line segments.



Zoomeron Equation
The PARTIAL DIFFERENTIAL EQUATION

d2

dt2
�

d2

dx2

 !
uxy

u

 !
�2 u2

� 	
xt
�0:
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Zorn’s Lemma
If S is any nonempty PARTIALLY ORDERED SET in
which every CHAIN has an upper bound, then S has a
maximal element. This statement is equivalent to the
AXIOM OF CHOICE.

See also AXIOM OF CHOICE

z-Score
The z -score associated with the i th observation of a
random variable x is given by

zi�
xi � x̄

s
;

where x̄ is the MEAN and s the STANDARD DEVIATION of
all observations x1; ..., xn:/

Zsigmondy Theorem
If 15bBa and (a; b)�1 (i.e., a and b are RELA-

TIVELY PRIME), then an�bn has a PRIMITIVE PRIME

FACTOR with the following two possible exceptions:

1. 26�16:/
2. n�2 and a�b is a POWER of 2.

Similarly, if a > b]1; then an�bn has a PRIMITIVE

PRIME FACTOR with the exception 23�13�9:/
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Z-Transform
The Z -transform of F(t) is defined by

Z F(t)½ ��L F�(t)½ �; (1)

where

F�(t)�F(t)dT(t)�
X�
n�0

F(nT)d(t�nT); (2)

/d(t) is the DELTA FUNCTION, T is the sampling period,
and L f½ � is the LAPLACE TRANSFORM. An alternative
definition is

Z F(t)½ ��
X

residues

1

1 � eTz z�1

 !
f (z); (3)

where

f (z)�
X�
n�0

F(nT)z�n: (4)

The inverse Z -transform is

Z�1[f (z)]�F�(t)�
1

2pi G f (z)zn�1 dz: (5)

The GENERATING FUNCTION of G(t) of a sequence of
numbers f (n) given by the Z -transform of f (n) in the
variable 1=t (Germundsson 2000).

It satisfies

Z[aF(t)�bG(t)]�aZ[F(t)]�bZ[F(t)] (6)

Z[F(t�T)]�zZ[F(t)]�zF(0) (7)

Z[F(t�2T)]�z2Z[F(t)]�z2F(0)�zF(t) (8)

Z[F(t�mT)]�zmZ[F(t)]�
Xm�1

r�0

zm�rF(rt) (9)

Z[F(t�mT)]�z�mZ[F(t)] (10)

Z eatF(t)½ ��Z e�aTz
� �

(11)

Z e�atF tð Þ½ ��Z eaTz
� �

(12)

tF(t)��Tz
d

dz
Z F(t)½ � (13)

t�1F(t)��
1

T g
z

0

f (z)

z
dz: (14)

Transforms of special functions (Beyer 1987, pp. 426�/

427) include

Z d(t)½ ��1 (15)

Z d(t�mT)½ ��z�m (16)

Z H(t)½ �� z

z � 1
(17)

Z H(t�mT)½ �� z

zm(z � 1)
(18)

Z t½ �� Tz

(z � 1)2 (19)

Z t2
� �

�
T2z(z � 1)

z � 1ð Þ3 (20)

Z t3
� �

�
T3z z2 � 4z � 1ð Þ

(z � 1)4 (21)



Z avt½ �� z

z � a vT 
(22)

Z cos(vt)½ �� z sin( vT)

z2 � 2z cos(vT) � 1
(23)

Z sin( vt)½ �� z z � cos(vT)½ �
Z2 � 2z cos(vT) � 1 

; (24)

where H(t) is the HEAVISIDE STEP FUNCTION.

In general,

Z tn½ ��(�1)n lim
x00

dn

dxn

z

z � e �xT

 !
(25)

Tnz
Pn

k�1

n
k

 !
zk �1

(z � 1)n �1 ; (26)

where the n
k

" #
are EULERIAN NUMBERS. Amazingly,

the Z-transforms of tn are therefore generators for
EULER’S TRIANGLE.

The discrete z -transform of a sequence aj

$ %�
j���

is
defined as

A(z) �Z a½ ��
X�

k���

akz�k (27)

(Krantz 1999, p. 214). The DISCRETE FOURIER TRANS-

FORM is therefore a special case of the z -transform
with

z �e �2pi=N : (28)

A z -transform with

z�e�2pia=N (29)

for a"91 is called a FRACTIONAL FOURIER TRANS-

FORM.

See also DISCRETE FOURIER TRANSFORM, EULER’S

TRIANGLE, EULERIAN NUMBER, FRACTIONAL FOURIER

TRANSFORM
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z-Transform (Population)
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