
Schrödinger Operators

Gerald Teschl



Gerald Teschl
Institut für Mathematik
Nordbergstraße 15
Universität Wien
1090 Wien, Austria

E-mail address: Gerald.Teschl@univie.ac.at
URL: http://www.mat.univie.ac.at/~gerald/

1991 Mathematics subject classification. 81-01, 81Qxx

Abstract. This manuscript provides a brief introduction to Schrödinger op-
erators. We start with the mathematical foundations of quantum mechanics
and prove the spectral theorem. Then we consider quantum dynamics and
establish Stone’s and the RAGE theorem.

After a detailed study of the free Schrödinger operator we investigate
self-adjointness of atomic Schrödinger operators and their essential spec-
trum, in particular the HVZ theorem. Finally we have a look at scattering
theory and prove asymptotic completeness in the short range case.

Keywords and phrases. Schrödinger operators, quantum mechanics, spectral
theory.

Typeset by AMS-LATEX and Makeindex.
Version: October 19, 2004
Copyright c© 1999-2004 by Gerald Teschl





Contents

Preface vii

Part 1. Mathematical Foundations of Quantum Mechanics

Chapter 0. Preliminaries 3

§0.1. Borel measures 3

§0.2. Integration 5

§0.3. The decomposition of measures 7

§0.4. Banach spaces 8

§0.5. Lebesgue spaces 10

Chapter 1. Hilbert spaces 13

§1.1. Hilbert spaces 13

§1.2. Orthonormal bases 16

§1.3. The projection theorem and the Riesz lemma 19

§1.4. Orthogonal sums and tensor products 20

Chapter 2. Self-adjointness and spectrum 23

§2.1. Some quantum mechanics 23

§2.2. Self-adjoint operators 26

§2.3. Resolvents and spectra 36

§2.4. Orthogonal sums of operators 40

§2.5. Self-adjoint extensions 42

Chapter 3. The spectral theorem 45

iii



iv Contents

§3.1. The spectral theorem 45
§3.2. More on Borel measures 54
§3.3. Spectral types 56
§3.4. Appendix: The Herglotz theorem 58

Chapter 4. Applications of the spectral theorem 63
§4.1. Integral formulas 63
§4.2. Commuting operators 67
§4.3. The min-max theorem 69
§4.4. Estimating eigenspaces 71
§4.5. Tensor products of operators 72

Chapter 5. Quantum dynamics 75
§5.1. The time evolution and Stone’s theorem 75
§5.2. The RAGE theorem 78

Part 2. Schrödinger Operators

Chapter 6. The free Schrödinger operator 85
§6.1. The Fourier transform 85
§6.2. The free Schrödinger operator 88
§6.3. The time evolution in the free case 90
§6.4. The resolvent and Green’s function 92

Chapter 7. Algebraic methods 95
§7.1. Position and momentum 95
§7.2. Angular momentum 96
§7.3. The harmonic oscillator 99

Chapter 8. Self-adjointness of Schrödinger operators 101
§8.1. Relatively bounded operators and the Kato-Rellich theorem 101
§8.2. More on compact operators 103
§8.3. Relatively compact operators and Weyl’s theorem 105
§8.4. One-particle Schrödinger operators 109
§8.5. Sturm-Liouville operators 110

Chapter 9. Atomic Schrödinger operators 119
§9.1. The hydrogen atom 119
§9.2. Angular momentum 121
§9.3. The spectrum of the hydrogen atom 124



Contents v

§9.4. Atomic Schrödinger operators 127

Chapter 10. Scattering theory 135
§10.1. Abstract theory 135
§10.2. Incoming and outgoing states 138
§10.3. Schrödinger operators with short range potentials 140

Bibliography 145

Glossary of notations 147

Index 149

Index 151





Preface

The present manuscript was written for my course Schrödinger Operators
given at the University of Vienna in Winter 1999 and Summer 2002. It is
supposed to give a brief but rather self contained introduction to the field of
Schrödinger operators with emphasis on applications in quantum mechanics.
I assume some previous experience with Hilbert spaces and bounded linear
operators which should be covered in any basic course on functional analysis.
However, all necessary results are reviewed in the first chapter. The material
presented is highly selective and many important and interesting topics are
not touched.

It is available from

http://www.mat.univie.ac.at/~gerald/ftp/book-schroe/

Acknowledgments

I’d like to thank Volker Enß for making his lecture notes available to me
and Maria Hoffmann-Ostenhof, Harald Rindler, and Karl Unterkofler for
pointing out errors in previous versions.

Gerald Teschl

Vienna, Austria
February, 2002

vii





Part 1

Mathematical
Foundations of
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Chapter 0

Preliminaries

I assume that the reader has some basic familiarity with measure theory
and functional analysis. For convenience, all facts needed are stated in this
chapter (without proofs). If you feel comfortable with terms like Lebesgue
integral, dominated convergence, Banach space, or bounded linear operator,
you can skip this entire chapter. However, you might want to at least browse
through it to refresh your memory. Good references are [2] or [14].

0.1. Borel measures

Recall that a σ-algebra Σ is a collection of subsets of a given set M such
that

• M ∈ Σ,

• Σ is closed under countable unions,

• Σ is closed under complements.

It follows from the de Morgan rules that Σ is closed under countable inter-
sections as well. The intersection of any family of σ-algebras {Σα} is again
a σ-algebra and for any collection S of subsets there is a unique smallest
σ-algebra containing S (namely the intersection of all σ-algebra containing
S). It is called the σ-algebra generated by S.

The Borel σ-algebra of Rn is defined to be the σ-algebra generated
by all open (respectively all closed) sets and is denoted by Bn. We will
abbreviate B = B1 and call sets Ω ∈ Bn simply Borel sets.

A measure µ is a map µ : Σ → [0,∞] such that

• µ(∅) = 0,

3



4 0. Preliminaries

• µ(
⋃∞
j=1 Ωj) =

∑∞
j=1 µ(Ωj) if Ωj ∩ Ωk = ∅ for all j, k.

It is called σ-finite if there is a countable cover {Ωj}∞j=1 of M with µ(Ωj) <
∞ for all j. We will assume all measures to be σ-finite. It is called finite if
µ(M) <∞.

A set Ω ∈ Σ is called a support for µ if µ(M\Ω) = 0. A property is
said to hold µ-almost everywhere (a.e.) if the set for which it holds is a
support for µ or, equivalently, if the set where it does not hold has measure
zero.

A measure on the Borel σ-algebra is called a Borel measure if µ(C) <
∞ for any compact set C. Borel measures on Bn automatically satisfy the
following regularity property

µ(Ω) = sup
C⊆Ω,C compact

µ(C) = inf
Ω⊆O,O open

µ(O), (0.1)

which shows that µ is uniquely determined by its value on compact respec-
tively open sets. (This is not true in general if Rn is replaced by an arbitrary
topological space.) We will only consider the case of Borel measures on Bn.

To every Borel measure on B we can assign its distribution function

µ(λ) =


µ((x, 0]), x < 0
0, λ = 0
µ((0, x]), x > 0

(0.2)

which is right continuous and non-decreasing. Conversely, given a right
continuous non-decreasing function µ : R → R we can set

µ(Ω) =


µ(b)− µ(a), Ω = (a, b]
µ(b)− µ(a−), Ω = [a, b]
µ(b−)− µ(a), Ω = (a, b)
µ(b−)− µ(a−), Ω = [a, b)

, (0.3)

where µ(a−) = limε↓0 µ(a−ε). Then µ gives rise to a unique Borel measure.

Theorem 0.1. For every right continuous non-decreasing function µ : R →
R there exists a unique Borel measure µ which extends (0.3). Two different
functions generate the same measure if and only if they differ by a constant.

Example. Suppose µ(λ) = 0 for λ < 0 and µ(λ) = 1 for λ ≥ 0. Then
we obtain the so-called Dirac measure at 0, which is given by µ(Ω) = 1 if
0 ∈ Ω and µ(Ω) = 0 if 0 6∈ Ω. �

Example. Suppose µ(λ) = λ, then the associated measure is the ordi-
nary Lebesgue measure on R. We will abbreviate the Lebesgue measure
of a Borel set Ω by |Ω|. �
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A function f : M → R is called measurable if f−1(Ω) ∈ Σ for every
Ω ∈ B. A complex-valued function is called measurable if both its real and
imaginary parts are. Clearly it suffices to check this condition for every set
Ω in a collection of sets which generate B, say for all open intervals. If Σ is
the Borel σ-algebra, we will call a measurable function also Borel function.
Note that, in particular, any continuous function is Borel.

Moreover, sometimes it is also convenient to allow ±∞ as possible values
for f , that is, functions f : M → R, R = R ∪ {−∞,∞}. In this case Ω ⊆ R
is called Borel if Ω ∩ R is.

The set of all measurable functions forms an algebra.

Lemma 0.2. Suppose f , g are measurable functions. Then the sum f + g
and the product fg is measurable.

Moreover, the set of all measurable functions is closed under all impor-
tant limiting operations.

Lemma 0.3. Suppose fn is a sequence of measurable functions, then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn (0.4)

are measurable as well.

It follows that if f and g are measurable functions, so are min(f, g),
max(f, g), |f | = max(f,−f), f± = max(±f, 0).

0.2. Integration

Now we can define the integral for measurable functions as follows. A mea-
surable function s : M → R is called simple if its range is finite, that is,
if s =

∑n
j=1 cjχΩj , Ωj ∈ Σ. Here χΩ is the characteristic function of Ω,

that is, χΩ(λ) = 1 if λ ∈ Ω and χΩ(λ) = 0 else.
For a positive simple function we define its integral as∫

s(λ)dµ(λ) =
n∑
j=1

cjµ(Ωj). (0.5)

It can be extended to the set of all positive measurable functions by ap-
proximating f by a nondecreasing sequence sn of simple functions and set∫

f(λ)dµ(λ) = lim
n→∞

∫
R
sn(λ)dµ(λ). (0.6)

If the integral is finite for both the positive and negative part f± of an
arbitrary measurable function f , we call f integrable and set∫

f(λ)dµ(λ) =
∫

R
f+(λ)dµ(λ)−

∫
f−(λ)dµ(λ). (0.7)
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The set of all integrable functions is denoted by L1(M). Similarly, we handle
the case where f is complex-valued by calling f integrable if both the real
and imaginary part are and setting∫

f(λ)dµ(λ) =
∫

R
Re(f(λ))dµ(λ) + i

∫
Im(f(λ))dµ(λ). (0.8)

Note that f is integrable if and only if |f | is.
It is custom to set∫

Ω
f(λ)dµ(λ) =

∫
χΩ(λ)f(λ)dµ(λ). (0.9)

The integral has the following properties

Theorem 0.4. Suppose f and g are integrable functions, then so is any
linear combination and∫

(αf(λ) + βg(λ))dµ(λ) = α

∫
f(λ)dµ(λ) + β

∫
g(λ)dµ(λ). (0.10)

Moreover,

|
∫
f(λ)dµ(λ)| ≤

∫
|f(λ)|dµ(λ) (0.11)

and

|
∫

Ω
f(λ)dµ(λ)| ≤ sup

λ∈Ω
|f(λ)|µ(Ω). (0.12)

If f , g are real-valued and satisfy f ≤ g, we have∫
f(λ)dµ(λ) ≤

∫
g(λ)dµ(λ). (0.13)

In particular, by |f + g| ≤ |f |+ |g| we infer∫
|f(λ) + g(λ)|dµ(λ) ≤

∫
|f(λ)|dµ(λ) +

∫
|g(λ)|dµ(λ). (0.14)

In addition, our integral is well behaved with respect to limiting opera-
tions. The most important results in this respect are

Theorem 0.5 (monotone convergence). Let fn be a monotone non-decreasing
sequence of positive measurable functions and set f = limn→∞ fn. If

∫
fndµ ≤

C for some finite constant C, then f is integrable and limn→∞
∫
|f−fn|dµ =

0.

Theorem 0.6 (dominated convergence). Let fn be a convergent sequence of
measurable functions and set f = limn→∞ fn. Suppose there is an integrable
function g such that |fn| ≤ g. Then f is integrable and limn→∞

∫
|f −

fn|dµ = 0.
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Finally, we note that if there are two measures µ1 and µ2 on Σ1 and
Σ2, respectively, then there is a unique measure, the product measure,
µ1 × µ2 on the σ-algebra generated by Σ1 × Σ2 which satisfies

µ1 × µ2(Ω1 × Ω2) = µ1(Ω1)µ2(Ω2), Ωj ∈ Σj , j = 1, 2. (0.15)

Moreover, it can be shown that if f is a measurable function on M1 ×M2,
then f(., λ2) is measurable on M1 for every λ2 and f(λ1, .) is measur-
able on M2 for every λ1. Moreover, if these functions are integrable, then∫
f(., λ2)dµ2(λ2) and

∫
f(λ1, .)dµ1(λ1) are measurable as well.

Theorem 0.7 (Fubini). Let f be a measurable function on M1 ×M2 and
let µ1, µ2 be measures on M1, M2, respectively.

Then ∫ (∫
|f(λ1, λ2)|dµ1(λ1)

)
dµ2(λ2) <∞ (0.16)

if and only if ∫ (∫
|f(λ1, λ2)|dµ2(λ2)

)
dµ1(λ1) <∞ (0.17)

and if one (and thus both) of these integrals is finite, then∫∫
f(λ1, λ2)dµ1 × µ2(λ1, λ2) =

∫ (∫
f(λ1, λ2)dµ1(λ1)

)
dµ2(λ2)

=
∫ (∫

f(λ1, λ2)dµ2(λ2)
)
dµ1(λ1). (0.18)

0.3. The decomposition of measures

The results in this section are somewhat more special and will not be needed
until Section 3.2.

Let µ, ν be two measures on a measure space (M,Σ). They are called
mutually singular if they are supported on disjoint sets. That is, there
is a measurable set Ω such that µ(Ω) = 0 and ν(M\Ω) = 0. The measure
ν is called absolutely continuous with respect to µ if µ(Ω) = 0 implies
ν(Ω) = 0.

The two main results read

Theorem 0.8 (Radon-Nikodym). Let µ, ν be two measures on a measure
space (M,Σ). Then ν is absolutely continuous with respect to µ if and only
if there is a positive measurable function f such that

ν(Ω) =
∫

Ω
f(λ)dµ(λ) (0.19)

for every Ω ∈ Σ. The function f is determined uniquely a.e. with respect to
µ and is called the Radon-Nikodym derivative dν

dµ of ν with respect to µ.
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Theorem 0.9 (Lebesgue decomposition). Let µ, ν be two measures on a
measure space (M,Σ). Then ν can be uniquely decomposed as ν = νac+νsing,
where νac and νsing are mutually singular and νac is absolutely continuous
with respect to µ.

In the case of a Borel measure µ on B the situation is as follows:
We call

(Dµ)(λ) = lim
ε↓0

µ(Iε)
|Iε|

, (0.20)

the Radon-Nikodym derivative of µ at λ provided the above limit exists for
any sequence of intervals Iε, which contain λ and have length |Iε| = ε.

Note that (Dµ)(λ) exists if and only if µ(λ) (as defined in (0.2)) is
differentiable at λ and (Dµ)(λ) = µ′(λ) in this case.

Theorem 0.10. The derivative Dµ of µ has the following properties:

• Dµ exists a.e. with respect to Lebesgue measure.

• Dµ ∈ L1(R).

• Dµ is the Radon-Nikodym derivative of the absolutely continuous
part of µ with respect to Lebesgue measure, that is,

µac(Ω) =
∫

Ω
(Dµ)(λ)dλ.

In particular, µ is singular with respect to Lebesgue measure if and only
if (Dµ)(λ) = 0 a.e. with respect to Lebesgue measure.

To find supports for the absolutely and singularly continuous part, it is
useful to consider

(Dµ)(λ) = lim sup
ε↓0

µ(Iε)
|Iε|

and (Dµ)(λ) = lim inf
ε↓0

µ(Iε)
|Iε|

. (0.21)

Then

Theorem 0.11. The set {λ|(Dµ)(λ) = ∞} is a support for the singularly
and {λ|(Dµ)(λ) <∞} is a support for the absolutely continuous part.

0.4. Banach spaces

A normed linear space X is a vector space X over C (or R) with a
real-valued function (the norm) ‖.‖ such that

• ‖ψ‖ ≥ 0 for all ψ ∈ X and ‖ψ‖ = 0 if and only if ψ = 0,

• ‖z ψ‖ = |z| ‖ψ‖ for all z ∈ C and ψ ∈ X, and

• ‖ψ + ϕ‖ ≤ ‖ψ‖+ ‖ϕ‖ for all ψ,ϕ ∈ X (triangle inequality).



0.4. Banach spaces 9

Clearly, the norm is continuous.
The norm gives rise to a metric

d(ψ,ϕ) = ‖ψ − ϕ‖ (0.22)

and hence concepts like convergence, Cauchy sequence, and completeness
are well-defined for a normed linear space. In particular, a complete normed
linear space is called a Banach space.

For a given set of vectors {ψj}j∈J the span span{ψj}j∈J is the set of
all finite linear combinations of the vectors ψj . The set {ψj}j∈J is called
linearly independent if any finite subset is and it is called total if its
span is dense. A Banach space is called separable if it contains a countable
dense set or, equivalently, if it contains a countable total set.

Example. The set C(K) of all continuous functions on a compact
interval K together with the sup norm

‖f‖∞ = sup
x∈K

|f(x)| (0.23)

is a Banach space. (This follows since the uniform limit of continuous func-
tions is again continuous.) It is even separable since the set of all polynomials
is dense by the Stone-Weierstrass theorem. �

A linear map A between two Banach spaces X and Y will be called a
(linear) operator

A : D(A) ⊆ X → Y. (0.24)

The linear subspace D(A) on which A is defined, is called the domain of A
and is usually required to be dense. The operator A is called bounded if
the following operator norm

‖A‖ = sup
‖ψ‖X=1

‖Aψ‖Y (0.25)

is finite.

Theorem 0.12. An operator A is bounded if and only if it is continuous.

Moreover, if A is bounded and densely defined, it is no restriction to
assume that it is defined on all of X.

Theorem 0.13. If A is bounded and D(A) is dense, there is a unique ex-
tension of A to X, which has the same norm.

Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension is clearly given by

Aψ = lim
n→∞

Aψn, ψn ∈ D(A), ψ ∈ X. (0.26)
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To show that this definition is independent of the sequence ψn → ψ, let
φn → ψ be a second sequence and observe

‖Aψn −Aφn‖ = ‖A(ψn − φn)‖ ≤ ‖A‖‖ψn − φn‖ → 0. (0.27)

To prove that this extension is linear and has the same norm is left as an
exercise. �

The set of all bounded linear operators from X to Y is denoted by
L(X,Y ) and, together with the operator norm (0.25), it is again a Banach
space. If X = Y we write L(X,X) = L(X).

An operator in L(X,C) is called a bounded linear functional and the
space X∗ = L(X,C) is called the dual space of X. A sequence ψn is said to
converge weakly ψn ⇀ ψ if `(ψn) → `(ψ) for every ` ∈ X∗.

The following important result will be needed later on.

Theorem 0.14 (uniform boundedness principle). Let X and Y be two Ba-
nach spaces and F a family of operators in L(X,Y ). If for each x ∈ X the
set {‖Ax‖Y |A ∈ F} is bounded, then so is {‖A‖ |A ∈ F}.

In particular, every weakly convergent sequence is bounded.

0.5. Lebesgue spaces

Let (M,µ) be a measure space and p ≥ 1. Two measurable functions f :
M → C are considered equivalent if they only differ on a set of measure
zero. The set of all equivalence classes together with the norm

‖f‖p =
(∫

M
|f(x)|pdµ(x)

)1/p

(0.28)

forms a normed space denoted by Lp(M,dµ). If dµ is the Lebesgue measure
on Rn we simply write Lp(M).

Theorem 0.15. Set space Lp(M) is a Banach space (i.e. complete).

Even though the elements of Lp(M,dµ) are strictly speaking equivalence
classes of functions, we will still call them functions for notational conve-
nience. However, note that for f ∈ Lp(M,dµ) the value f(x) is not well
defined (unless there is a continuous representative).

Theorem 0.16. If M ⊆ Rn and µ is a Borel measure, then the set C∞0 (M)
of all smooth functions with compact support is dense in Lp(M,dµ), 1 ≤ p <
∞.

The set of all equivalence classes (as in the previous example) together
with the norm

‖f‖∞ = inf{C| |f(x)| ≤ C a.e. x ∈M} (0.29)
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is also a Banach space denoted by L∞(M,dµ).

Theorem 0.17 (Hölder’s inequality). Let (M,µ) be a measure space and
let 1 ≤ p, q, r ≤ ∞ such that

1
p

+
1
q

=
1
r
. (0.30)

Suppose f ∈ Lp(M,dµ) and q ∈ Lq(M,dµ), then f g ∈ Lr(M,dµ) and

‖f g‖r ≤ ‖f‖p‖g‖q. (0.31)

Example. Let p, q > 1 satisfy 1
p + 1

q = 1. Then every element f ∈
Lp(M,dµ) gives rise to a bounded linear functional on Lq(M,dµ) via

g 7→
∫
M
f(x)g(x)dµ(x). (0.32)

One can even show Lp(M,dµ)∗ ' Lq(M,dµ) if 1 ≤ p <∞. �





Chapter 1

Hilbert spaces

The phase space in classical mechanics is the Euclidean space R2n (for the n
position and n momentum coordinates). In quantum mechanics the phase
space is always a Hilbert space H. Hence the geometry of Hilbert spaces
stands at the outset of our investigations.

1.1. Hilbert spaces

Suppose H is a vector space. A map 〈., ..〉 : H×H → C is called skew linear
form if it is conjugate linear in the first and linear in the second argument,
that is,

〈z1ψ1 + z2ψ2, ϕ〉 = z∗1〈ψ1, ϕ〉+ z∗2〈ψ2, ϕ〉
〈ψ, z1ϕ1 + z2ϕ2〉 = z1〈ψ,ϕ1〉+ z2〈ψ,ϕ2〉

, z1, z2 ∈ C. (1.1)

A skew linear form satisfying the requirements

• 〈ψ,ψ〉 > 0 for ψ 6= 0 and

• 〈ψ,ϕ〉 = 〈ϕ,ψ〉∗

is called inner product or scalar product. Associated with every scalar
product is a norm

‖ψ‖ =
√
〈ψ,ψ〉 (1.2)

(we will prove in a moment that this is indeed a norm). The pair (H, 〈., ..〉)
is called inner product space. If H is complete with respect to the above
norm, it is called a Hilbert space. It is no restriction to assume that H is
complete since one can easily replace it by its completion.

13



14 1. Hilbert spaces

Example. The space L2(M,dµ) is a Hilbert space with scalar product
given by

〈f, g〉 =
∫
M
f(x)∗g(x)dµ(x). (1.3)

Similarly, the set of all square summable sequences `2(N) is a Hilbert space
with scalar product

〈f, g〉 =
∑
j∈N

f∗j gj . (1.4)

(Note that the second example is a special case of the first one; take M = R
and µ is a sum of Dirac measures.) �

A vector ψ ∈ H is called normalized or unit vector if ‖ψ‖ = 1. Two
vectors ψ,ϕ ∈ H are called orthogonal or perpendicular (ψ ⊥ ϕ) if
〈ψ,ϕ〉 = 0 and parallel if one is a multiple of the other. If ψ and ϕ are
orthogonal we have the Pythagorean theorem:

‖ψ + ϕ‖2 = ‖ψ‖2 + ‖ϕ‖2, ψ ⊥ ϕ, (1.5)

which is straightforward to check.
Suppose ϕ is a unit vector, then the projection of ψ in the direction of

ϕ is given by
ψ‖ = 〈ϕ,ψ〉ϕ (1.6)

and ψ⊥ defined via
ψ⊥ = ψ − 〈ϕ,ψ〉ϕ (1.7)

is perpendicular to ϕ since 〈ϕ,ψ⊥〉 = 〈ϕ,ψ−〈ϕ,ψ〉ϕ〉 = 〈ϕ,ψ〉−〈ϕ,ψ〉〈ϕ,ϕ〉 =
0. Taking any other vector parallel to ϕ it is easy to see

‖ψ − cϕ‖2 = ‖ψ⊥‖2 + |c− 〈ϕ,ψ〉|2 (1.8)

and hence ψ‖ = 〈ϕ,ψ〉ϕ is the unique vector parallel to ϕ which is closest
to ψ.

As a first consequence we obtain the Cauchy-Schwarz inequality:

|〈ψ,ϕ〉| ≤ ‖ψ‖ ‖ϕ‖ (1.9)

with equality if and only if ψ and ϕ are parallel. In fact, it suffices to prove
the case ‖ϕ‖ = 1. But then the claim follows from ‖ψ‖2 = |〈ϕ,ψ〉|2 +‖ψ⊥‖2.

Note that the Cauchy-Schwarz inequality implies that the scalar product
is continuous in both variables.

As another consequence we infer that the map ‖.‖ is indeed a norm. Only
the triangle inequality is nontrivial. It follows from the Schwarz inequality
since

‖ψ + ϕ‖2 = ‖ψ‖2 + 〈ψ,ϕ〉+ 〈ϕ,ψ〉+ ‖ϕ‖2 ≤ (‖ψ‖+ ‖ϕ‖)2. (1.10)
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These results can also be generalized to more than one vector. A set
of vectors {ϕj} is called orthonormal set if 〈ϕj , ϕk〉 = 0 for j 6= k and
〈ϕj , ϕj〉 = 1.

Lemma 1.1. Suppose {ϕj}nj=0 is an orthonormal set. Then every ψ ∈ H

can be written as

ψ = ψ‖ + ψ⊥, ψ‖ =
n∑
j=0

〈ϕj , ψ〉ϕj , (1.11)

where ψ‖ and ψ⊥ are orthogonal. Moreover, 〈ϕj , ψ⊥〉 = 0 for all 1 ≤ j ≤ n.
In particular,

‖ψ‖2 =
n∑
j=0

|〈ϕj , ψ〉|2 + ‖ψ⊥‖2. (1.12)

Moreover, every ψ̂ in the span of {ϕj}nj=0 satisfies

‖ψ − ψ̂‖ ≥ ‖ψ⊥‖ (1.13)

with equality holding if and only if ψ̂ = ψ‖. In other words, ψ‖ is uniquely
characterized as the vector in the span of {ϕj}nj=0 being closest to ψ.

Proof. A straightforward calculation shows 〈ϕj , ψ − ψ‖〉 = 0 and hence ψ‖
and ψ⊥ = ψ − ψ‖ are orthogonal. The formula for the norm follows by
applying (1.5) iteratively.

Now, fix a vector

ψ̂ =
n∑
j=0

cjϕj . (1.14)

in the span of {ϕj}nj=0. Then one computes

‖ψ − ψ̂‖2 = ‖ψ‖ + ψ⊥ − ψ̂‖2 = ‖ψ⊥‖2 + ‖ψ‖ − ψ̂‖2

= ‖ψ⊥‖2 +
n∑
j=0

|cj − 〈ϕj , ψ〉|2 (1.15)

from which the last claim follows. �

From (1.12) we obtain Bessel’s inequality
n∑
j=0

|〈ϕj , ψ〉|2 ≤ ‖ψ‖2 (1.16)

with equality holding if and only if ψ lies in the span of {ϕj}nj=0.
Note that a scalar product can be recovered from its norm by virtue of

the polarization identity

〈ϕ,ψ〉 =
1
4

(
‖ϕ+ ψ‖2 − ‖ϕ− ψ‖2 + i‖ϕ− iψ‖2 − i‖ϕ+ iψ‖2

)
, (1.17)
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which can be readily verified. However, note that this formula cannot be
used to define a scalar product from a norm. It can be shown that this only
works if the parallelogram law

‖ϕ+ ψ‖2 + ‖ϕ− ψ‖2 = 2‖ϕ‖2 + 2‖ψ‖2 (1.18)

holds (which is easy to verify for inner product spaces).
A bijective operator U ∈ L(H1,H2) is called unitary if U preserves

scalar products:

〈Uϕ,Uψ〉2 = 〈ϕ,ψ〉1, ϕ, ψ ∈ H1. (1.19)

By the polarization identity this is the case if and only if U preserves norms:
‖Uψ‖2 = ‖ψ‖1 for all ψ ∈ H1. The two Hilbert space H1 and H2 are called
unitarily equivalent in this case.

1.2. Orthonormal bases

Of course, since we cannot assume H to be a finite dimensional vector space,
we need to generalize Lemma 1.1 to arbitrary orthonormal sets {ϕj}j∈J .
We start by assuming that J is countable. Then Bessel’s inequality (1.16)
shows that ∑

j∈J
|〈ϕj , ψ〉|2 (1.20)

converges absolutely. Moreover, for any finite subset K ⊂ J we have

‖
∑
j∈K

〈ϕj , ψ〉ϕj‖2 =
∑
j∈K

|〈ϕj , ψ〉|2 (1.21)

by the Pythagorean theorem and thus
∑

j∈J〈ϕj , ψ〉ϕj is Cauchy if and only
if

∑
j∈J |〈ϕj , ψ〉|2 is. Now let J be arbitrary. Again, Bessel’s inequality

shows that for any given ε > 0 there are at most finitely many j for which
|〈ϕj , ψ〉| ≥ ε. Hence there are at most countably many j for which |〈ϕj , ψ〉| >
0. Thus it follows that ∑

j∈J
|〈ϕj , ψ〉|2 (1.22)

is well-defined and so is ∑
j∈J

〈ϕj , ψ〉ϕj . (1.23)

In particular, by continuity of the scalar product we see that Lemma 1.1
holds for arbitrary orthonormal sets without modifications.

Theorem 1.2. Suppose {ϕj}j∈J is an orthonormal set. Then every ψ ∈ H

can be written as

ψ = ψ‖ + ψ⊥, ψ‖ =
∑
j∈J

〈ϕj , ψ〉ϕj , (1.24)
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where ψ‖ and ψ⊥ are orthogonal. Moreover, 〈ϕj , ψ⊥〉 = 0 for all j ∈ J . In
particular,

‖ψ‖2 =
∑
j∈J

|〈ϕj , ψ〉|2 + ‖ψ⊥‖2. (1.25)

Moreover, every ψ̂ in the span of {ϕj}j∈J satisfies

‖ψ − ψ̂‖ ≥ ‖ψ⊥‖ (1.26)

with equality holding if and only if ψ̂ = ψ‖. In other words, ψ‖ is uniquely
characterized as the vector in the span of {ϕj}j∈J being closest to ψ.

Note that from Bessel’s inequality (which of course still holds) it follows
that the map ψ → ψ‖ is continuous.

The collection of all orthonormal sets in H can be partially ordered by
inclusion. Moreover, any linearly ordered chain has an upper bound (the
union of all sets in the chain). Hence Zorn’s lemma implies the existence
of a maximal element, that is, an orthonormal set which is not a proper
subset of any other orthonormal set. Such an orthonormal set is called an
orthonormal basis due to following result:

Theorem 1.3. For an orthonormal set {ϕj}j∈J the following conditions are
equivalent:
(i) {ϕj}j∈J is an orthonormal basis.
(ii) For every vector ψ ∈ H we have

ψ =
∑
j∈J

〈ϕj , ψ〉ϕj . (1.27)

(iii) For every vector ψ ∈ H we have

‖ψ‖2 =
∑
j∈J

|〈ϕj , ψ〉|2. (1.28)

(iv) 〈ϕj , ψ〉 = 0 for all j ∈ J implies ψ = 0.

Proof. We will use the notation from Theorem 1.2.
(i) ⇒ (ii): If ψ⊥ 6= 0 than we can normalize ψ⊥ to obtain a unit vector ψ̃⊥
which is orthogonal to all vectors ϕj . But then {ϕj}j∈J ∪ {ψ̃⊥} would be a
larger orthonormal set, contradicting maximality of {ϕj}j∈J .
(ii) ⇒ (iii): Follows since (ii) implies ψ⊥ = 0.
(iii) ⇒ (iv): If 〈ψ,ϕj〉 = 0 for all j ∈ J we conclude ‖ψ‖2 = 0 and hence
ψ = 0.
(iv) ⇒ (i): If {ϕj}j∈J were not maximal, there would be a unit vector ϕ
such that {ϕj}j∈J ∪ {ϕ} is larger orthonormal set. But 〈ϕj , ϕ〉 = 0 for all
j ∈ J implies ϕ = 0 by (iv), a contradiction. �
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Since ψ → ψ‖ is continuous, it suffices to check conditions (ii) and (iii)
on a dense set.

Example. The set of functions

ϕn(x) =
1√
2π

einx, n ∈ Z, (1.29)

forms an orthonormal basis for H = L2(0, 2π). The corresponding orthogo-
nal expansion is just the ordinary Fourier series. �

A Hilbert space is separable if and only if there is a countable orthonor-
mal basis. In fact, if H is separable, then there exists a countable total set
{ψj}Nj=0. After throwing away some vectors we can assume that ψn+1 can-
not be expressed as a linear combinations of the vectors ψ0, . . .ψn. Now we
can construct an orthonormal set as follows: We begin by normalizing ψ0

ϕ0 =
ψ0

‖ψ0‖
. (1.30)

Next we take ψ1 and remove the component parallel to ϕ0 and normalize
again

ϕ1 =
ψ1 − 〈ϕ0, ψ1〉ϕ0

‖ψ1 − 〈ϕ0, ψ1〉ϕ0‖
. (1.31)

Proceeding like this we define recursively

ϕn =
ψn −

∑n−1
j=0 〈ϕj , ψn〉ϕj

‖ψn −
∑n−1

j=0 〈ϕj , ψn〉ϕj‖
. (1.32)

This procedure is known as Gram-Schmidt orthogonalization. Hence
we obtain an orthonormal set {ϕj}Nj=0 such that span{ϕj}nj=0 = span{ψj}nj=0

for any finite n and thus also for N . Since {ψj}Nj=0 is total, we infer that
{ϕj}Nj=0 is an orthonormal basis.

If fact, if there is one countable basis, then it follows that every other
basis is countable as well.

Theorem 1.4. If H is separable, then every orthonormal basis is countable.

Proof. We know that there is at least one countable orthonormal basis
{ϕj}j∈J . Now let {φk}k∈K be a second basis and consider the set Kj =
{k ∈ K|〈φk, ϕj〉 6= 0}. Since these are the expansion coefficients of ϕj with
respect to {φk}k∈K , this set is countable. Hence the set K̃ =

⋃
j∈J Kj is

countable as well. But k ∈ K\K̃ implies φk = 0 and hence K̃ = K. �

We will assume all Hilbert spaces to be separable.

In particular, it can be shown that L2(M,dµ) is separable. Moreover, it
turns out that, up to unitary equivalence, there is only one (separable)
infinite dimensional Hilbert space:
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Let H be an infinite dimensional Hilbert space and let {ϕj}j∈N be any
orthogonal basis. Then the map U : H → `2(N), ψ 7→ (〈ϕj , ψ〉)j∈N is unitary
(by Theorem 1.3 (iii)). In particular, any infinite dimensional Hilbert space
is unitarily equivalent to `2(N).

1.3. The projection theorem and the Riesz
lemma

Let M ⊆ H be a subset, then M⊥ = {ψ|〈ϕ,ψ〉 = 0, ∀ϕ ∈ M} is called
the orthogonal complement of M . By continuity of the scalar prod-
uct it follows that M⊥ is a closed linear subspace and by linearity that
(span(M))⊥ = M⊥. For example we have H⊥ = {0} since any vector in H⊥

must be in particular orthogonal to all vectors in some orthonormal basis.

Theorem 1.5 (projection theorem). Let M be a closed linear subspace of a
Hilbert space H, then every ψ ∈ H can be uniquely written as ψ = ψ‖ + ψ⊥
with ψ‖ ∈M and ψ⊥ ∈M⊥. One writes

M ⊕M⊥ = H (1.33)

in this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal basis
{ϕj}j∈J . Hence the result follows from Theorem 1.2. �

In other words, to every ψ ∈ H we can assign a unique vector ψ‖ which
is the vector in M closest to ψ. The rest ψ − ψ‖ lies in M⊥. The operator
PMψ = ψ‖ is called the orthogonal projection corresponding to M . Clearly
we have PM⊥ψ = ψ − PMψ = ψ⊥.

Moreover, we see that the vectors in a closed subspace M are precisely
those which are orthogonal to all vectors in M⊥, that is, M⊥⊥ = M . If M
is an arbitrary subset we have at least

M⊥⊥ = span(M). (1.34)

Finally we turn to linear functionals, that is, to operators ` : H →
C. By the Cauchy-Schwarz inequality we know that `ϕ : ψ 7→ 〈ϕ,ψ〉 is a
bounded linear functional (with norm ‖ϕ‖). In turns out that in a Hilbert
space every bounded linear functional can be written in this way.

Theorem 1.6 (Riesz lemma). Suppose ` is a bounded linear functional on
a Hilbert space H. Then there is a vector ϕ ∈ H such that `(ψ) = 〈ϕ,ψ〉 for
all ψ ∈ H. In other words, a Hilbert space is equivalent to its own dual space
H∗ = H.
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Proof. If ` ≡ 0 we can choose ϕ = 0. Otherwise Ker(`) = {ψ|`(ψ) = 0}
is a proper subspace and we can find a unit vector ϕ̃ ∈ Ker(`)⊥. For every
ψ ∈ H we have `(ψ)ϕ̃− `(ϕ̃)ψ ∈ Ker(`) and hence

0 = 〈ϕ̃, `(ψ)ϕ̃− `(ϕ̃)ψ〉 = `(ψ)− `(ϕ̃)〈ϕ̃, ψ〉. (1.35)

In other words, we can choose ϕ = `(ϕ̃)∗ϕ̃. �

The following easy consequence is left as an exercise.

Corollary 1.7. Suppose B is a bounded skew liner form, that is,

|B(ψ,ϕ)| ≤ C‖ψ‖ ‖ϕ‖. (1.36)

Then there is a unique bounded operator A such that

B(ψ,ϕ) = 〈Aψ,ϕ〉. (1.37)

1.4. Orthogonal sums and tensor products

Given two Hilbert spaces H1 and H2 we define their orthogonal sum H1⊕H2

to be the set of all pairs (ψ1, ψ2) ∈ H1×H2 together with the scalar product

〈(ϕ1, ϕ2), (ψ1, ψ2)〉 = 〈ϕ1, ψ1〉1 + 〈ϕ2, ψ2〉2. (1.38)

It is left as an exercise to verify that H1 ⊕ H2 is again a Hilbert space.
Moreover, H1 can be identified with {(ψ1, 0)|ψ1 ∈ H1} and we can regard
H1 as a subspace of H1 ⊕ H2. Similarly for H2. It is also custom to write
ψ1 + ψ2 instead of (ψ1, ψ2).

More generally, let Hj j ∈ N, be a countable collection of Hilbert spaces
and define

∞⊕
j=1

Hj = {
∞∑
j=1

ψj |ψj ∈ Hj ,

∞∑
j=1

‖ψj‖2
j <∞}, (1.39)

which becomes a Hilbert space with the scalar product

〈
∞∑
j=1

ϕj ,
∞∑
j=1

ψj〉 =
∞∑
j=1

〈ϕj , ψj〉j . (1.40)

Suppose H and H̃ are two Hilbert spaces. Our goal is to construct their
tensor product. The elements should be products ψ ⊗ ψ̃ of elements ψ ∈ H

and ψ̃ ∈ H̃. Hence we start with the set of all finite linear combinations of
elements of H× H̃

F(H, H̃) = {
n∑
j=1

αj(ψj , ψ̃j)|(ψj , ψ̃j) ∈ H× H̃, αj ∈ C}. (1.41)
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Since we want (ψ1+ψ2)⊗ψ̃ = ψ1⊗ψ̃+ψ2⊗ψ̃, ψ⊗(ψ̃1+ψ̃2) = ψ⊗ψ̃1+ψ⊗ψ̃2,
and (αψ)⊗ ψ̃ = ψ ⊗ (αψ̃) we consider F(H, H̃)/N (H, H̃), where

N (H, H̃) = span{
n∑

j,k=1

αjβk(ψj , ψ̃k)− (
n∑
j=1

αjψj ,

n∑
k=1

βkψ̃k)} (1.42)

and write ψ ⊗ ψ̃ for the equivalence class of (ψ, ψ̃).
Next we define

〈ψ ⊗ ψ̃, φ⊗ φ̃〉 = 〈ψ, φ〉〈ψ̃, φ̃〉 (1.43)

which extends to a skew linear form on F(H, H̃)/N (H, H̃). To show that we
obtain a scalar product, we need to ensure positivity. Let ψ =

∑
i αiψi⊗ψ̃i 6=

0 and pick orthonormal bases ϕj , ϕ̃k for span{ψi}, span{ψ̃i}, respectively.
Then

ψ =
∑
j,k

αjkϕj ⊗ ϕ̃k, αjk =
∑
i

αi〈ϕj , ψi〉〈ϕ̃k, ψ̃i〉 (1.44)

and we compute
〈ψ,ψ〉 =

∑
j,k

|αjk|2 > 0. (1.45)

The completion of F(H, H̃)/N (H, H̃) with respect to the induced norm is
called the tensor product H⊗ H̃ of H and H̃.

Lemma 1.8. If ϕj, ϕ̃k are orthonormal bases for H, H̃, respectively, then
ϕj ⊗ ϕ̃k is an orthonormal basis for H⊗ H̃.

Proof. That ϕj⊗ ϕ̃k is an orthonormal set is immediate from (1.43). More-
over, since span{ϕj}, span{ϕ̃k} is dense in H, H̃, respectively, it is easy to
see that ϕj ⊗ ϕ̃k is dense in F(H, H̃)/N (H, H̃). But the latter is dense in
H⊗ H̃. �

Example. We have H⊗ Cn = Hn. �

Example. Let (M,dµ) and (M̃, dµ̃) be two measure spaces. Then we
have L2(M,dµ)⊗ L2(M̃, dµ̃) = L2(M × M̃, dµ× dµ̃).

Clearly we have L2(M,dµ) ⊗ L2(M̃, dµ̃) ⊆ L2(M × M̃, dµ × dµ̃). Now
take an orthonormal basis ϕj ⊗ ϕ̃k for L2(M,dµ) ⊗ L2(M̃, dµ̃) as in our
previous lemma. Then∫

M

∫
M̃

(ϕj(x)ϕ̃k(y))∗f(x, y)dµ(x)dµ̃(y) = 0 (1.46)

implies∫
M
ϕj(x)∗fk(x)dµ(x) = 0, fk(x) =

∫
M̃
ϕ̃k(y)∗f(x, y)dµ̃(y) (1.47)
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and hence fk(x) = 0 µ-a.e. x. But this implies f(x, y) = 0 for µ-a.e. x and
µ̃-a.e. y and thus f = 0. Hence ϕj ⊗ ϕ̃k is a basis for L2(M × M̃, dµ× dµ̃)
and equality follows. �

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

(
∞⊕
j=1

Hj)⊗ H =
∞⊕
j=1

(Hj ⊗ H), (1.48)

where equality has to be understood in the sense, that both spaces are
unitarily equivalent by virtue of the identification

(
∞∑
j=1

ψj)⊗ ψ =
∞∑
j=1

ψj ⊗ ψ. (1.49)



Chapter 2

Self-adjointness and
spectrum

2.1. Some quantum mechanics

In quantum mechanics, a single particle living in R3 is described by a
complex-valued function (the wave function)

ψ(x, t), (x, t) ∈ R3 × R, (2.1)

where x corresponds to a point in space and t corresponds to time. The
quantity ρt(x) = |ψ(x, t)|2 is interpreted as the probability density of the
particle at the time t. In particular, ψ must be normalized according to∫

R3

|ψ(x, t)|2d3x = 1, t ∈ R. (2.2)

The location x of the particle is a quantity which can be observed (i.e.,
measured) and is hence called observable. Due to our probabilistic in-
terpretation it is also a random variable whose expectation is given by

Eψ(x) =
∫

R3

x|ψ(x, t)|2d3x. (2.3)

In a real life setting, it will not be possible to measure x directly and one will
only be able to measure certain functions of x. For example, it is possible to
check whether the particle is inside a certain area Ω of space (e.g., inside a
detector). The corresponding observable is the characteristic function χΩ(x)
of this set. In particular, the number

Eψ(χΩ) =
∫

R3

χΩ(x)|ψ(x, t)|2d3x =
∫

Ω
|ψ(x, t)|2d3x (2.4)

23
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corresponds to the probability of finding the particle inside Ω ⊆ R3. An
important point to observe is that, in contradistinction to classical mechan-
ics, the particle is no longer localized at a certain point. In particular, the
mean-square deviation ∆ψ(x)2 = Eψ(x2)− Eψ(x)2 is always nonzero.

In general, the configuration space (or phase space) of a quantum
system is a (complex) Hilbert space H and the possible states of this system
are represented by the elements ψ having norm one, ‖ψ‖ = 1.

An observable a corresponds to a linear operator A in this Hilbert space
and its expectation, if the system is in the state ψ, is given by the real
number

Eψ(A) = 〈ψ,Aψ〉, (2.5)
where 〈., ..〉 denotes the scalar product of H. From a physical point of view,
(2.5) should make sense for any ψ ∈ H. However, this is not in the cards
as our simple example of one particle already shows. In fact, the reader
is invited to find a square integrable function ψ(x) for which xψ(x) is no
longer square integrable. The deeper reason behind this nuisance is that
Eψ(x) can attain arbitrary large values if the particle is not confined to a
finite domain, which renders the corresponding operator unbounded. But
unbounded operators cannot be defined on the entire Hilbert space in a
natural way by the closed graph theorem (Theorem 2.7 below) .

Hence, A will only be defined on a subset D(A) ⊆ H called the domain
of A. Since we want A to be defined for most states, we require D(A) to be
dense.

However, it should be noted that there is no general prescription how to
find the operator corresponding to a given observable.

Now let us turn to the time evolution of such a quantum mechanical
system. Given an initial state ψ(0) of the system, there should be a unique
ψ(t) representing the state of the system at time t ∈ R. We will write

ψ(t) = U(t)ψ(0). (2.6)

Moreover, it follows from physical experiments, that superposition of
states holds, that is, U(t)(α1ψ1(0)+α2ψ2(0)) = α1ψ1(t)+α2ψ2(t) (|α1|2 +
|α2|2 = 1). In other words, U(t) should be a linear operator. Moreover,
since ψ(t) is a state (i.e., ‖ψ(t)‖ = 1), we have

‖U(t)ψ‖ = ‖ψ‖. (2.7)

Such operators are called unitary. Next, since we have assumed uniqueness
of solutions to the initial value problem, we must have

U(0) = I, U(t+ s) = U(t)U(s). (2.8)

A family of unitary operators U(t) having this property is called a one-
parameter unitary group. In addition, it is natural to assume that this
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group is strongly continuous

lim
t→t0

U(t)ψ = U(t0)ψ, ψ ∈ H. (2.9)

Each such group has an infinitesimal generator defined by

Hψ = lim
t→0

i
t
(U(t)ψ − ψ), D(H) = {ψ ∈ H| lim

t→0

1
t
(U(t)ψ − ψ) exists}.

(2.10)
This operator is called the Hamiltonian and corresponds to the energy of
the system. If ψ(0) ∈ D(H), then ψ(t) is a solution of the Schrödinger
equation (in suitable units)

i
d

dt
ψ(t) = Hψ(t). (2.11)

This equation will be the main subject of our course.
In summary, we have the following axioms of quantum mechanics.

Axiom 1. The configuration space of a quantum system is a complex
separable Hilbert space H and the possible states of this system are repre-
sented by the elements of H which have norm one.

Axiom 2. Each observable a corresponds to a linear operator A defined
maximally on a dense subset D(A). Moreover, the operator correspond-
ing to a polynomial Pn(a) =

∑n
j=0 αja

j , αj ∈ R, is Pn(A) =
∑n

j=0 αjA
j ,

D(Pn(A)) = D(An) = {ψ ∈ D(A)|Aψ ∈ D(An−1)} (A0 = I).
Axiom 3. The expectation value for a measurement of a, when the

system is in the state ψ ∈ D(A), is given by (2.5), which must be real for
all ψ ∈ D(A).

Axiom 4. The time evolution is given by a strongly continuous one-
parameter unitary group U(t). The generator of this group corresponds to
the energy of the system.

In the following sections we will try to draw some mathematical conse-
quences from these assumptions:

First we will see that Axiom 2 and 3 imply that observables correspond to
self-adjoint operators. Hence these operators play a central role in quantum
mechanics and we will derive some of their basic properties. Another crucial
role is played by the (closure of the) set of all possible expectation values
for the measurement of a, which will be identified as the spectrum σ(A) of
the corresponding operator A.

The problem of defining functions of an observable will lead us to the
spectral theorem (in the next chapter), which generalizes the diagonalization
of symmetric matrices.

Axiom 4 will be the topic of Chapter 5.
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2.2. Self-adjoint operators

Let H be a (complex separable) Hilbert space. A linear operator is a linear
mapping

A : D(A) → H, (2.12)
where D(A) is a linear subspace of H, called the domain of A. It is called
bounded if the operator norm

‖A‖ = sup
‖ψ‖=1

‖Aψ‖ = sup
‖ϕ‖=‖ψ‖=1

|〈ψ,Aϕ〉| (2.13)

is finite. The second equality follows since equality in |〈ψ,Aϕ〉| ≤ ‖ψ‖ ‖Aϕ‖
is attained when Aϕ = zψ for some z ∈ C. If A is bounded it is no restriction
to assume D(A) = H and we will always do so. The Banach space of all
bounded linear operators is denoted by L(H).

The expression 〈ψ,Aψ〉 encountered in the previous section is called the
quadratic form

qA(ψ) = 〈ψ,Aψ〉, ψ ∈ D(A), (2.14)

associated to A. An operator can be reconstructed from its quadratic form
via the polarization identity

〈ϕ,Aψ〉 =
1
4

(qA(ϕ+ ψ)− qA(ϕ− ψ) + iqA(ϕ− iψ)− iqA(ϕ+ iψ)) . (2.15)

A densely defined linear operator A is called symmetric (or Hermitian)
if

〈ϕ,Aψ〉 = 〈Aϕ,ψ〉, ψ, ϕ ∈ D(A). (2.16)
The justification for this definition is provided by the following

Lemma 2.1. A densely defined operator A is symmetric if and only if the
corresponding quadratic form is real valued.

Proof. Clearly (2.16) implies that Im(qA(ψ)) = 0. Conversely, taking the
imaginary part of the identity

qA(ψ + iϕ) = qA(ψ) + qA(ϕ) + i(〈ψ,Aϕ〉 − 〈ϕ,Aψ〉) (2.17)

shows Re〈Aϕ,ψ〉 = Re〈ϕ,Aψ〉. Replacing ϕ by iϕ in this last equation
shows Im〈Aϕ,ψ〉 = Im〈ϕ,Aψ〉 and finishes the proof. �

In other words, a densely defined operator A is symmetric if and only if

〈ψ,Aψ〉 = 〈Aψ,ψ〉, ψ ∈ D(A). (2.18)

This already narrows the class of admissible operators to the class of
symmetric operators by Axiom 3. Next, let us tackle the issue of the correct
domain.
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By Axiom 2, A should be defined maximally, that is, if Ã is another
symmetric operator such that A ⊆ Ã, then A = Ã. Here we write A ⊆ Ã if
D(A) ⊆ D(Ã) and Aψ = Ãψ for all ψ ∈ D(A). In addition, we write A = Ã

if both Ã ⊆ A and A ⊆ Ã hold.
The adjoint operator A∗ of a densely defined linear operator A is

defined by

D(A∗) = {ψ ∈ H|∃ψ̃ ∈ H : 〈ψ,Aϕ〉 = 〈ψ̃, ϕ〉,∀ϕ ∈ D(A)}
A∗ψ = ψ̃

. (2.19)

The requirement that D(A) is dense implies that A∗ is well-defined. How-
ever, note that D(A∗) might not be dense in general. In fact, it might
contain no vectors other than 0.

For later use, note that

Ker(A∗) = Ran(A)⊥. (2.20)

For symmetric operators we clearly have A ⊆ A∗. If in addition, A = A∗

holds, then A is called self-adjoint. Our goal is to show that observables
correspond to self-adjoint operators. This is for example true in the case of
the position operator x, which is a special case of a multiplication operator.

Example. (Multiplication operator) Consider the multiplication oper-
ator

(Af)(x) = A(x)f(x), D(A) = {f ∈ L2(Rn, dµ) |Af ∈ L2(Rn, dµ)},
(2.21)

given by multiplication with the measurable function A : Rn → C. First of
all note that D(A) is dense. In fact, consider Ωn = {x ∈ Rn | |A(x)| ≤ n}.
Then, for every f ∈ L2(Rn, dµ) the function fn = χΩnf ∈ D(A) converges
to f as n→∞.

Next, let us compute the adjoint of A. Performing a formal computation
we have for h, f ∈ D(A) that

〈h,Af〉 =
∫
h(x)∗A(x)f(x)dµ(x) =

∫
(A(x)∗h(x))∗f(x)dµ(x) = 〈Ah, f 〉,

(2.22)
where Ã is multiplication by A(x)∗,

(Ãf)(x) = A(x)∗f(x), D(Ã) = {f ∈ L2(Rn, dµ) | Ãf ∈ L2(Rn, dµ)}.
(2.23)

Note D(Ã) = D(A). At first sight this seems to show that the adjoint of
A is Ã. But for our calculation we had to assume h ∈ D(A) and there
might be some functions in D(A∗) which do not satisfy this requirement! In
particular, our calculation only shows Ã ⊆ A∗. To show that equality holds,
we need to work a little harder:
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If h ∈ D(A∗) we must have∫
h(x)∗A(x)f(x)dµ(x) =

∫
g(x)∗f(x)dµ(x), f ∈ D(A), (2.24)

and thus∫
(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ D(A). (2.25)

In particular,∫
χΩn(x)(h(x)A(x)∗ − g(x))∗f(x)dµ(x) = 0, f ∈ L2(Rn, dµ), (2.26)

which shows that χΩn(h(x)A(x)∗− g(x))∗f(x) ∈ L2(Rn, dµ) vanishes. Since
n is arbitrary, we even have h(x)A(x)∗ = g(x) ∈ L2(Rn, dµ) and thus A∗ is
multiplication by A(x)∗ and D(A∗) = D(A).

In particular, A is self-adjoint if A is real-valued. In the general case we
have at least ‖Af‖ = ‖A∗f‖ for all f ∈ D(A) = D(A∗). Such operators are
called normal. �

Now note that
A ⊆ B ⇒ B∗ ⊆ A∗, (2.27)

that is, increasing the domain of A implies decreasing the domain of A∗.
Thus there is no point in trying to extend the domain of a self-adjoint
operator further. In fact, if A is self-adjoint and B is a symmetric extension,
we infer A ⊆ B ⊆ B∗ ⊆ A∗ = A implying A = B.

Corollary 2.2. Self-adjoint operators are maximal, that is, they do not have
any symmetric extensions.

Furthermore, if A∗ is densely defined (which is the case if A is symmetric)
we can consider A∗∗. From the definition (2.19) it is clear that A ⊆ A∗∗ and
thus A∗∗ is an extension of A. This extension is closely related to extending
a linear subspace M via M⊥⊥ = M (as we will see a bit later) and thus is
called the closure A = A∗∗ of A.

If A is symmetric we have A ⊆ A∗ and hence A = A∗∗ ⊆ A∗, that is,
A lies between A and A∗. Moreover, 〈ψ,A∗ϕ〉 = 〈Aψ,ϕ〉 for all ψ ∈ D(A),
ϕ ∈ D(A∗) implies that A is symmetric since A∗ϕ = Aϕ for ϕ ∈ D(A).

Example. (Differential operator) Take H = L2(0, 2π).
(i). Consider the operator

A0f = −i
d

dx
f, D(A0) = {f ∈ C1[0, 2π] | f(0) = f(2π) = 0}. (2.28)

That A0 is symmetric can be shown by a simple integration by parts. How-
ever, this will also follow once we have computed A∗0. If g ∈ D(A∗0) we must
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have ∫ 2π

0
if ′(x)∗g(x)dx =

∫ 2π

0
if(x)∗g̃(x)dx (2.29)

for some g̃ ∈ L2(0, 2π). Integration by parts shows∫ 2π

0
if ′(x)∗

(
g(x) + i

∫ x

0
g̃(t)dt

)
dx = 0 (2.30)

and hence g(x) + i
∫ x
0 g̃(t)dt ∈ {f ′|f ∈ D(A0)}⊥. But {f ′|f ∈ D(A0)} =

{h ∈ H|
∫ 2π
0 h(t)dt = 0} = {1}⊥ implying g(x) = g(0) − i

∫ x
0 g̃(t)dt since

{1}⊥⊥ = span{1}. Thus g ∈ AC[0, 2π], where

AC[a, b] = {f ∈ C[a, b]|f(x) = f(a) +
∫ x

a
g(t)dt, g ∈ L1(a, b)} (2.31)

denotes the set of all absolutely continuous functions. In summary, g ∈
AC[0, 2π] ⊆ D(A∗0) and A∗0g = g̃ = −ig′. Conversely, for every g ∈ AC[0, 2π]
(2.29) holds with g̃ = −ig′ and we conclude

A∗0f = −i
d

dx
f, D(A∗0) = AC[0, 2π]. (2.32)

In particular, A is symmetric but not self-adjoint. Since A∗∗ ⊆ A∗ we
compute

0 = 〈g,A0f〉 − 〈A∗0g, f〉 = i(f(0)g(0)∗ − f(2π)g(2π)∗) (2.33)

and since the boundary values of g ∈ D(A∗0) can be prescribed arbitrary, we
must have f(0) = f(2π) = 0. Thus

A0f = −i
d

dx
f, D(A0) = {f ∈ AC[0, 2π] | f(0) = f(2π) = 0}. (2.34)

(ii). Now let us take

Af = −i
d

dx
f, D(A) = {f ∈ C1[0, 2π] | f(0) = f(2π)}. (2.35)

which is clearly an extension of A0. Thus A∗ ⊆ A∗0 and we compute

0 = 〈g,Af〉 − 〈A∗g, f〉 = if(0)(g(0)∗ − g(2π)∗). (2.36)

Since this must hold for all f ∈ D(A) we conclude g(0) = g(2π) and

A∗f = −i
d

dx
f, D(A∗) = {f ∈ AC[0, 2π] | f(0) = f(2π)}. (2.37)

Similarly, as before, A = A∗ and thus A is self-adjoint. �

One might suspect that there is no big difference between the two sym-
metric operators A0 and A from the previous example, since they coincide
on a dense set of vectors. However, the converse is true: For example, the
first operator A0 has no eigenvectors at all (i.e., solutions of the equation
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A0ψ = zψ, z ∈ C) whereas the second one has an orthonormal basis of
eigenvectors!

Example. Compute the eigenvectors of A0 and A from the previous
example.

(i). By definition an eigenvector is a (nonzero) solution of A0ψ = zψ,
z ∈ C, that is, a solution of the ordinary differential equation

ψ′(x) = zψ(x) (2.38)

satisfying the boundary conditions ψ(0) = ψ(2π) = 0 (since we must have
ψ ∈ D(A0). The general solution of the differential equation is ψ(x) =
ψ(0)ez x and the boundary conditions imply ψ(x) = 0. Hence there are no
eigenvectors.

(ii). Now we look for solutions of Aψ = zψ, that is the same dif-
ferential equation as before, but now subject to the boundary condition
ψ(0) = ψ(2π). Again the general solution is ψ(x) = ψ(0)ez x and the bound-
ary condition requires ψ(0) = ψ(0)e2πz. Thus there are two possibilities.
Either ψ(0) = 0 (which is of no use for us) or z ∈ Z. In particular, we see
that all eigenfunctions are given by

ψn(x) =
1√
2π

enx, n ∈ Z, (2.39)

which are well-known to form an orthonormal basis. �

We will see a bit later that this is a consequence of self-adjointness of
A. Hence it will be important to know whether a given operator is self-
adjoint or not. Our example shows that symmetry is easy to check (in case
of differential operators it usually boils down to integration by parts), but
computing the adjoint of an operator is a nontrivial job even in simple situ-
ations. However, we will learn soon that self-adjointness is a much stronger
property than symmetry justifying the additional effort needed to prove it.

On the other hand, if a given symmetric operator A turns out not to
be self-adjoint, this raises the question of self-adjoint extensions. Two cases
need to be distinguished. If A is self-adjoint, then there is only one self-
adjoint extension (if B is another one, we have A ⊆ B and hence A = B
by Corollary 2.2). In this case A is called essentially self-adjoint and
D(A) is called a core for A. Otherwise there might be more than one self-
adjoint extension or none at all. This situation is more delicate and will be
investigated in Section 2.5.

Since we have seen that computing A∗ is not always easy, a criterion for
self-adjointness not involving A∗ will be useful.

Lemma 2.3. Let A be symmetric such that Ran(A+ z) = Ran(A+ z∗) = H

for one z ∈ C. Then A is self-adjoint.
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Proof. Let ψ ∈ D(A∗) and A∗ψ = ψ̃. Since Ran(A + z∗) = H, there is a
ϑ ∈ D(A) such that (A+ z∗)ϑ = ψ̃ + z∗ψ. Now we compute

〈ψ, (A+ z)ϕ〉 = 〈ψ̃+ z∗ψ,ϕ〉 = 〈(A+ z∗)ϑ, ϕ〉 = 〈ϑ, (A+ z)ϕ〉, ϕ ∈ D(A),
(2.40)

and hence ψ = ϑ ∈ D(A) since Ran(A+ z) = H. �

To proceed further, we will need more information on the closure of
an operator. We will use a different approach which avoids the use of the
adjoint operator. We will establish equivalence with our original definition
in Lemma 2.4.

The simplest way of extending an operator A is to take the closure of its
graph Γ(A) = {(ψ,Aψ)|ψ ∈ D(A)} ⊂ H2. That is, if (ψn, Aψn) → (ψ, ψ̃)
we might try to define Aψ = ψ̃. For Aψ to be well-defined, we need that
(ψn, Aψn) → (0, ψ̃) implies ψ̃ = 0. In this case A is called closable and the
unique operator A which satisfies Γ(A) = Γ(A) is called the closure of A.
Clearly, A is called closed if A = A, which is the case if and only if the
graph of A is closed. A bounded operator is closed if and only if its domain
is closed.

Example. Let us compute the closure of the operator A0 from the
previous example without the use of the adjoint operator. Let f ∈ D(A0)
and let fn ∈ D(A0) be a sequence such that fn → f , A0fn → −ig. Then
f ′n → g and hence f(x) =

∫ x
0 g(t)dt. Thus f ∈ AC[0, 2π] and f(0) = 0.

Moreover f(2π) = limn→0

∫ 2π
0 f ′n(t)dt = 0. Conversely, any such f can be

approximated by functions in D(A0) (show this). �

Next, let us collect a few important results.

Lemma 2.4. Suppose A is a densely defined operator.

(1) A∗ is closed.

(2) A is closable if and only if D(A∗) is dense and A = A∗∗ respectively
(A)∗ = A∗ in this case.

(3) If A is injective and the Ran(A) is dense, then (A∗)−1 = (A−1)∗.
If A is closable and A is injective, then A

−1 = A−1.

Proof. Let us consider the following two unitary operators from H2 to itself

U(ϕ,ψ) = (ψ,−ϕ), V (ϕ,ψ) = (ψ,ϕ). (2.41)
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(1). From

Γ(A∗) = {(ϕ, ϕ̃)|〈ϕ,Aψ〉 = 〈ϕ̃, ψ〉 ∀ϕ ∈ D(A∗)}
= {(ϕ, ϕ̃)|〈(−ϕ̃, ϕ), (ψ, ψ̃)〉 = 0 ∀(ψ, ψ̃) ∈ Γ(A)}
= U(Γ(A)⊥) = (UΓ(A))⊥ (2.42)

we conclude that A∗ is closed.
(2). From

Γ(A) = Γ(A)⊥⊥ = (UΓ(A∗))⊥

= {(ψ, ψ̃)| 〈ψ,A∗ϕ〉 − 〈ψ̃, ϕ〉 = 0,∀ϕ ∈ D(A∗)} (2.43)

we see that (0, ψ̃) ∈ Γ(A) if and only if ψ̃ ∈ D(A∗)⊥. Hence A is closable if
and only if D(A∗) is dense. In this case, equation (2.42) also shows A∗ = A∗.
Moreover, replacing A by A∗ in (2.42) and comparing with the last formula
shows A∗∗ = A.

(3). Next note that (provided A is injective)

Γ(A−1) = V Γ(A). (2.44)

Hence if Ran(A) is dense, then Ker(A∗) = Ran(A)⊥ = {0} and

Γ((A∗)−1) = V Γ(A∗) = V UΓ(A)⊥ = UV Γ(A)⊥ = U(V Γ(A))⊥ (2.45)

shows that (A∗)−1 = (A−1)∗. Similarly, if A is closable and A is injective,
then A−1 = A−1 by

Γ(A−1) = V Γ(A) = V Γ(A) = Γ(A−1). (2.46)

�

Furthermore, if A ∈ L(H) we clearly have D(A∗) = H and hence

‖A∗‖ = sup
‖ϕ‖=‖ψ‖=1

|〈ψ,A∗ϕ〉| = sup
‖ϕ‖=‖ψ‖=1

|〈Aψ,ϕ〉| = ‖A‖. (2.47)

In particular, since A = A∗∗ we obtain

Theorem 2.5. We have A ∈ L(H) if and only if A∗ ∈ L(H) Moreover,
‖A∗‖ = ‖A‖ in this case.

Now we can also generalize Lemma 2.3 to the case of essential self-adjoint
operators.

Lemma 2.6. A symmetric operator A is essentially self-adjoint if and only
if one of the following conditions holds for one z ∈ C\R.

• Ran(A+ z) = Ran(A+ z∗) = H.

• Ker(A∗ + z) = Ker(A∗ + z∗) = {0}.
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If A is non-negative, that is 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ D(A), we can also
admit z ∈ (−∞, 0).

Proof. As noted earlier Ker(A∗) = Ran(A)⊥, and hence the two conditions
are equivalent. By taking the closure of A it is no restriction to assume that
A is closed. Let z = x+ iy. From

‖(A−z)ψ‖2 = ‖(A−x)ψ− iyψ‖2 = ‖(A−x)ψ‖2+y2‖ψ‖2 ≥ y2‖ψ‖2, (2.48)

we infer that Ker(A−z) = {0} and hence (A−z)−1 exists. Moreover, setting
ψ = (A − z)−1ϕ (y 6= 0) shows ‖(A − z)−1‖ ≤ |y|−1. Hence (A − z)−1 is
bounded and closed. Since it is densely defined by assumption, its domain
Ran(A+ z) must be equal to H. Replacing z by z∗ and applying Lemma 2.3
finishes the general case. The argument for the non-negative case with
z < 0 is similar using ε‖ψ‖2 ≤ |〈ψ, (A + ε)ψ〉|2 ≤ ‖ψ‖‖(A + ε)ψ‖ which
shows (A+ ε)−1 ≤ ε−1, ε > 0. �

In addition, we can also prove the closed graph theorem which shows
that an unbounded operator cannot be defined on the entire Hilbert space.

Theorem 2.7 (closed graph). Let H1 and H2 be two Hilbert spaces and A
an operator defined on all of H1. Then A is bounded if and only if Γ(A) is
closed.

Proof. If A is bounded than it is easy to see that Γ(A) is closed. So let us
assume that Γ(A) is closed. Then A∗ is well defined and for all unit vectors
ϕ ∈ D(A∗) we have that the linear functional `ϕ(ψ) = 〈A∗ϕ,ψ〉 is pointwise
bounded

‖`ϕ(ψ)‖ = |〈ϕ,Aψ〉| ≤ ‖Aψ‖. (2.49)

Hence by the uniform boundedness principle there is a constant C such that
‖`ϕ‖ = ‖A∗ϕ‖ ≤ C. That is, A∗ is bounded and so is A = A∗∗. �

Finally we want to draw some some further consequences of Axiom 2
and show that observables correspond to self-adjoint operators. Since self-
adjoint operators are already maximal, the difficult part remaining is to
show that an observable has at least one self-adjoint extension. There is a
good way of doing this for non-negative operators and hence we will consider
this case first.

An operator is called non-negative (resp. positive) if 〈ψ,Aψ〉 ≥ 0
(resp. > 0 for ψ 6= 0) for all ψ ∈ D(A). If A is positive, the map (ϕ,ψ) 7→
〈ϕ,Aψ〉 is a scalar product. However, there might be sequences which are
Cauchy with respect to this scalar product but not with respect to our
original one. To avoid this, we introduce the scalar product

〈ϕ,ψ〉A = 〈ϕ, (A+ 1)ψ〉, A ≥ 0, (2.50)
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defined on D(A), which satisfies ‖ψ‖ ≤ ‖ψ‖A. Let HA be the completion of
D(A) with respect to the above scalar product. We claim that HA can be
regarded as a subspace of H, that is, D(A) ⊆ HA ⊆ H.

If (ψn) is a Cauchy sequence in D(A), then it is also Cauchy in H (since
‖ψ‖ ≤ ‖ψ‖A by assumption) and hence we can identify it with the limit of
(ψn) regarded as a sequence in H. For this identification to be unique, we
need to show that if (ψn) ⊂ D(A) is a Cauchy sequence in HA such that
‖ψn‖ → 0, then ‖ψn‖A → 0. This follows from

‖ψn‖2
A = 〈ψn, ψn − ψm〉A + 〈ψn, ψm〉A

≤ ‖ψn‖A‖ψn − ψm‖A + ‖ψn‖‖(A+ 1)ψm‖ (2.51)

since the right hand side can be made arbitrarily small choosing m,n large.
Clearly the quadratic form qA can be extended to every ψ ∈ HA by

setting
qA(ψ) = 〈ψ,ψ〉A − ‖ψ‖2, ψ ∈ Q(A) = HA. (2.52)

The set Q(A) is also called the form domain of A.
Now we come to our extension result. Note that A + 1 is injective and

the best we can hope for is that for a non-negative extension Ã, Ã+ 1 is a
bijection from D(Ã) onto H.

Lemma 2.8. Suppose A is a non-negative operator, then there is a non-
negative extension Ã such that Ran(Ã+ 1) = H.

Proof. Let us define an operator Ã by

D(Ã) = {ψ ∈ HA|∃ψ̃ ∈ H : 〈ϕ,ψ〉A = 〈ϕ, ψ̃〉,∀ϕ ∈ HA}
Ãψ = ψ̃ − ψ

. (2.53)

Since HA is dense, ψ̃ is well-defined. Moreover, it is straightforward to see
that Ã is a non-negative extension of A.

It is also not hard to see that Ran(Ã+ 1) = H. Indeed, for any ψ̃ ∈ H,
ϕ 7→ 〈ψ̃, ϕ〉 is bounded linear functional on HA. Hence there is an element
ψ ∈ HA such that 〈ψ̃, ϕ〉 = 〈ψ,ϕ〉A for all ϕ ∈ HA. By the definition of Ã,
(Ã+ 1)ψ = ψ̃ and hence Ã+ 1 is onto. �

Now it is time for an
Example. Let us take H = L2(0, π) and consider the operator

Af = − d2

dx2
f, D(A) = {f ∈ C2[0, π] | f(0) = f(π) = 0}, (2.54)

which corresponds to the one-dimensional model of a particle confined to a
box.
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(i). First of all, using integration by parts twice, it is straightforward to
check that A is symmetric∫ π

0
g(x)∗(−f ′′)(x)dx =

∫ π

0
g′(x)∗f ′(x)dx =

∫ π

0
(−g′′)(x)∗f(x)dx. (2.55)

Note that the boundary conditions f(0) = f(π) = 0 are chosen such that
the boundary terms occurring from integration by parts vanish. Moreover,
the same calculation also shows that A is positive∫ π

0
f(x)∗(−f ′′)(x)dx =

∫ π

0
|f ′(x)|2dx > 0, f 6= 0. (2.56)

(ii). Next let us show HA = {f ∈ AC[0, π] | f(0) = f(π) = 0}. In fact,
since

〈g, f〉A =
∫ π

0

(
g′(x)∗f ′(x) + g(x)∗f(x)

)
dx, (2.57)

we see that fn is Cauchy in HA if and only if both fn and f ′n are Cauchy
in L2(0, π). Thus fn → f and f ′n → g in L2(0, π) and fn(x) =

∫ x
0 f

′
n(t)dt

implies f(x) =
∫ x
0 g(t)dt. Thus f ∈ AC[0, π]. Moreover, f(0) = 0 is obvious

and from 0 = fn(π) =
∫ π
0 f ′n(t)dt we have f(π) = limn→∞

∫ π
0 f ′n(t)dt = 0.

So we have HA ⊆ {f ∈ AC[0, π] | f(0) = f(π) = 0}. To see the converse
approximate f ′ by smooth functions gn. Using gn−

∫ π
0 gn(t)dt instead of gn

it is no restriction to assume
∫ π
0 gn(t)dt = 0. Now define fn(x) =

∫ x
0 gn(t)dt

and note fn ∈ D(A) → f .

(iii). Finally, let us compute the extension Ã. We have f ∈ D(Ã) if for
all g ∈ HA there is an f̃ such that 〈g, f〉A = 〈g, f̃〉. That is,∫ π

0
g′(x)∗f ′(x)dx =

∫ π

0
g(x)∗(f̃(x)− f(x))dx. (2.58)

Integration by parts on the right hand side shows∫ π

0
g′(x)∗f ′(x)dx = −

∫ π

0
g′(x)∗

∫ x

0
(f̃(t)− f(t))dt dx (2.59)

or equivalently∫ π

0
g′(x)∗

(
f ′(x) +

∫ x

0
(f̃(t)− f(t))dt

)
dx = 0. (2.60)

Now observe {g′ ∈ H|g ∈ HA} = {g ∈ H|
∫ π
0 g(t)dt = 0} = {1}⊥ and thus

f ′(x) +
∫ x
0 (f̃(t) − f(t))dt ∈ {1}⊥⊥ = span{1}. So we see f ∈ AC1[0, π] =

{f ∈ AC[0, π]|f ′ ∈ AC[0, π]} and Ãf = −f ′′. The converse is easy and
hence

Ãf = − d2

dx2
f, D(Ã) = {f ∈ AC1[0, π] | f(0) = f(π) = 0}. (2.61)

�
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Now let us apply this result to operators A corresponding to observ-
ables. Since A will, in general, not satisfy the assumptions of our lemma, we
will consider 1 + A2, D(1 + A2) = D(A2), instead, which has a symmetric
extension whose range is H. By our requirement for observables, 1 + A2

is maximally defined and hence is equal to this extension. In other words,
Ran(1 +A2) = H. Moreover, for any ϕ ∈ H there is a ψ ∈ D(A2) such that

(A− i)(A+ i)ψ = (A+ i)(A− i)ψ = ϕ (2.62)

and since (A ± i)ψ ∈ D(A), we infer Ran(A ± i) = H. As an immediate
consequence we obtain

Corollary 2.9. Observables correspond to self-adjoint operators.

But there is another important consequence of the results which is worth
while mentioning.

Theorem 2.10 (Friedrichs extension). Let A be a semi-bounded symmet-
ric operator, that is,

qA(ψ) = 〈ψ,Aψ〉 ≥ γ‖ψ‖2, γ ∈ R. (2.63)

Then there is a self-adjoint extension Ã which is also bounded from below
by γ and which satisfies D(Ã) ⊆ HA−γ.

Proof. Replacing A by A − γ we can reduce it to the case considered in
Lemma 2.8. The rest is straightforward. �

2.3. Resolvents and spectra

Let A be a (densely defined) closed operator. The resolvent set of A is
defined by

ρ(A) = {z ∈ C|(A− z)−1 ∈ L(H)}. (2.64)

More precisely, z ∈ ρ(A) if and only if (A − z) : D(A) → H is bijective
and its inverse is bounded. By the closed graph theorem (Theorem 2.7), it
suffices to check that A − z is bijective. The complement of the resolvent
set is called the spectrum

σ(A) = C\ρ(A) (2.65)

of A. In particular, z ∈ σ(A) if A − z has a nontrivial kernel. A vector
ψ ∈ Ker(A− z) is called an eigenvector and z is called eigenvalue in this
case.

The function
RA : ρ(A) → L(H)

z 7→ (A− z)−1
(2.66)
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is called resolvent of A. Note the convenient formula

RA(z)∗ = ((A− z)−1)∗ = ((A− z)∗)−1 = (A∗ − z∗)−1 = RA∗(z∗). (2.67)

In particular,
ρ(A∗) = ρ(A)∗. (2.68)

If z, z′ ∈ ρ(A), we have the first resolvent formula

RA(z)−RA(z′) = (z − z′)RA(z)RA(z′) = (z − z′)RA(z′)RA(z). (2.69)

In fact,

(A− z)−1 − (z − z′)(A− z)−1(A− z′)−1 =

(A− z)−1(1− (z −A+A− z′)(A− z′)−1) = (A− z′)−1, (2.70)

which proves the first equality. The second follows after interchanging z and
z′. Now fix z′ = z0 and use (2.69) recursively to obtain

RA(z) =
n∑
j=0

(z − z0)jRA(z0)j+1 + (z − z0)n+1RA(z0)n+1RA(z). (2.71)

The sequence of bounded operators

Rn =
n∑
j=0

(z − z0)jRA(z0)j+1 (2.72)

converges to a bounded operator if |z − z0| < ‖RA(z0)‖−1 and clearly we
expect z ∈ ρ(A) and Rn → RA(z) in this case. Let R∞ = limn→∞Rn and
set ϕn = Rnψ, ϕ = R∞ψ for some ψ ∈ H. Then a quick calculation shows

ARnψ = ψ + (z − z0)ϕn−1 + zϕn. (2.73)

Hence (ϕn, Aϕn) → (ϕ,ψ + zϕ) shows ϕ ∈ D(A) (since A is closed) and
(A− z)R∞ψ = ψ. Similarly, for ψ ∈ D(A),

RnAψ = ψ + (z − z0)ϕn−1 + zϕn (2.74)

and hence R∞(A − z)ψ = ψ after taking the limit. Thus R∞ = RA(z) as
anticipated.

If A is bounded, a similar argument verifies the Neumann series for
the resolvent

RA(z) = −
n−1∑
j=0

Aj

zj+1
+

1
zn
AnRA(z)

= −
∞∑
j=0

Aj

zj+1
, |z| > ‖A‖. (2.75)

In summary we have proved the following
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Theorem 2.11. The resolvent set ρ(A) is open and RA : ρ(A) → L(H) is
holomorphic, that is, it has an absolutely convergent power series expansion
around every point z0 ∈ ρ(A). In addition,

‖RA(z)‖ ≥ dist(z, σ(A))−1 (2.76)

and if A is bounded we have {z ∈ C| |z| > ‖A‖} ⊆ ρ(A).

As a consequence we obtain the useful

Lemma 2.12. We have z ∈ σ(A) if there is a sequence ψn ∈ D(A) such
that ‖ψn‖ = 1 and ‖(A− z)ψn‖ → 0. If z is a boundary point of ρ(A), then
the converse is also true. Such a sequence is called Weyl sequence.

Proof. Let ψn be a Weyl sequence. Then z ∈ ρ(A) is impossible by 1 =
‖ψn‖ = ‖RA(z)(A − z)ψn‖ ≤ ‖RA(z)‖‖(A − z)ψn‖ → 0. Conversely, by
(2.76) there is a sequence zn → z and corresponding vectors ϕn ∈ H such
that ‖RA(z)ϕn‖‖ϕn‖−1 →∞. Let ψn = RA(zn)ϕn and rescale ϕn such that
‖ψn‖ = 1. Then ‖ϕn‖ → 0 and hence

‖(A− z)ψn‖ = ‖ϕn + (zn − z)ψn‖ ≤ ‖ϕn‖+ |z − zn| → 0 (2.77)

shows that ψn is a Weyl sequence. �

Let us also note the following spectral mapping result.

Lemma 2.13. Suppose A is injective, then

σ(A−1)\{0} = (σ(A)\{0})−1. (2.78)

In addition, we have Aψ = zψ if and only if A−1ψ = z−1ψ.

Proof. Suppose z ∈ ρ(A)\{0}. Then we claim

RA−1(z−1) = −zARA(z) = −z −RA(z). (2.79)

In fact, the right hand side is a bounded operator from H → Ran(A) =
D(A−1) and

(A−1 − z−1)(−zARA(z))ϕ = (−z +A)RA(z)ϕ = ϕ, ϕ ∈ H. (2.80)

Conversely, if ψ ∈ D(A−1) = Ran(A) we have ψ = Aϕ and hence

(−zARA(z))(A−1 − z−1)ψ = ARA(z)((A− z)ϕ) = Aϕ = ψ. (2.81)

Thus z−1 ∈ ρ(A−1). The rest follows after interchanging the roles of A and
A−1. �

Next, let us characterize the spectra of self-adjoint operators.

Theorem 2.14. Let A be symmetric. Then A is self-adjoint if and only if
σ(A) ⊆ R and A ≥ 0 if and only if σ(A) ⊆ [0,∞). Moreover, ‖RA(z)‖ ≤
|Im(z)|−1 and, if A ≥ 0, ‖RA(λ)‖ ≤ |λ|−1, λ < 0.
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Proof. If σ(A) ⊆ R, then Ran(A + z) = H, z ∈ C\R, and hence A is self-
adjoint by Lemma 2.6. Conversely, if A is self-adjoint (resp. A ≥ 0), then
RA(z) exists for z ∈ C\R (resp. z ∈ C\(−∞, 0]) and satisfies the given
estimates as has been shown in the proof of Lemma 2.6. �

In particular, the converse part in Lemma 2.12 holds for self-adjoint
operators and hence the closure of the set of all possible expectation values
equals the spectrum of the corresponding operator:

Theorem 2.15. Let A be self-adjoint, then

σ(A) = {〈ψ,Aψ〉|ψ ∈ D(A), ‖ψ‖ = 1} (2.82)

and in particular,

inf σ(A) = inf
ψ∈D(A), ‖ψ‖=1

〈ψ,Aψ〉. (2.83)

For the eigenvalues and corresponding eigenfunctions we have:

Lemma 2.16. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. If Aψj = λjψj , j = 1, 2, we have

λ1‖ψ1‖2 = 〈ψ1, λ1ψ1〉 = 〈ψ1, Aψ1〉 = 〈ψ1, Aψ1〉 = 〈λ1ψ1, ψ1〉 = λ∗1‖ψ1‖2

(2.84)
and

(λ1 − λ2)〈ψ1, ψ2〉 = 〈Aψ1, ψ2〉 − 〈Aψ1, ψ2〉 = 0, (2.85)
finishing the proof. �

The result does not imply that two linearly independent eigenfunctions
to the same eigenvalue are orthogonal. However, it is no restriction to
assume that they are since we can use Gram-Schmidt to find an orthonormal
basis for Ker(A − λ). If H is finite dimensional, we can always find an
orthonormal basis of eigenvectors. In the infinite dimensional case this is
no longer true in general. However, if there is an orthonormal basis of
eigenvectors, then A is essentially self-adjoint.

Theorem 2.17. Suppose A is a symmetric operator which has an orthonor-
mal basis of eigenfunctions {ϕj}, then A is essentially self-adjoint. In par-
ticular, it is essentially self-adjoint on span{ϕj}.

Proof. Consider the set of all finite linear combinations ψ =
∑n

j=0 cjϕj
which is dense in H. Then φ =

∑n
j=0

cj
λj±iϕj ∈ D(A) and (A ± i)φ = ψ

shows that Ran(A± i) is dense. �

In addition, we note the following asymptotic expansion for the resolvent.
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Lemma 2.18. Suppose A is self-adjoint. For every ψ ∈ H we have

lim
Im(z)→∞

‖ARA(z)ψ‖ = 0. (2.86)

In particular, if ψ ∈ D(An), then

RA(z)ψ = −
n∑
j=0

Ajψ

zj+1
+ o(

1
zn+1

), as Im(z) →∞. (2.87)

Proof. It suffices to prove the first claim since the second then follows as
in (2.75).

Write ψ = ψ̃ + ϕ, where ψ̃ ∈ D(A) and ‖ϕ‖ ≤ ε. Then

‖ARA(z)ψ‖ ≤ ‖RA(z)Aψ̃‖+ ‖ARA(z)ϕ‖

≤ ‖Aψ̃‖
Im(z)

+ ‖ϕ‖, (2.88)

by (2.48), finishing the proof. �

Similarly, we can characterize the spectra of unitary operators. Recall
that a bijection U is called unitary if 〈Uψ,Uψ〉 = 〈ψ,U∗Uψ〉 = 〈ψ,ψ〉. Thus
U is unitary if and only if

U∗ = U−1. (2.89)

Theorem 2.19. Let U be unitary, then σ(U) ⊆ {z ∈ C| |z| = 1}. All
eigenvalues have modulus one and eigenvectors corresponding to different
eigenvalues are orthogonal.

Proof. Since ‖U‖ ≤ 1 we have σ(U) ⊆ {z ∈ C| |z| ≤ 1}. Moreover, U−1

is also unitary and hence σ(U) ⊆ {z ∈ C| |z| ≥ 1} by Lemma 2.13. If
Uψj = zjψj , j = 1, 2 we have

(z1 − z2)〈ψ1, ψ2〉 = 〈U∗ψ1, ψ2〉 − 〈ψ1, Uψ2〉 = 0 (2.90)

since Uψ = zψ implies U∗ψ = U−1ψ = z−1ψ = z∗ψ. �

2.4. Orthogonal sums of operators

Let Hj , j = 1, 2, be two given Hilbert spaces and let Aj : D(Aj) → Hj be
two given operators. Setting H = H1 ⊕ H2 we can define an operator

A = A1 ⊕A2, D(A) = D(A1)⊕D(A2) (2.91)

by setting A(ψ1 + ψ2) = A1ψ1 + A2ψ2 for ψj ∈ D(Aj). Clearly A is closed,
(essentially) self-adjoint, etc., if and only if both A1 and A2 are. Moreover,
it is straightforward to verify
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Theorem 2.20. Suppose Aj are self-adjoint operators on Hj, then A =
A1 ⊕A2 is self-adjoint and

RA(z) = RA1(z)⊕RA2(z), z ∈ ρ(A) = ρ(A1) ∩ ρ(A2). (2.92)

In particular,

σ(A) = σ(A1) ∪ σ(A2). (2.93)

Conversely, given an operator A it might be useful to write A as orthog-
onal sum and investigate each part separately.

Let H1 ⊆ H be a closed subspace and let P1 be the corresponding projec-
tor. We say that H1 reduces the operator A if P1A ⊆ AP1. Note that this
implies P1D(A) ⊆ D(A). Moreover, if we set H2 = H⊥1 , we have H = H1⊕H2

and P2 = I− P1 reduces A as well.

Lemma 2.21. Suppose H1 ⊆ H reduces A, then A = A1 ⊕A2, where

Ajψ = Aψ, D(Aj) = PjD(A) ⊆ D(A). (2.94)

If A is closable, then H1 also reduces A and

A = A1 ⊕A2. (2.95)

Proof. As already noted, P1D(A) ⊆ D(A) and hence P2D(A) = (I −
P1)D(A) ⊆ D(A). Thus we see D(A) = D(A1) ⊕ D(A2). Moreover, if
ψ ∈ D(Aj) we have Aψ = APjψ = PjAψ ∈ Hj and thus Aj : D(Aj) → Hj

which proves the first claim.
Now let us turn to the second claim. Clearly A ⊆ A1 ⊕A2. Conversely,

suppose ψ ∈ D(A), then there is a sequence ψn ∈ D(A) such that ψn → ψ
and Aψn → Aψ. Then Pjψn → Pjψ and APjψn = PjAψn → PAψ. In
particular, Pjψ ∈ D(A) and APjψ = PAψ. �

The same considerations apply to countable orthogonal sums

A =
⊕
j

Aj , D(A) =
⊕
j

D(Aj). (2.96)

If A is self-adjoint, then H1 reduces A if P1D(A) ⊆ D(A) and AP1ψ ∈ H1

for every ψ ∈ D(A). In fact, if ψ ∈ D(A) we can write ψ = ψ1 ⊕ ψ2,
ψj = Pjψ ∈ D(A). Since AP1ψ = Aψ1 and P1Aψ = P1Aψ1 + P1Aψ2 =
Aψ1 + P1Aψ2 we need to show P1Aψ2 = 0. But this follows since

〈ϕ, P1Aψ2〉 = 〈AP1ϕ,ψ2〉 = 0 (2.97)

for every ϕ ∈ D(A).
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2.5. Self-adjoint extensions

In many physical applications a symmetric operator is given. If this operator
turns out to be essentially self-adjoint, there is a unique self-adjoint extension
and everything is fine. However, if it is not, it is important to find out if
there are self-adjoint extensions at all (for physical problems there better
are) and to classify them. It is safe to skip this entire section on first reading.

In Section 2.2 we have seen that A is essentially self-adjoint if Ker(A∗−
z) = Ker(A∗ − z∗) = {0} for one z ∈ C\R. Hence self-adjointness is related
to the dimension of these spaces and one calls the numbers

d±(A) = dimK±, K± = Ran(A± i)⊥ = Ker(A∗ ∓ i), (2.98)

defect indices of A (we have chosen z = i for simplicity, every other z ∈
C\R would be as good). If d−(A) = d+(A) = 0 there is one self-adjoint
extension of A, namely A. But what happens in the general case? Is there
more than one extension, or maybe none at all? These questions can be
answered by virtue of the Cayley transform

V = (A− i)(A+ i)−1 : Ran(A+ i) → Ran(A− i). (2.99)

Theorem 2.22. The Cayley transform is a bijection from the set of all
symmetric operators A to the set of all isometric operators V (i.e., ‖V ϕ‖ =
‖ϕ‖ for all ϕ ∈ D(V )) for which Ran(1 + V ) is dense.

Proof. Since A is symmetric we have ‖(A ± i)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2 for
all ψ ∈ D(A) by a straightforward computation. And thus for every ϕ =
(A+ i)ψ ∈ D(V ) = Ran(A+ i) we have

‖V ϕ‖ = ‖(A− i)ψ‖ = ‖(A+ i)ψ‖ = ‖ϕ‖. (2.100)

Next observe

1± V = ((A− i)± (A+ i))(A+ i)−1 =
{

2A(A+ i)−1

2i(A+ i)−1 , (2.101)

which shows D(A) = Ran(1− V ) and

A = i(1 + V )(1− V )−1. (2.102)

Conversely, let V be given and use the last equation to define A.
Since A is symmetric we have 〈(1 ± V )ϕ, (1 ∓ V )ϕ〉 = ±2i〈V ϕ, ϕ〉 for

all ϕ ∈ D(V ) by a straightforward computation. And thus for every ψ =
(1− V )ϕ ∈ D(A) = Ran(1− V ) we have

〈Aψ,ψ〉 = −i〈(1+V )ϕ, (1+V )ϕ〉 = i〈(1+V )ϕ, (1+V )ϕ〉 = 〈ψ,Aψ〉, (2.103)

that is, A is symmetric. Finally observe

A± i = ((1 + V )± (1− V ))(1− V )−1 =
{

2i(1− V )−1

2iV (1− V )−1 , (2.104)



2.5. Self-adjoint extensions 43

which shows that A is the Cayley transform of V and finishes the proof. �

Thus A is self-adjoint if and only if its Cayley transform V is unitary.
Moreover, finding a self-adjoint extension of A is equivalent to finding a
unitary extensions of V . Finding a unitary extension V is equivalent to
(taking the closure and) finding a unitary operator from D(V )⊥ to Ran(V )⊥.
This is possible if and only if both spaces have the same dimension, that is,
if and only if d+(A) = d−(A).

Theorem 2.23. A symmetric operator has self-adjoint extensions if and
only if its defect indices are equal.

In this case let A1 be a self-adjoint extension, V1 its Cayley transform.
Then

D(A1) = D(A) + (1− V1)K+ = {ψ + ϕ+ − V1ϕ+|ψ ∈ D(A), ϕ+ ∈ K+}
(2.105)

and
A1(ψ + ϕ+ − V1ϕ+) = Aψ + iϕ+ + iV1ϕ+. (2.106)

Moreover,

(A1 ± i)−1 = (A± i)−1 ⊕ ∓i
2

∑
j

〈ϕ±j , .〉(ϕ
±
j − ϕ∓j ), (2.107)

where {ϕ+
j } is an orthonormal basis for K+ and ϕ−j = V1ϕ

+
j .

Concerning closures we note that a bounded operator is closed if and
only if its domain is closed and any operator is closed if and only if its
inverse is closed. Hence we have

Lemma 2.24. The following items are equivalent.

• A is closed.
• D(V ) = Ran(A+ i) is closed.
• Ran(V ) = Ran(A− i) is closed.
• V is closed.

Next, we give a useful criterion for the existence of self-adjoint exten-
sions. A skew linear map C : H → H is called a conjugation if it satisfies
C2 = I and 〈Cψ,Cϕ〉 = 〈ψ,ϕ〉. The prototypical example is of course
complex conjugation Cψ = ψ∗. An operator A is called C-real if

CD(A) ⊆ D(A), and ACψ = CAψ, ψ ∈ D(A). (2.108)

Note that in this case CD(A) = D(A), since D(A) = C2D(A) ⊆ CD(A).

Theorem 2.25. Suppose the symmetric operator A is C-real, then its defect
indices are equal.
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Proof. Let {ϕj} be an orthonormal set in Ran(A+ i)⊥. Then {Kϕj} is an
orthonormal set in Ran(A − i)⊥. Hence {ϕj} is an orthonormal basis for
Ran(A+ i)⊥ if and only if {Kϕj} is an orthonormal basis for Ran(A− i)⊥.
Hence the two spaces have the same dimension. �

Finally, we note the following useful formula for the difference of resol-
vents of self-adjoint extensions.

Lemma 2.26. Suppose A is a closed symmetric operator with equal defect
indices d = d+(A) = d−(A). Then dim Ker(A∗−z∗) = d for all z. Moreover,
if Aj, j = 1, 2 are self-adjoint extensions and if {ϕj(z)} is an orthonormal
basis for Ker(A∗ − z∗), then

(A1 − z)−1 − (A2 − z)−1 =
∑
j,k

(α1
jk(z)− α2

jk(z))〈ϕk(z), .〉ϕk(z∗), (2.109)

where
αljk(z) = 〈ϕj(z∗), (Al − z)−1ϕk(z)〉. (2.110)

Proof. First of all we note that instead of z = i we could use V (z) =
(A + z∗)(A + z)−1 for any z ∈ C\R. Let d±(z) = dimK±(z), K+(z) =
Ran(A + z)⊥ respectively K−(z) = Ran(A + z∗)⊥. The same arguments
as before show that there is a one to one correspondence between the self-
adjoint extensions of A and the unitary operators on Cd(z). Hence d(z1) =
d(z2) = d±(A).

Now note that ((A1−z)−1−(A2−z)−1)ϕ is zero for every ϕ ∈ Ran(A−z).
Hence it suffices to consider it for vectors ϕ =

∑
j〈ϕj(z), ϕ〉ϕj(z) ∈ Ran(A−

z)⊥. Hence we have

(A1 − z)−1 − (A2 − z)−1 =
∑
j

〈ϕj(z), .〉ψj(z), (2.111)

where
ψj(z) = ((A1 − z)−1 − (A2 − z)−1)ϕj(z). (2.112)

Now computation the adjoint once using ((Aj − z)−1)∗ = (Aj − z∗)−1 and
once using (

∑
j〈ψj , .〉ϕj)∗ =

∑
j〈ϕj , .〉ψj we obtain∑

j

〈ϕj(z∗), .〉ψj(z∗) =
∑
j

〈ψj(z), .〉ϕj(z). (2.113)

Evaluating at ϕk(z) implies

ψk(z) =
∑
j

〈ψj(z∗), ϕk(z)〉ϕj(z∗) (2.114)

and finishes the proof. �



Chapter 3

The spectral theorem

The time evolution of a quantum mechanical system is governed by the
Schrödinger equation

i
d

dt
ψ(t) = Hψ(t). (3.1)

If H = Cn, and H is hence a matrix, this system of ordinary differential
equations is solved by the matrix exponential

ψ(t) = exp(−itH)ψ(0). (3.2)

This matrix exponential can be defined by a convergent power series. For
this approach the boundedness of H is crucial, which might not be the case
for a a quantum system. However, the best way to compute the matrix
exponential, and to understand the underlying dynamics, is to diagonalize
H. But how do we diagonalize a self-adjoint operator? The answer is know
as the spectral theorem.

3.1. The spectral theorem

In this section we want to address the problem of defining functions of a
self-adjoint operator A in a natural way, that is, such that

(f+g)(A) = f(A)+g(A), (fg)(A) = f(A)g(A), (f∗)(A) = f(A)∗. (3.3)

As long as f and g are polynomials, no problems arise. If we want to extend
this definition to a larger class of functions, we will need to perform some
limiting procedure. Hence we could consider convergent power series or
equip the space of polynomials with the sup norm. In both cases this only
works if the operator A is bounded. To overcome this limitation, we will use
characteristic functions χΩ(A) instead of powers Aj . Since χΩ(λ)2 = χΩ(λ),
the corresponding operators should be orthogonal projections. Moreover,

45
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we should also have χR(A) = I and χΩ(A) =
∑n

j=1 χΩj (A) for any finite
union Ω =

⋃n
j=1 Ωj of disjoint sets. The only remaining problem is of course

the definition of χΩ(A). However, we will defer this problem and begin
by developing a functional calculus for a family of characteristic functions
χΩ(A).

Denote the Borel sigma algebra of R by B. A projection-valued mea-
sure is a map

P : B → L(H), Ω 7→ P (Ω), (3.4)

from the Borel sets to the set of orthogonal projections, that is, P (Ω)∗ =
P (Ω) and P (Ω)2 = P (Ω), such that the following two conditions hold:

(1) P (R) = I.
(2) If Ω =

⋃
n Ωn with Ωn ∩ Ωm = ∅ for n 6= m, then

∑
n P (Ωn)ψ =

P (Ω)ψ for every ψ ∈ H (strong convergence).

Note that we require
∑

n P (Ωn)ψ = P (Ω)ψ rather than
∑

n P (Ωn) =
P (Ω). That is, we do not require the sum to converge in the operator
norm. In general, a sequence of bounded operators An is said to converge
strongly to a bounded operator A if Anψ → Aψ for every ψ ∈ H. Clearly
norm convergence implies strong convergence. For the sake of complete-
ness, a sequence of bounded operators An is said to converge weakly to
a bounded operator A if 〈ϕ,Anψ〉 → 〈ϕ,Aψ〉 for every ϕ,ψ ∈ H. Clearly
strong convergence implies weak convergence.

It is straightforward to verify that any projection-valued measure satis-
fies

P (∅) = 0, P (R\Ω) = I− P (Ω), (3.5)

and
P (Ω1 ∪ Ω2) + P (Ω1 ∩ Ω2) = P (Ω1) + P (Ω2). (3.6)

Moreover, we also have

P (Ω1)P (Ω2) = P (Ω1 ∩ Ω2). (3.7)

Indeed, suppose Ω1 ∩Ω2 = ∅ first. Then, taking the square of (3.6) we infer

P (Ω1)P (Ω2) + P (Ω2)P (Ω1) = 0. (3.8)

Multiplying this equation from the left by P (Ω1)P (Ω2) and from the right
by P (Ω2) we have (P (Ω1)P (Ω2))2 = 0 and hence P (Ω1)P (Ω2) = 0. For the
general case Ω1 ∩ Ω2 6= ∅ we now have

P (Ω1)P (Ω2) = (P (Ω1 − Ω2) + P (Ω1 ∩ Ω2))(P (Ω2 − Ω1) + P (Ω1 ∩ Ω2))

= P (Ω1 ∩ Ω2) (3.9)

as stated.
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We will abbreviate P (λ) = P ((−∞, λ]). Picking ψ ∈ H, we obtain a
finite Borel measure µψ(Ω) = 〈ψ, P (Ω)ψ〉, µψ(R) = ‖ψ‖2 <∞.

Using the polarization identity (2.15) we also have the following complex
Borel measures

µϕ,ψ(Ω) = 〈ϕ, P (Ω)ψ〉 =
1
4
(µϕ+ψ(Ω)− µϕ−ψ(Ω) + iµϕ−iψ(Ω)− iµϕ+iψ(Ω)).

(3.10)
Note also that, by Cauchy-Schwarz, |µϕ,ψ(Ω)| ≤ ‖ϕ‖ ‖ψ‖. Now let us turn
to integration with respect to our projection-valued measure. For any simple
function f =

∑n
j=1 cjχΩj we set

P (f) ≡
∫

R
f(λ)dP (λ) =

n∑
j=1

cjP (Ωj). (3.11)

In particular, P (χΩ) = P (Ω). The operator P is a linear map from the set
of simple functions into the set of bounded linear operators on H satisfying

〈ϕ, P (f)ψ〉 =
∫

R
f(λ)dµϕ,ψ(λ) (3.12)

and

‖P (f)ψ‖2 =
∫

R
|f(λ)|2dµψ(λ) ≤ sup

λ∈R
|f(λ)|2‖ψ‖2. (3.13)

Equipping the set of simple functions with the sup norm, there is a unique
extension of P to a bounded linear operator P : B(R) → L(H) (whose norm
is one) from the bounded Borel functions on R (with sup norm) to the set
of bounded linear operators on H. In particular, (3.12) and (3.13) remain
true. In addition, observe

dµP (g)ϕ,P (f)ψ = g∗fdµϕ,ψ (3.14)

and

〈P (g)ϕ, P (f)ψ〉 =
∫

R
g∗(λ)f(λ)dµϕ,ψ(λ). (3.15)

There is some additional structure behind this extension. Let us recall
some definitions first. A Banach algebra A (with identity) is a Banach
space which is at the same time an algebra such that

(1) ‖ab‖ ≤ ‖a‖ ‖b‖, a, b ∈ A,

(2) ‖I‖ = 1.

If, in addition, there is a conjugate linear mapping a 7→ a∗ such that

(1) ‖a∗‖ = ‖a‖,
(2) ‖aa∗‖ = ‖a‖ ‖a∗‖, a ∈ A,
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then A is called a C∗ algebra. The element a∗ is called the adjoint of a.
An element a ∈ A is called normal if aa∗ = a∗a, self-adjoint if a = a∗,

unitary if aa∗ = a∗a = I, (orthogonal) projection if a = a∗ = a2, and
positive if a = bb∗ for some b ∈ A.

A ∗-subalgebra is a subalgebra which is closed under the adjoint map.
An ideal is a subspace I ⊆ A such that a ∈ I, b ∈ A implies ab ∈ I and
ba ∈ I. If it is closed under the adjoint map it is called a ∗-ideal.

For example, the set of all bounded Borel measurable functions B(R)
(with the sup norm) and the set L(H) of all bounded linear mappings on H

are C∗ algebras.
A C∗ algebra homomorphism φ is a linear map between two C∗ al-

gebras which respects both the multiplication and the adjoint, that is,
φ(ab) = φ(a)φ(b), φ(a−1) = φ(a)−1 and φ(a∗) = φ(a)∗. Any C∗ algebra
homomorphism has norm one

‖φ(a)‖ ≤ ‖a‖ (3.16)

and is positivity preserving.

Theorem 3.1. Let P (Ω) be a projection-valued measure on H. Then the
operator

P : B(R) → L(H)
f 7→

∫
R f(λ)dP (λ)

(3.17)

is a C∗ algebra homomorphism.
In addition, if fn(x) → f(x) pointwise and if the sequence supλ∈R |fn(λ)|

is bounded, then P (fn) → P (f) strongly.

Proof. The properties P (1) = I, P (f∗) = P (f)∗, and P (fg) = P (f)P (g)
are straightforward for simple functions f . For general f they follow from
continuity. Hence P is a C∗ algebra homomorphism.

The last claim follows from the dominated convergence theorem and
(3.13). �

Next we want to define this operator for unbounded Borel functions.
Since we expect the resulting operator to be unbounded, we need a suitable
domain first

Df = {ψ ∈ H|
∫

R
|f(λ)|2dµψ(λ) <∞}. (3.18)

This is clearly a linear subspace of H since µαψ(Ω) = |α|2µψ(Ω) and since
µϕ+ψ(Ω) ≤ 2(µϕ(Ω) + µψ(Ω)) (by the triangle inequality).

For every ψ ∈ Df , the bounded Borel function

fn = χΩnf, Ωn = {λ| |f(λ)| ≤ n}, (3.19)
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converges to f in the sense of L2(R, dµψ). Moreover, because of (3.13),
P (fn)ψ converges to some vector ψ̃. We define P (f)ψ = ψ̃. By construction,
P (f) is a linear operator such that (3.12) and (3.13) hold.

In addition, Df is dense. Indeed, let Ωn be defined as in (3.19) and
abbreviate ψn = P (Ωn)ψ. Now observe that dµψn = χΩndµψ and hence
ψn ∈ Df . Moreover, ψn → ψ by (3.13) since χΩn → 1 in L2(R, dµψ).

The operator P (f) has some additional properties. One calls an un-
bounded operator A normal if D(A) = D(A∗) and ‖Aψ‖ = ‖A∗ψ‖ for all
ψ ∈ D(A).

Theorem 3.2. For any Borel function f , the operator

P (f) =
∫

R
f(λ)dP (λ), D(P (f)) = Df , (3.20)

is normal and satisfies
P (f)∗ = P (f∗). (3.21)

Proof. Let f be given and define fn, Ωn as above. Since (3.21) holds for
fn by our previous theorem, we get

〈ϕ, P (f)ψ〉 = 〈P (f∗)ϕ,ψ〉 (3.22)

for any ϕ,ψ ∈ Df = D(f∗) by continuity. Thus it remains to show that
D(P (f)∗) ⊆ Df . If ψ ∈ D(P (f)∗) we have 〈ψ, P (f)ϕ〉 = 〈ψ̃, ϕ〉 for all
ϕ ∈ Df by definition. Now observe that P (f∗n)ψ = P (Ωn)ψ̃ since we have

〈P (f∗n)ψ,ϕ〉 = 〈ψ, P (fn)ϕ〉 = 〈ψ, P (f)P (Ωn)ϕ〉 = 〈P (Ωn)ψ̃, ϕ〉 (3.23)

for any ϕ ∈ H. To see the second equality use P (fn)ϕ = P (fmχn)ϕ =
P (fm)P (Ωn)ϕ for m ≥ n and let m→∞. This proves existence of the limit

lim
n→∞

∫
R
|fn|2dµψ(λ) = lim

n→∞
‖P (f∗n)ψ‖2 = lim

n→∞
‖P (Ωn)ψ̃‖2 = ‖ψ̃‖2, (3.24)

which implies f ∈ L2(R, dµψ), that is, ψ ∈ Df . That P (f) is normal follows
from ‖P (f)ψ‖ = ‖P (f∗)ψ‖ =

∫
R |f(λ)|2dµψ. �

These considerations seem to indicate some kind of correspondence be-
tween the operators P (f) in H and f in L2(R, dµψ). Recall that U : H → H̃ is
called unitary if it is a bijection which preserves scalar products 〈Uϕ,Uψ〉 =
〈ϕ,ψ〉. The operators A in H and Ã in H̃ are said to be unitarily equiva-
lent if

UA = ÃU, UD(A) = D(Ã). (3.25)
Clearly, A is self-adjoint if and only if Ã is and σ(A) = σ(Ã).

Now let us return to our original problem and consider the subspace

Hψ = {P (f)ψ|f ∈ L2(R, dµψ)} ⊆ H. (3.26)
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The vector ψ is called cyclic if Hψ = H. By (3.13), the relation

Uψ(P (f)ψ) = f (3.27)

defines a unique unitary operator Uψ : Hψ → L2(R, dµψ) such that

UψP (f) = fUψ, (3.28)

where f is identified with its corresponding multiplication operator. More-
over, if f is unbounded we have Uψ(Df∩Hψ) = D(f) = {g ∈ L2(R, dµψ)|fg ∈
L2(R, dµψ)} (since ϕ = P (f)ψ implies dµϕ = fdµψ) and the above equation
still holds.

If ψ is cyclic, our picture is complete. Otherwise we need to extend this
approach. A set {ψj}j∈J (J some index set) is called a set of spectral vectors
if ‖ψj‖ = 1 and Hψi

⊥ Hψj
for all i 6= j. A maximal set of spectral vectors

is called a spectral basis. By Zorn’s lemma there exists a spectral basis.
It is important to observe that the cardinality of a spectral basis is not

well-defined (in contradistinction to the cardinality of an ordinary basis of
the Hilbert space). However, it can be at most equal to the cardinality of an
ordinary basis. In particular, since H is separable, it is at most countable.
The minimal cardinality of a spectral basis is called spectral multiplicity
of P . If the spectral multiplicity is one, the spectrum is called simple.

For a spectral basis {ψj}j∈J we claim
⊕

j Hψj
= H. Indeed, if equality

would not hold, we could find a g ⊥
⊕

j Hψj
and {ψj}j∈J ∪ {g} would be a

larger spectral set contradicting maximality.
In summary we have,

Lemma 3.3. For every projection valued measure P , there is an (at most
countable) spectral basis {ψn} such that

H =
⊕
n

Hψn (3.29)

and a corresponding unitary operator

U =
⊕
n

Uψn : H →
⊕
n

L2(R, dµψn) (3.30)

such that for any Borel function f ,

UP (f) = fU, UDf = D(f). (3.31)

Using this canonical form of projection valued measures it is straight-
forward to prove

Lemma 3.4. Let f, g be Borel functions and α, β ∈ C. Then we have

αP (f) + βP (g) ⊆ P (αf + βg), D(αP (f) + βP (g)) = D|f |+|g| (3.32)
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and
P (f)P (g) ⊆ P (f g), D(P (f)P (g)) = Dg ∩Df g. (3.33)

Now observe, that to every projection valued measure P we can assign a
self-adjoint operator A =

∫
R λdP (λ). The question is whether we can invert

this map. To do this, we consider the resolvent RA(z) =
∫

R(λ− z)−1dP (λ).
By (3.12) the corresponding quadratic form is given by

Fψ(z) = 〈ψ,RA(z)ψ〉 =
∫

R

1
λ− z

dµψ(λ), (3.34)

which is know as the Borel transform of the measure µψ. It can be shown
(see Section 3.4) that Fψ(z) is a holomorphic map from the upper half
plane to itself. Such functions are called Herglotz functions. Moreover,
the measure µψ can be reconstructed from Fψ(z) by Stieltjes inversion
formula

µψ(λ) = lim
δ↓0

lim
ε↓0

1
π

∫ λ+δ

−∞
Im(Fψ(λ+ iε))dλ. (3.35)

Conversely, if Fψ(z) is a Herglotz function satisfying |F (z)| ≤ M
Im(z) , then it

is the Borel transform of a unique measure µψ (given by Stieltjes inversion
formula).

So let A be a given self-adjoint operator and consider the expectation of
the resolvent of A,

Fψ(z) = 〈ψ,RA(z)ψ〉. (3.36)

This function is holomorphic for z ∈ ρ(A) and satisfies

Fψ(z∗) = Fψ(z)∗ and |Fψ(z)| ≤ ‖ψ‖2

Im(z)
(3.37)

(see Theorem 2.14). Moreover, the first resolvent formula (2.69) shows

Im(Fψ(z)) = Im(z)‖RA(z)ψ‖2 (3.38)

that it maps the upper half plane to itself, that is, it is a Herglotz function.
So by our above remarks, there is a corresponding measure µψ(λ) given by
Stieltjes inversion formula. It is called spectral measure corresponding to
ψ.

More generally, by polarization, for each ϕ,ψ ∈ H we can find a corre-
sponding complex measure µϕ,ψ such that

〈ϕ,RA(z)ψ〉 =
∫

R

1
λ− z

dµϕ,ψ(λ). (3.39)

The measure µϕ,ψ is conjugate linear in ϕ and linear in ψ. Moreover, a
comparison with our previous considerations begs us to define a family of
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operators PA(Ω) via

〈ϕ, PA(Ω)ψ〉 =
∫

R
χΩ(λ)dµϕ,ψ(λ). (3.40)

This is indeed possible by the Riesz lemma since |〈ϕ, PA(Ω)ψ〉| = |µϕ,ψ(Ω)| ≤
‖ϕ‖ ‖ψ‖. The operators PA(Ω) are non negative (0 ≤ 〈ψ, PA(Ω)ψ〉 ≤ 1) and
hence self-adjoint.

Lemma 3.5. The family of operators PA(Ω) forms a projection valued mea-
sure.

Proof. We first show PA(Ω1)PA(Ω2) = PA(Ω1 ∩ Ω2) in two steps. First
observe (using the first resolvent formula (2.69))∫

R

1
λ− z̃

dµRA(z∗)ϕ,ψ(λ) = 〈RA(z∗)ϕ,RA(z̃)ψ〉 = 〈ϕ,RA(z)RA(z̃)ψ〉

=
1

z − z̃
(〈ϕ,RA(z)ψ〉 − 〈ϕ,RA(z̃)ψ〉)

=
1

z − z̃

∫
R

(
1

λ− z
− 1
λ− z̃

)
dµϕ,ψ(λ) =

∫
R

1
λ− z̃

dµϕ,ψ(λ)
λ− z

(3.41)

implying dµRA(z∗)ϕ,ψ(λ) = (λ − z)−1dµϕ,ψ(λ) since a Herglotz function is
uniquely determined by its measure. Secondly we compute∫

R

1
λ− z

dµϕ,PA(Ω)ψ(λ) = 〈ϕ,RA(z)PA(Ω)ψ〉 = 〈RA(z∗)ϕ, PA(Ω)ψ〉

=
∫

R
χΩ(λ)dµRA(z∗)ϕ,ψ(λ) =

∫
R

1
λ− z

χΩ(λ)dµϕ,ψ(λ)

implying dµϕ,PA(Ω)ψ(λ) = χΩ(λ)dµϕ,ψ(λ). Equivalently we have

〈ϕ, PA(Ω1)PA(Ω2)ψ〉 = 〈ϕ, PA(Ω1 ∩ Ω2)ψ〉 (3.42)

since χΩ1χΩ2 = χΩ1∩Ω2 . In particular, choosing Ω1 = Ω2, we see that
PA(Ω1) is a projector.

The relation PA(R) = I follows from (3.86) below and Lemma 2.18 which
imply µψ(R) = ‖ψ‖2.

Now let Ω =
⋃∞
n=1 Ωn with Ωn ∩ Ωm = ∅ for n 6= m. Then

n∑
j=1

〈ψ, PA(Ωj)ψ〉 → 〈ψ, PA(Ω)ψ〉 (3.43)

since µψ(Ω) =
∑∞

j=1 µψ(Ωj). Furthermore, using

PA(Ω)−
n∑
j=1

PA(Ωj) = PA(Ω\
n⋃
j=1

Ωj) (3.44)
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and

〈ψ, PA(Ω\
n⋃
j=1

Ωj)ψ〉 = ‖PA(Ω\
n⋃
j=1

Ωj)ψ‖2 (3.45)

we see that
∑n

j=1 PA(Ωj)ψ → PA(Ω)ψ for any ψ ∈ H. �

Now we can prove the spectral theorem for self-adjoint operators.

Theorem 3.6 (Spectral theorem). To every self-adjoint operator A there
corresponds a unique projection valued measure PA such that

A =
∫

R
λdPA(λ). (3.46)

Proof. Existence has already been established. Moreover, Lemma 3.4 shows
that PA((λ−z)−1) = RA(z), z ∈ C\R. Since the measures µϕ,ψ are uniquely
determined by the resolvent and the projection valued measure is uniquely
determined by the measures µϕ,ψ we are done. �

The quadratic form of A is given by

qA(ψ) =
∫

R
λdµψ(λ) (3.47)

and can be defined for every ψ in the form domain self-adjoint operator

Q(A) = {ψ ∈ H|
∫

R
|λ|dµψ(λ) <∞}. (3.48)

This extends our previous definition for non-negative operators.
Note, that ifA and Ã are unitarily equivalent as in (3.25), then URA(z) =

RÃ(z)U and hence
dµψ = dµ̃Uψ. (3.49)

In particular, we have UPA(f) = PÃ(f)U , UD(PA(f)) = D(PÃ(f)).
Finally, let us give a characterization of the spectrum of A in terms of

the associated projectors.

Theorem 3.7. The spectrum of A is given by

σ(A) = {λ ∈ R|PA((λ− ε, λ+ ε)) 6= 0 for all ε > 0}. (3.50)

Proof. Let Ωn = (λ0 − 1
n , λ0 + 1

n). Suppose PA(Ωn) 6= 0. Then we can find
a ψn ∈ PA(Ωn)H with ‖ψn‖ = 1. Since

‖(A− λ0)ψn‖2 = ‖(A− λ0)PA(Ωn)ψn‖2

=
∫

R
(λ− λ0)2χΩn(λ)dµψn(λ) ≤ 1

n2
(3.51)

we conclude λ0 ∈ σ(A) by Lemma 2.12.
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Conversely, if PA((λ0− ε, λ0 + ε)) = 0, set fε(λ) = χR\(λ0−ε,λ0+ε)(λ)(λ−
λ0)−1. Then

(A− λ0)PA(fε) = PA(fε)(A− λ0) =

PA(fε(λ)(λ− λ0)) = PA(R\(λ0 − ε, λ0 + ε)) = I (3.52)

and hence λ0 ∈ ρ(A). �

Thus PA((λ1, λ2)) = 0 if and only if (λ1, λ2) ⊆ ρ(A) and we have

PA(σ(A)) = I and PA(R ∩ ρ(A)) = 0 (3.53)

and consequently

PA(f) = PA(σ(A))PA(f) = PA(χσ(A)f). (3.54)

In other words, PA(f) is not affected by the values of f on R\σ(A)!
It is clearly more intuitive to write PA(f) = f(A) and we will do so from

now on. This notation is justified by the elementary observation

PA(
n∑
j=0

αjλ
j) =

n∑
j=0

αjA
j . (3.55)

Moreover, this also shows that if A is bounded and f(A) can be defined via
a convergent power series, then this agrees with our present definition by
Theorem 3.1.

3.2. More on Borel measures

Section 3.1 showed that in order to understand self-adjoint operators, one
needs to understand multiplication operators on L2(R, dµ), where dµ is a
finite Borel measure. This is the purpose of the present section.

The set of all growth points, that is,

σ(µ) = {λ ∈ R|µ((λ− ε, λ+ ε)) > 0 for all ε > 0}, (3.56)

is called the spectrum of µ. Invoking Morea’s together with Fubini’s theorem
shows that the Borel transform

F (z) =
∫

R

1
λ− z

dµ(λ) (3.57)

is holomorphic for z ∈ C\σ(µ). The converse following from Stieltjes inver-
sion formula. Associated with this measure is the operator

Af(λ) = λf(λ), D(A) = {f ∈ L2(R, dµ)|λf(λ) ∈ L2(R, dµ)}. (3.58)

By Theorem 3.7 the spectrum of A is precisely the spectrum of µ, that is,

σ(A) = σ(µ). (3.59)
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Note that 1 ∈ L2(R, dµ) is a cyclic vector for A and that

dµg,f (λ) = g(λ)∗f(λ)dµ(λ). (3.60)

Now what can we say about the function f(A) (which is precisely the
multiplication operator by f) of A? We are only interested in the case where
f is real valued. Introduce the measure

(f?µ)(Ω) = µ(f−1(Ω)), (3.61)

then ∫
R
g(λ)d(f?µ)(λ) =

∫
R
g(f(λ))dµ(λ). (3.62)

In fact, it suffices to check this formula for simple functions g which follows
since χΩ ◦ f = χf−1(Ω). In particular, we have

Pf(A)(Ω) = χf−1(Ω). (3.63)

It is tempting to conjecture that f(A) is unitarily equivalent to multi-
plication by λ in L2(R, d(f?µ)) via the map

L2(R, d(f?µ)) → L2(R, dµ), g 7→ g ◦ f. (3.64)

However, this map is only unitary if its range is L2(R, dµ), which is equiva-
lent to 1 being also cyclic for f(A).

For example, let f(λ) = λ2, then (g ◦ f)(λ) = g(λ2) and the range of
the above map is given by the symmetric functions. Note that we can still
get a unitary map L2(R, d(f?µ)) ⊕ L2(R, χd(f?µ)) → L2(R, dµ), (g1, g2) 7→
g1(λ2) + g2(λ2)(χ(λ)− χ(−λ)), where χ = χ(0,∞).

Lemma 3.8. Let f be real valued. The spectrum of f(A) is given by

σ(f(A)) = σ(f?µ). (3.65)

In particular,
σ(f(A)) ⊆ f(σ(A)), (3.66)

where equality holds if f is continuous and the closure can be dropped if, in
addition, σ(A) is bounded (i.e., compact).

Proof. If λ0 ∈ σ(f?µ), then the sequence gn = µ(Ωn)−1/2χΩn , Ωn =
f−1((λ0 − 1

n , λ0 + 1
n)), satisfies ‖gn‖ = 1, ‖(f(A)− λ0)gn‖ < n−1 and hence

λ0 ∈ σ(f(A)). Conversely, if λ0 6∈ σ(f?µ), then µ(Ωn) = 0 for some n and
hence we can change f on Ωn such that f(R)∩ (λ0− 1

n , λ0 + 1
n) = ∅ without

changing the corresponding operator. Thus (f(A)− λ0)−1 = (f(λ)− λ0)−1

exists and is bounded, implying λ0 6∈ σ(f(A)).
If f is continuous, f−1(f(λ) − ε, f(λ) + ε) contains an open interval

around λ and hence f(λ) ∈ σ(f(A)) if λ ∈ σ(A). If, in addition, σ(A) is
compact, then f(σ(A)) is compact and hence closed. �
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Next we recall the unique decomposition of µ with respect to Lebesgue
measure,

dµ = dµac + dµs, (3.67)
where µac is absolutely continuous with respect to Lebesgue measure (i.e.,
we have µac(B) = 0 for allB with Lebesgue measure zero) and µs is singular
with respect to Lebesgue measure (i.e., µs is supported, µs(R\B) = 0, on
a set B with Lebesgue measure zero). The singular part µs can be further
decomposed into a (singularly) continuous and a pure point part,

dµs = dµsc + dµpp, (3.68)

where µsc is continuous on R and µpp is a step function. Since the measures
dµac, dµsc, and dµpp are mutually singular, they have mutually disjoint
supports Mac, Msc, and Mpp. Note that these sets are not unique. We will
choose them such that Mpp is the set of all jumps of µ(λ) and such that Msc

has Lebesgue measure zero.
To the sets Mac, Msc, and Mpp correspond projectors P ac = χMac(A),

P sc = χMsc(A), and P pp = χMpp(A) satisfying P ac + P sc + P pp = I. In
other words, we have a corresponding direct sum decomposition of both our
Hilbert space

L2(R, dµ) = L2(R, dµac)⊕ L2(R, dµsc)⊕ L2(R, dµpp) (3.69)

and our operator A

A = (AP ac)⊕ (AP sc)⊕ (AP pp). (3.70)

3.3. Spectral types

Our next aim is to transfer the results of the previous section to arbitrary
self-adjoint operators using Lemma 3.3. First note that to each spectral
basis {ψn} we can assign a trace measure

dµ =
∑
n

εndµψn , 0 < εn ≤ 1,
∑
n

εn = 1. (3.71)

Then, we have σ(A) = σ(µ) and the following generalization of Lemma 3.8
holds.

Theorem 3.9 (Spectral mapping). Let µ be the trace measure of some
spectral basis and let f be real-valued. Then the spectrum of f(A) is given
by

σ(f(A)) = {λ ∈ R|µ(f−1(λ− ε, λ+ ε)) > 0 for all ε > 0}. (3.72)

In particular,
σ(f(A)) ⊆ f(σ(A)), (3.73)

where equality holds if f is continuous and the closure can be dropped if, in
addition, σ(A) is bounded.
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Next, we want to introduce the splitting (3.69) for arbitrary self-adjoint
operators A. It is tempting to pick a spectral basis and treat each summand
in the direct sum separately. However, since it is not clear that this approach
is independent of the spectral basis chosen, we use the more sophisticated
definition

Hac = {ψ ∈ H|µψ is absolutely continuous},
Hsc = {ψ ∈ H|µψ is singularly continuous},
Hpp = {ψ ∈ H|µψ is pure point}. (3.74)

Lemma 3.10. We have

H = Hac ⊕ Hsc ⊕ Hpp. (3.75)

There are Borel sets Mxx such that the projector onto Hxx is given by
P xx = χMxx(A), xx ∈ {ac, sc, pp}. In particular, the subspaces Hxx re-
duce A. For the sets Mxx one can choose the corresponding supports of
some trace measure µ.

Proof. We will use the unitary operator U of Lemma 3.3. Pick ϕ ∈ H and
write ϕ =

∑
n ϕn with ϕn ∈ Hψn . Let fn = Uϕn, then, by construction

of the unitary operator U , ϕn = fn(A)ψn and hence dµϕn = |fn|2dµψn .
Moreover, since the subspaces Hψn are orthogonal, we have

dµϕ =
∑
n

|fn|2dµψn (3.76)

and hence

dµϕ,xx =
∑
n

|fn|2dµψn,xx, xx ∈ {ac, sc, pp}. (3.77)

This shows

UHxx =
⊕
n

L2(R, dµψn,xx), xx ∈ {ac, sc, pp} (3.78)

and reduces our problem to the considerations of the previous section. �

The absolutely continuous, singularly continuous, and pure point
spectrum of A are defined as

σac(A) = σ(A|Hac), σsc(A) = σ(A|Hsc), and σpp(A) = σ(A|Hpp),
(3.79)

respectively. If A and Ã are unitarily equivalent via U , then so are A|Hxx

and Ã|H̃xx
by (3.49). In particular, σxx(A) = σxx(Ã).

It is important to observe that σpp(A) is in general not equal to the set
of eigenvalues

σp(A) = {λ ∈ R|λ is an eigenvalue of A} (3.80)
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since we only have σpp(A) = σp(A).

3.4. Appendix: The Herglotz theorem

A holomorphic function F : C+ → C+, C± = {z ∈ C|± Im(z) > 0}, is called
a Herglotz function. We can define F on C− using F (z∗) = F (z)∗.

Suppose µ is a finite Borel measure. Then its Borel transform is defined
via

F (z) =
∫

R

dµ(λ)
λ− z

. (3.81)

Theorem 3.11. The Borel transform of a finite Borel measure is a Herglotz
function satisfying

|F (z)| ≤ µ(R)
Im(z)

, z ∈ C+. (3.82)

Moreover, the measure µ can be reconstructed via Stieltjes inversion formula

1
2

(µ((λ1, λ2)) + µ([λ1, λ2])) = lim
ε↓0

1
π

∫ λ2

λ1

Im(F (λ+ iε))dλ. (3.83)

Proof. By Morea’s and Fubini’s theorem, F is holomorphic on C+ and the
remaining properties follow from 0 < Im((λ−z)−1) and |λ−z|−1 ≤ Im(z)−1.
Stieltjes inversion formula follows from Fubini’s theorem and the dominated
convergence theorem since

1
2πi

∫ λ2

λ1

(
1

x− λ− iε
− 1
x− λ+ iε

)dλ→ 1
2

(
χ[λ1,λ2](x) + χ(λ1,λ2)(x)

)
(3.84)

pointwise. �

Observe

Im(F (z)) = Im(z)
∫

R

dµ(λ)
|λ− z|2

(3.85)

and
lim
λ→∞

λ Im(F (iλ)) = µ(R). (3.86)

The converse of the previous theorem is also true

Theorem 3.12. Suppose F is a Herglotz function satisfying

|F (z)| ≤ M

Im(z)
, z ∈ C+. (3.87)

Then there is a unique Borel measure µ, satisfying µ(R) ≤M , such that F
is the Borel transform of µ.
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Proof. We abbreviate F (z) = v(z)+ iw(z) and z = x+i y. Next we choose
a contour

Γ = {x+ iε+ λ|λ ∈ [−R,R]} ∪ {x+ iε+Reiϕ|ϕ ∈ [0, π]}. (3.88)

and note that z lies inside Γ and z∗ + 2iε lies outside Γ if 0 < ε < y < R.
Hence we have by Cauchy’s formula

F (z) =
1

2πi

∫
Γ

(
1

ζ − z
− 1
ζ − z∗ − 2iε

)
F (ζ)dζ. (3.89)

Inserting the explicit form of Γ we see

F (z) =
1
π

∫ R

−R

y − ε

λ2 + (y − ε)2
F (x+ iε+ λ)dλ

+
i
π

∫ π

0

y − ε

R2e2iϕ + (y − ε)2
F (x+ iε+Reiϕ)Reiϕdϕ. (3.90)

The integral over the semi circle vanishes as R→∞ and hence we obtain

F (z) =
1
π

∫
R

y − ε

(λ− x)2 + (y − ε)2
F (λ+ iε)dλ (3.91)

and taking imaginary parts

w(z) =
∫

R
φε(λ)wε(λ)dλ, (3.92)

where φε(λ) = (y−ε)/((λ−x)2 +(y−ε)2) and wε(λ) = w(λ+iε)/π. Letting
y →∞ we infer from our bound∫

R
wε(λ)dλ ≤M. (3.93)

In particular, since |φε(λ)− φ0(λ)| ≤ const ε we have

w(z) = lim
ε↓0

∫
R
φ0(λ)dµε(λ), (3.94)

where µε(λ) =
∫ λ
−∞wε(x)dx. It remains to establish that the monotone

functions µε converge properly. Since 0 ≤ µε(λ) ≤M , there is a convergent
subsequence for fixed λ. Moreover, by the standard diagonal trick, there
is even a subsequence εn such that µεn(λ) converges for each rational λ.
For irrational λ we set µ(λ0) = infλ≥λ0{µ(λ)|λ rational}. Then µ(λ) is
monotone, 0 ≤ µ(λ1) ≤ µ(λ2) ≤M , λ1 ≤ λ2, and we claim

w(z) =
∫

R
φ0(λ)dµ(λ). (3.95)

Fix δ > 0 and let λ1 < λ2 < · · · < λm+1 be rational numbers such that

|λj+1 − λj | ≤ δ and λ1 ≤ x− δ

y3
, λm+1 ≥ x+

δ

y3
. (3.96)
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Then
|φ0(λ)− φ0(λj)| ≤

δ

y2
, λj ≤ λ ≤ λj+1, (3.97)

and
|φ0(λ)| ≤ δ

y2
, λ ≤ λ1 or λm+1 ≤ λ. (3.98)

Now observe

|
∫

R
φ0(λ)dµ(λ)−

∫
R
φ0(λ)dµεn(λ)| ≤

|
∫

R
φ0(λ)dµ(λ)−

m∑
j=1

φ0(λj)(µ(λj+1)− µ(λj))|

+ |
m∑
j=1

φ0(λj)(µ(λj+1)− µ(λj)− µεn(λj+1) + µεn(λj))

+ |
∫

R
φ0(λ)dµεn(λ)−

m∑
j=1

φ0(λj)(µεn(λj+1)− µεn(λj))| (3.99)

The first and third term can be bounded by 2Mδ/y2. Moreover, since
φ0(y) ≤ 1/y we can find an N ∈ N such that

|µ(λj)− µεn(λj)| ≤
y

2m
δ, n ≥ N, (3.100)

and hence the second term is bounded by δ. In summary, the difference in
(3.99) can be made arbitrarily small.

Now F (z) and
∫

R(λ−z)−1dµ(λ) have the same imaginary part and thus
the only differ by a real constant. By our bound this constant must be
zero. �

The Radon-Nikodym derivative of µ can be obtained from the boundary
values of F .

Theorem 3.13. Let µ be a finite Borel measure and F its Borel transform,
then

(Dµ)(λ) ≤ lim inf
ε↓0

1
π
F (λ+ iε) ≤ lim sup

ε↓0

1
π
F (λ+ iε) ≤ (Dµ)(λ). (3.101)

Proof. We need to estimate

Im(F (λ+ iε)) =
∫

R
Kε(t)dµ(t), Kε(t) =

ε

t2 + ε2
. (3.102)

We first split the integral into two parts

Im(F (λ+iε)) =
∫
Iδ

Kε(t−λ)dµ(t)+
∫

R\Iδ
Kε(t−λ)µ(t), Iδ = (λ−δ, λ+δ).

(3.103)
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Clearly the second part can be estimated by∫
R\Iδ

Kε(t− λ)µ(t) ≤ Kε(δ)µ(R). (3.104)

To estimate the first part we integrate

K ′
ε(s) ds dµ(t) (3.105)

over the triangle {(s, t)|λ − s < t < λ + s, 0 < s < δ} = {(s, t)|λ − δ < t <
λ+ δ, t− λ < s < δ} and obtain∫ δ

0
µ(Is)K ′

ε(s)ds =
∫
Iδ

(K(δ)−Kε(t− λ))dµ(t). (3.106)

Now suppose there is are constants c and C such that c ≤ µ(Is)
2s ≤ C,

0 ≤ s ≤ δ, then

2c arctan(
δ

ε
) ≤

∫
Iδ

Kε(t− λ)dµ(t) ≤ 2C arctan(
δ

ε
) (3.107)

since

δKε(δ) +
∫ δ

0
−sK ′

ε(s)ds = arctan(
δ

ε
). (3.108)

Thus the claim follows combining both estimates. �

As a consequence of Theorem 0.10 and Theorem 0.11 we obtain

Theorem 3.14. Let µ be a finite Borel measure and F its Borel transform,
then the limit

Im(F (λ)) = lim
ε↓0

1
π

Im(F (λ+ iε)) (3.109)

exists a.e. with respect to µ (finite or infinite) and

(Dµ)(λ) =
1
π

Im(F (λ)) (3.110)

whenever the latter is finite.
Moreover, the set {λ|F (λ) = ∞} is a support for the singularly and

{λ|F (λ) <∞} is a support for the absolutely continuous part.

In particular,

Corollary 3.15. The measure µ is purely absolutely continuous on I if
lim supε↓0 Im(F (λ+ iε)) <∞ for all λ ∈ I.





Chapter 4

Applications of the
spectral theorem

Now let us show how the spectral theorem can be used. This chapter can
be skipped on first reading. We will give a few typical applications:

Firstly we will derive an operator valued version of of Stieltjes’ inversion
formula. To do this, we need to show how to integrate a family of functions
of A with respect to a parameter. Moreover, we will show that these integrals
can be evaluated by computing the corresponding integrals of the complex
valued functions.

Secondly we will consider commuting operators and show how certain
facts, which are known to hold for the resolvent of an operator A, can be
established for a larger class of functions.

Finally, we will show how the dimension of RanPA(Ω) can be estimated.

4.1. Integral formulas

We begin with the first task by having a closer look at the projector PA(Ω).
They project onto subspaces corresponding to expectation values in the set
Ω. In particular, the number

〈ψ, χΩ(A)ψ〉 (4.1)

is the probability for a measurement of a to lie in Ω. In addition, we have

〈ψ,Aψ〉 =
∫

Ω
λ dµψ(λ) ∈ hull(Ω), ψ ∈ PA(Ω)H, ‖ψ‖ = 1, (4.2)

where hull(Ω) is the convex hull of Ω.

63
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The space Ranχ{λ0}(A) is called the eigenspace corresponding to λ0

since we have

〈ϕ,Aψ〉 =
∫

R
λχ{λ0}(λ)dµϕ,ψ(λ) = λ0

∫
R
dµϕ,ψ(λ) = λ0〈ϕ,ψ〉 (4.3)

and hence Aψ = λ0ψ for all ψ ∈ Ranχ{λ0}(A). The dimension of the
eigenspace is called the multiplicity of the eigenvalue.

Moreover, since

lim
ε↓0

−iε
λ− λ0 − iε

= χ{λ0}(λ) (4.4)

we infer from Theorem 3.1 that

lim
ε↓0

−iεRA(λ0 + iε)ψ = χ{λ0}(A)ψ. (4.5)

Similarly, we can obtain an operator valued version of Stieltjes’ inversion
formula. But first we need to recall a few facts from integration in Banach
spaces.

We will consider the case of mappings f : I → X where I = [t0, t1] ⊂ R is
a compact interval andX is a Banach space. As before, a function f : I → X
is called simple if the image of f is finite, f(I) = {xi}ni=1, and if each inverse
image f−1(xi), 1 ≤ i ≤ n, is a Borel set. The set of simple functions
S(I,X) forms a linear space and can be equipped with the sup norm. The
corresponding Banach space obtained after completion is called the set of
regulated functions R(I,X).

Observe that C(I,X) ⊂ R(I,X). In fact, consider the simple function
fn =

∑n−1
i=0 f(si)χ[si,si+1), where si = t0 + i t1−t0n . Since f ∈ C(I,X) is

uniformly continuous, we infer that fn converges uniformly to f .
For f ∈ S(I,X) we can define a linear map

∫
: S(I,X) → X by∫

I
f(t)dt =

n∑
i=1

xi|f−1(xi)|, (4.6)

where |Ω| denotes the Lebesgue measure of Ω. This map satisfies

‖
∫
I
f(t)dt‖ ≤ ‖f‖(t1 − t0) (4.7)

and hence it can be extended uniquely to a linear map
∫

: R(I,X) → X
with the same norm (t1 − t0). We even have

‖
∫
I
f(t)dt‖ ≤

∫
I
‖f(t)‖dt, (4.8)
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which clearly holds for f ∈ S(I,X) und thus for all f ∈ R(I,X) by conti-
nuity. In addition, if ` ∈ X∗ is a continuous linear functional, then

`(
∫
I
f(t)dt) =

∫
I
`(f(t))dt, f ∈ R(I,X). (4.9)

If I = R, we say that f : I → X is integrable if f ∈ R([−r, r], X) for all
r > 0 and if ‖f(t)‖ is integrable. In this case we can set∫

R
f(t)dt = lim

r→∞

∫
[−r,r]

f(t)dt (4.10)

and (4.8) and (4.9) still hold.

We will use the standard notation
∫ t3
t2
f(s)ds =

∫
I χ(t2,t3)(s)f(s)ds and∫ t2

t3
f(s)ds = −

∫ t3
t2
f(s)ds.

We write f ∈ C1(I,X) if

d

dt
f(t) = lim

ε→0

f(t+ ε)− f(t)
ε

(4.11)

exists for all t ∈ I. In particular, if f ∈ C(I,X), then F (t) =
∫ t
t0
f(s)ds ∈

C1(I,X) and dF/dt = f as can be seen from

|F (t+ ε)− F (t)− f(t)ε| = |
∫ t+ε

t
(f(s)− f(t))ds| ≤ |ε| sup

s∈[t,t+ε]
|f(s)− f(t)|.

(4.12)
The important facts for us are the following two results.

Lemma 4.1. Suppose f : I × R → C is a bounded Borel function such
that f(., λ) is integrable for every λ and set F (λ) =

∫
I f(t, λ)dt. For any

self-adjoint operator A we have

F (A) =
∫
I
f(t, A)dt respectively F (A)ψ =

∫
I
f(t, A)ψ dt. (4.13)

Moreover, suppose A : I → L(H) is integrable, then

(∫
I
A(t)dt

)
ψ =

∫
I
(A(t)ψ)dt. (4.14)



66 4. Applications of the spectral theorem

Proof. We compute

〈ϕ, (
∫
I
f(t, A)dt)ψ〉 =

∫
I
〈ϕ, f(t, A)ψ〉dt

=
∫
I

∫
R
f(t, λ)dµϕ,ψ(λ)dt

=
∫

R

∫
I
f(t, λ)dt dµϕ,ψ(λ)

=
∫

R
F (λ)dµϕ,ψ(λ) = 〈ϕ, F (A)ψ〉 (4.15)

by Fubini’s theorem and hence the first claim follows. The remaining claims
are similar. �

Lemma 4.2. Suppose F : R → L(H) is integrable and A ∈ L(H). Then

A

∫
R
f(t)dt =

∫
R
Af(t)dt respectively

∫
R
f(t)dtA =

∫
R
f(t)Adt. (4.16)

Proof. It suffices to prove the case where f is simple and of compact sup-
port. But for such functions the claim is straightforward. �

Now we can prove Stone’s formula.

Theorem 4.3 (Stone’s formula). Let A be self-adjoint, then

1
2πi

∫ λ2

λ1

(RA(λ+ iε)−RA(λ− iε))dλ→ 1
2

(PA([λ1, λ2]) + PA((λ1, λ2)))

(4.17)
strongly.

Proof. The result follows easily combining the previous lemma with Theo-
rem 3.1 and (3.84). �

Let Γ be a differentiable Jordan curve in ρ(A). Then the following
integral ∫

Γ
RA(z)dz (4.18)

is well-defined by our above analysis. Furthermore, it only depends on the
homotopy class of Γ since

〈ϕ, (
∫

Γ
RA(z)dz)ψ〉 =

∫
Γ
〈ϕ,RA(z)ψ〉dz (4.19)
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and since 〈ϕ,RA(z)ψ〉 is holomorphic in ρ(A). Moreover, the result can be
easily computed∫

Γ
〈ϕ,RA(z)ψ〉dz =

∫
Γ

∫
R

1
λ− z

dµϕ,ψ(λ)dz

=
∫

R

∫
Γ

1
λ− z

dz dµϕ,ψ(λ)

=
∫

R
χΩ(z)dµϕ,ψ(λ), (4.20)

where Ω is the intersection of the interior of Γ with R. Hence

χΩ(A) =
∫

Γ
RA(z)dz. (4.21)

4.2. Commuting operators

Now we come to commuting operators. We first recall the Stone-Weierstrass
theorem.

Theorem 4.4 (Stone-Weierstrass). Let X be a compact Hausdorff space and
let B be a subalgabra of C(X,R) which separates points, that is for every
x, y ∈ X there is an f ∈ B with f(x) 6= f(y). Then the closure of B is
either C(X,R) of {f ∈ C(X,R)|f(x0) = 0} for some x0 ∈ X.

We are interested in the complex case C(X,C), where the same con-
clusion holds if B is a ∗-subalgebra (i.e., closed under conjugation), which
follows easily by applying the Stone-Weierstrass to the real and imaginary
part.

As a preparation we can now prove

Lemma 4.5. Let K ⊆ R be closed. And let C∞(K) be the set of all contin-
uous functions on K which vanish at ∞ (if K is unbounded) with the sup
norm. The ∗-algebra generated by the function

λ 7→ 1
λ− z

(4.22)

for one z ∈ C\K is dense in C∞(K).

Proof. If K is compact, the claim follows directly from the complex Stone-
Weierstrass theorem since (λ1 − z)−1 = (λ2 − z)−1 implies λ1 = λ2. Other-
wise, replace K by K̃ = K ∪{∞}, which is compact, and set (∞−z)−1 = 0.
Then we can again apply the complex Stone-Weierstrass theorem to con-
clude that our ∗-subalgebra is equal to {f ∈ C(K̃)|f(∞) = 0} which is
equivalent to C∞(K). �
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We say that two bounded operators A, B commute if

[A,B] = AB −BA = 0. (4.23)

If A or B is unbounded, we soon run into trouble with this definition since
the above expression might not even make sense for any nonzero vector (e.g.,
take B = 〈ϕ, .〉ψ with ψ 6∈ D(A)). To avoid this nuisance we will replace A
by a bounded function of A. A good candidate is the resolvent. Hence if A
is self-adjoint and B is bounded we will say that A and B commute if

[RA(z), B] = [RA(z∗), B] = 0 (4.24)

for one z ∈ ρ(A).

Lemma 4.6. Suppose A is self-adjoint and commutes with the bounded
operator B. Then

[f(A), B] = 0 (4.25)

for any bounded Borel function f . If f is unbounded, the claim holds for
any ψ ∈ D(f(A)).

Proof. Equation (4.24) tell us that (4.25) holds for any f in the ∗-subalgebra
generated by RA(z). Since this subalgebra is dense in C∞(σ(A)), the claim
follows for all such f ∈ C∞(σ(A)). Next fix ψ ∈ H and let f be bounded.
Choose a sequence fn ∈ C∞(σ(A)) converging to f in L2(R, dµψ). Then

Bf(A)ψ = lim
n→∞

Bfn(A)ψ = lim
n→∞

fn(A)Bψ = f(A)Bψ. (4.26)

If f is unbounded, let ψ ∈ D(f(A)) and choose fn as in (3.19). Then

f(A)Bψ = lim
n→∞

fn(A)Bψ = lim
n→∞

Bfn(A)ψ (4.27)

shows f ∈ L2(R, dµBψ) (i.e., Bψ ∈ D(f(A))) and f(A)Bψ = BF (A)ψ. �

Corollary 4.7. If A is self-adjoint and bounded, then (4.24) holds if and
only if (4.23) holds.

Proof. Since σ(A) is compact, we have λ ∈ C∞(σ(A)) and hence (4.23)
follows from (4.25) by our lemma. Conversely, since B commutes with any
polynomial of A, the claim follows from the Neumann series. �

As another consequence we obtain

Theorem 4.8. Suppose A is self-adjoint and has simple spectrum. A bounded
operator B commutes with A if and only if B = f(A) for some bounded Borel
function.
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Proof. Let ψ be a cyclic vector for A. By our unitary equivalence it is no
restriction to assume H = L2(R, dµψ). Then

Bg(λ) = Bg(λ) · 1 = g(λ)(B1)(λ) (4.28)

since B commutes with the multiplication operator g(λ). Hence B is multi-
plication by f(λ) = (B1)(λ). �

The assumption that the spectrum of A is simple is crucial as the exam-
ple A = I shows. Note also that the functions exp(−itA) can also be used
instead of resolvents.

Lemma 4.9. Suppose A is self-adjoint and B is bounded. Then B commutes
with A if and only if

[e−iAt, B] = 0 (4.29)
for all t ∈ R.

Proof. It suffices to show [f̂(A), B] = 0 for f ∈ S(R), since these functions
are dense in C∞(R) by the complex Stone-Weierstrass theorem. Here f̂
denotes the Fourier transform of f , see Section 6.1. But for such f we have

[f̂(A), B] =
1√
2π

[
∫

R
f(t)e−iAtdt,B] =

1√
2π

∫
R
f(t)[e−iAt, B]dt = 0 (4.30)

by Lemma 4.2. �

The extension to the case where B is self-adjoint and unbounded is
straightforward. We say that A and B commute in this case if

[RA(z1), RB(z2)] = [RA(z∗1), RB(z2)] = 0 (4.31)

for one z1 ∈ ρ(A) and one z2 ∈ ρ(B) (the claim for z∗2 follows by taking
adjoints). From our above analysis it follows that this is equivalent to

[e−iAt, e−iBs] = 0, t, s ∈ R, (4.32)

respectively
[f(A), g(B)] = 0 (4.33)

for arbitrary bounded Borel functions f and g.

4.3. The min-max theorem

In many applications a self-adjoint operator has a number of eigenvalues be-
low the bottom of the essential spectrum. The essential spectrum is obtained
from the spectrum by removing all discrete eigenvalues with finite multiplic-
ity (we will have a closer look at it in Section 8.2). In general there is no way
of computing the lowest eigenvalues and their corresponding eigenfunctions
explicitly. However, one often has some idea how the eigenfunctions might
approximately look like.
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So suppose we have a normalized function ψ1 which is an approximation
for the eigenfunction ϕ1 of the lowest eigenvalue E1. Then by Theorem 2.15
we know that

〈ψ1, Aψ1〉 ≥ 〈ϕ1, Aϕ1〉 = E1. (4.34)

If we add some free parameters to ψ1, one can optimize them and obtain
quite good upper bounds for the first eigenvalue.

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction ϕ1, then we can restrict A to the
orthogonal complement of ϕ1 and proceed as before: E2 will be the infimum
over all expectations restricted to this subspace. If we restrict to the or-
thogonal complement of an approximating eigenfunction ψ1, there will still
be a component in the direction of ϕ1 left and hence the infimum of the
expectations will be lower than E2. Thus the optimal choice ψ1 = ϕ1 will
give the maximal value E2.

More precisely, let {ϕj}Nj=1 be an orthonormal basis for the space spanned
by the eigenfunctions corresponding to eigenvalues below the essential spec-
trum. Assume they satisfy (A − Ej)ϕj = 0, where Ej ≤ Ej+1 are the
eigenvalues (counted according to their multiplicity). If the number of eigen-
values N is finite we set Ej = inf σess(A) for j > N and choose ϕj such that
‖(A− Ej)ϕj = ‖ ≤ ε.

Define

U(ψ1, . . . , ψn) = {ψ ∈ D(A)| ‖ψ‖ = 1, ψ ∈ span{ψ1, . . . , ψn}⊥}. (4.35)

(i) We have

inf
ψ∈U(ψ1,...,ψn)

〈ψ,Aψ〉 ≤ En +O(ε). (4.36)

In fact, set ψ =
∑n

j=1 αjϕj and choose αj such that ψ ∈ U(ψ1, . . . , ψn−1),
then

〈ψ,Aψ〉 =
n∑
j=1

|αj |2Ej +O(ε) ≤ En +O(ε) (4.37)

and the claim follows.
(ii) We have

inf
ψ∈U(ψ1,...,ψn)

〈ψ,Aψ〉 ≥ En +O(ε). (4.38)

In fact, set ψ = ϕn and proceed as before.
Since ε can be chosen arbitrarily small we have proven

Theorem 4.10 (Min-Max). Let A be self-adjoint and let E1 ≤ E2 ≤ E3 · · ·
be the eigenvalues of A below the essential spectrum respectively the infimum
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of the essential spectrum once there are no more eigenvalues left. Then

En = sup
ψ1,...,ψn−1

inf
ψ∈U(ψ1,...,ψn−1)

〈ψ,Aψ〉. (4.39)

Clearly the same result holds if D(A) is replaced by the quadratic form
domain Q(A) in the definition of U . In addition, as long as En is an eigen-
value, the sup and inf are in fact max and min, explaining the name.

Corollary 4.11. Suppose A and B are self-adjoint operators with A ≥ B
(i.e. A−B ≥ 0), then En(A) ≥ En(B).

4.4. Estimating eigenspaces

Next, we show that the dimension of the range of PA(Ω) can be estimated
if we have some functions which lie approximately in this space.

Theorem 4.12. Suppose A is a bounded self-adjoint operator and ψj, 1 ≤
j ≤ k, are linearly independent elements of a H.
(i). Let λ ∈ R, ψj ∈ Q(A). If

〈ψ,Aψ〉 < λ‖ψ‖2 (4.40)

for any nonzero linear combination ψ =
∑k

j=1 cjψj, then

dim RanPA((−∞, λ)) ≥ k. (4.41)

Similarly, 〈ψ,Aψ〉 > λ‖ψ‖2 implies dim RanPA((λ,∞)) ≥ k.
(ii). Let λ1 < λ2, ψj ∈ D(A). If

‖(A− λ2 + λ1

2
)ψ‖ < λ2 − λ1

2
‖ψ‖ (4.42)

for any nonzero linear combination ψ =
∑k

j=1 cjψj, then

dim RanPA((λ1, λ2)) ≥ k. (4.43)

Proof. (i). Let M = span{ψj} ⊆ H. We claim dimPA((−∞, λ))M =
dimM = k. For this it suffices to show KerPA((−∞, λ))|M = {0}. Sup-
pose PA((−∞, λ))ψ = 0, ψ 6= 0. Then we see that for any nonzero linear
combination ψ

〈ψ,Aψ〉 =
∫

R
η dµψ(η) =

∫
[λ,∞)

η dµψ(η)

≥ λ

∫
[λ,∞)

dµψ(η) = λ‖ψ‖2. (4.44)

This contradicts our assumption (4.40).
(ii). Using the same notation as before we need to show KerPA((λ1, λ2))|M =
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{0}. If PA((λ1, λ2))ψ = 0, ψ 6= 0, then,

‖(A− λ2 + λ1

2
)ψ‖2 =

∫
R
(x− λ2 + λ1

2
)2dµψ(x) =

∫
Ω
x2dµψ(x+

λ2 + λ1

2
)

≥ (λ2 − λ1)2

4

∫
Ω
dµψ(x+

λ2 + λ1

2
) =

(λ2 − λ1)2

4
‖ψ‖2, (4.45)

where Ω = (−∞,−(λ2−λ1)/2]∪[(λ2−λ1)/2,∞). But this is a contradiction
as before. �

4.5. Tensor products of operators

Suppose Aj , 1 ≤ j ≤ n, are self-adjoint operators on Hj . For every monomial
λn1

1 · · ·λnn
n we can define

(An1
1 ⊗ · · · ⊗Ann

n )ψ1 ⊗ · · · ⊗ ψn = (An1
1 ψ1)⊗ · · · ⊗ (Ann

n ψn), ψj ∈ D(Anj

j ).
(4.46)

Hence for every polynomial P (λ1, . . . , λn) of degree N we can define

P (A1, . . . , An)ψ1 ⊗ · · · ⊗ ψn, ψj ∈ D(ANj ), (4.47)

and extend this definition to obtain a linear operator on the set

D = span{ψ1 ⊗ · · · ⊗ ψn |ψj ∈ D(ANj )}. (4.48)

Moreover, if P is real-valued, then the operator P (A1, . . . , An) on D is sym-
metric and we can consider its closure, which will again be denoted by
P (A1, . . . , An).

Theorem 4.13. Suppose Aj, 1 ≤ j ≤ n, are self-adjoint operators on Hj

and let P (λ1, . . . , λn) be a real-valued polynomial and define P (A1, . . . , An)
as above.

Then P (A1, . . . , An) is self-adjoint and its spectrum is the closure of the
range of P on the product of the spectra of the Aj, that is,

σ(P (A1, . . . , An)) = P (σ(A1), . . . , σ(An)). (4.49)

Proof. By the spectral theorem it is no restriction to assume that Aj is
multiplication by λj on L2(R, dµj) and P (A1, . . . , An) is hence multiplication
by P (λ1, . . . , λn) on L2(Rn, dµ1 × · · · × dµn). Since D contains the set of
all functions ψ1(λ1) · · ·ψn(λn) for which ψj ∈ L2

0(R, dµj) it follows that the
domain of the closure of P contains L2

0(Rn, dµ1 × · · · × dµn). Hence P is
the maximally defined multiplication operator by P (λ1, . . . , λn), which is
self-adjoint.

Now let λ = P (λ1, . . . , λn) with λj ∈ σ(Aj). Then there exists Weyl
sequences ψj,k ∈ D(ANj ) with (Aj − λj)ψj,k → 0 as k → ∞. Then, (P −
λ)ψk → 0, where ψk = ψ1,k ⊗ · · · ⊗ ψ1,k and hence λ ∈ σ(P ). Conversely,
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if λ 6∈ P (σ(A1), . . . , σ(An)), then |P (λ1, . . . , λn) − λ| ≥ ε for a.e. λj with
respect to µj and hence (P−λ)−1 exists and is bounded, that is λ ∈ ρ(P ). �

The two main cases of interest are A1 ⊗A2, in which case

σ(A1 ⊗A2) = σ(A1)σ(A2) = {λ1λ2|λj ∈ σ(Aj)}, (4.50)

and A1 ⊗ I + I⊗A2, in which case

σ(A1 ⊗ I + I⊗A2) = σ(A1) + σ(A2) = {λ1 + λ2|λj ∈ σ(Aj)}. (4.51)





Chapter 5

Quantum dynamics

As in the finite dimensional case, the solution the Schrödinger equation

i
d

dt
ψ(t) = Hψ(t) (5.1)

is given by
ψ(t) = exp(−itH)ψ(0). (5.2)

A detailed investigation of this formula will be our first task. Moreover, in
the finite dimensional case the dynamics is understood once the eigenvalues
are known and the same is true in our case once we know the spectrum. Note
that, like any Hamiltonian system from classical mechanics, our system is
not hyperbolic (i.e., the spectrum is not away from the real axis) and hence
simple results like, all solutions tend to the equilibrium position cannot be
expected.

5.1. The time evolution and Stone’s theorem

In this section we want to have a look at the initial value problem associated
with the Schrödinger equation (2.11) in the Hilbert space H. If H is one-
dimensional (and hence A is a real number), the solution is given by

ψ(t) = e−itAψ(0). (5.3)

Our hope is that this formula also applies in the general case and that we
can reconstruct a one-parameter unitary group U(t) from its generator A
(compare (2.10)) via U(t) = exp(−itA). We first investigate the family of
operators exp(−itA).

Theorem 5.1. Let A be self-adjoint and let U(t) = exp(−itA).
(i). U(t) is a strongly continuous one-parameter unitary group.
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76 5. Quantum dynamics

(ii). The limit limt→0
1
t (U(t)ψ − ψ) exists if and only if ψ ∈ D(A) in

which case limt→0
1
t (U(t)ψ − ψ) = −iAψ.

(iii). U(t)D(A) = D(A) and AU(t) = U(t)A.

Proof. The group property (i) follows directly from Theorem 3.1 and the
corresponding statements for the function exp(−itλ). To prove strong con-
tinuity observe that

lim
t→t0

‖e−itAψ − e−it0Aψ‖2 = lim
t→t0

∫
R
|e−itλ − e−it0λ|2dµψ(λ)

=
∫

R
lim
t→t0

|e−itλ − e−it0λ|2dµψ(λ) = 0 (5.4)

by the dominated convergence theorem.
Similarly, if ψ ∈ D(A) we obtain

lim
t→0

‖1
t
(e−itAψ − ψ) + iAψ‖2 = lim

t→0

∫
R
|1
t
(e−itλ − 1) + iλ|2dµψ(λ) = 0 (5.5)

since |eitλ−1| ≤ |tλ|. Now let Ã be the generator defined as in (2.10). Then
Ã is a symmetric extension of A since we have

〈ϕ, Ãψ〉 = lim
t→0

〈ϕ, i
t
(U(t)−1)ψ〉 = lim

t→0
〈 i
−t

(U(−t)−1)ϕ,ψ〉 = 〈Ãϕ, ψ〉 (5.6)

and hence Ã = A by Corollary 2.2. This settles (ii).
To see (iii) replace ψ → U(s)ψ in (ii). �

For our original problem this implies that formula (5.3) is indeed the
solution to the initial value problem of the Schrödinger equation. Moreover,

〈U(t)ψ,AU(t)ψ〉 = 〈U(t)ψ,U(t)Aψ〉 = 〈ψ,Aψ〉 (5.7)

shows that the expectations of A are time independent. This corresponds
to conservation of energy.

On the other hand, the generator of the time evolution of a quantum
mechanical system should always be a self-adjoint operator since it corre-
sponds to an observable (energy). Moreover, there should be a one to one
correspondence between the unitary group and its generator. This is ensured
by Stone’s theorem.

Theorem 5.2 (Stone). Let U(t) be a strongly continuous one-parameter
unitary group. Then its generator A is self-adjoint and U(t) = exp(−itA).

Proof. We first show that A is densely defined. Pick ψ ∈ H and set

ψτ =
∫ τ

0
U(t)ψdt (5.8)
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(the integral is defined as in Section 4.1) implying limτ→0 τ
−1ψτ = ψ. More-

over,

1
t
(U(t)ψτ − ψτ ) =

1
t

∫ t+τ

t
U(s)ψds− 1

t

∫ τ

0
U(s)ψds

=
1
t

∫ τ+t

τ
U(s)ψds− 1

t

∫ t

0
U(s)ψds

=
1
t
U(τ)

∫ t

0
U(s)ψds− 1

t

∫ t

0
U(s)ψds→ U(τ)ψ + ψ (5.9)

as t→ 0 shows ψτ ∈ D(A). As in the proof of the previous theorem, we can
show that A is symmetric and that U(t)D(A) = D(A).

Next, let us prove that A is essentially self-adjoint. By Lemma 2.6 it
suffices to prove Ker(A∗−z∗) = {0} for z ∈ C\R. Suppose A∗ϕ = z∗ϕ, then
for each ψ ∈ D(A) we have

d

dt
〈ϕ,U(t)ψ〉 = 〈ϕ,−iAU(t)ψ〉 = −i〈A∗ϕ,U(t)ψ〉

= −iz〈ϕ,U(t)ψ〉 (5.10)

and hence 〈ϕ,U(t)ψ〉 = exp(−izt)〈ϕ,ψ〉. Since the left hand side is bounded
for all t ∈ R and the exponential on the right hand side is not, we must have
〈ϕ,ψ〉 = 0 implying ϕ = 0 since D(A) is dense.

So A is essentially self-adjoint and we can introduce V (t) = exp(−itA).
We are done if we can show U(t) = V (t).

Let ψ ∈ D(A) and abbreviate ψ(t) = (U(t)− V (t))ψ. Then

lim
s→0

ψ(t+ s)− ψ(t)
s

= 0 (5.11)

and hence d
dt‖ψ(t)‖2 = 0. Since ψ(0) = 0 we have ψ(t) = 0 and hence

U(t) and V (t) coincide on D(A). Furthermore, since D(A) is dense we have
U(t) = V (t) by continuity. �

As an immediate consequence of the proof we also note the following
useful criterion.

Corollary 5.3. Suppose D ⊆ D(A) is dense and invariant under U(t).
Then A is essentially self-adjoint on D.

Proof. As in the above proof it follows 〈ϕ,ψ〉 = 0 for any ϕ ∈ Ker(A∗− z∗)
and ψ ∈ D. �

Note that by Lemma 4.9 two strongly continuous one-parameter groups
commute

[e−itA, e−isB] = 0 (5.12)
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if and only if the generators commute.
Clearly, for a physicist, one of the goals must be to understand the time

evolution of a quantum mechanical system. We have seen that the time
evolution is generated by a self-adjoint operator, the Hamiltonian, and is
given by a linear first order differential equation, the Schrödinger equation.
To understand the dynamics of such a first order differential equation, one
must understand the spectrum of the generator. Some general tools for this
endeavor will be provided in the following sections.

5.2. The RAGE theorem

Now, let us discuss why the decomposition of the spectrum introduced in
Section 3.3 is of physical relevance. Let ‖ϕ‖ = ‖ψ‖ = 1. The vector 〈ϕ,ψ〉ϕ
is the projection of ψ onto the (one-dimensional) subspace spanned by ϕ.
Hence |〈ϕ,ψ〉|2 can be viewed as the part of ψ which is in the state ϕ. A
first question one might rise is, how does

|〈ϕ,U(t)ψ〉|2 (5.13)

behave as t→∞? By the spectral theorem,

µ̂ϕ,ψ(t) = 〈ϕ,U(t)ψ〉 =
∫

R
e−itλdµϕ,ψ(λ) (5.14)

is the Fourier transform of the measure µϕ,ψ. Thus our question is an-
swered by Wieners theorem.

Theorem 5.4 (Wiener). Let µ be a finite complex Borel measure on R and
let

µ̂(t) =
∫

R
e−itλdµ(λ) (5.15)

be its Fourier transform. Then the Cesàro time average of µ̂(t) has the
following limit

lim
T→∞

1
T

∫ T

0
|µ̂(t)|2dt =

∑
λ∈R

|µ({λ})|2, (5.16)

where the sum on the right hand side is finite.

Proof. By Fubini we have

1
T

∫ T

0
|µ̂(t)|2dt =

1
T

∫ T

0

∫
R

∫
R

e−i(x−y)tdµ(x)dµ∗(y)dt

=
∫

R

∫
R

(
1
T

∫ T

0
e−i(x−y)tdt

)
dµ(x)dµ∗(y). (5.17)
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The function in parentheses is bounded by one and converges pointwise to
χ{0}(x − y) as T → ∞. Thus, by the dominated convergence theorem, the
limit of the above expression is given by∫

R

∫
R
χ{0}(x− y)dµ(x)dµ∗(y) =

∫
R
µ({y})dµ∗(y) =

∑
y∈R

|µ({y})|2. (5.18)

�

To apply this result to our situation, observe that the subspaces Hac,
Hsc, and Hpp are invariant with respect to time evolution since P xxU(t) =
χMxx(H) exp(−itH) = exp(−itH)χMxx(H) = U(t)P xx, xx ∈ {ac, sc, pp}.
Moreover, if ψ ∈ Hxx we have P xxψ = ψ which shows 〈ϕ, f(A)ψ〉 =
〈ϕ, P xxf(A)ψ〉 = 〈P xxϕ, f(A)ψ〉 implying dµϕ,ψ = dµPxxϕ,ψ. Thus if µψ
is ac, sc, or pp, so is µϕ,ψ for every ϕ ∈ H.

That is, if ψ ∈ Hc = Hac⊕Hsc, then the Cesàro mean of 〈ϕ,U(t)ψ〉 tends
to zero. In other words, the average of the probability of finding the system
in any prescribed state tends to zero if we start in the continuous subspace
Hc of A.

If ψ ∈ Hac, then dµϕ,ψ is absolutely continuous with respect to Lebesgue
measure and thus µ̂ϕ,ψ(t) is continuous and tends to zero as |t| → ∞. In
fact, this follows from the Riemann-Lebesgue lemma (see Lemma 6.5 below).

Now we want to draw some additional consequences from Wiener’s the-
orem. This will eventually yield a dynamical characterization of the contin-
uous and pure point spectrum due to Ruelle, Amrein, Gorgescu, and Enß.
But first we need a few definitions.

An operator K ∈ L(H) is called finite rank if its range is finite dimen-
sional. The dimension n = dim Ran(K) is called the rank of K. If {ψj}nj=1

is an orthonormal basis for Ran(K) we have

Kψ =
n∑
j=1

〈ψj ,Kψ〉ψj =
n∑
j=1

〈ϕj , ψ〉ψj , (5.19)

where ϕj = K∗ψj . The elements ϕj are linearly independent since Ran(K) =
Ker(K∗)⊥. Hence every finite rank operator is of the form (5.19). In addi-
tion, the adjoint of K is also finite rank and given by

K∗ψ =
n∑
j=1

〈ψj , ψ〉ϕj . (5.20)

The closure of the set of all finite rank operators in L(H) is called the
set of compact operators C(H).

Lemma 5.5. The set of all compact operators C(H) is a closed ∗-ideal in
L(H).
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Proof. The set of finite rank operators is clearly a ∗-ideal and hence so is
its closure C(H). �

There is also a weaker version of compactness which is useful for us. The
operator K is called relatively compact with respect to A if

KRA(z) ∈ C(H) (5.21)

for one z ∈ ρ(A). By the first resolvent identity this then follows for all
z ∈ ρ(A). In particular we have D(A) ⊆ D(K).

Now let us return to our original problem.

Theorem 5.6. Let A be self-adjoint and suppose K is relatively compact.
Then

lim
T→∞

1
T

∫ T

0
‖Ke−itAP cψ‖2dt = 0 and lim

t→∞
‖Ke−itAP acψ‖ = 0

(5.22)
for every ψ ∈ D(A). In particular, if K is also bounded, then the result
holds for any ψ ∈ H.

Proof. Let ψ ∈ Hc respectively ψ ∈ Hac and drop the projectors. Then, ifK
is a rank one operator (i.e., K = 〈ϕ1, .〉ϕ2), the claim follows from Wiener’s
theorem respectively the Riemann-Lebesgue lemma. Hence it holds for any
finite rank operator K.

If K is compact, there is a sequence Kn of finite rank operators such
that ‖K −Kn‖ ≤ 1/n and hence

‖Ke−itAψ‖ ≤ ‖Kne−itAψ‖+
1
n
‖ψ‖. (5.23)

Thus the claim holds for any compact operator K.
If ψ ∈ D(A) we can set ψ = (A − i)−1ϕ, where ϕ ∈ Hc if and only if

ψ ∈ Hc (since Hc reduces A). Since K(A+ i)−1 is compact by assumption,
the claim can be reduced to the previous situation. If, in addition, K is
bounded, we can find a sequence ψn ∈ D(A) such that ‖ψ−ψn‖ ≤ 1/n and
hence

‖Ke−itAψ‖ ≤ ‖Ke−itAψn‖+
1
n
‖K‖, (5.24)

concluding the proof. �

With the help of this result we can now prove an abstract version of the
RAGE theorem.
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Theorem 5.7 (RAGE). Let A be self-adjoint. Suppose Kn ∈ L(H) is a se-
quence of relatively compact operators which converges strongly to the iden-
tity. Then

Hc = {ψ ∈ H| lim
n→∞

lim
T→∞

1
T

∫ T

0
‖Kne−itAψ‖dt = 0},

Hpp = {ψ ∈ H| lim
n→∞

sup
t≥0

‖(I−Kn)e−itAψ‖ = 0}. (5.25)

Proof. Abbreviate ψ(t) = exp(−itA)ψ. We begin with the first equation.
Let ψ ∈ Hc, then

1
T

∫ T

0
‖Knψ(t)‖dt ≤

(
1
T

∫ T

0
‖Knψ(t)‖2dt

)1/2

→ 0 (5.26)

by Cauchy-Schwarz and the previous theorem. Conversely, if ψ 6∈ Hc we
can write ψ = ψc + ψpp. By our previous estimate it suffices to show
‖Knψ

pp(t)‖ ≥ ε > 0 for n large. In fact, we even claim

lim
n→∞

Knψ
pp(t) = ψpp(t) (5.27)

uniformly in t. By the spectral theorem, we can write ψpp(t) =
∑

j αj(t)ψj ,
where the ψj are orthonormal eigenfunctions and αj(t) = exp(−itλj)αj .
Truncate this expansion after N terms, then this part converges to the de-
sired limit by strong convergence of Kn. Moreover, by the uniform bound-
edness principle, we can find a positive constant M such that ‖Kn‖ ≤ M
and hence the error can be made arbitrarily small by choosing N large.

Now let us turn to the second equation. If ψ ∈ Hpp the claim follows
by (5.27). Conversely, if ψ 6∈ Hpp we can write ψ = ψc + ψpp and by our
previous estimate it suffices to show that ‖(I−Kn)ψc(t)‖ does not tend to
0 as n→∞. If it would, we would have

0 = lim
T→∞

1
T

∫ T

0
‖(I−Kn)ψc(t)‖2dt

≥ ‖ψc(t)‖2 − lim
T→∞

1
T

∫ T

0
‖Knψ

c(t)‖2dt = ‖ψc(t)‖2, (5.28)

a contradiction. �

In summary, regularity properties of spectral measures are related to
the long time behavior of the corresponding quantum mechanical system.
However, a more detailed investigation of this topic is beyond the scope of
this manuscript. For a survey containing several recent results see [7].

It is often convenient to treat the observables as time dependent rather
than the states. We set

K(t) = eitAKe−itA (5.29)
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and note
〈ψ(t),Kψ(t)〉 = 〈ψ,K(t)ψ〉, ψ(t) = e−itAψ. (5.30)

This point of view is often referred to as Heisenberg picture in the physics
literature. If K is unbounded we will assume D(A) ⊆ D(K) such that the
above equations make sense at least for ψ ∈ D(A). The main interest is
the behavior of K(t) for large t. The strong limits are called asymptotic
observables if they exist.

Theorem 5.8. Suppose A is self-adjoint and K is relatively compact. Then

lim
T→∞

1
T

∫ T

0
eitAKe−itAψdt =

∑
λ∈σp(A)

PA({λ})KPA({λ})ψ, ψ ∈ D(A).

(5.31)
If K is in addition bounded, the result holds for any ψ ∈ H.

Proof. We will assume that K is bounded. To obtain the general result,
use the same trick as before and replace K by KRA(z). Write ψ = ψc+ψpp.
Then

lim
T→∞

1
T
‖

∫ T

0
K(t)ψcdt‖ ≤ lim

T→∞

1
T

∫ T

0
‖K(t)ψcdt‖ = 0 (5.32)

by Theorem 5.6. As in the proof of the previous theorem we can write
ψpp =

∑
j αjψj and hence∑

j

αj
1
T

∫ T

0
K(t)ψjdt =

∑
j

αj

(
1
T

∫ T

0
eit(A−λj)dt

)
Kψj . (5.33)

As in the proof of Wiener’s theorem, we see that the operator in parenthesis
tends to PA({λj}) strongly as T →∞. Since this operator is also bounded
by 1 for all T , we can interchange the limit with the summation and the
claim follows. �

We also note the following corollary.

Corollary 5.9. Under the same assumptions as in the RAGE theorem we
have

lim
n→∞

lim
T→∞

1
T

∫ T

0
eitAKne−itAψdt = P ppψ (5.34)

respectively

lim
n→∞

lim
T→∞

1
T

∫ T

0
e−itA(I−Kn)e−itAψdt = P cψ. (5.35)
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Chapter 6

The free Schrödinger
operator

6.1. The Fourier transform

We first review some basic facts concerning the Fourier transform which
will be needed in the following section.

Let C∞(Rn) be the set of all complex-valued functions which have partial
derivatives of arbitrary order. For f ∈ C∞(Rn) and α ∈ Nn

0 we set

∂αf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, xα = xα1

1 · · ·xαn
n , |α| = α1 + · · ·+ αn. (6.1)

An element α ∈ Nn
0 is called multi-index and |α| is called its order. Recall

the Schwarz space

S(Rn) = {f ∈ C∞(Rn)| sup
x
|xα(∂βf)(x)| <∞, α, β ∈ Nn

0} (6.2)

which is dense in L2(Rn). For f ∈ S(Rn) we define

F(f)(p) ≡ f̂(p) =
1

(2π)n/2

∫
Rn

e−ipxf(x)dnx. (6.3)

Then it is an exercise in partial integration to prove

Lemma 6.1. For any multi-index α ∈ Nn
0 and any f ∈ S(Rn) we have

(∂αf)∧(p) = (ip)αf̂(p), (xαf(x))∧(p) = i|α|∂αf̂(p). (6.4)

Hence we will sometimes write pf(x) for −i∂f(x), where ∂ = (∂1, . . . , ∂n)
is the gradient.

85
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In particular F maps S(Rn) into itself. Another useful property is the
convolution formula.

Lemma 6.2. The Fourier transform of the convolution

(f ∗ g)(x) =
∫

Rn

f(y)g(x− y)dny =
∫

Rn

f(x− y)g(y)dny (6.5)

of two functions f, g ∈ S(Rn) is given by

(f ∗ g)∧(p) = (2π)n/2f̂(p)ĝ(p). (6.6)

Proof. We compute

(f ∗ g)∧(p) =
1

(2π)n/2

∫
Rn

e−ipx

∫
Rn

f(y)g(x− y)dny dnx

=
∫

Rn

e−ipyf(y)
1

(2π)n/2

∫
Rn

e−ip(x−y)g(x− y)dnx dny

=
∫

Rn

e−ipyf(y)ĝ(p)dny = (2π)n/2f̂(p)ĝ(p), (6.7)

where we have used Fubini’s theorem. �

Next, we want to compute the inverse of the Fourier transform. For this
the following lemma will be needed.

Lemma 6.3. We have e−zx
2/2 ∈ S(Rn) for Re(z) > 0 and

F(e−zx
2/2)(p) =

1
zn/2

e−p
2/(2z). (6.8)

Here zn/2 has to be understood as (
√
z)n, where the branch cut of the root

is chosen along the negative real axis.

Proof. Due to product structure of the exponential, one can treat each
coordinate separately, reducing the problem to the case n = 1.

Let φz(x) = exp(−zx2/2). Then φ′z(x)+zxφz(x) = 0 and hence i(pφ̂z(p)+
zφ̂′z(p)) = 0. Thus φ̂z(p) = cφ1/z(p) and

c = φ̂z(0) =
1√
2π

∫
R

exp(−zx2/2)dx =
1√
z

(6.9)

at least for z > 0. However, since the integral is holomorphic for Re(z) > 0,
this holds for all z with Re(z) > 0 if we choose the branch cut of the root
along the negative real axis. �

Now we can show
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Lemma 6.4. The Fourier transform F : S(Rn) → S(Rn) is a bijection. Its
inverse is given by

F−1(g)(x) ≡ ǧ(x) =
1

(2π)n/2

∫
Rn

eipxg(p)dnp. (6.10)

We have F2(f)(x) = f(−x) and thus F4 = I.

Proof. It suffices to show F2(f)(x) = f(−x). Let φ(x) = exp(−x2/2).
Then, by the dominated convergence theorem we have

F(f̂) = lim
ε↓0

F(φ(εp)f̂(p)). (6.11)

Using the convolution formula we see that the last term is equal to

lim
ε↓0

1
(2πε2)n/2

∫
Rn

φ(y/ε)f(y − x)dny

= lim
ε↓0

1
(2π)n/2

∫
Rn

φ(y)f(εy − x)dny

=
f(−x)
(2π)n/2

∫
Rn

φ(y)dny = f(−x) (6.12)

concluding the proof. �

From Fubini’s theorem it follows∫
Rn

ĝ(p)∗f(p)dnp =
1

(2π)n/2

∫
Rn

∫
Rn

g(p)∗f(x)eipxdnp dnx

=
∫

Rn

g(x)∗f̂(x)dnx (6.13)

and in particular, we see F−1g = F∗g, g ∈ S(Rn), which implies Parseval’s
identity ∫

Rn

|f(x)|2dnx =
∫

Rn

|f̂(p)|2dnp (6.14)

for f ∈ S(Rn). Moreover, F extends to a unitary operator F : L2(Rn) →
L2(Rn). Its spectrum satisfies

σ(F) ⊆ {z ∈ C|z4 = 1}. (6.15)

In fact, if ψn is a Weyl sequence, then (F2 + z2)(F + z)(F − z)ψn = (F4 −
z4)ψn = (1−z4)ψn → 0 implies z4 = 1. We will show in (7.42) that equality
holds.

Lemma 6.1 also allows us to extend differentiation to a larger class. Let
us introduce the Sobolev space

Hr(Rn) = {f ∈ L2(Rn)||p|rf̂(p) ∈ L2(Rn)}. (6.16)
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We will abbreviate

∂αf = ((ip)αf̂(p))∨, f ∈ Hr(Rn), |α| ≤ r (6.17)

which implies∫
Rn

g(x)(∂αf)(x)dnx = (−1)α
∫

Rn

(∂αg)(x)f(x)dnx, (6.18)

for f ∈ Hr(Rn) and g ∈ S(Rn). That is, ∂αf is the derivative of f in the
sense of distributions.

Finally, we have the Riemann-Lebesgue lemma.

Lemma 6.5 (Riemann-Lebesgue). Let C∞(Rn) denote the Banach space of
all continuous functions f : Rn → C which vanish at ∞ equipped with the
sup norm. Then the Fourier transform is a bounded map from L1(Rn) into
C∞(Rn) satisfying

‖f̂‖∞ ≤ (2π)−n/2‖f‖1. (6.19)

Proof. Clearly we have f̂ ∈ C∞(Rn) if f ∈ S(Rn). Moreover, the estimate

sup
p
|f̂(p)| ≤ 1

(2π)n/2

∫
Rn

|e−ipxf(x)|dnx =
1

(2π)n/2

∫
Rn

|f(x)|dnx. (6.20)

shows f̂ ∈ C∞(Rn) for arbitrary f ∈ L1(Rn) since S(Rn) is dense in L1(Rn).
�

6.2. The free Schrödinger operator

In Section 2.1 we have seen that the Hilbert space corresponding to one
particle in R3 is L2(R3). More generally, the Hilbert space for N particles
in Rd is L2(Rn), n = Nd. The corresponding non relativistic Hamilton
operator, if the particles do not interact, is given by

H0 = −∆, (6.21)

where ∆ is the Laplace operator

∆ =
n∑
j=1

∂2

∂x2
j

. (6.22)

Our first task is to find a good domain such thatH0 is a self-adjoint operator.
By Lemma 6.1 we have that

−∆ψ(x) = (p2ψ̂(p))∨(x), ψ ∈ H2(Rn), (6.23)

and hence the operator

H0ψ = −∆ψ, D(H0) = H2(Rn), (6.24)
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is unitarily equivalent to the maximally defined multiplication operator

(F H0F−1)ϕ(p) = p2ϕ(p), D(p2) = {ϕ ∈ L2(Rn)|p2ϕ(p) ∈ L2(Rn)}.
(6.25)

Theorem 6.6. The free Schrödinger operator H0 is self-adjoint and its
spectrum is characterized by

σ(H0) = σac(H0) = [0,∞), σsc(H0) = σpp(H0) = ∅. (6.26)

Proof. It suffices to show that dµψ is purely absolutely continuous for every
ψ. First observe that

〈ψ,RH0(z)ψ〉 = 〈ψ̂, Rp2(z)ψ̂〉 =
∫

Rn

|ψ̂(p)|2

p2 − z
dnp =

∫
R

1
r2 − z

dµ̃ψ(r), (6.27)

where

dµ̃ψ(r) = χ[0,∞)(r)r
n−1

(∫
Sn−1

|ψ̂(rω)|2dn−1ω

)
dr. (6.28)

Hence, after a change of coordinates, we have

〈ψ,RH0(z)ψ〉 =
∫

R

1
λ− z

dµψ(λ), (6.29)

where

dµψ(λ) =
1
2
χ[0,∞)(λ)λn/2−1

(∫
Sn−1

|ψ̂(
√
λω)|2dn−1ω

)
dλ, (6.30)

proving the claim. �

Finally, we note that C∞0 (Rn) is a core for H0.

Lemma 6.7. The set C∞0 (Rn) = {f ∈ S(Rn)|supp(f) is compact} is a core
for H0.

Proof. Let A = H0|C∞0 (Rn). It suffices to show A∗ ⊆ H0, implying H0 =
H∗

0 ⊆ A∗∗ = A and hence H0 = A. Let ψ ∈ D(A∗), then there is a θ such
that 〈−∆ϕ,ψ〉 = 〈ϕ, θ〉 for all ϕ ∈ C∞0 (Rn). Taking the Fourier transform
we see 〈p2ϕ̂, ψ̂〉 = 〈ϕ̂, θ̂〉 from which we expect p2ψ̂ = θ̂. But since we don’t
know p2ψ̂ ∈ L2(Rn), a more careful argument is needed. Switching to 1+p2

we see

〈(1 + p2)ϕ̂, ψ̂ − 1
1 + p2

(ψ̂ + θ̂)〉, ϕ ∈ C∞0 (Rn), (6.31)

implying ψ̂ = 1
1+p2

(ψ̂ + θ̂) = 0. Hence p2ψ̂ = θ̂ ∈ L2(Rn) and thus ψ ∈
D(H0). �
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Note also that the quadratic form of H0 is given by

qH0(ψ) =
n∑
j=1

∫
Rn

|∂jψ(x)|2dnx, ψ ∈ Q(H0) = H1(Rn). (6.32)

6.3. The time evolution in the free case

Now let us look at the time evolution. We have

e−itH0ψ(x) = F−1e−itp2ψ̂(p). (6.33)

The right hand side is a product and hence our operator should be express-
ible as an integral operator via the convolution formula. However, since
e−itp2 is not in L2, a more careful analysis is needed.

Consider
fε(p2) = e−(it+ε)p2 , ε > 0. (6.34)

Then fε(H0)ψ → e−itH0ψ by Theorem 3.1. Moreover, by Lemma 6.3 and
the convolution formula we have

fε(H0)ψ(x) =
1

(4π(it+ ε))n/2

∫
Rn

e−
|x−y|2
4(it+ε)ψ(y)dny (6.35)

and hence

e−itH0ψ(x) =
1

(4πit)n/2

∫
Rn

ei
|x−y|2

4t ψ(y)dny (6.36)

for t 6= 0 and ψ ∈ L1 ∩ L2. For general ψ ∈ L2 the integral has to be
understood as a limit.

Using this explicit form, it is not hard to draw some immediate conse-
quences. For example, if ψ ∈ L2(Rn)∩L1(Rn), then ψ(t) ∈ C(Rn) for t 6= 0
(use dominated convergence and continuity of the exponential) and satisfies

‖ψ(t)‖∞ ≤ 1
|4πt|n/2

‖ψ(0)‖1 (6.37)

by the Riemann-Lebesgue lemma. Thus we have spreading of wave functions
in this case. Moreover, it is even possible to determine the asymptotic form
of the wave function for large t as follows. Observe

e−itH0ψ(x) =
eix2

4t

(4πit)n/2

∫
Rn

ei y2

4t ψ(y)eixy
2t dny

=
(

1
2it

)n/2

eix2

4t

(
ei y2

4t ψ(y)
)∧

(
x

2t
). (6.38)

Moreover, since exp(iy
2

4t )ψ(y) → ψ(y) in L2 as |t| → ∞ (dominated conver-
gence) we obtain
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Lemma 6.8. For any ψ ∈ L2(Rn) we have

e−itH0ψ(x)−
(

1
2it

)n/2

eix2

4t ψ̂(
x

2t
) → 0 (6.39)

in L2 as |t| → ∞.

Next we want to apply the RAGE theorem in order to show that for any
initial condition, a particle will escape to infinity. But first we need some
good criteria when an operator is compact.

Of particular interest for us is the case of integral operators

Kψ(x) =
∫

Rn

K(x, y)ψ(y)dny, (6.40)

where K(x, y) ∈ L2(Rn×Rn). Such an operator is called Hilbert-Schmidt
operator. Using Cauchy-Schwarz,∫

Rn

|Kψ(x)|2dnx =
∫

Rn

∣∣∣∣∫
Rn

|K(x, y)ψ(y)|dny
∣∣∣∣2 dnx

≤
∫

Rn

(∫
Rn

|K(x, y)|2dny
) (∫

Rn

|ψ(y)|2dny
)
dnx

=
(∫

Rn

∫
Rn

|K(x, y)|2dny dnx
) (∫

Rn

|ψ(y)|2dny
)

(6.41)

we see thatK is bounded. Next, pick an orthonormal basis ϕj(x) for L2(Rn).
Then, by Lemma 1.8, ϕi(x)ϕj(y) is an orthonormal basis for L2(Rn × Rn)
and

K(x, y) =
∑
i,j

ci,jϕi(x)ϕj(y), ci,j = 〈ϕi,Kϕj〉, (6.42)

where ∑
i,j

|ci,j |2 =
∫

Rn

∫
Rn

|K(x, y)|2dny dnx <∞. (6.43)

In particular,
Kψ(x) =

∑
i,j

ci,j〈ϕj , ψ〉ϕi(x) (6.44)

shows that K can be approximated by finite rank operators (take finitely
many terms in the sum) and is hence compact.

Now we can prove

Lemma 6.9. Let g(x) be the multiplication operator by g and let f(p) be
the operator given by f(p)ψ(x) = F−1(f(p)ψ̂(p))(x). Denote by L∞∞(Rn) the
bounded Borel functions which vanish at infinity. Then

f(p)g(x) and g(x)f(p) (6.45)
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are compact if f, g ∈ L∞∞(Rn) and (extend to) Hilbert-Schmidt operators if
f, g ∈ L2(Rn).

Proof. By symmetry it suffices to consider g(x)f(p). Let f, g ∈ L2, then

g(x)f(p)ψ(x) =
1

(2π)n/2

∫
Rn

g(x)f̌(x− y)ψ(y)dny (6.46)

shows that g(x)f(p) is Hilbert-Schmidt since g(x)f̌(x− y) ∈ L2(Rn × Rn).
If f, g are bounded then the functions fR(p) = χ{p|p2≤R}(p)f(p) and

gR(x) = χ{x|x2≤R}(x)g(x) are in L2. Thus gR(x)fR(p) is compact and tends
to g(x)f(p) in norm since f, g vanish at infinity. �

In particular, this lemma implies that

χΩ(H0 + i)−1 (6.47)

is compact if Ω ⊆ Rn is bounded and hence

lim
t→∞

‖χΩe−itH0ψ‖2 = 0 (6.48)

for any ψ ∈ L2(Rn) and any bounded subset Ω of Rn. In other words, the
particle will eventually escape to infinity since the probability of finding the
particle in any bounded set tends to zero. (If ψ ∈ L1(Rn) this of course also
follows from (6.37).)

6.4. The resolvent and Green’s function

Now let us compute the resolvent ofH0. We will try to use a similar approach
as for the time evolution in the previous section. However, since it is highly
nontrivial to compute the inverse Fourier transform of exp(−εp2)(p2 − z)−1

directly, we will use a small ruse.
Note that

RH0(z) =
∫ ∞

0
ezte−tH0dt, Re(z) < 0 (6.49)

by Lemma 4.1. Moreover,

e−tH0ψ(x) =
1

(4πt)n/2

∫
Rn

e−
|x−y|2

4t ψ(y)dny, t > 0, (6.50)

by the same analysis as in the previous section. Hence, by Fubini, we have

RH0(z)ψ(x) =
∫

Rn

G0(z, |x− y|)ψ(y)dny, (6.51)

where

G0(z, r) =
∫ ∞

0

1
(4πt)n/2

e−
r2

4t
+ztdt, r > 0, Re(z) < 0. (6.52)
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The function G0(z, r) is called Green’s function of H0. The integral can
be evaluated in terms of modified Bessel functions of the second kind

G0(z, r) =
1
2π

(
−z

4π2r2

)n−2
4

Kn
2
−1(

√
−zr). (6.53)

The functions Kν(x) satisfy the following differential equation(
d2

dx2
+

1
x

d

dx
− 1− ν2

x2

)
Kν(x) = 0 (6.54)

and have the following asymptotics

Kν(x) =
{

Γ(ν)
2

(
x
2

)−ν +O(x−ν+1) ν 6= 0
− ln(x2 ) +O(1) ν = 0

(6.55)

for |x| → 0 and

Kν(x) =
√

π

2x
e−x(1 +O(x−1)) (6.56)

for |x| → ∞. For more information see for example [18]. In particular,
G0(z, r) has an analytic continuation for z ∈ C\[0,∞) = ρ(H0). Hence we
can define the right hand side of (6.51) for all z ∈ ρ(H0) such that∫

Rn

∫
Rn

ϕ(x)G0(z, |x− y|)ψ(y)dnydnx (6.57)

is analytic for z ∈ ρ(H0) and ϕ,ψ ∈ S(Rn) (by Morea’s theorem). Since
it is equal to 〈ϕ,RH0(z)ψ〉 for Re(z) < 0 it is equal to this function for all
z ∈ ρ(H0), since both functions are analytic in this domain. In particular,
(6.51) holds for all z ∈ ρ(H0).

If n is odd, we have the case of spherical Bessel functions which can be
expressed in terms of elementary functions. For example, we have

G0(z, r) =
1

2
√
−z

e−
√
−z r, n = 1, (6.58)

and
G0(z, r) =

1
4πr

e−
√
−z r, n = 3. (6.59)





Chapter 7

Algebraic methods

7.1. Position and momentum

Apart from the Hamiltonian H0, which corresponds to the kinetic energy,
there are several other important observables associated with a single parti-
cle in three dimensions. Using commutation relation between these observ-
ables, many important consequences about these observables can be derived.

First consider the one-parameter unitary group

(Uj(t)ψ)(x) = e−itxjψ(x), 1 ≤ j ≤ 3. (7.1)

For ψ ∈ S(R3) we compute

lim
t→0

i
e−itxjψ(x)− ψ(x)

t
= xjψ(x) (7.2)

and hence the generator is the multiplication operator by the j-th coordinate
function. By Corollary 5.3 it is essentially self-adjoint on ψ ∈ S(R3). It is
custom to combine all three operators to one vector valued operator x, which
is known as position operator. Moreover, it is not hard to see that the
spectrum of xj is purely absolutely continuous and given by σ(xj) = R. In
fact, let ϕ(x) be an orthonormal basis for L2(R). Then ϕi(x1)ϕj(x2)ϕk(x3)
is an orthonormal basis for L2(R3) and x1 can be written as a orthogonal
sum of operators restricted to the subspaces spanned by ϕj(x2)ϕk(x3). Each
subspace is unitarily equivalent to L2(R) and x1 is given by multiplication
with the identity. Hence the claim follows (or use Theorem 4.13).

Next, consider the one-parameter unitary group of translations

(Uj(t)ψ)(x) = ψ(x− tej), 1 ≤ j ≤ 3, (7.3)

95
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where ej is the unit vector in the j-th coordinate direction. For ψ ∈ S(R3)
we compute

lim
t→0

i
ψ(x− tej)− ψ(x)

t
=

1
i
∂

∂xj
ψ(x) (7.4)

and hence the generator is pj = 1
i
∂
∂xj

. Again it is essentially self-adjoint
on ψ ∈ S(R3). Moreover, since it is unitarily equivalent to xj by virtue of
the Fourier transform we conclude that the spectrum of pj is again purely
absolutely continuous and given by σ(pj) = R. The operator p is known as
momentum operator. Note that since

[H0, pj ]ψ(x) = 0, ψ ∈ S(R3) (7.5)

we have
d

dt
〈ψ(t), pjψ(t)〉 = 0, ψ(t) = e−itH0ψ(0) ∈ S(R3), (7.6)

that is, the momentum is a conserved quantity for the free motion. Similarly
one has

[pj , xk]ψ(x) = δjkψ(x), ψ ∈ S(R3), (7.7)
which is known as the Weyl relation.

7.2. Angular momentum

Now consider the one-parameter unitary group of rotations

(Uj(t)ψ)(x) = ψ(Mj(t)x), 1 ≤ j ≤ 3, (7.8)

where Mj(t) is the matrix of rotation around ej by an angle of t. For
ψ ∈ S(R3) we compute

lim
t→0

i
ψ(Mi(t)x)− ψ(x)

t
=

3∑
j,k=1

εijkxjpkψ(x), (7.9)

where

εijk =


1 if ijk is an even permutation of 123
−1 if ijk is an odd permutation of 123
0 else

. (7.10)

Again one combines the three components to one vector valued operator
L = x ∧ p, which is known as angular momentum operator. Since
ei2πLj = I, we see that the spectrum is a subset of Z. In particular, the
continuous spectrum is empty. We will show below that we have σ(Lj) = Z.
Note that since

[H0, Lj ]ψ(x) = 0, ψ ∈ S(R3), (7.11)
we have again

d

dt
〈ψ(t), Ljψ(t)〉 = 0, ψ(t) = e−itH0ψ(0) ∈ S(R3), (7.12)
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that is, the angular momentum is a conserved quantity for the free motion
as well.

Moreover, we even have

[Li,Kj ]ψ(x) = i
3∑

k=1

εijkKkψ(x), ψ ∈ S(R3),Kj ∈ {Lj , pj , xj}, (7.13)

and these algebraic commutation relations are often used to derive informa-
tion on the point spectra of these operators. In this respect the following
domain

D = span{xαe−
x2

2 |α ∈ Nn
0} ⊂ S(Rn) (7.14)

is often used. It has the nice property that the finite dimensional subspaces

Dk = span{xαe−
x2

2 | |α| ≤ k} (7.15)

are invariant under Lj (and hence they reduce Lj).

Lemma 7.1. The subspace D ⊂ L2(Rn) defined in (7.14) is dense.

Proof. By Lemma 1.8 it suffices to consider the case n = 1. Suppose
〈ϕ,ψ〉 = 0 for every ψ ∈ D. Then

1√
2π

∫
ϕ(x)e−

x2

2

k∑
j=1

(itx)k

j!
= 0 (7.16)

for any finite k and hence also in the limit k →∞ by the dominated conver-

gence theorem. But the limit is the Fourier transform of ϕ(x)e−
x2

2 , which
shows that this function is zero. Hence ϕ(x) = 0. �

Since it is invariant under the unitary groups generated by Lj , the op-
erators Lj are essentially self-adjoint on D by Corollary 5.3.

Introducing L2 = L2
1 + L2

2 + L2
3 it is straightforward to check

[L2, Lj ]ψ(x) = 0, ψ ∈ S(R3). (7.17)

Moreover, Dk is invariant under L2 and L3 and hence Dk reduces L2 and
L3. In particular, L2 and L3 are given by finite matrices on Dk. Now
let Hm = Ker(L3 − m) and denote by Pk the projector onto Dk. Since
L2 and L3 commute on Dk, the space PkHm is invariant under L2 which
shows that we can choose an orthonormal basis consisting of eigenfunctions
of L2 for PkHm. Increasing k we get an orthonormal set of simultaneous
eigenfunctions whose span is equal to D. Hence there is an orthonormal
basis of simultaneous eigenfunctions of L2 and L3.
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Now let us try to draw some further consequences by using the commuta-
tion relations (7.13). (All commutation relations below hold for ψ ∈ S(R3).)
Denote by Hl,m the set of all functions in D satisfying

L3ψ = mψ, L2ψ = l(l + 1)ψ. (7.18)

By L2 ≥ 0 and σ(L3) ⊆ Z we can restrict our attention to the case l ≥ 0
and m ∈ Z.

First introduce two new operators

L± = L1 ± iL2, [L3, L±] = ±L±. (7.19)

Then, for every ψ ∈ Hl,m we have

L3(L±ψ) = (m± 1)(L±ψ), L2(L±ψ) = l(l + 1)(L±ψ), (7.20)

that is, L±Hl,m → Hl,m±1. Moreover, since

L2 = L2
3 ± L3 + L∓L± (7.21)

we obtain

‖L±ψ‖2 = 〈ψ,L∓L±ψ〉 = (l(l + 1)−m(m± 1))‖ψ‖ (7.22)

for every ψ ∈ Hl,m. If ψ 6= 0 we must have l(l + 1) −m(m ± 1) ≥ 0 which
shows Hl,m = {0} for |m| > l. Moreover, L±Hl,m → Hl,m±1 is injective
unless |m| = l. Hence we must have Hl,m = {0} for l 6∈ N0.

Up to this point we know σ(L2) ⊆ {l(l+1)|l ∈ N0}, σ(L3) ⊆ Z. In order
to show that equality holds in both cases, we need to show that Hl,m 6= {0}
for l ∈ N0, m = −l,−l + 1, . . . , l − 1, l. First of all we observe

ψ0,0(x) =
1

π3/2
e−

x2

2 ∈ H0,0. (7.23)

Next, we note that (7.13) implies

[L3, x±] = ±x±, x± = x1 ± ix2,

[L±, x±] = 0, [L±, x∓] = ±2x3,

[L2, x±] = 2x±(1± L3)∓ 2x3L±. (7.24)

Hence if ψ ∈ Hl,l, then (x1 ± ix2)ψ ∈ Hl±1,l±1. And thus

ψl,l(x) =
1√
l!

(x1 ± ix2)lψ0,0(x) ∈ Hl,l, (7.25)

respectively

ψl,m(x) =

√
(l +m)!

(l −m)!(2l)!
Ll−m− ψl,l(x) ∈ Hl,m. (7.26)

The constants are chosen such that ‖ψl,m‖ = 1.
In summary,
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Theorem 7.2. There exists an orthonormal basis of simultaneous eigen-
vectors for the operators L2 and Lj. Moreover, their spectra are given by

σ(L2) = {l(l + 1)|l ∈ N0}, σ(L3) = Z. (7.27)

We will rederive this result using different methods in Section 9.2.

7.3. The harmonic oscillator

Finally, let us consider another important model whose algebraic structure
is similar to those of the angular momentum, the harmonic oscillator

H = H0 + ω2x2, ω > 0. (7.28)

As domain we will choose

D(H) = D = span{xαe−
x2

2 |α ∈ N3
0} ⊆ L2(R3) (7.29)

from our previous section.
We will first consider the one-dimensional case. Introducing

A± =
1√
2

(√
ωx∓ 1√

ω

d

dx

)
(7.30)

we have
[A−, A+] = 1 (7.31)

and
H = ω(2N + 1), N = A+A−, (7.32)

for any function in D.
Moreover, since

[N,A±] = ±A±, (7.33)
we see that Nψ = nψ implies NA±ψ = (n± 1)A±ψ. Moreover, ‖A+ψ‖2 =
〈ψ,A−A+ψ〉 = (n + 1)‖ψ‖2 respectively ‖A−ψ‖2 = n‖ψ‖2 in this case and
hence we conclude that σ(N) ⊆ N0

If Nψ0 = 0, then we must have A−ψ = 0 and the normalized solution
of this last equation is given by

ψ0(x) =
(ω
π

)1/4
e−

ωx2

2 ∈ D. (7.34)

Hence
ψn(x) =

1√
n!
An+ψ0(x) (7.35)

is a normalized eigenfunction of N corresponding to the eigenvalue n. More-
over, since

ψn(x) =
1√
n!

( ω

4π

)1/4
Hn(

x√
ω

)e−
ωx2

2 (7.36)
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where Hn(x) is a polynomial of degree n given by

Hn(x) = e
x2

2

(
x− d

dx

)n

e−
x2

2 = (−1)nex
2 dn

dxn
e−x

2
, (7.37)

we conclude span{ψn} = D. The polynomials Hn(x) are called Hermite
polynomials.

In summary,

Theorem 7.3. The harmonic oscillator H is essentially self adjoint on D

and has an orthonormal basis of eigenfunctions

ψn1,n2,n3(x) = ψn1(x1)ψn2(x2)ψn3(x3), (7.38)

with ψnj (xj) from (7.36). The spectrum is given by

σ(H) = {(2n+ 3)ω|n ∈ N0}. (7.39)

Finally, there is also a close connection with the Fourier transformation.
without restriction we choose ω = 1 and consider only one dimension. Then
it easy to verify that H commutes with the Fourier transformation

FH = HF (7.40)

and hence {ψn} is an orthonormal basis of eigenfunctions for F as well.
Moreover, by FA± = ∓iA±F we even infer

Fψn = (−i)nψn (7.41)

and hence
σ(F) = {z ∈ C|z4 = 1}. (7.42)



Chapter 8

Self-adjointness of
Schrödinger operators

The Hamiltonian of a quantum mechanical system is usually the sum of
the kinetic energy H0 (free Schrödinger operator) plus an operator V cor-
responding to the potential energy. Since we already know a lot about H0,
we will try to consider V as a perturbation of H0. This will only work if V
is small with respect to H0. Hence we study perturbations of self-adjoint
operators first.

8.1. Relatively bounded operators and the
Kato-Rellich theorem

An operator B is called A bounded or relatively bounded with respect
to A if D(A) ⊆ D(B) and if there are constants a, b ≥ 0 such that

‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖, ψ ∈ D(A). (8.1)

The infimum of all such constants is called the A-bound of B.
The triangle inequality implies

Lemma 8.1. Suppose Bj, j = 1, 2, are A bounded with respective A-bounds
ai, i = 1, 2. Then α1B1 + α2B2 is also A bounded with A-bound less than
|α1|a1 + |α2|a2. In particular, the set of all A bounded operators forms a
linear space.

We are mainly interested in the situation where A is self-adjoint and B
is symmetric. Hence we will restrict our attention to this case.

101
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Lemma 8.2. Suppose A is self-adjoint and B is closed with D(A) ⊆ D(B).
Then B is A bounded.

Proof. The set D(A) is a Hilbert space with respect to the scalar product
〈ϕ,ψ〉A = 〈(1 + |A|)ϕ, (1 + |A|)ψ〉. Moreover, since ‖ψ‖A ≤ ‖Aψ‖ + ‖ψ‖,
the restriction of B to D(A) is still closed (with respect to this new norm)
and hence there is a constant a ≥ 0 such that ‖Bψ‖ ≤ a‖ψ‖A by the closed
graph theorem (Theorem 2.7). �

Lemma 8.3. Suppose A is self-adjoint and D(A) ⊆ D(B). Then B is A
bounded if and only if BRA(z) is bounded for some z ∈ ρ(A). The A-bound
of B is given by

lim
λ→∞

‖BRA(±iλ)‖. (8.2)

If A is bounded from below, we can also replace ±iλ by −λ.

Proof. If BRA(z) is bounded for one z ∈ ρ(A) it is bounded for all z ∈ ρ(A)
by the first resolvent formula. Hence it suffices to consider only z = ±iλ,
λ > 0. Let ϕ = RA(±iλ)ψ and let a∞ be the A-bound of B. If B is A
bounded, then (use the spectral theorem to estimate the norms)

‖BRA(±iλ)ψ‖ ≤ a‖Aϕ‖+ b‖ϕ‖ ≤ (a+
b

λ
)‖ψ‖. (8.3)

Conversely, if aλ = ‖BRA(±iλ)‖ <∞, we have

‖Bϕ‖ ≤ aλ‖ψ‖ ≤ aλ(‖Aϕ‖+ λ‖ψ‖). (8.4)

In addition, this shows a0 ≤ aλ ≤ a+ b/λ and hence all limiting values of aλ
must lie in [a0, a]. Since a can be chosen arbitrarily close to a0 we are done.

The case where a is bounded from below is similar. �

Now we will show the basic perturbation result due to Kato and Rellich.

Theorem 8.4 (Kato-Rellich). Suppose A is (essentially) self-adjoint and B
is symmetric with A-bound less then one. Then A+B, D(A+B) = D(A),
is (essentially) self-adjoint. If A is essentially self-adjoint we have D(A) ⊆
D(B) and A+B = A+B.

If A is bounded from below by γ, then A + B is bounded from below by
min(γ, b/(a− 1)).

Proof. Since D(A) ⊆ D(B) and D(A) ⊆ D(A+B) by (8.1) we can assume
that A is closed (i.e., self-adjoint). It suffices to show that Ran(A+B±iλ) =
H. By the above lemma we can find a λ > 0 such that ‖BRA(±iλ)‖ < 1.
Hence 1 ∈ ρ(BRA(±iλ)) and thus I +BRA(±iλ) is onto. Thus

(A+B ± iλ) = (I +BRA(±iλ))(A± iλ) (8.5)

is onto and the proof of the first part is complete.
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If A is bounded from below we can replace ±iλ by −λ and the above
equation shows that RA+B exists for λ sufficiently large. By the proof of
the previous lemma we can choose −λ < min(γ, b/(a− 1)). �

Finally, let us show that there is also a connection between the resolvents.

Lemma 8.5. Suppose A and B are closed and D(A) ⊆ D(B). Then we
have the second resolvent formula

RA+B(z)−RA(z) = −RA(z)BRA+B(z) = −RA+B(z)BRA(z) (8.6)

for z ∈ ρ(A) ∩ ρ(A+B).

Proof. We compute

RA+B(z) +RA(z)BRA+B(z) = RA(z)(A+B − z)RA+B(z) = RA(z). (8.7)

The second identity is similar. �

8.2. More on compact operators

Recall from Section 5.2 that we have introduced the set of compact operators
C(H) as the closure of the set of all finite rank operators in L(H). Before we
can proceed, we need to establish some further results for such operators.
We begin by investigating the spectrum of self-adjoint compact operators
and show that the spectral theorem takes a particular simple form in this
case.

We introduce some notation first. The discrete spectrum σd(A) is the
set of all eigenvalues which are discrete points of the spectrum and whose
corresponding eigenspace is finite dimensional. The complement of the dis-
crete spectrum is called the essential spectrum σess(A) = σ(A)\σd(A).
If A is self-adjoint we might equivalently set

σd(A) = {λ ∈ σp(A)|rank(PA((λ− ε, λ+ ε))) <∞ for some ε > 0}. (8.8)

respectively

σess(A){λ ∈ R|rank(PA((λ− ε, λ+ ε))) = ∞ for all ε > 0}. (8.9)

Theorem 8.6 (Spectral theorem for compact operators). Suppose the op-
erator K is self-adjoint and compact. Then the spectrum of K consists of
an at most countable number of eigenvalues which can only cluster at 0.
Moreover, the eigenspace to each nonzero eigenvalue is finite dimensional.
In other words,

σess(K) ⊆ {0}, (8.10)

where equality holds if and only if H is infinite dimensional.
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In addition, we have

K =
∑

λ∈σ(K)

λPK({λ}). (8.11)

Proof. It suffices to show rank(PK((λ− ε, λ+ ε))) <∞ for 0 < ε < |λ|.
Let Kn be a sequence of finite rank operators such that ‖K−Kn‖ ≤ 1/n.

If RanPK((λ−ε, λ+ε)) is infinite dimensional we can find a vector ψn in this
range such that ‖ψn‖ = 1 and Knψn = 0. But this yields a contradiction

1
n
≥ |〈ψn, (K −Kn)ψn〉| = |〈ψn,Kψn〉| ≥ |λ| − ε > 0 (8.12)

by (4.2). �

As a consequence we obtain the canonical form of a general compact
operator.

Theorem 8.7 (Canonical form of compact operators). Let K be compact.
There exists orthonormal sets {ψj}, {ϕj} and positive numbers {λj} such
that

K =
∑
j

λj〈ϕj , .〉ψj , K∗ =
∑
j

λj〈ψj , .〉ϕj . (8.13)

Note Kϕj = λjψj and K∗ψj = λjϕj and hence K∗Kϕj = λ2
jϕj and

KK∗ψj = λ2
jψj.

The numbers λ2
j > 0 are the nonzero eigenvalues of KK∗ respectively

K∗K and are called singular values of K.

Proof. Let {ϕj} be an orthonormal basis of eigenvectors for PK∗K((0,∞))H
and let λ2

j be the eigenvalue corresponding to ϕj . Then, for any ψ ∈ H we
can write

ψ =
∑
j

〈ϕj , ψ〉ϕj + ψ̃ (8.14)

with ψ̃ ∈ Ker(K∗K). Then

Kψ =
∑
j

λj〈ϕj , ψ〉ψj , (8.15)

where ψj = λ−1
j Kϕj , since ‖Kψ̃‖ = 〈ψ̃,K∗Kψ̃〉 = 0. That {ψj} are or-

thonormal is a straightforward calculation and the formula for K∗ can be
proven similar. �

Finally, let me remark that there are a number of other equivalent defi-
nitions for compact operators.

Lemma 8.8. For K ∈ L(H) the following statements are equivalent:

(1) K is compact.
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(1’) K∗ is compact.

(2) An ∈ L(H) is normal and An → A strongly implies KAn → KA.

(2’) An ∈ L(H) and An → A strongly implies AnK → AK.

(3) ψn → ψ weakly implies Kψn → Kψ in norm.

(4) ψn bounded implies that Kψn has a (norm) convergent subsequence.

Proof. (1) ⇔ (1’). This is immediate from Theorem 8.7.
(1) ⇒ (2). Translating An → An − A it is no restriction to assume

A = 0. Since ‖An‖ ≤ M by the uniform boundedness principle, it suffices
to consider the case where K is finite rank. Then (by (8.13))

‖KAn‖2 = sup
‖ψ‖=1

n∑
j=1

λj |〈ϕj , Anψ〉|2 ≤
n∑
j=1

λj‖Anϕj‖2 → 0 (8.16)

since ‖A∗nϕj‖ = ‖Anϕj‖.
(2) ⇒ (3). Again, replace ψn → ψn − ψ and assume ψ = 0. Choose

An = 〈Kψn, .〉ψn, then ‖KAn‖ = ‖Kψn‖2 → 0.
(3) ⇒ (4). If ψn is bounded it has a weakly convergent subsequence.

Now apply (3) to this subsequence.
(4) ⇒ (1). Let ϕj be an orthonormal basis and set

Kn =
n∑
j=1

〈ϕj , .〉Kϕj . (8.17)

Then
λn = ‖K −Kn‖ = sup

ψ∈span{ϕj}∞j=n,‖ψ‖=1
‖Kψ‖ (8.18)

is a decreasing sequence tending to a limit ε ≥ 0. Moreover, we can find
a sequence of unit vectors ψn ∈ span{ϕj}∞j=n for which ‖Kψn‖ ≥ ε. By
assumption, Kψn has a convergent subsequence which, since ψn converges
weakly to 0, converges to 0. Hence ε must be 0 and we are done.

(1) ⇒ (2’) follows with a similar argument as for (1) ⇒ (2).
(2’) ⇒ (1’) Using An = 〈ψn, .〉K∗ψn shows that (2’) implies (3) with K

replaced by K∗, which shows that K∗ is compact. �

The last condition explains the name compact.

8.3. Relatively compact operators and Weyl’s
theorem

In the previous section we have seen that the sum of a self-adjoint and a sym-
metric operator is again self-adjoint if the perturbing operator is small. In
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this section we want to study the influence of perturbations on the spectrum.
Our hope is that at least some parts of the spectrum remain invariant.

Let A be self-adjoint. Note that if we add a multiple of the identity to
A, we shift the entire spectrum. Hence, in general, we cannot expect a (rel-
atively) bounded perturbation to leave any part of the spectrum invariant.
Next, if λ0 is in the discrete spectrum, we can easily remove this eigenvalue
with a finite rank perturbation of arbitrary small norm. In fact, consider

A+ εPA({λ0}). (8.19)

Hence our only hope is that the remainder, namely the essential spectrum,
is stable under finite rank perturbations. To show this, we first need a good
criterion for a point to be in the essential spectrum of A.

Lemma 8.9 (Weyl criterion). A point λ is in the essential spectrum of
a self-adjoint operator A if and only if there is a sequence ψn such that
‖ψn‖ = 1, ψn converges weakly to 0, and ‖(A − λ)ψn‖ → 0. Moreover, the
sequence can chosen to be orthonormal. Such a sequence is called singular
Weyl sequence.

Proof. Let ψn be a singular Weyl sequence for the point λ0. By Lemma 2.12
we have λ0 ∈ σ(A) and hence it suffices to show λ0 6∈ σd(A). If λ0 ∈ σd(A) we
can find an ε > 0 such that Pε = PA((λ0−ε, λ0 +ε)) is finite rank. Consider
ψ̃n = Pεψn. Clearly ψ̃n converges weakly to zero and ‖(A − λ0)ψ̃n‖ → 0.
Moreover,

‖ψn − ψ̃n‖2 =
∫

R\(λ−ε,λ+ε)
dµψn(λ)

≤ 1
ε2

∫
R\(λ−ε,λ+ε)

(λ− λ0)2dµψn(λ)

≤ 1
ε2
‖(A− λ0)ψn‖2 (8.20)

and hence ‖ψ̃n‖ → 1. Thus ϕn = ‖ψ̃n‖−1ψ̃n is also a singular Weyl sequence.
But ϕn is a sequence of unit length vectors which lives in a finite dimensional
space and converges to 0 weakly, a contradiction.

Conversely, if λ0 ∈ σess(A), consider Pn = PA([λ − 1
n , λ −

1
n+1) ∪ (λ +

1
n+1 , λ+ 1

n ]). Then rank(Pnj ) > 0 for an infinite subsequence nj . Now pick
ψj ∈ RanPnj . �

Now let K be a self-adjoint compact operator and ψn a singular Weyl
sequence for A. Then ψn converges weakly to zero and hence

‖(A+K − λ)ψn‖ ≤ ‖(A− λ)ψn‖+ ‖Kψn‖ → 0 (8.21)
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since ‖(A − λ)ψn‖ → 0 by assumption and ‖Kψn‖ → 0 by Lemma 8.8 (3).
Hence σess(A) ⊆ σess(A + K). Reversing the roles of A + K and A shows
σess(A+K) = σess(A). Since we have shown that we can remove any point
in the discrete spectrum by a self-adjoint finite rank operator we obtain the
following equivalent characterization of the essential spectrum.

Lemma 8.10. The essential spectrum of a self-adjoint operator A is pre-
cisely the part which is invariant under rank-one perturbations. In particu-
lar,

σess(A) =
⋂

K∈C(H),K∗=K

σ(A+K). (8.22)

There is even a larger class of operators under which the essential spec-
trum is invariant.

Theorem 8.11 (Weyl). Suppose A and B are self-adjoint operators. If

RA(z)−RB(z) ∈ C(H) (8.23)

for one z ∈ ρ(A) ∩ ρ(B), then

σess(A) = σess(B). (8.24)

Proof. In fact, suppose λ ∈ σess(A) and let ψn be a corresponding singular
Weyl sequence. Then (RA(z)− 1

λ−z )ψn = RA(z)
λ−z (A−λ)ψn and thus ‖(RA(z)−

1
λ−z )ψn‖ → 0. Moreover, by our assumption we also have ‖(RB(z) −

1
λ−z )ψn‖ → 0 and thus ‖(B − λ)ϕn‖ → 0, where ϕn = RB(z)ψn. Since
limn→∞ ‖ϕn‖ = limn→∞ ‖RA(z)ψn‖ = |λ − z|−1 6= 0 we obtain a singular
Weyl sequence for B, showing λ ∈ σess(B). Now interchange the roles of A
and B. �

As a first consequence note the following result

Theorem 8.12. Suppose A is symmetric with equal finite defect indices,
then all self-adjoint extensions have the same essential spectrum.

Proof. By Lemma 2.26 the resolvent difference of two self-adjoint extensions
is a finite rank operator if the defect indices are finite. �

In addition, the following result is of interest.

Lemma 8.13. Suppose

RA(z)−RB(z) ∈ C(H) (8.25)

for one z ∈ ρ(A)∩ρ(B), then this holds for all z ∈ ρ(A)∩ρ(B). In addition,
if A and B are self-adjoint, then

f(A)− f(B) ∈ C(H) (8.26)

for any f ∈ C∞(R).
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Proof. If the condition holds for one z it holds for all since we have (using
both resolvent formulas)

RA(z′)−RB(z′)

= (1− (z − z′)RB(z′))(RA(z)−RB(z))(1− (z − z′)RA(z′)). (8.27)

Let A and B be self-adjoint. The set of all functions f for which the
claim holds is a closed ∗-subalgebra of C∞(R) (with sup norm). Hence the
claim follows from Lemma 4.5. �

Remember that we have called K relatively compact with respect to A
if KRA(z) is compact (for one and hence for all z) and note that the the
resolvent difference RA+K(z)−RA(z) is compact if K is relatively compact.
In particular, Theorem 8.11 applies if B = A + K, where K is relatively
compact.

For later use observe that set of all operators which are relatively com-
pact with respect to A forms a linear space (since compact operators do)
and relatively compact operators have A-bound zero.

Lemma 8.14. Let A be self-adjoint and suppose K is relatively compact
with respect to A. Then the A-bound of K is zero.

Proof. Write

KRA(λi) = (KRA(i))((A+ i)RA(λi)) (8.28)

and observe that the first operator is compact and the second is normal and
converges strongly to 0 (by the spectral theorem). Hence the claim follows
from Lemma 8.3 and Lemma 8.8 (2). �

In addition, note the following result which is a straightforward conse-
quence of the second resolvent identity.

Lemma 8.15. Suppose A is self-adjoint and B is symmetric with A-bound
less then one. If K is relatively compact with respect to A then it is also
relatively compact with respect to A+B.

Proof. Since B is A bounded with A-bound less than one, we can choose a
z ∈ C such that ‖BRA(z)‖ < 1. And hence

BRA+B(z) = BRA(z)(I +BRA(z))−1 (8.29)

shows that B is also A+B bounded and the result follows from

KRA+B(z) = KRA(z)(I−BRA+B(z)) (8.30)

since KRA(z) is compact and BRA+B(z) is bounded. �
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8.4. One-particle Schrödinger operators

Our next goal is to apply these results to Schrödinger operators. The Hamil-
tonian of one particle in d dimensions is given by

H = H0 + V, (8.31)

where V : Rd → R is the potential energy of the particle. We are mainly
interested in the case 1 ≤ d ≤ 3 and want to find classes of potentials which
are relatively bounded respectively relatively compact. To do this we need
a better understanding of the functions in the domain of H0.

Lemma 8.16. Suppose n ≤ 3 and ψ ∈ H2(Rn). Then ψ ∈ C∞(Rn) and for
any a > 0 there is a b > 0 such that

‖ψ‖∞ ≤ a‖H0ψ‖+ b‖ψ‖. (8.32)

Proof. The important observation is that (p2 + γ2)−1 ∈ L2(Rn) if n ≤ 3.
Hence, since (p2 + γ2)ψ̂ ∈ L2(Rn), the Cauchy-Schwarz inequality

‖ψ̂‖1 ≤ ‖(p2 + γ2)−1(p2 + γ2)ψ̂(p)‖1

≤ ‖(p2 + γ2)−1‖ ‖(p2 + γ2)ψ̂(p)‖. (8.33)

shows ψ̂ ∈ L1(Rn). But now everything follows from the Riemann-Lebesgue
lemma

‖ψ‖∞ ≤ (2π)−n/2‖(p2 + γ2)−1‖(‖p2ψ̂(p)‖+ γ2‖ψ̂(p)‖)
= (γ/2π)n/2‖(p2 + 1)−1‖(γ−2‖H0ψ‖+ ‖ψ‖) (8.34)

finishes the proof. �

Now we come to our first result.

Theorem 8.17. Let V be real-valued and V ∈ L∞∞(Rn) or n ≤ 3 and
V ∈ L∞∞(Rn)+L2(Rn). Then V is relatively compact with respect to H0. In
particular,

H = H0 + V, D(H) = H2(Rn), (8.35)

is self-adjoint, bounded from below and

σess(H) = [0,∞). (8.36)

Proof. Our previous lemma shows D(H0) ⊆ D(V ) and the rest follows from
Lemma 6.9 using f(p) = (P 2 − z)−1 and g(x) = V (x). �

Observe that since C∞0 (Rn) ⊆ D(H0), we must have V ∈ L2
loc(Rn) if

D(V ) ⊆ D(H0).
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8.5. Sturm-Liouville operators

In this section we want to illustrate some of the results obtained thus far by
investigating a specific example, the Sturm-Liouville equations.

τf(x) =
1

r(x)

(
− d

dx
p(x)

d

dx
f(x) + q(x)f(x)

)
, f, pf ′ ∈ ACloc(I) (8.37)

The case p = r = 1 can be viewed as the model of a particle in one
dimension in the external potential q. Moreover, the case of a particle in
three dimensions can in some situations be reduced to the investigation of
Sturm-Liouville equations. In particular, we will see how this works when
explicitly solving the hydrogen atom.

The suitable Hilbert space is

L2((a, b), r(x)dx), 〈f, g〉 =
∫ b

a
f(x)g(x)r(x)dx, (8.38)

where I = (a, b) ⊂ R is an arbitrary open interval.
We require

(1) p ∈ ACloc(I), p′ ∈ L2
loc(I), p

−1 ∈ L1
loc(I), real-valued

(2) q ∈ L2
loc(I), real-valued

(3) r ∈ L1
loc(I), r

−1 ∈ L∞loc(I), positive

If a is finite and if p−1, q, r ∈ L1((a, c)) (c ∈ I), then the Sturm-Liouville
equation (8.37) is called regular at a. Similarly for b. If it is both regular at
a and b it is called regular.

The maximal domain of definition for τ in L2(I, r dx) is given by

D(τ) = {f ∈ L2(I, r dx)|f, pf ′ ∈ ACloc(I), τf ∈ L2(I, r dx)}. (8.39)

Since C∞0 (I) ⊂ D(τ) we infer that D(τ) is dense. (Let me remark that it
suffices to require p−1, q, r ∈ L1

loc(I), however, in this case it is no longer
obvious that D(τ) is dense.)

Since we are interested in self-adjoint operatorsH associated with (8.37),
we perform a little calculation. Using integration by parts (twice) we obtain
(a < c < d < b):∫ d

c
g(τf) rdt = Wd(g, f)−Wc(g, f) +

∫ d

c
(τg)f rdt, f, g ∈ ACloc(I),

(8.40)
where

Wx(f1, f2) =
(
p(f1f

′
2 − f ′1f2)

)
(x) (8.41)

is called the modified Wronskian.
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It is straightforward to check that the Wronskian of two solutions of
τu = zu is constant

Wx(u1, u2) = W (u1, u2), τu1,2 = zu1,2. (8.42)

Moreover, it is nonzero if and only if u1 and u2 are linearly independent
(compare Theorem 8.18 below).

If we choose f, g ∈ D(τ) in (8.40), than we can take the limits c → a
and d→ b, which results in

〈g, τf〉 = Wb(g, f)−Wa(g, f) + 〈τg, f〉, f, g ∈ D(τ). (8.43)

Here Wa,b(g, f) has to be understood as limit.
Finally, we recall the following well-known result from ordinary differ-

ential equations.

Theorem 8.18. Suppose rg ∈ L1
loc(I), then there exists a unique solution

f, pf ′ ∈ ACloc(I) of the differential equation

(τ − z)f = g, z ∈ C, (8.44)

satisfying the initial condition

f(c) = α, (pf ′)(c) = β, α, β ∈ C, c ∈ I. (8.45)

Note that f, pf ′ can be extended continuously to a regular end point.

Lemma 8.19. Suppose u1, u2 are two solutions of (τ − z)u = 0 with
W (u1, u2) = 1. Then every other solution of (8.44) can be written as
(α, β ∈ C)

f(x) = u1(x)
(
α+

∫ x

c
u2gr dt

)
+ u2(x)

(
β −

∫ x

c
u1gr dt

)
,

f ′(x) = u′1(x)
(
α+

∫ x

c
u2gr dt

)
+ u′2(x)

(
β −

∫ x

c
u1gr dt

)
. (8.46)

Note that the constants α, β coincide with those from Theorem 8.18 if
u1(c) = p(c)u′2(c) = 1 and p(c)u′1(c) = u2(c) = 0.

Proof. It suffices to show τf − z f = g (the rest follows from 8.18). Differ-
entiating the first equation of (8.46) gives the second. Next we compute

(pf ′)′ = (pu′1)
′
(
α+

∫
u2gr dt

)
+ (pu′2)

′
(
β −

∫
u1gr dt

)
−W (u1, u2)gr

= (q − z)u1

(
α+

∫
u2gr dt

)
+ (q − z)u2

(
β −

∫
u1g dt

)
− gr

= (q − z)f − gr (8.47)

which proves the claim. �
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Now we want to obtain a symmetric operator and hence we choose

A0f = τf, D(A0) = D(τ) ∩AC0(I), (8.48)

where AC0(I) are the functions in AC(I) with compact support. This defi-
nition clearly ensures that the Wronskian of two such functions vanishes on
the boundary, implying that A0 is symmetric. Our first task is to compute
the closure of A0 and its adjoint. For this the following elementary fact will
be needed.

Lemma 8.20. Suppose V is a vector space and l, l1, . . . , ln are linear func-
tionals (defined on all of V ) such that

⋂n
j=1 Ker(lj) ⊆ Ker(l). Then l =∑n

j=0 αjlj for some constants αj ∈ C.

Proof. First of all it is no restriction to assume that the functionals lj are
linearly independent. Taking a dual basis fk ∈ V , that is lj(fk) = 0 for
j 6= k and lj(fj) = 1. Then f −

∑n
j=1 lj(f)fj ∈

⋂n
j=1 Ker(lj) and hence

l(f)−
∑n

j=1 lj(f)l(fj) = 0. Thus we can choose αj = l(fj). �

Now we are ready to prove

Lemma 8.21. The closure of A0 is given by

A0f = τf, D(A0) = {f ∈ D(τ) |Wa(f, g) = Wb(f, g) = 0, ∀g ∈ D(τ)}.
(8.49)

Its adjoint is given by

A∗0f = τf, D(A∗0) = D(τ). (8.50)

Proof. We start by computing A∗0. By (8.43) we have D(τ) ⊆ D(A∗0) and
it remains to show D(A∗0) ⊆ D(τ). If h ∈ D(A∗0) we must have

〈h,A0f〉 = 〈k, f〉, ∀f ∈ D(A0) (8.51)

for some k ∈ L2(I, r dx). Using (8.46) we can find a h̃ such that τ h̃ = k and
from integration by parts we obtain∫ b

a
(h(x)− h̃(x))∗(τf)(x)r(x)dx = 0, ∀f ∈ D(A0). (8.52)

Clearly we expect that h − h̃ will be a solution of the τu = 0 and to prove
this we will invoke Lemma 8.20. Therefore we consider the linear functionals

l(f) =
∫ b

a
(h(x)−h̃(x))∗g(x)r(x)dx, lj(f) =

∫ b

a
uj(x)∗g(x)r(x)dx, (8.53)
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on L2
0(I, r dx), where uj are two solutions of τu = 0 with W (u1, u2) 6= 0.

We have Ker(l1) ∩Ker(l2) ⊆ Ker(l). In fact, if g ∈ Ker(l1) ∩Ker(l2), then

f(x) = u1(x)
∫ x

a
u2(t)g(t)r(t)dt+ u2(x)

∫ b

x
u1(t)g(t)r(t)dt (8.54)

is in D(A0) and g = τf ∈ Ker(l) by (8.53). Now Lemma 8.20 implies∫ b

a
(h(x)− h̃(x) + α1u1(x) + α2u2(x))∗g(x)r(x)dx = 0, ∀g ∈ L2

0(I, rdx)

(8.55)
and hence h = h̃+ α1u1 + α2u2 ∈ D(τ).

Now we turn to A0. Denote the set on the right hand side of (8.49) by
D. Then we have D ⊆ D(A∗∗0 ) = A0 by (8.43). Conversely, since A0 ⊆ A∗0
we can use (8.43) to conclude

Wa(f, h) +Wb(f, h) = 0, f ∈ D(A0), h ∈ D(A∗0). (8.56)

Now replace h by a h̃ ∈ D(A∗0) which coincides with h near a and vanishes
identically near b. Then Wa(f, h) = Wa(f, h̃) + Wb(f, h̃) = 0. Finally,
Wb(f, h) = −Wa(f, h) = 0 shows f ∈ D. �

This result shows that any self-adjoint extension of A0 must lie between
A0 and A∗0. Moreover, self-adjointness seems to be related to the Wronskian
of two functions at the boundary. Hence we collect a few properties first.

Lemma 8.22. Suppose v ∈ D(τ) with Wa(v, v) = 0 and there is a f̂ ∈ D(τ)
with W (v, f̂)a 6= 0. then we have

Wa(v, f) = 0 ⇔ Wa(v, f) = 0 ∀f ∈ D(τ) (8.57)

and

Wa(v, f) = Wa(v, g) = 0 ⇒ Wa(g, f) = 0 ∀f, g ∈ D(τ) (8.58)

Proof. For all f1, . . . , f4 ∈ D(τ) we have the Plücker identity

Wx(f1, f2)Wx(f3, f4) +Wx(f1, f3)Wx(f4, f2) +Wx(f1, f4)Wx(f2, f3) = 0
(8.59)

which remains valid in the limit x → a. Choosing f1 = v, f2 = f, f3 =
v, f4 = f̂ we infer (8.57). Choosing f1 = f, f2 = g, f3 = v, f4 = f̂ we infer
(8.58). �

We call τ limit circle (l.c.) at a if there is a v ∈ D(τ) with Wa(v, v) = 0
such that Wa(v, f) 6= 0 for at least one f ∈ D(τ). Otherwise τ is called limit
point (l.p.) at a. Similarly for b.

Suppose, Wa(f, v) 6= 0, then Wa(f,Re(v)) 6= 0 or Wa(f, Im(v)) 6= 0 and
hence τ is l.c. at a.
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Theorem 8.23. If τ is l.c. at a, then let v ∈ D(τ) with W (v, v)a = 0 and
W (v, f)a 6= 0 for some f ∈ D(τ). Similarly, if τ is l.c. at b, let w be an
analogous function. Then the operator

A : D(A) → L2(I, r dx)
f 7→ τf

(8.60)

with
D(A) = {f ∈ D(τ)| W (v, f)a = 0 if l.c. at a

W (w, f)b = 0 if l.c. at b} (8.61)

is self-adjoint.

Proof. Clearly A ⊆ A∗ ⊆ A∗0. As in the computation of A0 we conclude
Wa(f, g) = 0 for all f ∈ D(A), g ∈ D(A∗). Moreover, by the lemma we have
Wa(v, g) = 0 since Wa(v, f) = 0. Thus g ∈ D(A). �

The name limit circle respectively limit point stems from the original
approach of Weyl, who considered the set of solutions τu = zu, z ∈ C\R
which satisfy Wc(u∗, u) = 0. They can be shown to lie on a circle which
converges to a circle respectively point as c→ a (or c→ b).

Next we want to compute the resolvent of A.

Lemma 8.24. Suppose z ∈ ρ(A), then there exists a solution ua(z, x) which
is in L2((a, c), r dx) and which satisfies the boundary condition at a if τ is l.c.
at a. Similarly, there exists a solution ub(z, x) with the analogous properties
near b.

The resolvent of A is given by

(A− z)−1g(x) =
∫ b

a
G(z, x, t)g(t)r(t)dt, (8.62)

where

G(z, x, t) =
1

W (ub(z), ua(z))

{
ub(z, x)ua(z, t) x ≥ t
ua(z, x)ub(z, t) x ≤ t

. (8.63)

Proof. Let g ∈ L2
0(I, r dx) and consider f = (A − z)−1g ∈ D(A). Since

τf = 0 near a respectively b, we obtain ua(z, x) by setting it equal to f near
a and using the differential equation to extend it to the rest of I. Similarly
we obtain ub. The only problem is that ua or ub might be identically zero.
Hence we need to show that this can be avoided by choosing g properly.

Let g be supported in (c, d) ⊂ I. Since τf = g we have

f(x) = u1(x)
(
α+

∫ x

a
u2gr dt

)
+ u2(x)

(
β +

∫ b

x
u1gr dt

)
. (8.64)

Near a (x < c) we have f(x) = αu1(x) + β̃u2(x) and near b (x > d) we have
f(x) = α̃u1(x) + βu2(x), where α̃ = α+

∫ b
a u2gr dt and β̃ = β +

∫ b
a u1gr dt.
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If f vanishes identically near both a and b we must have α = β = α̃ = β̃ = 0
and thus α = β = 0 and

∫ b
a uj(t)g(t)r(t)dt = 0, j = 1, 2. This case can

be avoided choosing g suitable and hence there is at least one solution, say
ub(z).

Now choose u1 = ub and consider the behavior near b. If u2 is not square
integrable on (d, b), we must have β = 0 since βu2 = f − α̃ub is. If u2 is
square integrable, we can find two functions in D(τ) which coincide with
ub and u2 near b. Since W (ub, u2) = 1 we see that τ is l.c. at a and hence
0 = Wb(ub, f) = Wb(ub, α̃ub + βu2) = β. Thus β = 0 in both cases and we
have

f(x) = ub(x)
(
α+

∫ x

a
u2gr dt

)
+ u2(x)

∫ b

x
ubgr dt. (8.65)

Now choosing g such that
∫ b
a ubgr dt 6= 0 we infer existence of ua(z). Choos-

ing u2 = ua and arguing as before we see α = 0 and hence

f(x) = ub(x)
∫ x

a
ua(t)g(t)r(t)dt+ ua(x)

∫ b

x
ub(t)g(t)r(t)dt

=
∫ b

a
G(z, x, t)g(t)r(t)dt (8.66)

for any g ∈ L2
0(I, r dx). Since this set is dense the claim follows. �

Theorem 8.25 (Weyl alternative). The operator τ is l.c. at a if and only
if for one z0 ∈ C all solutions of (τ − z0)u = 0 are square integrable near a.
This then holds for all z ∈ C. Similarly for b.

Proof. If all solutions are square integrable near a, τ is l.c. at a since the
Wronskian of two linearly independent solutions does not vanish.

Conversely, take two functions v, ṽ ∈ D(τ) with Wa(v, ṽ) 6= 0. By con-
sidering real and imaginary parts it is no restriction th assume that v and
ṽ is real-valued. Thus they give rise to two different self-adjoint operators
A and Ã (choose any fixed w for the other endpoint). Let ua and ũa be
the corresponding solutions from above, then W (ua, ũa) 6= 0 (since other-
wise A = Ã by Lemma 8.22) and thus there are two linearly independent
solutions which are square integrable near a. Since any other solution can
be written as a linear combination of those two, every solution is square
integrable near a.

It remains to show that all solutions of (τ − z)u = 0 for all z ∈ C are
square integrable near a if τ is l.c. at a. In fact, the above argument ensures
this for every z ∈ ρ(A) ∩ ρ(Ã), that is, at least for all z ∈ C\R.

Suppose (τ −z)u = 0. and choose two linearly independent solutions uj ,
j = 1, 2, of (τ − z0)u = 0 with W (u1, u2) = 1. Using (τ − z0)u = (z − z0)u
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and (8.46) we have (a < c < x < b)

u(x) = αu1(x) + βu2(x) + (z − z0)
∫ x

c
(u1(x)u2(t)− u1(t)u2(x))u(t)r(t) dt.

(8.67)
Since uj ∈ L2((c, b), rdx) we can find a constant M ≥ 0 such that∫ b

c
|u1,2(t)|2r(t) dt ≤M. (8.68)

Now choose c close to b such that |z − z0|M2 ≤ 1/4. Next, estimating the
integral using Cauchy–Schwarz gives∣∣∣ ∫ x

c
(u1(x)u2(t)− u1(t)u2(x))u(t)r(t) dt

∣∣∣2
≤

∫ x

c
|u1(x)u2(t)− u1(t)u2(x)|2r(t) dt

∫ x

c
|u(t)|2r(t) dt

≤M
(
|u1(x)|2 + |u2(x)|2

) ∫ x

c
|u(t)|2r(t) dt (8.69)

and hence∫ x

c
|u(t)|2r(t) dt ≤ (|α|2 + |β|2)M + 2|z − z0|M2

∫ x

c
|u(t)|2r(t) dt

≤ (|α|2 + |β|2)M +
1
2

∫ x

c
|u(t)|2r(t) dt. (8.70)

Thus ∫ x

c
|u(t)|2r(t) dt ≤ 2(|α|2 + |β|2)M (8.71)

and since u ∈ ACloc(I) we have u ∈ L2((c, b), r dx) for every c ∈ (a, b). �

Note that all eigenvalues are simple. If τ is l.p. at one endpoint this is
clear, since there is at most one solution of (τ − λ)u = 0 which is square
integrable near this end point. If τ is l.c. this also follows since the fact that
two solutions of (τ − λ)u = 0 satisfy the same boundary condition implies
that their Wronskian vanishes.

Finally, led us shed some additional light on the number of possible
boundary conditions. Suppose τ is l.c. at a and let u1, u2 be two solutions
of τu = 0 with W (u1, u2) = 1. Abbreviate

BCjx(f) = Wx(uj , f), f ∈ D(τ). (8.72)

Let v be as in Theorem 8.23, then, using Lemma 8.22 it is not hard to see
that

Wa(v, f) = 0 ⇔ cos(α)BC1
a(f)− sin(α)BC2

a(f) = 0, (8.73)
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where tan(α) = BC1
a(v)

BC2
a(v)

. Hence all possible boundary conditions can be
parametrized by α ∈ [0, π). If τ is regular at a and if we choose u1(a) =
p(a)u′2(a) = 1 and p(a)u′1(a) = u2(a) = 0, then

BC1
a(f) = f(a), BC2

a(f) = p(a)f ′(a) (8.74)

and the boundary condition takes the simple form

cos(α)f(a)− sin(α)p(a)f ′(a) = 0. (8.75)

Finally, note that if τ is l.c. at both a and b, then Theorem 8.23 does not
give all possible self-adjoint extensions. For example, one could also choose

BC1
a(f) = eiαBC1

b (f), BC2
a(f) = eiαBC2

b (f). (8.76)

The case α = 0 gives rise to periodic boundary conditions in the regular
case.

Now we turn to the investigation of the spectrum of A. If τ is l.c. at
both endpoints, then the spectrum of A is very simple

Theorem 8.26. If τ is l.c. at both end points, then the resolvent is a Hilbert–
Schmidt operator, that is,∫ b

a

∫ b

a
|G(z, x, t)|2r(t)dt r(x)dx <∞. (8.77)

In particular, the spectrum of any self adjoint extensions is purely discrete
and the eigenfunctions (which are simple) form an orthonormal basis.

Proof. This follows from the estimate∫ b

a

( ∫ x

a
|ub(x)ua(t)|2r(t)dt+

∫ b

x
|ub(t)ua(x)|2dt

)
r(x)dx

≤ 2
∫ b

a
|ua(t)|2r(t)dt

∫ b

a
|ub(s)|2r(s)ds, (8.78)

which shows that the resolvent is Hilbert–Schmidt and hence compact. �

If τ is not l.c. the situation is more complicated and we can only say
something about the essential spectrum.

Theorem 8.27. All self adjoint extensions have the same essential spec-
trum. Moreover, if Aac and Acb are self-adjoint extensions of τ restricted to
(a, c) and (c, b) (for any c ∈ I), then

σess(A) = σess(Aac) ∪ σess(Acb). (8.79)

Proof. Since (τ − i)u = 0 has two linearly independent solutions, the defect
indices are at most two (they are zero if τ is l.p. at both end points, one if
τ is l.c. at one and l.p. at the other end point, and two if τ is l.c. at both
endpoints). Hence The first claim follows from Theorem 8.12.
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For the second claim restrict τ to the functions with compact support
in (a, c)∪ (c, d). Then, this operator is the orthogonal sum of the operators
A0,ac and A0,cb. Hence the same is true for the adjoints and hence the defect
indices of A0,ac ⊕ A0,cb are at most four. Now note that A and Aac ⊕ Acb
are both self-adjoint extensions of this operator. Thus the second claim also
follows from Theorem 8.12. �

Examples will follow in the next chapter.



Chapter 9

Atomic Schrödinger
operators

9.1. The hydrogen atom

We begin with the simple model of a single electron in R3 moving in the
external potential V generated by a nucleus (which is assumed to be fixed
at the origin). If one takes only the electrostatic force into account, then
V is given by the Coulomb potential and the corresponding Hamiltonian is
given by

H(1) = −∆− γ

|x|
, D(H(1)) = H2(R3). (9.1)

If the potential is attracting, that is, if γ > 0, then it describes the hydrogen
atom and is probably the most famous model in quantum mechanics.

As domain we have chosen D(H(1)) = D(H0) ∩D( 1
|x|) = D(H0) and by

Theorem 8.17 we conclude that H(1) is self-adjoint. Moreover, Theorem 8.17
also tells us

σess(H(1)) = [0,∞) (9.2)

and that H(1) is bounded from below

E0 = inf σ(H(1)) > −∞. (9.3)

If γ ≤ 0 we have H(1) ≥ 0 and hence E0 = 0, but if γ > 0, we might have
E0 < 0 and there might be some discrete eigenvalues below the essential
spectrum.

In order to say more about the eigenvalues of H(1) we will use the fact
that both H0 and V (1) = −γ/|x| have a simple behavior with respect to

119
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scaling. Consider the dilation group

U(s)ψ(x) = e−ns/2ψ(e−sx), s ∈ R, (9.4)

which is a strongly continuous one-parameter unitary group. The generator
can be easily computed

Dψ(x) =
1
2
(xp+ px)ψ(x) = (xp− in

2
)ψ(x), ψ ∈ S(Rn). (9.5)

Now let us investigate the action of U(s) on H(1)

H(1)(s) = U(−s)H(1)U(s) = e−2sH0 + e−sV (1), D(H(1)(s)) = D(H(1)).
(9.6)

Now suppose Hψ = λψ, then

〈ψ, [U(s),H]ψ〉 = 〈U(−s)ψ,Hψ〉 − 〈Hψ,U(s)ψ〉 = 0 (9.7)

and hence

0 = lim
s→0

1
s
〈ψ, [U(s),H]ψ〉 = lim

s→0
〈U(−s)ψ, H −H(s)

s
ψ〉

= 〈ψ, (2H0 + V (1))ψ〉. (9.8)

Thus we have proven the virial theorem.

Theorem 9.1. Suppose H = H0 +V with U(−s)V U(s) = e−sV . Then any
normalized eigenfunction ψ corresponding to an eigenvalue λ satisfies

λ = −〈ψ,H0ψ〉 =
1
2
〈ψ, V ψ〉. (9.9)

In particular, all eigenvalues must be negative.

This result even has some further consequences for the point spectrum
of H(1).

Corollary 9.2. Suppose γ > 0. Then

σp(H(1)) = σd(H(1)) = {Ej−1}j∈N0 , E0 < Ej < Ej+1 < 0, (9.10)

with limj→∞Ej = 0.

Proof. Choose ψ ∈ C∞0 (R\{0}) and set ψ(s) = U(−s)ψ. Then

〈ψ(s),H(1)ψ(s)〉 = e−2s〈ψ,H0ψ〉+ e−s〈ψ, V (1)ψ〉 (9.11)

which is negative for s large. Now choose a sequence sn → ∞ such that
we have supp(ψ(sn)) ∩ supp(ψ(sm)) = ∅ for n 6= m. Then Theorem 4.12
(i) shows that rank(PH(1)((−∞, 0))) = ∞. Since each eigenvalue Ej has
finite multiplicity (it lies in the discrete spectrum) there must be an infinite
number of eigenvalues which accumulate at 0. �
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If γ ≤ 0 we have σd(H(1)) = ∅ since H(1) ≥ 0 in this case.

Hence we have gotten a quite complete picture of the spectrum of H(1).
Next, we could try to compute the eigenvalues of H(1) (in the case γ > 0) by
solving the corresponding eigenvalue equation, which is given by the partial
differential equation

−∆ψ(x)− γ

|x|
ψ(x) = λψ(x). (9.12)

For a general potential this is hopeless, but in our case we can use the rota-
tional symmetry of our operator to reduce our partial differential equation
to ordinary ones.

First of all, it suggests itself to switch to spherical coordinates (x1, x2, x3) →
(r, θ, ϕ) which correspond to a unitary transform

L2(R3) → L2((0,∞), r2dr)⊗ L2((0, π), sin(θ)dθ)⊗ L2((0, 2π), dϕ) (9.13)

In these new coordinates (r, θ, ϕ) our operator reads

H(1) = − 1
r2

∂

∂r
r2
∂

∂r
+

1
r2
L2 + V (r), V (r) = −γ

r
, (9.14)

where

L2 = L2
1 + L2

2 + L2
3 = − 1

sin(θ)
∂

∂θ
sin(θ)

∂

∂θ
− 1

sin(θ)2
∂2

∂ϕ2
. (9.15)

(Recall the angular momentum operators Lj from Section 7.2.)
Making the product ansatz (separation of variables)

ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) (9.16)

we obtain the following three Sturm-Liouville equations(
− 1
r2

d

dr
r2
d

dr
+
l(l + 1)
r2

+ V (r)
)
R(r) = λR(r)

1
sin(θ)

(
− d

dθ
sin(θ)

d

dθ
+

m2

sin(θ)

)
Θ(θ) = l(l + 1)Θ(θ)

− d2

dϕ2
Φ(ϕ) = m2Φ(ϕ) (9.17)

The form chosen for the constants l(l + 1) and m2 is for convenience later
on. These equations will be investigated in the following sections.

9.2. Angular momentum

We start by investigating the equation for Φ(ϕ) which associated with the
Stum-Liouville equation

τΦ = −Φ′′, I = (0, 2π). (9.18)
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since we want ψ defined via (9.16) to be in the domain of H0 (in particu-
lar continuous), we choose periodic boundary conditions the Stum-Liouville
equation

AΦ = τΦ, D(A) = {Φ ∈ L2(0, π)| Φ ∈ AC1[0, π],
Φ(0) = Φ(2π),Φ′(0) = Φ′(2π)}

.

(9.19)
From our analysis in Section 8.5 we immediately obtain

Theorem 9.3. The operator A defined via (9.18) is self-adjoint. Its spec-
trum is purely discrete

σ(A) = σd(A) = {m2|m ∈ Z} (9.20)

and the corresponding eigenfunctions

Φm(ϕ) =
1√
2π

eimϕ, m ∈ Z, (9.21)

form an orthonormal basis for L2(0, 2π).

Note that except for the lowest eigenvalue, all eigenvalues are twice de-
generate.

We note that this operator is essentially the square of the angular mo-
mentum in the third coordinate direction, since in polar coordinates

L3 =
1
i
∂

∂ϕ
. (9.22)

Now we turn to the equation for Θ(θ)

τmΘ(θ) =
1

sin(θ)

(
− d

dθ
sin(θ)

d

dθ
+

m2

sin(θ)

)
Θ(θ), I = (0, π),m ∈ N0.

(9.23)
For the investigation of the corresponding operator we use the unitary

transform

L2((0, π), sin(θ)dθ) → L2((−1, 1), dx), Θ(θ) 7→ f(x) = Θ(arccos(x)).
(9.24)

The operator τ transforms to the somewhat simpler form

τm = − d

dx
(1− x2)

d

dx
− m2

1− x2
. (9.25)

The corresponding eigenvalue equation

τmu = l(l − 1)u (9.26)

is the associated Legendre equation. For l ∈ N0 it is solved by the
associated Legendre functions

Plm(x) = (1− x)m/2
dm

dxm
Pl(x), (9.27)
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where

Pl(x) =
1

2ll!
dl

dxl
(1− x2) (9.28)

are the Legendre polynomials. This is straightforward to check. More-
over, note that Pl(x) are (nonzero) polynomials of degree l. A second,
linearly independent solution is given by

Qlm(x) = Plm(x)
∫ x

0

dt

(1− t2)Plm(t)2
. (9.29)

In fact, for every Sturm-Liouville equation v(x) =
∫ x dt

p(t)u(t)2
satisfies τv = 0

whenever τu = 0. Now fix l = 0 and note P0(x) = 1. For m = 0 we have
Q00 = arctanh(x) ∈ L2 and so τ0 is l.c. at both end points. For m > 0 we
have Q0m = (x ± 1)−m/2(C + O(x ± 1)) which shows that it is not square
integrable. Thus τm is l.c. for m = 0 and l.p. for m > 0 at both endpoints.
In order to make sure that the eigenfunctions for m = 0 are continuous (such
that ψ defined via (9.16) is continuous) we choose the boundary condition
generated by P0(x) = 1 in this case

Amf = τf, D(Am) = {f ∈ L2(−1, 1)| f ∈ AC1(0, π), τf ∈ L2(−1, 1)
limx→±1(1− x2)f ′(x) = 0}

.

(9.30)

Theorem 9.4. The operator Am, m ∈ N0, defined via (9.30) is self-adjoint.
Its spectrum is purely discrete

σ(Am) = σd(Am) = {l(l + 1)|l ∈ N0, l ≥ m} (9.31)

and the corresponding eigenfunctions

ulm(x) =

√
2l + 1

2
(l +m)!
(l −m)!

Plm(x), l ∈ N0, l ≥ m, (9.32)

form an orthonormal basis for L2(−1, 1).

Proof. By Theorem 8.23, Am is self-adjoint. Moreover, Plm is an eigen-
function corresponding to the eigenvalue l(l+1) and it suffices to show that
Plm form a basis. To prove this, it suffices to show that the functions Plm(x)
are dense. Since (1 − x2) > 0 for x ∈ (−1, 1) it suffices to show that the
functions (1 − x2)−m/2Plm(x) are dense. But the span of these functions
contains every polynomial. Every continuous function can be approximated
by polynomials (in the sup norm and hence in the L2 norm) and since the
continuous functions are dense, so are the polynomials.

The only thing remaining is the normalization of the eigenfunctions,
which can be found in any book on special functions. �
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Returning to our original setting we conclude that

Θlm =

√
2l + 1

2
(l +m)!
(l −m)!

Plm(cos(θ)), l = m,m+ 1, . . . (9.33)

form an orthonormal basis for L2((0, π), sin(θ)dθ) for any fixed m ∈ N0.

Theorem 9.5. The operator L2 on L2((0, π), sin(θ)dθ)⊗ L2((0, 2π)) has a
purely discrete spectrum given

σ(L2) = {l(l + 1)|l ∈ N0}. (9.34)

The spherical harmonics

Ylm(θ, ϕ) = Θl|m|(θ)Φm(ϕ) =

√
2l + 1

4π
(l + |m|)!
(l − |m|)!

Pl|m|(cos(θ))eimϕ, |m| ≤ l,

(9.35)
form an orthonormal basis and satisfy L2Ylm = l(l + 1)Ylm and L3Ylm =
mYlm.

Proof. Everything follows from our construction, if we can show that Ylm
form a basis. But this follows as in the proof of Lemma 1.8. �

Note that transforming Ylm back to cartesian coordinates gives

Yl,±m(x) =

√
2l + 1

4π
(l +m)!
(l −m)!

P̃lm(
x3

r
)
(
x1 ± ix2

r

)m

, r = |x|, (9.36)

where P̃lm is a polynomial of degree l −m given by

P̃lm(x) = (1− x2)−m/2Plm(x) =
dl+m

dxl+m
(1− x2)l. (9.37)

In particular, Ylm are smooth away from the origin and by construction they
satisfy

−∆Ylm =
l(l + 1)
r2

Ylm. (9.38)

9.3. The spectrum of the hydrogen atom

Now we want to use the considerations from the previous section to decom-
pose the Hamiltonian of the hydrogen atom. In fact, we can even admit any
potential V (x) = V (|x|) with

V (r) ∈ L∞∞(R) + L2((0,∞), r2dr). (9.39)

The important observation is that the spaces

Hlm = {ψ(x) = R(r)Ylm(θ, ϕ)|R(r) ∈ L2((0,∞), r2dr)} (9.40)
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reduce our operator H = H0 + V . Hence

H = H0 + V =
⊕
l,m

H̃l, (9.41)

where

H̃lR(r) = τ̃lR(r), τ̃l = − 1
r2

d

dr
r2
d

dr
+
l(l + 1)
r2

+ V (r)

D(Hl) ⊆ L2((0,∞), r2dr). (9.42)

Using the unitary transformation

L2((0,∞), r2dr) → L2((0,∞)), R(r) 7→ u(r) = rR(r), (9.43)

our operator transforms to

Alf = τlf, τl = − d2

dr2
+
l(l + 1)
r2

+ V (r)

D(Al) ⊆ L2((0,∞)). (9.44)

It remains to investigate this operator.

Theorem 9.6. The domain of the operator Al is given by

D(Al) = {f ∈ L2(I)| f, f ′ ∈ AC(I), τf ∈ L2(I),
limr→0(f(r)− rf ′(r)) = 0 if l = 0},

(9.45)

where I = (0,∞). Moreover, σess(Al) = [0,∞).

Proof. By construction of Al we know that it is self-adjoint and satisfies
σess(Al) = [0,∞). Hence it remains to compute the domain. We know at
least D(Al) ⊆ D(τ) and since D(H) = D(H0) it suffices to consider the case
V = 0. In this case the solutions of −u′′(r) + l(l+1)

r2
u(r) = 0 are given by

u(r) = αrl+1 + βr−l. Thus we are in the l.p. case at ∞ for any l ∈ N0.
However, at 0 we are in the l.p. case only if l > 0, that is, we need an
additional boundary condition at 0 if l = 0. Since we need R(r) = u(r)

r to
be bounded (such that (9.16) is in the domain of H0), we have to take the
boundary condition generated by u(r) = r. �

Finally let us turn to some explicit choices for V , where the correspond-
ing differential equation can be explicitly solved. The simplest case is V = 0
in this case the solutions of

−u′′(r) +
l(l + 1)
r2

u(r) = zu(r) (9.46)

are given by the spherical Bessel respectively spherical Neumann func-
tions

u(r) = α jl(
√
zr) + β nl(

√
zr), (9.47)
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where

jl(r) = (−r)l
(

1
r

d

dr

)l sin(r)
r

. (9.48)

In particular,

ua(z, r) = jl(
√
zr) and ub(z, r) = jl(

√
zr) + inl(

√
zr) (9.49)

are the functions which are square integrable and satisfy the boundary con-
dition (if any) near a = 0 and b = ∞, respectively.

The second case is that of our Coulomb potential

V (r) = −γ
r
, γ > 0, (9.50)

where we will try to compute the eigenvalues plus corresponding eigenfunc-
tions. It turns out that they can be expressed in terms of the Laguerre
polynomials

Lj(r) = er
dj

drj
e−rrj (9.51)

and the associated Laguerre polynomials

Lkj (r) =
dk

drk
Lj(r). (9.52)

Note that Lkj is a polynomial of degree j − k.

Theorem 9.7. The eigenvalues of H(1) are explicitly given by

En = −
(

γ

2(n+ 1)

)2

, n ∈ N0. (9.53)

An orthonormal basis for the corresponding eigenspace is given by

ψnlm(x) = Rnl(r)Ylm(x), (9.54)

where

Rnl(r) =

√
γ3(n− l)!

2n3((n+ l + 1)!)3

(
γr

n+ 1

)l

e−
γr

2(n+1)L2l+1
n+l+1(

γr

n+ 1
). (9.55)

In particular, the lowest eigenvalue E0 = −γ2

4 is simple and the correspond-

ing eigenfunction ψ000(x) =
√

γ3

43π
e−γr/2 is positive.

Proof. It is a straightforward calculation to check that Rnl are indeed eigen-
functions of Al corresponding to the eigenvalue −( γ

2(n+1))
2 and for the norm-

ing constants we refer to any book on special functions. The only problem
is to show that we have found all eigenvalues.

Since all eigenvalues are negative, we need to look at the equation

−u′′(r) + (
l(l + 1)
r2

− γ

r
)u(r) = λu(r) (9.56)
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for λ < 0. Introducing new variables x =
√
−λr and v(x) = xl+1e−xu(x/

√
−λ)

this equation transforms into

xv′′(x) + 2(l + 1− x)v′(x) + 2nv(x) = 0, n =
γ

2
√
−λ

− (l + 1). (9.57)

Now let us search for a solution which can be expanded into a convergent
power series

v(x) =
∞∑
j=0

vjx
j , v0 = 1. (9.58)

The corresponding u(r) is square integrable near 0 and satisfies the boundary
condition (if any). Thus we need to find those values of λ for which it is
square integrable near +∞.

Substituting the ansatz (9.58) into our differential equation and com-
paring powers of x gives the following recursion for the coefficients

vj+1 =
2(j − n)

(j + 1)(j + 2(l + 1))
vj (9.59)

and thus

vj =
1
j!

j−1∏
k=0

2(k − n)
k + 2(l + 1)

. (9.60)

Now there are two cases to distinguish. If n ∈ N0, then vj = 0 for j > n
and v(x) is a polynomial. In this case u(r) is square integrable and hence an
eigenfunction corresponding to the eigenvalue λn = −( γ

2(n+l+1))
2. Otherwise

we have vj ≥ (2−ε)j

j! for j sufficiently large. Hence by adding a polynomial

to v(x) we can get a function ṽ(x) such that ṽj ≥ (2−ε)j

j! for all j. But
then ṽ(x) ≥ exp((2 − ε)x) and thus the corresponding u(r) is not square
integrable near −∞. �

9.4. Atomic Schrödinger operators

In this section we want to have a look at the Hamiltonian corresponding to
more than one interacting particle. It is given by

H = −
N∑
j=1

∆j +
N∑
j<k

Vj,k(xj − xk). (9.61)

We first consider the case of two particles, which will give us a feeling
for how the many particle case differs from the one particle case and how
the difficulties can be overcome.

We denote the coordinates corresponding to the first particle by x1 =
(x1,1, x1,2, x1,3) and those corresponding to the second particle by x2 =
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(x2,1, x2,2, x2,3). If we assume that the interaction is again of the Coulomb
type, the Hamiltonian is given by

H = −∆1 −∆2 −
γ

|x1 − x2|
, D(H) = H2(R6). (9.62)

Since Theorem 8.17 does not allow singularities for n ≥ 3, it does not tell
us whether H is self-adjoint or not. Let

(y1, y2) =
1√
2

(
I I
−I I

)
(x1, x2), (9.63)

then H reads in this new coordinates

H = (−∆1) + (−∆2 −
γ/
√

2
|y2|

). (9.64)

In particular, it is the sum of a free particle plus a particle in an external
Coulomb field. From a physics point of view, the first part corresponds to
the center of mass motion and the second part to the relative motion.

Using that γ/(
√

2|y2|) has (−∆2)-bound 0 in L2(R3) it is not hard to
see that the same is true for the (−∆1 −∆2)-bound in L2(R6) (details will
follow in the next section). In particular, H is self-adjoint and semi-bounded
for any γ ∈ R. Moreover, you might suspect that γ/(

√
2|y2|) is relatively

compact with respect to −∆1−∆2 in L2(R6) since it is with respect to −∆2

in L2(R6). However, this is not true! This is due to the fact that γ/(
√

2|y2|)
does not vanish as |y| → ∞.

Let us look at this problem from the physical view point. If λ ∈ σess(H),
this means that the movement of the whole system is somehow unbounded.
There are two possibilities for this.

Firstly, both particles are far away from each other (such that we can
neglect the interaction) and the energy corresponds to the sum of the kinetic
energies of both particles. Since both can be arbitrarily small (but positive),
we expect [0,∞) ⊆ σess(H).

Secondly, both particles remain close to each other and move together.
In the last coordinates this corresponds to a bound state of the second
operator. Hence we expect [λ0,∞) ⊆ σess(H), where λ0 = −γ2/8 is the
smallest eigenvalue of the second operator if the forces are attracting (γ ≥ 0)
and λ0 = 0 if they are repelling (γ ≤ 0).

It is not hard to translate this intuitive ideas into a rigorous proof.
Let ψ1(y1) be a Weyl sequence corresponding to λ ∈ [0,∞) for −∆1 and
ψ2(y2) be a Weyl sequence corresponding to λ0 for −∆2−γ/(

√
2|y2|). Then,

ψ1(y1)ψ2(y2) is a Weyl sequence corresponding to λ + λ0 for H and thus
[λ0,∞) ⊆ σess(H). Conversely, we have −∆1 ≥ 0 respectively −∆2 −
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γ/(
√

2|y2|) ≥ λ0 and hence H ≥ λ0. Thus we obtain

σ(H) = σess(H) = [λ0,∞), λ0 =
{
−γ2/8, γ ≥ 0
0, γ ≤ 0

. (9.65)

Clearly, the physically relevant information is the spectrum of the operator
−∆2−γ/(

√
2|y2|) which is hidden by the spectrum of −∆1. Hence, in order

to reveal the physics, one first has to remove the center of mass motion.
To avoid clumsy notation, we will restrict ourselves to the case of one

atom with N electrons whose nucleus is fixed at the origin. In particular,
this implies that we do not have to deal with the center of mass motion
encountered in our example above. The Hamiltonian is given by

H(N) = −
N∑
j=1

∆j −
N∑
j=1

Vne(xj) +
N∑
j=1

N∑
j<k

Vee(xj − xk),

D(H(N)) = H2(R3N ), (9.66)

where Vne describes the interaction of one electron with the nucleus and Vee
describes the interaction of two electrons. Explicitly we have

Vj(x) =
γj
|x|
, γj > 0, j = ne, ee. (9.67)

We first need to establish self-adjointness of H(N). This will follow from
Kato’s theorem.

Theorem 9.8 (Kato). Let Vk ∈ L∞∞(Rd) + L2(Rd), d ≤ 3, be real-valued
and let Vk(y(k)) be the multiplication operator in L2(Rn), n = Nd, obtained
by letting y(k) be the first d coordinates of a unitary transform of Rn. Then
Vk is H0 bounded with H0-bound 0. In particular,

H = H0 +
∑
k

Vk(y(k)), D(H) = H2(Rn), (9.68)

is self-adjoint.

Proof. It suffices to consider one k. After a unitary transform of Rn we can
assume y(1) = (x1, . . . , xd) since such transformation leave both the scalar
product of L2(Rn) and H0 invariant. Now let ψ ∈ S(Rn), then

‖Vkψ‖2 ≤ a2

∫
Rn

|∆1ψ(x)|2dnx+ b2
∫

Rn

|ψ(x)|2dnx, (9.69)
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where ∆1 =
∑d

j=1 ∂
2/∂2xj , by our previous lemma. Hence we obtain

‖Vkψ‖2 ≤ a2

∫
Rn

|
d∑
j=1

p2
j ψ̂(p)|2dnp+ b2‖ψ‖2

≤ a2

∫
Rn

|
n∑
j=1

p2
j ψ̂(p)|2dnp+ b2‖ψ‖2

= a2‖H0ψ‖2 + b2‖ψ‖2, (9.70)

which implies that Vk is relatively bounded with bound 0. �

The considerations of the beginning of this section show that it is not so
easy to determine the essential spectrum of H(N) since the potential does
not decay in all directions as |x| → ∞. However, there is still something we
can do. Denote the infimum of the spectrum of H(N) by λN . Then, let us
split the system into H(N−1) plus a single electron. If the single electron is
far away from the remaining system such that there is little interaction, the
energy should be the sum of the kinetic energy of the single electron and
the energy of the remaining system. Hence arguing as in the two electron
example of the previous section we expect

Theorem 9.9 (HVZ). Let H(N) be the self-adjoint operator given in (9.66).
Then H(N) is bounded from below and

σess(H(N)) = [λN−1,∞), (9.71)

where λN = minσ(H(N)) < 0.

In particular, the ionization energy (i.e., the energy needed to remove
one electron from the atom in its ground state) of an atom with N electrons
is given by λN − λN−1.

Our goal for the rest of this section is to prove this result which is due to
Zhislin, van Winter and Hunziker and known as HVZ theorem. In fact there
is a version which holds for general N -body systems. The proof is similar
but involves some additional notation.

The idea of proof is the following. To prove [λN−1,∞) ⊆ σess(H(N))
we choose Weyl sequences for H(N−1) and −∆N and proceed according to
our intuitive picture from above. To prove σess(H(N)) ⊆ [λN−1,∞) we will
localize H(N) on sets where either one electron is far away from the others
or all electrons are far away from the nucleus. Since the error turns out
relatively compact, it remains to consider the infimum of the spectra of
these operators. For all cases where one electron is far away it is λN−1 and
for the case where all electrons are far away from the nucleus it is 0 (since
the electrons repel each other).
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We begin with the first inclusion. Let ψN−1(x1, . . . , xN−1) ∈ H2(R3(N−1))
such that ‖ψN−1‖ = 1, ‖(H(N−1)−λN−1)ψN−1‖ ≤ ε and ψ1 ∈ H2(R3) such
that ‖ψ1‖ = 1, ‖(−∆N − λ)ψN−1‖ ≤ ε for some λ ≥ 0. Now consider
ψr(x1, . . . , xN ) = ψN−1(x1, . . . , xN−1)ψ1

r (xN ), ψ1
r (xN ) = ψ1(xN − r), then

‖(H(N) − λ− λN−1)ψr‖ ≤ ‖(H(N−1) − λN−1)ψN−1‖‖ψ1
r‖

+ ‖ψN−1‖‖(−∆N − λ)ψ1
r‖

+ ‖(VN −
N−1∑
j=1

VN,j)ψr‖, (9.72)

where VN = Vne(xN ) and VN,j = Vee(xN−xj). Since (VN−
∑N−1

j=1 VN,j)ψN−1 ∈
L2(R3N ) and |ψ1

r | → 0 pointwise as |r| → ∞ (by Lemma 8.16), the third
term can be made smaller than ε by choosing |r| large (dominated conver-
gence). In summary,

‖(H(N) − λ− λN−1)ψr‖ ≤ 3ε (9.73)

proving [λN−1,∞) ⊆ σess(H(N)).
The second inclusion is more involved. We begin with a localization

formula, which can be verified by a straightforward computation

Lemma 9.10 (IMS localization formula). Suppose φj ∈ C∞(Rn), 0 ≤ j ≤
N , is such that

N∑
j=0

φj(x)2 = 1, x ∈ Rn, (9.74)

then

∆ψ =
N∑
j=0

φj∆φjψ − |∂φj |2ψ, ψ ∈ H2(Rn). (9.75)

Abbreviate B = {x ∈ R3N ||x| ≥ 1}. Now we will choose φj , 1 ≤ j ≤ N ,
in such a way that x ∈ supp(φj) ∩ B implies that the j-th particle is far
away from all the others and from the nucleus. Similarly, we will choose φ0

in such a way that x ∈ supp(φ0) ∩ B implies that all particle are far away
from the nucleus.

Lemma 9.11. There exists functions φj ∈ C∞(Rn, [0, 1]), 0 ≤ j ≤ N , is
such that (9.74) holds,

supp(φj) ∩B ⊆ {x ∈ B| |xj − x`| ≥ C|x| for all ` 6= j, and |xj | ≥ C|x|},
supp(φ0) ∩B ⊆ {x ∈ B| |x`| ≥ C|x| for all `} (9.76)

for some C ∈ [0, 1], and |∂φj(x)| → 0 as |x| → ∞.
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Proof. Consider the sets

Unj = {x ∈ S3N−1| |xj − x`| > n−1 for all ` 6= j, and |xj | > n−1},
UN0 = {x ∈ S3N−1| |x`| > n−1 for all `}. (9.77)

We claim that
∞⋃
n=1

N⋃
j=0

Unj = S3N−1. (9.78)

Indeed, suppose there is an x ∈ S3N−1 which is not an element of this union.
Then x 6∈ Un0 for all n implies 0 = |xj | for some j, say j = 1. Next, since
x 6∈ Un1 for all n implies 0 = |xj − x1| = |xj | for some j > 1, say j = 2.
Proceeding like this we end up with x = 0, a contradiction. By compactness
of S3N−1 we even have

N⋃
j=0

Unj = S3N−1 (9.79)

for n sufficiently large. It is well-known that there is a partition of unity
φ̃j(x) subordinate to this cover. Extend φ̃j(x) to a smooth function from
R3N\{0} to [0, 1] by

φ̃j(λx) = φ̃j(x), x ∈ S3N−1, λ > 0, (9.80)

and pick a function φ̃ ∈ C∞(R3N , [0, 1]) with support inside the unit ball
which is 1 in a neighborhood of the origin. Then

φj =
φ̃+ (1− φ̃)φ̃j√∑N
`=0 φ̃+ (1− φ̃)φ̃`

(9.81)

are the desired functions. The gradient tends to zero since φj(λx) = φj(x)
for λ ≥ 1 and |x| ≥ 1 which implies (∂φj)(λx) = λ−1(∂φj)(x). �

By our localization formula we have

H(N) =
N∑
j=0

φjH
(N,j)φj +K, K =

N∑
j=0

φ2
jV

(N,j) + |∂φj |2, (9.82)

where

H(N,j) = −
N∑
`=1

∆` −
N∑
` 6=j

V` +
N∑

k<`, k, 6̀=j
Vk,`, H(N,0) = −

N∑
`=1

∆` +
N∑
k<`

Vk,`

V (N,j) = Vj +
N∑
` 6=j

Vj,`, V (N,0) =
N∑
`=1

V` (9.83)

To show that our choice of the functions φj implies that K is relatively
compact with respect to H we need the following



9.4. Atomic Schrödinger operators 133

Lemma 9.12. Let V be H0 bounded with H0-bound 0 and suppose that
‖χ{x||x|≥R}V RH0(z)‖ → 0 as R → ∞. Then V is relatively compact with
respect to H0.

Proof. Let ψn converge to 0 weakly. Note that ‖ψn‖ ≤ M for some
M > 0. It suffices to show that ‖V RH0(z)ψn‖ converges to 0. Choose
φ ∈ C∞0 (Rn, [0, 1]) such that it is one for |x| ≤ R. Then

‖V RH0(z)ψn‖ ≤ ‖(1− φ)V RH0(z)ψn‖+ ‖V φRH0(z)ψn‖
≤ ‖(1− φ)V RH0(z)‖∞‖ψn‖+

a‖H0φRH0(z)ψn‖+ b‖φRH0(z)ψn‖. (9.84)

By assumption, the first term can be made smaller than ε by choosing R
large. Next, the same is true for the second term choosing a small. Finally,
the last term can also be made smaller than ε by choosing n large since φ
is H0 compact. �

The terms |∂φj |2 are bounded and vanish at ∞, hence they are H0 com-
pact by Lemma 6.9. The terms φjV (N,j) are relatively compact by the lemma
and hence K is relatively compact with respect to H0. By Lemma 8.15, K is
also relatively compact with respect toH(N) since V (N) is relatively bounded
with respect to H0.

In particular H(N) − K is self-adjoint on H2(R3N ) and σess(H(N)) =
σess(H(N) − K). Since the operators H(N,j), 1 ≤ j ≤ N , are all of the
form H(N−1) plus one particle which does not interact with the others and
the nucleus, we have H(N,j) − λN−1 ≥ 0, 1 ≤ j ≤ N . Moreover, we have
H(0) ≥ 0 since Vj,k ≥ 0 and hence

〈ψ, (H(N) −K − λN−1)ψ〉 =
N∑
j=0

〈φjψ, (H(N,j) − λN−1)φjψ〉 ≥ 0. (9.85)

Thus we obtain the remaining inclusion

σess(H(N)) = σess(H(N) −K) ⊆ σ(H(N) −K) ⊆ [λN−1,∞) (9.86)

which finishes the proof of the HVZ theorem.
Note that the same proof works if we add additional nuclei at fixed

locations. That is, we can also treat molecules if we assume that the nuclei
are fixed in space.

Finally, let us consider the example of Helium like atoms (N = 2). By
the HVZ theorem and the considerations of the previous section we have

σess(H(2)) = [−γ
2
ne

4
,∞). (9.87)
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Moreover, if γee = 0 (no electron interaction), we can take products of one
particle eigenfunctions to show that

−γ2
ne

(
1

4n2
+

1
4m2

)
∈ σp(H(2)(γee = 0)), n,m ∈ N. (9.88)

In particular, there are eigenvalues embedded in the essential spectrum in
this case. Moreover, since the electron interaction term is positive, we see

H(2) ≥ −γ
2
ne

2
. (9.89)

Note that there can be no positive eigenvalues by the virial theorem. This
even holds for arbitrary N ,

σp(H(N)) ⊂ (−∞, 0). (9.90)



Chapter 10

Scattering theory

10.1. Abstract theory

In physical measurements one often has the following situation. A particle
is shot into a region where it interacts with some forces and then leaves
the region again. Outside this region the forces are negligible and hence the
time evolution should be asymptotically free. Hence one expects asymptotic
states ψ±(t) = exp(−itH0)ψ±(0) to exist such that

‖ψ(t)− ψ±(t)‖ → 0 as t→ ±∞. (10.1)

ψ(t)

ψ−(t)

ψ+(t)

�
�
�
�
�
�
�
�
�
�
�
�
�
���

������������������:

�

Rewriting this condition we see

0 = lim
t→±∞

‖e−itHψ(0)− e−itH0ψ±(0)‖ = lim
t→±∞

‖ψ(0)− eitHe−itH0ψ±(0)‖
(10.2)

and motivated by this we define the wave operators by

D(Ω±) = {ψ ∈ H|∃ limt→±∞ eitHe−itH0ψ}
Ω±ψ = limt→±∞ eitHe−itH0ψ

. (10.3)

135
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The set D(Ω±) is the set of all incoming/outgoing asymptotic states ψ± and
Ran(Ω±) is the set of all states which have an incoming/outgoing asymptotic
state. If a state ψ has both, that is, ψ ∈ Ran(Ω+) ∩ Ran(Ω−), it is called a
scattering state.

By construction we have

‖Ω±ψ‖ = lim
t→±∞

‖eitHe−itH0ψ‖ = lim
t→±∞

‖ψ‖ = ‖ψ‖ (10.4)

and it is not hard to see that D(Ω±) is closed. Moreover, interchanging the
roles of H0 and H amounts to replacing Ω± by Ω−1

± and hence Ran(Ω±) is
also closed. In summary,

Lemma 10.1. The sets D(Ω±) and Ran(Ω±) are closed and Ω± : D(Ω±) →
Ran(Ω±) is unitary.

Next, observe that

lim
t→±∞

eitHe−itH0(e−isH0ψ) = lim
t→±∞

e−isH(ei(t+s)He−i(t+s)H0ψ) (10.5)

and hence
Ω±e−itH0ψ = e−itHΩ±ψ, ψ ∈ D(Ω±). (10.6)

In addition, D(Ω±) is invariant under exp(−itH0) and Ran(Ω±) is invariant
under exp(−itH). Moreover, if ψ ∈ D(Ω±)⊥ then

〈ϕ, exp(−itH0)ψ〉 = 〈exp(itH0)ϕ,ψ〉 = 0, ϕ ∈ D(Ω±). (10.7)

Hence D(Ω±)⊥ is invariant under exp(−itH0) and Ran(Ω±)⊥ is invariant
under exp(−itH). Consequently, D(Ω±) reduces exp(−itH0) and Ran(Ω±)
reduces exp(−itH). Moreover, differentiating (10.6) with respect to t we
obtain from Theorem 5.1 the intertwining property of the wave operators.

Theorem 10.2. The subspaces D(Ω±) respectively Ran(Ω±) reduce H0 re-
spectively H and the operators restricted to these subspaces are unitarily
equivalent

Ω±H0ψ = HΩ±ψ, ψ ∈ D(Ω±) ∩D(H0). (10.8)

It is interesting to know the correspondence between incoming and out-
going states. Hence we define the scattering operator

S = Ω−1
+ Ω−, D(S) = {ψ ∈ D(Ω−)|Ω−ψ ∈ Ran(Ω+)}. (10.9)

Note that we have D(S) = D(Ω−) if and only if Ran(Ω+) ⊆ Ran(Ω−) and
Ran(S) = D(Ω+) if and only if Ran(Ω−) ⊆ Ran(Ω+). Moreover, S is unitary
from D(S) onto Ran(S) and we have

H0Sψ = SH0ψ, D(H0) ∩D(S). (10.10)

However, note that this whole theory is meaningless until we can show
that D(Ω±) are nontrivial. We first show a criterion due to Cook.
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Lemma 10.3 (Cook). Suppose D(H) ⊆ D(H0). If∫ ∞

0
‖(H −H0) exp(∓itH0)ψ‖dt <∞, ψ ∈ D(H0), (10.11)

then ψ ∈ D(Ω±), respectively. Moreover, we even have

‖(Ω± − I)ψ‖ ≤
∫ ∞

0
‖(H −H0) exp(∓itH0)ψ‖dt (10.12)

in this case.

Proof. The result follows from

eitHe−itH0ψ = ψ + i
∫ t

0
exp(isH)(H −H0) exp(−isH0)ψds (10.13)

which holds for ψ ∈ D(H0). �

As a simple consequence we obtain the following result for Schrödinger
operators in R3

Theorem 10.4. Suppose H0 is the free Schrödinger operator and H =
H0 + V with V ∈ L2(R3), then the wave operators exist and D(Ω±) = H.

Proof. Since we want to use Cook’s lemma, we need to estimate

‖V ψ(s)‖2 =
∫

R3

|V (x)ψ(s, x)|2dx, ψ(s) = exp(isH0)ψ, (10.14)

for given ψ ∈ D(H0). Invoking (6.37) we get

‖V ψ(s)‖ ≤ ‖ψ(s)‖∞‖V ‖ ≤
1

(4πs)3/2
‖ψ‖1‖V ‖, s > 0, (10.15)

at least for ψ ∈ L1(R3). Moreover, this implies∫ ∞

1
‖V ψ(s)‖ds ≤ 1

4π3/2
‖ψ‖1‖V ‖ (10.16)

and thus any such ψ is in D(Ω+). Since such functions are dense, we obtain
D(Ω+) = H. Similarly for Ω−. �

By the intertwining property ψ is an eigenfunction of H0 if and only
if it is an eigenfunction of H. Hence for ψ ∈ Hpp(H0) it is easy to check
whether it is in D(Ω±) or not and only the continuous subspace is of interest.
We will say that the wave operators exist if all elements of Hac(H0) are
asymptotic states, that is,

Hac(H0) ⊆ D(Ω±) (10.17)

and that they are complete if, in addition, all elements of Hac(H) are
scattering states, that is,

Hac(H) ⊆ Ran(Ω±). (10.18)
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If we even have
Hc(H) ⊆ Ran(Ω±), (10.19)

they are called asymptotically complete. We will be mainly interested in
the case where H0 is the free Schrödinger operator and hence Hac(H0) = H.
In this later case the wave operators exist if D(Ω±) = H, they are complete if
Hac(H) = Ran(Ω±), and asymptotically complete if Hc(H) = Ran(Ω±). In
particular asymptotic completeness implies Hsc(H) = ∅ since H restricted
to Ran(Ω±) is unitarily equivalent to H0.

10.2. Incoming and outgoing states

In the remaining sections we want to apply this theory to Schrödinger op-
erators. Our first goal is to give a precise meaning to some terms in the
intuitive picture of scattering theory introduced in the previous section.

This physical picture suggests that we should be able to decompose
ψ ∈ H into an incoming and an outgoing part. But how should incom-
ing respectively outgoing be defined for ψ ∈ H? Well incoming (outgoing)
means that the expectation of x2 should decrease (increase). Set x(t)2 =
exp(iH0t)x2 exp(−iH0t), then, abbreviating ψ(t) = e−itH0ψ,

d

dt
Eψ(x(t)2) = 〈ψ(t), i[H0, x

2]ψ(t)〉 = 4〈ψ(t), Dψ(t)〉, ψ ∈ S(Rn),

(10.20)
where D is the dilation operator introduced in (9.5). Hence it is natural to
consider ψ ∈ Ran(P±),

P± = PD((0,±∞)), (10.21)

as outgoing respectively incoming states. If we project a state in Ran(P±)
to energies in the interval (a2, b2), we expect that it cannot be found in a
ball of radius proportional to a|t| as t → ±∞ (a is the minimal velocity of
the particle, since we have assumed the mass to be two). In fact, we will
show below that the tail decays faster then any inverse power of |t|.

We first collect some properties of D which will be needed later on. Note

FD = −DF (10.22)

and hence Ff(D) = f(−D)F . To say more we will look for a transformation
which maps D to a multiplication operator.

Since the dilation group acts on |x| only, it seems reasonable to switch
to polar coordinates x = rω, (t, ω) ∈ R+ × Sn−1. Since U(s) essentially
transforms r into r exp(s) we will replace r by ρ = ln(r). In these coordinates
we have

U(s)ψ(eρω) = e−ns/2ψ(e(ρ−s)ω) (10.23)
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and hence U(s) corresponds to a shift of ρ (the constant in front is absorbed
by the volume element). Thus D corresponds to differentiation with respect
to this coordinate and all we have to do to make it a multiplication operator
is to take the Fourier transform with respect to ρ.

This leads us to the Mellin transform

M : L2(Rn) → L2(R× Sn−1)

ψ(rω) → (Mψ)(λ, ω) =
1√
2π

∫ ∞

0
r−iλψ(rω)r

n
2
−1dr

. (10.24)

By construction, M is unitary, that is,∫
R

∫
Sn−1

|(Mψ)(λ, ω)|2dλdn−1ω =
∫

R+

∫
Sn−1

|ψ(rω)|2rn−1drdn−1ω,

(10.25)
where dn−1ω is the normalized surface measure on Sn−1. Moreover,

M−1U(s)M = e−isλ (10.26)

and hence
M−1DM = λ. (10.27)

From this it is straightforward to show that

σ(D) = σac(D) = R, σsc(D) = σpp(D) = ∅ (10.28)

and that S(Rn) is a core for D. In particular we have P+ + P− = I.
Using the Mellin transform we can now prove Perry’s estimate [8].

Lemma 10.5. Suppose f ∈ C∞0 (R) with supp(f) ⊂ (a2, b2) for some a, b >
0. For any R ∈ R, N ∈ N there is a constant C such that

‖χ{x| |x|<2a|t|}e
−itH0f(H0)PD((±R,±∞))‖ ≤ C

(1 + |t|)N
, ±t ≥ 0, (10.29)

respectively.

Proof. We prove only the + case, the remaining one being similar. Consider
ψ ∈ S(Rn). Introducing

ψ(t, x) = e−itH0f(H0)PD((R,∞))ψ(x) = 〈Kt,x,FPD((R,∞))ψ〉
= 〈Kt,x, PD((−∞,−R))ψ̂〉, (10.30)

where

Kt,x(p) =
1

(2π)n/2
ei( p2

t
+px)f(p2)∗, (10.31)

we see that it suffices to show

‖PD((−∞,−R))Kt,x‖2 ≤ const

(1 + |t|)2N
, for |x| < 2a|t|, t > 0. (10.32)
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Now we invoke the Mellin transform to estimate this norm

‖PD((−∞,−R))Kt,x‖2 =
∫ R

−∞

∫
Sn−1

|(MKt,x)(λ, ω)|2dλdn−1ω. (10.33)

Since
(MKt,x)(λ, ω) =

1
(2π)(n+1)/2

∫ ∞

0
f̃(r)eiα(r)dr (10.34)

with f̃(r) = f(r2)∗rn/2−1 ∈ C∞0 ((a2, b2)), α(r) = tr2 + rωx − λ ln(r). Esti-
mating the derivative of α we see

α′(r) = 2tr + ωx− λ/r > 0, r ∈ (a, b), (10.35)

for λ ≤ −R and t > R(2εa)−1, where ε is the distance of a to the support
of f̃ . Hence we can find a constant such that

1
|α′(r)|

≤ const

1 + |λ|+ |t|
, r ∈ (a, b), (10.36)

and λ, t as above. Using this we can estimate the integral in (10.34)∣∣∣∣∫ ∞

0
f̃(r)

1
α′(r)

d

dr
eiα(r)dr

∣∣∣∣ ≤ const

1 + |λ|+ |t|

∣∣∣∣∫ ∞

0
f̃ ′(r)eiα(r)dr

∣∣∣∣ , (10.37)

(the last step uses integration by parts) for λ, t as above. By increasing the
constant we can even assume that it holds for t ≥ 0 and λ ≤ −R. Moreover,
by iterating the last estimate we see

|(MKt,x)(λ, ω)| ≤ const

(1 + |λ|+ |t|)N
(10.38)

for any N ∈ N and t ≥ 0 and λ ≤ −R. This finishes the proof. �

Corollary 10.6. Suppose that f ∈ C∞0 ((0,∞)) and R ∈ R. Then the
operator PD((±R,±∞))f(H0) exp(−itH0) converges strongly to 0 as t →
∓∞.

Proof. Abbreviating PD = PD((±R,±∞)) and χ = χ{x| |x|<2a|t|} we have

‖PDf(H0)e−itH0ψ‖ ≤ ‖χeitH0f(H0)∗PD‖ ‖ψ‖+‖f(H0)‖‖(I−χ)ψ‖. (10.39)

since ‖A‖ = ‖A∗‖. Taking t→ ∓∞ the first term goes to zero by our lemma
and the second goes to zero since χψ → ψ. �

10.3. Schrödinger operators with short range
potentials

By the RAGE theorem we know that for ψ ∈ Hc, ψ(t) will eventually leave
every compact ball (at least on the average). Hence we expect that the
time evolution will asymptotically look like the free one for ψ ∈ Hc if the
potential decays sufficiently fast. In other words, we expect such potentials
to be asymptotically complete.
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Suppose V is relatively bounded with bound less than one. Introduce

h1(r) = ‖V RH0(z)χr‖, h2(r) = ‖χrV RH0(z)‖, r ≥ 0, (10.40)

where
χr = χ{x| |x|≥r}. (10.41)

The potential V will be called short range if these quantities are integrable.
We first note that it suffices to check this for h1 or h2 and for one z ∈ ρ(H0).

Lemma 10.7. The function h1 is integrable if and only if h2 is. Moreover,
hj integrable for one z0 ∈ ρ(H0) implies hj integrable for all z ∈ ρ(H0).

Proof. Pick φ ∈ C∞0 (Rn, [0, 1]) such that φ(x) = 0 for 0 ≤ |x| ≤ 1/2 and
φ(x) = 0 for 1 ≤ |x|. Then it is not hard to see that hj is integrable if and
only if h̃j is integrable, where

h̃1(r) = ‖V RH0(z)φr‖, h̃2(r) = ‖φrV RH0(z)‖, r ≥ 1, (10.42)

and φr(x) = φ(x/r). Using

[RH0(z), φr] = −RH0(z)[H0(z), φr]RH0(z)

= RH0(z)(∆φr + (∂φr)∂)RH0(z) (10.43)

and ∆φr = φr/2∆φr, ‖∆φr‖∞ ≤ ‖∆φ‖∞/r2 respectively (∂φr) = φr/2(∂φr),
‖∂φr‖∞ ≤ ‖∂φ‖∞/r2 we see

|h̃1(r)− h̃2(r)| ≤
c

r
h̃1(r/2), r ≥ 1. (10.44)

Hence h̃2 is integrable if h̃1 is. Conversely,

h̃1(r) ≤ h̃2(r) +
c

r
h̃1(r/2) ≤ h̃2(r) +

c

r
h̃2(r/2) +

2c
r2
h̃1(r/4) (10.45)

shows that h̃2 is integrable if h̃1 is.
Invoking the first resolvent formula

‖φrV RH0(z)‖ ≤ ‖φrV RH0(z0)‖‖I− (z − z0)RH0(z)‖ (10.46)

finishes the proof. �

As a first consequence note

Lemma 10.8. If V is short range, then RH(z)−RH0(z) is compact.

Proof. The operator RH(z)V (I−χr)RH0(z) is compact since (I−χr)RH0(z)
is by Lemma 6.9 and RH(z)V is bounded by Lemma 8.15. Moreover, by our
short range condition it converges in norm to

RH(z)V RH0(z) = RH(z)−RH0(z) (10.47)

as r →∞ (at least for some subsequence). �
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In particular, by Weyl’s theorem we have σess(H) = [0,∞). Moreover,
V short range implies that H and H0 look alike far outside.

Lemma 10.9. Suppose RH(z)−RH0(z) is compact, then so is f(H)−f(H0)
for any f ∈ C∞(R) and

lim
r→∞

‖(f(H)− f(H0))χr‖ = 0. (10.48)

Proof. The first part is Lemma 8.13 and the second part follows from part
(2) of Lemma 8.8 since χr converges strongly to 0. �

However, this is clearly not enough to prove asymptotic completeness
and we need a more careful analysis. The main ideas are due to Enß [4].

We begin by showing that the wave operators exist. By Cook’s criterion
(Lemma 10.3) we need to show that

‖V exp(∓itH0)ψ‖ ≤ ‖V RH0(−1)‖‖(I− χ2a|t|) exp(∓itH0)(H0 + I)ψ‖
+ ‖V RH0(−1)χ2a|t|‖‖(H0 + I)ψ‖ (10.49)

is integrable for a dense set of vectors ψ. The second term is integrable by our
short range assumption. The same is true by Perry’s estimate (Lemma 10.5)
for the first term if we choose ψ = f(H0)PD((±R,±∞))ϕ. Since vectors of
this form are dense, we see that the wave operators exist,

D(Ω±) = H. (10.50)

Since H restricted to Ran(Ω∗
±) is unitarily equivalent to H0, we obtain

[0,∞) = σac(H0) ⊆ σac(H). And by σac(H) ⊆ σess(H) = [0,∞) we even
have σac(H) = [0,∞).

To prove asymptotic completeness of the wave operators we will need
that (Ω± − I)f(H0)P± are compact.

Lemma 10.10. Let f ∈ C∞0 ((0,∞)) and suppose ψn converges weakly to 0.
Then

lim
n→∞

‖(Ω± − I)f(H0)P±ψn‖ = 0, (10.51)

that is, (Ω± − I)f(H0)P± is compact.

Proof. By (10.13) we see

‖RH(z)(Ω± − I)f(H0)P±ψn‖ ≤
∫ ∞

0
‖RH(z)V exp(−isH0)f(H0)P±ψn‖dt.

(10.52)
Since RH(z)V RH0 is compact we see that the integrand

RH(z)V exp(−isH0)f(H0)P±ψn =

RH(z)V RH0 exp(−isH0)(H0 + 1)f(H0)P±ψn (10.53)
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converges pointwise to 0. Moreover, arguing as in (10.49) the integrand
is bounded by an L1 function depending only on ‖ψn‖. Thus RH(z)(Ω± −
I)f(H0)P± is compact by the dominated convergence theorem. Furthermore,
using the intertwining property we see that

(Ω± − I)f̃(H0)P± = RH(z)(Ω± − I)f(H0)P±
− (RH(z)−RH0(z))f(H0)P± (10.54)

is compact by Lemma 8.13, where f̃(λ) = (λ+ 1)f(λ). �

Now we have gathered enough information to tackle the problem of
asymptotic completeness.

We first show that the singular continuous spectrum is absent. This
is not really necessary, but avoids the use of Cesàro means in our main
argument.

Abbreviate P = P scH PH((a, b)), 0 < a < b. Since H restricted to
Ran(Ω±) is unitarily equivalent to H0 (which has purely absolutely continu-
ous spectrum), the singular part must live on Ran(Ω±)⊥, that is, P scH Ω± = 0.
Thus Pf(H0) = P (I−Ω+)f(H0)P+ +P (I−Ω−)f(H0)P− is compact. Since
f(H) − f(H0) is compact, it follows that Pf(H) is also compact. Choos-
ing f such that f(λ) = 1 for λ ∈ [a, b] we see that P = Pf(H) is com-
pact and hence finite dimensional. In particular σsc(H) ∩ (a, b) is a fi-
nite set. But a continuous measure cannot be supported on a finite set,
showing σsc(H) ∩ (a, b) = ∅. Since 0 < a < b are arbitrary we even
have σsc(H) ∩ (0,∞) = ∅ and by σsc(H) ⊆ σess(H) = [0,∞) we obtain
σsc(H) = ∅.

Observe that replacing P scH by P ppH the same argument shows that all
nonzero eigenvalues are finite dimensional and cannot accumulate in (0,∞).

In summary we have shown

Theorem 10.11. Suppose V is short range. Then

σac(H) = σess(H) = [0,∞), σsc(H) = ∅. (10.55)

All nonzero eigenvalues have finite multiplicity and cannot accumulate in
(0,∞).

Now we come to the anticipated asymptotic completeness result of Enß.
Choose

ψ ∈ Hc(H) = Hac(H) such that ψ = f(H)ψ (10.56)

for some f ∈ C∞0 ((0,∞). By the RAGE theorem the sequence ψ(t) converges
weakly to zero as t→ ±∞. Abbreviate ψ(t) = exp(−itH)ψ. Introduce

ϕ±(t) = f(H0)P±ψ(t). (10.57)
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which satisfy
lim

t→±∞
‖ψ(t)− ϕ+(t)− ϕ−(t)‖ = 0. (10.58)

Indeed this follows from

ψ(t) = ϕ+(t) + ϕ−(t) + (f(H)− f(H0))ψ(t) (10.59)

and Lemma 8.13. Moreover, we even have

lim
t→±∞

‖(Ω± − I)ϕ±(t)‖ = 0 (10.60)

by Lemma 10.10. Now suppose ψ ∈ Ran(Ω±)⊥, then

‖ψ‖2 = lim
t→±∞

〈ψ(t), ψ(t)〉

= lim
t→±∞

〈ψ(t), ϕ+(t) + ϕ−(t)〉

= lim
t→±∞

〈ψ(t),Ω+ϕ+(t) + Ω−ϕ−(t)〉. (10.61)

By Theorem 10.2, Ran(Ω±)⊥ is invariant underH and hence ψ(t) ∈ Ran(Ω±)⊥

implying

‖ψ‖2 = lim
t→±∞

〈ψ(t),Ω∓ϕ∓(t)〉 (10.62)

= lim
t→±∞

〈P∓f(H0)∗Ω∗∓ψ(t), ψ(t)〉.

Invoking the intertwining property we see

‖ψ‖2 = lim
t→±∞

〈P∓f(H0)∗e−itH0Ω∗∓ψ,ψ(t)〉 = 0 (10.63)

by Corollary 10.6. Hence Ran(Ω±) = Hac(H) = Hc(H) and we thus have
shown

Theorem 10.12 (Enß). Suppose V is short range, then the wave operators
are asymptotically complete.

For further results and references see for example [3].
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Glossary of notations

AC(I) . . . absolutely continuous functions, 29
B = B1

Bn . . . Borel σ-field of Rn, 3.
C(H) . . . set of compact operators, 79.
C(U) . . . set of continuous functions from U to C.
C∞(U) . . . set of functions in C(U) which vanish at ∞.
C(U, V ) . . . set of continuous functions from U to V .
C∞0 (U, V ) . . . set of compactly supported smooth functions
χΩ(.) . . . characteristic function of the set Ω
dim . . . dimension of a linear space
D(.) . . . domain of an operator
e . . . exponential function, ez = exp(z)
E(A) . . . expectation of an operator A, 23
F . . . Fourier transform, 85
H . . . Schrödinger operator, 109
H0 . . . free Schrödinger operator, 88
Hj(Rn) . . . Sobolev space, 87
hull(.) . . . convex hull
H . . . a separable Hilbert space
i . . . complex unity, i2 = −1
Im(.) . . . imaginary part of a complex number
inf . . . infimum
Ker(A) . . . kernel of an operator A
L(X,Y ) . . . set of all bounded linear operators from X to Y , 10
L(X) = L(X,X)
Lp(M,dµ) . . . Lebesgue space of p integrable functions, 10
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148 Glossary of notations

L∞(M,dµ) . . . Lebesgue space of bounded functions, 11
L∞∞(Rn) . . . Lebesgue space of bounded functions vanishing at ∞
λ . . . a real number
max . . . maximum
M . . .Mellin transform, 139
µψ . . . spectral measure, 51
N . . . the set of positive integers
N0 = N ∪ {0}
Ω . . . a Borel set
Ω± . . . wave operators, 135
PA(.) . . . family of spectral projections of an operator A
P± . . . projector onto outgoing/incoming states, 138
Q(.) . . . form domain of an operator, 53
R(I,X) . . . set of regulated functions, 64
RA(z) . . . resolvent of A, 36
Ran(A) . . . range of an operator A
rank(A) = dim Ran(A), rank of an operator A, 79
Re(.) . . . real part of a complex number
ρ(A) . . . resolvent set of A, 36
R . . . the set of real numbers
S(I,X) . . . set of simple functions, 64
S(Rn) . . . set of smooth functions with rapid decay, 85
sup . . . supremum
supp . . . support of a function
σ(A) . . . spectrum of an operator A, 36
σac(A) . . . absolutely continuous spectrum of A, 57
σsc(A) . . . singular continuous spectrum of A, 57
σpp(A) . . . pure point spectrum of A, 57
σp(A) . . . point spectrum (set of eigenvalues) of A, 57
σd(A) . . . discrete spectrum of A, 103
σess(A) . . . essential spectrum of A, 103
span(M) . . . set of finite linear combinations from M , 9
Z . . . the set of integers
z . . . a complex number



Glossary of notations 149

I . . . identity operator√
z . . . square root of z with branch cut along (−∞, 0)

z∗ . . . complex conjugation
A∗ . . . adjoint of A, 27
A . . . closure of A, 31
f̂ = Ff , Fourier transform of f
f̌ = F−1f , inverse Fourier transform of f
‖.‖ . . . norm in the Hilbert space H

‖.‖p . . . norm in the Banach space Lp

〈., ..〉 . . . scalar product in H

⊕ . . . orthogonal sum of linear spaces or operators, 20
∆ . . . Laplace operator, 88
∂ . . . gradient, 85
∂α . . . derivative, 85
M⊥ . . . orthogonal complement, 19
(λ1, λ2) = {λ ∈ R |λ1 < λ < λ2}, open interval
[λ1, λ2] = {λ ∈ R |λ1 ≤ λ ≤ λ2}, closed interval
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a.e., see almost everywehre

Absolutely continuous

function, 29

measure, 7

Almost everywhere, 4

Angular momentum operator, 96

Banach algebra, 47

Banach space, 9

separable, 9

Basis

orthonormal, 17

spectral, 50

Bessel function, 93

spherical, 125

Bessel inequality, 15

Borel

function, 5

measure, 4

set, 3

σ-algebra, 3

Borel transform, 51

C-real, 43

Cauchy-Schwarz inequality, 14

Caylay transform, 42

Cesàro average, 78

characteristic function, 5

Commute, 68

Configuration space, 24

Conjugation, 43

Convolution, 86

Core, 30

C∗ algebra, 48

Cyclic vector, 50

Dilation group, 120

Dirac measure, 4

Domain, 9, 24, 26

Eigenspace, 64

Eigenvalue, 36

multiplicity, 64

Eigenvector, 36

Element

adjoint, 48

normal, 48

positive, 48

self-adjoint, 48

unitary, 48

Expectation, 23

First resolvent formula, 37

Form domain, 34, 53

Fourier series, 18

Fourier transform, 78, 85

Friedrichs extension, 36

Function

absolutely continuous, 29

Gradient, 85

Gram-Schmidt orthogonalization, 18

Graph, 31

Green’s function, 93

Hölder inequality, 11

Hamiltonian, 25

Harmonic oscillator, 99

Heisenberg picture, 82

Herglotz functions, 51

Hermite polynomials, 100

Hilbert space, 13
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separable, 18

Hydrogen atom, 119

Ideal, 48

Inner product, 13

space, 13

Integrable, 5

Integral, 5

Intertwining property, 136

Ionisation, 130

l.c., see Limit circle

l.p., see Limit point

Laguerre polynomial, 126

associated, 126

Lebesgue measure, 4

Legendre equation, 122

Lemma

Riemann-Lebesgue, 88

Limit circle, 113

Limit point, 113

Linear functional, 10, 19

Localization formula, 131

Mean-square deviation, 24

Measurable, 5

Measure, 3

absolutely continuous, 7

growth point, 54

mutually singular, 7

product, 7

projection-valued, 46

spectral, 51

support, 4

measure

finite, 4

Mellin transform, 139

Metric, 9

Momentum operator, 96

Multi-index, 85

order, 85

Multiplicity

spectral, 50

Neumann function

spherical, 125

Neumann series, 37

Norm, 8

operator, 9

Normalized, 14

Normed space, 8

Observable, 23

One-parameter unitary group, 24

Operator

adjoint, 27

bounded, 9

closable, 31

closed, 31

closure, 31

compact, 79

domain, 9, 26

finite rank, 79

Hermitian, 26

Hilbert-Schmidt, 91

linear, 9, 26

non-negative, 33

normal, 49

positive, 33

relatively bounded, 101

relatively compact, 80

self-adjoint, 27

semi-bounded, 36

symmetric, 26

unitary, 16, 24

Orthogonal, 14

Orthogonal complement, 19

Orthogonal sum, 20

Parallel, 14

Parallelogram law, 16

Parseval’s identity, 87

Perpendicular, 14

Phase space, 24

Plücker identity, 113

Polarization identity, 15, 26

Position operator, 95

Probability density, 23

Product measure, 7

Projection, 48

Quadratic form, 26

Rank, 79

Regulated function, 64

Relatively compact, 80

Resolvent, 37

Neumann series, 37

Resolvent set, 36

Riesz lemma, 19

Scalar product, 13

Scattering operator, 136

Scattering state, 136

Schrödinger equation, 25

Second resolvent formula, 103

Self-adjoint

essentially, 30

Short range, 141

σ-algebra, 3

σ-finite, 4

Simple function, 5, 64

Simple spectrum, 50

Singular values, 104
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Span, 9
Spectral theorem, 53

compact operators, 103

Spectrum, 36
absolutely continuous, 57

discrete, 103

essential, 103
pure point, 57

singularly continuous, 57
Spherical harmonics, 124

Stieltjes inversion formula, 51

Stone’s formula, 66
Stone-Weierstrass theorem, 67

Strong convergence, 46

Sturm-Liouville equation, 110
regular, 110

Subalgebra, 48

Subspace
reducing, 41

Superposition, 24

Tensor product, 21

Theorem
closed graph, 33

dominated convergence, 6

Fubini, 7
HVZ, 130

Kato-Rellich, 102

Lebesgue decomposition, 8
monotone convergence, 6

Pythagorean, 14

Radon-Nikodym, 7
RAGE, 81

spectral, 53

spectral mapping, 56
Stone, 76

virial, 120
Weyl, 107

Wiener, 78

Total, 9
Triangel inequality, 8

Uniform boundedness principle, 10
Unit vector, 14

Unitary group

Generator, 25

Wave function, 23

Wave operators, 135
Weak convergence, 10, 46

Weyl relation, 96
Weyl sequence, 38

singular, 106
Wronskian, 110
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