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Abstract

We consider classes C of differential equations characterized by the presence
of arbitrary elements, that is, arbitrary functions or constants. Based on an idea
of Ovsiannikov, we develop a systematic theory of equivalence transformations,
that is, point changes of variables which map every equation in C to another
equation in C. Examples of nontrivial groups of equivalence transformations are
found for some linear wave and nonlinear diffusion convection systems, and used to
clarify some previously known results. We show how equivalence transformations
may be inherited as symmetries of equations in C, leading to a partial symmetry
classification for the class C. New symmetry results for a potential system form of
the nonlinear diffusion convection equation are derived by this procedure.

Finally we show how to use equivalence group information to facilitate com-
plete symmetry classification for a class of differential equations. The method
relies on the geometric concept of a moving frame, that is, an arbitrary (possibly
noncommuting) basis for differential operators on the space of independent and
dependent variables. We show how to choose a frame which is invariant under the
action of the equivalence group, and how to rewrite the determining equations for
symmetries in terms of this frame. A symmetry classification algorithm due to
Reid is modified to deal with the case of noncommuting operators. The result is an
algorithm which combines features of Reid’s classification algorithm and Cartan’s
equivalence method. The method is applied to the potential diffusion convection
example, and yields a complete symmetry classification in a particularly elegant
form.
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Chapter 1

Introduction

1.1 Differential equations and their transforma-
tion

In dealing with differential equations, a common situation is that one wishes to
analyze simultaneously a whole class of equations of some given type. It is natural
to consider ‘the class of second order ordinary differential equations’

d2y

dx2
= ω(x, y,

dy

dx
) (1.1)

or ‘the nonlinear diffusion equation’

ut = [D(u)ux]x

Here ω, D are arbitrary (smooth) functions of their arguments, at least in some
suitable domain of definition. Thus the entire class of equations under consider-
ation is specified by allowing these arbitrary elements to range over all possible
functional forms.

In this dissertation, I will be concerned with the transformation properties of
a given class C of differential equations. Attention will be restricted to invertible
‘point’ transformations, which act on a coordinate space of the independent and
dependent variables. These are the usual ‘changes of variables’ in differential
equations. For (1.1) for example, the most general such change of variables is

x′ = F (x, y)
y′ = G(x, y) (1.2)

(subject to the Jacobian FxGy −GxFy being nonzero).
Any transformation applied to the variables in a differential equation (d.e.)

yields another differential equation. Certain transformations are of particular
interest:

symmetry A symmetry of a differential equation is a transformation which maps
every solution of the differential equation to another solution of the same
equation.

1



Chapter 1. Introduction

equivalence transformation An equivalence transformation for a differential
equation in a given class is a change of variables which maps the equation
to another equation in the same class.

We briefly discuss these types of transformations.
Knowledge of symmetries of a differential equation often assists in construct-

ing (special or general) solutions of the d.e. In [13, 47, 9], symmetry methods for
solving differential equations are described; [13] also discusses solutions of associ-
ated boundary value problems. Symmetry properties of a d.e. were also shown by
Kumei and Bluman [13, 41, 14] to characterize whether a given differential equa-
tion can be mapped to a linear equation, and to give a means for constructing
the linearizing map. We shall not be touching these applications (except briefly
in §3.4.2). Rather, the methods we develop assist in constructing the symmetries
themselves.

Equivalence transformations have been mainly used as a starting point for solv-
ing the Cartan equivalence problem (the problem is more properly due to Tresse
[68], or even Lie [43]). Given a class of differential equations (for example all
second order o.d.e.’s (1.1)), the Cartan equivalence problem is to find criteria for
whether two d.e.’s are connected by a change of variables drawn from a transfor-
mation group G (for example all point changes of variable (1.2)). A method for
constructing such criteria was given by Tresse [68], and subsequently used by him
[69] to solve the equivalence problem for second order o.d.e.’s under point changes
of variable. Cartan [19] radically reformulated the method, basing his solution
method on the geometric theory of Pfaffian systems. The Cartan method (and
Tresse’s prior formulation) give equivalence criteria for the d.e.’s with respect to
action of G, but Cartan [19] showed that symmetry structure of the d.e.’s could
also be found as a byproduct of his method.

Both Cartan and Tresse addressed the equivalence problem for classes of equa-
tions where some group G was already available. They were not concerned with
the problem of finding a G ‘suitable’ to a given class of equations in the sense that
each transformation in G maps an equation in the class to another equation in
the class. Their examples were mainly concerned with finding equivalence criteria
for ‘geometrically natural’ classes of objects, such as Riemannian metrics on a
two dimensional space, or the set of second order o.d.e.’s. Following publication
of Gardner’s influential paper [25], such applications of the Cartan method have
again become popular, with various authors treating ordinary and partial differ-
ential equations [35, 39, 34], Lagrangians [17, 61, 36, 37, 31], differential operators
[38] and control problems [27]. In every case treated by these authors, the class of
objects they analyze has associated with it a ‘natural’ group of transformations,
usually the set of all point changes of variables or some subgroup thereof.

In contrast, one of our principal aims will be to show how to systematically
derive a group G of transformations appropriate to a given class of d.e.’s. This
line of reasoning was initiated by Ovsiannikov [52, §6.4], and has recently been
applied by Ibragimov and coworkers [3, 4, 32] to various classes of partial dif-
ferential equations. A theoretical foundation for their method of construction of
this ‘equivalence group’ is not available, and we attempt to remedy this in Chap-
ter 3. The advantage of dealing with the equivalence group is that it is often a
‘small’ (e.g., finite-parameter) group. The extensive geometric machinery of the
Cartan equivalence method is geared to infinite transformation groups, and can
often be dispensed with for finite groups. This permits us to obtain significant

2



1.2. Equivalence of differential equations: Examples

transformation information relatively easily.
With the equivalence group known, we may use it directly to map a solution

of one d.e. in the class to a solution of another such d.e. However, just as the
Cartan equivalence method incidentally yields symmetry information, so one of
our principal uses of the equivalence group will be to assist in finding symmetries.
In fact we shall devote an entire chapter §4 to this topic.

1.2 Equivalence of differential equations: Exam-
ples

Before developing any theory, we give a sequence of examples, illustrating various
points about equivalence transformations.

Example 1.2.1. [Class closed under point transformations.] Consider the class
(1.1) of second order ordinary differential equations (o.d.e.’s). Clearly any point
transformation (1.2) maps a second order o.d.e. to another second order o.d.e.
Substituting the change of variables (1.2) into an equation

d2y′

dx′2
= ω′(x′, y′,

dy′

dx′
) (1.3)

shows that the undashed variables (x, y) satisfy

d2y

dx2
=
{
(∆F )3 ω′

(
F,G, ∆G

∆F

)
−∆F · (Gxx + 2pGxy +Gyy)

+ ∆G · (Fxx + 2pFxy + Fyy)
}/

(FxGy − FyGx)
(1.4)

where the differential operator ∆ is defined by

∆ =
∂

∂x
+ p

∂

∂y

and p ≡ dy
dx .

Turning this around, it is seen that if two equations (1.3) and (1.1) are given,
the dashed and undashed equations are connected by a change of variables (1.2)
if and only if there exist functions F (x, y), G(x, y) such that

(∆F )3ω′
(
F,G,

∆G
∆F

)
= ∆F (Gxx + 2pGxy + p2Gyy)

−∆G(Fxx + 2pFxy + p2Fyy) + ω · (FxGy − FyGy).
(1.5)

If such F,G can be found they can serve in the change of variables (1.2) to connect
the two equations (1.1), (1.3). Such a criterion is useless in this form. For a given
ω and ω′ condition (1.5) represents a very complicated nonlinear partial d.e. in
the unknowns F,G, and it is not apparent what to do with it. The equivalence
problem, as treated by Tresse and Cartan, does not attempt to solve for F , G,
but instead seeks conditions on ω and ω′ for this p.d.e. to have solutions. The
result is a complicated set of equations involving ω, ω′ and their derivatives. The
important point is that the functions F , G are not present. This means that
whether equations are equivalent can be checked knowing only the equations: the

3



Chapter 1. Introduction

equivalence problem (whether equations are equivalent) is thus separated from
the more difficult problem of actually finding the transformation connecting the
equations.

For this example, equivalence criteria were first found by Tresse [69], using
his theory of equivalence [68] (see also [34] for a solution based on the Cartan
equivalence method).
Example 1.2.2. Group of equivalence transformations.

Consider the class of nonlinear diffusion equations

ut = [D(u)ux]x, (1.6)

where D(u) > 0.
Under an arbitrary point transformation

x′ = α(x, t, u)
t′ = β(x, t, u)
u′ = γ(x, t, u)

equation (1.6) is certainly not mapped to another nonlinear diffusion equation.
The most general point transformation which preserves the class of diffusion equa-
tions is the six-parameter equivalence group

x = λ2c−1x′ + ε
t = λ2t′ + δ
u = au′ + b, a, c, λ �= 0

(1.7)

which maps (1.6) to a nonlinear diffusion equation with diffusivity

D′(u′) = c2D(au′ + b). (1.8)

The simple transformations (1.7) reflect fundamental physical properties of the
diffusion equation (arbitrary choice of units; arbitrary choice of origin for tem-
perature), and are often used without comment for parameter elimination. They
have the following significant properties:

Property (i) Correspondence (1.8) is established for every diffusivity D.

Property (ii) The same point transformation (1.7) establishes correspondence
(1.8) for any diffusivity D.

Property (iii) Transformations (1.7) form a transformation group on (x, t, u)
space.

In this case equivalence transformations (1.7) can be found by inspection.
Correspondence (1.8) for diffusivities is analogous to condition (1.5) for second

order o.d.e.’s. The need for equivalence conditions on D(u) (i.e., with parame-
ters a, b, c eliminated) does not seem as pressing as in the o.d.e. case, but the
only essential difference is finite versus infinite parameter groups (1.7) and (1.2)
respectively.

Two diffusion equations with diffusivities D(u), D′(u′) are connected by a
transformation (1.7) if there exist constants a, b, c with ac �= 0 such that D, D′

are related by (1.8). This condition is analogous to (1.5) above: for given D(u),
D′(u′) it represents an equation to be satisfied by a, b, c. Whether this equation
has solutions or not can be stated entirely in terms of D, D′. Denote derivatives
of D with a dot. The criteria for equivalence with respect to (1.7) are

4



1.2. Equivalence of differential equations: Examples

1. If both Ḋ = 0 and Ḋ′ = 0 the equations are equivalent.

2. Suppose Ḋ �= 0, Ḋ′ �= 0. Let

J :=
(D
Ḋ

)·
and let J ′ be the analogous quantity computed for the diffusivity D′. If J
and J ′ are constant and equal , the equations are equivalent.

3. Suppose J �= const, J ′ �= const. Then the map u 	→ J is invertible, so J can
serve as a coordinate instead of u. Let

K =
D

Ḋ
J̇

and let K ′ be the analogous quantity for the diffusivity D′. Express K as a
function of J . If K = f(J) and K ′ = f(J ′) with the same function f , then
the equations are equivalent.

In any other case the equations are not equivalent.

A difference in emphasis is apparent between Examples 1.2.1 and 1.2.2. In the
case of the ordinary d.e.’s, the class (1.1) comes equipped with a natural group
of transformations (1.2) transforming equations to other equations. This is the
kind of problem to which Cartan’s equivalence method has usually been applied.
In contrast, the diffusion equations (1.6) do not come equipped with a group, and
we must somehow come up with transformations (1.7) as the appropriate ones.
Once found, the group is sufficiently small that the equivalence criteria given
above are superfluous: correspondence (1.8) intuitively seems more informative
than “K = f(J)”.

Example 1.2.3. Group of ‘potential’ equivalence transformations.

Consider the system of equations

vx = u

vt = D(u)ux (1.9)

The scalar nonlinear diffusion equation (1.6) is embedded in system (1.9) in the
following sense: if u, v satisfy (1.9), then u satisfies (1.6); conversely, if u satis-
fies (1.6) then there exists a function v such that u, v satisfy (1.9). Here v is a
potential variable: we call (1.9) the potential system form of the nonlinear diffu-
sion equation. As above, class (1.9) is not closed under arbitrary transformations
of (x, t, u, v) space: the most general point transformation mapping a nonlinear
diffusion potential system to another such system is given by the four-parameter
family [3, 4]

v = av′ + bx′

x = cv′ + dx′

t = t′

u =
au′ + b
cu′ + d

, ad− bc �= 0.

(1.10)

5



Chapter 1. Introduction

The dashed variables satisfy a diffusion system with diffusivity D′:

D′(u′) =
1

(cu′ + d)2
D
(au′ + b
cu′ + d

)
. (1.11)

Transformations (1.10) have the same properties (i), (ii), (iii) as in Example 1.2.2.
When c �= 0 in (1.10), the transformation is nontrivial, and cannot be found by
inspection. For the potential system form, as for the scalar form of the diffusion
equation, the main problem is to come up with the group (1.10).

This example is included to highlight the fact that transformation properties
such as equivalence may vary depending on the form in which the original equation
is written. We may think of the scalar equation (1.6) and potential system (1.9)
as minor variants of the same equation, but from the viewpoint of point changes
of variable, these forms differ radically, since the spaces (x, t, u) and (x, t, u, v)
on which transformations act are different. In (1.10) if c �= 0, then v′ occurs
explicitly in the transformation of x, and it is not possible to project (1.10) to a
transformation acting on (x, t, u) space. Although transformations (1.10) establish
a correspondence between scalar diffusion equations according to the schema

potential system
(1.10)−−−−→ potential system

D(u)
1

(cu+ d)2
D
(au+ b
cu+ d

)
�

�
scalar equation scalar equation

D(u)
1

(cu+ d)2
D
(au+ b
cu+ d

)
,

the mapping is nonlocal because it involves v, which is an integral
∫
u dx. Trans-

formations (1.10) are therefore point transformations for the potential system form
(1.9), but nonlocal transformations of the scalar form (1.6) of the diffusion equa-
tion. This situation is analogous to symmetry properties of potential forms of
equations. Where a symmetry transformation for a potential form of an equation
is genuinely nonlocal, Bluman, et al. [15, 11] use the term ‘potential symmetry’.
Correspondingly, we may refer to (1.10) as ‘potential equivalence transformations’
of the scalar equation (1.6).

Knowledge of transformations (1.10) has immediate interesting consequences.
For example, it follows that the system (1.9) with diffusivity D(u) = (αu + β)−2

can be mapped to the linear system

vx = u
vt = ux

for which u obeys the heat equation ut = uxx. This linearizing transformation was
constructed in various ways in [10, 60, 15]. We discuss linearizing transformations
for diffusion convection equations in §3.4.2.
Example 1.2.4. Classification for equivalence transformations.

Consider the class of ordinary differential equations

d2y

dx2
= −k(x)

2y
+m exp

dy

dx
(1.12)

6



1.2. Equivalence of differential equations: Examples

with arbitrary function k(x) and arbitrary constant m. The most general point
transformation mapping each equation in the class to another such equation is the
two-parameter family

x = ax′ + b
y = ay′, a �= 0.

(1.13)

A transformation of this form maps (1.12) to a similar ‘dashed’ equation, with
new arbitrary elements

k′(x′) = k(ax′ + b)
m′ = 1

am.

Again these transformations share Properties (i), (ii), (iii) of Example 1.2.2: they
act as a point group on the whole class of equations (1.12).

Now consider the subclass of equations

d2y

dx2
= −k(x)

2y
(1.14)

obtained by setting m = 0 in (1.12). The most general transformation mapping
any such equation to another of the same form is given by the four -parameter
family

x =
ax′ + b
cx′ + d

y = (ad− bc) y′

cx′ + d
, ad− bc �= 0.

(1.15)

Under the action of this transformation, equation (1.14) is mapped to a similar
‘dashed’ equation with arbitrary element

k′(x′) =
1

(cx′ + d)2
k
(ax′ + b
cx′ + d

)
.

For this subclass (1.14) transformations (1.15) share Properties (i), (ii), (iii) above.
However, if c �= 0 in (1.15), the transformation does not map each equation in the
class (1.12) to another equation of the same type.

This example illustrates a general situation. For a given class of equations
(such as (1.12)), we wish to find not only the equivalence transformations (like
1.13) which act on the class as a whole, but also to rationally classify all subclasses
(like (1.14)) for which additional equivalence transformations appear. We do not
address such classification questions here.

Example 1.2.5. Point equivalence transformations not forming a group.

Consider the class of nonlinear telegraph equations, written in potential system
form:

vt = ux
vx = c2(u)ut + b(u)

(1.16)
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Chapter 1. Introduction

In addition to some simple scaling and translation transformations (similar to
Example 1.2.2), the one-parameter family of transformations

x′ = x− εv
t′ = t− ε

∫ u c2(z)
1− εb(z) dz

u′ = u
v′ = v

(1.17)

maps each nonlinear telegraph system to another system with the same form, and
new arbitrary elements b′, c′ given by [70]

b′(u′) =
b(u′)

1− εb(u′)
c′(u′) =

c(u′)
1− εb(u′) .

(1.18)

This family of transformations shares Property (i) of Example 1.2.2: corre-
spondence (1.18) is established for any arbitrary elements b(u), c(u). However
Property (ii) is violated: (1.17) specifies a different point transformation for each
choice of b(u), c(u). Moreover, Property (iii) is violated: transformations (1.17)
do not form a point group acting on (x, t, u, v) space. For each nonlinear tele-
graph equation (1.16) (i.e., for each choice of b(u), c(u)), mapping (1.17) is a
point transformation. However, calculation of (x′, t′, u′, v′) depends not only on
knowing values of the independent and dependent variables (x, t, u, v), but also
on the functions b(u), c(u), so transformations (1.17) do not form a point group.
However (1.17,1.18) may be regarded as a group of transformations acting on a
function space with coordinates (x, t, u, v) and arbitrary functions b(u), c(u).
Example 1.2.6. Non-point equivalence.

Consider the linear hyperbolic equation

uxy +A(x, y)ux +B(x, y)uy + C(x, y)u = 0, (1.19)

which can be written in factored form:

(∂x +B)(∂y +A)u = hu

where h = h(x, y) is the Laplace invariant [52, §9] h = Ax+AB−C. The factored
equation may be written as the system

uy +Au = z
zx +Bz = hu

(1.20)

Eliminating z yields (1.19) once again.
Suppose the Laplace invariant h �= 0. Eliminating u from (1.20) yields another

scalar equation

zxy +A′(x, y)zx +B′(x, y)zy + C ′(x, y)z = 0 (1.21)

where

A′ = A− hy
h

B′ = B

C ′ = C + k − h−Bhy
h

8
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and k = By+AB−C is the second Laplace invariant of (1.19). The two hyperbolic
equations (1.19), (1.21) are put into correspondence by (1.20). The ‘transforma-
tion’ (1.20) is known as Laplace’s transformation [52]. It is clearly not a point
transformation (the map from u(x, y) to z(x, y) involves taking derivatives of u).
Such non-point transformations are beyond the scope of the present investigation.

1.3 Symmetries and differential equations

Our main concern will be with construction and use of equivalence transforma-
tions for a class of equations. Before describing this, we review some ideas of Lie
symmetry methods for differential equations. We give a more detailed account of
this theory in §2, and for now limit ourselves to some comments on the general
philosophy of Lie symmetry methods. The equivalence methods we describe are
exactly parallel to these standard symmetry results.

A point symmetry of a differential equation (d.e.) is an invertible point trans-
formation which maps every solution of the d.e. to another solution of the same
d.e. The topic of symmetry for d.e.’s is by now well-studied. In the late nine-
teenth century, the Norwegian mathematician Sophus Lie developed the theory of
continuous transformation groups (Lie groups) precisely to deal with such symme-
tries. He showed that the symmetries of a d.e. form a group (the admitted group
of the equation). Knowledge of this group was shown by Lie to be of great assis-
tance in understanding and constructing solutions of the d.e. The applications of
symmetry groups to d.e.’s include [13, 47, 52]:

• mapping solutions to other solutions

• integration of ordinary d.e.’s in formula

• constructing invariant (‘similarity’) solutions, that is, solutions which are
invariant under the action of a subgroup of the admitted group

• detection of linearizing transformations.

To execute any of these, a reliable method for finding symmetries of d.e.’s is
required. In principle one could insert an arbitrary change of variables (e.g. (1.2))
into the equation (e.g. (1.1)) and then force the new variables (e.g. x′, y′) to satisfy
the same differential equation. This yields a (usually large) number of (usually
nonlinear) differential equations (the ‘defining equations’) to be satisfied by the
transformation (e.g., the functions F,G of (1.2)). This direct approach is too
cumbersome to be of much use: defining equations may be derived, but solving
such a large system of nonlinear equations is usually out of the question.

The crucial insight of Lie was that this problem could be overcome by consid-
ering the ‘infinitesimal’ action of the group. An example is helpful. Consider the
rotations of the (x, y) plane

x′ = x cos ε+ y sin ε
y′ = −x sin ε+ y cos ε, (1.22)

which form a group, whose transformations are parametrized by the angle ε of
rotation. When ε = 0, the identity transformation results. Expanding in the
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Chapter 1. Introduction

neighbourhood of the identity ε = 0 gives

x′ = x+ εy +O(ε2)
y′ = y − εx+O(ε2). (1.23)

The terms of order ε in (1.23) represent the derivative of (1.22) at the identity. Lie
regards (1.23) as an ‘infinitesimally small’ rotation of the plane. His remarkable
result (Lie’s first fundamental theorem) is that the action of a group can be (es-
sentially) completely recovered from the group’s ‘infinitesimal action’, and involves
only solution of an initial value problem for a finite system of ordinary differential
equations.

Because of this the problem of finding symmetries reduces to the solution of a
system of linear differential equations (the determining equations) for the infinites-
imal group action. Once the infinitesimals are known, solving ordinary d.e. initial
value problems suffices to recover the symmetry group. Most structural informa-
tion about the group is available directly from the infinitesimals. Indeed, Reid
[57, 58] shows how to extract structural information directly from the determin-
ing equations without knowing their solution. It cannot be overemphasized how
important the ‘infinitesimalizing’ of symmetry calculations is: as Olver [47, p.43]
observes, “ . . . almost the entire range of applications of Lie groups to differential
equations ultimately rests on this one construction”.

When one is dealing with a class C of differential equations, the symmetry
group admitted by the equations in the class will in general vary from equation
to equation. The symmetry group classification problem for the class C is to
rationally classify the equations in C into a hierarchy of cases according to the
size and structure of their symmetry groups. This problem is considerably more
difficult than finding the symmetries of a single differential equation. In fact we
shall devote a great deal of our effort towards solving this problem.

Following the work of Ovsiannikov in the USSR in the late 1950’s and 1960’s
[50] and of Bluman in the West in the late 1960’s and 1970’s [7, 9], there has
been a major revival of interest in symmetry methods for differential equations.
With the publication of the texts of Ovsiannikov [52], Olver [47], and Bluman and
Kumei [13], there are now several comprehensive accounts of the basic theory, as
well as more recent applications and generalizations. The central results of Lie’s
theory are outlined in Chapter 2; they allow the equivalence methods which follow
to appear as a natural outgrowth, and in turn will provide a fruitful application
of equivalence ideas.

1.4 Equivalence transformations

Just as symmetries of a differential equation transform solutions of the d.e. to other
solutions of the same d.e., point equivalence transformations transform differential
equations in some specified class C to other d.e.’s in the same class. Referring to
the Examples in §1.1, it is apparent that several kinds of transformations map
equations to equations in C.

There may exist point transformations having the property that they map
every equation in C to another equation in C. In Examples 1.2.1–1.2.4, transfor-
mations (1.2, 1.7, 1.10, 1.13) respectively are of this kind. It is clearly of great
interest to determine these transformations. They will certainly include those basic
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‘physical’ transformations relating to choice of units etc. in the original equation,
but as in Example 1.2.3, may also include less trivial transformations.

Ovsiannikov [52, §6] defined a suitable methodology and notation for dealing
with such transformations, for which he used the term equivalence transformations.
He derived some basic results about them, including the all-important property
that they form a group. The defining properties of Ovsiannikov’s equivalence
transformations are (cf. Properties (i)–(iii), Example 1.2.2)

(i) The transformations act on every equation in the class C. That is, they map
every equation in C to another equation in C.

(ii) The transformations are fixed point transformations, in the sense that they
do not depend on the arbitrary elements, and are realized on the point
space (independent and dependent variables) associated with the differential
equations. In contrast, transformations (1.17) for the potential nonlinear
telegraph equation (1.16) explicitly depend on the arbitrary functions b(u),
c(u) occurring there.

(iii) The transformations act on the arbitrary elements as point transformations
of an augmented space of independent and dependent variables and addi-
tional variables representing values taken by the arbitrary elements.

The collection of all such transformations constitute Ovsiannikov’s equivalence
group, which we denote by Q. The action on the augmented space will be denoted
by Q̂.

Although he intimates that determination of the equivalence group is possible
using the Lie symmetry method, an explicit algorithm is not presented. The only
example given is the equivalence group (1.7) for the scalar nonlinear diffusion equa-
tion (1.6), which unfortunately is available by inspection. Akhatov, Gazizov and
Ibragimov [3] used Ovsiannikov’s methodology in determining the infinitesimal
form of transformations (1.10) for a potential form vt = D(vx)vxx of the nonlin-
ear diffusion equation (compare 1.9). Subsequently, in the course of a heuristic
investigation [4] of nonlocal symmetries, they further applied Ovsiannikov’s ideas
to several examples, giving sufficient detail for a general method to be discerned.
They used the equivalence group to give a preliminary symmetry group classifica-
tion for several examples, a technique which we describe below in §1.5, and more
fully in §4.2. Ibragimov, Torrisi and Valenti [32] found the equivalence group Q
for a large class of nonlinear hyperbolic equations and executed the preliminary
classification for a finite-parameter subgroup of Q. These are apparently the only
significant uses of Ovsiannikov’s equivalence ideas which have been made to date.
It does not seem that a detailed theoretical exposition of the equivalence group is
available, so a first goal in this dissertation will be to systematically develop a the-
ory of equivalence transformations, and to show how to algorithmically construct
them.

First, in §3.1 and §3.2, we develop the theory of equivalence transformations,
filling in and extending the skeleton of theory provided by Ovsiannikov. We at-
tempt to follow a course as closely parallel to Lie symmetry theory as possible.
Calculation of equivalence transformations for a given class C of equations will be
the subject of §3.3. We show how the problem can be formulated infinitesimally,
and how this leads to a system of linear homogeneous determining equations for
the infinitesimal equivalences. Calculating the equivalence group is often straight-
forward, because the method typically yields a large number of simple determining
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equations. We give examples of such equivalence calculations in §3.4, using nonlin-
ear diffusion convection and linear wave equations as instances having nontrivial
equivalence groups.

In §3.4 we make tangential reference to direct use of equivalence groups: map-
ping solutions of a ‘simple’ equation to solutions of related ‘complicated’ equa-
tions; or conversely, to simplify a complicated equation by mapping it to a simple
(e.g. linear) equation. In Appendix C, using results derived in §3.4.1, we map some
similarity solutions of the nonlinear diffusion equation with power law diffusivity
D(u) = um to solutions for the diffusivity D(u) = um(1 − u)−(m+2). In §3.4.2,
we clarify the process of linearizing some nonlinear diffusion convection equations.
Finally, in §3.4.3, we give some nontrivial relationships between some ‘potential
symmetries’ of linear wave equations.

However, our principal use of the equivalence group will be in classifying sym-
metries of a class of differential equations.

1.5 Symmetry classification problem

There are two broad approaches to classification of symmetries for a class of dif-
ferential equations, which we characterize as synthetic and analytic methods. In
symmetry group analysis of differential equations, one forms and analyzes deter-
mining equations for the infinitesimal symmetry transformations. A method due
to Reid [57] for systematic group analysis is discussed below.

In contrast, synthetic methods bypass the construction of determining equa-
tions. Here we initially require a class of d.e.’s and a given group G of transforma-
tions mapping each d.e. in the class to another d.e. in the class. For example, given
the class of second order o.d.e.’s (1.1), there is naturally available the group (1.2) of
point transformations, which acts on the equations. With the algorithm of §3.3.3,
we may provide such a group G for any class of d.e.’s, namely the equivalence
group Q. With G available one uses various algebraic and geometric processes to
construct the d.e.’s admitting subgroups of G as symmetries. With this approach
one can only extract those symmetries which are contained in the given group G.
For second order o.d.e.’s (1.1) this is no hindrance, since G (1.2) is the group of all
point transformations. However, for a finite-parameter equivalence group such as
(1.7) for nonlinear diffusion, it cannot be known how many symmetries lie outside
Q.

In §4.2 we describe a synthetic method which is appropriate for finite-parameter
equivalence groups. The method is modelled on the classification of invariant so-
lutions of d.e.’s, a theory which in turn relies on the classification of subgroups
of the equivalence group using the adjoint group. This has the advantage of
using very well known theory to derive the (necessarily partial) symmetry classi-
fication: recently, Ibragimov and others [4, 32] described this process, calling it
the ‘preliminary classification’ method. Their examples include some quasilinear
hyperbolic equations, potential forms of nonlinear diffusion equations, and fluid
flow equations. We exemplify the partial classification method using nonlinear
diffusion convection equations. The method provides ‘quick and dirty’ symmetry
information: quick, because one often avoids dealing with infinite groups; dirty,
because the information is not complete. For our example the equivalence group
is small (a 10-parameter group), but it contains a surprising amount of symmetry
information.
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The premier synthetic classification methods are due to Tresse and Cartan
(cf. §1.1). Here, given a class of d.e.’s and a group G acting on this class, one
attempts to write the d.e.’s in a form which is invariant under the action of
G. Actually, their methods are geared to giving criteria for equivalence of two
differential equations with respect to G, with symmetry information appearing as
a byproduct. Tresse described two variants of the process. In one, differential
invariants of G are explicitly constructed, and the d.e.’s expressed in terms of
them. In the other, one uses the action of G to reduce the class of d.e.’s to a small
number of canonical forms. Cartan’s reformulation of the equivalence method
takes the second approach. Sophisticated geometric and algebraic machinery [26]
uses the action of G to reduce a coframe to an invariant form where equivalence
criteria and symmetry structure may be read off easily. Cartan [18] noted

The general solution of this problem has already been given by the
works of S. Lie and all those that they inspired. It is therefore only
the form of the solution given here that is new.

(emphasis in original). On the other hand Cartan claimed as a genuinely new
result his ability to extract structural properties of symmetry groups from his
invariant coframes. Cartan’s results take a new form in that they are expressed
in the geometric language of differential forms. The extensive geometric machin-
ery used in the Cartan equivalence method is required when finding equivalence
criteria with respect to infinite groups G, whose structure theory was described
by Cartan [18] in terms of differential forms. However finite-parameter groups G
have a structure theory which can be adequately described without forms, and
less profound mathematical methods suffice. In a broad sense the methodology of
the partial classification described in §4.2 is consistent with Cartan’s method: the
adjoint action of the group G is used to remove parameters and reduce the d.e.’s
admitting symmetries from G to a finite number of canonical forms.

The advantage of synthetic methods is that they can use powerful geometric
methods to uncover the symmetries which lie within the given group G. The
obvious deficiency is that one is tied completely to the group G. It is not difficult
to give a classification of the diffusion equations which admit some subgroup of
(1.7) as symmetries, but what is really desired is a classification of all the point
symmetries of the equations. There are two ways to approach this. Firstly, one
can embed the given class of equations in a ‘bigger’ class, on which a suitably
large group acts. For example, instead of analyzing diffusion equations, one might
attempt to analyze all second order quasilinear p.d.e’s. If the class is sufficiently
enlarged, one can ensure that all the desired symmetry information is contained
in the associated equivalence group, and then apply a synthetic procedure such as
Cartan’s. This has the obvious drawback of quickly leading to impracticably large
classification problems. Indeed very few partial differential equation classifications
have ever been found by Cartan’s method.

One can instead attempt an analytic approach to symmetry classification. Here
one accepts the given class of d.e.’s and attempts to sort it into subclasses on the
basis of symmetry properties. The leading—and perhaps only—such method is
that of Reid [57]. His approach is directly based on the Lie infinitesimal method
for symmetries. First he calculates determining equations for the infinitesimal
symmetries of equations in the class. By systematically appending compatibility
conditions to a determining system, eventually a standard ‘involutive’ form is
obtained, wherein the size and structure of the symmetry algebra can be read
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off by a simple process. When one does the same thing for a class of d.e.’s,
Reid’s method inevitably provides case splittings between the equations possessing
symmetry groups of differing size and structure. Because his method involves only
differentiation and algebraic processes, it is feasible to execute on a computer, and
quite difficult classification problems can be solved by his procedure.

It is not clear how these two widely differing approaches can be combined. The
Tresse and Cartan methods are geometric, while Reid’s is analytic. However, in
§4.5 we show how the two methods can be combined. This requires geometric
machinery developed by Tresse (and much elaborated by Cartan) for dealing with
moving frames, that is, non-commuting bases of differential operators. An outline
of the necessary concepts is given in §4.3.1, where we show how to refer determining
equations to a moving frame. Next, in §4.3.2, we develop a variant of Reid’s
method [55, 56] for reducing a system of d.e.’s to involutive form. Reid’s original
formulation is referred to a fixed coordinate basis, where the differential operators
commute. We define a corresponding algorithm for reducing a frame system to a
‘frame involutive’ form.

The key idea, developed in §4.4, is to refer the determining equations to a
moving frame which is invariant under the action of the equivalence group. Con-
struction of such invariant frames was described by Tresse [68], and is at the heart
of Cartan’s method [25]. Referring the frame Reid algorithm to the invariant
frame from Tresse’s or Cartan’s methods allows us to find a symmetry classifica-
tion which is invariant under the action of the equivalence group. This process is
described in §4.5. Our method may thus be regarded as either: a way to incorpo-
rate equivalence group information into Reid’s method; or as a way to incorporate
partial classification information (with respect to a ‘small’ group Q) into a broader
classification (with respect to the group of all point transformations).

Our new method fully utilizes equivalence group information in the construc-
tion of a complete point symmetry classification, thereby combining the best fea-
tures of Cartan’s and Reid’s methods. There are some theoretical gaps in our
treatment: in particular, a frame version of the Riquier integrability theorem re-
mains to be proved. However, the method shows great promise. We believe it
provides a powerful framework for dealing with p.d.e. symmetry classifications,
including those which are computationally infeasible to either Reid or Cartan
methods. In §4.5.2, we apply our method to a symmetry classification of nonlin-
ear diffusion convection systems. For this example the order and simplicity in the
classification which results is indeed remarkable.

Finally, in Chapter 5, we indicate some of the many directions in which the
methods described here can be developed.
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Chapter 2

Transformation Groups and
Differential Equations

Before developing the theory of equivalence transformations, we first give the
necessary background for dealing with (i) transformations and transformation
groups (ii) differential equations (d.e.’s).

2.1 Transformation groups

We now establish the basic definitions and results on transformations and trans-
formation groups, expecially as relating to differential equations. The results are
standard, and no proof or motivation is offered. In the books of Bluman and
Kumei [13], Olver [47] and Ovsiannikov [52] this material is developed in detail,
and we refer to these sources for proofs of the theorems and illustrative examples.

2.1.1 Transformations, Lie groups

Spaces

We shall have use for various spaces representing independent variables, dependent
variables, derivatives and so on. Without exception these are n-dimensional real
spaces IRn, or an open neighbourhood thereof. Rather than calling the spaces U ,
IRn etc., we shall mostly refer to spaces by their coordinates. Rather than “let
f : X → U be a function”, we shall say “let ui = f i(x1, x2, . . . , xn), i = 1, 2, . . . ,m
be functions”. The gain in readability should compensate for any loss of precision.
We routinely make abbreviations such as u = f(x) in preference to expressions
using indices. In order to express calculational formulas, a debauch of indices is
nevertheless necessary. We follow usual conventions for such indices: superscripts
xi, uj to count coordinates of an ordinary space; subscripts for derivatives and
similar objects. Thus uji represents the i-th partial derivative of a component
uj . This conforms to geometric practice of placing covariant indices of a tensor
as subscripts, and contravariant indices as superscripts; however not all of our
indexed objects are tensors. We rigorously adhere to the summation convention:
a repeated index occurring as a subscript and a superscript is to be summed over

its range of values. Thus uji
∂f

∂uj
is properly

∑m

j=i
uji
∂f

∂uj
. We often use Kronecker

15



Chapter 2. Transformation Groups and D.E.s

delta notation δij (1 for i = j, 0 otherwise). Changes of coordinates are denoted
by x′ = f(x). For derivatives of a function K we use dot notation K̇, K̈ .

Transformations

Definition 2.1.1. A transformation of a space x = (x1, x2, . . . , xn) is a smooth
(C∞) mapping x′ = τ(x) such that τ = (τ1, τ2, . . . , τn) is one-one and onto.

The inverse transformation τ−1 of τ therefore always exists.
This definition is actually more stringent than required. If a mapping τ is

defined only on some open subset of x-space we still use the term ‘transformation
of x’. Thus we regard the map τ : x 	→ 1/x as a transformation ‘of x’, even
though it is undefined at the point x = 0. That is, all our statements are local
in nature. The local theory is congested with statements about ‘neighbourhoods
U of the point x0’, which can obscure the main thrust of the theory. We mostly
omit reference to such neighbourhoods. Thus it must always be borne in mind
that our results are not true as stated for ‘a space x’, but hold only on suitably
small neighbourhoods of x. We occasionally underscore this point, but mostly let
it pass without comment.

Lie groups

Our interest is in groups continuously parametrized by r real parameters:

Definition 2.1.2. Let r real parameters ε = (ε1, ε2, . . . , εr) lie in a space P . The
space P is an r-parameter Lie group if there is defined a binary operation ∗ on P
such that

• There is a unique identity element e ∈ P such that ε ∗ e = e ∗ ε = ε for all
ε ∈ P .

• The operation ∗ is associative: ε ∗ (δ ∗ γ) = (ε ∗ δ) ∗ γ for all ε, δ, γ ∈ P .
• For every ε ∈ P , there exists an inverse element ε−1 ∈ P such that ε∗ε−1 =
ε−1 ∗ ε = e.

• Both the binary operation ∗ and the map ε 	→ ε−1 are analytic.

The identity element e can be taken as the origin 0, but there is no special
necessity to do so.

Again this definition is more stringent than required. In general the parameters
ε are local coordinates of an r-dimensional manifold. However, we only use the
group elements near the identity, and locally we may treat the parameter space
as IRr. A local theory of such ‘groups’ is available [52, §12], [47, p19], wherein the
binary operation and inverses are defined only in neighbourhoods of the identity
element e. We understand that any reference to a ‘Lie group’ actually means
‘elements sufficiently near the identity’. Any results based on global properties
(connectedness, compactness, etc.) of the group are outside our domain of inquiry.

For example, the archetypal Lie group is the real numbers under addition:
P ≡ IR, with the operation ‘∗’ being ordinary addition +. For adding angles of
rotation the relevant group is the circle (addition modulo 2π). Although these two
groups have differing global topologies (e.g., one is simply connected, the other is
not), in the neighbourhood of the identity 0 they both represent simple addition,
and from our viewpoint are identical.
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Lie transformation group

The group P of parameters remains in the background; our interest is in transfor-
mation groups, i.e., collections of transformations labelled by the parameters ε of
P .

Definition 2.1.3. A Lie transformation group on a space x = (x1, x2, . . . , xn)
is a collection G of smooth transformations τ of x obtained as the homomorphic
image of a Lie group of parameters. There is a map τ : P → G such that

• τ(e) is the identity map of x: τ(e)(x) = x for all x.

• τ(ε) ◦ τ(δ) = τ(ε ∗ δ) for all ε, δ ∈ P .

• τ(ε−1) = τ(ε)−1

• The map x′ = F (x; ε) = τ(ε)(x) is smooth (C∞) in x and ε.

(see also [13, §2.1.3], [47, p.21], and [52, §16.1]). The binary operation on a
transformation group is always composition ◦ . Because transformation groups
are our primary interest, the unqualified term ‘Lie group’ will always be taken to
mean a Lie transformation group. If the underlying Lie group of parameters is
used, we explicitly say so.

Example 2.1.4. The collection of transformations of (x, y)

x′ =
x

1− εx
y′ = (1− εx)2y

(2.1)

is a transformation group. Fixing ε specifies a (local) transformation τ(ε) of (x, y)
space. Composing two such transformations τ(ε), τ(δ) yields the transformation
τ(ε+ δ), so the parameter ε lives on the additive group on IR. Note that none of
the transformations is globally defined. Similarly, the image of a point (x, y) is not
defined for every transformation in the group. However, the image of any point
(x, y) is defined for every transformation sufficiently close to the identity ε = 0.
This is sufficient for our purposes.

A transformation group G is specified by a map x′ = F (x; ε) with the properties

• for fixed ε, the map τ(ε) defined by τ(ε)(x) = F (x; ε) is a transformation of
x.

• F (x; e) = x for all x.

• F (F (x; ε); δ) = F (x; δ ∗ ε).

• F analytic in ε and C∞ in x.

We also assume that if F (x; ε) = x for all x, then ε = e, so that there are no
‘unnecessary’ parameters.
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One-parameter transformation group

As a special case of a transformation group, let the single real parameter ε be
additive.

Definition 2.1.5. A one-parameter (ε) group acting on a space x is a transfor-
mation group on x with the following properties:

• τ(0) is the identity transformation on x

• τ(ε) ◦ τ(δ) = τ(ε+ δ)
See also [13, §2.1.4], [47, p28], [52, §1]. For example, (2.1) is a one-parameter

(ε) Lie transformation group of (x, y) space. It seems a restriction to demand that
the real parameter ε be additive in IR, but any other local group operation on IR
can be reparametrized to be addition [13, §2.2.1].

2.1.2 Infinitesimal operators

The key to practical construction of Lie transformation groups is an infinitesimal
formulation of the problem, which replaces nonlinear conditions for a group with
linear conditions.

Infinitesimal transformation

Consider a one-parameter (ε) group of transformations (Definition 2.1.5) acting
on a space x = (x1, x2, . . . , xn). In a neighbourhood of the identity ε = 0, the
transformation

x′ = F (x; ε)

can be expanded as

x′ = x+ εξ(x) +O(ε2) (2.2)

where ξ = (ξ1, ξ2, . . . , ξn) is given by

ξi(x) =
∂F i

∂ε
(x; ε)

∣∣∣
ε=0
. (2.3)

The quantities ξi are called infinitesimals of the one-parameter group: expansion
(2.2) represents an ‘infinitesimal transformation’ from the group.

Theorem 2.1.6 (First fundamental theorem of Lie). The function F defin-
ing a one-parameter group of transformations (Definition 2.1.5) can be constructed
from the infinitesimals ξ of the group as the solution x′ = F (x; ε) of the o.d.e. ini-
tial value problem

dx′

dε
= ξ(x′), x′(0) = x. (2.4)

For a proof see [13, §2.2.1], [47, §1.3], or [52, §2.3].
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2.1. Transformation groups

Example 2.1.7. Consider the one-parameter group (2.1) acting on (x, y) space.
Differentiating with respect to ε (2.3) gives infinitesimals (x2,−2xy) corresponding
to (x, y) respectively. The initial value problem (2.4) is here

dx′

dε
= x′2 x′(0) = x

dy′

dε
= −2x′y′ y′(0) = y.

Solving this indeed recovers the original one-parameter Lie group (2.1) (at least
locally).

Thus the infinitesimals encode all information necessary to recover the action
of a one-parameter group. Note that even when the infinitesimals ξi are smooth,
existence and uniqueness results for o.d.e. initial value problems guarantee only
local existence of a solution to the problem (2.4). Our local use of ‘transformation’
and ‘transformation group’ is thus natural for groups found by integration of (2.4).

Group operator

Definition 2.1.8. The group operator X of a one-parameter group with infinites-
imals ξ = (ξ1, ξ2, . . . , ξn) (2.2) is the first order differential operator

X = ξi(x)
∂

∂xi
. (2.5)

For example, the group operator corresponding to (2.1) is X = x2 ∂x− 2xy ∂y.
Group operators will be denoted with boldface roman capitals X, Y. A group
operator is a vector field on the space x: it attaches a vector ξ(x) to each point
x in the space. In §4.3 we use vector fields which do not naturally give rise to
a transformation group, and we reserve this more geometric terminology for such
circumstances. To save space we often write ∂x instead of ∂

∂x .
An operator X is a coordinate free object. It encodes information on the rate

of change of a function f with respect to the group parameter ε as a point x is
dragged along by the one-parameter group associated with X:

d

dε
f(x′(ε))

∣∣∣
ε=0

= Xf(x).

Lie algebra of operators

An r-parameter Lie transformation group has associated r group operatorsX1,X2,
. . . ,Xr which are linearly independent and form an r-dimensional vector space
over IR. This vector space has the additional structure of being closed under
commutation.

Definition 2.1.9. LetX = ξi
∂

∂xi
andY = γi

∂

∂xi
be two group operators. Their

commutator [X,Y ] is the first order operator

XY−YX =
(
ξj
∂γi

∂xj
− γj ∂ξ

i

∂xj

) ∂

∂xi
. (2.6)

The commutator bracket [ , ] has the properties

• Bilinearity. [X, aY+bZ ] = a[X,Y ]+b[X,Z ] where a, b are real constants.

19



Chapter 2. Transformation Groups and D.E.s

• Anticommutativity. [X,Y ] = −[Y,X ]

• Jacobi identity.

[X, [Y,Z ] ] + [Y, [Z,X ] ] + [Z, [X,Y ] ] = 0 (2.7)

Any vector space satisfying these three properties is called a Lie algebra, but our
Lie algebras are always Lie algebras of operators, with commutator bracket defined
by (2.6).

Correspondence between Lie group and Lie algebra

A Lie algebra of operators contains all the information necessary to reconstruct a
Lie group.

Theorem 2.1.10. To every r-parameter Lie transformation group G there cor-
responds an r-dimensional Lie algebra of operators L. An r-dimensional vector
space L of operators derives from a Lie transformation group if and only if L is
closed under commutation:

[X,Y ] ∈ L for all X,Y∈ L .

Usually a finite-dimensional Lie algebra is resolved with respect to a basis Xi,
in which case this closure condition becomes

[Xi,Xj ] = CkijXk (2.8)

for some constants Ckij which are called the structure constants of L. Antisymme-
try of the commutator bracket shows Ckij = −Ckji, and the Jacobi identity (2.7)
gives further relations. Practical construction of a Lie group proceeds from its Lie
algebra of operators as follows.

Theorem 2.1.11. Let G be an r-parameter Lie transformation group. Let X1,
X2, . . . , Xr be r linearly independent group operators corresponding to r inde-
pendent one-parameter subgroups G1, G2, . . . ,Gr of G. Let τ1(ε1), τ2(ε2), . . . ,
τr(εr) be transformations from the groups G1, G2, . . . ,Gr respectively. Then ev-
ery transformation τ(ε) ∈ G sufficiently close to the identity can be realized by
composing these:

τ(ε) = τ1(ε1) ◦ τ2(ε2) ◦ . . . ◦ τr(εr). (2.9)

See [52, §16.7].
The motivation for examining Lie algebras of operators is that they encode

in linear form the local structure of a Lie group of transformations. That is, the
structure constants Ckij determine a local Lie group up to isomorphism. To every
structural feature of a local Lie group there is a corresponding structural feature of
the Lie algebra, which can be discerned from its commutation relations. Details of
this structural correspondence are given by Ovsiannikov [52, §15]: we state some
of the more imporant ones here.
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2.1. Transformation groups

Normal subgroup, ideal

A subgroup H of a group G is normal if τ ◦σ ◦ τ−1 ∈ H for all σ ∈ H and all
τ ∈ G. A subalgebra I of L is an ideal if [X,Y ] ∈ I for all X ∈ I and all Y∈ L.
The Lie algebra I of a normal subgroup H of G is an ideal in the Lie algebra L
of G. If {Xi} span an ideal I, and {Xi,Yj} span the whole Lie algebra L, the
commutator table has the following form:

[ , ] Xi Yj

Xi {Xi} {Xi}

Yj {Xi} {Xi,Yj}
(2.10)

Direct and semidirect sum

A Lie algebra L is the semidirect sum of two subalgebras I, J , denoted by L =
I ⊕s J if L is a vector space direct sum of I, J , and I is an ideal in L: [I, J ] ⊆ I.
If Xi are a basis for I and Yj a basis for J , the commutator table of L takes the
following form:

[ , ] Xi Yj

Xi {Xi} {Xi}

Yj {Xi} {Yj}

This condition is stronger than requiring that I be an ideal in L, since we also
require its vector space complement to be a subalgebra. Note that the semidirect
sum operation is not commutative: L �= J ⊕s I. A semidirect sum becomes a
direct sum of ideals when the off-diagonal blocks in the commutator table vanish.
This is stronger than a semidirect sum: the two ideals I, J do not ‘interact’ at all.

Quotient group, quotient algebra

Let H ⊆ G be normal. Define the equivalence relation ∼ on G by τ1 ∼ τ2 iff
τ1 ◦ τ−1

2 ∈ H. Denote the equivalence class containing τ by τ̄ . The collection of
such equivalence classes is a group G/H under an operation (which we also denote
by ◦ ) induced by τ̄1 ◦ τ̄2 = τ1 ◦ τ2. The group G/H is called the quotient group (or
factor group) of G over H.

Let I ⊆ L be an ideal. Define the equivalence relation ∼ on L by X1 ∼ X2 iff
X1 −X2 ∈ I. Denote the equivalence class containing X by X̄. The collection of
such equivalence classes is a Lie algebra L/I under an operation (which we also
denote by [ , ]) induced by [ X̄1, X̄2 ] = [X1,X2 ]. The algebra L/I is called the
quotient or factor algebra of L over I.

Let G/H be the quotient group of the Lie group G over the normal subgroup
H. Then the Lie algebra associated with this quotient group is the factor algebra
L/I. The commutation relations of the factor algebra are obtained from those of
L by taking the bottom right hand corner of the table (2.10) and dropping the Xi
components. If L is a semidirect sum I ⊕s J , the factor algebra L/I is isomorphic
to J .
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Chapter 2. Transformation Groups and D.E.s

Isomorphism, homomorphism

A mapping ψ from a Lie group G onto the Lie group M is a group homomorphism
if

ψ(τ ◦σ) = ψ(τ) ◦ψ(σ)

for all τ, σ ∈ G.
The kernel kerψ of a homomorphism ψ is the set of transformations κ which are
mapped to the identity e by ψ:

kerψ = {κ ∈ G | ψ(κ) = e}.
It is a normal subgroup of G. A homomorphism ψ is an isomorphism if it is one-
to-one onto M (or equivalently, if kerψ = {e}). The image of a homomorphism
ψ is isomorphic to the quotient group G/ kerψ.

A linear mapping A from a Lie algebra L onto the Lie algebra M is a Lie
algebra homomorphism if

A([X,Y ]) = [A(X), A(Y)]

for all X,Y ∈ L. The kernel kerA of a homomorphism A is the set of operators
which are mapped to zero by A:

kerA = {K ∈ L | A(K) = 0}.
It is an ideal in L. The algebra homomorphism A is an isomorphism if it is one-
to-one and onto M (equivalently, if kerA = {0}). The image of a homomorphism
A is isomorphic to the factor algebra L/ kerA. In particular, if L = I ⊕s J , and
kerA = I, then the image of A is isomorphic to J .

Group and algebra homomorphisms and isomorphisms correspond, at least for
local Lie groups and their associated Lie algebras.

2.1.3 Invariant surface

The construction of symmetries (or the equivalence transformations of Chapter 3)
follows from an infinitesimal criterion for a transformation to leave invariant some
surface. The criterion for the case involving derivatives relies on a corresponding
result for algebraic equations, which we state first.

Definition 2.1.12. Let E be the set of points x = (x1, x2, . . . , xn) satisfying the
algebraic equations f(x) = 0, where f = (f1, f2, . . . , fs) are s smooth functions.
Let G be a Lie transformation group acting on the space x. The equation f(x) = 0
admits the group G (or is invariant under G) if for every x satisfying f(x) = 0,
and every transformation τ ∈ G, we have f(τ(x)) = 0.

In short the group G transforms E to itself.

Theorem 2.1.13. Assume the system f(x) = 0 is of maximal rank. That is, the
Jacobian ∂fi

∂xj is of rank s at every point on f(x) = 0, where s is the number of
equations. Then f(x) = 0 admits a Lie transformation group G if and only if

Xf(x) = 0 for all x such that f(x) = 0 (2.11)

for every operator X of G.
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2.2. Extension

See [13, §2.2.7], [47, p83], or [52, §3.12] for a proof.
The rank condition on the Jacobian is essential in this theorem. If it is violated,

either the system contains redundant equations which can be discarded, or the
assignment of the surface f(x) = 0 is ‘bad’. For instance the system x2 = 0 does
not satisfy the Jacobian condition. However the surface defined by this equation
is clearly identical to that defined by x = 0, which does satisfy the rank condition.
It is always possible to modify a system of equations so that it (locally) satisfies
the Jacobian condition. Note that a system of equations written in solved form
automatically satisfies the Jacobian condition, and hence we write equations in
solved form whenever possible.

2.2 Extension

In the previous section we considered transformations of an arbitrary space x.
When dealing with differential equations, we have spaces of independent and de-
pendent variables, and properties of derivatives enter the picture. The process of
taking an object defined on the base space of independent and dependent variables,
and deriving the corresponding object on the space of derivatives is called exten-
sion. (The term ‘prolongation’ is also used.) For example, substituting x′ = x,
y′ = y/x in a scalar o.d.e. induces an action

dy′

dx′
=

1
x

dy

dx
− y

x2
.

on the first derivative dy/dx: this is the first extension of the transformation of
(x, y) space.

We show in turn how to extend spaces, transformations, transformation groups,
and group operators.

2.2.1 Notation for derivatives

We wish to develop results for differential equations in arbitrary numbers of inde-
pendent and dependent variables. Let x = (x1, x2, . . . , xn) be the n independent
variables, and u = (u1, u2, . . . , um) be the m dependent variables. The transfor-
mations in which we are interested act on all such variables: the space (x, u) of
independent and dependent variables will be called the base space of the d.e.

To deal with differential equations, we extend the base space by adjoining
coordinates representing values taken by derivatives of u. Let θ(x) be a function
θ = (θ1, θ2, . . . , θm) of the independent variables. The collection of all k-th order
partial derivatives

∂kθi(x)
∂xjk . . . ∂xj2∂xj1

1 ≤ i ≤ m
1 ≤ j1, j2, . . . , jk ≤ n

is denoted by θ
k
(x). At each point x, the set of possible values of θ

k
(x) forms a

space of dimension m
(
n+k−1
k

)
. We assign coordinates

u
k
= uij1j2...jk , 1 ≤ i ≤ m

1 ≤ j1, j2, . . . , jk ≤ n
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Chapter 2. Transformation Groups and D.E.s

to this space in the obvious way: these will collectively be denoted by u
k
.

It is convenient to let J = (j1j2 . . . jk) denote a multi-index. The order of J
is the number of elements in the multi-index (k in this case), and will be denoted
by |J |. This allows convenient shorthand notations: the collection of k-th order
derivatives of u can be concisely rendered as {ujJ : |J | = k}. Concatenation of
multi-indices is denoted in the obvious way, so that Ji ≡ (j1j2 . . . jki). Equal-
ity of mixed partial derivatives implies that a multi-index is defined only up to
permutation: if I is a rearrangement of the multi-index J , then uI ≡ uJ .

We define the k-th extension space to be (x, u, u
1
, . . . , u

k
), representing variables

and derivatives up to order k.

2.2.2 Extension of transformation

A transformation

x′ = F (x, u)
u′ = G(x, u)

(2.12)

of the base space induces an action on derivatives in a natural way. We now give
the basis of this construction. We carefully distinguish when u is being treated
as an independent coordinate, and when it is a function of x. Let u be assigned
as u = θ(x), and correspondingly u

1
= θ

1
(x), . . . , u

k
= θ
k
(x). A function f(x, u, u

1
,

. . . , u
k
) becomes

θ∗f (x) = f(x, θ(x), θ
1
(x), . . . , θ

k
(x)), (2.13)

which we call the pullback of f by θ. Although the name and notation are differ-
ential geometric, it need only be remembered that the notation θ∗f implies that
we are treating u as a function of x in f .

Definition 2.2.1. The graph of a smooth function θ = (θ1, θ2, . . . , θm) is the set
of points

Γ(θ) = {(x, u) | u = θ(x)}
The k-th extension of a graph Γ(θ) is the set of points

Γ(θ
k
) =

{
(x, u, u

1
, . . . , u

k
)
∣∣∣ (u, u

1
, . . . , u

k
) = (θ(x), θ

1
(x), . . . , θ

k
(x)
}

(2.14)

A transformation τ on the base space (x, u) acts pointwise on a graph, mapping
a point (x, u) on Γ(θ) to (x′, u′). If the transformation τ is sufficiently close to
the identity, these points (x′, u′) (at least locally) constitute the graph Γ(θ′) of a
function u′ = θ′(x′) [47, §2.2]. We say that τ transforms θ to θ′.

However, attempting the same argument on an extended graph Γ(θ
1
) by ap-

plying an arbitrary transformation of (x, u, u
1
) will in general fail. Initially u

1
= θ

1

represents the slope of the plane tangent to the surface u = θ(x). After trans-
formation, however, there is no guarantee that u′

1
agrees with the slope of the

tangent plane to u′ = θ′(x′). The resulting locus is of no significance unless these
derivatives ‘match up’.
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2.2. Extension

Definition 2.2.2. The k-th order contact forms C
k
on the space (x, u, u

1
, . . . , u

k
)

are the differential one forms

dujI − ujIi dxi, 0 ≤ |I| ≤ k − 1 (2.15)

The tangency conditions require that C
k
be preserved by a transformation τ

k
.

They are expressed in terms of the following operators:

Definition 2.2.3. The (formally infinite) differential operator

Dxi =
∂

∂xi
+ uji

∂

∂uj
+ · · ·+ ujIi

∂

∂ujI
+ · · · . (2.16)

is called the total derivative with respect to xi.

Total derivative operators Dxi are naturally dual to contact forms C
k
in the

sense that they are annihilated by every such form. Although the sum definingDxi

is formally infinite, we only apply total derivative operators to functions f(x, u, u
1
,

. . . , u
k
) defined on some finite order extension space, so only a finite number of

terms is needed: the infinite sum is interpreted as “to whatever finite number of
terms necessary”. Functions f(x, u, u

1
, . . . , u

k
) are sometimes called (k-th order)

differential functions.
We wish to reserve the notation ∂xi for partial derivatives of a function f(x, u, u

1
,

. . . , u
k
), so that in ∂xif , the coordinates (u, u, u

1
, . . . , u

k
) are held constant. In con-

trast, Dxi differentiates ‘as though’ u were a function of x. More precisely,

Proposition 2.2.4. Let f(x, u, u
1
, . . . , u

k
) be some function, and let u = θ(x). We

have

θ∗(Dxif)(x) = ∂xi(θ∗f)(x)

so that assigning u = θ(x) after total differentiation agrees with assigning u =
θ(x) followed by partial differentiation. This justifies the name ‘total derivative’.
It is essential in the transformation theory to distinguish between ∂xi and Dxi :
the difference boils down to whether u is being treated as a coordinate (∂xi) or as
a function of x (Dxi). If we were always imagining u to be a function of x, the
distinction would not be necessary, and in fact in §4.3 we allow the notation Dxi

to lapse and submit to the usual barbarism of confusing it with ∂xi . Until then,
however, the distinction is carefully maintained.

Preserving contact conditions places strong restrictions on a transformation of
the k-th extension space when k ≥ 1.

Theorem 2.2.5. Let τ
k
be a transformation

x′i = F i(x, u, u
1
, . . . , u

k
)

u′j = Gj(x, u, u
1
, . . . , u

k
)

...
u′jI = GjI(x, u, u1 , . . . , uk

), 0 ≤ |I| ≤ k

(2.17)
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Chapter 2. Transformation Groups and D.E.s

of k-th extension space. Define Aij = DxjF i, along with the ‘inverse matrix’ Bjl
such that BjlA

i
j = δil . (We may guarantee existence of this inverse by taking τ

sufficiently close to the identity.) Then

Dx′i = BjiDxj . (2.18)

If τ
k
preserves the k-th order contact conditions C

k
(Definition 2.2.2) then the func-

tions Gji , . . . , G
j
I for 1 ≤ |I| ≤ k are determined in terms of F , G by the recurrence

(extension formula)

GjIi = B
l
iDxlGjI , 0 ≤ |I| ≤ k − 1. (2.19)

See [13, §2.3.5] for further details and proof; also [47, Thm 2.36], [52, §4.5].
If F , G depend nontrivially on derivative components (u

1
, . . . , u

k
), the depen-

dence cannot be arbitrary, since extension formula (2.19) apparently raises the
order of derivatives each time it is applied. This results in strong restrictions on
F , G:

Theorem 2.2.6 (Bäcklund).

(i) If the number of dependent variables u = (u1, u2, . . . , um) is greater than
one, the only transformations of (x, u, u

1
, . . . , u

k
) which preserve k-th order

contact C
k
, are extensions of transformations (2.12) of (x, u).

(ii) If the number of dependent variables u is one, the only transformations of
(x, u, u

1
, . . . , u

k
) which preserve k-th order contact C

k
are extensions of trans-

formations of (x, u, u
1
).

Transformations obtained by extension of a base transformation (2.12) are
called extended point transformations. Transformations obtained by extension of
a transformation of (x, u, u

1
) space are called first order contact transformations.

We scarcely mention contact symmetries in this dissertation (see [13, §5.2.4] for
details). Instead, from now on we restrict ourselves without exception to extended
point transformations.

For later reference we mention projectable point transformations, of the form

x′ = F (x)
u′ = G(x, u).

(2.20)

Sometimes the term ‘fibre preserving’ transformation is used.
Extension of a transformation group G on base space (x, u) to a group G

k
on

(x, u, u
1
, . . . , u

k
) is defined by extending each transformation in G. The extended

group G
k
is isomorphic to G.

Example 2.2.7. Consider the one-parameter group (2.1) of transformations. Sup-
pose y is a dependent variable, and x the independent. Denoting the single first
extension component by ẏ, so that the contact form is dy− ẏ dx, we compute from
(2.2.5) the extended transformation

ẏ′ = (1− εx)3
(
(1− εx)ẏ − 2εy

)
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2.3. Differential equations and symmetry

2.2.3 Extension of group operator

The process (2.19) of extending a Lie transformation group G on the base space
(x, u) to action on derivatives naturally induces an extension of the group op-
erators (2.5) associated with G. This is calculated by inserting the infinitesimal
transformation (2.3) into extension formula (2.19).

Theorem 2.2.8. Let

X = ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
(2.21)

be an operator for a transformation group G acting on base space (x, u). Corre-
sponding to the k-th extension group G

k
is the operator

X
k

= ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
+ ηj(i)(x, u, u1)

∂

∂uji
+ · · ·

+ ηj(I)(x, u, u1 , . . . , uk
)
∂

∂ujI
, 0 ≤ |I| ≤ k (2.22)

where ηj(I), 1 ≤ |I| ≤ k are obtained from the recurrence

ηj(Ii) = Dxiηj(I) − ujIq (Dxiξq) (2.23)

where Dxi is the total derivative operator (2.16).

See [13, §2.3.5], [47, p.108ff ], [52, §4.8]. Our notation ηj(I) for extended in-
finitesimals is consistent with our placement downstairs of differentiation indices.
The parentheses (I) are necessary to avoid confusion with partial derivatives ηI .

Example 2.2.9. Consider the group operator X = x2 ∂x− 2xy ∂y corresponding to
the group (2.1). Extend using Theorem 2.2.8 to an operator X

1
= X + η(1)∂ẏ on

the space (x, y, ẏ). We find η(1) = −4xẏ − 2y. This agrees with the expression
obtained by differentiation of the extended transformation noted in Example 2.2.7.

2.3 Differential equations and symmetry

2.3.1 Differential equations

From the outset, the term ‘system of differential equations’ will be taken to mean
a general

system of s differential equations
of order k

in n independent variables
and m dependent variables.

Definition 2.3.1. A system E of s k-th order differential equations is defined by
a function f = (f1, f2, . . . , fs) on the k-th extension space (x, u, u

1
, . . . , u

k
) as

f(x, u, u
1
, . . . , u

k
) = 0. (2.24)
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Chapter 2. Transformation Groups and D.E.s

This is a system of algebraic equations with certain of the coordinates inter-
preted as coordinates of derivative spaces. The equation f = 0 (2.24) specifies a
‘surface’ E embedded in the space (x, u, u

1
, . . . , u

k
). Identifying a differential equa-

tion with this surface gives the theory a ‘geometric’ character. We do not make
a distinction between this surface and the equations defining it, even though the
same differential equations can be written in different forms (i.e. with various f ’s).

Definition 2.3.2. A (local) solution of equations E (2.24) through a point x0 is
a function u = θ(x) such that

f
(
x, θ(x), θ

1
(x), . . . , θ

k
(x)
)
= 0 (2.25)

for all x in some neighbourhood U of x0.

In terms of the pullback (2.13), θ is a solution of f = 0 if θ∗f(x) vanishes
identically for all x ∈ U . Alternatively, (2.25) states that the graph of θ lies in the
surface E: f = 0 (2.24).

Example 2.3.3. To illustrate this notation, consider the scalar wave equation

utt = c2(x)uxx. (2.26)

Here there are n = 2 independent variables (x, t); m = 1 dependent variable u;
s = 1 equation; of order k = 2. The spaces involved are

x = (x, t)
u = (u)
u
1
= (ux, ut)

u
2
= (uxx, uxt, utt).

The base space is (x, t, u); the twice-extended space is (x, t, u, ux, ut, uxx, uxt, utt).
A solution of the wave equation (2.26) is a function u = θ(x, t) satisfying condition
(2.25):

∂2θ

∂t2
(x, t) = c2(x)

∂2θ

∂x2
(x, t).

We use the abbreviated notation x, u, u
1
only in general theoretical statements:

it is not particularly useful in concrete examples. Index notation (x1, x2, . . . , xn)
for components of spaces will also be reserved for general theory: in examples it
is preferable to give variables distinct names (x, t, etc.) reflecting their physical
meaning.

2.3.2 Symmetries of differential equations

We now state the main results concerning symmetries of differential equations.
Several results in Chapter 3 are established by parallel methods, so proofs of some
of the theorems are given.

Definition 2.3.4. A transformation acting on the base space (x, u) of a system
E of differential equations is a point symmetry of E if it maps every solution θ of
E to another solution θ′ of E.
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2.3. Differential equations and symmetry

(‘Mapping θ’ means mapping the graph of θ.) As usual, the definition of sym-
metry is more stringent than really intended. Interpreted strictly, Definition 2.3.4
would disqualify a transformation from being a symmetry if there existed even one
solution which was not mapped to another solution. The proper local statement
[47, p.96] is to require that each solution u = θ(x) in a neighbourhood of a point x0

be mapped to another local solution in a neighbourhood of x′0 by every symmetry
transformation sufficiently close to the identity. This is sufficient for our purposes.

By Definition 2.3.4, symmetries act on functions θ representing solutions of
the differential equations (2.24). The criterion for whether a point transformation
is a symmetry would seem to demand we know all solutions of the differential
equations. This is of no practical use: the ‘function’ criterion of Definition 2.3.4
must be replaced with a ‘point-by-point’ criterion.

Theorem 2.3.5. Let E be a system of differential equations given by (2.24). Let
τ be a transformation of the base space, whose extension τ, τ

1
, . . . , τ

k
leaves the

surface E invariant. Then τ is a symmetry of E.

Proof. Every solution u = θ(x) of E has its graph Γ(θ
k
) lying in the surface E.

The extension τ
k
of τ maps (extended) graphs to graphs, so there is a function

u′ = θ′(x′) such that the τ
k
maps Γ(θ

k
) to the graph Γ(θ′

k
) of θ′. But τ maps E to

itself, so every point on the extended graph Γ(θ′
k
) lies in E. Hence θ′ is a solution

of the differential equations.

This theorem is the basis for practical calculation of symmetries of differential
equations. The ‘point-by-point’ nature of the criterion allows us to treat the
differential equations as algebraic equations in extended space. Application of
Theorem 2.1.13 yields an infinitesimal form of Theorem 2.3.5.

Definition 2.3.6. A system E of s differential equations f = 0 (2.24) satisfies the
Jacobian condition if the Jacobian of f with respect to the variables (u, u

1
, . . . , u

k
)

is of full rank s at all points on E.

The Jacobian condition guarantees that a system of d.e.’s can be (in principle)
written in solved form, that is, s of the derivatives (u, u

1
, . . . , u

k
) can be isolated

on the left hand side. Note that the variables x are omitted when considering the
Jacobian rank condition: we do not allow the independent variables x to be bound
by an algebraic relation. If such an algebraic relation is present, the system E has
no solutions at all, and is inconsistent . The Jacobian condition is not sufficient to
ensure consistency, since a relation among x could be implied as a compatibility
condition of the equations in the original system.

Theorem 2.3.7. Let E be a system of differential equations f = 0 (2.24) satis-
fying the Jacobian condition. Suppose G is a Lie transformation group such that

X
k
f(x, u, u

1
, . . . , u

k
) = 0 whenever f(x, u, u

1
, . . . , u

k
) = 0 (2.27)

for every group operator X of G. Then G consists of symmetries of E.

Proof. Applying Theorem 2.1.13 to the surface E shows that a point transforma-
tion τ leaves invariant the surface E if and only if infinitesimal condition (2.27) is
satisfied. Theorem 2.3.5 then shows that τ is a symmetry of E.
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Chapter 2. Transformation Groups and D.E.s

This theorem gives a constructive method for finding symmetries of a system
of differential equations. To ensure that all symmetries are found, the differential
equations E must satisfy additional hypotheses.

Definition 2.3.8. A system E (2.24) of differential equations f = 0 is locally
solvable if through every point (x, u, u

1
, . . . , u

k
) on E there passes the graph of a

solution u = θ(x).

The importance of local solvability is motivated as follows. There are two sur-
faces of interest in the space (x, u, u

1
, . . . , u

k
). First there is the surface E specifying

the differential equations. Second there is the surface generated by the union of all
graphs of solutions of the differential equations. Only for locally solvable systems
may these two surfaces be identified. If a system is not locally solvable there are
portions of surface E through which there are no solutions. In this case condition
(2.27) would force a transformation τ to leave invariant a surface ‘larger’ than
that generated by the solutions—in terms of which symmetry properties of E are
defined. This leads to imposition of stronger conditions than necessary on τ .

For locally solvable systems, Theorem 2.3.5 admits a converse.

Theorem 2.3.9. A locally solvable system E of differential equations (2.24) ad-
mits a symmetry τ if and only if (τ, τ

1
, . . . , τ

k
) leaves invariant the surface E (2.24)

defining the equations.

Proof. We have only to show the converse statement. Let P = (x0, u0, u0
1
, . . . , u0

k
)

be a point on E. Local solvability guarantees existence of a solution u = θ(x)
passing through P . Applying the symmetry τ

k
to this solution, P is mapped to

a point P ′ which lies on a solution u′ = θ′(x′) of equations E. Hence P ′ is on E.
Thus every point on E is mapped to a point on E.

Theorem 2.3.10. Let E be a locally solvable system of differential equations f =
0 (2.24) satisfying the Jacobian condition. Then a Lie transformation group G is a
point symmetry group of E if and only if infinitesimal condition (2.27) is satisfied
for every operator X of G.
Proof. Just combine Theorems 2.3.7 and 2.3.9.

This implies that the set of all operatorsX satisfying (2.27) generates the complete
symmetry group of E. Further discussion of local solvability and related issues may
be found in [47, §2.6]. For more detailed material on transformation of d.e.’s and
their symmetries, see [13, §3,§4], [47, §2], [52, §5].

As it stands, the local solvability criterion could not be checked without know-
ing all the solutions of the d.e.’s. The following regularity conditions are more
convenient.

Definition 2.3.11. We call a system E of differential equations

f(x, u, u
1
, . . . , u

k
) = 0

regular if

(i) The function f is analytic in all its arguments.
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2.3. Differential equations and symmetry

(ii) f satisfies the Jacobian condition.

(iii) No further relations of order k or less can be derived from E by differentiation
or taking compatibility conditions.

Theorem 2.3.12. A regular system of differential equations is locally solvable.

This is an immediate consequence of the Riquier-Janet theory [59, 33, 67, 56]
on existence of solutions of involutive systems of d.e.’s.

For a given d.e. the conditions of Definition 2.3.11 can be checked by a finite
algorithm [56], and this makes the criterion of regularity useful in practice. If
condition (iii) above fails, the Janet theory [33], or Reid’s variant thereof [56]
gives an algorithmic procedure for appending compatibility conditions until the
condition is satisfied. This is often of no concern. For example, scalar equations
trivially can have no compatibility conditions. However, compatibility conditions
are of utmost importance for dealing with determining equations for symmetries,
because such systems are usually overdetermined, and imply many compatibility
conditions. We shall return to this point at length in §4.3.
Example 2.3.13. Consider the potential system form of the nonlinear diffusion
convection equation

vx = u
vt = D(u)ux −K(u),

(2.28)

where D(u) and K(u) are analytic functions. This system implies as compatibility
condition

ut = [D(u)ux −K(u)]x (2.29)

i.e., the scalar diffusion convection equation. Provided D(u) �= 0, this condition
is of second order . Since no further compatibility conditions can be derived, we
conclude that (2.28) is regular and therefore locally solvable. A separate treatment
is required if D(u) ≡ 0, and in fact local solvability of (2.28) fails in that case.

2.3.3 Algorithmic construction of symmetries

Theorem 2.3.10 above leads to an algorithmic construction of the symmetry group
G for a regular system E of differential equations. The key observation is that
condition (2.27) contains extension variables (u

1
, . . . , u

k
), which appear through

the extension formula (2.23) and in the differential equations themselves. In both
cases their occurrence is explicitly known. Hence condition (2.27) can be split up
by powers of these extension variables, yielding a system of determining equations
for the infinitesimals ξ, η. The details of this algorithm are as follows [13, §4.3.3],
[47, §2.4], [52, §5.4].

Algorithm 2.3.14 (Lie).

1. Write the system E in solved form i.e., isolate derivatives on the left hand
side of each equation. If necessary, append differential consequences of the
system until it is regular.
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Chapter 2. Transformation Groups and D.E.s

2. Let ξi, i = 1, . . . , n; and ηj , j = 1, . . . ,m be arbitrary functions of (x, u).
Write the formal operator

X = ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
(2.30)

3. Extend the operator X to X
k
acting on (u

1
, . . . , u

k
), where k is the order of

the differential equations E. This adds to X the terms

· · ·+ ηj(i)
∂

∂uji
+ · · ·+ ηj(I)

∂

∂ujI
, 1 ≤ |I| ≤ k.

where ηj(I), 1 ≤ |I| ≤ k are determined in terms of ξ, η and their derivatives
by extension formulas (2.23, 2.16).

4. Apply the extended operator X
k
to the function f which defines the system

E of differential equations (2.24).

5. Restrict X
k
f(x, u, u

1
, . . . , u

k
) to the surface f = 0 by substituting for the

derivatives which occur on the left hand side of E. Set the resulting ex-
pression to zero. This yields conditions (2.27) for an infinitesimal symmetry.

At this stage, conditions (2.27) are linear homogeneous partial differential equa-
tions for the infinitesimals ξ, η. The coefficients in these invariance conditions are
(known) functions of x, u, and derivatives from the system E (i.e. some of u

1
, . . . , u

k
).

Provided u
1
, . . . , u

k
occur polynomially in the original system E (2.24), they occur

polynomially in the invariance condition (Theorem 2.3.10), in an explicitly known
manner. In this case, one is able to split up the invariance condition according to
powers of these derivatives into a finite number of determining equations for the
infinitesimals ξ(x, u) and η(x, u). Usually this system of determining equations is
overdetermined , consisting of more equations than unknowns.

With this discussion we complete the algorithm:

6. Split up conditions (2.27) by powers of the variables u
1
, . . . , u

k
, to give deter-

mining equations for the infinitesimal symmetry group.

7. Solve the determining equations for the infinitesimals ξ, η.

8. For each infinitesimal operator in the algebra of symmetry operators, inte-
grate the initial value problem (2.4) to yield a set of one-parameter subgroups
of the symmetry group G. Compose these subgroups (Theorem 2.1.11) to
give (the connected component of) the symmetry group G.

Steps 7 and 8 are not strictly algorithmic, since they involve integrations, which
may not be able to be performed explicitly. However, in practice solution of the
differential equations of 7 and 8 can often be accomplished, and the full symmetry
group of E calculated. Even if they cannot be solved, an algorithm of Reid [56, 57]
gives a standard form for the determining equations, from which size and structure
of the symmetry group can be found without difficulty.

For a system of equations which is not locally solvable, there is nothing to
prevent application of this algorithm, but there is no guarantee that the resulting
list of symmetries is complete.
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Chapter 3

The Equivalence Group

3.1 Class of differential equations

3.1.1 Decoupled systems of d.e.’s

We have frequent cause to deal with “systems of d.e.’s” which are decoupled into
two or more subsystems, which are solved in sequence; the theory described in §2
must be modified to deal with this case.

For example, the first order o.d.e.’s

dv

du
= f(u, v) (3.1)

and
du

dx
= g(x, u, v) (3.2)

are a decoupled system. The two equations are solved sequentially: first (3.1) is
solved for v = φ(u), which is then inserted into (3.2), turning it into a d.e. in
(x, u):

du

dx
= g(x, u, φ(u))

The interpretation we wish to give decoupled systems is as specifying a class
of equations.
Example 3.1.1. Consider the system A:

ax = 0 at = 0 (3.3)

for a as a function of (x, t, u), and the equation E for u(x, t):

ut = auxx + au(ux)2. (3.4)

The trivial system (3.3) has solution a = D(u), where D(u) is any function.
Inserting this into (3.4) we obtain

ut = (D(u)ux)x. (3.5)

Equations (3.3), (3.4) therefore describe the class of nonlinear diffusion equations
(3.5).
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Chapter 3. The Equivalence Group

Note that in this latter example, equations (3.3), (3.4) cannot be collectively
regarded as a system of d.e.’s, since there is no consistent assignment of indepen-
dent and dependent variables. In particular, u is an independent variable in (3.3),
but a dependent variable in (3.4).

Although the transformation theory of the remainder of this chapter is applica-
ble to any decoupled system of d.e.’s, our motivation and terminology is for dealing
with classes C of d.e.’s such as the diffusion equations above. Here the first half
of the decoupled system specifies certain ‘arbitrary elements’ such as a = D(u)
above, which are then inserted into the second half of the system to give the class
C. Typically the arbitrary elements represent possible physical properties of me-
dia (e.g. ‘the diffusivity D(u)’, ‘a fluid of uniform density ρ’); or mathematically
natural collections of equations (e.g. second order o.d.e.’s ÿ = ω(x, y, ẏ)).

3.1.2 Class of d.e.’s

Let A be a

system of σ differential equations
of order κ

in ν independent variables w = (w1, w2, . . . , wν)
and µ dependent variables a = (a1, a2, . . . , aµ).

described by the function g = (g1, g2, . . . , gσ) as

g(w, a, a
1
, . . . , a

κ
) = 0. (3.6)

Let E be the system of s equations

f(x, u, u
1
, . . . , u

k
; a, a

1
, . . . , a

κ
) = 0 (3.7)

defined by functions f = (f1, f2, . . . , fs), where u = (u1, u2, . . . , um) are depen-
dent variables, x = (x1, x2, . . . , xn) are independent variables, and (x, u) ≡ w.
(Note that m+ n = ν). When a = φ(w) ≡ φ(x, u) is assigned to lie on the graph
of a solution of A (3.6) (and correspondingly a

1
= φ

1
, etc.), we obtain the system

E(φ)

f
(
x, u, u

1
, . . . , u

k
, φ(x, u), φ

1
(x, u), . . . , φ

κ
(x, u)

)
= 0, (3.8)

which is a system of k-th order d.e.’s for u as a function of x. The decoupled
system A, E (3.6), (3.7) represents a class C of differential equations, namely

C = {E(φ) | φ solves A}. (3.9)

We call the functions φ(x, u) solving A the arbitrary elements characterizing the
class C. The system A we call the auxiliary system of the class; E will be called
the primary system.

Our convention is to use Roman indices (i, j, n,m, k, s) for the primary system
E and its variables xj , ui; and Greek (β, γ, ν, µ, κ, σ) for the auxiliary system A
and its variables wγ , aβ .
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3.1. Class of differential equations

We use pullback notation (cf. (2.13)) to indicate that a has been assigned as a
function of (x, u), so that (3.8) is written

φ∗f (x, u, u
1
, . . . , u

k
) = 0,

where φ is a solution of A, so that φ∗g (w) ≡ 0. Thus a function u = θ(x) is a
solution of an equation E(φ) ∈ C if φ solves A: φ∗g (w) ≡ 0, and and θ solves E(φ):

θ∗φ∗f (x) ≡ 0. (3.10)

Writing this out in full, it says

f
(
x, θ(x), θ

1
(x), . . . , θ

k
(x), φ(x, θ(x)), φ

1
(x, θ(x)), . . . , φ

κ
(x, θ(x))

)
= 0,

which is as good an advertisement as any for pullback notation.
It is important to note that because assignment of independent and dependent

variables is different in A (3.6) and E (3.7), there are two different extensions here;
the ‘underscripts’ 1 in a

1
and in u

1
have distinct meanings. Components of u

1
are

values of derivatives of u = θ(x) with respect to x, so u
1
= {uij}, for i = 1, . . . ,m

and j = 1, . . . , n, where uij =
∂θi

∂xj (x). In contrast, the components of a
1
are values

of derivatives of a = φ(w) with respect to w, so a
1
= {aβγ}, for β = 1, . . . , µ and

γ = 1, . . . , ν, where aβγ = ∂φβ

∂wγ (w). For example the first extensions a
1
for nonlinear

diffusion Example 3.1.1 are a
1
= (ax, at, au), whereas u

1
= (ux, ut).

Example 3.1.2. Consider the class of scalar wave equations

utt = c2(x)uxx, (3.11)

where c(x) is an arbitrary wavespeed function representing spatial inhomogeneity
of the medium. This class of equations may be specified by a decoupled system
with auxiliary system A:

au = 0 at = 0, (3.12)

and primary system E:

utt = a2uxx. (3.13)

Equation (3.11) results when we assign a = c(x) as the general solution of A.
Potential forms of wave equations can be constructed. The system [46]

vx = c−2(x) [h(x, t)ut − ht(x, t)u ]
vt = h(x, t)ux − hx(x, t)u (3.14)

is a potential system for (3.11), if the function h(x, t) satisfies

∂2h

∂t2
(x, t) = c2(x)

∂2h

∂x2
(x, t), (3.15)

that is, if h(x, t) is a solution of (3.11). In this case, the compatibility condition
of (3.14) is the scalar wave equation (3.11). If u = θ(x, t), v = χ(x, t) solve the
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Chapter 3. The Equivalence Group

potential system (3.14) then u = θ(x, t) solves the scalar wave equation (3.11).
Conversely, if u = θ(x, t) solves the scalar equation (3.11), then for each function
h satisfying (3.15), there exists a v = χ(x, t) such that u = θ(x, t), v = χ(x, t) is a
solution of the potential system form (3.14) of the equation.

This class of potential systems can be specified by the auxiliary system

at = au = av = 0
bu = bv = 0

btt = a2bxx (3.16)

with dependent variables a, b as functions of (x, t, u, v). A solution a = c(x),
b = h(x, t) of this system is inserted into the system E:

vx = a−2(but − btu)
vt = bux − bxu, (3.17)

turning it into the potential wave system (3.14).

Auxiliary systems frequently merely specify dependencies, as in (3.12), but as
system (3.16) illustrates, this is by no means always so.

We have assumed that the arbitrary elements a = φ(w) depend only on
w = (x, u), but it is quite possible for dependence on derivatives of u to arise,
so that we should take w = (x, u, u

1
, . . . ). For example, the class of second order

o.d.e.’s ÿ = ω(x, y, ẏ) has an arbitrary element depending on ẏ. Dealing with
derivative dependence requires only minor changes: it is largely a matter of nota-
tional inconvenience.

The point of specifying C as an auxiliary system A and primary system E is
that it is described algebraically as a coordinate locus, instead of as a collection
of equations parametrized by arbitrary elements. This is analogous to treating a
d.e. as a surface in an extension space, rather than as a collection of solutions.

3.2 Equivalence transformations

With notation established for classes of differential equations, we now examine
transformation properties of these equations.

Let C be a class of differential equations (§3.1.2). We seek transformations
of (x, u) which map solutions of an equation E(φ) ∈ C to solutions of another
equation E(φ′) ∈ C. There are several ways in which such transformations could
be sought, each of them yielding different levels of generality: we consider only
the most restrictive case.

Ovsiannikov [52, §6] considered equivalence transformations which act on solu-
tions of equations as follows. An equivalence transformation is a point transforma-
tion τ on (x, u) space. Inserting this transformation τ into any equation E(φ) ∈ C
maps it to another equation E(φ′) ∈ C. Most importantly, the relationship be-
tween the original arbitrary element a = φ(w) and its transform a′ = φ′(w′) is the
result of a transformation τ̂ acting on (w, a) space as

τ̂ : w′ = τ(w)
a′ = σ(w, a).

(3.18)
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3.2. Equivalence transformations

(Recall that w ≡ (x, u)). That is,

φ′(w′) = σ
(
τ−1(w′), φ ◦ τ−1(w′)

)
. (3.19)

As in §2, our base space is (x, u), the space of independent and dependent
variables of the primary system of d.e.’s. We call the space (w, a) ≡ (x, u, a)
the augmented space: it is the space of independent and dependent variables of
the auxiliary system of d.e.’s. We continue to call a transformation τ of (x, u)
space a ‘point transformation’; a transformation τ̂ of the form (3.18) acting on
(w, a) space will be called an augmented transformation. We follow the convention
that an object (such as a transformation) on augmented space is ‘hatted’ (τ̂); its
projection to a corresponding object on base space is unhatted (τ).

Example 3.2.1. A transformation τ of the form (1.7)

x = ρ−1x′

t = t′

u = αu′ + β, α, ρ �= 0
(3.20)

maps a nonlinear diffusion equation

ut = (D(u)ux)x

to a diffusion equation

u′t′ = (D′(u′)u′x′)x′ ,

where

D′(u′) = ρ2D(αu′ + β).

In terms of the variable a = D(u) introduced in Example 3.1.1, such a trans-
formation of D results from the augmented transformation τ̂ consisting of (3.20)
and

a = ρ−2a′.

In this section we give a theory for equivalence transformations of the type
described by Ovsiannikov [52]. In the next section we give the corresponding
infinitesimal form of the theory.

Definition 3.2.2. Let C be a class of differential equations for u = θ(x), with
arbitrary elements a = φ(w). An augmented transformation τ̂ is an equivalence
transformation for C if every solution u = θ(x) of the equation E(φ) ∈ C is mapped
to a solution u′ = θ′(x′) of the equation E(φ′) ∈ C, where φ′ is the transform (3.19)
of φ under the action of τ̂ .

Since τ̂ transforms φ (solving the auxiliary system A) to φ′ (also solving A),
an equivalence transformation maps solutions to solutions of A, that is, it is a
symmetry of A. Note that, as usual, ‘solutions’ on which equivalence transfor-
mations act are local, being defined only in a neighbourhood of some point x0

(Definition 2.3.2). Similarly, the transformations themselves need not be defined
globally.
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Chapter 3. The Equivalence Group

Being an equivalence transformation does not depend on the particular equa-
tion E(φ): the same augmented transformation may be applied to every equation
in C. This fact, and the fact that such transformations project to action on (x, u),
are strong restrictions on the nature of mappings between equations. Firstly,
transformations such as (1.15) in Example 1.2.4 which act only on a subclass of C
are disqualified. Thus the very interesting problem of classifying mappings among
equations is outside our ambit. Secondly, transformations such as (1.17) for non-
linear telegraph systems (Example 1.2.5) are beyond our scope, since the action
of (1.17) does not project to (x, t, u, v) space. Instead, (x′, t′, u′, v′) depend on the
arbitrary elements b(u), c(u).

Before giving the main results, we clarify the extension process for an aug-
mented transformation τ̂ (3.18). In extending a transformation τ̂ on (x, u, a) to
one on (x, u, u

1
, . . . , u

k
, a) we require invariance of contact forms C

k
(Definition 2.2.2)

dujI − ujIi dxi, 0 ≤ |I| ≤ k − 1

where I = (i1i2 . . . il). This ensures that u
j
I transform ‘like derivatives’ of u with

respect to x. Extending to action on (w, a, a
1
, . . . , a

κ
) requires invariance of contact

forms Ĉ
k

daβΛ − aβΛγ dwγ , 0 ≤ |Λ| ≤ κ− 1

where Λ = (λ1λ2 . . . λl) is a multi-index. Extension of τ̂ to action on (x, u, u
1
,

. . . , u
k
; a, a

1
, . . . , a

κ
) will be denoted by τ̂

k κ
. If one of the orders of extension is of no

consequence we place a dot there, so τ̂·κ means τ̂ has been extended to action on
(a, a

1
, . . . , a

κ
) and may or may not have been extended to (u

1
, u

2
, . . . ).

To specify a solution θ of a d.e. E(φ) in some class requires two functions: θ
to specify which solution, φ to specify which equation a = φ(w). As in Defini-
tion 2.2.1, the graph Γ(θ) of this solution is the set of points

Γ(θ) = {(x, u) | u = θ(x)};
the extended graph Γ(θ

k
) is the set of points

Γ(θ
k
) =

{
(x, u, u

1
, . . . , u

k
)
∣∣∣ (u, u

1
, . . . , u

k
) =

(
θ(x), θ

1
(x), . . . , θ

k
(x)
)}
.

Similarly, we define the graph Γ̂(φ) as the set of points in (x, u, a) space

Γ̂(φ) = {(w, a) | a = φ(w)},
and its extensions to Γ̂(φ

κ
) analogously. If both φ, θ are assigned we can define the

locus

Γ̂(θ, φ) = {(x, u, a) | u = θ(x), a = φ(x, θ(x))},

which we call the augmented graph of θ, φ. The extension of this graph is, of course

Γ̂(θ
k
, φ
κ
) =

{
(x, u, u

1
, . . . , u

k
; a, a

1
, . . . , a

κ
)
∣∣∣ (u, u

1
, . . . , u

k
) = (θ(x), θ

1
(x), . . . , θ

k
(x)),

(a, a
1
, . . . , a

κ
) =

(
φ(x, θ(x)), φ

1
(x, θ(x)), . . . , φ

κ
(x, θ(x))

)}
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3.2. Equivalence transformations

Criterion (3.10) that a function u = θ(x) is a solution of equation E(φ) (3.8)
in class C, is that φ∗g(w) ≡ 0, and θ∗φ∗f (x) ≡ 0. In terms of graphs, this says
that θ solves E(φ) ∈ C if (i) the graph Γ̂(φ

κ
) lies on the surface A: g = 0, (ii) the

augmented graph Γ̂(θ
k
, φ
κ
) lies on the surface E: f = 0.

We now establish the central results which lead to algorithmic determination
of equivalence transformations.

Theorem 3.2.3. Let C be a class of differential equations described by the surfaces

A =
{
(x, u, u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
)
∣∣∣ g(w, a, a

1
, . . . , a

κ
) = 0

}
E =

{
(x, u, u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
)
∣∣∣ f(x, u, u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
) = 0

}
.

If τ̂ is an augmented transformation whose extension τ̂
k κ

leaves invariant the sur-

faces A: g = 0 and E ∩ A: f = 0, g = 0, then τ is an equivalence transformation
for the class C.

Proof. Let τ̂ be an augmented transformation satisfying the conditions of the
theorem. Let u = θ(x) be a solution of the d.e. E(φ), where a = φ(w) is a solution
of the auxiliary system A. Denote the transform (3.19) of φ under the action of τ̂
by φ′. Similarly, denote the transform of θ under the action of τ by θ′. We must
show firstly, that φ′ is a solution of A, and secondly, that θ′ is a solution of E(φ′).

(i) The extension τ̂·κ of τ̂ maps the surface A to itself, and Theorem 2.3.5 then
shows τ̂ is a symmetry of the system A. That is, any solution φ of A maps to a
solution φ′ under the action (3.19) of τ̂ .

(ii) Let P̂ (x0) be a point on the augmented graph Γ̂(θ
k
, φ
κ
) in the space (x, u, u

1
,

. . . , u
k
, a, a

1
, . . . , a

κ
), so that P̂ (x) lies on the surface E∩A for all x in a neighbour-

hood of x0. Transforming Γ̂(θ
k
, φ
κ
) by τ̂

k κ
yields a set of points which lie on the

graph Γ̂(θ′
k
, φ′
κ
) (by definition of θ′, φ′), and which lie on E ∩ A (by hypothesis).

Since Γ̂(θ′
k
, φ′
κ
) lies on E∩A, θ

k

′ is a solution of E(φ′), with φ′ a solution of A (from

(i)).

Theorem 3.2.3 replaces the ‘function’ criterion of Definition 3.2.2 (mapping
solutions to solutions) with a pointwise criterion (mapping points to points): it is
analogous to Theorem 2.3.5 for symmetries of differential equations.

Once again, to guarantee that all equivalence transformations are found, the
class must satisfy additional hypotheses. These ensure that the surfaces E, A
defining the class C of d.e.’s accurately reflect the collection of solutions of A and
the solutions of equations E(φ) ∈ C.

Definition 3.2.4. A class C of differential equations f = 0, g = 0 is locally
solvable if

(i) Through every point (w, a, a
1
, . . . , a

κ
) on the surface A: g = 0 there passes

the graph of a solution a = φ(w) of the auxiliary system A. (i.e., the system
A is locally solvable, Definition 2.3.8)
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(ii) For every point

P̂ = (x, u, u
1
, . . . , u

k
, a, a

1
, . . . , a

κ
) (3.21)

on the surface E ∩ A: f = 0, g = 0 there is a function φ solving A and a
function θ solving E(φ) such that P̂ lies on the augmented graph Γ̂(θ, φ).

That is, P̂ can be realized as

P̂ =
(
x, θ(x), θ

1
(x), . . . , θ

k
(x), φ(x, θ(x)), φ

1
(x, θ(x)), . . . , φ

κ
(x, θ(x))

)
.

For a locally solvable class, Theorem 3.2.3 admits a converse.

Theorem 3.2.5. A locally solvable class C of differential equations admits an
augmented equivalence transformation τ̂ if and only if τ̂ leaves invariant (i) the
surface A: g = 0 specifying the auxiliary system, and (ii) the surface E ∩ A:
f = 0, g = 0.

Proof. We have only to show the converse statement. Let τ̂ be an augmented
equivalence transformation. By Definition 3.2.2 of equivalence transformation,
every solution u = θ(x) of the equation E(φ) is mapped by τ̂ to a solution u′ =
θ′(x′) of the equation E(φ′), where φ′ is given by (3.19). Since τ̂ acts on every
solution φ of A by (3.19) to produce another solution φ′ of A, it is a symmetry
(Definition 2.3.4) of A. By hypothesis A is locally solvable, and Theorem 2.3.9
shows that τ̂ leaves the surface A invariant. This establishes (i).

Now let P̂ (3.21) be a point on the surface E ∩ A: f = 0, g = 0. Local
solvability (ii) of class C ensures there are functions θ(x), φ(w) such that P̂ lies
on the graph Γ̂(θ

k
, φ
κ
) of a solution θ of equation E(φ) where φ solves A. Because

τ̂ is an equivalence transformation, it maps θ to a solution θ′ of equation E(φ′)
where φ′ solves A. Hence τ̂

k κ
maps the graph Γ̂(θ

k
, φ
κ
) to the graph Γ̂(θ′

k
, φ′
κ
) of these

transformed functions, and Γ̂(θ′
k
, φ′
κ
) lies on the surface E ∩ A. In particular, it

maps the point P̂ ∈ Γ̂(θ
k
, φ
κ
) to a point P̂ ′ ∈ Γ̂(θ′

k
, φ′
κ
) on E ∩A. Hence every point

P̂ on the surface E ∩A is mapped to a point P̂ ′ on E ∩A.

Ovsiannikov [52, §6.4] defines equivalence transformations slightly differently.
His definition is by a pointwise property (mapping points on E to points on E).
Since he does not ensure that class C is in a form where no integrability conditions
occur, his surface E may not accurately represent the collection of solutions of
the equations C. Thus leaving surface E invariant may lead to stronger conditions
than necessary, because one is leaving invariant portions of surface through which
there pass no solutions. Assuming the class to be locally solvable obviates this
possibility and allows us to establish the above correspondence between ‘solution
mapping’ and ‘point mapping’ properties. Most importantly, Ovsiannikov did not
take careful account of the auxiliary system constraining the arbitrary elements.
In fact his only comment [52, p.66] is that it is “required to . . . know in advance
possible special properties of the arbitrary element (for example, independence of
some components of . . . [(x, u)])”. The correct way of dealing with the auxiliary
system A may be discerned from the calculations of Akhatov, et al. [3, 4] and Ibrag-
imov, et al. [32], although their auxiliary systems all serve merely to specify that
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3.2. Equivalence transformations

the arbitrary elements are independent of certain components of (x, u). However,
both these papers rely on Ovsiannikov’s definition of equivalence transformation,
so their formulation will fail for systems which are not locally solvable.

Theorem 3.2.3 requires that τ̂ (3.18) be a symmetry of the auxiliary system
A. Note that this symmetry must be projectable i.e., the w component of τ̂ is
independent of a. This makes construction of such symmetries simpler than finding
the full point symmetry group of A.

The most important property of equivalence transformations is the following:

Theorem 3.2.6. Point equivalence transformations for a locally solvable class C
of differential equations form a group Q̂ acting on augmented space (x, u, a), and
a group Q acting on the base space (x, u).

Proof. The augmented transformations τ̂ leaving invariant the surfaces A: g = 0
and E∩A: f = 0, g = 0 form a group on (x, u, a) space. By Theorem 3.2.5 this is
the augmented equivalence group Q̂. Projecting this group action onto the base
space (x, u) (i.e., dropping the ‘a′ = σ(w, a)’ components of (3.18)), a group Q is
obtained. This projection is a homomorphism of Q̂.

We make extensive use of the augmented equivalence group Q̂, since it encodes
information on how both the variables (x, u) and the arbitrary elements a = φ(w)
transform. The base equivalence group Q, giving the action on the independent
and dependent variables (x, u) alone, will generally play a subsidiary role.
Example 3.2.7. To illustrate these group actions, consider the class C of scalar
wave equations (3.11)

utt = c2(x)uxx (3.22)

with wavespeed a = c(x), specified by auxiliary system A (3.12):

au = 0 at = 0, (3.23)

and primary system

utt = a2uxx. (3.24)

The augmented equivalence group consists of transformations

x =
γ1x

′ + γ2

γ3x′ + γ4

t = ρt′ + κ

u =
λu′ + ν0 + ν1x′ + ν2t′ + ν3x′t′

γ3x′ + γ4

a =
1
ρ
· ±a′
(γ3x′ + γ4)2

(3.25)

with ten independent parameters γi, κ, ρ, νi, λ satisfying λ, ρ �= 0, γ1γ4 − γ2γ3 =
±1. It may be directly verified that every augmented transformation of this form
leaves invariant the surfaces A (3.23) and E ∩ A (in this case just E (3.24)).
Transformation (3.25) maps a wave equation (3.22) with wavespeed c to another
such equation with wavespeed

c′(x′) = ρ (γ3x
′ + γ4)2 c

(γ1x
′ + γ2

γ3x′ + γ4

)
. (3.26)
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Chapter 3. The Equivalence Group

Action of the equivalence group on base space is obtained simply by dropping the
a component of the augmented equivalence transformations.

3.3 Infinitesimal augmented transformations

Now that we have defined the equivalence group, we turn to methods for its
calculation. As with symmetries (§1.2), the naive method would be to substitute
an augmented transformation τ̂ (3.18) into equations E (3.7) and A (3.6) specifying
the class C, then to force the new variables (x′, u′, u

1

′, . . . , u
k

′, a′, a
1

′, . . . , a
κ
′) to

satisfy identical equations. This yields a set of defining equations satisfied by
the components of τ̂ . In practice, the resulting enormous system of nonlinear
equations is intractable: practical determination of the equivalence group requires
an infinitesimal version of the process, parallelling that described in Section 2.3.2
for symmetries.

3.3.1 Infinitesimal augmented transformations

Augmented transformations, acting on (x, u, a), are of the form (3.18)

x′ = F (x, u)
u′ = G(x, u)

}
τ

a′ = H(x, u, a)


 τ̂ (3.27)

A one-parameter group of augmented transformations (3.18) is a collection τ̂(ε)
of such transformations parametrized by an additive real parameter ε (cf. Defini-
tion 2.1.5). A transformation τ̂(ε) is of the form

x′ = F (x, u; ε)
u′ = G(x, u; ε)
a′ = H(x, u, a; ε) . (3.28)

As in §2.1.2, transformations τ̂(ε) near the identity ε = 0 may be expanded as

x′ = x+ εξ(x, u) +O(ε2)
u′ = x+ εη(x, u) +O(ε2)
a′ = a+ εα(x, u, a) +O(ε2) (3.29)

where

ξ(x, u) =
d

dε
F (x, u; ε)

∣∣∣
ε=0

η(x, u) =
d

dε
G(x, u; ε)

∣∣∣
ε=0

α(x, u, a) =
d

dε
H(x, u, a; ε)

∣∣∣
ε=0
. (3.30)

The quantities ξ, η, α defined by (3.30) are called the infinitesimals of the group
(3.28). By Theorem 2.1.6, the group transformations (3.28) can be recovered from
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3.3. Infinitesimal augmented transformations

the infinitesimals (3.30) by solving the initial value problem

dx′

dε
= ξ(x′, u′), x′(0) = x

du′

dε
= η(x′, u′), u′(0) = u

da′

dε
= α(x′, u′, a′), a′(0) = a

(3.31)

As in §2.2, infinitesimal information contained in ξ, η, α is conveniently stated in
terms of a group operator

X̂ = ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
+ αν(x, u, a)

∂

∂aν
(3.32)

Extension of X̂ to action on derivatives (u
1
, u

2
, . . . , u

k
) of u and derivatives (a

1
, a

2
,

. . . , a
κ
) of a is achieved by demanding that the infinitesimal transformation (3.29)

leave invariant the contact forms C
k
(2.15)

dujI − ujIi dxi, 0 ≤ |I| ≤ k − 1

and the contact forms Ĉ
k

daβΛ − aβΛγ dwγ , 0 ≤ |Λ| ≤ κ− 1, (3.33)

where I, Λ are multi-indices. The total derivative operators corresponding to these
contact forms are

Dxi =
∂

∂xi
+ uji

∂

∂uj
+ · · ·+ ujIi

∂

∂ujI
+ · · · (3.34)

and

D̂wγ =
∂

∂wγ
+ aβγ

∂

∂aβ
+ · · ·+ aβΛγ

∂

∂aβΛ
+ · · · (3.35)

respectively. We adopt notation X̂
kκ

to indicate that X̂ has been extended to action

on u
k
and a

κ
. As in §3.2, if one of the orders of extension is immaterial, we place

a dot there, so X̂·κ means X̂ has been extended to action on (a, a
1
, . . . , a

κ
), but may

or may not have been extended to (u, u
1
, . . . , u

k
).

The extension of X̂ is then

X̂
kκ

= ξi∂xi + ηj∂uj︸ ︷︷ ︸
ζγ∂wγ

+
∑

1≤|I|≤k
ηj(I)∂uj

I
+ αβ∂aβ +

∑
1≤|Λ|≤κ

αβ(Λ)∂aβ
Λ

(3.36)

where ηj(I) is a function of (x, u, u
1
, . . . , u

|I|
) and αβ(Λ) a function of (w, a, a

1
, . . . , a

|Λ|
).

The components ηj(I) follow from recurrence (2.23) as

ηj(Ii) = Dxiηj(I) − ujIq (Dxiξq), 0 ≤ |I| ≤ k − 1 (3.37)
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and similarly

αβ(Λγ) = D̂wγαβ(Λ) − aβΛρ(D̂wγ ζρ), 0 ≤ |Λ| ≤ κ− 1.

In fact, since ζρ depends only on w, this last can be written

αβ(Λγ) = Dwγαβ(Λ) − aβΛρ (∂wγ ζρ), 0 ≤ |Λ| ≤ κ− 1. (3.38)

Although this is all an immediate consequence of the general extension formula
(2.23), great care is necessary. We have adopted the shorthand w ≡ (x, u), so that
a component wγ of w could represent one of the xi. We then have three operators
representing ‘differentiation with respect to xi’: ∂xi , D̂xi and Dxi .

Example 3.3.1. Suppose there is one independent variable x, one dependent vari-
able u and one arbitrary element a. There are three ‘derivatives with respect to
x’:

∂x
D̂x = ∂x + ax ∂a + aux∂au

+ axx∂ax
+ · · ·

Dx = ∂x + ux ∂u + uxx∂ux
+ · · ·

The operator ∂x ‘sees’ u, ux, a, ax, au as coordinates, and accordingly ∂xu = 0,
∂xa = 0 etc. The operator D̂x sees u, ux as coordinates, but recognizes a as a
function of (x, u), so D̂xu = 0, but D̂xa = ax. The operator Dx recognizes u as
a function of x so Dxu = ux. One would imagine that Dxa = ax + uxau, but our
operator Dx never operates on a, so there is no necessity to do so.

We compute an extension of the operator

X̂ = ξ(x, u) ∂x + η(x, u) ∂u + α(x, u, a) ∂a

to the operator

X̂
11

= ξ ∂x + η ∂u + α∂a + η(x)∂ux
+ α(x)∂ax

+ α(u)∂au
,

finding

η(x) = Dxη − uxDxξ
and

α(x) = D̂xα− ax ∂xξ − au ∂xη
α(u) = D̂uα− ax ∂uξ − au ∂uη

with

Dx = ∂x + ux ∂u + · · ·
and

D̂x = ∂x + ax ∂a + · · ·
D̂u = ∂u + au ∂a + · · · .

The possibilities for confusion should be apparent.

In [4], Akhatov, et al. adopted a similar notation: their D̃x is our D̂x.
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3.3. Infinitesimal augmented transformations

3.3.2 Algebra of equivalence operators

Now that infinitesimal augmented operators and their extensions have been de-
fined, we examine properties of operators associated with the (augmented) equiv-
alence group Q̂ of a class C of differential equations.

We first ‘infinitesimalize’ Theorem 3.2.3. As with symmetries, an additional
hypothesis on the class of d.e.’s is required.

Definition 3.3.2. A class of differential equations specified by s equations f = 0,
with σ auxiliary equations g = 0 satisfies the Jacobian condition if

(i) the Jacobian of g with respect to a, a
1
, . . . , a

κ
is of full rank σ at all points

satisfying g = 0.

(ii) the Jacobian of (f, g) with respect to (u, u
1
, . . . , u

k
, a, a

1
, . . . , a

κ
) is of full rank

s+ σ at all points on E ∩A: f = 0, g = 0.

Theorem 3.3.3. Let C be a class of differential equations satisfying the Jacobian
condition. Suppose Q̂ is a Lie augmented transformation group such that

X̂·κg(w, a, a1, . . . , aκ) = 0 when g(w, a, a
1
, . . . , a

κ
) = 0 (3.39)

and

X̂
kκ
f(x, u, u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
) = 0

when

{
g(w, a, a

1
, . . . , a

κ
) = 0

f(x, u, u
1
, . . . , u

k
, a, a

1
, . . . , a

κ
) = 0 . (3.40)

for every augmented operator X̂ of Q̂. Then Q̂ consists of equivalence transfor-
mations of C.
Proof. Let the operators X̂ of the group Q̂ satisfy the conditions of the theorem.
Applying Theorem 2.3.7 to condition (3.39) shows that Q̂ consists of symmetries
of the auxiliary system A. Given (3.39) is satisfied, condition (3.40) is identical to

X̂
kκ
f = 0

X̂·κg = 0

}
when f = 0 and g = 0.

Applying Theorem 2.1.13 to the surface E∩A: f = 0, g = 0 shows that Q̂ consists
of transformations leaving invariant E ∩ A. Applying Theorem 3.2.3 shows that
such transformations are equivalence transformations.

We call the set of operators X̂ satisfying conditions (3.39, 3.40) the infinitesimal
(augmented) equivalence group for the class C of equations.

Just as Theorem 2.3.10 does for symmetries, Theorem 3.3.3 gives a construc-
tive method for finding equivalence transformations. For locally solvable classes
of d.e.’s, Theorem 3.3.3 admits a converse., and here we can guarantee that all
equivalence transformations can be found from the infinitesimal criteria.

Theorem 3.3.4. Let C be a locally solvable class of differential equations f = 0,
g = 0 satisfying the Jacobian condition. Then an augmented transformation group
Q̂ is an augmented equivalence group of the class C if and only if infinitesimal
conditions (3.39, 3.40) are satisfied for every operator X̂ of Q̂.
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Proof. We have only to prove the converse statement. Suppose Q̂ is the equivalence
group of the class C. Since C is locally solvable, Theorem 3.2.5 shows that every τ̂ ∈
Q̂ leaves the surfaces A: g = 0 and E∩A: f = 0, g = 0 invariant. Theorem 2.1.13
then implies the infinitesimal conditions (3.39, 3.40).

Thus the set of operators X̂ satisfying (3.39), (3.40) generates the complete point
equivalence group of the class C. The sequence of Theorems 3.2.3–3.3.4 exactly
parallels the symmetry results of Theorems 2.3.5–2.3.10.

The algorithm for constructing the equivalence group from the infinitesimal
criteria (3.39, 3.40) will be detailed in the next subsection. First we illustrate the
result with an example.

Example 3.3.5. Consider the potential system form

vx = u
vt = D(u)ux

(3.41)

of the nonlinear diffusion equation

ut = (D(u)ux)x

Letting a = D(u) be the coordinate of ‘diffusivity space’, the primary system E is

vx − u = 0
vt − aux = 0

(3.42)

The auxiliary system A is

ax = at = av = 0 (3.43)

The most general transformation τ̂ in the equivalence group Q̂ is

v =
λ

ρ
(αv′ + βx′) + κ0

x =
λ

ρ
(γv′ + δx′) + κ1

t =
λ2

ρ
t′ + κ2

u =
αu′ + β
γu′ + δ

, αδ − βγ = ±1
a = ρ−1(γu′ + δ)2a′, λ �= 0, ρ > 0. (3.44)

This group acts on diffusivity functions by

D′(u′) =
ρ

(γu′ + δ)2
D
(αu′ + β
γu′ + δ

)
, αδ − βγ = ±1. (3.45)

Note that although Q̂ (3.44) has eight independent parameters, only four (inde-
pendent) parameters affect the diffusivity D(u). We return to this point in §3.3.5.
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The infinitesimal operators corresponding to this eight-parameter group, ob-
tained by differentiation of (3.44), are

X̂1 = ∂x
X̂2 = ∂t
X̂3 = x ∂x + 2t ∂t + v ∂v
X̂4 = ∂v
X̂5 = x ∂v + ∂u
X̂6 = − 1

2x ∂x + 1
2v ∂v + u ∂u −a ∂a

X̂7 = −v ∂x +u2 ∂u− 2ua ∂a
X̂8 = x ∂x + t ∂t + v ∂v + a ∂a

(3.46)

These operators were found by Akhatov, et al. [3], although the form of potential
equation they analyzed was slightly different. Only the operators X5, X6, X7, X8

affect the form of D(u).
It may be directly verified that operators (3.46) satisfy conditions (3.39, 3.40)

of Theorem 3.3.3. Consider for instance X̂7. Computing the extension to (x, t, u, v,
ux, vx, vt, a, ax, at, av) space by the method of §3.3.1 gives

X̂7
11

= −v ∂
∂x

+ u2 ∂

∂u
+ ux(2u+ vx)

∂

∂ux
+ v2

x

∂

∂vx
+ vxvt

∂

∂vt

−2ua ∂
∂a

− 2uax
∂

∂ax
− 2uat

∂

∂at
− (2uav − ax) ∂

∂av
.

Applying the extended operator X̂7
11

to the left hand side of E (3.42) gives

v2
x − u2, vx(vt − aux)

which vanish identically on E ∩A. Applying it to A (3.43) gives

−2uax, −2uat, ax − 2uav

which vanish identically on A, so X̂7 indeed satisfies infinitesimal invariance con-
ditions (3.39, 3.40).

The converse—that operators satisfying (3.39, 3.40) generate the equivalence
group Q̂—will give the algorithm.

Example 3.3.5. (cont.) We show how to determine operators (3.46) for the po-
tential diffusion system. First, an arbitrary operator X̂ on the augmented space
(x, t, u, v, a) is of the form

X̂ = ξ ∂x + τ ∂t + η ∂u + σ ∂v + α∂a

where ξ, τ, η, σ are functions of (x, t, u, v) and α is a function of (x, t, u, v, a). The
necessary extension components are

· · ·+ η(x) ∂

∂ux
+ σ(x)

∂

∂vx
+ σ(t)

∂

∂vt
+ α(x)

∂

∂ax
+ α(t)

∂

∂at
+ α(v)

∂

∂av

where η(x), σ(x), σ(t) are functions of (x, t, u, v, ux, ut, vx, vt) and α(x), α(t), α(v) are
functions of (x, t, u, v, a, ax, at, au, av). These components are computed by the
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method of §3.3.1. Enforcing conditions (3.39, 3.40) by applying the extended
operator X̂

11
to equations A (3.43) and E (3.42) gives

α(x) = α(t) = α(v) = 0 on A (a)
σ(x) = η
σ(t) = aη(x) + uxα

}
on E ∩A (b) (3.47)

Restriction to the surfaces A, E is achieved by substituting for ax, at, av from
(3.43) and for vx, vt from (3.42). This yields from (3.47a)

αx − auηx = 0
αt − auηt = 0
αv − auηv = 0. (3.48)

Since η, α do not depend on the coordinate au, (3.48) decomposes to give

αx = αt = αv = 0
ηx = ηt = ηv = 0

(3.49)

Equation (3.47b) yields—after taking account of (3.49)—

η = (σx + uσv − uξx − u2ξv) + (σu − uξu − aτx − uaτv)− aτuu2
x

(σt − uξt) + (σv − τt)aux + (σu − uξu)ut − a2τvu
2
x =

((ηu − ξx)a+ α)ux − (τx + uτv)aut − aξuu2
x

None of the infinitesimals ξ, τ , η, σ, α depend on derivatives ux, ut, so these
equations can be split up by powers of ux, ut. Also, none of the ξ, τ , η, σ depend
on the coordinate a, so equations not involving α may be split up by powers
of a. Ultimately one arrives at a set of determining equations, which may be
manipulated to involutive form:

ξt = ξu = 0
τx = τu = τv = 0
σt = σu = 0

ξxx = ξxv = ξvv = 0
σxx = σxv = σvv = 0

τtt = 0
η = σx + u(σv − ξx)− u2ξv

α = a(2ξx − τt − 2uξv)

The general solution of these determining equations is easily found, and is
given by an arbitrary linear combination of the operators X̂1, . . . , X̂8 (3.46) (cf.
[3]). Integrating the initial value problem (3.31), composing the one-parameter
groups, and reparametrizing, yields the equivalence group Q̂ (3.44). (Or at least,
its connected component: the discrete transformations x 	→ −x, v 	→ −v; and
u 	→ −u, v 	→ −v are not connected to the identity, and must be found somehow.)

In [3], Akhatov, Gazizov and Ibragimov used the equivalence algorithm just
outlined to find what are essentially the above results.
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[ , ] X̂1 X̂2 X̂3 X̂4 X̂5 X̂6 X̂7 X̂8

X̂1 0 0 X̂1 0 X̂4 − 1
2X̂1 0 X̂1

X̂2 0 0 2X̂2 0 0 0 0 X̂2

X̂3 −X̂1 −2X̂2 0 −X̂4 0 0 0 0

X̂4 0 0 X̂4 0 0 − 1
2X̂4 −X̂1 X̂4

X̂5 −X̂4 0 0 0 0 X̂5 2X̂6 0

X̂6
1
2X̂1 0 0 1

2X̂4 −X̂5 0 X̂7 0

X̂7 0 0 0 X̂1 −2X̂6 −X̂7 0 0

X̂8 −X̂1 −X̂2 0 −X̂4 0 0 0 0

Table 3.1: Commutator table of equivalence algebra (3.46) for nonlinear diffusion
potential system (3.41).

Since equivalence transformations form a group, the infinitesimal equivalence
operators X̂ form a Lie algebra L̂ of operators on the space (x, u, a). Hence, by
analogy with the Lie symmetry algebra, we may call the operators satisfying (3.40,
3.40) the Lie algebra of equivalence operators for the class C of equations.

Example 3.3.5. (cont.) Consider the potential nonlinear diffusion system (3.41)
discussed above. The Lie algebra structure of the equivalence operators (3.46) is
given by the commutation relations in Table 3.1. The Lie algebra of operators
R̂ = {X̂5, X̂6, X̂7, X̂8} which actually affect D(u) appears in the lower right hand
corner. Note that the algebra is a semidirect sum L̂ = K̂ ⊕s R̂, where K̂ =
{X̂1, X̂2, X̂3, X̂4} is the algebra of operators which do not affect D(u).

3.3.3 Algorithm for construction of equivalence group

Theorem 3.3.3 of the last subsection leads to an algorithmic construction of the
equivalence group Q̂ for a class C of differential equations. Details of this construc-
tion have already been illustrated with the example of §3.3.2: no further theory is
required.

Algorithm 3.3.6.

1. Let ξi(x, u), i = 1, . . . , n; ηj(x, u), j = 1, . . . ,m and αβ(x, u, a), β =
1, . . . , µ be arbitrary functions of their arguments. Write the formal op-
erator

X̂ = ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
+ αβ(x, u, a)

∂

∂aβ

2. Extend X̂ to action on derivatives (u
1
, . . . , u

k
) of the dependent variables

u (where k is the order of the differential equations in class C), and to
derivatives of the arbitrary elements (a

1
, . . . , a

κ
), where κ is the order of the
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auxiliary system. This gives

X̂
kκ

= X̂+
∑

1≤|I|≤k
ηj(I)

∂

∂ujI
+

∑
1≤|Λ|≤κ

αβ(Λ)

∂

∂aβΛ

with ηj(I) determined from (3.37), and αβ(Λ) from (3.38).

3. Apply the extended operator X̂
kκ

to the functions f, g which define the class

C of differential equations (3.7, 3.6).

4. Enforce invariance of the auxiliary system A by restricting

X̂·κg(w, a, a1, . . . , aκ)

to the surface g = 0 and setting the resulting expression to zero.
Force X̂

kκ
f(x, u, u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
) to vanish on the surface f = 0, g = 0.

This yields infinitesimal conditions (3.39, 3.40) for an infinitesimal equiva-
lence transformation..

5. (Assuming the conditions are polynomial in the derivatives.) Split up con-
ditions (3.39, 3.40) by powers of the variables u

1
, . . . , u

k
, a, a

1
, . . . , a

κ
wherever

possible. This gives the determining equations for the infinitesimal equiva-
lence group. Manipulate these equations to involutive form by the algorithm
of Reid [56].

6. Solve the determining equations for the infinitesimals ξ, η, α.

7. For each infinitesimal operator in the algebra of equivalence operators, in-
tegrate the initial value problem (3.31) to yield a set of one-parameter sub-
groups of the augmented equivalence group Q̂. Compose these subgroups to
give the (connected component of) the equivalence group Q̂.

Comparing this equivalence algorithm with the symmetry method described
in §2.3.3, the only essential difference is in the nature of the extensions needed.
The above algorithm constructs ‘symmetry transformations’ of certain surfaces
embedded in an augmented space. The equivalence group represents ‘symmetries’
of a class of d.e.’s, that is, transformations which leave the class invariant.

3.3.4 Proposition on form of infinitesimals

All necessary machinery is now in place to compute equivalence groups for specific
examples. However, first we establish a proposition which gives the determining
equations resulting from the commonest kind of auxiliary equations. Usually an
arbitrary element aβ = φβ(w) does not depend on all variables w, but only on a
certain subset. In the wave equation (3.22), the wavespeed a = c(x) is independent
of the variables t, u, so the auxiliary system A includes the equations at = au =
0 (3.23). An equivalence operator X̂ leaves A invariant (Theorem 3.3.3), and
enforcing invariance for equations of this simple type leads to simple determining
equations (e.g. (3.49)). In the following, we assume the auxiliary system A is
in solved form, i.e., certain ‘leading derivatives’ have been isolated on the left
hand side. The derivatives not occurring on the left hand side are ‘parametric
derivatives’.
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3.3. Infinitesimal augmented transformations

Proposition 3.3.7. Let C be a class of d.e.’s characterized by arbitrary elements
aβ = φβ(w), β = 1, 2, . . . , µ. Let I be the set of indices (βγ ) such that equations
aβγ = 0 are in the auxiliary system A of C. Assume that no other first derivatives
occur as leading derivatives in the auxiliary system. Then the infinitesimals ζγ ,
αβ of an equivalence operator

X̂ = ζγ(w)∂wγ + αβ(w, a)∂aβ

satisfy the following equations: For each (βγ ) ∈ I,

(i)
∂αβ

∂wγ
= 0

(ii)
∂ζρ

∂wγ
= 0 for ρ such that aβρ is parametric in A.

(iii)
∂αβ

∂aλ
= 0 for λ such that aλγ is parametric in A.

Proof. Invariance of the equations

aβγ = 0, (βγ ) ∈ I (3.50)

of the auxiliary system A yields the conditions aβ(γ) = 0 on A. That is,

∂αβ

∂wγ
+ aλγ

∂αβ

∂aλ
− aβρ

∂ζρ

∂wγ
= 0 on A, (βγ ) ∈ I

Inserting (3.50) gives

∂αβ

∂wγ
+
∑
λ∈Jγ

aλγ
∂αβ

∂aλ
−
∑
ρ∈J β

aβρ
∂ζρ

∂wγ
= 0, (βγ ) ∈ I (3.51)

where Jγ is the set of indices λ such that aλγ is parametric in A.
J β is the set of indices ρ such that aβρ is parametric in A.

By hypothesis there are no first order leading derivatives other than (3.50), so
condition (3.51) may be split up with respect to the remaining first derivatives.
Note that aλγ in the first sum of (3.51) could match aβρ in the second only if λ = β,
ρ = γ. But β �∈ Jγ , γ �∈ J β , so this does not occur. Hence splitting (3.51) yields
the proposition.

The interpretation of this proposition is that an arbitrary element aβ which
is independent of a certain variable wγ must remain so after applying the in-
finitesimal transformation represented by X̂. Thus the infinitesimal αβ must be
independent of wγ and must also be independent of any components of a which
depend on wγ . Moreover, the transformation of the components wρ on which aβ

may depend must not depend on wγ (otherwise the transformed aβ could depend
on wγ indirectly through its arguments wρ).

This proposition is useful in generating determining equations without calcu-
lation. Note that the conclusions are unaffected if the auxiliary system A includes
equations other than (3.50), provided they are of second or higher order. However,
if A includes an equation with a first order leading derivative other than (3.50)
(for example aβγ = 2aβ) then the conclusions of the proposition do not hold. This
is because this leading derivative must be inserted into (3.51), thereby affecting
its decomposition.
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3.3.5 Structure of the equivalence group

We may now efficiently calculate equivalence groups, and it is probably worthwhile
to skip to §3.4 to see some further examples. However in interpreting equivalence
groups in these examples, we need the structural features to be described in this
subsection.

In §3.2, §3.3, we obtained the main results leading to an algorithmic construc-
tion of the equivalence group. In Example 3.3.5 we noted that not all of the
equivalence group affected the arbitrary element D(u): there was present a four-
parameter subgroup K̂ ≺ Q̂ with trivial action onD(u). This subgroup K̂ therefore
maps each equation E(φ) in the class C to the same equation E(φ), and therefore
consists of symmetries common to every equation in the class. A point which did
not arise in the diffusion example was the possible presence of augmented trans-
formations which act only on the arbitrary elements, not transforming the base
variables at all. Both these kinds of transformation are mostly of nuisance value,
and our main interest is in how to factor them out.

Common symmetries

Definition 3.3.8. A common symmetry for a class C of differential equations is a
transformation κ (of the base space (x, u)) which is a symmetry of every equation
in the class.

Proposition 3.3.9. The set of all common symmetries is a group K on base
space (x, u). Moreover K is a normal subgroup of the base equivalence group Q.
Proof. That K is a group is immediate. To show K ≺ Q, note that any transfor-
mation κ ∈ K is a symmetry of every equation E(φ) ∈ C, so it can be regarded
as having action φ′(w′) = φ(w) on the arbitrary elements φ. Hence, by Defini-
tion 3.2.2, the augmented transformation κ̂

(x′, u′) = κ(x, u)
a′ = a.

(3.52)

is an equivalence transformation. Disregarding the a component, we have K is a
subgroup of Q.

To show this subgroup is normal, let κ ∈ K be a common symmetry, and let
τ̂ ∈ Q̂ be any equivalence transformation. Suppose τ̂ maps E(φ) to E(φ′), so that
τ̂−1 maps E(φ′) to E(φ′). Also, κ can be augmented to κ̂ (3.52), which maps E(φ′)
to itself for any φ′. Hence τ−1 ◦κ ◦ τ maps E(φ) to itself for any φ, so by definition
it is a common symmetry. Hence K is normal.

The above properties of the common symmetry group K were noted by Ovsiann-
ikov [52, 51].

Usually the common symmetries represent some very basic physical properties
of the class of equations under consideration, such as homogeneity of a medium,
or arbitrary choice of zero for a potential variable. In the potential diffusion
system Example 3.3.5 considered above, the common symmetries are generated
by operators K̂ = {X̂1, X̂2, X̂3, X̂4}, giving rise to the group K̂

v′ = λv + κ0

x′ = λx+ κ1

t′ = λ2t+ κ2,

(3.53)
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whose transformations represent spatial (κ1) and temporal (κ2) homogeneity; ar-
bitrary choice of zero for potential v (κ0); and a dimensional scaling invariance
(λ).

Trivial equivalence

The fussiness in the proof of Proposition 3.3.9 is due to the fact that augmen-
tation of an equivalence transformation need not be unique: there can be many
equivalence transformations τ̂ on (x, u, a) with the same component τ on the base
space (x, u).

Definition 3.3.10. An augmented equivalence transformation ρ̂ is trivial if it has
trivial action on the base space, i.e., is of the form

x′ = x
u′ = u
a′ = σ(x, u, a)

(3.54)

Trivial equivalence transformations reflect the extent to which augmentation
is nonunique. Let τ̂1, τ̂2 be two equivalence transformations which both project
to the same action τ on the base space (x, u). Then there is a trivial equivalence
transformation ρ̂ such that τ̂2 = ρ̂ ◦ τ̂1, namely ρ = τ̂−1

1 ◦ τ̂2. Since τ̂1 and τ̂2 have
the same action τ on the base space, ρ has trivial action on (x, u), so is a trivial
equivalence transformation.

Proposition 3.3.11. The set of trivial augmented equivalence transformations is
a normal subgroup M̂ of the augmented equivalence group Q̂. The quotient group
Q̂/M̂ is isomorphic to the base equivalence group Q.
Proof. That M̂ is a normal subgroup of Q̂ is immediate. The base equivalence
group Q is the homomorphic image of Q̂, since it is obtained by projection (i.e. by
dropping the a components of Q̂). The kernel of this homomorphism is the group
M̂ of trivial equivalence transformations (3.54). Hence Q � Q̂/M̂.

A trivial equivalence transformation projects to the identity transformation on
base space (x, u), so two equations E(φ), E(φ′) connected by such a transformation
are in fact the same equation. Thus many differing arbitrary elements correspond
to the same differential equation: in this case a ‘differential equation’ corresponds
to an equivalence class of arbitrary elements φ. Our main interest is in how
equations transform, rather than how arbitrary elements transform, so the quotient
group Q̂/M̂ acting on these equivalence classes is of prime importance.

A familiar example arises in Hamilton’s equations

dqi

dt
= Hpi

dpi
dt

= −Hqi ,

where the Hamiltonian H(q,p) is defined only to within an additive constant
H 	→ H + ε. Nevertheless, this trivial equivalence transformation will appear in
the equivalence algebra.

Sometimes trivial equivalence transformations can be persuaded to disappear
by redefining arbitrary elements. However, it is sometimes preferable to tolerate
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their presence. In Hamilton’s equations, we could treat Hqi and Hpi
as the arbi-

trary elements, but this is awkward, since it replaces a single arbitrary element
with no auxiliary system by 2n arbitrary elements satisfying many compatibility
conditions: this is a heavy price to pay to avoid some trifling indetermination in
the Hamiltonian. In some cases trivial equivalences cannot be removed at all. For
example, the class of linear partial differential equations

aij(x)uij + bi(x)ui + c(x)u = 0 (3.55)

has trivial transformations

aij ′(x) = λ(x) aij(x)
bi ′(x) = λ(x) bi(x)
c ′(x) = λ(x) c(x)

appearing in its augmented equivalence group: a linear p.d.e. determines its coeffi-
cients only to within a scaling. This cannot be avoided by redefining the coefficients
aij , bi, c.

Action on arbitrary elements

The interest in the equivalence group is to see how distinct equations can be
transformed one to the other. In this context common symmetries are of no
importance, since they do not affect the arbitrary elements at all. First we define
the group K̂ to be the collection of equivalence transformations of the form (3.52),
namely the common symmetries K augmented by appending a trivial action on a.
We see that K̂ is a normal subgroup of Q̂.

Proposition 3.3.12. The augmented equivalence group Q̂ homomorphically in-
duces a group action on arbitrary elements φ. This group action is isomorphic to
the quotient group Q̂/K̂.

Proof. A transformation τ̂ from the augmented equivalence group acts on arbi-
trary elements φ(w) via (3.19). The group Q̂ of all such transformations thereby
induces homomorphically a group action on functions φ(w). The kernel of the ho-
momorphism consists of transformations τ̂ whose action on φ is trivial (i.e., such
that φ′ = φ in (3.19)). But this is just the augmented common symmetry group
K̂ by Proposition 3.3.9.

For example, action (3.45) on diffusivity D(u) in the potential diffusion system
example has the structure of GL2(IR)/{I,−I}. This is indeed isomorphic to the
quotient of Q̂ (3.44) over K̂ (3.53).

We frequently discard the group K̂ when considering an equivalence group Q̂.
That is, we use the equivalence group ‘modulo its common symmetries’, so that
we use a realization of Q̂/K̂. Interestingly, in the examples we consider, the equiv-
alence algebra is a semidirect sum K̂ ⊕s R̂ for some subalgebra R̂. For example,
the equivalence algebra (Table 3.1) for the potential diffusion system (3.41) is a
semidirect sum as marked. The basis must be carefully chosen to illustrate this
feature: our choice for X̂6 (3.46) was dictated by this consideration. The alge-
bra R̂ = {X̂5, X̂6, X̂7, X̂8} therefore generates the group of transformations which
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affect D(u). We may speak of the equivalence group as being

v = ρ−1(αv′ + βx′)
x = ρ−1(γv′ + δx′)
t = t′

u =
αu′ + β
γu′ + δ

, αδ − βγ = ±1
a = ρ−2(γu′ + δ)2a′, ρ �= 0, (3.56)

to within common symmetries. It is unclear whether there is always such a semidi-
rect sum decomposition L̂ = K̂ ⊕s R̂ of the equivalence algebra.

Factoring out K̂ gives the action on arbitrary elements φ, but ultimately our
interest is in how distinct equations in the class transform one to the other. That is,
we wish to know how equivalence classes of arbitrary elements (with respect to M̂)
transform. Hence we factor out both common symmetries and trivial equivalence
transformations. In some sense we may include M̂ in the common symmetries:
their base component is the identity transformation, so they map every equation
in the class to itself. Factoring out both K̂ and M̂ is possible because they are
commuting normal subgroups of the equivalence group Q̂. The group acting on
distinct equations in the class C is isomorphic to the quotient group Q̂/(M̂K̂).

Structural features of a Lie algebra follow from the corresponding structure of
the Lie group (§2.1.2). Hence the above discussion yields corresponding structural
information about the Lie equivalence algebra L̂. In particular, the common sym-
metry algebra and the trivial equivalence algebra are mutually commuting ideals
in L̂. We are basically interested in the quotient algebra which results when these
are factored out.

3.4 Examples of equivalence groups

We now give some examples of nontrivial equivalence groups, which we use to
illustrate some uses of equivalence transformations. The topics we touch on are:
invariant solutions and their inherited equivalence group; potential equivalence
transformations; and mapping nonlinear to linear p.d.e.’s.

3.4.1 Boltzmann’s similarity solution for nonlinear diffusion

Derivation of similarity o.d.e.

In Example 3.3.5, we analyzed the potential system form

vx = u
vt = D(u)ux

(3.57)

of the nonlinear diffusion equation, and found an eight-parameter equivalence
group (3.44). We concern ourselves with the scaling invariant similarity solu-
tion first discussed by Boltzmann: this is of physical importance, since the cor-
responding boundary conditions are easily realized in practice, and it is used as
an approximation or asymptotic limit for many diffusion problems, as well as for
measurement of the diffusivity D(u) [21, 54].

We first give the necessary definitions.
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Definition 3.4.1. Let E be a differential equation, admitting symmetry group G.
Let H ≺ G be a subgroup of G. A solution u = θ(x) of E is H-invariant if its
graph Γθ = {(x, u) | u = θ(x)} is invariant under the action of H, that is,

h(Γθ) = Γθ, ∀h ∈ H.
We write H(Γθ) = Γθ.

The theory of invariant solutions is covered at length in [13, §4], [47, §3], [52,
§19]; the concept is capable of generalization [8, 48].

Definition 3.4.2. An invariant of a groupH acting on (x, u) is a function F (x, u)
such that

F ◦h (x, u) = F (x, u), ∀h ∈ H,
or more briefly, F ◦H = F .

H-invariant solutions satisfy a reduced system of d.e.’s (the ‘H-reduced system’
E/H) in a smaller number of variables, these being invariants of H. There is a
one-to-one correspondence between solutions of E/H and H-invariant solutions of
E.

Boltzmann’s similarity solution of (3.57) results from seeking solutions which
are invariant under the scaling group H generated by the common symmetry
operator

X̂3 = v ∂v + x ∂x + 2t ∂t.

Introduce invariants

z = xt−1/2

u

y = − 1
2 (v − xu)t−1/2

(3.58)

of H: this gives the class of reduced o.d.e. systems

−2dy
dz

+ z
du

dz
= 0

y = −D(u)
du

dz
.

The variable y is related to the flux q = −D(u)ux by y = qt1/2, which is why we
prefer it over the obvious choice vt−1/2. It is convenient to rewrite this using u as
independent variable:

dy

du
=
z

2
dz

du
= −D(u)

y
.

(3.59)

Equivalence group of similarity o.d.e.’s

We compute the equivalence group of the class of o.d.e.’s (3.59). Introducing
the coordinate a = D(u) and applying Proposition 3.3.7, we find the equivalence
operator takes the form

Ŷ = ξ(u) ∂u + ζ(u, z, y) ∂z + η(u, z, y) ∂y + α(u, a) ∂a.
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Extending Ŷ by the method of §3.3.1, and enforcing invariance conditions (3.39,
3.40), gives determining equations for ξ, ζ, η, α, which may be completed by
Reid’s method [56], giving the involutive form

ξz = 0 ηz = 0

ξy = 0 ηy =
1
y
η

ξuu =
2
y
ηu ηuu = 0

ζ = 2ηu − zξu + z

y
η

α = 2a(−ξu + 1
y
η).

This system is easily solved, giving an equivalence algebra generated by

Ŷ1 = ∂u
Ŷ2 = u ∂u − 1

2z ∂z + 1
2y ∂y − a ∂a

Ŷ3 = u2 ∂u + (2y − uz) ∂z + uy ∂y − 2ua ∂a
Ŷ4 = z ∂z + y ∂y + 2a ∂a.

(3.60)

This gives a four-parameter equivalence group Q̂:

u =
αu′ + β
γu′ + δ

z = ρ−1((γu′ + δ)z′ − 2γy′)

y = ρ−1 y′

γu′ + δ
, ρ �= 0

a = ρ−2(γu′ + δ)2a′, αδ − βγ = ±1

(3.61)

relating (3.59) to the system with diffusivity

D′(u′) =
ρ2

(γu′ + δ)2
D′
(αu′ + β
γu′ + δ

)
. (3.62)

These transformations were noted by Lisle and Parlange [45]. Note that there are
no common symmetry operators in the algebra (3.60): the only common symmetry
in the equivalence group (3.61) is the discrete transformation z 	→ −z, y 	→ −y.
Nevertheless, Proposition 3.3.12 still applies: the equivalence group Q̂ is a real-
ization of the group GL2(IR) of nonsingular 2 × 2 matrices, but in its action on
D(u), a matrix and its negative are identified, so that (3.62) has the structure
GL2(IR)/{I,−I}.

An interesting point here is that we were able to explicitly construct the equiv-
alence group for a system of first order o.d.e.’s. The corresponding problem of
finding symmetries of a first order system of o.d.e.’s leads to a system of deter-
mining equations whose general solution requires solution of the original o.d.e.’s
[13, §3.2.3], [52, §8]). Hence the symmetry problem is always indeterminate, but
the equivalence group problem may be capable of solution.

Inherited equivalence

Note the resemblance between the equivalence group (3.61) for the similarity o.d.e.
and the group (3.44) for the original p.d.e. system. It appears that the o.d.e.
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inherits its equivalence group from the p.d.e. We give some general results in this
direction. First we give a corresponding result about inherited symmetries [13,
§7.2.7], [52, §20.4].
Definition 3.4.3. Let H ≺ G be a subgroup of a group G. The normalizer of H
in G is the group

NG(H) = {τ ∈ G | τ ◦H ◦ τ−1 = H}. (3.63)

Theorem 3.4.4. Let E be a system of d.e.’s admitting a point symmetry group G.
Let H ≺ G be a subgroup of G. If τ ∈ NG(H) is a transformation in the normalizer
of H, then τ induces a point symmetry on the H-reduced system E/H.
Proof. The H-reduced system is expressed in terms of invariants of H. Let F
be such an invariant. Action of τ on F gives a function F ′ = F ◦ τ . But, using
Definition 3.4.2 of invariant,

F ′ ◦H = F ◦ τ ◦H = F ◦H ◦ τ = F ◦ τ = F ′,

so F ′ is also an invariant of H. Hence τ induces a mapping on the space of
invariants of H, i.e., on the variables in E/H.

Let Γθ be the graph of an H-invariant solution u = θ(x) of E, so that (Def-
inition 3.4.1) H(Γθ) = Γθ. Let τ ∈ NG(H), so τ ◦H = H ◦ τ . Let Γθ′ = τ(Γθ).
Then

H(Γθ′) = H ◦ τ(Γθ) = τ ◦H(Γθ) = τ(Γθ) = Γθ′ ,

so θ′ is an H-invariant solution. Thus τ maps H-invariant solutions of E to
H-invariant solutions. Since there is a one-to-one correspondence between H-
invariant solutions and solutions of E/H, τ induces a mapping from solutions of
E/H to solutions of E/H. From above this is a point transformation, and the
Theorem is established.

This result is given in a similar form by Ovsiannikov [52, Theorem 20.4]. In the
above it is possible that the symmetry induced by τ on E/H is trivial, i.e., is the
identity map on the space of invariants of H.

There is an infinitesimal version of the above result.

Definition 3.4.5. Let H be a Lie subalgebra of a Lie algebra L. The normalizer
of H in L is the subalgebra

NL(H) = {X ∈ L | [H,X] ⊆ H} (3.64)

Theorem 3.4.6. Let E be a system of d.e.’s with symmetry algebra L. Let H ⊆ L
be a subalgebra of L. If X ∈ NL(H) is a transformation in the normalizer of H,
then X induces a symmetry operator for E/H.

We note that the theorem states that X may be written in terms of invariants
of H, but does not guarantee that the induced symmetry operator is nontrivial.
Indeed it is quite possible for X to induce the zero operator (see below).

Bluman and Kumei [13, §7.2.7] used such a result to examine the inheritance
of symmetries of the o.d.e. system (3.59) from the ‘parent’ p.d.e. system (3.57).
Their version [13, Theorem 7.2.7-1] of Theorem 3.4.6 asserts that if E admits X,
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Y such that [X,Y] = µX then Y induces a one-parameter symmetry group on
the X-reduced equation. The result is correct provided the word ‘one-parameter’
is deleted. For example, the equation uxx = u2

xut admits operators X = ∂x,
Y = x ∂x with the stipulated property. The invariants of X are t, u. It is true
that Y acts on (t, u), but this action is trivial. Thus Y induces the identity
transformation on (t, u), not a one-parameter group. (Their diffusion example is
not affected by this observation.)

We now give corresponding results for inheritance of equivalence transforma-
tions of some class C of d.e.’s. We examine the group invariant solutions associ-
ated with a subgroup H of the common symmetries of C. Reducing each equation
E(φ) ∈ C gives a class C/H of reduced systems E(φ)/H. For example, reducing
the diffusion p.d.e.’s (3.57) by the common symmetry subgroup generated by X̂3

gives the class of reduced o.d.e.’s (3.59). In the following K̂, Ĥ are essentially the
same as K, H, since K̂ has trivial action on arbitrary element space a.

Theorem 3.4.7. Let C be a class of equations with equivalence group Q̂ and com-
mon symmetries K. Let H ≺ K be a subgroup of K. Let τ̂ ∈ NQ̂(Ĥ) be an aug-
mented equivalence transformation in the normalizer of Ĥ. Then τ̂ induces an
equivalence transformation on the class of H-reduced systems.
Proof. By an identical argument to that used in the proof of Theorem 3.4.4, we
find that τ̂ ∈ NQ̂(Ĥ) induces a transformation on the space of invariants of Ĥ.
Moreover, since H consists of common symmetries, its invariants are F , a, where
F are the invariants of H. As an equivalence transformation τ̂ is projectable to
(x, u) space, so the transformation induced on invariants of Ĥ is of the form

F ′ = ψ(F )
a′ = ω(F, a),

that is, it is projectable to the space of variables F of E/H.
Let u = θ(x) be an H-invariant solution of an equation E(φ) ∈ C, and let

Γθ,φ be its augmented graph, so that Ĥ(Γθ,φ) = Γθ,φ. Let τ̂ ∈ NQ̂(H), so that
Ĥ ◦ τ̂ = τ̂ ◦ Ĥ. Suppose τ̂ maps solutions of E(φ) to solutions of E(φ′); in particular,
that it maps u = θ(x) solving E(φ) to u′ = θ′(x) solving E(φ′). Then

Ĥ(Γθ′,φ′) = Ĥ ◦ τ̂(Γθ,φ) = τ̂ ◦ Ĥ(Γθ,φ) = τ̂(Γθ,φ) = (Γθ′,φ′),

so that u′ = θ′(x′) is an H-invariant solution of E(φ′). Thus τ̂ maps H-invariant
solutions of E(φ) to H-invariant solutions of E(φ′), and hence induces a map
from solutions of the reduced system E(φ)/H to solutions of the reduced system
E(φ′)/H. From above, this is realized as an augmented transformation on the
space of invariants of Ĥ and is therefore an equivalence transformation of the
class C/H of reduced systems.

Once again it is understood that the induced equivalence transformation can be
trivial. Applying Theorem 3.4.4 to equations in C shows that the normalizer
NK(H) of H in K induces common symmetry transformations of the H-reduced
class C/H. Since K̂ is a normal subgroup of Q̂, the inherited common symmetries
(from NK̂(Ĥ)) are a normal subgroup of the inherited equivalence transformations
(from NQ̂(Ĥ)).

The infinitesimal form of Theorem 3.4.7 is:
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Theorem 3.4.8. Let C be a class of d.e.’s with equivalence algebra Q̂ and common
symmetry algebra K. Let H ≺ K be a subalgebra of common symmetries with
associated symmetry group H. Let X ∈ NQ̂(Ĥ) be an augmented equivalence
operator in the normalizer of Ĥ in Q̂. Then X induces an equivalence operator
on the class C/H of H-reduced systems.

Once again it is possible for the induced operator to be identically zero. The
inherited common symmetry algebra is an ideal in the inherited equivalence alge-
bra.

We now apply the above theory to the potential nonlinear diffusion example.
From the commutator Table 3.1 we find the normalizer of {X̂3} is a five dimen-
sional algebra with basis {X̂3, X̂5, X̂6, X̂7, X̂8}. Writing these operators in terms
of ∂u, ∂z, ∂y yields the four equivalence operators Ŷ (3.60) found above. Hence
in this case the entire equivalence algebra is inherited from the ‘parent’ p.d.e. No
common symmetry operators are inherited, but the discrete common symmetry
z 	→ −z, y 	→ −y, is still inherited from the common symmetry group (3.53) for
the p.d.e., and is indeed a normal subgroup of (3.61).

In Appendix C, we use symmetry and equivalence properties of the Boltzmann
similarity o.d.e.’s (3.59) to assist in the solution of some boundary value problems
for certain diffusivities.

Comparison with scalar diffusion

The scalar diffusion equation

ut = (D(u)ux)x (3.65)

admits only a six-parameter equivalence group, generated [52, §6.7] by

X̂1 = ∂x
X̂2 = ∂t
X̂3 = x ∂x + 2t ∂t
X̂5 = ∂u
X̂6 = − 1

2x ∂x + u ∂u −a ∂a
X̂8 = x ∂x + t ∂t + a ∂a,

(3.66)

where the numbering is chosen to agree with the potential system case (3.46).
These transformations consist of translations and scalings which are available by
inspection. They establish the correspondence

D′(u′) = ρ2D(αu′ + β). (3.67)

The important point is that the scalar and potential system forms differ in the
structure of their equivalence groups. Operator X̂7 (3.46) cannot be expressed
in terms of (x, t, u), and generates a nonlocal equivalence group of (3.65). These
transformations were also found in [4, 3].

This behaviour is inherited by the Boltzmann similarity reduction, which for
the scalar equation (3.65) gives

d

dz
(−D(u)

du

dz
) = 1

2z
du

dz
. (3.68)
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This o.d.e. has three-parameter equivalence group generated by

Ŷ1 = ∂u
Ŷ2 = u ∂u − 1

2z ∂z − a ∂a
Ŷ4 = z ∂z + 2a ∂a,

(3.69)

all of which are inherited from (3.66). These simple scalings and translations are
obvious by inspection. They act on D(u) by (3.67). The operator Ŷ3 which
was present in the equivalence algebra (3.60) of the o.d.e. system (3.59) is a
nonlocal potential equivalence operator for the scalar o.d.e. (3.68). This situation
is analogous to the situation for symmetry calculations [13, ch.7], [16].

3.4.2 Nonlinear diffusion-convection equations

Equivalence for scalar form

Consider the class of nonlinear diffusion convection equations

0 = ut + qx
q = −D(u)ux +K(u) (3.70)

governing the convection of a diffusing substance in one spatial dimension. Here u
is concentration, q flux; the first equation expresses conservation of mass. Equation
(3.70) governs for instance the flow of a liquid through a homogeneous porous
medium [54], where the diffusive term −D(u)ux represents the effect of capillarity,
and the convective term K(u) the contribution of gravity. A particular equation is
characterized by arbitrary functions D(u) (diffusivity) and K(u) (conductivity).
Often q is eliminated from (3.70), giving the scalar equation

ut = (D(u)ux)x − K̇(u)ux (3.71)

where K̇ ≡ dK
du . Every point symmetry of system (3.70) is a contact symmetry

of the scalar equation (3.71). It turns out that there are no genuine contact
symmetries of (3.71), so the transformation properties of (3.71) and (3.70) are
essentially identical. We analyze the system (3.70).

Introducing coordinates a = D(u), b = K(u) for arbitrary element space, class
(3.70) has primary system

0 = ut + qx
q = −aux + b

with a, b satisfying auxiliary system A:

ax = at = aq = 0
bx = bt = bq = 0. (3.72)

An augmented equivalence operator is sought in the form

X̂ = ξ(x, t, u, q) ∂x + τ(x, t, u, q) ∂t + η(u) ∂u + χ(x, t, u, q) ∂q
+ α(u, a, b) ∂a + β(u, a, b) ∂b,

61



Chapter 3. The Equivalence Group

where Proposition 3.3.7 has been used to simplify the forms of η, α, β. Enforcing
conditions of Theorem 3.3.3 yields determining equations which are easily solved,
giving an eight-dimensional basis of operators

X̂1 = ∂x
X̂2 = ∂t
X̂3 = ∂q + ∂b
X̂4 = t ∂x +u ∂q +u ∂b
X̂5 = ∂u
X̂6 = − 1

2x ∂x +u ∂u + 1
2q ∂q +

1
2b ∂b − a ∂a

X̂7 = −x ∂x − 2t ∂t + q ∂q + b ∂b
X̂8 = x ∂x + t ∂t + a ∂a

(3.73)

Equivalence operators for the scalar equation (3.71) are obtained by dropping ∂q
components from (3.73). This algebra is a proper expansion of (3.66) for the scalar
diffusion equation; the basis is chosen to reflect this, with only a renumbering of
operators. Apart from scalings and translations, (3.73) includes the operator X̂4

which represents a change to a uniformly moving coordinate frame,

x 	→x+ νt u 	→u b 	→ b+ νu
t 	→ t q 	→ q + νu a 	→ a.

Altogether operators (3.73) generate a group Q̂

x = ρλα−1/2x′ + νt′ + κ1

t = ρλ2t′ + κ2

u = αu′ + β
q = λ−1α1/2q′ + νu′ + ε
b = λ−1α1/2b′ + νu′ + ε
a = ρα−1a′, (3.74)

with the eight parameters κ1, κ2, ε, ν, α, β, λ, ρ, where α, λ, ρ > 0. To these we
may append three discrete equivalences

R1 : x 	→ −x R2 : x 	→ x R3 : x 	→ −x
q 	→ −q q 	→ −q q 	→ q
u 	→ u u 	→ −u u 	→ −u
b 	→ −b b 	→ −b b 	→ b,

(3.75)

so that the equivalence group consists of four disconnected sheets. Hence a diffu-
sivity D(u) and conductivity K(u) are related by an equivalence transformation
to any other D′(u), K ′(u) of the form

K ′(u) = λK(αu+ β) + νu+ ε
D′(u) = ρD(αu+ β), (3.76)

where the six parameters ε, ν, α, β, λ, ρ are not necessarily the same as in (3.74),
and are subject to λ, α �= 0, ρ > 0. The common symmetries of (3.70) are the
translations generated by X̂1, X̂2, represented in (3.74) by the parameters κ1, κ2.
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[ , ] X̂1 X̂2 X̂3 X̂4 X̂5 X̂6 X̂7 X̂8

X̂1 0 0 0 0 0 − 1
2X̂1 −X̂1 X̂1

X̂2 0 0 0 X̂1 0 0 −2X̂2 X̂2

X̂3 0 0 0 0 0 1
2X̂3 X̂3 0

X̂4 0 −X̂1 0 0 −X̂3 − 1
2X̂4 X̂4 0

X̂5 0 0 0 X̂3 0 X̂5 0 0

X̂6
1
2X̂1 0 − 1

2X̂3
1
2X̂4 −X̂5 0 0 0

X̂7 X̂1 2X̂2 −X̂3 −X̂4 0 0 0 0

X̂8 −X̂1 −X̂2 0 0 0 0 0 0

Table 3.2: Commutator table for equivalence operators (3.73) of scalar diffusion
convection equation (3.70). Bold outlines indicate the semidirect sum structure.

The structure of the equivalence algebra L̂ is shown in the commutator Ta-
ble 3.2. Note that the common symmetries {X̂1, X̂2} are an ideal in L̂. There are
no trivial equivalences for the system form (3.70), but X̂3 is trivial for the scalar
form (3.71), and is a one-dimensional ideal in L̂.

Although transformations (3.74) are useful, this result is disappointing since
the Galileian transformation, scalings and translations which make up the equiv-
alence group can be obtained by inspection.

Equivalence for potential form

The nonlinear diffusion convection equation (3.70) may also be written in various
potential forms. Following the procedure of Bluman, Kumei and Reid [15], note
that the first (continuity) equation of (3.70) is a divergence. Hence there exists a
potential v such that

vx = u
vt = −q . (3.77)

The system (3.77), (3.70) for three dependent variables (u, q, v) is a potential
system for the nonlinear diffusion convection equation. Eliminating q gives a
system for u, v:

vx = u
vt = D(u)ux −K(u)

(3.78)

whose compatibility condition is the scalar equation (3.71). Elimination of u from
this system (3.78) shows that v satisfies a scalar equation

vt = D(vx)vxx −K(vx). (3.79)

Transformation properties of these three potential forms (3.70, 3.77), (3.78) and
(3.79) are essentially identical. We calculate the equivalence group for the (u, v)
potential system form (3.78).
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Introducing coordinates a = D(u), b = K(u), the class (3.78) is specified by
primary system

vx = u
vt = aux − b

with auxiliary system

ax = at = av = 0
bx = bt = bv = 0.

Applying the method of §3.3.3, a system of determining equations is derived with-
out difficulty.

The general solution of the determining equations is ten-dimensional. A basis
for the equivalence operators is

X̂0 = ∂v
X̂1 = ∂x
X̂2 = ∂t
X̂3 = −t ∂v + ∂q + ∂b
X̂4 = t ∂x + u ∂q + u ∂b
X̂5 = x ∂v + ∂u
X̂6 = 1

2v ∂v − 1
2x ∂x + u ∂u + 1

2q ∂q
1
2b ∂b − a ∂a

X̂7 =−v ∂v − x ∂x − 2t ∂t + q ∂q + b ∂b
X̂8 = v ∂v + x ∂x + t ∂t + a ∂a
X̂9 = −v ∂x + u2 ∂u + uq ∂q + ub ∂b − 2ua ∂a

(3.80)

Here we give action on not only (x, t, u, v, a, b) space, but also on the flux q ≡ −vt
(3.77).

Operators X̂1, . . . , X̂8 project onto corresponding operators (3.73) for the
form (3.70) of the equation. However, operator X̂9 is new. It generates the one-
parameter group

v = v′ u =
u′

1− εu′
x = x′ − εv′ b =

b′

1− εu′
t = t′ a = (1− εu′)2a′

q =
q′

1− εu′ ,

and maps a potential diffusion convection equation (3.78) to another such equation
with

D′(u′) =
1

(1− εu′)2 D
( u′

1− εu′
)

K ′(u′) = (1− εu′)K
( u′

1− εu′
)
.

It acts nonlocally on the base space (x, t, u, q) of (3.70), since transformation of
x depends explicitly on v which is an integral

∫
u dx (or − ∫ q dt) (3.77) of the
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local variables u, q . Following the terminology of Bluman, Kumei and Reid [15],
we refer to such transformations as potential equivalence transformations (in [4],
the terminology ‘quasilocal’ equivalence transformation is used.) The potential
equivalence operator X̂9 generalizes the transformations found by Akhatov, et al.
[3, 4] to the case where a nonlinear convection term is present.

Altogether the operators X̂0, . . . , X̂9 (3.80) generate a ten-parameter equiva-
lence group Q̂

v =
λ

ρ
(αv′ + βx′) + θt′ + κ0

x =
λ

ρ
(γv′ + δx′) + νt′ + κ1

t =
λ2

ρ
t′ + κ2

u =
αu′ + β
γu′ + δ

q =
λq′ + ρ(αν − γθ)u′ + ρ(βν − δθ)

λ2(γu′ + δ)

b =
λb′ + ρ(αν − γθ)u′ + ρ(βν − δθ)

λ2(γu′ + δ)
a = ρ−1(γu′ + δ)2a′ (3.81)

with λ, ρ > 0 and αδ − βγ = 1. To this may be appended the discrete reflection
equivalence R2 (3.75) (with added component v 	→ −v). The reflection R1 (3.75)
is connected to the identity in (3.81), while R3 is connected to R2. Hence the
equivalence group of the potential system consists of two disconnected sheets. It
is a realization of the matrix group


a b ∗ ∗
c d ∗ ∗
0 0 e ∗
0 0 0 1


 ,

(
a b
c d

)
∈ GL2(IR)

e > 0.

Action on diffusivity and conductivity functions is given by

D′(u′) =
ρ

(γu′ + δ)2
D
(αu′ + β
γu′ + δ

)
K ′(u′) = λ(γu′ + δ) K

(αu′ + β
γu′ + δ

)
+ µu′ + ε, (3.82)

where (
µ
ε

)
:=
ρ

λ

(
α γ
β δ

)(−ν
θ

)
(3.83)

The three parameters κi disappear here since these represent common translation
symmetries. The common symmetry X̂0 = ∂v which appears for the potential
system is of trivial significance.

This result is apparently new. Note that the potential diffusion system (3.41)
results by setting K(u) ≡ 0 in (3.78). The equivalence group (3.81) of the diffusion
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convection system (3.78) is therefore a proper generalization of the equivalence
group (3.44) of the diffusion system, and the parametrization has been chosen to
reflect this. Note that X̂3 in (3.41) is a common symmetry for diffusion equations,
but moves into the true equivalence group (operator X̂7 in (3.80)) for (3.78)!

The equivalence group of the potential diffusion convection system is also a
proper expansion of the equivalence group of the scalar diffusion convection equa-
tion (3.71). In fact, by adjoining the single hodograph-type transformation

x = −v′ u = 1/u′

v = −x′ b = b′/u′

t = t′ a = u′2a′
(3.84)

to (3.74), we can obtain the equivalence group (3.81) of the potential system.
Unfortunately, addition of this one transformation has the consequence that sym-
metry group classification is significantly more difficult in the potential form than
in the scalar form of the diffusion convection system, a topic we discuss in §4.2,
§4.3.

Mapping nonlinear to linear equations

One of the most important mapping problems for differential equations is to de-
termine whether a nonlinear d.e. can be mapped to a linear d.e., and if so, to
determine the mapping. Where a class of equations includes a linear equation,
equivalence transformations acting on this equation can give rise to a nonlinear
equation. Therefore the equivalence group detects and constructs certain lineariz-
ing mappings.

By setting D(u) ≡ 1, K(u) ≡ 0 in (3.70), the linear heat system

vx = u
vt = ux

(3.85)

results. Applying transformations (3.81) from the equivalence group of (3.78) to
this heat system gives the equations linearizable by a change of variables of this
type. We take the view that the scalings, translations etc. of (3.74) are obvious,
and may freely be used to remove parameters. With this understood, the heat
equation maps to the equation

v′x′ = u′

v′t′ = u′−2u′x′
(3.86)

by the hodograph-type transformation (3.84). Linearization of equation (3.86) was
discovered in a different form by Bluman and Kumei [10] (see also [66, 60, 15, 14]).
Equivalence transformations (3.81) are a proper generalization of the Bluman-
Kumei mapping to the case of arbitrary diffusivity and conductivity. Only for
(3.86) does this mapping linearize the equation; for all other cases it maps a
nonlinear equation to another nonlinear equation.

Another well known diffusion convection equation is Burgers’ equation,

UT = UXX − 2UUX , (3.87)
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which results from assigning D(U) = 1, K(U) = U2. In potential system form,
Burgers’ equation is

VX = U
VT = UX − U2 .

(3.88)

This is mapped to the linear heat system (3.85) by the Cole-Hopf transformation

v = e−V x = X
u = −Ue−V t = T

. (3.89)

Because this transformation is not contained in the equivalence group (3.81), it
is not detected by the present method as applied to class (3.78). In order to
find linearizing transformations, the general method of Kumei and Bluman [41]
must be applied: the equivalence group can give interesting results, but they are
incomplete in nature.

Given that Burgers’ equation can be mapped to the heat equation, the equiv-
alence group (3.81) of the potential system allows Burgers’ system to be mapped
to the system of Fokas and Yortsos [24]

V ′
X′ = U ′

V ′
T ′ =

1
U ′2U

′
X′ +

1
U ′

(3.90)

by the hodograph-type transformation (3.84). By composing this with the Cole-
Hopf transformation (3.89), we find that the nonlinear Fokas-Yortsos system (3.90)
is mapped to the linear heat system (3.85) by

X ′ = − log v
T ′ = t

V ′ = x
U ′ = −vu−1.

(3.91)

With the equivalence group of class (3.78) available, the result of Fokas and Yortsos
[24] therefore is ‘predictable’: it results from the Cole-Hopf transformation com-
bined with equivalence properties common to the whole class. The relationship
between their case (3.90) and Burgers’ system (3.88) is identical to that between
the Bluman-Kumei system (3.86) and the heat system (3.85).

Note that all of the transformations (3.84, 3.89, 3.91) explicitly involve the v
coordinate in the transformation of (x, t, u). Thus they are all nonlocal transfor-
mations of (x, t, u) space: they are not point transformations for the scalar form
(3.71) of the diffusion convection equation. The discovery of these transformations
in [10, 24] was by means of generalized (Lie-Bäcklund) symmetries of the scalar
form of the equation. This gives the results only after difficult calculations, and
necessitates an awkward statement of the transformations. For the potential sys-
tem (3.78) the transformations take their most transparent form. The idea that
analysis of a potential system can lead to significant nonlocal results for a scalar
equation is due to Bluman, Kumei and Reid [15] (see also [11]). The potential
system approach is much simpler, since one deals only with point transforma-
tions acting on a different space (e.g. transformations of (x, t, u, v) as opposed to
(x, t, u)).

The linearization described above for the potential Fokas-Yortsos system (3.90)
results by composing two nonlocal transformations—the hodograph-type transfor-
mation (3.84), and the Cole-Hopf transformation (3.89). Further composing this
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Bluman-Kumei system (3.86)
D(u) = u−2; K(u) = 0

hodograph←−−−−−−→ Linear Heat system (3.85)
D(u) = 1; K(u) = 0

local
transformation

��
��Cole-Hopf

Fokas-Yortsos system (3.90)
D(u) = u−2; K(u) = u−1

hodograph←−−−−−−→ Burgers’ system (3.88)
D(u) = 1; K(u) = u2

Figure 3.1: Relationship between linearizable diffusion convection potential sys-
tems. Only Fokas-Yortsos and Bluman-Kumei equations are connected by a local
transformation.

linearizing map with transformation (3.84) maps the Fokas-Yortsos system (3.90)
to the Bluman-Kumei system (3.86) (see Figure 3.1). This leads to the following

Proposition 3.4.9. The scalar form

U ′
T ′ = (U ′−2U ′

X′ − U ′−1)X′

of the Fokas-Yortsos equation is point equivalent to the scalar Bluman-Kumei
equation

u′t′ = (u′−2u′x′)x′

by the transformation

X ′ = − log x′

T ′ = t′

U ′ = −x′u′.
(3.92)

This is remarkable since the transformations between any other pair drawn
from the four systems (3.85, 3.86, 3.88, 3.90) are nonlocal, explicitly involving
the v-coordinate in the transformation of (x, t, u). Proposition 3.4.9 reduces the
linearization results of Fokas and Yortsos [24] to those of Bluman and Kumei [10].
The scalar linear heat equation admits infinitely many point symmetries; Burgers’
equation admits five; and Bluman-Kumei and Fokas-Yortsos four each. Hence it is
certain that Bluman-Kumei and Fokas-Yortsos are the only equations in Figure 3.1
connected by a local transformation on (x, t, u) space.

3.4.3 Wave equations

Consider the class of linear wave equations (3.22)

utt = c2(x)uxx (3.93)

characterized by wavespeed function c(x). This system was examined in Exam-
ple 3.2.7; the equivalence group was described in Example 3.2.7. It is clear on
physical grounds that (3.93) is equivalent to a wave equation with wavespeed

c′(x′) = γ c(αx′ + β) (3.94)

68



3.4. Examples of equivalence groups

[ , ] X̂1 X̂2 X̂3 X̂4 X̂5 X̂6 X̂7 X̂8 X̂9 X̂10

X̂1 0 −X̂2 −X̂3 −X̂4 −X̂5 0 0 0 0 0

X̂2 X̂2 0 0 0 0 0 0 0 0 X̂3

X̂3 X̂3 0 0 0 0 0 0 −X̂2 − 1
2X̂3 0

X̂4 X̂4 0 0 0 0 −X̂2 −X̂4 0 3
2X̂4 X̂5

X̂5 X̂5 0 0 0 0 −X̂3 −X̂5 −X̂4 − 1
2X̂5 0

X̂6 0 0 0 X̂2 X̂3 0 X̂6 0 0 0

X̂7 0 0 0 X̂4 X̂5 −X̂6 0 0 0 0

X̂8 0 0 X̂2 0 X̂4 0 0 0 X̂8 2X̂9

X̂9 0 1
2X̂2

1
2X̂3 − 3

2X̂4
1
2X̂5 0 0 −X̂8 0 X̂10

X̂10 0 −X̂3 0 −X̂5 0 0 0 −2X̂9 −X̂10 0

Table 3.3: Commutation relations of equivalence algebra (3.95) of the scalar wave
equation (3.93). The algebra is a semidirect sum of the subalgebras of dimensions
6 and 4 shown.

with α, β, γ arbitrary constants satisfying α, γ �= 0.
Execution of Algorithm 3.3.6 on the class (3.93) (that is, (3.24, 3.23)), gives

equivalence operators

X̂1 = u ∂u
X̂2 = ∂u
X̂3 = x ∂u
X̂4 = t ∂u
X̂5 = xt ∂u
X̂6 = ∂t
X̂7 = t ∂t − a ∂a
X̂8 = ∂x
X̂9 = x ∂x + 1

2u ∂u + a ∂a
X̂10 = x2 ∂x +xu ∂u +2xa ∂a.

(3.95)

Commutation relations for this algebra are shown in Table 3.3.
The algebra is a semidirect sum L̂ = K̂ ⊕s R̂. The common symmetry algebra

K̂ is spanned by X̂1, . . . , X̂6; it generates the six-parameter common symmetry
group

x = x′

t = t′ + κ
u = λu′ + ν0 + ν1x′ + ν2t′ + ν3x′t′

a = a′, λ �= 0

(3.96)

to which can be appended the discrete time-reversal symmetry t 	→ −t. The
parameters νi represent superposition symmetries. The functions 1, x, t, xt are

69



Chapter 3. The Equivalence Group

solutions common to every wave equation and can be added to any solution of any
wave equation, yielding another solution of the same equation. The parameter λ
gives the scaling associated with any linear equation, while κ represents invariance
under time translation.

The complement R̂ = {X̂7, X̂8, X̂9, X̂10} of K̂ generates the ‘true’ equivalence
transformations

x =
γ1x

′ + γ2

γ3x′ + γ4

t = ρt′ + κ

u =
u′

γ3x′ + γ4
, γ1γ4 − γ2γ3 = ±1

a =
1
ρ

±a′
(γ3x′ + γ4)2

, ρ > 0 (3.97)

with four independent parameters γi, ρ. Groups (3.96) and (3.97) generate the
whole equivalence group (3.25) of the scalar wave equation. Transformation (3.97)
maps the wave equation (3.93) with wavespeed c to another such equation with
wavespeed

c′(x′) = ρ (γ3x
′ + γ4)2 c

(γ1x
′ + γ2

γ3x′ + γ4

)
. (3.98)

Three of the parameters here are associated with the obvious equivalences (3.94).
However the interesting case is γ3 �= 0, which leads to projective transforma-
tions not available by inspection, and apparently not previously known. Action
(3.98) on the wavespeed c reflects the factoring out of the six common symmetries
(3.96). Disregarding the indetermination of sign of c, the structure of this action
is GL2(IR)/{I,−I} (compare with (3.62)).

As noted in Example 3.1.2, a wave equation (3.93) may also be written in the
very general potential form (3.14):

vx = c−2(x) [h(x, t)ut − ht(x, t)u ]
vt = h(x, t)ux − hx(x, t)u (3.99)

where h(x, t) is any nonzero solution of the scalar wave equation (3.93). This
class is specified by systems (3.16), (3.17). Execution of Algorithm 3.3.6 gives
equivalence operators

X̂0 = ∂v
X̂1 = u ∂u+ v ∂v
X̂6 = ∂t
X̂7 = t ∂t + v ∂v − a ∂a
X̂8 = ∂x
X̂9 = x ∂x + 1

2u ∂u + a ∂a+ 1
2b ∂b

X̂10 = x2 ∂x +xu ∂u +2xa ∂a+xb ∂b
X̂11 = v ∂v + b ∂b

(3.100)

The operators X̂1 and X̂6 , . . . , X̂10 correspond to operators in the Lie algebra
(3.95) of the scalar equation. The new operators X̂0, X̂11 have trivial action on
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(x, t, u) and are of no significance. Hence no potential equivalence transformations
arise in this case. Altogether the operators (3.100) generate an eight-parameter
group. Once again the Lie algebra is a semidirect sum of common symmetries
K̂ = {X̂0, X̂1} and their complement R̂ = {X̂6, . . . , X̂11}. The common sym-
metries represent a scaling due to linearity of system (3.99); and the fact that v
is a potential variable, and only determined to within a constant. Note that the
operator X̂6, representing time translation, moves from the common symmetry
group for the scalar form (3.93) to the true equivalences for the system (3.99).
The common superposition symmetries which were present for the scalar equation
disappear completely.

The group of ‘true’ equivalences generated by R̂ is

x =
γ1x

′ + γ2

γ3x′ + γ4

t = ρt′ + κ

u =
u′

(γ3x′ + γ4)

v =
1
ρµ
v′

a =
1
ρ

±a′
(γ3x′ + γ4)2

ρ, µ �= 0

b =
1
ρµ

b′

γ3x′ + γ4
, γ1γ4 − γ2γ3 = ±1. (3.101)

The effect of these transformations on the arbitrary elements c, h is to map them
to new elements

c′(x′) = ρ(γ3x
′ + γ4)2 c

(γ1x
′ + γ2

γ3x′ + γ4

)
h′(x′, t′) = ρµ(γ3x

′ + γ4) h
(γ1x

′ + γ2

γ3x′ + γ4
, ρt′ + κ

)
. (3.102)

The availability of transformations (3.101) has some interesting consequences.
There is particular interest in the potential forms (3.99) where the function h(x, t)
is

h(x, t) = ν0 + ν1x+ ν2t+ ν3xt . (3.103)

An h of this form is a solution of every scalar wave equation (3.93), and therefore
the corresponding potential form (3.99) is valid for every wavespeed. Use of obvi-
ous scaling and translation equivalences shows that any h of the form (3.103) can
be reduced to the six canonical cases

h(x, t) = 1, t, x+ t,
x, xt, xt+ 1 .

(3.104)

However, application of the transformation

x =
1
x′

u =
u′

x′
(3.105)
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maps each member in the second row of (3.104) to the corresponding member in
the first row. Hence the canonical list can be shortened to

h(x, t) = 1, t , x+ t .

Thus knowing the symmetry groups of the potential system (3.99) for the above
three cases allows the symmetries for every case (3.103) to be recovered. In partic-
ular, the new group classification found by Ma [46] for (3.99) in the case h(x, t) = x
can be obtained by transformation (3.105) from the group classification found by
Bluman and Kumei [11] for the case h(x, t) = 1. In [11], more-or-less explicit
formulas for the wavespeeds c(x) admitting a nontrivial symmetry group when
h(x, t) = 1 were found. Their information on qualitative behaviour of c(x) may
be transformed through (3.105) to give qualitative behaviour of wavespeeds ad-
mitting a nontrivial symmetry group for h(x, t) = x. For instance, the wavespeed
considered in [12] is bounded by two constants c1, c2: 0 < c1 < c(x) < c2. Ap-
plication of transformation (3.105) (see also (3.102)) takes any such wavespeed to
one which vanishes at x = 0 and is unbounded at x′ → ±∞. Thus the physically
interesting behaviour of c(x) is lost in the transformation process.

3.4.4 Hamilton’s equations

We apply the equivalence group Algorithm 3.3.6 to Hamilton’s equations in the 2n
dependent variables q = (q1, q2, . . . , qn) (‘coordinates’) and p = (p1, p2, . . . , pn)
(‘momenta’):

dqi

dt
=

∂H

∂pi
(q,p, t)

dpi
dt

= −∂H
∂qi

(q,p, t) (3.106)

characterized by the arbitrary element H(q,p, t) (the ‘Hamiltonian’).
The ‘canonical formalism’ of classical mechanics [28, ch.9], [5, ch.9] is concerned

with finding transformations of (q,p) space (‘phase space’) which leave the form
of Hamilton’s equations invariant. Our goal here is to show how our equivalence
group construction for the class (3.106) leads to these canonical transformations.

Introducing a coordinate h = H(q,p, t) for ‘Hamiltonian space’, and coordi-
nates hqi , hpi

for derivatives of H, the class (3.106) is written

q̇i = hpi

ṗi = −hqi .

where the dot represents d
dt . The function H is arbitrary, so there is no auxiliary

system. The equivalence group operator is sought in the form

X̂
1 1

= τ
∂

∂t
+ κi

∂

∂qi
+ πi

∂

∂pi
+ κi(t)

∂

∂q̇i
+ πi(t)

∂

∂ṗi

+ γ
∂

∂h
+ γ(qi)

∂

∂hqi

+ γ(pi)
∂

∂hpi
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with τ , κi, πi functions of (q,p, t), and γ(q,p, t, h). Enforcing invariance condi-
tions (Theorem 3.3.3) yields the determining equations

∂τ

∂qi
= 0

∂τ

∂pi
= 0

∂κi

∂pj
− ∂κj

∂pi
= 0

∂κi

∂t
− ∂γ

∂pi
= 0

∂πi
∂qj

− ∂πj
∂qi

= 0
∂πi
∂t

+
∂γ

∂qi
= 0

∂κi

∂qj
+
∂πj
∂pi

= δij(
∂τ

∂t
+
∂γ

∂h
)

(3.107)

along with the dependency conditions

∂τ

∂h
=
∂κi

∂h
=
∂πi
∂h

= 0 (3.108)

Computing compatibility conditions of (3.107) shows that

∂τ

∂t
+
∂γ

∂h
= k (3.109)

where k is a constant.
The determining equations can be solved by writing them as the integrability

conditions of certain equations. This integration can be concisely stated in terms
of differential forms as follows. Define the differential one form φ on augmented
space (q,p, t, h) by

φ = πi dqi − κi dpi + τ dh− γ dt .
Let θ be the one form

θ = pi dqi − h dt. (3.110)

In terms of these forms, determining equations (3.107, 3.109) are just

dφ = k dθ . (3.111)

The general solution of this equation, after taking account of dependency condi-
tions (3.108), is

φ = kθ − d
(
W (q,p, t) + τ(t)h

)
(3.112)

where W, τ are arbitrary functions of their arguments. Thus the general equiv-
alence transformation of Hamilton’s equations is characterized by one arbitrary
constant k, one arbitrary function τ of one variable, and one arbitrary function
W of 2n+ 1 variables.

Writing the solution (3.112) componentwise, we see that the equivalence group
of Hamilton’s equations (3.106) is generated by operators

Λ = pi∂pi
+ h∂h (3.113a)

T (τ) = τ ∂t − τth∂h (3.113b)
Ω(W ) = −Wpi

∂qi +Wqi∂pi
−Wt∂h (3.113c)
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The scaling operator Λ is associated with arbitrary choice of units for h. The
operators T (τ) permit arbitrary variation in the time metric, which induces a cor-
responding variation in the Hamiltonian. These operators are usually ignored in
mechanics texts, since their significance is trivial. The important generators are
Ω(W ), which represent infinitesimal canonical transformations [28]. The commu-
tator of two such transformations is

[ Ω(W1),Ω(W2) ] = Ω({W1,W2})
where { , } is the Poisson bracket:

{W1,W2} = ∂W1

∂qi
∂W2

∂pi
− ∂W1

∂pi

∂W2

∂qi
. (3.114)

Among equivalence operators (3.113c) are some trivial equivalences, generated
by setting W to be a function of t only: X̂ =Wt(t)∂h. These reflect the fact that
addition of any function of t to the Hamiltonian H

H ′(q,p, t) = H(q,p, t) + E(t)

does not affect Hamilton’s equations. It is understood that ‘a Hamiltonian’ actu-
ally refers to an equivalence class of Hamiltonians connected by such transforma-
tions.

In older classical mechanics books (e.g. [28, 42]), the derivation of canonical
transformations is essentially that given here, except that a fixed time parametriza-
tion τ(t) = 0 is usually enforced a priori . Sometimes the scalings Λ are also
suppressed.

More abstract treatments of classical mechanics take a geometric viewpoint,
with canonical transformations being defined as transformations of phase space
which leave invariant a ‘symplectic two form’ ω [5]. Our derivation of the deter-
mining equations (3.111) can be rephrased as follows. Let ω = dθ (with θ given
by (3.110)), so that

ω = dpi ∧ dqi − dh ∧ dt.
The condition that a transformation map a Hamiltonian system (3.106) to another
such system is equivalent to demanding that ω be transformed to a multiple of
itself. In infinitesimal form, this requires that

LX̂ω = αω (3.115)

where α is a scalar function and LX̂ denotes Lie derivative with respect to X̂. In
fact, taking exterior derivative d shows that α is a constant k; condition (3.115)
can be written

d(LX̂θ) = k dθ

which is exactly (3.111).
Our derivation of canonical transformations differs from the usual one mostly

in notation and terminology. The important point is that our method is part of
an overall theoretical and algorithmic machinery applicable to very general classes
of equations. The example of Hamilton’s equations is simplified by the fact that
the auxiliary system is null. When a nontrivial auxiliary system is present, the
machinery of §3.2, §3.3 becomes essential.
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Symmetry Group
Classification

4.1 Symmetry classification problem

The symmetry group classification problem for a class C of differential equations is
to find and construct the symmetry group of each equation in C. One attempts to
find conditions on the arbitrary elements so that symmetries are present. One ap-
proach to this problem is to derive and attempt to solve the determining equations
for the infinitesimals of the symmetry operators. In the course of this process one
hopes to find ‘classifying conditions’, that is, conditions on the arbitrary elements
of C which split the calculation into two branches, depending whether the arbi-
trary elements take this or that form. Consider the standard example of the scalar
nonlinear diffusion equation (3.65). Ovsiannikov [52, §6.7] obtains a determining
equation of the form

(D/Ḋ)·· (2ξx − ηt) = 0.

The next step depends on whether (D/Ḋ)·· = 0 or not, so this condition is classify-
ing. Reid [55, 57] showed that classification can be performed without solving the
determining equations. His method algorithmically finds classification conditions
by appending compatibility conditions to the determining system.

However classified, the determining equations must ultimately be solved to
find the symmetry operators. This results in a list of functional forms for the
arbitrary elements, each with its associated symmetry operators. For the scalar
diffusion equation (3.65), if D(u) = (au + b)m, (a �= 0) then the equation admits
a symmetry

a(m+ 1)x ∂x + a(m+ 2)t ∂t + (au+ b) ∂u .

The parameters a, b here may ‘without loss of generality’ be set to a = 1, b = 0,
and this kind of parameter elimination is customary in presenting results of sym-
metry classification. However, even the ‘w.l.o.g.’ parameter removal above relies
on knowledge extrinsic to the symmetry classification procedure, namely avail-
ability of equivalence transformations (3.74). A method such as Reid’s, based
on analysis of determining equations will find symmetries, but it cannot spec-
ify which equations are related by a change of variables, and hence parameter
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elimination is not achieved. Nevertheless, use of equivalence transformations to
remove parameters from classifying conditions is an integral (albeit implicit) part
of the symmetry group classification process. The parameter reduction effected
using whatever equivalence transformations are available by inspection is ad hoc,
although it may suffice for simple examples. A more complete and systematic
parameter elimination is possible using the full equivalence group calculated by
the method of §3.3.3.

4.1.1 Example: scalar diffusion convection

For later reference we now give a symmetry group classification for the scalar
nonlinear diffusion convection equation (3.70):

ut = (D(u)ux −K(u))x . (4.1)

This will permit a comparison with the potential system form (3.78), for which
classification is more difficult. Calculations for the scalar form can be completed
by hand, and although lengthy, ad hoc methods suffice to sort out all the cases:
the method is not reproduced here. A symmetry classification for (4.1) is shown
in Table 4.1, where cases which are distinct under equivalence transformations
(3.74) are shown. The general forms of D(u), K(u) and their associated symmetry
operators may be obtained by use of the equivalence group (3.74). For instance
Case 2a below is D(u) = um, K(u) = un, n �= 0, 1, representing the general family

D′(u′) = (αu′ + β)m

K ′(u′) = λ(αu′ + β)n + νu′ + ε, α, λ �= 0. (4.2)

The symmetry Y3 for this family becomes

Y3 = α((m− n+ 1)x′ − ν(n− 1)t′) ∂x′ + α(m− 2n+ 2)t′ ∂t′ + (αu′ + β) ∂u′ .

If K(u) = νu + ε for some ν, ε then the convection term can be removed,
and we are left (Case 1.) with the nonlinear diffusion equation (3.65). Symmetry
classification for this case is well known [52, §6.7]. Burgers’ equation D(u) =
1, K(u) = u2 (Case 2ai) also has well known symmetry properties [13, p.266].
The remainder of the symmetry classification is adapted from Lisle [44] (with
corrections). In [49], Oron and Rosenau claim to give a classification for the scalar
diffusion convection equation, but the results in their Table 3(a) are seriously in
error. In particular Cases 2ai, 2aii, 2c, and 2e of our Table 4.1 are not detected
at all, and Cases 2a and 2d are only partially detected (they impose spurious
restrictions n = m + 1 and m = −1 respectively). Case 5 of their Table 1(a) of
symmetries of the scalar diffusion equation also appears to be spurious.

4.2 Partial symmetry classification

4.2.1 Symmetry inherited from equivalence group

Reid’s method [55, 57] in principle solves the symmetry group classification prob-
lem for a class of differential equations, but the calculations involved are lengthy
even when a computer algebra package is used. Instead of attempting a full point
symmetry group classification, we may seek those point symmetries belonging to
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1. K = 0 (diffusion) Y3 = v ∂v + x ∂x + 2t ∂t

a. D(u) = 1 Y†
4 = −2t ∂x + xu ∂u
Y†

5 = −4xt ∂x − 4t2 ∂t + (x2 + 2t)u ∂u
Y6 = u ∂u
Y†
∞ = θ(x, t) ∂u

u = θ(x, t) any solution of uxx = ut

b. D(u) = um,m �= 0 Y4 = mx∂x + 2u ∂u

bi. m = − 4
3 Y†

5 = x2 ∂x − 3xu ∂u

c. D(u) = eu Y4 = x ∂x + 2 ∂u

2. K �≡ 0 (nonlinear convection)

a. D(u) = um, Y3 = (m− n+ 1)x ∂x + (m− 2n+ 2)t ∂t + u ∂u

K(u) = un, n �= 0, 1

ai. m = 0 Y4 = 2t ∂x + ∂u
n = 2 Y†

5 = 2xt ∂x + 2t2 ∂t + (x− 2tu) ∂u

aii. m = −2 Y†
4 = e−x ∂x + e−xu ∂u

n = −1
b. D(u) = um Y3 = (m+ 1)x ∂x + (m+ 2)t ∂t + u ∂u

K(u) = log u

c. D(u) = um Y3 = (mx+ t) ∂x +mt∂t + u ∂u
K(u) = u log u

d. D(u) = emu Y3 = (m− 1)x ∂x + (m− 2)t ∂t + ∂u
K(u) = eu,

e. D(u) = eu Y3 = (x+ 2t) ∂x + t ∂t + ∂u
K(u) = u2

Table 4.1: Full symmetry classification for scalar form of nonlinear diffusion con-
vection equation (4.1). Operators shown are in addition to common symmetries
Y1 = ∂x, Y2 = ∂t. All symmetry operators are inherited from the equivalence
algebra (3.73) except those marked with a dagger Y†

i .
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the equivalence group of the class. This gives only a partial symmetry classifica-
tion for the class, but is often much easier to obtain than the full classification.
The results we state are easy adaptations of methods for group invariant solutions
(§3.4.1).

We make the following observations. The equivalence group Q̂ is a group of
symmetries for the auxiliary system A satisfied by the arbitrary elements. Let
Ĥ ≺ Q̂ be some subgroup of Q̂, and let a = φ(w) be an H-invariant solution of A,
that is,

Ĥ(Γφ) = Γφ,

where Γφ = {(w, a) | a = φ(w)} is the graph of φ. Thus H maps every solution
u = θ(x) of E(φ) to a solution of the same equation E(φ), and is therefore a
symmetry group of E(φ). Therefore finding and classifying all subgroups Ĥ ≺ Q̂
of the equivalence group of C leads to a classification of all Ĥ-invariant solutions
of A, and hence to a classification of symmetry groups of equations E(φ) ∈ C.
This symmetry classification is partial , since the symmetries found will all lie in
Q; there may be additional symmetries outside Q. All of the machinery described
in [13, §4], [47, §3], [52, §19] for classification of invariant solutions may now be
brought to bear, and no new theory is required.

This simple insight appears to be new. Recently it was discovered indepen-
dently by Akhatov, Gazizov and Ibragimov [4], who used these ideas to assist in
several symmetry classification calculations. Subsequently Ibragimov, Torrisi and
Valenti [32] executed the method on a more difficult example. Note that common
symmetries K have a special, trivial role here: every solution a = φ(w) of A is
K̂-invariant. Hence we can neglect K̂ and concern ourselves only with classifying
subgroups of Q̂/K̂.

We use an infinitesimal formulation of the above.

Proposition 4.2.1. Let X̂ be an equivalence operator for a class C of differential
equations:

X̂ = ζγ(w)∂wγ + αβ(w, a)∂aβ . (4.3)

Let E(φ) ∈ C be a differential equation in C, and suppose X̂ is such that

αβ(w, φ(w)) = ζγ(w)
∂φβ

∂wγ
(w), β = 1, 2, . . . , µ. (4.4)

Then X is a symmetry operator for E(φ).

Proof. Property (4.4) asserts that the vector field X̂ is everywhere tangent to the
surface a = φ(w), i.e., that X̂(a − φ(w)) = 0 whenever a = φ(w). By Theo-
rem 2.1.13, the one-parameter group Ĥ associated with X̂ leaves invariant the
surface a = φ(w). From the notes above, H consists of symmetries of E(φ). Hence
the operator X associated with H is an infinitesimal symmetry of E(φ).

For each equivalence operator X̂, infinitesimal condition (4.4) is a system of
first order differential equations

ζγ(w)aβγ = αβ(w, a) (4.5)
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for the arbitrary elements a = φ(w), with ζγ and αβ being known functions. For
a differential equation E(φ) to admit X, the function φ must be a solution of
both the auxiliary system and equations (4.5). Note that condition (4.4) is quite
distinct from requiring a′ = a: it is not the coordinate a which must be preserved,
but the function a = φ(w).

Example 4.2.2. Consider the scalar diffusion convection equation (4.1) with dif-
fusivity D(u) and conductivity K(u). The most general operator from the aug-
mented equivalence group is a linear combination

∑8
i=1 ciX̂i of operators (3.73).

Condition (4.4) that the equation a = D(u), b = K(u) admit this operator is

(c6u+ c5)Ḋ(u) = (c8 − c6)D(u)
(c6u+ c5)K̇(u) = (c7 + 1

2c6)K(u) + (c4u+ c3). (4.6)

The system (4.5) is

(c6u+ c5)ȧ = (c8 − c6)a
(c6u+ c5)ḃ = (c7 + 1

2c6)b+ (c4u+ c3); (4.7)

if a = D(u), b = K(u) are solutions of this, the diffusion convection equation (4.1)
with diffusivityD(u) and conductivityK(u) admits the symmetryX =

∑8
i=1 ciXi.

The constants c1, c2 associated with common translation symmetries Y1 = ∂x,
Y2 = ∂t may be assigned arbitrarily. The solution of o.d.e.’s (4.7) is easily found
for the various values of c3, . . . , c8. The result is a collection of functions D(u)
andK(u) each with their associated symmetries (of equivalence type). Equivalence
transformations (3.74) can then be used to remove parameters c3, . . . , c8 from
D(u), K(u).

The completeness of neither the resulting collection of D(u),K(u) nor their
associated symmetries can be guaranteed, since only those symmetries inherited
from the equivalence algebra are found in this way. What is remarkable in this
case is how much of the symmetry classification of Table 4.1 is recovered. Every
functional form of D(u), K(u) with symmetry beyond the common translations
is found, although subcases 1bi (m = −4/3 diffusion) and 2aii (Fokas-Yortsos)
are not singled out as exceptional. Not only are the forms of D(u), K(u) found,
but almost all the symmetries for these D(u), K(u) are found in this way. Partial
classification for this example yields Table 4.1 apart from the cases marked with
daggers:

• Linear heat equation Case 1a., operators Y4, Y5, Y∞.

• Burgers’ equation Case 2ai, operator Y5.

• Fokas-Yortsos equation Case 2aii, operator Y4.

• u−4/3 diffusion equation Case 1bi., operator Y5.

Note that most of the classification of the scalar diffusion equation [52, §6.7] is
inherited from the simple equivalence group (3.66). This partial symmetry classifi-
cation detects several symmetries which were missed by Oron and Rosenau [49] in
their alleged classification of the scalar diffusion convection equation. Thus even
when it is feasible to calculate a complete symmetry classification, partial results
obtained from the equivalence group can offer a valuable check.
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Chapter 4. Symmetry Group Classification

Equivalence transformations (3.74) all reflect physical properties of diffusion
convection processes (rescaling of units, Galileian invariance etc.). The symmetries
found by the partial classification procedure are hence predictable on physical
grounds. Only the daggered operators in Table 4.1 appear ‘out of the blue’. In
the usual method for symmetry classification one has to wait until the end of a long
calculation to find even very simple symmetries, and there is no ready criterion
for distinguishing ‘predictable’ symmetries from ‘exceptional’ ones.

The usual method for symmetry classification is ‘analytic’: for a given class of
equations, we seek symmetries by analyzing determining equations. The partial
classification is synthetic, that is, given a group operator we construct the equa-
tions which admit it as a symmetry. Determining equations for symmetries are
never formed. It is this which permits partial classification results to be obtained
with small computational labour, at least for finite-parameter equivalence groups.
The process is the same as finding invariant solutions of a d.e. There we suppose
that a symmetry group G of the d.e. is known, and seek solutions u = θ(x) which
are invariant under the action of a given subgroup of G. Constructing group invari-
ant solutions begins with a known group of (symmetry) transformations, just as
partial classification begins with a known group of (equivalence) transformations.

4.2.2 Optimal system of subalgebras

When executing a partial classification one obtains d.e.’s (such as (4.7)) for the
arbitrary elements. Typically these d.e.’s contain many parameters—one for each
operator from the equivalence algebra. These d.e.’s could be integrated with pa-
rameters in place; the actual result depends on the parameter values, giving a
classification of the arbitrary elements. Following integration, equivalence group
action can be used to remove parameters, giving a short list of the essentially
different cases. Instead, we describe how to use the equivalence group action to
simplify the d.e.’s before integrating them. The method is based on the following
considerations.

Let Q̂ be the augmented equivalence group of a class of d.e.’s and let Ĥ ⊆
Q̂ be a subgroup. Let φ be an Ĥ-invariant solution of the auxiliary system A
(so Ĥ(Γφ) = Γφ where Γφ is the graph a = φ(w)). Thus E(φ) admits H as
symmetries. Let τ̂ ∈ Q̂ be an equivalence transformation mapping E(φ) to E(φ′) ∈
C Then φ′ is an invariant solution of A with respect to the conjugate subgroup
τ̂ ◦ Ĥ ◦ τ̂−1, and hence E(φ′) admits τ ◦H ◦ τ−1 as symmetries. Hence we need
only consider reduction of A with respect to subgroups Ĥ ≺ Q̂ which are distinct
under conjugation by τ̂ This is the usual process of classification of group invariant
solutions [47, §3.3], [52, §20.5].

An infinitesimal form of this result is given in terms of the action of ‘conjugation
by τ̂ ’ on equivalence operators. Let G be a Lie group, with associated Lie algebra
L. Let X ∈ L be a group operator, generating a one-parameter group H of
transformations σ(ε). The one-parameter subgroup obtained by conjugation by
some τ ∈ G is H′

τ = τ ◦H ◦ τ−1. It consists of transformations σ′(ε), where
σ′(ε) = τ ◦σ(ε) ◦ τ−1. The group operator X′

τ associated with H′
τ is found by

differentiation as X′
τ =

d
dεσ

′(ε)
∣∣
ε=0

. The linear mapping from X to X′
τ is denoted

by Ad τ . The map τ 	→ Ad τ is a homomorphism of G onto a group of linear
transformations of the Lie algebra L. The group AdG of matrices is called the
adjoint group of G. It gives the action of a transformation group on its Lie algebra.
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4.2. Partial symmetry classification

Calculation and use of the adjoint group is described in [47, §3.3], [52, §14].
Proposition 4.2.3. Let Ĥ ⊆ L̂ be a subalgebra of the equivalence algebra L̂ for
a class C of d.e.’s with equivalence group Q̂. Let φ be an Ĥ-invariant solution of
the auxiliary system A of C, so that E(φ) ∈ C admits H as a symmetry algebra.
Let τ̂ ∈ Q̂ be an equivalence transformation, mapping E(φ) to E(φ′) ∈ C. Then
E(φ′) admits symmetry algebra Ad τ(H) ⊆ L.
Proof. Let Ĥ have associated group Ĥ ≺ Q̂. From the comments above, E(φ′)
admits the symmetry group τ ◦H ◦ τ−1. The algebra associated with this group is
Ad τ(H).

Hence we need only find Ĥ-invariant solutions of A with respect to subalgebras of
L̂, distinct under the adjoint action of Q̂.

The adjoint action of the equivalence group on the equivalence algebra can
be used to construct an optimal system [52, §14], [47, §3.3] of one dimensional
subalgebras. An optimal system is a collection of equivalence operators which are
essentially different (no two operators in the optimal system are connected by
an equivalence transformation) and complete (every operator in the equivalence
algebra is equivalent to an operator in the optimal system). Each operator in the
optimal system gives rise to a classifying d.e. (4.5) for the arbitrary elements. No
two such classifying d.e.’s are connected by an equivalence transformation. Also
every possible classifying d.e. is connected to a classifying d.e. associated with an
operator in the optimal system. Hence the optimal system of one dimensional sub-
algebras gives a minimally short list of classifying d.e.’s, which are then integrated
one by one.

Integration of (4.5) gives rise to additional parameters—the constants of inte-
gration. These constants of integration may be removable using the action of any
remaining equivalence transformations. Let Ĥ ≺ Q̂ be a subgroup of the equiva-
lence group Q̂ of a class C of d.e.’s with auxiliary system A, and let CĤ ⊆ C be
the subclass of d.e.’s

CĤ = {E(φ) ∈ C | φ is an Ĥ-invariant solution of A}.
Thus CĤ is the set of equations in C admitting H as a symmetry group.

Proposition 4.2.4. The subclass CĤ of d.e.’s inherits the normalizer

NQ̂(Ĥ) = {τ̂ ∈ Q̂ | τ̂ ◦ Ĥτ̂−1 = Ĥ}
of Ĥ in its equivalence group. In particular, CĤ has common symmetries K̂ and
Ĥ.
Proof. From Theorem 3.4.4, NQ̂(Ĥ) maps Ĥ-invariant solutions of A to Ĥ-invariant
solutions of A. Hence NQ̂(Ĥ) consists of transformations mapping solutions of
E(φ) ∈ CĤ to solutions of E(φ′) ∈ CĤ. Hence NQ̂(Ĥ) consists of equivalence
transformations of CĤ. The statement about common symmetries is trivial.

This result is related to, but distinct from, Theorem 3.4.7, which was concerned
with inheritance of equivalence transformations when the d.e.’s E(φ) ∈ C were
reduced with respect to the action of a subgroup of the common symmetries K̂. In
Proposition 4.2.4, no group reduction of E(φ) is being effected: instead, by group
reduction of the auxiliary system A, one picks out a subclass of equations which
share some symmetry group H.
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Chapter 4. Symmetry Group Classification

4.2.3 Partial symmetry classification for nonlinear diffusion
convection

We now perform a partial classification of the potential system form (3.78)

vx = u
vt = D(u)ux −K(u)

(4.8)

of the nonlinear diffusion convection equation. The equivalence algebra L̂ (3.80)
for this class is ten-dimensional, with seven operators having a nontrivial action
on the diffusivity and conductivity functions D(u),K(u). To write condition (4.5)
it is convenient to project these operators to action on (u, a, b) space:

X̃3 = ∂b
X̃4 = u ∂b
X̃5 = ∂u
X̃6 = u ∂u + 1

2b ∂b − a ∂a
X̃9 =u2 ∂u +ub ∂b − 2ua ∂a
X̃7 = b ∂b
X̃8 = a ∂a

(4.9)

This neatly removes the common symmetries X̂0, X̂1, X̂2. We denote this pro-
jected Lie algebra by L̃. The operators X̃3, . . . ,X̃9 generate the Lie group (see
3.82)

u =
αu′ + β
γu′ + δ

b = λ
b′ − µu′ − ε
γu′ + δ

a = ρ(γu′ + δ)2 a′ (4.10)

where ρ > 0, λ �= 0, αδ − βγ = 1. This projected group action is denoted by Q̃
(compare (3.82)).

Applying a general linear combination

Ỹ =
9∑
i=3

ciX̃i (4.11)

of equivalence operators (4.9) to the equations a = D(u), b = K(u) yields a
classifying system (4.5) in the form

(c9u2 + c6u+ c5)ȧ = (−2c9u+ c8 − c6)a
(c9u2 + c6u+ c5)ḃ = (c9u+ 1

2c6 + c7)b+ (c4u+ c3). (4.12)

A solution a = D(u), b = K(u) of this classifying system of d.e.’s gives a diffusion
convection system admitting the symmetry Y =

∑9
i=3 ciXi, in addition to the

common translation symmetries

Y0 = ∂v, Y1 = ∂x, Y2 = ∂t . (4.13)
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4.2. Partial symmetry classification

Instead of a frontal assault on (4.12), we use Proposition 4.2.3 to remove pa-
rameters ci before integrating. Direct substitution of the group (4.10) into Ỹ
(4.11) gives the adjoint action on the constants ci specifying Ỹ. Suppose that
Ỹ =

∑
ciX̃i maps to Ỹ′ =

∑
c′iX̃

′
i, where in an obvious notation, X̃′

4 = u′ ∂∂b′
and so forth. The adjoint action is a linear map, with matrix form



c8
c7
c9
c6
c5
c4
c3




′

=




1
1

C

µ
B A

ε







c8
c7
c9
c6
c5
c4
c3




(4.14)

with submatrices A, B, C

A = λ

(
α β
γ δ

)
, αδ − βγ = ±1, λ �= 0

B =
(
α(βµ− αε) α(δµ− γε)− 1

2µ γ(δµ− γε)
β(βµ− αε) β(δµ− γε)− 1

2ε δ(δµ− γε)
)

C =


 α2 αγ γ2

2αβ αδ + βγ 2γδ
β2 βδ δ2


 (4.15)

The adjoint action (4.14) is used to simplify the operator Ỹ. For this it is
helpful to know the three invariants

J = c24 − 4c3c9, c7, c8 (4.16)

of the adjoint group action. For example, knowing that J is invariant under ad-
joint actions, it is immediately possible to assert that diffusivities D(u) satisfying
equation (4.12) are sorted into three distinct classes, namely J < 0, J = 0 and
J > 0. The invariants may be obtained by the methods described in [52, §17.4].
First the Lie algebra L̃ is broken into a direct sum of the centre {X̃8} and its
complement L̃6 = {X̃3, X̃4, X̃5, X̃6, X̃9, X̃7}. The coefficient c8 of X̃8 in this de-
composition is an invariant of the adjoint action. The invariant c7 is obvious by
inspection, while J can be found from the Killing polynomial of L̃6. Finally an
optimal system of one-parameter subalgebras of L̃ is constructed: such a system
is shown in Table 4.2. For each subalgebra we also give its normalizer.

With the optimal system of one dimensional subalgebras known, it remains to
integrate classifying equations (4.12) for each operator in the optimal system. We
illustrate the procedure for Case 1 from Table 4.2, for which c6 = 1, c7 = n − 1

2 ,
c8 = m+ 1, and n �= 0, 1. Classifying system (4.12) becomes

uȧ = ma, uḃ = n b,

which is easily integrated, yielding

a = D(u) = D0 |u|m, b = K(u) = K0|u|n. (4.17)

We require the diffusivity D(u) to be positive, so D0 > 0; the constant K0 is
unrestricted. By Proposition 4.2.4, this subclass (4.17) of diffusion convection
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Case Operator Normalizer Diffusivity D(u) Conductivity K(u)

∗1. X6 + (n− 1
2 )X7 + (m+ 1)X8, n �= 0, 1 X7 |u|m K0|u|n

2. X4 +X6 + 1
2X7 + (m+ 1)X8 X4 |u|m u log |u|+K0u

3. X5 +X7 +mX8 X7 emu K0e
u

4. 2X4 +X5 +X8 X3 eu u2 +K0

5. X5 +X8 X3,X7 eu K0

6. 2X4 +X5 X3,X6 + 3
2X7 1 u2 +K0

7. X5 X3,X6,X7 1 K0

8. X7 +mX8 X5,X6,X9

{
arbitrary if m = 0
inconsistent otherwise

0

9. X8 (Whole algebra) inconsistent

10. X3 +X8 X4,X5,X6 − 1
2X7 inconsistent

11. X3 X4,X5,X6,X7 inconsistent

†12. X5 +X9 + nX7 +mX8 X7
1

1 + u2
exp(m tan−1 u) K0

√
1 + u2 expn tan−1 u

∗ Parameters (m,n) can be further restricted to lie in the region Ω = {m > −1, n �= 0, 1} ∪ {m = −1, n ≥ 1
2 , �= 1}

† Parameters (m,n) may be taken to lie in the region Λ = {n > 0} ∪ {n = 0,m ≥ 0}

Table 4.2: Optimal system of one-dimensional subalgebras of L̃ (4.9) for nonlinear diffusion convection potential system (4.8). The
normalizer of the algebra spanned by Y consists of Y itself, X8, and the operators in the ‘Normalizer’ column. D(u) and K(u) are found
by integration of (4.12). A multiplicative constant D0 has been removed from D(u), using action of X8.
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4.2. Partial symmetry classification

systems takes the normalizer X7, X8 as equivalence operators; by construction
X6+(n− 1

2 )X7+(m+1)X8 is a common symmetry of the subclass. Action of X8

can scale D0 to unity; similarly X7 can scale K0 to 1 unless K0 = 0. If K0 = 0,
X̂7 has trivial action on the equation, and is another symmetry (in fact, the
Boltzmann scaling group for diffusion equations). There remains a certain amount
of bookkeeping to ensure cases are not repeated. For example, D(u) = |u|m,
K(u) = 0 occurs again in Case 8. This equation admits two symmetry operators,
which occur as distinct cases in the optimal system.

Several operators in the optimal system of Table 4.2 have no associated solu-
tions of (4.12), or else give D(u) = 0, which we ruled out a priori. These cases
are marked ‘inconsistent’.

Case 8 with m = 0 (K(u) = 0, D(u) arbitrary) gives the class of potential
diffusion systems (3.57), and shows that this class inherits as common symmetries
X̂0, X̂1, X̂2 from the diffusion convection equation, plus the additional common
symmetry X̂7. The four remaining operators X5, X6, X9, X8 in the normal-
izer of X̂7 give the four ‘true’ equivalences (3.56) of the diffusion system. This
nicely illustrates Proposition 4.2.4 on inheritance of equivalences by subclasses
with symmetry.

Once all the repeats are weeded out, we finally obtain the partial classification
of diffusion convection potential systems shown in Tables 4.3, 4.4. Constants
of integration have been removed where possible. In addition to the symmetry
operators shown, certain discrete symmetries are inherited from the equivalence
group: these are noted in the table. Mostly these are obvious reflections, but we
draw attention to the cases D(u) = u−1, K(u) = 0 and D(u) = u−1, K(u) = u1/2,
which have the hodograph-type transformation (3.84) as a discrete symmetry.

The symmetries listed in Tables 4.3, 4.4 for the diffusion convection potential
system (4.8) are local symmetries of the scalar diffusion convection equation (3.71)
unless X9 has a nonzero component. Thus the only listed equations with nonlocal
inherited symmetries are the ‘em tan−1 u’ cases. (Because of the nonlocality, this
case does not appear for the scalar equation (Table 4.1)). However, many nonlocal
inherited symmetries are hidden by the parameter removal we have effected. The
coefficients listed in Table 4.4 are representatives of families D(u), K(u) obtained
by applying equivalence transformations (3.81) to the listed D(u), K(u). Since
(3.81) includes nonlocal ‘potential equivalences’, the local symmetries listed in
Tables 4.3 4.4 may correspond to nonlocal symmetries of the related D(u), K(u).

To exhibit the nonlocal inherited symmetries, we insert parameters using the
potential equivalence group (3.81), then remove as many as possible using just the
local equivalence group (3.74). The resulting nonlocal symmetries are shown in
Table 4.6. We emphasize that all D(u), K(u) in Table 4.6 correspond to cases in
Tables 4.3, 4.4. The close resemblance between Cases 1b and 1d; and between
Cases 2a and 2f, reflects the fact that they are connected by a complex-valued
transformation u 	→ iu, m 	→ im.

The partial classification gives significant insight into the symmetry structure
of the diffusion convection potential system (4.8), and several interesting potential
symmetries [15] are uncovered by the method. On the basis of the analysis we can
make no statement about the possible completeness of the results in Tables 4.3, 4.4.
A direct approach to symmetry classification of the diffusion convection system
(4.8) is significantly more difficult than for the case where convection is absent,
which is analyzed in [3, 15, 4]. This is due to the presence of two arbitrary func-
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Case Equation Symmetry Operators
1. K(u) = 0 (Diffusion case) Y3 = X7 = v ∂v + x ∂x + 2t ∂t

a. D(u) = 1 Y4 = X6 − 1
2X7 +X8 = v ∂v + u ∂u

(linear heat) Y5 = X5 = x ∂v + ∂u

∗b. D(u) = |u|m, m ≥ −1, �= 0 Y4 = X6 − 1
2X7 + (m+ 1)X8

= (m+ 2)v ∂v + (m+ 1)x ∂x + (m+ 2)t ∂t + u ∂u

c. D(u) = eu Y4 = X5 +X8 = (v + x) ∂v + x ∂x + t ∂t + ∂u

†d. D(u) =
1

1 + u2
exp(m tan−1 u), Y4 = X5 +X9 +mX8

m ≥ 0 = (mv + x) ∂v + (mx− v) ∂x +mt∂t + (1 + u2) ∂u

∗ Reflection symmetry v 	→ −v u 	→ −u.
The case m = −1 also admits the hodograph x 	→ v, v 	→ x, u 	→ 1/u.

† Case m = 0 admits reflection symmetry v 	→ −v, u 	→ −u.

Table 4.3: Partial symmetry classification for diffusion convection potential system (4.8): Case K(u) = 0 (diffusion equations). Operators
shown are in addition to common translations Y0 = ∂v, Y1 = ∂x, Y2 = ∂t. Operator Y3 and reflection symmetry x 	→ −x, v 	→ −v are
common to all cases.
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Case 2. Equation Symmetry Operators
∗a. D(u) = |u|m Y3 = X6 + (n− 1

2 )X7 + (m+ 1)X8

K(u) = |u|n, (m,n) ∈ Ω = (m− n+ 2)v ∂v + (m− n+ 1)x ∂x + (m− 2n+ 2)t ∂t + u ∂u

b. D(u) = 1 Y3 = X6 + 3
2X7 +X8 = −x ∂x − 2t ∂t + u ∂u

K(u) = u2 Y4 = 2X4 +X5 = x ∂v + 2t ∂x + ∂u

†c. D(u) = |u|m Y3 = X4 +X6 + 1
2X7 + (m+ 1)X8

K(u) = u log |u| = (m+ 1)v ∂v + (t+mx) ∂x +mt∂t + u ∂u

d. D(u) = emu Y3 = X5 +X7 +mX8

K(u) = eu = (x+mv − v) ∂v + (m− 1)x ∂x + (m− 2)t ∂t + ∂u

e. D(u) = eu Y3 = X4 +X5 +X8

K(u) = u2 = (v + x) ∂v + (x+ t) ∂x + t ∂t + ∂u

‡f. D(u) =
1

1 + u2
exp(m tan−1 u) Y3 = X5 +X9 + nX7 +mX8

K(u) =
√
1 + u2 exp(n tan−1 u), (m,n) ∈ Λ = (mv − nv + x) ∂v + (−v +mx− nx) ∂x + (m− 2n)t ∂t + (1 + u2) ∂u

∗ Admits reflection symmetry x 	→ −x u 	→ −u.
Parameter region Ω = {n > 1

2 , �= 1} ∪ {n = 1
2 ,m ≥ −1}

Case (m,n) = (−1, 1/2) also admits hodograph x 	→ v, v 	→ x, u 	→ 1/u.
† Admits reflection symmetry v 	→ −v, u 	→ −u.
‡ Parameter region Λ = {n > 0} ∪ {n = 0,m ≥ 0}.
Case (m,n) = (0, 0) admits reflection symmetry x 	→ −x, u 	→ −u.

Table 4.4: Partial symmetry classification for diffusion convection potential system (4.8): Case with nonlinear convection present. Oper-
ators shown are in addition to common translations Y0 = ∂v, Y1 = ∂x, Y2 = ∂t.
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Case Diffusivity (Conductivity K(u) = 0) Nonlocal symmetry operator

1a. D(u) = u−2 Y = v ∂x − u2 ∂u

b. D(u) =
1

|1− u2|
∣∣∣1 + u
1− u

∣∣∣m/2, m �= ±2 Y = (mv + x) ∂v + (v +mx) ∂x +mt∂t + (1− u2) ∂u

c. D(u) = u−2e1/u Y = v ∂v + (v + x) ∂x + t ∂t − u2 ∂u

d. D(u) =
1

1 + u2
exp (m tan−1 u) Y = (mv + x) ∂v + (−v +mx) ∂x +mt∂t + (1 + u2) ∂u

Table 4.5: Nonlocal symmetries inherited from equivalence group (3.81) of diffusion convection potential system (4.8): Case K(u) = 0
(diffusion equations). Case numbering matches Table 4.3, but in 1b the parameter m does not correspond. Parameters have been removed

using local equivalences (3.74) only. Note that
∣∣∣1 + u
1− u

∣∣∣m/2 ≡ exp(m tanh−1 u).
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Case Diffusivity, Conductivity Nonlocal symmetry operator

2a. D(u) =
1

|1− u2|
∣∣∣1 + u
1− u

∣∣∣m/2 Y = ((m− n)v + x) ∂v + (v + (m− n)x) ∂x

K(u) = |1− u2|1/2
∣∣∣1 + u
1− u

∣∣∣n/2, n �= ±1 + (m− 2n)t ∂t + (1− u2) ∂u

b. D(u) = u−2 Y = 2t ∂v + v ∂x − u2 ∂u

K(u) = u−1

c. D(u) =
1

|1− u2|
∣∣∣1 + u
1− u

∣∣∣m/2 Y = ((m− 1)v + x− 2t) ∂v + (v + (m− 1)x+ 2t) ∂x

K(u) = (1 + u) log
∣∣∣1 + u
1− u

∣∣∣ + (m− 2)t ∂t + (1− u2) ∂u

d. D(u) = u−2em/u Y = (m− 1)v ∂v + (v + (m− 1)x) ∂x + (m− 2)t ∂t − u2 ∂u

K(u) = ue1/u

e. D(u) = u−2e1/u Y = (v − 2t) ∂v + (v + x) ∂x + t ∂t − u2 ∂u

K(u) = u−1

f . D(u) =
1

1 + u2
exp (m tan−1 u) Y = ((m− n)v + x) ∂v + (−v + (m− n)x) ∂x

K(u) =
√
1 + u2 exp (n tan−1 u)

+ (m− 2n)t ∂t + (1 + u2) ∂u

Table 4.6: Nonlocal symmetries inherited from equivalence group (3.81) of diffusion convection potential system (4.8). Case numbering
matches Table 4.4, but in 2a and 2c, the parameter m does not correspond. Parameters have been removed using local equivalences

(3.74) only. Note that
∣∣∣1 + u
1− u

∣∣∣m/2 ≡ exp(m tanh−1 u).
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Chapter 4. Symmetry Group Classification

tions D(u), K(u) instead of one. In fact it has not been possible to complete the
calculations by hand. Reid’s method [55, 57] as implemented in the symbolic lan-
guage Maple can complete the calculations only after great labour. Due to the
complexity of the output classifying equations (a typical case is the fourth order
nonlinear system reproduced as (4.107)), it is difficult to interpret the results. We
shall take up this point again in §4.5, where the complete symmetry classification is
calculated by incorporating equivalence group information into a modified version
of Reid’s method. The result is that the partial classification above misses symme-
tries in only two cases, namely the linearizable equations discussed in §4.2.3: linear
heat/Bluman-Kumei; and Burgers’/Fokas-Yortsos’ systems. Apart from this the
partial classification is complete. This is remarkable considering the relatively
small labour involved in deriving these symmetry results.

Oron and Rosenau [49, Table 3(b)] give a symmetry classification for the scalar
potential form (3.79) of the diffusion convection equation, whose symmetry and
equivalence properties are identical to the potential system form (4.8). Like their
classification for the scalar form (3.71), there are many errors and omissions in
their results. In particular, none of the potential symmetries of Table 4.6 are
found. Moreover they do not detect Case 2e at all, and of the cases D(u) = um,
K(u) = log |u|; D(u) = um, K(u) = u log |u| related to 2c they find only the
special case D(u) = 1, K(u) = log u. Partial classification offers a valuable check
on symmetry calculations using other methods: just knowing classifying system
(4.12) alerts one to major omissions in stated results.

Akhatov, Gazizov and Ibragimov [4] independently discovered the partial clas-
sification method (their ‘preliminary classification’). They use the adjoint group
in the same way as we do to construct an optimal system of subalgebras (see also
[32]) and give a short list of essentially different cases. Our Proposition 4.2.4 is
new. Combined with the results in §3.4.1, it gives a simple but powerful way of
predicting how much symmetry and equivalence is inherited by a subclass CĤ of
d.e.’s from its parent class C, or by a class of group invariant reduced equations
C/H from C. These results may be chained together. This process is appealing,
since it uses one calculation of an equivalence group to the maximum possible
extent, making symmetry results available without calculating or solving deter-
mining equations.

The price paid for these easily obtained symmetry and equivalence results is
that there is no guarantee of completeness: there may be symmetries and equiva-
lences other than the inherited ones.

In [4], Akhatov, et al. performed a partial classification for various potential
forms of one-dimensional gas dynamics equations. For one of their examples, a
nonlocal equivalence transformation appears. They were also able to perform a
complete symmetry classification, and as in our example, almost all the symmetries
are inherited from the equivalence group. Another partial classification example is
given in [32]. This case is less interesting, since there are no nonlocal equivalence
transformations present.

4.3 Modification of Reid algorithm

We now consider symmetry group classification for a class C of d.e.’s, where now we
ask for the full group, not just symmetries inherited from the equivalence group of
C. The goal is to discover ‘classifying conditions’ for the arbitrary elements which
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discriminate between cases with different symmetry properties (see the discussion
at the beginning of §4.2.1).

The systematic classification of symmetry groups for a class of differential equa-
tions is due to Reid [55, 57], whose method is based on an algorithm for reducing
an arbitrary system of p.d.e.’s to involutive form. His method does not utilize the
transformation information contained in the equivalence group. This is an advan-
tage in the sense that the input to the method is an easily derived and standard
object, namely the determining equations for the symmetry operators. However,
there are less desirable consequences. For example, two d.e.’s which are connected
by an equivalence transformation may appear on different branches of the classi-
fication. Moreover, the algorithm can produce ‘classifying’ conditions which are
completely spurious—the symmetry results on both branches can be identical. An
analogous situation arises with linear algebraic systems with symbolic entries: the
solution structure of (

a b
c d

)(
x
y

)
=
(
0
0

)

depends only on the determinant ad−bc, whereas Gaussian elimination also splits
the calculation on two different paths depending whether a = 0 or not. Reid’s
method is a ‘Gaussian elimination’ method for linear differential equations, and
can give the same kind of spurious case splittings.

As we have seen, the equivalence group Q̂ includes nontrivial symmetry in-
formation. This information can be made available through partial classification
(§4.2) or the Tresse-Cartan equivalence method. Both methods proceed syntheti-
cally, constructing equations with symmetries without forming determining equa-
tions. However, these methods can only yield symmetries which lie in the equiv-
alence group. One could circumvent this by sufficiently enlarging the class of
equations until its equivalence group includes every possible symmetry transfor-
mation. However, this quickly leads to computationally intractable problems. One
feels that there ought to be a way to use the partial symmetry information from
the equivalence group to one’s advantage when finding the complete classification.
Until now there has been no way to do this. In [4], Akhatov, et al. compute both
partial and complete symmetry classifications for one example in gas dynamics,
but the two calculations are disjoint. No advantage accrues from knowing the
equivalence group until the end, when it is used merely to remove parameters.

We seek to combine the best features of Reid’s approach with those of the
Tresse-Cartan method. Rather than avoiding determining equations altogether,
we use the equivalence group Q̂ to rewrite the determining equations in a radically
different form. Distinct equations E(φ), E(φ′) in a class C in general give rise to
distinct determining systems. This is true even when they are connected by a
transformation from Q. We rewrite the determining system in a form which is
invariant under the action of Q̂, so that if E(φ) and E(φ′) are connected by
an equivalence transformation, they have identical determining systems. The
equivalence information is then ‘built in’. Provided subsequent manipulations
are in terms of Q̂-invariant operations, the invariance property of the determining
system under action of Q̂ is preserved. Symmetry classification is then performed
by reformulating Reid’s algorithm in terms of invariant operations.

Our method takes the results of the Tresse-Cartan equivalence method, and
uses them as input to the invariant Reid method. If no equivalence information
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is available, or if the equivalence group is trivial, our method is just Reid’s. Con-
versely, if the equivalence group is known to contain every symmetry, our method
becomes the Tresse-Cartan method. Usually we are in the intermediate situation,
where a nontrivial equivalence group is available, but is not guaranteed to contain
all symmetries.

We believe this major reformulation of infinitesimal symmetry methods to be
new. Our method should permit resolution of group classification problems which
are computationally infeasible to Cartan or Reid used alone. The simplification
and structure this process gives to the Reid classification method can be very great
indeed. As an example, we give the complete symmetry group classification for
the nonlinear diffusion convection equation in potential form.

4.3.1 Moving frame and determining equations

Initially we concentrate our attention on Reid’s algorithm for reducing a system
of determining equations to involutive form. His calculations are carried out in
a fixed coordinate system. In particular, the differential operators ∂wj in the
system represent derivatives with respect to a coordinate system. Moreover the
dependent variables ζj are components of a vector field Y = ζj∂wj referred to
this coordinate basis ∂wj . Subsequent manipulations, in particular computation
of compatibility conditions, are performed by taking derivatives ∂wj of equations
in the determining system. Our first goal is to modify Reid’s involution algorithm
so that all these steps are referred to an arbitrary moving frame. We begin by
introducing the necessary theoretical machinery.

Definition 4.3.1. Let W be a ν-dimensional space. A moving frame on W is a
set of ν smooth vector fields ∆1, ∆2, . . . , ∆ν which are linearly independent at
each point in W .

Ultimately any moving frame can be referred to the coordinate frame

∂w1 , ∂w2 , . . . , ∂wν

associated with the coordinate system w, as

∆i = A
j
i (w)∂wj .

The ν × ν matrix Aji (w) of smooth functions is to be nonsingular at every point
w. More generally, given a frame {∆i}νi=1, we may change frame to

∆′
i = A

j
i (w)∆j

where the smooth nonsingular matrix Aji (w) is the change of frame matrix . It is
convenient to write this explicitly in vector-matrix form


∆′

1

∆′
2
...
∆′
ν


 =



A1

1(w) A2
1(w) . . . Aν1(w)

A1
2(w) A2

2(w) . . . Aν2(w)
...

...
. . .

...
A1
ν(w) A2

ν(w) . . . Aνν(w)






∆1

∆2

...
∆ν




or, more briefly,

∆′ = A∆ (4.18)

92



4.3. Modification of Reid algorithm

If a change of coordinates w 	→ w′ is executed, the change of coordinate frame
from ∂w = (∂w1 ∂w2 . . . ∂wν ) to ∂w′ = (∂w′1 ∂w′2 . . . ∂w′n) is given by (4.18) with

A being the Jacobian matrix, Aji =
∂wj

∂w′i . In general, however, the matrix A is
arbitrary, and not derived from a change of coordinates.

We shall always denote frame operators by upper case Greek letters ∆, Λ, etc.
Moving frames are widely used in geometry, and we refer to [65, Vol. II, §7] or any
other modern differential geometry text for further information. Our orientation
is more computational than most treatments.

Vector field referred to frame

A vector field Ymay be referred to a coordinate frame ∂w as

Y= ζi(w)∂wi .

A vector field may also be referred to a moving frame ∆, since the basis vector
fields ∆i are linearly independent at every point w:

Y= θi∆i.

It is convenient to write θ = (θ1 θ2 . . . θν)T , so that

Y= θT∆.

We used θ earlier to name functions u = θ(x), but no confusion should arise since
we have no further need to assign u as a function of x.

Suppose a change of frame (4.18) is executed. Then

Y= θ′T∆′

where

θ′ = (AT )−1θ, (4.19)

showing how components of a vector field transform under change of frame.

Example 4.3.2. The following frame arises in the analysis of the nonlinear diffusion
convection potential system. We draw our examples in this section from this
equation, its equivalence group and its symmetry analysis. A complete symmetry
analysis based on the methods of this section will be presented in §4.5.2.

Let ∂ = (∂v, ∂x, ∂t, ∂u)T be a coordinate frame on a space (v, x, t, u). Introduce
the moving frame ∆ given by

∆1 = ∂v

∆2 = ∂x

∆3 = ∂t + K̇(u)∂x + (uK̇(u)−K(u))∂v
∆4 = ∂u (4.20)

where K(u) is some smooth function. The determinant of the change of frame
matrix is 1, in particular it is nonzero, so ∆ is indeed a moving frame.

Let

Y= χ∂v + ξ∂x + τ∂t + η∂u
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be an arbitrary vector field, with χ, ξ, τ , η functions of (v, x, t, u). Resolving this
with respect to the moving frame ∆, i.e. Y= θi∆i, we find

θ1 = χ− (uK̇(u)−K(u))τ
θ2 = ξ − K̇(u)τ
θ3 = τ

θ4 = η. (4.21)

Structure relations

Since the commutator [∆i,∆j ] of two vector fields ∆i, ∆j from a moving frame is
a vector field, it must be expressible as a linear combination of ∆k at each point:

[∆i,∆j ] = γkij∆k, (4.22)

where γkij are functions of w, which we call the structure functions. Relations
(4.22) will be called the structure relations for the moving frame ∆. Clearly γkij is
antisymmetric in the lower indices γkij = −γkji.
Example 4.3.2. (cont.) For the moving frame ∆ (4.20), we compute

[∆1,∆2] = 0 [∆1,∆3] = 0 [∆1,∆4] = 0
[∆2,∆3] = 0 [∆2,∆4] = 0

[∆3,∆4] = −K̈(u)(∆2 + u∆1).
(4.23)

In general a moving frame does not derive from a coordinate system: it is a
standard result [65, Vol. I, Theorem 5.14] that a frame represents a coordinate
system if and only if [∆i,∆j ] = 0 for each i, j. In general, frame operators ∆i
may be algebraically manipulated in much the same way as partial derivatives—
in particular they are linear differential operators obeying Leibniz’ rule ∆i(fg) =
f∆ig+g∆if—except that they may not be freely permuted. Instead the structure
relations (4.22) must be consulted to execute any changes in order of application
of the frame operators ∆i. We examine this process in more detail.

Let J = (j1, j2, . . . , jp) be an ordered multi-index. Denote the number of
indices by |J | = p. We shall often write

∆J ≡ ∆jp . . .∆j2∆j1

for brevity, so that ∆ij = ∆j∆i. The ordering of indices should be carefully noted:
this is consistent with the convention that uxy ≡ ∂y∂xu.

Suppose I is a permutation of J . If ∆i represented derivatives with respect
to a coordinate system we would have ∆I = ∆J . In this case, the only feature
of importance in J is the number of 1’s, 2’s, . . . , ν’s. For general frames this
is not so, and order in a multi-index is important. Nevertheless ∆I and ∆J are
“essentially” the same in the sense that they differ only by “lower order terms”.

Proposition 4.3.3. Let I be a permutation of a p-th order multi-index J , and let
∆ be a frame. Then

∆I = ∆J +
∑

|K|≤p−1

CK∆K

where CK are certain coefficient functions expressible in terms of the frame’s struc-
ture functions γkij and their frame derivatives.
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Proof. For p = 1 the proposition is trivial; structure relations (4.22) in the form
∆ij = ∆ji + γkij∆k express its truth for p = 2. For arbitrary p the structure
relations (4.22) show how to effect pairwise interchanges of neighbouring ele-
ments. Let J ′ be obtained from J by such a pairwise interchange of indices:
J = (j1j2 . . . jklmjk+3 . . . jp), and J ′ = (j1j2 . . . jkmljk+3 . . . jp). Then

∆J ′ = ∆J +∆jk+3...jp(γ
q
lm∆q)∆j1j2...jk .

The second term is of order p− 1 and by Leibniz’ rule may ultimately be written
as

∑
|K|≤p−1

CK∆K , for some coefficients CK . Since any permutation can be ef-

fected by a sequence of pairwise interchanges of neighbouring elements, repeated
application of this argument yields the proposition.

In future we refer to the lower order correction terms as ‘permutation terms’:
they are expressible solely in terms of the structure functions γkij and their frame
derivatives.

Change of frame

Suppose a frame ∆ has structure relations (4.22). Executing a change of frame
(4.18) to Λ, a direct calculation gives

[Λi,Λj ] = βkijΛk

with new structure functions

βkij = B
k
l

(
ApiA

q
jγ
l
pq +A

p
i∆p(A

l
j)−Apj∆p(Ali)

)
(4.24)

where the matrix B = [Bij ] is the inverse B = A−1 of the change of frame matrix,
so AikB

k
j = δij . Thus structure functions for the new frame are available in terms

of the old structure functions, the change of frame matrix, its inverse, and its
frame derivatives. Note that unlike the structure constants Ckij of a Lie algebra,
the structure functions do not generally constitute a tensor.
Example 4.3.2. (cont.) Suppose we change frame from ∆ (4.20) to Λ given by

Λ1 = D1/2(u) (∆2 + u∆1)
Λ2 = Ḋ(u)D−3/2(u)∆2 +D−3/2(u)(uḊ(u) + 2D(u))∆1

Λ3 = ∆3

Λ4 = 1/D(u)∆4 (4.25)

where D(u) > 0 is a strictly positive smooth function. We compute, for example

[Λ2,Λ4] = D−5/2Ḋ [∆2,∆4] +D−5/2(uḊ + 2D) [∆1,∆4]

+
(
D−3/2Ḋ∆2(D−1) +D−3/2(uḊ + 2D)∆1(D−1)

)
∆4

+D−1∆4(ḊD−3/2)∆2 −D−1∆4(D−3/2(uḊ + 2D))∆1.

The first two terms vanish by virtue of structure relations (4.23) for ∆i. Frame
derivatives of u, D(u) and Ḋ(u) are required. However, the original definition
(4.20) of ∆ shows ∆1D(u) = ∆2D(u) = 0, while ∆4D(u) = Ḋ(u). Hence

[Λ2,Λ4] = −D−7/2(DD̈ − 3/2Ḋ2)(∆2 + u∆1)
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We must now express this in terms of Λi:

[Λ2,Λ4] = −L(u)Λ1

where the function L(u) is given by

L(u) =
D(u)D̈(u)− 3

2Ḋ(u)2

D(u)4
. (4.26)

Carrying out similar manipulations gives structure relations for Λ:

[Λ1,Λ2] = 0 [Λ1,Λ3] = 0 [Λ1,Λ4] = − 1
2Λ2

[Λ2,Λ3] = 0 [Λ2,Λ4] = −L(u)Λ1

[Λ3,Λ4] = −I(u)Λ1

(4.27)

where I(u) = K̈(u)D−3/2(u).

Infinitesimal determining equations

The determining equations are linear homogeneous p.d.e.’s for the components ξi,
ηj of a symmetry vector field

Y= ξi∂xi + ηj∂uj .

In the determining equations there is no distinction between the independent and
dependent variables x, u of the original d.e.’s: all x, u are independent variables
of the determining system. As in §3.1 we use the notation w = (x, u), and as in
§3.3.1 denote the corresponding infinitesimals by ζ = (ξ, η), so that Y = ζi∂wi .
Thus the determining equations are expressed in terms of

(i) Differential operators ∂wi , which operate on the dependent variables ζi of
the determining system.

(ii) Components ζi of a vector field, referred to the coordinate frame ∂wi .

(iii) Coefficient functions, which are functions of w.

Instead of referring determining equations to the w coordinate system, we refer
them to an arbitrary moving frame. By the process described above, we change
frame to ∆. The determining equations will be expressed in terms of

(i′) Differential operators ∆i, operating on the ‘dependent variables’ θi of the
system, and given by (4.18).

(ii′) Components θi of a vector field, referred to the moving frame ∆i, and given
by (4.19).

(iii′) Coefficient functions, which are functions of w. The new coefficient functions
are expressed in terms of the old coefficients, and the change of frame matrix,
its inverse, and its frame derivatives of various orders.

Clearly the determining equations are linear and homogeneous in θi. However,
when written with respect to the frame they are not (as it stands) differential
equations. A frame system is a system of d.e.’s referred to a moving frame.
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Example 4.3.4. The diffusion convection potential system (4.8)

vx = u
vt = D(u)ux −K(u)

leads to determining equations

∂vτ = 0
∂xτ = 0
∂uτ = 0 ∂uξ = 0 ∂uχ = 0

η − ∂xχ− u ∂xξ − u2 ∂vξ = 0

Ḋη +D(− ∂xξ − ∂vχ+ ∂tτ + ∂uη) = 0

K̇η +K(− ∂vχ+ ∂tτ + u ∂vξ)−D( ∂xη + u ∂vη) + ∂tχ− u ∂tξ = 0 (4.28)

for the components of a symmetry vector field Y = ξ ∂x + τ ∂t + χ∂v + η ∂u.
Introducing the moving frame ∆ (4.20) in place of the operators ∂x, ∂t, ∂v, ∂u;
and the field components θi (4.21) in place of ξ, τ , χ, η, these equations become

∆1θ
3 = 0

∆2θ
3 = 0

∆4θ
3 = 0

∆4θ
2 + K̈θ3 = 0 ∆4θ

1 + uK̈θ3 = 0

θ4 −∆2θ
1 − u∆1θ

1 − u∆2θ
2 − u2∆1θ

2 = 0

Ḋθ4 +D(−∆1θ
1 −∆2θ

2 +∆3θ
3 +∆4θ

4) = 0

−D(∆2θ
4 + u∆1θ

4) + ∆3θ
1 − u∆3θ

2 = 0 (4.29)

4.3.2 Frame Reid method

Reid [55, 56] described an algorithm for bringing a linear homogeneous system of
partial differential equations to an involutive form, whose compatibility conditions
yield no new relations. Now suppose we have a frame system, i.e., a linear homo-
geneous system for frame derivatives of certain dependent variables θi. We seek
to generalize these ideas to construct a ‘frame involutive’ system. We successively
define orthonomic, reduced orthonomic, and involutive systems with respect to a
frame. These concepts are straight adaptations from the Riquier-Janet-Reid the-
ory [33, 67, 55] for systems of d.e.’s. We attempt to stay as close as possible to
Reid’s methods. We are not aware of other attempts at a ‘frame Riquier-Janet’
theory in the literature: frames are usually used in conjunction with geometric in-
tegrability theorems (Frobenius theorem, Cartan-Kähler theorem), which obscure
the relationship with Reid’s method.

Frame derivatives

Let {∆i}νi=1 be a moving frame on a space (w1, w2, . . . , wν), with structure
relations [∆i,∆j ] = γkij∆k. Let {θi}µi=1 be certain dependent variables. In our
application θi are dependent variables in determining equations for symmetries,
and are components of a vector field Y= θi∆i. However this fact is not used until
§4.5, so we let θi represent any variables. We first establish notation for frame
derivatives. Proposition 4.3.3 shows that ∆I and ∆J are equivalent to within
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lower order terms if I is a permutation of J . In certain circumstances the ordering
of a multi-index J is of no importance. In this case we denote the multi-index J
by [J ], which represents the equivalence class of J under arbitrary permutation.
Thus [I] = [J ] if and only if I is a permutation of J ; the characterizing feature of
[J ] is the number of 1’s, 2’s, . . . , ν’s contained in J . We define Ni(J) to be the
number of occurrences of i in the multi-index J .

Let I and J be two multi-indices of orders p1, p2 respectively, with p1 ≤ p2.
We say I ⊆ J if there exists a (p2−p1)-th order multi-index L such that [J ] = [IL].
Thus (133) ⊆ (3131), since [3131] = [(133)(1)]. Alternatively, I ⊆ J if Ni(I) ≤
Ni(J) for all i.

Definition 4.3.5. Let ∆Iθ and ∆Jθ be two frame derivatives of θ. We say ∆Jθ
is a ((|J | − |I|)-th order) frame derivative of ∆Iθ if I ⊆ J .

Clearly ∆133θ is a derivative of ∆1θ, since ∆133θ = ∆33(∆1θ). Note that
∆133θ is also a (first order) derivative of ∆31θ, since [133] = [(31)(3)]. If I ⊆ J
then ∆Jθ may be obtained from ∆Iθ by application of a frame operator ∆L plus
permutation terms. Thus

∆133θ = ∆313θ +∆3(γk31∆kθ).

Note that if I is a permutation of J , then ∆Jθ is a ‘zeroth-order derivative’ of
∆Iθ.

Order relation on frame derivatives

The Reid [56] and Janet [33] methods for rendering a p.d.e. system involutive
rely crucially on ordering the partial derivatives ∂Juj which occur there (here J
is a multi-index). From our point of view, their method assigns an order relation
not on derivatives ∂Juj , but on equivalence classes of derivatives ∂[J]u

j . If I is a
permutation of J , [I] = [J ], ∂Iuj and ∂Juj are regarded as the same derivative.
In a frame system, the frame derivatives ∆Iθj and ∆Jθj are distinct objects, even
when I is a permutation of J , . However, for purposes of ordering we regard them
as identical. We denote the set of frame derivatives equivalent to ∆Jθj under
permutation by ∆[J]θ

j .

Definition 4.3.6. A Janet ordering of frame derivatives is a total order relation
≺ on equivalence classes ∆[J]θ

j of derivatives with the properties:

1. (transitivity) If ∆[I]θ
i ≺ ∆[J]θ

j and ∆[J]θ
j ≺ ∆[K]θ

k, then ∆[I]θ
i ≺ ∆[K]θ

k.

2. (trichotomy) If ∆[I]θ
i, ∆[J]θ

j are two derivatives, exactly one of (a) ∆[I]θ
i ≺

∆[J]θ
j , (b) ∆[J]θ

j ≺ ∆[I]θ
i, (c) ∆[J]θ

j = ∆[I]θ
i, is true.

3. (preservation under differentiation) If ∆[I]θ
i ≺ ∆[J]θ

j , then ∆[IL]θ
i ≺ ∆[JL]θ

j

for all arbitrary order multi-indices L.

4. (respects differentiation) ∆[J]θ
j ≺ ∆[JL]θ

j for all nonempty multi-indices L.

These properties are essential in determining which derivative should be iso-
lated on the left hand side of an equation. By using Proposition 4.3.3, we can pass
freely between ∆Iθj and ∆Jθj , and we do not distinguish them in the ordering. If
desired, frame derivatives could be further ordered within the equivalence classes
[J ], to give a total order relation on the set of all frame derivatives.
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As an example of a Janet ordering, consider the lexicographic ordering ∆[I]θ
i ≺

∆[J]θ
j if

1. |I| < |J |
2. |I| = |J |, but i < j
3. |I| = |J |, i = j but the first nonzero member of the sequence

N1(I)−N1(J), N2(I)−N2(J), . . . , Nν(I)−Nν(J)
is negative.

(Recall Ni(I) is the number of i’s in the sequence I). For example, suppose there
are two dependent variables θ1, θ2, and two frame operators ∆1, ∆2. Lexicographic
order is

θ1 ≺θ2 ≺ ∆1θ
1 ≺ ∆2θ

1 ≺ ∆1θ
2 ≺ ∆2θ

2 ≺ ∆11θ
1 ≺

{
∆12θ

1

∆21θ
1

}
≺ ∆22θ

1 ≺ ∆11θ
2 ≺

{
∆12θ

2

∆21θ
2

}
≺ ∆22θ

2

Any other convenient ordering satisfying (i)—(iv) of Definition 4.3.6 may be
chosen: Janet orders do not have to be lexicographic. In practice we choose
the ordering during the course of a hand calculation. Our failure to distinguish
between ∆12θ and ∆21θ has the consequence that the standard ‘involutive’ form
eventually attained by our system is not unique: An equation ∆12θ = rhs could be
replaced by ∆21θ = rhs+permutation terms, without upsetting our ordering. This
could be resolved by ordering frame derivatives within each permutation class.

Assuming that an ordering has been chosen for a frame system, we seek to
append all compatibility conditions to the system. Algorithms for this are shown
in Appendix A.1; we illustrate the ideas involved by example.

Orthonomic system

We adapt the concept of orthonomic system [55, 33] to frame systems.

Definition 4.3.7. A linear homogeneous frame system is in orthonomic form if

(i) Each equation is resolved in the form

∆Iθi =
∑
j,J

CJj ∆Jθ
j

(ii) ∆Iθi is strictly higher in the ordering than any terms ∆Jθj on the right
hand side.

(iii) A given derivative ∆Jθj cannot appear in both the left and right hand sides
of the system.

Achieving orthonomic form is basically a linear algebra problem, which is
solved by Gauss-Jordan elimination (see Appendix A.1.1). Requirement (ii) adds
the complication that certain ordering conditions must be respected in the process.

The highest order derivative occurring in an equation will be called the leading
derivative.
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Example 4.3.8. Consider a frame system with dependent variable θ, referred to
the frame Λ considered above (4.25):

−ḊΛ1θ +D2Λ2θ = 0

(2D + uḊ)Λ1θ − uD2Λ2θ = 0
Λ4θ = 0

Λ4Λ3θ − Λ1θ = 0 (4.30)

The frame has structure relations (4.27). Here D = D(u) is some nonzero function
of u.

First we lexicographically order the derivatives occurring in the system,

θ ≺ Λ1θ ≺ Λ2θ ≺ Λ3θ ≺ Λ4θ ≺ Λ4Λ3θ.

The highest ordered derivative occurring is Λ4Λ3θ, and we isolate it on the left
hand side Λ4Λ3θ = Λ1θ. The next highest is Λ4θ, which is already isolated.
Neither of these leading derivatives occur elsewhere in the system, so no substi-
tutions are required yet. The next highest derivative is Λ2θ, which is the leading
derivative in both the first two equations. Choosing the first one arbitrarily, and
isolating Λ2θ gives Λ2θ = Ḋ

D2Λ1θ. Substituting this into the second equation
yields Λ1θ = 0. This must now be substituted throughout, giving Λ2θ = 0, and
Λ4Λ3θ = 0. Finally we achieve orthonomic form:

Λ1θ = 0, Λ2θ = 0, Λ4θ = 0, Λ4Λ3θ = 0 (4.31)

Note that choice of ordering helps matters here. If we had Λ2θ ≺ Λ1θ in the order,
division by either Ḋ or 2D+ uḊ would have been necessary. This requires one of
these coefficients to be nonvanishing, which imposes restrictions on Ḋ which were
not needed in the ordering originally chosen. In a hand calculation one can vary
the ordering of derivatives during the procedure in order to avoid such divisions
for as long as possible.

Reduced Orthonomic Form

A frame system in orthonomic form separates the derivatives unambiguously into
two classes (those which occur on the left hand side and those which do not).
However, the resolution of the system is unsatisfactory in that one may have
derivatives which are derivatives of leading derivatives.

Definition 4.3.9. A reduced orthonomic system is a frame system in orthonomic
form (satisfying (i), (ii), (iii) of Definition 4.3.7) and also

(iv) No derivative in the system is the derivative of any derivative on the left
hand side.

Note that, since we regard ∆i∆jθ as a derivative of ∆iθ, a system with both
∆iθ and ∆i∆jθ on the left hand side would not be in reduced orthonomic form.

Suppose we are given an orthonomic system, in which ∆Jθj is a deriva-
tive of some leading derivative ∆Iθj . Thus [J ] = [IL] for some multi-index L,
and ∆Jθj = ∆L∆Iθj + permutation terms. The system includes an equation
∆Iθj = rhs (since ∆Iθj is leading). Execute the substitution of this into ∆Jθj ,
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replacing ∆Jθj by ∆L(rhs)+permutation terms. Reid calls this an implicit substi-
tution, and we retain this terminology. The only additional feature in our process
is the presence of permutation terms resulting from noncommuting frame oper-
ators. Reduced orthonomic form is achieved by executing all possible implicit
substitutions throughout a system (see Appendix A.1.2).

Example 4.3.10. We bring system (4.30) to reduced orthonomic form. First the
system is brought to orthonomic form (4.31). Now we note that Λ4Λ3θ is a
derivative of a leading derivative Λ4θ. From the structure relation [Λ3,Λ4] =
−K̈D−3/2Λ1 (4.27) we find

Λ4Λ3θ = Λ3(Λ4θ) + K̈D−3/2Λ1θ.

while the system states Λ4Λ3θ = 0. Hence inserting Λ4θ = 0, we find K̈D−3/2Λ1θ =
0. The system is now no longer in orthonomic form. Bringing it to orthonomic
form just eliminates this last equation, and we obtain the reduced orthonomic
system

Λ1θ = 0, Λ2θ = 0, Λ4θ = 0 (4.32)

Compatibility Conditions

Let a frame system be given in reduced orthonomic form. Let

∆Iθi = rhs1 (4.33)
∆Jθi = rhs2 (4.34)

be two equations in the system. Define the ‘union’ [I ∪ J ] of multi-indices I, J by

Nj [I ∪ J ] = max{Nj(I), Nj(J)}, j = 1, 2, . . . , ν

The ‘union’ is only defined to within a permutation of its indices. Let U ∈ [I ∪ J ]
be some multi-index in the union of I and J . Thus ∆Uθi is a derivative of both
∆Iθi and ∆Jθi. Also U is the “smallest” such multi-index, in the sense that
any multi-index K of order |K| ≤ |U | with this property is a permutation of U ,
[K] = [U ] = [I ∪ J ]. For example, let I = (13312), and J = (212). The ‘union’ of
I, J is [I ∪ J ] = [112233], to within permutation. Suppose [U ] = [IL] = [JM ] for
some multi-indices L, M . Then

∆Uθi = ∆L∆Iθi + permutation terms
= ∆L(rhs1) + permutation terms

and

∆Uθi = ∆M∆Jθi + permutation terms
= ∆M (rhs2) + permutation terms.

Equating these two expressions yields the compatibility condition

∆L(rhs1)−∆M (rhs2) + permutation terms = 0

of (4.33). Substitutions and implicit substitutions from the original reduced or-
thonomic system are applied to the resulting expression, which then involves only
nonleading derivatives. (In many cases this simplification leads to triviality 0 = 0.)
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Example 4.3.11. We compute compatibility conditions of the reduced orthonomic
system (4.32). Consider the two equations Λ1θ = 0 and Λ4θ = 0. The ‘union’ of
(1) and (4) is just (14). The compatibility condition is Λ1(0)−Λ4(0)− [Λ1,Λ4]θ =
0. Structure relations (4.27)) show [Λ1,Λ4] = − 1

2Λ2. Hence the compatibility
condition is Λ2θ = 0. Simplification of this by the system yields a triviality. In
fact all the compatibility conditions of this system are trivial.

Suppose now the structure relations had been different, and that we had
[Λ1,Λ4] = Λ3. Compatibility of the same equations would have given us Λ3θ = 0,
a nontrivial equation. Even the simplest equations can generate nontrivial com-
patibility conditions through structure relations.

Frame involutive form

If we adjoin compatibility conditions to a reduced orthonomic frame system, the
composite system is no longer in solved form, and must be brought once again
to reduced orthonomic form. We distinguish systems where this process does not
lead to addition of further relations.

Definition 4.3.12. A reduced orthonomic frame system R is involutive (or ‘pas-
sive’) if the compatibility conditions of R become trivial after carrying out implicit
substitutions from R.

A frame system may be brought to involutive form by putting it into reduced
orthonomic form, appending compatibility conditions, then repeating the process
(see Appendix A.1.3). By an argument originally due to Tresse [68] (see also [55]),
this process must be finite.
Example 4.3.13. Consider the reduced orthonomic system (4.32). Its compati-
bility conditions—partly computed above—are Λ2θ = 0, L(u)Λ1θ = 0, with L(u)
defined by (4.26). Reducing these using the original system gives trivialities 0 = 0.
Hence system (4.32) is involutive.

Associated with an involutive system are two sets of (equivalence classes of)
frame derivatives. The derivatives which occur on the left hand side of the system
have values which are specified in terms of those on the right hand side. By
differentiation, any derivative of these is also expressed in terms of the derivatives
on the right hand side.

Definition 4.3.14. If ∆Jθj occurs on the left hand side, or is a derivative of ∆Iθj

occurring on the left hand side of a frame involutive system, then it is called a
leading or principal derivative of the system. If ∆Jθj is not a principal derivative
it is called a parametric derivative.

Note that the criterion for whether a frame derivative is principal (and hence
also for parametric) respects permutation of the multi-index J defining it. Thus
we could not have ∆12θ being principal and ∆21θ being parametric.

Consider for example, the involutive system (4.32). The principal derivatives
are Λ1θ, Λ2θ, Λ4θ (which occur on the left hand side) and their derivatives Λ11θ
Λ12θ, Λ21θ, etc. The parametric derivatives are θ, Λ3θ, Λ33θ, . . . .

Frame Riquier theory

The importance of involutive systems of p.d.e.’s is that there is available a theory
for existence of a unique solution in the neighbourhood of initial data obtained by
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4.3. Modification of Reid algorithm

specifying each parametric derivative at a point. The theory is due to Riquier [67]
(see also Reid [55, 56]). We state the principal existence theorem in a restricted
form, sufficient for our analysis of determining equations.

Theorem 4.3.15. Let a linear homogeneous involutive system DQ in independent
variables w and dependent variables θ be given in a coordinate frame. Let w0 be a
point at which the coefficient functions are analytic. If the parametric derivatives
of DQ are of finite number r, and values of these parametric derivatives are speci-
fied at w0, there exists a unique analytic solution of DQ in a neighbourhood of w0

satisfying these initial conditions. In particular the system has an r-dimensional
solution space. If the parametric derivatives are not finite in number the system
has an infinite-dimensional solution space.

Briefly put, the solution space dimension of an involutive system is equal to
the number of parametric derivatives in the system.

Example 4.3.16. Consider a linear homogeneous system in two dependent vari-
ables (ξ, τ), and three independent variables (x, t, u):

ξtt = 0
ξx = 1

xξ + τt
ξu = 0

τtt = 0
τx = 0
τu = 0.

This system is involutive, and has as parametric derivatives τ , τt, ξ, ξt. The
Riquier theorem therefore asserts that at a point (x0, t0, u0) with x �= 0, we may
specify τ(x0, t0, u0) = c1, τt(x0, t0, u0) = c2, ξ(x0, t0, u0) = c3 and ξt(x0, t0, u0) =
c4 arbitrarily: associated with each choice of c1, . . . , c4 is a unique solution of the
system. The solution space is therefore four-dimensional. The general solution is
in fact τ(x, t, u) = c1 + c2t, ξ(x, t, u) = c2x log x+ c3x+ c4xt, where we have taken
x0 = 1, t0 = 0, u0 = 0 as a suitable initial data point. The main point is that this
explicit solution is not needed to count the solution space dimension.

In its full generality, the theory is not restricted to linear systems, and a careful
enumeration of initial data sufficient to guarantee existence and uniqueness for the
infinite dimensional case is also performed. Reid [56] gives details, examples and
computational algorithms for his variant of this process. Involutivity is essential
for establishing uniqueness in the Riquier theorem. The criterion of involutivity
depends explicitly on the ordering of derivatives chosen. In turn, the objects
ordered, namely ∂Kθj

∂(w1)i1∂(w2)i2 ···∂(wν)iν
explicitly depend on the coordinate system

w employed. The order relation makes no sense if a change of variables is executed:
a new ordering must be devised, written in terms of the new variables.

Now suppose that a system is referred to a moving frame. An ordering of frame
derivatives is devised, and the system brought to frame involutive form. Because
it is referred to a coordinate system, the Riquier theory does not apply to this
frame involutive system. We could attempt to circumvent this by (notionally)
‘translating’ the frame involutive system back into a system of p.d.e.’s and then
applying the Riquier theory. However, a frame involutive system will not be
in involutive form when thus translated, since involutivity of p.d.e.’s is defined in
terms not of frame derivatives but partial derivatives with respect to the coordinate
system. In particular, the system will not be in solved form, and restoration of
solved form requires an ordering of partial derivatives distinct from the ordering
used in the original frame system. Hence a proof of the following ‘frame Riquier’
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theorem is essential if we are to extract information on solution space dimension
directly from the frame involutive system.

Conjecture 4.3.17. Let a linear homogeneous frame involutive system DQ in the
dependent variables θ be given, referred to a moving frame ∆. Let w0 be a point
at which the coefficient functions are analytic. Partition the parametric frame
derivatives of DQ into equivalence classes under permutation. If such equivalence
classes are of finite number r, and values of one parametric derivative in each class
are specified at w0, there exists a unique solution of DQ in a neighbourhood of w0

satisfying these initial conditions. In particular the system has an r-dimensional
solution space. If the parametric derivatives are not finite in number the system
has an infinite-dimensional solution space.

We shall critically rely on this presumed result in the following material. Note
that the result is stated in terms of equivalence classes of derivatives. Suppose we
have ∆12θ and ∆21θ as parametric derivatives. These are not independent, since
∆21θ = ∆12θ + γk12∆kθ. Hence we can prescribe only one of them as initial data,
the other being determined in terms of it.

For systemsDQ of determining equations for a Lie symmetry algebra, Reid [57]
showed how to find structure constants of the algebra by Taylor expansion. This
idea was subsequently improved in [58]. Assuming the frame Riquier existence
conjecture, Appendix B gives an elegant and algorithmic way to find the structure
constants of the symmetry algebra from the frame involutive form, without solving
the determining system. We use this in our examples.

4.4 Invariant frame

The frame Reid method described above applies to any moving frame. We now
show how to choose a frame in which calculations become particularly simple. This
is achieved by requiring the frame to be invariant under the action of the (aug-
mented) equivalence group. Despite the obvious geometric flavour of all the follow-
ing material, we refrain from overtly using geometric concepts such as pullbacks,
induced maps, sections of bundles, etc. Instead we state results from Ovsiannikov
[52, §24], who uses analytic methods and terminology. Note that Ovsiannikov’s
Lemma 24.2 incorrectly asserts that invariant operators constitute a Lie algebra
over the ‘field’ of invariant functions because they form a vector space which is
closed under commutation. This is false, since commutation does not distribute
linearly over scalar multiplication by an element of this field.

4.4.1 Augmented frame

As in Example 4.3.2 the frames we use depend upon arbitrary elements φ(w). The
following discussion applies to any set of independent and dependent variables,
with extension to derivatives. Our independent variables are w = (x, u) (the ν
independent variables in the determining equations or the constraining system);
our dependent variables are the µ coordinates a = φ(w) of arbitrary element space.
First we introduce some terminology and notation.

Definition 4.4.1. We define

z
k
= (w, a, a

1
, . . . , a

k
) (4.35)
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to be the collection of independent and dependent variables and derivatives up to
order k.

This notation is convenient because (w, a, a
1
, . . . , a

k
) occurs so frequently.

Definition 4.4.2. A real-valued function f(z
k
) of independent and dependent

variables, and derivatives up to order k will be called a (k-th order) differential
function.

If the order k is not specified, we understand f to be of arbitrary finite order.

Definition 4.4.3. Let g(w, a, a
1
, . . . , a

k
) be a k-th order differential function. If

the dependent variables a = φ(w) are assigned as a function of the independent
variables we define the function φ∗g by

φ∗g (w) = g(w, φ(w), φ
1
(w), . . . , φ

k
(w)) (4.36)

This notation was used earlier in §3.1.2.
In Example 4.3.2 we used a moving frame with vector fields such as ∆4 =

1
D(u) ∂u. It is natural to introduce a coordinate a = D(u) for diffusivity space
and to write this as ∆4 = 1

a ∂u. This is misleading notation for the following
reason. Action of ∂u on a function D(u) gives Ḋ(u). However, action of ∂u on
the differential function a gives 0. Clearly this is because the total derivative
operator D̂u is appropriate here, and we should define ∆4 = 1

aD̂u, so that ∆4

‘sees’ a as a function of u.

Proposition 4.4.4. Let ∆ be the differential operator

∆ = gi(z
k
)D̂wi

where D̂wi is the total derivative operator

D̂wi = ∂wi + aji∂aj + · · ·+ ajJi∂aj
J
+ · · · .

Let φ∗∆ be the vector field on w space

φ∗∆ = φ∗g (w)∂wi (4.37)

Then ∆ and φ∗∆ agree in their actions on differential functions in the sense that

(φ∗∆)(φ∗f)(w) = φ∗(∆f)(w) (4.38)

for any differential function f .

First we clarify the nature of the various terms in (4.38): f and ∆f are both
differential functions; after inserting a = φ(w), φ∗(∆f) is a function of w alone.
On the left hand side, φ∗f is a function of w; φ∗∆ is a vector field on w space, so
(φ∗∆)(φ∗f) is a function of w.

Proof.

∆f = gi(z
k
) (D̂wif)(z

l
)
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so

φ∗(∆f)(w) = (φ∗gi)(w)(φ∗(D̂wif))(w)

and by the fundamental property (Proposition 2.2.4) of total derivatives,

= (φ∗gi)(w)∂wi(φ∗f)(w).

By definition (4.38) of φ∗∆, this equals (φ∗∆)(φ∗f)(w).

We are primarily concerned with moving frames of the following form.

Definition 4.4.5. An augmented moving frame ∆ with respect to independent
variables (w1, w2, . . . , wν) and dependent variables a is an ordered set of ν differ-
ential operators of the form

∆i = g
j
i (zk

)D̂wj (4.39)

such that the matrix G(z
k
) = [ gji (zk

) ] is nonsingular for all values of z
k
.

Once arbitrary elements a = φ(w) are assigned as functions of the independent
variables, we obtain the moving frame φ∗∆:

φ∗∆i = φ∗g
j
i (w)∂wj . (4.40)

Although the frames before and after assignment of arbitrary elements are
conceptually distinct entities, in examples we wantonly confuse the two. Such
notational abuse is possible because of Proposition 4.4.4, and is true to the Leib-
nizian tradition of confusing a function with its value. In a calculation we write
φ, φ

1
and so on, manipulating them as coordinates, but ‘imagining’ that they are

functions of w. Comment on this situation would not be necessary if it were not
that in other calculations (e.g. §3.3) it is essential that a = φ(w) not be imagined
as functions of w. Since we are now always imagining a to be a function of w, the
only relevant ‘derivative with respect to u’ is D̂u, (i.e., ∂u plays no role). It is
perverse to continue using total derivative notation in this case, and from now on
we write ∂u when D̂u is meant.
Example 4.4.6. Consider the augmented frame (4.25)

Λ1 = a1/2(D̂x + uD̂v)
Λ2 = ȧa−3/2D̂x + a−3/2(uȧ+ 2a)D̂v
Λ3 = D̂t + ḃD̂x + (uḃ− b)D̂v
Λ4 = 1

aD̂u

(4.41)

on (x, t, u, v) space, with dependent variables (a, b), and ȧ ≡ au etc. Assign
a = D(u), b = K(u), and let φ = (D,K): this yields the frame

φ∗Λ1 = D(u)1/2( ∂x + u ∂v)
φ∗Λ2 = Ḋ(u)D(u)−3/2 ∂x +D(u)−3/2(uḊ(u) + 2D(u)) ∂v
φ∗Λ3 = ∂t + K̇(u) ∂x + (uK̇(u)− b) ∂v
φ∗Λ4 = 1

D(u) ∂u

In fact our usual notation will be to write Λ1 = D1/2( ∂x + u ∂v) etc., leaving it
ambiguous whether the arbitrary elements have yet been assigned.
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Mapping of vector field

A transformation τ : w′ = τ(w) of base space naturally induces an action on total
derivative operators by

D̂wi =
∂τ j

∂wi
(w)D̂w′j =

∂τ j

∂wi
◦ τ−1(w′)D̂w′j .

Hence if τ̂ represents an action on z
k
space,

w′ = τ(w)
a′ = σ(w, a)

this transformation naturally induces an action on an augmented vector field ∆ =
giD̂wi by

τ̂∗∆ = g′j(z
k
)D̂wj

where

g′j ◦ τ̂(z
k
) = gi(z

k
)
∂τ j

∂wi
(w). (4.42)

The notation τ∗ follows differential geometric conventions on mapping tangent
vectors.

Example 4.4.7. Consider the augmented vector field

Y= a1/2(D̂x + uD̂v) (4.43)

under the action of a transformation τ̂ : (v, x, t, u, a, b) 	→ (v′, x′, t′, u′, a′, b′) given
by

v = αv′ + βx′

x = γv′ + δx′

t = t′

u =
αu′ + β
γu′ + δ

a = (γu′ + δ)2a′

b =
b′

γu′ + δ
, αδ − βγ = 1.

(4.44)

(These transformations constitute a three-parameter group Ĝ3.) Then

D̂x = αD̂x′ − βD̂v′
D̂v = −γD̂x′ + δD̂v′ ,

so

Y = (γu′ + δ)a′1/2
(
(αD̂x′ − βD̂v′) +

(αu′ + β
γu′ + δ

)
(−γD̂x′ + δD̂v′)

)
= a′1/2(D̂x′ + u′D̂v′)

(4.45)

Thus the transformed vector field is

τ̂∗Y= a1/2(D̂x + uD̂v)
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4.4.2 Invariant frame

The example above illustrates the following concept.

Definition 4.4.8. An augmented vector field Y is invariant under the action of
a transformation τ̂ if

τ̂∗Y= Y

The definition asserts that the functions g′j (4.42) are identical to gj in the
original vector field. That is

gj ◦ τ̂(z
k
) = ∂wjτ i(w) gj(z

k
) (4.46)

for all points z
k
. In practical terms, we take a vector field Y = gj(z

k
)Dwj and

express it in terms of new variables (w′, a′, a′
1
, . . . , a′

k
) as

Y= g′j(z
k

′)Dw′j .

The vector field is invariant if g′j are the same functions of z
k

′ as gj are of z
k
.

Example 4.4.7. (cont.) The vector field Y (4.43) is invariant under the action of
transformations (4.44). Its expression (4.45) in dashed variables is identical to its
expression in terms of the original variables, so that τ̂∗Y= Y.

Now that invariance of a vector field under one transformation has been de-
fined, we define invariance of a frame under a transformation group by requiring
that each vector field in the frame is invariant under each transformation in the
group.

Definition 4.4.9. Let Q̂ be a group of augmented transformations τ̂(ε):

w′ = τ(w; ε)
a′ = σ(w, a; ε)

An augmented frame ∆ is invariant under the action of Q̂ if

τ̂∗(ε)∆i = ∆i

for each ∆i, i = 1, 2, . . . , ν, and all transformations τ̂(ε) ∈ Q̂.

Example 4.4.10. Consider the augmented frame (4.20) under the action of the
two-parameter group Ĝ2

v = v′ + µt′

x = x′ + εt′

t = t′

u = u′

D = D′

K = K ′ + εu′ − µ
(4.47)

(We are here freely confusing notations for frames before and after assigning ar-
bitrary elements a = D(u), b = K(u).) We find

∆1 = ∂v′
∆2 = ∂x′
∆3 = ∂t′ + K̇ ′∂x′ + (u′K̇ ′ −K ′)∂v′
∆4 = ∂u′
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so that ∆ takes the same form in the new variables, whatever values are taken
by the group parameters ε, µ. Hence ∆ is an invariant frame with respect to this
group action.

Similarly, we note that the frame Λ (4.25) is invariant under the action of both
Ĝ2 and the three-parameter group Ĝ3 (4.44).

4.4.3 Differential invariants

In addition to invariant frame differential operators, we require the following more
familiar concept:

Definition 4.4.11. Let f(z
k
) be a (k-th order) differential function. Let Q̂ be a

transformation group acting on z = (w, a). If

f(τ̂(z
k
)) = f(z

k
)

for all z
k
, and all transformations τ̂ ∈ Q̂, then f is a (k-th order) differential

invariant of Q̂.

This concept was used earlier in §3.4.1. We may write more briefly f ◦ Q̂ = f .
Example 4.4.12. Consider the two-parameter group Ĝ2 (4.47) acting on (x, t, u, v;
D,K) space. Clearly u is a differential invariant of Ĝ2. In addition, D and its
derivatives Ḋ, D̈, . . . are differential invariants, as are K̈,

...
K. We define J := K̈.

A less trivial calculation of invariants is obtained from the action of the three-
parameter group Ĝ3 (4.44). Suppose we seek invariants of the five-parameter group
Ĝ5 obtained by composing Ĝ2 and Ĝ3. Action of Ĝ3 on (v, x, t, u,D,K) induces
action on derivatives Ḋ, K̇ etc. and hence on the differential invariants of Ĝ2 just
noted. We find

u =
αu′ + β
γu′ + δ

D = (γu′ + δ)2D′

Ḋ = (γu′ + δ)3
(
(γu′ + δ)Ḋ′ + 2γD′)

D̈ = (γu′ + δ)4
(
(γu′ + δ)2D̈′ + 6γ(γu′ + δ)Ḋ′ + 6γ2D′)

J = (γu′ + δ)3J ′.

With this, we note for instance that

I := |J |D−3/2 = |K̈|D−3/2

L :=
DD̈ − 3/2Ḋ2

D4

(4.48)

are differential invariants—not only of Ĝ3 (4.44), but also of Ĝ2 (4.47). Hence I
and L are differential invariants of Ĝ5.

If an invariant frame for a group Q̂ is known, certain differential invariants of
Q̂ are immediately available:

Proposition 4.4.13. Let ∆ be an augmented frame, invariant under the action
of a group Q̂. The structure functions γkij

[∆i,∆j ] = γkij∆k

are differential invariants of Q̂.
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Tresse [68] first noted this property. A more modern discussion of differential
invariants and invariant operators is given in [52, §24].
Example 4.4.14. As noted above, the frame ∆ (4.20) is invariant under the action
of the group Ĝ2 (4.47). Its structure relations (4.23) have all commutators van-
ishing except [∆3,∆4] = −J(∆2 + u∆1). The coefficients are expressed in terms
of u and J ≡ K̈, which are invariants of Ĝ2 (see above).

Now consider the frame Λ (4.25), which is invariant under the five-parameter
group Ĝ5 obtained by composition of Ĝ2 and Ĝ3 (4.44). The coefficients in the
structure relations (4.27) for Λ are constants except [Λ2,Λ4] = −LΛ1, and [Λ3,Λ4] =
−IΛ1. Both L and I are invariants (4.48) of the group Ĝ5.

Once one has found a differential invariant, the invariant frame provides a
means for generating additional invariants:

Proposition 4.4.15. If J is a differential invariant of a group Q̂, and ∆ is an
invariant augmented vector field, then ∆J is also a differential invariant of Q̂.

Generally if J is a k-th order invariant, ∆J is of order k + 1, although it can
happen that ∆J vanishes or is constant.

Example 4.4.16. Consider the action of the operator Λ4 (4.41) on the invariant
L (4.48). We are assured that Λ4L is an invariant of the group Ĝ5. Tracing the
definition of Λ4, we find Λ4 = 1

D D̂u, and we compute

Λ4L =
D2

...
D − 6DḊD̈ + 6Ḋ3

D6
.

It may be directly verified that this is a third order differential invariant of Ĝ5.

In practice there is no gain in expanding an expression such as Λ4L: the point
is to manipulate the invariants of Ĝ5 as painlessly as possible, and this is achieved
by treating Λ4L as an entity in its own right.

4.4.4 Tresse basis

Generally differential invariants and invariant frames may not be defined at all
points. The following material may be found in Eisenhart [22] or Ovsiannikov [52,
§24].
Definition 4.4.17. Let an r-parameter group on an N -dimensional space y be
generated by a Lie algebra with basis X1, X2, . . . , Xr, with Xi = ξji (y)∂yj .
Define the r ×N matrix Ξ(y) = [ ξji (y) ] of infinitesimals. The rank of the system
of operators at a point y is defined to be ρ(y) = rankΞ(y). It is a property of
the group action and is independent of the basis chosen for the Lie algebra of
operators.

The rank ρ(y) is in fact the dimension of the group orbit passing through y.
Clearly we have ρ(y) ≤ r at all points y. Hence ρ(y) attains a maximum value ρ̄.
It is easily shown that if ρ(y0) = ρ̄ then ρ(y) = ρ̄ for all y in some neighbourhood
of y0, since we always assume ξji smooth. Indeed if ξji are analytic, the maximum
rank ρ̄ is attained ‘generically’, i.e. ρ(y) < ρ̄ on sets of dimension strictly less that
n.
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4.4. Invariant frame

Definition 4.4.18. A point y at which ρ(y) = ρ̄ is called regular . If ρ(y) < ρ̄, we
call the point y singular .

The generic rank ρ̄ gives a count of the invariants of the group action:

Proposition 4.4.19. Let a group G act on a space y with dimension N . In the
neighbourhood of a regular point y there exist exactly t = N − ρ̄ invariants of G.

Our interest is in group action on a base space (w, a) and its extensions to
(w, a, a

1
, . . . , a

k
). Extension of the group appends columns to the matrix Ξ(w, a),

leading to a sequence of generic ranks

ρ̄0, ρ̄1, . . . , ρ̄k

for each order of extension. If the k-times extended space has dimension Nk,
Proposition 4.4.19 shows there are tk = Nk− ρ̄k invariants of the k times extended
space. The dimension of the extension spaces is unbounded as k → ∞, while
the ranks ρ̄k are bounded above since ρ̄k ≤ r, so it follows that the number of
differential invariants tk is unbounded as the order of extension k → ∞. However
Proposition 4.4.15 can be used to generate a sequence of differential invariants
∆J , ∆2J , . . . from one invariant J . We may reasonably hope to generate all
differential invariants of a group by application of invariant frame operators to a
finite number of such invariants. This is indeed the case.

Theorem 4.4.20 (Tresse basis). [52, §24]
(i) For every r-parameter group Q̂ acting on (w, a) space, there is a finite order

χ such that the generic rank ρ̄χ of the χ times extended group exactly equals
r.

(ii) Let z
χ
be a regular point of Q̂ in the χ times extended space z

χ
= (w, a, a

1
,

. . . , a
χ
). Then in the neighbourhood of z

χ
there exists an augmented frame ∆,

∆i = g
j
i (zχ)Dwj

invariant under the action of Q̂.
(iii) (Tresse basis) Every differential invariant of a group Q̂ may be obtained by

application of invariant frame operators ∆i to the differential invariants of
order ≤ χ+ 1.

The bound χ+ 1 in (iii) is not sharp, i.e., in some cases differential invariants
of order lower than χ+ 1 may suffice.

The structure functions γkij of a Q̂-invariant frame ∆ yield certain differential
invariants (by Proposition 4.4.13). In many cases these are complete in the sense
that every differential invariant of Q̂ is obtainable from γkij by application of the
frame operators ∆i. If this is so, the invariant frame encodes all of the invariant
information of the group.

The results above were stated for finite-parameter Lie transformation groups.
Most have analogous statements for infinite-parameter Lie groups, but it is beyond
our scope to describe this theory: the Cartan equivalence method is specifically
tailored for dealing with this case. Methods for calculation of differential invariants
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Chapter 4. Symmetry Group Classification

and invariant frames are canvassed in Ovsiannikov [52, §17,§24] and by Tresse [68].
Ovsiannikov covers only methods for constructing invariants from the infinitesimal
operators of the group Q̂, which involves too many integrations to be useful in
practice.

Instead, it is preferable first to construct the group action. A naive elimination
of group parameters is then often practical to find the differential invariants and
invariant frame. Alternatively the Cartan equivalence procedure may be used
to find the frame (actually the dual coframe), and ultimately its invariants. We
content ourselves with an example of the naive procedure.

Example 4.4.21. Consider the action of the group Ĝ2 (4.47) on the coordinates u,
D, K, along with extensions to K̇, Ḋ, etc.:

u = u′

D = D′

K = K ′ + εu′ − µ
K̇ = K̇ ′ + ε.

We may solve for the group parameters ε and µ as

ε = K̇ ′ − K̇
µ = K ′ −K + u′(K̇ ′ − K̇).

The action of Ĝ2 on the coordinate frame ( ∂v, ∂x, ∂t, ∂u) is

∂v′ = ∂v
∂x′ = ∂x
∂t′ = ∂t + µ∂v + ε ∂x
∂u′ = ∂u.

Hence ∂v, ∂x, ∂u are invariant operators. Substituting for ε, µ from above gives,
after some rearrangement

∂t′ −K ′ ∂v + K̇ ′( ∂x + u′ ∂v) = ∂t −K ∂v + K̇( ∂x + u′ ∂v).

Noting that ∂v = ∂v′ , ∂x = ∂x′ , and u = u′, this becomes

∂t′ −K ′∂v′ + K̇ ′(∂x′ + u′∂v′) = ∂t −K ∂v + K̇( ∂x + u ∂v),

which gives us the remaining invariant operator. Altogether we have derived a
frame ∆ (4.20), which is invariant under Ĝ2.

This procedure is less elegant than the Cartan method (or Tresse’s ‘reduced
forms’). Its principal disadvantage is that much calculation is duplicated, since
everything is found in both primed and unprimed coordinates. Nevertheless it is
surprisingly effective for finite-parameter groups which are not too large.

4.5 Symmetry classification

Reid’s algorithm for bringing determining equations DQ to involutive form is
effective when DQ contains arbitrary elements, i.e., when DQ(φ) is derived from
a d.e. E(φ) drawn from some class. Bringing the determining system to orthonomic
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4.5. Symmetry classification

form requires division by coefficients of the leading derivatives, which may now
depend on the arbitrary elements a, a

1
, . . . . For example, we might have

ȧ ∂uξ − ξ = 0.

Whether ∂uξ can be isolated depends on whether the arbitrary elements are such
as to make this coefficient vanish. For example, if ȧ �= 0 we find ∂uξ = 1/ȧ ξ,
whereas if the ‘pivot’ ȧ vanishes identically, the equation becomes ξ = 0. To effect
a complete classification, every such branch must be pursued until involutive form
is attained. The Riquier theory then yields the dimension of the Lie symmetry
algebra, and the method of Appendix B gives its commutation relations.

This process requires minor modification when we refer the Reid method to a
moving frame ∆. The auxiliary system A must be restated in terms of the frame
∆: it is originally written in terms of w, a and derivatives with respect to w,
namely D̂wj . When a frame ∆ is introduced, we replace the operators D̂wj in A
by their expressions in terms of ∆, so that A becomes a frame system in ∆. Note
that in the determining equations DQ, the dependent variables ζj are affected by
a change of frame, since they are components ζj∂wj of a vector field. However,
the dependent variables a in A are scalars, and are unaffected by the change to
∆. We denote the collection of κ-th order frame derivatives of a by ∆κa.

The vital classification step occurs when isolating a frame derivative on the
left hand side of an equation in DQ. Suppose we attempt to isolate a derivative
∆Jθj , and to do so requires division by a coefficient H(w, a,∆a, . . . ,∆κa), which
we follow Reid [55, 57] in calling a pivot . To effect division requires knowledge
of whether or not the pivot vanishes. At the beginning of the classification, we
have some information about a, namely that it satisfies the auxiliary frame system
A. Substitution from this system may reveal definitively that a pivot vanishes.
However, if the classifying equation

H(w, a,∆a, . . . ,∆κa) = 0

is not an implication of A, a branching appears: we must separately attempt
involutive form for the cases

(i) The arbitrary elements satisfy system A and the inequality

H(w,∆a, . . . ,∆κa) �= 0

(ii) The arbitrary elements satisfy the system A and

H(w,∆a, . . . ,∆κa) = 0

obtained by adjoining the classifying equation to the original auxiliary sys-
tem.

Thus we build up a tree of possibilities, accumulating a classifying system CQ—
consisting of the original auxiliary frame system A along with additional classifying
frame equations which have arisen—and a set CI of classifying frame inequalities
which result from demanding that various pivots not vanish.

With appropriate modifications to the procedures presented in §A.1, the clas-
sification algorithm is capable of concise recursive definition. These modifications
are given in Appendix A.2. Firstly, the classifying equations CQ and classifying
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inequalities CI must be made available to all procedures. Secondly, each process
now has two possible returns: a ‘successful’ one (e.g., involutive form was achieved)
and an ‘indecisive’ one (division by a pivot could not be resolved, and the process
halted in an incomplete state). Assuming we have available a procedure involutive
which reduces a frame system to involutive form and is modified in this way, we
define a function classify recursively as

Algorithm 4.5.1. (classify)

function classify(DQ,CQ,CI)
input: DQ . . . frame determining system

CQ . . . frame classifying system
CI . . . classifying frame inequalities

output: Nothing
side effect:Involutive form and corresponding classifying

systems and inequalities for each leaf of the tree
are printed out.

DQ := involutive(DQ ,CQ ,CI ,pivot)
if pivot = (null) then

print(DQ ,CQ ,CI )
else

classify(DQ ,CQ ,{CI , pivot �= 0})
classify(DQ ,{CQ , pivot = 0},CI )

fi
end

This procedure concisely describes the generation of a classification tree, and
mirrors the process used in hand calculation. Initially we invoke classify with DQ
being the original frame determining system, CQ being the auxiliary frame system
A, and CI being empty.

Our recursive generation of the tree is both more natural and more efficient
than Reid’s original statement [57] of the classification procedure. Reid [57] origi-
nally advocated division by coefficients as though they were nonzero, but retaining
them in a pivot list. His procedure then restarts “from scratch but subject to one
of the pivots being identically zero.” Our calculation is restarted at the point
where an unresolved division occurred, so repetition of calculations is avoided.

Unlike Reid’s procedure, ours has not been implemented on a computer al-
gebra system, although Appendix A may be regarded as an outline for such an
implementation. When performing hand calculations, there is considerable scope
for modifying the methods just described. As long as care is taken to respect an
ordering of the derivatives, and not to execute circular chains of reasoning (sub-
stituting an equation into itself), the steps can be executed in almost any order
desired. Typically one works with a simple subsystem of the determining system
DQ, simplifying it as much as possible, computing its compatibility conditions and
so forth. Later the remaining equations in the system are adjoined one by one.
By doing this one can defer dealing with complicated equations until many simple
equations are available. Typically also, we vary the ordering of derivatives used
during the course of the calculation, attempting to defer for as long as possible
division by troublesome coefficients.
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4.5. Symmetry classification

4.5.1 Invariant form of group classification

We can now execute symmetry classification of a class of differential equations in
an invariant manner, i.e., with each step being invariant with respect to the action
of the equivalence group of the class. We simply execute the above classification
algorithm referred to a frame invariant under the action of the equivalence group.

1. Derive the equivalence group Q̂ of the class.

2. Derive determining equations DQ(φ) for symmetries of an equation E(φ).

3. Construct invariants and invariant augmented frame(s) of Q̂, along with
their structure relations. (Different frames may be necessary for different
arbitrary elements φ.)

4. Rewrite DQ in terms of the invariant frame, with invariant coefficients.

5. Rewrite the auxiliary system A in terms of invariants and frame operators.

6. Invoke the frame Reid classification procedure classify with the classifying
system CQ initially equal to A, and CI initially null.

7. For each leaf of the resulting tree there is a frame involutive form of DQ:
find the size and structure of the Lie symmetry algebra associated with these
involutive DQ’s.

This new method for symmetry classification is therefore a generalization of Reid’s
[57] to a case where an equivalence group is available. Equivalence information
is built into the method through the invariant frame. Once the invariant frame
is calculated, most of the hard work is over. In many cases completion to frame
involutive form can be achieved by hand, even for systems requiring large amounts
of computer time and memory in Reid’s Maple implementation of his algorithm.
This is presumably because a great deal of the symmetry information is in the
equivalence group, so that factoring this out reduces the computational complex-
ity. An especially useful feature of our new method is that, since it is expressed
in terms of invariants of the equivalence group, the case splittings involved are
likewise invariant. This means that two equations connected by an equivalence
transformation must end up on the same branch of the classification tree. This
drastically reduces the number of spurious case splittings generated by Reid’s
method, with consequent gains in interpretability of the tree.

Example 4.5.2. Before giving the results of a major classification calculation, we
demonstrate the method on a very simple example. Consider the nonlinear diffu-
sion equation

ut = (D(u)ux)x. (4.49)

The determining equations for a symmetry operator

Y= ξ ∂x + τ ∂t + η ∂u

115



Chapter 4. Symmetry Group Classification

[ , ] X̂1 X̂2 X̂3 X̂4 X̂5 X̂6

X̂1 0 0 X̂1 X̂1 0 0

X̂2 0 0 2X̂2 0 0 0

X̂3 −X̂1 −2X̂2 0 0 0 0

X̂4 −X̂1 0 0 0 0 0

X̂5 0 0 0 0 0 X̂5

X̂6 0 0 0 0 −X̂5 0

Table 4.7: Commutator table of equivalence algebra (4.51) of nonlinear diffusion
equation (4.49).

are [52, eq.6.7.3]

∂xτ = 0, ∂uτ = 0

∂uξ = 0, ∂2
uη = 0

D(2 ∂xξ − ∂tτ)− Ḋη = 0

D(2 ∂x ∂uη − ∂2
xξ) + 2Ḋ ∂xη + ∂tξ = 0

D∂2
xη − ∂tη = 0. (4.50)

Here and throughout, it is understood that ∂x, ∂u etc. ‘see’ D(u) as a function
of u (i.e., they are really D̂x, D̂u etc.). We leave ambiguous whether D refers to
the coordinate a of diffusivity space or to the function D(u).

We attempt to construct invariants and invariant frames of the six-parameter
equivalence group generated by (3.66), which we rewrite here as

X̂1 = ∂x
X̂2 = ∂t
X̂3 = x ∂x + 2t ∂t
X̂4 = x ∂x + 2a ∂a
X̂5 = ∂u
X̂6 = u ∂u,

(4.51)

where a renumbering and change of basis has been executed. The equivalence
algebra structure is shown in Table 4.7. Note that the algebra is solvable, with
the chain of normal subgroups

{X̂1} ≺ {X̂1, X̂2} ≺ · · · ≺ {X̂1, . . . , X̂6}.
Instead of attacking the whole equivalence group at once, we proceed in steps
through this normal subgroup chain.

As we enlarge from a subgroup Ĥ to the next largest group Ĝ, we require
expressions for
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1. A change of frame from an Ĥ-invariant frame to a Ĝ-invariant frame ∆.

2. The invariant infinitesimals for ∆, i.e., quantities θ such that a vector field
Y= θi∆i.

3. Invariants of Ĝ in terms of those of Ĥ.

4. Structure relations of the Ĝ-invariant frame—expressed in terms of invariants
of Ĝ.

5. The auxiliary system A in terms of invariants of Ĝ and the frame ∆.

6. The determining system DQ written in terms of ∆, θ and the invariants of
Ĝ.

Common translation symmetries

We treat the common symmetry operators X̂1 = ∂x, X̂2 = ∂t together. They
generate a group Ĝ2

x′ = x+ κ1

t′ = t+ κ2

u′ = u
a′ = a.

(4.52)

The coordinate frame ∂x, ∂t, ∂u is invariant, and ξ, τ , η are invariant infinitesi-
mals. The invariants are u, D, subject to the auxiliary system

∂xD = 0, ∂tD = 0. (4.53)

Note that the determining system (4.50) is already expressed in terms of these
invariant quantities: in particular, x and t do not appear explicitly.

Boltzmann scaling

We now adjoin the scaling symmetry operator X̂3, giving the three-parameter
common symmetry group Ĝ3. This has action

∂x′ = λ−1 ∂x
∂t′ = λ−2 ∂t u′ = u
∂u′ = ∂u D′ = D

on the invariants of Ĝ2. Invariants (u, D), and even an invariant operator ∂u
are available, but the parameter λ cannot be completely eliminated: there is no
invariant frame for Ĝ3. The frame Reid method works regardless of the frame
to which it is referred. Hence our calculations do not rely critically on the frame
being invariant, and we just ignore X̂3.

Scaling group—diffusivity

We adjoin the scaling operator X̂4, giving a four-parameter subgroup Ĝ4. This
has action

∂x′ = ρ−1 ∂x u′ = u
∂t′ = ∂t D′ = ρ2D

∂u′ = ∂u Ḋ′ = ρ2Ḋ
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on the invariants of Ĝ2. We easily find an invariant frame ∆, with dual infinitesi-
mals θ, and invariants u, I:

∆1 = D1/2 ∂x θ1 = D−1/2ξ
∆2 = ∂t θ2 = τ

∆3 = ∂u θ3 = η I :=
Ḋ

D

(4.54)

The invariants u, I are subject to constraints

∆1u = 0 ∆1I = 0
∆2u = 0 ∆2I = 0
∆3u = 1,

(4.55)

with ∆3I = İ being free. The structure relations of the frame ∆ are

[∆1,∆2] = 0, [∆1,∆3] = − 1
2I∆1, [∆2,∆3] = 0. (4.56)

We do not show the determining system (4.50) in this frame.

Translation in u

We adjoin the translation operator X̂5 = ∂u, which has trivial action on ∆ and
I: hence ∆, θ, I are invariants. The only change from above is that u is removed
from the list of invariants.

Scaling of u

Finally we adjoin the scaling operator X̂6 = u ∂u, which has action

∆′
1 = ∆1

∆′
2 = ∆2

∆′
3 = α−1∆3 I ′ = α−1I

on the invariants ∆, I. The calculation now splits into two cases.
Case a. I �= 0.

Here we may divide by I to eliminate the parameter α. An invariant frame Γ,
invariant infinitesimals ζ, and invariant J are easily found:

Γ1 := ∆1 ζ1 := θ1

Γ2 := ∆2 ζ2 := θ2

Γ3 := I−1∆3 ζ3 := Iθ3 J := İ/I2,

(4.57)

where we retain dot notation İ ≡ ∆3I, since ∆3 = ∂u. The invariant J is con-
strained by

Γ1J = 0, Γ2J = 0. (4.58)

The structure relations for Γ are

[Γ1,Γ2] = 0, [Γ1,Γ3] = − 1
2Γ1, [Γ2,Γ3] = 0. (4.59)
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Determining system (4.50) becomes

Γ1ζ
2 = 0 (Γ1)2ζ3 = Γ2ζ

3

Γ3ζ
2 = 0 Γ1Γ3ζ

3 = 1
2 (Γ1)2ζ1 + (J − 1)Γ1ζ

3 − 1
2Γ2ζ

1

Γ3ζ
1 = − 1

2ζ
1 (Γ3)2ζ3 = JΓ3ζ

3 + (Γ3J)ζ3

Γ2ζ
2 = 2Γ1ζ

1 − ζ3.

(4.60)

Case b. I = 0.
This is the linear equation case Ḋ = 0. Here the parameter α cannot be

eliminated, and ∆ is as close to an invariant frame as we can manage. There
are no invariants. Reduction to involutive form shows there are infinitely many
symmetries. We leave aside this case and pursue Case a.

Reduction to involutive form

Now that the frame Γ has been introduced, we apply the frame Reid method
described in §4.3.2 to bring (4.60) to involutive form. The system is already in
reduced orthonomic form. We compute compatibility conditions, for example

Γ2(Γ3ζ
2)− Γ3(Γ2ζ

2) = Γ2(0)− Γ3(2Γ1ζ
1 − ζ3).

Structure relations (4.59) simplify the left hand side, giving

0 = 2Γ3Γ1ζ
1 − Γ3ζ

3.

Note that the first term is a derivative of the leading derivative Γ3ζ
1. Implicit

substitution for Γ3ζ
1 from (4.60) gives Γ3ζ

3 = 0, which may be appended to the
system. Inserting this into the other equations in (4.60), we find

(Γ3J)ζ3 = 0,

so that Γ3J is a pivot.
If Γ3J �= 0, we have ζ3 = 0, and the system quickly collapses to an involutive

form with three-dimensional solution space. The three symmetries are, of course,
the common symmetries X1, X2, X3. We therefore do not present this case.

If Γ3J = 0 (so that J is a constant), we continue computing compatibility
conditions, ultimately bringing the system to the form

Γ1ζ
2 = 0 (Γ1)2ζ1 = 2(1− J)Γ1ζ

3 (Γ1)2ζ3 = 0
Γ2ζ

2 = 2Γ1ζ
1 − ζ3 Γ2ζ

1 = 0 Γ2ζ
3 = 0

Γ3ζ
2 = 0 Γ3ζ

1 = − 1
2ζ

1 Γ3ζ
3 = 0

(4.61)

along with

(3− 4J)Γ1ζ
3 = 0,

so that (3− 4J) is a pivot.
If J �= 3/4, we have Γ1ζ

3 = 0, and the system collapses to the involutive form

Γ1ζ
2 = 0 (Γ1)2ζ1 = 0 Γ1ζ

3 = 0
Γ2ζ

2 = 2Γ1ζ
1 − ζ3 Γ2ζ

1 = 0 Γ2ζ
3 = 0

Γ3ζ
2 = 0 Γ3ζ

1 = − 1
2ζ

1 Γ3ζ
3 = 0.
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D �= 0
I := Ḋ/D

J := İ/I2 ∞-parameter

I �=0 I=0

3-parameter

J̇ �=0 J̇=0

4-parameter 5-parameter

J−3/4 �=0 J−3/4=0

Figure 4.1: Classification tree for symmetries of nonlinear diffusion equation.

Here there are four parametric derivatives ζ1, Γ1ζ
1, ζ2, ζ3, so there is a four

parameter symmetry group. Applying the method of Appendix B, we find the
symmetry algebra has structure

[ , ] Y1 Y2 Y3 Y4

Y1 0 0 Y1 0

Y2 0 0 2Y2 −Y2

Y3 −Y1 −2Y2 0 0

Y4 0 Y2 0 0

If J = 3/4, system (4.61) is involutive. There are five parametric derivatives
ζ1, Γ1ζ

1, ζ2, ζ3, Γ1ζ
3, so there is a five-parameter symmetry group, whose com-

mutation relations are easily found.
All in all we have generated the classification tree shown in Figure 4.1.

We make some remarks about this classification, comparing it with the results
in [52, §6.7]. Firstly, the classification tree Figure 4.1 results from two kinds
of splittings. The top branch is due to our method of constructing frames and
occurs even before we consider determining equations. Subsequent branches are
generated from the determining system by the frame Reid method.

Secondly, the case splittings revealed by the frame method agree with those of
the usual classification. The invariant J has the expression J = −(D/Ḋ)·, so that
the classifying equation Γ3J = 0 is (D/Ḋ)·· = 0, in agreement with [52, eq.6.7.12].
The diffusivities satisfying this are D(u) = (au + b)m, for which J = m−1, and
D(u) = aebu, for which J = 0. That eu and um are not split in our classification
tree reflects the fact that eu is merely a limiting case of the power law diffusivities:
eu = limm→∞(1 + u

m )m. The commutation relations we computed above are
identical for all values of J . This fact is obscured in [52], where the inessential
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parameter m appears, and algebras for the um and eu cases appear to be different.

Some remarks are in order on why the operator X̂3 gave difficulty above. First
we note that our failure in this case does not contradict Theorem 4.4.20(ii), which
guarantees existence of an invariant frame only at regular points of the equivalence
group action. However auxiliary system (4.53) specifies a locus of singular points.

The problem seems to be due to there being ‘too much’ symmetry. There is
no difficulty in finding an invariant frame for the symmetry operators X̂1, X̂2.
When the additional symmetry X̂3 arises, its action on all the invariants u, D,
Ḋ, . . . , is trivial, so there is no way to eliminate the group parameter λ. We
expect difficulty whenever the rank of the system of common symmetry operators
is less than the number of such operators, i.e., the symmetry group acts multiply
transitively on its orbits. In this case we will not be able to find a frame which
is invariant under the action of the equivalence group Q̂. Instead we may find an
‘almost invariant’ frame, on which Q̂ has nontrivial action. The residuum of group
action presumably reflects the structure of the isotropy (stabilizer) subgroup of
the common symmetry group. This phenomenon affects only our ability to find
an invariant frame, and does not affect operation of the frame Reid algorithm.

Finally we note that for this simple example the overhead of computing and
substituting for the invariant frames is scarcely worth the effort. Despite the
cleaner appearance of the classification tree and commutation relations, the diffu-
sion example is not difficult enough to justify use of such ‘heavy machinery’.

4.5.2 Potential diffusion convection system

We now give a substantially more difficult computational example, applying the
frame method to the diffusion convection potential system

vx = u
vt = Dux −K (4.62)

with auxiliary system

∂vD = 0
∂xD = 0
∂tD = 0

∂vK = 0
∂xK = 0
∂tK = 0,

(4.63)

specifying permissible diffusivity and conductivity functionsD(u),K(u). We make
no notational distinction between D, K as coordinates and D, K as functions. Dot
notation is used for derivatives ∂uD = Ḋ, ∂uK = K̇, etc. From the outset we
impose the inequality D �= 0: if D = 0 the equation ceases to be parabolic, and is
not locally solvable.

Seeking a symmetry operator in the form

Y= χ∂v + ξ ∂x + τ ∂t + η ∂u
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yields determining equations (4.28) which can be written in the suggestive form

∂vτ = 0
∂xτ = 0
∂uτ = 0 ∂uξ = 0 ∂uχ = 0

Ḋ( ∂x + u ∂v)(χ− uξ)− 2D( ∂x + u ∂v)ξ +D∂tτ = 0

( ∂t + K̇( ∂x + u ∂v)−K ∂v)(χ− uξ) +K ∂tτ −D( ∂x + u ∂v)2(χ− uξ) = 0
η = ( ∂x + u ∂v)(χ− uξ). (4.64)

A 10-parameter equivalence group Q̂ (3.81) for the diffusion convection system
(4.62) was found in §3.4. A basis for the Lie algebra L̂ of Q̂ is given in (3.80). The
commutation relations are shown in Table 4.8.

X̂0 X̂1 X̂2 X̂3 X̂4 X̂5 X̂6 X̂9 X̂7 X̂8

X̂0 0 0 0 0 0 0 1
2X̂0 −X̂1 −X̂0 X̂0

X̂1 0 0 0 0 0 X̂0 − 1
2X̂1 0 −X̂1 X̂1

X̂2 0 0 0 −X̂0 X̂1 0 0 0 −2X̂2 X̂2

X̂3 0 0 X̂0 0 0 0 1
2X̂3 X̂4 X̂3 0

X̂4 0 0 −X̂1 0 0 −X̂3 − 1
2X̂4 0 X̂4 0

X̂5 0 −X̂0 0 0 X̂3 0 X̂5 2X̂6 0 0

X̂6 − 1
2X̂0

1
2X̂1 0 − 1

2X̂3
1
2X̂4 −X̂5 0 X̂9 0 0

X̂9 X̂1 0 0 −X̂4 0 −2X̂6 −X̂9 0 0 0

X̂7 X̂0 X̂1 2X̂2 −X̂3 −X̂4 0 0 0 0 0

X̂8 −X̂0 −X̂1 −X̂2 0 0 0 0 0 0 0

Table 4.8: Commutation relations for equivalence algebra (3.80) of diffusion con-
vection potential system (4.62). A chain of normal subalgebras is outlined. The
algebra is a semidirect sum of the diagonal blocks.

We seek to construct invariants and invariant frames for Q̂, writing the deter-
mining system (4.64) in terms of these. As above, we compute invariants of Q̂ in
steps. We use a chain of normal subgroups

Ĝ3 ≺ Ĝ5 ≺ Ĝ8 ≺ Ĝ9 ≺ Ĝ10 = Q̂
of the equivalence group, corresponding to algebras of dimension 3, 5, 8, 9, 10
starting at the top left of Table 4.8. In this case the operators appended at each
stage themselves form a subalgebra, i.e., L̂ is a semidirect sum of the subalgebras

L3{X̂0, X̂1, X̂2} ⊕s L2{X̂3, X̂4} ⊕s L3{X̂5, X̂6, X̂9} ⊕s L1{X̂7} ⊕s L1{X̂8}.
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After using the connected component of Q̂, we adjoin the discrete transformation
R2 (3.75).

As in Example 4.5.2, in enlarging from one subgroup to the next we must
find: an invariant frame; invariant infinitesimals; differential invariants; structure
relations; invariant auxiliary system; and frame determining system.

Common translation symmetries

The algebra L3{X̂0, X̂1, X̂2} generates the translation symmetries

v′ = v + κ2

x′ = x+ κ0

t′ = t+ κ1

u′ = u.

D′ = D
K ′ = K

(4.65)

The coordinate frame ∂v, ∂x, ∂t, ∂u is invariant, as are the infinitesimals are χ,
ξ, τ , η. The structure functions all vanish. The invariants u, D, K are subject to
the constraining system (4.63), plus obvious properties such as ∂xu = 0, ∂uu = 1.

Galilean transformation

Now consider the group generated by L2{X̂3, X̂4}:

v′ = v − εt
x′ = x+ δt
t′ = t
u′ = u.

D′ = D
K ′ = K + µu+ ε

(4.66)

An invariant frame ∆ and corresponding infinitesimals θ are given by

∆1 = ∂v
∆2 = ∂x
∆3 = ∂t −K ∂v + K̇( ∂x + u ∂v)
∆4 = ∂u

θ1 = χ− (uK̇ −K)τ
θ2 = ξ − K̇τ
θ3 = τ
θ4 = η.

(4.67)

The invariants of the group action are

u, D, J := K̈ (4.68)

The structure relations for ∆ are

[∆1,∆2] = 0 [∆1,∆3] = 0 [∆1,∆4] = 0
[∆2,∆3] = 0 [∆2,∆4] = 0

[∆3,∆4] = −uJ∆1

(4.69)

The invariants u, D, J are subject to (from (4.63))

∆1u = 0
∆2u = 0
∆3u = 0
∆4u = 1

∆1D = 0
∆2D = 0
∆3D = 0

∆1J = 0
∆2J = 0
∆3J = 0.

(4.70)
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The frame derivatives ∆4D and ∆4J are free. Since ∆4 is ∂u, we retain dot
notation and write ∆4J = J̇ etc. Finally, determining equations (4.64) become

∆1θ
3 = 0

∆2θ
3 = 0

∆4θ
3 = 0 ∆4θ

2 = −Jθ3 ∆4θ
1 = −uJθ3

Ḋ(∆2 + u∆1)(θ1 − uθ2)− 2D(∆2 + u∆1)θ2 +D∆3θ
3 = 0

∆3(θ1 − uθ2)−D(∆2 + u∆1)2(θ1 − uθ2) = 0

θ4 = (∆2 + u∆1)(θ1 − uθ2) (4.71)

Group isomorphic to SL2(IR)

Now consider the group generated by L3{X̂5, X̂6, X̂9}:
v′ = αv + βx
x′ = γv + δx
t′ = t

u′ =
αu+ β
γu+ δ

D′ = (γu+ δ)2D

K ′ =
K

γu+ δ

αδ − βγ = 1,

(4.72)

acting on the coordinate frame by

∂v′ = δ ∂v − γ ∂x
∂x′ = −β ∂v + α∂x
∂t′ = ∂t
∂u′ = (γu+ δ)2 ∂u.

The action on the quantities ∆, u, D, J is

u′ =
αu+ β
γu+ δ

a′ = (γu+ δ)2a
J ′ = (γu+ δ)3J

∆′
1 = δ∆1 − γ∆2

∆′
2 = −β∆1 + α∆2

∆′
3 = ∆3

∆′
4 = (γu+ δ)2∆4.

An invariant frame Λ is given by

Λ1 = πD1/2(∆2 + u∆1)
Λ2 = πD−3/2

(
2D∆1 + Ḋ(∆2 + u∆1)

)
Λ3 = ∆3

Λ4 = 1
D∆4,

(4.73)

with corresponding infinitesimals λ, defined by

λ1 = − 1
2πD

−3/2
(
Ḋ(θ1 − uθ2)− 2Dθ2

)
λ2 = 1

2πD
1/2(θ1 − uθ2)

λ3 = θ3

λ4 = Dθ4.

(4.74)

The quantity π appearing throughout is a sign ±. If J �= 0 then we take π = sgnJ .
If J = 0 this choice is impermissible, and we take π = 1. This is discussed below.
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The invariants of the group action are

L :=
DD̈ − 3/2Ḋ2

D4
I := |J |D−3/2 (4.75)

The structure relations of the frame Λ are

[Λ1,Λ2] = 0 [Λ1,Λ3] = 0 [Λ1,Λ4] = − 1
2Λ2

[Λ2,Λ3] = 0 [Λ2,Λ4] = −LΛ1

[Λ3,Λ4] = −IΛ1

(4.76)

From (4.70) the invariants L, I are subject to

Λ1L = 0
Λ2L = 0
Λ3L = 0

Λ1I = 0
Λ2I = 0
Λ3I = 0,

(4.77)

with Λ4L and Λ4I unconstrained. Finally, determining equations (4.71) become

Λ1λ
3 = 0

Λ2λ
3 = 0

Λ4λ
3 = 0

(Λ1)2λ2 = Λ3λ
2

Λ4λ
2 = − 1

2λ
1 Λ1λ

1 = 1
2Λ3λ

3

Λ4λ
1 = −Lλ2 − Iλ3

λ4 = 2Λ1λ
2 (4.78)

In this beautiful form only two terms have nonconstant coefficients, and the sim-
plicity of structure of the determining system (4.64) is revealed.

Consider the sign π which appeared above in (4.73), (4.74). If J �= 0, we may
choose π = sgnJ , and the frame Λ is then invariant under the action of the whole
SL2 subgroup (4.72). However, if J = 0, Λ1, Λ2 (4.73) change sign under action of
(4.72), so that (4.73) is not invariant. This is because when I = 0 (pure diffusion)
the transformation x 	→ −x, v 	→ −v becomes a reflection symmetry. In this case
we set π = 1 and continue, with Λ not invariant. We should give this as a case
splitting now, but it appears immediately below, so we don’t bother.

Scaling group—convection

Most of the hard work is now over, and things begin to become interesting. Con-
sider the group generated by L1{X̂7}:

v′ = µ−1v

x′ = µ−1x

t′ = µ−2t

u′ = u

D′ = D
K ′ = µK

µ > 0.
(4.79)

This has action on Λ, L, I given by

Λ′
1 = µΛ1

Λ′
2 = µΛ2

Λ′
3 = µ2Λ3

Λ′
4 = Λ4.

L′ = L
I ′ = µI

We must now consider the possibilities a. I �= 0 b. I = 0.

125



Chapter 4. Symmetry Group Classification

Case a. I �= 0.
Here we can effect division by I and eliminate the group parameter µ. An

invariant frame Γ and corresponding infinitesimals ζ are given by

Γ1 = I−1Λ1

Γ2 = I−1Λ2

Γ3 = I−2Λ3

Γ4 = Λ4

ζ1 = Iλ1

ζ2 = Iλ2

ζ3 = I2λ3

ζ4 = λ4.

(4.80)

The invariants of the group action are

L, M := I−1Λ4I (4.81)

The structure relations of Γ are

[Γ1,Γ2] = 0 [Γ1,Γ3] = 0 [Γ1,Γ4] = − 1
2Γ2 +MΓ1

[Γ2,Γ3] = 0 [Γ2,Γ4] = −LΓ1 +MΓ2

[Γ3,Γ4] = −Γ1 + 2MΓ3

(4.82)

From (4.77) the invariants L, M are subject to

Γ1L = 0
Γ2L = 0
Γ3L = 0

Γ1M = 0
Γ2M = 0
Γ3M = 0,

(4.83)

with Γ4L and Γ4M free. Finally, determining system (4.78) becomes

Γ1ζ
3 = 0

Γ2ζ
3 = 0

Γ4ζ
3 = 2Mζ3

(Γ1)2ζ2 = Γ3ζ
2

Γ4ζ
2 = − 1

2ζ
1 +Mζ2

Γ1ζ
1 = 1

2Γ3ζ
3

Γ4ζ
1 =Mζ1 − Lζ2 − ζ3

ζ4 = 2Γ1ζ
2 (4.84)

Case b. I = 0.
The condition I = 0 is equivalent to J = 0, that is, K̈ = 0. This case

is equivalent to a pure diffusion equation K = 0. Here division by I cannot
be effected, so the group parameter µ cannot be eliminated. This is the case
encountered in Example 4.5.2: the Boltzmann scaling has become a symmetry.
An invariant L is available, but there is no invariant frame. Note that this case
also inherits the symmetry x 	→ −x, v 	→ −v from the SL2 group (4.72): this is
due to our failure to eliminate the sign π.

Scaling group—diffusion

Finally we account for the group generated by L1{X̂8}, namely

v′ = ρv
x′ = ρx
t′ = ρt
u′ = u

D′ = ρD
K ′ = K

ρ > 0.
(4.85)
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Computing action on the quantities Λ, L, I yields

Λ′
1 = ρ−1/2Λ1

Λ′
2 = ρ−3/2Λ2

Λ′
3 = ρ−1Λ3

Λ′
4 = ρ−1Λ4.

L′ = ρ−2L

I ′ = ρ−3/2I
(4.86)

Now consider the branches I �= 0 and I = 0 from above.

Case a. I �= 0.
We compute the action on Γ, L, M :

Γ′
1 = ρΓ1

Γ′
2 = Γ2

Γ′
3 = ρ2Γ3

Γ′
4 = ρ−1Γ4.

L′ = ρ−2L

M ′ = ρ−1M

The calculation splits into two subcases, depending on whether L vanishes.

Case aa. I �= 0, L �= 0.
Here we can effect division by L and thereby eliminate the group parameter ρ.

An invariant frame Σ and corresponding infinitesimals β are

Σ1 = |L|1/2Γ1

Σ2 = Γ2

Σ3 = LΓ3

Σ4 = |L|−1/2Γ4

β1 = |L|−1/2ζ1

β2 = ζ2

β3 = L−1ζ3

β4 = |L|1/2ζ4.

(4.87)

The invariants of the group action are

P := |L|−3/2Γ4L, Q :=M |L|−1/2, σ := sgnL. (4.88)

The sign σ is truly invariant, and cannot be removed through stealth or art. The
absolute value signs throughout must be carefully respected, e.g., ∆|L| = σ∆L.
The structure relations of the frame Σ are

[Σ1,Σ2] = 0 [Σ1,Σ3] = 0 [Σ1,Σ4] = 1
2 (2Q− σP )Σ1 − 1

2Σ2

[Σ2,Σ3] = 0 [Σ2,Σ4] = −σΣ1 +QΣ2

[Σ3,Σ4] = −σΣ1 + (2Q− σP )Σ3

(4.89)

From (4.83), the invariants P , Q are subject to

Σ1P = 0
Σ2P = 0
Σ3P = 0

Σ1Q = 0
Σ2Q = 0
Σ3Q = 0,

(4.90)

with Σ4P and Σ4Q unconstrained. Finally, determining system (4.84) becomes

Σ1β
3 = 0

Σ2β
3 = 0

Σ4β
3 = (2Q− σP )β3

β4 = 2Σ1β
2

(Σ1)2β2 = σΣ3β
2

Σ4β
2 = − 1

2β
1 +Qβ2

Σ1β
1 = 1

2Σ3β
3

Σ4β
1 = 1

2 (2Q− σP )β1 − σβ2 − σβ3

(4.91)

Case ab. I �= 0, L = 0.
Here division by L cannot be effected. Another splitting appears, depending

on whether M vanishes.
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Case aba. I �= 0, L = 0, M �= 0.
Here we can use M to eliminate the group parameter ρ. An invariant frame Ξ

and corresponding infinitesimals ψ are:

Ξ1 =MΓ1

Ξ2 = Γ2

Ξ3 =M2Γ3

Ξ4 =M−1Γ4

ψ1 =M−1ζ1

ψ2 = ζ2

ψ3 =M−2ζ3

ψ4 =Mζ4.

(4.92)

The invariants of the group action are

R :=M−2Γ4M, S := LM−2. (4.93)

The quantities R, S, Ξ are well defined whenever M �= 0 (regardless of L). Here
we have L = 0, so S = 0. The structure relations of Ξ are

[Ξ1,Ξ2] = 0 [Ξ1,Ξ3] = 0 [Ξ1,Ξ4] = − 1
2Ξ2 + (1−R)Ξ1

[Ξ2,Ξ3] = 0 [Ξ2,Ξ4] = Ξ2

[Ξ3,Ξ4] = −Ξ1 + 2(1−R)Ξ3

(4.94)

From (4.83) the invariant R is subject to

Ξ1R = 0 Ξ2R = 0 Ξ3R = 0, (4.95)

with Ξ4R unconstrained. Finally, determining system (4.84) becomes

Ξ1ψ
3 = 0

Ξ2ψ
3 = 0

Ξ4ψ
3 = 2(1−R)ψ3

(Ξ1)2ψ2 = Ξ3ψ
2

Ξ4ψ
2 = − 1

2ψ
1 + ψ2

Ξ1ψ
1 = 1

2Ξ3ψ
3

Ξ4ψ
1 = (1−R)ψ1 − ψ3

ψ4 = 2Ξ1ψ
2 (4.96)

Case abb. I �= 0, L = 0, M = 0.
Here there is no way to eliminate the group parameter ρ. The best we can do

for a frame is Γ. This singular case is again associated with equivalence trans-
formations moving into the symmetry group. Conditions L = 0, M = 0, I �= 0
are

DD̈ − 3
2Ḋ

2 = 0, (K̈D−3/2)· = 0, K̈ �= 0

which lead to

D(u) = (eu+ f)−2

K(u) =
au2 + bu+ c
eu+ f

where at least one of e, f is nonvanishing, and eu+f does not divide au2+ bu+ c.
These are the equations (including the Fokas-Yortsos system (3.90)) which are
equivalent to Burgers’ system (3.88). It is interesting that the frame calculations
pick this out as a singular case even though the linearizing transformation taking
Burgers’ to the heat equation is not detected.

All branches with I �= 0 have now been exhausted, so we pass on to

Case b. I = 0.
The action of the scaling group on our ‘almost invariant’ frame Λ was given

above (4.86). We still have L′ = ρ−2L, so we get another splitting.
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Case ba. I = 0, L �= 0.
Here we can use division by L to eliminate the group parameter ρ. An invariant

frame Υ, and corresponding infinitesimals ω are:

Υ1 = |L|−1/4Λ1

Υ2 = |L|−3/4Λ2

Υ3 = |L|−1/2Λ3

Υ4 = |L|−1/2Λ4

ω1 = |L|1/4λ1

ω2 = |L|3/4λ2

ω3 = |L|1/2λ3

ω4 = |L|1/2λ4.

(4.97)

The invariants of the group action are

P := |L|−3/2Λ4L, σ := sgnL. (4.98)

This P is the same as (4.88), merely rewritten in new notation. The structure
relations of the frame Υ are

[Υ1,Υ2] = 0 [Υ1,Υ3] = 0 [Υ1,Υ4] = 1
4σPΥ1 − 1

2Υ2

[Υ2,Υ3] = 0 [Υ2,Υ4] = −σΥ1 + 3
4σPΥ2

[Υ3,Υ4] = − 1
2σPΥ3.

(4.99)

From (4.77) the invariant P is subject to

Υ1P = 0 Υ2P = 0 Υ3P = 0, (4.100)

with Υ4P unconstrained. Finally, determining system (4.78) becomes

Υ1ω
3 = 0

Υ2ω
3 = 0

Υ4ω
3 = 1

2σPω
3

(Υ1)2ω2 = Υ3ω
2

Υ4ω
2 = − 1

2ω
1 + 3

4σPω
2

Υ1ω
1 = 1

2Υ3ω
3

Υ4ω
1 = 1

4σPω
1 − σω2

ω4 = 2Υ1ω
2 (4.101)

Case bb. I = 0, L = 0.
Here there is no way to eliminate the group parameter ρ, and we are stuck

with the frame Λ. This singular case corresponds to D, K satisfying

DD̈ − 3
2Ḋ

2 = 0, K̈ = 0

which lead to

D(u) = (eu+ f)−2

K(u) = au+ b

where at least one of e, f is nonvanishing. These are the equations (including
the Bluman-Kumei system (3.86)) which are equivalent to the linear heat system.
In this case the linearizing transformation is in the equivalence group, so it is
expected that this case should be picked out as singular.

Reflection equivalence

The calculation of invariant and ‘almost invariant’ frames for the connected com-
ponent of the equivalence group is now finished. For completeness, we should
adjoin the reflection equivalence R2 (3.75) v 	→ −v, u 	→ −u. This has little effect
on the branches above. It causes the quantities M , P , Q to change sign, as well
as various operators Λ, Σ, Ξ, Γ. Two cases are affected by these sign changes:
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Case aa. I �= 0, L �= 0. Here if P �= 0, we may use sgnP to eliminate sign
anomalies. Thus P̃ := sgnP · P and Q̃ := sgnP ·Q are invariant, as are the
operators Σ̃4 := sgnP · Σ4, etc. If P = 0 but Q �= 0, we use sgnQ in the
same way. The structure relations (4.89), determining system (4.91) etc. are
identical, except that P , Q, Σ4 are replaced by their ‘sign corrected’ relatives
P̃ , Q̃, Σ̃4. The only interesting case is P = Q = 0, where the sign cannot be
compensated. Here a discrete symmetry is inherited from the equivalence
group. This is the case D(u) = |αu2 + βu + γ|−1 (Fujita diffusivity [23])
and K(u) = K0|αu2 + βu + γ|1/2, where β2 − 4αγ �= 0, K0 �= 0. Up to
equivalence there are two distinct cases:

• D(u) = |u|−1, K(u) = |u|1/2, admitting the hodograph-type transfor-
mation (3.84) as a symmetry.

• D(u) = (1+u2)−1, K(u) =
√
1 + u2, admitting the reflection symmetry

v 	→ −v, u 	→ −u.

Case ba. I = 0, L �= 0. Here if P �= 0 we use it as above to remove sign
anomalies, while if P = 0 compensation is impossible. This is the case of
Fujita’s diffusion equation K(u) = 0, D(u) = 1/|αu2+βu+γ|, β2−4αγ �= 0.
Up to equivalence there are two cases

• D(u) = |u|−1, K(u) = 0, admitting the hodograph symmetry (3.84).

• D(u) = (1+u2)−1, K(u) = 0, admitting the above reflection symmetry.

Interestingly, these cases were distinguished in the partial classification Tables
4.3, 4.4 for the same reasons.

Summary of invariant frames

So far we have the incomplete classification tree shown in Figure 4.2.

Completion to involutive system

For each of the five ‘leaves’ of the tree above we now complete the determining
system to involutive form. This gives rise to a further hierarchy of branchings.
Note the three common translation symmetries are always present. Hence the the
solution space of the determining systems is always of dimension at least three. We
therefore do not present results for any branch with a three dimensional solution
space.

Case aa. I �= 0, L �= 0.
Here we are working on system (4.91). ] of the frame Reid method gives a case

splitting on Σ4P . If Σ4P �= 0 only minimal translation symmetry is present. We
pursue the case Σ4P = 0, that is, P = const. A further case splitting, on Σ4Q,
arises. If Σ4Q �= 0 we have only minimal symmetry. Hence we follow the branch
Σ4Q = 0, Q = const. No further splittings arise, and the system is reduced to
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D > 0
Λ4 := 1

D ∂u

L := DD̈−3/2Ḋ2

D4

I := |K̈|D−3/2

M := Λ4I/I

I �=0 I=0

P := |L|−3/2Λ4L
frame: Υ

frame: Λ

L�=0 L=0

P := |L|−3/2Λ4L

Q :=M |L|−1/2

frame: Σ

L�=0 L=0

R :=M−2Λ4M
frame: Ξ

frame: Γ

M �=0 M=0

Figure 4.2: Preliminary classification tree for potential diffusion convection system
(4.62). Branchings are on the basis of whether or not particular frames exist.

involutive form

Σ1β
3 = 0

Σ2β
3 = 0

Σ3β
3 = −2(2Q− σP )Σ1β

2

Σ4β
3 = (2Q− σP )β3

Σ2
1β

2 = 0
Σ2β

2 = −2QΣ1β
2

Σ3β
2 = 0

Σ4β
2 = − 1

2β
1 +Qβ2

Σ1β
1 = −(2Q− σP )Σ1β

2 β4 = 2Σ1β
2

Σ2β
1 = 2σΣ1β

2

Σ3β
1 = 2σΣ1β

2

Σ4β
1 = 1

2 (2Q− σP )β1 − σβ2 − σβ3

(4.102)

The four parametric quantities β1, β2, β3, Σ1β
2, give a four-parameter symmetry

group.

Application of the method (Appendix B) for finding structure constants gives
a Lie algebra of symmetry operators Y1, Y2, Y3, Y4 with commutation relations
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Chapter 4. Symmetry Group Classification

Y1 Y2 Y3 Y4

Y1 0 0 0 −(2Q− σP )Y1 +Y2

Y2 0 0 2σY1 − 2QY2

Y3 0 2σY1 − 2(2Q− σP )Y3

Y4 0

Case aba. I �= 0, L = 0, M �= 0.
We apply the frame Reid method to system (4.96), giving a case splitting on

Ξ4R. If Ξ4R �= 0 there is minimal symmetry, and we present the case Ξ4R = 0,
which terminates without further branching in involutive form:

Ξ1ψ
3 = 0

Ξ2ψ
3 = 0

Ξ3ψ
3 = 2(1−R)Ξ2ψ

2

Ξ4ψ
3 = 2(1−R)ψ3

Ξ1ψ
2 = − 1

2Ξ2ψ
2

Ξ2
2ψ

2 = 0

Ξ3ψ
2 = 0

Ξ4ψ
2 = − 1

2ψ
1 + ψ2

ψ4 = −Ξ2ψ
2

Ξ1ψ
1 = (1−R)Ξ2ψ

2

Ξ2ψ
1 = 0

Ξ3ψ
1 = −Ξ2ψ

2

Ξ4ψ
1 = (1−R)ψ1 − ψ3

(4.103)

The parametric quantities ψ1, ψ2, ψ3, Ξ2ψ
2 give a four-parameter symmetry

group. The commutation relations of the symmetry algebra are

Y1 Y2 Y3 Y4

Y1 0 0 0 (1−R)Y1 − 1
2Y2

Y2 0 0 Y2

Y3 0 −Y1 + 2(1−R)Y3

Y4 0

Case abb. I �= 0, L = 0, M = 0.
This is the Burgers’ equation case. There are no further splittings. Since

this case is connected to the linear heat system by the Cole-Hopf transformation,
an involutive system with infinitely many parametric derivatives results. We do
not reproduce it here. If this linearization were not known, it is interesting to
speculate whether it could be detected from the determining system. For this a
frame version of the theory of Kumei and Bluman [41, 14] would be required.

Case ba. I = 0, L �= 0.
Applying the frame Reid method to determining system (4.101), we find a case
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4.5. Symmetry classification

splitting on Υ4P . If Υ4P �= 0 the system reduces to the involutive form

Υ1ω
3 = 0

Υ2ω
3 = 0

(Υ3)2ω3 = 0

Υ4ω
3 = 1

2σPω
3

Υ1ω
2 = 0

(Υ2)2ω2 = 1
2Υ3ω

3

Υ3ω
2 = 0

Υ4ω
2 = − 1

2ω
1 + 3

4σPω
2

ω4 = 0

Υ1ω
1 = 1

2Υ3ω
3

Υ2ω
1 = 0

Υ3ω
1 = 0

Υ4ω
1 = 1

4σPω
1 − σω2

(4.104)

The parametric derivatives ω1, ω2, ω3, Υ3ω
3 give a four-parameter symmetry

group, representing the four symmetries common to all diffusion potential systems.
The commutation relations of the symmetry algebra are

Y1 Y2 Y3 Y4

Y1 0 0 0 1
2Y1

Y2 0 0 1
2Y2

Y3 0 Y3

Y4 0

If Υ4P = 0, we obtain an involutive form

Υ1ω
3 = 0

Υ2ω
3 = 0

(Υ3)2ω3 = 0

Υ4ω
3 = 1

2σPω
3

Υ2
1ω

2 = 0

(Υ2)2ω2 = −σPΥ1ω
2 + 1

2Υ3ω
3

Υ3ω
2 = 0

Υ4ω
2 = − 1

2ω
1 + 3

4σPω
2

ω4 = 2Υ1ω
2

Υ1ω
1 = 1

2Υ3ω
3

Υ2ω
1 = 2σΥ1ω

2

Υ3ω
1 = 0

Υ4ω
1 = 1

4σPω
1 − σω2

(4.105)

The parametric quantities ω1, ω2, ω3, Υ3ω
3, Υ1ω

2 give five symmetries. The
structure of the symmetry algebra is
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Chapter 4. Symmetry Group Classification

Y1 Y2 Y3 Y4 Y5

Y1 0 0 0 1
2Y1 Y2

Y2 0 0 1
2Y2 2σY1 − σPY2

Y3 0 Y3 0

Y4 0 0

Y5 0

Case bb. I = 0, L = 0
There is no further case splitting. The involutive form is

Λ1λ
3 = 0

Λ2λ
3 = 0

Λ4λ
3 = 0

(Λ3)2λ3 = 0

Λ4λ
2 = − 1

2λ
1

Λ2
1λ

2 = Λ3λ
2

Λ2Λ1λ
2 = − 1

2Λ3λ
1

(Λ2)2λ2 = 1
2Λ3λ

1

Λ3Λ2λ
2 = 0

Λ1λ
1 = 1

2Λ3λ
3

Λ2λ
1 = 0

Λ4λ
1 = 0

(Λ3)2λ1 = 0
λ4 = 2Λ1λ

2

(4.106)

The parametric quantities are λ1, Λ3λ
1, λ3, Λ3λ

3, Λ2λ
2, and the two infinite

sequences λ2, Λ3λ
2, (Λ3)2λ2, . . . and Λ1λ

2, Λ3Λ1λ
2, (Λ3)2Λ1λ

2, . . . . Hence this
case admits an infinite-dimensional symmetry algebra. We do not attempt to find
commutation relations for this case. The class consists of equations which can be
mapped to the heat equation by an equivalence transformation, and we regard the
symmetry properties as known.

Summary of classification

All in all the calculations of this section yield the classification tree shown in
Figure 4.3. In this remarkably compact diagram is present all the information
required to decide the symmetry properties of a diffusion convection potential
system. The elegance and compactness of the result is apparent when compared
with the output of Reid’s [57] method. For instance, the case Λ4P = Λ4Q = 0,
when written out in full, is

12DD̈3 − 6Ḋ2D̈2 − 16DḊD̈
...
D + 6Ḋ3...

D

− 2D2....
DD̈ + 3D

....
DḊ

2 + 3D2...
D

2
= 0

4K̈
....
KD

2D̈ − 6K̈
....
KDḊ

2 + 8K̈
...
KDḊD̈ − 6K̈

...
KḊ

3 − 6K̈2D̈2D (4.107)

+ 3K̈2Ḋ2D̈ − 4
...
K

2
D2D̈ + 6

...
K

2
DḊ2 − 2K̈

...
KD

2...
D + 3K̈2ḊD

...
D = 0,

which is the form in which Reid’s method [57] returns the result.
In Figure 4.3, all the branchings are (by construction) invariant under the ac-

tion of the equivalence group. Hence two equations connected by an equivalence
transformation always occur on the same branch. This greatly cuts down on spuri-
ous branchings, and in fact all of the branches in Figure 4.3 discriminate symmetry
properties. In contrast, Reid’s method gives rise to a large number of apparently
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4.5. Symmetry classification

irrelevant branches. Note that equations occurring on different branches of the
tree could be equivalent with respect to a transformation not in equivalence group
(3.81): this in fact occurs, since the Burgers’ and linear heat equation branches
are connected by the Cole-Hopf transformation (3.89).

Ultimately one wishes to solve the classifying equations to find D(u), K(u),
and to solve the determining system to find the symmetry operators. However,
the count of symmetries in Figure 4.3 shows that the only cases with symmetry
beyond that encountered in the partial classification of §4.2.3 are the linear heat
and Burgers’ branches. The symmetries of the heat system are well-known, and
those of Burgers’ system follow from these by the Cole-Hopf transformation of
§3.4.2. Hence no further construction of symmetries is required.
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D > 0
Λ4 := 1

D ∂u

L := DD̈−3/2Ḋ2

D4

I := |K̈|D−3/2

M := Λ4I/I

I �=0 I=0

P := |L|−3/2Λ4L (heat)
∞-parameter

L�=0 L=0

4-parameter 5-parameter

Λ4P �=0 Λ4P=0

P := |L|−3/2Λ4L

Q :=M |L|−1/2

L�=0 L=0

R :=M−2Λ4M (Burgers’)
∞-parameter

M �=0 M=0

3-parameter 4-parameter

Λ4R �=0 Λ4R=0

3-parameter

Λ4P �=0 Λ4P=0

3-parameter 4-parameter

Λ4Q�=0 Λ4Q=0

Figure 4.3: Complete symmetry classification tree for potential diffusion convection system (4.62).
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Chapter 5

Conclusion

5.1 Further work

We now describe some further directions in which the equivalence methods intro-
duced here could be pursued.

First we describe some possible modifications to the definition of equivalence
transformations in Chapter 3. The conditions we placed on transformations there,
realizing them as projectable coordinate transformations on an augmented space,
and requiring that they act on every solution of every equation in the class, are
extremely restrictive. The most obvious generalization is to permit the variables
(x′, u′) to depend on arbitrary elements a = φ(w) in some way. Permitting de-
pendence on the value a alone is insufficient, and it seems that the appropriate
generalization is to allow Lie-Bäcklund transformations for a as a function of w.
Another modification is to relax the requirement that equivalence transformations
act on every equation in the class. This would lead to an ‘equivalence classifica-
tion’, with a hierarchy of subclasses admitting richer equivalences than usual. The
examples in §1.2 already show the need for both these kinds of generalization.

Apart from the intrinsic interest of transformation properties, a principal moti-
vation for using equivalence methods is for assisting in the symmetry classification
for a class of p.d.e.’s. We have shown in §4 how useful the equivalence group can
be for such problems. However, further computational experience with the frame
classification method of §4.5 is required, especially on difficult examples with an
infinite-parameter equivalence group. Our treatment also has some theoretical
gaps, the vital one being the absence of a proof of the frame Riquier Conjec-
ture 4.3.17. Our use of frame involutive form to obtain the dimension and struc-
ture of symmetry groups relies directly on the frame Riquier conjecture. Hence
it is essential to establish this result, so that the method for counting symmetries
and finding commutation relations can be placed on a sound footing.

An interesting issue raised when Reid’s method is referred to an arbitrary
moving frame is the ordering of frame derivatives. Because frame operators do not
commute, the ordering process is more subtle than in the classical p.d.e. case. We
simply demanded that the ordering imposed be a Janet ordering on equivalence
classes of derivatives, leaving the relative order of ∆12θ and ∆21θ unresolved.
Certainly this can be extended to an ordering on all frame derivatives by assigning
some ordering within each equivalence class. However, it is not clear that this is
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Chapter 5. Conclusion

the most general ordering possible. Characterization of permissible orderings may
be more difficult than in the p.d.e. case.

Lastly, an important task is to develop a computer implementation of the
frame Reid method. The general program structure used by Reid for the p.d.e.
case certainly carries over. However every procedure, and even the data structure
for derivatives, requires modification to account for noncommuting operators, so
this is a nontrivial undertaking.

5.1.1 Isovector method for frame determining system

Our method for writing and manipulating frame determining systems is only
partially geometric. The frame derivatives ∆iθj of components θj of a vector
field are of no particular geometric importance: in particular they do not consti-
tute a tensor. The important geometric quantities are the covariant derivatives
θj;i = ∆iθj + γ

j
ikθ

k with respect to a connection defined by the frame ∆. It is not
clear whether any computational advantage accrues from using covariant deriva-
tives in preference to simple frame derivatives. The approach actually presented
has the advantage of more closely parallelling Reid’s method.

A second way in which our method fails to be geometric is that we derive
determining equations using coordinate-based calculations. Only later is the de-
termining system given a geometric formulation by referring it to a moving frame.
In this we are the opposite of Harrison and Estabrook’s isovector method [29].
There the original p.d.e.’s are formulated geometrically as an ideal I of differ-
ential forms. The symmetry vector fields Y are found by requiring vanishing of
the Lie derivative LYI = 0, (mod I). Once they derive their invariance condi-
tion, geometric formalism is abandoned, and determining equations are treated
simply as systems of p.d.e.’s. Both the Liesymm package in the Maple V sym-
bolic language [20], and the program of Kersten [40], use the Harrison-Estabrook
formalism to derive determining equations. Everything is referred to basis vector
fields ∂xi and basis forms dxi, and the method amounts to a recondite procedure
for constructing determining equations.

However, a completely geometric formulation of determining equations is pos-
sible, referring every step of the calculation to a moving frame. First we formulate
the original p.d.e.’s as a collection of differential forms Ωi, collectively denoted by
I. Similarly reformulate the auxiliary system satisfied by the arbitrary elements as
a collection of forms Θi. Next, by applying the Cartan equivalence method to the
equivalence group, we construct an invariant coframe ω, along with its structure
relations, which here take the form dωk = γkij ω

i ∧ ωj . Rewrite the forms Ωi rep-
resenting the p.d.e.’s in terms of the coframe ω. Similarly rewrite Θi representing
the auxiliary system in terms of the coframe ω. The Harrison-Estabrook isovector
procedure can now be applied. Write Y= ζi∆j , where ∆ is the invariant frame
dual to the coframe ω. The isovector condition

LYΩj = 0 (mod I)

is then stated entirely in terms of frames, and yields a collection of differential
forms representing the determining system. This can be broken up by picking off
coefficients of the basis forms ω, to yield a frame determining system, which can
be reduced using the frame Reid method. Alternatively the Cartan-Kähler theory
might be used to count the dimension of the solution space, i.e., the number
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5.1. Further work

of symmetries. Indeed this version of our method would be theoretically more
satisfactory, in that the integration theory used to count the symmetries already
exists.

We sketch an example of this method, rederiving some of the results of Sec-
tion 4.5.2 for the potential diffusion convection system. First we reformulate the
system

vx = u
vt = aux − b

where a = D(u) and b = K(u) as the one forms

du− p dx− q dt
dv − u dx− (ap− b) dt

where p, q represent ux, ut respectively. The auxiliary system ax = 0 etc. is
written as the forms

da = ȧ du db = ḃ du.

Thus we are working on a six dimensional space (x, t, u, v, p, q).
Constructing an invariant coframe with respect to the equivalence group, we

come upon branchings similar to those in Figure 4.2. Suppose the conditions
I �= 0, L �= 0 are satisfied, so that the invariants are P , Q. Because here we are
working on a larger space, there are additional invariants F , G expressed in terms
of p, q respectively and various derivatives a, ȧ, etc. We construct an invariant
coframe ω whose structure relations are

dω1 = 0
dω2 = Qω1 ∧ ω2 − ω1 ∧ ω3

dω3 = − 1
2σω

1 ∧ ω2 + 1
2 (2Q− σP )ω1 ∧ ω3 − σω1 ∧ ω4

dω4 = (2Q− σP )ω1 ∧ ω4

dω5 = (−Q+ σP )ω1 ∧ ω5

dω6 = σ(1 + F )ω1 ∧ ω5 + (−2Q+ 3/2σP )ω1 ∧ ω6

The diffusion convection system referred to this coframe is generated by forms Ω1,
Ω2:

Ω1 = ω1 − σFω3 − σGω4

Ω2 = ω2 − Fω4.
(5.1)

The frame derivatives of the invariants P , Q, F , G are not arbitrary, but are
constrained to satisfy the auxiliary system

dP = P,1ω1

dQ = P,1ω1

dF = F (−Q+ σP )ω1 + ω5

dG =
(

1
2σF (2 + F ) +G(−2Q+ 3/2σP )

)
ω1 + ω6

where P,1 = ∆1P where ∆ is the frame dual to the coframe ω.
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We seek symmetry vector fields Ywhich we suppose referred to the frame ∆:
Y= θi∆i. The symmetry condition is that

LYΩ = 0 (modΩ)

where L is the Lie derivative. That is, there are functions λ1
1, λ

2
1, λ

1
2, λ

2
2 such that

Lθi∆i
Ω1 = λ1

1Ω
1 + λ1

2Ω
2

Lθi∆i
Ω2 = λ2

1Ω
1 + λ2

2Ω
2

Replacing Ω1, Ω2 by their expressions (5.1) in terms of the coframe ω, and using
the identity

LYΩ = d〈Ω | Y〉+Y- dΩ,

we find for example from the Ω2 equation,

dθ2 − F dθ4 + ((2Q− σP )Fθ4 + θ3 −Qθ2)ω1 +Qθ1ω2 − θ1ω3

− (θ5 +QFθ1)ω4 = λ2
1(ω

1 − σFω3 − σGω4) + λ2
2(ω

2 − Fω4).

Picking off coefficients gives a linear homogeneous frame system for θi and λij ,
which is in fact the determining system. Rendering it involutive using the frame
Reid method gives the results derived in Section 4.5.2.

This procedure is elegant and geometric throughout. It combines the Cartan,
Harrison-Estabrook, and Reid procedures into one vast algorithm for symmetry
classification. The approach follows on naturally from the Cartan equivalence
method, as opposed to our treatment in Section 4.3, which was designed to tie in
naturally with Reid’s method. There are disadvantages in the process: the space
(x, t, u, v, p, q) on which we construct the invariant coframe is of dimension six;
the derivative coordinates p, q would seem to be of lesser importance, and did not
occur in our previous formulation. This leads to more intensive calculations.

5.2 Conclusions

In this dissertation we have endeavoured to give a systematic and detailed method
for finding equivalence transformations for a class of differential equations. Al-
though the construction is not difficult, and has been available in albeit sketchy
form for almost a decade, it appears to have been little used. The systematic
use of equivalence transformations appears to have been confined to the Cartan
equivalence method, which is hampered by its insistence on extracting only trans-
formation information contained in a given group acting on the class of d.e.’s. The
examples treated by the Cartan method have tended to be classes of geometric
objects under the action of some natural transformation group. Since physical
classes of equations rarely represent a geometrically natural class, and generally
do not come provided with a transformation group attached, application of the
Cartan method to physically significant problems has been seriously hampered.

The method we have described does not usually yield exhaustive transfor-
mation information on the class of differential equations under consideration.
Nevertheless, we have shown by example that the information contained in the
equivalence group is nontrivial, and can give significant insight into relationships
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between various equations in the class. Some of these relationships were explored
for examples in §3.4.

It appears to us that one of the most important uses of the equivalence group is
in systematically ordering the calculations and results of symmetry classification.
This is extremely important, since application of similarity or other methods based
on a symmetry approach requires first the construction of a symmetry group. The
multitude of cases which arise when performing a symmetry classification, and the
multitude of parameters occurring in each of the cases, can lead to difficulty in
stating symmetry classification results. Order is usually imposed by an ad hoc
parameter removal, which the equivalence group makes more complete and sys-
tematic. Certain symmetry classification information is easily available using by
the methods described in §4.2. In fact the symmetries contained in the equiva-
lence group are in some sense the ‘predictable’ symmetries. Their construction
and classification pose few problems for a finite-parameter equivalence group, and
for the infinite case the Cartan equivalence method is available. The symme-
tries not contained in the equivalence group are not predictable by our methods.
Despite this (or perhaps because of this), such symmetries are of great interest,
and it is unacceptable to confine our attention solely to the symmetries from the
equivalence group. Hence we have been led to the method of Section 4.3, which
enables a complete symmetry classification, while taking full account of the (neces-
sarily partial) information contained in the equivalence group. In this it combines
the best features of the Cartan equivalence method (utilizing transformation in-
formation) and Reid algorithm (giving a complete classfication). The geometric
formulation of determining equations in terms of moving frames has an intrinsic
elegance which is reflected in the nature of the classification tree produced (Fig-
ure 4.3). Our method uses the results produced by the Tresse/Cartan equivalence
method as an input to the frame Reid method of §4.3.2, thus providing a bridge
between the geometric method of Tresse/Cartan and the analytic method of Reid.
In this way it synthesizes a significant portion of symmetry theory for d.e.’s.
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Appendix A

Algorithms for Frame
Systems

In this appendix we present algorithms for the frame systems of §4.3—§4.5. First
we cover reduction to involutive form, then we consider the classification case
with arbitrary elements present. It is not necessary for the frame system to be a
determining system for symmetries, although this is the only way in which we use
frame systems.

A.1 Reduction to frame involutive form

We give a sequence of procedures, starting with the most elementary, and culmi-
nating in a procedure for reduction to involutive form.

A.1.1 Orthonomic form

We assume that the following elementary procedures are available:

maxorder(S)
input: A finite set S of frame derivatives ∆Jθj

output: The element s ∈ S highest in the ordering

removepermutations(R)
input: A set R of frame equations.
action: For each equation r ∈ R, check for presence in r of derivatives

∆Iθj , ∆Jθj which are permutations of one another.
If present, use structure relations to write them all in terms
of one among them:

∆Iθj = ∆Jθj + permutation terms.
output: Equations R with permutations removed.

leadingderiv(eqn)
input: A frame equation eqn.
output: The derivative of highest order occurring in eqn:

leadingderiv := maxorder{∆Jθj | ∆Jθj present in eqn}.
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A.1. Reduction to frame involutive form

solve(eqn,deriv)
input: A frame equation eqn.

A frame derivative deriv = ∆Jθj occurring in eqn.
output: eqn rewritten in the form ∆Jθj = rhs.

subst(eqn,U)
input: An equation eqn in solved form ∆Jθj = rhs.

A set U of frame equations.
action: Replace each occurrence of ∆Iθj where I is a permutation

of J by ∆Iθj = rhs + permutation terms
output: U with ∆Jθj substituted out.

With these defined, orthonomic form (Definition 4.3.7) may be achieved by the
following ‘Gaussian elimination’ algorithm:

Algorithm A.1.1. (orthonomic)

function orthonomic(DQ)
unsolved := DQ
solved := ∅
repeat

unsolved := removepermutations(unsolved)
maxderiv := maxorder{leadingderiv(eqn) | eqn ∈ U}
maxset := {eqn ∈ unsolved | leadingderiv(eqn) = maxderiv}
nexteqn := (any element in maxset)
nexteqn := solve(nexteqn,maxderiv)
solved := subst(nexteqn,solved) ∪ {nexteqn}
unsolved := subst(nexteqn,unsolved \{nexteqn})

until unsolved = ∅
orthonomic := solved

end

We note

1. Substitution of nexteqn into the set solved cannot cause these to lose solved
form, since the derivative being substituted is lower in the ordering than all
the leading derivatives in solved .

2. The number of equations in unsolved decreases by one for each pass through
the loop, so the procedure terminates after a finite number of steps.

A.1.2 Reduced orthonomic form

The process of implicit substitution was described in §4.3.2. We denote implicit
substitution of a leading derivative ∆Iθj into ∆Jθj throughout a system by

implicit subst(∆Iθj , ∆Jθj , system)

With this, a system may be brought to reduced orthonomic form (Definition 4.3.9)
as follows:

Algorithm A.1.2. (reduce)
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function reduce(system)
repeat

system := orthonomic(system)
while exist ∆Jθj , derivative of leading ∆Iθj

do
system := implicit subst (∆Iθj , ∆Jθj , system)

od
until system is orthonomic
reduce := system

end

We note

1. Carrying out all implicit substitutions is a finite process. Implicit substitu-
tion strictly lowers the order of derivatives occurring. Because the deriva-
tives originally occurring are of finite order, it is impossible for there to be
infinitely many implicit substitutions.

2. In this procedure, reduction to orthonomic form is executed a finite number
of times. Each iteration generates an orthonomic system. If implicit substi-
tutions in this system affect only the right hand sides, the system remains
orthonomic, and we exit. If implicit substitutions also affect leading deriva-
tives, orthonomic form is lost, and the loop is entered again. However, the
order of leading derivatives has now strictly decreased. Sufficiently many
iterations would therefore cause the system to disappear altogether. Hence
the loop can only be traversed a finite number of times.

A.1.3 Involutive form

The process of computing compatibility conditions was described in §4.3.2. All
compatibility conditions of a reduced orthonomic frame system DQ are generated,
then simplified by implicit substitution from DQ. We denote the result of this
process compatibility(system). Involutive form (Definition 4.3.12) is achieved as
follows:

Algorithm A.1.3. (involutive)

function involutive(system)
repeat

system := reduce(system)
compat := compatibility(system)
system := system ∪ compat

until compat = ∅
involutive := system

end

The argument which proves this process must be finite is originally due to
Tresse [68] (see also [56]).

A.2 Group classification

To effect a classification for a frame system containing arbitrary elements, the
procedures detailed in §A.1 must be modified. The changes are as follows:

144



A.2. Group classification

1. A classifying (frame) system CQ is now present. This starts out as the
frame auxiliary system, and has classifying equations appended to it as the
calculation proceeds. Every time CQ is modified, we reduce it to frame
involutive form.

2. The classifying system CQ and classifying inequalities CI are made available
to each procedure, notably solve, orthonomic, reduce, and involutive.

3. All possible implicit substitutions from from the classifying system CQ must
be carried out at each step. This keeps coefficients in the determining system
as simple as possible. In particular, when orthonomic determines the lead-
ing derivative in an equation, the coefficient of this leading derivative will
already have been simplified subject to CQ, and therefore will not vanish as
a consequence of CQ.

4. The procedures solve, orthonomic, reduce, and involutive run to completion
only if all divisions were unequivocally possible (i.e., the coefficients divided
by are constants or are nonzero by virtue of inequalities CI). If solve cannot
resolve division by the coefficient required, this coefficient must be noted as
a pivot , and solve returns without effecting the division. Then orthonomic,
reduce, and ultimately involutive are also unsuccessful, and return with only
a partially processed determining system along with the unresolved pivot. A
branching is now carried out, with involutive form being sought separately
for the two cases pivot �= 0 and pivot = 0.

We redefine the function involutive as follows.

Algorithm A.2.1. (involutive)

function involutive(DQ,CQ,CI,var pivot)
input: DQ . . . frame determining system

CQ . . . frame classifying system
CI . . . classifying frame inequalities

output:(pivot = null) divisions were successful
involutive gives involutive form of DQ

(pivot non-null) a pivot was encountered
involutive is partial progress towards involutive form

repeat
DQ := reduce(DQ ,CQ ,CI , pivot)
if pivot = (null) then

compat := compatibility(DQ,CQ)
DQ := DQ ∪ compat

else
involutive := DQ
RETURN

fi
until compat = ∅
involutive := DQ

end
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The important feature is the ‘unsuccessful’ return, which returns pivot through
the parameter list. Procedures reduce, orthonomic and solve are modified simi-
larly: a successful return is indicated by a null pivot (all divisions were resolved);
an unsuccessful return being accompanied by a nontrivial pivot expression.

As noted in §4.5, these modifications permit generation of a binary classifica-
tion tree by a recursive procedure, which we reproduce here for convenience.

Algorithm A.2.2. (classify)

function classify(DQ,CQ,CI)
input: DQ . . . frame determining system

CQ . . . frame classifying system
CI . . . classifying frame inequalities

output: Nothing
side effect:Involutive form and corresponding classifying

systems and inequalities for each leaf of the tree
are printed out.

DQ := involutive(DQ ,CQ ,CI ,pivot)
if pivot = (null) then

print(DQ ,CQ ,CI )
else

classify(DQ ,CQ ,CI ∪{pivot �= 0})
classify(DQ ,CQ ∪{pivot = 0},CI )

fi
end
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Appendix B

Structure Constants

Consider a frame determining system DQ for an algebra of Lie symmetry opera-
tors. A finite-dimensional Lie algebra is characterized by its structure constants
Ckij . Our goal here is to show how Ckij can be found directly from the determining
system DQ, without knowing its solutions. The method is an improvement of that
originally given by Reid [57], which was based on Taylor expansion of the solution
about an initial data point. This improvement has been implemented in [58] for
the coordinate case.

Determining equations are linear and homogeneous, which implies that their
solutions constitute a vector space. In addition, they have the property of being
‘closed under commutation’. Suppose DQ are referred to a coordinate system.
Let ξ, η be two solutions of DQ, so that X = ξi∂wi and Y= ηi∂wi are symmetry
vector fields. Since [X,Y] is also a symmetry vector field, it follows that if ζi =
ξj∂wjηi− ηj∂wjξi, then ζ is also a solution of DQ. Thus the commutator bracket
on vector fields induces a commutator bracket on solutions of DQ, and we write
ζ = [ξ, η].

Now suppose the determining equations are referred to a moving frame. The
systemDQ is certainly linear and homogeneous in its dependent variables θi. Once
again the commutator bracket on vector fields induces a bracket on solutions:

Proposition B.0.3. Let DQ be a differential system for the components of a sym-
metry vector field referred to a moving frame ∆ with structure relations [∆i,∆j ] =
γkij∆k. Let χ, ψ be two solutions of DQ. Then if

ωl = χj∆jψl − ψj∆jχl + γlijχiψj (B.1)

then ω is also a solution of DQ. We write ω = [χ, ψ].

Proof. Corresponding to the solutions χ, ψ are the symmetry vector fields X =
χi∆i andY= ψi∆i. Their commutator Z = [X,Y] is also a symmetry vector field.
Writing Z = ωi∆i, it follows that ω is a solution of DQ. Computing components
of ω yields (B.1).

Suppose the solution space ofDQ is of finite dimension r, i.e., the Lie symmetry
algebra corresponds to an r-parameter group. If θi is a basis for the solutions of
DQ‡, it follows that [θi, θj ] = Ckijθk for some constants Ckij , which are the structure

‡Indices θi which are ‘down’ count which solution, indices ψj which are ‘up’ count components
of solutions.
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Appendix B. Structure Constants

constants of the Lie algebra. Of course, if solutions θi are known explicitly, the
structure constants Ckij may be found by explicitly computing the commutator
[θi, θj ]. Construction of Ckij without knowing solutions is based on the following
results.

Lemma B.0.4. Let χ, ψ be solutions of the determining system DQ, and let
P (χ), P (ψ) represent the parametric derivatives of χ, ψ respectively. Thus P i(χ)(w) =
∆Jχj(w) for some indices j, J . Let ω = [χ, ψ] be the commutator of χ, ψ. Then
each parametric derivative P l(ω) is a skew symmetric bilinear function Bl of P (χ),
P (ψ):

P l(ω)(w) = Bl
(
P (χ)(w), P (ψ)(w)

)
at each point w.

Proof. Equation (B.1) expresses the component ωi as a skew symmetric bilinear
function of (χ,∆jχ) and (ψ,∆jψ). Applying frame derivative operators to (B.1),
it is found that every derivative ∆Iωi is a skew symmetric bilinear function of
derivatives (∆Jχj) and (∆Jψj) of order |J | = 0, 1, . . . , |I| + 1. This is true in
particular for parametric derivatives of the commutator ω: each P l(ω) is a skew
symmetric bilinear function of derivatives (∆Jχj) and (∆Jψj).

Now both χ, ψ are solutions of the determining system DQ. Suppose the
highest order derivatives in the bilinear functions for P l(θ) are of order K. We
prolong the determining system DQ to order K, and write it as L(θ) = AP (θ),
where L(θ) are the leading derivatives of θ up to order K, and A is a coefficient
matrix. (All the terms here are functions of w.) The substitutions L(χ) = AP (χ)
and L(ψ) = AP (ψ) (same matrix A in each case) in the expressions for P l(θ)
preserve the properties of bilinearity and skew symmetry, so we have

P l(ω) = Bl(P (χ), P (ψ)).

where Bl is skew symmetric and bilinear.

All of the above holds pointwise; we have suppressed the argumentsBl(w), P (ψ)(w),
A(w) etc. which occur throughout.

We now establish the main result.

Theorem B.0.5. The parametric derivatives P l(ω) of the commutator ω = [χ, ψ]
of two solutions χ, ψ of the determining system DQ are given by

P l(ω)(w) = Blij(w)P
i(χ)(w)P j(ψ)(w) (B.2)

for some skew symmetric coefficients Blij(w) = −Blji(w). At each point w0 where
initial data can be posed, the coefficients Blij(w0) are structure constants Clij of
the Lie symmetry algebra with respect to some basis.

Proof. Equation (B.2) is just a restatement of the lemma above. Choose a basis
of solutions θ1, θ2, . . . , θr of DQ as follows. Pose as initial data for θi

P j(θi)(w0) = δ
j
i j = 1, 2, . . . , r

where δji is the Kronecker delta. The frame Riquier conjecture (4.3.17) assures
us that for each i = 1, 2, . . . , r, this choice of initial data gives a corresponding
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unique solution θi(w) in some neighbourhood of w0. With respect to this basis
the structure constants are defined by

[θi, θj ] = Clijθl.

Hence

P l([θi, θj ])(w0) = P l(Cmij θm)(w0)
= Cmij P

l(θm)(w0)
= Clij

due to our choice of initial data. Thus Clij is interpreted as the l-th piece of initial
data for the commutator of solution i with solution j.

However, writing (B.2) with χ ≡ θi, ψ ≡ θj , we have

P l([θi, θj ])(w0) = Blmn(w0)Pm(θi)(w0)Pn(θj)(w0)
= Blij(w0)

again due to our choice of initial data. Hence for the basis chosen above we have
Clij = B

l
ij(w0). This holds for any suitable initial data point w0 with its associated

choice of basis.

Hence to find structure constants, we follow the calculations described in the
derivation of Lemma B.0.4, expressing the parametric derivatives of the commuta-
tor [χ, ψ] in terms of parametric derivatives of χ and of ψ. Picking off coefficients
and evaluating at any convenient point w0 yields suitable Clij .

This process generalizes the process described by Reid, et al. [58] to frame
determining systems.

Example B.0.6. Consider the involutive determining system

Σ1β
3 = 0

Σ2β
3 = 0

Σ3β
3 = 2PΣ1β

2

Σ4β
3 = −Pβ3

(Σ1)2β2 = 0
Σ2β

2 = 0
Σ3β

2 = 0
Σ4β

2 = − 1
2β

1

Σ1β
1 = PΣ1β

2

Σ2β
1 = 2Σ1β

2

Σ3β
1 = 2Σ1β

2

Σ4β
1 = − 1

2Pβ
1 − β2 − β3

β4 = 2Σ1β
2,

(B.3)

which is a special case of (4.102), obtained by setting Q = 0, σ = 1. The system
is for components βi of a symmetry vector field Y= βiΣi, referred to a frame Σ
with structure relations (4.89)

[Σ1,Σ2] = 0 [Σ1,Σ3] = 0 [Σ1,Σ4] = − 1
2PΣ1 − 1

2Σ2

[Σ2,Σ3] = 0 [Σ2,Σ4] = −Σ1

[Σ3,Σ4] = −Σ1 − PΣ3,

where P is a constant. The parametric derivatives are β1, β2, β3, Σ1β
2. Let χ, ψ

be two solutions, and let ω = [χ, ψ]. After using the structure relations, we find,
for instance

ω1 = (χ1Σ1ψ
1 − ψ1Σ1χ

1) + (χ2Σ2ψ
1 − ψ2Σ2χ

1)
+ (χ3Σ3ψ

1 − ψ3Σ3χ
1) + (χ4Σ4ψ

1 − ψ4Σ4χ
1)

+− 1
2P (χ

1ψ4 − ψ1χ4)− (χ2ψ4 − ψ2χ4)− (χ3ψ4 − ψ3χ4).
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Appendix B. Structure Constants

We may now substitute for the principal derivatives Σ1ψ
1 = PΣ1ψ

2 etc. from the
determining system (B.3), to obtain

ω1 = P (χ1Σ1ψ
2 − ψ1Σ1χ

2) + 2(χ2Σ1ψ
2 − ψ2Σ1χ

2) + 2(χ3Σ1ψ
2 − ψ3Σ1χ

2).

Similarly, we find

ω2 = (χ1Σ1ψ
2 − ψ1Σ1χ

2)
ω3 = 2P (χ3Σ1ψ

2 − ψ3Σ1χ
2)

Σ1ω
2 = 0.

The coefficients in these bilinear expressions are the structure constants Clij . Hence
the commutation relations for the Lie symmetry algebra are

[X1,X2] = 0 [X1,X3] = 0 [X1,X4] = PX1 +X2

[X2,X3] = 0 [X2,X4] = 2X1

[X3,X4] = 2X1 + 2PX3

Note that we use only existence of the basis θi: explicit construction of the solution
basis θi is not necessary.
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Appendix C

Similarity Solution for
Nonlinear Diffusion

We examine the system of o.d.e.’s (3.59) for Boltzmann’s similarity solution of the
nonlinear diffusion equation (3.57):

dy

du
=
z

2
dz

du
= −D(u)

y
.

(C.1)

This system is subject to the boundary conditions

z = 0 u = u0

z→∞ u = ui y = 0 . (C.2)

The problem (C.1, C.2) is important not only because it is mathematically
simple, but because the boundary conditions are easy to realize experimentally
[21]. Note that the affine equivalence transformations generated by (3.69)

z′ = λz

u′ = αu+ β
y′ = λαy

a′ = λ2a (C.3)

are available, and can be used to rescale boundary conditions (C.2) to

z = 0 u = 1 (C.4a)
z→∞ u = 0 y = 0 . (C.4b)

C.1 Power law diffusivity

For arbitrary D(u), the problem (C.1, C.4) cannot be further simplified, and
solutions are obtained numerically by shooting [62]. For several diffusivities, ad-
ditional simplification is possible. The general analytical reduction for these cases
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1

u

0
0 z zF

y

0
0 z zF

y

0
0 u 1

Figure C.1: Relation between concentration u, flux y and spatial coordinate z for
the diffusion problem (C.1, C.6, C.4). At the singularity u = 0, y = 0, z = zF ,
the flux and concentration are both continuous.

was given by Lisle and Parlange [45], from which all of the following results are
drawn.

When D(u) obeys a power law

D(u) = (au+ b)m (C.5)

a scaling symmetry becomes available. The constant a can be scaled to any conve-
nient value (e.g. unity), but in general b cannot be removed by the transformations
(C.3) without disturbing the rescaled boundary conditions (C.4). The symmetry
is the basis of several analytical methods for reducing the boundary value problem.
The greatest simplification is achieved when b = 0, a > 0 and m > 0 in (C.5),
which is a case of physical significance. In this case, we write the diffusivity as

D(u) = (m+ 1)um (C.6)

where a scaling from (C.3) has been used to enforce the condition
∫ 1

0
D(u) du =

1. General results [62, 63, 6] show the solutions have singular properties. The
diffusant penetrates only as far as a finite ‘front’ i.e., there exists a value zF of z
such that u(z) = 0, y(z) = 0 for z ≥ zF . Both concentration u and flux y vanish
at the front, so that these functions are continuous, but their derivatives may not
be (Figure C.1). This remarkable situation is associated with the fact that when
D(0) = 0, the coefficient of uxx in the original partial d.e. (3.65) vanishes, and
the equation is not parabolic in the neighbourhood of this point.

Several methods for dealing with the boundary value problem (C.1, C.4, C.6)
are available. All of them rely for their success on a symmetry transformation

u′ = c2u

z′ = cmz

y′ = cm+2y, (C.7)

which is inherited from the equivalence subgroup (C.3). This scaling symmetry
maps the front u = 0, z = zF , y = 0 to a front u′ = 0, z′ = z′F , y

′ = 0; and maps
the surface z = 0 to the surface z′ = 0.
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C.1. Power law diffusivity

v

w

1

0

B

C

A

Figure C.2: Phase portrait for first quadrant of (w, v) plane for (C.9). The three
classes A, B, C of trajectories represent respectively smooth solutions, the singular
solutions shown in Figure C.1, and singular solutions with discontinuous flux and
concentration.

C.1.1 Phase reduction

The existence of symmetry (C.7) allows (C.1, C.6) to be reduced to the phase
plane. Introduce the invariants

w = umz−2

v = 2y/(uz) . (C.8)

of the transformation group (C.7). Standard theory [13, §3.3], [47, §2.5] shows
that system (C.1, C.6) is reduced to the single first order equation

dv

dw
=
v

w

1− v + 2w
mv + 4w

(C.9)

in the half-plane w ≥ 0. There are two finite critical points: the node-like quadratic
singularity at w = 0, v = 0, representing solutions u = const; and a saddle at
w = 0, v = 1. The fourth quadrant is irrelevant for our purposes. The phase
portrait of (C.9) for the first quadrant of the w, v plane is sketched in Figure C.2.
The trajectory of interest is the separatrix emanating from the saddle and exiting
to infinity with v ∼ qw1/2, q > 0.

The phase equation (C.9) can be (numerically) solved for v(w), where the initial
condition w = 0, v = 1 is enforced. A starting value for the derivative dv/dw at
this singular point is furnished by Taylor expansion. Once v(w) is known, the
concentration u(w) is recovered by the quadrature∫ ∞

w

v(w̄) dw̄
w̄(mv(w̄) + 4w̄)

=
∫ 1

u

dū

ū
(C.10)

after which y, z follow from (C.8):

z = um/2w−1/2

y = 1
2v(w)u(w)z(w)

(C.11)
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Appendix C. Similarity Solution for Nonlinear Diffusion

Equations (C.10, C.11) yield the solution u, y, z parametrically as a function of
w. Note that this procedure effectively reduces the boundary value problem (C.1,
C.6, C.4) to an initial value problem. The solution method of Parlange, et al. [53]
explicitly used this reduction.

C.1.2 Exact shooting

Rather than reducing the equation to the phase plane, it is possible to directly
use symmetry (C.7) to map a numerical solution of the original system (C.1, C.6)
to the desired solution satisfying the correct boundary conditions (C.4). The
procedure, due to Shampine [64] is as follows:

1. Guess a value of the front location zF , and integrate (C.1, C.6) with the
initial condition z = zF , u = 0, y = 0. It may be advantageous to write the
system with u as the independent variable to begin the integration. Taylor
expansion is necessary to resolve the indeterminacy of the system at the
initial point.

2. Terminate the integration at the surface z = 0. Let the value of u at this
point be û.

3. Compute c = û−1/2. Perform transformation (C.7) with this value of c on the
solution thus constructed. The functions u′(z′), y′(z′) satisfy the o.d.e. (C.1,
C.6) and boundary conditions (C.4), and hence specify the exact solution of
the boundary value problem.

C.1.3 Series solution

Heaslet and Alksne [30] found a formal series solution of the boundary value
problem (C.1, C.6, C.4), of the form

u = (z − zF )1/m
∞∑
k=1

ak(z − zF )k (C.12)

For our purposes it is more convenient to recast the series with u as the indepen-
dent variable:

y = 1
2zFu

(
1−

∞∑
k=1

pk(m)
[
2um

mz2
F

]k)
(C.13)

and

z = zF

(
1−

∞∑
k=1

(1 +mk)pk(m)
[
2um

mz2
F

]k)
. (C.14)

Boundary condition (C.4b) is automatically satisfied by a series of this form. The
coefficients pk(m) are found from an explicit recurrence obtained by substituting
the series (C.13, C.14) into the system (C.1, C.6). The front location zF is then
found by enforcing boundary condition (C.4a).
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C.2 Modified power law diffusivity

By applying equivalence transformations (3.61), the power law diffusivity (C.6)
can be mapped to the diffusivity

D(u′) = (m+ 1)
1

(γu′ + δ)2

(
αu′ + β
γu′ + δ

)m
. (C.15)

We seek the solution of the boundary value problem for the ‘dashed’ system (C.1,
C.15, C.4), concentrating on those parameter values obtainable by transformation
of the singular problem treated above for the power law. Using affine transforma-
tions (C.3) we map diffusivity (C.15) to the form

D(u) = (m+ 1)
1− µ

(1− µu)2
[
(1− µ)u
1− µu

]m
(C.16)

where µ ∈ (−∞, 1), m > 0, and the awkward looking scaling is chosen so that∫ 1

0
D(u) du = 1. Despite the singular behaviour at the point u = µ−1, this dif-

fusivity is of some physical interest [2]. It might be supposed that the boundary
value problem (C.1, C.6, C.4) for the power law can be mapped to the corre-
sponding problem (C.1, C.16, C.4) for diffusivity (C.16), but this is not so. The
solution curves of the two boundary value problems are in correspondence, but
the surface boundary condition (C.4a) maps to a nonzero value of z if µ �= 0 i.e.
to a moving boundary. Although this moving boundary problem may therefore
be easily solved, we are most interested in a fixed boundary condition for the new
diffusivity, corresponding to a moving boundary for the power law diffusivity. This
makes the mapping process slightly awkward. Rather than explicitly carrying this
out, Lisle and Parlange [45] use the mapping between solution curves to map the
methods across from the power law to the new case.

The symmetry (C.7) for the power law case (C.6) maps to the symmetry trans-
formation

u′ =
τu

1− (1− τ)µu
y′ = τm/2

τy

1− (1− τ)µu
z′ = τm/2[ z + (1− τ)µ(2y − zu) ] (C.17)

for diffusivity (C.16), where τ is the group parameter.

C.2.1 Phase reduction

The new diffusivity (C.16) can be mapped to the power law (C.6) and thence
reduced to the same equation (C.9) in the phase plane. The same separatrix
trajectory is required, but instead of taking w to infinity, the integration is stopped
at the value w = w0 such that v(w0) = µ−1. The quadrature (C.10) is replaced
by ∫ w0

w

v(w̄) dw̄
w̄(mv(w̄) + 4w̄)

=
∫ 1

u′

dū

ū(1− µū) . (C.18)

Note that instead of having a termination point fixed a priori as in the power
law case, the point w0 at which integration is terminated is determined in the
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course of the calculation. Nevertheless no iteration is required, and the problem
is effectively reduced to an initial value problem.

C.2.2 Exact shooting

Direct use of symmetry transformation (C.17) allows the numerical solution of the
boundary value problem (C.1, C.16, C.4) to be simplified. The procedure is as
follows:

1. Guess a value of the front location zF , and integrate (C.1, C.16) with the
initial condition z = zF , u = 0, y = 0.

2. Terminate the integration when values (z̄, ū, f̄) of (z, u, f) are encountered
satisfying

z̄ū

2f̄
=
µ(1− ū)
1− µū (C.19)

3. Compute τ̄ = (1 − µ)ū/(1 − µū). Perform the transformation (C.17) with
τ = τ̄ on the solution thus constructed. The functions u′(z′), y′(z′) satisfy
the o.d.e. (C.1, C.16) and boundary conditions (C.4), and hence are the
exact solution. The exact front location is z′F = τ̄−m/2zF .

This generalizes Shampine’s [64] method for the power law (C.6), showing that
boundary value problem (C.1, C.16, C.4) may be reduced to solving an initial
value problem.

C.2.3 Series solution

Applying transformation (3.61) to the series solution (C.13, C.14) found above for
the power law shows that diffusivity (C.16) admits a solution with y/u expanded
in powers of x(u), where

x(u) =
[
(1− µ)u
1− µu

]m
. (C.20)

This is conveniently written

y(u) = 1
2zFu

(
1−

∞∑
k=1

pk(m) [ t̄ x(u)]k
)

(C.21)

where zF is the (as yet unknown) location of the front;

t̄ = 2(1− µ)/(mz2
F ) ; (C.22)

and the pk(m) are obtained from the same recurrence as for the power law:

p1 = 1

pk =
1

k(1 +mk)

k−1∑
j=1

j(1 +mj) pj pk−j , k ≥ 2 . (C.23)
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C.3. Discussion

Differentiating once shows

z(u) = zF

(
1−

∞∑
k=1

ak(m,µ) [ t̄ x(u)]
k

)
. (C.24)

where

ak(m,µ) = pk(m)
(
1 +

mk

1− µ
)
, (C.25)

Boundary condition (C.4b) is automatically satisfied when y, z have the form
(C.21, C.24). The other boundary condition (C.4a) is to be satisfied by choosing
the value zF .

Assuming series (C.24) is valid to u = 1, t̄ must satisfy the equation

∞∑
k=1

ak(m,µ)t̄ k = 1 (C.26)

so that t̄ is a function of m,µ. The series solution is given by (C.13–C.26).
The obvious way to solve (C.26) approximately is to truncate the series after a

finite number of terms and solve the resulting polynomial equation. An alternative,
more explicit, and more accurate method is to use reversion of series on (C.26).
Let

r(t) =
∞∑
k=1

akt
k

and revert this series to obtain

t =
∞∑
l=1

bl r
l . (C.27)

The first few bl are given by [1, 3.6.25]. The value t̄ is found by evaluating (C.27)
at r = 1, so that

t̄ =
∞∑
l=1

bl(m,µ) . (C.28)

The procedure is valid provided ε = (1 − µ)m−1 is sufficiently small. Some nu-
merical results using both the series and exact shooting are given by Lisle and
Parlange [45]. The series is exceptionally accurate for ε less than about 0.25, and
loses its usefulness only when ε is larger than about 2. The accuracy properties
are essentially independent of the value of m.

C.3 Discussion

The above methods for dealing with the new diffusivity (C.16) all result from
the enlargement of the equivalence group (3.61) which results by considering the
system form (C.1) of the d.e.’s. All the well-known solution methods for dealing
with the power law (C.6) carry over to the new case. Of course in principle the
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Appendix C. Similarity Solution for Nonlinear Diffusion

methods detailed above for dealing with the new case could be directly derived
from symmetry properties of the equation. However, the form (C.1), as a system of
first order ordinary d.e.’s, cannot be completely group analyzed [52]. Eliminating
z, one obtains the scalar equation

y
d2y

du2
= −1

2
D(u) . (C.29)

This can be group analyzed, and the symmetry (C.17) found: this leads to the
phase reduction and exact shooting methods described above. However the correct
form (C.21) of the series solution is far from obvious if one does not map from
the power law case (C.13). Moreover, mapping from the power law unifies the
two cases; without the availability of the equivalence transformation (3.61) the
reductions would appear similar but unrelated.

The symmetry properties used here are inherited from the equivalence group
of the o.d.e. system (C.1). As described in §3.4.1, this equivalence group is in turn
inherited from the p.d.e. potential system (3.57). Hence all of the results given
here follow from equivalence analysis.
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[43] Lie, S. 1884. Über Differentialinvarianten. Math. Annalen 24: 537–578. (En-
glish translation in R. Hermann, 1976. Sophus Lie’s 1884 differential invariant
paper., MathSci Press, Brookline, MA.)

[44] Lisle, I.G. 1983. Group properties of differential equations. Masters project,
University of Queensland.

[45] Lisle, I.G. and J.-Y. Parlange. 1992. Analytical reduction for a concentration
dependent diffusion problem. ZAMP (in press).

[46] Ma, A. 1990. Extended Group Analysis of the Wave Equation. M.Sc. Thesis,
University of British Columbia.

[47] Olver, P.J. 1986. Applications of Lie Groups to Differential Equations.
Springer, New York.

161



Bibliography

[48] Olver, P.J. and P. Rosenau. 1987. Group-invariant solutions of differential
equations. SIAM J. Appl. Math. 47: 263–278.

[49] Oron, A. and P. Rosenau. 1986. Some symmetries of the nonlinear heat and
wave equations. Phys. Lett. A118: 172–176.

[50] Ovsiannikov, L.V. 1962. Group Properties of Differential Equations. Novosi-
birsk. (in Russian: English translation by G.W. Bluman, unpublished.)

[51] Ovsiannikov, L.V. 1974. Some problems arising in group analysis of differ-
ential equations, in Symmetry, Similarity and Group Theoretic Methods in
Mechanics. (P.G. Glockner and M.C. Singh eds.) Amer. Acad. of Mech.

[52] Ovsiannikov, L.V. 1982. Group Analysis of Differential Equations. Academic
Press, New York.

[53] Parlange, J.-Y., R.D. Braddock and B.T. Chu. 1980. First integrals of the
diffusion equation; an extension of the Fujita solutions. Soil Sci. Soc. Am. J.
44: 908–911.

[54] Philip, J.R. 1970. Flow in porous media. Ann. Rev. Fluid Mech. 2 : 177–204.

[55] Reid, G.J. 1990. A triangularization algorithm which determines the Lie sym-
metry algebra of any system of PDEs. J. Phys. A23: L853–859.

[56] Reid, G.J. 1991. Algorithms for reducing a system of PDEs to standard form,
determining the dimension of its solution space and calculating its Taylor
series solution. Euro. J. Appl. Maths. 2: 293–318.

[57] Reid, G.J. 1991. Finding abstract Lie symmetry algebras of differential equa-
tions without integrating determining equations. Euro. J. Appl. Maths. 2:
319–340.

[58] Reid, G.J., I.G. Lisle, A. Boulton and A. D. Wittkopf. 1992. Algorithmic
determination of commutation relations for Lie symmetry algebras of PDEs.
ISSAC ’92 Conference Proceedings (to appear).
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