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0.1 Introduction

These lecture notes describe a new development in the calculus of variations called
Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry
was the description of the motion of electrons in a two-dimensional crystal in terms
of a simple model. To do so, Aubry investigated a discrete variational problem and
the corresponding minimals.

On the other hand, Mather started from a specific class of area-preserving annulus
mappings, the so called monotone twist maps. These maps appear in mechanics
as Poincaré maps. Such maps were studied by Birkhoff during the 1920’s in several
basic papers. Mather succeeded in 1982 to make essential progress in this field and
to prove the existence of a class of closed invariant subsets, which are now called
Mather sets. His existence theorem is based again on a variational principle.

Evenso these two investigations have different motivations, they are closely related
and have the same mathematical foundation. In the following, we will now not fol-
low those approaches but will make a connection to classical results of Jacobi,
Legendre, Weierstrass and others from the 19’th century. Therefore in Chapter I,
we will put together the results of the classical theory which are the most impor-
tant for us. The notion of extremal fields will be most relevant in the following.

In chapter II we investigate variational problems on the 2-dimensional torus. We
look at the corresponding global minimals as well as at the relation between min-
imals and extremal fields. In this way, we will be led to Mather sets. Finally, in
Chapter III, we will learn the connection with monotone twist maps, which was
the starting point for Mather’s theory. We will so arrive at a discrete variational
problem which was the basis for Aubry’s investigations.

This theory additionally has interesting applications in differential geometry, namely
for the geodesic flow on two-dimensional surfaces, especially on the torus. In this
context the minimal geodesics as investigated by Morse and Hedlund (1932)
play a distinguished role.

As Bangert has shown, the theories of Aubry and Mather lead to new results for
the geodesic flow on the two-dimensional torus. The restriction to two dimensions
is essential as the example in the last section of these lecture notes shows. These
differential geometric questions are treated at the end of the third chapter.

The beautiful survey article of Bangert should be at hand with these lecture notes.
Our description aims less to generality as rather to show the relations of newer de-
velopments with classical notions with the extremal fields. Especially, the Mather
sets appear like this as ’generalized extremal fields’.
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For the production of these lecture notes I was assisted by O. Knill to whom I
want to express my thanks.

Zürich, September 1988, J. Moser

0.2 On these lecture notes

These lectures were given by J. Moser in the spring of 1988 at the ETH Zürich. The
students were in the 6.-8’th semester (which corresponds to the 3’th-4’th year of
a 4 year curriculum). There were however also PhD students (graduate students)
and visitors of the FIM (research institute at the ETH) in the auditorium.

In the last 12 years since the event the research on this special topic in the
calculus of variations has made some progress. A few hints to the literature are
attached in an appendix. Because important questions are still open, these lecture
notes might maybe be of more than historical value.

In March 2000, I stumbled over old floppy diskettes which contained the lec-
ture notes which I had written in the summer of 1998 using the text processor
’Signum’ on an Atary ST. J. Moser had looked carefully through the lecture notes
in September 1988. Because the text editor is now obsolete, the typesetting had
to be done new in LATEX. The original has not been changed except for small,
mostly stylistic or typographical corrections. The translation took more time as
anticipated, partly because we tried to do it automatically using a perl script. It
probably would have been faster without this ”help” but it has the advantage that
the program can now be blamed for any remaining germanisms.

Austin, TX, June 2000, O. Knill
Cambridge, MA, September 2000-April 2002, (English translation), The figures
were added in May-June 2002, O. Knill
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Chapter 1

One-dimensional variational
problems

1.1 Regularity of the minimals

Let Ω be an open region in Rn+1 from which we assume that it is simply connected.
A point in Ω has the coordinates (t, x1, ..., xn) = (t, x). Let F = F (t, x, p) ∈
Cr(Ω×Rn) with r ≥ 2 and let (t1, a) and (t2, b) be two points in Ω. The space

Γ := {γ : t→ x(t) ∈ Ω | x ∈ C1[t1, t2], x(t1) = a, x(t2) = b }

consists of all continuous differentiable curves which start at (t1, a) and end at
(t2, b). On Γ is defined the functional

I(γ) =

∫ t2

t1

F (t, x(t), ẋ(t)) dt .

Definition: We say γ∗ ∈ Γ is minimal in Γ, if

I(γ) ≥ I(γ∗), ∀γ ∈ Γ .

We first search for necessary conditions for a minimum of I, while assuming
the existence of a minimal.

Remark.
A minimum does not need to exist in general:

• It is possible that Γ = ∅.

• It is also possible, that a minimal γ∗ is contained only in Ω.

7



8 CHAPTER 1. ONE-DIMENSIONAL VARIATIONAL PROBLEMS

• Finally, the infimum could exist without that the minimum is achieved.

Example: Let n = 1 and F (t, x, ẋ) = t2 · ẋ2, (t1, a) = (0, 0), (t2, b) = (1, 1).
We have

γm(t) = tm, I(γm) =
1

m+ 3
, inf
m∈N

I(γm) = 0,

but for all γ ∈ Γ one has I(γ) > 0.

Theorem 1.1.1

If γ∗ is minimal in Γ, then

Fpj (t, x
∗, ẋ∗) =

∫ t

t1

Fxj (s, x
∗, ẋ∗) ds = const

for all t1 ≤ t ≤ t2 and j = 1, ..., n. These equations are
called integrated Euler equations.

Definition: One calls γ∗ regular, if det(Fpipj ) 6= 0 for
x = x∗, p = ẋ∗.

Theorem 1.1.2

If γ∗ is a regular minimal, then x∗ ∈ C2[t1, t2] and one has
for j = 1, . . . , n

d

dt
Fpj (t, x

∗, ẋ∗) = Fxj (t, x
∗, ẋ∗) (1.1)

This equations called Euler equations.

Definition: An element γ∗ ∈ Γ, satisfying the Euler equa-
tions 1.1 are called a extremal in Γ.

Attention: not every extremal solution is a minimal!

Proof of Theorem 1.1.1:

Proof. We assume, that γ∗ is minimal in Γ. Let ξ ∈ C1
0 (t1, t2) = {x ∈ C1[t1, t2] | x(t1) =

x(t2) = 0 } and γε : t 7→ x(t) + εξ(t). Since Ω is open and γ ∈ Ω, then also γε ∈ Ω
for enough little ε. Therefore,

0 =
d

dε
I(γε)|ε=0

=

∫ t2

t1

n∑

j=1

(
Fpj (s)ξ̇j + Fxj (s)

)
ξj ds

=

∫ t2

t1

(λ(t), ξ(t)) dt
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with λj(t) = Fpj (t) −
∫ t2
t1
Fxj (s) ds. Theorem 1.1.1 is now a consequence of the

following Lemma. 2

Lemma 1.1.3

If λ ∈ C[t1, t2] and

∫ t2

t1

(λ, ξ̇) dt = 0, ∀ξ ∈ C1
0 [t1, t2]

then λ = const.

Proof. Define c = (t2 − t1)−1
∫ t2
t1
λ(t) dt and put ξ(t) =

∫ t2
t1

(λ(s)− c) ds. We have

ξ ∈ C1
0 [t1, t2] and by assumption we have:

0 =

∫ t2

t1

(λ, ξ̇) dt

∫ t2

t1

(λ, (λ− c)) dt =

∫ t2

t1

(λ− c)2 dt ,

where the last equation followed from
∫ t2
t1

(λ− c) dt = 0. Since λ was assumed con-

tinuous this implies with
∫ t2
t1

(λ − c)2 dt = 0 the claim λ = const. This concludes
the proof of Theorem 1.1.1. 2

Proof of Theorem 1.1.2:

Proof. Put y∗j = Fpj (t, x
∗, p∗). Since by assumption det(Fpipj ) 6= 0 at every

point (t, x∗(t), ẋ∗(t)), the implicit function theorem assures that functions p∗k =
φk(t, x∗, y∗) exist, which are locally C1. From Theorem 1.1.1 we know

y∗j = const−
∫ t

t1

Fxj (s, x
∗, ẋ∗) ds ∈ C1 (1.2)

and so
ẋ∗k = φk(t, x∗, y∗) ∈ C1 .

Therefore x∗k ∈ C2. The Euler equations are obtained from the integrated Euler
equations in Theorem 1.1.1. 2

Theorem 1.1.4

If γ∗ is minimal then

(Fpp(t, x
∗, y∗)ζ, ζ) =

n∑

i,j=1

Fpipj (t, x
∗, y∗)ζiζj ≥ 0

holds for all t1 < t < t2 and all ζ ∈ Rn.
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Proof. Let γε be defined as in the proof of Theorem 1.1.1. Then γε : t 7→ x∗(t) +
εξ(t), ξ ∈ C1

0 .

0 ≤ II :=
d2

(dε)2
I(γε)|ε=0 (1.3)

=

∫ t2

t1

(Fppξ̇, ξ̇) + 2(Fpxξ̇, ξ̇) + (Fxxξ, ξ) dt . (1.4)

II is called the second variation of the functional I. Let t ∈ (t1, t2) be arbitrary.
We construct now special functions ξj ∈ C1

0 (t1, t2):

ξj(t) = ζjψ(
t− τ
ε

) ,

where ζj ∈ R and ψ ∈ C1(R) by assumption, ψ(λ) = 0 for |λ| > 1 and
∫
R

(ψ′)2 dλ =
1. Here ψ′ denotes the derivative with respect to the new time variable τ , which
is related to t as follows:

t = τ + ελ, ε−1dt = dλ .

The equations

ξ̇j(t) = ε−1ζjψ
′(
t− τ
ε

)

and (1.3) gives

0 ≤ ε3II =

∫

R

(Fppζ, ζ)(ψ′)2(λ) dλ+O(ε)

For ε > 0 and ε→ 0 this means that

(Fpp(t, x(t), ẋ(t))ζ, ζ) ≥ 0 .

2

Remark:
Theorem 1.1.4 tells, that for a minimal γ∗ the Hessian of F is positive semidefinite.

Definition: We call the function F autonomous, if F is
independent of t, i.e. if Ft = 0 holds.

Theorem 1.1.5

If F is autonomous, every regular extremal solution satisfies

H = −F +

n∑

j=1

pjFpj = const. .

The function H is also called the energy. In the au-
tonomous case we have therefore energy conservation.
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Proof. Because the partial derivative Ht vanishes, one has

d

dt
H =

d

dt
(−F +

n∑

j=1

pjFpj )

=
n∑

j=1

[−Fxj ẋj − Fpj ẍj + ẍjFpj + ẋj
d

dt
Fpj ]

=

n∑

j=1

[−Fxj ẋj − Fpj ẍj + ẍjFpj + ẋjFxj ] = 0 .

Since we have assumed the extremal solution to be regular, we could use by The-
orem 1.1.2 the Euler equations. 2

In order to obtain sharper regularity results we change the variational space.
We have seen, that if Fpp is not degenerate, then γ∗ ∈ Γ is two times differentiable,
evenso the elements in Γ are only C1. This was the statement of the regularity
Theorem 1.1.2.

We consider now a bigger class of curves

Λ = {γ : [t1, t2]→ Ω, t 7→ x(t), x ∈ Lip[t1, t2], x(t1) = a, x(t2) = b } .
Lip[t1, t2] denotes the space the Lipshitz continuous functions on the interval
[t1, t2]. Note that ẋ is now only measurable and bounded. Nevertheless it gives
analogues theorems as Theorem 1.1.1 or Theorem 1.1.2:

Theorem 1.1.6

If γ∗ is a minimal in Λ then

Fpj (t, x
∗, ẋ∗)−

∫ t2

t1

Fxj (s, x
∗, ẋ∗) ds = const (1.5)

for Lebesgue almost all t ∈ [t1, t2] and all j = 1, ..., n.

Proof. As in the proof of Theorem 1.1.1 we put γε = γ + εξ, but where this time,
ξ is in

Lip0[t1, t2] := {γ : t 7→ x(t) ∈ Ω, x ∈ Lip[t1, t2], x(t1) = x(t2) = 0 } .
So,

0 =
d

dε
I(γε)|ε=0

= lim
ε→0

(I(γε)− I(γ0))/ε

= lim
ε→0

∫ t2

t1

[F (t, γ∗ + εξ, γ̇∗ + εξ̇)− F (t, γ∗, γ̇∗)]/ε dt .
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To make the limit ε→ 0 inside the integral, we use the Lebesgue convergence
theorem: for fixed t we have

lim
ε→0

[F (t, γ∗ + εξ, γ̇∗ + εξ̇)− F (t, γ∗, γ̇∗)]/ε = Fxξ + Fpξ̇

and

F (t, γ∗ + εξ, γ̇∗ + εξ̇)− F (t, γ, γ̇)

ε
≤ sup
s∈[t1,t2]

|Fx(s, x(s), ẋ(s)|ξ(s)+|Fp(s, x(s)|ξ̇(s) .

The last expression is in L1[t1, t2]. Applying Lebesgue’s theorem gives

0 =
d

dε
I(γε)|ε=0 =

∫ t2

t1

Fxξ + Fpξ̇ dt =

∫ t2

t1

λ(t)ξ̇ dt

with λ(t) = Fp −
∫ t2
t1
Fx ds. This is bounded and measurable. Define c = (t2 −

t1)−1
∫ t
t1
λ(t) dt and put ξ(t) =

∫ t2
t1

(λ(s)− c) ds. We get ξ ∈ Lip0[t1, t2] and in the
same way as in the proof of Theorem 1.1.4 one concludes

0 =

∫ t2

t1

(λ, ξ̇) dt =

∫ t2

t1

(λ, (λ(t)− c))) dt =

∫ t2

t1

(λ− c)2 dt ,

where the last equation followed from
∫ t2
t1

(λ − c) dt = 0. The means, that λ = c

for almost all t ∈ [t1, t2]. 2

Theorem 1.1.7

If γ∗ is a minimal in Λ and Fpp(t, x, p) is positive definit
for all (t, x, p) ∈ Ω×Rn, then x∗ ∈ C2[t1, t2] and

d

dt
Fpj (t, x

∗, ẋ∗) = Fxj (t, x
∗, ẋ∗)

for j = 1, ..., n.

Proof. The proof uses the integrable Euler equations in Theorem 1.1.1 and uses
the fact that the solution of the implicit equation y = Fp(t, x, p) for p = Φ(t, x, y)
is globally unique. Indeed: if we assumed that two solutions p and q existed

y = Fp(t, x, p) = Fq(t, x, q) ,

it would imply that

0 = (Fp(t, x, p)− Fp(t, x, q), p− q) = (A(p− q), p− q)

with

A =

∫ 1

0

Fpp(t, x, p+ λ(q − p)) dλ
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and because A has been assumed positive definite p = q follows.

From the integrated Euler equations we know that

y(t) = Fp(t, x, ẋ)

is continuous with bounded derivatives. Therefore ẋ = Φ(t, x, y) is absolutely
continuous. Integration leads to x ∈ C1. The integrable Euler equations of Theo-
rem 1.1.1 tell now, that Fp is even C1 and we get with the already proven global
uniqueness, that ẋ is in C1 and hence that x is in C2. Also here we obtain the
Euler equations by differentiation of (1.5). 2

A remark on newer developments:
We have seen, that a minimal γ∗ ∈ Λ is two times continuously differentiable.
A natural question is whether we obtain such smooth minimals also in bigger
variational spaces. Let for example

Λa = {γ : [t1, t2]→ Ω, t 7→ x(t), x ∈W 1,1[t1, t2], x(t1) = a, x(t2) = b }

denote the space of absolutely continuous γ. Here one has to deal with singu-
larities for minimal γ which form however a set of measure zero. Also, the infimum
in this class Λa can be smaller as the infimum in the Lipschitz class Λ. This is
called the Lavremtiev-Phenomenon. Examples of this kind go back to Ball and
Mizel. One can read more about it in the work of Davie [9].

In the next chapter we will consider the special case when Ω = T2 ×R. We
will also work in a bigger function space, namely in

Ξ = {γ : [t1, t2]→ Ω, t→ x(t), x ∈W 1,2[t1, t2], x(t1) = a, x(t2) = b } ,

where we some growth conditions for F = F (t, x, p) for p→∞ are assumed.

1.2 Examples

Example 1):
Free motion of a mass point on a manifold.

Let M be a n-dimensional Riemannian manifold with metric gij ∈ C2(M),
(where the matrix-valued function gij is of course symmetric and positive definite).
Let

F (x, p) =
1

2
gij(x)pipj .

(We use here the Einstein summation convention, which tells to sum over
lower and upper indices.) On the manifold M two points a and b are given which
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are both in the same chart U ⊂ M . U is homeomorphic to an open region in Rn

and we define W = U ×R. We also fix two time parameters t1 and t2 in R. The
space Λ can now be defined as above. We search a minimal γ∗ to the functional

I(x) =

∫ t2

t1

F (t, x, x)dt =

∫ t2

t1

gij(x)ẋiẋj dt (1.6)

which satisfy. From Theorem 1.1.2 we know, that these are the Euler equations.
We have

Fpk = gkip
i

Fxk =
1

2

∂

∂xk
gij(x)pipj

and Euler equations to γ∗ can, using the identity

1

2

∂

∂xj
gik(x)ẋiẋj =

1

2

∂

∂xi
gjk(x)ẋiẋj

and the Christoffel symbols

Γijk =
1

2
[
∂

∂xi
gjk(x) +

∂

∂xj
gik(x)− ∂

∂xk
gij(x)]

be written as
gkiẍ

i = −Γijkẋ
iẋj

which are with
gij := g−1

ij , Γkij := glkΓijl

of the form
ẍk = −Γkij ẋ

iẋj .

These are the differential equations which describe geodesics. Since F is indepen-
dent of t, it follows from Theorem 1.1.5 that

pkFpk − F = pkgkip
i − F = 2F − F = F

are constant along the orbit. This can be interpretet as the kinetic energy. The
Euler equations describe the curve of a mass point moving in M from a to b free
of exteriour forces.

Example 2): Geodesics on a Manifold.
Using the notations of the last example, we see this time however the new function

G(t, x, p) =
√
gij(x)pipj =

√
2F .

The functional

I(γ) =

∫ t2

t1

√
gij(x)ẋiẋj dt
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gives the arc length of γ. The Euler equations

d

dt
Gpi = Gxi (1.7)

can using the previous function F be written as

d

dt

Fpi√
2F

=
Fxi√
2F

(1.8)

and this equations satisfies, if
d

dt
Fpi = Fxi (1.9)

because d
dtF = 0. In order to get the same equations as in the first example, equa-

tions (1.8) and (1.9) are however not equivalent because a reparameterisation of
time t 7→ τ(t) leaves invariant the equation (1.8) in contrary to equation (1.9). The
for the extremal solution of (1.9) distinguished parameterisation is proportional
to the arc length.

The relation of the two variational problems, which we met in the examples
1) and 2), is a special case the Maupertius principle, which we mention for
completness:

Let the function F be given by

F = F2 + F1 + F0 ,

where Fi are independent of t and homogeneous of degree j. (Fj is homogenous
of degree j, if Fj(t, x, λp) = λFj(t, x, p) for all λ ∈ R). The term F2 is assumed to
be positive definite. Then, the energy

pFp − F = F2 − F0

is invariant. We can assume without loss of generality that we are on a energy
surface F2 − F0 = 0. With F2 = F0, we get

F = F − (
√
F2 −

√
F0)2 = 2

√
F2F0 − F1 = G

and

I(x) =

∫ t2

t1

G dt =

∫ t2

t1

(2
√
F2F0 − F1) dt

is independent of the parametrisation. Therefore the right hand side is homogenous
of degree 1. If x satisfies the Euler equations for F and the energy satisfies F2−F1 =
0, then x then satisfies also the Euler equations for G. The case derived in examples
1) and 2) correspond to F1 = 0, F0 = c > 0.
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Theorem 1.2.1

(Maupertius princple) If F = F2 + F1 + F0, where Fj are
homogenous of degree j and independent of t and F2 is pos-
itive definit, then every x, on the energy surface F2−F0 = 0
satisfies the Euler equations

d

dt
Fp = Fx

with F2 = F0 if and only if x satisfies the Euler equations
d
dtGp = Gx.

Proof. If x is a solution of d
dtFp = Fx with F2 − F0 = 0, then

δ

∫
G dt = δ

∫
F dt− 2

∫
(
√
F2 −

√
F0))δ(

√
F2 −

√
F0) = 0

(δI is the first variation of the functional I). Therefore x is a critical point of∫
G dt =

∫
(2
√
F2F0 − F1) dt and x satisfies the Euler equations d

dtGp = Gx. On
the other hand, if x is a solution of the Euler equations for G, we reparameterize
x in such a way, that with the new time

t = t(s) =

∫ s

t1

√
F2(τ, x(τ), ẋ(τ))√
F0(τ, x(τ), ẋ(τ))

dτ

x(t) satisfies the Euler equations for F , if x(s) satisfies the Euler equations for G
. If x(t) is on the energy surface F2 = F0, then x(t) = x(s) and x satisfies also the
Euler equations for F . 2

We see from Theorem 1.2.1, that in the case F1 = 0, the extremal solu-
tions of F even correspond to the geodesics in the metric gij(x)pipj = (p, p)x =
4F0(x, p)F2(x, p). This metric g is called the Jacobi metric.

Example 3): A particle in a potential in Euclidean space.

We look at the path x(t) of a particle with mass m in Euclidean space Rn.
The particle is moving in the potential U(x). An extremal solution to the Lagrange
function

F (t, x, p) = mp2/2 + E − U(x)

leads on the Euler equations

mẍ = −∂U
∂x

.

E is then the constant energy pFp −F = mp2/2 +U . The expression F2 = mp2/2
is positive definit and homogenous of degree 2. Furthermore F0 = E − U(x) is
homogenous of degree 0 and F = F2 + F0. From Theorem 1.2.1 we conclude that
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the extremal solutions of F with energy E correspond to geodesics of the Jacobi
metric

gij(x) = 2(E − U(x))δij .

It is well known, that the solutions are not allways minimals of the functional. In
general, they are stationary solutions. Consider for example the linear pendulum,
where in R the potential U(x) = ω2x is given and were we want to minimize

I(x) =

∫ T

0

F (t, x, ẋ) dt =

∫ T

0

(ẋ2 − ω2x2) dt

in the class of functions satisfing x(0) = 0 and x(T ) = 0. The solution x ≡ 0
is a solution of the Euler equations. It is however only a minimal solution, if
0 < T ≤ π/ω. If T > π/w, we have I(ξ) < I(0) for a certain ξ ∈ C(0, T ) with
ξ(0) = ξ(T ) = 0.

Example 4): Geodesics on the rotationally symmetric torus in R3
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The rotationally symmetric torus, embedded in R3 is parameterized by

x(u, v) = ((a+ b cos(2πv)) cos(2πu), (a+ b cos(2πv)) sin(2πu), b sin(2πv)) ,

where 0 < b < a. The metric gij on the torus is given by

g11 = 4π2(a+ b cos(2πv))2 = 4π2r2

g22 = 4π2b2

g12 = g21 = 0
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so that the line element ds has the form

ds2 = 4π2[(a+ b cos(2πv))2 du2 + b2dv2] = 4π2(r2du2 + b2dv2) .

Evidently, v ≡ 0 and v ≡ 1/2 are geodesics, where v ≡ 1/2 is a minimal geodesic.
The curve v = 0 is however not a minimal geodesic! If u is the time parameter we
can reduce the problem to find extremal solutions to the functional

4π2

∫ t2

t1

(a+ b cos(2πv))2u̇2 + b2v̇2 dt

reduce to the question to find extremal solution to the functional

4π2b2
∫ u1

u2

F (v, v′) du, uj = u(tj) ,

where

F (v, v′) =

√
(
a

b
+ cos(2πv))2 + (v′)2

with v′ = dv
du . This worked because our original Lagrange function is independent

of u. With E. Nöther’s theorem we get immediately an invariant, the angular
momentum. This is a consequence of the rotational symmetry of the torus. With
u as time, this is a conserved quantity but looks a bit different. All solutions are
regular and the Euler equations are

d

du

(
v′

F

)
= Fv .

Because F is autonomous, d.h dF
du = 0, we have with Theorem 1.1.5 energy con-

servation

E = v′Fv′ − F =
v′2

F
− F = −b2r2/F = −b2r sin(ψ) = const. ,

where r = a+b cos(2πv) is the distance to the axes of rotation and where sin(ψ) =
r/F . The angle ψ has a geometric interpretation. It is the angle, which the tangent
to the geodesic makes with the meridian u = const. For E = 0 we get ψ =
0 (modπ) and we see, that the meridians are geodesics. The conserved quantity
r sin(ψ) is called the Clairauts integral. It appears naturally as an integral for
every surface of revolution.
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Example 5): Billiard
As a motivation, we look first at the geodesic flow on a two-dimensionalen smooth
Riemannian manifold M which is homeomorphic to a sphere and which has a
strictly convex boundary in R3. The images of M under the maps

zn : R3 → R3, (x, y, z) 7→ (x, y, z/n)

Mn = zn(M) are again Riemannian mannifolds with the same properties as M .
Especially, they have a well defined geodesic flow. With bigger and bigger n, the
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manifolds Mn become flatter and flatter and as a ’limit’ one obtains a strictly
convex flat region. The geodesics are then degenerated to straight lines, which hit
the boundary with law that the impact angle is the same as the reflected angle.
The like this obtained system is called billiard. If we follow such a degenerated
geodesic and the successive impact points at the boundary, we obtain a map f ,
which entirely describes the billiard. Also without these preliminaries we could
start from the beginning as follows:

P

P

P

t

t

t

1

22

1

o

Let Γ be a convex smooth closed curve in the plane with arc length 1. We
fix a point O and an orientation on Γ. Every point P on Γ is now assigned a real
number s, the arc-length of the arc from O to P in positive direction. Let t be the
angle between the the straight line which passes through P and the tangent of Γ
in P . For t different from 0 or π, the straight line has a second intersection P with
Γ and to this intersection can again be assigned two numbers s1 and t1. They are
uniquely determined by the values s and t. If t = 0, we put simplly (s1, t1) = (s, t)
and for t = π we take (s1, t1) = (s+ 1, t). Let now φ be the map (s, t) 7→ (s1, t1).
It is a map on the closed annulus

A = {(s, t) | s ∈ R/Z, t ∈ [0, π] }
onto itself. It leaves the boundary of A, δA = {t = 0} ∪ {t = π} invariant and if φ
written as

φ(s, t) = (s1, t1) = (f(s, t), g(s, t))

then ∂
∂tf > 0. Maps of this kind are called monotone twist maps. We construct

now through P a one new straight line by reflection the straight lines P1P at the
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tangent of P . This new straight line intersects Γ in a new point P2. Like this, one
obtains a sequence of points Pn, where φ(Pn) = Pn+1. The set {Pn | n ∈ N } is
called an orbit of P . An orbit called closed or periodic, if there exists n with
Pi+n = Pi. We can define f also on the strip Ã, the covering surface

Ã = R× [0, π]

of A. For the lifted φ̃ we define φ̃(s, 0) = 0, φ̃(s, π) = 1. One says, a point P is
periodic of type p/q with p ∈ Z, q ∈ N \ {0}, if sq = s+ p, tq = t. In this case,

lim
n→∞

sn
n

=
p

q

holds. An orbit is called of type α, if

lim
n→∞

sn
n

= α .

A first question is the existence of orbits of prescribed type α ∈ (0, 1). We will deal
more with billiards in the third chapter where we will point out also the connection
with the calculus of variations.

1.3 The acessoric Variational problem

In this section we learn additional necessary conditions for minimals.

Definition: If γ∗ is an extremal solution in Λ and γε = γ∗+
εφ with φ ∈ Lip0[t1, t2], we define the second variation as

II(φ) = (
d2

(dε)2
)I(γε)|ε=0

=

∫ t2

t1

(Aφ̇, φ̇) + 2(Bφ̇, φ) + (Cφ, φ) dt ,

where A = Fpp(t, x
∗, ẋ∗), B = Fpx(t, x∗, ẋ∗) and C =

Fxx(t, x∗, ẋ∗). In more generality, we define the symmetric
bilinear form

II(φ, ψ) =

∫ t2

t1

(Aφ̇, ψ̇) + (Bφ̇, ψ) + (Bψ̇, φ) + (Cφ, ψ) dt

and put II(φ) = II(φ, φ).

It is clear that II(φ) ≥ 0 is a necessary condition for a minimum.
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Remark: The symmetric bilinearform II plays the role of the Hessian matrix
for an extremal problem on Rm.

For fixed φ, we can look at the functional II(φ, ψ) as a variational problem.
It is called the accessoric variational problem. With

F (t, φ, φ̇) = (Aφ̇, φ̇) + 2(Bφ̇, φ) + (Cφ, φ) ,

the Euler equations to this problem are

d

dt

(
Fψ̇

)
= Fψ

which are
d

dt
(Aφ̇+BTφ) = Bφ̇+ Cφ . (1.10)

These equations are called Jacobi equations for φ.

Definition: Given an extremal solution γ∗ : t 7→ x∗(t)
in Λ. A point (s, x∗(s)) ∈ Ω with s > t1 is called a
conjugated point to (t1, x

∗(t1)) if a nonzero solution
φ ∈ Lip[t1, t2] of the Jacobi equations (1.10) exists, which
satisfy φ(t1) = 0 and φ(s) = 0.

We also say, γ∗ has no conjugated points, if no con-
jugate point of (t1, x

∗(t1)) exists on the open segment
{(t, x∗(t)) | t1 < t < t2 } ⊂ Ω.

Theorem 1.3.1 If γ∗ is a minimal then γ∗ has no conjugated point.

Proof. It is enough to show, that II(φ) ≥ 0, ∀φ ∈ Lip0[t1, t2] implies that no con-
jugated point of (t1, x(t1)) exists on the open segment {(t, x∗(t)) | t1 < t < t2 }.

Let ψ ∈ Lip0[t1, t2] be a solution of the Jacobi equations, with ψ(s) = 0 for
s ∈ (t1, t2) and φ(ψ, ψ̇) = (Aψ̇+BTψ)ψ̇+(Bψ̇+Cψ)ψ. Using the Jacobi equations
we get

∫ s

t1

φ(ψ, ψ̇) dt =

∫ s

t1

(Aψ +BTψ)ψ̇ + (Bψ̇ + Cψ)ψ̇ dt

=

∫ s

t1

(Aψ̇ +BTψ)ψ̇ +
d

dt
(Aψ̇ +BTψ)ψ dt

=

∫ s

t1

d

dt
[(Aψ̇ +BTψ)ψ] dt

= [(Aψ̇ +BTψ)ψ]st1 = 0 .
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Because ψ̇(s) 6= 0 the fact ψ̇(s) = 0 would with ψ(s) = 0 and the uniqueness
theorem for ordinary differential equations imply that ψ(s) ≡ 0. This is however
excluded by assumption.

The Lipschitz function

ψ̃(t) :=

{
ψ(t) t ∈ [t1, s)

0 t ∈ [s, t2]

satisfies by the above calculation II(ψ̃) = 0. It is therefore also a solution of the
Jacobi equation. Since we have assumed II(φ) ≥ 0, ∀φ ∈ Lip0[t1, t2], ψ must be
minimal. ψ is however not C2, because ψ̇(s) 6= 0, but ψ̇(t) = 0 for t ∈ (s, t2]. This
is a contradiction to Theorem 1.1.2. 2

The question now arrizes whether the existence theory of conjugated points
of γ in (t1, t2) implies that II(f) ≥ 0 for all φ ∈ Lip0[t1, t2]. The answer is yes in
the case n = 1. We also will deal in the following with the one-dimensional case
n = 1 and assume that A,B,C ∈ C1[t1, t2], with A > 0.

Theorem 1.3.2

Let n = 1, A > 0. Given an extremal solution γ∗ ∈ Λ. Then
we have: There are no conjugate points of γ if and only if

II(φ) =

∫ t2

t1

Aφ̇2 + 2Bφφ̇+ Cφ2 dt ≥ 0, ∀φ ∈ Lip0[t1, t2] .

The assumption II(φ) ≥ 0, ∀φ ∈ Lip0[t1, t2] is called Jacobi condition.
Theorem 1.3.1 and Theorem 1.3.2 together say, that a minimal satisfies the Jacobi
condition in the case n = 1.

Proof. One direction has been done already in the proof of Theorem 1.3.1. What
we also have to show is that the existence theory of conjugated points for an
extremal solution γ∗ implies that

∫ t2

t1

Aφ̇2 + 2Bφφ̇+ Cφ2 dt ≥ 0, ∀φ ∈ Lip0[t1, t2] .

First we prove this under the somehow stronger assumption, that no conjugated
point in (t1, t2] exist. We claim that a solution φ̃ ∈ Lip[t1, t2] of the Jacobi equa-

tions exists which satisfies φ̃(t) > 0, ∀t ∈ [t1, t2] and φ̃(t1− ε) = 0 and
˙̃
φ(t1− ε) = 1

for a certain ε > 0. One can see this as follows:

Consider for example the solution ψ of he Jacobi equations with ψ(t1) =
0, ψ̇(t1) = 1, so that by assumption the next bigger root s2 satisfies s2 > t2. By
continuity there is ε > 0 and a solution φ̃ with φ̃(t1− ε) = 0 and ψ̃(t1− ε) = 1 and
φ̃(t) > 0, ∀t ∈ [t1, t2]. For such a ψ̃ there is a Lemma:
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Lemma 1.3.3

If φ̃ is a solution of the Jacobi equations satisfying φ̃(t) >
0, ∀t ∈ [t1, t2], then for every φ ∈ Lip0[t1, t2] with ξ := φ/φ̃
we have

II(φ) =

∫ t2

t1

Aφ̇2 + 2Bφφ̇+ Cφ2 dt =

∫ t2

t1

Aφ̃2ξ̇2 dt ≥ 0 .

Proof. The following calculation of the proof of the Lemma goes back to Legendre:

One has φ̇ =
˙̃
φξ + φ̃ξ̇ and therefore

II(φ) =

∫ t2

t1

Aφ̇2 + 2Bφφ̇+ Cφ2 dt

=

∫ t2

t1

(A
˜̇
φ

2

+ 2B
˜̇
φφ̃+ Cφ̃2)ξ2 dt+

∫ t2

t1

(2Aφ̃
˙̃
φ+ 2Bφ̃2)ξξ̇ dt+

∫ t2

t1

Aφ̃2ξ̇2 dt

=

∫ t2

t1

[(A
˙̃
φ+Bφ̃)

˙̃
φ+

d

dt
(A

˙̃
φ+Bφ̃)φ̃]ξ2

+ (A
˙̃
φ+Bφ̃)φ̃

d

dt
ξ̃2 +Aφ̃2ξ̇2 dt

=

∫ t2

t1

d

dt

(
(Aφ̇+Bφ̃)φ̃ξ2

)
dt+

∫ t2

t1

Aφ̃2ξ̇2 dt

= (Aφ̇+Bφ̃)φ̃ξ2|t2t1 +

∫ t2

t1

Aφ̃2ξ̇2 dt

=

∫ t2

t1

Aφ̃2ξ̇2 dt ,

where we have used in the third equation that φ satisfies the Jacobi equations. 2

Continuation of the proof of Theorem 1.3.2: we have still to deal with the
case, where (t2, x

∗(t2)) is a conjugated point. This is an exercice (Problem 6 be-
low). 2

The next Theorem is only true in the case n = 1, A(t, x, p) > 0, ∀(t, x, p) ∈
Ω×R.
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Theorem 1.3.4

Let n = 1, A > 0. For i = 1, 2 let γi be minimals in

Λi = {γ : t 7→ xi(t) | xi ∈ Lip[t1, t2], xi(t1) = ai, xi(t2) = bi } .

The minimals γ1 and γ2 intersect for t1 < t < t2 maximally
once.

Proof. Assume we have two γi in Λi which intersect twice in the interior of the
interval [t1, t2], namely at the places s1 and s2. Now we define the new paths γ
and γ as follows:

γ(t) =

{
γ2(t) falls t ∈ [t1, s1] ∪ [s2, t2]
γ1(t) falls t ∈ [s1, s2]

γ(t) =

{
γ1(t) falls t ∈ [t1, s1] ∪ [s2, t2]
γ2(t) falls t ∈ [s1, s2]

.

We denote also by γ̃i the restriction of γi to [s1, s2]. Let

Λ0 = {γ̇ : t 7→ x(t), x(t) ∈ Lip[s1, s2], x(si) = x1(si) = x2(si) } .

In this class we have I(γ̃1) = I(γ̃2), because both γ1 and γ2 are minimal. The
means

I(γ) = I(γ1) in Λ1

I(γ) = I(γ2) in Λ2

and therefore γ̃ is minimal in Λ1 and γ2 is minimal in Λ2. This contradicts the
regularity theorem. Therefore the curves γ and γ are not C2, because γ1 and γ2
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intersect transverally as a consequence of the uniqueness theorem for ordinary dif-
ferential equations. 2

Application: The Sturm Theorems.

Corollary 1.3.5
If s1 and s2 are two successive roots of a solution φ 6= 0 of
the Jacobi equation, then every solution which is linearly in-
dependent of φ has exactely one root in the interval (s1, s2).

Corollary 1.3.6

If q(t) ≤ Q(t),

φ̈+ qφ = 0

Φ̈ +QΦ = 0

and s1, s2 are two successive roots of Φ, then φ has maxi-
mally one root in (s1, s2).

The proof the of Sturm theorems is an exercice (see exercice 7).

1.4 Extremal fields for n=1

In this paragraph we want to derive sufficient conditions for minimality in the
case n = 1. We will see that the Euler equations, the assumption Fpp > 0 and the
Jacobi conditions are sufficient for a local minimum. Since all this assumptions
are of local nature, one can not expect more than a local minimum. If we talk
about a local minimum, this is ment with respect to the topology on Λ. In the C0

topology on Λ, the distance of two elements γ1 : t 7→ x1(t) and γ2 : t 7→ x2(t) is
given through

d(γ1, γ2) = max
t∈[t1,t2]

{|x1(t)− x2(t)| } .

A neighborhood of γ∗ in this topology is called wide neighborhood of of γ. A
different possible topology on Λ would be the C1 topology, in which the distance
of γ1 and γ2 is measured by

d1(γ1, γ2) = supt∈[t1,t2]{|x1(t)− x2(t)|+ |ẋ1(t)− ẋ(t)| } .

We would then talk of a narrow neighborhood of γ∗.

Definition: γ∗ ∈ Λ is called a strong minimum in Λ, if
I(γ) ≥ I(γ∗) for all γ in a wide neighborhood of γ∗.

γ∗ ∈ Λ called a weak minimum in Λ, if I(γ) ≥ I(γ∗) for
all γ in a narrow neighborhood of γ∗.
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We will see, that under the assumption of the Jacobi condition, a field of
extremal solutions can be found which cover a wide neighborhood of the extremal
solutions γ∗. Explicitely, we make the following definition:

Definition: An extremal field in Ω is a vector field ẋ =
ψ(t, x), ψ ∈ C1(Ω) which in defined in a wide neighborhood
U of an extremal solutions and which has the property that
every solution x(t) of the differential equation ẋ = ψ(t, x)
is also a solution of the Euler equations.

Examples:
1) F = 1

2p
2 has the Euler equation ẍ = 0 and the extremal field: ẋ = ψ(t, x) =

c = const.

2) F =
√

1 + p2 give the Euler equations ẍ = 0 with a solution x = λt. The
equation x = ψ(t, x) = x/t defines an extremal field for t > 0.

3) The geodesics on a in R3 embedded torus whose Clairaut angle φ satisfies
the equation r sin(φ) = c, where −(a − b) < c < (a − b) form an extremal field.
(Exercice 12).

Theorem 1.4.1

ψ = ψ(t, x) defines an extremal field in U if and only if for
all γ ∈ U and γ : t 7→ x(t) the equation

DψFp = Fx

holds for p = ψ(t, x), where Dψ := ∂t+ψ∂x+(ψt+ψψx)∂p.

Proof. ψ defines an extremal field if and only if for all γ ∈ U , γ : t 7→ x(t) holds

d

dt
Fp(t, x, p) = Fx(t, x, p)

for p = ẋ = ψ(t, x(t)). We have

(∂t + ẋ∂x +
d

dt
ψ(t, x(t))∂p)Fp = Fx

(∂t + ψ∂x + (ψt + ψxψ)∂p)Fp = Fx .

2

Theorem 1.4.2

If γ∗ can be embedded in an extremal field in a wide neigh-
borhood U of γ∗ and Fpp(t, x, p) ≥ 0 for (t, x) ∈ Ω ∀p, then
γ∗ is a strong minimal. If Fpp(t, x, p) > 0 for all (t, x) ∈ Ω
and for all p, then γ∗ is a unique strong minimal.
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Proof. Let U be a wide neighborhood of γ∗ and let Fpp(t, x, p) ≥ 0 for (t, x) ∈ Ω, ∀p.
We show that I(γ∗) ≥ I(γ) for all γ ∈ U . Let for γ ∈ C2(Ω)

F̃ (t, x, p) = F (t, x, p)− gt − gxp

Ĩ(γ) =

∫ t2

t1

F̃ (t, x, p) dt = I(γ)− g(t, x)|(t2,a)
(t1,b)

.

We search now a γ ∈ C2 so that

F̃ (t, x, ψ(t, x)) = 0

F̃ (t, x, p) ≥ 0, ∀p .

(This means then even that every extremal solution of the extremal field is a
minimal one!) Such a F̃ defines a variational problem which is equivalent to the
one defined by F because F̃p = 0 for p = ψ(t, x). The two equations

gx = Fp(t, x, ψ)

gt = F (t, x, ψ)− Fp(t, x, ψ)ψ

are called the fundamental equations of calculus of variations. They form a
system of partial differential equations of the form

gx = a(t, x)

gt = b(t, x) .

These equations have solutions if Ω is simply connected and if the integrability
condition at = bx is satisfied (if the curl of a vector field in a simply connected
region vanishes, then the vector field is a gradient field). Then g can be computed
as a (path independent) line integral

g =

∫
a(t, x) dx+ b(t, x) dt .

2

Lemma 1.4.3

The compatibility condition at = bx:

∂

∂t
Fp(t, x, ψ(t, x)) =

∂

∂x
(F − ψFp)(t, x, ψ(t, x))

is true if and only if ψ is an extremal field.

Proof. This is a calculation. One has to consider that

a(t, x) = Fp(t, x, ψ(t, x))



30 CHAPTER 1. ONE-DIMENSIONAL VARIATIONAL PROBLEMS

and that
b(t, x) = (F − ψFp)(t, x, ψ(t, x))

are functions of the two variables t and x, while F is a function of three variables
t, x, p, where p = ψ(t, x). We write therefore ∂tF, ∂xF and ∂pF , if the derivatives
of F with respect to the first, the second and the third variable can be understood
as ∂

∂tF (t, x, ψ(t, x)) rsp. ∂
∂xF (t, x, ψ(t, x)), if p = ψ(t, x) is t and x are understood

as independent random variables. Therefore

∂

∂t
a(t, x) =

∂

∂t
Fp(t, x, ψ(t, x)) = Fpt + ψtFpp (1.11)

= (∂t + ψt∂p)Fp (1.12)

and because

∂

∂x
Fp(t, x, ψ(t, x)) = Fpx + ψxFpp = (∂x + ψx∂p)Fp

holds

∂

∂x
b(t, x) =

∂

∂x
[F (t, x, ψ(t, x))− ψ(t, x)Fp(t, x, ψ(t, x))] (1.13)

= (∂x + ψx∂p)F − (ψxFp + ψFpx + ψψxFpp) (1.14)

= Fx − (ψx + ψ∂x + ψψx∂p)Fp . (1.15)

Therefore, (1.11) and (1.13) together give

∂

∂x
b− ∂

∂t
a = Fx − (∂t + ψ∂x + (ψt + ψψx)∂p)Fp

= Fx −DψF .

According to Theorem 1.4.1, the relation ∂xb − ∂ta = 0 holds if and only if ψ
defines an extremal field. 2

Continuation of the proof of Theorem 1.4.2:

Proof. With this Lemma, we have found a function g which itself can be written
as a path-independent integral

g(t, x) =

∫ (t,x)

(t1,a)

(F − ψFp) dt′ + Fp dx
′ .

This line integral is called Hilbert invariant integral. For every curve γ : t 7→
x(t) one has:

I(γ) =

∫

γ

F dt =

∫

γ

F dt− Fpẋ dt+ Fp dx . (1.16)
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Especially for the path γ∗ of the extremal field ẋ = ψ(t, x), one has

I(γ∗) =

∫

γ∗
(F − ψFp) dt+ Fpdx .

Because of the path independence of the integrals, this also holds for γ ∈ Λ

I(γ∗) =

∫
(F − ψFp) dt+ Fp dx (1.17)

and we get from the subtraction of (1.17) from I(γ) =
∫
γ
F dt

I(γ)− I(γ∗) =

∫

γ

F (t, x, ẋ)− F (t, x, ψ)− (ẋ− ψ)Fp(t, x, ψ) dt

=

∫

γ

E(t, x, ẋ, ψ) dt ,

where E(t, x, p, q) = F (t, x, p)− F (t, x, q)− (p− q)Fp(t, x, q) is called the Weier-
strass exzess function or shortly the Weierstrass E-funktion. According to
the intermediate value theorem, the integral equation gives for q ∈ [p, q] with

E(t, x, p, q) =
(p− q)2

2
Fpp(t, x, q) ≥ 0

according to our assumption for Fpp. This inequality is strict, if Fpp > 0 is and
p 6= q. Therefore, I(γ)− I(γ∗) ≥ 0 and in the case Fpp > 0 we have I(γ) > I(γ∗)
for γ 6= γ∗. This means that γ∗ is a unique strong minimal. 2

Now to the main point: THe Euler euqations, the Jacobi condition and the
ondition Fpp ≥ 0 are sufficient for a strong local minimum.

Theorem 1.4.4
Let γ∗ be an extremal with no conjugated points. If Fpp ≥ 0
on Ω, let γ∗ be embedded in an extremal field. It is therefore
a strong minimal. Is Fpp > 0 then γ∗ is a unique minimal.

Proof. We construct an extremal feld, which conains γ∗ and make Theorem 1.4.2
applicable.

Choose τ < t1 close enough at t1, so that all solutions φ of the Jacobi equa-
tions with φ(τ) = 0 and φ̇(τ) 6= 0 are nonzero on (τ, t2]. This is possible because of
continuity reasons. We construct now a field x = u(t, η) of solutions of the Euler
equations, so that for small enough |η|

u(τ, η) = x∗(τ)

u̇(τ, η) = ẋ∗(τ) + η
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holds. This can be done by the existence theorem for ordinary differential equa-
tions. We show that for some δ > 0 with |η| < δ, this extremal solutions cover a
wide neighborhood of γ∗. To do so we prove that uη(t, 0) > 0 for t ∈ (τ, t2].

If we differentiate the Euler equations

d

dt
Fp(t, u, u̇) = Fx(t, u, u̇) .

an the place η = 0 with respect to η we get

d

dt
(Au̇η +Bu̇η) = Bu̇η + Cuη

and see that φ = uη is a solution of the Jacobi equations. With the claim uη(t, 0) >
0 for t ∈ [t1, t2] we obtained the statement at the beginning of the proof.

From uη(t, 0) > 0 in (τ, t2] follows with the implicit function theorem that for
η in a neighborhood of zero, there is an inverse function η = v(t, x) of x = u(t, η)
which is C1 and for which the equation

0 = v(t, x∗(t))

holds. Especially the C1 function (ut and v are C1)

ψ(t, x) = ut(t, v(t, x))

defines an extremal field ψ

ẋ = ψ(t, x)

which is defined in a neighborhood of {(t, x∗(t)) | t1 ≤ t ≤ t2 }. Of course every
solution of ẋ = ψ(t, x) in this neighborhood is given by x = u(t, h) so that every
solution of ẋ = ψ(t, x) is an extremal. 2

1.5 The Hamiltonian formulation

The Euler equations
d

dt
Fpj = Fxj

which an extremal solution γ in Λ has to satisfy necessarily, form a system of
second order differential equations. If

∑
i,j Fpipjξ

iξj > 0 for ξ 6= 0, is the Legendre
transformation

l : Ω×Rn → Ω×Rn, (t, x, p) 7→ (t, x, y) ,
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where yj = Fpj (t, x, p) is uniquely invertible. It is in general not surjectiv. A typical
example of a not surjective case is

F =
√

1 + p2, y =
p√

1 + p2
∈ (−1, 1) .

The inverse map can with the Hamilton function

H(t, x, y) = (y, p)− F (t, x, p)

be represented in the form
p = Hy(t, x, y) .

We have Hyy(t, x, y) = py = y−1
p = F−1

pp > 0 and the Euler equations turn with
the Legendre transformation into the Hamilton differential equations

ẋj = Hyj

ẏj = −Hxj

which form now a system of first order differential equations. By the way, one
can write this Hamiltonian equations also as the Euler equations using the action
integral

S =

∫ t2

t1

yẋ−H(t, x, y) dt .

The was Cartan’s aproach to this theory. He have seen then the differential form

α = ydx−Hdt = dS

which is called the integral invariant of Poincaré-Cartan. The above action
integral is of course nothing else than the Hilbert invariant Integral which we met
in the third paragraph.

If the Legendre transformation is surjective, call Ω×Rn the phase space.
Important is that y is now independent of x so that the differential form α does
not only depend on the (t, x) variables, but is also defined in the phase space.

In the case n = 1 the phase space is three dimensional. For a function h :
(t, x) 7→ h(t, x) the graph

Σ = {(t, x, y) ∈ Ω×Rn | y = h(t, x) }
is a two-dimensional surface.

Definition: The surface Σ is called invariant under the
flow of H, if the vector field

XH = ∂t +Hy∂x −Hx∂y

is tangent to Σ.
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Theorem 1.5.1

Let (n = 1). If ẋ = ψ(t, x) is an extremal field for F , then

Σ = {(t, x, y) ∈ Ω×R | y = Fp(t, x, ψ(t, x)) }

is C1 and invariant under the flow of H. On the other hand:
if Σ is a surface which is invariant by the flow of H has the
form

Σ = {(t, x, y) ∈ Ω×R | y = h(t, x) } ,
where h ∈ C1(Ω), hen the vector field ẋ = ψ(t, x) defined
by

ψ = Hy(t, x, h(t, x))

is an extremal field.

Proof. We assume first, we have given an extremal field x = ψ(t, x) for F . Then
according to Theorem 1.4.1

DψFp = Fx

and according to the Lemma in the proof of Theorem 1.4.2 this is the case if and
only if there exiss a function g which satisfies the fundamental equations in the
calculus of variation

gx(t, x) = Fp(t, x, ψ)

gt(t, x) = F (t, x, y)− ψFp(t, x, y) = −H(t, x, gx) .

The surface
Σ = {(t, x, p) | y = gx(t, x, ψ) }

is invariant under the flow of H:

XH(y − gx) = [∂t +Hy∂x −Hx∂y](y − gx)

= −Hygxx − gxt −Hx

= −∂x[gt +H(t, x, gx)] = 0 .

On the other hand, if
Σ = {(t, x, p) | y = h(t, x) }

is invariant under the flow of H, then by definition

0 = XH(y − h(t, x)) = [∂t +Hy∂x −Hx∂y](y − h(t, x))

= −Hyhx − ht −Hx

= −∂x[gt +H(t, x, h)]

with the function g(t, x) =
∫ x
a
h(t, x′) dx′ which satisfies the Hamilton-Jacobi

equations

gx = h(t, x) = y = Fp(t, x, ẋ)

gt = −H(t, x, gx) .
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The means however, that ẋ = gx(t, x) = Hy(t, x, h(x, y)) defines an extremal field.
2

Theorem 1.5.1 tells us that instead of considering extremal fields we can look
at surfaces which are given as the graph of gx given, where g is a solution of the
Hamilton-Jacobi equation

gt = −H(t, x, gx) .

The can be generalized to n ≥ 1: We look for g ∈ C2(Ω) at the manifold Σ :=
{(t, x, y) ∈ Ω×Rn | yj = gxj }, where

gt +H(t, x, gx) = 0 .

The following result holds:

Theorem 1.5.2

a) Σ is invariant under XH .
b) The vector field ẋ = ψ(t, x), with ψ(t, x) = Hy(t, x, gx)
defines an extremal field for F .
c) The Hilbert integral

∫
F + (ẋ− ψ)F dt is path indepen-

dent.

The verification of these theorems works as before in Theorem 1.5.1. One has
however to consider that in the case n > 1 not every field ẋ = ψ(t, x) of extremal
solutions can be represented in the form ψ = Hy. The necessary assumption is the
solvability of the fundamental equations

gt = F (t, x, ψ)−
n∑

j=1

ψjFpj (t, x, ψ)

gx = Fpj (t, x, ψ) (1.18)

for g. From the n(n + 1)/2 compatibility conditions, which have to be satisfied
only the n(n− 1)/2 assumptions

∂xkFpj (t, x, ψ) = ∂xjFpk(t, x, ψ) (1.19)

are necessary. Additionally, the n conditions

DψFpj (t, x, ψ) = Fxj (t, x, ψ)

hold which express that the solutions of ẋ = ψ are extremal solutions.

Definition: A vector field ẋ = ψ(t, x) is called a Mayer
field if there is a function g(t, x) which satify the funda-
mental equations (1.18).
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We even have seen that a vector field is a Mayer field if and only if it is
an extremal field which satisfies the compatibility conditions (1.19). These
compatibility conditions (1.19) are expressed best in the way that one asks from
the differential form

α =
∑

j

yjdxj −H(t, x, y) dt

that it is closed on Σ = {(t, x, y) | y = h(t, x)} that is

dα|Σ = d[
∑

j

hjdxj −H(t, x, h)dt] = 0 .

Since we assumed Ω to be simply connected, this is equivalent with exactness, that
is α|Σ = dg or

hj = gxj
−H(t, x, h) = gt

which is with the Legendre transformation equivalent to the fundamental equations

Fp(t, x, ψ) = gx

F (t, x, ψ)− ψFp = gt .

Like this, a Mayer field defines a manifold which is the graph of a function
y = h(t, x) in such a way that dα = 0 on g = h.

In invariant terminology, we call a one n-dimensional submanifold of a (2n+
1)-dimensional manifold with a 1-Form α a Legendre manifold, if dα vanishes
there. (See [3] Appendix 4K).

Geometric interpretation of g.
A Mayer field given by a function g = g(t, x) which satisfies gt +H(t, x, gx) = 0 is
completely characterized: the vector field is then given by

ẋ = Hy(t, x, gx) = ψ(t, x) .

This has the following geometric significance:

The manifolds g ≡ const, like for example the manifolds g ≡ A and g ≡ B
correspond to

∫
Fdt equidistant in the sense that along an extremal solution γ :

t 7→ x(t) with x(tA) ∈ {g = A} and x(tB) ∈ {g = B} one has

∫ tB

tA

F (t, x(t), ψ(t, x(t))) dt = B −A .

Therefore

d

dt
g(t, x(t)) = gt + ψgx = F − ψFp(t, x, ψ) + ψFp(t, x, ψ) = F (t, x, ψ)
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and this means

∫ tB

tA

F (t, x(t), ψ(t, x(t))) dt =

∫ tB

tA

d

dt
g(t, x(t)) dt = g(t, x(t))|tBtA = B −A .

Since these are minimals
∫
F (t, x, ψ(t, x) dt measures in a certain sense the

distance between the manifolds g = const, which are also called wave fronts.
This expression has its origin in optics, where F (x, p) = η(x)

√
1 + |p|2 is called

the refraction index η(x). The function g is then mostly denoted by S = S(t, x)
and the Hamilton-Jacobi equation

St +H(x, Sx) = 0

have in this case the form
S2
t + |Sx|2 = η2 ..

Therefore

Fp = η
p√

1 + |p|2
= y, p =

y√
η2 − |y|2

,

H = pFp − F = −η/
√
η2 − |y|2 = −

√
η2 − |y|2

and consequently St + H(x, Sx) = St −
√
η2 − S2

x = 0 holds. The corresponding
extremal field

ẋ = ψ(t, x) = Hy(t, Sx) =
−Sx√

η2 − |Sx|2
=
−Sx
St

is in the (t, x)-space orthogonal to S(t, x) = const.:

(ṫ, ẋ) = (1, ẋ) = λ(St, Sx)

with λ = S−1
t . ’The light rays are orthogonal to the wave fronts’.

1.6 Exercices to Chapter 1

1) Show that in example 4) of paragraph 1.1, the metric gij has the form given
there.

2) In Euclidean three-dimensional space, a surface of revolution is given in
cylindrical coordinates as

f(z, r) = 0 .

As local coordinates on the surface of revolution one takes z and φ and describes
the surface locally by the function r = r(z).
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a) Show that the Euclidean metric on R3 induces the metric on the cylinder
given by

ds2 = g11dz
2 + g22dφ

2

with

g11 = 1 + (
dr

dz
)2, g22 = r2(z) .

b) Let F ((φ, z), (φ̇, ż)) = 1
2 (gzz ż

2 + r2(z)φ̇2). Show that along a geodesic, the
functions

F, pφ :=
∂F

∂φ̇
r2φ̇, pz :=

∂F

∂ż
= g11ż

are constant. (Hint: Proceed as in example 4) and work with z and φ as ’time
parameter’).

c) Denote by ez and eφ the standard basis vectors and a point by (z, φ). The

angle ψ between eφ and the tangent vector v = (ż, φ̇) at the geodesic is given by

cos(ψ) = (v, eφ)/
√

(v, v)(eφ, eφ) .

Show, that r cos(ψ) = pφ/
√
F holds and therefore the theorem of Clairaut

holds, which says, that r cos(ψ) is constant along every geodesic on the surface of
revolution.

d) Show, that the geodesic flow on a surface of revolution is completely inte-
grable. Determine the formula for φ(t) and z(t).

3) Show, that there exists a triangle inscribed into a smooth convex billiard
which has maximal length. (In particular, this triangle does not degenerate to a
2-gon.) Show, that this triangle is closed periodic orbit for the billiard.

4) Prove, that the billiard in a circle has for every p/q ∈ (0, 1) periodic orbits
of type α = p/q.

5) Let A > 0 and A,B,C ∈ C1[t1, t2]. Consider the linear differential operator

LΦ =
d

dt
(AΦ̇ +BΦ)− (BΦ̇ + CΦ) .

Prove, that for ψ > 0,ψ ∈ C1[t1, t2], ζ ∈ C1[t1, t2] the identity

L(ζψ) = ψ−1 d

dt
(Aψ2ζ̇) + ζL(ψ)

holds. Especially for Lψ = 0, ψ > 0 one has

L(ζψ) = ψ−1 d

dt
(Aψ2ζ̇) .
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Compare this formula with the Legendre transformation for the second variation.

6) Give a complete proof of Theorem 1.3.2 using the Lemma of Legendre.
One has to show therefore, that for all φ ∈ Lip0[t1, t2] holds

II(φ) =

∫ t2

t1

Aφ̇2 + 2Bφφ̇+ Cφ2 dt ≥ 0

if (t2, x
∗(t2)) is the nearest conjugated point to (t1, x

∗(t1)). Choose to for every
small enough ε > 0 a C1 function ηε, for which

ηε(t) =

{
0 t ∈ (−∞, t1 + ε/2) ∪ (t2 − ε/2,∞)
1 t ∈ [t1 + ε, t2 − ε]

η̇ε(t) = O(ε−1), ε→ 0

and show then
a) II(ηεφ) ≥ 0, ∀ε small enough.
b) II(ηεφ)→ II(φ) for ε→ 0.

7) Prove the Sturmian theorems Corollaries 1.3.5 and Corollaries 1.3.6).

8) Let F ∈ C2(Ω ×R) be given in such a way that every C2 function t 7→
x(t), (t, x(t)) ∈ Ω satisfies the Euler equation

d

dt
Fp(t, x, ẋ) = Fx(t, x, ẋ) .

Show then, the if Ω is simply connected, F must have the form

F (t, x, p) = gt + gxp

with g ∈ C1(Ω).

9) Show, that for all x ∈ Lip0[0, a]
∫ a

0

ẋ2 − x2 dt ≥ 0

if and only if |a| ≤ π.

10) Show, that x ≡ 0 is not a strong minimal for
∫ 1

0

(ẋ2 − ẋ4) dt, x(0) = x(1) = 0 .

11) Determine the distance between the conjugated points of the geodesics
v ≡ 0 in example 4) and show, that on the geodesic v ≡ 1/2, there are no conju-
gated points. (Linearize the Euler equations for F =

√
a
b + cos(2πv))2 + (v′)2).
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12) Show that the geodesic in example 4) which is given by I = r sin(ψ)
defines an extremal field if −(a− b) < c < a− b. Discuss the geodesic for c = a− b,
for a− b < c < a+ b and for c = a+ b.



Chapter 2

Extremal fields and global
minimals

2.1 Global extremal fields

The two-dimensional torus has the standard representation T2 = R2/Z2. We
often will work on his covering surface R2, where everything is invariant under
his fundamental group Z2. In this chapter, we are occupied with the principle of
variation

∫
F (t, x, p) dt on R2, where of F has the following properties:

i) F ∈ C2(T2 ×R2) d.h.

a) F ∈ C2(R3) ,
b) F (t+ 1, x, p) = F (t, x+ 1, p) = F (t, x, p) .

(2.1)

ii) H has quadratic growth. There exist δ > 0, c > 0

c) δ ≤ Fpp ≤ δ−1

d) |Fx| ≤ c(1 + p2)
e) |Ftp|+ |Fpx| ≤ c(1 + |p|) .

(2.2)

Because of Ft = −Ht, Fx = −Hx and Fpp = H−1
yy this assumptions look in

the Hamiltonian formulation as follows:

i) H ∈ C2(T2 ×R2) which means

a) H ∈ C2(R3)
b) H(t+ 1, x, y) = H(t, x+ 1, y) = H(t, x, y) .

(2.3)

ii) H has quadratic growth: ∃δ > 0, c > 0

c) δ ≤ Hyy ≤ δ−1

d) |Hx| ≤ c(1 + y2)
e) |Hty|+ |Fyx| ≤ c(1 + |y|)

(2.4)

41
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Example: nonlinear pendulum.

Let V (t, x) ∈ C2(T2) be given by V (t, x) = [g(t)/(2π)] cos(2πx) and F =
p2/2 + V (t, x). The Euler equation

ẍ = g(t) sin(2πx) (2.5)

is the differential equation which describes a pendulum, where the gravitational
accelereation g is periodic and time dependent. (A concrete example would be the
tidal force of the moon.) By the way, the linearized equation of (2.5) is called the
Hills equation

ẍ = g(t)x .

It has been investigated in detail. The Hills equation g(t) = −ω2(1 + ε cos(2πt))
is called the Mathieuequation. One is interested for example in the stability of
the systems in dependence of the parameters ω and ε. One could ask for example
whether the weak tidal force of the moon can pump up a pendulum on the earth,
if its motion were assumed to be frictionless.

The question of stability which we have met above is rooted at the center of
the general theory.

Definition: A global extremal field on the torus is given by
a vector field ẋ = ψ(t, x) with ψ ∈ C1(T2), so that every
solution x(t) is extremal, which means DψFp−Fx|p=ψ = 0.

Are there such extremal fields at all?

Example: The free nonlinear pendulum.

If the gravitational accelereation g(t) = g is constant, there is an extremal
field. In this case, F is autonomous and according to Theorem ??

E = pFp − F = p2/2− V (x) = const.

so that for E > max{V (x) | x ∈ T 1 } an extremal field is given by

ẋ = ψ(t, x) =
√

2(E − V (x)) .

The means, that the problem is integrable and that the solution can be given ex-
plicitly as an elliptic integral.

The existence of an extremal field is equivalent to stability. Therefore, we
know with Theorem 1.5.1, that in this case, the surfaces

Σ = {(t, x, y) | y = Fp(t, x, ψ(t, x)) }
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are invariant under the flow of XH .

The surface Σ is an invariant torus in the phase space T2×R2. The question
of the existence of invariant tori is subtle and topic the so called KAM theory.
We will come back to it again later the last chapter.

Definition: An extremal solution x = x(t) is called global
minimal, if

∫

R

F (t, x+ φ, ẋ+ φ̇)− F (t, x, ẋ) dt ≥ 0

for all φ ∈ Lipcomp(R) = {φ ∈ Lip(R) of with compact
support. }

Definition: A curve γ : t 7→ x(t) has a self intersection
in T2, if there exists (j, k) ∈ Z2 such that the function
x(t+ j)− k − x(t) changes sign.

In order that a curve has a self intersection we must have for all (j, k) ∈ Z2

either x(t+ j)− k− x(t) > 0 or x(t+ j)− k− x(t) = 0 or x(t+ j)− k− x(t) < 0.

Theorem 2.1.1
If ψ ∈ C1(T) is an extremal field then every solution of
ẋ = ψ(t, x) is a global minimal and has no self intersections
on the torus.

Proof. First to the proof of the first parts the statements: Let γ : t 7→ x(t)
be a solution of the extremal field ẋ = ψ(t, x). Since Fpp(t, x, p) > 0 according to
condition c) at the beginning of this paragraph, all the conditions for Theorem 1.4.2
are satisfied. For all t1 and t2 ∈ R is γ is a minimal in

Λ(t1, t2) := {γ : t 7→ x(t) | x ∈ Lip(t1, t2), x(t1) = x(t1), x(t2) = x(t2) } .

Let φ be an arbitrary element in Lipcomp(R) and let γ̃ be given as x̃(t) = x(t)+φ(t).
Since φ has compact support, there exists T > 0, so that γ̃ ∈ Λ(−T, T ). Therefore,
one has

∫

R

F (t, x̃, ˙̃x)− F (t, x, ẋ) dt =

∫ T

−T
F (t, x̃, ˙̃x)− F (t, x, ẋ) dt

=

∫ T

−T
E(t, x, ˙̃x, ψ(t, x)) dt ≥ 0 ,

(where E is the Weierstrass E-funktion). This means hat γ̃ is a global minimal.
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Now to the second part of the claim:

If x(t) is an extremal solution to the extremal field, then also y(t) = x(t +
j) − k is an extremal solution, because ψ is periodic in t and x. If x and y have
a selfintersection, x ≡ y follows because of the uniqueness theorem for ordinary
differential equations. Therefore x as well as y satisfy the same differential equation

ẋ = ψ(t, x), ẏ = ψ(t, y) .

2

We have now seen, that every extremal solution in one extremal field is a
global minimal.

What about global minimals, if we don’t have an extremal field? Do they still
exist? In the special case of the geodesic flow on the two dimensional torus there
exists only one metric for which all solutions are minimals. This is a theorem of
Eberhard Hopf [16] which we cite here without proof.

Theorem 2.1.2
If all geodesics on the torus are global minimals, then the
torus is flat: the Gaussian curvature is zero.

We will come back to the relation of extremal fields with minimal geodesics later.
We will also see, that in general, global extremal fields do not need to exist. Ac-
cording to theorem 1.5.1 an extremal field ψ can be represented by ψ = H(t, x, gx),
where g(t, x) satisifes the Hamilton-Jacobi equationen

gt +H(t, x, gx) = 0, gx ∈ C1(T2) .

The existence of a function g on T2 which solves the Hamilton-Jacobi equations
globally is equivalent to the existence of a global extremal field. It is however well
known how to solve the Hamilton-Jacobi equations locally. Here we deal however
with a global problem with periodic boundary conditions and the theorem of Hopf
shows, that this problem can not be solved in general.

However we will see that the problem has solutions, if one widens the class
of solutions. These will form weak solutions in some sense and the minimals will
lead to weak solutions of the Hamilton-Jacobi equations.

2.2 An existence theorem

The aim of this paragraph is to prove the existence and regularity of minimals
with given boundary values or periodic boundary conditions within a function



2.2. AN EXISTENCE THEOREM 45

class which is bigger then the function class considered so far. We will use here
the assumptions 2.1 and 2.2 on the quadratic growth.

Let W 1,2[t1, t2] denote the Hilbert space obtained by closing C1[t1, t2] with
respect to the norm

||x||2 =

∫ t2

t1

(x2 + ẋ2) dt .

One call it also a Sobolov space. It contains Lip[t1, t2], the space the Lipshitz
continuous functions, which is also denoted by W 1,∞. Analogously as we have
treated variational problems in Γ and Λ, we search now in

Ξ := {γ : t 7→ x(t) ∈ T2 | x ∈W 1,2[t1, t2], x(t1) = a, x(t2) = b }

for extremal solutions to the functional

I(γ) =

∫ t2

t1

F (t, x, ẋ) dt .

The set Ξ is no linear space. But if we consider for example

x0 = x0(t) =
a(t2 − t) + b(t− t1)

t2 − t1
then Ξ = x0 + Ξ0, where

Ξ0 = {γ : t 7→ x(t) ∈ T2 | x ∈W 1,2[t1, t2], x(t1) = 0, x(t2) = 0 }

a linear space.

Theorem 2.2.1
It follows from the conditions (2.1) to (2.2) that there exists
a minimal γ∗ : t 7→ x∗(t) in Ξ. It is in x∗ ∈ C2[t1, t2] and
x∗ satisfies the Euler equations.

The proof is based on a simple principle: A lower semicontinuous function
which is bounded from blow takes a minimum on a compact topological space.

Proof.
1) I is bounded from below:

µ = inf{I(γ) | γ ∈ Ξ} > −∞ .

From δ < Fpp < δ−1 we obtain by integration: there exists c with

δ

4
p2 − c ≤ F (t, x, p) ≤ δ−1p2 + c .
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From this follows that for every γ ∈ Ξ,

I(γ) =

∫ t2

t1

F (t, x, ẋ) dt ≥ δ

4

∫ t2

t1

ẋ2 dt− c(t2 − t2) ≥ −c(t2 − t2) > −∞ .

This is called coercivity. Denote by µ the now obtained finite infimum of I.

2) The closure of the set

K := {γ ∈ Ξ | I(γ) ≤ µ+ 1 }

(using the topology given by the norm) is weakly compact.
Given γ ∈ K. From

µ+ 1 ≥ I(γ) ≥ δ

4

∫ t2

t1

ẋ2 dt− c(t2 − t1)

follows ∫ t2

t1

ẋ2 dt ≤ 4

δ
(µ+ 1) =: M1 ,

and with |x(t)| ≤ a+
∫ t2
t1
ẋ(t) dt ≤ a+ [

∫ t2
t1
ẋ2 dt(t2 − t1)]1/2 we get

∫ t2

t1

x2 dt ≤ (t2 − t1)(a+ [
4

δ
(µ+ 1)(t2 − t1)]1/2)2 =: M2 .

Both together lead to

||γ||2 =

∫ t2

t1

(ẋ2 + x2) dt ≤M1 +M2 .

This means that the setK is bounded. Therefore, also its strong closure is bounded.
Because a bounded closed set is weakly compact in Ξ, it follows, that the closure
of K is weakly compact. (Look at exercice 2 for a direct proof using the theorem
of Arzela-Ascoli.)

3) I is lower semicontinous in the weak topology.
We have to show that I(γ) ≤ lim infn→∞ I(γn) if γn →w γ. (The symbol →w

denotes the convergence in the weak topology).

a) The function p 7→ F (t, x, p) is convex:

F (t, x, p)− F (t, x, q) ≥ Fp(t, x, q)(p− q) .

Proof: The claim is equivalent to E(t, x, p, q) ≥ 0.



2.2. AN EXISTENCE THEOREM 47

b) If xn →w x, then
∫ t2
t1
φ[ẋn − ẋ] dt→ 0 for φ ∈ L2[t1, t2].

Proof: The claim is clear for φ ∈ C1 by partial integration. Since C1 is dense
in L2, we can for an arbitrary φ ∈ L2 and ε > 0 find an element φ̃ ∈ C1 so that
||φ− φ̃||L2 < ε. We have then

|
∫ t2

t1

φ(ẋn − ẋ) dt| ≤ |
∫ t2

t1

φ̃(ẋn − ẋ) dt|+ 2εM1 ,

and therefore

lim sup
n→∞

|
∫ t2

t1

φ(ẋn − ẋ) dt| ≤ 2εM1 .

c) If xn →w x, it follows that
∫ t2
t1
φ[xn − x] dt→ 0 for φ ∈ L2[t1, t2].

Proof: xn →w x implies, that xn converges uniformly to x.

From
∫ t2
t1
ẋ2
n dt ≤M1 follows that |xn(t)−xn(s)| ≤M1(|t−s|)1/2 and xn(t) ≤

a+M(t− t1). Therefore, {xn | n ∈ N } is an equicontinuous family of uniformly
bounded functions. According to Arzela-Ascoli there exists a subsequence of xn
which converges uniformly. Because xn →w x, we must have x as the limit. From
||xn − x||L∞ → 0 follows using the Hölder inequality that

|
∫ t2

t1

φ[xn − x] dt| ≤
∫ t2

t1

|φ| dt, ||xn − x||L∞ → 0 .

Using a),b) and c), we can now prove the claim:

I(γn)− I(γ) =

∫ t2

t1

F (t, x, ẋ)− F (t, xn, ẋn)

−F (t, x, ẋn) + F (t, x, ẋn)− F (t, x, ẋ) dt

≥
∫ t2

t1

Fx(t, x̃, ẋn)(xn − x) dt

+

∫ t2

t1

Fp(t, x, ẋ)(ẋn − ẋ) dt =: Dn .

In that case, x̃(t) is in the interval [xn(t), x(t)] and ẋ is in the interval [ẋn(t), ẋ(t)].
For the inequality, we had used a). Since Fx is in L1 (because |Fx| ≤ c(1+ẋ2) ∈ L1),
and Fp is in L1 (because |Fp| ≤ c(1 + |ẋ|) ∈ L2 ⊂ L1), we conclude with b) and
c), that Dn converges to 0 for n→∞. This finishes the proof:

lim inf
n→∞

I(γ)− I(γ) ≥ 0 .

4) Existence of the minimals.
From 1) to 3) and the fact, that a lower semicontinuous function which is bounded
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from below takes a minimimum on a compact space, we obtain the existence of
the minimals.

5) Regularity of the minimals.
Let γ∗ : t 7→ x∗(t) be a minimal element in Ξ from which we had proven existence
in 4). For all φ : t 7→ y(t), φ ∈ Ξ

I(γ + εφ) ≥ I(γ∗) .

This means that the first variation must disappear if it exists.

Claim: The first variation limε→0(I(γ∗ + εφ)− I(γ∗))/ε exists.

[I(γ∗ + εφ)− I(γ∗)]/ε =

∫ t2

t1

[F (t, x∗ + εy, ẋ∗ + εẏ)− F (t, x∗, ẋ∗)] dt/ε

=

∫ t2

t1

[λ(t, ε)ẏ + µ(t, ε)y] dt

with

λ(t, ε) =

∫ 1

0

Fp(t, x
∗, ẋ∗ + θεẏ) dθ

µ(t, ε) =

∫ 1

0

Fx(t, x∗ + θεy, ẋ∗) dθ .

These estimates become for ε < 1 and θ0 ∈ [0, 1]:

|λ(t, ε)| ≤ c(1 + |ẋ∗ + εθ0ẏ|) ≤ c(1 + |ẋ∗|+ |ẏ|)
|µ(t, ε)| ≤ c(1 + (ẋ∗)2 + ẏ2) .

According to the Lebesgue dominated convergence theorem, both λ(t, ε)ẏ and
µ(t, ε)y are in L1[t1, t2], because the majorants c(1+|ẋ∗|+|ẏ|)ẏ and c(1+(ẋ∗)2+ẏ2)y
are Lebesgue integrable. With the convergence theorem of Lebesgue follows the
existence of limε→0[I(γ∗ + εφ)− I(γ∗)]/ε = 0 so that

lim
ε→0

[I(γ + εφ)− I(γ)]/ε =

∫ t2

t1

Fp(t, x
∗ẋ∗)ẏ + Fx(t, x∗, ẋ∗)y dt

=

∫ t2

t1

(
Fp(t, x

∗ẋ∗)−
∫ t2

t1

Fx(s, x∗ẋ∗) ds+ c

)
ẏ dt

= 0 .

This means that

Fp(t, x
∗, ẋ∗) =

∫ t2

t1

Fx(t, x∗, ẋ∗) ds+ c
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is absolutely continuous. From Fpp > 0 and the theorem of implicit functions we
find ẋ∗ ∈ C0, x∗ ∈ C1. From the integrated Euler equations we get Fp ∈ C1. Again
applying the implicit function theorem gives ẋ∗ ∈ C1 from which finally follows
x∗ ∈ C2. 2

In the second part of this paragraph, we will formulate the corresponding
theorem on the existence of periodic minimals.

Definition: A curve γ : t 7→ x(t) is periodic of type (q, p)
for (q, p) ∈ Z2, q 6= 0, if x(t+ q)− p ≡ x(t).

Define for q 6= 0

Ξp,q = {γ : t 7→ x(t) =
p

q
t+ ξ(t) | ξ ∈W 1,2[t1, t2], ξ(t+ q) = ξ(t) } .

with the vector space operations

ργ1 :
p

q
t+ ρξ1(t)

γ1 + γ2 :
p

q
t+ ξ1(t) + ξ2(t)

if γj : t 7→ p
q t+ ξj(t), and the scalar product

(γ1, γ2) =

∫ q

0

ξ1ξ2 + ξ̇1ξ̇2 dt

makes Ξp,q to a Hilbert space. We look for a minimum of the functional

I(γ) =

∫ q

0

F (t, x, ẋ) dt .

Definition: A minimum of the functional

I(γ) =

∫ q

0

F (t, x, ẋ) dt

is called a periodic minimal of type (q, p) . We write
M(q, p) for the set the periodic of type (q, p). (We will
sometimes write for γ ∈ M(q, p), γ : t 7→ x(t), also x ∈
M(q, p).)

Theorem 2.2.2
For every (q, p) ∈ Z2 with q 6= 0, there exists an element
γ∗ ∈ M(q, p) with γ : t 7→ x∗(t) so that x∗ ∈ C2(R) satis-
fies the Euler equations.
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The proof of Theorem 2.2.2 uses exactly the same approach as the proof of
Theorem 2.2.1.

Remark on the necessarity of the quadratic growth.
The assumptions of quadratic growth 2.1-2.2 could be weakened and it would
suffice to assume superlinear growth for the existence theorem. A classical theorem
of Tonelli guarantied the existence of absolutely continuous minimals under the
assumption, that Fpp ≥ 0 and

F (t, x, p) ≥ φ(p) := lim
|p|→∞

φ(p)

|p| =∞ .

On the other hand, such an existence theorem does no more hold, if F has only
linear growth in p. One can show for example, that

F (x, p) =
√

1 + p2 + x2p2

with boundary conditions

x(−1) = −a, x(1) = a

has no minimal for sufficiently large a. Evenso in this example, Fpp > 0 the growth
is only linear at x = 0. As a reference for the theorem of Tonelli and the above
example see [9].

b(λ)

λ
0.20.1

t

x

t

x

P

We also give an example without global minimals, where F (t, x, p) is periodic
in t and x. Such an example can be obtained as follows: Let

F (t, x, p) = a(t, x)
√

1 + p2

with a(t, x) = 1 + b(t2 + x2) for |t|, |x| ≤ 1. If b = b(λ) ≥ 0, there exists a C∞-
function, which vanishes outside the interval [0.1, 0.2] identically. We take a(t, x)
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with period 1 in t and periodically continue a in x also to get a function on R2.
Then, a(t, x) ≥ 1 for all t, x ∈ R and the variational problem is

∫
F (t, x, ẋ) dt =

∫
a(t, x) ds ,

where ds =
√

1 + ẋ2 dt.

We consider for this variational problem a unique minimal segment, which
is contained in the disc t2 + x2 ≤ 1/4s and which is not a straight line. Now we
use the rotational symmetry of the problem and turn the segment in such a way ,
that it can be represented as a graph x = x(t), but so that ẋ(τ) = ∞ for a point
P = (τ, x(τ)).

Since this segment is a unique minimal for the corresponding boundary con-
dition, it must have a singularity at t = τ . The condition of quadratic growth
excludes such a singular behavior.

2.3 Properties of global minimals

In this section we derive properties of global minimals, which will allow us to
construct them in the next section. In this paragraph we always assume that
n = 1.

Definition: Denote byM the set of global minimals. We
write for x and y in M

x ≤ y, x(t) ≤ y(t), ∀t
x < y, x(t) < y(t), ∀t
x = y, x(t) = y(t), ∀t
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x

tT

y(t)

T-1ττ−ε τ+ε

x(t)

z(t)

q(t)

Theorem 2.3.1

a) Two different global minimals x and y inM do intersect
maximally once.
b) If x ≤ y, then x = y or x < y.
c) If limt→∞ |x(t) − y(t)| + |x(t) − y(t)| = 0 and
supt>0(|x(t)|+ |y(t)|) ≤M <∞ for x < y or x > y.
d) Two different periodic minimal of type (q, p) do not in-
tersect.

Proof. a) Let x and y be two global minimals which intersect two times in the
interval [t1, t2]. The argumentation in the proof of Theorem 1.3.4 with Ξ instead
the function space Λ used there, leads also again to a contradition.

b) If x(t) = y(t) for some t ∈ R, then, if x ≤ y also ẋ(t) = ẏ(t). The functions
are differentiable and even in C2. This means according to the uniqueness theorem
for ordinary differential equations that x = y.

c) We assume, the claim is wrong and that there exists under the assumptions
of the theorem a time t ∈ R with x(t) = y(t). Claim (*):

lim
T→∞

|
∫ T

τ

F (t, x, ẋ) dt−
∫ T

τ

F (t, y, ẏ) dt| = 0 .

Proof: we can construct z as follows:

z(t) =

{
y(t) t ∈ [τ, T − 1]
x(t)− (t− T )(y(t)− x(t)) t ∈ [T − 1, T ]

.

Because of the minimality of x we have
∫ T

τ

F (t, x, ẋ) dt ≤
∫ T

τ

F (t, z, ż) dt
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=

∫ T

τ

F (t, y, ẏ) dt+

∫ T

τ

F (t, z, ż)− F (t, y, ẏ) dt

=

∫ T

τ

F (t, y, ẏ) dt+

∫ T

T−1

F (t, z, ż)− F (t, y, ẏ) dt .

For t ∈ [T − 1, T ] the point (x(t), ẋ(t)) is by assumption contained in the compact
set T2× [−M,M ]. The set Π = [T −1, T ]×T2× [−M,M ] is compact in the phase
space Ω×R. Now

∫ T

T−1

F (t, z, ż)− F (t, y, ẏ) dt

≤ max
(t,u,v)∈Π

{Fx(t, u, v)|z(t)− y(t)|+ Fp(t, u, v)|ż(t)− ẏ(t)| }

→ 0

for T →∞ because of the assumptions on |y(t)− x(t)| and |ẏ(t)− ẋ(t)|. One has
(z(t) − y(t)) = (x(t) − y(t))(1 + t − T ) for t ∈ [T − 1, T ]. With that, the claim
(*) is proven. On the other hand, the minimals x(t) and y(t) have to intersect
transversely at a point t = τ . Otherwise they would coincide according to the
uniqueness theorem of differential equations. The means however, that there exists
ε < 0, so that the path t 7→ x(t) is not minimal on the interval [τ − ε, T ] for large
enough T . Therefore

• On the interval [τ − ε, τ + ε] the action can be decreased by a fixed positive
value if a minimal C2-path q(t) is chosen from x(t − ε) to y(t + ε) instead
taking on [τ − ε, τ + ε] x(t) and y(t) and go around corners.

• According to claim (*) the difference of the actions of x(t) and y(t) on the
interval [τ, T ] can be made arbitrary small if T goes to ∞.

• The path

t 7→
{
q(t) t ∈ [τ − ε, τ + ε]
z(t) t ∈ [τ − ε, T ]

has therefore for large enough T a smaller action as x(t). This is a contra-
diction to the assumption, that x(t) is a global minimal.

d) It is equivalent to search for a minimum of the functional

I(γ) =

∫ q

0

F (t, x, ẋ) dt

in Ξq,p then for a minimum of

Iε(γ) =

∫ q−ε

ε

F (t, x, ẋ) dt
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simply, because both functionals coincide on Ξq,p. If γ has two roots in (0, q], we
can find ε > 0, so that γ has two roots in (ε, q + ε). Therefore, Iε(γ) can not
be minimal by the same argument as in a) and therefore also not on I(γ). γ has
therefore maximally one root in (0, q]. According to the next Theorem 2.3.2 a)
(which uses in the proof only a) of this theorem) γ has therefore also maximally
one root in (0, Nq], but is periodic with period q. 2

Theorem 2.3.2

For all N ∈ N,(q, p) ∈ Z, q 6= 0 one has:
a) γ ∈M(q, p) if and only if γ ∈M(Nq,Np).
b) The class M(q, p) is characterized by p/q ∈ Q.
c) M(q, p) ⊂M.

Proof. a) (i) Let γ ∈M(Nq,Np) be given

γ : x(t) =
p

q
t+ ξ(t)

with ξ(t+Nq) = ξ(t). We claim that γ ∈M(q, p). Put y(t) = x(t+ q) = p
q t+ η(t)

with η(t) = x(t+q). Since x(t)−y(t) = x(t)−η(t) = x(t)−x(t+q) has the period
Nq and ∫ Nq

0

(x− y) dt =

∫ Nq

0

(ξ(t)− ξ(t+ q)) dt = 0 ,

x(t)− y(t) disappears according to the intermediate value theorem at least at two
places in (0, Nq). Theorem 2.6 a) implies now x = y and

I(γ)|Nq0 =

∫ Nq

0

F (t, x, ẋ) dt = N

∫ q

0

F (t, x, ẋ) dt = NI(γ)|q0 .

Therefore, because ΞNq,Np ⊃ Ξq,p

inf
η∈Ξq,p

I(η)|q0 ≥
∫

η∈ΞNq,Np

N−1I(η)|Nq0 = N−1I(γ)|Nq0 = I(γ)|q0 .

This proves γ ∈M(q, p).

(ii) Conversely, if γ ∈ M(q, p) is given we show that γ ∈ M(Nq,Np). The
function γ can be seen as an element of ΞNq,Np. According to the existence The-
orem 2.2.2 in the last paragraph, there exists a minimal element ζ ∈ M(Nq,Np)
for which we have

NI(γ)q0 = I(γ)|Nq0 > I(ζ)|Nq0 .

From (i) we conclude, that ζ ∈M(q, p) and

NI(γ)|q0 ≥ NI(ζ)|q0 .
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Since γ ∈M(q, p) we have also NI(γ)|q0 ≤ NI(ζ)|q0 and therefore

NI(γ)|q0 = NI(ζ)|q0

and finally

I(γ)|Nq0 = I(ζ)|Nq0

which means that γ ∈M(Nq,Np).

b) follows immediately from a).

c) Let γ ∈M(q, p). We have to show, that for φ ∈ Lipcomp(R)

∫

R

F (t, x+ φ, ẋ+ φ̇)− F (t, x, ẋ) dt ≥ 0 .

Choose N so big, that the support of φ is contained in the interval [−Nq,Nq].
Continue φ 2Nq-periodically to φ̃. Since γ ∈M(q, p),

∫

R

F (t, x+ φ, ẋ+ φ̇)− F (t, x, ẋ) dt =

∫

R

F (t, x+ φ, ẋ+ φ̇)− F (t, x, ẋ) dt

=

∫ Nq

−Nq
F (t, x+ φ, ẋ+ φ̇)− F (t, x, ẋ) dt

=

∫ Nq

−Nq
F (t, x+ φ̃, ẋ+

˙̃
φ)− F (t, x, ẋ) dt ≥ 0 .

2

Theorem 7.2 can be summarized as follows: a periodic minimal of type (q,p)
is globally minimal and characterized by a rational number p/q. We write therefore
M(p/q) instead of M(q, p).

Theorem 2.3.3 Global minimals have no self intersections on T2.

Definition: Denote by M[0, T ] the set of minimals on the
interval [0, T ].

The proof of Theorem 2.3.3 needs estimates for elements in M[0, T ]. We do
this first in a Lemma:
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Lemma 2.3.4

Let γ ∈ M[0, T ], γ : t 7→ x(t) and A > T > 1, so that
|x(T )−x(0)| ≤ A. There are constants c0, c1, c2 which only
depend on F , so that ∀ ∈ [0, T ] we have

a) |x(t)− x(0)| ≤ C0(A) = c0A , (2.6)

b) |ẋ(t)| ≤ C1(A) = c1A
2T−1 , (2.7)

c) |ẍ(t)| ≤ C2(A) = c2A
4T−2 . (2.8)

Proof. γ : t 7→ x(t) ∈ M[0, T ]. From δ ≤ Fpp ≤ δ−1 we get by integration
(compare Theorem 2.2.1):

−a1 +
δ

4
ẋ2 ≤ F ≤ δ−1ẋ2 + a1

−a1 +
δ

4
ẏ2 ≤ F ≤ δ−1ẏ2 + a1 .

Therefore, because of the minimality of γ, the inequality I(γ) ≤ I(η) gilt, is with
y = T−1[x(0)(T − t) + x(T )t]

−a1T +
δ

4

∫ T

0

ẋ2 dt ≤
∫ T

0

F (t, x, ẋ) dt

≤
∫ T

0

F (t, y, ẏ) dt

≤ δ−1

∫ T

0

ẏ2 dt+ a1T

≤ δ−1[x(T )− x(0)]2T−1 + a1T

≤ δ−1A2T−1 + a1T .

We conclude
∫ T

0

ẋ2 dt ≤ 4δ−2A2T−1 + 8a1Tδ
−1 ≤ a2A

2T−1 .

Now a) can be finished:

|x(t)− x(0)| = |
∫ t

0

1 · ẋ ds

≤
√
t[

∫ t

0

ẋ2 ds]1/2

≤
√
T [a2A

2T−1]1/2 = c0A .

Since γ in M[0, T ], the function x(t) satisfies the Euler equations d
dtFp = Fx,

which are
ẍFpp + ẋFxp + Ftp = Fx .
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With Fpp ≥ δ, |Fx| ≤ c(1 + ẋ2), |Fxp| ≤ c(1 + |Ẋ|) and |Ftp| ≤ c(1 + |ẋ|), we can
estimate ẍ as follows: there exists a constant a3 with

|ẍ| ≤ a3(1 + ẋ2)

and therefore also b) is soon proven: ∀t, s ∈ [0, T ] one has

|ẋ(t)− ẋ(s)| = |
∫ t

s

ẍ dt| ≤ a3

∫ T

0

(1 + ẋ2) dt ≤ a3[T + a2A
2T−1] ≤ a44A2T−1 .

There exists s ∈ [0, T ] with |ẋ(s)| = |[x(T )− x(0)]T−1| ≤ AT−1 and finite is

|ẋ(t)| ≤ AT−1 + a4A
2T−1 ≤ c1A2T−1 .

c) is done now also:

|ẍ(t)| < a3(1 + ẋ2) ≤ a3[1 + (c1AT
−1)2] ≤ c2A4T−2 .

2

We turn now to the proof of Theorem 2.3.3:

Proof. We assume, there exists γ ∈M with a self intersection. This means, there
exists (q, p) ∈ Z2, q 6= 0 and τ ∈ R (without loss of generality we can take τ = 0)
with

x(τ + q)− p = x(τ) .

With x(t) = p
q t+ ξ(t) one has

x(τ + q)− p =
p

q
t+ ξ(t+ q) .

Since there is maximally one intersection of x(t) and x(t+ q)− p, we have

x(t+ q)− p− x(t) > 0, t > 0
x(t+ q)− p− x(t) < 0, t < 0

}
d.h.

{
ξ(t+ q)− ξ(t) > 0, t > 0
ξ(t+ q)− ξ(t) < 0, t < 0

or

x(t+ q)− p− x(t) < 0, t > 0
x(t+ q)− p− x(t) > 0, t < 0

}
d.h.

{
ξ(t+ q)− ξ(t) < 0, t > 0
ξ(t+ q)− ξ(t) > 0, t < 0

.

We can restrict ourselves without loss of generality to the first case: (Otherwise,
replace t by −t.) We have

ξ(t+ q)− p− ξ(t) < 0, t > 0
ξ(t+ q)− p− ξ(t) > 0, t < 0

}
d.h. ξ(t)− ξ(t− q) < 0, t < q .
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From that it follows that for every n ∈ N

ξn(t) := ξ(t+ nq) > ξn−1(t), t > 0 (2.9)

ξn(t) := ξ(t− nq) > ξ−n+1(t), t < q . (2.10)

Therefore, ξn(t) is a monotonically increasing sequence for fixed t > 0 and ξ−n(t)
is monotonically increasing for t < q and n→∞ also. According to the existence
theorem for periodic minimals in the last paragraph, there exists a periodic mini-
mal θ ∈M(q, p) θ : t 7→ z(t), z(t) = p

q t+ ζ(t) with ζ(t) = ζ(t+ q). The additional
assumption

z(0) < x(0) < z(0) + 2

can be achieved by an eventual translation of z. We have therefore

ζ(0) < ξ(0) = ξ(q) < ζ(0) + 2 .

Since γ and θ can not intersect two times in [0, q], we have for t ∈ [0, q]

z(t) < x(t) < z(t) + 2

ζ(t) < ξ(t) < ζ(t) + 2 .

Because ζ(t + nq) = ζ(t) and ξn(t) > ξn−1(t) > ξ(t), ξ−n(t) > ξ−n+1(t) for
t ∈ [0, q], for all n > 0 and t ∈ [0, q], either

ζ(t) < ξn(t) < ζ(t) + 2

or

ζ(t) > ξn(t) > ζ(t) + 2 .

Therefore because (2.9) holds, the left estimate holds also. If both estimates were
wrong, there would exist t′, t′′ ∈ [0, q] and n′, n′′ > 0 with

ξn′(t
′) = ζ(t′) + 2

ξn′′(t
′′) = ζ(t′′) + 2

which would lead to two intersections of x(t) and z(t) at t = t′+n′ and t = t′′+n′′.
Again we can restrict us to the first case so that for all t > 0 the inequalities
ζ(t) < ξn(t) < ξn+1(t) < ζ(t) + 2 hold for t > 0, where ζ(t) has the period q. This
means however, that there exists κ(t), with ξn(t)→ κ(t) for n→∞, pointwise for
every t > 0. Because ξn+1(t) = ξ(t + q) → κ(t + q) = κ(t) κ has the period q. If
we can prove now the three claims

i) ∃M, |ẋ(t)| ≤M, t > 0

ii) |x(t+ q)− p− x(t)| → 0, t→∞
iii) |ẋ(t+ q)− p− ẋ(t)| → 0, t→∞
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we were finished with Theorem 2.6 c) applied to the global minimals given by x(t)
and y(t) = x(t+ q)− p. The inequalities x < y or y < x mean, that γ can have no
self intersections in contradiction to the assumption.

The claims i) to iii) follow in the similar way as in the above proven Lemma 2.3.4.
Therefore i) to iii) are equivalent with

i)′ ∃M, |ξn(t)| ≤M, t ∈ [0, T ]

ii)′ |ξn+1(t)− ξn(t)| → 0, n→∞, t ∈ [0, q]

iii)′ |ξ̇n+1(t)− ξ̇(t)| → 0, n→∞, t ∈ [0, q] .

The claim i)’ has already been proven by giving the periodic function ξ(t). With
the above proven Lemma 2.3.4 we see that

|ξn(t)| ≤ C1

|ξ̇n(t)| ≤ C2

and this means, that ξn(t) and ξ̇n(t) are quicontinuous uniformly bounded se-
quences of functions. According to the theorem of Arzela-Ascoli, they converge
uniformly. So, also (ii) and (iii) are proven. 2

As a corollary of this theorems we see, that if γ ∈ M and γ is not periodic,
one has an order on Z2 defined by

(j, k) < (j′, k′) if x(t+ j)− k < x(t+ j′)− k′, ∀t . (2.11)

Therefore, the theorem implies, that allowed pairs (j, k) and (j ′, k′) can be com-
pared: (j, k) < (j′, k′) or (j, k) > (j′, k′).

2.4 A priori estimates and a compactness prop-
erty for minimals

Theorem 2.4.1

For a global minimal γ ∈M, γ : t 7→ x(t), the limit

α = lim
t→∞

x(t)

t

exists.

Definition: For γ ∈M , the limiting value α = limt→∞
x(t)
t

is called the rotation number or the average slope of
γ.
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The proof is based on the fact that the minimal γ and its translates Tqpγ :
t 7→ x(t+ q)− p do not intersect.

Proof. First part of the proof.

1) It is enough to show that the sequence x(j)/j for j ∈ Z, converges. Ac-
cording to Lemma 2.3.4 with T = 1 and A = |x(j + 1) − x(j)| + 1, follows for
t ∈ [j, j + 1], j > 0

|x(t)− x(j)| < c0(|x(j + 1)− x(j)|+ 1)

and

|x(t)

t
− x(j)

j
| ≤ |x(t)− x(j)

t
+ x(j)(

1

t
− 1

j
)|

≤ |x(t)− x(j)|
j

|+ |x(j)|
j

(t− j)
t

≤ |x(t)− x(j)|
j

+
|x(j)|
j

1

t

≤ c0|
x(j + 1)− x(j)

j
|+ |x(j)|

j

1

t

if we assume, that α = limj→∞ x(j)/j exists, we have

lim
t→∞

|x(t)

t
− x(j)

j
| = 0 .

2) Since x(t) has no self intersections, the map

f : S → S, S = {x(j)− k, (j, k) ∈ Z2 }, s = x(j)− k 7→ f(s) = x(j + 1)− k

is monotone and commutes with s 7→ s+ 1. This means

f(s) < f(s′), s < s′

f(s+ 1) = f(s) + 1 .

In other words, f̂(s) = f(s)− s has the period 1. 2

Lemma 2.4.2 ∀s, s′ ∈ S, |f̂(s)− f̂(s′)| < 1.

Proof. We assume that the claim is wrong and that there exists s and s′ ∈ S such
that

|f̂(s)− f̂(s′)| ≥ 1 .
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Because we can assume without restricting generality that f̂(s) ≥ f̂(s′) + 1, and

that s < s′ < s+ 1 (periodicity of f̂), we have

f(s)− s− f(s′) + s′ ≥ 1 . (2.12)

Because of the monotony of f , we have for s < s′ < s+ 1

f(s) < f(s′) < f(s+ 1)

and from this we get

f(s) + s′ < f(s′) + s+ 1 . (2.13)

Equation (2.12) contradicts (2.13). 2

Proof. Continuation of the proof.

The iterates of f

fm : x(j) + k 7→ x(j +m)− k

exist for every m ∈ Z and fm has the same properties as f .

3) The numbers

b(f) = sup
s∈S

f̂(s)

a(f) = inf
s∈S

f̂(s)

exist because of Lemma 2.3.4. Also

b(f)− a(f) ≤ 1 .

Especially both are finite, because

b ≤ 1 + (f(s0)− s0) <∞, s0 = x(0) .

a and b are subadditiv, that is

b(f j+k) ≤ b(f j) + b(fk)

a(f j+k) ≤ a(f j) + a(fk)

because

sup(f j+k(s)− s) ≤ sup(f j(fk(s)− fk(s)) + sup(fk(s)− s) ≤ b(f j) + b(fk) .
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It is well known that in this case

lim
j→∞

b(f j)

j
= β

lim
j→∞

a(f j)

j
= α

exist. Because
0 ≤ b(fn)− a(fn) ≤ 1

holds, α = β. The theorem is proven. 2

The result in Theorem 2.4.1 can be improved quantitatively: because of the
subaditivity of a and b one has:

a(fk) ≥ ka(f)

b(fk) ≤ kb(f)

and therefore

a(f) ≤ a(fm)

m
≤ b(fm)

m
≤ b(f)

which gives with m→∞
a(f) ≤ α ≤ b(f) .

This means
−1 ≤ α(f)− b(f) ≤ f̂(s)− α ≤ b(f)− a(f) ≤ 1

and we have proven the following Lemma:

Lemma 2.4.3 |f(s)− s− α| ≤ 1, ∀s ∈ S

If Lemma 2.4.3 is applied to fm, it gives

|fm(s)− s−mα| ≤ 1, ∀s ∈ S .

This is an improvement of Theorem 2.4.1:

|f
m(s)− s
m

− α| ≤ 1

m
.

Especially we get
|x(m)− x(0)−mα| ≤ 1 .

Theorem 2.4.4

If γ : t 7→ x(t) is a global minimal, then ∀t ∈ R, ∀m ∈ Z,

|x(t+m)− x(t)−mα| ≤ 1 .
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Proof. If instead of the function F (t, x, ẋ) the translated function F (t+ τ, x, ẋ) is
taken, we get the same estimate as in Lemma 2.4.3 and analoguously, it gives

|x(t+m)− x(t)−mα| ≤ 1 .

2

γ

2c

Theorem 2.4.5

There is a constant c, which depends only on F , but not on
γ ∈M nor on α so that for all t, t′ ∈ R,

|x(t+ t′)− x(t)− αt′| < c
√

1 + α2 .

Proof. Chose j ∈ Z so that j ≤ t′ ≤ j+1. With Lemma 2.4.3 applied to s = x(t+j)
this gives

|x(t+ j + 1)− x(t+ j)| = |f(s)− s| ≤ |α|+ 1 ,

which according to Lemma 2.3.4 with T = 1 and A = 1 + |α| gives

|x(t+ t′)− x(t+ j)| ≤ c0(|α|+ 1) .

Using this, we obtain using Theorem 2.4.4 and Lemma 2.3.4

|x(t+ t′)− x(t)− αt′| ≤ |x(t+ j)− x(t)− αj|+ |x(t+ t′)− x(t+ j)|+ |α|(t′ − j)|
≤ |1 + c0(|α|+ 1) + |α| = (c0 + 1)(|α|+ 1)

≤ 2(c0 + 1)
√
α2 + 1

=: c
√
α2 + 1 .

2
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Theorem 2.4.5 has the following geometric interpretation: a global minimal
is contained in a strip with width 2c. The width 2c is independent of x and α!

From Theorem 2.4.1 follows that there exists a function α : M → R, γ 7→
α(γ) which assigns to a global minimal its rotation number.

Definition: We define

Mα = {γ ∈M | α(γ) = α } ⊂ M .

Lemma 2.4.6

a) M =
⋃
α∈R =Mα.

b) Mα ∩Mβ = ∅, α 6= β.
c) Mp/q ⊃M(p/q) 6= ∅ .

Proof. a) and b) follow from Theorem 2.4.1.
c) Mp/q ⊃ M(p/q) is obvious. The fact that M(p/q) 6= ∅ was already proven in
Theorem 2.2.1. 2

Theorem 2.4.7

Let γ ∈ Mα, γ : t 7→ x(t), |α| ≤ A ≥ 1. Then there exist
constants d0, d1 and d2, so that for all t, t1, t2 ∈ R

a) |x(t1)− x(t2)− α(t1 − t2)| ≤ D0(A) := d0A

b) |ẋ(t)| ≤ D1(A) = d1A
2

c) |ẍ(t)| ≤ D2(A) := d2A
4 .

Proof. Claim a) follows directly from Theorem 2.4.5:

|x(t1)− x(t2)− α(t1 − t2)| ≤ c
√

1 + α2 ≤
√

2c|α| ≤
√

2A =: d0A .

b) From a), we get

|x(t+ T )− x(t)| < |α|T + d0A ≤ A(T + d0) ,

which give with Lemma 2.3.4 and with the choice T = 1

|ẋ(t)| ≤ c1[A(T + d0)]2T−1 = d1A
2 .

c) Because

|ẍ| ≤ a3(1 + |ẋ|2) ≤ a3(1 + d2
1A

4) ≤ 2a3d
2
1A

4 = d2A
4

(compare Lemma 2.3.4 in the last paragraph), also the third estimate is true. 2
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Remark: Denzler [10] has given estimates of the form

D1(A) = ed1A .

The improvements in Theorem 2.4.7 base on the use the minimality property.
Probably, they are not optimal. One expects

D1(A) = d1A

D2(A) = d2A
2

which is the case for F = (1 + 1
2 sin(2πx))p2 because

E = (1 +
1

2
sin(2πx))ẋ2

is an integral and A is of the order
√
E.

Definition: We writeM/Z for the quotient space given by
the equivalence relation ∼ on M:

x ∼ y ⇔ ∃k ∈ Z, x(t) = y(t) + k .

In the same way, on the subsets Mα, the quotient Mα/Z
is defined.

Definition: The C1(R) topology on the C1-functions on
R is defined by xm(t) → x(t),m → ∞ if for ∀ compact
K ⊂ R, the sequence xm converges uniformly to x in the
C1(K) topology.

Analoguously, for r ≥ 0, the Cr(R) topologies are defined On the space of C1-
curves γ : R → Ω, t 7→ xm(t), the C1(R) topology is given in a natural way by
γn → γ if xm → x.

Lemma 2.4.8 α is continuous on M, if we take the C0(R) topology on
M.

Proof. We have to show that xm → x implies αm := α(xm)→ α := α(x). Because
from Theorem 2.4.7 |xm(t)− xm(0)− αt| ≤ D0 is known, one has

|αm − α| ≤
|x(t)− xm(t)− x(0) + xm(0)|

t
+

2D0

t
.

Given ε > 0 choose t so large that 2D0/t < ε/2 and then m so that

|x(t)− xm(t)− x(0) + xm(0)|
t

≤ ε/2
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in C(K) where K = [−T, T ] is a compact interval which contains 0 and t. There-
fore |α− αm| < ε. 2

Corollary 2.4.9
⋃
|α|≤AMα/Z is compact in the C1(R) topology.

Proof. The fact that
⋃
|α|≤AM/Z is relatively compact in C1(R) follows from the

theorem of Arzela-Ascoli and Theorem 2.4.7. To show compactness, we need to
show the closedness in C1(R). Let therefore γm be a sequence in

⋃
|α|≤MMα/Z

with γm → γ ∈ C1(R) in the C1 topology. We claim that γ ∈ ⋃|α|≤MMα/Z.

1) γ : t 7→ x(t) ∈ M: Otherwise, there would exist a function φ ∈ C1
comp(R)

with support in [−T, T ] satisfying

∫ T

−T
F (t, x+ φ, ẋ+ φ̇) dt <

∫ T

−T
F (t, x, ẋ) dt .

Because of the uniform convergence xm → x, ẋm → ẋ on [−T, T ] we know that
for sufficiently large m also

∫ T

−T
F (t, xm + φ, ẋm + φ̇) dt <

∫ T

−T
F (t, xm, ẋm) dt

holds. This is a contradiction.

2) The fact that γ ∈ ⋃|α|≤MMα/Z follows from the continuity of α if the

C1 topology is chosen on M. (We would even have continuity in the weaker C0

topology according to Lemma 2.4.8). 2

We know already from Lemma 2.4.6 thatM⊃M(p/q) 6= ∅ and thatMα 6= ∅
for rational α. With corollary 2.4.9 we now also have the existence of minimals
with irrational rotation number.

Theorem 2.4.10 For every α ∈ R we have Mα 6= ∅.

Proof. Given α ∈ R, there exists a sequence {αm} ⊂ Q with αm → α.

For every m we chose an element γm ∈Mαm ⊂
⋃
|β|⊂AMβ/Z with α < A.

By the compactnes obtained in corollary 2.4.9 there is a subsequence of
γm ∈Mαm which converges to an element γ ∈Mα. 2
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2.5 Mα for irrational α, Mather sets

If α is irrational and γ ∈Mα, γ : t 7→ x(t), generate the fundamental group Z2 of
T2 by

(i, j) < (i′, j′)⇔ x(j)− k < x(j′)− k′

totally ordered: it also has the property that

(i, j) = (i′, j′)⇔ x(j)− k = x(j′)− k′ .

Therefore, if x(j) − k = x(j ′) − k′, then x(t + q) − p = x(t) with q = j ′ − j and
p = k′− k, which means q = p = 0 or α = p/q. Since α is irrational, (i, j) = (i′, j′)
follows. This order is the same as the order given by F = p2/2:

(i, j) < (i′, j′)⇔ αj − k < αj′ − k′ .

Let St := {α(j+t)−k | (j, k) ∈ Z2 } and S = {(t, θ) | θ = α(j+t)−k ∈ St, t ∈ R}.
We define the map

u : S → R, (t, θ = α(j + t)− k) 7→ x(j + t)− k .

Theorem 2.5.1

a) u is strict monotone in θ, d.h.

α(j+ t)−k < α(j′+ t)−k′ ⇔ x(j+ t)−k < x(j′+ t)−k′ .

b) u(t+ 1, θ) = u(t, θ).
c) u(t, θ + 1) = u(t, θ) + 1.

Proof. a) α(j + t) − k < α(j′ + t) − k′ ⇔ x(j + t) − k < x(j′ + t) − k′ is with
q = j′ − j and p = k′ − k equivalent to

0 < αq − p⇔ x(t) < x(t+ q)− p ,

where q > 0 can be assumed (otherwise replace (j, k) with (j ′, k′) and < with >).

i) From x(t) < x(t+ q)− p we get by induction for all n ∈ N:

x(t) < x(t+ nq)− np

or after division by nq
x(t)

nq
<
x(t+ nq)

nq
− p

q
.

The limit n→∞ gives

0 ≤ α− p

q
.

Because α is irrational, we have αq > p.
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ii) For the reversed implication we argue indirectly: for x(t) ≥ x(t + q) − p
we get proceeding as in i) also α < p/q.

b) For θ = a(j + t)− k we have

u(t+1, θ) = u(t+1, α(j+t)−k) = u(t+1, α(j−1+t+1)−k) = x(t+j)−k = u(t, θ) .

c) u(t, θ + 1) = u(t, α(j + t)− k + 1) = x(t+ j)− k + 1 = u(t, θ) + 1. 2

For t = 0 we obtain

u(0, θ + α) = x(j + 1)− k = f(x(j)− k) = f(u(0, θ)) ,

Therefore, with u0 = u(0, ·)

u0(θ + α) = f ◦ u0(θ) .

The map f is therefore conjugated to a rotation by the angle α. However u
is defined on S, a dense subset of R. If u could be continued continuously to R,
then, by the in Theorem 2.5.1 proven monotonicity, it would be a homeomorphism
and f would be conjugated to a rotation.

We define by closure two functions u+ and u−:

u+(t, θ) = lim
θn→θ,θn>θ

u(t, θn)

u−(t, θ) = lim
θn→θ,θn<θ

u(t, θn) .

There are two cases:

case A): u+ = u− = u (which means u is continuous).
case B): u+ 6= u−.

In the first case, u = u(t, θ) is continuous and strictly monotone in θ: indeed,
if θ < θ′ then (j, k) and (j′, k′) with

θ < (t+ j)α− k < (t+ j′)α− k′ < θ′

and therefore also with Theorem 2.5.1 a)

u(t, θ) ≤ u(t, (t+ j)α− k) < u(t, (t+ j ′)α− k′) ≤ u(t, θ′)

and we have the strict monotonicity. This means that the map

h : (t, θ)→ (t, u(t, θ))
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is a homeomorphism on R. It can be interpreted as a homeomorphism on the torus
because it commutes with

(t, θ) 7→ (t+ j, θ + k) .

For every β ∈ R we have γβ ∈Mα, where

γβ : t 7→ x(t, β) = u(t, αt+ β) .

and also x(t, β) < x(t, β′) for β < β′. We have therefore a one-parameter family
of extremals.

Question: is this an extremal field? Formal differentiation gives

d

dt
x(t, β) = (∂t + α∂θ)u(t, θ) = (∂t + α∂θ)uh

−1(t, x) .

In order to have an extremal field, we have to establish that

ψ(t, x) = (∂t + α∂θ)uh
−1(t, x) = ẋ(t, β)

is continuously differentiable. This is not the case in general. Nevertheless, we can
say:

Theorem 2.5.2
If α is irrational, |α| ≤ A and γ : t 7→ x(t) ∈Mα and if we
are in the case A), then ψ = (∂t + α∂θ)uh

−1 ∈ Lip(T2).

Proof. (The proof requires Theorem 2.5.3 below). First of all, ψ is defined on the
torus because

ψ(t+ 1, x) = ψ(t, x) = ψ(t, x+ 1) .

To show the Lipshitz continuity we have to establish, that there is a constant L
such that

|ψ(t′, x′)− ψ(t′′, x′′)| ≤ L(|t′ − t′′|+ |x′ − x′′|) .
For x′ = x(t′, β′) and x′′ = x(t′′, β′′) we introduce a third point y = x(t′, β′′).

|ψ(t′, y)− ψ(t′′, x′′)| = |ẋ(t′, β′′)− ẋ(t′′, β′′)|
≤ |t′ − t′′|C2(A)

|ψ(t′, x′)− ψ(t′, y)| = |ẋ(t′, β′)− ẋ(t′, β′′)|
≤ M(A)|x′ − y| (Theorem 2.5.3)

≤ M(A)|x′ − x′′|
|ψ(t′, x′)− ψ(t′′, x′′)| < |ψ(t′, y)− ψ(t′′, x′′)|+ |ψ(t′, x′)− ψ(t′, y)|

≤ L(A)(|t′ − t′′|+ |x′ − x′′|)
with L(A) = max{C2(A),M(A)}. In the first step of the second equation we have
used Theorem 2.5.3. 2



70 CHAPTER 2. EXTREMAL FIELDS AND GLOBAL MINIMALS

Theorem 2.5.3
Let γ, η ∈ Mα, γ : t 7→ x(t), η : t 7→ y(t), x(t) > y(t),
|α| ≤ A > 1. There is a constant M = M(A) with |ẋ− ẏ| ≤
M |x− y|, ∀t ∈ R.

Proof. For x, y ∈M[−T, T ], Lemma 2.3.4 assures that

|ẋ|, |ẏ| < C1(A) = c1A
2T−1 .

Let ξ(t) = x(t)− y(t) > 0 in [−T, T ]. It is enough to show

|ξ̇(0)| < M |ξ(0)|

because of the invariance of the problem with respect to time translation. The
Euler equations

d

dt
Fp(t, x, ẋ)− Fx(t, x, ẋ) = 0

d

dt
Fp(t, y, ẏ)− Fx(t, y, ẏ) = 0

give after subtraction

d

dt
(A0ξ̇ +Bξ)− (Bξ̇ + Cξ) = 0

with

A0 =

∫ 1

0

Fpp(t, x+ λ(y − x), ẋ+ λ(ẏ − ẋ) dλ

B =

∫ 1

0

Fpx(t, x+ λ(y − x), ẋ+ λ(ẏ − ẋ)) dλ

C =

∫ 1

0

Fxx(t, x+ λ(y − x), ẋ+ λ(ẏ − ẋ) dλ .

By assumptions (i) and (ii) in , we conclude

δ ≤ A0 ≤ δ−1

|B| ≤ λ

|C| ≤ λ2

with λ = c0A
2T−1, where c0 is a F dependent constant ≥ 1 and A ≥ 1 is a bound

for |α| and |x(T )− x(−T )|, |y(T )− y(−T )|. With the following Lemma, the proof
of Theorem 2.5.3 is done. 2
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Lemma 2.5.4

Let ξ = ξ(t) be a in [−T, T ] positive solution of the Jacobi
equation d

dt (A0ξ̇ +Bξ) = Bξ + Cξ. Then,

|ξ̇(0)| ≤Mξ(0) ,

where M = 5c0A
2T−1δ−2.

Proof. Since ξ > 0 for t ∈ [−T, T ], we can form

η := A0
ξ̇

ξ
+B .

For t = −τ we get

d

dτ
η = −η̇ = − d

dt
(
A0ξ̇ +Bξ

ξ
)

=
d
dt (A0ξ̇ +Bξ)

ξ
+

ξ̇

ξ2
(A0ξ̇ +Bξ)

= −Bξ̇ + Cξ

ξ
+A0(

ξ̇

ξ
)2 +B

ξ̇

ξ

= A−1
0 (η2 − 2Bη +B2 −A0C) .

Therefore
d

dτ
η = A−1

0 (η −B)2 − C .

This quadratic differential equation is called Riccati-equation. We want to esti-
mate |η(0)|. In our case we can asssume η(0) > 0 because if we replace (t, h) by
(−t,−h) and B by (−B), the Riccati-equation stays invariant.

Claim: |η(0)| ≤ 4λδ−1.
If the claim were wrong, then η(0) > 4λδ−1. For t > 0, as long the solution exists,
the relation

η(τ) ≥ η(0) > 4λδ−1

follows. Indeed, for η > 4λδ−1

|2Bη|+ |B2 −A0C| < 2λη + λ2(1 + δ−1) < 2λη + 2λ2δ−1 <
δη2

2
+
δη2

4
=

3

4
η2δ

so that from the Riccatti equation, we get

dη

dτ
≥ δ(η2 − 3

4
η2δ) ≥ δη2/4 > 0 .

This inequality leads not only to the monotony property, but also the comparison
function

η(τ) ≥ η(0)

1− η(0)δτ/4
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which becomes infinite for t = 4δ−1η(0)−1. Therefore,

T < 4δ−1η(0)−1

or η(0) < 4T−1δ−1 ≤ 4A2T−1δ−1 = 4λδ−1 which contradicts our assumption. The
claim |η(0)| ≤ 4λδ−1 is now proven. Because

ξ̇

ξ
= A−1

0 (η −B)

one has
|ξ̇(0)|
ξ(0)

≤ δ−1(4λδ−1 + λ) ≤ 5λδ−2 = 5c0A
2T−1δ−2

and the Lemma is proven. 2

Definition: A global Lipschitz-extremal field on the
torus is given by a vector field ẋ = ψ(t, x) with ψ ∈ Lip(T2),
so that every solution x(t) is extremal.

Theorem 2.5.2 tells that a minimal with irrational rotation number in Case
A) can be embedded into a global Lipschitz-extremal field.

Example: Undisturbed pendulum.
F = 1

2

(
p2 − 1

π cos(2πx)
)

has the Euler equations

ẍ =
1

2
sin(2πx)

with the energy integral

E =
ẋ2

2
+

1

4π
cos(2πx) ≥ − 1

4π
.

Especially for E = (4π)−1 we get

ẋ2 =
1

2π
(1− cos(2πx)) =

1

π
sin2(πx)

or
ẋ = ± sin(πx)/

√
π

and in order to get the period 1, we take

|ẋ| = | sin(πx)/
√
π| = ψ(t, x) .

ψ is however not C1 but Lipschitz continuous with Lipschitz constant
√
π.

In the Hamiltonian formulation, things are similar as in the case of C1-
extremal-fields. Since Lipschitz surfaces have tangent planes only almost every-
where, we make the following definition:
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Definition: A Lipschitz surface Σ is called invariant un-
der the flow of H, if the vector field

XH = ∂t +Hy∂x −Hx∂y

is almost everywhere tangential to Σ.

Theorem 2.5.5

If ẋ = ψ(t, x) a Lipschitz-Extremal field is for F , then

Σ = {(t, x, y) ∈ Ω×R | y = Fp(t, x, ψ(t, x)) }

isLipschitz and invariant under the flow of H. On the other
hand: if Σ is a surface which is invariant under the flow of
H given by

Σ = {(t, x, y) ∈ Ω×R | y = h(t, x) } ,

where ψ ∈ Lip(Ω), then the vector field ẋ = ψ(t, x) defined
by

ψ = Hy(t, x, h(t, x))

is a Lipschitz extremal field.

In the example of the mathematical pendulum, which appeared in the first
paragraph, we had invariant C1 tori: however, with the energy E = (4π)−1, the
extremal field was only Lipschitz continuous. In the same way the torus is only
Lipschitz continuous.

While for α irrational and case A), the construction of Lipschitz extremal
fields has been achieved now, the question appears whether there might be different
ψ ∈Mα, which can not be embedded into this extremal field. Starting from such
a ψ, one could construct a different extremal field. The answer is negative:

Theorem 2.5.6

If γ, η ∈ Mα, γ : t 7→ x(t), η : t 7→ y(t), α irrational and if
we are in case A) for γ, then:
there exists β ∈ R, such that y = u(t, αt+ β) and for η we
are in case A).

The proof of Theorem 2.5.6 will be provided later.

Remarks:
1) Theorem 2.5.6 states, that all elements of Mα belong to the extremal field,
which is generated by γ and the cases A) and B) are independent of γ ∈Mα.
2) In case A), one has for every α exactly one γ ∈ M(α), with x(0) = α. This
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follows from the existence and uniqueness theorem for ordinary differential equa-
tions.
3) In case A), every γ ∈Mα is dense in T2, because the map is a homeomorphisms
in this case.

What happens in case B)? Can it occur at all?
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Example: Consider F = 1
2p

2+V (t, x). We assume, the torus is parameterized
by |x| ≤ 1/2, |t| ≤ 1/2 and define V as a C∞(T2)-function for 0 < ρ < r ≤ 1/6:

V (t, x) ≥M ≥ 1 , ρ2 ≥ x2 + t2

V (t, x) = v(t2 + x2) ≥ 0 , ρ2 ≤ x2 + t2 ≤ r2

V (t, x) = 0 , x2 + t2 ≥ r2 .

Claim: For every α ∈ R with ρ2M > 6(|α|+ 1|)4, case B) happens for Mα.

Proof. We assume, there exists an α ∈ R with

ρ2M > 6[|a|+ 1]4

and we were in case A). According to the above remark 3), there would be a min-
imal γ ∈M, γ : t 7→ x(t) with x(0) = 0.

We will show now, that γ can not be minimal in the class of curves, which
start at A := (t1, a = x(t1)) = (−0.5, x(−0.5)) and end at B = (t1, b = x(t2)) =
(0.5, x(0.5)). This will lead to a contradiction.

Since by Theorem 2.4.4, |x(t+j)−x(t)−jα| ≤ 1 for every j ∈ Z the inequality

m := |x(
1

2
)− x(−1

2
)| ≤ 1 + |α| .

A

B

r

1/2-r

< my(t)

A

B

x(t)

t t1 2
0.5-0.5

ρ
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Let t1 and t2 be chosen in such a way that

t1 < 0 < t2

t2 + x(t)2 ≤ ρ2, t ∈ [t1, t2] .

This means, that the diameter 2ρ of Bρ = {(t, x) | t2 + x2 ≤ ρ2 } is smaller or
equal than the length of γ between x(t1) and x(t2):

2ρ ≤
∫ t2

t1

√
1 + ẋ2 dt ≤

√
t2 − t1[

∫ t2

t1

(1 + ẋ2) dt]1/2

and therefore ∫ t2

t1

(1 + ẋ2) dt ≥ 4ρ2

τ
.

The action of γ connecting A with B can now estimated:

∫ 1/2

−1/2

F (t, x, ẋ) dt ≥
∫ t2

t1

F (t, x, ẋ) dt

≥
∫ t2

t1

1

2
(ẋ2 + 1) + (M − 1

2
) dt

≥ 2ρ2

τ
+ (M − 1

2
)τ .

With the special choice τ = 2ρ[2M − 1]−1/2 we have

∫ 1/2

−1/2

F (t, x, ẋ) dt ≥ 2ρ2

τ
+ (M − 1

2
)τ = 2ρ

√
2M − ρ .

We chose now a special path η : t 7→ y(t) which will pass in the region where
V = 0. This can be made with a broken straight line t 7→ y(t), where

ẏ ≤ m

(1/2− r) ≤ 3m .

We have then

∫ 1/2

−1/2

F (t, y, ẏ) dt ≤
∫ 1/2

−1/2

ẏ2

2
dt ≤ 9

2
m2 ≤ 9

2
(1 + |α|)2 .

Because of the minimality of γ we have

2ρ
√

2M − ρ ≤ 9

2
(1 + |α|)2
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and so

4ρ2(2M − ρ) ≤ 81

4
(1 + |α|)4

4Mρ2 ≤ 81

4
(1 + |a|)4

Mρ2 ≤ 6(1 + |a|)4

which is a contradiction to the above assumption. 2

Remarks:
1) Since V can be approximated arbitrary closely by real-analytic V , it is also
clear that there exist real-analytic V for which we are in case B).
2) Without giving a proof we note that in this example, for fixed ρ, r,M and
sufficiently large α we are always in case A). The reason is that for big α, the
summand p2/2 has large weight with respect to V (t, x). To do the α to∞ limit in
the given variational problem is equivalent to do the ε→ 0 limit in the variational
problem

F ′ =
p2

2
+ εV (t, x).

The later is a problem in perturbation theory, a topic in the so-called KAM-theory.

Let γ ∈ Mα, α irrational and assume that Mα is in case B). By definition
we have u+ 6= u−, where u+ and u− are the functions constructed from γ. For
every t, the set {θ | u+(t, θ) 6= u−(t, θ) } is countable.

Definition: Define the sets

M±t := {u±(t, θ) | θ ∈ R }

and the limit set of the orbit γ

M(γ) = {u±(t, θ) | t, θ ∈ R } .

Mt := M+
t ∩ M−t is the set of continuity of u+ rsp. u−. There are only

countably many discontinuity points. An important result of this section is the
following theorem:

Theorem 2.5.7
Let α be irrational, γ : t 7→ x(t), η : t 7→ y(t) in M(α)
with corresponding functions u± and v±. Then there exists
a constant c ∈ R such that u±(t, θ) = v±(t, θ + c).
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Proof.
1) It is enough to prove the claim for t = 0. Assume that (with the notation

u±0 (θ) = u±(0, θ)) there exists c with

u±0 (θ) = v±0 (θ + c), ∀θ .
Then also

u±0 (θ + α) = v±0 (θ + α+ c) .

Define for fixed θ

γ̃ : t 7→ x̃(t) := u±(t, αt+ θ)

η̃ : t 7→ ṽ(t) := v±(t, αt+ θ + c)

γ̃ and η̃ are in Mα. Because of the two intersections

x̃(1) = ỹ(1)

x̃(0) = ỹ(0)

the two curves γ̃ and η̃ are the same. Replacing αt+ θ with αt+ θ+ c establishes
the claim u±(t, θ) = v±(t, θ + c).

2) If for some λ ∈ R and some θ ∈ R the conditions v−0 (θ + λ)− u−0 (θ) < 0
hold, then v0(θ + λ)− u0(θ) ≤ 0, ∀θ ∈ R.

Otherwise, v−0 (θ+λ)−u−0 (θ) changes sign and by semicontinuity, there would
exist intervals I+ and I− of positive length, for which

v−0 (θ + λ)− u−0 (θ) > 0, in I+

v−0 (θ + λ)− u−0 (θ) < 0, in I− .

We put

x̃(t) = u−0 (t, αt)

ỹ(t) = v−0 (t, αt+ λ) .

Then

ỹ(j)− x̃(j) = ỹ(j)− k − (x̃(j)− k) = v−0 (λ+ αj − k)− u−0 (αj − k)

and this is > 0, if αj − k ∈ I+ and < 0 if αj − k ∈ I−. Since αj − k is dense in R,
there would be infinitely many intersections of x̃ and ỹ. This is a contradiction.

3) c := sup{λ | v−0 (θ + λ) − u−0 (θ) ≤ 0, ∀θ } is finite and the supremum is
attained.
There exists a constant M , so that for all θ ∈ R one has

|v−0 (θ + λ)− (θ + λ)| ≤M
|u−0 (θ)− θ| ≤M .
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Because of Theorem 2.5.1, both functions on the left hand side are periodic. There-
fore, also

|v−0 (θ + λ)− u−0 (θ)− λ| ≤ 2M

or
v−0 (θ + λ)− u−0 (θ) ≥ λ− 2M .

Because the left hand side is ≤ 0, we have

λ ≤ 2M

and c is finite. If a sequence λn converges from below to c and

v−0 (θ + λ)− u−0 (θ) ≤ 0, ∀θ,

then
v−0 (θ + c)− u−0 (θ) ≤ 0, ∀θ

because of the left semi continuity of v−0 .

4) v−0 (θ + c) − u−0 (θ) = 0, if θ + c is a point of continuity of v−0 . Otherwise
there would ∃θ∗ with

v−0 (θ∗ + c)− u−0 (θ∗) < 0 ,

where θ∗+ c is a point of continuity. The implies also, that there exists λ > c with

v−0 (θ∗ + λ)− u−0 (θ∗) < 0 .

with claim 2) we conclude that

v−0 (θ + λ)− u−0 (θ) ≤ 0, ∀θ .

This is a contradiction to the minimality of γ.

5) v±0 (θ + c) = u±0 (θ), ∀θ.
Since they have only countably many points of discontinuity, the functions v+

0 and
u−0 are determined uniquely by the values at the places of continuity:

v−0 (θ + c) = u−0 (θ), ∀θ .

Also, v+
0 = v−0 and u+

0 = u−0 at the places of continuity and therefore the same
holds also for c

v+
0 (θ + c) = u+

0 (θ), ∀θ .
2

In the next theorem the gap size

ξ(t) = x+(t)− x−(t) = u+(t, αt+ β)− u+(t, αt+ β)

is estimated:
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Theorem 2.5.8

Let |a| ≤ A and M(A) the constant of Theorem 2.5.3. There
exists a constant C = C(A) = log(M(A)), with

exp(−C|t− s|) ≤ ξ(t)/ξ(s) ≤ exp(C|t− s|) .

Proof. According to Theorem 2.5.3 the relation

|ξ̇(t)| ≤Mξ(t)

holds and therefore

|ξ̇|/ξ ≤ M

| d
dt

log ξ| ≤ M

| log ξ(t)− log ξ(s)| ≤ M |t− s| .

2

Theorem 2.5.9
For irrational α, Mα is totally ordered: ∀γ, η ∈ Mα we
have γ < η or γ = η or γ > η.

Remarks:
1) Theorem 2.5.9 says that two minimals with the same rotation number do not
intersect.
2) As we will see in the next paragraph, this statement is wrong for α ∈ Q. There
are in this case pairs of intersecting orbits, so called homoclinic orbits.
3) Still an other formulation of Theorem 2.5.9 would be: the projection

p :Mα → R, x 7→ x(0)

is injectiv. This means that for every a ∈ R there exists maximally one x ∈ M
with x(0) = a. In case A) the projection p is also surjective in contrary to case B).
4) Theorem 2.5.9 implies Theorem 2.5.5.

Proof of Theorem 2.5.9:

Proof. We use, that for x ∈Mα the set of orbits

{γjk : x(t+ j)− k }

and therefore also their closure M(x) is total ordered.
Since by definition u−(t, αt+ β) ∈Mα(x), the claim follows for

y(t) = u±(t, αt+ β) .
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It remains the case, where y is itself in a gap of the Mather set of x:

u−(0, β) < y(0) < u+(0, β) .

Since by Theorem 2.5.7 the functions u± are also generated by y it is true ∀t

u−(t, αt+ β) < y(t) < u−(t, αt+ β)

and we need to show the claim only, if both x and y are in the same gap of the
Mather set. Let therefore

u−(0, β) < x(0) ≤ y(0) < u+(0, β) .

We claim, that the gap with

ξ(t) := u+(t, αt+ β)− u−(t, αt+ β) > 0

converges to 0 for t → ∞. The would mean, that x and y are asymptotic. With
Theorem 2.5.3 also |ẋ − ẏ| → 0 and we would be finished with Theorem 2.6 c).
The area of the gap is ∫

R

ξ(t) dt ≤ µ(T2) .

It is finite, because µ(T2) is the area of the torus. From Theorem 2.5.8 we know,
that for t ∈ [n, n+ 1) we have

M−1 ≤ ξ(t)/ξ(n) ≤M

and because ∑

n∈N

ξ(n) ≤M
∫

R

ξ(t) dt <∞

is limn→∞ ξ(n) = limt→∞ ξ(t) = 0. 2

We leave the question open, whether there are minimal orbits in the gaps of
the Mather sets and instead characterize the orbits of the form

x(t) = u±(t, αt+ β) .

Let
Uα = {x ∈Mα | ∃βx(t) = u±(αt+ β) } .

Definition: A extremal solution x(t) is called recurrent,
if there exist sequences jn and kn with jn → ∞, so that
x(t + jn) − kn − x(t) → 0 for n → ∞. Denote the set of
recurrent minimals with Mrec and Mrec

α :=Mrec ∩Mα.
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Theorem 2.5.10 For irrational α we have Uα =Mrec
α .

Proof.
(i) Uα ⊂Mrec

α .
If x ∈ Uα, x = u+(t, αt+ β), then

x(t+ jn)− k = u+(t, αt+ β + αjn − kn)

and it is enough to find sequences jn, kn with αjn− kn → 0. Therefore, x is recur-
rent. In the same way the claim is verified for x = u−(t, αt+ β).

(ii) Mrec
α ⊂ Uα

We assume, x ∈Mα \ Uα. This means that x is recurrent and it is in a gap

u−(0, β) < x(0) < u+(0, β)

x(jn)− kn → x(0), jn →∞ .

By the construction of u±(0, β), we have

x(jn)− kn → u±(0, β)

and therefore x(0) = u±(0, β). This is a contradiction. 2

Definition: Define Mrec
α (γ) :=Mα(γ) ∩Mrec

α .

Theorem 2.5.11

If α is irrational, then ∀γ1, γ2 ∈Mα and

Mrec
α (γ1) =Mrec

α (γ2) =Mrec
α .

Proof. According to Theorem 2.5.10 we have Mrec
α = Uα and by construction we

get Mrec
α (γ) = Uα. Theorem 2.5.7 assured that Uα is independent of γ. 2

For every (j, k) ∈ Z2 let

Tj,k :M→M .

Mα and therefore also Mrec
α is invariant under the dynamics. Which are the

smallest, non empty Tj,k invariant, closed subsets of Mα?

Theorem 2.5.12
In Mα, there are exactely one smallest non empty Tj,k-
invariante closed subset: it is Mrec

α .
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Proof. Mrec
α is Tj,k-invariant, closed and not empty. Let M∗α ⊂ Mα have the

same properties and let x∗ ∈ M∗α. Because of the closedness and invariance of
Mrec

α (x∗) ⊂M∗α and because of Theorem 2.5.11, also Mrec
α ⊂M∗α. 2

We knowMα for irrational α by approximation by periodic minimals. We can
now show that every recurrent minimal can be approximated by periodic minimals.

Theorem 2.5.13 Every x ∈ Mrec
α can be approximated by periodic orbits in

M.

Proof. The set M∗ of orbits which can be approximated by periodic minimals is
Tj,k invariant, closed and not empty. Because of Theorem 2.5.12 we have Mrec

α ⊂
M∗. 2

Definition: One calls the elements inMrec
α Mather sets.

if we are in the case B).

Mather sets are perfect sets, they are closed, nowhere dense sets for which
every point is an accumulation point. A perfect set is also called a Cantor set.

Let us summarize the essential statement of this paragraph:

Theorem 2.5.14

For irrational α, the following holds:

case A): All minimal x ∈ Mα are dense on the torus,
d.h. for all (t, a) ∈ R2 exist one sequence (jn, kn) ∈ Z2

with x(t+ jn)− kn → a.

case B): no minimal γ ∈ Mα is dense on the torus. In
other words if u−(0, β) < a < u+(0, β), then (0, a) is never
an accumulation point of x.

We know, that both cases A) and B) can occur. It is however a delicat ques-
tion, to decide, in which of the cases we are. The answer can depend on how well
α can be approximated by rational numbers.

Appendix: Denjoy theorie
The theory developed here is related with Denjoy theory, which had al-

ready been developed in the first third of the 20’th century. We will state the main
results here without proof.

Let f be an orientation preserving homeomorphims on the circle T. The
following Lemma of Poincaré should be compared with Theorem 2.4.1.
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Lemma 2.5.15
The rotation number α(f) = limn→∞ fn(t)/n exists and is
independent of t.

Let St = {α(j + t) − k | (j, k) ∈ Z2 } and S = {(t, θ) | θ = α(j + t) − k ∈
St, t ∈ R } and

u : S → R , (t, θ = α(j + t)− k)→ f j(t)− k .

The next theorem should be compared with Theorem 2.5.1.

Theorem 2.5.16

a) u is strictly monotone in θ. This means

α(j + t)− k < a(j′ + t)− k′ ⇔ f j(t)− k < f j
′
(t)− k′ .

b) u(t+ 1, θ) = u(t, θ).
c) u(t, θ + 1) = u(t, θ) + 1.

Again we define by closure the two functions u+ and u−:

u+(t, θ) = lim
θ<θn→θ

u(t, θn)

u−(t, θ) = lim
θ>θn→θ

u(t, θn)

and have again the two cases:

case A): u+ = u− = u (d.h. u is continuous)
case B): u+ 6= u−.

The set

L±(t) := {ω ∈ T | ∃jn → ±∞, f jn(t)→ ω } .
is closed and f -invariant. The following theorem of Denjoy (1932) should be com-
pared to the theorems 2.5.10, 2.5.11 and 2.5.12.

Theorem 2.5.17

If α is irrational, then L = L+(t) = L−(t) is independent
of t and the smallest non empty f -invariant, closed subset
of T . In the case A) we have L = T, in the case B) the set
L is a perfect set. If f ′ is of bounded variation, we are in
case A). For f ∈ C1 it provides examples, where we are in
case B).

Im case B), one calls the set L a Denjoy-minimal set. We see now the
relations:
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The intersections of the Mather set with the lines t = t0
are Denjoy-minimal sets of a continuation of the map f :
x(j)− k → x(j + 1)− k.

2.6 Mα for rational α

Let α = p/q with q 6= 0. We have seen in Lemma 2.4.6 of Section 2.4 and Theo-
rem 2.2.2 that

Mp/q ⊃M(q, p) 6= ∅ .

In that case,M(p/q) =M(q, p) is the set of minimal periodic orbits of type (q, p).

Question: is Mp/q =M(p/q)? No! Indeed there are pairs of orbits in Mp/q,
which intersect once and which can therefore not be contained in the totally or-
dered set M(p/q).

Example:
1) F = p2/2, ẍ = 0, x(t) = αt+ β. In this case we have Mp/q =M(p/q).

2) F = p2/2 + cos(2πx) , E = ẋ2/2 + cos(2πx) is constant. Take α = 0.
We have M0 6= M(0), because M(0) is not totally ordered and M is totally
ordered according to Theorem 2.5.9. M(0) is not well ordered, because there are
seperatrices for E = (4π)−1 given by

ẋ = ±| sin(πx)|/√π .

They have rotation number 0 and intersect.

Definition: Two periodic orbits x1 < x2 ∈ M(p/q) are
called neighboring, if no x ∈ M(p/q) exists with x1 <
x < x2.

Note that M(p/q) is well ordered and that the definition therefore makes
sense.
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Theorem 2.6.1

Let γ ∈Mp/q. There are three possibilities:

a) γ ∈M(p/q), therefore x(t+ q)− p = x(t).

b+) There are two neighboring periodic minimals
γ1 > γ2, γi ∈M(p/q) : γi : t 7→ xi(t), so that

x1(t)− x(t)→ 0 for t→∞ and
x2(t)− x(t)→ 0 for t→ −∞.

b−) There are two neighboring periodic minimals
γ1 > γ2, γi ∈M(p/q) : γi : t 7→ xi(t), so that

x2(t)− x(t)→ 0 for t→∞ and
x1(t)− x(t)→ 0 for t→ −∞.

Definition: x1 and x2 are called heteroclinic orbits and
in the case x1 = x2 (mod 1) one calls them homoclinic
orbits. We denote the set of x, which are in case b±) with
M±p/q.

Proof. Let γ ∈Mp/q, γ : t 7→ x(t) but in γ /∈M(p/q). Therefore, for all t

(i) x(t+ q)− p > x(t) or

(ii) x(t+ q)− p < x(t) .

We will show, that (i) implies, that b+) occurs By (i), the sequence

yj(t) = x(t+ jq)− pj

is monotonically increasing for j →∞ and bounded because of the estimate

|yj(t)− yj(0)| ≤ C0 .

Therefore yj converge to a function x2(t), which is again in Mp/q. It is even
periodic and of type (q, p) and is contained therefore inM(p/q). In the same way
yj converges for j →∞ to a function x ∈ M(p/q). We still have to show that x1

and x2 are neighboring. Let γ∗ : x∗ ∈ M(p/q) with x1 < x∗ < x2 and call A the
now mandatory intersection of x∗ with x.

We have therefore A = (t0, x(t0)) = (t0, x
∗(t0)). We define also the points

B = (t0 + q, x∗(t0 + q)), P = (T − q, x(T − q)) and Q = (T, z(T )), where z : t 7→
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x(t− q) and T > t0 + q. The new curves

x̃∗1(t) :=

{
x∗(t), t ∈ [t0, t0 + q]
z(t) t ∈ [t0 + q, T ]

x̃∗2(t) :=

{
x(t), t ∈ [t0, T − q]
w(t) t ∈ [T − q, T ]

with w(t) = (T − t)x(t) − (T − q − t)z(t) are concurrent in the class the curves
between A and Q. We have

∫ T−q

t0

F (t, x, ẋ) dt =

∫ T

t0+q

F (t, z, ż) dt

and
∫ T

T−q
F (t, w, ẇ) dt =T→∞

∫ T

T−q
F (t, x̃2, ˙̃x2) dt

=

∫ t0+q

t0

F (t, x̃2, ˙̃x2) dt

=

∫ t0+q

t0

F (t, x∗, ẋ∗) dt .

The first equation holds asymptoticlly for T → ∞. The second last equation is a
consequence of the periodicity of x2, the last equation follows from the minimality
of x2 and x∗ in M(p/q). Therefore, for T →∞, the actions of x̃1 and x̃2 between
A and Q are approximatively equal. The action of the path t 7→ x̃1(t) can however
be decreased at B by a fixed (und T independent) amount, because y has a corner
there. Therefore, x∗ can not be minimal between A and P . This is a contradiction
and therefore the assumption of the existence of x∗ is absurd. The proof that in
(ii) implies the case b) goes along the same way. 2

Theorem 2.6.2
If x1, x2 ∈M(p/q) are neighboring, then there exist at least
2 nonperiodic x+, x− ∈ Mp/q, where x± is asymptotic to
x2 for t→ ±∞ and asymptotic to x1 for t→ ∓∞.

Proof. Let x1(t) and x2(t) be two neighboring minimals in M(p/q). According
to the existence Theorem 2.2.1 there exists for every n ∈ N a minimal zn(t) with
zn(−n) = x1(−n), zn(n) = x2(n).

We call xm(t) = [x1(t) + x2(t)]/2 the middle line of x1 and x2. By time
translation one can always achieve, that

z̃n(t) = zn(t+ τn)
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intersects the center line xm in the interval [0, q]. Because of the in Theorem 2.4.9
proven compactness ,there is a subsequence of z̃n inMp/q to an element x+ which
also intersects the center line xm in the interval [0, q]. Therefore, zm is not peri-
odic because between x1 and x2 there is by assumption no periodic minimal of
type (q, p) Therefore, the claim in Theorem 2.6.1 is proven. It is obvious, how one
constructs x− analoguously. 2

Example: heteroclinic connection of two neighboring geodesics (M.Morse
1924) [23]

If we have on the torus two minimal neighboring closed geodesics of same
length, then they can be connected (as we will see below) by an asymptotic
geodesics.

Theorems 2.6.1 and 2.6.2 can be summarized as follows:

Theorem 2.6.3
Mp/q =M+

p/q ∪M−p/q ∪M(p/q). If not Mp/q =M(p/q),

then M−p/q 6= ∅ and M+
p/q 6= ∅.

Appendix: stability of periodic minimals.
A periodic extremal solution x of type (q, p) satisfies the Euler equation

d

dt
Fp(t, x, ẋ) = Fx(t, x, ẋ) .

Let ξ be a solution of the Jacobi equation

d

dt
(Fppξ̇) + (

d

dt
Fpx − Fxx)ξ = 0 .

We write this shorter as

d

dt
(aξ̇) + bξ = 0, a = Fpp(t, x, ẋ) > 0 .

With ξ(t) beeing a solution, also ξ(t + q) is a solution and if ξ1 and ξ2 are two
solutions, then the Wronski-determinant [ξ1, ξ2] := a(ξ̇1ξ2− ξ̇2ξ1) is a constant.
It is different from zero if and only if ξ1 and ξ2 are linearly independent. In this
case there is a matrix A, so that

(
ξ1(t+ q)
ξ2(t+ q)

)
= A

(
ξ1(t)
ξ2(t)

)
,

or W (t+ q) = W (t) with W =

(
ξ1 ξ̇1
ξ2 ξ̇2

)
. The comparison of the Wronskian

a(t+ q)detW (t+ q) = [ξ1, ξ2](t+ q) = [ξ1, ξ2](t) = a(t)detW (t)
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leads because of a(t+ q) = a(t) > 0 to

det(A) = 1

and this means that with λ also λ−1 is an eigenvalue of A. There are three possi-
bilities:

Elliptic case |λ| = 1, λ 6= ±1 (stable case )
Parabolic case |λ| = ±1
Hyperbolic case λ reell, λ 6= ±1 (unstable case)

Definition: We say that the extremal solution x is ellip-
tic, hyperbolic or parabolic, if we are in the elliptic, the
hyperbolic or the parabolic case.

It turns out that periodic minimals are not stable:

Theorem 2.6.4 Periodic minimal γ ∈M(p/q), γ : t 7→ x(t) are not elliptic.

Proof. We know, that for all global minimals γ ∈M(p/q) a solution ξ 6= 0 of the
Jacobi equations has maximally one root. If two roots would exist, there would
be a conjugated point, which is excluded by Jacobi’s Theorem 1.3.1. Assume now
that γ is elliptic. There is then by definition a complex solution ζ(t) of the Jacobi
equation which satisfies

ζ(t+ q) = λζ(t), |λ| = 1, λ = eiαq 6= 0, 1, α ∈ R

For π(t) = e−iαtζ(t) we have therefore

π(t+ q) = π(t) .

Of course also
ξ(t) = Reζ(t) = Re(eiαtπ(t))

is a solution of the Jacobi equation. From eiαq 6= 0, 1 follows that there exists
N > 1 so that

Re(exp(iNαq)) < 0 .

This means that
ξ(t+Nq)ξ(t) < 0

and with that ξ had one root t ∈ [0, Nq]. Also t+kNq were roots for every k ∈ N.
The is a contradiction. 2
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We want now also show, that the situation is completetely different for n > 1
and that the above argument does not apply. To do so we consider for n = 2 the
integral ∫ t2

t1

| ẋ2 − αJx|2 dt

with x ∈ Lip(R,R2) where J =

(
0 1
−1 0

)
and α is a real constant. For the class

of periodic curves
x(t+ 1) = x(t)

obviously x ≡ 0 is a minimal, because

I(x)|t2t1 =

∫ t2

t1

|ẋ− αJx|2 dt ≥ 0 .

On the other hand the Jacobi equation gives

ξ̈ − 2αJξ̇ + α2ξ = (
d

dt
− αJ)2ξ = 0 .

Let now c ∈ C2 \ {0 } be a complex eigenvector of J , like for example

c =

(
1
i

)
, Jc = ic .

Obviously
ξ(t) = Re(eiαtc)

is a nontrivial solution of the Jacobi equation. This means that x = 0 is elliptic.
However x has no root. If ξ(τ) = 0, we could achieve by translation that ξ(0) = 0
and so c = −c. From

Jc = ic

would follow Jc = −ic and c = 0. This implies that ξ identical to 0. This example
shows also, that for n ≥ 2, periodic minimals can be elliptic.

An additional remark on the average action:

Definition: For γ ∈Mα we define the average action as

Φ(γ) = lim
T→∞

T−1

∫ T

0

F (t, x, ẋ) dt

Theorem 2.6.5

a) For γ ∈ Mα the average action is finite. It is inde-
pendent of γ. We write therefore also Φ(α) = Φ(γ) with
γ ∈Mα.

b) On Q the map α 7→ Φ(α) is strictly convex and Lipschitz
continuous.
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We conjecture that α 7→ Φ(α) is continuous on R.

Proof.
a) For α = p/q and periodic x, the claim follows from

Φ(α) = q−1

∫ q

0

F (t, x, ẋ) dt .

In the case α = p/q, where x is not periodic, the statement follows from the fact
that x is by Theorem 2.6.1 asymptotic to a periodic x̃.

For irrational α we can assume that γ is inMα, because non recurrent orbits
are asymptotic to recurrent orbits x̃ = u±(t, αt+ β).

According to H.Weyl, there are for irrational α periodic Riemann integrable
functions f(t, θ) which are periodic in t and θ so that

lim
T→∞

T−1

∫ T

0

f(t, αt+ β) dt =

∫ 1

0

∫ 1

0

f(t, θ) dtdθ .

One shows this first for exp(2π(kt + jθ)), then for trigonometric polynomials,
then for continuous functions and finally, by lower approximation, for Riemann
integrable functions. The claim follows now, if we put

f(t, θ) = F (t, u±(t, θ), (∂t + α∂θ)u
±(t, θ)) .

b) We show, that for α = p/q, β = p′/q′ γ = ρα+(1−ρ)β with ρ = s/r ∈ (0, 1)
we get te inequality

Φ(γ) < ρΦ(a) + (1− ρ)Φ(β) .

For x ∈M(p/q), y ∈M(p′/q′) we define if x(t0) = y(t0) is the obligate intersection
of x and y

z(t) =

{
x(t), t ∈ [t0, t0 + qq′s]

y(t)− (p′q − pq′)s, t ∈ [t0 + qq′s, t0 + qq′r]

which is piecewise smooth, continuous and periodically continued. z has the rota-
tion number

(p′q(r − s) + pq′s)/(q′qr) = (1− ρ)β + ρα = γ

and because z is not C2, we have

Φ(γ) <
1

qq′r

∫ qq′r

0

F (t, z, ż) dt = ρΦ(α) + (1− ρ)Φ(β)

and Φ is Lipschitz continuous, because

Φ(γ)− Φ(β) < ρ(Φ(α)− Φ(β))

= [(γ − β)/(α− β)](Φ(α)− Φ(β))

≤ (γ − β)2 max(Φ(α),Φ(β))/(α− β) .
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2

Appendix: A degenerate variatiational problem on the torus.

The determination of Mα for irrational α is computationally reduced to the
determination of u = u±(t, θ), because u+ and u− agree almost everywhere. u
satisfied the equation (write D for ∂t + α∂θ)

DFp(t, u,Du) = Fx(t, u,Du)

and these are the Euler equations to the variational problem

∫ 1

0

∫ 1

0

F (t, u,Du) dtdθ ,

where u(t, θ) − θ period 1 in t and θ has and where u(t, θ) is monotone in θ.
One could approach the problem to find u directly. The difficulty is that for the
minimum, whose existence one can prove, the validity of the Euler-equation can
not be verified so easily. It could be, that the minimals are located at the boundary
of the admissible functions, for example if u is constant on an interval or if it has
a point of discontinuity. The problem can however be regularized if one looks at

F̃ (t, θ, u(t, θ),∇u(t, θ)) :=
ν

2
u2
θ + F (t, u(t, θ), Du(t, θ))

with ν > 0. One studies then the variational problem

∫ 1

0

∫ 1

0

F̃ (t, u,∇u) dt dθ

in the limit ν → 0 for u(t, θ)−θ ∈W 1,2(T2). It turns out that for ν > 0 a minimal
automaticly is strictly monotone. This is done in [10].

2.7 Exercices to chapter II

1) Show, that for a sequence γn : t 7→ xn(t) in Ξ one has γn →w γ if and only if
xn coverging to x is equicontinuous and if there exists M ∈ R existiert, so that
||γn||Ξ ≤M .

2) Prove the weak compactness of K in the proof of Theorem 2.2.1 directly
with the help of Arzela-Ascoli.

3) Investigate the solutions of the nonlinear pendulum with F = p2/2 +
(1/2π) cos(2πx) and corresponding Euler equations ẋ = sin(2πx) for minimality



2.7. EXERCICES TO CHAPTER II 93

in the following cases:

a) A periodic oscillation x(t) = x(t+ T ) with x 6= 0,
b) the stable equilibrium x ≡ 0,
c) the unstable equilibrium x ≡ 1/2.

4) Show, that for γ : t 7→ x(t) with γ ∈M the following holds: ∀t1, t2 ∈ R

1

t2 − t1

∫ t2

t1

ẋ2 dt ≤ c
{(

x(t2)− x(t1)

t2 − t1

)2

+ 1

}
.
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Chapter 3

Discrete Systems,
Applications

3.1 Monotone twist maps

In this chapter we consider situations which are closely related to the questions
in Chapter II. Indeed, they are more or less the same questions, evenso the as-
sumptions are not identical. The topics require some unimportant changes while
the underlying ideas remain the same.

The results of Mather apply to monotone twist maps, a topic which will ap-
pear now as an application of the earlier theory. Before we define these maps we
derive them from the in Chapter II treated variational problem via a Poincaré map.

95
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We make the assumption that F is given on the torus T2. We also assume
that there are no extremal solutions in [0, 1] with conjugated points. This means
that if (t1, x(t1)) and (t2, x(t2)) are conjugated points, then t2 − t1 > 1.

Under the assumptions of Chapter II, there exist solutions of the Euler equa-
tions

d

dt
Fẋ = Fx

for all t. (See Exercice 1). Therefore the Poincaré map

f : S1 ×R→ S1 ×R, (x(0), ẋ(0)) 7→ (x(1), ẋ(1))

is well defined on the cylinder S1 × R = {t = 0, x ∈ S, ẋ ∈ R }, which forms a
hypersurface in the phase space Ω×R.

Let x be a solution of the Euler equations. We define

x0 := x(0), x1 = x(1)

y0 := Fp(0, x0, ẋ0), y1 := Fp(0, x1, ẋ1)
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and consider x from now on as a function of t, x0 and x1. With

S(x0, x1) =

∫ 1

0

F (t, x, ẋ) dt

one has

Sx0
=

∫ 1

0

Fx
dx

dx0
+ Fp

dẋ

dx0
dt =

∫ 1

0

[Fx −
d

dt
Fp]

dx

dx0
dt+ Fp

dx

dx0
|10 = −y0

Sx1
=

∫ 1

0

Fx
dx

dx1
+ Fp

dẋ

dx1
dt =

∫ 1

0

[Fx −
d

dt
Fp]

dx

dx1
dt+ Fp

dx

dx1
|10 = y1

and (if ẋ0 is considered as a function of x0 and x1),

Sx0x1
= −Fpp(0, x0, ẋ0)

dẋ0

dx1
.

Because

ξ(t) :=
∂x(t, x0, x1)

∂x1

is a solution of the Jacobi equation (differentiate ∂tFp = Fx with respect to x1)
there are by assumption no conjugated points. Because ξ(1) = 1 and ξ(0) = 0 we
have ξ(t) > 0 for t ∈ (0, 1) and this means

ξ̇(0) =
dẋ0

dx1
> 0

or Sx0x1
< 0. Summarizing, we can state

f : (x0, y0) 7→ (x1, y1)

satisfies

y0 = −Sx0
, y1 = Sx1

Sx0x1
< 0 , d.h.

∂y1

∂x0
> 0 .

Side remark: (compare [3] S.260). In classical mechanics S is called a generat-
ing function for the canonical transformation φ. The Hamilton-Jacobi method
to integrate the Hamilton equations consists of finding a generating function S in
such a way, that

H(t, x0, Sx0
(x0, x1)) = K(x1) .

The original Hamilton equations

ẋ0 = Hy0
, ẏ0 = −Hx0
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transform then to the integrable system

ẋ1 = 0, ẏ1 = Kx1
.

For most integrable systems of Hamiltonian mechanics the Hamilton-Jacobi method
applies. An example is the geodesic flow on the ellipsoid.

Instead of starting with the variational principle we could also define directly:

Definition: A map

φ : A→ A, (x, y) 7→ (f(x, y), g(x, y)) = (x1, y1)

on the annulus

A = {(x, y) | x (mod 1), a ≤ y ≤ b, −∞ ≤ a < b ≤ ∞ }

is called a monotone Twist map, if it is an exact, boundary preserving
C1-diffeomorphism which has a continuation onto the cover of A:

(0) f, g ∈ C1(A)
(i) f(x+ 1, y) = f(x, y) + 1, g(x+ 1, y) = g(x, y)
(ii) a = ydx− y1dx1 = dh
(iii) g(x, a) = a, g(x, b) = b
(iv) ∂yf(x, y) > 0 .

In the cases, when a and b are finite, one could replace eassumption (ii) also
with a somehow weaker requirement of area-preservation:

dxdy = dx1dy1 .

The exact symplecticity (ii) follows from that. With the in (ii) existing generating
function h we can write these assumptions also differently, but in a completely
equivalent way, where hi are the derivative of h with respect to the i’th variable.

(0)’ h ∈ C2(R2)
(i)’ h(x+ 1, x′ + 1) = h(x, x′)
(ii)’ y = −h1(x, x1), y1 = h2(x, x1)
(iii)’ h1(x, x′) + h2(x, x′) = 0 for h1(x, x′) = a, b
(iv)’ hxx′ < 0 .

We are interested in the orbits (xj , yj) = φj(x, y) (j ∈ Z) of the monotone
twist map φ. The dynamics given by φ is completely determined by the function
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h which is defined on the torus T2 and which satisfies (0)’ to (iv)’. The equations
of motion

h2(xj−1, xj) + h1(xj , xj+1) = 0

form a second order difference equation on T1 and can be seen as the Euler equa-
tions to a variatonal principle. See more in the next paragraph.

It is not difficult to see that the function h is in the case when φ is the
Poincaré map nothing else than the generating function S considered above.

One can imagine an analogy between the continuous and the discrete case as
follows:

continuous system discrete system

F (t, x, p) Lagrange function h(xj , xj+1) generating function

∫ t2
t1
F (t, x, ẋ) dt action

∑n2−1
j=n1

h(xj , xj+1) action

d
dtFẋ = Fx Eulerequation h2(xj−1, xj) = −h1(xj , xj+1) Euler equation

Fpp > 0 Legendre condition h12 < 0 twist maps

x(t) extremal solution xj orbit

x(t) minimal xj minimal

ẋ(t) velocity xj+1 − xj first difference

ẍ(t) acceleration xj+1 − 2xj + xj−1 second difference

y = Fp(t, x, p) momentum yj+1 = h2(xj+1, xj) momentum
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Example: 1) The standard map of Taylor, Greene and Chirikov.
Consider on the cylinder

A = {(x, y) | x (mod 1), y ∈ R }

the map

φ :

(
x
y

)
7→
(
x+ y + λ

2π sin(2πx)
y + λ

2π sin(2πx)

)
=

(
x1

y1

)
.

Because

φ(x+ 1, y) = (x1 + 1, y) = (x1, y1),

φ(x, y + 1) = (x1 + 1, y + 1) = (x1, y1 + 1)

the map φ commutes with with all elements of the fundamental group on the torus
and can therefore be seen as a transformation on the torus. φ has the generated
function

h(x, x1) =
(x1 − x)2

2
− λ

2π
cos(2πx) =

(∆x)2

2
− λ

2π
cos(2πx) .

If one considers a few orbits of φ one sees often stable periodic orbits in the
center the ’stabilen islands’. The unstable, hyperbolic orbits are contained in a
’stochastic sea’, which in the experiments typically consist of one orbit. Invariant
curves, which wind around the torus are called KAM tori. If the parameter value
is increased (numerically one sees this for example at 0.97..), then also the last
KAM torus, the ’golden torus’ vanishes. The name ’golden’ origins from the fact
that the rotation number is equal to the golden mean.

The formal analogy between discrete and continuous systems can one observe
well at this example:
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continuous system discrete system

F (t, x, p) = p2

2 − λ
4π2 cos(2πx) h(xj , xj+1) =

(xj+1−xj)2

2 - λ
4π2 cos(2πxj)

Fpp = 1 > 0 h12 = −1 < 0

ẍ = λ
2π sin(2πx) ∇2xj = λ

2π sin(2πxj)

y = Fp = p yj+1 = h2(xj , xj+1) = (xj+1 − xj) = Dxj

There is an essential difference between the continuous system (the mathe-
matical pendulum) and its discrete brother, the Standard map. The continuous
system is integrable: one can x(t) express through elliptic integrals and Jacobi’s
elliptic function. The Standard map however is not integrable for almost all pa-
rameter values. We will return to the Standard map later.
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Example: 2) Billiards. We take over the notation from the first paragraph.
The map

(s, t) 7→ (s1, t1)

on the annulus S1 × [0, π] was defined in new coordiantes as

(x, y) = (s,− cos(t))

on the annulus A = S × [−1, 1]. In order to to show, that

φ : (x, y) 7→ (x1, y1) = (f(x, y), g(x, y))

is a monotone twist map, we simply give a generating function

h(x, x1) = −d(P, P1)

which has the properties (0’) until (iv’). Here d(P, P1) denotes the Euclidean dis-
tance of the points P and P1 on boundary of the table which are given by x = s
and x1 = s1 respectively.
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Proof. (0’) is satisfieed if the curve is C2.
(i’) is clear
(ii’) cos(t) = hx,− cos(t1) = hx1

.
(iii’) x = f(x, 1) or f(x,−1) implies hx + hx1

= 0.
(iv’) hxx1

< 0 follows from the strict convexity of the curve. 2

Example: 3) Dual billiard
As in the billiard, we start with a closed convex oriented curve in the plane and
define a map φ on the exterior of Γ as follows. From some point P ∈ E we draw
the tangent L to Γ, where we denote by Q the contact point which is the center
of the segment L ∩ Γ. The line L is chosen according to the orientation of Γ from
the two possible tangents. We call the point, which one obtains by mirroring P at
Q mirror with P1. We have so defined a map φ, which assigns to the point P the
point P1. The map can be inverted and is uniquely defined by the curve Γ. The
so obtained dynamical system system is called dual billiards. The already asked
questions like for example the question of the existence of periodic points or the
existence of invariant curves appear here also. But there are also problems which
do not appear in billiards. One can for example investigate for which Γ every orbit
is bounded or whether there are Γ, for which there is an orbit which escapes to
infinity. To the stability question one know someting as we will see later on.

The dual billiard map φ has a generating function φ. To find it, we use the
coordiantes

x = θ/(2π), y = t2/2 ,

where (t, θ) are the polar coordinates of the vector (P1 − P )/2. The generating
function h(x, x1) is the area of the region between the straight lines QP ,P and Q
and the curve segment of Γ between Q and Q1. The map

φ : (x, y) 7→ (x1, y1)
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is defined on the half cylinder A = S1 × [0,∞) and the generating function h
satisfies properties (0’) until (iv’), if we take a C1-curve for γ (exercice).

We will look below more closely at the three examples. When investigating
monotone twist maps, the question of existence of periodic orbits or invariant
curves or other invariant sets like Cantor maps is interesting.

Periodic orbits.
The existence of periodic orbits of monotone twist maps is assured by the famous
fixed point theorem of Poincaré-Birkhoff, which we prove here only in a
special case. In the next paragraph we look at the topic from the point of view
of the in Chapter II developed theory and will see that periodic orbits have to exist.

Definition: A map φ

(x, y) 7→ (f(x, y), g(x, y)) = (x1, y1)

defined on the annulus A = {(x, y) | x mod 1, a ≤ y ≤ b,
−∞ < a < b < +∞ }, is called twist map, if it has the
following properties:

(0) φ is a homeomorphims of A.
(i) f(x+ 1, y) = f(x, y) + 1, g(x+ 1, y) = g(x, y) (continu-
tation onto a cover of A).
(ii) dxdy = dx1dy1 (area preserving)
(iii) g(x, y) = y for y = a, b (preserving the boundary)
(iv) f(x, a)− x > 0, f(x, b)− x < 0 (twist map property)

Theorem 3.1.1
(Poincaré-Birkhoff 1913) A twist map φ has at least 2 fixed
points.

A proof can be found in [6]. In contrary to monotone twist maps, the com-
position of twist maps is again a twist map. As a corollary we get therefore the
existence of infinite many periodic orbits:

Corollary 3.1.2
For every twist map φ there is a q0, so that for all q > q0,
at least two periodic orbits of period q exist for φ.

Proof. Define

m = max{f(x, a)− x | x ∈ R } < 0

M = min{f(x, b)− x | x ∈ R } > 0 .
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Then, for every q > 0 with the notation φj(x, y) = (f j(x, y), gj(x, y)) we have

max(f q(x, a)− x) ≤ max{
q−1∑

j=0

f j+1(x, a)− f j(x, a) }

≤ qm < qM ≤ min{
q−1∑

j=0

f j+1(x, b)− f j(x, b) } ≤ min{f q(x, b)− x) } .

Let q0 be so large, that q0M − q0m > 1. If q > q0, there is a p ∈ Z, such that
qm < p < qM . And with

φq,p : (x, y) 7→ (f q(x, y)− p, gq(x, y))

the twist maps satisfy

φq,p(x, a) < qm− p < 0 < qM − p < φq,p(x, b) .

According to Poincaré-Birkhoff the maps φq,p have at least two fixed points. This
means that φ has two periodic orbits of type (q, p). 2

It is simple to prove a special case of Theorem 3.1.1:

Special case:
A monotone twist map satisfying fy > 0 has at least 2 fixed
point, if the boundaries of the annulus turn in different
directions (Property (iv) for twist maps).

Proof of the special case: because of the twist condition, there exists for every
x a y = z(x) with

f(x, z(x)) = x .

The map z is C1 because of property (0) for the monoton twist maps. Because of
area-preservation, the map must intersect the curve

γ : x 7→ (x, z(x)) ∈ A

with its image φ(γ) in at least two points. The are two fixed points of the map φ.

Invariant curves.
By an invariant curve of a monotone twist map φ we mean a closed curve in
the interior of A, which surrounds the inner boundary {y = a } once and which is
invariant under φ. From Birkhoff [12] origins the following theorem:

Theorem 3.1.3
(Birkhoff 1920) Every invariant curve of a monotone twist
map is star shaped. This means that it has a representa-
tion as a graph y = w(x) of a function w.
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For a careful proof see the appendix of Fathi in [15].

Theorem 3.1.4
Every invariant curve of a monotone twist map can be rep-
resented as a graph y = w(x) of a Lipshitz continuous func-
tion w.

Proof. Let γ be an invariant curve of the monotone twist map φ. From Birkhoffs
theorem we know that γ is given as a graph of a function w. The map φ induced
on γ is a homeomorphims

(x,w(x)) 7→ (ψ(x), w(ψ(x))) = (f(x,w(x)), g(x,w(x)))

given by a strictly monotone function ψ. Let (xj , yj) and (x′j , y
′
j) be two orbits on

γ. Then xj and x′j are solutions the Euler equations

−h1(xj , xj+1) = h2(xj−1, xj)

h2(x′j−1, x
′
j) = −h1(x′j , x

′
j+1) .

If we add both of these equations for j = 0 and add h1(x0, x
′
1) − h2(x−1, x

′
0) on

both sides, we get

h2(x′−1, x
′
0)− h2(x−1, x

′
0) + h1(x0, x

′
1)− h1(x0, x1)

= h2(x−1, x0)− h2(x−1, x
′
0) + h1(x0, x

′
1)− h1(x′0, x

′
1)

and by the intermediate value theorem we have

δ(x′−1 − x−1) + δ(x′1 − x1) ≤ L(x′0 − x0) ,

where δ = min(−h12) > 0 and L = max(|h11| + |h22|) < ∞. Because x1 =
ψ(x0), x−1 = ψ−1(x0), we have

|ψ(x′0)− ψ(x0)|, |ψ−1(x′0)− ψ−1(x0)| ≤ L

δ
|x′0 − x0|

This means that ψ and ψ−1 are Lipschitz and also

ψ(x) = −h1(x, ψ(x))

is Lipshitz. 2

The question about the existence of invariant curves is closely related to sta-
bility:
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Definition: The annulus A is called a region of instabil-
ity, if there is an orbit (xj , yj) which goes from the inner
boundary to the outer boundary. More precisely, this means
that

∀ε > 0 ∃n,m ∈ Z, yn ∈ Uε := {a < y < a+ ε }

and ym ∈ Vε := {b− ε < y < b }.

Theorem 3.1.5
A is a region of instability if and only if there are no in-
variant curves in A.

Proof. If there exists an invariant curve γ in A, then it divides the annulus A
into two regions Aa and Ab in such a way that Aa is bounded by γ and the inner
boundary {y = a } and Ab is bounded by the curves γ and {y = b } Because of the
continuity of the map and the invariance of the boundary the regions are maped
into themselves. A can therefore not be a region of instability.

If A is no region of instability, there exists ε > 0, so that one orbit which
starts in Uε never reaches Vε. The φ-invariant set

U =
⋃

j∈Z

φj(U)

is therefore disjoint from V . It is bounded by a φ-invariant curve γ, and which is
according to the Theorems 3.1.3 and 3.1.4 Lipschitz continuous. 2

One knows that for small perturbations of the integrable monotone twist
map

φα :

(
x
y

)
7→
(
x+ α(y)

y

)
, α′(y) ≥ δ > 0

invariant curves with ’sufficiently irrational’ rotation numbers survive. This is the
statement of the twist map theorem, which forms part of KAM theory. See [24]
for a reference to a proof.

Definition: The space Cr(A) the Cr-Diffeomorphismen on
A has the topology:

||φ1−φ2||r = sup
m+n≤r

(
|∂
m+n(f1 − f2)

∂xm∂yn
|+ |∂

m+n(g1 − g2)

∂xm∂yn
|
)
,

where φj(x, y) = (fj(x, y), gj(x, y)).
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Definition: we say that an irrational number β let Dio-
phantine, if there are positive constants C and τ , so that
for all integers p, q > 0 one has

|β − p

q
| ≥ Cq−τ .

Theorem 3.1.6

(Twist map theorem) Given α ∈ Cr[a, b] with r > 3 and
α′(y) ≥ δ > 0, ∀y ∈ [a, b]. there exists ε > 0, so that
for every area-preserving Cr-Diffeomorphismus φ of A with
||φ−φα|| < ε and every Diophantine β ∈ [α(a), α(b)], there
exists an invariant C1-Kurve γβ, where the by φ on γβ in-
duced map is a C1 diffeomorphism with rotation number
β.

Remark. For r < 3 there are counter examples due to M. Hermann.

Relation between the continuous and the discrete systems:
At the beginning of this paragraph we have seen, that a F with Fpp > 0, for which
no extremal solution has a conjugated point, the Poincaré map φ has the generated
function

h(x, x′) =

∫ 1

0

F (t, x, ẋ) dt .

φ is then a monotone twist map. The exclusion of conjugated points is then nec-
essary. In general (if conjugated points are not excluded) one can represent the
Poincaré map φ as a product of monotone twist maps: there exists N ∈ N, so that
the maps

φN,j : (x(j/N), y(j/N)) 7→ (x((j + 1)/N), y((j + 1)/N))

are monotone twist maps, if (x(t), y(t)) is a solution of the Hamilton equations

ẋ = Hy, ẏ = −Hx .

One sees from that that

x(t+ ε) = x(t) + εHy +O(ε2)

y(t+ ε) = y(t)− εHx +O(ε2)

with Hyy > 0 is a monotone twist map for small enough ε. The Poincaré map φ
can therefore be written as

φ = φN,N−1 ◦ φN,N−2 ◦ ... ◦ φN,0
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and we see, that the extremal solutions of
∫
F dt correspond to products of mono-

tone twist maps.

The question now appears whether every monotone twist map can be given
as a variational problem on the torus. This is indeed the case for smooth (C∞)
maps [25]. The result is:

Theorem 3.1.7

(Interpolation theorem) For every C∞ monotone twist map
φ there is a Hamilton function H = H(t, x, y) ∈ C∞(R×A)
with

a) H(t+ 1, x, y) = H(t, x, y) = H(t, x+ 1, y)

b) Hx(t, x, y) = 0, y = a, b

c) Hyy > 0 ,

so that the map φ agrees with the map (x0, y0) 7→ (x1, y1),
where (x(t), y(t)) is a solution of

ẋ = Hy(t, x, y), y = −Hx(t, x, y) .

With this theorem, the Mather theory for monotone C∞ twist maps is a
direct consequence of the theory developed in Chapter II.

3.2 A discrete variational problem

In this paragraph we investigate a variational problem which is related to the
problem treated in Chapter II. We will start here however not from the beginning
but just list the results which one can prove using the ideas develpoed in Chapter II.
In [26] the proofs are made explicit for this situation. Let

Φ = {x : Z 7→ R }

be the space of two-sided sequences of real numbers equiped with the product
topology. An element x ∈ Φ is called a trajectory or orbit and one can can write
{xj}j∈Z for x.
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Definition: For a given function h : R2 → R we define

H(xj , ..., xk) =

k−1∑

i=j

h(xi, xi+1)

and say, (xj , ..., xk) is a minimal segment, if

H(xj + ξj , xj+1 + ξj+1, ..., xk + ξk) ≥ H(xj , ..., xk),

∀ξj , ..., ξk ∈ R.

Definition: An orbit (xj) is called minimal, if every seg-
ment (xj , ..., xk) is a minimal sgement. One writes M for
the set of minimal elements for Φ. If h ∈ C2,we say that x is
stationary or extremal, if x satisfies the Euler equations

h2(xi−1, xi) + h1(xi, xi+1) = 0, ∀i ∈ Z .

Of course every minimal orbit extremal. We could ask the conditions
(i) h(x, x′) = h(x+ 1, x′ + 1)
(ii) h ∈ C2(R)
(iii) h12 ≤ −δ < 0

for h. The generating function of a monotone twist map satisfies these re-
quirements. Additionally it also has the property

(iv) h1(x, x′) + h2(x, x′) = 0, if h1(x, x′) = a, b .
The theory can be developed also with less assumptions [4]: (ii) and (iii) can

be replaced. Instead of (i) to (iii) it suffices to work with the following assumptions
only:

(i’) h(x, x′) = h(x+ 1, x′ + 1)
(ii’) h ∈ C2(R)
(iii’) h(x, x+ λ)→∞, uniform in x, λ→∞
(iv’) x < x′ or y < y′ ⇒ h(x, y) + h(x′, y′) < h(x, y′) + h(x′, y)
(v’) (x′, x, x′′),(y′, x, y′′) minimal ⇒ (x′ − y′)(x′′ − y′′) < 0.

Assumption (iii’) follows from (iii), if h ∈ C2 because of

−λ2 δ

2
≥

∫ x+λ

x

dξ

∫ x+λ

ξ

h12(ξ, η) dη
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= −h(x, x+ λ) + h(x+ λ, x+ λ)−
∫ x+λ

x

h1(ξ, ξ) dξ

= −h(x, x+ λ) +O(λ) .

The assumption (iv’) is similar to (iii), because

−δ(x′−x)(y′−y) ≥
∫ x′

x

∫ y′

y

dξh12(ξ, η) dη = h(x′, y′)+h(x, y)−h(x, y′)−h(x′, y)

and (v’) follows from (iii) because of the monotony of y 7→ h1(x, y) and x 7→
h2(x, y).

x′ < y′ means h2(x′, x) > h2(y′, x) > h2(y′, y) and x′′ < y′′ give h1(x, x′′) >
h1(x, y′′) > h1(y, y′′). Addition gives a contradiction to the Euler equations h2(x′, x)+
h1(x, x′′) = 0 and h2(y′, y) + h1(y, y′′) = 0.

We translate now the results and definitions in Chapter II to the current
situation. How the translated proofs look explicitly can be looked up in [4].

Theorem 3.2.1
(Compare Theorem 2.4.1 or [4], 3.16) For every (xi)i∈Z ∈
M the rotation number α = limi→∞ xi/i exists.

For monotone twist maps the rotation number is contained in the twist in-
terval [αa, αb], where αa, α − b are the rotation numbers of orbits which satisfy
h1(xj , xj+1) = a (rsp. h1(xj , xj+1) = b).

Definition: The set of minimals with rotation num-
ber α is denoted by Mα.

Definition: An orbit x is called periodic if type (q,p),
if xj+q − p = xj . Call the set of these orbits M(q, p).

Definition: We say, two trajectories (xi)i∈Z and (yj)j∈Z

intersect

a) at the place k, if (xk−1 − yk−1)(xk+1 − yk+1) < 0 and
xk = yk.
b) between k and k + 1, if (xk − yk)(xk+1 − yk+1) < 0.

Definition: On M is given the partial order

x ≤ y ⇔ xi ≤ yi, ∀i ∈ Z

x < y ⇔ xi < yi, ∀i ∈ Z .
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Compare the next result with Theorem 2.6 or[4],3.1,3.2,3.9).

Theorem 3.2.2

a) Two different minimal trajectories intersect maximally
once.
b) If x ≤ y, then x = y or x < y.
c) If limi→∞ |xi − yi| = 0, then x < y or x > y.
d) Two different minimals of type (q, p) don’t intersect. The
set M(q, p) is totally ordered.

Remark. About the proof of Theorem 3.2.2: The strategy is the same as
in Theorem 2.6. For a), we need the transversality condition (v’) and the order
relation (iv’).

For the next theorem, see Theorem 2.3.3 or [4],3.13).

Theorem 3.2.3
(Compare Theorem 2.3.3 or [4],3.13). Minimals have no
self intersections on T2.

See Theorems 6.2 and 8.6 in [4] or [4] 3.3 and 3.17) as a comparison to the
following theorem:

Theorem 3.2.4

a) For every (q, p) ∈ Z2 with q 6= 0 there is a minimal of
type (q, p).

b) Mα 6= ∅ for all α ∈ R.

For monotone twist maps this means that for every α in the twist interval
[αa, αb] there exist minimal trajectories with rotation number α.

Theorem 3.2.5
(Compare Theorem 2.5.9 or [4],4.1). For irrational α the
set Mα is totally geordnet.
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Definition: For x ∈ Mα and irrational α, define the map
u : R 7→ R

u : i = αj − k 7→ xj − k
and by closure the two semicontinuous functions

u+ = lim
θ<θn→θ

u(θn)

u− = lim
θ>θn→θ

u(θn) .

There is again a distinction into two cases A) and B):

case A): u+ = u− = u
case B): u+ 6= u−.

Theorem 3.2.6 (Compare Theorems 9.1,9.13 or [4], 2.3. ). u± are strict
monotone in θ.

Definition: A trajectory x ∈ Mα is called recurrent, if
there exist (jm, km) ∈ Z2, such that xi+jm − km → xi for
m → ∞. The set the recurrent trajectories is denoted by
Mrec. The elements ofMrec

α =Mα∩Mrec become in case
B) Mathermengen. Define also

Uα := {x ∈Mα | xj = u+(αj + β) oder xj = u−(αj + β) }

for β ∈ R.

Compare the next result with Theorems 2.5.10-2.5.13 or 4.5, 4.6 in [4].

Theorem 3.2.7

a) Uα =Mrec
α

b) Mα is independent if x, which generated u.
c) x ∈Mrec

α can be approximated by periodic minimals.
d) Every x ∈Mα is asymptotic to an element x− ∈Mrec

α .

On Urecα =Mα we define the map (compare also 11.4)

ψ : u(θ) 7→ u(θ + α) .

Definition: In the case, when h generates a monotone twist
map φ, we define for every irrational α ∈ [αa, αb] the set

Mα = {(x, y) | x = u±(θ), θ ∈ R, y = −h1(x, ψ(x)) }.
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Theorem 3.2.8

(Mather, compare [4],7.6) If h is a generating function for
a monotone twist map on the annulus A, then for every
irrational α in the twist interval [αa, αb] one has.

a) Mα is a non empty subset of A, which is φ-invariant.
b) Mα is the graph of a Lipschitz function ω : Aα → [a, b],
which is defined on the closed set Aα = {u±(θ) | θ ∈ R }
by ω(x) = −h1(x, ψ(x)).
c) The on Mα induced map is order preserving.
d) The set Aα, the projection of Mα on S1 is either the
entire line R or it is a Cantor set. In the first case we
are in case A) and the graph of ω is an invariant Lipschitz
curve. In the second case we are in case B) and Mα is
called a Mather set with rotation number α.

We point to the recent papers of S.B.Angenent [2, 1], in which these ideas
are continued and generalized. In those papers periodic orbits are constructed for
monotone twist maps which do not need to be minimal but which have a prescribed
index in the sense of Morse theory. In the proof Conleys generalized Morse theory is
used. Furthermore, Angenent studied situations, where the seond order difference
equations like h2(xi−1, xi) + h1(xi, xi+1) = 0 are replaced by difference equations
of higher order.

3.3 Three examples

In this paragraph we return to the three examples for monotone twist maps men-
tioned above: the Standard map, biliards and the dual billiard.

3.3.1 The Standard map

Mather has shown in [22] that the Standard map has for parameter values |λ| > 4/3
no invariant curves in A. We show first, that for |λ| > 2, no invariant curves can
exist.

According to Birkhoff’s Theorem 3.1.4, an invariant curve is a graph of a
Lipschitz function y = ω(x) presented become and the induced map

x1 = ψ(x) = f(x, ω(x))

would be a solution the equation

h1(x, ψ(x)) + h2(ψ−1(x), x) = 0 .
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If we plug in

h1(x, x1) = −(x1 − x)− λ

2π
sin(2πx)

h2(x, x1) = x1 − x0

we get

−(ψ(x)− x)− λ

2π
sin(2πx) + x− ψ−1(x) = 0

or

ψ(x) + ψ−1(x) = 2x− λ

2π
sin(2πx) .

The left hand side is a monotonically increasing Lipschitz continuous function and
this is for |λ| > 2 a contradiction, because then the derivative of the right hand
side

2− λ cos(2πx)

has roots.

Theorem 3.3.1
(Mather) The Standard map has for parameter values |λ| >
4/3 no invariant curve.

Proof. We have even seen, that the on the invariant curve induced map ψ satisfies
the equation

g(x) = ψ(x) + ψ−1(x) = 2x− λ

2π
sin(2πx) .

For Lebesgue almost all x, we have

m := 2− |λ| < g′(x) ≤ 2 + |λ| =: M .

Denote by esssup(f) the essential supremum of f and by essinf(f) the essential
infimum. Let

R = esssup ψ′(x)

r = essinf ψ′(x) .

Therefore, for almost all x

r ≤ ψ′(x) ≤ R
R−1 ≤ ψ′(x) ≤ r−1

and therefore

a) max{R+R−1, r + r−1} ≤ max g′(x) ≤M
b) 2min{r,R−1} < r +R−1 ≤ min g′(x) = m .
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From a) follows

R, r−1 ≤ 1

2
(M +

√
M2 − 4) .

From b) follows

max(R, r−1) ≥ 2

m
.

Together
2

m
≤ 1

2
(M +

√
M2 − 4) .

If we plug in m = 2− |λ| and M = 2 + |λ| we obtain

(3|λ| − 4)|λ| ≤ 0 .

Therefore, |λ| ≤ 4/3. 2

Remarks:

1) Theorem 3.3.1 was improved by MacKay and Percival in [19]. They can
show the nonexistence of invariant curves for |λ| > 63/64.

2) Numerical experiments of Greene [13] suggest that at a critical value λ =
0.971635.... the last invariant curve disappears.

Theorem 3.3.2
There exists ε > 0 so that for |λ| < ε and for every Dio-
phantine rotation number β, the set Mβ is an invariant
Lipschitz curve.

Proof. Apply the twist theorem 3.1.6. The function α(y) is naturally given by
α(y) = y. 2

Remark: There exist today explicit bounds for ε: see [15]. Celletti and Chier-
chia have recently shown [8] that the Standard map has for |λ| ≤ 0.65 analytic
invariant curves.

A direct consequence of Theorem 12.7 and Theorem 3.3.1 ist:

Theorem 3.3.3

For every α ∈ R, there exist Mather sets Mα for the Stan-
dard map. For α = p/q there are periodic orbits if type
(q, p), for irrational α and |λ| > 4/3, the set Mα projects
onto a Cantor set.
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If we look at a few orbits of the Standard map for different values of λ, we
see the following picture:

For λ = 0, the unperturbed case, all orbits are located on invariant curves.
For λ = 0.2 the origin (0, 0) is an elliptic fixed point. While increasing λ more and
more, for example for λ = 0.4 a region of instability grows near a hyperbolic fixed
point. For λ = 0.6, there are still invariant KAM Tori. For λ = 0.8 the dynamics
is already quite complicated. For λ = 1.0 it is known that no invariant curves
which wind around the torus can exist any more. For λ = 1.2, the ”stochastic sea”
pushes away the regions of stability. One believes that for large λ, the dynamics
is ergodic on a set of positive measure. For λ = 10.0 one can no more see islands
evenso the existence is not excluded.

3.3.2 Birkhoff billiard

Also due to Mather [21] are examples, where the closed convex C2-Kurve Γ of the
billiard map has no invariant curves.

Theorem 3.3.4
(Mather) If Γ has a flat point, that is if there is a point,
where the curvature vanishes, then φ has no invariant
curve.

For example, the curve given by x4 + y4 = 1 has flat points.

Proof. If an invariant curve for the billiard map φ exists then through every point
P of Γ there would exist a minimal billiard trajectory.

We show, that this can not be true for the flat point P0 ∈ Γ. If there wouldex-
ist a minimal through P0, we denote with P−1 and P1 the neighboring reflection
points of the billiard orbit. We draw the ellipse, which passes through P0 and
which has both points P−1 and P1 as focal points. In a neighborhood of P0, the
curve Γ passes outside the ellipse, because P0 is a flat point. This means that for
a point P ∈ Γ in a neighborhood of P0 the length of the path P−1PP1 is bigger
as the length of the path P−1P0P1, which contradicts the minimality of the orbit. 2

Definition: A piecewise smooth, closed curve γ in the inte-
rior of the billiard table Γ is called a caustic, if the billiard
orbit which is tangential to γ stays tangent to Γ after every
reflection at γ.

Of course a caustic leads to an invariant curve {(s, ψ(x)) } for the billiard
map. In that case ψ(s) is the initial angle of the billiard map path at the boundary
which hits the caustic.
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Lazutkin and Douady have proven [18, 11], that for a smooth billiard table
Γ, which has positive curvature everywhere, there always are ”wisper galleries”
near Γ.

Theorem 3.3.5

If the curvature of the curve Γ is positive everywhere and
Γ ∈ C6, there exist caustic near the curve Γ. These caustics
correspond to invariant curves of the billiard map near y =
0 and y = π.

From Hubacher [17] is the result that a discontinuity in the curvature of Γ
does not allow caustics near Γ.

Theorem 3.3.6
If the curvature of Γ has a discontinuity at a point there
exist no invariant curves in the annulus A near y = −1
and y = 1.

This theorem does not make statements about the global existence theory of
invariant curves in the billiard map in this case. Indeed, there are examples, where
the curvature of Γ has discontinuites evenso there are caustics.

Also as a direct consequence of Theorem 3.2.7 we have the following result:

Theorem 3.3.7 For every α ∈ (0, 1), there are orbits of the Billard map
with rotation number α.

Appendix: ergodic Billard of Bunimovich.

Definition: An area preseving map φ of the annulus A is
called ergodic, if every φ-invariante measurable subset of
φ has Lebesgue measure 0 or 1.

If φ is ergodic, then A is itself a region of instability. Moreover, there are orbits
in A, which come arbitrarily close to every point in A. This is called transitivity.
Bunimovich [7] has given examples of ergodic billiards. Ergodic billiards have no
invariant curves. Remark: Mather theory still holds but not necessarily for the
Bunimovich billiard, which produces a continuous but not a smooth billiard map.



3.3. THREE EXAMPLES 119

3.3.3 Dual Billard

P

P

P

t

t

θ

θ

h(θ,θ )

1

1

1

2



1

The dual billard was suggested by B.H.Neumann (see [24]). In contrary to
billiards, affine equivalent curves produce affine equivalent orbits. Mathers Theo-
rem 3.2.8 applied to this problem gives:

Theorem 3.3.8
If Γ is smooth, then there exists for every α ∈ (0, 1) a point
away from the curve Γ, which rotates around γ with an
average angular speed α.
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An application of the twist Theorem 3.1.6 with zero twist is the following
theorem:

Theorem 3.3.9
If the curve γ is at least Cr with r > 4, then every orbit of
the dual billiard is bounded.

Let Γ be an arbitrary convex closed curve. For every angle ψ ∈ [0, 2π) we
construct the smallest strip bounded by two straight lines and which has slope
arctan(ψ), and which contains the entire curve Γ. The two straight lines intersect
Γ in general in two intervals. Let ξ be the vector which connects the center of the
first interval with the center o the second interval. The convex closed curve γ with
polar representation r(ψ) = |ξψ| is called the fundamental curve of Γ.
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It is invariant under reflection at the origion and can therefore be viewed as
the boundary of a unit ball in R2 with norm

||x|| = min{λ ∈ R | λx ∈ γ } .

Denote with γ∗ the boundary of the unit ball in the dual space in the Banach
space (R2, || · ||). This curve is called the dual fundamental curve of Γ. away
from the curve Γ moves on an orbit near a curve which has the form of the dual
fundamental curve of Γ. If Γ is a polygon, then also the dual fundamental curve
γ∗ of Γ is a polygon. If the corners of γ have rational coordinates, then Γ is called
a rational polygon. The following result is due to Vivaldi and Shaidenko [27] :

Theorem 3.3.10

(Vivaldi and Shaidenko) If Γ is a rational polygon, then all
orbits of the dual billard are periodic. In this case there are
invariant curves in formclose to the dual fundamental curve
γ∗ of Γ.

(Note added: the proof in [27] had a gap. New proofs were given later, see
Appendix).

Open problem: It is not known whether there exists a dual billiardw for
which there are no invariant curves. In other words: is it possible that for a convex
curve γ and a point P outside of γ that the sequence φnγ (P ) is unbounded, where
φγ is the dual billiard map?

3.4 A second variational problem

Actually, one could find Mather sets in the discrete case by investigating a function
u satisfying the following properties:

(i) u is monotone
(ii) u(θ + 1) = u(θ) + 1.
(iii) h1(u(θ), u(θ + α)) + h2(u(θ − α), u(θ)) = 0 .

This is again a variational problem. Equation (iii) is the Euler equation de-
scribing extrema of the functional

Iα(u) =

∫ 1

0

h(u(θ), u(θ + α)) dθ

on the class N the functions which satisfy (i) and (ii). This is how Mather proved
first the existence of u± [20]. A difficulty with this approach is to prove existence
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of the Euler equations. Formally this works:

d

dε
Iε(u+ εv)|ε=0 =

∫ 1

0

h1(u, u(θ + α))v + h2(u, u(θ) + α))v(θ + α) dθ

=

∫ 1

0

[h1(u, u(θ + α)) + h2(u(θ − α), u(θ))]v(θ) dθ

but we can not vary arbitrarily in the class N , because otherwise the monotonicity
could get lost. Mather succeeded with a suitable parameterisation.

A different possibility is to regularize the variational problem. We consider
for every ν > 0 the functional

I(ν)(u) =

∫ 1

0

ν

2
u2
θ + h(u(θ), u(θ + α)) dθ

and search for a minimum in the class the functions u, for which u(θ) − θ is a
probability measure on S1:

u− Id ∈M1(T1) .

The Euler equation to this problem is a differential-difference equation

−νuθθ + h1(u(θ), u(θ + α)) + h2(u(θ + α), u(θ)) = 0

for which one can show that the minimum u∗θ is regular and monotone:

u∗ν(θ)− θ ∈ C2(S1), du∗ν(θ)/dθ > 0 .

Because of the weak compactness of the unit ball in M 1(S1) there is the sequence
νk → 0 has a subsequence u∗νk which converges weakly to u∗ and u∗ satisfies all at
the requirements (i) to (iii).

Remark. This strategy could maybe also be used to find Mather sets nu-
merically.

3.5 Minimal geodesics on T2

Minimal geodesics on the torus were investigated already in 1932 by Hedlund [14].
In [5], Bangert has related and extended the results of Hedlund to the above theory.
In this paragraph, we describe this relation. For proofs, we refer to Bangerts article.
On the two-dimensional torus T2 = R2/Z2 is given a positive definit metric

ds2 = gij(q)dq
idqj , gij ∈ C2(T2) .
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The length of a piecewise continuous curve γ : [a, b]→ R2 is measured with

L(γ) =

∫ b

a

F (q, q̇) dt

F (q, q̇) = ([gij(q)q̇
iq̇j ])1/2

and the distance of two points p and q is

d(q, p) = inf{L(γ) | γ(a) = p, γ(b) = q} .

One calls such a metric Finsler metric. A Finsler metric is a metric defined by d,
where F is homogenous of degree 1 and satisfies the Legendre condition. The just
defined metric generalizes the Riemannian metrik, for which gij is symmetric.

Definition: A curve γ : R → R2 called a minimal
geodesic if for all [a, b] ⊂ R one has

d(γ(a), γ(b)) = L(γ)|ba .

Again we denote byM the set of minimal geodesics in R2.

Already in 1924, Morse investigated minimal geodesics on covers of 2-dimensional
Riemannian manifolds of genus ≥ 2 [23]. Hedlund’s result of 1934 was:

Theorem 3.5.1

a) Two minimal geodesics intersect maximally once.
b) There is a constant D, which only depends on g, so that
every minimal geodesic is contained in a strip of width 2D:
∃ constants A,B,C with A2 + B2 = 1, so that for every
minimal geodesic γ : t 7→ (q1(t), q2(t)) one has

|Aq1(t) +Bq2(t) + C| ≤ D, ∀t ∈ R .

c) In every strip of this kind there exists a geodesic:
∀A,B,C with A2 + B2 = 1, ∃ minimal geodesic γ : t 7→
(q1(t), q2(t))

|Aq1(t) +Bq2(t) + C| ≤ D, ∀t ∈ R

with rotation number

α = −A/B = lim
t→∞

q2(t)/q1(t)

which also can take the value ∞.
d) γ ∈M has no self intersections on the torus.
e) If α is irrational then Mα the set of minimal geodesics
with rotation number α is well ordered.
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How does this result relate to the theory developed in Chapter II? The vari-
ational problem which we had studied earlier, is given by

I(γ) =

∫

γ

F (t, x, ẋ) dt =

∫

γ

F (q1, q2,
dq2

dq1
) dq1 ,

where (t, x(t)) is a graph of a function. Now we allow arbitary curves (q1(t), q2(t)),
which can in general not be written as graphs q2 = φ(q1). Also if we had q2 = φ(q1)
like for example in the case of the Euclidean metric

F = [1 + (
dq2

dq1
)2]1/2

one has in general not quadratic growth. Bangert has shown how this problem
can be avoided. We assume that the following existence theorem (vgl [4] 6.1, 6.2)
holds:

Theorem 3.5.2

a) Two arbitrary points p and q on R2 can be connected by
a minimal geodesic segment: ∃γ∗ : [a, b] → R2, s 7→ q∗(s)
with q∗(a) = p, q∗(b) = q and L(γ∗) = d(p, q).
b) In every homotopy classes {γ : s 7→ q(s) | q(s + L) =
q(s)+ j, j ∈ Z2 }, there is at least a minimal. This minimal
has no self intersections on T2.

Let γ : s 7→ q(s) = (q1(s), q2(s)) be a geodesic parametrized by the arc length
s. According to the just stated theorem, there is a minimal γ∗ : s 7→ q∗(s) with

q∗(s+ L) = q∗(s) + e2 ,

where e2 is the basis vector ofthe second coordinate. Since this minimal set has
no self intersections, we can apply a coordinate transformation so that in the new
coordiante is

q1(s) = 0, q2(s) = s .

Therefore, one has

(k, s) = q∗(s) + k, ∀k ∈ Z .

Define

h(ξ, η) := d((0, ξ), (1, η)) ,

where d is the metric d in the new coordiante system. The length of a curve between
p and q which is composed of minimal geodesic segments, is given by

r∑

j=1

h(xj , xj+1)
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and the minimum

minxr=q
x1=p

r∑

j=1

h(xj , xj+1)

is assumed by a minimal geodesic segment, which connects (1, x1) with (r, x2).

The following statement reduces the problem to the previously developed
theory. It should be compared with 6.4 in [4].

Theorem 3.5.3 The function h satisfies properties (i′) to (iv′).

We can summarize the results as follows and compare them with [4] 6.5 to
6.10:
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Theorem 3.5.4

a) For every α ∈ R there exist a minimal geodesic with
rotation number α.
b) A minimal geodesic does not have self intersections on
the torus.
c) Periodic minimal geodesics are minimal in their homo-
topy class.
d) Two different periodic minimal geodesics of the same
period don’t intersect.
e) A minimal geodesic γ with rotation number α is either
periodic or contained in a strip formed by two periodic
minimal geodesics γ+ and γ− of the same rotation number.
In every time direction, γ is asymptotic to exactely one
geodesic γ+ or γ−. There are no further periodic minimal
geodesics between γ+ and γ−. In other words, they are
neighboring.
f) In every strip formed by two neighboring minimal
periodic geodesics γ− and γ+ of rotation number α there
are heteroclinic connections in both directions.
g) Two different minimal geodesics with irrational rotation
number don’t intersect.
h) For rrational α there are two cases:

case A): Through every point of R2 passes a recurrent
minimal geodesic with rotation number α.

case B): The recurrent minimal geodesics of this rotation
number intersect every minimal periodic geodesic in a
Cantor set.

i) Every non-recurrent minimal geodesic of irrational
rotation number α is enclosed by two minimal geodesics,
which are asymptic both forward and backwards.

j) Every nonrecurrent minimal Geodesic can be approxi-
mated by minimal geodesics approximate.

3.6 Hedlund’s metric on T3

We describe in this last section a metric on the three-dimensional torus, whose
construction is due to Hedlund. It shows that the above theory is restricted to
dimensions n = 2. The reason is that straight lines in R2 which are not parallel
intersect in R2 in contrary to R3, where there are of course non intersecting
straight lines.
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The main points are the following:

1) It is in general wrong that there is for every direction a
minimal in this direction. There are exmaples, where one
has only three asymptotic directions.

2) It is in general false that if γ∗(s + L) = γ∗(s) + k is
minimal in this class M(L, k), then also γ∗(s + NL) =
γ∗(s)+NL is minimal inM(NL,Nk). Otherwise γ∗ would
be a global minimal and would therefore be asymptotic to
one of the three distinguished directions.

There are however at least dim(H1(T3,R)) = 3 minimal [5]:

Theorem 3.6.1
On a compact manifold M with dim(M) ≥ 3 and not
compact cover, there are at least dim(H1(M,R) minimal
geodesics.

The example:
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Define on R3 = R3/Z3 the metric

gij(x) = η2(x)δij ,

where η ∈ C∞(T3), η > 0.

We need 3 closed curves γ1, γ2 and γ3 on T3, which pairwise do not intersect.
(Here, ei denote the unit vectors in R3).

γ1 : t 7→ te1
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γ2 : t 7→ te2 +
1

2
te1

γ3 : t 7→ te3 +
1

2
te2 +

1

2
te1

Γ =
3⋃

j=1

γj .

Let 0 < ε < 10−2 be given. The ε-neighborhood Uε(γi) form thin channels in
T3, which do not intersect. Denote by

U(γ) =
3⋃

j=1

Uε(γ0)

the entire canal system.

Let 0 < εi ≤ ε < 10−2 for i = 1, 2, 3 and η ∈ C∞(T3) with

i) η(x) ≤ 1 + ε, ∀x ∈ T3

ii) η(x) ≥ 1, ∀x ∈ T3 \ U(γ)

iii) η(x) ≥ εi, ∀x ∈ U(γi) \ γi.
iv) η(x) = εi, ∀x ∈ γi .

The results are:

Theorem 3.6.2

a) The total length of the minimal segments outside U(γ)
is < 4.
b) Every minimal changes maximally 4 times from one
channel to an other.
c) Every minimal is for s→ ±∞ asymptotic to one of the
γi.
d) Every γi is a minimal.

Proof. We take first an arbitrary piecewise C1 curve, which we parameterize with
the arc length s

γ : [a, b] 7→ R3, s 7→ γ(s)

with η2|γ̇(s)|2 = 1, so that

L(γ) =

∫ b

a

= η|γ̇| ds =

∫ b

a

ds = b− a .

We denote by A the set of times, for which γ is outside the channels

A = {s ∈ [a, b] : γ(s) /∈ U(Γ)}
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and let

γ(A) =

∫

A

ds ≤ L(γ) .

Finally we need the vector x = γ(b)− γ(a). The proof will now be interrupted by
two Lemmas. 2

Lemma 3.6.3

(Estimate of the time outside the channels). For every
piecewise C1-curve γ : [a, b]→ R3, we have

γ(A) ≤ 11

10
[L(γ)−

3∑

j=1

εj |x|j ] + 10−2 .

Proof. Let for j = 1, 2, 3

Aj = {s ∈ [a, b] | γ(s) ∈ Uε(γj) }
A = {s ∈ [a, b] | γ(s) /∈ U(Γ) }

so that [a, b] = A∪A1 ∪A2 ∪A3. If nj is the number of visits of γ in Uε(γi), then
the cross section of Uε(γj) ≤ 2ε is

|
∫

Aj

γ̇j ds | ≤ 2njε, i 6= j

|
∫

Aj

γ̇j ds | ≥ |
∫

[a,b]

γ̇j ds| − |
∫

[a,b]\Aj
γ̇j ds| = |xj | − |

∫

[a,b]\Aj
γ̇j ds|

|
∫

[a,b]\Aj
γ̇j ds| ≤

∫

A

|γ̇j | ds+
∑

i6=j
|
∫

Aj

γ̇j ds| ≥
∫

A

η|γ̇j | ds+ 2(ni + nk)ε

= λ(A) + 2(ni + nk)ε, ({i, j, k} = {1, 2, 3}) .

We have

λ(Aj) =

∫

Aj

η|γ̇| ds ≥ εj |
∫

Aj

γ̇j ds| ≥ εj{|xj | − λ(A)− 2(ni + nk)ε } .

Addition gives

L(γ) = λ(A) +
3∑

j=1

λ(Aj)

≥ λ(A) +
∑

j

εj |xj | − 3ελ(A)− 4ε2(n1 + n2 + n3)

≥ (1− 3ε)λ(A) +
3∑

j=1

[εj |xj | − 4ε2ηj ] .
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On the other hand, there must be n1 + n2 + n3 − 1 changes between channels and
during theses times the γ are outside of Uε(Γ). Since the distance between two
channels is ≥ (1/2− 2ε), it follows that

λ(A) ≥ (
3∑

j=1

ηj − 1)(
1

2
− 2ε) .

Therefore
3∑

j=1

ηj ≤ λ(A)(
1

2
− 2ε)−1

so that

L(γ) ≥ λ(A)[1− 3ε− 4ε2(
1

2
− 2ε)−1 +

3∑

j=1

εj |xj | − 4ε2

≥ 10

11
(λ(A) +

3∑

j=1

εj |xj | − 4ε2)

and from this follows

λ(A) ≤ 11

10
(L(γ)−

3∑

j=1

εj |xj |) + 10−2 .

2

Lemma 3.6.4

(Estimate of the length of a minimal)

L(γ) = d(γ(a), γ(b)) ≤
3∑

j=1

εj |xj |+ 3(1 + ε) .

Proof. The length of a minimal from a to one of the channels Uε(γj) is less or
equal to 1 + ε. Also the length of a path which switches from Uε(γj) to Uε(γi) is
smaller or equal to (1+ε). The length of a path in a channel Uε(γi) is smaller than
εj |xj |. Therefore

L(γ) ≤ 3(1 + ε) +

3∑

j=1

εj |xj | .

2
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Proof. Continuation of the proof of Theorem 3.6.2:
a) follows now directly from Lemma 3.6.3 and Lemma 3.6.4:

λ(A) ≤ 11

10
(L(γ)−

3∑

j=1

εj |xj |) + 10−2 ≤ 11

10
3(1 + ε) + 10−2 < 4 .

b) Let γ : [a, b] → R2 be a minimal segment, so that γ(a) and γ(b) ∈ U(Γ).
We have

L(γ) ≤ 2(1 + ε) + 2ε+

3∑

j=1

εj |xj | .

If N is the number of times, the channel is changed, then

N(
1

2
− 2ε) ≤ λ(A) ≤ 11

10
[2(1 + ε) + 2ε+ 10−2]

which means N < 5 and therefore N ≤ 4.
c) Since we only have finitely many changes, a minimal γ is finally contained in
a channel Uε(γk) and it is not difficult to see, that γ must be asymptotic to γk.
(This is an exercice). 2

Remark.
Again as an exercice, show that for all p, x ∈ R3 one has

3∑

i=1

εi|xi| − 4 ≤ d(p, p+ x) ≤
3∑

i=1

εi|xi|+ 4

and with that we get the so called stable metric

d̃(p, p+ x) = lim
N→∞

d(p, p+Nx)

N
=

3∑

j=1

εj |xj | .

The stable norm on H1(T3,R) is if γ is a closed curve in T3 and represents an
element in H1(T3,R) given by

||v|| = d̃(γ(0), γ(L)) .

It has a unit ball of the form of an octahedron. It turns out there is in general
a close relation between the existence properties of minimal geodesics and the
convexity of the unit ball in the stable norm. (Siehe [5]).
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3.7 Exercices to chapter III

1) Verify, that for the billard and for the dual billard, the generating functions
have properties (0’) until (iv’).

2) Show, that in Hedlund’s example, a minimal geodesic is always asymptotic
to one of the curves γk.

3) Prove, that the curves γk, k = 1, 2, 3 in Hedlund’s example are minimal.

4) Verify in Hedlund’s example the inequality

3∑

i=1

εi|xi| − 4 ≤ d(p, p+ x) ≤
3∑

i=1

εi|xi|+ 4 .
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Appendix

3.8 Remarks on the literature
Every problem in the calculus of varia-
tions has a solution, provided the word
solution is suitably understood.

David Hilbert

Since these lectures were delivered by Moser, quite a bit of activity happend
in this branch of dynamical system theory and calculus of variations. In this ap-
pendix some references to the literature are added.

For the classical results in the calculus of variation see [25, 31]. In the mean
time also the books [30, 70] have appeared. The notes of Hildebrandt [29], which
were available at the time of the lectures in mimeographed form only have become
a book [25]. It is recomended to readers who want to know more about classical
variational problems. Finally, one should also mention the review article [59].

More information about geodesic flows can be found in [18, 11, 60]. Related
to the theorem of Hopf are the papers on integrable geodesic flows on the two-
dimensional torus with Liouville metrics gij(x, y) = (f(x) + h(y))δij (see [7, 52,
63]). These metrics have additionally to the energy integral H(x, y, p, q) = (p2 +
q2)/4(f(x) + h(y)) the quadratic integral F (x, y, p, q) = (h(y)p− f(x)q)/4(f(x) +
h(y)). The question to list all integrable geodesic flows seems open (see [75]). An
other theorem of Hopf-type can be found in [61]. A theorem in higher dimensions
(known under the name Hopf conjecture) has been proven in [17].

More about Aubry-Mather theory can be found in [46]. Mathers first work is
the paper [45]. The variational problem has later been reformulated for invariant
measures. It has been investigated further for example in [48, 50, 49, 51].

Angenent’s work which was mentioned in these lectures is published in [3].
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The preprint of Bangert has appeared in [8].

The construction of Aubry-Mather sets as a closure of periodic minimals was
done in [32, 33]. For a different proof of a part of the Mather theory see [26] an
approach which does not give all the results of Mather theory but which has the
advantage of beeing generalizable [38]. For higher dimensional Mather theory see
[65]. For billiards it leads to average minimal action invariants [66]. The regular-
ized variational principle mentioned in the course is described in detail in [56, 57].
For the origins of the approach described in this course, the papers [54, 22] are
relevant. Aubry-Mather sets have been found as closed sets of weak solutions of the
Hamilton-Jacobi equations ut +H(x, t, u)x = 0, which is a forced Burger equation
ut + uux + Vx(x, t) = 0 in the case H(x, t, p) = p2/2 + V (x, t). See [23]. The work
of Maneé about Mather theory which had been announced in [43] appeared later
in [44].

The theorem of Poincaré-Birkhoff which had first been proven by Birkhoff in
[12] was got new proofs in [16, 47, 1].

For Aubry-Mather theory in higher dimensions, many questions are open.
In [64], the average action was considered in higher dimensions. The higher-
dimensional Frenkel-Kontorova-Modell is treated in [65].

A good introduction to the theory of billiards is [71]. For a careful proof
for the existence of classes of periodic orbits im billiards see [76]. An analogu-
oues theorem of the theorem of Hopf for geodesics is proven in [10], see also [77].
A question which is sometimes attributed to Birkhoff is, whether every smooth,
strictly convex billiard is integrable. The problem is still open and also depends on
the definition of integrability. Evenso Birkhoff made indications [13, 14], he never
seems have written down the conjecture explicitely. The question was asked how-
ever explicitely by H. Poritski in [62] who also attacked the problem there. The
conjecture should therefore be called Birkhoff-Poritski-conjecture. For more
literature and results about caustics in billiard see [71, 36, 27].

More about the Standard map can be found in the textbook [67, 19, 34, 41].
The map appeared around 1960 in relation with the dynamics of electrons in mi-
crotrons [21]. It was first studied numerically by Taylor in 1968 and by Chirikov
in 1969 (see [24, 20]). The map appears also by the name of the ’kicked rotator’
and describes equilibrium states in the Frenkel-Kontorova model [39, ?].

The break-up of invariant tori and the transition of KAM Mather sets to
Cantorus Mather sets in particular had recently been an active research topic.
The question, whether the MacKay fixed point exists, is also open. In a somewhat
larger space of ’commuting pairs’, the existence of a periodic orbit of period 3
has been shown in [69]. A new approach to the question the break-up of invari-



3.8. REMARKS ON THE LITERATURE 139

ant curves is the theory of renormalisation in a space of Hamiltonian flows [37],
where a nontrivial fixed point is conjectured also. (Koch has recently claimed a
proof of the existence of the MacKay fixed point in the Hamiltonian context). For
renormalisation approaches to understand the break-up of invariant curves, one
can consult [42, 68, 69, 37].

With the variational problem for twist maps one can also look for general
critical points. An elegant construction of critical points is due to Aubry and
Abramovici [6, 4, 5]. See [35] for a formulation with the Percival functional.

A part the theory of the break-up of invariant curves is today called ’Con-
verse KAM theory’.

The dual billiard is sometimes also called ’exterior billiard’ or ’Moser billiard’.
The reason for the later name is that Moser had often used it for illustrations in
papers or talks, for example in the paper [53] or in the book [53]. The question,
whether a convex exterior billiard exists which has unbounded orbits is also open.
Newer results on this dynamical system can be found in [72, 73, 74]. The proof
of Vivaldi and Shaidenko on the boundedness of rational exteriour billiards had a
gap. A new proof has been given in [28], see also [15].

The different approaches to Mather theory are:

• Aubry’s approach via minimal energy states was historically the first one
and indicates connections of the theme with statistical mechanics and solid
state physics.

• Mathers construction is a new piece of calculus of variation.

• Katok’s construction via Birkhoff periodic orbits is maybe the technically
simplest proof.

• Golés proof leads to to weaker results but can be generalized.

• Bangert connected the theory to the classical calculus of variation and the
theory the geodesics an.

• of Moser’s viscosity proof is motivated by classical methods from the theory
of partial differential equations.

In contrary to classical variational problems, where one looks for compact so-
lutions of differentiable functionals, the theme of these lectures show, that Mather
theory can be seen as a variational problem, where one searches for noncompact
solutions which are minimal with respect to compact perturbations. For such vari-
ational problems, the existence of solutions needs already quite a bit of work.
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In an extended framework the subject leads to the theory of noncompact
minimals, to the perturbation theory of non-compact pseudo-holomorphic curves
on tori with almost complex structure [58], to the theory of elliptic partial differ-
ential equations [55] or to the theory of minimal foliations [9].

As Hedlund’s example shows, Mather’s theory can not be extended to higher
dimensions without modifications. The question arrises for example, what happens
with a minimal solution on an integrable three-dimensional torus, if the metric
is deformed to the Hedlund-metric or whether there is a Mather theory, which
is applicable near the flat metric of the torus. In [40], the Hedlund metric was
investigated and the existence of many solutions for the geodesic flow and nonin-
tegrability is proven. For metrics of the Hedlund type on more general manifolds
one can consult [2].
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