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4.1. A mixed boundary value problem for the Lamé system 108
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Introduction

“Ce problème est, d’ailleurs, indissoluble-
ment lié à la recherche des points sin-
guliers de f , puisque ceux-ci constituent,
au point de vue de la théorie moderne
des fonctions, la plus importante des pro-
priétés de f .”

Jacques Hadamard
Notice sur les travaux scientifiques,
Gauthier-Villars, Paris, 1901, p.2

Roots of the theory. In the present book we study singularities of solutions
to classical problems of mathematical physics as well as to general elliptic equations
and systems. Solutions of many problems of elasticity, aero- and hydrodynamics,
electromagnetic field theory, acoustics etc., exhibit singular behavior inside the
domain and at the border, the last being caused, in particular, by irregularities of
the boundary. For example, fracture criteria and the modelling of a flow around
the wing are traditional applications exploiting properties of singular solutions.

The significance of mathematical analysis of solutions with singularities had
been understood long ago, and some relevant facts were obtained already in the
19th century. As an illustration, it suffices to mention the role of the Green and
Poisson kernels. Complex function theory and that of special functions were rich
sources of information about singularities of harmonic and biharmonic functions,
as well as solutions of the Lamé and Stokes systems.

In the 20th century and especially in its second half, a vast number of math-
ematical papers about particular and general elliptic boundary value problems in
domains with smooth and piecewise smooth boundaries appeared. The modern the-
ory of such problems contains theorems on solvability in various function spaces,
estimates and regularity results, as well as asymptotic representations for solutions
near interior points, vertices, edges, polyhedral angles etc. For a factual and histor-
ical account of this development we refer to our recent book [136], where a detailed
exposition of a theory of linear boundary value problems for differential operators
in domains with smooth boundaries and with isolated vertices at the boundary is
given.

Motivation. The serious inherent drawback of the elliptic theory for non-
smooth domains is that most of its results are conditional. The reason is that
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2 INTRODUCTION

singularities of solutions are described in terms of spectral properties of certain
pencils1 of boundary value problems on spherical domains. Hence, the answers to
natural questions about continuity, summability and differentiability of solutions
are given under a priori conditions on the eigenvalues, eigenvectors and generalized
eigenvectors of these operator pencils.

The obvious need for the unconditional results concerning solvability and reg-
ularity properties of solutions to elliptic boundary value problems in domains with
piecewise smooth boundaries makes spectral analysis of the operator pencils in
question vitally important. Therefore, in this book, being interested in singular-
ities of solutions, we fix our attention on such a spectral analysis. However, we
also try to add another dimension to our text by presenting some applications to
boundary value problems. We give a few examples of the questions which can be
answered using the information about operator pencils obtained in the first part of
the book:

• Are variational solutions of the Navier-Stokes system with zero Dirichlet data
continuous up to the boundary of an arbitrary polyhedron?

• The same question for the Lamé system with zero Dirichlet data.
• Are the solutions just mentioned continuously differentiable up to the bound-

ary if the polyhedron is convex?
One can easily continue this list, but we stop here, since even these simply

stated questions are so obviously basic that the utility of the techniques leading to
the answers is quite clear. (By the way, for the Lamé system with zero Neumann
data these questions are still open, despite all physical evidence in favor of positive
answers.)

Another impetus for the spectral analysis in question is the challenging program
of establishing unconditional analogs of the results of the classical theory of general
elliptic boundary value problems for domains with piecewise smooth boundaries.
This program gives rise to many interesting questions, some of them being treated
in the second part of the book.

Singularities and pencils. What kind of singularities are we dealing with,
and how are they related to spectral theory of operator pencils? To give an idea, we
consider a solution to an elliptic boundary value problem in a cone. By Kondrat′ev’s
theorem [109], this solution, under certain conditions, behaves asymptotically near
the vertex O as

(1) |x|λ0

s∑

k=0

1
k!

(log |x|)kus−k(x/|x|),

where λ0 is an eigenvalue of a pencil of boundary value problems on a domain, the
cone cuts out on the unit sphere. Here, the coefficients are: an eigenvector u0, and
generalized eigenvectors u1, . . . , us corresponding to λ0. In what follows, speaking
about singularities of solutions we always mean the singularities of the form (1).

It is worth noting that these power-logarithmic terms describe not only point
singularities. In fact, the singularities near edges and vertices of polyhedra can be
characterized by similar expressions.

1The operators polynomially depending on a spectral parameter are called operator pencils,
for the definition of their eigenvalues, eigenvectors and generalized eigenvectors see Section 1.1
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The above mentioned operator pencil is obtained (in the case of a scalar equa-
tion) by applying the principal parts of domain and boundary differential operators
to the function rλu(ω), where r = |x| and ω = x/|x|. Also, this pencil appears un-
der the Mellin transform of the same principal parts. For example, in the case of the
n-dimensional Laplacian ∆, we arrive at the operator pencil δ+λ(λ+n−2), where
δ is the Laplace-Beltrami operator on the unit sphere. The pencil corresponding to
the biharmonic operator ∆2 has the form:

δ2 + 2
(
λ2 + (n− 5)λ− n + 4

)
δ + λ (λ− 2) (λ + n− 2) (λ + n− 4).

Even less attractive is the pencil generated by the Stokes system
(U

P

)
→

(−∆U +∇P

∇ · U
)
,

where U is the velocity vector and P is the pressure. Putting

U(x) = rλu(ω) and P (x) = rλ−1p(ω) ,

one can check that this pencil looks as follows in the spherical coordinates (r, θ, ϕ):




ur

uθ

uϕ

p


 →




−δur − (λ− 1)(λ + 2)ur + 2
∂θ(sin θ uθ) + ∂ϕuϕ

sin θ
+ (λ− 1)p

−δuθ − λ(λ + 1)uθ +
uθ + 2 cos θ ∂ϕuϕ

sin2 θ
− 2∂θur + ∂θp

−δuϕ − λ(λ + 1)uϕ +
uϕ − 2 cos θ ∂ϕuθ

sin2 θ
− 2∂ϕur − ∂θp

sin θ

∂θ(sin θ uθ) + ∂ϕuϕ

sin θ
+ (λ + 2)ur




.

Here ∂θ and ∂ϕ denote partial derivatives.
In the two-dimensional case, when the pencil is formed by ordinary differen-

tial operators, its eigenvalues are roots of a transcendental equation for an entire
function of a spectral parameter λ. In the higher-dimensional case and for a cone
of a general form one has to deal with nothing better than a complicated pencil of
boundary value problems on a subdomain of the unit sphere.

Fortunately, many applications do not require explicit knowledge of eigenvalues.
For example, this is the case with the question whether solutions having a finite
energy integral are continuous near the vertex. For 2m < n the affirmative answer
results from the absence of nonconstant solutions (1) with m− n/2 < Re λ0 ≤ 0.

Since the investigation of regularity properties of solutions with the finite energy
integral is of special importance, we are concerned with the widest strip in the
λ-plane, free of eigenvalues and containing the “energy line” Re λ = m − n/2.
Information on the width of this “energy strip” is obtained from lower estimates
for real parts of the eigenvalues situated over the energy line. Sometimes, we are
able to establish the monotonicity of the energy strip with respect to the opening
of the cone. We are interested in the geometric, partial and algebraic multiplicities
of eigenvalues, and find domains in the complex plane, where all eigenvalues are
real or nonreal. Asymptotic formulae for large eigenvalues are also given.

The book is principally based on results of our work and the work of our col-
laborators during last twenty years. Needless to say, we followed our own taste in
the choice of topics and we neither could nor wished to achieve completeness in
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description of the field of singularities which is currently in process of development.
We hope that the present book will promote further exploration of this field.

Organization of the subject. Nowadays, for arbitrary elliptic problems there
exist no unified approaches to the question whether eigenvalues of the associated
operator pencils are absent or present in particular domains on the complex plane.
Therefore, our dominating principle, when dealing with these pencils, is to depart
from boundary value problems, not from methods.

We move from special problems to more general ones. In particular, the two-
dimensional case precedes the multi-dimensional one. By the way, this does not
always lead to simplifications, since, as a rule, one is able to obtain much deeper
information about singularities for n = 2 in comparison with n > 2.

Certainly, it is easy to describe singularities for particular boundary value prob-
lems of elasticity and hydrodynamics in an angle, because of the simplicity of the
corresponding transcendental equations. (We include this material, since it was
never collected before, is of value for applications, and of use in our subsequent ex-
position.) On the contrary, when we pass to an arbitrary elliptic operator of order
2m with two variables, the entire function in the transcendental equation depends
on 2m + 1 real parameters, which makes the task of investigating the roots quite
nontrivial.

It turns out that our results on the singularities for three-dimensional problems
of elasticity and hydrodynamics are not absorbed by the subsequent analysis of
multi-dimensional higher order equations, because, on the one hand, we obtain
a more detailed picture of the spectrum for concrete problems, and, on the other
hand, we are not bound up in most cases with the Lipschitz graph assumption about
the cone, which appears elsewhere. (The question can be raised if this geometric
restriction can be avoided, but it has no answer yet.) Moreover, the methods
used for treating the pencils generated by concrete three-dimensional problems
and general higher order multi-dimensional equations are completely different. We
mainly deal with only constant coefficient operators and only in cones, but these
are not painful restrictions. In fact, it is well known that the study of variable
coefficient operators on more general domains ultimately rests on the analysis of
the model problems considered here.

Briefly but systematically, we mention various applications of our spectral re-
sults to elliptic problems with variable coefficients in domains with nonsmooth
boundaries. Here is a list of these topics: Lp- and Schauder estimates along with the
corresponding Fredholm theory, asymptotics of solutions near the vertex, pointwise
estimates for the Green and Poisson kernels, and the Miranda-Agmon maximum
principle.

Structure of the book. According to what has been said, we divide the
book into two parts, the first being devoted to the power-logarithmic singularities
of solutions to classical boundary value problems of mathematical physics, and
the second dealing with similar singularities for higher order elliptic equations and
systems.

The first part consists of Chapters 1-7. In Chapter 1 we collect basic facts
concerning operator pencils acting in a pair of Hilbert spaces. These facts are used
later on various occasions. Related properties of ordinary differential equations with
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Figure 1. On the left: a polyhedron which is not Lipschitz in any
neighborhood of O. On the right: a conic surface smooth outside
the point O which is not Lipschitz in any neighborhood of O.

constant operator coefficients are discussed. Connections with the theory of general
elliptic boundary value problems in domains with conic vertices are also outlined.
Some of results in this chapter are new, such as, for example, a variational principle
for real eigenvalues of operator pencils.

The Laplace operator, treated in Chapter 2, is a starting point and a model for
the subsequent study of angular and conic singularities of solutions. The results vary
from trivial, as for boundary value problems in an angle, to less straightforward,
in the many-dimensional case. In the plane case it is possible to write all singular
terms explicitly. For higher dimensions the singularities are represented by means
of eigenvalues and eigenfunctions of the Beltrami operator on a subdomain of the
unit sphere. We discuss spectral properties of this operator.

Our next theme is the Lamé system of linear homogeneous isotropic elasticity
in an angle and a cone. In Chapter 3 we consider the Dirichlet boundary condition,
beginning with the plane case and turning to the space problem. In Chapter 4, we
investigate some mixed boundary conditions. Then by using a different approach,
the Neumann problem with tractions prescribed on the boundary of a Lipschitz
cone is studied. We deal with different questions concerning the spectral properties
of the operator pencils generated by these problems. For example, we estimate the
width of the energy strip. For the Dirichlet and mixed boundary value problems we
show that the eigenvalues in a certain wider strip are real and establish a variational
principle for these eigenvalues. In the case of the Dirichlet problem this variational
principle implies the monotonicity of the eigenvalues with respect to the cone.

Parallel to our study of the Lamé system, in Chapters 5 and 6 we consider
the Stokes system. Chapter 5 is devoted to the Dirichlet problem. In Chapter 6
we deal with mixed boundary data appearing in hydrodynamics of a viscous fluid
with free surface. We conclude Chapter 6 with a short treatment of the Neumann
problem. This topic is followed by the Dirichlet problem for the polyharmonic
operator, which is the subject of Chapter 7.

The second part of the book includes Chapters 8-12. In Chapter 8, the Dirichlet
problem for general elliptic differential equation of order 2m in an angle is studied.
As we said above, the calculation of eigenvalues of the associated operator pencil
leads to the determination of zeros of a certain transcendental equation. Its study is
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based upon some results on distributions of zeros of polynomials and meromorphic
functions. We give a complete description of the spectrum in the strip m − 2 ≤
Re λ ≤ m.

In Chapter 9 we obtain an asymptotic formula for the distribution of eigenvalues
of operator pencils corresponding to general elliptic boundary value problems in an
angle.

In Chapters 10 and 11 we are concerned with the Dirichlet problem for elliptic
systems of differential equations of order 2m in a n-dimensional cone. For the
cases when the cone coincides with Rn \ {O}, the half-space Rn

+, the exterior of a
ray, or a dihedron, we find all eigenvalues and eigenfunctions of the corresponding
operator pencil in Chapter 10. In the next chapter, under the assumptions that the
differential operator is selfadjoint and the cone admits an explicit representation
in Cartesian coordinates, we prove that the strip |Re λ−m + n/2| ≤ 1/2 contains
no eigenvalues of the pencil generated by the Dirichlet problem. From the results
in Chapter 11, concerning the Dirichlet problem in the exterior of a thin cone, it
follows that the bound 1/2 is sharp.

The Neumann problem for general elliptic systems is studied in Chapter 12,
where we deal, in particular, with eigenvalues of the corresponding operator pencil
in the strip |Re λ−m + n/2| ≤ 1/2. We show that only integer numbers contained
in this strip are eigenvalues.

The applications listed above are placed, as a rule, in introductions to chap-
ters and in special sections at the end of chapters. Each chapter is finished by
bibliographical notes.

This is a short outline of the book. More details can be found in the introduc-
tions to chapters.

Readership. This volume is addressed to mathematicians who work in partial
differential equations, spectral analysis, asymptotic methods and their applications.
We hope that it will be of use also for those who are interested in numerical anal-
ysis, mathematical elasticity and hydrodynamics. Prerequisites for this book are
undergraduate courses in partial differential equations and functional analysis.

Acknowledgements. V. Kozlov and V. Maz′ya acknowledge the support of
the Royal Swedish Academy of Sciences, the Swedish Natural Science Research
Council (NFR) and the Swedish Research Council for Engineering Sciences (TFR).
V. Maz′ya is grateful to the Alexander von Humboldt Foundation for the sponsor-
ship during the last stage of the work on this volume. J. Roßmann would like to
thank the Department of Mathematics at Linköping University for hospitality.
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CHAPTER 1

Prerequisites on operator pencils

In this chapter we describe the general operator theoretic means which are used
in the subsequent analysis of singularities of solutions to boundary value problems.
The chapter is auxiliary and mostly based upon known results from the theory
of holomorphic operator functions. At the same time we have to include some
new material concerning parameter-depending sesquilinear forms and variational
principles for their eigenvalues.

Our main concern is with the spectral properties of operator pencils, i.e., oper-
ators polynomially depending on a complex parameter λ. We give an idea how the
pencils appear in the theory of general elliptic boundary value problems in domains
with conic vertices.

Let G be a domain in the Euclidean space Rn which coincides with the cone
K = {x ∈ Rn : x/|x| ∈ Ω} in a neighborhood of the origin, where Ω is a subdomain
of the unit sphere. We consider solutions of the differential equation

(1.0.1) LU = F in G
satisfying the boundary conditions

(1.0.2) BkU = Gk, k = 1, . . . , m,

outside the singular points of the boundary ∂G. Here L is a 2m order elliptic
differential operator and Bk are differential operators of orders mk. We assume
that the operators L, B1, . . . , Bm are subject to the ellipticity condition.

It is well known that the main results about elliptic boundary value problems
in domains with smooth boundaries are deduced from the study of so-called model
problems which involve the principal parts of the given differential operators with
coefficients frozen at certain point. The same trick applied to the situation we are
dealing with leads to the model problem

L◦ U = Φ in K,

B◦
k U = Ψk on ∂K\{0}, k = 1, . . . , m,

where L◦, B◦
k are the principal parts of L and Bk, respectively, with coefficients

frozen at the origin. Passing to the spherical coordinates r, ω, where r = |x| and
ω = x/|x|, we arrive at a problem of the form

L(r∂r) U = r2m Φ in Ω× (0,∞),
Bk(r∂r)U = rmk Ψk on ∂Ω× (0,∞), k = 1, . . . , m.

Now the application of the Mellin transform

Ũ(λ) = (2π)−1/2

∞∫

0

r−λ−1 U(r) dr

9
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leads to the boundary value problem

L(λ) u = f in Ω,

Bk(λ)u = gk on ∂Ω, k = 1, . . . ,m,

with the complex parameter λ. Let us denote the polynomial operator (operator
pencil) of this problem by A(λ). Properties of the pencil A are closely connected
with those of the original boundary value problem (1.0.1), (1.0.2), in particular,
with its solvability in various function spaces and the asymptotics of its solutions
near the vertex of K (see Section 1.4). One can show, for example, that the solutions
U behave asymptotically like a linear combination of the terms

rλ
s∑

k=0

1
k!

(log r)k us−k(ω)

where λ is an eigenvalue of the pencil A, u0 is an eigenfunctions and u1, . . . , us are
generalized eigenfunctions corresponding to the eigenvalue λ. Thus, one has been
naturally led to the study of spectral properties of polynomial operator pencils.

1.1. Operator pencils

1.1.1. Basic definitions. Let X , Y be Hilbert spaces with the inner products
(·, ·)X , (·, ·)Y and the norms ‖·‖X , ‖·‖Y , respectively. We denote by L(X ,Y) the set
of the linear and bounded operators from X into Y. If A ∈ L(X ,Y), then by kerA
and R(A) we denote the kernel and the range of the operator A. The operator
A is said to be Fredholm if R(A) is closed and the dimensions of kerA and the
orthogonal complement to R(A) are finite. The space of all Fredholm operators is
denoted by Φ(X ,Y).

The operator polynomial

(1.1.1) A(λ) =
l∑

k=0

Ak λk, λ ∈ C,

where Ak ∈ L(X , Y ), is called operator pencil.
The point λ0 ∈ C is said to be regular if the operator A(λ0) is invertible. The

set of all nonregular points is called the spectrum of the operator pencil A.

Definition 1.1.1. The number λ0 ∈ G is called an eigenvalue of the operator
pencil A if the equation

(1.1.2) A(λ0)ϕ0 = 0

has a non-trivial solution ϕ0 ∈ X . Every such ϕ0 ∈ X of (1.1.2) is called an eigen-
vector of the operator pencil A corresponding to the eigenvalue λ0. The dimension
of kerA(λ) is called the geometric multiplicity of the eigenvalue λ0.

Definition 1.1.2. Let λ0 be an eigenvalue of the operator pencil A and let ϕ0

be an eigenvector corresponding to λ0. If the elements ϕ1, . . . , ϕs−1 ∈ X satisfy the
equations

(1.1.3)
j∑

k=0

1
k!

A(k)(λ0) ϕj−k = 0 for j = 1, . . . , s− 1,
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where A(k)(λ) = dkA(λ)/dλk, then the ordered collection ϕ0, ϕ1, . . . , ϕs−1 is said to
be a Jordan chain of A corresponding to the eigenvalue λ0. The vectors ϕ1, . . . , ϕs−1

are said to be generalized eigenvectors corresponding to ϕ0.
The maximal length of all Jordan chains formed by the eigenvector ϕ0 and

corresponding generalized eigenvectors will be denoted by m(ϕ0).

Definition 1.1.3. Suppose that the geometric multiplicity of the eigenvalue
λ0 is finite and denote it by I. Assume also that

max
ϕ∈ker A(λ0)\{O}

m(ϕ) < ∞ .

Then a set of Jordan chains

ϕj,0, ϕj,1, . . . , ϕj,κj−1, j = 1, . . . , I,

is called canonical system of eigenvectors and generalized eigenvectors if
(1) the eigenvectors {ϕj,0}j=1,...,I form a basis in kerA(λ0),
(2) Let Mj be the space spanned by the vectors ϕ1,0, . . . , ϕj−1,0. Then

m(ϕj,0) = max
ϕ∈ker A(λ0)\Mj

m(ϕ), j = 1, . . . , I.

The numbers κj = m(ϕj , 0) are called the partial multiplicities of the eigenvalue
λ0. The number κ1 is also called the index of λ0. The sum κ = κ1 + . . . + κI is
called the algebraic multiplicity of the eigenvalue λ0.

1.1.2. Basic properties of operator pencils. The following well-known as-
sertion (see, for example, the book of Kozlov and Maz′ya [135, Appendix]) describes
an important for applications class of operator pencils whose spectrum consists of
isolated eigenvalues with finite algebraic multiplicities.

Theorem 1.1.1. Let G be a domain in the complex plane C. Suppose that the
operator pencil A satisfies the following conditions:

(i) A(λ) ∈ Φ(X ,Y) for all λ ∈ G.
(ii) There exists a number λ ∈ G such that the operator A(λ) has a bounded

inverse.
Then the spectrum of the operator pencil A consists of isolated eigenvalues with
finite algebraic multiplicities which do not have accumulation points in G.

The next direct consequence of Theorem 1.1.1 is useful in applications.

Corollary 1.1.1. Let the operator pencil (1.1.1) satisfy the conditions:
a) The operators Aj : X → Y, j = 1, . . . , l, are compact.
b) There exists at least one regular point of the pencil A.

Then the result of Theorem 1.1.1 with G = C is valid for the pencil A.

The following remark shows that sometimes one can change the domain (of
definition) of operator pencils without changing their spectral properties.

Remark 1.1.1. Let X0, Y0 be Hilbert spaces imbedded into X and Y, re-
spectively. We assume that the operator A(λ) continuously maps X0 into Y0 for
arbitrary λ ∈ C and that every solution u ∈ X of the equation

A(λ)u = f
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belongs to X0 if f ∈ Y0. Then the spectrum of the operator pencil (1.1.1) coincides
with the spectrum of the restriction

A(λ) : X0 → Y0.

The last pencil has the same eigenvectors and generalized eigenvectors as the pencil
(1.1.1).

In order to describe the structure of the inverse to the pencil A near an eigen-
value, we need the notion of holomorphic operator functions.

Let G ⊂ C be a domain. An operator function

Γ : G → L(X , Y )

is called holomorphic if in a neighborhood of every point λ0 it can be represented
as a convergent in L(X , Y ) series

Γ(λ) =
∞∑

j=0

Γj(λ− λ0)j ,

where Γj ∈ L(X , Y ) can depend on λ0.

Theorem 1.1.2. Let the operator pencil A satisfy the conditions in Theorem
1.1.1. If λ0 ∈ G is an eigenvalue of A, then the inverse operator to A(λ) has the
representation

A(λ)−1 =
σ∑

j=1

Tj

(λ− λ0)j
+ Γ(λ)

in a neighborhood of the point λ0, where σ is the index of the eigenvalue λ0,
T1, . . . , Tσ are linear bounded finite-dimensional operators and Γ(λ) is a holomor-
phic function in a neighborhood of λ0 with values in L(X ,Y).

The following two theorems help to calculate the total algebraic multiplicity of
eigenvalues situated in a certain domain. Their proofs can be found, for example,
in the book by Gohberg, Goldberg and Kaashoek [71, Sect.XI.9].

Theorem 1.1.3. Let the conditions of Theorem 1.1.1 be satisfied. Furthermore,
let G be a simply connected domain in C which is bounded by a piecewise smooth
closed curve ∂G and let A : G → L(X ,Y) be invertible on ∂G. Then

(1.1.4)
1

2πi
tr

∫

∂G

A(1)(λ) (A(λ))−1 dλ = κ(A, G),

where κ(A, G) denotes the sum of the algebraic multiplicities of all eigenvalues of
the operator pencil A which are situated in the domain G.

Note that, by Theorem 1.1.2, the integral on the left-hand side of (1.1.4) is a
finite-dimensional operator. Therefore, the trace of this integral is well defined.

Theorem 1.1.4. Let G be a simply connected domain in C which is bounded
by a piecewise smooth closed curve ∂G and let A, B be operator pencils satisfying
the conditions of Theorem 1.1.1. Furthermore, we assume that A(λ) is invertible
for λ ∈ ∂G and

‖A(λ)−1 (A(λ)−B(λ))‖L(X ,X ) < 1 for λ ∈ ∂G.

Then B(λ) is invertible for λ ∈ ∂G and κ(A, G) = κ(B, G).
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As a consequence of the last result which is a generalization of Rouché’s theo-
rem, we obtain the following assertion.

Corollary 1.1.2. Let A(t, λ) be an operator pencil with values in L(X , Y )
whose coefficients are continuous with respect to t ∈ [a, b]. Furthermore, we suppose
that the pencil A(t, ·) satisfies the conditions of Theorem 1.1.1 for every t ∈ [a, b].
If A(t, λ) is invertible for t ∈ [a, b] and λ ∈ ∂G, then κ

(
A(t, ·), G)

is independent of
t.

Remark 1.1.2. All definitions and properties of this and the preceding sub-
sections can be obviously extended to holomorphic operator functions. For details
we refer the reader to the books by Gohberg, Goldberg and Kaashoek [71], Kozlov
and Maz′ya [135].

1.1.3. Ordinary differential equations with operator coefficients. Let
A(λ) be the operator pencil (1.1.1). We are interested in solutions of the ordinary
differential equation

(1.1.5) A(r∂r) U(r) = 0 for r > 0

which have the form

(1.1.6) U(r) = rλ0

s∑

k=0

(log r)k

k!
us−k ,

where λ0 ∈ C and uk ∈ X (k = 0, . . . , s). Here and elsewhere ∂r denotes the
derivative d/dr.

Theorem 1.1.5. The function (1.1.6) is a solution of (1.1.5) if and only if λ0

is an eigenvalue of the pencil A and u0, u1, . . . , us is a Jordan chain corresponding
to the eigenvalue λ0.

Proof: We have

A(r∂r) U(r) = rλ0 A(λ0 + r∂r)
s∑

k=0

1
k!

(log r)k us−k(1.1.7)

= rλ0

l∑

j=0

1
j!

A(j)(λ0) (r∂r)j
s∑

k=0

1
k!

(log r)k us−k

= rλ0

s∑

k=0

1
k!

(log r)k
s−k∑

j=0

1
j!

A(j)(λ0) us−k−j .

Hence U(r) is a solution of (1.1.5) if and only if the coefficients of (log r)k on the
right-hand side of the last formula are equal to zero. This proves the theorem.

Let λ0 be an eigenvalue of the operator pencil A(λ). We denote by N (A, λ0)
the space of all solutions of (1.1.5) which have the form (1.1.6). As a consequence
of Theorem 1.1.5 we get the following assertion.

Corollary 1.1.3. The dimension of N (A, λ0) is equal to the algebraic multi-
plicity of the eigenvalue λ0. The maximal power of log r of the vector functions of
N (A, λ0) is equal to m− 1, where m denotes the index of the eigenvalue λ0.
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Now we consider the inhomogeneous differential equation

(1.1.8) A(r∂r) U(r) = F (r).

Theorem 1.1.6. Suppose that the operator pencil A satisfies the conditions of
Theorem 1.1.1 and F is a function of the form

F (r) = rλ0

s∑

k=0

(log r)k

k!
fs−k,

where λ0 ∈ C and fk ∈ Y for k = 0, . . . , s. Then equation (1.1.8) has a solution of
the form

(1.1.9) U(r) = rλ0

s+σ∑

k=0

(log r)k

k!
us+σ−k,

where u0, u1, . . . , us+σ are elements of the space X , σ is the index of λ0 if λ0 is an
eigenvalue of A, while σ = 0 if λ0 is a regular point.

Proof: By Theorem 1.1.2, the inverse of A(λ) admits the representation

A−1(λ) =
σ∑

k=−∞
Tk (λ− λ0)k.

Here, by the identity A(λ)A−1(λ) = I, the operators Tj satisfy the equalities

(1.1.10)
σ+k∑

j=0

1
j!

A(j)(λ0)Tj−k =
{

I for k = 0,
0 for k = −σ, . . . ,−1, +1, +2, . . . .

Let U be the function (1.1.9). Then, analogously to (1.1.7), we get

r−λ0 A(r∂r) U(r) =
s+σ∑

k=0

1
k!

(log r)k
s+σ−k∑

j=0

1
j!

A(j)(λ0)us+σ−k−j .

Setting

uk =
min(k,s)∑

ν=0

Tσ−k+ν fnu , k = 0, 1, . . . , s + σ,

we obtain

r−λ0 A(r∂r)U(r) =
s+σ∑

k=0

1
k!

(log r)k

min(s+σ−k,s)∑
ν=0

σ+s−k−ν∑

j=0

1
j!

A(j)(λ0)Tj−s+k+ν fν

=
s∑

ν=0

s+σ−ν∑

k=0

1
k!

(log r)k
( σ+s−k−ν∑

j=0

1
j!

A(j)(λ0)Tj−s+k+ν

)
fν .

According to (1.1.10), the right side of the last equality is equal to
s∑

ν=0

s+σ−ν∑

k=0

1
k!

(log r)kδs−k−ν,0 fν =
s∑

ν=0

1
(s− ν)!

(log r)s−ν fν .

This proves the lemma.

Remark 1.1.3. If λ0 is a regular point of the pencil A, then the solution (1.1.9)
is uniquely determined. In the case of an eigenvalue the solution (1.1.9) is uniquely
determined up to elements of N (A, λ0).
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1.1.4. The adjoint operator pencil. Let A(λ) be the operator (1.1.1). We
set

A∗(λ) =
l∑

j=0

A∗j λj ,

where A∗j : Y∗ → X ∗ are the adjoint operators to Aj . This means that the operator
A∗(λ) is adjoint to A(λ) for every fixed λ. A proof of the following well-known
assertions can be found, e.g., in the book by Kozlov and Maz′ya [135, Appendix].

Theorem 1.1.7. Suppose that the conditions of Theorem 1.1.1 are satisfied for
the pencil A. Then the spectrum of A∗ consists of isolated eigenvalues with finite
algebraic multiplicities.

If λ0 is an eigenvalue of A, then λ0 is an eigenvalue of the pencil A∗. The
geometric, partial, and algebraic multiplicities of these eigenvalues coincide.

1.2. Operator pencils corresponding to sesquilinear forms

1.2.1. Parameter-depending sesquilinear forms. Let H+ be a Hilbert
space which is compactly imbedded into and dense in the Hilbert space H, and let
H− be its dual with respect to the inner product in H. We consider the pencil of
sesquilinear forms

(1.2.1) a(u, v;λ) =
l∑

j=0

aj(u, v)λj ,

where aj(·, ·) are bounded sesquilinear forms on H+ ×H+ which define linear and
continuous operators Aj : H+ → H− by the equalities

(1.2.2) (Aju, v)H = aj(u, v) , u, v ∈ H+ .

Then the operator

(1.2.3) A(λ) =
l∑

j=0

Aj λj

satisfies the equality

(1.2.4) (A(λ)u, v)H = a(u, v; λ) for all u, v ∈ H+ .

It can be easily verified that a number λ0 is an eigenvalue of the operator pencil A
and ϕ0, ϕ1, . . . , ϕs−1 is a Jordan chain of A corresponding to λ0 if and only if

(1.2.5)
j∑

k=0

1
k!

a(k)(ϕj−k, v; λ0) = 0 for all v ∈ H+, j = 0, 1, . . . , s− 1,

where a(k)(u, v; λ) = dka(u, v; λ)/dλk.

We suppose that the following conditions are satisfied:
(i) There exist a constant c0 and a real-valued function c1 such that

|a(u, u; λ)| ≥ c0 ‖u‖2H+
− c1(λ) ‖u‖2H for all u ∈ H+

and for every λ ∈ C.
(ii) There exists a real number γ such that the quadratic form a(u, u; λ) has

real values for Re λ = γ/2, u ∈ H+.
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Remark 1.2.1. Suppose that the operators A1, . . . , Al are compact and there
exists a number λ0 such that

(1.2.6) |a(u, u; λ0)| ≥ c0 ‖u‖2H+
− c1 ‖u‖2H for all u ∈ H+ ,

where c0 is a positive constant. Then condition (i) is satisfied.

Indeed, by the compactness of Aj , for every positive ε there exists a constant
cε such that

|(Aju, u)H| ≤ ε‖u‖2H+
+ cε‖u‖2H for all u ∈ H+.

Hence

|a(u, u;λ)| ≥ |a(u, u;λ0)| − |a(u, u;λ)− a(u, u; λ0)|

≥ c0‖u‖2H+
−

l∑

j=1

|λj − λj
0| (ε ‖u‖2H+

+ cε‖u‖2H)− c1‖u‖2H.

Setting ε =
1
2

c0

( l∑

j=1

|λj − λj
0|

)−1

, we get (1.2.6).

Theorem 1.2.1. Suppose that condition (i) is satisfied and there exists a com-
plex number λ0 such that

(1.2.7) |a(u, u;λ0)| > 0 for all u ∈ H+\{0}.
Then the operator A(λ) is Fredholm for every λ ∈ C and the spectrum of the pencil
A consists of isolated eigenvalues with finite algebraic multiplicities.

Proof: First we prove that the kernel of A(λ) has a finite dimension for arbitrary
λ ∈ C. By condition (i), we have

(1.2.8) ‖u‖2H+
≤ c1(λ)

c0(λ)
‖u‖2H for all u ∈ kerA(λ).

Since the operator of the imbedding H+ ⊂ H is compact, the inequality (1.2.8) can
be only valid on a finite-dimensional subspace. Consequently, dim kerA(λ) < ∞.

Now we prove that the range of A(λ) is closed in H∗+ for arbitrary λ. We assume
that A(λ) uk = fk for k = 1, 2, . . . and the sequence {fk}k≥1 converges in H∗+ to a
certain element f . Using (1.2.4), we get

c0(λ)‖uk‖2H+
− c1(λ)‖uk‖2H ≤ |(fk, uk)H| ≤ ‖fk‖H∗+ ‖uk‖H+ ≤ c +

1
2
c0(λ) ‖uk‖2H+

.

Hence
1
2
c0(λ) ‖uk‖2H − c1(λ) ‖u‖2H ≤ c.

By compactness of the imbedding H+ ⊂ H, it follows from the last inequality
that the sequence {uk}k≥1 is bounded in H+. Consequently, there exists a weakly
convergent subsequence {ukj}j≥1. Let u be the weak limit of this subsequence.
Then for every v ∈ H+ we have

(A(λ)u, v)H = (u, A(λ)∗v)H = lim
j→∞

(ukj , A(λ)∗v)H

= lim
j→∞

(A(λ) ukj , v)H = lim
j→∞

(fkj , v)H = (f, v)H ,

i.e., A(λ)u = f. Thus, we have proved that the range of A(λ) is closed.
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We show that the cokernel of A(λ) has a finite dimension. For this it suffices
to prove that kerA(λ)∗ is finite-dimensional. The equality

(1.2.9) (A(λ)∗u, u)H = (u, A(λ)u)H = a(u, u; λ)

yields ∣∣(A(λ)∗u, u)H
∣∣ ≥ c0(λ)‖u‖2H+

− c1(λ)‖u‖2H .

Hence, arguing as in the proof of dim kerA(λ) < ∞, we obtain dim kerA(λ)∗ < ∞.
Consequently, the operator A(λ) is Fredholm for every λ ∈ C.

Furthermore, by (1.2.7), the kernel of A(λ0) is trivial and from (1.2.9) it follows
that kerA(λ0)∗ = {0}. Therefore, the operator A(λ0) has a bounded inverse. Using
Theorem 1.1.1, we get the above assertion on the spectrum of the pencil A.

Theorem 1.2.2. Let condition (ii) be satisfied.
1) Then the equality

(1.2.10) A(λ)∗ = A(γ − λ)

is valid for all λ ∈ C,
2) If λ0 is an eigenvalue of the pencil A, then γ − λ0 is also an eigenvalue.

The geometric, algebraic, and partial multiplicities of the eigenvalues λ0 and γ−λ0

coincide.

Proof: In order to prove (1.2.10), we have to show that

(1.2.11) a(u, v;λ) = a(v, u; γ − λ) for all u, v ∈ H+ .

We set
b(u, v; λ) = a(u, v; λ)− a(v, u; γ − λ).

By condition (ii), the polynomial (in λ) b(u, u; λ) vanishes on the line Re λ = γ/2
and, therefore, on the whole complex plane. Thus, we have

2 b(u, v; λ) = b(u + v, u + v;λ) + i b(u + iv, u + iv;λ) = 0

for all u, v ∈ H+. This implies (1.2.11).
The second assertion is a consequence of Theorem 1.1.7.

Definition 1.2.1. Let condition (ii) be satisfied. Then the line Reλ = γ/2 is
called energy line. The strip

|Re λ− γ/2| < c

is called energy strip if there are no eigenvalues of the pencil A in the set 0 <
|Re λ− γ/2| < c.

The following lemma contains a sufficient condition for the absence of eigenval-
ues on the energy line.

Lemma 1.2.1. 1) Suppose the inequality

(1.2.12) a(u, u, γ/2 + it) > 0

is satisfied for all u 6= 0 and all real t. Then the line Re λ = γ/2 does not contain
eigenvalues of the pencil A.

2) If condition (i) is satisfied, inequality (1.2.12) is valid for all u 6= 0 and large
t, and there are no eigenvalues of the pencil A on the line Re λ = γ/2, then (1.2.12)
is valid for all real t.
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Proof: The first assertion is obvious. We prove the second one. Suppose that
a(u0, u0, γ/2 + it0) ≤ 0 for some u0 ∈ H+\{0}, t0 ∈ R. From condition (i) and
(1.2.10) it follows that the operator A(γ/2 + it) is selfadjoint, semibounded from
below, and has a discrete spectrum µ1(t) ≤ µ2(t) ≤ · · · . Since the function µ1(t)
is continuous, positive for large |t| and nonpositive for t = t0, it vanishes for some
t = t1. Then the number λ = γ/2 + it1 is an eigenvalue of the pencil A on the line
Re λ = γ/2.

Lemma 1.2.2. Suppose that condition (i) is satisfied and that the quadratic form
a(u, u;λ) is nonnegative for Re λ = γ/2. If the form a(u, u; γ/2) vanishes on the
subspace H0, then H0 is the space of the eigenvectors of the pencil A corresponding
to the eigenvalue λ0 = γ/2. Furthermore, every eigenvector corresponding to this
eigenvalue has at least one generalized eigenvector.

Proof: Since the form a(u, u; γ/2) is nonnegative, we get

|a(u, v; γ/2)|2 ≤ a(u, u; γ/2) · a(v, v; γ/2) = 0

for u ∈ H0, v ∈ H+ . This implies A(γ/2)u = 0 for u ∈ H0. Conversely, every
eigenvector u of the pencil A corresponding to the eigenvalue γ/2 satisfies the
equation a(u, u; γ/2) = 0. Thus, according to (1.2.10), we obtain kerA(γ/2) =
kerA(γ/2)∗ = H0.

We show that every eigenvector u0 corresponding to the eigenvalue λ = γ/2
has at least one generalized eigenvector, i.e., there exists a vector u1 satisfying the
equation

a(u1, v; γ/2) + a(1)(u0, v; γ/2) = 0 for all v ∈ H+

or, what is the same,
A(γ/2)u1 = −f1 ,

where f1 ∈ H∗+ denotes the functional H+ 3 v → a(1)(u0, v; γ/2). The last equation
is solvable if

(1.2.13) (f1, v)H = a(1)(u0, v; γ/2) = 0 for all v ∈ H0 .

We consider the function t → a(v, v; γ/2 + it), v ∈ H0, which is nonnegative for all
real t and equal to zero for t = 0. Consequently, we have a(1)(v, v; γ/2) = 0 for all
v ∈ H0. This implies

a(1)(u, v; γ/2) =
1
2

(
a(1)(u + v, u + v; γ/2) + i a(1)(u + iv, u + iv; γ/2)

)
= 0

for all u, v ∈ H0, i.e., condition (1.2.13) is satisfied. The proof is complete.

1.2.2. Ordinary differential equations in the variational form. LetH+,
H be the same Hilbert spaces as in the foregoing subsection. Furthermore, let
aj,k(·, ·), j, k = 1, . . . ,m, be bounded sesquilinear forms on H+ ×H+.

We seek functions U = U(r) of the form

(1.2.14) U(r) = rλ0

s∑

k=0

1
k!

(log r)kus−k, uk ∈ H+ ,

which satisfy the integral identity

(1.2.15)

∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)k U(r) , (r∂r)j V (r)) r−γ dr

r
= 0



1.2. OPERATOR PENCILS CORRESPONDING TO SESQUILINEAR FORMS 19

for all V ∈ C∞0 ((0,∞);H+). Here γ is a real number.
For u, v ∈ H+ we set

a(u, v; λ) =
m∑

j,k=0

aj,k

(
λku , (γ − λ)jv

)
=

m∑

j,k=0

aj,k(u, v) λk (γ − λ)j .

Furthermore, let A(λ) : H+ → H∗+ be the operator defined by (1.2.4).
It can be easily verified that

a(u, v; λ) =
1

2| log ε|

1/ε∫

ε

m∑

j,k=0

aj,k

(
(r∂r)k U(r) , (r∂r)j V (r)

)
r−γ dr

r
,

where ε is a positive real number less than one, U(r) = rλu, V (r) = rγ−λ v.

Theorem 1.2.3. The function (1.2.14) is a solution of (1.2.15) if and only
if λ0 is an eigenvalue of the operator pencil A and u0, . . . , us is a Jordan chain
corresponding to this eigenvalue.

Proof: Integrating by parts in (1.2.15), we get
∞∫

0

m∑

j,k=0

aj,k

(
(−r∂r + γ)j (r∂r)k U(r) , V (r)) r−γ dr

r
= 0.

This equality is valid for all V ∈ C∞0 ((0,∞);H+) if and only if
m∑

j,k=0

aj,k

(
(−r∂r + γ)j (r∂r)k U(r) , v) = 0 for r > 0, v ∈ H+ .

The last equation can be rewritten in the form

A(r∂r)U(r) = 0 for r > 0.

Now our assertion is an immediate consequence of Theorem 1.1.5.

Theorem 1.2.4. Suppose that there exists a number δ ∈ (0, 1) such that

∣∣∣
∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)k U(r) , (r∂r)j U(r)

)
r−γ dr

r

∣∣∣(1.2.16)

≥ c0

∞∫

0

(‖U(r)‖2H+
+ ‖∂m

r U‖2H − c1‖U‖2H
)
dr

for all U ∈ C∞0 ((0,∞);H+) with support in (1 − δ, 1 + δ). Then there exists a
number T such that

(1.2.17) |a(u, u; it +
γ

2
)| ≥ c0(‖u‖2H+

+ t2m‖u‖2H)

for all real t, |t| > T , and all u ∈ H+.

Proof: Let ζ = ζ(r) be a smooth real-valued function on (0,∞) with support in
(1− δ, 1+ δ) equal to one for r = 1. We set U(r) = rit+γ/2u, where u is an element
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of H+. Then

∣∣∣
∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)kζU(r) , (r∂r)jζU(r)) r−γ dr

r
(1.2.18)

−
∞∫

0

m∑

j,k=0

ζ2aj,k

(
(r∂r)kU(r) , (r∂r)jU(r)) r−γ dr

r

∣∣∣

≤ c
∑

0 ≤ j, k ≤ m
j + k ≥ 1

|aj,k(u, u)| (1 + |t|)j+k−1 .

Furthermore,
∞∫

0

m∑

j,k=0

ζ2 aj,k

(
(r∂r)kU(r) , (r∂r)jU(r)

)
r−γ dr

r
(1.2.19)

= a(u, u; it +
γ

2
)

∞∫

0

ζ2(r)
dr

r
.

Using (1.2.16), we get the estimate

∣∣∣
∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)kζU(r) , (r∂r)jζU(r)

)
r−γ dr

r

∣∣∣(1.2.20)

≥ c(‖u‖2H+
+ t2m‖u‖2H)− c2(1 + |t|)2m−1‖u‖2H .

From (1.2.18)–(1.2.20) we conclude that

|a(u, u; it +
γ

2
)| ≥ c(‖u‖2H+

+ t2m‖u‖2H)− c2(1 + |t|)2m−1‖u‖2H+
.

This proves our assertion.

Theorem 1.2.5. Suppose that the condition of Theorem 1.2.4 is satisfied. Fur-
thermore, we assume that the operator

(1.2.21) A(λ)− A(0) : H+ → H∗+
is compact for all λ ∈ C. Then A(λ) is Fredholm for all λ ∈ C and the spectrum of
the pencil A consists of isolated eigenvalues with finite algebraic multiplicities.

Proof: From our assumption it follows that A(λ)−A(µ) is a compact operator
from H+ into H∗+ for all λ, µ ∈ C. Hence for arbitrary ε > 0 there exists a constant
cε depending on λ and µ such that

∣∣((A(λ)− A(µ))u, u
)
H

∣∣ ≤ ε ‖u‖2H+
+ cε ‖u‖2H

for u ∈ H+. Therefore, we obtain
∣∣(A(λ)u, u

)
H

∣∣ ≥
∣∣(A(it +

γ

2
)u, u

)
H

∣∣−
∣∣((A(it +

γ

2
)− A(λ))u, u

)
H

∣∣

≥ c0

(‖u‖2H+
+ t2m‖u‖2H

)− ε‖u‖2H+
− cε‖u‖2H .

Now the result follows from Theorem 1.2.1.
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Theorem 1.2.6. 1) Suppose that

(1.2.22)

∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)kU(r) , (r∂r)jU(r)

)
rγ dr

r

is real for arbitrary U ∈ C∞0 ((0,∞);H+). Then a(u, u, it + γ/2) is real for all
u ∈ H+, t ∈ R.

2) If (1.2.22) is nonnegative for all U ∈ C∞0 ((0,∞);H+), then a(u, u, it + γ/2)
is also nonnegative for u ∈ H+, t ∈ R.

Proof: Let u ∈ H+, ζ ∈ C∞0 (R), and ε > 0. We set

Uε(r) = ε1/2 rit+γ/2 ζ(ε log r) u.

Then
∞∫

0

m∑

j,k=0

aj,k

(
(r∂r)kUε(r) , (r∂r)jUε(r)

)
r−γ dr

r

=

+∞∫

−∞
|ζ(s)|2 ds · a(u, u, it + γ/2) + O(ε).

Hence a(u, u, it+γ/2) is real (nonnegative) if the left-hand side of the last equality
is real (nonnegative). This proves the theorem.

1.3. A variational principle for operator pencils

1.3.1. Assumptions. Let H+,H be the same Hilbert spaces as in the previ-
ous section. We consider the sesquilinear form (1.2.1), where aj are sesquilinear,
Hermitian and bounded forms on H+ × H+. Then a(u, u;λ) is real for real λ
and u ∈ H+. The sesquilinear forms aj(·, ·) and a(·, ·; λ) generate the operators
Aj : H+ → H∗+ and A(λ) : H+ → H∗+ by (1.2.2) and (1.2.3), respectively.

We suppose that α, β are real numbers such that α < β and the following
conditions are satisfied.

(I) There exist a positive constant c1 and a continuous function c0(·) on the
interval [α, β], c0(λ) > 0 in [α, β), such that

a(u, u; λ) ≥ c0(λ) ‖u‖2H+
− c1‖u‖2H for all u ∈ H+, λ ∈ [α, β].

(II) The operator A(α) is positive definite.
(III) If A(λ0)u = 0 for a certain λ0 ∈ (α, β), u ∈ H+, u 6= 0, then

d

dλ
a(u, u; λ)

∣∣∣
λ=λ0

< 0.

1.3.2. Properties of the pencil A.

Theorem 1.3.1. Let conditions (I)–(III) be satisfied. Then the following as-
sertions are valid.

1) The spectrum of the pencil A on the interval [α, β) consists of isolated eigen-
values with finite algebraic multiplicities and the eigenvectors have no generalized
eigenvectors.

2) For every λ0 ∈ [α, β) the operator A(λ0) is selfadjoint, bounded from below
and has a discrete spectrum with the unique accumulation point at +∞.
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Proof: 1) There exists a open set U ⊂ C containing the interval [α, β] such that

Re a(u, u, λ) ≥ 1
2

c0(Re λ) ‖u‖2H+
− c1 ‖u‖2H+

for λ ∈ U . Using Theorem 1.2.1, we can conclude that the spectrum of A in U
consists of isolated eigenvalues with finite algebraic multiplicities. Let λ0 be an
eigenvalue, ϕ0 an eigenvector to λ0 and ϕ1 a generalized eigenvector associated to
ϕ0. Then

a(ϕ1, v; λ0) +
d

dλ
a(ϕ0, v;λ)

∣∣∣
λ=λ0

= 0

for all v ∈ H+ . Setting v = ϕ0, we get the equality
d

dλ
a(ϕ0, ϕ0, λ)

∣∣∣
λ=λ0

= 0

which contradicts condition (III).
2) From our assumption that the forms aj are Hermitian and from condition

(I) it follows that A(λ0) is selfadjoint and bounded from below for every λ0 ∈ [α, β).
Since the imbedding H+ ⊂ H is compact, it further follows that the spectrum is
discrete. The proof is complete.

1.3.3. Eigenvalues of the operator A(λ). We consider the eigenvalue prob-
lem

(1.3.1) A(λ)u = µ(λ) u

for fixed λ ∈ [α, β). Let µ1(λ) ≤ µ2(λ) ≤ . . . be the nondecreasing sequence of
the eigenvalues counted with their multiplicities. By Theorem 1.3.1, µj(λ) tends to
infinity as j →∞.

Theorem 1.3.2. 1) The functions µj are continuous on the interval [α, β) and
µj(α) > 0.

2) If c0(β) > 0, then the functions µj are also continuous at the point λ = β.
3) For every index j ≥ 1 the equation µj(λ) = 0 has at most one root in

the interval (α, β). If µj(λ0) = 0 for a certain λ0 ∈ (α, β), then µj(λ) > 0 for
λ ∈ (α, λ0) and µj(λ0) < 0 for λ ∈ (λ0, β).

Proof: For assertions 1), 2) we refer to Kato’s book [96, Ch.7,Th.1.8], where
in fact a stronger assertion has been proved. In particular, it has been shown there
that the functions µj are real-analytic on each of the intervals (λ− ε, λ], [λ, λ + ε),
where λ ∈ (α, β), ε is a small positive number, and on the interval [α, α + ε). If
c0(β) > 0, then this is also true on the interval (β − ε, β].

3) Let λ0 ∈ (α, β) be a root of the equation µj(λ) = 0 and let I = dimkerA(λ0).
As it has been proved in [96, Ch.7,Th.1.8], there exist analytic functions mk(λ) and
vector functions uk(λ), k = 1, . . . , I, such that

(1.3.2) A(λ)uk(λ) = mk(λ) uk(λ)

in a neighborhood of λ0 and the linear closure of the vectors u1(λ0), . . . , uI(λ0)
coincides with kerA(λ0). Obviously, mk coincides with one of the functions µj

on the left of the point λ0 and possibly with a different µj on the right of λ0.
Differentiating (1.3.2) with respect to λ and setting λ = λ0, we get

A(λ0)u′k(λ0) + A′(λ0)uk(λ0) = m′
k(λ0) uk(λ0).
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Multiplying both parts of the last equation by uk(λ), we obtain

m′
k(λ0) =

(
A′(λ0)uk(λ0) , uk(λ0)

)
H · ‖uk(λ0)‖−2

H .

By condition (III), the right-hand side is negative. Hence m′
k(λ0) < 0. This proves

the third assertion of the theorem.

1.3.4. On the number of eigenvalues of the pencil A in the interval
(α, β). Let {uj(λ)} be a sequence of linearly independent eigenvectors of problem
(1.3.1) corresponding to the eigenvalues µj(λ).

Theorem 1.3.3. 1) The number λ0 ∈ [α, β) is an eigenvalue of the operator
pencil A with the geometric multiplicity I if and only if there exists a number k ≥ 1
such that

µj(λ0) = 0 for j = k, k + 1, . . . , k + I − 1.

The corresponding characteristic space coincides with the linear closure of the vec-
tors uk(λ0), uk+1(λ0), . . . , uk+I−1(λ0).

2) Let β0 ∈ (α, β) and let N be the maximum of all integer numbers s for which
there exists a subspace Hs ⊂ H+ of dimension s such that

(1.3.3) a(u, u; β0) < 0 for u ∈ Hs\{0}.
Then the interval (α, β0) contains exactly N eigenvalues (counting their multiplic-
ities) of the operator pencil A.

Proof: The first assertion is obvious. We show that assertion 2) is true.
The number N can be characterized as follows. Let n be a number such that
µn(β0) < 0 and µn+1(β0) ≥ 0. Then it can be easily seen that n = N and the space
HN can be chosen as the linear closure of the vectors u1(β0), . . . , uN (β0). Since
µj(α) > 0, µj(β0) < 0 for j = 1, . . . , N and µj(β0) ≥ 0 for j > N , it follows from
Theorem 1.3.2 that every of the functions µ1, . . . , µN has exactly one zero in the
interval (α, β0) and the functions µj for j > N have no zeros in this interval. Using
the first assertion of the theorem, we arrive at 2).

Theorem 1.3.4. 1) Let Hs be a subspace of H+ with dimension s such that

(1.3.4) a(u, u; β) < 0 for u ∈ Hs\{0}
Then the pencil A has at least s eigenvalues (counting their multiplicities) in the
interval (α, β).

2) Suppose that the following condition is satisfied: If a(u, u; β) ≥ 0, then there
exists a positive number ε such that

(1.3.5) a(u, u; λ) ≥ 0 for λ ∈ (β − ε, β).

Under this condition, the number of the eigenvalues of the pencil A in the interval
(α, β) is equal to the maximal dimension of the spaces Hs for which (1.3.4) is true.

Proof: 1) If (1.3.4) is valid, then there exists a positive constant c such that

(1.3.6) a(u, u; β) ≤ −c ‖u‖2H+

for all u ∈ Hs. For small |λ− β| we get

|a(u, u; λ)− a(u, u, β)| ≤ c

2
‖u‖2H+

if u ∈ H+ .
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Consequently,
a(u, u;λ) ≥ − c

2
‖u‖2H+

for all u ∈ Hs and from the second part of Theorem 1.3.3 we obtain assertion 1).
2) Without loss of generality, we may assume that N is equal to the greatest

number s for which the inequality (1.3.4) is satisfied. By the selfadjointness of the
operator A(β), the space H+ can be decomposed into a direct sum H+ = H0 ⊕H1

such that dimH0 = N ,

(1.3.7)
{

a(u, u; β) < 0 for u ∈ H0\{0},
a(u, u; β) ≥ 0 for u ∈ H1.

Since H0 is finite-dimensional, the inequality (1.3.6) is satisfied with certain con-
stant c for all u ∈ H0. This and condition (1.3.5) imply the validity of the inequal-
ities

a(u, u; λ) ≤ − c

2
‖u‖2H+

for u ∈ H0,

a(u, u; λ) ≥ 0 for u ∈ H1

if λ lies in a sufficiently small neighborhood of β. Now 2) follows immediately from
the second part of Theorem 1.3.3.

1.3.5. On the smallest eigenvalue of the pencil A in the interval
(α, β). Let

λ∗ = sup
{

λ ∈ [α, β] : a(u, u; µ) > 0 for all µ ∈ [α, λ), u ∈ H+\{0}
}

.

The following assertion is obvious.

Lemma 1.3.1. If λ∗ < β, then λ∗ is the smallest eigenvalue of the operator
pencil A in the interval [α, β).

We give another characterization of the number λ∗. Let R(u) be the smallest
root of the polynomial λ → a(u, u;λ), u ∈ H+\{0}, in the interval [α, β). If [α, β)
does not contain such roots, then we set R(u) = β.

Lemma 1.3.2. The number λ∗ is given by

(1.3.8) λ∗ = inf
{

R(u) : u ∈ H+\{0}
}

.

Proof: It suffices to consider the case λ∗ < β. We denote the right-hand side of
(1.3.8) by λ1. Then from the definition of the number λ∗ it follows that λ∗ ≤ λ1.
On the other hand, by Lemma 1.3.1, the number λ∗ is an eigenvalue of A. Let ϕ0

be an eigenvector corresponding to λ∗. Since a(ϕ0, ϕ0; λ∗) = (A(λ∗)ϕ0, ϕ0)H = 0,
we get λ1 ≤ R(ϕ0) ≤ λ∗. This proves the lemma.

1.3.6. Monotonicity of the eigenvalues of the operator pencil with
respect to its domain. Let H+ be a subspace of H+ and let H be the closure of
the set H+ in H. Furthermore, let â(·, ·; λ) be the restriction of the form a(·, ·; λ)
to H+ ×H+, i.e.,

â(u, v;λ) = a(u, v; λ) for all u, v ∈ H+

We define the operators Âj : H+ → H∗
+ by

(Âju, v) = aj(u, v) , u, v ∈ H+ ,
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and set

Â(λ) =
l∑

j=0

Âj λj .

Obviously,
(Â(λ)u, v) = â(u, v;λ) for all u, v ∈ H+,

and conditions (I), (II) are also valid for the form â(·, ·; λ) and the operator Â(λ).
Additionally, we suppose that Â satisfies condition (III). Then all results of Theo-
rems 1.3.1–1.3.4 hold for the operator pencil Â and the form â.

Let λ1, . . . , λp be the eigenvalues of A in the interval (α, β) counted with their
multiplicities. Analogously, we denote the eigenvalues of Â in (α, β) by λ̂1, . . . , λ̂q.
We assume that the eigenvalues are numerated such that

α < λ1 ≤ . . . ≤ λp < β and α < λ̂1 ≤ . . . ≤ λ̂q < β.

Theorem 1.3.5. 1) Under the above assumptions, we have

q ≤ p and λj ≤ λ̂j for j = 1, . . . , q.

2) Suppose that for arbitrary λ ∈ (α, β) the vector u = 0 is the only element in
H+ subject to

a(u, v; λ) = 0 for all v ∈ H+ .

Then λj < λ̂j for j = 1, . . . , q.

Proof: We denote the eigenvalues of the problems

A(λ) u = µu and Â(λ)u = µu

by µj(λ) and µ̂j(λ), respectively. The eigenvalues µj(λ) are given for λ ∈ (α, β) by

(1.3.9) µj(λ) = max
L

min
u∈L\{0}

a(u, u; λ)
(u, u)H

,

where the maximum is taken over the set of all subspaces L ⊂ H+ of codimension
≥ j − 1. Analogously,

µ̂j(λ) = max
L

min
u∈L\{0}

â(u, u; λ)
(u, u)H

,

where the maximum is taken over all subspaces L ⊂ H+ of codimension ≥ j − 1.
Using the imbedding H+ ⊂ H+, we obtain

(1.3.10) µj(λ) ≤ µ̂j(λ) for λ ∈ (α, β), j = 1, 2, . . .

This together with the first part of Theorem 1.3.3 implies assertion 1).
2) We show that the equality µ̂j(λ) = 0, λ ∈ (α, β), implies µj(λ) < 0. To

this end, we suppose that µj(λ) = µ̂j(λ) = 0 and denote by u1, . . . , uj ∈ H+

an orthogonal system of eigenvectors of the operator Â(λ) corresponding to the
eigenvalues µ̂1(λ), . . . , µ̂j(λ). By (1.3.9), we have

µj(λ) ≥ min
u∈H(j)

+ \{0}

a(u, u; λ)
‖u‖2H

,

where
H(j)

+ = {u ∈ H+ : (u, uk) = 0 for k = 1, . . . , j − 1}.
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Since a(uj , uj ; λ) = µ̂j ‖u‖2H and µj = µ̂j , we obtain

(1.3.11) 0 = µj(λ) = min
u∈H(j)

+ \{0}

a(u, u; λ)
‖u‖2H

,

where the minimum in the right-hand side is attained at the vector u = uj . From
(1.3.11) it follows that there exist constants c1, . . . , cj−1 such that

(1.3.12) a(uj , v; λ) =
j−1∑

k=1

ck a(uk, v; λ) for all v ∈ H+ .

Furthermore, since uj is an eigenvector of the operator Â(λ) corresponding to the
eigenvalue µ̂j(λ) = 0, we have a(uj , v; λ) = 0 for all v ∈ H+. Consequently,

j−1∑

k=1

ck a(uk, v;λ) = 0 for all v ∈ H+.

From this we obtain ck = 0 if µ̂k(λ) 6= 0. Hence by (1.3.12), we get

a(w, v; λ) = 0 for all v ∈ H+,

where
w = uj −

∑

1 ≤ k ≤ j − 1
µ̂k(λ) = 0

ck uk

is an element of H+. By the assumption of the theorem, this implies w = 0, i.e.,
uj = 0 and ck = 0 for k = 1, . . . , j − 1. Therefore, the equality µj(λ) = µ̂j(λ) = 0
cannot be valid. Thus, µj(λ) < 0 if µ̂j(λ) = 0. Hence the zero of the function µj(·)
is less than the zero of the function µ̂j(·). Using Theorem 1.3.3, we get the second
assertion.

1.4. Elliptic boundary value problems in domains with conic points:
some basic results

As we said in the introduction to this chapter, pencils of boundary value prob-
lems on a subdomain of the unit sphere Sn−1 appear naturally in the theory of
elliptic boundary value problems on n-dimensional domains with conic vertices. In
this section we formulate fundamental analytic facts of this theory. They depend
upon general spectral properties of the corresponding operator pencils and are valid
for arbitrary elliptic systems. A drawback of this generality is that one can deduce
from them no explicit information on the continuity and differentiability properties
of solutions. However, using these basic facts along with concrete results on the
operator pencils to be obtained in the sequel, we shall be able to derive information
of such a kind in the next chapters.

1.4.1. The operator pencil generated by the boundary value problem.
Let G be a n-dimensional domain with d singular boundary points x(1), . . . , x(d).
Outside the set S of these points, the boundary ∂G is assumed to be smooth.
Furthermore, we suppose that the domain G coincides with a cone Kτ =
{x : (x − x(τ))/|x − x(τ)| ∈ Ωτ} in a neighborhood of x(τ), τ = 1, . . . , d. By
rτ (x) we denote the distance of the point x to x(τ) and by r(x) a positive infin-
itely differentiable function on G\S which coincides with the distance to S in a
neighborhood of S.
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We consider the boundary value problem
N∑

j=1

Li,j(x, ∂x)Uj = Fi in G, i = 1, . . . , N,(1.4.1)

N∑

j=1

Bk,j(x, ∂x)Uj = Gk on ∂G\S, k = 1, . . . ,M,(1.4.2)

where Li,j , Bk,j are linear differential operators, ordLi,j ≤ si+tj , ord Bk,j ≤ σk+tj
(si, tj are given integer numbers, s1 + t1 + · · ·+ sN + tN = 2M , the operators Li,j ,
Bk,j are assumed to be zero if si + tj < 0 and σk + tj < 0, respectively).

We suppose that the coefficients of Li,j , Bk,j are smooth outside S and that
problem (1.4.1), (1.4.2) is elliptic , i.e., the system (1.4.1) is elliptic in G\S in the
sense of Douglis and Nirenberg and the Lopatinskĭı condition is satisfied on ∂G\S
(see [2, 49]).

Consider a differential operator

(1.4.3) P (x, ∂x) =
∑

|α|≤k

pα(x) ∂α
x

of order k (for an arbitrary multi-index α = (α1, . . . , αn) with length |α| = α1 +
· · ·+ αn we denote by ∂α

x the partial derivative ∂α1
x1
· · · ∂αn

xn
). This operator is said

to be admissible in a neighborhood of x(τ) if the coefficients pα have the form

pα(x) = r|α|−k
τ p(τ)

α (rτ , ω)

in this neighborhood, where ω = (x − x(τ))/rτ , the functions p
(τ)
α are smooth in

(0,∞)× Ωτ , continuous in [0,∞)× Ωτ and satisfy the condition

(r∂r)i ∂β
ω

(
p(τ)

α (ω, r)− p(τ)
α (ω, 0)

) → 0 as r → 0

uniformly with respect to ω ∈ Ωτ for all i and β. The differential operator

P (τ)(x, ∂x) =
∑

|α|≤l

r|α|−k
τ p(τ)

α (0, ω) ∂α
x

is called the leading part of the operator (1.4.3) at x(τ). For example, every differ-
ential operator P (x, ∂x) with infinitely differentiable coefficients on G is admissible.
In this case, the differential operator P (τ)(x, ∂x) is equal to the principal part of P
with coefficients frozen at x(τ), i.e., to the operator

P ◦(x(τ), ∂x) =
∑

|α|=k

pα(x(τ)) ∂α
x

We assume that Li,j , Bk,j are admissible operators of order si + tj and σk + tj ,
respectively, in a neighborhood of each of the points x(1), . . . , x(d).

For every τ = 1, . . . , d we consider the operator Aτ (λ) of the parameter-
depending boundary value problem

N∑

j=1

L(τ)
i,j (λ + tj)uj = fi in Ωτ , i = 1, . . . , N,(1.4.4)

N∑

j=1

B(τ)
k,j (λ + tj)uj = gk on ∂Ωτ on ∂Ωτ , k = 1, . . . , M,(1.4.5)
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where

L(τ)
i,j (λ)u(ω) = rsi+tj−λ

τ L
(τ)
i,j (x, ∂x) rλ

τ u(ω),

B(τ)
k,j (λ)u(ω) = rσk+tj−λ

τ B
(τ)
k,j (x, ∂x) rλ

τ u(ω)

and L
(τ)
i,j , B

(τ)
k,j are the leading parts of L and Bk,j , respectively, at x(τ).

In this book we are mostly concerned with the systems elliptic in the sense of
Petrovskĭı, which means that

t1 = . . . = tN = 0 and s1 = . . . = sN = 2m .

In this case system (1.4.1) can be written in the form

(1.4.6)
∑

|α|≤2m

Aα(x) ∂α
x U = F in G,

where Aα(x) are N × N -matrices, and U , F denote the vectors with the compo-
nents U1, . . . , UN and F1, . . . , FN , respectively. If the matrices Aα(x) are infinitely
differentiable with respect to x in a neighborhood of x(τ), then system (1.4.4) has
the form L(τ)(λ)u = f in Ωτ , where

L(τ)(λ)u = r2m−λ
τ

∑

|α|=2m

Aα(x(τ)) ∂α
x

(
rλ
τ u

)
.

1.4.2. Solvability of the boundary value problem in weighted Sobolev
spaces. Let l be a nonnegative integer, p ∈ (1,∞), and ~β = (β1, . . . , βd) ∈ Rd. We
define the weighted Sobolev space V l

p,~β
(G) as the closure of the set C∞0 (G\S) with

respect to the norm

‖U‖V l

p,~β
(G) =

( ∫

G

( d∏
τ=1

rpβτ
τ

) ∑

|α|≤l

rp(|α|−l) |∂α
x U(x)|p dx

)1/p

.

Sometimes, we will use the notation V l
p,β(G), by that we mean the above defined

space with ~β = (β, . . . , β) ∈ Rd. The space of traces of functions from V l
p,~β

(G),

l ≥ 1, on ∂G\S is denoted by V
l−1/p

p,~β
(∂G). It is equipped with the norm

‖U‖
V

l−1/p

p,~β
(∂G)

= inf
{‖V ‖V l

p,~β
(G) : V ∈ V l

p,~β
(G), V = U on ∂G\S}

.

It follows from U ∈ V l
p,~γ(G) that

d∏
τ=1

rpδτ
τ U ∈ V l

p,~γ−~δ
(G), ~δ = (δ1, . . . , δd) .

We consider the operator

U = (U1, . . . , UN ) →
{ N∑

j=1

Li,jUj ,

N∑

j=1

Bk,jUj

}
1≤i≤N, 1≤k≤M

of the boundary value problem (1.4.1), (1.4.2). Clearly, under the above assump-
tions, this operator realizes a continuous mapping

(1.4.7) Al
p,~β

:
N∏

j=1

V
l+tj

p,~β
(G) →

N∏

i=1

V l−si

p,~β
(G)×

M∏

k=1

V
l−σk−1/p

p,~β
(∂G),
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where

(1.4.8) l is integer and l ≥ max si, l > max σk .

We shall assume in all theorems formulated in this section that l (and a similar
index l′) are subject to (1.4.8). As it was proved by Maz′ya and Plamenevskĭı [182]
(see also the monograph of Nazarov and Plamenevskĭı [207] and, for the case p = 2,
Kondrat′ev’s paper [109] and the monographs of Grisvard [78], Dauge [41], Kozlov,
Maz′ya and Roßmann [136]), the following statement is valid.

Theorem 1.4.1. Suppose that the line Reλ = l − βτ − n/p does not contain
eigenvalues of the pencil Aτ , τ = 1, . . . , d. Then the operator Al

p,~β
is Fredholm, and

for any solution

U = (U1, . . . , UN ) ∈
N∏

j=1

V
l+tj

p,~β
(G)

of problem (1.4.1), (1.4.2) there is the estimate

N∑

j=1

‖Uj‖
V

l+tj

p,~β
(G)

≤ c
( N∑

i=1

‖Fi‖V
l−si

p,~β
(G)

+
M∑

k=1

‖Gk‖V
l−σk−1/p

p,~β
(∂G)

+
N∑

j=1

‖Uj‖Lp(G′)
)
,

where G′ is an arbitrary nonempty open set, G′ ⊂ G\S.

In [136] an analogous result in weighted Sobolev spaces with arbitrary integer
order is obtained. Note that the conditions on the eigenvalues of the pencils Aτ in
Theorem 1.4.1 are also necessary.

From Theorem 1.4.3 below it follows that the kernel of the operator Al
p,β de-

pends only on the numbers l− βτ −n/p, τ = 1, . . . , d, if there are no eigenvalues of
the pencils Aτ on the lines Re λ = l−βτ−n/p. The same is true for the kernel of the
adjoint operator. In Maz′ya and Plamenevskĭı’s paper [180, Le.8.1] the following
formula for the index of the operator Al

p,β was proved under the assumptions that
l − βτ − n/p < l′ − β′τ − n/p′ and there are no eigenvalues of the pencils Aτ on
the lines Re λ = l − βτ − n/p and Re λ = l′ − β′τ − n/p′, τ = 1, . . . , d (in the case
p = p′ = 2 see also the books [136, Th.6.6] and [207, Ch.4,Th.3.3]):

(1.4.9) indAl
p,β = indAl′

p′,β′ +
d∑

τ=1

κτ ,

where κτ is the sum of the algebraic multiplicities of all eigenvalues of the pencil
Aτ in the strip l − βτ − n/p < Re λ < l′ − β′τ − n/p′, τ = 1, . . . , d.

1.4.3. Regularity and asymptotics of the solution. By means of clas-
sical local regularity results for solutions of elliptic boundary value problems, the
following assertion can be proved (see, e.g., [136, Le.6.3.1]).

Theorem 1.4.2. Let Uj ∈ V 0
p,~β−(l+tj)~1

(G), j = 1, . . . , N (here ~1 denotes the

vector (1, 1, . . . , 1) ∈ Rd), be functions which belong to W
l+tj
p (G′) for every open

set G′, G′ ⊂ G\S. If the vector function U = (U1, . . . , UN ) is a solution of problem
(1.4.1), (1.4.2), where Fi ∈ V l−si

p,~β
(G), Gk ∈ V

l−σk−1/p

p,~β
(∂G), then Uj ∈ V

l+tj

p,~β
(G).
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Furthermore, the inequality

N∑

j=1

‖Uj‖
V

l+tj

p,~β
(G)

≤ c
( N∑

i=1

‖Fi‖V
l−si

p,~β
(G)

+
M∑

k=1

‖Gk‖V
l−σk−1/p

p,~β
(∂G)

+
N∑

j=1

‖Uj‖V 0
p,~β−(l+tj)~1

(G)

)

is satisfied.

In contrast to Theorem 1.4.2, the following statement holds only under ad-
ditional assumptions on the eigenvalues of the pencils Aτ . We refer again to
[182, 207] and, in the case p = 2, to [41, 78, 109, 136].

Theorem 1.4.3. Let U ∈ ∏
V

l+tj

p,~β
(G) be a solution of problem (1.4.1), (1.4.2)

with Fi ∈ V l′−si

p′, ~β′
(G), Gk ∈ V

l′−σk−1/p′

p′, ~β′
(∂G). If there are no eigenvalues of the

pencils Aτ , τ = 1, . . . , d, in the closed strip between the lines Re λ = l − βτ − n/p

and Re λ = l′ − β′τ − n/p′, then U ∈ ∏
V

l′+tj

p′, ~β′
(G).

One of the central questions in the theory of elliptic boundary value problems
for domains with conic points is the question on the asymptotic behavior of the
solutions near the singular boundary points. We give here an asymptotic formula
for the case when the operators Li,j , Bk,j are model operators, i.e., they coincide
with their leading parts near x(τ).

Theorem 1.4.4. Let U = (U1, . . . , UN ) ∈ ∏
V

l+tj

p,~β
(G) be a solution of problem

(1.4.1), (1.4.2) with

Fi ∈ V l′−si

p′, ~β′
(G), Gk ∈ V

l′−σk−1/p′

p′, ~β′
(∂G) ,

where l′ − β′τ − n/p′ > l− βτ − n/p. We suppose that near x(τ) the operators Li,j,
Bk,j coincide with their principal parts at x(τ). Furthermore, we assume that the
lines Re λ = l − βτ − n/p and Re λ = l′ − β′τ − n/p′ are free of eigenvalues of the
pencil Aτ . Then the functions Uj, j = 1, . . . , N , admit, near x(τ), the asymptotic
representation

Uj =
M∑

µ=1

Iν∑
ν=1

κµ,ν−1∑
s=0

cµ,ν,sr
λµ+tj
τ

s∑
σ=0

1
s− σ!

(log r)s−σ uj;µ,ν,σ(ω) + Vj ,

where Vj ∈ V
l′+tj

p′, ~β′
(G), λ1, . . . , λM are the eigenvalues of the pencil Aτ in the strip

l − βτ − n/p < Re λ < l′ − β′τ − n/p′, ω are coordinates on the sphere |x− x(τ)| =
1, and uµ,ν,σ =

(
u1;µ,ν,σ, . . . , uN ;µ,ν,σ

)
are eigenvectors (σ = 0) and generalized

eigenvectors (σ ≥ 1) of the pencil Aτ corresponding to the eigenvalue λµ.

1.4.4. Solvability in weighted Hölder spaces. Let again l be nonnegative,
~β = (β1, . . . , βd) ∈ Rd, and 0 < σ < 1. We denote by N l,σ

~β
(G) the weighted Hölder
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space with the norm

‖U‖N l,σ
~β

(G) = sup
x∈G

( d∏
τ=1

rβτ
τ

∑

|α|≤l

r|α|−l−σ |∂α
x U(x)|

)

+
∑

|α|=l

sup
x,y∈G

|x− y|−σ
∣∣∣

d∏
τ=1

rτ (x)βτ ∂α
x U(x)−

d∏
τ=1

rτ (y)βτ ∂α
y U(y)

∣∣∣

Furthermore, let N l,σ
~β

(∂G) be the trace space on ∂G for the space N l,σ
~β

(G). If β is

a real number, then by N l,σ
β (G) and N l,σ

β (∂G) we mean the spaces just introduced
with the weight parameter ~β = (β, . . . , β) ∈ Rd. Obviously, the space N l+1,σ

β+1 (G) is
continuously imbedded into N l,σ

β (G) for arbitrary l, β, and σ.
The operator of the boundary value problem (1.4.1), (1.4.2) realizes a contin-

uous mapping

(1.4.10) Al,σ
~β

:
N∏

j=1

N
l+tj ,σ
~β

(G) →
N∏

i=1

N l−si,σ
~β

(G)×
m∏

k=1

N l−σk,σ
~β

(∂G) .

We state a result for the space N l,σ
~β

(G) similar to Theorems 1.4.1 and 1.4.3 (cf.
[182, Th.6.3,Th.6.4]).

Theorem 1.4.5. 1) Suppose that there are no eigenvalues of the pencils Aτ on
the line Re λ = l + σ − βτ , τ = 1, . . . , d. Then operator (1.4.10) is Fredholm and
every solution U ∈ ∏

N
l+tj ,σ
~β

(G) of problem (1.4.1), (1.4.2) satisfies the estimate

N∑

j=1

‖Uj‖
N

l+tj ,σ

~β
(G)

≤ c
( N∑

i=1

‖Fi‖N
l−si,σ

~β
(G)

+
M∑

k=1

‖Gk‖N
l−σk,σ

~β
(∂G)

+ ‖U‖L(G′)N

)
,

where G′ is an arbitrary nonempty open set, G′ ⊂ G\S.
2) Let U ∈ ∏

V
l+tj

p,~β
(G) be a solution of problem (1.4.1), (1.4.2), where

Fi ∈ N l′−si,σ
~β′

(G) , Gk ∈ N l′−σk,σ
~β′

(∂G) .

If there are no eigenvalues of the pencils Aτ , τ = 1, . . . , d, in the closed strip between
the lines Re λ = l − βτ − n/p and Re λ = l′ + σ − β′τ , then U ∈ ∏

N
l′+tj ,σ
~β′

(G).

We have restricted ourselves to the minimum information which is frequently
used in this book. However, many other results of a similar nature are known,
in particular, those relating function spaces with “nonhomogeneous” norms such
as classical Sobolev and Hölder spaces (see, for example, [41, 109, 136, 179]).
Combining such results with explicit facts about operator pencils to be obtained in
the sequel, one can easily extend the scope of applications of these facts.

1.5. Notes

Pencils of general elliptic parameter dependent boundary value problems ap-
peared first in the works Agranovich and Vishik [4], Agmon and Nirenberg [3]
(cylindrical domains), and Kondrat’ev [109] (domain with conic vertices).
Lopatinskĭı [156] and Eskin [51, 52] arrived at holomorphic operator functions
when studying boundary integral equations generated by elliptic boundary value
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problems in domains with corners.

Section 1.1. Basic facts from the theory of holomorphic operator functions in
a pair of Banach spaces can be found in works of Gohberg, Goldberg and Kaashoek
[71], Markus [160], Wendland [265], Mennicken and Möller [200], and Kozlov and
Maz′ya [135]. The Laurent decomposition of the resolvent near a pole was con-
structed by Keldysh [97, 98] and extended to holomorphic operator functions by
Markus and Sigal [161] and to meromorphic operator functions by Gohberg and
Sigal [73] (for the proof see [71] and [135]). Operator versions of the logarith-
mic residual and Rouché’s theorems were obtained in [98] for pencils, in [161] for
holomorphic operator functions and in [73] for meromorphic operator functions.
Theorems 1.1.7 and 1.1.9 are classical results in the theory of ordinary differential
equations.

Section 1.2. The material is borrowed from the paper [129] by Kozlov and
Maz′ya.

Section 1.3. All results can be found in the papers [140, 141] by Kozlov,
Maz′ya and Schwab.

Section 1.4. There exists extensive bibliography concerning elliptic bound-
ary value problems in domains with angle and conic vertices. A theory of general
elliptic problems for these domains was initiated in the above mentioned works
by Lopatinskĭı, Eskin and Kondrat′ev. The first two authors dealt with boundary
value problems in plane domains with angular points. They reduced the problem
to an integral equation on the boundary and investigated this equation by using
Mellin’s transform. Kondrat′ev [109] studied boundary value problems for scalar
differential operators in domains of arbitrary dimension with conic points by ap-
plying Mellin’s transform directly to the differential operators. He established the
Fredholm property in weighted and usual L2-Sobolev spaces, and also found asymp-
totic representations of solutions near vertices. Maz′ya and Plamenevskĭı extended
these results to other function spaces (Lp-Sobolev spaces, Hölder spaces, spaces
with inhomogeneous norms). They calculated the coefficients in asymptotics and
described singularities of Green’s kernels (see [179, 180, 182, 186]).

Formula (1.4.9) which describes dependence of the index on function spaces
is proved in [180] by Maz′ya and Plamenevskĭı. Eskin [54] obtained an index
formula for elliptic boundary value problem in a plane domain with corners. In
connection with the index formulas, we mention also the works of Gromov and
Shubin [87, 88], Shubin [245], where the classical Riemann-Roch theorem was
generalized to solutions of general elliptic equations with isolated singularities on a
compact manifold.

A theory of pseudodifferential operators on manifolds with conic points was
developed in works of Plamenevskĭı [228], Schulze [236, 238, 240, 241], Melrose
[198] and others.

The modern state of the theory of elliptic problems in domains with angu-
lar or conic points is discussed in the books of Dauge [41], Maz′ya, Nazarov and
Plamenevskĭı [174], Schulze [237, 239], Nazarov and Plamenevskĭı [207], Kozlov,
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Maz′ya and Roßmann [136]. In these books and in the review of Kondrat′ev and
Olĕınik [112], many additional references concerning the subject can be found.

In a number of works, results of the same type as in Section 1.4 were extended
to transmission problems. We mention here the papers by Kellogg [100], Ben
M’Barek and Merigot [17], Lemrabet [152], Meister, Penzel, Speck and Teixeira
[197] (Laplace, Helmholtz equations), the books of Leguillon and Sanchez-Palencia
[151] (second order equations, elasticity), Nicaise [211] (Laplace, biharmonic equa-
tions), and the papers of Nicaise and Sändig [212] (general equations).





CHAPTER 2

Angle and conic singularities of harmonic functions

This chapter is an introduction to the theme of singularities. The Laplacian
is a suitable object to begin with because of the simplicity of the corresponding
operator pencil δ + λ(λ + n− 2), where δ is the Laplace-Beltrami operator on the
unit sphere. Thus, we deal with a standard spectral problem for the operator δ (at
least, in the case of the Dirichlet and Neumann boundary conditions).

We start with an example of singularities generated by the Laplace operator
and say a few words about their applications. Let G be a bounded plane domain
whose boundary ∂G contains the origin. We suppose that the arc ∂G\{0} is smooth
and that near the point x = 0 the domain coincides with the angle

{x = r eiϕ : 0 < r < 1, 0 < ϕ < α},
where α ∈ (0, 2π]. Consider the Dirichlet problem

(2.0.1) −∆U = F on G, U = 0 on ∂G\{0}
where F is a given function in L2(G). By the Riesz representation theorem there
exists a unique (variational) solution U in the Sobolev space

W 1
2 (G) = {U ∈ L2(G) :

∫

G
|∇U |2 dx < ∞}

(see the book [155, Ch.2,Sect.9] by Lions and Magenes). If we assume additionally
that F = 0 in a neighborhood of 0, then a direct application of the Fourier method
leads to the representation of U near 0 in the form of the convergent series:

(2.0.2) U(x) =
∞∑

k=1

ck rkπ/α sin(kπϕ/α).

When applying the Fourier method, we see that the exponents λk = kπ/α are
eigenvalues of the spectral problem

−u′′(ϕ)− λ2u(ϕ) = 0, 0 < ϕ < α,(2.0.3)
u(0) = u(α) = 0.(2.0.4)

and that sin(kπϕ/α) is an eigenfunction corresponding to λk.
In (2.0.2) we meet infinitely many singular, i.e., nonsmooth terms. In particu-

lar, all terms in this series are singular if π/α is irrational. Clearly, (2.0.2) contains
all information about differentiability properties of u in a neighborhood of the ver-
tex x = 0. We see, for example, that U and its derivatives up to order m are
continuous if π/α is integer or α < π/m.

We state a well-known regularity result, where the first term in (2.0.2) is impor-
tant (see, for example, our book [136, Sect.6.6]). Consider the Dirichlet problem

35
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(2.0.1) with an arbitrary F ∈ L2(G). The second derivatives of the solution U to
(2.0.1) belong to L2(G) if and only if the same is true for the function rπ/α sin(πϕ/α)
or, equivalently, if and only if α ≤ π.

As in the two-dimensional case, the Fourier method can be used to describe
singularities of solutions to problem (2.0.1) for the n-dimensional domain G coin-
ciding with the cone K = {x ∈ Rn : 0 < r < 1, ω ∈ Ω} near the origin. Here
r = |x|, ω = x/|x| and Ω is a domain on the unit sphere. If F = 0 near the origin,
the solution is given, for sufficiently small r, by the series

(2.0.5) U(x) =
∞∑

k=1

ck rλk uk(ω),

where ck=const, {uk} is a sequence of eigenfunctions and {λk} is the sequence of
positive eigenvalues of the spectral problem

−δu− λ(λ + n− 2)u = 0 in Ω, u = 0 on ∂Ω,

As in the two-dimensional case, the decomposition (2.0.5) gives rise to theorems on
regularity of solutions to problem (2.0.1), formulated in terms of λk. However, one
can find these eigenvalues very seldom, which makes description of the regularity
properties of solutions in a particular domain difficult even in the case of the Laplace
operator.

In Section 2.1 we consider classical boundary value problems for harmonic
functions in an angle for which the question of singularities is trivial. The Dirichlet
problem for the Laplace operator in an n-dimensional cone is shortly discussed in
Section 2.2, which is a collection of known results, with simple facts proved and
deeper ones only formulated. Sections 2.3 and 2.4 deal with the multi-dimensional
Neumann and oblique derivative problems in a cone. In Section 2.5 we present
some qualitative information about eigenvalues obtained by asymptotic methods,
and we conclude the chapter with historical notes.

2.1. Boundary value problems for the Laplace operator in an angle

2.1.1. The Dirichlet problem. Let K = {(x1, x2) ∈ R2 : r > 0, 0 < ϕ < α}
be a plane angle with vertex at the origin. Here r, ϕ are the polar coordinates of the
point (x1, x2) and 0 < α ≤ 2π. We are interested in harmonic functions in K which
are positively homogeneous of degree λ, λ ∈ C, and equal to zero on the boundary.
This means, we seek the solutions of the problem

(2.1.1) −∆U = 0 on K, U(r, 0) = U(r, α) = 0

which have the form

(2.1.2) U(r, ϕ) = rλ u(ϕ).

Since the Laplace operator has the representation

∆U = r−1∂r (r∂r U) + r−2∂2
ϕU

in polar coordinates, we get the Dirichlet problem (2.0.3), (2.0.4) for the function u.
Let A(λ) = −d2/dϕ2 − λ2 be the operator on the left-hand side of (2.0.3) which is
defined on the set of the functions equal to zero at the ends of the interval (0, α). The

operator A(λ) can be considered, e.g., as a mapping from the space W 2
2 ((0, α))∩ ◦

W
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1
2((0, α)) into L2((0, α)). Here L2((0, α)) is the space of square summable functions
in (0, α), W l

2((0, α)) denotes the Sobolev space with the norm

‖u‖W l
2((0,α)) =

( l∑

j=0

∣∣∂ϕu(ϕ)
∣∣2 dϕ

)1/2

,

and
◦

W l
2((0, α)) denotes the closure of the set of all infinitely differentiable functions

with support in (0, α) with respect to the W l
2((0, α))-norm.

By what has been shown above, the function (2.1.2) is a solution of problem
(2.1.1) if and only if λ is an eigenvalue of the operator pencil A and u is an eigenfunc-
tion corresponding to this eigenvalue. It can be easily verified that the eigenvalues
of the pencil A are the numbers λ±j = ±jπ/α, j = 1, 2, . . . and that

v±j(ϕ) = sin
jπϕ

α
.

are the eigenfunctions corresponding to the eigenvalues λ±j .
Now we seek solutions of (2.1.1) which have the form

(2.1.3) U = rλ
s∑

k=0

1
k!

(log r)k us−k(ϕ) ,

where uk ∈ W 2
2 ((0, α))∩ ◦

W1
2((0, α)), k = 0, 1, . . . , s, u0 6= 0, s ≥ 1. Inserting (2.1.3)

into (2.1.1), we obtain

0 = rλ (log r)s

s!
(
λ2u0 + u′′0

)
+ rλ (log r)s−1

(s− 1)!
(
λ2u1 + u′′1 + 2λu0

)

+ rλ
s−2∑

k=0

(log r)k

k!
(
λ2us−k + u′′s−k + 2λus−1−k + us−2−k

)
.

Consequently, the functions u0, u1, . . . , us satisfy the equalities

−u′′0 − λ2u0 = 0,(2.1.4)
−u′′1 − λ2u1 = 2λu0,(2.1.5)
−u′′k − λ2uk = 2λuk−1 + uk−2 , k = 2, . . . , s.(2.1.6)

This means that λ is an eigenvalue of the pencil A and the functions u0, u1, . . . , us

form a Jordan chain of the pencil A corresponding to the eigenvalue λ. In particular,
we have λ = λ±j and u0 = c v±j , c 6= 0. Multiplying (2.1.5) by v±j and integrating
over the interval (0, α), we obtain

2cλ±j

α∫

0

|v±j(ϕ)|2 dϕ =

α∫

0

A(λ±j)u1 · v±j dϕ =

α∫

0

u1 · A(λ±j)v±j dϕ = 0.

Since this contradicts the assumption c 6= 0, we conclude that the operator pencil A
has no generalized eigenfunctions. Thus, solutions of the form (2.1.3) with u0 6= 0,
s ≥ 1, do not exist.

The same results hold if the operator A(λ) is considered as a mapping from
◦

W 1
2((0, α)) into the dual space W−1

2 ((0, α)). Then the operator A(λ) is given by
the equality (

A(λ) u, v
)

= a(u, v;λ), u, v ∈ ◦
W

1
2((0, α)),



38 2. ANGLE AND CONIC SINGULARITIES OF HARMONIC FUNCTIONS

where (·, ·) denotes the extension of the inner product in L2((0, α)) to the Cartesian

product W−1
2 ((0, α))× ◦

W1
2((0, α)) and

(2.1.7) a(u, v;λ) =

α∫

0

(
u′(ϕ) v′(ϕ)− λ2 u(ϕ) v(ϕ)

)
dϕ,

2.1.2. The Neumann problem. Next we consider the problem

−∆U = 0 in K, ∂ϕU(r, 0) = ∂ϕU(r, α) = 0.

As above, we seek solutions of the form (2.1.2). This leads to the problem

−u′′(ϕ)− λ2u(ϕ) = 0, 0 < ϕ < α,(2.1.8)
u′(0) = u′(α) = 0.(2.1.9)

The corresponding operator A(λ) can be defined, e.g., as a mapping from the space
{u ∈ W 2

2 ((0, α)) : u′(0) = u′(α) = 0} into L2((0, α)).
The spectrum of the pencil A consists of the eigenvalues λ±j = ±jπ/α, j =

0, 1, 2, . . . , and the corresponding eigenfunctions are

v±j(ϕ) = cos
jπϕ

α
.

It can be easily verified that all eigenvalues, except λ0 = 0, are simple, i.e., (up to
a scalar factor) there exists only one eigenfunction to every of these eigenvalues,
while generalized eigenfunctions do not exist. The set of the eigenfunctions and
generalized eigenfunctions corresponding to the eigenvalue λ0 = 0 consists of the
constant functions u0 = c0, u1 = c1.

Let a(·, ·, λ) be the sesquilinear form (2.1.7) on W 1
2 ((0, α))×W 1

2 ((0, α)). Then
the Neumann problem (2.1.8), (2.1.9) can be understood in the sense of the integral
identity

a(u, v; λ) = 0 for all v ∈ W 1
2 ((0, α)),

The form a(·, ·, λ) generates a continuous operator W 1
2 ((0, α)) → W 1

2 ((0, α))∗ which
quadratically depends on the parameter λ. This operator is an extension of the
above considered operator A(λ). It can be easily shown that the pencil defined
by means of the form a has the same eigenvalues, eigenfunctions, and generalized
eigenfunctions as A.

Both for the Dirichlet and the Neumann problem the quadratic form a(u, u; λ)
is nonnegative for Re λ = 0. The line Re λ = 0 is free of eigenvalues in the case of
the Dirichlet problem, while it contains the eigenvalue λ = 0 of the pencil generated
by the Neumann problem. The widest strip in the complex plane which contains
the line Re λ = 0 and which is free of eigenvalues outside this line is the strip
|Re λ| < π/α.

2.1.3. The mixed problem. Now we are interested in solutions of the bound-
ary value problem

−∆U = 0 in K, U(r, 0) = ∂ϕU(r, α) = 0

which are positively homogeneous of degree λ. This problem is connected with the
parameter-depending boundary value problem

−u′′(ϕ)− λ2u(ϕ) = 0, 0 < ϕ < α,(2.1.10)
u(0) = 0, u′(α) = 0.(2.1.11)
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The spectrum of the operator pencil corresponding to the problem (2.1.10), (2.1.11)
consists of the eigenvalues λ±j = ±j π

2α , j = 1, 2, . . . . Here

v±j(ϕ) = sin
jπϕ

2α

are the eigenfunctions corresponding to λ±j . Generalized eigenfunctions do not
exist.

Note that the strip |Re λ| < π
2α does not contain eigenvalues.

2.1.4. The problem with oblique derivative. Let K denote the angle

{(x1, x2) ∈ R2 : 0 < r < ∞, |ϕ| < α/2},
where α ∈ (0, 2π]. We consider the boundary value problem

−∆U = 0 in K,(2.1.12)
a± ∂τ±U + b± ∂ν±U = 0 for ϕ = ±α/2.(2.1.13)

Here a±, b± are real numbers, b± > 0, τ± are the directions of the rays ϕ = ±α/2,
and ν± are the exterior normals to the sides ϕ = ±α/2 of the angle K. In polar
coordinates the boundary conditions (2.1.13) have the form

(a± ∂rU ± b±r−1∂ϕU)
∣∣∣
ϕ=±α/2

= 0.

Let A(λ) be the operator

W 2
2 (Ω) 3 u → {−(∂2

ϕ + λ2)u , (±b±∂ϕu + λa±u)|ϕ=±α/2} ∈ L2(Ω)× C2,

where Ω denotes the interval (−α/2,+α/2). Then the function U = rλu(ϕ) is a
solution of problem (2.1.12), (2.1.13) if and only if λ is an eigenvalue of the pencil
A and u is an eigenfunction corresponding to this eigenvalue, i.e., u is a nontrivial
solution of the equation A(λ)u = 0. Furthermore, the function

U = rλ
s∑

k=0

1
k!

(log r)kus−k(ϕ)

with u0 6= 0 is a solution of (2.1.12), (2.1.13) if and only if the functions u0, u1, . . . , us

form a Jordan chain of the pencil A corresponding to the eigenvalue λ, i.e., if

A(λ)u0 = 0,(2.1.14)
A(λ)u1 = −A′(λ) u0,(2.1.15)

A(λ)uk = −A′(λ) uk−1 − 1
2

A′′(λ)uk−2 , k = 2, . . . , s.(2.1.16)

Here A′(λ)u = {−2λu , a±u|ϕ=±α/2} and A′′(λ) u = {−2u, 0, 0}.
It can be directly verified that the set of the eigenvalues of the pencil A consists

of the numbers λ∗ = 0 and

λ±j = (k+ + k− ± jπ)/α, j = 0, 1, 2, . . . ,

where k± = arctan (a±/b±). The eigenfunctions corresponding to the eigenvalues
λ±j are

v±j(ϕ) = cos
(
(k+ + k− + jπ)ϕ/α + (k+ + k− − jπ)/2

)
.

Generalized eigenfunctions corresponding to these eigenvalues do not exist.
The eigenvalue λ∗ = 0 has the eigenfunction u0 = 1. Equation (2.1.15) with

λ = 0, u0 = 1 is solvable if and only if a+b− + a−b+ = 0. In this case there
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is the generalized eigenfunction u1 = a+ϕ/b+ which is uniquely determined up to
multiples of the eigenfunction u0 = 1. Other generalized eigenfunctions do not exist.

Finally, let us mention that the strip determined by the inequalities

(k+ + k−)/α > Re λ > (k+ + k− − π)/α if a+b− + a−b+ > 0,
(k+ + k− + π)/α > Reλ > (k+ + k−)/α if a+b− + a−b+ < 0,
|Re λ| < π/α if a+b− + a−b+ = 0

contains only the eigenvalue λ∗ = 0.

2.2. The Dirichlet problem for the Laplace operator in a cone

2.2.1. The operator pencil generated by the Dirichlet problem. Let
Ω be an open subset of the unit sphere Sn−1, n ≥ 3, with the boundary ∂Ω.
Furthermore, let K be the cone

{
x = (x1, . . . , xn) ∈ Rn : r > 0, ω ∈ Ω

}
,

where r = |x| and ω = x/|x|. We are interested in solutions of the Dirichlet problem

(2.2.1) −∆U = 0 in K, U = 0 on ∂K\{0}
which have the form

(2.2.2) U(x) = rλ u(ω),

where λ is a complex number. If K = Rn\{0}, i.e., Ω = Sn−1, then (2.2.1) is
considered without the Dirichlet boundary condition.

It is useful to write the Laplace operator in spherical coordinates r, θ1, . . . , θn−1

which are connected with the Cartesian coordinates by the following formulas:

x1 = r cos θ1

x2 = r sin θ1 cos θ2 ,
...

xn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1 ,
xn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1 ,

θ1, . . . , θn−2 ∈ [0, π], θn−1 ∈ [0, 2π]. Then we have

(2.2.3) ∆ = ∂2/∂r2 + (n− 1) r−1 ∂/∂r + r−2δ,

where δ is the so-called Beltrami operator:

(2.2.4) δ =
n−1∑

j=1

1
qj(sin θj)n−j−1

∂

∂θj

(
(sin θj)n−j−1 ∂

∂θj

)
,

(2.2.5) q1 = 1, qj = (sin θ1 sin θ2 · · · sin θj−1)2 for j = 2, . . . , n− 1

(see, e.g., Mikhlin’s book [201, Ch.12,§2]). By means of (2.2.3), it can be easily
shown that U is a solution of (2.2.1) if and only if the function r2−n U(x/r2) is
a solution of (2.2.1). The transformation U(x) → r2−n U(x/r2) is called Kelvin
transformation.

Inserting (2.2.2) into (2.2.1), we get

(2.2.6) −δu− λ(λ + n− 2)u = 0 in Ω, u = 0 on ∂Ω.
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We introduce the norm

(2.2.7) ‖u‖ ◦
W1

2(Ω)
=

( ∫

Ω

n−1∑

j=1

1
qj

∣∣∣ ∂u

∂θj

∣∣∣
2

dω
)1/2

,

where
dω = sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 dθ1 · · · dθn−1

denotes the measure on Ω. It can be easily seen that

−
∫

Ω

δu · u dω = ‖u‖2◦
W1

2(Ω)

for all u ∈ C∞0 (Ω). Let W 1
2 (Ω) be the Sobolev space with the norm

‖u‖W 1
2 (Ω) =

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1
2(Ω)

)1/2

and let
◦

W1
2(Ω) be the closure of the set C∞0 (Ω) of all infinitely differentiable func-

tions with support in Ω with respect to the norm (2.2.7). The space W−1
2 (Ω) is

defined as the dual space of
◦

W1
2(Ω) with respect to the inner product in L2(Ω).

We denote the operator

−δ − λ(λ + n− 2) :
◦

W
1
2(Ω) → W−1

2 (Ω)

of problem (2.2.6) by A(λ). Here δ is understood as Friedrichs’ extension of the
differential operator (2.2.4) given on C∞0 (Ω). The operator −δ is selfadjoint, non-
negative and has a discrete spectrum. It is evident that λ is an eigenvalue of the
operator pencil A if and only if λ(λ + n− 2) is an eigenvalue of the operator −δ.

Let {Λj}j≥1 be the nondecreasing sequence of the eigenvalues of the operator
−δ counted with their multiplicities. Furthermore, let {ϕj}j≥1 be an orthonormal
(in L2(Ω)) sequence of eigenfunctions corresponding to the eigenvalues Λj . Then

(2.2.8) λ±j = 1− n/2 ±
√

(1− n/2)2 + Λj , j = 1, 2, . . . ,

are the eigenvalues of the pencil A and v±j = ϕj are the corresponding eigenfunc-
tions. Since Λj ≥ 0, we have λj ≥ 0 and λ−j ≤ 2−n for j = 1, 2, . . .. In particular,
the strip

|Re λ− 1 + n/2| <
√

(1− n/2)2 + Λ1

does not contain eigenvalues.
Equation (2.1.15) for the first generalized eigenfunction has the form

(2.2.9) A(λ±j)u = −(2λ±j + n− 2) v±j .

From (2.2.8) it follows that λ±j 6= 1− n/2. Hence the right-hand side of (2.2.9) is
not orthogonal to the function v±j in L2(Ω) and equation (2.2.9) has no solutions.
Consequently, the pencil A has no generalized eigenfunctions. From this it follows
that there are no solutions of problem (2.2.1) which have the form

(2.2.10) U(x) = rλ
s∑

k=0

1
k!

(log r)kus−k(ω),

where uk ∈
◦

W1
2(Ω) for k = 0, 1, . . . , s, s ≥ 1, u0 6= 0.

Using the positivity of Green’s function for the Beltrami operator and the
classical Jentzsch theorem on integral operators with a positive kernel (see, e.g.,
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the books of Krasnosel′skĭı [146, Ch.2] and Zeidler [274, §7.8]), we obtain the
following result.

Theorem 2.2.1. The eigenvalue Λ1 is simple and the corresponding eigenfunc-
tion is positive in Ω.

2.2.2. The cases of the space and the half-space. The following theorem
allows one to obtain a complete description of the spectrum of the pencil A in the
cases K = Rn\{0} and K = Rn

+ = {(x1, . . . , xn) ∈ Rn : xn > 0}.
Theorem 2.2.2. 1) Let K = Rn\{0}. Then all solution to problem (2.2.1) of

the form (2.2.2), where λ ≥ 0, are homogeneous polynomials.
2) If K = Rn

+, then all solutions to the Dirichlet problem (2.2.1) of the form
(2.2.2) with λ ≥ 0 have the representation U(x) = xnp(x), where p is a homogeneous
polynomial.

Proof: 1) Since U is a harmonic function in Rn\{0}, it is smooth outside the
origin. Using the mean value theorem, we conclude from the local boundedness of
the solution that U is smooth everywhere. From the positive homogeneity of U it
follows that U is a harmonic homogeneous polynomial.

2) Using classical regularity assertions for solutions of elliptic boundary value
problems, we obtain U ∈ C∞(Rn

+). From this it follows again that U is a harmonic
homogeneous polynomial. By the Dirichlet boundary condition, this polynomial
has the form xnp(x). The theorem is proved.

Corollary 2.2.1. 1) Let K = Rn\{0}. Then the spectrum of the pencil A
consists of the numbers λj = j − 1 and λ−j = 3 − n − j, j = 1, 2, . . .. The
eigenfunctions corresponding to the eigenvalues λ±j are the restrictions of harmonic
homogeneous polynomials of degree j − 1 to the sphere Sn−1.

2) In the case K = Rn
+ the spectrum of the pencil A consists of the numbers

λj = j and λ−j = 2 − n − j, j = 1, 2, . . .. The eigenfunctions corresponding to
λ±j are the restrictions of harmonic functions of the form xnp(x), where p is a
homogeneous polynomial of degree j − 1.

As a consequence of the last result, we obtain that the eigenvalues of the oper-
ator −δ are

Λj = (j − 1) (j + n− 3), j = 1, 2, . . . ,

if Ω coincides with the sphere Sn−1. If Ω is the half-sphere Sn−1
+ = Sn−1 ∩ Rn

+,
then the spectrum of −δ consists of the eigenvalues

Λj = j(j + n− 2), j = 1, 2, . . . .

2.2.3. Monotonicity of the eigenvalues. Now we study the dependence of
the eigenvalues Λj on the domain Ω. The proofs of the following two theorems are
based on a variational principle for the eigenvalues Λj(Ω) (see, e.g., Courant and
Hilbert’s book [32]):

(2.2.11) Λj(Ω) = max
{L}

min
u∈L\{0}

− ∫
Ω

δu · u dω∫
Ω
|u|2dω

,

where the maximum is taken over all subspaces L ⊂ ◦
W 1

2(Ω) with codimension
≥ j − 1.

For the formulation and the proof of the following theorem we need the notion
of the harmonic capacity and some elementary results connected with this notion
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which can be found in the book of Landkof [149]. Here the capacity of a closed set
K ⊂ S2 is defined as

(2.2.12) cap (K) = inf
{
‖u‖2W 1

2 (S2) : u ∈ C∞(S2), u ≥ 1 on K
}

.

The reader who is not familiar with the theory of capacity can skip the following
theorem without loss of understanding for the further results.

Theorem 2.2.3. Let K be contained in the open connected set Ω of the sphere
Sn−1. Then Λ1(Ω\K) > Λ1(Ω) if and only if K has positive capacity.

Proof: If the capacity of K is equal to zero, then
◦

W 1
2(Ω\K) =

◦
W 1

2(Ω) (see
Maz′ya [164, Ch.9]). Hence the equality Λ1(Ω\K) = Λ1(Ω) follows from the vari-
ational principle (2.2.11).

We assume now that K has positive capacity. It suffices to show that the eigen-
function of −δ corresponding to the eigenvalue Λ1(Ω) does not belong to the space
◦

W1
2(Ω\K). Indeed, in the opposite case this function vanishes on the set K except

for a subset of zero capacity. This contradicts Theorem 2.2.1.

Since the eigenfunctions ϕj , j > 1, have zeros in the interior of Ω, the assertion
of Theorem 2.2.3 is not true, in general, for the eigenvalues Λ2,Λ3, . . . . However,
the following statement holds for all eigenvalues Λj .

Theorem 2.2.4. If Ω1 ⊂ Ω2, then Λj(Ω1) ≥ Λj(Ω2). Moreover, Λj(Ω1) >

Λj(Ω2) if Ω1 is a subset of the open connected set Ω2 and Ω2\Ω1 6= ∅.

Proof: If Ω1 ⊂ Ω2, then
◦

W 1
2(Ω1) can be considered as a subspace of

◦
W 1

2(Ω2).
Using the variational principle (2.2.11), we conclude that Λj(Ω1) ≥ Λj(Ω2).

Now let Ω2 be a connected open set and Ω2\Ω1 6= ∅. Suppose that for a certain
index j the eigenvalue Λj(Ω1) is equal to Λj(Ω2). Furthermore, let ϕ1, . . . , ϕj be
the eigenfunctions of the Dirichlet problem for the operator −δ in the domain Ω1

corresponding to the eigenvalues Λ1(Ω1), . . . , Λj(Ω1). We introduce the subspaces

L
(k)
j

def
=

{
u ∈ ◦

W
1
2(Ωk) :

∫

Ωk

u · ϕs dω = 0 for s = 1, . . . , j − 1
}

, k = 1, 2.

Then

Λj(Ω2) = Λj(Ω1) = min
L

(1)
j \{0}

− ∫
Ω1

δu · u dω∫
Ω1
|u|2 dω

= min
L

(2)
j \{0}

− ∫
Ω2

δu · u dω∫
Ω2
|u|2 dω

,

where both minima are realized for the function u = ϕj . From this it follows that

−
∫

Ω2

δϕj · u dω − Λj(Ω2)
∫

Ω2

ϕj u dω = 0

for all u ∈ L
(2)
j . Hence

−δϕj − Λj(Ω2)ϕj =
j−1∑

k=1

ck ϕk in Ω2

with certain complex numbers c1, . . . , cj−1. Since −δϕj = Λj(Ω1)ϕj in Ω2 and the
functions ϕ1, . . . , ϕj−1 are linearly independent, we get ck = 0 for k = 1, . . . , j − 1.
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Consequently, −δ ϕj = Λj(Ω2)ϕj on Ω2. From this we conclude that ϕj is real-
analytic in Ω2. On the other hand, the function ϕj vanishes on the open set Ω2\Ω1.
Therefore, ϕj = 0 in Ω2 which contradicts our assumption on ϕj . The theorem is
proved.

Without proof we give a known isoperimetric property of the eigenvalue Λ1(Ω)
which was proved by Sperner [248], Friedland and Hayman [63].

Theorem 2.2.5. Among all sets Ω with fixed (n− 1)-dimensional measure, the
geodesic ball on Sn−1 has the smallest eigenvalue Λ1(Ω) of the operator −δ. This
ball is the only extremal domain.

One can easily prove the following assertion.

Lemma 2.2.1. Let Bα be the geodesic ball {ω ∈ Sn−1 : 0 ≤ θ1 < α} and let λ1 =
λ1(α) be the smallest positive solution of the equation C

(n−2)/2
λ (cosα) = 0, where

C
(n−2)/2
λ (·) denotes the Gegenbauer function (see, e.g., Magnus, Oberhettinger and

Soni [158, §5.3]). Then

Λ1(Bα) = λ1(α) (λ1(α) + n− 2)

is the first eigenvalue of the operator −δ (with the Dirichlet boundary conditions)
in Bα.

Proof: It suffices to show that there exists a positive solution u = u(θ1) of the
Dirichlet problem for the equation −δu = Λ1(Bα)u in Bα or, what is the same, of
the problem

u′′(θ1) +
(n− 2) cos θ1

sin θ1
u′(θ1) + λ1(λ1 + n− 2)u(θ1) = 0 for 0 ≤ θ1 < α,

u(α) = 0.

The substitution cos θ1 = t leads to the problem

v′′(t) +
(n− 1)t
t2 − 1

v′(t)− λ1(λ1 + n− 2)
t2 − 1

v(t) = 0, v(cosα) = 0

for the function v(t) = u(arccos t). This problem has the positive solution v(t) =
C

(n−2)/2
λ1

(t). The lemma is proved.

Theorem 2.2.5 and Lemma 2.2.1 yield the following sharp lower estimate for
the eigenvalue λ1 = λ1(Ω) of the pencil A in terms of the measure of Ω. Let α be
given by the equality

mesn−1Ω = mesn−2S
n−2

α∫

0

(sin θ)n−2 dθ

and let λ1 = λ1(α) be the smallest positive root of the equation C
(n−2)/2
λ (cos α) = 0.

Then λ1(Ω) ≥ λ1(Bα) = λ1(α).

2.2.4. On the multiplicity of eigenvalues. We close this section with an
upper estimate for the multiplicity of the eigenvalue Λj . For this we need the
following lemma which was proved by Nadirashvili [202].
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Lemma 2.2.2. Let G be a bounded domain in R2 with smooth boundary and let

L =
2∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)
+ a(x) + λ b(x)

be a uniformly elliptic operator with coefficients a, b, ai,j ∈ C∞(G), b > 0, such that
the matrix

(
ai,j

)
1≤i,j≤2

is symmetric and positive definite in G. We consider the
spectral problem

Lu = 0 in G, Bu = 0 on ∂G,

where B is the operator of the Dirichlet or Neumann boundary condition. By
{µj}j≥1 we denote the sequence of the eigenvalues to this problem. Then the mul-
tiplicity of µj does not exceed 2j − 1.

Theorem 2.2.6. If Ω is a domain on the sphere S2 with smooth boundary, then
the multiplicity of the eigenvalue Λj(Ω) does not exceed 2j − 1.

Proof: If Ω = S2, then, by Corollary 2.2.1, we have Λj = j(j − 1). The
eigenfunctions corresponding to these eigenvalues are restrictions of harmonic ho-
mogeneous polynomials of degree j − 1 to the sphere S2. Since there are exactly
2j − 1 linearly independent polynomials of that kind, the theorem is true in the
case Ω = S2.

Now let Ω 6= S2. Then, without loss of generality, we may assume that the
south pole P of the sphere is a point of the set S2\Ω. We introduce the coordinates
y = (y1, y2) on S2\P, where

(2.2.13) y1 = tan(θ1/2) cos θ2 , y2 = tan(θ1/2) sin θ2 .

The coordinate change ω → y maps the domain Ω onto a bounded subdomain of
the plane with smooth boundary. The spectral problem associated with (2.2.1) in
the coordinates y has the form

∆yv(y) + 4λ(1 + |y|2)−2 v(y) = 0 in G, v(y) = 0 on ∂G.

It remains to apply Lemma 2.2.2.

2.3. The Neumann problem for the Laplace operator in a cone

2.3.1. The operator pencil generated by the Neumann problem. As
in the preceding section, let K be the cone {x ∈ Rn : x/|x| ∈ Ω}, where Ω is an
open and connected set on the unit sphere Sn−1, n ≥ 3. We suppose in this section
that the operator of the imbedding W 1

2 (Ω) ⊂ L2(Ω) is compact. Necessary and
sufficient and also more easy verifiable sufficient conditions for the compactness of
this imbedding are given in the book of Maz′ya [164]. For example, the condition
Ω ∈ C (i.e., the boundary of the domain can be locally given in a system of Cartesian
coordinates by means of continuous functions) is sufficient for the compactness of
the imbedding W 1

2 (Ω) ⊂ L2(Ω) (see Courant and Hilbert’s book [32] or [164]).
Let ν denote the exterior normal to ∂K\{0}. We consider the Neumann problem

(2.3.1) −∆U = 0 in K,
∂U

∂ν
= 0 on ∂K\{0}

which can be understood in the sense of the integral identity

(2.3.2)
∫

K

∇U · ∇V dx = 0,
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where ηU ∈ W 1
2 (K) for all η ∈ C∞0 (K\{0}), and V is an arbitrary function in

W 1
2 (K) with compact support equal to zero in a neighborhood of the origin. Here

∇U denotes the gradient of U . As before, we seek solutions which are positively
homogeneous of degree λ, i.e., which have the form U(x) = rλ u(ω). If we insert
V (r, ω) = ζ(r) v(ω) into (2.3.2), where ζ ∈ C∞0 ((0,∞)), v ∈ W 1

2 (Ω), we obtain the
integral identity

(2.3.3)
∫

Ω

∇ωu · ∇ωv dω − λ(λ + n− 2)
∫

Ω

u · v dω = 0.

Here

∇ωu · ∇ωv =
n−1∑

j=1

1
qj

∂θj
u · ∂θj

v

and the quantities qj are given by (2.2.5). The sesquilinear form

W 1
2 (Ω)×W 1

2 (Ω) 3 (u, v) →
∫

Ω

∇ωu · ∇ωv dω

generates a selfadjoint operator A : W 1
2 (Ω) → W 1

2 (Ω)∗. Obviously, the solution u
of (2.3.3) satisfies the equation A(λ)u = 0, where A(λ) = A− λ(λ + n− 2). By the
compactness of the imbedding W 1

2 (Ω) ⊂ L2(Ω), the spectrum of A is discrete. We
denote by {Nj}j≥1 the nondecreasing sequence of eigenvalues (which are counted
with their multiplicities) of A. Let {ψj}j≥1 be an orthonormal in L2(Ω) sequence
of eigenfunctions to Nj . Then

(2.3.4) λ±j = 1− n/2 ±
√

(1− n/2)2 + Nj , j = ±1,±2, . . . ,

are the eigenvalues of the operator pencil A with the corresponding eigenfunctions
v±j = ψj .

It can be easily seen that the operator A(λ) = A− λ(λ + n− 2) is positive for
λ on the line Re λ = 1− n/2. The widest strip containing this line which is free of
eigenvalues of the pencil A is the strip 2−n < Re λ < 0. The boundary of this strip
contains the simple eigenvalues λ1 = 0 and λ−1 = 2 − n with the corresponding
eigenfunctions v±1 = const.

Note that the equation (2.2.9) with A(λ) = A− λ(λ + n− 2) has no solutions.
Hence the eigenfunctions v±j do not have generalized eigenfunctions. From this it
follows that there are no solutions of the Neumann problem (2.3.1) which have the
form (2.2.10) with uk ∈ W 1

2 (Ω), s ≥ 1, u0 6= 0.
Repeating the proof of Theorem 2.2.6, we arrive at the following result.

Theorem 2.3.1. If Ω is a domain on the sphere S2 with smooth boundary, then
the multiplicity of the eigenvalue Nj(Ω) does not exceed 2j − 1.

2.3.2. On the monotonicity of the eigenvalues. In general, the eigen-
values λj are not monotone functions of the domain Ω. To see this it suffices to
observe the dependence of the eigenvalue λ2 on the angle α ∈ [π/2, π] for the circle
Ω = {ω ∈ S2, 0 ≤ θ1 < α, 0 ≤ θ2 < 2π}. In this case the eigenvalues λ2 = λ3 are
the smallest positive solutions of the equation

∂θ P 1
λ(cos θ)

∣∣∣
θ=α

= 0.
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The corresponding eigenfunctions are P 1
λ(cos θ1) e±iθ2 , where λ = λ2 = λ3 and Pm

λ

denotes the associated Legendre function of first kind.
The graph of the function λ = λ(α) is represented in the figure below.

0
0.2
0.4
0.6
0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0

λ

x

Figure 2. Dependence of the eigenvalue λ = λ2 = λ3 on x =
cos α, α ∈ [π/2, π]

However, in a particular but important case (a domain with a crack) the mono-
tonicity of the functions λj = λj(Ω) holds.

Theorem 2.3.2. Let Ω1 ⊂ Ω2 and mesn−1(Ω2\Ω1) = 0. Then λj(Ω1) ≤ λj(Ω2)
for j = 1, 2, . . . .

Proof: It suffices to show the inequality Nj(Ω1) ≤ Nj(Ω2), j = 1, 2, . . . . Let
ψj ∈ W 1

2 (Ω1) be an eigenfunction corresponding to the eigenvalue λj for the domain
Ω1. We introduce the spaces

Hj(Ωi)
def
=

{
h ∈ W 1

2 (Ωi) :
∫

Ωi

hψk dω = 0 for k = 1, . . . , j − 1
}

, i = 1, 2.

Then, by the variational principle, we have

(2.3.5) Nj(Ω1) = inf
h∈Hj(Ω1)

∫

Ω1

|∇ωh|2 dω ·
(∫

Ω1

|h|2 dω
)−1

.

Clearly, for h ∈ Hj(Ω2) we have h|Ω1 ∈ Hj(Ω1),∫

Ω2

|∇ωh|2 dω =
∫

Ω1

∣∣∣∇ωh|Ω1

∣∣∣
2

dω and
∫

Ω2

|h|2 dω =
∫

Ω1

∣∣∣h|Ω1

∣∣∣
2

dω.

Hence the right-hand side of (2.3.5) does not exceed the value

inf
h∈Hj(Ω2)

∫

Ω2

|∇ωh|2 dω ·
(∫

Ω2

|h|2 dω
)−1

which is not greater than

max
{L}

inf
h∈L

∫

Ω2

|∇ωh|2 dω ·
( ∫

Ω2

|h|2 dω
)−1

= Nj(Ω2),
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where the maximum is taken over all subspace L ⊂ W 1
2 (Ω2) of codimension j − 1.

This proves the theorem.

It is worth mentioning that, under the conditions of Theorem 2.3.2, the eigen-
values of the operator pencil corresponding to the Neumann problem do not de-
crease with growing Ω, whereas in the case of the Dirichlet problem they do not
increase. Furthermore, there is the following difference between the properties of
the eigenvalues of the operator pencils corresponding to the Dirichlet and Neumann
problems. If {Ωk}k≥1 is an increasing sequence of subdomains Ωk ⊂ Ω exhausting
the domain Ω, then Λj(Ωk) ↓ Λj(Ω). The following example shows that all eigen-
values Nj(Ωk) may converge to zero for k →∞, whereas N2(Ω) > 0.

Example. Let G be the square (0, 1)× (0, 1) and let Rk be the rectangle (0, 1)×
(2−k, 1). For every integer k ≥ 1 we consider the rectangles

Pk,l =
(
(l − 1/2)/k , l/k

)× (
3 · 2−k−2, 7 · 2−k−3

)
, l = 1, . . . , k,

and the squares

Qk,l =
(
l/k − 2−k−3, l/k

)× [7 · 2−k−3, 2−k] , l = 1, . . . , k.

The union of the rectangles Rk, Pk,l and the squares Qk,l, l = 1, . . . , k, is denoted
by Gk (see Figure 3). Obviously, {Gk}k≥1 is an increasing and exhausting sequence
for the domain G.

6

-

G1

G2\G1

y11

y2

1

2−1

2−2

Figure 3

We introduce the functions

uk,l =





1 in Pk,l,
2k+3(2−k − y2) in Qk,l,

0 elsewhere.
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These functions belong to the Sobolev space W 1
2 (Gk) and the supports of the func-

tions uk,1, . . . , uk,k do not intersect. Moreover,
∫

Gk

|∇uk,l|2 dy ·
( ∫

Gk

|uk,l|2 dy
)−1

<
mes2Qk,l

mes2Pk,l
= k · 2−k−2.

Applying Theorem 1.3.3 with

a(u, u;λ) =
∫

Gk

|∇u|2 dx− λ

∫

Gk

|u|2 dx,

α = −ε, where ε is an arbitrarily small positive number, β = k 2−k−2, H = L2(Gk),
H+ = W 1

2 (Gk), we obtain that the Laplace operator in the domain Gk with the
Neumann boundary condition has at least k eigenvalues in the interval [0, k ·2−k−2).
From this it follows that all eigenvalues of the Neumann problem for the Laplace
operator converge to zero. Obviously, this is also true for the eigenvalues Nj to the
Neumann problem for the equation

∆yv(y) + 4Nj(1 + |y|2)−2 v(y) = 0 in Gk .

Using the stereographic projection (i.e., the mapping ω → y defined in the proof of
Theorem 2.2.6), we obtain a sequence {Ωk}k≥1 such that Nj(Ωk) → 0 as k → ∞
and N2(Ω) > 0.

Finally, we formulate an isoperimetric property of the first nonzero eigenvalue
N2 which was proved by Ashbaugh and Benguria [8].

Theorem 2.3.3. If Ω is contained in a hemisphere, then

N2(Ω) ≤ N2(B),

where B is a geodesic ball in Sn−1 of the same measure as Ω.

Note that for the first eigenvalue of the Beltrami operator with Dirichlet bound-
ary condition the opposite inequality Λ1(Ω) ≥ Λ1(B) is valid (see Theorem 2.2.5).

2.4. The problem with oblique derivative

Now let Ω be a subdomain of the sphere Sn−1 with smooth boundary and let
K be the cone {x ∈ Rn : 0 < r < ∞, ω ∈ Ω}. We are interested in solutions

U(x) = rλ u(ω), u ∈ W 2
2 (Ω),

of the boundary value problem

(2.4.1) −∆U = 0 in K, BU = 0 on ∂K\{0},
where

BU = ∂ν U + a ∂rU +
1
r
QU.

Here ν denotes the exterior normal to ∂K\{0}, a is a smooth real-valued function
on ∂Ω, and Q is a differential operator of first order on ∂Ω with smooth real-valued
coefficients such that Q 1 = 0. Using the representation (2.2.3) for the Laplace
operator, we get the problem A(λ)u = 0, where

A(λ)u =
(− δu− λ(λ + n− 2)u , (∂νu + Qu + λau)|∂Ω

)
.



50 2. ANGLE AND CONIC SINGULARITIES OF HARMONIC FUNCTIONS

Here the operator A(λ) is considered as a mapping from W 2
2 (Ω) into L2(Ω) ×

W
1/2
2 (∂Ω). From the ellipticity of problem (2.4.1) it follows, by a result of Agra-

novich and Vishik [4] (see also [136, Th.3.6.1,Le.6.1.5]) that the operator A(λ) is
Fredholm for all λ ∈ C and invertible for large λ situated near the imaginary axis.
Consequently, the spectrum of the operator pencil A consists of isolated eigenvalues
with finite algebraic multiplicities (see Theorem 1.1.1). These eigenvalues, with the
possible exception of finitely many, lie outside a double sector which contains the
imaginary axis.

Theorem 2.4.1. The line Re λ = 0 contains only the eigenvalue λ = 0 with
the unique eigenfunction u = const.

Proof: Let λ = iβ (β ∈ R) be an eigenvalue of A and let u = ϕ + iψ, where ϕ,
ψ are real-valued functions, be an eigenfunction corresponding to this eigenvalue.
Then the function

U(x) = Re riβ u(ω) = cos(β log r)ϕ(ω)− sin(β log r)ψ(ω)

is a solution of problem (2.4.1). If β 6= 0, then the coordinate change r = et

transforms U into the 2π/β-periodic (with respect to the variable t) function

cos(βt)ϕ(ω)− sin(βt) ψ(ω).

Hence, both in the cases β = 0 and β 6= 0, the function U attains its maximum
at a certain point x ∈ K\{0}. By the maximum principle and the Giraud theorem
on the sign of nontangential derivatives of harmonic functions (see, e.g., Protter
and Weinberger [230, Ch.2,Th.7]), we get U = const. Consequently, β = 0 and
u = ϕ = const. The theorem is proved.

In order to find a necessary and sufficient condition for the simplicity of the
eigenvalue λ = 0, we need the operator

A+(0) = (−δ , ∂ν + Q+),

where Q+ is the formally adjoint operator to Q on ∂Ω. By Theorem 2.4.1, the
kernel of A+(0) is one-dimensional. It is determined by a real-valued function v.

Theorem 2.4.2. The eigenvalue λ = 0 is simple if and only if

(2.4.2) (n− 2)
∫

Ω

v dω 6=
∫

∂Ω

a v dσ

for v ∈ kerA+(0).

Proof: By Theorem 2.4.1, the function u0 = 1 is the eigenfunction correspond-
ing to the eigenvalue λ = 0. The boundary value problem for the generalized
eigenfunction u1 has the form

−δu1 = n− 2 in Ω, ∂νu1 + Qu1 = −a on ∂Ω.

Therefore,

(n− 2)
∫

Ω

v dω = −
∫

Ω

v · δu1 dω =
∫

∂Ω

(∂νv · u1 − v · ∂νu1) dω.



2.4. THE PROBLEM WITH OBLIQUE DERIVATIVE 51

By the boundary conditions on the functions v and u1, the last integral is equal to
∫

∂Ω

(
v(Qu1 + a)−Q+v · u1

)
dσ =

∫

∂Ω

av dσ.

Hence the condition (2.4.2) is equivalent to the nonexistence of a generalized eigen-
function.

We close this section with the following property of a nontrivial function v ∈
kerA+(0).

Theorem 2.4.3. The function v does not vanish in Ω.

Proof: We assume that the function v takes values with different signs and
introduce the sets

Ωε = {ω ∈ Ω : v(ω) > ε} , (∂Ω)ε = {ω ∈ ∂Ω : v(ω) > ε},
and

Γε = {ω ∈ Ω : v(ω) = ε},
where ε > 0. Furthermore, for an arbitrary function u in Ω, we set u+(x) = u(x) if
u(x) > 0, u+(x) = 0 if u(x) < 0.

Since v is a smooth function, the manifold Γε is smooth for almost all ε. We
denote the exterior (with respect to Ωε) normal to the manifold Γε by νε. Obviously,
∂v/∂νε ≤ 0 on Γε and

0 =
∫

Ωε

δv dω =
∫

Γε

∂νεv dσ +
∫

(∂Ω)ε

∂νv dσ =
∫

Γε

∂νεv dσ −
∫

(∂Ω)ε

Q+v dσ

for almost all ε. Here the last integral is equal to
∫

(∂Ω)ε

Q+(v − ε) dσ + ε

∫

(∂Ω)ε

Q+ 1 dσ =
∫

∂Ω

Q+
(
(v − ε)+

)
dσ + ε

∫

(∂Ω)ε

Q+ 1 dσ.

Since Q1 = 0 on ∂Ω, the first integral on the right-hand side is equal to zero.
Consequently, ∫

Γε

∂νεv dσ = O(ε) as ε → 0.

Let ϕ be an arbitrary function from C∞0 (Ω). Since ∂v/∂νε ≤ 0 on Γε, we get
∫

Γε

ϕ∂νεv dσ = O(ε) as ε → 0.

This implies
∫

Ω

∇ωv+ · ∇ωϕdω = lim
ε→0

∫

Ωε

∇ωv · ∇ωϕdω = lim
ε→0

∫

Γε

ϕ · ∂νεv dσ = 0.

Consequently, δv+ = 0 in Ω. Since v+ = 0 on the nonempty open set {ω ∈ Ω :
v(ω) < 0}, we conclude that v ≡ 0. This proves the theorem.
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2.5. Further results

Additional information about the eigenvalues λj(Ω) can be obtained by means
of asymptotic methods. Here we give asymptotic formulas for the eigenvalues in
the cases when Ω is the unit sphere with a small hole and when Ω is a small domain
on the sphere.

2.5.1. Asymptotic formulas for the eigenvalues of the pencil gen-
erated by the Dirichlet problem. Let λj = λj(Ω) be the eigenvalues of the
pencil A introduced in Section 2.2. First we consider the case when Ω is the
sphere with a small hole. As before, let ω = x/|x| and r = |x|. Moreover, we set
x′ = (x1, . . . , xn−1) and ω′ = x′/r. Let G be a given bounded domain in Rn−1 and
let ε be a small positive parameter. We introduce the following subset of the unit
sphere Sn−1:

Ωε = {ω ∈ Sn−1 : ω′/ε ∈ G}.
Samarskĭı [232], Maz′ya, Nazarov and Plamenevskĭı [171] showed that in the case
n > 3 the asymptotic formula

λ1(Sn−1\Ωε) ∼ εn−3 (n− 3)mesn−2S
n−2

(n− 2)mesn−1Sn−1
cap G

is valid, where cap G is the classical Wiener capacity in Rn−1. Furthermore, by
[171], for n = 3 we have

(2.5.1) λ1(S2\Ωε) = h(| log ε|−1) + O(ε1−σ),

where σ is an arbitrary positive number and h is an analytic function in a neigh-
borhood of zero satisfying the condition h(0) = 0, h′(0) = 1/2.

For the Dirichlet problem in the small domain Ωε the main term in the asymp-
totics of Λj(Ωε) can be easily found by means of the perturbation theory. We
have

Λj(Ωε) =
µj(G)

ε2
+ O(1),

where µj(G) is the j-th eigenvalue of the Dirichlet problem for the Laplace operator
in the domain G. Consequently, the asymptotic formula

λj(Ωε) =

√
µj(G)
ε

+ O(1)

for the eigenvalues of the pencil A holds.

2.5.2. Asymptotic formulas for the eigenvalues of the pencil gener-
ated by the Neumann problem. Now let λ±j = λ±j(Ω) be the numbers (2.3.4),
where Nj are the eigenvalues of the operator −δ on Ω with the Neumann boundary
conditions.

1. We start with the case when Ω is the sphere with a small hole which was
considered by Maz′ya and Nazarov in [170]. Let G be a domain in the plane R2

with compact closure and smooth boundary. We introduce the domain

Gε = {y ∈ R2 : ε−1y ∈ G}
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depending on a small positive parameter ε. Here y = (y1, y2) are the coordinates
given by (2.2.13). Then the domain

Ωε = {ω ∈ S2 : tan(θ1/2) (cos θ2, sin θ2) ∈ Gε}
plays the role of a small hole on the sphere S2. In [170] explicit formulas for
λj(S2\Ωε), j = 2, 3, 4, as ε → 0 were found. These eigenvalues exhaust the spec-
trum in the interval (0, 1) and in a neighborhood of the point λ = 1. The interval
(0, 1) contains exactly two numbers λ2 and λ3, where

λj(S2\Ωε) = 1− π−1 µj ε2 + O(ε3 | log ε|) , j = 2, 3,

and µ2, µ3 are the eigenvalues of the positive definite matrix M = (mk,l)k,l=1,2

with the elements

mk,l = δk,l mes2G +
∫

R2\G

∇yWk(y) · ∇yWl(y) dy .

Here Wk are the harmonic functions in R2\G satisfying the boundary condition
∂Wk/∂νy = −∂yk/∂νy on ∂G. The eigenvalue λ4(S2\Ωε) which is greater than 1
has the asymptotics

λ4(S2\Ωε) = 1 + 4π−1 mes2Gε2 + O(ε3 | log ε|).
In particular, if G is the unit circle, then M = 2πI and, therefore, the formulas

λ2,3(S2\Ωε) ∼ 1− 2ε2 , λ4(S2\Ωε) ∼ 1 + 4ε2

are valid for a circled hole Ωε.

2. Now let the domain Ω be the complement in S2 to the segment

Eα = {ω ∈ S2 : θ1 = π/2 , 0 ≤ θ2 ≤ α}
of the equator, where α ∈ (0, 2π). We are interested in the eigenvalues lying in
the interval (0, 1). In [170, Le.2.1] it was shown that for small α exactly three
eigenvalues (counted with their multiplicities) are situated near the point λ = 1.
Two of them, λ3 and λ4, are equal to 1 and the eigenfunctions corresponding to these
eigenvalues are sin θ1 cos θ2 and sin θ1 sin θ2. For the eigenvalue λ2 the asymptotic
formulas

λ2(S2\Eα) =
1
2

+
1
π

cos
α

2
+

1
π2

cos2
α

2
+ (

1
π3

+
1
6π

) cos3
α

2
+ O(cos4

α

2
)

as α → π,

λ2(S2\Eα) = 1− 1
2
(sec

α

2
− 1) +

1
4
(sec

α

2
− 1)2 log(sec

α

2
− 1)

+
3
4
(1− log 2) (sec

α

2
− 1)2 + O

(
(sec

α

2
− 1)3 log(sec

α

2
− 1))2

)

as α → 0

were obtained by Brown and Stewartson [24]. The last formula yields

(2.5.2) λ2(S2\Eα) < 1 for all α ∈ (0, 2π).

We consider the spectral Neumann problem for the set S2\E, where E is the equa-
tor. Obviously, the eigenvalues λ1,2(S2\E) are equal to zero and the corresponding
eigenfunctions are 1 and sign (θ1−π/2). Furthermore, λj(S2\E) = 1 for j = 3, 4, 5, 6
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and the corresponding eigenfunctions are the functions sin θ1 cos θ2, sin θ1 sin θ2,
sin θ1 cos θ2 sign (θ1 − π/2), and sin θ1 sin θ2 sign (θ1 − π/2). Theorem 2.3.2 implies

(2.5.3) 1 = λ3(S2\E) ≤ λ3(S2\Eα) for α ∈ (0, 2π).

Since the set S2\Eα is connected, the eigenvalue λ1(S2\Eα) = 0 is simple. Hence
λ2(S2\Eα) > 0. From this and from the inequalities (2.5.2), (2.5.3) it follows that
λ2(S2\Eα) is the only eigenvalue in the interval (0, 1).

We derive the asymptotics of the function λ2(S2\Eα) for α → 2π. Let u(θ1, θ2)
be an eigenfunction to this eigenvalue. Then u(π−θ1, θ2) is also an eigenfunction to
this eigenvalue. Consequently, u(θ1, θ2) = u(π−θ1, θ2) or u(θ1, θ2) = −u(π−θ1, θ2).
In the first case we obtain ∂θ1u(θ1, θ2) = 0 for θ1 = π/2, θ2 ∈ [0, 2π), i.e., λ2(S2\Eα)
is an eigenvalue of the operator pencil to the Neumann problem for the half-sphere
S2

+ and u is an eigenfunction corresponding to this eigenvalue. Moreover,
∫

S2
+

u dω = 0.

This implies λ2(S2\Eα) = λj(S2
+) for a certain index j ≥ 2. Therefore, we get

the inequality λ2(S2\Eα) ≥ 1 which contradicts (2.5.2). Consequently, we have
u(θ1, θ2) = −u(π − θ1, θ2) and, in particular,

(2.5.4) u(π/2, θ2) = 0 for α < θ2 < 2π.

The function

v(θ1, θ2) =
{

u(θ1, θ2) for θ1 ∈ [0, π/2],
u(π − θ1, θ2) for θ1 ∈ [π/2, π]

satisfies the equation

−δv − λ2(λ2 + 1) v = 0 in S2\{ω ∈ S2 : α ≤ θ2 ≤ 2π, θ = π/2},
where λ2 = λ2(S2\Eα), and the boundary condition (2.5.4). Using the asymptotic
formula (2.5.1), we obtain

λ2(S2\Eα) ∼ 1
2 | log(2π − α)| as α → 2π.

3. Finally, we consider the eigenvalues λj for a small domain on the unit sphere.
Let G be a bounded domain in Rn−1 and Ωε = {ω ∈ Sn−1 : ω′/ε ∈ G}. Analogously
to the case of the Dirichlet problem, there is the asymptotic representation

λj(Ωε) =

√
µj(G)
ε

+ O(1) for j ≥ 2,

where µj(G) is the j-th eigenvalue of the Neumann problem for the Laplace operator
in the domain G.

2.6. Applications to boundary value problems for the Laplace equation

The results of this chapter lead to various assertions concerning regularity prop-
erties of solutions and solvability of boundary value problems for the Laplace equa-
tion in domains with singular boundary points, such as angular and conic vertices,
edges. We restrict ourselves to a few examples.
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2.6.1. The Dirichlet problem for the Laplace equation in plane do-
mains with angular points. Let G be a plane domain with d singular boundary
points x(1), . . . , x(d). We suppose that for each point x(τ), τ = 1, . . . , d, there
exists a neighborhood Uτ such that Uτ ∩ G is the intersection of a plane angle
Kτ = {x : (x − x(τ))/|x − x(τ)| ∈ Ωτ} with the unit disk centered at x(τ). The
opening of the interior angle at x(τ) is denoted by ατ .

Let F be an arbitrary function in L2(G) = V 0
2,0(G) Then, by the Riesz rep-

resentation theorem, there exists a unique variational solution U ∈ ◦
W 1

2(G) of the
Dirichlet problem

(2.6.1) −∆U = F in G, u = 0 on ∂G,

i.e., a function satisfying the equality∫

G

∇U · ∇V dx =
∫

G

F V dx for all V ∈ ◦
W

1
2(G).

Since
◦

W1
2(G) is continuously imbedded into V 1

2,0(G), it follows from Theorem 1.4.2
that this solution belongs to V 2

2,1(G) and satisfies the estimate

‖U‖V 2
2,1(G) ≤ c ‖F‖V 0

2,1(G) .

Applying Theorems 1.4.1 and 1.4.3 together with the results of Section 2.1, we
obtain

Theorem 2.6.1. The Dirichlet problem (2.6.1) is uniquely solvable in V l
p,~β

(G)

for all F ∈ V l−2

p,~β
(G), l ≥ 2, p ∈ (1,∞), ~β = (β1, . . . , βd) ∈ Rd, if and only if

|l − βτ − 2/p| < π/ατ for τ = 1, . . . , d.

If (l− βτ − 2/p)ατ/π is a nonzero integer for at least one τ , then the operator

(2.6.2) V l
p,β(G) 3 u → (−∆u, u|∂G\S

) ∈ V l−2
p,β (G)× V

l−1/2
p,β (∂G)

is not Fredholm. We assume that

(2.6.3) kτπ/ατ < l − βτ − 2/p < (kτ + 1)π/ατ for τ = 1, . . . , d,

where k1, . . . , kd are positive integers. One can deduce the following assertion from
Section 2.1.1.

Theorem 2.6.2. Let inequalities (2.6.3) be satisfied with certain positive in-
tegers kτ . Then there exist k = k1 + · · · + kd linearly independent and linear
continuous functionals Φj, j = 1, . . . , k, on V l−2

p,β (G) such that problem (2.6.1) is
solvable in V l

p,~β
(G) if and only if F ∈ V l−2

p,~β
(G) satisfies the conditions Φj(F ) = 0

for j = 1, . . . , k. Under these conditions, the solution is unique.

The functionals Φj can be explicitly described. Suppose, for simplicity, that
d = 1, the angular point x(1) lies in the origin, and G coincides with the angle
K = {(x1, x2) ∈ R2 : 0 < ϕ = arg (x1 + ix2) < α} in a neighborhood of x(1). Then
for every j = 1, 2, . . . there exists a harmonic function ζj in G which vanishes on
∂G\S and has the asymptotics

(2.6.4) ζj(x) = (jπ)−1/2 r−jπ/α sin
jπϕ

α
+ O(1)
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as r → 0. The functions ζ1, . . . , ζk belong to the kernel of the adjoint operator to
(2.6.2). Consequently, one can set

Φj(F ) =
∫

G

F (x) ζj(x) dx j = 1, . . . , k.

Analogous results are valid in the class of the weighted Hölder spaces N l,σ
β (G).

In particular, Theorem 1.4.5 leads to the following statement.

Theorem 2.6.3. Problem (2.6.1) is uniquely solvable in N l,σ
β (G) for every F ∈

N l−2,σ
β (G) if and only if |l + σ − βτ | < π/ατ for τ = 1, . . . , d.

We consider again the solution U ∈ ◦
W 1

2(G) of problem (2.6.1), where F ∈
W−1

2 (G)∩V l−2
p,β (G). Suppose that l−βτ −2/p ∈ (

kπ/ατ , (k+1)π/ατ

)
for a certain

τ ∈ {1, . . . , d} and for some integer k > 0. For simplicity, we assume that d = 1,
x(1) lies in the origin, and G coincides with the plane angle K = {(x1, x2) ∈ R2 :
0 < ϕ = arg (x1+ix2) < α} in a neighborhood of x(1). Then, according to Theorem

1.4.4, the solution U ∈ ◦
W1

2(G) admits the representation

U =
k∑

j=1

cj (jπ)−1/2 rjπ/α1 sin
jπϕ

α1
+ V,

where cj are constants and V ∈ V l
p,β(G). By [180, Th.9.1] (see also [174, Th.1.3.8]),

the coefficients cj are given by the formula

cj = −
∫

G

F (x) ζj(x) dx,

where ζj is the function (2.6.4).

2.6.2. The mixed boundary value problem for the Laplace equation
in domains with angular points. Let G be the same domain as in the preceding
subsection. We consider the boundary value problem

(2.6.5) −∆U = F in G, BτU = 0 on the side x(τ)x(τ+1) ⊂ ∂G, τ = 1, . . . , d,

where x(d+1) = x(1) and Bτ = 1 or Bτ = ∂/∂ν and suppose that the Dirichlet
condition is given on at least one of the adjacent sides of the boundary. Then every
function U ∈ W 1

2 (G) satisfying the boundary conditions in (2.6.5) belongs also to
the space V 1

2,0(G). Using the information on the spectrum of the operator pencil
corresponding to the parameter-depending problem (2.1.10), (2.1.11) obtained in
Section 2.1, we can deduce from Theorems 1.4.1–1.4.5 analogous results as in the
case of the Dirichlet problem. In particular, the following statement holds.

Theorem 2.6.4. Let λ
(τ)
1 = π/ατ if the Dirichlet condition is given on both

sides of ∂G adjacent to x(τ) and λ
(τ)
1 = π/(2ατ ) if on one side the Dirichlet condi-

tion and on the other side the Neumann condition are given. Then problem (2.6.5)
is uniquely solvable in V l

p,~β
(G) for all F ∈ V l−2

p,~β
(G) if and only if

|l − βτ − 2/p| < λ
(τ)
1 for τ = 1, . . . , d.
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For the unique solvability in N l,σ
~β

(G) it is necessary and sufficient that |l+σ−βτ | <
λ

(τ)
1 for τ = 1, . . . , d.

2.6.3. The Dirichlet problem for the Laplace equation in a domain
with conic points. Now we consider problem (2.6.1) in the same n-dimensional
domain G with the conic vertices x(1), . . . , x(d), as in Section 1.4. Theorems 1.4.1–
1.4.3 together with the information obtained in Section 2.2 lead to the following
assertion.

Theorem 2.6.5. Suppose that

(2.6.6)
∣∣∣l − 1− βτ +

n

2
− n

p

∣∣∣
2

<
(
1− n

2

)2

+ Λ(τ)
1 for τ = 1, . . . , d,

where Λ(τ)
1 denotes the first eigenvalue of the Dirichlet problem for the operator −δ

on the intersection Ωτ of the sphere |x − x(τ)| = 1 with the cone Kτ . Then the
Dirichlet problem (2.6.1) is uniquely solvable in V l

p,~β
(G) for every F ∈ V l−2

p,~β
(G).

Analogously, the condition

(2.6.7)
∣∣∣l + σ − 1− βτ +

n

2

∣∣∣
2

<
(
1− n

2

)2

+ Λ(τ)
1 for τ = 1, . . . , d

ensures the unique solvability of the Dirichlet problem in N l,σ
~β

(G) for arbitrary f ∈
N l−2,σ

~β
(G). The variational solution U ∈ ◦

W1
2(G) belongs to V l

p,~β
(G) if F ∈ V l−2

p,~β
(G)

and (2.6.6) is satisfied. It belongs to N l,σ
~β

(G) if F ∈ N l−2,σ
~β

(G) and condition (2.6.7)
is satisfied.

Since the eigenvalues Λ(τ)
1 are positive, we conclude that the variational solution

U belongs to the Sobolev space W l
p(G) if F ∈ W l−2

p (G) and l ≤ n/p. Stronger

regularity results can be obtained using the monotonicity of Λ(τ)
1 with respect to

Ωτ . If, for example, Kτ is contained in a half-space, then Λ(τ)
1 ≥ n − 1 . Thus,

in the case when all cones Kτ are contained in half-spaces, we get U ∈ W l
p(G) if

F ∈ W l−2
p (G) and l ≤ 1 + n/p.

2.7. Notes

Section 2.1-2.4. Most of the results are standard. The isoperimetric property
of the first eigenvalue of the Dirichlet problem for the Beltrami operator (Theorem
2.2.5) was first proved by Sperner [248]. The proof of the corresponding result for
domains in the Euclidean space was given by Faber [55] and Krahn [144, 145] in
the 1920s (see also the book of Pólya and Szegö [229]). In the book of Chavel [26]
a modern proof is given which works for any of the model spaces including sphere.
Another isoperimetric inequality was obtained by Shen and Shieh [244] who proved
that among all spherical bands on S2 with given area the band which is symmetric
to the equator has the largest first eigenvalue of the Dirichlet problem.

The isoperimetric property for the first nonzero eigenvalue of the Neumann
problem (Theorem 2.3.3) was first proved by Chavel [25, 26] under more restric-
tive hypotheses. Ashbaugh and Benguria [8] extended Chavel’s result to arbitrary
spherical domains contained in a hemisphere. The corresponding result for the
Euclidean case was obtained by Szegö [252] and Weinberger [264].
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Theorems 2.2.6 and 2.3.1 on the multiplicity of the eigenvalues of the Beltrami
operator were essentially proved by Nadirashvili [202].

Figure 2 is taken from the paper [167] of Maz′ya and Levin. Other material in
Sections 2.3.2 and 2.4 was unpublished.

Boersma [22] and Keller [99] studied singularities of solutions to the Dirichlet
and Neumann problems for the Laplace equation in R3\Kα, where Kα is a plane
angular sector of opening angle α.

Section 2.5. Here we collected asymptotic formulas for eigenvalues which
were obtained in papers by Samarskĭı [232], Brown and Stewartson [24], Maz′ya,
Nazarov and Plamenevskĭı [171], Maz′ya and Nazarov [170].

Section 2.6. Treatments of boundary value problems for the Laplacian in
domains with piecewise smooth boundaries can be found in the monographs of
Grisvard [78, 86], Kufner and Sändig [147], Dauge [41], Maz′ya, Nazarov and
Plamenevskĭı [174], Nazarov and Plamenevskĭı [207], Kozlov, Maz′ya and Roß-
mann [136]. Regularity results for the solution of the Dirichlet problem in plane
domains of polygonal type were obtained in 1956 by Nikol’skĭı [214, 215] and in
the 1960s by Volkov [258, 259, 260] and Fufaev [64]. They gave (necessary and
sufficient) conditions ensuring that the solution belongs to the Nikolskĭı space Hs

p

and to a Hölder space, respectively. Birman and Skvortsov [20] got a W 2
2 regularity

result for the case when the angles at the corners are less than π. For the case of
a three-dimensional convex polyhedron an analogous result was proved by Hanna
and Smith [89]. Wigley [269]–[272] studied the smoothness of the solution to the
mixed problem and its asymptotic behavior near the angular points. Distribution
solutions of the mixed problem in a polygon were considered by Aziz and Kellogg
[9].

In [255, 256] Maz′ya and Verzhbinskĭı developed an asymptotic theory of the
Dirichlet problem for the Laplacian in n-dimensional domains with singular bound-
ary points including conic and cuspidal vertices. As a consequence of their estimates
for the Green function and harmonic measure, they obtained a Lp coercivity result
for the case of a conic point (a proof of this result is given in [257]).

Grisvard [74]–[86] dealt with various boundary value problems for the Laplace
equation in polygonal or polyhedral domains. He studied, in particular, the solv-
ability in Sobolev spaces (without weight) and the singularities of the solutions.
Fichera [59]–[62] dealt with the Dirichlet problem in three-dimensional polyhedral
domains. In [59] he proved, for example, that the solution belongs to C1 if the
polyhedron is convex.

Theorems on the solvability of boundary value problems for the Laplace equa-
tion in domains with corners and edges as well as regularity assertions for the
solutions can be also found in papers of Kondrat′ev [110, 111], Komech [107],
Zajaczkowski and Solonnikov [273], Dauge [39, 40, 43], Dauge and Nicaise [45].
Solutions of mixed screen boundary value problems for the Helmholtz equation in
the lifting surface theory were studied, e.g., by Hinder, Meister [90] and Nazarov
[205].

Besides, there are many works which are concerned with the Laplace equa-
tion in domains of special classes (convex domains, domains with C1 or Lipschitz
boundaries). For example, Grisvard [78, Ch.3] proved that the Dirichlet problem
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(2.6.1) in an arbitrary bounded convex domain G of Rn is uniquely solvable in
W 2

2 (G) for every F ∈ L2(G). Also for convex domains Adolfsson and Jerison [1]
proved that the Neumann problem has a unique solution in W 2

p (G), 1 < p ≤ 2, if
the function on the right-hand side of the differential equation belongs to Lp(G).
A deep theory of second order equations in Lipschitz domains including solvability
of boundary value problems for Lp boundary data and regularity results for the
solutions was developed in the works of Dahlberg [33], Dahlberg and Kenig [34],
Kenig and Pipher [105, 106], Kenig [103], Jerison and Kenig [92, 93]. A survey
of this development is given in Kenig’s monograph [104]. Higher order regularity
results for certain classes of Lipschitz domains can be found in the book of Maz′ya
and Shaposhnikova [196].

Numerical methods for the determination of eigenvalues of operator pencils are
not a subject of this book. Let us give here only a few references concerning this
direction. The first result we mention here is that of Fichera [59] who considered
the Dirichlet problem in the exterior of a cube and obtained two–sided estimates for
the smallest positive eigenvalue of the corresponding pencil. Furthermore, we refer
to the papers of Walden and Kellogg [263], Stephan and Whiteman [250], Beagles
and Whiteman [15, 16], Babuška, von Petersdorff and Andersson [10], Schmitz,
Volk and Wendland [235] which are also concerned with the numerical calculation
of singularities of solutions to the Laplace equation near singular boundary points.





CHAPTER 3

The Dirichlet problem for the Lamé system

In this chapter we consider the Dirichlet problem for the Lamé system of
isotropic elasticity

(3.0.1) ∆U + (1− 2ν)−1∇∇ · U = 0

in an angle and a cone with vertex at the origin. Here U is the displacement vector
and ν denotes the Poisson ratio, ν < 1/2.

Solutions to this problem may exhibit infinite stresses near singularities of the
boundary, such as edges and vertices. Their occurrence is related to displacement
field U which, near an isolated vertex, have the form U = rλu(ω), where r denotes
the distance to the vertex and ω are spherical coordinates in the base of the cone.
The quantity λ and the vector function u depend only on the geometry, the type
of the boundary condition and the Poisson ratio, but are independent of the par-
ticular right-hand side and the boundary data. The knowledge of λ and u enables
one to determine not only the asymptotics of stresses near conic points, but also
the regularity of a weak solution in scales of Sobolev spaces. Moreover, λ and u
are needed for the computation of coefficients in the asymptotic expansion of the
stresses near the conic points, the so-called stress intensity factors. Knowledge of
λ and u is crucial for the design of proper numerical approximation schemes (mesh
grading in finite element schemes, for example).

The pairs (λ, u) can be characterized as eigenvalues and eigenvectors of a rather
complicated operator pencil in a domain on the unit sphere. This pencil is Fred-
holm. By considering general singularities

(3.0.2) rλ
s∑

k=0

1
k!

(log r)k u(s−k)(ω)

one arrives at generalized eigenfunctions of the pencil.
We begin with the case of a plane angle. As for the Laplace equation (see Chap-

ter 2), the singularities can be described by means of the eigenvalues, eigenvectors
and generalized eigenvectors of certain pencils of ordinary differential operators on
an interval. In Section 3.1 we derive transcendental equations for the eigenval-
ues and study the solvability of these equations in different strips of the complex
plane. Furthermore, we give representations for the eigenfunctions and generalized
eigenfunctions.

We give a simple example showing the usefulness of information obtained in
Section 3.1. Let G be the same two-dimensional domain as in the introduction
to Chapter 2. Recall that α denotes the opening of the angle. We consider the
Dirichlet problem

∆U + (1− 2ν)−1∇∇ · U = F on G, U = 0 on ∂G \ {0},
61
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where F is a given function equal zero near the angular boundary point. By com-
bining Theorem 3.1.2 and Theorem 1.4.4, we can explicitly describe the asymptotic
behavior of the solution U with a finite Dirichlet integral. According to Theorem
3.1.2, we must separate the cases α ∈ (0, π), α ∈ (π, 2π), and α = 2π. Here we
restrict ourselves to the case α ∈ (π, 2π). Let x−(α) and x

(1)
− (α) be real roots of

the equation
sin z

z
− sin α

(3− 4ν)α
= 0

and x+(α) be a real root of
sin z

z
+

sin α

(3− 4ν)α
= 0.

The inequalities
0 < x+(α) < π < x−(α) < x

(1)
− (α) < 2π

should be valid. (The above roots are uniquely defined by these inequalities.) Now
the asymptotics of U can be written in the form

U(x) = C+ rλ+ u+(ϕ) + C− rλ− u−(ϕ) + C
(1)
+ rλ

(1)
+ u

(1)
+ (ϕ) + o(r2π/α),

where the constant coefficients C± and C
(1)
− depend on the vector function F ,

whereas u± and u
(1)
− are linear combinations of trigonometric functions (see (3.1.28)

and 3.1.29)). The exponents λ± and λ
(1)
− are introduced by

λ+ =
x+(α)

α
, λ− =

x−(α)
α

, λ
(1)
− =

x
(1)
− (α)
α

.

Note that, by Theorem 3.1.2, the functions λ± and λ
(1)
− are strictly decreasing and

subject to the inequalities 1/2 < λ+ < λ− < 1 < λ
(1)
− on (π, 2π).

In Section 3.2 we turn to the incomparably more complicated three dimensional
Dirichlet problem for the system (3.0.1) in a cone K. By U = (U1, U2, U3) we
denote the displacement vector. We are interested in particular solutions of the
form (3.0.2). The exponents λ are (in general complex) eigenvalues of the operator
pencil

L(λ) :
◦

W
1
2(Ω)3 → W−1

2 (Ω)3

on the intersection Ω of K with the unit sphere S2, which is defined by

L(λ) u = r2−λ
(
∆rλu + (1− 2ν)−1∇∇ · rλu

)
.

We now outline some results of this chapter which concern the three-dimensional
case. In Subsection 3.2.4, starting with Jordan chains of L generated by an eigen-
value λ0, we describe Jordan chains of the same pencil corresponding to the eigen-
value −1 − λ0. In passing, in Subsection 3.2.5 we obtain an analog of the Kelvin
transform for solutions of the Lamé system:

If U satisfies the Lamé system (3.0.1), then the same is true for

V (x) = |x|−1
{
(3− 4ν)I + Ξ(x|x|−1) + (I − 2Ξ(x|x|−1)) x · ∂x

}
U

(
x|x|−2

)
,

where I is the identity matrix and Ξ(ω) = {ωiωj}3i,j=1.
Our next result is that only real eigenvalues of the pencil L may occur in the

domain
(Re λ + 1/2)2 − (Im λ)2 < Fν(Ω)2,
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where Fν(Ω) is a decreasing function of Ω, which, in particular, admits the estimate

Fν(Ω) ≥
((5

2
− 2ν

)2

+ (1− 2ν)2
)1/2

(Section 3.3). We prove that these eigenvalues do not admit generalized eigenvec-
tors. Furthermore, we establish a variational principle for real eigenvalues of L in
the interval (− 1

2 , β), where

β = min
{

Fν(Ω)− 1
2
, 3− 4ν

}
.

In particular, this principle allows one to show that all eigenvalues of L in (− 1
2 , β)

depend monotonically on the domain Ω cut out by the cone K on the unit sphere
S2.

As a corollary we obtain that the strip −1 ≤ Re λ ≤ 0 is free of the eigenvalues
and that, moreover, the same holds for the strip −2 ≤ Re λ ≤ 1 if Ω ⊂ S2

+ and
S2

+\Ω contains a nonempty open set. Another corollary is that, if S2
+ ⊂ Ω and S2\Ω

contains a nonempty open set, then there are exactly three eigenvalues λj ∈ (0, 1]
which may coincide, but always have total multiplicity 3.

These results imply that solutions of the Dirichlet problem are either Hölder
continuous near the vertex of a cone or have a singularity stronger than r−1. If the
cone is situated in a half space, then the stresses are Hölder continuous. Besides, in
a neighborhood of the reentrant vertex the solution of the Dirichlet problem with
finite energy integral has the asymptotics

U(x) =
3∑

j=1

rλj uj(ω) + o
(
r1+ε

)
, ε > 0.

where 0 < λ1 ≤ λ2 ≤ λ3 < 1.
The above results on the spectrum of L together with Theorems 1.4.1–1.4.5

enable one to draw conclusions about the regularity of the solution of the inhomo-
geneous Dirichlet problem

∆U + (1− 2ν)−1∇ ∇ · U = F in G, U = 0 on ∂G
where G is a domain in R3 with conic vertices. For example,

(i) U ∈ C1,α(G)3 for some positive α if F ∈ L∞(G)3 and all tangent cones at
vertices are contained in a half-space.

(ii) U ∈ W 2
2 (G)3 if F ∈ L2(G)3 and the tangent cones are contained in a circular

cone for which the smallest real part of the eigenvalues of L is greater than 1/2.
Section 3.4 is dedicated to estimates of the width of a strip on the complex

plane which contains no eigenvalues of L. For example, it is shown that this is true
for the strip ∣∣∣Re λ +

1
2

∣∣∣ ≤ (2γ + 1)M
M + 2γ + 4

+
1
2

,

where M is a positive number such that M(M + 1) is the first eigenvalue of the
Laplace-Beltrami operator in Ω with zero Dirichlet data.

In the next section for circular cones we obtain an explicit transcendental equa-
tion for all eigenvalues of the pencil L and compute the dependence of the first
eigenvalues on the opening angle of the cone. It is found that the dominant stress
fields near a rotationally symmetric rigid inclusion are not rotationally symmetric.
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We conclude this chapter by stating some applications of the above mentioned
results to the Dirichlet problem for the Lamé system in a two- or three-dimensional
domain with piecewise smooth boundary.

3.1. The Dirichlet problem for the Lamé system in a plane angle

We start with the Dirichlet problem for the Lamé system in a plane angle.
In contrast to the boundary value problems for the Laplace operator, it is not
possible to give explicit representations for the eigenvalues of the operator pencil
generated by this problem. However, one can find entire functions whose zeros are
the mentioned eigenvalues. By means of these functions, we study the distribution
of the eigenvalues in the complex plane.

3.1.1. The operator pencil generated by the Dirichlet problem. Let

K =
{
(x1, x2) ∈ R2 : 0 < r < ∞, −α/2 < ϕ < α/2}, α ∈ (0, 2π],

be a plane angle. We consider the Lamé system

(3.1.1) ∆U + (1− 2ν)−1∇∇ · U = 0 in K
for the displacement vector U = (U1, U2) with the Dirichlet condition

(3.1.2) U = 0 on ∂K\{0}.
In polar coordinates r, ϕ the Lamé system has the form

∆Ur − 1
r2

Ur − 2
r2

∂ϕUϕ + (1− 2ν)−1 ∂r

(1
r
∂r(rUr) +

1
r
∂ϕUϕ

)
= 0,

∆Uϕ − 1
r2

Uϕ +
2
r2

∂ϕUr + (1− 2ν)−1 1
r2

∂ϕ

(
∂r(rUr) + ∂ϕUϕ

)
= 0,

where

(3.1.3)
(

Ur

Uϕ

)
=

(
cosϕ sin ϕ

− sinϕ cosϕ

)
·
(

U1

U2

)
.

We seek solutions

(3.1.4) Ur(r, ϕ) = rλur(ϕ) , Uϕ(r, ϕ) = rλuϕ(ϕ)

which are positively homogeneous of degree λ. For the functions ur, uϕ the following
system of ordinary differential equations holds:

1− 2ν

2− 2ν
u′′r + (λ2 − 1)ur +

(
λ− 1− 1− 2ν

2− 2ν
(λ + 1)

)
u′ϕ = 0,(3.1.5)

u′′ϕ +
1− 2ν

2− 2ν
(λ2 − 1)uϕ +

(
λ + 1− 1− 2ν

2− 2ν
(λ− 1)

)
u′r = 0.(3.1.6)

Moreover, ur and uϕ satisfy the boundary conditions

(3.1.7) ur(±α/2) = uϕ(±α/2) = 0.

Let L(λ) denote the differential operator on the left-hand side of the system (3.1.5),
(3.1.6). Furthermore, let B be the operator

(W 2
2 (−α/2,+α/2))2 3

( ur

uϕ

)
→

( ur(±α/2)
uϕ(±α/2)

)
∈ C4.
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We introduce the operator

(W 2
2 (−α/2,+α/2))2 3

(
ur

uϕ

)
→ A(λ)

(
ur

uϕ

)
def
=

(L(λ),B) ( ur

uϕ

)

∈ (L2(−α/2,+α/2))2 × C4.

Clearly, the spectrum of the operator pencil A is discrete and consists of eigenvalues
with finite algebraic multiplicities.

3.1.2. Two lemmas on operator functions. Let the space Y be the Carte-
sian product Y0 × Y1 of two Hilbert spaces and let the operator pencil

(3.1.8) A(λ) =
(L(λ), B(λ)

)
: X → Y

consist of two pencils L(λ) ∈ L(X ,Y0), B(λ) ∈ L(X ,Y1). We suppose that there ex-
ist a Hilbert space Z and a holomorphic operator-function P(λ) ∈ L(Z,X ) defined
for all complex λ in a domain G ⊂ C such that

(3.1.9) kerP(λ) = {0}, R(P(λ)) = kerL(λ), L(λ) is surjective for all λ ∈ G,

where R(P(λ)) denotes the range of the operator P(λ).
The next lemma gives a connection between the spectral properties of the pencil

(3.1.8) and the operator function

(3.1.10) B(λ)P(λ) : Z → Y1, λ ∈ G.

Lemma 3.1.1. Suppose that condition (3.1.9) is satisfied. Then
1) the operator A(λ) is Fredholm if and only if B(λ)P(λ) is Fredholm,
2) the spectra in G of the operator functions A(λ) and B(λ)P(λ) coincide,
3) the number λ0 ∈ G is an eigenvalue of the operator-function A(λ) if and only

if λ0 is an eigenvalue of the operator-function B(λ)P(λ). The geometric, partial,
and algebraic multiplicities of the eigenvalue λ0 for the operator-functions A(λ) and
B(λ)P(λ) coincide.

4) If u0, . . . , us−1 ∈ Z is a Jordan chain of (3.1.10) corresponding to the eigen-
value λ0, then

(3.1.11) vj =
j∑

k=0

1
(j − k)!

P(j−k)(λ0)uk, j = 0, . . . , s− 1,

is a Jordan chain of (3.1.8) corresponding to λ0. Here P(k)(λ0) = dkP(λ)/dλk|λ=λ0 .
5) If v0, . . . , vs−1 is a Jordan chain of (3.1.8) corresponding to λ0, then there

exists a Jordan chain u0, . . . , us−1 of (3.1.10), such that (3.1.11) is valid.

Proof: a) Assertions 1) and 2). By (3.1.9), there exists a subspace Zλ ⊂ Z
with the same dimension as kerA(λ) such that P(λ)Zλ = ker A(λ). Consequently,
kerB(λ) P(λ) = Zλ and

dimker A(λ) = dim kerB(λ) P(λ).

Since L(λ) is surjective, we have

R(
A(λ)

)
= Y0 × Y ′1 ,

where Y ′1 is a linear subset of Y1. We show that the range of the operator B(λ)P(λ)
coincides with Y ′1. Obviously, the range of B(λ)P(λ) is contained in Y ′1. Let ψ1 be
an arbitrary element of Y ′1. Then there exists an element ϕ ∈ X such that

L(λ) ϕ = 0, B(λ)ϕ = ψ1 .



66 3. DIRICHLET PROBLEM FOR LAME SYSTEM

Furthermore, by (3.1.9), there exists an element χ ∈ Z such that P(λ) χ = ϕ and,
consequently, B(λ)P(λ)χ = ψ1. Thus, the range of B(λ)P(λ) coincides with Y ′1.
From this we conclude, that the operators A(λ) and B(λ)P(λ) are simultaneously
Fredholm. Moreover, they are simultaneously surjective. This proves 1) and 2).

b) Generating functions. We consider a general holomorphic operator function
C(λ) : X → Y. Let λ0 be an eigenvalue. A holomorphic function Φ(λ) with values
in X is called generating function of rank s in λ0 for C if

Φ(λ0) 6= 0 and C(λ)Φ(λ) = O(|λ− λ0|s).
Direct calculation shows that Φ(λ) is a generating function of rank s if and only if
the vectors

Φj =
1
j!

Φ(j)(λ0), j = 0, . . . , s− 1,

form a Jordan chain corresponding to λ0.

c) Proof of 4). Let Ψ(λ) be a generating function of rank s for B(λ)P(λ), i.e.,

Ψ(λ0) 6= 0 and B(λ) P(λ) Ψ(λ) = O(| λ− λ0 |s).
Since L(λ)P(λ) = 0 and kerP(λ0) = {0}, we get

P(λ0) Ψ(λ0) 6= 0 and A(λ)P(λ)Ψ(λ) = O(|λ− λ0|s).
Hence P(λ)Ψ(λ) is a generating function of rank s in λ0 for A(λ). Now the asser-
tion follows from a).

d) Proof of 5). Let Φ(λ) be a generating function of rank s for A(λ), i.e.,

Φ(λ0) 6= 0 and A(λ)Φ(λ) = O(|λ− λ0|s).
We prove by induction that for every k = 1, . . . , s there exists a polynomial Ψ(λ)
of degree k − 1 with coefficients in Z such that

(3.1.12) P(λ)Ψ(λ)− Φ(λ) = O(| λ− λ0 |k)

In the case k = 1 we set Ψ(λ) = ψ0, where ψ0 is a solution of the equation
P(λ0)Ψ0 = Φ(λ0). Since Φ(λ0) ∈ kerL(λ0), the existence of the solution Ψ0 follows
from (3.1.9).

Suppose that there exists a polynomial χ(λ) of degree k − 2 ≤ s− 2 satisfying
the condition

(3.1.13) P(λ)χ(λ)− Φ(λ) = O(|λ− λ0|k−1).

Since Φ(λ) is a generating function of rank s ≥ k for A(λ) and L(λ)P(λ) = 0, we
have

L(λ)
(P(λ)χ(λ)− Φ(λ)

)
= O(|λ− λ0|k).

This and (3.1.13) yield

L(λ0)
( dk−1

dλk−1

(P(λ)χ(λ)− Φ(λ)
)∣∣∣

λ=λ0

)
= 0.

Consequently, by (3.1.9), there exists an element Ψk−1 ∈ Z such that

(3.1.14) P(λ0)Ψk−1 +
1

(k − 1)!
dk−1

dλk−1

(P(λ)χ(λ)− Φ(λ)
)∣∣∣

λ=λ0

= 0.
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We set Ψ(λ) = χ(λ) + Ψk−1 (λ− λ0)k−1. Then, by (3.1.13) and (3.1.14), we obtain

dj−1

dλj−1

(P(λ) Ψ(λ)− Φ(λ)
)∣∣∣

λ=λ0

for j = 0, 1, . . . , k − 1, i.e., P(λ) Ψ(λ)− Φ(λ) = O(|λ− λ0|k).
Furthermore, Ψ(λ0) 6= 0, since the kernel of P(λ0) is trivial. Therefore, Ψ(λ)

is a generating function of rank k for B(λ)P(λ). Thus the existence of a function
Φ(λ) satisfying (3.1.12) with k = s is proved. This gives, in particular, the relations
(3.1.11). To complete the proof of (v), it suffices to apply b).

e) The validity of 3) follows from 4) and 5).

In the case dimX = dimY < ∞ the algebraic multiplicities of the eigenvalues
can be calculated by means of the following lemma (see, e.g., the book of Gohberg,
Lancaster and Rodman [72]).

Lemma 3.1.2. Let X and Y be finite-dimensional spaces with the same dimen-
sion. If λ0 is an eigenvalue of the operator-function A, then its algebraic multiplicity
is equal to the multiplicity of the zero λ = λ0 of the function detA.

3.1.3. A transcendental equation for the eigenvalues. The general so-
lution of the system (3.1.5), (3.1.6) is a linear combination of the vectors
(3.1.15)(

cos(1 + λ)ϕ
− sin(1 + λ)ϕ

)
,

(
sin(1 + λ)ϕ
cos(1 + λ)ϕ

)
,

(
A cos(1− λ)ϕ
−B sin(1− λ)ϕ

)
,

(
A sin(1− λ)ϕ
B cos(1− λ)ϕ

)
,

where A = 3−4ν−λ and B = 3−4ν+λ. The vectors (3.1.15) are linearly dependent
for λ = 0. Therefore, it is more convenient to represent the general solution in the
form

(3.1.16) u =
4∑

k=1

ck u(k) ,

where

u(1) =

(
u

(1)
r

u
(1)
ϕ

)
=

(
cos(1 + λ)ϕ
− sin(1 + λ)ϕ

)
,

u(2) =

(
u

(2)
r

u
(2)
ϕ

)
=

(
sin(1 + λ)ϕ
cos(1 + λ)ϕ

)
,

u(3) =

(
u

(3)
r

u
(3)
ϕ

)
=

1
λ

(
A cos(1− λ)ϕ− (3− 4ν) cos(1 + λ)ϕ
−B sin(1− λ)ϕ + (3− 4ν) sin(1 + λ)ϕ

)
,

u(4) =

(
u

(4)
r

u
(4)
ϕ

)
=

1
λ

(
A sin(1− λ)ϕ− (3− 4ν) sin(1 + λ)ϕ
B cos(1− λ)ϕ− (3− 4ν) cos(1 + λ)ϕ

)
.

For λ = 0 we have

u(3) =

(
u

(3)
r

u
(3)
ϕ

)
=

( − cosϕ + 2(3− 4ν) ϕ sin ϕ
− sin ϕ + 2(3− 4ν)ϕ cosϕ

)
,

u(4) =

(
u

(4)
r

u
(4)
ϕ

)
=

( − sin ϕ− 2(3− 4ν)ϕ cosϕ
cos ϕ + 2(3− 4ν)ϕ sin ϕ

)
.
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The boundary condition (3.1.2) yields the following algebraic system for the con-
stants c1, . . . , c4 :

(3.1.17)
4∑

k=1

ck u(k)(λ,±α/2) = 0

Since the components u
(1)
r , u

(2)
ϕ , u

(3)
r , u

(4)
ϕ are even functions of the variable ϕ and

the components u
(1)
ϕ , u

(2)
r , u

(3)
ϕ , u

(4)
r are odd functions, this algebraic system is

equivalent to the following two algebraic systems

c1u
(1)(λ, α/2) + c3 u(3)(λ, α/2) = 0,(3.1.18)

c2u
(2)(λ, α/2) + c4 u(4)(λ, α/2) = 0.(3.1.19)

This means,

(3.1.20)





(c1 − 3−4ν
λ c3) cos(1 + λ)α/2 + 1

λc3A cos(1− λ)α/2 = 0,

(c1 − 3−4ν
λ c3) sin(1 + λ)α/2 + 1

λc3B sin(1− λ)α/2 = 0,

and

(3.1.21)





(c2 − 3−4ν
λ c4) sin(1 + λ)α/2 + 1

λc4A sin(1− λ)α/2 = 0,

(c2 − 3−4ν
λ c4) cos(1 + λ)α/2 + 1

λc4B cos(1− λ)α/2 = 0.

The determinants of these systems are equal to

d−(λ) = λ−1
(
(3− 4ν) sin λα− λ sin α

)
,

d+(λ) = λ−1
(
(3− 4ν) sin λα + λ sin α

)
.

For λ = 0 these determinants are equal to (3 − 4ν)α ∓ sin α and do not vanish.
Therefore, every eigenvalue of the pencil A is a solution of one of the following
equations:

(3− 4ν) sin λα− λ sinα = 0,(3.1.22)
(3− 4ν) sin λα + λ sinα = 0.(3.1.23)

The graphs of the real parts of the roots of equations (3.1.22), (3.1.23) are repre-
sented in Figures 4 and 5 below, the thick lines correspond to real eigenvalues and
the thin lines to nonreal eigenvalues, multiple eigenvalues are indicated by ⊗).

It can be easily seen that the numbers λ, −λ, λ, and −λ are simultaneously
eigenvalues.

Let λ be a solution of the equation d−(λ) = 0. Then every solution of (3.1.20)
has the form

c1 = A1 λ−1
(
(3− 4ν) cos(1 + λ)α/2−A cos(1− λ)α/2

)
(3.1.24)

+A2 λ−1
(
(3− 4ν) sin(1 + λ)α/2−B sin(1− λ)α/2

)

c3 = A1 cos(1 + λ)α/2 + A2 sin(1 + λ)α/2 .(3.1.25)

If we set

(3.1.26) A1 = −λ cos(1 + λ)α/2 , A2 = −λ sin(1 + λ)α/2 ,

we obtain

(3.1.27) c1 = (3− 4ν) (cos λα− 1)− λ cos α , c3 = −λ.
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Figure 4. Real parts of eigenvalues of the pencil generated by the
Dirichlet problem for ν = 0.17
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Figure 5. Real parts of eigenvalues in the case ν = 0.45

Thus, for an eigenvalue of the operator pencil A satisfying the equality d−(λ) = 0
we get the eigenvector

(
u−r
u−ϕ

)
= c1u

(1) + c3u
(3)(3.1.28)

=
( −A cos(1− λ)ϕ

B sin(1− λ)ϕ

)
+

(
(3− 4ν) cos λα− λ cosα

) (
cos(1 + λ)ϕ
− sin(1 + λ)ϕ

)
.
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If λ satisfies the equality d+(λ) = 0, then, in a similar way, we obtain the eigenvector
(

u+
r

u+
ϕ

)
= −

(
A sin(1− λ)ϕ
B cos(1− λ)ϕ

)
(3.1.29)

+
(
(3− 4ν) cos λα + λ cosα

) (
sin(1 + λ)ϕ
cos(1 + λ)ϕ

)
.

Since each of the systems (3.1.18) and (3.1.19) has at most one linearly independent
solution, we have obtained all eigenvectors in this way.

3.1.4. Existence of generalized eigenvectors. Obviously, the operator

P(λ) : C4 3 (c1, c2, c3, c4) →
4∑

k=1

ck u(k)(λ, ϕ) ∈ kerL(λ).

satisfies condition (3.1.9) for all λ ∈ C. Consequently, by Lemma 3.1.1, every eigen-
value of the pencil A is also an eigenvalue of the pencil BP with the same geometric
and algebraic multiplicities. Here BP(λ) is a linear mapping C4 → C4. Hence the
algebraic multiplicity of any eigenvalue λ0 coincides with the multiplicity of the
zero λ = λ0 of the function detBP(λ) (see Lemma 3.1.2) and, therefore, also with
the multiplicity of the zero λ = λ0 of the function d+(λ) d−(λ). Thus, generalized
eigenvectors corresponding to the eigenvalue λ0 may only exist if

d+(λ0) d−(λ0) = 0 and d′+(λ0) d−(λ0) + d+(λ0) d′−(λ0),

i.e., if one of the conditions d+(λ0) = d−(λ0) = 0, d+(λ0) = d′+(λ0) = 0, and
d−(λ0) = d′−(λ0) = 0 is satisfied. Obviously, only in the cases α = π and α = 2π
the number λ0 can be a common root of the equations d+(λ) = 0 and d−(λ) = 0.
If α = π, then the spectrum of the pencil A consists of the eigenvalues ±1,±2, . . . ,
and in the case α = 2π the eigenvalues are the numbers ±k/2 (k = 1, 2, . . .). In
both cases two eigenvectors (3.1.28), (3.1.29) correspond to every eigenvalue, while
generalized eigenvectors do not exist.

Lemma 3.1.3. 1) There are no generalized eigenvectors which correspond to
nonreal eigenvalues.

2) The algebraic multiplicity of an arbitrary eigenvalue is not greater than two.

Proof: 1) Let d−(λ0) = d′−(λ0) = 0 or d+(λ0) = d′+(λ0) = 0. Then one of the
equalities

(3.1.30) (3− 4ν) α cos λ0α = ± sin α

is satisfied. Hence, cosλ0α is real. Thus, either sin(Re λ0α) = 0 or sinh(Im λ0α) =
0. The equality sin(Re λ0α) = 0 can be excluded. Otherwise, we get cos λ0α =
± cosh(Im λ0α) and, consequently, (3− 4ν)α | cos λ0α| > sin α. The last inequality
contradicts (3.1.30). Consequently, we obtain sinh(Im λ0α) = 0, i.e., Im λ0 = 0.

2) Suppose that d−(λ0) = d′−(λ0) = d′′−(λ0) = 0. Since

d′′−(λ0) = −(3− 4ν)α2 sin λ0α,

we get sin λ0α = 0 and the equality (3 − 4ν) sin λ0α = λ0 sin α yields sin α = 0.
This contradicts the equality d′−(λ0) = 0. In the same way, it can be shown that λ0

cannot satisfy the equalities d+(λ0) = d′+(λ0) = d′′+(λ0). This proves the lemma.
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Lemma 3.1.4. If λ0 is a multiple root of one of the equations d−(λ) = 0 or
d+(λ) = 0, then

(3.1.31)

(
v
(∓)
r (λ0, ϕ)

v
(∓)
ϕ (λ0, ϕ)

)
= ∂λ

(
u

(∓)
r (λ, ϕ)

u
(∓)
ϕ (λ, ϕ)

) ∣∣∣∣
λ=λ0

is a generalized eigenvector associated with the eigenvectors (3.1.28) and (3.1.29),
respectively.

Proof: Let c1 = c1(λ), c3 = c3(λ) be the functions (3.1.24) and (3.1.25), re-
spectively. We show that

(3.1.32) c1(λ) u(1)(λ, α/2) + c3(λ)u(3)(λ, α/2) = λ d−(λ)
(

cos(1 + λ)α/2
− sin(1 + λ)α/2

)

for all λ ∈ C. Indeed, it can be easily seen that

u(3)
ϕ (λ, α/2) u(1)

r (λ, α/2)− u(1)
ϕ (λ, α/2)u(3)

r (λ, α/2) =
(

0
d−(λ)

)
,

u(3)
r (λ, α/2) u(1)

ϕ (λ, α/2)− u(1)
r (λ, α/2)u(3)

ϕ (λ, α/2) =
(

d−(λ)
0

)
.

This together with (3.1.24)–(3.1.26) implies (3.1.32).
Since u

(1)
r , u

(3)
r are even and u

(1)
ϕ , u

(3)
ϕ are odd functions, it holds

(3.1.33) c1(λ)u(1)(λ,−α/2) + c3(λ)u(3)(λ,−α/2) = λ d−(λ)
(

cos(1 + λ)α/2
sin(1 + λ)α/2

)
.

Using (3.1.5), (3.1.6), (3.1.32), and (3.1.33), we arrive at

(3.1.34) A(λ)
(

u−r (λ, ϕ)
u−ϕ (λ, ϕ)

)
= λ d−(λ)

{
0 ,

(
cos(1 + λ)α/2
∓ sin(1 + λ)α/2

) }
.

Now let λ = λ0 be a multiple root of the equation d−(λ) = 0. Differentiating
(3.1.34) with respect to λ and setting λ = λ0, we obtain

A′(λ0)
(

u−r (λ0, ϕ)
u−ϕ (λ0, ϕ)

)
+ A(λ0)

(
v−r (λ0, ϕ)
v−ϕ (λ0, ϕ)

)
= 0.

This proves the assertion in the case “–”. The proof for the case “+” proceeds
analogously.

Obviously, a multiple root of one of the equations d∓(λ) = 0 satisfies the
equalities

(3− 4ν) sin λα∓ λ sinα = 0 ,

(3− 4ν) α cos λα∓ sin α = 0 .

Consequently, tan λα = λα and
sin α

α
= ±(3− 4ν) (λ2α2 + 1)−1/2. Therefore, the

sequence of the roots xn of the equation tan x = x generates a countable set of
angles α satisfying the equality α−1 sin α = ±(3 − 4ν) (x2

n + 1)−1/2. This set has
the accumulation points π and 2π. The corresponding eigenvalues are determined
by the formula

(3.1.35) λ = ±
( (3− 4ν)2

sin2 α
− 1

α2

)1/2

.
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3.1.5. Distribution of the eigenvalues in the half-plane Re λ > 0.

Theorem 3.1.1. Let α 6= π, α 6= 2π.
1) The lines Re λ = kπ/α (k = 0, 1, . . .) contain no points of the spectrum of

the pencil A.
2) If k is an odd number, k ≥ 1, then the strip

(3.1.36) k
π

α
< Re λ < (k + 1)

π

α

contains two eigenvalues satisfying (3.1.23) for α < π and (3.1.22) for α > π.
3) If k is an even number, k ≥ 2, then the strip (3.1.36) contains two eigenvalues

of the pencil A satisfying (3.1.22) for α < π and (3.1.23) for α > π.
4) The strip

(3.1.37) 0 < Re λ <
π

α

contains exactly one eigenvalue which satisfies (3.1.22) for α < π and (3.1.23) for
α > π.

Proof: We consider the roots z of the equations
sin z

z
− sin α

(3− 4ν)α
= 0,(3.1.38)

sin z

z
+

sin α

(3− 4ν)α
= 0(3.1.39)

which correspond to the equations d∓(λ) = 0 for λ = z/α. Suppose that z = kπ+iy,
where y ∈ R, k = 1, 2, . . ., is a root of one of the equations (3.1.38), (3.1.39). Then
we obtain

(−1)k i (3− 4ν)α sinh y ∓ (kπ + iy) sin α = 0.

This is impossible, since α 6= π and α 6= 2π. If z = iy, then we get the equation
sinh y

y
= ± sinα

(3− 4ν)α

which is also unsolvable, since the left-hand side is greater or equal to one and the
right-hand side is less than one. Consequently, the lines Re λ = kπ/α, k = 0, 1, . . .,
do not contain points of the spectrum.

From the obvious inequality
∣∣∣ sin z

z

∣∣∣ ≥ | sinh(Im z)|
|z|

it follows that each of the equations (3.1.38) and (3.1.39) has no solutions on the
set {z : |sinh(Im z)| > |z|}. Hence in an arbitrary strip |Re z| < a the modulus of
the roots of (3.1.38), (3.1.39) is uniformly bounded (with respect to α ∈ (0, 2π]) by
a constant only depending on a.

Furthermore, in a standard way, it can be verified that for angles α sufficiently
near to π every of the equations (3.1.37), (3.1.38) has a unique real-analytic solution

z∓(α) = kπ ∓ (−1)k k

3− 4ν
(α− π) + · · ·

in a small neighborhood of the point z = kπ, k = 1, 2, . . .. Therefore, for angles α
near to π, the roots of the equations (3.1.38), (3.1.39) are distributed as follows: If
k is an odd number, k ≥ 1, then the strip kπ < Re z < (k + 1)π contains two roots
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of (3.1.39) for α < π and two roots of (3.1.38) for α > π. If k is an even number,
k ≥ 2, then this strip contains two roots of (3.1.38) for α < π and two roots of
(3.1.39) for α > π. Moreover, one root of the equation (3.1.38) is contained in the
strip 0 < Re z < π if α < π and one root of the equation (3.1.39) is contained in
this strip if α > π. Since there are no roots of the equations (3.1.38), (3.1.39) on
the line Re z = kπ, it follows from Rouché’s theorem that the number of the roots
of every of these equations in the strips (3.1.36) and (3.1.37) is independent of the
angle α. This proves the theorem.

Comparing the graphs of the functions y = x−1 sin x and y = (3−4ν)−1x−1 sinx,
we can conclude that the equation (3.1.38) has no real solutions in the interval (0, π]
for α ∈ (π, 2π) and that it has a unique solution x−(α) in this interval for every
α ∈ (0, π]. Obviously,

x−(π) = π, x−(0) = c0,

where c0 ∈ (0, π) denotes the root of the equation sin c = c/(3− 4ν). Furthermore,
it can be easily seen that the root z = x−(α) is simple. Consequently, the function
α → x−(α) is real-analytic in the interval (0, π]. This function admits an analytic
extension to a neighborhood of the point π.

Analogously, the equation (3.1.39) has no real solutions in the interval (0, π] if
α ∈ (0, π) and a unique solution x+(α) in this interval for every α ∈ [π, 2π], where

x+(π) = x+(2π) = π.

The function α → x+(α) is real-analytic in [π, 2π] and admits an analytic extension
to a neighborhood of the point π.

We consider the real roots of equation (3.1.38) which are situated in the interval
(π, 2π) for α ∈ (π, 2π). It can be easily verified that this equation has exactly two
roots x

(1)
− (α), x

(2)
− (α), x

(1)
− (α) > x

(2)
− (α), in the interval (π, 2π). These roots are

simple and have analytic extensions to certain neighborhoods of the points α = π
and α = 2π. Moreover,

x
(1)
− (π) = x

(1)
− (2π) = 2π, x

(2)
− (π) = x

(2)
− (2π) = π.

The function x
(2)
− is the analytic extension of the function x− to the interval (π, 2π).

Therefore, in the sequel, we denote the function x
(2)
− by x−. Note that for every

α ∈ (π, 2π) the inequalities

0 < x+(α) < π < x−(α) < x
(1)
− (α) < 2π

are valid.
The above introduced functions x∓ and x

(1)
− are used in the following theorem

for the description of the spectrum of the operator pencil A near the line Re λ = 0.

Theorem 3.1.2. 1) If α ∈ (0, π), then the spectrum of the pencil A in the strip
0 ≤ Re λ ≤ π/α consists of the unique simple eigenvalue λ−(α) = x−(α)/α.

2) Let α ∈ (π, 2π). Then the spectrum of A in the strip 0 ≤ Re λ ≤ 2π/α
consists of the following three real eigenvalues :

λ+(α) =
x+(α)

α
, λ−(α) =

x−(α)
α

, λ
(1)
− (α) =

x
(1)
− (α)
α

.
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3) The function λ− is strictly decreasing on the interval (0, 2π], while λ+ and
λ

(1)
− are strictly decreasing functions on (π, 2π]. Furthermore, the inequalities

(3.1.40)
{

λ−(α) > 1 for α ∈ (0, π),
1/2 < λ+(α) < λ−(α) < 1 < λ

(1)
− (α) for α ∈ (π, 2π)

are satisfied.

Proof: Assertions 1) and 2) are immediate consequences of Theorem 3.1.1 and
of the definition of the functions x−, x+, x

(1)
− . We show that λ−, λ+, λ

(1)
− are strictly

decreasing functions. From the definition of λ− it follows that

λ′−(α) = −λ−
(3− 4ν) cos λ−α− cosα

(3− 4ν) α cos λ−α− sin α
.

Since λ−(π) = 1, λ−(2π) = 1/2, it suffices to verify the inequality λ′−(α) 6= 0 for
α ∈ (0, 2π). Suppose that λ′−(α0) = 0. Then for λ = λ−(α0) we get

(3.1.41) (3− 4ν) sin λα0 − λ sin α0 = 0, (3− 4ν) cos λα0 − cos α0 = 0.

Hence

(3.1.42)
tanλα0

λα0
=

tan α0

α0
.

By the definition of the function λ−, we have 0 < λα0 < π for 0 < α0 < π and
π < λα0 < 2π for π < α0 < 2π. In both cases equation (3.1.42) has the unique
solution λ = 1 which does not satisfy (3.1.41).

The inequality (λ(1)
− )′(α) 6= 0 for α ∈ (π, 2π) can be proved in a similar manner.

We show that λ′+(α) 6= 0 for α ∈ (π, 2π). If λ′+(α0) = 0, then for λ = λ+(α0)
we obtain

(3.1.43) (3− 4ν) sin λα0 + λ sin α0 = 0, (3− 4ν) cos λα0 + cos α0 = 0.

As above, this implies (3.1.42). Since λα0 ≤ π, π < α0 < 2π, we have λ ≤ 1.
However, from (3.1.43) it follows that (3−4ν)2 = λ2 sin2 α0+cos2 α0 and, therefore,
λ ≥ 3− 4ν > 1. Consequently, the function λ+ is strictly decreasing on (π, 2π).

The inequalities (3.1.40) follow from the corresponding estimates for x±(α) and
x

(1)
− (α).

3.2. The operator pencil generated by the Dirichlet problem in a cone

Let K be the cone {x ∈ R3 : 0 < |x| < ∞, x/|x| ∈ Ω}, where Ω is a domain
on the unit sphere. We consider the Lamé system for the displacement vector
U = (U1, U2, U3)

(3.2.1) ∆U + (1− 2ν)−1∇∇ · U = 0 in K
with the Dirichlet boundary condition

(3.2.2) U = 0 on ∂K\{0}.
The description of all solutions of problem (3.2.1), (3.2.2) which have the form

(3.0.2) with u(k) ∈ ◦
W 1

2(Ω)3 requires the study of the spectral properties of a cer-
tain operator pencil L which is defined below. We prove in this section that the
spectrum of this pencil consists of isolated points with finite algebraic multiplicities
and that the numbers λ, λ, 1− λ, and 1− λ are simultaneously eigenvalues or not.
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Furthermore, we give a relation between the Jordan chains corresponding to the
eigenvalues λ and 1− λ.

3.2.1. Sobolev spaces on a spherical domain. In what follows, we will
systematically employ the spherical coordinates r and ω = (θ, ϕ) which are related
to the Cartesian coordinates x = (x1, x2, x3) by

x1 = r sin θ cosϕ, x2 = r sin θ sin ϕ, x3 = r cos θ.

If (u1, u2, u3) is a vector function in Cartesian coordinates, then its spherical com-
ponents (ur, uθ, uϕ) are given by




ur

uθ

uϕ


 = J




u1

u2

u3


 ,

where

(3.2.3) J = J(θ, ϕ) =




sin θ cosϕ sin θ sin ϕ cos θ
cos θ cos ϕ cos θ sin ϕ − sin θ
− sinϕ cos ϕ 0


 .

Let us express the fact that u = (u1, u2, u3) ∈ W 1
2 (Ω)3 in terms of the spherical

components of u.
We set uω = (uθ, uϕ) and denote by

∇ω · uω =
1

sin θ
∂θ(sin θ uθ) +

1
sin θ

∂ϕuϕ

the spherical divergence of uω and by

∇ωv =
(

∂θv

(sin θ)−1 ∂ϕv

)

the spherical gradient of the function v. Furthermore, we introduce the sesquilinear
form

Q(uω, vω) =
∫

Ω

(
∂θuθ · ∂θvθ + ∂θuϕ · ∂θvϕ(3.2.4)

+
( 1

sin θ
∂ϕuθ − cot θ uϕ

)
·
( 1

sin θ
∂ϕvθ − cot θ vϕ

)

+
( 1

sin θ
∂ϕuϕ + cot θ uθ

)
·
( 1

sin θ
∂ϕvϕ + cot θ vθ

))
dω,

where dω = sin θ dθ dϕ. The space h1
2(Ω) is defined as the set of all vector functions

uω on Ω for which the quantity

‖uω‖h1
2(Ω) =

(
Q(uω, uω) +

∫

Ω

|uω|2 dω
)1/2

is finite.

Lemma 3.2.1. The Cartesian components of the vector function u belong to the
space W 1

2 (Ω) if and only if ur ∈ W 1
2 (Ω) and uω ∈ h1

2(Ω).
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Proof: The norm in W 1
2 (Ω) is defined as
(∫

Ω

(|v|2 + |∇ωv|2 )
dω

)1/2

(see Section 2.2). By a straightforward calculation, the following relations between
the Cartesian components u1, u2, u3 and the spherical components ur, uθ, uϕ of the
vector function u can be verified:

3∑

j=1

|∂θuj |2 = |∂θur|2 + |∂θuθ|2 + |∂θuϕ|2 + |ur|2 + |uθ|2 + 2 Re (ur∂θuθ − uθ∂θur),

3∑

j=1

|∂ϕuj |2 = |∂ϕur|2 + |∂ϕuθ|2 + |∂ϕuϕ|2 + sin2 θ |ur|2 + cos2 θ |uθ|2 + |uϕ|2

+ 2 Re
(

sin θ cos θ ur uθ + sin θ (ur∂ϕuϕ − uϕ∂ϕur)
)

+ 2 cos θ Re
(
uθ∂ϕuϕ − uϕ∂ϕuθ

)
.

From these formulas we obtain
3∑

j=1

|∇ωuj |2 = |∇ωur|2 + |∂θuθ|2 + |∂θuϕ|2 + 2 |ur|2 + |uω|2(3.2.5)

+
∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ

∣∣∣
2

+
∣∣∣ 1
sin θ

∂ϕuϕ + cot θ uθ

∣∣∣
2

+ 2 Re (ur ∇ω · uω − uω · ∇ωur),

where | · | is the Euclidean norm and u · v denotes the sum of products of the
corresponding components of the vectors u and v. One checks directly that

(3.2.6) |∂θuθ|2 +
∣∣∣ 1
sin θ

∂ϕuϕ + cot θ uθ

∣∣∣
2

≥ 1
2
|∇ω · uω|2 .

This and (3.2.5) imply the assertion of the lemma.

We denote by
◦
h1

2(Ω) the closure of C∞0 (Ω)2 in h1
2(Ω). Then, as a consequence

of Lemma 3.2.1, the following assertion holds.

Corollary 3.2.1. The Cartesian components of the vector function u are in
◦

W1
2(Ω) if and only if ur ∈

◦
W1

2(Ω) and uω ∈
◦
h1
2(Ω).

Furthermore, due to the compactness of the imbedding
◦

W 1
2(Ω) ⊂ L2(Ω), we

get the following result.

Corollary 3.2.2. The imbedding
◦
h1
2(Ω) ⊂ L2(Ω)2 is compact.

3.2.2. Properties of the form Q.

Lemma 3.2.2. For all uω ∈
◦
h1
2(Ω) there is the equality

Q(uω, uω) +
∫

Ω

|uω|2 dω(3.2.7)

=
∫

Ω

(
|∇ω · uω|2 +

∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ − ∂θuϕ

∣∣∣
2 )

dω.
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Proof: Applying the equalities

∫

Ω

|∇ω · uω|2 dω =
∫

Ω

(
|∂θuθ|2 +

∣∣∣ cot θ uθ +
1

sin θ
∂ϕuϕ

∣∣∣
2)

dω

+ 2 Re
∫

Ω

∂θuθ

(
cot θ uθ +

1
sin θ

∂ϕuϕ

)
dω,

∫

Ω

∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ − ∂θuϕ

∣∣∣
2

dω =
∫

Ω

(
|∂θuϕ|2 +

∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ

∣∣∣
2 )

dω

−2Re
∫

Ω

∂θuϕ

( 1
sin θ

∂ϕ uθ − cot θ uϕ

)
dω

and making use of the identities

2Re
∫

Ω

(
∂θuθ · uθ + ∂θuϕ · uϕ

)
cot θ dω =

∫

Ω

|uω|2 dω,(3.2.8)

Re
∫

Ω

(
∂θuθ · ∂ϕuϕ − ∂θuϕ · ∂ϕuθ

)
(sin θ)−1 dω = 0(3.2.9)

which are verified by integration by parts, we arrive at (3.2.7).

As a consequence of (3.2.7), we have

(3.2.10) Q(uω, uω) +
∫

Ω

|uω|2 dω ≥
∫

Ω

|∇ω · uω|2 dω

for all uω ∈
◦
h1
2(Ω).

Lemma 3.2.3. There is the inequality

(3.2.11) Q(uω, uω) ≥
∫

Ω

|uω|2 dω for all uω ∈
◦
h
1
2(Ω).

Proof: First we establish the identity

Q(uω, uω)−
∫

Ω

|uω|2 dω =
∫

Ω

(
2|∂θuθ|2 + 2

∣∣∣ 1
sin θ

∂ϕuϕ + cot θ uθ

∣∣∣
2

(3.2.12)

+
∣∣∣∂θuϕ +

1
sin θ

∂ϕuϕ − cot θ uϕ

∣∣∣
2

− |∇ω · uω|2
)

dω
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for any vector function uω ∈
◦
h1

2(Ω). In order to show this, we write the right-hand
side of (3.2.12) in the form

Q(uω, uω) +
∫

Ω

(
|∂θuθ|2 +

∣∣∣ 1
sin θ

∂ϕuϕ + cot θ uθ

∣∣∣
2

+ 2Re ∂θuϕ

( 1
sin θ

∂ϕūθ − cot θ ūϕ

)
− |∇ω · uω|2

)
dω

= Q(uω, uω) + 2 Re
∫

Ω

(
∂θuϕ

( 1
sin θ

∂ϕūθ − cot θ ūϕ

)

− ∂θuθ

( 1
sin θ

∂ϕūϕ + cot θ ūθ

))
dω.

Transforming the last integral by means of (3.2.8) and (3.2.9), we arrive at (3.2.12).
Since

2|∂θuθ|2 + 2
∣∣∣ 1
sin θ

∂ϕuϕ + cot θ uθ

∣∣∣
2

− |∇ω · uω|2 =
∣∣∣∂θuθ − 1

sin θ
∂ϕuϕ − cot θ uθ

∣∣∣
2

,

we obtain from (3.2.12) that

Q(uω, uω)−
∫

Ω

|uω|2 dω =
∫

Ω

(∣∣∣∂θuϕ +
1

sin θ
∂ϕuθ − cot θ uϕ

∣∣∣
2

(3.2.13)

+
∣∣∣∂θuθ − 1

sin θ
∂ϕuϕ − cot θ uθ

∣∣∣
2
)

dω.

This implies (3.2.11).

3.2.3. Definition of the pencil L. The Lamé system in spherical coordi-
nates has the following form (cf. Malvern’s book [159, p.672]):

∆Ur − 2
r2

(Ur +∇ω · Uω) +
1

1− 2ν
∂r

( 1
r2

∂r(r2Ur) +
1
r
∇ω · Uω

)
= 0,(3.2.14)

∆Uθ +
2
r2

(
∂θUr − 1

2 sin2 θ
Uθ − cot θ

sin θ
∂ϕUϕ

)
(3.2.15)

+
1

(1− 2ν)r2
∂θ

(1
r
∂r(r2Ur) +∇ω · Uω

)
= 0,

∆Uϕ +
2

r2 sin θ

(
∂ϕUr + cot θ ∂ϕUθ − Uϕ

2 sin θ

)
(3.2.16)

+
1

(1− 2ν)r2 sin θ
∂ϕ

(1
r
∂r(r2Ur) +∇ω · Uω

)
= 0.

Taking (Ur, Uθ, Uϕ) = rλ (ur, uθ, uϕ) and then multiplying (3.2.14)–(3.2.16) by
r2−λ, we arrive at the matrix differential operator

(3.2.17) L(λ)
(

ur

uω

)
=



−δur + 2−2ν

1−2ν (1− λ) (λ + 2) ur + 3−4ν−λ
1−2ν ∇ω · uω

−Hνuω + (1− λ) (λ + 2) uω − 4−4ν+λ
1−2ν ∇ωur


 .

Here δ denotes the Beltrami operator on the sphere S2 and

Hνuω = Huω + (1− 2ν)−1∇ω (∇ω · uω),
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where

H =




δ + 2− (sin θ)−2 −2 (sin θ)−1 cot θ ∂ϕ

2 (sin θ)−1 cot θ ∂ϕ δ + 2− (sin θ)−2


 .

Note that δv = ∇ω · (∇ωv) and that the matrix differential operator H satisfies the
equalities

H∇ωv = ∇ω (δ + 2) v,

∇ω ·H uω = (δ + 2)∇ω · uω.

Lemma 3.2.4. The operator

(3.2.18) L(λ) :
◦

W
1
2(Ω)× ◦

h
1
2(Ω) →

( ◦
W

1
2(Ω)× ◦

h
1
2(Ω)

)∗

is continuous for every λ ∈ C.

Proof: Let ur, vr ∈
◦

W1
2(Ω) and uω, vω ∈

◦
h1
2(Ω). Then

−
∫

Ω

Huω · vω dω =
∫

Ω

(
∇ωuθ · ∇ωvθ +∇ωuϕ · ∇ωvϕ + (cot2 θ − 1)uω · vω

+2
cot θ

sin θ
(∂ϕuϕ · vθ − ∂ϕuθ · vϕ)

)
dω

= Q(uω, vω)−
∫

Ω

uω · vω dω.

Consequently,∫

Ω

L(λ)
( ur

uω

)
·
( vr

vω

)
dω = Q(uω, uω)(3.2.19)

+
∫

Ω

(
∇ωur · ∇ωvr +

2− 2ν

1− 2ν
(λ + 2) (1− λ)urvr

+
(
(λ + 2)(1− λ)− 1

)
uω · vω +

1
1− 2ν

(∇ω · uω) (∇ω · vω)

+
3− 4ν − λ

1− 2ν
(∇ω · uω) vr +

4− 4ν + λ

1− 2ν
ur ∇ω · vω

)
dω.

This and (3.2.6) imply
∣∣∣
∫

Ω

L(λ)
( ur

uω

)
·
( vr

vω

)
dω

∣∣∣ ≤ c
∥∥∥
( ur

uω

)∥∥∥
W 1

2 (Ω)×h1
2(Ω)

·
∥∥∥
( ur

uω

)∥∥∥
W 1

2 (Ω)×h1
2(Ω)

.

Thus, the operator L(λ) is continuous.

From Theorem 1.1.5 it follows that the vector function (3.0.2) satisfies the
system (3.2.1) or, equivalently, the equations (3.2.14)–(3.2.16) if and only if

(3.2.20)
j∑

k=0

1
k!

∂kL
∂λk

(λ0)
(u

(s−k)
r

u
(s−k)
ω

)
= 0 on Ω for j = 0, 1, . . . , s.

Here u
(k)
r and u

(k)
ω = (u(k)

θ , u
(k)
ϕ ) are the spherical components of the vector function

u(k). This means that the following assertion is true.
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Lemma 3.2.5. The vector function (3.0.2) is a solution of problem (3.2.1),
(3.2.2) if and only if λ0 is an eigenvalue of the pencil L and u(0), . . . , u(s−1) is
a Jordan chain of this pencil corresponding to the eigenvalue λ0.

3.2.4. Basic properties of the pencil L. It can be easily seen that the
operator L(λ) is selfadjoint for Re λ = −1/2. In the following lemma we show, in
particular, that L(λ) is positive for λ on the above line.

Lemma 3.2.6. Let λ = it− 1/2, t ∈ R. Then∫

Ω

L(λ)
( ur

uω

)
·
( ur

uω

)
dω(3.2.21)

≥ c
(
Q(uω, uω) +

∫

Ω

|∇ωur|2 dω
)

+ (c + t2)
∫

Ω

(|ur|2 + |uω|2) dω

for every vector function (ur, uω) ∈ ◦
W 1

2(Ω)× ◦
h1

2(Ω). Here c is a positive constant
which is independent of the domain Ω.

Proof: Since the functions ur and uω can be extended by zero outside Ω, it
suffices to prove (3.2.21) for the case Ω = S2. By means of (3.2.19), we can rewrite
the left-hand side of (3.2.21) in the form

Q(uω, uω) +
∫

S2

(
|∇ωur|2 +

2− 2ν

1− 2ν

(9
4

+ t2
)
|ur|2 +

1
1− 2ν

|∇ω · uω|2

+
(5

4
+ t2

)
|uω|2 + 2 Re

(7/2− 4ν + it

1− 2ν
ur∇ω · uω

))
dω.

Using (3.2.7) and integrating by parts, we obtain that the last expression is equal
to ∫

S2

(∣∣∣∇ωur − 1
2
uω

∣∣∣
2

+
∣∣∣3
2
ur +∇ω · uω

∣∣∣
2

+
1

1− 2ν

∣∣∣
(3
2

+ it
)
ur +∇ω · uω

∣∣∣
2

+ t2 (|ur|2 + |uω|2) +
∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ − ∂θuϕ

∣∣∣
2
)

dω.

Hence (3.2.21) will be proved if we show that

(3.2.22)∫

S2

(∣∣∣∇ωur − 1
2
uω

∣∣∣
2

+
∣∣∣3
2
ur +∇ω · uω

∣∣∣
2

+
∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ − ∂θuϕ

∣∣∣
2
)

dω

≥ c
(
Q(uω, uω) +

∫

Ω

(|∇ωur|2 + |ur|2 + |uω|2
)
dω

)
.

To this end, we show first that the left-hand side of (3.2.22) is not equal to zero
unless the vector function (ur, uω) vanishes identically. Indeed, let us assume that

(3.2.23) ∇ωur − 1
2

uω = 0,
3
2

ur +∇ω · uω = 0.

Then we have

(3.2.24) δur +
3
4

ur = 0,

∫

S2

ur dω = 0.
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Since the second eigenvalue of −δ on the sphere is equal to 2 and the first eigenvalue
is zero with eigenfunction u = const (see Section 2.2.2), the identity (3.2.24) cannot
be true if ur 6= 0. Therefore, it follows from (3.2.23) that ur = 0, uω = 0. Conse-
quently, the left-hand side of (3.2.22) is positive for (ur, uω) 6= 0. Furthermore, by
Lemma 3.2.2, the left-hand side of (3.2.22) is majorized by

c
(
‖ur‖2W 1

2 (Ω) + ‖uω‖2h1
2(Ω)

)

and bounded from below by

c1

(
‖ur‖2W 1

2 (Ω) + ‖uω‖2h1
2(Ω)

)
− c2

(
‖ur‖2L2(Ω) + ‖uω‖2L2(Ω)2

)
.

Hence the left-hand side of (3.2.22) is an equivalent norm in
◦

W1
2(Ω)× ◦

h1
2(Ω). This

proves the inequalities (3.2.22) and (3.2.21).

The following theorem contains some basic properties of the pencil L.

Theorem 3.2.1. 1) The operator L(λ) is Fredholm for every λ ∈ C and positive
definite for Re λ = −1/2.

2) The spectrum of the pencil L consists of isolated eigenvalues with finite
algebraic multiplicities.

3) For all λ ∈ C there is the equality

(3.2.25) (L(λ))∗ = L(−1− λ).

This implies, in particular, that the number λ0 is an eigenvalue of the pencil L if
and only if −1 − λ0 is an eigenvalue of L. Moreover, the geometric, partial and
algebraic multiplicities of the eigenvalues λ0 and −1− λ0 coincide.

4) The number λ0 is an eigenvalue of the pencil L if and only if λ0 is an eigen-
value of the pencil L. The geometric, partial and algebraic multiplicities of these
eigenvalues coincide. If u(0), . . . , u(s) is a Jordan chain of the pencil L correspond-
ing to the eigenvalue λ0, then u(0), . . . , u(s) is a Jordan chain corresponding to the
eigenvalue λ0.

Proof: 1) By (3.2.21), the operator L(λ) is positive definite and invertible for
Re λ = −1/2. Furthermore, for every λ ∈ C the operator

L(λ)− L(−1/2) :
◦

W
1
2(Ω)× ◦

h
1
2(Ω) →

( ◦
W

1
2(Ω)× ◦

h
1
2(Ω)

)∗

is compact and, since L(−1/2) is invertible, it follows that L(λ) is a Fredholm
operator for all λ ∈ C.

2) The second assertion follows from assertion 1) and Theorem 1.1.1.
3) Applying Theorem 1.2.2, where A = L and γ = −1, we get (3.2.25).
4) For the proof of the last assertion we take the complex conjugate of (3.2.20)

and utilize the fact that the coefficients of the Lamé system are real. The proof is
complete.

3.2.5. A connection between the Jordan chains corresponding to the
eigenvalues λ0 and −1 − λ0. We introduce the diagonal matrix

(3.2.26) T (λ) =




4− 4ν + λ 0 0
0 3− 4ν − λ 0
0 0 3− 4ν − λ


 .
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It can be immediately verified that

(3.2.27) T (λ)L(λ) = L(−1− λ) T (λ).

Theorem 3.2.2. Let λ0 be an eigenvalue and u(0), . . . , u(s) a Jordan chain
corresponding to this eigenvalue.

1) If λ0 and u(0) satisfy one of the conditions

(i) λ0 6= 3− 4ν and λ0 6= 4ν − 4,

(ii) λ0 ∈
{
3− 4ν , 4ν − 4} and T (λ0)u(0) 6= 0,

then the vector functions

T (λ0)u(0), (−1)k


T (λ0)u(k) +




1 0 0
0 −1 0
0 0 −1


 u(k−1)


 , k = 1, . . . , s,

form a Jordan chain of eigenvectors and generalized eigenvectors of the pencil L
corresponding to the eigenvalue −1− λ0.

2) Let either λ0 = 3− 4ν or λ0 = 4ν − 4. Furthermore, let T (λ0)u(0) = 0 and
s ≥ 1. Then the vector functions

(−1)k−1


T (λ0)u(k) +




1 0 0
0 −1 0
0 0 −1


 u(k−1)


 , k = 1, . . . , s,

form a Jordan chain corresponding to the eigenvalue −1− λ0.

Proof: Let

u(λ) =
s∑

k=0

(λ− λ0)k u(k) .

Then
L(λ) u(λ) = O(|λ− λ0|s+1).

From this and (3.2.27) it follows that

(3.2.28) L(−1− λ) T (λ)u(λ) = O(|λ− λ0|s+1).

We set v(0) = T (λ0) u(0) and

(3.2.29) v(k) = (−1)k
(
T (λ0)u(k) + T ′(λ0) u(k−1)

)
, k = 1, . . . , s.

Then, by (3.2.28), we have

k∑

j=0

1
j!
L(j)(−1− λ) v(k−j) = 0

for k = 0, . . . , s. Furthermore, we have v(0) 6= 0 in case 1) and v(1) 6= 0 in case 2).
This proves the theorem.

Remark 3.2.1. If λ0 6= 3 − 4ν and λ0 6= 4ν − 4, then the formulas given
in the first part of Theorem 3.2.2 establish a one-to-one correspondence between
the eigenvectors and generalized eigenvectors of the pencil L corresponding to the
eigenvalues λ0 and −1− λ0, respectively.
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3.2.6. The Kelvin transform for the Lamé system. The identity (3.2.27)
implies the following analogue of the Kelvin transform for solutions of the Lamé
system.

Let U(x) be a solution of the system (3.2.1) in the domain G ⊂ R3. Then the
vector function

V (x) =
1
|x|

(
(3− 4ν) I + Ξ + (I − 2Ξ)

3∑

k=1

xk ∂xk

)
U

( x

|x|2
)

,

where I denotes the identity matrix and Ξ is the matrix with the elements xixj |x|−2,
is also a solution of the Lamé system in a domain which is obtained from G via the
inversion x → x|x|−2.

Indeed, we have L(r∂r)JU = 0, where J = J(θ, ϕ) is the transformation matrix
between spherical and Cartesian coordinates introduced in the beginning of this
section. Since (3.2.27) can be written as

T (r∂r)L(r∂r) = L(−1− r∂r) T (r∂r),

we get
L(−1− r∂r) T (r∂r)

(
J(θ, ϕ)U(x)

)
= 0

or, equivalently,

L(−r∂r)
(
r T (r∂r)

(
J(θ, ϕ) U(x)

))
= 0.

Replacing r by r−1, we obtain

L(r∂r)
(
r−1 T (−r∂r)

(
J(θ, ϕ) U(x/|x|2))

)
= 0,

i.e., the vector function J∗ r−1 T (−r∂r)J U(x/|x|2) satisfies the system (3.2.1).
Using the definition of the matrices J and T , we verify that this function is equal
to V.

The Kelvin transform obtained here is useful for the construction of particular
solutions of the Lamé system. For example, replacing U by the matrices I and x3I,
we arrive, up to scaling factors, at the Kelvin-Somigliana tensor and the Poisson
kernel for the Dirichlet problem in the half-space x3 > 0.

3.3. Properties of real eigenvalues

Here we describe a domain symmetric with respect to the line Re λ = −1/2
which contains only real eigenvalues. We also show that there are no generalized
eigenvectors associated to eigenvalues in this set.

3.3.1. A domain containing only real eigenvalues. We introduce the
quantities

(3.3.1) Γ(Ω) = inf
0 6=uω∈

◦
h1
2(Ω)

Q(uω, uω) + (2− 2ν)−1
∫
Ω
|∇ω · uω|2 dω∫

Ω
|uω|2 dω

and

(3.3.2) Fν(Ω) =
(1

2
Γ(Ω) +

3
4

+ (2− 2ν) (3− 4ν)
)1/2

.
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Theorem 3.3.1. In the region

(3.3.3)
(
Re λ +

1
2

)2

− (Im λ)2 < (Fν(Ω))2

the pencil L has only real eigenvalues.

Proof: Let λ be a complex number such that Im λ 6= 0, Re λ 6= −1/2. We
consider the quadratic form

q(u, u; λ) =
∫

Ω

L(λ)
(

ur

uω

)
·
(

c ur

uω

)
dω,

where

(3.3.4) c =
4− 4ν + λ

3− 4ν − λ
.

After a straightforward calculation we arrive at

q(u, u; λ) = Q(uω, uω) +
∫

Ω

(
c |∇ωur|2 + c

2− 2ν

1− 2ν
(1− λ)(λ + 2)|ur|2

)
dω(3.3.5)

+
(
(1− λ)(λ + 2)− 1

) ∫

Ω

|uω|2 dω +
1

1− 2ν

∫

Ω

|∇ω · uω|2 dω

+ 2 Re
(4− 4ν + λ

1− 2ν

∫

Ω

ur∇ω · uω dω
)
.

Using the relations

(3.3.6) c (1− λ) (λ + 2) = |4− 4ν + λ|2 − 2 (1− 2ν) (5− 4ν) c,

(3.3.7) c =
(4− 4ν + Re λ)(3− 4ν − Re λ) + (Im λ)2 + i Imλ (2Re λ + 1)

|3− 4ν − λ|2
and separating real and imaginary parts of the form q(u, u; λ), we find

Im q(u, u; λ) = Im λ (2Re λ + 1)


 1
|3− 4ν − λ|2

∫

Ω

|∇ωur|2 dω

−4(1− ν)(5− 4ν)
|3− 4ν − λ|2

∫

Ω

|ur|2 dω −
∫

Ω

|uω|2 dω


 ,

Re q(u, u; λ) = Q(uω, uω) + Re c

∫

Ω

|∇ωur|2 dω

+
(2− 2ν

1− 2ν
|4− 4ν + λ|2 − 4(1− ν)(5− 4ν)Re c

) ∫

Ω

|ur|2 dω

+
(
1− (Re λ)2 − Re λ + (Im λ)2

) ∫

Ω

|uω|2 dω

+
1

1− 2ν

∫

Ω

|∇ω · uω|2 dω + 2 Re
(4− 4ν + λ

1− 2ν

∫

Ω

ur∇ω · uω dω
)
.
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From this we obtain

Re q(u, u; λ)− Re c |3− 4ν − λ|2
Im λ (2Re λ + 1)

Im q(u, u; λ)(3.3.8)

= Q(uω, uω) +
1

2− 2ν

∫

Ω

|∇ω · uω|2 dω

+
2− 2ν

1− 2ν

∫

Ω

∣∣∣(4− 4ν + λ)ur +
1

2− 2ν
∇ω · uω

∣∣∣
2

dω

+
(
1 + (3− 4ν)(4− 4ν) + 2(Im λ)2 − 2Reλ (Re λ + 1)

) ∫

Ω

|uω|2 dω.

Consequently, if

(3.3.9) Γ(Ω) + 1 + (3− 4ν)(4− 4ν) + 2(Imλ)2 − 2Re λ (Re λ + 1) > 0,

then (3.3.8) is positive for uω 6= 0.
Suppose now that λ is an eigenvalue satisfying the inequality (3.3.9) and (ur, uω)

is an eigenvector corresponding to this eigenvalue. Then q(u, u; λ) = 0 and, nec-
essarily, also uω = 0. From this and from the equation L(λ)u = 0 we find that
(4−4ν +λ)∇ωur = 0 on Ω. Due to our assumption that Imλ 6= 0, the last equality

yields ∇ωur = 0 and, therefore, ur = const. Since ur ∈
◦

W 1
2(Ω), the function ur

must vanish. This proves the assertion in the case Re λ 6= −1/2. Since, by Theorem
3.2.1, there are no eigenvalues on the line Reλ = −1/2, the theorem is completely
proved.

As a consequence of Theorem 3.3.1, the following assertion holds.

Corollary 3.3.1. In the strip

(3.3.10)
∣∣∣Re λ +

1
2

∣∣∣ ≤ Fν(Ω)

the pencil L has only real eigenvalues.

An estimate for the set function Fν will be given later.

3.3.2. Absence of generalized eigenvectors. We consider the real eigen-
values of the pencil L in the interval (−Fν(Ω)− 1

2 , Fν(Ω)− 1
2 ). Our goal is to show

that there are no generalized eigenvectors associated to these eigenvalues.

Lemma 3.3.1. Let λ0 be a real eigenvalue of the pencil L and u(0) a correspond-
ing eigenvector. Furthermore, let c(λ) = (4− 4ν + λ)/(3− 4ν − λ).

1) If −1/2 < λ0 < min{3− 4ν , Fν(Ω)− 1/2}, then

d

dλ

∫

Ω

L(λ) u(0) ·
(

c(λ) ū
(0)
r

ū
(0)
ω

)
dω

∣∣∣∣
λ=λ0

< 0.

2) If 3− 4ν < λ0 < Fν(Ω)− 1/2, then

d

dλ

∫

Ω

L(λ) u(0) ·
(

c(λ) ū
(0)
r

ū
(0)
ω

)
dω

∣∣∣∣
λ=λ0

> 0.
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Proof: Let q be the sesquilinear form (3.3.5). For real λ the function (3.3.4)
coincides with c(λ) = (4− 4ν + λ)/(3− 4ν − λ). Differentiating (3.3.5), we get

d

dλ

∫

Ω

L(λ)u(0) ·
(

c(λ) ū
(0)
r

ū
(0)
ω

)
dω

∣∣∣∣
λ=λ0

=
d

dλ
q(u(0), u(0);λ)

∣∣∣
λ=λ0

(3.3.11)

=
∫

Ω

(
c′(λ0) |∇ωu(0)

r |2 − (2λ0 + 1) |u(0)
ω |2 +

2
1− 2ν

Re u(0)
r ∇ω · ū(0)

ω

+
2− 2ν

1− 2ν

(
(1− λ0)(λ0 + 2)c′(λ0)− (2λ0 + 1)c(λ0)

)
|u(0)

r |2
)

dω,

where c′(λ) = (7 − 8ν) (3 − 4ν − λ)−2. Multiplying both sides of the equation
L(λ0)u(0) = 0 by the vector function (u(0)

r , 0), integrating over Ω and taking the
real part, we find that the integral∫

Ω

(
|∇ωu(0)

r |2 +
2− 2ν

1− 2ν
(1− λ0)(λ0 + 2) |u(0)

r |2 +
3− 4ν − λ0

1− 2ν
Re(∇ω · u(0)

ω )ū(0)
r

)
dω

vanishes. From this and from (3.3.11) we obtain
1 + 2λ0

(3− 4ν − λ0)2

∫

Ω

|∇ωu(0)
r |2 dω − 4(1 + 2λ0)(1− ν)(5− 4ν)

(3− 4ν − λ0)2

∫

Ω

|u(0)
r |2 dω

−(2λ0 + 1)
∫

Ω

|u(0)
ω |2 dω =

d

dλ
q(u(0), u(0);λ)

∣∣∣
λ=λ0

.

Furthermore, by a calculation analogous to that in the proof of Theorem 3.3.1, we
arrive at the identity

− (4− 4ν + λ0)(3− 4ν − λ0)
1 + 2λ0

d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

= q(u(0), u(0);λ0)− (4− 4ν + λ0)(3− 4ν − λ0)
1 + 2λ0

d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

= Q(u(0)
ω , u(0)

ω ) +
1

2− 2ν

∫

Ω

|∇ω · u(0)
ω |2 dω

+
2− 2ν

1− 2ν

∫

Ω

∣∣∣(4− 4ν + λ0)u(0)
r +

1
2− 2ν

∇ω · u(0)
ω

∣∣∣
2

dω

+
(
1 + (3− 4ν)(4− 4ν)− 2Re λ0 (Re λ0 + 1)

) ∫

Ω

|u(0)
ω |2 dω.

This implies the assertion of the lemma.

Theorem 3.3.2. There are no generalized eigenvectors associated to eigenval-
ues in the interior of the strip (3.3.10).

Proof: Due to assertions 1) and 3) of Theorem 3.2.1, it is sufficient to consider
the case −1/2 < λ0 < Fν(Ω)− 1/2. Let u(0) be an eigenvector corresponding to λ0

and let u(1) be a generalized eigenvector for u(0). Then

L(λ0) u(0) = 0,(3.3.12)

L(λ0) u(1) = −L′(λ0) u(0) .(3.3.13)
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Assume first that λ0 6= 3 − 4ν. Multiplying both sides of (3.3.13) by (c̄u(0)
r , u

(0)
ω ),

where the quantity c has been defined in (3.3.4), setting λ = λ0 and integrating
over Ω, we get

q(u(1), u(0); λ0) = − d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

.

Here q(·, ·; λ) is the sesquilinear form (3.3.5). Since this form is symmetric for real
λ, we have

q(u(1), u(0); λ0) = q(u(0), u(1); λ0) = 0.

Therefore,
d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

= 0.

However, by Lemma 3.3.1, this is impossible. Thus, the theorem is proved for the
case λ0 6= 3− 4ν.

Now let 3−4ν < Fν(Ω)−1/2 and λ0 = 3−4ν. The equations (3.3.12), (3.3.13)
for the components u

(0)
r and u

(1)
r take the form

δu(0)
r + (4− 4ν) (5− 4ν)u(0)

r = 0,

δu(1)
r + (4− 4ν) (5− 4ν)u(1)

r = −2(1− ν)(7− 8ν)
1− 2ν

u(0)
r − 1

1− 2ν
∇ω · u(0)

ω .

The second equation may have a nontrivial solution only if

(3.3.14) 2(1− ν) (7− 8ν)
∫

Ω

|u(0)
r |2 dω + Re

∫

Ω

(∇ω · u(0)
ω )u(0)

r dω = 0.

Multiplying (3.3.12) by the vector function (0, u(0)
ω ), integrating over Ω and taking

the real part, we find

0 = Q(u(0)
ω , u(0)

ω )− (
1 + 2(1− 2ν)(5− 4ν)

) ∫

Ω

|u(0)
ω |2 dω(3.3.15)

+
1

1− 2ν

∫

Ω

|∇ω · u(0)
ω |2 dω +

7− 8ν

1− 2ν
Re

∫

Ω

u(0)
r ∇ω · ū(0)

ω dω.

From (3.3.14) it follows that

2− 2ν

1− 2ν

∫

Ω

∣∣∣(7− 8ν)u(0)
r +

1
2− 2ν

∇ω · u(0)
ω

∣∣∣
2

dω

− 1
(1− 2ν)(2− 2ν)

∫

Ω

|∇ω · u(0)
ω |2 dω =

7− 8ν

1− 2ν
Re

∫

Ω

u(0)
r ∇ω · u(0)

ω dω.

Using this equality, we can write (3.3.15) in the form

Q(u(0)
ω , u(0)

ω ) +
2− 2ν

1− 2ν

∫

Ω

∣∣∣(7− 8ν)u(0)
r +

1
2− 2ν

∇ω · u(0)
ω

∣∣∣
2

dω

+
1

2− 2ν

∫

Ω

|∇ω · u(0)
ω |2 dω − (

1 + 2(1− 2ν)(5− 4ν)
) ∫

Ω

|u(0)
ω |2 dω = 0.

Now, since Fν(Ω)− 1/2 > 3− 4ν, we have Γ(Ω) > 1+2(1− 2ν)(5− 4ν). Therefore,
the last equality cannot hold. The theorem is proved.
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3.4. The set functions Γ and Fν

We are interested in estimates for the quantity Fν(Ω) which appeared in Theo-
rems 3.3.1 and 3.3.2. For this we need information about the function Γ(Ω) defined
in (3.3.1).

In the sequel, we will write Ω0 ⊂⊂ Ω1, where Ω0, Ω1 are subdomains of the
sphere, if Ω0 ⊂ Ω1 and Ω1\Ω0 contains a nonempty open set.

3.4.1. Monotonicity of Γ and Fν .

Lemma 3.4.1. 1) If Ω0 ⊂ Ω1, then Γ(Ω0) ≥ Γ(Ω1).
2) If Ω0 ⊂⊂ Ω1, then Γ(Ω0) > Γ(Ω1).

Proof: If Ω0 ⊂ Ω1, then
◦
h1

2(Ω0) is contained in
◦
h1

2(Ω1). This proves the mono-
tonicity of Γ.

Let Ω0 ⊂⊂ Ω1. We assume that Γ(Ω0) = Γ(Ω1) and denote by u
(0)
ω ∈◦h1

2(Ω0) a
nonzero vector on which the infimum in (3.3.1) is attained. The extension of this
vector function to Ω1 by zero will be also denoted by u

(0)
ω . From our assumption

it follows that the infimum in (3.3.1) for the space
◦
h1
2(Ω1) is also attained on u

(0)
ω .

Therefore,
−Hν−1/2u

(0)
ω = Γ(Ω1)u(0)

ω on Ω1 .

From this we obtain that u
(0)
ω is analytic on Ω1 and, since u

(0)
ω = 0 on Ω1\Ω0, it

follows that u
(0)
ω = 0 on Ω1. This completes the proof.

Remark 3.4.1. If we let ν in (3.3.1) tend to −∞, then Γ(Ω) is equal to the
quantity

(3.4.1) s(Ω) = inf
0 6=uω∈

◦
h1
2(Ω)

( ∫

Ω

|uω|2 dω
)−1

Q(uω, uω).

Repeating the proof of Lemma 3.4.1 verbatim, we verify that the assertions 1) and
2) of Lemma 3.4.1 also hold for s(Ω). According to Lemma 3.2.3, we have s(Ω) ≥ 1.

From the stated properties of Γ(Ω) we immediately obtain the following asser-
tions.

Corollary 3.4.1. Let Fν(Ω) be the quantity defined in (3.3.2).
1) If Ω0 ⊂ Ω1, then Fν(Ω0) ≥ Fν(Ω1).
2) If Ω0 ⊂⊂ Ω1, then Fν(Ω0) > Fν(Ω1).
3) For all Ω ⊂ S2 there is the inequality

(3.4.2) Fν(Ω) ≥
((5

2
− 2ν

)2

+ (1− 2ν)2
)1/2

.

3.4.2. Estimates of Γ(Ω), Fν(Ω) for circular cones. Now we estimate
the quantities Γ(Ω) and Fν(Ω) for right circular cones, i.e., for

Ω = Ωα = { (θ, ϕ) : 0 ≤ θ < α, 0 ≤ ϕ < 2π} ,

where α ∈ (0, π].
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Lemma 3.4.2. The quantity Γ(Ωα) satisfies the inequalities

(3.4.3) γ0(α)− 1 ≥ Γ(α0) ≥ min
{
γ0(α), γ+

1 (α), γ−1 (α)
}− 1,

where

(3.4.4) γ0(α) = inf
f 6=0, f(cos α)=0

1∫
cos α

(
(1− x2) |f ′(x)|2 + (1− x2)−1 |f(x)|2

)
dx

1∫
cos α

|f(x)|2 dx

,

(3.4.5) γ±1 (α) = inf
f 6=0, f(cos α)=0

1∫
cos α

(
(1− x2) |f ′(x)|2 + 2 (1± x)−1 |f(x)|2

)
dx

1∫
cos α

|f(x)|2 dx

.

Proof: Let us first establish the upper bound for Γ(Ωα). Taking the infimum in
the right-hand side of (3.3.1) only over vector functions of the form (0, g(θ)), where

g ∈◦h1
2(Ωα), we get

Γ(Ωα) ≤ inf
g 6=0,g(α)=0

α∫
0

(|g′(θ)|2 + cot2 θ |g(θ)|2) sin θ dθ

α∫
0

|g(θ)|2 sin θ dθ

.

The change of variables cos θ = x leads immediately to the upper bound in (3.4.3).
We show the lower bound. Since Γ(Ωα) ≥ s(Ωα), it is sufficient to estimate

s(Ωα) from below. Observe that, if the infimum s(Ωα) in (3.4.1) is attained on the
pair (uθ, uϕ), then it is also attained on the pair (uϕ,−uθ), since the form Q(uω, uω)
is invariant under this transformation. Consequently, there exists a minimizer of
the form (f, if) or (f,−if) on which s(Ωα) is attained. If we represent f(θ, ϕ) as

f =
∑

k

f (k)(θ)
eikϕ

√
2π

,

where f (k)(α) = 0, we find that

s(Ωα) = min
k

µ±k ,

where

µ±k = inf
f

( α∫

0

|f |2 sin θ dθ

)−1

·
α∫

0

(
|f ′(θ)|2 +

( k

sin θ
± cot θ

)2

|f(θ)|2
)

sin θ dθ

and the infimum is taken over all functions f on the interval [0, α] such that f(α) =
0. Since for k ≥ 2 and θ ∈ (0, α] the inequality

( k

sin θ
± cot θ

)2

>
( 1

sin θ
± cot θ

)2

is satisfied, we have µ±1 < µ±k for k ≥ 2 and, therefore,

s(Ωα) = min(µ0, µ
+
1 , µ−1 ).
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Substituting x = cos θ into the expressions for µ0 and µ±1 , we get the quantities
γ0 − 1 and γ±1 − 1, respectively. This proves the lemma.

The figure below shows the dependence of the bounds γ0(α)− 1, γ+
1 (α)− 1 for

Γ(Ωα), α ∈ (π/2, π).

1

1.5

2

2.5

3

3.5

4

4.5

5

90 100 110 120 130 140 150 160 170 180

Figure 6. Upper bound γ0(α)− 1 and lower bound γ+
1 (α)− 1 for Γ(Ωα)

Remark 3.4.2. Let α = π. Then Γ(S2) = 1 and the only extremal element
(up to normalization) in (3.3.1) is the vector (uθ, uϕ) = (0, sin θ).

Indeed, by Lemma 3.2.3, we have Γ(S2) ≥ 1. Since the right-hand side of (3.3.1)
is equal to one for Ω = S2 and (uθ, uϕ) = (0, sin θ), we conclude that Γ(S2) = 1. In
order to show that there are no other minimizers, it suffices to consider only those
minimizers of the functional s for which ∇ω · uω = 0. Since µk > µ1 for k ≥ 2, we
need only consider functions which are either independent of ϕ or which are of the
form eiϕvω(θ). Using formula (3.2.13), we obtain in the first case that

Q(uω, uω) =
∫

S2

|uω|2 dω

and uω = (0, c sin θ) if ∇ω ·uω = 0. In the second case the right-hand side of (3.2.13)

is always positive for nonzero eiϕvω(θ) ∈◦h1
2(S

2).

Remark 3.4.3. Let γ0(α) = µ(µ + 1), µ > 0. As is easily seen, µ is the small-
est positive root of the equation P 1

µ(cos α) = 0, where P 1
µ denotes the associated

Legendre function. The corresponding minimizer is equal to P 1
µ(x).

In the next lemma we employ the notion of capacity, see (2.2.12). Note that

cap (S2\Ω) = 0 ⇔ h1
2(S

2) =
◦
h
1
2(Ω) ⇔ W 1

2 (S2) =
◦

W
1
2(Ω).

As is well known, the capacity of any arc is positive.

Lemma 3.4.3. Let Ω ⊂ S2 and cap (S2\Ω) > 0. Then Γ(Ω) > 1.
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Proof: It is known (see the article [46] by Deny and Lions or Landkof’s book

[164]) that every function u ∈ ◦
W 1

2(Ω)3, “precisée” in the sense of [46], is equal to

zero quasi-everywhere on S2\Ω. By Lemma 3.2.1, the same holds for all v ∈◦h1
2(Ω).

Now the crucial observation is that the vector (0, sin θ) for which, according to
Remark 3.4.2, the infimum Γ = 1 is attained is nonzero quasi-everywhere on S2

as it vanishes only at the poles. Hence (0, sin θ) 6∈◦h1
2(Ω) if cap (S2\Ω) > 0. This

implies Γ > 1 if cap (S2\Ω) > 0.

3.5. A variational principle for real eigenvalues

Let α = −1/2, β = min{Fν(Ω)−1/2 , 3−4ν}. By Theorem 3.3.1, the eigenvalues
of the pencil L in the strip α ≤ Re λ < β are real. By means of a variational
principle, we show that these eigenvalues depend monotonically on the domain Ω.

We set

A(λ)
def
= T (λ)L(λ),

where T (λ) is the matrix (3.2.26). Then every eigenvalue of the pencil L is also an
eigenvalue of the pencil A. Furthermore, we have

ã(u, u;λ)
def
=

∫

Ω

A(λ)
(

ur

uω

)
·
(

ur

uω

)
dω = (3− 4ν − λ) q(u, u; λ)

= (3− 4ν − λ)
(

Q(uω, uω) + (1− λ− λ2)
∫

Ω

|uω|2 dω

)

+ (3− 4ν − λ)
(

1
1− 2ν

∫

Ω

|∇ω · uω|2 dω +
2(4− 4ν + λ)

1− 2ν
Re

∫

Ω

ur∇ω · uω dω

)

+ (4− 4ν + λ)
( ∫

Ω

|∇ωur|2 dω +
2− 2ν

1− 2ν
(1− λ)(λ + 2)

∫

Ω

|ur|2 dω

)

for λ ∈ R, (ur, uω) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω). The form ã and the pencil A satisfy conditions

(I)–(III) in Section 1.3 if we set

H+ =
◦

W
1
2(Ω)× ◦

h
1
2(Ω) and H = L2(Ω)3.

Condition (I) is a consequence of 3 − 4ν − λ > 0, while conditions (II) and (III)
follow from Lemmas 3.2.6 and 3.3.1.

By Theorem 1.3.1, the operator A(λ) is selfadjoint, bounded from below and
has discrete spectrum for every fixed λ ∈ [α, β). We consider the eigenvalue problem

A(λ) u = µ(λ) u

for fixed λ ∈ [α, β). By {µj(λ)}j≥1 we denote a nondecreasing sequence of eigen-
values of this problem counted with their multiplicities. As it was shown in Section
1.3 (see Theorem 1.3.2), the functions µj are continuous on the interval [α, β). Fur-
thermore, as a consequence of Theorems 1.3.2, 1.3.3 and Corollary 3.3.1, we obtain
the following results.
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Theorem 3.5.1. 1) All eigenvalues of the pencil L in the strip −1/2 ≤ Reλ < β
are real and may be characterized by

{λj}j=1,...,J =
{

λ ∈ [−1
2
, β] : µj(λ) = 0 for j = 1, . . . , J

}
,

where J is the largest index j for which the function µj has a zero in the interval
[− 1

2 , β). For every j the function µj has not more than one zero in [− 1
2 , β).

2) If λ0 ∈ [− 1
2 , β) is an eigenvalue of multiplicity I, then I is equal to the

number of function µj which have a zero at λ0.

Now we study the dependence of the eigenvalues on the domain Ω. To this
end, we will indicate the dependence of the quantities on the domain explicitly (for
example β(Ω), µj(λ; Ω), and so on). By the variational principle for eigenvalues of
selfadjoint operators which are bounded from below, we have

µj(λ; Ω) = max
L

min
u∈L\{0}

ã(u, u;λ, Ω)
‖u‖2L2(Ω)3

for λ ∈ [−1
2
, β(Ω)),

where the maximum is taken over all subspaces L ⊂ ◦
W1

2(Ω)× ◦
h1
2(Ω) of codimension

≥ j − 1.
We enumerate the eigenvalues of the pencil L(λ; Ω) which are located in the

interval [− 1
2 , β(Ω)) in nondecreasing order:

−1/2 < λ1(Ω) ≤ . . . ≤ λJ(Ω) < β(Ω).

Here the eigenvalues are counted with their geometric multiplicities, i.e., J = J(Ω)
denotes the sum of the geometric multiplicities of all eigenvalues of L(λ; Ω) in the
interval [− 1

2 , β).

Theorem 3.5.2. Let Ω1, Ω2 be open subsets of the unit sphere, Ω1 ⊂ Ω1. Then
J(Ω1) ≤ J(Ω2) and

(3.5.1) λj(Ω2) ≤ λj(Ω1) for j = 1, . . . , J(Ω1).

If, in addition, Ω1 ⊂⊂ Ω2, then in (3.5.1) even the strict inequality holds.

Proof: We apply Theorem 1.3.5. In our case

H+ =
◦

W
1
2(Ω2)×

◦
h
1
2(Ω0) and H = L2(Ω2)3.

The same spaces with Ω1 instead of Ω2 are denoted by H+ and H. If we identify
every function on Ω1 with its extension by zero to Ω2, we can consider the spaces
H+, H as subspaces of H+ and H, respectively. Applying the first part of Theorem
1.3.5 to the form ã, we obtain (3.5.1). In order to prove the strict inequality, we
have to verify that the equality

ã(u, v; λ) = 0 for all v ∈ H+,

where u ∈ H+, −1/2 < λ < β(Ω1), implies u = 0. Indeed, from the above equality
we obtain that L(λ)u = 0 in Ω2. Since the operator L(λ) is elliptic and has analytic
coefficients, we obtain that u is analytic in Ω2. Therefore, from the equality u = 0
in Ω2\Ω1 it follows that u = 0. Now it suffices to refer to part 2) of Theorem 1.3.5
to complete the proof.

If K = R3, then the only solutions of (3.2.1), (3.2.2) having the form (3.0.2)
with − 1

2 ≤ Re λ ≤ 1 are the vector functions U = a and U = b(1)x1+b(2)x2+b(3)x3,
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where a, b(1), b(2), b(3) ∈ C3. In the case K = R3
+ = {x ∈ R3 : x3 > 0} the only

solution of this form is the vector function U = bx3, where b ∈ C3. Consequently,
for K = R3 the spectrum of the pencil L consists only of the eigenvalues λ0 = 0
and λ1 = 1 with geometric multiplicities 3 and 9, respectively. In the case K = R3

+

the spectrum in this strip consists only of the eigenvalue λ = 1 with geometric
multiplicity 3. In both cases there are no generalized eigenvectors.

Using Theorem 3.5.2 and this information on the spectrum of the pencil L for
Ω = S2

+ and Ω = S2 we arrive at the following statement.

Theorem 3.5.3. If Ω ⊂⊂ S2
+, then the strip |Reλ+ 1

2 | ≤ 3
2 contains no eigenval-

ues of the operator pencil L. If S2
+ ⊂ Ω ⊂⊂ S2, then the strip |Re λ+ 1

2 | ≤ 3
2 contains

exactly three eigenvalues of L. They are real and the corresponding eigenfunctions
do not have generalized eigenfunctions.

3.6. Estimates for the width of the energy strip

We suppose that cap (S2\Ω) > 0. Then the first eigenvalue of the Dirichlet
problem for the operator −δ in Ω is positive. We represent this eigenvalue in the
form M(M + 1), M > 0.

Our goal is the estimation of the energy strip for the pencil L stated in terms
of M . For arbitrary real t we set

φ(t) = (2t + 1) (t + 1) (t + 2)− (3− 4ν − t) (M − t) (M + t + 1) .

Furthermore, we denote by t(M) the smallest solution of the equation

φ(t) = 2(2t + 1)

lying in the interval −1/2 < t < M. Since φ(t) < 2(2t + 1) for −1/2 < t ≤ 0 and
φ(M) > 2(2M + 1), such a solution always exists and is positive.

Theorem 3.6.1. The strip determined by the inequality

(3.6.1)
∣∣∣Re λ +

1
2

∣∣∣ ≤ min{1, t(M)}+
1
2

does not contain eigenvalues of the pencil L.

Proof: Since there are no eigenvalues of L(λ) on the line Reλ = −1/2 and
λ0 is an eigenvalue if and only if −1 − λ0 is an eigenvalue (see Theorem 3.2.1), it
suffices to prove the nonexistence of eigenvalues in the strip (3.6.1) for Reλ > −1/2.
Suppose λ0 is such an eigenvalue and u is an eigenfunction corresponding to λ0.
Then U(x) = rλ0 u0(ω) is a solution of the boundary value problem (3.2.1), (3.2.2).
Consequently, the pair (U,P ), where P = −(1−2ν)−1 div U , satisfies the equations

−∆U + gradP = 0,(3.6.2)
divU + (1− 2ν)P = 0(3.6.3)

in K. For arbitrary ε > 0 let Kε be the domain {x ∈ K : ε < |x| < 1/ε}. Then
(3.6.2) implies

−
∫

Kε

∆U · U dx +
∫

Kε

gradP · U dx = 0.
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Integrating by parts and using (3.6.3), we get
∫

Kε

|∇U |2 dx + ε2

∫

r=ε

U ∂rU dω − ε−2

∫

r=1/ε

U ∂rU dω

+ (1− 2ν)
∫

Kε

|P |2 dx− ε2

∫

r=ε

P · Ur dω + ε−2

∫

r=1/ε

P · Ur dω = 0.

Passing to the functions u(ω) = r−λ0 U(x) and p(ω) = r−λ0+1 P (x), we arrive at
1/ε∫

ε

r2 Re λ0 dr

∫

Ω

(
|∇ωu|2 + |λ0|2 |u|2 + (1− 2ν) |p|2

)
dω

+
(
ε2 Re λ0+1 − ε−2(Re λ0+1)

) (
λ0

∫

Ω

|u|2 dω −
∫

Ω

p ur dω

)
= 0.

Here we have used the Cartesian components of the vector function u, and by ∇ωu
we have denoted the vector function (∇ωu1,∇ωu2,∇ωu3). For 2 Re λ0 > −1 the
last equality implies∫

Ω

|∇ωu|2 dω +
(
(Im λ0)2 − Re λ0 (Re λ0 + 1)

) ∫

Ω

|u|2 dω(3.6.4)

+ (1− 2ν)
∫

Ω

|p|2 dω + (2 Re λ0 + 1)Re
∫

Ω

p ur dω = 0.

By (3.6.2) and (3.6.3), we have

r∂rP = x · gradP = x ·∆U = ∆(x · U)− 2 div U

= ∆(rUr) + 2(1− 2ν)P.

Taking P = rλ0−1p(ω), Ur = rλ0ur(ω), we obtain

(3.6.5) p(ω) = −(3− 4ν − λ0)−1
(
δur(ω) + (λ0 + 1)(λ0 + 2)ur(ω)

)

and, consequently,

Re
∫

Ω

p ur dω = Re (3− 4ν − λ0)−1

∫

Ω

|∇ωur|2 dω

− Re
(λ0 + 1)(λ0 + 2)

3− 4ν − λ0

∫

Ω

|ur|2 dω.

From this identity and from (3.6.4) it follows that
∫

Ω

|∇ωu|2 dω +
(
(Im λ0)2 − Re λ0 (Re λ0 + 1)

) ∫

Ω

|u|2 dω(3.6.6)

+ (1− 2ν)
∫

Ω

|p|2 dω + (2 Reλ0 + 1) Re (3− 4ν − λ0)−1

∫

Ω

|∇ωur|2 dω

−(2Re λ0 + 1) Re
(λ0 + 1)(λ0 + 2)

3− 4ν − λ0

∫

Ω

|ur|2 dω = 0.
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Obviously,
∫

Ω

|∇ωu|2 dω +
(
(Im λ0)2 − Re λ0 (Re λ0 + 1)

) ∫

Ω

|u|2 dω(3.6.7)

≥
(
M(M + 1)− Re λ0 (Re λ0 + 1)

) ∫

Ω

|u|2 dω.

Furthermore, we have

Re
(
(λ0 + 1)(λ0 + 2)(3− 4ν − λ0)

)

= (Re λ0 + 1) (Re λ0 + 2) (3− 4ν − Reλ0)− (Im λ0)2 (6− 4ν + Re λ0)
≤ (Re λ0 + 1) (Re λ0 + 2) (3− 4ν − Reλ0).

From this and from (3.6.6), (3.6.7) we obtain

(3− 4ν − Re λ0) (1− 2ν)
∫

Ω

|p|2 dω + (2Re λ0 + 1)
∫

Ω

|∇ωur|2 dω(3.6.8)

+ (3− 4ν − Reλ0)
(
M(M + 1)− Re λ0 (Re λ0 + 1)

) ∫

Ω

|uω|2 dω

≤ φ(Re λ0)
∫

Ω

|ur|2 dω .

By (3.6.3), we have ∇ω · uω + (λ0 + 2) ur + (1− 2ν)p = 0. Integrating this equality,
we conclude that ∫

Ω

(
ur +

1− 2ν

λ0 + 2
p
)

dω = 0.

We consider the minimization problem for the functional

(3.6.9)
(3− 4ν − Re λ0) (1− 2ν)

2 Re λ0 + 1

∫

Ω

|q|2 dω +
∫

Ω

|∇ωv|2 dω

on the set of pairs (v, q) ∈ ◦
W1

2(Ω)× L2(Ω) such that

(3.6.10)
∫

Ω

(
v +

1− 2ν

λ0 + 2
q
)

dω = 0, ‖v‖L2(Ω) = 1.

Let Ξ(Ω, λ0) be the minimum of this functional and let (v0, q0) be a pair realizing
this minimum. Inserting v = v0 and q = q0+q1 into (3.6.9), where q1 is an arbitrary
function in L2(Ω) orthogonal to 1, we obtain

Re
∫

Ω

q0 · q1 dω = 0.

Consequently, q0 is constant and we can restrict ourselves to constants q in the
above formulated variational problem. From this and from (3.6.10) it follows

Ξ(Ω, λ0) = inf
{ ∫

Ω

|∇ωv|2 dω +
(3− 4ν − Re λ0) |λ0 + 2|2
(1− 2ν) (2 Re λ0 + 1) |Ω|

∣∣∣
∫

Ω

v dω
∣∣∣
2}

,
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where the infimum is taken over all v ∈ ◦
W1

2(Ω) with L2(Ω)-norm equal to one. This
representation shows, in particular, that the function λ → Ξ(Ω, λ) decreases on the
interval (− 1

2 , 3 − 4ν] and that the function Ω → Ξ(Ω, λ) does not increase as Ω
increases.

Representing v as a series of spherical harmonics, we obtain

Ξ(S2, λ0) ≥ min
{

2 ,
(3− 4ν − Reλ0) (Re λ0 + 2)2

(1− 2ν) (2 Re λ0 + 1)

}
.

Since the function t → (3 − 4ν − t) (t + 2)2 (1 − 2ν)−1 (2t + 1)−1 decreases on the
interval (− 1

2 , 3− 4ν], there is the inequality

(3− 4ν − Reλ0) (Re λ0 + 2)2

(1− 2ν) (2 Re λ0 + 1)
≥ 2

for Re λ0 ≤ 1. Therefore, Ξ(S2, λ0) ≥ 2 and hence, Ξ(Ω, λ0) > 2. By (3.6.8)

(3− 4ν − Re λ0)
(
M(M + 1)− Re λ0 (Re λ0 + 1)

) ∫

Ω

|uω|2 dω(3.6.11)

≤
(
φ(Re λ0)− Ξ(Ω, λ0)(2Re λ0 + 1)

) ∫

Ω

|ur|2 dω.

Since −1/2 < Re λ0 ≤ min {1, t(M)}, we have

3− 4ν − Re λ0 > 0 , M(M + 1)− Reλ0 (Re λ0 + 1) > 0

and φ(Re λ0) − Ξ(Ω, λ0)(2 Re λ0 + 1) < 0, from (3.6.11) we obtain uω = 0 and
ur = 0. This proves the theorem.

Corollary 3.6.1. In the strip

(3.6.12) |Re λ + 1/2| ≤ min
{

1,
(3− 4ν)M
M + 6− 4ν

}
+

1
2

there are no eigenvalues of the pencil L.

Proof: Let 0 < t(M +6−4ν) ≤ (3−4ν)M. The last inequality can be rewritten
in the form

t(t + 3) ≤ (3− 4ν − t) (M − t).
Multiplying this estimate by 2t + 1 and using the inequality t < M , we get

t(2t + 1)(t + 3) < (3− 4ν − t)(M − t)(M + t + 1)

or, what is the same, φ(t) < 2(2t + 1). Consequently,

t(M) >
(3− 4ν)M
M + 6− 4ν

and, by Theorem 3.6.1, we obtain (3.6.12).

Remark 3.6.1. In Theorem 3.6.1 the guaranteed width of the strip not con-
taining eigenvalues does not exceed 3. The following estimate shows that the width
of the energy strip can be arbitrarily large if the domain Ω is sufficiently small: the
spectrum of the pencil L lies outside the strip

(3.6.13)
∣∣Re λ + 1/2

∣∣ <
(1− 2ν

2− 2ν

)1/2

(M + 1/2).
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Indeed, inequality (3.6.13) means that the quadratic function
(
M(M + 1)− Re λ (Re λ + 1) + (Im λ)2

)
t2 + (2Re λ + 1) t + 1− 2ν

is positive. On the other hand, it follows from (3.6.4) that
(
M(M + 1)− Re λ (Re λ + 1) + (Im λ)2

) ∫

Ω

|u|2 dω

+ (2 Re λ + 1) Re
∫

Ω

p ur dω + (1− 2ν)
∫

Ω

|p|2 dω ≤ 0.

Hence u = 0, p = 0, i.e., there are no eigenvalues in the strip (3.6.13). Estimate
(3.6.13) improves the result obtained in Theorem 3.6.1 for large M.

3.7. Eigenvalues for circular cones

3.7.1. The Boussinesq solution in spherical coordinates. Let Ω = Ωα =
{ω ∈ S2 : 0 ≤ θ < α, 0 ≤ ϕ < 2π}, α ∈ (0, π]. We are interested in nonnegative real
eigenvalues of the pencil L. For this we have to find special solutions of problem
(3.2.1), (3.2.2) which have the form U = rλu(θ, ϕ) with nonnegative real λ.

To find such solutions, we use the following representation of the general so-
lution of system (3.2.1) in terms of three harmonic functions Ψ, Θ, Λ which goes
back to Boussinesq [23]:

(3.7.1) U = a∇Ψ + 2b∇× (Θ~e3) + c
(
∇(x3Λ)− 4(1− ν)Λ~e3

)
,

where ∇ denotes the gradient in Cartesian coordinates, ~e3 is the unit vector in x3

direction, and a, b, c are arbitrary constants. A general harmonic function W can
be found by separation of variables: W = R(r)T (θ) S(ϕ). Since we are interested
in nontrivial solutions of the form U(x) = rλ u(ω), where λ is a real nonnegative
number, let us consider a harmonic function of the form W = rµ T

(m)
µ (θ) Sm(ϕ) in

the cone K. Then T
(m)
µ must satisfy the associated Legendre differential equation

(3.7.2)
d2T

(m)
µ

dθ2
+ cot θ

dT
(m)
µ

dθ
+

(
µ(µ + 1)− m2

sin2 θ

)
T (m)

µ = 0,

while Sm satisfies the equation

d2Sm

dϕ2
+ m2 Sm = 0 for ϕ ∈ [0, 2π)

with the periodic boundary conditions Sm(0) = Sm(2π), S′m(0) = S′m(2π). This
implies m = 0,±1,±2, . . . and Sm(ϕ) = cos(mϕ) or Sm(ϕ) = sin(mϕ). For integer
m, the general solution of (3.7.2) has the form (see Bateman, Erdélyi et al. [11,
Vol.1,Ch.3])

Tm
µ (θ) = c1 Qm

µ (cos θ) + c2 P−m
µ (θ) ,

where P−m
µ , Qm

µ are the associated Legendre functions of the first and second kind,
respectively. The requirement that W is bounded for finite r leads to c1 = 0. Thus,
an admissible harmonic function in K has the form

(3.7.3) W = rµ P−m
µ (cos θ) sin(mϕ) or W = rµ P−m

µ (cos θ) cos(mϕ).
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The representation (3.7.1) has the form



Ur

Uθ

Uϕ


 = a




∂rΨ
r−1∂θΨ

(r sin θ)−1∂ϕΨ


 + 2

b

r




∂ϕΘ
cot θ ∂ϕΘ

− sin θ ∂r(rΘ)− ∂θ(Θ cos θ)




+ c




cos θ
(
∂r(rΛ)− 4(1− ν)Λ)

∂θ(Λ cos θ) + 4(1− ν)Λ sin θ
cot θ ∂ϕΛ




in spherical coordinates. We select Ψ, Θ and Λ in (3.7.1) of the form (3.7.3) such
that the displacement field U has the form U = rλu

(m)
λ (θ, ϕ) and each of the

components Ur, Uθ, Uϕ contains only cos(mϕ) or sin(mϕ), i.e., the angular modes
cos(mϕ) or sin(mϕ) in the displacement field separate. This leads to the selections

(3.7.4)





Ψm = rλ+1 P−m
λ+1(cos θ) cos(mϕ),

Θm = rλ+1 P−m
λ+1(cos θ) sin(mϕ),

Λm = rλ P−m
λ (cos θ) cos(mϕ),

and

(3.7.5)





Ψm = rλ+1 P−m
λ+1(cos θ) sin(mϕ),

Θm = rλ+1 P−m
λ+1(cos θ) cos(mϕ),

Λm = rλ P−m
λ (cos θ) sin(mϕ),

respectively. Let M+
m(λ, θ), M−

m(λ, θ) be the 3× 3 matrices with the columns



(λ + 1) P−m
λ+1

(λ + 1) cot θ P−m
λ+1 − (λ + 1−m) (sin θ)−1 P−m

λ

∓m (sin θ)−1 P−m
λ+1


 ,




±2mP−m
λ+1

±2m cot θ P−m
λ+1

2(λ + 1) cot θ P−m
λ − 2(λ + 1) (sin θ)−1 P−m

λ+1




and


(λ− 3 + 4ν) cos θ P−m
λ

(λ + m + 1) cot θ P−m
λ+1 +

(
(3− 4ν) sin θ − (λ + 1) cos θ cot θ

)
P−m

λ

∓m cot θ P−m
λ


 .

Here the upper sign corresponds to M+
m(λ, θ) and the lower sign to M−

m(λ, θ).
Inserting (3.7.4), (3.7.5) into (3.7.1), then straightforward calculation yields the
following result.

Lemma 3.7.1. Let m be a nonnegative integer and λ a real number. Then to
the selections (3.7.4) and (3.7.5) for the harmonic functions Ψ, Θ and Λ in (3.7.1)
correspond the displacement fields rλu

(m)
λ (θ, ϕ) with

(3.7.6) u
(m)
λ (θ, ϕ) =




f+
m(θ) cos(mϕ)

g+
m(θ) cos(mϕ)

h+
m(θ) sin(mϕ)


 for selection (3.7.4)

and

(3.7.7) u
(m)
λ (θ, ϕ) =




f−m(θ) sin(mϕ)
g−m(θ) sin(mϕ)
h−m(θ) cos(mϕ)


 for selection (3.7.5),
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where

(3.7.8)




f+
m

g+
m

h+
m


 = M+

m(λ, θ)




a
b
c


 ,




f−m
g−m
h−m


 = M−

m(λ, θ)




a
b
c


 .

Note that M+
0 (λ, θ) = M−

0 (λ, θ) and det M+
m(λ, θ) = det M−

m(λ, θ) for m =
1, 2, . . ..

3.7.2. The first eigenvalues of the pencil L. There exist nonzero vector
functions (3.7.8) satisfying the Dirichlet boundary conditions at θ = α if

(3.7.9) det M+
m(λ, α) = 0

for some integer m. The solutions of the transcendental equation (3.7.9) are eigen-
values of the pencil L in Ωα. The vector functions (3.7.6), (3.7.7), where the vector
(a, b, c) in (3.7.8) is an eigenvector of detM+

m(λ, α) and det M−
m(λ, α), respectively,

are the corresponding eigenvectors.
The monotonicity of the eigenvalues of L with respect to the domain Ω estab-

lished in Theorem 3.5.2 allows one to give sharp upper and lower bounds for the
eigenvalues for an arbitrary domain Ω in terms of those for rotational cones.

Theorem 3.7.1. Let π/2 ≤ α ≤ β < π and Ωα ⊂ Ω ⊂ Ωβ . Then in the
strip 0 ≤ Re λ ≤ 1 the pencil L has exactly three eigenvalues which are real. The
eigenvalues satisfy

λj(Ωβ) ≤ λj(Ω) ≤ λj(Ωα).

If Ωα ⊂⊂ Ω ⊂⊂ Ωβ , then the strict inequalities hold here.

The figures below show the dependence of the eigenvalues λj(Ωα) ≤ 1 on α ∈
(π

2 , π). In the first figure the roots of equation (3.7.9) for m = 0 are depicted
for several values of ν including, in particular, the limiting case ν = 1/2 which
corresponds to the Dirichlet problem for the Stokes system. In this case λ = 1 is
an eigenvalue for all angles α and it is simple except for α = 2π

3 . For this angle
the eigenvector corresponding to λ = 1 has exactly one generalized eigenvector (see
Chapter 5). For fixed α the eigenvalues are monotonically increasing with respect
to ν.

In the second figure the roots of (3.7.9) for m = 1 and the same values of ν are
decipted. We point out that this eigenvalue lies below the corresponding eigenvalue
for m = 0, has two eigenvectors and decreases monotonically for increasing ν and
fixed α.
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Figure 7. Solutions of (3.7.9) for m = 0, ν = 0.2, 0.25, 0.3, 0.35, 0.5
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Figure 8. Solutions of (3.7.9) for m = 1, ν = 0.2, 0.25, 0.3, 0.35, 0.5

3.8. Applications

The information about the spectral properties of the operator pencils obtained
in Sections 3.1–3.7 enables one to answer various questions concerning the Dirichlet
problem for the Lamé system

(3.8.1) ∆U + (1− 2ν)−1∇∇ · U = F in G, U = 0 on ∂G
in a two- or three-dimensional domain with piecewise smooth boundary. In this
section we discuss the solvability in weighted Sobolev and Hölder spaces, regularity
properties of variational solutions, estimates for Green’s tensor and the Miranda-
Agmon maximum principle for the Lamé system.

3.8.1. The Lamé system in plane domains with corners. Let G be a
plane bounded domain with d corners x(1), . . . , x(d) on the boundary. Outside the
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set S = {x(1), . . . , x(d)}, the boundary is assumed to be smooth. Let G coincide
with a plane wedge in a neighborhood of each point x(τ). The opening of the angle
at x(τ) is denoted by ατ .

1. S o l v a b i l i t y i n w e i g h t e d S o b o l e v a n d H ö l d e r s p a c e s. Let ~β =
(β1, . . . , βd) ∈ Rd and let V l

p,~β
(G) and N l,σ

~β
(G) be the weighted spaces introduced

in Section 1.4.
For arbitrary α ∈ (0, 2π] we set

(3.8.2) λ∗(α) =
x−(α)

α
for 0 < α ≤ π, λ∗(α) =

x+(α)
α

for π < α ≤ 2π,

where x−, x+ are the functions introduced in Section 3.1.4. Then the following
assertion holds as a result of Theorems 3.1.2 and 1.4.1.

Theorem 3.8.1. Problem (3.8.1) is uniquely solvable in V l
p,~β

(G)2 for arbitrary

F ∈ V l−2

p,~β
(G)2, l ≥ 2, if and only if |l − βτ − 2/p| < λ∗(ατ ) for τ = 1, . . . , d. If

|l + σ − βτ | < λ∗(ατ ) for τ = 1, . . . , d, then problem (3.8.1) is uniquely solvable in
N l,σ

~β
(G)2 for every F ∈ N l−2,σ

~β
(G)2.

2. R e g u l a r i t y a s s e r t i o n s a n d a s y m p t o t i c s o f t h e s o l u t i o n.
Problem (3.8.1) has a unique solution U ∈ ◦

W 1
2(G)2 for arbitrary F ∈ W−1

2 (G)2.
The following regularity result is another consequence of Theorems 3.1.2 and 1.4.3.

Theorem 3.8.2. The solution U ∈ ◦
W 1

2(G)2 of (3.8.1) belongs to V l
p,~β

(G)2 if

F ∈ V l−2

p,~β
(G)2, l ≥ 2, and l − βτ − 2/p < λ∗(ατ ). It belongs to N l,σ

~β
(G)2 if

F ∈ N l,σ
~β

(G)2, l ≥ 2, and l + σ − βτ < λ∗(ατ ).

Since λ∗(α) > 1 for α < π, we obtain, in particular, that under the assumption
ατ < π, τ = 1, . . . , d,

U ∈ W 2
2 (G)2 if F ∈ L2(G)2

and
U ∈ C1,σ(G)2 for some σ > 0 if F ∈ Lp(G)2, p > 2 .

The asymptotics of the solution U ∈ (
◦

W 1
2(G))2 near x(τ) can be described by

using Theorems 1.4.4 and 3.1.2. Suppose, for simplicity, that x(τ) is the origin, the
domain G coincides with the angle {x ∈ R2 : r > 0, |ϕ| < α/2} and F = 0 near
x(τ). Here, by r, ϕ we denote the polar coordinates. We have

(3.8.3)
( Ur

Uϕ

)
= c rλ−(ατ )

(u−r (ϕ)
u−ϕ (ϕ)

)
+ o

(
rπ/ατ

)

if ατ ∈ (0, π). The function λ− was introduced in Section 3.1, its values are
contained in the interval (1, π/ατ ). The vector function (u−r , u−ϕ ) is defined by
(3.1.28).

In the case ατ ∈ (π, 2π) the asymptotics
( Ur

Uϕ

)
= c1 rλ+(ατ )

(u+
r (ϕ)

u+
ϕ (ϕ)

)
+ c2 rλ−(ατ )

(u−r (ϕ)
u−ϕ (ϕ)

)
(3.8.4)

+ c3 rλ
(1)
− (ατ )

( u−r,1(ϕ)

u−ϕ,1(ϕ)

)
+ o

(
r2π/ατ

)
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holds. Here 1/2 < λ+(α) < λ−(α) < 1 < λ
(1)
− (α) < 2π/α.

The term o(rjπ/ατ ) in (3.8.3), (3.8.4), where j = 1 for ατ ∈ (0, π) and j = 2
for ατ ∈ (π, 2π), can be replaced by a remainder

V ∈ V l
p,~β

(G)2, l ≥ 2, l − βτ − 2/p = jπ/ατ + ε

(ε is a sufficiently small number), if F ∈ V l−2

p,~β
(G)2, and by a remainder

V ∈ N l,σ
~β

(G)2, l ≥ 2, l + σ − βτ = jπ/ατ + ε,

if F ∈ N l−2,σ
~β

(G)2.

3.8.2. The Lamé system in a domain of polyhedral type. Now let G be
a bounded domain in R3 with piecewise smooth boundary ∂G containing singular-
ities of the types of conic vertices, edges and polyhedral vertices. This means that
∂G is the union of faces Γj , j = 1, . . . , T , edges Ek, k = 1, . . . , q, and vertices x(τ),
τ = 1, . . . , d. Outside the set S of the edges Ek and vertices x(τ), the boundary is
assumed to be smooth. Furthermore, we suppose that the domain G is diffeomor-
phic to a dihedron D = K × R, where K is a plane angle, in a neighborhood of
each edge point and that for each vertex x(τ) there exist a neighborhood Uτ and a
diffeomorphism κ : Uτ → R3 of class C∞ such that κ(Uτ ∩ G) is the intersection
of a cone Kτ = {x : x/|x| ∈ Ωτ} with the unit ball and κ′(x(τ)) = I. Here Ωτ is
a subdomain of the sphere S2 the boundary of which is the union of smooth arcs
intersecting transversally, and I denotes the unit matrix.

1. S o l v a b i l i t y i n w e i g h t e d S o b o l e v a n d H ö l d e r s p a c e s. We
denote by ρτ (x) the distance of x to x(τ), by rk the regularized distance to Ek (i.e.
a smooth function on G which coincides with the distance to Ek in a neighborhood
of Ek), by r(x) the regularized distance to the set S, and by ρ(x) the distance to
the set {x(1), . . . , x(d)}. Then the weighted Sobolev space V l,p

~β,δ
(G) is defined for

1 < p < ∞, l = 0, 1, . . ., ~β = (β1, . . . , βd) ∈ Rd and ~δ = (δ1, . . . , δq) ∈ Rq as the
closure of the set C∞0 (G\S) with respect to the norm

‖U‖V l,p
~β,~δ

(G) =
( ∫

G

( d∏
τ=1

ρpβτ
τ

) ( q∏

k=1

(
rk/ρ

)pδk
) ∑

|α|≤l

rp(|α|−l) |DαU |p dx
)1/p

.

Note that L2(G) = V 0,2
~0,~0

(G) and
◦

W l
2(G) ⊂ V l,2

~0,~0
(G) ⊂ W l

2(G) for l = 1, 2, . . ..

Furthermore, let N l,σ
~β,~δ

(G) be the weighted Hölder space with the norm

‖U‖N l,σ
~β,~δ

(G) =
∥∥∥
( d∏

τ=1

ρβτ
τ

) ( q∏

k=1

(
rk/ρ

)δk
)

U
∥∥∥

N l,σ(G)
,

where

‖U‖N l,σ(G) =
∑

|α|≤l

sup
x∈G

r|α|−l−σ|DαU(x)|+
∑

|α|=l

sup
x,y∈G

∣∣(DαU)(x)− (DαU)(y)
∣∣

|x− y|σ .

If β and δ are real numbers, then by V l,p
β,δ(G) and N l,σ

β,δ(G) we mean the weighted
spaces just defined, where the role of ~β and ~δ is played by the tuples (β, . . . , β) ∈
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Rd and (δ, . . . , δ) ∈ Rq. It can be easily seen that V l,p
β,δ(G) ⊂ V l−1,p

β−1,δ−1(G) and
N l,σ

β,δ(G) ⊂ N l−1,p
β−1,δ−1(G) for l ≥ 1.

The trace spaces for V l,p
~β,~δ

(G), l ≥ 1, and N l,σ
~β,~δ

(G) on the boundary are denoted

by V
l−1/p,p
~β,~δ

(∂G) and V l,σ
~β,~δ

(∂G), respectively.
Finally, we introduce the following notation. For every x ∈ ⋃

Ek let αx be the
angle at x between the tangent half-planes to ∂G\S. The smallest positive solution
of the equation

(3− 4ν) sin(λαx)± λ sin αx = 0
is denoted by λ∗(αx) (see (3.8.2) and Theorem 3.1.2). Furthermore, we set µτ =
minj Re λ

(τ)
j , where λ

(τ)
j are the eigenvalues of the operator pencil Lτ generated by

the Dirichlet problem for the Lamé system in the cone Kτ in the half-plane Re λ > 0.
(By Theorem 3.6.1, there are no eigenvalues in the strip −1/2 ≤ Re λ ≤ 0.)

The following theorem was established in [189]. For the case of a three-
dimensional domain with conic vertices we also refer to [188].

Theorem 3.8.3. Suppose that

(3.8.5) |l − δk − 2/p| < inf
x∈Ek

λ∗(αx) and |l − βτ − 3/p + 1/2| < µτ + 1/2

for k = 1, . . . , q, τ = 1, . . . , d. Then the problem

(3.8.6) ∆U + (1− 2ν)−1∇∇ · U = F in G, U = Φ on ∂G
is uniquely solvable in V l,p

~β,~δ
(G)3 for all F ∈ V l−2,p

~β,~δ
(G)3, Φ ∈ V

l−1/p,p
~β,~δ

(∂G)3, l ≥ 2.
Analogously, the conditions

(3.8.7) |l + σ − δk| < inf
x∈Ek

λ∗(αx) and |l + σ − βτ + 1/2| < µτ + 1/2

ensure the unique solvability of problem (3.8.6) in N l,σ
~β,~δ

(G)3 for arbitrary F ∈
N l−2,σ

~β,~δ
(G)3, Φ ∈ N l,σ

~β,~δ
(∂G)3.

Lower estimates for the quantity µτ are given in Sections 3.5–3.7. For example,
according to Corollary 3.6.1,

µτ > min
{

1,
(3− 4ν)Mτ

Mτ + 6− 4ν

}
,

where Mτ is a positive number such that Mτ (Mτ + 1) is the first eigenvalue of the
Dirichlet problem for the operator −δ on Ωτ .

2. R e g u l a r i t y o f s o l u t i o n s. The following assertion for the solution U ∈
W 1

2 (G)3 of problem (3.8.6) can also be found in [189].

Theorem 3.8.4. Let U ∈ W 1
2 (G)3 be a solution of problem (3.8.6). If F ∈

V l−2,p
~β,~δ

(G)3, Φ ∈ V
l−1/p,p
~β,~δ

(∂G)3 and (3.8.5) is satisfied, then U ∈ V l,p
~β,~δ

(G)3. If F ∈
N l−2,σ

~β,~δ
(G)3, Φ ∈ N l,σ

~β,~δ
(∂G)3 and condition (3.8.7) is satisfied, then U ∈ N l,σ

~β,~δ
(G)3.

Note that λ∗(αx) > 1/2 for αx ∈ (0, 2π) (see Theorem 3.1.2). Since λ∗(αx) > 1
for αx < π and µτ > 1 for Ωτ ⊂⊂ S2

+, we conclude from Theorem 3.8.4 that the

solution U ∈ ◦
W1

2(G)3 of problem (3.8.1) belongs to W 2
2 (G)3 if F ∈ L2(G)3, all inte-

rior edge angles are less than π and the cones Kτ are contained in half-spaces. The
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same assumptions on G guarantee that U belongs to the space N2,σ
1,1 and, therefore,

also to C1,σ(G) with a certain positive σ if F ∈ N0,σ
1,1 (G).

3. P o i n t e s t i m a t e s o f t h e G r e e n m a t r i x. Explicit information about
µτ is also of importance for the estimation of Green’s tensor in a neighborhood of
singular boundary points. Let the elements Gi,j , i, j = 1, 2, 3, of the matrix function
(x, y) → G(x, y) satisfy the boundary value problem

∆xGi,j(x, y) + (1− 2ν)−1
3∑

k=1

∂xi
∂xk

Gk,j(x, y) = δi,j δ(x− y), x, y ∈ G,

Gi,j(x, y) = 0 for x ∈ ∂G\S, y ∈ G.

This problem is uniquely solvable in the class of all matrix functions G such that
the functions x → Gi,j(x, y) belong to the space W 1

2 (G\U) for every y ∈ G and
every neighborhood U of y.

By [189, Th.11.9], the functions Gi,j satisfy the following pointwise estimates
in a neighborhood of the vertex x(τ).

Theorem 3.8.5. 1) If 2ρτ (x) < ρτ (y), then

(3.8.8) |Gi,j(x, y)| ≤ c

ρτ (y)

(ρτ (x)
ρτ (y)

)µτ−ε ∏

{k:x(τ)∈Ek}

( rk(x)
ρτ (x)

rk(y)
ρτ (y)

)θk−ε

,

where θk = infx∈Ek
λ∗(αx) and ε is an arbitrarily small positive number. In the

case 2ρτ (y) < ρτ (x) one has to change the places of x and y in the above estimate.
2) If ρτ (x)/2 < ρτ (y) < 2ρτ (x) and |x− y| > min(r(x), r(y)), then

(3.8.9) |Gi,j(x, y)| ≤ c

|x− y|
∏

{k:x(τ)∈Ek}

(rk(x)rk(y)
|x− y|2

)θk−ε

.

3) For |x− y| < min(r(x), r(y)) the estimate |Gi,j(x, y)| ≤ c |x− y|−1 holds.

Analogous estimates are valid for the derivatives Dα
x Dβ

y G(x, y) of Green’s ten-
sor.

4. We i g h t e d a n d n o n w e i g h t e d m a x i m u m p r i n c i p l e. The esti-
mates in Theorem 3.8.5 lead to weighted L∞ estimates for the solution. We denote
by L∞~β,~δ

(G) the set of all functions U on G such that

∥∥∥
( d∏

τ=1

ρβτ
τ

) ( q∏

k=1

(
rk/ρ

)δk
)

U
∥∥∥

L∞(G)
< ∞.

Analogously, the space L∞~β,~δ
(∂G) is defined.

We consider the boundary value problem

(3.8.10) ∆U + (1− 2ν)−1∇∇ · U = 0 in G, U = Φ on ∂G\S,

where Φ ∈ L∞~β,~δ
(∂G)3. The solution of this problem is defined as follows. Let {Φ(k)}

be a sequence of vector functions from C∞0 (∂G\S)3 such that

Φ(k) → Φ a.e. on ∂G and ‖Φ(k)‖L∞β,δ(G)3 ≤ const.
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Furthermore, let U (k) ∈ W 1
2 (G)3 be the solution of the homogeneous Lamé system

with Dirichlet data Φ(k) on ∂G\S. By means of Theorem 3.8.5, it can be shown
that the sequence U (k) converges in every point of G if δk < infx∈Ek

λ∗(αx) for
k = 1, . . . , q and βτ < 1 + µτ for τ = 1, . . . , d. The limit U of the sequence {U (k)}
does not depend on the choice of the approximating sequence {Φ(k)} and is called
solution of problem (3.8.10).

Theorem 3.8.6. [189, Th.11.11] Suppose that

|δk| < inf
x∈Ek

λ∗(αx) and |βτ − 1/2| < µτ + 1/2

for k = 1, . . . , q and τ = 1, . . . , d. Then the solution U of problem (3.8.10) satisfies

(3.8.11) ‖U‖L∞
~β,~δ

(G)3 ≤ c ‖Φ‖L∞
~β,~δ

(∂G)3

with a constant c independent of Φ.

Since µτ > 0, we can take βτ = 0 and δk = 0 in order to obtain

‖U‖L∞(G)3 ≤ c ‖Φ‖L∞(∂G)3 .

Furthermore, we have U ∈ C(G)3 if Φ ∈ C(∂G)3.
In other words, the maximum modulus of the displacement vector is majorized

by that of its boundary values for all piecewise smooth domains without cusps.

3.9. Notes

Section 3.1. Singularities of solutions of two–dimensional elasticity at angular
points were studied, among others, in papers by Vorovich [261], Grisvard [80]–[82],
[84, 85], Sändig and Richter [233], Nicaise [208, 209, 210], Costabel and Dauge
[31]. We refer also to the books of Parton and Perlin [223] and Grisvard [86]. In
[233] graphs for the eigenvalues similar to Figures 4 and 5 are given. The case
|θ| < π (the plane with a crack) is fundamental in fracture mechanics (see, for
example, Liebowitz [154] and Cherepanov [27, 28]).

Sections 3.2–3.5. The results are taken from the paper [140] by Kozlov,
Maz′ya and Schwab.

Section 3.6. The estimate for the width of the energy strip in Corollary 3.6.1
was obtained by Maz′ya and Plamenevskĭı [188]. The other results were unpub-
lished.

Section 3.7. Here we follow Kozlov, Maz′ya and Schwab [139, 140]. Equa-
tions for the eigenvalues of the pencil corresponding to the Dirichlet problem for
the Lamé system in a circular cone were numerically solved by A.-M. and R. Sändig
[234]. Rotationally symmetric solutions in a circular cone were studied by Bažant
and Keer [12], Beagles and Sändig [14]. The papers [12, 14, 139, 234] include
the Neumann problem.

Section 3.8. Using the estimate for the energy strip in Corollary 3.6.1, Maz′ya
and Plamenevskĭı [188] proved theorems on the solvability of the Dirichlet problem
for the Lamé system in three-dimensional domains with conical points as well as
regularity assertions for solutions, estimates for Green’s matrix and a maximum
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principle of Miranda-Agmon type. In [189] they studied the more complicated
situation when the domain is of polyhedral type. Section 3.8 contains formulations
of the main results of the last paper. Regularity results for solutions of the Lamé
system in three-dimensional polyhedral domains can be also found in the works by
Grisvard [84, 86] and Nicaise [208, 210].

Energy estimates of Saint-Venant’s principle type for solutions of boundary
value problems for the system of elasticity in a neighborhood of singular boundary
points were obtained by Olĕınik and Yosifyan [217, 218], Kopachek and Olĕınik
[116, 117], Kondrat′ev, Olĕınik and Kopachek [113, 115] (see also the review of
Kondrat′ev and Olĕınik [112]).

The Lamé system in Lipschitz domains with boundary data in Lp was studied
by Fabes [56], Kenig [102], Dahlberg, Kenig and Verchota [37], Dahlberg and
Kenig [35].



CHAPTER 4

Other boundary value problems for the Lamé
system

The present chapter is concerned with the spectral properties of operator pen-
cils generated by some boundary value problems for the Lamé system in a three-
dimensional cone K. In Section 4.1 we consider a mixed boundary value problem
with the following three types of boundary conditions:

(i) U = 0,
(ii) Un = 0 and σn,τ (U) = 0,
(iii) Uτ = 0 and σn,n(U) = 0.

We use the notation:
U = (U1, U2, U3) is the displacement vector,
n = (n1, n2, n3) is the exterior normal to ∂K\{0},
Un = U · n is the normal component of the vector U ,
Uτ = U − Unn is the tangential component of the vector U on the boundary,
σ(U) = {σi,j(U)} is the stress tensor connected with the strain tensor

{
εi,j(U)

}
=

{1
2

(∂xj Ui + ∂xiUj)
}

by the Hooke law

σi,j = 2µ
( ν

1− 2ν
(ε1,1 + ε2,2 + ε3,3) δi,j + εi,j

)

(µ is the shear modulus, ν is the Poisson ratio, ν < 1/2, and δi,j denotes the
Kronecker symbol),
σn,n(U) is the normal component of the vector σn(U) = σ(U) n, i. e.,

σn,n(U) =
3∑

i,j=1

σi,j(U) ni nj ,

σn,τ (U) is the tangential component of the vector σn(U).

We modify the method used in Chapter 3. As in the case of the Dirichlet problem,
we show that the spectrum of the corresponding operator pencil in a certain strip
centered about the line Re λ = −1/2 consists only of real eigenvalues and that the
eigenvectors corresponding to eigenvalues in the interior of this strip do not have
generalized eigenvectors. This result combined with Theorem 1.4.4 implies that the
solution U has the following asymptotics in a neighborhood of a conic vertex:

U =
J∑

j=1

cj rλj u(j)(ω) + O(rβ).

107
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Here β is an arbitrary positive real number less than
((5

2
− 2ν

)2 + (1− 2ν)2
)1/2

− 1
2
,

cj are constants, λj are the real eigenvalues of the above mentioned pencil in the
interval (−1/2, β), and u(j) are the corresponding eigenvectors. The feature of the
above asymptotic representation is that the exponents λj are real and that it does
not contain logarithmic terms. At the end of Section 4.1 we derive a variational
principle for the eigenvalues λ1, . . . , λJ .

Sections 4.2–4.4 are dedicated to the Neumann boundary conditions for the
Lamé system. First we analyze the plane problem in the spirit of Section 3.1. For
the three-dimensional case the method used previously does not work and we apply
a different approach. We start with the situation when the cone K is given by the
inequality x3 > φ(x1, x2), where φ is a smooth positively homogeneous of degree
1 function on R2\{0}. Then we pass to a three-dimensional anisotropic medium
with a crack which has the form of a plane angle. We prove that in both cases
the operator pencil generated by the Neumann problem has only the eigenvalues 0
and −1 in the strip −1 ≤ Re λ ≤ 0 and that both eigenvalues have geometric and
algebraic multiplicity 3.

These assertions imply the Hölder continuity of the solution to the Neumann
problem for the Lamé system in a neighborhood of the vertex of a polyhedral angle
as well as the Hölder continuity of the displacement field in an anisotropic medium
with a polygonal crack.

4.1. A mixed boundary value problem for the Lamé system

4.1.1. Formulation of the problem. Let K be the cone {x = (x1, x2, x3) ∈
R3 : x/|x| ∈ Ω}, where Ω is a domain on the unit sphere with Lipschitz boundary
∂Ω = γ1 ∪ · · · ∪ γN and γ1, . . . , γN are pairwise disjoint open arcs. Then

∂K = Γ1 ∪ · · · ∪ ΓN ,

where Γk = {x : x/|x| ∈ γk}.
The homogeneous Lamé system

∆U + (1− 2ν)−1∇∇ · U = 0

can be written in the form

(4.1.1)
3∑

j=1

∂σi,j(U)
∂xj

= 0 for i = 1, 2, 3,

where {σi,j(U)} denotes the stress tensor. Throughout this section, it is assumed
that

−1 < ν < 1/2.

We divide the set of the indices 1, . . . , N into three subsets I0, In, Iτ . Our goal is to
find generalized solutions of the system (4.1.1) satisfying the boundary conditions

(4.1.2)





U = 0 on Γk for k ∈ I0,
Un = 0, σn,τ (U) = 0 on Γk for k ∈ In,
Uτ = 0, σn,n(U) = 0 on Γk for k ∈ Iτ .
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We introduce the notion of generalized solutions by means of the Green formula
∫

K

3∑

i,j=1

σij(U) · εij(V ) dx(4.1.3)

= −
∫

K

3∑

i,j=1

∂σij(U)
∂xj

· V i dx +
∫

∂K\{0}

3∑

i,j=1

σij(U) nj · V i dσ

which is satisfied for all U, V ∈ C∞0 (K\{0})3. If U is a formal solution of problem
(4.1.1), (4.1.2) and V ∈ W 1

2 (K)3 is a vector function vanishing for small and large
|x| which satisfies the conditions

(4.1.4)





V = 0 on Γk for k ∈ I0,
Vn = 0 on Γk for k ∈ In,
Vτ = 0 on Γk for k ∈ Iτ ,

then (4.1.3) implies

(4.1.5)
3∑

i,j=1

∫

K

σi,j(U) · εi,j(V ) dx = 0.

Let H be the space of all vector functions u ∈ W 1
2 (Ω)3 such that

• u = 0 on γk for k ∈ I0,
• un = 0 on γk for k ∈ In,
• uτ = 0 on γk for k ∈ Iτ ,

where un = u · n and uτ is the projection of the vector u onto the tangent plane to
∂K\{0}.

Definition 4.1.1. The function

(4.1.6) U(x) = rλ0

s∑

k=0

1
k!

(log r)k u(s−k)(ω), u(s−k) ∈ H,

is said to be a generalized solution of problem (4.1.1), (4.1.2) if the integral identity
(4.1.5) is valid for all V ∈ W 1

2 (K)3 with compact support in K\{0} satisfying the
boundary conditions (4.1.4).

4.1.2. The operator pencil generated by the boundary value prob-
lem. We use the same notations as in Section 3.2. In spherical coordinates, the
components of the strain tensor have the form

(4.1.7)





εrr = ∂rUr , εϕϕ =
1

r sin θ
∂ϕUϕ +

Ur

r
+ cot θ

Uθ

r

εθθ =
1
r
∂θUθ +

Ur

r
, εrϕ =

1
2

( 1
r sin θ

∂ϕUr − Uϕ

r
+ ∂rUϕ

)
,

εrθ =
1
2

(1
r
∂θUr − Uθ

r
+ ∂rUθ

)
,

εθϕ =
1
2

(1
r
∂θUϕ − cot θ

Uϕ

r
+

1
r sin θ

∂ϕUθ

)
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(see, for example, Malvern [159]). Furthermore, the Hooke law has the following
representation:

σrr = 2µ
( ν

1− 2ν
Θ + εrr

)
, σϕϕ = 2µ

( ν

1− 2ν
Θ + εϕϕ

)
,

σθθ = 2µ
( ν

1− 2ν
Θ + εθθ

)
, σrϕ = 2 µ εrϕ , σθϕ = 2 µ εθϕ , σrθ = 2 µ εrθ ,

where Θ = εrr +εθθ +εϕϕ. In the spherical coordinates, the integral identity (4.1.5)
takes the form

∞∫

0

∫

Ω

(
σrr(U) εrr(V ) + σθθ(U) εθθ(V ) + σϕϕ(U) εϕϕ(V )(4.1.8)

+ 2σrθ(U) εrθ(V ) + 2σrϕ(U) εrϕ(V ) + 2σθϕ(U) εθϕ(V )
)

r2 dω dr = 0.

We introduce the sesquilinear form

a(u, v;λ) =
1

2µ | log ε|

1/ε∫

ε

∫

Ω

(
σrr(U) εrr(V ) + σθθ(U) εθθ(V ) + σϕϕ(U) εϕϕ(V )

+2 σrθ(U) εrθ(V ) + 2 σrϕ(U) εrϕ(V ) + 2 σθϕ(U) εθϕ(V )
)

r2 dω dr

=
1

| log ε|

1/ε∫

ε

∫

Ω

(
εrr(U) εrr(V ) + εθθ(U) εθθ(V ) + εϕϕ(U) εϕϕ(V )

+ 2 εrθ(U) εrθ(V ) + 2 εrϕ(U) εrϕ(V ) + 2 εθϕ(U) εθϕ(V )

+
ν

1− 2ν
Θ(U)Θ(V )

)
r2 dω dr,

where U = rλ u(ω), V = r−1−λ v(ω), and ε is a positive real number less than 1.
It can be easily verified that the expression on the right side is independent of ε.
Using the formulas for the stress and strain tensors in spherical coordinates given
above, we obtain

a(u, v;λ) = [uω, vω] +
∫

Ω

(
∇ωur · ∇ωvr + (λ + 2)(1− λ)

2− 2ν

1− 2ν
ur vr(4.1.9)

+ (λ + 2)(1− λ)uω · vω +
2ν

1− 2ν
(∇ω · uω)∇ω · vω

+
( 2ν

1− 2ν
(λ + 2) + 2

)
ur ∇ω · vω +

( 2ν

1− 2ν
(1− λ) + 2

)
(∇ω · uω) vr

− (1− λ)uω · ∇ωvr − (λ + 2)∇ωur · vω

)
dω,

where

[uω, vω] =
∫

Ω

(
2∂θuθ · ∂θvθ + 2

(∂ϕuϕ

sin θ
+ cot θ uθ

)
·
(∂ϕvϕ

sin θ
+ cot θ vθ

)
(4.1.10)

+
(
∂θuϕ +

∂ϕuθ

sin θ
− cot θ uϕ

)
·
(
∂θvϕ +

∂ϕvθ

sin θ
− cot θ vϕ

) )
dω,
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∇ωv =
(

∂θv
(sin θ)−1 ∂ϕv

)
,

uω =
(

uθ

uϕ

)
, ∇ω · uω =

1
sin θ

∂θ(sin θ uθ) +
1

sin θ
∂ϕuϕ.

Note that the form (4.1.9) coincides with the right-hand side of (3.2.19) on the

space
◦

W1
2(Ω)× ◦

h1
2(Ω).

We give some properties of the form [·, ·]. Here we make use of the spaces h1
2(Ω)

and
◦
h1
2(Ω) introduced in Section 3.2.

Lemma 4.1.1. 1) The inequalities

[uω, uω] ≤ 2 Q(uω, uω) ,(4.1.11)

[uω, uω] ≥
∫

Ω

|∇ω · uω|2 dω.(4.1.12)

are valid for arbitrary vector functions uω ∈ h1
2(Ω). (For the definition of Q see

(3.2.4).)
2) For all uω ∈ h1

2(Ω) the inequality

(4.1.13) [uω, uω] +
∫

Ω

|uω|2 dω ≥ c0 ‖uω‖2h1
2(Ω)

holds, where c0 is a positive constant.
3) Every vector function uω ∈

◦
h1
2(Ω) satisfies the equality

(4.1.14) [uω, uω] +
∫

Ω

|uω|2 dω = Q(uω, uω) +
∫

Ω

|∇ω · uω|2 dω.

Proof: 1) The inequality (4.1.11) follows from the estimate

∣∣∣∂θuϕ +
1

sin θ
∂ϕuθ − cot θ uϕ

∣∣∣
2

≤ 2
(
|∂θuϕ|2 +

∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ

∣∣∣
2)

,

while (4.1.12) follows from the equality

[uω, uω] =
∫

Ω

|∇ω · uω|2 dω +
∫

Ω

∣∣∣∂θuθ − 1
sin θ

∂ϕuϕ − cot θ uθ

∣∣∣
2

dω(4.1.15)

+
∫

Ω

∣∣∣∂θuϕ +
1

sin θ
∂ϕuθ − cot θ uϕ

∣∣∣
2

dω.

2) Let K0 be the set {x ∈ K : 1
2 < |x| < 2}. Since the boundary of K0 is

Lipschitz, the Korn inequality (see Gobert [70])

∫

K0

( 3∑

i,j=1

|εi,j(U)|2 + |U |2
)

dx ≥ c

∫

K0

3∑

i,j=1

|∂xiUj |2 dx
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is valid. Taking U(x) = u(ω) and writing the last inequality in the spherical
components, we obtain∫

Ω

(
|εrr|2 + |εrθ|2 + |εrϕ|2 + |εθθ|2 + |εϕϕ|2 + |εθϕ|2

)
dω

+
∫

Ω

(|uω|2 + |ur|2
)
dω ≥ c

(
‖uω‖2h1

2(Ω) + ‖ur‖2W 1
2 (Ω)

)
.

Setting ur = 0, we arrive at (4.1.13).
3) It can be easily verified that

[uω, uω]−
∫

Ω

|∇ω · uω|2 dω = Q(uω, uω)

+ 2 Re
∫

Ω

(
∂θuϕ

( 1
sin θ

∂ϕuθ − cot θ uϕ

)
− ∂θuθ

( 1
sin θ

∂ϕuϕ + cot θ uθ

))
dω.

Integrating by parts in the last integral, we get the equality (4.1.14) for uω ∈
◦
h1
2(Ω).

The lemma is proved.

We introduce the space Hs which consists of all vectors (ur, uω) such that their
Cartesian components belong to the space H defined in Section 4.1.1. It is evident
that Hs is a closed subspace of W 1

2 (Ω)× h1
2(Ω) and

(4.1.16)
◦

W
1
2(Ω)× ◦

h
1
2(Ω) ⊂ Hs ⊂ W 1

2 (Ω)× h1
2(Ω).

Using the estimates (4.1.11), (4.1.12), it can be shown that the form a(·, ·; λ) is con-
tinuous onHs×Hs for every complex λ. Therefore, this form generates a continuous
operator

(4.1.17) A(λ) : Hs → H∗s
which is defined by the equality(

A(λ)u , v
)

L2(Ω)3
= a(u, v; λ) , u, v ∈ Hs.

Clearly, A(λ) depends polynomially on λ. Furthermore, by Theorem 1.2.3, there is
the following connection between the eigenvectors and generalized eigenvectors of
the pencil A and the solutions (4.1.6) of equation (4.1.5).

Lemma 4.1.2. The function (4.1.6) is a solution of problem (4.1.1), (4.1.2) if
and only if λ0 is an eigenvalue of the pencil A and the functions u(0), . . . , u(s) form
a Jordan chain corresponding to this eigenvalue.

4.1.3. Basic properties of the pencil A.

Theorem 4.1.1. 1) The operator A(λ) is Fredholm for all λ ∈ C.
2) The operator A(−1/2 + it) is positive definite for all real t.
3) The spectrum of the pencil A consists of isolated eigenvalues with finite

algebraic multiplicities.
4) The number λ0 is an eigenvalue of the pencil A if and only if −1− λ0 is an

eigenvalue of this pencil. The geometric, algebraic, and partial multiplicities of the
eigenvalues λ0 and −1− λ0 coincide.
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Proof: 1) We prove that there exists a constant c1(λ) such that

(4.1.18) |a(u, u; λ)| ≥ c0

(
‖ur‖2H1(Ω) + ‖uω‖2h1(Ω)

)
− c1(λ)

∫

Ω

(|ur|2 + |uω|2) dω

for arbitrary u ∈ Hs.
Using (4.1.12) and the fact that ν/(1− 2ν) > −1/3 for ν > −1, we get

∫

Ω

2ν

1− 2ν
|∇ω · uω|2 dω ≥ −2

3
[uω, uω] .

Furthermore, we have
∣∣∣
∫

Ω

ur ∇ω · uω dω
∣∣∣ ≤ ε

∫

Ω

|∇ω · uω|2 dω +
1
4ε

∫

Ω

|ur|2 dω

≤ 2ε [uω, uω] +
1
4ε

∫

Ω

|ur|2 dω

and ∣∣∣
∫

Ω

uω · ∇ωur dω
∣∣∣ ≤ ε

∫

Ω

|∇ωur|2 dω +
1
4ε

∫

Ω

|uω|2 dω,

where ε is an arbitrary positive number. Let ε be sufficiently small. Then (4.1.9)
yields

|a(u, u;λ)| ≥ 1
4

(
[uω, uω] +

∫

Ω

|∇ωur|2 dω
)
− c(λ)

∫

Ω

(|ur|2 + |uω|2) dω

with a constant c(λ) depending only on λ and ν. From this and from assertion
2) of Lemma 4.1.1, we obtain (4.1.18). This proves the Fredholm property of the
operator A(λ) for arbitrary λ ∈ C.

2) Now let Re λ = −1/2. Then the quadratic form a(u, u; λ) is equal to

1
| log ε|

1/ε∫

ε

∫

Ω

(
|εrr(U)|2 + |εθθ(U)|2 + |εϕϕ(U)|2 +

ν

1− 2ν

∣∣Θ(U)
∣∣2

+ 2 |εrθ(U)|2 + 2 |εrϕ(U)|2 + 2 |εθϕ(U)|2
)
r2 dω dr,

where U = rλu(ω). Since −1 < ν < 1/2, we have

|εrr(U)|2 + |εθθ(U)|2 + |εϕϕ(U)|2 +
ν

1− 2ν

∣∣Θ(U)
∣∣2

≥ min
(
1 ,

ν + 1
1− 2ν

)
·
(
|εrr(U)|2 + |εθθ(U)|2 + |εϕϕ(U)|2

)
.

Hence the form a(u, u;λ) is nonnegative for Re λ = −1/2. Moreover, the equality
a(u, u;λ) = 0 implies

εrr(U) = εθθ(U) = εϕϕ(U) = εrθ(U) = εrϕ(U) = εθϕ(U) = 0.

Since εrr(U) = λrλ−1ur, we conclude from this that ur = 0. Analogously, by (4.1.7),
we obtain uϕ = uθ = 0, i.e, uω = 0. This proves 2).

Assertion 3) is a consequence of 1) and 2) combined with Theorem 1.1.1. Fi-
nally, 4) follows from 2) and Theorem 1.2.2.
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4.1.4. Properties of the space Hs. In what follows, the properties of the
space Hs given in the next lemma play a crucial role.

Lemma 4.1.3. 1) The subspace Hs admits the representation

(4.1.19) Hs = Hr
s ×Hω

s ,

where Hr
s, Hω

s are subspaces of W 1
2 (Ω) and h1

2(Ω), respectively, such that
◦

W1
2(Ω) ⊂

Hr
s and

◦
h1
2(Ω) ⊂ Hω

s .
2) The equality

(4.1.20)
∫

∂Ω

un vr dω′ = 0

or, equivalently,

(4.1.21)
∫

Ω

(
(∇ω · uω) vr + uω · ∇ωvr

)
dω = 0

is satisfied for all u, v ∈ Hs.

Proof: 1) In order to prove (4.1.19) we have to show that (ur, 0) ∈ Hs if
(ur, uω) ∈ Hs.

Let (ur, uω) be an arbitrary element of Hs. Then the Cartesian components of
the vector function (ur, 0) are

w =




w1

w2

w3


 = J∗

(
ur

0

)
=




sin θ cos ϕ
sin θ sin ϕ

cos θ


 ur .

Here J∗ denotes the adjoint matrix to (3.2.3). If k ∈ I0∪Iτ , then ur = 0 on γk and,
therefore, w= 0 on γk. Furthermore, since the vector (sin θ cos ϕ, sin θ sin ϕ, cos θ) =
x/|x| is orthogonal to n, we have wn = 0 on γk for every k = 1, . . . , N. Thus, w ∈ H
and, consequently, (ur, 0) ∈ Hs.

2) If k ∈ I0 ∪ Iτ , then vr = 0 on γk, while un = 0 on γk for k ∈ I0 ∪ In. Hence

∫

γk

un · vr dω′ = 0

for k = 1, . . . , N. This implies (4.1.20).
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It remains to prove that the left-hand sides of (4.1.20) and (4.1.21) coincide.
Using the representation of uω in terms of the Cartesian components of u, we get∫

Ω

(
(∇ω · uω) vr + uω · ∇ωvr

)
dω(4.1.22)

=
∫

Ω

(sin θ)−1
(
∂θ(sin θ uθ vr) + ∂ϕ(uϕvr)

)
dω

=
∫

Ω

(
cos θ

(
cos ϕ∂θ(u1vr) + sin ϕ∂θ(u2vr)

)− sin θ ∂θ(u3vr)

− sinϕ

sin θ
∂ϕ(u1vr) +

cos ϕ

sin θ
∂ϕ(u2vr)− 2 sin θ cosϕu1vr

− 2 sin θ sin ϕu2vr − 2 cos θ u3vr

)
dω.

Integrating by parts, we obtain
1

log 2

∫

K
1<|x|<2

∇x · (r−2u(ω) vr(ω)) dx(4.1.23)

=
1

log 2

∫

∂K
1<|x|<2

n · r−2 u(ω) vr(ω) dx′ =
∫

∂Ω

un vr dω′.

The integrand ∇x · (r−2u(ω) vr(ω)) on the left-hand side of (4.1.23) is equal to

1
r3

(
cos θ

(
cosϕ∂θ(u1vr) + sin ϕ∂θ(u2vr)

)
− sin θ ∂θ(u3vr)− sin ϕ

sin θ
∂ϕ(u1vr)

+
cos ϕ

sin θ
∂ϕ(u2vr)− 2 sin θ cosϕ u1vr − 2 sin θ sin ϕu2vr − 2 cos θ u3vr

)
.

Hence (4.1.22) and (4.1.23) coincide. The lemma is proved.

4.1.5. Connections between eigenvectors and generalized eigenvec-
tors corresponding to the eigenvalues λ and −1 − λ. By (4.1.21), the
sesquilinear form a(·, ·; λ) can be written as

a(u, v;λ) = [uω, vω] +
∫

Ω

(
(∇ωur) · ∇ωvr + (λ + 2)(1− λ)

2− 2ν

1− 2ν
ur vr(4.1.24)

+(λ + 2)(1− λ)uω · vω +
2ν

1− 2ν
(∇ω · uω)∇ω · vω

+
4− 4ν + λ

1− 2ν
ur ∇ω · vω +

3− 4ν − λ

1− 2ν
(∇ω · uω) vr

)
dω

for u, v ∈ Hs.
Let T (λ) be the matrix (3.2.26). Then for u, v ∈ Hs we have T (λ) u ∈ Hs,

T (λ) v ∈ Hs, and
a(T (λ)u, v;−1− λ) = a(u, T (λ)v;λ).

Consequently, for all λ ∈ C there is the equality

(4.1.25) T (λ)A(λ) = A(−1− λ) T (λ).
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Repeating the proof of Theorem 3.2.2, we get the following result.

Theorem 4.1.2. Let λ0 be an eigenvalue of the pencil A and let u(0), . . . , u(s)

be a Jordan chain corresponding to this eigenvalue. If λ0 does not take the values
3 − 4ν and 4ν − 4 or T (λ0)u(0) 6= 0, then −1 − λ0 is also an eigenvalue and the
vector functions

T (λ0)u(0), (−1)k


T (λ0)u(k) +




1 0 0
0 −1 0
0 0 −1


 u(k−1)


 , k = 1, . . . , s,

form a Jordan chain corresponding to this eigenvalue.

Remark 4.1.1. If λ0 6= 3 − 4ν and λ0 6= 4ν − 4, then the formulas in the
theorem determine a one-to-one relation between the eigenvectors and generalized
eigenvectors of the pencil A(λ) corresponding to the eigenvalues λ0 and −1− λ0.

4.1.6. A strip containing only real eigenvalues of the pencil A.

Theorem 4.1.3. The strip

(4.1.26)
∣∣∣Re λ +

1
2

∣∣∣
2

≤
(5

2
− 2ν

)2

+ (1− 2ν)2

contains only real eigenvalues of the pencil A.

Proof: Let λ be a complex number such that Re λ 6= −1/2, Im λ 6= 0. We
consider the sesquilinear form

(4.1.27) q(u, v;λ) = a
(( ur

uω

)
,
(cvr

vω

)
; λ

)
,

where

c =
4− 4ν + λ

3− 4ν − λ
.

By (4.1.24), we have

q(u, u; λ) = [uω, uω] +
∫

Ω

(
c |∇ωur|2 + (λ + 2) (1− λ)

2− 2ν

1− 2ν
c |ur|2(4.1.28)

+ (λ + 2) (1− λ) |uω|2 +
2ν

1− 2ν
|∇ω · uω|2

+ 2 Re
(4− 4ν + λ

1− 2ν
ur ∇ω · uω

))
dω.

Using the formulas

c (1− λ) (λ + 2) = |4− 4ν + λ|2 − 2(1− 2ν)(5− 4ν) c,

c =
(4− 4ν + Re λ)(3− 4ν − Re λ) + (Im λ)2 + i Im λ (2Re λ + 1)

|3− 4ν − λ|2 ,

we get

Im q(u, u; λ) = Im λ (2Re λ + 1)
∫

Ω

(
1

|3− 4ν − λ|2 |∇ωur|2

−4(1− ν)(5− 4ν)
|3− 4ν − λ|2 |ur|2 − |uω|2

)
dω,
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while the real part of q(u, u;λ) is equal to

[uω, uω] +
∫

Ω

(
Re c |∇ωur|2 +

(
(1− Re λ) (Re λ + 2) + (Im λ)2

) |uω|2

+ 2(1− ν)
( |4− 4ν + λ|2

1− 2ν
− (10− 8ν)Re c

)
|ur|2

+
2ν

1− 2ν
|∇ω · uω|2 + 2Re

(4− 4ν + λ

1− 2ν
ur ∇ω · uω

))
dω.

This implies

Re q(u, u;λ)− Re c |3− 4ν − λ|2
Imλ (2Re λ + 1)

Im q(u, u; λ)

= [uω, uω] + 2
∫

Ω

(
(1− Reλ) (Re λ + 2) + (1− 2ν) (5− 4ν) + (Im λ)2

)
|uω|2 dω

+
∫

Ω

(2− 2ν

1− 2ν
|4− 4ν + λ|2 |ur|2 +

2ν

1− 2ν
|∇ω · uω|2

)
dω

+ 2
∫

Ω

Re
(4− 4ν + λ

1− 2ν
ur ∇ω · uω

)
dω

= [uω, uω] + 2
∫

Ω

(
(1− Reλ) (Re λ + 2) + (1− 2ν) (5− 4ν) + (Im λ)2

)
|uω|2 dω

+
∫

Ω

(
2− 2ν

1− 2ν

∣∣∣(4− 4ν + λ)ur +
1

2− 2ν
∇ω · uω

∣∣∣
2

− 1− 2ν

2− 2ν
|∇ω · uω|2

)
dω.

If the inequality (4.1.26) is satisfied, then, by (4.1.12), the right side of the last
equation is positive for u 6= 0. Hence q(u, u; λ) 6= 0 for all nonreal λ in the strip
(4.1.26), Re λ 6= −1/2, and all u ∈ Hs. From this we conclude the assertion of the
theorem in the case Re λ 6= −1/2. Since the line Re λ = −1/2 does not contain
eigenvalues (see Theorem 4.1.1, assertion 2), the theorem is completely proved.

4.1.7. Absence of generalized eigenvectors. Now we show that the eigen-
vectors corresponding to eigenvalues in the interior of the strip (4.1.26) have no
generalized eigenvectors.

Lemma 4.1.4. Let λ0 be a real eigenvalue of the pencil A in the interval

(4.1.29) −1
2

< λ <
((5

2
− 2ν

)2

+ (1− 2ν)2
)1/2

− 1
2

and let u(0) be an eigenvector corresponding to this eigenvalue. Then

(4.1.30)
d

dλ
a
((u

(0)
r

u
(0)
ω

)
,
(c(λ)u(0)

r

u
(0)
ω

)
; λ

)∣∣∣
λ=λ0

< 0,

where c(λ) = (4− 4ν + λ)/(3− 4ν − λ).

Proof: Let q(·, ·; λ) be the sesquilinear form (4.1.27) with c(λ) as in the formu-
lation of the lemma. Then, according to (4.1.28), the left side of (4.1.30) is equal
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to

d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

=
∫

Ω

(
c′(λ0) |∇ωu(0)

r |2 +
2

1− 2ν
Re

(
u(0)

r ∇ω · u(0)
ω

)− (2λ0 + 1) |u(0)
ω |2

+
2− 2ν

1− 2ν

(
(λ0 + 2) (1− λ0) c′(λ0)− (2λ0 + 1) c(λ0)

)
|u(0)

r |2
)

dω,

where c′(λ0) = (7− 8ν) (3− 4ν − λ0)−2.

Furthermore, by the first part of Lemma 4.1.3, the vector function (u(0)
r , 0)

belongs to the space Hs. Consequently,

0 = a
((u

(0)
r

u
(0)
ω

)
,
(u

(0)
r

0

)
; λ0

)
=

∫

Ω

(
|∇ωu(0)

r |2 +
2− 2ν

1− 2ν
(λ0 + 2) (1− λ0) |u(0)

r |2

+
3− 4ν − λ0

1− 2ν
(∇ω · u(0)

ω )u
(0)
r

)
dω.

From this we obtain

d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

=
d

dλ
q(u(0), u(0); λ)

∣∣∣
λ=λ0

− 2
3− 4ν − λ0

Re a
((u

(0)
r

u
(0)
ω

)
,
(u

(0)
r

0

)
; λ0

)

= (1 + 2λ0)
∫

Ω

(
1

(3− 4ν − λ0)2
|∇ωu(0)

r |2 − 4(1− ν)(5− 4ν)
(3− 4ν − λ0)2

|u(0)
r |2 − |u(0)

ω |2
)

dω.

Since q(u(0), u(0);λ0) = 0, we get, analogously to the proof of Lemma 3.3.1,

− (4− 4ν + λ0)(3− 4ν − λ0)
1 + 2λ0

d

dλ
q(u(0), u(0);λ)

∣∣∣
λ=λ0

(4.1.31)

= [u(0)
ω , u(0)

ω ] +
2− 2ν

1− 2ν

∫

Ω

∣∣∣(4− 4ν + λ0)u(0)
r +

1
2− 2ν

∇ω · u(0)
ω

∣∣∣
2

dω

+ 2
(
(
5
2
− 2ν)2 + (1− 2ν)2 − (λ0 +

1
2
)2

) ∫

Ω

|u(0)
ω |2 dω.

− 1− 2ν

2− 2ν

∫

Ω

|∇ω · u(0)
ω |2 dω.

Using (4.1.12), we obtain that the right side of (4.1.31) is positive for λ0 from the
interval (4.1.29). Since the upper bound of the interval (4.1.29) is less than 3− 4ν,
we get (4.1.30).

Theorem 4.1.4. The eigenvectors corresponding to eigenvalues in the strip
∣∣∣Re λ +

1
2

∣∣∣
2

<
(5

2
− 2ν

)2

+ (1− 2ν)2

do not have generalized eigenvectors.
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Proof: By assertion 4) of Theorem 4.1.1, we can restrict ourselves to real eigen-
values in the interval (4.1.29).

Let λ0 be an eigenvalue in this interval and let u(0), u(1) be a Jordan chain
corresponding to this eigenvalue. Then for arbitrary v ∈ Hs

a(u(0), v;λ0) = 0,(4.1.32)

a(u(1), v;λ0) +
d

dλ
a(u(0), v;λ)

∣∣∣
λ=λ0

= 0.(4.1.33)

We denote by q(·, ·;λ) the same sesquilinear form as in the proof of Lemma 4.1.4.
From (4.1.32) it follows that

q(u(0), u(1); λ0) =
1

3− 4ν − λ
a(u(0) , T (λ0)u(1) ;λ0) = 0.

Furthermore, since the form q is symmetric, we have

0 = q(u(1), u(0); λ0) =
1

3− 4ν − λ
a(u(1) , T (λ0)u(0) ;λ0).

Hence we get
d

dλ
q(u(0), u(0); λ)

∣∣
λ=λ0

=
d

dλ

1
3− 4ν − λ

a(u(0), T (λ)u(0);λ)
∣∣∣
λ=λ0

=
1

3− 4ν − λ

d

dλ
a(u(0), T (λ)u(0);λ)

∣∣∣
λ=λ0

=
1

3− 4ν − λ

(
a(u(0) , T ′(λ0) u(0); λ0) +

d

dλ
a(u(0), T (λ0) u(0); λ)

∣∣∣
λ=λ0

)

=
1

3− 4ν − λ

(
a(u(0) , T ′(λ0) u(0); λ0)− a(u(1), T (λ0)u(0);λ0)

)
= 0.

This contradicts (4.1.30). The theorem is proved.

Remark 4.1.2. We have proved Theorems 4.1.2–4.1.4 for the operator pencil
A generated by the Lamé system (4.1.1) with the boundary conditions (4.1.2).
These results hold also for other boundary conditions provided the assertions of
Lemma 4.1.3 are true for the space H which determines these boundary conditions.
Note that the second assertion of Lemma 4.1.3 is not valid for the space H =
W 1

2 (Ω)× h1
2(Ω), i.e., the Neumann boundary conditions are excluded.

4.1.8. A variational principle. We consider the operator

A(λ) = T (λ)A(λ)

and the corresponding quadratic form(
A(λ)u, u

)
L2(Ω)3

= ã(u, u; λ)
def
= (3− 4ν − λ) q(u, u;λ) = (3− 4ν − λ) [uω, uω]

+
∫

Ω

(
(4− 4ν + λ) |∇ωur|2 +

2− 2ν

1− 2ν
(λ + 2) (1− λ) (4− 4ν + λ) |ur|2

+ (λ + 2) (1− λ) (3− 4ν − λ) |uω|2 +
2ν

1− 2ν
(3− 4ν − λ) |∇ω · uω|2

+
2 (3− 4ν − λ) (4− 4ν + λ)

1− 2ν
Re ur ∇ω · uω

)
dω,

where u ∈ Hs. We shall apply the results of Section 1.3 for the form ã. In our
case H = L2(Ω)3, H+ = Hs, α = − 1

2 and β = − 1
2 +

(
( 5
2 − 2ν)2 + (1 − 2ν)2

)1/2
.
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Note that β < 3 − 4ν. Let us verify the validity of conditions (I)–(III) of Section
1.3. Indeed, for λ ≥ − 1

2 we have c ≥ 1 and, therefore, q(u, u; λ) ≥ a(u, u;λ). Thus,
condition (I) can be deduced from (4.1.18). Condition (II) follows from the identity
A(− 1

2 ) = ( 7
2 − 4ν)A(− 1

2 ) and from the second assertion of Theorem 4.1.1. Finally,
condition (III) is a consequence of Lemma 4.1.4.

We denote by {µj(λ)} a nondecreasing sequence of eigenvalues of the operator
A(λ) counting their multiplicities. From the positivity of the operator A(−1/2) it
follows that µj(−1/2) > 0. The next theorem is a consequence of Theorems 1.3.2
and 1.3.3.

Theorem 4.1.5. The spectrum of the pencil A has the following properties in
the strip −1/2 ≤ Re λ ≤ β.

1) All eigenvalues of the pencil A are real and may be characterized by

{λj}j=1,...,J =
{

λ ∈ [−1
2
, β] : µj(λ) = 0 for some j = 1, . . . , J

}
,

where J is the largest index j for which the function µj has a zero in the interval
[− 1

2 , β). For every j the function µj has not more than one zero in [− 1
2 , β).

2) If λ0 ∈ [− 1
2 , β) is an eigenvalue of multiplicity I, then I is equal to the

number of functions µj which have a zero at λ0.

If Hs 6=
◦

W 1
2(Ω)× ◦

h1
2(Ω), then the eigenvalues do not monotonically depend on

the domain Ω. However, the following statement is a consequence of Theorem 1.3.5.

Theorem 4.1.6. Let Hs,1, Hs,2 be subspaces of W 1
2 (Ω) × h1

2(Ω) such that the
assertions of Lemma 4.1.3 are valid. We denote by A1, A2 the operator pencils cor-
responding to these subspaces. Furthermore, let {λ(1)

j }, {λ(2)
j } be the nondecreasing

sequences of the eigenvalues of the pencils A1 and A2 in the interval [−1/2, β)
counted with their multiplicities. If Hs,1 ⊂ Hs,2, then the number of the eigenval-
ues of the pencil A1 in the interval [−1/2, β) is not greater than the number of such
eigenvalues of the pencil A2. Furthermore, the inequality

λ
(2)
j ≤ λ

(1)
j

is valid.

4.2. The Neumann problem for the Lamé system in a plane angle

Now we study the eigenvalues, eigenfunctions and generalized eigenfunctions
of the operator pencil generated by the Neumann problem for the Lamé system in
a plane angle. As in the case of the Dirichlet problem, we obtain entire functions
whose zeros are the mentioned eigenvalues. This enables us to obtain information
on the distribution of these eigenvalues.

4.2.1. The operator pencil generated by the Neumann problem. Let
K =

{
(x1, x2) ∈ R2 : 0 < r < ∞, −α/2 < ϕ < α/2} be a plane angle with opening

α ∈ (0, 2π]. We consider the Lamé system

∆U + (1− 2ν)−1∇∇ · U = 0 in K
with the Neumann boundary condition σϕ = τrϕ = 0 on ∂K\{0}, i.e.,

∂rUr +
1− ν

ν

(1
r
∂ϕUϕ +

1
r
Ur

)
= 0,

1
r
∂ϕUr + ∂rUϕ − 1

r
Uϕ = 0 for ϕ = ±α/2.
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Putting Ur = rλur(ϕ) and Uϕ = rλuϕ(ϕ) into the Lamé system, we get the system

L(λ)
( ur

uϕ

)
= 0

given by (3.1.5), (3.1.6), while the boundary conditions take the form

(4.2.1) B±(λ)
( ur

uϕ

)
=

( λur + 1−ν
ν (u′ϕ + ur)

u′r + (λ− 1)uϕ

)∣∣∣
ϕ=±α/2

= 0.

We denote the operator(L(λ),B+,B−
)

: (W 2
2 (−α/2,+α/2))2 → (L2(−α/2, +α/2))2 × C2 × C2

by A(λ). As in the case of the Dirichlet problem, the operator A(λ) is Fredholm
for every λ ∈ C and the spectrum of the pencil A consists of eigenvalues with
finite algebraic multiplicities. If λ0 is an eigenvalue, then −λ0, λ0, −λ0 are also
eigenvalues.

4.2.2. Equations for the eigenvalues of the operator pencil. Inserting
the general solution (3.1.16) of system (3.1.5), (3.1.6) into the boundary conditions
(4.2.1), we obtain the following algebraic system for the coefficients c1, . . . , c4:

−2λ
(
c1 − 3− 4ν

λ
c3

) (
cos(1 + λ)α/2
± sin(1 + λ)α/2

)

+2λ
(
c2 − 3− 4ν

λ
c4

) ( ± sin(1 + λ)α/2
cos(1 + λ)α/2

)

+2c3

(
(1 + λ) cos(1− λ)α/2
±(1− λ) sin(1− λ)α/2

)
+ 2c4

( ∓(1 + λ sin(1− λ)α/2
−(1− λ) cos(1− λ)α/2

)
= 0.

Analogous to the case of the Dirichlet problem, this system is equivalent to two
systems

(4.2.2)





−λ
(
c1 − 3−4ν

λ c3

)
cos(1 + λ)α/2 + (1 + λ)c3 cos(1− λ)α/2 = 0,

−λ
(
c1 − 3−4ν

λ c3

)
sin(1 + λ)α/2 + (1− λ)c3 sin(1− λ)α/2 = 0

and

(4.2.3)





λ
(
c2 − 3−4ν

λ c4

)
sin(1 + λ)α/2− (1 + λ)c4 sin(1− λ)α/2 = 0,

λ
(
c2 − 3−4ν

λ c4

)
cos(1 + λ)α/2 + (1− λ)c4 cos(1− λ)α/2 = 0

with the determinants

d+(λ) = λ (sinλα + λ sin α),
d−(λ) = λ (sinλα− λ sin α).

Therefore, every eigenvalue of the pencil A is a solution of one of the equations

sin λα + λ sin α = 0,(4.2.4)
sin λα− λ sin α = 0.(4.2.5)

The graphs of the real parts of the roots of the equations (4.2.4), (4.2.5) are repre-
sented in the figure below, the thick lines correspond to real and the thin lines to
nonreal eigenvalues).
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Figure 9. Real parts of eigenvalues of the pencil generated by the
Neumann problem in the strip 0 < Reλ < 3

4.2.3. Eigenvectors and generalized eigenvectors of the pencil A. As
in Section 3.1, let A = 3− 4ν − λ, B = 3− 4ν + λ. If λ is an eigenvalue satisfying
the equality d+(λ) = 0, then

(4.2.6)
(

u+
r

u+
ϕ

)
= (cos λα + λ cos α)

(
cos(1 + λ)ϕ
− sin(1 + λ)ϕ

)
+

(
A cos(1− λ)ϕ
−B sin(1− λ)ϕ

)

is an eigenvector corresponding to this eigenvalue. Analogously, the eigenvector

(4.2.7)
(

u−r
u−ϕ

)
= (cos λα− λ cosα)

(
sin(1 + λ)ϕ
cos(1 + λ)ϕ

)
+

(
A sin(1− λ)ϕ
B cos(1− λ)ϕ

)

corresponds to the eigenvalue λ satisfying the equality d−(λ) = 0. Since each of the
systems (4.2.2), (4.2.3) has at most one nontrivial solution, we have obtained all
eigenvectors in this way.

The equations (4.2.4), (4.2.5) coincide with (3.1.22), (3.1.23) for ν = 1/2.
Therefore, the spectra of the operator pencils corresponding to the Dirichlet and
Neumann problems have several common properties. In particular, there are no
generalized eigenvectors to nonreal eigenvalues and the length of the Jordan chains
corresponding to real eigenvalues is not greater than 2 (cf. Lemma 3.1.3). The
angles α for which generalized eigenvectors exist are determined by the relations
given after the proof of Lemma 3.1.4. Here, in the case of the Neumann problem,
we have to put ν = 1/2.

Furthermore, formula (3.1.31) for the generalized eigenvectors is also valid for
the pencil of the Neumann problem. Here the functions u±r , u±ϕ on the right-hand
side are determined by (4.2.6), (4.2.7). The proof of this fact is the same as for
Lemma 3.1.4.

In contrast to the Dirichlet problem, the spectrum of the pencil generated by
the Neumann problem contains the number λ = 0. This eigenvalue has the algebraic
multiplicity 4, since λ = 0 is a zero of multiplicity two both of d+(λ) and d−(λ).
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This eigenvalue has the eigenvectors
(

u+
r

u+
ϕ

)
=

(
cos ϕ
− sin ϕ

)
,

(
u−r
u−ϕ

)
=

(
sinϕ
cos ϕ

)

and the corresponding generalized eigenvectors
(

v+
r

v+
ϕ

)
=

1− 2ν

2− 2ν
ϕ

(
sin ϕ
cos ϕ

)
− 1

4(1− ν)

(
cos ϕ
sin ϕ

)
,

(
v−r
v−ϕ

)
=

1− 2ν

2− 2ν
ϕ

( − cosϕ
sin ϕ

)
+

1
4(1− ν)

( − sin ϕ
cos ϕ

)
.

Obviously, the common roots λ 6= 0 of the equations d+(λ) = 0 and d−(λ) = 0
exist only in the cases α = π and α = 2π. If α = π, then the spectrum consists
of the eigenvalues 0,±1,±2, . . . , and in the case α = 2π the numbers ±k/2 (k =
0, 1, . . .) are eigenvalues. In both cases there are two eigenvectors (4.2.6), (4.2.7)
and generalized eigenvectors only exist for λ = 0.

The eigenvalue λ = 1
2 of the operator pencil A for α = 2π plays an important

role in fracture mechanics (see Cherepanov [27, 28]). The eigenvectors correspond-
ing to this eigenvalue are(

(5− 8ν) cos ϕ/2− cos 3ϕ/2
−(7− 8ν) sin ϕ/2 + sin 3ϕ/2

)
,

(
(5− 8ν) sin ϕ/2− 3 sin 3ϕ/2
(7− 8ν) cos ϕ/2− 3 sin 3ϕ/2

)
.

Finally, we note that λ = 1 is a root of the equation d−(λ) = 0 for every angle α.
The eigenvector corresponding to this eigenvalue is

(
u−r
u−ϕ

)
=

(
0
1

)
.

A generalized eigenvector corresponding to this eigenvalue exists only for α = α∗,
where α∗ is the unique solution of the equation tan α = α in the interval (0, 2π],
α∗ ≈ 1.4303 π. From (3.1.31) it follows that the generalized eigenvector has the
form (

v−r
v−ϕ

)
= − 1

4(1− ν) cos α∗

(
sin 2ϕ
cos 2ϕ

)
− 1− 2ν

2− 2ν

(
ϕ
0

)
.

4.2.4. Distribution of the eigenvalues in the plane Re λ > 0. For the
proof of the following theorem it suffices to repeat the arguments used in the proof
of Theorem 3.1.1. Here we have to put ν = 1/2.

Theorem 4.2.1. Let α 6= π, α 6= 2π. Then the lines Re λ = kπ/α, k =
1, 2, . . ., do not contain eigenvalues of A, while the line Re λ = 0 contains the unique
eigenvalue λ = 0. Furthermore, the assertions 2)–4) of Theorem 3.1.1, where the
constant ν in (3.1.22), (3.1.23) is replaced by 1/2, are valid for the pencil A generated
by the Neumann problem.

Before we formulate an analogous result to Theorem 3.1.2, we introduce two
auxiliary functions ξ±. Let ξ+(α) be the smallest positive root of the equation

(4.2.8)
sin ξ

ξ
+

sinα

α
= 0 α ∈ (0, 2π].

Positive roots exist only for α ≥ α0, where α0 is the smallest positive root of the
equation α−1 sinα = − cosα∗, α0 ≈ 0.8128π. For α < α0 the equation (4.2.8) has
only nonreal roots. The function ξ+ is real-analytic for α ∈ (α0, 2π], assumes its
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maximum α∗ at the point α = α0 and its minimum α0 at the point α = α∗. It
decreases on the interval [α0, α∗] and increases on the interval [α∗, 2π]. Moreover,

ξ+(π) = ξ+(2π) = π.

Furthermore, let ξ−(α) be the smallest positive root of the equation

(4.2.9)
1

ξ − α

( sin ξ

ξ
− sin α

α

)
= 0.

The function ξ− is defined for α ∈ [α1, 2π], where α1 is the smallest positive root of
the equation α−1 sin α = cos α∗∗ and α∗∗ is the second positive root of the equation
tanα = α, α∗∗ ≈ 2.4590 π, α1 ≈ 0.88397 π. Note that ξ− is real-analytic and strictly
decreasing in (α1, 2π]. Furthermore,

ξ−(α1) = α∗∗, ξ−(π) = 2π, ξ−(α∗) = α∗, ξ−(2π) = π.

The following theorem describes the spectrum of the operator pencil A near the
line Re λ = 0 and can be proved analogously to Theorem 3.1.2.

Theorem 4.2.2. 1) If α ∈ (0, π), then the spectrum of the operator pencil A in
the strip 0 < Re λ < π/α consists of the unique simple eigenvalue λ = 1.

2) Let α ∈ (π, 2π). Then the spectrum of A in the strip 0 < Re λ < 2π/α
consists of the eigenvalues

λ+(α) =
ξ+(α)

α
, 1 , λ−(α) =

ξ−(α)
α

.

3) The functions λ+, λ− defined on the intervals [α0, 2π] and [α1, 2π], respec-
tively, are strictly decreasing. Furthermore, the following inequalities are satisfied:

λ+(α) < 1 < λ−(α) <
2π

α
for α ∈ (π, α∗),

λ+(α) < λ−(α) < 1 for α ∈ (α∗, 2π).

Moreover, λ+(π) = 1, λ−(π) = 2, λ−(α∗) = 1, and λ+(2π) = λ−(2π) = 1
2 .

Now we deal with the spectrum of the pencil A in the strip

(4.2.10)
π

α
< Re λ <

2π

α

for α ∈ (0, π). If α ∈ (α0, π), then the equation (4.2.8) has two roots in the interval
(π, 2π). We denote the smallest of them by ξ+, while the second is denoted by ξ

(1)
+ .

The function ξ
(1)
+ is strictly increasing and satisfies the equalities

ξ
(1)
+ (α0) = ξ+(α0) = α∗, ξ

(1)
+ (π) = 2π.

Since (4.2.8) has no real roots for α ∈ (0, α0), according to Theorem 4.2.1, there
are two nonreal eigenvalues z(α)/α and z(α)/α in the strip (4.2.10), where z(α) is
the root of (4.2.8) with positive imaginary part. The root z(α) is simple and real-
analytic with respect to α ∈ (0, α0). Furthermore, the limits z(+0) and z(α0 − 0)
exist. The first of these limits is the root of the equation sin z = −z with the
smallest positive real part, z(+0) ≈ 4.2 + 2.3i, while the second is equal to α∗.
Moreover, z(α) has the asymptotics

z(α) = α∗ + c i (α0 − π)1/2 + O(α0 − α) as α → α0 − 0,
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where c =
√

2 (α−1
0 −cot α0)1/2 > 0. Indeed, in a neighborhood of the point α = α0,

z = α∗ the following decomposition holds:

α sin z + z sinα = (sin α∗ + α∗ cosα0) (α− α0)(4.2.11)

− α0 sin α∗
(z − α∗)2

2
+

∑

l+2k>2

ak,l (α− α0)k (z − α∗)l.

Hence z(α) can be represented as a convergent series of powers of (α0 − α)1/2

(see, e.g., the book by Vainberg and Trenogin [254]). From (4.2.11) it follows
immediately that

c =
(
2

sin α∗ + α∗ cos α0

α0 sin α∗

)1/2

.

Using the equalities tan α∗ = α∗, α−1
0 sinα0 = − cosα∗, we obtain the expression

for the constant c given above.

Theorem 4.2.3. 1) Let α ∈ (0, α0). Then the spectrum of the operator pencil A

in the strip (4.2.10) consists of two nonreal simple eigenvalues z(α)/α and z(α)/α.
The function Re z(α) is strictly increasing on (0, α0).

2) If α = α0, then the pencil A has the only eigenvalue α∗/α in the strip
(4.2.10). The algebraic multiplicity of this eigenvalue is equal to two.

3) If α ∈ (α0, π), then the spectrum of A in the strip (4.2.10) consists of the
simple real eigenvalues ξ+(α)/α and ξ

(1)
+ (α)/α.

Proof: By Theorem 4.2.1, the sum of the algebraic multiplicities of all eigenval-
ues in the strip (4.2.10) is equal to two. A description of the eigenvalues has been
given before the present theorem. Therefore, we have only to show the monotonicity
of the function Re z(α).

Obviously, the function t(α) = α−1 sin α is positive and strictly decreasing
in the interval in (0, α0). We set ζ(t) = z(α(t)), where α = α(t) is the inverse
function to t = t(α). Differentiating the equation sin ζ(t) + t ζ(t) = 0, we obtain
ζ ′ = −(cos ζ + t)−1ζ. Hence for ζ = a + bi

(4.2.12) Re ζ ′ =
−a(cos a · cosh b + t) + b sin a · sinh b

| cos ζ + t|2 .

Splitting the equation sin ζ + tζ = 0 into the real and imaginary parts, we get the
system

(4.2.13) sin a · cosh b + ta = 0 , cos a · sinh b + tb = 0.

Together with (4.2.12) this implies

Re ζ ′ =
sin 2a− 2at2

2t | cos ζ + t|2 .

By (4.2.13), we have sin 2a = 4t2 ab/ sinh 2b > 0 and, therefore,

Re ζ ′ =
at(2b− sinh 2b)

sinh 2b | cos ζ + t|2 < 0.

Hence the function Re z(α) is strictly increasing on (0, α0).
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4.3. The Neumann problem for the Lamé system in a cone

In this section we deal with the pencil corresponding to the Neumann problem
for the Lamé system in a three-dimensional cone. We describe its spectrum in
the strip −1 ≤ Re λ ≤ 0. We show that the spectrum in this strip consists of two
eigenvalues λ0 = 0 and λ1 = −1 which have geometric and algebraic multiplicity
3 if the cone K is given by the inequality x3 > φ(x1, x2) with a smooth positively
homogeneous of degree 1 function φ.

4.3.1. The operator pencil generated by the Neumann problem for
the Lamé system. We consider the Neumann problem for the Lamé system:

∆U + (1− 2ν)−1∇∇ · U = 0 in K,(4.3.1)
3∑

j=1

σi,j(U)nj = 0 on ∂K\{0}, i = 1, 2, 3.(4.3.2)

Here again {σi,j(U)} denotes the stress tensor. In what follows, it is assumed that
the cone K is given by x3 > φ(x1, x2), where φ is a positively homogeneous function
of degree 1 which is smooth on R2\{0}.

We are interested in solutions of problem (4.3.1), (4.3.2) which have the form

(4.3.3) U = rλ0

s∑

k=0

1
k!

(log r)k u(s−k)(ω),

where u(k) ∈ W 1
2 (Ω)3 for k = 0, 1, . . . , s. This means that we look for vector

functions (4.3.3) which satisfy the integral identity

(4.3.4)
3∑

i,j=1

∫

K

σi,j(U) · εi,j(V ) dx = 0

for all functions V = V (r, ω) of the class C∞0
(
(0,∞); W 1

2 (Ω)3
)
.

By a(·, ·; λ) we denote the parameter-depending sesquilinear form

(4.3.5) a(u, v; λ) =
1

2 log 2

∫

K
1/2<|x|<2

3∑

i,j=1

σi,j(U) · εi,j(V ) dx,

where U(x) = rλ u(ω), V (x) = r−1−λ v(ω), and u, v ∈ W 1
2 (Ω)3.

The sesquilinear form (4.3.5) generates a linear and continuous operator

(4.3.6) A(λ) : W 1
2 (Ω)3 → (W 1

2 (Ω)3)∗

by the equality

(4.3.7)
(
A(λ)u, v

)
L2(Ω)3

= a(u, v; λ), u, v ∈ W 1
2 (Ω)3 .

According to Lemma 1.2.3, the vector function (4.3.3) is a solution of the equation
(4.3.4) if and only if λ0 is an eigenvalue of the operator pencil A and u(0), . . . , u(s)

is a Jordan chain corresponding to this eigenvalue.
The assertions of Theorem 4.1.1 are also valid for the operator pencil generated

by the Neumann problem and their proof is literally the same as that for the mixed
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problem in Section 4.1. In particular, the spectrum of the pencil A consists of
isolated eigenvalues with finite algebraic multiplicities, and the equality

a(u, v;λ) = a(v, u;−1− λ)

holds for arbitrary u, v ∈ W 1
2 (Ω)3. This means that (A(λ))∗ = A(−1− λ).

Let λ0 be an eigenvalue of the pencil A and let u0 be an eigenvector corre-
sponding to this eigenvalue. The equation

A(λ0)u(1) = −A′(λ0)u0

for the generalized eigenvector u(1) is solvable if and only if A′(λ0) u0 is orthogonal
to the kernel of the operator (A(λ0))∗ = A(−1− λ0) or, what is the same, if

a(1)(u0, v; λ0) = 0

for all eigenvectors of the pencil A corresponding to the eigenvalue −1− λ0.

4.3.2. The case of the half-space. Let K be the half-space

R3
+ = {(x1, x2, x3) : x3 > 0}.

In this case we denote the above introduced operator pencil by A0. We leave to the
reader the proof of the following well-known assertion concerning positively homo-
geneous solutions of the Neumann problem for the Lamé system in R3

+ (compare
with Theorems 10.3.1–10.3.3).

Lemma 4.3.1. The pencil A0 has the eigenvalues

λj = j and µj = −j − 1,

j = 0, 1, 2, . . . . The eigenvectors corresponding to the eigenvalues λj are the traces
on S2

+ of homogeneous polynomials of degree j which are solutions of the problem
(4.3.1), (4.3.2), while the eigenvectors corresponding to the eigenvalues µj are traces
of derivatives of the Poisson kernels, i.e., of solutions to the problems

∆Pj + (1− 2ν)−1∇∇ · Pj = 0 in R3
+,

σi,3(Pj) = c δi,j δ(x′) for x3 = 0, i = 1, 2, 3.

Other eigenvalues of the pencil A0 do not exist.

4.3.3. Eigenvalues in the strip −1 ≤ Re λ ≤ 0. In particular, it follows
from Lemma 4.3.1 that 0 and −1 are the only eigenvalues of the pencil A0 in the
strip −1 ≤ Re λ ≤ 0. We show that this is also true for the pencil A if K is an
arbitrary cone given by the inequality x3 > φ(x1, x2) with a function φ which is
smooth and positively homogeneous of degree 1 on R2\{0}.

Theorem 4.3.1. The strip −1 ≤ Re λ ≤ 0 contains exactly two eigenvalues
λ0 = 0 and λ1 = −1. Both eigenvalues have the geometric and algebraic multiplicity
3. Generalized eigenvectors to these eigenvalues do not exist. The eigenvectors
corresponding to the eigenvalue λ0 are the constant vectors in C3.

Proof: We show first that λ0 = 0 is the only eigenvalue of the pencil A on the
line Re λ = 0. Let U(x) = rλ u(ω) be a solution of problem (4.3.1), (4.3.2), where
Re λ = 0. Using the Green formula (4.1.3) and the equality

3∑

i,j=1

σi,j(U) εi,j(V ) =
3∑

i,j=1

εi,j(U) σi,j(V ),
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we obtain
∫

K
1/2<|x|<2

∂

∂x3

3∑

i,j=1

σi,j(U) · εi,j(U) dx(4.3.8)

= 2 Re
3∑

i,j=1

∫

K
1/2<|x|<2

σi,j(U) · εi,j

( ∂U

∂x3

)
dx

= 2 Re
( ∫

S1/2

3∑

i,j=1

σi,j(U) nj
∂U i

∂x3
dσ +

∫

S2

3∑

i,j=1

σi,j(U)nj
∂U i

∂x3
dσ

)
,

where S1/2, S2 are the intersections of the cone K with the spheres |x| = 1/2 and
|x| = 2, respectively. Since U(x) = rλ u(ω) with Re λ = 0, the right side of (4.3.8)
vanishes. Hence,

0 =
∫

K
1/2<|x|<2

∂

∂x3

3∑

i,j=1

σi,j(U) · εi,j(U) dx =
∫

∂K
1/2<|x|<2

n3

3∑

i,j=1

σi,j(U) εi,j(U) dσ

+
∫

S1/2

n3

3∑

i,j=1

σi,j(U) εi,j(U) dσ +
∫

S2

n3

3∑

i,j=1

σi,j(U) εi,j(U) dσ

=
∫

∂K
1/2<|x|<2

n3

3∑

i,j=1

σi,j(U) εi,j(U) dσ

= 2 µ

∫

∂K
1/2<|x|<2

n3

( ν

1− 2ν
|∇ · U |2 +

3∑

i,j=1

|εi,j(U)|2
)

dσ.

By our assumptions on K, the component n3 of n is negative on ∂K\{0}. Conse-
quently, we get

∇ · U = 0 on ∂K\{0} and εi,j(U) = 0 on ∂K\{0} for i, j = 1, 2, 3.

Applying the operator ∇· to equation (4.3.1), we obtain ∆∇ · U = 0 in K. Here
∇ · U is a function of the form rλ−1 v(ω). Consequently, v = 0 or λ(λ − 1) is an
eigenvalue of the Dirichlet problem for the operator −δ in Ω (see Section 2.2).
Since the eigenvalues of −δ with Dirichlet boundary conditions on ∂Ω are real and
positive, the last can be excluded. Hence ∇ · U = 0. This implies ∆εi,j(U) = 0
and, by the same arguments as before, εi,j = 0 for i, j = 1, 2, 3. Thus, we obtain
U = const ∈ C3 and λ = 0.

Now we prove that there are no generalized eigenvectors to the eigenvalue λ0 =
0. For this we have to show that there are no solutions of problem (4.3.1), (4.3.2)
which have the form U(x) = c log r + v(ω) with a nonzero constant vector c. Let U
be a solution of this form. Since the derivatives ∂U/∂xi have the form r−1 wi(ω),
it can be shown, in the same way as above, that εi,j(U) = 0. Consequently, c = 0,
i.e., there are no generalized eigenvectors.
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Thus, we have shown that λ0 = 0 is the only eigenvalue on the line Re λ = 0
and that this eigenvalue has the geometric and algebraic multiplicity 3. From the
equality (A(λ))∗ = A(−1 − λ) and from Theorem 1.1.7 it follows that λ1 = −1 is
the only eigenvalue on the line Re λ = −1 and that this eigenvalue has also the
geometric and algebraic multiplicity 3.

Let Kt be the cone {(x1, x2, x3) ∈ R3 : x3 > t φ(x1, x2)}, 0 ≤ t ≤ 1, and let Ωt

be the intersection of Kt with the unit sphere S2. We denote by At the operator
pencil generated by the problem

∆U + (1− 2ν)−1∇∇ · U = 0 in Kt,
3∑

j=1

σi,j(U)nj = 0 on ∂Kt\{0}, i = 1, 2, 3,

i.e., the operator At(λ) : W 1
2 (Ωt)3 → (W 1

2 (Ωt)∗)3 is determined by the sesquilinear
form (4.3.5), where K has to be replaced by Kt. In particular, A1 = A and A0 is
the operator pencil generated by problem (4.3.1), (4.3.2) in the half-space. The
operator pencils A and At have only the eigenvalues λ0 = 0 and λ1 = −1 on the
lines Re λ = 0 and Re λ = −1. Both eigenvalues have algebraic multiplicity 3. There
exists a set of diffeomorphisms ψt : Ωt → Ω0 infinitely differentiable with respect
to the parameter t ∈ [0, 1] which transform the operators At(λ) into the operators

Ãt(λ) : W 1
2 (Ω0)3 → (W 1

2 (Ω0)∗)3.

The pencils At and Ãt have the same eigenvalues with the same geometric and
algebraic multiplicities. Consequently, on the lines Re λ = 0 and Re λ = −1 there
are only the eigenvalues λ0 = 0 and λ1 = −1 of the pencils Ãt. Moreover, by Lemma
4.3.1 there are no eigenvalues of the pencil Ã0 in the strip −1 < Re λ < 0. Applying
Theorem 1.1.4, we obtain that this strip does not contain eigenvalues of the pencil
Ã1. This completes the proof.

Remark 4.3.1. Theorem 4.3.1 remains true if the domain Ω which is cut out
by K on the unit sphere has a finite number of angles not equal to 0 and 2π on
the boundary. Then the gradients of the eigen- and generalized eigenvectors (with
finite energy integrals) have the order O(ρ−1/2+ε), ε > 0, at the corners of the
contour ∂Ω (here ρ denotes the distance to the corner). This allows one to use the
same arguments as in the proof of Theorem 4.3.1.

4.3.4. The Neumann problem in a circular cone. Now let K be the
circular cone {x : x/|x| ∈ Ωα}, where Ωα = {ω ∈ S2 : 0 ≤ θ < α, 0 ≤ ϕ < 2π}. In
the same way as for the Dirichlet problem it is possible to establish a transcendental
equation for real eigenvalues of the pencil A by means of Lemma 3.7.1.

We write the components of the vector function (3.7.6) in the form

ur = cos(mϕ) ~m+
r (θ) · ~a, uθ = cos(mϕ) ~m+

θ (θ) · ~a, uϕ = sin(mϕ) ~m+
ϕ (θ) · ~a,

where ~m+
r , ~m+

θ , ~m+
ϕ are the rows of the matrix M+

m(λ, θ) introduced in Section 3.7
and ~a = (a, b, c). Analogously, the components of the vector function (3.7.7) have
the form

ur = sin(mϕ) ~m−
r (θ) · ~a, uθ = sin(mϕ) ~m−

θ (θ) · ~a, uϕ = cos(mϕ) ~m−
ϕ (θ) · ~a,
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where ~m−
r , ~m−

θ , ~m−
ϕ are the rows of the matrix M−

m(λ, θ). The components of the
corresponding displacement field are

(4.3.9) Ur = rλ ur, Uθ = rλ uθ, Uϕ = rλ uϕ.

We write the Neumann boundary condition σ n|θ=α = 0 in spherical coordinates:

(4.3.10)
E

ν + 1

(
εθr, εθθ +

ν

1− 2ν

(
εrr + εθθ + εϕϕ

)
, εθϕ

)∣∣∣
θ=α

= 0.

Here E is the Young modulus, and the components of the strain tensor in spherical
coordinates have the following form for selection (3.7.6):

εrr = cos(mϕ) rλ−1 Err(θ), εrθ = cos(mϕ) rλ−1 Erθ(θ),

εθθ = cos(mϕ) rλ−1 Eθθ(θ), εϕϕ = cos(mϕ) rλ−1 Eϕϕ(θ),

εθϕ = sin(mϕ) rλ−1 Eθϕ(θ),

where

Err = λ ~m+
r · ~a, Erθ =

1
2

(
∂θ ~m+

r + (λ− 1)~m+
θ

)
· ~a, Eθθ =

(
∂θ ~m+

θ + ~m+
r

) · ~a,

Eϕϕ =
( m

sin θ
~m+

ϕ + ~m+
r + cot θ ~m+

θ

)
· ~a,

Eθϕ =
1
2

(
∂θ ~m+

ϕ − cot θ ~m+
ϕ −

m

sin θ
~m+

θ

)
· ~a

(cf. (4.1.7)). For selection (3.7.7) we have

εrr = sin(mϕ) rλ−1 Err(θ), εrθ = sin(mϕ) rλ−1 Erθ(θ),

εθθ = sin(mϕ) rλ−1 Eθθ(θ), εϕϕ = sin(mϕ) rλ−1 Eϕϕ(θ),

εθϕ = cos(mϕ) rλ−1 Eθϕ(θ),

where

Err = λ ~m−
r · ~a, Erθ =

1
2

(
∂θ ~m−

r + (λ− 1)~m−
θ

)
· ~a, Eθθ =

(
∂θ ~m−

θ + ~m−
r

) · ~a,

Eϕϕ =
(
− m

sin θ
~m−

ϕ + ~m−
r + cot θ ~m−

θ

)
· ~a,

Eθϕ =
1
2

(
∂θ ~m−

ϕ − cot θ ~m−
ϕ +

m

sin θ
~m−

θ

)
· ~a.

Thus, (4.3.10) is satisfied if

(4.3.11)
E

ν + 1

(
Eθr, Eθθ +

ν

1− 2ν

(
Err + Eθθ + Eϕϕ

)
, Eθϕ

)∣∣∣
θ=α

= 0.

Let the matrices N±
m be given by

N±
m(λ, θ) =




∂θ ~m±
r + (λ− 1) ~m±

θ

(2− 2ν) ∂θ ~m±
θ + 2(1 + νλ) ~m±

r + 2ν
(
cot θ ~m±

θ ±m (sin θ)−1 ~m±
ϕ

)
∂θ ~m±

ϕ − cot θ ~m±
ϕ ∓m (sin θ)−1 ~m±

θ


 .

Furthermore, let D be the matrix

D =
E

ν + 1

( 1 0 0
0 (1− 2ν)−1 0
0 0 1

)
.

Then (4.3.11) is equivalent to

D N±
m(λ, α)~a = 0.



4.3. THE NEUMANN PROBLEM FOR THE LAME SYSTEM IN A CONE 131

Here the upper sign corresponds to the selection (3.7.6), and the lower sign to
(3.7.7). Therefore, nontrivial solutions of (4.3.1), (4.3.2) of the form (4.3.9) exist if
λ is a solution of

(4.3.12)
1

1− 2ν

( E

ν + 1

)3

det N±
m(λ, α) = 0.

The matrix N+
m is explicitly given by

N+
m(λ, θ) = P−m

λ (cos θ)Am(λ, θ) + P−m
λ+1(cos θ)Bm(λ, θ),

where Am is the matrix with the columns
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−λ(λ + 1−m) (sin θ)−1

2(1− 2ν)(λ + 1−m) (sin θ)−2 cos θ
0


 ,




m(λ + 1−m) (sin θ)−1

−2(λ + 1−m) (sin θ)−2 cos θ
(λ + 1−m)(λ− 2 cot2 θ)


 ,




(1− 2ν) λ sin θ − (λ + 1)(λ− 2ν − 2) (sin θ)−1 cos2 θ

2 cos θ
(
λ2 + 4ν(λ− ν − 2)− λ− 3− (

(2− 2ν)(λ + 1)2 − λ + 1−m2
)
(sin θ)−2

)

m
(
2− 4ν − (λ + 2) cot θ(1 + cot θ)

)




and Bm is the matrix with the columns



λ(λ + 1) cot θ
2m2(sin θ)−2 − 2(1− 2ν)(λ + 1)

(
λ + 1 + cot2 θ

)
−m cot θ


 ,




−2m cot θ
2(λ + 2ν)(sin θ)−2 − 2(1− 2ν)λ(

m2 + (1−m)(λ + 1)
)
cot θ


 ,




(λ + m + 1)(λ + 2ν − 2) cot θ
(2− 4ν) (λ + m + 1((2− 2ν − cot2 θ)

0


 .

Note that real eigenvalues of the pencil A which are solutions of (4.3.12) with
m = 1, 2, . . . have at least multiplicity 2 and two linearly independent eigensolu-
tions of the form (3.7.6) and (3.7.7). For m = 0 in condition (4.3.12) there exist
two different, simple eigenvalues, one corresponding to torsion and the other to
axisymmetric eigenstates, respectively.

The following lemma lists the eigenvectors corresponding to the eigenvalue
λ = 1 for α = π/2 and α = π together with the values of m in (4.3.12).

Lemma 4.3.2. The multiplicity of λ = 1 for α = π is 9. A system of eigenvec-
tors is the restriction to S2 of the following vectors




x1

x2

0


 ,




x2

−x1

0


 ,




0
0
x3


 (m = 0),




x3

0
0


 ,




0
x3

0


 ,




0
0
x1


 ,




0
0
x2


 (m = 1),




x2

x1

0


 ,



−x1

x2

0


 (m = 2).

In the case α = π/2 the multiplicity of λ = 1 equals 6. The eigenvectors are the
restriction to S2 of




x2

−x1

0


 ,




x1

x2
2ν

1−ν x3


 (m = 0),




x3

0
−x1


 ,




0
x3

−x2


 (m = 1),

and 


x2

x1

0


 ,



−x1

x2

0


 (m = 2)
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For all opening angles α, the eigenvalue λ = 1 has multiplicity ≥ 3. Three eigen-
vectors are given by the restrictions to S2 of




x2

−x1

0


 (m = 0),




x3

0
−x1


 ,




0
x3

−x2


 (m = 1).

The figures below show the dependence of the eigenvalues less than 1 on the
opening α ∈ [π

2 , π]. In Figure 10 the first eigenvalue obtained from equation (4.3.12)
with m = 0 is depicted. This eigenvalue corresponds to axisymmetric eigenstates
and has already been obtained by Bažant and Keer [12]. It is always less than 1
(and, therefore, induces infinite stresses) and behaves monotonically with respect
ν, the minimal value being attained for ν = 1

2 . As ν approaches −1, the eigenvalue
curves tend to λ = 1. The singular nature of this eigenvalue is already indicated
by equation (4.3.12).

The second eigenvalue corresponding to m = 0 has an elastic torsion eigenstate.
It does not depend on ν, branches off 2 at α = π/2 and joins 1 for α = π.

Figure 10. Eigenvalues of A for m = 0, ν = 0, 0.2, 0.3, 0.4, 0.475

Figure 11 shows the real eigenvalues less than 1 corresponding to m = 1 for
several values of ν between 0.2 and 0.5. All branches decrease monotonically as
α increases and enter the interval (0, 1) at some critical angle α(ν) (α(ν) ≈ 3

4π
for 0.25 ≤ ν ≤ 0.4), attain an absolute minimum and increase again to λ = 1 at
α = π. Their minimal values are lower than the axisymmetric eigenvalues, so that,
in particular, for slender notches they cause the dominant stress singularity. Note
that above 1 the eigenvalues become complex.

For m = 2 there is a branch of double eigenvalues. The eigenvalues of this
branch are also real and less than 1 for π

2 < α < π. Figure 12 shows these eigen-
values for several values of ν. The eigenvalue curves increase monotonically as ν
increases and cause, for some α and ν (e.g., α = 155◦, ν = 0.2), the dominant
singularity.
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Figure 11. Eigenvalues of A for m = 1, ν = 0.2, 0.25, 0.3, 0.4, 0.5

Figure 12. Eigenvalues of A for m = 2, ν = 0.2, 0.25, 0.3, 0.4, 0.5

4.4. Angular crack in an anisotropic elastic space

4.4.1. Statement of the problem. Let H be a plane angle with vertex x = 0
and opening α which is placed in the plane x2 = 0. Furthermore, let the arc h be
the intersection of H with the unit sphere S2. We consider the Neumann problem

3∑

i=1

∂xi σi,j(U) = 0 in K = R3\H,(4.4.1)

σ2,j(U) = 0 on H, j = 1, 2, 3.(4.4.2)

The stress and strain tensors are related by Hooke’s law

(4.4.3) σi,j =
3∑

k,h=1

aij,kh εk,h ,
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where aij,kh are real coefficients with the symmetry property aij,kh = aji,kh = akh,ij

and with the property of ellipticity

(4.4.4)
∑

i,j,k,h

aij,kh εi,j εk,h ≥ c
∑

i,j

ε2
i,j , c > 0,

which has to be valid for all real εi,j such that εi,j = εj,i. We associate with this
problem the sesquilinear form (4.3.5), where U(x) = rλu(ω), V (x) = r−1−λv(ω),
u, v ∈ W 1

2 (Ω)3, Ω = S2\h. Here, in contrast to Section 4.3, the stress tensor is
given by (4.4.3). The sesquilinear form a(·, ·;λ) generates the operator A(λ) by
(4.3.6) and (4.3.7).

4.4.2. Properties of the pencil A.

Theorem 4.4.1. All assertions of Theorem 4.1.1 are valid for the pencil A.

Proof: Let us prove first the second assertion. For λ = − 1
2 + it the quadratic

form a(u, u; λ) is given by (4.3.5), where V = U . Using (4.4.4), one can show that
the right-hand side of (4.3.5) for λ = − 1

2 + it and V = U can be estimated from
below by the same expression as in the case of isotropic elasticity and, therefore,
the positivity of A(− 1

2 + it) follows from the analogous property for the pencil
generated by the Neumann problem to Lamé’s system.

To prove the first assertion, it suffices to note that the operator A(− 1
2 + it) is

invertible and the operator A(λ)−A(− 1
2 + it) acting from W 1

2 (Ω)3 into (W 1
2 (Ω)∗)3

is compact for arbitrary λ.
Assertions 3) and 4) follow from Theorems 1.1.1 and 1.2.2.

4.4.3. Eigenvalues on the line Re λ = 0.

Lemma 4.4.1. The number λ0 = 0 is the only eigenvalue of the pencil A on the
line Re λ = 0.

Proof: For convenience, we assume that one of the sides of H coincides with
the positive x3-axis. The unit vector directed along the bisectrix of the angle H is
denoted by b. Let Gδ be the union of two geodesic δ-neighborhoods of the endpoints
of the arc h = H ∩ S2 and let

Kδ =
{
x : 1/2 < |x| < 2, x/|x| 6∈ Gδ ∪ h

}
,

where δ is a small positive number.
Suppose U(x) = |x|λ u(x/|x|) is a solution of problem (4.4.1), (4.4.2) with

Re λ = 0. Then

0 =
∫

Kδ

3∑

i,j=1

∂xj σi,j(U) ∂bU i dx

=
∫

∂Kδ

3∑

i,j=1

nj σi,j(U) ∂bU i dσ −
∫

Kδ

3∑

i,j=1

σi,j(U) ∂bεi,j(U) dx,

where n = (n1, n2, n3) is the exterior normal to ∂Kδ. Consequently,

(4.4.5) 0 = Re
∫

∂Kδ

3∑

i,j=1

(
nj σi,j(U) ∂bU i − 1

2
nb σi,j(U) εi,j(U)

)
dσ.
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The integrand vanishes on the surface H and the sum of the integrals over the parts
of the spheres |x| = 1/2 and |x| = 2 equals zero. Thus, the integration in (4.4.5) is
carried out only over the two components of the surface {x : 1/2 < |x| < 2, x/|x| ∈
∂Gδ} and we arrive at the equality

(4.4.6) Re
∫

∂Gδ

3∑

i,j=1

(
nj σi,j(U) ∂bU i − 1

2
nb σi,j(U) εi,j(U)

)
ds = 0.

Next we are going to find the asymptotics for the integrand near the north pole
of the sphere S2. Under corresponding choice of the x1-axis, the principal part
of the boundary value problem (4.4.1), (4.4.2) is the operator of generalized plane
elasticity in the (x1, x2)-plane with a cut along the semi-axis R1

− = {(x1, x2) ∈ R2 :
x2 = 0, x1 < 0}. Therefore,

(4.4.7) u(x/|x|) = L(x1, x2) + v(x1, x2) + O
(
(x2

1 + x2
2)

(1+σ)/2
)
,

where σ ∈ (0, 1/2), L is a linear vector function and v = (v1, v2, v3) is a positively
homogeneous of degree 1/2 vector function which satisfies the equations

∂x1σ1,j(v) + ∂x2σ2,j(v) = 0 on R2\R1
− ,

∂i,2(v) = 0 on R1
− , i = 1, 2, 3.

The vector function v has the form

v(x1, x2) = r1/2
(
KI GI(ϕ) + KII GII(ϕ) + KIII GIII(ϕ)

)
,

where KI , KII , KIII are so-called stress intensity factors, r, ϕ are polar coordinates,
and GI , GII , GIII are smooth vector functions on the interval [−π, π]. From (4.4.7)
we immediately obtain that the integrand in (4.4.6) has the form
(4.4.8)

sin
α

2

(n1

2

3∑

i,j=1

σi,j(v)εi,j(v)−
3∑

i=1

(
n1σi,1(v)∂x1(vi) + n2σi,2(v)∂x1vi

))
+ O(r1/2),

where α is the opening of the angle H. It is known that the integral
∫

r=δ

(n1

2

3∑

i,j=1

σi,j(w)εi,j(w)−
3∑

i=1

(
n1σi,1(w)∂x1(wi) + n2σi,2(w)∂x1wi

))
δ dϕ,

which characterizes the energy flux across the circumference r = δ, does not depend
on δ and represents a positive definite quadratic form of the stress intensity factors
corresponding to the real-valued displacement field w = (w1, w2, w3) (see Nazarov
and Plamenevskĭı [207, Sect.7.4], Nazarov [204, Sect.5]). Therefore, the integral
of the real part of the expression in braces in (4.4.8) taken over the circumference
r = δ does not depend on δ and is positive, provided the vector function v does
not vanish identically. What we said before about the neighborhood of the north
pole holds also for the other end of the arc h. Thus, we conclude from (4.4.6) that
u ∈ W 2

2 (S2\h).
Let X denote the subspace of the eigenvectors corresponding to the eigenvalue

λ, Re λ = 0. Due to assertion 4) of Theorem 4.1.1 (by Theorem 4.4.1 this assertion
als also true for the pencil A), the number λ − 1 = −1 − λ is an eigenvalue of the
pencil A with the same geometric and algebraic multiplicities as λ. The subspace
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generated by the eigenvalue λ − 1 is denoted by Y . Its dimension coincides with
dim X. We introduce linear operators acting from X into Y by the equalities

Au = r1−λ ∂x1(r
λu), Bu = r1−λ ∂x3(r

λu), u ∈ X.

(It can be easily seen that the vector functions Au and Bu belong to W 1
2 (S2\h) and

that they are eigenvectors of the pencil A corresponding to the eigenvalue λ− 1.)
Suppose first that the kernel of B is nontrivial. Then ∂x3(r

λu) = 0 for some
vector function u ∈ X, u 6= 0. Hence rλu = f(x1, x2), where f is a vector function
which is positively homogeneous of degree λ and which satisfies the two-dimensional
elasticity problem in the plane with a cut. Consequently, f = const and λ = 0.

Now let kerB = {0}. By β we denote an eigenvalue of the operator B−1A and
by u the corresponding eigenfunction. Then

(∂x1 − β ∂x3) (rλu) = (A− βB)u = 0.

If β is real, then, using an orthogonal change of variables in the plane x2 = 0,
we conclude that the kernel of B is nontrivial and, as we have shown above, that
λ = 0. If Im β 6= 0, then rλu = f(x3 + βx1, x2), where f is a vector function which
is positively homogeneous of degree λ and analytic in the variable x3 + Re βx1 +
i Im βx1 for all x2 6= 0. The boundedness and analyticity of f imply f = const. and
λ = 0. The proof is complete.

4.4.4. Eigenvectors corresponding to the eigenvalue λ = 0. Obviously,
the number λ = 0 is an eigenvalue of the pencil A and the constant vectors are
eigenvectors corresponding to this eigenvalue.

Lemma 4.4.2. The subspace of the eigenvectors corresponding to the eigenvalue
λ = 0 consists of all constant vectors. There are no generalized eigenvectors corre-
sponding to this eigenvalue.

Proof: Suppose that besides constant vectors c1, c2, c3 there are additional non-
constant eigenvectors u1, . . . , un corresponding to the eigenvalue λ = 0 and that
the vectors c1, c2, c3, u1, . . . , un form a basis in the subspace of all eigenvectors.
Furthermore, we assume that for some l = 0, 1, 2, 3 the vectors c1, . . . , cl have gen-
eralized eigenvectors, while the vectors cl+1, . . . , c3 and their linear combinations do
not have generalized eigenvectors. (The values l = 0, l = 3 and n = 0 are included;
in these cases we mean that corresponding sets are empty.) We have to show that
l = n = 0.

By our assumptions, there exist solutions of problem (4.4.1), (4.4.2) of the form

Uk(x) = ck log |x|+ vk(x/|x|), k = 1, . . . , l.

As it was shown in the proof of Lemma 4.4.1, the vector functions u1, . . . , un be-
long to the space W 2

2 (S2\h)3. In analogy to this proof we obtain vk ∈ W 2
2 (S2\h)3.

Since ∂Uk/∂x1 and ∂Uk/∂x3, k = 1, . . . , l are solutions of problem (4.4.1), (4.4.2),
we conclude that the functions r ∂Uk/∂xj , j = 1, 3, k = 1, . . . , l, are eigenvec-
tors corresponding to the eigenvalue λ = −1. The same is true for the functions
r ∂uk/∂xj , j = 1, 3, k = 1, . . . , n

Let Zl denote the linear span of the vector functions U1, . . . , Ul, u1, . . . , un. We
introduce the operators A, B acting from Zl into the space Y of the eigenvectors
corresponding to λ = −1 by the formulas

Aw = r ∂x1w, Bw = r ∂x3w, w ∈ Zl.



138 4. OTHER BOUNDARY VALUE PROBLEMS FOR THE LAME SYSTEM

If the kernel of the operator B is nontrivial, then ∂w/∂x3 = 0 for some vector
function w ∈ Zl, w 6= 0. If kerB = {0} and R(A) ⊂ R(B), then (cf. proof of
Lemma 4.4.1) we have

(∂x1 − β∂x3)w = 0 for some β ∈ C, w ∈ Zl\{0}.
Using the same arguments as in the proof of Lemma 4.4.1, we get w = const. in both
cases. Since Zl does not contain constant vectors, we conclude that kerB = {0},
R(A) ⊃ R(B), R(A) 6= R(B).

For l 6= 0 or n 6= 0 this implies that the vectors

r∂x3U1, . . . , r∂x3Ul, r∂x3u1, . . . , r∂x3un

are linearly independent and that not all of the vectors

r∂x1U1, . . . , r∂x1Ul, r∂x1u1, . . . , r∂x1un

belong to R(B). In particular, we get dimY > l + n and, since dim Y = dim X =
n + 3, it follows that l < 3.

Let c be a constant vector. If v is an arbitrary element of the subspace Y of
the form v = r∂w/∂xs, where s = 1, 3, and w is one of the vectors U1, . . . , Ul,
u1, . . . , un, then we obtain

2 log 2 a(1)(c, v; 0) =
∫

R3\H
1/2<|x|<2

3∑

i,j=1

σi,j(c log |x|) εi,j(∂xsw) dx

= −
∫

R3\H
1/2<|x|<2

3∑

i,j=1

σi,j(cxs|x|−2) εi,j(w) dx

=
∫

R3\H
1/2<|x|<2

3∑

i,j=1

(
cxs|x|−2

)
i
∂xj σi,j(w) dx

and, consequently,

(4.4.9) a(1)(c, v; 0) = 0.

If l 6= 0 or n 6= 0, then the codimension of the linear span of the vectors r∂Uk/∂xs

and r∂uj/∂xs, s = 1, 3, k = 1, . . . , l, j = 1, . . . , n, in the space Y does not exceed
(n + 3) − (n + l + 1) = 2 − l. This implies the existence of a nonzero linear
combination c of the vectors cl+1, . . . , c3 for which (4.4.9) holds for all v ∈ Y . The
latter means that this vector c has generalized eigenvectors. Since this contradicts
our assumptions, it follows that l = 0 and n = 0, i.e., the space X consists only of
constant vectors which posses no generalized eigenvectors.

4.4.5. The spectrum in the strip −1 ≤ Re λ ≤ 0. Now we can prove the
main result of this section.

Theorem 4.4.2. The spectrum of the pencil A in the strip −1 ≤ Reλ ≤ 0
consists of two eigenvalues λ0 = 0 and λ1 = −1. The geometric and algebraic
multiplicities of both eigenvalues are equal to 3. The subspace of the eigenvectors
corresponding to the eigenvalue λ = 0 consists of the constant vectors.
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Proof: If α = π, then by using the Fourier transformation with respect to
the variable x3, one can easily derive the absence of the spectrum in the strip
−1 < Re λ < 0. An arbitrary plane crack H can be continuously deformed into
the crack with α = π. The number of eigenvalues in the strip −1 < Re λ < 0
is independent under such deformation (cf. proof of Theorem 4.3.1). Since this
strip contains no points of the spectrum for α = π, it contains no eigenvalues
for an arbitrary crack. The assertions of the theorem concerning the eigenvalue
λ = 0 follow from Lemmas 4.4.1 and 4.4.2, and the assertions for λ = −1 are a
consequence of item 4) of Theorem 4.1.1 which is valid by Theorem 4.4.1.

4.5. Notes

Section 4.1. The mixed problem considered in Section 4.1 was investigated
by Kozlov, Maz′ya and Roßmann in [137].

Section 4.2. Different boundary value problems for the Lamé system in plane
domains with angular points, including the Neumann and mixed problems, were
studied by Vorovich and Kopasenko [262], Grisvard [84] [86], Sändig and Richter
[233], Nicaise [208, 209, 210], Costabel and Dauge [31], Eck, Nazarov and Wend-
land [50].

Section 4.3. Theorem 4.3.1 describing the spectrum of the pencil correspond-
ing to the Neumann problem for the Lamé system in the strip −1 ≤ Re λ ≤ 0 is
due to Kozlov and Maz′ya [127] (see also their survey article [132]). The results
of Section 4.3.4 on the the Neumann problem in a rotational cone are taken from
the preprint [139] by Kozlov, Maz′ya and Schwab.

Section 4.4. The material is borrowed from Kozlov and Maz′ya in [128].

Finally, let us give some publications dealing with the numerical calculation
of singularities of solutions of problems of elasticity theory at singular boundary
points. We mention here the works by Benthem [18, 19], Bažant and Estenssoro
[13], Noble, Hussain and Pu [216], Leguillon and Sanchez-Palencia [151], Wend-
land, Schmitz and Bumb [266], Hsiao, Stephan and Wendland [91], Ghahremani
[68], Schmitz, Volk and Wendland [235], Leguillon [150], Andersson, Falk, Babuška
and von Petersdorff [5]), Dimitrov, Andrä and Schnack [48].





CHAPTER 5

The Dirichlet problem for the Stokes system

In this chapter we study the first boundary value problem for the Stokes system
of linearized hydrodynamics:

−∆U +∇P = 0, ∇ · U = 0 in K,(5.0.1)
U = 0 on ∂K \ {0},(5.0.2)

where K is a plane angle or a three-dimensional cone. We are interested in special
solutions (U,P ) which have the form

(5.0.3) U(x) = rλ0

s∑

k=0

(log r)k

k!
u(s−k)(ω), P (x) = rλ0−1

s∑

k=0

(log r)k

k!
p(s−k)

(
ω
)
,

where r = |x|, ω = x/|x| and λ0 is a complex number.
In Section 5.1 we assume that K is a plane angle and, similarly to the case

of the Lamé system treated in Section 3.1, describe solutions (5.0.3). The more
complicated situation when K is a three-dimensional cone {x : 0 < r < ∞, ω ∈
Ω ⊂ S2} is investigated in Sections 5.2–5.7, where we study the pencil L generated
by (5.0.1), (5.0.2):

L(λ)
(u

p

)
=

(
r2−λ

(−∆(rλu) +∇(rλ−1p)
)

r1−λ∇ · (rλu)

)

with (u, p) being a vector function on Ω. The vector function (5.0.3) is a solution
of (5.0.1), (5.0.2) if and only if λ0 is an eigenvalue of the pencil L, (u(0), p(0))
is an eigenvector and (u(j), p(j)), j = 1, . . . , s are generalized eigenvectors of L
corresponding to λ0. The eigenvalues of L are placed symmetrically with respect
to the line Re λ = −1/2.

Section 5.2 deals with basic properties of the pencil L. For example, here the
discreteness of the spectrum and the absence of eigenvalues on the line Reλ =
−1/2 are proven. We also describe connections between generalized eigenvectors
corresponding to the eigenvalues λ and −1−λ. As a byproduct we find the following
analog of the Kelvin transform for harmonic functions. If (U,P ) solves the Stokes
system (5.0.1), then (V,Q) defined by

(5.0.4) V (x) = |x|−1
(
I + Ξ(x|x|−1) +

(
I − 2Ξ(x|x|−1)

)
x · ∂x

)
U

(
x|x|−2

)
,

where Ξ(ω) = {ωiωj}3i,j=1, and

(5.0.5) Q(x) = |x|−3 (−2− 4 x · ∂x )x · U(
x|x|−2

)
+ |x|−1(1 + x · ∂x)P

(
x|x|−2

)

is a solution of (5.0.1) as well.
In Section 5.3 we show that the region{

λ ∈ C : (Re λ + 1/2)2 − (Im λ)2 < (F (Ω))2
}

141
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contains only real eigenvalues of the pencil L. Here F is a special case of the set
function Fν (see (3.3.2)) corresponding to ν = 1/2. This function was investigated
in detail in Chapter 3. In particular, we checked there that F (Ω) ≥ 3/2 and
that F (Ω) is nonincreasing with respect to Ω. Another result of Section 5.3 is the
nonexistence of generalized eigenfunctions to real eigenvalues in the strip{

λ ∈ C : |Reλ + 1/2| < F (Ω), λ 6= 1, λ 6= −2
}

.

Therefore, the logarithmic terms in the solutions (5.0.3) do not occur for these
eigenvalues.

The eigenvalues λ = 1 and λ = −2, which have the same geometric and alge-
braic multiplicities, are considered in Section 5.4. Obviously, the pair (u, p) = (0, 1)
is an eigenvector corresponding to λ = 1. We obtain necessary and sufficient condi-
tions for the existence of additional eigenvectors as well as generalized eigenvectors.
To be more precise we show that λ = 1 has at least two eigenvalues if and only if
the scalar problem

(δ + 6) w = 0, w ∈ ◦
W

1
2(Ω),

∫

Ω

w(ω) dω = 0

has a nontrivial solution. Here δ is the Laplace-Beltrami operator on S2. Moreover,
we prove that λ = 1 has a generalized eigenvector if and only if the problem

(δ + 6) w = 1, w ∈ ◦
W

1
2(Ω),

∫

Ω

w(ω) dω = 0

is solvable and other generalized eigenvectors do not exist. We obtain similar as-
sertions concerning the eigenvalue λ = −2.

It follows from what we said above that there are only real eigenvalues in the
strip −1/2 ≤ Re λ ≤ 1. In Section 5.5 we deal with the eigenvalues in the interval
[−1/2, 1). We introduce variational principles for these eigenvalues which show
that they are nonincreasing functions of the domain Ω. The monotonicity of the
eigenvalues of the Stokes pencil may be used to estimate them by those for right
circular cones. A transcendental equation for the eigenvalues of the Stokes pencil
for circular cones is written in Section 5.6.

Additional information on the eigenvalues of L can be derived by the use of the
eigenvalues N1(Ω) ≤ N2(Ω) ≤ . . . of the quadratic form∫

Ω

|∇ωv|2 dω

defined on all functions which vanish on ∂Ω and are orthogonal to 1 in L2(Ω). In
Section 5.4 some estimates for the eigenvalues of L formulated in terms of Nk(Ω)
are obtained. It is proved for example, that the interval [−1/2, 1) contains exactly
k positive eigenvalues of L in the case Nk(Ω) < 6 ≤ Nk+1(Ω). If, on the other
hand, N1(Ω) ≥ 6, then the strip −1/2 ≤ Re λ < 1 is free of the spectrum of the
pencil L. If N1(Ω) > 6, which is the case of Ω situated in a hemisphere, then the
strip −1/2 ≤ Re λ ≤ 1 contains exactly one simple eigenvalue λ = 1 of L. For the
case N1(Ω) ≤ 6 we prove in Subsection 5.5.4 that the strip

∣∣∣Re λ +
1
2

∣∣∣ <
1
2

(
13− 4

(
13− 2N1(Ω)

)1/2
)1/2

contains no eigenvalues of L. The bound in the right-hand side is the best possible
one for all Ω with either N1(Ω) = 6 or N1(Ω) = 2.
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According to Theorem 5.5.6, the strip

(5.0.6)
∣∣∣Re λ +

1
2

∣∣∣ ≤ 1
2

+
M

M + 4
does not intersect the spectrum of L. Remind that M is a positive number such
that M(M + 1) is the first eigenvalue of the Dirichlet problem for the operator −δ
on Ω.

We denote the spherical domain Ω corresponding to the right circular cone with
solid opening angle 2α by Ωα, i.e.

Ωα = {ω ∈ Ω : 0 ≤ ϕ < 2π, 0 ≤ θ < α},
and by S2

+ the upper hemisphere in R3. The results of Section 5.5 imply the
following assertions on the spectrum of the pencil L:

(i) If S2
+ ⊂⊂ Ω ⊂⊂ Ω2π/3, then the strip −1/2 < Re λ ≤ 1 contains exactly 3

eigenvalues. One of them is λ = 1 with multiplicity one.
(ii) If Ω2π/3 ⊂⊂ Ω, then the strip − 1

2 < Re λ ≤ 1 contains exactly 4 eigenvalues.
One of them is λ = 1 with multiplicity one.

In the case that S2
+ ⊂⊂ Ω and the boundary ∂Ω is smooth this along with the

general Theorem 1.4.4 leads to the asymptotics near the vertex for solutions U,P
of the Dirichlet problem for the Stokes system with smooth data. For Ω ⊂ S2, we
denote by λj(Ω), j = 1, 2, . . . the eigenvalues of L with Re λj(Ω) ≥ 0 ordered with
respect to increasing real part and with multiplicity counted.

(i) If S2
+ ⊂⊂ Ω ⊂⊂ Ω2π/3, then

U = rλ1(Ω)u
(0)
1 (ω) + rλ2(Ω)u

(0)
2 (ω) + O(r),

P = rλ1(Ω)−1p
(0)
1 (ω) + rλ2(Ω)−1p

(0)
2 (ω) + O(1)

with 0.4996 < λ1(Ω) ≤ λ2(Ω) < 1. Here the lower bound for λ1 results from
numerical values for λ1(Ω2π/3).

(ii) If Ω2π/3 ⊂⊂ Ω, then

U =
3∑

j=1

rλj(Ω) u
(0)
j (ω) + O(r),

P =
3∑

j=1

rλj(Ω)−1 p
(0)
j (ω) + O(1),

where 0 ≤ λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) < 1. This is in contrast to the Dirichlet problem
for linear elasticity in piecewise smooth domains. For that problem, according to
Theorem 3.7.1, in the case S2

+ ⊂⊂ Ω there are exactly three terms in the asymptotics
which give rise to unbounded stresses at the vertex.

Another important application concerns the L2-summability of the second
derivatives of the velocity vector subject to the Dirichlet problem for the inho-
mogeneous Stokes system

(5.0.7) −∆U +∇P = F, ∇ · U = 0 in G, U = 0 on ∂G,

where G is a bounded three-dimensional domain with a conic vertex O on ∂G.
By Theorem 1.4.3, one needs to verify that there are no eigenvalues of L in the
strip −3/2 ≤ Re λ ≤ 1/2. A geometrical assumption for this is the inclusion
Ω ⊂⊂ Ωα∗ , where 2α∗ is the solid opening angle of a right circular cone for which
λ1(Ωα∗) = 1/2 (α∗ ≈ 0.6665π, see Section 5.6). Therefore, the variational solution
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(U,P ) ∈ W 1
2 (G)3 × L2(G) of (5.0.7) belongs to the space W 2

2 (G)3 ×W 1
2 (G) if F ∈

L2(G)3.
One might also observe that the nonlinear term in the Navier–Stokes system

−∆U +∇P + U · ∇U = F, ∇ · U = 0 in G
is not strong enough to violate the validity of the last result for this system with
zero Dirichlet data. However we leave aside the proof of this fact (compare with
Maz′ya’s and Plamenevskĭı’s paper [189]).

We say a few words about the remaining two sections of this chapters. The
goal of Section 5.7 is the complete description of the eigenvalues of L and the
construction of the corresponding eigenvectors and generalized eigenvectors in the
case when the cone K is a dihedral angle. Here we rely heavily on the previous
results concerning the plane case and on the above mentioned Kelvin transform.

In the last Section 5.8 we state more regularity results for the Dirichlet prob-
lem posed for the Stokes and the Navier–Stokes systems in domains with piecewise
smooth boundaries. In order to obtain these results one should use spectral prop-
erties of the pencil L studied in this chapter.

5.1. The Dirichlet problem for the Stokes system in an angle

This section deals with the operator pencil generated by the Dirichlet problem
for the Stokes system in a plane angle. We will see that, with the exception of λ = 0,
the spectrum of this pencil coincides with the spectrum of the pencil generated by
the Neumann problem for the Lamé system.

5.1.1. The operator pencil generated by the Dirichlet problem for
the Stokes system. Let K = {(x1, x2) ∈ R2 : 0 < r < ∞, |ϕ| < α/2} be an angle
with aperture α ∈ (0, 2π]. We consider the Stokes system

(5.1.1)





−(∂2
x1

+ ∂2
x2

)U1 + ∂x1P = 0 in K,

−(∂2
x1

+ ∂2
x2

)U2 + ∂x2P = 0 in K,

∂x1U1 + ∂x2U2 = 0 in K
for the vector function (U1, U2, P ) with the Dirichlet boundary condition

(5.1.2) U1 = U2 = 0 on ∂K\{0}.
Let Ur, Uϕ be the polar components of the vector function U = (U1, U2) defined
by formula (3.1.3). Then the system (5.1.1) can be written as

− 1
r2

(
(r∂r)2 Ur + ∂2

ϕ Ur − 2∂ϕ Uϕ − Ur

)
+ ∂r P = 0,

− 1
r2

(
(r∂r)2 Uϕ + ∂2

ϕ Uϕ + 2∂ϕ Ur − Uϕ

)
+

1
r
∂ϕ P = 0,

∂r Ur +
1
r

(Ur + ∂ϕ Uϕ) = 0,

where 0 < r < ∞, −α/2 < ϕ < α/2. We are interested in solutions (Ur, Uϕ, P )
which have the form

(5.1.3)
(

Ur(r, ϕ)
Uϕ(r, ϕ)

)
= rλ

(
ur(ϕ)
uϕ(ϕ)

)
, P (r, ϕ) = rλ−1 p(ϕ).
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Obviously, the functions ur, uϕ, and p have to satisfy the system of ordinary dif-
ferential equations
(5.1.4)




−u′′r + (1− λ2) ur + 2 u′ϕ + (λ− 1) p = 0 for ϕ ∈ (−α/2 , +α/2),

−u′′ϕ + (1− λ2) uϕ − 2 u′r + p′ = 0 for ϕ ∈ (−α/2 , +α/2),

u′ϕ + (λ + 1) ur = 0 for ϕ ∈ (−α/2 , +α/2)

and the boundary conditions

(5.1.5) ur(±α/2) = uϕ(±α/2) = 0.

Let L(λ) be the operator on the left-hand side of (5.1.4) and let B be the mapping
(ur, uϕ) → (

ur(±α/2), uϕ(±α/2)
)
. Then by A(λ) we denote the operator

W 2
2 (−α/2, +α/2)2 ×W 1

2 (−α/2,+α/2) 3
( ur

uϕ

p

)

→
(
L(λ)

( ur

uϕ

p

)
, B

(
ur

uϕ

))
∈ L2(−α/2, +α/2)2 ×W 1

2 (−α/2,+α/2)× C4.

This operator is Fredholm for all complex λ and invertible for sufficiently large
purely imaginary λ. Consequently, by Theorem 1.1.1, the spectrum of the pencil A
is discrete and consists of eigenvalues with finite algebraic multiplicities.

5.1.2. Equations for the eigenvalues. The general solution of the system
(5.1.4) for λ 6= 0 is a linear combination of the following four independent solutions:




cos(1 + λ)ϕ
− sin(1 + λ)ϕ

0


 ,




sin(1 + λ)ϕ
cos(1 + λ)ϕ

0


 ,




(1− λ) cos(1− λ)ϕ
−(1 + λ) sin(1− λ)ϕ
−4λ cos(1− λ)ϕ


 ,




(1− λ) sin(1− λ)ϕ
(1 + λ) cos(1− λ)ϕ
−4λ sin(1− λ)ϕ


 .

In order to include the case λ = 0 we introduce another basis:



u
(1)
r

u
(1)
ϕ

p(1)


 =




cos(1 + λ)ϕ
− sin(1 + λ)ϕ

0


 ,




u
(2)
r

u
(2)
ϕ

p(2)


 =




sin(1 + λ)ϕ
cos(1 + λ)ϕ

0


 ,




u
(3)
r

u
(3)
ϕ

p(3)


 =

1
λ




(1− λ) cos(1− λ)ϕ− cos(1 + λ)ϕ
−(1 + λ) sin(1− λ)ϕ + sin(1 + λ)ϕ

−4λ cos(1− λ)ϕ


 ,




u
(4)
r

u
(4)
ϕ

p(4)


 =

1
λ




(1− λ) sin(1− λ)ϕ− sin(1 + λ)ϕ
(1 + λ) cos(1− λ)ϕ− cos(1 + λ)ϕ

−4λ sin(1− λ)ϕ


 .
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For λ = 0 we have


u
(3)
r

u
(3)
ϕ

p(3)


 =



− cos ϕ + 2ϕ sin ϕ
− sin ϕ + 2ϕ cos ϕ

−4 cos ϕ


 ,




u
(4)
r

u
(4)
ϕ

p(4)


 =



− sin ϕ− 2ϕ cos ϕ
cosϕ + 2ϕ sinϕ

−4 sin ϕ


 .

We represent the general solution of the system (5.1.4) in the form

(5.1.6)




ur

uϕ

p


 =

4∑

k=1

ck




u
(k)
r

u
(k)
ϕ

p(k)


 .

Then the boundary condition (5.1.5) yields

4∑

k=1

ck

(
u

(k)
r (λ,±α/2)

u
(k)
ϕ (λ,±α/2)

)
= 0.

Since the components u
(1)
r , u

(2)
ϕ , u

(3)
r , u

(4)
ϕ are even functions of the variable ϕ and

the components u
(1)
ϕ , u

(2)
r , u

(3)
ϕ , u

(4)
r are odd functions, the last algebraic system is

equivalent to the following two algebraic systems:

c1

(
u

(1)
r (λ, α/2)

u
(1)
ϕ (λ, α/2)

)
+ c3

(
u

(3)
r (λ, α/2)

u
(3)
ϕ (λ, α/2)

)
= 0,(5.1.7)

c2

(
u

(2)
r (λ, α/2)

u
(2)
ϕ (λ, α/2)

)
+ c4

(
u

(4)
r (λ, α/2)

u
(4)
ϕ (λ, α/2)

)
= 0.(5.1.8)

The coefficients determinants of these algebraic systems are

d−(λ) = λ−1 (sinλα− λ sin α)

and
d+(λ) = λ−1 (sinλα + λ sinα),

respectively. Obviously, d∓(0) = α ∓ sin α 6= 0. Therefore, λ = 0 does not belong
to the spectrum of the operator pencil A. Every eigenvalue is a solutions of one of
the equations

(5.1.9) sin λα∓ λ sin α = 0.

These equations are the same as for the eigenvalues of the operator pencil generated
by the Neumann problem for the Lamé system (cf. (4.2.4), (4.2.5)).

5.1.3. Eigenvectors and generalized eigenvectors. Let λ be a solution of
the equation d−(λ) = 0. Then every solution of the system (5.1.7) has the form

c1 = A1 λ−1
(

cos
(1 + λ)α

2
− (1− λ) cos

(1− λ)α
2

)

+ A2 λ−1
(

sin
(1 + λ)α

2
− (1 + λ) sin

(1− λ)α
2

)
,

c3 = A1 cos
(1 + λ)α

2
+ A2 sin

(1 + λ)α
2

.
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To avoid the simultaneous vanishing of the coefficients c1 and c3, we choose the
coefficients A1, A2 as follows:

A1 = −λ cos
(1 + λ)α

2
, A2 = −λ sin

(1 + λ)α
2

.

Then

(5.1.10) c1 = cos λα− λ cos α− 1, c3 = −λ

and we obtain the eigenvector



u−r
u−ϕ
p−


 = c1




u
(1)
r

u
(1)
ϕ

p(1)


 + c3




u
(3)
r

u
(3)
ϕ

p(3)


(5.1.11)

= −



(1− λ) cos(1− λ)ϕ
−(1 + λ) sin(1− λ)ϕ

4λ cos(1− λ)ϕ


 + (cos λα− λ cosα)




cos(1 + λ)ϕ
− sin(1 + λ)ϕ

0


 .

which corresponds to an eigenvalue λ satisfying the equality d−(λ) = 0. If λ is a
solution of the equation d+(λ) = 0, then, analogously, the eigenvector




u+
r

u+
ϕ

p+


 = −




(1− λ) sin(1− λ)ϕ
(1 + λ) cos(1− λ)ϕ

4λ sin(1− λ)ϕ


(5.1.12)

+(cosλα + λ cos α)




sin(1 + λ)ϕ
cos(1 + λ)ϕ

0




holds. Since every of the systems (5.1.7), (5.1.8) has not more than one linearly
independent solution, we have obtained all eigenvectors of the pencil A in this way.

For example, the eigenspace corresponding to the eigenvalue λ = 1 is spanned
by the eigenvector

(5.1.13)




u−r
u−ϕ
p−


 =




0
0
4


 if α 6= π, α 6= 2π.

If α = π or α = 2π, then additionally the eigenvector


u+
r

u+
ϕ

p+


 =




2 cos α sin 2ϕ
2(cos α cos 2ϕ− 1)

0




occurs. (The Cartesian components of this vector are u+
1 = 0, u+

2 = −4 cos ϕ for
α = π and u+

1 = 4 sin ϕ, u+
2 = 0 for α = 2π.)

Now we deal with the existence of generalized eigenvectors. As in the case of
the Lamé system, the algebraic multiplicity of any eigenvalue λ0 of the pencil A
coincides with the multiplicity of the root λ = λ0 of the equation d+(λ) d−(λ) = 0.
Common roots of the equations d+(λ) = 0 and d−(λ) = 0 exist only in the cases
α = π and α = 2π. For α = π the spectrum of the pencil A consists of the
eigenvalues ±1,±2, . . ., while in the case α = 2π the numbers ±k/2 (k = 1, 2, . . .)
are eigenvalues. In both cases there are two eigenvectors (5.1.11), (5.1.12) to every
eigenvalue, and generalized eigenvectors do not exist.

Analogously to Lemmas 3.1.3 and 3.1.4, the following results hold.
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Lemma 5.1.1. 1) There are no generalized eigenvectors to nonreal eigenvalues.
2) The algebraic multiplicities of all eigenvalues are not greater than two.

Proof: 1) Let one of the equalities d−(λ0) = d′−(λ0) = 0, d+(λ0) = d′+(λ0) = 0
be satisfied. Then we get

(5.1.14) α cos λ0α = ± sin α.

Hence cos λ0α is real, i.e., either sin(Re λ0 α) = 0 or sinh(Im λ0 α) = 0. The equality
sin(Re λ0 α) = 0 cannot be valid. Otherwise, we get cos λ0α = ± cosh(Im λ0 α) and,
therefore, | cos λ0α| > 1 for Im λ0 6= 0. This contradicts (5.1.14). Consequently,
sinh(Imλ0 α) = 0, i.e., Im λ0 = 0. Thus, only real eigenvalues may have algebraic
multiplicity greater than one.

2) Suppose that λ0 is an eigenvalue satisfying the equalities d−(λ0) = d′−(λ0) =
d′′−(λ0) = 0. As we have shown above, λ0 is real. Furthermore, by the equality
d′′−(λ0) = −λ−1

0 α2 sin λ0α, we have sin λ0α = 0. Since sin λ0α = λ0 sin α, this yields
sin α = 0. This contradicts the equality d′−(λ0) = 0. Analogously, the equalities
d+(λ0) = d′+(λ0) = d′′+(λ0) = 0 lead to a contradiction.

Lemma 5.1.2. If λ0 is a multiple root of one of the equations d−(λ) = 0 or
d+(λ0) = 0, then a generalized eigenvector to (5.1.11) and (5.1.12), respectively,
can be obtained by the formula

(5.1.15)




v∓r (λ0, ϕ)
v∓ϕ (λ0, ϕ)
q∓(λ0, ϕ)


 =

∂

∂λ




u∓r (λ0, ϕ)
u∓ϕ (λ0, ϕ)
p∓(λ0, ϕ)




∣∣∣∣∣∣
λ=λ0

.

Proof: Let c1 = c1(λ), c3 = c3(λ) be the functions defined in (5.1.10). It can
be easily verified that

c1(λ)

(
u

(1)
r (λ, α/2)

u
(1)
ϕ (λ, α/2)

)
+ c3(λ)

(
u

(3)
r (λ, α/2)

u
(3)
ϕ (λ, α/2)

)
= λ d−(λ)

(
cos(1 + λ)α/2
− sin(1 + λ)α/2

)

for all λ ∈ C. Using the fact that u
(1)
r , u

(3)
r are even functions of the variable ϕ and

u
(1)
ϕ , u

(3)
ϕ are odd functions, we get

c1(λ)

(
u

(1)
r (λ,−α/2)

u
(1)
ϕ (λ,−α/2)

)
+ c3(λ)

(
u

(3)
r (λ,−α/2)

u
(3)
ϕ (λ,−α/2)

)
= λ d−(λ)

(
cos(1 + λ)α/2
sin(1 + λ)α/2

)
.

Since (u(1)
r , u

(1)
ϕ , p(1)) and (u(3)

r , u
(3)
ϕ , p(3)) are solutions of the system (5.1.4), the

last two equalities yield

(5.1.16) A(λ)




u−r
u−ϕ
p−


 = λ d−(λ)

(
0 ,

( cos(1 + λ)α/2
− sin(1 + λ)α/2

)
,
(cos(1 + λ)α/2

sin(1 + λ)α/2

))
.

Let λ = λ0 be a multiple root of the equation d−(λ) = 0. Differentiating (5.1.16)
with respect to λ and setting λ = λ0, we get

A′(λ0)




u−r (λ0, ϕ)
u−ϕ (λ0, ϕ)
p−(λ0, ϕ)


 + A(λ0)




v−r (λ0, ϕ)
v−ϕ (λ0, ϕ)
q−(λ0, ϕ)


 = 0.

This proves the lemma for the case “–”. The proof for the case “+” proceeds anal-
ogously.
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We describe the angles α for which generalized eigenvectors exist. Obviously,
every multiple root of the equation d∓(λ) = 0 satisfies

sin λα∓ λ sin α = α cosλα∓ sin α = 0.

Consequently, tanλα = λα and α−1 sin α = ±(λ2α2 + 1)−1/2. Hence the sequence
of solutions xn of the equation tan x = x generates a denumerable set {α} of angles
satisfying the equation α−1 sin α = ±(x2

n + 1)−1/2. The corresponding eigenvalues
with index 2 are

λ = ±
( 1

sin2 α
− 1

α2

)1/2

.

Note that the points π and 2π are accumulation points of the mentioned set {α}.

Example. The eigenvector (5.1.13) corresponding to the eigenvalue λ0 = 1 has
a generalized eigenvector if and only if α = α∗, where α∗ is the unique solution of
the equation tan α = α in the interval (0, 2π], α∗ ≈ 1.4303π. By Lemma 5.1.2, this
generalized eigenvector is equal to

(5.1.17)




v−r (ϕ)
v−ϕ (ϕ)
q−(ϕ)


 =




1
−2ϕ

4


− 1

cos α∗




cos 2ϕ
− sin 2ϕ

0


 .

5.1.4. Distribution of eigenvalues. In the following two theorems some
properties of the spectrum of A are listed. Since the numbers λ, −λ, λ, and −λ
are simultaneously eigenvalues, we can restrict ourselves to the eigenvalues in the
half-plane Re λ ≥ 0.

Repeating the proof of Theorem 3.1.1 (where ν has to be replaced by 1/2), we
obtain the following results.

Theorem 5.1.1. Let α 6= π and α 6= 2π. Then the following assertions are
true.

1) There are no eigenvalues of the pencil A on the lines Re λ = kπ/α, k =
0, 1, 2, . . . .

2) For every odd k, k ≥ 1, the strip

(5.1.18) k
π

α
< Re λ < (k + 1)

π

α

contains two eigenvalues of A which are solutions of the equation d+(λ) = 0 for
α < π and of the equation d−(λ) = 0 for α > π.

3) If k is an even number, k ≥ 2, then there are two eigenvalues of A in the strip
(5.1.18) which satisfy the equality d−(λ) = 0 for α < π and the equality d+(λ) = 0
for α > π.

4) The strip

(5.1.19) 0 < Re λ <
π

α

contains exactly one eigenvalue. This eigenvalue is a solution of the equation
d−(λ) = 0 if α < π and of the equation d+(λ) = 0 if α > π.

For the formulation of the next theorem we need the auxiliary functions ξ± =
ξ±(α) introduced in Section 4.2. Let ξ+(α) be the smallest positive solution of the
equation

sin ξ

ξ
+

sin α

α
= 0
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and ξ−(α) the smallest positive solution of the equation
1

ξ − α

( sin ξ

ξ
− sin α

α

)
= 0.

Note that the function ξ+ is defined for α ∈ [α0, 2π], where α0 is the smallest
positive root of the equation α−1 sin α = − cosα∗, α0 ≈ 0.8128π, and the function
ξ− is defined on the interval [α1, 2π], where α1 is the smallest positive root of the
equation α−1 sinα = cos α∗∗ and α∗∗ is the second positive root of the equation
tanα = α, α∗∗ ≈ 2.4590π, α1 ≈ 0.88397π. Other elementary properties of the
functions ξ+ and ξ− are given in Section 4.2 after Theorem 4.2.1.

According to Theorem 4.2.2, the following results hold.

Theorem 5.1.2. 1) If α ∈ (0, π), then the spectrum of the operator pencil A in
the strip 0 < Re λ < π/α consists of the unique and simple real eigenvalue λ = 1.

2) If α ∈ (π, 2π), then the spectrum of A in the strip 0 < Re λ < 2π/α consists
of the real eigenvalues

λ+(α) =
ξ+(α)

α
, 1 , λ−(α) =

ξ−(α)
α

.

3) The functions λ+, λ− defined on the intervals [α0, 2π] and [α1, 2π], respec-
tively, are strictly decreasing and satisfy the following inequalities:

λ+(α) < 1 < λ−(α) <
2π

α
for α ∈ (π, α∗),

λ+(α) < λ−(α) < 1 for α ∈ (α∗, 2π).

Moreover, λ+(π) = 1, λ−(π) = 2, λ−(α∗) = 1, and λ+(2π) = λ−(2π) = 1/2.

5.2. The operator pencil generated by the Dirichlet problem in a cone

Let K be the cone {x ∈ R3 : 0 < |x| < ∞, x/|x| ∈ Ω}. We consider the
Dirichlet problem (5.0.1), (5.0.2) for the Stokes system. Throughout this chapter,
we assume that Ω is a Lipschitz domain on the sphere S2. We seek special solutions
(U,P ) of the form (5.0.3), where u(k) ∈ ◦

W1
2(Ω)3, and p(k) ∈ L2(Ω)3 for k = 0, . . . , s.

For this we have to study the spectrum of a certain pencil of differential operators
on a subdomain of the sphere. First we introduce this pencil and prove some basic
properties.

5.2.1. Definition of the pencil L. Let L(λ) be the operator
◦

W
1
2(Ω)3 × L2(Ω) 3

( u
p

)
(5.2.1)

→
(

r2−λ
(−∆(rλu) +∇(rλ−1p)

)
r1−λ∇ · (rλu)

)
∈ W−1

2 (Ω)3 × L2(Ω),

By Theorem 1.1.5, the functions (5.0.3) form a solution of problem (5.0.1), (5.0.2)
if and only if λ0 is an eigenvalue of the pencil L and

( u(0)

p(0)

)
,
( u(1)

p(1)

)
, . . . ,

( u(s)

p(s)

)

is a Jordan chain corresponding to this eigenvalue.
As in in the preceding chapters, we will systematically use the spherical com-

ponents ur, uθ uϕ of the vector function (u1, u2, u3) and use the same notations as
in Section 3.2.
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Then the system L(λ)
(

u
p

)
= 0 has the form

(λ− 1)p− (δ + λ2 + λ− 2)ur +
2

sin θ

(
∂θ(sin θ uθ) + ∂ϕuϕ

)
= 0,(5.2.2)

∂θp−
(
δ + λ2 + λ− 1

sin2 θ

)
uθ + 2

cot θ

sin θ
∂ϕuϕ − 2∂θur = 0,(5.2.3)

1
sin θ

∂ϕp−
(
δ + λ2 + λ− 1

sin2 θ

)
uϕ − 2

cot θ

sin θ
∂ϕuθ − 2

sin θ
∂ϕur = 0,(5.2.4)

− 1
sin θ

(
∂θ(sin θ uθ) + ∂ϕuϕ

)
− (λ + 2)ur = 0,(5.2.5)

where δ denotes the Beltrami operator on the sphere S2. We denote the matrix
operator on the left in (5.2.2)–(5.2.5) also by L(λ).

Let Q(·, ·) be the form (3.2.4). We introduce the parameter-depending sesquilin-
ear form

a
(( u

p

)
,
( v

q

)
; λ

)
= Q(uω, vω) +

∫

Ω

(∇ωur) · ∇ωvr dω(5.2.6)

−
∫

Ω

(
(λ + 2)(λ− 1)urvr + (λ2 + λ− 1)uω · vω

)
dω

−2
∫

Ω

(
(∇ωur) · vω − (∇ω · uω) vr

)
dω

−
∫

Ω

(
p

(∇ω · vω + (1− λ) vr

)
+

(∇ω · uω + (λ + 2) ur

)
q
)

dω

on
◦

W1
2(Ω)× ◦

h1
2(Ω)× L2(Ω) which is connected with the operator

L(λ) :
◦

W
1
2(Ω)× ◦

h
1
2(Ω)× L2(Ω) →

( ◦
W

1
2(Ω)× ◦

h
1
2(Ω)

)∗
× L2(Ω)

by the equality

a
((

u
p

)
,
(

v
q

)
; λ

)
=

(
L(λ)

(
u
p

)
,
(

v
q

))
L2(Ω)4

.

By (5.2.6) and by the equality

(5.2.7)
∫

Ω

(∇ωur) · vω dω = −
∫

Ω

ur ∇ω · vω dω,

we have

(5.2.8) a
((u

p

)
,
(v

q

)
; λ

)
= a

((v

q

)
,
(u

p

)
; −1− λ

)

for all (u, p), (v, q) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)×L2(Ω) and, consequently, L(λ)∗ = L(−1−λ).

5.2.2. Basic properties of the pencil L. Without proof we state the fol-
lowing well-known lemma which is used below. For the proof we refer to the book
of Temam [253, Prop.I.1.2,Le.I.2.4].

Lemma 5.2.1. Assume that Ω ⊂ S2 is open and Lipschitz. Then
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1) if a distribution p has a spherical gradient ∇ωp in (
◦
h 1

2(Ω))∗, then p ∈
L2(Ω),

2) the spherical divergence operator

uω → ∇ω · uω

maps the space
◦
h1
2(Ω) onto L2(Ω)/R.

As a consequence of the last lemma, we obtain the following result.

Lemma 5.2.2. Let g be an arbitrary L2 function on Ω. Then the equation

(λ + 2) ur +∇ω · uω = g

has a solution (ur, uω) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω) satisfying the inequality

|λ + 2| ‖ur‖W 1
2 (Ω) + ‖uω‖h1

2(Ω) ≤ c ‖g‖L2(Ω)

with a constant c independent of g and λ.

Proof: First let
∫
Ω

g dω = 0. Then, according to Lemma 5.2.1, the equation

∇ω · uω = g has a solution uω ∈◦h1
2(Ω). Thus, the vector function (0, uω) satisfies

the desired equation.
In the case

∫
Ω

g dω = c 6= 0 we set ur = c (λ + 2)−1 ψ, where ψ is an arbi-

trary function in
◦

W 1
2(Ω) such that

∫
Ω

ψ dω = 1. Then the integral of the function
g−(λ+2) ur over Ω vanishes, and we can solve the equation ∇ω ·uω = g−(λ+2)ur.
The so obtained vector function (ur, uω) has the desired properties.

Lemma 5.2.3. Let Re λ = −1/2, and let |λ| be sufficiently large. Then for

every functional f ∈ ( ◦
W1

2(Ω)× ◦
h1
2(Ω)

)∗ and every function g ∈ L2(Ω) there exists

a solution (u, p) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)× L2(Ω) of the equation

(5.2.9) L(λ)
(u

p

)
=

(f

g

)
.

Proof: By Lemma 5.2.2, there exists a vector function u(0) = (u(0)
r , u

(0)
ω ) ∈

◦
W1

2(Ω)× ◦
h1
2(Ω) such that (λ + 2) u

(0)
r +∇ω · u(0)

ω = g. Then we have

L(λ)
(u(0)

0

)
=

(F

g

)
,

where F ∈ ( ◦
W1

2(Ω)× ◦
h1
2(Ω)

)∗ is given by the left-hand sides of (5.2.2)–(5.2.4) with
p = 0 and u = u(0).

We show that there exists a vector function (u(1), p) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)× L2(Ω)

such that

(5.2.10) L(λ)
(u(1)

p

)
=

(f − F

0

)
.
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Using (5.2.6) and (5.2.7), we get

a
((u

0

)
,
(u

0

)
; −1

2
+ it

)
= Q(uω, uω) +

∫

Ω

(
|∇ωur|2 + (

9
4

+ t2) |ur|2
)

dω

+
∫

Ω

(
(
5
4

+ t2) |uω|2 − 4Re (∇ωur) · uω

)
dω

for arbitrary ur ∈
◦

W1
2(Ω), uω ∈

◦
h1
2(Ω). Hence for Re λ = −1/2, |λ| sufficiently large,

it holds

(5.2.11)
∣∣∣a

((u

0

)
,
(u

0

)
; λ

)∣∣∣ ≥ c
(
‖ur‖2W 1

2 (Ω) + ‖uω‖2h1
2(Ω)

)

with a constant c independent of ur ∈
◦

W1
2(Ω), uω ∈

◦
h1
2(Ω). In particular, (5.2.11) is

satisfied for all (ur, uω) from the subspace

Hλ
def
= {(ur, uω) ∈ ◦

W
1
2(Ω)× ◦

h
1
2(Ω) : (λ + 2)ur +∇ω · uω = 0}.

Consequently, by Lax-Milgram’s theorem, there exists a solution u(1) ∈ Hλ of the
equation

(5.2.12) a
((u(1)

0

)
,
(v

0

)
; λ

)
= (f − F, v)L2(Ω)3 , v ∈ Hλ .

We consider the functional

(5.2.13) v → G(v)
def
= a

((u(1)

0

)
,
(v

0

)
; λ

)
− (f − F, v)L2(Ω)3

on
◦

W 1
2(Ω)× ◦

h1
2(Ω). Let v = (vr, vω) be an arbitrary function in

◦
W 1

2(Ω)× ◦
h1

2(Ω).
Since the functional G vanishes on the subspace Hλ, we have

G(v) = G(w)

for all w ∈ ◦
W 1

2(Ω)× ◦
h1

2(Ω) such that (λ + 2) wr +∇ω · wω = (λ + 2) vr +∇ω · vω.
Due to Lemma 5.2.2, we can choose w = (wr, wω) such that

‖wr‖W 1
2 (Ω) + ‖wω‖h1

2(Ω) ≤ c
∥∥(λ + 2) vr +∇ω · vω

∥∥
L2(Ω)

.

Therefore, G(v) can be understood as a linear and continuous functional applied to
(λ + 2) vr +∇ω · vω. By the Riesz theorem, there exists a function p ∈ L2(Ω) such
that

G(v) =
∫

Ω

p · ((λ + 2)vr +∇ω · vω

)
dω

for all v ∈ Hs. Using (5.2.13) and the last equality, we obtain

a
((u(1)

p

)
,
(v

q

)
;λ

)
= a

((u(1)

0

)
,
(v

0

)
; λ

)
−

∫

Ω

p · ((λ + 2)vr +∇ω · vω

)
dω

= (f − F, v)L2(Ω)3 .

Thus, the vector function (u(1), p) satisfies (5.2.10). This proves the lemma.
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Theorem 5.2.1. 1) The operator L(λ) is Fredholm for all λ.
2) The spectrum of the pencil L consists of isolated eigenvalues with finite

algebraic multiplicities.
3) The line Re λ = −1/2 does not contain eigenvalues of the pencil L.
4) The number λ0 is an eigenvalue of the pencil L if and only if −1− λ0 is an

eigenvalue of this pencil. The geometric, algebraic and partial multiplicities of the
eigenvalues λ0 and −1− λ0 coincide.

Proof: We show first that the kernel of the operator L(λ) is trivial for Re λ =
−1/2. Let (u, p) be an element of the kernel of L(λ), where λ is a number on the
line Re λ = −1/2. Then, by (5.2.5), we have

(λ + 2) ur +∇ω · uω = 0 in Ω.

Consequently, by (5.2.6), (5.2.7) and by the equality λ + 2 = 1− λ, we obtain

a
((u

p

)
,
(u

p

)
; λ

)
= Q(uω, uω) +

∫

Ω

(∣∣∇ωur − 1
2
uω

∣∣2 + |λ + 2|2 |ur|2
)

dω

+
∫

Ω

((|λ + 2|2 − 5
4
) |uω|2 + 3 Re (∇ω · uω)ur

)
dω.

Using (3.2.10) and replacing ∇ω · uω by −(λ + 2)ur, we arrive at the inequality

0 = a
((u

p

)
,
(u

p

)
; λ

)
≥

∫

Ω

(∣∣∇ωur − 1
2
uω

∣∣2 +
(|λ + 2|2 − 9

4
) |uω|2

)
dω

+
∫

Ω

(
2 |λ + 2|2 − 3Re (λ + 2)

)
|ur|2 dω.

This implies ur = 0 and uω = 0 if λ 6= −1/2. In the case λ = −1/2 we obtain

∇ωur − 1
2

uω = 0,
3
2

ur +∇ω · uω = 0.

From this we also conclude, in the same way as in the proof of Lemma 3.2.6, that
ur = 0 and uω = 0.

Furthermore, for u = 0 and for arbitrary vr ∈
◦

W1
2(Ω), vω ∈

◦
h1
2(Ω) we get

a
((0

p

)
,
(v

0

)
; λ

)
= −

∫

Ω

p
(
(1− λ)vr +∇ω · vω

)
dω = 0.

This together with Lemma 5.2.2 implies p = 0. Thus, the kernel of the operator
L(λ) is trivial for Re λ = −1/2.

If moreover |λ| is sufficiently large, then, by Lemma 5.2.3, the operator L(λ)
is an isomorphism. Since L(λ) − L(µ) is a compact operator for arbitrary λ, µ,
it follows that the operator L(λ) is Fredholm for every complex λ. This proves
assertion 1).

The second assertion follows from 1), from the invertibility of the operator L(λ)
for Re λ = −1/2, |λ| sufficiently large, and from Theorem 1.1.1.

The proof of the third assertion is contained in the proof of assertion 1).
Finally, assertion 4) follows from the equality L(λ)∗ = L(−1− λ).
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5.2.3. Relations between eigenvectors corresponding to the eigenval-
ues λ and −1 − λ. Since the coefficients of the Stokes system are real, it follows
from assertion 4) of Theorem 5.2.1 that the numbers λ and −1− λ are simultane-
ously eigenvalues of the pencil L or not. Our goal is to derive a relation between
the eigenvectors and generalized eigenvectors corresponding to these eigenvalues.

We introduce the matrix

(5.2.14) S(λ) =




λ + 2 0 0 0
0 1− λ 0 0
0 0 1− λ 0

2 + 4λ 0 0 1− λ


 .

From (5.2.6) and (5.2.7) it follows that

a
((u

p

)
, S(λ)

(v

q

)
; λ

)
= a

(
S(λ)

(u

p

)
,
(v

q

)
; −1− λ

)
.

for all u, v ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω), p, q ∈ L2(Ω). Consequently, there is the equality

(5.2.15) S(λ)t L(λ) = L(−1− λ)S(λ)

for arbitrary λ ∈ C, where S(λ)t is the transposed matrix to S(λ). This leads to
the following assertions.

Theorem 5.2.2. Let λ0 be an eigenvalue of the pencil L and let the vector func-
tions (u(0), p(0)), . . . , (u(s), p(s)) form a Jordan chain of this pencil corresponding to
λ0.

1) If λ0 6∈ {1,−2} or λ0 ∈ {1,−2} and S(λ0)
(

u(0)

p(0)

)
6= 0,

then −1−λ0 is also an eigenvalue of the pencil L and the vector functions
(

v(0)

q(0)

)
=

S(λ0)
(

u(0)

p(0)

)
,

(v(k)

q(k)

)
= (−1)k


S(λ0)

(u(k)

p(k)

)
+




1 0 0 0
0 −1 0 0
0 0 −1 0
4 0 0 −1




(u(k−1)

p(k−1)

)

 ,

k = 1, . . . , s, form a Jordan chain corresponding to −1− λ0.

2) If λ0 ∈ {1,−2}, S(λ0)
(

u(0)

p(0)

)
= 0 and s ≥ 1, then −1 − λ0 is also an

eigenvalue and the vector functions

(v(k)

q(k)

)
= (−1)k


S(λ0)

(u(k)

p(k)

)
+




1 0 0 0
0 −1 0 0
0 0 −1 0
4 0 0 −1




(u(k−1)

p(k−1)

)

 ,

k = 1, . . . , s, form a Jordan chain corresponding to this eigenvalue.

Proof: First note that

S(λ0)
(u(1)

p(1)

)
+




1 0 0 0
0 −1 0 0
0 0 −1 0
4 0 0 −1




(u(0)

p(0)

)
6= 0

if λ0 ∈ {1,−2} and S(λ0)
(

u(0)

p(0)

)
= 0.
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By the assumptions of the lemma, the vector functions (u(j), p(j)) satisfy the
equations

k∑

j=0

1
(k − j)!

L(k−j)(λ0)
(u(j)

p(j)

)
= 0 for k = 0, 1, . . . , s,

where L(j)(λ) = djL(λ)/dλj . We have to show that

k∑

j=0

1
(k − j)!

L(k−j)(−1− λ0)
(v(j)

q(j)

)
(5.2.16)

= (−1)k L(−1− λ0)S(λ0)
(u(k)

p(k)

)

+
k−1∑

j=0

(−1)j

(k − j)!
L(−1− λ0)S(λ0)

(u(j)

p(j)

)

−
k−1∑

j=0

(−1)j

(k − j − 1)!
L(k−j−1)(−1− λ0)S ′(λ0)

(u(j)

p(j)

)
= 0.

Differentiating (5.2.15) with respect to λ, we obtain

S(λ)t L(k−j)(λ) + (k − j)S ′(λ)t L(k−j−1)(λ)

= (−1)k−j
(
L(k−j)(−1− λ)S(λ)− (k − j)L(k−j−1)(−1− λ)S ′(λ)

)

for j ≤ k − 1. Hence the left side of (5.2.16) is equal to

(−1)kS(λ0)t
k∑

j=0

1
(k − j)!

L(k−j)(λ0)
(u(j)

p(j)

)

+ (−1)k S ′(λ0)t
k−1∑

j=0

1
(k − 1− j)!

L(k−1−j)(λ0)
(u(j)

p(j)

)
= 0.

The theorem is proved.

Remark 5.2.1. In the case λ0 6= 1, λ0 6= −2 the formulas given in the first
part of Theorem 5.2.2 yield a one-to-one correspondence between eigenvectors and
generalized eigenvectors of the pencil L corresponding to the eigenvalues λ0 and
−1− λ0.

5.2.4. The Kelvin transform for the Stokes system. The identity (5.2.15)
leads to the following analogue of the Kelvin transform. Let (U,P ) be a solution
of (5.0.1) in the domain G ⊂ R3, then the vector function (5.0.4), (5.0.5) solves the
Stokes system in the domain Gin obtained from G by the inversion x → x |x|−2.

Indeed, we have

L(r∂r)
(JU

P

)
= 0,

where J is the matrix (3.2.3). By (5.2.15), we have

L(−1− r∂r)S(r∂r)
(JU

P

)
= 0.
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Replacing r by r−1, we obtain

L(r∂r) r−1 S(−r∂r)
( J 0

0 1

)(U(x/|x|2)
P (x/|x|2)

)
= 0.

Hence the vector function
( J t 0

0 1

)
r−1 S(−r∂r)

( J 0
0 1

)(U(x/|x|2)
P (x/|x|2)

)

solves the homogeneous Stokes system in Gin. Using the definition of J and S, one
can directly verify that the above vector function coincides with (5.0.4), (5.0.5).

5.3. Properties of real eigenvalues

We prove in this section that in a certain strip of the complex plane centered
about the line Re λ = −1/2 there are only real eigenvalues of the pencil L. Another
result is the nonexistence of generalized eigenvectors to eigenvalues λ 6= 1, λ 6= −2
in the interior of this strip.

5.3.1. A strip which contains only real eigenvalues. Note that the form
a(·, ·;λ) is not symmetric. However, it is possible to obtain a symmetric form
corresponding to the same operator L(λ) as follows.

Lemma 5.3.1. If λ 6= 1, then

a
((

u
p

)
, Jλ

(
v
q

)
;λ

)
= a

((
v
q

)
, Jλ̄

(
u
p

)
;λ

)
,

where

(5.3.1) Jλ =




c 0 0 0
0 1 0 0
0 0 1 0

2c− 2 0 0 1


 and c =

λ + 2
1− λ

Proof: Using (5.2.6) and (5.2.7), we obtain

a
((

u
p

)
, Jλ

( v
q

)
;λ

)
= Q(uω, uω) +

∫

Ω

c (∇ωur) · ∇ωvr dω(5.3.2)

+
∫

Ω

(
|λ + 2|2 + 2 (λ + 2) (1− c)

)
ur vr dω

+
∫

Ω

(
(1− λ− λ2) uω · vω + 2 (∇ω · uω) vr + 2ur ∇ω · vω

)
dω

−
∫

Ω

(
p

(∇ω · vω + (λ + 2) vr

)
+

(∇ω · uω + (λ + 2) ur

)
q
)

dω.

This implies the assertion of the lemma.

The following theorem characterizes a strip in the complex plane, where the
spectrum of the pencil L is real.
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Theorem 5.3.1. The strip |Re λ + 1
2 | ≤ F (Ω), where

(5.3.3) F (Ω) =

√
Γ(Ω)

2
+

7
4
,

and

Γ(Ω) = inf
0 6=uω∈

◦
h1
2(Ω)

Q(uω, uω) +
∫

Ω

|∇ω · uω|2 dω
∫

Ω

|uω|2 dω

,

may contain only real eigenvalues of the pencil L.

Proof: We assume that Im λ 6= 0 and consider the equation

(5.3.4) a
((

u
p

)
, Jλ

(
u
p

)
; λ

)
= 0.

Taking the imaginary part of (5.3.4) we obtain

Im c

∫

Ω

|∇ωur|2 dω − Im λ(2Re λ + 1)
∫

Ω

|uω|2

+ 2 Im
(
(λ + 2)(1− c)

) ∫

Ω

|ur|2 dω = 0.

A simple calculation yields

(5.3.5) − 1
|1− λ|2

∫

Ω

|∇ωur|2 dω +
∫

Ω

|uω|2 dω +
6

|1− λ|2
∫

Ω

|ur|2 dω = 0.

Now taking the real part of (5.3.4) results in

Q(uω, uω) +
(Im λ)2 − (Re λ)2 − Re λ + 2

|1− λ|2
∫

Ω

|∇ωur|2 dω

+ |λ + 2|2
∫

Ω

|ur|2 dω −
(
(Re λ)2 − (Im λ)2 + Re λ− 1

)∫

Ω

|uω|2 dω

+4Re
∫

Ω

∇ω · uω ūr dω + 2(2Re λ + 1)
(
1 +

3(Re λ− 1)
|1− λ|2

) ∫

Ω

|ur|2 dω = 0.

We eliminate
∫
Ω
|∇ωur|2 dω by means of (5.3.5) and obtain after simplification:

Q(uω, uω) +
(
2(Imλ)2 − 2(Reλ)2 − 2Reλ + 3

) ∫

Ω

|uω|2 dω

+ |λ + 2|2
∫

Ω

|ur|2 dω = 0.

Using the equality
∫

Ω

|∇ω · uω|2 dω = |λ + 2|2
∫

Ω

|ur|2 dω
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and the inequality

Q(uω, uω) +
∫

Ω

|∇ω · uω|2 dω ≥ Γ(Ω)
∫

Ω

|uω|2 dω,

we get (
2Re λ (Re λ + 1)− 3− Γ(Ω)− 2(Im λ)2

) ∫

Ω

|uω|2dω ≥ 0

which yields a contradiction to Imλ 6= 0 if
(
Re λ +

1
2

)2

− (Im λ)2 < (F (Ω))2.

This proves the theorem.

Remark 5.3.1. We actually proved the following stronger assertion: If there
are any eigenvalues λ in the domain

{
λ :

(
Re λ +

1
2

)2

− (Im λ)2 < (F (Ω))2
}

,

then they must be real.

Remark 5.3.2. The quantity F (Ω) defined by (5.3.3) coincides with Fν(Ω) in
Chapter 3 (see formula (3.3.2)) if ν = 1/2. Therefore, the set function F has the
following properties (cf. Corollary 3.4.1):

1) For all Ω ⊂ S2 it holds F (Ω) ≥ 3/2.
2) The function F decreases as the set Ω increases, i.e., if Ω0 ⊂ Ω1 ⊂ S2, then

F (Ω0) ≥ F (Ω1). If, moreover, Ω1 is connected and Ω0 ⊂⊂ Ω1, then even the strict
inequality is valid. (Here the notation Ω0 ⊂⊂ Ω1 means that Ω0 ⊂ Ω1 and Ω1\Ω0

contains a nonzero open set.)
3) If Ω ⊂ S2 and cap(S2\Ω) > 0, where

cap(K) = inf
{
‖u‖2W 1

2 (S2) : u ∈ C∞(S2), u|K ≥ 1
}

is the Wiener capacity on S2, then F (Ω) > 3/2.
All these assertions are valid without our general assumption that Ω is a

Lipschitz domain.

5.3.2. Absence of generalized eigenvectors. Now we study the existence
of generalized eigenfunctions of the pencil L for real eigenvalues in the interval
−F (Ω) − 1/2 < λ < F (Ω) − 1/2. Due to assertion 4) of Theorem 5.2.1, it is
sufficient to investigate the spectrum of the pencil L in the interval (−1/2, F (Ω)−
1/2). Throughout this subsection, we will assume that λ 6= 1 and postpone the
investigation of the case λ = 1 to the next section.

Let (u(0), p(0)) be an eigenvector to the real eigenvalue λ0 and let (u(1), p(1)) be
a corresponding generalized eigenvector. Then (u(1), p(1)) satisfies the equation

a
(( u(1)

p(1)

)
, Jλ

( v
q

)
;λ

)∣∣∣
λ=λ0

= − d

dλ
a
(( u(0)

p(0)

)
, Jλ

( v
q

)
;λ

)∣∣∣
λ=λ0

for all (v, q) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)×L2(Ω). Since the sesquilinear form a has a nontrivial

kernel for λ = λ0 and since a(·, Jλ·; λ) is symmetric, we have the following sufficient
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condition for the existence of generalized eigenfunctions:

(5.3.6)
d

dλ
a
(( u(0)

p(0)

)
, Jλ

( u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

= 0.

The following lemma shows that this is not true for real eigenvalues λ in the interval
(− 1

2 , F (Ω)− 1
2 ), λ 6= 1.

Lemma 5.3.2. Assume that (u, p) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)×L2(Ω), (u, p) 6= 0, satisfies

the equality

(5.3.7) a
(( u

p

)
, Jλ

( v
q

)
; λ

)
= 0

for all (v, q) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω)× L2(Ω). Then

(5.3.8)
d

dλ
a
(( u

p

)
, Jλ

( u
p

)
; λ

)




< 0 if λ ∈ (− 1
2 , 1),

> 0 if λ ∈ (1, F (Ω)− 1
2 ),

where the set function F is defined by (5.3.3).

Proof: We have

d

dλ
a
((

u
p

)
, Jλ

(
u
p

)
; λ

)
= −(2λ + 1)

∫

Ω

(c |ur|2 + |uω|2) dω(5.3.9)

+
∫

Ω

(
c p ūr − ur p̄− (2c− 2) |ur|2

)
dω.

We remove uω in equation (5.2.2) by means of (5.2.5). Then we get

(5.3.10) (1− λ)
∫

Ω

p ūr dω = −
∫

Ω

(
δ + (λ + 1)(λ + 2)

)
ur · ūr dω.

This equation can be used to eliminate p in (5.3.9). After simplification we arrive
at

d

dλ
a
(( u

p

)
, Jλ

( u
p

)
;λ

)

=
c− 1
1− λ

( ∫

Ω

|∇ωur|2 dω − 6
∫

Ω

|ur|2 dω − (1− λ2)
∫

Ω

|uω|2 dω

)
.

Evaluating the left hand side of (5.3.7) by (5.2.6) and using (5.2.5), we obtain

c
1− λ

c− λ

d

dλ
a
(( u

p

)
, Jλ

( u
p

)
;λ

)
− a

(( u
p

)
, Jλ

( u
p

)
; λ

)
(5.3.11)

= −(λ + 2)2
∫

Ω

|ur|2 dω + (2λ2 + 2λ− 3)
∫

Ω

|uω|2 dω −Q(uω, uω).

From (5.2.5) we get the equality
∫

Ω

|∇ω · uω|2 dω = (λ + 2)2
∫

Ω

|ur|2 dω
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which implies in particular that uω 6= 0. Therefore, the left-hand side of (5.3.11) is
bounded from above by the quantity

(
2λ2 + 2λ− 3− Γ(Ω)

) ∫

Ω

|uω|2 dω.

which is less than zero if (λ + 1/2)2 < F (Ω)2. Together with (5.3.7) this implies
(5.3.8).

Using Lemma 5.3.2, we are able to prove the following assertion.

Theorem 5.3.2. The pencil L has no generalized eigenfunctions for eigenvalues
λ ∈ (− 1

2 , 1) ∪ (1, F (Ω)− 1
2 ).

Proof: If λ0 is an eigenvalue and (u0, p0), (u1, p1) are eigen- and generalized
eigenfunctions, respectively, then

a
(( u(0)

p(0)

)
,
( v

q

)
;λ

)∣∣∣
λ=λ0

= 0

and

a
((

u(1)

p(1)

)
,
(

v
q

)
;λ

)∣∣∣
λ=λ0

= − d

dλ
a
((

u(0)

p(0)

)
,
(

v
q

)
; λ

)∣∣∣
λ=λ0

for all (v, q) ∈ ◦
W 1

2(Ω)× ◦
h1

2(Ω) × L2(Ω). As λ0 6= 1 we may substitute Jλ

(
u(0)

p(0)

)

for
(

v
q

)
and the theorem follows from Lemma 5.3.2.

5.4. The eigenvalues λ=1 and λ =–2

Obviously, the vector function (ur, uω, p) = (0, 0, 1) is a solution of problem
(5.2.2)–(5.2.5) with λ = 0. Consequently, the spectrum of the pencil L contains
the point λ = 1, and (0, 0, 1) is an eigenvector corresponding to this eigenvalue.
In Sections 5.4.1 and 5.4.2 we derive necessary and sufficient conditions for the
existence of additional eigenvectors and generalized eigenvectors corresponding to
λ = 1. In Section 5.4.3 we obtain all eigenvectors and generalized eigenvectors for
the case of a circular cone. In the last subsection we describe the eigenvectors and
generalized eigenvectors corresponding to the eigenvalue λ = −2.

5.4.1. An auxiliary problem. We consider the auxiliary problem

∂θp− (δ + 2)uθ +
uθ

sin2 θ
+ 2

cot θ

sin θ
∂ϕuϕ = f in Ω,(5.4.1)

1
sin θ

∂ϕp− (δ + 2)uϕ +
uϕ

sin2 θ
− 2

cot θ

sin θ
∂ϕuϕ = g in Ω,(5.4.2)

− 1
sin θ

∂θ(sin θ uθ)− 1
sin θ

∂ϕuϕ = ψ in Ω(5.4.3)

with the boundary conditions

uθ = uϕ = 0 on ∂Ω.

Note that (5.4.1)–(5.4.3) coincide with the equations (5.2.3)–(5.2.5) for λ = 1,
f = 2∂θur, g = 2(sin θ)−1∂ϕur, ψ = 3ur.
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Taking the inner product in L2(Ω) of the equation (5.4.1) with vθ, of the equa-
tion (5.4.2) with vϕ and of (5.4.3) with q, where (vθ, vϕ, q) is an arbitrary vector

function from
◦
h1
2(Ω)×L2(Ω), and combining the resulting expressions, we arrive at

the identity

Q(uω, vω)−
∫

Ω

uω vω dω −
∫

Ω

(
p∇ω · vω + (∇ω · uω) q

)
dω(5.4.4)

=
∫

Ω

(fvθ + gvϕ + ψq) dω.

The following lemma on the solvability of the auxiliary problem is a straightfor-
ward analogue of the well-known result for the plane Stokes problem (see Temam
[253]).

Lemma 5.4.1. Let Ω 6= S2, (f, g) ∈◦h1
2(Ω)∗, ψ ∈ L2(Ω). For the solvability of

problem (5.4.1)–(5.4.3) in the space
◦
h1
2(Ω)×L2(Ω) it is necessary and sufficient that

(5.4.5)
∫

Ω

ψdω = 0.

Under this condition, the solution (uθ, uϕ, p) is unique up to a vector (0, 0, const.).

Proof: 1) Necessity of the condition (5.4.5): For vω = 0, q = 1 the integral
identity (5.4.4) takes the form

∫
Ω

ψ dω = − ∫
Ω
∇ω · uω dω = 0.

2) Uniqueness of the solution: If Ω is a Lipschitz domain and Ω 6= S2, then we
get, by Remark 5.3.2, that Γ(Ω) > 1 and, consequently, that

Q(uω, uω)−
∫

Ω

|uω|2 dω ≥ c0 Q(uω, uω)

for some c0 > 0. Therefore, if f = g = ψ = 0, it follows that uω = 0 and p = const.
3) Existence of a solution: First we remark that, by the second part of Lemma

5.2.1, there exists a vector function ũω = (ũθ, ũϕ) ∈◦h1
2(Ω) such that ∇ω · ũω = ψ on

Ω. Consequently, it is sufficient to show the existence of a solution of (5.4.1)–(5.4.3)
in the case ψ = 0.

Assume that the vector function vω satisfies the condition ∇ω · vω = 0. Since
also ∇ω · uω = 0, we obtain from (5.4.4)

(5.4.6) Q(uω, vω)−
∫

Ω

uω v̄ω dω =
∫

Ω

(f v̄θ + g v̄ϕ) dω.

By Riesz’s theorem on the representation of linear functionals in a Hilbert space,
there exists a vector function uω ∈

◦
h1

2(Ω) which satisfies the condition ∇ω · uω = 0

and (5.4.6) for all vω ∈◦h1
2(Ω) such that ∇ω · vω = 0. Now let vω be an arbitrary

vector function in
◦
h1
2(Ω). Then

Q(uω, vω)−
∫

Ω

uω v̄ω dω −
∫

Ω

(f v̄θ + g v̄ϕ) dω
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is a continuous linear functional on ∇ω · vω ∈ L2(Ω). Therefore, there exists a
function p ∈ L2(Ω) such that

Q(uω, vω)−
∫

Ω

uω v̄ω dω −
∫

Ω

p∇ω · v̄ω dω =
∫

Ω

(f v̄θ + g v̄ϕ) dω

for all vω ∈
◦
h1
2(Ω). Thus, the existence of a solution is shown.

5.4.2. The multiplicity of the eigenvalue λ = 1. Now we can characterize
the algebraic multiplicity of the eigenvalue λ = 1 and construct the corresponding
system of eigenvectors and generalized eigenvectors.

Theorem 5.4.1. Let Ω 6= S2. Then the number λ = 1 is always an eigenvalue
with the corresponding eigenvector (0, 0, 0, 1). Furthermore, the following assertions
are valid.

1) If the problem

(5.4.7) (δ + 6)w = 0, w ∈ ◦
W

1
2(Ω),

∫

Ω

w dω = 0

has only the trivial solution, then there are no other eigenvectors. If, however, the
problem (5.4.7) has a nontrivial solution w, then there exists another eigenvector
(w, uω, p), where (uω, p) is a solution of (5.4.1)–(5.4.3) with the right-hand sides

f = 2∂θw, g = 2(sin θ)−1∂ϕw, ψ = 3w.

There are no further eigenvectors.
2) Let (u(0), p(0)) denote an eigenvector corresponding to the eigenvalue λ = 1.

Then for the existence of a generalized eigenvector it is necessary and sufficient that
u(0) = 0, p(0) = const. and that the problem

(5.4.8) (δ + 6)w = p(0) , w ∈ ◦
W

1
2(Ω),

with the constraint ∫

Ω

w dω = 0

is solvable. The generalized eigenvector has the form (w, uω, p), where (uω, p) is a
solution of the problem (5.4.1)–(5.4.3) with the right-hand side

f = 2∂θw, g = 2(sin θ)−1∂ϕw, ψ = 3w.

Further generalized eigenvectors do not exist.

Proof: 1) If the vector function (u, p) is an eigenvector, then it follows from
(5.2.2) and (5.2.5) that the function w = ur is a solution of the problem (5.4.7) and
the vector function (uω, p) can be obtained by solving the boundary value problem
(5.4.1)–(5.4.3) with the right-hand sides given above. The remaining part of the
statement 1) can be verified easily.

2) Suppose the eigenvector (u(0), p(0)) has a generalized eigenvector (u(1), p(1)).
If u

(0)
r = 0, then it follows from (5.2.3)–(5.2.5) and Lemma 5.2.1 that u

(0)
ω = 0 and
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p(0) = const. We assume that u
(0)
r 6= 0. Then the function u

(1)
r ∈ ◦

W 1
2(Ω) satisfies

the equation

(δ + 6)u(1)
r = p(0) − d

dλ

(
δ + (λ + 1)(λ + 2)

)
u(0)

r

∣∣∣
λ=1

.

Now, as (δ + 6)u(0)
r = 0, it holds

(5.4.9) 0 =
∫

Ω

(δ + 6) u(1)
r u

(0)
r dω =

∫

Ω

p(0) u
(0)
r dω − 5

∫

Ω

|u(0)
r |2 dω.

Further, inserting

(
u
p

)
=

(
u(0)

p(0)

)
,

(
v
q

)
=




0
u

(0)
ω

0




and λ = 1 into (5.3.6), we obtain

(5.4.10) Q(u(0)
ω , u(0)

ω )−
∫

Ω

|u(0)
ω |2 dω+2

∫

Ω

u(0)
r ∇ω ·u(0)

ω dω−
∫

Ω

p(0)∇ω ·u(0)
ω dω = 0.

Inserting (5.4.9) into (5.4.10) and utilizing ∇ω · u(0)
ω = −3u

(0)
r , we arrive at

Q(u(0)
ω , u(0)

ω )−
∫

Ω

|u(0)
ω |2 dω + 9

∫

Ω

|u(0)
r |2 dω = 0.

From this from Lemma 3.2.3 we conclude that u
(0)
r = 0. Consequently, by the

first part of the proof, (u(0)
ω , p) is a solution of the homogeneous problem (5.4.1)–

(5.4.3). Lemma 5.4.1 implies u
(0)
ω = 0, p(0) = const. It can be easily seen that

the eigenvector (u(0), p(0)) = (0, const) admits a generalized eigenvector (u(1), p(1))
if and only if the problem (5.4.8) is solvable. The generalized eigenvector is then
obtained as described in the theorem.

Now we show that there are no generalized eigenvectors of order ≥ 2 which
correspond to the eigenvector (u(0), p(0)). We assume the contrary. Then the com-
ponent u

(2)
r 6= 0 satisfies the relations

(5.4.11) (δ + 6)u(2)
r = p(1) − d

dλ

(
δ + (λ + 1)(λ + 2)

)
u(1)

r

∣∣∣
λ=1

,

u
(2)
r ∈ ◦

W1
2(Ω), and

(5.4.12)
∫

Ω

u(2)
r dω = 0.

Multiplying (5.4.11) by u
(1)
r , integrating over the domain Ω and using the equalities

(δ + 6)u(1)
r = p(0) = const and (5.4.12), we obtain the equality

∫

Ω

p(1) u
(1)
r dω = 5

∫

Ω

|u(1)
r |2 dω.
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The vector function (u(1), p(1)) satisfies the equations (5.2.3)-(5.2.5) for λ = 1.
Therefore, also (5.4.10) remains true for (u(1), p(1)) and ∇ω · u(1)

ω = −3u
(1)
r . Rea-

soning as above, we arrive at

Q(u(1)
ω , u(1)

ω )−
∫

Ω

|u(1)
ω |2 dω + 9

∫

Ω

|u(1)
r |2 dω = 0.

From this and from Lemma 3.2.3 we conclude that u
(1)
r = 0 and, since (u(1)

ω , p(1))
solves the homogeneous problem (5.4.1)–(5.4.3), u

(1)
ω = 0. This leads to a contra-

diction.

The preceding theorem shows that the investigation of the eigenvalue λ = 1 of
the pencil L is closely related to the following spectral problem:

Find a pair (w, c) ∈ ◦
W1

2(Ω)× C such that

(5.4.13) (δ +N )w = c on Ω,

∫

Ω

w dω = 0

where N ∈ C. More precisely, we are interested in the spectral problem for the
operator induced by the quadratic form

X (Ω) 3 w →
∫

Ω

|∇ωw|2 dω,

on the space L2(Ω)ª {1}, where

(5.4.14) X (Ω) =
{

w ∈ ◦
W

1
2(Ω) :

∫

Ω

w dω = 0
}

.

We denote the nondecreasing sequence of nonnegative eigenvalues of this operator
by {Nj}j≥1 and the corresponding eigenfunctions by wj . Then it is obvious that
the pair (wj , cj), where cj is defined by

cj =
∫

Ω

δwj dω,

solves (5.4.13) for N = Nj .
Now Theorem 5.4.1 above implies the following characterization of the algebraic

multiplicity of the eigenvalue λ = 1 of the pencil L.

Theorem 5.4.2. Suppose N = 6 is an eigenvalue of problem (5.4.13) with
multiplicity s ≥ 0. Then the algebraic multiplicity of the eigenvalue λ = 1 of the
pencil L is equal to s + 1.

Furthermore, the eigenvalue Nj can be characterized by the variational princi-
ple

(5.4.15) Nj = max
Xj

inf
w∈Xj\{0}

∫

Ω

|∇w|2 dω
∫

Ω

|w|2 dω

,

where the maximum is taken over all subspaces Xj ⊂ X (Ω) of codimension j − 1.
This implies, in particular, that the numbers Nj = Nj(Ω) are nondecreasing as the
domain decreases. Moreover, we get Nj(Ω1) > Nj(Ω2) if Ω1 ⊂⊂ Ω2.
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In the case Ω = S2 the eigenvalue Nj is equal to the (j + 1)st eigenvalue of the
operator −δ on S2. Hence,

(5.4.16) N1(S2) = N2(S2) = N3(S2) = 2, N4(S2) = 6.

Furthermore, in this case the pairs (wj , cj) are given by

(5.4.17) w1 = cos θ, w2 = sin θ sin ϕ, w3 = sin θ cosϕ, c1 = c2 = c3 = 0.

By the monotonicity of Nk with respect to Ω, we have Nk(Ω) > 6 for k ≥ 4 and
Ω ⊂⊂ S2.

5.4.3. Eigenvectors and generalized eigenvectors corresponding to
the eigenvalue λ = 1 for circular cones. In the following lemma the val-
ues Nk are estimated for domains corresponding to right circular cones, i.e., for the
case

Ω = Ωα
def
=

{
ω ∈ S2 : 0 ≤ θ < α, 0 ≤ ϕ < 2π

}
, α ∈ (0, π].

Lemma 5.4.2. 1) The eigenvalues Nj satisfy

N1(Ω 2π
3

) = N2(Ω 2π
3

) < 6, N3(Ω 2π
3

) = 6,(5.4.18)

N1(S2
+) = N2(S2

+) = 6, N3(S2
+) > 6.(5.4.19)

2) Let Ω ⊂⊂ S2. If Ω 2π
3
⊂⊂ Ω, S2

+ ⊂⊂ Ω ⊂⊂ Ω 2π
3

or Ω ⊂⊂ S2
+, then Nk(Ω) 6= 6 for

k = 1, 2, . . . .

Proof: We decompose the space
◦

W 1
2(Ωα) into an orthogonal sum

◦
W 1

2(Ωα) =
Yα ⊕ Zα, where the space Zα consists of all axisymmetric functions which are
independent of ϕ. Then all functions in Yα are orthogonal to 1. We set

y(α) = inf
{ ∫

Ωα

|∇ωw|2 dω : w ∈ Yα, ‖w‖L2(Ωα) = 1
}

.

It is clear that y(α) is an eigenvalue for the Dirichlet problem of the operator −δ
on Ωα and its multiplicity equals two. Now, since y(π

2 ) = 6, we have y( 2π
3 ) < 6.

We denote by {zj(α)}j≥1 a nondecreasing sequence of eigenvalues of the oper-
ator on L2(Ω) which is induced by the quadratic form

{
v ∈ Zα :

∫

Ωα

v dω = 0
}
3 w →

∫

Ωα

|∇ωw|2 dω.

Relations (5.4.18), (5.4.19) will follow from the monotonicity of Nj(Ω) with respect
to Ω if we can show that z1( 2π

3 ) = 6. By (5.4.16) and (5.4.17), we have z1(π) = 2
and z2(π) ≥ 6. From this and from the strict monotonicity of the functions zk(α)
we infer that z1(α) > 2 and that the interval (2, 6] contains at least z1(α) for
α ∈ (0, π).

Obviously, the pair (w, c) = (2 cos 2θ + 1, 2) satisfies the equations

1
sin θ

(sin θw′)′ + 6w = c, w(
2π

3
) = 0,

2π/3∫

0

w sin θ dθ = 0.

Hence, 6 is among the numbers zk(2π
3 ) and, therefore, z1( 2π

3 ) = 6. This shows part
1) of the lemma.
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The statement 2) follows from the monotonicity ofN1,N2,N3 and from (5.4.16),
(5.4.18) and (5.4.19).

In the following theorem we give explicit expressions for the eigen- and gener-
alized eigenvectors corresponding to the eigenvalue λ = 1 in the particular case of
right circular cones.

Theorem 5.4.3. Let α ∈ (0, π).
1) If α 6= π

2 , 2π
3 , then the eigenvalue λ = 1 of the pencil L is simple and the

corresponding eigenvector is (0, 0, 0, 1).
2) If α = π

2 , then exactly three linearly independent eigenvectors correspond to
the eigenvalue λ = 1:



ur

uθ

uϕ

p


 =




0
0
0
1


 ,




cos θ sin θ cosϕ
cos 2θ cosϕ
− sin θ sin ϕ

0


 ,




cos θ sin θ sin ϕ
cos 2θ sin ϕ
cos θ cosϕ

0


 .

There are no generalized eigenvectors.
3) If α = 2π

3 , then exactly one eigenvector (0, 0, 0, 1) and the generalized eigen-
vector

(5.4.20)




u
(1)
r

u
(1)
θ

u
(1)
ϕ

p(1)


 =




cos 2θ + 1
2

(cos 3θ − 1)/2 sin θ
0

log(cos θ + 1)




correspond to the eigenvalue λ = 1

Proof: 1) If α 6= π
2 , 2π

3 then, by statement 2) of Lemma 5.4.2, the problem
(5.4.13) has nontrivial solutions for N = 6. Referring to Theorem 5.4.1 completes
the proof of assertion 1).

2) If the cone coincides with the half-space R3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0},

then the solutions (U,P ) ∈ W 1
2 (Ω)3 × L2(Ω) of problem (5.0.1), (5.0.2) with zero

boundary conditions (U = 0 for x3 = 0) of the form (5.0.3) for λ = 1 are the vector
functions (0, 0, 0, 1), (x3, 0, 0, 0), (0, x3, 0, 0). This proves 2).

3) By (5.4.18), problem (5.4.13) has a unique solution (w, c) = (c cos 2θ + c
2 , c).

Applying Theorem 5.4.1, we obtain the unique eigenvector (0, 0, 0, 1). Furthermore,
we get the existence of a generalized eigenvector. One immediately verifies that it
is the one given in (5.4.20). The theorem is proved.

5.4.4. The eigenvalue λ = −2. From part 4) of Theorem 5.2.1 it follows
that λ = −2 is an eigenvalue of the pencil L with the same geometric and algebraic
multiplicities as the eigenvalue λ = 1. The following theorem contains information
on the eigenvectors and generalized eigenvectors corresponding to this eigenvalue.

Theorem 5.4.4. Let Ω 6= S2. Then the following assertions are valid:
1) The number λ = −2 is always an eigenvalue. The eigenvectors corresponding

to this eigenvalue are exhausted by vector functions of the form (ur, 0, p), where

ur ∈
◦

W1
2(Ω), p ∈ L2(Ω),

2ur − p = c and δur + 6ur = 3c on Ω

with a constant c.
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2) If the problem

(5.4.21) (δ + 6)v = −3,

∫

Ω

v dω = 0

has no solutions in
◦

W1
2(Ω), then generalized eigenvectors corresponding to the eigen-

value λ = −2 do not exist.
3) Let problem (5.4.21) be solvable. Then generalized eigenvectors exist only

for the eigenvectors (u(0)
r , 0, 2u

(0)
r + 1) (and nonzero multiples of these) such that∫

Ω
u

(0)
r dω = 0 and

∫
Ω

u
(0)
r w dω = 0 for all w ∈ ◦

W1
2(Ω), δw + 6w = 0.

Suppose that the vector function (u(1)
ω , p) is a solution of the auxiliary problem

(5.4.1)–(5.4.3) with f = g = 0, ψ = u
(0)
r , and u

(1)
r ∈ ◦

W 1
2(Ω) is a solution of the

problem

(5.4.22) δu(1)
r + 6 u(1)

r = 3 u(0)
r − 3p + 1,

then the vector (u(1)
r , u

(1)
ω , p + 2u

(1)
r ) is a generalized eigenvector to the eigenvec-

tor (u(0)
r , 0, 2u

(0)
r + 1). In this way all generalized eigenvectors can be represented.

Second generalized eigenvectors do not exist.

Proof: 1) Let (ur, uω, p) be an eigenvector corresponding to the eigenvalue
λ = −2. Then, by Theorem 5.2.2, the vector

S(−2)




ur

uω

p


 = 3




0
uω

p− 2ur




is either zero or an eigenvector corresponding to the eigenvalue λ = 1. In both
cases, according to Theorem 5.4.1 and Lemma 5.4.1, we have uω = 0 and 2ur−p =
c = const. This implies

0 = a







ur

0
p


 ,




vr

0
q


 ;−2


 =

∫

Ω

(
(∇ωur) · ∇ωvr − 3p vr

)
dω

for all vr ∈
◦

W1
2(Ω) and, consequently, −δur = 3p = 3 (2ur − c).

2) Suppose that the vector functions (u(0), p(0)), (u(1), p(1)) form a Jordan chain
corresponding to the eigenvalue λ = −2. Then

(5.4.23) a
((

u(1)

p(1)

)
,
( v

q

)
;−2

)
+ a(1)

(( u(0)

p(0)

)
,
(

v
q

)
;−2

)
= 0

for all v = (vr, vω) ∈ ◦
W1

2(Ω)× ◦
h1
2(Ω), q ∈ L2(Ω). Here

a
(( u(1)

p(1)

)
,
( v

q

)
;−2

)
= Q(u(1)

ω , vω) +
∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr − u(1)
ω · vω

)
dω

−2
∫

Ω

(
(∇ωu(1)

r ) · vω − (∇ω · u(1)
ω ) vr

)
dω

−
∫

Ω

(
p(1)

(∇ω · vω + 3 vr

)
+ (∇ω · u(1)

ω ) q
)

dω
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and, since u
(0)
ω = 0,

a(1)
(( u(0)

p(0)

)
,
( v

q

)
;−2

)
=

∫

Ω

(
3u(0)

r vr + p(0) vr − u(0)
r q

)
dω.

Inserting v = 0 into (5.4.23), we obtain

(5.4.24) ∇ω · u(1)
ω + u(0)

r = 0.

If we set vr = 0, q = 0 in (5.4.23), we get

(5.4.25) Q(u(1)
ω , vω)−

∫

Ω

(
u(1)

ω · vω + 2 (∇ωu(1)
r ) · vω + p(1)∇ω · vω

)
dω = 0.

Furthermore, the equality∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr + 2 (∇ω · u(1)
ω ) vr − 3p(1) vr + (3u(0)

r + p(0)) vr

)
dω = 0

holds, if one sets vω = 0, q = 0 in (5.4.23). From the last equality together with
the equalities p(0) = 2u

(0)
r − c and (5.4.24) it follows that

(5.4.26)
∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr + (3u(0)
r − 3p(1) − c) vr

)
dω = 0

Obviously, the equations (5.4.24)–(5.4.25) are equivalent to (5.4.23).
By (5.4.24), (5.4.25), we have

Q(u(1)
ω , vω)−

∫

Ω

(
u(1)

ω · vω + p(1)∇ω · vω + (∇ω · u(1)
ω ) q

)
dω(5.4.27)

=
∫

Ω

(
2 (∇ωu(1)

r ) · vω + u(0)
r q

)
dω

for all vω ∈
◦

W1
2(Ω), q ∈ L2(Ω), i.e., (u(1)

ω , p(1)) is a solution of the auxiliary problem
(5.4.4) with f = 2∂θu

(1)
r , g = 2(sin θ)−1∂ϕu

(1)
r , ψ = u

(0)
r . According to Lemma

5.4.1, this problem is solvable if and only if
∫
Ω

u
(0)
r dω = 0.

From (5.4.26) it follows that δu
(1)
r = 3u

(0)
r − 3p(1) − c or, what is the same,

(5.4.28) δu(1)
r + 6u(1)

r = 3u(0)
r − 3p− c

with p = p(1) − 2u
(1)
r . Furthermore, (5.4.27) is equivalent to

Q(u(1)
ω , vω)−

∫

Ω

(
u(1)

ω vω + p∇ω · vω + (∇ω · u(1)
ω ) q

)
dω =

∫

Ω

u(0)
r q dω.

This means that (u(1)
ω , p) is a solution of the auxiliary problem (5.4.4) with f =

g = 0, ψ = u
(0)
r . Under our assumption on u

(0)
r , this solution exists.

We show that problem (5.4.28) is solvable if and only if c 6= 0 and u
(0)
r is

orthogonal to all w ∈ ◦
W 1

2(Ω) such that δw + 6w = 0. Let c = 0. Then (5.4.28)
implies

3
∫

Ω

(u(0)
r − p)u

(0)
r dω =

∫

Ω

(δu(1)
r + 6u(1)

r )u
(0)
r dω =

∫

Ω

u(1)
r (δu(0)

r + 6u
(0)
r ) dω = 0
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i.e.,
∫
Ω

p u
(0)
r dω =

∫
Ω
|u(0)

r |2 dω. From this and from (5.4.24), (5.4.25) it follows
that

Q(u(1)
ω , u(1)

ω )−
∫

Ω

|u(1)
ω |2 dω =

∫

Ω

(
2(∇ωu(1)

r ) · u(1)
ω + p(1)∇ω · u(1)

ω

)
dω

=
∫

Ω

(
p(1) − 2u(1)

r

)∇ω · u(1)
ω dω = −

∫

Ω

p u
(0)
r dω = −

∫

Ω

|u(0)
r |2 dω.

Due to (3.2.11), the left-hand side of the last equality is nonnegative. Consequently,
u

(0)
r = 0 and, according to assertion 1), the vector (u(0), p(0)) is zero. Therefore, for

the solvability of (5.4.28) it is necessary that c 6= 0. Then −u
(0)
r /c is a solution of

problem (5.4.21). This proves, in particular, the second assertion of the theorem.

Let w be a function from
◦

W 1
2(Ω) satisfying the equality δw + 6w = 0. Then,

by the solvability of problem (5.4.21), we have
∫
Ω

w dω = 0. Hence, the equation
(5.4.28) is solvable if and only if

(5.4.29)
∫

Ω

(u(0)
r − p)w dω = 0

for all w ∈ ◦
W1

2(Ω), δw + 6w = 0. From (5.4.25) it follows that

Q(u(1)
ω , vω)−

∫

Ω

(
u(1)

ω · vω + p∇ω · vω

)
dω = 0.

Setting vω = ∇ωf , where f ∈ C∞0 (Ω), and using the equality

Q(uω,∇ωf) =
∫

Ω

(∇ω · uω) (δf + f) dω,

we get ∫

Ω

(
(∇ω · u(1)

ω ) (δf + 2f)− p δf
)

dω = 0.

It can be easily verified (by passing to the limit) that the same is true for an
arbitrary eigenfunction f of the operator −δ. Therefore, putting f = w and using
(5.4.24), we obtain ∫

Ω

(4u(0)
r + 6p)w dω = 0

Consequently, condition (5.4.29) is equivalent to the equality
∫
Ω

u
(0)
r w dω = 0. The

proof is complete.

5.5. A variational principle for real eigenvalues

Now we derive a variational principle for real eigenvalues of the operator pencil
L. This variational principle implies a new characterization of real eigenvalues
which allows one, in particular, to deduce that real eigenvalues in the interval
[− 1

2 , 1) are monotonous with respect to the set Ω.
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5.5.1. Description of real eigenvalues of the Stokes pencil by the
eigenvalues of a selfadjoint operator. Suppose that λ ∈ [− 1

2 , 1) is an eigen-
value of the pencil L and (ur, uω, p) is a corresponding eigenvector. Then from
(5.2.2) and (5.2.5) we obtain

(5.5.1) ur = − 1
λ + 2

∇ω · uω,

and

(5.5.2) p =
1

(λ + 2)(1− λ)
δ∇ω · uω +

λ + 1
1− λ

∇ω · uω.

Imposing the same relations for (vr, vω, q) and eliminating the functions ur, vr, p, q
in the sesquilinear form (5.3.2), we arrive at the sesquilinear form

bω(uω, vω; λ) = Q(uω, vω) +
1

(1− λ)(λ + 2)

∫

Ω

∇ω(∇ω · uω) · ∇ω(∇ω · vω) dω

− λ2 + λ + 4
(1− λ)(λ + 2)

∫

Ω

(∇ω · uω)∇ω · vω dω + (1− λ− λ2)
∫

Ω

uω · vω dω

which is defined for uω, vω in the space

Y(Ω) = {uω ∈
◦
h
1
2(Ω) : ∇ω · uω ∈

◦
W

1
2(Ω)}.

Clearly, uω satisfies

(5.5.3) bω(uω, vω, λ) = 0 for arbitrary vω ∈ Y(Ω).

Conversely, if λ ∈ [− 1
2 , 1) and uω ∈ Y(Ω) solves (5.5.3), then λ is an eigenvalue of

the pencil L and the vector (ur, uω, p), where ur, p are given by (5.5.1) and (5.5.2),
is a corresponding eigenvector. Indeed, the vector uω satisfies (5.2.3), (5.2.4), where
ur and p are replaced by the right-hand sides of (5.5.1) and (5.5.2). This together
with (5.5.1), (5.5.2) leads to the required assertion.

Therefore, it suffices to consider the eigenvalues and eigenvectors of problem
(5.5.3).

In order to apply the results of Section 1.3, we verify that the form

(5.5.4) b(·, ·, λ) = (1− λ) (λ + 2) bω(·, ·, λ)

satisfies the conditions (I)–(III) in Section 1.3. In our case α = −1/2, β = 1,
H+ = Y(Ω) and H = L2(Ω)2. Condition (I) is evident. The validity of conditions
(II) and (III) is proved in the following two lemmas.

Lemma 5.5.1. The form b(uω, uω,−1/2) is positive for uω 6= 0.

Proof: Obviously,

bω(uω, uω,−1/2) = Q(uω, uω) +
∫

Ω

(|uω|2 − |∇ω · uω|2
)
dω

+
4
9

∫

Ω

∣∣∣∇ω(∇ω · uω) +
3
4
uω

∣∣∣
2

dω.
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Using (3.2.7), we get

bω(uω, uω,−1/2) =
∫

Ω

∣∣∣ 1
sin θ

∂ϕuθ − cot θ uϕ − ∂θuϕ

∣∣∣
2

dω

+
4
9

∫

Ω

∣∣∣∇ω(∇ω · uω) +
3
4
uω

∣∣∣
2

dω.

We show that the last integral does not vanish for uω 6= 0. Indeed, suppose that
∇ω(∇ω · uω) + 3

4uω = 0. This implies

δv +
3
4
v = 0 and

∫

Ω

v dω = 0,

where v = ∇ω · uω. This is impossible since∫

S2

|∇ωv|2 dω ≥ 2
∫

S2

|v|2 dω for all v ∈ W 1
2 (S2),

∫

S2

v dω = 0.

The last inequality follows from the fact that the second eigenvalue of the operator
−δ on the sphere S2 is equal to two (see Section 2.2.2).

Lemma 5.5.2. If (5.5.3) is satisfied for certain λ = λ0 ∈ (− 1
2 , 1), uω ∈ Y(Ω),

then
d

dλ
bω(uω, uω, λ)

∣∣∣
λ=λ0

< 0.

Proof: We have

bω(uω, uω, λ) = a
((u

p

)
, Jλ

(u

p

)
; λ

)
,

where ur, p are defined by (5.5.1) and (5.5.2). Differentiating this equality with
respect to λ, we get
d

dλ
bω(uω, uω, λ) =

∂

∂λ
a
((u

p

)
, Jλ

(u

p

)
; λ

)
− 2Re

∫

Ω

∂p

∂λ

(
∇ω · uω + (λ + 2) ur

)
dω

−2Re
∫

Ω

∂ur

∂λ

(
c δur + c λ (λ + 5) ur − 2∇ω · uω + (λ + 2) p

)
dω.

By (5.2.2) and (5.2.5), the last two integrals equal zero. Now the result follows
from (5.3.6).

Since the sesquilinear forms b and bω are connected by the relation (5.5.4), we
obtain the following assertion.

Corollary 5.5.1. The assertions of the preceding lemma are also valid for the
form b.

Now we introduce the functions

(5.5.5) µj(λ) = max
{V }

min
V \{0}

b(uω, uω; λ)∫
Ω
|uω|2 dω

,

where the maximum is taken over all subspaces V ⊂Y of codimension ≥ j−1. Since
conditions (I)–(III) of Section 1.3 are satisfied, the results of Theorems 1.3.2–1.3.4
hold. In particular, we get the following result.
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Theorem 5.5.1. 1) The number λ∗ ∈ [− 1
2 , 1) is an eigenvalue of the pencil L

with multiplicity ν if and only if there exists an integer k ≥ 1 such that

(5.5.6) µj(λ∗) = 0 for j = k, k + 1, ..., k + ν − 1,

where µj is as in (5.5.5). The corresponding eigenspace is spanned by the functions

(5.5.7)




u
(j)
r

u
(j)
ω

p(j)


 =




− 1
λ∗ + 2

∇ω · u(j)
ω

u
(j)
ω

1
(λ∗ + 2)(1− λ∗)

δ∇ω · u(j)
ω +

λ∗ + 1
1− λ∗

∇ω · u(j)
ω




for j = k, k + 1, ....., k + ν − 1, where u
(j)
ω = u

(j)
ω (λ) denotes the j-th eigenfunction

of the variational problem (5.5.5).
2) For all j, j ≥ 1, the equation µj(λ) = 0 has not more than one zero in the

interval [− 1
2 , 1). If µj(λ0) = 0 for λ0 ∈ (− 1

2 , 1), then µj(λ) > 0 for λ ∈ [− 1
2 , λ0)

and µj(λ) < 0 for λ ∈ (λ0, 1).

5.5.2. Variational principles for the smallest positive eigenvalue of
the pencil L. Now we consider the smallest real eigenvalue of the pencil L on the
interval [−1/2, 1). Let λ0 be defined as
(5.5.8)

λ0 = sup
{

λ ∈ [−1
2
, 1) : bω(uω, uω; µ) > 0 for all µ ∈ [−1

2
, λ), 0 6= uω ∈ Y

}
,

and let R(uω), uω ∈ Y, be the smallest root of the function

λ → b(uω, uω;λ)

which is located in the interval [− 1
2 , 1). If such root does not exist, then we set

R(uω) = 1.
The following assertions are direct consequences of Lemmas 1.3.1 and 1.3.2.

Lemma 5.5.3. If λ0 < 1, then λ0 is the smallest eigenvalue of the pencil L in
the interval [−1/2, 1).

Lemma 5.5.4. The smallest real eigenvalue of L in the interval [− 1
2 , 1) is given

by

(5.5.9) λ0 = inf
0 6=uω∈Y

{R(uω)}.

Now we define
T (uω) = R(uω)

(
R(uω) + 1

)
.

Then, by the definition of the form bω, the quantity T = T (uω) is the smallest
nonnegative root of the equation

(5.5.10) T 2 − (α + 3)T + β + 2 = 0,

where

(5.5.11) α =
Q(uω, uω) +

∫
Ω
|∇ω · uω|2 dω∫

Ω
|uω|2 dω

and

(5.5.12) β =
2Q(uω, uω) +

∫
Ω
|∇ω(∇ω · uω)|2 dω − 4

∫
Ω
|∇ω · uω|2 dω∫

Ω
|uω|2 dω

.
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As a consequence of Lemma 5.5.4, we get the following result.

Theorem 5.5.2. The smallest non-negative eigenvalue λ0 of the pencil L in
the interval [−1/2, 1) can be characterized by the equality

(5.5.13) λ0(λ0 + 1) = inf
0 6=uω∈Y

{T (uω)} .

5.5.3. Consequences of the variational principles. We collect informa-
tion on eigenvalues of the pencil L which can be deduced from the variational prin-
ciples established above. From part 2) of Theorem 1.3.3 we obtain the following
assertion.

Lemma 5.5.5. Suppose that for some µ ∈ (− 1
2 , 1) there exists a subspace Y0 ⊂

Y(Ω) of dimension k such that

(5.5.14) b(uω, uω;µ) < 0 for all uω ∈ Y0\{0}.
Then the interval [− 1

2 , µ) contains at least k eigenvalues of the pencil L. Moreover,
if k denotes the maximal dimension of the subspaces Y0 for which the inequality
(5.5.14) holds, then the interval [− 1

2 , µ) contains exactly k eigenvalues of the pencil
L.

In the following lemma we give the analogue of Lemma 5.5.5 for the case µ = 1.
We note that in this case

b(uω, uω; 1) =
∫

Ω

(
|∇ω(∇ω · uω)|2 − 6 |∇ω · uω|2

)
dω

Theorem 5.5.3. Let k be the maximal dimension of the subspace X of X (Ω),
defined by (5.4.14), for which

(5.5.15)
∫

Ω

(|∇ωv|2 − 6|v|2) dω < 0 for all v ∈ X\{0}

holds. Then the interval [− 1
2 , 1) contains exactly k eigenvalues of the pencil L.

Proof: Due to the definition of the number k, there is an orthogonal in L2(Ω)
decomposition

X (Ω) = Xk ⊕Hk ,

where the inequality (5.5.15) holds on Xk and∫

Ω

(|∇ωv|2 − 6|v|2) dω ≥ 0 for all v ∈ Hk .

Let v1, ..., vk be a basis of Xk. According to the second part of Lemma 5.2.1, the
equations

∇ω · uω = vj on Ω, 1 ≤ j ≤ k,

are solvable in the space
◦
h1

2(Ω). We denote the solutions by u
(j)
ω . Clearly, u

(j)
ω ∈

Y(Ω). Let Yk be the linear hull of the vectors u
(j)
ω and let Zk be the set of elements

uω ∈ Y(Ω) for which ∇ω · uω ∈ Hk holds.
Obviously, both Yk and Zk are closed and Yk ∩ Zk = {0}. Furthermore, if uω

is an arbitrary element of Y(Ω), v is the projection of the function ∇ω · uω onto
Xk, and u′ω ∈ Yk is the solution of the equation ∇ω · u′ω = v, then uω − u′ω ∈ Zk.
Therefore, the space Y(Ω) coincides with the direct sum Yk ⊕ Zk.
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We write the form bω as follows:

bω(uω, uω; µ) = Q(uω, uω) +
1

(1− µ)(µ + 2)

∫

Ω

(
|∇ω(∇ω · uω)|2 − 6|∇ω · uω|2

)
dω

+
∫

Ω

|∇ω · uω|2 dω −
∫

Ω

|uω|2 dω + (1− µ)(µ + 2)
∫

Ω

|uω|2 dω.

On the finite dimensional subspace Yk we have the estimate

Q(uω, uω) +
∫

Ω

|uω|2 dω ≤ c

∫

Ω

|∇ω · uω|2 dω.

From this and from (3.2.11) it follows that for all µ ∈ (0, 1) which are sufficiently
close to 1, the inequalities

bω(uω, uω; µ) < 0 for uω ∈ Yk\{0},
bω(uω, uω; µ) ≥ 0 for uω ∈ Zk

are valid. Now the assertion of the theorem follows from Lemma 5.5.5.

Now we prove the monotonicity of the eigenvalues of the pencil L with respect
to the domain Ω

Theorem 5.5.4. Let Ω1 ⊂ Ω2 and λj(Ω1) < 1. Then λj(Ω2) ≤ λj(Ω1). If,
moreover, Ω1 ⊂⊂ Ω2, then λj(Ω2) < λj(Ω1).

Proof: We apply Theorem 1.3.5. In our case, the role of the forms a and â
is played by the form b with the domains Y(Ω2) and Y(Ω1), respectively. Since
Y(Ω1) ⊂ Y(Ω2), we obtain that the functions λj(Ω) are nonincreasing with respect
to Ω (see the first part of Theorem 1.3.5).

In order to apply the second part of Theorem 1.3.5, we have to verify that the
equality

b(uω, vω;λ) = 0 for all v ∈ Y(Ω2),
where uω ∈ Y(Ω1) and λ ∈ (− 1

2 , 1), implies uω = 0. From the above equality it
follows that uω satisfies (5.2.3) and (5.2.4) in the domain Ω2, where ur and p are
defined by (5.5.1), (5.5.2). This system is elliptic in the sense of Douglis-Nirenberg
and has analytic coefficients. Therefore, uω is analytic in Ω2. Since uω = 0 in
Ω2\Ω1, we conclude that uω = 0. Reference to part 2) of Theorem 1.3.5 completes
the proof.

Furthermore, from Theorems 5.5.3 and 5.4.2 we conclude the following result.

Corollary 5.5.2. If N1(Ω) ≥ 6, then the strip − 1
2 < Reλ ≤ 1 contains the

single eigenvalue λ = 1 of the pencil L. This eigenvalue is simple if N1(Ω) > 6.

Now we give precise results for the number of eigenvalues in the strip −1/2 <
Re λ < 1 and their multiplicities in dependence on the spherical domain Ω.

Theorem 5.5.5. 1) If Ω ⊂⊂ S2
+, then the strip − 1

2 < Re λ ≤ 1 contains only
the simple eigenvalue λ = 1.

2) If S2
+ ⊂⊂ Ω ⊂⊂ Ω2π/3, then the strip − 1

2 < Reλ ≤ 1 contains exactly 3
eigenvalues. One of them is λ = 1 with multiplicity one.

3) If Ω2π/3 ⊂⊂ Ω, then the strip −1/2 < Re λ ≤ 1 contains exactly 4 eigenvalues.
One of them is λ = 1 with multiplicity one.
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Proof: Item 1) follows from the first assertion of Lemma 5.4.2, from the mono-
tonicity of Nk(Ω) with respect to Ω and from Corollary 5.5.2 above. Items 2) and
3) are consequences of the monotonicity of Nk(Ω) and of Lemma 5.4.2.

5.5.4. The energy strip. A hydrodynamical analog of Corollary 3.6.1 is the
following statement.

Theorem 5.5.6. There are no eigenvalues of L in the strip

(5.5.16)
∣∣∣Re λ +

1
2

∣∣∣ ≤ 1
2

+
M

M + 4
,

where M is the same as in Corollary 3.6.1.

Proof: We note that the system (3.6.2), (3.6.3) with ν = 1/2 becomes the
Stokes system. Similarly to Section 3.6, we denote by t(M) the smallest positive
root of the equation φ(t) = 2(2t + 1) or, what is the same,

t(t + 3)(2t + 1)− (1− t)(M − t)(M + t + 1) = 0.

Clearly, t(M) < min(1,M). Repeating the proof of Theorem 3.6.1 for ν = 1/2, we
show the absence of eigenvalues of L in the strip

∣∣Re λ + 1/2
∣∣ ≤ t(M) + 1/2. It

remains to use the estimate t(M) > M(M +4)−1 obtained in the proof of Corollary
3.6.1, where ν = 1/2.

We close the present section with a result of the same nature stated in terms
of N1. The case N1 ≥ 6 is treated in Corollary 5.5.2. The following assertion for
the case N1 ≤ 6 is a consequence of the variational principle (5.5.13).

Theorem 5.5.7. If N1 ≤ 6, then the strip

(5.5.17) |Re λ +
1
2
| < 1

2

(
13− 4(13− 2N1)1/2

)1/2

does not contain eigenvalues of the pencil L. This estimate is sharp for N1 = 2 and
N1 = 6.

Proof: From the definition of the quantities β and N1 we obtain that

(5.5.18) β ≥
2Q(uω, uω) + (N1 − 4)

∫

Ω

|∇ω · uω|2 dω
∫

Ω

|uω|2 dω

.

Now, as N1 ≥ 2, it follows from (5.5.18) and from the inequality (3.2.10) that β ≥ 0.
If the equation (5.5.10) does not have roots in the interval [0, 2) for all uω ∈

Y, uω 6= 0, then T (uω) = 2 and the strip (5.5.17) does not contain eigenvalues of
the pencil L.

Suppose now that there exists an element uω ∈ Y\{0} such that the equation
(5.5.10) has a root on [0, 2). Then

T (uω) =
1
2

(
α + 3−

(
(α− 1)2 + 4(2α− β)

)1/2
)

.

By (5.5.11) and (5.5.12), we have

2α− β ≤ (6−N1)τ,
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where

τ =

∫

Ω

|∇ω · uω|2 dω
∫

Ω

|uω|2 dω

.

Therefore,

(5.5.19) T (uω) ≥ 1
2

(
α + 3−

(
(α− 1)2 + 4(6−N1)τ

)1/2
)

.

Using the inequality (3.2.11), we obtain α ≥ 1 + τ . Moreover, from (3.2.10) it
follows that α ≥ 2τ − 1. Consequently,

α ≥ (2− ε)τ + 2ε− 1

for all ε ∈ [0, 1]. Due to the monotonicity of the right-hand side of (5.5.19), we get
the estimate

T (uω) ≥ (1− ε

2
)τ + ε + 1−

((
(1− ε

2
)τ + ε− 1

)2

+ (6−N1)τ
)1/2

.

We denote the right hand side of this inequality by f(τ) and remark that this
function is monotone. Furthermore, we have f(0) = 2ε and f(∞) = 2 − (6 −
N1)/(2− ε). Hence

T (uω) ≥ min{2ε , 2− (6−N1)/(2− ε)}
for all ε ∈ [0, 1]. Since the maximum with respect to ε of the right hand side is
attained for

ε =
1
2
(
3− (13− 2N1)1/2

)
,

we have T (uω) ≥ 3 − (13 − 2N1)1/2. Now it remains to refer to Theorem 5.5.2 to
complete the proof.

5.6. Eigenvalues in the case of right circular cones

Here we derive a transcendental equation for the eigenvalues of the pencil L in
the case of a domain on the sphere which corresponds to a right circular cone of
solid opening angle 2α.

5.6.1. A transcendental equation for the eigenvalues. Let K be a right
circular cone, i.e., Ω = K ∩ S2 has the form

Ω = Ωα =
{
ω ∈ S2 : 0 ≤ θ < α, 0 ≤ ϕ < 2π

}
.

In this case we can separate variables in (5.2.2)–(5.2.5) as follows

(5.6.1)




ur

uθ

uϕ

p


 =




f
(1)
m (θ) cos(mϕ)

g
(1)
m (θ) cos(mϕ)

h
(1)
m (θ) sin(mϕ)

p
(1)
m (θ) cos(mϕ)


 ,

(5.6.2)




ur

uθ

uϕ

p


 =




f
(2)
m (θ) sin(mϕ)

g
(2)
m (θ) sin(mϕ)

h
(2)
m (θ) cos(mϕ)

p
(2)
m (θ) sin(mϕ)
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where m = 0, 1, 2, 3, . . .. For m ≥ 1 the vector function (5.6.1) is a solution of
(5.2.2)–(5.2.5) if and only if (5.6.2) is a solution of these equations and

f (2)
m = f (1)

m , g(2)
m = g(1)

m , h(2)
m = −h(1)

m , p(2)
m = p(1)

m .

We derive a transcendental equation for the eigenvalues of the pencil L from the fol-
lowing representation of solutions (U,P ) of the homogeneous system (5.0.1) in terms
of three harmonic functions Ψ, Θ, Λ, which is the analogue of the Boussinesq repre-
sentation [23] of solutions of the homogeneous system of linear three-dimensional
elastostatics (see Section 3.3):

(5.6.3)
{

U = a∇Ψ + 2b∇× (Θ~e3) + c(∇(x3Λ)− 2Λ~e3),
P = 2c∂x3Λ,

where ∇ is the gradient in Cartesian coordinates, ~e3 denotes the unit vector in x3

direction and a, b, c are arbitrary constants. In spherical coordinates this represen-
tation becomes


Ur

Uθ

Uϕ


 = a




∂rΨ
r−1∂θΨ

(r sin θ)−1∂ϕΨ


 + 2

b

r




∂ϕΘ
cot θ∂ϕΘ

− sin θ∂r(rΘ)− ∂θ(Θ cos θ)




+ c




cos θ

(
∂r(rΛ)− 2Λ

)

∂θ(Λ cos θ) + 2Λ sin θ
cot θ∂ϕΛ




and

P = 2c

(
cos θ∂rΛ− sin θ

r
∂θΛ

)
,

respectively. Based on (5.6.1) and (5.6.3), we select the potentials

Ψm = rλ+1 P−m
λ+1(cos θ) cos(mϕ) ,

Θm = rλ+1 P−m
λ+1(cos θ) sin(mϕ) ,(5.6.4)

Λm = rλ P−m
λ (cos θ) cos(mϕ).

Then the functions f
(1)
m , g

(1)
m and h

(1)
m in (5.6.1) take the form

(5.6.5)




f
(1)
m (θ)

g
(1)
m (θ)

h
(1)
m (θ)


 = M

(m)
λ (θ)




a
b
c


 ,

where M
(m)
λ (θ) is the matrix with the columns




(λ + 1) P−m
λ+1

(λ + 1) cot θ P−m
λ+1 − (λ + 1−m) (sin θ)−1 P−m

λ

−m (sin θ)−1 P−m
λ+1


 ,




2mP−m
λ+1

2m cot θ P−m
λ+1

2(λ + 1) cot θ P−m
λ − 2(λ + 1) (sin θ)−1 P−m

λ+1


 ,




(λ− 1) cos θ P−m
λ

(λ + m + 1) cot θ P−m
λ+1 +

(
sin θ − (λ + 1) cos θ cot θ

)
P−m

λ

−m cot θ P−m
λ
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and P−m
µ are the associated Legendre functions of first kind. Furthermore,

(5.6.6) p(1)
m (θ) = 2c

(
λ cos θ P−m

λ (cos θ)− sin θ ∂θ(P−m
λ (cos θ))

)
.

The homogeneous Dirichlet condition for the velocity components ur, uθ, uϕ at θ =
α gives the following condition for the existence of nontrivial solutions of (5.6.1):

(5.6.7) det(M (m)
λ (α)) = 0

which is obtained from (5.6.1), (5.6.5), (5.6.6) and from the eigenvector

(a, b, c) ∈ ker(M (m)
λ (α)).

Condition (5.6.7) is the desired transcendental equation for the eigenvalues λ of
the pencil L which was solved numerically. Figure 11 below shows the eigenvalues
λ1(Ωα) and λ2(Ωα) obtained for m = 1 and 0, respectively, in the case π/2 ≤ α ≤ π.
As we remarked earlier (see Theorem 5.4.1), λ = 1 is an eigenvalue of L for all
α ∈ (0, π], corresponding to zero velocity U and constant pressure P . It is obtained
in (5.6.3) for Ψ = Θ = 0 and Λ = x3.
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Figure 13. Eigenvalues λk(Ωα) ∈ [0, 1) for π/2 ≤ α ≤ π. Solid
line: simple eigenvalue corresponding to axisymmetric eigenstates,
dashed line: twofold eigenvalue corresponding to the first spherical
harmonic.

Furthermore, it is interesting to observe that the double eigenvalue λ1(Ωα)
corresponding to m = 1 (with the eigenvectors given by (5.6.1) and (5.6.2)) lies
below the eigenvalue λ2(Ωα) corresponding to m = 0. The latter eigenvalue and
λ = 1 arise from two coalescing simple eigenvalues of the pencil corresponding to
the Dirichlet problem of linear elastostatics as the Poisson ratio tends to 1/2 from
below, i.e. in the incompressible limit.
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5.6.2. The case α = 2π/3. By Theorem 5.4.3, there correspond exactly
one eigenvector (0, 0, 0, 1) and the generalized eigenvector (5.4.20) to the eigenvalue
λ2(Ω2π/3) = 1. Figure 11 indicates that λ1(Ω2π/3) is either equal or very close to
1/2. To determine λ1(Ω2π/3), we evaluate

det M
(1)
1/2(

2π

3
) =

1
12

(
17 (P−1

3/2(−
1
2
))2 P−1

1/2(−
1
2
)

+22P−1
3/2(−

1
2
)P−1

1/2(−
1
2
)− 80 (P−1

3/2(−
1
2
))3 + (P−1

1/2(−
1
2
))3

)
.

Using

P−1
3/2(−1/2) = F

(5
2
,−3

2
; 2;

3
4

)
, P−1

1/2(−1/2) = F
(3

2
,−1

2
; 2;

3
4

)
,

it was found by Kozlov, Maz′ya and Schwab [141], with accurate series expansions
for the hypergeometric function, that

0 6= det M
(1)
1/2(

2π

3
) = −0.0010545...

with all digits shown correct, i.e., λ1(Ω2π/3) 6= 1
2 . A bisection method showed the

inclusion
0.666496π < α∗ < 0.666507π

for the critical angle α∗ for which λ1(Ωα∗) = 1/2. Hence α∗ < 2π/3. Furthermore,
by means of a bisection method, the inclusion 0.49967 < λ1(Ω2π/3) < 0.49968 was
obtained in [141].

5.7. The Dirichlet problem for the Stokes system in a dihedron

Now we consider the special case when the cone K coincides with the dihedral
angle K = Kα × R1, where α ∈ (0, 2π],

Kα =
{
(x1, x2) ∈ R2 : 0 < ρ < ∞, ϕ ∈ (−α/2, α/2)

}
,

and (ρ, ϕ) are the polar coordinates in the (x1, x2)-plane. We construct all solutions
to the homogeneous problem (5.0.1), (5.0.2) which have the form (5.0.3). This
means that we get a description of all eigenvalues, eigenvectors and generalized
eigenvectors of the operator pencil L = Lα defined on the subdomain Ωα = K∩S2

of the unit sphere. The construction of such solutions is done in several steps. First
we describe all solutions of the form (5.0.3) with Reλ > −1/2 which are independent
of x3. These solutions can be directly expressed by the eigenvectors and generalized
eigenvectors of the pencil generated by the plane Stokes problem. Next we give a
description of all other solutions of the form (5.0.3) with Reλ > −1/2. The solutions
of this form with Reλ < −1/2 are constructed by means of the relation between the
eigenvectors and generalized eigenvectors corresponding to the eigenvalues λ and
−1 − λ which was given in Theorem 5.2.2. Since this relation is not one-to-one in
the case λ = 1, we consider the eigenvalue λ = −2 separately in the last subsection.

5.7.1. Special solutions of the homogeneous Stokes system which are
independent of x3. First we give an explicit description of all solutions of the
problem (5.0.1), (5.0.2) which have the form (5.0.3) and are independent of x3.
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Obviously, x3-independent solutions U = U(x1, x2), P = P (x1, x2) of the ho-
mogeneous system (5.0.1) satisfy the equations

(5.7.1)





−(
∂2

x1
+ ∂2

x2

)
U1 + ∂x1P = 0,

−(
∂2

x1
+ ∂2

x2

)
U2 + ∂x2P = 0,

∂x1U1 + ∂x2U2 = 0

and

(5.7.2)
(
∂2

x1
+ ∂2

x2

)
U3 = 0.

in the plane angle Kα. The boundary conditions (5.0.2) on ∂Kα\{0} take the form

U1 = U2 = 0,(5.7.3)
U3 = 0.(5.7.4)

Thus, the system is split into the two-dimensional Stokes system for (U1, U2, P ) and
the Dirichlet problem to the Laplace operator for U3. We seek all x3-independent
solutions of (5.7.1)–(5.7.2) which have the form

U(x1, x2) = ρλ
s∑

k=0

1
(s− k)!

(log ρ)s−ku(k)(ϕ), u(k) ∈ ◦
W

1
2(Ωα)3,

P (x1, x2) = ρλ−1
s∑

k=0

1
(s− k)!

(log ρ)s−kp(k)(ϕ), p(k) ∈ L2(Ωα).

As it was shown in Section 2.1, the solutions to the boundary value problem (5.7.2),
(5.7.4) of the form

U3 = ρλ
s∑

k=0

1
(s− k)!

(log ρ)s−ku
(k)
3 (ϕ), u

(k)
3 ∈ ◦

W
1
2(Ωα)

are exhausted (up to a constant factor) by the functions

ρ±πj/α sin
πj(ϕ + α/2)

α
, j = 1, 2, . . . .

Power-logarithmic solutions of the boundary value problem (5.7.1), (5.7.2) have
been studied in Section 5.1. Here the polar components

Uρ(ρ, ϕ) = U1 cosϕ + U2 sin ϕ and Uϕ(ρ, ϕ) = −U1 sin ϕ + U2 cosϕ

were used instead of U1 and U2. From (5.7.1), (5.7.3) it follows that the vector
function (Uρ, Uϕ, P ) is a solution of the system

(5.7.5)





− 1
ρ2

(
(ρ∂ρ)2 Uρ + ∂2

ϕ Uρ − 2∂ϕ Uϕ − Uρ

)
+ ∂ρ P = 0,

− 1
ρ2

(
(ρ∂ρ)2 Uϕ + ∂2

ϕ Uϕ + 2∂ϕ Uρ − Uϕ

)
+ 1

ρ∂ϕ P = 0,

∂ρ Uρ + 1
ρ (Uρ + ∂ϕ Uϕ) = 0

for −α/2 < ϕ < α/2 with the boundary conditions

(5.7.6) Uρ(ρ, ϕ) = Uϕ(ρ, ϕ) = 0 for ϕ = ±α/2.
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By what has been shown in Section 5.1, all solutions of this problem having the
form (

Uρ(ρ, ϕ)
Uϕ(ρ, ϕ)

)
= ρλ

(
uρ(ϕ)
uϕ(ϕ)

)
, P (ρ, ϕ) = ρλ−1 p(ϕ)

are exhausted (up to constant factors) by the functions

(5.7.7)




ρλ u±ρ (ϕ)
ρλ u±ϕ (ϕ)

ρλ−1p±(ϕ)


 ,

where λ is a nonzero solution of the equation

d±(λ)
def
= sin(λα)± λ sin α = 0

and the vector functions (u±ρ , u±ϕ , p±) are given by (5.1.11) and (5.1.12) with ρ
instead of r. Furthermore, for all multiple roots of the equations d±(λ) = 0, the
vector functions

(5.7.8)




ρλ
(
u±ρ log ρ + v±ρ

)
ρλ

(
u±ϕ log ρ + v±ϕ

)
ρλ−1

(
p± log ρ + q±


 , where




v±ρ
v±ϕ
q±


 =

∂

∂λ




u±ρ
u±ϕ
p±


 ,

and all linear combinations of the vector functions (5.7.7) and (5.7.8) are solutions
of problem (5.7.5), (5.7.6). Other power-logarithmic solutions of this problem do
not exist.

Note that the traces of (5.7.7) and (5.7.8) on Ωα belong to
◦

W1
2(Ωα) if Re λ > 0.

Thus, we obtain the following description of solutions to the homogeneous problem
(5.0.1), (5.0.2) which have the form (5.0.3) with u(k) ∈ ◦

W1
2(Ωα), p(k) ∈ L2(Ωα) and

which are independent of x3.

Theorem 5.7.1. All x3-independent solutions to problem (5.0.1), (5.0.2) of the
form (5.0.3) with Reλ ≥ 0 can be described in the following way:

1) Let either α = π or α = 2π. Then such solutions exist only for λ = πj/α
j = 1, 2, . . . . They are linear combinations of the vector-valued functions




ρλu−ρ
ρλu−ϕ

0
ρλ−1p−


 ,




ρλu+
ρ

ρλu+
ϕ

0
ρλ−1p+


 ,




0
0

ρλ sin
(
πj(ϕ + α/2)/α

)
0


 .

2) Let α 6= π, α 6= 2π and let λ = πj/α, j = 1, 2, . . . . Then these solutions are
the vector-valued functions

c




0
0

ρλ sin
(
π(ϕ + α/2)/α

)
0


 ,

where c is an arbitrary constant.
3) Let α 6= π, α 6= 2π and let λ be a simple root of one of the equations

d+(λ) = 0 or d−(λ) = 0 (clearly, λ cannot be a root of both equations). Then the
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solutions are

(5.7.9) c




ρλu±ρ
ρλu±ϕ

0
ρλ−1p±


 .

If λ is a multiple root, then the solutions are linear combinations of the vector
functions (5.7.9) and 



ρλ
(
u±ρ log ρ + v±ρ

)
ρλ

(
u±ϕ log ρ + v±ϕ

)
0

ρλ−1
(
p± log ρ + q±

)


 .

There are no other solutions of problem (5.0.1), (5.0.2) which have the form
(5.0.3) and which are independent of x3.

Given a fixed α, we numerate the above described solutions of the form (5.0.3)
which are independent of x3 and have a finite energy integral in a neighborhood of
the origin:

(5.7.10)
(

U (j)(ρ, ϕ)
P (j)(ρ, ϕ)

)
=

(
ρλj

(
u(j)(ϕ) log ρ + v(j)(ϕ)

)
ρλj−1

(
p(j)(ϕ) log ρ + q(j)(ϕ)

)
)

, j = 1, 2, . . . ,

where
(

u(j)

p(j)

)
is either an eigenvector of the pencil L corresponding to the eigen-

value λj or 0. (In the first case
(

v(j)

q(j)

)
is a generalized eigenvector, and in the

second case it is an eigenvector). We note that Re λj > 0.

5.7.2. The case Re λ > −1/2. Now we construct solutions to the problem
(5.0.1), (5.0.2) which have the form (5.0.3) with Re λ > −1/2 and which are not
necessarily independent of x3. First we seek solutions of the form

(5.7.11)
(

U(x)
P (x)

)
=

m∑

k=0

xk
3

(
ρµ+m−kUk(ϕ, log ρ)

ρµ+m−1−kPk(ϕ, log ρ)

)

where m+µ = λ, Uk(ϕ, z) is a vector-polynomial in z which coefficients are smooth
vector functions on [−α/2, α/2], Pk(ϕ, z) is a polynomial in z with smooth coeffi-
cients for ϕ ∈ [−α/2, α/2]. Since the traces of the vector-valued function U and of
the function P on Ωα belong to the spaces W 1

2 (Ωα)3 and L2(Ωα), respectively, it
holds Re µ ≥ 0.

We set

Ψ(k)(x1, x2) = ρµ+m−k Uk(ϕ, log ρ),

Φ(k)(x1, x2) = ρµ+m−1−k Pk(ϕ, log ρ).

Then the equalities (5.7.1) are equivalent to the following system on Kα:

−(
∂2

x1
+ ∂2

x2

)
Ψ(k)

1 + ∂x1Φ
(k) = (k + 2)(k + 1) Ψ(k+2)

1 ,

−(
∂2

x1
+ ∂2

x2

)
Ψ(k)

2 + ∂x2Φ
(k) = (k + 2)(k + 1) Ψ(k+2)

2

∂x1Ψ
(k)
1 + ∂x2Ψ

(k)
2 = −(k + 1)Ψ(k+1)

3 ,

−(
∂2

x1
+ ∂2

x2

)
Ψ(k)

3 = −(k + 1)Ψ(k+1)
3
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for k = 0, . . . , m. Here we have set Ψ(k) = 0, Φ(k) = 0 if k > m. From the boundary
conditions (5.0.2) it follows that

Ψ(k) = 0 on ∂Kα\{0}.
This, in particular, implies that

(
Ψ(m)

1 , Ψ(m)
2 ,Φ(m)

)
is a solution of the problem

(5.7.1), (5.7.3) and Ψ(m)
3 is a solution of the problem (5.7.2), (5.7.4). These solutions

were described in Theorem 5.7.1. The vector functions
(
Ψ(k)

1 , Ψ(k)
2 , Φ(k)

)
and the

functions Ψ(k)
3 , k = m − 1,m − 2, . . . , 1, can be recurrently calculated from the

above systems by means of Theorem 1.1.6.

Let j = 1, 2, . . . and m = 0, 1, . . . . By
(

U (j,m)

P (j,m)

)
we denote one of the solu-

tions of the form (5.7.11), where the coefficient of xm
3 is equal to the vector-valued

function (5.7.10). Using the induction in m we arrive at the following assertion.

Lemma 5.7.1. Let µ ≥ 0 and let the vector function (5.7.11) be a solution of
problem (5.0.1), (5.0.2). Then

(
U(x)
P (x)

)
=

∑

µj+`=µ+m

Cj,`

(
U (j,`)(x)
P (j,`)(x)

)

5.7.3. Two auxiliary assertions.

Lemma 5.7.2. Suppose that (U,P ) is a vector function of the form (5.0.3) such

that ζU ∈ ◦
W 1

2(K)3 and ζP ∈ L2(K) for every function ζ ∈ C∞0 (K\{0}). Then

u(k) ∈ ◦
W1

2(Ωα)3 and p(k) ∈ L2(Ωα)3 for k = 0, 1, . . . , s.

Proof: From (5.0.3) we obtain the algebraic system
s∑

k=0

1
(s− k)!

(log 2jr)s−k u(k)(ω) = (2jr)−λ0U(2jx), j = 0, 1, . . . , s,

for the functions u(k). Since the coefficients determinant of this system is nonzero
(multiplying this determinant by 1! · · · s!, one obtains the Vandermonde determi-
nant), the functions u(k) in (5.0.3) can be represented in terms of the functions
U(2jx), 1 < |x| < 2, j = 0, 1, . . . , s. Hence, from our assumption on U it follows

that u(k) ∈ ◦
W1

2(Ωα)3 for k = 0, 1, . . . s. Analogously, we obtain p(k) ∈ L2(Ωα).

Lemma 5.7.3. If (U,P ) is a solution of problem (5.0.1), (5.0.2) of the form

(5.0.3), where λ ∈ C, u(k) ∈ ◦
W 1

2(Ωα)3, p(k) ∈ L2(Ωα), then the vector functions(
∂`

x3
U, ∂`

x3
P

)
have the same properties for an arbitrary positive integer `.

Proof: Let ζ, η be an arbitrary functions from C∞0 (K\{0}) such that ζη = ζ.

We show that ζ∂x3U ∈ ◦
W1

2(K)3 and ζ∂x3P ∈ L2(K). From (5.0.1), (5.0.2) it follows
that the functions V = ζU and Q = ζP satisfy the equations

(5.7.12) −∆V +∇Q = F, ∇ · V = G in K,

where F = −2(∇ζ ·∇)U −U ∆ζ +P ∇ζ and G = U ·∇ζ. For an arbitrary function
Φ in K let Φε denote the mollification of Φ in x3 with radius ε:

Φε(x1, x2, ·) = Φ(x1, x2, ·) ∗ hε ,
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where hε(x3) = ε−1 h(x3/ε), h(t) = c exp
( − 1/(1 − t2)

)
for −1 < t < 1, h(t) = 0

for |t| ≥ 1 and c is such that
∫ +1

−1
h(t) dt = 1. Then, by (5.7.12), we have

−∆Vε +∇Qε = Fε , ∇ · Vε = Gε

which implies

(5.7.13) −∆ ∂x3Vε +∇ ∂x3Qε = ∂x3Fε, ∇ · ∂x3Vε = ∂x3Gε .

Multiplying the first equation of (5.7.13) by ∂x3V ε and integrating over K, we arrive
at

‖∇∂x3Vε‖2L2(K)3 +
(∇∂x3Qε , ∂x3Vε

)
K =

(
∂x3Fε , ∂x3Vε

)
K.

Since
(∇∂x3Qε , ∂x3Vε

)
K = −(

∂x3Qε ,∇ · ∂x3Vε

)
K = −(

∂x3Qε , ∂x3Gε

)
K,

this implies

(5.7.14) ‖∂x3Vε‖2◦
W 1

2(K)3
≤ ‖∂x3Fε‖ ◦

W
−1
2 (K)3

‖∂x3Vε‖ ◦
W 1

2(K)3
+

∣∣(∂x3Qε , ∂x3Gε

)
K
∣∣.

There exists a vector function W ∈ ◦
W1

2(K)3 with compact support such that∇·W =
∂x3Gε and

‖W‖ ◦
W 1

2(K)3
≤ c ‖∂x3Gε‖L2(K) .

Here the constant c is independent of G and ε. Multiplying now the first equation
of (5.7.13) by W and integrating over K, we obtain

(∇∂x3Vε ,∇W
)
K −

(
∂x3Qε , ∂x3Gε

)
K =

(
∂x3Fε ,W

)
K

and, therefore,
(5.7.15)∣∣(∂x3Qε , ∂x3Gε

)
K
∣∣ ≤ c

(
‖∂x3Fε‖W−1

2 (K)3 + ‖∂x3Vε‖ ◦
W 1

2(K)3

)
‖∂x3Gε‖L2(K) .

From (5.7.14) and (5.7.15) it follows that

‖∂x3Vε‖ ◦
W 1

2(K)3
≤ c

(
‖∂x3Fε‖W−1

2 (K)3 + ‖∂x3Gε‖L2(K)

)

with a constant c is independent of ε. The right-hand side of the last inequality
tends to

c
(
‖∂x3F‖W−1

2 (K)3 + ‖∂x3G‖L2(K)

)

as ε → 0 and can be estimated by the norms of ηU and ηP in
◦

W 1
2(K)3 and

L2(K), respectively. Hence ∂x3V ∈ ◦
W 1

2(K)3. Then, by (5.7.12), we have ∇∂x3Q =
∆∂x3V + ∂x3F ∈ W−1

2 (K)3 and, therefore, ∂x3Q ∈ L2(K). This together with
Lemma 5.7.2 proves that the vector function ∂x3(U,P ) has the form (5.0.3) with

u(k) ∈ ◦
W1

2(Ωα)3, p(k) ∈ L2(Ωα). By induction, the same follows for the derivatives
∂`

x3
(U,P ), ` = 2, 3, . . ..
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5.7.4. The case Re λ > −1/2. Continuation. Here we describe all solu-
tions to the Dirichlet problem for the homogeneous Stokes system which have the
form (5.0.3) with Re λ > −1/2.

Theorem 5.7.2. The vector function (U,P ) of the form (5.0.3) with Re λ >

−1/2, u(k) ∈ ◦
W1

2(Ωα)3, p(k) ∈ L2(Ωα) is a solution of the problem (5.0.1), (5.0.2) if
and only if λ = µσ + ` for some σ ≥ 1, ` ≥ 0 and (U,P ) is a linear combination of
the vector functions

(
U (j,m), P (j,m)

)
with µj + m = λ.

Proof: By Lemma 5.7.3, the following representations are valid for all multi-
indices β = (β1, β2, β3), β1 + β2 ≤ 1:

∂β
x U(x) = rλ−|β|

κ∑

k=0

(log r)k φk(ω),(5.7.16)

∂β3
x3

P (x) = rλ−1−β3

κ∑

k=0

log rk ψk(ω),(5.7.17)

where φk ∈ W 1−β1−β2
2 (Ωα)3, ψk ∈ L2(Ωα).

Let F (x1, x2, ζ) and G(x1, x2, ζ) be the Fourier transforms in x3 of the vector
function U and of the function P , respectively. Since

(5.7.18) F (x1, x2, ζ) = |ζ|−2M

∫

R

eiζx3 (−∂2
x3

)M U(x1, x2, x3) dx3

and

(5.7.19) G(x1, x2, ζ) = |ζ|−2M

∫

R

eiζx3 (−∂2
x3

)M P (x1, x2, x3) dx3,

for ζ 6= 0, M = 0, 1, . . . , it follows that the vector-valued function ζ → F (·, ·, ζ)

belongs to C∞
(
R2\{0}; ◦

W 1
2,loc(Kα, 0)3

)
and the function ζ → G(·, ·, ζ) belongs to

C∞
(
R1\{0}; L2,loc(Kα, 0)

)
. For all ζ 6= 0 we have

−(
∂2

x1
+ ∂2

x2
− |ζ|2) F +




∂x1

∂x2

iζ


 G = 0 on Kα,(5.7.20)

∂x1F1 + ∂x2F2 + iζF3 = 0 on Kα.(5.7.21)

We show that for each ζ 6= 0 the vector-valued function F (·, ·, ζ) belongs to the

space
◦

W1
2(Kα)3 and G(·, ·, ζ) belongs to L2(Kα). From (5.7.16)–(5.7.19) we get the

estimates
α/2∫

−α/2

∣∣∣
(
∂β1

x1
∂β2

x2
F

)
(ρ, ϕ, ζ)

∣∣∣
2

dϕ ≤ CN (ζ) ρ−N ,

α/2∫

−α/2

∣∣G(ρ, ϕ, ζ)
∣∣2 dϕ ≤ CN (ζ) ρ−N ,

where β1 + β2 ≤ 1, N = 0, 1, . . . . This implies the square summability of the
functions ∂β1

x1
∂β2

x2
F and G on the set {(x1, x2) ∈ Kα : ρ > 1} for all ζ 6= 0.



5.7. THE DIRICHLET PROBLEM FOR THE STOKES SYSTEM IN A DIHEDRON 187

Let χ ∈ C∞0 (R1), χ(x3) = 0 for |x3| > 1 and χ(x3) = 1 for |x3| < 1/2. By F0,
G0 and F∞, G∞ we denote the Fourier transforms in x3 of the functions χU , χP
and (1− χ)U, (1− χ)P , respectively. Then for β1 + β2 ≤ 1 we have∫

Cα

∫

R

∣∣∂β1
x1

∂β2
x2

F0

∣∣2 dζ dx1 dx2 = c

∫

Cα

∫

R

∣∣∂β1
x1

∂β2
x2

(χU)
∣∣2 dx3 dx1 dx2,(5.7.22)

∫

Cα

∫

R

|G0|2 dζ dx1 dx2 = c

∫

Cα

∫

R

|χP |2 dx3 dx1 dx2,(5.7.23)

where Cα = {(x1, x2) ∈ Kα : ρ < 1}. The condition Reλ > −1/2 implies that the
right-hand sides of (5.7.22) (5.7.23) are finite.

We represent F∞, G∞ in the form

F∞(x1, x2, ζ) = |ζ|−2M

∫

R

eiζx3
(− ∂2

x3

)M (
(1− χ)U

)
dx3,

G∞(x1, x2, ζ) = |ζ|−2M

∫

R

eiζx3
(− ∂2

x3

)M (
(1− χ)P

)
dx3,

where M is a sufficiently large number. Using Parseval’s theorem we get∫

Cα

∫

R

|ζ|4M
∣∣∂β1

x1
∂β2

x2
F∞

∣∣2 dζ dx1 dx2

≤ c
∑

σ+τ=2M

∫

Cα

∫

R

∣∣∂σ
x3

(1− χ)
∣∣2 ∣∣∂τ

x3
∂β1

x1
∂β2

x2
U

∣∣2 dx3 dx1 dx2

and∫

Cα

∫

R

|ζ|4M |G∞|2 dζ dx1 dx2 ≤ c
∑

σ+τ=2M

∫

Cα

∫

R

∣∣∂σ
x3

(1− χ)
∣∣2 ∣∣∂τ

x3
P

∣∣2 dx3 dx1 dx2.

(The finiteness of the right-hand sides follows from (5.7.16), (5.7.17).) From these
estimates we conclude that

(5.7.24) F ∈ L2,loc

(
R1\{0}; ◦

W
1
2(Kα)3

)
, G ∈ L2,loc

(
R1\{0}; L2(Kα)

)
.

In particular, we have

F (·, ·, ζ) ∈ ◦
W

1
2(Kα)3, G(·, ·, ζ) ∈ L2(Kα)

for almost all ζ.
Multiplying both sides of (5.7.20) by F (·, ·, ζ), integrating by parts and using

(5.7.21), we obtain∫

Kα

(∣∣∂x1F
∣∣2 +

∣∣∂x2F
∣∣2 + |ζ|2 |F |2

)
dx1 dx2 = 0.

Consequently, F = 0 and, by (5.7.20) G = 0 for almost all ζ. The inclusion (5.7.24)
implies F = 0, G = 0 for x3 6= 0. Therefore,

F (x1, x2, ζ) =
∑

fk(x1, x2) δ(k)(ζ) and G(x1, x2, ζ) =
∑

gk(x1, x2) δ(k)(ζ).

Thus, the functions U and P have the form (5.7.11). Using Lemma 5.7.1, we
complete the proof.
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Remark 5.7.1. Using Theorem 5.7.2 one can calculate the algebraic multi-
plicities of the eigenvalues. In fact, if λ is an eigenvalue of the operator pencil L
with Re λ > −1/2, then its algebraic multiplicity is equal to the number of various
representations of λ in the form λ = µσ + `, where σ ≥ 1, ` ≥ 0. Using assertions
3) and 4) of Theorem 5.2.1, we conclude that the eigenvalues −1−λ, λ, and −1−λ
have the same algebraic multiplicity.

5.7.5. Homogeneous solutions of the form (5.0.3) with Re λ < −1/2.
Next we describe the solutions to problem (5.0.1), (5.0.2) which have the form
(5.0.3), where Re λ < −1/2. We start with the construction of positively homoge-
neous solutions of degree λ, Re λ < −1/2, λ 6= −2.

Here we use the fact that the numbers λ and −1− λ are simultaneously eigen-
values and the relation between the corresponding eigenvectors given in Theorem
5.2.2.

Let
(

U
P

)
=




ρµ uρ(ϕ)
ρµuϕ(ϕ)
ρµ u3(ϕ)
ρµ−1 p(ϕ)


 , Re µ > −1/2, µ 6= 1,

be a solution of problem (5.0.1), (5.0.2). We rewrite this solution in the spherical
coordinate system (r, θ, ϕ):




Ur

Uθ

Uϕ

P


 =




rµ (sin θ)µ
(
cos θ u3(ϕ) + sin θ uρ(ϕ)

)
rµ (sin θ)µ

(− sin θ u3(ϕ) + cos θ uρ(ϕ)
)

rµ (sin θ)µ uϕ(ϕ)
rµ−1 (sin θ)µ−1 p(ϕ)


 .

According to Theorem 5.2.2, the vector function


Vr

Vθ

Vϕ

Q


 =




r−1−µvr

r−1−µvθ

r−1−µvϕ

r−2−µq


 ,

where

(5.7.25)




vr

vθ

vϕ


 =




(µ + 2) (sin θ)µ
(
cos θ u3(ϕ) + sin θ uρ(ϕ)

)
(1− µ) (sin θ)µ

(− sin θ u3(ϕ) + cos θ uρ(ϕ)
)

(1− µ) (sin θ)µ uϕ(ϕ)




and

(5.7.26) q = (sin θ)µ−1
(
(1− µ) p(ϕ) + (2 + 4µ) sin θ

(
cos θ u3(ϕ) + sin θ uρ(ϕ)

))
,

is a solution of the problem (5.0.1), (5.0.2). Consequently, the vector function
(vr, vθ, vϕ, q) is an eigenvector corresponding to the eigenvalue λ = −1 − µ. By
Lemma 5.7.3, the derivatives of the vector function (Vr, Vθ, Vϕ, Q) with respect to
x3 are also solutions of (5.0.1), (5.0.2). In order to calculate these derivatives, we
rewrite the vector (Vr, Vθ, Vϕ, Q)t in the form




r−2−2µ (µ + 2) ρµ
(
x3 u3(ϕ) + ρ uρ(ϕ)

)
r−2−2µ (1− µ) ρµ

(− ρ u3(ϕ) + x3 uρ(ϕ)
)

r−1−2µ (1− µ) ρµ uϕ(ϕ)
r−3−2µ ρµ−1

(
(1− µ) r2 P (ϕ) + (2 + 4µ) ρ

(
x3 u3(ϕ) + ρ uρ(ϕ)

))


 .
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Hence

∂k
x3




Vr

Vθ

Vϕ


 =




(µ + 2) ρµ
(− 1

2µ π
(µ)
k+1 u3(ϕ) + π

(µ+1)
k ρ uρ(ϕ)

)

(1− µ) ρµ
(− π

(µ+1)
k ρ u3(ϕ)− 1

2µ π
(µ)
k+1 uρ(ϕ)

)

(1− µ) ρµ π
(µ)
k uϕ(ϕ)




and ∂k
x3

Q coincides with the function

ρµ−1
(
(1− µ)π

(µ+1/2)
k p(ϕ)− 2ρ π

(µ+1/2)
k+1 u3(ϕ) + (2 + 4µ) ρ2 π

(µ+3/2)
k uρ(ϕ)

)
,

where we used the notation

(5.7.27) π
(κ)
k (x) = ∂k

x3
(r−2κ).

As a consequence of the Rodrigues formula for the Gegenbauer polynomials (see
Whittaker and Watson [267, Sect.10.9]) the following representation for π

(κ)
k holds:

(5.7.28) π
(κ)
k (x) = r−2κ−k Π(κ)

k (cos θ)

where

Π(κ)
k (cos θ) =

2kk! (1− k − κ)k

(1− 2k − 2κ)k

k/2∑
m=0

(1/2− k − κ)k−m

m! (k − 2m)!
(1− cos2 θ)m (2 cos θ)k−2m

(Here (α)n = α (α+1) · · · (α+n−1) for n = 1, 2, . . . and (α)0 = 1). Consequently,

∂x3




Vr

Vθ

Vϕ

Q


 =




r−1−µ−k vkr

r−1−µ−k vkθ

r−1−µ−k vkϕ

r−2−µ−k qk


 ,

where
(5.7.29)



vkr = (µ + 2) (sin θ)µ
(
− 1

2µ
Π(µ)

k+1(cos θ) u3(ϕ) + Π(µ+1)
k (cos θ) sin θ uρ(ϕ)

)
,

vkθ = (1− µ) (sin θ)µ
(
−Π(µ+1)

k (cos θ) sin θ u3(ϕ)− 1
2µ

Π(µ)
k+1(cos θ)uρ(ϕ)

)
,

vkϕ = (1− µ) (sin θ)µ Π(µ)
k (cos θ)uρ(ϕ),

qk = (sin θ)µ−1
(
(1− µ)Π(µ+1/2)

k (cos θ) p(ϕ)− 2 sin θ Π(ν+1/2)
k+1 (cos θ) u3(ϕ)

+ (2 + 4µ) sin2 θ Π(µ+3/2)
k (cos θ) uρ(ϕ)

)
.

By Theorem 5.2.2, the vector function

(5.7.30)




wkr

wkθ

wkϕ

sk


 =




(1− µ− k) vkr(ϕ)
(2 + µ + k) vkθ(ϕ)
(2 + µ + k) vkϕ(ϕ)

(2 + µ + k) qk(ϕ)− (2 + 4µ + 4k) vkr(ϕ)




is the eigenfunction corresponding to λ = µ + k.
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5.7.6. Generalized eigenvectors of the operator pencil L. Let Re µ >
−1/2, µ 6= 1, and let

(5.7.31)
(

U

P

)
=

(
ρµ

(
u(ϕ) log ρ + v(ϕ)

)
ρµ−1

(
p(ϕ) log ρ + q(ϕ)

)
)

be a non-trivial solution to the Dirichlet problem for the system (5.0.1). This means
that µ = λj for some j ≥ 0, (u, p) is the corresponding eigenvector of the operator
pencil L, and (v, q) is its generalized eigenvector.

The solution (5.7.31) takes the following form in the spherical coordinates




Ur

Uθ

Uϕ

P


 =




rµ
( ◦

ur log ρ+
◦
vr

)

rµ
( ◦

uθ log ρ+
◦
vθ

)

rµ
( ◦

uϕ log ρ+
◦
vϕ

)

rµ−1
( ◦

p log ρ+
◦
q

)




,

where




◦
ur
◦
uθ
◦
uϕ
◦
p




=




(sin θ)µ (cos θ u3 + sin θ uρ)
(sin θ)µ (− sin θ u3 + cos θ uρ)

(sin θ)µuϕ

(sin θ)µ−1p


 ,(5.7.32)




◦
vr
◦
vθ
◦
vϕ
◦
q




=




(sin θ)µ (cos θ v3 + sin θ vρ)
(sin θ)µ (− sin θ v3 + cos θ vρ)

(sin θ)µvϕ

(sin θ)µ−1q


 .(5.7.33)

According to Theorem 5.2.2, the vector
(
Vr, Vθ, Vϕ, Q

)
, where

Vr = r−1−µ
(
(µ + 2)

(
2
◦
ur log r− ◦

ur log ρ− ◦
vr

)− ◦
ur

)
,

Vθ = r−1−µ
(
(1− µ)

(
2
◦
uθ log r− ◦

uθ log ρ− ◦
vθ

)
+

◦
uθ

)
,

Vϕ = r−1−µ
(
(1− µ)

(
2
◦
uϕ log r− ◦

uϕ log ρ− ◦
vϕ

)
+

◦
uϕ

)
,

Q = r−2−µ
(
(1− µ)

(
2
◦
p log r− ◦

p log ρ− ◦
q

)

+ (2 + 4µ)
(
2
◦
ur log r− ◦

ur log ρ− ◦
vr

)
+
◦
p −4

◦
ur

)
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is a solution of the problem (5.0.1), (5.0.2). This implies that the vector function(
v
(1)
r , v

(1)
θ , v

(1)
ϕ , q(1)

)
, where

v(1)
r = −(sin θ)µ

(
(cos θ uz + sin θ uρ)

(
1 + (µ + 2) log sin θ

)

+ (µ + 2) (cos θ v3 + sin θ vρ)
)
,

v
(1)
θ = (sin θ)µ

(
(− sin θ u3 + cos θ uρ)

(
1− (1− µ) log sin θ)

− (1− µ) (− sin θ u3 + cos θ vρ

))
,

v
(1)
φ = (sin θ)µ

(
uϕ

(
1− (1− µ) log sin θ

)− (1− µ) vϕ

)
,

q(1) = (sin θ)µ−1
(
p

(
1− (1− µ) log sin θ

)

− sin θ (cos θ u3 + sin θ uρ)
(
4 + (2 + 4µ) log sin θ

)

− (1− µ) q − (2 + 4µ) sin θ (cos θ v3 + sin θ vρ)
)
,

is the generalized eigenvector for the eigenvector (vr, vθ, vϕ, q) defined by (5.7.25),
(5.7.26) corresponding to the eigenvalue λ = −1− µ.

In order to construct generalized eigenvectors corresponding to the eigenvalue
−1 − µ − k, k = 1, 2, . . . , one can apply the operator ∂k

x3
to the vector function

(Vr, Vθ, Vϕ, Q). We note that the vector (Vr, Vθ, Vϕ) can be written in the form

r−2−2µ
(
(αx3 + β) log r + γx3 + δ

)
,

where α, β, γ, δ are vectors depending only on the variable (x1, x2). Similarly, we
can write

Q = r−3−2µ
(
(α1x3 + β1) log r + γ1x3 + δ1

)
+ r−1−2µ (α2 log r + β2),

where α1, β1, γ1, δ1, α2, β2 depend only on (x1, x2). Now we can differentiate with
respect to x3 using (5.7.27). For example,

∂k
x3

V = α ∂µ

(π
(µ)
k+1

4µ

)
− β ∂µ

(π
(µ+1)
k

2

)
− γ

π
(µ)
k+1

2µ
+ δ π

(µ+1)
k .

In a similar way, we can express ∂k
x3

Q. Then we use the formula (5.7.28) for π
(κ)
k .

After certain algebraic transformations, we get the solution in the form

∂k
x3

(
V

Q

)
=

(
r−1−µ−k

(
vk(ω) log r + v

(1)
k (ω)

)

r−2−µ−k
(
qk(ω) log r + q

(1)
k (ω)

)
)

.

The eigenvector (vk, qk) is defined by (5.7.29); an explicit representation for the
generalized eigenvector

(
v
(1)
k , q

(1)
k

)
is rather complicated and we omit it here.

If λ = µ+k, then, by Theorem 5.2.2, the eigenvector (5.7.30) has the generalized
eigenvector




(µ + k − 1) v
(1)
kr − vkr

−(2 + µ + k) v
(1)
kθ + vkθ

−(2 + µ + k) v
(1)
kϕ + vkϕ

−(2 + µ + k) q
(1)
k + qk + (4µ + 4k + 2) v

(1)
kr − 4vkr


 .
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In this way we have obtained a complete description of the set of the eigenvectors
and generalized eigenvectors corresponding to eigenvalues λ 6= −2 (see Remark
5.7.1).

5.7.7. The eigenvalue λ = −2. For µ = 1 the formulas (5.7.25), (5.7.26)
give only the eigenfunctions of the operator pencil L corresponding to the eigenvalue
λ = −2 which have the form (ur, 0, 0, 2ur). In order to find other eigenfunctions
we solve the equation L(−2)

(
u
p

)
= 0 directly. For this purpose, we use Theorem

5.4.4.
First we find those α ∈ (0, 2π] for which 6 is an eigenvalue of the Dirichlet

problem for the operator −δ in Ωα and determine the corresponding eigenfunctions.
The number 6 is an eigenvalue of −δ if 2 is an eigenvalue of the pencil −δ−λ(λ+1)
which is generated by the Dirichlet problem for the Laplace equation in the dihedron
Kα × R (see Section 2.2). Applying Theorem 10.5.3, we obtain j + kπ/α = 2 for
some integer j ≥ 0, k > 0. Therefore, α takes one of the values π/2, π, 3π/2, 2π and
k may be either 0 or 1. Thus, there are only two functions ρ2 sin(2ϕ + kπ/2) and
x3ρ sin(ϕ + kπ/2) which linear combinations may give the eigenfunctions. These
eigenfunctions are given in the following table.

α π/2 π 3π/2 2π
v1 (sin θ)2 cos 2ϕ (sin θ)2 sin 2ϕ (sin θ)2 cos 2ϕ (sin θ)2 sin 2ϕ
v2 cos θ sin θ cos ϕ cos θ sin θ sin ϕ

Only the eigenfunctions in the table which correspond to the angles π/2 and 3π/2
are not orthogonal to 1.

In order to use Theorem 5.4.4, it is necessary to find the solution of the Dirichlet
problem

(δ + 6)v = −3 on Ω, v = 0 on ∂Ω

for α 6= π/2 and α 6= 3π/2. If we write this solution in the form v = (sin θ)2 w(ϕ),
we get the problem

w′′(ϕ) + 4w(ϕ) = −3 for |ϕ| < α/2, w(±α/2) = 0.

Consequently,

(5.7.34) v(ω) = −3
4

(sin θ)2
(
1− cos 2ϕ

cosα

)
.

The orthogonality of v to the corresponding eigenfunctions for α = π or α = 2π
can be readily verified. From this and from Theorem 5.4.4 we obtain the following
description of the subspace of eigenvectors corresponding to the the eigenvalue
λ = −2.

Lemma 5.7.4. 1) If α 6∈ {π/2, π, 3π/2, 2π}, then the eigenfunctions of the
operator pencil L corresponding to the eigenvalue λ = −2 are multiples of the
vector

(5.7.35)




u
(0)
r

u
(0)
ω

p(0)


 =




− 3
4 (sin θ)2

(
1− cos 2ϕ

cos α

)

0
− 3

2 (sin θ)2
(
1− cos 2ϕ

cos α

)
+ 1


 .



5.7. THE DIRICHLET PROBLEM FOR THE STOKES SYSTEM IN A DIHEDRON 193

2) If either α = π/2 or α = 3π/2, then the eigenvectors are multiples of



u
(0)
r

u
(0)
ω

p(0)


 =




(sin θ)2 cos 2ϕ
0

2 (sin θ)2 cos 2ϕ


 .

3) If α = π, then the subspace of the eigenvectors (u(0)
r , u

(0)
ω , p(0)) is generated

by the vector (5.7.35) and by the vectors



(sin θ)2 sin 2ϕ
0

2 (sin θ)2 sin 2ϕ


 ,




cos θ sin θ cos ϕ
0

2 cos θ sin θ cos ϕ


 .

The same is valid for α = 2π if cos ϕ is replaced by sin ϕ in the formula for the last
vector.

The eigenvectors corresponding to λ = −2− k are

r−2+k∂k
x3

(
r2

(
u(0)

r , u(0)
ω , p(0)

))

and the eigenvectors corresponding to λ = 1 + k are

r−2+k ∂k
x3

(
r2S(−2− k)

(
u(0)

r , u(0)
ω , p(0)

))
.

Now we deal with the generalized eigenvectors corresponding to the eigenvalue
λ = −2. Since the matrix S(−1 − λ) degenerates for λ = −2, Remark 5.2.1 gives
no way to find generalized eigenvectors. By Theorem 5.4.4, only the eigenvector
(v, 0, 0, 2v + 1)t (and nonzero multiples of this), where v is defined by (5.7.29),
may have a generalized eigenvector. Moreover, it exists only under the condition
of orthogonality of v to 1 in L2(Ω). From (5.7.34) it follows that this condition is
valid for α = α∗, where α∗ is the unique solution of the equation tanα = α on the
interval (0, 2π). As it has been mentioned above, the number 6 is not an eigenvalue
of the Dirichlet problem for the operator −δ on Ωα∗ .

Now we turn to a description of the generalized eigenvector. Let the vector(
w

(1)
r , w

(1)
θ , w

(1)
ϕ , s(1)

)
be a generalized eigenvector associated to (v, 0, 0, 2v + 1).

Theorem 5.2.2 implies that

(5.7.36)




0 0 0 0
0 −3 0 0
0 0 −3 0
6 0 0 −3







w
(1)
r

w
(1)
θ

w
(1)
ϕ

s(1)


 +




−1 0 0 0
0 1 0 0
0 0 1 0
−4 0 0 1







v
0
0

2v + 1




is a generalized eigenvector corresponding to the eigenvector



0 0 0 0
0 3 0 0
0 0 3 0
−6 0 0 3







v
0
0

2v + 1


 =




0
0
0
3
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and to the eigenvalue λ = 1. By (5.7.32), (5.7.33), and (5.1.17), the generalized
eigenvector has the form




3
4 sin2 θ

(
1− cos 2ϕ

cos α∗

)

3
4 sin θ cos θ

(
1− cos 2ϕ

cos α∗

)

3
4 sin θ

(
−2ϕ + sin 2ϕ

cos α∗

)

3




.

Since this vector can differ from (5.7.36) only by the eigenvector (0, 0, 0, c), it follows
that

w
(1)
θ = −1

4
sin θ cos θ

(
1− cos 2ϕ

cos α∗

)
,

w(1)
ϕ = −1

4
sin θ

(
−2ϕ +

sin 2ϕ

cosα∗

)
,

3
(
2w(1)

r − s(1)
)

+ 1− 2v = c.

Using the last equality and (5.4.22), where u
(1)
r , p(1), u

(0)
r , p(0) are replaced by w

(1)
r ,

s(1), v, 2v + 1, respectively, we obtain the equation

(δ + 6) w(1)
r = 5v + c in Ω.

Consequently, the generalized eigenvector corresponding to (v, 0, 0, 2v + 1) is



w
(1)
r

w
(1)
θ

w
(1)
ϕ

s(1)


 =




5h

− 1
4 sin θ cos θ

(
1− cos 2ϕ

cos α∗

)

− 1
4 sin θ

(
−2ϕ + sin 2ϕ

cos α∗

)

10h + 1
3 − 2

3v



− c

3




v
0
0

2v + 1


 ,

where h is a solution of the boundary value problem

(δ + 6) h = v in Ω, h = 0 on ∂Ω

and v is defined by (5.7.34). This problem is uniquely solvable, since 6 is not an
eigenvalue of the operator −δ for α = α∗.

5.8. Stokes and Navier–Stokes systems in domains with piecewise
smooth boundaries

It is well known (see, e.g., the books by Girault, Raviart [69] and Ladyzhen-
skaya [148]) that the problem

(5.8.1) −∆U +∇P = F, ∇ · U = 0 in G, U = 0 on ∂G
in an arbitrary bounded domain G of dimension n = 2 or n = 3 has a solution
(U,P ) ∈ ◦

W 1
2(G)n × L2(G) for arbitrary F ∈ W−1

2 (G)n. The velocity vector U
is uniquely determined and the pressure P is unique up to a constant term. In
this section we suppose that G is a domain of polygonal or polyhedral type. We
apply results on operator pencils obtained in the present chapter to derive various
regularity properties of the solutions (U,P ).
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5.8.1. The Stokes system in plane domains with corners. Let G be a
bounded plane domain with d angle vertices x(1), . . . , x(d) on the boundary. Outside
the union S = {x(1), . . . , x(d)}, the boundary ∂G is assumed to be smooth. We
suppose that for every x(τ) there exist a neighborhood Uτ where G coincides with
a plane angle Kτ . The opening of Kτ is denoted by ατ . Furthermore, let V l

p,~β
(G)

and N l,σ
~β

(G), where ~β = (β1, . . . , βd) ∈ Rd, be the weighted spaces introduced in
Section 1.4.

Using Theorems 1.4.3 and 5.1.2, we obtain

Theorem 5.8.1. Any solution (U,P ) ∈ ◦
W 1

2(G)2 × L2(G) of problem (5.8.1)
belongs to the space V l

p,~β
(G)2 × V l−1

p,~β
(G) if F ∈ V l−2

p,~β
(G)2, l ≥ 2, and

(5.8.2) |l − βτ − 2/p| <
{

1 for ατ < π,
ξ+(ατ )/ατ for ατ > π,

Here ξ+(α) is the smallest positive solution of the equation ξ−1 sin ξ+α−1 sin α = 0.
Condition (5.8.2) with l + σ − βτ instead of l − βτ + 2/p guarantees that (U,P ) ∈
N l,σ

~β
(G)2 ×N l−1,σ

~β
(G) if F ∈ N l−2,σ

~β
(G)2.

Furthermore, by means of Theorems 1.4.4 and 5.1.2, the asymptotics of the
solution U ∈ ◦

W 1
2(G)2 near the corner point x(τ) can be described. Suppose, for

simplicity, F = 0 near x(τ). Then for x in a vicinity of x(τ) we have

U(x) = o
(
rπ/ατ

)
, P (x) = const + o

(
r−1+π/ατ

)
if ατ < π .

If π < ατ < 2π and ατ 6= α∗ (here α∗ is the solution of the equation tan α = α
in the interval (π, 2π)), then the asymptotics

( Ur

Uϕ

)
= c+ r

ξ+(ατ )
ατ

(u+
r

u+
ϕ

)
+ c− r

ξ−(ατ )
ατ

(u−r
u−ϕ

)
+ o

(
r2π/ατ

)
,

P = c + c+ r
ξ+(ατ )

ατ
−1 p+ + c− r

ξ−(ατ )
ατ

−1 p− + o
(
r−1+2π/ατ

)

holds. Here we use the polar coordinates (r, ϕ) in a neighborhood x(τ). Further-
more, c, c+ and c− are constants, ξ±(α) are the smallest roots of the equations
ξ−1 sin ξ ± α−1 sin α = 0 not equal to α, and the vectors (u±r , u±ϕ , p±) are defined
by (5.1.11) and (5.1.12), respectively. In the case ατ = α∗, when ξ−(ατ ) = ατ ,
the asymptotics contains an additional logarithmic term. By Theorem 5.1.2, the
functions α → ξ±(α)/α are strictly decreasing, and we have ξ±(α)/α > 1/2 for
α < 2π.

5.8.2. The Stokes system in a domain of polyhedral type. Let G be the
same bounded domain in R3 with piecewise smooth boundary ∂G as in Subsection
3.6.2. We use the same notation as in in Subsection 3.6.2. In particular, we denote
by Γj , j = 1, . . . , T , the faces of G, by Ek, k = 1, . . . , q, the edges, and by x(τ),
τ = 1, . . . , d, the vertices. Outside the set S of the edges Ek and vertices x(τ), the
boundary is assumed to be smooth.

For every x ∈ ⋃
Ek let αx be the angle at x between the tangential half-planes

to ∂G\S. If αx < π, then we set θ(x) = 1. In the case π < αx < 2π let θ(x) be the
smallest positive solution of the equation

sin(θαx) + θ sin αx = 0.
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To every vertex x(τ) we associate the operator pencil Lτ generated by the Dirichlet
problem for the Stokes system in the cone Kτ . By µτ we denote the smallest real
part of eigenvalues of Lτ , situated in the half-plane Re λ > −1/2.

1. R e g u l a r i t y r e s u l t s f o r t h e s o l u t i o n s. We consider the solutions
(U,P ) ∈ ◦

W 1
2(G)3 × L2(G) of problem (5.8.1). The following analogue to Theorem

3.8.4 was proved by Maz′ya and Plamenevskĭı [189, Th.6.1].

Theorem 5.8.2. Suppose that F ∈ V l−2,p
~β,~δ

(G)3, where

(5.8.3) |l − δk − 2/p| < inf
x∈Ek

θ(x) and |l − βτ − 3/p + 1/2| < µτ + 1/2

for k = 1, . . . , q, τ = 1, . . . , d. Then the solution (U,P ) of problem (5.8.1) belongs
to the space V l,p

~β,~δ
(G)3 × V l−1,p

~β,~δ
(G).

If F ∈ N l−2,σ
~β,~δ

(G)3, where

(5.8.4) |l + σ − δk| < inf
x∈Ek

θ(x) and |l + σ − βτ + 1/2| < µτ + 1/2

for k = 1, . . . , q, τ = 1, . . . , d. Then the solution (U,P ) of problem (5.8.1) belongs
to the space N l,σ

~β,~δ
(G)3 ×N l−1,σ

~β,~δ
(G).

We note that, by Theorem 5.5.5, µτ = 1 if Kτ is contained in a half-space. It
follows from Corollary 3.4.2 that

(5.8.5) µτ >
Mτ

Mτ + 4
,

where Mτ is the same as in Section 3.6. Another estimate can be found in Theorem
5.5.6. More estimates for µτ follow from the monotonicity of real eigenvalues with
respect to Ωτ (see Theorem 5.5.4). If, for example, Kτ contains a half-space we see
that 0 < µτ ≤ 1 and µτ is a monotone non-increasing function of Kτ .

The assertions of Theorem 5.8.2 are also true for solutions (U,P ) ∈ ◦
W 1

2(G)3 ×
L2(G) of the Dirichlet problem for the Navier-Stokes system

−∆U +∇P + U · ∇U = F , ∇ · U = 0 in G

(see [189, Th.10.3,10.4]).

2. E s t i m a t e s o f t h e G r e e n m a t r i x. The Green matrix of problem
(5.8.1) is defined as a matrix-function (x, y) → (

Gi,j(x, y)
)3

i,j=1
such that the vec-

tors (G1,j , . . . , G4,j), j = 1, 2, 3, are solutions of the problem

−∆xGi,j(x, y) + ∂xiG4,j(x, y) = δi,j δ(x− y) for (x, y) ∈ G × G, i = 1, 2, 3,
3∑

i=1

∂xiGi,j(x, y) = 0 for (x, y) ∈ G × G,

Gi,j(x, y) = 0 for x ∈ ∂G\S, y ∈ G, i = 1, 2, 3,
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while the vector (G1,4, . . . , G4,4) is a solution of the problem

−∆xGi,4(x, y) + ∂xi
G4,4(x, y) = 0 for (x, y) ∈ G × G, i = 1, 2, 3,

3∑

i=1

∂xiGi,4(x, y) = δ(x− y) for (x, y) ∈ G × G,

Gi,4(x, y) = 0 for x ∈ ∂G\S, y ∈ G, i = 1, 2, 3.

Here we mean solutions for which the functions x → (
G1,j(x, y), . . . , G4,j(x, y)

)

belong to the space W 1
2 (G\U)3 ×L2(G\U) for every y ∈ G and every neighborhood

U of y. By [189], the components Gi,j of the Green matrix satisfy the following
estimates in a neighborhood of the vertex x(τ).

Theorem 5.8.3. 1) If 2ρτ (x) < ρτ (y), then (3.8.8) is valid for the functions
Gi,j, i, j = 1, . . . , 3, θk = infx∈Ek

θ(x). Furthermore,

|G4,j(x, y)| ≤ c
ρτ (x)µτ−1−ε

ρτ (y)µτ+1−ε

∏

{k:x(τ)∈Ek}

( rk(x)
ρτ (x)

)θk−1−ε ∏

{k:x(τ)∈Ek}

( rk(y)
ρτ (y)

)θk−ε

,

|Gi,4(x, y)| ≤ c
ρτ (x)µτ−ε

ρτ (y)µτ+2−ε

∏

{k:x(τ)∈Ek}

( rk(x)
ρτ (x)

)θk−ε ∏

{k:x(τ)∈Ek}

( rk(y)
ρτ (y)

)θk−1−ε

for i, j = 1, 2, 3 and

|G4,4(x, y)| ≤ c
ρτ (x)µτ−1−ε

ρτ (y)µτ+2−ε

∏

{k:x(τ)∈Ek}

( rk(x)
ρτ (x)

)θk−1−ε ∏

{k:x(τ)∈Ek}

( rk(y)
ρτ (y)

)θk−1−ε

,

The expression, which arises if one changes the places of x and y on the right-hand
side of these estimates, majorizes the functions |Gi,j |, i, j = 1, . . . , 4, in the case
2ρτ (y) < ρτ (x).

2) If ρτ (x)/2 < ρτ (y) < 2ρτ (x) and |x−y| > min(r(x), r(y)), then the estimate
(3.8.9) is valid for the functions Gi,j, i, j = 1, 2, 3, while

|G4,j(x, y)| ≤ c

|x− y|2
∏

{k:x(τ)∈Ek}

( rk(x)
|x− y|)

)θk−1−ε ∏

{k:x(τ)∈Ek}

( rk(y)
|x− y|

)θk−ε

,

|Gi,4(x, y)| ≤ c

|x− y|2
∏

{k:x(τ)∈Ek}

( rk(x)
|x− y|

)θk−ε ∏

{k:x(τ)∈Ek}

( rk(y)
|x− y|

)θk−1−ε

,

|G4,4(x, y)| ≤ c

|x− y|3
∏

{k:x(τ)∈Ek}

( rk(x)
|x− y|

)θk−1−ε ∏

{k:x(τ)∈Ek}

( rk(y)
|x− y|

)θk−1−ε

.

3) If |x− y| < min(r(x), r(y)), then |Gi,j(x, y)| ≤ c |x− y|−1 for i, j = 1, 2, 3.

Analogous estimates are valid for the derivatives of the functions Gi,j , i, j =
1, . . . , 4.

Clearly, we can replace µτ and θk in the above estimates by their lower bounds
in order to get more visible dependence on the geometry of singularities of ∂G.
In particular, estimate (5.8.5) can be of use, as well as other information on µτ

obtained in this chapter.

3. L∞ - e s t i m a t e s. Now we consider the problem

(5.8.6) −∆U +∇P = 0, ∇ · U = 0 in G, U = Φ on ∂G.
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We suppose that Φ belongs to the space L∞~β,~δ
(∂G)3 which was introduced in Section

3.6. The solution of this problem is defined as follows. Let {Φ(k)} ⊂ C∞0 (∂G\S)3

be a sequence such that

Φ(k) → Φ a.e. on ∂G and ‖Φ(k)‖L∞
~β,~δ

(G)3 ≤ const.

The vector functions (U (k), P (k)) ∈ W 1
2 (G)3 × L2(G) with the components

U
(k)
i (x) =

∫

∂G\S

3∑

j=1

∂Gi,j

∂νξ
(x, y)Φ(k)

j (ξ) dσξ ,

P (k)(x) =
∫

∂G\S

3∑

j=1

∂G4,j

∂νξ
(x, y)Φ(k)

j (ξ) dσξ

are solutions of problem (5.8.6) with the Dirichlet data Φ(k). By means of Theorem
5.8.3, it can be shown that the sequence (U (k), P (k)) converges in every point of G
if δk < infx∈Ek

θ(x) for k = 1, . . . , q and βτ < 1 + µτ for τ = 1, . . . , d. The limit
(U,P ) of the sequence {(U (k), P (k))} is called solution of problem (5.8.6).

Theorem 5.8.4. [189, Th.9.1] (see also [188, Th.2] in the case of a domain
with conic points) Let (U,P ) be a solution of problem (5.8.6), where Φ ∈ L∞~β,~δ

(∂G),

|δk| < inf
x∈Ek

θ(x) and |βτ − 1/2| < µτ + 1/2

for k = 1, . . . , q and τ = 1, . . . , d. Then

(5.8.7) ‖U‖L∞
~β,~δ

(G)3 ≤ c ‖Φ‖L∞
~β,~δ

(∂G)3 .

Here the constant c is independent of Φ.

Since infx∈Ek
θ(x) and µτ are positive one may set ~β = ~0 and ~δ = ~0 in the last

theorem. Then one obtains the estimate

‖U‖L∞(G)3 ≤ c ‖Φ‖L∞(∂G)3 .

Furthermore, Φ ∈ C(∂G)3 implies U ∈ C(G)3.
The last sentence is also true for the solutions of the Navier-Stokes system, that

is if (U,P ) ∈ W 1
2 (G)3 × L2(G) is a solution of the problem

−∆U +∇P + U · ∇U = 0 , ∇ · U = 0 in G,

U = Φ on ∂G,

where Φ ∈ C(∂G)3, then U ∈ C(G)3 (see [189, Th.10.8]).

5.9. Notes

Section 5.1. We mention the papers by Kellogg and Osborn [101], Osborn
[222], Lozi [157] and Dauge [38, 42] dedicated to the Stokes system in domains
with corners.

The equation (5.1.9) for the eigenvalues of the pencil generated by the Dirichlet
problems for the Stokes system is the same as for the Lamé system with ν = 1/2.
Therefore, information on the spectrum of this pencil can be also found in works
on linear elasticity (see the references at the end of Chapter 3).



5.9. NOTES 199

Sections 5.2–5.6. The estimate (5.0.6) for the width of the energy strip of
the pencil generated by the Dirichlet problem for the Stokes system in a three-
dimensional cone was proved in the paper [188] by Maz′ya and Plamenevskĭı. For
convex cones it was improved by Dauge [42]. The results of Sections 5.2–5.6 were
obtained in Kozlov, Maz’ya and Schwab [141]. For the case of a rotational cone we
refer additionally to [139].

Section 5.7. For dihedral angles the eigenvalues, eigenvectors and generalized
eigenvectors of the corresponding pencil were described by Kozlov and Maz′ya in
[134].

Section 5.8. Regularity results for the Dirichlet problem to the Stokes system
in polygonal domains as well as asymptotic formulas for the solutions near the
corners can be found in the above cited papers [38, 42, 101, 157, 222] and in
the book of Grisvard [86]. For example, Kellogg and Osborn [101] proved that the
solution of problem (5.8.1) in a convex polygon G belongs to W 2

2 (G)2 ×W 1
2 (G) if

F ∈ L2(G)2.
Eigenvalues of the pencil corresponding to the two-dimensional problem are

also of importance for the description of the behavior of solutions to the Stokes
and Navier-Stokes systems near edges of three-dimensional domains. Maz’ya and
Plamenevskĭı’s paper [176] contains existence theorems in different function spaces
for the solutions of the Dirichlet problem to the Navier-Stokes system in domains
with edges and asymptotic formulas for the solution.

The Dirichlet problem for the Stokes and Navier-Stokes systems in three-
dimensional domains with conic points was studied by the same authors in [188].
This paper includes, in particular, weighted Lp, L∞ and Hölder estimates for the
solutions. The results of this paper were extended in [189] to the Stokes and Navier-
Stokes systems in domains of polyhedral type. (We discuss the main results of [189]
in Section 5.8.) Dauge [42] proved that the solution of problem (5.8.1) belongs to
the space W 2

2 (G)3 × W 1
2 (G) if G is a convex polyhedron and F ∈ W 1

2 (G)3. A Lp

theory for the Dirichlet problem to the Stokes system in nonsmooth domains was
also developed by Fabes, Kenig and Verchota [57] and Deuring [47]. In [57] the
existence of solutions is proved for arbitrary Lipschitz domains and boundary data
in Lp.





CHAPTER 6

Other boundary value problems for the Stokes
system in a cone

In this chapter we deal with the spectral properties of operator pencils which
are generated by some boundary value problems for the Stokes system

−∆U +∇P = F, ∇ · U = 0

in a three-dimensional cone K. In Sections 6.1 and 6.2 we consider a problem,
where the following conditions are given on parts of the boundary:

(i) U = 0
(ii) Un = 0, εn,τ (U) = 0
(iii) Uτ = 0, −P + 2 εn,n(U) = 0.

Here n = (n1, n2, n3) is the exterior normal to ∂K, Un = U · n is the normal com-
ponent of the velocity U = (U1, U2, U3), Uτ = U −Unn is the tangential component
of the vector U , ε(U) =

{
εij(U)

}
is the strain tensor (see Introduction to Chapter

4),

εnn =
3∑

i,j=1

εij(U)ni nj

is the normal component of the vector εn(U) = ε(U)n, and εnτ (U) is the tangential
component of the vector εn(U).

The boundary conditions (i)-(iii) appear in the analysis of the steady-state
motion of a viscous fluid in a vessel with a free surface having contact with the
walls of the vessel (see, for example, the papers by Maz′ya, Plamenevskĭı, Stupyalis
[190] and Solonnikov [247]).

We investigate spectral properties of the pencil associated to a boundary value
problem by modifying the method used in the foregoing chapter. In the beginning
we obtain some basic results as, for example, the discreteness of the spectrum and
the absence of eigenvalues on the line Re λ = −1/2. Analogously to the Dirichlet
problem, we show that the eigenvalues in the strip −2 ≤ Reλ ≤ 1 are real and
that the eigenvectors corresponding to eigenvalues in the interior of this strip do
not have generalized eigenvectors.

From this result one can deduce that the solution of the boundary value problem
has the following asymptotics near a conic vertex if the right-hand sides in the Stokes
system and in the boundary conditions vanish near this vertex:

U =
J∑

j=1

cj rλj u(j)(ω) + O(r), P =
J∑

j=1

cj rλj−1p(j)(ω) + O(log r)

Here λj are real eigenvalues in the interval (−1/2, 1), and (u(j), p(j)) are corre-
sponding eigenvectors. In order to determine the regularity of weak solutions, it is

201
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useful to estimate the smallest eigenvalue in the interval (−1/2, 1]. At the end of
Section 6.1 we show that there are no eigenvalues in the interval (−1/2, 0) and that
λ = 0 is an eigenvalue if and only if there exists a constant vector (U,P ) = (c, 0)
satisfying the zero boundary conditions. This result implies the Hölder continuity
of the velocity U in a neighborhood of the vertex.

In contrast to the Dirichlet problem, the number λ = 1 is not always an eigen-
value. In Section 6.2 we give conditions ensuring that λ = 1 belongs to the spec-
trum and determine all eigenvectors and generalized eigenvectors associated to this
eigenvalue. A variational principle derived at the end of Section 6.2 enables one
to obtain sharper estimates for the smallest eigenvalue in the interval (−1/2, 1). A
consequence of this principle is the monotonicity (with respect to the cone K) of
the eigenvalues in (−1/2, 1) if only the boundary conditions (i) and (iii) appear.

Section 6.3 is dedicated to the Neumann problem for the Stokes system in a
three-dimensional cone K which is given by the inequality x3 > φ(x1, x2), where
φ is a smooth function on R2\{0} positively homogeneous of degree 1. We prove
that the operator pencil generated by this problem has only the eigenvalues 0 and
−1 in the strip −1 ≤ Re λ ≤ 0 and that both eigenvalues have geometric and
algebraic multiplicity 3. The eigenvectors corresponding to λ = 0 have the form
(u, p) = (c, 0), where c ∈ C3. From this result, it follows, for example, that the
velocity vector U is Hölder continuous in a neighborhood of a conic vertex.

6.1. A mixed boundary value problem for the Stokes system

6.1.1. The operator pencil generated by the mixed boundary value
problem. Let K be the cone {x = (x1, x2, x3) ∈ R3 : x/|x| ∈ Ω}, where Ω is
a domain on the unit sphere with Lipschitz boundary ∂Ω = γ1 ∪ . . . ∪ γN . Here
γ1, . . . , γN are pairwise disjoint open connected arcs on the sphere S2. Then the
boundary ofK is the union of faces, ∂K = Γ1∪· · ·∪ΓN , where Γk = {x : x/|x| ∈ γk}.

We divide the set of the indices 1, . . . , N into three subsets I0, In, Iτ . Our goal
is to find solutions of the system

(6.1.1) −∆U +∇P = 0, ∇ · U = 0 in K

satisfying the boundary conditions

(6.1.2)





U = 0 on Γk for k ∈ I0,
Un = 0, εn,τ (U) = 0 on Γk for k ∈ In,

Uτ = 0, −P + 2
3∑

i,j=1

εij(U)ni nj = 0 on Γk for k ∈ Iτ

which will be understood in a generalized sense.
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In order to introduce the notion of generalized solutions, we need the following
Green formula

∫

K

(
2

3∑

i,j=1

εij(U) · εij(V )− P ∇ · V − (∇ · U)Q
)

dx(6.1.3)

=
∫

K

((−∆U −∇∇ · U +∇P
)
V −∇ · U ·Q

)
dx

+
3∑

j=1

∫

∂K\{0}

(
− P nj + 2

3∑

i=1

εij(U) ni

)
V j dσ.

If (U,P ) is a formal solution of problem (6.1.1), (6.1.2), (V,Q) vanishes for large
and small |x|, and V satisfies the conditions

(6.1.4)





V = 0 on Γk for k ∈ I0,
Vn = 0 on Γk for k ∈ In,
Vτ = 0 on Γk for k ∈ Iτ ,

then (6.1.3) implies

(6.1.5)
∫

K

(
2

3∑

i,j=1

εij(U) · εij(V )− P ∇ · V − (∇ · U)Q

)
dx = 0.

Hence it is natural to define generalized solutions by means of this integral identity.

Definition 6.1.1. Let H be the space of all vector functions u ∈ W 1
2 (Ω)3

satisfying the conditions

(i) u = 0 on γk for k ∈ I0,
(ii) un = 0 on γk for k ∈ In,
(iii) uτ = 0 on γk for k ∈ Iτ ,

where un = u · n, n denotes the exterior normal to ∂K, and uτ is the projection of
the vector u onto the tangent plane to ∂K. We say that the pair (U,P ) given by

U(x) = rλ0

s∑

k=0

1
k!

(log r)k u(s−k)(ω) , u(s−k) ∈ H,(6.1.6)

P (x) = rλ0−1
s∑

k=0

1
k!

(log r)k p(s−k)(ω) , p(s−k) ∈ L2(Ω)(6.1.7)

is a generalized solution of (6.1.1), (6.1.2) if (6.1.5) is satisfied for all (V,Q) ∈
W 1

2 (K)3×L2(K) with compact support in K\{0} such that V satisfies the boundary
conditions (6.1.4).

Note that the space H in the above definition coincides with the space H which
was introduced in Section 4.1.

In what follows, we use the notations introduced in Section 3.2. In terms of the
spherical components of the vector function U , the integral identity (6.1.5) takes
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the form
∞∫

0

∫

Ω

(
2εrr(U) εrr(V ) + 2εθθ(U) εθθ(V ) + 2εϕϕ(U) εϕϕ(V ) + 4 εrθ(U) εrθ(V )

+ 4 εrϕ(U) εrϕ(V ) + 4 εθϕ(U) εθϕ(V )− P
(
εrr(V ) + εθθ(V ) + εϕϕ(V )

)

−
(
εrr(U) + εθθ(U) + εϕϕ(U)

)
Q

)
r2 dω dr = 0.

Here εrr, εϕ,ϕ, εθ,θ, εrϕ, εr,θ, and εθ,ϕ are the spherical components of the strain
tensor which are defined by (4.1.7). We introduce the sesquilinear form

a
((u

p

)
,
(v

q

)
; λ

)
=

1
2 log 2

2∫

1/2

∫

Ω

(
2 εrr(U) εrr(V ) + 2 εθθ(U) εθθ(V )

+ 2εϕϕ(U) εϕϕ(V ) + 4εrθ(U) εrθ(V ) + 4εrϕ(U) εrϕ(V )

+ 4 εθϕ(U) εθϕ(V )− P
(
εrr(V ) + εθθ(V ) + εϕϕ(V )

)

−
(
εrr(U) + εθθ(U) + εϕϕ(U)

)
Q

)
r2 dω dr,

where

U = rλ u(ω), P = rλ−1 p(ω), V = r−1−λ v(ω), Q = r−2−λ q(ω),

dω = sin θ dθ dϕ. Using (4.1.7), we find

a
((u

p

)
,
(v

q

)
; λ

)
= [uω, vω] +

∫

Ω

(
(∇ωur) · ∇ωvr(6.1.8)

+ (λ + 2) (1− λ)
(
2 ur vr + uω · vω

)
+ 2ur ∇ω · vω

+ 2(∇ω · uω) vr − (1− λ)uω · ∇ωvr − (λ + 2) (∇ωur) · vω

− p
(
(1− λ) vr +∇ω · vω

)
−

(
(λ + 2) ur +∇ω · uω

)
q

)
dω,

where the sesquilinear form [uω, vω] is defined by (4.1.10).
We define the space Hs as the set of all vector functions (ur, uω) ∈ W 1

2 (Ω) ×
h1

2(Ω) such that the boundary conditions (i)–(iii) in Definition 6.1.1 are satisfied,
i.e., we have (u1, u2, u3) ∈ H if and only if (ur, uω) ∈ Hs.

The form a(·, ·; λ) is continuous on
(
Hs×L2(Ω)

)
×

(
Hs×L2(Ω)

)
and generates

the continuous operator

A(λ) : Hs × L2(Ω) → H∗s × L2(Ω)

by the equality
(
A(λ)

(u

p

)
,
(v

q

))
L2(Ω)4

= a
((u

p

)
,
(v

q

)
; λ

)
, u, v ∈ Hs, p, q ∈ L2(Ω).

Obviously, A(λ) depends polynomially on the complex parameter λ. As a conse-
quence of Theorem 1.2.3, the following statement holds.
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Lemma 6.1.1. The functions (6.1.6) and (6.1.7) form a solution of the integral
identity (6.1.5) if and only if λ0 is an eigenvalue of the pencil A and the vec-
tor functions (u(0), p(0)), . . . , (u(s), p(s)) form a Jordan chain corresponding to this
eigenvalue.

6.1.2. Basic properties of the pencil A. We prove that the operator A(λ)
is Fredholm for every fixed λ and invertible for at least one λ. We start with the
following analogue of Lemma 5.2.3.

Lemma 6.1.2. Let Re λ = −1/2. Then for every f ∈ H∗s , g ∈ L2(Ω) there
exists a vector function (u, p) ∈ Hs × L2(Ω) satisfying the equation

(6.1.9) a
((u

p

)
,
(v

q

)
; λ

)
= (f, v)Ω +

∫

Ω

g q dω

for all v ∈ Hs, q ∈ L2(Ω). Here (·, ·)Ω denotes the continuation of the scalar product
in L2(Ω)3 to H∗s ×Hs.

Proof: By Lemma 5.2.2, there exists a vector function u(0) = (u(0)
r , u

(0)
ω ) ∈ Hs

satisfying the equation (λ+2) u
(0)
r +∇ω ·u(0)

ω = −g. Then, according to (6.1.8), we
have

a
((u(0)

0

)
,
(v

q

)
; λ

)
= (F, v)Ω +

∫

Ω

g q dω,

where

(F, v)Ω = [u(0)
ω , vω] +

∫

Ω

(
(∇ωu(0)

r ) · ∇ωvr + (λ + 2) (1− λ)
(
2u(0)

r vr + u(0)
ω · vω

)

+ 2u(0)
r ∇ω · vω + 2(∇ω · u(0)

ω ) vr

− (1− λ)u(0)
ω · ∇ωvr − (λ + 2) (∇ωu(0)

r ) · vω

)
dω.

Obviously, F is a continuous functional on Hs.
We show now that there exists a vector function (u(1), p) ∈ Hs × L2(Ω) such

that

(λ + 2) u(1)
r +∇ω · u(1)

ω = 0

and

a
((u(1)

p

)
,
(v

q

)
; λ

)
= (f − F, v)Ω

for v ∈ Hs, q ∈ L2(Ω). Then the vector function (u, p) with u = u(0) + u(1) satisfies
(6.1.9).

From (4.1.13) it follows that

a
((u

0

)
,
(u

0

)
; λ

)
≥ c0

(
‖ur‖2W 1

2 (Ω + ‖uω‖2h1
2(Ω)

)
− c1(λ)

(
‖ur‖2L2(Ω

+ ‖uω‖2L2(Ω)

)
,
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where c0 and c1(λ) are positive constants independent of ur and uω. Furthermore,
for Re λ = −1/2 we have

a
((u

0

)
,
(u

0

)
; λ

)
=

∫

Ω

(
2 |∂θuθ + ur|2 + 2

∣∣∣ 1
sin θ

∂ϕuϕ + uθ cot θ + ur

∣∣∣
2

+ 2 |λ|2 |ur|2 +
∣∣∣∂θuϕ +

1
sin θ

∂ϕuθ − cot θ uϕ

∣∣∣
2

+
∣∣∂θur − (1− λ)uθ

∣∣2 +
∣∣∣ 1
sin θ

∂ϕur − (1− λ)uϕ

∣∣∣
2
)

dω.

Since this form vanishes only for u = 0, we get

(6.1.10)
∣∣∣a

((u

0

)
,
(u

0

)
;λ

)∣∣∣ ≥ c ‖u‖2Hs

for Re λ = −1/2, where the constant c depends on λ but not on u. In particular,

(6.1.10) is satisfied for all u ∈ H(λ)
s

def
= {u ∈ Hs : (λ + 2)ur + ∇ω · uω = 0}.

Consequently, by Lax-Milgram’s theorem, there exists a solution u(1) ∈ H(λ)
s of the

equation

(6.1.11) a
((u(1)

0

)
,
(v

0

)
; λ

)
= (f − F, v)Ω , v ∈ H(λ)

s .

Analogously to the proof of Lemma 5.2.3, we can show that there exists a function
p ∈ L2(Ω) such that

a
((u(1)

0

)
,
(v

0

)
; λ

)
− (f − F, v)Ω =

∫

Ω

p
(
(1− λ) vr +∇ω · vω

)
dω

for all v ∈ Hs. Then we have

a
((u(1)

p

)
,
(v

q

)
;λ

)
= a

((u(1)

0

)
,
(v

0

)
; λ

)
−

∫

Ω

p ·
(
(1− λ)vr +∇ω · vω

)
dω

= (f − F, v)Ω

for all v ∈ Hs. This proves the lemma.

Now we are able to prove the following analogue of Theorem 5.2.1.

Theorem 6.1.1. 1) The operator A(λ) is Fredholm for all λ.
2) The spectrum of the pencil A consists of isolated eigenvalues with finite

algebraic multiplicities.
3) There are no eigenvalues of the pencil A on the line Re λ = −1/2.
4) The number λ0 is an eigenvalue of the pencil A if and only if −1− λ0 is an

eigenvalue of this pencil. The geometric, algebraic and partial multiplicities of the
eigenvalues λ0 and −1− λ0 coincide.

Proof: First we show that the kernel of the operator A(λ) is trivial for Re λ =
−1/2. Let λ be a number on the line Re λ = −1/2, and let (u, p) be an element of
the kernel of A(λ). Then

0 = a
((u

p

)
,
(0

q

)
; λ

)
= −

∫

Ω

(
(λ + 2) ur +∇ω · uω

)
q dω
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for all q ∈ L2(Ω). This implies

(6.1.12) (λ + 2) ur +∇ω · uω = 0 in Ω.

Using (6.1.12) and the equality λ + 2 = 1− λ, we obtain

0 = a
((u

p

)
,
(u

p

)
; λ

)
= [uω, uω]−

∫

Ω

|∇ω · uω|2 dω +
∫

Ω

∣∣∇ωur − (1− λ)uω

∣∣2 dω

+
∫

Ω

(∣∣∇ω · uω + 2ur

∣∣2 +
(|1− λ|2 − 2

) |ur|2
)

dω.

Due to the inequalities (4.1.12) and |1−λ|2 ≥ 9/4, the last equality is satisfied only
if ur = 0 and uω = 0. Furthermore, for u = 0 we get

a
((u

p

)
,
(v

0

)
; λ

)
= −

∫

Ω

p
(
(1− λ)vr +∇ω · vω

)
dω = 0, (vr, vω) ∈ Hs.

In particular, the last equality is valid for all vr ∈
◦

W 1
2(Ω), vω = 0. From this we

conclude that p = 0. Thus, the kernel of the operator A(λ) is trivial for Re λ = −1/2.
This result together with Lemma 6.1.2 implies that A(λ) is an isomorphism for
Re λ = −1/2. Since A(λ)−A(µ) is a compact operator for arbitrary λ, µ, it follows
that the operator A(λ) is Fredholm for every complex λ. This proves assertions 1)
and 3).

The second assertion follows from 1), from the invertibility of A(−1/2) and
from Theorem 1.1.1.

Finally, it can be easily seen that

(6.1.13) a
((u

p

)
,
(v

q

)
; λ

)
= a

((v

q

)
,
(u

p

)
; −1− λ

)
,

i.e., A(λ)∗ = A(−1− λ). As a consequence of this equality, assertion 4) holds.

6.1.3. Properties of the space Hs. In the sequel, the following properties
of the spaces H and Hs will play an important role (cf. Lemma 4.1.3).

Lemma 6.1.3. 1) The subspace Hs admits the representation

(6.1.14) Hs = Hr
s ×Hω

s ,

where Hr
s is a subspace of W 1

2 (Ω),
◦

W 1
2(Ω) ⊂ Hr

s, and Hω
s is a subspace of h1

2(Ω),
◦
h1
2(Ω) ⊂ Hω

s .
2) For all u, v ∈ H the equality

(6.1.15)
∫

∂Ω

un vr dω′ = 0

or, equivalently,

(6.1.16)
∫

Ω

(
(∇ω · uω) vr + uω · ∇ωvr

)
dω = 0

is valid.

Remark 6.1.1. In the following, we will only use the properties (6.1.14) and
(6.1.15) of the space H. All results of Sections 6.1 and 6.2 are also true for other
subspaces H ⊂ W 1

2 (Ω)× h1
2(Ω) satisfying these conditions.
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Due to (6.1.15), the sesquilinear form a(·, ·; λ) can be written on
(
Hs×L2(Ω)

)2

in the form

a
((u

p

)
,
(v

q

)
; λ

)
= [uω, vω] +

∫

Ω

∇ωur · ∇ωvr dω(6.1.17)

+
∫

Ω

(λ + 2) (1− λ)
(
2ur vr + uω · vω

)

+
∫

Ω

(
(λ + 4) ur ∇ω · vω + (3− λ) (∇ω · uω) vr

)
dω

−
∫

Ω

(
p

(
(1− λ) vr +∇ω · vω

)
+

(
(λ + 2) ur +∇ω · uω

)
q
)

dω.

6.1.4. Connection between eigenvectors corresponding to the eigen-
values λ and −1 − λ. Let S(λ) be the matrix defined by (5.2.14). According
to (6.1.14), the vector function S(λ)

(u

p

)
belongs to Hs × L2(Ω) if (ur, uω) ∈ Hs,

p ∈ L2(Ω). Moreover, we have

a
((u

p

)
, S(λ)

(v

q

)
; λ

)
= a

(
S(λ)

(u

p

)
,
(v

q

)
; −1− λ

)
.

for all u, v ∈ Hs, p, q ∈ L2(Ω). Consequently, there is the equality

(6.1.18) S(λ)t A(λ) = A(−1− λ)S(λ)

for arbitrary λ ∈ C, where S(λ)t is the transposed matrix to S(λ). Thus, analo-
gously to Theorem 5.2.2, the following statement holds.

Theorem 6.1.2. Suppose that λ0 is an eigenvalue of the pencil A and that the
vector functions (u(0), p(0)), . . . , (u(s), p(s)) form a Jordan chain corresponding to
this eigenvalue.

1) If λ0 6∈ {1,−2} or λ0 ∈ {1,−2} and S(λ0)
(

u(0)

p(0)

)
6= 0, then −1− λ0 is also

an eigenvalue of the pencil A and the vector functions
(

v(0)

q(0)

)
= S(λ0)

(
u(0)

p(0)

)
,

(v(k)

q(k)

)
= (−1)k


S(λ0)

(u(k)

p(k)

)
+




1 0 0 0
0 −1 0 0
0 0 −1 0
4 0 0 −1




(u(k−1)

p(k−1)

)

 ,

k = 1, . . . , s, form a Jordan chain corresponding to −1− λ0.

2) If λ0 ∈ {1,−2}, S(λ0)
(

u(0)

p(0)

)
= 0 and s ≥ 1, then −1 − λ0 is also an

eigenvalue and the vector functions

(v(k)

q(k)

)
= (−1)k


S(λ0)

(u(k)

p(k)

)
+




1 0 0 0
0 −1 0 0
0 0 −1 0
4 0 0 −1




(u(k−1)

p(k−1)

)

 ,

k = 1, . . . , s, form a Jordan chain corresponding to this eigenvalue.
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6.1.5. Eigenvalues in the strip −2 ≤ Re λ ≤ 1. The sesquilinear form
(6.1.17) is not symmetric in its arguments. In order to obtain a symmetric form,
we introduce the matrix

Jλ =




c 0 0 0
0 1 0 0
0 0 1 0

2c− 2 0 0 1


 , c =

λ + 2
1− λ

,

which was already used in Chapter 5. Obviously, the sesquilinear form

s
((u

p

)
,
(v

q

)
; λ

)
def
= a

((u

p

)
, Jλ

(v

q

)
; λ

)
(6.1.19)

= [uω, vω] +
∫

Ω

(
c(∇ωur) · ∇ωvr + 2 (λ + 2) (1− cλ)ur vr

)
dω

+
∫

Ω

(λ + 2) (1− λ)uω · vω dω

+
∫

Ω

(
(λ + 4) ur ∇ω · vω + (λ + 4) (∇ω · uω) vr

)
dω

−
∫

Ω

(
p

(
(λ + 2) vr +∇ω · vω

)
+

(
(λ + 2) ur +∇ω · uω

)
q
)

dω

is symmetric.

Theorem 6.1.3. The strip

(6.1.20)
∣∣∣Re λ +

1
2

∣∣∣ ≤ 3
2

contains only real eigenvalues of the pencil A.

Proof: Let λ be a complex eigenvalue in the strip (6.1.20) such that Re λ 6=
−1/2, Im λ 6= 0 and let (u, p) be an eigenvector corresponding to this eigenvalue.
Using (6.1.12), we obtain

0 = s
((u

p

)
,
(u

p

)
; λ

)
= [uω, uω] +

∫

Ω

(
λ + 2
1− λ

|∇ωur|2 − 6
λ + 2
1− λ

|ur|2

+ (λ + 2) (1− λ) |uω|2
)

dω.

Since

Im s
((u

p

)
,
(u

p

)
; λ

)
= Im λ (2Re λ + 1)

∫

Ω

(
1

|1− λ|2 |∇ωur|2

− 6
|1− λ|2 |ur|2 − |uω|2

)
dω,
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and

Re s
((u

p

)
,
(u

p

)
; λ

)
= [uω, uω] +

(1− Re λ) (2 + Re λ) + (Imλ)2

|1− λ|2
∫

Ω

|∇ωur|2 dω

− 6
(1− Reλ) (2 + Re λ) + (Im λ)2

|1− λ|2
∫

Ω

|ur|2 dω

+
(
(1− Re λ) (2 + Re λ) + (Imλ)2

) ∫

Ω

|uω|2 dω,

we get

Re s
((u

p

)
,
(u

p

)
; λ

)
− (1− Re λ) (2 + Re λ) + (Im λ)2

Imλ (2Re λ + 1)
Im s

((u

p

)
,
(u

p

)
; λ

)

= [uω, uω] + 2
(
(1− Re λ) (2 + Re λ) + (Imλ)2

) ∫

Ω

|uω|2 dω.

If λ satisfies inequality (6.1.20), then the right-hand side of the last equation may
be zero only in the case uω = 0. Then from (6.1.12) it follows that ur = 0. Hence
the form (6.1.17) is only zero if

∫

Ω

p
(
(1− λ) vr +∇ω · vω

)
dω = 0 for all v ∈ Hs.

Since the last equality is satisfied, in particular, for arbitrary vr ∈ ◦
W 1

2(Ω) and
vω = 0, we obtain p = 0. Thus, the theorem is proved for the case Reλ 6= −1/2.
For Re λ = −1/2 the assertion of the theorem follows from the third part of Theorem
6.1.1.

6.1.6. Absence of generalized eigenvectors. Our goal is to show that
there are no generalized eigenvectors to eigenvalues in the strip −2 < Re λ < 1.
Since the eigenvalues in this strip are real (see Theorem 6.1.3), we consider the
sesquilinear form (6.1.19) in this subsection as a form depending on the real pa-
rameter λ.

Lemma 6.1.4. If λ0 is a real eigenvalue of the operator pencil A in the interval
(−1/2 , 1) and (u(0), p(0)) is an eigenvector corresponding to this eigenvalue, then

(6.1.21)
d

dλ
a
((u(0)

p(0)

)
, Jλ

(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

< 0

Proof: The left side of (6.1.21) is equal to

d

dλ
s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

(6.1.22)

=
∫

Ω

(
3

(1− λ0)2
|∇ωu(0)

r |2 + 2
(
2λ0 + 5− λ0 + 2

1− λ0
− 3

λ0 + 2
(1− λ0)2

)
|u(0)

r |2

− (2λ0 + 1) |u(0)
ω |2 + u(0)

r ∇ω · u(0)
ω + (∇ω · u(0)

ω ) u
(0)
r

− p(0) u
(0)
r − u(0)

r p(0)

)
dω.
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Moreover, since (u(0), p(0)) is an eigenvector, we have

(6.1.23) a
((u(0)

p(0)

)
,
(v

q

)
; λ0

)
= 0 for all v ∈ Hs, q ∈ L2(Ω).

Inserting v = 0 into (6.1.23), we get

(6.1.24) (λ0 + 2) u(0)
r +∇ω · u(0)

ω = 0 in Ω.

Furthermore, substituting v = (u(0)
r , 0), q = 0 into (6.1.23), we arrive at the equality

∫

Ω

(
|∇ωu(0)

r |2 + 2 (λ0 + 2) (1− λ0) |u(0)
r |2(6.1.25)

+ (3− λ0) (∇ω · u(0)
ω ) u

(0)
r − (1− λ0) p(0) u

(0)
r

)
dω = 0.

Multiplying the real part of the left-hand side of (6.1.25) by 2 (λ0−1)−1 and adding
this to the right-hand side of (6.1.22), we find that

d

dλ
s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

=
∫

Ω

(
1 + 2λ0

(1− λ0)2
|∇ωu(0)

r |2 − 2
(1 + 2λ0

1− λ0
+ 3

λ0 + 2
(1− λ0)2

)
|u(0)

r |2

− (2λ0 + 1) |u(0)
ω |2 − 2

1− λ0

(
u(0)

r ∇ω · u(0)
ω + (∇ω · u(0)

ω ) u(0)
r

) )
dω.

We eliminate ∇ω · u(0)
ω in the last equation by means of (6.1.24). Then we obtain

d

dλ
s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

= (1 + 2λ0)
∫

Ω

(
1

(1− λ0)2
|∇ωu(0)

r |2 − 6
(1− λ0)2

|u(0)
r |2 − |u(0)

ω |2
)

dω.

Since s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ0

)
= 0, it follows that

− (λ0 + 2) (1− λ0)
1 + 2λ0

d

dλ
s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

= s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ0

)
− (λ0 + 2) (1− λ0)

1 + 2λ0

d

dλ
s
((u(0)

p(0)

)
,
(u(0)

p(0)

)
; λ)

∣∣∣
λ=λ0

= [uω, uω] + 2 (λ0 + 2) (1− λ0)
∫

Ω

|u(0)
ω |2 dω.

The right-hand side of the last equality is nonnegative and is equal to zero only
if u

(0)
ω = 0. In this case (6.1.24) implies u

(0)
r = 0 and, analogously to the proof of

Theorem 6.1.1, we get p(0) = 0. Hence λ0 is not an eigenvalue. This proves the
lemma.

Theorem 6.1.4. The eigenfunctions of the operator pencil A which correspond
to eigenvalues in the strip |Reλ+1/2| < 3/2 do not have generalized eigenfunctions.
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Proof: By the last assertion of Theorem 6.1.1 and by Theorem 6.1.3, it suffices
to prove the theorem for real eigenvalues in the interval (−1/2 , 1).

Let λ0 ∈ (−1/2 , 1) be an eigenvalue of the pencil A, (u(0), p(0)) an eigenvector
to this eigenvalue, and (u(1), p(1)) a corresponding generalized eigenvector. Then
the equations

a
((u(0)

p(0)

)
,
(v

q

)
; λ0

)
= 0,(6.1.26)

a
((u(1)

p(1)

)
,
(v

q

)
; λ0

)
= − d

dλ
a
((u(0)

p(0)

)
,
(v

q

)
; λ

)∣∣∣
λ=λ0

(6.1.27)

are satisfied for all (v, q) ∈ Hs × L2(Ω). Inserting
(v

q

)
= Jλ0

(u(1)

p(1)

)
into (6.1.26),

we get

s
((u(0)

p(0)

)
,
(u(1)

p(1)

)
; λ0

)
= 0.

By the symmetry of the form s, we conclude from this that

(6.1.28) 0 = s
((u(1)

p(1)

)
,
(u(0)

p(0)

)
; λ0

)
= a

((u(1)

p(1)

)
, Jλ0

(u(0)

p(0)

)
; λ0

)
.

Using (6.1.28) and inserting
(v

q

)
= Jλ0

(u(0)

p(0)

)
into (6.1.27), we obtain

d

dλ
a
((u(0)

p(0)

)
, Jλ0

(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

= 0.

From this and (6.1.26) we get

d

dλ
a
((u(0)

p(0)

)
, Jλ

(u(0)

p(0)

)
; λ

)∣∣∣
λ=λ0

= 0.

Since this contradicts Lemma 6.1.4, the theorem is proved.

6.1.7. The strip −1 ≤ Re λ ≤ 0. The following theorem describes the
spectrum of the pencil A in the strip −1 ≤ Re λ ≤ 0.

Theorem 6.1.5. 1) The set

{λ ∈ C : −1 ≤ Re λ ≤ 0}\{0,−1}
does not contain eigenvalues of the pencil A.

2) Let Hc be the set of constant vectors u = (u1, u2, u3) ∈ C3 which belong to
H. The numbers 0 and −1 are eigenvalues if and only if Hc 6= {0}. Both values
have the same geometric and algebraic multiplicities. The set of the eigenvectors to
λ0 = 0 coincides with the set {(u, 0) : u ∈ Hc}, while generalized eigenvectors do
not exist.

Proof: Due to Theorems 6.1.1 and 6.1.3, we can restrict ourselves in the proof
to real eigenvalues in the interval [−1/2, 0].
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Suppose that (u, p) is an eigenvector to the eigenvalue λ ∈ [−1/2, 0]. Then,
according to (6.1.12), we get

0 = s
((u

p

)
,
(u

p

)
; λ

)
(6.1.29)

= [uω, uω] +
∫

Ω

c

(
|∇ωur|2 + (λ + 2)(1− λ) |uω|2 − (λ + 2)(∇ωur)uω

− (λ + 2) uω · ∇ωur + 2 (λ + 2)(1− cλ) |ur|2

+ 2 ur ∇ω · uω + 2 (∇ω · uω)ur

)
dω

= [uω, uω]−
∫

Ω

|∇ω · uω|2 dω +
∫

Ω

c
∣∣∇ωur − (1− λ)uω

∣∣2 dω

+
∫

Ω

|∇ω · uω + 2ur|2 dω + 2
(
(λ + 2) (1− cλ)− 2

) ∫

Ω

|ur|2 dω,

where c = (λ + 2)/(1− λ) > 0 and

(λ + 2) (1− cλ)− 2 = − λ

1− λ
(λ2 + 5λ + 3)

{
= 0 for λ = 0,
> 0 for λ ∈ [−1/2, 0).

In the case λ ∈ [−1/2, 0) we conclude from (4.1.15) and (6.1.29) that ur = 0 and

uω = 0. Consequently, for arbitrary vr ∈
◦

W1
2(Ω) and vω = 0 we have

−(λ + 2)
∫

Ω

p vr dω = s
((u

p

)
,
(v

0

)
; 0

)
= 0

and, therefore, p = 0. This proves the first part of the theorem.
If λ = 0, then (6.1.29) together with (4.1.15) yields

∇ω · uω + 2ur = 0,(6.1.30)
∇ωur − uω = 0,(6.1.31)

∂θuθ − 1
sin θ

∂ϕuϕ − cot θ uθ = 0,(6.1.32)

∂θuϕ +
1

sin θ
∂ϕuθ − cot θ uϕ = 0.(6.1.33)

Summing up (6.1.30) and (6.1.32), we get ur + ∂θuθ = 0. Furthermore, by (6.1.31),
we have uθ = ∂θur and, consequently, ur + ∂2

θur = 0. Hence the functions ur, uθ

have the form

ur = c1(ϕ) cos θ + c2(ϕ) sin θ,

uθ = c2(ϕ) cos θ − c1(ϕ) sin θ.

Inserting uω = ∇ωur (i.e., uθ = ∂θur, uϕ = (sin θ)−1 ∂ϕur) into (6.1.33), we arrive
at

∂θ

(
(sin θ)−1 ∂ϕur

)
= 0.

Consequently, the function c1 in the representation of ur is constant. Moreover, it
holds uϕ = (sin θ)−1 ∂ϕur = c′2(ϕ). We insert this representation for uϕ and the
representations given above for ur and uθ into (6.1.30). Then we obtain

c2(ϕ) + c′′2(ϕ) = 0.
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This implies c2 = a cos ϕ + b sin ϕ and


ur

uθ

uϕ


 =




sin θ cos ϕ sin θ sin ϕ cos θ
cos θ cos ϕ cos θ sin ϕ − sin θ
− sinϕ cos ϕ 0







a
b
c1


 = J ·




a
b
c1


 ,

where a, b, c1 are constants. Furthermore, for vω = 0, q = 0 we have

s
((u

p

)
,
(v

q

)
; 0

)
= 2

∫

Ω

(
∇ωur · ∇ωvr + (2ur + 2∇ω · uω − p)vr

)
dω = 0

Using (6.1.30), (6.1.31) and (6.1.16), we get
∫
Ω

p vr dω = 0 for all vr ∈
◦

W1
2(Ω), i.e.,

p = 0.
Thus, λ0 = 0 is the only possible eigenvalue in the strip −1/2 ≤ Reλ ≤ 0 and

the corresponding eigenvectors (in the Cartesian coordinate system) have the form
(u, 0), where u ∈ Hc.

The assertions of the theorem concerning the number λ1 = −1 follow from
Theorem 6.1.1. The proof is complete.

Remark 6.1.2. The condition Hc 6= {0} in the second part of Theorem 6.1.5
is satisfied only in the following three cases:

(1) K is a dihedron bounded by two half-planes Γ+, Γ− and H = {u ∈
W 1

2 (Ω)3 : un = 0 on γ±}, where γ± = Γ± ∩ S2

(2) K is a dihedron bounded by two half-planes Γ+, Γ− which are orthogonal
to each other and H = {u ∈ W 1

2 (Ω)3 : un = 0 on γ+, uτ = 0 on γ−}
(3) K is a half-space bounded by a plane Γ and H = {u ∈ W 1

2 (Ω)3, uτ = 0
on γ = Γ ∩ S2}

In all other cases the numbers 0 and −1 do not belong to the spectrum of the pencil
A.

6.2. Real eigenvalues of the pencil to the mixed problem

We continue to study the operator pencil A introduced in the preceding sec-
tion. As we have shown there, the eigenvalues of A in the strip −2 ≤ Re λ ≤ 1
are real and the interval (−1, 0) is free of eigenvalues. In this section we study
the eigenvalues in the interval [0, 1]. We describe all eigenvectors and generalized
eigenvectors corresponding to λ = 1 when this number is an eigenvalue of the pencil
A. Furthermore, we derive a variational principle for the eigenvalues of A in the
interval [0, 1) and find the total multiplicity of the spectrum in [0, 1). We show that,
in the case of the boundary conditions (i) and (iii) on different parts of ∂K, this
multiplicity is an increasing function of K.

6.2.1. Classification of subspaces of W 1
2 (Ω)3. Some of the results of this

section depend on the validity of an additional condition on the subspace H.

Definition 6.2.1. The space H ⊂ W 1
2 (Ω)3 is said to be a subspace of the first

kind if ∫

∂Ω

un dω′ = 0 for all u ∈ H.

Otherwise, H will be called a subspace of the second kind.

Remark 6.2.1. Obviously, H is a subspace of the first kind if Iτ = ∅ and a
subspace of the second kind if Iτ 6= ∅.
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Furthermore, we note that∫

∂Ω

un dω′ =
∫

Ω

∇ω · uω dω

for arbitrary u ∈ W 1
2 (Ω)3. This equality holds if we set vr = 1 in the second part

of the proof of Lemma 4.1.3.

Lemma 6.2.1. Let f be an arbitrary function in L2(Ω).
1) If H is a subspace of the first kind, then for the solvability of the equation

(6.2.1) ∇ω · uω = f

in space Hω
s it is necessary and sufficient that

(6.2.2)
∫

Ω

f dω = 0.

2) If H is a subspace of the second kind, then the equation (6.2.1) is always
solvable in Hω

s .
3) There exists a constant c such that in both cases a solution uω ∈ Hω

s of the
equation (6.2.1) can be chosen which satisfies the estimate

(6.2.3) ‖uω‖h1
2(Ω) ≤ c ‖f‖L2(Ω) .

Proof: 1) It is evident that the condition (6.2.2) is necessary for the solvability
of the equation (6.2.1). By Lemma 5.2.1, this condition is also sufficient for the

solvability of (6.2.1) in the space
◦
h1
2(Ω). This proves the first assertion.

2) Let u
(0)
ω ∈ Hω

s and
∫
Ω
∇ω · u(0)

ω dω 6= 0. We write the solution uω ∈ Hω
s of

(6.2.1) in the form

uω = u(1)
ω + c u(0)

ω , where c =
( ∫

Ω

∇ω · u(0)
ω dω

)−1

·
∫

Ω

f dω.

Then an equation of the form ∇ω · u(1)
ω = g holds for u

(1)
ω , where g satisfies the

condition (6.2.2). This equation is solvable in
◦
h1
2(Ω). Thus, the second assertion is

proved.
3) We denote by X0 the space {uω ∈ Hω

s : ∇ω · uω = 0} and by X1 any direct
complement in Hω

s . Then, by assertions 1) and 2), the operator uω → ∇ω · uω is
an injective mapping from X1 onto the space {f ∈ L2(Ω) :

∫
Ω

f dω = 0} if H is a
subspace of the first kind and onto L2(Ω) if H is a subspace of the second kind.
Consequently, if we choose the solution of (6.2.1) from the space X1, the estimate
(6.2.3) with a constant c independent of f is satisfied. The proof is complete.

6.2.2. An auxiliary problem. Now we deal with the number λ = 1 which,
by Theorem 6.1.3, is the only possible eigenvalue on the line Reλ = 1.

For λ = 1 the sesquilinear form (6.1.17) takes the form

a
((u

p

)
,
(v

q

)
; 1

)
= [uω, vω] +

∫

Ω

(
∇ωur · ∇ωvr + 5 ur ∇ω · vω

)
dω(6.2.4)

+
∫

Ω

(
2 (∇ω · uω) vr − p∇ω · vω − (3ur +∇ω · uω) q

)
dω.
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Consequently, every eigenvector (u, p) corresponding to the eigenvalue λ = 1 satis-
fies

(6.2.5) 3 ur +∇ω · uω = 0 in Ω.

Furthermore, inserting vω = 0, q = 0 into (6.2.4) and using (6.2.5), we obtain

(6.2.6)
∫

Ω

(
(∇ωur) · ∇ωvr − 6 ur vr

)
dω = 0 for all vr ∈ Hr

s.

From (6.2.4)–(6.2.6) it follows that

(6.2.7) [uω, vω] +
∫

Ω

(
5 ur ∇ω · vω − p∇ω · vω

)
dω = 0 for all vω ∈ Hω

s .

The equation (6.2.7) together with (6.2.5) can be considered as a variational prob-
lem for the vector function (uω, p). We consider the following generalization of this
problem.

Problem P. Let the functions f, g ∈ L2(Ω) and the vector function F ∈
L2(Ω)2 be given. We seek a vector function (uω, p) ∈ Hω

s × L2(Ω) which satisfies
the integral identity

[uω, vω] +
∫

Ω

(
− p∇ω · vω + 2 (∇ω · uω) q

)
dω(6.2.8)

=
∫

Ω

(
f ∇ω · vω + F · vω + g q

)
dω

for all vω ∈ Hω
s , q ∈ L2(Ω).

Remark 6.2.2. From the integral identity (6.2.8) it follows that

(6.2.9) 2∇ω · uω = g in Ω.

Therefore, (6.2.8) can be written in the form

(6.2.10) [uω, vω]−
∫

Ω

p∇ω · vω dω =
∫

Ω

(
f ∇ω · vω + F · vω

)
dω,

where vω is an arbitrary element of the space Hω
s . Clearly, the integral identity

(6.2.8) is equivalent to the validity of the equality (6.2.9) and the relation (6.2.10).

6.2.3. Solvability of the auxiliary problem. Before turning to the solv-
ability of Problem P, we prove the following lemma.

Lemma 6.2.2. The set of the vector functions uω ∈ h1
2(Ω) satisfying the equality

(6.2.11) [uω, uω] = 0

is exhausted by linear combinations of the vector functions

(6.2.12) u(1)
ω =

(
sin ϕ

cos θ cos ϕ

)
, u(2)

ω =
(

cos ϕ

− cos θ sin ϕ

)
, u(3)

ω =
(

0
sin θ

)
.



6.2. REAL EIGENVALUES OF THE PENCIL TO THE MIXED PROBLEM 217

Proof: Equation (6.2.11) is equivalent to

∂θuθ = 0 in Ω,(6.2.13)
∂ϕuϕ + cos θ uθ = 0 in Ω,(6.2.14)

∂θ

( uϕ

sin θ

)
+

1
sin2 θ

∂ϕuθ = 0 in Ω.(6.2.15)

From (6.2.13) it follows that uθ = uθ(ϕ). Hence from (6.2.14) we conclude that

uϕ = − cos θ F (ϕ) + h(θ), where F ′ = uθ.

Using now (6.2.15), we find

uϕ = cos θ ∂ϕuθ + sin θ g(ϕ).

Consequently,
cos θ

(
∂ϕuθ + F (ϕ)

)
+ sin θ g(ϕ) = h(θ).

This implies

F = a cos ϕ + b sin ϕ + c1, g = c2, h(θ) = c1 cos θ + c2 sin θ,

where a, b, c1, c2 are constants. Thus, we get

uθ(ϕ) = b cosϕ− a sin ϕ, uϕ = − cos θ (a cos ϕ + b sin ϕ) + c2 sin θ.

This proves the lemma.

Remark 6.2.3. 1) By (4.1.12), we have ∇ω · uω = 0 for every vector function
uω ∈ h1

2(Ω) satisfying (6.2.11).
2) Let u

(j)
ω , j = 1, 2, 3, be the vectors (6.2.12). Then the vectors r

(
0

u
(j)
ω

)
,

j = 1, 2, 3, have the form of rigid body rotations


0
x3

−x2


 ,




x3

0
−x1


 ,



−x2

x1

0




in the Cartesian system of coordinates.

We denote by H0 the set of all linear combinations of the vector functions
(6.2.12) which belong to the space Hω

s .

Lemma 6.2.3. Let f = g = 0 and F = 0. Then the following assertions are
valid for the solutions of Problem P.

1) If H is a subspace of the first kind, then the solutions of Problem P are
exhausted by the vector functions (uω, p), where uω ∈ H0, p = const ∈ C.

2) If H is a subspace of the second kind, then the solutions of Problem P are
exhausted by the vector functions (uω, 0), where uω ∈ H0.

Proof: For f = g = 0, F = 0 it follows from (6.2.8) that ∇ω · uω = 0 and

[uω, vω]−
∫

Ω

p∇ω · vω dω = 0 for all v ∈ Hω
s

(see Remark 6.2.2). Consequently, [uω, uω] = 0. This implies [uω, vω] = 0 for all
vω ∈ Hω

s and ∫

Ω

p∇ω · vω dω = 0 for all vω ∈ Hω
s .
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Since
◦
h1

2(Ω) ⊂ Hω
s , the last equality can be satisfied only for constant p. Now the

assertions of the lemma follow from Definition 6.2.1 and Lemma 6.2.2.

Next we consider the inhomogeneous Problem P.

Lemma 6.2.4. Let f, g ∈ L2(Ω) and F ∈ L2(Ω)2.
1) If H is a subspace of the first kind, then for the solvability of Problem P it

is necessary and sufficient that

(6.2.16)
∫

Ω

g dω = 0 and
∫

Ω

F · vω dω = 0 for all vω ∈ H0.

2) If H is a subspace of the second kind, then the condition

(6.2.17)
∫

Ω

F · vω dω = 0 for all vω ∈ H0.

is necessary and sufficient for the solvability of Problem P.

Proof: The proof of the necessity of conditions (6.2.16), (6.2.17) is obvious. We
prove the sufficiency of these conditions.

Let H be a subspace of the first kind. As we have mentioned in Remark 6.2.2,
the solution (uω, p) of Problem P satisfies the equality 2∇ω ·uω = g. Using the first
condition in (6.2.16) and the first part of Lemma 6.2.1, we obtain the existence of
a solution u

(0)
ω of the equation ∇ω · uω = g in the space Hω

s . We write the solution
of Problem P in the form uω = u

(1)
ω + u

(0)
ω . Then for the determination of u

(1)
ω and

p we have the equation

[u(1)
ω , vω]−

∫

Ω

p∇ω · vω dω(6.2.18)

= −[u(0)
ω , vω] +

∫

Ω

(
f ∇ω · vω + F · vω) dω

which has to be satisfied for all vω ∈ Hω
s . Furthermore, u

(1)
ω has to satisfy the

equality ∇ω · u(1)
ω = 0 in Ω.

We introduce the space X = {uω ∈ Hω
s : ∇ω · uω = 0}. It is evident that

H0 ⊂ X . Let X0 be the direct complement of H0 in X . Then [·, ·] is a scalar product
in X0. We seek the element u

(1)
ω in the space X0. Inserting vω ∈ X0 into (6.2.18),

we obtain

(6.2.19) [u(1)
ω , vω] = −[u(0)

ω , vω] +
∫

Ω

F · vω dω for all vω ∈ X0.

The right-hand side of (6.2.19) is a bounded antilinear functional in X0. Hence the
Riesz theorem implies the existence of an element u

(1)
ω ∈ X0 satisfying (6.2.19).

Furthermore, due to the second condition of (6.2.16), the equality (6.2.19) holds for
arbitrary vω ∈ H0. Consequently, (6.2.19) is satisfied for all vω ∈ X .

Let X1 be the direct complement of the subspace X in Hω
s and let Y = {g ∈

L2(Ω) :
∫
Ω

g dω = 0}. By the first part of Lemma 6.2.1, the operator uω → ∇ω ·uω

is an isomorphism from X1 onto Y. We represent the element vω ∈ Hω
s as a sum
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vω = v
(0)
ω + v

(1)
ω , where v

(0)
ω ∈ X , v

(1)
ω ∈ X1. Then the integral identity (6.2.18) is

satisfied if

−
∫

Ω

p∇ω · v(1)
ω dω = −[u(0)

ω , v(1)
ω ] +

∫

Ω

F · v(1)
ω dω(6.2.20)

− [u(1)
ω , v(1)

ω ] +
∫

Ω

f ∇ω · v(1)
ω dω.

The right-hand side of (6.2.20) is a functional on X1 and, consequently, also on
Y. Therefore, there exists an element p ∈ Y satisfying (6.2.20) for all v

(1)
ω ∈ X1.

Thus, we have proved part 1) of the lemma. The proof of the second part proceeds
analogously.

6.2.4. The eigenvalue λ = 1 when H is a subspace of the first kind.
Now we are able to give a description of the eigenfunctions and generalized eigen-
functions corresponding to the eigenvalue λ = 1. We start with the case when H is
a subspace of the first kind.

Theorem 6.2.1. Suppose that Ω 6= S2 and H is a subspace of the first kind.
Then the number λ = 1 is always an eigenvalue of the pencil A and the vector
functions (0, uω, c), where uω ∈ H0, c ∈ C, are eigenvectors corresponding to this
eigenvalue. Moreover, the following assertions are true.

1) If the problem

(6.2.21)





∫

Ω

(∇ωw · ∇ωv − 6 w v
)
dω = 0 for all v ∈ Hr

s,

∫

Ω

w dω = 0

has only the trivial solution in the space Hr
s, then there are no other eigenvectors. If

the problem (6.2.21) has a nontrivial solution w ∈ Hr
s, then there are the additional

eigenvectors (w, uω, p), where (uω, p) is a solution of Problem P with f = −5w,
g = −6w, F = 0. Other eigenvectors to the eigenvalue λ = 1 do not occur.

2) For the existence of a generalized eigenvector to the eigenvalue λ = 1 and
the eigenvector (u(0)

r , u
(0)
ω , p(0)) it is necessary and sufficient that u

(0)
r = 0, u

(0)
ω = 0,

p(0) = const and that the problem

(6.2.22)





∫

Ω

(∇ωw · ∇ωv − 6 w v
)
dω = −

∫

Ω

p(0) v dω for all v ∈ Hr
s,

∫

Ω

w dω = 0

has a solution w ∈ Hr
s. In this case the corresponding generalized eigenvector has the

form (w, uω, p), where (uω, p) is a solution of Problem P with f = −5w, g = −6w,
F = 0. Other generalized eigenvectors do not exist.

Proof: Let (ur, uω, p) be an eigenvector to the eigenvalue λ = 1. If ur = 0, then,
by (6.2.5), we get ∇ω · uω = 0 and from (6.2.7) it follows that

[uω, uω]−
∫

Ω

p∇ω · vω dω = 0 for all vω ∈ Hω
s .
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Using the first part of Lemma 6.2.3, we conclude that uω ∈ H0 and p = const.
Now let ur be nonzero. Then, by (6.2.5) and (6.2.6), the function ur is a

solution of problem (6.2.21), and from (6.2.5), (6.2.7) it follows that the vector
function (uω, p) is a solution of the problem

(6.2.23)





∇ω · uω = −3ur

[uω, vω]−
∫

Ω

p∇ω · vω dω = −5
∫

Ω

ur ∇ω · vω dω for all vω ∈ Hω
s .

This gives the required properties of the eigenvectors.
We investigate the existence of generalized eigenvectors. Let (u(0)

r , u
(0)
ω , p(0)) be

an eigenvector to the eigenvalue λ = 1 and let (u(1)
r , u

(1)
ω , p(1)) be a corresponding

generalized eigenvector. Differentiating (6.1.17) with respect to λ, we obtain

d

dλ
a
((u

p

)
,
(v

q

)
; λ

)∣∣∣
λ=1

=
∫

Ω

(
− 6 ur vr − 3 uω · vω + ur ∇ω · vω

−(∇ω · uω) vr + p vr − ur q
)

dω.

Consequently, the generalized eigenfunction satisfies the equation

0 = a
((u(1)

p(1)

)
,
(v

q

)
; 1

)
+

d

dλ
a
((u(0)

p(0)

)
,
(v

q

)
; λ

)∣∣∣
λ=1

(6.2.24)

= [u(1)
ω , vω] +

∫

Ω

(
(∇ωu(1)

r ) · ∇ω vr + 2 (∇ω · u(1)
ω ) vr

)
dω

+
∫

Ω

(
5 u(1)

r ∇ω · vω − p(1)∇ω · vω − (3u(1)
r +∇ω · u(1)

ω ) q
)

dω

+
∫

Ω

(
− 6 u(0)

r vr − (∇ω · u(0)
ω ) vr + p(0) vr

)
dω

+
∫

Ω

(
− 3 u(0)

ω · vω + u(0)
r ∇ω · vω − u(0)

r q
)

dω

for all vr ∈ Hr
s, vω ∈ Hω

s , q ∈ L2(Ω). From this we obtain

(6.2.25) 3u(1)
r +∇ω · u(1)

ω + u(0)
r = 0 in Ω

and ∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr + 2 (∇ω · u(1)
ω ) vr − 6 u(0)

r vr(6.2.26)

− (∇ω · u(0)
ω ) vr + p(0) vr

)
dω = 0

for all vr ∈ Hr
s. Using the equalities ∇ω ·u(0)

ω = −3u
(0)
r and ∇ω ·u(1)

ω = −3u
(1)
r −u

(0)
r ,

we find that (6.2.26) is equivalent to

(6.2.27)
∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr − 6 u(1)
r vr

)
dω =

∫

Ω

(
5 u(0)

r vr − p(0) vr

)
dω
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for vr ∈ Hr
s. Substituting vr = u

(0)
r into (6.2.27) and using (6.2.6) for ur = u

(0)
r , we

obtain

(6.2.28)
∫

Ω

(
5 |u(0)

r |2 − p(0) u
(0)
r

)
dω = 0.

Furthermore, by (6.2.7), we have

[u(0)
ω , u(0)

ω ] +
∫

Ω

(
5 u(0)

r ∇ω · u(0)
ω − p(0)∇ω · u(0)

ω

)
dω = 0

The last equality together with ∇ω ·u(0)
ω = −3u

(0)
r and (6.2.28) implies [u(0)

ω , u
(0)
ω ] =

0. Therefore, u
(0)
ω ∈ H0. Moreover, we get u

(0)
r = − 1

3∇ω ·u(0)
ω = 0 (see Remark 6.2.3).

As it has been shown in the beginning of the proof, this implies p(0) = const.
Inserting vr = 0, q = 0 into (6.2.24), we find that

(6.2.29) [u(1)
ω , vω] +

∫

Ω

(
5 u(1)

r ∇ω · vω − p(1)∇ω · vω − 3 u(0)
ω · vω

)
dω = 0

for all vω ∈ Hω
s . In particular, if vω ∈ H0, then∫

Ω

u(0)
ω · vω dω = 0

and, therefore, u
(0)
ω = 0. Thus, we have shown that only eigenvectors of the form

(0, 0, p(0)) may have generalized eigenvectors. In this case the following relations
for the generalized eigenvectors hold (see (6.2.25), (6.2.27), (6.2.29)):

3 u(1)
r +∇ω · u(1)

ω = 0 in Ω,(6.2.30) ∫

Ω

(
(∇ωu(1)

r ) · ∇ωvr − 6 u(1)
r vr + p(0) vr

)
dω = 0 for all vr ∈ Hr

s,(6.2.31)

[u(1)
ω , vω] +

∫

Ω

(
5 u(1)

r − p(1)
)∇ω · vω dω = 0 for all vω ∈ Hω

s .(6.2.32)

From (6.2.30), (6.2.31) it follows that u
(1)
r is a solution of the problem (6.2.22),

while (6.2.32) is equivalent to Problem P for f = −5u
(1)
r , g = −6u

(1)
r , F = 0.

We show that there are no second generalized eigenvectors. Let (u(1)
r , u

(1)
ω , p(1))

be a generalized eigenvector to the eigenvector (0, 0, p(0)), p(0) = const. Suppose
there exists a second generalized eigenvector (u(2)

r , u
(2)
ω , p(2)). Since

d2

dλ2
a
((u(0)

p(0)

)
,
(v

q

)
;λ

)∣∣∣
λ=1

= −2
∫

Ω

(
2 u(0)

r vr + u(0)
ω · vω

)
dω = 0,

the equality (6.2.24) with (u(2)
r , u

(2)
ω ) instead of (u(1)

r , u
(1)
ω ) and (u(1)

r , u
(1)
ω ) instead

of (u(0)
r , u

(0)
ω ) holds. This implies (cf. (6.2.25), (6.2.27))

(6.2.33) 3u(2)
r +∇ω · u(2)

ω + u(1)
r = 0 in Ω

and

(6.2.34)
∫

Ω

(
(∇ωu(2)

r ) · ∇ωvr − 6 u(2)
r vr

)
dω =

∫

Ω

(
5 u(1)

r vr − p(1) vr

)
dω
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for all vr ∈ Hr
s. From (6.2.25), (6.2.33) and from the properties of the space Hω

s it
follows that

∫
Ω

u
(2)
r dω = 0. Hence, by (6.2.27), we have

∫

Ω

(∇ωu(2)
r · ∇ωu

(1)
r − 6 u(2)

r u
(1)
r

)
dω = −p(0)

∫

Ω

u(2)
r dω = 0.

Consequently, inserting vr = u
(1)
r into (6.2.34), we obtain

(6.2.35)
∫

Ω

(
5 |u(1)

r |2 − p(1) u
(1)
r

)
dω = 0.

Furthermore, using (6.2.30) and (6.2.32), we get

[u(1)
ω , u(1)

ω ]− 3
∫

Ω

(
5 |u(1)

r |2 − p(1) u
(1)
r

)
dω = 0.

From this and from (6.2.35) we conclude that [u(1)
ω , u

(1)
ω ] = 0, i.e., u

(1)
ω ∈ H0. Accord-

ing to (6.2.30) and Remark 6.2.3, this implies u
(1)
r = 0. Thus, second generalized

eigenvectors do not exist. The proof is complete.

6.2.5. The eigenvalue λ = 1 when H is a subspace of the second kind.

Theorem 6.2.2. Let Ω 6= S2 and let H be a subspace of the second kind.
1) If H0 6= {0}, then the number λ = 1 is always an eigenvalue of the pencil

A. The vectors (0, uω, 0), where uω ∈ H0, are eigenvectors to this eigenvalue. If the
problem

(6.2.36)
∫

Ω

(∇ωw · ∇ωv − 6 w v
)
dω = 0 for all v ∈ Hr

s

has only the trivial solution w = 0 in Hr
s, then there are no other eigenvectors.

If the problem (6.2.36) has a nontrivial solution w ∈ Hr
s, then there is also the

eigenvector (w, uω, p), where (uω, p) is a solution of Problem P with f = −5w,
g = −6w, F = 0. Generalized eigenvectors do not occur.

2) If H0 = {0}, then λ = 1 is an eigenvalue if and only if the problem (6.2.36)
has a nontrivial solution w ∈ Hr

s. Then there is the eigenvector (w, uω, p), where
(uω, p) is a solution of Problem P with f = −5w, g = −6w, F = 0. Generalized
eigenvectors do not occur.

Proof: First we investigate the existence and the structure of the eigenvectors.
Let (ur, uω, p) be an eigenvector of the pencil A corresponding to the eigenvalue
λ = 1. Then, analogously to the proof of Theorem 6.2.1, the functions ur, uω,
p satisfy (6.2.23). If ur = 0, then, by the second part of Lemma 6.2.3, we get
uω ∈ H0 and p = 0. Consequently, eigenvectors of the form (0, uω, p) exist if
and only if H0 6= {0}. Suppose that ur 6= 0. Then, by (6.2.6), the function ur is a
nontrivial solution of the problem (6.2.36), while (uω, p) is a solution of the problem
(6.2.23). This proves the assertions of the theorem concerning the eigenvectors to
the eigenvalue λ = 1.

Now we show that generalized eigenvectors do not exist. To this end, we
assume that (u(0)

r , u
(0)
ω , p(0)) is an eigenvector to the eigenvalue λ = 1 and that

(u(1)
r , u

(1)
ω , p(1)) is a corresponding generalized eigenvector. Analogously to the proof
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of Theorem 6.2.1, we find that u
(0)
ω = 0 and, consequently, ∇ω · u(0)

ω = 0. Hence, by
(6.1.24), we have u

(0)
r = 0. As we have shown in the beginning of the proof, this

implies p(0) = 0. Furthermore, analogously to the proof of Theorem 6.2.1, equality
(6.2.29) is satisfied. In particular, we have∫

Ω

u(0)
ω · vω dω = 0 for all vω ∈ H0

and, therefore, u
(0)
ω = 0. Thus, the vector (u(0)

r , u
(0)
ω , p(0)) is not an eigenvector.

This proves the theorem.

6.2.6. A variational principle for real eigenvalues. In this subsection
we get a variational principle for real eigenvalues of the operator pencil A in the
interval −1/2 ≤ λ < 1. Since the derivation of this variational principle is analogous
to Chapter 5, we give the formulation of the following lemmas and theorems without
proofs.

Eliminating the function ur and p in the quadratic form s(·, ·; λ) by the equa-
tions (5.5.1) and (5.5.2), we obtain the form

bω(uω, uω; λ) = [uω, uω] +
∫

Ω

1
(1− λ)(λ + 2)

|∇ω(∇ω · uω)|2 dω

+
∫

Ω

(
2

5− 6λ− 2λ2

(λ + 2)(1− λ)
|∇ω · uω|2 + (λ + 2)(1− λ) |uω|2

)
dω

which is defined on the space

Y = {uω ∈ Hω
s : ∇ω · uω ∈ Hr

s}.
Furthermore, let

b(uω, uω; λ) = (1− λ)(λ + 2) bω(uω, uω; λ).

This form satisfies the conditions (I)–(III) in Section 1.3, where α = −1/2, β = 1,
H = L2(Ω)2, H+ = Y. We introduce the functions

(6.2.37) µj(λ) = max
{V }

min
uω∈V \{0}

b(uω, uω;λ)
‖uω‖2L2(Ω)2

,

where the maximum is taken over all subspaces V ⊂ Y of codimension ≥ j−1. The
functions µj are continuous in the interval [− 1

2 , 1) and µj(−1/2) > 0. By Theorems
1.3.2 and 1.3.3, the following statement holds.

Theorem 6.2.3. All assertions of Theorem 5.5.1 are also valid for the eigen-
values of the pencil A and for the above introduced function µj.

Due to Theorem 6.2.3, the assertions on the eigenvalue λ = 1 can be used to
obtain information on the eigenvalues in the interval (−1/2, 1).

We consider first the case when Hs is a subspace of the first kind (i.e., Iτ = ∅,
compare with Theorem 5.5.3).

Theorem 6.2.4. Let Hs be a subspace of the first kind. If k is the maximal
dimension of the subspace X ⊂ {v ∈ Hr

s :
∫
Ω

v dω = 0} for which
∫

Ω

(|∇ωv|2 − 6 |v|2) dω < 0 for all v ∈ X\{0},
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then the interval [−1/2, 1) contains exactly k eigenvalues of the pencil A.

Analogously, the following assertion holds in the case when Hs is a subspace of
the second kind (i.e., Iτ 6= ∅.)

Theorem 6.2.5. Let Hs be a subspace of the second kind. If k is the maximal
dimension of the subspace X ⊂ Hr

s for which
∫

Ω

(|∇ωv|2 − 6 |v|2) dω < 0 for all v ∈ X\{0},

then the interval [−1/2, 1) contains exactly k eigenvalues of the pencil A.

As a consequence of Theorem 6.2.5, the following assertion holds.

Corollary 6.2.1. In the case Hr
s =

◦
W 1

2(Ω) (this takes place, for example,
if only the boundary conditions (i), (iii) appear in the definition of the space H),
the number of the eigenvalues in [−1/2, 1) monotonically depends on the domain
Ω ⊂ S2.

6.2.7. Examples.

1) Let Iτ 6= ∅, In = ∅. Then Hr
s =

◦
W 1

2(Ω), and Hs is a subspace of the second
kind. Furthermore, let Dα be a dihedral angle with opening α.

Theorem 6.2.6. If K ⊂ Dα with α ≤ π/2, and Dα\K 6= ∅, then the strip
−1/2 ≤ Re λ ≤ 1 does not contain eigenvalues of the pencil A.

Proof: Let Ωα = Dα ∩ S2 and let δ be the Beltrami operator on S2. Then the
smallest positive eigenvalue of the operator pencil

−δ − λ(λ + 1) :
◦

W
1
2(Ωα) → W−1

2 (Ωα)

is π/α (see Theorem 10.5.3). Hence

(6.2.38)
∫

Ωα

|∇ωv|2 dω ≥ 6
∫

Ωα

|v|2 dω, v ∈ ◦
W

1
2(Ωα),

provided α ≤ π/2. Since Ω ⊂ Ωα and Ωα\Ω 6= ∅, it follows that the inequal-

ity (6.2.38) is valid for v ∈ ◦
W 1

2(Ω) and the equality in (6.2.38) may be valid only
for v = 0. Using Theorems 6.2.2 and 6.2.5, we obtain the assertion of the theorem.

2) We consider a convex polyhedral cone K and suppose that ∂K\{0} consists
of a finite number of flat open faces Γ1, . . . , ΓN and rays. The convexity of K implies
that the angles between two adjacent faces are less than π. We assume that the
angles between Γ1 and adjoining faces are less than π/2.

Furthermore, let the boundary condition (ii) be prescribed on Γ1, while the
Dirichlet condition is given on the remaining faces.

Theorem 6.2.7. Under the above assumptions, the operator pencil A has only
one eigenvalue λ1 = 1 in the strip −1/2 ≤ Re λ ≤ 1. This eigenvalue has only the
eigenvectors (0, 0, 0, c), where c is a constant. There are no generalized eigenvectors
to this eigenvalue.
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Proof: We can suppose that the face Γ1 is located in the plane x3 = 0 and the
cone K is placed in the half-space x3 < 0. Let K+ and Ks be the following cones:

K+ = {x = (x1, x2, x3) : (x1, x2,−x3) ∈ K}, Ks = K ∪ K+ ∪ Γ1 .

Obviously, the cone Ks is also convex. By As we denote the operator pencil asso-
ciated with the Dirichlet problem for the Stokes system.

We consider the auxiliary spectral problem generated by the ratio of quadratic
forms:

(6.2.39)

∫
Ω
|∇ωv|2 dω∫
Ω
|v|2 dω

, v ∈ X\{0},

where Ω = K ∩ S2 and

X =
{

w ∈ W 1
2 (Ω) : w = 0 on γ2 ∩ γ3 ∩ · · · ∩ γN and

∫

Ω

w dω = 0
}

(here γj = Γj ∩ S2). Setting

(6.2.40) vs(ω) =
{

v(ω) if ω3 < 0,
v(ω1, ω2,−ω3) if ω3 > 0,

we obtain an extension of v ∈ X onto Ωs = Ks ∩ S2. It is evident that

vs ∈
{

w ∈ ◦
W

1
2(Ωs) :

∫

Ωs

w dω = 0
}

.

Using this extension operator, one can show that the least eigenvalue of the operator
induced by (6.2.39) is not greater than the infimum of the functional (6.2.39), where
Ω, v are replaced by Ωs, vs, respectively, and vs is defined by (6.2.40).

Since Ωs is placed in a half-sphere, it follows from Lemma 5.4.2 that the first
eigenvalue of the spectral problem in Ωs is greater than 6. Hence the same is
true for the spectral problem in Ω. Now the assertion of the theorem follows from
Theorems 6.2.1 and 6.2.4.

6.3. The Neumann problem for the Stokes system

Let K be the three-dimensional cone {x = (x1, x2, x3) : x3 > φ(x1, x2)} with
a function φ which is positively homogeneous of degree 1 and smooth on R2\{0}.
We consider the boundary value problem

−∆U +∇P = 0, ∇ · U = 0 in K,(6.3.1)
−P n + 2 εn(U) = 0 on ∂K\{0},(6.3.2)

where εn(U) denotes the vector

( 3∑

j=1

εij(U) nj

)3

i=1

and n is the exterior normal to ∂K\{0}. We show that the spectrum of the corre-
sponding operator pencil in the strip −1 ≤ Re λ ≤ 0 consists only of the eigenvalues
−1 and 0, that both eigenvalues have geometric multiplicity 3, and that they have
no generalized eigenvectors.
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6.3.1. The operator pencil generated by the Neumann problem. We
are interested in solutions of the Neumann problem (6.3.1), (6.3.2) which have the
form (6.1.6), (6.1.7). This means we seek vector functions (6.1.6), (6.1.7) satisfying
the integral identity

(6.3.3)
∫

K

(
2

3∑

i,j=1

εij(U) · εij(V )− P ∇ · V − (∇ · U)Q

)
dx = 0

for all (V, Q) ∈ W 1
2 (K)3 × L2(K) with compact support in K\{0}.

To this end, we introduce the parameter-depending sesquilinear form

a
((u

p

)
,
(v

q

)
;λ

)

=
1

2 log 2

∫

K
1/2<|x|<2

(
2

3∑

i,j=1

εij(U) · εij(V )− P ∇ · V − (∇ · U)Q

)
dx,

where

U = rλ u(ω), P = rλ−1 p(ω), V = r−1−λ v(ω), Q = r−2−λ q(ω),

u, v ∈ W 1
2 (Ω)3, and p, q ∈ L2(Ω).

The form a(·, ·; λ) generates the linear and continuous operator

A(λ) : W 1
2 (Ω)3 × L2(Ω) → (W 1

2 (Ω)3)∗ × L2(Ω)

by the equality
(
A(λ)

(u

p

)
,
(v

q

))
L2(Ω)4

= a
((u

p

)
,
(v

q

)
; λ

)
, u, v ∈ W 1

2 (Ω)3, p, q ∈ L2(Ω).

Then the vector function (6.1.6), (6.1.7) is a solution of the equation (6.3.3) if
and only if λ0 is an eigenvalue of the operator pencil A and the vector functions
(u(0), p(0)), . . . , (u(s), p(s)) form a Jordan chain corresponding to this eigenvalue.

Furthermore, analogously to Theorem 6.1.1, the following assertions can be
proved.

Theorem 6.3.1. 1) The operator A(λ) is Fredholm for all λ ∈ C.
2) The spectrum of the pencil A consists of isolated eigenvalues with finite

algebraic multiplicities.
3) There are no eigenvalues of the pencil A on the line Re λ = −1/2.
4) The number λ0 is an eigenvalue of the pencil A if and only if −1− λ0 is an

eigenvalue of this pencil. The geometric, algebraic and partial multiplicities of the
eigenvalues λ0 and −1− λ0 coincide.

6.3.2. The spectrum of the pencil A in the strip −1 ≤ Re λ ≤ 0.

Theorem 6.3.2. The strip −1 ≤ Re λ ≤ 0 contains exactly two eigenvalues of
the pencil A: λ0 = 0 and λ1 = −1. Both eigenvalues have algebraic multiplicity 3.
The eigenfunctions corresponding to the eigenvalue λ0 = 0 are (c, 0), where c ∈ C3

is an arbitrary constant vector. Generalized eigenfunctions corresponding to the
eigenvalues λ0 and λ1 do not exist.
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Proof: First we show that the line Re λ = 0 contains only the eigenvalue λ0 = 0
with multiplicity 3. Let U(x) = rλ0u(ω), P (x) = rλ0−1p(ω), Reλ0 = 0. Then

0 =
∫

K
1/2<|x|<2

(
− 2

∂εij

∂xj
+

∂p

∂xi

) ∂ui

∂x3
dx =

∫

∂K
1/2<|x|<2

n3

3∑

i,j=1

ε2
ij dσ

and, consequently, εij = 0 on ∂K\{0}. From this and from the boundary condition
(6.3.2) it follows that P = 0 on ∂K\{0}. Applying the operator ∇· to the first
equation of (6.3.1), we conclude that P is a harmonic function. Consequently,
p = 0 or λ0(λ0 − 1) is an eigenvalue of the Dirichlet problem for the Beltrami
operator. Due to the results of Section 2.2, the last can be excluded, i.e., we have
P = 0. This implies ∆εij = 0. Since εij = 0 on ∂K\{0}, we obtain, by the same
arguments as before, that εij = 0 in K and, therefore, U = const. Thus, λ0 = 0
is the only eigenvalue of the pencil A on the line Reλ = 0 and the corresponding
eigenfunctions have the form (c, 0), where c ∈ C3.

We suppose that there exists a generalized eigenfunction (u(1), p(1)) to the eigen-
value λ0 = 0. Then there is a solution (U,P ) of problem (6.3.1), (6.3.2) which has
the form

U = c log r + u(1)(ω), P = r−1 p(1)(ω).
Since the derivatives ∂U/∂xj , ∂P/∂xj have the form r−1vj(ω) and r−2wj(ω), re-
spectively, it can be shown, in the same way as above, that P = 0 and εij(U) = 0.
Consequently, the constant c in the representation of the vector function U vanishes.
This means that there are no generalized eigenvectors.

Therefore, the assertions of the theorem concerning the eigenvalue λ0 = 0 are
proved. The assertions on the eigenvalue λ1 = −1 follow from the last item of
Theorem 6.3.1. The proof of the absence of eigenvalues in the strip −1 < Reλ < 0
proceeds analogously to Theorem 4.3.1.

6.4. Notes

Sections 6.1, 6.2. The results are taken from the paper [138] by Kozlov,
Maz′ya and Roßmann. Let us note that all assertions are valid for other boundary
value problems to the Stokes system if the subspaceH determining the stable bound-
ary conditions (see Lions and Magenes [155, Ch.2,Remark 9.5]) has the properties
1) and 2) of Lemma 6.1.3.

For plane angles, singularities of solutions to the Stokes system with boundary
conditions of the form (i), (ii) (see the introduction to this chapter) were consid-
ered in papers by Maz′ya, Plamenevskĭı and Stupyalis [190] and Solonnikov [247].
Equations for the eigenvalues of the operator pencil corresponding to the Stokes
system with boundary conditions (i), (ii) or (iii) on the sides of an angle are given
in the paper [95] by Kalex. Orlt and Sändig [221] studied a more general class
of boundary value problems for the Stokes system in plane polygonal domains and
the corresponding operator pencils.

Section 6.3. Theorem 6.3.2 describing the spectrum of the pencil correspond-
ing to the Neumann problem in the strip −1 ≤ Re λ ≤ 0 was proved by Kozlov and
Maz′ya [127] (see also [132]).





CHAPTER 7

The Dirichlet problem for the biharmonic and
polyharmonic equations

This chapter is devoted to the study of singularities of solutions to the Dirichlet
problem for the biharmonic and polyharmonic equations in angles and cones. We
start with the biharmonic equation in the plane case when these singularities can
be represented by zeros of a simple entire function. The treatment here is analogous
to that in Sections 3.1 and 5.1.

In Section 7.2 we turn to the higher-dimensional case. Let K be a cone in
Rn and let Ω = K ∩ Sn−1. We consider the Dirichlet problem for the biharmonic
operator ∆2 in K. The corresponding operator pencil is given by

(7.0.1) L(λ) =
(
δ + (λ− 2)(λ + n− 4)

) (
δ + λ(λ + n− 2)

)
,

where δ is the Laplace-Beltrami operator on Sn−1.
Let M be a positive number such that M(M + n− 2) is the first eigenvalue of

the operator −δ in Ω with zero Dirichlet data. We introduce the quantity

σ0 = 2− n/2 +
√

(M + n/2− 1)2 + 1.

In Sections 7.2.2 and 7.2.3 we show that all eigenvalues of L in the strip 4−n−σ0 ≤
Re λ ≤ σ0 are real and have no generalized eigenfunctions.

We describe the variational principle obtained in Subsection 7.2.4 for the least
eigenvalue of L situated on the half-line [2−n/2,∞). Let u ∈ ◦

W2
2(Ω) and u 6= 0. By

R(u) we denote the least root of the equation (L(σ)u, u)L2(Ω) = 0 in the interval
[2− n/2,∞). The equation just mentioned is

‖δu‖2L2(Ω) + 2
(
ξ − n + 2

) (
δu, u

)
L2(Ω)

+ ξ
(
ξ − 2(n− 2)

) ‖u‖2L2(Ω) = 0,

where ξ = σ(σ + n− 4), and hence R(u) can be written explicitly. If there are no
roots in this interval, we set R(u) = ∞. We use the notation

σ1 = inf
u∈ ◦

W 2
2(Ω), u 6=0

R(u).

The variational principle in question states that if the value σ1 is finite, then it
coincides with the least eigenvalue of the pencil L on the half-line [2− n/2,∞). A
simple consequence of this principle is the decrease of the least eigenvalue under
the increase of Ω.

Estimates for the width of the strip |Re λ + (n− 4)/2| ≤ T , free of eigenvalues,
are given in Sections 7.2.4 and 7.2.5. The best result obtained here is the estimate

T > min{σ0, σ1}+ (n− 4)/2

229
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(see Theorem 7.2.4). As a corollary, we deduce that under the condition Ω 6= Sn−1,
the spectrum of L is placed outside one of the strips:

(7.0.2) |Re λ− 1/2| ≤ max(1/2,M − 1/2) if n = 3,

(7.0.3) |Reλ| ≤ max(1/2,M) if n = 4,

and

(7.0.4) 4− n−M ≤ Reλ ≤ M if n > 4.

We give a simple example showing the usefulness of this information for the study
of solutions to the Dirichlet problem

(7.0.5) ∆2U = F in G, U = ∂νU = 0 on ∂G,

where ν is the normal, F ∈ C∞(G), and G is a bounded domain in Rn which
coincides with a cone K near a boundary point O. The following three facts are
direct corollaries of (7.0.2)–(7.0.4) and Theorem 1.4.5.

If U ∈ ◦
W2

2(G), then

U ∈ C1,α(G) for n = 3,

U ∈ C0,1/2 +α(G) for n = 4,

U ∈ C0,α(G) for n > 4,

where α is a positive number depending on the cone K.
From the variational principle we deduce that, if Ω ⊂⊂ Sn−1

+ , then the strip
2−n ≤ Re λ ≤ 2 contains no eigenvalues of L. We also show that if, on the contrary,
Sn−1

+ ⊂⊂ Ω, then the interior of the last strip contains at least two eigenvalues of L,
which are symmetric with respect to the line Re λ = 2− n/2.

Hence from Theorem 1.4.5 we conclude that if K is a proper subset of a closed
half-space, then the solution u ∈ W 2

2 (G) of problem (7.0.5) belongs to the space
C2,α(G) with some positive α. Moreover, assuming that a closed half-space is a
proper subset of K, we see that there is a solution U ∈ W 2

2 (G) which is not in the
space C2,0(G).

Other applications of the spectral properties of L studied in this chapter to the
Dirichlet problem for the biharmonic equation are collected in Section 7.4.

In Section 7.3 we study the operator pencil corresponding to the Dirichlet
problem for the polyharmonic operator in the cone K. Let the differential operator

(7.0.6) L(λ) :
◦

W
m
2 (Ω) → W−m

2 (Ω),

where λ ∈ C, be defined by the equality

L(λ)u(ω) = (−1)mr2m−λ∆m
(
rλu(ω)

)
.

Direct calculations show that

(7.0.7) L(λ) = (−1)m
m−1∏

j=0

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
.

We formulate the main results of this section.
(i) Let 2m ≤ n − 4. Then the strip m − 2 − n/2 ≤ Re λ ≤ m + 2 − n/2

contains no eigenvalues of the pencil L.
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(ii) Let 2m = n−3. Then the strip −3 ≤ Reλ ≤ 0 is free of the spectrum of L.
The wider strip −3 − 1/2 ≤ Re λ ≤ 1/2 contains only real eigenvalues of
L, and corresponding eigenfunctions have no generalized eigenfunctions.
There is at most one eigenvalue on the interval (0, 1/2] which increases
when the domain Ω decreases.

(iii) Let 2m = n− 2. Then the strip −2 ≤ Re λ ≤ 0 is free of the spectrum of
the pencil L. The wider strip −3 ≤ Re λ ≤ 1 contains only real eigenvalues
of L and corresponding eigenfunctions have no generalized eigenfunctions.
There is at most one eigenvalue on the interval (0, 1] which increases when
the domain Ω decreases.

(iv) Let 2m > n− 2. Then the strip m− (n + 1)/2 ≤ Re λ ≤ m− (n− 1)/2 is
free of the spectrum of L, the strip m − 1 − n/2 ≤ Re λ ≤ m + 1 − n/2
contains only real eigenvalues of L, and corresponding eigenfunctions have
no generalized eigenfunctions. The eigenvalues on the interval (m− (n−
1)/2, m + 1− n/2] increase when the domain Ω decreases.

We give an application of the above information on the spectrum of L. Let G
be the same domain in Rn as in (7.0.5). Consider the Dirichlet problem

(−∆)mU = F in G,(7.0.8)

∂k
ν U = 0 on ∂G, k = 0, . . . , m− 1,(7.0.9)

where m > 2. This problem has a unique solution in the Sobolev space
◦

Wm
2 (G) if,

for example, F ∈ C∞(G). The following facts are corollaries of assertions (i)–(iv)
and Theorem 1.4.5.

If U ∈ ◦
Wm

2 (G), then

U ∈ C0,α for n− 4 ≤ 2m ≤ n− 1,

U ∈ C0,1/2+α for 2m = n.

If 2m > n, then we obtain U ∈ Cm−n/2,1/2+α or U ∈ Cm−n/2+1/2,α for even n and
odd n, respectively. Here α is a sufficiently small positive number.

7.1. The Dirichlet problem for the biharmonic equation in an angle

In this section we consider the operator pencil generated by the Dirichlet prob-
lem for the biharmonic equation. The equations which determine the eigenvalues
of this pencil are almost the same as for the Lamé system. Therefore, the results
obtained in Section 3.1 lead to analogous results for the biharmonic equation.

7.1.1. The operator pencil generated by the Dirichlet problem for
the biharmonic equation. Let K = {(x1, x2) ∈ R2 : 0 < r < ∞, |ϕ| < α/2},
α ∈ (0, 2π), be a plane angle. We seek solutions of the Dirichlet problem

∆2U = 0 in K,(7.1.1)
U = 0, ∂νU = 0 for ϕ = ±α/2.(7.1.2)

The biharmonic operator has the form

∆2 = r−4 L(∂ϕ, r∂r)

in the polar coordinates r, ϕ, where

L(∂ϕ, λ) =
(
∂2

ϕ + (λ− 2)2
) (

∂2
ϕ + λ2

)
.
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Therefore, inserting U(r, ϕ) = rλ u(ϕ) into (7.1.1), (7.1.2), we get the spectral
problem

L(∂ϕ, λ)u = 0 for |ϕ| < α/2,(7.1.3)
B u = 0,(7.1.4)

where Bu =
(
u(±α/2), u′(±α/2)

)
. The operator A(λ) =

(L(λ),B)
realizes a con-

tinuous mapping

W 4
2 ((−α/2, +α/2)) → L2((−α/2,+α/2))× C4

which is Fredholm for arbitrary complex λ and invertible for large purely imaginary
λ. Consequently, the spectrum of the operator pencil A is discrete and consists of
eigenvalues with finite algebraic multiplicities.

7.1.2. Distribution of eigenvalues in the complex plane. Obviously,
L(∂ϕ, λ) = L(∂ϕ, 2 − λ). For this reason, it suffices to study the spectrum of A
in the half-plane Re λ ≥ 1.

If λ 6= 0, 1, 2, then every solution of the equation L(∂ϕ, λ)u = 0 is a linear
combination of the functions

cos(λϕ), sin(λϕ), cos((λ− 2)ϕ), sin((λ− 2)ϕ),

It is more convenient to represent the general solution in the following form which
is suitable for arbitrary λ :

(7.1.5) u =
4∑

k=1

ck uk ,

where

u1(λ, ϕ) = cos λϕ, u2(λ, ϕ) = λ−1 sin λϕ,

u3(λ, ϕ) =
cosλϕ− cos(λ− 2)ϕ

λ− 2
, u4(λ, ϕ) =

(λ− 2) sin λϕ− λ sin(λ− 2)ϕ
λ(λ− 1)(λ− 2)

.

Inserting the function (7.1.5) into the boundary condition (7.1.4), we get the alge-
braic system

4∑

k=1

ck uk(λ,±α/2) = 0,

4∑

k=1

ck u′k(λ,±α/2) = 0

with the unknowns c1, . . . , c4 which is equivalent to the following two systems
{

c1 u1(λ, α/2) + c3 u3(λ, α/2) = 0,
c1 u′1(λ, α/2) + c3 u′3(λ, α/2) = 0,

(7.1.6)
{

c2 u2(λ, α/2) + c4 u4(λ, α/2) = 0,
c2 u′2(λ, α/2) + c4 u′4(λ, α/2) = 0.

(7.1.7)

The coefficients determinants of the systems (7.1.6) and (7.1.7) are

d+(λ) =
1

1− λ
(sin(λ− 1)α + (λ− 1) sin α),

d−(λ) =
1

λ(1− λ)(λ− 2)
(sin(λ− 1)α− (λ− 1) sin α).
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Every eigenvalue of the pencil A is a zero of one of the functions d+(λ) and d−(λ).
Since d+(1) = −(α + sin α) and d−(1) = sin α − α, the number λ = 1 is not an
eigenvalue of A. Moreover,

d+(2) = −2 sin α, d′+(2) = sin α− α cosα(7.1.8)

d−(2) =
1
2
(α cosα− sin α), d′−(2) = −3

2
d−(2)− α2

4
sin α.(7.1.9)

Therefore, λ = 2 is a root of the equation d+(λ) = 0 only for α = π, α = 2π and a
root of the equation d−(λ) = 0 only for α = α∗. Here, as in Section 3.1, α∗ denotes
the unique solution of the equation tan α = α in the interval (0, 2π]. In both cases
the root λ = 2 is simple.

If λ 6= 1, λ 6= 2, then the equations d±(λ) = 0 are equivalent to

(7.1.10) sin(λ− 1)α± (λ− 1) sin α = 0

which we already met (with λ instead of λ− 1) in Section 4.2 (cf. formulas (4.2.4),
(4.2.5)). Hence Theorems 4.2.1–4.2.3 can be reformulated as follows for the operator
pencil generated by problem (7.1.1), (7.1.2).

Theorem 7.1.1. Let α 6= π, α 6= 2π. Then the following assertions hold.
1) The lines Re λ−1 = kπ/α, k = 0, 1, . . ., do not contain points of the spectrum

of A.
2) For k = 3, 5, 7, ... the strip

(7.1.11) k
π

α
< Re λ− 1 < (k + 1)

π

α

contains two eigenvalues of A which are solutions of the equation d+(λ) = 0 for
α < π and of the equation d−(λ) = 0 for α > π.

3) For k = 2, 4, 6, ... the strip (7.1.11) contains two eigenvalues of A which
satisfy the equality d−(λ) = 0 for α < π and the equality d+(λ) = 0 for α > π.

4) The strip
π

α
< Re λ− 1 <

2π

α
contains two eigenvalues of A satisfying the equality d+(λ) = 0 if α < π and one
eigenvalue satisfying the equality d−(λ) = 0 if α > π.

5) If α > π, then the strip

(7.1.12) 0 < Reλ− 1 <
π

α

contains one eigenvalue satisfying the equation d+(λ) = 0. In the case α < π the
strip (7.1.12) is free of eigenvalues.

Theorem 7.1.2. Let α0, α∗, z(α), ξ+(α), ξ
(1)
+ (α), and ξ−(α) be the same quan-

tities as in Theorems 4.2.2 and 4.2.3.
1) If α ∈ (0, α0), then the spectrum of the operator pencil A in the strip

(7.1.13) 0 < Re λ− 1 < 2π/α

consists of two nonreal simple eigenvalues

1 +
z(α)
α

and 1 +
z(α)
α

.

2) For α = α0 the spectrum of A in the strip (7.1.13) consists of the unique
eigenvalue 1 + α∗/α0 which has the algebraic multiplicity 2.
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3) If α ∈ (α0, π), then the spectrum of A in the strip (7.1.13) consists of the
real eigenvalues

1 +
ξ+(α)

α
and 1 +

ξ
(1)
+ (α)

α
.

4) If α ∈ (π, 2π), then the spectrum of A in the strip (7.1.13) consists of the
eigenvalues 1 + ξ+(α)/α and 1 + ξ−(α)/α.

7.1.3. Eigenfunctions and generalized eigenfunctions of the operator
pencil. Now we establish formulas for the eigenfunctions and generalized eigen-
functions of the operator pencil A. If λ is a root of the equation d+(λ) = 0, then
the solutions of system (7.1.6) have the form

c1 = α1 u3(λ,
α

2
) + α2 u′3(λ,

α

2
),

c3 = −α1 u1(λ,
α

2
)− α2 u′1(λ,

α

2
).

Setting α1 = cos(λα/2), α2 = −λ−1 sin(λα/2), we obtain

c1 =
λ− (λ− 1) cos α− cos(λ− 1)α

λ(λ− 1)
,

c3 = −1.

Therefore, we have found the eigenfunction

u+(λ, ϕ) = c1 u1(λ, ϕ) + c3 u3(λ, ϕ)(7.1.14)

=
λ cos(λ− 2)ϕ− ((λ− 1) cos α + cos(λ− 1)α) cos λϕ

λ(λ− 1)
.

The function C 3 λ → u+ is analytic and satisfies the equation L(∂ϕ, λ)u+ = 0 and
the boundary conditions

u+(λ,±α/2) = α2(λ) d+(λ) ,

(∂ϕu+)(λ, α/2) = ∓α1(λ) d+(λ).

By analogous considerations, we get the following expression for an eigenfunction
corresponding to the roots of the equation d−(λ) = 0 :

u−(λ, ϕ) =
λ sin(λ− 2)ϕ + (cos(λ− 1)α− (λ− 1) cos α) sin λϕ

λ(λ− 1)(λ− 2)
.(7.1.15)

Defining u−(λ, ·) for all λ ∈ C by this equality, we get a function which satisfies the
equation L(∂ϕ, λ)u− = 0 and the boundary conditions

u−(λ,±α/2) = ±β2(λ) d−(λ),
(∂ϕu−)(λ,±α/2) = −β1(λ) d−(λ),

where β1(λ) = λ sin(λα/2), β2(λ) = cos(λα/2).
As it was mentioned before Theorem 7.1.1, there are no generalized eigenvectors

to nonreal eigenvalues and no second generalized eigenvectors to all eigenvalues.
The eigenvalues for which generalized eigenvectors exist have been described in
Section 3.1 after Lemma 3.1.1. In our case we have to set γ = 0 and to replace λ
by λ− 1 in formula (3.1.35).

The following theorem which can proved analogously to Lemma 3.1.4 gives a
formula for the generalized eigenfunctions.
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Theorem 7.1.3. If λ0 is a multiple root of the equation d±(λ) = 0, then the
generalized eigenfunction is given by

v±(λ0, ϕ) = (∂λu±)(λ0, ϕ).

Finally, we consider the cases α = π and α = 2π. In these cases common roots
of the equations d+(λ) = 0 and d−(λ) = 0 exist.

If α = π, then 3, 4, 5, . . . are simple zeros both of d+(λ) and d−(λ). These
numbers are eigenvalues of the pencil A with geometric and algebraic multiplicities
2. The corresponding eigenfunctions are given by (7.1.14) and (7.1.15). By (7.1.8),
(7.1.9), the number λ = 2 is a simple eigenvalue which satisfies the equality d+(λ) =
0. The eigenfunction corresponding to this eigenvalue is given by (7.1.14). Other
eigenvalues in the half-plane Re λ ≥ 1 do not exist.

Let α = 2π. Then the eigenvalues in the half-plane Re λ ≥ 1 form the sequence
λk = 1 + k/2 (k = 1, 2, . . .). All of them, except λ2, have geometric and algebraic
multiplicities 2 and are simple zeros both of d+(λ) and d−(λ). The eigenvalue
λ2 = 2 is simple. Again the eigenfunctions are given by (7.1.14) and (7.1.15).

7.2. The Dirichlet problem for the biharmonic equation in a cone

Here we study spectral properties of the operator pencil generated by the
Dirichlet problem for the biharmonic equation in a cone. We find estimates for
the energy strip. They imply, in particular, that the strip 2 − n ≤ Re λ ≤ 2 does
not contain eigenvalues of this pencil if the cone is situated in a half-space. We
show also that in a certain wider strip there are only real eigenvalues whose eigen-
functions have no generalized eigenfunctions. Moreover, these eigenvalues depend
monotonically on the cone.

7.2.1. The pencil generated by the biharmonic equation in a cone.
Let K be the cone {x ∈ Rn : x/|x| ∈ Ω}, n ≥ 3, where Ω is a domain on Sn−1 such

that Sn−1\Ω has nonempty interior. We define the space
◦

W2
2(Ω) as the closure of

C∞0 (Ω) with respect to the norm

‖u‖ ◦
W 2

2(Ω)
= ‖δu‖2L2(Ω),

where δ is the Beltrami operator. This space is closely and compactly imbedded
into L2(Ω). Furthermore, let W−2

2 (Ω) be the dual space of
◦

W2
2(Ω) with respect to

the scalar product in L2(Ω).
We are interested in solutions of the equation

(7.2.1) ∆2 U = 0 in K
which have the form

(7.2.2) U(x) = rλ0

s∑

k=0

1
k!

(log r)s us−k(ω), us−k ∈
◦

W
2
2(Ω).

We introduce the pencil

(7.2.3) L(λ) :
◦

W
2
2(Ω) → W−2

2 (Ω)

defined by
L(λ)u = r4−λ ∆2

(
rλ u(ω)

)
.
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Using the formula r2−λ∆(rλu(ω)) =
(
δ+λ(λ+n−2)

)
u(ω) (see Section 2.2), we get

the representation (7.0.1) for the operator L(λ). By Theorem 1.1.5, the function
(7.2.2) satisfies (7.2.1) if and only if λ0 is an eigenvalue of L, u0 is an eigenfunction,
and u1, . . . , us are generalized eigenfunctions corresponding to λ0.

We introduce the sesquilinear form

a(u, v;λ) = (δu, δv)L2(Ω) + λ(λ− 2)(λ + n− 2)(λ + n− 4) (u, v)L2(Ω)(7.2.4)

+
(
λ(λ + n− 2) + (λ− 2)(λ + n− 4)

)
(δu, v)L2(Ω) .

Clearly, (L(λ)u, v)L2(Ω) = a(u, v;λ) for all u, v ∈ ◦
W 2

2(Ω). The last equality can be
taken as another definition of the operator (7.2.3). It can be directly verified that

(7.2.5) (L(λ))∗ = L(4− n− λ)

Theorem 7.2.1. 1) There exists a constant c depending only on n such that
the inequality

a(u, u;λ) ≥ 1
2
‖δu‖2L2(Ω) − c

(|λ|+ 1
)4 ‖u‖2L2(Ω)

is valid for all u ∈ ◦
W2

2(Ω).

2) The operator L(2− n/2 + it) is positive definite on
◦

W2
2(Ω) for all real t.

Proof: 1) Estimating (δu, u) in (7.2.4) by the Schwarz inequality, we obtain the
first assertion.

2) Direct calculation gives

a(u, u; 2− n/2 + it) =
∥∥δu + (n/2 + it) (2− n/2 + it)u

∥∥2

L2(Ω)
.

The right hand side vanishes if and only if

(7.2.6) δu + (n/2 + it) (2− n/2 + it)u = 0, u ∈ ◦
W

2
2(Ω).

Clearly, this impossible for t 6= 0. We consider the case t = 0. Let first n > 3. In this
case the equality (7.2.6) is also impossible, since n

2 (2− n
2 ) ≤ 0 and (δu, u)L2(Ω) < 0

for u 6= 0. Let now n = 3. Integrating (7.2.6) over Ω, we obtain
∫
Ω

u dω = 0. In
order to show that (7.2.6) is not valid in this case, it suffices to prove that

−(δu, u)L2(S2) ≥ 2 ‖u‖2L2(S2)

for u ∈ W 1
2 (S2),

∫
Ω

u dω = 0. The last inequality follows from the fact that the sec-
ond eigenvalue of the operator −δ on the sphere S2 is equal to 2 (see Section 2.2).

From the last theorem and from Theorem 1.2.1 it follows that the spectrum of
the pencil L consists of eigenvalues with finite geometric and algebraic multiplicities.
The line Re λ = 2− n/2 is free of eigenvalues and every strip a ≤ Re λ ≤ b on the
complex plane contains only a finite number of eigenvalues of L.

7.2.2. A strip containing only real eigenvalues. We denote by µ0 =
µ0(Ω) the first eigenvalue of the operator −δ in the domain Ω with the Dirich-
let conditions on ∂Ω. By our assumptions on Ω, we have µ0 > 0. Let

σ0 = σ0(Ω) = 2− n/2 +
√

(n/2− 1)2 + 1 + µ0(Ω).

From the monotonicity of µ0 (see Theorem 2.2.4) it follows that the set function
σ0 is also monotonous, i.e., σ0(Ω1) ≥ σ0(Ω2) if Ω1 ⊂ Ω2.
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Representing 1 + µ0 as τ0(τ0 + n− 2) with τ0 > 0, we obtain that σ0 = 1 + τ0.

Theorem 7.2.2. The strip

4− n− σ0 ≤ Re λ ≤ σ0

may only contain real eigenvalues of the pencil L.

Proof: The quadratic form

(7.2.7) b(u, u;λ)
def
= −(

δu, u
)
L2(Ω)

−
(
λ2 + (n− 4)λ− n + 2

)
‖u‖2L2(Ω)

is positive definite on
◦

W 1
2(Ω) for real λ satisfying the inequality λ2 + (n − 4)λ −

n + 2 < µ0 or, what is the same, 4− n− σ0 < λ < σ0. By Theorem 7.2.1, the line
Re λ = 2− n/2 does not contain eigenvalues of L. Let λ0 = σ + it be an eigenvalue
of the pencil L, where σ ∈ [4− n− σ0, σ0], σ 6= 2− n/2, t ∈ R. Furthermore, let u
be an eigenfunction correspnding to this eigenvalue. Then

0 = Im a(u, u;λ0) = −2t (2σ + n− 4)
(
b(u, u; σ) + t2 ‖u‖2L2(Ω)

)
.

The right side of the last equality is nonzero for t 6= 0, σ ∈ [4 − n − σ0, σ0],
σ 6= 2−n/2. Consequently, the eigenvalue λ0 must be real. This proves the theorem.

7.2.3. On generalized eigenfunctions.

Theorem 7.2.3. The eigenfunctions corresponding to eigenvalues in the strip

4− n− σ0 < Re λ < σ0

do not have generalized eigenfunctions.

Proof: By Theorem 7.2.2 and (7.2.5), we may restrict ourselves in the proof to
real eigenvalues in the interval (2 − n/2, σ0). For these eigenvalues the quadratic
form (7.2.7) is positive definite. Hence

(7.2.8)
d

dλ

(L(λ)u, u
)
L2(Ω)

∣∣∣
λ=λ0

= −2 (2λ0 + n− 4) b(u, u; λ0) < 0

for every eigenvalue λ0 ∈ (2−n/2, σ0). Suppose that u0 is an eigenfunctions and u1

a generalized eigenfunction corresponding to λ0. Then it follows from the equality
L′(λ0) u0 + L(λ0)u1 = 0 that

(L′(λ0)u0, u0

)
L2(Ω)

= −(L(λ0)u1, u0

)
L2(Ω)

= −(
u1,L(λ0)u0

)
L2(Ω)

= 0.

This contradicts (7.2.8). The theorem is proved.

Note that, by Theorems 7.2.1 and (7.2.8), conditions (I)–(III) of Section 1.3

are satisfied for the form a, where H = L2(Ω), H+ =
◦

W2
2(Ω), α = 2− n/2, β = σ0.

Therefore, all results of Section 1.3 are valid for this case. Using Theorem 1.3.5 and
the monotonicity of the space

◦
W 2

2(Ω) with respect to Ω, we obtain, in particular,
that the eigenvalues of L on the interval (2− n/2, σ0) increase when the domain Ω
becomes smaller.
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7.2.4. Estimates for the width of the energy strip. We denote by σ1 =
σ1(Ω) the greatest number (including +∞) such that σ1 > 2−n/2 and the operator
L(σ) is positive definite for σ ∈ [2−n/2, σ1) (cf. definition of λ∗ in Section 1.3). By
the second part of Theorem 7.2.1, this number exists. It can be easily seen that the
set function σ1 is nonincreasing with respect to Ω. Moreover, the following lemma
holds.

Lemma 7.2.1. Let Ω1, Ω2 be domains on the sphere such that Ω1 ⊂⊂ Ω2. Then
σ1(Ω1) > σ1(Ω2). (The notation Ω1 ⊂⊂ Ω2 is introduced in Section 3.3.3.)

Proof: Suppose that σ1(Ω1) = σ1(Ω2) = λ0 and u ∈ ◦
W 2

2(Ω1)\{0} is such that(L(λ0)u, u
)
L2(Ω1)

= 0. Extending u by zero to Ω2\Ω1, we get the same relation for
Ω2. Since the operator L(λ0) is nonnegative on L2(Ω2), we obtain that L(λ0)u = 0
in Ω2. The last equation implies that u is analytic in Ω2 and, hence, u = 0. This
contradicts our assumption on u.

Theorem 7.2.4. 1) The strip

4− n−min{σ0, σ1} < Re λ < min{σ0, σ1}
does not contain eigenvalues of the pencil L.

2) If σ1 < ∞, then σ1 is an eigenvalue of the pencil L.

Proof: 1) Due to (7.2.5) and Theorem 7.2.1, it is sufficient to prove that there
are no eigenvalues of the pencil L in the strip 2− n/2 < Re λ < min{σ0, σ1}. This
follows from Theorem 7.2.2 and from the definition of the quantity σ1.

2) According to the definition of σ1, the operator L(σ1) has the lower bound
zero, whence statement 2) follows.

7.2.5. Properties of σ1. We give another definition of σ1. For u ∈ ◦
W 2

2(Ω),
u 6= 0, let R(u) denote the least root of the equation

a(u, u;σ) = 0

in the interval [2− n/2,∞]. Lemma 1.3.2 immediately implies the following asser-
tion.

Lemma 7.2.2. The quantity σ1 satisfies

(7.2.9) σ1(Ω) = inf
u∈ ◦

W 2
2(Ω)\{0}

R(u).

If σ1 < ∞, then the infimum is attained on the eigenfunction u1 of the pencil A
corresponding to the eigenvalue σ1.

The equation a(u, u;σ) = 0 can be written in the variable ξ = σ(σ + n− 4) as

‖δu‖2L2(Ω) + 2
(
ξ − n + 4

) (
δu, u

)
L2(Ω)

+ ξ (ξ − 2n + 4) ‖u‖2L2(Ω) = 0.

Solving this quadratic equation and expressing σ1 by ξ, we get the formula

(7.2.10) σ1 = 2− n/2 +
√

(2− n/2)2 + Ξ,

where

(7.2.11) Ξ = inf
u∈ ◦

W
2
2(Ω)

‖u‖L2(Ω)=1, D(u)≥0

(
− (δu, u)L2(Ω) + n− 2−

√
D(u)

)
,
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and
D(u) =

(
(δu, u)L2(Ω)

)2 − ‖δu‖2L2(Ω) + (n− 2)2 − 4 (δu, u)L2(Ω) .

Lemma 7.2.3. If n ≥ 4 or n = 3 and µ0 ≥ 3/4, then

(7.2.12) σ1(Ω) > M,

where M is the positive number such that M(M + n− 2) = µ0.

Proof: By the Schwarz inequality,

(7.2.13)
∣∣(δu, u)L2(Ω)

∣∣2 ≤ ‖δu‖2L2(Ω)

if ‖u‖L2(Ω) = 1. Moreover, equality takes place there only if δu = cu with some

constant c. But the last relation is impossible for u ∈ ◦
W 2

2(Ω). Hence we have a
strict inequality in (7.2.13) and, therefore,

(7.2.14) D(u) < (n− 2)2 − 4(δu, u)L2(Ω) .

Since the right-hand side in (7.2.11) attains its infimum at a certain u0 ∈
◦

W 2
2(Ω),

we have, owing to (7.2.14),

(7.2.15) Ξ > −(δu0, u0)L2(Ω) + n− 2−
√
−4 (δu0, u0)L2(Ω) + (n− 2)2 .

If n ≥ 4, then the right-hand side in (7.2.15) is an increasing function with respect
to −(δu0, u0)L2(Ω). Since the last quantity is not less than µ0, we have

Ξ > µ0 + n− 2−
√

4µ0 + (n− 2)2 = M(M + n− 4).

Therefore, σ1 > M .
If n = 3, then the function

Λ → Λ + 1−
√

4Λ + 1

decreases for Λ ∈ (0, 3
4 ) and increases for Λ > 3

4 . Hence,

Ξ > −1
4

if µ0 <
3
4
,

Ξ > µ0 + 1−
√

4µ0 + 1 = M(M − 1) if µ0 ≥ 3
4

.

The above obtained inequalities for Ξ and (7.2.10) imply (7.2.12).

Remark 7.2.1. The function σ1 satisfies also the estimate σ1(Ω) > (5− n)/2.
This follows from the monotonicity of the set function σ1 and from the inequality
|Re λj −m+n/2| > 1/2 for the eigenvalues of the operator pencil generated by the
Dirichlet for a 2m order strongly elliptic differential operator in a Lipschitz cone
which will be proved in Section 11.1 (see Theorem 11.1.1).

In the next theorem we present estimates for the energy strip of the pencil L
in terms of M .

Theorem 7.2.5. The strips

(7.2.16) 1−max(M, 1) ≤ Re λ ≤ max(M, 1) for n = 3,

(7.2.17) −max(M, 1/2) ≤ Re λ ≤ max(M, 1/2) for n = 4,

and

(7.2.18) 4− n−M ≤ Re λ ≤ M for n > 4
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contain no eigenvalues of the pencil L.

Proof: Since σ0 > M + 1, the above assertion follows from Theorem 7.2.4,
Lemma 7.2.3 and Remark 7.2.1.

7.2.6. On the eigenvalues of L in the interval [2−n/2, σ0). The opera-
tor L(λ) is selfadjoint and bounded from below for real λ. For λ ≥ 2−n/2 we denote
by {µj(λ)}j≥1 a nondecreasing sequence of eigenvalues of L(λ) counted with their
multiplicities and by vj(λ) an eigenfunction corresponding to µj(λ). We can choose
vj in such a way that the system {vj(λ)}j≥1 forms a orthonormal basis in L2(Ω).
The functions µj are continuous (moreover, piecewise analytic) with respect to λ
(see, for example, Kato’s book [96, Ch.VII,Th.1.8]). From the variational principle
it follows that the functions µj(λ) are decreasing with respect to Ω. Let N be the
integer satisfying µN (σ0) < 0 and µN+1(σ0) ≥ 0.

Lemma 7.2.4. The interval 2 − n/2 ≤ λ < σ0 contains exactly N eigenvalues
(counted with their geometric multiplicities) of the operator pencil L. These eigen-
values are zeros of the function µj, j ≤ N , with eigenfunctions vj. Moreover, every
function µj has at most one zero at the interval [2− n/2, σ0).

Proof: First, we prove that the function µj has only one zero on [2− n/2, σ0).
Since µj(2 − n/2) > 0 (because of positivity of (L(2 − n/2), see Theorem 7.2.1)
and µj(σ0) < 0, the function µj has at least one root at the interval [2− n/2, σ0).
Owing to Theorem 1.3.2, the function µj has at most one root on this interval.

Second, the number λ∗ ∈ [2−n/2, σ0) is an eigenvalue of the pencil L if and only
if this number is a zero of one of the functions µ1, . . . , µN . Clearly, the functions
vj are eigenfunctions of the pencil L corresponding to the eigenvalue λ∗, and these
functions exhaust all eigenfunctions corresponding to λ∗.

Corollary 7.2.1. The eigenvalues of the pencil L in [2−n/2, σ0) are decreas-
ing functions with respect to the domain Ω and located in the interval (0, σ0).

Proof: The assertion follows from Lemma 7.2.4, from the absence of eigenvalues
on [2−n/2, 0] (see Section 7.2.3) and from the monotonicity property of the function
µj .

7.2.7. The case of a cone contained in a half-space. Using Theorem
7.2.4 and the monotonicity of the set functions σ0, σ1, we can prove the following
estimate for the width of the energy strip in the case when Ω is contained in the
half-sphere Sn−1

+ .

Theorem 7.2.6. If Ω ⊂⊂ Sn−1
+ , where Sn−1

+ denotes the hemisphere Sn−1∩Rn
+,

then the strip
2− n ≤ Reλ ≤ 2

is free of eigenvalues of the pencil L.

Proof: By Theorem 2.2.4 and Lemma 7.2.1, the set functions σ0 and σ1 are
strictly monotonous. Hence, by Theorem 7.2.4, it is sufficient to establish the
relations σ0(Sn−1

+ ) > 2 and σ1(Sn−1
+ ) = 2. The first relation follows immediately

from the equality µ0(Sn−1
+ ) = n− 1 (see Section 2.2) and from the definition of σ0.

Analogously to Theorem 2.2.2, it can be shown that all solutions of the equation
∆2U = 0 in the half-space Rn

+ which have the representation U(x) = rλu(ω) with

Re λ > 2− n/2, u ∈ ◦
W2

2(S
n−1
+ ) can be written in the form U(x) = x2

np(x), where p
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is homogeneous polynomial. From this it follows that the eigenvalues of the pencil
L in the half-plane Reλ > 2 − n/2 for Ω = Sn−1

+ are exhausted by the values
2, 3, . . . . Using the second part of Theorem 7.2.4, we conclude that σ1(Sn−1

+ ) = 2.
This proves the theorem.

7.3. The polyharmonic operator

Now we deal with the pencil L corresponding to the Dirichlet problem for the
polyharmonic operator (−∆)m in the cone K = {x ∈ Rn : x/|x| ∈ Ω} which is

defined by (7.0.7) for the function u ∈ ◦
W m

2 (Ω). Here
◦

W m
2 (Ω) is the closure of

C∞0 (Ω) with respect to the norm

‖u‖W m
2 (Ω) =

( ∫

K
1/2<|x|<2

∑

|α|≤m

|Dα
x u(x)|2 dx

)1/2

,

where in the integral on the right the function u is extended to K by u(x) = u(x/|x|).
As in Section 7.2, we will assume that Sn−1\Ω has a nonempty interior. We give
estimates for the energy strip and for strips containing only real eigenvalues. For
these eigenvalues we prove the monotone dependence on the domain Ω.

7.3.1. Some properties of L. We begin with a positivity property of L.

Lemma 7.3.1. Let λ = m− n/2 + iτ , τ ∈ R. Then for all u ∈ ◦
Wm

2 (Ω) there is
the inequality

(7.3.1)
(L(λ)u, u

)
L2(Ω)

≥ c
(‖u‖2W m

2 (Ω) + |λ|2m ‖u‖2L2(Ω)

)
,

where c is a positive constant.

Proof. 1) Consider first the case m = 2k. Then for λ = m− n/2 + iτ

L(λ) = L1(λ)L1(λ),

where

L1(λ) =
k−1∏

j=0

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
.

Hence

(7.3.2)
(L(λ)u, u

)
L2(Ω)

= ‖L1(λ)u‖2L2(Ω).

Here the kernel of L1(λ) is trivial on
◦

Wm
2 (Ω), since the order of L1 is equal to m.

From (7.3.2) we get (7.3.1) for large |τ |. If |τ | ≤ C, where C is a constant, then we
have ‖L1(λ)u‖L2(Ω) ≥ c ‖u‖W m

2 (Ω) with some positive c depending on C.
2) Let m = 2k + 1. Then

−L(λ) = (δ + (λ− 2k)(λ− 2k + n− 2))L1(λ) L1(λ)

= (δ − (1− n/2)2 − τ2)L1(λ)L1(λ) ,

which implies

(7.3.3)
(L(λ)u, u

)
L2(Ω)

=
(
(−δ + (1− n/2)2 + τ2)L1(λ)u, L1(λ)u

)
L2(Ω)

.

This together with ker L1(λ)u = {0} on
◦

Wm
2 (Ω) implies (7.3.1).
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The above lemma shows, in particular, that the operator (7.0.6) is isomorphic
for λ = m− n/2. Clearly, the operator

L(λ)− L(m− n/2) :
◦

W
m
2 (Ω) → W−m

2 (Ω)

is compact for all λ ∈ C. Therefore, the operator (7.0.6) is Fredholm for every
λ. From this we conclude that the spectrum of L consists of eigenvalues of finite
algebraic multiplicity and that the only accumulation point of the spectrum is
infinity (see Theorem 1.1.1).

It can be easily verified that

L(λ) = L(2m− n− λ) .

Thus, it suffices to study spectral properties of the pencil L in the half-plane Re λ >
m− n/2.

Remark 7.3.1. In the cases 2m < n and 2m ≥ n, n odd, the assertion of
Lemma 7.3.1 is true for arbitrary Ω ⊂ Sn−1. This follows from the fact that
L1(λ)u = 0 for u ∈ Wm

2 (Sn−1) implies ∆k(rλu(ω)) = 0 on Sn−1 and, consequently,
u = 0 (see Theorem 10.2.1).

7.3.2. Eigenvalues on the line Re λ = m + 1 − n/2.

Lemma 7.3.2. The number λ = m + 1−n/2 + iτ with nonzero real τ is not an
eigenvalue of the pencil L.

Proof: 1) Let m = 2k + 1 and λ = m + 1− n/2 + iτ . Then

−L(λ) =
(
δ + λ(λ + n− 2)

)
L2(λ)L2(λ) ,

where

L2(λ) =
k∏

j=1

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
.

Therefore,

(7.3.4) Im
(L(λ)u, u

)
L2(Ω)

= 2mτ ‖L2(λ)u‖2L2(Ω) .

The right-hand side is only zero if τ = 0 or L2(λ)u = 0. Owing to the Dirichlet
boundary conditions, this implies u = 0. Hence (L(λ)u, u) 6= 0 for τ 6= 0 and u 6= 0.
The result follows for odd m.

2) Now let m = 2k + 2. Then

L(λ) =
(
δ + λ(λ + n− 2)

) (
δ + (λ− 2k − 2)(λ− 2k + n− 4)

)
L2(λ)L2(λ).

Since
(
δ + λ(λ + n− 2)

) (
δ + (λ− 2k − 2)(λ− 2k + n− 4)

)

=
(
δ + (iτ + m)2 − (1− n/2)2

) (
δ − τ2 − (1− n/2)2

)
,

we obtain

(7.3.5) Im
(L(λ)u, u

)
L2(Ω)

= 2mτ
(
(−δ + (1− n/2)2 + τ2) L2(λ)u, L2(λ)u

)
L2(Ω)

.

As in the case of odd m, the right hand side vanishes only for τ = 0 or u = 0. The
proof is complete.



7.3. THE POLYHARMONIC OPERATOR 243

Lemma 7.3.3. Let λ0 = m + 1− n/2 be an eigenvalue of the pencil L and u0 a
corresponding eigenfunction. Then

(7.3.6)
d

dλ

(L(λ)u0, u0

)
L2(Ω)

∣∣∣
λ=λ0

> 0 .

Proof: The quadratic form (L(λ)u0, u0)L2(Ω) is a polynomial in λ = σ + iτ . We
represent it as

(L(λ)u0, u0)L2(Ω) = p(σ, τ) + iτ q(σ, τ),

where and p and q are real-valued polynomials with respect to σ and τ . Since

d

dλ

(L(λ)u0, u0

)
L2(Ω)

=
d

idτ

(L(λ)u0, u0

)
L2(Ω)

,

we have
d

dλ

(L(λ)u0, u0

)
L2(Ω)

=
d

idτ
p(σ, τ) + q(σ, τ) + τ

d

dτ
q(σ, τ).

Using the fact that the left-hand side in this identity is real, we obtain

d

dλ

(L(λ)u0, u0

)
L2(Ω)

∣∣∣
λ=λ0

= q(λ0, 0) .

Thus,
d

dλ

(L(λ)u0, u0

)
L2(Ω)

∣∣∣
λ=λ0

=
1
τ

Im
(L(λ0)u0, u0

)
,

and inequality (7.3.6) follows from the positivity (after division by τ) of the right
hand sides in (7.3.4) and (7.3.5).

Corollary 7.3.1. If λ0 = m + 1− n/2 is an eigenvalue of the pencil L, then
it has no generalized eigenfunctions.

Proof: Let λ0 be an eigenvalue and u0 a corresponding eigenfunction. Then
the equation for a generalized eigenfunction u1 is

L(λ0)u1 = − d

dλ
L(λ)u0|λ=λ0 .

In order to show that it is unsolvable, we multiply (in L2(Ω)) both sides of the
equation by u0. Then the left-hand side vanishes, since u0 is eigenfunction and the
operator L(λ0) is selfadjoint. But the right-hand side differs from zero by Lemma
7.3.3. This proves the corollary.

7.3.3. Eigenvalues in the strip m − n/2 ≤ Re λ ≤ m + 1 − n/2. We
consider the operator pencil L for real λ. Clearly, the operator L(λ) is selfadjoint
and semibounded from below. For every λ ≥ m − n/2 we denote by {µj(λ)}j≥1 a
nondecreasing sequence of eigenvalues of the operator L(λ), counted with their mul-
tiplicities. Furthermore, we denote by vj(λ) an eigenfunction of L(λ) corresponding
to µj(λ). One can suppose that the system {vj(λ)}j≥1 is an orthonormal basis in
L2(Ω). It is known (see, for example Kato’s book [96, Ch.VII,Th.1.8]) that the
functions µj are continuous (moreover piecewise analytic) on [m − n/2,∞). From
the variational principle for µj(λ) it follows that the functions µj increase when the
domain Ω becomes smaller.

Let N be the number for which µN (m+1−n/2) ≤ 0 and µN+1(m+1−n/2) > 0.



244 7. BIHARMONIC AND POLYHARMONIC EQUATIONS

Lemma 7.3.4. The strip

(7.3.7) m− n/2 ≤ Re λ ≤ m + 1− n/2

contains exactly N eigenvalues of the operator pencil L counted with their geometric
multiplicities. All these eigenvalues are real and have no generalized eigenfunctions.
Every function µj has at most one zero on the interval [m− n/2, m + 1− n/2].

Proof: 1) We consider the functions µ1, . . . , µN . By Lemma 7.3.1, the operator
L(m − n/2) is positive. Consequently, µj(m − n/2) > 0 for all j. If j ≤ N , then
µj(m + 1 − n/2) ≤ 0 and, therefore, the function µj has at least one zero, say
λj , on the interval (m − n/2,m + 1 − n/2]. Clearly, λj is an eigenvalue of the
pencil L and vj is an eigenfunction corresponding to λj . Thus, we have proved
that the total geometric multiplicity of the eigenvalues situated on the interval
(m − n/2,m + 1 − n/2] is not less than N . Moreover, if one of the functions µj ,
j ≤ N , has more than one zero on (m−n/2,m+1−n/2], then the total geometric
multiplicity of eigenvalues of L in the strip (7.3.7) is greater than N .

2) We consider the family of operator pencils Lt(λ) = L(λ)+tI, where t ≥ 0 and
I is the identity operator. Clearly, the set {µj(λ)+t}j≥1 represents a nondecreasing
sequence of eigenvalues of Lt(λ), counted with their multiplicities. If t is sufficiently
large, then there are no eigenvalues of Lt in the strip (7.3.7).

Now we keep t decreasing. For t > −µ1(m + 1 − n/2) this strip is still free of
eigenvalues of Lt. Indeed, from Lemmas 7.3.1 and 7.3.2 it follows that there are no
eigenvalues on the lines Re λ = m− n/2 and Re λ = m + 1− n/2 and there are no
eigenvalues in the strip (7.3.7) for large |Im λ| hence, by Corollary 1.1.2, there are
no eigenvalues in the strip (7.3.7) for all t > −µ1(m + 1− n/2).

Let t = −µ1(m+1−n/2). Then the strip m−n/2 < Re λ < m+1−n/2 is free
of eigenvalues of Lt. Otherwise, by Corollary 1.1.2, the same strip should contain
eigenvalues of Lt for some t greater than −µ1(m+1−n/2). Let κ be such index that
µ1(m+1−n/2) = · · · = µκ(m+1−n/2) = −t and µκ+1(m+1−n/2) > −t. Then
the strip (7.3.7) contains exactly one eigenvalue λ = m + 1 − n/2 of the pencil Lt

with geometric multiplicity κ. By Lemma 7.3.2, this eigenvalue has no generalized
eigenfunctions. Thus, the total algebraic multiplicity of eigenvalues in the strip
(7.3.7) is equal to their total geometric multiplicity and equals κ. If we take t a little
bit smaller than −µ1(m+1−n/2), then again both lines Re λ = m−n/2 and Re λ =
m + 1−n/2 are free of eigenvalues of the pencil Lt and, by continuous dependence
of eigenvalues on a parameter, the total algebraic multiplicity of eigenvalues of Lt

in the strip (7.3.7) is not greater than κ.
The next value of t for which this total algebraic multiplicity changes is t =

−µκ+1(m + 1− n/2). Let κ1 be the index such that

µκ+1(m + 1− n/2) = · · · = µκ+κ1(m + 1− n/2) = −t

and t > −µκ+κ1(m + 1 − n/2). Then, reasoning as above, we conclude that the
total algebraic multiplicity of Lt in the strip (7.3.7) does not exceed κ + κ1 for this
t and for t which is a little bit smaller than −µκ1 . Continuing this procedure, we
obtain finally that the total algebraic multiplicity of L0 = L in the strip (7.3.7) is
not greater than N . This together with part 1) proves the lemma.

7.3.4. Eigenvalues in the strip m − n/2 ≤ Re λ ≤ m + 2 − n/2.

Lemma 7.3.5. Let m ≤ n/2 − 1. Then the set {λ = iτ + m + 2− n/2}, where
τ is a nonzero real number, does not contain eigenvalues of the pencil L.
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Proof: 1) Let m = 2k + 2 and λ = iτ + m + 2− n/2, τ 6= 0. Then

L(λ) =
(
δ + λ(λ + n− 2)

) (
δ + (λ− 2)(λ + n− 4)

)
L3(λ)L3(λ),

where

L3(λ) =
k+1∏

j=2

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
.

Since

Im
(
(δ + λ(λ + n− 2))(δ + (λ− 2)(λ + n− 4))u, u

)
L2(Ω)

= 4mτ
(
(δ − τ2 + m2 − n2

4
+ n− 2)u, u

)
L2(Ω)

,

we conclude that

Im
(L(λ)u, u

)
L2(Ω)

= 4mτ
(
(δ − τ2 + m2 − n2

4
+ n− 2)L3(λ)u , L3(λ)u

)
L2(Ω)

.

The operator −δ + τ2 −m2 + n2

4 − n + 2 is positive if m ≤ n/2 − 1. Therefore, the

left hand side can be zero only if L3(λ)u = 0. But, since u ∈ ◦
Wm

2 (Ω), this implies
u = 0.

2) We consider the case m = 2k + 1. Then

−L(λ) = P (λ) L4(λ
)
L4(λ),

where

P (λ) =
(
δ + λ(λ + n− 2)

) (
δ + (λ− 2)(λ + n− 4)

)

×(
δ + (λ− 2k − 2)(λ− 2k + n− 4)

)
,

L4(λ) =
k∏

j=2

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
.

After simple calculations, we get

Im
(
P (λ)v, v

)
L2(Ω)

(7.3.8)

= 4mτ
((

δ − τ2 − (1− n/2)2 + m2 − 1
)
v ,

(
δ − τ2 − (1− n/2)2

)
v
)

L2(Ω)
.

Let w = (δ − τ2 − (1− n/2)2)v. Then ‖w‖L2(Ω) ≤ (1− n/2)2 ‖v‖L2(Ω). Using this
estimate together with the Schwarz inequality, we obtain

∣∣(w, w + (m2 − 1)v)L2(Ω)

∣∣ ≤
(
1− m2 − 1

(1− n/2)2
)
‖w‖2L2(Ω) .

Since m ≤ n/2 − 1, the left-hand side of the last equality is positive, and (7.3.8)
implies

−1
τ

Im
(L(λ)u, u

)
L2(Ω)

> 0 for u ∈ ◦
W

m
2 (Ω), u 6= 0.

The proof is complete.

The following assertions can be proved analogously to Lemmas 7.3.3, 7.3.4 and
Corollary 7.3.1.
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Lemma 7.3.6. Let m ≤ n/2 − 1 and let λ0 = m + 2− n/2 be an eigenvalue of
the pencil L and u0 a corresponding eigenfunction. Then

d

dλ

(L(λ)u0, u0

)
L2(Ω)

∣∣∣
λ=λ0

< 0.

Corollary 7.3.2. If λ0 = m + 2− n/2 is an eigenvalue of the pencil L, then
it has no generalized eigenfunctions.

Denote by N ′ the maximal index j such that µj(m + 2− n/2) ≤ 0.

Lemma 7.3.7. Let m ≤ n/2 −1. Then the strip m−n/2 ≤ Re λ ≤ m+2−n/2
contains exactly N ′ eigenvalues of the operator pencil L counted with their algebraic
multiplicities. All these eigenvalues are real and have no generalized eigenfunctions.
Every function µj has at most one zero in the interval [m− n/2,m + 2− n/2].

7.3.5. On real eigenvalues of the pencil L. We denote by Λ = Λ(Ω) the
smallest real eigenvalue of the pencil L greater than m − n/2. If there are no
eigenvalues of L on (m − n/2,∞), then we put Λ = ∞. Clearly, Λ is the smallest
zero of the function µ1 on (m − n/2,∞). In the following lemma we give some
properties of Λ whose proof is quite straightforward.

Lemma 7.3.8. Suppose that Λ < ∞.
1) The number Λ is the smallest number λ on (m − n/2,∞) such that the

operator L(λ) has non-trivial kernel.

2) Let R(u), where u ∈ ◦
W m

2 (Ω)\{0}, denote the smallest root of the equation(L(λ)u, u
)
L2(Ω)

= 0 on the interval (m− n/2,∞). Then

Λ = inf R(u) ,

where the infimum is taken over all nonzero u ∈ ◦
Wm

2 (Ω).

Corollary 7.3.3. 1) The number Λ increases when the domain Ω decreases.
Moreover, Λ(Ω2) > Λ(Ω1) if Ω2 ⊂ Ω1 and Ω1 \ Ω2 is not empty.

2) If m− n/2 < 0, then Λ > 0.
3) If m− n/2 ≥ 0, then Λ > m− n/2 + 1/2.

Proof: 1) The monotonicity of Λ with respect to Ω follows from the second
part of Lemma 7.3.8. The strict monotonicity can be proved in the same way as in
Theorem 3.5.2.

2) By Remark 7.3.1, the definition of Λ can be applied without changes to
all domains in Sn−1 if m < n/2. Moreover, Lemma 7.3.8 is also valid in this
case. If Ω = Sn−1, then the spectrum of L consists of the integers 0, 1, . . . and
2m − n, 2m − n − 1, . . .. Therefore, Λ(Sn−1) = 0 and, by part 2) of Lemma 7.3.8,
we get Λ(Ω) > 0.

3) Let K0 be the complement of a small closed circular cone, and let Ω0 be the
intersection of K0 and Sn−1. We can suppose that Ω ⊂ Ω0. Clearly, the boundary
of K0 is Lipschitz. Since the strip |Reλ−m+n/2| ≤ 1/2 is free of eigenvalues of the
pencil corresponding to Ω0 (this will be proved in Section 11.1 for pencils generated
by the Dirichlet problem for general 2m order elliptic operators in a Lipschitz cone,
see Theorem 11.1.1), we have Λ(Ω0) > m− n/2 + 1/2. The same inequality for Ω
follows from the second part of Lemma 7.3.8.
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7.3.6. The main theorem.

Theorem 7.3.1. 1) The strip

(7.3.9) m− 2− n/2 ≤ Reλ ≤ m + 2− n/2 if 2m ≤ n− 4,

(7.3.10) −3 ≤ Re λ ≤ 0 if 2m = n− 3

(7.3.11) −2 ≤ Reλ ≤ 0 if 2m = n− 2

and

(7.3.12) m− (n + 1)/2 ≤ Re λ ≤ m− (n− 1)/2 if 2m > n− 2

contains no eigenvalues of the pencil L.
2) Let 2m = n−3. Then the strip −7/2 ≤ Re λ ≤ 1/2 contains only real eigen-

values of L, the corresponding eigenfunctions have no generalized eigenfunctions.
There is at most one eigenvalue on the interval (0, 1/2] which increases when the
domain Ω decreases.

3) If 2m = n− 2, then the strip −3 ≤ Re λ ≤ 1 contains only real eigenvalues
of L, the corresponding eigenfunctions have no generalized eigenfunctions. There
is at most one eigenvalue on the interval (0, 1] which increases when the domain Ω
decreases.

4) Let m ≥ n/2. Then the strip m − 1 − n/2 ≤ Re λ ≤ m + 1 − n/2 contains
only real eigenvalues of L, the corresponding eigenfunctions have no generalized
eigenfunctions. The eigenvalues on the interval (m−(n−1)/2,m+1−n/2] increase
when the domain Ω decreases.

Proof: 1) Let 2m ≤ n−4. We introduce the operator pencil Lt(λ) = L(λ)+ tI,
t ≥ 0. Using Lemma 7.3.1, we obtain

(Lt(λ)u, u
)
L2(Ω)

≥ c ‖u‖2W m
2 (Ω) +

(
c |λ|2m + t

) ‖u‖2L2(Ω)

for all λ on the line Im λ = m − n/2. This inequality implies that there are
no eigenvalues of Lt for |Im λ| ≥ C, Re λ ∈ [m − n/2, m + 2 − n/2], where C is a
sufficiently large number. From Lemma 7.3.5 and from the second part of Corollary
7.3.3 it follows that the pencils Lt have no eigenvalues on the line Reλ = m+2−n/2.
Hence, by Corollary 1.1.2, all pencils Lt have the same number of eigenvalues in
the strip (7.3.9). Since for large t the pencil Lt has no eigenvalues in this strip, we
conclude that the same is true for L.

The cases 2m = n − 3 and 2m = n − 2 are considered analogously. Let
2m > n − 2. Then, reasoning as in the proof of inequalities (7.3.9) and using
assertion 3) of Corollary 7.3.3 instead of 2), we obtain the absence of eigenvalues
in the strip (7.3.12).

2) By Lemma 7.3.7, the strip −7/2 ≤ Re λ ≤ 1/2 contains only real eigenvalues
of the pencil L which have no generalized eigenfunctions. By assertion 1), there
are no eigenvalues on the interval [−3, 0]. If Ω = Sn−1, then the interval [0, 1/2]
contains exactly one eigenvalue of L, namely λ0 = 0 which has multiplicity 1. This
eigenvalue is the zero of the functions µ1. Clearly, this function increases when the
domain Ω decreases. Therefore, if Sn−1 \ Ω is nonempty, then the interval (0, 1/2]
contains at most one simple eigenvalue which increases when Ω decreases.

The proofs of assertions 3) and 4) are essentially the same as those of 2).
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Remark 7.3.2. Note that the estimate (7.3.12) for the strip free of spectrum
is sharp (for 2m = n−1 see Section 11.7 and for 2m ≥ n see Section 11.1). Clearly,
the estimates (7.3.12), (7.3.10) and (7.3.9) for 2m = n − 4 can not be improved
for arbitrary cones. It remains an important question. Is it possible to improve
the estimate (7.3.9) for 2m < n − 4, m > 2? The conjecture here is that the strip
m− n/2 ≤ λ ≤ 0 should be free of the eigenvalues of L. This would lead to Hölder
continuity of solutions to (7.0.8), (7.0.9) for all m and n.

7.4. The Dirichlet problem for ∆2 in domains with piecewise smooth
boundaries

We consider the problem

(7.4.1) ∆2U = F in G, U =
∂U

∂ν
= 0 on ∂G\S

in a bounded domain G with angular or conic points x(1), . . . , x(d) on the boundary.
We assume that near every point x(τ) the domain G coincides with a cone (or angle
in the case n = 2) Kτ = {x : (x− x(τ))/|x− x(τ)| ∈ Ωτ}.

7.4.1. The biharmonic equation in plane domains with corners. We
start with the case of a plane domain G. By ατ we denote the interior angle at the
point x(τ).

Using Theorems 1.4.1 and 7.1.2, we obtain the following assertion on the unique
solvability in the weighted spaces V l

p,~β
(G) and N l,σ

~β
(G) introduced in Section 1.4.

Theorem 7.4.1. The boundary value problem (7.4.1) is uniquely solvable in
V l

p,~β
(G) for arbitrary F ∈ V l−4

p,~β
(G), l ≥ 4, if and only if l, p and ~β = (β1, . . . , βd)

satisfy the inequality

(7.4.2) |l − βτ − 1− 2/p| < α−1
τ Re z(ατ ) for τ = 1, . . . , d,

where z(α) is the solution of the equation z−1 sin z + α−1 sinα with smallest real
part. Analogously, the condition

(7.4.3) |l + σ − βτ − 1| < α−1
τ Re z(ατ ) for τ = 1, . . . , d,

is equivalent to the unique solvability in N l,σ
~β

(G) for F ∈ N l−4,σ
~β

(G), l ≥ 4.

The properties of the function z = z(α) were studied in Section 4.2. We recall
that z(α) is real if α ≥ α0, where α0 is the smallest positive root of the equation
α−1 sin α = − cos α∗ and α∗ is the smallest positive root of the equation tan α = α.
For α < α0 the roots z(α) and z(α) are nonreal.

Furthermore, the following statement holds.

Theorem 7.4.2. Let F ∈ W−2
2 (G) and let U ∈ ◦

W 2
2(G) be the unique solution

of problem (7.4.1). If F ∈ V l−4

p,~β
(G) (F ∈ N l−4,σ

~β
(G)), l ≥ 4, and condition (7.4.2)

(condition (7.4.3)) is satisfied, then U ∈ V l
p,~β

(G) (U ∈ N l,σ
~β

(G)).

Analogous results are valid for solutions of problem (7.4.1) in a n-dimensional
domain with smooth non-intersecting (n − 2)-dimensional edges. Then the role of
ατ is played by the angles αx at the edge points x (see Subsection 8.7.2).
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7.4.2. The biharmonic equation in domains with conic vertices. Now
let G be a bounded domain in Rn, n ≥ 3, with d conic vertices on ∂G. We denote
by Lτ the operator pencil generated by the Dirichlet problem for the biharmonic
equation in the cone Kτ .

Applying Theorem 1.4.1, we obtain the following statement, where µτ is the
minimum of real part of the eigenvalues of Lτ situated in the half-plane Reλ >
2− n/2.

Theorem 7.4.3. 1) The boundary value problem (7.4.1) is uniquely solvable in
V l

p,~β
(G) for arbitrary F ∈ V l−4

p,~β
(G), l ≥ 4, if and only if and only if

(7.4.4) 4− n− µτ < l − βτ − n/p < µτ for τ = 1, . . . , d.

Analogously, if

(7.4.5) 4− n− µτ < l + σ − βτ < µτ for τ = 1, . . . , d,

then problem (7.4.1) has a unique solution in N l,σ
~β

(G) for every F ∈ N l−4,σ
~β

(G),
l ≥ 4.

2) The solution U ∈ ◦
W 2

2(G) of problem (7.4.1) belongs to V l
p,~β

(G) (N l,σ
~β

(G)),

l ≥ 4, if F ∈ V l−4

p,~β
(G) and 2 − n/2 ≤ l − βτ − n/p < µτ for τ = 1, . . . , d (F ∈

N l−4,σ
~β

(G) and 2− n/2 ≤ l + σ − βτ < µτ for τ = 1, . . . , d).

Lower estimates for µτ are given in Sections 7.2.4 and 7.2.5. According to
Theorem 7.2.5,

µτ > max(1,Mτ ) if n = 3,

µτ > max(1/2,Mτ ) if n = 4
and

µτ > Mτ if n > 4,

where Mτ (Mτ + n − 2) is the first eigenvalue of the Dirichlet problem for the
operator −δ on Ωτ , Mτ > 0. Other lower estimates for µτ can be obtained from
the monotonicity of real eigenvalues with respect to Ωτ (see Section 7.2.6). In
particular, µτ > 2 if the cones Kτ are contained in half-spaces. If, on the contrary,
a cone Kτ contains a half-space then 0 < µτ ≤ 2 and µτ is a monotone decreasing
function of Kτ .

7.4.3. Maximum principle. Let G be the same as in the preceding subsec-
tion. We consider the problem

(7.4.6) ∆2U = 0 in G, U = Φ,
∂U

∂ν
= Ψ on ∂G\S .

Maz′ya and Plamenevskĭı [187] showed that the Miranda-Agmon maximum prin-
ciple

(7.4.7) ‖U‖W 1∞(G) ≤ c
(
‖Φ‖W 1∞(∂G) + ‖Ψ‖L∞(∂G)

)

holds for all solutions of (7.4.6) if and only if

4− n− µτ < 1 < µτ τ = 1, . . . , d .

Since µτ > 1 for n = 3, the maximum principle is always valid in the three-
dimensional case. Moreover, according to [187], it holds if n = 2 and G is an
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arbitrary polygon. If n ≥ 4 and all cones Kτ are contained in half-spaces, then
µτ > 2, as we said above, and hence (7.4.7) is also true.

The following example shows that the Miranda-Agmon maximum principle
(7.4.7) fails, in general, for n ≥ 4. Let Kτ be the cone

(7.4.8) {x ∈ R4 : x4 > |x| cos (α/2)},
where α ∈ [π, 2π). Then Lτ is the operator of the boundary value problem(

δ + λ(λ− 2)
) (

δ + λ(λ + 2)
)
u = f for θ < α/2,(7.4.9)

u =
∂u

∂θ
= 0 for θ = α/2,(7.4.10)

where cos θ = x4/|x|. For λ = 1 equation (7.4.9) yields

(7.4.11) (δ − 1)(δ + 3)u = 0.

If u depends only on the variable θ, then, according to the representation (2.2.4) of
the Beltrami operator, we have

δu(θ) = (sin2 θ)−1 d

dθ

(
sin2 θ

du

dθ

)
.

It is easy to verify that u(θ) = c1 cos θ + c2 θ/ sin θ is a smooth solution of (7.4.11).
The boundary conditions (7.4.10) imply

c1 cos
α

2
+ c2

α

2 sin (α/2)
= 0, −c1 sin

α

2
+ c2

2 sin (α/2)− α cos (α/2)
2 sin2 (α/2)

= 0.

The determinant of this system is (2 sin2 (α/2))−1 (α cosα − sin α). Consequently,
there exists an eigenfunction of the form u = u(θ) corresponding to the eigenvalue
λ = 1 if and only if α = α∗, where α∗ is the root of the equation tan α = α in
the interval (π, 2π), α∗ ≈ 1.4303 π. Hence, if G coincides with the cone (7.4.8) in a
neighborhood of the vertex x(τ) = 0, then the Miranda-Agmon maximum principle
is not valid. Maz′ya and Roßmann [194] showed that for such a domain even
smooth solutions of the biharmonic equation do not satisfy (7.4.7) with a constant
c independent of U .

7.5. Notes

Section 7.1. Information on singularities of solutions of boundary value prob-
lems for the biharmonic equation near angular points can be found in Williams
[268], Kondrat′ev [109], Seif [243], Melzer and Rannacher [199], Blum and Ran-
nacher [21], Maz′ya, Morozov and Plamenevskĭı [168], Maz′ya and Plamenevskĭı
[187], Maslovskaya [162], Grisvard [78, 80], Szabo and Babuška [251].

Section 7.2. The operator pencil generated by the Dirichlet problem for the
biharmonic equation in a n-dimensional cone, n ≥ 3, was first investigated in the
paper [187] of Maz′ya and Plamenevskĭı, where the estimates for the width of the
energy strip in Theorem 7.2.5 were essentially proved. Other results of this section
are taken from the paper [122] of Kozlov.

Section 7.3. The results were obtained by Kozlov [125].

Section 7.4. Theorems 7.4.1–7.4.3 on the solvability of the Dirichlet problem
for the biharmonic equation in domains with angular or conic points and on the
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smoothness of the solutions follow directly from analogous results of the general
theory (see Section 1.4). Let us further note that Dahlberg, Kenig and Verchota
[36] obtained existence and uniqueness results for solutions in Lipschitz domains
when the boundary values have first derivatives in L2 and the normal derivative is
in L2. An analogous assertion for Lp spaces was proved by Pipher and Verchota
[225].

The validity of the Miranda-Agmon maximum principle (7.4.7) for n ≤ 3 (and
for the case n ≥ 4, when the cones Kτ are contained in half-spaces) was proved
by Maz′ya and Plamenevskĭı [187]. The proof in [187] is based on point estimates
for Green’s function in a neighborhood of the conic points. The counterexample at
the end of Section 7.4 is borrowed from the paper [194] of Maz′ya and Roßmann.
Pipher and Verchota [226] proved that the Miranda-Agmon maximum principle is
valid for solutions of the biharmonic equation in C1 domains of arbitrary dimension
and in Lipschitz domains of dimension n ≤ 3. In [227] the same authors showed
that the Miranda-Agmon maximum principle is valid for solutions of the polyhar-
monic equation in three-dimensional Lipschitz domains, while it fails, in general,
for dimension n ≥ 4. Maz′ya and Roßmann [194] obtained necessary and suffi-
cient conditions guaranteeing the validity of this principle for solutions of general
2m order strongly elliptic equations in domains with conic points. In [193] they
proved this principle for solutions of strongly elliptic equations in three-dimensional
domains of polyhedral type.

In papers by Olĕınik, Yosifyan and Tavkhelidze [219, 220], Kondrat′ev,
Kopachek and Olĕınik [114] pointwise estimates of solutions to the Dirichlet prob-
lem for the biharmonic equation near nonregular boundary points were obtained.
A survey of these results can be found in Kondrat′ev and Olĕınik’s paper [112].
The regularity of boundary points in the sense of Wiener for the biharmonic and
polyharmonic operators was investigated in papers of Maz′ya [163, 165], Maz′ya
and Donchev [166].





Part 2

Singularities of solutions to general
elliptic equations and systems





CHAPTER 8

The Dirichlet problem for elliptic equations and
systems in an angle

In this chapter we are concerned with the singularities of solutions to the Dirich-
let problem for elliptic differential equations and systems in a plane angle. In order
to describe these singularities, one has to study the eigenvalues, eigenvectors and
generalized eigenvectors of certain pencils of ordinary differential operators on an
interval. Sections 8.1–8.4 are dedicated to the operator pencil generated by the
Dirichlet problem for a 2m order differential equation. In Section 8.1 we derive
a transcendental equation for the eigenvalues generalizing equation (7.1.10) that
we dealt with when studying the biharmonic equation. Although in the general
case the corresponding transcendental equation is more complicated, one can de-
rive rather explicit knowledge on their roots. Here is a brief outline of the results
obtained in the present chapter.

We consider the Dirichlet problem for a scalar elliptic homogeneous operator
L(∂x1 , ∂x2) with real constant coefficients in a plane angle

Kα = {(x1, x2) ∈ R2 : 0 < r < ∞, ϕ ∈ (0, α)},
where (r, ϕ) are polar coordinates and α ∈ (0, 2π]. The operator pencil associated
to this problem will be denoted by Lα.

If λ is an eigenvalue of Lα, then λ and m − 1 − λ are also eigenvalues of
Lα. The geometric, partial and algebraic multiplicities of these three eigenvalues
coincide. Therefore, it is sufficient to describe the location of eigenvalues and their
multiplicities in the half-plane Re λ ≥ m− 1.

For α = π and α = 2π all eigenvalues of Lα can be evaluated explicitly. In fact,
we show in Subsection 8.1.5 that

(i) the spectrum of Lπ consists of the eigenvalues m− 1± k, k = 1, 2, . . . , with
the multiplicities k for k ≤ m and m for k > m,

(ii) the spectrum of L2π consists of the eigenvalues m − 1 ± k, k = 1, 2, . . . ,
of the same multiplicities as in the case (i) and of the eigenvalues m − 1/2 ± k,
k = 0, 1, . . . , of multiplicity m.

In both cases there are no generalized eigenfunctions. If the angle α is close to
π or 2π, then it is possible to give explicit asymptotic formulas for eigenvalues of
Lα close to m and to m − 1/2 (see Sections 8.2 and 8.3). Let us denote the roots
of the equation L(1, z) = 0 with positive imaginary parts by z1, . . . , zm. If there is
a multiple root, then we take into account its multiplicity. The following assertions
are contained in Theorems 8.2.1 and 8.3.1.

(i) When α is close to lπ, l = 1, 2, there is only one eigenvalue λl(α) of Lα

located near m and

λl(α) = m + Im (z1 + · · ·+ zm)(1− α/lπ) + O(|1− α/lπ|2).
255
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(ii) When α is close to 2π, there are exactly m eigenvalues µk(α), k = 1, . . . , m,
located near m− 1/2, and subject to

µk(α) = m− 1/2 + αk(2π − α)2k−1 + O(|2π − α|2k),

where αk are constants written explicitly.
The case α < π is treated in Section 8.4, where it is proved that the eigenvalues

of Lα do not coincide with m + k, k = 0, 1, . . . , m− 1, and that the strip m− 1 ≤
Re λ ≤ m contains no eigenvalues of this pencil.

The usefulness of the last statement is illustrated by the Dirichlet problem

L(∂x1 , ∂x2)U = F in G, ∂j
νU = 0 on ∂G, j = 0, . . . , m− 1,

where G is a convex polygon and ν is the normal to ∂G. If F ∈ L2(G), then this

problem has a solution U in
◦

W m
2 (G). Since there are no eigenvalues of the pencil

Lα in the strip m− 1 ≤ Reλ ≤ m, Theorem 1.4.3 implies that U ∈ Wm+1
2 (G).

In Section 8.5 we turn to the case α ∈ (π, 2π). We prove that
(i) all eigenvalues of Lα in the strip m− 1 ≤ Reλ ≤ m are real and situated in

(m− 1/2,m],
(ii) all eigenvalues of Lα in (m−1/2,m) are simple and strictly decreasing with

respect to α ∈ (π, 2π),
(iii) the total number of eigenvalues in the interval (m− 1/2,m) changes from

m to 1 when α changes from 2π to π.
This result together with Theorem 1.4.4 implies that the variational solution U

of the Dirichlet problem for the operator L(∂x1 , ∂x2) in the angle Kα, α ∈ (π, 2π),
with the right-hand side in L2(Kα), can be represented near the vertex in the
asymptotic form

U(x1, x2) =
k∑

j=1

cjr
λj uj(ϕ) + O(rm−ε),

where ε is an arbitrary positive number, m−1/2 < λ1 < · · · < λk < m, 1 ≤ k ≤ m,
uj are smooth functions independent of F , and cj are constants.

It follows from the above results on the eigenvalues of Lα that the strip |Re λ−
m + 1| < 1/2 is free of eigenvalues for any α and that, moreover, the same is valid
for the strip |Reλ−m + 1| ≤ 1 if α < π. As a matter of fact, these properties are
not preserved if some coefficients of L(∂x1 , ∂x2) are nonreal. In Subsection 8.4.3 we
give a family of rather simple differential operators with complex coefficients such
that the eigenvalues of the associated pencils Lα approach the line Re λ = m− 1.

In Section 8.6 we extend some of the previous results to a class of strongly
elliptic second order matrix differential operators by using a quite different method.
As usual, we conclude the chapter with some applications to the theory of elliptic
equations in domains with piecewise smooth boundary.

8.1. The operator pencil generated by the Dirichlet problem

8.1.1. Formulation of the problem. Let K be the plane angle

{(x1, x2) ∈ R2 : 0 < r < ∞, 0 < ϕ < α},
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where r, ϕ are the polar coordinates of the point x = (x1, x2). We consider the
Dirichlet problem

L(∂x1 , ∂x2)U =
2m∑

j=0

aj ∂2m−j
x1

∂j
x2

U = 0 on K,(8.1.1)

∂k
x2

U
∣∣∣
ϕ=0

= (− sin α ∂x1 + cosα ∂x2)
kU

∣∣∣
ϕ=α

= 0, k = 0, 1, . . . , m− 1.(8.1.2)

Here L is an elliptic differential operator with real constant coefficients aj . In order
to obtain the corresponding operator pencil, we insert the function U = rλ u(ϕ),
where λ ∈ C, into (8.1.1), (8.1.2). Then we arrive at

L(λ) u(ϕ) = 0 for 0 < ϕ < α,(8.1.3)

u(k)(ϕ)|ϕ=0 = u(k)(ϕ)|ϕ=α = 0 for k = 0, 1, . . . , m− 1,(8.1.4)

where L(λ) = L(ϕ, ∂ϕ, λ) is a parameter-depending ordinary differential operator
defined by

L(ϕ, ∂ϕ, λ)u(ϕ) = r2m−λ L(∂x1 , ∂x2) rλ u(ϕ),

i.e., r−2m L(ϕ, ∂ϕ, r∂r) = L(∂x1 , ∂x2).

Example. If L(∂x1 , ∂x2) = (∂2
x1

+ ∂2
x2

)m, then

L(ϕ, ∂ϕ, λ) =
m−1∏

j=0

(
∂2

ϕ + (λ− j)2
)
.

In general case, L(ϕ, ∂ϕ, λ) is an ordinary differential operator with variable
coefficients which realizes a continuous mapping

(8.1.5) W 2m
2 ((0, α))∩ ◦

W
m
2 ((0, α)) → L2((0, α))

for arbitrary λ ∈ C
We recall some well-known properties of the pencil L which, according to a

result of Agmon, Nirenberg [3, Th.5.2] and Agranovich, Vishik [4] (see also our
book [136, Th.3.6.1,Le.6.1.5]), follow from the ellipticity of problem (8.1.1), (8.1.2).

Theorem 8.1.1. The operator L(λ) realizes an isomorphism (8.1.5) for all
λ ∈ C except a countable set of isolated points, the eigenvalues of the pencil L. The
eigenvalues have finite algebraic multiplicities and are contained, with the possible
exception of finitely many, in a double angle with opening less than π containing
the real axis.

Theorem 8.1.2. If λ0 is an eigenvalue of the pencil L, then λ0, 2m− 2− λ0,
and 2m − 2 − λ0 are eigenvalues with the same geometric, partial and algebraic
multiplicities.

Proof: Let U = rλu(ϕ), V = r2m−2−λv(ϕ), where u and v are arbitrary func-
tions from C∞0 ((0, α)). Integrating by parts, we get

∫

K
1<|x|<2

LU · V dx =
∫

K
1<|x|<2

U · LV dx
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(the sum of the integrals on the arcs |x| = 1 and |x| = 2 vanishes). This implies
α∫

0

L(ϕ, ∂ϕ, λ)u(ϕ) · v(ϕ) dϕ =

α∫

0

u(ϕ) · L(ϕ, ∂ϕ, 2m− 2− λ) v(ϕ) dϕ,

i.e., the operator L(ϕ, ∂ϕ, λ) is adjoint to L(ϕ, ∂ϕ, 2m− 2− λ). Consequently, the
numbers λ and 2m− 2− λ are simultaneously eigenvalues (see Theorem 1.1.7).

Since the coefficients of the operator L(ϕ, ∂ϕ, λ) are real, the numbers λ and λ
are simultaneously eigenvalues. This proves the theorem.

Due to Theorem 8.1.2, it suffices to study the eigenvalues in the half-plane
Re λ ≥ m− 1.

8.1.2. A transcendental equation for the eigenvalues. Let the ordinary
differential operators B(k)

α (ϕ, ∂ϕ, λ) be defined by

B(k)
α (ϕ, ∂ϕ, λ) u(ϕ) = rk−λ(− sin α ∂x1 + cosα ∂x2)

k (rλu(ϕ)).

It can be easily seen that the coefficient of the derivative ∂k
ϕ of B(k)

α is equal to one
at ϕ = α. Hence the boundary conditions (8.1.4) are equivalent to the conditions

(8.1.6) B(k)
0 (ϕ, ∂ϕ, λ)u(ϕ)|ϕ=0 = B(k)

α (ϕ, ∂ϕ, λ)u(ϕ)|ϕ=α = 0, k = 0, 1, . . . , m− 1.

For technical reasons, we will use the boundary conditions (8.1.6) instead of the
conditions (8.1.4). We denote the operator

u → {(B(k)
0 (ϕ, ∂ϕ, λ)u(ϕ)|ϕ=0 , B(k)

α (ϕ, ∂ϕ, λ)u(ϕ)|ϕ=α

)}
0≤k≤m−1

by B(λ) and the operator

W 2m
2 ((0, α)) 3 u → (L(ϕ, ∂ϕ, λ)u,B(λ)u

) ∈ L2((0, α))× C2m

by A(λ). Obviously, the spectra of the pencils L and A coincide.
For l = 0, 1, . . . , 2m− 1 let vl = vl(λ, ϕ) be the solution of the Cauchy problem

L(ϕ, ∂ϕ, λ) vl = 0 for ϕ > 0,(8.1.7)

B(k)
0 (ϕ, ∂ϕ, λ) vl

∣∣∣
ϕ=0

= δk,l for k = 0, 1, . . . , 2m− 1.(8.1.8)

The coefficient of ∂2m
ϕ in the operator L(ϕ, ∂ϕ, λ) is equal to L(− sin ϕ, cosϕ) 6= 0.

Hence the functions vl are analytic in λ, λ ∈ C, and depend on the variable ϕ
real-analytically.

Lemma 8.1.1. Let Ψ(λ) be the quadratical matrix with the rows

(8.1.9) B
(k)
0 (ϕ, ∂ϕ, λ) (v0, v1, . . . , v2m−1)

∣∣∣
ϕ=0

and

(8.1.10) B(k)
α (ϕ, ∂ϕ, λ) (v0, v1, . . . , v2m−1)

∣∣∣
ϕ=α

,

k = 0, 1, . . . , m− 1. Then λ0 is an eigenvalue of L if and only if

(8.1.11) detΨ(λ0) = 0.

The order of the zero λ0 of the function detΨ(λ) coincides with the algebraic mul-
tiplicity of the eigenvalue λ0, while the dimension of the kernel of the matrix Ψ(λ0)
coincides with the geometric multiplicity of the eigenvalue λ0.



8.1. THE OPERATOR PENCIL GENERATED BY THE DIRICHLET PROBLEM 259

Proof: Let P(λ) be the operator

C2m 3 (c1, . . . , c2m) →
2m∑

l=1

cl vl(λ, ϕ) ∈ kerL(ϕ, ∂ϕ, λ).

Then the operator function λ → B(λ)P(λ) coincides with the matrix-function Ψ.
Consequently, by Lemma 3.1.1, every eigenvalue of the pencil A is also an eigen-
value of the matrix-function Ψ. The geometric and algebraic multiplicities of these
eigenvalues coincide. Using Lemma 3.1.2, we obtain the assertions of the lemma.

Equation (8.1.11) is the transcendental equation we have sought for the eigen-
values of the pencil L. Since

L(ϕ, ∂ϕ, λ) = L(ϕ, ∂ϕ, λ) and B(k)
α (ϕ, ∂ϕ, λ) = B(k)

α (ϕ, ∂ϕ, λ),

it follows that vl(λ, ϕ) = vl(λ, ϕ) and, consequently,

detΨ(λ) = detΨ(λ).

8.1.3. A more explicit form of the transcendental equation. Now our
goal is to obtain more explicit expressions for the function det Ψ(λ). Let z1, . . . , zd

be the distinct roots of the equation L(1, z) = 0 with positive imaginary parts, and
let ν1, . . . , νd be their multiplicities. Since the coefficients of the operator L are
real, we have ν1 + · · ·+νd = m. Let zd+q = zq and νd+q = νq for q = 1, . . . , d. Then

L(∂x1 , ∂x2) = a2m

2d∏
q=1

(
∂x2 − zq∂x1

)νq
.

We introduce the notation

(µ)l = µ (µ + 1) · · · (µ + l − 1) for l = 1, 2, ... , (µ)0 = 1

and set

wq,j(λ, ϕ) = ∂j
z(cos ϕ + z sin ϕ)λ

∣∣∣
z=zq

(8.1.12)

= (λ− j + 1)j (sinϕ)j (cos ϕ + zq sinϕ)λ−j

for q = 1, . . . , d, j = 0, . . . , νq − 1. Here it is assumed that the argument of the
function ϕ → cos ϕ+ z sin ϕ varies from 0 to 2π for Im z > 0 and from 0 to −2π for
Im z < 0.

If P (∂x1 , ∂x2) is an arbitrary homogeneous differential operator of order µ with
constant coefficients and the operator P(ϕ, ∂ϕ, λ) is defined by the equality

P(ϕ, ∂ϕ, λ)u(ϕ) = rµ−λ P (∂x1 , ∂x2) (rλu(ϕ)),

then

P(ϕ, ∂ϕ, λ)wq,j(λ, ϕ) = rµ−λ P (∂x1 , ∂x2)
(
∂j

z(x1 + zx2)λ
)∣∣∣

z=zq

(8.1.13)

= rµ−λ (λ− µ + 1)µ ∂j
z

(
P (1, z)(x1 + zx2)λ−µ

)∣∣∣
z=zq

= (λ− µ + 1)µ ∂j
z

(
P (1, z) (cos ϕ + z sin ϕ)λ−µ

)∣∣∣
z=zq

.
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In particular, it follows from (8.1.13) that the functions wq,j(λ, ϕ) are solutions of
the equation L(ϕ, ∂ϕ, λ)u = 0. Furthermore, we have

B(k)
α (ϕ, ∂ϕ, λ)wq,j(λ, ϕ)

∣∣
ϕ=α

(8.1.14)

= (λ− k + 1)k ∂j
z

(
(− sin α + z cosα)k (cos α + z sin α)λ−k

)∣∣
z=zq

.

We write the solutions vl of the Cauchy problems (8.1.7), (8.1.8) in the form

vl(λ, ϕ) =
2d∑

q=1

νq−1∑

j=0

cl,q,j(λ)wq,j(λ, ϕ), l = 0, 1 . . . , 2m− 1.

Using (8.1.14) with α = 0, we obtain the following system of equations for the
coefficients cl,q,j(λ) :

2d∑
q=1

νq−1∑

j=0

cl,q,j(λ) (λ− µ + 1)µ ∂j
zzµ

∣∣
z=zq

= δl,µ , l, µ = 0, 1, . . . , 2m− 1.

The matrix T with the rows

∂j
z

(
1, z, . . . , z2m−1

)∣∣
z=zq

, q = 1, . . . , 2d, j = 0, . . . , νq − 1,

is invertible. Otherwise, there exist numbers cµ, not all zero, such that
2m−1∑
µ=0

cµ ∂j
zzµ

∣∣
z=zq

= 0 for q = 1, . . . , 2d, j = 0, . . . , νq − 1,

i.e., the polynomial
∑

cµzµ of degree 2m− 1 has 2m roots (counting multiplicity).
This is only possible if c0 = . . . = c2m−1 = 0.

Let sl,q,j be the elements of the inverse matrix to T, l = 0, 1, . . . , 2m − 1,
q = 1, . . . , 2d, j = 0, . . . , νq − 1. Then

(8.1.15) cl,q,j =
1

(λ− l + 1)l
sl,q,j .

We set

(8.1.16) σk(z, λ) = (sin α− z cosα)k (cos α + z sin α)λ−k

and denote the matrix with the rows

∂j
z

(
z0, . . . , zm−1 , σ0(z, λ), . . . , σm−1(z, λ)

)∣∣∣
z=zq

,

q = 1, . . . , 2d, j = 0, . . . , νq − 1, by D(λ). According to (8.1.14), we have

B(k)
0 (ϕ, ∂ϕ, λ) vl(λ, ϕ)

∣∣∣
ϕ=0

= (λ− k + 1)k

∑

q,j

cl,q,j(λ) ∂j
zzk

∣∣∣
z=zq

,

B(k)
α (ϕ, ∂ϕ, λ) vl(λ, ϕ)

∣∣∣
ϕ=α

= (−1)k(λ− k + 1)k

∑

q,j

cl,q,j(λ) ∂j
zσk(z, λ)

∣∣∣
z=zq

.

From this and (8.1.15) we obtain the formula

(8.1.17) det Ψ(λ) = (−1)m(m−1)/2 detT−1 detD(λ)
m−1∏

k=0

1
(λ− k −m + 1)m

.

Thus, the following lemma holds.
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Lemma 8.1.2. If λ0 6= 0, 1, . . . , 2m − 2, then the number λ0 is an eigenvalue
of the pencil L if and only if detD(λ0) = 0. The geometric multiplicity of this
eigenvalue is equal to the dimension of the kernel of the matrix D(λ0), while its
algebraic multiplicity is equal to the order of the zero λ0 of the function detD(λ).

If λ0 = m− 1± k, k ∈ {0, 1, . . . , m− 1}, then λ0 is an eigenvalue of the pencil
L if and only if

(8.1.18) ∂m−k
λ detD(λ)

∣∣∣
λ=λ0

= 0.

8.1.4. The transcendental equation for α 6= π, α 6= 2π. We give another
representation for detD(λ) in the case α 6= π, α 6= 2π. Let D(λ) be the matrix with
the rows

∂j
z

(
σ(z)0, . . . , σ(z)m−1 , σ(z)λ−0, . . . , σ(z)λ−m+1

)∣∣∣
z=zq

,

q = 1, . . . , 2d, j = 0, . . . , νq − 1, where

σ(z) = cos α + z sin α.

Using the formulas

z = − cot α + (cos α + z sin α)/ sin α ,

sin α− z cosα = 1/ sin α− (cos α + z sin α) cot α,

by means of elementary transformations of the matrix D(λ), we obtain

(8.1.19) detD(λ) = (sin α)−m(m−1) detD(λ).

Equation (8.1.11) for the eigenvalues, together with the relations (8.1.17) and
(8.1.19) will play an important role in the study of the spectrum of the pencil
L.

Example. Let L = ∂2/∂2
x1

+ ∂2/∂2
x2

be the Laplace operator. Then the zeros of
L(1, z) are z1 = i and z2 = −i. In this case the matrices D(λ) and D(λ) coincide:

D(λ) = D(λ) =
(

1 eiλα

1 e−iλα

)
.

The determinant of D(λ) is equal to zero if and only if λ = kπ/α, where k is an
arbitrary integer. Since ∂λ detD(λ)|λ=0 = −2iα 6= 0, the number λ = 0 is not an
eigenvalue of the pencil L.

8.1.5. The spectrum of the pencil for the angles π and 2π. We give an
explicit description of the spectrum of the pencil L for the cases α = π and α = 2π.

Theorem 8.1.3. 1) If α = π, then the spectrum of the pencil L consists of the
eigenvalues

λk = m− 1 + k (k = ±1,±2, . . .).
The geometric and algebraic multiplicities of the eigenvalues λk are equal to |k| for
k = ±1, . . . ,±(m− 1) and equal to m for |k| ≥ m.

2) If α = 2π, then the spectrum of the pencil L consists of the eigenvalues

λk = m− 1 + k (k = ±1,±2, . . .) and µk = m− 1
2

+ k (k = 0,±1,±2, . . .).

The eigenvalues λk have the same multiplicities as in the case α = π, while the
eigenvalues µk have geometric and algebraic multiplicities m.
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Proof: Let α = lπ, l = 1 , 2. Then

∂j
zσk(z, λ)

∣∣∣
z=zq

= (−1)k e±ilπλ ∂j
zzk

∣∣∣
z=zq

for ± Im zq > 0.

We denote by T0 the square matrix with the rows

∂j
z

(
1, z, . . . , zm−1

)∣∣
z=zq

, q = 1, . . . , d, j = 0, . . . , νk − 1.

In the same way as for the matrix T , it can be shown that det T0 6= 0. Let T 0 be the
matrix whose elements are the complex conjugates of the elements of the matrix
T0. Then

(8.1.20) D(λ) = (−1)m(m−1)/2

(
T0 eilπλT0

T 0 e−ilπλT 0

)

and, therefore,

(8.1.21) detD(λ) = (−1)m(m−1)/2 | detT0|2 (e−ilπλ − eilπλ)m.

Consequently, by Lemma 8.1.2, the numbers λ = m−1+k for k = ±m,±(m+1), . . .
and µk = m + k − 1/2 for k = 0,±1, . . . are eigenvalues with algebraic multiplicity
m. Furthermore, it follows from (8.1.20) that the dimension of the kernel of the
matrix D(λ) is equal to m for these values of λ. Hence there are no generalized
eigenfunctions.

We consider the eigenvalues λk = m − 1 + k for k = ±1, . . . ,±(m − 1). From
(8.1.17) and (8.1.21) it follows that the multiplicities of the zeros λk of the function
detΨ(λ) are equal to |k|. Obviously, for k = 1, 2, . . . , m− 1 the functions

xm−1+k
2 , x1 xm−2+k

2 , . . . , xk−1
1 xm

2

are homogeneous solutions of degree m − 1 + k of the Dirichlet problem (8.1.1),
(8.1.2). Hence

(sinϕ)m+k−1 , cos ϕ (sinϕ)m+k−2 , . . . , (cos ϕ)k−1 (sinϕ)m

are eigenfunctions of the operator pencil L corresponding to the eigenvalues λk =
m−1+k, k = 1, 2, . . . , m−1. This means that both the geometric and the algebraic
multiplicities of the eigenvalues λk = m− 1 + k are equal to k for k = 1, . . . , m− 1.
By Theorem 8.1.2, the same is true for the eigenvalues λ−k = m−1−k. The proof
is complete.

8.1.6. On the width of the energy strip. We have seen that in the case
α = 2π the strip |Re λ −m + 1| < 1/2 does not contain eigenvalues of the pencil
L. Now we show that for α < 2π even the closure of the above strip is free of
eigenvalues. We start with the following lemma.

Lemma 8.1.3. For every positive number ε there exists a number R such that
detΨ(λ) 6= 0 if α ∈ [ε, 2π], m− 1 ≤ Reλ ≤ m, and |Im λ| ≥ R.

Proof: 1) We transform the operator L(λ) by means of the coordinate change
ϕ′ = πϕ/α into an operator L̃(α;λ) defined on the interval (0, π) which is infinitely
differentiable with respect to the parameter α ∈ [ε, 2π]. For this operator the con-
dition of ellipticity with parameter (in the sense of Agranovich and Vishik [4]) is
satisfied uniformly with respect to α. Hence this pencil is invertible for sufficiently
large |λ| in some sector containing the imaginary axis (see, e.g., our book [136,
Th.3.6.1]).
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Theorem 8.1.4. If 0 < α < 2π, then the strip |Re λ −m + 1| ≤ 1/2 does not
contain eigenvalues of the pencil L.

Proof: For α = π the assertion follows from the first part of Theorem 8.1.3.
Therefore, we may assume that α 6= π. We show that the line Re λ = m− 1/2 does
not contain eigenvalues of L. For this it suffices to prove that the columns of the
matrix D(λ) are linearly independent for λ = m− 1/2 + it, t ∈ R.

Suppose that c0, . . . , cm−1, d0, . . . , dm−1 are complex numbers such that

(8.1.22)
m−1∑

k=0

ck ∂j
zσ(z)k|z=zq

+
m−1∑

k=0

dm−1−k ∂j
zσ(z)m−1/2+it−k|z=zq

= 0

for q = 1, . . . , 2d, j = 0, . . . , νq − 1, where σ(z) = cos α + z sin α. We have to show
that c0 = · · · = cm−1 = d0 = · · · = dm−1 = 0.

First let α ∈ (0, π). Then we introduce the polynomials

P (ζ) =
m−1∑

k=0

ck ζk , Q(ζ) =
m−1∑

k=0

dk ζk .

Obviously, (8.1.22) is equivalent to

∂j
z

(
P (σ(z)) + σ(z)it+1/2 Q(σ(z))

)∣∣∣
z=zq

= 0, q = 1, . . . , 2d, j = 0, . . . , νq − 1.

We set ζ = σ(z), ζq = σ(zq) = cos α + zq sinα, P (ζ) = P (ζ), and Q(ζ) = Q(ζ̄).
Since ζq+d = ζq, we get

∂j
ζ

(
P (ζ) + ζit+1/2 Q(ζ)

)∣∣
ζ=ζq

= ∂j
ζ

(
P (ζ) + ζ−it+1/2 Q(ζ)

)∣∣
ζ=ζq

= 0

for q = 1, . . . , d, j = 0, . . . , νq − 1. This implies

∂j
z

(
P (ζ) P (ζ)− ζ Q(ζ)Q(ζ)

)∣∣
ζ=ζq

= 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

Hence the polynomial P (ζ)P (ζ)− ζQ(ζ)Q(ζ) has m roots in the upper half-plane
Im ζ > 0. However, P (ζ)P (ζ)− ζQ(ζ)Q(ζ) is a polynomial of degree 2m− 1 which
assumes real values for real ζ. Consequently, P (ζ)P (ζ) − ζQ(ζ)Q(ζ) = 0 for all ζ.
From this we conclude that P = Q = 0.

Now let α ∈ (π, 2π). Then

(8.1.23) ∂j
zσ(z)λ−k|z=zq = e±iπ(λ−k) ∂j

z(−σ(z))λ−k|z=zq for ± Im zq > 0.

Here the argument of −σ(z) = − cos α − z sin α lies in the interval (−π, +π). We
introduce the polynomials

P (ζ) =
m−1∑

k=0

(−1)k ck ζk , Q(ζ) =
m−1∑

k=0

(−1)m+k−1 dk ζk .

Then (8.1.22) and (8.1.23) yield

∂j
ζ

(
P (ζ) + i e−πt ζit+1/2 Q(ζ)

)∣∣
ζ=ζq

(8.1.24)

= ∂j
ζ

(
P (ζ) + i eπt ζ−it+1/2 Q(ζ)

)∣∣
ζ=ζq

= 0

for q = 1, . . . , d, j = 0, . . . , νq − 1, where ζq = −σ(zq) = − cos α − zq sin α.
Analogously to the case α < π, it follows from (8.1.24) that the polynomial
P (ζ)P (ζ)+ ζQ(ζ)Q(ζ) of degree 2m− 1 has m roots in the upper half-plane. Since
this polynomial has real values for real ζ, this is only possible if P = Q = 0.
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Thus, we have proved that the columns of the matrix D(λ) are linearly inde-
pendent for Re λ = m − 1/2 and, consequently, also for Re λ = m − 3/2. Using
Rouchè’s theorem and Lemma 8.1.3, we conclude from this that the number of the
roots of the equation det Ψ(λ) = 0 in the strip m − 3/2 ≤ Re λ ≤ m − 1/2 does
not depend on the angle α ∈ (0, 2π). Since this strip does not contain zeros of the
function detΨ for α = π (see Theorem 8.1.3), it follows that there are no zeros of
detΨ in this strip for arbitrary α ∈ (0, 2π). The theorem is proved.

8.1.7. Eigenvalues on the line Re λ = m. We show that m is the only
possible eigenvalue of the pencil L on the line Re λ = m.

Theorem 8.1.5. Let α ∈ (0, 2π]. Then the set {λ ∈ C : λ = m+ it, t ∈ R\{0}}
does not contain eigenvalues of the pencil L.

Proof: If α = π or α = 2π, then the assertion follows from Theorem 8.1.3.
Therefore, we suppose that α 6= π and α 6= 2π. We have to show that the columns

Uk(α) =
(
∂j

zσ(z)k|z=zq
: q = 1, . . . , 2d, j = 0, . . . , νq − 1

)

and
Vk(α, λ) =

(
∂j

zσ(z)λ−k|z=zq : q = 1, . . . , 2d, j = 0, . . . , νq − 1
)
,

k = 0, . . . ,m−1, of the matrix D(λ) are linearly independent for λ = m+it. To this
end, we suppose the contrary, i.e., there exist numbers c0, . . . , cm−1 and d1, . . . , dm

such that

(8.1.25)
m−1∑

k=0

(
ck Uk(α) + dm−k Vk(α,m + it)

)
= 0.

First let α ∈ (0, π). We introduce the polynomials

P (ζ) =
m−1∑

k=0

ck ζk , Q(ζ) =
m∑

k=1

dk ζk .

Furthermore, let P (ζ) = P (ζ), Q(ζ) = Q(ζ). From (8.1.25) it follows that

∂j
z

(
P (σ(z)) + σ(z)it Q(σ(z))

)∣∣
z=zq

= 0

for q = 1, . . . , 2d, j = 0, . . . , νq − 1. Setting ζ = σ(z), we get

∂j
ζ

(
P (ζ) + ζit Q(ζ)

)|ζ=ζq = ∂j
ζ

(
P (ζ) + ζ−it Q(ζ)

)|ζ=ζq = 0

for q = 1, . . . , d, j = 0, . . . , νq − 1, where ζq = σ(zq) = cos α + zq sinα. This implies

∂j
ζ

(
PP (ζ)−QQ(ζ)

)∣∣
ζ=ζq

= 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

The polynomial QQ(ζ) − PP (ζ) of degree 2m assumes real values for real ζ and
has m roots in the upper half-plane. Hence

QQ(ζ)− PP (ζ) = c

d∏
q=1

(ζ − ζq)νq (ζ − ζq)
νq ,

where c is a real number. The coefficient c is nonnegative, since the leading co-
efficient of the polynomial QQ − PP coincides with the leading coefficient of the
polynomial QQ. However, by the equality Q(0) = 0, we have QQ(0) − PP (0) =
−PP (0) ≤ 0 and, therefore, c ≤ 0. Hence we get QQ−PP = 0. From this it follows,
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in particular, that c0 = dm = 0. Suppose that m ≥ 2 and one of the coefficients
c1, . . . , cm−1, d1, . . . , dm−1 is nonzero. Then the vectors

U1(α), . . . , Um−1(α), V1(α, m + it), . . . , Vm−1(α, m + it)

are linearly dependent. Due to the relation Vk+1(α, λ) = Vk(α, λ− 1), this implies
the linear dependence of the vectors

U1(α), . . . , Um−1(α), V0(α,m− 1 + it), . . . , Vm−2(α, m− 1 + it)

which are columns of the matrix D(m − 1 + it). By Lemma 8.1.2 and (8.1.19),
we conclude from this that m − 1 + it is an eigenvalue of L. However, the line
Re λ = m− 1 does not contain eigenvalues (see Theorem 8.1.4).

Now we consider the case α ∈ (π, 2π). We introduce the polynomials

P (ζ) =
m−1∑

k=0

(−1)k ck ζk , Q(ζ) =
m∑

k=1

(−1)m+k dk ζk .

Using (8.1.23), where the argument of the function α → − cos α − z sin α varies
from −π to π for α ∈ (π, 2π), we rewrite (8.1.25) in the form

∂j
ζ

(
P (ζ) + e−πt ζit Q(ζ)

)∣∣
ζ=ζq

= ∂j
ζ

(
P (ζ) + eπt ζ−it Q(ζ)

)∣∣
ζ=ζq

= 0

for q = 1, . . . , d, j = 0, . . . , νq − 1, where ζq = −σ(zq) = − cosα − zq sin α. This
relations imply

∂j
ζ

(
PP (ζ)−QQ(ζ)

)∣∣
ζ=ζq

= 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

Arguing as in the case α ∈ (0, π), we find that PP = QQ, whence it follows that
c0 = dm = 0. If one of the coefficients c1, . . . , cm−1, d1, . . . , dm−1 is nonzero then,
in analogy to the foregoing, we arrive at the equality detD(m− 1 + it) = 0 which
is impossible. Thus, we have proved that the columns of the matrix D(m + it) are
linearly independent. This proves the theorem.

8.2. An asymptotic formula for the eigenvalue close to m

If α = π or α = 2π, then, by Theorem 8.1.3, there is only one simple eigenvalue
λ = m of the pencil L on the line Re λ = m. Suppose that the angle α is close to
lπ, l = 1, 2. We denote the unique eigenvalue of the pencil L which is situated in a
small neighborhood of the point λ = m by λ∗l (α). Let again z1, . . . , zd be the distinct
roots of the equation L(1, z) = 0 with positive imaginary parts and ν1, . . . , νd their
multiplicities. Furthermore, we set zd+q = zq, and νd+q = νq for q = 1, . . . , d.

Theorem 8.2.1. If α is close to lπ, l = 1, 2, then the formula

(8.2.1) λ∗l (α) = m + (1− α

lπ
) Im (ν1z1 + · · ·+ νdzd) + O(|1− α

lπ
|2)

is valid.

Proof: Let σk be the function (8.1.16). If α = lπ − ε, l = 1 , 2, then

∂j
zσk(z, λ)

∣∣∣
z=zq

= (−1)k e±ilπλ ∂j
z

(
(sin ε + z cos ε)k (cos ε− z sin ε)λ−k

)∣∣∣
z=zq

for ±Im zq > 0 (here the argument of the function ε → cos ε − z sin ε varies from
−π to π). We set ω = λ−m and denote by Hl(ω, ε) the matrix with the rows

∂j
z

(
z0, . . . , zm−1, e±ilπωz0σ̃(z)ω+m, . . . , e±ilπωzm−1σ̃(z)ω+1

)∣∣∣
z=zq
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for ±Im zq > 0, q = 1, . . . , 2d, j = 0, . . . , νq − 1, where

σ̃(z) = σ̃(z, ε) = cos ε− z sin ε.

Since

(sin ε + z cos ε)k (cos ε− z sin ε)λ−k =
k∑

s=0

(k

s

) (tan ε)k−s

(cos ε)s
zs (cos ε− z sin ε)λ−s ,

we get

(8.2.2) detD(λ) = (−1)m(m+2l−1)/2 (cos ε)−m(m−1)/2 detHl(ω, ε).

By (8.1.17) and Theorem 8.1.3, the function

fl(ω, ε)
def
= ω1−m detHl(ω, ε)

is smooth and fl(0, 0) = 0. Furthermore, using (8.1.21) and (8.2.2), we obtain

fl(ω, 0) = ω1−m | detT0|2
(
e−ilπω − eilπω

)m

and, consequently,

(8.2.3) ∂ωfl(0, 0) = | detT0|2 (−2πli)m 6= 0.

Hence, by the implicit function theorem, there is the representation

(8.2.4) λ∗l (α) = m− ∂εfl(0, 0)
∂ωfl(0, 0)

ε + O(ε2).

We calculate the derivative ∂εfl(0, 0). Since

∂ε ∂j
z

(
zk σ̃(z, ε)ω+m−k

)|z=zq = −(ω + m− k) ∂j
z

(
zk+1 σ̃(z, ε)ω+m−k−1

)|z=zq ,

it follows that
∂ε detHl(ω, ε)|ε=0 = −(ω + 1) det Φl(ω, 0),

where Φl(ω, ε) is the matrix with the rows

∂j
z

(
z0, . . . , zm−1, e±ilπωz0σ̃(z)ω+m, . . . , e±ilπωzm−2σ̃(z)ω+2, e±ilπωzmσ̃(z)ω

)∣∣∣
z=zq

for ±Im zq > 0, q = 1, . . . , 2d, j = 0, . . . , νq − 1. We denote by ~g = (g0, . . . , gm−1)t

the solution of the equation

(8.2.5) T0 · ~g =
(

∂j
zzm|z=zq : q = 1, . . . , d, j = 0, . . . , νq − 1

)
.

Furthermore, we set

M =




g0

Im−1 g1

...
0 gm−1


 ,

where In is the n× n identity matrix. Then

Φl(ω, 0) =




T0 0

0 T 0


 ·




Im eilπωM

Im e−ilπωM


 .

This implies

∂ε detHl(ω, ε)|ε=0(8.2.6)

= −(ω + 1) |det T0|2 (e−ilπω − eilπω)m−1 (gm−1e
−ilπω − gm−1e

ilπω).
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Since the vector (g0, . . . , gm−1) is a solution of the system

∂j
z

(
zm −

m−1∑

k=0

gk zk
)∣∣∣

z=zq

= 0, q = 1, . . . , d, j = 0, . . . , νq − 1

(see (8.2.5)), the polynomial zm−∑
gk zk has the zeros z1, . . . , zd with multiplicities

ν1, . . . , νd. Consequently, by Viète’s theorem,

gm−1 = ν1z1 + · · ·+ νdzd

and (8.2.6) yields

(8.2.7) ∂εfl(0, 0) = | detT0|2 (−2πli)m−1 2i Im (ν1z1 + · · ·+ νdzd).

Substituting (8.2.3) and (8.2.7) into (8.2.4), we arrive at formula (8.2.1). The
theorem is proved.

8.3. Asymptotic formulas for the eigenvalues close to m− 1/2

If α = 2π, then, by the second part of Theorem 8.1.3, there is the only one
eigenvalue λ = m− 1/2 on the line Re λ = m− 1/2 with geometric multiplicity m
(there are no generalized eigenvalues in this case). So, if α is close to 2π, there are
m eigenvalues of the pencil L in a neighborhood of m− 1/2. Our goal is to obtain
an asymptotic formula for them.

8.3.1. A lemma on zeros of polynomials.

Lemma 8.3.1. Let m and n be integers, m ≥ n ≥ 0, m ≥ 1. Suppose that P and
Q are polynomials with real coefficients, deg P ≤ m+n−1, deg Q ≤ m−n−1, such
that the polynomial P + iQ has at least m roots in the upper half-plane Im z > 0.
Then P = Q = 0.

Proof: It suffices to consider the case when deg P = m+n−1, deg Q = m−n−1,
and the polynomials P, Q have no common roots.

We represent the polynomial P + iQ in the form

P (z) + iQ(z) =
m+n−1∑

s=0

(ps + iqs) zm+n−s−1 ,

where ps and qs are real numbers, qs = 0 for s = 0, . . . , 2n − 1. Let R2k be the
quadratical (2k)× (2k) matrix with the rows

(pj−1 , qj−1 , pj−2 , qj−2 , . . . , pj−2k , qj−2k) , j = 1, . . . , 2k,

where qs = ps = 0 if s < 0. Applying the general Hurwitz Theorem (see Gantmakher
[65, Vol.2,p.194]) to the polynomial P + iQ, we find that the number of the roots of
this polynomial located in the upper half-plane is equal to the number of changes
of sign in the sequence {1, detR2, . . . , det R2(m+n−1)}. Since det R2k = 0 for k =
1, . . . , n, the number of changes of signs in this sequence is not greater than m− 1
(the rule for determining the number of changes of signs in the case when some of
the determinants R2k are zero is given in [65, Vol.2,p.194]). This proves the lemma.
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8.3.2. A representation for det D(λ) if α is close to 2π and λ is close
to m−1/2. Let α = 2π−ε, where ε is a small positive number. Using the second
assertion of Theorem 8.1.3, formula (8.2.1) with l = 2, Lemma 8.1.3, and Theorem
8.1.5, we find that the sum of the multiplicities of the zeros of the function detΨ(λ)
located in the strip m− 1 ≤ Re λ ≤ m is equal to m. Moreover, all these zeros are
located near the point λ = m− 1/2. We set τ = tan ε. Then we have the formula

∂j
z σk(z, λ)

∣∣∣
z=zq

= e±2πλi (cos ε)λ ∂j
z

(
(−τ − z)k (1− τz)λ−k

)∣∣∣
z=zq

for ±Im zq > 0. Let ω = λ− (m− 1/2). We denote by N (ω, τ) the matrix with the
rows

∂j
z

(
z0, . . . , zm−1, ψ±0 (ω, τ, z), . . . , ψ±m−1(ω, τ, z)

)∣∣∣
z=zq

(for ±Im zq > 0), q = 1, . . . , 2d, j = 0, . . . , νq − 1, where

ψ±k (ω, τ, z) = −e±2πωi zk (1− τz)ω+m−1/2−k .

Since

(−τ − z)k (1− τz)λ−k = (−1)k
k∑

s=0

(k

s

) (
z(1 + τ2)

)s
τk−s (1− τz)ω+m−1/2−s,

we obtain, by elementary operations on the matrix D(λ), the relation

detD(λ) = (−1)m(m−1)/2 (cos ε)mλ (1 + τ2)m(m−1)/2 detN (ω, τ).

It can be easily seen that detN (0, 0) = 0 and

(8.3.1) detN (ω̄, τ) = (−1)m detN (ω, τ).

Our goal is to find solutions of the equation N (ω, τ) = 0 in a neighborhood of the
point (ω, τ) = (0, 0).

8.3.3. Taylor expansion of det N .

Lemma 8.3.2. The function detN (ω, τ) can be expanded into a series

(8.3.2) detN (ω, τ) =
m−1∑

l=0

(l+1)2∑

k=l2

∑

s≥m−l

bk,s τk ωs +
∑

k≥m2, s≥0

bk,s τk ωs

which converges absolutely in a neighborhood of the point (ω, τ) = (0, 0), where
im bk,s are real numbers. The coefficients bl2,m−l, l = 0, 1, . . . , m, are nonzero and
have the representation

(8.3.3) bl2,m−l = (−1)l(2m+l+1)/2 (2πi)m−l
( l∏

s=1

(
3
2
− s)2s−1

)
det Jl detΛl ,

where Jl denotes the matrix

Jl =
( 1

(k + s− 1)!

)
k,s=1,...,l

and Λl is the matrix with the rows

∂j
z

(
z0, . . . , zm+l−1,−z0, . . . ,−zm−l−1

)∣∣∣
z=zq

and
∂j

z

(
z0, . . . , zm+l−1, z0, . . . , zm−l−1

)∣∣∣
z=z̄q

,
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q = 1, . . . , d, j = 0, 1, . . . , νq − 1.

Proof: The function detN (ω, τ) is analytic in some neighborhood of the point
(ω, τ) = (0, 0). Hence it can be expanded into an absolutely convergent series

(8.3.4) detN (ω, τ) =
∑

k,s≥0

bk,s τk ωs.

From (8.3.1) it follows that im bk,s are real numbers.
Nonzero elements in (8.3.4). We show that the only nonzero terms in the series

(8.3.4) are those with k ≥ m2 or l2 ≤ k < (l + 1)2 and s ≥ m − l for some l with
l = 0, . . . ,m− 1.

Using the formula

∂h
τ ψ±k (ω, τ, z)

∣∣
z=zq

= (−1)h (ω + m + 1/2− k − h)h ψ±k+h(ω, τ, z)
∣∣
z=zq

and the formula for differentiating the determinant of a matrix, we get

∂h
τ detN (ω, τ)(8.3.5)

= (−1)h
∑

|γ|=h

h!
γ!

( m−1∏

k=0

(ω + m + 1/2− k − γk)γk

)
detNγ(ω, τ),

where γ denotes the multi-index (γ0, . . . , γm−1) and Nγ(ω, τ) denotes the matrix
with the rows

∂j
z

(
z0, . . . , zm−1, ψ±0+γ0

(ω, τ, z), . . . , ψ±m−1+γm−1
(ω, τ, z)

)∣∣∣
z=zq

(for ±Im zq > 0), q = 1, . . . , 2d, j = 0, . . . , νq − 1.
We are interested in multi-indices γ for which the determinant of Nγ is nonzero.

Let Nk be the vector with the components

−e±2πωi ∂j
z(zk(1− τz)ω+m−1/2−k)|z=zq , q = 1, . . . , 2d, j = 0, . . . , νq − 1,

for ±Im zq > 0. Then the last m columns of the matrix Nγ(ω, τ) are the vectors
Nγ0 , . . . , Nm−1+γm−1 . We divide these vectors into two groups. The first group
contains the vectors Nk+γk

with k +γk ≤ m−1, the second gets all the others. Let
n be the number of vectors in the second group and let {k1, . . . , kn} be the set of the
indices determining the vectors Nk+γk

of the second group. For the nonvanishing
of detNγ it is necessary that the vectors in this group are distinct. This leads to
the inequality

n∑
µ=1

(kµ + γkµ) ≥
n−1∑
µ=0

(m + µ)

for the indices. Since k1 + . . .+kn ≤ (m−1)+ · · ·+(m−n), we obtain the estimate

(8.3.6)
n∑

µ=1

γkµ ≥
n−1∑
µ=0

(m + µ)−
n∑

µ=1

(m− µ) = n2.

Here equality is only possible if {k1, . . . , kn} = {m − 1, . . . , m − n}. In particular,
we obtain h = |γ| ≥ n2. If h = |γ| = n2, then equality in (8.3.6) holds only in the
case {0, 1, . . . ,m−1}\{k1, . . . , kn} = {0, 1, . . . , m−n−1}, γ0 = . . . = γm−n−1 = 0.

If we add the (k+γk +1)-th column of the matrix Nγ(ω, 0) (i.e., the vector with
the elements ∂j

zzk+γk |z=zq ) to the column Nk+γk
|τ=0 of the first group (k + γk ≤
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m−1), each component of the new column contains the factor 1−e2πωi or 1−e−2πωi.
Since this operation does not change the determinant of the matrix Nγ , we get

detNγ(ω, 0) = O(|ω|m−n).

From this and from formula (8.3.5) it follows that

a) ∂h
τ detN (ω, τ)

∣∣∣
τ=0

= O(|ω|m−l+1) if h < l2,

b) ∂h
τ detN (ω, τ)

∣∣∣
τ=0

= Il(ω) + O(|ω|m−l+1) if h = l2

for some l, l = 0, 1, . . . ,m, where
(8.3.7)

Il(ω) = (−1)l2
∑

|γ|=l2

γ1=...=γm−l−1=0

(l2)!
γ!

( m−1∏

k=m−l

(ω + m + 1/2− k − γk)γk

)
detNγ(ω, 0).

It follows from property a) that the coefficient bh,s in series (8.3.4) is equal to zero
if (l − 1)2 ≤ h < l2, s < m − (l − 1) for some l = 1, . . . , m. This proves formula
(8.3.2)

Proof of (8.3.3). The multi-indices γ over which the summation in (8.3.7) is
extended admit the representation

m− k + γm−k = m− 1 + βk, k = 1, . . . , l,

where β1, . . . , βl are pairwise distinct numbers assuming the values 1, 2, . . . , l. Ar-
ranging the last l columns Nm−1+β1 , . . . , Nm−1+βl

of the matrices Nγ in (8.3.7) in
increasing order of their indices (in doing this, we introduce a factor δ(β), where
δ(β) = ±1 depends on the parity of the permutation (1, . . . , l) → (β1, . . . , βl)), we
obtain
(8.3.8)

Il(ω) = (−1)l(l+1)/2 (l2)!
∑

β

δ(β)
( l∏

k=1

(ω + 3/2− βk)k−1+βk

(k − 1 + βk)!

)
detN (l)(ω, 0),

where the summation is extended over all permutations β of the numbers 1, . . . , l
and N (l)(ω, τ) is the matrix with the rows

∂j
z

(
z0, . . . , zm−1, ψ±0 , . . . , ψ±m−l−1, ψ

±
m, . . . , ψ±m+l−1

)∣∣∣
z=zq

(for ±Im zq > 0), q = 1, . . . , 2d, ν = 0, . . . , νq − 1. We introduce the matrix

G =
( (ω − s + 3/2)k+s−1

(k + s− 1)!

)
k,s=1,...,l

.

Since (ω − s + 3/2)k+s−1 = (ω − s + 3/2)s (ω + 3/2)k−1, we have

detG =
( l∏

k=1

(ω − k + 3/2)k (ω + 3/2)k−1

)
detJl

=
( l∏

k=1

(ω − k + 3/2)2k−1

)
detJl
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and (8.3.8) can be rewritten in the form

Il(ω) = (−1)l(l+1)/2 (l2)! det G detN (l)

= (−1)l(l+1)/2 (l2)!
( l∏

k=1

(ω − k + 3/2)2k−1

)
detN (l) .

Now we study the function detN (l)(ω, 0). If we add the k-th column of the matrix
N (l) to the (m+k)-th column Nk−1 (k = 1, . . . ,m− l), the elements of the (m+k)-
th column of the new matrix for τ = 0 are (1− e±2πωi)∂j

zzk−1|z=zq , q = 1, . . . , 2d,
j = 0, . . . , νq − 1. Hence we have

det N (l)(ω, 0) = (2πωi)m−l (−1)lm det Λl + O(|ω|m−l+1).

This proves (8.3.3).
We show that the coefficients bl2,m−l are nonzero for l = 0, 1, . . . , m. To this

end, we prove that

(8.3.9) det Jl = (−1)l−1 ((l − 1)!)2

(2l − 1)! (2l − 2)!
detJl−1.

Let F (z) be the determinant of the l×l-matrix whose first l−1 rows are the same as
those of the matrix Jl and whose last row is (zl/l!, zl+1/(l+1)!, . . . , z2l−1/(2l−1)!).
It is not difficult to see that the coefficient of z2l−1 in the polynomial F (z) is
detJl−1/(2l−1)!. Furthermore, the polynomial F satisfies the relations ∂k

z F (0) = 0
for k = 0, . . . , l − 1, F (1) = det Jl, ∂k

z F (1) = 0 for k = 1, . . . ,m − 1. Using these
data we can recover the polynomial F using the Hermite interpolation (see Gel′fond
[67, p.46]):

F (z) = det Jl z
l

l−1∑

k=0

∂l−k−1
z z−l|z=1

(l − k − 1)!
(z − 1)l−k−1 .

Therefore, the coefficient of z2l−1 in the polynomial F is also equal to

(−1)l−1 (2l − 2)!
((l − 1)!)2

detJl.

This implies (8.3.9). In particular, from (8.3.9) it follows that det Jl 6= 0.
Finally we prove that det Λl 6= 0 for l = 0, . . . ,m. Assume that there exist

numbers c0, . . . , cm+l−1 and p0, . . . , pm−l−1 such that
m+l−1∑

k=0

ck ∂j
zzk|z=zq +

m−l−1∑

k=0

pk (−∂j
zzk)|z=zq = 0,(8.3.10)

m+l−1∑

k=0

ck ∂j
zzk|z=z̄q +

m−l−1∑

k=0

pk ∂j
zzk|z=z̄q = 0(8.3.11)

for q = 1, . . . , d, j = 0, . . . , νq − 1. We introduce the polynomials

P (z) =
m+l−1∑

k=0

ck zk , Q(z) =
m−l−1∑

k=0

pk zk .

Equations (8.3.10, (8.3.11) can be written in the form

(8.3.12) ∂j
z(P (z)−Q(z))

∣∣
z=zq

= ∂j
z(P (z) + Q(z))

∣∣
z=zq

= 0
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for q = 1, . . . , d, j = 0, . . . , νq − 1 (here P (z) denotes the polynomial P (z)). Let
P1 = P +P , iQ1 = Q−Q. Then it follows from (8.3.12) that the polynomial P1+iQ1

has m roots in the upper half-plane. Applying Lemma 8.3.1, we get P1 = Q1 = 0,
i.e., P = −P , Q = Q. The equalities P = P , Q = −Q are proved analogously.
Thus, P = Q = 0 and the columns of Λl are linearly independent, i.e., det Λl 6= 0.
The lemma is proved.

8.3.4. Asymptotic formulas for the eigenvalues.

Theorem 8.3.1. There exist a positive number ε0 and real-analytic functions

µk : (2π − ε0, 2π) → (m− 1/2,m), k = 1, . . . , m,

such that the spectrum of the pencil L lying in the strip m − 1 ≤ Re λ ≤ m is
exhausted by the simple eigenvalues µ1(α), . . . , µm(α) for 2π− ε0 < α < 2π. More-
over, the following asymptotic formula holds as α → 2π :

(8.3.13) µk(α) = m− 1/2 + αk (2π − α)2k−1 + O(|2π − α|2k),

k = 1, . . . ,m. Here αk are positive numbers computed as follows. We set

R(z) =
d∏

q=1

(z − zq)νq =
m∑

l=0

(γl + iβl) zm−l,

where γj , βj are real numbers. Furthermore, we introduce the following matrices:
∇0 = 1, ∇2k is the 2k × 2k matrix whose j-the row has the form

(γj−1, βj−1, γj−2, βj−2, . . . , γj−2k, βj−2k),

where we agree that γ−l = β−l = 0 for l > 0. Then

(8.3.14) αk = − 1
4π

( (k − 1)! Γ(k − 1/2)
(2k − 2)! Γ(1/2)

)2 det∇2k

det∇2k−2
.

(Note that the quantity det∇2k is positive for even k and negative for odd k, cf.
Gantmakher [65, Vol.2, p.194].)

Proof: We construct the solutions of the equation detN (ω, τ) = 0 in a neigh-
borhood of the point (ω, τ) = (0, 0) using a Newton diagram (see Vainberg and
Trenogin [254, Ch.1,§2]) which, by Lemma 8.3.2, is generated by the points
(l2,m − l), l = 0, 1, . . . , m, and consists of m segments. The defining equation for
each segment of the Newton diagram is linear. Therefore, the equation detN (ω, τ) =
0 has exactly m real solutions ω1(τ), . . . , ωm(τ) defined for τ ∈ (0, δ) and having
the asymptotics

(8.3.15) ωl(τ) = αl τ
2l−1 + O(τ2l), where αl = −bl2,m−l/b(l−1)2,m−l+1 .

According to Theorem 8.1.4, the equation det Ψ(λ) = 0 has no solutions in the
strip |Re λ−m + 1| ≤ 1/2 for α ∈ (0, 2π). Consequently, ωl(τ) > 0 and αl > 0 for
l = 1, . . . ,m.

We calculate the constants αl in (8.3.15). To this end, we establish the connec-
tion between the determinants of the matrices Λl and Λl−1. Let the column-vector
c(l) = (c0, . . . , cm+l−2, p0, . . . , pm−l)t be the solution of the equation Λl−1 c(l) =
u(m+l−1), where u(m+l−1) is the vector with the components ∂j

zzm+l−1|z=zq , q =
1, . . . , 2d, j = 0, . . . , νq − 1. Then the matrix

M =
(
e(1), · · · , e(m+l−1), c(l), e(m+l), . . . , e(2m−1)

)
,
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where ej is the j-th unit vector in R2m, satisfies the equality Λl−1M = Λl. There-
fore,

(8.3.16) (−1)m−l pm−l detΛl−1 = det Λl .

Using formulas (8.3.9) and (8.3.16), we find that

αl = − 1
2πi

(l − 1/2) (1/2)2l−1

(l)l (l)l−1
pm−l .

Now we determine the numbers pm−l. Let

P (z) = −zm+l−1 +
m+l−2∑

k=0

ck zk , Q(z) =
m−l∑

k=0

pk zk .

Then the relation Λl−1c
(l) = u(m+l−1) can be written in the form

(8.3.17) ∂j
z (P (z)−Q(z))|z=zq = ∂j

z (P (z) + Q(z))|z=zq = 0

for q = 1, . . . , d, j = 0, . . . , νq−1. The polynomials P1 = −i(P−P ) and Q1 = Q+Q
have real coefficients and deg P1 ≤ m + l − 2, deg Q1 ≤ m − l. It follows from
(8.3.17) that the polynomial P1+iQ1 has m roots in the upper half-plane. Applying
Lemma 8.3.1, we find that P1 = Q1 = 0. In particular, we deduce from this that
Re pm−l = 0. Therefore,

(8.3.18) αl = − 1
2πi

(l − 1/2) (1/2)2l−1

(l)l (l)l−1
Im pm−l .

Now let P2 = (P + P )/2, Q2 = (Q−Q)/2i. Then P2 and Q2 are polynomials with
real coefficients, and from (8.3.17) it follows that

(8.3.19) ∂j
z (−P2(z) + iQ2(z))|z=zq = 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

In order to calculate the leading coefficient Im pm−l of the polynomial Q2, we rep-
resent the polynomial −P2 + iQ2 in the form

(8.3.20) −P2(z) + iQ2(z) = R(z)S(z), where S(z) =
l−1∑

k=0

(xk + iyk) zl−1−k .

The representation (8.3.20) is possible by (8.3.19). It can be easily seen that γ0 =
x0 = 1 and β0 = y0 = 0. From (8.3.20) we obtain the equalities

∑

k+s=n

(γk ys + βk xs) = 0 for n = 0, . . . , 2l − 2,(8.3.21)

∑

k+s=2l−1

(γk ys + βk xs) = Im pm−l,(8.3.22)

in which we have taken γk = βk = 0 for k > m and xs = ys = 0 for s ≥ l.
Let y be the column-vector (y0, x0, y1, x1, . . . , yl−1, xl−1)t. Then (8.3.21), (8.3.22)
can be written in the form ∇2ly = Im pm−l · e(2l), where e(2l) is the (2l)-th unit
vector in R2l. We denote by m = (m1, . . . ,m2l)t the column-vector consisting of
the minors corresponding to the elements of the last row of the matrix ∇2l. Since
γ0 = 1 and β0 = 0, it follows that m1 = 0 and m2 = det∇2l−2. Moreover, there is
the equality ∇2lm = det∇2l · e(2l). Consequently, y = (Im pm−l/ det∇2l) m. Since
x0 = 1 and m2 = det∇2l−2, we have Im pm−l = det∇2l/ det∇2l−2. From this and
from (8.3.18) we obtain formula (8.3.14). The theorem is proved.
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8.4. The case of a convex angle

Here we improve the result of Theorem 8.1.4 for α < π. We show that the strip
|Re λ−m + 1| ≤ 1 does not contain eigenvalues of the pencil L in this case.

8.4.1. An auxiliary assertion.

Lemma 8.4.1. Suppose that m and n are integers, m ≥ 2, n = 0, . . . , m−2, and
P , Q are polynomials, deg P ≤ m+n, deg Q ≤ m−n−2, such that the polynomial
PQ has real coefficients. If the function

(8.4.1) F (z)
def
= P (z) Q(z) + zn+1 QQ(z) log z

has at least m roots with positive imaginary parts, then F = 0 and, consequently,
also Q = 0.

Proof: We consider the function F in the complex plane cut along the negative
semi-axis and suppose that F has at least m roots in the upper half-plane. Since
F (z) = F (z), it follows that F has at least 2m roots with nonzero imaginary part.

We represent the polynomials P and Q in the form P = L1P1 and Q = L1L2Q1,
where L1 and L2 are polynomials with real coefficients whose roots are situated on
the real axis, the polynomials P1 and L2 have no common roots, and Q1(z) 6= 0 for
Im z = 0. Then F = (L1)2L2F1, where

F1(z) = P1Q1(z) + zn+1 L2(z) Q1Q1(z) log z.

It can be easily shown that the function F1, just as F, has at least 2m roots with
nonzero imaginary parts. We show that F1 does not vanish on the negative real
semi-axis. Indeed, if F1(z0) = 0, Im z0 = 0, and Re z0 < 0, then L2(z0) = 0 and
P1(z0) = 0, but the polynomials P1 and L1 have no common roots.

We consider the contour Γε,R = (R eiπ, εeiπ)∪Sε ∪ (εe−iπ, R e−iπ)∪SR, where
Sρ is a circle of radius ρ with center at the point 0.

If ε is sufficiently small and R is a large positive number, then the function F1

does not vanish on Γε,R and has at least 2m roots inside Γε,R. We compute the
increment of the argument of F1 on a single passage around the contour Γε,R in a
counterclockwise direction. Suppose the degrees of the polynomials L1 and L2 are
equal to l1 and l2, respectively. First we show that the modulus of the increment
of F1 on the segment (R eiπ, εeiπ) does not exceed π(l2 + 1). Indeed, the imaginary
part of F1 can change sign only on passing through a root of the function L2. Thus,
as z varies from R eiπ to εeiπ, the imaginary part of F1 can change sign not more
than l − 2 times. From this we obtain the required estimate of the increment of
the argument. Similarly, it can be proved that the modulus of the increment of F1

on the segment (εe−iπ, R e−iπ) also does not exceed π(l2 + 1). Separating out the
principal part of the function F1 at zero and infinity, we find that the increment
of the argument of F1 on the contours Sε, SR is contained within the limits from
−2π(2m − 2 − 2l1 − l2) − δ1 to δ1 and from −δ2 to 2π(2m − 2 − 2l1 − l2) + δ2,
respectively, where the numbers δ1 and δ2 can be made arbitrarily small by the
choice of the numbers ε and R. In summary, we find that the modulus of the
increment of the argument of F1 on the contour Γε,R does not exceed 2π(m − 1).
Since F1 has 2m roots inside Γε,R, it follows that F1 = 0. The lemma is proved.
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8.4.2. The energy strip in the case α < π.

Theorem 8.4.1. Let α ∈ (0, π). Then
1) the spectrum of the pencil L does not contain the points m,m+1, . . . , 2m−1,
2) the strip m− 2 ≤ Re λ ≤ m does not contain eigenvalues of the pencil L.

Proof: 1) Suppose first that λ = 2m − 1. We prove the linear independence
of the vectors Uk(α) and Vk(α, λ), k = 0, . . . , m − 1, introduced in the proof of
Theorem 8.1.5. Let c0, . . . , c2m−1 be complex numbers such that

(8.4.2)
m−1∑

k=0

(
ck Uk(α) + c2m−1−k Vk(α, 2m− 1)

)
= 0.

We introduce the polynomial

P (z) =
2m−1∑

k=0

ck zk.

Then (8.4.2) can be written as

∂j
zP (z)

∣∣∣
z=cos α+zq sin α

= 0, q = 1, . . . , 2d, j = 0, . . . , νq − 1.

From this we conclude that P = 0. Hence the vectors Uk(α) and Vk(α, λ) are linear
independent for λ = 2m− 1.

Next we prove that the number λ = m + n does not belong to the spectrum of
L for n = 0, . . . , m− 2. Due to Lemma 8.1.2 and (8.1.19), it suffices to show that

(8.4.3) ∂m−n−1
λ detD(λ)

∣∣∣
λ=m+n

6= 0.

Since Vm−k(α, m + n) = Un+k(α) for k = 1, . . . ,m− n− 1, the quantity on the left
side of (8.4.3) is equal to the determinant of the matrix(

U0, . . . , Um−1, V0, . . . , Vn, ∂λVn+1, . . . , ∂λVm−1

)∣∣∣
λ=m+n

.

We assume that there exist numbers c0, . . . , cm+n and d0, . . . , dm−n−2 such that
m−1∑

k=0

ckUk(α) +
m+n∑

k=m

ckVm+n−k(α, m + n)(8.4.4)

+
m−n−2∑

k=0

dk∂λVm−1−k(α, m + n) = 0.

Then we introduce the polynomials

P (z) =
m+n∑

k=0

ck zk , Q(z) = i

m−n−2∑

k=0

dk zk .

Since ∂λ Vm−1−k(α,m + n) is the vector with the components

∂j
z

(
(cos α + z sin α)n+k+1 log(cos α + z sin α)

)∣∣∣
z=zq

,

q = 1, . . . , 2d, j = 0, . . . , νq − 1, we can write (8.4.4) in the form

(8.4.5)





∂j
z(P (z) + zn+1 Q(z) log z)|z=ζq = 0,

∂j
z(P (z) + zn+1 Q(z) log z)|z=ζq = 0,
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where ζq = cos α + zq sin α, q = 1, . . . , d, j = 0, . . . , νq − 1. This implies

∂j
z

(
zn+1 (PQ(z)− PQ(z)) log z

)∣∣∣
z=ζq

= 0,

and, consequently, ∂j
z(PQ(z)− PQ(z))|z=ζq = 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

The polynomial PQ − PQ of degree 2m − 2 assumes real values for real z and
has m roots in the upper half-plane. Hence PQ = PQ, i.e., the coefficients of the
polynomial PQ are real.

We consider the function

F (z)
def
= P (z) Q(z) + zn+1 Q(z) Q(z) log z.

From (8.4.5) it follows that

∂j
zF (z)|z=ζq

= 0 for q = 1, . . . , d, j = 0, . . . , νq − 1.

Consequently, by Lemma 8.4.1, the polynomial Q is equal to zero. Since the degree
of the polynomial P is less than 2m− 1, it follows from (8.4.5) that the polynomial
P is equal to zero. Hence the numbers m + n are not eigenvalues of L for n =
0, . . . , m− 2. The first part of the theorem is proved.

2) Let δ be a small positive number. By Lemma 8.1.3, there exists a positive
number N such that the function λ → detΨ(λ) has no zeros in the set

{
λ ∈ C : m− 1 ≤ Re λ ≤ m, |Im λ| ≥ N}

if α ∈ [δ, 2π]. We denote the boundary of the rectangle

GN =
{
λ ∈ C : m− 1 ≤ Re λ ≤ m, |Imλ| ≤ N

}

by ΓN . By Theorem 8.1.5, Lemma 8.1.3 and part 1) of Theorem 8.4.1, the function
detΨ(·) is nonzero on ΓN if α ∈ [δ, 2π]. Applying Rouché’s theorem, we find that
the number of zeros of det Ψ(·) situated in GN does not depend on α ∈ [δ, π]. If the
angle α is close to π, then, by Theorems 8.1.3 and 8.2.1, the strip m−1 ≤ Re λ ≤ m
is free of zeros of detΨ(·). Therefore, for α ∈ [δ, π) the function det Ψ(·) is nonzero
in the rectangle GN and, consequently, also in the strip m − 1 ≤ Re λ ≤ m. From
Theorem 8.1.2 we conclude that the strip m − 2 ≤ Re λ ≤ m does not contain
eigenvalues of L. The proof is complete.

8.4.3. A counterexample. We show that Theorems 8.1.4 and 8.4.1 are not
true, in general, if the coefficients of the operator L are nonreal. Let

L(∂x1 , ∂x2) = ∂2
x2

+ i (t− 1) ∂x1 ∂x2 + t ∂2
x1

= (∂x2 − i ∂x1) (∂x2 + i t ∂x1)

with a positive real constant t. If λ 6= 0, then the functions

u1(λ, ϕ) = (cos ϕ + i sin ϕ)λ and u2(λ, ϕ) = (cos ϕ− it sin ϕ)λ

form a complete system of solutions of the equation L(ϕ, ∂ϕ, λ)u(ϕ) = 0. It can be
easily verified that the number λ0 is an eigenvalue of the pencil L if and only if

(8.4.6) λ−1
0

(
u1(λ0, α)− u2(λ0, α)

)
= 0.

Since log(cos α + i sinα) 6= log(cos α − it sin α) (we recall that the argument of
the function ϕ → cos ϕ + z sin ϕ varies from 0 to 2π for Im z > 0 and from 0
to −2π for Im z < 0), it follows that the number 0 is not an eigenvalue. We
denote by γ, γ ∈ [−2π, 0), the argument of the number cosα − it sin α and set
ρ = log(cos2 α + t sin2 α). Assuming that ρ 6= 0 (i.e., α 6= π, α 6= 2π, and t 6= 1),
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we find that the solutions of the equation (8.4.6) are exhausted by the numbers λk,
k = ±1,±2, . . . , where

Im λk =
2kπ

ρ + (α− γ)2/ρ
, Re λk =

2kπ(α− γ)
ρ2 + (α− γ)2

.

Hence, if t is a sufficiently large number and α 6= π, α 6= 2π, then the eigenvalues
of the pencil L can lie arbitrarily close to the line Reλ = 0.

8.5. The case of a nonconvex angle

Now we assume that the opening α of the angle K is greater than π. Then, in
contrast to the case α < π, the strip m− 1 ≤ Re λ ≤ m contains eigenvalues of the
pencil L. We prove that all eigenvalues in this strip are real and simple and that
they depend monotonically on α.

8.5.1. Auxiliary assertions on the distribution of roots of complex
functions. We start with the proof of the following three lemmas.

Lemma 8.5.1. Let c be a complex number with nonzero imaginary part, and let
P, Q be polynomials with real coefficients. Suppose that the polynomial

P (z) + c z2 Q(z)

has m ≥ 2 roots in the upper half-plane. Furthermore, we assume that one of the
following assumptions is valid:

(i) deg P ≤ m− 1 and deg Q ≤ m− 2,
(ii) deg P ≤ m and deg Q ≤ m− 3.

Then P = Q = 0.

Proof: Let deg P ≤ m − 1 and deg Q ≤ m − 2. Without loss of generality,
we may assume that P (0) 6= 0, deg Q = m − 2, and the leading coefficient of the
polynomial Q is 1. Suppose that the polynomial P (z) + c z2 Q(z) has the roots
z1, . . . , zm, which lie in the upper half-plane Im z > 0. Then, by Viète’s theorem we
have

P (0) = (−1)m c z1 · · · zm , P ′(0) = (−1)m−1 c z1 · · · zm (z−1
1 + · · ·+ z−1

m ).

Consequently, P ′(0)/P (0) = −(z−1
1 + · · ·+z−1

m ) which is impossible, since Im z−1
k <

0 for k = 1, . . . , m. This proves the assertion for case (i). The proof for case (ii)
proceeds analogously.

Lemma 8.5.2. Let P, Q be polynomials with real coefficients such that deg P ≤
m and deg Q ≤ m− 3, m ≥ 2. Furthermore, we assume that the function

h(z) = P (z) + (πi + log z) z2 Q(z)

has at least m zeros in the upper half-plane. Then P = Q = 0.

Proof: We assume at first that the polynomials P and z2Q have no common
real roots. Then the function h does not vanish on the real axis. Let

P (z) =
k∑

j=0

pj zj , Q(z) =
l∑

j=0

qj zj ,

where k ≤ m, l ≤ m− 3, pk 6= 0, ql 6= 0. We consider the family of functions

ht(z) = P (z) + (πi + t log z) z2 Q(z) , 0 ≤ t ≤ 1.
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These functions do not vanish for Im z = 0. Moreover, for large |z| the following
formulas hold:

ht(z) = pk zk + O(|z|k−1 log |z|) if k ≥ l + 3,

ht(z) =
(
ql (πi + t log z) + pk

)
zk + O(|z|k−1 log |z|) if k = l + 2,

ht(z) = ql (πi + t log z) zl+2 + O(|z|l+1 log |z|) if k < l + 2.

Consequently, in all cases for sufficiently large |z| with Im z ≥ 0 the functions ht,
t ∈ [0, 1], are nonzero. Using Rouché’s theorem, we find that the functions ht have
the same number of zeros in the upper half-plane. Since h1 = h, the polynomial h0

has at least m zeros in the upper half-plane. Applying Lemma 8.5.1 to h0, we get
P = Q = 0.

We consider the case when the polynomials P and z2Q have common real roots.
Then there are the decompositions

P (z) = P1(z)P2(z) and z2 Q(z) = P1(z) Q2(z),

where P1 is a polynomial with real roots, deg P2 ≤ m − 1, deg Q2 ≤ m − 2, and
P2(z) + iQ2(z) 6= 0 for real z. The function z → P2(z) + (πi + log z)Q2(z) has
at least m roots in the upper half-plane. Just as above, it can be proved that the
polynomial P2 + iπQ2 has m roots with positive imaginary part. From this we
conclude that P2 = Q2 = 0. The lemma is proved.

Similarly, the following lemma can be proved.

Lemma 8.5.3. Let P, Q be polynomials with real coefficients, deg P ≤ m − 1,
deg Q ≤ m−2, m ≥ 2. Furthermore, let τ be a real number, τ 6= 0, |τ | < 1/2. If the
function h(z) = P (z) + eπτi zτ+2 Q(z) has at least m zeros in the upper half-plane
Im z > 0, then P = Q = 0.

Proof: Suppose that the function h has at least m roots with positive imaginary
part. We assume first that the polynomials P (z) and z2 Q(z) have no common real
roots. Then h(z) 6= 0 for real z. Let

P (z) =
k∑

j=0

pj zj , Q(z) =
l∑

j=0

qj zj ,

where k ≤ m− 1, l ≤ m− 2, pk 6= 0, ql 6= 0. We consider the family of functions

ht(z) = P (z) + eπτi ztτ+2 Q(z), 0 ≤ t ≤ 1,

which are nonzero for real z. For large |z| we have

ht(z) = ql e
πτiztτ+l+2 + O(|z|l+3/2) if k ≤ l + 1,

ht(z) =
(
ql e

πτi ztτ + pk

)
zk + O(|z|k−1/2) if k = l + 2,

ht(z) = pk zk + O(|z|k−1/2) if k > l + 2.

Consequently, in all cases the functions ht are nonzero for large |z|, Im z ≥ 0.
Therefore, the functions ht, t ∈ [0, 1], have the same number of zeros in the upper
half-plane as h1 = h. In particular, it follows that the polynomial h0 has at least
m roots with positive imaginary part, which is impossible by Lemma 8.5.1.

Now we consider the case when the polynomials P and z2Q have common real
roots. Then P (z) = P1(z) P2(z), z2Q(z) = P1(z)Q2(z), where P1 is a polyno-
mial with real roots and P2(z) + iQ2(z) 6= 0 for real z. Furthermore, the function
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z → P2(z) + eπτi zτ Q2(z) has at least m roots in the upper half-plane Im z > 0.
Reasoning as above, we find that the polynomial P2 + eπτi Q2 has at least m roots
with positive imaginary parts. This implies P2 = Q2 = 0. The lemma is proved.

8.5.2. A property of the function Ψ. Let Ψ = Ψ(α, λ) be the matrix
introduced in Lemma 8.1.1.

Lemma 8.5.4. If det Ψ(α, λ) = 0 for some α ∈ [π, 2π), λ ∈ (m− 1/2,m +1/2),
then ∂α det Ψ(α, λ) 6= 0.

Proof: We consider three cases.
1. The case α = π, λ ∈ (m − 1/2,m + 1/2). By Theorem 8.1.3, the num-

ber λ = m is the only solution of the equation det Ψ(π, λ) = 0 in the interval
(m− 1/2,m + 1/2). Furthermore, by (8.1.17) and (8.2.2), we have

detΨ(α, λ) = (−1)m(m+1)/2 det T−1 (cos α)−m(m−1)/2 f1(λ−m,π − α)

×(λ−m)m−1
m−1∏

k=0

1
(λ− k −m + 1)m

,

where f1 is the function introduced in the proof of Theorem 8.2.1. From (8.2.7) it
follows that ∂αf1(λ−m,π−α) 6= 0 for α = π, λ = m. Consequently, ∂α detΨ(α, λ) 6=
0 for α = π, λ = m.

2. The case α ∈ (π, 2π), λ = m. If det Ψ(α,m) = 0 for some α ∈ (π, 2π), then

(8.5.1) ∂m−1
λ detD(α, λ)

∣∣
λ=m

= 0

(cf. (8.1.18), (8.1.19)). Let Uk(α), Vk(α, λ) be the the column-vectors introduced
in the proof of Theorem 8.1.5. Since Vm−k(α, m) = Uk(α) for k = 1, . . . ,m− 1, the
left side of (8.5.1) is equal to the determinant of the matrix with the columns

(8.5.2) U0(α), . . . , Um(α), ∂λV1(α, λ)|λ=m, . . . , ∂λVm−1(α, λ)|λ=m .

Thus, (8.5.1) is satisfied if and only if the vectors (8.5.2) are linearly dependent.
We assume that ∂α detΨ(α, m) = 0 or, what is the same, that

(8.5.3) ∂α∂m−1
λ detD(α, λ)|λ=m = 0.

Since the vector ∂αUk(α) is a linear combination of Uk(α) and Uk−1(α), k =
1, . . . , m− 1, and the vector ∂α∂λVm−k(α, λ)|λ=m is a linear combination of Uk(α),
Uk−1(α), ∂λVm−k(α, λ)|λ=m, and ∂λVm−k+1(α, λ)|λ=m, it follows from (8.5.3) that
the vectors
(8.5.4)

U0(α), . . . , Um(α), ∂λV1(α, λ)|λ=m, . . . , ∂λVm−2(α, λ)|λ=m, ∂λVm(α, λ)|λ=m

are linearly dependent.
We prove that the vectors

(8.5.5) U0(α), . . . , Um−1(α), ∂λV1(α, λ)|λ=m, . . . , ∂λVm(α, λ)|λ=m

are linearly independent. Indeed, since Vk(α, λ) = Vk−1(α, λ−1), the linear depen-
dence of the vectors (8.5.5) is equivalent to the vanishing of the determinant of the
matrix with the columns

U0(α), . . . , Um−1(α), ∂λV0(α, λ)|λ=m−1, . . . , ∂λVm−1(α, λ)|λ=m−1 .

However, by the relation Vk(α, m − 1) = Um−1−k(α), k = 0, . . . ,m − 1, the de-
terminant just mentioned equals ∂m

λ D(α, λ)|λ=m−1, which is nonzero by (8.1.19),
Lemma 8.1.2, and Theorem 8.1.4.
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From the linear dependence of the vectors (8.5.2), (8.5.4) and the linear inde-
pendence of the vectors (8.5.5) it follows that

U0(α), . . . , Um(α), ∂λV1(α, λ)|λ=m, . . . , ∂λVm−2(α, λ)|λ=m

are linearly dependent, i.e., there exist numbers c0, . . . , cm, d1, . . . , dm−2, not all
zero, such that

(8.5.6)
m∑

k=0

ck Uk(α) +
m−2∑

k=1

dk ∂λVk(α, λ)|λ=m = 0.

We introduce the polynomials

P (z) =
m∑

k=0

ck (−z)k , Q(z) =
m−2∑

k=1

dk (−z)m−2−k .

Since

∂λ∂j
zσ(z)λ−k|λ=m,z=zq

= ∂j
z

(
i
(± πi + log(− cos α− z sin α)

)
(cos α + z sin α)m−k

)∣∣∣
z=zq

for ±Im zq > 0 (the principal value of the logarithm is taken here), the equality
(8.5.6) can be written in the form

∂j
ζ

(
− iP (ζ) + ζ2(πi + log ζ) Q(ζ)

)∣∣∣
ζ=ζq

(8.5.7)

= ∂j
ζ

(
iP (ζ) + ζ2(πi + log ζ) Q(ζ)

)∣∣∣
ζ=ζq

= 0,

where ζq = −σ(zq) = − cosα− zq sin α, q = 1, . . . , d, j = 0, . . . , νq − 1. We consider
the function

h(ζ) = P1(ζ) + ζ2 (πi + log ζ)Q1(ζ),
where P1 = i(P − P ) and Q1 = Q + Q are polynomials with real coefficients. By
(8.5.7), the function h has m zeros with positive imaginary parts. Applying Lemma
8.5.2 to this function, we find that P1 = Q1 = 0. Similarly, it can be proved that
P + P = Q − Q = 0 and, consequently, P = Q = 0. This proves the lemma for
λ = m.

3. The case α ∈ (π, 2π), λ ∈ (m − 1/2,m + 1/2), λ 6= m. If detΨ(α, λ) = 0,
then the vectors

(8.5.8) U0(α), . . . , Um−1(α), V0(α, λ), . . . , Vm−1(α, λ)

are linearly independent. If, moreover, ∂α detΨ(α, λ) = 0, then

(8.5.9) ∂α detD(α, λ) = 0.

Since the vector ∂αUk(α), k = 1, . . . , m − 1, is a linear combination of Uk(α)
and Uk−1(α) and the vector ∂αVk(α, λ) is a linear combination of Vk(α, λ) and
Vk+1(α, λ), the equality (8.5.9) is equivalent to the linear dependence of the vectors

(8.5.10) U0(α), . . . , Um−1(α), V0(α, λ), . . . , Vm−2(α, λ), Vm(α, λ).

By Theorem 8.1.4, the number λ− 1 does not belong to the spectrum of L. Conse-
quently, the determinant of D(α, λ−1) is nonzero. From this and from the relation
Vk(α, λ) = Vk−1(α, λ− 1) we conclude that the vectors

(8.5.11) U0(α), . . . , Um−1(α), V1(α, λ), . . . , Vm(α, λ)
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are linearly independent. By the linear dependence of the vectors (8.5.8) and
(8.5.10) and the linear independence of the vectors (8.5.11), there exist numbers
c0, . . . , cm−1, d0, . . . , dm−2, not all zero, such that

(8.5.12)
m−1∑

k=0

ck Uk(α) +
m−2∑

k=0

dk Vm−2−k(α, λ) = 0.

We set τ = λ−m. Then τ ∈ (−1/2, +1/2), τ 6= 0, and the components of the vector
Vk are

∂j
zσ(z)λ−k|z=zq

= (−1)m−k e±πτi∂j
z(− cos α− z sin α)τ+m−k|z=zq

for ± Im zq > 0,

where the argument of the function − cosα−z sin α lies in the interval (−π, π). We
introduce the polynomials

P (z) =
m−1∑

k=0

ck (−z)k , Q(z) = (−1)m
m−2∑

k=0

dk (−z)k .

Then (8.5.12) can be written in the form

(8.5.13) ∂j
ζ

(
P (ζ) + eπτi ζτ+2 Q(ζ)

)∣∣
ζ=ζq

= ∂j
ζ

(
P (ζ) + eπτi ζτ+2 Q(ζ)

)∣∣
ζ=ζq

= 0,

where ζq = −σ(zq) = − cos α − zq sin α, q = 1, . . . , d, j = 0, . . . , νq − 1. Let P1 =
P +P , Q1 = Q+Q. Then, according to (8.5.13), the function P1(ζ)+eπτi ζτ+2 Q1(ζ)
has m roots in the upper half-plane. Applying Lemma 8.5.3, we find that P1 =
Q1 = 0, i.e., P = −P , Q = −Q. Similarly, we can prove that P = P , Q = Q. Thus,
P = Q = 0. This proves the lemma for α ∈ (π, 2π), λ 6= m.

8.5.3. Eigenvalues in the strip m − 1/2 < Re λ ≤ m. Now we give a
description of the eigenvalues of the operator pencil L in the strip m−1/2 < Re λ ≤
m.

Theorem 8.5.1. Let α ∈ [π, 2π). There exist real-analytic functions αk =
αk(λ), λ ∈ (m − 1/2,m], k = 1, . . . , m, with values in the interval [π, 2π) which
have the following properties.

1) The functions αk, k = 1, . . . , m, satisfy the inequality α′k(λ) < 0 for λ ∈
(m−1/2,m), i.e., these functions are decreasing. For all λ ∈ (m−1/2,m]
we have

α1(λ) < α2(λ) < · · · < αm(λ).

Furthermore,

α1(m) = π, α′1(m) = −π/Im (ν1z1 + · · ·+ νdzd), and

lim
λ→m−1/2

αk(λ) = 2π for k = 1, . . . ,m

(see Figure 14 below).
2) The eigenvalues of the pencil L lying in the strip m − 1 ≤ Re λ ≤ m are

the elements of the set

{λ ∈ (m− 1/2,m] : αk(λ) = α for some k = 1, . . . ,m}.
If the number m is an eigenvalue, then its algebraic multiplicity is at most
two. All other eigenvalues in the strip m− 1 ≤ Re λ ≤ m are simple.
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Proof: We set F (α, λ) = det Ψ(α, λ). Then F (α, λ) = F (α, λ), i.e., the function
F (α, ·) assumes real values for real λ. By Lemma 8.5.4, the function F (·, λ) has only
simple zeros for λ ∈ (m−1/2,m]. We show that the number of zeros of the function
F (·, λ) is independent of λ ∈ (m− 1/2,m]. If λ ∈ (m− 1/2,m), then, by Theorem
8.1.3, we have F (π, λ) = F (2π, λ) 6= 0, i.e., the function F (·, λ) is nonzero at the
endpoints of the interval [π, 2π]. Since the zeros of the function F (·, λ) are simple, it
follows from this that the number of zeros is independent of λ for λ ∈ (m−1/2,m).
Now let λ = m. We denote by α1, . . . , αn the roots of the equation F (α, m) = 0 on
the interval [π, 2π). By Theorem 8.1.3, one of them (suppose it is α1 for definiteness)
equals π. If we consider the equation F (α, m) = 0 on the interval [π, 2π], then
another simple root appears by Theorems 8.1.3 and 8.2.1, namely αn+1 = 2π.
Using the implicit function theorem, we conclude that there exist smooth functions
Φk = Φk(λ), k = 1, . . . , n + 1, defined in some neighborhood (m − ε,m + ε) of
the point λ = m with values in a neighborhood of the segment [π, 2π] such that
Φk(m) = αk, F (Φk(λ), λ) = 0 for k = 1, . . . , n + 1, and the functions Φk exhaust
all the roots of the equation F (α, λ) = 0 for λ ∈ (m− ε,m + ε), α ∈ [π, 2π). Since
π < αk < 2π for k = 2, . . . , n, it follows that for sufficiently small ε the functions Φk,
k = 2, . . . , n assume values in the segment (π, 2π). From the asymptotic formulas
(8.2.1) we conclude that the function Φ1 assumes values on the segment [π, 2π) for
λ ∈ (m− ε,m], while the values of the function Φn+1 lie outside the interval [π, 2π)
for λ ∈ (m − ε,m]. Therefore, the functions F (·, λ) have n zeros on the interval
[π, 2π), if λ ∈ (m − ε,m]. Consequently, for all λ ∈ (m − 1/2,m] the functions
F (·, λ) have n zeros on the interval [π, 2π).

Now we show that n = m. Indeed, if λ = m−1/2, then the equation F (α, λ) = 0
has the unique root α0 = 2π on the interval [π, 2π] (cf. Theorems 8.1.3, 8.1.4). As
λ increases, this root splits into m distinct roots (cf. Theorem 8.3.1). Hence n = m.

We enumerate the zeros of the function F (·, λ), λ ∈ (m− 1/2,m], belonging to
the interval [π, 2π) in increasing order:

α1(λ) < α2(λ) < · · · < αm(λ), λ ∈ (m− 1/2,m].

It follows from the implicit function theorem that the functions αk, k = 1, . . . , m,
are real-analytic in (m− 1/2,m]. In addition, α1(m) = π and from formula (8.2.1)
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we conclude that
α′1(m) = −π/Im (ν1z1 + · · · νdzd).

Furthermore, by Theorem 8.3.1, we have αk(λ) → 2π as λ → m−1/2, k = 1, . . . , m.
It remains to prove part 2) of the theorem and the relations α′k(λ) < 0 for λ ∈

(m−1/2,m), k = 1, . . . ,m. Assume that for some λ0 ∈ (m−1/2,m), k = 1, . . . , m,

l ≥ 1 we have ∂j
λαk(λ0) = 0 for j = 0, 1, . . . , l− 1 and ∂l

λαk(λ0) 6= 0. From this and
from the rule for differentiating an implicit function we conclude that the function
λ → F (αk(λ0), λ) has a zero of order l at the point λ = λ0. We call the number l
the multiplicity of the function αk at the point λ0.

Let α ∈ [π, 2π) and k ∈ {1, . . . , m}. We denote by λ1, . . . , λs the solutions of the
equation αk(λ) = α. Furthermore, we denote by lj the multiplicity of the function
αk at the point λj , j = 1, . . . , s, and set

nk(α) = l1 + · · ·+ ls, n(α) = n1(α) + · · ·+ nm(α).

It is not difficult to see that the quantity n(α) equals the number of zeros (counting
multiplicity) of the function F (α, ·) on the interval (m− 1/2,m]. Let n∗(α) be the
number of zeros of the function F (α, ·) contained in the strip m− 1/2 ≤ Re λ ≤ m.
Then

(8.5.14) n(α) ≤ n∗(α) for α ∈ [π, 2π).

We set ωk = αk(m), k = 1, . . . ,m, ωm+1 = 2π and assume that the following two
properties have been established for all k, k = 1, . . . , m :

(i) If α ∈ (ωk, ωk+1), then n(α) = n∗(α) = k.
(ii) The function αk has order 1 or 2 at the point λ = m. In the first case

n(ωk) = n∗(ωk) = k and in the second case n(ωk) = n∗(ωk) = k + 1.

From this it can be seen that for any α ∈ [π, 2π) the function F (α, ·) has only
real roots in the strip m − 1/2 ≤ Re λ ≤ m. Since the range of the function αk,
k = 1, . . . , m, contains the interval [ωk, 2π), it follows from the properties (i) and
(ii) that the functions αk have order 1 at each point of the interval (m−1/2,m), i.e.,
α′k(λ) 6= 0 for λ ∈ (m−1/2, m). Using the inequality αk(m) < 2π = lim

λ→m−1/2
αk(λ),

we find that α′k(λ) < 0 for λ ∈ (m− 1/2,m) from which we arrive at the assertion
of the theorem.

We establish properties (i) and (ii). The inequality

(8.5.15) n(α) ≥ k for α ∈ [ωk, ωk+1), k = 1, . . . , m,

is obvious. By Theorems 8.1.4 and 8.1.5, the function F (α, ·) has no zeros on the
line Re λ = m − 1/2 and in the set {λ = m + it : t ∈ R\{0}}. Furthermore, by
Lemma 8.1.3, the function F (α, ·) has no zeros in the strip m − 1/2 ≤ Re λ ≤ m
if |Imλ| ≥ R, where R is a sufficiently large number independent of α ∈ [π, 2π).
Therefore, as α increases from π to 2π, the value of the function n∗(·) may change
only if α passes through a zero of the function F (·,m). Consequently, the function
n∗(·) is constant on the intervals (ωk, ωk+1), k = 1, . . . , m. By Theorems 8.1.3 and
8.2.1, we have n∗(α) = 1 for α close to π and hence for α ∈ [ω1, ω2). From (8.5.14),
(8.5.15) it follows that n(α) = n∗(α) = 1 for α ∈ [ω1, ω2). This proves properties
(i) and (ii) for k = 1.

Suppose that these properties have been proved for k = l − 1. We verify them
for k = l, l ≥ 2. By Lemma 8.5.4, we have ∂αF (α, m)|α=ωl

6= 0. In addition, the
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function F (ωl, ·) is not identically zero. Therefore, the Taylor series of the function
F has the form

F (α, λ) = c0 (α− ωl) + c1 (λ−m)s +
∑

i≥1, i+j>1

c
(0)
i,j (α− ωl)i (λ−m)j

+
∑

i+j>s, j≥s

c
(1)
i,j (α− ωl)i (λ−m)j

in a neighborhood of the point (α, λ) = (ωl,m), where c0, c1, c
(0)
i,j , and c

(1)
i,j are

real numbers, c0 6= 0 and c1 6= 0 for s ≥ 1. The number s is the multiplicity of
the zero λ = m for the function F (ωl, ·) and, consequently, the multiplicity of the
function αl at the point λ = m. Since n(α) = n∗(α) = l − 1 for α ∈ (ωl−1, ωl),
the roots of the function F (α, ·), α ∈ (ωl − ε, ωl) are distinct from the point λ = m
for small ε > 0 and it holds αl(λ) ≥ ωl for λ ≤ m. From this we conclude that
n∗(ωl) = l−1+ s and the quantity c0/c1 is positive for odd s and negative for even
s. From the obvious inequality n(ωl) ≥ l − 1 + s and (8.5.14) we obtain

(8.5.16) n(ωl) = n∗(ωl) = l − 1 + s.

We consider the following cases:
1. s = 1. Then the point λ = m is a simple zero of the function F (ωl, ·). Since

c1/c0 > 0, it follows that for angles α near ωl, α > ωl, this zero lies inside the strip
m− 1/2 ≤ Re λ ≤ m. Therefore, n∗(α) = l for α ∈ (ωl, ωl+1).

2. s = 2. Then c0/c1 < 0. For α ∈ (ωl, ωl + ε), where ε is a small positive
number, the equation F (α, λ) = 0 has two real solutions

λ = m± |c0/c1 (α− ωl)|1/2 + O(|α− ωl|)
(see Vainberg and Trenogin [254, Ch.1,§2]). Hence, if α ∈ (ωl, ωl + ε), then inside
the strip m− 1/2 ≤ Re λ ≤ m there is a unique simple zero of the function F (α, ·)
close to m. Therefore, n∗(α) = l for α ∈ (ωl, ωl+1).

3. s ≥ 3. If α ∈ (ωl − ε, ωl), where ε is a small positive number, then the
equation F (α, λ) = 0 has the solution

λ = m + eπi(s−1)/s |c0/c1 (α− ωl)|1/s + O(|α− ωl|2/s)

for odd s and

λ = m + eπi(s+2)/2s |c0/c1 (α− ωl)|1/s + O(|α− ωl|2/s)

for even s. In both cases the real part of λ−m is negative and the imaginary part
is nonzero for α ∈ (ωl− ε, ωl). Consequently, if α ∈ (ωl− ε, ωl), the function F (α, ·)
has nonreal roots in the strip m − 1/2 ≤ Reλ ≤ m. This contradicts the equality
n(α) = n∗(α) for α ∈ (ωl−1, ωl). This means that case 3 is impossible.

Thus, properties (i) and (ii) are proved for k = l. The proof of the theorem is
complete.

As a consequence of Theorem 8.5.1, we obtain the following results.

Corollary 8.5.1. Let n(α), α ∈ (π, 2π), be the number of eigenvalues of
the pencil L located in the strip m − 1/2 ≤ Re λ ≤ m. Then n(α) = k if α ∈
(αk(m), αk+1(m)], k = 1, . . . , m− 1, and n(α) = m if α ∈ (αm(m), 2π).
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Corollary 8.5.2. The number ε0 in Theorem 8.3.1 can be taken as 2π −
αm(m). Then the inequalities m > µ1(α) > · · · > µm(α) > m − 1/2 hold for
α ∈ (αm(m), 2π).

8.6. The Dirichlet problem for a second order system

Here we consider the operator pencil corresponding to the Dirichlet problem for
a `×` system of second order elliptic equations in an angle. We show, in particular,
that the strip |Re λ| ≤ 1 does not contain eigenvalues of this pencil if the opening
of the angle is less than π. For opening greater than π (but less than 2π) we prove
that both strips −1 ≤ Re λ < 0 and 0 < Reλ ≤ 1 contain exactly ` eigenvalues.

8.6.1. Basic properties of the pencil generated by the Dirichlet prob-
lem. Let K be the angle {(x1, x2) ∈ R2 : 0 < r < ∞, 0 < ϕ < α}, where r, ϕ are
the polar coordinates in R2. Furthermore, let L be the differential operator

(8.6.1) L(∂x1 , ∂x2) =
2∑

i,j=1

Ai,j ∂xi ∂xj ,

where Ai,j are `×`-matrices and Ai,j = A∗j,i. We assume that there exists a positive
constant c0 such that

(8.6.2)
2∑

i,j=1

(
Ai,jf

(j), f (i)
)
C` ≥ c0

(|f (1)|2C` + |f (2)|2C`

)

for all f (1), f (2) ∈ C`. It is clear that this condition implies the ellipticity of L.
We seek all solutions of the Dirichlet problem

L(∂x1 , ∂x2)U = 0 in K,(8.6.3)
U = 0 for ϕ = 0 and ϕ = α,(8.6.4)

which have the form

(8.6.5) U(x1, x2) = rλ
s∑

k=0

1
k!

(log r)k us−k(ϕ),

where λ ∈ C, uk ∈ W 2
2 ((0, α))`.

Inserting U = rλu(ϕ) into (8.6.3), we obtain the differential equation

L(ϕ, ∂ϕ, λ) u(ϕ) = 0 for 0 < ϕ < α,

where L(ϕ, ∂ϕ, λ) : u → r2−λ L(∂x1 , ∂x2) (rλ u) is a differential operator quadrati-
cally depending on the parameter λ. We consider the differential operator L(λ) =
L(ϕ, ∂ϕ, λ) for fixed λ ∈ C as a continuous mapping

(8.6.6) W 2
2 ((0, α))`∩ ◦

W
1
2((0, α))` → L2((0, α))`.

Theorem 8.6.1. 1) The operator L(λ) realizes an isomorphism (8.6.6) for all
λ ∈ C, except a countable set of isolated points, the eigenvalues of the pencil L. The
eigenvalues have finite algebraic multiplicities and are contained, with the possible
exception of finitely many, in a double angle with opening less than π containing
the real axis.

2) The number λ is an eigenvalue of the pencil L if and only if −λ is an eigen-
value of L. The geometric, partial, and algebraic multiplicities of these eigenvalues
coincide.
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3) There exist no purely imaginary eigenvalues of the pencil L.

Proof: We prove first that the operator L(λ) is invertible for purely imaginary
λ. Let U = ritu(ϕ), where t is an arbitrary real number and u ∈ C∞0 ((0, α))`.
Integrating by parts, we get (because of the cancelling of the integrals on the arcs
|x| = 1 and |x| = 2)

−
∫

K
1<|x|<2

(
L(∂x)U,U

)
C` dx =

∫

K
1<|x|<2

2∑

i,j=1

(
Ai,j ∂xj

U , ∂xi
U

)
C` dx.

By (8.6.2), the right-hand side of the last equality can be estimated from below by
∫

K
1<|x|<2

2∑

j=1

∣∣∂xj
U

∣∣2 dx.

Consequently, we obtain

∣∣∣
α∫

0

(L(ϕ, ∂ϕ, it)u , u
)
C` dϕ

∣∣∣ ≥ c ‖u‖2W 1
2 ((0,α))` .

This implies that the operator L(it) :
◦

W 1
2((0, α))` → W−1

2 ((0, α))` and, therefore,
also the operator (8.6.6) are invertible. Applying Theorem 1.1.1, we get assertions
1) and 3).

Now let U = rλu(ϕ), V = r−λv(ϕ), where λ is an arbitrary complex number
and u, v are arbitrary vector functions from C∞0 ((0, α))`. Then, analogously to the
first part of the proof, integration by parts gives

∫

K
1<|x|<2

(
LU, V

)
C` dx =

∫

K
1<|x|<2

(
U,LV

)
C` dx.

This implies
α∫

0

(L(ϕ, ∂ϕ, λ)u(ϕ) , v(ϕ)
)
C` dϕ =

α∫

0

(
u(ϕ) , L(ϕ, ∂ϕ,−λ) v(ϕ)

)
C` dϕ,

Hence the operator L(ϕ, ∂ϕ, λ) is adjoint to L(ϕ, ∂ϕ,−λ). Using Theorem 1.1.7, we
obtain assertion 2).

By Theorem 1.1.5, the function (8.6.5) is a solution of problem (8.6.3), (8.6.4)
if and only if λ is an eigenvalue and u0, u1, . . . , us is a Jordan chain of the pencil L
corresponding to this eigenvalue.

8.6.2. The cases α = π and α = 2π. If α = π, then the set of all solutions
of problem (8.6.3), (8.6.4) having the form (8.6.5) for Reλ ≥ 0 is exhausted by
homogeneous vector-polynomials. Therefore, the spectrum of the pencil L in the
half-plane Re λ ≥ 0 consists of the eigenvalues λk = k, k = 1, 2, . . . , with geometric
and algebraic multiplicities equal to `. In this case generalized eigenfunctions do
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not exist. Due to the second part of Theorem 8.6.1, the spectrum of L in the half-
plane Re λ ≤ 0 consists of the eigenvalues λk = k, k = −1,−2, . . ., with geometric
and algebraic multiplicities equal to `.

In the case α = 2π it can be shown in the same way as in the preceding
section that the spectrum of the operator pencil L consists of the eigenvalues ±k/2,
k = 1, 2, . . . , with geometric and algebraic multiplicities equal to `. As in the case
α = π, there exist no generalized eigenfunctions.

8.6.3. Eigenvalues of the pencil L in the strip −1 ≤ Re λ ≤ 1. Now
we consider the pencil L in the case α 6= π, α 6= 2π.

Lemma 8.6.1. If α 6= π and α 6= 2π, then the line Re λ = 1 does not contain
eigenvalues of the pencil L.

Proof: We set

Bi,j =
1
2

(
Ai,j + A∗i,j

)
.

Obviously, Bi,j = Bj,i = B∗
i,j . Suppose that the function U = rλu(ϕ), where

Re λ = 1 and u ∈ W 2
2 ((0, α))`, is a solution of problem (8.6.3), (8.6.4). Then

0 =
∫

K
1<|x|<2

(
L(Dx)U,∆U

)
C` dx =

2∑

i,j=1

∫

K
1<|x|<2

(
∂xiBi,j∂xj U, ∆U

)
C` dx(8.6.7)

= −
2∑

i,j=1

∫

K
1<|x|<2

(
Bi,j∂xj U, ∂xi∆U

)
C` dx +

2∑

i,j=1

2∫

1

νi

(
Bi,j∂xj U, ∆U

)
C`

∣∣∣
ϕ=α

ϕ=0
dr.

where (ν1, ν2) is the exterior normal to the rays ϕ = 0 and ϕ = α. (Due to the
condition Re λ = 1, the integrals over the arcs r = 1 and r = 2 are cancelled.)
Integrating by parts in the first sum on the right of (8.6.7), we get

−
2∑

i,j,k=1

∫

K
1<|x|<2

(
Bi,j∂xj ∂xk

U, ∂xi∂xk
U

)
C` dx(8.6.8)

=
2∑

i,j,k=1

2∫

1

(
νi

(
Bi,j∂xj U, ∂2

xk
U

)
C` − νk

(
Bi,j∂xj U, ∂xi∂xk

U
)
C`

)∣∣∣
ϕ=α

ϕ=0
dr.

We show that the right-hand side of the last equality vanishes for ϕ = 0. Since
ν1 = 0, ν2 = −1 for ϕ = 0 and ∂x1U

∣∣
ϕ=0

= ∂2
x1

U
∣∣
ϕ=0

= 0, the right-hand side of
(8.6.8) (for ϕ = 0) is equal to

2∫

1

(
B1,2∂x2U, ∂x1∂x2U

)
C`

∣∣
ϕ=0

dx1

and, consequently, also to

(8.6.9)
1
2

2∫

1

∂x1

(
B1,2∂x2U, ∂x2U

)
C`

∣∣
ϕ=0

dx1 .
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Here we made use of the fact that the left-hand side of (8.6.8) is real by (8.6.2). Since
∂x2U

∣∣
ϕ=0

= rλ−1 u′(0) and Re λ = 1, the scalar product of the vector functions
B1,2∂x2U and ∂x2U in C` is equal to a constant for ϕ = 0. Therefore, the expression
(8.6.9) vanishes. Thus, we have shown that the right-hand side of (8.6.8) vanishes
for ϕ = 0. The same can be shown for ϕ = α. Consequently,

2∑

i,j,k=1

∫

K
1<|x|<2

(
Bi,j∂xj

∂xk
U, ∂xi

∂xk
U

)
C` dx = 0.

Using (8.6.2), we conclude that ∂xj ∂xk
U = 0 for j, k = 1, 2. Hence U has the

form U = x1f
(1) + x2f

(2) with certain f (1), f (2) ∈ C`. However, the equalities
U(0) = U(α) = 0 exclude this representation for α 6= π, α 6= 2π. The lemma is
proved.

Theorem 8.6.2. 1) If α ∈ (0, π), then the strip |Re λ| ≤ 1 does not contain
eigenvalues of the operator pencil L.

2) If α ∈ (π, 2π), then every of the strips 0 < Re λ ≤ 1 and −1 ≤ Re λ < 0
contains exactly ` eigenvalues (counting multiplicity) of L.

Proof: By the second part of Theorem 8.6.1, it suffices to prove the statement
of the theorem for the strip 0 < Re λ ≤ 1. We introduce the differential operator

Lt(∂x1 , ∂x2) = (1− t)∆ I + t L(∂x1 , ∂x2),

where t ∈ [0, 1] and I is the identity matrix. Note that condition (8.6.2) is also true
for the coefficients of the operator Lt. Let Lt denote the operator pencil generated
by the Dirichlet problem for the differential operator Lt.

We consider the case α ∈ (0, π). By Theorem 8.6.1 and Lemma 8.6.1, the lines
Re λ = 0 and Re λ = 1 do not contain eigenvalues of the pencil Lt. Furthermore,
it can be easily verified that for large c there are no eigenvalues of the pencil Lt in
the set {λ : 0 ≤ Re λ ≤ 1, |λ| > c} (cf. Lemma 8.1.3). Using Corollary 1.1.2, we
conclude from this that the operator pencils Lt, 0 ≤ t ≤ 1, have the same number
of eigenvalues (counting multiplicity) in the strip 0 ≤ Re λ ≤ 1. Since the operator
pencil L0 has no eigenvalues in this strip (see Section 2.1), the same is true for the
pencil L1 = L.

Now let α ∈ (π, 2π). By the same arguments as above, we conclude that the
number of eigenvalues of the operator pencil Lt in the strip 0 < Re λ < 1 is
independent of t. By what has been shown in Section 2.1, the operator pencil L0

has the only eigenvalue π/α of multiplicity ` in this strip. This implies assertion 2)
of the theorem.

Remark 8.6.1. In the case ` = 1 it follows from Theorem 8.1.4 that the strip
|Re λ| ≤ 1/2 does not contain eigenvalues of the pencil L if α < 2π. Note that
this result is also true for arbitrary `. We will prove the corresponding fact for the
Dirichlet problem in a n-dimensional cone, n ≥ 2, in Section 11.1.

8.7. Applications

In this section we give some applications of the results obtained in Sections 8.1–
8.5 to the Dirichlet problem for elliptic equations in plane domains with corners
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and in n-dimensional domains with smooth non-intersecting (n − 2)-dimensional
edges.

8.7.1. Two-dimensional case. Let G be a bounded open polygon in R2. By
S we denote the set of its vertices x(τ), τ = 1, . . . , d, and by ατ the opening of the
interior angle at the corner x(τ).

We consider the Dirichlet problem

(8.7.1) L(x, ∂x) U = F in G, ∂k
ν U = 0 on ∂G\S, k = 0, 1, . . . , m− 1,

where L is an elliptic differential operator of order 2m with infinitely differentiable
coefficients on G. The coefficients of the principal part of L are assumed to be real.

1. S o l v a b i l i t y i n w e i g h t e d S o b o l e v a n d H ö l d e r s p a c e s. For
every τ = 1, . . . , d we introduce local polar coordinates r, ϕ in a neighborhood of
x(τ) such that ϕ takes the values 0 and ατ on the tangents to ∂G at x(τ). Let Lτ (λ)
denote the operator pencil

W 2m
2 ((0, ατ ))∩ ◦

W
m
2 ((0, ατ )) 3 u → r2m−λL◦(x(τ), ∂x) rλu(ϕ) ∈ L2((0, ατ )),

where L◦(x(τ), ∂x) is the principal part of L with coefficients frozen at x(τ). The
eigenvalues of Lτ are roots of the transcendental equation

(8.7.2) det Ψτ (λ) = 0,

where Ψτ is the matrix introduced in Section 8.1 for the operator L◦(x(τ), ∂x) and
the angle 0 < r < ∞, 0 < ϕ < ατ .

Let V l
p,~β

(G) and N l,σ
~β

(G) be the weighted spaces introduced in Section 1.4.

Here l is an integer, l ≥ 0, p ∈ (1,∞), σ ∈ (0, 1), and ~β = (β1, . . . , βd) is a real
d-tuple. Furthermore, by V

l−1/p

p,~β
(∂G) and N l,σ

~β
(∂G) we denote the corresponding

trace spaces.
By Theorems 1.4.1 and 1.4.5, the operators

V l
p,~β

(G) 3 U → (
LU, U |∂G\S , . . . , Dm−1

ν U |∂G\S
)

(8.7.3)

∈ V l−2m

p,~β
(G)×

m−1∏

k=0

V
l−k−1/2

p,~β
(∂G)

and

N l,σ
~β

(G) 3 U → (
LU, U |∂G\S , . . . , Dm−1

ν U |∂G\S
)

(8.7.4)

∈ N l−2m,σ
~β

(G)×
m−1∏

k=0

N l−k,σ
~β

(∂G)

are Fredholm if for τ = 1, . . . , d, there are no eigenvalues of Lτ on the lines Re λ =
l − βτ − n/p and Re λ = l + σ − βτ , respectively.

Let problem (8.7.1) be uniquely solvable in
◦

W m
2 (G) for all F ∈ W−m

2 (G).
Then, as is well known and essentially follows from Theorems 1.4.3 and 1.4.5, the
operators (8.7.3) and (8.7.4) are isomorphic if and only if the numbers l− βτ − 2/p
and l + σ − βτ lie in the energy strip of Lτ :

{λ ∈ C : |Reλ−m + 1| < µτ −m + 1}.
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(Here µτ is the minimum real part of roots of (8.7.2) situated in the half-plane
Re λ = m − 1.) By Theorem 8.1.4, µτ > m − 1/2 that leads to the bijectivity of
operator (8.7.3) if

m− 3/2 ≤ l − βτ − 2/p ≤ m− 1/2 for τ = 1, . . . , d,

as well as the bijectivity of (8.7.4) if

m− 3/2 ≤ l + σ − βτ ≤ m− 1/2 for τ = 1, . . . , d .

In the case when all values ατ are less than π, the above conditions can be replaced
by the inequalities m − 2 ≤ l − βτ − 2/p ≤ m and m − 2 ≤ l + σ − βτ ≤ m,
respectively (see the second part of Theorem 8.4.1). We add that, according to
Theorem 8.5.1, µτ changes monotonically from m − 1 to m − 1/2 with respect to
the angle Kτ , ατ ∈ [π, 2π].

2. R e g u l a r i t y a s s e r t i o n s a n d a s ym p t o t i c s o f t h e s o l u t i o n. The
following result stems from Theorems 1.4.3 and 1.4.5.

Theorem 8.7.1. Let U ∈ ◦
W m

2 (G) be a variational solution of (8.7.1), where
F ∈ V l−2m

p,~β
(G), l ≥ 2m. If

m− 1 ≤ l − βτ − 2/p < µτ for τ = 1, . . . , d,

then U ∈ V l
p,~β

(G). Analogously, if F ∈ N l−2m,σ
~β

(G) and

m− 1 ≤ l + σ − βτ < µτ for τ = 1, . . . , d,

then U ∈ N l,σ
~β

(G).

Replacing µτ by its lower bounds mentioned above, we immediately arrive at
explicit sufficient conditions for U ∈ V l

p,~β
(G) and U ∈ N l,σ

~β
(G).

As a consequence of Theorems 1.4.4 and 8.5.1 we have

Theorem 8.7.2. If F ∈ V l−2m

p,~β
(G), m− 1/2 < l − βτ − 2/p < m, and ατ > π,

then in a neighborhood U of x(τ) the variational solution U admits the asymptotic
representation:

(8.7.5) U =
J∑

j=1

cj rλj uj(ϕ) + W,

where J ≤ m, λj are real roots of (8.7.2) in the interval (m−1/2, l−βτ−2/p), uj are
infinitely differentiable functions on (0, ατ ), and ηW ∈ V l

p,~β
(G) for all η ∈ C∞0 (U).

In contrast to the general asymptotics given in Theorem 1.4.4, the above de-
composition contains only real powers of r and no logarithmic terms.

8.7.2. Higher-dimensional case. Now let G be a bounded domain in Rn

whose boundary consists of smooth (n−1)-dimensional faces Γ1, . . . , Γd and smooth
non-intersecting (n−2)-dimensional edges M1, . . . , Md−1. We suppose that for each
point ξ ∈ S = M1∪· · ·∪Md−1 there exist a neighborhood U(ξ) and a diffeomorphism
κ : U(ξ) → Rn of class C∞ such that κ(U ∩ G) is the intersection of the unit ball
with a dihedron Dξ = Kξ × Rn−2, where Kξ is a plane angle with vertex at the
origin and opening αξ ∈ (0, 2π).
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We consider the Dirichlet problem (8.7.1), where L is again a 2m order elliptic
differential operator with infinitely differential coefficients on G. The coefficients of
the principal part of L are assumed to be real.

For every point ξ ∈ Mj , j = 1, . . . , d − 1, we define an operator pencil Lξ

as follows. Let Γk+ , Γk− be the faces of ∂G which are adjoint to ξ. There exist
(n − 1)-dimensional half-spaces Γ± tangent to Γk± in ξ such that Γ+ ∩ Γ− is a
(n − 2)-dimensional subspace tangent to the edge Mj in ξ. We introduce new
Cartesian coordinates (y, z) = (y1, y2, z1, . . . , zn−2) such that ξ is the origin of the
y, z-coordinate system and Γ−, Γ+ coincide with the sets {(y, z) : y1 > 0, y2 = 0}
and {(y, z) : arg (y1 + iy2) = αξ} , respectively. By L◦ξ(∂y, ∂z) we denote the
operator which arises from the principal part of L after freezing the coefficients at
ξ and passing to the coordinates y, z. Then Lξ(λ) denotes the operator pencil

W 2m
2 ((0, αξ))∩

◦
W

m
2 ((0, αξ)) 3 u → r2m−λL◦ξ(∂y, 0) rλu(ϕ) ∈ L2((0, αξ)).

Here r, ϕ are the polar coordinates in the y1, y2-plane. It was shown in Section 8.1
that the eigenvalues of the pencil Lξ are solutions of the transcendental equation

(8.7.6) det Ψ(ξ; λ) = 0,

where Ψ(ξ; λ) is the square matrix introduced in Lemma 8.1.1 (with L = Lξ,
α = αξ). By analogy with our previous notation, let us denote by µ(ξ) the mini-
mum real part of roots of (8.7.6) situated in the half-plane Reλ = m− 1.

1. S o l v a b i l i t y i n w e i g h t e d S o b o l e v s p a c e s. We introduce the
weighted Sobolev space V l

p,β(G), where the weight function is a power of the distance
to the edges. Let r be the regularized distance to the set S, i.e., r = r(x) is a smooth
positive function on G\S which coincides with the distance to S if x is situated in
a neighborhood of S. Then V l

p,β(G) is the closure of the set C∞0 (G\S) with respect
to the norm

‖U‖V l
p,β(G) =

( ∫

G

∑

|α|≤l

rp(β(ξ)−l+|α|) |DαU(x)|p dx
)1/p

.

Here l is a nonnegative integer, 1 < p < ∞, β is a smooth real-valued function on
S, and ξ is a nearest point to x on S.

Applying Theorem 10.1 of Maz′ya and Plamenevskĭı’s paper [183] to the Dirich-
let problem (8.7.1), we get

Theorem 8.7.3. Let l ≥ 2m, 2m + 1, . . .. The operator

V l
p,β(G) 3 U → (

LU, U |∂G\S , . . . , Dm−1
ν U |∂G\S

)
(8.7.7)

∈ V l−2m
p,β (G)×

m−1∏

k=0

V
l−k−1/2
pβ (∂G)

is Fredholm if and only if for all ξ ∈ S
(8.7.8) 2m− 2− µ(ξ) < l − β(ξ)− 2/p < µ(ξ) for all ξ ∈ S.

If (8.7.8) holds and for an arbitrary F ∈ W−m
2 (G) there exists a unique variational

solution U ∈ ◦
W m

2 (G) of (8.7.1), then the operator in question realizes an isomor-
phism.
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This result complemented by the inequality µ(ξ) > 1/2 guarantees that the
operator (8.7.7) is isomorphic if

m− 3/2 ≤ l − β(ξ)− 2/p ≤ m− 1/2 for all ξ ∈ S
and if for an arbitrary F ∈ W−m

2 (G) there exists a unique variational solution U ∈
◦

Wm
2 (G) of (8.7.1). If the angle αξ is less than π, then µ(ξ) > 1 and therefore the

weaker inequalities m− 2 ≤ l − β(ξ)− 2/p ≤ m are sufficient.

2. R e g u l a r i t y a s s e r t i o n s a n d a s ym p t o t i c s o f t h e s o l u t i o n. For
the variational solution U ∈ ◦

Wm
2 (G) of problem (8.7.1) we get the same regularity

result as in the plane case (see [183, Th.10.3]):

Theorem 8.7.4. Let U ∈ ◦
Wm

2 (G) solve problem (8.7.1), where F ∈ V l−2m
p,β (G),

l ≥ 2m. If (8.7.8) holds, then U ∈ V l
p,β(G).

From this result together with Theorem 8.1.4 we conclude, in particular, that
U belongs to the space V l

p,β(G) if F ∈ V l−2m
p,β (G) and m−1 ≤ l−β−2/p < m+ε− 1

2 .
Here ε is a sufficiently small number. If the interior angles at the edges are less
than π, then for this statement it is sufficient that m− 1 ≤ l− β − 2/p < m + ε. If
the angle αξ is greater than π for a certain edge point ξ, then in a neighborhood
of this point an asymptotic decomposition for the solution similar as (8.7.5) holds
(see, e.g., the papers of Dauge [41], Maz′ya and Roßmann [192] or the book of
Nazarov and Plamenevskĭı [207, Ch.11]).

3. S o l v a b i l i t y i n w e i g h t e d H ö l d e r s p a c e s. Let N l,σ
β (G) be the

weighted Hölder space with the norm

‖U‖N l,σ
β (G) =

∑

|α|≤l

sup
x∈G

rβ(ξ)−l−σ+|α| |DαU(x)|

+
∑

|α|=l

sup
x,x′∈G

|x− x′|−σ
∣∣r(x)β(ξ)DαU(x)− r(x′)β(ξ′) DαU(x′)

∣∣.

Here l is a nonnegative integer, σ ∈ (0, 1), β is a smooth real-valued function on S,
and ξ, ξ′ are nearest points on S to x and x′, respectively.

Essentially the same conditions as in the case of weighted Sobolev spaces guar-
antee the Fredholm property of the operator of problem (8.7.1) in the class of the
just introduced weighted Hölder spaces. More precisely, the following assertion is
true (see Maz′ya and Plamenevskĭı [185, Th.3.1]).

Theorem 8.7.5. The operator

N l,σ
β (G) 3 U → (

LU, U |∂G\S , . . . , Dm−1
ν U |∂G\S

)
(8.7.9)

∈ N l−2m,σ
β (G)×

m−1∏

k=0

N l−k,σ
β (∂G)

is Fredholm if and only if

(8.7.10) 2m− 2− µ(ξ) < l + σ − β(ξ) < µ(ξ) for all ξ ∈ S.

If (8.7.10) holds and for an arbitrary F ∈ W−m
2 (G) there exists a unique vari-

ational solution U ∈ ◦
W m

2 (G) of (8.7.1), then the operator in question realizes an
isomorphism.
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In particular, the operator (8.7.9) is Fredholm if m−3/2 ≤ l+σ−β(ξ) ≤ m−1/2
for all ξ ∈ S. If αξ < π, then even the condition m − 2 ≤ l + σ − β(ξ) ≤ m is
sufficient for the Fredholm property.

8.8. Notes

Section 8.1. Explicit equations for the eigenvalues of operator pencils gener-
ated by boundary value problems for general elliptic equations in a plane angle were
obtained by Maz′ya and Plamenevskĭı [184], Kozlov [120], Costabel and Dauge
[29]. In [184] and [120] such equations were derived for boundary value problems
for 2m order elliptic equations, while [29] is concerned with general boundary value
problems for elliptic (in the sense of Douglis-Nirenberg) systems.

Sections 8.2.–8.5. For the case of the Dirichlet problem, Kozlov [119, 120,
123, 124] obtained detailed information about the eigenvalues of the correspond-
ing operator pencil in the strip m− 2 ≤ Re λ ≤ m. These results are presented in
Sections 8.2–8.5.

Section 8.6. The spectrum of the pencil corresponding to the Dirichlet prob-
lem for a system of second order equations in the strip |Re λ| ≤ 1 was described by
Kozlov and Maz′ya in [131, 132].

Section 8.7. In the first subsection we collected some results which follow from
the theory of general elliptic boundary value problems in domains with angular and
conic points (see Section 1.4 and, for references, Section 1.5).

The theorems on the solvability of the Dirichlet problem in domains with edges
and on the smoothness of the solutions stated in the second subsection were proved
by Maz′ya and Plamenevskĭı [183, 185]. We give here some additional references.
Boundary value problems for second order equations in domains with edges are
handled in works of Kondrat′ev [110, 111], Maz′ya and Plamenevskĭı [175, 178],
Grisvard [75, 76, 77, 83, 86], Nikishkin [213], Dauge [40, 43, 44], Eskin [53],
Komech and Merzon [108], Costabel and Dauge [30], Maz′ya and Roßmann [195]
and others. These works include theorems on the solvability in different func-
tion spaces, regularity assertions for the solutions and asymptotic formulas near
the edges. A theory for higher order equations was developed by Maz′ya and
Plamenevskĭı [177, 181, 183, 184, 185], Maz′ya and Roßmann [191, 192], Dauge
[41], Roßmann [231], Nazarov and Plamenevskĭı [207], Nazarov [206], Apel and
Nicaise [6]. Schulze [237, 242] studied pseudo-differential operators on manifolds
with edges.





CHAPTER 9

Asymptotics of the spectrum of operator pencils
generated by general boundary value problems in

an angle

The present chapter occupies a somewhat special position in this book, because
we are interested here and only here, in the asymptotic distribution of eigenvalues
at infinity. In order to give an idea of the subject, we consider the transcendental
equation

(9.0.1) sin2(λ− 1)α = (λ− 1)2 sin2 α ,

which, according to Section 7.1, describes singularities of the Dirichlet problem for
the biharmonic equation in an angle with opening α. An elementary analysis shows
that the roots of (9.0.1) approach either positive or negative semiaxis in the sense
of the angular distance so that

(9.0.2) n±(t) =
2α

π
t + o(t) as t → +∞,

where n+(t) and n−(t) are the numbers of the roots with positive and negative real
parts in the disk {z ∈ C : |z| < t}.

In this chapter we give a nontrivial generalization of (9.0.2) describing the
asymptotic distribution of the eigenvalues of operator pencils generated by a class
of elliptic boundary value problems for differential equations in an angle.

We establish the existence of a finite number of rays in the complex plane such
that all eigenvalues, except for finitely many, lie near these rays and we obtain an
asymptotic formula for the distribution of the eigenvalues as the main result of this
chapter.

9.1. The operator pencil generated by a regular boundary value
problem

9.1.1. Formulation of the problem. Let K be the angle {(x1, x2) ∈ R2 :
0 < r < ∞, 0 < ϕ < α}, where r, ϕ are the polar coordinates of the point
x = (x1, x2). We consider the boundary value problem

L(∂x1 , ∂x2) U = 0 in K,(9.1.1)
B0,k(∂x1 , ∂x2)U = 0 for ϕ = 0, k = 1, . . . , l −m,(9.1.2)
B1,k(∂x1 , ∂x2)U = 0 for ϕ = α, k = 1, . . . , m.(9.1.3)

Here L is a homogeneous elliptic differential operator of order l with constant
coefficients, Bj,k are homogeneous differential operators of order µj,k with constant
coefficients, and m is an integer number between 0 and l. In the case m = 0 the

295
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boundary conditions (9.1.3) on the ray ϕ = α do not occur, while the boundary
conditions (9.1.2) on the ray ϕ = 0 do not occur if m = l.

We seek solutions of problem (9.1.1)–(9.1.3) which have the form

(9.1.4) U(x1, x2) = rλ0

s∑

k=0

1
k!

(log r)k us−k(ϕ),

where λ0 is a complex number and uk are infinitely differentiable functions on the
interval [0, α].

Let L and Bj,k be the parameter-depending differential operators defined by
the equalities

L(ϕ, ∂ϕ, λ)u(ϕ) = rl−λ L(∂x1 , ∂x2) (rλ u(ϕ)),

Bj,k(ϕ, ∂ϕ, λ)u(ϕ) = rµj,k−λ Bj,k(∂x1 , ∂x2) (rλ u(ϕ)).

By A(λ) we denote the operator of the boundary value problem

(9.1.5)





L(ϕ, ∂ϕ, λ) v(ϕ) = f(ϕ) for 0 < ϕ < α,

B0,k(ϕ, ∂ϕ, λ) v(ϕ)|ϕ=0 = g0,k , k = 1, . . . , l −m,

B1,k(ϕ, ∂ϕ, λ) v(ϕ)|ϕ=α = g1,k , k = 1, . . . , m.

For arbitrary complex λ the operator A(λ) maps the space W s
2 (0, α) into the space

W s−l
2 (0, α) × Cm if s ≥ l, s > max µj,k + 1/2. By Theorem 1.1.5, the function

(9.1.4) is a solution of the homogeneous problem (9.1.1)–(9.1.3) if and only if λ0 is
an eigenvalue of the pencil A and u0, u1, . . . , us is a Jordan chain corresponding to
this eigenvalue.

9.1.2. An equation for the eigenvalues. Since the operator L is homoge-
neous and elliptic, it can be written in the form

L(∂x1 , ∂x2) = c0

d∏
q=1

(∂x2 − zq ∂x1)
νq ,

where z1, . . . , zd are pairwise distinct complex numbers with nonzero imaginary
parts, ν1 + . . . + νd = l. We set

Wq,j(x1, x2) = ∂j
z(x1 + zx2)λ

∣∣
z=zq

= (λ− j + 1)j xj
2 (x1 + zq x2)λ−j ,

wq,j(λ, ϕ) = (λ− j + 1)j (sinϕ)j (cos ϕ + zq sin ϕ)λ−j ,

where

(z)j = z (z + 1) · · · (z + j − 1) for j = 1, 2, . . . , (z)0 = 1.

Here it is assumed that the argument of the functions cos ϕ+zq sin ϕ and x1 +zqx2

varies from 0 to 2π for Im zq > 0 and from 0 to −2π for Im zq < 0. If λ 6=
0, 1, . . . , l − 2, then the functions wq,j , q = 1, . . . , d, j = 0, . . . , νq − 1, form a
basis in the space of solutions of the equation L(ϕ, ∂ϕ, λ)u = 0.
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For every homogeneous differential operator B of order µ with constant coeffi-
cients we have

B(∂x1 , ∂x2)Wq,j

=
j∑

ν=0

( j

ν

)
(λ− µ− ν + 1)µ+ν ∂j−ν

z B(1, z)|z=zq xν
2 (x1 + zq x2)λ−µ−ν

= (λ− µ + 1)µ rλ−µ ∂j
z

(
B(1, z) (cos ϕ + z sin ϕ)λ−µ

)∣∣∣
z=zq

.

This implies

B0,k(ϕ, ∂ϕ, λ)wq,j(λ, ϕ)|ϕ=0 = (λ− µ0,k + 1)µ0,k
∂j

zB0,k(1, z)|z=zq

for k = 1, . . . , l −m, q = 1, . . . , d, j = 0, . . . , νq − 1, and

B1,k(ϕ, ∂ϕ, λ)wq,j(λ, ϕ)|ϕ=α(9.1.6)

= (λ− µ1,k + 1)µ1,k
∂j

z

(
B1,k(1, z) (cos α + z sin α)λ−µ1,k

)∣∣∣
z=zq

for k = 1, . . . , m, q = 1, . . . , d, j = 0, . . . , νq − 1. We introduce the column vectors

Uk =
(
∂j

zB0,k(1, z)|z=zq : 1 ≤ q ≤ d, 0 ≤ j ≤ νq − 1
)

,

k = 1, . . . , l −m, and

Vk(λ) =
(
∂j

z

(
B1,k(1, z) (cos α + z sinα)λ−µ1,k

)∣∣
z=zq

: 1 ≤ q ≤ d, 0 ≤ j ≤ νq − 1
)

,

k = 1, . . . , m. By D(λ) we denote the l × l-matrix with the columns U1, . . . , Ul−m,
V1, . . . , Vm. Then we obtain the following assertion (cf. Lemma 8.1.2).

Lemma 9.1.1. Let λ0 6= 0, 1, . . . , l − 2. Then λ0 is an eigenvalue of the pencil
A if and only if

(9.1.7)
l−m∏

k=1

(λ− µ0,k + 1)µ0,k
·

m∏

k=1

(λ− µ1,k + 1)µ1,k
· detD(λ) = 0.

The algebraic multiplicity of the eigenvalue λ0 is equal to the multiplicity of the root
λ0 of the equation (9.1.7).

Remark 9.1.1. If d = 1 or m = 0 or m = l, then the pencil A has a finite
number of eigenvalues and all eigenvalues have finite algebraic multiplicities.

Indeed, for d = 1 the determinant ofD(λ) has the form F (λ) (cos α+z1 sin α)mλ,
where F (λ) is a polynomial not identically equal to zero, for m = 0 the matrix D(λ)
does not depend on λ, and for m = l there is the representation

detD(λ) = F (λ) (cos α + z1 sin α)ν1λ · · · (cosα + zd sin α)νdλ

with a polynomial F (λ) not equal to zero. Hence the equation (9.1.7) has only
finitely many solutions in these cases.
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9.1.3. Regularity of boundary conditions. Let Λm be the set of vectors
κ = (κ1, . . . , κd) with integer components κq, 0 ≤ κq ≤ νq, κ1 + · · ·+ κd = m. We
set

(9.1.8) τq = log(cos α + zq sin α)

and define the polygon Pm as the convex hull of the points

κ · τ = κ1 τ1 + · · ·+ κd τd,

where κ ∈ Λm. The set of the corners of the polygon Pm is denoted by Γm. If
d = 1 or m = 0 or m = l, then the set Pm consists of one point only. Assume that
m 6= 0, m 6= l, and between the numbers z1, . . . , zq are both such with positive and
negative imaginary parts. Then for α = π the set Pm coincides with the line with
the endpoints ±mπi on the imaginary axis. If α = 2π, then Pm is the line with the
endpoints ±2mπi.

Lemma 9.1.2. 1) Let κ, κ′ be vectors from Λm such that κ · τ , κ′ · τ ∈ Γm for
the vector τ = (τ1, . . . , τd). If κ · τ = κ′ · τ , then κ = κ′.

2) If κ ∈ Λm, κ · τ ∈ Γm, then for all indices q = 1, . . . , d, with the possible
exception of one index, we have κq = νq or κq = 0.

3) Let κ ∈ Λm and ν − κ = (ν1− κ1, . . . , νd− κd) ∈ Λl−m. Furthermore, let Qκ

be the convex hull of all points τq with index q = 1, . . . , d satisfying the condition
κq 6= 0. (Analogously, Qν−κ is the convex hull of all points τq such that κq 6= νq.)
Then the number κ·τ belongs to the set Γm if and only if the intersection Qκ∩Qν−κ

is empty or consists of the unique common corner.

Proof: 1) Suppose that κ 6= κ′. Then for certain indices j, k the inequalities
κj < κ′j and κk > κ′k are valid. Without loss of generality, we may assume that
k > j. We consider the vectors

κ(1) = (κ1, . . . , κj−1, κj + 1, κj+1, . . . , κk−1, κk − 1, κk+1, . . . , κd)

and
κ(2) = (κ′1, . . . , κ

′
j−1, κ

′
j − 1, κ′j+1, . . . , κ

′
k−1, κ

′
k + 1, κ′k+1, . . . , κ

′
d)

which belong to Λm. Furthermore, κ(1) · τ 6= κ(2) · τ . Indeed, if κ(1) · τ = κ(2) · τ ,
then (κ(1)−κ) ·τ = (κ(2)−κ′) ·τ and, consequently, τj = τk. However, the numbers
τ1, . . . , τd are pairwise distinct. Consequently, κ(1) · τ 6= κ(2) · τ .

From this inequality it follows that the point κ · τ = (κ(1) · τ + κ(2) · τ)/2 does
not belong to the set Γm. This proves the first assertion.

2) Let the second assertion be not true. Then, without loss of generality, we
may assume that 0 < κ1 < ν1 and 0 < κ2 < ν2. We set

κ(1) = (κ1 − 1, κ2 + 1, κ3, . . . , κd) and κ(2) = (κ1 + 1, κ2 − 1, κ3, . . . , κd).

These vectors belong to Λm and the corresponding complex numbers κ(1) · τ and
κ(2) · τ do not coincide. Therefore, the point κ · τ = (κ(1) · τ + κ(2) · τ)/2 cannot
belong to Γm.

3) Let κ · τ ∈ Γm. We suppose that the polygons Qκ, Qν−κ have the common
point C. Then there exist nonnegative numbers β1, . . . , βd, γ1, . . . , γd such that

d∑
q=1

γq κq τ q =
d∑

q=1

βq (νq − κq) τ q = C,
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where

(9.1.9)
d∑

q=1

γq κq =
d∑

q=1

βq (νq − κq) = 1.

This implies
d∑

q=1

βq (νq − κq)
(
κ · τ + τ q − C

)
= κ · τ

and

κ · τ + τ q − C =
d∑

j=1

γj κj

(
κ · τ + τ q − τ j

)
.

Consequently,

(9.1.10) κ · τ =
d∑

q=1

d∑

j=1

βq (νq − κq) γj κj

(
κ · τ + τ q − τ j

)
.

If κq 6= νq and κj 6= 0, then the point κ · τ + τ q − τ j belongs to Pm. Since κ·τ ∈ Γm,
the equality (9.1.10) can be only valid in the case

(9.1.11)
d∑

q=1

βq (νq − κq) γq κq = 1.

From (9.1.9), (9.1.11) it follows that for a certain index q we have βq (νq − κq) =
γq κq = 1. Therefore, the intersection of the polygons Qκ, Qν−κ contains not more
than one point which is a corner of both polygons.

Now let κ ∈ Λm and let the intersection of Qκ, Qν−κ consist of one corner.
Then there exist two nonparallel lines g1 and g2 such that Qκ and Qν−κ lie on
different sides both of g1 and g2. We denote by g′1, g′2 lines through the point
κ · τ which are parallel to g1 and g2, respectively. It can be easily shown that the
convex hull of the points σ · τ , where σ ∈ Λm, lies on one side of these lines. Hence
κ · τ ∈ Pm. The lemma is proved.

In particular, it follows from Lemma 9.1.2 that for every corner a0 of the
polygon Pm there exists a unique vector κ ∈ Λm such that κ · τ coincides with a0.
We denote the set of these vectors by Λ′m. By the third part of the foregoing lemma,
the vector κ belongs to the set Λ′m if and only if ν−κ = (ν1−κ1, . . . , νd−κd) ∈ Λ′l−m.

We introduce the notion of regularity of boundary conditions.

Definition 9.1.1. Let κ ∈ Λ′m and let 〈κ〉 be the set of all pairs (q, j) of integer
numbers such that 1 ≤ q ≤ d, 0 ≤ j ≤ κq − 1. The boundary conditions (9.1.2),
(9.1.3) are said to be κ-regular if the matrices

(9.1.12)
(
∂j

zB0,k(1, z)|z=zq

)
1≤k≤l−m, (q,j)∈〈ν−κ〉

and

(9.1.13)
(
∂j

zB1,k

(
(cos α + z sin α)−1, z(cos α + z sin α)−1

)|z=zq

)
1≤k≤m, (q,j)∈〈κ〉

are nondegenerate. In this case the boundary conditions (9.1.2) are said to be
(ν − κ)-regular, while the boundary conditions (9.1.3) are said to be κ-regular.



300 9. ASYMPTOTICS OF THE SPECTRUM

Definition 9.1.2. The system of the boundary conditions (9.1.2), (9.1.3) is
said to be regular if it is κ-regular for every κ ∈ Λ′m.

It is frequently more convenient to consider the matrix

(9.1.14)
(
∂j

ζB1,k(−ζ sin α + cos α, ζ cosα + sin α)|ζ=ζq

)
1≤k≤m, (q,j)∈〈κ〉

,

where ζq = (zq cosα − sin α) (zq sin α + cos α)−1, instead of (9.1.13). The matrix
(9.1.14) is invertible simultaneously with the matrix
((

(cos α− ζ sin α)2 ∂ζ

)j
B1,k

(
cos α− ζ sin α, ζ cosα + sin α

)∣∣
ζ=ζq

)
1≤k≤m, (q,j)∈〈κ〉

which arises from the matrix (9.1.13) via the coordinate change

ζ = (z cosα− sin α) · (z sin α + cos α)−1.

Therefore, the regularity of the matrix (9.1.13) is equivalent to the regularity of the
matrix (9.1.14).

9.1.4. The relation between κ-regularity and Shapiro-Lopatinskĭı con-
dition. Suppose that l = 2m and the operator L is properly elliptic. We consider
the vectors κ+ = (κ+

1 , . . . , κ+
d ), κ− = (κ−1 , . . . , κ−d ), where

κ+
q = νq, κ−q = 0 for Im zq > 0,

κ+
q = 0, κ−q = νq for Im zq < 0.

Note that κ+, κ− ∈ Λ′m. The validity of the Shapiro-Lopatinskĭı condition on the
sides of the angle K is equivalent to the κ+- and κ−-regularity of the boundary
conditions (9.1.2), (9.1.3). In particular, this implies that for α = π, α = 2π or for
d = 2 and arbitrary angle α the regularity of the boundary conditions is equivalent
to the validity of the Shapiro-Lopatinskĭı condition on the sides of the angle.

9.1.5. Examples. Let κ ∈ Λ′m. We give some examples for κ-regular bound-
ary conditions on the ray ϕ = α, i.e., for operators B1,k, k = 1, . . . ,m, for which
the matrix (9.1.14) is regular. To this end, we set

pk(ζ) = B1,k(−ζ sin α + cos α , ζ cos α + sin α)

and
ζq = (zq cosα− sin α) · (zq sin α + cos α)−1, q = 1, . . . , d.

Example 1: Dirichlet conditions. If the polynomials pk have degree k − 1 for
k = 1, . . . ,m, then the boundary conditions (9.1.3) are κ-regular on the ray ϕ = α
for arbitrary κ.

Example 2: Conditions of the Neumann type. Suppose that the polynomials
pk have the form pk(ζ) = p(ζ) gk(ζ), where gk are polynomials of degree k − 1,
k = 1, . . . ,m, and p is a polynomial not equal to zero at the points ζq with indices q
satisfying the condition κq 6= 0. Then the boundary conditions (9.1.3) are κ-regular
on the ray ϕ = α.

Example 3. Let pk(ζ) = p(ζ) (g(ζ))k−1 for k = 1, . . . , m, where p, g are poly-
nomials such that

g(ζq) 6= g(ζj) for q 6= j, g′(ζq) 6= 0, and p(ζq) 6= 0
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(here only the indices q and j are considered for which κq 6= 0, κj 6= 0). Then the
boundary conditions (9.1.3) are κ-regular.

Analogously, (ν − κ)-regular boundary conditions on the ray ϕ = 0 can be
constructed. For this in Examples 1–3 the vector κ has to be replaced by ν − κ, m
by l −m, and α has to be replaced by 0.

The κ-regularity of the boundary conditions in Examples 1 and 2 essentially
follows from the κ-regularity in Example 3 if we set g(u) = u. We prove the κ-
regularity of the boundary conditions in Example 3.

Let the matrix (9.1.14) be degenerate. Then there exist numbers c1, . . . , cm not
all simultaneously equal to zero such that

(9.1.15)
m∑

k=1

ck ∂j
ζ pk(ζ)|ζ=ζq

= 0 for (q, j) ∈ 〈κ〉.

We introduce the polynomial h(z) =
m∑

k=1

ck zk−1. From our assumptions and from

(9.1.15) it follows that

∂j
zh(z)|z=g(ζq) = 0 for (q, j) ∈ 〈κ〉.

Consequently, the polynomial h has m roots counting multiplicities. Hence h = 0
which contradicts our assumption. This proves the κ-regularity of the boundary
conditions in Example 3.

9.2. Distribution of the eigenvalues

9.2.1. A property of det D(λ). If we expand the determinant of D(λ) with
respect to its columns V1, . . . , Vm, we arrive at the representation

detD(λ) =
∑

κ∈Λm

Fκ(λ) eλκ·τ ,

where Fκ are polynomials in λ.

Lemma 9.2.1. If κ ∈ Λ′m and the boundary conditions (9.1.2), (9.1.3) are κ-
regular, then the polynomial Fκ is not identically equal to zero.

Proof: By Lemma 9.1.2 we may assume, without loss of generality, that κ1 =
· · · = κs−1 = 0, κs+1 = νs+1, . . . , κd = νd.

We consider the case 0 < κs < νs. Let
◦
Uk be the vectors with length l whose

first ν1 + . . . + νs components are the numbers ∂j
zB0,k(1, z)|z=zq , q = 1, . . . , s,

j = 0, . . . , νq − 1, while the others are zero. Analogously, we define
◦
V k(λ) as the

l-vector with the first ν1 + · · ·+νs−1 components equal to zero and the others equal
to

(9.2.1) ∂j
z

(
B1,k(1, z)(cos α + z sinα)λ−µ1,k

)∣∣
z=zq

, s ≤ q ≤ d, 0 ≤ j ≤ νq − 1.

Then it can be easily verified that the matrix

M(λ) =
( ◦

U1, . . . ,
◦
Ul−m,

◦
V 1, . . . ,

◦
V m

)

satisfies
detM(λ) = Fκ(λ) eλκ·τ .
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Dividing the components (9.2.1) of the vector
◦
Vk(λ) by (cos α+zq sinα)λ, we obtain

the vector V
(1)
k with the components

vk;q,j(λ) =





0 for q < s,

(cos α + zq sin α)−λ∂j
z

(
B1,k(1, z)(cos α + z sin α)λ−µ1,k

)∣∣
z=zq

else.

Let M(λ) be the polynomial matrix consisting of the columns
◦
U 1, . . . ,

◦
U l−m and

V
(1)
1 , . . . , V

(m)
1 . Then Fκ(λ) = det M(λ).

We show that the matrix M(λ) is nondegenerate for at least one λ. Suppose
that det M(λ) = 0 for all λ ∈ C. Since M(λ) is a polynomial matrix, there exist
polynomials c1(λ), . . . , cl−m(λ), d1(λ), . . . , dm(λ) such that

(9.2.2)
l−m∑

k=1

ck(λ)
◦
Uk +

m∑

k=1

dk(λ)V
(1)
k (λ) = 0

for all λ ∈ C. We introduce the functions

G(z, λ) =
l−m∑

k=1

ck(λ)B0,k(1, z) =
p∑

σ=0

Gσ(z) λσ,

H(z, λ) =
m∑

k=1

dk(λ)B1,k(1, z) (cos α + z sin α)−µ1,k =
p′∑

σ=0

Hσ(z)λσ.

The coefficients Gσ(z) and Hσ(z) can be written in the form

Gσ(z) =
l−m∑

k=1

ck,σ B0,k(1, z),

Hσ(z) =
m∑

k=1

dk,σ B1,k(1, z) (cos α + z sin α)−µ1,k .

Suppose that the functions Gp(z), Hp′(z) are not identically equal to zero. The
equality (9.2.2) yields

∂j
zG(z, λ)|z=zq = 0 for q = 1, . . . , s− 1, j = 0, . . . , νq − 1,(9.2.3)

∂j
zH(z, λ)|z=zq = 0 for q = s + 1, . . . , d, j = 0, . . . , νq − 1,(9.2.4)

and
j∑

ν=0

( j

ν

)
∂ν

z H(z, λ) (λ− j + ν + 1)j−ν

( sinα

cos α + z sin α

)j−ν∣∣∣
z=zs

(9.2.5)

+ ∂j
zG(z, λ)

∣∣
z=zs

= 0 for j = 0, . . . , νs − 1.

From (9.2.3), (9.2.4) it follows that

∂j
zGp(z)|z=zq = 0 for q = 1, . . . , s− 1, j = 0, . . . , νq − 1,(9.2.6)

∂j
zHp′(z)|z=zq = 0 for q = s + 1, . . . , d, j = 0, . . . , νq − 1,(9.2.7)

If we compare the coefficients of the same powers of λ in (9.2.5), we obtain

Gp(zs) = . . . = ∂p−p′−1
z Gp(z)|z=zs = 0,(9.2.8)

Hp′(zs) = . . . = ∂p′−p+νs−2
z Hp′(z)|z=zs = 0.(9.2.9)
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(In the cases p − p′ < 1 and p′ − p + νs < 2 the corresponding equations can be
omitted.)

Since ν1 + · · · + νd = l, one of the inequalities p − p′ + ν1 + · · · + νs ≥ l −m
and νs+1 + · · ·+ νd + p′ − p + νs − 1 ≥ m must be satisfied. If p− p′ + ν1 + · · ·+
νs ≥ l −m, then (9.2.6), (9.2.8) imply that the matrix (9.1.12) is degenerate. For
νs+1 + · · ·+ νd + p′− p + νs− 1 ≥ m it follows from (9.2.7), (9.2.9) that the matrix
(9.1.13) is degenerate. Thus, we have got a contradiction to the assumption of the
κ-regularity if 0 < κs < νs.

In the same way a contradiction holds if κs = 0 or κs = νs.

9.2.2. Distribution of zeros of quasipolynomials. We present a classical
result on the asymptotic behaviour of zeros of functions which have the form

f(λ) =
n∑

k=1

pk(λ) eαkλ,

where pk are polynomials and αk are complex numbers. If f is a function of the
above form, then there exists the limit

hf (ϑ) = lim
r→∞

ln
∣∣f(r eiϑ)

∣∣
r

for every real ϑ. The function hf is called the indicator of f . In order to express
hf in terms of αk, we consider the convex hull P of the points αk, k = 1, . . . , n.
Let a1, . . . , aN be the corners of the polygon P enumerated in clockwise direction.
Obviously, there exist indices k1, . . . , kN such that

aj = αkj for j = 1, . . . , N.

We suppose that the polynomials pkj , j = 1, . . . , N , are not identically equal to
zero. Then

hf (ϑ) = max
1≤j≤N

(
Re aj cos ϑ + Im aj sin ϑ

)
,

i.e., hf (ϑ) is the supporting function of the polygon P (see Levin’s book [153,
Ch.1, Sect.19]). Furthermore, the polygon P can be characterized by means of the
function

s(ς, ϑ) = h′f (ϑ)− h′f (ς) +

ϑ∫

ς

hς(ψ) dψ.

It admits the following geometric interpretation. Let

ϑj = arg i(aj+1 − aj) for j = 1, . . . , N,

where aN+1 = a1. If ς < ϑ, ϑ− ς < 2π, and ς, ϑ are not equal to ϑ1, . . . , ϑN , then
(see [153, Ch.1, Sect.19])

(9.2.10) s(ς, ϑ) =
∑ ∣∣aj+1 − aj

∣∣,
where the summation is extended over all j such that ϑj +2kπ ∈ (ς, ϑ) for a certain
integer k.

We denote the number of zeros of f in the sector

ς ≤ arg λ ≤ ϑ, |λ| ≤ r,

by n(r, ς, ϑ). The following theorem is a particular case of Theorem 3 in [153, Ch.3,
Sect.3].
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Theorem 9.2.1. Let ς < ϑ, ϑ − ς < 2π and let ς, ϑ be not equal to ϑj + 2kπ.
We suppose that the polynomials pkj

are not identically equal to zero. Then

lim
r→∞

n(r, ς, ϑ)
r

=
s(ς, ϑ)

2π
.

9.2.3. An asymptotic formula for the distribution of the eigenvalues.
Now we formulate the main result of this section. Let a1, . . . , aN be the corners
of the polygon Pm enumerated in clockwise direction. We set `k = ak+1 − ak for
k = 1, . . . , N − 1 and `N = a1 − aN . Furthermore, for every index k = 1, . . . , N let
Sk(ε) be the angle

Sk(ε) = {λ ∈ C : | arg λ− arg i`k| ≤ ε, |λ| > 0},
where ε is a positive number. In the sequel, the number ε will be chosen sufficiently
small such that the angles Sk(ε) and Sj(ε) do not intersect if k 6= j. By nk(t, ε) we
denote the number of the eigenvalues (counted with their algebraic multiplicities)
of the pencil A which lie in the sector {λ ∈ Sk(ε) : |λ| < t}, k = 1, . . . , N.

Theorem 9.2.2. Let the boundary conditions (9.1.2), (9.1.3) be regular and
let ε be a small positive number. Then the eigenvalues of the pencil A, with the
possible exception of finitely many, lie in the angles Sk(ε). For the functions nk of
the distribution of the eigenvalues the formula

(9.2.11) nk(t, ε) =
|`k|
2π

t + o(t), k = 1, . . . , N,

is valid.

Proof: The function λ → detD(λ) is a quasipolynomial which, by Lemma 9.2.1,
satisfies the condition of Theorem 9.2.1. Applying Theorem 9.2.1 and using formula
(9.2.10), we arrive at the asymptotic formula (9.2.11).

We consider the sector ω1 ≤ ω ≤ ω2, where arg(i`k) < ω1 < ω2 < arg(i`k−1) for
a certain k. Let κ ∈ Λ′m and ak = κ · τ , where τ is the vector with the components
(9.1.8). Then the relation

detD(λ) e−λak = Fκ(λ) + O(e−δ|λ|)

is valid in the sector ω1 ≤ arg λ ≤ ω2, where δ is a positive number. Since the
polynomial Fκ is not identically equal to zero (see Lemma 9.2.1), the last relation
implies the existence of only finitely many zeros of the function detD(λ) outside
the sector Sk(ε), k = 1, . . . , N, for arbitrary positive ε. The theorem is proved.

9.2.4. The angles π and 2π. Suppose that the set of the numbers z1, . . . , zd

can be divided into two groups: the numbers z1, . . . , zs which have positive imag-
inary parts and the numbers zs+1, . . . , zd which have negative imaginary parts,
where ν1 + . . . + νs = l −m. We introduce the matrices

A =
(
∂j

zB0,k(1, z)|z=zq

)
k=1,...,l−m

q=1,...,s, j=0,...,νq−1

,

B =
(
∂j

zB1,k(1, z)|z=zq

)
k=1,...,m

q=s+1,...,d, j=0,...,νq−1

,

C =
(
∂j

zB1,k(1, z)|z=zq

)
k=1,...,m

q=1,...,s, j=0,...,νq−1

,

D =
(
∂j

zB0,k(1, z)|z=zq

)
k=1,...,l−m

q=s+1,...,d, j=0,...,νq−1

.
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From the regularity of the boundary conditions (9.1.2), (9.1.3) it follows that the
matrices A and B are invertible. We calculate the eigenvalues of the pencil A which
are not equal to 0, 1 . . . , l − 2.

First we consider the case α = π. Then

D(λ) =




A eiπλC

D e−iπλB


 ,

and, therefore,

detD(λ) = eimπλ detA det B det(e−2iπλI −B−1C A−1D).

We denote by µ1, . . . , µp, p ≤ m, the nonzero eigenvalues of the matrix B−1C A−1D
and by σ1, . . . , σp their algebraic multiplicities. Furthermore, let λk be a root of
the equation e−2iπλ = µk, k = 1, . . . , p. Then the pencil A has the eigenvalues

λk,s = λk + s , k = 1, . . . , p, s = 0,±1, . . . ,

where the algebraic multiplicity of the eigenvalue λk,s is equal to σk. Furthermore,
the roots of the polynomial

(9.2.12)
m∏

k=1

(λ− µ1,k + 1)µ1,k
·

l−m∏

k=1

(λ− µ0,k + 1)µ0,k

are eigenvalues of the pencil A. The algebraic multiplicities of these eigenvalues co-
incide with the multiplicities of the corresponding roots of the polynomial (9.2.12).

Now we consider the case α = 2π. In this case we have

D(λ) =




A e2iπλC

D e−2iπλB


 .

Consequently,

detD(λ) = e2imπλ det A detB det(e−4iπλI −B−1C A−1D).

From this it follows that the numbers

λ′k,s = λk +
s

2
, k = 1, . . . , p, s = 0,±1, . . . ,

are eigenvalues of A and the algebraic multiplicity of the eigenvalue λk,s is equal to
σk. Additionally, the roots of the polynomial (9.2.12) are eigenvalues.

9.2.5. Example. We consider the homogeneous equations which describe the
plane deformation of an anisotropic body.

2∑

j=1

∂σi,j

∂xj
= 0 in K, i = 1, 2,(9.2.13)

σ2,2 = σ1,2 = 0 for ϕ = 0,(9.2.14)
σ1,2 cos α− σ1,1 sin α = σ2,2 cos α− σ2,1 sin α = 0 for ϕ = α.(9.2.15)

The stress tensor σ = (σi,j)i,j=1,2 is connected with the strain tensor ε = (εi,j)i,j=1,2

by the Hooke law

εi,j =
2∑

k,l=1

ai,j,k,l σk,l ,
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where ai,j,k,l are real numbers such that ai,j,k,l = ak,l,i,j , ai,j,k,l = aj,i,k,l,

2∑

i,j,k,l=1

ai,j,k,l σi,j σk,l ≥ c0

2∑

i,j=1

σ2
i,j , c0 > 0.

Recall that σ and ε are symmetric tensors and the tensor ε satisfies the condition

(9.2.16)
∂2ε1,1

∂x2
2

+
∂2ε2,2

∂x2
1

= 2
∂2ε1,2

∂x1 ∂x2
.

The general solution of (9.2.13) can be represented by one function U :

(9.2.17) σ1,1 =
∂2U

∂x2
2

, σ2,2 =
∂2U

∂x2
1

, σ1,2 = − ∂2U

∂x1 ∂x2
.

Inserting these expressions into the Hooke law and the obtained relations into
(9.2.16), we arrive at the equation

(9.2.18) Q(∂x1 , ∂x2) U = 0 in K.

We do not need the explicit form of the differential operator Q. Let us only note
that Q is an elliptic operator of fourth order with real coefficients. It is determined
by the roots µ1, µ2, µ1, µ2 (Im µ1, Imµ2 > 0) of the equation Q(1, µ) = 0. The
boundary conditions (9.2.14), (9.2.15) take the form

∂2U

∂x2
1

=
∂2U

∂x1 ∂x2
= 0 for ϕ = 0,(9.2.19)

∂2U

∂x2
2

sin α +
∂2U

∂x1 ∂x2
cosα =

∂2U

∂x1 ∂x2
sin α +

∂2U

∂x2
1

cosα = 0(9.2.20)

for ϕ = α.

We check that the boundary operators are regular. The polynomials correspond-
ing to the boundary conditions (9.2.19) are 1 and ζ. The regularity follows from
Example 1 in Section 9.1. The polynomials corresponding to conditions (9.2.20)
are

p1(ζ) = ζ cos α + sin α, p2(ζ) = −ζ sin α + cosα.

Since p1(ζ) sin α + p2(ζ) cos α = 1 and p1(ζ) cos α− p2(ζ) sin α = ζ, the regularity
of (9.2.20) follows from Example 2 in Section 9.1. Thus, Theorem 9.2.2 is applicable
to the operator pencil A generated by problem (9.2.18)–(9.2.20).

First let | cos α+µ2 sin α| 6= | cos α+µ1 sinα|. Then the polygon P2 is a rhombus.
Consequently, there are four rays (exactly one in every quadrant) such that the
spectrum of the pencil is situated near these. We find the ray and the corresponding
distribution function for the eigenvalues in the first quadrant. The other rays can
be found by means of reflection with respect to the x1- and x2-axes. Without loss
of generality, let | cosα+µ2 sin α| > | cos α+µ1 sin α|. Then the desired ray has the
direction

`0 = log
(
(cos α + µ2 sin α) (cos α + µ1 sinα)−1

)
.

We consider the angle S(ε) = {λ ∈ C : | arg λ−arg i`0| ≤ ε, |λ| > 0}. The function
n(t, ε) of the distribution of eigenvalues in the angle S(ε) has the asymptotics

n(t, ε) =
|`0|
2π

t + o(t).



9.3. NOTES 307

If | cosα + µ2 sinα| = | cosα + µ1 sin α|, then the polygon P2 coincides with a line
segment parallel to the imaginary axis with the length

s = 2
(

arg(cos α + µ2 sin α) + arg(cos α + µ1 sin α)
)
.

The spectrum of the pencil A is situated near the real axis. If we denote the number
of eigenvalues in the sectors {λ ∈ C : | arg(±λ)| < ε, 0 < |λ| < t} by n±(t, ε), then
we have

n±(t, ε) =
s

2π
t + o±(t).

9.3. Notes

The notion of κ-regular boundary conditions was introduced by Kozlov [118]
who also found the asymptotic formula for the eigenvalues in Theorem 9.2.2. This
notion proved to be useful in establishing the unique continuation property for
solutions of general elliptic boundary value problems at a corner point (Kozlov
[121, 124]).





CHAPTER 10

The Dirichlet problem for strongly elliptic systems
in particular cones

In this chapter we study the singularities of solutions to the Dirichlet problem
for strongly elliptic systems of partial differential equations of order 2m in a n-
dimensional cone K. In other words, we are interested in solutions of the problem

(10.0.1) L(Dx)U(x) = 0 on K, ∂j
νU(x) = 0 on ∂K \ {0}, j = 0, . . . , m− 1,

which have the form

(10.0.2) U(x) = |x|λ0

s∑

k=0

1
k!

(log |x|)k us−k(x/|x|)

with uk ∈ ◦
W m

2 (Ω)`, Ω = K ∩ Sn−1. For this we have to find the eigenvalues,
eigenfunctions and generalized eigenfunctions of the associated operator pencil L
on Ω. Preliminary information about this pencil is collected in Section 10.1.

There are several cases when all power-logarithmic solutions (10.0.2) can be
found. Sections 10.2–10.4 deal with three cases of such a kind.

In Section 10.2 we assume that K = Rn \ {0}. We show that the eigenvalues of
L may only be equal to 0, 1, . . . or 2m − n, 2m − n − 1, . . . and that the function
(10.0.2) is a solution of (10.0.1) if and only if

(10.0.3) U(x) =
∑

|α|=λ0

pα xα +
∑

|β|=2m−n−λ0

∂β
x E(x) qβ ,

where E is the fundamental matrix of L(Dx), pα, qβ are constant vectors and the
first sum in the right-hand side of (10.0.3) satisfies (10.0.1). If λ0 < 0 or λ0 > 2m−n,
then the corresponding sum in (10.0.3) is omitted.

Another particular case K = Rn
+ =

{
x = (x′, xn) : xn > 0

}
is considered in

Section 10.3. The exponent λ0 in (10.0.2) may only be equal to m, m + 1, . . . or
m−n, m−n−1, m−n−2, . . .. In order to describe solutions (10.0.2), we introduce
the Poisson kernels Gj , j = 0, . . . , m− 1, as homogeneous solutions of the Dirichlet
problem

L(Dx) Gj(x) = 0 in Rn
+, ∂k

xn
Gj(x) = I`δ(x′)δk

j for xn = 0, k = 0, . . . , m− 1,

where I` is the `× ` identity matrix. Then (10.0.2) is a solution of (10.0.1) if and
only if

(10.0.4) U(x) = xm
n

∑

|α|=λ0−m

pα xα +
m−1∑

j=0

∑

|β|=j+1−n−λ0

∂β
x′Gj(x) qβ ,

309
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where pα, qβ are constant vectors and the first term in the right-hand side of (10.0.4)
satisfies (10.0.1). If λ0 < m or λ0 > j + 1− n for some j = 0, . . . ,m− 1, then the
corresponding terms in (10.0.4) are omitted.

We turn to another case considered in Section 10.4 when the spectrum of L
can be given explicitly. Let R be the ray {x ∈ Rn : x′ = 0, xn ≥ 0}. We put
K = Rn\R and 2m ≥ n. We prove the following statements:

(i) Let n be odd. Then the spectrum of L is exhausted by the eigenvalues
k = 0,±1,±2, . . . . If u is an eigenfunction corresponding to k, then

(10.0.5) |x|ku(x/|x|) =
∑

|α|=k

pα xα +
∑

|β|=2m−n−k

∂β
x E(x) qβ ,

where pα, qβ ∈ C`. If k < 0, then the first sum on the right is absent. If k > 2m−n,
then the second sum is omitted.

(ii) Let n be even. Then the integers k, k 6= m − n/2, are eigenvalues of
L, and the corresponding eigenfunctions admit the representation (10.0.5). The
half-integers

m− (n− 1)/2 + k, where k = 0,±1,±2, . . . ,

are also eigenvalues. Their geometric multiplicities are `
(

m+n/2−1
n−1

)
. Other eigen-

values do not exist.
Both in the cases (i) and (ii) there are no generalized eigenfunctions.
For the operator L(Dx) = (−∆)m, 2m ≥ n, all eigenfunctions of the corre-

sponding pencil are presented in Subsection 10.4.5.
In the last Section 10.5 we study solutions (10.0.2) of problem (10.0.1) in the

cone K = Kd × Rn−d, where Kd is an arbitrary open cone in Rd, n > d > 1. We
are able to represent the solutions (10.0.2) by analogous solutions to the Dirichlet
problem in Kd.

Needless to say, all power-logarithmic solutions explicitly constructed in this
chapter can be used to describe the asymptotic behavior of solutions to the Dirichlet
problem near the corresponding boundary singularities.

10.1. Basic properties of the operator pencil generated by the Dirichlet
problem

10.1.1. Function spaces. For an arbitrary open set G ⊂ Rn let Wm
2 (G) be

the Sobolev space with the norm

‖u‖W m
2 (G) =

( ∫

G

∑

|α|≤m

|Dα
x u(x)|2 dx

)1/2

,

where x = (x1, . . . , xn) ∈ Rn, Dx = −i
(
∂x1 , . . . , ∂xn

)
. Furthermore, let

◦
W m

2 (G)
denote the closure of C∞0 (G) in Wm

2 (G). Here C∞0 (G) is the set of all infinitely
differentiable functions on G whose support is compact and contained in G. The
space W−m

2 (G) is defined as the dual space of
◦

Wm
2 (G).

In the sequel, let Ω be an open subset of the (n − 1)-dimensional unit sphere
Sn−1, and let K be the cone {x ∈ Rn : x/|x| ∈ Ω}. We set

◦
W

m
2,loc(K, 0) = {U : ηU ∈ ◦

W
m
2 (K) for all η ∈ C∞0 (Rn\{0}) },

W−m
2,loc(K, 0) = {F : ηF ∈ W−m

2 (K) for all η ∈ C∞0 (Rn\{0}) }.
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Furthermore, we introduce the following function spaces on the open subset Ω ⊂
Sn−1. By L2(Ω) we denote the set of square summable functions on Ω. This space
is a Hilbert space with the scalar product

(
u, v

)
L2(Ω)

=
∫

Ω

u · v dω,

where dω is the measure on Ω. We define Wm
2 (Ω) as the space of all functions u

on Ω such that Mu ∈ L2(Ω) for every differential operator M of order ≤ m on Ω
with smooth coefficients. The norm in this space is defined as

(10.1.1) ‖u‖W m
2 (Ω) =

( ∫

K
1/2<|x|<2

∑

|α|≤m

|Dα
x u(x)|2 dx

)1/2

,

where in the integral the function u is extended to K by u(x) = u(x/|x|). An
equivalent norm holds if the domain of integration {x ∈ K : 1/2 < |x| < 2} on the
right of (10.1.1) is replaced by {x ∈ K : ε < |x| < 1/ε} with arbitrary positive
ε < 1. Finally, we denote the closure of the set C∞0 (Ω) with respect to the norm

(10.1.1) by
◦

Wm
2 (Ω).

10.1.2. Definition of the operator pencil. Let the differential operator

(10.1.2) L(Dx) =
∑

|α|=2m

Aα Dα
x

be given, where Aα are constant `× ` matrices. We suppose that the operator L is
strongly elliptic, i.e., for arbitrary ξ ∈ Rn, f ∈ C` there is the inequality

Re (L(ξ) f , f)C` ≥ c0 |ξ|2m |f |2C`

with a positive constant c0. Obviously, the differential operator L realizes a linear
and continuous mapping

◦
Wm

2,loc(K, 0)` → W−m
2,loc(K, 0)`. Our goal is the description

of all solutions of the equation

(10.1.3) L(Dx)U = 0 in K
which have the form

(10.1.4) U(x) = rλ0

s∑

k=0

(log r)k

k!
us−k(ω),

where r = |x|, ω = x/|x|, and uk ∈
◦

Wm
2 (Ω)` are vector functions on Ω.

Lemma 10.1.1. The function (10.1.4) belongs to the space
◦

Wm
2,loc(K, 0)` if and

only if uk ∈
◦

Wm
2 (Ω)` for k = 0, . . . , s.

Proof: It is obvious that every function of the form (10.1.4) with uk ∈
◦

Wm
2 (Ω)`

belongs to the space
◦

W m
2,loc(K, 0)`. On the other hand, the functions uk(ω) in

(10.1.4) can be represented in terms of the functions U(2jx), 1 < |x| < 2, j =
0, 1, . . . , s, since

s∑

k=0

(log 2jr)s−k

(s− k)!
uk(ω) =

U(2jx)
(2jr)λ0

, j = 0, 1, . . . , s.
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The coefficients determinant of this algebraic system is nonzero. (Multiplying this
determinant by 1! · · · s!, we obtain the Vandermonde determinant.) Hence from

U ∈ ◦
Wm

2,loc(K, 0)` it follows that uk ∈
◦

Wm
2 (Ω)` for k = 1, . . . ,m.

As in the two-dimensional case, let the parameter-depending differential oper-
ator L(λ) on the unit sphere Sn−1 be defined by the equality

(10.1.5) L(λ)u = r2m−λ L(Dx) (rλu).

The operator L(λ) is a polynomial of degree 2m in λ. For arbitrary λ ∈ C the

operator L(λ) continuously maps
◦

Wm
2 (Ω)` into W−m

2 (Ω)`. Furthermore,

L(r∂r) = r2mL(Dx).

From Theorem 1.1.5 it follows that the vector function (10.1.4) is a solution of the
equation (10.1.3) if and only if λ0 is an eigenvalue of the pencil L and u0, . . . , us is
a Jordan chain of L corresponding to this eigenvalue, i.e.,

(10.1.6)
k∑

j=0

1
j!
L(j)(λ0)uk−j = 0 for k = 0, 1, . . . , s.

By Corollary 1.1.3, the dimension of the space of all solutions of the form (10.1.4)
is equal to the algebraic multiplicity of the eigenvalue λ0.

10.1.3. The adjoint operator pencil. Let A∗α denote the adjoint matrix to
Aα. Then the operator

L+(Dx) =
∑

|α|=2m

A∗α Dα
x ,

is formally adjoint to the differential operator L(Dx). Analogously to L(λ), let the
differential operator L+(λ) on the sphere be defined by the equality

L+(λ)u(ω) = r2m−λ L+(Dx) (rλ u(ω)).

Lemma 10.1.2. For all λ ∈ C there is the equality

(10.1.7) L+(2m− n− λ̄) = (L(λ))∗ ,

where the operator on the right-hand side is the adjoint operator to L(λ).

Proof: Obviously,
∫

Ω

(L(λ)u, v
)
C` dω =

1
2 | log ε|

∫

K
ε<|x|<1/ε

(
L(Dx) (rλu) , r2m−n−λ̄v

)
C`

dx

for all u, v ∈ C∞0 (Ω)`, where ε is an arbitrary positive real number less than one.
We apply Green’s formula to the integral on the right-hand side. Then, due to the
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cancelling of the integrals over the spheres |x| = ε and |x| = 1/ε, we get
1

2 | log ε|
∫

K
ε<|x|<1/ε

(
L(Dx) (rλu) , r2m−n−λ̄v

)
C`

dx

=
1

2 | log ε|
∫

K
ε<|x|<1/ε

(
rλu , L+(Dx) (r2m−n−λ̄v)

)
C`

dx

=
∫

Ω

(
u , L+(2m− n− λ̄) v

)
C` dω.

This proves the lemma.

Note that the definition of the operator L+(λ) does not coincide with the
definition of the operator L∗(λ) in Section 1.1. The adjoint (in the sense of Section
1.1) operator pencil L∗ is given by the equality L∗(λ) = (L(λ))∗. Hence there is the
relation L+(λ) = L∗(2m− n− λ) between the pencils L+ and L∗.

10.1.4. Discreteness of the spectrum of the pencil L. Let M(λ) be the
differential operator on the sphere Sn−1 which is generated by the polyharmonic
operator:

M(λ) v = r2m−λ (−∆)m (rλv)(10.1.8)

= (−1)m
m−1∏

k=0

(
δ + (λ− 2k)(λ− 2k + n− 2)

)
v

(see Section 7.3). According to Lemma 7.3.1 and Remark 7.3.1, there exists a
positive constant c such that

(10.1.9)
∫

Ω

M(λ)v · v dω ≥ c
(‖v‖2W m

2 (Ω) + |λ|2m ‖v‖2L2(Ω)

)

for all v ∈ C∞0 (Ω), λ = m − n/2 + it, t ∈ R, if one of the following conditions is
satisfied:

(i) 2m < n,
(ii) 2m ≥ n and n odd,
(iii) 2m ≥ n, n even, and Ω 6= Sn−1.

The constant c depends only on m and n.
By means of estimate (10.1.9), the following assertion can be proved.

Corollary 10.1.1. Let one of the conditions (i), (ii), (iii) be satisfied. Then
for all U ∈ C∞0 (K) there is the inequality

(10.1.10)
∑

|α|≤m

∫

K

r−2(m−|α|) |Dα
x U |2 dx ≤ c

∑

|α|=m

∫

K

|Dα
x U |2 dx

with a constant c independent of U.

Proof: The left-hand side of (10.1.10) can be estimated by the inequality

∑

|α|≤m

∫

K

r−2(m−|α|) |Dα
x U |2 dx ≤ c

∞∫

0

m∑

j=0

rn−1−2m ‖(r∂r)jU‖2
W m−j

2 (Ω)
dr.
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Here the constant c is independent of U. Furthermore, we have

∑

|α|=m

∫

K

|Dα
x U |2 dx ≥ c

∫

K

(−∆)mU · U dx = c

∞∫

0

∫

Ω

M(r∂r)U · U dω rn−1−2m dr.

Hence, in order to obtain (10.1.10), we have to prove the inequality
∞∫

0

m∑

j=0

rn−1−2m ‖(r∂r)jU‖2
W m−j

2 (Ω)
dr ≤ c

∞∫

0

∫

Ω

M(r∂r)U · U dω rn−1−2m dr

or, what is the same,
+∞∫

−∞

m∑

j=0

‖(m− n

2
+ ∂t)jV ‖2

W m−j
2 (Ω)

dt ≤ c

+∞∫

−∞

∫

Ω

M(m− n

2
+ ∂t)V · V dω dt,

where t = log r, V = e−(m−n/2)tU . r by et, U by e(m−n/2)t V. By the Parseval
equality, the last inequality is equivalent to

+∞∫

−∞

m∑

j=0

‖(m− n

2
+ iτ)j V̂ ‖2

W m−j
2 (Ω)

dτ ≤ c

+∞∫

−∞

∫

Ω

M(m− n

2
+ iτ)V̂ · V̂ dω dτ,

where V̂ denotes the Fourier transform with respect to t of V , and follows imme-
diately from ∫

Ω

M(λ)V̂ · V̂ dω ≥ c

m∑

j=0

|λ|2j ‖V̂ ‖2
W m−j

2 (Ω)

with λ = m− n/2 + iτ .

We show now that the conditions of Theorem 1.1.1 are satisfied for the operator
pencil L. Condition (ii) of Theorem 1.1.1 follows from the estimate given in the
following lemma.

Lemma 10.1.3. There exist positive numbers c, R, and ε such that the inequality

(10.1.11) Re
∫

Ω

(L(λ)u, u
)
C` dω ≥ c

m∑

j=0

|λ|2j ‖u‖2
W m−j

2 (Ω)`

is satisfied for all u ∈ C∞0 (Ω)`, |λ| > R, |Re λ| < ε |Im λ|.
Proof: Since the operator L(Dx) is strongly elliptic, there is the estimate

(−1)m

∫

K

(∆mU,U)C` dx ≤ c Re
∫

K

(
L(Dx)U,U

)
C` dx

for all U ∈ C∞0 (K). We set U(x) = ε1/2 η(ε log r) rλ u(ω), where u ∈ C∞0 (Ω)`,
η ∈ C∞0 (R), λ = m− n/2 + it, t ∈ R. Then for ε → 0 we arrive at the inequality

(10.1.12)
∫

Ω

(M(m− n/2 + it)u, u
)
C` dω ≤ c Re

∫

Ω

(L(m− n/2 + it)u, u
)
C` dω.

This and (10.1.9) imply (10.1.11) for λ = m−n/2+it (for large t inequality (10.1.9)
is satisfied without conditions (i), (ii) or (iii)).
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Now let λ = s+it, where s and t are real numbers such that |s−m+n/2| ≤ 2ε |t|.
Then for sufficiently large |t| we have

Re
∫

Ω

(
(L(λ)− L(m− n

2
+ it))u , u

)
C` ≤ c ε

m∑

j=0

|λ|2j ‖u‖2
W m−j

2 (Ω)` .

Choosing ε sufficiently small, we obtain (10.1.11) for |Re λ −m + n/2| ≤ 2ε |Im λ|
and sufficiently large Im λ. This proves the lemma.

From (10.1.11) it follows that the operator L(λ) is invertible for |λ| > R,
|Re λ| < ε |Im λ|. Furthermore, the operator L(λ1)−L(λ2) is compact for arbitrary
complex numbers λ1 and λ2. Hence the operator L(λ) is Fredholm for arbitrary λ.
Using Theorem 1.1.1, we obtain the following result.

Theorem 10.1.1. Suppose that the differential operator (10.1.2) is strongly
elliptic. Then the operator L(λ) is an isomorphism for all λ ∈ C, with the possible
exception of a denumerable set of isolated points. The mentioned denumerable set
consists of eigenvalues with finite algebraic multiplicities which are situated, except
finitely many, outside a double sector |Re λ| < ε |Imλ| containing the imaginary
axis.

Furthermore, as a consequence of Theorem 1.1.7 and Lemma 10.1.2, the fol-
lowing assertion holds.

Theorem 10.1.2. The number λ0 is an eigenvalue of the pencil L if and only if
2m−n−λ0 is an eigenvalue of the pencil L+. The geometric, partial and algebraic
multiplicities of these eigenvalues coincide.

Finally, from (10.1.9) and (10.1.12) we obtain the following assertion on the
nonexistence of eigenvalues on the energy line.

Theorem 10.1.3. Let one of the conditions (i), (ii), (iii) in the beginning of
this subsection be satisfied. Then there are no eigenvalues of the pencil L on the
line Re λ = m− n/2.

The only exceptional case for the validity of the assertion in Theorem 10.1.3
is the case Ω = Sn−1, n even, and 2m ≥ n. Then the pencil L has the eigenvalue
λ = m− n/2. The traces of homogeneous polynomials of degree m− n/2 on Sn−1

are eigenfunctions corresponding to these eigenvalues (see Theorems 10.2.2, 10.2.3).

10.2. Elliptic systems in Rn

Let L(Dx) be the same differential operator L(Dx) as in the previous section.
We show that all solutions of the system

(10.2.1) L(Dx)U = 0 in Rn\{0},
which have the form (10.1.4), where uk are smooth vector functions on the sphere
Sn−1, are linear combinations of homogeneous vector-polynomials and derivatives
of the columns of the Green matrix. In this way, we describe the spectrum of the
pencil L introduced in Section 10.1 for the case Ω = Sn−1.
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10.2.1. Power-logarithmic solutions of elliptic systems. We denote by
G(x) the Green matrix of the operator L(Dx), i.e., the solution of the system

(10.2.2) L(Dx) G(x) = I` δ(x) in Rn,

where I` is the ` × ` identity matrix and δ is the Dirac function. It is well-known
(see John’s book [94]) that G admits the representation

(10.2.3) G(x) =
{

r2m−n Q(ω) if 2m ≥ n, n odd, or 2m < n,
R(x) log r + r2m−nS(ω) if 2m ≥ n, n even,

where Q and S are smooth matrix-functions on Sn−1, and R is a homogeneous
polynomial matrix of degree 2m− n.

In the sequel, let Π(n)
k be the space of homogeneous polynomials of degree k

with n variables, n ≥ 1. The dimension of this space is equal to (n+k−1
n−1 ). For n = 0

we set Π(0)
k = {0}.

Obviously, homogeneous polynomials of degree k are functions of the form
(10.1.4), where λ0 = k and s = 0. We calculate the number of linearly independent
homogeneous polynomials of degree k which are solutions of equation (10.2.1). For
this we need the following lemma.

Lemma 10.2.1. Let f ∈ (Π(n)
s )` and gk ∈ (Π(n−1)

2m+s−k)` for k = 0, 1 . . . , 2m− 1,
where s is an arbitrary nonnegative integer. Then the Cauchy problem

(10.2.4)





L(Dx) p = f in Rn,

∂k
xn

p|xn=0 = gk on Rn−1, k = 0, . . . , 2m− 1,

has a uniquely determined solution p ∈ (Π(n)
2m+s)

`.

Proof: Without loss of generality, we may assume that gk = 0. Then every
solution p ∈ (Π(n)

2m+s)
` of problem (10.2.4) has the form

p(x) =
s∑

j=0

x2m+s−j
n pj(x′),

where x′ = (x1, . . . , xn−1) and pj ∈ (Π(n−1)
j )`. Furthermore, the polynomial f can

be written in the form

f(x) =
s∑

j=0

xs−j
n fj(x′),

where fj ∈ (Π(n−1)
j )`. Then we have

L(Dx) p(x) =
2m∑

k=0

s∑

j=k

(2m + s− j

2m− k

)
xk+s−j

n (−i)2m−k L(2m−k)(Dx′ , 0) pj(x′),

where L(k)(ξ) = ∂k
ξn

L(ξ). Consequently, we get

min(2m,s−j)∑

k=0

(−i)2m−k
(2m− k + s− j

2m− k

)
L(2m−k)(Dx′ , 0) pk+j(x′) = fj(x′)

for j = 0, 1, . . . , s. These equations form a triangular system with the elements
( 2m+s−j

2m )L(2m) in the diagonal. Since L(2m) is a constant regular matrix, this
system is uniquely solvable. This proves the lemma.
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Corollary 10.2.1. The dimension of the space {p ∈ (Π(n)
k )` : L(Dx)p = 0},

k ≥ 0, is equal to ` κ(k), where

(10.2.5) κ(k) =





(
n+k−1

n−1

)
if k < 2m,

(
n+k−1

n−1

)
−

(
n−2m+k−1

n−1

)
if k ≥ 2m.

Proof: For k < 2m the set {p ∈ (Π(n)
k )` : L(Dx)p = 0} coincides with (Π(n)

k )`. In
the case k ≥ 2m the mapping L(Dx) : (Π(n)

k )` → (Π(n)
k−2m)` is surjective by Lemma

10.2.1. Hence the dimension of its kernel is equal to dim(Π(n)
k )` − dim(Π(n)

k−2m)`.
This proves (10.2.5)

By Lemma 10.2.1, the numbers λ
(1)
k = k, k = 0, 1, . . ., form a sequence of

exponents λ0 in (10.1.4) which correspond to solutions U ∈ (Π(n)
k )` of the system

(10.2.1). Moreover, for the exponents λ
(2)
k = 2m− n− k, k = 0, 1, . . ., one can find

the solutions

(10.2.6)
∑

|α|=k

Dα
x G(x) · cα , cα ∈ C`.

Such linear combinations of the matrix-function Dα
x G are equal to zero in Rn\{0}

if and only if there exists a vector-polynomial p ∈ (Π(n)
k−2m)` such that

∑

|α|=k

cα ξα = L(ξ) p(ξ).

Hence the number of linearly independent solutions of the form (10.2.6) in Rn\{0}
is equal to ` κ(k).

The following theorem shows that, additionally to the solutions given above,
there are no other solutions of system (10.2.1) which have the form (10.1.4).

Theorem 10.2.1. The vector function (10.1.4) is a solution of (10.2.1) if and
only if the following conditions are satisfied:

(i) λ0 = k or λ0 = 2m− n− k with nonnegative integer k,
(ii) the vector function (10.1.4) has the form

U(x) =





Pk(x) if λ0 = k ≥ max(0, 2m− n + 1),

∑

|α|=k

Dα
x G(x) cα if λ0 = 2m− n− k < 0,

Pk(x) +
∑

|α|=2m−n−k

Dα
x G(x) cα if λ0 = k and 0 ≤ k ≤ 2m− n.

Here cα ∈ C` and Pk is a homogeneous vector-polynomial of degree k
satisfying the equation L(Dx) Pk = 0.

Proof: We assume at first that Re λ0 > −n. Then the function (10.1.4) is
locally integrable and belongs to the space S′(Rn)`. Since the distribution L(Dx)U
is concentrated in the point x = 0, there is the representation

L(Dx) U(x) =
∑
α

cα Dα
x δ(x) in Rn,
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where the summation on the right-hand side is extended over a finite set of multi-
indices. We set

U(x) =
∑
α

Dα
x G(x) cα + V (x).

Since L(Dx) V = 0 in Rn and V ∈ S′(Rn), the function V is a vector-polynomial.
This proves the theorem for Re λ0 > −n.

Let L(λ) be the differential operator (10.1.5) which maps
◦

Wm
2 (Sn−1)` into the

space W−m
2 (Sn−1)`. We have shown above, in particular, that the spectrum of

the operator pencil L in the half-plane Re λ ≥ 2m is exhausted by the eigenvalues
λ

(1)
k = k, k ≥ 2m, with the algebraic multiplicities ` κ(k). Applying this assertion

to the formally adjoint operator L+(Dx), we conclude that the same is true for the
pencil L+. Hence from Theorem 10.1.2 it follows that the spectrum of L in the
half-plane Re λ ≤ −n is exhausted by the eigenvalues λ

(2)
k = 2m− n− k, k ≥ 2m,

with the algebraic multiplicities ` κ(k). Therefore, solutions of the form (10.1.4),
where Re λ0 ≤ −n, exist only for λ0 = λ

(2)
k and the dimension of the space of such

solutions is equal to ` κ(k). As it was shown before this theorem, this number is
also equal to the number of linear independent solutions of the form (10.2.6). The
theorem is proved.

10.2.2. Spectral properties of the pencil L in the case Ω = Sn−1.

Let the operator L(λ) :
◦

Wm
2 (Sn−1)` → W−m

2 (Sn−1)` be defined by (10.1.5). As an
immediate consequence of Theorem 10.2.1, we obtain the following result.

Theorem 10.2.2. 1) Let 2m < n. Then the spectrum of the pencil L consists
of two nonintersecting sequences {λ(1)

k = k}k=0,1... and {λ(2)
k = 2m−n−k}k=0,1,....

The geometric and algebraic multiplicities of the eigenvalues λ
(1)
k and λ

(2)
k are equal

to ` κ(k). The eigenfunctions corresponding to the eigenvalues λ
(1)
k are the traces

on Sn−1 of the vector-polynomials from (Π(n)
k )` which satisfy (10.2.1). The eigen-

functions to the eigenvalues λ
(2)
k are the traces on Sn−1 of the solutions of (10.2.1)

which have the form (10.2.6).
2) Let 2m ≥ n. Then the spectrum of L is formed by the sequences {λ(1)

k }k>2m−n,

{λ(2)
k }k>2m−n, and the numbers 0, 1, . . . , 2m−n. For the eigenvalues λ

(1)
k , λ

(2)
k and

their eigenfunction the same assertions as in part 1) are true.
The eigenvalues λ = k, k = 0, 1, . . . , 2m− n, have the algebraic multiplicities

`
(
κ(k) + κ(2m− n− k)

)
.

There are no second generalized eigenvectors to these eigenvalues (i.e., the index of
these eigenvalues is not greater than two). If additionally n is an odd number, then
there are no generalized eigenvectors. In this case the eigenfunctions corresponding
to the eigenvalues λ = k, k ∈ {0, 1, . . . , 2m − n}, are the traces on Sn−1 of vector
functions of the form

Pk(x) +
∑

|α|=2m−n−k

Dα
x G(x) cα,

where Pk ∈ (Π(n)
k )`, cα ∈ C`.
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Theorem 10.2.2 does not answer the question on the number of the generalized
eigenvectors in the case n ≤ 2m, n even, and λ = k, k ∈ {0, 1, . . . , 2m − n}. An
answer is given in the following two theorems.

Theorem 10.2.3. Let L be a strongly elliptic operator and let n be an even
number, n ≤ 2m. Then the geometric multiplicity of the eigenvalue λ = m− n/2 is
equal to ` κ(m− n/2). The space of the eigenfunctions to this eigenvalue coincides
with the restriction of (Π(n)

m−n/2)
` to the unit sphere Sn−1. Every eigenfunction has

exactly one generalized eigenfunction.

Proof: It is known (see John [94, Ch.3]) that the matrix polynomial R in
(10.2.3) is determined by the equality

(10.2.7) R(x) = − 1
(2πi)n (2m− n)!

∫

Sn−1

(x · ω)2m−n L−1(ω) dω.

We show that the equality

(10.2.8)
∑

|α|=m−n/2

Dα
x R(x) cα = 0 in Rn

implies cα = 0. Indeed, the left-hand side of (10.2.8) is equal to

− 1
(2πi)m−n/2 (m− n/2)!

∑

|α|=m−n/2

∫

Sn−1

(x · ω)m−n/2 ωα L−1(ω) cα dω.

Differentiating this equality, we obtain
∑

|α|=m−n/2

∫

Sn−1

ωα+β L−1(ω) cα dω = 0

for all multi-indices β, |β| = m− n/2. From this it follows that∫

Sn−1

(
L−1(ω) F (ω) , F (ω)

)
C`

dω = 0, where F (ω) =
∑

|α|=m−n/2

cα ωα.

Using the strong ellipticity of the operator L, we conclude that F (ω) = 0 on Sn−1

and, therefore, cα = 0.
Let U be an arbitrary solution of the system (10.2.1) which has the form (10.1.4)

with λ0 = m−n/2. By the second part of Theorem 10.2.1, there is the representation

U(x) = Pm−n/2(x) +
∑

|α|=m−n/2

Dα
x G(x) cα ,

where Pm−n/2 ∈ (Π(n)
m−n/2)

`, cα ∈ C`. Thus,

(10.2.9) U(x) =
∑

|α|=m−n/2

Dα
x R(x) cα log r + rm−n/2 Φ(ω)

with a vector function Φ ∈ C∞(Sn−1)`. By Theorem 1.1.5, the vector function
(10.2.9) is a solution of (10.2.1) if and only if the coefficient of log r is an eigenvector
and Φ is a generalized eigenvector corresponding to the eigenvalue m − n/2. We
show that every vector-polynomial p ∈ (Π(n)

m−n/2)
` has the representation

p(x) =
∑

|α|=m−n/2

Dα
x R(x) cα ,
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where cα ∈ C`. To this end, we consider the mapping

C` κ(m−n/2) 3 {cα}|α|=m−n/2
T−→

∑

|α|=m−n/2

Dα
x R(x) cα ∈ (Π(n)

m−n/2)
`.

As it was shown above, the kernel of T is trivial and dim(Π(n)
m−n/2)

` = ` κ(m−n/2).
Hence T is an isomorphism.

Thus, every eigenvector from (Π(n)
m−n/2)

`|Sn−1 has a generalized eigenvector.
The dimension of the space of these eigenvectors and generalized eigenvectors is
equal to 2`κ(m − n/2). According to Theorem 10.2.2, this number coincides with
the algebraic multiplicity of the eigenvalue m − n/2. Consequently, there are no
other generalized eigenvectors. The theorem is proved.

Theorem 10.2.4. Let L(Dx) be strongly elliptic, n even, and 2m > n. Then the
geometric multiplicity of the eigenvalue λ = k, k ∈ {0, 1, . . . , 2m − n}\{m − n/2},
is equal to

` κ(2m− n− k) if k = 0, . . . ,m− n/2− 1,(10.2.10)
` κ(k) if k = m− n/2 + 1, . . . , 2m− n.(10.2.11)

In the first case only eigenvectors from (Π(n)
k )`|Sn−1 have generalized eigenvectors.

In the second case the set of the eigenvectors coincides with (Π(n)
k )`

∣∣
Sn−1 .

Proof: Let λ0 = k > m − n/2. By the second part of Theorem 10.2.1, every
solution (10.1.4) of the system (10.2.1) can be written in the form

U(x) = Pk(x) +
∑

|α|=2m−n−k

Dα
x G(x) cα ,

where Pk ∈ (Π(n)
k )`, cα ∈ C`. From (10.2.3) it follows that

(10.2.12) U(x) =
∑

|α|=2m−n−k

Dα
x R(x) cα log r + rk Φ(ω),

where Φ ∈ C∞(Sn−1)` and R is a `× `-matrix with elements from (Π(n)
2m−n)` which

has the representation (10.2.7). We show that the mapping

C`κ(2m−n−k) 3 {cα}|α|=2m−n−k
Tk−→

∑

|α|=2m−n−k

Dα
x R(x) cα ∈ (Π(n)

k )`

has a trivial kernel. Let β be a multi-index of order k −m + n/2. Then

Dβ
xTk {cα}|α|=2m−n−k = Tm−n/2 {c′γ}|γ|=m−n/2 ,

where c′γ = cα if γ = α + β, c′γ = 0 else. In the proof of the Theorem 10.2.3 it was
shown that the kernel of T = Tm−n/2 is trivial. Consequently, the same is true for
the mapping Tk. From this it follows that the dimension of the range of Tk is equal
to ` κ(2m− n− k).

Since the vector function (10.2.12) is a solution of (10.2.1) if and only if the
coefficient of log r is an eigenvector and Φ is a generalized eigenvector, it follows that
the dimension of the space of eigenvectors which have generalized eigenvectors is
equal to ` κ(2m−n−k). Furthermore, by Theorem 10.2.2, the algebraic multiplicity
of the eigenvalue λ = k is equal to ` (κ(2m − n − k) + κ(k)). Using dim(Π(n)

k )` =
` κ(k), we conclude that the set of eigenvectors coincides with (Π(n)

k )`|Sn−1 .
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Now let λ0 = k < m− n/2. We show that the mapping Tk is surjective. Since
Tm−n/2 is an isomorphism, the equation

Tm−n/2 {cγ}|γ|=m−n/2 =
i|β| β!

(α + β)!
xα+β

is solvable for all multi-indices α and β, |α| = k, |β| = m − n/2 − k. The solution
{cγ} satisfies the equality

Dβ
x Tm−n/2 {cγ}|γ|=m−n/2 = xα

which can be rewritten in the form

Tk {c′σ}|σ|=2m−n−k = xα ,

where c′σ = cγ if σ = β + γ, c′σ = 0 else. Since α is an arbitrary multi-index with
|α| = k, we conclude from this that Tk is surjective.

Hence the coefficient of log r in (10.2.12) may be an arbitrary polynomial from
(Π(n)

k )`. Thus, the dimension of the set of eigenvectors which have generalized eigen-
vectors is equal to ` κ(k). Using the fact that the algebraic multiplicity of the eigen-
value λ = k is equal to ` (κ(k) + κ(2m−n− k)) (see Theorem 10.2.2), we find that
the geometric multiplicity is equal to ` κ(2m− n− k). This proves the theorem.

10.3. The Dirichlet problem in the half-space

Now we consider power-logarithmic solutions of the Dirichlet problem for the
operator (10.1.2) in a half-space. We show that they are polynomials or linear com-
binations of derivatives of the Poisson kernels. This enables us to give a complete
description of the spectrum of the pencil L for the case when Ω is a half-sphere.

10.3.1. Power-logarithmic solutions of the Dirichlet problem. Let L
be the operator (10.1.2). We consider the Dirichlet problem

(10.3.1)





L(Dx)U = 0 in Rn
+,

(∂k
xn

U)(x′, 0) = 0 on Rn−1, k = 0, 1, . . . , m− 1,

in the half-space Rn
+ = {x = (x′, xn) : x′ ∈ Rn−1, xn > 0}. As in the previous

section, we are interested in solutions of the form

(10.3.2) U(x) = rλ0

s∑

k=0

(log r)k

k!
us−k(ω),

where uk are smooth vector functions on the closure of the half-sphere Sn−1
+ . (In

the case K = Rn
+ the generalized formulation of this problem given in the beginning

of Section 10.1 is equivalent to the classical.)

Theorem 10.3.1. Let Re λ0 > m−n/2, and let the vector function (10.3.2) be
a solution of the Dirichlet problem (10.3.1). Then λ0 = m + k with a nonnegative
integer k and

(10.3.3) U(x) = xm
n Pk(x), where Pk ∈ (Π(n)

k )`.
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The dimension of the space of these solutions is equal to

(10.3.4)





`
(n + k − 1

n− 1

)
if k < m,

`

m−1∑

j=0

(n− 2 + k − j

n− 2

)
if k ≥ m.

Proof: If Re λ0 > m−n/2, then ζU ∈ ◦
Wm

2 (Rn
+)` for all ζ ∈ C∞0 (Rn

+). Therefore,
from well-known regularity assertions for the generalized solution of the Dirich-
let problem it follows that U is infinitely differentiable on Rn

+. Consequently, the
number λ0 in (10.3.2) is a nonnegative integer and U is a homogeneous vector-
polynomial. Since U satisfies the homogeneous Dirichlet conditions on the hyper-
plane xn = 0, we get λ0 = m+ k with nonnegative integer k and U(x) = xm

n Pk(x),
where Pk ∈ (Π(n)

k )`.

If k < m, then Pk may be an arbitrary polynomial from (Π(n)
k )`. Since the

dimension of the space Π(n)
k is equal to (n+k−1

n−1 ), we conclude that the space of the
solutions (10.3.2) has the dimension (10.3.4).

In the case k ≥ m the desired formula for the dimension follows from the
fact that the space of the solutions (10.3.3) coincides with the space of the solu-
tions to the Cauchy problem (10.2.4), where f = 0, g0 = · · · = gm−1 = 0, and
gm+j ∈ (Π(n−1)

k−j )` for j = 0, . . . ,m− 1. The theorem is proved.

We denote by Gj(x), j = 0, 1, . . . ,m − 1, the Poisson kernels of the Dirichlet
problem in Rn

+, i.e., the solutions of the boundary value problems

L(Dx)Gj = 0 in Rn
+ ,

(∂j
xn

Gj)(x′, 0) = I` δ(x′) on Rn−1 ,

(∂k
xn

Gj)(x′, 0) = 0 on Rn−1, k 6= j, 0 ≤ k ≤ m− 1.

As is known (we refer to the works of Agmon, Douglis, Nirenberg [2] and Solonnikov
[246]), there is the representation

Gj(x) = rj+1−n Gj(ω),

where the elements of the matrix Gj(ω) are smooth functions on Sn−1
+ .

Theorem 10.3.2. Let Reλ0 < m − n/2. Then the vector function (10.3.2) is
a solution of the Dirichlet problem (10.3.1) if and only if λ0 = m − n − k with a
nonnegative integer k and

(10.3.5) U(x) =
∑

j−|α|=m−k−1

Dα
x′Gj(x) cj,α ,

where cj,α ∈ C`. The dimension of the space of these solutions is equal to (10.3.4).

Proof: We calculate the dimension of the space of solutions having the form
(10.3.5). It follows from the definition of the Poisson kernels Gj that the right-
hand side of (10.3.5) is equal to zero only if all coefficients cj,α are equal to zero.
Consequently, the dimension of the considered space is equal to the number of all
pairs (j, α) satisfying the conditions

max(m− k − 1, 0) ≤ j ≤ m− 1, |α| = j −m + k + 1.
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This number equals

`

m−1∑

j=max(m−k−1,0)

(n + j + k −m− 1
n− 2

)
,

i.e., it coincides with (10.3.4). Using Theorem 10.1.2 and applying Theorem 10.3.1
to the formally adjoint operator L+(Dx), we conclude that the number of linearly
independent solutions (10.3.2) is equal to (10.3.4). Consequently, every solution
(10.3.2) coincides with one of the solutions of the form (10.3.5). This proves the
theorem.

10.3.2. Spectral properties of the pencil L in the case when Ω is the
half-sphere. As a consequence of Theorems 10.1.3, 10.3.1 and 10.3.2, we obtain
the following assertion on the spectrum of the operator pencil L introduced in
Section 10.1.

Theorem 10.3.3. The spectrum of the pencil L generated by the Dirichlet prob-
lem (10.3.1) consists of two nonintersecting sequences

{λ(1)
k = m + k}k=0,1,... and {λ(2)

k = m− n− k}k=0,1,....

The geometric and algebraic multiplicities of these eigenvalues are equal to (10.3.4).
The eigenfunctions corresponding to the eigenvalues λ

(1)
k are the restrictions to

Sn−1
+ of vector-polynomials of the form (10.3.3) which are solutions of the system

L(Dx)U = 0. The eigenfunctions corresponding to the eigenvalues λ
(2)
k are the

restrictions to Sn−1
+ of vector functions (10.3.5).

10.4. The Sobolev problem in the exterior of a ray

In this section the exterior of a ray plays the role of the cone K. We assume
that 2m ≥ n and consider the Dirichlet problem with zero Dirichlet data on the
ray. For the corresponding operator pencil L we show that its spectrum coincides
with the set

{m− n− 1
2

+ k}k=0,±1,... if n is an odd number

and with the set

{m− n

2
+

k

2
}k=±1,±2... if n is even.

Moreover, we prove that there are no generalized eigenvectors and that the eigen-
vectors corresponding to integer eigenvalues are smooth on the unit sphere.

In the case of the polyharmonic operator an explicit representation of all eigen-
vectors will be given.

10.4.1. Formulation of the problem. Let R1 be the line {x = (x′, xn) ∈
Rn : x′ = 0}. Using the Fourier transform with respect to the variable xn, it can
be easily shown that an arbitrary distribution from S′(Rn) with support on the
line x′ = 0 is a finite sum of distributions τα(xn) (Dα

x′δ)(x
′), where τα ∈ S′(R1).

Consequently, every functional from W−m
2 (Rn) equal to zero on C∞0 (Rn\R1) has

the form ∑

|α|≤m−n/2

τα(xn) (Dα
x′δ)(x

′),
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where τα ∈ W
|α|−m+(n−1)/2
2 (R1). From this it follows that

(10.4.1)
◦

W
m
2 (Rn\R1) =

{
U ∈ Wm

2 (Rn) : Dα
x′U = 0 on R1 for |α| ≤ m− n/2

}
.

We denote by R the ray {x = (x′, xn) ∈ Rn : x′ = 0, xn ≥ 0} and consider the
Sobolev problem

L(Dx)U = 0 in Rn\R,(10.4.2)
Dα

x′ U = 0 on R\{0}, |α| ≤ m− n/2,(10.4.3)

for the strongly elliptic differential operator (10.1.2).

We say that U is a solution of problem (10.4.2), (10.4.3) if U ∈ ◦
Wm

2 (Rn\R, 0)`

and (10.4.2) is satisfied in the distributional sense. By (10.4.1), the vector function

U belongs to
◦

W m
2 (Rn\R, 0)` if and only if U ∈ Wm

2,loc(Rn\{0})` and condition
(10.4.3) is satisfied.

Our goal is the description of all solutions which have the form

(10.4.4) U(x) = rλ0

s∑

k=0

(log r)k

k!
us−k(ω),

where uk ∈
◦

Wm
2 (Sn−1\N). Here N = (0, . . . , 0, 1) denotes the north pole of the unit

sphere.
Let L(λ) and L+(λ) be the operators introduced in Section 10.1, where Ω =

Sn−1\N.

10.4.2. Properties of distributions with support on the ray. For the
study of the spectrum of the pencil L we need the following two lemmas concerning
distributions which are concentrated on the ray R. Proofs of the following lemmas
are given in the book of Gel′fand and Shilov [66].

Lemma 10.4.1. Let F ∈ S′(Rn) be a positively homogeneous of degree z ∈ C
distribution with support on the ray R. Then F has the representation

F =
∑

|α|≤µ

aα
x

z+|α|+n−1
n+

Γ(z + |α|+ n)
Dα

x′ δ(x
′),

where aα are constants.

Here xλ−1
n+ denotes the distribution corresponding to the function xλ−1

n+ which
is equal to xλ−1

n for xn > 0 and zero for xn ≤ 0. Recall (see [66, Ch.1, Sect.3]) that
xλ−1

n+ is an analytic function of λ ∈ C and that xλ−1
n+ /Γ(λ) = δ(k)(xn) for λ = −k,

k = 0, 1, . . . .

Lemma 10.4.2. Let F ∈ S′(Rn) be a distribution with support on the ray R
satisfying the equality

F (tx) = tz
(
F (x) + H(x) log t

)
for t > 0,

where H is a positively homogeneous distribution of order z ∈ C. Then F admits
the representation

F =
∑

|α|≤µ

(aα + bα
d

dz
)

x
z+|α|+n−1
n+

Γ(z + |α|+ n)
Dα

x′δ(x
′),

where aα and bα are constants.
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10.4.3. Positively homogeneous solutions of the Sobolev problem.
Let 2m ≥ n. In order to describe the eigenvalues and eigenfunctions of the op-
erator pencil L, we have to find all functions

U(x) = rλ u(ω), u ∈ ◦
W

m
2 (Sn−1\N)`,

which are solutions of the equation

(10.4.5) L(Dx) U(x) = 0 for x ∈ Rn\R.

As in the previous section, we denote the set of the homogeneous polynomials of
degree k with n variables by Π(n)

k . The following lemma is essentially contained in
Lemma 10.2.1.

Lemma 10.4.3. Let f ∈ (Π(n)
k−2m)`, k ≥ 2m, n ≥ 2, and let c ∈ C` be an

arbitrary vector. Then there exists a polynomial p ∈ (Π(n)
k )` such that

L(Dx) p = f in Rn,

Dα
x′p|x′=0 = 0 for |α| ≤ 2m− 1, α 6= (2m− 1, 0, . . . , 0),

D2m−1
x1

p|x′=0 = c xk−2m+1
n .

Proof: By Lemma 10.2.1, there exists a uniquely determined solution p ∈
(Π(n)

k )` of the problem

L(Dx) p = f in Rn,

p|x1=0 = · · · = ∂2m−2
x1

p|x1=0 = 0 , ∂2m−1
x1

p|x1=0 = c xk−2m+1
n .

Obviously, this polynomial also satisfies the condition Dα
x′p = 0 on the line x′ = 0

for |α| ≤ 2m− 1, α 6= (2m− 1, 0, . . . , 0).

In particular, from Lemma 10.4.3 it follows that for every integer k > m− n/2
there exists a nontrivial solution p ∈ (Π(n)

k )` of the equations

L(Dx) p = 0 in Rn, Dα
x′p|x′=0 = 0 for |α| ≤ m− n/2.

(For m − n/2 < k < 2m − 1 we can choose p = xk
1 and in the case k ≥ 2m

the existence of p is ensured by the assertion of Lemma 10.4.3 for f = 0, c 6= 0.)
Consequently, every integer number k > m − n/2 is an eigenvalue of the operator
pencil L.

Now we are interested in solutions U(x) = rλ u(ω), Re λ ≥ m−n/2, of (10.4.5)
which are not polynomials. Since U ∈ S′(Rn)`, according to Lemma 10.4.1, equa-
tion (10.4.5) can be written in the equivalent form

(10.4.6) L(Dx) U =
∑

|α|≤m−n/2

cα
x

λ+|α|+n−2m−1
n+

Γ(λ + |α|+ n− 2m)
Dα

x′δ(x
′) in Rn.

Applying the Fourier transform û(ξ) =
∫

eixξu(x) dx to (10.4.6), we obtain (see
[66, Ch.2, Sect.2])

L(ξ) Û(ξ) =
∑

|α|≤m−n/2

ei(λ+|α|+n−2m)π/2 (ξn + i0)−λ−|α|−n+2m cα ξ′α

or

(10.4.7) Û(ξ) =
∑

|α|≤m−n/2

ei(λ+|α|+n−2m)π/2(ξn + i0)−λ−|α|−n+2m ξ′αL−1(ξ) cα.
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The right-hand side of (10.4.7) is a distribution for λ 6= 0, 1, . . . . The method of
regularizing such distributions is given, for example, in [66, Ch.4]. Since Û ∈
S′(Rn)`, the right-hand side of (10.4.7) belongs to S′(Rn)` also for the exceptional
values of λ. For λ = k, k = 0, 1, . . . , this is true if and only if

(10.4.8)
∑
α

∫

Sn−1

ω′α (ωn + i0)−k−|α|−n+2m ωγ L−1(ω) cα ei|α|π/2 dω = 0

for |γ| = k, where
ω′ = ξ′/|ξ′|, ωn = ξn/|ξ|

(see [66, Ch.3, Sect.3]).
The following two lemmas contain conditions on the coefficients cα for the

validity of (10.4.8).

Lemma 10.4.4. Let n be odd and let k ≥ m− n/2 be an integer. Then (10.4.8)
implies

(10.4.9) cα = 0 for 2m− n + 1− k ≤ |α| ≤ m− (n + 1)/2.

Proof: If k = m− (n− 1)/2, then the set of multi-indices α subject to (10.4.9)
is empty. Therefore, we may assume that k ≥ m− (n− 3)/2.

Let γ′ be the multi-index formed by the first n − 1 components of the multi-
index γ = (γ1, . . . , γn). Then (10.4.8) implies

(10.4.10)
∑

|α|≤m−n/2

∫

Sn−1

ω′α+γ′ (ωn + i0)2m−n−|α|−|γ′| L−1(ω) dω hα = 0,

where hα = ei|α|π/2 cα ∈ C`, |γ′| ≤ k. We set

(10.4.11) Iα,γ′ =
∫

Sn−1

ω′α+γ′ (ωn + i0)2m−n−|α|−|γ′| L−1(ω) dω.

Then (10.4.10) can be written in the form

(10.4.12)
∑

|α|≤m−n/2

Iα,γ′ hα = 0 for |γ′| ≤ k.

After the change of variables ω → −ω in the integral (10.4.11) we get

(10.4.13) Iα,γ′ = −
∫

Sn−1

ω′α+γ′ (ωn − i0)2m−n−|α|−|γ′| L−1(ω) dω.

This and (10.4.11) yields

(10.4.14) Iα,γ′ = 0 for |α|+ |γ′| ≤ 2m− n.

Let 2m − n − |α| − |γ′| = −s, s > 0. Using (10.4.11) and (10.4.13) together with
the relation

(t + i0)−s − (t− i0)−s = −2i
π(−1)s−1

(s− 1)!
δ(s−1)(t)

(see [66, Ch.1, Sect.3]), we find that

Iα,γ′ = −i
π(−1)s−1

(s− 1)!

∫

Sn−1

ω′α+γ′
δ(s−1)(ωn)L−1(ω) dω.
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In particular, for |α|+ |γ′| = 2m− n + 1 we have

Iα,γ′ = −iπ

∫

Sn−1

ω′α+γ′
L−1(ω′, 1) dω′.

We prove (10.4.9) by induction in |α|. First let |α| = m− (n+1)/2. Then (10.4.12)
and (10.4.14) imply

∑

|α|=m−(n+1)/2

Iα,γ′ hα = 0 for |γ′| = m− (n− 3)/2.

We show that the matrix
(
Iα,γ′

)
|α|=m−(n+1)/2,|γ′|=m−(n−3)/2

has maximal rank
which will obviously imply that cα = hα = 0 for |α| = m − (n + 1)/2. For this we
consider the square matrix

(10.4.15)
( ∫

Sn−2

ω′α+β
ω2

1 L−1(ω′, 1) dω′
)
|α|=|β|=m−(n+1)/2

which is obtained for γ′ = (2, 0, .., 0)+β. Let {fα}|α|=m−(n+1)/2 be an arbitrary col-
lection of vectors in C` not vanishing simultaneously. Since the matrix Re L−1(ω′, 1)
is positive definite, we have

Re
∑

|α|=|β|=m−(n+1)/2

( ∫

Sn−2

ω′α+β
ω2

1 L−1(ω′, 1) dω′ fα , fβ

)
C`

(10.4.16)

= Re
∫

Sn−2

ω2
1

(
L−1(ω′, 1)P (ω′) , P (ω′)

)
C`

dω > 0,

where P (ω′) =
∑

|α|=m−(n+1)/2

fα ω′α. From the last equality it follows that the matrix

(10.4.15) is regular. Hence, the matrix (Iα,γ′) has maximal rank and we obtain
cα = 0 for |α| = m− (n + 1)/2.

Suppose that cα = 0 for |α| ≥ d > 2m − n + 1 − k. From (10.4.11), by the
induction hypothesis and (10.4.13), we get

∑

|α|=d−1

Iα,γ′ hα = 0 for |γ′| = 2m− n− d + 2.

(Note that 2m − n − d + 2 ≤ k.) To prove that hα = 0 for |α| = d − 1, it suffices
to check that the rank of the matrix

(
Iα,γ′

)
|α|=d−1, |γ′|=2m−n−d+2

is maximal. To
this end, we consider the matrix

(10.4.17)
( ∫

Sn−2

ω′α+β
ω2m−n−2d+3

1 L−1(ω′, 1) dω′
)
|α|=|β|=d−1

which is obtained for γ′ = (2m − n − 2d + 3, 0, .., 0) + β. Here 2m − n − 2d + 3 is
an even positive number. In the same way as for the matrix (10.4.15), it can be
verified that the matrix (10.4.17) is regular. Consequently, cα = 0 for |α| = d− 1.
The proof is complete.

Lemma 10.4.5. Let n be even and let k ≥ m−n/2 be an integer. Then (10.4.8)
implies that cα = 0 for |α| ≤ m− n/2.
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Proof: Let γ = (γ′, γn), |γ′| ≤ m − n/2. Since the integrand in (10.4.8) is an
even function, we get

(10.4.18)
∑

|α|≤m−n/2

∫

Sn−1
+

ω′α+β
ω2m−n−|α|−|β|

n L−1(ω) dω ei|α|π/2 cα = 0

for all multi-indices β, |β| ≤ m − n/2. Here Sn−1
+ denotes the half-sphere {ω ∈

Sn−1 : ωn > 0}. We make the change of variables ω = (1 + |η|2)−1/2 (η, 1) or
η = ω′/ωn. Then dω = ωn

n dη, and (10.4.18) takes the form

(10.4.19)
∑

|α|≤m−n/2

∫

Rn−1

ηα+β L−1(η, 1) dη ei|α|π/2 cα = 0

for |β| ≤ m− n/2. We show that the matrix

(10.4.20)
( ∫

Rn−1

ηα+β L−1(η, 1) dη
)
|α|,|β|≤m−n/2

is nonsingular. Let {fα}|α|≤m−n/2 be an arbitrary collection of vectors in C` not
vanishing simultaneously. Since the matrix Re L−1(η, 1) is positive definite, we have

Re
∑

|α|,|β|≤m−n/2

( ∫

Rn−1

ηα+β L−1(η, 1) dη fα , fβ

)
C`

= Re
∫

Rn−1

(
L−1(η, 1)Q(η), Q(η)

)
dη > 0,

where Q(η) =
∑

|α|≤m−n/2

fα ηα. From this we conclude that the matrix (10.4.20) is

nonsingular and from (10.4.19) it follows that cα = 0 for |α| = m− n/2.

10.4.4. Eigenvalues and eigenfunctions of the pencil L. As in Section
10.2, let G(x) be the Green matrix for the operator L(Dx) in Rn (i.e., the solution
of (10.2.2)). Recall that G(x) admits the representation (10.2.3).

Using Lemmas 10.4.1 and 10.4.2, we can prove the following theorem which
gives a complete description of the eigenvalues of the operator pencil L and of the
eigenfunctions corresponding to integer eigenvalues.

Theorem 10.4.1. Let 2m ≥ n. Then the eigenfunctions of the operator pencil
L have no generalized eigenfunctions. The integer numbers µk = k (if n is even,
then k 6= m − n/2) are eigenvalues of L. Here the multiplicities of the eigenvalues
µk and µ2m−n−k coincide. Furthermore, the following assertions are valid:

1) If n is odd, then the spectrum of the pencil L is exhausted by the eigenvalues
µk, k = 0,±1, . . . . For every eigenfunction u corresponding to the eigenvalue µk

there is the representation

(10.4.21) rk u(ω) =
∑

|α|=k

pαxα +
∑

|α|=2m−n−k

Dα
x G(x) qα ,

where pα, qα ∈ C`. In the case k < 0 the first sum is absent, while the second sum
is absent in the case k > 2m− n. There are no generalized eigenfunctions.
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2) Let n be an even number and let u be an eigenfunction corresponding to the
eigenvalue µk. Then

rk u(ω) =
∑

|α|=k

pα xα for k > m− n/2,(10.4.22)

rk u(ω) =
∑

|α|=k

pα xα +
∑

|α|=2m−n−k

Dα
x G(x) qα for k < m− n/2,(10.4.23)

where pα, qα ∈ C`. The first sum in (10.4.23) is absent if k < 0. Additionally to
the eigenvalues µk = k, there are also the eigenvalues λk = m − (n − 1)/2 + k,

k = 0,±1, . . . , which have the multiplicities ` (m+n/2−1
n−1 ). Other eigenvalues do not

exist. Both the eigenvalues λk and µk do not have generalized eigenfunctions.

Proof: Let λ = k, k = 0, 1, . . . . Then, according to Lemmas 10.4.4 and 10.4.5,
the right-hand side of (10.4.6) contains only derivatives of the Dirac function for odd
n and vanishes for even n. Thus, we arrive at (10.4.21) and (10.4.22) for k ≥ m−n/2.

Let λ be a noninteger. From (10.4.7) we find that

U(x) = (2π)−n

∫

Rn

e−ixξ
∑
α

ei(λ+|α|+n−2m)π/2 ξ′α(10.4.24)

×(ξn + i0)−λ−|α|−n+2m L−1(ξ) cα dξ.

Using the identity

(2π)−n

∫

Rn−1

L−1(ξ) ξ′α+β
dξ′ = Sα+β |ξn|−2m+n−1 ξ|α|+|β|n ,

where
Sα+β = (2π)−n

∫

Rn−1

ξ′α+β
L−1(ξ′, 1) dξ′,

we obtain

(−Dx′)β U(x)|x′=0 =
∑
α

ei(|α|−|β|)π/2 Γ(−λ + |β|) Sα+β cα(10.4.25)

×
(
ei(−λ−n/2+m)π (xn + i0)λ−|β| + ei(λ+n/2−m)π (xn − i0)λ−|β|

)

for |β| ≤ m− n/2. We seek the vectors cα from the relations

(−Dx′)β U(x)|x′=0 for xn > 0, |β| ≤ m− n/2.

By (10.4.25), we have the system of algebraic equations

(10.4.26) 2 Γ(−λ + |β|) cos(λ−m + n/2)π
∑
α

ei(|α|−|β|)π/2 Sα+β cα = 0,

where |β| ≤ m − n/2. As it was shown in the proof of Lemma 10.4.4, the matrix
Sα+β is regular. The diagonal matrix

(
Γ(−λ + |β|) δα,β cos(λ−m + n/2)π

)
|α|,|β|≤m−n/2

is nonsingular for odd dimension n if Re λ ≥ m−n/2 and turns into the zero matrix
for even dimension n if λ is half-integer. For other values of λ which differ from
integers, this matrix is also nonsingular. Thus, we have proved that the spectrum of
the operator pencil L in the half-plane Re λ ≥ m−n/2 is exhausted by integers for
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odd n and that the corresponding eigenfunctions have the representation (10.4.21).
If n is even, then, additionally to the eigenvalues whose eigenfunctions have the
form (10.4.22), there are half-integer eigenvalues of multiplicity ` (m+n/2−1

n−1 ). Other
eigenvalues do not exist. The representation (10.4.22) and the equality Dα

x′U = 0
for x′ = 0, |α| ≤ m− n/2 imply that the number λ = m− n/2 is not an eigenvalue
for even n.

Now we show that the eigenfunctions have no generalized eigenfunctions. Let
λ be an eigenvalue and let u be an eigenfunction corresponding to this eigenvalue.
Suppose there exists a function v ∈ ◦

Wm
2 (Sn−1\N)` such that

U(x) = rλ
(
u(ω) log r + v(ω)

)

is a solution of the equation (10.4.5). First let λ = k, where k ≥ m − n/2 is
an integer. Since we proved that u ∈ C∞(Sn−1)`, the distribution L(Dx)U is
positively homogeneous of degree k − 2m on Rn with support on the ray R. This
and Lemma 10.4.1 imply that U satisfies (10.4.6). By Lemmas 10.4.4 and 10.4.5,
the coefficients cα on the right-hand side of (10.4.6) vanish for |α| ≥ 2m−n+1−k
if n is odd and for all α if n is even. Consequently, for even n the function U is a
sum of a polynomial and of derivatives of the Green function, and for odd n it is a
polynomial. This contradicts the equality U(x) = rk

(
u(ω) log r + v(ω)

)
, u 6= 0.

Now let n be even and let λ = k/2, where k is odd, k > 2m−n. Obviously, the
distribution L(Dx)U on Rn satisfies the condition of Lemma 10.4.2 for z = k/2−2m.
Therefore,

L(Dx) U =
∑

|α|≤m−n/2

(
cα + bα

d

dλ

) x
λ+|α|+n/2−2m−1
n+

Γ(λ + |α|+ n− 2m)

∣∣∣
λ=k/2

Dα
x′ δ(x

′),

where cα and bα are vectors in C`. Using the same arguments as in the proof of
(10.4.26), we get

d

dλ

∑

|α|≤m−n/2

ei(|α|−|β|)π/2 Γ(−λ + |β|) cos(λ−m + n/2)π Sα+β bα

+
∑

|α|≤m−n/2

ei(|α|−|β|)π/2 Γ(−λ + |β|) cos(λ−m + n/2)π Sα+β cα = 0

for λ = k/2. This implies that bα = 0, i.e., U satisfies (10.4.6). From the representa-
tion (10.4.24) for solutions of (10.4.6) we deduce that U is positively homogeneous
which contradicts the equality U = rk/2

(
u(ω) log r + v(ω)

)
.

Thus, we have proved the theorem for Re λ ≥ m − n/2. Using Lemma 10.1.2
and the fact that all we established above is also valid for L+(λ), we get all the
assertions of the theorem for Re λ < m−n/2, except the representations (10.4.21),
(10.4.22) for the eigenfunctions corresponding to the eigenvalues µk, k < m− n/2.

Let u ∈ ◦
W m

2 (Sn−1\N)` be the eigenfunction corresponding to the eigenvalue
µk. We show that

U(x) = rk u(ω) ∈ S′(Rn)`.

For k > −n this inclusion is obvious. Therefore, we may assume that k = −n− s,
where s is a nonnegative integer. We have to establish the equalities

(10.4.27)
∫

Sn−1

u(ω) ωγ dω = 0 for |γ| = s
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(see Gel′fand and Shilov [66, Ch.3, Sec.3]). Applying the assertion of Lemma 10.4.3
to the operator L+(Dx), we conclude that the problem

L+(2m + s) v = c ωγ ,

Dα
x′ v = 0 for ω = N, |α| ≤ m− n/2

is solvable for all c ∈ C`, |γ| = s. Since

0 =
∫

Sn−1

(L(k)u, v
)
C` dω =

∫

Sn−1

(
u,L+(2m + s)v

)
C` dω

for all v ∈ ◦
Wm

2 (Sn−1\N)`, we get (10.4.27).
Thus, U is a positively homogeneous distribution of degree k. Consequently, by

Lemma 10.4.1, we have the equality

L(Dx)U =
∑

|α|=k−2m+n

cα Dα
x δ(x) on Rn

which is equivalent to (10.4.21), (10.4.22). The proof of the theorem is complete.

10.4.5. The polyharmonic operator. We consider the Sobolev problem
(10.4.2), (10.4.3) for the operator L(Dx) = (−∆)m, 2m > n. The corresponding
differential operator on the unit sphere Sn−1 has the form

L(λ) = (−1)m
m−1∏

j=0

(
δ + (λ− 2j)(λ− 2j + n− 2)

)
,

where δ is the Beltrami operator on Sn−1 (see Chapter 7). Obviously,

(10.4.28) L(2m− n− λ) = L(λ).

Therefore, the eigenfunctions corresponding to the eigenvalues λ and 2m − n − λ
coincide, and we can restrict ourselves to the eigenvalues to the right of the point
m− n/2.

The case of odd dimension. Let n be an odd number. In this case the spectrum
consists of the integers

k = m− n/2 + 1/2, m− n/2 + 3/2, . . . .

The corresponding eigenfunctions for k > 2m− n are the traces of polynomials of
degree k satisfying (10.4.3) on Sn−1. For k ≤ 2m − n the eigenfunctions have the
form

(10.4.29) u(ω) =
∑

|α|=k

pα ωα +
∑

|α|=2m−n−k

r−k Dα
x r2m−n qα .

By (10.4.28), the functions xγ r−2m+n+k, |γ| = 2m− n− k, are also eigenfunctions
corresponding to k. Therefore, (10.4.21) can be rewritten in the form

u(ω) =
∑

|α|=k

pα ωα +
∑

|γ|=2m−n−k

qγ ωγ .

Naturally, the boundary conditions (10.4.3) have to be satisfied.
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The case of even dimension. If n is even, then the spectrum consists of integer
eigenvalues

k = m− n/2 + 1, m− n/2 + 2, . . .

and half-integer eigenvalues

λk = m− n/2 + k + 1/2, k = 0, 1, . . . .

The eigenfunctions corresponding to integer eigenvalues are restrictions of polyno-
mials. We consider the eigenvalues λk.

Lemma 10.4.6. Let n be even, n ≥ 4. Then

(10.4.30)
∫

Rn−1

eix′ξ′

(1 + |ξ′|2)n/2
dξ′ =

(2π)n/2

Γ(n/2− 1)
e−|x

′| .

Proof: We denote the left-hand side of (10.4.30) by I(x′). Using the equality∫

Sn−2

eix′ξ′ dω′ = 2π
( |x′| · |ξ′|

2π

)−(n−3)/2

J(n−3)/2(|x′| · |ξ′|)

wich can be found in the book by Stein and Weiss [249, Ch.4, §3], where ω′ = ξ′/|ξ′|,
we get

I(x′) = 2π
( |x′|

2π

)−(n−3)/2
∞∫

0

ρ(n−1)/2

(1 + ρ2)n/2
J(n−3)/2(|x′|ρ) dρ.

This together with formula (51) in the book by Bateman, Erdélyi et al. [11,
Vol.2,p.95] implies (10.4.30).

Lemma 10.4.7. Let n ≥ 4 and k = 0,±1, . . . . Then

(10.4.31) ∆n/2(xn + i|x′|)k+1/2 = c (xn + i0)k−1/2 δ(x′),

where c = −i(k + 1/2) 2n−2 πn/2−1 Γ(n/2− 1).

Proof: From (10.4.30) we get

(−∆x′ + 1)n/2 e−|x
′| = cn δ(x′),

where cn = 2n−2 πn/2−1 Γ(n/2− 1). Therefore,

(−∆x′ + τ2)n/2 e−|τx′| = cn |τ | δ(x′)
for all τ ∈ R. Multiplying both sides of this equality by τ

−k−3/2
+ and applying the

Fourier transform Fτ→xn , we obtain (10.4.31).

For n ≥ 4 let θ = θ(ω) ∈ (0, π] be the angle between the rays (0, N) and (0, ω),
i.e., cos θ = ωn. If n = 2, then θ ∈ [0, 2π] is the polar angle taken counterclockwise
from the axis (0, N). We consider the cases 2m = n and 2m > n separately.

The case 2m = n. We show that the eigenfunctions corresponding to the eigen-
value λk = k + 1/2, k ∈ Z, are exhausted by the functions c sin(k + 1/2)θ, c ∈ C.

If n ≥ 4, then by Lemma 10.4.7,

(10.4.32) ∆n/2 rk+1/2 sin(k + 1/2)θ = 0 on Rn\R, k ∈ Z.

For n = 2 this equality can be easily verified. Since the functions sin(k + 1/2)θ are

smooth on Sn−1\N and belong to
◦

W
n/2
2 (Sn−1\N), they are eigenfunctions. By the
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second part of Theorem 10.4.1, there are no other eigenfunctions.

The case 2m > n, n even. We check that the functions

sin(m− n/2 + k − 2j + 1/2)θ , j = 0, 1, . . . ,m− n/2,

satisfy the equation L(λk)u = 0 on Sn−1\N, where λk = m− n/2 + k + 1/2.
Indeed, (10.4.32) implies

∆m xj
n rm−n/2−j+k+1/2 sin(m− n/2 + k − j + 1/2)θ = 0

for j = 0, 1, . . . , m− n/2. Consequently, the functions

(cos θ)j sin(m− n/2 + k − j + 1/2)θ

satisfy the equation L(λk)u = 0 on Sn−1\N. It can be easily seen that the linear
span of the functions (cos θ)j sin(m− n/2 + k− j + 1/2)θ coincides with the linear
span of the functions sin(m− n/2 + k − 2j + 1/2)θ, j = 0, . . . , m− n/2.

We construct functions

(10.4.33) Pk(θ) =
m−n/2∑

j=0

c
(k)
j sin(m− n/2 + k − 2j + 1/2)θ,

satisfying the equalities

d2s+1

dθ2s+1
Pk(θ)

∣∣∣
θ=0

= 0, s = 0, 1, . . . , m− n

2
− 1.

Inserting (10.4.33) into the last equalities, we get the following algebraic system for
the coefficients c

(k)
j :

(10.4.34)
m−n/2∑

j=0

c
(k)
j (m− n/2 + k − 2j + 1/2)2s+1 = 0.

Putting c
(k)
m−n/2 = 1, we obtain a uniquely solvable system.

The functions Pk(θ) are solutions of the equations L(λk)u = 0 on Sn−1\N.
Since

(10.4.35) Pk(θ) = O(θ2m−n+1) for small θ,

it follows that

(10.4.36) Dα
x′ Pk(θ)|θ=0 = 0 for |α| ≤ 2m− n.

We set

(10.4.37) uα(ω) = r−λk Dα
x

(
rλk+m−n/2 Pk+m−n/2(θ)

)
,

where α is an arbitrary multi-index of order m− n/2. One can readily verify that

uα ∈ ◦
W m

2 (Sn−1\N). Since Vk(x) = rλk+m−n/2 Pk+m−n/2(θ) is a solution of the
equation ∆mV = 0 on Rn\R, the functions uα satisfy the equality L(λk) uα = 0
on Sn−1\N. Thus, these functions are eigenfunctions.

We show that the functions uα are linearly independent on Sn−1\N. Suppose
that

(10.4.38)
∑

|α|=m−n/2

cα Dα
x

(
rλk+m−n/2 Pk+m−n/2(θ)

)
= 0
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outside R. From (10.4.33), (10.4.34) it follows that

(10.4.39) Pk(θ) = c θ2m−n+1 + O(θ2m−n+3) as θ → 0,

where

(10.4.40) c = (−1)m−n/2

m−n/2∑

j=0

c
(k)
j (m− n/2 + k − 2j + 1/2)2m−n+1.

The number c does not vanish, since otherwise all the coefficients c
(k)
j would vanish

by (10.4.34) and (10.4.40). According to (10.4.39), we have

(10.4.41) Vk(x) = c xk−1/2
n |x′|2m−n+1 + F (x′, xn)

in a small neighborhood of the point x′ = 0, xn = 1, where

|Dα′
x′ Dαn

xn
F (x′, xn)| ≤ cα′,αn |x′|2m−n+3−|α′|.

Let
∑

|α|=m−n/2

cα Dα
x =

m−n/2∑

j=0

Qj(Dx′) Dj
xn

,

where Qj(Dx′) are homogeneous differential operators of order m− n/2− j. From
(10.4.38) it follows that

Q0(Dx′) |x′|2m−n+1 = 0 on Rn−1.

Applying the (n−1)-dimensional Fourier transform to this equality, we get Q0 = 0.
Suppose that the operators Q0, Q1, . . . , Qs−1 are zero. Then, by (10.4.38) and
(10.4.41), we have Qs(Dx′) |x′|2m−n+1 = 0 or, equivalently, Qs = 0. Thus, the
functions uα are linearly independent.

Since the functions {uα}|α|=m−n/2 span a (m+n/2+1
n−1 )-dimensional space, it fol-

lows from the second part of Theorem 10.4.1 that other eigenfunctions do not exist.

10.5. The Dirichlet problem in a dihedron

In this section the Dirichlet problem for strongly elliptic systems in the cone

K = Kd × Rn−d

is considered, where Kd is an arbitrary open cone in Rd and n > d > 1. We describe
the eigenvalues, eigenvectors and generalized eigenvectors in terms of those for the
Dirichlet problem in the cone Kd.

10.5.1. The operator pencils L and Ld. We represent Rn, n ≥ 3, as the
Cartesian product Rd × Rn−d and use the notation

x = (y, z), y = (y1, . . . , yd), z = (z1, . . . , zn−d).

Let (r, ω), (ρ, φ), and (σ, ϑ) be the spherical coordinates in Rn, Rd and Rn−d,
respectively, where r = |x|, ρ = |y|, σ = |z|, ω ∈ Sn−1, φ ∈ Sd−1, ϑ ∈ Sn−d−1.

We consider the open d-dimensional cone

Kd =
{
y ∈ Rd : ρ > 0, φ ∈ Ωd

}
,

where Ωd is a domain on the sphere Sd−1, Ωd 6= Sd−1. Suppose that the cone

K =
{
x ∈ Rn : r > 0, ω ∈ Ω

}
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can be represented as the product Kd × Rn−d. In this case ω ∈ Ω if and only if

ω =
(
φ cos τ , ϑ sin τ

)
, where 0 < τ < π/2, φ ∈ Ωd, ϑ ∈ Sn−d−1.

We assume again that the differential operator

L(Dx) =
∑

|α|=2m

Aα Dα
x ,

where Aα are constant ` × `-matrices, is strongly elliptic and denote by L the
operator pencil generated by the Dirichlet problem for L (see Section 10.1).

As we noted in Section 10.1, the vector function (10.1.4) is a solution of the
system (10.1.3) if and only if λ is an eigenvalue of the pencil L and the functions
u0, . . . , us form a Jordan chain corresponding to this eigenvalue. Furthermore, the
following assertion holds.

Lemma 10.5.1. Let U be a solution of the system (10.1.3) which has the form

(10.1.4), where λ ∈ C, uk ∈
◦

Wm
2 (Ω)`. Then the function Dγ

z U has the same proper-
ties for arbitrary multi-index γ.

Proof: Applying a local energy estimate to the derivative ∂zj Uε, where Uε is a
mollification of U in z with radius ε, and passing to the limit as ε → 0, we obtain
that ∂zj U belongs to the space

◦
Wm

2 (K, 0)` which was introduced in Section 10.1 (cf.
proof of Lemma 5.7.3). Obviously, ∂zj U is a solution of (10.1.3) and has the form
(10.1.4). This together with Lemma 10.1.1 yields the desired result for |γ| = 1. By
induction in |γ|, we get the result for arbitrary multi-indices γ.

Below we need the set of solutions of the equation

(10.5.1) L(Dy, 0) U = 0 in Kd

which have the form

(10.5.2) U(y) = ρλ
s∑

k=0

1
k!

(log ρ)k us−k(φ),

where uk ∈
◦

W m
2 (Ωd)`. Analogously to the definition of the pencil L, we associate

the operator pencil

Ld(λ) :
◦

W
m
2 (Ωd)` → W−m

2 (Ωd)`

with equation (10.5.1). Note that Theorem 10.1.1 is valid for this pencil. Fur-
thermore, by Theorem 10.1.3, there are no eigenvalues of the pencil Ld on the line
Re λ = m− d/2.

Our goal is to represent the eigenvalues and eigenfunctions of the pencil L in
terms of the eigenvalues and eigenfunctions of the pencil Ld. We consider the cases
Re λ > m− n/2 and Re λ < m− n/2 separately.

10.5.2. The case Re λ > m−n/2. Let {µj}j∈Z be a sequence of eigenvalues
of the pencil Ld listed according to their algebraic multiplicities. We assume that
the eigenvalues lying in the half-plane Re µ > m − d/2 have nonnegative indices,
while the indices of the other eigenvalues are negative. Each eigenvalue µj generates
a solution of problem (10.5.1) which has the form

Vj(y) = ρµj Qj(φ, log ρ),
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where Qj are polynomials in the second argument with coefficients in
◦

W m
2 (Ωd)`.

Here it can be assumed that to equal eigenvalues µj there correspond linearly
independent polynomials Qj .

Lemma 10.5.2. Let α be a given (n − d)-dimensional multi-index and let j be
a given nonnegative integer. Then there exists a solution of the system (10.1.3)
having the form

(10.5.3) Vj,α(x) =
∑

β≤α

zβ ρµj+|α−β|Qj,β(φ, log ρ) ,

where Qj,β are polynomials in log ρ with coefficients in
◦

Wm
2 (Ωd)` and Qj,α coincides

with the above introduced polynomial Qj.

Proof: For the sake of brevity, let the coefficient of zβ on the right-hand side
of (10.5.3) be denoted by Ψβ(y). The equality L(Dx)Vj,α = 0 is equivalent to the
system of equations

(10.5.4) L(Dy, 0)Ψγ = −
∑

γ<β≤α

(−i)|β−γ|β!
(β − γ)!

L(β−γ)(Dy, 0)Ψβ(y) in Kd ,

where γ is an arbitrary (n − d)-dimensional multi-index satisfying the inequality
γ ≤ α and L(δ)(η, ζ) = (∂δ

ζL)(η, ζ). Suppose all Ψβ are constructed for β > γ. Then
Ψγ can be determined by (10.5.4) using Theorem 1.1.6.

Remark 10.5.1. If among the numbers µj +1, . . . , µj + |α| there are no points
of the spectrum of the operator pencil Ld, then the vector function Vj,α is uniquely
defined. Moreover, the degrees of the polynomials Qj,β , β ≤ α, do not exceed the
degree of the polynomial Qj,α.

If the collection µj + 1, . . . , µj + |α| contains s different eigenvalues with the
maximal partial multiplicities κ1, . . . , κs, then the degree of the polynomial Qj,β in
(10.5.3) does not exceed deg Qj + κ1 + · · · + κs. In this case the vector function
Vj,α is unique up to a linear combination of solutions Vk,γ such that γ < α and
µk + |γ| = µj + |α|. In the process of subsequent determination of vector functions
Ψγ satisfying (10.5.4) we will choose any of them if they are not unique. Then to
each pair (j, α) there corresponds one and only one solution (10.5.3). Since the
coefficients ρµ

j Qj of zα in (10.5.3) are linearly independent, the same is true for
Vj,α.

Lemma 10.5.3. Let the vector function

(10.5.5) U(x) =
∑

|α|≤N

zα ρλ−|α|Qα(φ, log ρ),

where Re λ − N > m − d/2 and Qα are polynomials in log ρ with coefficients in
◦

W m
2 (Ωd)`, be a solution of the homogeneous Dirichlet problem for the equation

(10.1.3). Then λ = µq + k for some integer k, q ≥ 0 and

(10.5.6) U(x) =
∑

µj+|α|=µq+k

cj,α Vj,α(x).

Proof: It is clear that the coefficients of zα with |α| = N in (10.5.5) satisfy the
equation

L(Dy, 0) (ρλ−N Qα) = 0 in Kd.
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From this and from the inequality Re λ−N > m− d/2 it follows that λ−N = µj ,
j ≥ 0, and

ρλ−N Qα(φ, log ρ) =
∑

j: µj=λ−N

cj,α Vj(y),

where cj,α are constants. From this and from the equality

Vj,α = zα Vj +
∑

β<α

zβ ρµj+|α−β|Qj,α,β(φ, log ρ)

(see Lemma 10.5.2) we conclude that

U(x)−
∑

|α|=N

∑

j: µj+|α|=λ

cj,α Vj,α(x)

is a function of the form (10.5.5) with N − 1 instead of N . Furthermore, this func-
tion is a solution of the homogeneous Dirichlet problem for the equation (10.1.3).
Subsequently reducing N , we arrive at (10.5.6).

Theorem 10.5.1. The vector function (10.1.4), where Reλ > m − n/2 and

uk ∈ ◦
W m

2 (Ω)`, is a solution of system (10.1.3) if and only if λ = µq + k for
some nonnegative k, q and U is a linear combination of vector functions Vj,α with
µj + |α| = µq + k.

Proof: By Lemma 10.5.1, the function Dγ
z U is a solution of the homogeneous

Dirichlet problem for the system (10.1.3) which can be represented in the form

(10.1.4) with coefficients in
◦

Wm
2 (Ω)`. Here the role of λ is played by λ− |γ|. Hence

it follows that

(10.5.7) Dα
y Dγ

z U(x) = rλ−|α|−|γ|
s∑

k=0

(log r)k ϕk(ω), ϕk ∈ W
m−|α|
2 (Ω)`,

for |α| ≤ m and for arbitrary γ.
Let Û(y, ζ) =

∫
eiζ·z U(y, z) dz be the Fourier transform of the function U(y, z)

in z and let Û(y, ·) ∈ S′(Rn−d)` for all y ∈ Kd. Since

(10.5.8) Û(y, ζ) = |ζ|−2M

∫

Rn−d

eiζ·z (−∆z)M U(y, z) dz

for ζ 6= 0 and M = 0, 1, . . . , the function ζ → Û(·, ζ) belongs to the class C∞
(
Rn−d\{0}; ◦

W
m
2,loc(Kd)`

)
. Furthermore, Û is a solution of the equation

(10.5.9) L(Dy,−ζ) Û(y, ζ) = 0 in Kd

for all ζ 6= 0. From (10.5.7) and (10.5.8) it follows that

(10.5.10)
∫

Ωd

∣∣(Dα
y Û)(|y|ϑ, ζ)

∣∣2 dϑ ≤ cN (ζ) |y|−N ,

where |α| ≤ m and N = 0, 1, . . . .

We show that the function Û(·, ζ) belongs to the space
◦

Wm
2 (Kd)` for any ζ 6= 0.

Let χ ∈ C∞0 (Rn−d) be a cut-off function, χ = 0 outside the unit ball and χ(z) = 1
for |z| ≤ 1/2. By F0(y, ζ) and F∞(y, ζ) we denote the Fourier transforms in z of the
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functions χU and (1−χ)U , respectively. Furthermore, let K′d = {y ∈ Kd : |y| < 1}.
Then Û = F0 + F∞ and for |α| ≤ m we have

(10.5.11)
∫

K′d

∫

Rn−d

∣∣Dα
y F0(y, ζ)

∣∣2 dζ dy = c

∫

K′d

∫

Rn−d

∣∣Dα
y (χU)

∣∣2 dz dy.

From the condition Reλ > m−n/2 and (10.5.7) it follows that the right-hand side
of (10.5.11) is finite. We represent F∞ in the form

F∞(y, ζ) = |ζ|−2M

∫

Rn−d

eiζ·z (−∆z)M
(
(1− χ)U

)
dz,

where M is a sufficiently large integer. By Parseval’s equality, we have
∫

K′d

∫

Rn−d

|ζ|4M |Dα
y F∞|2 dζ dy ≤ c

∑

|γ|+|δ|=2M

∫

K′d

∫

Rn−d

∣∣Dγ
z (1− χ)

∣∣2 ∣∣Dδ
zD

α
y U

∣∣2 dz dy.

By (10.5.7), the right-hand side of the last inequality is finite. Thus, Û(·, ζ) ∈
◦

Wm
2 (Kd)` for all ζ 6= 0.

Since Û(·, ζ) is a solution of the equation (10.5.9) with a strongly elliptic op-
erator L(Dy,−ζ), the vector function Û(·, ζ) vanishes for ζ 6= 0. Therefore, U has
the form

U(y, z) =
∑

|α|≤N

zα Φα(y).

From this and (10.1.4) we find that

Φα(y) = ρλ−|α|Qα(φ, log ρ),

where Qα is a polynomial in the second argument with coefficients in
◦

W m
2 (Ωd)`.

Since U ∈ ◦
Wm

2,loc(K)`, we have Re λ −N > m − d/2. Using Lemma 10.5.3, we get
the assertion of the theorem.

Remark 10.5.2. From the above theorem and from the linear independence
of the functions Vj,α (see Remark 10.5.1) it follows that the algebraic multiplicity
of the eigenvalue λ of the operator pencil L with Re λ > m − n/2 is equal to the
number of pairs (j, α) such that λ = µj + |α|, j ≥ 0.

10.5.3. Special solutions of the equation (10.5.9). The theorem just
proved gives a description of all solutions of the form (10.1.4) of the problem (10.1.3)
for Re λ > m− n/2. According to Theorem 10.1.3, there are no solutions with ex-
ponent λ on the line Re λ = m − n/2. Therefore, it remains to study the case
Re λ < m− n/2. First we consider equation (10.5.9).

Lemma 10.5.4. Let j < 0. There exists a solution of the Dirichlet problem for
the system (10.5.9) which has the form

(10.5.12) Wj(y, ζ) = χ(ρζ)
∑

|α|≤m−d/2−Re µj

ζα ρµj+|α|Qj,α(φ, log ρ) + Rj(y, ζ).

Here χ ∈ C∞0 (Rn−d), χ = 1 in a neighborhood of the origin, Qj,α are polynomials

in log ρ with coefficients from
◦

W m
2 (Ωd)`, Qj,0 = Qj, and the vector function Rj



10.5. THE DIRICHLET PROBLEM IN A DIHEDRON 339

belongs to C∞
(
Rn−d\{0}; ◦

W m
2

(Kd)`
)
. Furthermore, Rj can be represented in the

form

(10.5.13) Rj(y, ζ) = |ζ|−µj

Nj∑

k=0

Rj,k

(
y|ζ|, ζ/|ζ|) (log |ζ|)k,

where Nj is the largest degree of the polynomials Qj,α, and the vector functions

ϑ → Rj,k(·, ϑ) belong to C∞
(
Sn−d−1;

◦
Wm

2 (Kd)`
)
.

Proof: We set
Ψj,α(y) = ρµj+|α|Qj,α(φ, log ρ)

and seek the functions Ψj,α from the formal equality

L(Dy,−ζ)
( ∑

α

ζα Ψj,α(y)
)

= 0 in Kd .

Since the left-hand side of the last equality is equal to
∑

γ

(−1)|γ|

γ!

∑
α

ζα+γ L(γ)(Dy, 0)Ψj,α =
∑

β

ζβ
∑

α≤β

(−1)|β−α|

(β − α)!
L(β−α)(Dy, 0)Ψj,α,

we get

(10.5.14) L(Dy, 0)Ψj,β = −
∑

α<β

(−1)|β−α|

(β − α)!
L(β−α)(Dy, 0)Ψj,α(y) on Kd

for each β. Starting with the vector function Ψj,0 and using Theorem 1.1.6, we can
subsequently find all Ψj,β from (10.5.14).

The function Rj in (10.5.12) satisfies the system

(10.5.15) L(Dy,−ζ)Rj(y, ζ) = Fj(y, ζ) in Kd ,

where Fj admits the representation

(10.5.16) Fj(y, ζ) =
∑

|α|≤3m−d/2−Re µj

∑

|β|≤2m

χα,β(ρζ) ζα ρµj+|α|−2m Q
(β)
j,α(φ, log ρ).

Here χα,β ∈ C∞0 (Rn−d\{0}) and Q
(β)
j,α are polynomials in the second argument

with degree not higher than the largest of degrees of the polynomials Qj,α and with
coefficients from the class W−m

2 (Ωd)`.
From (10.5.16) we conclude that Fj belongs to C∞

(
Rn−d;W−m

2 (Kd)`
)
. More-

over, (10.5.16) implies the representation

(10.5.17) Fj(y, ζ) = |ζ|2m−µj

Nj∑

k=0

Fj,k(y|ζ|, ζ/|ζ|) (log |ζ|)k,

where the functions ϑ → Fj,k(·, ϑ) belong to the class C∞
(
Sn−d−1; W−m

2 (Kd)`
)
.

By the strong ellipticity of the operator L(Dx), the mapping

(L(Dy,−ζ))−1 : W−m
2 (Kd)` → ◦

W
m
2 (Kd)`

is bounded together with all its derivatives uniformly with respect to ζ, |ζ| = 1.

Therefore, the system (10.5.15) has a unique solution in C∞
(
Rn−d\{0}; ◦

Wm
2 (Kd)`

)
which, according to (10.5.17), can be written in the form (10.5.13) with

Rj,k(·, ϑ) = (L(Dy,−ϑ))−1 Fj,k(·, ϑ).
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The proof is complete.

Remark 10.5.3. If among the numbers µj + 1, . . . , µj + [m − d/2 − µj ] there
are no points of the spectrum of the pencil Ld, then the vector function Wj in
Lemma 10.5.4 is uniquely determined and the degrees of the polynomials Qj,α and
the number Nj do not exceed the degree of the polynomial Qj .

If the collection µj +1, . . . , µj +[m−d/2−µj ] contains eigenvalues of the pencil
Ld, then Wj is unique up to a linear combination of solutions ζαWk, 0 ≤ |α| =
µk − µj . Suppose the collection µj + 1, . . . , µj + [m− d/2− µj ] contains s different
eigenvalues with maximal partial multiplicities κ1, . . . , κs. Then the degrees of the
polynomials Qj,α and the number Nj do not exceed deg Qj + κ1 + · · ·+ κs.

Henceforth, we assume that the solutions Wj , j < 0, with the properties given
in Lemma 10.5.4 are fixed.

Remark 10.5.4. Since the functions ρµj Qj are linearly independent, the same
is true for the functions ζαWj , j < 0, |α| ≥ 0.

Now we prove two properties of the function Rj which will be used in the
next subsection when we apply the inverse Fourier transform (with respect to the
variable ζ) to the functions Wj .

Lemma 10.5.5. Let Rj be the function introduced in Lemma 10.5.4. Then

Dγ
ζ Rj(y, ζ) = |ζ|−µj−|γ|

Nj∑

k=0

Rj,γ,k(y|ζ|, ζ/|ζ|) (log |ζ|)k,

where the functions ϑ → Rj,γ,k(·, ϑ) belong to the class C∞
(
Sn−d−1;

◦
W m

2 (Kd)`
)

and γ is an arbitrary multi-index.

Proof: Formula (10.5.16) implies

(10.5.18) Dγ
ζ Fj(y, ζ) = |ζ|2m−µj−|γ|

Nj∑

k=0

Fj,γ,k(y|ζ|, ζ/|ζ|) (log |ζ|)k

where the functions ϑ → Fj,γ,k(·, ϑ) belong to C∞
(
Sn−d−1; W−m

2 (Ωd)`
)
. Using the

obvious equality

L(Dy,−ζ) (Dγ
ζ Rj) = Dγ

ζ Fj −
∑

β<γ

(γ

β

)
i|γ−β| L(γ−β)(Dy,−ζ) (Dβ

ζ Rj)

and (10.5.18), we complete the proof by virtue of induction in |γ|.
Lemma 10.5.6. Let Rj,k be the vector functions in (10.5.13). Then the integrals

∫

Kd

(1 + ρ2)N
∣∣Dα

y Rj,k(y, ϑ)
∣∣2 dy, k = 0, 1, . . . , NJ ,

are uniformly bounded with respect to ϑ for every positive integer N and every
multi-index α, |α| ≤ m.

Proof: Let Fj,k = L(Dy,−ϑ) Rj,k. Then we have

L(Dy,−ϑ)
(
(1 + ρ2)1/2 Rj,k

)
= (1 + ρ2)1/2 Fj,k −

[
L(Dy,−ϑ), (1 + ρ2)1/2

]
Rj,k ,
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where
[
L(Dy,−ϑ), (1 + ρ2)1/2

]
is the commutator of L(Dy,−ϑ) and (1 + ρ2)1/2.

From (10.5.16) and (10.5.17) it follows that the function (1+ ρ2)N/2Fj,k belongs to
C∞

(
Sn−d−1; Wm

2 (Kd)`
)

for all N . Using the boundedness of the operator

[
L(Dy,−ϑ), (1 + ρ2)1/2

]
:
◦

W
m
2 (Kd)` → W−m

2 (Kd)`

and induction in N , we obtain the boundedness of the norm of (1 + ρ2)N/2Rj,k in
◦

Wm
2 (Kd)`. The lemma is proved.

10.5.4. Solutions (10.1.4) with Re λ < m−n/2. Let f̌ denote the inverse
Fourier transform of the distribution f = f(ζ), i.e.,

f̌(z) = (2π)d−n

∫

Rn−d

e−iz·ζf(ζ) dζ.

Then, by (10.5.12), we have

(10.5.19) (W̌j − Řj)(y, z) = ρµj+d−n
∑

|α|≤m−d/2−Re µj

(Dαχ̌)(z/ρ)Qj,α(φ, log ρ).

Since χ̌ ∈ S(Rn−d), all components of derivatives in x of order not higher than m
of the vector function (10.5.19) do not exceed

(10.5.20) r−µ ρM−m+µj+d−n (1 + | log ρ|)Nj q(φ)

for |x| ≤ b < ∞, where M is an arbitrary positive number and q is a positive
function in L2(Ωd). It can be easily verified that (10.5.20) is a square summable
function on the set {x ∈ K : 0 < a ≤ |x| ≤ b < ∞}. Therefore, the function

(10.5.19) belongs to
◦

Wm
2,loc(K)`.

Since ρ = r cos τ and z/ρ = ϑ tan τ , the right-hand side of (10.5.19) is equal to

(r cos τ)µj+d−n
∑

|α|≤m−d/2−Re µj

(Dαχ̌)(ϑ tan τ) Qj,α

(
φ, log(r cos τ)

)

= (r cos τ)µj+d−n

Nj∑
ν=0

(log r)ν

ν!

∑

|α|≤m−d/2−Re µj

(Dαχ̌)(ϑ tan τ) Q
(ν)
j,α

(
φ, log cos τ

)
,

where Q
(ν)
j,α(φ, t) = ∂ν

t Qj,α(φ, t). Hence the function (10.5.19) has the form (10.1.4)

with coefficients from
◦

Wm
2 (Ω)`.

By Lemma 10.5.6, we have
∑

|α|≤m

∫

Kd

|y|−2(m−|α|) ∣∣Dα
y Rj(y, ζ)

∣∣2 dy(10.5.21)

≤ c |ζ|−2Re µj−d+2m
(
1 + | log |ζ| |)2Nj

Nj∑

k=0

max
ϑ∈Sn−d−1

‖Rj,k(·, ϑ)‖2◦
Wm

2 (Kd)`
.

Since −2 Re µj − d+2m > d−n, the inverse Fourier transform Ř(y, ·) ∈ S′(Rn−d)`

is defined for almost all y ∈ Kd. Moreover, by (10.5.21), the function Rj can be
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considered as an element of the space S′
(
Rn−d;

◦
Lm

2 (Kd)`
)
, where

◦
Lm

2 (Kd) is the
closure of C∞0 (Kd) with respect to the norm

‖U‖ =
( ∫

Kd

∑

|α|=m

∣∣Dα
y U(y)

∣∣2 dy
)1/2

.

The first summand on the right of (10.5.12) belongs to the space

(C∞ ∩ S′)
(
Rn−d;

◦
W

m
2,loc(Kd)`

)
.

Hence Wj ∈ S′
(
Rn−d;

◦
Wm

2,loc(Kd)`
)

and W̌j ∈ S′
(
Rn−d;

◦
Wm

2,loc(Kd)`
)
.

Furthermore, by (10.5.21), Wj belongs to the class L∞,loc

(
Rn−d;

◦
Wm

2,loc(Kd, 0)`
)
.

Consequently, L(Dy,−ζ)Wj ∈ L∞,loc

(
Rn−d; W−m

2,loc(Kd, 0)`
)
. Thus, the equation

L(Dy,−ζ)Wj = 0 obtained earlier for ζ 6= 0 can be extended to all ζ, i.e., we have
L(Dy,−ζ)Wj = 0 in K in the space S′

(
Rn−d; W−m

2,loc(Kd, 0)`
)
. From this it follows

that L(Dx) W̌j = 0 in K in the sense of the theory of distributions.
We show that W̌j has the form (10.1.4). For this we need the following lemma.

Lemma 10.5.7. The vector function Řj belongs to the space
◦

Wm
2,loc(K)` and has

the representation (10.1.4) with s ≤ Nj.

Proof: Let Rj = R
(1)
j + R

(2)
j , where

R
(1)
j (y, ζ) = χ(ζ)Rj(y, ζ) , R

(2)
j (y, ζ) =

(
1− χ(ζ)

)
Rj(y, ζ).

Let b be a positive constant and Kd,b = {y ∈ Kd : |y| < b}. Using Parseval’s
equality, we get ∫

Kd,b

|y|2(|α|−m)

∫

Rn−d

∣∣Dα
y Dβ

z Ř
(1)
j (y, z)

∣∣2 dz dy(10.5.22)

= c

∫

Rn−d

∣∣ζβ χ(ζ)
∣∣2

∫

Kd,b

|y|2(|α|−m)
∣∣Dα

y Rj(y, ζ)
∣∣2 dy dζ

for |α| + |β| ≤ m. From (10.5.21) it follows that the right-hand side of (10.5.22)
does not exceed

c

∫

Rn−d

|χ(ζ)|2 |ζ|−2Re µj−d+2m+2|β| (1 + | log |ζ| |)2Nj
dζ < ∞.

We estimate the integral

(10.5.23)
∫

Kd,b

∫

Rn−d

(|y|4N + |z|4N
) ∣∣Dα

y Dβ
z Ř

(2)
j (y, z)

∣∣2 dz dy

for |α| + |β| ≤ m and for sufficiently large N. By Parseval’s equality, this integral
is equal to

c

∫

Kd,b

∫

Rn−d

∣∣∣(−∆ζ)N
(
ζβ (1− χ(ζ)) Dα

y Rj(y, ζ)
)∣∣∣

2

dζ dy(10.5.24)

+ c

∫

Kd,b

∫

Rn−d

∣∣∣|y|2N ζβ (1− χ(ζ)) Dα
y Rj(y, ζ)

∣∣∣
2

dζ dy.
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Due to Lemma 10.5.6, the first integral does not exceed

c

∫

|ζ|>a

|ζ|−2µj−4N+2|α|+2|β|−d
(
1 + | log |ζ| |)2Nj(10.5.25)

×
∫

Kd

Nj∑

k=0

∑

|γ|≤2N

∣∣Dα
y Rj,γ,k(y, ζ/|ζ|)∣∣2 dy dζ,

where a and c are positive constants. Since the inner integral is bounded and N is
large, the value (10.5.25) is finite.

The second integral in (10.5.24) is not greater than

c

∫

|ζ|>a

|ζ|−2µj−4N+2|α|+2|β|−d
(
1 + | log |ζ| |)2Nj

∫

Kd

|y|4N

Nj∑

k=0

∣∣Dα
y Rj,k(y, ζ/|ζ|)∣∣2 dy dζ.

This value is also finite because, by Lemma 10.5.6, the inner integral is uniformly
bounded with respect to ζ/|ζ|.

From the boundedness of the integrals (10.5.22) and (10.5.23) it follows that
the integral ∫

K
a<|x|<b

∑

|α|≤m

|Dα
x Řj(x)|2 dx

is finite.
We verify the zero Dirichlet conditions for Řj on ∂K\{0}. Let

Rj,ε(y, ζ) =
(
1− χ(ζ/ε)

)
χ(εζ) Rj(y, ζ),

where ε is a sufficiently small positive number. By Lemma 10.5.5, we have Rj,ε ∈
S

(
Rn−d;

◦
W m

2 (Kd)`
)

and, therefore, Řj,ε ∈ S
(
Rn−d;

◦
W m

2 (Kd)`
)
. Moreover, Řj,ε

belongs to
◦

Wm
2 (K)`. Replacing Rj by Rj −Rj,ε at the above arguments, we obtain

∫

Kd,b

|y|2(|α|−m)

∫

Rn−d

∣∣Dα
y Dβ

z (Ř(1)
j − Ř

(1)
j,ε )

∣∣2 dz dy → 0,

∫

Kd,b

∫

Rn−d

(|y|4N + |z|4N
) ∣∣Dα

y Dβ
z (Ř(2)

j − Ř
(2)
j,ε )

∣∣2 dz dy → 0

as ε → +0. Consequently, Řj ∈
◦

Wm
2,loc(K)`.

Finally, by (10.5.13), we have

Řj(x) =
rµj+d−n

(2π)n−d

∫

Rn−d

e−ir−1z·ζ |ζ|−µj

Nj∑

k=0

Rj,k

(
y|ζ|/r, ζ/|ζ|) (

log
|ζ|
r

)k
dζ

which is equivalent to (10.1.4) for d = Nj . The lemma is proved.

As a consequence of Lemma 10.5.7, we obtain the following result.

Lemma 10.5.8. The function W̌j has the form (10.1.4), where λ = µj + d− n,

s ≤ Nj, uk ∈
◦

Wm
2 (Ω)`, and satisfies the system (10.1.3).
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Proof: We have shown above that W̌j satisfies (10.1.3) and that W̌j − Řj has

the form (10.1.4), where λ = µj + d− n, s ≤ Nj , uk ∈
◦

Wm
2 (Ω)`. This together with

Lemma 10.5.7 completes the proof.

The following result is an immediate consequence of Lemmas 10.5.1, 10.5.8 and
Remark 10.5.4.

Lemma 10.5.9. For any multi-index γ the vector function Dγ
z W̌j has the form

(10.1.4), where λ = µj + d − n − |γ|, s ≤ Nj, uk ∈ ◦
W m

2 (Ω)`, and satisfies the
system (10.1.3). The vector functions Dγ

z W̌j, where j < 0 and γ is an arbitrary
multi-index, are linearly independent.

Now we are able to give a description of all solutions (10.1.4) for Re λ > m−n/2.

Theorem 10.5.2. Let U be a vector function of the form (10.1.4), where Re λ <

m− n/2, uk ∈
◦

Wm
2 (Ω)`. Then U is a solution of the system (10.1.3) if and only if

λ = µq + d − n − k for some integers k ≥ 0, q < 0. Moreover, the solution U is
linear combination of vector functions Dγ

z W̌j, where µj + d− n− |γ| = λ.

Proof: Let L+ be the adjoint operator pencil to L (see Section 10.1). Anal-
ogously, we define the operator pencil L+

d by means of the differential operator
L+(Dy, 0) in Kd. By Theorem 10.1.2, the spectrum of L+

d consists of the eigenval-
ues 2m − d − µj , j = 0,±1, . . . , listed according to their algebraic multiplicities.
This and Theorem 10.5.1 imply that the spectrum of L+ consists of the eigenvalues
λ+

j,γ = 2m − d − µj + |γ| in the half-plane Re λ > m − n/2, where j < 0 and γ

is an arbitrary (n − d)-dimensional multi-index. Applying again Theorem 10.1.2,
we obtain that the spectrum of the pencil L in the half-plane Re λ < m − n/2
consists of the eigenvalues 2m − n − λ+

j,γ = µj + d − n − |γ| numerated with ac-
count taken of their multiplicities. Therefore, by Remark 10.5.2, the number of
linearly independent solutions of the system (10.1.3) having the form (10.1.4) with

Re λ < m−n/2 and uk ∈
◦

Wm
2 (Ω)` is equal to the number of representations of λ in

the form µj +d−n−|γ| with j < 0, |γ| ≥ 0. As it was shown in Lemma 10.5.9, the
solutions Dγ

z W̌j are linearly independent. Consequently, all solutions of the system
(10.1.3) which have the form (10.1.4) are linear combinations of functions Dγ

z W̌j .
The theorem is proved.

10.5.5. The Dirichlet problem for the Laplace operator. If L(Dx) is
the Laplace operator, then it is possible to obtain more explicit interpretations of
Theorems 10.5.1 and 10.5.2. Let L(Dx) = −∆x. Then L(Dy, 0) = −∆y and

Ld(µ) = −δ − µ(µ + d− 2) ,

where δ is the Beltrami operator on Sd−1. Let {µj}j≥0 be the sequence of posi-
tive eigenvalues of the operator pencil Ld numerated with account taken of their
algebraic multiplicities, and let {ψj}j≥0 be the corresponding sequence of real eigen-
functions. Note that 2− d− µj is also an eigenvalue for each integer j ≥ 0 and ψj

is an eigenfunction corresponding to this eigenvalue.
By {λj} we denote the sequence of eigenvalues of the pencil L generated by the

operator −∆x in the cone K and by {uj}j≥0 a sequence of corresponding eigenfunc-
tions. As we have shown in Section 2.2, the eigenvalues λj and 2− n− λj have the
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same eigenfunctions. In particular, the function (cos τ)µj ψj(φ) is an eigenfunction
of the pencil L for every j ≥ 0 which generates two solutions of the form (10.1.4):

ρµj ψj(φ) and Uj(x) = r2−n−2µj ρµj ψj(φ).

In order to find all eigenfunctions of the operator pencil L and, therefore, all solu-
tions of (10.1.3) which have the form (10.1.4) it suffices to do this for the eigenvalues
2− n− λj .

First we show that the functions Uj play the role of the functions W̌j introduced
in the preceding subsection. We have

∫

Rn−d

eiz·ζ Uj(y, z) dz = ρµj ψj(φ)
∫

Rn−d

eiz·ζ

(ρ2 + |z|2)µj−1+n/2
dz(10.5.26)

=
22−d/2µj π(n−d)/2

Γ(µj − 1 + n/2)
ρ2−d−µj ψj(φ) (ρ|ζ|)µj−1+d/2 K1−µj−d/2(ρ|ζ|),

where Kν is the modified Bessel function. The function

ρ1−d/2 K1−µj−d/2(ρ)ψj(φ)

is a solution of the equation ∆u − u = 0 in Kd and satisfies the zero Dirichlet
condition on ∂Kd\{0}. Furthermore,

K1−µj−d/2(ρ) = ρ1−µj−d/2 Pk(ρ2) + O(ρε), ε > 0,

for ρ → 0, where Pk is a polynomial of degree k, 2k ≤ µj − 1 + d/2. Consequently,
the right-hand side of (10.5.26) admits the representation (10.5.12) and can play
the role of Wj . This and Theorem 10.1.2 imply that linear combinations of the
functions Dγ

z Uj exhaust the set of solutions of the form (10.1.4) for Re λ < 1−n/2.
We introduce the polynomials of degree |γ|

Qγ,κ(z) =
(|z|2 + 1

)|γ|+κ/2
Dγ

z

(|z|2 + 1
)−κ/2

and represent them as a sum of homogeneous polynomials:

Qγ,k =
[|γ|/2]∑
q=0

Q
(q)
γ,k , where deg Q

(q)
γ,k = |γ| − 2q.

Then

rκ+2|γ|Dγ
z r−κ =

[|γ|/2]∑
q=0

ρ2q Q
(q)
γ,k(z).

Consequently, the functions

uν,γ(ω) = (cos τ)µν ψν(φ)
[|γ|/2]∑
q=0

(cos τ)2q Q
(q)
γ,n−2+2µν

(ϑ sin τ)

where ν and γ satisfy the equality µν+|γ| = µj+k, are eigenfunctions corresponding
to the eigenvalues 2 − n − µj − k, k = 0, 1, . . . . By Theorem 10.5.2, there are no
other linearly independent eigenfunctions. The same eigenfunctions are generated
by the eigenvalue µj + k. Thus, we have proved the following theorem.

Theorem 10.5.3. Let U ∈ ◦
W1

2,loc(K, 0) be a function of the form (10.1.4). Then
U is a solution of the equation −∆xU = 0 in K if and only if one of the following
two assertions is true:
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(i) λ = µj + k, j, k = 0, 1, . . . , and U is a linear combination of the functions

ρµν ψν(φ)
[|γ|/2]∑
q=0

ρ2q Q
(q)
γ,n−2+2µν

(z) ,

where µν + |γ| = µj + k
(ii) λ = 2 − n − µj − k, j, k = 0, 1, . . . , and U is a linear combination of the

functions

ρµν ψν(φ)Dγ
z r2−n−2µν = ρµν ψν(φ) r2−n−2µν

[|γ|/2]∑
q=0

ρ2q Q
(q)
γ,n−2+2µν

(z) ,

where µν + |γ| = µj + k.

10.6. Notes

Section 10.1. Modulo presentation, the material is standard.

Sections 10.2 and 10.3. It is well-known that power-logarithmic solutions
of an elliptic system in Rn\{0} and of the Dirichlet problem in the half-space are
linear combinations of polynomials and derivatives of Green’s matrix. We used this
fact together with classical results on Green’s matrix (see John’s book [94] and
the papers by Agmon, Douglis, Nirenberg [2] and Solonnikov [246]) to obtain a
description of the spectrum of the corresponding operator pencils. We refer also to
Pazy’s paper [224].

Section 10.4. The eigenvalues, eigenvectors and generalized eigenvectors of
the pencil generated by the Sobolev problem for an elliptic system of 2m order
equations in the exterior of a ray were described in the paper [130] of Kozlov and
Maz′ya. For the plane case (the case of a crack) we refer also to the papers by
Nazarov [203, 204] and the book by Nazarov and Plamenevskĭı [207], where more
general elliptic problems are considered.

Section 10.5. The material is borrowed from the paper [133] by Kozlov and
Maz′ya.



CHAPTER 11

The Dirichlet problem in a cone

In the present chapter, as in the previous one, we deal with singularities of
solutions to the Dirichlet problem for strongly elliptic equations and systems of
order 2m in n-dimensional cones. Some basic properties of the operator pencil
L generated by this problem were studied in Section 10.1, where we proved, in
particular, the absence of eigenvalues of L on the energy line Re λ = m− n/2.

We wish to estimate the width of the energy strip |Re λ − m + n/2| < δ,
that is the widest strip free of eigenvalues of L and symmetric with respect to
the energy line. It is proved in Section 11.1 that a certain δ > 1/2 suits if the
differential operator is selfadjoint and the cone K has an explicit representation
xn > φ(x1, . . . , xn−1) in Cartesian coordinates, where φ is smooth on Rn−1\{0}
and positively homogeneous of degree 1. This, along with a general property of
elliptic boundary value problems in domains with conic vertices (we refer to the
book of Dauge [41]) implies square summability of “derivatives” of order m+1/2+ε
for solutions to the Dirichlet problem in these domains. Such an improvement of
smoothness by an order greater than 1/2 is independent both of the cone opening
and the differential operator L.

In Section 11.2 we try to weaken the smoothness condition on φ. By requiring
the mere continuity of φ, we are able to prove only that the strip |Re λ−m+n/2| <
1/2 contains no eigenvalues. The same assertion concerning the strip |Re λ−m +
n/2| < 1/2 + ε, ε > 0, is obtained for elliptic systems of second order differential
equations if the restriction of the function φ to the sphere Sn−2 belongs to the
Sobolev space W 1

2 (Sn−2).
The condition of selfadjointness of L cannot be removed. In fact, by coun-

terexample 8.4.3, there exists a family of second order strongly elliptic operators
with complex coefficients such that a sequence of eigenvalues of the corresponding
operator pencils L tends to the energy line.

In Section 11.4 we consider the Dirichlet problem for second order square elliptic
systems in a three-dimensional polyhedral cone. We show that the strip |Re λ +
1/2| ≤ 1 is free of eigenvalues of L if all interior angles at the edges, with the
possible exception of one of them, are less than π.

In Section 11.5 we pass to the Dirichlet problem for a 2m order elliptic equation
in the case when K is the exterior of a thin cone. Here the operator pencil generated
by the Dirichlet problem is a small singular perturbation of that generated by the
Sobolev problem in the exterior of a ray. Resting on this, we show that an arbitrary
neighborhood of an eigenvalue of the pencil associated to the Sobolev problem
contains also eigenvalues of the pencil generated by the Dirichlet problem in the
exterior of a sufficiently thin cone. From this result it follows, in particular, that
the estimate δ > 1/2 obtained in Section 11.1 for the width of the energy strip
|Re λ−m + n/2| < δ is sharp for 2m ≥ n.

347
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Section 11.6 is dedicated to the Dirichlet problem in a cone close to a half-
space. Here we derive an asymptotic formula for the eigenvalue situated near the
point λ0 = m. We wish to make an observation apropos this formula. To begin
with, differential operators considered earlier, such as ∆, ∆2 and the Lamé operator
in a cone, as well as an arbitrary elliptic operator with real constant coefficients
in an angle, possess the following common property. Their variational solutions
with zero Dirichlet data on ∂K have continuous partial derivatives up to order m
on K if K ⊂⊂ Rn

+. One might presuppose intuitively that this law is universal for
strongly elliptic selfadjoint operators in a cone situated in a half-space. However,
we construct a counterexample to this hypothesis based on the asymptotic formula
in question.

In Section 11.7 we consider pencils generated by the Dirichlet problem in a cone
with small opening. We find an algebraic condition on elliptic differential operators
ensuring the nonrealness of all eigenvalues in a sufficiently large strip. Some results
concerning the Dirichlet problem in the exterior of a thin cone are given without
proofs in Section 11.8.

In the last Section 11.9 we outline known results on the solvability and regular-
ity for solutions to the Dirichlet problem in domains of polyhedral type, taking into
account spectral properties of operator pencils investigated in this and previous
chapters.

11.1. The case of a “smooth” cone

Additionally to the assumptions of Section 10.1, it is supposed in this section
that the operator L(Dx) is formally selfadjoint and

(11.1.1) K = {x = (x′, xn) ∈ Rn : xn > φ(x′)},
where the function φ is is infinitely differentiable on Rn−1\{0} and positively ho-
mogeneous of degree 1. We prove that the strip

(11.1.2) |Reλ−m + n/2| ≤ 1/2

does not contain eigenvalues of the operator pencil L introduced in Section 10.1.

11.1.1. Absence of eigenvalues on the line Re λ = m−(n−1)/2. Sup-
pose that the operator (10.1.2) is formally selfadjoint. Then it can be represented
in the form

(11.1.3) L(Dx) =
∑

|α|=|β|=m

Aα,β Dα+β
x ,

where Aα,β are constant `× `-matrices satisfying the condition Aα,β = A∗β,α. Note
that every elliptic formally selfadjoint operator L(Dx) of the given form is strongly
elliptic. As in the preceding chapter, let L denote the operator pencil generated by
L(Dx), i.e., the operator L(λ) :

◦
Wm

2 (Ω)` → W−m
2 (Ω)` is defined by (10.1.5). Here

Ω is the intersection of the cone K with the unit sphere Sn−1.
Since φ is assumed to be smooth on Rn−1\{0}, there exists the exterior normal

ν = (ν1, . . . , νn) to ∂K\{0}. The last component νn is given by the equality

νn

(
x′, φ(x′)

)
= −

(
1 +

n−1∑

j=1

|∂xj φ(x′)|2
)−1/2

.
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We will prove that the line Re λ = m − (n − 1)/2 does not contain eigenvalues of
the pencil L. For this we need the following lemma.

Lemma 11.1.1. Let Reλ0 = m− (n− 1)/2, u ∈ C∞(Ω)`, and let the function
U(x) = rλ0 u(ω) be a solution of the problem

L(Dx)U = 0 in K,
∂jU

∂νj
= 0 on ∂K\{0}, j = 0, . . . ,m− 1.

Then ∂mU/∂νm = 0 on ∂K\{0}.
Proof: We introduce the sets

Kε = {x ∈ K : ε < |x| < 1}, Γε = {x ∈ ∂K : ε < |x| < 1},
and Ωε = {x ∈ K : |x| = ε}. Here ε is an arbitrary positive real number less than
one. Integrating by parts and using the equality

Dα
x U = (−i)m να ∂mU

∂νm
on ∂K\{0} for |α| = m,

we get

Re
∫

Kε

(
L(Dx)U,

∂U

∂xn

)
C`

dx = Re
∫

Kε

∑

|α|=|β|=m

(
Aα,βDβ

xU, ∂xnDα
x U

)
C`

dx(11.1.4)

−
∫

Γε

νn

∑

|α|=|β|=m

(
Aα,β να+β ∂mU

∂νm
,

∂mU

∂νm

)
C`

dσ

+
∫

Ω

Ψ1(x) dω −
∫

Ωε

Ψ1(x) dωε ,

where Ψ1 is a positively homogeneous function of degree 1− n. Since

1
2

∑

|α|=|β|=m

∂

∂xn

(
Aα,β Dβ

xU,Dα
x U

)
C` = Re

∑

|α|=|β|=m

(
Aα,β Dβ

xU,Dα
x

∂U

∂xn

)
C`

,

the first term on the right-hand side of (11.1.4) is equal to

1
2

∫

Γε

νn

∑

|α|=|β|=m

(
Aα,β να+β ∂mU

∂νm
,

∂mU

∂νm

)
C`

dσ +
∫

Ω

Ψ2(x) dω −
∫

Ωε

Ψ2(x) dωε ,

where Ψ2 is positively homogeneous of degree 1− n. Obviously,
∫

Ω

Ψj(x) dω =
∫

Ωε

Ψj(x) dωε for j = 1, 2.

Hence (11.1.4) implies

Re
∫

Kε

(
L(Dx)U,

∂U

∂xn

)
C`

dx(11.1.5)

= −1
2

∫

Γε

νn

∑

|α|=|β|=m

(
Aα,β να+β ∂mU

∂νm
,

∂mU

∂νm

)
C`

dσ.
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The left-hand side of (11.1.5) vanishes, since U is a solution of the equation (10.1.3).
By the ellipticity and selfadjointness of the operator L(Dx), the expression

(11.1.6)
∑

|α|=|β|=m

(
Aα,β να+β ∂mU

∂νm
,

∂mU

∂νm

)
C`

is real and does not change the sign. Furthermore, νn is negative on ∂K\{0}. Con-
sequently, from (11.1.5) it follows that the expression (11.1.6) vanishes on ∂K\{0}.
Using the ellipticity of L(Dx), we get ∂mU/∂νm = 0 on ∂K\{0}.

Lemma 11.1.2. There are no eigenvalues of L on the line Re λ = m−n/2+1/2.

Proof: Suppose the assertion of the lemma is not true, i.e., there exists an
eigenvalue λ0 with real part m−n/2+1/2. Let u1, . . . , uI be a basis in the space of
the eigenfunctions of L corresponding to the eigenvalue λ0. By the selfadjointness
of the operator L(Dx) and Theorem 10.1.2, the number λ1 = 2m−n−λ0 = λ0− 1
is also an eigenvalue of L with the same geometric multiplicity I. We denote by
v1, . . . , vI a basis in the space of eigenfunctions corresponding to the eigenvalue λ1

and set
Uj(x) = rλ0 uj(ω) , Vj(x) = rλ1 vj(ω), j = 1, . . . , I.

The functions ∂Uj/∂xs are solutions of the equation L(Dx)U = 0 in K. By Lemma
11.1.1, they also satisfy the homogeneous Dirichlet boundary conditions on ∂K\{0}.
Moreover, these functions are positively homogeneous of degree λ1. Consequently,
there exist constants cs

j,k such that

(11.1.7)
∂

∂xs
Uj(x) =

I∑

k=1

cs
j,k Vk(x) for j = 1, . . . , I, s = 1, . . . , n.

Let a = (a1, . . . , an) be a nonzero vector such that the matrix

(11.1.8)
( n∑

s=1

cs
j,k as

)
j,k=1,...,I

has a nontrivial kernel. Such vector always exists. If the inverse (dj,k) of the matrix
(c1

j,k) exists, we can set a = (µ, 1, 0, . . . , 0), where µ is an eigenvalue of the matrix

−
( I∑

k=1

dj,k c2
k,s

)
j,s=1,...,I

.

Otherwise, the vector a = (1, 0, . . . , 0) has the desired property.
We choose a nonzero vector b = (b1, . . . , bI) from the kernel of the matrix

(11.1.8). Then (11.1.7) implies

(11.1.9)
n∑

s=1

as
∂

∂xs

( I∑

j=1

bj Uj(x)
)

= 0.

Now we introduce the function

U(x) = b1 U1(x) + · · ·+ bI UI(x) in K
and extend this function by zero to Rn. Since ∂kU/∂νk = 0 on ∂K\{0} for k =
0, . . . , m, this extension has continuous derivatives of order ≤ m on Rn\{0}. Fur-
thermore, for large |x| it grows not faster than a polynomial.
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Equation (11.1.9) can be transformed, by a linear change of variables, into one
of the following equations

(11.1.10)
∂

∂y1
U(y) = 0,

( ∂

∂y1
+ i

∂

∂y2

)
U(y) = 0,

Here the cone K turns into a new cone K′.
Suppose that the first of the equations (11.1.10) holds. If one of the lines

y′ = (y2, . . . , yn) = const crosses the boundary ∂K′\{0} at a nonzero angle, then
from the equation ∂U/∂y1 = 0 and from the fact that U = 0 outside K′ it follows
that U vanishes in an open subset of K′. Since U is a real-analytic function, we
obtain U = 0. If there are no lines y′ = const crossing ∂K′\{0} at a nonzero angle,
then K′ = R × K1, where K1 is a (n − 1)-dimensional cone. Since K′\{0} is a
smooth manifold, this is only possible if K is a half-space in Rn. In this case we get
a contradiction to Theorem 10.3.1.

Suppose now that the second equation of (11.1.10) is realized. If one of the
planes y′′ = (y3, . . . , yn) = const contains both interior and exterior points of K′,
then again integrating the equation (∂/∂y1 + i∂/∂y2)U = 0 and using the fact that
U = 0 outside K′, we get U = 0 in an open subset of K′ and, therefore, U = 0
everywhere. In the contrary case we have K′ = R2 × K2, where K2 is a cone in
Rn−2. Arguing as before, we conclude that K is a half-space in Rn. This contradicts
Theorem 10.3.1. The proof is complete.

11.1.2. The width of the energy strip.

Theorem 11.1.1. Suppose that the cone K is determined by the inequality
xn > φ(x′) with a positively homogeneous function φ of degree 1 which is infinitely
differentiable on Rn−1\{0}. Furthermore, we assume that the operator L(Dx) is
elliptic and formally selfadjoint. Then the strip |Re λ −m + n/2| ≤ 1/2 does not
contain eigenvalues of the pencil L.

Proof: Let Kt be the cone {x = (x′, xn) ∈ Rn : xn > tφ(x′)}, 0 ≤ t ≤ 1, and
let Γt be the boundary of Kt. Furthermore, let Ωt be the intersection of Kt with the
unit sphere Sn−1. We denote by Lt the operator pencil generated by the Dirichlet
problem

L(Dx)U = 0 in Kt ,
∂jU

∂νj
= 0 on ∂Kt\{0}, j = 0, . . . ,m− 1.

From Lemma 11.1.2, Theorem 10.1.2 and from the selfadjointness of the operator
L(Dx) it follows that there are no eigenvalues of Lt on the lines Re λ = m−n/2±1/2.
Using the strong ellipticity of L, it can be proved, analogously to Lemma 10.1.3,
that the set

{λ ∈ C : |Reλ−m + n/2| ≤ 1/2, |Im λ| ≥ c}
does not contain eigenvalues of Lt if c is a sufficiently large positive number.

If t = 0, then the cone Kt coincides with the half-space. Hence, by Theorems
10.3.1 and 10.3.2, the strip m− n < Re λ < m does not contain eigenvalues of the
pencil L0.

There exists a family of diffeomorphisms ψt : Ωt → Ω0 infinitely differen-
tiable with respect to the parameter t ∈ [0, 1]. These diffeomorphisms transform
the operators Lt(λ) into the operators

L̃t(λ) :
◦

W
m
2 (Ω0)` → W−m

2 (Ω0)`.
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The pencils Lt and L̃t have the same eigenvalues with the same algebraic multiplic-
ities. Hence there are no eigenvalues of the pencils L̃t, 0 ≤ t ≤ 1, on the boundary
of the rectangle

Λc = {λ ∈ C : |Re λ−m + n/2| < 1/2, |Imλ| < c}.
Moreover, no eigenvalues of L̃0 = L0 are situated in Λc. Applying Theorem 1.1.4,
we conclude that Λc does not contain eigenvalues of the pencils L̃t, 0 ≤ t ≤ 1.
Consequently, the strip |Re λ−m + n/2| ≤ 1/2 is free of eigenvalues of the pencil
L = L1. The theorem is proved.

Remark 11.1.1. We have proved the assertion of Theorem 11.1.1 only under
the assumption that the cone K is determined by the inequality xn > φ(x′). Not
every cone K = {x ∈ Rn : x/|x| ∈ Ω} has this form (see Figure 1 on p. 4).

11.2. The case of a nonsmooth cone

Now let K be the cone (11.1.1), where φ is an arbitrary continuous and posi-
tively homogeneous function of degree 1. We prove that, without the assumption of
smoothness of φ, the open strip |Re λ−m+n/2| < 1/2 does not contain eigenvalues
of the pencil L generated by the Dirichlet problem in the cone.

11.2.1. Behaviour of the spectrum of operator pencils under small
variation of the domain. Let X be a Hilbert space with the scalar product
b0(·, ·). Furthermore let Xε, ε > 0, be closed subspaces of X such that the orthogonal
projections Pε from X onto Xε converge to the identity in the weak sense, i.e.,

(11.2.1) Pε u → u for every u ∈ X
as ε tends to zero. By b(·, ·; λ) we denote the following sesquilinear form on X ×X :

b(u, v; λ) =
µ∑

k=0

bk(u, v)λk,

where bk(·, ·) are sesquilinear forms on X×X and λ is a complex parameter. Suppose
that the operators Tk : X → X , k = 1, . . . , µ, defined by the equality

b0(Tku, v) = bk(u, v) for all u, v ∈ X
are compact. The sesquilinear form b(·, ·; λ) generates the operators A(λ) : X → X
and Aε(λ) : Xε → Xε by the equalities

b0(A(λ)u, v) = b(u, v; λ) for all u, v ∈ X ,(11.2.2)
b0(Aε(λ)u, v) = b(u, v; λ) for all u, v ∈ Xε.(11.2.3)

Obviously,

A(λ) = I +
µ∑

k=1

Tk λk ,

where I denotes the identity operator in the space X . Our goal is to find a connection
between the spectra of the pencils A and Aε for small ε. To this end, we introduce
the operators

Sε(λ) = I − Pε + Pε A(λ) : X → X .

Lemma 11.2.1. The operator pencils Aε and Sε have the same eigenvalues with
the same geometric, algebraic, and partial multiplicities.
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Proof: We show that every Jordan chain of the pencil Aε is a Jordan chain of
Sε and, conversely, every Jordan chain of Sε is a Jordan chain of Aε.

1) Let u0, . . . , us−1 be a Jordan chain of the pencil Aε corresponding to the
eigenvalue λ0, i.e.,

(11.2.4)
j∑

k=0

1
k!

A(k)
ε (λ0)uj−k = 0 for j = 0, 1, . . . , s− 1, uj ∈ Xε .

Since b0(Aε(λ)u, v) = b0(A(λ)u, v) for all u, v ∈ Xε, we have

(11.2.5) b0

(
A(k)

ε (λ)u, v
)

= b0

(
A(k)(λ)u, v

)
for all u, v ∈ Xε.

Consequently, (11.2.4) implies

b0

( j∑

k=0

1
k!

A(k)(λ0) uj−k , v
)

= 0 for all v ∈ Xε,

i.e.,

(11.2.6) Pε

( j∑

k=0

1
k!

A(k)(λ0) uj−k

)
= 0.

Since uj ∈ Xε, we further have (I − Pε)uj = 0 for j = 0, . . . , s − 1. Hence (11.2.6)
implies

(11.2.7)
j∑

k=0

1
k!

S(k)
ε (λ0) uj−k = 0.

Therefore, u0, . . . , us−1 is a Jordan chain of the pencil Sε corresponding to the
eigenvalue λ0.

2) Suppose that u0, . . . , us−1 is a Jordan chain of Sε corresponding to the
eigenvalue λ0. This means that u0, . . . , us−1 are elements of the space X satisfying
(11.2.7) for j = 0, . . . , s − 1. In particular, for j = 0 we get u0 = Pε

(
I − A(λ0)

)
u0

and, therefore, u0 ∈ Xε. Analogously, it follows that uj ∈ Xε for j = 1, . . . , s − 1.
Thus, (I − Pε)uj = 0 for j = 0, . . . , s − 1, and (11.2.7) implies (11.2.6). Using
(11.2.5), we obtain the equality

b0

( j∑

k=0

1
k!

A(k)
ε (λ0)uj−k , v

)
= 0 for each v ∈ Xε

which is equivalent to (11.2.4). This proves the lemma.

Now the following assertion holds as a direct consequence of Theorem 1.1.4.

Theorem 11.2.1. Let λ0 be an eigenvalue of the pencil A with the algebraic mul-
tiplicity κ and let δ be a sufficiently small real number such that the ball Bδ(λ0) =
{λ : |λ − λ0| < δ} does not contain other eigenvalues of A. Then there exists a
number ε0 > 0 such that the sum of the algebraic multiplicities of the eigenvalues
of Aε in Bδ(λ0) is equal to κ if ε < ε0.

Proof: From (11.2.1) and from the compactness of the operator A(λ) − I it
follows that the operator

A(λ)− Sε(λ) = (I − Pε) (A(λ)− I)
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converges to zero in the space of linear and continuous operators from X into
X . Hence Theorem 1.1.4 implies that the sum of the algebraic multiplicities of
eigenvalues of Sε(λ) in Bδ(λ0) is equal to κ if ε < ε0. Using Lemma 11.2.1, we get
the assertion of the theorem.

11.2.2. An estimate for the energy strip. Let L(Dx) be the differential
operator (11.1.3) and let K be the cone {x = (x′, xn) : xn > φ(x′)}, where φ is
positively homogeneous of degree 1. We introduce the sesquilinear form
(11.2.8)

a(u, v;λ) =
1

| log ε|
∫

Kε

∑

|α|=|β|=m

(
Aα,β Dβ

x(rλu) , Dα
x (r2m−n−λ̄v)

)
C`

dx,

u, v ∈ X def
=

◦
Wm

2 (Ω)`,

where Kε = {x ∈ K : ε < |x| < 1} and ε is an arbitrary positive real number less
than one. It can be easily seen that the right-hand side of (11.2.8) is independent of
ε. Integrating by parts, we get (by the compensation of the integrals on the spheres
|x| = ε and |x| = 1)∫

Ω

(L(λ)u, v
)
C` dx =

1
| log ε|

∫

Kε

∑

|α|=|β|=m

(
L(Dx) (rλu) , r2m−n−λ̄v

)
C`

dx

=
1

| log ε|
∫

Kε

∑

|α|=|β|=m

(
Aα,β Dβ

x(rλu) , Dα
x (r2m−n−λ̄v)

)
C`

dx

= a(u, v; λ) for all u, v ∈ C∞0 (Ω)`.

Hence the operator L(λ) : X → X ∗ introduced in Section 10.1 satisfies the equality

(11.2.9)
(L(λ)u, v

)
L2(Ω)` = a(u, v; λ) for all u, v ∈ X .

By (10.1.9) and (10.1.12), there exists a positive constant c such that

|a(u, u;m− n/2 + it)| ≥ c ‖u‖2W m
2 (Ω)`

for all u ∈ X and for all real t. In particular, it follows from this inequality that

b0(u, v) = a(u, v; m− n/2)

is a scalar product in X =
◦

Wm
2 (Ω)`.

Let {φε}ε>0 be a set of positively homogeneous of degree 1 functions on Rn−1

which are smooth in Rn−1\{0} and satisfy the inequality φε(x′) > φ(x′) for x′ ∈
Rn−1\{0}. Furthermore, let K(ε) be the cone {x = (x′, xn) : xn > φε(x′)} and Ω(ε)

the intersection of K(ε) with the unit sphere Sn−1. We suppose that the subdomains
Ω(ε) of Ω satisfy the condition 0 < dist (Ω(ε), ∂Ω) < ε. If we identify every vector

function u ∈ ◦
W m

2 (Ω(ε))` with its zero extension to the domain Ω, we can consider

the space Xε
def
=

◦
Wm

2 (Ω(ε))` as a subspace of X =
◦

Wm
2 (Ω)`.

Lemma 11.2.2. Let Pε be the orthogonal projection from X onto Xε. Then
Pεu → u for all u ∈ X as ε → 0.

Proof: Let u be an arbitrary element of the space X and let {uk} ⊂ C∞0 (Ω)`

be a sequence which converges to u in X . Obviously,

‖(I − Pε)u‖X ≤ ‖(I − Pε)uk‖X + ‖(I − Pε) (u− uk)‖X
≤ ‖(I − Pε)uk‖X + ‖u− uk‖X .
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Since uk ∈ C∞0 (Ω)`, we have uk ∈ Xε for sufficiently small ε and fixed k. Hence
the norm of (I − Pε)uk in X tends to zero as ε → 0. Furthermore, the norm of
u − uk tends to zero as k → ∞. Consequently, we obtain lim

ε→0
‖(I − Pε)u‖X = 0.

This proves the lemma.

Now it is easy to prove the following theorem.

Theorem 11.2.2. Suppose that the differential operator L(Dx) is elliptic and
formally selfadjoint. Then the strip

(11.2.10) |Reλ−m + n/2| < 1/2

does not contain eigenvalues of the pencil L.

Proof: We set
b(u, v;λ) = a(u, v;λ + m− n/2)

and define the operators A(λ), Aε(λ) by the relations (11.2.2) and (11.2.3), re-
spectively. Then any number λ0 is an eigenvalue of the pencil L if and only if
λ0 − m + n/2 is an eigenvalue of A. The same is true for the eigenvalues of the
pencil Lε generated by the Dirichlet problem in the cone K(ε) and the eigenvalues
of the pencil Aε.

We assume that there is an eigenvalue λ0 of the pencil L in the strip (11.2.10).
Then, by Theorem 11.2.1, this strip contains at least one eigenvalue of the pencil
Lε if ε is sufficiently small. This contradicts Theorem 11.1.1.

11.3. Second order systems

11.3.1. Formulation of the main result. Let

(11.3.1) L(∂x) = −
n∑

i,j=1

Ai,j ∂xi ∂xj ,

where Ai,j are constant ` × `-matrices such that A∗i,j = Aj,i = Ai,j . We suppose
that the operator (11.3.1) is strongly elliptic, i.e., there exists a positive constant
c0 such that

(11.3.2) |(L(ξ)f, f)C` | =
( n∑

i,j=1

Ai,jξiξj f, f
)
C`
≥ c0|ξ|2|f |2C`

for all ξ ∈ R, f ∈ C`. Furthermore, let

Kφ = {x = (x′, xn) ∈ Rn : xn > φ(x′)}
be a cone with vertex at the origin. Here φ is a continuous positively homogeneous
function of degree 1 on Rn−1. By (r, ω) we denote spherical coordinates of the point
x ∈ Rn, i.e., r = |x|, ω = (ω1, . . . , ωn) = x/|x|. Then the set

Ωφ = {ω = (ω′, ωn) ∈ Sn−1 : ωn > φ(ω′)}
is the intersection of the cone Kφ with the unit sphere Sn−1.

We are interested in solutions of the Dirichlet problem

(11.3.3) L(∂x)U = 0 in Kφ, U = 0 on ∂Kφ\{0}
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which have the form

(11.3.4) U(x) = rλ0

s∑

k=0

(log r)k

k!
us−k(ω) ,

where λ0 ∈ C and uk ∈
◦

W1
2(Ωφ))`, k = 0, 1, . . . , s.

In order to find such solutions, we have to explore the spectrum of the pencil

(11.3.5) Lφ(λ) :
◦

W
1
2(Ωφ)` → W−1

2 (Ωφ)`

where

Lφ(λ)u(ω) = L(λ)u(ω) = r2−λ L(∂x) (rλ u(ω)) for u ∈ ◦
W

1
2(Ωφ)`.

Let a(·, ·;λ) be the following sesquilinear form on
◦

W1
2(Ωφ)`× ◦

W1
2(Ωφ)` quadratically

depending on λ:

(11.3.6) a(u, v; λ) =
1

| log ε|
∫

Kφ

ε<|x|<1

n∑

i,j=1

(
Ai,j∂xj

U, ∂xi
V

)
C` dx ,

where ε is an arbitrary real number less than one, U(x) = rλu(ω), and V (x) =
r2−n−λv(ω) (cf. (11.2.8)). Then we have

∫

Ωφ

(Lφ(λ)u, v
)
C` dω = a(u, v; λ) for all u, v ∈ ◦

W
1
2(Ωφ)`,

where dω is the standard measure on Sn−1. Note that the right-hand side of (11.3.6)
is independent of ε.

We introduce the differential operators

∂ωj = r (∂xj − ωj ∂r) , j = 1, . . . , n,

on the sphere Sn−1. It can be easily verified that

L(λ) = −
n∑

i,j=1

Ai,j

(
(λ− 1)ωi + ∂ωi

)
(λωj + ∂ωj ).

Since (n− 1)ωj − ∂ωj is the adjoint operator to ∂ωj in L2(Ω), we get

a(u, v;λ) =
∫

Ωφ

n∑

i,j=1

(
Ai,j(λωj + ∂ωj )u ,

(
(2− n− λ)ωi + ∂ωi

)
v
)
C`

dω .

Furthermore,

(11.3.7)





∂ωj ∂ωk
− ∂ωk

∂ωj = ωj∂ωk
− ωk∂ωj ,

n∑

j=1

ωj∂ωj = 0,

n∑

j=1

∂2
ωj

= δ .

Here δ denotes the Beltrami operator on Sn−1. The expression
n∑

j=1

∫

Ωφ

(
∂ωj u, ∂ωj v

)
C` dω
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defines a scalar product in
◦

W1
2(Ωφ)`. Besides, we have

(11.3.8)
n∑

j=1

∫

Ωφ

∣∣∂ωj w
∣∣2 dω ≥ µ0(φ)

∫

Ωφ

|w|2 dω ,

where µ0(φ) is the smallest positive eigenvalue of the operator −δ on Ωφ with
Dirichlet boundary condition.

The main result of this section is the following:
Let φ be a continuous function on Rn−1 positively homogeneous of degree
1 such that φ|Sn−2 ∈ W 1

2 (Sn−2). Then the strip |Reλ− 1 + n/2| ≤ 1/2 is
free of eigenvalues of the pencil Lφ.

The proof of this assertion is given in the following subsections. First we give some
general properties of the operator pencil Lφ for continuous φ. Then we consider
the operator pencil Lχ for smooth χ satisfying the inequality φ(x′) ≤ χ(x′) ≤
φ(x′)+τ |x′|. We prove that for sufficiently small τ depending only on the coefficients
of L there exists a positive number ε1 such that all eigenvalues of Lχ lie outside
the strip |Reλ− 1 + n/2| ≤ (1 + ε1)/2. This number ε1 depends only on φ and on
the W 1

2 -norm of χ|Sn−2 . Applying Theorem 11.2.1, we get the above assertion.

11.3.2. Basic properties of the operator pencil Lφ. In the following
theorem we give some properties of the operator pencil Lφ(λ) which were partially
proved in the previous sections.

Theorem 11.3.1. Let φ be a function continuous and positively homogeneous
of degree 1 on Rn−1. Then the following assertions are true.

1) The operator (11.3.5) is Fredholm for every λ ∈ C.
2) For every λ, Re λ = 1−n/2, the operator (11.3.5) is selfadjoint and positive

definite. Moreover, for all λ, Re λ = 1−n/2, and u ∈ ◦
W1

2(Ωφ) there is the inequality

(11.3.9) a(u, u, λ) ≥ c0

∫

Ωφ

( ∑

1≤j≤n

∣∣∂ωj u
∣∣2 + |λ|2|u|2

)
dω ,

where c0 is the same constant as in (11.3.2).
3) The spectrum of the operator pencil Lφ consists of isolated eigenvalues with

finite algebraic multiplicities. The set
{

λ ∈ C : (Re λ− 1 + n/2)2 <
c0

c1

(
(1− n/2)2 + (Imλ)2 + µ0(φ)

)}
,

where

(11.3.10) c1 = max
ω∈Sn−1

∥∥∥
n∑

i,j=1

Ai,j ωi ωj

∥∥∥
C`→C`

,

does not contain eigenvalues of the pencil Lφ.
4) If λ0 is an eigenvalue of Lφ, then 2 − n − λ0 is an eigenvalue, too. The

geometric, partial and algebraic multiplicities of λ0 and 2− n− λ0 coincide.
5) The strip |Re λ− 1 + n/2| < 1/2 is free of eigenvalues of the pencil Lφ.

Proof: For assertions 1), 4) and 5) we refer to Theorems 10.1.1, 10.1.2 and
11.2.2. We prove 2) and 3).
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2) Inequality (11.3.2) implies

(11.3.11)
∫

Kφ

n∑

i,j=1

(
Ai,j∂xj

U , ∂xi
U

)
C` dx ≥ c0

∫

Kφ

n∑

j=1

∣∣∂xj U
∣∣2 dx

for all U ∈ ◦
W1

2(Kφ)`. Let

(11.3.12) Ũ(λ, ·) = (Mr→λU)(λ, ·) = (2π)−1/2

∞∫

0

r−λ−1 U(r, ·) dr

be the Mellin transform of U with respect to the variable t. Using the equalities

Mr→λ (r∂rU) = λMr→λ U , r∂xj
= ωj r∂r + ∂ωj

and the Parseval equality
∞∫

0

rn−3 U(r) V (r) dr =
∫

R

Ũ(it + 1− n/2) Ṽ (it + 1− n/2) dt,

from (11.3.11) we get
∫

R

a
(
Ũ(it + 1− n/2, ·), Ũ(it + 1− n/2, ·); it + 1− n/2

)
dt

≥ c0

∫

R

∫

Ωφ

n∑

j=1

∣∣∣
(
(it + 1− n/2)ωj + ∂ωj

)
Ũ(it + 1− n/2, ω)

∣∣∣
2

C`
dω dt .

Hence we have

(11.3.13) a(u, u; λ) ≥ c0

∫

Ωφ

n∑

j=1

∣∣(λωj + ∂ωj

)
u
∣∣2 dω

for all u ∈ ◦
W 1

2(Ωφ)`, Re λ = 1 − n/2. From this, by means of (11.3.7), we obtain
(11.3.9).

3) The first part of assertion 3) follows from 1) and 2). We prove the second
part. Let λ = τ + λ1, λ1 = 1− n/2 + it, t ∈ R, τ ∈ R. Then

a(u, u; λ) = a(u, u; λ1)− τ2
n∑

i,j=1

∫

Ωφ

(
Ai,j ωj u, ωi u

)
C`dω

+ τ

n∑

i,j=1

∫

Ωφ

((
Ai,jωju, (λ1ωi + ∂ωi)u

)
C` −

(
Ai,j(λ1ωj + ∂ωj )u, ωiu

)
C`

)
dω .

Hence

(11.3.14) Re a(u, u; λ) = a(u, u;λ1)− τ2

∫

Ωφ

(L(ω)u, u)C`dω

and, by virtue of (11.3.8), (11.3.9), we get the second assertion of 3). The proof is
complete.
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Note that

(11.3.15) ‖Ai,j‖C`→C` ≤ c1 for i, j = 1, . . . , n,

where c1 is the constant (11.3.10). Indeed, if i = j, then (11.3.15) immediately
follows from (11.3.10). If i 6= j, then, by the positivity of the matrix L(ω), ω ∈
Sn−1, we get the inequality

|(Ai,jf, f)|2 ≤ (Ai,if, f) (Aj,jf, f) for all f ∈ C`

which implies (11.3.15).

11.3.3. On eigenfunctions of Lχ for smooth χ. In the following three
lemmas it is assumed that χ is positively homogeneous of degree 1 and infinitely
differentiable on Rn−1\{0}.

Lemma 11.3.1. The following Green formula is satisfied for all u, v ∈ W 2
2 (Ωχ)`.∫

Ωχ

((L(λ)u(ω), v(ω)
)
C` −

(
u(ω),L(2− n− λ)v(ω)

)
C`

)
dω(11.3.16)

= −
n∑

i,j=1

∫

∂Ωχ

(
Ai,jνi(λωj + ∂ωj )u, v

)
C`

dω

+
n∑

i,j=1

∫

∂Ωχ

(
Ai,jνju,

(
(2− n− λ)ωi + ∂ωi

)
v
)
C`

dω

Here νj denotes the j-th component of the exterior normal ν to ∂Kχ.

Proof: Let U = rλu and V = r2−n−λv Then, due to the cancellation of the
integrals on the spheres |x| = ε and |x| = 1, we get∫

Kχ

ε<|x|<1

((
L(∂x)U, V

)
C` −

(
U,L(∂x)V

)
C`

)
dx

= −
n∑

i,j=1

∫

∂Kχ

ε<|x|<1

((
Ai,jνi∂xj U, V

)
C` −

(
Ai,jνjU, ∂xiV

)
C`

)
dσ.

This relation yields (11.3.16).

In the sequel, let Ωt be the subdomain {ω ∈ Sn−1 : ωn > t|ω′|} of the unit
sphere. Here t is an arbitrary real number.

Lemma 11.3.2. 1) There exists a positive constant ε0 depending only on n, t
and on the coefficients Ai,j such that the Dirichlet problem

(11.3.17)





L(λ)G(ω, θ; λ) = I`δ(ω − θ), ω ∈ Ωt ,

G(ω, θ; λ) = 0, ω ∈ ∂Ωt ,

where I` denotes the identity matrix in C`, has a unique solution G(·, θ;λ) for
arbitrary θ ∈ Ωt and λ lying in the strip

(11.3.18) |Re λ− 1 + n/2| < (1 + ε0)/2.
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This solution (the Green function) satisfies the estimate

(11.3.19) ‖G(ω, θ; λ)‖C`→C` ≤
{

c |ω − θ|3−n if n > 3,

c (| log |ω − θ| |+ 1) if n = 3

for all ω, θ ∈ Ωt and λ from the strip (11.3.18). The constant c in (11.3.19) does
not depend on ω, θ, and λ.

2) Let χ(x′) ≥ t + 1 for |x′| = 1. Furthermore, let ε ∈ [0, ε0] and let λ0 =
(3 − n + ε)/2 + it, t ∈ R, be an eigenvalue of Lχ. Then every eigenvector u0

corresponding to this eigenvalue admits the representation

(11.3.20) u0(θ) = −
∫

∂Ωχ

(
L(ν) ∂νu0(ω) , G(ω, θ; 2− n− λ0)

)
C`

dω .

Proof: By Theorem 11.1.1, there exists a positive constant τ > 1/2 such that

the operator L(λ) is an isomorphism
◦

W1
2(Ωt) → W−1

2 (Ωt) for |Re λ− 1 + n/2| < τ.
Hence the Green function of the problem (11.3.17) exists for each λ lying in this
strip (see, e.g., (see, e.g., our book [136, Sect.3.5]).

We prove (11.3.19). According to Theorem 2.2 in Maz′ya’s and Plamenevskĭı’s
paper [186] (see also [136, Th.8.4.8]), for every y ∈ K there exists a solution G0(·, y)
of the problem

L(∂x)G0(x, y) = I` δ(x− y), x ∈ K,

G0(x, y) = 0, x ∈ ∂K
in the cone K = {x ∈ Rn : ω = x/|x| ∈ Ωt} satisfying the estimates

|G0(x, y)| ≤ c (|x− y|2−n + |y|2−n) if |x|/2 ≤ |y| ≤ 2|x|, n ≥ 3,(11.3.21)

|G0(x, y)| ≤ c |x|1+τ−ε−n/2 |y|1−τ+ε−n/2 if |y| > 2|x|,(11.3.22)

|G0(x, y)| ≤ c |x|1−τ−ε−n/2 |y|1+τ+ε−n/2 if 2|y| < |x|(11.3.23)

with an arbitrarily small positive number ε. Since r∂xj = ωjr∂r + ∂ωj , we have

r2 L(∂x) = −r2
n∑

i,j=1

Ai,j ∂xi
∂xj

= −
n∑

i,j=1

Ai,j (r∂xi − ωi) r∂xj

= −
n∑

i,j=1

Ai,j

(
ωi(r∂r − 1) + ∂ωi

)(
ωjr∂r + ∂ωj

)
.

Applying the Mellin transform (11.3.12) to the equation

r2 L(∂x)G0(x, y) = I` r2 δ(x− y),

we get
L(λ) G̃0(λ, ω, ρ, θ) = I` Mr→λ r2δ(x− y),

where G̃0(λ, ω, ρ, θ) = (2π)−1/2
∫∞
0

r−λ−1 G0(rω, ρθ) dr denotes the Mellin trans-
form of G0 . Furthermore, inserting U(x) = r−λ−n+2 u(ω) into the equality

U(y) =
∫

K

δ(x− y)U(x) dx =
∫

Ωt

∞∫

0

rn−1 δ(x− y) U(x) dr dω ,
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we obtain

ρ−λ−n+2 u(θ) =
∫

Ωt

( ∞∫

0

r−λ+1 δ(x− y) dr
)

u(ω) dω .

This means that Mr→λ r2δ(x − y) = ρ−λ−n+2 δ(ω − θ). Hence the Green function
G(ω, θ;λ) is given by the equality

G(ω, θ; λ) = ρλ+n−2 G̃0(λ, ω, ρ, θ) = ρλ+n−2

∞∫

0

r−λ−1 G0(rω, ρθ) dr .

Here, by (11.3.22), we have

∣∣∣
ρ/2∫

0

r−λ−1 G0(rω, ρθ) dr
∣∣∣ ≤ cρ1−τ+ε−n/2

ρ/2∫

0

r−Re λ+τ−ε−n/2 dr = C ρ−Re λ−n+2

if Re λ < 1 + τ − ε, where C = c/(−Re λ + 1 + τ − ε−n/2). An analogous estimate
holds for the integral over the interval (2ρ, +∞). Furthermore, by (11.3.21), we
have

∣∣∣
2ρ∫

ρ/2

r−λ−1 G0(rω, ρθ) dr
∣∣∣ ≤ c ρ1−n−Re λ

2ρ∫

ρ/2

(∣∣∣ r
ρ
ω − θ

∣∣∣
2−n

+ 1
)

dr

= c ρ2−n−Re λ

2∫

1/2

(|rω − θ|2−n + 1) dr .

Using the inequality

2∫

1/2

|rω − θ|2−n dr ≤
{

c |ω − θ|3−n if n > 3,
c (| log |ω − θ| |+ 1) if n = 3,

we get the desired inequality for G(ω, θ;λ) if λ lies in the strip (11.3.18) and ε is
less than 2τ − 1.

Lemma 11.3.3. Let λ0 = (3 − n + ε)/2 + it, t ∈ R, ε > 0, be an eigenvalue

of the operator pencil Lχ. Furthermore, let u0 ∈ (
◦

W 1
2(Ωχ))` be an eigenvector

corresponding to λ0. Then

(11.3.24)
∫

∂Ωχ

|νn| |∂νu0|2C` dω ≤ C
c2
1

c2
0

ε (1 + ε)2
∫

Ωχ

|u0|2C` dω ,

where the constant C only depends on n.
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Proof: Let U(x) = rλ0u0(ω), K(1)
χ = {x ∈ Kχ : 1/2 < |x| < 1} and ∂K(1)

χ =
{x ∈ ∂Kχ : 1/2 < |x| < 1}. Then we have

0 = −Re
∫

K(1)
χ

n∑

i,j=1

(
Ai,j∂xi

∂xj
U, ∂xn

U
)
C` dx

= Re
∫

∂K(1)
χ

n∑

i,j=1

(νn

2
(
Ai,j∂xj

U, ∂xi
U

)
C` − νi

(
Ai,j∂xj

U, ∂xn
U

)
C`

)
dσ

+ Re
∫

Ωχ

n∑

i,j=1

(
1
2
ωn

(
Ai,j∂xj U, ∂xiU

)
C` − ωi

(
Ai,j∂xj U, ∂xnU

)
C`

)
dω rn−1

∣∣∣
r=1

r=1/2
.

Using the equality ∂xj U = νj∂νU on ∂Kχ\{0}, we obtain

1
2

∫

∂Ωχ

νn

n∑

i,j=1

(Ai,jνiνj∂νu0, ∂νu0)C` dω(11.3.25)

= (1− 2−ε)Re
∫

Ωχ

n∑

i,j=1

(
ωn

2

(
Ai,j(λ0ωj + ∂ωj )u0 , (λ0ωi + ∂ωi)u0

)
C`

− ωi

(
Ai,j(λ0ωj + ∂ωj )u0 , (λ0ωn + ∂ωn)u0

)
C`

)
dω.

Applying (11.3.15), we can estimate the right-hand side of (11.3.25) from above by

(11.3.26) C c1 ε
( ∫

Ωχ

n∑

j=1

∣∣(λ1ωj + ∂ωj )u0

∣∣2 dω + (1 + ε)2
∫

Ωχ

|u0|2dω
)

,

where λ1 = 1 − n
2 + it = λ0 − 1+ε

2 and the constant C depends only on n. Using
(11.3.13), (11.3.14) and the fact that u0 is an eigenfunction of Lχ corresponding to
the eigenvalue λ0, it can be easily seen that (11.3.26) does not exceed

C
c1

c0
(c1 + c0) ε(1 + ε)2

∫

Ωχ

|u0|2 dω.

Estimating now the left-hand side of (11.3.25) by means of (11.3.2), we arrive at
(11.3.24).

11.3.4. The width of the energy strip.

Lemma 11.3.4. Let χ, ψ, η be continuous functions on Rn−1 positively homo-
geneous of degree 1 such that

χ(x′) ≤ ψ(x′) ≤ η(x′) for all x′ ∈ Rn−1 .

We set Ω(χ, ψ) = {ω = (ω′, ωn) ∈ Sn−1 : χ(ω′) < ωn < ψ(ω′)}. Analogously,
we define the domains Ω(χ, η), Ω(ψ, η) ⊂ Sn−1. Then the following estimate is
satisfied for every function w ∈ W 1

2 (Ω(χ, η)):
∫

Ω(χ,ψ)

|w|2dω ≤ 16
3

ρ log 2
∫

Ω(χ,η)

|(λ1ωn + ∂ωn)w|2 dω + 2 (1 + q2)κ

∫

Ω(ψ,η)

|w|2 dω,
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where

λ1 = 1− n

2
+ it, t ∈ R,

ρ = max
|x′|=1

(ψ(x′)− χ(x′)) (η(x′)− χ(x′)),

κ = max
|x′|=1

(ψ(x′)− χ(x′)) (η(x′)− ψ(x′))−1,

and
q = max

|x′|=1
max

(|χ(x′)| , |η(x′)|).

Proof: If χ(x′) < xn < ψ(x′) < ξ < η(x′), then

|W (x′, xn)| ≤
ξ∫

xn

|∂tW (x′, t)|dt + |W (x′, ξ)|

and, therefore,

|W (x′, xn)|2 ≤ 2(η(x′)− χ(x′))

η(x′)∫

χ(x′)

|∂tW (x′, t)|2 dt + 2 |W (x′, ξ)|2 .

Integrating with respect to ξ over the interval (ψ(x′), η(x′)), we get

|W (x′, xn)|2 ≤ 2 (η(x′)− χ(x′))

η(x′)∫

χ(x′)

|∂tW (x′, t)|2 dt(11.3.27)

+
2

η(x′)− ψ(x′)

η(x′)∫

ψ(x′)

|W (x′, t)|2 dt .

We introduce the set

Q(χ, ψ) = {x ∈ Rn : 1 < |x′| < 2, χ(x′) < xn < ψ(x′)}.
Analogously, we define the sets Q(ψ, η) and Q(χ, η). Integrating (11.3.27) at first
with respect to xn over the interval (χ(x′), ψ(x′)) and then with respect to x′ over
the set 1 < |x′| < 2, we get

∫

Q(χ,ψ)

|W (x)|2dx ≤ 8ρ

∫

Q(χ,η)

|∂xnW (x)|2 dx + 2κ

∫

Q(ψ,η)

|W (x)|2dx .

If we set W (x) = rλ1w(ω), we obtain

3
2

∫

Ω(χ,ψ)

|w(ω)|2|ω′|−2dω ≤ 8 ρ log 2
∫

Ω(χ,η)

|(λ1ωn + ∂ωn)w|2 dω(11.3.28)

+ 3κ

∫

Ω(ψ,η)

|w(ω)|2 |ω′|−2 dω.

Here we have used the fact that r = |x| satisfies the inequality |ω′|−1 < r < 2|ω′|−1

in the domains Q(χ, ψ), Q(χ, η) and Q(ψ, η).
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Since |ωn| ≤ q|ω′|, we have (1+q2)−1/2 ≤ |ω′| ≤ 1 for all ω = (ω′, ωn) ∈ Ω(φ, η).
Using these inequalities, we deduce the assertion of the lemma from (11.3.28).

Corollary 11.3.1. Let φ, χ be continuous functions on Rn−1 positively homo-
geneous of degree 1 satisfying the inequalities

(11.3.29) φ(x′) ≤ χ(x′) ≤ φ(x′) + τ |x′| for all x′ ∈ Rn−1

with a constant τ ∈ (0, 1]. Then the following inequality is satisfied for each w ∈
W 1

2 (Ωχ):

(11.3.30)
∫

Ωχ

|w|2 dω ≤ 15
(

τ

∫

Ωχ

|(λ1ωn + ∂ωn
)w|2 dω + (1 + φ2

0)
∫

Ωφ+τ|x′|

|w|2 dω

)
,

where φ0 = max
|x′|=1

|φ(x′)|.

Proof: We set ψ(x′) = φ(x′) + τ |x′| and η(x′) = φ(x′) + (τ + 1)|x′| and apply
Lemma 11.3.4 to the functions χ, ψ and η. Since ρ ≤ 2τ , κ ≤ τ and q ≤ φ0 + τ +1,
we get the inequality

∫

Ω(χ,ψ)

|w|2dω ≤ 15 τ

∫

Ωχ

|(λ1ωn + ∂ωn)w|2 dω + (14 + 15φ2
0)

∫

Ω(ψ,η)

|w|2 dω

which implies (11.3.30).

The last result is used in the proof of the following theorem.

Theorem 11.3.2. Let φ be a fixed continuous function on Rn−1 which is posi-
tively homogeneous of degree 1. Furthermore, let χ ∈ C∞(Rn−1\{0}) be a positively
homogeneous function of degree 1 satisfying the inequalities

φ(x′) ≤ χ(x′) ≤ φ(x′) +
τ

2
|x′| ,

where τ = 1
30c0/c1. Then the operator pencil Lχ has no eigenvalues in the strip

|Re λ− 1 + n/2| < (1 + ε1)/2

where ε1 =
(
c

∫

Sn−1

(1 + |∇x′χ|2)dx′
)−1

. Here the constant c depends only on n, c0,

c1 and on the function φ.

Proof: Let λ0 = (3− n + ε)/2 + it be an eigenvalue of the operator pencil Lχ,
where t ∈ R and ε ∈ [0, 1], and let u0 be a corresponding eigenvector. By Lemma
11.3.3, we have

(11.3.31)
∫

∂Ωχ

|νn| |∂νu0|2C` dω ≤ c ε

∫

Ωχ

|u0|2C` dω.

Here and in the sequel, we denote by c constants which depend only on n, c0, c1

and φ. We set λ1 = 1+ it−n/2. Then, by means of (11.3.13) and (11.3.14), we get

(11.3.32) c0

n∑

j=1

∫

Ωχ

∣∣(λ1ωj + ∂ωj

)
u0

∣∣2
C` dω ≤ c1

∫

Ωχ

|u0|2C` dω .
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Using Corollary 11.3.1, we can estimate the integral on the right-hand side of
(11.3.32). This leads to the inequality

c0

n∑

j=1

∫

Ωχ

|(λ1ωj + ∂ωj
)u0|2C` dω

≤ 15 c1

(
τ

∫

Ωχ

|(λ1ωn + ∂ωn
)u0|2C` dω + (1 + φ2

0)
∫

Ω(φ+τ|x′|)

|u0|2C` dω
)

.

Consequently, we have

n∑

j=1

∫

Ωχ

|(λ1ωj + ∂ωj )u0|2C` dω ≤ c

∫

Ω(φ+τ|x′|)

|u0|2C` dω.

This inequality and (11.3.31) together with the estimate

n∑

j=1

∫

Ωχ

|(λ1ωj + ∂ωj )u0|2C` dω ≥ (|λ1|2 + µ0(χ))
∫

Ωχ

|u0|2 dω

yield

(11.3.33)
∫

∂Ωχ

|νn| |∂νu0|2C` dω ≤ cε

∫

Ω(φ+τ|x′|)

|u0|2C` dω.

We denote by G(ω, θ;λ) the Green function of problem (11.3.17) in the domain

Ω = {ω ∈ Sn−1 : ωn > (−φ0 − 1)|ω′|}.

This function exists for each λ lying in the strip |Re λ−1+n/2| ≤ (1+ε0)/2, where
ε0 is a positive number depending only on n, φ0 and Ai,j . By means of (11.3.19)
and (11.3.20), we can estimate the right-hand side of (11.3.33). Then we get

∫

∂Ωχ

|νn| |∂νu0|2C` dω ≤ cε
( ∫

∂Ωχ

|∂νu0|C` dω
)2

(11.3.34)

≤ cε

∫

∂Ωχ

|νn| |∂νu0|2dω ·
∫

∂Ωχ

|νn|−1dω.

Here
∫

∂Ωχ

|νn|−1 dω =
n− 1

1− 21−n

∫

∂K(1)
χ

|νn|−1 dσ =
n− 1

1− 21−n

∫

Q
(1)
χ

|νn|−2 dx′,

where ∂K(1)
χ = {x ∈ ∂Kχ : 1/2 < |x| < 1} and

Q(1)
χ =

{
x′ ∈ Rn−1 :

1
2

(1 + χ(ω′)2)−1/2 < |x′| < (1 + χ(ω′)2)−1/2
}
.
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Since νn(x′) = (1 + |∇x′χ(x′)|2)−1/2 is independent of |x′|, we get

∫

∂Ωχ

|νn|−1dω =
n− 1

1− 21−n

∫

Sn−2

( (1+χ(ω′)2)−1/2∫

1
2 (1+χ(ω′)2)−1/2

|x′|n−2 d|x′|
) (

1 + |∇χ(ω′)|2) dω′

≤
∫

Sn−2

(1 + |∇χ(ω′)|2) dω′ .

Therefore, (11.3.34) is impossible if ε satisfies the inequality

ε < ε1 =
(
c

∫

Sn−2

(1 + |∇x′χ(x′)|2) dx′
)−1

.

Thus, there are no eigenvalues of the pencil Lχ on the line Reλ = (3−n + ε)/2 for
0 ≤ ε < ε1. Using parts 4) and 5) of Theorem 11.3.1, we get the assertion of the
lemma.

Theorems 11.2.1 and 11.3.2 enable us to prove the following result.

Theorem 11.3.3. Let φ be a continuous and positively homogeneous function
of degree 1 on Rn−1 such that the restriction of φ to the sphere Sn−2 belongs to the
Sobolev space W 1

2 (Sn−2). Then the strip

(11.3.35)
∣∣∣Re λ− 1 +

n

2

∣∣∣ ≤ 1
2

does not contain eigenvalues of the pencil Lφ.

Proof: Let τ be the same positive real number as in Theorem 11.3.2. Further-
more, let {χj} ⊂ C∞(Rn−1) be a sequence of positively homogeneous functions of
degree 1 such that

(i) φ(x′) ≤ χj(x′) ≤ φ(x′) + τ
2 |x′| and χj+1(x′) ≤ χj(x′) for all x′ ∈ Rn−1.

(ii) χj

∣∣
Sn−2 → φ

∣∣
Sn−2 in C(Sn−2) as j →∞.

(iii)
∥∥χj

∣∣
Sn−2

∥∥
W 1

2 (Sn−2)
≤ c, where c does not depend on j.

Such a sequence {χj} can be always found, since φ is continuous on Rn−1 and the
restriction of φ to the unit sphere belongs to W 1

2 (Sn−2).
Due to Theorem 11.3.2, there exists a positive number ε1 which does not depend

on j such that the strip

|Re λ− 1 + n/2| < (1 + ε1)/2

is free of eigenvalues of the pencil Lχj for every index j. Let

b(u, v;λ) = a(u, v;λ + 1− n/2), X =
◦

W
1
2(Ωφ))` , and Xj =

◦
W

1
2(Ωχj )

` .

Furthermore, let the operator A(λ) be defined by (11.2.2). Then the conditions of
Theorem 11.2.1 are satisfied. Consequently, analogously to the proof of Theorem
11.2.2, we obtain that the strip (11.3.35) does not contain eigenvalues of the oper-
ator pencil Lφ.

Remark 11.3.1. The assumption of Theorem 11.3.3 is satisfied, e.g., if φ ∈
C0,1(Rn−1). We give another example.
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Let Q be an arbitrary point on Sn−2 and let φ be a positively homogeneous
function of degree 1 on Rn−1 such that φ

∣∣
Sn−2 is smooth on Sn−2\Q and has the

asymptotics
φ(y) = c|y|κ , κ > 2− n/2

in a neighborhood of the point Q where y = (y1, . . . , yn−2) are local coordinates on
the sphere Sn−2 in a neighborhood of Q with the point Q at the origin. Then the
function φ satisfies the condition of Theorem 11.3.3.

11.4. Second order systems in a polyhedral cone

This section deals with operator pencils generated by the Dirichlet problem for
elliptic systems of second order partial differential equations in a three-dimensional
polyhedral cone. The main result of this section is the nonexistence of eigenvalues
in the strip |Re λ+1/2| ≤ 1 if all, with the possible exception of one, interior angles
at the edges are less than π.

11.4.1. Nonexistence of eigenvalues on the line Re λ = 1/2. Let K be
a cone in R3 with vertex at the origin such that

∂K\{0} =
N⋃

j=1

Γj ∪
N⋃

j=1

Rj ,

where N > 2, Γj are plane angles, and Rj are rays. Here it is assumed that the
boundary of Γj coincides with Rj ∪ Rj+1 ∪ {0} for j = 1, . . . , N − 1 and with
RN ∪ R0 ∪ {0} if j = N . By αj we denote the interior angle between two plane
parts of the boundary ∂K intersecting along the edge Rj . Again let Ω be the
intersection of K with the unit sphere S2.

We consider the differential operator

L(Dx) =
3∑

i,j=1

Ai,j Dxi Dxj

where Ai,j are `× ` matrices such that A∗i,j = Aj,i, and assume that there exists a
positive constant c0 such that

(11.4.1)
3∑

i,j=1

(
Ai,jf

(j), f (i)
)
C` ≥ c0

3∑

j=1

|f (j)|2C`

for all f (1), f (2), f (3) ∈ C`. It is clear that the operator L(Dx) is strongly elliptic.
We are interested in solutions of the Dirichlet problem

L(Dx) U = 0 in K,(11.4.2)
U = 0 on ∂K\{0}.(11.4.3)

which have the form (10.1.4), where λ0 is a complex number and uk ∈
◦

W1
2(Ω)`. As it

was mentioned in Section 10.1, the vector function (10.1.4) is a solution of problem
(11.4.2), (11.4.3) if and only if λ0 is an eigenvalue of the operator pencil L defined
by (10.1.5) and the vector functions u0, . . . , us form a Jordan chain corresponding
to this eigenvalue.

Lemma 11.4.1. Let αj ∈ (0, π) for j = 2, . . . , N and α1 ∈ (0, 2π]. Then the line
Re λ = 1/2 does not contain eigenvalues of the operator pencil L.
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Proof. Let λ be an eigenvalue of the pencil L on the line Re λ = 1/2 and let

u ∈ ◦
W 1

2(Ω)` be a corresponding eigenfunction. Since the boundary of Ω is smooth
outside the points ωk = Rk ∩ ∂Ω, k = 1, . . . N , the vector function u is smooth
outside these points.

It can be easily verified that the principal part of the differential operator L(λ)
at ωk satisfies the conditions in Section 8.5. Using Theorems 8.6.1, 8.6.2 together
with well-known results on the asymptotics of solutions of general elliptic boundary
value problems near angular points (see Section 1.4), we conclude that

(11.4.4) u(ω) = O
(|ω − ωk|1+δ

)

in a neighborhood of the point ωk, k = 2, . . . , N , for some positive δ and

(11.4.5) u(ω) = O
(|ω − ω1|1/2+δ

)

in a neighborhood of ω1. Moreover, both relations (11.4.4) and (11.4.5) may be
differentiated.

We introduce the truncated cone

K1 =
{
x ∈ R3 : 1 < r < 2, ω ∈ Ω

}

and the set

(∂K)1 =
{
x ∈ ∂K : 1 < r < 2

}
.

Let ν = (ν1, ν2, ν3) denote the unit exterior normal to ∂K, and let τ be the vector
directed along the ray R1. Furthermore, let U(x) = rλu(ω). Since L(Dx)U = 0 in
K, we have

0 =
∫

K1

(
L(Dx)U, D2

τU
)
C` dx =

3∑

i,j=1

∫

K1

(
Ai,jDxj DτU, DxiDτU

)
C` dx(11.4.6)

− i

3∑

i,j=1

∫

(∂K)1

(
νi

(
Ai,jDxj U, D2

τU
)
C` − (τ, ν)

(
Ai,jDxj U, DxiDτU

)
C`

)
dσ.

Here, we made use of the fact that the integrals over the boundary lying on the
spheres r = 1 and r = 2 mutually cancel. According to (11.4.4), (11.4.5), all the
integrals in (11.4.6) make sense.

We show that the last sum in the right-hand side of (11.4.6) vanishes. Since
the first integral in (11.4.6) is real, it suffices to prove that

Im
3∑

i,j=1

∫

Γn,1

(
νi

(
Ai,jDxj U, D2

τU
)
C` − (τ, ν)

(
Ai,jDxj U, DxiDτU

)
C`

)
dσ(11.4.7)

= 0

for n = 1, . . . , N , where Γn,1 =
{
x ∈ Γn : 1 < r < 2

}
. Without loss of generality,

we can assume that Γn,1 lies in the plane x3 = 0 (one can always gain this by virtue
of a linear change of coordinates) and that ν = (0, 0, 1) on Γn,1. Then the left-hand
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side of (11.4.7) is equal to

Im
∫

Γn,1

((
A3,3Dx3U,D2

τU
)
C` − τ3

3∑

i=1

(
Ai,3Dx3U, Dxi

DτU
)
C`

)
dσ

= Im
∫

Γn,1

( 2∑

j=1

τj Dxj

(
A3,3Dx3U, Dx3U

)
C` −

2∑

i=1

τ3Dxi

(
Ai,3Dx3U,Dx3U

)
C`

)
dσ

= 0.

Thus, we get
3∑

i,j=1

∫

K1

(
Ai,jDxj ∂τU, ∂xi∂τU

)
C`dx = 0.

Using estimate (11.4.1), we obtain

DτU = c = const. in K.

Since DτU is a positive homogeneous function of degree −1/2, we get DτU = 0. If
K is not a dihedral angle, this together with U = 0 on ∂K implies U = 0 in K. The
lemma is proved.

11.4.2. The width of the energy strip.

Theorem 11.4.1. Let αj ∈ (0, π) for j = 2, . . . , N and α1 ∈ (0, 2π]. Then the
strip

(11.4.8) |Re λ + 1/2| ≤ 1

is free of eigenvalues of the operator pencil L.

Proof: Since the number λ is an eigenvalue of L simultaneously with −1−λ, we
conclude from Lemma 11.4.1 that the line Re λ = −3/2 does not contain eigenvalues
of the pencil L.

Let I` be the `× ` identity matrix. We set

Lt(Dx) = −(1− t)I` ∆ + t L(Dx) for t ∈ [0, 1].

By Lt we denote the operator pencil generated by the Dirichlet problem for the
operator Lt. Note that the coefficients of the operators Lt satisfy condition (11.4.1).
Hence, by Lemma 11.4.1, the operator pencils Lt have no eigenvalues on the lines
Re λ = −3/2 and Re λ = 1/2. Using the strong ellipticity of Lt(Dx), we can prove,
analogously to Lemma 10.1.3, that the operator pencils Lt do not have eigenvalues
in the strip −3/2 ≤ Re λ ≤ 1/2 for large |λ|. By Theorem 1.1.4, we conclude from
this that the operator pencils Lt, 0 ≤ t ≤ 1, have the same number of eigenvalues
(counting multiplicities) in the strip (11.4.8). Thus, it suffices to show that the
operator pencil L0 = −I`(δ + λ(λ + 1)) has no eigenvalues in the strip (11.4.8).

Let K0 be the dihedral angle with opening α1 and with the edge directed along
the ray R1. Furthermore, let Ω0 = K0 ∩ S2. Then, by Theorem 10.5.3, there are
no eigenvalues of the operator pencil

−δ − λ(λ + 1) :
◦

W
1
2(Ω0) → W−1

2 (Ω0)

in the strip |Re λ + 1/2| < 1/2 + π/α1. Since Ω ⊂ Ω0, we conclude from Theorem
2.2.4 that the strip (11.4.8) is free of eigenvalues of the pencil L0. The proof is
complete.
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11.5. Exterior of a thin cone

In this section we consider the Dirichlet problem in a cone K which is the
exterior of a thin cone. We assume here that 2m ≥ n and prove that the eigenvalues
of the corresponding operator pencil are close to those of the Sobolev problem. This
shows, in particular, that the estimate for the energy strip given in Theorem 11.1.1
is sharp in the case 2m ≥ n.

11.5.1. Asymptotics of solutions of the Sobolev problem on Sn−1.
Let 2m ≥ n and let

(11.5.1) L(λ) :
◦

W
m
2 (Sn−1\N) → W−m

2 (Sn−1\N)

be the operator of the problem

(11.5.2)
{ L(λ) u(ω) = f(ω) on Sn−1\N,

Dα
x′u|x′=0 = 0 for |α| ≤ m− n/2

which is generated by the Sobolev problem (10.4.2), (10.4.3) in the exterior of the
ray R = {x = (0, xn) ∈ Rn : xn ≥ 0}. Here N denotes the north pole on the sphere
Sn−1. Suppose that λ is a regular point of the pencil (11.5.1). Note that every
regular point, except λ = m−n/2 (if n is even), is noninteger (see Theorem 10.4.1).

We consider the equation

(11.5.3) L(λ)u(ω) = f(ω) on Sn−1.

By the definition of the differential operator L(λ), this equation is equivalent to

L(Dx)
(
rλ u(ω)

)
= rλ−2m f(ω) on Rn\{0}.

Properties of the pencil

(11.5.4) L(λ) : W s
2 (Sn−1)` → W s−2m

2 (Sn−1)`, s ∈ R,

were studied in Section 10.2. In particular, the following assertions are valid:

(1) The spectrum of the pencil (11.5.4) is exhausted by integers. For nonin-
teger λ the operator (11.5.4) is an isomorphism.

(2) If λ = m− n/2 and n is even, then the condition
∫

Sn−1

(f , c ωγ)C` dω = 0 for all c ∈ C`, |γ| = m− n/2

is necessary and sufficient for the solvability of equation (11.5.3).

For the first assertion we refer to Theorem 10.2.2, while the second assertion follows
from the fact that the kernel of the adjoint operator L+(m − n/2) is spanned by
the functions c ωγ , where c ∈ C`, |γ| = m− n/2 (see Theorem 10.2.3).

Let λ be noninteger. Then by Gβ(λ, ·) ∈ W k
2 (Sn−1)`, k < 2m−|β|− (n−1)/2,

we denote the solution of the equation (11.5.3) with f = I` Dβ
x′δ(x

′), where I` is
the ` × ` identity matrix. Here and below we use the local coordinates x′ of the
point x =

(
x′, (1− |x′|2)1/2

) ∈ Sn−1 in a neighborhood of the north pole N.
In the case λ = m− n/2, n even, Gβ(λ, ·) denotes the solution of (11.5.3) with

f = I` Dβ
x′δ(x

′) + fβ , where fβ are `× `-matrices with elements from C∞(Sn−1)
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such that ∫

Sn−1

(
fβ , c ωγ

)
dω = −

∫

Sn−1

(
I` Dβ

x′δ(x
′) , c ωγ

)
dω

for all c ∈ C`×`, |γ| = m − n/2. Clearly, there exist matrices fβ satisfying this
condition.

Remark 11.5.1. Let ζ = ζ(x′) be a smooth function with support in a neigh-
borhood of the point x′ = 0 and ζ(x′) = 1 for small |x′|. Then the following
asymptotic formulas are valid for Gβ(λ, ·), |β| ≤ 2m− n :

Gβ(λ, ω) = ζ(x′)
(
|x′|2m−n+1−|β|Φβ(λ,

x′

|x′| ) + p2m−n+1−|β|(λ, x′)
)

(11.5.5)

+ O(|x′|2m−n−|β|+3/2)

for even n and

Gβ(λ, ω) = ζ(x′)
(
|x′|2m−n+1−|β| (Ψ(1)

β (λ,
x′

|x′| ) log |x′|+ Ψ(2)
β (λ,

x′

|x′| )
))

(11.5.6)

+ ζ(x′) q2m−n+1−|β|(λ, x′) + O(|x′|2m−n−|β|+3/2)

for odd n. Here pk and qk are matrix polynomials of degree ≤ k and Φβ , Ψ(1)
β , Ψ(2)

β

are smooth functions on Sn−2.

Lemma 11.5.1. 1) Let λ be a regular point of the pencil (11.5.1). Furthermore,
let f ∈ W−s

2 (Sn−1\N)`, 0 ≤ s ≤ m. Then problem (11.5.2) has the unique solution

u =
∑

s−(n−1)/2≤|β|≤m−n/2

Gβ(λ, ·) cβ + v,

where v ∈ W 2m−s
2 (Sn−1)` and cβ ∈ C`. The function v and the coefficients cβ

satisfy the estimate

(11.5.7)
∑

s−(n−1)/2≤|β|≤m−n/2

|cβ |+ ‖v‖W 2m−s
2 (Sn−1)` ≤ c ‖f‖W−s

2 (Sn−1\N)` ,

where c is a constant independent of f.
2) Let λ be a regular point of the pencil (11.5.1) and f ∈ W s

2 (Sn−1)`, s ≥ 0.
Then problem (11.5.2) has the unique solution

u =
∑

|β|≤m−n/2

Gβ(λ, ·) cβ + v,

where v ∈ W 2m+s
2 (Sn−1)` and cβ ∈ C`. The function v and the coefficients cβ

satisfy the estimate
∑

|β|≤m−n/2

|cβ |+ ‖v‖W 2m+s
2 (Sn−1)` ≤ c ‖f‖W s

2 (Sn−1\N)` ,

where c is a constant independent of f.

Proof: We limit considerations to assertion 1), since the proof of the second
assertion requires only obvious changes.
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We introduce an auxiliary operator which performs a continuous extension of a
linear functional f on

◦
Ws

2(S
n−1\N)` to a linear functional F on W s

2 (Sn−1)`, s ≥ 0.
For arbitrary f ∈ W−s

2 (Sn−1\N)` and ϕ ∈ W s
2 (Sn−1)`, s ≥ 0, we set

(11.5.8) (F,ϕ)L2(Sn−1)` =
(
f , ϕ− ζ

∑

|α|<s−(n−1)/2

x′α

α!
(∂α

x′ϕ)(0)
)

L2(Sn−1)`
.

Here ζ = ζ(x′) is an arbitrary smooth function with support in a neighborhood of
the point x′ = 0 and ζ(x′) = 1 for small |x′|. Since

ϕ− ζ
∑

|α|<s−(n−1)/2

x′α

α!
(∂α

x′ϕ)(0) ∈ ◦
W

s
2(S

n−1\N)`,

the right-hand side of (11.5.8) is well-defined. Obviously, the functionals f and F

coincide on
◦

Ws
2(S

n−1\N)`. Furthermore,
∣∣(F,ϕ)L2(Sn−1)`

∣∣

≤ ‖f‖W−s
2 (Sn−1\N)`

∥∥∥ϕ− ζ
∑

|α|<s−(n−1)/2

x′α

α!
(∂α

x′ϕ)(0)
∥∥∥ ◦

W s
2(S

n−1\N)`

≤ c ‖f‖W−s
2 (Sn−1\N)` ‖ϕ‖W s

2 (Sn−1)` .

Hence the mapping f → F is continuous from W−s
2 (Sn−1\N)` into W−s

2 (Sn−1)`.
Using this operator, we write (11.5.2) in the form

(11.5.9)





L(λ)u(ω) = F +
∑

|β|≤m−n/2

cβ Dβ
x′ δ(x

′) on Sn−1,

Dα
x′u = 0 for x′ = 0, |α| ≤ m− n/2.

Suppose λ is not an integer. If n is odd, then this assumption is equivalent to the
regularity of the point λ, and in the case of even n this assumption excludes only
the regular point λ = m− n/2 (cf. Theorem 10.4.1).

If |β| ≤ m− n/2, then Gβ ∈ Wm
2 (Sn−1)`×`. We introduce the block matrix

(
Sα,β(λ)

)
|α|,|β|≤m−n/2

=
(
Dα

x′Gβ(λ, x′)|x′=0

)
|α|,|β|≤m−n/2

and show that it is nonsingular. In fact, if kβ ∈ C` are vectors such that
∑

|β|≤m−n/2

Sα,β(λ) kβ = 0 for |α| ≤ m− n/2,

then the vector-valued function u =
∑

β Gβ(λ, ·) kβ is a solution of the equation

L(λ)u = 0 on Sn−1\N which belongs to the space
◦

W m
2 (Sn−1\N)`. Since λ is a

regular point of the pencil (11.5.1), it follows that u = 0 and, consequently, kβ = 0
for |β| ≤ m− n/2. This proves the regularity of the matrix (Sα,β).

Let w ∈ W 2m−s
2 (Sn−1)` be a solution of the equation

L(λ) w = F on Sn−1.

Then the constants cβ in (11.5.9) are given by the equalities

Dα
x′w|x′=0 + Sα,β cβ = 0 for |α| ≤ m− n/2.
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If (Tβ,α) is the inverse matrix of (Sα,β), then we have

cβ = −
∑

|α|≤m−n/2

Tβ,α(λ) Dα
x′w|x′=0 .

This implies the estimate
∑

|β|≤m−n/2

|cβ | ≤ c ‖f‖W−s
2 (Sn−1)` .

We put

F = F +
∑

|β|<s−(n−1)/2

cβ Dβ
x′ δ(x

′) ∈ W−s
2 (Sn−1)`.

Then

u = v +
∑

s−(n−1)/2≤|β|≤m−n/2

Gβ(λ, ·) cβ ,

where v ∈ W 2m−s
2 (Sn−1)` is a solution of the equation L(λ) v = F on Sn−1. This

implies the estimate

‖v‖W 2m−s
2 (Sn−1)` ≤ c ‖F‖W−s

2 (Sn−1)` ≤ c ‖f‖W−s
2 (Sn−1\N)` .

Now we consider the case of even n and λ = m− n/2. In this case the equation

L(λ)u(ω) = F +
∑

|β|≤m−n/2

cβ Dβ
x′δ(x

′) on Sn−1

is solvable if the orthogonality condition
(
F , cωγ

)
L2(Sn−1)` +

∑

|β|≤m−n/2

(
cβ Dβ

x′δ(x
′) , cωγ

)
L2(Sn−1)` = 0

is satisfied for c ∈ C` and |γ| = m−n/2. This condition uniquely defines constants
cβ for which (11.5.7) is obviously valid.

Using the functions Gβ , we can write a special solution of (11.5.9) in the form

u =
∑

|β|≤m−n/2

Gβ cβ + v1 ,

where v1 ∈ W 2m−s
2 (Sn−1)` and the norm of v1 is estimated by the right-hand side

of (11.5.7). Since the nontrivial solutions of the equation L(m − n/2)u = 0 on
Sn−1 are exhausted by the functions cωγ with c ∈ C`, |γ| = m−n/2 (see Theorem
10.2.3), it follows that the general solution of (11.5.9) has the form

(11.5.10) u =
∑

|β|≤m−n/2

Gβ cβ + v1 +
∑

|γ|=m−n/2

dγ ωγ .

The vectors dγ are uniquely defined from the relations Dα
x′u|x′=0 = 0, |α| ≤ m−n/2.

It is clear that (11.5.10) entails the required representation. The lemma is proved.
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11.5.2. Estimates for the eigenvalues of a perturbed problem. It fol-
lows from (10.1.9) and (10.1.12) that

(11.5.11) Re
∫

Sn−1\N

(L(m− n/2 + it)u, u
)
C` dω ≥ c

m∑

j=0

|t|2j ‖u‖2◦
W

m−j
2 (Sn−1\N)`

for all u ∈ C∞0 (Sn−1\N)`, t ∈ R. This, in particular, implies that the operator

L(m− n/2) :
◦

W
m
2 (Sn−1\N)` → W−m

2 (Sn−1\N)`

defines an isomorphism. We denote its inverse by L−1.
Let ε be a small positive number and let Ωε be a domain on Sn−1 such that

N ∈ Sn−1\Ωε and the diameter of Sn−1\Ωε is equal to ε. By

Lε(λ) :
◦

W
m
2 (Ωε)` → W−m

2 (Ωε)`

we denote the operator of the Dirichlet problem

L(λ)u = f in Ωε,

Dα
x′u = 0 on ∂Ωε, |α| ≤ m− 1.

Furthermore, let L−1
ε denote the inverse operator of Lε(m − n/2). This operator

exists by (11.5.11) and maps W−m
2 (Ωε)` onto

◦
Wm

2 (Ωε)`. Its norm is bounded uni-
formly in ε.

Let χε be the operator of restriction to Ωε acting from W−m
2 (Sn−1\N)` into

W−m
2 (Ωε)`, and let πε be the operator of extension by zero acting from

◦
Wm

2 (Ωε)`

into
◦

Wm
2 (Sn−1\N)`.

Lemma 11.5.2. For all f ∈ W−m+1
2 (Sn−1\N)` there is the estimate

‖(L−1 − πεL−1
ε χε)f‖ ◦

W m
2 (Sn−1\N)`

≤ c ε1/2 ‖f‖W−m+1
2 (Sn−1\N)`

if n is even and

‖(L−1 − πεL−1
ε χε)f‖ ◦

W m
2 (Sn−1\N)`

≤ c | log ε|−1/2 ‖f‖W−m+1
2 (Sn−1\N)`

if n is odd.

Proof: Let f be an arbitrary element of the space W−m+1
2 (Sn−1\N)`. We put

u = L−1 f , uε = πεL−1
ε χεf , w = u− uε.

The function w is the solution of the boundary value problem

(11.5.12) L(m− n/2)w = 0 on Ωε, w − u ∈ ◦
W

m
2 (Ωε)`.

The condition w−u ∈ ◦
Wm

2 (Ωε)` can be replaced by the inclusion w−ηεu ∈
◦

Wm
2 (Ωε)`,

where ηε is a function in C∞0 (Sn−1) equal to unity in a neighborhood of the set
Sn−1\Ωε. This and (11.5.12) imply that∫

Ωε

(
L(m− n/2) (w − ηεu) , w − ηεu

)
C`

dω =
∫

Ωε

(
L(m− n/2) ηεu , ηεu− w

)
C`

dω.

Applying the G
◦
arding inequality (11.5.11) for t = 0, we obtain

(11.5.13) ‖w − ηεu‖ ◦
W m

2 (Ωε)`
≤ c ‖ηεu‖W m

2 (Ωε)` .
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with a constant c independent of ε. Since w = ηεu on Sn−1\Ωε, by (11.5.13), we
have

(11.5.14) ‖w‖ ◦
W m

2 (Sn−1\N)`
≤ c ‖ηεu‖ ◦

W m
2 (Sn−1\N)`

.

Let n be even. Then, by Lemma 11.5.1, there is the representation

u = v +
∑

|β|=m−n/2

Gβ(ω) cβ ,

where v ∈ Wm+1
2 (Sn−1)`. Moreover,

‖v‖W m+1
2 (Sn−1)` +

∑

|β|=m−n/2

|cβ | ≤ c ‖f‖W−m+1
2 (Sn−1\N)` .

We introduce the space V k
2,σ(Sn−1\N), k = 0, 1, . . . , σ ∈ R, which consists of all

functions u ∈ W k
2,loc(S

n−1\N) for which the integral
∫

|x′|≤1/2

∑

|α|≤k

|x′|2(σ−k+|α|) |Dα
x′u|2 dx′

is finite. By Theorem 2.1 in Maz′ya and Plamenevskĭı’s paper [179] (see also
our book [136, Th.7.1.1]), there exists a vector-valued polynomial pm−n/2+1 =
pm−n/2+1(x′) of degree ≤ m − n/2 + 1 with coefficients majorized by the norm of
the vector-valued function v in Wm+1

2 (Sn−1)` such that

v − ζ pm−n/2+1 ∈ V m+1
2,σ (Sn−1\N)`

for arbitrary σ > 0. Here ζ = ζ(x′) is a smooth function with support in a neigh-
borhood of the point x′ = 0 and ζ(x′) = 1 for small |x′|. By Remark 11.5.1, the
functions Gβ have the representation

Gβ(ω) = ζ
(
Q

(β)
m−n/2+1(x

′) + uβ(x′)
)

+ O(|x′|m−n/2+3/2),

where Q
(β)
m−n/2+1 is a polynomial of degree m− n/2 + 1 and uβ is positively homo-

geneous of degree m− n/2 + 1. Since Dα
x′u = 0 at the point N for |α| ≤ m− n/2,

it follows that

pm−n/2+1 +
∑

|β|=m−n/2

Q
(β)
m−n/2+1 cβ

is a homogeneous polynomial of degree m− n/2 + 1. Consequently, we have

u− ζ u(1) ∈ V m
2,σ(Sn−1\N)`

for σ > −1, where u(1) is a function, positively homogeneous of degree m−n/2+1
satisfying the conditions

|Dα
x′u

(1)(x′)| ≤ cα ‖f‖W−m+1
2 (Sn−1\N)` for |x′| = 1.

Furthermore, (11.5.7) implies the estimate

(11.5.15) ‖u− ζu(1)‖V m
2,σ(Sn−1\N)` ≤ c ‖f‖W−m+1

2 (Sn−1\N)` .
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Suppose that ηε(x′) = η(x′/ε), where η ∈ C∞0 (Rn−1), η(x′) = 1 for |x′| < 1, and
η(x′) = 0 for |x′| > 2. Now (11.5.15) entails

‖ηε (u− ζu(1))‖ ◦
W m

2 (Sn−1\N)`
≤ c ‖ηε (u− ζu(1))‖V m

2,σ(Sn−1\N)`

≤ c ε−σ ‖u− ζu(1)‖V m
2,σ(Sn−1\N)` ≤ c ε−σ ‖f‖W−m+1

2 (Sn−1\N)`

for σ > −1. It is readily verified that

‖ηεζu(1)‖V m
2,σ(Sn−1\N)` ≤ c ε1/2 ‖f‖W−m+1

2 (Sn−1\N)` .

The last two inequalities together with (11.5.14) lead to

‖w‖ ◦
W m

2 (Sn−1\N)`
≤ c ε1/2 ‖f‖W−m+1

2 (Sn−1\N)` .

Thus, we have proved the lemma for even n.
Now let n be an odd number. Then, by Lemma 11.5.1, we have

u = v +
∑

|β|=m−(n+1)/2

Gβ(ω) cβ ,

where v ∈ Wm+1
2 (Sn−1)`. Moreover,

‖v‖W m+1
2 (Sn−1)` +

∑

|β|=m−(n+1)/2

|cβ | ≤ c ‖f‖W−m+1
2 (Sn−1\N)` .

Again, by means of [179, Th.2.1], we get

v − ζ pm−(n−3)/2 ∈ V m
2,σ(Sn−1\N)`

for σ > −1, where pm−(n−3)/2 is a polynomial of degree ≤ m − (n − 3)/2. Hence,
by (11.5.6), there exist a polynomial Q of degree ≤ m − (n − 3)/2 and smooth
functions Ψ(1), Ψ(2) on Sn−2 such that the function

u1
def
= u− ζ

(
Q(x′) + |x′|m−(n−3)/2

(
Ψ(1)(ω′) log |x′|+ Ψ(2)(ω′)

))

belongs to V m
2,σ(Sn−1\N)` for σ > −1. Since Dα

x′u = 0 at N for |α| ≤ m − n/2, it
follows that Q is the sum of homogeneous polynomials of degree m− (n− 1)/2 and
m− (n− 3)/2. Furthermore, the coefficients of Q, the functions Ψ(1) and Ψ(2) and
all their derivatives, and the norm of u1 in the space V m

2,σ(Sn−1\N)` are majorized
by

c ‖f‖W−m+1
2 (Sn−1\N)` .

We put ηε(x′) = η(| log |x′|/ log ε|), where η is a smooth function, η(t) = 1 for t ≤ 2,
and η(t) = 0 for t ≥ 3. It is clear that

|Dα
x′ηε(x′)| ≤ cα |x′|−|α| | log ε|−1 for |α| > 0

and that the supports of the derivatives Dα
x′ηε, α 6= 0, are contained in the domain

{x′ : ε3 < |x′| < ε2}. Therefore,

‖ηεu‖ ◦
W m

2 (Sn−1\N)`
(11.5.16)

≤ c
(
‖ηεu1‖V m

2,σ(Sn−1\N)` + ‖ηε(u− u1)‖ ◦
W m

2 (Sn−1\N)`

)
.

Here for σ > −1 we have

‖ηεu1‖V m
2,σ(Sn−1\N)` ≤ c ε−σ‖ηεu1‖V m

2,σ(Sn−1\N)` ≤ c ε−σ ‖f‖W−m+1
2 (Sn−1\N)` .
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Furthermore, the above properties of ηε imply that the second summand on the
right in (11.5.16) does not exceed

c | log ε|−1/2 ‖f‖W−m+1
2 (Sn−1\N)` .

Applying (11.5.14) we arrive at the estimate

‖w‖ ◦
W m

2 (Sn−1\N)`
≤ c | log ε|−1/2 ‖f‖W−m+1

2 (Sn−1\N)` .

This proves the lemma for odd n.

We consider two families of bounded operators in
◦

Wm
2 (Sn−1\N)` :

B(λ) = I + L−1
(L(λ)− L(m− n/2)

)
,

Bε(λ) = I + πε L−1
ε χε

(L(λ)− L(m− n/2)
)
.

Obviously, the pencils L and B have the same eigenvalues, eigenfunctions and
generalized eigenfunctions. We show that the spectra of the operator pencils Lε

and Bε coincide.

Lemma 11.5.3. The functions u0, u1, . . . , us−1 form a Jordan chain of the pencil
Bε corresponding to the eigenvalue λ0 if and only if

uj = πεvj for j = 0, . . . , s− 1,

where vj ∈
◦

Wm
2 (Ωε)` and v0, . . . , vs−1 is a Jordan chain of the pencil Lε correspond-

ing to the eigenvalue λ0.

Proof: Let u0, . . . , us−1 be a Jordan chain of Bε(λ) corresponding to the eigen-
value λ0. Then we have

(11.5.17)
j∑

k=0

1
k!

B(k)
ε (λ0)uj−k = 0

for j = 0, . . . , s− 1, i.e.,

(11.5.18) uj = −πε L−1
ε χε

(
(L(λ)− L(m− n/2)) uj +

j∑

k=1

L(k)(λ0)uj−k

)

for j = 0, 1, . . . , s − 1. Hence the functions uj are extensions by zero of functions

vj ∈
◦

W m
2 (Ωε)`. This implies χεL(λ)uj = Lε(λ)vj . Therefore, from (11.5.18) we

conclude that

L−1
ε

j∑

k=0

L(k)
ε (λ0) vj−k = 0 for j = 0, 1, . . . , s− 1.

Consequently, v0, v1, . . . , vs−1 is a Jordan chain of the pencil Lε corresponding to
the eigenvalue λ0.

Conversely, if v0, v1, . . . , vs−1 is a Jordan chain of Lε corresponding to the
eigenvalue λ0, we obtain the equalities (11.5.18) for the functions uj = πεvj . These
equalities are equivalent to (11.5.17). The proof is complete.

Now it is easy to prove the following theorem.
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Theorem 11.5.1. Let λ0 be an eigenvalue of the operator pencil L generated
by the Sobolev problem (11.5.2) and let κ be the algebraic multiplicity of λ0. Then
there exists a constant c(λ0) > 0 independent of ε such that the operator pencil Lε

has κ eigenvalues (counted with their algebraic multiplicities) in the circle

{λ ∈ C : |λ− λ0| < c(λ0) ε1/2} for even n,

{λ ∈ C : |λ− λ0| < c(λ0) | log ε|−1/2} for odd n.

Proof: Let λ0 be an eigenvalue of the pencil L and, therefore, also of the pencil
B. Since the operator pencil L has no generalized eigenfunctions, neither does B.
Consequently, by Theorem 1.1.2, the inverse B(λ)−1 satisfies the estimate

‖B(λ)−1‖ ◦
W m

2 (Sn−1\N)`→ ◦
W m

2 (Sn−1\N)`
≤ c0 |λ− λ0|−1

for small |λ− λ0|, λ 6= λ0. Using Lemma 11.5.2, we find that

‖B(λ)−Bε(λ)‖ ◦
W m

2 (Sn−1\N)`→ ◦
W m

2 (Sn−1\N)`
≤

{
c1 ε1/2 for even n,
c2 | log ε|−1/2 for odd n.

Since
Bε(λ) = B(λ)

(
I + B(λ)−1

(
Bε(λ)−B(λ)

))
,

it follows that Bε(λ) is invertible for |λ− λ0| = δ if

δ ≥ d
def
=

{
2c0 c1 ε1/2 for even n,
2c0 c2 | log ε|−1/2 for odd n.

Hence from Theorem 1.1.4 we conclude that the sum of the algebraic multiplicities
of all eigenvalues of Bε in the circle |λ− λ0| ≤ d coincides with the algebraic mul-
tiplicity of the eigenvalue λ0 of the pencil L. Applying Lemma 11.5.3, we complete
the proof.

Using the fact that λ = m − (n − 1)/2 is an eigenvalue of L (see Theorem
10.4.1), the following assertion holds as a consequence of Theorem 11.5.1.

Corollary 11.5.1. Let 2m ≥ n. Then for every δ > 0 there exists a number
ε0 = ε0(δ) > 0 such that the strip |Re λ−m + n/2| < 1/2 + δ contains at least one
eigenvalue of the pencil Lε for ε < ε0.

11.6. A cone close to the half-space

Let Kε denote the cone {x = (x′, xn) ∈ Rn : xn > ε φ(x′)}, where ε ∈ R and φ
is a given smooth real-valued function in Rn−1\{0} which is positively homogeneous
of degree one. By Ωε we denote the intersection of the cone Kε with the unit sphere
Sn−1. Furthermore, let

L(∂x) =
∑

|α|=2m

aα ∂α
x

be a scalar elliptic differential operator with constant real coefficients. We define
the differential operator L(λ) on the unit sphere Sn−1 by

L(λ) u(ω) = r2m−λL(∂x)
(
rλu(ω)

)
,

where u is a function on the sphere, and consider the operator pencil
◦

W
m
2 (Ωε) 3 u → L(λ) u ∈ W−m

2 (Ωε)
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which is denoted by Lε(λ). If ε = 0, then the cone Kε coincides with the half-
space Rn

+. The spectrum of the pencil L0 is explicitly described in Section 10.3. In
particular, λ0 = m is an eigenvalue with the eigenfunction c ωm

n . Here we derive an
asymptotic formula for the eigenvalue close to m of the pencil Lε when ε → 0.

11.6.1. A normalization property of eigenfunctions of L0. There exist
homogeneous differential operators Tj of degree j with constant coefficients such
that the Green formula

∫

Rn
+

L(∂x) U · V dx +
m−1∑

j=0

∫

Rn−1

∂j
xn

U · T2m−1−j(∂x)V dx′(11.6.1)

=
∫

Rn
+

U · L(∂x)V dx +
m−1∑

j=0

∫

Rn−1

T2m−1−j(∂x)U · ∂j
xnV dx′

is satisfied for all U, V ∈ C∞0 (Rn
+).

Let a denote the coefficient of ∂2m
xn

in the differential operator L. Then the
coefficient of ∂2m−1−j

xn
in the operator T2m−1−j is equal to (−1)j+1 a. We introduce

the following parameter-depending differential operators on the sphere Sn−1:

Sj(λ)u(ω) = rj−λ ∂j
xn

(
rλ u(ω)

)
,

T2m−1−j(λ)u(ω) = r2m−1−j−λ T2m−1−j(∂x)
(
rλ u(ω)

)
,

j = 0, . . . , m − 1. From (11.6.1) we obtain the Green formula (see, e.g., our book
[136, Le.6.1.6])

∫

Sn−1
+

L(λ)u · v dω +
m−1∑

j=0

∫

Sn−2

Sj(λ)u · T2m−1−j(2m− n− λ)v dω′

=
∫

Sn−1
+

u · L(2m− n− λ) v dω +
m−1∑

j=0

∫

Sn−2

T2m−1−j(λ) u · Sj(2m− n− λ)v dω′,

where u, v ∈ C∞(Sn−1
+ ). From this formula it follows that

(11.6.2)
(L(λ)

)∗ = L(2m− n− λ).

We set L(k)(λ) = ∂k
λL(λ). Then, according to (11.6.2), we have

(11.6.3) L(k)(λ) = (−1)k
(L(k)(2m− n− λ)

)∗
.

By Theorem 10.3.3, the numbers λ = m and λ = m − n are simple eigenval-
ues of the pencil L0. The corresponding eigenvectors are u0(ω) =

(
xn/|x|)m and

v0(ω) = Gm−1(ω), respectively. Here Gm−1(x) = Gm−1(x′, xn) is the solution of
the boundary value problem

L(∂x) Gm−1 = 0 in Rn
+,

(∂j
xn

Gm−1)(x′, 0) = 0 for x′ ∈ Rn−1, j = 0, . . . ,m− 2,

(∂m−1
xn

Gm−1)(x′, 0) = δ(x′) for x′ ∈ Rn−1.
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Lemma 11.6.1. Let u0, v0 be the above introduced eigenfunctions. Then∫

Sn−1
+

L(1)(m)u0(ω) · v0(ω) dω = (−1)m m! a.

Proof: We consider the Dirichlet problem

L(∂x)U = F in Rn
+,(11.6.4)

∂j
xn

U = 0 for xn = 0, j = 0, . . . , m− 1.(11.6.5)

By G = G(x, y) we denote the Green function, i.e., the solution of problem (11.6.4),
(11.6.5) with the right-hand side F = δ(x− y). Then

(11.6.6) Gm−1(y′ − x′, yn) = Tm(∂x)G(y, x)
∣∣
xn=0

.

The solution of problem (11.6.4), (11.6.5) is given by

U(y) =
∫

Rn
+

F (x)G(y, x) dx.

Let F ∈ C∞0 (Rn
+), F = 0 in a neighborhood of the point x = 0. We denote the

constant
∂m

yn
U(y)

∣∣
y=0

=
∫

Rn
+

L(∂x) U(x) · ∂m
yn

G(y, x)
∣∣
y=0

dx

by c. It follows from (11.6.6) that ∂m
yn

G(y, x)
∣∣
y=0

= (−1)m a−1 Gm−1(x). Conse-
quently,

c = (−1)m a−1

∫

Rn
+

L(∂x)U(x) ·Gm−1(x) dx.

Let ε be a positive number such that F (x) = 0 for |x| < ε, and let the function
χε = χε(r) be equal to zero for r < ε and equal to one for r > ε. Then

c = (−1)m a−1

∫

Rn
+

U(x) · L(∂x)
(
χεGm−1

)
dx.

It can be easily verified that

L(∂x)
(
χε Gm−1

)
= r−m−n

∑

k≥1

1
k!

(r∂r)k χε(r)L(k)(m− n)Gm−n(ω).

Since U(x) = c xm
n /m! + O(rm+1), we get

c =
(−1)m

a
lim
ε→0

∞∫

0

∫

Sn−1
+

c

m!
u0(ω)

∑

k≥1

1
k!

(r∂r)kχε(r)L(k)(m− n) v0(ω) dω
dr

r

=
(−1)m c

am!

∫

Sn−1
+

u0(ω) · L(1)(m− n) v0(ω) dω.

Using (11.6.3) for λ = m and k = 1, we obtain

(−1)m m! a = −
∫

Sn−1
+

L(1)(m) u0(ω) · v0(ω) dω.
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The lemma is proved.

11.6.2. An asymptotic formula for the eigenvalue close to m. Now we
consider the pencil Lε generated by the Dirichlet problem in the cone Kε. The
following theorem contains an asymptotic formula for the eigenvalue λε which is
close to the eigenvalue λ0 = m of the pencil L0.

Theorem 11.6.1. The following asymptotic formula is valid:

(11.6.7) λε = m + ε

∫

Sn−2

∂m
xn

Gm−1(ω′, 0)φ(ω′) dω′ + O(ε2).

Proof: We seek a number λε and a function uε ∈ C∞(Ωε) such that

L(λε)uε = 0 in Ωε,(11.6.8)
Sj(λε)uε = 0 on ∂Ωε, j = 0, 1, . . . ,m− 1,(11.6.9)

and λε, uε have the forms

λε = m + ελ1 + · · · ,(11.6.10)
uε(ω) = u0(ω) + ε u1(ω) + · · · ,(11.6.11)

where uk are smooth functions in Ω0 = Sn−1
+ . Since the domain Ωε is not necessarily

contained in Ω0, it is assumed that the functions uk are smoothly extended outside
Ω0. It is easily seen that the following constructions do not depend on the method
of extension.

Inserting expressions (11.6.10), (11.6.11) into (11.6.8), (11.6.9) and equating
the coefficients of like powers of ε (in this connection, boundary conditions are
blown off into ∂Ω0), we get a recurrence sequence of boundary value problems for
the determination of the functions uk and the numbers λk. As usual, the numbers
λk are found from the condition of the orthogonality of the right-hand sides to
the zero of the adjoint problem (i.e., to the function v0). We restrict ourselves to
the determination of the number λ1 and the function u1. We find them from the
equation

(11.6.12) L(m)u1 + λ1 L(1)(m)u0 = 0 on Sn−1
+ .

Since Sj(m)u0

∣∣
∂Ωε

= O(ε2) for j = 0, . . . ,m− 2, and

Sm−1(m)u0

∣∣
∂Ωε

= r−1 ∂m−1
xn

xm
n

∣∣
xn=ε φ(x′) = m! ε φ(ω′) + O(ε2),

the function u1 must satisfy the boundary conditions

Sj(m) u1 = 0 on Sn−2, j = 0, . . . ,m− 2,(11.6.13)

Sm−1(m)u1 + m! φ(ω′) = 0 on Sn−2.(11.6.14)

The space of the solutions of the formally adjoint problem is spanned by the function
v0. Therefore, the condition for the solvability of problem (11.6.12)–(11.6.14) has
the following form

λ1

∫

Sn−1
+

L(1)(m) u0 · v0 dω + m!
∫

Sn−2

φ(ω′) Tm(m− n) v0 dω′ = 0.
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Using the equality

Tm(m− n) v0(ω)
∣∣
Sn−2 = rn Tm(∂x)Gm−1(x)

∣∣
xn=0

= (−1)m a ∂m
xn

Gm−1(ω′, 0)

and Lemma 11.6.1, we arrive at (11.6.7). The theorem is proved.

11.6.3. Determination of the function ∂m
xn

Gm−1(x′, 0). We seek the
function Gm−1 in the form

(11.6.15) Gm−1(x) = (2π)1−n

∫

Rn−1

eix′·ξ′P (ξ′, xn) dξ′.

Then the function P satisfies the relations

L(iξ′, ∂xn
)P (ξ′, xn) = 0 for xn > 0,(11.6.16)

∂j
xn

P (ξ′, xn)
∣∣
xn=0

= 0 for j = 0, 1, . . . , m− 2,(11.6.17)

∂m−1
xn

P (ξ′, xn)
∣∣
xn=0

= 1.(11.6.18)

Let z1(ξ′), . . . , zd(ξ′) denote the roots of the equation L(ξ′, z) = 0 in the upper half-
plane Im z > 0 and let ν1, . . . , νd be their multiplicities. Then ν1 + · · · + νd = m
and the solution of (11.6.16) has the form

P (ξ′, xn) =
d∑

k=1

νk−1∑

l=0

pk,l(ξ′) xl
n eixnzk(ξ′).

Since ∂j
xn

(
xl

neixnzk(ξ′)
)∣∣

xn=0
= ∂l

z(z
j)|z=izk(ξ′), relations (11.6.17) and (11.6.18)

are equivalent to

d∑

k=1

νk−1∑

l=0

pk,l(ξ′) ∂l
zz

j
∣∣
z=izk(ξ′) = 0 for j = 0, . . . , m− 2,(11.6.19)

d∑

k=1

νk−1∑

l=0

pk,l(ξ′) ∂l
zz

m−1
∣∣
z=izk(ξ′) = 1.(11.6.20)

Let hj(ξ′) be the row-vector
(
∂l

zz
j |z=izk(ξ′)

)
k=1,...,d, l=0,...,νk−1

and let H be the m×m-matrix with the rows h0, . . . , hm−1. Furthermore, let p be
the column-vector (

pk,l(ξ′)
)
k=1,...,d, l=0,...,νk−1

.

Then relations (11.6.19), (11.6.20) can be written in the form

H p = em ,

where em denotes the column of length m with the elements 0, . . . , 0, 1.
Let the vector q(ξ′) =

(
q0(ξ′), . . . , qm−1(ξ′)

)
satisfy the equation q H = hm.

Then

(11.6.21) ∂m
xn

P (ξ′, xn)
∣∣
xn=0

= hm(ξ′) p(ξ′) = q(ξ′)H(ξ′) p(ξ′) = qm−1(ξ′).
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In order to calculate the number qm−1(ξ′), we write the equation q H = hm in the
coordinate form

∂l
z

( m−1∑
s=0

qs(ξ′) zs
)∣∣∣

z=izk(ξ′)
= ∂l

zz
m

∣∣
z=izk(ξ′) , k = 1, . . . , d, l = 0, . . . , νk − 1.

From this we conclude that the polynomial

zm −
m−1∑
s=0

qs zs

has zeros izk(ξ′) of multiplicities νk, k = 1, . . . , d. Therefore,

qm−1(ξ′) = i
(
ν1 z1(ξ′) + · · ·+ νd zd(ξ′)

)
.

Finally, by (11.6.15) and (11.6.21), we have

∂m
xn

Gm−1(x′, 0) = (2π)1−n

∫

Rn−1

eix′·ξ′ ∂m
xn

P (ξ′, xn)
∣∣
xn=0

dξ′(11.6.22)

= i (2π)1−n

∫

Rn−1

eix′·ξ′
d∑

k=1

νk zk(ξ′) dξ′.

Let us observe that the function qm−1 is smooth for ξ′ 6= 0 and qm−1(−ξ′) =
qm−1(ξ′). Therefore, integral (11.6.22) is real.

Remark 11.6.1. In the case of a strongly elliptic operator L(∂x) with com-
plex coefficients, the same argument as in Theorem 11.6.1 leads to the asymptotic
formula

(11.6.23) λε = m + ε

∫

Sn−2

∂m
xn

Gm−1(ω′, 0)φ(ω′) dω′ + O(ε2) .

Moreover, in the proof of formula (11.6.22) the realness of the coefficients of L(∂x)
has not been used.

11.6.4. Examples.

Example 1. Let L(∂x) = ∆m. Then qm−1(ξ′) = −m |ξ′|. Therefore,

∂m
xn

Gm−1(x′, 0) = m Γ(n/2)π−n/2 |x′|−n.

Consequently, the coefficient λ1 in (11.6.10) is positive in the case φ ≥ 0, φ 6≡ 0.

Example 2. The following example shows that the coefficient λ1 in (11.6.10)
may be negative for positive φ. Let

L(∂x) = ∆2 + a ∂4
x1

, a > 0.

Then L(∂x) =
(
∆− ib∂2

x1

) (
∆ + ib∂2

x1

)
, where b2 = a, b > 0. Therefore,

(11.6.24) z1(ξ′) = i
√
|ξ′|2 − ibξ2

1 , z2(ξ′) = i
√
|ξ′|2 + ibξ2

1

(here the principal value of the square root is taken). Using the formulas for the
Fourier transforms of functions of the form (11.6.24) (see, e.g., Gel′fand and Shilov
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[66]), we get∫

Rn−1

eix′·ξ′
√
|ξ′|2 ∓ ibξ2

1 dξ′

= −2n−1 π(n−1)/2 Γ(n/2)
Γ(1/2)

√
1∓ ib

( x2
1

1∓ ib
+ x2

2 + · · ·+ x2
n−1

)−n/2

.

Consequently,

∂2
xn

G1(x′, 0) =
2Γ(n/2)

πn/2
Re

( 1√
1 + ib

( x2
1

1 + ib
+ x2

2 + · · ·+ x2
n−1

)−n/2)

and, therefore,

∂2
xn

G1(x′, 0)
∣∣
x1=0

=
2 Γ(n/2)

πn/2
Re (1 + ib)−1/2 (x2

2 + · · ·+ x2
n−1

)−n/2
> 0,

∂2
xn

G1(x′, 0)
∣∣
x2=···=xn−1=0

=
2Γ(n/2)

πn/2
Re (1 + ib)(n−1)/2 .(11.6.25)

Let α = arg(1 + ib). If α (n − 1)/2 ∈ (π/2 + 2kπ , 3π/2 + 2kπ), k ∈ Z, then the
quantity (11.6.25) is negative. In particular, if n = 4 and α ∈ (π/3, π/2), then

∂2
xn

G1(x′, 0)
∣∣
x2=···=xn−1=0

< 0.

Therefore, the function ∂2
xn

G1(ω′, 0) changes sign. Thus, there exists a positive
function φ such that the coefficient λ1 in (11.6.10) is negative.

Example 3. The asymptotic formula (11.6.23) takes a particularly simple form
if n = 2. Let us write L(ξ) as L(ξ1, ξ2), and let ζ+

1 , . . . , ζ+
m and ζ−1 , . . . , ζ−m denote

the roots of the polynomial L(1, ζ) = 0 with positive and negative imaginary parts,
respectively. We prove that

(11.6.26) λε = m +
iε

2π

m∑

k=1

(ζ+
k − ζ−k )

(
φ(1) + φ(−1)

)
+ O(ε2) .

By formula (11.6.22) with n = 2

∂m
x2

Gm−1(x1, 0) =
i

2π

( m∑

k=1

ζ+
k

∞∫

0

eix1ξ1ξ1 dξ1 +
m∑

k=1

ζ−k

0∫

−∞
eix1ξ1ξ1 dξ1

)
.

Hence, for x1 6= 0

(11.6.27) ∂m
x2

Gm−1(x1, 0) =
−i

2πx2
1

m∑

k=1

(ζ+
k − ζ−k ) .

It remains to put (11.6.27) into (11.6.23).
For the operator L(∂x) with real coefficients, formula (11.6.26) becomes

(11.6.28) λε = m +
ε

π
Im

m∑

k=1

ζ+
k

(
φ(1) + φ(−1)

)
+ O(ε2) ,

which is in agreement with (8.2.1).
In conclusion, we mention that the real part of the coefficient

i

m∑

k=1

(ζ+
k − ζ−k )
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in (11.6.26) is negative.

11.7. Nonrealness of eigenvalues

As is known (see Chapter 2), all eigenvalues of the operator pencil associated
with the Dirichlet Laplacian in a cone are real. For other operators (for example, for
the biharmonic operator in a plane angle with Dirichlet boundary conditions), the
situation may be different: the spectrum of the corresponding operator pencil may
contain nonreal eigenvalues. In the present section we describe a class of operators
L(Dx) for which there are no real eigenvalues in a sufficiently large strip if the cone
has a small opening. This class includes ∆2k but does not include ∆2k−1, k = 1, . . ..

We assume that K\{0} is contained in the half-space Rn
+ = {(x′, xn) : x′ ∈

Rn−1, xn > 0} and denote by Kε the cone {x : (ε−1x′, xn) ∈ K}, 0 < ε ≤ 1. The
intersection of Kε with the unit sphere is denoted by Ωε.

Let L(Dx) be a scalar homogeneous elliptic operator of order 2m with constant
real coefficients, and let the operator pencil Lε(λ) be defined by

Lε(λ)u = r2m−λ L(Dx) rλu, u ∈ ◦
W

m
2 (Ωε).

We prove the following assertion.

Theorem 11.7.1. Suppose that

(11.7.1) Re L(ξ′, iξn) > 0 for a.e. ξ = (ξ′, ξn) ∈ Rn.

Then for any positive number N there exists εN > 0 such that for ε ∈ (0, εN ] the
pencil Lε has no real eigenvalues in the strip |Re λ| ≤ N/ε.

Proof: Let Gε = {x′ ∈ Rn−1 : (x′, 1) ∈ Kε}. In the region Ωε we introduce
the local coordinates x′ of the point ω = (x′, 1)(1 + |x′|2)−1/2. Furthermore, we set
λε = λ/ε. Then, after the change of variables y′ = x′/ε, the equation Lε(λε)u = 0
becomes (

L(Dy′ ,−iλ) + εRε(y′, Dy′ , λ)
)
u = 0 on G1,

where
Rε(y′, Dy′ , λ) =

∑

k+|β|≤2m

qk,β(ε, y′) λk Dβ
y′

is a differential operator on [0, 1]×G1 with smooth coefficients qk,β . The function
u satisfies zero Dirichlet conditions on ∂G1.

We show that the pencil L(Dy′ ,−iλ) has no real eigenvalues. In fact, if
L(Dy′ ,−iλ)u = 0 and Im λ = 0, then∫

G1

L(Dy′ ,−iλ) u · u dy′ =
∫

Rn−1
L(ξ′,−iλ) |û|2 dξ′ = 0,

where û is the Fourier transform of the zero extension of u to Rn−1. Hence and by
(11.7.1), u = 0 as required.

It may be assumed, without loss of generality, that there are no eigenvalues
of the pencil L(Dy′ ,−iλ) on the lines Re λ = ±N . We denote by λ1, . . . , λm the
eigenvalues of this pencil in the strip |Re λ| ≤ N if there are any. There exists a
positive number εN such that for all ε ∈ [0, εN ] the pencil L + εRε has exactly
m eigenvalues in this strip. Suppose D1, . . . , Dm are disks in the complex plane
centered at λ1 . . . , λm which do not intersect the real axis. Then, for a sufficiently
small εN , all eigenvalues of the pencil L + εRε in the strip |Re λ| ≤ N are situated
in the disks D1, . . . , Dm if ε ≤ εN . The result follows.
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11.8. Further results

In Section 11.5 we studied the singularities of solutions to the Dirichlet problem
in the exterior of a thin cone under the assumption that the order 2m of the
differential operator is not less than the dimension n. The case 2m < n was
considered in the book [174] by Maz′ya, Nazarov and Plamenevskĭı.

Let Kε be the cone

Kε = {x = (x′, xn) ∈ Rn : ε−1 x−1
n x′ ∈ G},

where G is a bounded domain in Rn−1 containing the origin with smooth boundary
∂G. We consider the operator pencil Lε generated by the Dirichlet problem for
the strongly elliptic operator (10.1.2) in the cone Kε = Rn\Kε (the definition of
this pencil is given in Section 10.1). For small ε there exist eigenvalues λj(ε),
j = 1, . . . , `, of the pencil Lε near the point λ = 0. In [174, Ch.10] asymptotic
formulas for these eigenvalues as ε → 0 were obtained.

We restrict ourselves first to the scalar case ` = 1 when there is only one
eigenvalue λ(ε) near λ = 0. Let

L(∂x′ , 0) = (−1)m
∑

|α|=|β|=m

A
(0)
αβ ∂α+β

x′ ,

where α and β are (n− 1)-dimensional multi-indices, and

k =
∫

Rn−1\G

∑

|α|=|β|=m

A
(0)
αβ ∂β

x′w(x′) ∂α
x′w(x′) dx′

with w being the solution of the Dirichlet problem

L(∂x′ , 0)w(x′) = 0, for x′ ∈ Rn−1\G,

w(x′) = 1, ∂α
x′w(x′) = 0, for x′ ∈ ∂G, 0 < |α| < m,

which vanishes at infinity. Furthermore, let E(x) be the positively homogeneous
fundamental solution of the operator L+(Dx) in Rn.

Theorem 11.8.1. [174] 1) Let n− 1 = 2m. Then

λ(ε) =
∣∣2 log ε

∣∣−1(1 + o(1)).

2) If n− 1 > 2m, then

(11.8.1) λ(ε) = εn−1−2m
(
k E(0, . . . , 0, 1) + o(1)

)
.

The value k is a generalization of the m-harmonic capacity capm(Ω) of the
domain Ω ⊂ Rn−1. In the special case L(Dx) = (−4)m the asymptotic formula
(11.8.1) takes the form

λ(ε) = εn−1−m
(
2m−2πn/2Γ

(
(n− 2m)/2

)
Γ(m)−1capm(ω) + o(1)

)
.

For the second order elliptic operator

L(∂x) = −
n∑

j,k=1

aj,k
∂2

∂xj ∂xk
, n > 3,
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the eigenvalue λ(ε) satisfies

λ(ε) = εn−3
((

(n− 2)|Sn−1|)−1 cap(ω;L(∂x′ , 0))
(
det(ajk)n−1

j,k=1

)(2−n)/2

×(
det(ajk)n

j,k=1

)(n−3)/2 + o(1)
)
,

where |Sn−1| denotes the area of the (n− 1)-dimensional unit sphere and

cap
(
ω; L(∂x′ , 0)

)
=

∫

Rn−1\ω

n−1∑

j,k=1

ajk ∂xk
w ∂xj

w dx′

with w being the solution of

L(∂x′ , 0) w(x′) = 0, x′ ∈ Rn−1\G,

which equals 1 on ∂G and vanishes at infinity.
Similar asymptotic formulas were obtained in [174, Ch.10] for matrix operators.

In particular, for the Lamé operator it was shown that there are exactly three small
eigenvalues λj(ε), j = 1, 2, 3, with the asymptotics

λj(ε) = |2 log ε|−1
(
1 + o(1)

)
.

The same is true for the Stokes operator.
According to [174, Ch.10], there are no eigenvalues of the pencil Lε in the

strips
{
λ ∈ C : Re λ ∈ [2m− n + εn−1−2mµ, εn−1−2mµ]

}
for n− 1 > 2m,{

λ ∈ C : Re λ ∈ [−1− | log ε|−1µ, | log ε|−1µ]
}

for n− 1 = 2m,

where µ < Re
(
k E(0, . . . , 0, 1)

)
if n− 1 > 2m and µ < 1/2 if n− 1 = 2m.

One can deduce from this fact that in the case n − 1 = 2m all Wm
2 -solutions

of the Dirichlet problem for the scalar differential operator L(∂x) are continuous at
the vertex of Kε provided ε is sufficiently small. If the coefficients of L are real, the
same is true for an arbitrary Lipschitz cone.

Let us turn to the case n− 1 > 2m. If

Re
(
k E(0, . . . , 0, 1)

)
> 0,

then the above statement about the strip, which is free of the spectrum, guarantees
the continuity of solutions to the Dirichlet problem in Kε with a sufficiently small
ε. There are examples, which show that the continuity may fail. This may happen
in the case n > 4 for the second order strongly elliptic operator with complex
coefficients

L(∂x) = (1 + iβ)∂2
x1

+ ∂2
x2

+ · · ·+ ∂2
xn−1

+ α∂2
xn

,

where α and β are some numbers such that Imβ = 0, Re α > 0 (see [174,
Sec.10.6.1]). Another example of the loss of continuity is provided by the oper-
ator

L(∂x) = ∆2 + a2 ∂4
xn

, n ≥ 8,

where (n− 3) arctan a ∈ (2π, 4π) (see [169] and [174, Sec.10.6.2]).
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11.9. The Dirichlet problem in domains with conic vertices

The contents of the preceding sections together with results of the theory of
general elliptic problems in domains with piecewise smooth boundaries can be used
to obtain various assertions concerning the Dirichlet problem for 2m order elliptic
equations (or systems). We illustrate this by a domain with conic vertices.

Let G in Rn be the same bounded domain as in Section 1.4. We use the
following notation introduced there: x(τ), rτ (x), r(x), S = {x(1), . . . , x(d)}, and
Kτ = {x : (x − x(τ))/|x − x(τ)| ∈ Ωτ}. The function spaces V l

p,~β
(G), N l,σ

~β
(G),

where ~β = (β1, . . . , βd), and the corresponding trace spaces were also introduced in
Section 1.4.

We consider the Dirichlet problem

(11.9.1) L(x,Dx)U = F in G, ∂k
ν U = Gk on ∂G\S, k = 0, . . . , m− 1,

where

(11.9.2) L(x,Dx) =
∑

|α|≤2m

Aα(x) Dα
x

is a strongly elliptic differential operator whose coefficients Aα are ` × ` matrices
infinitely differentiable in G. We assume that the operators L◦(x(τ), Dx) are for-
mally selfadjoint and the cones Kτ are Lipschitz (i.e., Kτ has the representation
xn > φ(x′) in a certain Cartesian coordinate system).

Let Aτ be the operator pencil generated by the Dirichlet problem (11.9.1) for
x(τ). (These pencils were introduced in Section 1.4 for general elliptic problems. In
the case of problem (11.9.1) we have tj = 0 and si = 2m.) By Theorem 11.1.1, the
eigenvalues of Aτ lie outside the strip

|Re λ−m + n/2| ≤ 1/2 .

Hence and by using essentially Theorems 1.4.1–1.4.5, we arrive at the following
explicit solvability and regularity results.

Theorem 11.9.1. 1) Let l ≥ 2m. Suppose that for arbitrary F ∈ W−m
2 (G)`

and for G1 = . . . = Gm = 0 there exists a unique solution U ∈ ◦
Wm

2 (G)` of problem
(11.9.1). Then the operator of this problem:

V l
p,~β

(G)` → V l−2m

p,~β
(G)` ×

m−1∏

k=0

V
l−k−1/p

p,~β
(∂G)`.

is isomorphic if

m− n + 1
2

− ε ≤ l − βτ − n/p ≤ m− n− 1
2

+ ε

for τ = 1, . . . , d. Here and elsewhere in this theorem ε is a sufficient small positive
number. Analogously, the operator of problem (11.9.1):

N l,σ
~β

(G)` → N l−2m,σ
~β

(G)` ×
m−1∏

k=0

N l−k,σ
~β

(∂G)`.

is isomorphic if

m− n + 1
2

− ε ≤ l + σ − βτ ≤ m− n− 1
2

+ ε .
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2) Let l ≥ 2m and let U ∈ Wm
2 (G)` be a variational solution of problem (11.9.1),

where F ∈ V l−2m

p,~β
(G)`, Gk ∈ V

l−k−1/p

p,~β
(∂G)`. If

m− n/2 ≤ l − βτ − n/p ≤ m− n− 1
2

+ ε for τ = 1, . . . , d,

then U ∈ V l
p,~β

(G).

If F ∈ N l−2m,σ
~β

(G)`, Gk ∈ N l−k,σ
~β

(∂G)`, where

m− n/2 ≤ l + σ − βτ ≤ m− n− 1
2

+ ε for τ = 1, . . . , d,

then U ∈ N l,σ
~β

(G).

11.10. Notes

Sections 11.1.–11.4. The estimate for the width of the energy strip of the
pencil corresponding to the Dirichlet problem in a “smooth” cone (Theorem 11.1.1)
was proved by Kozlov and Maz′ya [127]. The weaker estimate in Theorem 11.2.2
without restrictions on the smoothness of the cone was obtained by Kozlov and
Roßmann in [142]. In [143] the same authors obtained the estimate of Theorem
11.1.1 for the case of a second order system under lower assumptions on the cone
(see Theorem 11.3.3). Kozlov and Maz′ya [131] improved this estimate for second
order systems in a polyhedral cone with edge angles less than π (see Sect. 8.6).
Theorem 11.4.1 can be found in their paper [132].

Sections 11.5, 11.8. The relation between the spectra of the pencils gener-
ated by the Sobolev problem in the exterior of a ray and the Dirichlet problem in
the exterior of a thin cone given in Theorem 11.5.1 was obtained by Kozlov and
Maz′ya [130]. They assumed that the order 2m of the differential equation (or
system) is not less than the dimension of the domain. Singularities of solutions
of the Dirichlet problem in the exterior of a thin cone with dimension n > 2m
were investigated by Maz′ya, Nazarov and Plamenevskĭı [172, 173, 174]. They
obtained, in particular, the asymptotic formulas for small eigenvalues in Theorem
11.8.1.

Section 11.6. The asymptotic formula for the eigenvalue near m of the op-
erator pencil generated by the Dirichlet problem in a cone which is close to the
half-space was obtained by Kozlov [122].

Section 11.7. Theorem 11.7.1 is due to Kozlov, Kondrat′ev and Maz′ya [126].





CHAPTER 12

The Neumann problem in a cone

In the present chapter we are interested in eigenvalues, eigenvectors and gen-
eralized eigenvectors associated to the operator pencil A that is generated by the
Neumann problem for the operator

(12.0.1) L(∂x) = (−1)m
∑

|α|=|β|=2m

Aα,β ∂α+β
x

in the cone K = {x ∈ Rn : x/|x| ∈ Ω}. Here Aα,β are constant `× `-matrices such
that A∗α,β = Aβ,α, and Ω is a domain on the unit sphere Sn−1. We introduce the
sesquilinear form

(12.0.2) b(U, V ) =
∫

K

∑

|α|=|β|=m

(
Aα,β ∂β

xU , ∂α
x V

)
C`

dx ,

where U, V are vector functions in K. Throughout this chapter, the following con-
dition is satisfied.

Condition 1 (local coerciveness). There exists a number δ > 0 such that the
inequality

(12.0.3) b(U,U) ≥ c

∫

K

∑

|α|=m

|∂α
x U |2C` dx

is valid for all vector functions U ∈ Wm
2 (K)` whose supports intersect the unit

sphere and have diameters not exceeding δ. Here c is a positive constant.

If ∂Ω is smooth and

(12.0.4)
∑

|α|=|β|=m

(
Aα,βfβ , fα

)
C` ≥ 0 for all fα ∈ C`, |α| = m,

then Condition 1 is satisfied, by Aronszajn’s theorem [7], if and only if the matrix
∑

|α|=|β|=0

Aα,β

(
ξ + iτν(ω′)

)β (
ξ − iτν(ω′)

)α

is nonsingular for every ξ ∈ Rn, τ ∈ R, |ξ| + |τ | 6= 0, ω′ ∈ ∂Ω (ν is the exterior
normal to ∂K).

We always assume in this chapter that the imbedding W 1
2 (Ω) ⊂ L2(Ω) is com-

pact. For this it suffices, for example, that the domain Ω belongs to the class C, i.e.,
the boundary ∂Ω admits a local explicit representation by a continuous function.
A necessary and sufficient condition as well as more comprehensive sufficient condi-
tions are given in Maz′ya’s book [164]. Clearly, the compactness of the imbedding
W 1

2 (Ω) ⊂ L2(Ω) implies the compactness of the imbedding W l
2(Ω) ⊂ L2(Ω) for

arbitrary l ≥ 1.

391
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In Section 12.1 we show that Condition 1 guarantees discreteness of the spec-
trum of A.

It is proved in Section 12.2 that the energy line Reλ = m − n/2 contains no
eigenvalues of A if either 2m < n or 2m ≥ n and n is odd. Moreover, we find that
m− n/2 is the only eigenvalue on the energy line if 2m ≥ n and n is even.

These results are obtained under the following condition on the operator L.

Condition 2 (generalized Korn’s inequality). For all vector functions U ∈
Wm

2 (K)` vanishing in a neighborhood of the vertex, inequality (12.0.3) is valid with
a positive constant c independent of U .

Obviously, Condition 2 is stronger than Condition 1. In Corollary 12.3.1 it is
shown that Condition 1 complemented by (12.0.4) implies the validity of Condition
2 for cones of class C0,1 (Lipschitz graph). At the end of Section 12.2 we construct
an example showing that under just one condition 1 of local coerciveness, without
(12.0.4), the line Re λ = m−n/2 may contain nonreal eigenvalues. Thus, Condition
2 does not follow from Condition 1.

The most complete information on the spectrum of A is obtained in Section
12.3 under the following condition, more restrictive than Condition 1.

Condition 3. For all vectors fα ∈ C`, |α| = m, there holds the inequality
∑

|α|=|β|=m

(
Aα,β fβ , fα

)
C` ≥ c

∑

|α|=m

|fα|2C` ,

where c is a positive constant.

We present this information as

Theorem. Let the cone K be given by the inequality xn > φ(x′), where φ is a
smooth function on Rn−1. Then

(i) For 2m < n− 1 the strip |Re λ−m + n/2| ≤ 1/2 contains no points of the
spectrum of A.

(ii) For 2m ≥ n− 1 and even n the strip |Re λ−m + n/2| ≤ 1/2 contains the
single eigenvalue λ0 = m − n/2. A vector-valued function u is an eigenfunction
if and only if u = p|Ω, where p is a homogeneous vector polynomial in Rn of
degree m − n/2. To each eigenfunction there corresponds exactly one generalized
eigenfunction.

(iii) For 2m ≥ n−1 and odd n the strip |Re λ−m+n/2| ≤ 1/2 contains exactly
two eigenvalues λ± = m− n/2± 1/2, with multiplicity equal to

`

(
m + (n− 1)/2

n− 1

)
and `

((
m + (n− 1)/2

n− 1

)
+

(
m + (n− 3)/2

n− 1

))

respectively. The eigenfunctions corresponding to λ+ are traces on Ω of homo-
geneous vector polynomials of degree (2m − n + 1)/2. To each eigenvector there
corresponds at most one generalized vector.

The statements of this theorem regarding the open strip |Re λ−m+n/2| < 1/2
are established in Section 12.3 under somewhat weaker conditions. Namely, it is
assumed only that φ satisfies the Lipschitz condition and that the operator L is
subject to (12.0.4) and Condition 1.

An example at the end of Section 12.3 illustrates the fact that Condition 3 in
the above theorem cannot be replaced by Condition 2.

We note that the theorem is sharp for n = 2 (see Remark 12.3.1).
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In Section 12.4, as an application of the results mentioned above, we derive
asymptotic formulae for solutions of the Neumann problem in a domain G with a
conic vertex. We consider two well posed problems. The first is the usual variational
formulation of the Neumann problem. For the second one, meaningful only for
2m > n, we prescribe (in addition to the Neumann conditions) the data for the
solution and its derivatives up to order |α| < m − n/2 at the vertex. It is shown
that for the odd dimension n the solution of the problem in the first formulation
has greater smoothness than in the second one.

Finally, in Section 12.5 we give a rather complete information about the spec-
trum in the strip |Re λ| ≤ 1 for the pencil generated by the Lamé system of the
plane anisotropic elasticity in an angle with Neumann boundary conditions.

12.1. The operator pencil generated by the Neumann problem

12.1.1. Definition of the pencil A. We are interested in solutions of the
Neumann problem for the differential operator (12.0.1) in the cone K which have
the form

(12.1.1) U(x) = rλ0

s∑

k=0

1
k!

(log r)k us−k(ω),

where r, ω are the spherical coordinates of the point x and uk ∈ Wm
2 (Ω)` for

k = 0, . . . , s. This means, we seek solutions (12.1.1) of the equation

(12.1.2) b(U, V ) = 0

which has to be satisfied for all V ∈ Wm
2 (K)` equal to zero in a neighborhood of

the point x = 0 and of infinity.
This leads to a spectral problem on the domain Ω which can be described as

follows. Let

(12.1.3) Qα(ω, ∂ω, λ)u(ω) = r−λ+|α| ∂α
x

(
rλ u(ω)

)
.

Then we set
(12.1.4)

a(u, v; λ) =
∑

|α|=|β|=m

∫

Ω

(
Aα,β Qβ(ω, ∂ω, λ)u , Qα(ω, ∂ω, 2m− n− λ̄)v

)
C`

dω.

It can be easily verified that the form a(·, ·; λ) admits the representation

(12.1.5) a(u, v; λ) =
1

2 | log ε|
∫

K
ε<|x|<1/ε

∑

|α|=|β|=m

(
Aα,β∂β

xU , ∂α
x V

)
C` dx,

where U(x) = rλ u(ω), V (x) = r2m−n−λ v(ω), and ε is an arbitrary positive number
less than one.

The sesquilinear form (12.1.4) generates the linear and continuous operator

(12.1.6) A(λ) : Wm
2 (Ω)` → (Wm

2 (Ω)`)∗

polynomially depending on the parameter λ ∈ C.
We show that there is the following relation between solutions of (12.1.2) having

the form (12.1.1) and the spectrum of the pencil A (cf. Theorem 1.1.5).
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Lemma 12.1.1. The vector function (12.1.1) is a solution of (12.1.2) if and
only if λ0 is an eigenvalue of the operator pencil A and u0, . . . , us is a Jordan chain
corresponding to this eigenvalue.

Proof: Let U be a solution of (12.1.2) which has the form (12.1.1). We write
the differential operators Qα(ω, ∂ω, r∂r) in the form

Qα(ω, ∂ω, r∂r) =
|α|∑

j=0

1
j!

Q(j)
α (0) (r∂r)j ,

where Q
(j)
α (λ) = ∂j

λQα(ω, ∂ω, λ). Integrating by parts in (12.0.2), we get

b(U, V ) =
∑

|α|=|β|=m

∫

K

(
Aα,βr−mQβ(ω, ∂ω, r∂r)U , r−mQα(ω, ∂ω, r∂r)V

)
C`

dx

=
∑

|α|=|β|=m

m∑

j=0

1
j!

∞∫

0

∫

Ω

rn−2m+λ
(
Aα,β (2m− n− λ0 − r∂r)j

×Qβ(ω, ∂ω, λ0 + r∂r)
s∑

k=0

(log r)k

k!
us−k(ω) , Q(j)

α (0)V
)
C`

dr

r
dω = 0

for V ∈ Wm
2 (K)`, V = 0 near the origin and infinity. The last equation is satisfied

if and only if

∑

|α|=|β|=m

m∑

j=0

1
j!

∫

Ω

(
Aα,β (2m− n− λ0 − r∂r)j Qβ(ω, ∂ω, λ0 + r∂r)(12.1.7)

×
s∑

k=0

(log r)k

k!
us−k(ω) , Q(j)

α (0)v(ω)
)
C`

dω = 0

for all v ∈ Wm
2 (Ω)` and r > 0. Using the formulas

Qβ(ω, ∂ω, λ0 + r∂r) =
|β|∑
q=0

1
q!

Q
(q)
β (λ0) (r∂r)q,

(2m− n− λ0 − r∂r)j =
j∑

µ=0

( j

µ

)
(2m− n− λ0)j−µ (−r∂r)µ,

we can write the expression on the left of (12.1.7) in the form
∑

α,β

∑

j

∑
q

∑
µ

1
j! q!

( j

µ

)
(2m− n− λ0)j−µ (−1)µ

×
∫

Ω

(
Aα,βQ

(q)
β (λ0)

s∑

k=0

(log r)s−k−µ−q

(s− k − µ− q)!
uk(ω) , Q(j)

α (0)v(ω)
)
C`

dω

=
∑

α,β

∑
µ

∑
q

(−1)µ

µ! q!

∫

Ω

(
Aα,βQ

(q)
β (λ0)

×
s∑

k=0

(log r)s−k−µ−q

(s− k − µ− q)!
uk(ω) , Q(µ)

α (2m− n− λ0)v(ω)
)
C`

dω.
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Hence (12.1.7) is satisfied if and only if

∑

α,β

∑

µ+q≤s−σ

(−1)µ

µ! q!

∫

Ω

(
Aα,βQ

(q)
β (λ0)us−µ−q−σ(ω) , Q(µ)

α (2m− n− λ0)v(ω)
)
C`

dω

vanishes for σ = 0, 1, . . . , s or, what is the same, if

s−σ∑

j=0

1
j!

a(j)(us−σ−j , v;λ0) = 0

for σ = 0, 1, . . . , s. This proves the lemma.

12.1.2. Basic properties of the pencil A. Let

(12.1.8) b0(U, V )
def
=

∫

K

∑

|α|=m

(
∂α

x U, ∂α
x V

)
C` dx

and let a0 be the corresponding parameter-dependent sesquilinear form on Wm
2 (Ω)`,

i.e.,

a0(u, v; λ) =
∑

|α|=m

∫

Ω

(
Qα(ω, ∂ω, λ)u , Qα(ω, ∂ω, 2m− n− λ̄)v

)
C`

dω(12.1.9)

=
1

2 log 2

∫

K
1/2<|x|<2

∑

|α|=m

(
∂α

x U, ∂α
x V

)
C` dx,

where U(x) = rλ u(ω), V (x) = r2m−n−λ v(ω).

Lemma 12.1.2. There exists a positive constant c independent of u and λ such
that

a0(u, u; λ) ≥ c
(
‖u‖2W m

2 (Ω)` + |λ|2m ‖u‖2L2(Ω)`

)

for all u ∈ Wm
2 (Ω)` and sufficiently large |λ|, Re λ = m− n/2.

Proof: Let u ∈ Wm
2 (Ω)` and λ ∈ C, Re λ = m − n/2, be given. We set

U(x) = rλu(ω). Using the representation

(r∂r)m =
∑

|α|≤m

cα(ω) rα ∂α
x ,

we obtain

|λ|2m ‖u‖2L2(Ω)` = c

∫

K
1/2<|x|<2

∣∣(r∂r)mU
∣∣2 dx

≤ c
∑

|α|≤m

∫

K
1/2<|x|<2

r2|α| ∣∣∂α
x U

∣∣2 dx

≤ c
(
a0(u, u;λ) +

m−1∑

j=0

|λ|2j ‖u‖2
W m−1−j

2 (Ω)`

)
.
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Furthermore,

‖u‖2W m
2 (Ω)` = c

∑

|α|≤m

∫

K
1/2<|x|<2

∣∣∂α
x (r−λU)

∣∣2 dx

≤ c
(
a0(u, u; λ) +

m∑

j=1

|λ|2j ‖u‖2
W m−j

2 (Ω)`

)

The last two inequalities together with the inequality

|λ|j ‖u‖W m−j
2 (Ω)` ≤ ε ‖u‖W m

2 (Ω)` + c ε(j−m)/j |λ|m ‖u‖L2(Ω)` ,

which follows from the interpolation inequality

‖u‖W k
2 (Ω) ≤ c ‖u‖(m−k)/m

L2(Ω) ‖u‖k/m
W m

2 (Ω) ,

imply

|λ|2m ‖u‖2L2(Ω)` + ‖u‖2W m
2 (Ω)` ≤ c

(
a0(u, u; λ) +

m−1∑

j=0

|λ|2j ‖u‖2
W m−1−j

2 (Ω)`

)
.

Hence for large |λ| we get the desired inequality.

Using the preceding lemma, we establish the following properties of the qua-
dratic form a(u, u; λ).

Lemma 12.1.3. Suppose Condition 1 is satisfied. Then the following assertions
are true.

1) There exist a positive constant c0 and a real-valued function c1 = c1(λ) such
that

(12.1.10) |a(u, u;λ)| ≥ c0 ‖u‖2W m
2 (Ω)` − c1(λ) ‖u‖2L2(Ω)`

for all u ∈ Wm
2 (Ω)`, λ ∈ C.

2) The quadratic form a(u, u; m−n/2+it) is real-valued for t ∈ R. Furthermore,

a(u, u, m− n/2 + it) > 0

for large |t|, t ∈ R, u ∈ Wm
2 (Ω)`\{0}.

Proof: Let u ∈ Wm
2 (Ω)`, U(x) = rλ u(ω), Re λ = m − n/2. Then, by (12.1.5),

we have

a(u, u; λ) =
1

2 | log ε|
∫

K
ε<|x|<1/ε

∑

|α|=|β|=m

(
Aα,β∂β

x U , ∂α
x U

)
C` dx.

Since Aα,β = A∗β,α, we conclude that a(u, u; λ) is real for Re λ = m− n/2.

We denote by {ηj} a finite collection of smooth real-valued functions on Sn−1

such that the functions η2
j form a partition of unity subordinate to a sufficiently fine

open covering of the sphere Sn−1. Furthermore, let ζ be a smooth real function of
the variable r with support in a neighborhood of the point r = 1 such that ζ(1) > 0.
It can be easily shown that the quantities

∣∣∣b(ζU, ζU)− a(u, u;λ)

∞∫

0

(ζ(r))2 r−1 dr
∣∣∣ and

∣∣∣b(ζU, ζU)−
∑

j

b(ζηjU, ζηjU)
∣∣∣
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do not exceed the expression

c
∑

µ+ν≤2m−1
µ,ν≤m

|λ|2m−1−µ−ν ‖u‖W µ
2 (Ω)` ‖u‖W ν

2 (Ω)`

if Re λ = m− n/2. Consequently,

∣∣∣
∑

j

b(ζηjU, ζηjU)− a(u, u;λ)

∞∫

0

(ζ(r))2 r−1 dr
∣∣∣(12.1.11)

≤ c
∑

µ+ν≤2m−1
µ,ν≤m

|λ|2m−1−µ−ν ‖u‖W µ
2 (Ω)` ‖u‖W ν

2 (Ω)`

with a certain positive constant c. Analogously,

∣∣∣
∑

j

b0(ζηjU, ζηjU)− a0(u, u; λ)

∞∫

0

(ζ(r))2 r−1 dr
∣∣∣(12.1.12)

≤ c
∑

µ+ν≤2m−1
µ,ν≤m

|λ|2m−1−µ−ν ‖u‖W µ
2 (Ω)` ‖u‖W ν

2 (Ω)` .

Using (12.1.11), (12.1.12), and the inequality

b(ζηjU, ζηjU) ≥ c b0(ζηjU, ζηjU) ,

which follows from Condition 1, we get the estimate

a(u, u;λ) ≥ c1 a0(u, u; λ)− c2

∑

µ+ν≤2m−1
µ,ν≤m

|λ|2m−1−µ−ν ‖u‖W µ
2 (Ω)` ‖u‖W ν

2 (Ω)` .

From this and from Lemma 12.1.2 we conclude that

(12.1.13) a(u, u; λ) ≥ c
(
‖u‖2W m

2 (Ω)` + |λ|2m ‖u‖2L2(Ω)`

)

for u ∈ Wm
2 (Ω)` and for sufficiently large |λ|, Re λ = m − n/2. This proves the

second assertion of the lemma. Using the fact that the order of the differential
operator Qβ(ω, ∂ω, λ)−Qβ(ω, ∂ω, µ) is less than m for |β| = m, we derive the first
assertion from (12.1.13).

As a consequence of Theorems 1.2.1, 1.2.2 and Lemma 12.1.3, the following
results hold.

Theorem 12.1.1. Let Condition 1 be satisfied. Then the following assertions
are valid.

1) The operator (12.1.6) is Fredholm for all λ ∈ C.
2) The spectrum of the pencil A consists of isolated eigenvalues with finite

algebraic multiplicities.
3) For all u, v ∈ Wm

2 (Ω)` there is the equality

a(u, v;λ) = a(v, u; 2m− n− λ).

Therefore, we have
A(λ)∗ = A(2m− n− λ).
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4) If λ0 is an eigenvalue of the pencil A, then 2m−n−λ0 is also an eigenvalue.
The geometric, partial and algebraic multiplicities of these eigenvalues coincide.

12.2. The energy line

12.2.1. Eigenvalues on the line Re λ = m − n/2. We denote the space
of homogeneous scalar polynomials of degree k in the variables x1, . . . , xn by Π(n)

k .
The dimension of this space is equal to (n+k−1

n−1 ).

Theorem 12.2.1. Suppose that Condition 2 is satisfied.
1) If 2m < n or 2m ≥ n and n is odd, then the operator A(λ) is positive definite

for Re λ = m−n/2. Consequently, in these cases the line Reλ = m−n/2 does not
contain eigenvalues of the pencil A.

2) If 2m ≥ n and n is even, then the operator A(λ) is positive definite for
Re λ = m − n/2, λ 6= m − n/2. The operator A(m − n/2) is nonnegative and the
number λ0 = m − n/2 is the only eigenvalue of the pencil A on the line Re λ =
m−n/2. The corresponding eigenfunctions are the restrictions of the homogeneous
vector-polynomials of degree m − n/2 to the domain Ω on the sphere. For every
eigenfunction there exists exactly one generalized eigenfunction.

Proof: Let ζ be a positive real-valued function on the interval (0,∞), ζ = 1 on
[1, 2], ζ = 0 outside the interval [1/2, 4]. Substituting the function

U(x) = ε−1/2 rλ ζ(ε log r)u(ω)

into (12.0.3) and passing to the limit as ε → 0, we obtain

(12.2.1) a(u, u; λ) ≥ c a0(u, u; λ) ≥ 0 for Re λ = m− n/2,

where a0 is the sesquilinear form (12.1.9). In the same way, by means of the
estimate b(U,U) ≤ C b0(U,U), where b0(·, ·) is the sesquilinear form (12.1.8), we
get the inequality

(12.2.2) a(u, u; λ) ≤ C a0(u, u; λ).

The quadratic form a0(u, u;λ) is given by the right-hand side of (12.1.9), where
U = V = rλu, if Re λ = m−n/2. If the vector-valued function U is not a polynomial,
then this expression is positive. This proves that the line Re λ = m− n/2 does not
contain eigenvalues if m − n/2 6∈ {0, 1, . . .} and that in the case of nonnegative
integer m − n/2 this number is the only eigenvalue of the pencil A with real part
m− n/2. Furthermore, the assertion of the theorem concerning the eigenfunctions
holds.

Let m− n/2 be a nonnegative integer and let u0 be the trace on Ω of a homo-
geneous vector-polynomial of degree k. By Lemma 1.2.2, there exists a generalized
eigenfunction associated to the eigenfunction u0. We prove the absence of second
generalized eigenfunctions.

Suppose that u0, u1, u2 is a Jordan chain corresponding to the eigenvalue λ0 =
m− n/2. Then

a(u0, v;λ0) = 0,(12.2.3)

a(u1, v;λ0) + a(1)(u0, v; λ0) = 0,(12.2.4)

a(u2, v;λ0) + a(1)(u1, v; λ0) +
1
2

a(2)(u0, v, λ0) = 0(12.2.5)
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for all v ∈ Wm
2 (Ω)`, where a(j)(u, v; λ) = dka(u, v;λ)/dλk. By what has been

shown above, the function rm−n/2 u0(ω) is a polynomial in x. Consequently, we
have ∂α

x

(
rm−n/2u0(ω)

)
= 0 for |α| = m or, what is the same,

(12.2.6) Qα(ω, ∂ω, λ0) u0 = 0,

where Qα is the differential operator (12.1.3). We set Q
(k)
α (λ)= dkQα(ω, ∂ω, λ)/dλk.

By (12.1.4), (12.2.4), and (12.2.6), we have

0 = a(u1, u1; λ0) + a(1)(u0, u1; λ0)(12.2.7)

=
∑

|α|=|β|=m

∫

Ω

(
Aα,β

(
Qβ(λ0)u1 + Q

(1)
β (λ0)u0

)
, Qα(λ0)u1

)
C`

dω.

Furthermore, from (12.2.5) and (12.2.6) it follows that

0 = a(u2, u0; λ0) + a(1)(u1, u0;λ0) +
1
2

a(2)(u0, u0, λ0)(12.2.8)

= −
∑

|α|=|β|=m

∫

Ω

(
Aα,β

(
Qβ(λ0)u1 + Q

(1)
β (λ0)u0

)
, Q(1)

α (λ0)u0

)
C`

dω.

Subtracting (12.2.8) from (12.2.7), we get
∑

|α|=|β|=m

∫

Ω

(
Aα,β

(
Qβ(λ0)u1 + Q

(1)
β (λ0)u0

)
, Qα(λ0)u1 + Q(1)

α (λ0)u0

)
C`

dω = 0.

We substitute the function

U(x) = ε−1/2 ζ(ε log r) rλ0
(
u1(ω) + u0(ω) log r

)

into (12.0.3). Passing to the limit as ε → 0, analogously to (12.2.1), we obtain

0 =
∑

|α|=|β|=m

∫

Ω

(
Aα,β

(
Qβ(λ0)u1 + Q

(1)
β (λ0)u0

)
, Qα(λ0)u1 + Q(1)

α (λ0)u0

)
C`

dω

≥ c
∑

|α|=m

∫

Ω

∣∣Qα(λ0)u1 + Q(1)
α (λ0)u0

∣∣2
C` dω.

From this we conclude that Qα(λ0)u1 + Q
(1)
α (λ0)u0 = 0 or, equivalently,

∂α
x

(
rλ0u1(ω) + rλ0u0(ω) log r

)
= 0

for |α| = m. Hence rλ0
(
u1(ω) + u0(ω) log r

)
is a polynomial in x. This is only

possible if u0 = 0 what contradicts our assumption on u0. The proof is complete.

12.2.2. An example. The following example shows that Condition 2 in the
formulation of Theorem 12.2.1 cannot be replaced by the weaker Condition 1.

Let σ < 1 and n ≥ 3. Suppose that the boundary ∂Ω is a smooth manifold.
We consider the sesquilinear form

bσ(U, V )
def
=

∫

K

n∑

j,k=1

∂2U

∂xj ∂xk
· ∂2V

∂xj ∂xk
dx− σ

∫

K

∆U ·∆V dx

which generates one of the Neumann problems for the biharmonic operator ∆2.
The corresponding parameter-depending sesquilinear form on Wm

2 (Ω)×Wm
2 (Ω) is

denoted by aσ(·, ·;λ).
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We verify the ellipticity of the corresponding boundary value problem. Since
the form bσ(·, ·) is invariant with respect to rotations, we may restrict ourselves to
the case K = Rn

+. Then the boundary conditions induced by the sesquilinear form
bσ on the boundary ∂K have the form

(∂2
xn
− σ∆)U =

(
∂2

xn
+ (σ − 2)∆

)
∂xnU = 0.

Standard calculations show that this problem is elliptic if and only if σ 6= 3/4.
Clearly, Conditions 1 and 2 are equivalent in the case of a half-space, since in-

equality (12.0.3) is invariant with respect to translation and dilation. Furthermore,
it can easily verified that the inequality σ < 3/4 is necessary and sufficient for the
local coerciveness of the form bσ(·, ·) defined on W 2

2 (Rn
+)×W 2

2 (Rn
+). Consequently,

Condition 1 for the form bσ defined on W 2
2 (K) is also equivalent to the inequality

σ < 3/4.
We prove that for σ ∈ (1/n, 3/4) there exists a cone K for which the form

bσ(·, ·) has the following property: the pencil Aσ(λ) corresponding to the form
bσ has eigenvalues with nonzero imaginary part on the line Re λ = 2 − n/2. In
particular, this implies that the condition in the formulation of Theorem 12.2.1 can
not be replaced by Condition 1. Let K = {x ∈ Rn : xn > |x′|/ε}, where ε is a small
positive number. We introduce the coordinates ω = (ω1, . . . , ωn) = x/|x| and set

u0(ω) = ω−n/2+it0
n (ω2

n + c t20 |ω′|2), t0 ∈ R,

where ω′ = (ω1, . . . , ωn−1). Then we have

aσ(u0, u0; 2− n/2 + it0)(12.2.9)

=
1

2 log 2

∫

K
1/2<|x|<2

( n∑

j,k=1

∣∣ ∂2U

∂xj ∂xk

∣∣∣
2

− σ |∆U |2
)

dx,

where
U(x) = r2−n/2+it0 u0(ω) = x−n/2+it0

n (x2
n + c t20 |x′|2).

If |t0| ≥ c(n), where c(n) is a sufficiently large positive constant depending only on
n, then the term in the integral on the right of (12.2.9) is equal to

((
4c2(n− 1) + 1− σ(2c(n− 1)− 1)2

)
t40 + O(|t0|3) + O(ε2t60)

)
x−n

n .

Since the infimum with respect to c of the expression in the big brackets is equal
to (1− σn)/(1− σ(n− 1)) for σ ∈ (1/n, 1/(n− 1)) and to −∞ for σ ≥ 1/(n− 1),
one can choose c, t0, ε, depending only on σ and n, in such a way that the integral
on the right in (12.2.9) is negative. As it was shown in the proof of Lemma 1.2.1,
the inequality

aσ(u0, u0, 2− n/2 + it0) < 0

implies the existence of an eigenvalue of the pencil Aσ which has the form λ =
2− n/2 + it, where t ∈ R, |t| > |t0|.

12.3. The energy strip

Additionally to the assumptions of Section 12.1, we suppose now that the cone
K is given by the inequality xn > φ(x′), x′ ∈ Rn−1, in some Cartesian coordinate
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system, where the function φ is positively homogeneous of degree 1 and satisfies
the Lipschitz condition

(12.3.1) |φ(x′)− φ(y′)| ≤ M |x′ − y′|
for all x′, y′ ∈ Rn−1. We describe the spectrum of the pencil A in the strip
|Re λ−m + n/2| ≤ 1/2.

12.3.1. The operators Tδ and Sδ. We introduce the following operator Tδ

defined on the set of all functions ψ ∈ L1(Sn−1) :

(Tδψ)(x) =
∫

Sn−1

f
( ω − x

|ω − x|
)
|ω − x|δ−n ψ(ω) dω,

where δ ∈ (0, 1), f ∈ C∞(Sn−1). The function Tδψ is defined almost everywhere
on Rn, or, more precisely, on the set Rn\Sn−1, where it is smooth. For large values
of |x| there is the inequality

|Dα
x (Tδψ)(x)| ≤ cα |x|δ−n−|α|

∫

Sn−1

|ψ(ω)| dω,

where |α| is an arbitrary multi-index and cα =const.
The following lemma gives an estimate for the W l

2-norm of the function Tδψ =
(Tδψ)(x) with respect to the coordinates x/|x| on the sphere.

Lemma 12.3.1. If l is a nonnegative integer and ψ ∈ W l
2(S

n−1), then

‖(Tδψ)(|x|·)‖W l
2(Sn−1) ≤ c |1− |x| |δ−1 ‖ψ‖W l

2(Sn−1)

for small values of |1− |x||.
Proof: We assume that the support of the function ψ is contained in a small

coordinate neighborhood U and estimate the norm of (Tδψ)(|x|·) in W l
2(U). Let z′,

y′ be local coordinates of the points x/|x| and ω in U and let zn = |x| − 1. In these
coordinates we can write Tδψ in the form

(Tδψ)(z) =
∫

Rn−1

F (y′ − z′, zn, y′) |y′ − z′|δ−n ψ(y′) dy′,

where F admits the estimate

|∂α
y′F (z, y′)| ≤ const, |α| ≤ l,

on any compact subset of Rn × Rn−1. Clearly,

|∂α
z′(Tδψ)(z)| ≤ c

∑

β≤α

∫

Rn−1

|∂β
z′F (y′, zn, z′ + y′)| |∂α−β

z′ ψ(z′ + y′)| |y′|δ−n dy′

≤ c
∑

β≤α

∫

Rn−1

|y′ − z′|δ−n |∂β
y′ψ(y′)| dy′.

This implies the inequality

‖(Tδψ)(·, zn)‖W l
2(Q) ≤ c |zn|δ−1 ‖ψ‖W l

2(Rn−1) ,

where Q is an arbitrary compact set in Rn−1. This proves the lemma for functions
ψ with supp ψ ⊂ U . If the function ψ has arbitrary support, then the assertion
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holds by means of a sufficiently fine partition of unity on Sn−1.

Let K0 be the cone {x ∈ Rn : xn > 2M |x′|}, where M is the Lipschitz constant
in (12.3.1). Then the relation x ∈ K implies x + K0 ∈ K. Furthermore, let δ be a
real number in the interval (0, 1) and f a smooth nonnegative function on the unit
sphere with support in K0 ∩ Sn−1 which does not vanish identically. We consider
the integral operator with weak singularity

(SδU)(x) =
∫

Rn

f
( y − x

|y − x|
)
|y − x|δ−n U(y) dy,

i.e., SδU is the convolution of U with the function Fδ(x) = f(ω) rδ−n. By the
assumption on the support of f , it suffices to integrate only on K in order to obtain
the value of SδU at a point x ∈ K. Therefore, we have

(SδU)(x) =
∫

K

f
( y − x

|y − x|
)
|y − x|δ−n U(y) dy, x ∈ K.

Lemma 12.3.2. There exists a positive constant c such that

(12.3.2) Re
∫

Rn

SδU · U dx ≥ c

∫

Rn

|ξ|−δ |Û |2 dξ,

where

Û(ξ) =
∫

Rn

eix·ξ U(x) dx

denotes the Fourier transform of U .

Proof: Let (ρ, θ) be spherical coordinates of the point ξ. For the Fourier trans-
form of the function Fδ(x) = f(ω) rδ−n the following formula (see Gel′fand and
Shilov [66]) holds.

F̂δ(ξ) = Γ(δ) ρ−δ

∫

Sn−1

(
eiδπ/2 (θ · ω)−δ

+ + e−iδπ/2 (θ · ω)−δ
−

)
f(ω) dω.

Consequently,

Re F̂δ(ξ) = Γ(δ) cos(δπ/2) ρ−δ

∫

Sn−1

|θ · ω|−δ f(ω) dω

and, therefore, Re F̂δ > 0. Using the Parseval equality, we get (12.3.2).

12.3.2. Absence of eigenvalues in {λ : 0 < |Re λ − m + n/2| < 1/2}.
The following lemma will be used in the proof of Theorem 12.3.1.

Lemma 12.3.3. Let V = r−n/2−δ/2+it v(ω), W = r−n/2−δ/2+it w(ω), where
δ ∈ (0, 1), t ∈ R, and v, w are functions from L2(Ω). Furthermore, let χε be the
characteristic function of the spherical shell {x : ε < |x| < 1/ε}, 0 < ε < 1. Then
the integral

Iε =
∫

K

(1− χε)V Sδ χεW dx

is bounded as ε → 0.
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Proof: Obviously,

(12.3.3) Iε =
∫

K
|x|≤ε

V SδχεW dx +
∫

K
|x|≥1/ε

V SδχεW dx.

We readily check the estimates

|(SδχεW )(x)| ≤




c ε−n/2+δ/2 for |x| ≤ ε,

c ε−n/2+δ/2 |x|δ−n for |x| ≥ 1/ε.

This and (12.3.3) imply the uniform boundedness of Iε for small ε.

Theorem 12.3.1. Let the cone K be given by the inequality xn > φ(x′), where φ
is positively homogeneous of degree 1 and satisfies the Lipschitz condition (12.3.1).
Furthermore, let Condition 3 be satisfied. Then there are no points of the spectrum
of the pencil A in the set {λ ∈ C : 0 < |Re λ−m + n/2| < 1/2}.

Proof: By Theorem 12.1.1, it suffices to establish the absence of eigenvalues in
the strip m− (n + 1)/2 < Re λ < m− n/2. Suppose there exists a solution

U(x) = rm−n/2−δ/2+it u0(ω), t, δ ∈ R, 0 < δ < 1,

of the Neumann problem (12.1.2). Then
∑

|α|=|β|=m

∫

K

(
Aα,β ∂β

x U , ∂α
x (SδχεU)

)
C`

dx = 0.

Since the convolution and the differentiation operators commute and χ2
ε = χε , we

obtain

0 =
∑

|α|=|β|=m

∫

K

(
Aα,β ∂β

x U , Sδ∂
α
x (χεU)

)
C`

dx(12.3.4)

=
∑

|α|=|β|=m

∫

K

(
Aα,β χε∂

β
x U , Sδχε∂

α
x U

)
C`

dx

+
∑

|α|=|β|=m

∫

K

(
Aα,β ∂β

xU , Sδ [∂α
x , χε]U

)
C`

dx

+
∑

|α|=|β|=m

∫

K

(
Aα,β ∂β

xU , [Sδ, χε] χε∂
α
x U

)
C`

dx,

where [A,B] = AB − BA. Since [Sδ, χε] χε∂
α
x U = (1 − χε) Sδ (χε∂

α
x U), it follows

from Lemma 12.3.3 that the last sum on the right in (12.3.4) is uniformly bounded.
We consider the second integral on the right in (12.3.4). Let ej be the multi-

index with all components equal to zero except for the j-th which is equal to unity.
Then

Sδ[∂α
x , χε]U =

∑

γ+ej≤α

c
(α)
j,γ ∂γ

xSδ∂xj χε∂
α−γ−ej
x U(12.3.5)

=
∑

γ+ej≤α

c
(α)
j,γ ∂γ

x Sδ

(
ωj

(
δ(r − ε)− δ(r − ε−1)

)
∂α−γ−ej

x U
)
,
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We introduce the functional (for the time being formally)

Ga =
∫

K

V · ∂γ
xSδ

(
δ(r − a)W

)
dx, a > 0,

where V (x) = r−n/2−δ/2+it v(ω), W (x) = rm−s−n/2−δ/2+it w(ω), v ∈ L2(Ω), w ∈
Wm−s

2 (Ω), |γ| + s = m − 1. Using the homogeneity of the functions V and W, we
obtain that Ga = G1. This and (12.3.5) imply the equality

(12.3.6)
∑

|α|=|β|=m

∫

K

(
Aα,β ∂β

xU , Sδ[∂α
x , χε]U

)
C`

dx = 0.

It remains to give a meaning to the functional G1. Let ζ = ζ(r) be a smooth function
equal to 1 in a neighborhood of the point r = 1 and to zero for |r − 1| > 1/2. By
Lemma 12.3.1, it suffices to regularize the functional

(12.3.7)
∫

K

V ∂γ
x

(
ζSδ

(
δ(r − 1) W

))
dx =

∫

K

V ∂γ
x

(
ζTδw

)
dx.

We represent the operator ∂γ
x in the form

∂γ
x =

|γ|∑

k=0

r−|γ| (r∂r)k qk(ω, ∂ω),

where qk are differential operators of order |γ| − k with smooth coefficients on the
sphere. Then by the functional (12.3.7) we mean the sum

|γ|∑

k=0

(n

2
− |γ| − δ

2
+ it

)k

∞∫

0

∫

Ω

rn/2−1−|γ|−δ/2+it v(ω) qk(ω, ∂ω)
(
ζTδw

)
dω dr,

which is obtained from (12.3.7) by integration by parts. The integrals in this
sum are absolutely convergent by Lemma 12.3.1. Thus, the relation (12.3.6) is
completely proved.

From (12.3.4), (12.3.6) and from the previously proved boundedness of the last
sum in the right-hand side of (12.3.4) it follows that the integral

Jε =
∑

|α|=|β|=m

∫

K

(
Aα,βχε∂

β
xU , Sδχε∂

α
x U

)
C`

dx

is uniformly bounded. Applying Parseval’s equality and (12.3.2), we find that

Re Jε ≥ c

∫

Rn

|ξ|−δ
∑

|α|=|β|=m

(
Aα,βÛε,β , Ûε,α

)
C` dξ,

where Uε,α is the zero extension of the function χε∂
α
x U given on K. By Condition

3, we obtain

(12.3.8) Re Jε ≥ c
∑

|α|=m

∫

Rn

|ξ|−δ |Ûε,α(ξ)|2 dξ.

We introduce the integral operator

(Rδ/2G)(x) =
∫

Rn

G(y) |x− y|−n+δ/2 dy.
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Then from (12.3.8) we get

Re Jε ≥ c
∑

|α|=m

∫

Rn

|(Rδ/2Uε,α)(x)|2 dx.

Let τ be a positive number and

(12.3.9) J (τ)
ε =

∫

Rn

χτ |(Rδ/2Uε,α)(x)|2.

It is easily seen that J
(τ)
ε tends to the limit

J (τ) =
∫

Rn

χτ |(Rδ/2U0,α)(x)|2 dx

as ε → 0, where U0,α is the zero extension to Rn of the function ∂α
x U. Since U0,α is

positively homogeneous of degree −n/2− δ/2 + it, we have

|(Rδ/2U0,α)(x)|2 = |x|−n ψα(ω).

If ∂α
x U 6= 0 for a certain multi-index α, then ψα 6= 0 and the integral J (τ) tends to

infinity as τ → 0. Consequently, if some of the functions ∂α
x U with |α| = m are not

zero, then for any positive c one can choose ε in such a way that Re Jε > c. The
last inequality contradicts the uniform boundedness of Jε with respect to ε. Thus,
∂α

x U = 0 for all α with |α| = m. Hence U is a vector-valued polynomial. Since U
is positively homogeneous of degree m− n/2− δ/2 + it, where δ ∈ (0, 1), t ∈ R, we
have U = 0. This proves the theorem.

We prove now that Condition 3 in Theorem 12.3.1 can be replaced by Condition
1 and estimate (12.0.4). Then together with Theorem 12.2.1 the following result
holds.

Theorem 12.3.2. Let the cone K be given by the inequality xn > φ(x′), where φ
is positively homogeneous of degree 1 and satisfies the Lipschitz condition (12.3.1).
Furthermore, let Condition 1 and estimate (12.0.4) be satisfied.

1) If 2m < n or 2m ≥ n and n is odd, then the strip |Re λ −m + n/2| < 1/2
contains no points of the spectrum of the pencil A.

2) If 2m ≥ n and n is even, then the strip |Re λ − m + n/2| < 1/2 contains
the single eigenvalue λ0 = m − n/2. The vector-valued function u = u(ω) is an
eigenfunction corresponding to the eigenvalue λ0 = m− n/2 if and only if u = p|Ω,
where p is a homogeneous vector-valued polynomial of degree m − n/2 in Rn. To
each eigenfunction there corresponds precisely one generalized eigenfunction.

Proof: We consider the sesquilinear form b̃ε(U, V ) = b(U, V )+ε b0(U, V ), where
b, b0 are defined by (12.0.2) and (12.1.8). By ãε(·, ·;λ) we denote the parameter-
depending form generated by bε(·, ·) :

ãε(u, v; λ) = a(u, v; λ) + ε a0(u, v; λ)

(see (12.1.4), (12.1.9)). The operator pencil Ãε corresponding to the form ãε is equal
to A + εA0, where A0 is the operator pencil generated by the form a0. Obviously,
the coefficients of the form b̃ε satisfy Condition 3 for ε > 0. Therefore, the set
{λ : 0 < |Re λ − m + n/2| < 1/2} is free of eigenvalues of the pencil Ãε. The
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statement of the theorem for Ãε, ε > 0, relative to the line Re λ = m− n/2 follows
immediately from Theorem 12.2.1.

Since Condition 1 holds for the form ãε uniformly with respect to ε ≥ 0, it
follows that for some σ, independent of ε, the set

{λ ∈ C : |Re λ| < σ |Imλ|, |Im λ| > 1/σ}
contains no points of the spectrum of the pencil Ãε, ε ≥ 0. Using Theorem 1.1.4,
we conclude that within the set

{λ ∈ C : |Re λ−m + n/2| < 1/2 , |Im λ| ≤ 1/σ}
eigenvalues of the pencil Ã0 = A can lie only on the line Re λ = m− n/2 and that
the sum of the algebraic multiplicities of these eigenvalues is the same as for the
pencil Ãε, ε ≥ 0. Thus, the theorem is proved for m < n/2 and for m ≥ n/2, n
odd.

Let m−n/2 be a nonnegative integer. Then λ = m−n/2 is an eigenvalue of the
pencil A, and the restrictions of homogeneous vector-polynomials of degree m−n/2
are eigenfunctions. From (12.0.4) and from the representation (12.1.5) it follows
that the quadratic form a(u, u; λ) is nonnegative for Re λ = m−n/2. Consequently,
by Lemma 1.2.2, to each eigenfunction there corresponds at least one generalized
eigenfunction. Since the sum of the algebraic multiplicities of eigenvalues of A in the
strip |Reλ −m + n/2| < 1/2 is the same as for the pencil Ãε, ε > 0, we conclude
that the eigenvalue λ0 = m − n/2 has no other eigenfunctions and generalized
eigenfunctions and that there are no other eigenvalues of the pencil A in the strip
|Re λ−m + n/2| < 1/2. The proof is complete.

12.3.3. On the validity of the generalized Korn inequality. The ex-
ample in Section 12.2 shows that Condition 1 does not follow from Condition 2.
However, by means of the last theorem, it can be shown that Condition 1 and in-
equality (12.0.4) imply Condition 2. For the proof of this fact we need the following
lemma.

Lemma 12.3.4. Let the conditions of Theorem 12.3.2 be satisfied and let m−n/2
be a nonnegative integer. Then there exist positive constants c1 and c2 such that

c1 a(u, u; m− n/2 + it) ≤ t2 ‖u(0)‖2L2(Ω)` + ‖u(1)‖2W m
2 (Ω)`(12.3.10)

≤ c2 a(u, u;m− n/2 + it)

for all u ∈ Wm
2 (Ω)` and for small |t|, t ∈ R, where u(0) is the orthogonal projection

of u onto the subspace of traces on Ω of homogeneous vector-polynomials of degree
m− n/2 and u(1) = u− u(0).

Proof: From (12.0.4) it follows that the form b(U,U) admits the representation

(12.3.11) b(U,U) =
∫

K

N∑

j=1

∣∣Pj(∂x) U
∣∣2
C` dx,

where Pj are homogeneous matrix-valued differential operators with constant coef-
ficients. Consequently, for the corresponding form a we have

(12.3.12) a(u, u; λ) =
N∑

j=1

∫

Ω

(
Pj(ω, ∂ω, λ)u , Pj(ω, ∂ω, 2m− n− λ)u

)
C`

dω,
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where Pj(ω, ∂ω, λ)u = rm−λ Pj(∂x) (rλ u(ω)). Let a(ν)(u, v;λ) = dνa(u, v; λ)/dλν

and P(ν)
j (λ) = dνPj(ω, ∂ω, λ)/dλν . Furthermore, let H0 denote the set of eigenvec-

tors of the pencil A corresponding to the eigenvalue m−n/2, i.e., the space of traces
on Ω of homogeneous vector-polynomials of degree k = m−n/2. Since Pj(k)u = 0
for u ∈ H0 and j = 1, . . . , N , we get

(12.3.13) −a(2)(u, v; k) = 2
N∑

j=1

(P(1)
j (k)u , P(1)

j (k)v
)
L2(Ω)`

for arbitrary u, v ∈ H0.
We show that the quadratic form −a(2)(u, u; k) is positive definite on H0. If

a(2)(u0, u0; k) = 0 for some eigenfunction u0 ∈ H0\{0}, then P(1)
j (k)u0 = 0 for

j = 1, . . . , m and, therefore, a(2)(u0, v; k) = 0 for all v ∈ H0. Since

∣∣a(1)(u0, v; k)
∣∣2 ≤

( N∑

j=1

∣∣(P(1)
j (k)u0 , Pj(k)v

)
L2(Ω)`

∣∣
)2

≤
N∑

j=1

‖P(1)
j (k)u0‖2L2(Ω)`

N∑

j=1

‖Pj(k)v‖2L2(Ω)` = −1
2

a(2)(u0, u0; k) · a(v, v; k),

we get a(1)(u0, v; k) = 0 for all v ∈ Wm
2 (Ω). Consequently, if u1 is a generalized

eigenvector associated to u0, then, by (12.2.4), we have a(u1, v; k) = 0 for all
v ∈ Wm

2 (Ω)`. Thus, u1 ∈ H0 and a(1)(u1, v; k) = 0 for all v ∈ H0. From this we
conclude that the equation

(12.3.14) a(u2, v; k) + a(1)(u1, v; k) +
1
2

a(2)(u0, v; k) = 0, v ∈ Wm
2 (Ω)`,

for the second generalized eigenvector u2 is solvable. Since this contradicts Theorem
12.3.2, we have proved that the form −a(2)(u, u; γ/2) is positive definite on H0.

We pass to the proof of (12.3.10). Using the equalities a(u(0), u(0); k) = 0,
a(u(0), u(1); k) = 0 and the fact that the space H0 has finite dimension, we can
deduce the left estimate in (12.3.10) from the equality

a(u, u; k + it) = a(u(0), u(0); k + it) + 2 Re a(u(0), u(1); k + it) + a(u(1), u(1); k + it).

We prove the right estimate in (12.3.10). Since

a(u(0), u(0); k) = a(u(0), u(1); k) = a(1)(u(0), u(0); k) = 0,

it suffices to establish the inequality

− t2

2
a(2)(u(0), u(0); k) + 2 Re it a(1)(u(0), u(1); k) + a(u(1), u(1); k)(12.3.15)

≥ c
(
t2 ‖u(0)‖2L2(Ω)` + ‖u(1)‖2W m

2 (Ω)`

)
.

If u(1) = 0, then this inequality follows from the positive definiteness of the form
−a(2)(u, u; k) on H0 and from the fact that H0 is finite-dimensional. Using inequal-
ity (12.1.10), the compactness of the imbedding Wm

2 (Ω) ⊂ L2(Ω) and the positive
definiteness of the form a(u, u; k) on the orthogonal complement of H0 in Wm

2 (Ω)`,
we obtain the validity of (12.3.15) in the case u(0) = 0. Therefore, in order to prove
(12.3.15), we only have to verify that

(12.3.16)
∣∣ Im a(1)(u(0), u(1); k)

∣∣2 6= −1
2

a(2)(u(0), u(0); k) · a(u(1), u(1); γ/2)
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for all nonvanishing u(0), u(1). By the equality

a(1)(u(0), u(1); k) =
m∑

j=1

(P(1)
j (k)u(0) , Pj(k)u(1)

)
L2(Ω)`

and (12.3.13), the inequality (12.3.16) is violated only if

(12.3.17) Pj(k) u(1) = cP(1)
j (k) u(0) , j = 1, . . . , m.

By renorming u(1) one may assume that c = −1. Then it follows from (12.3.17)
that

a(u(1), v; k) + a(1)(u(0), v; k) = 0 for all v ∈ Wm
2 (Ω)`.

Consequently, u(1) is a generalized eigenvector associated to u(0). Using (12.3.17),
we get

m∑

j=1

((Pj(k)u(1) , P(1)
j (k)v

)
L2(Ω)` +

(P(1)
j (k)u(0) , P(1)

j (k)v)
)
H = 0.

This is equivalent to

(12.3.18) a(1)(u(1), v; k) +
1
2

a(2)(u(0), v; k) = 0 for v ∈ H0.

Therefore, equation (12.3.14) for the second generalized eigenfunction u2 is solvable.
Since this contradicts Theorem 12.3.2, inequality (12.3.16) must be valid. The
lemma is proved.

Corollary 12.3.1. Suppose Condition 1 and inequality (12.0.4) are satisfied
and the cone K is given by the inequality xn > φ(x′), where φ is positively homo-
geneous of degree one in Rn−1 and satisfies the Lipschitz condition (12.3.1). Then
the inequality (12.0.3) is valid for all U ∈ Wm

2 (K)`.

Proof: First we prove (12.0.3) for U ∈ C∞0 (K\{0}). Let 2m ≥ n and n be even.
Then, by Lemma 12.3.4, we have the equivalence relation

(12.3.19) a(u, u, m− n/2 + it) ∼ t2 ‖u(0)‖2L2(Ω)` + ‖u(1)‖2W m
2 (Ω)`

for small |t|, t ∈ R, where u(0) is the orthogonal projection of u onto the subspace
of traces on Ω of homogeneous vector-polynomials of degree m − n/2 and u(1) =
u− u(0). For sufficiently large |t| we have

(12.3.20) a(u, u, m− n/2 + it) ∼ t2m ‖u‖2L2(Ω)` + ‖u‖2W m
2 (Ω)`

(see inequality (12.1.13)). Since, by Theorem 12.3.2 the form a(u, u; m− n/2 + it)
is positive for t 6= 0, the relation (12.3.20) can be extended over the set of all real
t satisfying the condition 0 < c1 < |t| < c2.

Replacing b by b0 and a by a0 (see (12.1.8), (12.1.9)) in the above arguments,
we arrive at the relations (12.3.19), (12.3.20) for the form a0(u, u; m − n/2 + it).
Therefore,

(12.3.21) a(u, u; λ) ∼ a0(u, u; λ) for Re λ = m− n/2.

Setting u = Ũ(λ, ω), where

Ũ(λ, ω) =

∞∫

0

r−λ−1 U(r, ω) dr
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denotes the Mellin transform with respect to r of the function U , integrating
(12.3.21) over the line Re λ = m − n/2 and applying the Parseval equality, we
get the inequality (12.0.3) for the case 2m ≥ n, n even, U ∈ C∞0 (K\{0})`.

If 2m < n or 2m ≥ n and n is odd, then the proof of this inequality for
U ∈ C∞0 (K\{0})` is much simpler, since, by the first part of Theorem 12.3.2, the
line Re λ = m − n/2 contains no eigenvalues of the pencil A and, consequently,
(12.3.20) holds for all real t. This again yields (12.3.21), and the application of the
Mellin transformation leads to (12.0.3) for U ∈ C∞0 (K\{0})`. Since C∞0 (K\{0}) is
dense in Wm

2 (K) for 2m ≤ n, the proof is complete for such m and n.
It remains to get rid of the restriction U ∈ C∞0 (K\{0})` for 2m > n. Since

C∞(K) ∩Wm
2 (K) is dense in Wm

2 (K), it suffices to prove (12.0.3) only for smooth
functions U. Let

p(x) =
∑

|α|<m−n/2

1
α!

(∂α
x U)(0) xα

and let η ∈ C∞0 (Rn), η(x) = 1 for |x| ≤ 1. We set ηN (x) = η(x/N) for N = 1, 2, . . . .
It can be easily seen that the difference Vn = U − ηNp can be approximated in
Wm

2 (K)` by functions from C∞0 (K\{0})`. Therefore, b(VN , VN ) ≥ c b0(VN , VN ).
Finally, we observe that

b(ηNp, ηNp) + b0(ηNp, ηNp) → 0

as N →∞. This proves Corollary 12.3.1.

12.3.4. The spectrum on the lines Re λ = m−n/2±1/2. Let the cone
K be given by the inequality xn > φ(x′). Now we suppose that the function φ is
positively homogeneous of degree 1 and smooth on Rn−1\{0}.

Theorem 12.3.3. Let Condition 3 be satisfied. Then the following assertions
are valid:

1) If n is even or n is odd and 2m < n−1, then the lines Re λ = m−n/2±1/2
do not contain eigenvalues of the pencil A.

2) If n is an odd number and 2m ≥ n − 1, then every of the lines Re λ =
m− n/2± 1/2 contains the single eigenvalue λ± = m− n/2± 1/2. The geometric,
partial and algebraic multiplicities of the eigenvalues λ+ and λ− coincide. The set
of the eigenfunctions corresponding to the eigenvalue λ+ is exhausted by the traces
on Ω of homogeneous vector-polynomials of degree λ+. The algebraic multiplicity
of the eigenvalue λ+ is equal to

`
((n + λ+ − 1

n− 1

)
+

(n + λ+ − 2
n− 1

))

(in the case λ+ = 0 the second binomial coefficient is equal to (n−2
n−1 ) = 0). To every

eigenfunction there corresponds at most one generalized eigenfunction.

Proof: By assertion 4) of Theorem 12.1.1, it suffices to consider the line Re λ =
m − n/2 + 1/2. Let λ0 be an eigenvalue of the pencil A on this line and let u0

be an eigenfunction corresponding to this eigenvalue. We set U(x) = rλ0 u0(ω).
Since λ0 − 1 = 2m− n− λ0, it follows from the definition of the operator A(λ) (cf.
(12.1.5)) that ∫

K

χε

∑

|α|=|β|=m

(
Aα,β ∂β

xU , ∂α
x ∂xnU

)
C` dx = 0,
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where χε is the characteristic function of the spherical shell ε < |x| < 1/ε, 0 < ε < 1.
Using the equalities Aα,β = A∗β,α for |α| = |β| = m and the fact that the integral
on the left is real, we get

1
2

∫

K

χε ∂xn

∑

|α|=|β|=m

(
Aα,β ∂β

xU , ∂α
x U

)
C` dx = 0.

Because of the cancelling of the corresponding integrals over the spheres |x| = ε
and |x| = 1/ε, integration by parts yields

∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β ∂β

x U , ∂α
x U

)
C` dx = 0.

Here the n-th component νn of the exterior normal ν is negative on ∂K\{0}. Hence
it follows from Condition 3 that

(12.3.22) ∂α
x U = 0 on ∂K\{0} for |α| = m.

First let n ≥ 3. Then ∂K\{0} is a connected manifold and, by (12.3.22), there exists
a vector-polynomial p(x), deg p ≤ m− 1, such that

∂α
x U = ∂α

x p on ∂K\{0} for |α| ≤ m− 1.

Since the function U is positively homogeneous of degree λ0, this implies p = 0 if
λ0 6∈ {0, 1, 2, . . .}. If λ0 is a nonnegative integer (i.e., λ0 = λ+ = m − n/2 + 1/2,
2m ≥ n − 1, n odd), then we conclude that the polynomial p is homogeneous of
degree λ0. In both cases U − p is a positively homogeneous function of degree λ0

which satisfies the Dirichlet boundary conditions on ∂K\{0}. Moreover,
∑

|α|=|β|=m

∂α
x

(
Aα,β ∂β

x (U − p)
)

= 0 in K.

Using Theorem 11.1.1, we conclude that U − p = 0.
In the case n = 2 the set ∂K\{0} consists of two half-lines Γ1 and Γ2. Con-

sequently, by (12.3.22), there exist polynomials p1, p2 of degree ≤ m − 1 such
that

∂α
x U = ∂α

x p1 on Γ1, ∂α
x U = ∂α

x p2 on Γ2, |α| ≤ m− 1.

Since λ0 is noninteger in this case, we get p1 = p2 = 0. By the same arguments as
in the case n ≥ 3, this implies U = 0.

Thus, we have proved that only in the case 2m ≥ n − 1, n odd, there is an
eigenvalue on the line Re λ = m − n/2 + 1/2, that this eigenvalue is equal to
m − n/2 + 1/2, and that the eigenfunctions corresponding to this eigenvalue are
traces on Ω of homogeneous polynomials.

We show that for integer k = m − n/2 + 1/2 ≥ 0 every eigenfunction of the
pencil A corresponding to the eigenvalue λ+ = k has at most one generalized
eigenfunction. Let u0, u1, u2 be a Jordan chain corresponding to the eigenvalue
λ+ = k. Then, as it was shown above, the function U0 = rk u0(ω) belongs to the
set (Π(n)

k )` of homogeneous vector-polynomials of degree k. Furthermore,

a(1)(u0, v; k) + a(u1, v; k) = 0,(12.3.23)
1
2

a(2)(u0, v; k) + a(1)(u1, v; k) + a(u2, v; k) = 0(12.3.24)
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for all v ∈ Wm
2 (Ω)`. We introduce the operator Tn(λ) by the equality

Tn(λ)u = Tn(ω, ∂ω, λ)u(ω) = r−λ+1 ∂xn
(rλ u(ω)).

Then we have

Qα(k − 1)Tn(k) = r−k+m+1 ∂α
x ∂xn

(rku0) = 0 for |α| = m,

where Qα is the operator defined in (12.1.3). Inserting v = Tn(k)u0 into (12.3.24),
we obtain

(12.3.25)
1
2

a(2)(u0, Tn(k)u0; k) + a(1)(u1, Tn(k)u0; k) = 0.

If we set v = Tn(k)u1 in (12.3.23), then we get

(12.3.26) a(1)(u0, Tn(k)u1; k) = −a(u1, Tn(k)u1; k).

One can readily verify that

| log ε| a(2)(u0, Tn(k)u0; k)(12.3.27)

= −
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x (log r U0) , ∂α
x (log r ∂xnU0)

)
C`

dx

= −1
2

∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β∂β

x (log r U0) , ∂α
x (log r U0)

)
C`

dx

+
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x (log r U0) , ∂α
x (ωnr−1U0)

)
C`

dx.

Setting U1 = rku1 , in a similar way, we obtain

2 | log ε| a(1)(u1, Tn(k)u0; k)(12.3.28)

= −
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x U1 , ∂α
x (log r ∂xnU0)

)
C`

dx

=
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x ∂xnU1 , ∂α
x (log r U0)

)
C`

dx

−
∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β∂β

xU1 , ∂α
x (log r U0)

)
C`

dx

+
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

xU1 , ∂α
x (ωnr−1U0)

)
C`

dx.

Substituting v = ωnu0 in (12.3.23), we get

(12.3.29) a(1)(u0, ωnu0; k) = −a(u1, ωnu0; k).

The left-hand side of (12.3.29) multiplied by 2 | log ε| is equal to the last integral
in (12.3.27), while the right-hand side is equal to the last integral in (12.3.28).
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Therefore, by (12.3.27) and (12.3.28), we can rewrite (12.3.25) in the form

1
2

∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β∂β

x (log r U0) , ∂α
x (log r U0)

)
C`

dx(12.3.30)

+
∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β∂β

x U1 , ∂α
x (log r U0)

)
C`

dx

−
∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x ∂xn
U1 , ∂α

x (log r U0)
)
C`

dx = 0.

Furthermore, the right-hand side in (12.3.26) is equal to

− 1
2 | log ε|

∫

K

χε

∑

|α|=|β|=m

(
Aα,β∂β

x U1 , ∂α
x ∂xnU1

)
C`

dx

= − 1
4 | log ε|

∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β∂β

xU1 , ∂α
x U1

)
C`

dx,

and the left-hand side of (12.3.26) and the last integral in (12.3.30) are complex
conjugates. Therefore, taking the real part in (12.3.30), we get

∫

∂K

χε νn

∑

|α|=|β|=m

(
Aα,β ∂β

x (U0 log r + U1) , ∂α
x (U0 log r + U1)

)
C`

dx(12.3.31)

= 0.

This implies the existence of a vector-polynomial p of degree not greater than m−1
such that ∂γ

x(U0 log r + U1) = ∂γ
xp on ∂K for |γ| ≤ m. From this it follows that

U0 = 0. This contradicts the assumption that u0 is an eigenfunction. Thus, we have
proved that every eigenfunction has at most one generalized eigenfunction.

Now we give an upper estimate for the algebraic multiplicity of the eigenvalue
λ+ = k = m − n/2 + 1/2. Let u0 be an eigenfunction corresponding to this eigen-
value. We assume that the vector-polynomial U0 = rku0 does not depend on the
variable xn and show that there are no generalized eigenfunctions associated to the
eigenfunction u0. For this end, we suppose the contrary, i.e., there exists a gener-
alized eigenfunction u1. Then U0 log r + rku1 is a solution of the problem (12.1.2).
If we set V = χε ∂xn(U0 log r + U1) with U1 = rku1 in (12.1.2), we get

(12.3.32)

0 =
∫

K

∑

|α|=|β|=m

(
Aα,β ∂β

x (U0 log r + U1), ∂α
x

(
χε∂xn(U0 log r + U1)

))
C`

dx

=
∫

K

χε

∑

|α|=|β|=m

(
Aα,β ∂β

x (U0 log r + U1), ∂xn∂α
x (U0 log r + U1)

)
C`

dx,

since the polynomial U0 is independent of xn. Integrating by parts in the right-hand
side of (12.3.32) we arrive at (12.3.31), where U1 = rku1. Here we have used the
fact that the integrals over the spheres |x| = ε and |x| = 1/ε mutually cancel by
the homogeneity of the functions ∂β

x (U0 log r), ∂xn(U0 log r), and U1. Consequently,
U0 = 0. This implies that the dimension of the subspace of eigenfunctions having a
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generalized eigenfunctions does not exceed the dimension of the space of the vector-
polynomials xn p(x), p ∈ (Π(n)

k−1)
`. Thus, the algebraic multiplicity of the eigenvalue

λ+ does not exceed `((n+k−1
n−1 ) + (n+k−2

n−1 )).
For k = 0 this estimate, together with the assertion on the eigenfunctions, im-

plies the statement of the theorem. Let k ≥ 1. By Theorem 12.1.1, the dimension of
the space of eigenfunctions to the eigenvalue λ+ having a generalized eigenfunction
is the same as for the eigenvalues λ− = k − 1. The eigenspace of the eigenvalue
λ− contains the traces of the vector-valued polynomials from (Π(n)

k−1)
` on Ω. We

show that for all of them generalized eigenfunctions exist. In fact, if u0 = U0|Ω,

U0 ∈ (Π(n)
k−1)

`, then

a(1)(u0, v; k − 1) = 0 for all v = V |Ω, V ∈ (Π(n)
k )`.

This is equivalent to the existence of a generalized eigenfunction associated to u0.
Hence the algebraic multiplicity of λ+ is at least `((n+k−1

n−1 ) + (n+k−2
n−1 )). The proof

of the theorem is complete.

Remark 12.3.1. In Section 9.2 we got a transcendental equation for eigenvalues
of the pencil generated by general elliptic boundary value problems for equations
of order 2m in a plane angle of size α ∈ (0, 2π]. For α = 2π this transcendental
equation has the form

det(e−4πλi I −B−1CA−1D) = 0,

where A, B, C, D are m×m-matrices depending on the operators of the problem.
In the case of the Neumann problem we have C = A and B = D. Therefore,
every half-integer number is an eigenvalue. Since the roots of the above-mentioned
transcendental equation depend continuously on α, for any angle size close to 2π
there exist eigenvalues of the pencil close to m−1/2. This implies that the statement
of Theorems 12.3.2, 12.3.3 can not be refined. Namely, there exists no strip wider
than the strip m− 1 < Re λ ≤ m− 1/2 which is free of eigenvalue of the pencil A
without additional assumptions on the operator and the angle size.

The following example shows that Theorem 12.3.3 fails if Condition 3 is re-
placed by the weaker Condition 2.

Example. We consider the Neumann problem in the example of Section 12.2
in the half-space K = R3

+ for σ = 1/2. Then Condition 2 is satisfied for the corre-
sponding quadratic form. On the other hand, the form

3∑

i,j=1

|fi,j |2 − 1
2

∣∣∣
3∑

i=1

fi,i

∣∣∣
2

is not positive, i.e., Condition 3 does not hold. Theorem 12.3.3 fails for this problem,
since it has four linearly independent positively homogeneous solutions of degree 1:
x1, x2, x3, and |x|.

12.4. Applications to the Neumann problem in a bounded domain

Let G be a bounded domain in Rn and 0 ∈ ∂G. For simplicity we assume that
the set {x ∈ G : |x| < 1} coincides with {x ∈ K : |x| < 1}, where K is the same
cone as in the preceding section.
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Furthermore, let L be the operator

L(∂x) = (−1)m
∑

|α|=|β|=m

Aα,β ∂α+β
x ,

where Aα,β are constant ` × `-matrices, Aα,β = A∗β,α. We assume the coefficients
Aα,β are subject to Condition 3. The Neumann problem will be considered in two
formulations.

Problem I. Let f be a vector-valued function from L2(G)` orthogonal to all
vector-polynomials of degree not greater than m− 1. By a solution of Problem I we
mean a function U ∈ Wm

2 (G)` satisfying the integral identity

(12.4.1)
∫

G

∑

|α|=|β|=m

(
Aα,β ∂β

x U , ∂α
x V

)
C` dx =

∫

G

(f, V )C` dx

for all V ∈ Wm
2 (G)`.

Condition 3 ensures the solvability of Problem I. The solutions are uniquely
determined up to additive polynomial terms of degree not greater than m− 1.

To formulate Problem II we use the function space Wm
2 (G, 0), which is defined

as the completion of C∞0 (G\{0}) in the norm of the space Wm
2 (G). This space differs

from Wm
2 (G) only in the case 2m > n.

Furthermore, we denote by
◦
Π the set of the polynomials of degree not greater

than m−1 vanishing at the conic point x = 0 together with the derivatives of order
less than m− n/2.

Problem II. Let 2m > n and let f ∈ L2(G)` be a vector-valued function or-

thogonal to
◦
Π `. By a solution of Problem II we mean a vector-valued function

U ∈ Wm
2 (G, 0)` satisfying the integral identity (12.4.1) for all V ∈ Wm

2 (G, 0)`.

Clearly, this problem is also solvable and its solution is uniquely determined up
to polynomials from

◦
Π `.

As an application of Theorems 12.2.1–12.3.3 we find the principal terms of
the asymptotics near the point x = 0 for the solutions of the two boundary value
problems just stated. We limit consideration to a smooth vector function f. Using
asymptotic formulas for solutions of general elliptic boundary value problems near
conic points (see Section 1.4) and Theorems 12.2.1–12.3.3, we obtain the following
asymptotics for the solution UII of Problem II:

(12.4.2) UII(x) =
∑

|α|=m−n/2

cα xα + O(rm−(n−1)/2+ε)

if n is even and

UII(x) =
∑

|β|=m−(n−1)/2

cβ xβ(12.4.3)

+
∑

|γ|=m−(n+1)/2

cγ

(
pγ(x) log r + hγ(x)

)
+ O(rm−(n−1)/2+ε)
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if n is odd. Here cα, cβ are constant vectors, cγ are scalars, pγ are vector-valued
polynomials of degree |γ|+1, hγ are vector-valued functions positively homogeneous
of degree |γ|+ 1, and ε is a positive number.

Theorem 12.4.1. The solution UI of Problem I has the asymptotics

(12.4.4) UI(x) =
∑

|α|≤m−(n−1)/2

cα xα + O(rm−(n−1)/2+ε)

near the point x = 0, where cα are constant vectors. (In the case 2m < n − 1 the
sum in (12.4.4) is absent.)

Proof: For 2m ≤ n as well as for 2m > n and even n the asymptotics (12.4.4)
immediately follows from Theorems 12.2.1–12.3.3. In the case 2m > n, n odd, these
theorems yield the cruder asymptotic representation

UI(x) =
∑

|β|≤m−(n−1)/2

cβ xβ(12.4.5)

+
∑

|γ|=m−(n+1)/2

cγ

(
pγ(x) log r + hγ(x)

)
+ O(rm−(n−1)/2+ε).

We prove that the coefficients cγ in (12.4.5) are zero. Let U(x) = pγ(x) log r+hγ(x)
and let η be a function of the class C∞0 (Rn) equal to one in a neighborhood of the
origin. Obviously, it suffices to prove that the equality

(12.4.6) b(U, ηV ) = 0

is not valid for all homogeneous vector-valued polynomials V of degree λ+ − 1,
where λ+ = k = m− (n− 1)/2 and η ∈ C∞0 (K).

Suppose that (12.4.6) is satisfied for all V ∈ (Π(n)
k−1)

`. Since the left-hand side
of (12.4.6) does not depend on the cut-off function η, (12.4.6) implies

b(U,χV ) = 0 for all V = rk−1 v(ω) ∈ (Π(n)
k−1)

`,

where χ = χ(r) is the characteristic function of the unit ball. One can readily check
the relation

∂α
x (χV ) =

m∑

k=1

rk−m−1 (r∂r)kχ · q(k)
α (ω, ∂ω) v(ω),

where q
(k)
α are differential operators on the unit sphere,

q(1)
α (ω, ∂ω) = ∂λQα(ω, ∂ω, λ)|λ=k−1.

Since ∂β
x U(x) has the form rk−m gβ(ω) for |β| = m, we obtain

b(U, χV ) =
∫

K

∑

|α|=|β|=m

(
Aα,β∂β

x U , rk−m χ′ q(1)
α (ω, ∂ω)v

)
C`

dx

= −
∫

Ω

∑

|α|=|β|=m

(
Aα,β

(
Q′β(ω, ∂ω, k)u0 + Qβ(ω, ∂ω, k)u1

)
, Q′

α(ω, ∂ω, k − 1)v
)
C`

dω,

where u0 = pγ |Ω, u1 = hγ |Ω. Taking into account that u0 and v are traces on Ω of
polynomials of degree k and k − 1, we get

b(U, χV ) =
1
2

a(2)(u0, v; k) + a(1)(u1, v; k).
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Thus, we arrive at the equalities

a(1)(u0, w; λ+) + a(u0, w; λ+) = 0 for all w ∈ Wm
2 (Ω)`,

1
2

a(2)(u0, v; λ+) + a(1)(u1, v; λ+) = 0 for all v such that rλ+−1 v ∈ (Π(n)
λ+−1)

`.

Using the same arguments as in the proof of Theorem 12.3.3, from these relations we
deduce (12.3.25)–(12.3.31), where U0 and U1 are replaced by pγ and hγ , respectively.
From the equality (12.3.31) modified in this way we obtain

∂α
x (pγ log r + hγ) = p on ∂K for |α| ≤ m,

where p is a vector-valued polynomial of degree not greater than m − 1. Conse-
quently, pγ = 0. This proves the representation (12.4.4).

Comparing the asymptotics of the solutions UI and UII for 2m > n and odd
n, we see that UI ∈ W

m+1/2+δ
2 (G)` for some δ > 0 and UII ∈ W

m+1/2−δ
2 (G)` for

all δ > 0. For other dimensions UI and UII belong to the space W
m+1/2+δ
2 (G)`.

12.5. The Neumann problem for anisotropic elasticity in an angle

Let us consider the Neumann problem for the Lamé system of the plane aniso-
tropic elasticity in the angle K with opening α ∈ (0, 2π). In other words, we deal
with problem (9.2.13)–(9.2.15). We use the notation introduced in Section 9.2.5.
By the second assertion of Theorem 12.3.2, the strip |Re λ| < 1/2 contains only
the eigenvalue λ = 0 of the pencil A corresponding to the boundary value prob-
lem for the displacement vector. Moreover, this eigenvalue generates two constant
eigenvectors, and each of them has precisely one generalized eigenvector.

Here we enhance this information by describing spectral properties of A for
1/2 ≤ |Re λ| ≤ 1. We use the reduction (9.2.17) of the elasticity problem to the
fourth order elliptic equation (9.2.18) with boundary conditions (9.2.19), (9.2.20).
By assertion 4 of Theorem 12.1.1, it is sufficient to consider the strip 1/2 ≤ Re λ ≤ 1.

Integrating (9.2.19) and (9.2.20), we obtain that U is linear and the normal
derivative of U is constant on each side of K. Since we are interested in power-
logarithmic solutions U with the power λ + 1, the Dirichlet data for U just men-
tioned should be zero. We note that the power-logarithmic displacement solutions
satisfying problem (9.2.13)–(9.2.15) can be recovered from U modulo a rigid body
displacement term. Clearly, this term is zero if λ 6= 1. For λ = 1 the rigid displace-
ment term is the vector c (x2,−x1).

Referring to Theorem 8.4.1, we see that for α < π the strip 1/2 ≤ Re λ ≤ 1
contains one simple eigenvalue λ = 1 with the eigenvector (sinϕ,− cos ϕ).

If α ∈ [π, 2π), then, by Theorem 8.5.1, all eigenvalues of A in the strip 1/2 ≤
Re λ ≤ 1 are real and situated in (1/2, 1]. Furthermore, all eigenvalues of A in the
interval (1/2, 1) are simple and strictly decreasing with respect to α. By the same
theorem, there exists an angle α∗ ∈ (π, 2π) such that there is one eigenvalue in the
interval (1/2, 1) if α ∈ (π, α∗] and there are two eigenvalues in the same interval
if α ∈ (α∗, 2π). If α is close to 2π, then the interval (1/2, 1) contains exactly two
eigenvalues subject to the asymptotic formula

λk(α) =
1
2

+ ck(2π − α)2k−1 + O(|2π − α|2k) ,
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where k = 1, 2 and ck = const > 0 (see Theorem 8.3.1). If α is close to π and
α > π, then the pencil has exactly one simple eigenvalue λ2(α) in (1/2, 1) which
satisfies

λ2(α) = 1− c (α− π) + O((α− π)2) ,

where c is a positive constant (see Theorem 8.2.1).
Theorem 8.1.3 and the above information about the eigenvalue λ = 1 show

that, in the case α = π, the strip 1/2 ≤ Re λ ≤ 1 contains the single eigenvalue
λ = 1 of multiplicity 2. A corresponding eigenvector is (sinϕ,− cosϕ) and another
one can be found from (9.2.17), where U = x2

2.
It remains to consider the case of a cut, i.e. α = 2π. Condition 2 (Korn’s

inequality) holds because it is valid for the half-plane. Hence and by the second
assertion of Theorem 12.2.1, there is only one eigenvalue λ = 0 of A on the line
Re λ = 0. The corresponding eigenvectors are (1, 0) and (0, 1), and each of them
has one generalized eigenvector. Theorem 8.1.3 guarantees that the spectrum of
A in the strip 0 < Reλ ≤ 1 consists of the eigenvalues 1/2 and 1. Moreover, the
eigenvalue λ = 1 has the same two eigenvectors as in the case α = π and there are
no generalized eigenvectors. The remaining eigenvalue λ = 1/2 has geometric and
algebraic multiplicities 2.

12.6. Notes

The results of this chapter, except for the previous section, are taken from the
paper [129] by Kozlov and Maz′ya.
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[115] Kondrat′ev, V. A., Kopachek, I., Olĕınik, O. A., On the behavior of generalized solutions of
elliptic second order equations and of the system of elasticity theory in a neighborhood of a
boundary point, Trudy Sem. Petrovsk. 8 (1982) 135-152.
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tischer Randwertaufgaben in Gebieten mit Kanten I–III, Preprint P-MATH 07/84, 30/84,
31/84 Institut für Math., Akademie der Wissenschaften der DDR, Berlin 1984.
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[214] Nikol′skĭı, S. M., The Dirichlet problem in domains with corners, Dokl. Akad. Nauk SSSR
109 (1956) 1, 33-35 (in Russian).
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[220] Olĕınik, O. A., Yosifyan, G. A., Tavkhelidze, I. N., On the asymptotics of solutions of the
biharmonic equation in a neighborhood of nonregular boundary points and at infinity, Tr.
Mosk. Mat. Obs. 42 (1981) 160-175 (in Russian).
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[256] Verzhbinskĭı, G. M., Maz′ya, V. G., Asymptotic behaviour of solutions of elliptic equations

of second order near the boundary I, II, Sibirsk. Mat. Zh. 12 (1971) 6, 1217-1249, 13 (1972)
6, 1239-1271.
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M pencil generated by the poly-

harmonic operator, 311
I` `× ` identity matrix, 313
G Green matrix of L, 313
Π(n)

k space of homogeneous polynomi-
als of degree k with n variables, 314

S′(Rn) space of tempered distributions
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Rn
+ half-space, 319

Gj Poisson kernel, 320
R1 line in Rn, 321
R ray in Rn, 321
xλ−1

n+ distribution, 322
Û Fourier transform of U , 323

Chapter 11

K cone xn > φ(x′), 346, 365
Ω domain on the sphere, 346
L differential operator, 346, 353, 376
L operator pencil, 346, 368, 376
ν = (ν1, . . . , νn) exterior normal, 346
a(·, ·;λ) sesquilinear form, 352, 354
ω = (ω1, . . . , ωn) = x/|x| coordinates

on the unit sphere
∂ωj differential operator on the sphere,

354
G Green function, 358
αj interior angle between plane parts

of ∂K, 365
R ray, 368
N north pole of the unit sphere, 368
Gβ vector function on Sn−1, 368
Ωε domain on the sphere, 372, 376,

383
Lε operator pencil, 372, 377, 383
Kε cone, 376, 383
Gm−1 function on Rn

+, 377

Chapter 12

L differential operator, 389
Aα,β `× ` matrices, coefficients of L,

389
K cone, 389
Ω domain on the sphere, 389
b(·, ·) sesquilinear form, 389
ν exterior normal, 389
Qα differential operator on the sphere,

391
a(·, ·;λ) sesquilinear form, 391
A operator pencil, 391
b0(·, ·) sesquilinear form, 393
a0(·, ·; λ) sesquilinear form, 393

Π(n)
k set of homogeneous polynomials

of degree k, 396
φ function, 398
Tδ integral operator, 399
Sδ integral operator, 400
◦
Π set of polynomials, 412


