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Introduction

“Ce probléme est, d’ailleurs, indissoluble-
ment lié a la recherche des points sin-
guliers de f, puisque ceuz-ci constituent,
au point de wvue de la théorie moderne
des fonctions, la plus importante des pro-
priétés de f.”

Jacques Hadamard

Notice sur les travauz scientifiques,

Gauthier-Villars, Paris, 1901, p.2

Roots of the theory. In the present book we study singularities of solutions
to classical problems of mathematical physics as well as to general elliptic equations
and systems. Solutions of many problems of elasticity, aero- and hydrodynamics,
electromagnetic field theory, acoustics etc., exhibit singular behavior inside the
domain and at the border, the last being caused, in particular, by irregularities of
the boundary. For example, fracture criteria and the modelling of a flow around
the wing are traditional applications exploiting properties of singular solutions.

The significance of mathematical analysis of solutions with singularities had
been understood long ago, and some relevant facts were obtained already in the
19th century. As an illustration, it suffices to mention the role of the Green and
Poisson kernels. Complex function theory and that of special functions were rich
sources of information about singularities of harmonic and biharmonic functions,
as well as solutions of the Lamé and Stokes systems.

In the 20th century and especially in its second half, a vast number of math-
ematical papers about particular and general elliptic boundary value problems in
domains with smooth and piecewise smooth boundaries appeared. The modern the-
ory of such problems contains theorems on solvability in various function spaces,
estimates and regularity results, as well as asymptotic representations for solutions
near interior points, vertices, edges, polyhedral angles etc. For a factual and histor-
ical account of this development we refer to our recent book [136], where a detailed
exposition of a theory of linear boundary value problems for differential operators
in domains with smooth boundaries and with isolated vertices at the boundary is
given.

Motivation. The serious inherent drawback of the elliptic theory for non-
smooth domains is that most of its results are conditional. The reason is that

1



2 INTRODUCTION

singularities of solutions are described in terms of spectral properties of certain
pencils' of boundary value problems on spherical domains. Hence, the answers to
natural questions about continuity, summability and differentiability of solutions
are given under a priori conditions on the eigenvalues, eigenvectors and generalized
eigenvectors of these operator pencils.

The obvious need for the unconditional results concerning solvability and reg-
ularity properties of solutions to elliptic boundary value problems in domains with
piecewise smooth boundaries makes spectral analysis of the operator pencils in
question vitally important. Therefore, in this book, being interested in singular-
ities of solutions, we fix our attention on such a spectral analysis. However, we
also try to add another dimension to our text by presenting some applications to
boundary value problems. We give a few examples of the questions which can be
answered using the information about operator pencils obtained in the first part of
the book:

e Are variational solutions of the Navier-Stokes system with zero Dirichlet data
continuous up to the boundary of an arbitrary polyhedron?

e The same question for the Lamé system with zero Dirichlet data.

e Are the solutions just mentioned continuously differentiable up to the bound-
ary if the polyhedron is convex?

One can easily continue this list, but we stop here, since even these simply
stated questions are so obviously basic that the utility of the techniques leading to
the answers is quite clear. (By the way, for the Lamé system with zero Neumann
data these questions are still open, despite all physical evidence in favor of positive
answers. )

Another impetus for the spectral analysis in question is the challenging program
of establishing unconditional analogs of the results of the classical theory of general
elliptic boundary value problems for domains with piecewise smooth boundaries.
This program gives rise to many interesting questions, some of them being treated
in the second part of the book.

Singularities and pencils. What kind of singularities are we dealing with,
and how are they related to spectral theory of operator pencils? To give an idea, we
consider a solution to an elliptic boundary value problem in a cone. By Kondrat’ev’s
theorem [109], this solution, under certain conditions, behaves asymptotically near
the vertex O as

>\ 1
(1) leAOZg(loglwl)kusw(x/\xl)v

k=0

where \q is an eigenvalue of a pencil of boundary value problems on a domain, the
cone cuts out on the unit sphere. Here, the coefficients are: an eigenvector ug, and
generalized eigenvectors uq, ..., us corresponding to Ag. In what follows, speaking
about singularities of solutions we always mean the singularities of the form (1).

It is worth noting that these power-logarithmic terms describe not only point
singularities. In fact, the singularities near edges and vertices of polyhedra can be
characterized by similar expressions.

IThe operators polynomially depending on a spectral parameter are called operator pencils,
for the definition of their eigenvalues, eigenvectors and generalized eigenvectors see Section 1.1
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The above mentioned operator pencil is obtained (in the case of a scalar equa-
tion) by applying the principal parts of domain and boundary differential operators
to the function r*u(w), where r = |z| and w = z/|z|. Also, this pencil appears un-
der the Mellin transform of the same principal parts. For example, in the case of the
n-dimensional Laplacian A, we arrive at the operator pencil § + A\(A+n — 2), where
0 is the Laplace-Beltrami operator on the unit sphere. The pencil corresponding to
the biharmonic operator A2 has the form:

FH2N+n=5)A—n+4)5+AA=2)(A+n—2)(A+n—4).
Even less attractive is the pencil generated by the Stokes system
(U) (—AU + VP)
- b
P v.-U

where U is the velocity vector and P is the pressure. Putting

U(z) = rMu(w) and P(x) = r*"pw),
one can check that this pencil looks as follows in the spherical coordinates (r, 8, ¢):

O (sin 0 UQ) + 8¢,u¢

—0up — (A =1 (AN+2)u, +2 - A—1
4y = A= DA+ 2)u + UM (-1
2cos 60

Uy —dug — AN+ 1Dug + U + .c02s plo _ 209U, + Ogp
ug sin” 6
u —

» Up —2c0s00,ug  20,u, — Ogp

D dup — AN+ 1)uy, + Zd i

Og(sin O up) + O uy N

Nu,
sin 0 (A +2)ur

Here 0y and 0, denote partial derivatives.

In the two-dimensional case, when the pencil is formed by ordinary differen-
tial operators, its eigenvalues are roots of a transcendental equation for an entire
function of a spectral parameter A. In the higher-dimensional case and for a cone
of a general form one has to deal with nothing better than a complicated pencil of
boundary value problems on a subdomain of the unit sphere.

Fortunately, many applications do not require explicit knowledge of eigenvalues.
For example, this is the case with the question whether solutions having a finite
energy integral are continuous near the vertex. For 2m < n the affirmative answer
results from the absence of nonconstant solutions (1) with m —n/2 < Re Ao < 0.

Since the investigation of regularity properties of solutions with the finite energy
integral is of special importance, we are concerned with the widest strip in the
A-plane, free of eigenvalues and containing the “energy line” ReA = m — n/2.
Information on the width of this “energy strip” is obtained from lower estimates
for real parts of the eigenvalues situated over the energy line. Sometimes, we are
able to establish the monotonicity of the energy strip with respect to the opening
of the cone. We are interested in the geometric, partial and algebraic multiplicities
of eigenvalues, and find domains in the complex plane, where all eigenvalues are
real or nonreal. Asymptotic formulae for large eigenvalues are also given.

The book is principally based on results of our work and the work of our col-
laborators during last twenty years. Needless to say, we followed our own taste in
the choice of topics and we neither could nor wished to achieve completeness in
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description of the field of singularities which is currently in process of development.
We hope that the present book will promote further exploration of this field.

Organization of the subject. Nowadays, for arbitrary elliptic problems there
exist no unified approaches to the question whether eigenvalues of the associated
operator pencils are absent or present in particular domains on the complex plane.
Therefore, our dominating principle, when dealing with these pencils, is to depart
from boundary value problems, not from methods.

We move from special problems to more general ones. In particular, the two-
dimensional case precedes the multi-dimensional one. By the way, this does not
always lead to simplifications, since, as a rule, one is able to obtain much deeper
information about singularities for n = 2 in comparison with n > 2.

Certainly, it is easy to describe singularities for particular boundary value prob-
lems of elasticity and hydrodynamics in an angle, because of the simplicity of the
corresponding transcendental equations. (We include this material, since it was
never collected before, is of value for applications, and of use in our subsequent ex-
position.) On the contrary, when we pass to an arbitrary elliptic operator of order
2m with two variables, the entire function in the transcendental equation depends
on 2m + 1 real parameters, which makes the task of investigating the roots quite
nontrivial.

It turns out that our results on the singularities for three-dimensional problems
of elasticity and hydrodynamics are not absorbed by the subsequent analysis of
multi-dimensional higher order equations, because, on the one hand, we obtain
a more detailed picture of the spectrum for concrete problems, and, on the other
hand, we are not bound up in most cases with the Lipschitz graph assumption about
the cone, which appears elsewhere. (The question can be raised if this geometric
restriction can be avoided, but it has no answer yet.) Moreover, the methods
used for treating the pencils generated by concrete three-dimensional problems
and general higher order multi-dimensional equations are completely different. We
mainly deal with only constant coefficient operators and only in cones, but these
are not painful restrictions. In fact, it is well known that the study of variable
coefficient operators on more general domains ultimately rests on the analysis of
the model problems considered here.

Briefly but systematically, we mention various applications of our spectral re-
sults to elliptic problems with variable coefficients in domains with nonsmooth
boundaries. Here is a list of these topics: L,- and Schauder estimates along with the
corresponding Fredholm theory, asymptotics of solutions near the vertex, pointwise
estimates for the Green and Poisson kernels, and the Miranda-Agmon maximum
principle.

Structure of the book. According to what has been said, we divide the
book into two parts, the first being devoted to the power-logarithmic singularities
of solutions to classical boundary value problems of mathematical physics, and
the second dealing with similar singularities for higher order elliptic equations and
systems.

The first part consists of Chapters 1-7. In Chapter 1 we collect basic facts
concerning operator pencils acting in a pair of Hilbert spaces. These facts are used
later on various occasions. Related properties of ordinary differential equations with
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FIGURE 1. On the left: a polyhedron which is not Lipschitz in any
neighborhood of O. On the right: a conic surface smooth outside
the point O which is not Lipschitz in any neighborhood of O.

constant operator coefficients are discussed. Connections with the theory of general
elliptic boundary value problems in domains with conic vertices are also outlined.
Some of results in this chapter are new, such as, for example, a variational principle
for real eigenvalues of operator pencils.

The Laplace operator, treated in Chapter 2, is a starting point and a model for
the subsequent study of angular and conic singularities of solutions. The results vary
from trivial, as for boundary value problems in an angle, to less straightforward,
in the many-dimensional case. In the plane case it is possible to write all singular
terms explicitly. For higher dimensions the singularities are represented by means
of eigenvalues and eigenfunctions of the Beltrami operator on a subdomain of the
unit sphere. We discuss spectral properties of this operator.

Our next theme is the Lamé system of linear homogeneous isotropic elasticity
in an angle and a cone. In Chapter 3 we consider the Dirichlet boundary condition,
beginning with the plane case and turning to the space problem. In Chapter 4, we
investigate some mixed boundary conditions. Then by using a different approach,
the Neumann problem with tractions prescribed on the boundary of a Lipschitz
cone is studied. We deal with different questions concerning the spectral properties
of the operator pencils generated by these problems. For example, we estimate the
width of the energy strip. For the Dirichlet and mixed boundary value problems we
show that the eigenvalues in a certain wider strip are real and establish a variational
principle for these eigenvalues. In the case of the Dirichlet problem this variational
principle implies the monotonicity of the eigenvalues with respect to the cone.

Parallel to our study of the Lamé system, in Chapters 5 and 6 we consider
the Stokes system. Chapter 5 is devoted to the Dirichlet problem. In Chapter 6
we deal with mixed boundary data appearing in hydrodynamics of a viscous fluid
with free surface. We conclude Chapter 6 with a short treatment of the Neumann
problem. This topic is followed by the Dirichlet problem for the polyharmonic
operator, which is the subject of Chapter 7.

The second part of the book includes Chapters 8-12. In Chapter 8, the Dirichlet
problem for general elliptic differential equation of order 2m in an angle is studied.
As we said above, the calculation of eigenvalues of the associated operator pencil
leads to the determination of zeros of a certain transcendental equation. Its study is
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based upon some results on distributions of zeros of polynomials and meromorphic
functions. We give a complete description of the spectrum in the strip m — 2 <
Re A <m.

In Chapter 9 we obtain an asymptotic formula for the distribution of eigenvalues
of operator pencils corresponding to general elliptic boundary value problems in an
angle.

In Chapters 10 and 11 we are concerned with the Dirichlet problem for elliptic
systems of differential equations of order 2m in a n-dimensional cone. For the
cases when the cone coincides with R™ \ {O}, the half-space R’}, the exterior of a
ray, or a dihedron, we find all eigenvalues and eigenfunctions of the corresponding
operator pencil in Chapter 10. In the next chapter, under the assumptions that the
differential operator is selfadjoint and the cone admits an explicit representation
in Cartesian coordinates, we prove that the strip |[Re A —m + n/2| < 1/2 contains
no eigenvalues of the pencil generated by the Dirichlet problem. From the results
in Chapter 11, concerning the Dirichlet problem in the exterior of a thin cone, it
follows that the bound 1/2 is sharp.

The Neumann problem for general elliptic systems is studied in Chapter 12,
where we deal, in particular, with eigenvalues of the corresponding operator pencil
in the strip |[Re A —m +n/2| < 1/2. We show that only integer numbers contained
in this strip are eigenvalues.

The applications listed above are placed, as a rule, in introductions to chap-
ters and in special sections at the end of chapters. Each chapter is finished by
bibliographical notes.

This is a short outline of the book. More details can be found in the introduc-
tions to chapters.

Readership. This volume is addressed to mathematicians who work in partial
differential equations, spectral analysis, asymptotic methods and their applications.
We hope that it will be of use also for those who are interested in numerical anal-
ysis, mathematical elasticity and hydrodynamics. Prerequisites for this book are
undergraduate courses in partial differential equations and functional analysis.

Acknowledgements. V. Kozlov and V. Maz'ya acknowledge the support of
the Royal Swedish Academy of Sciences, the Swedish Natural Science Research
Council (NFR) and the Swedish Research Council for Engineering Sciences (TFR).
V. Maz'ya is grateful to the Alexander von Humboldt Foundation for the sponsor-
ship during the last stage of the work on this volume. J. Rofimann would like to
thank the Department of Mathematics at Linkoping University for hospitality.
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CHAPTER 1

Prerequisites on operator pencils

In this chapter we describe the general operator theoretic means which are used
in the subsequent analysis of singularities of solutions to boundary value problems.
The chapter is auxiliary and mostly based upon known results from the theory
of holomorphic operator functions. At the same time we have to include some
new material concerning parameter-depending sesquilinear forms and variational
principles for their eigenvalues.

Our main concern is with the spectral properties of operator pencils, i.e., oper-
ators polynomially depending on a complex parameter A. We give an idea how the
pencils appear in the theory of general elliptic boundary value problems in domains
with conic vertices.

Let G be a domain in the Euclidean space R™ which coincides with the cone
K ={x €eR": z/|z| € Q} in a neighborhood of the origin, where 2 is a subdomain
of the unit sphere. We consider solutions of the differential equation

(1.0.1) LU=F ing
satisfying the boundary conditions
(1.0.2) BU =Gy, k=1,...,m,

outside the singular points of the boundary 0G. Here L is a 2m order elliptic
differential operator and By are differential operators of orders my. We assume
that the operators L, By, ..., B,, are subject to the ellipticity condition.

It is well known that the main results about elliptic boundary value problems
in domains with smooth boundaries are deduced from the study of so-called model
problems which involve the principal parts of the given differential operators with
coeflicients frozen at certain point. The same trick applied to the situation we are
dealing with leads to the model problem

L°U=® ink,
By U =T, ondK\{0}, k=1,...,m,
where L°, B} are the principal parts of L and By, respectively, with coefficients

frozen at the origin. Passing to the spherical coordinates r,w, where r = |z| and
w = z/|z|, we arrive at a problem of the form

L(ro)U=r*"® inQ x (0,00),
By (ro,)U =r™ ¥ on 90 x (0,00), k=1,...,m.

Now the application of the Mellin transform

oo

UN) = 2n)~ Y2 [+ 271U () dr
/
9



10 1. PREREQUISITES ON OPERATOR PENCILS

leads to the boundary value problem

LA)u=f inQQ,
Br(MNu=gr ondQ, k=1,...,m,

with the complex parameter . Let us denote the polynomial operator (operator
pencil) of this problem by 2((\). Properties of the pencil 2 are closely connected
with those of the original boundary value problem (1.0.1), (1.0.2), in particular,
with its solvability in various function spaces and the asymptotics of its solutions
near the vertex of IC (see Section 1.4). One can show, for example, that the solutions
U behave asymptotically like a linear combination of the terms

S
1
A k
T Z i (log )" us—p(w)
k=0
where A is an eigenvalue of the pencil 2, ug is an eigenfunctions and uq, ..., us are
generalized eigenfunctions corresponding to the eigenvalue A. Thus, one has been
naturally led to the study of spectral properties of polynomial operator pencils.

1.1. Operator pencils

1.1.1. Basic definitions. Let X', )Y be Hilbert spaces with the inner products
(-,)x, (-,-)y and the norms || - || x, || ||y, respectively. We denote by L(X,)) the set
of the linear and bounded operators from X into Y. If A € L(X,)), then by ker A
and R(A) we denote the kernel and the range of the operator A. The operator
A is said to be Fredholm if R(A) is closed and the dimensions of ker A and the
orthogonal complement to R(A) are finite. The space of all Fredholm operators is
denoted by ®(X,Y).

The operator polynomial

l
(1.1.1) AN) =D AN, Nec,
k=0

where Ay € L(X,Y), is called operator pencil.
The point Ao € C is said to be regular if the operator (X\o) is invertible. The
set of all nonregular points is called the spectrum of the operator pencil 2.

DEFINITION 1.1.1. The number Ay € G is called an eigenvalue of the operator
pencil 2 if the equation

(112) Ql()\o) $o = 0

has a non-trivial solution ¢g € X. Every such g € X of (1.1.2) is called an eigen-
vector of the operator pencil 2 corresponding to the eigenvalue Ag. The dimension
of ker () is called the geometric multiplicity of the eigenvalue Ag.

DEFINITION 1.1.2. Let Ay be an eigenvalue of the operator pencil 2 and let ¢q

be an eigenvector corresponding to Ag. If the elements ¢1,...,ps—1 € X satisfy the
equations

71
(1.1.3) Zﬁm(k)(/\o)(pj_k =0 forj=1,...,5s—1,
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where A) (\) = d*A(N)/d\F, then the ordered collection @g, @1, . . ., ps_1 is said to
be a Jordan chain of 2 corresponding to the eigenvalue Ag. The vectors 1, ..., 0s—1
are said to be generalized eigenvectors corresponding to ¢g.

The maximal length of all Jordan chains formed by the eigenvector py and
corresponding generalized eigenvectors will be denoted by m(pg).

DEFINITION 1.1.3. Suppose that the geometric multiplicity of the eigenvalue
Ao is finite and denote it by I. Assume also that

max m < 0.
p€ker A(Xo)\{O} (?)

Then a set of Jordan chains

©35,0yPjlye- s wj,nj—lv ] = 17 R 717
is called canonical system of eigenvectors and generalized eigenvectors if

(1) the eigenvectors {¢;};=1,...,r form a basis in ker (o),
(2) Let M; be the space spanned by the vectors ¢10,...,¢;—1,0. Then

. = B ] = ]_, P 7_[.
m(e5,0) @Ekerrg?;z)\%m(so) J

The numbers k; = m(y;,0) are called the partial multiplicities of the eigenvalue
Ao.- The number k1 is also called the index of A\g. The sum Kk = k1 + ... + Ky is
called the algebraic multiplicity of the eigenvalue \g.

1.1.2. Basic properties of operator pencils. The following well-known as-
sertion (see, for example, the book of Kozlov and Maz'ya [135, Appendix]) describes
an important for applications class of operator pencils whose spectrum consists of
isolated eigenvalues with finite algebraic multiplicities.

THEOREM 1.1.1. Let G be a domain in the complex plane C. Suppose that the
operator pencil A satisfies the following conditions:

(i) AN) € 2(X,Y) for all X € G.
(ii) There exists a number A € G such that the operator A(X) has a bounded
inverse.

Then the spectrum of the operator pencil A consists of isolated eigenvalues with
finite algebraic multiplicities which do not have accumulation points in G.

The next direct consequence of Theorem 1.1.1 is useful in applications.

COROLLARY 1.1.1. Let the operator pencil (1.1.1) satisfy the conditions:

a) The operators Aj : X — Y, j=1,...,1, are compact.
b) There exists at least one regqular point of the pencil 2.

Then the result of Theorem 1.1.1 with G = C is valid for the pencil .

The following remark shows that sometimes one can change the domain (of
definition) of operator pencils without changing their spectral properties.

REMARK 1.1.1. Let Xy, )Yy be Hilbert spaces imbedded into X and ), re-
spectively. We assume that the operator 20(\) continuously maps X, into )y for
arbitrary A € C and that every solution u € X of the equation

AN u = f
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belongs to Xy if f € V. Then the spectrum of the operator pencil (1.1.1) coincides
with the spectrum of the restriction

Q[()\) : Xo — yo.

The last pencil has the same eigenvectors and generalized eigenvectors as the pencil
(1.1.1).

In order to describe the structure of the inverse to the pencil 2 near an eigen-
value, we need the notion of holomorphic operator functions.
Let G C C be a domain. An operator function

I : G- LX,Y)
is called holomorphic if in a neighborhood of every point A it can be represented
as a convergent in L(X,Y) series

POy = 300 Ao,

where I'; € L(X,Y") can depend on A.

THEOREM 1.1.2. Let the operator pencil 2 satisfy the conditions in Theorem
1.1.1. If Ao € G is an eigenvalue of A, then the inverse operator to A(N) has the
representation

AN =D (L +T(\)

= A—Xo)!
i a neighborhood of the point Ao, where o is the index of the eigenvalue Ao,
Ti,...,T, are linear bounded finite-dimensional operators and T'(\) is a holomor-

phic function in a neighborhood of Ao with values in L(X,Y).

The following two theorems help to calculate the total algebraic multiplicity of
eigenvalues situated in a certain domain. Their proofs can be found, for example,
in the book by Gohberg, Goldberg and Kaashoek [71, Sect.XI.9].

THEOREM 1.1.3. Let the conditions of Theorem 1.1.1 be satisfied. Furthermore,
let G be a simply connected domain in C which is bounded by a piecewise smooth
closed curve OG and let A : G — L(X,Y) be invertible on OG. Then

(1.1.4) zim tr /mw(x) AN)Ldr = k(2 G),
oG

where k(, G) denotes the sum of the algebraic multiplicities of all eigenvalues of
the operator pencil A which are situated in the domain G.

Note that, by Theorem 1.1.2; the integral on the left-hand side of (1.1.4) is a
finite-dimensional operator. Therefore, the trace of this integral is well defined.

THEOREM 1.1.4. Let G be a simply connected domain in C which is bounded
by a piecewise smooth closed curve OG and let U, B be operator pencils satisfying

the conditions of Theorem 1.1.1. Furthermore, we assume that A(\) is invertible
for A € 0G and

) @A) = Bl pway <1 for A€ dG.
Then B () is invertible for X € 0G and (A, G) = (B, G).
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As a consequence of the last result which is a generalization of Rouché’s theo-
rem, we obtain the following assertion.

COROLLARY 1.1.2. Let 2(t,\) be an operator pencil with values in L(X,Y)
whose coefficients are continuous with respect to t € [a,b]. Furthermore, we suppose
that the pencil A(t,-) satisfies the conditions of Theorem 1.1.1 for every t € [a,b).
If A(t, A) is invertible for t € [a,b] and X € 9G, then k(A(L,-),G) is independent of
t.

REMARK 1.1.2. All definitions and properties of this and the preceding sub-
sections can be obviously extended to holomorphic operator functions. For details
we refer the reader to the books by Gohberg, Goldberg and Kaashoek [71], Kozlov
and Maz'ya [135].

1.1.3. Ordinary differential equations with operator coefficients. Let
2A(A) be the operator pencil (1.1.1). We are interested in solutions of the ordinary
differential equation

(1.1.5) A(rd,) U(r)=0 forr >0
which have the form
A : (log T)k
(1.1.6) U(r) =r° Z o Us—hs
k=0 ’

where A\g € C and u, € X (k = 0,...,s). Here and elsewhere 0, denotes the
derivative d/dr.

THEOREM 1.1.5. The function (1.1.6) is a solution of (1.1.5) if and only if Ao
is an eigenvalue of the pencil A and ug,uq, ..., us is a Jordan chain corresponding
to the eigenvalue \g.

Proof: We have

1
(1.1.7)  A(ro.) U(r) = AN + 70;) ZE (log7)* us_p

S

— o Z Q[(J) (Xo) (rd,)? Z;' (log )" us_p

j= O k=0
s _

= o Z logr Z ) (Ao) Us—k—j -
k=0 =0’

Hence U(r) is a solution of (1.1.5) if and only if the coefficients of (logr)* on the
right-hand side of the last formula are equal to zero. This proves the theorem. m

Let Mg be an eigenvalue of the operator pencil 2(X). We denote by N (2, \g)
the space of all solutions of (1.1.5) which have the form (1.1.6). As a consequence
of Theorem 1.1.5 we get the following assertion.

COROLLARY 1.1.3. The dimension of N (2, o) is equal to the algebraic multi-
plicity of the eigenvalue \g. The mazximal power of logr of the vector functions of
N (&, Xo) is equal to m — 1, where m denotes the index of the eigenvalue Ag.
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Now we consider the inhomogeneous differential equation
(1.1.8) A(rd,) U(r) = F(r).

THEOREM 1.1.6. Suppose that the operator pencil % satisfies the conditions of
Theorem 1.1.1 and F is a function of the form

Py = SO0
k=0
where \g € C and fr, € Y for k=0,...,s. Then equation (1.1.8) has a solution of
the form

. - o s+to (log T)k
(1.1.9) (ry=r Z o Usto—ks
k=0
where ug, U1, . .., Usyo are elements of the space X, o is the index of \g if Ao is an

eigenvalue of A, while o0 = 0 if Ay is a regular point.

Proof: By Theorem 1.1.2, the inverse of 2A(\) admits the representation

g

AN = D (A= )"

k=—oc0
Here, by the identity 2A(X\) 271 ()\) = I, the operators T satisfy the equalities
J+k
I fork=0
(7) )
(1.1.10) Z R (Ao) T~ ’“{0 fork=—o,...,—1,4+1,+2,....

Let U be the functlon (1.1.9). Then, analogously to (1.1.7), we get
s+o s+o—k

_ 1 1 .
=2 A(rd, ) U(r) = Z o (log )" Z Tm(J)()\o)usﬂHkq .
k=0 =0 I
Setting
min(k,s)
Z TU—k+Vf7’Lu7 k:O717"'78+U7
we obtain
sto 1 min(s+o—k,s) o+s—k—v
rAO)Ur) = Y 4 (logn)* Z Z —w (M) Ty serretw fo
k=0 !
s s+o—v o+s—k—v
=y ¥ k' (log 7) ( 3 —Ql(”()\o) N H,W) £
v=0 k=0 7=0 ]

According to (1.1.10), the right side of the last equality is equal to

s sto—v

Z Z k' (log r)*6s_s_ Vofl,—Zﬁ(logr)s_”fy.

v=0 k=0 v=0
This proves the lemma. =

REMARK 1.1.3. If )¢ is a regular point of the pencil 2, then the solution (1.1.9)
is uniquely determined. In the case of an eigenvalue the solution (1.1.9) is uniquely
determined up to elements of N (2, o).
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1.1.4. The adjoint operator pencil. Let 2(\) be the operator (1.1.1). We
set

l
AN =D AT N,
j=0

where A% : * — X* are the adjoint operators to A;. This means that the operator

2A*(A) is adjoint to A(A) for every fixed A. A proof of the following well-known
assertions can be found, e.g., in the book by Kozlov and Maz'ya [135, Appendix].

THEOREM 1.1.7. Suppose that the conditions of Theorem 1.1.1 are satisfied for
the pencil A. Then the spectrum of A* consists of isolated eigenvalues with finite
algebraic multiplicities.

If \o is an eigenvalue of A, then X is an eigenvalue of the pencil A*. The
geometric, partial, and algebraic multiplicities of these eigenvalues coincide.

1.2. Operator pencils corresponding to sesquilinear forms

1.2.1. Parameter-depending sesquilinear forms. Let H, be a Hilbert
space which is compactly imbedded into and dense in the Hilbert space H, and let
H_ be its dual with respect to the inner product in H. We consider the pencil of
sesquilinear forms

!
(1.2.1) a(u,v; A) = ZCLJ‘(U,U) N,
i=0

where a;(-,-) are bounded sesquilinear forms on H4 x H, which define linear and
continuous operators A; : H4 — H_ by the equalities

(1.2.2) (Aju,v)n = aj(u,v), u,veHy.
Then the operator

l
(1.2.3) AN) =D A; N
j=0
satisfies the equality
(1.2.4) (A(N)u, v)x = a(u, v; ) for all u,v € Hy .
It can be easily verified that a number )\g is an eigenvalue of the operator pencil
and g, ©1,...,ps—1 is a Jordan chain of 2 corresponding to Aq if and only if
J
(1.2.5) o a(k)(goj_k,’u;)\o) =0 foralve Hy, 7=0,1,...,5—1,
k=0

where a®) (u,v; \) = d*a(u, v; \)/d\F.

We suppose that the following conditions are satisfied:
(i) There exist a constant ¢y and a real-valued function ¢; such that
la(u,u; N)| > ¢o ||u||%[+ —c1(N) [Jull3, for all u € Hy

and for every A € C.
(ii) There exists a real number v such that the quadratic form a(u,u; A) has
real values for Re A = v/2, u € H,.
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REMARK 1.2.1. Suppose that the operators Ay, ..., A; are compact and there

exists a number A\g such that

(1.2.6) la(u, u; Ao)| > co HU||§{+ — ¢ |Jul3 for all u € Hy

where ¢ is a positive constant. Then condition (i) is satisfied.

Indeed, by the compactness of A;, for every positive € there exists a constant
¢. such that

[(Aju, u)n| < 5||u||31(+ + cc||ul|3, for all w € Hy.
Hence

la(u, i; | = a(u, us o) = [alu, u; A) — alu, u; Ao)|

Y

l
collullpe, =Y IV = Xd| (e llullze, + cellull3) — eillull?
j=1

l
1 . o -1
Setting e = 3 CO(Z [N — )\f)|) , we get (1.2.6).
j=1
THEOREM 1.2.1. Suppose that condition (1) is satisfied and there exists a com-
plex number Ao such that

(1.2.7) la(u,u; Xo)| >0 for all w € Hy\{0}.

Then the operator A(N) is Fredholm for every A € C and the spectrum of the pencil
A consists of isolated eigenvalues with finite algebraic multiplicities.

Proof: First we prove that the kernel of 20(A) has a finite dimension for arbitrary
A € C. By condition (i), we have
C1 ()\)
co(A)
Since the operator of the imbedding H C H is compact, the inequality (1.2.8) can
be only valid on a finite-dimensional subspace. Consequently, dim ker 2((A) < co.

Now we prove that the range of () is closed in H7 for arbitrary A. We assume
that A(N) ux = fi for k =1,2,... and the sequence {fy}r>1 converges in H7 to a
certain element f. Using (1.2.4), we get

(1.2.8) ||u||%br < |ull3, for all u € kerA(N).

coMllurlze, —esMllurllze < [(fies we)nl < 1 fillres

Hence

1
[ullze, < e+ 5eo(N) fluxllz, -

1
30N lullz = ex (V) lullf < e.

By compactness of the imbedding Hi C H, it follows from the last inequality
that the sequence {ug}x>1 is bounded in H. Consequently, there exists a weakly
convergent subsequence {ug,};>1. Let u be the weak limit of this subsequence.
Then for every v € Hy we have

RN u,v) = (0, AN V) = jlilgo(ukjvm(A)*U)H
= jliglo@l@) Uk, V)1 = jli_{{.lo(fkj,v)ﬂ = (f,v)n,

ie., A(N)u = f. Thus, we have proved that the range of A(A) is closed.
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We show that the cokernel of 2()\) has a finite dimension. For this it suffices
to prove that ker 2A(\)* is finite-dimensional. The equality

(1.2.9) AN u, u)y = (u, AN )y = alu, u; A)
yields
(@A) w, w)ne| = coMlullFy, — ex (Ml -
Hence, arguing as in the proof of dim ker 2(\) < oo, we obtain dim ker 2A(\)* < occ.
Consequently, the operator 2(\) is Fredholm for every A € C.
Furthermore, by (1.2.7), the kernel of 2()g) is trivial and from (1.2.9) it follows

that ker 2A(Ag)* = {0}. Therefore, the operator A(Ag) has a bounded inverse. Using
Theorem 1.1.1, we get the above assertion on the spectrum of the pencil 2. m

THEOREM 1.2.2. Let condition (ii) be satisfied.
1) Then the equality
(1.2.10) AN =A(y = N)
is valid for all A € C,

2) If \o is an eigenvalue of the pencil 2, then v — \o is also an eigenvalue.
The geometric, algebraic, and partial multiplicities of the eigenvalues Ao and vy — g
coincide.

Proof: In order to prove (1.2.10), we have to show that
(1.2.11) a(u,v;\) = a(v,u;y —A)  for all u,v € H .
We set

b(u,v; \) = a(u,v; \) — a(v,u;y — A).
By condition (ii), the polynomial (in ) b(u,u; A) vanishes on the line Re A = 7/2
and, therefore, on the whole complex plane. Thus, we have
2b(u,v; \) = blu+ v,u+v;A) +ib(u+iv,u+iv; A) =0

for all u,v € H4. This implies (1.2.11).

The second assertion is a consequence of Theorem 1.1.7. m

DEFINITION 1.2.1. Let condition (ii) be satisfied. Then the line Re A = v/2 is
called energy line. The strip
ReX —v/2| < ¢
is called energy strip if there are no eigenvalues of the pencil 2 in the set 0 <
[Re A —v/2| < e

The following lemma contains a sufficient condition for the absence of eigenval-
ues on the energy line.

LEMMA 1.2.1. 1) Suppose the inequality
(1.2.12) a(u,u,v/24+1it) >0

is satisfied for all uw # 0 and all real t. Then the line Re A\ = v/2 does not contain
etgenvalues of the pencil .

2) If condition (i) is satisfied, inequality (1.2.12) is valid for all w # 0 and large
t, and there are no eigenvalues of the pencil A on the line Re A = /2, then (1.2.12)
is valid for all real t.
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Proof: The first assertion is obvious. We prove the second one. Suppose that
a(ug, ug,v/2 + ity) < 0 for some ug € H4\{0}, to € R. From condition (i) and
(1.2.10) it follows that the operator 20(y/2 + it) is selfadjoint, semibounded from
below, and has a discrete spectrum puq(t) < po(t) < --- . Since the function w4 (t)
is continuous, positive for large [¢| and nonpositive for ¢t = t¢, it vanishes for some
t = t;. Then the number A = v/2 + ity is an eigenvalue of the pencil 2 on the line
ReA=7v/2.m

LEMMA 1.2.2. Suppose that condition (i) is satisfied and that the quadratic form
a(u,u; ) is nonnegative for Re A = ~/2. If the form a(u,wu;~y/2) vanishes on the
subspace Ho, then Hy is the space of the eigenvectors of the pencil 2 corresponding
to the eigenvalue A\g = /2. Furthermore, every eigenvector corresponding to this
etgenvalue has at least one generalized eigenvector.

Proof: Since the form a(u, u;v/2) is nonnegative, we get
la(u, v;v/2)|? < alu,u;v/2) - a(v,v;v/2) =0
for u € Hp, v € Hy . This implies A(y/2)u = 0 for u € Hy. Conversely, every
eigenvector u of the pencil 2 corresponding to the eigenvalue /2 satisfies the
equation a(u,u;y/2) = 0. Thus, according to (1.2.10), we obtain ker A(v/2) =
ker A(v/2)* = Ho.

We show that every eigenvector ug corresponding to the eigenvalue A = ~/2
has at least one generalized eigenvector, i.e., there exists a vector u; satisfying the
equation

a(uy,v;7/2) + a® (ug, v;v/2) = 0 for all v € Hy
or, what is the same,
A(v/2)ur = —fi,
where f1 € H’ denotes the functional Hy > v — a™ (ug,v;7/2). The last equation
is solvable if

(1.2.13) (f1,0)0 = aW (ug,v;7/2) =0 for all v € Hyp.

We consider the function ¢t — a(v,v;v/2 + it), v € Ho, which is nonnegative for all
real ¢ and equal to zero for t = 0. Consequently, we have a(!) (v, v;~/2) = 0 for all
v € Hy. This implies

1
aM (u,v;7/2) = 3 (a(l)(u +v,u+v;9/2) +iaW (u+ v, u + iv; 7/2)) =0
for all u,v € Hy, i.e., condition (1.2.13) is satisfied. The proof is complete. m

1.2.2. Ordinary differential equations in the variational form. Let H,,
‘H be the same Hilbert spaces as in the foregoing subsection. Furthermore, let
a; k(-,-), 3,k =1,...,m, be bounded sesquilinear forms on H4 x H.

We seek functions U = U(r) of the form

S

1
(1.2.14) U(r)=r*Y" - (log Mous g, up € Hy,
k=0

which satisfy the integral identity

(1.2.15) / Z ajyk((’f’ar)k U(r), (r@,«)j Vi) r—7 g =0
o dk=

J,k=0
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for all V € C§°((0,00); Hy). Here v is a real number.
For u,v € H4 we set

m m
a(u,v; ) Za Zaakuv Fly=X)7.
J,k=0 7,k=0

Furthermore, let A()) : Hy — H* be the operator defined by (1.2.4).
It can be easily verified that

1/e
L 1 = 4 k j —y dr
o, :) = 5o / j;oa],k«ra,.) U, (0P V()

where ¢ is a positive real number less than one, U (r) = r*u, V(r) = 17> v.

THEOREM 1.2.3. The function (1.2.14) is a solution of (1.2.15) if and only
if Ao is an eigenvalue of the operator pencil A and ug,...,us is a Jordan chain
corresponding to this eigenvalue.

Proof: Integrating by parts in (1.2.15), we get

/ Z aj i ((=rdy +7)’ (ro)k Uy, V(r) v TT =0.
0
This equality is valid for all V' € C§°((0,00); H4) if and only if
Z aj i (=10 +7) (r9,)FU(r), v) =0 forr >0, veHy.
4,k=0
The last equation can be rewritten in the form
A(ro.)U(r) =0 for r > 0.
Now our assertion is an immediate consequence of Theorem 1.1.5. m

THEOREM 1.2.4. Suppose that there exists a number § € (0,1) such that

o0
m

(1.2.16) [ a6 v, wory v+
0 7,k=0
> o [ (0O, + 10701~ U] dr
0

for all U € C§°((0,00); Hy) with support in (1 — 6,1 + J). Then there ezists a
number T' such that

(1.2.17) fa(w usit + D) > eollull, + 27 ul3)
for all real t, [t| > T, and all v € H.

Proof: Let ¢ = {(r) be a smooth real-valued function on (0, c0) with support in
(1—8,140) equal to one for r = 1. We set U(r) = r*T7/2y, where u is an element
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of Hy. Then
(1.2.18) ‘/ > a; CU(r), (r8,)2CU®r)) 1 dr
0 7,k=0 "
- [ 3 a0 v, (o U6
0 J,k=0 "
<e Y lage(uu)] (L4 )T
0<jk<m
jk>1
Furthermore,
(1.2.19) / Z Cajp((ro) U(r), (ro.)U(r)) r=7 dr
3 4.k=0 "
= a(u,u; zt—|— /(2
0
Using (1.2.16), we get the estimate
(1.2.20) ‘/ Z a;k((ro,)*¢u(r), (ro, )y ¢U(r)) v~ dr
0 Jk=0

k
> c(llullf, + ™ ullF) — ca( 4+ [E)*™ull3, .
From (1.2.18)—(1.2.20) we conclude that

|la(u, us it + )| > c(llullz, + 2" ullF) — ca(1 + [E)* HlullFy, -

This proves our assertion. m

THEOREM 1.2.5. Suppose that the condition of Theorem 1.2.4 is satisfied. Fur-

thermore, we assume that the operator

(1.2.21) AN) —2A(0) : Hy — HE

is compact for all X € C. Then 2A(X) is Fredholm for all A € C and the spectrum of
the pencil A consists of isolated eigenvalues with finite algebraic multiplicities.

Proof: From our assumption it follows that 2(X) — 2(x) is a compact operator
from H, into H? for all A, u € C. Hence for arbitrary € > 0 there exists a constant

¢ depending on X\ and u such that
(AN = A()u, ) | < elullzg, + e full?,

for u € Hy. Therefore, we obtain

|(Ql()\)u, u)H’

- 0 ’H+ am H) T H+_ € ?‘{
> co(llullz, + " ull3,) — ellull? C||u||

Now the result follows from Theorem 1.2.1. m

| (A(it —l— | — | (it —l— —AN))u, u)
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THEOREM 1.2.6. 1) Suppose that

(1.2.22) /Oo
/

s

4 (O U (), (10,70 () 77 &

r

NE

=~
I

0

is real for arbitrary U € C§°((0,00); Hy). Then a(u,u,it + v/2) is real for all
u e H+, t € R.

2) If (1.2.22) is nonnegative for all U € C§°((0,00); H4), then a(u,u, it +7v/2)
is also nonnegative for u € Hy, t € R.

Proof: Let u € Hy, ¢ € C(R), and € > 0. We set
U-(r) = e¥/2 pit 712 ¢ (e log r) u.
Then

aj7k((rar)kUa(T) , (Tar)jUE(r)) r %

/

5,k=0
+oo
- / 1C(s)[2 ds - alu, us it +/2) + O(c).

Hence a(u, u, it +/2) is real (nonnegative) if the left-hand side of the last equality
is real (nonnegative). This proves the theorem. m

1.3. A variational principle for operator pencils

1.3.1. Assumptions. Let H,,H be the same Hilbert spaces as in the previ-
ous section. We consider the sesquilinear form (1.2.1), where a; are sesquilinear,
Hermitian and bounded forms on Hy x Hy. Then a(u,u;\) is real for real A
and v € H4. The sesquilinear forms a;(-,-) and a(-,-; A) generate the operators
Aj i Hy — MY and A(N) : Hy — H by (1.2.2) and (1.2.3), respectively.

We suppose that «, 3 are real numbers such that @ < ( and the following
conditions are satisfied.

(I) There exist a positive constant ¢; and a continuous function ¢(-) on the
interval [a, B], co(A) > 0 in [a, ), such that

alu,u; N) > co(A) ||u||%{+ —ci|lullf, forallu € Hy, € [a,p].

(IT) The operator 2A(«) is positive definite.
(IIT) If A(Ng)u = 0 for a certain Ay € (o, 8), u € Hy, u # 0, then

d
ﬁa(u,u, A) N < 0.

1.3.2. Properties of the pencil 2.

THEOREM 1.3.1. Let conditions (I)—-(III) be satisfied. Then the following as-
sertions are valid.

1) The spectrum of the pencil A on the interval [, B) consists of isolated eigen-
values with finite algebraic multiplicities and the eigenvectors have no generalized
etgenvectors.

2) For every Ao € |a, B) the operator A(Ag) is selfadjoint, bounded from below
and has a discrete spectrum with the unique accumulation point at +oo.
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Proof: 1) There exists a open set U C C containing the interval [« §] such that
1
Rea(u,u,A) 2 5 co(Re ) lull?e, — e llull?,

for A € U. Using Theorem 1.2.1, we can conclude that the spectrum of 2 in U
consists of isolated eigenvalues with finite algebraic multiplicities. Let Ay be an
eigenvalue, p an eigenvector to Ao and ¢; a generalized eigenvector associated to
0. Then

d
a(p1,v; o) + aa(goo, v; )\)‘/\Z = 0
for all v € Hy . Setting v = g, we get the equality
d
S alpo, 0,0 =0
dA al0 %0, A) A=Xo

which contradicts condition (III).

2) From our assumption that the forms a; are Hermitian and from condition
(I) it follows that A(Ag) is selfadjoint and bounded from below for every A\g € [o, 3).
Since the imbedding Hy C ‘H is compact, it further follows that the spectrum is
discrete. The proof is complete. m

1.3.3. Eigenvalues of the operator 2(\). We consider the eigenvalue prob-
lem

(1.3.1) AN u = p(A) u

for fixed A € [a, B). Let p1(A) < pe(A) < ... be the nondecreasing sequence of
the eigenvalues counted with their multiplicities. By Theorem 1.3.1, 11;() tends to
infinity as j — oo.

THEOREM 1.3.2. 1) The functions p; are continuous on the interval [, 3) and

() > 0.
2) If co(B) > 0, then the functions p; are also continuous at the point A = (3.
3) For every index j > 1 the equation pj(A) = 0 has at most one root in

the interval (o, 5). If pj(Ao) = 0 for a certain Ao € (a, ), then p;j(A) > 0 for
NS (Oé,)\o) and ,uj()\o) <0 fOT’ A€ (/\o,ﬂ)

Proof: For assertions 1), 2) we refer to Kato’s book [96, Ch.7,Th.1.8], where
in fact a stronger assertion has been proved. In particular, it has been shown there
that the functions p; are real-analytic on each of the intervals (A —e, A}, [A\, A +¢€),
where A\ € (a, ), € is a small positive number, and on the interval [a, a 4 €). If
¢o(B) > 0, then this is also true on the interval (8 — ¢, 5].

3) Let A\g € (o, B) be aroot of the equation z;(A) = 0 and let I = dim ker (o).
As it has been proved in [96, Ch.7,Th.1.8], there exist analytic functions my(\) and

vector functions ug(\), k= 1,..., 1, such that
(1.3.2) AN ur(N) = mg(X) ug(N)
in a neighborhood of A\g and the linear closure of the vectors wui(Ag),...,ur(Ao)

coincides with ker4()\o). Obviously, my coincides with one of the functions p;
on the left of the point A\ and possibly with a different p; on the right of Ao.
Differentiating (1.3.2) with respect to A and setting A = Ao, we get

A(Xo) uj,(Ao) + 2" (o) uk(Xo) = mi(Xo) ur (o).
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Multiplying both parts of the last equation by ux(\), we obtain

mi, (M) = (' (Ao)ur(Xo) , ur(Xo)),, - llue(No) 17

By condition (IIT), the right-hand side is negative. Hence mj (o) < 0. This proves
the third assertion of the theorem. m

1.3.4. On the number of eigenvalues of the pencil 2 in the interval
(a, B). Let {u;(\)} be a sequence of linearly independent eigenvectors of problem
(1.3.1) corresponding to the eigenvalues y;(\).

THEOREM 1.3.3. 1) The number Ao € [a, ) is an eigenvalue of the operator
pencil A with the geometric multiplicity I if and only if there exists a number k > 1
such that

1i(Ao) =0 forj=kk+1,....k+1—1.
The corresponding characteristic space coincides with the linear closure of the vec-

tors ug(Ao), uk+1(Xo)s - -+ ugt1—1(Ao)-
2) Let By € (o, 3) and let N be the mazimum of all integer numbers s for which
there exists a subspace Hs C Hi of dimension s such that

(1.3.3) a(u,u; Bp) <0 for uw € H\{0}.
Then the interval («, By) contains exactly N eigenvalues (counting their multiplic-

ities) of the operator pencil 2.

Proof: The first assertion is obvious. We show that assertion 2) is true.
The number N can be characterized as follows. Let n be a number such that
tn(Bo) < 0and p,11(Bo) > 0. Then it can be easily seen that n = N and the space
Hy can be chosen as the linear closure of the vectors ui(f5p),...,un(Bo). Since
wi(a) > 0,1;(B0) <0 for j=1,...,N and u;(By) > 0 for j > N, it follows from
Theorem 1.3.2 that every of the functions pq, ..., ux has exactly one zero in the
interval (a, fy) and the functions p; for j > N have no zeros in this interval. Using
the first assertion of the theorem, we arrive at 2). m

THEOREM 1.3.4. 1) Let Hs be a subspace of Hi with dimension s such that
(1.34) a(u,u; 8) <0 for u € H\{0}

Then the pencil A has at least s eigenvalues (counting their multiplicities) in the
interval (a, 3).

2) Suppose that the following condition is satisfied: If a(u,u; ) > 0, then there
exists a positive number € such that

(1.3.5) a(u,u; ) >0 for A€ (B —¢, ).

Under this condition, the number of the eigenvalues of the pencil 2 in the interval
(a, B) is equal to the mazimal dimension of the spaces Hy for which (1.3.4) is true.

Proof: 1) If (1.3.4) is valid, then there exists a positive constant ¢ such that
(1.3.6) a(u,u; B) < —cllull3,,
for all u € H,. For small |\ — 3| we get

c .
la(u, u; A) — a(u,u, 8)] < 3 ||u||%(+ ifueH,.
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Consequently,
¢
alu,u N) > 5 [l
for all u € H, and from the second part of Theorem 1.3.3 we obtain assertion 1).
2) Without loss of generality, we may assume that N is equal to the greatest
number s for which the inequality (1.3.4) is satisfied. By the selfadjointness of the

operator (), the space Hy can be decomposed into a direct sum Hy = Ho S H;
such that dimHo = N,

{ a(u,u; B) <0 for w e Ho\{0},

(137) a(ru’u’B) 2 0 fOI' u e H]_.

Since Hj is finite-dimensional, the inequality (1.3.6) is satisfied with certain con-
stant ¢ for all u € Hy. This and condition (1.3.5) imply the validity of the inequal-
ities
c
a(u,u;N) < ~5 ||u||§{+ for u € Hy,
a(u,u; \) >0 for uw € Hy

if A lies in a sufficiently small neighborhood of 3. Now 2) follows immediately from
the second part of Theorem 1.3.3. m

1.3.5. On the smallest eigenvalue of the pencil 2l in the interval
(o, B). Let

Ay = sup {/\ € la,B]: alu,u;p) >0 for all p € [a, A), u € ’H+\{O}}.
The following assertion is obvious.

LEMMA 1.3.1. If A, < B, then \. is the smallest eigenvalue of the operator
pencil A in the interval [a, 3).

We give another characterization of the number .. Let R(u) be the smallest
root of the polynomial A — a(u,u; \), u € H4\{0}, in the interval [a, ). If [a, §)
does not contain such roots, then we set R(u) = 3.

LEMMA 1.3.2. The number A\, is given by
(1.3.8) A, = inf {R(u) ‘u€ H+\{0}}.

Proof: Tt suffices to consider the case A\, < 8. We denote the right-hand side of
(1.3.8) by A;. Then from the definition of the number ), it follows that A, < A;.
On the other hand, by Lemma 1.3.1, the number A, is an eigenvalue of 2. Let g
be an eigenvector corresponding to A.. Since a(pg, vo; A«) = (A(As)@o, po)n = 0,
we get A\ < R(pp) < Ax. This proves the lemma. m

1.3.6. Monotonicity of the eigenvalues of the operator pencil with
respect to its domain. Let H_ be a subspace of H and let H be the closure of
the set H, in H. Furthermore, let a(-,-; A\) be the restriction of the form a(-,-; \)
to Hy x Hy, ie.,

a(u,v; A) = alu,v; \) for all u,v € Hy
We define the operators Aj :Hy — HY by

(Aju,v) = aj(u,v), wu,veHy,
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and set
l
AN =D A; N
=0

Obviously,
(AN u,v) = a(u,v; \)  for all u,v € H,

and conditions (I), (II) are also valid for the form a(-,-;A) and the operator 2A(\).
Additionally, we suppose that 2 satisfies condition (II1). Then all results of Theo-
rems 1.3.1-1.3.4 hold for the operator pencil 2 and the form a.

Let A1,..., A, be the eigenvalues of  in the interval (o, 3) counted with their

multiplicities. Analogously, we denote the eigenvalues of 2 in (a, B) by M,y S\q.
We assume that the eigenvalues are numerated such that

a<A<...<),<f and a<;\1§...§;\q<ﬁ.
THEOREM 1.3.5. 1) Under the above assumptions, we have
qg<p and )\jgﬂj forj=1,...,q.

2) Suppose that for arbitrary A € («, 8) the vector uw =0 is the only element in
H subject to

a(u,v; ) =0 for allv e Hy .
Then \; < 5\j forj=1,...,q.
Proof: We denote the eigenvalues of the problems
AN u=pu and ANu = pu
by p;(A) and fi;(X), respectively. The eigenvalues pj(\) are given for A € (o, 8) by
(1.3.9) wi(A) = mgqurILlir{lo} Cm

where the maximum is taken over the set of all subspaces L C Hy of codimension
> j — 1. Analogously,

R . alu,up )
fi5(A) Y e loy (uyu)y

where the maximum is taken over all subspaces L C H; of codimension > j — 1.
Using the imbedding H; C H4, we obtain

(1.3.10) i (A) < fi(N) for A e (o, 0), j=1,2,...
This together with the first part of Theorem 1.3.3 implies assertion 1).

2) We show that the equality ;(A) = 0, A € (a, §), implies p;(A) < 0. To
this end, we suppose that p;(A) = f;(A) = 0 and denote by ui,...,u; € Hy
an orthogonal system of eigenvectors of the operator Ql()\) corresponding to the
eigenvalues fi1(A), ..., ;(A). By (1.3.9), we have

i
)= min 2t
wen\ oy llullz

where _
HY = {ue My s (uug) =0 for k=1,....5 -1}
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Since a(uj,uj; N) = i ||ul|3, and p; = fi; , we obtain
U A
(1.3.11) 0=p;(\)= min a(”i“z)
ueH )\ {0} f|ull%

where the minimum in the right-hand side is attained at the vector u = u;. From
(1.3.11) it follows that there exist constants ci,...,c;—1 such that

Jj—1
(1.3.12) a(u;,v; \) = ch a(ug,v; A) for all v € H .
k=1

Furthermore, since u; is an eigenvector of the operator ﬁl()\) corresponding to the
eigenvalue f1;(A) = 0, we have a(uj,v; ) =0 for all v € Hy. Consequently,

j—1
ch a(ug,v;A) =0 for all v € Hy.
k=1

From this we obtain ¢, = 0 if fix(\) # 0. Hence by (1.3.12), we get
alw,v;A) =0 for all v € H,

w=1u; — Z Ci Uf

1<k<j-1
Ae(A) =0
is an element of Hy. By the assumption of the theorem, this implies w = 0, i.e.,
uj =0 and ¢ =0 for k =1,...,5 — 1. Therefore, the equality p;(\) = ;(A) =0
cannot be valid. Thus, p;(A) < 0if fi;(A) = 0. Hence the zero of the function f;(-)
is less than the zero of the function fi;(-). Using Theorem 1.3.3, we get the second
assertion. m

where

1.4. Elliptic boundary value problems in domains with conic points:
some basic results

As we said in the introduction to this chapter, pencils of boundary value prob-
lems on a subdomain of the unit sphere S”~! appear naturally in the theory of
elliptic boundary value problems on n-dimensional domains with conic vertices. In
this section we formulate fundamental analytic facts of this theory. They depend
upon general spectral properties of the corresponding operator pencils and are valid
for arbitrary elliptic systems. A drawback of this generality is that one can deduce
from them no explicit information on the continuity and differentiability properties
of solutions. However, using these basic facts along with concrete results on the
operator pencils to be obtained in the sequel, we shall be able to derive information
of such a kind in the next chapters.

1.4.1. The operator pencil generated by the boundary value problem.
Let G be a n-dimensional domain with d singular boundary points z(), ... 2(4.
Outside the set S of these points, the boundary 0G is assumed to be smooth.
Furthermore, we suppose that the domain G coincides with a cone K, =
{z : (z —2T)/|z — 27| € Q,} in a neighborhood of (™), 7 = 1,...,d. By
r-(x) we denote the distance of the point = to 2(7) and by 7(z) a positive infin-
itely differentiable function on ?\S which coincides with the distance to S in a
neighborhood of S.
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We consider the boundary value problem

N

(1.4.1) > Lij(2,0,)U;=F inG, i=1,...,N,
N

(1.4.2) > Bij(2,0,)U;j =G, on 9G\S, k=1,..., M,
j=1

where L; j, By, ; are linear differential operators, ord L; ; < s;+t;, ord By ; < o +t;
(si, t; are given integer numbers, s; +t1 +--- + sy +txy = 2M, the operators L, ;,
By,,; are assumed to be zero if s; +t; < 0 and oy, +t; < 0, respectively).

We suppose that the coefficients of L; j, By ; are smooth outside S and that
problem (1.4.1), (1.4.2) is elliptic , i.e., the system (1.4.1) is elliptic in G\S in the
sense of Douglis and Nirenberg and the Lopatinskii condition is satisfied on 9G\S

(see [2, 49]).
Consider a differential operator
la| <k
of order k (for an arbitrary multi-index o = (aq,...,a,) with length |a| = a1 +

-+ + ap, we denote by dg the partial derivative dg? ---dgn). This operator is said
to be admissible in a neighborhood of z(7) if the coefficients p, have the form
pa(z) = rl1=* p (rr,w)
in this neighborhood, where w = (z — (7)) /r,, the functions p) are smooth in
(0,00) x £, continuous in [0, 00) x ., and satisfy the condition

(rd,)" 6£(p(;) (w,r) —pg)(w,())) —0 asr—0
uniformly with respect to w € €, for all 4 and 3. The differential operator
PO(w,0,) =m0 (0,w) 85
o] <1

is called the leading part of the operator (1.4.3) at (7). For example, every differ-

ential operator P(z,d,) with infinitely differentiable coefficients on G is admissible.
In this case, the differential operator P(™)(x,d,) is equal to the principal part of P
with coefficients frozen at z(7), i.e., to the operator

P°(2(M,8,) Z Pal(z(™) 0
|| =k

We assume that L; j, By ; are admissible operators of order s; 4 t; and oy + t,

respectively, in a neighborhood of each of the points =V, ..., z(4.
For every 7 = 1,...,d we consider the operator 2,()\) of the parameter-
depending boundary value problem
N
(1.4.4) ST+t uy = f Q. i=1,.. N,
j*l

(1.4.5) ZB A+tj)uj =gr on 0, on 0N, k=1,..., M,
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where
L7 (Nu(w) = r3 A LT (2, 0,) rdu(w),
B (Nu(w) = r2+5 =2 BT (2,0,) ru(w)

and LETJ), B(T} are the leading parts of L and By, j, respectively, at z(7),

In this book we are mostly concerned with the systems elliptic in the sense of
Petrovskii, which means that

ti1=...=tny=0 and s;=...=sy =2m.
In this case system (1.4.1) can be written in the form

(1.4.6) > Au(z)03U=F ing,

|| <2m

where A, (z) are N x N-matrices, and U, F denote the vectors with the compo-
nents Uy, ..., Uyx and Fi,..., Fy, respectively. If the matrices A, (x) are infinitely
differentiable with respect to x in a neighborhood of z(7), then system (1.4.4) has
the form £ (\)u = f in Q,, where

LN u = r2m Z Aa(2M) 0% (r2u) .
|| =2m

1.4.2. Solvability of the boundary value problem in weighted Sobolev
spaces. Let [ be a nonnegative integer, p € (1,00), and 8 = (84, ... 75d)f R, We
define the weighted Sobolev space Vpl E(g) as the closure of the set C§°(G\S) with

respect to the norm
U = (/(f[rplh) Z rPel=D | 9oy ()P dx)l/p
Ve.5(9) S\ s = £ :
Sometimes, we will use the notation ‘/;7 5(G), by that we mean the above defined
space with E = (B3,...,8) € RL The space of traces of functions from szﬁ(g),
[ > 1, on OG\S is denoted by V;‘Bl/p(ag). It is equipped with the norm

\|U||VL 1p(pgy = inf {||V|\Vp,ﬁ(g) s Ve V;fﬁ(g), V =U on 0G\S}.

It follows from U € Vplﬁ(g) that

We consider the operator

N N
_ ... L By,3U; |
U= (Uy,...,Un) — {; i.iU Z kUi 1<i<N, 1<k<M

j=1
of the boundary value problem (1.4.1), (1.4.2). Clearly, under the above assump-
tions, this operator realizes a continuous mapping
N

(1.4.7) Ai)ﬁ: H l+t Hvl 5(G) x HVL or— 1/p a0),

j=1
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where
(1.4.8) [ is integer and [ > maxs;, | > maxoy .

We shall assume in all theorems formulated in this section that | (and a similar
index ') are subject to (1.4.8). As it was proved by Maz'ya and Plamenevskii [182]
(see also the monograph of Nazarov and Plamenevskii [207] and, for the case p = 2,
Kondrat’ev’s paper [109] and the monographs of Grisvard [78], Dauge [41], Kozlov,
Maz'ya and RoBmann [136]), the following statement is valid.

THEOREM 1.4.1. Suppose that the line Re A =1 — 8, — n/p does not contain
etgenvalues of the pencil A, T =1,...,d. Then the operator .A; F is Fredholm, and

for any solution
N
U=(Uh,...,Uy) € Vpl;fj(g)
j=1

of problem (1.4.1), (1.4.2) there is the estimate

N N M N
2Nl gy < (> 1Byt igy + D2 NGkl t=tin gy + 3 1Uilz, @),
j=1 P i=1 P k=1 P j=1

where G' is an arbitrary nonempty open set, G' C ?\S

In [136] an analogous result in weighted Sobolev spaces with arbitrary integer
order is obtained. Note that the conditions on the eigenvalues of the pencils . in
Theorem 1.4.1 are also necessary.

From Theorem 1.4.3 below it follows that the kernel of the operator Aﬁv, 5 de-
pends only on the numbers | — 8, —n/p, 7 = 1,...,d, if there are no eigenvalues of
the pencils 2 on the lines Re A = — 3, —n/p. The same is true for the kernel of the
adjoint operator. In Maz'ya and Plamenevskii’s paper [180, Le.8.1] the following
formula for the index of the operator ,Aé, 5 was proved under the assumptions that
Il -0 —n/p <l'— B, —n/p and there are no eigenvalues of the pencils 2, on
the lines ReA=1—- 3, —n/pand ReA=1U'— 0. —n/p’, 7 =1,...,d (in the case
p=p =2 see also the books [136, Th.6.6] and [207, Ch.4,Th.3.3]):

d
(1.4.9) ind A 5 =ind A, 5+ ke,
T=1
where £, is the sum of the algebraic multiplicities of all eigenvalues of the pencil
A, in the stripl — 8 —n/p<ReA <l =g, —n/p, 7=1,...,d.

1.4.3. Regularity and asymptotics of the solution. By means of clas-
sical local regularity results for solutions of elliptic boundary value problems, the
following assertion can be proved (see, e.g., [136, Le.6.3.1]).

. 0 P — T
THEOREM 1.4.2. Let U; € Vp75_(l+tj)f(g), j=1,...,N (here 1 denotes the

vector (1,1,...,1) € R9), be functions which belong to Wé“j (G') for every open
set G, G/ C G\S. If the vector function U = (Uy,...,Uy) is a solution of problem
(1.4.1), (14.2), where F; € V! 2(G), G € Vljg’k—l/f’(ag), then U; € Vpl;ﬁ <).
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Furthermore, the inequality

N N M
Z ||Uj‘|vl+fj (G) S ¢ (Z ||FiHVlisi(g) + Z ||Gk||vl_<”k_1/1’(8g)
j=1 p,B i=1 r,B k=1 p,B3
Y )
+Z 1G5lve s re 5@

is satisfied.

In contrast to Theorem 1.4.2, the following statement holds only under ad-
ditional assumptions on the eigenvalues of the pencils 2,. We refer again to
[182, 207] and, in the case p = 2, to [41, 78, 109, 136].

THEOREM 1.4.3. Let U € HVl+t (G) be a solution of problem (1.4.1), (1.4.2)
with F; € Vl, _ﬁfl (G), Gy € Vl,;”‘ l/p (0G). If there are no eigenvalues of the
pencils A, 7 = 1,...,d, in the closed strip between the lines ReA =1— (. —n/p

and Rex=1 -0, — n/p then U € [] Vl,—;fj (9).

One of the central questions in the theory of elliptic boundary value problems
for domains with conic points is the question on the asymptotic behavior of the
solutions near the singular boundary points. We give here an asymptotic formula
for the case when the operators L; ;, By ; are model operators, i.e., they coincide
with their leading parts near (7).

THEOREM 1.4.4. Let U = (Uy,...,Un) € H‘/;Et'j(g) be a solution of problem
(1.4.1), (1.4.2) with

F e VI g), Gue v, 77 (0g)
where ' — 3. —n/p' > 1 — B, —n/p. We suppose that near (™) the operators L;;,
By, j coincide with their principal parts at z(7) . Furthermore, we assume that the
lines ReA\=1— 03, —n/p and ReA =1 — 5. —n/p’ are free of eigenvalues of the
pencil A.. Then the functions U;, j = 1,..., N, admit, near (7| the asymptotic
representation

where V; € VZ/J; (G), A1,-.., Am are the eigenvalues of the pencil 2. in the strip
l— B —n/p<Rel<l'— 3. —n/p, w are coordinates on the sphere |z — 2(7)| =
1, and uypo = (Utppos- - UNiypvo) are eigenvectors (o = 0) and generalized

eigenvectors (o > 1) of the pencil A, corresponding to the eigenvalue \,,.

1.4.4. Solvability in weighted Holder spaces. Let again [ be nonnegative,
B =(B1,---,B4) €RY and 0 < o < 1. We denote by Né’”(g) the weighted Holder
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space with the norm

101 e )—sup(Hrﬁf > rlelr v @)

=1 la| <1
d
+ Z sup |z —y|™° H () ﬂfaa HrT 5*80‘ (y)
Ja|=17¥E9 =1

Furthermore, let Ng"(ag) be the trace space on 9G for the space Ng” (G). If B is

a real number, then by N é’”(g) and N, Z,’U (0G) we mean the spaces just introduced

with the weight parameter ﬁ =(B,...,3) € R Obviously, the space N},ﬂ"(g) is

continuously imbedded into N é’” (G) for arbitrary I, 8, and o.
The operator of the boundary value problem (1.4.1), (1.4.2) realizes a contin-
uous mapping
N m

(1:4.10) H NG(@) = TN (@) < [T Vg 7 (09).

i=1 k=1
We state a result for the space NBZ (G) similar to Theorems 1.4.1 and 1.4.3 (cf.
[182, Th.6.3,Th.6.4]).

THEOREM 1.4.5. 1) Suppose that there are no eigenvalues of the pencils 2, on
the line ReA =1+o0— 0., 7=1,...,d. Then operator (1.4.10) is Fredholm and

every solution U € HNZ—H””( G) of problem (1.4.1), (1.4.2) satisfies the estimate

M
Z\\an,v;w <c (ZHFIINz gy + NGl gy + Vo)
j=1 k=1

where G' is an arbitrary nonempty open set, G' C G\S.
2) Let U € HVpHgtj (G) be a solution of problem (1.4.1), (1.4.2), where

F, € Né;—s““(g) , Gre N;l,“’kv“(ag) .

If there are no eigenvalues of the pencils A, 7 =1,...,d, in the closed strip between
the lines ReA=1— 03, —n/p and Re\=1'"+0 — 3., then U € HNl “J"’(g),

We have restricted ourselves to the minimum information which is frequently
used in this book. However, many other results of a similar nature are known,
in particular, those relating function spaces with “nonhomogeneous” norms such
as classical Sobolev and Hoélder spaces (see, for example, [41, 109, 136, 179]).
Combining such results with explicit facts about operator pencils to be obtained in
the sequel, one can easily extend the scope of applications of these facts.

1.5. Notes

Pencils of general elliptic parameter dependent boundary value problems ap-
peared first in the works Agranovich and Vishik [4], Agmon and Nirenberg [3]
(cylindrical domains), and Kondrat’ev [109] (domain with conic vertices).
Lopatinskii [156] and Eskin [51, 52] arrived at holomorphic operator functions
when studying boundary integral equations generated by elliptic boundary value
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problems in domains with corners.

Section 1.1. Basic facts from the theory of holomorphic operator functions in
a pair of Banach spaces can be found in works of Gohberg, Goldberg and Kaashoek
[71], Markus [160], Wendland [265], Mennicken and Moller [200], and Kozlov and
Maz'ya [135]. The Laurent decomposition of the resolvent near a pole was con-
structed by Keldysh [97, 98] and extended to holomorphic operator functions by
Markus and Sigal [161] and to meromorphic operator functions by Gohberg and
Sigal [73] (for the proof see [71] and [135]). Operator versions of the logarith-
mic residual and Rouché’s theorems were obtained in [98] for pencils, in [161] for
holomorphic operator functions and in [73] for meromorphic operator functions.
Theorems 1.1.7 and 1.1.9 are classical results in the theory of ordinary differential
equations.

Section 1.2. The material is borrowed from the paper [129] by Kozlov and
Maz'ya.

Section 1.3. All results can be found in the papers [140, 141] by Kozlov,
Maz'ya and Schwab.

Section 1.4. There exists extensive bibliography concerning elliptic bound-
ary value problems in domains with angle and conic vertices. A theory of general
elliptic problems for these domains was initiated in the above mentioned works
by Lopatinskii, Eskin and Kondrat’ev. The first two authors dealt with boundary
value problems in plane domains with angular points. They reduced the problem
to an integral equation on the boundary and investigated this equation by using
Mellin’s transform. Kondrat’ev [109] studied boundary value problems for scalar
differential operators in domains of arbitrary dimension with conic points by ap-
plying Mellin’s transform directly to the differential operators. He established the
Fredholm property in weighted and usual Ly-Sobolev spaces, and also found asymp-
totic representations of solutions near vertices. Maz'ya and Plamenevskil extended
these results to other function spaces (L,-Sobolev spaces, Holder spaces, spaces
with inhomogeneous norms). They calculated the coefficients in asymptotics and
described singularities of Green’s kernels (see [179, 180, 182, 186]).

Formula (1.4.9) which describes dependence of the index on function spaces
is proved in [180] by Maz'ya and Plamenevskil. Eskin [54] obtained an index
formula for elliptic boundary value problem in a plane domain with corners. In
connection with the index formulas, we mention also the works of Gromov and
Shubin [87, 88], Shubin [245], where the classical Riemann-Roch theorem was
generalized to solutions of general elliptic equations with isolated singularities on a
compact manifold.

A theory of pseudodifferential operators on manifolds with conic points was
developed in works of Plamenevskii [228], Schulze [236, 238, 240, 241], Melrose
[198] and others.

The modern state of the theory of elliptic problems in domains with angu-
lar or conic points is discussed in the books of Dauge [41], Maz'ya, Nazarov and
Plamenevskii [174], Schulze [237, 239], Nazarov and Plamenevskii [207], Kozlov,
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Maz'ya and RoBmann [136]. In these books and in the review of Kondrat’ev and
Oletnik [112], many additional references concerning the subject can be found.

In a number of works, results of the same type as in Section 1.4 were extended
to transmission problems. We mention here the papers by Kellogg [100], Ben
M’Barek and Merigot [17], Lemrabet [152], Meister, Penzel, Speck and Teixeira
[197] (Laplace, Helmholtz equations), the books of Leguillon and Sanchez-Palencia
[151] (second order equations, elasticity), Nicaise [211] (Laplace, biharmonic equa-
tions), and the papers of Nicaise and Sandig [212] (general equations).






CHAPTER 2

Angle and conic singularities of harmonic functions

This chapter is an introduction to the theme of singularities. The Laplacian
is a suitable object to begin with because of the simplicity of the corresponding
operator pencil 6 + A(\ + n — 2), where ¢ is the Laplace-Beltrami operator on the
unit sphere. Thus, we deal with a standard spectral problem for the operator ¢ (at
least, in the case of the Dirichlet and Neumann boundary conditions).

We start with an example of singularities generated by the Laplace operator
and say a few words about their applications. Let G be a bounded plane domain
whose boundary G contains the origin. We suppose that the arc 9G\{0} is smooth
and that near the point x = 0 the domain coincides with the angle

{z=re?:0<r<1,0<p<al,
where a € (0,27]. Consider the Dirichlet problem

(2.0.1) —AU=F onG, U=0 ondG\{0}

where F'is a given function in Lo(G). By the Riesz representation theorem there
exists a unique (variational) solution U in the Sobolev space

W(G) = {U € La(G) : /g VU2 dz < o0}

(see the book [155, Ch.2,Sect.9] by Lions and Magenes). If we assume additionally
that F = 0 in a neighborhood of 0, then a direct application of the Fourier method
leads to the representation of U near 0 in the form of the convergent series:

(2.0.2) Uz) = Z e F Y sin(krp /).

k=1
When applying the Fourier method, we see that the exponents A\, = k7n/a are
eigenvalues of the spectral problem

(2.0.3) —u" () = Nu(p) =0, 0<p<a,
(2.0.4) u(0) = u(a) = 0.

and that sin(kme/a) is an eigenfunction corresponding to Ag.

In (2.0.2) we meet infinitely many singular, i.e., nonsmooth terms. In particu-
lar, all terms in this series are singular if 7/« is irrational. Clearly, (2.0.2) contains
all information about differentiability properties of u in a neighborhood of the ver-
tex x = 0. We see, for example, that U and its derivatives up to order m are
continuous if 7/« is integer or o < 7/m.

We state a well-known regularity result, where the first term in (2.0.2) is impor-
tant (see, for example, our book [136, Sect.6.6]). Consider the Dirichlet problem

35
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(2.0.1) with an arbitrary F' € La(G). The second derivatives of the solution U to
(2.0.1) belong to Ly (G) if and only if the same is true for the function 77/ sin(re/a)
or, equivalently, if and only if o < 7.

As in the two-dimensional case, the Fourier method can be used to describe
singularities of solutions to problem (2.0.1) for the n-dimensional domain G coin-
ciding with the cone X = {x € R” : 0 < r < 1, w € Q} near the origin. Here
r = |z|,w = z/|z|] and © is a domain on the unit sphere. If F' = 0 near the origin,
the solution is given, for sufficiently small r, by the series

(2.0.5) U(z) = ch M g (W),
k=1

where cp=const, {ux} is a sequence of eigenfunctions and {A\;} is the sequence of
positive eigenvalues of the spectral problem

—u—AA+n—-2)u=0 inQ, w=0 ondN,

As in the two-dimensional case, the decomposition (2.0.5) gives rise to theorems on
regularity of solutions to problem (2.0.1), formulated in terms of Ax. However, one
can find these eigenvalues very seldom, which makes description of the regularity
properties of solutions in a particular domain difficult even in the case of the Laplace
operator.

In Section 2.1 we consider classical boundary value problems for harmonic
functions in an angle for which the question of singularities is trivial. The Dirichlet
problem for the Laplace operator in an n-dimensional cone is shortly discussed in
Section 2.2, which is a collection of known results, with simple facts proved and
deeper ones only formulated. Sections 2.3 and 2.4 deal with the multi-dimensional
Neumann and oblique derivative problems in a cone. In Section 2.5 we present
some qualitative information about eigenvalues obtained by asymptotic methods,
and we conclude the chapter with historical notes.

2.1. Boundary value problems for the Laplace operator in an angle

2.1.1. The Dirichlet problem. Let K = {(x1,72) € R?: r > 0,0 < ¢ < a}
be a plane angle with vertex at the origin. Here r, ¢ are the polar coordinates of the
point (z1,z2) and 0 < a < 2w. We are interested in harmonic functions in /C which
are positively homogeneous of degree A\, A € C, and equal to zero on the boundary.
This means, we seek the solutions of the problem

(2.1.1) —AU=0 onK, U(r,0)=U(r,a)=0
which have the form
(2.1.2) U(r,¢) = u(gp).
Since the Laplace operator has the representation
AU = 7719, (r0, U) + 7‘72(‘33,U

in polar coordinates, we get the Dirichlet problem (2.0.3), (2.0.4) for the function wu.
Let A(X\) = —d?/dp? — \? be the operator on the left-hand side of (2.0.3) which is
defined on the set of the functions equal to zero at the ends of the interval (0, ). The

operator 2(\) can be considered, e.g., as a mapping from the space W2 ((0, a))N W
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3((0,)) into L2((0,«)). Here La((0,)) is the space of square summable functions
in (0, ), Wi((0,)) denotes the Sobolev space with the norm

! 1/2
lullwe(o,a)) = (Z @J“(‘P)IZ dﬁp) )
=0

and I/?/IQ((O, «)) denotes the closure of the set of all infinitely differentiable functions
with support in (0, «) with respect to the W((0, a))-norm.

By what has been shown above, the function (2.1.2) is a solution of problem
(2.1.1) if and only if X is an eigenvalue of the operator pencil 2 and u is an eigenfunc-
tion corresponding to this eigenvalue. It can be easily verified that the eigenvalues
of the pencil 2 are the numbers \y; = +j7/c, j = 1,2,... and that

. JTe
vaslp) =sin 72
are the eigenfunctions corresponding to the eigenvalues A4 ;.
Now we seek solutions of (2.1.1) which have the form

1
(2.1.3) U=r*) " (logn)*usr(p),
k=0

where w, € W2((0,0))N Wh((0,a)), k=0,1,...,5, ug #0, s > 1. Inserting (2.1.3)
into (2.1.1), we obtain

(log7)*
S'

1 s—1
0o = (/\2u0 + ug) + (log7)

(s—1)!

s—2

log r)*

+ r Z ( i' ) (/\2Us—k + u;’_k 4+ 2 \ug_1_ + us_Q_k).
k=0 ’

()\2u1 +uf + 2)\u0)

Consequently, the functions ug, u1, ..., us satisfy the equalities

(2.1.4) —uf — Nug = 0,

(2.1.5) —uf = Nu; = 2\ug,

(2.1.6) —uf = Nup = 2 up_q tup_o, k=2,...,s

This means that A is an eigenvalue of the pencil 2 and the functions ug, w1, ..., us
form a Jordan chain of the pencil 2 corresponding to the eigenvalue \. In particular,
we have A = Ay; and wg = cv4j, ¢ # 0. Multiplying (2.1.5) by v4; and integrating
over the interval (0, «), we obtain

2cA4;j /|Uij(s@)\2ds@: /Ql()\ij)ul Vg dp = /m - 2A(Asj) v+ dep = 0.
0 0 0

Since this contradicts the assumption ¢ # 0, we conclude that the operator pencil 2
has no generalized eigenfunctions. Thus, solutions of the form (2.1.3) with ug # 0,
s > 1, do not exist.

The same results hold if the operator 2()\) is considered as a mapping from
I/f/%((aa)) into the dual space W5 '((0,)). Then the operator A()) is given by
the equality

(AN u, v) = alu,v; A), U, v EI/;/é((O,Oé)%
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where (-, ) denotes the extension of the inner product in Ly ((0, «)) to the Cartesian
product W, 1((0, ) x V([)/%((O,a)) and
2.17) awvi) = [ (@) V) - ¥ u(e) 7)) de.

0

2.1.2. The Neumann problem. Next we consider the problem
—-AU =0 inK, 0,U(r,0)=0,U(r,a)=0.
As above, we seek solutions of the form (2.1.2). This leads to the problem
(2.1.8) —u"(p) = Nu(p) =0, 0<¢<a,
(2.1.9) u'(0) = u/(a) = 0.

The corresponding operator 2(\) can be defined, e.g., as a mapping from the space
{u e W2((0,a)) : v'(0) =/ (a) =0} into L2((0, )).

The spectrum of the pencil 2 consists of the eigenvalues A\y; = £jn/a, j =

0,1,2,..., and the corresponding eigenfunctions are

v1;(p) = cos e
' «a

It can be easily verified that all eigenvalues, except Ao = 0, are simple, i.e., (up to
a scalar factor) there exists only one eigenfunction to every of these eigenvalues,
while generalized eigenfunctions do not exist. The set of the eigenfunctions and
generalized eigenfunctions corresponding to the eigenvalue Ay = 0 consists of the
constant functions ug = cg, u; = c1.

Let a(,-,A) be the sesquilinear form (2.1.7) on W3 ((0,«)) x W3 ((0,«)). Then
the Neumann problem (2.1.8), (2.1.9) can be understood in the sense of the integral
identity

a(u,v;\) =0 for all v € W, ((0,)),
The form a(-, -, \) generates a continuous operator W4 ((0, a)) — W4 ((0, «))* which
quadratically depends on the parameter A\. This operator is an extension of the
above considered operator 2(A). It can be easily shown that the pencil defined
by means of the form a has the same eigenvalues, eigenfunctions, and generalized
eigenfunctions as 2.

Both for the Dirichlet and the Neumann problem the quadratic form a(u, u; A)
is nonnegative for Re A = 0. The line Re A = 0 is free of eigenvalues in the case of
the Dirichlet problem, while it contains the eigenvalue A = 0 of the pencil generated
by the Neumann problem. The widest strip in the complex plane which contains
the line ReA = 0 and which is free of eigenvalues outside this line is the strip
Re A| < m/c.

2.1.3. The mixed problem. Now we are interested in solutions of the bound-
ary value problem
-AU =0 inK, U(r,0)=0,U(r,a) =0
which are positively homogeneous of degree A. This problem is connected with the
parameter-depending boundary value problem
(2.1.10) —u"(p) = Nu(p) =0, 0<p<a,
(2.1.11) u(0) = 0, v'(a) = 0.
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The spectrum of the operator pencil corresponding to the problem (2.1.10), (2.1.11)

consists of the eigenvalues A\y; = +j5-, j =1,2,.... Here
oy JTP
vas () = sin 20

are the eigenfunctions corresponding to Ai;. Generalized eigenfunctions do not
exist.
Note that the strip [Re A| < 5= does not contain eigenvalues.

2.1.4. The problem with oblique derivative. Let C denote the angle
{(‘Tla$2) € Rz 0<r< 00, |<)0| < 04/2},

where « € (0,27]. We consider the boundary value problem

(2.1.12) —AU =0 in K,
(2.1.13) at 0.2U +bF9,2U =0 for ¢ = +a/2.
Here a*, b* are real numbers, b* > 0, 7+ are the directions of the rays ¢ = +a/2,

and v are the exterior normals to the sides ¢ = +a/2 of the angle K. In polar
coordinates the boundary conditions (2.1.13) have the form

£ +,.—1
oU+Lb 0,U =0.
(a r—9,U) omtar/2
Let 2(A) be the operator
W3 () 3 u — {—(02 + X)u, (£bT0pu + Aa™u)|p—sa/2} € La(Q) x C?,

where  denotes the interval (—a/2,+a/2). Then the function U = ru(y) is a
solution of problem (2.1.12), (2.1.13) if and only if A is an eigenvalue of the pencil
2 and w is an eigenfunction corresponding to this eigenvalue, i.e., u is a nontrivial
solution of the equation 2A(A\)u = 0. Furthermore, the function

1
U= Z o (log ) us_1(¢)
k=0 """

with ug # 0 is a solution of (2.1.12), (2.1.13) if and only if the functions ug, ug, . . ., us
form a Jordan chain of the pencil 2 corresponding to the eigenvalue A, i.e., if

(2.1.14) A(N) ug = 0,
(2.1.15) AN ug = —A'(A) uo,
(2116) 2[()\) U = —Q[/(A) Uk—1 — %Q[N()\)’U,k,Q s k= 27 sy S,

Here /(A u = {—2\u, a*ulp—yq/2} and A’ (A) u = {—2u,0,0}.
It can be directly verified that the set of the eigenvalues of the pencil & consists
of the numbers A\, = 0 and

Apj = (kT +k™ £ jm)/a, j=0,1,2,...,
where k* = arctan (a*/b%). The eigenfunctions corresponding to the eigenvalues
A4 are
v1j(p) = cos (k% + k™ + jm)p/a+ (kT + k= — jm)/2).
Generalized eigenfunctions corresponding to these eigenvalues do not exist.

The eigenvalue A, = 0 has the eigenfunction vy = 1. Equation (2.1.15) with
A = 0, up = 1 is solvable if and only if a™b~ 4+ a~b" = 0. In this case there
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is the generalized eigenfunction u; = a*¢/b™ which is uniquely determined up to
multiples of the eigenfunction ug = 1. Other generalized eigenfunctions do not exist.
Finally, let us mention that the strip determined by the inequalities

(kt+k7)/a>Rer> (kT + k™ —m)/a if atb” 4+a bt >0,
(kT +k+7m)/a>ReA> (kT +k7)/a  if atb” +a7bT <0,
Re\| < 7/ if atb” +a bt =0

contains only the eigenvalue A, = 0.

2.2. The Dirichlet problem for the Laplace operator in a cone

2.2.1. The operator pencil generated by the Dirichlet problem. Let
Q be an open subset of the unit sphere S"~!, n > 3, with the boundary 0.
Furthermore, let /C be the cone

{x:(zl,...,xn) eR™: T>O,wEQ},
where r = |x| and w = z/|x|. We are interested in solutions of the Dirichlet problem
(2.2.1) —AU =0 in K, U =0 on 0K\{0}
which have the form
(2.2.2) U(z) = r* u(w),

where )\ is a complex number. If £ = R™\{0}, i.e., @ = S"71, then (2.2.1) is
considered without the Dirichlet boundary condition.

It is useful to write the Laplace operator in spherical coordinates r, 61, ...,60,_1
which are connected with the Cartesian coordinates by the following formulas:

T = r cosbh

To = rsinfy cosbsy,

Tp_1 = 7T sinfq sinfy---sinf,_o cosb,_1,
Tn = rsinfy sinfs---sinf,,_o sinf,_q,

01,...,0,_2€[0,m], 0,1 € [0,27]. Then we have
(2.2.3) A=0*/or* + (n—1)r t9/or +r729,

where ¢ is the so-called Beltrami operator:

n—1

1 0 ., 0
2.2.4 0=y ——————— —((sing,)" 71—
224 = q;(sin;)"=I71 96; ((Sm ) 393')’
(2.2.5) @ =1, q;=(sinf sinfy---sinf;_;)*> forj=2,...,n—1

(see, e.g., Mikhlin’s book [201, Ch.12,52]). By means of (2.2.3), it can be easily
shown that U is a solution of (2.2.1) if and only if the function 72=" U (z/r?) is
a solution of (2.2.1). The transformation U(z) — r?="U(z/r?) is called Kelvin
transformation.

Inserting (2.2.2) into (2.2.1), we get

(2.2.6) —du—AXA+n—-2)u=0 inQ, u=0 ond.
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We introduce the norm

n—1

1

(2.2.7) ol ) = (/Zq]
Q 7=t

where

2 1/2
dw) ,

ou
00,

dw =sin"20; sin" 30y -sinb,_odb; ---db,_;

denotes the measure on ). It can be easily seen that

—/6u-ﬂdw = [lull%,
W5(9)
)

for all u € C§°(Q2). Let W3 () be the Sobolev space with the norm

1/2
_ 2 2
lolhwg o = (WellEagoy + i, )
and let I/f/%(Q) be the closure of the set C3°(€2) of all infinitely differentiable func-
tions with support in © with respect to the norm (2.2.7). The space W, *(Q) is

defined as the dual space of I/?/% (Q) with respect to the inner product in Lo ().
We denote the operator

—5 =AM +n—2) L W) — Wy Q)

of problem (2.2.6) by (A). Here 6 is understood as Friedrichs’ extension of the
differential operator (2.2.4) given on C§°(€2). The operator —9 is selfadjoint, non-
negative and has a discrete spectrum. It is evident that A is an eigenvalue of the
operator pencil 2 if and only if A\(A + n — 2) is an eigenvalue of the operator —d.
Let {A;};>1 be the nondecreasing sequence of the eigenvalues of the operator
—0 counted with their multiplicities. Furthermore, let {¢;};>1 be an orthonormal
(in L2(€2)) sequence of eigenfunctions corresponding to the eigenvalues A;. Then

(2.2.8) Aj=1-—n/2+ /(1 -n/2)2+A;, ji=12,...,

are the eigenvalues of the pencil & and vi; = ¢; are the corresponding eigenfunc-
tions. Since A; > 0, we have A\; > 0 and A_; <2—nfor j =1,2,.... In particular,
the strip

[ReA —1+n/2| <+/(1-n/2)24+ A4
does not contain eigenvalues.
Equation (2.1.15) for the first generalized eigenfunction has the form
(2.2.9) Q[(/\ij) U= —(2/\ij +n-—2) Vgj -

From (2.2.8) it follows that Ay; # 1 —n/2. Hence the right-hand side of (2.2.9) is
not orthogonal to the function v ; in Ly(§2) and equation (2.2.9) has no solutions.
Consequently, the pencil 2 has no generalized eigenfunctions. From this it follows
that there are no solutions of problem (2.2.1) which have the form

S
1
(2.2.10) Uz) = Z o (log 7)*us_p(w),
k=0
where wuy, 61/?/%(9) for k=0,1,...,5, 8 >1, ug #0.
Using the positivity of Green’s function for the Beltrami operator and the
classical Jentzsch theorem on integral operators with a positive kernel (see, e.g.,
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the books of Krasnosel’skii [146, Ch.2] and Zeidler [274, §7.8]), we obtain the
following result.

THEOREM 2.2.1. The eigenvalue Ay is simple and the corresponding eigenfunc-
tion is positive in Q.

2.2.2. The cases of the space and the half-space. The following theorem
allows one to obtain a complete description of the spectrum of the pencil 2 in the
cases K = R™"\{0} and K =R" = {(x1,...,2,) € R": x,, > 0}.

THEOREM 2.2.2. 1) Let K = R™\{0}. Then all solution to problem (2.2.1) of
the form (2.2.2), where A > 0, are homogeneous polynomials.

2) If K = R, then all solutions to the Dirichlet problem (2.2.1) of the form
(2.2.2) with A > 0 have the representation U(x) = x,p(x), where p is a homogeneous
polynomial.

Proof: 1) Since U is a harmonic function in R™\{0}, it is smooth outside the
origin. Using the mean value theorem, we conclude from the local boundedness of
the solution that U is smooth everywhere. From the positive homogeneity of U it
follows that U is a harmonic homogeneous polynomial.

2) Using classical regularity assertions for solutions of elliptic boundary value
problems, we obtain U € C°°(R’). From this it follows again that U is a harmonic
homogeneous polynomial. By the Dirichlet boundary condition, this polynomial
has the form z,p(z). The theorem is proved. m

COROLLARY 2.2.1. 1) Let K = R"\{0}. Then the spectrum of the pencil A
consists of the numbers \j = j —1 and \_; = 3 —n—7j, j = 1,2,.... The
eigenfunctions corresponding to the eigenvalues Ay ; are the restrictions of harmonic
homogeneous polynomials of degree j — 1 to the sphere S™1.

2) In the case K = R’} the spectrum of the pencil 2 consists of the numbers
Aj=jand A\_j =2—-n—j, j=12,.... The eigenfunctions corresponding to
A+j are the restrictions of harmonic functions of the form x,p(x), where p is a
homogeneous polynomial of degree j — 1.

As a consequence of the last result, we obtain that the eigenvalues of the oper-
ator —J are
Aj=G-1D)@G+n-3), j=12...,
if Q coincides with the sphere S”~!. If Q is the half-sphere Si_l =S8N R%,
then the spectrum of —§ consists of the eigenvalues

Aj=jGi+n-2), j=12....

2.2.3. Monotonicity of the eigenvalues. Now we study the dependence of
the eigenvalues A; on the domain 2. The proofs of the following two theorems are
based on a variational principle for the eigenvalues A;(Q) (see, e.g., Courant and
Hilbert’s book [32]):

— Jo 0u-ud
(2.2.11) A;(Q) =max min M
{L} uweL\{0} o |ul?dw

where the maximum is taken over all subspaces L CIV 3(Q) with codimension
>2j—L

For the formulation and the proof of the following theorem we need the notion
of the harmonic capacity and some elementary results connected with this notion
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which can be found in the book of Landkof [149]. Here the capacity of a closed set
K C 52 is defined as

(2.2.12) cap (K) = inf {||u\|€v21(52) :u€ C™(S?),u>1on K}.

The reader who is not familiar with the theory of capacity can skip the following
theorem without loss of understanding for the further results.

THEOREM 2.2.3. Let K be contained in the open connected set §) of the sphere
S™=1. Then A1 (Q\K) > A1(Q) if and only if K has positive capacity.

Proof: If the capacity of K is equal to zero, then W A(Q\K) =W 1(Q) (see
Maz'ya [164, Ch.9]). Hence the equality A;(Q\K) = A1(Q) follows from the vari-
ational principle (2.2.11).

We assume now that K has positive capacity. It suffices to show that the eigen-
function of —§ corresponding to the eigenvalue A;(2) does not belong to the space

W3(Q\K). Indeed, in the opposite case this function vanishes on the set K except
for a subset of zero capacity. This contradicts Theorem 2.2.1. m

Since the eigenfunctions ¢;, j > 1, have zeros in the interior of €2, the assertion
of Theorem 2.2.3 is not true, in general, for the eigenvalues Ag, As,... . However,
the following statement holds for all eigenvalues A;.

THEOREM 2.2.4. If Q1 C Qo, then A;(1) > A;(Q). Moreover, A;j(Q1) >
A; () if O is a subset of the open connected set Qs and Q22\Qy # 0.

Proof: If Q1 C Qs, then V?/%(Ql) can be considered as a subspace of V(‘?/%(QQ)
Using the variational principle (2.2.11), we conclude that A; (1) > A;(Q2).

Now let Q5 be a connected open set and 5\ # (). Suppose that for a certain
index j the eigenvalue A;(€) is equal to A;(Qs). Furthermore, let ¢1,...,¢; be
the eigenfunctions of the Dirichlet problem for the operator —J in the domain
corresponding to the eigenvalues A1(Q4),...,A;(21). We introduce the subspaces

Lg-k)déf {uch[)/é(Qk): /u-@sdw:Ofors:L...,j—l}, k=1,2.

o
Then
— ou - udw — ou - wdw
Aj(Q) = A1) = min fﬂl—2: min fQ—Q
tO\) o, [l dw vy fg, lul? dw

where both minima are realized for the function u = ¢;. From this it follows that

—/5g0jﬂdw—AJ(Q2)/cpJﬁdw:0
Q2

Q2

for all u € L.§’2)' Hence

j—1
—0p; = Nj(Q)p; =D crpr in Qo
k=1

with certain complex numbers ¢, ..., cj_1. Since —d¢; = A;(Q1)p; in Oy and the
functions ¢1,...,¢;j—1 are linearly independent, we get ¢, =0for k=1,...,5 — 1.
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Consequently, —d ¢; = A;(Q2) p; on Qs. From this we conclude that ¢; is real-
analytic in 5. On the other hand, the function ¢; vanishes on the open set Q2\Q;.
Therefore, ¢; = 0 in Q which contradicts our assumption on ¢;. The theorem is
proved. m

Without proof we give a known isoperimetric property of the eigenvalue A ()
which was proved by Sperner [248], Friedland and Hayman [63].

THEOREM 2.2.5. Among all sets Q with fized (n — 1)-dimensional measure, the
geodesic ball on S"~' has the smallest eigenvalue A1 () of the operator —6. This
ball is the only extremal domain.

One can easily prove the following assertion.

LEMMA 2.2.1. Let B, be the geodesic ball {w € S"~1: 0<6; < a} and let \; =

—2)/2(

A1(a@) be the smallest positive solution of the equation Cg\" cosa) = 0, where

C’;n_z)/Q(-) denotes the Gegenbauer function (see, e.g., Magnus, Oberhettinger and
Soni [158, §5.3]). Then
A1(Ba) = A1(a) (A1) +n = 2)

is the first eigenvalue of the operator —o0 (with the Dirichlet boundary conditions)
in By.

Proof: Tt suffices to show that there exists a positive solution u = u(6;) of the
Dirichlet problem for the equation —du = Ay (By)u in B, or, what is the same, of
the problem

-2 0
u”(01) + % W (0)+ (AN +n—2)u@)=0 for0<6; <a,
1
u(a) = 0.
The substitution cos#; = t leads to the problem
— 1)t Ar(A -2
v (t) + (’;% v (t) — % v(t) =0,  wv(cosa) =0

for the function v(t) = u(arccost). This problem has the positive solution v(t) =
C/(\sz)/Q (t). The lemma is proved. m

Theorem 2.2.5 and Lemma 2.2.1 yield the following sharp lower estimate for
the eigenvalue A\ = A1(£2) of the pencil 2 in terms of the measure of . Let a be
given by the equality

[}

mes,_1{) = mes,,_5" "2 /(sin 0)" 2 db
0
and let Ay = A1 () be the smallest positive root of the equation C’/(\n_Q)/Q(
Then A1(Q2) > A (Ba) = A1(@).

cosa) = 0.

2.2.4. On the multiplicity of eigenvalues. We close this section with an
upper estimate for the multiplicity of the eigenvalue A;. For this we need the
following lemma which was proved by Nadirashvili [202].
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LEMMA 2.2.2. Let G be a bounded domain in R? with smooth boundary and let

L= il % (aw(a:)(,g]) +a(z) + Ab(x)

be a uniformly elliptic operator with coefficients a,b,a; ; € C*(G), b > 0, such that
the matriz (a; ;) is symmetric and positive definite in G. We consider the
spectral problem

1<i,j<2

Lu=0 inG, Bu=0 ondG,
where B s the operator of the Dirichlet or Neumann boundary condition. By
{1j}j>1 we denote the sequence of the eigenvalues to this problem. Then the mul-
tiplicity of p; does not exceed 25 — 1.

THEOREM 2.2.6. If Q is a domain on the sphere S% with smooth boundary, then
the multiplicity of the eigenvalue A;(Q2) does not exceed 2j — 1.

Proof: If Q = S2, then, by Corollary 2.2.1, we have A; = j(j — 1). The
eigenfunctions corresponding to these eigenvalues are restrictions of harmonic ho-
mogeneous polynomials of degree j — 1 to the sphere S2. Since there are exactly
2j — 1 linearly independent polynomials of that kind, the theorem is true in the
case Q = S2.

Now let Q # S2. Then, without loss of generality, we may assume that the
south pole P of the sphere is a point of the set S%\Q. We introduce the coordinates
y = (y1,y2) on S?\ P, where

(2.2.13) y1 = tan(f1/2) coshy, yo =tan(h;/2) sinb,.

The coordinate change w — y maps the domain 2 onto a bounded subdomain of
the plane with smooth boundary. The spectral problem associated with (2.2.1) in
the coordinates y has the form

Ayo(y) +4X1 + [y[*) 2 v(y) =0 in G, v(y) =0 on JG.

It remains to apply Lemma 2.2.2. m

2.3. The Neumann problem for the Laplace operator in a cone

2.3.1. The operator pencil generated by the Neumann problem. As
in the preceding section, let K be the cone {z € R" : z/|z| € Q}, where Q is an
open and connected set on the unit sphere S"~1, n > 3. We suppose in this section
that the operator of the imbedding W3 (Q) C Lo(Q) is compact. Necessary and
sufficient and also more easy verifiable sufficient conditions for the compactness of
this imbedding are given in the book of Maz'ya [164]. For example, the condition
Q € C (i.e., the boundary of the domain can be locally given in a system of Cartesian
coordinates by means of continuous functions) is sufficient for the compactness of
the imbedding W3 () C La(2) (see Courant and Hilbert’s book [32] or [164]).

Let v denote the exterior normal to OK\{0}. We consider the Neumann problem

oU
S =0 on 9K\{0}

which can be understood in the sense of the integral identity

(2.3.1) —AU =0 in K,

(2.3.2) /VU - VVdx =0,
K
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where nU € W3 (K) for all n € C§°(K\{0}), and V is an arbitrary function in
W4 (K) with compact support equal to zero in a neighborhood of the origin. Here
VU denotes the gradient of U. As before, we seek solutions which are positively
homogeneous of degree ), i.e., which have the form U(z) = r* u(w). If we insert
V(r,w) = ¢(r)v(w) into (2.3.2), where ¢ € C§°((0,00)), v € W3 (), we obtain the
integral identity

(2.3.3) /un-wadw—)\()\—kn—Q)/u-@dw=O.
Q Q
Here
n—1 1
Vot V=Y — Op,u- 0,0
j=1 %

and the quantities g; are given by (2.2.5). The sesquilinear form

W3 (Q) x W3 (Q) > (u,v) — /un - VU dw
Q

generates a selfadjoint operator A : W} (Q) — W4 (Q)*. Obviously, the solution u
of (2.3.3) satisfies the equation 2(A)u = 0, where A(A\) = A — A(A +n — 2). By the
compactness of the imbedding W3 (Q) C La(£2), the spectrum of A is discrete. We
denote by {N;};>1 the nondecreasing sequence of eigenvalues (which are counted
with their multiplicities) of A. Let {¢;};>1 be an orthonormal in L, () sequence
of eigenfunctions to IN;. Then

2.3.4 Aii=1-n/2 £,/(1-n/2)2+N;, j==41,42,...,
J J

are the eigenvalues of the operator pencil 2 with the corresponding eigenfunctions
V45 = Q/Jj.

It can be easily seen that the operator 2(\) = A — A(A + n — 2) is positive for
A on the line ReA = 1 — n/2. The widest strip containing this line which is free of
eigenvalues of the pencil 2 is the strip 2—n < Re A < 0. The boundary of this strip
contains the simple eigenvalues A\; = 0 and A_; = 2 — n with the corresponding
eigenfunctions vy, = const.

Note that the equation (2.2.9) with A(\) = A — A(A 4+ n — 2) has no solutions.
Hence the eigenfunctions v4; do not have generalized eigenfunctions. From this it
follows that there are no solutions of the Neumann problem (2.3.1) which have the
form (2.2.10) with u, € WH(Q), s > 1, ug # 0.

Repeating the proof of Theorem 2.2.6, we arrive at the following result.

THEOREM 2.3.1. IfQ is a domain on the sphere S? with smooth boundary, then
the multiplicity of the eigenvalue N;(§2) does not exceed 2j — 1.

2.3.2. On the monotonicity of the eigenvalues. In general, the eigen-
values \; are not monotone functions of the domain €2. To see this it suffices to
observe the dependence of the eigenvalue A2 on the angle a € [r/2, 7] for the circle
QO={wesS?0<6 <a,0< 6, <2r}. In this case the eigenvalues Ay = A3 are
the smallest positive solutions of the equation

Dp Py (cos6) =0.

=«
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The corresponding eigenfunctions are P/{ (cos 1) e where A = Ay = A3 and Pt
denotes the associated Legendre function of first kind.
The graph of the function A = () is represented in the figure below.

1
0.8
0.6
0.4
0.2

0
-1 -08 -06 -04 -02 O
T

FIGURE 2. Dependence of the eigenvalue A = Ay = A3 on z =
cosa, a € [1/2,7]

However, in a particular but important case (a domain with a crack) the mono-
tonicity of the functions A; = X;(€2) holds.

THEOREM 2.3.2. Let 1 C Q9 and mesn_l(Qg\Ql) = 0. Then /\](Ql) < /\](Qg)
forj=1,2,....

Proof: Tt suffices to show the inequality N;(Q1) < N;(Qs2), j = 1,2,.... Let
¥; € W3 (£1) be an eigenfunction corresponding to the eigenvalue \; for the domain
Q1. We introduce the spaces

Hj(Q)def{hGWQ /mpkdw_o for k=1,. ..,3_1} i=1,2.

Then, by the variational principle, we have

, _ 2 ) 2 -
(2.3.5) N;(94) hell{r;fﬂl)/wwm dw (/|h\ dw)
Ql Q1

Clearly, for h € H;(€2) we have h\gl € H;(),

2
/|v h\de—/‘V ho| do  and /|h|2dw:/’h|gl d
Qo 4

W .
(951

Hence the right-hand side of (2.3.5) does not exceed the value

inf /|v h|2dw /|h|2dw
heH;(Q2)

which is not greater than

-1
max inf/|th|2dw- (/|h|2 dw) = N;(Q2),

{L} heL
Qz QQ
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where the maximum is taken over all subspace L C W3 (£22) of codimension j — 1.
This proves the theorem. m

It is worth mentioning that, under the conditions of Theorem 2.3.2, the eigen-
values of the operator pencil corresponding to the Neumann problem do not de-
crease with growing (2, whereas in the case of the Dirichlet problem they do not
increase. Furthermore, there is the following difference between the properties of
the eigenvalues of the operator pencils corresponding to the Dirichlet and Neumann
problems. If {2 }r>1 is an increasing sequence of subdomains Qj C Q exhausting
the domain Q, then A;(Q) | A;(Q2). The following example shows that all eigen-
values N;(Q2;) may converge to zero for k — oo, whereas No(£2) > 0.

Ezample. Let G be the square (0,1) x (0,1) and let Ry, be the rectangle (0, 1) x
(27%,1). For every integer k > 1 we consider the rectangles

Poi=(1-1/2)/k,l/k) x (3-27F27.27F3) =1,k
and the squares
Qui= (I/k—27F31/k) x [7-277 3 27F) ) 1=1,... k.

The union of the rectangles Ry, Pi; and the squares Q;, I =1,...,k, is denoted
by Gy, (see Figure 3). Obviously, {Gj}r>1 is an increasing and exhausting sequence
for the domain G.

Y24
1
G1
271
|
G2\Gy
272
:‘ :

Ly
Figure 3

We introduce the functions
1 in PkJ,

upg =14 283(27F — ) in Quy,
0 elsewhere.
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These functions belong to the Sobolev space W3 (G},) and the supports of the func-

tions ug 1, ..., U, do not intersect. Moreover,
-1 mesy@Q
2 2 2Wk,l —k—2
|Vuk,l| dy . ( |uk,l| dy) < —2>=k-2 .
meSQPkJ
Gr Gr

Applying Theorem 1.3.3 with

a(u,u;/\):/|Vu|2d:E—)\ /|u|2dx,
Gk Gk

a = —¢, where ¢ is an arbitrarily small positive number, 8 = k2752 H = Ly(Gy,),
Hy = W3(Gy), we obtain that the Laplace operator in the domain Gy, with the
Neumann boundary condition has at least k eigenvalues in the interval [0, k-27¥=2).
From this it follows that all eigenvalues of the Neumann problem for the Laplace
operator converge to zero. Obviously, this is also true for the eigenvalues INV; to the
Neumann problem for the equation

Ayo(y) +4N;(1+y]*)2ov(y) =0 in Gy.

Using the stereographic projection (i.e., the mapping w — y defined in the proof of
Theorem 2.2.6), we obtain a sequence {Q}r>1 such that N;(2) — 0 as k — oo
and N2 () > 0.

Finally, we formulate an isoperimetric property of the first nonzero eigenvalue
N5 which was proved by Ashbaugh and Benguria [8].

THEOREM 2.3.3. If Q is contained in a hemisphere, then

Na(§2) < Na(B),

where B is a geodesic ball in S™~! of the same measure as Q.

Note that for the first eigenvalue of the Beltrami operator with Dirichlet bound-
ary condition the opposite inequality A;(€2) > A1(B) is valid (see Theorem 2.2.5).

2.4. The problem with oblique derivative

Now let Q be a subdomain of the sphere S"~! with smooth boundary and let
K be the cone {z € R" : 0 < r < 00, w € Q}. We are interested in solutions

Uz) =r*u(w), ueWiQ),
of the boundary value problem
(2.4.1) —AU =0 inK, BU =0 on 0K\{0},
where

BU =0,U+a0.U+ %QU.

Here v denotes the exterior normal to IC\{0}, a is a smooth real-valued function
on 012, and @ is a differential operator of first order on 92 with smooth real-valued
coefficients such that @1 = 0. Using the representation (2.2.3) for the Laplace
operator, we get the problem 2A(\)u = 0, where

AN u= (—du—AA+n—2)u, (Qyu+ Qu+ lau)|sq).
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Here the operator 2A(\) is considered as a mapping from W3(Q) into La(Q) x

T/V21 /2 (09). From the ellipticity of problem (2.4.1) it follows, by a result of Agra-
novich and Vishik [4] (see also [136, Th.3.6.1,Le.6.1.5]) that the operator 2(\) is
Fredholm for all A € C and invertible for large A situated near the imaginary axis.
Consequently, the spectrum of the operator pencil 2 consists of isolated eigenvalues
with finite algebraic multiplicities (see Theorem 1.1.1). These eigenvalues, with the
possible exception of finitely many, lie outside a double sector which contains the
imaginary axis.

THEOREM 2.4.1. The line Re A = 0 contains only the eigenvalue N = 0 with
the unique eigenfunction u = const.

Proof: Let A =48 (8 € R) be an eigenvalue of 2 and let u = ¢ + i), where ¢,
1) are real-valued functions, be an eigenfunction corresponding to this eigenvalue.
Then the function

U(z) = Re rwu(w) = cos(f logr) p(w) — sin(B logr) ¥(w)

is a solution of problem (2.4.1). If 8 # 0, then the coordinate change r = e
transforms U into the 27w /F-periodic (with respect to the variable t) function

cos(ft) p(w) — sin(Bt) ().

Hence, both in the cases 8 = 0 and 3 # 0, the function U attains its maximum
at a certain point = € K£\{0}. By the maximum principle and the Giraud theorem
on the sign of nontangential derivatives of harmonic functions (see, e.g., Protter
and Weinberger [230, Ch.2,Th.7]), we get U = const. Consequently, 8 = 0 and
u = @ = const. The theorem is proved. m

t

In order to find a necessary and sufficient condition for the simplicity of the
eigenvalue A = 0, we need the operator

AT (0) = (=65, 0, + QT),

where QT is the formally adjoint operator to @ on 9. By Theorem 2.4.1, the
kernel of 207 (0) is one-dimensional. It is determined by a real-valued function v.

THEOREM 2.4.2. The eigenvalue A = 0 is simple if and only if

(2.4.2) (n72)/vdw %aéavda

Q

for v € ker A1 (0).

Proof: By Theorem 2.4.1, the function ug = 1 is the eigenfunction correspond-
ing to the eigenvalue A = 0. The boundary value problem for the generalized
eigenfunction u; has the form

—dup =n—2 1in Q, dyu1 + Quy = —a on 0.
Therefore,

(n—Z)/waz—/v-éuldw:/(Byv-ul—v-ayul)dw.

Q Q o0
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By the boundary conditions on the functions v and w1, the last integral is equal to

/ (U(Qul ta)—Qtu- ul) do = /cw do.

a0 a0
Hence the condition (2.4.2) is equivalent to the nonexistence of a generalized eigen-
function. m
We close this section with the following property of a nontrivial function v €
ker 207 (0).
THEOREM 2.4.3. The function v does not vanish in 2.

Proof: We assume that the function v takes values with different signs and
introduce the sets

Q. ={weN: v(w)>e}, (00): ={w e N : v(w) > e},
and
. ={weQ: v(w)=¢},

where € > 0. Furthermore, for an arbitrary function u in Q, we set u4(z) = u(x) if
u(z) >0, uy(z) =0 if u(z) < 0.

Since v is a smooth function, the manifold I'; is smooth for almost all . We
denote the exterior (with respect to ) normal to the manifold I'; by v.. Obviously,
Ov/Ov. <0on T, and

07/6vdwf/8 vdo + / 5‘Vvd0f/8,,5vdaf / Qtvdo

(09) (092)¢
for almost all . Here the last integral is equal to
/ QT (v—e)do+¢ / Q+1d0—/Q+ v—e) dU+E / Qt 1do.
(99). (99). (09).

Since @1 = 0 on 912, the first integral on the right-hand side is equal to zero.
Consequently,

/&,EvdazO(s) as € — 0.

Let ¢ be an arbitrary function from C§°(€2). Since dv/dv. < 0 on I';, we get

/@(?ysde':O(E) as € — 0.
e

This implies

/va-s- -Vepdw = liH(l) Vv - Vypdw = lin(l)/gp -0y vdo = 0.

e

Consequently, vy = 0 in Q. Since vy = 0 on the nonempty open set {w €  :
v(w) < 0}, we conclude that v = 0. This proves the theorem. m
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2.5. Further results

Additional information about the eigenvalues A;(€2) can be obtained by means
of asymptotic methods. Here we give asymptotic formulas for the eigenvalues in
the cases when 2 is the unit sphere with a small hole and when €2 is a small domain
on the sphere.

2.5.1. Asymptotic formulas for the eigenvalues of the pencil gen-
erated by the Dirichlet problem. Let A\; = X;(2) be the eigenvalues of the
pencil 2 introduced in Section 2.2. First we consider the case when ) is the
sphere with a small hole. As before, let w = 2/|z| and r = |z|. Moreover, we set
2 = (x1,...,2,-1) and w’ = 2’ /7. Let G be a given bounded domain in R"~! and
let € be a small positive parameter. We introduce the following subset of the unit
sphere S™1:

Q. ={we st :u/ecC}.

Samarskil [232], Maz'ya, Nazarov and Plamenevskii [171] showed that in the case
n > 3 the asymptotic formula

n3(n —3)mes, 95" 2

n—1\ 0
A(S"TNR) ~ 2 (n — 2) mes,,_15™1

cap G

is valid, where cap G is the classical Wiener capacity in R"~!. Furthermore, by
[171], for n = 3 we have

(2.5.1) M (S?\ Q) = h(]loge| ™) + O(e17),

where o is an arbitrary positive number and h is an analytic function in a neigh-
borhood of zero satisfying the condition h(0) = 0, h'(0) = 1/2.

For the Dirichlet problem in the small domain 2. the main term in the asymp-
totics of A;(£2.) can be easily found by means of the perturbation theory. We
have

(G
Aj(QE) — /LJ( ) +O(1),

2

where 11;(G) is the j-th eigenvalue of the Dirichlet problem for the Laplace operator
in the domain G. Consequently, the asymptotic formula

1 (G)

Aj(Qs) = c

+0(1)
for the eigenvalues of the pencil 2 holds.

2.5.2. Asymptotic formulas for the eigenvalues of the pencil gener-
ated by the Neumann problem. Now let Ay; = A1, (€) be the numbers (2.3.4),
where IV; are the eigenvalues of the operator —¢ on § with the Neumann boundary
conditions.

1. We start with the case when € is the sphere with a small hole which was
considered by Maz'ya and Nazarov in [170]. Let G be a domain in the plane R?
with compact closure and smooth boundary. We introduce the domain

Ge={yecR?: e lyecG}
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depending on a small positive parameter €. Here y = (y1,y2) are the coordinates
given by (2.2.13). Then the domain

Q. = {w e S%: tan(h1/2) (cos by, sinfy) € G}

plays the role of a small hole on the sphere S2. In [170] explicit formulas for
i (S2\Q), 7 = 2,3,4, as € — 0 were found. These eigenvalues exhaust the spec-
trum in the interval (0,1) and in a neighborhood of the point A = 1. The interval
(0,1) contains exactly two numbers Ao and A3, where

N(SA\Q) =1 =77 pie® + O(e* logel),  j=2,3,

and po, us are the eigenvalues of the positive definite matrix M = (my)k =12
with the elements

My, = Ok, mesoG + / VWi (y) - V,Wi(y) dy.
R2\G
Here Wy, are the harmonic functions in R*\G satisfying the boundary condition

OWy,/Ov,, = —0yi,/Ov, on OG. The eigenvalue A\y(S?\Q.) which is greater than 1
has the asymptotics

M(S\Q.) = 14 47  mesyGe? + O(e? | loge]).
In particular, if G is the unit circle, then M = 27 I and, therefore, the formulas
Ao3(SH\Q) ~1—2e2, A (SH\Q) ~ 1+ 4e?

are valid for a circled hole ..

2. Now let the domain € be the complement in S? to the segment
Ey={wes?: 0,=7/2, 0< 6, <a}

of the equator, where o € (0,27). We are interested in the eigenvalues lying in
the interval (0,1). In [170, Le.2.1] it was shown that for small a exactly three
eigenvalues (counted with their multiplicities) are situated near the point A = 1.
Two of them, A3 and A4, are equal to 1 and the eigenfunctions corresponding to these
eigenvalues are sin 67 cosfs and sin 6, sin 6. For the eigenvalue A5 the asymptotic
formulas

1 1 o 1 o 1 1 o o
Xo(S*\E,) = gT_cosg+— cos? 5+ (ﬁ + @) cos® 5 T O(cos* 5)
as a — ,
1 o 1 o «
NE) = 1-= Z 1)+ = Z_1)2 i
A2 (SY\Ey) 2(sec 5 )+ 4(Sec 5 )* log(sec 5 1)
3
—1—1(1 —log2) (sec% —1)% + O((sec% —1)3 log(sec% - 1))2)
asa—0

were obtained by Brown and Stewartson [24]. The last formula yields
(2.5.2) Ao (S*\E,) < 1 for all a € (0, 27).

We consider the spectral Neumann problem for the set S2\ E, where E is the equa-
tor. Obviously, the eigenvalues A\ o(S?\E) are equal to zero and the corresponding
eigenfunctions are 1 and sign (¢; —7/2). Furthermore, \;(S?\E) = 1 for j = 3,4,5,6
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and the corresponding eigenfunctions are the functions sin#; cosfs, sinf; sin6s,
sin 6y cos @y sign (61 — 7/2), and sin 0; sin f2 sign (§; — 7/2). Theorem 2.3.2 implies

(2.5.3) 1= X\3(S*\E) < A\3(S*\E,) for a € (0,27).

Since the set S?\E, is connected, the eigenvalue \;(S?\E,) = 0 is simple. Hence
A2(S?\E,) > 0. From this and from the inequalities (2.5.2), (2.5.3) it follows that
A2(S?\E,) is the only eigenvalue in the interval (0,1).

We derive the asymptotics of the function A\o(S?\E,) for a — 2. Let u(6y, 62)
be an eigenfunction to this eigenvalue. Then u(m—601,62) is also an eigenfunction to
this eigenvalue. Consequently, u(61,02) = u(m—01,02) or u(f,02) = —u(r—61,02).
In the first case we obtain 9y, u(61,62) = 0 for 61 = /2, 02 € [0,27), i.e., \a(S*\Ey)
is an eigenvalue of the operator pencil to the Neumann problem for the half-sphere
Si and u is an eigenfunction corresponding to this eigenvalue. Moreover,

/udsz.

2
S+

This implies A2(S?\Es) = A;(S%) for a certain index j > 2. Therefore, we get
the inequality A2(S?\E,) > 1 which contradicts (2.5.2). Consequently, we have
u(01,02) = —u(m — 01, 6) and, in particular,

(2.5.4) u(m/2,602) =0 for a < 6y < 27.

The function

v(61,05) = u(61,02)  for 0y €[0,7/2],
bR u(m —61,0) for 61 € [7/2, 7]

satisfies the equation
v =AM+ 1Dv=0 inSHN\{weS?*: a<b, <2 0=r/2},

where Ay = X\2(S?\E,), and the boundary condition (2.5.4). Using the asymptotic
formula (2.5.1), we obtain

1

Aa(S7\Ba) ~ 5 [Tog(27 — o))

as a — 2.

3. Finally, we consider the eigenvalues A; for a small domain on the unit sphere.
Let G be a bounded domain in R"~! and Q. = {w € S"~! : w'/e € G}. Analogously
to the case of the Dirichlet problem, there is the asymptotic representation

n@) =YD o0y oz,

where 11, (G) is the j-th eigenvalue of the Neumann problem for the Laplace operator
in the domain G.

2.6. Applications to boundary value problems for the Laplace equation

The results of this chapter lead to various assertions concerning regularity prop-
erties of solutions and solvability of boundary value problems for the Laplace equa-
tion in domains with singular boundary points, such as angular and conic vertices,
edges. We restrict ourselves to a few examples.
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2.6.1. The Dirichlet problem for the Laplace equation in plane do-
mains with angular points. Let G be a plane domain with d singular boundary
points (M), ... 29, We suppose that for each point z(7), 7 = 1,...,d, there
exists a neighborhood U, such that U, N G is the intersection of a plane angle
Ky ={z: (z —2)/|z — 27| € Q,} with the unit disk centered at z(7). The
opening of the interior angle at z(7) is denoted by « .

Let F be an arbitrary function in Ly(G) = Vi4(G) Then, by the Riesz rep-

o
resentation theorem, there exists a unique variational solution U €W 3(G) of the
Dirichlet problem

(2.6.1) —AU =F ing, u=0 on 03,

i.e., a function satisfying the equality

/VU-VVda:: /FVd:c for all V €WL(G).
g g

Since V?/% (G) is continuously imbedded into V3'((G), it follows from Theorem 1.4.2
that this solution belongs to Vi (G) and satisfies the estimate

1Ullvz, ) < cllFllve, (o) -

Applying Theorems 1.4.1 and 1.4.3 together with the results of Section 2.1, we
obtain

THEOREM 2.6.1. The Dirichlet problem (2.6.1) is uniquely solvable in V;E(g)
for oll F € VZ;?Q(Q), 1 >2 pe(l,00), 5 = (B1,...,B4) € R, if and only if
=B —2/p| <7/ar forT=1,....d.

If (I - 3, —2/p)a, /7 is a nonzero integer for at least one 7, then the operator

_ 1-1/2

(2.6.2) V! 5(9) 3 u— (= Auyulogys) € V52(G) x V) 512 (09)

is not Fredholm. We assume that

(2.6.3) krmfor <l—0; —2/p < (kr + 1)/, for 7=1,...,d,

where k1, ..., kq are positive integers. One can deduce the following assertion from

Section 2.1.1.

THEOREM 2.6.2. Let inequalities (2.6.3) be satisfied with certain positive in-
tegers k.. Then there exist k = ki + --- + kq linearly independent and linear
continuous functionals ®;, j = 1,...,k, on 1/;};32(g) such that problem (2.6.1) is
solvable in szﬁ(g) if and only if F € V;‘;(g) satisfies the conditions ®;(F) = 0
for 5 =1,... k. Under these conditions, the solution is unique.

The functionals ®; can be explicitly described. Suppose, for simplicity, that
d = 1, the angular point z(!) lies in the origin, and G coincides with the angle
K ={(z1,22) €R?: 0 < ¢ = arg (x1 +izy) < a} in a neighborhood of z(!). Then
for every j = 1,2,... there exists a harmonic function (; in G which vanishes on
0G\S and has the asymptotics

(2.6.4) (@) = (jm) /2 eI/ sin j%‘ﬁ +0(1)
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as r — 0. The functions (i, ..., (; belong to the kernel of the adjoint operator to
(2.6.2). Consequently, one can set

<I>j(F):/F(:E)Cj(x)d:v ji=1,...,k

g

Analogous results are valid in the class of the weighted Holder spaces N };"(g).
In particular, Theorem 1.4.5 leads to the following statement.

THEOREM 2.6.3. Problem (2.6.1) is uniquely solvable in Ng"(g) for every F €
Ng‘l"(g) if and only if |l + 0 — | <7/a; forT=1,...,d.

We consider again the solution U EV?f%(g) of problem (2.6.1), where F €
W5 HG) mvpl;f(g). Suppose that [ — 3, —2/p € (kn/a,, (k+1)7/a;) for a certain
7 € {1,...,d} and for some integer k > 0. For simplicity, we assume that d = 1,
(M lies in the origin, and G coincides with the plane angle K = {(x1,22) € R? :
0 < ¢ = arg (v +iry) < a} in a neighborhood of (). Then, according to Theorem
1.4.4, the solution U EI/?/% (G) admits the representation

k

. ; . T
U= ¢; (jm) V2 pim/e gin I2E 4y,
g 5 (i) -

where ¢; are constants and V' € Vpl,ﬁ (G). By [180, Th.9.1] (see also [174, Th.1.3.8]),
the coeflicients c; are given by the formula

cj = —/F(m) Gj(x)dx,
g
where (; is the function (2.6.4).

2.6.2. The mixed boundary value problem for the Laplace equation
in domains with angular points. Let G be the same domain as in the preceding
subsection. We consider the boundary value problem

(26.5) —AU=F inG, B;U=0 on the side M) oG, r=1,....,d,

where 2(4t1) = 2(1) and B, = 1 or B, = §/0v and suppose that the Dirichlet
condition is given on at least one of the adjacent sides of the boundary. Then every
function U € W4(G) satisfying the boundary conditions in (2.6.5) belongs also to
the space V4 4(G). Using the information on the spectrum of the operator pencil
corresponding to the parameter-depending problem (2.1.10), (2.1.11) obtained in
Section 2.1, we can deduce from Theorems 1.4.1-1.4.5 analogous results as in the
case of the Dirichlet problem. In particular, the following statement holds.

THEOREM 2.6.4. Let )\ST) = 7/a, if the Dirichlet condition is given on both

sides of 0G adjacent to =™ and )\Y) = w/(2a;) if on one side the Dirichlet condi-
tion and on the other side the Neumann condition are given. Then problem (2.6.5)
is uniquely solvable in Vpl g(g) for all F € sz;;'(g) if and only if

|l—ﬁr—2/p|<)\gT) fort=1,....d.
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For the unique solvability in Ng”(g) it is necessary and sufficient that |l+0— ;| <
N7 forr=1,....d.

2.6.3. The Dirichlet problem for the Laplace equation in a domain
with conic points. Now we consider problem (2.6.1) in the same n-dimensional
domain G with the conic vertices (1), ..., z(¥) as in Section 1.4. Theorems 1.4.1-
1.4.3 together with the information obtained in Section 2.2 lead to the following
assertion.

THEOREM 2.6.5. Suppose that
2 2
(2.6.6) 1—1—ﬁ7+g—@‘ <(1—g) +AD forr=1,....4,
p

where AST) denotes the first eigenvalue of the Dirichlet problem for the operator —§
on the intersection Q. of the sphere |z — x(T)| = 1 with the cone K,.. Then the
Dirichlet problem (2.6.1) is uniquely solvable in Vpl g(g) for every F € V;%Q(Q),

Analogously, the condition

2 2
(2.6.7) l+a—1—ﬁf+g‘ <(1—g) + A forr=1,....d

ensures the unique solvability of the Dirichlet problem in Ng"(g) for arbitrary f €

Né_Q’U(g). The variational solution U El/ffé(g) belongs to Vplﬁ(g) if F e V;;P(g)
and (2.6.6) is satisfied. It belongs to N;f’(g) ifF e N;:Z’U(g) and condition (2.6.7)
is satisfied.

Since the eigenvalues AgT) are positive, we conclude that the variational solution

U belongs to the Sobolev space W(G) if F € W/ 2(G) and | < n/p. Stronger

)

regularity results can be obtained using the monotonicity of AY with respect to

Q.. If for example, K, is contained in a half-space, then AgT) >n—1. Thus,
in the case when all cones K, are contained in half-spaces, we get U € Wlﬂ(g) if
Fe W;,*(g) and | < 1+n/p.

2.7. Notes

Section 2.1-2.4. Most of the results are standard. The isoperimetric property
of the first eigenvalue of the Dirichlet problem for the Beltrami operator (Theorem
2.2.5) was first proved by Sperner [248]. The proof of the corresponding result for
domains in the Euclidean space was given by Faber [55] and Krahn [144, 145] in
the 1920s (see also the book of Pélya and Szegd [229]). In the book of Chavel [26]
a modern proof is given which works for any of the model spaces including sphere.
Another isoperimetric inequality was obtained by Shen and Shieh [244] who proved
that among all spherical bands on S? with given area the band which is symmetric
to the equator has the largest first eigenvalue of the Dirichlet problem.

The isoperimetric property for the first nonzero eigenvalue of the Neumann
problem (Theorem 2.3.3) was first proved by Chavel [25, 26] under more restric-
tive hypotheses. Ashbaugh and Benguria [8] extended Chavel’s result to arbitrary
spherical domains contained in a hemisphere. The corresponding result for the
Euclidean case was obtained by Szeg6 [252] and Weinberger [264].
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Theorems 2.2.6 and 2.3.1 on the multiplicity of the eigenvalues of the Beltrami
operator were essentially proved by Nadirashvili [202].

Figure 2 is taken from the paper [167] of Maz'ya and Levin. Other material in
Sections 2.3.2 and 2.4 was unpublished.

Boersma [22] and Keller [99] studied singularities of solutions to the Dirichlet
and Neumann problems for the Laplace equation in R3\ K, where K, is a plane
angular sector of opening angle a.

Section 2.5. Here we collected asymptotic formulas for eigenvalues which
were obtained in papers by Samarskii [232], Brown and Stewartson [24], Maz'ya,
Nazarov and Plamenevskii [171], Maz'ya and Nazarov [170].

Section 2.6. Treatments of boundary value problems for the Laplacian in
domains with piecewise smooth boundaries can be found in the monographs of
Grisvard [78, 86], Kufner and Séndig [147], Dauge [41], Maz'ya, Nazarov and
Plamenevskii [174], Nazarov and Plamenevskii [207], Kozlov, Maz'ya and Rof-
mann [136]. Regularity results for the solution of the Dirichlet problem in plane
domains of polygonal type were obtained in 1956 by Nikol’skif [214, 215] and in
the 1960s by Volkov [258, 259, 260] and Fufaev [64]. They gave (necessary and
sufficient) conditions ensuring that the solution belongs to the Nikolskil space H,
and to a Holder space, respectively. Birman and Skvortsov [20] got a W3 regularity
result for the case when the angles at the corners are less than w. For the case of
a three-dimensional convex polyhedron an analogous result was proved by Hanna
and Smith [89]. Wigley [269]—[272] studied the smoothness of the solution to the
mixed problem and its asymptotic behavior near the angular points. Distribution
solutions of the mixed problem in a polygon were considered by Aziz and Kellogg
[9].

In [255, 256] Maz'ya and Verzhbinskil developed an asymptotic theory of the
Dirichlet problem for the Laplacian in n-dimensional domains with singular bound-
ary points including conic and cuspidal vertices. As a consequence of their estimates
for the Green function and harmonic measure, they obtained a L, coercivity result
for the case of a conic point (a proof of this result is given in [257]).

Grisvard [74]-[86] dealt with various boundary value problems for the Laplace
equation in polygonal or polyhedral domains. He studied, in particular, the solv-
ability in Sobolev spaces (without weight) and the singularities of the solutions.
Fichera [59]-[62] dealt with the Dirichlet problem in three-dimensional polyhedral
domains. In [59] he proved, for example, that the solution belongs to C* if the
polyhedron is convex.

Theorems on the solvability of boundary value problems for the Laplace equa-
tion in domains with corners and edges as well as regularity assertions for the
solutions can be also found in papers of Kondrat’'ev [110, 111], Komech [107],
Zajaczkowski and Solonnikov [273], Dauge [39, 40, 43], Dauge and Nicaise [45].
Solutions of mixed screen boundary value problems for the Helmholtz equation in
the lifting surface theory were studied, e.g., by Hinder, Meister [90] and Nazarov
[205].

Besides, there are many works which are concerned with the Laplace equa-
tion in domains of special classes (convex domains, domains with C'* or Lipschitz
boundaries). For example, Grisvard [78, Ch.3] proved that the Dirichlet problem
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(2.6.1) in an arbitrary bounded convex domain G of R™ is uniquely solvable in
W3(G) for every F € La(G). Also for convex domains Adolfsson and Jerison [1]
proved that the Neumann problem has a unique solution in WZ? (G),1<p<2if
the function on the right-hand side of the differential equation belongs to L,(G).
A deep theory of second order equations in Lipschitz domains including solvability
of boundary value problems for L, boundary data and regularity results for the
solutions was developed in the works of Dahlberg [33], Dahlberg and Kenig [34],
Kenig and Pipher [105, 106], Kenig [103], Jerison and Kenig [92, 93]. A survey
of this development is given in Kenig’s monograph [104]. Higher order regularity
results for certain classes of Lipschitz domains can be found in the book of Maz'ya
and Shaposhnikova [196].

Numerical methods for the determination of eigenvalues of operator pencils are
not a subject of this book. Let us give here only a few references concerning this
direction. The first result we mention here is that of Fichera [59] who considered
the Dirichlet problem in the exterior of a cube and obtained two—sided estimates for
the smallest positive eigenvalue of the corresponding pencil. Furthermore, we refer
to the papers of Walden and Kellogg [263], Stephan and Whiteman [250], Beagles
and Whiteman [15, 16], Babuska, von Petersdorff and Andersson [10], Schmitz,
Volk and Wendland [235] which are also concerned with the numerical calculation
of singularities of solutions to the Laplace equation near singular boundary points.






CHAPTER 3

The Dirichlet problem for the Lamé system

In this chapter we consider the Dirichlet problem for the Lamé system of
isotropic elasticity

(3.0.1) AU+ (1—-20)"'VV-U=0

in an angle and a cone with vertex at the origin. Here U is the displacement vector
and v denotes the Poisson ratio, v < 1/2.

Solutions to this problem may exhibit infinite stresses near singularities of the
boundary, such as edges and vertices. Their occurrence is related to displacement
field U which, near an isolated vertex, have the form U = r*u(w), where r denotes
the distance to the vertex and w are spherical coordinates in the base of the cone.
The quantity A and the vector function u depend only on the geometry, the type
of the boundary condition and the Poisson ratio, but are independent of the par-
ticular right-hand side and the boundary data. The knowledge of A and w enables
one to determine not only the asymptotics of stresses near conic points, but also
the regularity of a weak solution in scales of Sobolev spaces. Moreover, A and u
are needed for the computation of coefficients in the asymptotic expansion of the
stresses near the conic points, the so-called stress intensity factors. Knowledge of
A and w is crucial for the design of proper numerical approximation schemes (mesh
grading in finite element schemes, for example).

The pairs (A, u) can be characterized as eigenvalues and eigenvectors of a rather
complicated operator pencil in a domain on the unit sphere. This pencil is Fred-
holm. By considering general singularities

s 1 -
(3.0.2) r Z o (log r)* u*=) (W)
k=0 """

one arrives at generalized eigenfunctions of the pencil.

We begin with the case of a plane angle. As for the Laplace equation (see Chap-
ter 2), the singularities can be described by means of the eigenvalues, eigenvectors
and generalized eigenvectors of certain pencils of ordinary differential operators on
an interval. In Section 3.1 we derive transcendental equations for the eigenval-
ues and study the solvability of these equations in different strips of the complex
plane. Furthermore, we give representations for the eigenfunctions and generalized
eigenfunctions.

We give a simple example showing the usefulness of information obtained in
Section 3.1. Let G be the same two-dimensional domain as in the introduction
to Chapter 2. Recall that « denotes the opening of the angle. We consider the
Dirichlet problem

AU+ (1-20)"'VV-U=F onG, U=0 ondg\ {0},

61
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where F' is a given function equal zero near the angular boundary point. By com-
bining Theorem 3.1.2 and Theorem 1.4.4, we can explicitly describe the asymptotic
behavior of the solution U with a finite Dirichlet integral. According to Theorem
3.1.2, we must separate the cases a € (0,7), a € (m,27), and o = 2w. Here we
restrict ourselves to the case a € (m,27). Let z_(«) and a:(_l)(oz) be real roots of
the equation

sin z sinae 0
z (3—4v)a
and =4 («) be a real root of
sin z sin o
=0.
z + B —4)a

The inequalities

0<zi(a)<m<z_(a)< x(_l)(a) <27
should be valid. (The above roots are uniquely defined by these inequalities.) Now
the asymptotics of U can be written in the form

U(z) = Cp ™ ug(p) + C- 1™ u(p) + C(f) P ugrl)(go) + o(r¥/®),

where the constant coefficients Cy and C’(_l) depend on the vector function F,
whereas u and u'") are linear combinations of trigonometric functions (see (3.1.28)
and 3.1.29)). The exponents Ay and AY are introduced by

1
7+ (0) v-(a) o _20()
a a 7T o
Note that, by Theorem 3.1.2, the functions A+ and )\(f) are strictly decreasing and
subject to the inequalities 1/2 < Ay < A_ <1< AY on (m,2m).

In Section 3.2 we turn to the incomparably more complicated three dimensional
Dirichlet problem for the system (3.0.1) in a cone K. By U = (Uy,Us,Us) we
denote the displacement vector. We are interested in particular solutions of the
form (3.0.2). The exponents A are (in general complex) eigenvalues of the operator
pencil

L) : WH)* — Wy (@)?
on the intersection 2 of K with the unit sphere S?, which is defined by
LA)u= r2=2 (ArAu +(1- 21/)_1VV . T)‘u).

We now outline some results of this chapter which concern the three-dimensional
case. In Subsection 3.2.4, starting with Jordan chains of £ generated by an eigen-
value \g, we describe Jordan chains of the same pencil corresponding to the eigen-
value —1 — A\g. In passing, in Subsection 3.2.5 we obtain an analog of the Kelvin
transform for solutions of the Lamé system:

If U satisfies the Lamé system (3.0.1), then the same is true for

V(z)= \x|_1{(3 — 4T+ E(x|z| ™) 4+ (I — 22 (z|z| ™)) 2 - O, }U(Jc\x|_2) ,

where T is the identity matrix and Z(w) = {wiw;}} ;.
Our next result is that only real eigenvalues of the pencil £ may occur in the
domain
(Re A +1/2) — (Im\)? < F,(Q)?,
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where F), () is a decreasing function of {2, which, in particular, admits the estimate

F,(Q) > ((g - 2u)2 +(1- 21/)2)

(Section 3.3). We prove that these eigenvalues do not admit generalized eigenvec-
tors. Furthermore, we establish a variational principle for real eigenvalues of £ in
the interval (—3, 3), where

1/2

3 = min {FV(Q) - %,3 — 41/}.

In particular, this principle allows one to show that all eigenvalues of £ in (—%, B)
depend monotonically on the domain €2 cut out by the cone K on the unit sphere
S2.

As a corollary we obtain that the strip —1 < Re A < 0 is free of the eigenvalues
and that, moreover, the same holds for the strip —2 < ReA < 1if Q C Si and
S?r \ ) contains a nonempty open set. Another corollary is that, if SJQr C Qand S?\Q
contains a nonempty open set, then there are exactly three eigenvalues \; € (0, 1]
which may coincide, but always have total multiplicity 3.

These results imply that solutions of the Dirichlet problem are either Holder
continuous near the vertex of a cone or have a singularity stronger than r—!. If the
cone is situated in a half space, then the stresses are Holder continuous. Besides, in
a neighborhood of the reentrant vertex the solution of the Dirichlet problem with
finite energy integral has the asymptotics

3
U(zr) = Zr’\j uj(w)+o(r'*e), e>o.
=1

where 0 < A1 < X\ < A3 < 1.

The above results on the spectrum of £ together with Theorems 1.4.1-1.4.5
enable one to draw conclusions about the regularity of the solution of the inhomo-
geneous Dirichlet problem

AU+(1-20)"'VV-U=F inG, U=0 ondg

where G is a domain in R? with conic vertices. For example,

(i) U € C12(G)? for some positive o if F € L (G)® and all tangent cones at
vertices are contained in a half-space.

(i) U € W2(G)? if F € L*(G)? and the tangent cones are contained in a circular
cone for which the smallest real part of the eigenvalues of L is greater than 1/2.

Section 3.4 is dedicated to estimates of the width of a strip on the complex
plane which contains no eigenvalues of £. For example, it is shown that this is true
for the strip

2y+1)M 1

M+2y+4 27

where M is a positive number such that M (M + 1) is the first eigenvalue of the
Laplace-Beltrami operator in €2 with zero Dirichlet data.

In the next section for circular cones we obtain an explicit transcendental equa-
tion for all eigenvalues of the pencil £ and compute the dependence of the first
eigenvalues on the opening angle of the cone. It is found that the dominant stress
fields near a rotationally symmetric rigid inclusion are not rotationally symmetric.

1
Re ) 7‘<
‘e—|—2_
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We conclude this chapter by stating some applications of the above mentioned
results to the Dirichlet problem for the Lamé system in a two- or three-dimensional
domain with piecewise smooth boundary.

3.1. The Dirichlet problem for the Lamé system in a plane angle

We start with the Dirichlet problem for the Lamé system in a plane angle.
In contrast to the boundary value problems for the Laplace operator, it is not
possible to give explicit representations for the eigenvalues of the operator pencil
generated by this problem. However, one can find entire functions whose zeros are
the mentioned eigenvalues. By means of these functions, we study the distribution
of the eigenvalues in the complex plane.

3.1.1. The operator pencil generated by the Dirichlet problem. Let
K={(z1,22) ER* : 0<r<o0, —/2 << a2}, a € (0,27],
be a plane angle. We consider the Lamé system
(3.1.1) AU+(1-20)"'VV-U=0 ink
for the displacement vector U = (Uy, Uz) with the Dirichlet condition
(3.1.2) U=0 on OK\{0}.

In polar coordinates r, ¢ the Lamé system has the form

1

2 _ 1 1
AU, — T—QUT - r—zag,Uw +(1-2v)"" ar(;ar(TUr) + ;&pr) =0,

1 2 |
AU, = Uy + 50,0, + (1 - 20)7" 50, (0.0, + 0,0, ) =0,

o}
where

U-\ cosp singp Uy
(3.1.3) ( U, > o ( —singp cosp ) ( U, )

We seek solutions

(3.1.4) Upr(r,o) = 1™un(9),  Uplr, @) = rug ()

which are positively homogeneous of degree A. For the functions u,., u, the following
system of ordinary differential equations holds:

1-2v , 9 ( 1-2v ) ;o
(3.1.5) 5o, Ur + N =Du,+ (A—1 55, (A+1))u, =0,
1-2v 1-2v
(3.1.6) ug+2_2y(>\fl)u¢,+()\+1—2_ V(Afl))u;:O
Moreover, u, and u, satisfy the boundary conditions
(3.1.7) ur(£a/2) = uy(£a/2) = 0.

Let £(\) denote the differential operator on the left-hand side of the system (3.1.5),
(3.1.6). Furthermore, let B be the operator

(W3 (~a/2,+a/2) 5 ( " )~ ( Zv((izg)) )ect,
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We introduce the operator
20 2 Uy Ur dgf Uy
(W3(=a/24+a/2)7 > () =2 () < (€m.8) ()
€ (La(—a/2,+a/2))? x C*.
Clearly, the spectrum of the operator pencil 2 is discrete and consists of eigenvalues
with finite algebraic multiplicities.

3.1.2. Two lemmas on operator functions. Let the space ) be the Carte-
sian product Yy x Y of two Hilbert spaces and let the operator pencil

(3.1.8) AN) = (L(A), B(N) : X =Y

consist of two pencils L(\) € L(X, ), B(A) € L(X,Y1). We suppose that there ex-
ist a Hilbert space Z and a holomorphic operator-function P(\) € L(Z, X) defined
for all complex A in a domain G C C such that

(3.1.9) kerP(A\) = {0}, R(P(N) =ker L(A), L(A) is surjective for all A € G,

where R(P())) denotes the range of the operator P(\).
The next lemma gives a connection between the spectral properties of the pencil
(3.1.8) and the operator function

(3.1.10) BPO) : Z -, Aed.

LEMMA 3.1.1. Suppose that condition (3.1.9) is satisfied. Then

1) the operator A(N) is Fredholm if and only if B(\) P(X) is Fredholm,

2) the spectra in G of the operator functions 2A(X) and B(X\) P(\) coincide,

3) the number Ao € G is an eigenvalue of the operator-function A(\) if and only
if Ao is an eigenvalue of the operator-function B(A) P(N\). The geometric, partial,
and algebraic multiplicities of the eigenvalue Mg for the operator-functions A(N\) and
B(A) P(N) coincide.

4) If ug,...,us—1 € Z is a Jordan chain of (3.1.10) corresponding to the eigen-
value g, then

J

1 ; .

(3111) Uj :Zmp(jik)(AO) Uk, J :O;"'55717
k=0 \J ’

is a Jordan chain of (3.1.8) corresponding to Xg. Here P (\g) = d*P(N)/d\F|r=», -
5) If vo,...,vs—1 s a Jordan chain of (3.1.8) corresponding to \o, then there
exists a Jordan chain ug, ..., us—1 of (3.1.10), such that (3.1.11) is valid.

Proof: a) Assertions 1) and 2). By (3.1.9), there exists a subspace Zy C Z
with the same dimension as ker () such that P(\) 2, = ker A(A). Consequently,
ker B(A) P(A\) = Z) and

dim ker () = dimker B(\) P(A).
Since L£(A) is surjective, we have
R(Q’[()‘)) = Yo x V1,
where )/ is a linear subset of );. We show that the range of the operator B(A) P())

coincides with ). Obviously, the range of B(A) P()) is contained in Yj. Let 9; be
an arbitrary element of ;. Then there exists an element ¢ € X such that

LA ¢ =0, BA)p=1r.



66 3. DIRICHLET PROBLEM FOR LAME SYSTEM

Furthermore, by (3.1.9), there exists an element y € Z such that P(\) x = ¢ and,
consequently, B(A) P(A\) x = 1. Thus, the range of B(A\) P(A) coincides with ).
From this we conclude, that the operators 24(\) and B(A) P(A) are simultaneously
Fredholm. Moreover, they are simultaneously surjective. This proves 1) and 2).

b) Generating functions. We consider a general holomorphic operator function
C(A\): X — Y. Let \g be an eigenvalue. A holomorphic function ®(\) with values
in X is called generating function of rank s in Ag for C if

(M) £0 and  CA) BN = O(A — Aol*).

Direct calculation shows that ®(\) is a generating function of rank s if and only if
the vectors

1 .
@jzﬁ@U)(Ao), j=0,...,s—1,

form a Jordan chain corresponding to Ag.

¢) Proof of 4). Let ¥(X) be a generating function of rank s for B(\) P(N), i.e.,
TU(Xo) #0  and  B(A) P(A) T(A)=0(| X=X |").
Since L(A) P(A) = 0 and ker P(Ag) = {0}, we get
P()T(0) £0  and AN PR) () = O(A = Ao,

Hence P(A\) ¥()) is a generating function of rank s in Ag for 2A(\). Now the asser-
tion follows from a).

d) Proof of 5). Let ®(\) be a generating function of rank s for 2(()), i.e.,
D(Ag) A0 and AN P(A) = O(|A — Ao|?).
We prove by induction that for every k = 1,...,s there exists a polynomial ¥(\)
of degree k — 1 with coefficients in Z such that
(3.1.12) PA)T) —B(A) = O(| A= Ao ")

In the case k = 1 we set ¥(A) = 1y, where 1)y is a solution of the equation
P(Xo) Uo = D(Ag). Since ®(Ag) € ker L( ), the existence of the solution ¥y follows
from (3.1.9).

Suppose that there exists a polynomial x(\) of degree k — 2 < s — 2 satisfying
the condition
(3.1.13) P(A) x(\) — ®(N\) = O(|A — XolF71).

Since ®(A) is a generating function of rank s > k for 2(A) and L(A\) P(\) = 0, we
have

L) (P x(A) = 2(A)) = O(IA = Aol*).
This and (3.1.13) yield

dk—l
L(No) (W(P()\) X(A) — @(N)) ‘/\:/\O) =0
Consequently, by (3.1.9), there exists an element ¥;_; € Z such that

1 d!

(3.1.14) P(Xo) Vi—1 + (= W(P(A) x(
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We set U(A) = x(A) + Px_1 (A — Ag)*~ 1. Then, by (3.1.13) and (3.1.14), we obtain
=1
dN\i—1 A=Xo

for j=0,1,...,k—1,ie, P(A\) ¥(A) — ®(\) = O(]A — Ao|).

Furthermore, ¥(Ag) # 0, since the kernel of P()\g) is trivial. Therefore, U(\)
is a generating function of rank k for B(A) P(A). Thus the existence of a function
®(\) satisfying (3.1.12) with k = s is proved. This gives, in particular, the relations
(3.1.11). To complete the proof of (v), it suffices to apply b).

(P W) - 2(N)|

e) The validity of 3) follows from 4) and 5). m

In the case dim X = dim Y < oo the algebraic multiplicities of the eigenvalues
can be calculated by means of the following lemma (see, e.g., the book of Gohberg,
Lancaster and Rodman [72]).

LEMMA 3.1.2. Let X and Y be finite-dimensional spaces with the same dimen-
sion. If A\g is an eigenvalue of the operator-function A, then its algebraic multiplicity
is equal to the multiplicity of the zero A = Ao of the function det 2.

3.1.3. A transcendental equation for the eigenvalues. The general so-
lution of the system (3.1.5), (3.1.6) is a linear combination of the vectors
(3.1.15)

cos(1+ Ny sin(1 4+ M)y Acos(l =Ny Asin(l — M)y

( sin(1 + A)go) ’ (cos(l + A)(p) ’ (B sin(1 — A)ap) ’ (Bcos(l - /\)g0> ’
where A = 3—4v—X and B = 3—4v+ . The vectors (3.1.15) are linearly dependent
for A = 0. Therefore, it is more convenient to represent the general solution in the
form

4
(3.1.16) u=> cru®,
k=1
where
(1) 14\
Ly [ ur ) o cos(L+ Mg
ug) —sin(1+ ) ’
U,(Q) o U$ﬂ2) o sin(l + )\)(p
=L )= Lemtions )
3) _ ul® _ 1 Acos(1—Np—(3—4v)cos(1+ )y
“ u® ] T X\ =Bsin(1 - N+ (3 - 4v)sin(1+N)p )
u@ — ul? _ 1 Asin(1 =X~ (3—4v)sin(l + N)g
u ] A\ Beos(l—= Mg — (3 —4v)cos(1+N)p )

For A = 0 we have
@) _ ul® [ —cosp+2(3—4v)psing
u - ug’) T\ —sinp+23—4v)pcosp )’

o - ul® _( —sinp— 2(3 —4v) ¢ cosp
uld cos p+2(3—4v)psing |-
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The boundary condition (3.1.2) yields the following algebraic system for the con-
stants ¢1,...,¢4:

4
(3.1.17) > e u®™ (A £a/2) =0
k=1
Since the components ugl), ug), u@, ugl ) are even functions of the variable » and
the components u&,l), u$2), ug’), u$4) are odd functions, this algebraic system is

equivalent to the following two algebraic systems

(3.1.18) cruM (N, a/2) + ez u® (N, a/2) =0,
(3.1.19) cau (N, a/2) + ey u® (N, a/2) = 0.
This means,

(c1 — 35%¢3) cos(1 + A)ar/2 + FesAcos(l — Na/2 = 0,
(3.1.20)

(c1 — 35es) sin(1 + A)a/2 + $e3Bsin(1 — Na/2 = 0,
and

(co — 352¢y)sin(l + N)a/2 + FesAsin(l — N)a/2 = 0,
(3.1.21)

(c2 — 252¢y) cos(1+ N)a/2 + $esBeos(l — N)a/2 = 0.

The determinants of these systems are equal to

d_(\) =71 ((3 —4v) sin A — )\sinoz) ,

di(\) =271 ((3 — 4v) sin Aa + Asin a) .

For A = 0 these determinants are equal to (3 — 4v)a F sin and do not vanish.
Therefore, every eigenvalue of the pencil 2 is a solution of one of the following
equations:

(3.1.22) (3 —4v) sinda— A sina =0,
(3.1.23) (3 —4v) sin da+ A sina = 0.

The graphs of the real parts of the roots of equations (3.1.22), (3.1.23) are repre-
sented in Figures 4 and 5 below, the thick lines correspond to real eigenvalues and
the thin lines to nonreal eigenvalues, multiple eigenvalues are indicated by ®).

It can be easily seen that the numbers A\, —\, ), and —\ are simultaneously
eigenvalues.

Let A be a solution of the equation d_(A) = 0. Then every solution of (3.1.20)
has the form

(31.24) ¢ = A At ((3 —4v) cos(1 + N)a/2 — Acos(1 — )\)a/2)

T AN ((3 — 4v) sin(1 + Na/2 — Bsin(1 — )\)a/2>
(3.1.25) ¢35 = Ajcos(l1+ Na/2+ Az sin(1+ N)a/2.
If we set
(3.1.26) Ar ==X cos(l+ N)a/2, Ay = =Asin(l + N)a/2,
we obtain

(3.1.27) 1 =B —4v)(cosda—1) — X cosa, c3 = —A.
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FIGURE 4. Real parts of eigenvalues of the pencil generated by the
Dirichlet problem for » = 0.17
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FI1GURE 5. Real parts of eigenvalues in the case v = 0.45

Thus, for an eigenvalue of the operator pencil 2 satisfying the equality d_(A) =0
we get the eigenvector

(3.1.28)( ZT, ) = cuV 4 czu®
©

_ ( P ) 1 (3= 4v) cos Aa — Acosa) ( N ) .

69
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If ) satisfies the equality dy(\) = 0, then, in a similar way, we obtain the eigenvector

wt B Asin(1 — M)y
(3.1.29) ( u} ) - < Becos(1— \)p
sin(1+ X)p
+ ((3 — 4v) cos Ada + Acos ) < cos(1+ Mo ) -
Since each of the systems (3.1.18) and (3.1.19) has at most one linearly independent
solution, we have obtained all eigenvectors in this way.

3.1.4. Existence of generalized eigenvectors. Obviously, the operator

4
P(A) : C* 3 (c1,co,c3,¢4) — ch u® (\, ) € ker L(N).
k=1

satisfies condition (3.1.9) for all A € C. Consequently, by Lemma 3.1.1, every eigen-
value of the pencil 2 is also an eigenvalue of the pencil BP with the same geometric
and algebraic multiplicities. Here BP()) is a linear mapping C* — C*. Hence the
algebraic multiplicity of any eigenvalue A¢ coincides with the multiplicity of the
zero A = Ao of the function det BP()) (see Lemma 3.1.2) and, therefore, also with
the multiplicity of the zero A = A\g of the function dy(A)d_ (). Thus, generalized
eigenvectors corresponding to the eigenvalue Ao may only exist if

d(Ao)d—(Ao) =0 and d(Ag)d-(Ao) +di(Xo) d_(No),

i.e., if one of the conditions di(Aog) = d—(Ao) = 0, dy(Xo) = d/ (Xo) = 0, and
d_(Xg) = d_(N\o) = 0 is satisfied. Obviously, only in the cases « = 7 and « = 27
the number Ag can be a common root of the equations d(A) = 0 and d_(\) = 0.
If & = 7, then the spectrum of the pencil 2 consists of the eigenvalues +1,+2, ...,
and in the case a = 27 the eigenvalues are the numbers +k/2 (k = 1,2,...). In
both cases two eigenvectors (3.1.28), (3.1.29) correspond to every eigenvalue, while
generalized eigenvectors do not exist.

LEMMA 3.1.3. 1) There are no generalized eigenvectors which correspond to
nonreal eigenvalues.
2) The algebraic multiplicity of an arbitrary eigenvalue is not greater than two.

Proof: 1) Let d_(Xg) = d_(Ao) = 0 or d(Xg) = d’, (o) = 0. Then one of the
equalities

(3.1.30) (3 —4v) a cos Mg = sina

is satisfied. Hence, cos Mg« is real. Thus, either sin(Re Agar) = 0 or sinh(Im M) =
0. The equality sin(Re Agar) = 0 can be excluded. Otherwise, we get cos Agax =
+ cosh(Im A\px) and, consequently, (3 — 4v)a | cos Ager| > sin . The last inequality
contradicts (3.1.30). Consequently, we obtain sinh(Im A\g) = 0, i.e., Im Ay = 0.

2) Suppose that d_(Ag) = d_(Xo) = d” (No) = 0. Since

d” (\o) = —(3 — 4v)a? sin \ga,

we get sin Aga = 0 and the equality (3 — 4v)sin Agaw = Agsina yields sina = 0.
This contradicts the equality d’_(A\g) = 0. In the same way, it can be shown that \g
cannot satisfy the equalities dy (A\o) = d’, (Ao) = d/{ (Ag). This proves the lemma. m
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LEMMA 3.1.4. If Ao is a multiple root of one of the equations d_(\) = 0 or
d+(X) =0, then

(F) (F)
v’ (Ao, U (A,
v (Ao, @) ug (A, )
is a generalized eigenvector associated with the eigenvectors (3.1.28) and (3.1.29),
respectively.

Proof: Let ¢1 = ¢1(X), cg = c3(A) be the functions (3.1.24) and (3.1.25), re-
spectively. We show that

A=Xo

(1) (3) _ cos(1+ A)a/2
(3.1.32) (M) u'V (A af2) + es(N)u (N, a/2) = Ad_()N) ( —sin(1+ \a/2
for all A € C. Indeed, it can be easily seen that

ufa3)()\,oz/2)u$.1)(/\,oz/2)—ug)(/\,a/Q)ug.B)()\,ozﬁ):( 0 )

d_(\)
WP /2 ul(\, 0/2) = ud(\ a/2) u) (1, 0/2) = ( a ) |

This together with (3.1.24)—(3.1.26) implies (3.1.32).

Since ug), u&” are even and u&,l), u(wg) are odd functions, it holds

(3.1.33) c1(A) u (A, —a/2) + es(A) u® (A, —ar/2) = Ad_()) ( ‘;f;((iii))gﬁ ) .

Using (3.1.5), (3.1.6), (3.1.32), and (3.1.33), we arrive at
u (A e) ) cos(1+ N)a/2
(3.1.34) A(N) ( u;(%i) ) _Ad,(A){o, ( Sl 4 A2 ) }

Now let A = X¢ be a multiple root of the equation d_(A) = 0. Differentiating
(3.1.34) with respect to A and setting A = Ao, we obtain

- (X0, ¢) vy (Ao, )
A (ng) U o >+2l/\ < r 300 = 0.
( O) ( uLp (>\0a<p) ( 0) ng ()‘07(10)
This proves the assertion in the case . The proof for the case “+” proceeds
analogously. m

“ »

Obviously, a multiple root of one of the equations d+(\) = 0 satisfies the
equalities
(3—4v) sind\aF Asina=0,
(3—4v)a cosdaFsina=0.

sin o

= +(3—4v) (Va® + 1)*1/2. Therefore, the
sequence of the roots x, of the equation tanx = x generates a countable set of
angles o satisfying the equality a~! sina = +(3 — 4v) (2 + 1)~ /2. This set has
the accumulation points 7 and 2. The corresponding eigenvalues are determined
by the formula

Consequently, tan Aa = Ao and

sin? a a?

(3.1.35) A= i(w ! )1/2.
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3.1.5. Distribution of the eigenvalues in the half-plane Re A > 0.

THEOREM 3.1.1. Let o # 7, a # 2.

1) The lines Re A = kn/a (k = 0,1,...) contain no points of the spectrum of
the pencil 2.

2) If k is an odd number, k > 1, then the strip
(3.1.36) kL < Reh< (k+1)~

e e

contains two eigenvalues satisfying (3.1.23) for a < 7 and (3.1.22) for a > m.

3) If k is an even number, k > 2, then the strip (3.1.36) contains two eigenvalues
of the pencil A satisfying (3.1.22) for a < w and (3.1.23) for a > 7.

4) The strip

(3.1.37) 0<Re\< g

contains exactly one eigenvalue which satisfies (3.1.22) for a < w and (3.1.23) for
o > T.

Proof: We consider the roots z of the equations

sin z sin o
3.1.38 — =0
( ) z (3 —dv)a ’
sin z sin «
3.1.39 =0
( ) z + B —4d)a

which correspond to the equations d+(\) = 0 for A = z/a. Suppose that z = kr+iy,
where y € R, k =1,2,..., is a root of one of the equations (3.1.38), (3.1.39). Then
we obtain

(=1)Fi (3 —4v) asinhy F (kr 4 iy) sina = 0.
This is impossible, since a # 7 and « # 27. If z = 4y, then we get the equation

sinh y sin «
y  (3—4v)a
which is also unsolvable, since the left-hand side is greater or equal to one and the
right-hand side is less than one. Consequently, the lines Re A = kr /o, k =0,1,.. .,
do not contain points of the spectrum.
From the obvious inequality

sin z | sinh(Im z)]
>

z 2|
it follows that each of the equations (3.1.38) and (3.1.39) has no solutions on the
set {z : |sinh(Im z)| > |z|}. Hence in an arbitrary strip |Re z| < a the modulus of
the roots of (3.1.38), (3.1.39) is uniformly bounded (with respect to a € (0, 27]) by
a constant only depending on a.

Furthermore, in a standard way, it can be verified that for angles « sufficiently

near to 7 every of the equations (3.1.37), (3.1.38) has a unique real-analytic solution
(—1)*
3—4v
in a small neighborhood of the point z = kn, k = 1,2,.... Therefore, for angles «

near to m, the roots of the equations (3.1.38), (3.1.39) are distributed as follows: If
k is an odd number, k > 1, then the strip k7 < Rez < (k + 1)7 contains two roots

ze(a) =kr F (—m)+---
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of (3.1.39) for oo < 7 and two roots of (3.1.38) for a > 7. If k is an even number,
k > 2, then this strip contains two roots of (3.1.38) for a < 7 and two roots of
(3.1.39) for a > 7. Moreover, one root of the equation (3.1.38) is contained in the
strip 0 < Rez < 7 if @ < 7 and one root of the equation (3.1.39) is contained in
this strip if @ > . Since there are no roots of the equations (3.1.38), (3.1.39) on
the line Re z = km, it follows from Rouché’s theorem that the number of the roots
of every of these equations in the strips (3.1.36) and (3.1.37) is independent of the
angle a. This proves the theorem. m

1 —-1,.—1

Comparing the graphs of the functions y = 27! sinz and y = (3—4v) "tz 'sinz,
we can conclude that the equation (3.1.38) has no real solutions in the interval (0, 7]
for o € (m,2m) and that it has a unique solution z_(«) in this interval for every
a € (0, 7]. Obviously,

z_(m) =m, x_(0) = co,

where ¢o € (0,7) denotes the root of the equation sinc = ¢/(3 — 4v). Furthermore,
it can be easily seen that the root z = x_(«) is simple. Consequently, the function
a — z_(a) is real-analytic in the interval (0,7]. This function admits an analytic
extension to a neighborhood of the point 7.

Analogously, the equation (3.1.39) has no real solutions in the interval (0, 7] if
a € (0,7) and a unique solution x4 («) in this interval for every « € [, 27|, where

z4(m) =24 (27) = 7.

The function « — x4 () is real-analytic in [, 27| and admits an analytic extension
to a neighborhood of the point 7.

We consider the real roots of equation (3.1.38) which are situated in the interval
(m,27) for a € (m,2m). It can be easily verified that this equation has exactly two
roots x(_l)(a), 2 (a), x(_l)(a) > x(_2)(0¢)7 in the interval (m,27). These roots are
simple and have analytic extensions to certain neighborhoods of the points a« = 7
and a = 27w. Moreover,

Y =2Wen =2r, 2P@) =29@r) =

(2

The function x'*’ is the analytic extension of the function z_ to the interval (7, 27).

Therefore, in the sequel, we denote the function z? by x_. Note that for every
a € (m,27) the inequalities

0<zi(e)<m<a_(a)<azW(a)<2r

are valid.
The above introduced functions x4 and 2 are used in the following theorem
for the description of the spectrum of the operator pencil 2 near the line Re A = 0.

THEOREM 3.1.2. 1) If « € (0,7), then the spectrum of the pencil A in the strip
0 < Re X < 7/« consists of the unique simple eigenvalue A_(a) = z_(a) /.

2) Let a € (mw,2m). Then the spectrum of 2 in the strip 0 < Rel < 27/«
consists of the following three real eigenvalues :

D (a)
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3) The function \_ is strictly decreasing on the interval (0, 27|, while A and
)\(f) are strictly decreasing functions on (w,27]. Furthermore, the inequalities
A(a) >1 forae(0,7),
(3.1.40) () (0,m) 1)
1/2 < Ap(a) < A_(a) <1 < A (@) for a € (m,2m)

are satisfied.

Proof: Assertions 1) and 2) are immediate consequences of Theorem 3.1.1 and

of the definition of the functions z_, x4, x(j). We show that A_, Ay, )\(j) are strictly
decreasing functions. From the definition of A_ it follows that

(3 —4v) cos A_a — cos

by =—-A_ :
- (@) (3—4v)a cosA_a —sina

Since A_(m) = 1, A_(2m) = 1/2, it suffices to verify the inequality A’ («) # 0 for
a € (0,2m). Suppose that X\ (ag) = 0. Then for A = A_(ap) we get

(3.1.41) (3 — 4v) sin Adag — A sinag = 0, (3 — 4v) cos Aag — cosag = 0.

Hence

tan Aoy tanag
3.1.42 = .
( ) /\Oéo (%))

By the definition of the function A_, we have 0 < Aag < 7 for 0 < ag < 7 and
T < Aag < 27 for 1 < o < 27. In both cases equation (3.1.42) has the unique
solution A = 1 which does not satisfy (3.1.41).

The inequality (A(_l))’(a) # 0 for a € (m,27) can be proved in a similar manner.
We show that X, (a) # 0 for a € (m,27). If X\ (ap) = 0, then for A = A ()
we obtain

(3.1.43) (3 — 4v) sin Aag + A sinag = 0, (3 — 4v) cos Aag + cosag = 0.

As above, this implies (3.1.42). Since dag < 7, T < ap < 27, we have A < 1.

However, from (3.1.43) it follows that (3—4v)2 = A2 sin? ag+cos? ag and, therefore,

A > 3 —4v > 1. Consequently, the function Ay is strictly decreasing on (7, 2m).
The inequalities (3.1.40) follow from the corresponding estimates for x4 (o) and

x(_l)(a). n

3.2. The operator pencil generated by the Dirichlet problem in a cone

Let K be the cone {x € R? : 0 < |z| < 0o, z/|z| € Q}, where  is a domain
on the unit sphere. We consider the Lamé system for the displacement vector
U - (U17 U27 U3)

(3.2.1) AU+(1-20)"'VV-U=0 ink

with the Dirichlet boundary condition

(3.2.2) U=0 ondK\{0}.

The description of all solutions of problem (3.2.1), (3.2.2) which have the form

(3.0.2) with u®) EV([)/é(Q)3 requires the study of the spectral properties of a cer-
tain operator pencil £ which is defined below. We prove in this section that the
spectrum of this pencil consists of isolated points with finite algebraic multiplicities
and that the numbers \, X, 1 — A, and 1 — X are simultaneously eigenvalues or not.
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Furthermore, we give a relation between the Jordan chains corresponding to the
eigenvalues A and 1 — .

3.2.1. Sobolev spaces on a spherical domain. In what follows, we will
systematically employ the spherical coordinates r and w = (6, ¢) which are related
to the Cartesian coordinates x = (x1,x2,x3) by

21 =7 sinf cos p, To =71 sinf sin g, r3 =1 cosf.

If (u1,us,us) is a vector function in Cartesian coordinates, then its spherical com-
ponents (ur, ug, u,) are given by

Uy U7

Ug =J U9 ,

Uy us
where

sinf cosp sinf siny  cosf
(3.2.3) J=J(0,p)=| cosf cosp cosfsiny —sind

—sinp cos ¢ 0

Let us express the fact that u = (u1,u2,u3) € W3(2)? in terms of the spherical
components of u.
We set u,, = (ug, u,) and denote by

1 . 1
Vo Uy = g Op(sin O ug) + b O

the spherical divergence of u, and by

B Ogv
Vov = ((sin 6)-1 @ﬂ/)

the spherical gradient of the function v. Furthermore, we introduce the sesquilinear
form

(3.2.4) Q(uw,vw) = / (89U9 - OpTg + 891@; . 895¢

+ (ﬁ Opug — cot9u¢> . (ﬁ 0,V — cot 9@,)
1

+ (m OpUy —|—cot9u9) . (ﬁ 0,7, + cot 91}9)) dw,

where dw = sin 6 df dp. The space hi(Q) is defined as the set of all vector functions
u,, on €2 for which the quantity

1/2
Juallagor = (@) + [ fnaf? o)
Q

is finite.

LEMMA 3.2.1. The Cartesian components of the vector function u belong to the
space W3 (Q) if and only if u, € W3 () and u,, € hi(Q).
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Proof: The norm in W3 () is defined as

(|v]* + |Vov|?) dw 2
(f )

Q

(see Section 2.2). By a straightforward calculation, the following relations between
the Cartesian components uy, u2, u3 and the spherical components ., ug, u, of the
vector function u can be verified:

3
Z |8.9’Uj‘2 = |89uT\2 + |8@’u,3|2 + |89u¢|2 + |ur|2 + \ue|2 + 2Re (uragﬂe — u(;@gm),
j=1

3
Z 10pu;[* = 10pur|? + |0u|* + [Dpup|* + sin? 0 [u,|* + cos® 0 ug|? + Jug|?
j=1

+ 2Re (sin9 cos 8 u, Up + sin @ (u, 0,0, — u¢3¢ﬂr))
+ 2cosf Re (u98¢ﬂ¢ — uwawﬂg).

From these formulas we obtain

3
(3.2.5) Z IVoui? = [Vou|* + |0pug|* + |0pue|* + 2 |ur > + |uw|?
j=1

1 2 1 2
+ m@,ue —cot9u¢‘ + ‘mawuw + cot O ug
+ 2Re (ur Vy, - Uy — Uy - Vo),
where | - | is the Euclidean norm and w - v denotes the sum of products of the

corresponding components of the vectors v and v. One checks directly that
1 2 1
(3.2.6) |Bpus|? + ]Sm@uﬁmteu@] > S Vol

This and (3.2.5) imply the assertion of the lemma. m

We denote by }OL%(Q) the closure of C§°(Q)? in hi(Q2). Then, as a consequence
of Lemma 3.2.1, the following assertion holds.

COROLLARY 3.2.1. The Cartesian components of the vector function u are in
W(2) if and only if u, eW3(Q) and u, €h3().

Furthermore, due to the compactness of the imbedding I/?/%(Q) C Ly (), we
get the following result.

COROLLARY 3.2.2. The imbedding %(Q) C Lo(2)? is compact.
3.2.2. Properties of the form Q.

LEmMA 3.2.2. For all u,, G;L%(Q) there is the equality

(3.2.7) Q(uw,uw)+/|uw|2dw

Q

1 2
:/(\Vw-uw\2+‘Mﬁwuefcotéuwfaguwl )dw.
Q
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Proof: Applying the equalities

1 2
/|Vw.uw|2dw = /(\89U9\2+‘c0t9ue+w&pu¢’ )dw
Q Q

_ 1 _
+ 2Re /89U9 (cot@u@ + m&pu@) dw,
Q

1

/ sin ¢

Q

2 1 2
Opug — cot Bu, — 691;@‘ dw = / <|<9.9uw|2 + ’@a@ue - cotﬁuwl ) dw
Q
1 _ _
—2Re [ Ogu, (m O, Ug — cot@uw) dw
Q

and making use of the identities

(3.2.8) 2Re / (&9“9 “Ug + O, ~ﬂ¢) cotfdw = / \uw|2 dw,
Q Q
(3.2.9) Re / (89U9 - Oplyp — OpUy - 8@69) (sin 0)*1 dw =0
Q

which are verified by integration by parts, we arrive at (3.2.7). m

As a consequence of (3.2.7), we have

(3.2.10) Q(uw,uw)—l—/|uw|2 dwz/\vw-uw\zdw
9) %)

for all u, €1L(Q).

LEMMA 3.2.3. There is the inequality
(3.2.11) Q (U, uy) > /|uw|2dw for all uy, E;L%(Q)
Q

Proof: First we establish the identity

1 2
(3.2.12) Q(uw,uw)—/|uw|2dw:/<2|89u9|2+2‘M8¢u¢+cot9ug‘
Q Q

1
+ ‘89% + ==

2
ea(pu(p - cotﬁugp‘ — |V, - uw|2) dw
in
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for any vector function w,, e;é(Q) In order to show this, we write the right-hand
side of (3.2.12) in the form

:

Q(uwvuw) /<80u0|2+‘ 8 U@+COtGUQ
Q

1
+ 2R689u¢(sm Oyplig — cot9u¢> — |V -uw|2> dw

1 _
= Q(uy,u,) +2Re / (aguw(sm Oplig — cot9u¢>
Q

_ 5‘9U9(S Oply +cot0ue)> dw.

Transforming the last integral by means of (3.2.8) and (3.2.9), we arrive at (3.2.12).
Since
1 2

2|69U9| + 2 ’ Opug + cot&ue’ — |V ~uw|2 = ‘ague - ﬁﬁwuw — cot0ue‘ ,
we obtain from (3.2.12) that

1 2
(3.213)  Q(uy,uy) — / || dw = / (’391@ + m@;ug - cot&uw‘

Q Q

1
sin @

2
+ ’69U9 — Optiy — cot@ue‘ ) dw.

This implies (3.2.11). m
3.2.3. Definition of the pencil £. The Lamé system in spherical coordi-
nates has the following form (cf. Malvern’s book [159, p.672]):

(3.2.14) AUrfg(Ur+Vw'Uw) Lo, (13 (r U)Jr%Vw'Uw) —0,

1-2v 2
1 cot 0
2.1 A —
(3.2.15) AU + = (89U a5V~ S ag,Uq,)
1 1. .,
gy 0 (U + Vo L) =

2sinf

(3:2.16) AU, + ——— - (a U, + cot 89,0y — —22 )
1 (%8,(7" U,) + Vo U,) =0

* (1 —2v)r2sind %%

Taking (U,,Up,Uy,) = 1 (ur,up,u,) and then multiplying (3.2.14)—(3.2.16) by

2= we arrive at the matrix differential operator
" —Su, + E2Z2(1-A) (A +2)u, + 3522V,
(3.2.17) L(N) <u ) =

—Hyuy + (1= N) (A +2) u, — 22Ty,
Here § denotes the Beltrami operator on the sphere S? and

Hyu, = Hu, + (1 —2v)"' V,, (Vo - u),
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where

§+2—(sinf)™2 —2(sinf)~* cot b,

H =

2(sin)~! cot09, §+2— (sinf)2
Note that 0v = V,, - (V,v) and that the matrix differential operator H satisfies the
equalities

HV,2v = V,(0+2)v,
Vo -Hu, = (64+2)Vy-u,.

LEMMA 3.2.4. The operator
(3.2.18) £0V) + Wh(Q)x hh(©) — (Wh(Q)x mh(®))

is continuous for every A € C.
Proof: Let uy, vy EI/IO/%(Q) and Uy, Uy E]%(Q) Then

—/Huw Dy, dw = / (kug V0o + Vouy - Vo, + (cot® 0 — 1) ug, - 0y,
Q
cot 0

sm 0

Q(uy, vy) /uw -7, dw.
Q

(Optuy - Uy — Dypug - U«p)) dw

Consequently,
(3.2.19) /ﬁ()\) (Z:) : (;) dw = Q(uy, u,)
Q

_ 2—2v _
+ /(unr~vwvr+ T 5, A+2)(1 =X\ u, o,
Q

_ 1 _

n ((A+2)(17A)71)uw-%+ (Vi) (Vo T0)
3—4v— A _ 4—4v+ X _
ﬁ(vw . ’uw)'l}r + ﬁur Vw . Uw) dw.
This and (3.2. 6) imply
u

(o)l =< () 1(69] ~
’/L ) wp=e ( ) W2 (Q)xh(Q) (uw) W (Q)xhi(Q)

Thus, the operator £()) is continuous. m

From Theorem 1.1.5 it follows that the vector function (3.0.2) satisfies the
system (3.2.1) or, equivalently, the equations (3.2.14)—(3.2.16) if and only if

k G
(3.2.20) L 0L ( '

HW()\0) uff k)):() on {2 for j=0,1,...,s.
Hereu()andu

u®). This means that the following assertion is true.

( (uék), ugp )) are the spherical components of the vector function
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LEMMA 3.2.5. The vector function (3.0.2) is a solution of problem (3.2.1),
(3.2.2) if and only if No is an eigenvalue of the pencil £ and u®, ... ut=Y is
a Jordan chain of this pencil corresponding to the eigenvalue Ag.

3.2.4. Basic properties of the pencil L. It can be easily seen that the
operator £(\) is selfadjoint for Re A = —1/2. In the following lemma we show, in
particular, that £()) is positive for A on the above line.

LEMMA 3.2.6. Let A =it —1/2,t € R. Then

(3.2.21) L(\ : “")dw

U.)

ZC(wa,uw /|ku,«| @) + e+ ) [ (furl + ) d
Q

o
for every vector function (ur,u.) GW%(Q)X h3(2). Here c is a positive constant
which is independent of the domain ).

Proof: Since the functions u, and u, can be extended by zero outside {2, it
suffices to prove (3.2.21) for the case ) = S?. By means of (3.2.19), we can rewrite
the left-hand side of (3.2.21) in the form

2—2v /9 1
2, 2 2 2
Q (U, Uy) + / (V u|* + —5, <4 +t ) lur|® + = 2VIVUJ U |
S?

+(2 +t2) luo? + 2 Re (Murvw uw)) dw.

1—2v

Using (3.2.7) and integrating by parts, we obtain that the last expression is equal
to

e

2
+1—2V ‘

1 12 3 3 .
‘unT—fuw‘ —I—‘fur—i-vw-uw ’(f—&—zt)uT—i—Vw-uw
2 2 2
SQ
+ 2 (Ju > + |u |2)+‘L8 ug — cot B u, — dyu ‘2 dw
" v sinf 7 © ® '

Hence (3.2.21) will be proved if we show that

(3.2.22)
1 12 3 2 1 2
/ <‘unr - 5““” + ‘iur + V., -uw’ + ‘@@,ug —cot Quy, —89U¢‘ ) dw
5'2
> C(Q(uw,uw) +/(\kur|2 +u]? + Jugl?) dw).

Q
To this end, we show first that the left-hand side of (3.2.22) is not equal to zero
unless the vector function (u,,u,) vanishes identically. Indeed, let us assume that

1 3
(3.2.23) Vo, — 3 u, =0, 3 u, + V- u, =0.

Then we have

(3.2.24) o, + §ur =0, /ur dw = 0.

4
S2
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Since the second eigenvalue of —d on the sphere is equal to 2 and the first eigenvalue
is zero with eigenfunction u = const (see Section 2.2.2), the identity (3.2.24) cannot
be true if w, # 0. Therefore, it follows from (3.2.23) that w, = 0, u, = 0. Conse-
quently, the left-hand side of (3.2.22) is positive for (u,,u,,) # 0. Furthermore, by
Lemma 3.2.2, the left-hand side of (3.2.22) is majorized by

¢ (Ilur g ey + il 3300 )

and bounded from below by
e1 (lurlg g + NuwliZyey ) = e (lurlifa@) + lluwlZa@y )-

Hence the left-hand side of (3.2.22) is an equivalent norm in I/?/%(Q)x }OL% (Q). This
proves the inequalities (3.2.22) and (3.2.21). m

The following theorem contains some basic properties of the pencil L.

THEOREM 3.2.1. 1) The operator L(X) is Fredholm for every A € C and positive
definite for Re A = —1/2.

2) The spectrum of the pencil L consists of isolated eigenvalues with finite
algebraic multiplicities.

3) For all A € C there is the equality

(3.2.25) (L)) = L(~1— V).

This implies, in particular, that the number \g is an eigenvalue of the pencil L if
and only if —1 — Xg is an eigenvalue of L. Moreover, the geometric, partial and
algebraic multiplicities of the eigenvalues Ao and —1 — \g coincide.

4) The number Ao is an eigenvalue of the pencil L if and only if Ao is an eigen-
value of the pencil L. The geometric, partial and algebraic multiplicities of these
eigenvalues coincide. If u(®, ... u'® is a Jordan chain of the pencil L correspond-
ing to the eigenvalue Ao, then u©, ... u() is a Jordan chain corresponding to the
eigenvalue Xg.

Proof: 1) By (3.2.21), the operator £(\) is positive definite and invertible for
Re A = —1/2. Furthermore, for every A € C the operator

L) = £(=1/2) - Wh@)x 1) — (Wh@)x hb(@)

is compact and, since £(—1/2) is invertible, it follows that L£(\) is a Fredholm
operator for all A € C.

2) The second assertion follows from assertion 1) and Theorem 1.1.1.

3) Applying Theorem 1.2.2, where 2 = £ and v = —1, we get (3.2.25).

4) For the proof of the last assertion we take the complex conjugate of (3.2.20)
and utilize the fact that the coefficients of the Lamé system are real. The proof is
complete. m

3.2.5. A connection between the Jordan chains corresponding to the
eigenvalues A\g and —1 — X\g. We introduce the diagonal matrix

A—4v+ A 0 0
(3.2.26) T(\) = 0 3—dv— A 0
0 0 3— 4y — A
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It can be immediately verified that
(3.2.27) T LA =L(=1=XN)T(N).

THEOREM 3.2.2. Let Ao be an eigenvalue and u®, ... ,u®) o Jordan chain
corresponding to this eigenvalue.
1) If Ao and u'® satisfy one of the conditions

(i) Ao # 3 —4v and Ao # 4v — 4,
(ii) Ao € {3 —4v, v — 4} and T()\O)u(O) #£0,

then the vector functions

1 0 0
To)u®, (—DF | TO)u® + 0 =1 0 |u* V|, k=1,...s,
0 0 -1

form a Jordan chain of eigenvectors and generalized eigenvectors of the pencil L
corresponding to the eigenvalue —1 — Xg.

2) Let either \g = 3 — 4v or \g = 4v — 4. Furthermore, let T (\o)u'®) = 0 and
s > 1. Then the vector functions

10 0
DT+ [ 0 =1 0 JuD ) k=1,
0 0 -1

form a Jordan chain corresponding to the eigenvalue —1 — Aq.

Proof: Let

S

u(A) =D (A=) u®.
k=0
Then
L) u(X) = O(A = Aol*™).
From this and (3.2.27) it follows that
(3.2.28) L(—=1=X)T N u\) =O(X = o).
We set v(®) = T (\g) u® and
(3.2.29) o) = (—1)k <T()\0) u™ +T'(No) u(k_l)), k=1,...,s.

Then, by (3.2.28), we have
"
Z 7£(j)(_1 — Ao =0
=07

for k = 0,...,s. Furthermore, we have v(°) # 0 in case 1) and v £ 0 in case 2).
This proves the theorem. m

REMARK 3.2.1. If A\g # 3 —4v and A9 # 4v — 4, then the formulas given
in the first part of Theorem 3.2.2 establish a one-to-one correspondence between
the eigenvectors and generalized eigenvectors of the pencil £ corresponding to the
eigenvalues A\g and —1 — )\, respectively.
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3.2.6. The Kelvin transform for the Lamé system. The identity (3.2.27)
implies the following analogue of the Kelvin transform for solutions of the Lamé
system.

Let U(x) be a solution of the system (3.2.1) in the domain G C R3. Then the
vector function

3
Viz) = = ((3—4u)1+5+(1—25)2xkau> U(ﬁ)
k=1

el

where I denotes the identity matrix and = is the matrix with the elements z;x;|z| =2,
is also a solution of the Lamé system in a domain which is obtained from G via the
inversion z — z|z|~2.

Indeed, we have £(r0,.)JU = 0, where J = J(0, ¢) is the transformation matrix
between spherical and Cartesian coordinates introduced in the beginning of this
section. Since (3.2.27) can be written as

T(rdy) L(ro) = L(=1 —rd,) T (rd,),
we get

L(—=1—7r0,.)T(ro,) (J(@7 ©) U(ﬂc)) =0
or, equivalently,

L(—r0d,) (r T (ro,) (J(0, ) U(x))) =0.

L we obtain

Replacing r by r—
£0,) (= T(=10,) (0, 9) Ular/2P)) ) = 0,

i.e., the vector function J*r=17(—rd,)JU(z/|z|?) satisfies the system (3.2.1).
Using the definition of the matrices J and 7', we verify that this function is equal
to V.

The Kelvin transform obtained here is useful for the construction of particular
solutions of the Lamé system. For example, replacing U by the matrices I and x31,
we arrive, up to scaling factors, at the Kelvin-Somigliana tensor and the Poisson
kernel for the Dirichlet problem in the half-space x3 > 0.

3.3. Properties of real eigenvalues

Here we describe a domain symmetric with respect to the line Re A = —1/2
which contains only real eigenvalues. We also show that there are no generalized
eigenvectors associated to eigenvalues in this set.

3.3.1. A domain containing only real eigenvalues. We introduce the
quantities

Q(uwa Uw) + (2 - 2”)71 fQ |Vw : Uw|2 dw

(3.3.1) Q)= inf

02U, €RL(Q) Jo luw|? dw
and
1 1/2
(3.3.2) F,(Q) = (5 Q)+ % F@2-2)(3— 4y)) .
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THEOREM 3.3.1. In the region
112
(3.3.3) (Re)\ + 5) — (Im\)? < (F,(Q))?
the pencil L has only real eigenvalues.

Proof: Let A be a complex number such that ImX\ # 0, ReX # —1/2. We
consider the quadratic form

o= e (). ()

4—4dv+ A
3—dv— X\’
After a straightforward calculation we arrive at

3:35) alus:) = Qutss) + [ (el Vol + 3

Q

where

(3.3.4) =

- §Z(1 “ MO 2)|ur\2)dw

+ ((1_)\)()‘+2)—1)/|uw|2dw+ /\VW g, | dw

Q
4 —4v+ A\ .
+ QRG(ﬁ/Uva s Uy dW)
Q
Using the relations
(3.3.6) c(1-ANA+2)=|4—dv+A?-2(1-2v)(5—4)c,

_ (4—4v+ReX)(3—4v —Re)) + (ImA)? + i Im A (2Re A + 1)
N |3 —4v — A2

and separating real and imaginary parts of the form g(u,u; \), we find

(3.3.7)

1
Q

4(1fy )(5 — 4v)

Req(u,u; \) = Q(uy,u,) + Rec / |VWuT|2 dw

2
+ (17 |4 —dv+ A - (1—u)(5—4u)Rec) /|ur\2dw

+ (1 (ReA)? ~Red+ (1m 1)?) /|uw\2dw

1 2 4—4V+)\ _
172y/|vw.uw| dw+2Re<ﬁ/urvw.uwdw>_
Q Q

+
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From this we obtain
Rec|3 —4v — \|?
Im /\ 2Re A+ 1)

= Quw, ) + /|vw o2 dw

(3.3.8) Req(u,u;A) —

Tm q(u, u; \)

2—2v

1—2 dw

1 2
/‘(4—4u+/\)ur+72_2va~uw‘
Q

+ <1+(3—4y)(4—4y)+2(1m/\)2 —2Re>\(Re)\+1)> /|uw|2dw.

Consequently, if
(3.3.9) L(Q) +1+4+(3—4v)(4—4v)+2(ImA)? —2Re X (ReA+1) > 0,

then (3.3.8) is positive for u,, # 0.

Suppose now that A is an eigenvalue satisfying the inequality (3.3.9) and (u,, u,,)
is an eigenvector corresponding to this eigenvalue. Then ¢(u,u;A) = 0 and, nec-
essarily, also u, = 0. From this and from the equation £(A)u = 0 we find that
(4—4v+ A\)V,u, = 0 on Q. Due to our assumption that Im A # 0, the last equality

yields V,u, = 0 and, therefore, u, = const. Since u, GV?/%(Q), the function u,
must vanish. This proves the assertion in the case Re A # —1/2. Since, by Theorem
3.2.1, there are no eigenvalues on the line Re A\ = —1/2, the theorem is completely
proved. m

As a consequence of Theorem 3.3.1, the following assertion holds.

COROLLARY 3.3.1. In the strip
1
(3.3.10) ’Re)\ + 5\ < F,(Q)
the pencil L has only real eigenvalues.

An estimate for the set function F, will be given later.

3.3.2. Absence of generalized eigenvectors. We consider the real eigen-
values of the pencil £ in the interval (—F, () — 3, F,,(€2) — 3). Our goal is to show
that there are no generalized eigenvectors associated to these eigenvalues.

LEMMA 3.3.1. Let Ao be a real eigenvalue of the pencil £ and u'®) a correspond-
ing eigenvector. Furthermore, let ¢(A) = (4 —4v+ X)/(3 —4v — ).

1) If —1/2 < Ao < min{3 —4v, F,(Q) — 1/2}, then

c(N) @ =(0)
/£ (O) _(0) dw < 0.
A=Xo
2) If 3—4v < Ao < F, () — 1/2, then
=(0)
d c(A) uy
) u(® . ( (_)(0) ) dw > 0.
5 Uw A=Xo



86 3. DIRICHLET PROBLEM FOR LAME SYSTEM

Proof: Let g be the sesquilinear form (3.3.5). For real A the function (3.3.4)
coincides with ¢(A) = (4 —4v + X)/(3 — 4v — ). Differentiating (3.3.5), we get

d e\ a™
)
(3.3.11) d}\/ﬁ(/\)u ( 2O dw
Q

2
/(a(xo)wuug‘))ﬁ(2A0+1)u§9>2+ ﬁReu@vw.ag’)
— zlV

d
= ﬁq(u(o),u(o)ﬂ)’

A=Xo A=2o

2—2v ’ (0))2

5 (1= 20) 0 +2)¢/ (M) = (20 + L)e(ho) ) [u?[? ) de,
where ¢/(\) = (7 — 8v) (3 — 4v — \)~2. Multiplying both sides of the equation
LX) u® = 0 by the vector function (u,« ),O) integrating over 2 and taking the
real part, we find that the integral

+

—2v v—A

(0)2 _ (0) 0 Oz (0)
/(\v WO + 722 (1= 20) o +2) [ul® 2 + 2= =20 Re(V, - ul®)al )dw
Q
vanishes. From this and from (3.3.11) we obtain

1 +2,\0 02 g, _ AL+ 220)(1 = 5 1v) / o)
Vo 2d
(B—dv—X)? /| up7d 3—4v— fur “

d
—(2A0 +1) / ()2 dw = 7q(u(0)’u(0);)\)‘
Q

d\ A=Xo

Furthermore, by a calculation analogous to that in the proof of Theorem 3.3.1, we
arrive at the identity

(=4 +M)B—4r— ) iq(u(O)yu(o);/\)’

1+ 2h X A=2o
4—4v4+X)B—4v—X) d

— o ©® @5y 0 0 ©) 4. )

2™, w7 M) 1+ 2X UL N

1
(0) (0) - (02
Q( )+2_2V/‘VW uw|dw
Q

2-2
— 2; / ’(4 — v+ A)ul? +
Q

Ol
5oy Ve e ‘ @

+ (14 (3= 4)(4 - ) — 2Re X (Redg + 1)) / Jul[? dw.

This implies the assertion of the lemma. m

THEOREM 3.3.2. There are no generalized eigenvectors associated to eigenval-
ues in the interior of the strip (3.3.10).

Proof: Due to assertions 1) and 3) of Theorem 3.2.1, it is sufficient to consider
the case —1/2 < \g < F,(Q) — 1/2. Let u(®) be an eigenvector corresponding to Ao
and let u(") be a generalized eigenvector for u(?). Then
(3.3.12) L(o)u® =0,

(3.3.13) L) u™ = —£' () ul® .
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Assume first that Ay # 3 — 4v. Multiplying both sides of (3.3.13) by (cu,(ﬂo),ufuo)),
where the quantity ¢ has been defined in (3.3.4), setting A = Ag and integrating
over (), we get
1) . (0). _ .
q(u™ u ),Ao)——aqu u oy
Here ¢(+,-; \) is the sesquilinear form (3.3.5). Since this form is symmetric for real
A, we have

g(ut 1@ 20) = ¢(u©®, u®; Ag) = 0.

Therefore,
d
Za(u® 0.y —=0.
PIRAGRE ALY N
However, by Lemma 3.3.1, this is impossible. Thus, the theorem is proved for the
case \g # 3 — 4v.
Now let 3 —4v < F,(2) —1/2 and \g = 3 — 4v. The equations (3.3.12), (3.3.13)
for the components uﬁo) and u,(ﬂl) take the form
oul® + (4 — 4v) (5 — 4v)u® =0,

2(1 —v)(7—8v) 1
(1) - - (1) — (0) _ A\
dup’ + (4 —4v) (5 — 4v) uy T 5, U, 1o, Ve U -

The second equation may have a nontrivial solution only if

(3.3.14) 2(1 —v) (7 —8v) / [u®? dw + Re /(vw 7O dw = 0.
Q

Multiplying (3.3.12) by the vector function (0, u&o)), integrating over (2 and taking
the real part, we find

(33.15)  0=Qu,u®) — (1+2(1-2v)(5—4v)) / [ul9)? dw

+

1 7T-38
=% / Ve - ul9)? dw + T 2ZRe /u&O)Vw a0 dw.
Q

From (3.3.14) it follows that

Ol
1_2y/‘7 8v)u Vw~uw’dw
——/\V u(0)| dw = — 8 Re/u(o)v -@dw.
(1-2v)(2-2v w 1-2v T
Q
Using this equality, we can write (3.3.15) in the form
2
Qul?, ul! + 15, /’ (7T—8v)u Vw~u£)0)’ dw
+2 —5 /|Vw ul9)? dw — (1+2(1—2v)(5—4v)) /|u(0)| dw = 0.

Q

Now, since F),(2) —1/2 > 3 —4v, we have I'(Q2) > 1+ 2(1 —2v)(5 — 4v). Therefore,
the last equality cannot hold. The theorem is proved. m
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3.4. The set functions I' and F,

We are interested in estimates for the quantity F, (2) which appeared in Theo-
rems 3.3.1 and 3.3.2. For this we need information about the function I'(€2) defined
in (3.3.1).

In the sequel, we will write Qg C €1, where g, 2, are subdomains of the
sphere, if Q¢ C Q; and 1\ contains a nonempty open set.

3.4.1. Monotonicity of " and F,,.

2) If Qo C Qy, then F(Qo) > F(Ql)

Proof: 1f Qg C 1, then ;Lé (Qo) is contained in ;é (Q1). This proves the mono-
tonicity of T'.

Let Qo C Q5. We assume that I'(€2g) = I'(€21) and denote by ul 6]01%(90) a
nonzero vector on which the infimum in (3.3.1) is attained. The extension of this

vector function to €2 by zero will be also denoted by ufuo). From our assumption

it follows that the infimum in (3.3.1) for the space ;Lé(Ql) is also attained on ul.
Therefore,

— ,/_1/21145)0) =T(7) u&o) on €.
From this we obtain that us,o) is analytic on €2y and, since ufuo) =0 on 21\, it

follows that u&o) =0 on 2. This completes the proof. m

REMARK 3.4.1. If we let v in (3.3.1) tend to —oo, then I'(Q2) is equal to the
quantity

(3.4.1) s(Q) = inf (/ |, |? dw)71 Q (U, Usy)-
€R3@) g

0#u,,

Repeating the proof of Lemma 3.4.1 verbatim, we verify that the assertions 1) and
2) of Lemma 3.4.1 also hold for s(Q2). According to Lemma 3.2.3, we have s(€2) > 1.

From the stated properties of T'(2) we immediately obtain the following asser-
tions.

COROLLARY 3.4.1. Let F, () be the quantity defined in (3.3.2).
1) If Qp C Ql, then FV(Qo) > Fy(Ql)

2) If Qo C 4, then F,(Qp) > F,(Q1).

3) For all Q C S? there is the inequality

(3.4.2) F,(Q) > ((g - 2u)2 +(1- 21/)2)1/2

3.4.2. Estimates of I'(?), F,,(?) for circular cones. Now we estimate
the quantities I'(Q2) and F,(Q2) for right circular cones, i.e., for

D=0Q,={00,p): 0<b<a, 0<p< 2},

where o € (0, 7].
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LEMMA 3.4.2. The quantity T'(,) satisfies the inequalities
(3.4.3) Yo(a) =1 > T(ag) > min {o(a), 7 (@), 77 (@)} =1,

where
1
J (A=) @PR + (-2 f@)P) de
(3-44) %(a):hﬁO fi(rclgsa):ocom I :
| J @)z ds

cos «

[ (0=a)F@P 2020 f@)?) de

3.45) ~i(a) = inf <=
(3.4.5) 71 (a) oo

[ 1@ ds

COoS &

Proof: Let us first establish the upper bound for I'(Q,). Taking the infimum in
the right-hand side of (3.3.1) only over vector functions of the form (0, g(9)), where
g €h3(Qa), we get

e

Jg' (0)7 + cot? @ [g(0)[?) sin 6 db

a) < Y
97#0.9(e)=0 [ 1g(0)]2 sin 0 do

0
The change of variables cos § = z leads immediately to the upper bound in (3.4.3).
We show the lower bound. Since I'(Q,) > s(£), it is sufficient to estimate
5(Qq) from below. Observe that, if the infimum s(Q,) in (3.4.1) is attained on the
pair (ug, u,), then it is also attained on the pair (u,, —ug), since the form Q(u.,, u.,)
is invariant under this transformation. Consequently, there exists a minimizer of
the form (f,if) or (f, —if) on which s(£2,) is attained. If we represent f(6, ) as

eik:tp

_ (k)
f ;f (9)\/%’

where f*)(a) = 0, we find that

s(Qy) = 1rnkin;11§€t ,

where

pic = inf </|f|2 sin9d0) -/(|f’(9)|2 + (@ icotH) |f(9)|2) sin 6 do
0 0

and the infimum is taken over all functions f on the interval [0, a] such that f(a) =
0. Since for k£ > 2 and 6 € (0, o] the inequality

(si :l:cot9>2 > (SL j:cot9>2

in 6@ inf

is satisfied, we have uli < uf for k > 2 and, therefore,

$(Qa) = min(uo, i, py ).
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Substituting = = cos# into the expressions for po and uli, we get the quantities
Yo — 1 and 'yli — 1, respectively. This proves the lemma. m

The figure below shows the dependence of the bounds yo(a) — 1, 7 (a) — 1 for
['(Qy), o € (7/2, ).

4500

35

25

15

FIGURE 6. Upper bound 7o(a) — 1 and lower bound ~; (o) — 1 for T'(Q4)

REMARK 3.4.2. Let o = 7. Then I'(S?) = 1 and the only extremal element
(up to normalization) in (3.3.1) is the vector (ug,u,) = (0,siné).

Indeed, by Lemma 3.2.3, we have I'(S%) > 1. Since the right-hand side of (3.3.1)
is equal to one for 2 = 5% and (ug, u,) = (0,sin6), we conclude that I'(S?) = 1. In
order to show that there are no other minimizers, it suffices to consider only those
minimizers of the functional s for which V, - u,, = 0. Since u; > pq for k > 2, we
need only consider functions which are either independent of ¢ or which are of the
form e*v,,(#). Using formula (3.2.13), we obtain in the first case that

Qs 1) = / a2 o
SZ

and u,, = (0, csin ) if V,,-u,, = 0. In the second case the right-hand side of (3.2.13)
is always positive for nonzero e*?v,, () 6}015(52).

REMARK 3.4.3. Let yo(a) = p(p + 1), u > 0. As is easily seen, pu is the small-
est positive root of the equation Pﬁ(cos a) = 0, where Pj denotes the associated
Legendre function. The corresponding minimizer is equal to Pj (z).

In the next lemma we employ the notion of capacity, see (2.2.12). Note that
cap (S2\Q) =0 & hy(S?) =mp(Q) & Wy (5?) =W3(Q).
As is well known, the capacity of any arc is positive.

LEMMA 3.4.3. Let Q C S? and cap (S*\Q) > 0. Then I'(Q2) > 1.
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Proof: Tt is known (see the article [46] by Deny and Lions or Landkof’s book
[164]) that every function u GI/(I)/%(Q)‘S, “precisée” in the sense of [46], is equal to

zero quasi-everywhere on S2\(2. By Lemma 3.2.1, the same holds for all v E%(Q)
Now the crucial observation is that the vector (0,sin ) for which, according to
Remark 3.4.2, the infimum I' = 1 is attained is nonzero quasi-everywhere on S2

as it vanishes only at the poles. Hence (0, sin0) ¢;L%(Q) if cap (S2\Q2) > 0. This
implies I > 1 if cap (S*\Q) > 0. m

3.5. A variational principle for real eigenvalues

Let « = —1/2, 8 = min{F, (Q)—1/2, 3—4v}. By Theorem 3.3.1, the eigenvalues
of the pencil £ in the strip @« < ReA < 3 are real. By means of a variational
principle, we show that these eigenvalues depend monotonically on the domain €.

We set

AN TN LN,

where 7 (\) is the matrix (3.2.26). Then every eigenvalue of the pencil £ is also an
eigenvalue of the pencil A. Furthermore, we have

(s 1 \) déf/A(A) (“) - (“) do = (3 — 4v — ) qlu, 1w \)

J Uy, Uy,
=(B3—4v—-)) (Q(uw,uw)+(1—)\—>\2)Q/|uw|2dw)

1 24—-4
+(3—4u—/\)( _2y/|Vw.uw2dw+('H'/\)Re/urvw.uwdw)
Q Q

1 1-2v

+ (4—4V+A)(/|unr|2dw+ 3_21/(1—)\)()\+2)/|url2dw>
— Ll
Q Q

for A € R, (ur,uy) EI/?/% (Q)x iolé (©2). The form @ and the pencil A satisfy conditions
(I)—(III) in Section 1.3 if we set

He =WEHQ)x hA(Q)  and  H = La(Q)°.

Condition (I) is a consequence of 3 —4r — A > 0, while conditions (II) and (III)
follow from Lemmas 3.2.6 and 3.3.1.

By Theorem 1.3.1, the operator A()) is selfadjoint, bounded from below and
has discrete spectrum for every fixed A € [«, 3). We consider the eigenvalue problem

AN uw=pNu

for fixed A € [o, 8). By {u;(A\)};>1 we denote a nondecreasing sequence of eigen-
values of this problem counted with their multiplicities. As it was shown in Section
1.3 (see Theorem 1.3.2), the functions p; are continuous on the interval [e, §). Fur-
thermore, as a consequence of Theorems 1.3.2, 1.3.3 and Corollary 3.3.1, we obtain
the following results.
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THEOREM 3.5.1. 1) All eigenvalues of the pencil L in the strip —1/2 < Re A <
are real and may be characterized by

Dubims = {Ae 5.8 s N =0 forj=1,...7},

where J is the largest index j for which the function u; has a zero in the interval
[—%, ). For every j the function p; has not more than one zero in [—%,ﬂ).
2) If Ay € [—%,ﬂ) is an eigenvalue of multiplicity I, then I is equal to the

number of function p; which have a zero at Ag.

Now we study the dependence of the eigenvalues on the domain ). To this
end, we will indicate the dependence of the quantities on the domain explicitly (for
example (), 1;(X;€2), and so on). By the variational principle for eigenvalues of
selfadjoint operators which are bounded from below, we have

. a(u,us A, Q) 1
(A Q) =max min ————F- for A € [—=,8(2)),
/'LJ( ) I uEL\{O} ||u||%2(9)3 [ 2 ( ))

where the maximum is taken over all subspaces L Cl/f/é (Q)x %(Q) of codimension
2j—L

We enumerate the eigenvalues of the pencil £(A; Q) which are located in the
interval [—3, 3(2)) in nondecreasing order:

“1/2 < A(Q) < ... < AS(Q) < B().

Here the eigenvalues are counted with their geometric multiplicities, i.e., J = J(£2)
denotes the sum of the geometric multiplicities of all eigenvalues of L(\; ) in the
interval [—3, 3).

THEOREM 3.5.2. Let 2y, o be open subsets of the unit sphere, 1 C 1. Then
J(Q1) < J(Q3) and

If, in addition, Q1 C Qa, then in (3.5.1) even the strict inequality holds.

Proof: We apply Theorem 1.3.5. In our case

H+ :V?/%(QQ)X ;L%(Q()) and H= LQ(QQ)?).

The same spaces with €2; instead of {22 are denoted by H; and H. If we identify
every function on 2; with its extension by zero to {23, we can consider the spaces
H_, H as subspaces of Hy and H, respectively. Applying the first part of Theorem
1.3.5 to the form a, we obtain (3.5.1). In order to prove the strict inequality, we
have to verify that the equality

a(u,v;\) =0 for all v € Hy,
where u € Hy, —1/2 < A < (), implies © = 0. Indeed, from the above equality
we obtain that £(\) u = 0 in Qs