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Preface

A classical problem in the calculus of variations is the investigation of critical
points of a C1-functional L : V → R on a normed space V . Typical exam-
ples are L[u] =

∫
Ω L(x, u,∇u) dx with Ω ⊂ R

n and V a space of admissible
functions u : Ω → R

k. A large variety of methods has been invented to ob-
tain existence of critical points of L. The present work addresses a different
question:

Under what conditions on the Lagrangian L, the domain Ω and the
set of admissible functions V does L have at most one critical point?

The following sufficient condition for uniqueness is presented in this work: the
functional L has at most one critical point u0 if a differentiable one-parameter
group G = {gε}ε∈R of transformations gε : V → V exists, which strictly re-
duces the values of L, i.e. L[gεu] < L[u] for all ε > 0 and all u ∈ V \ {u0}.
If G is not differentiable the uniqueness result is recovered under the extra
assumption that the Lagrangian is a convex function of ∇u (ellipticity con-
dition). This approach to uniqueness is called “the method of transformation
groups”.

The interest for uniqueness results in the calculus of variations comes from
two sources:

1) In applications to physical problems uniqueness is often considered as sup-
porting the validity of a model.

2) For semilinear boundary value problems like ∆u + λu + |u|p−1u = 0 in
Ω with u = 0 on ∂Ω uniqueness means that u ≡ 0 is the only solution.
Conditions on Ω, p, λ ensuring uniqueness may be compared with those
conditions guaranteeing the existence of nontrivial solutions. E.g., if Ω is
bounded and 1 < p < n+2

n−2 , then nontrivial solutions exist for all λ. If, in
turn, one can prove uniqueness for p ≥ n+2

n−2 and certain λ and Ω, then the
restriction on p made for existence is not only sufficient but also necessary.

A very important uniqueness theorem for semilinear problems was found
in 1965 by S.I. Pohožaev [75]. If Ω is star-shaped with respect to the origin,
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p ≥ n+2
n−2 and λ ≤ 0, then uniqueness of the trivial solution follows. In his

proof Pohožaev tested the equation with x · ∇u and u. The resulting integral
identity admits only the zero-solution. A crucial role is played by the vector-
field x. The motivation of the present work was to exhibit arguments within
the calculus of variations which explain Pohožaev’s result and, in particular,
explain the role of the vector-field x.

Chapter 1 provides two examples illustrating the method of transformation
groups in an elementary way.

In Chapter 2 we develop the general theory of uniqueness of critical points
for abstract functionals L : V → R on a normed space V . The notion of
a differentiable one-parameter transformation group gε : dom gε ⊂ V → V
is developed and the following fundamental uniqueness result is shown: if
L[gεu] < L[u] for all ε > 0 and all u ∈ V \ {u0} then u0 is the only possible
critical point of L. We mention two applications: 1) a strictly convex functional
has at most one critical point and 2) the first eigenvalue of a linear elliptic
divergence-operator with zero Dirichlet or Neumann boundary conditions is
simple.

As a generalization the concept of non-differentiable one-parameter trans-
formation groups is developed in Chapter 3. Its interaction with first order
variational functionals L[u] =

∫
Ω
L(x, u,∇u) dx is studied. Under the extra

assumption of rank-one convexity of L w.r.t. ∇u, a uniqueness result in the
presence of energy reducing transformation groups is proved, which is a suit-
able generalization of the one in Chapter 2. In particular, Pohožaev’s identity
will emerge as two ways of computing the rate of change of the functional L
under the action of the one-parameter transformation group.

In Chapter 4 the semilinear Dirichlet problem ∆u + λu + |u|p−1u = 0 in
Ω, u = 0 on ∂Ω is treated, where Ω is a domain on a Riemannian manifold
M . An exponent p∗ ≥ n+2

n−2 is associated with Ω such that u ≡ 0 is the
only solution provided p ≥ p∗ and λ is sufficiently small. On more special
manifolds better results can be achieved. If M possesses a one-parameter
group {Φt}t∈R of conformal self-maps Φt : M →M , then a complete analogue
of the Euclidean vector-field x is given by the so-called conformal vector-field
ξ(x) := d

dtΦt(x)|t=0. In the presence of conformal vector-fields one can show
that the critical Sobolev exponent n+2

n−2 is the true barrier for existence/non-
existence of non-trivial solutions. Generalizations of the semilinear Dirichlet
problem to nonlinear Neumann boundary value problems are also considered.

In Chapter 5 and 6 we study variational problems in Euclidean R
n. Exam-

ples of non-starshaped domains are given, for which Pohožaev’s original result
still holds. A number of boundary value problems for semilinear and quasi-
linear equations is studied. Uniqueness results for trivial/non-trivial solutions
of supercritical problems as well as L∞-bounds from below for solutions of
subcritical problems are investigated. Uniqueness questions from the theory
of elasticity (boundary displacement problem) and from geometry (surfaces
of prescribed mean curvature) are treated as examples.
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work.

Basel,
February 2004 Wolfgang Reichel





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A convex functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A functional with supercritical growth . . . . . . . . . . . . . . . . . . . . . 2
1.3 Construction of the transformations . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Uniqueness of critical points (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 One-parameter transformation groups . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Variational sub-symmetries and uniqueness of critical points . . 10
2.3 Uniqueness results for critical points of constrained functionals 12
2.4 First order variational integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Classical uniqueness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Convex functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Uniqueness of a saddle point . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 Strict variational sub-symmetry w.r.t. an affine subspace 17
2.5.4 Uniqueness of positive solutions for sublinear problems . 21
2.5.5 Simplicity of the first eigenvalue . . . . . . . . . . . . . . . . . . . . . 24

3 Uniqueness of critical points (II) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The total space M × R

k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 One-parameter transformation groups on M × R

k . . . . . . . . . . . 31
3.4 Action of transformation groups on functions . . . . . . . . . . . . . . . 32
3.5 Rate of change of derivatives and volume-forms . . . . . . . . . . . . . 35
3.6 Rate of change of first-order variational functionals . . . . . . . . . . 39

3.6.1 Partial derivatives of Lagrangians . . . . . . . . . . . . . . . . . . . 39
3.6.2 The rate of change formula . . . . . . . . . . . . . . . . . . . . . . . . . 41
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1

Introduction

We begin this study with two well known examples to illustrate our point
of view to uniqueness questions in the calculus of variations. We look for
conditions such that a Fréchet differentiable functional L : V → R defined on
a normed space V possesses at most one critical point. Here u ∈ V is called a
critical point if

d

dt
L[u+ tv]

∣
∣
t=0

= 0 for all v ∈ V.

1.1 A convex functional

Probably the best known uniqueness result in the calculus of variations states
that a Fréchet differentiable, strictly convex functional L : V → R defined on
a normed space V possesses at most one critical point. Consider the following
uniqueness proof: suppose u0 is a critical point of L. For a fixed element u ∈ V
we define a transformed element

ũ = e−ε(u− u0) + u0.

For each ε the operator
gε : u �→ gεu := ũ

maps V into itself. We want to compare L[gεu] with L[u]. The simplest way
to do this is by differentiation with respect to ε. If one takes strict convexity
of L into account then

d

dε
L[gεu] = L′[gεu]e−ε(u0 − u)

= (L′[gεu]− L′[u0])(u0 − gεu) (1.1)
< 0 unless u ≡ u0.

If additionally u is a critical point of L then the rate of change can be computed
by the chain rule as d

dεL[gεu]|ε=0 = L′[u](u0 − u) = 0. By (1.1) this implies
uniqueness u ≡ u0.

W. Reichel: LNM 1841, pp. 1–7, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction

For ε > 0 the transformation gε has the property L[gεu] < L[u] if u 	= u0,
i.e., it strictly reduces the energy. In analogy to variational symmetries (cf.
Olver [71]), which leave the energy invariant, the transformation gε is called a
strict variational sub-symmetry w.r.t. u0. The presence of a strict variational
sub-symmetry is responsible for the uniqueness of the critical point of L.

1.2 A functional with supercritical growth

As a second example consider the functional L[u] =
∫

Ω
1
2 |∇u|2− 1

p+1 |u|p+1 dx

for p > 1 defined on the space V = C1
0 (Ω) of C1-functions u vanishing on

∂Ω, where Ω ⊂ R
n, n ≥ 3 is a bounded domain. Sufficiently smooth critical

points of L are classical solutions of

∆u+ |u|p−1u = 0 in Ω, u = 0 on ∂Ω.

We assume that p > n+2
n−2 is strictly supercritical. Suppose also that the domain

Ω is star-shaped with respect to 0 ∈ Ω . For ε > 0 we define the following
transformation of a fixed function u:

ũ(x̃) = e
n−2

2 εu(eεx̃) for x̃ ∈ e−εΩ = {e−εx : x ∈ Ω}
and extend ũ outside e−εΩ by zero. Due to the star-shapedness of Ω the
function ũ is a well-defined function with a fold (german: “Knick”) at e−ε∂Ω =
{e−εx : x ∈ ∂Ω}. For each ε > 0 the operator

gε : u �→ gεu := ũ.

is a well defined selfmap of the space C0,1
0 (Ω) of Lipschitz-functions vanishing

on ∂Ω. It will again be useful to write both gεu and ũ(x̃) for the transformed
function. Notice that in contrast to our first example the transformation not
only changes the dependent variable u but also the independent variable x.

As we will show later, strictly supercritical p > n+2
n−2 implies that L[gεu] is

strictly decreasing in ε > 0, i.e.

L[gεu] < L[u] for ε > 0 if u 	= 0.

As in Section 1.1 such a transformation is called a strict variational sub-
symmetry w.r.t. 0.

A heuristic argument for uniqueness

Before we give a rigorous uniqueness proof let consider a heuristic argument
why the presence of a variational sub-symmetry is responsible for the absence
of non-trivial critical points of L. It is easy to verify that u0 = 0 is a local
minimum of L[u] =

∫
Ω

1
2 |∇u|2 − 1

p+1 |u|p+1 dx. Moreover, L cannot have any
other local minimum u1 	= 0 since gεu1 produces for ε > 0 a nearby function
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with strictly lower energy L[gεu1] < L[u1]. We show that the same property
excludes the existence of critical points of mountain-pass type: since L has a
local minimum at u0 = 0 and since L[tφ] → −∞ as t → ∞ for any φ 	= 0,
one could expect a critical point of mountain-pass type, i.e. a critical point u
with L[u] = c where the energy-level c is given by

c = inf
γ∈Γ

max
t∈[0,1]

L[γ(t)]

and Γ is the set of all continuous paths γ : [0, 1] → C0,1
0 (Ω) with γ(0) =

0, γ(1) = ū and ū such that L[ū] < 0. Let us assume that γ is a minimizing
path (assuming the existence of such a minimizing path makes the argument
heuristic). We define a deformed path gε ◦ γ, which now connects 0 to gεū.
By connecting gεū linearly to ū and composing both paths we obtain a new
path γε ∈ Γ , see Figure 1.1. By choosing ε > 0 small enough we may achieve
that L[γε(t)] < 0 on the linear “tail”. Therefore, by the strict sub-symmetry
property of gε we find

max
t∈[0,1]

L[γε(t)] = max
t∈[0,1]

L[gε ◦ γ(t)] < max
t∈[0,1]

L[γ(t)]

which contradicts the optimality of the path γ. Therefore no mountain-pass
type critical point exists, and similar arguments show heuristically that there
are no other min-max type critical points of L.

γ

L[γ]

ū
0

L[γε]

γε

Fig. 1.1. Applying the sub-symmetry to a minimizing path
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A rigorous uniqueness proof

To evaluate the functional on gεu it is sufficient to integrate over e−εΩ, since
the support of gεu is contained in e−εΩ. By the assumption of strictly super-
critical growth one finds

L[gεu] =
∫

e−εΩ

1
2
|∇ũ|2 − 1

p+ 1
|ũ|p+1 dx̃

=
∫

e−εΩ

1
2
enε|∇u|2(eεx̃)− 1

p+ 1
e

(p+1)(n−2)
2 ε|u(eεx̃)|p+1 dx̃ (1.2)

=
∫

Ω

1
2
|∇u|2(x)− 1

p+ 1
e

(p+1)(n−2)−2n
2 ε|u(x)|p+1 dx (1.3)

< L[u] if u 	≡ 0 and ε > 0.

We will calculate the rate of change of L under the action of the sub-symmetry.
It follows from (1.3) that

d

dε
L[gεu]|ε=0 =

∫

Ω

− (p+ 1)(n− 2)− 2n
2

|u(x)|p+1 dx < 0 if u 	≡ 0. (1.4)

On the other hand we can directly differentiate (1.2) by using the formula
d
dε |ε=0

∫
e−εΩ h(x) dx = − ∫

∂Ω(x · ν)h(x) dσ. This results in

d

dε
L[gεu]|ε=0 =

∫

Ω

n

2
|∇u|2 + xTD2u∇u− n− 2

2
|u|p+1 dx

−
∫

Ω

|u|p−1u∇u · xdx−
∫

∂Ω

(x · ν)(1
2
|∇u|2 − 1

p+ 1
|u|p+1) dσ

=
∫

Ω

(
2 − n

2
u− x · ∇u)|u|p−1u−∇(

2− n
2

u− x · ∇u) · ∇u dx

−1
2

∫

∂Ω

(x · ν)|∇u|2 dσ.

If we introduce the Euler-Lagrange operator E [u] = ∆u+ |u|p−1u and assume
that u is a C2-function we can rewrite the volume integral in the previous
formula:

d

dε
L[gεu]|ε=0 =

∫

Ω

(
2 − n

2
u− x · ∇u)E [u] dx

−
∫

Ω

div
(2− n

2
u∇u− (x · ∇u)∇u

)
dx− 1

2

∫

∂Ω

(x · ν)|∇u|2 dσ.

Using u = 0 on ∂Ω we get (x · ∇u)∇u = (x · ν)|∇u|2, which implies

d

dε
L[gεu]|ε=0 =

∫

Ω

(
2− n

2
u− x · ∇u)E [u] dx+

1
2

∫

∂Ω

(x · ν)|∇u|2 dσ. (1.5)
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If u is a critical point which satisfies E [u] = 0 then (1.5) and the star-
shapedness of Ω imply d

dεL[gεu]|ε=0 ≥ 0. Together with (1.4) this implies
u ≡ 0 and finishes our uniqueness proof.

The two ways of calculating d
dεL[gεu]|ε=0 give the equality of (1.4) and

(1.5). This identity is called Pohožaev’s identity, since it was first discovered
by S.I. Pohožaev [75] in 1965 using different means. In Section 5.1 we show
how the proof extends to the exactly critical case p = n+2

n−2 .

Remark 1.1. (i) In the first example a variational sub-symmetry was obtained
by a transformation of the dependent variable only. In the second example
both the dependent and the independent variable were transformed.
(ii) Let us point out an important difference in the two examples. In our first
example the transformation gε : u �→ gεu was differentiable in ε in the sense
d
dεgεu = e−ε(u0 − u) ∈ V . Therefore d

dεL[gεu]|ε=0 = L′[u](u0 − u) = 0 by
the chain rule for any critical point u. However, for the support-shrinking
transformations of our second example we find from the definition of gεu

d

dε
gε(x̃)

∣
∣
∣
ε=0

=
n− 2

2
u(x) + x · ∇u(x).

Since n−2
2 u+ x · ∇u 	∈ C0,1

0 (Ω) unless u ≡ 0, we obtain that gεu is in general
not differentiable in the space C0,1

0 (Ω). Thus d
dεL[gεu]|ε=0 does not vanish by

application of the chain rule.

1.3 Construction of the transformations

The transformations u �→ gεu in the previous two examples can be constructed
from differential equations.

First example. Consider the differential equation

dU

dε
= u0 − U, U(0) = u. (1.6)

Solutions are given by gεu := e−ε(u − u0) + u0.

Second example. Consider the system

dX

dε
= −X, dU

dε
=
n− 2

2
U, X(0) = x, U(0) = u. (1.7)

Solutions are (e−εx, e
n−2

2 εu). If the initial state (x, u) lies on the graph of a
function u, i.e. u = u(x) then after time ε the dynamical system has evolved
to a new point (x̃, ũ), which lies on the graph of a new function ũ(x̃) given by

ũ(x̃) = e
n−2

2 εu(eεx̃).



6 1 Introduction

Both systems (1.6), (1.7) give rise to the transformations gε : u �→ ũ sending a
initial element u ∈ V to a new element gεu ∈ V . These transformations have
the group property gε1+ε2 = gε1 ◦ gε2 and are called one-parameter transfor-
mation groups .

We summarize the main features of these examples:

(i) A transformation group acts as a strict variational sub-symmetry on L[u],
i.e. d

dεL[gεu]|ε=0 < 0 for all u 	= u0 by the convexity assumption in the
first example and by the supercritical growth in the second example.

(ii) The rate of change can also be computed in terms of the Euler-Lagrange
operator. If u is a critical point then in the first example d

dεL[gεu]|ε=0 = 0
by the differentiability of the group orbit gε. In the second example the
star-shapedness of Ω makes d

dεL[gεu]|ε=0 ≥ 0 for any critical point. In both
cases (i) and (ii) imply uniqueness of the critical point of L.

(iii)The variational sub-symmetries are generated by differential equations.
(iv)In both examples Lipschitz functions supported in Ω are mapped to other

Lipschitz functions supported in Ω. In the first example this is trivial; in
the second example this is simply expressed by x ·ν ≥ 0 on ∂Ω and by the
restriction to ε ≥ 0.

Remark 1.2. In both our examples the orbits {gεu}ε≥0 are non-compact sub-
sets of the underlying function space. In contrast, if in the second example Ω
is an annulus then the group of rotations ũ(x̃) = u(Rεx̃) with a parameterized
rotation matrix Rε acts as an exact variational symmetry of the functional
L[u]. Now the group orbits are compact. This rotation group is acting in favor
of non-trivial critical points rather than preventing them.

The method of transformation groups

In Chapter 2 we develop a general theory of differentiable transformation
groups acting monotonically on C1-functionals L : V → R in the sense that
L[gεu] ≤ L[u] for ε ≥ 0. Various examples generalizing the basic uniqueness
result for strictly convex functionals are given including uniqueness of saddle
points, uniqueness of positive solutions to sublinear problems and simplicity
of first eigenvalues.

Chapter 3 contains the general theory for non-differentiable transfor-
mation groups. Here we restrict attention to first-order functionals L[u] =∫

Ω L(x, u,∇u) dx. The main uniqueness result is proved under the assump-
tion that the transformation group acts monotonically in the sense that
L[gεu] ≤ L[u] for ε ≥ 0. We will give an infinitesimal criterion for such groups,
which allows a computationally easy verification. Under suitable structural
assumptions on the functional and geometric assumptions on the underlying
domain Ω uniqueness of critical points of L will follow.

The standard theory for uniqueness of critical points relies on testing the
Euler-Lagrange equation with suitable test-functions as in Pohožaev [75] or
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on an ad-hoc divergence-identity as in Pucci, Serrin [77]. Both lead to the
well known Pohožaev-identity. In contrast, our approach remains as closely as
possible within the calculus of variations. All our uniqueness results follow via
the method of transformation groups, i.e. the calculation of the rate of change
of a functional L under the action of a transformation group. Pohožaev’s
identity itself emerges as a side-result.

In Chapters 4, 5, 6 the uniqueness results of Chapter 3 are applied to many
specific problems including semilinear and quasilinear boundary value prob-
lems on bounded domains on Riemannian manifolds, some special aspects of
harmonic maps between Riemannian manifolds, boundary displacement prob-
lems in nonlinear elasticity and a non-existence result for parametric closed
surfaces of prescribed mean curvature. In a number of cases the transforma-
tion groups and their generating differential equations allow some geometric
insight into old and new results. A set of applications is centered around
semilinear Dirichlet problems

∆u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω,

where Ω is a bounded subdomain of a Riemannian manifold M . A second set
of applications is developed around the nonlinear Neumann boundary value
problem

∆u+ f(x, u) = 0 in Ω, u = 0 on ΓD, ∂νu− g(x, u) = 0 on ΓN ,

where ∂Ω = ΓD ∪ ΓN is decomposed into two parts. The results depend on
the structure of the nonlinearities f(x, u), g(x, u) and the amount of symmetry
of the underlying manifold M and the domains Ω.

Every work has its temporal and spatial limitations. In the selection of
the presented material the following areas are not considered: higher order
variational problems, semilinear problems on manifolds without boundary and
on unbounded domains. Uniqueness results for all three problems may be given
by the method of transformation groups. Some notes on these problems are
given in Section 5.6.

Convention on monotonicity

A function ϕ(τ) of a real variable is called “increasing” in τ if ϕ(τ1) ≤ ϕ(τ2)
for all τ1 < τ2 and “strictly increasing” if ϕ(τ1) < ϕ(τ2) for all τ1 < τ2.
Similarly the words “decreasing” and “strictly decreasing” are used.



2

Uniqueness of critical points (I)

2.1 One-parameter transformation groups

A one-parameter transformation group on a normed space V is a family of
maps gε : dom gε ⊂ V → V which obey the group laws

(a) gε1 ◦ gε2 = gε1+ε2 , (b) g0 = Id, (c) g−ε ◦ gε = Id

on their respective domain of definition. For general references to one-para-
meter transformation groups we refer to Olver [71]. The precise definition
using the map G(ε, u) := gεu is the following; see also Fig. 2.1:

Definition 2.1. Let V be a normed vector space. A one-parameter transfor-
mation group on V is given by an open set W ⊂ R × V and a smooth map
G :W → V with the following properties:

(a) if (ε1, u), (ε2, G(ε1, u)), (ε1 + ε2, u) ∈ W then

G(ε2, G(ε1, u)) = G(ε1 + ε2, u),

(b) (0, u) ∈ W for all u ∈ V and G(0, u) = u,
(c) if (ε, u) ∈ W then (−ε, u) ∈ W and

G(−ε,G(ε, u)) = u.

It is convenient to write dom gε := {u ∈ V : (ε, u) ∈ W} and to refer to the
group G = {gε}ε∈R as the collection of the group-elements gε.

Definition 2.2. A one-parameter transformation group G = {gε}ε∈R on a
normed vector space V is called differentiable if d

dεgεu
∣
∣
ε=0
∈ V for all u ∈ V .

Examples of differentiable groups arise from ordinary differential equations

dU

dε
= φ(U), (2.1)

W. Reichel: LNM 1841, pp. 9–26, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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W
V

ε

Fig. 2.1. Domain of definiton of G

if one assumes that the map φ : V → V is locally Lipschitz continuous (for
convenience assume that φ is continuously differentiable). We denote by gεu
the unique local solution of (2.1) at time ε with initial condition U(0) = u ∈ V .
We assume that gεu is maximally extended in time. The map gε is called the
flow-map at time ε of the flow given by (2.1). By continuous dependence on
initial conditions the family G = {gε}ε∈R forms a one-parameter transforma-
tion group. The function φ is called the infinitesimal generator of the group
G.

We assume in this chapter that all one-parameter transformation groups
G on V are differentiable and given through (2.1).

2.2 Variational sub-symmetries and uniqueness of
critical points

A one-parameter transformation group, which leaves the values of a functional
L : V → R invariant, is called a variational symmetry. If the values of L are
reduced, we speak of a variational sub-symmetry. For our purpose of finding
uniqueness of critical points of functionals, the notion of a variational sub-
symmetry is most important. Precise definitions are given next.

Definition 2.3 (Variational symmetry/sub-symmetry). Let L : V → R

be a functional on a normed space V . Consider a one-parameter transforma-
tion group G on V .

(i) G is called a variational symmetry if for all (ε, u) ∈ W
L[gεu] = L[u]. (2.2)

(ii)G is called a variational sub-symmetry if for all (ε, u) ∈ W with ε ≥ 0

L[gεu] ≤ L[u]. (2.3)



2.2 Variational sub-symmetries and uniqueness of critical points 11

The restriction to ε ≥ 0 in (ii) cannot be avoided, since clearly for ε ≤ 0
the group elements will increase the values of L.

Proposition 2.4. Let L : V → R be a C1-functional and let G be a one-
parameter transformation group with infinitesimal generator φ.

(i) G is a variational symmetry for L if and only if

L′[u]φ(u) = 0 (2.4)

holds for every u ∈ V .
(ii)G is a variational sub-symmetry for L if and only if

L′[u]φ(u) ≤ 0 (2.5)

holds for every u ∈ V .

Proof. We only show (ii), since (i) follows by applying (ii) to L and −L. If G
is a variational sub-symmetry then (2.5) follows from (2.3) by differentiation.
Reversely let us assume (2.5). We show that d

dεL[gεu] ≤ 0 for all ε. To do this
notice that d

dεL[gεu] = d
dtL[gt ◦ gεu]|t=0, and since gεu is differentiable w.r.t.

ε we get
d

dε
L[gεu] =

d

dt
L[gt ◦ gεu]|t=0 = L′[gεu]φ(gεu),

which is non-positive by our hypotheses. 
�
Definition 2.5. Let L : V → R be a C1-functional on a normed space V and
let G be a one-parameter transformation group with infinitesimal generator φ.
The group G is called a strict variational sub-symmetry w.r.t. u0 ∈ V provided

L′[u]φ(u) < 0 for all u ∈ V \ {u0}.

Now we can state the main result of this chapter.

Theorem 2.6. Let L : V → R be a C1-functional and let G be a one-
parameter transformation group defined on V . If G is a strict variational
sub-symmetry w.r.t. u0 then the only possible critical point of L is u0.

Proof. Assume u ∈ V is a critical point. Then L′[u] = 0. The definition of a
strict variational sub-symmetry implies u = u0. 
�
Remark 2.7. While the idea of a variational symmetry is due to Sophus Lie, it
was Emmy Noether’s breakthrough paper [70] on conservation laws induced
by variational symmetries which showed the importance of the concept. E.g.,
consider the Lagrange-functional

∫ T

0
L(t, q, q̇) dt of a particle q : [0, T ]→ R

3. If
L is time-independent then (gεq)(t) = q(t+ε) is a variational symmetry, which
implies conservation of energy E = L −∑3

i=1 q̇
i ∂L
∂q̇i . Likewise, if for example

L is independent of the x1-direction in space then gεq(t) = q(t) + ε(1, 0, 0)
is a variational symmetry which generates the conservation of momentum
P1 = ∂L

∂q̇1 in direction x1. And similarly, if L is invariant under a rotation then
angular-momentum is the conserved quantity.
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2.3 Uniqueness results for critical points of constrained
functionals

A similar uniqueness result holds for critical points of functionals L : V → R

subject to a functional constraint N [u] = 0. We assume the non-degeneracy
hypotheses N ′[u] 	= 0 for all critical points u of L subject to N [u] = 0.

Theorem 2.8. Let L,N : V → R be C1-functionals and let G be a one-
parameter transformation group defined on V . If G is a variational symmetry
for N and a strict variational sub-symmetry for L w.r.t. u0 ∈ V then the only
possible critical point of L w.r.t. the constraint N [u] = 0 is u0.

Proof. Assume u ∈ V is a critical point on L subject to N [u] = 0. By the
non-degeneracy assumption there exists a Lagrange-multiplier λ ∈ R such
that L′[u] + λN ′[u] = 0. Moreover N ′[u]φ(u) = 0 by Proposition 2.4. Hence

d

dε
L[gεu]

∣
∣
ε=0

= L′[u]φ(u) = (L′[u] + λN ′[u])φ(u) = 0.

One the other hand, since G is a strict variational sub-symmetry for L w.r.t.
u0, the previous expression is strictly negative if u 	= u0. Hence necessarily
u = u0. 
�

2.4 First order variational integrals

The present theory will to a large part be applied to first order variational
integrals L[u] =

∫
Ω L(x, u,∇u) dx for real- or vectorvalued functions u =

(u1, . . . , uk) : Ω → R
k on a bounded domain Ω ⊂ R

n. We assume that the
Lagrangian L : R

n × R
k × R

nk → R is continuous and that L(x, u,p) is
continuously differentiable w.r.t. (u,p) = (u1, . . . , uk,p1, . . . ,pk).

Theorem 2.9 (Rate of change formula). Let G = {gε}ε∈R be a one-
parameter transformation group on V = C1(Ω)k with infinitesimal generator
φ : R

k → R
k. Define the formal differential operator

w(1) =
k∑

α=1

φα(u)∂uα +
k∑

α=1

∇φα(u) · ∇pα .

Then the rate of change of L under the action of G is given by

d

dε
L[gεu]

∣
∣
ε=0

=
∫

Ω

w(1)L(x, u,∇u) dx.

Proof. The result is evident since L′[u]φ(u) =
∫

Ω w(1)L(x, u,∇u) dx. 
�
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The rate of change formula will be generalized to non-differentiable trans-
formation groups in Chapter 3, Theorem 3.13.

Remark 2.10. If L = L(x, u) only depends on x and u then the rate of change
is given by d

dεL[gεu]|ε=0 =
∫

Ω wL(x, u) dx with w =
∑k

α=1 φ
α(u)∂uα . The

operator w(1) is called the prolongation of w.

2.5 Classical uniqueness results

2.5.1 Convex functionals

In the first example of Section 1.1 we have already seen the well known result
that a strictly convex functional L has at most one critical point.

Example 2.11. Let L[u] =
∫

Ω
L(x, u,∇u) dx with a first order Lagrangian

L : R
n×R

k×R
nk → R for vector-valued functions u : Ω → R

k on a bounded
domain Ω ⊂ R

n. Consider L on the normed space V = C1
0 (Ω)l × C1(Ω)k−l

for l ∈ {0, 1, . . . , k}. The following is evident: if for fixed x ∈ R
n the

Lagrangian L(x, u,p) is continuously differentiable and strictly convex in
(u1, . . . , uk,p1 . . . ,pk) ∈ R

k×R
nk then L has a most one critical point u0 ∈ V .

E.g., consider the case k = 1. Let F (s) be a continuously differentiable
function. Define the functional L[u] =

∫
Ω

1
2 |∇u|2−F (u) dx on the space C1

0 (Ω)
(l = 1) or C1(Ω) (l = 0). Critical points are weak solutions of

∆u + F ′(u) = 0 in Ω

with either u = 0 on ∂Ω or ∂u
∂ν = 0 on ∂Ω. If F (s) is concave in s ∈ R then

L has a unique critical point.

Example 2.12. Let H be a Hilbert space and L[u] = 1
2‖u‖2+C[u]+λD[u] with

C1-functionals C,D : H → R. Suppose that C is convex and D′[u] : H →
H globally Lipschitz-continuous w.r.t. u with Lipschitz-constant LipD′ =
supv �=w

‖D′[v]−D′[w]‖
‖v−w‖ . Then L is strictly convex for |λ| < 1/LipD′.

Example 2.13. Suppose F ′(t) = f1(t) + λt with f1 decreasing and λ < λ1,
the first Dirichlet-eigenvalue of −∆ on Ω. Then the functional L[u] =∫

Ω
1
2 |∇u|2 − F (u) dx has at most one critical point u0 ∈ W 1,2

0 (Ω). With
the help of Poincaré’s inequality the functional D[u] = 1

2

∫
Ω |u|2 dx has a

derivative D′ with Lipschitz-constant LipD′ = 1/λ1 w.r.t. the norm ‖u‖ =
(
∫

Ω
|∇u|2 dx)1/2. Hence the previous example applies.

Example 2.14 (Contraction mapping principle). Let H be Hilbert-space and
L[u] = 1

2‖u‖2−K[u] with LipK ′ < 1. Then L has at most one critical point by
Example 2.12. Since the Euler-Lagrange equation is u−K ′[u] = 0 uniqueness
also follows from the contraction mapping principle.
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2.5.2 Uniqueness of a saddle point

In the previous examples the unique critical point of a functional was the
global minimizer. One might therefore get the impression that the concept
of variational sub-symmetries will only work under circumstances where a
unique global minimizer exists. The following examples show that it works
equally well to show uniqueness of saddle points. For illustration we begin
with a simplified example.

Example 2.15. Consider L : R
2 → R given by L[x, y] = −(x−x0)2 +(y−y0)2,

where (x0, y0) ∈ R
2 is fixed. Clearly L has the unique critical point (x0, y0),

which is a saddle point. The one-parameter group

gε(x, y) :=
(
eε(x− x0), e−ε(y − y0)

)
+ (x0, y0)

is a strict variational sub-symmetry w.r.t. (x0, y0). Indeed,

d

dε
L[x, y]

∣
∣
ε=0

= −2
(
(x− x0)2 + (y − y0)2

)
< 0 unless (x, y) = (x0, y0).

The main feature of this example is that for ε > 0 the group G enhances
the direction x − x0 where L is decreasing and damps the direction y − y0
where L is increasing. The following is an infinite dimensional analogue of
Example 2.15. Consider the boundary value problem

∆u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω (2.6)

on a bounded domain Ω ⊂ R
n with a Carathéodory-function f : Ω ×R→ R,

which means that f(x, s) is measurable in x and continuous in s.

Theorem 2.16 (Dolph [23]). Counting multiplicities let 0 < λ1 < λ2 ≤
λ3 ≤ . . . be the Dirichlet eigenvalues of −∆ on Ω. Let f : Ω × R → R and
suppose that there exists an eigenvalue-index i0 such that

λi0 < sup
x∈Ω,s�=t

f(x, s)− f(x, t)
s− t < λi0+1. (2.7)

Then (2.6) has a unique solution, which is a saddle point of L[u] =
∫

Ω
1
2 |∇u|2−

F (x, u) dx, where F (x, s) =
∫ s

0
f(x, t) dt.

Remark 2.17. This result is a generalization of Example 2.13.

Usually this is proved by a contraction-mapping argument, see Lazer,
McKenna [60]. With the method of transformation groups we will show how
uniqueness in Dolph’s result is a special case of the following abstract result.

For the rest of this section we assume that (H, 〈·, ·〉) is a real Hilbert-space
and A : D ⊂ H → H a selfadjoint, strictly positive definite, densely defined
linear operator. Let HA be the completion of D w.r.t. norm ‖ · ‖A generated
by the inner product 〈u, v〉A := 〈Au, v〉.
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Definition 2.18. Let f ∈ H. An element u ∈ HA is called a weak solution of

Au = f

provided 〈u, v〉A = 〈f, v〉 for all v ∈ HA.

This is equivalent to saying that u is a critical point of the functional J :
HA → R with J [u] := 1

2 〈u, u〉A − 〈f, u〉.
Theorem 2.19. Assume that the selfadjoint linear operator A : D ⊂ H → H
has discrete spectrum σ consisting of the eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . .
including multiplicities. Let K : HA → R be a C2-functional and for u ∈ HA

let k(u) ∈ H be the Riesz-representation of K ′(u) w.r.t. 〈·, ·〉. The equation

Au = k(u) (2.8)

has at most one weak solution provided there exists an index i0 ∈ N such that

Lip
(
k − λi0 + λi0+1

2
Id

)
<
λi0+1 − λi0

2
,

where the Lipschitz constant is computed w.r.t. the norm ‖ · ‖ of H.

Proof. The proof consists in the construction of a suitable strict variational
sub-symmetry as in Example 2.15. The eigenvectors φi corresponding to the
eigenvalues λi form an orthonormal Fourier-basis in H , i.e. for every u ∈ H

u =
∞∑

i=1

uiφi with ui = 〈u, φi〉.

Recall that HA is the completion of D w.r.t. the norm ‖u‖A := 〈u, u〉1/2
A . Since

‖u‖A ≥ λ1‖u‖ we can consider HA as closed subspace of H . Weak solutions
of (2.8) are critical points of the functional L : HA → R given by

L[u] =
1
2
‖u‖2A −K(u).

Suppose u0 is a critical point of L. Define the one-parameter group G = {gε :
HA → HA}ε∈R as follows

gεu :=
i0∑

i=1

eε(u− u0)iφi +
∞∑

i=i0+1

e−ε(u− u0)iφi + u0.

We show that gε strictly reduces L unless u = u0. Using the orthogonality
relations of the eigenvectors we get
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d

dε
L[gεu]|ε=0 = 〈u, d

dε
gεu

∣
∣
ε=0
〉A −K ′(u)

d

dε
gεu

∣
∣
ε=0

= 〈u, d
dε
gεu

∣
∣
ε=0
〉A − 〈k(u),

d

dε
gεu

∣
∣
ε=0
〉

=
i0∑

i=1

λi(u− u0)iui −
∞∑

i=i0+1

λi(u− u0)iui

−〈
k(u),

i0∑

i=1

(u− u0)iφi −
∞∑

i=i0+1

(u − u0)iφi

〉
.

Next one uses that u0 weakly solves (2.8), i.e. for each i it holds that λiu0,i =
〈k(u0), φi〉. Inserting this in the rate-of-change formula one obtains

d

dε
L[gεu]|ε=0 =

i0∑

i=1

λi(u− u0)2i −
∞∑

i=i0+1

λi(u − u0)2i

+
〈
k(u0)− k(u),

i0∑

i=1

(u− u0)iφi

〉− 〈
k(u0)− k(u),

∞∑

i=i0+1

(u− u0)iφi

〉
.

With the definition
l(u) := k(u)− λi0 + λi0+1

2
u

one can replace k(u) by λi0+λi0+1

2 u+ l(u). Estimation of λi by λi0 in the first
sum and of −λi by −λi0+1 in the second sum implies

d

dε
L[gεu]|ε=0

≤ (λi0 −
λi0 + λi0+1

2
)

i0∑

i=1

(u− u0)2i − (λi0+1 − λi0 + λi0+1

2
)

∞∑

i=i0+1

(u− u0)2i

+
〈
l(u0)− l(u),

i0∑

i=1

(u − u0)iφi

〉− 〈
l(u0)− l(u),

∞∑

i=i0

(u − u0)iφi

〉

=
λi0 − λi0+1

2
‖u− u0‖2 + 〈l(u0)− l(u),

∞∑

i=1

±(u− u0)iφi〉,

where + is used for i = 1 . . . i0 and − for i = i0 + 1 . . .∞. By the Cauchy-
Schwarz inequality we conclude

d

dε
L[gεu]|ε=0 ≤

(λi0 − λi0+1

2
+ Lip l

)‖u− u0‖2,

which is strictly negative by our assumption on Lip l unless u = u0. Thus gε

is a strict variational sub-symmetry w.r.t. u0. 
�
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Remark 2.20. Note that gεu is the flow map of the infinite system of differential
equations in the Fourier-coefficients

U̇i = (U − u0)i, 1 ≤ i ≤ i0,
U̇i = −(U − u0)i, i0 + 1 ≤ i <∞.

with initial condition U(0) = u. Compare with Example 2.15 where

Ẋ = X −X0, Ẏ = −(Y − Y0),

and with the example in Section 1.1, where for a convex functional we used

U̇ = −(U − u0).

Example 2.21 (Uniqueness part of the Fredholm-alternative). For a given b ∈
H the linear equation

Au = b+ λu, b ∈ H
has exactly one weak solution provided λi0 < λ < λi0+1. Theorem 2.19
applies, since the Lipschitz-condition for b + (λ − λi0+λi0+1

2 )u amounts to
|λ− λi0+λi0+1

2 | < λi0+1−λi0
2 .

Example 2.22 (Uniqueness part of Theorem 2.16). Consider the operator −∆
on the Hilbert-space H = L2(Ω) with domain D0 = W 2,2(Ω) ∩W 1,2

0 (Ω). Let
A : D ⊂ H → H be a self-adjoint extension of −∆. If for u ∈ H the map K
is given by K(u) =

∫
Ω F (x, u) dx then the Riesz-representation of the Fréchet

derivative is k : u �→ f(x, u). Let l : u �→ f(x, u) − λi0+1+λi0
2 u. To find the

Lipschitz-constant of l we calculate

‖l(v)− l(w)‖2 =
∫

Ω

(
f(x, v)− f(x,w) − λi0+1 + λi0

2
(v − w)

)2

dx

≤
(λi0+1 − λi0

2
− δ

)2

‖v − w‖2,

with a suitable δ > 0 by assumption (2.7). Therefore Lip l ≤ λi0+1−λi0
2 − δ

and Theorem 2.19 shows uniqueness. 
�

2.5.3 Strict variational sub-symmetry w.r.t. an affine subspace

The notion of a strict variational sub-symmetry can be suitably weakened if
instead of uniqueness one wants to localize the critical points of a functional
L : V → R within an affine subspace of V .

Definition 2.23. Let L : V → R be a functional on a normed space V .
Suppose u0 ∈ V is given and let V1 ≤ V be a linear subspace. The one-
parameter transformation group G defined on V is called a strict variational
sub-symmetry w.r.t. the affine space u0 ⊕ V1 provided

d

dε
L[gεu]

∣
∣
ε=0

< 0 for all u ∈ V \ (u0 ⊕ V1).
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Note that for V1 = {0} we recover the notion of a strict variational sub-
symmetry w.r.t. u0 from Definition 2.5. As shown in the next theorem the
notion of a strict variational sub-symmetry w.r.t. an affine subspace localizes
the critical points in that subspace. The proof is the same as for Theorem 2.6.

Theorem 2.24. Let L : V → R be a C1-functional on a normed space V and
let G be a one-parameter transformation group defined on V . Suppose u0 ∈ V
is given and let V1 ≤ V be a linear subspace. If G is a strict variational sub-
symmetry w.r.t. the affine subspace u0⊕V1 then all critical points of L belong
to u0 ⊕ V1.

As a first application of this concept consider on the unit ball B1(0) ⊂ R
n

the boundary value problem

∆u+ f(x, u) = 0 in B1(0), u = 0 on ∂B1(0). (2.9)

Denote by 0 < λ1 < λ2 ≤ λ3 ≤ . . . the Dirichlet eigenvalues of −∆ including
multiplicities with corresponding eigenfunctions φi. It is well known that λ1

is simple and φ1 radially symmetric, whereas λ2 is not simple and φ2 not
radially symmetric. Let us denote by L2

rad, W
1,2
0,rad the respective subspaces

of L2(B1(0)), W 1,2
0 (B1(0)) consisting of radially symmetric functions and by

µ1 ≤ µ2 ≤ µ3 ≤ . . . the eigenvalues of −∆ corresponding to non-radial eigen-
functions ψ1, ψ2, ψ3, . . .. In this notation µ1 = λ2.

Theorem 2.25. Assume that

(a) ∃u0 ∈W 1,2
0 (B1(0)) s.t.

∫
B1(0)∇u0∇v − f(x, u0)v dx = 0 ∀v ∈ (W 1,2

0,rad)
⊥

(b) f(x, s) is locally Lipschitz continuous in s uniformly w.r.t. x and

sup
x∈B1(0),s�=t

f(x, s)− f(x, t)
s− t < λ2.

Then every weak solution u of (2.9) belongs to u0 ⊕W 1,2
0,rad.

Proof. For s, t ∈ [−M,M ] we may assume

−LM < sup
x∈B1(0),s�=t

f(x, s)− f(x, t)
s− t < λ2 = µ1 (2.10)

for a large LM > 0. First, this restricts the result to all those solutions which
attain values in [−M,M ]. But since M can be taken arbitrarily large the full
statement is recovered.

For u ∈ W 1,2
0 (B1(0)) let uj :=

∫
B1(0)

uψj dx for j ≥ 1. Let gεu :=
∑∞

j=1 e
−ε(u−u0)jψj +P (u−u0)+u0, where P : L2(B1(0))→ L2

rad is the or-
thogonal projection. Consider the functional L[u] =

∫
B1(0)

1
2 |∇u|2−F (x, u) dx

on W 1,2
0 (B1(0)) with F (x, s) =

∫ s

0
f(x, t) dt. One obtains
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d

dε
L[gεu]

∣
∣
ε=0

= −
∞∑

j=1

µj(u− u0)juj +
∞∑

j=1

∫

B1(0)

f(x, u)(u− u0)jψj dx.

By (a) we know µju0,j =
∫

B1(0)
f(x, u0)ψj dx for j ≥ 1. Therefore

d

dε
L[gεu]

∣
∣
ε=0

= −
∞∑

j=1

µj(u−u0)2j +
∞∑

j=1

∫

B1(0)

(f(x, u)−f(x, u0))(u−u0)jψj dx.

By adding and subtracting µ1−LM

2

∑∞
j=1(u− u0)2j we obtain

d

dε
L[gεu]

∣
∣
ε=0

= −
∞∑

j=1

(
µj − µ1 − LM

2
)
(u− u0)2j

+
∞∑

j=1

∫

B1(0)

(
f(x, u)− f(x, u0)− µ1 − LM

2
(u− u0)

)
(u− u0)jψj dx

≤
(
− µ1 + LM

2
+ Lip

(
f(x, s)− µ1 − LM

2
s
)) ∞∑

j=1

(u− u0)2j .

By (2.10) the Lipschitz-constant of f(x, s) − µ1−LM

2 s is strictly smaller than
µ1+LM

2 . Hence d
dεL[gεu]|ε=0 < 0 if u−u0 	∈ W 1,2

0,rad, i.e., gε is a strict variational
sub-symmetry w.r.t. u0⊕W 1,2

0,rad. Theorem 2.24 applies and proves the result.

�

Corollary 2.26. Suppose only condition (b) of Theorem 2.25 holds.

(i) If u, v are two solutions of (2.9) then u− v ∈ W 1,2
0,rad.

(ii)If f(x, s) = f(y, s) whenever |x| = |y| then every solution of (2.9) is
radially symmetric.

Remark 2.27. Part (ii) was obtained by Lazer, McKenna [59]. It should be
compared with Example 2.13.

Proof. (i) Let v be a solution of (2.9). With u0 := v Theorem 2.25 implies
that u ∈ v ⊕W 1,2

0,rad for every other solution u. (ii) Let u0 = 0. Condition
(a) in Theorem 2.25 holds since f(x, 0) is a radial function. As a result every
solution belongs to W 1,2

0,rad. 
�
As another example we have the following generalization of Theorem 2.19.

Again we assume that (H, 〈·, ·〉) is a real Hilbert-space and A : D ⊂ H → H a
selfadjoint, strictly positive definite, densely defined linear operator. By HA

we denote the completion of D w.r.t. the inner product 〈u, v〉A := 〈Au, v〉.



20 2 Uniqueness of critical points (I)

Theorem 2.28. Assume that the selfadjoint linear operator A : D ⊂ H → H
has discrete spectrum σ consisting of the eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ . . .
including multiplicities. Assume further that there exists a closed subspace
W ⊂ H such that A : W ∩ D → W ∩ D is self-adjoint with spectrum σ1.
Then σ \ σ1 consist of the eigenvalues 0 < µ1 ≤ µ2 ≤ µ3 ≤ . . . including
multiplicities. Let K : HA → R be a C2-functional and for each u ∈ HA let
k(u) ∈ H be the Riesz-representation of K ′(u) w.r.t. 〈·, ·〉. All weak solutions
of the equation

Au = k(u) (2.11)

belong to the affine subspace u0 ⊕W provided

(a) u0 ∈ HA is such that 〈u0, v〉A − 〈k(u0), v〉 = 0 for all v ∈ (W ∩HA)⊥,
(b) ∃j0 ∈ N such that Lip

(
k− µj0+µj0+1

2 Id
)
<

µj0+1−µj0
2 , where the Lipschitz

constant is computed w.r.t. to the norm ‖ · ‖ of H.

Remark 2.29. Theorems of the same spirit were first found by Lazer, McKenna
[59] and subsequently by Fečkan [30] and Mawhin, Walter [62].

Proof. Recall that HA is the completion of D w.r.t. the inner product
〈u, v〉A := 〈Au, v〉. We have the following decomposition

HA = (W ∩HA)
︸ ︷︷ ︸

=:V1

⊕ (W ∩HA)⊥
︸ ︷︷ ︸

=:V0

.

We need to show that Theorem 2.24 applies. As in Theorem 2.19 we have the
Fourier-decomposition ofH with respect to the full spectrum σ ofA. Moreover
we have the spectrum σ1 of A on W ∩ D and the remaining eigenvalues 0 <
µ1 ≤ µ2 ≤ µ3 ≤ . . . from σ\σ1 with corresponding eigenvectors ψ1, ψ2, ψ3, . . ..
We use the following notation

u =
∞∑

j=1

ujψj + Pu,

where as usual uj = 〈u, ψj〉 and P is the orthogonal projector from H onto
W . This leads to the following definition of a one-parameter transformation
group

gεu :=
j0∑

j=1

eε(u− u0)jψj +
∞∑

j=j0+1

e−ε(u − u0)jψj + P (u− u0) + u0.

The same computation as in Theorem 2.19 leads to

d

dε
L[gεu]|ε=0 =

j0∑

j=1

µj(u− u0)juj −
∞∑

j=j0+1

µj(u− u0)juj

−〈
k(u),

j0∑

j=1

(u− u0)jψj −
∞∑

j=j0+1

(u − u0)jφj

〉
.
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Next one uses condition (a), i.e., for each j it holds that µju0,j = 〈k(u0), ψj〉.
Inserting this in the rate-of-change formula one obtains

d

dε
L[gεu]|ε=0 =

j0∑

j=1

µj(u− u0)2j −
∞∑

j=j0+1

µj(u− u0)2j

+
〈
k(u0)− k(u),

j0∑

j=1

(u− u0)jψj

〉− 〈
k(u0)− k(u),

∞∑

j=j0+1

(u − u0)jψj

〉
.

Using the Lipschitz properties of l(u) := k(u) − µj0+µj0+1

2 u we obtain as in
Theorem 2.19

d

dε
L[gεu]|ε=0 ≤

(µj0 − µj0+1

2
+ Lip l

)‖Q(u− u0)‖2,

where Q : H → W⊥ is the orthogonal projection onto W⊥. By assumption
(b) we find d

dεL[gεu]|ε=0 < 0 for all u ∈ HA such that u − u0 	∈ V1. Hence
gε is a strict variational sub-symmetry w.r.t. the affine space u0 ⊕ V1. Hence
Theorem 2.24 applies and proves the claim. 
�

If one applies the previous theorem to problem (2.9) then one finds the
following result, which complements Theorem 2.25 and Corollary 2.26. It was
essentially shown by Lazer, McKenna [59].

Theorem 2.30. Counting multiplicities let 0 < λ1 < λ2 ≤ λ3 ≤ . . . be the
Dirichlet eigenvalues of −∆ on B1(0) and let µ1 ≤ µ2 ≤ µ3 ≤ . . . be the
eigenvalues of −∆ corresponding to non-radial eigenfunctions ψ1, ψ2, ψ3, . . ..
Let f : B1(0)×R→ R. Suppose there exists an eigenvalue-index j0 such that

µj0 < sup
x∈Ω,s�=t

f(x, s)− f(x, t)
s− t < µj0+1.

Then the following holds:

(i) if u, v are two solutions of (2.9) then u− v ∈W 1,2
0,rad,

(ii)if f(x, s) = f(y, s) whenever |x| = |y| then every solution of (2.9) is radi-
ally symmetric.

2.5.4 Uniqueness of positive solutions for sublinear problems

So far the one-parameter transformation group G = {gε}ε∈R was defined on
a normed vector space V . If instead we have that gε : dom gε ⊂ O → O for
an open subset O of V then again a strict variational sub-symmetry w.r.t.
u0 ∈ O implies that every critical point of L : V → R in O coincides with u0.

This observation is applied to the following problem on a bounded smooth
domain Ω ⊂ R

n

∆u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω, (2.12)

where f : Ω × [0,∞)→ [0,∞) is sublinear, i.e.,
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(i) f(x, s)/s is strictly decreasing for s ∈ (0,∞),
(ii) ∃C > 0 such that 0 ≤ f(x, s) ≤ C(1 + s) for all s ∈ [0,∞) and all x ∈ Ω.

A prototype sublinear function is f(x, u) = up with 0 < p < 1. Existence and
uniqueness results for positive solutions of (2.12) are due to Krasnoselskii [56],
Keller, Cohen [54] and Laetsch [58]. The methods are based on maximum prin-
ciples. Later Brezis, Oswald [10] and Ambrosetti, Brezis, Cerami [1] avoided
the maximum principle and obtained uniqueness of the positive solution by
testing (2.12) with suitable test-functions. We will show how the uniqueness of
positive solutions fits well in the framework of the method of transformation-
groups provided we restrict attention to weak solutions in C1

0 (Ω). Belloni and
Kawohl [8] obtained uniqueness in the pure W 1,2

0 (Ω)-context.

We start with a purely formal calculation, which will be made rigorous
later. Let L[u] =

∫
Ω

1
2 |∇u|2−F (x, u) dx with F (x, s) =

∫ s

0
f(x, t) dt. Let u0 ∈

C1
0 (Ω) be a positive weak solution of (2.12). For the infinitesimal generator of

a variational sub-symmetry we set φ(x, u) = (−u + u0(x)2

u )∂u, where for the
moment we ignore the fact that φ is discontinuous at u = 0. Then we find the
prolongation

w(1) = (−u+
u0(x)2

u
)∂u + (−∇u+ 2∇u0(x)

u0(x)
u
−∇uu0(x)

2

u2
) · ∇p.

For verification of the sub-symmetry criterion we use the rate of change for-
mula from Theorem 2.9 and calculate

∫

Ω

w(1)L(x, u,∇u) dx

=
∫

Ω

f(x, u)u− f(x, u)
u

u2
0 − |∇u|2 + 2∇u · ∇u0

u0

u
− |∇u|2u0

2

u2
dx.

Using the fact that u0 solves (2.12) this yields
∫

Ω

w(1)L(x, u,∇u) dx =
∫

Ω

(f(x, u)
u

− f(x, u0)
u0

)
(u− u0)(u + u0) dx

+
∫

Ω

−∣
∣∇u− u

u0
∇u0

∣
∣2 − ∣

∣∇u0 − u0

u
∇u∣∣2 dx.

Since f(x, s)/s is strictly decreasing for s > 0 we find
∫

Ω
w(1)L(x, u,∇u) dx <

0 unless u ≡ u0. Hence φ generates a strict variational sub-symmetry w.r.t.
u0 and uniqueness follows by Theorem 2.6.

Now we need to address the question how to justify rigorously the previous
steps. Although the infinitesimal generator φ is singular at u = 0 the ordinary
differential equation

U̇ = −U + u2
0/U, U(0) = u
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generated by φ has the unique solution

gεu =
√
u2

0 + e−2ε(u2 − u2
0),

which is well defined in C1
0 (Ω).

Lemma 2.31. Let u0 ∈ C1
0 (Ω) be a fixed positive weak solution of (2.12).

If u ∈ C1
0 (Ω) is an arbitrary positive weak solution then u/u0 and u0/u are

bounded on Ω.

Proof. Since ∆u ≤ 0 weakly on Ω and u = 0 on ∂Ω the strong maximum
principle implies that ∇u·ν < 0 everywhere on ∂Ω, and hence ∇u·ν ≤ −δ < 0
on ∂Ω. Since the same holds for u0 the claim follows. 
�

We proceed with the uniqueness proof as follows. For k > 1 define Ok :=
{u ∈ C1

0 (Ω) : u0(x)/k < u(x) < u0(x)}. By Lemma 2.31 we know that any
positive critical points of L belongs to Ok for k ≥ k0 = k0(u). Given a fixed
u ∈ Ok with k ≥ k0 there exists ε0 = ε0(u) > 0 such that gεu ∈ Ok for all ε ∈
[−ε0, ε0]. This means that for small ε the group operation gεu is well defined
for u ∈ Ok. The vector-field w generates a transformation group for the
functional L if the group-operation is restricted to initial functions belonging
Ok. Since we have already verified that the variational sub-symmetry is strict
w.r.t. u0, the uniqueness proof is complete.

Example 2.32. The functional L[u] =
∫

Ω
a(x)

2 |∇u|2 − F (x, u) dx has at most
one positive critical point in C1

0 (Ω) provided a > 0 in Ω and f(x, s)/s is
strictly decreasing for s ∈ (0,∞).

Example 2.33. For 0 < p < 1 the Neumann problem

∆u − u+ up = 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (2.13)

on a bounded domain has only the positive solution u ≡ 1 in the class of weak
C1-solutions. Positive solutions are critical points of the functional L[u] =∫

Ω
1
2 |∇u|2 + 1

2u
2 − 1

p+1u
p+1 dx on the space C1(Ω). The result follows if one

applies the same variational sub-symmetry as for the Dirichlet-problem (2.12).

Example 2.34. For 0 < p < 1 the nonlinear Neumann problem

∆u− u = 0 in Ω,
∂u

∂ν
= up on ∂Ω, (2.14)

on a bounded domain has only one positive weak solution in the class C1(Ω).
Positive solutions are now given as critical points of the functional L[u] =∫

Ω
1
2 |∇u|2 + 1

2u
2 dx − ∫

∂Ω
1

p+1u
p+1 dσ with u ∈ C1(Ω). By choosing again

w = (−u+ u0(x)2

u )∂u one can prove uniqueness.
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Example 2.35 (q-Laplacian). For 1 < q <∞ critical points in W 1,q
0 (Ω) of the

functional L[u] =
∫

Ω
1
q |∇u|q − F (x, u) dx weakly satisfy

div(|∇u|q−2∇u) + f(x, u) = 0 in Ω, u = 0 on ∂Ω, (2.15)

provided F (s) satisfies a subcritical growth condition. The operator ∆qu =
div(|∇u|q−2∇u) is called the q-Laplacian. For q 	= 2 the operator ∆q is not
uniformly elliptic near those points x where |∇u(x)| = 0 or ∞. Weak solu-
tions of (2.15) are therefore in general not classical but only C1,α-regular, cf.
DiBenedetto [20], Lieberman [61]. Like in the sublinear case, uniqueness of
positive solutions holds in the class of weak C1

0 (Ω)-solutions provided

(i) f(x, s)/sq−1 is strictly decreasing for s ∈ (0,∞),
(ii) ∃C > 0 such that 0 ≤ f(x, s) ≤ C(1 + sq−1) for all s ∈ [0,∞).

This result goes back do Dı́az, Saa [22] and was recently sharpened by Belloni,
Kawohl [8]. For a proof via transformation groups we may use the uniqueness
principle of strict variational sub-symmetries, provided we restrict to the class
of weak solution in C1

0 (Ω). We follow the lines of the sublinear case. The
strong maximum principle used in Lemma 2.31 has its analogue for the p-
Laplacian, cf. Vazquez [90]. Next, one has to show that the transformation
group generated by w(x, u) = (−u + u0(x)q

uq−1 )∂u is a strict variational sub-
symmetry w.r.t. u0. The proof requires the inequality

|∇u|q + |∇u0|q + (q − 1)
uq

uq
0

|∇u0|q + (q − 1)
uq

0

uq
|∇u|q

≥ q u
q−1
0

uq−1
∇u · ∇u0|∇u|q−2 + q

uq−1

uq−1
0

∇u · ∇u0|∇u0|q−2

with equality if and only if u, u0 are linearly dependent. For a proof one
uses the strict convexity of a �→ |a|q for a ∈ R

n to show the following three
inequalities:

1 + (q − 1)sq ≥ qsq−1 for all s > 0,
|a|q + (q − 1)tq|b|q ≥ qtq−1a · b|b|q−2 for all a, b ∈ R

n, t > 0,
|b|q + (q − 1)t−q|a|q ≥ qt1−qa · b|a|q−2 for all a, b ∈ R

n, t > 0.

2.5.5 Simplicity of the first eigenvalue

A simple variant of the uniqueness proof for sublinear problems shows that the
first eigenvalue of second-order divergence type operators is simple. Suppose
again that Ω ⊂ R

n is a bounded smooth domain.
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Theorem 2.36. Let

λ1 = inf
u∈C1

0(Ω)

∫
Ω a(x)|∇u|2 + b(x)u2 dx

∫
Ω
c(x)u2 dx

with bounded measurable functions a, b, c : Ω → R such that a(x) ≥ δ > 0 and
c(x) ≥ 0 for all x ∈ Ω. If the Dirichlet eigenvalue λ1 is attained in C1

0 (Ω) then
λ1 is simple. The same holds for Neumann eigenvalues if C1

0 (Ω) is replaced
by C1(Ω).

Proof. The proof is done for the Dirichlet case only. For the Neumann case
the proof is identically the same. We consider λ1 as a critical value of L[u] =∫

Ω a(x)|∇u|2 + b(x)u2 dx over the constraint S = {u ∈ C1
0 (Ω) : N [u] =∫

Ω
c(x)u2 dx = 1}. We fix some positive first-eigenfunction u0 with N [u0] = 1

and use the same transformation group as in the previous section restricted
to the set Ok := {(u ∈ C1

0 (Ω) : u0(x)/k < u(x) < ku0(x)}. The same
reasoning as in Lemma 2.31 shows that for sufficiently large k any positive
first-eigenfunction lies in Ok. Let us check that the functional constraint S is
left invariant: by the rate of change-formula from Theorem 2.9 we find

d

dε
N [u]|ε=0 =

∫

Ω

wN dx

=
∫

Ω

2c(x)u(−u+
u0(x)2

u
) dx

= 0.

Hence the functional constraint S is left invariant. We proceed to check the
criterion for a strict variational sub-symmetry. As for the sublinear case we
obtain

∫

Ω

w(1)L(x, u,∇u) dx

=
∫

Ω

−a(x)
∣
∣
∣∇u− u

u0(x)
∇u0(x)

∣
∣
∣
2

− a(x)
∣
∣
∣∇u0(x)− u0(x)

u
∇u

∣
∣
∣
2

dx

≤ 0

and in fact the last inequality is strict unless u(x)∇u0(x) = u0(x)∇u(x) for
almost all x ∈ Ω, i.e. unless u(x)/u0(x) ≡ const.. Therefore Theorem 2.8
applies and proves that every positive first-eigenfunction lying in S must be
equal to u0, or in other words, any positive first-eigenfunction must be a
multiple of u0. 
�
Example 2.37. The first eigenvalue of the modified Stekloff-problem ∆u−u =
0 in Ω with ∂u

∂ν = λu on ∂Ω is simple.
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Example 2.38. For q > 1 the first eigenvalue of the q-Laplacian

λ1 = inf
u∈C1

0(Ω)

∫
Ω
|∇u|q+1 dx

∫
Ω |u|q+1 dx

is simple. This result (and a generalization of it) was proved by Anane [2] and
then by Belloni, Kawohl [8]. A proof can be given with the same transforma-
tion group as in Example 2.35.

Example 2.39. For q > 1 the functional L[u] =
∫

Ω
1
q |∇u|q − F (u) dx has at

most one critical point u0 ∈ W 2,1(Ω)∩C1
0 (Ω) provided F ′(t) = f1(t)+λ|t|q−1t

with f1 decreasing and λ < λ1. Here λ1 denotes the first Dirichlet-eigenvalue
of q-Laplacian on Ω. Examples 2.13 and 2.38 are relevant.
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Uniqueness of critical points (II)

In the previous chapter we discussed one-parameter transformation groups
arising from ordinary differential equations in a normed space. For the proto-
type functional L[u] =

∫
Ω L(x, u,∇u) dx this means that only those transfor-

mations were considered where the dependent variable u was transformed and
the independent variable x was left untouched. In this chapter we extend the
theory of one-parameter transformation groups to cases where the dependent
and the independent variable are simultaneously transformed. Now the struc-
ture of the underlying domain Ω will be important. We assume throughout
that Ω is subset of an n-dimensional Riemannian manifold M with metric g.
First we recall the basic concepts of Riemannian manifolds.

3.1 Riemannian manifolds

A collection is presented of those differential geometric concepts, which are
useful in the calculus of variations on manifolds.

Manifolds. A manifold M of dimension n is a topological Hausdorff space,
such that for each point x ∈ M there exists an open neighbourhood U ⊂ M
of x and a homeomorphism h : U → R

n. The pair (U , h) is called a local
chart, the functions (x1(x), . . . , xn(x)) = h(x) are called local coordinates.
The manifold M is called smooth if a collection of local charts (Uι, hι)ι∈I

exists, such that
⋃

ι∈I Uι = M and whenever Uι1 ∩Uι2 	= ∅ then hι1 ◦ h−1
ι2 and

hι2 ◦ h−1
ι1 are smooth maps between neighbourhoods of R

n.

Differentiable functions. A function f : U ⊂M → R is called differentiable at
x if for a local chart (U , h) at x the function f◦h−1 : h(U)→ R is differentiable
at h(x). We write ∂xif(x) or simply f,i(x) for ∂

∂xi f ◦ h−1|h(x).

Tangent vectors, tangent space. A tangent vector w at x ∈ M is a map
w : f �→ w(f) ∈ R defined for functions f , which are differentiable in a
neighbourhood of x such that:
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(a) w(αf + βg) = αw(f) + βw(g) for all α, β ∈ R,
(b)w(fg) = f(x)w(g) + g(x)w(f).

The tangent space TxM is the set of all tangent vectors at x. In local coor-
dinates the vectors ∂xi |x, i = 1, . . . , n with ∂xi |xf := ∂xif(x) are a basis of
TxM . A vector w can be written as w =

∑n
i=1 w

i∂xi |x.

Summation convention. Indices occurring twice are automatically summed,
e.g. w = wi∂xi |x.

Vector fields, tangent bundle. The tangent bundle TM =
⋃

x∈M TxM is a 2n-
dimensional manifold. A vector-field w : M → TM is a smooth map assigning
to each x ∈M a vector w(x) ∈ TxM . In local coordinates w(x) = wi(x)∂xi |x
or simply w = wi∂xi .

Covectors, cotangent space. The space of linear functionals on TxM , i.e. the
dual space T ∗

xM is called the cotangent space; its elements are called covectors.
In local coordinates the dual-basis of ∂xi |x is called dxi|x with dxi|x(∂xj |x) =
δi
j . A covector ω at x may be written as ω = ωidx

i|x.

One forms, cotangent bundle. The cotangent bundle T ∗M =
⋃

x∈M T ∗
xM is

also a 2n-dimensional manifold. A one-form ω : M → T ∗M is a smooth
map assigning to each x ∈ M a covector ω(x) ∈ T ∗M . In local coordinates
ω(x) = ωi(x)dxi|x or simply ω = ωidx

i.

The differential of a map. If τ : M → N is a smooth map between two man-
ifolds then its differential dτ : TM → TN is a linear map defined pointwise
for fixed x as follows: let w ∈ TxM be an arbitrary vector and h : N → R an
arbitrary smooth function. Then a new vector (dτw)|τ(x) ∈ Tτ(x)N is defined
by

(dτw)|τ(x)h := w(h ◦ τ)(x).
Thus dτ |x : TxM → Tτ(x)N . For vector-fields w on M the definition
(dτw)h := w(h ◦ τ) defines a new vector field dτw on N . In local coordi-
nates one finds for w = wi∂xi that dτw = τk

,jw
j∂yk . If u : M → R is a

function, then its differential du is a one-form on M given by du = u,idx
i.

Tensors, tensor fields. For our purposes we only need the notion of a 2-tensor.
A tensor v of type (0, 2) at a point x is a bilinear map v : TxM×TxM → R. A
basis of (0, 2)-tensors is given by dxi|x⊗dxj |x with dxi|x⊗dxj |x(∂xk |x, ∂xl |x) =
δi
kδ

j
l . Thus v = aijdx

i|x⊗dxj |x. A tensor B of type (2, 0) at x is a bilinear map
T ∗

xM×T ∗
xM → R, a basis is given by ∂xi |x⊗∂xj |x. Hence B = bij∂xi |x⊗∂xj |x.

Finally a tensor of type (1, 1) is a bilinear map C : T ∗
xM × TxM with basis

∂xi |x⊗dxj |x, i.e. C = cij∂xi |x⊗dxj |x. A simple way to construct a (1, 1)-tensor
from a vector w and a covector ω is by defining the tensor w ⊗ ω pointwise
for η ∈ T ∗

xM and z ∈ TxM through the formula (w ⊗ ω)(η, z) := η(w)ω(z).
Tensor fields arise by smoothly assigning each point x ∈M a tensor at x.
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Tensors of type (1, 1) as self-maps of TxM . If C : T ∗
xM×TxM → R is a (1, 1)-

tensor then we may interpret C as a self-map of TxM . In local coordinates
Cw = cijw

j∂xi |x for every vector w = wi∂xi |x, and in abstract form

(Cw)f := C(df,w) for every smooth functionf.

Riemannian manifolds. A Riemannian manifold (M, g) is a manifold M to-
gether with a smooth (0, 2)-tensor field g = gijdx

i ⊗ dxj such that for each
fixed x ∈ M the map g|x : TxM × TxM is a positive definite and symmetric
bilinear form. On TxM the tensor g induces a scalar product v·w = g|x(v,w),
and likewise for vector-fields. By forming the inverse matrix gij(x) one defines
a (2, 0)-tensor field gij∂xi ⊗ ∂xj .

Raising and lowering indices. Type conversion. With the metric tensor g we
can define the type conversion, e.g. if v = aijdx

i ⊗ dxj is a (0, 2)-tensor-field
then cij = gilalj defines the coefficients of a (1, 1)-tensor C = cij∂xi ⊗ dxj .
This operation is called raising an index. Similarly, indices can be lowered by
multiplication with gij .

Covariant differentiation, Christoffel symbols. For the general theory of co-
variant differentiation see Aubin [4]. We only need the following facts: for a
smooth function u : M → R the gradient ∇u is the unique vector-field such
that g(∇u,w) = du(w) = wiu,i. In local coordinates ∇u = giju,j∂xi . We use
the notation ∇u = u;i∂xi with u;i = giju,j. For the definition of the covariant
derivative (in the sense of Levi-Civita) of a vector-field we need to define the
Christoffel-symbols Γ i

jk : M → R

Γ i
jk =

1
2
gil(gjl,k + gkl,j − gjk,l), i, j, k = 1, . . . , n.

For a smooth vector-field w = wi∂xi the covariant derivative is defined as the
(1, 1)-tensor Dw = wi

;jdx
j ⊗ ∂xi with

wi
;j = wi

,j + Γ i
jkw

k.

The function div w = traceDw = wi
;i is called the divergence of w.

Covariant derivative along paths. Let γ : (−1, 1)→ M be a smooth path. A
vector-field ζ along γ is a map ζ : (−1, 1) → TM such that ζ(t) ∈ Tγ(t)M .
The covariant derivative of ζ along γ is the vector-field ζ′ : (−1, 1) → TM
with

ζ ′ = (ζ̇i + Γ i
jkζ

j γ̇k)∂xi .

Here we use the notation ζ̇i(t) = d
dtζ

i(t) and γ̇i(t) = d
dtγ

i(t).

Hessian and Laplace-Beltrami. Let u : M → R be a smooth function. The
(1, 1)-tensor D∇u is called the Hessian of u. It has the symmetry property
g(D∇uw, z) = g(w, D∇uz) for any two vector fields w, z. The function ∆u =
traceD∇u = u;i

;i is called the Laplace-Beltrami of u.
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3.2 The total space M × R
k

Let (M, g) be an n-dimensional smooth Riemannian manifold with metric g
and without boundary. On M we consider a subset Ω and R

k-valued functions
u : Ω ⊂M → R

k. The graph of such a function u is a subset of M × R
k.

The total space M ×R
k is an (n+ k)-dimensional smooth manifold. Each

tangent space has the simple structure T(x,u)(M × R
k) = TxM × R

k. Vector
fields w on M × R

k are written in local coordinates as w = ξi(x, u)∂xi +
φα(x, u)∂uα . We use the notation w = ξ(x, u) + φ(x, u) with ξ(x, u) ∈ TxM
and φ(x, u) = (φ1(x, u), . . . , φk(x, u)) ∈ R

k.

Partial derivatives

Consider a smooth function f : M × R
k → R. Partial derivatives of f are

defined as follows: for fixed x partial derivatives of the function f(x, ·) : R
k →

R with respect to uα, α = 1, . . . , k are denoted by ∂uαf(x, u). Likewise, for
fixed u ∈ R

k the function f(·, u) : M → R has a partial gradient with respect
to x denoted by ∇xf(x, u), and written in coordinates as f(x, u);x

i

∂xi .

Consider now a smooth vector field ξ : M × R
k → TM . By fixing x

and differentiating w.r.t. uα we obtain a new vector field ∂uαξ(x, u) for each
α = 1, . . . , k. By fixing u ∈ R

k we consider ξ(·, u) : M → TM . The partial
covariant derivative with respect to x gives the (1, 1)-tensor Dxξ(x, u). In
local coordinates we write ξ(x, u)i

;xj∂xi⊗dxj . Similarly the partial divergence
divx ξ(x, u) is defined.

Total derivatives

Suppose u : M → R
k is a smooth R

k-valued function. For f : M × R
k → R

we consider the new real-valued function f(Id×u)(x) := f(x, u(x)). For the
total gradient of f(Id×u) : M → R we have the formula

∇(f(x, u(x))) = ∇xf(x, u(x)) + ∂uαf(x, u(x))∇uα,

written in local coordinates as f ;i∂xi = (f ;xi

+ f,uαuα;i)∂xi . A similar con-
structions leads to the total differential of f(Id×u):

d(f(x, u(x))) = dxf(x, u(x)) + ∂uαf(x, u(x))duα

written in local coordinates as f,idx
i = (f,xi+f,uαuα

,i)dx
i. If ξ : M×R

k → TM
is a vector-field we can consider the new vector-field ξ(Id×u) : M → TM .
For the total covariant derivative we find

Dξ(x, u(x)) = Dxξ(x, u(x)) + ∂uαξ(x, u(x)) ⊗ duα(x)

and in local coordinates we use the following notation
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Dξ(x, u(x)) = ξi
;j∂xi ⊗ dxj = (ξi

;xj + ξi
,uαuα

,j)∂xi ⊗ dxj .

For the total divergence we have

Div ξ(x, u(x)) = divx ξ(x, u(x)) + ∂uαξ(x, u(x)) · ∇uα(x)

with a similar expression in local coordinates.

3.3 One-parameter transformation groups on M × R
k

We start with the definition of a one-parameter transformation group on the
total space M ×R

k. It is a variant of Definition 2.1. For general references to
one-parameter transformation groups see Olver [71].

Definition 3.1. A one-parameter transformation group on M × R
k is given

by an open set W ⊂ R ×M × R
k and a smooth map G : W → M × R

k with
the following properties:

(a) if (ε1, x, u), (ε2, G(ε1, x, u)), (ε1 + ε2, x, u) ∈ W then

G(ε2, G(ε1, x, u)) = G(ε1 + ε2, x, u),

(b) (0, x, u) ∈ W for all (x, u) ∈M × R
k and G(0, x, u) = (x, u),

(c) if (ε, x, u) ∈ W then (−ε, x, u) ∈ W and

G(−ε,G(ε, x, u)) = (x, u).

As before we write gε(x, u) := G(ε, x, u) and dom gε := {(x, u) ∈ M × R
k :

(ε, x, u) ∈ W}. We refer to the group G = {gε}ε∈R as the collection of the
group-elements gε.

An example of such a group can be constructed by a system of ordinary
differential equations

dX

dε
= ξ(X,U),

dUα

dε
= φα(X,U), α = 1, . . . , k (3.1)

with a smooth 1 vector field w = ξ + φ on M × R
k. In local coordinates we

have w = ξi(X,U)∂xi +φα(X,U)∂uα and (3.1) is then the system of ordinary
differential equations

dX i

dε
= ξi(X,U), i = 1, . . . , n,

dUα

dε
= φα(X,U), α = 1, . . . , k. (3.2)

1 continuous in (x, u) and locally Lipschitz continuous in u uniformly w.r.t. x are
minimal requirements
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We denote by (χε(x, u), ψε(x, u)) the solution of (3.1) at time ε with initial
condition (x, u) ∈ M × R

k at ε = 0, and we assume that the solution is
maximally extended in time. The map

gε(x, u) = (χε(x, u), ψε(x, u)) for every (x, u) ∈M × R
k

is called the flow-map at time ε of the flow given by the system (3.1). The
family G = {gε}ε∈R forms a one-parameter transformation group. The vector
field w is called the infinitesimal generator of the group G. By continuous
dependence on parameters and initial conditions we have the following result:

Proposition 3.2. For every compact subset K ⊂M ×R
k there exists a max-

imal interval IK containing 0 such that for each initial condition (x, u) ∈ K
the flow-map gε(x, u) is well defined for all ε ∈ IK .

In the following we assume that all one-parameter transformation groups
on M × R

k are given through (3.1).

3.4 Action of transformation groups on functions

So far the group elements gε are defined for points (x, u) of the total space
M × R

k. We want to generalize the group G such that it acts on R
k-valued

globally Lipschitz-continuous functions u : Ω ⊂ M → R
k where Ω is open

and bounded. We fix such a function u. The graph Γu = {(x, u1, . . . , uk) ∈
M × R

k : uα = uα(x), α = 1, . . . , k} lies in a compact subset of M × R
k,

and by Proposition 3.2 the group elements gε are well defined on Γu for ε in
an open interval around 0. For ε sufficiently close to 0 the transformed graph
gε(Γu) represents the graph of a new Lipschitz-continuous function ũ = ũ(x̃)
defined for x̃ ∈ Ω̃ = {χε(x, u(x)) : x ∈ Ω} 2. To find the expression for
the new function ũ = ũ(x̃) we take a point (x̃, ũ) on gε(Γu), which means
(x̃, ũ) = (χε(x, u(x)), ψε(x, u(x))) for some x ∈ Ω. To write ũ as an expression
of x̃ we invert the expression x̃ = χε(Id×u)(x) as shown

x
χε(Id×u)−−−−−−→ x̃, x

[χε(Id×u)]−1

←−−−−−−−−− x̃.

This implies the following formula for the transformed function ũ

ũ(x̃) = ψε(Id×u)[χε(Id×u)]−1(x̃), x̃ ∈ Ω̃. (3.3)

As an extension of the action of G = {gε}ε∈R on points of M × R
k we can

now define the map
gε : u �→ ũ

2 The restriction to small ε is necessary, since for large ε the set gε(Γu) will no
longer be the graph of a single-valued function.
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for Lipschitz-functions u : Ω → R
k and for all ε ∈ (−ε0(u), ε0(u)). The trans-

formed function ũ is defined on the transformed domain Ω̃. For the trans-
formed function we use the notation gεu as well as ũ(x̃), and for its domain
of definition we write gεΩ as well as Ω̃. The following theorem, which is
proved in Appendix B, states the mapping-properties of the group-elements
gε : u �→ gεu.

Proposition 3.3. For a Lipschitz domain Ω let C0,1(Ω), C1(Ω) be the space
of Lipschitz continuous, continuously differentiable functions, respectively. Let
u ∈ C0,1(Ω) or u ∈ C1(Ω). Then there exists ε0 = ε0(u) such that for all
ε ∈ (−ε0, ε0) we have

(i) gεu belongs to C0,1(gεΩ) or C1(gεΩ), respectively,
(ii)gεΩ is a Lipschitz domain.

Finally, it is easy to verify that (gε1 ◦ gε2)u = gε1+ε2u. Thus, the trans-
formation group G is now extended to act on globally Lipschitz-continuous
functions defined on bounded subsets of M . The following figure sums up our
definitions:

Differential equation Initial condition Solution

Ẋ = ξ(X,U) X(0) = x χε(x, u)

U̇ = φ(X,U) U(0) = u ψε(x, u)

Function u Transformed function gεu Transformed domain

u :

{
Ω → R

k

x �→ u(x)
ũ :

{
Ω̃ → R

k

x̃ �→ ψε(Id×u) ◦ [χε(Id×u)]−1(x̃)
gεΩ = Ω̃ = χε(Id×u)Ω

The definition of gεu can be equivalently obtained by solving the transport
equation

∂tU = φ(x, U)− ξ(x, U) · ∇U, U(0) = u (3.4)

with an initial function u ∈ C0,1(Ω) and setting gεu = U(ε). In fact the
system (3.1) is exactly the system of characteristic equations for the partial
differential equation (3.4). We do not follows this approach to transformation
groups through the transport equation.

Remark 3.4. (i) If ξ = 0 and φ = φ(u) then there is no change in the indepen-
dent variable. In this case G = {gε}ε∈R is indeed a one-parameter transforma-
tion group on e.g. C1(Ω) or C0,1(Ω). The group coincides with a differentiable
group introduced in Chapter 2.
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(ii) If ξ is non-tangential to ∂Ω then the spatial domain of definition of
gεu varies with ε. Therefore G = {gε}ε∈R does not map the function space
like C1(Ω) or C0,1(Ω) for a fixed domain Ω into itself. Instead it maps
C1 = {u ∈ C1(Ω) : Ω ⊂M, open and bounded} or C0,1 = {u ∈ C0,1(Ω), Ω ⊂
M open and bounded} into itself. These spaces are not vector spaces. Hence
G is not a one-parameter transformation group in the strict sense of Defini-
tion 2.1. This problem will be resolved in Section 3.7. We still callG = {gε}ε∈R

a one-parameter transformation group.

Fixed points of the group-action

Definition 3.5. Let G be a one-parameter transformation group on a function
space V with infinitesimal generator w = ξ + φ. A function u0 ∈ V is a fixed
point of G if gεu0 = u0 for all ε ∈ R.

Lemma 3.6. A C1-function u0 is fixed point of a one-parameter transforma-
tion group G generated by w = ξ + φ if and only if

φ(x, u0(x))− ξ(x, u0(x)) · ∇u0(x) = 0 for all x ∈ Ω. (3.5)

Proof. Assume that u0 is a fixed point, i.e. (gεu0)(x̃) = u0(x̃). This is equiv-
alent to

ψε(x, u0(x)) = u0(χε(x, u0(x))). (3.6)

Differentiation w.r.t. ε at ε = 0 leads to

φ(x, u0(x)) = ∇u0 · ξ(x, u0(x)).

Reversely, assume that (3.5) holds. Denote by χ0
ε(x) the solution of Ẋ =

ξ(X,u0(X)) with X(0) = x and define ψ0
ε (x) := u0(χ0

ε(x)). For fixed x the
two functions χ0

ε , ψ
0
ε as functions of ε satisfy

χ̇0
ε = ξ(χ0

ε , ψ
0
ε ),

ψ̇0
ε = ∇u0(χ0

ε ) · ξ(χ0
ε , ψ

0
ε ) = φ(χ0

ε , ψ
0
ε )

by assumption (3.5). Hence, as functions of ε the pair (χ0
ε (x), ψ

0
ε (x)) solves

the same basic differential equation as (χε(x, u0(x)), ψε(x, u0(x))). Since the
two pairs have the same initial conditions at ε = 0 uniqueness of the solution
guarantees

χ0
ε(x) = χε(x, u0(x)), ψ0

ε (x) = ψε(x, u0(x)).

The latter of the two equations and the definition of ψ0
ε imply (3.6). Hence

u0 is a fixed point of G. 
�
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Rate of change formula – a simplified case

We finish this section by showing that the interpretation of vector-fields as
derivations is a useful concept. Let L : M × R

k → R be a smooth function
and suppose u ∈ C1(M ; Rk). Then we have in local coordinates

d

dε
L(x̃, ũ(x̃)) =

(
ξi∂xiL+ φα∂uαL

)
(x̃, ũ(x̃)), (3.7)

which can be written as
d

dε
L(x̃, ũ(x̃)) = (wL)(x̃, ũ(x̃)) (3.8)

with the infinitesimal generator w = ξ + φ of the flow (3.1). The proof of
(3.7) is an immediate consequence of the chain-rule and of the definition of x̃
and ũ(x̃). If we recall that w acts as a derivation on L then (3.8) follows.

The example gives a formula for the rate of change of functions under the
action of the group G. Our goal is to find a formula for the rate of change of
functionals

∫
Ω L(x, u,∇u) dx under the action of G. We will see in Section 3.6

that in local coordinates
d

dε

∫

Ω̃

L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃
∣
∣
∣
ε=0

=
∫

Ω

ξi∂xiL+ φα∂uαL+ (φα;i − ξj
,kg

kigjlu
α;l − gijgkj,lξ

luα;k)∂pα;iLdx

+
∫

Ω

LDiv ξ dx.

The nontrivial formula arises because already the derivatives ∂ũ/∂x̃i depend
on ε in a complicated way. Also the domain of definition of the integral depends
on ε. It is therefore necessary to find a systematic approach to the rate-of-
change formula. In the following section we show how the derivatives of ũ and
the volume-form dx̃ change with ε.

3.5 Rate of change of derivatives and volume-forms

Derivatives of the initial function u will be transformed to derivatives of the
new function gεu = ũ. For the gradient of ũ with respect to x̃ ∈ Ω̃ we write
∇̃ũ. The next Proposition shows how ∇̃ũ(x̃) changes with ε. To formulate it
the concept of the adjoint of a linear map is needed.

Definition 3.7 (Adjoint map). Let A : TxM → TyM be linear. Then its
adjoint map AdjA : TyM → TxM is defined by the relation

g|y(Av,w) = g|x(v,AdjAw) for every v ∈ TxM,w ∈ TyM.

In local coordinates, if Av = ai
jv

j∂yi |y then AdjAw|x = a∗i
jw

j∂xi |x with
a∗i

j = gis(x)gjr(y)ar
s. In Euclidean R

n we have a∗i
j = aj

i .
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Proposition 3.8. Let G be a one-parameter transformation group with in-
finitesimal generator w. For u ∈ C1(Ω) let ũ(x̃) be the transformed function.
For fixed x ∈M let d

dε∇̃ũ(x̃) be the covariant derivative of ∇̃ũ along the path
γ : ε �→ χε(x, u(x)). Then

d

dε
∇̃ũ(x̃)|ε=0 = ∇φ(x, u(x)) −Adj[Dξ(x, u(x))]∇u.

Proof. Recall the definition of ũ(x̃):

ũ(x̃) = ψε(Id×u) ◦ [χε(Id×u)]−1(x̃)

for x̃ ∈ Ω̃ = χε(Id×u)Ω. The differential of the new function is given by

d̃ũ(x̃) = dψε(Id×u)|χε(Id×u)−1(x̃) ◦ [dχε(Id×u)]−1|x̃.

Inserting the definition x̃ = χε(x, u(x)) in the above formula yields

d̃ũ(x̃) = dψε(x, u(x)) ◦ [dχε(x, u(x))|x]−1.

By forming the metrically equivalent vector-field we obtain

∇̃ũ(x̃) = Adj[dχε(x, u(x))]−1∇ψε(x, u(x)). (3.9)

For a fixed base point x ∈M the path γ is defined as γ : ε �→ χε(x, u(x)). Let
ζ(ε) := ∇̃ũα(x̃) for a fixed α ∈ {1, . . . , k}. Then ζ is a vector-field along the
path γ. Thus

d

dε
ζ(ε)|ε=0 =

(
ζ̇i(0) + Γ i

jk γ̇
j(0)ζk(0)

)
∂xi |x =

(
ζ̇i(0) + Γ i

jkξ
jζk(0)

)
∂xi |x.

(3.10)
It remains to compute ζ̇i. By (3.9), ζ(ε) = Adj[dχε(x, u(x))]−1∇ψα

ε (x, u(x)),
which implies

ζi(ε) = Adj[dχε(x, u(x))]−1i

jg
lj(x)ψα

ε (x, u(x)),l

= [dχε(x, u(x)))−1]rsg
is(χε(x, u(x))grj(x)glj(x)ψα

ε (x, u(x)),l

= [dχε(x, u(x)))−1]lsg
is(χε(x, u(x))ψα

ε (x, u(x)),l.

For the differentiation w.r.t. ε notice the law d
dεA

−1
ε = −A−1

ε ◦ d
dεAε ◦A−1

ε for
the operator-family Aε = dχε(x, u(x)))−1. Since A0 = Id we find

ζ̇(ε)i|ε=0 = − d

dε
χε(x, u(x))l

,s|ε=0g
isuα

,l + δl
sg

is
,kξ

kuα
,l + δl

sg
isφα

,l

= −ξl
,sg

isuα
,l + gil

,kξ
kuα

,l + gilφα
,l .

(3.11)

Combining (3.10) and (3.11) we get
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d

dε
∇̃ũα(x̃)|ε=0 = (−ξl

,sg
isuα

,l + gil
,kξ

kuα
,l + gilφα

,l + Γ i
jkξ

juα;k)∂xi

= (gilφα
,l + (gil

,rξ
rglk − ξl

,sg
isglk + Γ i

jkξ
j)uα;k)∂xi .

By a short calculation this simplifies to

d

dε
∇̃ũα(x̃)|ε=0 = ∇φα −

(
(Dξ)l

sg
isglk(∇uα)k

)
∂xi

= ∇φα −Adj(Dξ)∇uα

which establishes the claim. 
�
The rate of change of volume

Consider an ordinary differential equation on R
n given by Ẋ = ξ(X). The

solution with initial condition X(0) = x is written as χε(x). The infinitesimal
rate of change of the volume is given by

d

dε

∫

Ω̃

dx̃ =
∫

Ω

d

dε
det dχε(x) dx.

Differentiation yields d
dε detχε(x) = div ξ|χε(x) det dχε(x) and hence

d

dε

∫

Ω̃

dx̃ =
∫

Ω̃

(div ξ)(x̃) dx̃.

This statement in the context for transformation groups on manifolds is given
below in Proposition 3.9. It requires a few preparations.

Volume forms. We will use the following facts, see Aubin [4]: a differential k-
form ω assigns to each x ∈ M smoothly a multilinear, alternating map from
TxM × . . . × TxM → R. The space of n-forms on a n-dimensional manifold
is one-dimensional. The manifold M is called orientable if there exists an n-
form which never vanishes. An orientation is a selection of a non-vanishing
n-form ω. A basis {w1, . . . ,wn} of vector-fields of TM is called positively
oriented if ω(w1, . . . ,wn) > 0. On an oriented manifold the unique n-form
dx such that dx(w1, . . . ,wn) = 1 for every positively oriented orthonormal
basis of vector-fields is called the volume-form. In local coordinates dx =√

det(gij(x))dx1 ∧ dx2 ∧ . . . ∧ dxn.

Jacobian determinant of a diffeomorphism. Let τ : Ω ⊂M →M be a diffeo-
morphism with differential

dτ |x : TxM → Tτ(x)M.

For a given n-form ω we can define a new n-form τ∗ω by

(τ∗ω)(z1, . . . , zn) := ω(dτz1, . . . , dτzn) for vector fields z1, . . . , zn.
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Since the space of n-forms is one-dimensional there exists a unique function
det dτ defined on Ω such that

τ∗dx = det dτ dx.

The function det dτ is call the Jacobian determinant of τ . In local coordi-
nates dτ |xz = τ(x)i

,jz
j∂xi |τ(x), which leads to the familiar formula det dτ |x =

det(τ(x)i
,j)i,j=1,...,n.

Proposition 3.9. Let G be a one-parameter transformation group with in-
finitesimal generator w = ξ + φ. Then we find

d

dε
det dχε(x, u(x)) = (Div ξ)(x̃, ũ(x̃), ∇̃ũ(x̃)) det dχε(x, u(x)) in Ω.

Proof. Suppose x ∈ M and z ∈ TxX are fixed. The map ε �→ dχε(x, u(x))z
is a vector-field along the path γ : ε �→ χε(x, u(x)). We find dχε(x, u(x))z =
χε(x, u(x))i

,jz
j∂xi |τε(x). We abbreviate χε = χε(x, u(x)) and ψε = ψε(x, u(x)).

By the formula for the covariant derivative along γ we have

d

dε
(dχεz)

=
(dχi

ε,j

dε
zj + Γ i

jkχ
j
ε,lz

lγ̇k
)
∂xi |χε

=
(
ξ(χε, ψε)i

,jz
j + Γ i

jkχ
j
ε,lz

lξk(χε, ψε)
)
∂xi |χε

=
(
ξi
,xl(χε, ψε)χl

ε,jz
j + ξi

,uα(χε, ψε)ψα
ε,jz

j + Γ i
jkχ

j
ε,lz

lξk(χε, ψε)
)
∂xi |χε .

Collecting terms this can be written as

d

dε
(dχεz) = (Dxξ)(χε, ψε)dχεz + (∂uαξ)(χε, ψε)⊗ dψα

ε z

=
(
(Dxξ)(χε, ψε) + (∂uαξ)(χε, ψε)⊗ dψα

ε ◦ dχ−1
ε

)
dχεz.

And if we recall from Proposition 3.8 that d̃ũ = dψα
ε ◦ dχ−1

ε we finally obtain

d

dε
(dχεz) =

(
(Dxξ)(χε, ψε) + (∂uαξ)(χε, ψε)⊗ d̃ũ︸ ︷︷ ︸

=:Aε

)
dχεz. (3.12)

Recall now the definition of the Jacobian determinant:

(det dχε)dx(z1, . . . , zn) = dx(dχεz1, . . . , dχεzn) (3.13)

for all z1, . . . , zn ∈ TxM . Differentiation of (3.13) w.r.t. ε and use of (3.12)
yield
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( d

dε
det dχε

)
dx(z1, . . . , zn)

=
n∑

i=1

dx(dχεz1, . . . , dχεzi−1, Aεdχεzi, dχεzi+1, . . . , dχεzn)

= traceAε dx(dχεz1, . . . , dχεzn)
= (Div ξ)(x̃, ũ(x̃), ∇̃ũ(x̃)) det dχε dx(z1, . . . , zn).

The claim is now proved. 
�

3.6 Rate of change of first-order variational functionals

Our goal is the rate of change formula for functionals
∫

Ω L(x, u,∇u) dx under
the action of a one-parameter transformation group G. To achieve this we
need a precise notion of the partial derivatives of the Lagrangian.

3.6.1 Partial derivatives of Lagrangians

Consider a Lagrangian L(x, u,∇u) in Euclidean space. If u is R
k-valued then

L is defined on R
n+k+nk and partial derivatives can be defined by freezing all

but one variable and differentiating with respect to the remaining variable.
For example

∇xL(x, u,p) · z := lim
t→0

1
t

(
L(x+ tz, u,p)− L(x, u,p)

)

is the partial derivative of L w.r.t. to x in direction z. On a Riemannian
manifold a Lagrangian L(x, u,p) is defined on R

k × ⋃
y∈M (TyM)k, which

means (x,p) ∈ ⋃
y∈M (TyM)k and u ∈ R

k. The set
⋃

y∈M (TyM)k is an n+nk-
dimensional manifold. It consists of points (x,p1, . . . ,pk) with x ∈ M and
p1, . . . ,pk ∈ TxM . The construction of varying x while freezing u and p is
no longer possible, since the tangent space TxM changes with x. Instead a
construction based on the notion of parallel translation is necessary.

Parallel translation

Let γ : (−1, 1) → M be a smooth path on M . If ζ : (−1, 1) → TM is a
vector-field along γ such that ζ ′ = 0 then ζ is called parallel. If a ∈ (−1, 1)
and z ∈ Tγ(a)M are both fixed, then there exists a unique parallel vector-field
ζ with ζ(a) = z. For two fixed values a, b ∈ (−1, 1) the parallel translation
from γ(a) to γ(b) along γ is defined as the map

Pa,b :
{
Tγ(a)M → Tγ(b)M
z �→ ζ(b)
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where ζ is the unique parallel vector-field with ζ(a) = z. Notice that Pa,b =
P−1

b,a . We will need the formula

d

dt
(P0,tz)i = −Γ i

jk(γ(t))γ̇j(t)zk

which follows from the fact that P0,tz is parallel along γ.

Definition 3.10 (Partial derivatives of a Lagrangian). Let L : R
k ×⋃

y∈M (TyM)k → R be C1. At the fixed point (x, u,p) ∈ R
k ×⋃

y∈M (TyM)k

we define:

(i) the partial derivative of L w.r.t. x in direction z ∈ TxM by

∇xL(x, u,p) · z :=
d

dt
L(γ(t), u, P0,tp)|t=0.

Here P0,t is the parallel translation along a curve γ : (−1, 1) → M with
γ(0) = x and γ̇(0) = z. The value is independent of the curve γ.

(ii)the partial derivative of L w.r.t. uα by

∂uαL(x, u,p) :=
d

dt
L(x, u1, . . . , uα−1, uα + t, uα+1 . . . , uk,p)|t=0.

(iii)the partial derivative of L w.r.t. pα in direction z ∈ TxM by

∇pαL(x, u,p) · z :=
d

dt
L(x, u,p1, . . . ,pα−1,pα + tz,pα+1, . . . ,pk)|t=0.

Proposition 3.11. Let L : R
k × ⋃

y∈M (TyM)k → R be C1. Then in local
coordinates we have

∇xL(x, u,p) · z =
( ∂L
∂xi

(x, u,p)− Γ l
ik(x)pα,k ∂L

∂pα,l
(x, u,p)

)
zi (3.14)

∇pαL(x, u,p) · z =
∂L

∂pα,i
(x, u,p)zi, α = 1, . . . , k. (3.15)

In vector notation we have

∇xL(x, u,p) = gij(x)
( ∂L
∂xj

(x, u,p)− Γ l
jkp

α,k ∂L

∂pα,l
(x, u,p)

)
∂xi (3.16)

∇pαL(x, u,p) = gij(x)
∂L

∂pα,j
(x, u,p)∂xi , α = 1, . . . , k. (3.17)

Proof. (3.15) follows directly from Definition 3.10. To prove (3.14) we apply
the definition of ∇x and the properties of parallel translation:

∇xL(x, u,p) · z =
d

dt
L(γ(t), u, P0,tp) |t=0

=
∂L

∂xi
(x, u,p)zi +

∂L

∂pα,l
(x, u,p)

d

dt
(P0,tpα)l |t=0

=
∂L

∂xi
(x, u,p)zi − ∂L

∂pα,l
(x, u,p)Γ l

ik(x)zipα,k.

This proves (3.14). 
�
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Example 3.12. (i) The definition of the partial derivatives implies the following
chain-rule for a C2-function u : M → R

k:

∇L(x, u,∇u) =
∇xL(x, u,∇u) + ∂uαL(x, u,∇u)∇uα + (D∇uα)∇pαL(x, u,∇u).

The proof is straight-forward and uses the fact that D∇uα is self-adjoint.
(ii) For the case of a single dependent variable u consider L(x, u,p) = |p|2 =
grsp

rps. Then ∇xL = 0. This is easily seen from d
dtL(γ(t), u, P0,tp)|t=0 = 0 by

the isometry property of parallel translation, which is equivalent to ∇xg = 0.
It is also easy so see that ∇pL = 2p.

3.6.2 The rate of change formula

We are now ready to state and prove the main theorem in this section. In the
Euclidean case this theorem can be obtained in full generality for Lagrangians
of arbitrary order from results of Olver [71], Section 2.3 and 4.2.

Theorem 3.13. Let L : R
k × ⋃

y∈M (TyM)k → R be a C1-Lagrangian and
let G be a transformation group with infinitesimal generator w = ξ + φ. If
u ∈ C1(Ω) then we find that

d

dε

∫

Ω̃

L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃
∣
∣
∣
ε=0

=
∫

Ω

ξ · ∇xL+ φα∂uαL+ (∇φα −Adj(Dξ)∇uα) · ∇pαL+ LDiv ξ dx,

where L and its derivatives are evaluated at (x, u,∇u(x)) and ξ, φα and their
derivatives are evaluated at (x, u(x)).

Remark 3.14. If ξ = 0 and φ = φ(u) then Theorem 3.13 reduces to the result
of Theorem 2.9.

Proof. We begin by applying the change of variables formula

∫

Ω̃

L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃

=
∫

Ω

L(χε(x, u(x)), ψε(x, u(x)), ∇̃ũ|χε(x,u(x))) det dχε(x, u(x)) dx. (3.18)

For the purpose of finding the ε-derivative at ε = 0 of the integrand we need
to calculate difference quotients. By adding and subtracting L at suitable
intermediate points we find
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L(χε(x, u(x)), ψε(x, u(x)), ∇̃ũ|χε(x,u(x)))− L(x, u(x),∇u(x))

= L(χε(x, u(x)), ψε(x, u(x)), ∇̃ũ|χε(x,u(x)))

−L(χε(x, u(x)), u(x), ∇̃ũ|χε(x,u(x)))

+L(χε(x, u(x)), u(x), ∇̃ũ|χε(x,u(x)))− L(x, u(x), Pε,0∇̃ũ|χε(x,u(x)))

+L(x, u(x), Pε,0∇̃ũ|χε(x,u(x)))− L(x, u(x),∇u(x)).

By dividing through ε and taking the limit ε → 0 the difference of the first
pair of terms converges to φα(x, u(x))∂uαL. Similarly the second pair yields
ξ(x, u(x)) · ∇xL. By the definition of the partial derivative of L w.r.t. pα

the third pair leads to ∇pαL · d
dεPε,0∇̃ũ|χε(x,u(x))|ε=0. The definition of the

parallel translation implies that d
dεPε,0ζ(ε) = Pε,0ζ

′(ε). If we recall the rate-
of-change of ∇̃ũ from Proposition 3.8 then the third pair is seen to converge
to ∇pαL · (∇φα −Adj(Dξ)∇uα). Altogether we get

d

dε
L(χε(x, u(x)), ψε(x, u(x)), ∇̃ũ|χε(x,u(x)))

∣
∣
∣
ε=0

= ∂uαLφα(x, u(x)) +∇xL · ξ(x, u(x)) +∇pαL · (∇φα −Adj(Dξ)∇uα).

Finally, differentiation w.r.t. ε under the integral in (3.18) produces the
claim if we observe that by the product rule we also have to differentiate
det dχε(x, u(x)) at ε = 0. By Proposition 3.9 we pick up the term LDiv ξ. 
�

The prolongation of w

Theorem 3.13 is a generalization of the rate of change formula of Theorem 2.9.
This similarity becomes more evident if we introduce the formal differential
operator w(1) = ξ · ∇x + φα∂uα + (∇φα − Adj(Dξ)∇uα) · ∇pα . Then the
rate-of-change formula of Theorem 3.13 can be written as

d

dε

∫

Ω̃

L(x̃, ũ(x̃)) dx̃
∣
∣
∣
ε=0

=
∫

Ω

w(1)L+ LDiv ξ dx. (3.19)

The differential operator w(1) is called the prolongation of w, cf. Olver [71].
If the Lagrangian L = L(x, u) does not depend on ∇u then w(1)L = wL in
the sense that w = ξ + φ acts through ξ as a derivation in x and through φ
as a derivation in u.

Corollary 3.15. In explicit terms we have

w(1) = ξ · ∇x + φα∂uα

+
(
∇xφ

α + (∂uβφα)∇uβ −Adj(Dxξ + (∂uβ ξ)⊗ duβ)∇uα
)
· ∇pα

and in terms of local coordinates we have
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w(1) = ξi∂xi + φα∂uα

+ (φα;xi

+ φα
,uβu

β;i − ξj
,xkg

kigjlu
α;l − ξj

,uβgjku
β;iuα;k − gijgkj,lξ

luα;k)∂pα,i .

Remark 3.16. Notice that ξL = ξ · ∇xL, since ξ acts as a derivation on the
function L. Hence, in a strict sense, w(1) = ξ + φα∂uα + (. . .) · ∇pα would be
correct. However, we prefer w(1) = ξ ·∇x+φα∂uα +(. . .)·∇pα since then w(1)L
resembles better the term in the rate of change formula of Theorem 3.13.

3.6.3 Noether’s formula and Pohožaev’s identity

Our previous consideration led to a formula of the rate of change of first order
variational functionals under the action of a one-parameter group of transfor-
mations. In a celebrated paper [70], Emmy Noether realized that the volume-
integrand in the rate-of-change formula of Theorem 3.13 can be rewritten as
a multiple of the associated Euler-Lagrange operator plus a divergence term.
This observation was the key-stone for Emmy Noether’s famous theorem on
symmetry induced conservation laws, see Olver [71], Section 4.4.

Theorem 3.17 (Noether’s formula). Let L : R
k ×⋃

y∈M (TyM)k → R be
a C1-Lagrangian with Euler-Lagrange operator Eα[u] = −Div(∇pαL) + ∂uαL
and let G be a transformation group with infinitesimal generator w. If u ∈
C2(Ω) then

w(1)L+LDiv ξ = (φα−ξ·∇uα)Eα[u]+Div(ξL+(φα−ξ·∇uα)∇pαL). (3.20)

If u ∈ W 2,1(Ω) then the formula holds almost everywhere.

Proof. We need the formula∇(ξ·∇u) = (AdjDξ)∇u+(AdjD∇u)ξ. We prove
(3.20) by direct calculation of the right-hand-side:

(φα − ξ · ∇uα)Eα[u] + Div
(
ξL+ (φα − ξ · ∇uα)∇pαL

)

= (φα − ξ · ∇uα)∂uαL+ LDiv ξ + ξ · ∇L+∇(φα − ξ · ∇uα) · ∇pαL

= (φα − ξ · ∇uα)∂uαL+ LDiv ξ + ξ ·
(
∇xL+ ∂uαL∇uα + (D∇uα)∇pαL

)

+
(
∇φα −Adj(Dξ)∇uα −Adj(D∇uα)ξ

)
· ∇pαL.

Since D∇uα is a self-adjoint (1, 1)-tensor, a cancellation happens, and the
left-hand-side of (3.20) follows. 
�

For the next result we briefly discuss the divergence theorem on oriented
Riemannian manifolds. Suppose that Ω is a bounded open subset of the mani-
fold M such that ∂Ω is Lipschitz. Clearly ∂Ω inherits the metric, and becomes
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itself a Riemannian manifold. Let ν(x) denote the exterior normal-field on ∂Ω.
If dx denotes the volume-form on M and dσ the volume-form on ∂Ω then we
have the formula ∫

Ω

div z dx =
∫

∂Ω

z · ν dσ

for every C1-vector-field z on Ω.

Theorem 3.18 (Pohožaev’s identity). Let L : R
k×⋃

y∈M (TyM)k → R be
a C1-Lagrangian with Euler-Lagrange operator Eα[u] = −Div(∇pαL) + ∂uαL
and let G be a transformation group with infinitesimal generator w. If u ∈
C1(Ω) ∩ C2(Ω) then the following identity holds:

d

dε

∫

Ω̃

L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃
∣
∣
∣
ε=0

=
∫

Ω

(w(1)L+ LDiv ξ)(x, u(x),∇u(x)) dx (3.21)

=
∫

Ω

(φα − ξ · ∇uα)Eα[u] dx (3.22)

+
∫

∂Ω

ν · ξL+ (φα − ξ · ∇uα)ν · ∇pαLdσx

If u ∈ C0,1(Ω) ∩W 2,1(Ω) then the same formula holds.

Proof. The proof follows from integrating Noether’s formula (3.20) and ap-
plying the divergence theorem. 
�

3.7 Admissible transformation groups

So far we have investigated how
∫

Ω̃
L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃ changes with ε. Our

primary goal is however to obtain information on the critical points of the
functional L[u] =

∫
Ω
L(x, u(x),∇u(x)) dx. In order to link the two objects we

will have to look out for those transformation groups which have the property

L[gεu] =
∫

Ω̃

L(x̃, ũ(x̃), ∇̃ũ(x̃)) dx̃. (3.23)

Notice that gεu is defined on Ω̃ = gεΩ, whereas in order to insert it in the func-
tional L the transformed function gεu must be defined (or at least definable)
on Ω. In order to achieve (3.23) we consider special classes of transformation
groups. Their definition depends on the underlying function space.

Choice of the function spaces

The following two function spaces are frequently used.
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The space C0,1
0 (Ω). This is the space of Lipschitz functions with zero-boundary

conditions. The functional L is Fréchet-differentiable in the space C0,1
0 (Ω) pro-

vided L(x, u,p) is a C1-Lagrangian, cf. Appendix A.

The space C0,1
ΓD

(Ω). Suppose ∂Ω splits into ΓD∪ΓN with two relatively open,
disjoint sets ΓD, ΓN ⊂ ∂Ω. The space C0,1

ΓD
(Ω) is defined as the space of all

Lipschitz functions vanishing on ΓD. Notice that for ΓN = ∅ we recover the
previous situation.

Since ∂Ω is assumed to be Lipschitz we can consider ΓN as a subset of the
n− 1-dimensional Lipschitz manifold ∂Ω with inherited metric g and volume
form dσ. Likewise we assume that ΓN has a relative boundary ∂ΓN which is
Lipschitz. Thus ∂ΓN with the inherited metric g becomes a n−2-dimensional
Riemannian manifold with volume form dλ.

Definition 3.19. Let G = {gε}ε∈R be a one-parameter transformation group
with infinitesimal generator w = ξ + φ defined on a function space V .

(a) If V = C0,1
0 (Ω) then the group G is called domain contracting if gεΩ ⊂ Ω

for all ε ≥ 0.
(b) If V = C0,1

ΓD
(Ω) then the group G is called domain contracting if gεΩ ⊂ Ω

and gεΓN ⊂ ΓN for all ε ≥ 0.

This definition immediately leads to the following characterization of the
domain contraction property.

Lemma 3.20. Let G be a one-parameter transformation group with infinites-
imal generator w = ξ + φ defined on the function space V . The group G is
domain contracting provided

(a) ξ(x, u(x)) · ν(x) ≤ 0 on ∂Ω for all u ∈ V if V = C0,1
0 (Ω),

(b) ξ(x, u(x)) · ν(x) ≤ 0 on ΓD, ξ(x, u(x)) · ν(x) = 0 on ΓN and ξ(x, u(x)) ·
νΓN (x) ≤ 0 on ∂ΓN for all u ∈ V if V = C0,1

ΓD
(Ω).

Here ν(x) is the exterior normal on ∂Ω and νΓN (x) is the relative exterior
normal on ∂ΓN . Notice that for x ∈ ΓN one has ξ(x, u(x)) ∈ TxΓN since
ξ(x, u(x)) ∈ TxM and ξ(x, ν(x)) · ν(x) = 0.

Fixed points and extension of gεu to all of Ω

Assume now that the domain contracting transformation group G is defined
on the function space V = C0,1

ΓD
(Ω). If G has a fixed point u0 ∈ V then the

extension
gεu = u0 on Ω \ gεΩ

is well defined for ε ≥ 0. It has the following implication, which is an extension
of Proposition 3.3.
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Lemma 3.21. Let G be domain contracting one-parameter transformation
group on V = C0,1

ΓD
(Ω). If u ∈ V then gεu ∈ V provided ε ≥ 0.

The lemma shows that for ε ≥ 0 the “semi-group”G = {gε}ε≥0 satisfies the
Definition 2.1 of a “proper” one-parameter transformation group except (c).
A transformation group G = {gε}ε≥0 with the property stated in Lemma 3.21
is called an admissible transformation group.

Proof. Fix u ∈ C0,1
ΓD

(Ω). Recall that (χε(x, u), ψε(x, u)) denotes the solu-
tion of Ẋ = ξ(X,U), U̇ = φ(X,U) with initial condition (x, u) at ε = 0.
If x ∈ ΓN then x̃ = χε(x, u(x)) ∈ ΓN for all ε ≥ 0. If x ∈ ΓD then
x̃ = χε(x, u(x)) ∈ gεΓD. By the fact that u0 is a fixed point of G we
have ψε(x, u0(x)) = u0(χε(x, u0(x))) for all x ∈ ΓD. Now recall that ũ(x̃) =
ψε(x, u(x)), where x̃ = χε(x, u(x)). If we take x̃ ∈ gεΓD then the correspond-
ing x lies in ΓD and thus ũ(x̃) = ψε(x, u(x)) = ψε(x, u0(x)) = u0(χε(x, u0(x)))
since u = u0 = 0 on ΓD. Hence ũ(x̃) = u0(x̃) for x ∈ gεΓD. The function gεu
is then continuously extended by u0 into the region Ω \ gεΩ. Since gεΩ is a
Lipschitz domain by Proposition 3.3 we see that the extension of gεu onto Ω
is Lipschitz. 
�
Remark 3.22. We know from Proposition 3.3 that gεu on gεΩ is as smooth
as u on Ω. Since gεΩ is a Lipschitz-domain the extension of gεu to all of
Ω is again Lipschitz. However, even if u ∈ C1(Ω) one has in general that
gεu 	∈ C1(Ω) since a fold (german “Knick”) occurs at those parts of gεΓD

where gεΓD 	⊂ ΓD. Therefore the natural function space to work in is the
Lipschitz-space V = C0,1

ΓD
(Ω).

3.8 Rate of change formula for solutions

Next we compute the rate of change d
dεL[u]|ε=0 at critical points of functionals

L[u] =
∫

Ω L(x, u,∇u) dx. With out loss of generality we may assume the
normalization L(x, u0(x),∇u0(x)) = 0 for all x ∈ Ω where u0 ∈ V is a fixed
point of a one-parameter transformation group on the function space V . Then
(3.23) holds due to the way we extended gεu outside gεΩ.

Theorem 3.23 (Pohožaev’s identity for solutions I). Let L : R
k ×⋃

y∈M (TyM)k → R be a C1-Lagrangian with Euler-Lagrange operator Eα[u] =
−Div(∇pαL)+∂uαL. Let G defined on C0,1

0 (Ω) be an admissible domain con-
tracting transformation group with infinitesimal generator w. Let u0 be a fixed
point of G and assume L(x, u0,∇u0) = 0. If u ∈ C2(Ω) ∩C1

0 (Ω) satisfies the
Euler-Lagrange equation Eα[u] = 0 in Ω with u = 0 on ∂Ω then the following
identity holds:

d

dε
L[gεu]|ε=0 =

∫

Ω

(w(1)L+ LDiv ξ)(x, u(x),∇u(x)) dx (3.24)

=
∫

∂Ω

ν · ξ(L + (∇uα
0 −∇uα) · ∇pαL) dσx. (3.25)
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For u ∈ C0,1
0 (Ω) ∩W 2,1(Ω) satisfying the Euler-Lagrange equation Eα[u] = 0

almost everywhere the identity (3.24)-(3.25) still holds.

Proof. The proof is based on (3.21)-(3.22) in Theorem 3.18. Since u0 is a fixed
point of G we have by Lemma 3.6 φα(x, 0) = ξ(x, 0) · ∇uα

0 (x) for all x ∈ ∂Ω.
Therefore the surface-integrand in (3.22) becomes

ξ(x, 0) · νL+ ξ(x, 0) · (∇uα
0 (x) −∇uα(x))ν · ∇pαL. (3.26)

Due to the Dirichlet boundary-conditions one finds ∇uα
0 − ∇uα = ((∇uα

0 −
∇uα) · ν)ν. Inserting this into (3.26) we obtain the boundary-integrand of
(3.25). 
�
Remark 3.24. In the literature the equality between the volume integral (3.24)
and the surface integral (3.25) is sometimes called Pohožaev’s identity. It has a
long history. Clearly Noether [70] is an early source of reference. Subsequently,
Finkelstein [32] used it in the derivation of the virial theorem of quantum
mechanics (see Kalf [52] for a rigorous proof). Rellich [81] used it similarly as
Finkelstein to show the absence of eigenvalues of linear differential operators.
In a truly nonlinear context of elliptic equations the identity was first observed
by Pohožaev [75] and later proved in full generality by Pucci, Serrin [77].
Hulshof, vanderVorst [48] made an attempt to link Pohožaev’s identity to
transformation groups in the case of exact variational symmetries rather than
sub-symmetries. Wagner [91] derived a version of Pohožaev’s identity based
on domain-variation formulas of Hadamard.

Next an extension of the previous theorem is given for the case where

L[u] =
∫

Ω

L(x, u,∇u) dx+
∫

ΓN

K(x, u) dσx.

is defined on V = C0,1
ΓD

(Ω). The Euler-Lagrange equation satisfied by a critical
point of L is

−Div(∇pαL) + ∂uαL in Ω, u = 0 on ΓD, ∇pαL · ν + ∂uαK = 0 on ΓN .

Theorem 3.25 (Pohožaev’s identity for solutions II). Let L : R
k ×⋃

y∈M (TyM)k → R and K : M × R
k → R be C1-Lagrangians with as-

sociated Euler-Lagrange operator Eα[u] = −Div(∇pαL) + ∂uαL in Ω. Let
G defined on C0,1

ΓD
(Ω) be an admissible domain contracting transformation

group with infinitesimal generator w. Let u0 be a fixed point of G and assume
L(x, u0,∇u0) = 0 in Ω and K(x, u0) = 0 on ΓN . If u ∈ C2(Ω) ∩ C1(Ω)
satisfies the Euler-Lagrange equation Eα[u] = 0 in Ω with u = 0 on ΓD and
∇pαL · ν + ∂uαK = 0 on ΓN then the following identity holds:



48 3 Uniqueness of critical points (II)

d

dε
L[gεu]|ε=0 =

∫

Ω

(w(1)L+ LDiv ξ)(x, u(x),∇u(x)) dx (3.27)

+
∫

ΓN

(wK +K DivΓN ξ)(x, u(x)) dσx

=
∫

ΓD

ν · ξ(L+ (∇uα
0 −∇uα) · ∇pαL) dσx. (3.28)

For u ∈ C0,1
ΓD

(Ω) ∩W 2,1(Ω) satisfying the Euler-Lagrange equation and the
boundary condition pointwise almost everywhere the identity (3.27)-(3.28) still
holds.

Remark 3.26. For the case ΓN = ∅ the above reduces to Theorem 3.23.

Proof. We consider
∫

ΓN
K(x, u) dσx as a functional-integral on a subset ΓN

of the n − 1-dimensional manifold ∂Ω. By applying (3.21) separately to the
two parts of the functional L we get

d

dε
L[gεu]

∣
∣
ε=0

=
∫

Ω

w(1)L+ LDiv ξ dx+
∫

ΓN

wK +K DivΓN ξ dσx.

This is (3.27). Next one uses (3.22) again separately for the two inte-
grals. Notice that the “Euler-Lagrange operator” for the surface integral∫

ΓN
K(x, u(x))σx is Fα[u] = ∂uαK. Thus one finds

d

dε
L[gεu]

∣
∣
ε=0

=
∫

ΓD

ν · ξ(L+ (∇uα
0 −∇uα) · ∇pαL)dσx +

∫

ΓN

(φα − ξ · ∇uα)∇pαL · ν dσx

+
∫

ΓN

(φα − ξ · ∇uα)∂uαK dσx +
∫

∂ΓN

νΓN · ξK dλx.

The second and third integral add up to zero due to the boundary condition
on ΓN . For the fourth integral notice that ∂ΓN = ∂ΓD and hence u = u0 = 0
on ∂ΓN . Due to the normalization K(x, u0) = 0 the fourth integral vanishes.
This establishes (3.28). 
�

3.9 Variational sub-symmetries

In order to prove a global uniqueness theorem for critical points of L[u] =∫
Ω L(x, u,∇u) dx on the function space C0,1

0 (Ω) we will look again for varia-
tional sub-symmetries. Recall from Definition 2.3 that a one-parameter trans-
formation group G on a space V is called a variational sub-symmetry provided

L[gεu] ≤ L[u] ∀u ∈ V and ∀ε ≥ 0. (3.29)

In our context this makes sense for admissible one-parameter transformation
groups.
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Proposition 3.27. Let L be a functional with associated C1-Lagrangian L :
R

k ×⋃
y∈M (TyM)k → R. Let G be an admissible domain contracting trans-

formation group on V = C0,1
0 (Ω) with infinitesimal generator w = ξ + φ. Let

u0 be a fixed point of G and assume L(x, u0,∇u0) = 0 in Ω. Then G is a
variational sub-symmetry for L if and only if

∫

Ω

(w(1)L+ LDiv ξ)(x, u(x),∇u(x)) dx ≤ 0 (3.30)

holds for every function u ∈ C1
0 (Ω). Likewise, if a surface integral of the form∫

ΓN
K(x, u) dσx with K(x, u0) = 0 on ΓN is added to L and L is defined on

V = C0,1
ΓD

(Ω) then the corresponding condition is

∫

Ω

(w(1)L+ LDiv ξ)(x, u(x),∇u(x)) dx

+
∫

ΓN

(wK +K DivΓN ξ)(x, u(x)) dσx ≤ 0 (3.31)

for every function u ∈ C1
ΓD

(Ω).

Notice that (3.30), (3.31) are formulated only for C1-functions. Since do-
main contracting transformation groups are defined on the Lipschitz-space
C0,1

0 (Ω), it takes an extra step in the proof to show that the validity of (3.30)
for C1

0 -functions implies (3.29) for all u ∈ C0,1
0 (Ω).

Proof. The proof is given only for the first part of the proposition. First we
consider a C1-function u and we want to show that d

dεL[gεu] ≤ 0 for ε ≥ 0.
Since gεu is a C1-function on gεΩ we can apply the rate-of-change formula
(3.19) with gεΩ as underlying domain and t as a parameter and we find

d

dt
L[gt ◦ gεu]|t=0 =

∫

gεΩ

(w(1)L+ LDiv ξ)(x̃, gεu(x̃),∇gεu(x̃)) dx̃.

In the last integral we can replace gεΩ by Ω. To see this one needs to realize
that gεu = u0 onΩ\gεΩ and that the integrand w(1)L+LDiv ξ vanishes point-
wise if the fixed-point u0 is inserted; a fact that is best seen from Noether’s
formula (3.20) if one recalls φ(x, u0)−ξ(x, u0) ·∇u0 = 0 from Lemma 3.6 and
L(x, u0,∇u0) = 0. After the replacement of gεΩ by Ω and the re-naming x̃
by x we obtain

d

dε
L[gεu] =

∫

Ω

(w(1)L+ LDiv ξ)(x, gεu(x),∇gεu(x)) dx, (3.32)

which holds for every C1-function u on Ω. We would like to use hypothesis
(3.30) to see from (3.32) that d

dεL[gεu] ≤ 0. However, since gεu is only Lipschitz
continuous on Ω and not C1 we cannot directly use hypotheses (3.30). Instead,
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we need to approximate gεu ∈ C0,1
0 (Ω) by a sequence vn ∈ C1

0 (Ω) such that
vn → gεu, ∇vn → ∇gεu pointwise almost everywhere in Ω as n → ∞. For
each n the quantity

∫
Ω

(w(1)L+ LDiv ξ)(x, vn(x),∇vn(x)) dx is non-positive
by hypotheses (3.30) and converges by the dominated convergence theorem
to the right-hand side in (3.32). As a consequence we have d

dεL[gεu] ≤ 0 for
every u ∈ C1

0 (Ω), i.e. the group-elements {gε}ε≥0 reduce the values of L when
applied to C1

0 -functions.
In order to show that G is a variational sub-symmetry, it remains to

demonstrate the energy-reduction for every function u ∈ C0,1
0 (Ω). This is

again done by approximation: for u ∈ C0,1
0 (Ω) let un ∈ C1

0 (Ω) be a sequence
such that un → u and ∇un → ∇u pointwise almost everywhere in Ω as
n →∞. By definition gεun and gεu arise from solutions of ordinary differen-
tial equations. Therefore the standard continuous-dependence on initial data
shows that gεun(x) → gεu(x) and ∇gεun(x)→ ∇gεu(x) as n→∞ pointwise
a.e. in Ω. By the dominated convergence theorem L[gεun]→ L[gεu] and since
L[gεun] is decreasing in ε for ε ≥ 0 the same is true for L[gεu]. 
�
Definition 3.28. Let u0 be the fixed point of an admissible domain contract-
ing transformation group. We say that G is a strict variational sub-symmetry
w.r.t. u0, if there exists a C1-function u0 ∈ V such that (3.30) or (3.31) holds
with strict inequality for every u 	= u0.

3.10 Uniqueness of critical points

The following two definitions provide structural assumptions on the La-
grangian L of the functional L which allow to prove uniqueness of critical
points in the presence of variational sub-symmetries.

Definition 3.29 (Rank-one-convexity). A function F : (TxM)k → R is
called rank-one-convex at the point p = (p1, . . . ,pk) ∈ (TxM)k provided for
all a ∈ R

k and all q ∈ TxM the function F (p + ta ⊗ q) is a convex scalar
function of t ∈ R. Here a⊗ q stand for the set of vectors (a1q, . . . , akq) which
has at most rank 1.

If F is a C1-function then rank-one-convexity at p implies

F (p + a⊗ q) ≤ F (p) + aα q · ∇pαF (p + a⊗ q)
for all q ∈ TxM and a ∈ R

k.

Example 3.30. The function F (p1, . . . ,pn) = det(p1, . . . ,pn) maps R
n×n to

R. It is not convex but rank-one convex. In fact even −F is rank-one convex,
because F (p + ta ⊗ q) is an affine function of t. Further examples of rank-
one convex functions can be constructed by p �→ h(det(p))) with a convex
function h : R → R. The function F : R

2n → R with F (p,q) = p · q is not
rank-one convex.
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For our applications we will use rank-one-convexity for a Lagrangian
L : R

k × ⋃
y∈M (TyM)k → R in a restricted way, namely we require

L(x, u0(x),∇u0(x) + p) to be rank-one-convex in p = (p1, . . . ,pk) ∈ (TxM)k

at p = 0. If L is C1 and L(x, u0(x),∇u0(x)) = 0 for all x ∈ M then this
implies

L(x, u0(x),∇u0(x) + a⊗ q) ≤ aα q · ∇pαL(x, u0(x),∇u0(x) + a⊗ q) (3.33)

for all x ∈M , a ∈ R
k and q ∈ TxM .

Remark 3.31. In case where u0 is a strong local minimizer of L in the sense
that L[u0] ≤ L[u] if ‖u − u0‖∞ < δ and if we assume the normalization
L(x, u0,∇u0) = 0 then the necessary condition of Weierstrass states that

L(x, u0,∇u0 + a⊗ q) ≥ aα q · ∇pαL(x, u0,∇u0). (3.34)

Conditions (3.33) and (3.34) are independent, but related in the sense that
both follow from rank-one-convexity of L(x, u0(x),∇u0(x) + p) at p = 0.

Example 3.32. (i) For the functional

L[u] =
∫

Ω

1
q + 1

(|∇u1(x)|2 + . . .+ |∇uk(x)|2) q+1
2 − F (x, u(x)) dx

with q > 1 the Lagrangian L(x, u,p) is rank-one-convex in p because it is
convex in p.
(ii) For functions u : Ω ⊂ R

2 → R
3 consider the functional

L[u] =
∫

Ω

1
2
(|∇u1(x, y)|2 + |∇u2(x, y)|2 + |∇u3(x, y)|2)+

2
3
(u ·ux∧uy) d(x, y),

where ux, uy stands for the partial derivatives in x, y and ux∧uy is the exterior
product of ux and uy. The Lagrangian is not rank-one convex in (ux, uy)
because of the term u·(ux∧uy). However, for u0 ≡ 0 the restricted Lagrangian
L(x, 0,p1,p2,p3) = 1

2 (|p1|2 + |p2|2 + |p3|2) is convex and hence rank-one-
convex in p.

Definition 3.33 (Unique continuation property). The Euler-Lagrange
operator E [u] of a C1-Lagrangian L : R

k ×⋃
y∈M (TyM)k → R has the unique

continuation property w.r.t. u0 ∈ V if the following holds: if u ∈ C2(Ω) ∩
C1(Ω) solves E [u] = 0 in Ω, u = 0 on a non-empty, relatively open set
ΓD ⊂ ∂Ω and

(ν ·ξ)
(
L(x, 0,∇u)−L(x, 0,∇u0)+(∇uα

0 −∇uα) ·∇pαL(x, 0,∇u)
)

= 0 on ΓD

then u ≡ u0 in Ω.

Remark 3.34. In the following application one also requires the normalization
L(x, u0,∇u0) = 0 in Ω. Since u0 = 0 on ΓD the term L(x, 0,∇u0) drops out
in the above equation on ΓD.
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Example 3.35. Suppose Ω is a bounded, piecewise smooth domain, cf. Def-
inition 4.7. Consider the Lagrangian L(x, u,p) = 1

2 |p|2 − F (u) for a scalar
function u : Ω → R with f(0) = 0 and f Lipschitz. Take u0 ≡ 0. Then
(ν · ξ)(L(x, 0,∇u(x)) − ∇u(x) · ∇pL(x, 0,∇u(x))) = −1

2 (ν · ξ)|∇u|2. If this
quantity vanishes everywhere on ΓD, and if ν · ξ < 0 on a relatively open
subset T ⊂ ΓD then |∇u| = 0 and u = 0 on T . Moreover, u satisfies the linear
equation ∆u + a(x)u = 0 in Ω with a(x) = f(u(x))/u(x) ∈ L∞(Ω). In local
coordinates the equation takes the form 1/

√
g∂xi(

√
ggij∂xju) + a(x)u = 0

with g = det(gij). By the unique continuation principle for linear, uniformly
elliptic equations, cf. Miranda [65], we conclude that u ≡ 0 in Ω, i.e. the
unique continuation property holds for such a Lagrangian provided ν · ξ < 0
on a relatively open subset of ΓD.

The following is the main result of this section. It is the basis for all further
applications. We state it in a form which applies to L[u] =

∫
Ω
L(x, u,∇u) dx+

∫
ΓN

K(x, u(x)) dσx on the space C0,1
ΓD

(Ω). The case ΓN = ∅ is included.

Theorem 3.36 (Uniqueness result). Suppose L : R
k×⋃

y∈M (TyM)k → R

and K : R
k × M → R are C1-Lagrangians for the functional L[u] =∫

Ω L(x, u,∇u) dx +
∫

ΓN
K(x, u) dσx. Let G defined on C0,1

ΓD
(Ω) be an admis-

sible domain contracting transformation group with infinitesimal generator
w = ξ + φ. Let u0 be a fixed point of G and assume L(x, u0,∇u0) = 0 in
Ω and K(x, u0) = 0 on ΓN . If furthermore L(x, u0,∇u0 + p) is rank-one-
convex in p at p = 0 then either of the following two conditions implies the
uniqueness of the critical point u0 ∈ C2(Ω) ∩ C1

ΓD
(Ω):

(i) G is a strict variational sub-symmetry w.r.t. u0,
(ii)G is a variational sub-symmetry and the unique continuation property at

u0 holds.

Part (i) of the uniqueness result remains true for critical points in C0,1
ΓD

(Ω) ∩
W 2,1(Ω) satisfying the Euler-Lagrange equation E [u] = 0 and the boundary
condition ∂pαL · ν + ∂uαK = 0 on ΓN almost everywhere.

Proof. Let u ∈ C2(Ω) ∩ C1
ΓD

(Ω) be a critical point of L. By (3.28) in Theo-
rem 3.25 we have

d

dε
L[gεu]|ε=0 =

∫

ΓD

(ξ · ν)
(
L+ (∇uα

0 −∇uα) · ∇pαL
)
dσx,

where ξ, L and ∇pαL are evaluated at (x, 0,∇u(x)). On ΓD the solution u
attains zero boundary-values, which implies ∇uα = aαν for some scalar val-
ues aα. Hence rank-one-convexity of L(x, 0,∇u0(x) + p) w.r.t. p at p = 0
implies L + (∇uα

0 − ∇uα) · ∇pαL ≤ 0 on ΓD, where L and ∇pαL are eval-
uated at (x, 0,∇u0(x) + a ⊗ ν). Since furthermore ξ · ν ≤ 0 on ΓD by the
domain contracting property of G we see altogether that d

dεL[gεu]|ε=0 ≥
0. On the other hand G is a variational sub-symmetry. Hence it follows
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that d
dεL[gεu]|ε=0 = 0. In case (i), where G is a strict variational sub-

symmetry, this immediately implies u ≡ u0. In case (ii) we first deduce from
d
dεL[gεu]|ε=0 = 0 and from the non-negativity of the surface-integrand in
(3.25) that (ν · ξ)(L + (∇uα

0 −∇uα) · ∇pαL)(x, 0,∇u(x)) = 0 everywhere on
ΓD. The unique-continuation property from condition (ii) now implies u ≡ u0.


�

3.11 Uniqueness of critical points for constrained
functionals

The theory of Section 3.10 deals with the critical points of a functional L[u] =∫
Ω L(x, u,∇u) dx+

∫
ΓN

K(x, u) dσx defined on the entire function space V =
C0,1

ΓD
(Ω). Often in the calculus of variations one is interested in critical points

of L[u] restricted by a constraint. We will consider two types of constraints:

(1) functional constraints, where L is restricted to the set of u ∈ V which lie
on the “hypersurface”N [u] =

∫
Ω
N(x, u,∇u) dx+

∫
ΓN

M(x, u(x)) dσx = 0
(2) pointwise constraints, where L is restricted to the set of u ∈ V with

N(x, u(x)) = 0 for all x ∈ Ω.

Multiple constraints of the above type can be considered similarly as soon as
the case of one constraint is clarified.

3.11.1 Functional constraints

Assume the non-degeneracy hypothesis N ′[u] 	= 0 for all critical points u of
L in S = {u ∈ V : N [u] = 0}. Here N ′[u]h =

∫
Ω
∇pαN(x, u,∇u) · ∇hα +

∂uαN(x, u,∇u)hα dx +
∫

ΓN
∂uαM(x, u)hα dσx is the Fréchet-derivative of N

at u. Under this condition it is known that for every extremal u of L over
S there exists a Lagrange-multiplier λ ∈ R such that u is a critical point of
the functional L+λN over the entire space V . Therefore the Euler-Lagrange
equation in its weak form holds: L′[u] + λN ′[u] = 0. We want to use the
method of transformation groups to such constrained variational problems.
So let G = {gε}ε≥0 be an admissible, domain contracting transformation
group with fixed point u0. We need to require that whenever u ∈ S then also
gεu ∈ S. This is the case if and only if

0 =
d

dε
N [gεu] =

∫

Ω

w(1)N +N div ξ dx +
∫

ΓN

wM +M divΓN ξ dσx

for all C1-functions u ∈ V . Here w is the infinitesimal generator of {gε}ε∈R.
Moreover we need to require the normalization N(x, u0,∇u0) = 0 in Ω and
M(x, u0) = 0 on ΓN .

As a consequence, a transformation group which leaves S invariant, is a
(strict) variational sub-symmetry for L if and only if it is a (strict) variational
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sub-symmetry for the free functional L + λN . In order to find uniqueness of
the critical points of L over S we only need to reformulate the hypotheses of
Theorem 3.36 to the extended function L+ λN .

Theorem 3.37. Suppose the transformation group G generated by w = ξ+φ
with fixed point u0 ∈ S leaves S invariant. Theorem 3.36 remains true for
constrained critical points of L provided G is a variational sub-symmetry for
L, L(x, u0,∇u0) = N(x, u0,∇u0) = 0 in Ω, K(x, u0) = M(x, u0) = 0 on ΓN

and (L+ λN)(x, u0,∇u0 + p) is rank-one-convex in p at p = 0 and either of
the following two conditions hold

(i) the variational sub-symmetry is strict w.r.t. u0,
(ii)the unique continuation property of Theorem 3.36 holds for L+ λN .

Here λ is the (in general unknown) Lagrange-multiplier of an arbitrary critical
point.

Remark 3.38. The verification of the rank-one-convexity condition and the
unique continuation property for L + λN requires either structural assump-
tions on L and N (e.g. N is gradient-independent) or a-priori knowledge of
the non-negativity of the Lagrange multiplier λ if e.g. L and N individually
satisfy the rank-one-convexity condition. Both situations will be illustrated
by some applications in Section 5.

3.11.2 Pointwise constraints

Now we look at critical points of L subject to some pointwise condition
N(x, u(x)) = 0 in Ω. Since we explicitly require that N does not depend
on ∇u(x), we consider N as a smooth map from M × R

k → R. The con-
straint on which we seek critical points of L is given by S = {u ∈ V :
N(x, u(x)) = 0 for all x ∈ Ω}. We assume the usual non-degeneracy condi-
tion: for all (x, v) ∈ Ω ×R

k with N(x, v) = 0 there is an index α ∈ {1, . . . , k}
with ∂vαN(x, v) 	= 0. Then for every critical point u of L over S there exists
a Lagrange-multiplier λ(x) ∈ R such that u is a critical point of the func-
tional L[u] +

∫
Ω λ(x)N(x, u(x)) dx over the entire space V , see Giaquinta-

Hildebrandt [36], Chapter 2.2. The method of transformation groups can
be successfully applied to such problems provided the transformation group
leaves the set S invariant, i.e. whenever N(x, u(x)) = 0 for all x ∈ Ω we have
that N(χε(x, u(x)), ψε(x, u(x))) = 0 for ε ∈ R.

Remark 3.39. Suppose G is a domain contracting transformation group gen-
erated by w = ξ + φ with fixed point u0 ∈ S. A criterion for invariance of S
is given by

∇xN(x, u) · ξ(x, u) + ∂uαN(x, u)φα(x, u) = 0

for all x ∈ Ω, u ∈ R
k, cf. Olver [71] Section 2.1.



3.11 Uniqueness of critical points for constrained functionals 55

Lemma 3.40. Suppose G is a transformation group with infinitesimal gener-
ator w, which leaves the set S = {u ∈ V : N(x, u(x)) = 0 ∀x ∈ Ω} invariant.
Then

∂uαN(x, u(x))(φα(x, u(x)) − ξ(x, u(x)) · ∇uα(x)) = 0 on Ω

for every element u ∈ S.

Proof. Differentiation of N(χε(x, u(x)), ψε(x, u(x))) = 0 with respect to ε at
ε = 0 yields

∇xN(x, u(x)) · ξ(x, u(x)) + ∂uαN(x, u(x))φα(x, u(x)) = 0 in Ω,

and differentiation of N(x, u(x)) = 0 w.r.t. x yields

∇xN(x, u(x)) + ∂uαN(x, u(x))∇uα(x) = 0 in Ω.

Inserting the second into the first expression gives the result. 
�
As a simple corollary we find:

Corollary 3.41. Suppose G is an admissible, domain contracting transfor-
mation group with infinitesimal generator w and fixed point u0. Suppose
G leaves the set S = {u ∈ V : N(x, u(x)) = 0 ∀x ∈ Ω} invariant. Let
Eα,L = − div(∇pαL) + ∂uαL be the Euler-Lagrange operator associated with
L. If u is a critical point of the functional L[u] =

∫
Ω
L(x, u,∇u) dx on the

constraint S then

Eα,L[u]
(
φα(x, u(x)) − ξ(x, u(x)) · ∇uα(x)

)
= 0 in Ω.

Proof. Recall that u is a critical point of the unconstrained functional L[u] +∫
Ω λ(x)N(x, u(x)) dx. Hence u satisfies the Euler-Lagrange equation Eα,L[u]+
λ(x)∂uαN(x, u(x)) = 0 in Ω. If we multiply the Euler-Lagrange equation with
φα(x, u(x))− ξ(x, u(x)) · ∇uα(x) and sum over α, then the term involving N
and its derivatives vanishes by Lemma 3.40. The remaining identity proves
the claim. 
�

As a conclusion we see the following: u satisfies an Euler-Lagrange equa-
tion with additional terms coming from the constraint. But still a suitably
weighted sum of the Euler-Lagrange operator Eα,L associated with L is an-
nihilated. Therefore the critical point u still satisfies Pohožaev’s identity for
the functional L as stated in Theorem 3.25 since the volume term involving
the Euler-Lagrange operator in Theorem 3.18 vanishes by Corollary 3.41. As
a consequence we have

Theorem 3.42. Theorem 3.36 remains valid for constrained critical points of
the functional L provided the transformation group G generated by w = ξ +φ
with fixed point u0 ∈ S leaves S invariant and acts as a variational sub-
symmetry for L.
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Remark 3.43. The requirement that a pointwise constraint is left invariant is
much more restrictive than the requirement that a functional constraint is
left invariant. However, as a bonus we get that in the presence of pointwise
constraints the uniqueness theorems hold with no further assumption or a-
priori knowledge of the Lagrange-multiplier.

3.12 Differentiability of the group orbits

We finish the discussion of the method of transformation groups with the
question whether the groups constructed in this section are differentiable in
the sense of Definition 2.2, i.e., if for given u ∈ V there exists h ∈ V with

lim
ε→0+

‖gεu− u
ε

− h‖V = 0.

We assume that G is domain contracting with fixed point u0.

Let us begin with the special case, where ξ = 0 and φ = φ(u). In this
case the group generated by w = ξ + φ is the same as the one generated
by the ordinary differential equation U̇ = Φ(U), where Φ : V → V is given
by Φ(U)(x) := φ(u(x)). Thus, if e.g. V = C1(Ω) then G is differentiable. If,
however, V = C1

0 (Ω) then G is only differentiable if φ(0) = 0 since only then
is Φ as self-map of V .

More generally, consider now a domain preserving group, i.e., a group with
the property ξ(x, u) · ν(x) = 0 for all x ∈ ∂Ω and all u ∈ R. Recalling the
definition (3.3) of ũ(x̃) = ψε(Id×u)[χε(Id×u)]−1(x̃) we find that for fixed
x ∈ Ω the first order Taylor-expansion of ũ(x̃) with respect to ε is given by

ũ(x̃) = u(x) + ε(φ(x, u(x)) − ξ(x, u(x)) · ∇u(x)) +O(ε2). (3.35)

The first order-term represents a function in L∞(Ω) and, under higher differ-
entiability of w and u, it represents a function in C1(Ω). This leads to the
following differentiability properties of the group-orbits.

Proposition 3.44. Suppose G is a domain-preserving transformation group
defined on C1

0 (Ω) or C1(Ω) with infinitesimal generator w = ξ + φ. If G is
defined on the space C1

0 (Ω) assume furthermore φ(x, 0) = 0 for all x ∈ ∂Ω,
whereas if G is defined on C1(Ω) we make no further hypotheses. With h =
φ(x, u(x))− ξ(x, u(x)) · ∇u(x) we get

lim
ε→0
‖gεu− u

ε
− h‖∞ = 0.

If the infinitesimal generator w is C1 and u ∈ C2(Ω) then h ∈ C1(Ω). If
u ∈ C2(Ω) ∩ C1

0 (Ω) then h ∈ C1
0 (Ω). In both cases we have

lim
ε→0
‖gεu− u

ε
− h‖C1 = 0.
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Remark 3.45. (i) The last relation shows that the group-orbit is differentiable
at least for certain u ∈ V . This is equivalent to the fact that in (3.22) in
Theorem 3.18 there is no boundary integral since ξ·ν = 0 and either∇u·ξ = 0
(Dirichlet boundary condition) or ∇pαL · ν = 0 (natural Neumann boundary
condition).
(ii) The condition φ(x, 0) = 0 on ∂Ω is nothing but the condition that u0 = 0
is a fixed point of the group G. The condition has only to hold on ∂Ω since
the group is domain preserving, i.e., gεΩ = Ω.

The situation for domain-contracting transformation groups is different.

Proposition 3.46. Let G be domain-contracting transformation group with
infinitesimal generator w = ξ + φ. Let u0 be a fixed point of G, i.e.
φ(x, u0(x)) − ξ(x, u0(x)) · ∇u0(x) = 0 for all x ∈ Ω. For u ∈ C0,1

0 (Ω) we
define h = φ(x, u(x)) − ξ(x, u(x)) · ∇u(x) ∈ L∞(Ω) and get

lim
ε→0+

‖gεu− u
ε

− h‖∞ = 0.

If the infinitesimal generator w is C1 and u ∈ C2(Ω) ∩ C1
0 (Ω) then

lim
ε→0+

‖gεu− u
ε

− h‖C1 = 0.

On ∂Ω the function h becomes φ(x, 0) − ξ(x, 0) · ∇u(x). Using the fixed
point property of u0 this implies h = ξ(x, 0) · (∇u0(x)−∇u(x)) on ∂Ω. Since
u, u0 attain zero-Dirichlet boundary values on ∂Ω it follows that ∇u−∇u0 is
pointing in the normal direction on ∂Ω. Hence h does in general not vanish
on ∂Ω and the group is not differentiable in the space C1

0 (Ω). Since differen-
tiability of the group-orbit does not hold a boundary-integral occurs in the
identity of Theorem 3.18 and further structural conditions on the Lagrangian
were needed to succeed with a uniqueness result.
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75. Pohožaev, S.I.: Eigenfunctions of the equation ∆u + λf(u) = 0. Soviet Math.
Dokl, 6, 1408–1411 (1965). English translation, Dokl. Akad. Nauk. SSSR, 165,
33–36 (1965)

76. Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Grundlehren der
math. Wiss., 299. Springer Verlag (1992)

77. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J., 35,
681–703 (1986)

78. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic
operators. J. Math. Pures Appl., 69, 55–83 (1990)

79. Reichel, W.: Uniqueness results for semilinear polyharmonic boundary value
problems on conformally contractible domains. I and II. J. Math. Anal. Appl.,
287, 61–74 and 75–89 (2003)

80. Reichel, W., Henghui Zou: Non-existence results for semilinear cooperative ellip-
tic systems via moving spheres. J. Differential Equations, 161, 219–243 (2000)

81. Rellich, F.: Darstellung der Eigenwerte von ∆u+λu = 0 durch ein Randintegral.
Math. Z., 47, 153–160 (1940)

82. Schaaf, R.: Uniqueness for semilinear elliptic problems – supercritical growth
and domain geometry. Advances in Differential Equations, 5, 1201–1220 (2000)

83. Schmitt, K.: Positive solutions of semilinear elliptic boundary value problems.
In: Granas, A., Frigon, M. (eds) Topological Methods in Differential Equations
and Inclusions, NATO ASI Series 472. Kluwer Academic Publishers (1995)



References 149

84. Schoen, R.M.: The existence of weak solutions with prescribed singular behavior
for a conformally invariant scalar equation. Comm. Pure Appl. Math., 41, 317–
392 (1988)

85. Stapelkamp, S.: The Brezis-Nirenberg Problem on H
n. Existence and Unique-

ness of Solutions. PhD Thesis, University of Basel, Switzerland (2003)
86. Stingelin, S.: New numerical solutions for the Brezis-Nirenberg problem on S

n.
University of Basel preprint No. 2003-15 (2003) Switzerland (2003)

87. Struwe, M.: Variational Methods, Ergebnisse der Mathematik und ihrer Grenz-
gebiete 34, 2nd Edition. Springer Verlag (1996)

88. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations.
J. Differential Equations, 51, 126–150 (1984)

89. vanderVorst, R.C.A.M.: Variational identities and applications to differential
systems. Arch. Rational Mech. Anal., 116, 375–398 (1991)

90. Vazquez, J.L.: A strong maximum principle for some quasilinear elliptic equa-
tions. Appl. Math. Optim., 12, 191–202 (1984)

91. Wagner, A.: Pohozaev’s identity from a variational viewpoint. J. Math. Anal.
Appl., 266, 149–159 (2002)

92. Wente, H.: The differential equation ∆x = 2Hxu ∧ xv with vanishing boundary
values. Proc. Amer. Math. Soc., 50, 131–137 (1975)

93. Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland
Publishing Co. Amsterdam, P. Noordhoff Ltd, Groningen (1955)



5

Scalar problems in Euclidean space

5.1 Extensions of Pohožaev’s result to more general
domains

In this section we consider the boundary value problem

∆u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω, (5.1)

for a bounded, piecewise smooth domain Ω ⊂ R
n which is conformally

contractible. Solutions are critical points u ∈ C0,1
0 (Ω) of the functional

L[u] =
∫

Ω
1
2 |∇u|2 − F (x, u) dx, where F (x, s) =

∫ s

0 f(x, t) dt.

In the case when Ω is star-shaped with respect to 0 ∈ Ω and for the model
nonlinearity f(x, s) = |x|σ|s|p−1s it is known from the work of Ni [69] and
Egnell [24] that for σ > −1 and p ≥ n+2+2σ

n−2 no nontrivial solutions in the
class W 1,2

0 (Ω) ∩ L∞(Ω) exist.

By the method of transformation groups we consider extensions of this re-
sult to conformally contractible domains. Recall the classification of conformal
vector-fields ξ in R

n from Lemma 4.33:

(a) If n = 2 then ξ = a(x, y)e1 + b(x, y)e2 where w = a+ ib is a holomorphic
function of z = x+ iy.

(b) If n ≥ 3 then (up to a constant shift) ξ is a linear combination of the
vector-fields

X = xiei,

Yij = xjei − xiej for 1 ≤ i < j ≤ n
Zi = (xixi −∑n

j �=i x
jxj)ei + 2

∑n
j �=i x

ixjej for i = 1 . . . n.

Additionally all conformal vector-fields in R
n satisfy ∆div ξ = 0.

W. Reichel: LNM 1841, pp. 89–125, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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ferret
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Remark 5.1. In Euclidean R
n the standard basis is e1, . . . , en. In this case

we find it more convenient to write ξ = ξiei instead of ξ = ξi∂xi . Thus, we
write w = ξ · ∇x + φ∂u for the infinitesimal generator of a one-parameter
transformation group.

The fact that ∆div ξ = 0 is special for Euclidean R
n. It is verified di-

rectly or through Proposition 4.28. It was shown in Section 4.4 that confor-
mal vector-fields correspond to one-parameter groups of conformal self-maps
of the underlying manifold. The groups can be computed explicitly in R

n and
are shown in Table 5.1.

vectorfield one-parameter group

X x �→ etx dilation

Yij x �→ (xi cos t+ xj sin t)ei + (−xi sin t+ xj cos t)ej rotation

Zi x �→ (I ◦ Si(t) ◦ I)x with I : x �→ x/|x|2 inversion

and Si(t) : x �→ x− tei shift

Table 5.1. One-parameter groups of conformal maps in R
n

For the following uniqueness result one should consider the nonlinearity
f(x, s) = |x|σ|s|p−1s with p ≥ n+2+2σ

n−2 and σ > −1 as a guiding example,
since due to the possibly negative σ it explains the need for hypotheses (b).

Theorem 5.2. Let Ω ⊂ R
n be a bounded, piecewise smooth, conformally con-

tractible domain with associated vector-field ξ such that div ξ ≤ 0 in Ω and
0 ∈ Ω, ξ(0) = 0. Suppose moreover that

(a) f : Ω \ {0} × R→ R is locally Lipschitz continuous in the second variable
and f(x, 0) = 0,

(b) there exists q > n such that f(·, s) ∈ Lq(Ω) with Lq-norm uniformly
bounded for s in bounded intervals

(c) the following function is increasing in ε > 0 for all (x, u) ∈ Ω \ {0} × R

F (χε(x), ψε(x, u))

ψε(x, u)
2n

n−2
,

where χε(x) is the solution of Ẋ = ξ(X), X(0) = x and ψε(u) is the
solution of U̇ = 2−n

2n (div ξ)U , U(0) = u.

Then (5.1) has only the zero-solution in the class of weak L∞(Ω) ∩ C1
0 (Ω)-

solutions.
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Remark 5.3. Condition (c) is equivalent to

ξ(x) · ∇xF (x, u) +
2− n
2n

(div ξ(x))uf(x, u) + F (x, u) div ξ(x) ≥ 0

for all (x, u) ∈ Ω \ {0} × R.

Proof. Every bounded weak solution in L∞(Ω) ∩ C1(Ω) is a strong W 2,q-
solution, since by hypothesis (b) the right-hand side −f(x, u(x)) ∈ Lq(Ω)
for some q > n. We can therefore work with critical points of L in the class
of strong W 2,1(Ω) ∩ C1

0 (Ω)-solutions. The uniqueness proof is done through
Theorem 3.36 by finding a variational sub-symmetry w.r.t. 0. Like in the
previous chapter we set

w = ξ · ∇x +
2− n
2n

(div ξ)u∂u.

This corresponds to the choice φ(x, u) = 2−n
2n (div ξ)u. For the prolongation

we find

w(1) = ξ · ∇x +
2− n
2n

(div ξ)u∂u

+
(2− n

2n
u∇div ξ +

2− n
2n

(div ξ)∇u−Dξ∗∇u) · ∇p.

To verify that G is a group of variational sub-symmetries we use the infinites-
imal criterion of Proposition 3.27 and calculate

w(1)L+ LDiv ξ

= −ξ · ∇xF (x, u)− 2− n
2n

(div ξ)uf(x, u)− F div ξ +
2− n
2n

div(
u2

2
∇div ξ).

Integration over Ω shows that G generates a variational sub-symmetry w.r.t.
0 since the integral over −ξ · ∇xF (x, u) − 2−n

2n (div ξ)uf(x, u) − F div ξ is
non-positive, as seen from the differentiated version of hypothesis (c), see Re-
mark 5.3. Also, since f(x, s) is locally Lipschitz in s and f(x, 0) = 0 the unique
continuation property at 0 holds, cf. Definition 3.33. Moreover the Lagrangian
L(x, u,p) = |p|2/2−F (x, u) is convex in p. Therefore Theorem 3.36(ii) applies
and shows uniqueness of the critical point u ≡ 0 in the class W 2,1(Ω)∩C1

0 (Ω).

�

Corollary 5.4. Let Ω ⊂ R
n be a bounded, piecewise smooth, conformally

contractible domain with associated vector-field ξ such that div ξ ≤ 0 in Ω
and 0 ∈ Ω, ξ(0) = 0. Let f(u) = λu+ s(x)σ |u|p−1u with s(x) = |x| or |ξ(x)|.
(i) If p ≥ n+2+2σ

n−2 , σ > −1 and λ ≤ 0 then (c) of Theorem 5.2 holds.
(ii)If moreover λ = 0 and p = n+2+2σ

n−2 , σ > −1 (exact critical growth) then
the additional assumption div ξ ≤ 0 is not necessary.

Proof. Only (i) with s(x) = |ξ(x)| is not completely obvious. To see its validity
one shows by a computation that ξ·x = 1

n |x|2 div ξ for every conformal vector-
field with ξ(0) = 0. 
�
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The pure critical exponent case

For completeness we mention that in the case of exactly critical growth
f(x, s) = |ξ|σ|s| 4+2σ

n−2 s with a conformal vector-field ξ with ξ(0) = 0 more
information about the nature of critical points is available. Let us consider
the related minimization problem

inf
u�=0

I[u] with I[u] =

∫
Ω |∇u|2 dx

(
∫

Ω |ξ(x)|σ |u| 2n+2σ
n−2 dx)

n−2
n+σ

.

Suitably rescaled critical points of I are in one-to-one correspondence to the
critical points of the “free” functional L. An interesting fact is that I possesses
no minimizer on any bounded domainΩ with 0 ∈ Ω regardless of the geometry
or topology of Ω, cf. Struwe [87], Chapter I Section 4.5 and 4.7, where a proof
for σ = 0 is readily adapted to σ > −1.

Dancer [16] remarked that the autonomous pure critical exponent prob-
lem, i.e. (5.1) with f(u) = |u|4/(n−2)u, is invariant under conformal maps
of R

n. Hence, it follows for any bounded domain Ω, which is the conformal
image of a bounded star-shaped domain, that only the zero-solution of (5.1)
exists. In [16] Dancer gave an analytic characterization of such domains. As
we shall see in part (i) of Proposition 5.5 Dancer’s observation is contained
in Corollary 5.4(ii).

Examples of conformally contractible domains

We give two examples of domains in R
3, which are not star-shaped but con-

formally contractible, and the associated vector-field ξ satisfies div ξ ≤ 0.
Example domain 1: Let ξ = (−x + y,−y − x,−z). Then div ξ = −3. The
vector-field ξ generates a composition of a dilation and a rotation in the x, y-
plane. We construct a conformally contractible domain by extending a 2d-
domain cylindrically in the z-direction. Both the 2d-cut and the 3d-domain
are shown in Figure 5.1. In the 2d-domain the trajectories of the flow (ẋ, ẏ) =
(−x + y,−y − x) starting from the boundary are shown. The 2d-domain is
positively-invariant under the flow, i.e. the transformation group is domain
contracting. By the cylindrical extension this remains true for the 3d-domain.
Example domain 2: For ξ = (−2xz,−2yz,−z2+x2+y2) one has div ξ = −6z.
The vector-field ξ is the infinitesimal generator of a one-parameter group
of conformal maps involving inversions. We construct a conformally con-
tractible domain by rotating a planar domain around the z-axis. The flow
(ẋ, ẏ, ż) = ξ(x, y, z) is also rotationally symmetric around the z-axis. In Fig-
ure 5.2 the 2d-cut and the trajectories starting from the boundary are visu-
alized. Again the 2d-domain is positively-invariant, and due to the rotation-
symmetry this remains true for the 3d-domain. Hence our transformation
group is contracting, and since the domain lies in the region z ≥ 0 we have
div ξ ≤ 0. In Figure 5.3 the 3d-domain is visualized from above and from
below.
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The set of conformally contractible domains

Let us denote by CC the set of all bounded, conformally contractible domains
in R

n, n ≥ 3. By CC− we denote all members of CC such that div ξ ≤ 0 for one
associated conformal vector-field. Finally consider the set CI of all bounded
domains, which are conformal images of bounded star-shaped domains. Then
we have the following relations:

Proposition 5.5. (i) CI ⊂ CC, (ii) CC− � CC.
Proof. (i) Let Ω belong to CI, i.e. Ω = h(Ω′) where h is a conformal map
and Ω′ is bounded star-shaped w.r.t. 0. If St denotes the map x �→ e−tx then
the one-parameter group hSth

−1 of conformal maps contracts the domain Ω.
Hence Ω belongs to CC.
(ii) By taking the 2d-domain of Example 2 and running it backwards in time
under the flow, we obtain a new domain shown in Figure 5.4. Rotating the
new 2d-domain around the z-axis we find an example of a domain which is
conformally contractible with associated vector-field ξ = (−2xz,−2yz,−z2 +
x2 + y2) with divergence −6z. Clearly div ξ now also attains positive values,
since the domain extends into the region z < 0. The domain is therefore not
in CC−. 
�
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Fig. 5.4. Rotating this 2d-domain produces a set not in CC−

Remark 5.6. We do not know if CI = CC or if CI = CC−. A result of Dancer
[16] characterizes CI as follows: there exists a point x ∈ Ω and a point b ∈
R

n \ Ω such that every planar circular arc with endpoints x and b intersects
Ω in a connected set.

5.1.1 Nonlinear Neumann boundary conditions

If ∂Ω is decomposed into ΓD ∪ ΓN then the natural extension of (5.1) is
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∆u+ f(x, u) = 0 in Ω, u = 0 on ΓD

∂νu− g(x, u) = 0 on ΓN .
(5.2)

We consider solutions which are critical points u ∈ C0,1
ΓD

(Ω) of the functional
L[u] =

∫
Ω

1
2 |∇u|2−F (x, u) dx−∫

ΓN
G(x, u) dσx, where F (x, s) =

∫ s

0
f(x, t) dt

and G(x, s) =
∫ s

0 g(x, t) dt.

Theorem 5.7. Let Ω ⊂ R
n be bounded and piecewise smooth. Assume that

(Ω,ΓN ) is conformally contractible domain with associated vector-field ξ such
that div ξ ≤ 0 in Ω and 0 ∈ ΓN , ξ(0) = 0. Suppose moreover that

(a) f : Ω \ {0} × R→ R is locally Lipschitz continuous in the second variable
and f(x, 0) = 0,

(b) there exists q1 > n and q2 > n − 1 such that f(·, s) ∈ Lq1(Ω), g(·, s) ∈
Lq2(ΓN ) with Lq1 , Lq2-norms uniformly bounded for s in bounded intervals,

(c) the following functions are increasing in ε > 0 for all (x, u) ∈ Ω \ {0}×R

F (χε(x), ψε(x, u))

ψε(x, u)
2n

n−2
,

G(χε(x), ψε(x, u)) + n−2
4 H(χε(x))ψε(x, u)2

ψε(x, u)
2n−2
n−2

,

where χε(x) is the solution of Ẋ = ξ(X), X(0) = x, ψε(u) is the solution
of U̇ = 2−n

2n (div ξ)U , U(0) = u and H is the mean-curvature of ΓN .

Then (5.2) has only the zero-solution in the class of weak L∞(Ω) ∩ C1
0 (Ω)-

solutions.

Remark 5.8. The second part of condition (c) is equivalent to

ξ(x) · ∇xG(x, u) +
2− n
2n

(div ξ(x))ug(x, u)

+
n− 1
n

G(x, u) div ξ(x) +
n− 2
4n

u2(H div ξ + n∇H · ξ) ≥ 0

for all (x, u) ∈ Ω \ {0} × R.

Proof. The uniqueness proof is very similar to the proof of Theorem 5.2. Con-
sider the group generated by w = ξ·∇x+ 2−n

2n (div ξ)u∂u. The underlying func-
tional L decomposes into two parts L[u] =

∫
Ω
L(x, u,∇u) dx+

∫
ΓN

G(x, u) dσx.
From the rate of change formula one finds as before

∫

Ω

w(1)L+ LDiv ξ dx = −
∫

Ω

ξ · ∇xF +
2− n
2n

(div ξ)uf + F div ξ dx

+
∫

ΓN

2− n
2n

u2

2
∂ν div ξ dσx, (5.3)

and the first part of condition (c) guarantees that the volume-integral is non-
positive. Applying the rate of change formula to

∫
ΓN

G(x, u) dσx one finds
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∫

ΓN

wG(x, u) +G(x, u) divΓN ξ dσx

=
∫

ΓN

ξ · ∇xG(x, u) +
2− n
2n

(div ξ)ug(x, u) +
n− 1
n

Gdiv ξ dσx. (5.4)

Recall from Lemma 4.24 that divΓN ξ = n−1
n div ξ and from Proposition 4.28

that ∂ν div ξ = H div ξ+n∇H ·ξ. Hence, after adding the two surface integrals
from (5.3) and (5.4), we find that the rate of change d

dεL[gεu]|ε=0 is non-
positive due to the differentiated version of condition (c), see Remark 5.8. As
in the proof of Theorem 5.2 uniqueness of the critical point u ≡ 0 in the class
W 2,1(Ω) ∩C1

0 (Ω) follows from Theorem 3.36(ii). 
�
In all of the following example domains we have H ≡ 0 on ΓN .

Example 1: Let H+ = {x ∈ R
n : x1 > 0} be a halfspace and ∂H+ = {x ∈

R
n : x1 = 0} be its boundary. Let Ω ⊂ R

n be star-shaped w.r.t. 0 ∈ Ω and
let Ω+ = Ω ∩ H+. Let ΓN = Ω ∩ ∂H+ and ΓD = ∂Ω ∩H+. The vector-field
ξ = −x verifies the conditions of Theorem 5.7. E.g., a half-ball B1(0)+ = {x ∈
R

n : |x| < 1, x1 > 0} with ΓN = {x ∈ R
n : |x| ≤ 1 : x1 = 0} is such a domain.

Example 2: Consider the two-dimensional domain ω ⊂ R
2 depicted in Fig-

ure 5.1. Let Ω = ω × [0, 1]n−2 and set ΓN = ω × {0} and ΓD the remaining
part of the boundary. The vector-field ξ = (−x1+x2,−x1−x2,−x3, . . . ,−xn)
satisfies the requirements of Theorem 5.7.

Example 3: The three-dimensional example depicted in Figure 5.5 with ΓN =
∂Ω∩{y = 0} shows a domain similar to a quarter-ball, but which is non star-
shaped. The corresponding vector-field is ξ = (−2xz,−2yz,−z2 + x2 + y2).
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Corollary 5.9. Let Ω ⊂ R
n be bounded and piecewise smooth. Assume that

(Ω,ΓN ) is conformally contractible domain with associated vector-field ξ such
that div ξ ≤ 0 in Ω and 0 ∈ ΓN , ξ(0) = 0. Let f(u) = λu+ s(x)σ1 |u|p−1u and
g(u) = µu+ t(x)σ2 |u|q−1u with s(x), t(x) = |x| or |ξ(x)|.
(i) Suppose ∂ν div ξ ≥ 0 on ΓN . If p ≥ n+2+2σ1

n−2 , q ≥ n+2σ2
n−2 , σ1, σ2 > −1 and

λ ≤ 0, µ ≤ 0 then (c) of Theorem 5.7 holds.
(ii)If no condition on ∂ν div ξ on ΓN is assumed then suppose instead that

ξ · ∇H ≥ 0 on ΓN . With all conditions of (i) kept except that µ ≤
2−n

2 maxΓN H it follows that (c) of Theorem 5.7 holds.
(iii)If moreover λ = µ = 0 and p = n+2+2σ1

n−2 , q = n+2σ2
n−2 , σ1, σ2 > −1 then the

assumption div ξ ≤ 0 is not necessary provided H = 0 on ΓN .

5.1.2 Extension to operators of q-Laplacian type

In Example 2.35 of Chapter 2 boundary value problems for the q-Laplacian
were introduced. For simplicity we restrict attention to autonomous problems.
Recall that for 1 < q <∞ critical points in W 1,q

0 (Ω) of the functional L[u] =∫
Ω

1
q |∇u|q − F (u) dx weakly satisfy

div(|∇u|q−2∇u) + f(u) = 0 in Ω, u = 0 on ∂Ω, (5.5)

provided F (s) satisfies a subcritical growth condition. For q 	= 2 the operator
∆q is not uniformly elliptic near those points x where ∇u(x) = 0. Therefore
the solutions of (5.5) are typically not classical. E.g., if f is continuous and
u ∈ L∞(Ω) ∩W 1,q

0 (Ω) then it is known from DiBenedetto [20], Lieberman
[61] that u is C1,α-regular – but examples exist, where the regularity cannot
be improved.

To overcome the regularity problems the following regularization was in-
troduced for ε > 0:

∆q,εu = div((|∇u|2 + ε)
q−2
2 ∇u).

Concerning uniqueness of the trivial solutions of supercritical problems

Lu+ f(u) = 0 in Ω, u = 0 on ∂Ω (5.6)

we show that the two operators L = ∆q and L = ∆q,ε behave similarly with
only minor differences.

In the following we assume that f is continuous. A solution of (5.6) always
means a weak C1,α

0 (Ω)-solution.

Theorem 5.10. Let Ω ⊂ R
n, n > q be a bounded C1,α-smooth conformally

contractible domain with associated conformal vector-field ξ = −X + ζ s.t.
ζ ∈ span[xiej − xjei, i, j = 1, . . . , n].
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(i) Problem (5.6) has no non-trivial solution if F (tu)/t
2q

n−q is strictly increas-
ing in t > 0 for all u ∈ R\{0}. For f(u) = |u|p−1u+λ|u|q−2u this amounts
to p > nq−n+q

n−q , λ ≤ 0 or p ≥ nq−n+q
n−q , λ < 0.

(ii)In the special case f(u) = |u|nq−2n−2q
n−q u there are no non-trivial solutions

of (5.6) for L = ∆q,ε. For L = ∆q we can only conclude that (5.6) has no
non-trivial solution of one sign u ≥ 0 or u ≤ 0.

Proof. The two operators L = ∆q,∆q,ε are variational. In both cases C1,α(Ω)-
solutions to (5.6) satisfy the Euler-equation pointwise almost everywhere,
see Tolksdorf [88]. For 1 < q ≤ 2 they belong to W 2,q(Ω) and for q ≥ 2
to W 2,2(Ω), see Dı́az [21], Section 4.1c. Hence the theory of transformation
groups as in Theorem 3.36 is available.

Part (i): First we give the proof for ∆q,ε. Solutions are critical points of
the functional

L[u] =
∫

Ω

1
q
(|∇u|2 + ε)q/2 − F (u) dx.

With the vector-field w = ξ · ∇x + a(x)u∂u one obtains
∫

Ω

w(1)L+ L div ξ dx

=
∫

Ω

−a(x)uf(u)− F (u) div ξ + (a(x) − div ξ

n
)(|∇u|2 + ε)

q−2
2 |∇u|2 dx

+
∫

Ω

(|∇u|2 + ε)
q−2
2 u∇a(x) · ∇u+

div ξ

q
(|∇u|2 + ε)

q
2 dx.

By our hypotheses ξ is a conformal vector field with constant divergence −n.
We will choose a(x) = a = const. > 0 with the value of a determined a-
posteriori. Therefore ∇a(x) vanishes and we find
∫

Ω

w(1)L+ L div ξ dx

=
∫

Ω

−auf(u) + nF (u) + (a+ 1)(|∇u|2 + ε)
q−2
2 |∇u|2 − n

q
(|∇u|2 + ε)

q
2 dx

<

∫

Ω

−auf(u) + nF (u) + (a+ 1− n

q
)(|∇u|2 + ε)

q
2 dx (5.7)

unless u ≡ 0. The strict inequality comes from the fact that ε > 0. If we
choose a = (n − q)/q then we obtain that w generates a strict variational
sub-symmetry w.r.t. 0.

The proof for the q-Laplacian ∆q is the same proof as above with ε = 0.
Now the vector-field w produces equality in (5.7). But since F (tu)/t

2q
n−q is

strictly increasing we still have the strict variational sub-symmetry. Unique-
ness follows by Theorem 3.36.
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Part (ii): If f(u) is exactly the critical-power function, then w still generates
a strict variational sub-symmetry for ∆q,ε if ε > 0. Uniqueness follows as in
Part (i). This is different for the q-Laplacian ∆q. Now we get

∫
Ω

w(1)L +
L div ξ dx = 0 and hence by Pohožaev’s identity of Theorem 3.23 we obtain

0 =
∫

∂Ω

ν · ξ(L−∇u · ∇pL) dσ =
∫

∂Ω

ν · ξ 1− q
q
|∇u|q dσ.

This implies that ∇u = 0 on a subset of positive measure of ∂Ω. How-
ever, if u is either entirely positive or negative in Ω this contradicts Hopf’s
maximum principle (cf. Vazquez [90]) for non-trivial, one-signed solutions of
∆qu+ |u| nq

n−q−2u = 0 with zero Dirichlet conditions on ∂Ω. 
�
Remark 5.11. 1) The result of Theorem 5.10 is sharp in the sense that for
1 < p < nq−n+q

n−q (n > q) or 1 < p <∞ (n ≤ q) standard variational methods
show existence of positive solutions for all λ < λ1.
2) In difference to the Laplacian we cannot admit quadratic conformal vector-
fields of type Zi, see Section 5.1, because Zi has non-constant divergence and
hence the choice of a = const. in the above proof does no longer work.
3) In order to obtain the result of Theorem 5.10 (ii) for arbitrary solutions
one would need the unique continuation principle for the q-Laplacian.

Example 5.12. If ∂Ω is decomposed into ΓD ∪ ΓN then one can consider

∆qu+ f(u) = 0 in Ω, u = 0 on ΓD

|∇u|q−2∂νu− g(u) = 0 on ΓN .
(5.8)

Suppose Ω ⊂ R
n, n > q is a bounded and smooth. Let (Ω,ΓN ) be con-

formally contractible with associated conformal vector-field ξ = −X + ζ
s.t. ζ ∈ span[xiej − xjei, i, j = 1, . . . , n]. Then (5.8) has no non-trivial

W 2,1(Ω) ∩ C1(Ω)-solution provided F (tu)/t
nq

n−q , G(tu)/t
(n−1)q

n−q is strictly in-
creasing in t > 0 for all u ∈ R \ {0}. The proof uses explicitly that
div ξ = const. and hence ∂ν div ξ = 0 on ΓN .

5.1.3 Extension to the mean-curvature operator

In their work on generalized versions of Pohožaev’s identity Pucci and Serrin
[77] also studied a nonlinear boundary-value problem related to the mean-
curvature operator

div
( ∇u

√
1 + |∇u|2

)
+ f(u) = 0 in Ω, u = 0 on ∂Ω. (5.9)

For the case of star-shaped domains, they obtained a uniqueness result if
f has supercritical growth. We state the following extension:
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Theorem 5.13. Let Ω ⊂ R
n, ≥ 3 is a bounded Lipschitz domain, which is

conformally contractible with associated vector-field ξ = −X + ζ s.t. ζ ∈
span[xiej −xjei, i, j = 1, . . . , n]. If F (tu)/t

2
n−2 is increasing then (5.9) has no

non-trivial C2(Ω)∩C1(Ω)-solution. If f(u) = |u|p−1u+ λu then (5.9) has no
non-trivial solution if p ≥ n+2

n−2 and λ ≤ 0.

The proof is similar to the proof of Theorem 5.10. One applies the trans-
formation group generated by w = ξ · ∇x + n−2

2 u∂u to the functional
L[u] =

∫
Ω

√
1 + |∇u|2 − 1 − F (u) dx. One finds in all cases that w gener-

ates a strict variational sub-symmetry w.r.t. 0.

Example 5.14. The nonlinear Neumann problem for the mean-curvature op-
erator is given by

div
( ∇u

√
1 + |∇u|2

)
+ f(u) = 0 in Ω, u = 0 on ΓD

∂νu√
1 + |∇u|2 − g(u) = 0 on ΓN ,

(5.10)

where as usual ∂Ω is decomposed into ΓD ∪ ΓN . Let Ω ⊂ R
n, n ≥ 3 be

bounded. If (Ω,ΓN ) is conformally contractible with associated conformal
vector-field ξ = −X + ζ s.t. ζ ∈ span[xiej − xjei, i, j = 1, . . . , n] then (5.8)
has no non-trivial C2(Ω)∩C1(Ω)-solution provided F (tu)/t

2n
n−2 , G(tu)/t

2n−2
n−2

is strictly increasing in t > 0 for all u ∈ R\{0}. Again the proof uses explicitly
that div ξ = const. and hence ∂ν div ξ = 0 on ΓN .

5.2 Uniqueness of non-zero solutions

In the previous section examples for supercritical problems were presented
where u ≡ 0 was the unique solution. Consider now for p > 1 the model
problem

∆u+ λup + 1 = 0 in Ω, u = 0 on ∂Ω. (5.11)

We are interested in positive solutions. For λ > 0 and close to zero the implicit
function theorem shows that (5.11) has a positive solution-curve uλ, with
u0 = limλ→0 uλ being the solution of the torsion-problem ∆u0 + 1 = 0 in Ω
with u0 = 0 on ∂Ω. The next theorem shows that for strictly supercritical
exponents p > n+2

n−2 global uniqueness of this solution curve holds for small
positive λ. It applies more generally to problems of the form

∆u+ f(λ, u) = 0 in Ω, u = 0 on ∂Ω. (5.12)

Theorem 5.15. Let Ω ⊂ R
n, n ≥ 3 be a bounded Lipschitz domain, which is

conformally contractible with associated vector-field ξ such that div ξ ≤ 0 in
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Ω. Suppose f : [0,∞)×R→ R is a C2-function w.r.t. the second variable and
assume that ∂sf(λ, s), ∂2

ssf(λ, s) are continuous in (λ, s). Moreover suppose
that

(i) f(0, s) = const. for all s ∈ R,
(ii)∃p > n+2

n−2 and s0, λ0 > 0 such that F (λ, s)/|s|p+1 is increasing in s for
|s| ≥ s0 and λ ∈ [0, λ0].

Then the following uniqueness result holds:

(a) If div ξ < 0 in Ω then there exists λ̄ > 0 such that (5.12) has a unique
solution for all λ ∈ [0, λ̄].

(b) If div ξ ≤ 0 in Ω, f(λ, 0) > 0 for λ > 0 and if f(λ, s) is convex in s then
there exists λ̄ > 0 such that (5.12) has a unique positive solution for all
λ ∈ (0, λ̄].

Remark 5.16. Examples of convex nonlinearities which satisfy (i) and (ii) are
f(λ, s) = λ|s|p−1s+ 1, λ(|s|p−1s+ 1) for p > n+2

n−2 and λes.

The proof uses the following weighted Poincaré inequality on conformally
contractible domains with the weight-function − div ξ ≥ 0. It states that the
best constant λ̃1 is strictly positive.

Lemma 5.17. Let Ω ⊂ R
n, n ≥ 2 be a bounded Lipschitz domain, which

is conformally contractible domain with associated vector-field ξ such that
div ξ ≤ 0 in Ω. Then there exists a value λ̃1 such that

∫

Ω

(− div ξ)|∇u|2 dx ≥ λ̃1

∫

Ω

(− div ξ)u2 dx (5.13)

for all u ∈ C1
0 (Ω). If λ1 denotes the first Dirichlet eigenvalue of −∆ then the

optimal value λ̃1 in (5.13) satisfies λ̃ ≤ λ1. If div ξ = const. < 0 then clearly
λ̃1 = λ1.

Proof. For n ≥ 3 the function − div ξ is linear and non-negative. Hence we
may suppose after a rotation of the coordinate system that − div ξ = a+bx1 ≥
0 in Ω. To avoid trivialities assume b < 0 and x1 ≤ −a/b for x ∈ Ω (a similar
proof holds if b > 0 and x1 ≥ −a/b). Let C denote a generic constant. First,
we find

∫

Ω

(a+ bx1)u2 dx ≤ C

∫

Ω

u2 dx =
−C
b

∫

Ω

(a+ bx1)∂x1(u
2) dx

≤ C
(∫

Ω

(a+ bx1)u2 dx
)1/2( ∫

Ω

(a+ bx1)|∂x1u|2 dx
)1/2

,

i.e.,
∫

Ω
(a+ bx1)u2 dx ≤ C ∫

Ω
(a+ bx1)|∂x1u|2 dx. Likewise, for i = 2, . . . , n we

find
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∫

Ω

(a+ bx1)u2 dx = −
∫

Ω

xi∂xi

(
(a+ bx1)u2

)
dx ≤ C

∫

Ω

(a+ bx1)u∂xiu dx

≤ C
( ∫

Ω

(a+ bx1)u2 dx
)1/2( ∫

Ω

(a+ bx1)|∂xiu|2 dx
)1/2

.

Hence
∫

Ω(a+ bx1)u2 dx ≤ C ∫
Ω(a+ bx1)|∂xiu|2 dx for i = 2, . . . , n. The result

in (5.13) of Lemma 5.17 now follows by summation. To find the relation of
the best constant λ̃ in (5.13) and λ1 let φ1 be the first Dirichlet eigenfunction
of −∆. Then

∫

Ω

(− div ξ)∇φ1∇φ1 dx =
∫

Ω

∇(
(− div ξ)φ1

)∇φ1 dx+
∫

Ω

∇div ξ∇φ
2
1

2
dx.

Integration by parts and using ∆div ξ = 0 shows that the second integral
vanishes. Hence integration by parts of the first integral yields

∫

Ω

(− div ξ)∇φ1∇φ1 dx = λ1

∫

Ω

(− div ξ)φ2
1 dx,

which shows that the optimal constant λ̃1 is smaller or equal to λ1. Finally,
in the case n = 2 the function − div ξ ≥ 0 is harmonic. Hence it also has at
most simple zeroes on ∂Ω and we can estimate it from above and below by
a linear function. A similar proof as above works and shows also in this case
that λ̃1 ≥ λ1. 
�
Proof (of Theorem 5.15). For λ ∈ [0, λ̃] let uλ be the locally unique solution of
(5.12) obtained from the implicit function theorem. In case of (b) this solution
is the positive minimal solution since 0 is a strict subsolution for λ > 0. Any
solution u of (5.12) is a critical point of

L[u] =
∫

Ω

1
2
|∇u−∇uλ|2 − F (λ, u) + F (λ, uλ) + f(λ, uλ)(u− uλ) dx.

Then L(x, uλ,∇uλ) = 0. We want to show u = uλ. Clearly L is convex in the
gradient variable ∇u. We set w = ξ · ∇x +

(
a div ξ(u− uλ) + ξ · ∇uλ

)
∂u. By

Lemma 3.6 the function uλ is a fixed point of the group generated by w. For
the prolongation of w we get

w(1) = w +
(
a(u− uλ)∇(div ξ) + a div ξ(∇u−∇uλ)

+Dξ∇uλ +D2uλξ −DξT∇u
)
· ∇p.

Applying the infinitesimal sub-symmetry criterion to the Lagrangian of L we
find
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w(1)L+ LDiv ξ

= div ξ(a+
n− 2
2n

)|∇u −∇uλ|2 +
a

2
div

(∇(div ξ)(u − uλ)2
)

+
(
fs(λ, uλ)(u − uλ)− f(λ, u) + f(λ, uλ)

)
ξ · ∇uλ (5.14)

+a div ξ
(− f(λ, u) + f(λ, uλ)

)
(u− uλ)

+ div ξ
(− F (λ, u) + F (λ, uλ) + f(λ, uλ)(u − uλ)

)
.

We choose a ∈ (2−n
2n ,− 1

p+1 ) and define two functions h1, h2 : [0, λ̃]×Ω×R→ R

by

h1(λ, x, s) =
(
fs(λ, uλ)(s− uλ)− f(λ, s) + f(λ, uλ)

)
ξ · ∇uλ

h2(λ, x, s) = a div ξ
(− f(λ, s) + f(λ, uλ)

)
(s− uλ)

+ div ξ
(− F (λ, s) + F (λ, uλ) + f(λ, uλ)(s− uλ)

)
.

Then (5.14) can be integrated to

∫

Ω

w(1)L+ LDiv ξ dx

=
∫

Ω

div ξ(a+
n− 2
2n

)|∇u−∇uλ|2 + h1(λ, x, u(x)) + h2(λ, x, u(x)) dx.

(5.15)

We discuss the behaviour of h1, h2 depending on the different types of hy-
potheses.

Case (a). By (ii) we know that f(λ, s) grows superlinearly and thus

|h1(λ, x, s)| ≤ C(1+ |f(λ, s)|)(− div ξ) for all (λ, x, s) ∈ [0, λ̃]×Ω×R (5.16)

and by Taylor’s theorem |h1(λ, x, s)|/(s−uλ(x))2 is bounded for s in bounded
intervals. Moreover, by using ∂2

ssf(0, u0(x)) = 0 and the continuity of the
second derivative, one has

|h1(λ, x, s)|/(s− uλ(x))2 → 0 as λ→ 0 (5.17)

uniformly for s in bounded intervals and x ∈ Ω. The same reasoning shows
that (5.17) also holds for h2. By using the growth assumption (ii) we get for
a large constant C > 0 and all (λ, x, s) ∈ [0, λ̃]×Ω × R the estimate

h2(λ, x, s) ≤
(

(a+
1

p+ 1
)f(λ, s)s+ C

︸ ︷︷ ︸
→−∞ as |s|→∞

)
(− div ξ). (5.18)

For |s| → ∞ we see that h2 grows fast enough to −∞ to dominate |h1|.
Altogether this means for all (λ, x, s) ∈ [0, λ̃]×Ω × R that
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h1(λ, x, s) + h2(λ, x, s) ≤ o(1)|s− uλ(x)|2(− div ξ) (5.19)

where o(1)→ 0 as λ→ 0.
Case (b). Here can restrict attention to positive solutions. The discussion

of h2 is exactly the same as before. Only for the discussion of h1 there are
differences. We split the domain Ω = D1∪D2 where D1 is a compact subset of
Ω and D2 a neighbourhood of ∂Ω such that ξ · ∇uλ ≥ 0 in D2. By convexity
of f(λ, s) in s we find

h1(λ, x, s) ≤ 0 for all (λ, x, s) ∈ [0, λ̃]×D2 × R. (5.20)

Moreover, since − div ξ > 0 in D1 there exists a constant C > 0 such that

h1(λ, x, s) ≤ C(1+ |f(λ, s)|)(− div ξ) for all (λ, x, s) ∈ [0, λ̃]×D1×R. (5.21)

Both (5.20) and (5.21) together yield the same estimate (5.16) as in Case (a).
Hence also in this case we reach the same conclusion (5.19).

In both cases we may estimate (5.15) by

∫

Ω

w(1)L+ LDiv ξ dx

≤
∫

Ω

div ξ(a+
n− 2
2n

)|∇u −∇uλ|2 + o(1)|u− uλ|2(− div ξ) dx (5.22)

where o(1)→ 0 as λ→ 0. Since a > 2−n
2n we can apply the weighted Poincaré

inequality of Lemma 5.17 and obtain
∫

Ω

w(1)L+ LDiv ξ dx ≤
∫

Ω

div ξ(u− uλ)2
(
λ̃1(a+

n− 2
2n

) + o(1)
)
dx

which shows that for λ > 0 sufficiently small the vector-field w generates
a strict variational sub-symmetry w.r.t. uλ. By Theorem 3.36 we know that
u ≡ uλ is the only critical point of L for sufficiently small λ. 
�
Remark 5.18. 1) For the nonlinearities f(λ, s) = λ(1 + |s|p−2s), λ|s|p−2s + 1
with 1 < p < n+2

n−2 , n ≥ 3 and for arbitrary p > 1, n = 1, 2 there are at
least two positive solutions of (5.12) for small positive λ. This was shown for
smooth bounded domains by Crandall, Rabinowitz [14] and for a problem
similar to (5.11) on balls by Joseph, Lundgren [50].

2) For f(λ, s) = λes (5.12) is known as the Gelfand problem. For n ≥ 3
there exists λ̄ > 0 such that (5.12) has a unique positive solution exists
for λ ∈ [0, λ̄]. For star-shaped domains such a theorem can be found in
Schmitt [83], Theorem 2.6.6. For the construction in Theorem 5.15 one needs
a negative value 0 > a > 2−n

2n to obtain a variational sub-symmetry by
w = ξ · ∇x + (a div ξ(u − uλ) + ξ · ∇uλ)∂u. Therefore n ≥ 3 is needed for
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the proof. Indeed, the condition n ≥ 3 is also necessary, since for n = 1, 2 the
Gelfand-problem has at least two positive solutions for small positive λ. This
was shown by Gelfand [35] for intervals and disks and by Crandall, Rabinowitz
[14] for bounded smooth planar domains.

Example 5.19. For a nonlinear Neumann boundary value problem let us sup-
pose that ∂Ω is decomposed into ΓD∪ΓN and that Ω ⊂ R

n, n ≥ 3 is bounded.
Let (Ω,ΓN ) be conformally contractible with associated conformal vector-field
ξ such that div ξ ≤ 0 in Ω. In analogy to the weighted Poincareé-inequality
of Lemma 5.17 we consider the best constant λ̃1 of

∫

Ω

(− div ξ)|∇u|2 dx ≥ λ̃1

(∫

Ω

(− div ξ)u2 dx+
∫

ΓN

(− div ξ)u2 dσ
)

(5.23)

for all u ∈ C1
ΓD

(Ω). We conjecture that always λ̃1 > 0, but so far we can only
prove this for a restricted class of conformally contractible domains Ω, see
Lemma 5.20 below. In the following we suppose that Ω is such a domain with
λ̃1 > 0.

Consider the problem

∆u+ f(λ, u) = 0 in Ω, u = 0 on ΓD

∂νu− g(µ, u) = 0 on ΓN .
(5.24)

suppose ∂ν div ξ = (H div ξ+nξ∇H) ≥ 0 on ΓN . If f, g satisfy the smoothness
assumption of Theorem 5.15 together with

(i) f(0, s) = const., g(0, s) = const. for all s ∈ R,
(ii) ∃p > n+2

n−2 , q >
n

n−2 and s0, σ0 > 0 such that F (λ, s)/|s|p+1, G(µ, s)/|s|q+1

are increasing in s for |s| ≥ s0 and λ, µ ∈ [0, σ0]

then the following uniqueness result holds: if f(λ, 0), g(µ, 0) > 0 for λ, µ > 0
and if f(λ, s), g(µ, s) are convex in s then there exists σ̄ > 0 such that (5.24)
has a unique positive solution for all λ, µ ∈ (0, σ̄].

The weighted Poincaré-inequality for a restricted class of domains is given
next.

Lemma 5.20. Assume that ∂Ω is decomposed into ΓD ∪ ΓN and that Ω ⊂
R

n, n ≥ 2 is bounded and piecewise smooth. Let (Ω,ΓN ) be conformally con-
tractible with associated conformal vector-field ξ such that div ξ ≤ 0 in Ω. Let
λ̃1 be the best constant in the inequality (5.23). In each of the following cases
λ̃1 > 0:

(a) div ξ < 0 in Ω
(b) div ξ = 0 on a hyperplane E with ΓN ⊂ E.

Examples for (a), (b) are given found in Example 1 - 3 after Theorem 5.7.

Proof. Case (a) is a consequence of the uniform positivity of the weight. In case
(b) the surface integral in (5.23) vanishes and the same proof as in Lemma 5.17
works. 
�
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5.3 The subcritical case

Our attention so far was set on supercritical variational problems. We show
in this section that also for subcritical problems information can be obtained
by the method of transformation groups. For simplicity we restrict ourselves
to the bifurcation problem

∆u+ λu + |u|p−1u = 0 in Ω, u = 0 on ∂Ω. (5.25)

As usual we suppose that Ω ⊂ R
n is a bounded conformally contractible

domain with associated vector-field ξ. The main result is that any solution
with sufficiently small ‖ · ‖∞-norm must be the zero-solution. Reversely the
‖ · ‖∞-norm of non-trivial solutions must be sufficiently large.

Theorem 5.21. Consider a bounded Lipschitz domain Ω ⊂ R
n which is con-

formally contractible domain with associated vector-field ξ such that div ξ ≤ 0
in Ω. Let λ̃1 be the weighted Poincaré constant from Lemma 5.17. Let u be a
nontrivial solution of (5.25).

(i) If 1 < p <∞ and λ < λ̃1 then

‖u‖∞ ≥ λ̃1 − λ.

For those domains, where λ̃1 = λ1 the estimate shows how the solution
branch bifurcating at λ = λ1 leaves the trivial solution.

(ii)If 1 < p < n+2
n−2 and λ < 0 then

‖u‖p−1
∞ ≥ −λ 2(p+ 1)

2n− (n− 2)(p+ 1)

In the case n > 2, λ < 0 the L∞-norm of any nontrivial solution blows up
as p↗ n+2

n−2 .

Proof. Let L[u] =
∫

Ω
1
2 |∇u|2 − λ

2u
2 − 1

p+1 |u|p+1 dx. We will show that every
solution u of (2.12) with L∞-norm less than the bound in (i), (ii) is trivial.
Let w = ξ ·∇x−αdiv ξu∂u. We begin to verify the infinitesimal sub-symmetry
criterion for the vector-field w:

∫

Ω

w(1)L+ LDiv ξ dx =
∫

Ω

(α − n− 2
2n

)(− div ξ)|∇u|2 dx

+
∫

Ω

(− div ξ)(
1

p+ 1
− α)|u|p+1 + (− div ξ)(

1
2
− α)λu2 dx.

We choose α ≤ min{ 1
p+1 ,

n−2
2n }. Thus the coefficient of (− div ξ)|∇u|2 is non-

positive and the coefficient of (− div ξ)|u|p+1 is non-negative. By applying the
weighted Poincaré inequality from Lemma 5.17 we get
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∫

Ω

w(1)L+ LDiv ξ dx ≤
∫

Ω

[
λ̃1(α − n− 2

2n
) + (

1
2
− α)λ

]
(− div ξ)u2 dx

+
∫

Ω

(
1

p+ 1
− α)‖u‖p−1

∞ (− div ξ)u2 dx

where λ̃1 is the Poincaré constant. Thus we have a strict variational sub-
symmetry w.r.t. 0 provided

‖u‖p−1
∞ <

λ̃1(n−2
2n − α)− λ(1

2 − α)
1

p+1 − α
. (5.26)

In order to apply the uniqueness principle of Theorem 3.36 one needs to notice
that for u ∈ C0,1

0 (Ω) with ‖u‖∞ < M there exists ε0 = ε0(u) > 0 such that
‖gεu‖∞ < M for all ε ∈ [0, ε0]. In other words, open L∞-norm balls are
left locally invariant by the variational sub-symmetry G. Hence any solution
satisfying (5.26) is trivial by the uniqueness principle of Theorem 3.36. In
turn, any non-trivial solution has to satisfy the reverse inequality in (5.26). If
we let α→ −∞ then we obtain part (i) of the theorem. Part (ii) follows if we
take α = n−2

2n . 
�
Example 5.22. If ∂Ω = ΓD ∪ ΓN then the corresponding nonlinear Neumann
boundary value problem is

∆u+ λu+ |u|p−1u = 0 in Ω, u = 0 on ΓD

∂νu− µu− |u|q−1u = 0 on ΓN .
(5.27)

Suppose that Ω ⊂ R
n is bounded. Let (Ω,ΓN ) be conformally contractible

with associated conformal vector-field ξ such that div ξ ≤ 0 in Ω. Then the
following result holds: let 1 < p < n+2

n−2 , 1 < q < n
n−2 and λ < 0.

(i) Suppose ∂ν div ξ ≥ 0 on ΓN and µ < 0. Then at least one of the following
two estimates holds:

‖u‖p−1
∞ ≥ −2λ(p+ 1)

2n− (n− 2)(p+ 1)
, ‖u‖q−1

∞,ΓN
≥ −µ(q + 1)

2n− 2− (n− 2)(q + 1)
.

(ii) If no condition on ∂ν div ξ on ΓN is assumed then suppose instead that
ξ·∇H ≥ 0 on ΓN and µ < 2−n

2 maxΓN H . Then at least one of the following
two estimates holds:

‖u‖p−1
∞ ≥ −2λ(p+ 1)

2n− (n− 2)(p+ 1)
, ‖u‖q−1

∞,ΓN
≥ −(µ+ n−2

2 maxΓN H)(q + 1)
2n− 2− (n− 2)(q + 1)

.

5.4 Perturbations of conformally contractible domains

The following definition suggests a value which measures how far a way a given
domain Ω is from being conformally contractible. It is inspired by Dancer
and Zhang’s definition of ε-starshaped domains, cf. [17]. We use the notation
f+(x) = max{f(x), 0} for the positive part of a function f .
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Definition 5.23. Let Ω ⊂ R
n be a bounded C2,α-domain and let ξ0 be a fixed

conformal vector-field. The value

c0(ξ0, Ω) = max
x∈∂Ω

(ξ0(x) · ν(x))+

is called the contractibility-defect with respect to ξ0.

If c0(ξ0, Ω) is small then the vector-field ξ0 is almost pointing inward on
∂Ω – up to a small correction term. For such a correction term Dancer, Zhang
suggested to consider the solution h : Ω → R of

∆h =
|∂Ω|
volΩ

in Ω,
∂h

∂ν
= 1 on ∂Ω.

Then (ξ0 − c0(ξ0, Ω)∇h) · ν ≤ 0 on ∂Ω. The value c0(ξ0, Ω) is not scaling-
invariant. But if we introduce

‖D2h‖ξ0 := sup
x∈Ω

nµmaxD
2h(x)

− div ξ0
,

where µmaxD
2h is the largest eigenvalue of the Hessian of h, then

c0(ξ0, Ω)‖D2h‖ξ0

is scaling-invariant.
If one takes ξ0 = −x then c0(−x,Ω) is called the star-shapedness defect,

and c0(−x,Ω)‖D2h‖x is a scale-invariant measure of how far away Ω is from
being star-shaped. Based on this value Dancer, Zhang [17] proved the following
theorem.

Theorem 5.24. (Dancer, Zhang) Let Ω ⊂ R
n be a bounded C2,α-domain with

star-shapedness defect c0 = c0(−x,Ω). If p > n+2
n−2 and if

c0‖D2h‖x < p(n− 2)− (n+ 2)
n+ 2 + 2p

then
∆u+ |u|p−1u = 0 in Ω, u = 0 on ∂Ω (5.28)

has only the trivial solution.

Our next result generalizes the above theorem of Dancer and Zhang.

Theorem 5.25. Let Ω ⊂ R
n be a bounded C2,α-domain with contractibility-

defect c0 = c0(ξ0, Ω) > 0 in direction of a conformal vector-field ξ0. Suppose
div ξ0 ≤ 0 in Ω. If p > n+2

n−2 and if
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c0‖D2h‖ξ0 ≤
p(n− 2)− (n+ 2)

n+ 2 + 2p

λ ≤ 2λ̃1

n(p− 1)
· p(n− 2)− (n+ 2)− (n+ 2 + 2p)c0‖D2h‖ξ0

2 + c0‖D2h‖ξ0

then
∆u+ λu+ |u|p−1u = 0 in Ω, u = 0 on ∂Ω (5.29)

has only the trivial solution.

Proof. The vector-field ξ = ξ0− c0∇h is not conformal, but points inward on
∂Ω. Moreover, div ξ < 0 in Ω which implies that ξ · ν < 0 on a subset of ∂Ω
of positive measure. Recall from Theorem 4.8(c)–(d) that uniqueness of the
trivial solution holds provided

− div ξ − 2M∞ ≥ 0 in Ω, p ≥ p∗ = sup
Ω

− div ξ + 2M∞
− div ξ − 2M∞

,

λ ≤ λ̃1
2(p− p∗)

(p− 1)(p∗ + 1)
+

∆div ξ

(p− 1) div ξ
,

(5.30)

where M∞ = M∞(x; ξ) := sup|b|=1−bTDξ(x)bT . The proof of the present
theorem consists in verification of (5.30) for the given vector-field ξ. First we
compute

M∞ ≤ −1
n

div ξ0 +
c0
n
‖D2h‖ξ0(− div ξ0).

By using the hypotheses on c0‖D2h‖ξ0 we find

− div ξ − 2M∞ ≥ − div ξ0
n− 2
n

+ c0
|∂Ω|
volΩ

− 2c0
n
‖D2h‖ξ0(− div ξ0)

>
− div ξ0

n

(
n− 2− 2p(n− 2)− 2(n+ 2)

n+ 2 + 2p

)
=
− div ξ0(n+ 2)
n+ 2 + 2p

≥ 0,

which establishes the first part of (5.30). Since the definition of p∗ in (5.30) is
monotone w.r.t. to the upper estimate of M∞ we find

p∗ ≤ sup
Ω

− div ξ0(1 + 2/n) + c0
|∂Ω|
vol Ω + 2c0

n ‖D2h‖ξ0(− div ξ0)

− div ξ0(1− 2/n) + c0
|∂Ω|
vol Ω − 2c0

n ‖D2h‖ξ0(− div ξ0)
.

Since |∂Ω|/ volΩ = ∆h ≤ n‖D2h‖∞ ≤ ‖D2h‖ξ0(− div ξ0) the above estimate
simplifies to

p∗ ≤ (n+ 2)(1 + c0‖D2h‖ξ0)
n− 2− 2c0‖D2h‖ξ0

and by a direct computation the inequality p∗ ≤ p holds under the given
hypotheses on c0‖D2h‖ξ0 . It remains to verify the λ-part of (5.30). Note that
∆div ξ = 0. Moreover using the above estimate for p∗ one finds
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2λ̃1(p− p∗)
(p− 1)(p∗ + 1)

≥ 2λ̃1

(p− 1)n
· p(n− 2)− (n+ 2)− (n+ 2 + 2p)c0‖D2h‖ξ0

2 + c0‖D2h‖ξ0

.

For any λ less than the above quantity, (5.30) and hence the uniqueness state-
ment of the theorem holds. 
�
Remark 5.26. If we let c0‖D2h‖ → 0 in Theorem 5.25 then we recover the
result of Theorem 4.35 in the Euclidean case. Moreover, for large p >> n+2

n−2 the
admissible range for c0‖D2h‖ stays bounded but becomes larger. This shows
that the more “supercritical” the boundary-value problem (5.29) becomes the
more robust the uniqueness result is towards domain perturbation.

Problem 5.27. Find an appropriate version of Theorem 5.25 for nonlinear
Neumann boundary value problems.

5.5 Uniqueness in the presence of radial symmetry

In the previous sections we have obtained uniqueness results for entire classes
of domains, e.g., for the class of conformally contractible domains. Now we
take a look at very special domains, namely balls B(0) in R

n. If u is a positive
solution of

∆u+ f(|x|, u) = 0 in B(0), u = 0 on ∂B(0) (5.31)

and f(r, u) is locally Lipschitz continuous in u and increasing in r = |x| then
the well known symmetry theorem of Gidas, Ni and Nirenberg [37] shows
that u is radially symmetric; similar symmetry theorems for positive solu-
tions of boundary value problems on geodesic balls in S

n and H
n are due

to Kumaresan, Prajapat [57] and Padilla [74]. One may therefore ask un-
der what conditions radially symmetric solutions of (5.31) are unique/trivial.
Radially symmetric solutions of (5.31) are critical points of the functional∫ 1

0 (1
2 |u′|2 − F (r, u(r)))rn−1 dr with F (r, s) =

∫ s

0 f(r, t) dt. More generally we
consider the uniqueness question for critical points of

L[u] =
∫ r0

0

L(r, u, u′) dr

with u ∈ C0,1
0 [0, r0] = {u : [0, 1] → R : u, u′ ∈ L∞[0, r0], u(r0) =

0, u′(0) exists and = 0}. The function space has a built-in Dirichlet condi-
tion at r = r0 and a Neumann condition at r = 0. Our uniqueness results of
Section 3.10 do not directly apply to functionals on such spaces with boundary
conditions varying from Dirichlet at one endpoint to Neumann at the other.
A few extra considerations need to be done:

Transformation groups acting on this function space are generated by

w(r, u) = ξ(r, u)∂r + φ(r, u)∂u.

We only consider those transformation groups which satisfy
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(i) ξ(0, u) = 0 for all u ∈ R,
(ii) ξ(r0, u) ≤ 0 for all u ∈ R,
(iii)ξ(r, 0) = 0 for all r ∈ [0, r0].

Conditions (i) and (ii) guarantee that [0, r0] is mapped onto [0, rε] ⊂ [0, r0] for
ε > 0, whereas (iii) ensures that u = 0 is a fixed point of the flow, i.e. it guaran-
tees that the Dirichlet-boundary condition at the right-endpoint is preserved.
A transformation group satisfying (i)–(iii) is called admissible. The following
uniqueness theorem covers the radially symmetric case of Theorem 3.36 for
domain-contracting groups (we only consider the scalar case).

Theorem 3.36’. Suppose L : [0, r0] × R × R → R is a C1-Lagrangian
for the functional L[u] =

∫ r0

0 L(r, u, u′) dr. Let G defined on C0,1
0 ([0, r0]) be

an admissible transformation group with infinitesimal generator w(r, u) =
ξ(r, u)∂r +φ(r, u)∂u. Let u0 be a fixed point of G and assume L(r, u0, u

′
0) = 0

in [0, r0] and ∂pL(0, u, 0) = 0 for all u ∈ R. If furthermore L(r, u0, u
′
0 + p) is

convex in p at p = 0 then either of the following two conditions implies the
uniqueness of the critical point u0 ∈ C2(0, r0) ∩ C1([0, r0]):

(i) G is a strict variational sub-symmetry w.r.t. u0,
(ii)G is a variational sub-symmetry and the unique continuation property at

u0 holds.

For ordinary differential equations the unique continuation property at u0

means the following: if u is a C2-solution of the Euler-equation with u(r0) = 0,
u′(0) = 0 and if ξ(r0, 0)

(
L(r0, 0, u′(r0))+(u′0(r0)−u′(r0))∂pL(r0, 0, u′(r0))

)
=

0 holds then u ≡ u0.

The proof of Theorem 3.36’ differs only in one detail from the proof of
Theorem 3.36: Since the boundary integral in Pohožaev’s identity (3.23) con-
tributes both at r = 0 and at r = r0 we have

d

dε
L[gεu]|ε=0

= ξ(r0, 0)L(r0, 0, u′(r0)) +
(

φ(r0, 0)
︸ ︷︷ ︸

=ξ(r0,0)u′
0(r0)

−ξ(r0, 0)u′(r0)
)
∂pL(r0, 0, u′(r0))

− ξ(0, u(0))
︸ ︷︷ ︸

=0

L(0, u(0), 0)−
(
φ(0, u(0))− ξ(0, u(0))u′(0)

︸ ︷︷ ︸
=0

)
∂pL(0, u(0), 0)
︸ ︷︷ ︸

=0

.

By our hypothesis this implies

d

dε
L[gεu]|ε=0 = ξ(r0, 0)

(
L(r0, 0, u′(r0)) + (u′0(r0)− u′(r0))∂pL(r0, 0, u′(r0))

)
,

i.e. only the boundary r = r0 contributes to the rate of change. The proof
now continues exactly as in Theorem 3.36.
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5.5.1 Radially symmetric problems on R
n, S

n, H
n

We apply Theorem 3.36’ to

∆Bu+ λu + |u|p−1u = 0 in BR0 , u = 0 on ∂BR0 (5.32)

where ∆B is the Laplace-Beltrami operator on either Euclidean R
n, the n-

sphere S
n or the hyperbolic space H

n and BR0 is a geodesic ball of geodesic
radius R0. Recall from Section 4.1 the representations of S

n and H
n:

Spherical space: Let Y be the south-pole of S
n. Then S

n \ {Y } can be repre-
sented as (Rn, ( 2

1+|x|2 )2δij). Geodesic balls of radius R0 ∈ (0, π) around the
north-pole −Y are given as Euclidean balls Br0(0) with r0 = tan(R0/2).
Hyperbolic space: H

n can be represented as (B1(0) ⊂ R
n, ( 2

1−|x|2 )2δij). Geo-
desic balls of radius R0 ∈ (0,∞) are given as Euclidean balls Br0(0) with
r0 = tanh(R0/2) ∈ (0, 1).

space R
n

S
n

H
n

metric ρ2δij ρ = 1 ρ = 2
1+r2 ρ = 2

1−r2

radius of a geodesic ball R0 ∈ (0,∞) R0 ∈ (0, π) R0 ∈ (0,∞)

corresponding Euclidean radius R0 tan(R0/2) tanh(R0/2)

scalar curvature 0 n(n− 1) −n(n− 1)

Table 5.2. The model of R
n, Sn,Hn

All three models will be treated in the same way. We assume that the
metric is given by gij = ρ2(r)δij with ρ as in Table 5.2. Radially symmetric
solutions of (5.32) satisfy

(ρn−2rn−1u′)′

rn−1ρn
+ λu+ |u|p−1u = 0 in (0, r0), u′(0) = 0, u(r0) = 0 (5.33)

and they are found as critical points of the functional

L[u] =
∫ r0

0

rn−1ρn−2 u
′2

2
− rn−1ρn

(
λ
u2

2
+
|u|p+1

p+ 1

)
dr

on the space C0,1
0 [0, r0]. Such a Lagrangian satisfies the hypothesis of Theo-

rem 3.36’. We investigate when the more special vector-field

w(r, u) = ξ(r)∂r + a(r)u∂u.

generates a variational sub-symmetry. The prolongation of w is given by

w(1)(r, u) = ξ(r)∂r + a(r)u∂u +
(
a′(r)u + (a(r) − ξ′(r))u′

)
∂p.
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Lemma 5.28. Let G be an admissible transformation group on C0,1
0 [0, r0]

with infinitesimal generator w = ξ(r)∂r + a(r)u∂u. Let the functional L[u] =
∫ r0

0 rn−1ρn−2 u′2
2 − rn−1ρn(λu2

2 + |u|p+1

p+1 ) dr be defined on C0,1
0 [0, r0]. Then the

rate of change of L under the action of G at ε = 0 is given by

d

dε
L[gεu]|ε=0 =

∫ r0

0

w(1)L+ Lξ′(r) dr

=
∫ r0

0

rn−1ρn−2b1(r)
u′2

2
− rn−1ρn

(
b2(r)

u2

2
+ b3(r)

|u|p+1

p+ 1

)
dr,

where

b1(r) = 2a(r)− ξ′ + ξ(
n− 1
r

+
(n− 2)ρ′

ρ
),

b2(r) = λ
(
ξ′ + ξ(

n− 1
r

+
nρ′

ρ
) + 2a

)
+∆Ba,

b3(r) = ξ′ + ξ(
n− 1
r

+
nρ′

ρ
) + (p+ 1)a.

Our strategy for the choice of the unknown functions ξ(r), a(r) is to set

a(r) =
1
2

(
ξ′ − ξ(n− 1

r
+

(n− 2)ρ′

ρ
)
)
.

and determine ξ(r) such that b2(r), b3(r) ≥ 0. Once we have achieved the vari-
ational sub-symmetry, Theorem 3.36’ shows uniqueness of the zero-solution.

The supercritical case for n ≥ 3

If one sets ξ(r) = −r, which corresponds in the multi-dimensional case to
ξ(x) = −x, one obtains the following result already contained in Theorem 4.35.

Proposition 5.29. Consider a geodesic ball B or radius R0 in R
n, Sn,Hn

for n ≥ 3. In the case of S
n suppose furthermore that B is contained in a

half-sphere. Then (5.32) has only the trivial solution for p ≥ n+2
n−2 provided

λ ≤





0 in case of R
n,

−n(n−2)
4 in case of S

n,
n(n−2)

4 in case of H
n.

Remark. All three results are sharp for n ≥ 4 and p = (n+2)/(n−2). In the
Euclidean case Brezis, Nirenberg [9] showed that in dimension n ≥ 4 positive
solutions exist for λ ∈ (0, λ1) on any bounded domain. In case of S

n the above
uniqueness result was obtained by Bandle, Brillard, Flucher [7]. Existence for
λ ∈ (−n(n − 2)/4, λ1) follows from the methods used by Bandle, Benguria
[6]. In case of H

n the corresponding existence and non-existence results were
obtained Stapelkamp [85].
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The supercritical case for n = 3

In the case n = 3 the situation is not accurately described by Proposition 5.29.
If the exponent p = 5 is exactly critical it is known that positive solution exist
for λ ∈ (λ∗, λ1) and only the trivial solution exists for λ ≤ λ∗ with

λ∗ =






π2/4 in case of R
3,

π4/4−R2
0

R2
0

for a geodesic ball BR0 ⊂ S
n, R0 < π/2

π4/4+R2
0

R2
0

for a geodesic ball BR0 ⊂ H
n.

Brezis, Nirenberg [9] proved the Euclidean case, Bandle, Benguria [6] the
spherical and Stapelkamp [85] the hyperbolic case. This exceptional behaviour
of dimension n = 3 leads to the notion of a critical dimension, cf. Pucci, Serrin
[78] and Janelli [49].

We will investigate the case n = 3 for supercritical p ≥ 5 explicitly in the
three model cases R

3, S3 and H
3 by one of the following two options:

(a) solve b2(r) ≡ 0 and verify the sub-symmetry criterion via b3(r) ≥ 0,
(b) solve b3(r) ≡ 0 and verify the sub-symmetry criterion via b2(r) ≤ 0.

The best uniqueness results are always obtained by strategy (a).

The 3-dimensional Euclidean ball

In the Euclidean case ρ ≡ 1. Without loss of generality we may assume that
the geodesic ball has radius r0 = 1.

Theorem 5.30. Let p ≥ 5 be a given value and let λ∗(p) be the largest value
of λ > 0 such that

√
λr
2 (cot2(

√
λr) − 1)− cot(

√
λ)
√
λr cot(

√
λr)

cot(
√
λr)− cot(

√
λ)

≤ p− 1
p+ 3

∀r ∈ (0, 1). (5.34)

Then the zero solution of (5.32) is unique for λ ≤ λ∗(p). In particular, for
p = 5 we find that there is no nontrivial solution for λ ≤ π2/4.

In Figure 5.6 the numerical evaluation of λ∗(p) as a function of p ≥ 5 is
displayed. One can notice that λ∗(5) = π2/4 and λ∗(∞) = π2 = λ1 which
means that asymptotically the values λ∗(p) are best possible.

Proof. The proof consists in choosing ξ(r) and a(r) = 1
2 (ξ′(r) − 2

r ξ(r)) such
that the coefficients b2(r) and b3(r) from Lemma 5.28 are non-positive. One
finds

b2(r) =
1
2
ξ′′′ + 2λξ′, b3(r) =

3 + p

2
ξ′ + ξ

(1− p)
r

and solves b2(r) ≡ 0 by choosing ξ(r) = −α sin(2
√

λr)

2
√

λ
+ β

(
cos(2

√
λr)−1

2
√

λ

)
, where

α, β need to be found according to b3(r) ≥ 0 for r ∈ (0, 1) and ξ(1) ≤ 0. By
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π2/4

4

6

8

π2

5 10 20 30 40 50 60
p

λ*(p)

Fig. 5.6. The curve λ∗ as a function of p ≥ 5

expanding b3(r) again around r = 0 we find that necessarily α > 0. Thus, we
may assume α = 1. The relevant equations b3(r) ≥ 0 and ξ(1) ≤ 0 become

cos(2
√
λr) + β sin(2

√
λr) ≤ 2(p− 1)

p+ 3

( sin(2
√
λr)

2
√
λr

− β cos(2
√
λr)− 1

2
√
λr

)
,

sin(2
√
λ)

2
√
λ
− β cos(2

√
λ)− 1

2
√
λ

≥ 0.

Since we know a priori that λ ≤ λ1 = π2 the terms sin(
√
λr) are non-negative.

Thus, after some trigonometry this set of equations simplifies to
√
λr

2
(cot2(

√
λr)− 1) + β

√
λr cot(

√
λr) ≤ p− 1

p+ 3
(cot(

√
λr) + β), (5.35)

β + cot(
√
λ) ≥ 0. (5.36)

In the case p = 5 it is simple to find the optimal λ-interval: choose β = 0.
Then (5.36) holds for 0 ≤ λ ≤ π2/4 and (5.35) reduces to

z(cot2 z − 1)
cot z

≤ 1 for z =
√
λr

which holds provided 0 ≤ z ≤ π/2, i.e., 0 ≤ λ ≤ π2/4.
The case p > 5 is more involved. By (5.36) the right hand side of (5.35) is

non-negative. Therefore the optimal value λ∗(p) is determined as the biggest
value for which both of the following inequalities hold:

√
λr
2 (cot2(

√
λr) − 1) + β

√
λr cot(

√
λr)

cot(
√
λr) + β

≤ p− 1
p+ 3

for r ∈ (0, 1), (5.37)

β + cot(
√
λ) ≥ 0. (5.38)
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Since (5.37) is monotone increasing in β we need to choose β as small as
possible to obtain the largest λ-interval of validity of (5.37)-(5.38). Thus the
choice

β = − cot(
√
λ)

is best possible. This reduces the determination of λ∗(p) to the single inequal-
ity (5.34). 
�
The 3-dimensional spherical ball

In this case ρ(r) = 2/(1 + r2). The result now depends on the size of the
geodesic ball. For p = 5 the result was obtained by Bandle, Benguria [6].

Theorem 5.31. Let p ≥ 5 be a given value and let s0 = 2 arctan(r0) be the
geodesic radius of a spherical ball.

(a) If 0 < s0 ≤ π/2 then there exists a value λ∗(p, s0) ∈ (−1, λ1) such that
(5.32) has only the zero-solution for λ ≤ λ∗.

(b) If π/2 < s0 < π then there exists values λ∗(p, s0) and λ∗(p, s0) such that
(5.32) has only the zero-solution for λ∗ ≤ λ ≤ λ∗.

For p = 5 one has λ∗ = π2/4−s2
0

s2
0

.

Sketch of proof. We need to choose ξ(r) and a(r) = 1
2 (ξ′(r) − ξ(r)(n−1

r +
(n−2)ρ′

r )) such that the coefficients b2(r) and b3(r) from Lemma 5.28 are non-
positive. For r ∈ (0, r0) one finds

b2(r) =
1
8
ξ′′′(1 + r2)2 + ξ′(2λ+

3
2
)− ξ (3 + 4λ)r

1 + r2
,

b3(r) = ξ′(
3 + p

2
− 6

r

1 + r2
) + ξ

1− p+ 2r2

r(1 + r2)
.

A special solution of b2(r) = 0 is found by ξ(r) = (1 + r2). Further solutions
are found by setting ξ(r) = (1 + r2)k(s) and s = 2 arctan(r), s is then the
geodesic radius. The resulting form of b2(s) = 0 is

k′′′(s) + 4k′(s)(1 + λ) = 0,

which can be solved explicitly. The complete solution ξ is written as ξ(s) =
(1 + tan(s/2)2)l(s), with

l(s) =
−α
2

sin(2
√

1 + λs)− β

2

(
1− cos(2

√
1 + λs)

)
, if λ > −1,

l(s) =
−α
2

sinh(2
√−1− λs)− β

2

(
1− cosh(2

√−1− λs)
)
, if λ < −1,

l(s) = −αs2 − βs3, if λ = −1.

The formula for b3 now looks like follows:
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b3(s) = l̇ − 2(p− 1)
p+ 3

cot(s)l ≥ 0 for s ∈ (0, s0).

Expanding around s = 0 quickly shows that necessarily α > 0, which implies
that we may take α = 1. The goal is to find for a given value of s0 the best
choice of β giving the largest possible λ-interval for uniqueness. A detailed
analysis of the case p = 5 was given in Bandle, Benguria [6]. 
�

We illustrate Theorem 5.31 by plotting some numerically determined
curves λ∗, λ∗ together with the first eigenvalue λ1(s0) as a function of the
geodesic radius s0 = 2 arctan r0. Figure 5.7 shows the case of exponent p = 5
and p = 5, 10. The diagram indicates that both λ∗ and λ∗ are monotone
increasing with respect to the exponent p.
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Fig. 5.7. λ∗, λ∗ for p = 5 (left) and p = 5, 10 (right)

Remark 5.32. Theorem 5.31 is sharp for the case p = 5 in the following sense:
Bandle, Benguria [6] showed that positive solutions exist for λ ∈ (λ∗, λ1). In
the case of a geodesic ball lager than the half-sphere, it is very surprising
to have uniqueness only for a finite λ-interval between λ∗ and λ∗. This is in
striking difference to the Euclidean case. Bandle, Benguria [6] and Stingelin
[86] found strong numerical evidence that solutions exist for all λ < λ∗.

The 3-dimensional hyperbolic ball

The hyperbolic conformal factor is ρ(r) = 2/(1−r2). The result again depends
on the size of the geodesic ball. It is illustrated by numerically determined
curves in Figure 5.8. For p = 5 the result can be found in Stapelkamp [85].

Theorem 5.33. Let p ≥ 5 be a given value and let t0 = 2 artanh(r0) be the
geodesic radius of a hyperbolic ball. Then there exists a value λ∗(p, t0) ∈ (1, λ1)
such that (5.32) has only the zero-solution for λ ≤ λ∗. For p = 5 one has
λ∗ = π2/4+t20

t20
.
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Fig. 5.8. λ∗ for p = 5 (left) and p = 5, 10 (right)

Sketch of proof. As in the spherical case we need to choose ξ(r) and a(r) =
1
2 (ξ′(r)− ξ(r)(n−1

r + (n−2)ρ′

r )) such that the coefficients b2(r) and b3(r) from
Lemma 5.28 are non-positive. For r ∈ (0, r0) we obtain

b2(r) =
1
8
ξ′′′(1− r2)2 + ξ′(2λ− 3

2
)− ξ (3 − 4λ)r

1− r2 ,

b3(r) = ξ′(
3 + p

2
+ 6

r

1− r2 ) + ξ
1− p− 2r2

r(1 − r2) .

A special solution of b2(r) = 0 is found by ξ(r) = (1 − r2). Further solutions
are found by setting ξ(r) = (1 − r2)k(t) and t = 2 artanh(r), t is then the
geodesic radius. The resulting form of b2(t) = 0 is

k′′′(t) + 4k′(t)(−1 + λ) = 0,

which can be solved explicitly. Thus the complete solution ξ is written as
ξ(t) = (1− tanh(t/2)2)l(t), with

l(t) =
−α
2

sin(2
√
λ− 1t)− β

2

(
1− cos(2

√
λ− 1t)

)
, if λ > 1,

l(t) =
−α
2

sinh(2
√

1− λt)− β

2

(
1− cosh(2

√
1− λt)

)
, if λ < 1,

l(t) = −αt2 − βt3, if λ = 1.

The formula for b3(t) takes the form:

a1(t) = l̇ − 2(p− 1)
p+ 3

coth(t)l ≥ 0 for t ∈ (0, t0).

Expanding around t = 0 shows that necessarily α > 0, which implies that we
may take α = 1. The goal is to find for a given value of s0 the best choice of
β giving the largest possible λ-interval for uniqueness. 
�
Remark 5.34. For p = 5 the result is again sharp, since Stapelkamp [85] showed
existence of positive solutions for λ ∈ (λ∗, λ1).
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5.5.2 The radially symmetric q-Laplacian

As a further application of Theorem 3.36’ we consider

∆qu+ λ|u|q−2u+ |u|p−1u = 0 in B1(0), u = 0 on ∂B1(0) (5.39)

where ∆qu = div(|∇u|q−2∇u) is the Euclidean q-Laplacian for 1 < q < ∞,
cf. Section 5.1.2. Radially symmetric solutions satisfy

r1−n(rn−1|u′|q−2u′)′ + λ|u|q−2u+ |u|p−1u = 0 in (0, 1),
u′(0) = u(1) = 0

(5.40)

and they are found as critical points of the functional

L[u] =
∫ 1

0

rn−1
( |u′|q

q
− λ |u|

q

q
− |u|

p+1

p+ 1

)
dr

on the space C0,1
0 (0, 1). Let us write q∗ = nq/(n − q) if q < n and q∗ = ∞

if q ≥ n. Then the embedding W 1,q
0 into Ls is continuous for all finite s with

1 ≤ s ≤ q∗ and compact for all s with 1 ≤ s < q∗. The following results are
known:

(a) In the subcritical case 1 < p < q∗−1 solutions of (5.39) exist for all values
of λ ∈ R, and positive solutions for all λ < λ1, see del Pino, Manásevich
[19].

(b) In the supercritical case p ≥ q∗ − 1 there exist positive solutions of (5.39)
for λ in an interval (λ∗, λ1) ⊂ (0, λ1), see del Pino, Manásevich [19]. For
λ ≤ 0 only the zero-solution exists, see Theorem 5.10.

(c) In the critical case p = q∗ − 1, two subcases occur
(i) For n ≥ q2 Guedda and Veron [41] showed that positive solutions of

(5.39) exist for all λ ∈ (0, λ1).
(ii) For q < n < q2 there are no nontrivial solutions in a right-neighbour-

hood of λ = 0, as proved by Egnell [25] and as we show next.

In the critical-exponent case Egnell’s result shows that the dimensions n
strictly between q and q2 play the same exceptional role as dimension n = 3
in the Laplace or Laplace-Beltrami equations of the previous Section. Theses
dimensions are therefore called the critical dimensions for the q-Laplacian.

Theorem 5.35. For a critical dimension n ∈ (q, q2) and for p ≥ q∗ − 1 the
only solution of (5.40) for λ ≤ (q2 − n)nqq−1−q is u ≡ 0.

Proof. We already know from Theorem 5.10 that there are no non-trivial
solutions for λ ≤ 0. So suppose λ > 0. Consider an admissible transformation
groupG generated by the vector-field w = ξ(r)∂r+a(r)u∂u. For the functional
L[u] =

∫ 1

0
(1

q |u′|q − F (u))rn−1 dr we find
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∫ 1

0

w(1)L+ Lξ′ dr

=
∫ 1

0

(a′u|u′|q−2u′)rn−1 +
(
a− ξ′ +

1
q
(ξ′ +

n− 1
r

ξ)
)
|u′|qrn−1 dr

−
∫ 1

0

af(u)urn−1 + (ξ′ +
n− 1
r

ξ)F (u)rn−1 dr.

The simplest way to handle the first term is to take a = const., and by the
previous experience from Theorem 5.10 we take a = n−q

q . Egnell suggested
ξ(r) = −r + ζ(r), where one can think of ζ as a perturbation of the previous
choice −r from Theorem 5.10. If we furthermore insert f(u) = λ|u|q−2u +
|u|p−1u then we obtain
∫ 1

0

w(1)L+ Lξ′ dr

=
∫ 1

0

(
ζ′

1− q
q

+
(n− 1)ζ

rq

)
|u′|qrn−1 +

(
1− 1

q
(ζ′ +

n− 1
r

ζ)
)
λ|u|qrn−1 dr

+
∫ 1

0

(q − n
q

+
n

p+ 1
− 1
p+ 1

(ζ′ +
n− 1
r

ζ)
)
|u|p+1rn−1 dr.

Egnell used the first integral over |u′|q to estimate the integral over |u|q. For
this purpose he used Hardy’s inequality, see Hardy, Littlewood, Polya [42],
9.9.10: ∫ ∞

0

|v|qrn−1 dr ≤
( q
n

)q
∫ ∞

0

|v′|qrn+q−1 dr

valid for C1-functions on [0,∞), which vanish for large r. To obtain the right
power of r choose ζ = rq+1. Then the vector-field w = (−r+rq+1)∂r + n−q

q u∂u

generates an admissible group of transformations and we obtain
∫ 1

0

w(1)L+ Lξ′ dr =
∫ 1

0

n− q2
q
|u′|qrn+q−1 +

(
1− q + n

q
rq

︸ ︷︷ ︸
≥0

)
λ|u|qrn−1 dr

+
∫ 1

0

(q − n
q

+
n

p+ 1
− q + n

p+ 1
rq

︸ ︷︷ ︸
≥0

)
|u|p+1rn−1 dr.

For the critical dimensions q < n < q2 we may use Hardy’s inequality and
drop some negative terms to find

∫ 1

0

w(1)L+ Lξ′ dr

<

∫ 1

0

(
λ+

n− q2
q

(n
q

)q)
|u|qrn−1 +

(q − n
q

+
n

p+ 1

)
|u|p+1rn−1 dr,
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unless u ≡ 0. For values λ ≤ (q2−n)nqq−1−q and supercritical p ≥ q∗− 1 the
vector-field w generates a strict variational sub-symmetry w.r.t. 0, and hence
we have uniqueness of the zero-solution by Theorem 3.36’. 
�

5.5.3 Partial radial symmetry

Consider a half-ball B+
1 (0) = {x ∈ R

n : |x| ≤ 1, xn > 0} and the boundary
value problem

∆u+ λu + |u|p−1u = 0 in B+
1 (0), u = 0 on ∂B+

1 (0). (5.41)

Since B+
1 (0) is star-shaped w.r.t. 0 it is easy to see that (5.41) has no non-

trivial solution if p ≥ n+2
n−2 and λ ≤ 0. For p = n+2

n−2 and n ≥ 4 this is a sharp
result, since for 0 < λ < λ1 positive solutions exist, cf. Brezis, Nirenberg [9].
However, the situation is different for n = 3, since it is known that a value
λ∗ ∈ (0, λ1) exists such (5.41) has positive solutions for every λ ∈ (λ∗, λ1)
and no positive solution for λ ≤ λ∗. We want to show how the method of
transformation groups can be used to get lower bounds for λ∗.

It follows from the symmetry theorem of Gidas, Ni and Nirenberg [37]
that every positive solution is symmetric in the variable r =

√
x2 + y2, i.e.,

u = u(r, z). By using this symmetry we can show the following result.

Theorem 5.36. For λ ≤ λ∗ = 1/8 there is no positive solution of (5.41) for
n = 3 and p = 5.

Proof. Since the domain Ω = B+
1 (0) is star-shaped the result needs to be

proved only for λ > 0. We recall the following result from the proof of The-
orem 4.8: if L(x, u,p) = 1

2 |p2| − λ
2u

2 − 1
6u

6 and w = ξ · ∇x + αu∂u is the
generator of a one-parameter transformation group then

w(1)L+ LDiv ξ = |∇u|2(α+
1
2

div ξ)− (AdjDξ∇u) · ∇u+
1
2
∇α · ∇(u2)

+u2(−αλ − λ

2
div ξ) + |u|6(−α− 1

6
div ξ).

We take ξ(r, z) = (a(r, z) cos t, a(r, z) sin t, b(r, z)), where we use cylindrical
coordinates x = r cos t, y = r sin t and z. Due to the symmetry of u we have
∇u(r, z) = (ur cos t, ur sin t, uz) and hence

∇uTDξ∇u = u2
rar + uzur(az + br) + u2

zbz. (5.42)

Let us choose a(r, z), b(r, z) as real- and imaginary part of the holomorphic
function p(w) = a(r, z) + ib(r, z) w.r.t. the variable w = r + iz. Then we find

∇uTDξ∇u = ar|∇u|2 and div ξ = 2ar +
a

r
.

Hence
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∫

Ω

w(1)L+ L div ξ dx

=
∫

Ω

|∇u|2(α+
a

2r
)+u2

(
λ(−α−ar− a

2r
)− 1

2
∆α

)
+u6(−α− ar

3
− a

6r
) dx.

We choose α = −a/(2r). Then w generates a variational sub-symmetry pro-
vided the following conditions hold

(i) ξ · ν ≤ 0 on ∂Ω, (ii) ∆
a

r
≤ 4λar in Ω, (iii)

a

r
≤ ar in Ω,

with a strict inequality on a subset of ∂Ω of positive measure in (i). Now we
choose the holomorphic function p(w) = −w+ αw3 with α to be determined.
In this case a(r, z) = −r + αr3 − 3αrz2 and b(r, z) = −z + 3αr2z − αz3.
First we look at condition (iii) and find that it is satisfied for α ≥ 0. Next
we consider condition (i). On the flat part of ∂Ω we have ν = (0, 0,−1) and
ξ · ν = −b(r, 0) = 0. On the curved part of ∂Ω we have ν = (r cos t, r sin t, z)
and hence for r2 + z2 = 1, r, z > 0 we compute

ξ · ν = −1 + α(−1 + 2r2).

For α ≥ 0 the latter takes its maximum at r = 1, and hence we need to restrict
to 0 ≤ α ≤ 1. It remains to consider condition (ii). First we need to compute
∆(a/r). Using the fact that arr + azz = 0 one finds

∆
a

r
= − 1

r2
(ar − a

r
)

and by using the specific form of a condition (i) amounts to

−α ≤ 2λ(−1 + 3αr2 − 3αz2). (5.43)

Since α ≥ 0 and z2 ≤ 1 − r2 it is necessary and sufficient for (5.43) that
−α ≤ 2λ(−1 + 6αr2 − 3α). The right-hand side attains its infimum at r = 0
and hence we obtain that

λ ≤ α

2(1 + 3α)
for 0 ≤ α ≤ 1.

The optimal value α = 1 maximizes the right-hand side and shows that for
λ ≤ 1/8 we have a variational sub-symmetry. Theorem 3.36(ii) together with
the unique continuation property at u0 ≡ 0 shows that (5.41) has only the
trivial solution u ≡ 0 for λ ≤ 1/8. 
�
Remark 5.37. The idea of using a vector-field (a(r, z) cos t, b(r, z) sin t, z) with
a holomorphic function p(w) = a(r, z)+ ib(r, z) of the variable w = r+ iz goes
back to Chleb́ık, Fila and Reichel [11], where results similar to Theorem 5.36
were obtained for nonlinear Neumann problems. E.g., if Ω = B+

1 (0) ⊂ R
3 and

ΓD = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}, ΓN = {(x, y, 0) : x2 + y2 ≤ 1} then
the boundary value problem

∆u + λu = 0 in B+
1 (0), u = 0 on ΓD, ∂νu− u4 = 0 on ΓN

has no positive solution if λ ≤ λ∗ = 1/8.
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5.6 Notes on further results

There is a large number of results related to uniqueness/nonexistence of solu-
tions to nonlinear elliptic equations on domains in R

n which we did not cover.
Some of them are listed here.

1. Cooperative systems. Consider the (possibly non-variational) cooperative
system

−∆ui = fi(u) in Ω, u = 0 on ∂Ω

for i = 1, . . . , N . If Ω ⊂ R
n is bounded, star-shaped and fi(tu)/t

n+2
2−n is increas-

ing in t > 0 then no positive solution exists as shown by Reichel, Zou [80].
The method is based on the maximum principle. Corresponding results on
complements of bounded star-shaped domains are also shown without decay
assumptions at infinity.

2. Quasilinear elliptic problems. Problems of the type

div(g(x,∇u)) + λf(x, u) = 0 in Ω, u = 0 on ∂Ω

are studied by McGough, Schmitt [63] and McGough, Mortensen [64]. There
the ideas of Schaaf [82] and Dancer, Zhang [17] find a natural extension. The
method is the same as in Chapter 4. The notion of h-starlike domains Ω ⊂ R

n

is introduced where a vector-field h : Ω → R
n exists with

−bTDhb ≤ (1
2
(− div h)− c)|b|2, h · ν ≤ 0 on ∂Ω,

where c > 0 is a constant. Depending on the size of the constant c a non-
existence exponent p∗ is found as in Theorem 4.8. Various examples of h-
starlike domains are discussed. As an application the question of a-priori
bounds is treated. E.g., based on Pohožaev-type identities W 1,2-bounds for
solutions of the Gelfand-problem (see also Section 5.2) ∆u + λeu = 0 on an
h-starlike domain with zero Dirichlet data is proved. The interest in this result
lies in the fact that the L∞-norm on the branch of minimal positive solutions
is unbounded.

3. Anisotropic quasilinear elliptic problems. On a bounded domain Ω ⊂ R
n

consider the anisotropic quasilinear degenerate boundary value problem

n∑

i=1

∂i(|∂iu|mi−2∂iu) + up = 0, u ≥ 0 in Ω, u = 0 on ∂Ω.

Fragalà, Gazzola and Kawohl [33] obtained uniqueness of the trivial solution in
a supercritical setting. Due to the anisotropic nature the correct generalization
of starshapedness is α-starshapedness, where α = (α1, . . . , αn) is a multi-index
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of positive numbers and the domain Ω is positively invariant under the group-
action generated by Ẋi = −αiXi, X(0) = x. The correct critical exponent in
this setting is

m∗ :=
n

∑n
i=1

1
mi
− 1

and indeed the authors prove that for p > m∗− 1 the above problem has only
the zero-solution provided the α-starshapedness holds with αi := n( 1

mi
− 1

m∗ ),
mi ≥ 2 and supi mi/ infimi < (n+ 2)/n.

4. Polyharmonic Dirichlet problems. For the polyharmonic Dirichlet problem

(−∆)mu = f(x, u) in Ω, u = . . . = Dm−1u = 0 on ∂Ω,

with m ≥ 1 on a bounded domain Ω ⊂ R
n similar uniqueness results as for

the case m = 1 are known. Here the expression Dlu stands for the n|l|-tensor
consisting of the |l|-th order derivatives of u for a multi-index l with 1 ≤ |l| ≤
m − 1. E.g., for f(x, u) = |u|p−1u, Pucci and Serrin [77] proved uniqueness
of the trivial solution on star-shaped domains if p > n+2m

n−2m and n > 2m.
Admitting p = n+2m

n−2m is a delicate case because here the corresponding unique
continuation property as in Definition 3.33 is not available. Results were found
if u is positive and Ω = B1(0) by Osvald [73] and if u is radial and m = 2, 3
by Grunau [39].

The basic uniqueness result of Pucci, Serrin [77] was generalized to con-
formally contractible domains by Reichel [79]. In the same paper the lower
L∞-bounds in the subcritical case (Theorem 5.21) and the uniqueness result
for non-trivial solutions for supercritical nonlinearities of the type f(s) =
λ(1 + |s|p−1s) (Theorem 5.15) were generalized to polyharmonic operators.

In the radially symmetric case Ω = B1(0) a similar phenomenon of critical
dimensions as for the case m = 1 in Theorem 5.30, Section 5.5.1 is known.
It was conjectured by Pucci, Serrin [78] that for the polyharmonic problem
with f(x, u) = λu+u

n+2m
n−2m the dimensions n = 2m+1, . . . , 4m−1 are critical

dimensions in the following sense: there exists λ∗ > 0 such that no non-trivial
solution exists for λ ≤ λ∗. This conjecture was proved by Pucci and Serrin
[78] for m = 2. In a weaker version, the full conjecture was proved by Grunau
[40]. He showed that for n = 2m+1, . . . , 4m−1 there is a λ∗ > 0 such that no
non-trivial radial solution exists for λ ≤ λ∗. In its full version the conjecture
on critical dimension seems still open.

As a variant of the Dirichlet problem the biharmonic Navier problem

(−∆)2u = λu + |u|p−1u in Ω, u = ∆u = 0 on ∂Ω

was studied. For λ ≤ 0 Mitidieri [66] and vanderVorst [89] showed that on
bounded star-shaped domains there are no positive solutions if p ≥ n+4

n−4 and
n > 4. The case λ > 0 with p = n+4

n−4 on a ball was studied by Gazzola,
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Grunau, Squassina [34], where in the critical dimensions n = 5, 6, 7 it was
shown that no positive radial solution exists for λ ≤ λ∗. An extension of the
above results to solutions, which are not a-priori assumed to be positive is not
available so far.

5. Unbounded domains. All of the above examples may be considered on un-
bounded instead of bounded conformally contractible domains. In such a situ-
ation uniqueness results can still be obtained via the method of transformation
groups. The results are dual to the results on bounded domains. We explain
this in the polyharmonic case on an unbounded conformally contractible do-
main, cf. Reichel [79]: if f(s) = λs + |s|p−1s and 1 < p < n+2m

n−2m if n > 2m
and 1 < p < ∞ if n ≤ 2m, λ ≥ 0 then the zero-solution is unique provided
one has a growth assumption u ∈ H2m−1(Ω). This is needed to control the
boundary contributions on ∂Ω intersected with a large ball BR(0) if one lets
R→∞. Notice that the assumptions on the exponent p and the coefficient λ
are reversed if compared to the case of a bounded domain. This observation
was already made by Pucci and Serrin [77] for the complements of star-shaped
domains (under weaker growth conditions than above). Related results for so-
lutions with pre-assumed decay at infinity are found in Esteban and Lions
[28]. Reichel and Zou [80] obtained uniqueness results for nonlinear Laplace
equations with no decay assumptions at infinity.



6

Vector problems in Euclidean space

6.1 The Emden-Fowler system

The scalar Dirichlet problem for the Emden-Fowler equation ∆u + λu +
|u|p−1u = 0 can be generalized to a system as follows:

∆u + µv + |v|q−1v = 0 in Ω, u = 0 on ∂Ω
∆v + λu+ |u|p−1u = 0 in Ω, v = 0 on ∂Ω,

(6.1)

where Ω ⊂ R
n and p, q ≥ 1. Solutions correspond to critical points of the

functional

L[u, v] =
∫

Ω

∇u · ∇v − λu
2

2
− µv

2

2
− |u|

p+1

p+ 1
− |v|

q+1

q + 1
dx.

For finding weak solutions one would look for (u, v) ∈ Vα = W 1,α
0 (Ω) ×

W 1,α′
0 (Ω) with 1 < α,α′ < ∞ and 1

α + 1
α′ = 1. For this space we have the

embedding
Vα = W 1,α

0 (Ω)×W 1,α′
0 (Ω)→ Lβ(Ω) × Lγ(Ω)

with β, γ such that

α ≤ β ≤ nα
n−α if n > α,

α ≤ β <∞ if n ≤ α,
α ≤ γ ≤ nα

n(α−1)−α if n > α
α−1 ,

α ≤ γ <∞ if n ≤ α
α−1 .

Hence, for a given pair (p, q) the functional L is well defined on Vα provided
there exists a value α such that

(n− α)(p+ 1) ≤ nα,
(
n(α− 1)− α

)
(q + 1) ≤ nα.

This is equivalent to
1

p+ 1
+

1
q + 1

≥ n− 2
n

, (6.2)

W. Reichel: LNM 1841, pp. 127–138, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



128 6 Vector problems in Euclidean space

and the embedding Vα → Lp+1(Ω) × Lq+1(Ω) is even compact on bounded
domains Ω if (6.2) holds with strict inequality. Based on the compactness
of the embedding, Hulshof, vanderVorst [47] and Felmer, de Figueiredo [31]
proved existence of non-trivial solutions provided (p, q) satisfy (6.2) strictly
and λµ ≤ λ2

1.

The natural compactness barrier turns out to be indeed the barrier for the
existence of nontrivial critical points, as the following theorem of Mitidieri
[66] and vanderVorst [89] shows.

Theorem 6.1 (Mitidieri, vanderVorst). Suppose (p, q) satisfy

1
p+ 1

+
1

q + 1
≤ n− 2

n
(6.3)

and suppose λ, µ ≤ 0. If Ω is a bounded, piecewise smooth, star-shaped domain
then (6.1) has no solution (u, v) with u, v ≥ 0 or u, v ≤ 0 other than u, v ≡ 0.

Proof. For any p, q > 1 the functional L[u, v] is well defined for u, v ∈ C0,1
0 (Ω).

Consider the Lagrangian

L(x, u, v,p1,p2) = p1 · p2 − λu
2

2
− µv

2

2
− |u|

p+1

p+ 1
− |v|

q+1

q + 1
.

The function L(x, 0, 0,p1,p2) = p1 · p2 is not rank-one-convex at (p1,p2) =
(0, 0). To overcome this obstacle we have to restrict our attention to functions
u, v both attaining non-negative values (or non-positive values) on Ω. As a
consequence we have that ∇u·ν ≤ 0, ∇v ·ν ≤ 0 (or both inequalities reversed)
on ∂Ω, and in particular∇u·∇v ≥ 0 on ∂Ω. It is therefore sufficient to consider
the rank-one convexity of the function F (p1,p2) = p1 · p2 at p1 = p2 = 0
with respect to rank-one matrices a⊗ q, a = (a1, a2) ∈ R

2, q ∈ R
n such that

a1a2 ≥ 0. Under this extra condition we have indeed that F (ta⊗q) is convex
as a function of t ∈ R. Therefore Theorem 3.36 is applicable once we find a
variational sub-symmetry.

As the generator of a transformation-group we take the vector-field

w = −x · ∇x + αu∂u + βv∂v

with constants α, β. Its prolongation is given by

w(1) = −x · ∇x + αu∂u + (α + 1)∇u · ∇p1 + βv∂v + (β + 1)∇v · ∇p2 .

For the verification of the infinitesimal sub-symmetry criterion of Proposi-
tion 3.27 we compute

w(1)L+ L div ξ = (α+ β + 2− n)∇u · ∇v + (
n

p+ 1
− α)up+1 + λ(

n

2
− α)u2

+(
n

q + 1
− β)vq+1 + µ(

n

2
− β)v2.
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The choice of α + β = n − 2 shows that w generates indeed a variational
sub-symmetry provided the two inequalities

α ≥ n

p+ 1
, β ≥ n

q + 1

hold. This amounts exactly to condition (6.3). Uniqueness of the critical point
(u, v) = 0 follows from Theorem 3.36. 
�

Those points (p̃, q̃), which satisfy (6.2) with equality are said to lie on the
“critical hyperbola”. A pair (p, q) produces a subcritical/supercritical varia-
tional problem if (p, q) lies above/below the critical hyperbola.

Remark 6.2. 1) In the critical case, where (p, q) satisfy (6.3) with equality,
and for dimensions n ≥ 4 Hulshof, Mitidieri and vanderVorst [46] obtained
existence of non-trivial solutions for certain non-negative values of λ, µ.
2) For non star-shaped, conformally contractible domains our technique fails.
We explain briefly why this is the case: if we had used a vector-field ξ(x)
instead of −x to define w = ξ · ∇x + αu∂u + βv∂v then

w(1)L = (α+ β)∇u · ∇v − 2∇uDξ(x)∇v − αup+1 − λαu2 − βvq+1 − µβv2.

We would need ξ such that ∇uDξ(x)∇v = M(x)∇u · ∇v. Since ∇u,∇v may
be arbitrary this amounts to

aDξ(x)b = M(x)a · b for all a,b ∈ R
n

which is only possible is ξ(x) is a constant multiple of x. Therefore Theo-
rem 6.1 is proved for star-shaped domains only.

Remark 6.3. For points (p, q) strictly above the critical hyperbola (subcritical
case) lower bounds for the L∞-norm of nontrivial solutions of (6.1) hold in
the spirit of Theorem 5.21.

Problem 6.4. For the system −∆u = λvq + 1, −∆v = µup + 1 with zero
Dirichlet conditions and (p, q) strictly below the critical hyperbola (supercrit-
ical case) uniqueness of the positive solution for small positive values of λ, µ
is an open problem. So far no result in the spirit of Theorem 5.15 is available.

Example 6.5. There are various ways to consider a system similar to (6.1) with
nonlinear Neumann boundary conditions. E.g. suppose Ω is star-shaped w.r.t.
0 ∈ ∂Ω and ∂Ω = ΓD ∪ ΓN , where ΓN is part of a hyperplane through 0.
Then the boundary value problem

∆u+ µv + |v|q−1v = 0 in Ω, ∂νu− µ̃v − |v|q̃−1v = 0 on ΓN , u = 0 on ΓD,

∆v + λu+ |u|p−1u = 0 in Ω, ∂νv − λ̃u− |u|p̃−1u = 0 on ΓN , v = 0 on ΓD,

has no non-trivial solution provided λ, λ̃, µ, µ̃ ≤ 0 and

1
p+ 1

+
1

q + 1
≤ n− 2

n
,

1
p̃+ 1

+
1

q̃ + 1
≤ n− 2
n− 1

.
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6.2 Boundary displacement problem in nonlinear
elasticity

For the formulation of nonlinear elasticity we follow Ball [5]. Consider an
elastic body, which occupies the domain Ω ⊂ R

n in its reference position. A
deformation h : Ω → R

n describes the deviation of the body from its reference
position. We assume that h ∈ C1(Ω). For compressible materials one requires
det∇h > 0 and for incompressible materials det∇h = 1.

Total energy and equilibria

In the so called hyperelastic theory one assumes that for a deformation h
the elastic energy per unit volume of the body is given by L(x, h,∇h) =
L1(x,∇h) + L2(x, h). The function L1 : R

n × R
n×n → R is called the stored-

energy density and L2 : R
n ×R

n → R is called the body force potential. The
total energy of the deformation h is given by

L[h] =
∫

Ω

L(x, h,∇h) dx, h ∈ C1(Ω).

Let us suppose that there are no body forces (like gravity), which means
L2(x, h) ≡ 0. If one assumes moreover that the body is homogeneous then the
stored-energy function takes the form L(∇h). For a compressible material a
deformation h is called an equilibrium deformation if h is a critical point of L.
For sufficiently smooth h this means that the Euler-Lagrange-equations hold

div∇pαL(∇h) = 0 in Ω for α = 1, . . . , n.

For an incompressible material a deformation h is an equilibrium defor-
mation if h is a critical point of L subject to the constraint deth = 1. If h is
sufficiently smooth this means that

div∇pαL(∇h)− (co∇h)T∇q = 0 in Ω for α = 1, . . . , n

where q : Ω → R is a Lagrange-multiplier with the meaning of a pres-
sure and co∇h is the matrix of the co-factors of ∇h, i.e., (co∇h)iα =
(−1)i+α det(∇h)iα and det(∇h)iα is the determinant of ∇h after deletion
of the ith-row and the αth-column. In this notation recall that

(co∇h)T∇q =
d

dt
det(∇(h+ tq))|t=0.

Frame-indifference, isotropy, quasi-convexity

As a slight generalization let us consider “deformations” h : Ω ⊂ R
n → R

k.
From the point of view of elasticity only the case k = n is of interest. The
generalized “boundary displacement problem” is then formulated with a k×n-
matrix A = (aαi), α = 1, . . . , k, i = 1, . . . , n and a k-vector b.
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The following definitions are well established in the theory of elasticity
and vector-valued variational problems, see Morrey [67] for quasi-convexity,
Ball [5], Dacorogna [15] and Evans [29] for general reference.

We use the notation ei, i = 1, . . . , n for the i-th standard unit normal vector
in R

n. For each x ∈ Ω the deformation gradient P = ∇h(x) is an n×k-matrix.
We write P = (p1, . . . ,pk), where each pα = ∇hα(x) is a column-vector in
R

n. When P is used in matrix-multiplication we have Piα = pα
i = ∂hα

∂xi with
α = 1, . . . , k and i = 1, . . . , n. In this sense ∇(Ax + b) = AT . Recall the
definition of SO(n) = {Q ∈ R

n×n : detQ = 1, QT = Q−1}.
Definition 6.6. Consider a Lagrangian L : R

n×k → R.

(i) L is called frame-indifferent if L(QP) = L(P) for every matrix P ∈ R
n×k

and all orthogonal matrices Q ∈ SO(n).
(ii)L is called isotropic if L(PQ) = L(P) for every matrix P ∈ R

n×k and all
orthogonal matrices Q ∈ SO(k).

Interpretation. Frame-indifference means the following: if Q ∈ SO(n) gener-
ates an isometric change of variables in the reference space R

n then a de-
formation h is replaced by h̃ = h ◦ QT . Also ∇h̃(x) = (Q∇h)(QTx) but
L(∇h̃(x)) = L((∇h)(QTx)), i.e. the energy per unit-volume is unchanged.

Isotropy means the following: if Q ∈ SO(k) generates an isometric change
of variables in the state space R

k then h is replaced by h̃ = QTh. Also ∇h̃ =
∇h ◦Q but L(∇̃h) = L(∇h) is unchanged.

Lemma 6.7. Let L : R
n×k → R be frame-indifferent. If i0, j0 are two indices

between 1 and n then ∂pα
i0
L(P)pα

j0 = ∂pα
j0
L(P)pα

i0 .

Proof. Let Qt := cos t Id + sin t(ei0 ⊗ ej0 − ej0 ⊗ ei0). By frame-indifference
L(QtP) = L(P) and hence

0 =
d

dt
L(QtP)|t=0 = ∂pα

i
L(P)(ei0 ⊗ ej0P− ej0 ⊗ ei0P)iα

= ∂pα
i
L(P)(δi0iδj0m − δj0iδi0m)pα

m = ∂pα
i
L(P)(δi0ip

α
j0 − δj0ip

α
i0),

as claimed. 
�
Definition 6.8. Consider a Lagrangian L : R

n×k → R. L is called (strictly)
quasi-convex on the domain Ω if for every P ∈ R

n×k and every R
k-valued

function ψ ∈ C∞
0 (Ω) with ψ 	≡ 0 we have

∫
Ω L(P) dx ≤ (<)

∫
Ω L(P+∇ψ) dx.

Every quasi-convex function is rank-one convex, see Evans [29].

Example 6.9. Convex functions L : R
n×k → R are quasi-convex, because by

convexity
L(P) +∇pαL(P) · ∇ψα ≤ L(P +∇ψ) (6.4)
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for every ψ. Since P is a constant one has∇pαL(P)·∇ψα = div(∇pαL(P)ψα).
Integration of (6.4) and using ψ ∈ C∞

0 (Ω) yields
∫

Ω

L(P) dx ≤
∫

Ω

L(P +∇ψ) dx.

Other quasi-convex functions are det∇h if h : R
n → R

n, or more generally
the so-called polyconvex functions, i.e. convex functions of the determinants
of the quadratic sub-matrices of ∇h, see Ball [5], Evans [29].

6.2.1 Uniqueness for the boundary displacement problem
(compressible case)

We consider an compressible, homogeneous material with no body forces. In
the boundary displacement problem one assumes that ∂Ω is displaced by an
affine map Ax + b, with a k × n-matrix A and a k-vector b. Therefore only
those deformations h with h = Ax + b on ∂Ω are considered. Equilibrium
deformations must satisfy

div(∇pαL(∇h)) = 0 in Ω for α = 1, . . . n, h = Ax + b on ∂Ω.

Notice that h ≡ Ax + b is always an equilibrium solution. The goal of this
section is to determine conditions on L and Ω such that Ax + b is the only
equilibrium solution of the boundary displacement problem. Such uniqueness
conditions were obtained by Knops and Stuart [55].

Theorem 6.10. Suppose Ω ⊂ R
n is a bounded Lipschitz domain and let L :

R
n×k → R be a strictly quasi-convex Lagrangian. Then in the class of C2(Ω)∩

C1(Ω)-solutions the unique equilibrium solution of the boundary-displacement
problem (compressible case) is h = Ax+ b if one of the following holds

(i) Ω is star-shaped,
(ii)L is frame-indifferent and Ω is conformally contractible with associated

vector-field ξ = −X+ ζ such that ζ ∈ span[xiej − xjei, i, j = 1, . . . , n] lies
in the null-space of the matrix A.

Proof. In order to apply the uniqueness theory of Chapter 3, we transform to
zero-boundary conditions, i.e. u = h − Ax − b. If h is a critical point of L[h]
with h = Ax + b on ∂Ω then equivalently u with u = 0 on ∂Ω is a critical
point of L̃[u] =

∫
Ω L̃(∇u) dx with L̃(P) = L(P+AT ). Since L is quasi-convex,

L̃ is also quasi-convex, and hence rank-one convex.
Part (i): Without loss of generality we assume L̃(0) = 0. By the strict quasi-
convexity we find 0 = L̃[0] =

∫
Ω
L̃(0) dx <

∫
Ω
L̃(∇u) dx = L̃[u] for all u ∈

C1
0 (Ω) with u 	≡ 0. Next we will show that by a suitable choice of coefficients
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cα(x) and ξ we can make w = ξ · ∇x + cα(x)uα∂uα a strict variational sub-
symmetry w.r.t. 0 for the functional L̃. Since Ω is a star-shaped domain we
choose ξ(x) = −x. For the prolongation w(1) we find

w(1) = −x · ∇x + cα(x)uα∂uα + (cα(x),iu
α + cα(x)uα

,i + δj
i u

α
,j)∂pα

i
.

For the infinitesimal sub-symmetry criterion we calculate
∫

Ω

w(1)L̃+ L div ξ dx =
∫

Ω

(
cα(x),iu

α + (cα(x) + 1)uα
,i

)
∂pα

i
L̃ dx − nL̃[u].

Choose cα(x) = −1. Together with our previous observation L̃[u] > 0 for
u 	≡ 0 this shows that w generates a strict variational sub-symmetry w.r.t.
0. Clearly w generates a domain-contracting admissible transformation group
and hence we obtain uniqueness of the critical point u ≡ 0, i.e. h ≡ Ax+ b by
Theorem 3.36.
Part (ii): We choose ξ = −x + ζ as the associated conformal vector-field to
the conformally contractible domain Ω. We may assume that ζ has the special
form ζ = xi0ej0 − xj0ei0 . The general case, where ζ is a linear combination
of such vector-fields follows in an obvious manner. Let w = ξ · ∇x − uα∂uα .
To show that w generates a strict variational sub-symmetry w.r.t. 0 we can
adopt the proof of part (i) if we can show that −ξj

,ip
α
j ∂pα

i
L̃(P) = pα

i ∂pα
i
L̃(P)

for all x ∈ Ω and all P ∈ R
n×k. Since ξ = −x+ ζ this means

ζj
,ip

α
j ∂pα

i
L̃(P) = 0 (6.5)

and since ζ has the special form xi0ej0 − xj0ei0 the condition to be verified
simplifies to

pα
j0∂pα

i0
L̃(P) = pα

i0∂pα
j0
L̃(P). (6.6)

For the proof of (6.6) we first use Lemma 6.7 for the frame-indifferent function
L and rewrite the result for L̃(P) = L(P +AT ) as follows:

∂pα
i0
L̃(P)(pα

j0 + aαj0) = ∂pα
j0
L̃(P)(pα

i0 + aαi0). (6.7)

Since ζ = xi0ej0 − xj0ei0 lies in the null-space of A for all x in Ω it follows
that both ej0 and ei0 are in the null-space of A. Therefore both aαj0 and aαi0

vanish for all α = 1, . . . , k. Together with (6.7) this proves (6.6) and the claim
of Part (ii) is verified. 
�
Remark 6.11. Part (i) of the theorem for n = k was proved by Knops and
Stuart in [55]. Part (ii) is new to the best of our knowledge. An example,
where Part (ii) applies for the physically interesting case n = 3 is given by
the domain of Example 1 in Section 5.1: the domain is conformally contractible
with associated conformal vector-field (−x + y,−y − x,−z). If the matrix A
is a 3× 3-matrix such that Ax = αx3e3, i.e. A is a dilation in the z-direction,
then ζ = (y,−x, 0) lies in the null-space of A.
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6.2.2 Uniqueness for the boundary displacement problem
(incompressible case)

Here we consider an incompressible, homogeneous material with no body
forces and deformations h : Ω ⊂ R

n → R
n. Now the boundary displacement

problem consists of finding the solution (h, q) of

div∇pαL(∇h)− (co∇h)T∇q = 0 in Ω for α = 1, . . . , n, h = Ax+ b on ∂Ω,

where detA, deth = 1 and q : Ω → R is the pressure. Again h ≡ Ax + b and
q = const. is a solution. Knops and Stuart [55] obtained the following result:

Theorem 6.12 (Knops, Stuart). Suppose Ω ⊂ R
n is a bounded Lipschitz

domain and let L : R
n×k → R be a strictly quasi-convex Lagrangian. Then in

the class of C2(Ω) ∩ C1(Ω)-solutions the unique equilibrium solution of the
boundary-displacement problem (incompressible case) is h = Ax + b if Ω is
star-shaped.

Proof. The proof is almost identical with the one of Theorem 6.10. We use
the transformation u = h−Ax− b. Then we look for critical points of L̃[u] =∫

Ω
L̃(∇u) dx with L̃(P) = L(P + AT ) subject to the pointwise constraint

det(∇u + AT ) = 1. We choose w = −x · ∇x + cαuα∂uα . With cα = −1 the
prolongation w(1) becomes

w(1) = −x · ∇x + cα(x)uα∂uα

since the factor cα = −1 was chosen such that the coefficient of ∂pα
i

vanishes.
Since the constraint det(∇u+AT ) = 1 only depends on∇u the transformation
group is an exact symmetry and leaves it invariant. As before we have seen
that w acts as a strict variational sub-symmetry w.r.t. 0 for the functional
L̃. Hence Theorem 3.42 (i.e. a suitably extended version to cover constraints
N(x, u(x),∇u(x)) = 0) gives the uniqueness result. 
�
Remark 6.13. An extension of Theorem 6.12 in the spirit of Theorem 6.10(ii)
is not possible, since detA = 1 implies that the null-space of A is trivial.

6.3 A uniqueness result in dimension two

So far the aspects of conformally contractible domains in dimension n = 2 have
been left aside. Recall from Definition 4.20 and Lemma 4.33 that a bounded
domain in R

2 is called conformally contractible if there exists a vector-field
ξ = a(x, y)∂x+b(x, y)∂y such that a(x, y)+ib(x, y) is holomorphic in z = x+iy
and ξ · ν ≤ 0 on ∂Ω with strict inequality on a subset of positive measure.
The large number of such domains in R

2 is linked to the complex structure of
the space.



6.3 A uniqueness result in dimension two 135

A uniqueness theorem on two-dimensional domains is given next for func-
tionals L[u] =

∫
Ω L(u,∇u) dx with vector-valued functions u : Ω ⊂ R

2 → R
k.

An application will be given in the next section.

Theorem 6.14. Let Ω ⊂ R
2 be a bounded, piecewise smooth, conformally

contractible domain. Consider the functional

L[u] =
∫

Ω

L(u,∇u) dx, u ∈ C0,1
0 (Ω)

with a Lagrangian L : R
k×(R2)k → R such that L(0,P) is rank-one convex in

P at P = 0 (cf. Definition (3.29)) and L has the unique continuation property
w.r.t. 0 (cf. Definition (3.33)). If L(u,P) is frame-indifferent w.r.t. P and if
L(u, tP) = t2L(u,P) for all u ∈ R

k and all P ∈ (R2)k then u ≡ 0 is the
unique critical point of L in the class C2(Ω) ∩ C1

0 (Ω).

Proof. By homogeneity we have L(0, 0) = 0. Let w = ξ · ∇(x,y) where ξ =
(a(x, y), b(x, y)) is the conformal vector-field associated to Ω. We will show
that w, which is independent of u, generates a variational sub-symmetry for
the functional L. For the prolongation we find w(1) = ξ · ∇(x,y) − ξj

,iu
α
,j∂pα

i
.

For the sub-symmetry criterion we calculate

w(1)L+ L div ξ

= −ξj
,iu

α
,j∂pα

i
L+ Lξi

,i

= −ξ1,xuα
x∂pα

1
L− ξ1,yuα

,x∂pα
2
L− ξ2,xuα

,y∂pα
1
L− ξ2,yuα

,y∂pα
2
L+ L(ξ1,x + ξ2,y).

Since ξ is conformal we have ξ1,x = ξ2,y, ξ1,y = −ξ2,x and hence

w(1)L+ L div ξ

= −ξ1,x(uα
,x∂pα

1
L+ uα

,y∂pα
2
L− 2L)− ξ1,y(uα

,x∂pα
2
L− uα

,y∂pα
1
L). (6.8)

By the frame-indifference of L and Lemma 6.7 the second bracket in (6.8)
vanishes. Differentiation of the homogeneity assumption L(u, tP) = t2L(u,P)
with respect to t at t = 1 gives pα

i ∂pα
i
L(u,P) = 2L(u,P), i.e. pα

1 ∂pα
1
L(u,P) +

pα
2 ∂pα

2
L(u,P) − 2L(u,P) = 0. This shows that the first bracket in (6.8) also

vanishes. Hence w generates an exact variational symmetry. All the hypothe-
ses of Theorem 3.36, Part (ii) are now verified, and hence uniqueness of the
critical point u ≡ 0 follows. 
�
Example 6.15. Let Ω ⊂ R

2 be bounded, piecewise smooth, conformally con-
tractible and let (N, h) be a k-dimensional Riemannian manifold. Then the
harmonic-mapping problem u : Ω → N with u = const. = u0 ∈ N on ∂Ω has
the unique solution u ≡ u0. The Lagrangian L(u,P) = hαβ(u)pα · pβ has all
the properties of Theorem 6.14.



136 6 Vector problems in Euclidean space

Conformally contractible versus simply connected domains

Lemma 6.16. Let Ω ⊂ R
2 be a bounded, simply-connected C1,α-domain.

Then the following holds:

(i) Ω is conformally contractible. Moreover, there exists an associated confor-
mal vector-field ξ with ξ · ν < 0.

(ii)Whenever ξ is an associated vector-field with ξ · ν < 0 on ∂Ω then ξ has
precisely one zero in Ω.

Proof. (i) Let φ : Ω → D be an orientation preserving Riemann map onto the
open unit disk D. Then φ extends as a C1-function with non-degenerate Jaco-
bian onto Ω, cf. Pommerenke [76], Theorem 3.5. By setting ξ(z) = −φ(z)φ′(z)
the vector-field ξ is continuous on Ω and analytic in Ω. Let us denote
by ν(z) the exterior unit-normal to z ∈ ∂Ω and by ν̃(φ(z)) the exterior
unit-normal to D at φ(z), i.e. ν̃(φ(z)) = φ(z). By conformality of the map
φ we have ν(z) = φ′(z)

|φ′(z)| ν̃(φ(z)) = φ′(z)
|φ′(z)|φ(z). Therefore it follows that

ν(z) · ξ(z) = Re ν(z)ξ̄(z) = −|φ′(z)| < 0.
(ii) Suppose ξ is a conformal vector-field on Ω. Let φ : Ω → D be the

Riemann map. Then we construct by ξ̃(z) = ξ(φ−1(z))/φ′(φ−1(z)) a confor-
mal vector-field on D with ξ̃(z) · z = |φ′(φ−1(z))|−1ξ(φ−1(z)) · ν(φ−1(z)) < 0
on ∂D. Clearly the number of zeroes of ξ on Ω is the same as the number of
zeroes of ξ̃ on D. By choosing a suitably large number K > 0 we can achieve
|ξ̃(z)|2 < −2K ξ̃(z)·z on ∂D and hence |ξ̃(z)+Kz| < |Kz| on ∂D. By Rouché’s
Theorem the two functions ξ̃(z) and Kz have the same number of zeroes in
D. 
�

If φ : Ω → R
2 is a conformal map and Ω conformally contractible then

φ(Ω) is also conformally contractible. This raises the question whether the
converse of Lemma 6.16 (i) hold:

Problem 6.17. Are conformally contractible domains simply-connected?

We do not know any counter-example. One might think that a path in
a conformally contractible domain should be deformed to a point via the
differential equation (ẋ, ẏ) = ξ(x, y). Clearly the deformed path exists for all
t ≥ 0 and stays inside Ω. However, difficulties arise since the process might
stop due to equilibria (=zeroes of ξ) or limit cycles.

Example 6.18. Suppose a Lagrangian L : R
k × (R2)k → R is frame-indifferent

in the ∇u-variable and degree-2-homogeneous L(u, tP) = t2L(u,P). Then
on two-dimensional domains Ω the functional L[u] =

∫
Ω
L(u,∇u) d(x, y) is

invariant under conformal transformations φ : Ω̃ → Ω, i.e. for ũ(x̃, ỹ) =
u(φ(x̃, ỹ)) we have

∫

Ω

L(u,∇u) d(x, y) =
∫

Ω̃

L(ũ,∇ũ) d(x̃, ỹ).
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Hence, if the open problem of simple-connectedness were solved, then The-
orem 6.14 could be proved by transforming Ω conformally to the unit-disc,
where the standard conformal vector-field ξ = −(x, y) is available.

6.4 H. Wente’s uniqueness result for closed surfaces of
prescribed mean curvature

A two-dimensional parametric surface of mean-curvature H is represented in
isothermal coordinates as a map u : Ω ⊂ R

2 → R
3 such that

∆u = 2Hux ∧ uy in Ω.

Typical cases areH ≡ 0 (minimal surfaces) or H ≡ const. (soap bubbles). The
case where H = H(u) is called the prescribed mean-curvature problem. The
Dirichlet boundary-value problem for surfaces of prescribed mean curvature
is given by

∆u = 2H(u)ux ∧ uy in Ω, u = u0 on ∂Ω, (6.9)

where u0 is a given smooth function ∂Ω → R
3, which may be understood as

a smooth “curve” in R
3 bounding the surface. Solutions are supposed to be

in C2(Ω) ∩ C(Ω). To solve (6.9) Hildebrandt [44] introduced the functional

L[u] =
∫

Ω

1
2
|∇u|2 +

2
3
M(u)ux ∧ uy dx

where M : R
3 → R

3 is such that divM(z) = 3H(z). A straight-forward
calculation shows that critical points of L weakly solve (6.9). The following
result was observed by H. Wente [92] in the case H = const.:

Theorem 6.19 (Wente). If Ω ⊂ R
2 is smoothly bounded and simply con-

nected then any critical point u ∈ H1,2
0 (Ω) of L vanishes identically.

By a regularity result Wente immediately concluded that u is C2(Ω) ∩
C(Ω). He then used conformal maps and a unique continuation principle to
prove his theorem.
Interpretation. Critical points of L with constant zero boundary data u0 = 0
represent closed surfaces, since the bounding “curve” has now shrunk to a
single point in space. The uniqueness result then means that is it impossible
to represent a closed surface of prescribed mean-curvature parametrically over
a bounded, simply connected domain Ω. Consider for example the closed
constant-mean-curvature surface Ŝ

2 ⊂ R
3 and its stereographic projection

Π : Ŝ
2 to R

2. Then Π−1 : R
2 → Ŝ

2 represents Ŝ
2 in parametric form, but one

needs all of R
2 to achieve this.

It was already mentioned in Struwe [87] that Wente’s uniqueness result
may be understood as a companion of Pohožaev’s uniqueness result. Indeed,
based on the method of transformation groups we can prove the following
slightly different version of Wente’s result.
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Theorem 6.20. Let Ω ⊂ R
2 be a bounded, piecewise smooth, conformally

contractible domain. Then any critical point u ∈ C2(Ω)∩C1
0 (Ω) of L vanishes

identically.

Proof. The Lagrangian L(u,P) = 1
2 |P|2 + 2

3M(u)p1 ∧ p2 is both frame-
invariant and degree-2-homogeneous with respect to P. We may assume
M(0) = 0. Therefore, the restricted Lagrangian L(0,P) = 1

2 |P|2 is convex
in P, see also Example 3.32(ii). Moreover, if u = 0 and ∇u = 0 on a smooth
piece of ∂Ω then the unique continuation principle of Hartman, Wintner [43],
Corollary 1, applies and shows u ≡ 0. Hence we can use the two-dimensional
uniqueness Theorem 6.14 from the previous section to see that u ≡ 0 is the
only critical point of L. 
�



A

Fréchet-differentiability

In this section we discuss the Fréchet-differentiability of the functional L[u] =∫
Ω L(x, u,∇u) dx on the space C0,1(Ω) of Lipschitz-functions u : Ω → R

k.

Proposition A.1. Suppose L(x, u,p) is measurable in x ∈ Ω and has par-
tial derivatives ∂uαL(x, u,p) and ∇pαL(x, u,p), which are continuous in u
and p for fixed x. Suppose moreover that ∂uαL(x, u,p) and ∇pαL(x, u,p)
are bounded if (x, u,p) is in bounded subsets of R

k × ⋃
y∈M (TyM)k. Then

L[u] =
∫

Ω L(x, u,∇u) dx is Fréchet-differentiable in C0,1(Ω) with derivative

L′[u]h =
∫

Ω

∂uαL(x, u,∇u)hα +∇pαL(x, u,∇u) · ∇hα dx

for every function h ∈ C0,1(Ω).

The hypotheses of Proposition A.1 are fulfilled if L : R
k ×⋃

y∈M (TyM)k

is continuously differentiable with respect to x, u and p.

Proof. For u ∈ C0,1(Ω) we write L(x, u,∇u) for L(x, u(x),∇u(x)). Define
Ah :=

∫
Ω ∂uαL(x, u,∇u)hα +∇pαL(x, u,∇u) · ∇hα dx. Since the derivatives

∂uαL(x, u,∇u) and ∇pαL(x, u,∇u) are L∞-functions one finds that the func-
tional A is continuous on C0,1(Ω). h ∈ C0,1(Ω) then for almost all x ∈ Ω it
holds that

L(x, u+h,∇u+∇h)−L(x, u,∇u)−hα∂uαL(x, u,∇u)−∇hα·∇pαL(x, u,∇u)

=
∫ 1

0

(
∂uαL(x, u+ th,∇u+ t∇h)− ∂uαL(x, u,∇u)

)
hα dt

+
∫ 1

0

(
∇pαL(x, u + th,∇u+ t∇h)−∇pαL(x, u,∇u)

)
· ∇hα dt.

Integration over the domain Ω yields
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∣
∣
∣L[u+ h]− L[u]−Ah

∣
∣
∣

≤ ‖h‖∞
∫

Ω

∫ 1

0

k∑

α=1

∣
∣
∣∂uαL(x, u+ th,∇u+ t∇h)− ∂uαL(x, u,∇u)

∣
∣
∣ dt dx

+ ‖∇h‖∞
∫

Ω

∫ 1

0

k∑

α=1

∣
∣
∣∇pαL(x, u+ th,∇u+ t∇h)−∇pαL(x, u,∇u)

∣
∣
∣ dt dx.

By the dominated convergence theorem the integrals on the right hand side
converge to 0 as ‖h‖C0,1 → 0. Hence

∣
∣
∣L[u+ h]− L[u]−Ah

∣
∣
∣/‖h‖C0,1 → 0 as ‖h‖C0,1 → 0.

This shows the Fréchet-differentiability of L. 
�



B

Lipschitz-properties of gε and Ωε

We recall the following versions of the inverse and implicit function theorem.
Let X,Y, Z be Banach-spaces and let Bρ(x0) be the open norm-ball of radius
ρ around x0.

Inverse function theorem. Let f : Bρ(x0) ⊂ X → Y satisfy

‖f(x1)− f(x2)− L(x1 − x2)‖ ≤ K‖x1 − x2‖ ∀x ∈ Bρ(x0)

for a bounded linear homeomorphism L : X → Y with ‖L−1‖K < 1. Then
there exists ρ1 ∈ (0, ρ] such that f : Bρ1(x0) → f(Bρ1(x0)) has a Lipschitz
inverse with

‖f−1(y1)− f−1(y2)‖ ≤ ‖L−1‖
1− ‖L−1‖K ‖y1 − y2‖

‖f−1(y1)− f−1(y2)− L−1(y1 − y2)‖ ≤ ‖L−1‖2K
1− ‖L−1‖K ‖y1 − y2‖

for all y1, y2 ∈ f(Bρ1).

Implicit function theorem. Let f : Br(x0) × Bs(y0) ⊂ X × Y → Z with
f(x0, y0) be a Lipschitz function and suppose that

‖f(x, y1)−f(x, y2)−L(y1−y2)‖ ≤ K‖y1−y2‖ ∀x ∈ Br(x0), ∀y1, y2 ∈ Bs(y0)

for a bounded linear homeomorphism L : Y → Z with ‖L−1‖K < 1. Then
there exist r1 ∈ (0, r] and s1 ∈ (0, s] and a Lipschitz function g : Br1(x0)→ Y
with g(x0) = y0 such that the unique solution of f(x, y) = 0 in Br1(x0) ×
Bs1(y0) is given by y = g(x).

The proof of both theorems relies on the contraction mapping principle
applied to x − L−1(f(x) − y) = x for the inverse function theorem and y −
L−1f(x, y) = y for the implicit function theorem. Details can be found in
Deimling [18], Chapter 4 and Hildebrandt, Graves [45].
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We will use the inverse and implicit function theorems to prove Proposi-
tion 3.3 used in Chapter 3. If u is a Lipschitz-function we denote by Lip u the
best Lipschitz constant.

Proposition 3.3 Let Ω be a Lipschitz domain and let u ∈ C0,1(Ω) or u ∈
C1(Ω), respectively. Then there exists ε0 = ε0(u) such that for all ε ∈ (−ε0, ε0)
we have

(i) gεu belongs to C0,1(gεΩ) or C1(gεΩ), respectively.
(ii)gεΩ is a Lipschitz domain.

Proof. Part (i): For simplicity we give the proof only for k = 1. Since ξ, φ
are C1-functions we know that χε(x, u), Ψε(x, u) are C1-functions w.r.t. ε and
w.r.t. the initial conditions (x, u) ∈ Ω × R. Fix a local coordinate system at
x0 ∈ Ω and let B(x0) be a ball in R

n around x0. Moreover, let j ∈ {1, . . . , n}
be fixed. For x1, x2 ∈ B(x0) and u1, u2 ∈ R we find by the mean-value theorem
that there exists vectors x̄i for i = 1, . . . , n on the straight-line between x1

and x2 and a value ū between u1, u2 such that

|χj
ε(x1, u1)− χj

ε(x2, u2)− (xj
1 − xj

2)|
≤ |(χj

ε,i(x̄i, u1)− δj
i )(x

i
1 − xi

2)|+ |χj
ε,u(x2, ū)(u1 − u2)|

≤ |(εξj
,i(x̄i, u1) +O(ε2))(xi

1 − xi
2)|+ |(εξj

,u(x2, ū) +O(ε2))(u1 − u2)|,

where O(ε2) is uniform w.r.t. x1, x2 ∈ B(x0) and u1, u2 in compact intervals
K. Let | · |∞ be the maximum-norm in R

n. Let u : Ω → R be in C0,1(Ω). For
x1, x2 ∈ B(x0) we obtain

|χε(x1, u(x1))− χε(x2, u(x2))− (x1 − x2)|∞
≤ ε

(
max

i,j=1,...,n
‖ξj

,i‖∞ + Lip u max
j=1,...,n

‖ξj
,u‖∞

)
|x1− x2|∞ +O(ε2)|x1 − x2|∞,

where ‖ξj
,i‖∞ and ‖ξj

,u‖∞ are taken over Ω ×K and K is a compact interval
which contains u(Ω). Here O(ε2) is uniform w.r.t. x1, x2 ∈ B(x0). This implies
that χε(Id×u) → Id uniformly on Ω as ε → 0, and furthermore that for ε
sufficiently close to 0 the map χε(Id×u) : Ω → Ωε is a homeomorphism. And
finally, by the inverse function theorem we find that χε(Id×u)−1 is a Lipschitz-
function with Lip(χε(Id×u)−1) bounded in ε and Lip(χε(Id×u)−1 − Id) =
O(ε) in every local coordinate system. This proves part (i) of the Proposition
in the case u is Lipschitz on Ω. If u is C1 on Ω the same proof with the
conventional implicit function for C1-functions can be used.

Part (ii): We study the boundary of Ωε. Suppose that a portion of ∂Ω
around the point x̄ ∈ ∂Ω is given in local coordinates by xn = f(x′),
x′ = (x1, . . . , xn−1) with a Lipschitz continuous function f : U ⊂ R

n−1 → R.
The corresponding point x̄ε = χε(x̄, u(x̄)) is on ∂Ωε. To find the defining
equation for ∂Ωε let us define the coordinate projections Πn(y) = yn and
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Π1...n−1(y) = y′ = (y1, . . . , yn−1). Then in a small neighborhood of x̄ε we
have

x̃ ∈ ∂Ωε ⇔ Πn([χε(Id×u)]−1x̃)
︸ ︷︷ ︸

=xn

= f
(

Π1...n−1([χε(Id×u)]−1x̃)
︸ ︷︷ ︸

=(x1,...,xn−1)

)
. (B.1)

To solve (B.1) implicitly we define

H(x̃) =
(
Πn ◦ [χε(Id×u)]−1 − f ◦Π1...n−1 ◦ [χε(Id×u)]−1

)
x̃.

Then we need to find a Lipschitz function h such that the solution ofH(x̃) = 0
is given by x̃n = h(x̃1, . . . , x̃n−1). A sufficient condition to apply the above
version of the implicit function theorem is

|H(x̃′, x̃n)−H(x̃′, x̂n)− (x̃n − x̂n)| ≤ Kε|x̃n − x̂n| (B.2)

locally around x̄ε with Kε → 0 as ε→ 0. To verify (B.2) we use the definition
of H and the properties of [χε(Id×u)]−1 from Part (i):
∣
∣
∣Πn

(
[χε(Id×u)]−1(x̃′, x̃n)− [χε(Id×u)]−1(x̃′, x̂n)

)
− (x̃n − x̂n)

− f ◦Π1...n−1 ◦ [χε(Id×u)]−1(x̃′, x̃n) + f ◦Π1...n−1 ◦ [χε(Id×u)]−1(x̃′, x̂n)
∣
∣
∣

≤ Lip
(
[χε(Id×u)]−1 − Id

)
|x̃n − x̂n|

+ Lip f
∣
∣
∣Π1...n−1

(
[χε(Id×u)]−1(x̃′, x̃n)− [χε(Id×u)]−1(x̃′, x̂n)

)∣
∣
∣

= O(ε)|x̃n − x̂n|+ Lip f
∣
∣
∣Π1...n−1

(
(Id +O(ε))(0, x̃n − x̂n)

)∣
∣
∣

= O(ε)|x̃n − x̂n|

uniformly for (x̃′, x̃n), (x̃′, x̂n) in a small ball around x̄′ε. This shows that the
above version of the implicit function theorem is applicable, and hence ∂Ωε

is Lipschitz for sufficiently small ε. 
�
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conformally contractible, 74, 75, 77, 89,
92, 107, 132, 136, 138
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contraction mapping, 13
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critical

Dirichlet problem, 79, 80, 92
Neumann problem, 80

critical dimension, 114, 119, 120, 124
critical hyperbola, 129
critical point, 1
curvature

mean, 78, 80
prescribed mean, 137

scalar, 78–80

domain
Lipschitz, 62
piecewise smooth, 62

domain contracting, 45
domain preserving, 56

Emden-Fowler system, 127
Emmy Noether, 11, 43
equilibrium deformation, 130
Euler-Lagrange operator, 4, 44, 47

first eigenvalue
for q-Laplacian, 26
simplicity, 24
Stekloff-problem, 25

fixed point, 34, 45
flow, 10, 32
flow-map, 10, 32
frame-indifference, 130
Fredholm-alternative, 17

Gelfand problem, 105
geodesic, 72

Hardy inequality, 120
harmonic maps, 71

into conformally flat manifolds, 86
into spheres, 72

holomorphic function, 81, 89, 121
hyperbolic space H

n, 59, 84, 112, 117

incompressible material, 130
infinitesimal generator, 10, 32, 76



152 Index

isometry, 60
isotropy, 130

Killing-field, 77

Lipschitz constant, 13
Lipschitz domain, 62

mean-curvature operator
supercritical Dirichlet problem, 99
supercritical Neumann problem, 100

method of transformation groups, 6
monotonicity, 7

necessary condition of Weierstrass, 51
Nehari-manifold, 67
Noether’s formula, 43
nonlinear elasticity, 130

one-parameter transformation group, 6,
9, 31

admissible, 44, 46
differentiable, 9
domain contracting, 45
domain preserving, 56
fixed point of, 34, 45
infinitesimal generator of, 10, 32

orientation, 37

partial derivatives, 30
of Lagrangians, 39

piecewise smooth domain, 62
Pohožaev’s identity, 5, 44, 46, 47
Poincaré inequality, 13, 63, 65
polyharmonic operator, 124
prescribed mean curvature, 137
prolongation, 13, 42

q-Laplacian, 24, 26
critical dimension, 119
supercritical Dirichlet problem, 97

radially symmetric, 119
quasi-convexity, 131

radially symmetric Dirichlet problem,
110

rank-one-convexity, 50, 131
rate of change formula, 12, 35, 41
Riemannian manifold, 27
rotation surface, 84

saddle point, 14

simply-connected, 136, 137
Sophus Lie, 11
spherical space S

n, 59, 83, 112, 116
star-shaped, 2, 62, 64, 83, 84, 89, 92
Stekloff-problem, 25
subcritical

bifurcation problem, 106
Neumann problem, 107

sublinear
Dirichlet problem, 21

for q-Laplacian, 24
Neumann problem, 23

supercritical, 61
bifurcation problem, 62, 64, 68, 75,

83, 85, 91
Dirichlet problem, 64, 68, 73, 75, 89,

100
Emden-Fowler system, 127
for q-Laplacian, 97
for mean-curvature operator, 99
radially symmetric, 113, 114, 119
with partial radial symmetry, 121

Neumann problem, 65, 75, 94, 105
for mean-curvature operator, 100
for systems, 129
with partial radial symmetry, 121

supercritical growth, 2
surface

closed parametric, 137
of constant mean curvature, 137

torsion problem, 68
total derivative, 30
total space M × R

k, 30
transport equation, 33

unique continuation
principle, 52, 87, 137, 138
property, 51, 135

variational sub-symmetry, 2, 10, 48
strict, 11, 50
w.r.t. affine subspace, 17

variational symmetry, 10
virial theorem, 47
volume form, 37

weak solution, 15

Yamabe’s equation, 79
with boundary terms, 80




